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Abstract

The main topic of this thesis is the analysis of evolution equations reflecting
issues in ecology and population dynamics. In mathematical modelling, the impact
of environmental elements and the interaction between species is read into the role of
heterogeneity in equations and interactions in coupled systems. In this direction, we
investigate three separate problems, each corresponding to a chapter of this thesis.

The first problem addresses the evolution of a single population living in an en-
vironment with a fast diffusion line. From a mathematical point of view, this corre-
sponds to a system of two coupled reaction-diffusion equations working on domains
of different dimensions, which is called as in [20] a “road-field model”. We introduce
a periodic dependence of the reaction term in the direction of the fast diffusion line;
in the ecological interpretation, this corresponds to the presence of more and less
favourable zones for the growth of the population. Necessary and sufficient condi-
tions for persistence or extinction of the population and the effects of the presence of
the road are analysed through the study of a suitable generalised principal eigenvalue,
originally defined in [16]. By comparison with the literature about reaction-diffusion
equations in periodic media, we show that the presence of the road has no impact on
the survival chances of the population, despite the deleterious effect that is expected
from fragmentation.

The second investigation regards a model describing the competition between two
populations in a situation of asymmetrically aggressive interactions – one is the at-
tacker and the other the defender. We derive a system of ODEs from basic principles,
obtaining a modified Lotka-Volterra model relying on structural parameters as the
fitness of the population and the frequency and effectiveness of the attacks. The
evolution progresses through two possible scenarios, where only one population sur-
vives. Then, the interpretation of one of the parameters as the aggressiveness of the
attacker population naturally raises questions of controllability. With the aid of geo-
metrical arguments we characterise the set of initial conditions leading to the victory
of the attacker through a suitable (possibly time-dependant) strategy. Indeed, we
prove that bang-bang strategies are sufficient and sometimes necessary over constant
controls. Finally, we treat a time minimization question.

The third and last part of this thesis analyses the time decay of some evolution
equations with classical and fractional time derivatives. Carrying on an analysis
started in [43], we deal with evolution equations with a possibly mixed Caputo and
classical time derivative. By using energy methods, we prove quantitative estimates
of polynomial or exponential type; the different behaviour depends heavily on the
choice of the time derivative. The decay results apply to a large class of diffusion
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operators, comprehending local, nonlocal, real, complex, and even nonlinear ones, of
which we provide concrete examples.



Riassunto

Il principale argomento di questa tesi è l’analisi delle equazioni dell’evoluzione
che riflettono questioni di ecologia e di dinamica della popolazione. Nell’ambito della
modellizzazione matematica, l’impatto degli elementi ambientali e delle interazioni
tra le specie viene studiato mediante il ruolo dell’eterogeneità nelle equazioni e nel-
le interazioni nei sistemi accoppiati. In questa direzione, indaghiamo tre problemi
distinti corrispondenti a tre capitoli di questa tesi.

Il primo problema riguarda l’evoluzione di una singola popolazione che vive in un
ambiente con una linea di diffusione rapida. Dal punto di vista matematico, lo studio
riguarda un sistema di due equazioni di reazione-diffusione accoppiate, che lavorano
su domini di dimensioni diverse, chiamato come in [20] un modello “campo-strada”.
Introduciamo una dipendenza periodica in direzione della linea di diffusione per il
termine di reazione, che nell’interpretazione ecologica corrisponde alla presenza di
zone più e meno favorevoli alla crescita della popolazione. Le condizioni necessarie e
sufficienti per la persistenza o l’estinzione della popolazione e gli effetti della presenza
della strada sono analizzati attraverso lo studio di un adeguato autovalore principale
generalizzato, recentemente definito in [16]. Tramite il confronto con la letteratura
in mezzi periodici, si mostra che la presenza della strada non ha alcun impatto sulle
possibilità di sopravvivenza della popolazione, nonostante l’effetto deleterio che ci si
aspetta dalla frammentazione.

La seconda indagine riguarda un modello che descrive la competizione tra due po-
polazioni in una situazione di aggressione asimmetrica, in cui una popolazione aggre-
disce una seconda. Deriviamo un sistema di ODE da alcune assunzioni fondamentali,
ottenendo un modello Lotka-Volterra modificato che si basa su parametri strutturali
come la fitness della popolazione e la frequenza e l’efficacia degli attacchi. L’analisi
della dinamica mostra due possibili scenari, in cui una sola delle due popolazioni so-
pravvive. Dopodiché, l’interpretazione di uno dei parametri come l’aggressività della
prima popolazione solleva in modo naturale un problema di controllabilità. Tramite
argomentazioni geometriche caratterizziamo l’insieme delle condizioni iniziali permet-
tendo, con un’adeguata strategia eventualmente variabile nel tempo, la vittoria della
popolazione che attacca. Infatti, dimostriamo che le funzioni di tipo bang-bang so-
no sufficienti a raggiungere l’obiettivo e talvolta sono necessarie rispetto a funzioni
costanti. Infine, trattiamo una questione di minimizzazione nel tempo.

La terza e ultima parte analizza il decadimento nel tempo in equazioni di evoluzio-
ne con una possibile derivata temporale frazionaria. Proseguendo un’analisi iniziata
in [43], trattiamo equazioni d’evoluzione con una combinazione di derivata temporale
di Caputo e classica. Utilizzando metodi d’energia, dimostriamo stime quantitative
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di tipo polinomiale o esponenziale; il diverso comportamento dipende principalmente
dalla scelta della derivata temporale. I risultati di decadimento si applicano ad una
vasta classe di operatori di diffusione, comprendendone alcuni locali, non locali, reali,
complessi e anche non lineari, di cui forniamo esempi concreti.



Résumé

Le sujet principal de cette thèse est l’analyse des équations d’évolution reflétant
les questions d’écologie et de dynamique des populations. En modélisation, la
compréhension de l’impact des éléments environnementaux et de l’interaction entre
les espèces dépend de la compréhension du rôle de l’hétérogénéité dans les équations
et les interactions dans les systèmes couplés. Dans cette direction, nous étudions trois
problèmes indépendents correspondant à trois chapitres de cette thèse.

Le premier problème concerne l’évolution d’une seule population vivant dans un
environnement avec une ligne de diffusion rapide. L’analyse porte sur un système
de deux équations de réaction-diffusion couplées, travaillant sur des domaines de di-
mensions différentes, qui est appelé comme dans [20] un modèle “champ-route”. Nous
introduisons une dépendance périodique dans la direction de la ligne de diffusion pour
le terme de réaction, qui, dans l’interprétation écologique, correspond à la présence
de zones plus ou moins favorables à la croissance de la population. Les conditions
nécessaires et suffisantes pour la persistance ou l’extinction de la population et les
effets de la présence de la route sont analysés par l’étude de la valeur propre princi-
pale généralisée appropriée, définie pour la première fois dans [16]. Par comparaison
avec des études similaires dans des environnements périodiques, nous prouvons que la
présence de la route n’a aucun impact sur les chances de persistence de la population,
malgré l’effet délétère attendu lié à la fragmentation.

La deuxième étude porte sur un modèle décrivant l’interaction compétitive et
agressive entre deux populations. Nous dérivons un système d’EDO à partir de prin-
cipes de base, en obtenant un modèle Lotka-Volterra modifié reposant sur des pa-
ramètres structurels comme la fertilité de la population et la fréquence et l’efficacité
des attaques. L’analyse de la dynamique donne deux scénarios possibles, où une
seule population survit. Ensuite, l’interprétation d’un des paramètres comme étant
l’agressivité de la première population soulève tout naturellement des questions de
contrôlabilité. Grâce à des arguments géométriques, nous caractérisons l’ensemble des
conditions initiales permettant la victoire de la première population avec une stratégie
appropriée éventuellement dépendante du temps. En effet, nous prouvons que les
stratégies de bang-bang sont suffisantes et parfois nécessaires face à des contrôles
constants. Enfin, nous traitons une question de minimisation du temps.

La troisième et dernière partie de la thèse analyse la décroissance dans le temps
pour des solutions d’une classe d’équations d’évolution avec dérivées temporelles frac-
tionnaires et classiques. Poursuivant une analyse commencée dans [43], nous traitons
des équations d’évolution avec une combinaison linéaire des dérivées temporelles Ca-
puto et classiques. En utilisant des méthodes d’énérgie, nous prouvons des estima-

vii



viii

tions quantitatives de type polynomial ou exponentiel ; le comportement différent
dépend fortement du choix de la dérivée temporelle. Les résultats de la décroissance
s’appliquent à une large classe d’opérateurs de diffusion, comprenant des opérateurs
locaux, non locaux, réels, complexes et même non linéaires, dont nous fournissons des
exemples concrets.
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Chapter 1

Introduction

The main motivation behind research is to enhance mankind ability to predict and
keep under control natural and artificial processes. To this purpose, mathematical
models have revealed to be a very compelling instrument. A mathematical model is a
simplified representation of a phenomenon through several meaningful, quantitative
parameters evolving with analytical laws. Once some faithful evolution equations are
established, the role of mathematics is to provide as much information as possible
on the solutions, even if often only qualitative properties can be derived. That is,
mathematics does not study the reality, but the language in which we read it.

On the other side, given a model, people often find the mathematical challenges
interesting in themselves. It is natural that some questions on the mathematical
tools arise, or that variations of the model are proposed and discussed. This way,
knowledge of mathematics is expanded, and more equipment is available to write new
models.

At present, the problem of climate change and environment anthropization is a
great concern for humankind. In order to activate effective countermeasures against
biodiversity loss, it is important to understand as deeply as possible what conditions
would entail such event. These conditions depend on quantitative and qualitative
properties of the environment where the species lives, on a population’s resilience to
changes, but also on its interaction with other species sharing the same habitat. We
still know too little about the effects that these elements and their alteration have on
the survival chances of species.

This thesis is far from giving a solution to these dreadful problems but aims
to give a contribution to the field of evolution equations and systems with possible
application to population dynamics.

Topics and aims of the thesis

The thesis consists of three parts, each treating a different problem.

In the first part, corresponding to Chapter 2, we start from a reaction-diffusion
model in a periodic environment with a fast diffusion line. The aim is to find condi-
tions entailing survival or extinction of the population and to understand the influence
of the line and the environment on the dynamics. Our analysis permits a comparison
with the scenario where the fast diffusion line is not present for the general case of a
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2 Introduction

medium with heterogeneity in one direction. The content of Chapter 2 is reflects the
content of the paper [2] by the author of this thesis.

The second part, contained in Chapter 3, is consecrated to a model of aggressive,
asymmetric competition between two populations, derived from a Lotka-Volterra sys-
tem. The presence of the aggression term naturally leads to a control problem, where
a population tries to prevail on the other using an appropriate strategy. Hence, once
the dynamics of the system is understood, we investigate conditions for the victory of
the aggressive population, which quite surprisingly is not always possible. Moreover
it is found that, depending on the initial condition, either a bang-bang or a constant
strategy leads to the desired scenario. Chapter 3 corresponds to the paper [3] by
Serena Dipierro, Luca Rossi, Enrico Valdinoci and the author of this thesis.

The last part of this thesis deals with a more abstract and general problem;
we investigate asymptotic behaviour for a class of evolution equations with both
fractional and classical time derivatives. Our setting consists of an homogeneous
evolution equation working on a bounded set. The framework comprehends both
real and complex, local and nonlocal diffusion operators, and allow us to evaluate the
impact of time derivatives on the decay of solutions. Depending on the type of time
derivative, polynomial or exponential decays are entailed. The results of Chapter 4
are presented in the paper [5] in collaboration with Enrico Valdinoci and the note [4]
in collaboration with Serena Dipierro and Enrico Valdinoci.

Organisation of the manuscript

In this introductory chapter, we make the reader familiar with the problems we
investigate and the framework they are enclosed in. Following the historical path, we
start by a general introduction that then branches in three sections corresponding to
the precise research niches of our problems. In each section, after an overview of the
state of the art of the topic, we introduce the corresponding problem in details and
provide precise statements of our results.

As mentioned before, the rest of the manuscript consists of three chapters, cor-
responding respectively and in the same order to the topics we introduce in this
introduction. Each chapter is meant to be a self-standing script.

1.1 General historic background

For apparent reasons of population control and resource organisation, one of the
first themes for which modelisation has been used is population dynamics. The first
example in this sense was written by Leonardo Fibonacci in Liber Abaci and treats
the size of a population of rabbits. Fibonacci supposed that each couple of rabbits
that are older than one month gives birth to another couple of rabbits; calling un the
size of the population at the n−th month, under the previous hypothesis one deduces
that

un+2 = un+1 + un.

Staring with u0 = 1, it can be deduced that un has an exponential behaviour [8].
This deduction corresponds to the reality only as long as the food is abundant for all
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the individuals; moreover, the relation is involved and not easy to treat.

Another discrete model was proposed by Euler in the treatise Introduction to the
Analysis of the Infinite, published in 1748 [8]. He assumed the annual growth rate to
be a fixed quantity α > 0. Then, calling Pn the size of the population at the year n,
one has that

Pn+1 = (1 + α)Pn,

so one derives, calling P0 the population at the initial time,

Pn = (1 + α)nP0.

The sequence {Pn}n∈N is called a geometric sequence, and its behaviour is again
exponential. Thanks to these formulae, Euler treated some problems linked to the
growth of urban population and he investigated the reliability of the biblical story of
the Float. However, his model involve many computations that were hard to perform
before the introduction of computers.

Thomas Malthus, in his work Essay on the Principle of Population [81], used
a simpler relation to represent the evolution of a population size; he supposed the
growth of a population to be proportional to its size, that is, the growth rate to
be a fixed constant, a > 0. Moreover, as simplification, he assumed the size of
the population to evolve in a continuous fashion with respect to time. With these
hypothesis, the evolution of u follows the law

u′(t) = au(t) for t ≥ 0. (1.1)

The solutions to equation (1.1) are exponentials, in accordance with the result of
Fibonacci.

Again in [81], Malthus pointed out that the growth of a population is limited
by the quantity of resources. This idea was taken into the equation by Verhulst
[120]. He considered the number k > 0 of individuals that the environment can
support indefinitely with the available resources; this is called carrying capacity of
the environment. Then, he corrected Malthus’s equation (1.1) with the following:

u′(t) = au(t)

(
1− u(t)

k

)
for t ≥ 0. (1.2)

Equation (1.2) presents two equilibria: u = 0, that is repulsive, and u = k, which
is attractive. In fact, for all u(t) < k, one has u′(t) > 0, while for u(t) > k, it
holds u′(t) < 0; in both cases, the solution tends to get closer to the value k. This
means that, independently of the starting condition, as long as the initial datum is
positive, the population size evolves approaching the value k, which is the maximum
number of individuals that the environment can sustain. The logistic model is much
more realistic that the previous estimates. It is considered the precursor of interest-
ing mathematical branches, including Lotka-Volterra systems and reaction-diffusion
equations.



4 Introduction

1.2 The road-field model in a periodic medium

1.2.1 Reaction diffusion equations in the literature

One important feature that is not taken into account in the logistic equation
is dependence on space. The first effect to take into account for a space structured
model is the fact that a population is subject to dispersion. This is a result of the free
movement for animals and of the dispersion of seeds for plants. The first hypothesis
in the literature was to consider the individuals to move with random brownian walk,
as particles of a gas. Without taking account reproduction, calling u(t, x) the size
of a population and considering it in continuous dependence on time, the dispersal
would follow the well-known heat equation

∂tu−∆u = 0. (1.3)

Note that when speaking of population denisties and sizes, we only consider nonneg-
ative solutions.

The first mathematicians who added a reaction term to equation (1.3) were Fisher
[50] and Kolmogorov, Petrovsky and Piskunov [72]. They considered a function
u(t, x) representing the concentration of an advantageous gene in a population; it was
supposed that the population lives in a one-dimensional environment and that the
individuals move randomly. Taking these hypothesis, once the gene was introduced,
it spreads according to the equation

∂tu− ∂2
xxu = f(u) (1.4)

where f is a function such that

f(0) = f(1) = 0, (1.5)

moreover it is monostable, that is,

f(u) > 0 for u ∈ (0, 1),

and respects the condition called KPP hypothesis

f(u) < f ′(0)u. (1.6)

The function f represents the birth-death rate of individuals carrying the gene. The
fact that f(0) = 0 is a very natural assumption: if no individuals are present, no
new individual is generated. On the other hand, the choice f(1) = 0 suggests a
saturation at the size u = 1. The hypothesis (1.6) reflects the fact that the growth
rate decreases as the size of the population grows, as it is the case for the logistic
equation (1.2). Actually, Fisher supposed f(u) = au(1−u) for a > 0, which is exactly
the nonlinearity proposed by Verhulst, while Kolmogorov, Petrovsky and Piskunov
selected f(u) = au(1− u)2.

For a large class of initial data, among which the Heaviside functions, the solutions
to (1.4) asymptotically converge to a function of the shape

u(t, x) = U(z) for z = x+ ct. (1.7)
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Solutions of the form (1.7) are called travelling waves and the quantity c is called
speed of propagation of the travelling wave. The travelling wave found in [50] and
[72] has speed corresponding to cKPP = 2

√
f ′(0); actually, a travelling wave exists

for all c ≥ cKPP and cKPP corresponds to the minimal speed.
The main questions addressed in [50] and [72] have been later asked for larger and

larger class of nonlinearites. These questions concerns the existence of stationary
solutions, the existence of travelling fronts and the asymptotic speed of propagation
for the Cauchy problem.

For the sake of completeness, we must here name other two important settings.
In [48] and in [7] for the multidimensional case, Fife and McLeod and Aronson and
Weinberger treated equation (1.4) in the case of a function f satisfying the hypothesis
(1.5) and such that there exists a value θ for which

f(u) < 0 if u ∈ (0, θ), f(u) > 0 if u ∈ (θ, 1). (1.8)

A function satisfying (1.8) is called bistable, from the fact that the related equation
has two attractive states, 0 and 1. This type of nonlinearity is particularly interesting
because it embodies an important phenomenon in population dynamics, called the
Allee effect from the name of the scientist who discover it in the ’30s. It happens
that in social animals, aggregation increases the survival rate of individuals; therefore,
when the size of a population is under a certain threshold, the growth rate is negative;
when the group size passes the threshold, the growth rate becomes positive.

A third important setting is the combustion case, in which there exists a quantity
θ ∈ (0, 1) such that

f(u) = 0 if u ∈ [0, θ], f(u) > 0 if u ∈ (θ, 1).

This type of nonlinearity is used for ignition models, where to activate the combustion
process the temperature must pass a threshold.

As a matter of fact, Aronson and Weinberger investigated the equation

∂tu−∆u = f(u) for x ∈ Rn (1.9)

and asked under which conditions on the function f , other than (1.5), and on the
initial datum u0 one has invasion or spreading, that is,

u(t, x)
t→+∞−→ 1 locally uniformly in x.

The opposite behaviour is called extinction, and it occurs when

u(t, x)
t→+∞→ 0 uniformly in x.

We point out that for extinction a uniform convergence is required, otherwise, in
some scenarios, one could have a positive mass escaping further and further in space
as t goes to infinity. The authors found that for a compactly supported initial datum
which is “sufficiently large” (depending on the nonlinearity), invasion occurs if and
only if ∫ 1

0

f(x)dx > 0.
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Let us give more details on the minimal requirements for the initial datum. In the
monostable case, it is sufficient for u0 to be greater than a positive constant in (0, 1)
in a large enough ball. Moreover, if f ′(0) > 0, then all solutions issued from a non
zero, non negative initial datum converges to 1 as t goes to infinity; this is called
hair trigger effect. In the bistable and monostable cases, the positive constant is
necessarily greater than the threshold θ.

Equation (1.4) was the first example of a whole class of PDEs, the reaction-
diffusion equations. From the initial works [50, 72, 48, 7], the literature on reaction-
diffusion equations and the study on travelling waves have flourished. What is present
here is a circumscribed niche, which is handy to provide context to our work.

Reaction-diffusion equations in periodic media

One of the other natural applications of equations (1.4) and (1.9) is of course
population dynamics. Skellam [109] was one of the firsts to study the effects of
random dispersion on a population subject to the malthusian law, after noticing that
the framework given by [50] and [72] could be adapted to this problem.

In the optic of studying the survival and the distribution of a population in space,
a homogeneous environment is not satisfying and one expects the growth of the
population to vary according to the habitat conditions. On the other hand, from a
mathematical point of view, heterogeneity in the nonlinearity creates great difficulties.
Many new techniques were required to overcome these obstacles.

A first analysis was carried out by Shigesada, Kawasaki and Teramoto in
[108, 107]. The authors observed that natural environments are a mosaic of dif-
ferent habitats, such as forests, meadows, brush, cultivated fields and villages. This
led them to consider an environment which consists of two periodically alternating
homogeneous habitats, one favourable, E+, and one unfavourable, E−, for the consid-
ered species. The heterogeneity of the living conditions is reflected by the birth-death
rate, which they chose to be

f(x, u) =

{
u(µ+ − u), in E+,
u(µ− − u), in E−,

for some µ+ > µ−. Moreover, they also consider possibly varying diffusivity, hence
they took

A(x) =

{
A+, in E+,
A−, in E−.

This is due to the observation of increased speed in unfavourable environments; hence
we expect A+ < A− for a real population. Then, the authors studied in [108] the
equation

∂tu−∇ · (A(x)∇u) = f(x, u) for x ∈ Rn. (1.10)

This is known as the patch model ; they investigated long time behaviour, conver-
gence to travelling fronts and propagation speeds. Actually, since u = 1 is no longer
an equilibrium for equation (1.10), we have to modify our definition for species sur-
vival; from now on, we intend that persistence occurs if u(x, t) approaches a non null
stationary solution locally uniformly as t tends to infinity.
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By making use of numerical simulations, it was found that the stability of the
trivial solution u = 0 plays a key role in determining if the population survives or
not. It was already known (see [35]) that a negative or positive sign of the principal
eigenvalue resulting from the linearisation around u = 0 entails respectively stability
or instability of the 0 solution. In [108], it was shown numerically that the stability
of the trivial solution entails extinction, while its instability causes persistence of the
population. The authors also studied the sign of the eigenvalue depending on the
values of L, the measures of E+ and E− and the values of the parameters; this was
possible because of the simplicity of the framework.

Equation (1.10) was later considered in [70] and [18] for general A(x) and f(x, u)
depending on x in a continuous fashion and perdiodically of period L for some L ∈
Rn. In this second article, Berestycki, Hamel and Roques comprehended that the
extinction or persistence of the population depends on the sign of a periodic eigenvalue
λp(−L′,Rn), that is the unique real number such that the problem

L′(ψ) + λψ = 0, x ∈ Rn,
ψ > 0, x ∈ Rn,
||ψ||∞ = 1,
ψ is periodic in x of periods L,

(1.11)

where L′ is given by

L′(ψ) := ∇ · (A(x)∇ψ) + fu(x, 0)ψ,

has a solution ψp ∈ W 2,3
loc (Rn). It was proved that when λp(−L′,Rn) ≥ 0 extinction

occurs. On the other hand, when λp(−L′,Rn) < 0 there is persistence; moreover,
there exists a unique stationary solution to (1.10), that is periodic of period L, and
attracts all the solutions starting from a non negative, non zero bounded initial
datum.

The studies on the patch model [108, 107] and the ones on periodic media [70, 18]
evidenced also the effect of fragmentation on the survival chances of a population. It
was found that λp(−L′,Rn) decreases as the homogeneity increases, that is, a species
has better survival chances when the environment is less fragmented.

The case of a changing climate

A new aspect that one may consider while studying ecological problems is a chang-
ing climate. If the environment changes in time, so does the fitness of a population.
In this paragraph, we are going to analyse the difficulties produced by the new type
on nonlinearity and how it has been overcome.

A 1-dimensional model for population persistence under climate change was first
proposed by Berestycki, Diekmann, Nagelkerke and Zegeling in [15]. The authors
first imagined that a population lives in a favourable region enclosed into disadvan-
tageous environment. Assuming that a global warming is in place, and that the
population lives in the Boreal Emisphere, the authors imagined that the favourable
region moves to the north, so that for every favourable area lost in the South, an
equivalent favourable area is gained in the North. The resulting equation is

∂tu− ∂2
xxu = f(x− ct, u) for x ∈ R.
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Later, in [21], Berestycki and Rossi presented a model for climate change in Rn and
for a larger class of nonlinearites; they dealt with equation

∂tu−∆u = f(x− cte, u) for x ∈ Rn, (1.12)

with e a direction in Sn−1 and f : Rn × R+ → R. The authors focused on solutions
in the form of a travelling waves u(x, t) = U(x− cte) which solve the equation

∂tU −∆U − c e · ∇U = f(x, U) for x ∈ Rn. (1.13)

This second equation is more treatable: in fact, the dependence in time of the nonlin-
earity, which poses a lot of problems, is transformed into a transport term; now, the
equation has a nonlinearity depending only on space, and techniques for this type of
heterogeneity are more familiar.

The main question is if the population keeps pace with the shifting climate, that
is, if a large enough group is able to migrate with the same speed of the climate. The
answer to this question is positive if a solution to (1.13) exists; as happened for the
periodic equation (1.10), this depends on the sign of the principal eigenvalue coming
from the linearisation in 0.

The road-field model

Spatial heterogeneity in natural environments may be the consequence not only
of the diversity of the habitats, but also of the presence of obstacles or fast diffusion
channels that affects the fitness and the mobility of individuals.

In recent years, humans activity has caused drastic changes in the environment,
causing different species to become invasive in areas they were not present [107]. In
the case of the Processionary pine tree caterpillar, the diffusion in France has been
even faster than anticipated. It has been observed that the insect was incidentally
transported by humans from town to town, and from these settlements it spread in the
surroundings [103]. This in not the only example of ecological diffusion acceleration
by fast diffusion lines. In Western Canadian Forest, GPS observations on wolves
proved that the animals exploit seismic lines, that are straight roads used by the oil
companies to test reservoirs, to move faster and therefore to increase their probability
of meeting a prey [83].

Roads play a strong role also in the spreading of epidemics. The “black death”
plague in the 14th century was one of the most devastating epidemics known in
Europe. It is known that the plague was transported by animals and humans along
the commercial trade line of the silk road, and from that spread all over Europe.
More recently, a similar effect has been conjectured for the COVID-19 infection. By
tracing the spreading in Northen Italy in early March 2020, it was found that the
diffusion occurred first along highways and then spread in the surrounding territory
[52].

Inspired by this behaviour, Berestycki, Roquejoffre and Rossi proposed in [20]
a model of spreading in an environment presenting a fast diffusion channel. As a
simplification, they considered the channel to be a straight line in R2, the x axis
R × {y = 0}. Their idea was to split the population into two groups; the first one,
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of density u, occupies the one dimensional environment R × {y = 0} representing
the road, and the second one, of density v, occupies the surrounding territory; by
symmetry, they considered just one half of the plan, thus Ω := {(x, y) ∈ R2 : y > 0},
which they called “the field”. These two groups continuously exchange along the
road: a fraction ν > 0 of the population in Ω at y = 0 passes in the road, and a
fraction µ > 0 of the population in the road passes in the field. The diffusivity is
different in the two environments; its values are D on the road and d on the field,
both positive. Moreover, it is supposed that population reproduces only in the field
and that the environment is homogeneous; the corresponding function f is required
to satisfy (1.5), f ′(0) > 0 and a stronger version of the KPP hypothesis, that is

v 7→ f(v)

v
is decreasing.

The resulting system, called road-field model, is
∂tu(x, t)−D∂2

xxu(x, t) = νv(x, 0, t)− µu(x, t), x ∈ R, t > 0,
∂tv(x, y, t)− d∆v(x, y, t) = f(v), (x, y) ∈ Ω, t > 0,
−d∂yv(x, 0, t) = −νv(x, 0, t) + µu(x, t), x ∈ R, t > 0.

(1.14)

The authors of [20] found that invasion occurs for any non negative, non zero initial
datum, so the hair trigger effect holds; solutions converge to the unique steady state(
ν
µ
, 1
)

. Moreover, they studied spreading speeds and found that it is enhanced by the

presence of the road. In a second paper [19], the same authors investigated system
(1.14) with a transport term and a reaction term on the line.

Many variations of the road-field model were proposed. In [94, 95], the system was
modified by introducing nonlocal exchanges between the road and the field. The case
of a general nonlocal diffusion has been treated in [14, 13]. Different geometric settings
have also been considered; in [105], the model was extended in higher dimensions.
For a complete list, we refer to the chapter in [112] by Tellini.

Treating system (1.14) poses some difficulties because of the interaction between
functions living in different dimensions and the unusual boundary condition. Adding
some heterogeneity in space increases the difficulties. This is why very few studies
of this type have carried on so far, a part from an article by Giletti, Monsaingeon
and Zhou [58], where the authors considered the case of exchanges terms depending
periodically on x.

Recently, Berestycki, Ducasse and Rossi introduced in [16] a new generalised
principal eigenvalue fitting road-field models for a possibly heterogeneous reaction
term. Hence, they considered the system

∂tu(x, t)−D∂2
xxu(x, t)− c∂xu(t, x) = νv(x, 0, t)− µu(x, t), x ∈ R, t > 0,

∂tv(x, y, t)− d∆v(x, y, t)− c∂xu(t, x) = f(x, y, v), (x, y) ∈ Ω, t > 0,
−d∂yv(x, 0, t) = −νv(x, 0, t) + µu(x, t), x ∈ R, t > 0.

Calling 
R(φ, ψ) := Dφ′′ + cφ′ + νψ|y=0 − µφ,
L(ψ) := d∆ψ + c∂xψ − fv(x, y, 0)ψ,
B(φ, ψ) := d∂yψ|y=0 + µφ− νψ|y=0,
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this eigenvalue is defined as

λ1(Ω) = sup{λ ∈ R : ∃(φ, ψ) ≥ (0, 0), (φ, ψ) 6≡ (0, 0), such that

L(ψ) + λψ ≤ 0 in Ω, R(φ, ψ) + λφ ≤ 0 and B(φ, ψ) ≤ 0 in R},
(1.15)

with (φ, ψ) belonging to W 2,3
loc (R) × W 2,3

loc (Ω). Together with the definition, many
interesting properties and bounds were studied.

Thanks to that, the same authors were able to investigate the case of a favourable
ecological niche, possibly facing climate change, in [17]. It was proven that the sign
of λ1(Ω) characterises the extinction or the persistence of the population; moreover,
comparing the results with the ones found for the model without the road, in the
absence of climate change a deleterious effect of the road on the survival chances was
found. On the other hand, if the ecological niche shifts, the road has in some cases a
positive effect on the persistence.

1.2.2 A KPP model with a fast diffusion line in a periodic
medium

We are now ready to introduce in details the first problem dealt with in this
thesis. We are going to investigate a road-field model in a periodic medium. This
problem combines the interests of studying the effect of a fast diffusion line with the
one of treating a heterogeneous nonlinearity, that, as we pointed out before, reflects a
natural territory in a more realistic way than a homogeneous term. From a technical
point of view, it also combines the difficulties of the two settings.

The model

We have already presented the road-field model. In our problem, we treat a road-
field system with possible climate change and with a reaction term depending on the
spatial variable x; in particular, we will focus on the case of periodic dependence.
There is no dependence in the variable y, the heterogeneity in that direction is only
due to the presence of the road.

Keeping the notation used so far, the system we investigate reads
∂tu−Du′′ − cu′ − νv|y=0 + µu = 0, x ∈ R,
∂tv − d∆v − c∂xv = f(x, v), (x, y) ∈ Ω,
−d∂yv|y=0 + νv|y=0 − µu = 0, x ∈ R.

(1.16)

Recall that D, d, ν, µ are positive constants and c ≥ 0. The function f : R×R≥0 → R
is always supposed to be C1 in x, locally in v, and Lipschitz in v, uniformly in x;
moreover we suppose that the value v = 0 is an equilibrium, that is

f(x, 0) = 0, for all x ∈ R, (1.17)

and that

∃M > 0 such that f(x, v) < 0 for all v > M and all x ∈ R, (1.18)
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which indicates that there is a saturation level. We will derive some inequalities on
the generalised principal eigenvalue of (1.16) for the general case of f respecting these
hypothesis and c possibly nonzero.

The characterisation of extinction or persistence of the species is addressed in the
case of c = 0 and f a periodic function, reflecting the periodicity of the environment
in which the population diffuses, as we require with the forthcoming hypothesis. We
will analyse the case of a KPP nonlinearity, that is, we require that

f(x, s2)

s2

<
f(x, s1)

s1

for all s2 > s1 > 0 and all x ∈ R. (1.19)

Then, we suppose that there exists ` > 0 such that

f(x+ `, s) = f(x, s) for all s > 0 and all x ∈ R. (1.20)

To study the effect of the line of fast diffusion, we will compare the behaviour of
(1.16) to the one of the system{

vt − d∆v − c∂xv = f(x, v), (x, y) ∈ Ω,
−∂yv|y=0 = 0, x ∈ R, (1.21)

whose solution is a function v(x, y) that can be extended by symmetry to the whole
plane. It is natural to consider system (1.21) as the counterpart of system (1.16) in
the case without the road, since it presents the same geometry, including the same
boundary condition, exception made for the exchange terms that are in place for the
case of a fast diffusion channel.

1.2.3 Our results

We are now ready to present the main results of this part of the thesis.

The case of a periodic f(x, v). Here, we consider the case of a nonlinearity that
respects the KPP hypothesis and is periodic in the direction of the road. Moreover,
we consider c = 0.

We begin by the following result on the long time behaviour for solutions of system
(1.16). As already seen for similar problems, the key point lies in the stability of the
0 solution. This is linked to the sign of the generalised principal eigenvalue for the
road-field model, that we have defined in (1.15). With this notation, we have the
following:

Theorem 1.1. Let f satisfy (1.17)-(1.20) and c = 0. Then the following holds:

1. if λ1(Ω) ≥ 0, then extinction occurs.

2. if λ1(Ω) < 0, then persistence occurs and the positive stationary solution
(u∞, v∞) is unique and periodic in x.

Next, we compare the behaviour of solutions of the system (1.16) with the ones
of (1.21), or, equivalently, after extension by symmetry to the whole plane, of

∂tv − d∆v = f(x, v), for (x, y) ∈ R2. (1.22)
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Recalling the results of [18], we know that the persistence or extinction of a population
for a periodic equation in the whole R2 depends on the sign of the periodic eigenvalue
λp(−L,R2), that was defined in (1.11) for a general case. We obtain the following:

Theorem 1.2. Assume f fulfils hypotheses (1.17)-(1.20) and let c = 0. Then:

1. if λp(−L,R2) < 0, then λ1(Ω) < 0, that is, if persistence occurs for the system
“without the road” (1.22), then it occurs also for system “with the road” (1.16).

2. if λp(−L,R2) ≥ 0, then λ1(Ω) ≥ 0, that is, if extinction occurs for the system
“without the road” (1.22), then it occurs also for system “with the road” (1.16).

Theorem 1.2 asserts that the road has no negative impact on the survival chances
of the population in the case of a medium depending periodically on with respect to
variable in the direction of the road.

We recall the fact that fragmentation lowers the survival possibilities of a species
(see [18, 108]); also, even if we are not in the framework of an ecological niche,
we remember from [17] the fact that a road has a negative impact in the setting
without climate change. For those reasons, the result in Theorem 1.2 may be somehow
unexpected. However, despite the fact that no reproduction takes place on the road,
in the case of periodic media the presence of the fast diffusion channel does not
interfere with the long time behaviour of the population, which depends only on the
environment of a periodicity cell. As seen in [18], where the dependence of persistence
on the amplitude of fragmentation was studied, if the favourable zones are sufficiently
large, the population will eventually spread in all of them; the presence of the road
does not cause loss of favourable environment and consequently of persistence chances.
However, we expect the spreading speed to be influenced by the presence of the road,
as it has been already proven in the case of homogeneous environment.

We point out that Theorem (1.1) completes and is in accordance with the results
on long time behaviour found in [20] for a homogeneous reaction function, which we
can consider as a particular case of periodicity, satisfying a positive KPP request
(thanks to the hypothesis f ′(0) > 0). In [20], Theorem 4.1 states the convergence of
any positive solution to the unique positive stationary solution of the system. Since
it is well known that for the homogeneous case it holds λ1(−L,R2) = −f ′(0), the
hypothesis gives that λ1(−L,R2) < 0 and, as a consequence of Theorem 1.1, that
persistence occurs. Instead if f ′(0) ≤ 0, then we would be in the first case of Theorem
1.1, yielding extinction of the population.

Effects of amplitude of heterogeneity One may ask if the presence of a road
may alter the complex interaction between more favourable and less favourable zones;
in particular, one could wonder if this could penalise the persistence, since it was
shown that populations prefer a less fragmented environment. Nevertheless, owing
from Theorem 1.2 that the road has no effect on the survival chances of the species,
we can recover all the results on the effect of fragmentation.

Take a parameter α > 0 and consider system (1.16) with nonlinearity

f̃(x, v) = αf(x, v). (1.23)
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To highlight the dependence on α, we will call λ1(Ω, α) the generalised principal
eigenvalue defined in (1.15) with nonlinearity f̃ . As a direct consequence of our The-
orem 1.2 and of Theorem 2.12 in [18], we have the following result on the amplitude
of heterogeneity:

Corollary 1.3. Assume f̃ is defined as in (1.23), f satisfies (1.17)-(1.20), and c = 0.
Then:

1. if
∫ `

0
fv(x, 0) > 0, or if

∫ `
0
fv(x, 0) = 0 and f 6= 0, then for all α > 0 we have

λ1(Ω, α) < 0.

2. if
∫ `

0
fv(x, 0) < 0, then λ1(Ω, α) > 0 for α small enough; if moreover there exists

x0 ∈ [0, `] such that fv(x0, 0) > 0, then for all α large enough λ1(Ω, α) < 0.

A climate change setting for a general f(x, v). We consider now a general
nonlinearity that depends on the variable in the direction of the road. We stress
the fact that we do not suppose any periodicity, but the case of a periodic f is a
particular case of this setting. Moreover, the following results are done in the general
framework of a possible climate change, so the parameter c may be different from 0.

Comparison between the systems with and without the road, in the general case,
are done through comparison between λ1(Ω) and the generalised principal eigenvalue
of system (1.21), given by

λ1(−L,Ω) = sup{λ ∈ R : ∃ψ ≥ 0, ψ 6≡ 0 such that

L(ψ) + λψ ≤ 0 on Ω, −∂yψ|y=0 ≤ 0 on R}
(1.24)

for ψ ∈ W 2,3
loc (Ω). With this notation, we have the following:

Theorem 1.4. Assume λ1(−L,R2) as in (1.24) and λ1(Ω) as in (1.15); then
λ1(−L,R2) ≥ λ1(Ω).

In the special case c = 0, some information on the relations between λ1(−L,R2)
and λ1(Ω) was already available in [17]: Proposition 3.1 gives that if λ1(−L,R2) ≥ 0
then λ1(Ω) ≥ 0. Thanks to that and Theorem 1.4, the following result holds:

Corollary 1.5. If c = 0, we have λ1(−L,R2) < 0 if and only if λ1(Ω) < 0.

As already pointed out in [16], even for c = 0 it is not true that λ1(−L,R2) =
λ1(Ω). In fact, it has been found that λ1(Ω) ≤ µ, while playing with f one can
have λ1(−L,R2) as large as desired. However, the fact that they have the same sign
reveals that they are profoundly linked.

Perspectives

The next problem to tackle for system (1.16) in a periodic medium regards the
existence of travelling fronts and the study of their speed in all the direction of the
plane. We point out that, with respect to the classical case, there are great difficulties
linked to the anisotropy of the space, due both to the road and to the periodicity of
the medium. An acceleration effect due to the presence of the road is expected to be
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found when D > d; however, the repercussions of the periodicity of the medium on
the spreading speed in a general direction is hard to predict.

We also mention that it would be nice to extend the current results to the case
of heterogeneous exchange terms, periodic in x, as already treated in [58]. The key
point for attacking that problem is in the generalisation of the definition of λ1(Ω) for
non homogeneous coefficients.

1.3 A new model for aggressive competition

1.3.1 Lotka-Volterra models: a literature overview

Another issue that is overlooked in the logistic equation is the interaction of a
species with the other ones living in the same environment. In the ’20s, Lotka [78]
and Volterra [121] observed independently some curios transitory oscillations in the
concentration of chemicals during a reaction and in the population sizes of fishes.

They formulated the following model; let u be the quantity of a species of plants
present in the environment and v the size of a population of herbivores. It is supposed
that the plants have a constant growth rate at all times, a > 0. The herbivorous feed
exclusively on the observed plant and have limitless appetite. The consumption of
plants eaten by the animals is supposed to depend on the probability of meeting of
the two, represented by uv; the actual loss of the plants is −buv and the gain for the
herbivores is duv with b > d > 0, owning the fact that some plants could be torn but
not consumed. Moreover, as in the malthusian equation, the increase of a population
is suppose to depend on its size. It is also supposed that the environment conditions
are stable and than no mutation in the behaviour of the two species is possible.

Then, the model reads{
u̇ = au− buv, for t > 0,
v̇ = −cv + duv, for t > 0.

(1.25)

This system has two equilibria, (0, 0) and
(
c
d
, a
b

)
. If the initial datum is any point

of positive coordinates distinct from the equilibrium, the population sizes oscillate in
time, running on a closed curve on the phase portrait.

Competitive Lotka-Volterra models

Since the pioneer works, many studies on the interaction between populations were
carried out. In particular, after the studies of Gause [54], another model has been
employed to investigate the dynamics between two populations in competition, that
is, exploiting at least partly the same resources. We propose here its construction
using the example of two population of squirrels, the grey one and the red one,
following the work in [90]. These two species, one of the two recently introduced
in Britain, both inhabit hardwood forests and rely on the same resources to live.
Keeping in mind the derivation of the logistic equation, we realize that the resource
term in this scenario depends on the size of both population. Moreover, we take
into consideration the fact that, due to the social organisation and sometimes the



1.3 A new model for aggressive competition 15

segregation between competing species, the presence of individuals of the rival group
may obstruct food collection; if this is the case, there is an additional decrease of the
available resources for both population. Adding these corrections to the logistic of
both groups, the Lotka-Volterra competitive system reads

u̇ = auu

(
1− u+ αuvv

ku

)
, t > 0,

v̇ = avv

(
1− v + αvuu

kv

)
, t > 0,

(1.26)

where au, av, αuv, αvu, ku and kv are nonnegative real numbers. The coefficients
au and av are the intrinsic growth rates of the two population; ku and kv represent
the carrying capacities of the environment for the two groups. The coefficients αuv
and αvu represent the competition between individuals of different species, and indeed
they appear multiplied by the term uv, which represents a probability of meeting.
Taking the example of the squirrels, we expect that αuv, αvu > 1. However, for other
couple of populations relying on only partially overlapping food sets, one could have
also αuv, αvu ≤ 1. If finally the first population feeds on a subset of the resources of
the second one, it would be αuv ≥ 1 and αvu < 1.

For the sake of completeness, we recall that in the case of species mutually bene-
fiting from the presence of the other, which is not part of the competitive framework,
the dynamics prescribes negative values for αuv and αvu.

The dynamics of system (1.26) depends indeed on the values of the interspecific
competition terms: if αuv < 1 < αvu, then the first species u has an advantage over
the second one v and will eventually prevail; if αuv, αvu > 1, then the first population
that penetrates the environment (that is, the one that has a greater size at the initial
time) will persist while the other will extinguish; if αuv, αvu < 1, there exists an
attractive coexistence steady state. The fact that, if two populations’ ecological
niches completely overlap, then one of the two species gets extinct, is exactly the
statement of the Gause principle, a well-established law in ecology.

The Lotka-Volterra models of ODEs have been extended in many ways and its ap-
plications range from technology substitution to business competition. In the stochas-
tic analysis community, system (1.25) with additioned noise terms has been largely
studied [62]. Another branch were these systems have been of huge influence is, of
course, reaction-diffusion equations. In the next paragraph we are spending some
words on the results for diffusive Lotka-Volterra competitive systems.

Competitive Lotka-Volterra model with diffusion

In the interaction between different population, as already happens in the dynamic
of a single species, spatial organisation plays an important role. A great literature
has been devoted to the competitive Lotka-Volterra system with diffusion, that is,
up to a rescaling,{

∂u−∆u = u (1− u− αuvv) , x ∈ Rn, t > 0,

∂v − d∆v = av (1− v − αvuu) , x ∈ Rn, t > 0,
(1.27)
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for some d, a, αuv, αvu positive constants. Richer dynamics and more questions
naturally arise for system (1.27) but, unsurprisingly, the study of these involves many
more difficulties. Just to give some flavour of those, we provide some details on the
study of the speed of propagation of travelling waves connecting the steady states
(1, 0) and (0, 1), to which many studies have been consecrated. From the works of
Lewis, Li and Weinberger [75, 76] the minimal speed of propagation of a monotonic
wave is called cLLW . Even it the simplest case stated in (1.27), the exact value of
cLLW is still not known. Calling cKPP the minimal speed of diffusion for the second
equation under the assumption u ≡ 0, it holds that cLLW ≥ cKPP , but the inequality
may be strict depending on the parameters [64, 65].

Nevertheless, system (1.27) is one of the simplest among many possibilities; in the
literature one finds systems considering nonlocal diffusion [91], free boundary [44],
cross diffusion [79], and many other variations.

1.3.2 A model of Lotka-Volterra type for aggressive compe-
tition and analysis of the strategies

Among the several models dealing with the dynamics of biological systems, the
case of populations in open hostility seems to be rather unexplored. Our model con-
siders the case of two populations competing for the same resource with one aggressive
population which attacks the other: concretely, one may think of a situation in which
two populations live together in the same territory and share the same environmental
resources, till one population wants to prevail and try to overwhelm the other. We
consider this situation as a “civil war”, since the two populations share land and
resources.

The model

We now describe in further detail our model of conflict between the two popu-
lations and the attack strategies pursued by the aggressive population. Given the
lack of reliable data related to civil wars, the equations were derived by deduction
from the principles of population dynamics. Our idea is to modify the Lotka-Volterra
competitive system for two populations with density u and v, adding to the usual
competition for resources the fact that both populations suffer some losses as an
outcome of the attacks. The key point in our analysis is that the clashes do not
depend on the chance of meeting of the two populations, given by the quantity uv,
as it happens in many other works in the literature, but they are sought by the first
population and depend only on the size u of the first population and on its level of
aggressiveness a. The resulting model is{

u̇ = u(1− u− v)− acu, for t > 0,
v̇ = ρv(1− u− v)− au, for t > 0,

(1.28)

where a, c and ρ are nonnegative real numbers. Here, the coefficient ρ models the
fitness of the second population with respect to the first one. The parameter c here
stands for the quotient of endured per inflicted damages for the first population.
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Behaviour of solutions

We denote by (u(t), v(t)) a solution of (1.28) starting from a point (u(0), v(0)) ∈
[0, 1] × [0, 1]. We will also refer to the orbit of (u(0), v(0)) as the collection of
points (u(t), v(t)) for t ∈ R, thus both positive and negative times, while the tra-
jectory is the collection of points (u(t), v(t)) for t ≥ 0.

From the equations in (1.28), one promptly sees that v = 0 is not an equilibrium,
hence, v can reach the value 0 and even negative values in finite time. From a
modelling point of view, negative values of v are not acceptable, being it a population
density. However, we will suppose that the dynamics stops when the value v = 0 is
reached for the first time. At this point, the conflict ends with the victory of the first
population u, that can continue its evolution with a classical Lotka-Volterra equation
of the form

u̇ = u(1− u)

and that would certainly fall into the attractive equilibrium u = 1.
In order to state our first result on the dynamics of the system (1.28), we first

observe that, in a real-world situation, the value of a would probably be non-constant
and discontinuous, so we allow this coefficient to take values in the class A defined
as follows:

A :=
{
a : [0,+∞)→ [0,+∞) s.t. a is continuous

except at most at a finite number of points
}
.

(1.29)

A solution related to a strategy a(t) ∈ A is a pair (u(t), v(t)) ∈ C0(0,+∞) ×
C0(0,+∞), which is C1 outside the discontinuity points of a(t) and solves sys-
tem (1.28). Moreover, once the initial datum is imposed, the solution is assumed
to be continuous at t = 0.

In this setting, we establish the existence of the solutions to problem (1.28) and we
classify their behavior with respect to the possible exit from the domain [0, 1]× [0, 1].
Given (u(0), v(0)) ∈ [0, 1] × [0, 1] and a(t) ∈ A, two scenarios are possible for a
solution (u(t), v(t)) with a = a(t) of system (1.28) starting at (u(0), v(0)):

(1) The solution (u(t), v(t)) issued from (u(0), v(0)) belongs to [0, 1] × (0, 1] for
all t ≥ 0.

(2) There exists T ≥ 0 such that the solution (u(t), v(t)) issued from (u(0), v(0))
exists unique for all t ≤ T , and v(T ) = 0 and u(T ) > 0.

As a consequence, we can define the the stopping time of the solution (u(t), v(t)) as

Ts(u(0), v(0)) =

{
+∞ if situation (1) occurs,
T if situation (2) occurs.

(1.30)

From now on, we will implicitly consider solutions (u(t), v(t)) only for t ≤
Ts(u(0), v(0)).

We call victory of the first population the scenario where Ts < +∞, that corre-
sponds to the case where v(Ts) = 0 and u(Ts) > 0. On the other hand, we call victory
of the second population the scenario where (u, v) tends to (0, 1) as t tends to infinity.
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Now we are going to analyze the dynamics of (1.28) with a particular focus on
possible strategies. To do this, we now define the basins of attraction. The first one
is the basin of attraction of the point (0, 1), that is

B :=
{

(u(0), v(0)) ∈ [0, 1]× [0, 1] s.t.

Ts(u(0), v(0)) = +∞, (u(t), v(t))
t→∞−→ (0, 1)

}
,

(1.31)

namely the set of the initial points for which the first population gets extinct (in
infinite time) and the second one survives. The other one is

E := {(u(0), v(0)) ∈ ([0, 1]× [0, 1]) \ (0, 0) s.t. Ts(u(0), v(0)) < +∞} , (1.32)

namely the set of initial points for which we have the victory of the first population
and the extinction of the second one.

A control problem

In a rational, or at least well-organised population, one may expect that the
parameter a, representing aggressiveness, is subject to control; we are suggesting
that a population, by performing premeditated attacks, may control its strategy in
the conflict and would be able to choose the most appropriate one.

From now on, we may refer to the parameter a as the strategy, that may also
depend on time, and we will say that it is winning if it leads to victory of the first
population. We also notice that, with this choice, (1.28) is a control-affine system.

The main problems that we deal with are:

1. The characterization of the initial conditions for which there exists a winning
strategy.

2. The success of the constant strategies, compared to all possible strategies.

3. The construction of a winning strategy for a given initial datum.

4. The existence of a single winning strategy independently of the initial datum.

5. The existence of a winning strategy minimizing duration of the war.

The first question is a problem of target reachability for a control-affine system.
The second point regards the choice of a suitable functional space where to choose the
strategy. We also construct an actual winning strategy when victory is possible, an-
swering the third and fourth question. The last question results to be an optimisation
problem.

1.3.3 Our results

Dynamics for a constant strategy

The first step towards the understanding of the dynamics of the system in (1.28)
is is to analyze the behavior of the system for constant coefficients.

To this end, we introduce some notation. Following the terminology on pages 9-
10 in [123], we say that an equilibrium point (or fixed point) of the dynamics is a
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(hyperbolic) sink if all the eigenvalues of the linearized map have strictly negative
real parts, a (hyperbolic) source if all the eigenvalues of the linearized map have
strictly positive real parts, and a (hyperbolic) saddle if some of the eigenvalues of
the linearized map have strictly positive real parts and some have negative real parts
(since in this problem we work in dimension 2, saddles correspond to linearized maps
with one eigenvalue with strictly positive real part and one eigenvalue with strictly
negative real part). We also recall that sinks are asymptotically stable (and sources
are asymptotically stable for the reversed-time dynamics), see e.g. Theorem 1.1.1
in [123].

With this terminology, we state the following theorem:

Theorem 1.6 (Dynamics of system (1.28)). For a > 0, c > 0 and ρ > 0 the
system (1.28) has the following features:

(i) When 0 < ac < 1, the system has 3 equilibria: (0, 0) is a source, (0, 1) is a sink,
and

(us, vs) :=

(
1− ac
1 + ρc

ρc,
1− ac
1 + ρc

)
∈ (0, 1)× (0, 1) (1.33)

is a saddle.

(ii) When ac > 1, the system has 2 equilibria: (0, 1) is a sink and (0, 0) is a saddle.

(iii) When ac = 1, the system has 2 equilibria: (0, 1) is a sink and (0, 0) corresponds
to a strictly positive eigenvalue and a null one.

(iv) We have
[0, 1]× [0, 1] = B ∪ E ∪M (1.34)

where B and E are defined in (1.31) and (1.32), respectively, and M is a
smooth curve.

(v) The trajectories starting in M tend to (us, vs) if 0 < ac < 1, and to (0, 0)
if ac ≥ 1 as t goes to +∞.

More precisely, one can say that the curveM in Theorem 1.6 is the stable manifold
of the saddle point (us, vs) when 0 < ac < 1, and of the saddle point (0, 0) when ac >
1. The case ac = 1 needs a special treatment, due to the degeneracy of one eigenvalue,
and in this case the curve M corresponds to the center manifold of (0, 0), and an
ad-hoc argument will be exploited to show that also in this degenerate case orbits
that start in M are asymptotic in the future to (0, 0). As a matter of fact, M acts
as a dividing wall between the two basins of attraction B and E , as described in (iv)
of Theorem 1.6.

From a modelling point of view, Theorem 1.6 shows that, also for our model,
the Gause principle of exclusion is respected; that is, in general, two competing
populations cannot coexist in the same territory, see e.g. [47].

One peculiar feature of our system is that, if the aggressiveness is too strong, the
equilibrium (0, 0) changes its “stability” properties, passing from a source (as in (i) of
Theorem 1.6) to a saddle point (as in (ii) of Theorem 1.6). This shows that the war
may have self-destructive outcomes, therefore it is important for the first population
to analyze the situation in order to choose a proper level of aggressiveness. Figure 1.1
shows one example of dynamics for each case.
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The dedicated chapter contains further results on the dependence of B and E
on the parameters ρ and c. The parameter a, a part from having a more intricate
influence on the system, may be interpreted not as a biological constant but rather
as a choice of the first population. Therefore, we perform a deeper analysis, whose
result are presented in the next paragraph.

(a) a = 0.8, c = 0.5, ρ = 2 (b) a = 0.8, c = 3, ρ = 2

Figure 1.1 – The figures show a phase portrait for the indicated values of the coeffi-
cients. In blue, the orbits of the points. The red dots represent the equilibria. The
images are realised with Python.

Dynamics for variable strategies and optimisation results

We now introduce some terminology. Recalling (1.29), for any T ⊆ A, we set

VT :=
⋃

a(·)∈T

E(a(·)), (1.35)

where E(a(·)) denotes the set of initial data (u0, v0) such that Ts(u0, v0) < +∞, when
the coefficient a in (1.28) is replaced by the function a(t). Namely, VT represents
the set of initial conditions for which u is able to win by choosing a suitable strategy
in T ; we call VT the victory set with admissible strategies in T . We also say that a(·)
is a winning strategy for the point (u0, v0) if (u0, v0) ∈ E(a(·)).

Moreover, we will call

(u0
s, v

0
s) :=

(
ρc

1 + ρc
,

1

1 + ρc

)
. (1.36)

Notice that (u0
s, v

0
s) is the limit point as a tends to 0 of the sequence of saddle

points {(uas , vas )}a>0 defined in (1.33).

With this notation, the first question that we address is for which initial config-
urations it is possible for the population u to have a winning strategy, that is, to
characterize the victory set. For this, we allow the strategy to take all the values
in [0,+∞). In this setting, we have the following result:



1.3 A new model for aggressive competition 21

Theorem 1.7. (i) For ρ = 1, we have that

VA =
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v − u

c
< 0 if u ∈ [0, c]

and v ≤ 1 if u ∈ (c, 1]
}
,

(1.37)

with the convention that the last line in (1.37) is not present if c ≥ 1.

(ii) For ρ < 1, we have that

VA =

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ0(u) if u ∈ [0, u0

s],

v <
u

c
+

1− ρ
1 + ρc

if u ∈
[
u0
s,
ρc(c+ 1)

1 + ρc

]
and v ≤ 1 if u ∈

(
ρc(c+ 1)

1 + ρc
, 1

]}
,

(1.38)

where

γ0(u) :=
uρ

ρc(u0
s)
ρ−1

,

and we use the convention that the last line in (1.38) is not present if ρc(c+1)
1+ρc

≥ 1.

(iii) For ρ > 1, we have that

VA =

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v <

u

c
if u ∈ [0, u∞],

v < ζ(u) if u ∈

(
u∞,

c

(c+ 1)
ρ−1
ρ

]

and v ≤ 1 if u ∈

(
c

(c+ 1)
ρ−1
ρ

, 1

]}
,

(1.39)

where

u∞ :=
c

c+ 1
and ζ(u) :=

uρ

c uρ−1
∞

. (1.40)

and we use the convention that the last line in (1.39) is not present if c

(c+1)
ρ−1
ρ
≥

1.

Theorem 1.7 implies that the problem is not controllable, that is, for some initial
conditions the first population is not able to reach its target.

In practice, constant strategies could be certainly easier to implement and it
is therefore natural to investigate whether or not it suffices to restrict the control
to constant strategies without altering the possibility of victory. The next result
addresses this problem by showing that when ρ = 1 constant strategies are as good
as all strategies, but instead when ρ 6= 1 victory cannot be achieved by only exploiting
constant strategies:
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Theorem 1.8. Let K ⊂ A be the set of constant functions. Then the following holds:

(i) For ρ = 1, we have that VA = VK = E(a) for all a > 0;

(ii) For ρ 6= 1, we have that VK ( VA.

The result of Theorem 1.8, part (i), reveals a special rigidity of the case ρ = 1 in
which the victory depends only on the initial conditions, but it is independent of the
strategy a(t). Instead, as stated in Theorem 1.8, part (ii), for ρ 6= 1 the choice of a(t)
plays a crucial role in determining which population is going to win and constant
strategies do not exhaust all the possible winning scenarios. We stress that ρ = 1
plays also a special role in the biological interpretation of the model, since in this
case the two populations have the same fitness to the environmental resource, and
hence, in a sense, they are indistinguishable, up to the possible aggressive behavior
of the first population.

Next, we show that for all points in the set VA we can choose an appropriate
piecewise constant strategy with at most one discontinuity; functions with these
properties are called Heaviside functions.

Theorem 1.9. There holds that VA = VH, where H is the set of Heaviside functions.

The proof of Theorem 1.9 solves also the third question mentioned in the intro-
duction. As a matter of fact, it proves that for each point we either have a constant
winning strategy or a winning strategy of type

a(t) =

{
a1 if t < T,
a2 if t ≥ T,

for some T ∈ (0, Ts), and for suitable values a1, a2 ∈ (0,+∞) such that one is very
small and the other one very large, the order depending on ρ. The construction that
we give also puts in light the fact that the choice of the strategy depends on the
initial datum, answering also our fourth question.

It is interesting to observe that the winning strategy that switches abruptly from
a small to a large value could be considered, in the optimal control terminology, as a
“bang-bang” strategy. Even in a target reachability problem, the structure predicted
by Pontryagin’s Maximum Principle is brought in light: the bounds of the set VA, as
given in Theorem 1.7, depend on the bounds that we impose on the strategy, that
are, a ∈ [0,+∞).

It is natural to consider also the case in which the level of aggressiveness is con-
strained between a minimal and maximal threshold, which corresponds to the set-
ting a ∈ [m,M ] for suitable M ≥ m ≥ 0, with the hypothesis that M > 0. In this
setting, we denote by Am,M the class of piecewise continuous strategies a(·) in A such
that m ≤ a(t) ≤M for all t > 0 and we let

Vm,M := VAm,M =
⋃
a(·)∈A

m≤a(t)≤M

E(a(·)) =
⋃

a(·)∈Am,M

E(a(·)). (1.41)

Then we have the following:



1.3 A new model for aggressive competition 23

Theorem 1.10. Let M and m be two real numbers such that M ≥ m ≥ 0 and
M > 0. Then, for ρ 6= 1 we have the strict inclusion Vm,M ( VA.

Notice that for ρ = 1, Theorem 1.8 gives instead that Vm,M = VA and we think
that this is a nice feature, outlining a special role played by the parameter ρ (roughly
speaking, when ρ = 1 constant strategies suffice to detect all possible winning con-
figurations, thanks to Theorem 1.8, while when ρ 6= 1 non-constant strategies are
necessary to detect all winning configurations).

Time minimizing strategy. Once established that it is possible to win starting
in a certain initial condition, we are interested in knowing which of the possible
strategies is best to choose. One condition that may be taken into account is the
duration of the war. Now, this question can be written as a minimization problem
with a proper functional to minimize and therefore the classical Pontryagin theory
applies.

To state our next result, we recall the setting in (1.41) and define

S(u0, v0) :=
{
a(·) ∈ Am,M s.t. (u0, v0) ∈ E(a(·))

}
,

that is the set of all bounded strategies for which the trajectory starting at (u0, v0)
leads to the victory of the first population. To each a(·) ∈ S(u0, v0) we associate
the stopping time defined in (1.30), and we express its dependence on a(·) by writ-
ing Ts(a(·)). In this setting, we provide the following statement concerning the strat-
egy leading to the quickest possible victory for the first population:

Theorem 1.11. Given a point (u0, v0) ∈ Vm,M , there exists a winning strat-
egy ã(t) ∈ S(u0, v0), and a trajectory (ũ(t), ṽ(t)) associated with ã(t), for t ∈ [0, T ],
with (ũ(0), ṽ(0)) = (u0, v0), where T is given by

T = min
a(·)∈S

Ts(a(·)).

Moreover,
ã(t) ∈ {m, M, as(t)} ,

where

as(t) :=
(1− ũ(t)− ṽ(t))[ũ(t) (2c+ 1− ρc) + ρc]

ũ(t) 2c(c+ 1)
. (1.42)

The surprising fact given by Theorem 1.11 is that the minimizing strategy is not
only of bang-bang type, but it may assume some values along a singular arc, given
by as(t). This possibility is realized in some concrete cases, as we verified by running
some numerical simulations, whose results can be visualized in Figure 1.2.

Perspectives

The system of ODEs is the cornerstone for the study of the reaction-diffusion
system {

∂tu− ∂2
xxu = u(1− u− v)− acu, for x ∈ R, t > 0,

∂tv − d∂2
xxv = ρv(1− u− v)− a

∫
R u, for x ∈ R, t > 0,

(1.43)
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Figure 1.2 – The figure shows the result of a numerical simulation searching a min-
imizing time strategy ã(t) for the problem starting in (0.5, 0.1875) for the parame-
ters ρ = 0.5, c = 4.0, m = 0 and M = 10. In blue, the value found for ã(t); in
red, the value of as(t) for the corresponding trajectory (u(t), v(t)). As one can ob-
serve, ã(t) ≡ as(t) in a long trait. The simulation was done using AMPL-Ipopt on
the server NEOS and pictures have been made with Python.

for some d > 0. We expect solutions to this system to have very interesting be-
haviours. It is possible that the second population reaches the value 0 in only some
points of the domain, giving an example of the interesting phenomenon known as
dead-core, see e.g. [61].

1.4 Evolution equations with classical and frac-

tional derivatives

1.4.1 Fractional derivatives in evolution equations

The idea of fractional calculus first appears in the discussions between Leibniz
and De l’Hospital (see [104]); namely, given the classical derivative dnf(x)

dxn
for n ∈ N,

it is quite natural to ask if it is possible to define a generalisation of this operator
but with non entire order, thus dαf(x)

dxα
with α ∈ R.

However, it is only in the last few decades that a good number of mathematicians
started to work on fractional calculus. One of the reasons of this interest is the fact
that fractional derivative can help in the modelization of processes with memory or of
diffusion phenomena with spreading behaviour different from the one prescribed by
Brownian motion. This has applications in charge carrier transport in semicondutors,
nuclear magnetic resonance diffusometry, porous systems, dynamics in polymeric
systems (see [84] and the references therein).

Here, we introduce some fractional derivatives and operators and justify their
meaning and relations with the previous material. Providing an overview on the
state of art over existence, regularity and behaviour of evolution equations dealing
with fractional operators is far from our purposes, due to the complexity of the topic.
For that, we refer to [6, 33, 34, 98, 106, 124] and the reference therein.
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The Caputo derivative

There are several way of defining a fractional derivative. We choose to work with
Caputo derivative, that was first proposed in a geology model by Caputo in [30]. The
Caputo derivative of order α ∈ (0, 1) is defined by

Dα
t f(t) :=

1

Γ(1− α)

∫ t

0

ḟ(τ)

(t− τ)α
dτ

where Γ is Euler’s Gamma-function and ḟ is the classical derivative of f . For sim-
plicity, we will omit the constant and work with

∂αt f(t) := Γ(1− α)Dα
t f(t).

Notice that ∂αt f(t) is defined for all f ∈ C1([0, t]) such that ḟ ∈ L1(0, t). It is also
possible to define Caputo derivatives of higher order, thus with m − 1 < α < m for
m ∈ N, by the following:

Dα
t f(t) :=

1

Γ(m− α)

∫ t

0

f (m)(τ)

(t− τ)1+α−mdτ.

The Caputo derivative describes a process “with memory”, in the sense that the
history of the process is encoded in the derivative, though old events “count less” than
recent ones, since their value is counted with a smaller weight. Due to this memory
property, this operator has found several applications in models of hydrogeology, heat
transmission, percolation.

The Caputo derivative is considered to be an operator of “fractional” order, as
opposed to the entire order, that is proper to the classical derivatives. The value α
corresponds to the order of the derivative: indeed, for a power of order r > 0, it holds
∂αt t

r = Ctr−α for some constant C > 0.

Among the other types of fractional derivatives, it is worth mentioning the
Riemann-Liouville derivative because of its large diffusion. The Riemann-Liouville
derivative is defined by

Dαt f(t) :=
1

Γ(1− α)

d

dt

∫ t

0

f(τ)

(t− τ)α
dτ, (1.44)

and making the calculations one can show that it differs from the Caputo derivative
by the term f(0)

tα
. One of the reasons of the popularity of the Riemann-Liouville

derivative is that its limit for α→ 1 coincides with the classical derivative.

Evolution equations with Caputo time derivative. Classical partial differen-
tial equations are often divided in three groups depending on the order of the time
derivative: elliptic, parabolic, hyperbolic. Nevertheless, even in the Preface of Par-
tial Differential Equations by Evans [45], the author states that this subdivision is
fictive and “creates the false impression that there is some kind of general and useful
classification scheme available”. This subdivision is supposed to put together object
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with similar behaviours and classic theory results are usually meant for one of these
clusters.

An evolution equation with the Caputo time derivative, for example

∂αt u−∆u = 0, (1.45)

is not part of any of this groups. Thus, many results that one may want to use are
not available and must be recovered.

However, relations with the classical objects are present. Because of some be-
haviour similarities, evolution equations with Caputo time derivative have often been
compared to parabolic ones [84]. Recently, in [42], Dipierro and Valdinoci inspected
a model of transmission in neural structures and derive equation (1.45) from basic
principles. Doing so, they realized that it can be seen as a superposition of several
hyperbolic equations acting with delay. Despite this, the behaviour of solutions of
(1.45) is not similar to the one of wave equations: in fact, in opposition to hyperbolic
equations, (1.45) has a regularising effect on initial data.

The fractional Laplacian

An operator that has been very popular in recent years is the fractional Laplacian,
which is considered in some sense the fractional counterpart of the classic homonym
operator. Given s ∈ (0, 1), we define the fractional Laplacian as

− (∆)s u(x) := P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy, (1.46)

where “P.V.” stands for Principal Value. Curiously, many equivalent definitions of
the fractional Laplacian are possible: a part the one in (1.46), in [1, 73] one can find
a very exhaustive list together with the most important properties of the operator
known so far.

One of the reason for the popularity of the fractional Laplacian is its connection
with Lévy processes. We now give the idea behind the derivation of an evolution
equation containing the fractional Laplacian from a discrete Lévy process, which is
similar to the derivation of the heat equation from a Brownian movement. Consider
an infinite grid hZn, for some step h > 0, and a discrete evolution of time step τ = h2s.
Imagine to put a particle at the origin. At each time step t ∈ τN, the particle can
jump to any vertex of the grill different from its actual position, with a probability
that depends on the length of the jump; namely, if the particle is at the position hk,
with k ∈ Zn, the probability to jump into the position hj, if j 6= k, is

Ph(k, j) =
C

|k − j|n+2s
,

with C a normalisation constant. Then, we call u(t, x) the probability of finding the
particle in x ∈ hZn at the time t ∈ τN. The function u(t, x) evolves according to the
probability of the jumps; for example, the probability of finding the particle in the
origin at some time t+ τ is

u(t+ τ, 0) =
∑

j∈Zn\0

Ph(0, j)u(t, j) =
∑

j∈Zn\0

C

|j|n+2s
u(t, j)
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By taking the limit as h tends to 0, and by performing suitable manipulations, the
last equality becomes the evolution equation

∂tu− (∆)su = 0.

For all the details of the proof, we refer to [68].
Satellite-based measures of animal movement performed in the last years have

shown that Lévy process are a better approximation of animal movement than Brow-
nian motion. Some examples are provided by honey bees displacements and by move-
ment of marine predators when prey is scarce [10, 66, 101]. In general, it appears
that Lévy-flights are more fitting hunt strategies than Brownian walks [77]. For this
reason, the fractional Laplacian has been introduced in population dynamics model,
see [11, 36, 55] and the reference therein. However, the technical difficulties of dealing
with such delicate operators have not been totally overcome.

1.4.2 Decay estimates for evolution equations with classical
and fractional derivatives

Among the many open questions for fractional operators, we choose to study
decay estimates of a class of evolution equations with possibly nonlocal or nonlinear
diffusion operators. In particular, we are going to study the decay in time of the
Lebesgue norm of solutions to a Cauchy problem in a bounded domain. We present
some general results that apply to a wide class of evolution equations, namely all
the ones involving a diffusion operator that is satisfying a certain ellipticity property,
involving an “energy functional” that suits for both local and non local operators,
possibly complex. The time derivative may be of two types: purely classical or a
linear combination of a classical derivative and a Caputo derivative.

The problem

We now set the problem. Let λ1, λ2 ≥ 0 be fixed positive numbers. We suppose,
for concreteness, that

λ1 + λ2 = 1,

but up to a rescaling of the operator we can take λ1, λ2 any nonnegative numbers
with positive sum. Let Ω ⊂ Rn be a bounded open set and let u0 ∈ L∞(Rn) such
that suppu0 ⊂ Ω. Consider the Cauchy problem

(λ1∂
α
t + λ2∂t)[u] +N [u] = 0, for all x ∈ Ω, t > 0,

u(x, t) = 0, for all x ∈ Rn \ Ω, t > 0,
u(x, 0) = u0(x), for all x ∈ Rn,

(1.47)

where N is an operator, possibly involving fractional derivatives.
We underline that we consider smooth (C1 often, C2 if also the second derivative

appears) and bounded solutions of the problem (1.47). In fact, we want to avoid
convergence problems with the integrals that appear in the statements and in the
proofs. However, for certain operators, weaker hypothesis may be taken.
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Let us recall that for a complex valued function v : Ω→ C the Lebesgue norm is

‖v‖Ls(Ω) =

(∫
Ω

|v(x)|s dx
) 1

s

for any s ∈ [1,+∞). Also, we call <{z} the real part of z ∈ C. The main assumption
we take is the following: there exist γ ∈ (0,+∞) and C ∈ (0,+∞) such that

‖u(·, t)‖s−1+γ
Ls(Ω) ≤ C

∫
Ω

|u(x, t)|s−2<{ū(x, t)N [u](x, t)} dx. (1.48)

The constants γ and C and their dependence from the parameters of the problem may
vary from case to case. The righthandside of the equation may be seen as an energy
functional linked to the diffusion operator. This inequality implies, essentially, that
the operator N is not too degenerate and the energy of the solution should control a
certain power of the solution itself; here γ plays the role of the degree of ellipticity.
The inequality (1.48) strongly depends on the validity of a Sobolev inequality for the
solutions of the evolution equation. To get an intuition of the roles of the factors, take
the case of the Laplacian with s = 2; integrating by parts on the righthandside one
obtains ‖∇u(·, t)‖2

L2(Ω), thus the energy, which controls the L2 norm of the solution by
the Gagliardo-Nirenberg-Sobolev inequality. In our setting, the structural inequality
in (1.48) will be the cornerstone to obtain general energy estimates, which, combined
with appropriate barriers, in turn produce time-decay estimates.

1.4.3 Our Results

Extending the method of [43], we obtain a power-law decay in time of the Ls norm
with s ≥ 1. Also, for the case of classical time-derivatives, we obtain exponential
decays in time. The difference between polynomial and exponential decays in time
is thus related to the possible presence of a fractional derivative in the operator
involving the time variable.

Decay estimate theorems

First, we present this result for the more general setting, hence for a linear com-
bination of classical and Caputo time derivative. We have the following:

Theorem 1.12. Let u be a solution of the Cauchy problem (1.47), with N possibly
complex valued. Suppose that there exist s ∈ [1,+∞), γ ∈ (0,+∞) and C ∈ (0,+∞)
such that u satisfies (1.48). Then

(λ1∂
α
t + λ2∂t)‖u(·, t)‖Ls(Ω) ≤ −

‖u(·, t)‖γLs(Ω)

C
, for all t > 0, (1.49)

where C and γ are the constants appearing in (1.48). Furthermore,

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t
α
γ

, for all t > 0, (1.50)

for some C∗ > 0, depending only on C, γ, α and ‖u0(·)‖Ls(Rn).
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A polynomial decay is a nice piece of information on the solution and we can
expect this to be the best decay we can get for some fractional evolution equations
[56, 25]. However, there is also evidence that for classical settings better decays can
be achieved. In fact, the following theorem holds:

Theorem 1.13. Let u be a solution of the Cauchy problem (1.47) with only classical
derivative (that is, λ1 = 0) and N possibly complex valued. Suppose that there exist
s ∈ [1,+∞), γ ∈ (0,+∞) and C ∈ (0,+∞) such that u satisfies (1.48). Then, for
some C∗ > 0, depending only on the constants C and γ in (1.48), and on ‖u0(·)‖Ls(Rn),
we have that:

1. if 0 < γ ≤ 1 the solution u satisfies

‖u(·, t)‖Ls(Ω) ≤ C∗ e
− t
C , for all t > 0; (1.51)

2. if γ > 1, the solution u satisfies

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t
1

γ−1

, for all t > 0. (1.52)

As we will see in the proofs of these two theorems, the idea is to find a superso-
lution of (1.49) and use a comparison principle in order to estimate the decay of the
solution u. For the case of mixed derivatives, Vergara and Zacher [119] find both a
supersolution and a subsolution decaying as t−

α
γ . But, when α→ 1, the subsolution

tends to 0. On the other hand, the classical equation ∂te = −eγ has some exponential
supersolutions. This allows possibly better decays, which are in fact proven.

We point out that the case of an evolution equation with only Caputo time deriva-
tive, i.e. of λ2 = 0, was treated in [43]. The authors find in this case that the
supersolution is still asymptotic to t−

α
γ and the decay is of polynomial type.

It is interesting to notice the presence of a “decoupling” effect: for evolution equa-
tions with classical time derivative and fractional space derivative (take for example
the fractional Laplacian, −(∆)σu, σ ∈ (0, 1), see [43]), the space derivative does not
asymptotically interfere with the time derivative; thus the polynomial decay, typical
of fractional derivatives, does not appear, leaving place for the exponential decay
given by the classical time derivative. An example of this behaviour is found in [93],
where a model inspired to atoms dislocation was studied.

Applications

What makes Theorems 1.12 and 1.13 interesting is the fact that they may be
applied to a wide range of equations. Indeed, the only hypothesis required in order
to apply the theorems is the validity of the inequality (1.48) for suitable parameters
C and γ. In [43] and in our work, (1.48) was verified for many operators, that we are
listing here together with some references on the origins of these operators:

• the classic and fractional Laplacian, [27],

• the classic and fractional p-Laplacian, [32],

• the doubly nonlinear equation, [100]
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• the classic and fractional porous medium equations, [118, 29] and [39],

• the classic and fractional mean curvature equation, [28]

• the classic and fractional Kirchhoff equation, [23] and [49],

• the classic and fractional magnetic operator, [67] and [38].

The list is not supposed to be exhaustive; in fact, the aim is only to provide some
example of operators satisfying (1.48) and to encourage other mathematicians looking
for some decay estimates to attempt with operators they are struggling with.



Chapter 2

A Fisher-KPP model with a fast
diffusion line in periodic media

In this chapter, we treat a model of population dynamics in a periodic environment
presenting a fast diffusion line. The “road-field” model, introduced in [20], is a system
of coupled reaction-diffusion equations set in domains of different dimensions. Here,
we consider for the first time the case of a reaction term depending on a spatial
variable in a periodic fashion, which is of great interest for both its mathematical
difficult and for its applications. We derive necessary and sufficient conditions for
the survival of the species in terms of the sign of a suitable generalised principal
eigenvalue, defined recently in [16]. Moreover, we compare the long time behaviour
of a population in the same environment without the fast diffusion line, finding that
this element has no impact on the survival chances. This chapter corresponds to the
paper [2].

2.1 Setting and main results

This chapter investigates some effects of a fast diffusion line in an ecological
dynamics problem. Various examples in the literature showed that, in the presence
of roads or trade lines, some species or infections spread faster along these lines, and
then diffuse in the surroundings. This was observed in the case of the Processionary
caterpillar, whose spreading in France and Europe has been accelerated by accidental
human transport [103]. Another striking proof was given in [52], where the authors
point out that the COVID-19 epidemics in Northern Italy at the beginning of 2020
diffused faster along the highways.

A model for biological diffusion in a homogeneous medium presenting a fast dif-
fusion line was proposed by Berestycki, Roquejoffre and Rossi in [20], and since then
is called the road-field model. The authors proved an acceleration effect due to the
road on the spreading speed of an invading species. Since then, a growing number of
articles treated variations of the same system, investigating in particular the effect of
different type of diffusion or different geometries [13, 14, 105].

However, natural environments are usually far from being homogeneous and, more
often than not, territories are a composition of different habitats. Living conditions
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and heterogeneity play a strong impact on the survival chances of a species and on
the equilibria at which the population can settle.

Road-field models on heterogeneous environments have been little studied so far,
being more complex to treat. One of the few example is the paper [58] for periodic
exchange terms between the population on the road and the one in the field. Recently,
Berestycki, Ducasse and Rossi introduced a notion of generalised principal eigenvalue
for the road-field system in [16] and, thanks to it, they were able to treat the case of
an ecological niche facing climate change in [17].

Here, we propose an analysis of the asymptotic behaviour of an invasive population
under the assumption of spatial periodicity of the reaction term. Of course, under
this hypothesis we can investigate deeper the dependence of the population on a
natural-like environment and the effects of the road in this balance. Under which
conditions does the population survive in a periodic medium? And does the road
play some role on the survival chances of a species, perturbing the environment and
scattering the individuals, or rather permitting them to reach advantageous zones
more easily? These are the questions we are going to tackle.

2.1.1 The model

In this chapter, we study the reaction-diffusion model regulating the dynamics
of a population living in a periodic environment with a fast diffusion channel. The
equivalent of this model for homogeneous media was first introduced by Berestycki,
Roquejoffre and Rossi in [20]. Consider the half plane Ω := R×R+, where we mean
R+ = (0,+∞). The proposed model imposes the diffusion of a species in Ω and
prescribes that on ∂Ω = R×{y = 0} the population diffuses at a different speed. We
call v(x, t) the density of population for (x, y) ∈ Ω, hence on the “field”, and u(x)
the density of population for x ∈ R, i.e. on the “road”; moreover, we take D, d, ν, µ
positive constants and c ≥ 0. Then, the system we analyse reads

∂tu−Du′′ − cu′ − νv|y=0 + µu = 0, x ∈ R,
∂tv − d∆v − c∂xv = f(x, v), (x, y) ∈ Ω,
−d∂yv|y=0 + νv|y=0 − µu = 0, x ∈ R.

(2.1)

In Ω, the population evolves with a net birth-death rate represented by f , that
depends on the variable x. This embodies the heterogeneity of the media: in fact,
environments are typically not uniform and some zone are more favourable than
others. There is no dependence in the variable y, since the presence of the road
itself creates enough heterogeneity in that direction. The function f : R× R≥0 → R
is always supposed to be C1 in x, locally in v, and Lipschitz in v, uniformly in x;
moreover, we suppose that the value v = 0 is an equilibrium, that is

f(x, 0) = 0, for all x ∈ R, (2.2)

and that

∃M > 0 such that f(x, v) < 0 for all v > M and all x ∈ R. (2.3)

We will derive some inequalities on the generalised principal eigenvalue of (2.1) for
the general case of f respecting these hypothesis and c possibly nonzero.
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The characterisation of extinction or persistence of the species is performed for the
case of c = 0 and f a periodic function, reflecting the periodicity of the environment
in which the population diffuses. We will analyse the case of a KPP nonlinearity,
that is, we require that

f(x, s2)

s2

<
f(x, s1)

s1

for all s2 > s1 > 0 and all x ∈ R. (2.4)

Then, we suppose that there exists ` > 0 such that

f(x+ `, s) = f(x, s) for all s > 0 and all x ∈ R. (2.5)

To study the effect of the line of fast diffusion, we will compare the behaviour of
(2.1) to the one of the system{

vt − d∆v − c∂xv = f(x, v), (x, y) ∈ Ω,
−∂yv|y=0 = 0, x ∈ R, (2.6)

whose solution is a function v(x, y) that can be extended by symmetry to the whole
plane, thanks to the Neumann border condition. It is natural to consider system
(2.6) as the counterpart of system (2.1) in the case without the road, since it presents
the same geometry, including the same boundary condition exception made for the
exchange terms that are in place for the case of a fast diffusion channel.

2.1.2 State of the art

We present here the background that led us consider system (2.1) and some useful
results that are known in the community.

The study of reaction-diffusion equations started with the works by Fisher [50]
and by Kolmogorov, Petrowskii and Piskunov [72], who modelled the spacial diffusion
of an advantageous gene in a population living in a one-dimensional environment
through the equation

∂tv − d ∂2
xxv = f(v) (2.7)

for x ∈ R and t ≥ 0. For (2.7), it is supposed that d > 0 and f ≥ 0 is a C1 function
satisfying f(0) = f(1) = 0 and the KPP hypothesis f(v) ≤ f ′(0)v for v ∈ [0, 1]. The
first example was a nonlinearity of logistic type, so f(v) = av(1− v) for some a > 0.
It was shown any solution v issued from a nonnegative initial datum v0 converges to
1 as t goes to infinity, locally uniformly in space; this long time behaviour is called
invasion. The generalisation in higher dimension of equation (2.7) was then used to
study the spatial diffusion of animals, plants, bacteria and epidemics [109, 89].

A vast literature has been originated from the pioneer works, studying various
aspects of the homogeneous equation (2.7), in particular concerning the travelling
fronts. These are solutions of the form v(t, x) = V (x · e + ct) with V : R → [0, 1],
for e a direction, the direction of propagation, and c the speed of propagation of the
travelling front. Other than this, researchers have investigated the asymptotic speed
of propagation at which level sets of a solution starting from v0 expands. These
topics arose already in [50] and [72], and their investigation was continued in many
interesting articles, among which [48] and [7].
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The correspondence of the theoretical results with actual data as seen in [109] was
encouraging, however it was clear that natural environments, even at macroscopic
levels, were not well represented by a homogeneous medium, due to the alternation
of forests, cultivated fields, plains, scrubs and many other habitats, as well as roads,
rivers and other barriers [70]. It was necessary to look at more sophisticated features,
as the effects of inhomogeneity, fragmentation, barriers and fast diffusion channels,
and on the top of that, climate change.

A first analysis was carried out in [108, 107] and in [70] for the so-called the patch
model. The authors considered a periodic mosaic of two different homogeneous habi-
tats, one favorable and one unfavorable for the invading species. In [70], the authors
studied the long time behaviour of the population starting from any nonnegative
initial datum. For further convenience, let us give the following definition:

Definition 2.1. For the equation of (2.7) or the system (2.1), we say that

1. extinction occurs if any solution starting from a non negative bounded initial
datum converges to 0 or to (0, 0) uniformly as t goes to infinity.

2. persistence occurs if any solution starting from a non negative, non zero,
bounded initial datum converges to a positive stationary solution locally uni-
formly as t goes to infinity.

In [70], it was empirically shown that the stability of the trivial solution v = 0
determines the long time behaviour of the solutions. A solid mathematical framework
for a general periodic environment was given in [18]. There, the authors considered
the equation

∂tv −∇ · (A(x) · ∇v) = f(x, v) (2.8)

for x ∈ RN and t ≥ 0. The diffusion matrix A(x) is supposed to be C1,α, uniformly
elliptic and periodic; however, for our interest we can suppose A(x) = d IN , where
IN is the identity matrix. The nonlinearity f : RN × R≥0 → R is supposed to be C1

in x, locally in v, and Lipshitz in v, uniformly in x, respecting hypothesis (2.2)-(2.4)
and such that for some L = (L1, . . . , LN), with Li ≥ 0, it holds

f(x+ L, s) = f(x, s) for all s ≥ 0 and all x ∈ RN . (2.9)

The criterion for persistence or extinction is given via a notion of periodic eigen-
value, that is the unique number λp(−L,RN) such that there exists a solution
ψ ∈ W 2,p

loc (RN) to the system
L′(ψ) + λψ = 0, x ∈ RN ,
ψ > 0, x ∈ RN ,
||ψ||∞ = 1,
ψ is periodic in x of periods L,

(2.10)

where L′ is given by
L′(ψ) := d∆ψ + fv(x, 0)ψ. (2.11)

We point out that the existence and uniqueness of λp(−L,RN) is guaranteed by
Krein-Rutman theory. The long time behaviour result in [18] is the following:
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Theorem 2.2 (Theorem 2.6 in [18]). Assume f satisfies (2.2)-(2.4) and (2.9). Then:

1. If λp(−L′,RN) < 0, persistence occurs for (2.8).

2. If λp(−L′,RN) ≥ 0, extinction occurs for (2.8).

To prove Theorem 2.2, the authors performed an analysis of λp(−L,RN), proving
that it coincide with the limit of eigenvalues for a sequence of domains invading RN ,
so that it coincides with the generalised principal eigenvalue of the system “without
the road” (2.6). Nowadays, that and many other properties of this eigenvalue can be
found as part of a broader framework in [22]. In Section 2.2, we will provide further
comments on it.

Another important fact highlighted both in the series in [108, 107, 70] and in [18]
is that the presence of multiple small unfavourable zones gives less chances of survival
than one large one, the surface being equal.

A new difficulty that one may consider while studying ecological problems is,
sadly, the issue of a changing climate. A 1-dimensional model in this sense was first
proposed in [15] and [97], and was later treated in higher dimension in [21]. The
authors first imagined that a population lives in a favourable region enclosed into a
disadvantageous environment; due to the climate change, the favourable zone starts
to move in one direction, but keeps the same surface. The resulting equation is

∂tv −∆v = f(x− cte, v) for x ∈ RN , (2.12)

with e a direction in SN−1 and f : RN × R≥0 → R. It was observed that a solution
to (2.12) in the form of a travelling wave v(x, t) = V (x− cte) solves the equation

∂tV −∆V − c e · ∇V = f(x, V ) for x ∈ RN , (2.13)

which is more treatable. The main question is if the population keeps pace with the
shifting climate, that is, if the species is able to migrate with the same speed of the
climate. The answer to this question is positive if a solution to (2.13) exists; this
depends on the value of c. We point out that already in [21] the authors considered
the general case of a possible periodic f(x, v).

As mentioned before, another feature worth investigation is the effect of fast dif-
fusion channels on the survival and the spreading of species. In fact, the propagation
of invasive species as well as epidemics is influenced by the presence of roads [103, 52].
This observations led Berestycki, Roquejoffre and Rossi to propose a model for ecolog-
ical diffusion in the presence of a fast diffusion channel in [20], the so-called road-field
model. The field is modelled with the halfplane Ω = R × R+ and the line with the
x axis; the main idea is to use two different variables for modelling the density of
population along the line, u, and on the half plane, v. The system reads

∂tu(x, t)−D∂2
xxu(x, t) = νv(x, 0, t)− µu(x, t), x ∈ R, t > 0,

∂tv(x, y, t)− d∆v(x, y, t) = f(v), (x, y) ∈ Ω, t > 0,
−d∂yv(x, 0, t) = −νv(x, 0, t) + µu(x, t), x ∈ R, t > 0,

for D, d, ν, µ positive constants; moreover, f ∈ C1 was supposed to satisfy

f(0) = f(1) = 0, 0 < f(s) < f ′(0)s for s ∈ (0, 1), f(s) < 0 for s > 1.
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The three equations describe, respectively, the dynamic on the line, the dynamic on
the half plane and the exchanges of population between the line and the half plane.
On the line, the diffusion is faster than in Ω if D > d. In [20], the authors identify the

unique positive stationary solution
(

1
µ
, 1
)

and prove persistence of the population.

Moreover, they show that the presence of the line increases the spreading speed.
Another version of the model with a reaction term for the line was presented by the
same authors in [19], while many variation of the models were proposed by other
authors: with nonlocal exchanges in the direction of the road [94, 95], with nonlocal
diffusion [14, 13], and with different geometric settings [105]. For a complete list, we
refer to [112].

The case of heterogeneous media for systems of road-field type has been so far not
much treated, due to its difficulties. A first road-field model with exchange terms that
are periodic in the direction of the road was proposed in [58]. There, the authors
recovered the results of persistence and of acceleration on the propagation speed
due to the road known in the homogeneous case; they also studied the spreading of
solution with exponentially decaying initial data and calculated their speeds.

Recently, Berestycki, Ducasse and Rossi introduced in [16] a new generalised
principal eigenvalue fitting road-field system for possibly heterogeneous reaction term;
here, we give its definition directly for the system (2.1). Calling

R(φ, ψ) := Dφ′′ + cφ′ + νψ|y=0 − µφ,
L(ψ) := d∆ψ + c∂xψ − fv(x, 0)ψ,
B(φ, ψ) := d∂yψ|y=0 + µφ− νψ|y=0,

(2.14)

this eigenvalue is defined as

λ1(Ω) = sup{λ ∈ R : ∃(φ, ψ) ≥ (0, 0), (φ, ψ) 6≡ (0, 0), such that

L(ψ) + λψ ≤ 0 in Ω, R(φ, ψ) + λφ ≤ 0 and B(φ, ψ) ≤ 0 in R},
(2.15)

with (φ, ψ) belonging to W 2,3
loc (R) × W 2,3

loc (Ω). Together with the definition, many
interesting properties and bounds were studied; we will recall some of them later.

Thanks to that, the same authors were able to investigate the case of a favourable
ecological niche, possibly facing climate change, in [17]. It was proven that the sign
of λ1(Ω) characterises the extinction or the persistence of the population; moreover,
comparing the results with the ones found for the model without the road, a deleteri-
ous effect of the road on the survival chances is always found when there is no climate
change. On the other hand, if the ecological niche shifts, the road has in some cases
a positive effect on the persistence.

2.1.3 Main results

We are now ready to present the main results of this chapter.

The case of a periodic f(x, v)

Here, we consider the case of a nonlinearity that respects the KPP hypothesis and
is periodic in the direction of the road. Moreover, here we always consider c = 0.
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We begin by the following result on long time behaviour for solutions of system
(2.1):

Theorem 2.3. Assume f satisfy (2.2)-(2.5), c = 0 and let λ1(Ω) be as in (2.15).
Then the following holds:

1. if λ1(Ω) ≥ 0, then extinction occurs.

2. if λ1(Ω) < 0, then persistence occurs and the positive stationary solution
(u∞, v∞) is unique and periodic in x.

Now, we compare the behaviour of solutions to the system (2.1) with the ones
of system (2.6). This allows us to highlight the effects of the fast diffusion channel
on the survival chances of the population. Actually, since solutions of (2.6) can be
extended by refection to the whole plane, we can make the comparison with equation
(2.8) for A(x) = dI2 and L = (`, 0). The comparison is performed thanks to the
generalised principal eigenvalue λ1(Ω) for system (2.1) and the periodic eigenvalue
λp(−L,R2), as defined in (2.10), for the operator L in dimension 2. We obtain the
following:

Theorem 2.4. Assume f respects hypothesis (2.2)-(2.5), c = 0. Then:

1. if λp(−L,R2) < 0, then λ1(Ω) < 0, that is, if persistence occurs for the system
“without the road” (2.8), then it occurs also for system “with the road” (2.1).

2. if λp(−L,R2) ≥ 0, then λ1(Ω) ≥ 0, that is, if extinction occurs for the system
“without the road” (2.8), then it occurs also for system “with the road” (2.1).

Theorem 2.4 says that the road has no negative impact on the survival chances
of the population in the case of a periodic medium depending only on the variable in
the direction of the road. This is surprising if compared to the results obtained in [17]
(precisely Theorem 1.5, part (ii)), where the authors find that the existence of the
road is deleterious in presence of an ecological niche, and even more counter-intuitive
owing the fact that fragmentation of the environment lessens the survival chances of
a population, as shown in [18]. This means that, in the case of periodic media, the
presence of the fast diffusion channel does not interfere with the persistence of the
population, which depends only on the environment of a periodicity cell. As seen
in [18], where the dependence of persistence on the amplitude of fragmentation was
studied, if the favourable zones are sufficiently large, the population will eventually
spread in all of them; the presence of the road does not cause loss of favourable envi-
ronment and consequently of persistence chances. However, we expect the spreading
speed to be influenced by the presence of the road, as it has been already proven in
the case of homogeneous environment.

We point out that Theorem (2.3) completes and is in accordance with the results
on long time behaviour found in [20] for a homogeneous reaction term, which we
can see as a particular case of periodicity, which respects positive KPP hypothesis
(where the positivity is requested through f ′(0) > 0). In [20], Theorem 4.1 states the
convergence of any positive solution to the unique positive stationary solution of the
system. Since it is well known that for the homogeneous case it holds λ1(−L,R2) =
−f ′(0), the positivity hypothesis gives that λ1(−L,R2) < 0 and, as a consequence of
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Theorem 2.6, that the second case in our Theorem 2.3 occurs. If instead we asked
for f ′(0) ≤ 0, then we would be in the first case of Theorem 2.3, yielding extinction
of the population.

Effects of amplitude of heterogeneity. One may expect that the presence of a
road may alter the complex interaction between more favourable and less favourable
zones, in particular penalising the persistence, since it was shown that populations
prefer a less fragmented environment. However, the road does not interfere with
that; as a consequence, also for environments presenting fast diffusion channels, some
results of the analysis on the effect of fragmentation performed in [18] holds.

Take a parameter α > 0 and consider system (2.1) with nonlinearity

f̃(x, v) = αf(x, v). (2.16)

To highlight the dependence on α, we will call λ1(Ω, α) the generalised principal
eigenvalue defined in (2.15) with nonlinearity f̃ . As a direct consequence of Theorem
(2.4) and Theorem 2.12 in [18], we have the following result on the amplitude of
heterogeneity:

Corollary 2.5. Assume f̃ is defined as in (2.16), f satisfies (2.2)-(2.5), and c = 0.
Then:

1. if
∫ `

0
fv(x, 0) > 0, or if

∫ `
0
fv(x, 0) = 0 and f 6≡ 0, then for all α > 0 we have

λ1(Ω, α) < 0.

2. if
∫ `

0
fv(x, 0) < 0, then λ1(Ω, α) > 0 for α small enough; if moreover there exists

x0 ∈ [0, `] such that fv(x0, 0) > 0, then for all α large enough λ1(Ω, α) < 0.

This result describes with precision the fact that, to persist, a species must have
a sufficiently large favourable zone available. If the territory is more advantageous
than not, then the population persist. If however there environment is generally
unfavourable, the population persists only if there are some contiguous advantageous
zones large enough; if instead the advantageous zones are fragmented, even if there
is unlimited favourable territory, the population will encounter extinction.

A climate change setting for a general f(x, v)

We consider now a general nonlinearity that depends on the spatial variable in the
direction of the road. We stress the fact that we do not suppose any periodicity, but
the case of a periodic f is a particular case of this setting. Moreover, the following
result is done in the general framework of a possible climate change, so the parameter
c may be different from 0.

Comparison between the systems with and without the road, in the general case,
are done through comparison between λ1(Ω) and the generalised principal eigenvalue
of system (2.6), given by

λ1(−L,Ω) = sup{λ ∈ R : ∃ψ ≥ 0, ψ 6≡ 0 such that

L(ψ) + λψ ≤ 0 on Ω, −∂yψ|y=0 ≤ 0 on R}
(2.17)

for ψ ∈ W 2,3
loc (Ω). With this notation, we have the following:
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Theorem 2.6. Assume λ1(−L,R2) as in (2.17) and λ1(Ω) as in (2.15); then
λ1(−L,R2) ≥ λ1(Ω).

In the special case c = 0, some information on the relations between λ1(−L,R2)
and λ1(Ω) was already available in [17]: Proposition 3.1 yields that λ1(−L,R2) ≥ 0
implies λ1(Ω) ≥ 0. Thanks to that and Theorem 2.6, the following result holds:

Corollary 2.7. If c = 0, we have λ1(−L,R2) < 0 if and only if λ1(Ω) < 0.

As already pointed out in [16], even for c = 0 it is not true that λ1(−L,R2) =
λ1(Ω). In fact, it has been found that λ1(Ω) ≤ µ, while playing with f one can have
λ1(−L,R2) as large as desired. However, the fact that the two eigenvalues have the
same sign reveals that they are profoundly linked.

2.1.4 Organisation of the chapter

In Section 2.2, we recall and discuss the properties of the eigenvalues λ1(Ω),
λ1(−L,R2) and λp(−L,R2) already known in the literature. Furthermore, a periodic
eigenvalue for the system (2.1) will be defined; because of the presence of the road,
the periodicity is present only in the x direction. As a consequence, it is useful to
define an analogous generalised eigenvalue for the system without the road (2.6) with
periodicity only in the direction of the road.

In Section 2.3, one finds the proof of Theorem 2.6 and Theorem 2.4. Moreover, the
relations between the newly defined generalised periodic eigenvalues and the known
ones are shown.

The last Section 2.4 treats large time behaviour for solutions to (2.1) with c = 0
and periodic f ; this includes the proof of Theorem 2.3.

2.2 Generalised principal eigenvalues and their

properties

Both road-field models and reaction-diffusion equations in periodic media have
been treated in several papers. In this section, we introduce some useful objects
and recall their properties. All along this section we will make repeated use of the
operators L, R and B, that were defined in (2.14).

2.2.1 Eigenvalues in periodic media

Since L has periodic terms, it is natural to look for eigenfunctions that have the
same property. However, to begin the discussion on the periodic eigenvalue for the
operator L in R2, we consider its counterpart in R. We look for the unique number
λp(−L,R) ∈ R such that there exists a function ψ ∈ W 2,3

loc (R) solution to the problem
dψ′′ + fv(x, 0)ψ + λψ = 0, x ∈ R,
ψ > 0, x ∈ R,
||ψ||∞ = 1,
ψ is periodic in x of period `.

(2.18)
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In (2.18), the operator L has been replaced by an operator working on R, namely
the Laplacian has been substituted by a double derivative. Notice that existence and
uniqueness of the solution to (2.18), that we call (λp(−L,R), ψp), is guaranteed by
Krein-Rutman theory.

For the operator L, since it has no dependence on the y variable, we have to
introduce a fictive periodicity in order to be able to use the Krein-Rutman theory.
Thus, fix `′ > 0 and consider the problem in R2 of finding the value λp(−L,R2) ∈ R
such that there exists a solution ψ ∈ W 2,3

loc (R2) to the system
L(ψ) + λψ = 0, (x, y) ∈ R2,
ψ > 0, (x, y) ∈ R2,
||ψ||∞ = 1,
ψ is periodic in x and y of periods ` and `′.

(2.19)

Again we can use the Krein-Rutman Theorem to see that there exists a unique pair
(λp(−L,R2), ψ`′) solving (2.19). Now, with a slight abuse of notation, we consider
the function ψp(x, y) as the extension in R2 of ψp solution to (2.18). We observe that
the pair (λp(−L,R), ψp) gives a solution to (2.19). Hence, by the uniqueness of the
positive eigenfunction, we get

λp(−L,R2) = λp(−L,R) and ψp ≡ ψ`′ . (2.20)

This also implies that neither λp(−L,R2) nor ψ`′ depend on the parameter `′ that
was artificially introduced. From now on, we will use only ψp.

The properties of the eigenvalue λp(−L,R2) were also studied in [22], where it is
called λ′ and defined as

λp(−L,R2) = inf{λ ∈ R : ∃ϕ ∈ C2(R2) ∩ L∞(R2), ϕ > 0,

ϕ periodic in x and y, L(ϕ) + λϕ ≥ 0}.
(2.21)

In particular, in Proposition 2.3 of [22] it is stated that the value found with (2.19)
coincides with the one defined in (2.21).

2.2.2 Generalised principal eigenvalues for the system with
and without the road and some properties

In this section, we are going to treat eigenvalues that are well defined also for non
periodic reaction functions.

The generalised eigenvalue λ1(Ω) for the system (2.1), that we defined in (2.15),
was first introduced in [16]. Together with this, the authors also proved the interesting
property that λ1(Ω) coincides with the limit of principal eigenvalues of the same
system restricted to a sequence of invading domains. They use some half ball domains
defined as follow for R > 0:

ΩR := BR ∩ Ω and IR := (−R,R). (2.22)

Then we have the following characterisation for λ1(Ω):
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Proposition 2.8 (Theorem 1.1 of [16]). For R > 0, there is a unique λ1(ΩR) ∈ R
and a unique (up to multiplication by a positive scalar) positive (uR, vR) ∈ W 2,3(IR)×
W 2,3(ΩR) that satisfy the eigenvalue problem

R(φ, ψ) + λφ = 0, x ∈ IR,
L(ψ) + λψ = 0, (x, y) ∈ ΩR,
B(φ, ψ) = 0, x ∈ IR,
ψ = 0, (x, y) ∈ (∂ΩR) \ (IR × {0})
φ(R) = φ(−R) = 0.

(2.23)

Moreover,
λ1(ΩR) ↘

R→+∞
λ1(Ω).

We also consider the principal eigenvalue on the truncated domains for the linear
operator L(ψ). To do that, for any R > 0 we call BP

R the ball of centre P = (xP , yP )
and radius R. We define λ1(−L, BP

R) as the unique real number such that the problem
L(ψR) + λ1(−L, BP

R)ψR = 0, (x, y) ∈ BP
R ,

ψR = 0, (x, y) ∈ ∂BP
R ,

ψR > 0, (x, y) ∈ BP
R

(2.24)

admits a solution ψR ∈ W 2,3(BP
R). The existence and uniqueness of such quantity

and its eigenfunction is a well-known result derived via the Krein-Rutman theory.
We also notice that, calling BR the ball with radius R and center O = (0, 0), the pair
(λ1(−L, BR), ψR) is also a solution to the problem

L(ψ) + λψ = 0, (x, y) ∈ ΩR,
∂yψ(x, 0) = 0, x ∈ IR,
ψ = 0, (x, y) ∈ (∂ΩR) \ (IR × {0}),
ψ > 0, (x, y) ∈ ΩR.

(2.25)

The proof of that is very simple. If (λ, ψ) is the unique solution to (2.25), extending
ψ by symmetry in BR we get a solution to (2.24). By the uniqueness of the solution
to (2.24), we get λ = λ1(−L, BR).

Similarly to what happens with λ1(ΩR), thanks to the fact λ1(−L, BR) solves
(2.25), we have that the sequence λ1(−L, BR) converges to the value λ1(−L,Ω), that
was defined in (2.17). This was precisely stated in [17] as:

Proposition 2.9 (Proposition 2.4 of [17]). We have that

λ1(−L, BR) ↘
R→+∞

λ1(−L,Ω), (2.26)

Another notion of generalised eigenvalue analysed in [22] is the quantity

λ1(−L,R2) = sup{λ ∈ R : ∃ψ ≥ 0, ψ 6≡ 0 such that L(ψ) + λψ ≤ 0 a.e on R2}
(2.27)

for test functions ψ ∈ W 2,3
loc (R2). As stated in Proposition 2.2 of [22], we have

λ1(−L, BR) ↘
R→+∞

λ1(−L,R2).
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By that and (2.9), we have

λ1(−L,R2) = λ1(−L,Ω)

With this notation, we can report the following affirmations deriving from Theorem
1.7 in [22] for the case of a periodic reaction function:

Theorem 2.10 (Theorem 1.7 in [22]). Suppose f satisfies (2.5). The following holds:

1. It holds that λp(−L,R2) ≤ λ1(−L,Ω).

2. If L is self-adjoint (i.e, if c = 0), then λp(−L,R2) = λ1(−L,Ω).

At last, we recall the following result on the signs of the eigenvalues for the systems
with and without the road:

Proposition 2.11 (Proposition 3.1 in [17]). It holds that

λ1(−L,Ω) ≥ 0 ⇒ λ1(Ω) ≥ 0.

This is the result that, in combination with Theorem 2.6, gives Corollary 2.7.

2.2.3 The periodic generalised principal eigenvalue for the
road-field system

We introduce here two new eigenvalues that will be useful in the following proofs.
They are somehow of mixed type, in the sense that they are periodic in x but not in
y; this derives from the fact that the domains in which they are defined are periodic
in the variable x and truncated in the variable y. Here, we require f to be periodic
as in hypothesis (2.5).

Given r > 0, let (λp(−L,R×(−r, r)), ψr) be the unique pair solving the eigenvalue
problem 

L(ψr) + λψr = 0, (x, y) ∈ R× (−r, r),
ψr(x,±r) = 0, x ∈ R,
||ψr||∞ = 1, ψr is periodic in x.

(2.28)

The existence and uniqueness of the solution to (2.28) derives once again from Krein-
Rutman theory.

We point out that λp(−L,R× (−r, r)) is decreasing in r by inclusion of domains.
So, there exists a well defined value, that with a slight abuse of notation we call
λp(−L,Ω), such that

λp(−L,R× (−r, r)) ↘
r→+∞

λp(−L,Ω). (2.29)

Given r > 0, there exists a unique value λp(R× (0, r)) ∈ R such that the problem
R(φ, ψ) + λφ = 0, x ∈ R,
L(ψ) + λψ = 0, (x, y) ∈ R× (0, r),
B(φ, ψ) = 0, x ∈ R,
ψ(·, r) = 0,
φ and ψ are periodic in x,

(2.30)
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has a solution. The proof of the existence can be derived by modifying for periodic
functions the proof of the existence of λ1(ΩR) that is found in the Appendix of [16].

Moreover, we define

λp(Ω) = sup{λ ∈ R : ∃(φ, ψ) ≥ (0, 0), (φ, ψ) periodic in x, such that

R(φ, ψ) + λφ ≤ 0,L(ψ) + λψ ≤ 0, and B(φ, ψ) ≤ 0}

with test functions (φ, ψ) ∈ W 2,3
loc (R)×W 2,3

loc (Ω).
Then, we have:

Proposition 2.12. Suppose f satisfies (2.5). We have that

λp(R× (0, r)) ↘
r→+∞

λp(Ω). (2.31)

Moreover, there exists a couple (up, vp) ∈ W 2,3
loc (R) × W 2,3

loc (Ω) of positive functions
periodic in x such that satisfy

R(up, vp) + λp(Ω)vp = 0, x ∈ R,
Lvp + λp(Ω)vp = 0, (x, y) ∈ Ω,
B(up, vp) = 0, x ∈ R.

(2.32)

Proof. By inclusion of domains, one has that λp(R× (0, r)) is decreasing in r. Let us
call

λ̄ := lim
r→∞

λp(R× (0, r)).

Step 1. We now want to show that there exists a couple (φ̄, ψ̄) > (0, 0), with
φ̄ ∈ W 2,3

loc (R) and ψ̄ ∈ W 2,3
loc (Ω), periodic in x, that satisfy
R(φ̄, ψ̄) + λ̄φ̄ = 0, x ∈ R,
L(ψ̄) + λ̄ψ̄ = 0, (x, y) ∈ Ω,
B(φ̄, ψ̄) = 0, x ∈ R.

(2.33)

Fix M > 0. First, for all r > M + 2 consider the periodic eigenfunctions (φr, ψr)
related to λp(R× (0, r)). We normalize (φr, ψr) so that

φr(0) + ψr(0, 0) = 1.

Then, from the Harnack estimate in Theorem 2.3 of [16], there exists C > 0 such
that

max{ sup
IM+1

φr, sup
ΩM+1

ψr} ≤ C min{ inf
IM+1

φr, inf
ΩM+1

ψr} ≤ C, (2.34)

where the last inequality comes from the normalization. We can use the interior
estimate for φr and get

||φr||W 2,3(IM ) ≤ C ′(||φr||L3(IM+1) + ||ψr||L3(ΩM+1))

for some C ′ depending on M , µ, ν, and D. By that and (2.34), we get

||φr||W 2,3(IM ) ≤ C (2.35)
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for a possibly different C.
For ψr, in order to have estimates up to the border y = 0 of ΩM , we need to make

a construction. Recall that, calling L := L+ λp(R× (0, r)), ψr solves{
Lψr = 0, (x, y) ∈ ΩM+1,
−d∂yψr|y=0 + νψr|y=0 = µφr, x ∈ IM+1.

We call
ψ̃r := ψre

− ν
d
y

and the conjugate operator

L̃(w) := e−
ν
d
yL
(
e
ν
d
yw
)
.

Now, we have {
L̃ψ̃r = 0, (x, y) ∈ ΩM+1,

−d∂yψ̃r|y=0 = µφr, x ∈ IM+1.

Next, calling

wr(x, y) = ψ̃r(x, y)− d

µ
φr(x)y, (2.36)

we have that  L̃wr = −d
µ
L̃(φr(x)y), (x, y) ∈ ΩM+1,

∂ywr|y=0 = 0, x ∈ IM+1.
(2.37)

Now we define in the open ball BM+1 the function

w̄r(x, y) := wr(x, |y|), (2.38)

that is the extension of wr by reflection; thanks to the Neumann condition in (2.37)
and the fact that wr ∈ W 2,3(ΩM+1), we get that w̄r ∈ W 2,3(BM+1). Also, we define
the function

g(x, y) =
d

µ
L̃(φr(x)|y|). (2.39)

We also take the operator

L̄w := d∆w + c∂xw + 2νσ(y)∂yw +

(
fv(x, 0) + λp(R× (0, r)) +

ν2

d

)
w (2.40)

where σ(y) is the sign function given by

σ(y) :=

{
1 if y ≥ 0,
−1 if y < 0.

Thanks to the definition (2.38), (2.39) and (2.40), we get that w̄r is a weak solution
to the equation

− L̄w̄r = g for (x, y) ∈ BM+1. (2.41)

Finally, we can apply the interior estimates and get

||w̄r||W 2,3(BM ) ≤ C ′(||w̄r||L∞(BM+1) + ||g||L3(BM+1))
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for some C ′ depending on M and the coefficients of the equation (2.41). But using
the definition of w̄r and the fact that g is controlled by the norm of φr, we get, for a
possible different C ′,

||w̄r||W 2,3(BM ) ≤ C ′(||ψr||L∞(ΩM+1) + ||φr||L∞(IM+1) + ||φr||W 2,3(IM+1)).

Using (2.35) and (2.34), we finally have

||ψr||W 2,3(ΩM ) ≤ C.

Thanks to that and (2.35), we have that (φr, ψr) is uniformly bounded in W 2,3(IM)×
W 2,3(ΩM) for all M > 0. Hence, up to a diagonal extraction, (φr, ψr) converge
weakly in W 2,3

loc (IM)×W 2,3
loc (ΩM) to some (φ̄, ψ̄) ∈ W 2,3

loc (IM)×W 2,3
loc (ΩM). By Morrey

inequality, the convergence is strong in C1,α
loc (R) × C1,α

loc (Ω) for α < 1/6. Moreover,
(φ̄, ψ̄) are periodic in x since all of the (φr, ψr) are periodic. Then, taking the limit
of the equations in (2.30), we obtain that (φ̄, ψ̄) satisfy (2.33), as wished.

Step 2. We now prove that
λ̄ ≤ λp(Ω). (2.42)

Take λ̄ and its associated periodic eigenfunctions couple (φ̄, ψ̄) obtained in Step
1. By definition, λp(Ω) is the supremum of the set

A := {λ ∈ R : ∃(φ, ψ) ≥ (0, 0), (φ, ψ) periodic in x, R(φ, ψ) + λφ ≤ 0,

L(ψ) + λψ ≤ 0, and B(φ, ψ) ≤ 0}.
(2.43)

Then, using (φ̄, ψ̄) as test functions, we obtain that λ̄ is in the set A given in
(2.43). By the fact that λp(Ω) is the supremum of A, we get (2.42), as wished.

Step 3. We show
λp(Ω) ≤ λ̄. (2.44)

Now, take any λ ∈ A and one of its associate couple (φ, ψ). Then, by inclusion
of domains, one gets that for all r > 0 it holds

λ ≤ λp(R× (0, r)).

Hence, by taking the supremum on the left hand side and the infimum on the right
one, we get (2.44). By this and (2.42), equality is proven. Moreover, defining
(up, vp) ≡ (φ̄, ψ̄), by (2.33), we have the second statement of the proposition.

2.3 Ordering of the eigenvalues

This section is dedicated to show some inequalities and relations between the
aforementioned eigenvalues.

2.3.1 Proof of Theorem 2.6

We start by proving Theorem 2.6. We stress that this is done for the general
setting of c possibly non zero and f(x, v) which may not be periodic.
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Proof of Theorem 2.6.
Let us start by proving the first part of the theorem. For all R > 0, there exists

R′ > 0 and a point C ∈ R2 such that BR(C) ⊂ ΩR′ : it is sufficient to take R′ = 3R
and C = (0, 2

3
R). We want to prove that

λ1(−L, BR) ≥ λ1(ΩR′). (2.45)

Suppose by the absurd that (2.45) is not true. Consider ψR the eigenfunction related
to λ1(−L, BR) and vR′ the eigenfunction in the couple (uR′ , vR′) related to λ1(ΩR′).
Since infBR(C) vR′ > 0, and both eigenfunctions are bounded, there exists

θ∗ := sup{θ ≥ 0 : vR′ > θψR in BR(C)} > 0.

Since θ∗ is a supremum, then there exists (x∗, y∗) ∈ BR(C) such that vR′(x
∗, y∗) =

θ∗ψR(x∗, y∗). Then, (x∗, y∗) ∈ BR(C) because vR′ > 0 and ψR = 0 in ∂BR(C).
Calling ρ = vR′ − θ∗ψR, in a neighbourhood of (x∗, y∗) we have that

− d∆ρ− c · ∇ρ− fv(x, 0)ρ = λ1(−L, BR)ρ+ (λ1(ΩR′)− λ1(−L, BR))vR′ . (2.46)

We know that ρ(x∗, y∗) = 0 and that ρ ≥ 0 in BR(C). Then (x∗, y∗) is a minimum
for ρ, so ∇ρ(x∗, y∗) = 0 and ∆ρ(x∗, y∗) ≥ 0. Thus, the lefthandside of (2.46) is non
positive. But by the absurd hypotesis we have (λ1(ΩR′)− λ1(−L, BR))vR′ > 0. This
gives

0 ≥ −d∆ρ(x∗, y∗) = (λ1(ΩR′)− λ1(−L, BR))vR′(x
∗, y∗) > 0,

which is a contradiction. With that we obtain that (2.45) is true.
Notice that the eigenvalue λ1(−L, BR(C)) = λ1(−L, BR), where BR is the ball

centred in (0, 0), because f(x, v) does not depend on y, thus system (2.24) on BR(C)
and BR are the same. As a consequence, also their eigenfunctions coincide.

Recall that both λ1(−L,R2) and λ1(Ω) are limits of eigenvalues on limited do-
mains, by (2.9) and Proposition 2.8. Now, since for all R > 0 there exists R′ such
that (2.45) is true, then passing to the limit we find the required inequality.

2.3.2 Further inequalities between the eigenvalues

In this section, we collect some results on the ordering of periodic and generalised
eigenvalues for both system (2.1) and eqaution (2.8). Here we require f to be periodic
as in (2.5).

This first result is the analogue of Theorem (2.10) for the system (2.1):

Theorem 2.13. Suppose f respects hypothesis (2.5). Then:

1. It holds that λ1(Ω) ≥ λp(Ω).

2. If moreover c = 0, then we have λ1(Ω) = λp(Ω).

Proof. 1. By definition, λp(Ω) is the supremum of the set A given in (2.43), while
λ1(Ω) is the supremum of the set

{λ ∈ R : ∃(φ, ψ) ≥ (0, 0), R(φ, ψ) + λφ ≤ 0,

L(ψ) + λψ ≤ 0, and B(φ, ψ) ≤ 0} ⊇ A.
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By inclusion of sets, we have the desired inequality.

2. We call
HR := H1

0 (IR)×H1
0 (ΩR ∪ (IR ∪ {0})).

For (u, v) ∈ HR, we define

QR(u, v) :=
µ
∫
IR
D|u′|2 + ν

∫
ΩR

(d|∇v|2 − fv(x, 0)v2) +
∫
IR

(µu− νv|y=0)2

µ
∫
IR
u2 + ν

∫
ΩR
v2

.

Now we fix r > 0 and we consider λp(R × (0, r)) ad its periodic eigenfunctions
(φr, ψr). We consider ψr to be extended to 0 in Ω \ (R × (0, r)). This way we have
ψr ∈ H1(ΩR ∪ (IR ∪ {0})).

Then for all R > 1 we choose a C2(Ω) function YR : Ω→ [0, 1] such that

YR(x, y) = 1 if |(x, y)| < R− 1;

YR(x, y) = 0 if |(x, y)| ≥ R;

|∇YR|2 ≤ C;

where C is a fixed constant independent of R. To simplify the notation later, we call
XR(x) := YR(x, y)|y=0; we also have that XR ∈ C2(R) and |X ′′R| ≤ C. We have that

(φrXR, ψrYR) ∈ HR.

Now we want to show that for a suitable diverging sequence {Rn}n∈N we have

QRn(φrXRn , ψrYRn)
n→∞−→ λp(R× (0, r))). (2.47)

First, let us show a few useful rearrangements of the integrals that define
QR(φrXR, ψrYR). We have that∫
IR

|(φrXR)′|2 =

∫
IR

(φrXR)′ φrX
′
R +

∫
IR

(φrXR)′ φ′rXR,

=

∫
IR

(φrXR)′ φrX
′
R +

[
(φrX

2
R)φ′r

]R
−R −

∫
IR

(φrXR) (φ′′r XR + φ′rX
′
R) ,

=

∫
IR

φ2
r |X ′R|2 +

[
(φrX

2
R)φ′r

]R
−R −

∫
IR

φ′′r φrX
2
R,

by having applied integration by parts on the second line and trivial computation in
the others. Since XR(R) = XR(−R) = 0 and X ′R is supported only in IR \ IR−1, we
get

µD

∫
IR

|(φrXR)′|2 = −µD
∫
IR

φ′′r φrX
2
R + µD

∫
IR\IR−1

φ2
r |X ′R|2. (2.48)

With similar computations we get∫
ΩR

d|∇(ψr YR)|2 = −
∫

ΩR

d∆ψr ψr Y
2
R −

∫
IR

(d∂yψr)ψrX
2
R +

∫
ΩR\ΩR−1

d|∇YR|2ψ2
r .

(2.49)
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Then, we also have∫
IR

(µφrXR − νψrXR)2 =

∫
IR

µφrX
2
R(µφr − νψr)−

∫
IR

νψrX
2
R(µφr − νψr). (2.50)

We now recall that (φr, ψr) is an eigenfunction for the problem (2.30). Thanks to the
third equation of (2.30), the second term in (2.49) cancel out with the second term
in (2.50). Moreover we can sum the first term of (2.48) and the first term of (2.50)
and get

−
∫
IR

µDφ′′r φrX
2
R +

∫
IR

µφrX
2
R(µφr − νψr) =

∫
IR

µλp(R× (0, r))φ2
rX

2
R.

Moreover we have that

−
∫

ΩR

d∆ψr ψr Y
2
R −

∫
ΩR

fv(x, 0)ψ2
r Y

2
R =

∫
ΩR

λp(R× (0, r))ψ2
r Y

2
R.

So, if we call

PR :=
µ
∫
IR\IR−1

Dφ2
r |X ′R|2 + ν

∫
ΩR\ΩR−1

d|∇YR|2ψ2
r

µ
∫
IR

(φrXR)2 + ν
∫

ΩR
(ψrYR)2

,

we have that
QR(φrXR, ψrYR) = λp(R× (0, r)) + PR.

Proving (2.47) is equivalent to show that

PRn
n→∞−→ 0 (2.51)

for some diverging sequence {Rn}n∈N. Suppose by the absurd (2.51) is not true.
First, by the fact that the derivatives of XR and YR are bounded, for some positive
constant C we have that

0 ≤ PR ≤ C
µ
∫
IR\IR−1

φ2
r + ν

∫
ΩR\ΩR−1

ψ2
r

µ
∫
IR

(φrXR)2 + ν
∫

ΩR
(ψrYR)2

By the absurd hypothesis, we have that

lim inf
R→∞

PR = ξ > 0. (2.52)

Now let us define for all R ∈ N the quantity

αR := µ

∫
IR\IR−1

φ2
r + ν

∫
ΩR\ΩR−1

ψ2
r .

Since φr and ψr are bounded from above, we have that for some constant k depending
on r, µ, and ν, we have

αR ≤ kR. (2.53)
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For R ∈ N one has

µ

∫
IR

(φrXR)2 + ν

∫
ΩR

(ψrYR)2 =
R−1∑
n=1

αn + µ

∫
IR\IR−1

(φrXR)2 + ν

∫
ΩR\ΩR−1

(ψrYR)2.

By comparison with (2.52), we have

lim inf
R→∞

αR∑R−1
n=1 αn

≥ lim inf
R→∞

αR∑R−1
n=1 αn + µ

∫
IR\IR−1

(φrXR)2 + ν
∫

ΩR\ΩR−1
(ψrYR)2

≥ ξ

C
,

so for 0 < ε < ξ/C we have

αR > ε
R−1∑
n=1

αn (2.54)

Thanks to (2.54) we perform now a chain of inequalities:

αR+1 > ε
R∑
n=1

αn = ε

(
αR +

R−1∑
n=1

αn

)
> ε(1 + ε)

R−1∑
n=1

αn > · · · > (1 + ε)R+1 εα1

(1 + ε)3
.

from with we derive that αR diverges as an exponential, in contradiction with the
inequality in (2.53). Hence we obtain that (2.51) is true, so (2.47) is also valid.

By Proposition 4.5 in [16], we have that

λ1(ΩR) = min
(u,v)∈HR,
(u,v) 6=(0,0)

QR(u, v). (2.55)

Hence by (2.55) we have that

λ1(ΩR) ≤ QR(φrXR, ψrYR).

Since for all r > 0 there exist R > 0 so that (2.47) holds, we have moreover that

λ1(Ω) ≤ λp(R× (0, r)).

Then, recalling Proposition 2.12, we get that

λ1(Ω) ≤ λp(Ω).

Since the reverse inequality was already stated in the first part of this theorem, one
has the thesis.

At last, we prove this proposition of the bounds for λp(−L,Ω).

Proposition 2.14. Suppose f satisfies (2.5). We have that

λp(−L,R2) ≤ λp(−L,Ω) ≤ λ1(−L,Ω)

and if c = 0 the equality holds.
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Proof. Consider any r > 0 and take λp(−L,R×(−r, r)) and its eigenfunction ψr solv-
ing (2.28), that is periodic in x. Then take λp(−L,R2) and its periodic eigenfunction
ψp, that as we have seen in (2.20) does not depend on y, therefore it is limited and
has positive infimum, and solves (2.19). Then, λp(−L,R × (−r, r)) and λp(−L,R2)
are eigenvalues for the same equation in two domains with one containing the other;
hence, one gets that

λp(−L,R2) ≤ λp(−L,R× (−r, r)). (2.56)

By using (2.29), from (2.56) we have

λp(−L,R2) ≤ λp(−L,Ω). (2.57)

Given R < r, we can repeat the same argument for λ1(−L, BR) and λp(−L,R×
(−r, r)) and get

λp(−L,R× (−r, r)) ≤ λ1(−L, BR). (2.58)

By (2.29) and by (2.9), we get

λp(−L,Ω) ≤ λ1(−L,Ω).

This and (2.57) give the first statement of the proposition.
If c = 0, by the second part of Theorem 2.10 we get that λp(−L,R2) = λ1(−L,Ω),

hence we have

λp(−L,R2) = λp(−L,Ω) = λ1(−L,Ω),

as wished.

2.3.3 Proof of Theorem 2.4

Owing Theorems 2.3 and 2.2 together with the estimates on the eigenvalues proved
in the last subsection, we are ready to prove Theorem 2.4.

Proof of Theorem 2.4. By Theorem 2.10, we have that λ1(−L,R2) = λp(−L,R2).
Then, by Corollary 2.7, if λ1(Ω) < 0 then λp(−L,R2) < 0, and if λ1(Ω) ≥ 0 then
λp(−L,R2) ≥ 0.

Observe that, when c = 0, choosing N = 2 and L = (`, 0), the operator L′ defined
in (2.11) coincides with L. Then, the affirmations on the asymptotic behaviour of the
solutions of the system with and without the road comes from the characterisations
in Theorem 2.3 and 2.2.

2.4 Large time behaviour for a periodic medium

and c = 0

We start considering the long time behaviour of the solutions. As already stated
in Theorem 2.3, the two possibilities for a population evolving through (2.1) are
persistence and extinction. We treat these two case in separate sections.
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Before starting our analysis, we recall a comparison principle first appeared in [20]
that is fundamental for treating system (2.1). We recall that a generalised subsolution
(respectively, supersolution) is the supremum (resp. infimum) of two subsolutions
(resp. supersolutions).

Proposition 2.15 (Proposition 3.2 of [20]). Let (u, v) and (u, v) be respectively a
generalised subsolution bounded from above and a generalised supersolution bounded
from below of (2.1) satisfying u ≤ u and v ≤ v at t = 0. Then, either u ≤ u and
v ≤ v for all t, or there exists T > 0 such that (u, v) ≡ (u, v) for t ≤ T .

The original proof is given for the case of f homogeneous in space; however, it
can be adapted with changes so small that we find it useless to repeat it.

Proposition 2.15 gives us important informations on the behaviour at microscopic
level. In fact, it asserts that if two pairs of population densities are “ordered” at
an initial time, then the order is preserved during the evolution according to the
equations in (2.1).

2.4.1 Persistence

The aim of this section is to prove the second part of Theorem 2.3. First, we are
going to show a Liouville type result, that is Theorem 2.19, and then we will use that
to derive the suited convergence.

We start with some technical lemmas.

Lemma 2.16. Let (u, v) be a bounded stationary solution to (2.1) and let {(xn, yn)}n∈N ⊂
Ω be a sequence of points such that {xn}n∈N modulo ` tends to some x′ ∈ [0, `]. Then:

1. if {yn}n∈N is bounded, the sequence of function {(un, vn)}n∈N defined as

(un(x), vn(x, y)) = (u(x+ xn), v(x+ xn, y)) (2.59)

converges up to a subsequence to (ũ, ṽ) in C2
loc(R×Ω) and (ũ(x−x′), ṽ(x−x′, y)

is a bounded stationary solution to (2.1).

2. if {yn}n∈N is unbounded, the sequence of function {vn}n∈N defined as

vn(x, y) = v(x+ xn, y + yn) (2.60)

converges up to a subsequence to ṽ and ṽ(x − x′, y) in C2
loc(R2) is a bounded

stationary solution to the second equation in (2.1) in R2.

Proof. Let us call V = max{supu, sup v}. For all n ∈ N, there exists x′n ∈ [0, `) such
that xn − x′n ∈ `Z.

We start with the case of bounded {yn}n∈N. By the periodicity of f , we have that
(un, vn) defined in (2.59) is a solution to

−Du′′ − cu′ − νv|y=0 + µu = 0, x ∈ R,
v − d∆v − c∂xv = f(x+ x′n, v), (x, y) ∈ Ω,
−d∂yv|y=0 + νv|y=0 − µu = 0, x ∈ R,
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Fix p ≥ 1 and three numbers j > h > k > 0; we use the notation in (2.22) for
the sets IR and ΩR for R = k, h, j. By Agmon-Douglis-Nirenberg estimates (see for
example Theorem 9.11 in [57]), we have

‖un‖W 2,p(Ih) ≤ C
(
‖un‖Lp(Ij) + ‖vn(x, 0)‖Lp(Ij)

)
.

To find the same estimate for the norm of vn, we have to make the same construction
used in the proof of Proposition 2.12 to find the bound for ψr. In the same way, we
get

‖vn‖W 2,p(Ωh) ≤ C
(
‖un‖Lp(Ij) + ‖vn‖Lp(Ωj) + ‖f‖Lp(Ij×(0,V ))

)
.

where the constant C, possibly varying in each inequality, depends on ν, µ, d, D, h
and j. Using the boundedness of u and v, for a possible different C depending on f
we get

‖un‖W 2,p(Ih) ≤ CV,

‖vn‖W 2,p(Ωh) ≤ CV.

Then, we apply the general Sobolev inequalities (see [45], Theorem 6 in 5.6) and
get for some α depending on p, that

‖un‖Cα(Ih) ≤ C‖un‖W 2,p(Ih) ≤ CV,

‖vn‖Cα(Ωh) ≤ C‖vn‖W 2,p(Ωh) ≤ CV.

Now we can apply Schauder interior estimates for the oblique boundary condition
(see for example Theorem 6.30 in [57]) and find that

‖un‖C2,α(Ik) ≤ C
(
‖un‖Cα(Ih) + ‖vn(x, 0)‖Cα(Ih)

)
≤ CV,

‖vn‖C2,α(Ωk) ≤ C
(
‖un‖Cα(Ih) + ‖vn‖Cα(Ωh) + ‖f‖Cα(Ih×[0,V ])

)
≤ CV.

So the sequences {un}n∈N and {vn}n∈N are bounded locally in space in C2,α. By
compactness we can extract converging subsequences with limits ũ(x) and ṽ(x, y).
Moreover, since by hypothesis x′n → x′ as n→ +∞, we have that (ũ, ṽ) is a solution

−Du′′ − cu′ − νv|y=0 + µu = 0, x ∈ R,
v − d∆v − c∂xv = f(x+ x′, v), (x, y) ∈ Ω,
−d∂yv|y=0 + νv|y=0 − µu = 0, x ∈ R,

This concludes the proof of the first statement.
Now suppose that {yn}n∈N is unbounded and, up to a subsequence, we can suppose

that
yn

n→∞−→ +∞. (2.61)

Then, the function defined in (2.60) solves the equation

−d∆vn − c∂xvn = f(x+ x′n, v) for (x, y) ∈ R× (−yn, 0)
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with the boundary condition −d∂yvn(x, yn)+νvn(x,−yn)−µu(x+xn) = 0. Fix p ≥ 1
and three numbers j > h > k > 0; we denote by BR the open ball of R2 centred in
(0, 0) and with radius R, and we will consider R = j, h, k. Notice that by (2.61)
there exists N ∈ N we have that yn > j for all n ≥ N . Hence, applying the previous
estimates to vn for all n ≥ N , we find that

‖vn‖W 2,p(Bh) ≤ C
(
‖vn‖Lp(Bj) + ‖f‖Lp(Ij×(0,V ))

)
≤ CV

and then that

‖vn‖C2,α(Bk) ≤ C
(
‖vn‖Cα(Bh) + ‖f‖Cα(Ih×[0,V ])

)
≤ CV.

So the sequence {vn}n∈N is bounded locally in space in C2,α(R2) and by compactness
we can extract converging subsequence with limit ṽ(x, y), that satisfy

−d∆vn − c∂xvn = f(x+ x′, v) for (x, y) ∈ R2,

which gives the claim.

The second lemma is similar to the first one, but treats a shifting in time.

Lemma 2.17. Let (u, v) be a bounded solution to (2.1) which is monotone in time
and let {tn}n∈N ⊂ R≥0 be a diverging sequence. Then, the sequence {(un, vn)}n∈N
defined by

(un(t, x), vn(t, x, y)) = (u(t+ tn, x), v(t+ tn, x, y)) (2.62)

converges in C1,2,α
loc to a couple of functions (ũ, ṽ) which is a stationary solution to

(2.1).

Proof. We call V = max{supu, sup v}. For every fixed x ∈ R we have that un(t, x)
is an monotone bounded sequence. Then, we can define a function ũ(x) as

ũ(x) = lim
n→∞

un(t, x) (2.63)

and 0 ≤ ũ(x) ≤ U . Analogously, for all (x, y) ∈ Ω we can define

ṽ(x, y) = lim
n→∞

vn(t, x, y) (2.64)

and 0 ≤ ṽ(x, y) ≤ V .
Fix p ≥ 1, T > 0 and three numbers k < h < j; we use the notation in (2.22)

for the sets IR and ΩR for R = k, h, j. For S an open subset in RN , in this proof
we denote the space of function with one weak derivative in time and two weak
derivatives in space by W 1,2

p (S). By Agmon-Douglis-Nirenberg estimates we have

‖un‖W 1,2
p (Ih) ≤ C

(
‖un‖Lp((0,T )×Ij) + ‖vn(t, x, 0)‖Lp((0,T )×Ij)

)
≤ CV.

To find the same estimate for the norm of vn, we have to make the same construction
used in the proof of Proposition 2.12 to find the bound for ψr. In the same way, we
get

‖vn‖W 1,2
p ((0,T )×Ωh) ≤ C

(
‖un‖Lp((0,T )×Ij) + ‖vn‖Lp((0,T )×Ωj) + ‖f‖Lp(Ij×(0,V ))

)
≤ CV.
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where the constant C, possibly varying in each inequality, depends on ν, µ, d, D, T ,
h and j. Then, we apply the general Sobolev inequalities (see [45], Theorem 6 in 5.6)
and get for some α depending on p, that

‖un‖Cα((0,T )×Ih) ≤ C‖un‖W 1,2
p ((0,T )×Ih) ≤ CV,

‖vn‖Cα((0,T )×Ωh) ≤ C‖vn‖W 1,2
p ((0,T )×Ωh) ≤ CV.

Moreover, since for n ∈ N the functions un and vn are just time translation of the
same functions ũ and ṽ, we also have that

‖un‖Cα((0,+∞)×Ih) ≤ CV,

‖vn‖Cα((0,+∞)×Ωh) ≤ CV.

Now we can apply Schauder interior estimates (see for example Theorem 10.1 in
Chapter IV of [74]) and find that

‖un‖C1,2,α((0,+∞)×Ik) ≤ C
(
‖un‖Cα((0,+∞)×Ih) + ‖vn(t, x, 0)‖Cα((0,+∞)×Ih)

)
≤ CV,

‖vn‖C1,2,α((0,+∞)×Ωk) ≤ C
(
‖un‖Cα((0,+∞)×Ih)+

+ ‖vn‖Cα((0,+∞)×Ωh) + ‖f‖Cα(Ih×[0,V ])

)
≤ CV.

So the sequences {un}n∈N and {vn}n∈N are bounded locally in space in C1,2,α. By
compactness we can extract converging subsequences with limits q(t, x) and p(t, x, y)
that satisfy system (2.1). But as said in (2.63) and (2.64) the sequences {un} and
{vn} also converge punctually to ũ and ṽ, that are stationary functions. Then, the
couple (ũ, ṽ) is a positive bounded stationary solution of system (2.1).

The following lemma gives essentials information on the stationary solutions, on
which the uniqueness result of Theorem 2.19 will rely on.

Lemma 2.18. Suppose that c = 0, f satisfies (2.2)-(2.5) and that λ1(Ω) < 0. Then,
every stationary bounded solution (u, v) 6≡ (0, 0) of system (2.1) respects

inf
R
u > 0, inf

Ω
v > 0.

Proof. Step 1: sliding in x. If λ1(Ω) < 0, thanks to Proposition 2.8 there exists
R > 0 such that λ1(ΩR) < 0. Since λ1(ΩR) is monotonically decreasing in R, we
can suppose that R > `. By a slight abuse of notation, let us call (uR, vR) the
eigenfunctions associated with λ1(ΩR) < 0 extended to 0 in R× Ω \ (IR × ΩR).

We claim that there exists ε > 0 such that ε(uR, vR) is a subsolution for system
(2.1). In fact, we have that

lim
v→0+

f(x, v)

v
= fv(x, 0),

so for ε small enough we have that

f(x, εvR)

εvR
> fv(x, 0) + λ1(ΩR). (2.65)
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Then,
−Dεu′′R − cεu′R − νεvR|y=0 + µεuR = λ1(ΩR)εuR ≤ 0, x ∈ IR,
−d∆εvR − c∂xεvR = (fv(x, 0) + λ1(ΩR)εvR ≤ f(x, εvR), (x, y) ∈ ΩR,
−dε∂yvR|y=0 + νεvR|y=0 − εuR = 0, x ∈ IR,

(2.66)

so ε(uR, vR) is a subsolution.
Decreasing ε if necessary, we have that ε(uR, vR) < (u, v) because u and v are

strictly positive in all points of the domain while (uR, vR) has compact support. Now
we translate ε(uR, vR) in the variable x by multiples of `; given k ∈ Z, we call

uR,k(x) := εuR(x− k`), IR,k = (k`−R, k`+R),

vR,k(x, y) := εvR(x− k`, y), ΩR,k = BR(k`, 0) ∩ Ω.

The couple (uR,k, vR,k) is still a subsolution to system (2.1) because is a translation
of a subsolution by multiple of the periodicity of the coefficients in the equations.
Suppose by the absurd that there exists k ∈ Z such that (uR,k, vR,k) 6< (u, v). Since
u and v are strictly positive in all points of respectively R and Ω, while uR,k and vR,k
have compact support, by decreasing ε if necessary, we have that (uR,k, vR,k) ≤ (u, v)
and either there exists x̄ ∈ IR,k such that uR,k(x̄) = u(x̄) or there exists (x̄, ȳ) ∈ ΩR,k

such that vR,k(x̄, ȳ) = v(x̄, ȳ). Then, by the Comparison Principle, we have that
(uR,k, vR,k) ≡ (u, v), which is absurd because uR,k and vR,k are compactly supported.
Therefore, we have

u(x) > εuR(x+ k`), ∀x ∈ R, ∀k ∈ Z,
v(x, y) > εvR(x+ k`, y), ∀(x, y) ∈ Ω, ∀k ∈ Z. (2.67)

Fix Y <
√
R2 − `2. Then, let us call

δY := min{min
[0,`]

εuR(x), min
[0,`]×[0,Y ]

εvR(x, y)}.

Since [0, `]× (0, Y ) ⊂ ΩR and [0, `] ⊂ IR, we have that δY > 0. Then, (2.67) implies
that

u(x) > δY , for x ∈ R,
v(x, y) > δY , for x ∈ R, y ∈ [0, Y ].

(2.68)

Step 2: sliding in y. Recall that by Corollary 2.7 we have λ1(Ω) < 0 implies
λ1(−L,Ω) < 0 and by Proposition (2.12) it holds λp(−L,R2) ≤ λ1(−L,Ω) < 0. By
Proposition 2.14 and by (2.29) we have that for some r > 0 we have λp(−L,R ×
(−r, r)) < 0. Then, let us call vr the eigenfunction related to λp(−L,R × (−r, r))
extended to 0 outside its support; repeating the classic argument, one has that for
some θ > 0 we have θvr extended to 0 outside R × (−r, r) is a subsolution for the
second equation in system (2.1). For all h > 0, let us now call ϕh(x, y) := vr(x, y+h).
Since vr is periodic in the variable x, we have that vr is uniformly bounded. Now
take Y > 2r and h0 > r such that Y > h0 + r; by decreasing θ if necessary, we get
that θvr < δY . Hence, we get

θϕh0(x, y) < v(x, y) for x ∈ R, y ≥ 0. (2.69)
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Now define

h∗ = sup{h ≥ h0 : θϕh(x, y) < v(x, y) for x ∈ R, y ∈ [h− r, h+ r]}.

By (2.69), we get that h∗ ≥ h0 > r.
We now take ỹ < h∗ + r and define

h̃ =

{
ỹ, if ỹ ≤ h∗,
ỹ + h∗ − r

2
, if h∗ < ỹ < h∗ + r.

Then, h̃ < h∗: if h̃ = ỹ it is trivial, otherwise one observe that ỹ − r < h∗. Also,
ỹ ∈ (h̃− r, h̃+ r); in fact, that is obvious if h̃ = ỹ, otherwise we have that ỹ < h∗+ r
and

h̃− r < h∗ − r < ỹ <
ỹ + h∗ + r

2
= h̃+ r.

Then, since vr and therefore ϕh̃ are periodic in x, we have that

v(x, ỹ) > θϕh̃(x, ỹ) > min
[0,`]

θϕh̃(x, ỹ) > 0, (2.70)

so v(x, y) > 0 for all y < h∗ + r, x ∈ R and moreover

v(x, y) > θmin
[0,`]

vr(x, 0) > 0 for x ∈ R, y ≤ h∗. (2.71)

Suppose by absurd that h∗ < +∞. Then there exists a sequence {hn}n∈N and a
sequence {(xn, yn)}n∈N with (xn, yn) ∈ R× [hn − r, hn + r], such that

lim
n→+∞

hn = h∗ and lim
n→+∞

θϕhn(xn, yn)− v(xn, yn) = 0.

Up to a subsequence, {yn}n∈N ⊂ [0, h∗+r] converges to some ȳ ∈ [h∗−r, h∗+r] while
{xn}n∈N either converges to some x̄ ∈ R or goes to infinity.

For all n ∈ N there exists x′n ∈ [0, `) and k ∈ Z such that

xn = x′n + k`. (2.72)

Up to a subsequence,
x′n

n→∞−→ x′ ∈ [0, `]. (2.73)

Define
(un(x), vn(x, y)) := (u(x+ xn), v(x+ xn, y)).

Then, by Lemma 2.16 we have that {(un, vn)}n∈N converges to some (ũ, ṽ) such that

(ũ(x+ x′), ṽ(x+ x′, y) is a bounded stationary solution to (2.1). (2.74)

By (2.70), we have

ṽ(x, ỹ) > min
x∈[0,`]

θϕh̃(x, ỹ) > 0 for ỹ < h∗ + r. (2.75)
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We notice that if ṽ(0, ȳ) = 0, since ṽ ≥ 0 and (2.74) holds, by the maximum
principle we get ṽ ≡ 0 in Ω. But since (2.75) holds, this is not possible and instead
ṽ(0, ȳ) > 0. Hence, 0 < ṽ(0, ȳ) = θϕh∗(0, ȳ), so

ȳ 6= h∗ ± r. (2.76)

We have that θϕhn is a subsolution for L in R × (hn − r, hn + r), since it is a
translation of a subsolution. Moreover, thanks to the periodicity of ϕhn and the
definition of x′n in (2.72), we have

ϕhn(x+ xn, y) = ϕhn(x+ x′n, y).

It follows that the sequence ϕhn(x+xn, y) converges to ϕh∗(x+x′, y). Then, θϕh∗(x+
x′, y) is a subsolution for the second equation in (2.1) in R × (h∗ − r, h∗ + r) and
by (2.76) it holds (0, ȳ) ∈ R × (h∗ − r, h∗ + r) ⊂ Ω. Hence, we can apply the
comparison principle to ṽ(x, y) and θϕh∗(x + x′, y): since ṽ(0, ȳ) = θϕh∗(x

′, ȳ), then
ṽ(x, y) ≡ θϕh∗(x+x′, y) in all the points of R×(h∗−r, h∗+r). But then by continuity
ṽ(x, h∗ − r) = θϕh∗(x+ x′, h∗ − r) = 0, which is absurd for (2.75). Hence h∗ = +∞.
From that and (2.68) we have statement of the lemma.

Finally, we are ready to prove existence and uniqueness of a positive bounded
stationary solution to (2.1). The existence of such couple of function is crucial to get
the persistence result of Theorem 2.3.

Theorem 2.19. Suppose that c = 0, f satisfies (2.2)-(2.5) and that λ1(Ω) < 0.
Then, the following holds:

1. There exists a unique positive bounded stationary solution (u∞, v∞) to system
(2.1).

2. The functions u∞ and v∞ are periodic in the variable x of period `.

Proof. Step 1: construction of a subsolution.
Since λ1(Ω) < 0, by Theorem 2.13 it holds that λp(Ω) < 0 and moreover by

Proposition 2.31 there exists r > 1 such that λp(R× (0, r)) < 0. Let us call (φr, ψr)
the eigenfunction related to λp(R× (0, r)).

We have that

lim
v→0+

f(x, v)

v
= fv(x, 0),

so there exists ε > 0 such that

f(x, εψr)

εψr
> fv(x, 0) + λp(R× (0, r)).

Then,
−Dεφ′′r − cεφ′r − νεψr|y=0 + εφr = λp(R× (0, r))εφr < 0, x ∈ R,
−d∆εψr − c∂xεψr < f(x, εψr), (x, y) ∈ R× (0, r),
−dε∂yψr|y=0 + νεψr|y=0 − εφr = 0, x ∈ R,

(2.77)
so ε(φr, ψr) is a subsolution to system (2.1).
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Thanks to Corollary 2.7, λ1(Ω) < 0 implies λ1(−L,R2) < 0; then Proposition
2.12 implies that λp(−L,R2) < 0. By (2.20), also λp(−L,R) < 0.

Consider the periodic positive eigenfunction ψp(x) related to λp(−L,R). With a
slight abuse of notation, we can extend ψp(x) in all R2 by considering constant with
respect to the variable y. Repeating the same arguments as before, we can prove that
for some θ the function θψp(x) is a subsolution for the second equation of system (2.1)
in R2.

Consider δ > 0. We have that ψp(x) is limited, therefore there exists ε′ ∈ (0, θ)
such that

max
[0,`]

ε′ψp(x) < δ < min
[0,`]×[0,r−1]

εψr(x, y). (2.78)

Then, let us define the functions

u(x) := εφr(x),

v(x, y) := max{εψr(x, y), ε′ψp(x)}.

By (2.78), for y ∈ (0, r − 1) it holds that v(x, y) = εψr(x, y). Hence, we get
that (u, v) is a subsolution for the first and third equation of (2.1). Moreover, since
εψr(x, y) and ε′ψp(x) are both subsolution to the second equation to (2.1), so the
maximum between them is a generalised subsolution. Thanks to that, we can con-
clude that (u, v) is a generalised subsolution for the system (2.1).

Since φr and ψp are periodic in x and independent of y, we get

inf
R
u(x) > 0 and inf

Ω
v(x, y) > 0.

So, (u, v) is a generalised subsolution for the system (2.1), with positive infimum,
and by the periodicity of φr, ψr and ψp, it is periodic in x with period `.

Step 2: construction of a stationary solution.
Take the generalised subsolution (u, v). We want to show that the solution

(ũ(t, x), ṽ(t, x, y)) having (u(x), v(x, y)) as initial datum is increasing in time and
converge to a stationary solution.

By the fact that (u, v) is a subsolution, at we have (u, v) ≤ (ũ, ṽ) for all t ≥ 0.
Hence, for all τ > 0, let us consider the solution (z, w) stating at t = τ from the
initial datum (u(x), v(x, y)). Then, at t = τ we have that (ũ(τ, x), ṽ(τ, x, y)) ≥
(z(τ, x), w(τ, x, y)). By the comparison principle 2.15, we have that for all t ≥ τ it
holds that (ũ(t, x), ṽ(t, x, y)) ≥ (z(t, x), w(t, x, y)). By the arbitrariness of τ , we get
that (ũ(t, x), ṽ(t, x, y)) is increasing in time.

Moreover, consider

V := max
{
M, sup v,

µ

ν
supu

}
, U :=

ν

µ
V,

where M > 0 is the threshold value defined in (2.3). One immediatly checks that
(U, V ) is a supersolution for the system (2.1). Also, we have that (u(x), v(x, y)) ≤
(U, V ), so by the comparison principle 2.15 it holds that

(ũ(t, x), ṽ(t, x, y)) ≤ (U, V ) for all t > 0.
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Hence, (ũ(t, x), ṽ(t, x, y)) is limited.
Now consider an increasing diverging sequence {tn}n∈N ⊂ R+. Then, define

un(t, x) := ũ(t+ tn, x), vn(t, x, y) := ṽ(t+ tn, x, y),

that is a sequence of functions. By Lemma 2.17, (un, vn) converge in C1,2,α
loc to a

stationary bounded solution to (2.1), that we call (u∞, v∞). We point out that
(u∞, v∞) 6≡ (0, 0) since

(u∞, v∞) ≥ (u, v) > (0, 0).

Moreover, both functions are periodic of period ` in the variable x since the initial
datum is.

Step 3: uniqueness.
Suppose that there exists another positive bounded stationary solution (q, p) to

(2.1). Then, define

k∗ := sup {k > 0 : u∞(x) > kq(x) ∀x ∈ R, v∞(x, y) > kp(x, y) ∀(x, y) ∈ Ω} .

Since by Lemma 2.18 the functions u∞ and v∞ have positive infimum and since p
and q are bounded, we have that k∗ > 0.

We claim that
k∗ ≥ 1. (2.79)

By the definition of k∗, one of the following must hold: there exists

either a sequence {xn}n∈N ⊂ R such that u∞(xn)− k∗q(xn)
n→∞−→ 0, (2.80)

or a sequence {(xn, yn)}n∈N ⊂ Ω such that v∞(xn, yn)− k∗p(xn, yn)
n→∞−→ 0. (2.81)

There exists a sequence {x′n}n∈N ⊂ [0, `) such that

xn − x′n ∈ `Z for all n ∈ N. (2.82)

Then, up to extraction of a converging subsequence, we have that there exists x′ ∈ R
such that x′n

n→∞−→ x′. One can see that the sequence of couples

(qn(x), pn(x, y)) := (q(x+ xn), p(x+ xn, y))

is a stationary solution for (2.1) with reaction function f(x+x′n, v). By Lemma 2.16,
up to a subsequence, (qn, pn) converges in C2

loc to some (q∞, p∞), which is a stationary
solution of (2.1) with reaction function f(x + x′, v). We also notice that, thanks to
the periodicity of u∞ and v∞, (u∞(x+ x′), v∞(x+ x′, y)) is also a stationary solution
of (2.1) with reaction function f(x+ x′, v). Define the function

α(x) := u∞(x+ x′)− k∗q∞(x),

β(x) := v∞(x+ x′, y)− k∗p∞(x, y),
(2.83)

and notice that α(x) ≥ 0, β(x, y) ≥ 0.
Now suppose that (2.80) holds. We have that

α(0) = u∞(x′)− k∗q∞(0) = 0.
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Moreover, α(x) is a solution to the equation

−Dα′′ − cα′ − νβ|y=0 + µα = 0.

By the maximum principle, we have that since α(x) attains its minimum in the
interior of the domain then α(x) ≡ minα = 0. Then, one would have u∞(x + x′) ≡
k∗q∞(x) and by the comparison principle 2.15 we have v∞(x+x′, y) ≡ k∗p∞(x+x′, y).
Subtracting the second equation of system (2.1) for p∞ from the one for v∞ we get

0 = f(x+ x′, v∞(x+ x′, y))− k∗f(x+ x′, p∞(x, y)). (2.84)

If by the absurd k∗ < 1, by the KPP hypothesis (2.4) we have k∗f(x+x′, p∞(x, y)) <
f(x+ x′, k∗p∞(x, y)) = f(x+ x′, v∞(x+ x′, y)) and the right hand side of (2.84) has
a sign, that is absurd since the left hand side is 0. We can conclude that if we are in
the case of (2.80), then (2.79) holds.

Suppose instead that (2.81) is true. If {yn}n∈N is bounded, we define yn
n→N−→ y′ ∈

R. Then,
β(0, y′) = v∞(x′, y′)− k∗p∞(0, y′) = 0. (2.85)

If by the absurd k∗ < 1, then by the Fisher-KPP hypothesis (2.4) we have

−d∆β(x, y)− c∂xβ(x, y) = f(x+ x′, v∞(x+ x′, y))− k∗f(x+ x′, p∞(x, y))

> f(x+ x′, v∞(x+ x′, y))− f(x, k∗p∞(x, y)).
(2.86)

Since f is locally Lipschitz continuous in the second variable, one infers from (2.86)
that there exists a bounded function b(x) such that

− d∆β − c∂xβ + bβ > 0. (2.87)

Since that, β ≥ 0 and by (2.85) β(0, y′) = 0, if y′ > 0 we apply the strong maximum
principle and we have β ≡ 0. If y′ = 0, we point out that by the fact that v∞ and p∞
are solution to (2.1) it holds

d∂yβ(x, 0) = ν(v∞(x+ x′, 0)− k∗p∞(x, 0))− ν(u∞(x+ x′)− k∗q∞(x)) ≤ 0

By that, the inequality in (2.87), β ≥ 0, β(0, y′) = 0, we can apply Hopf’s lemma and
get again β ≡ 0. Then for both y′ > 0 and y′ = 0, v∞(x+x′, y) ≡ k∗p∞(x+x′, y) and
(2.84) holds, but we have already saw that this is absurd. So, in the case of (2.81),
if {yn}n∈N is bounded, (2.79) is true.

At last, if {yn}n∈N is unbounded, we define

Vn(x, y) := v∞(x+ xn, y + yn),

Pn(x, y) := p(x+ xn, y + yn).

By Lemma 2.17, up to subsequences, Vn and Pn converge in C2
loc to some functions

V∞ and P∞ solving

−d∆v − c∂xv = f(x+ x′, v) for (x, y) ∈ R2.
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Moreover, if we suppose k∗ < 1, by the Fisher-KPP hypothesis (2.4) we have that

k∗f(x+ x′, P∞) < f(x+ x′, k∗P∞)

and consequently, calling γ := V∞ − k∗P∞, we get

−d∆γ − c∂xγ > f(x+ x′, V∞)− f(x+ x′, k∗P∞).

Once again using the local Lipschitz boundedness of f in the second variable, for
some bounded function b we have that

− d∆γ − c∂xγ + bγ > 0. (2.88)

Also, we have that

γ(0, 0) = V∞(0, 0)− k∗P∞(0, 0) = lim
n→∞

v∞(xn, yn)− k∗p(xn, yn) = 0.

Since that, γ ≥ 0 and (2.88), we can apply the strong maximum principle and we
have γ ≡ 0 in R2. Then, V∞ ≡ k∗P∞ and

0 = −d∆γ − c∂xγ = f(x+ x′, k∗P∞)− k∗f(x+ x′, P∞) > 0, (2.89)

which is absurd. Since this was the last case to rule out, we can conclude that (2.79)
holds.

From (2.79), we have that

(u∞, v∞) ≥ (q, p). (2.90)

Now, we can repeat all the argument exchanging the role of (u∞, v∞) and (q, p).
We find

h∗ := sup {h > 0 : q(x) > hu∞(x) ∀x ∈ R, p(x, y) > hv∞(x, y) ∀(x, y) ∈ Ω} ≥ 1.

and
(q, p) ≥ (u∞, v∞).

By that and (2.90), we have that (u∞, v∞) ≡ (q, p). Hence, the uniqueness is proven.

Now we are ready to give a result on the persistence of the population.

Proof of Theorem 2.3, part 1. Since λ1(Ω) < 0, by Proposition (2.8), we have that
there exists R > 0 such that λ1(ΩR) < 0. Let us consider (uR, vR) the eigenfunctions
related to λ1(ΩR) < 0; then, with the argument already used in the proof of Lemma
2.18 (precisely, in (2.65) and (2.66)), there exists a value ε > 0 such that (εuR, εvR)
is a subsolution to (2.1) in ΩR. Observe also that uR(x) = 0 for x ∈ ∂IR and
vR(x, y) = 0 for (x, y) ∈ (∂ΩR) ∩ Ω. Then, we can extend εuR and εvR outside
respectively IR and ΩR, obtaining the generalised subsolution (εuR, εvR).

Let us consider the solution (u, v) issued from (u0, v0). Then, by the strong
parabolic principle we have that

u(1, x) > 0 and v(1, x, y) > 0. (2.91)
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Recall that (u∞, v∞) is the unique stationary solution of (2.1), and that by Lemma
(2.18) we have

u∞ > 0 and v∞ > 0. (2.92)

By that and (2.91), we have that

δ := min{min
x∈IR

u(1, x),min
x∈IR

u∞(x), min
(x,y)∈ΩR

v(1, x, y), min
(x,y)∈ΩR

v∞(x, y)} > 0.

Without loss of generality, we can suppose

ε < δ (2.93)

and thus by (2.91), (2.92), and (2.93), we have

u∞(x) > εuR(x) for all x ∈ R,
v∞(x, y) > εvR(x, y) for all (x, y) ∈ Ω.

(2.94)

Now, consider the solution (u, v) issued from (εuR, εvR). We point out that, by
the comparison principle, for all t > 0 we have

(u(t, x), v(t, x, y) ≤ (u(t+ 1, x), v(t+ 1, x, y)). (2.95)

By the standard argument already used in the proof of Theorem 2.19, we have that
(u, v) is increasing in time and by Lemma 2.17 it converges in C2

loc to a station-
ary function (u∞, v∞) as t tends to infinity. Since (u, v) is increasing in time and
(εuR, εvR) 6≡ (0, 0), by the strong maximum principle we have (u∞, v∞) > (0, 0). By
(2.94), we also have

(u∞, v∞) ≤ (u∞, v∞)

Then, by the uniqueness of the bounded positive stationary solution proved in The-
orem 2.19, we have (u∞, v∞) ≡ (u∞, v∞).

Next, take

V := max
{
M, sup v0,

µ

ν
supu0, sup v∞,

µ

ν
supu∞

}
, U :=

ν

µ
V, (2.96)

where M > 0 is the threshold value defined in (2.3). Making use of the hypothesis
(2.3) on f , one easily check that (U, V ) is a supersolution for (2.1). Let us call (u, v)
the solution to (2.1) issued from (U, V ). By definition, (U, V ) ≥ (u0, v0), hence by
the comparison principle for all t > 0 we have

(u(t, x), v(t, x, y)) ≤ (u(t, x), v(t, x, y)). (2.97)

Repeating the argument used in the proof of Theorem 2.19, we observe that (u, v) is
decreasing in time and by Lemma 2.17 it converges in C2

loc to a stationary function
(u∞, v∞) as t tends to infinity. We have (u∞, v∞) ≤ (U, V ), so the stationary solution
is bounded. Moreover, since by the definition of (U, V ) in (2.96) we have (u∞, v∞) ≤
(U, V ), by the comparison principle 2.15 we get

(u∞, v∞) ≤ (u∞, v∞).
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Since (u∞, v∞) is a bounded positive stationary solution of (2.1), by Theorem 2.19
we have that (u∞, v∞) ≡ (u∞, v∞).

By the comparison principle 2.15 and by (2.95) and (2.97), for all t > 1 we have

u(t− 1, x) ≤ u(t, x) ≤ u(t, x) for all x ∈ R,
v(t− 1, x, y) ≤ v(t, x, y) ≤ v(t, x, y) for all (x, y) ∈ Ω.

Since both (u, v) and (u, v) converge to (u∞, v∞) locally as t tends to infinity, by the
sandwich theorem we have that (u, v) also does. This is precisely the statement that
we wanted to prove.

2.4.2 Extinction

The first step to prove extinction is to show that there is no positive bounded
stationary solution to system (2.1), that is, the only bounded stationary solution is
(0, 0).

Lemma 2.20. Suppose c = 0 and f satisfy (2.2)-(2.5). If λ1(Ω) ≥ 0, then there is
no positive bounded stationary solution to system (2.1).

Proof. Step 1: construction of a supersolution. Observe that in this case, since c = 0,
by Theorem 2.13 it holds λp(Ω) = λ1(Ω) ≥ 0. We take the couple of eigenfunctions
(up, vp) related to λp(Ω) as prescribed by Proposition 2.12; recall that (up, vp) are
periodic in x. Suppose (q, p) is a positive bounded stationary solution to (2.1). Then,
there exists η > 0 such that

q(0) > ηup(0). (2.98)

We now choose a smooth function χ : R≥0 → R≥0 such that χ(y) = 0 for y ∈ [0, `],
χ(y) = 1 for y ∈ [2`,+∞).

By (2.20) and Theorem 2.10, we have λp(−L,R) = λp(−L,R2) = λ1(−L,R2). By
that, Theorem 2.7 and the fact that λ1(Ω) ≥ 0, we get λp(−L,R) ≥ 0. We call ψp the
eigenfunction related to λp(−L,R) and, with a slight abuse of notation, we extend
it to R2 by considering it constant with respect to the variable y. Take ε > 0 to be
fixed after, and define

(u(x), v(x, y)) := (ηup(x), ηvp(x, y) + εχ(y)ψp(x)).

Then, it holds that

−d∆v = −d
(
∆ηvp + εχ′′ψp + εχψ′′p

)
,

= (fv(x, 0) + λp(Ω)) ηvp + (fv(x, 0) + λp(−L,R))εχψp − dεχ′′ψp,
= fv(x, 0)v + λp(Ω)ηvp + λp(−L,R)εχψp − dεχ′′ψp.

(2.99)

Using the KPP hypothesis (2.4) and the boundedness of χ′′, for ε small enough we
have

fv(x, 0)v − dεχ′′ψp > f(x, v).

By that, (2.99) and the non negativity of λp(Ω) and λp(−L,R), we have

−d∆v > f(x, v).
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This means that v is a supersolution for the second equation of (2.1).
Since by definition for y ≤ ` we have χ(y) = 0, it holds that

(u(x), v(x, y)) ≡ (up(x), vp(x, y)) for all (x, y) ∈ R× (0, `). (2.100)

By the fact that λp(Ω) ≥ 0, it is easy to check that (up(x), vp(x, y)) is a supersolution
for the first and third equation in (2.1). By (2.100), the same holds for (u(x), v(x, y)).
This, together with (2.99), gives that (u(x), v(x, y)) is a supersolution to (2.1).

Step 2: construction of a bounded supersolution Now we distinguish two cases. If
vp is bounded, then we take

(ũ, ṽ) := (ū, v̄) (2.101)

Otherwise, we proceed as follows. Since in this other case vp is unbounded, and since
it is periodic in x, this means there exists a sequence {(xn, yn)}n∈N such that

vp(xn, yn)→∞, yn →∞ as n→∞. (2.102)

Now, consider

V := max

{
max

[0,`]×[0,3`]
vp + 1, max

[0,`]

ν

µ
up + 1, M

}
, (2.103)

where M is the quantity defined in (2.3). Take the set S := (−`, `)× (−`, `) and the
constant C of the Harnack inequality (see Theorem 5 in Chapter 6.4 of [45]) on the
set S for the operator L(ψ) = L(ψ) + λ1(Ω)ψ. Then, by (2.102), for some N ∈ N we
have

V ≤ 1

C
vp(xN , yN).

Then by using that and Harnack inequality on vp(x+xN , y+yN) in the set S, we get

V ≤ 1

C
sup
S
vp(x, y) ≤ inf

S
vp(x, y),

Then, using the periodicity of vp, we get

V ≤ vp(x, yN) for all x ∈ R. (2.104)

Now, define

ṽ(x, y) :=

{
min{V, v̄(x, y)} if y ≤ yN ,
V if y > yN .

(2.105)

Also, we define

U :=
ν

µ
V

and
ũ := min{U, up}. (2.106)

By the definition of V in (2.103), one readily checks that (U, V ) is a supersolution
for system (2.1) and that

ũ = up and ṽ(x, 0) = vp(x, 0). (2.107)
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We point out that by the definition of (ũ, ṽ), (2.104) and (2.107), for any (u, v)
subsolution to system (2.1), we will be able to apply the generalised comparison
principle, Proposition 3.3 appeared in [20]. Moreover, (ũ, ṽ) is bounded from above
by (U, V ).

By the fact that (up, vp) is a couple of generalised periodic eigenfunctions to (2.32),
by the strong maximum principle we have that

ũ(x) ≥ min
[0,`]

ηup(x
′) > 0 for x ∈ R,

ṽ(x, y) ≥ min
[0,`]×[0,2`]

ηvp(x
′, y′) > 0 for (x, y) ∈ R× [0, 2`],

ṽ(x, y) ≥ min{min
[0,`]

εψp(x
′), V } > 0 for (x, y) ∈ R× (2`,+∞).

(2.108)

Step 3: comparison with the stationary solution. Next, define

k∗ := inf{k ≥ 0 : k(ũ(x), ṽ(x, y)) > (q, p) for all (x, y) ∈ Ω}.

Since by (2.108) we have that ũ(x) and ṽ(x, y) are bounded away from 0, and since
(q, p) is bounded by hypothesis, we get that k∗ < +∞. By (2.98), we have that

k∗ > 1. (2.109)

Then, either

there exists a sequence {xn}n∈N ⊂ R such that k∗ũ(xn)− q(xn)
n→∞−→ 0, (2.110)

or

there exists a sequence {(xn, yn)}n∈N ⊂ Ω such that k∗ṽ(xn, yn)− p(xn, yn)
n→∞−→ 0.
(2.111)

As usual, for all n ∈ N we take x′n ∈ [0, `) such that xn − x′n ∈ `Z. Up to a
subsequence, {x′n}n∈N is convergent and we call

x′ = lim
n→∞

x′n ∈ [0, `].

Step 4: {yn}n∈N is bounded. If {yn}n∈N is bounded, consider a converging subse-
quence and call y′ = lim

n→∞
yn.

We define
(qn(x), pn(x, y)) := (q(x+ xn), p(x+ xn, y)).

By Lemma 2.16, (qn, pn) converges in C2
loc to some (q∞, p∞) such that (q∞(x −

x′), p∞(x− x′, y)) solves (2.1). Define the functions

α(x) := k∗ũ(x)− q∞(x− x′),
β(x, y) := ṽ(x, y)− p∞(x− x′, y).

If we are in the case of (2.110), then by the periodicity of ũ we get

α(x′) = k∗ũ(x′)− q∞(0) = lim
n→∞

(k∗ũ(xn)− q(xn)) = 0.



66 A Fisher-KPP model with a fast diffusion line in periodic media

Moreover, by the definition of k∗, we have that α ≥ 0. Also, α satisfies

−Dα′′ − νβ|y=0 + να ≥ 0.

Then, the strong maximum principle yields that, since α attains its minimum at
x = x′, then α ≡ 0. Then, by the comparison principle 3.3 in [20] we have that
β ≡ 0, hence

0 = −d∆β ≥ k∗f(x, ṽ)− f(x, p∞(x− x′, y)). (2.112)

By (2.109), we have that k∗ṽ > ṽ. Hence, by the Fischer-KPP hypothesis (2.4), we
have that

f(x, k∗ṽ)

k∗ṽ
<
f(x, ṽ)

ṽ
. (2.113)

Hence, again by the fact that β ≡ 0, we have p∞(x − x′, y) ≡ k∗ṽ; by that and by
(2.113), it holds

k∗f(x, ṽ)− f(x, p∞(x− x′, y)) = k∗f(x, ṽ)− f(x, k∗ṽ) > 0. (2.114)

But this is in contradiction with (2.112), hence this case cannot be possible.
If instead (2.111) holds, we get that

β(x′, y′) = k∗ṽ(x′, y′)− p∞(0, y′) = lim
n→∞

k∗ṽ(xn, yn)− p(xn, yn) = 0. (2.115)

By the definition of k∗ we also have that β ≥ 0. Moreover, we get that

−d∆β ≥ f(x, k∗ṽ)− f(x, p∞(x− x′, y))

using the fact that ṽ(x, y) is a supersolution, p∞(x− x′, y) is a solution, and (2.113).
Since f is Lipschitz in the second variable, uniformly with respect to the first one,
there exists some function b such that

−d∆β − bβ ≥ 0.

If y′ > 0, using the strong maximum principle and owing (2.115), we have that β ≡ 0.
If instead y′ = 0, recall that it also holds

−d∂yβ|y=0 ≥ µα− νβ.

Hence, in (x, y) = (x′, y′), we get that ∂yβ(x′, y′) ≤ 0. By Hopf’s lemma, we get again
that β ≡ 0.

But β ≡ 0 leads again to (2.112) and (2.114), giving an absurd, hence also this
case is not possible.

Step 5: {yn}n∈N is unbounded. We are left with the case of {yn}n∈N unbounded.
Up to a subsequence, we can suppose that {yn}n∈N is increasing. We define

Pn(x, y) := p(x+ xn, y + yn).

By Lemma 2.16 we have that, up to a subsequence, {Pn}n∈N converges in C2,α
loc (R2)

to some function P∞ such that P∞(x− x′, y) is a solution to the second equation in
(2.1) in R2.



2.4 Large time behaviour for a periodic medium and c = 0 67

Now we have two cases depending on how (ũ, ṽ) was constructed. If vp is bounded,
we have defined the supersolution as in (2.101). Then, by defining

vn(x, y) := vp(x+ xn, y + yn)

and applying Lemma 2.16, we have that vn converges locally uniformly to a bounded
function vp,∞ such that vp,∞(x− x′, y) satisfies

− d∆vp,∞(x− x′, y) = (fv(x, 0) + λ1(Ω))vp,∞(x− x′, y). (2.116)

In this case, we define

v∞(x, y) := ηvp,∞(x, y) + εψp(x+ x′).

We point out that v∞(x− x′, y) is a periodic supersolution of the second equation in
(2.1) by (2.116) and (2.99).

If instead vp is unbounded, by (2.106) for y > yN we have ṽ = V . In this case, we
choose

v∞ := V.

By the definition of V in (2.103), we have that v∞ is also a supersolution to (2.1).
We call γ(x, y) := k∗v∞(x− x′, y)− P∞(x− x′, y). Hence, γ(x, y) ≥ 0 and

γ(x′, 0) = k∗v∞(0, 0)− P∞(0, 0) = lim
n→∞

k∗ṽ(xn, yn)− p(xn, yn) = 0. (2.117)

Notice than that, since (2.109) holds, from the Fisher-KPP hypothesis on f (2.4), we
get

f(x, k∗v∞)

k∗v∞
<
f(x, v∞)

v∞
.

Using that, the fact that k∗v∞(x−x′, y) is a supersolution, and the fact that P∞(x−
x′, y) is a solution, we obtain

− d∆γ > f(x, k∗v∞(x− x′, y))− f(x, P∞(x− x′, y)). (2.118)

Since f is Lipschitz in the second variable, uniformly with respect to the first one,
there exists some function b such that

−d∆γ − bγ ≥ 0.

Using the strong maximum principle for the case of positive functions, since (2.117)
holds, we have that γ ≡ 0. As a consequence, from (2.118) we have

f(x, k∗v∞)− f(x, P∞) < 0.

but it also holds that k∗v∞ ≡ P∞, hence we have an absurd.
Having ruled out all the possible cases, we can conclude that there exists no

bounded positive stationary solution (q, p) to (2.1).

At last, we are ready to prove the first part of Theorem 2.3.
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Proof of Theorem 2.3, part 1. Define

V := max
{
M, sup v0,

µ

ν
supu0

}
and U :=

ν

µ
V.

It is easy to check that (U, V ) is a supersolution for (2.1). Then take (U, V ) to be the
solution to (2.1) with initial datum (U, V ). Notice that by the comparison principle

(0, 0) ≤ (u(t, x), v(t, x, y)) ≤ (U(t, x), V (t, x, y)) for all t > 0, (x, y) ∈ Ω. (2.119)

Since (U, V ) is a supersolution, we have that

(U, V ) ≤ (U, V ) for all t ≥ 0. (2.120)

Consider τ > 0 and call (Ũ , Ṽ ) the solution staring with initial datum (U, V ) at t = τ .
By (2.120) we have that (U(τ, x), V (τ, x, y)) ≤ (U, V ), hence by the comparison
principle (2.15) we have (U, V ) ≤ (Ũ , Ṽ ). By the arbitrariness of τ , we get that
(U, V ) is decreasing in t.

By Lemma 2.17, (U, V ) converges locally uniformly to a stationary solution (q, p).
But by Lemma 2.20, the only stationary solution is (0, 0). By that and (2.119), we
have that (u(t, x), v(t, x, y)) converges locally uniformly to (0, 0) as t goes to infinity.

Moreover, since (U, V ) is constant in x, and (2.1) is periodic in x, (U, V ) is periodic
in x. Hence, the convergence is uniform in x.

Now suppose by the absurd that the convergence is not uniform in y; hence there
exists some ε > 0 such that for infinitely many tn ≥ 0, with {tn}n∈N an increasing
sequence, and (xn, yn) ∈ Ω, it holds

V (tn, xn, yn) > ε. (2.121)

Since V is periodic in x, without loss of generality we can suppose xn ∈ [0, `] and that
up to a subsequence {xn}n∈N converges to some x′ ∈ [0, `]. If {yn}n∈N were bounded,
by (2.121) the local convergence to 0 would be contradicted; hence yn is unbounded.

Then, define the sequence of functions

Vn(t, x, y) = V (t, x+ xn, y + yn).

By (2.121), we have that

Vn(tn, 0, 0) > ε for all n ∈ N. (2.122)

Also, since Vn is bounded, by arguments similar to the ones used in Lemma 2.16
and Lemma 2.17 one can prove that, up to a subsequence, {Vn}n∈N converges in
C2
loc(R2) to a function Ṽ that solves

∂tṼ − d∆Ṽ = f(x+ x′, Ṽ ). (2.123)

Also by (2.122), we have that

Ṽ (tn, 0, 0) > ε for all n ∈ N. (2.124)

Recall that by the fact that λ1(Ω) ≥ 0, Corollary 2.7 and Theorem 2.10, λp(−L,R2) ≥
0. Then by Theorem 2.2 we have that every solution to (2.123) converges uniformly
to 0. But this is in contradiction with (2.124), hence we have an absurd and we
must refuse the existence such positive ε. So, the convergence of V to 0 is uniform
in space. As a consequence, the convergence of (u(t, x), v(t, x, y)) to (0, 0) is uniform
in space.



Chapter 3

Civil Wars: A New Lotka-Volterra
Competitive System and Analysis
of Winning Strategies

We introduce a new model in population dynamics that describes two species
sharing the same environmental resources in a situation of open hostility. Our basic
assumption is that one of the populations deliberately seek for hostility through
”targeted attacks”. Hence, the interaction among these populations is described not
in terms of random encounters but via the strategic decisions of one population that
can attack the other according to different levels of aggressiveness.

One of the features that distinguishes this model from usual competitive systems
is that it allows one of the population to go extinct in finite time. This leads to a
non-variational model for the two populations at war, taking into account structural
parameters such as the relative fit of the two populations with respect to the available
resources and the effectiveness of the attack strikes of the aggressive population.

The analysis that we perform is rigorous and focuses on the dynamical properties
of the system, by detecting and describing all the possible equilibria and their basins
of attraction.

Moreover, we will analyze the strategies that may lead to the victory of the
aggressive population, i.e. the choices of the aggressiveness parameter, in dependence
of the structural constants of the system and possibly varying in time in order to
optimize the efficacy of the attacks, which take to the extinction in finite time of the
defensive population.

The model that we present is flexible enough to also include commercial compe-
tition models of companies using aggressive policies against the competitors (such as
misleading advertising, or releasing computer viruses to set rival companies out of
the market).

This chapter corresponds to the paper [3] in collaboration with Serena Dipierro,
Luca Rossi and Enrico Valdinoci.
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3.1 Introduction

Among the several models dealing with the dynamics of biological systems, the
case of populations engaging into a mutual conflict seems to be unexplored. This
chapter aims at laying the foundations of a new model describing two populations
competing for the same resource with one aggressive population which may attack the
other: concretely, one may think of a situation in which two populations live together
in the same territory and share the same environmental resources, till one population
wants to prevail and try to kill the other. We consider this situation as a “civil
war”, since the two populations share land and resources; the two populations may
be equally fit to the environment (and, in this sense, they are “indistinguishable”,
up to the aggressive attitude of one of the populations), or they can have a different
compatibility to the resources (in which case one may think that the conflict could
be motivated by the different accessibility to environmental resources).

Given the lack of reliable data related to civil wars, a foundation of a solid math-
ematical theory for this type of conflicts may only leverage on the deduction of the
model from first principles: we follow this approach to obtain the description of the
problem in terms of a system of two ordinary differential equations, each describing
the evolution in time of the density of one of the two populations.

The method of analysis that we adopt is a combination of techniques from differ-
ent fields, including ordinary differential equations, dynamical systems and optimal
control.

This viewpoint will allow us to rigorously investigate the model, with a special
focus on a number of mathematical features of concrete interest, such as the possible
extinction of one of the two populations and the analysis of the strategies that lead
to the victory of the aggressive population.

In particular, we will analyze the dynamics of the system, characterizing the equi-
libria and their features (including possible basins of attraction) in terms of the
different parameters of the model (such as relative fitness to the environment, aggres-
siveness and effectiveness of strikes). Also, we will study the initial configurations
which may lead to the victory of the aggressive population, also taking into account
different possible strategies to achieve the victory: roughly speaking, we suppose that
the aggressive population may adjust the parameter describing the aggressiveness in
order to either dim or exacerbate the conflict with the aim of destroying the second
population (of course, the war has a cost in terms of life for both the populations,
hence the aggressive population must select the appropriate strategy in terms of the
structural parameters of the system). We will show that the initial data allowing
the victory of the aggressive population does not exhaust the all space, namely there
exists initial configurations for which the aggressive population cannot make the other
extinct, regardless the strategy adopted during the conflict.

Furthermore, for identical populations with the same fit to the environment the
constant strategies suffices for the aggressive population to possibly achieve the vic-
tory: namely, if an initial configuration admits a piecewise continuous in time strategy
that leads to the victory of the aggressive population, then it also admits a constant in
time strategy that reaches the same objective (and of course, for the aggressive pop-
ulation, the possibility of focusing only on constant strategies would entail concrete
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practical advantages).
Conversely, for populations with different fit to the environment, the constant

strategies do not exhaust all the winning strategies: that is, in this case, there are
initial conditions which allow the victory of the aggressive population only under the
exploitation of a strategy that is not constant in time.

In any case, we will also prove that strategies with at most one jump discontinuity
are sufficient for the aggressive population: namely, independently from the relative
fit to the environment, if an initial condition allows the aggressive population to reach
the victory through a piecewise continuous in time strategy, then the same goal can
be reached using a “bang-bang” strategy with at most one jump.

We will also discuss the winning strategies that minimize the duration of the war:
in this case, we will show that jump discontinuous strategies may be not sufficient
and interpolating arcs have to be taken into account.

We now describe in further detail our model of conflict between the two popu-
lations and the attack strategies pursued by the aggressive population. Our idea is
to modify the Lotka-Volterra competitive system for two populations with density u
and v, adding to the usual competition for resources the fact that both populations
suffer some losses as an outcome of the attacks. The key point in our analysis is that
the clashes do not depend on the chance of meeting of the two populations, given by
the quantity uv, as it happens in many other works in the literature (starting from
the publications of Lotka and Volterra, [78] and [121]), but they are sought by the
first population and depend only on the size u of the first population and on its level
of aggressiveness a. The resulting model is{

u̇ = u(1− u− v)− acu, for t > 0,
v̇ = ρv(1− u− v)− au, for t > 0,

(3.1)

where a, c and ρ are nonnegative real numbers. Here, the coefficient ρ models the
fitness of the second population with respect of the first one when resources are abun-
dant for both; it is linked with the exponential growth rate of the two species. The
parameter c here stands for the quotient of endured per inflicted damages for the first
population. Deeper justifications to the model (3.1) will be given in Subsection 3.1.1.

Notice that the size of the second population v may become negative in finite
time while the first population is still alive. The situation where v = 0 and u > 0
represents the extinction of the second population and the victory of the first one.

To describe our results, for communication convenience (and in spite of our per-
sonal fully pacifist believes) we take the perspective of the first population, that is,
the aggressive one; the objective of this population is to win the war, and, to achieve
that, it can influence the system by tuning the parameter a.

From now on, we may refer to the parameter a as the strategy, that may also
depend on time, and we will say that it is winning if it leads to victory of the first
population.

The main problems that we deal with in this chapter are:

1. The characterization of the initial conditions for which there exists a winning
strategy.

2. The success of the constant strategies, compared to all possible strategies.
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3. The construction of a winning strategy for a given initial datum.

4. The existence of a single winning strategy independently of the initial datum.

We discuss all these topics in Subsection 3.1.4, presenting concrete answers to
each of these problems.

Also, since to our knowledge this is the first time that system (3.1) is considered,
in Subsections 3.1.2 and 3.1.3 we will discuss the dynamics and some interesting
results about the dependence of the basins of attraction on the other parameters.

It would also be extremely interesting to add the space component to our model,
by considering a system of reaction-diffusion equations. This will be the subject of a
further work.

3.1.1 Motivations and derivation of the model

The classic Lotka-Volterra equations were first introduced for modelling popu-
lation dynamics between animals [121] and then used to model other phenomena
involving competition, for example in technology substitution [85]. The competitive
Lotka-Volterra system concerns the sizes u1(t) and u2(t) of two species competing for
the same resources. The system that the couple (u1(t), u2(t)) solves is

u̇1 = r1u1

(
σ − u1 + α12u2

k1

)
, t > 0,

u̇2 = r2u2

(
σ − u2 + α21u1

k2

)
, t > 0,

(3.2)

where r1, r2, σ, α12, α21, k1 and k2 are nonnegative real numbers.
Here, the coefficients α12 and α21 represent the competition between individu-

als of different species, and indeed they appear multiplied by the term u1u2, which
represents a probability of meeting.

The coefficient ri is the exponential growth rate of the i−th population, that
is, the reproduction rate that is observed when the resources are abundant. The
parameters ki are called carrying capacity and represent the number of individuals
of the i−th population that can be fed with the resources of the territory, that are
quantified by σ. It is however usual to rescale the system in order to reduce the
number of parameters. In general, u1 and u2 are rescaled so that they vary in the
interval [0, 1], thus describing densities of populations.

The behavior of the system depends substantially on the values of α12 and α21

with respect to the threshold given by the value 1, see e.g. [12]: if α12 < 1 < α21,
then the first species u1 has an advantage over the second one u2 and will eventually
prevail; if α12 and α21 are both strictly above or below the threshold, then the first
population that penetrates the environment (that is, the one that has a greater size
at the initial time) will persist while the other will extinguish.

Some modification of the Lotka-Volterra model were made in stochastic analysis
by adding a noise term of the form −f(t)ui in the i−th equation, finding some
interesting phenomena of phase transition, see e.g. [62].

The ODE system in (3.2) is of course the cornerstone to study the case of two
competitive populations that diffuse in space. Many different types of diffusion have
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been compared and one can find a huge literature on the topic, see [87, 37, 82]
for some examples and [86] for a more general overview. We point out that other
dynamic systems presenting finite time extinction of one or more species have been
generalised for heterogeneous environments, see for example the model in [53] for the
predator-prey behaviour of cats and birds, that has been thereafter widely studied.

In this chapter, we will focus not only on basic competition for resources, but also
on situations of open hostility. In social sciences, war models are in general little
studied; indeed, the collection of data up to modern times is hard for the lack of
reliable sources. Also, there is still much discussion about what factors are involved
and how to quantify them: in general, the outcome of a war does not only depend
on the availability of resources, but also on more subtle factors as the commitment
of the population and the knowledge of the battlefield, see e.g. [114]. Instead, the
causes of war were investigated by the statistician L.F. Richardson, who proposed
some models for predicting the beginning of a conflict, see [102].

In addition to the human populations, behavior of hostility between groups of
the same species has been observed in chimpanzee. Other species with complex
social behaviors are able to coordinate attacks against groups of different species:
ants versus termites, agouti versus snakes, small birds versus hawk and owls, see
e.g. [116].

The model that we present here is clearly a simplification of reality. Nevertheless,
we tried to capture some important features of conflicts between rational and strategic
populations, introducing in the mathematical modeling the new idea that a conflict
may be sought and the parameters that influence its development may be conveniently
adjusted.

Specifically, in our model, the interactions between populations are not merely
driven by chance and the strategic decisions of the population play a crucial role in
the final outcome of the conflict, and we consider this perspective as an interesting
novelty in the mathematical description of competitive environments.

At a technical level, our aim is to introduce a model for conflict between two
populations u and v, starting from the model when the two populations compete
for food and modifying it to add the information about the clashes. We imagine
that each individual of the first population u decides to attack an individual of the
second population with some probability a in a given period of time. We assume
that hostilities take the form of “duels”, that is, one-to-one fights. In each duel, the
individual of the first population has a probability ζu of being killed and a probabil-
ity ζv of killing his or her opponent; notice that in some duel the two fighters might
be both killed. Thus, after one time-period, the casualties for the first and second
populations are aζuu and aζvu respectively. The same conclusions are found if we
imagine that the first population forms an army to attack the second, which tries to
resist by recruting an army of proportional size. At the end of each battle, a ratio of
the total soldiers is dead, and this is again of the form aζuu for the first population
and aζvu for the second one.

Another effect that we take into account is the drop in the fertility of the pop-
ulation during wars. This seems due to the fact that families suffer some income
loss during war time, because of a lowering of the average productivity and lacking
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salaries only partially compensated by the state; another reason possibly discourag-
ing couples to have children is the increased chance of death of the parents during
war. As pointed out in [117], in some cases the number of lost births during wars
are comparable to the number of casualties. However, it is not reasonable to think
that this information should be included in the exponential growth rates ru and rv,
because the fertility drop really depends on the intensity of the war. For this reason,
we introduce the parameters cu ≥ 0 and cv ≥ 0 that are to be multiplied by au for
both populations.

Moreover, for simplicity, we also suppose that the clashes take place apart from
inhabited zone, without having influence on the harvesting of resources.

Now we derive the system of equations from a microlocal analysis. As in the
Lotka-Volterra model, it is assumed that the change of the size of the population in
an interval of time ∆t is proportional to the size of the population u(t), that is

u(t+ ∆t)− u(t) ≈ u(t)f(u, v)

for some appropriate function f(u, v). In particular, f(u, v) should depend on re-
sources that are available and reachable for the population. The maximum number
of individuals that can be fed with all the resources of the environment is k; taking
into account all the individuals of the two populations, the available resources are

k − u− v.

Notice that we suppose here that each individual consumes the same amount of
resources, independently of its belonging. In our model, this assumption is reasonable
since all the individuals belong to the same species. Also, the competition for the
resources depends only on the number of individuals, independently on their identity.

Furthermore, our model is sufficiently general to take into account the fact that
the growth rate of the populations can be possibly different. In practice, this possible
difference could be the outcome of a cultural distinction, or it may be also due to
some slight genetic differentiation, as it happened for Homo Sapiens and Neanderthal,
see [51].

Let us call ru and rv the fertility of the first and second populations respectively.
The contribution to the population growth rate is given by

f(u, v) := ru

(
1− u+ v

k

)
,

and these effects can be comprised in a typical Lotka-Volterra system.
Instead, in our model, we also take into account the possible death rate due to

casualties. In this way, we obtain a term such as −aζu to be added to f(u, v). The
fertility losses give another term −acu for the first population. We also perform the
same analysis for the second population, with the appropriate coefficients.

With these considerations, the system of the equations that we obtain is
u̇ = ruu

(
1− u+ v

k

)
− a(cu + ζu)u, t > 0,

v̇ = rvv

(
1− v + u

k

)
− a(cv + ζv)u, t > 0.

(3.3)
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As usual in these kinds of models, we can rescale the variables and the coefficients
in order to find an equivalent model with fewer parameters. Hence, we perform the
changes of variables

ũ(t̃) =
u(t)

k
, ṽ(t̃) =

v(t)

k
, where t̃ = rut,

ã =
a(cv + ζv)

ru
, c̃ =

cu + ζu
cv + ζv

and ρ =
rv
ru
,

(3.4)

and, dropping the tildas for the sake of readability, we finally get the system in (3.1).
We will also refer to it as the civil war model (CW).

From the change of variables in (3.4), we notice in particular that a may now take
values in [0,+∞).

The competitive Lotka-Volterra system is already used to study some market
phenomena as technology substitution, see e.g. [85, 24, 122], and our model aims at
adding new features to such models.

Concretely, in the technological competition model, one can think that u and v
represent the capitals of two computer companies. In this setting, to start with, one
can suppose that the first company produces a very successful product, say computers
with a certain operating system, in an infinite market, reinvesting a proportion ru
of the profits into the production of additional items, which are purchased by the
market, and so on: in this way, one obtains a linear equation of the type u̇ = ruu,
with exponentially growing solutions. The case in which the market is not infinite,
but reaches a saturation threshold k, would correspond to the equation

u̇ = ruu
(

1− u

k

)
.

Then, when a second computer company comes into the business, selling computers
with a different operating system to the same market, one obtains the competitive
system of equations 

u̇ = ruu

(
1− u+ v

k

)
,

v̇ = rvv

(
1− v + u

k

)
.

At this stage, the first company may decide to use an “aggressive” strategy consisting
in spreading a virus attacking the other company’s operating system, with the aim
of setting the other company out of the market (once the competition of the second
company is removed, the first company can then exploit the market in a monopolistic
regime). To model this strategy, one can suppose that the first company invests a
proportion of its capital in the project and diffusion of the virus, according to a
quantifying parameter au ≥ 0, thus producing the equation

u̇ = ruu

(
1− u+ v

k

)
− auu. (3.5)

This directly impacts the capital of the second company proportionally to the virus
spread, since the second company has to spend money to project and release an-
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tiviruses, as well as to repay unsatisfied customers, hence resulting in a second equa-
tion of the form

v̇ = rvv

(
1− v + u

k

)
− avu. (3.6)

The case au = av would correspond to an “even” effect in which the costs of producing
the virus is in balance with the damages that it causes. It is also realistic to take
into account the case au < av (e.g., the first company manages to produce and diffuse
the virus at low cost, with high impact on the functionality of the operating system
of the second company) as well as the case au > av (e.g., the cost of producing and
diffusing the virus is high with respect to the damages caused).

We remark that equations (3.5) and (3.6) can be set into the form (3.3), thus
showing the interesting versatility of our model also in financial mathematics.

3.1.2 Some notation and basic results on the dynamics of
system (3.1)

We denote by (u(t), v(t)) a solution of (3.1) starting from a point (u(0), v(0)) ∈
[0, 1] × [0, 1]. We will also refer to the orbit of (u(0), v(0)) as the collection of
points (u(t), v(t)) for t ∈ R, thus both positive and negative times, while the tra-
jectory is the collection of points (u(t), v(t)) for t ≥ 0.

As already mentioned in the discussion below formula (3.1), v can reach the value 0
and even negative values in finite time. However, we will suppose that the dynamics
stops when the value v = 0 is reached for the first time. At this point, the conflict
ends with the victory of the first population u, that can continue its evolution with
a classical Lotka-Volterra equation of the form

u̇ = u(1− u)

and that would certainly fall into the attractive equilibrium u = 1. The only other
possibility is that the solutions are constrained in the set [0, 1]× (0, 1].

In order to state our first result on the dynamics of the system (3.1), we first
observe that, in a real-world situation, the value of a would probably be non-constant
and discontinuous, so we allow this coefficient to take values in the class A defined
as follows:

A :=
{
a : [0,+∞)→ [0,+∞) s.t. a is continuous

except at most at a finite number of points
}
.

(3.7)

A solution related to a strategy a(t) ∈ A is a pair (u(t), v(t)) ∈ C0(0,+∞) ×
C0(0,+∞), which is C1 outside the discontinuous points of a(t) and solves sys-
tem (3.1). Moreover, once the initial datum is imposed, the solution is assumed
to be continuous at t = 0.

In this setting, we establish the existence of the solutions of problem (3.1) and we
classify their behavior with respect to the possible exit from the domain [0, 1]× [0, 1]:

Proposition 3.1. Let a(t) ∈ A. Given (u(0), v(0)) ∈ [0, 1] × [0, 1], there exists a
solution (u(t), v(t)) with a = a(t) of system (3.1) starting at (u(0), v(0)).

Furthermore, one of the two following situations occurs:
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(1) The solution (u(t), v(t)) issued from (u(0), v(0)) belongs to [0, 1] × (0, 1] for
all t ≥ 0.

(2) There exists T ≥ 0 such that the solution (u(t), v(t)) issued from (u(0), v(0))
exists unique for all t ≤ T , and v(T ) = 0 and u(T ) > 0.

As a consequence of Proposition 3.1, we can define the the stopping time of the
solution (u(t), v(t)) as

Ts(u(0), v(0)) =

{
+∞ if situation (1) occurs,
T if situation (2) occurs.

(3.8)

From now on, we will implicitly consider solutions (u(t), v(t)) only for t ≤
Ts(u(0), v(0)).

Now we are going to analyze the dynamics of (3.1) with a particular focus on
possible strategies. To do this, we now define the basins of attraction. The first one
is the basin of attraction of the point (0, 1), that is

B :=
{

(u(0), v(0)) ∈ [0, 1]× [0, 1] s.t.

Ts(u(0), v(0)) = +∞, (u(t), v(t))
t→∞−→ (0, 1)

}
,

(3.9)

namely the set of the initial points for which the first population gets extinct (in
infinite time) and the second one survives. The other one is

E := {(u(0), v(0)) ∈ ([0, 1]× [0, 1]) \ (0, 0) s.t. Ts(u(0), v(0)) < +∞} , (3.10)

namely the set of initial points for which we have the victory of the first population
and the extinction of the second one.

Of course, the sets B and E depend on the parameters a, c, and ρ; we will express
this dependence by writing B(a, c, ρ) and E(a, c, ρ) when it is needed, and omit it
otherwise for the sake of readability. The dependence on parameters will be carefully
studied in Subsection 3.3.

3.1.3 Dynamics of system (3.1) for constant strategies

The first step towards the understanding of the dynamics of the system in (3.1)
is is to analyze the behavior of the system for constant coefficients.

To this end, we introduce some notation. Following the terminology on pages 9-
10 in [123], we say that an equilibrium point (or fixed point) of the dynamics is a
(hyperbolic) sink if all the eigenvalues of the linearized map have strictly negative
real parts, a (hyperbolic) source if all the eigenvalues of the linearized map have
strictly positive real parts, and a (hyperbolic) saddle if some of the eigenvalues of
the linearized map have strictly positive real parts and some have negative real parts
(since in this chapter we work in dimension 2, saddles correspond to linearized maps
with one eigenvalue with strictly positive real part and one eigenvalue with strictly
negative real part). We also recall that sinks are asymptotically stable (and sources
are asymptotically stable for the reversed-time dynamics), see e.g. Theorem 1.1.1
in [123].

With this terminology, we state the following theorem:
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Theorem 3.2 (Dynamics of system (3.1)). For a > 0 and ρ > 0 the system (3.1)
has the following features:

(i) When 0 < ac < 1, the system has 3 equilibria: (0, 0) is a source, (0, 1) is a sink,
and

(us, vs) :=

(
1− ac
1 + ρc

ρc,
1− ac
1 + ρc

)
∈ (0, 1)× (0, 1) (3.11)

is a saddle.

(ii) When ac > 1, the system has 2 equilibria: (0, 1) is a sink and (0, 0) is a saddle.

(iii) When ac = 1, the system has 2 equilibria: (0, 1) is a sink and (0, 0) corresponds
to a strictly positive eigenvalue and a null one.

(iv) We have

[0, 1]× [0, 1] = B ∪ E ∪M (3.12)

where B and E are defined in (3.9) and (3.10), respectively, andM is a smooth
curve.

(v) The trajectories starting in M tend to (us, vs) if 0 < ac < 1, and to (0, 0)
if ac ≥ 1 as t goes to +∞.

More precisely, one can say that the curveM in Theorem 3.2 is the stable manifold
of the saddle point (us, vs) when 0 < ac < 1, and of the saddle point (0, 0) when ac >
1. The case ac = 1 needs a special treatment, due to the degeneracy of one eigenvalue,
and in this case the curve M corresponds to the center manifold of (0, 0), and an
ad-hoc argument will be exploited to show that also in this degenerate case orbits
that start in M are asymptotic in the future to (0, 0).

As a matter of fact,M acts as a dividing wall between the two basins of attraction,
as described in (iv) of Theorem 3.2 and in the forthcoming Proposition 3.16.

Moreover, in the forthcoming Propositions 3.8 and 3.14 we will show thatM can
be written as the graph of a function. This is particularly useful because, by studying
the properties of this function, we gain relevant pieces of information on the sets B
and E in (3.9) and (3.10).

We point out that in Theorem 3.2 we find that the set of initial data [0, 1]× [0, 1]
splits into three part: the set E , given in (3.10), made of points going to the extinction
of the second population in finite time; the set B, given in (3.9), which is the basin
of attraction of the equilibrium (0, 1); the setM, which is a manifold of dimension 1
that separates B from E .

In particular, Theorem 3.2 shows that, also for our model, the Gause principle of
exclusion is respected; that is, in general, two competing populations cannot coexist
in the same territory, see e.g. [47].

One peculiar feature of our system is that, if the aggressiveness is too strong, the
equilibrium (0, 0) changes its “stability” properties, passing from a source (as in (i) of
Theorem 3.2) to a saddle point (as in (ii) of Theorem 3.2). This shows that the war
may have self-destructive outcomes, therefore it is important for the first population
to analyze the situation in order to choose a proper level of aggressiveness. Figure 3.1
shows one example of dynamics for each case.
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(a) a = 0.8, c = 0.5, ρ = 2 (b) a = 0.8, c = 3, ρ = 2

Figure 3.1 – The figures show a phase portrait for the indicated values of the coeffi-
cients. In blue, the orbits of the points. The red dots represent the equilibria.

3.1.4 Dynamics of system (3.1) for variable strategies and
optimal strategies for the first population

We now deal with the problem of choosing the strategy a such that the first
population wins, that is a problem of target reachability for a control-affine system.
As we will see, the problem is not controllable, meaning that, starting from a given
initial point, it is not always possible to reach a given target.

We now introduce some terminology, that we will use throughout the chapter.
Recalling (3.7), for any T ⊆ A, we set

VT :=
⋃

a(·)∈T

E(a(·)), (3.13)

where E(a(·)) denotes the set of initial data (u0, v0) such that Ts(u0, v0) < +∞, when
the coefficient a in (3.1) is replaced by the function a(t).

Namely, VT represents the set of initial conditions for which u is able to win
by choosing a suitable strategy in T ; we call VT the victory set with admissible
strategies in T . We also say that a(·) is a winning strategy for the point (u0, v0)
if (u0, v0) ∈ E(a(·)).

Moreover, we will call

(u0
s, v

0
s) :=

(
ρc

1 + ρc
,

1

1 + ρc

)
. (3.14)

Notice that (u0
s, v

0
s) is the limit point as a tends to 0 of the sequence of saddle

points {(uas , vas )}a>0 defined in (3.11).

With this notation, the first question that we address is for which initial config-
urations it is possible for the population u to have a winning strategy, that is, to
characterize the victory set. For this, we allow the strategy to take all the values
in [0,+∞). In this setting, we have the following result:
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Theorem 3.3. (i) For ρ = 1, we have that

VA =
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v − u

c
< 0 if u ∈ [0, c]

and v ≤ 1 if u ∈ (c, 1]
}
,

(3.15)

with the convention that the last line in (3.15) is not present if c ≥ 1.

(ii) For ρ < 1, we have that

VA =

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ0(u) if u ∈ [0, u0

s],

v <
u

c
+

1− ρ
1 + ρc

if u ∈
[
u0
s,
ρc(c+ 1)

1 + ρc

]
and v ≤ 1 if u ∈

(
ρc(c+ 1)

1 + ρc
, 1

]}
,

(3.16)

where

γ0(u) :=
uρ

ρc(u0
s)
ρ−1

,

and we use the convention that the last line in (3.16) is not present if ρc(c+1)
1+ρc

≥ 1.

(iii) For ρ > 1, we have that

VA =

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v <

u

c
if u ∈ [0, u∞],

v < ζ(u) if u ∈

(
u∞,

c

(c+ 1)
ρ−1
ρ

]

and v ≤ 1 if u ∈

(
c

(c+ 1)
ρ−1
ρ

, 1

]}
,

(3.17)

where

u∞ :=
c

c+ 1
and ζ(u) :=

uρ

c uρ−1
∞

. (3.18)

and we use the convention that the last line in (3.17) is not present if c

(c+1)
ρ−1
ρ
≥

1.

In practice, constant strategies could be certainly easier to implement and it
is therefore natural to investigate whether or not it suffices to restrict to constant
strategies without altering the possibility of victory. The next result addresses this
problem by showing that when ρ = 1 constant strategies are as good as all strategies,
but instead when ρ 6= 1 victory cannot be achieved by only exploiting constant
strategies:

Theorem 3.4. Let K ⊂ A be the set of constant functions. Then the following holds:
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(i) For ρ = 1, we have that VA = VK = E(a) for all a > 0;

(ii) For ρ 6= 1, we have that VK ( VA.

The result of Theorem 3.4, part (i), reveals a special rigidity of the case ρ = 1 in
which, no matter which strategy u chooses, the victory depends only on the initial
conditions, but it is independent of the strategy a(t). Instead, as stated in Theo-
rem 3.4, part (ii), for ρ 6= 1 the choice of a(t) plays a crucial role in determining
which population is going to win and constant strategies do not exhaust all the possi-
ble winning strategies. We stress that ρ = 1 plays also a special role in the biological
interpretation of the model, since in this case the two populations have the same fit
to the environmental resource, and hence, in a sense, they are indistinguishable, up
to the possible aggressive behavior of the first population.

Next, we show that the set VA can be recovered if we use piecewise constant
functions with at most one discontinuity, that we call Heaviside functions.

Theorem 3.5. There holds that VA = VH, where H is the set of Heaviside functions.

The proof of Theorem 3.5 solves also the third question mentioned in the Intro-
duction. As a matter of fact, it proves that for each point we either have a constant
winning strategy or a winning strategy of type

a(t) =

{
a1 if t < T,
a2 if t ≥ T,

for some T ∈ (0, Ts), and for suitable values a1, a2 ∈ (0,+∞) such that one is very
small and the other one very large, the order depending on ρ. The construction that
we give also puts in light the fact that the choice of the strategy depends on the
initial datum, answering also our fourth question.

It is interesting to observe that the winning strategy that switches abruptly from
a small to a large value could be considered, in the optimal control terminology, as a
“bang-bang” strategy. Even in a target reachability problem, the structure predicted
by Pontryagin’s Maximum Principle is brought in light: the bounds of the set VA, as
given in Theorem 3.3, depend on the bounds that we impose on the strategy, that
are, a ∈ [0,+∞).

It is natural to consider also the case in which the level of aggressiveness is con-
strained between a minimal and maximal threshold, which corresponds to the set-
ting a ∈ [m,M ] for suitable M ≥ m ≥ 0, with the hypothesis that M > 0. In this
setting, we denote by Am,M the class of piecewise continuous strategies a(·) in A such
that m ≤ a(t) ≤M for all t > 0 and we let

Vm,M := VAm,M =
⋃
a(·)∈A

m≤a(t)≤M

E(a(·)) =
⋃

a(·)∈Am,M

E(a(·)). (3.19)

Then we have the following:

Theorem 3.6. Let M and m be two real numbers such that M ≥ m ≥ 0. Then, for
ρ 6= 1 we have the strict inclusion Vm,M ( VA.
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Notice that for ρ = 1, Theorem 3.4 gives instead that Vm,M = VA and we think
that this is a nice feature, outlining a special role played by the parameter ρ (roughly
speaking, when ρ = 1 constant strategies suffice to detect all possible winning con-
figurations, thanks to Theorem 3.4, while when ρ 6= 1 non-constant strategies are
necessary to detect all winning configurations).

Time minimizing strategy

Once established that it is possible to win starting in a certain initial condition,
we are interested in knowing which of the possible strategies is best to choose. One
condition that may be taken into account is the duration of the war. Now, this ques-
tion can be written as a minimization problem with a proper functional to minimize
and therefore the classical Pontryagin theory applies.

To state our next result, we recall the setting in (3.19) and define

S(u0, v0) :=
{
a(·) ∈ Am,M s.t. (u0, v0) ∈ E(a(·))

}
,

that is the set of all bounded strategies for which the trajectory starting at (u0, v0)
leads to the victory of the first population. To each a(·) ∈ S(u0, v0) we associate
the stopping time defined in (3.8), and we express its dependence on a(·) by writ-
ing Ts(a(·)). In this setting, we provide the following statement concerning the strat-
egy leading to the quickest possible victory for the first population:

Theorem 3.7. Given a point (u0, v0) ∈ Vm,M , there exists a winning strat-
egy ã(t) ∈ S(u0, v0), and a trajectory (ũ(t), ṽ(t)) associated with ã(t), for t ∈ [0, T ],
with (ũ(0), ṽ(0)) = (u0, v0), where T is given by

T = min
a(·)∈S

Ts(a(·)).

Moreover,
ã(t) ∈ {m, M, as(t)} ,

where

as(t) :=
(1− ũ(t)− ṽ(t))[ũ(t) (2c+ 1− ρc) + ρc]

ũ(t) 2c(c+ 1)
. (3.20)

The surprising fact given by Theorem 3.7 is that the minimizing strategy is not
only of bang-bang type, but it may assume some values along a singular arc, given
by as(t). This possibility is realized in some concrete cases, as we verified by running
some numerical simulations, whose results can be visualized in Figure 3.2.

3.1.5 Organization of the chapter

In the forthcoming Section 3.2 we will exploit methods from ordinary differential
equations and dynamical systems to describe the equilibria of the system and their
possible basins of attraction. The dependence of the dynamics on the structural
parameters, such as fit to the environment, aggressiveness and efficacy of attacks, is
discussed in detail in Section 3.3.
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Figure 3.2 – The figure shows the result of a numerical simulation searching a min-
imizing time strategy ã(t) for the problem starting in (0.5, 0.1875) for the parame-
ters ρ = 0.5, c = 4.0, m = 0 and M = 10. In blue, the value found for ã(t); in
red, the value of as(t) for the corresponding trajectory (u(t), v(t)). As one can ob-
serve, ã(t) ≡ as(t) in a long trait. The simulation was done using AMPL-Ipopt on
the server NEOS and pictures have been made with Python.

Section 3.4 is devoted to the analysis of the strategies that allow the first popula-
tion to eradicate the second one (this part needs an original combination of methods
from dynamical systems and optimal control theory).

3.2 First results on the dynamics and proofs of

Proposition 3.1 and Theorem 3.2

In this section we provide some useful results on the behavior of the solutions
of (3.1) and on the basin of attraction. In particular, we provide the proofs of
Proposition 3.1 and Theorem 3.2 and we state a characterization of the sets B and E
given in (3.9) and (3.10), respectively, see Propositions 3.16.

This material will be extremely useful for the analysis of the strategy that we
operate later.

We start with some preliminary notation. Given a close set S ⊆ [0, 1]× [0, 1], we
say that a trajectory (u(t), v(t)) originated in S exits the set S at some time T ≥ 0
if

— (u(t), v(t)) ∈ S for t ≤ T ,

— (u(T ), v(T )) ∈ ∂S,

— for any vector ν normal to ∂S at the point (u(T ), v(T )), it holds that

(u̇(T ), v̇(T )) · ν > 0.

Now, we prove Proposition 3.1, which is fundamental to the well-definition of our
model:

Proof of Proposition 3.1. We consider the function a(t) ∈ A, which is continuous ex-
cept in a finite number of points 0 < t1 < · · · < tn. In all the intervals (0, t1), (ti, ti+1],
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for i ∈ {1, · · · , n− 1}, and (tn,+∞), the equations in (3.1) have smooth coefficients,
and therefore a solution does exist. Now, it is sufficient to consider (u(ti), v(ti)) as
the initial datum for the dynamics in (ti, ti+1] to construct a solution (u(t), v(t)) for
all t > 0 satisfying system (3.1). This is a rather classical result and we refer to [96]
for more details.

Now, we prove that either the possibility in (1) or the possibility in (2) can occur.
For this, by using the equation for v in (3.1), we notice that for v = 1 the inward
pointing normal derivative is

−v̇|v=1 = (−ρv(1− u− v) + au) |v=1 = u(ρ+ a) ≥ 0.

This means that no trajectory can exit [0, 1] × [0, 1] on the edge v = 1. Similarly,
using the equation for u in (3.1), we see that for u = 1 the normal derivative inward
pointing is

−u̇|u=1 = (−u(1− u− v) + acu) |u=1 = v + ac ≥ 0,

and therefore no trajectory can exit [0, 1]× [0, 1] on the edge u = 1.
Moreover, it is easy to see that all points on the line u = 0 go to the equi-

librium (0, 1), thus trajectories do not cross the line u = 0. The only remaining
possibilities are that the trajectories stay in [0, 1] × (0, 1], that is possibility (1), or
they exit the square on the side v = 0, that is possibility (2).

Now, we give the proof of (i), (ii) and (iii) of Theorem 3.2.

Proof of (i), (ii) and (iii) of Theorem 3.2. We first consider equilibria with first co-
ordinate u = 0. In this case, from the second equation in (3.1), we have that the
equilibria must satisfy ρv(1 − v) = 0, thus v = 0 or v = 1. As a consequence, (0, 0)
and (0, 1) are two equilibria of the system.

Now, we consider equilibria with first coordinate u > 0. Equilibria of this form
must satisfy u̇ = 0 with u 6= 0, and therefore, from the first equation in (3.1),

1− u− v − ac = 0. (3.21)

Moreover from the condition v̇ = 0 and the second equation in (3.1), we see that

ρv(1− u− v)− au = 0. (3.22)

Putting together (3.21) and (3.22), we obtain that the intersection point must lie on
the line ρcv − u = 0. Since the equilibrium is at the intersection between two lines,
it must be unique. One can easily verify that the values given in (3.11) satisfy (3.21)
and (3.22).

From now on, we distinguish the three situations in (i), (ii) and (iii) of Theo-
rem 3.2.

(i) If 0 < ac < 1, we have that the point (us, vs) given in (3.11) lies in (0, 1)×(0, 1).
As a result, in this case the system has 3 equilibria, given by (0, 0), (0, 1) and (us, vs).

Now, we observe that the Jacobian of the system (3.1) is

J(u, v) =

(
1− 2u− v − ac −u
−ρv − a ρ(1− u− 2v)

)
. (3.23)
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At the point (0, 0), the matrix has eigenvalues ρ > 0 and 1− ac > 0, thus (0, 0) is a
source. At the point (0, 1), the Jacobian (3.23) has eigenvalues −ac < 0 and −ρ < 0,
thus (0, 1) is a sink. At the point (us, vs), by exploiting the relations (3.21) and (3.22)
we have that

J(us, vs) =

(
−us −us

−ρvs − a ρ(ac− vs)

)
,

which, by the change of basis given by the matrix(
− 1
us

0

− 1
us

[(
us
c

+ a
) (

ρc−c
1+ρc

)
+ ac

]
ρc−c
1+ρc

)
,

becomes (
1 1
ac ρac

)
. (3.24)

The characteristic polynomial of the matrix in (3.24) is λ2 − λ(1 + ρac) + ρac − ac,
that has two real roots, as one can see by inspection. Hence, J(us, vs) has two real
eigenvalues. Moreover, the determinant of J(us, vs) is−ρacus−aus < 0, which implies
that J(us, vs) has one positive and one negative eigenvalues. These considerations
give that (us, vs) is a saddle point, as desired. This completes the proof of (i) in
Theorem 3.2.

(ii) and (iii) We assume that ac ≥ 1. We observe that the equilibrium described
by the coordinates (us, vs) in (3.11) coincides with (0, 0) for ac = 1, and lies out-
side [0, 1] × [0, 1] for ac > 1. As a result, when ac ≥ 1 the system has 2 equilibria,
given by (0, 0) and (0, 1).

Looking at the Jacobian in (3.23), one sees that at the point (0, 1), it has eigen-
values −ac < 0 and −ρ < 0, and therefore (0, 1) is a sink when ac ≥ 1.

Furthermore, from (3.23) one finds that if ac > 1 then J(0, 0) has the positive
eigenvalue ρ and the negative eigenvalue 1− ac, thus (0, 0) is a saddle point.

If instead ac = 1, then J(0, 0) has one positive eigenvalue and one null eigenvalue,
as desired.

To complete the proof of Theorem 3.2, we will deal with the cases ac 6= 1
and ac = 1 separately. This analysis will be performed in the forthcoming Sec-
tions 3.2.1 and 3.2.2. The completion of the proof of Theorem 3.2 will then be given
in Section 3.2.3.

3.2.1 Characterization of M when ac 6= 1

We consider here the case ac 6= 1. The case ac = 1 is degenerate and it will be
treated separately in Section 3.2.2.

We point out that in the proof of (i) and (ii) in Theorem 3.2 we found a saddle
point in both cases. By the Stable Manifold Theorem (see for example [96]), the
point (us, vs) in (3.11) in the case 0 < ac < 1 and the point (0, 0) in the case ac > 1
have a stable manifold and an unstable manifold. These manifolds are unique, they
have dimension 1, and they are tangent to the eigenvectors of the linearized system.
We will denote by M the stable manifold associated with these saddle points. Since



86 A New Lotka-Volterra Competitive System

we are interested in the dynamics in the square [0, 1] × [0, 1], with a slight abuse of
notation we will only consider the restriction of M in [0, 1]× [0, 1].

In order to complete the proof of Theorem 3.2, we now analyze some properties
of M:

Proposition 3.8. For ac 6= 1 the set M can be written as the graph of a unique
increasing C2 function γ : [0, uM] → [0, vM] for some (uM, vM) ∈

(
{1} × [0, 1]

)
∪(

(0, 1]× {1}
)
, such that γ(0) = 0, γ(uM) = vM and

— if 0 < ac < 1, γ(us) = vs;

— if ac > 1, in u = 0 the function γ is tangent to the line (ρ− 1 + ac)v− au = 0.

As a byproduct of the proof of Proposition 3.8, we also obtain some useful infor-
mation on the structure of the stable manifold and the basins of attraction, that we
summarize here below:

Corollary 3.9. Suppose that 0 < ac < 1. Then, the curves (3.21) and (3.22), loci
of the points such that u̇ = 0 and v̇ = 0 respectively, divide the square [0, 1] × [0, 1]
into four regions:

A1 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t u̇ ≤ 0, v̇ ≥ 0
}
,

A2 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t u̇ ≤ 0, v̇ ≤ 0
}
,

A3 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t u̇ ≥ 0, v̇ ≤ 0
}
,

A4 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t u̇ ≥ 0, v̇ ≥ 0
}
.

(3.25)

Furthermore, the sets A1 ∪ A4 and A2 ∪ A3 are separated by the curve v̇ = 0,
given by the graph of the continuous function

σ(v) := 1− ρv2 + a

ρv + a
, (3.26)

that satisfies σ(0) = 0, σ(1) = 0, and 0 < σ(v) < 1 for all v ∈ (0, 1).
In addition,

M\ {(us, vs)} is contained in A2 ∪ A4, (3.27)

(A3 \ {(0, 0), (us, vs)}) ⊆ E , (3.28)

and
A1 \ {(us, vs)} ⊂ B, (3.29)

where the notation in (3.9) and (3.10) has been utilized.

To visualize the statements in Corollary 3.9, one can see Figure 3.3.

Corollary 3.10. Suppose that ac > 1. Then , we have that u̇ ≤ 0 in [0, 1] × [0, 1],
and the curve (3.22) divides the square [0, 1]× [0, 1] into two regions:

A1 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. u̇ ≤ 0, v̇ ≥ 0
}
,

A2 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. u̇ ≤ 0, v̇ ≤ 0
}
.

(3.30)

Furthermore, the sets A1 and A2 are separated by the curve v̇ = 0, given by the
graph of the continuous function σ given in (3.26).

In addition,
M⊂ A2. (3.31)
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Figure 3.3 – Partition of [0, 1] × [0, 1] in the case a = 0.8, c = 0.5, ρ = 2, as given
by (3.25). In red, the curve u̇ = 0. In blue, the curve v̇ = 0, parametrized by the
function σ in (3.26).

Proposition 3.8 and Corollaries 3.9 and 3.10 are a bit technical, but provide fun-
damental information to obtain a characterization of the sets E and B, given in the
forthcoming Proposition 3.16.

We now provide the proof of Proposition 3.8 (and, as a byproduct, of Corollar-
ies 3.9 and 3.10).

Proof of Proposition 3.8 and Corollaries 3.9 and 3.10. We treat separately the cases 0 <
ac < 1 and ac > 1. We start with the case 0 < ac < 1, and divide the proof in three
steps.

Step 1: localizing M. With the notation introduced in (3.25), we prove that

all trajectories starting in A3 \ {(0, 0), (us, vs)}
exit the set A3 on the side v = 0.

(3.32)

To this aim, we first observe that

there are no cycles entirely contained in A3, (3.33)

because u̇ and v̇ have a sign. Furthermore,

there are no equilibria where a trajectory in the interior of A3 can converge.
(3.34)

Indeed, no point in A3 with positive first coordinate can be mapped in (0, 0) without
exiting the set, because u̇ ≥ 0 in A3. Also, for all (u0, v0) ∈ A3 \ (us, vs), we have
that v0 < vs. On the other hand, v̇ ≤ 0 in A3, so no trajectory that is entirely
contained in A3 can converge to (us, vs). These observations prove (3.34).

As a consequence of (3.33), (3.34) and the Poincaré-Bendixson Theorem (see
e.g. [113]), we have that all the trajectories in the interior of A3 must exit the set at
some time.

We remark that the side connecting (0, 0) and (us, vs) can be written as the of
points belonging to {

(u, v) ∈ [0, 1]× (0, vs) s.t. u = σ(v)
}
,
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where the function σ is defined in (3.26). In this set, it holds that v̇ = 0 and u̇ > 0,
thus the normal derivative pointing outward A3 is negative, so the trajectories cannot
go outside A3 passing through this side.

Furthermore, on the side connecting (us, vs) with (1 − ac, 0), that lies on the
straight line v = 1 − ac − u, we have that u̇ = 0 and v̇ < 0 for (u, v) 6= (us, vs), so
also here the outer normal derivative is negative. Therefore, the trajectories cannot
go outside A3 passing through this side either.

These considerations complete the proof of (3.32). Accordingly, recalling the
definition of E in (3.10), we see that

(A3 \ {(0, 0), (us, vs)}) ⊆ E . (3.35)

In a similar way one can prove that all trajectories starting in A1 \ {(us, vs)} must
converge to (0, 1), which, recalling the definition of B in (3.9), implies that

A1 \ {(us, vs)} ⊂ B. (3.36)

Thanks to (3.35) and (3.36), we have that the stable manifoldM has no intersection
with A1 \ {(us, vs)} and A3 \ {(0, 0), (us, vs)} , and thereforeM must lie in A2 ∪A4.

Also, we know that M is tangent to an eigenvector in (us, vs), and we observe
that

(1,−1) is not an eigenvector of the linearized system. (3.37)

Indeed, if (1,−1) were an eigenvector, then(
1− ac− 2us − vs −us
−ρvs − a ρ− ρus − 2ρvs

)
·
(

1
−1

)
= λ

(
1
−1

)
,

which implies that 1−ac−a−ρ = (us+vs)(1−ρ). Hence, recalling (3.11), we obtain
that −a = ρac, which is impossible. This establishes (3.37).

In light of (3.37), we conclude that M \ {(us, vs)} must have intersection with
both A2 and A4.

Step 2: defining γ(u). Since u̇ > 0 and v̇ > 0 in the interior of A4, the portion
ofM in A4 can be described globally as the graph of a monotone increasing smooth
function γ1 : U → [0, vs], for a suitable interval U ⊆ [0, us] with us ∈ U , and such
that γ1(us) = vs.

We stress that, for u > us, the points (u, v) ∈M belong to A2.
Similarly, in the interior of A2 we have that u̇ < 0 and v̇ < 0. Therefore, we

find thatM can be represented in A2 as the graph of a monotone increasing smooth
function γ2 : V → [vs, 1], for a suitable interval V ⊆ [us, 1] with us ∈ V , and such
that γ2(us) = vs. Notice that in the second case the trajectories and the parametriza-
tion run in opposite directions.

Now, we define

γ(u) :=

{
γ1(u) if u ∈ U,
γ2(u) if u ∈ V,

and we observe that it is an increasing smooth function locally parametrizing M
around (us, vs) (thanks to the Stable Manifold Theorem).



3.2 First results on the dynamics and proofs of Proposition 3.1 and
Theorem 3.2 89

We point out that, in light of the Stable Manifold Theorem, the stable manifoldM
is globally parametrized by an increasing smooth function on a set W ⊂ [0, 1].

Step 3: γ(0) = 0 and γ(uM) = vM for some (uM, vM) ∈ ∂
(
[0, 1]× [0, 1]

)
. We first

prove that
γ(0) = 0. (3.38)

For this, we claim that

orbits in the interior of A4 do not come from outside A4. (3.39)

Indeed, it is easy to see that points on the half axis {u = 0} converge to (0, 1), and
therefore a trajectory cannot enter A4 from this side.

As for the side connecting (0, 0) to (us, vs), here one has that u̇ ≥ 0 and v̇ = 0,
and so the inward pointing normal derivative is negative. Therefore, no trajectory
can enter A4 on this side.

Moreover, on the side connecting (us, vs) to (0, 1−ac) the inward pointing normal
derivative is negative, because u̇ = 0 and v̇ ≥ 0, thus we have that no trajectory can
enter A4 on this side either. These considerations prove (3.39).

Furthermore, we have that

no cycles are allowed in A4, (3.40)

because u̇ ≥ 0 and v̇ ≥ 0 in A4.
From (3.39), (3.40) and the Poincaré-Bendixson Theorem (see e.g. [113]), we

conclude that, given a point (ũ, ṽ) ∈M in the interior of A4, the α-limit set of (ũ, ṽ),
that we denote by α(ũ,ṽ), can be

either an equilibrium or a union of (finitely many)

equilibria and non-closed orbits connecting these equilibria.
(3.41)

We stress that, being (ũ, ṽ) in the interior of A4, we have that

ũ < us. (3.42)

Now, we observe that

α(ũ,ṽ) cannot contain the saddle point (us, vs). (3.43)

Indeed, suppose by contradiction that α(ũ,ṽ) does contain (us, vs). Then, we denote
by φ(ũ,ṽ)(t) =

(
u(ũ,ṽ)(t), v(ũ,ṽ)(t)

)
the solution of (3.1) with φ(ũ,ṽ)(0) = (ũ, ṽ), and we

have that there exists a sequence tj → −∞ such that φ(ũ,ṽ)(tj) converges to (us, vs)
as j → +∞. In particular, in light of (3.42), there exists j0 sufficiently large such
that

u(ũ,ṽ)(0) = ũ < u(ũ,ṽ)(tj0).

Consequently, there exists t? ∈ (tj0 , 0) such that u̇(ũ,ṽ)(t?) < 0.
As a result, it follows that φ(ũ,ṽ)(t?) 6∈ A4. This, together with the fact

that φ(ũ,ṽ)(0) ∈ A4, is in contradiction with (3.39), and the proof of (3.43) is thereby
complete.
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Thus, from (3.41) and (3.43), we deduce that α(ũ,ṽ) = {(0, 0)}. This gives
that (0, 0) lies on the stable manifoldM, and therefore the proof of (3.38) is complete.

Now, we show that

there exists (uM, vM) ∈ ∂
(
[0, 1]× [0, 1]

)
such that γ(uM) = vM. (3.44)

To prove it, we first observe that

orbits in A2 converging to (us, vs) come from outside A2. (3.45)

Indeed, we suppose by contradiction that

an orbit in A2 converging to (us, vs) stays confined in A2. (3.46)

We remark that, in this case,

an orbit in A2 cannot be a cycle, (3.47)

because u̇ and v̇ have a sign in A2. Then, by the Poincaré-Bendixson Theorem (see
e.g. [113]), we conclude that, given a point (ũ, ṽ) ∈ M in the interior of A2, the α-
limit set of (ũ, ṽ), that we denote by α(ũ,ṽ), can be either an equilibrium or a union
of (finitely many) equilibria and non-closed orbits connecting these equilibria. We
notice that the set α(ũ,ṽ) cannot contain (0, 1), since it is a stable equilibrium. We
also claim that

α(ũ,ṽ) cannot contain (us, vs). (3.48)

Indeed, we suppose by contradiction that α(ũ,ṽ) does contain (us, vs). We observe
that, since u̇ ≤ 0 in A2,

ũ > us. (3.49)

We denote by φ(ũ,ṽ)(t) =
(
u(ũ,ṽ)(t), v(ũ,ṽ)(t)

)
the solution of (3.1) with φ(ũ,ṽ)(0) =

(ũ, ṽ), and we have that there exists a sequence tj → −∞ such that φ(ũ,ṽ)(tj) converges
to (us, vs) as j → +∞. In particular, in light of (3.49), there exists j0 sufficiently
large such that

u(ũ,ṽ)(0) = ũ > u(ũ,ṽ)(tj0).

Consequently, there exists t? ∈ (tj0 , 0) such that u̇(ũ,ṽ)(t?) > 0. Accordingly, we
have that φ(ũ,ṽ)(t?) 6∈ A2. This and the fact that φ(ũ,ṽ)(0) ∈ A2 give a contradiction
with (3.46), and therefore this establishes (3.48).

These considerations complete the proof of (3.45).
Now, we observe that the inward pointing normal derivative at every point in A2∩

A3 \ {(us, vs)} is negative, since u̇ = 0 and v̇ ≤ 0. Hence, no trajectory can enter
from this side. Also, the inward pointing normal derivative at every point in A1 ∩
A2 \ {(us, vs)} is negative, since u̇ ≤ 0 and v̇ = 0. Hence, no trajectory can enter
from this side either.

These observations and (3.45) give the desired result in (3.44), and thus Proposi-
tion 3.8 is established in the case ac < 1.

Now we treat the case ac > 1, using the same ideas. In this setting, M is the
stable manifold associated with the saddle point (0, 0). We point out that, in this
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case, for all points in [0, 1] × [0, 1] we have that u̇ ≤ 0. Hence, the curve of points
satisfying v̇ = 0, that was also given in (3.22), divides the square [0, 1] × [0, 1] into
two regions A1 and A2, defined in (3.30).

Now, one can repeat verbatim the arguments in Step 1 with obvious modifications,
to find that M⊂ A2.

Since the derivatives of u and v have a sign in A2, and the setM in this case is the
trajectory of a point converging to (0, 0), the setM can be represented globally as the
graph of a smooth increasing function γ : U → [0, 1] for a suitable interval U ⊆ [0, 1]
containing the origin. As a consequence, the condition γ(0) = 0 is trivially satisfied
in this setting. The existence of a suitable (uM, vM) can be derived reasoning as in
Step 3 with obvious modifications.

Now, we prove that

at u = 0 the function γ is tangent to the line (ρ− 1 + ac)v − au = 0. (3.50)

For this, we recall (3.23) and we see, by inspection, that the Jacobian matrix J(0, 0)
has two eigenvectors, namely (0, 1) and (ρ − 1 + ac, a). The first one is tangent
to the line u = 0, that is the unstable manifold of (0, 0), as one can easily verify.
Thus, the second eigenvector is the one tangent to M, as prescribed by the Stable
Manifold Theorem (see e.g. [96]). Hence, in (0, 0) the manifold M is tangent to the
line (ρ− 1 + ac)v− au = 0 and so is the function γ in u = 0. This proves (3.50), and
thus Proposition 3.8 is established in the case ac > 1 as well.

3.2.2 Characterization of M when ac = 1

Here we will prove the counterpart of Proposition 3.8 in the degenerate case ac =
1.

To this end, looking at the velocity fields, we first observe that

trajectories starting in (0, 1)× (−∞, 1) at time t = 0

remain in (0, 1)× (−∞, 1) for all time t > 0.
(3.51)

We also point out that

trajectories entering the region R := {u ∈ (0, 1), u+ v < 0}
at some time t0 ∈ R
remain in that region for all time t > t0,

(3.52)

since v̇ = ρv(1− u− v)− au = −ρu− au < 0 along {u ∈ (0, 1), u+ v = 0}.
Also, by the Center Manifold Theorem (see e.g. Theorem 1 on page 16 of [31] or

pages 89-90 in [99]), there exists a collection M0 of invariant curves, which are all
tangent at the origin to the eigenvector corresponding to the null eigenvalue, that is
the straight line ρv − au = 0. Then, we define M := M0 ∩ ([0, 1] × [0, 1]) and we
observe that this intersection is nonvoid, given the tangency property of M0 at the
origin.

In what follows, for every t ∈ R, we denote by (u(t), v(t)) = φp(t) the orbit
of p ∈M \ {(0, 0)}. We start by providing an observation related to negative times:
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Lemma 3.11. If p ∈M\{(0, 0)} then φp(t) cannot approach the origin for negative
values of t.

Proof. We argue by contradiction and denote by t1, . . . , tn, . . . a sequence of such
negative values of t, for which tn → −∞ and

lim
n→+∞

φp(tn) = (0, 0).

Up to a subsequence, we can also suppose that

u(tn+1) < u(tn). (3.53)

In light of (3.52), we have that, for all T ≤ 0,

φp(T ) 6∈ R. (3.54)

Indeed, if φp(T ) ∈ R, we deduce from (3.52) that φp(t) ∈ R for all t ≥ T . In
particular, we can take t = 0 ≥ T and conclude that p = φp(0) ∈ R, and this is in
contradiction with the assumption that p ∈M \ {(0, 0)}.

As a byproduct of (3.54), we obtain that, for all T ≤ 0,

φp(T ) ∈ {u ∈ (0, 1), u+ v ≥ 0} ⊆ {u̇ = −u(u+ v) ≤ 0}.

In particular

u(tn)− u(tn+1) =

∫ tn

tn+1

u̇(τ) dτ ≤ 0,

which is in contradiction with (3.53), and consequently we have established the desired
result.

Now we show that the ω-limit of any point lying on the global center manifold
coincides with the origin, according to the next result:

Lemma 3.12. If p ∈M, then its ω-limit is (0, 0).

Proof. We observe that, for every t > 0,

φp(t) ∈ [0, 1]× [0, 1]. (3.55)

Indeed, by (3.51), one sees that, for t > 0, φt(p) cannot cross {0} × [0, 1], {1} ×
[0, 1] and [0, 1] × {1}, hence the only possible escape side is given by [0, 1] × {0}.
Therefore, to prove (3.55), we suppose, by contradiction, that there exists t0 ≥ 0
such that φp(t0) ∈ [0, 1] × {0}, that is v(t0) = 0. Since (0, 0) is an equilibrium, it
follows that u(t0) 6= 0. In particular, u(t0) > 0 and accordingly v̇(t0) = −au(t0) < 0.
This means that v(t0 + ε) < 0 for all ε ∈ (0, ε0) for a suitable ε0 > 0. Looking
again at the velocity fields, this entails that φp(t) ∈ (0, 1) × (−∞, 0) for all t > ε0.
Consequently, φp(t) cannot approach the straight line ρv − au = 0 for t > ε0.

This, combined with Lemma 3.11, says that the trajectory emanating from p can
never approach the straight line ρv − au = 0 at the origin, in contradiction with the
definition of M, and thus the proof of (3.55) is complete.
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From (3.55) and the Poincaré-Bendixson Theorem (see e.g. [113]), we deduce
that the ω-limit of p can be either a cycle, or an equilibrium, or a union of (finitely
many) equilibria and non-closed orbits connecting these equilibria. We observe that
the ω-limit of p cannot be a cycle, since u̇ has a sign in [0, 1] × [0, 1]. Moreover, it
cannot contain the sink (0, 1), due to Lemma 3.11. Hence, the only possibility is that
the ω-limit of p coincides with (0, 0), which is the desired result.

As a consequence of Lemma 3.12 and the fact that u̇ < 0 in (0, 1] × [0, 1], we
obtain the following statement:

Corollary 3.13. Every trajectory in M has the form {φp(t), t ∈ R}, with

lim
t→+∞

φp(t) = (0, 0)

and there exists tp ∈ R such that φp(tp) ∈
(
{1} × [0, 1]

)
∪
(
[0, 1]× {1}

)
.

The result in Corollary 3.13 can be sharpened in view of the following state-
ment (which can be seen as the counterpart of Proposition 3.8 in the degenerate
case ac = 1): namely, since the center manifold can in principle contain many differ-
ent trajectories (see e.g. Figure 5.3 in [31]), we provide a tailor-made argument that
excludes this possibility in the specific case that we deal with.

Proposition 3.14. For ac = 1 M contains one, and only one, trajectory, which is
asymptotic to the origin as t→ +∞, and that can be written as a graph γ : [0, uM]→
[0, vM], for some (uM, vM) ∈

(
{1}×[0, 1]

)
∪
(
(0, 1]×{1}

)
, where γ is an increasing C2

function such that γ(0) = 0, γ(uM) = vM and the graph of γ at the origin is tangent
to the line ρv − au = 0.

Proof. First of all, we show that

M contains one, and only one, trajectory. (3.56)

Suppose, by contradiction, that M contains two different orbits, that we denote
byM− andM+. Using Corollary 3.13, we can suppose thatM+ lies aboveM− and

the region P ⊂ [0, 1]× [0, 1] contained between M+ and M−

lies in {u̇ < 0}.
(3.57)

Consequently, for every p ∈ P , it follows that

lim
t→+∞

φp(t) = (0, 0). (3.58)

In particular, we can take an open ball B ⊂ P in the vicinity of the origin, denote
by µ(t) the Lebesgue measure of S(t) := {φp(t), p ∈ B}, and write that µ(0) > 0
and

lim
t→+∞

µ(t) = 0. (3.59)

We point out that S(t) lies in the vicinity of the origin for all t ≥ 0, thanks to (3.57).
As a consequence, for all t, τ > 0, changing variable

y := φx(τ) = x+

∫ τ

0

dφx(θ)

dθ
dθ = x+ τ

dφx(0)

dt
+O(τ 2),
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we find that

µ(t+ τ) =

∫
S(t+τ)

dy

=

∫
S(t)

∣∣ det
(
Dxφx(τ)

)∣∣ dx
=

∫
S(t)

∣∣∣∣detDx

(
x+ τ

dφx(0)

dt
+O(τ 2)

)∣∣∣∣ dx
=

∫
S(t)

(
1 + τ Tr

(
Dx

dφx(0)

dt

)
+O(τ 2)

)
dx

= µ(t) + τ

∫
S(t)

Tr

(
Dx

dφx(0)

dt

)
dx+O(τ 2),

where Tr denotes the trace of a (2× 2)-matrix.
As a consequence,

dµ

dt
(t) =

∫
S(t)

Tr

(
Dx

dφx(0)

dt

)
dx. (3.60)

Also, using the notation x = (u, v), we can write (3.1) when ac = 1 in the form

dφx
dt

(t) = ẋ(t) =

(
u̇(t)
v̇(t)

)
=

(
−u(t)(u(t) + v(t))

ρv(t)(1− u(t)− v(t))− au(t)

)
.

Accordingly,

Dx
dφx(0)

dt
=

(
−∂u

(
u(u+ v)

)
−∂v

(
u(u+ v)

)
∂u
(
ρv(1− u− v)− au

)
∂v
(
ρv(1− u− v)− au

)) ,
whence

Tr

(
Dx

dφx(0)

dt

)
= −∂u

(
u(u+ v)

)
+ ∂v

(
ρv(1− u− v)− au

)
= −2u− v + ρ(1− u− v)− ρv
= ρ+O(|x|)

(3.61)

for x near the origin.
As a result, recalling (3.58), we can take t sufficiently large, such that S(t) lies

in a neighborhood of the origin, exploit (3.61) to write that Tr
(
Dx

dφx(0)
dt

)
≥ ρ

2
and

then (3.60) to conclude that

dµ

dt
(t) ≥ ρ

2

∫
S(t)

dx =
ρ

2
µ(t).

This implies that µ(t) diverges (exponentially fast) as t → +∞, which is in contra-
diction with (3.59). The proof of (3.56) is thereby complete.

Now, we check the other claims in the statement of Proposition 3.14. The asymp-
totic property as t → +∞ is a consequence of Corollary 3.13. Also, the graphical
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property as well as the monotonicity property of the graph follow from the fact
that M ⊂ {u̇ < 0}. The smoothness of the graph follows from the smoothness
of the center manifold. The fact that γ(0) = 0 and γ(uM) = vM follow also from
Corollary 3.13. The tangency property at the origin is a consequence of the tangency
property of the center manifold to the center eigenspace.

As a byproduct of the proof of Proposition 3.14 we also obtain the following
information:

Corollary 3.15. Suppose that ac = 1. Then , we have that u̇ ≤ 0 in [0, 1]×[0, 1], and
the curve (3.22) divides the square [0, 1]× [0, 1] into two regions A1 and A2, defined
in (3.30).

Furthermore, the sets A1 and A2 are separated by the curve v̇ = 0, given by the
graph of the continuous function σ given in (3.26).

In addition,
M⊂ A2. (3.62)

3.2.3 Completion of the proof of Theorem 3.2

We observe that, by the Stable Manifold Theorem and the Center Manifold The-
orem, the statement in (v) of Theorem 3.2 is obviously fulfilled.

Hence, to complete the proof of Theorem 3.2, it remains to show that the state-
ment in (iv) holds true. To this aim, exploiting the useful pieces of information in
Propositions 3.8 and 3.14, we first give a characterization of the sets E and B:

Proposition 3.16. The following characterizations of the sets in (3.9) and (3.10)
are true:

E =
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ(u) if u ∈ [0, uM]

and v ≤ 1 if u ∈ (uM, 1]
}
,

(3.63)

and
B =

{
(u, v) ∈ [0, uM]× [0, 1] s.t. v > γ(u) if u ∈ [0, uM]

}
, (3.64)

for some (uM, vM) ∈ ∂ ([0, 1]× [0, 1]).

One can visualize the appearance of the set E in (3.63) in two particular cases in
Figure 3.4.

Proof of Proposition 3.16. We let γ be the parametrization ofM, as given by Propo-
sitions 3.8 (when ac 6= 1) and 3.14 (when ac = 1), and we consider the sets

X :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ(u)
}

and Y :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v > γ(u)
}
.

The goal is to prove that X ≡ E and Y ≡ B. We observe that, when uM = 1,
then X ∪ Y ∪M = [0, 1] × [0, 1]. When instead uM ∈ (0, 1), then X ∪ Y ∪M ∪(
(uM, 1]× [0, 1]

)
= [0, 1]× [0, 1]. Accordingly, if we show that

X ∪
(
(uM, 1]× [0, 1]

)
⊆ E (3.65)

and Y ⊆ B, (3.66)
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(a) a = 0.8, c = 0.5, ρ = 2 (b) a = 0.8, c = 3, ρ = 2

Figure 3.4 – The figures show the phase portrait for the indicated values of the coef-
ficients. In blue, the orbits of the points. The red dots show the equilibria. In violet,
the set E.

we are done.
Hence, we now focus on the proof of (3.65). Namely, recalling (3.10), we show

that

all trajectories starting in X exit the set on the side (0, 1]× {0}. (3.67)

For this, we first notice that, gathering together (3.28), (3.29), (3.39), (3.40)
and (3.47), we find that

no limit cycle exists in [0, 1]× [0, 1] (3.68)

(in the case 0 < ac < 1, and the same holds true in the case ac ≥ 1 since u̇ has a
sign).

In addition,

the ω-limit of any point in X cannot contain an equilibrium. (3.69)

Indeed, by Propositions 3.8 (when (ac 6= 1) and 3.14 (when ac = 1), we have
that γ(0) = 0 < 1, and therefore (0, 1) /∈ X . Moreover, if ac < 1, a trajectory
in X cannot converge to (us, vs), since X does not contain points of the stable mani-
foldM, nor to (0, 0), since this is a repulsive equilibrium and no trajectory converges
here. If instead ac ≥ 1, then it cannot converge to (0, 0), since X does not contain
points of M. These observations completes the proof of (3.69).

From (3.68), (3.69) and the Poincaré-Bendixson Theorem (see e.g. [113]), we have
that every trajectory starting in X leaves the set (possibly in infinite time).

If the trajectory leaves at t = +∞, then it converges to some equilibrium on ∂X ,
which is in contradiction with (3.69).

As a consequence a trajectory in X leaves the set in finite time. Suppose that
a trajectory leaves X at a point (u, v) ∈ ∂X ; then either (u, v) ∈ M or (u, v) ∈
∂([0, 1]× [0, 1]). The first possibility is impossible, otherwise the starting point of the
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trajectory would converge to (us, vs). Hence, the only possibility is that the trajectory
leaves X at (u, v) ∈ ∂([0, 1]× [0, 1]). By Proposition 3.1 this is possible only if u > 0
and v = 0, which proves (3.67). As a consequence of (3.67) we obtain that

X ⊆ E . (3.70)

We now claim that (
(uM, 1]× [0, 1]

)
⊆ E . (3.71)

To this end, we observe that there are neither cycles nor equlibria in (uM, 1]× [0, 1],
and therefore we can use the Poincaré-Bendixson Theorem (see e.g. [113]) to conclude
that any trajectory starting in (uM, 1] × [0, 1] must exit the set. Also, the inward
normal velocity along the sides {1} × (0, 1] and (uM, 1) × {1} is positive, and thus
no trajectory can exit from these sides. Now, if a trajectory exits (uM, 1] × [0, 1]
from the side {uM} × (0, 1), then it enters the set X , and therefore (3.71) is a
consequence of (3.70) in this case. If instead a trajectory exits (uM, 1] × [0, 1] from
the side (0, 1)× {0}, then we directly obtain (3.71).

From (3.70) and (3.71) we obtain (3.65), as desired.

We now prove (3.66), namely we show that

for all (u0, v0) ∈ Y we have that (u(t), v(t))→ (0, 1) as t→ +∞. (3.72)

To this end, we observe that (us, vs) (if 0 < ac < 1) and (0, 0) are not in Y . Moreover,
no trajectory starting in Y converges to (us, vs) (if 0 < ac < 1), nor to (0, 0), since Y
does not contain points on M.

In addition, recalling (3.68), we have that there are no limit cycles in Y . As a
consequence, by the Poincaré-Bendixson Theorem (see e.g. [113]), we have that every
trajectory starting in Y either go to (0, 1) or it exits the set at some point of ∂Y .

In the latter case, since no trajectory can crossM, the only possibility is that the
trajectory exits Y at some point (u, v) ∈ ∂

(
[0, 1]× [0, 1]

)
. We notice that, since γ is

increasing, we have that γ(u) > 0 for all u > 0. As a consequence,

if (u, v) ∈ Y , then v > γ(u) > 0 for all u > 0. (3.73)

Now, thanks to Proposition 3.1, the only possibility that a trajectory exits Y at some
point (u, v) ∈ ∂

(
[0, 1]× [0, 1]

)
is for u > 0 and v = 0, which would contradict (3.73).

As a result, the only remaining possibility is that a trajectory in Y converges
to (0, 1), which proves (3.72). Hence, the proof of (3.66) is complete as well.

With this, we are now able to complete the proof of Theorem 3.2:

Proof of (iv) of Theorem 3.2. The statement in (iv) of Theorem 3.2 is a direct con-
sequence of the parametrization of the manifold M, as given by Proposition 3.8
for ac 6= 1 and by Proposition 3.14 for ac = 1, and the characterization of the sets B
and E , as given by Proposition 3.16.
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3.3 Dependence of the dynamics on the parame-

ters

In this section we discuss the dependence on the parameters involved in the sys-
tem (3.1).

The dynamics of the system in (3.1) depends qualitatively only on ac, but of
course the position of the saddle equilibrium and the size and shape of the basins of
attraction depend quantitatively upon all the parameters. Here we perform a deep
analysis on each parameter separately.

We notice that the system in (3.1) does not present a variational structure, due
to the presence of the terms −acu in the first equation and −au in the second one,
that are of first order in u. Thus, the classical methods of the calculus of variations
cannot be used and we have to make use of ad-hoc arguments, of geometrical flavour.

3.3.1 Dependence of the dynamics on the parameter c

We start by studying the dependence on c, that represents the losses (soldier
death and missing births) caused by the war for the first population with respect to
the second one. In the following proposition, we will express the dependence on c of
the basin of attraction E in (3.10) by writing explicitly E(c).

Proposition 3.17 (Dependence of the dynamics on c). With the notation in (3.10),
we have that

(i) If 0 < c1 < c2, then E(c2) ⊂ E(c1) .

(ii) It holds that ⋂
c>0

E(c) = (0, 1]× {0}. (3.74)

We remark that the behavior for c sufficiently small is given by (i) of Theorem 3.2:
in this case, there is a saddle point inside the domain [0, 1] × [0, 1], thus E(c) 6=
(0, 1]× [0, 1]. On the other hand, as c→ +∞, the set E(c) gets smaller and smaller
until the first population has no chances of victory if the second population has a
positive size.

The parameter c appears only in the first equation and it is multiplied by −au,
that is always negative in the domain we are interested in. Thus, the dependence on c
is independent of the other parameters. As one would expect, Proposition 3.17 tells
us that the greater the cost of the war for the first population, the fewer possibilities
of victory there are for it.

Proof of Proposition 3.17. (i) We take c2 > c1 > 0. According to Theorem 3.2,
we denote by (u2

s, v
2
s) the coexistence equilibrium for the parameter c2 if ac2 < 1,

otherwise we set (u2
s, v

2
s) = (0, 0); similarly, we call (u1

s, v
1
s) the coexistence equilibrium

for the parameter c1 if ac1 < 1, and in the other cases we set (u1
s, v

1
s) = (0, 0).

We observe that

v2
s ≤ v1

s . (3.75)
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Indeed, if ac2 < 1 then also ac1 < 1, and therefore, using the characterization
in (3.11),

∂vs
∂c

=
−a(1 + ρc)− ρ(1− ac)

(1 + ρc)2
=
−a− ρ

(1 + ρc)2
< 0,

which implies (3.75) in this case. If instead ac2 ≥ 1 then the inequality in (3.75) is
trivially satisfied, thanks to (i), (ii) and (iii) of Theorem 3.2.

Now, in the notation of Propositions 3.8 (if ac 6= 1) and 3.14 (if ac = 1), thanks
to the characterization in (3.63), if we prove that

γc1(u) > γc2(u) for any u ∈ (0,min{uc1M, u
c2
M}], (3.76)

then the inclusion in (i) is shown. Hence, we now focus on the proof of (3.76).
To this end, we observe that, since γc1 is an increasing function, its inverse func-

tion fc1 : [0, vc1M] → [0, uc1M] is well defined and is increasing as well. In an analogue
fashion, we define fc2(v) as the inverse of γc2(u). We point out that the inequality
in (3.76) holds true if

fc1(v) < fc2(v) for any v ∈ (0,min{vc1M, v
c2
M}]. (3.77)

Accordingly, we will show (3.77) in three steps.
First, in light of (3.75), we show that

the claim in (3.77) is true in the interval [v2
s , v

1
s ] ∩ (0,+∞). (3.78)

For this, if ac1 ≥ 1, then also ac2 ≥ 1, and therefore v1
s = v2

s = 0, thanks to (ii)
and (iii) in Theorem 3.2. Accordingly, in this case the interval [v2

s , v
1
s ] coincides with

the singleton {0}, and so there is nothing to prove.
Otherwise, we recall that the curve u = σ(v), given in (3.26) and representing

the points where v̇ = 0, is independent of c. Moreover, thanks to formula (3.27) in
Corollary 3.9 if ac < 1, formula (3.31) in Corollary 3.10 if ac > 1, and formula (3.62)
in Corollary 3.15 if ac = 1 (see also Figure 3.3), we have that fc1(v) < σ(v) for v < v1

s

and fc2(v) > σ(v) for v > v2
s , which proves (3.78) in the open interval (v2

s , v
1
s).

Moreover, it holds that

fc1(v
1
s) = σ(v1

s) < fc2(v
1
s), (3.79)

and (if ac2 < 1, otherwise v2
s = 0 and there is no need to perform this computation)

fc1(v
2
s) < σ(v2

s) = fc2(v
2
s). (3.80)

This completes the proof of (3.78).
Next we show that

the claim in (3.77) is true in the interval (0, v2
s). (3.81)

If ac2 ≥ 1, then v2
s = 0, and so the claim in (3.81) is trivial. Hence, we suppose

that ac2 < 1 and we argue by contradiction, assuming that for some v ∈ (0, v2
s) it

holds that fc1(v) ≥ fc2(v). As a consequence, we can define

v̄ := sup
{
v ∈ (0, v2

s) s.t. fc1(v) ≥ fc2(v)
}
.
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We observe that, by continuity, we have that fc1(v̄) = fc2(v̄), and therefore, by (3.78),
we see that v̄ < v2

s . As a result, since fc1(v) < fc2(v) for every v ∈ (v̄, v2
s ], then it

holds that
dfc1
dv

(v̄) <
dfc2
dv

(v̄). (3.82)

On the other hand, we can compute the derivatives by exploiting the fact that γc1
and γc2 follow the flux for the system (3.1). Namely, setting ū := fc1(v̄), we have that

dfc1
dv

(v̄) =
u̇

v̇
(v̄) =

ū(1− ū− v̄)− ac1ū

ρv̄(1− ū− v̄)− aū

and
dfc2
dv

(v̄) =
u̇

v̇
(v̄) =

ū(1− ū− v̄)− ac2ū

ρv̄(1− ū− v̄)− aū
.

Now, since v̄ ∈ [0, v1
s), we have that ρv̄(1− ū− v̄)− aū > 0 (recall (3.27) and notice

that (ū, v̄) ∈ A4). This and the fact that c2 > c1 give that

dfc1
dv

(v̄) >
dfc2
dv

(v̄),

which is in contradiction with (3.82), thus establishing (3.81).
Now we prove that

the claim in (3.77) is true in the interval (v1
s ,min{uc1M, u

c2
M}]. (3.83)

Indeed, if ac1 < 1, we argue towards a contradiction, supposing that there exists v >
v1
s such that fc1(v) ≥ fc2(v). Hence, we can define

v̂ := inf
{
v > v1

s s.t. fc1(v) ≥ fc2(v)
}
,

and we deduce from (3.79) that v̂ > v1
s . By continuity, we see that fc1(v̂) = fc2(v̂).

Therefore, since fc1(v) < fc2(v) for any v < v̂, we conclude that

dfc1
dv

(v̂) >
dfc2
dv

(v̂). (3.84)

On the other hand, setting û := fc1(v̂) and exploiting (3.1), we get that

dfc1
dv

(v̂) =
u̇

v̇
(v̂) =

(̂1− û− v̂)− ac1û

ρv̂(1− û− v̂)− aû

and
dfc2
dv

(v̂) =
û

v̂
(v̂) =

ρû(1− û− v̂)− ac2û

v̂(1− û− v̂)− aû
.

Moreover, recalling (3.25) and (3.27), we have that (fc1(v̂), v̂) and (fc2(v̂), v̂) belong to
the interior of A2, and therefore ρv̂(1− û− v̂)−aû < 0. This ad the fact that c2 > c1

give that
dfc1
dv

(v̂) <
dfc2
dv

(v̂),

which is in contradiction with (3.84). This establishes (3.83) in this case.
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If instead ac1 ≥ 1 , then also ac2 ≥ 1, and therefore we have that (u2
s, v

2
s) =

(u1
s, v

1
s) = (0, 0). In this setting, we use Propositions 3.8 and 3.14 to say that at v = 0

the function fc1 is tangent to the line (ρ − 1 + ac1)v − au = 0, while fc2 is tangent
to (ρ− 1 + ac2)v − au = 0. Now, since

ρ− 1

a
+ c1 <

ρ− 1

a
+ c2,

we have that for positive v the second line is above the first one. Also, thanks to the
fact that fc1 and fc2 are tangent to these lines, we conclude that there exists ε > 0
such that

fc1(v) < fc2(v) for any v < ε. (3.85)

Now, we suppose by contradiction that there exists some v > 0 such that fc1(v) ≥
fc2(v). Hence, we can define

ṽ := inf
{
v > 0 s.t. fc1(v) ≥ fc2(v)

}
.

In light of (3.85), we have that ṽ ≥ ε > 0. Moreover, by continuity, we see
that fc1(ṽ) = fc2(ṽ). Accordingly, since fc1(v) < fc2(v) for any v < ṽ, then it
must be

dfc1
dv

(ṽ) >
dfc2
dv

(ṽ). (3.86)

On the other hand, setting ũ := fc1(ṽ) and exploiting (3.1), we see that

dfc1
dv

(ṽ) =
u̇

v̇
(ṽ) =

ũ(1− ũ− ṽ)− ac1ũ

ρṽ(1− ũ− ṽ)− aũ

and
dfc2
dv

(ṽ) =
ũ

ṽ
(ṽ) =

ρũ(1− ũ− ṽ)− ac2ũ

ṽ(1− ũ− ṽ)− aũ
.

Now, thanks to (3.30) and (3.31), we have that (fc1(ṽ), ṽ) and (fc2(ṽ), ṽ) belong to
the interior of A2, and therefore ρṽ(1− ũ− ṽ)−aũ < 0. This ad the fact that c2 > c1

give that
dfc1
dv

(ṽ) <
dfc2
dv

(ṽ),

which is in contradiction with (3.86). This completes the proof of (3.83).
Gathering together (3.78), (3.81) and (3.83), we obtain (3.77), as desired.

(ii) We first show that for all ε > 0 there exists cε > 0 such that for all c ≥ cε it
holds that

E(c) ⊂
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < εu
}
. (3.87)

The inclusion in (3.87) is also equivalent to{
(u, v) ∈ [0, 1]× [0, 1] s.t. v > εu

}
⊂ B(c), (3.88)

and the strict inequality is justified by the fact that E(c) and B(c) are separated
by M, according to Proposition 3.16. We now establish the inclusion in (3.88). For
this, let

Tε :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v > εu
}
. (3.89)
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Now, we can choose c large enough such that the condition ac ≥ 1 is fulfilled. In this
way, thanks to (ii) and (iii) of Theorem 3.2, the only equilibria are the points (0, 0)
and (0, 1).

Now, the component of the velocity in the inward normal direction to Tε on the
side {v = εu} is given by

(u̇, v̇) · (−ε, 1)√
1 + ε2

=
v̇ − εu̇√
1 + ε2

=
1√

1 + ε2

(
ρv(1− u− v)− au− εu(1− u− v) + εacu

)
=

1√
1 + ε2

[
(ρv − εu)(1− u− v) + (εc− 1)au

]
=

1√
1 + ε2

[
(ρεu− εu)(1− u− εu) + (εc− 1)au

]
,

that is positive for

c > cε :=
2ε(1 + ρ) + a

εa
. (3.90)

This says that no trajectory in Tε can exit Tε from the side {v = εu}.
The other parts of ∂Tε belong to ∂((0, 1) × (0, 1)) but not to [0, 1] × {0}. As a

consequence, by Proposition 3.1,

every trajectory in Tε belongs to Tε for all t ≥ 0. (3.91)

From this, (3.68) and the Poincaré-Bendixson Theorem (see e.g. [113]), we conclude
that the ω-limit of any trajectory starting in Tε can be either an equilibrium or a
union of (finitely many) equilibria and non-closed orbits connecting these equilibria.

Now, we claim that, possibly taking c larger in (3.90),

M⊂
(
[0, 1]× [0, 1]

)
\ Tε. (3.92)

Indeed, suppose by contradiction that there exists (ũ, ṽ) ∈ M ∩ Tε. Then, in light
of (3.91), a trajectory passing through (ũ, ṽ) and converging to (0, 0) has to be entirely
contained in Tε.

On the other hand, by Propositions 3.8 and 3.14, we know that at u = 0 the
manifoldM is tangent to the line (ρ− 1 + ac)v− au = 0. Hence, if we choose c large
enough such that

a

ρ− 1 + ac
< ε,

we obtain that this line is below the line v = εu, thus reaching a contradiction. This
establishes (3.92).

From (3.92), we deduce that, given (ũ, ṽ) ∈ Tε, and denoting ω(ũ,ṽ) the ω-limit
of (ũ, ṽ),

ω(ũ,ṽ) 6= {(0, 0)}, (3.93)

provided that c is taken large enough.
Furthermore, ω(ũ,ṽ) cannot consist of the two equilibria (0, 0) and (0, 1) and non-

closed orbits connecting these equilibria, since (0, 1) is a sink. As a consequence of
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this and (3.93), we obtain that ω(ũ,ṽ) = {(0, 1)} for any (ũ, ṽ) ∈ Tε, provided that c
is large enough.

Thus, recalling (3.9) and (3.89), this proves (3.88), and therefore (3.87).
Now, using (3.87), we see that for every ε > 0,⋂

c>0

E(c) ⊆ E(cε) ⊆
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < εu
}
.

Accordingly,⋂
c>0

E(c) ⊆
⋂
ε>0

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v < εu

}
= (0, 1]× {0},

which implies (3.74), as desired.

3.3.2 Dependence of the dynamics on the parameter ρ

Now we analyze the dependence of the dynamics on the parameter ρ, that is the
fitness of the second population v with respect to the fitness of the first one u.

In the following proposition, we will make it explicit the dependence on ρ by
writing E(ρ) and B(ρ).

Proposition 3.18 (Dependence of the dynamics on ρ). With the notation in (3.9)
and (3.10), we have that

(i) When ρ = 0, for any v ∈ [0, 1] the point (0, v) is an equilibrium. If v ∈
(1− ac, 1], then it corresponds to a strictly negative eigenvalue and a null one.
If instead v ∈ [0, 1 − ac), then it corresponds to a strictly positive eigenvalue
and a null one

Moreover,
B(0) = ∅, (3.94)

and for any ε < ac/2 and any δ < εc/2 we have that

[0, 1]× [0, 1− ac) ⊆ E(0) ⊆ Tε,δ, (3.95)

where

Tε,δ :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. δv − εu ≤ δ(1− ε)
}
. (3.96)

(ii) For any ε < ac/3 and any δ < εc/2 it holds that⋂
a>0

⋃
0<ρ<a/3

E(ρ) ⊆ Tε,δ,

where Tε,δ is defined in (3.96).

(iii) It holds that ⋂
ω>0

⋃
ρ>ω

E(ρ) = (0, 1]× {0}. (3.97)
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We point out that the case ρ = 0 is not comprehended in Theorem 3.2. As a
matter of fact, the dynamics of this case is qualitatively very different from all the
other cases. Indeed, for ρ = 0 the domain [0, 1] × [0, 1] is not divided into E and B,
since more attractive equilibria appear on the line {0} × (0, 1). Thus, even if the
second population cannot grow, it still has some chance of victory.

As soon as ρ is positive, on the line u = 0 only the equilibrium (0, 1) survives,
and it attracts all the points that were going to the line {0} × (0, 1) for ρ = 0.

When ρ→ +∞, the basin of attraction of (0, 1) tends to invade the domain, thus
the first population tends to have almost no chance of victory and the second popu-
lation tends to win. However, the dependence on the parameter ρ is not monotone
as one could think, at least not in [0,+∞)× [0,+∞).

Indeed, by performing some simulation, one could find some values ρ1 and ρ2,
with 0 < ρ1 < ρ2, and a point (u∗, v∗) ∈ [0,+∞)× [0,+∞) such that (u∗, v∗) /∈ E(ρ1)
and (u∗, v∗) ∈ E(ρ2), see Figure 3.5.

(a) a = 0.2, c = 0.1, and ρ = 3 (b) a = 0.2, c = 0.1, and ρ = 7

Figure 3.5 – Figure (a) and Figure (b) show the trajectory starting from the
point (u0, v0) = (1.4045, 1.1) for ρ = 3 and ρ = 7 respectively. For ρ = 3 the
trajectory leads to the equilibrium (0, 1), so (u0, v0) /∈ E(ρ = 3), while for ρ = 7 the
second population goes to extinction in finite time, so (u0, v0) ∈ E(ρ = 7).

This means that, sometimes, a big value of fitness for the second population may
lead to extinction while a small value brings to victory. This is counterintuitive, but
can be easily explained: the parameter ρ is multiplied by the term 1− u− v, that is
negative past the counterdiagonal of the square [0, 1]× [0, 1]. So in the model (3.1),
as well as in any model of Lotka-Volterra type, the population that grows faster is
also the one that suffers more the consequences of overpopulation. Moreover, the
usual dynamics of Lotka-Volterra models is altered by the presence of the term −au,
and this leads to the lack of monotonicity that we observe.

We now give the proof of Proposition 3.18:

Proof of Proposition 3.18. (i) For ρ = 0, the equation v̇ = 0 collapses to u = 0.
Since for u = 0 also the equation u̇ = 0 is satisfied, each point on the line u = 0 is an
equilibrium.
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Calculating the eigenvalues for the points (0, ṽ), with ṽ ∈ [0, 1], using the Jacobian
matrix in (3.23), one gets the values 0 and 1− ac− ṽ. Accordingly, this entail that,
if ṽ < 1− ac, the point (0, ṽ) corresponds to a strictly negative eigenvalue and a null
one, while if ṽ > 1− ac then (0, ṽ) corresponds to a strictly negative eigenvalue and
a null one. These considerations proves the first statement in (i).

We notice also that in the whole square (0, 1]× [0, 1] we have v̇ = −au < 0, hence
there is no trajectory that can go to (0, 1), and there is no cycle. In particular this
implies (3.94).

Now, we observe that on the side [0, 1]×{1} the inward normal derivative is given
by −v̇ = au, which is nonnegative, and therefore a trajectory cannot exit the square
on this side. Similarly, along the side {1} × [0, 1] the inward normal derivative is
given by −u̇ = v+ ac, which is positive, hence a trajectory cannot exit the square on
this side either.

The side {0}× [0, 1] is made of equilibrium points at which the first population u
is extinct, while on the side (0, 1] × {0} we have extinction of the population v.
Thus a trajectory either converges to one of the equilibria on the side {0} × [0, 1], or
exits [0, 1]× [0, 1] through the side (0, 1]× {0}.

In particular, since {0} × [0, 1− ac) consists of repulsive equilibria, we have that

[0, 1]× [0, 1− ac) ⊆ E(0),

that is, trajectories starting in [0, 1]× [0, 1−ac) go to the extinction of v. This proves
the first inclusion in (3.95).

To prove the second inclusion in (3.95), we first show that

points in
(
[0, 1]× [0, 1]

)
\ Tε,δ are mapped into

(
[0, 1]× [0, 1]

)
\ Tε,δ itself. (3.98)

Indeed, on the line {δv − εu = δ(1 − ε)} we have that the inward-pointing normal
derivative is given by

(u̇, v̇) · (−ε, δ)√
ε2 + δ2

=
1√

ε2 + δ2

(
δv̇ − εu̇

)
=

1√
ε2 + δ2

(
− δau− εu(1− u− v) + εacu

)
=

u√
ε2 + δ2

[
ε
(
−1 + ac+ u+

ε

δ
u+ 1− ε

)
− δa

]
=

1√
ε2 + δ2

[
u2
(

1 +
ε

δ

)
+ u(εac− δa− ε2)

]
.

(3.99)

The first term is always positive; the second one is positive for the choice

δ <
εc

2
and ε <

ac

2
.

Hence, under the assumption in (i), on the line {δv − εu = δ(1 − ε)} the inward-
pointing normal derivative is positive, which implies that no trajectories in

(
[0, 1]×

[0, 1]
)
\ Tε,δ can exit from

(
[0, 1]× [0, 1]

)
\ Tε,δ. This establishes (3.98).

As a consequence of (3.98), we obtain also the second inclusion (3.95), as desired.
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(ii) We claim that (
[0, 1]× [0, 1]

)
\ Tε,δ ⊆ B(ρ), (3.100)

for all 0 < ρ < a/3. To this end, we observe that, in order to determine the sign of the
inward pointing normal derivative on the side {δv−εu = δ(1−ε)}, by (3.99) we have
to check that δv̇ − εu̇ ≥ 0. In order to simplify the calculation, we use the change of
coordinates x := u and y := 1− v. In this way, one needs to verify that δẏ + εẋ ≤ 0
on the line {δy + εx = δε}. For this, we compute

δẏ + εẋ = δρ(y − 1)(y − x) + δax+ εx(y − x)− εacx,
= −δρ(1− y)y + x

(
δρ(1− y) + δa+ ε(y − x)− εac

)
,

= −δρ(1− y)y + x
(
δρ− δρy + δa+ εy − εx− εac

)
≤ x

(
δρ− δρy + δa+ εy − εx− εac

)
.

(3.101)

Now we choose δ < εc/2 and we recall that ρ < a/3. Moreover, we notice that

y = ε− ε

δ
x ≤ ε,

and therefore εy ≤ ε2. Thus, we have that

−δρy + δρ+ δa+ εy − εx− εac ≤ εac

6
+
εac

2
+ ε2 − εac = ε

(
2

3
ac+ ε− ac

)
that is negative for ε < ac/3. Plugging this information into (3.101), we obtain
that δẏ + εẋ ≤ 0 , as desired.

This proves that trajectories in
(
[0, 1]×[0, 1]

)
\Tε,δ cannot exit

(
[0, 1]×[0, 1]

)
\Tε,δ.

This, the fact that there are no cycles in [0, 1] × [0, 1] and the Poincaré-Bendixson
Theorem (see e.g. [113]) give that trajectories in

(
[0, 1]×[0, 1]

)
\Tε,δ converge to (0, 1),

that is the only equilibrium in
(
[0, 1]× [0, 1]

)
\ Tε,δ. Hence, (3.100) is established.

From (3.100) we deduce that

E(ρ) ⊆ Tε,δ

for all 0 < ρ < a/3, which implies the desired result in (ii).

(iii) We consider ε1 > ε2 > 0 to be taken sufficiently small in what follows, and
we show that there exists R > 0, depending on ε1 and ε2, such that for all ρ ≥ R it
holds that

Rε1,ε2 := [0, 1− ε1]× [ε2, 1] ⊆ B(ρ). (3.102)

For this, we first observe that

no trajectory starting in Rε1,ε2 can exit the set. (3.103)

Indeed, looking at the velocity fields on the sides {0} × [ε2, 1] and [0, 1 − ε1] × {1},
one sees that no trajectory in Rε1,ε2 can exit from these sides.

Moreover, on the side {1− ε1} × [ε2, 1], the normal inward derivative is

−u̇ = −[u(1− u− v)− acu] = −(1− ε1)(ε1 − v − ac),
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and this is positive for ε1 ≤ ac (which is fixed from now on). In addition, on the
side [0, 1− ε1]× {ε2}, the inward normal derivative is

v̇ = [ρv(1− u− v)− au] = ρε2(1− u− ε2)− au
≥ ρε2(ε1 − ε2)− a(1− ε1),

and this is positive for

ρ >
a(1− ε1)

ε2(ε1 − ε2)
=: R. (3.104)

These observations complete the proof of (3.103).
From (3.68), (3.103) and the Poincaré-Bendixson Theorem (see e.g. [113]), we

have that all the trajectories in the interior of Rε1,ε2 must converge to either an
equilibrium or a union of (finitely many) equilibria and non-closed orbits connecting
these equilibria.

In addition, we claim that, if 0 < ac < 1, recalling (3.11) and possibly enlarging ρ
in (3.104),

(us, vs) /∈ Rε1,ε2 . (3.105)

Indeed, we have that us → 1− ac and vs → 0, as ρ→ +∞. Hence, we can choose ρ
large enough such that the statement in (3.105) is satisfied.

As a consequence of (3.105), we get that all the trajectories in the interior ofRε1,ε2

must converge to the equilibrium (0, 1), and this establishes (3.102).
Accordingly, (3.102) entails that, for ε1 > ε2 > 0 sufficiently small, there ex-

ists R > 0, depending on ε1 and ε2, such that for all ρ ≥ R

E(ρ) ⊂
(
(0, 1]× [0, ε2)

)
∪
(
(1− ε1, 1]× (ε2, 1]

)
.

This implies (3.97), as desired.

3.3.3 Dependence of the dynamics on the parameter a

The consequences of the lack of variational structure become even more extreme
when we observe the dependence of the dynamics on the parameter a, that is the
aggressiveness of the first population towards the other. Throughout this section,
we take ρ > 0 and c > 0, and we perform our analysis taking into account the limit
cases a→ 0 and a→ +∞. We start analyzing the dynamics of (3.1) in the case a = 0.

Proposition 3.19 (Dynamics of (3.1) when a = 0). For a = 0 the system (3.1) has
the following features:

i) The system has the equilibrium (0, 0), which is a source, and a straight line of
equilibria (u, 1 − u), for all u ∈ [0, 1], which correspond to a strictly negative
eigenvalue and a null one.

ii) Given any (u(0), v(0)) ∈ (0, 1)× (0, 1) we have that

(u(t), v(t))→ (ū, 1− ū) as t→ +∞, (3.106)

where ū satisfies
v(0)

uρ(0)
ūρ + ū− 1 = 0. (3.107)
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iii) The equilibrium (u0
s, v

0
s) given in (3.14) has a stable manifold, which can be

written as the graph of an increasing smooth function γ0 : [0, u0
M] → [0, v0

M],
for some (u0

M, v
0
M) ∈

(
{1}×[0, 1]

)
∪
(
(0, 1]×{1}

)
, such that γ0(0) = 0, γ0(u0

M) =
v0
M.

More precisely,

γ0(u) :=
v0
s

(u0
s)
ρ
uρ and u0

M := min

{
1,

u0
s

(v0
s)

1
ρ

}
, (3.108)

being (u0
s, v

0
s) defined in (3.14).

We point out that formula (3.106) says that for a = 0 every point in the interior
of [0, 1] × [0, 1] tends to a coexistence equilibrium. The shape of the trajectories
depends on ρ, being convex in the case ρ > 1, a straight line in the case ρ = 1, and
concave in the case ρ < 1. This means that if the second population v is alive at the
beginning, then it does not get extinct in finite time.

Proof of Proposition 3.19. (i) For a = 0, we look for the equilibria of the system (3.1)
by studying when u̇ = 0 and v̇ = 0. It is easy to see that the point (0, 0) and all the
points on the line u+ v = 1 are the only equilibria.

The Jacobian of the system (see (3.23), with a = 0) at the point (0, 0) has two
positive eigenvalues, 1 and ρ , and thereofore (0, 0) is a source.

Furthermore, the characteristic polynomial at a point (ũ, ṽ) on the line u+ v = 1
is given by

(λ+ ũ)(λ+ ρṽ)− ρũṽ = λ(λ+ ũ+ ρṽ),

and therefore, the eigenvalues are 0 and −ũ− ρṽ < 0.

(ii) We point out that when a = 0

µ(t) := v(t)/uρ(t) is a prime integral for the system. (3.109)

Indeed,

µ′ =
v̇uρ − ρuρ−1u̇v

u2ρ
= uρ−1ρuv(1− u− v)− ρuv(1− u− v)

u2ρ
= 0.

As a result, the trajectory starting at a point (u(0), v(0)) ∈ (0, 1)× (0, 1) lies on the
curve

v(t) =
v(0)

uρ(0)
uρ(t). (3.110)

Moreover, the trajectory starting at (u(0), v(0)) is asymptotic as t → +∞ to an
equilibrium on this curve. Since (0, 0) is a source, the only possibility is that the
trajectory starting at (u(0), v(0)) converges to an equlibrium (ū, v̄) such that v̄ = 1−ū.
This entails that

1− ū = v̄ = (v(0)/uρ(0))ūρ,

which is exactly equation (3.107).
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(iii) We observe that the point (u0
s, v

0
s) given in (3.14) lies on the straight line u+

v = 1, and therefore, thanks to (i) here, it is an equilibrium of the system (3.1), which
corresponds to a strictly negative eigenvalue −u0

s − ρv0
s and a null one.

Hence, by the Center Manifold Theorem (see e.g. Theorem 1 on page 16 of [31]),
the point (u0

s, v
0
s) has a stable manifold, which has dimension 1 and is tangent to

the eigenvector of the linearized system associated to the strictly negative eigen-
value −u0

s − ρv0
s .

Also, the graphicality and the monotonicity properties follow from the strict sign
of u̇ and u̇. The smoothnes of the graphs follows from the smoothness of the center
manifold. The fact that γ0(0) = 0 is a consequence of the monotonicity property
of u and v, which ensures that the limit at t → −∞ exists, and the fact that this
limit has to lie on the prime integral in (3.110). The fact that γ0(u0

M) = v0
M follows

from formula (3.106) and the monotonicity property. Formula (3.108) follows from
the fact that any trajectory has to lie on the prime integral in (3.110).

To state our next result concerning the dependence of the basin of attraction E
defined in (3.10) on the parameter a, we give some notation. We will make it explicit
the dependence of the sets E and B on the parameter a, by writing explicitly E(a)
and B(a), and we will call

E0 :=
⋂
a′>0

⋃
a′>a>0

E(a)

and
E∞ :=

⋂
a′>0

⋃
a>a′

E(a). (3.111)

In this setting, we have the following statements:

Proposition 3.20 (Dependence of the dynamics on a).

(i) We have that{
(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ0(u) if u ∈ [0, u0

M]

and v ≤ 1 if u ∈ (u0
M, 1]

}
⊆ E0 ⊆{

(u, v) ∈ [0, 1]× [0, 1] s.t. v ≤ γ0(u) if u ∈ [0, u0
M]

and v ≤ 1 if u ∈ (u0
M, 1]

}
,

(3.112)

where γ0 and u0
M are given in (3.108).

(ii) It holds that
Sc ⊆ E∞ ⊆ Sc, (3.113)

where
Sc :=

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v − u

c
< 0
}
. (3.114)

We point out that the set E0 in (3.112) does not coincide with the basin of attrac-
tion for the system (3.1) when a = 0. Indeed, as already mentioned, formula (3.106)
in Proposition 3.19 says that for a = 0 every point in the interior of [0, 1] × [0, 1]
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tends to a coexistence equilibrium and thus if v(0) 6= 0 then v(t) does not get extinct
in finite time.

Also, as a→ +∞, we have that the set E∞ is determined by Sc, defined in (3.114),
that depends only on the parameter c.

The statement in (i) of Proposition 3.20 will be a direct consequence of the fol-
lowing result. Recalling the function γ introduced in Propositions 3.8 and 3.14, we
express here the dependence on the parameter a by writing γa, ua, va, u

a
s , u

a
M. We

will also denote byMa the stable manifold of the point (us, vs) in (3.11), and byM0

the stable manifold of the point (u0
s, v

0
s) in (3.14). The key lemma is the following:

Lemma 3.21. For all u ∈ [0, 1], we have that γa(u) → γ0(u) uniformly as a → 0,
where γ0(u) is the function defined in (3.108).

Proof. Since we are dealing with the limit as a goes to zero, throughout this proof
we will always assume that we are in the case ac < 1.

Also, we denote by φap(t) the flow at time t of the point p ∈ [0, 1] × [0, 1] as-

sociated with (3.1), and similarly by φ
(0)
p (t) the flow at time t of the point p as-

sociated with (3.1) when a = 0. With a slight abuse of notation, we will also
write φap(t) = (ua(t), va(t)), with p = (ua(0), va(0)).

Let us start by proving that

Ma ∩
(
[0, u0

s]× [0, v0
s ]
)
→M0 ∩

(
[0, u0

s]× [0, v0
s ]
)

as a→ 0. (3.115)

For this, we claim that, for every ε > 0, if

(ua(0))2 + (va(0))2 ≥ ε2

4
(3.116)

and ∣∣(ua(t), va(t))− (uas , v
a
s )
∣∣ > ε

2
, (3.117)

then

|u̇a(t)|2 + |v̇a(t)|2 >
ε4

C0

, (3.118)

for some C0 > 0, depending only on ρ and c.
Indeed, by (v) of Theorem 3.2 and (3.117), the trajectory (ua(t), va(t)) belongs to

the set [0, uas ]× [0, vas ] \B ε
2
(uas , v

a
s ) .

Moreover, we claim that

1− ac− ua(t)− va(t) ≥
ε
√

2

4
, (3.119)

for any t > 0 such that (3.117) is satisfied. To prove this, we recall that (uas , v
a
s )

lies on the straight line ` given by v = −u + 1 − ac when 0 < ac < 1 (see (3.21)).
Clearly, there is no point of the set [0, uas ] × [0, vas ] \ B ε

2
(uas , v

a
s ) lying on `, and we

notice that the points in the set [0, uas ] × [0, vas ] \ B ε
2
(uas , v

a
s ) with minimal distance

from ` are given by p := (uas − ε/2, vas ) and q := (uas , v
a
s − ε/2). Also, the distance of
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the point p from the straight line ` is given by ε
2
· tan π

4
= ε

√
2

4
. Thus, the distance

between (ua(t), va(t)) and the line ` is greater than ε
√

2
4

, and this implies (3.119).
As a consequence of (3.119), we obtain that

(u̇a(t))
2 =

(
ua(t)(1− ac− ua(t)− va(t))

)2
> (ua(t))

2

(
ε
√

2

4

)2

(3.120)

and that

(v̇a(t))
2 =

(
ρva(t)(1− ua(t)− va(t))− aua(t)

)2

≥

(
ρva(t)

(
ac+

ε
√

2

4

)
− aua(t)

)2

.
(3.121)

Now, if ua(t) ≥ ρcva(t), then from (3.120) and (3.116) we obtain that

(u̇a(t))
2 + (v̇a(t))

2 ≥ (u̇a(t))
2 > (ua(t))

2

(
ε
√

2

4

)2

≥ (ua(t))
2

2

(
ε
√

2

4

)2

+
(ρcva(t))

2

2

(
ε
√

2

4

)2

≥ min{1, ρ2c2} ε
2

16

(
(ua(t))

2 + (va(t))
2
)

≥ min{1, ρ2c2} ε
2

16

(
(ua(0))2 + (va(0))2

)
≥ min{1, ρ2c2} ε

4

64
,

which proves (3.118) in this case.
If instead ua(t) < ρcva(t), we use (3.121) to see that

(u̇a(t))
2 + (v̇a(t))

2 ≥ (v̇a(t))
2 ≥

(
ρva(t)

(
ac+

ε
√

2

4

)
− aua(t)

)2

=

(
ε
√

2ρva(t)

4
+ a
(
ρcva(t)− ua(t)

))2

≥

(
ε
√

2ρva(t)

4

)2

≥ 1

2

(
ε
√

2ρva(t)

4

)2

+
1

2

(
ε
√

2ua(t)

4c

)2

≥ min

{
ρ2,

1

c2

}
ε2

16

(
(ua(t))

2 + (va(t))
2
)

≥ min

{
ρ2,

1

c2

}
ε2

16

(
(ua(0))2 + (va(0))2

)
≥ min

{
ρ2,

1

c2

}
ε4

64
,
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which completes the proof of (3.118).
Now, for any η > 0, we define

Pη :=

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v =

v0
s − η′

(u0
s + η′)ρ

uρ with |η′| ≤ η

}
.

Given ε > 0, we define

η(ε) to be the smallest η for which Pη ⊃ Bε(u
0
s, v

0
s). (3.122)

We remark that
lim
ε→0

η(ε) = 0. (3.123)

Also, given δ > 0, we define a tubular neighborhood Uδ of M0 as

Uδ :=
⋃
q∈M0

Bδ(q).

Furthermore, we define

δ(ε) the smallest δ such that Uδ ⊃ Pη(ε). (3.124)

Recalling (3.123), we have that

lim
ε→0

δ(ε) = 0. (3.125)

We remark that, as a→ 0, the point (uas , v
a
s ) in (3.11), which is a saddle point for

the dynamics of (3.1) when ac < 1 (recall Theorem 3.2), tends to the point (u0
s, v

0
s)

in (3.14), that belongs to the line v + u = 1, which is an equilibrium point for the
dynamics of (3.1) when a = 0, according to Proposition 3.19.

As a consequence, for every ε > 0, there exists aε > 0 such that if a ∈ (0, aε),

|(uas , vas )− (u0
s, v

0
s)| ≤

ε

8
. (3.126)

This gives that the intersection of Ma with Bε/2(u0
s, v

0
s) is nonempty.

Furthermore, since γa(0) = 0, in light of Proposition 3.8, we have that the inter-
section of Ma with Bε/2 is nonempty. Hence, there exists pε,a ∈Ma ∩ ∂Bε/2.

We also notice that
Ma = φapε,a(R). (3.127)

In addition,
φapε,a

(
(−∞, 0]

)
⊂ Bε/2. (3.128)

Also, since the origin belongs toM0, we have that Bε/2 ⊂ Uε. From this and (3.128),
we deduce that

φapε,a
(
(−∞, 0]

)
⊂ Uε. (3.129)

Now, we let C0 be as in (3.118) and we claim that there exists tε,a ∈ (0, 3
√
C0ε

−2)
such that

φapε,a(tε,a) ∈ ∂B3ε/4(u0
s, v

0
s). (3.130)
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To check this, we argue by contradiction and we suppose that

φapε,a
(
(0, 3

√
C0ε

−2)
)
∩B3ε/4(u0

s, v
0
s) = ∅.

Then, for every t ∈ (0, 3
√
C0ε

−2), recalling also (3.126),∣∣φapε,a(t)− (uas , v
a
s )
∣∣ ≥ ∣∣φapε,a(t)− (u0

s, v
0
s)
∣∣− ∣∣(uas , vas )− (u0

s, v
0
s)
∣∣ ≥ 3ε

4
− ε

8
>
ε

2
,

and consequently (3.117) is satisfied for every t ∈ (0, 3
√
C0ε

−2).
Moreover, we observe that pε,a satisfies (3.116), and therefore, by (3.118),

|u̇a(t)|2 + |v̇a(t)|2 >
ε4

C0

,

for all t ∈ (0, 3
√
C0ε

−2), where we used the notation φapε,a(t) = (ua(t), va(t)), be-
ing pε,a = (ua(0), va(0)). As a result,

(
u̇a(t) + v̇a(t)

)2
>
ε4

C0

,

and thus

u̇a(t) + v̇a(t) >
ε2

√
C0

.

This leads to

ua

(
3
√
C0

ε2

)
+ va

(
3
√
C0

ε2

)
= ua(0) + va(0) +

∫ 3
√
C0
ε2

0

(
u̇a(t) + v̇a(t)

)
dt

≥ ua(0) + va(0) +

∫ 3
√
C0
ε2

0

ε2

√
C0

dt = ua(0) + va(0) + 3 ≥ 3,

which forces the trajectory to exit the region [0, 1] × [0, 1]. This is against the as-
sumption that pε,a ∈Ma, and therefore the proof of (3.130) is complete.

In light of (3.130), we can set qε,a := φapε,a(tε,a), and we deduce from (3.122)
that qε,a ∈ Pη(ε). We also observe that the set Pη is invariant for the flow with a = 0,
thanks to (3.109). These observations give that φ0

qε,a(t) ∈ Pη(ε) for all t ∈ R.
As a result, using (3.124), we conclude that

φ0
qε,a(t) ∈ Uδ(ε) for all t ∈ R. (3.131)

In addition, by the continuous dependence of the flow on the parameter a (see e.g.
Section 2.4 in [60], or Theorem 2.4.2 in [63]),∣∣φ0

qε,a(t)− φ
a
qε,a(t)

∣∣ < ε,

for all t ∈ [−3
√
C0ε

−2, 0], provided that a is sufficiently small, possibly in dependence
of ε. This fact and (3.131) entail that

φaqε,a(t) ∈ Uδ(ε)+ε for all t ∈ [−3
√
C0ε

−2, 0].
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In particular, for all t ∈ [0, tε,a],

φapε,a(t) = φaqε,a(t− tε,a) ∈ Uδ(ε)+ε. (3.132)

We now claim that for all t ≥ tε,a,

φapε,a(t) ⊂ Bε(u
a
s , v

a
s ). (3.133)

Indeed, this is true when t = tε,a thanks to (3.126) and (3.130). Hence, since the
trajectory φapε,a(t) is contained in the domain where u̇ ≥ 0 and v̇ ≥ 0, thanks to (3.27),
we deduce that (3.133) holds true.

From (3.126) and (3.133), we conclude that

φapε,a(t) ⊂ B2ε(u
0
s, v

0
s),

for all t ≥ tε,a.
Using this, (3.129) and (3.132), we obtain that

φapε,a(R) ⊂ Uδ(ε)+2ε.

This and (3.125) give that (3.115) is satisfied, as desired.
One can also show that

Ma ∩
(
[u0
s, u

0
M]× [v0

s , v
0
M]
)
→M0 ∩

(
[u0
s, u

0
M]× [v0

s , v
0
M]
)

as a→ 0. (3.134)

The proof of (3.134) is similar to that of (3.115), just replacing pε,a with (uaM, v
a
M)

(in this case the analysis near the origin is simply omitted since the trajectory has
only one limit point).

With (3.115) and (3.134) the proof of Lemma 3.21 is thereby complete.

Now we are ready to give the proof of Proposition 3.20:

Proof of Proposition 3.20. (i) We call G the right-hand-side of (3.112), that is

G :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ0(u) if u ∈ [0, u0
M]

and v ≤ 1 if u ∈ (u0
M, 1]

}
,

and we aim at proving that G ⊆ E0 ⊆ G.
For this, we observe that, by Lemma 3.21, γa(u) converges to γ0(u) pointwise

as a→ 0. In particular, uaM → u0
M as a→ 0.

Also, recalling (3.108), we notice that if u0
M = u0

s/(v
0
s)

1
ρ < 1, then γ0(u0

M) = 1,
otherwise if u0

M = 1 then γ0(u0
M) < 1, being γ0(u) strictly monotone increasing.

Furthermore, thanks to Proposition 3.16, we know that he set E(a) is bounded
from above by the graph of the function γa(u) for u ∈ [0, uaM] and from the straight
line v = 1 for u ∈ (uaM, 1] (that is non empty for uaM < 1).

Now we claim that, for all a′ > 0,

G ⊆
⋃

0<a<a′

E(a). (3.135)
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To show this, we take a point (u, v) ∈ G. Hence, in light of the considerations above,
we have that (u, v) ∈ E(a) for any a sufficiently small, which proves (3.135).

From (3.135), we deduce that

G ⊆
⋂
a′>0

⋃
0<a<a′

E(a). (3.136)

Now we show that ⋂
a′>0

⋃
0<a<a′

E(a) ⊆ G. (3.137)

For this, we take

(û, v̂) ∈
⋂
a′>0

⋃
0<a<a′

E(a),

then it must hold that for every a′ > 0 there exists a < a′ such that (û, v̂) ∈ E(a),
namely v̂ < γa(û) if û ∈ [0, uaM] and v̂ ≤ 1 if û ∈ (uaM, 1]. Thus, by the pointwise
convergence, we have that v̂ ≤ γ0(û) if û ∈ [0, u0

M] and v̂ ≤ 1 if û ∈ (u0
M, 1], which

proves (3.137).
From (3.136) and (3.137), we conclude that

G ⊆
⋂
a′>0

⋃
0<a<a′

E(a) = E0 ⊆ G,

as desired.

(ii) Since we deal with the limit case as a→ +∞, from now on we suppose from
now on that ac > 1. We fix ε > 0 and we consider the set

Sε+ :=

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v > u

(
1

c
+ ε

)}
.

We claim that

Sε+ ⊆ B(a) (3.138)

for a big enough, possibly in dependence of ε. For this, we first analyze the component
of the velocity in the inward normal directions along the boundary of Sε+ . On the
side {0}× [0, 1], the trajectories cannot cross the boundary thanks to Proposition 3.1,
and the same happens for the sides [0, 1]× {1} and {1} × [ε+ 1/c, 1].

Hence, it remains to check the sign of the normal derivative along the side given
by the straight line v − u(ε+ 1/c) = 0. We compute

(u̇, v̇) ·
(
−
(
ε+

1

c

)
, 1

)
= v̇ − u̇

(
ε+

1

c

)
= ρv(1− u− v)− au−

(
ε+

1

c

)
u(1− u− v) +

(
ε+

1

c

)
acu

=

[
ρv −

(
ε+

1

c

)
u

]
(1− u− v) + εacu.
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Thus, by using that v − u(ε+ 1/c) = 0, we obtain that

(u̇, v̇) ·
(
−
(
ε+

1

c

)
, 1

)
≥ u

[
aεc+ (ρ− 1)(1− u− v)

(
ε+

1

c

)]
.

Notice that u ≤ 1 and |1− u− v| ≤ 2, and therefore

(u̇, v̇) ·
(
−
(
ε+

1

c

)
, 1

)
≥ u

[
aεc− 2(ρ+ 1)

(
ε+

1

c

)]
.

Accordingly, the normal velocity is positive for a ≥ a1, where

a1 := 2(ρ+ 1)

(
ε+

1

c

)
1

εc
.

These considerations, together with the fact that there are no cycles in [0, 1]× [0, 1]
and the Poincaré-Bendixson Theorem (see e.g. [113]) give that the ω-limit set of any
trajectory starting in the interior of Sε+ can be either an equilibrium or a union of
(finitely many) equilibria and non-closed orbits connecting these equilibria.

We remark that

the ω-limit set of any trajectory cannot be the equilibrium (0, 0). (3.139)

Indeed, if the ω-limit of a trajectory were (0, 0), then this trajectory must lie on the
stable manifold of (0, 0), and moreover it must be contained in Sε+ , since no trajectory
can exit Sε+ . On the other hand, by Proposition 3.8, we have that at u = 0 the stable
manifold is tangent to the line

v =
a

ρ− 1 + ac
u =

1
ρ−1
a

+ c
u.

Now, if we take a sufficiently large, this line lies below the line v = u(1/c + ε), thus
providing a contradiction. Hence, the proof of (3.139) is complete.

Accordingly, since (0, 1) is a sink, the only possibility is that the ω-limit set of
any trajectory starting in the interior of Sε+ is the equilibrium (0, 1). Namely, we
have established (3.138).

As a consequence of (3.138), we deduce that for every ε > 0 there exists aε > 0
such that ⋃

a≥aε

E(a) ⊆
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v ≤ u

(
1

c
+ ε

)}
. (3.140)

In addition, ⋂
ε>0

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v ≤ u

(
1

c
+ ε

)}
=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v ≤ u

c

}
= Sc.
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This and (3.140) entail that ⋂
a′>0

⋃
a>a′

E(a) ⊆ Sc,

which implies the second inclusion in (3.113).
Now, to show the first inclusion in (3.113), for every ε ∈ (0, 1/c) we consider the

set

Sε− :=

{
(u, v) ∈ [0, 1]× [0, 1] s.t. v < u

(
1

c
− ε
)}

.

We claim that, for all ε ∈ (0, 1/c),

Sε− ⊆ E∞. (3.141)

For this, we first show that if a is sufficiently large, possibly in dependence of ε,

every trajectory starting in the interior of Sε−
can exit Sε− from the side [0, 1]× {0}.

(3.142)

Indeed, on the side {1}× [0, 1] the trajectory cannot exit the set, thanks to Proposi-
tion 3.1. On the side given by v− (−ε+ 1/c)u = 0, the component of the velocity in
the direction of the outward normal is

(u̇, v̇) ·
(
−
(

1

c
− ε
)
, 1

)
= v̇ − u̇

(
1

c
− ε
)

= ρv(1− u− v)− au−
(

1

c
− ε
)
u(1− u− v) +

(
1

c
− ε
)
acu

= u

[(
1

c
− ε
)

(ρ− 1)(1− u− v)− εac
]

≤ u

[
2

(
1

c
− ε
)

(ρ+ 1)− εac
]
,

which is negative if a ≥ a2, with

a2 := 2

(
1

c
− ε
)

(ρ+ 1)
1

εc
.

Hence, if (u(0), v(0)) ∈ Sε− , then either Ts(u(0), v(0)) < ∞ or (u(t), v(t)) ∈ Sε− for
all t ≥ 0, where the notation in (3.8) has been used. We also notice that, for a > 1/c,
the points (0, 1) and (0, 0) are the only equilibria of the system, and there are no
cycles. We have that (0, 1) /∈ Sε− and (0, 0) ∈ Sε− , thus if

(u(t), v(t)) ∈ Sε− for all t ≥ 0 (3.143)

then
(u(t), v(t))→ (0, 0). (3.144)

On the other hand, by Proposition 3.8, we have that at u = 0 the stable manifold is
tangent to the line

v =
a

ρ− 1 + ac
u =

1
ρ−1
a

+ c
u,
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and, if we take a large enough, this line lies above the line v = u(1/c − ε). This
says that, for sufficiently large t, the trajectory must lie outside Sε− , and this is in
contradiction with (3.143).

As a result of these considerations, we conclude that if (u(0), v(0)) ∈ Sε−
then Ts(u(0), v(0)) <∞, which implies (3.142).

As a consequence of (3.142), we obtain that for every ε ∈ (0, 1/c) there exists aε >
0 such that

Sε− ⊆
⋂
a≥aε

E(a).

In particular for all ε ∈ (0, 1/c) it holds that

Sε− ⊆
⋂
a′>0

⋃
a>a′

E(a) = E∞,

which proves (3.141), as desired.
Then, the first inclusion in (3.113) plainly follows from (3.141).

3.4 Analysis of the strategies for the first popula-

tion

The main theorems on the winning strategy have been stated in Subsection 3.1.4.
In particular, Theorem 3.3 gives the characterization of the set of points that have
a winning strategy VA in (3.13), and Theorem 3.4 establishes the non equivalence of
constant and non-constant strategies when ρ 6= 1 (and their equivalence when ρ = 1).
Nonetheless, in Theorem 3.5 we state that Heaviside functions are enough to construct
a winning strategy for every point in VA.

In the following subsections we will give the proofs of these results.

3.4.1 Construction of winning non-constant strategies

We want to put in light the construction of non-constant winning strategies for
the points for which constant strategies fail.

For this, we recall the notation introduced in (3.14), (3.18) and (3.108), and we
have the following statement:

Proposition 3.22. Let M > 1. Then we have:

1. For ρ < 1, let (u0, v0) be a point of the set

P :=

{
(u, v) ∈ [0, 1]× [0, 1] s.t. u ∈ [u0

s, 1], γ0(u) ≤ v <
u

c
+

1− ρ
1 + ρc

}
.

(3.145)
Then there exist a∗ > M , a∗ <

1
M

, and T ≥ 0, depending on (u0, v0), c, and ρ,
such that the Heaviside strategy defined by

a(t) =

{
a∗, if t < T,
a∗, if t ≥ T,

(3.146)

belongs to VA.



3.4 Analysis of the strategies for the first population 119

2. For ρ > 1, let (u0, v0) be a point of the set

Q :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. u ∈ [u∞, 1],
u

c
≤ v < ζ(u)

}
. (3.147)

Then there exist a∗ > M , a∗ <
1
M

, and T ≥ 0, depending on (u0, v0), c, and ρ,
such that the Heaviside strategy defined by

a(t) =

{
a∗, if t < T,
a∗, if t ≥ T,

belongs to VA.

Proof. We start by proving the first claim in Proposition 3.22. To this aim, we
take (ū, v̄) ∈ P , and we observe that

v̄ − ū

c
<

1− ρ
1 + ρc

= v0
s −

u0
s

c
.

Therefore, there exists ξ > 0 such that

ξ <
v0
s − v̄ − 1

c
(u0

s − ū)

ū− u0
s

.

Hence, setting

vS :=

(
1

c
− ξ
)

(u0
s − ū) + v̄, (3.148)

we see that

vS < v0
s . (3.149)

Now, we want to show that there exists a∗ > 0 such that, for any a > a∗ and u > u0
s,

we have that
v̇

u̇
>

1

c
− ξ. (3.150)

To prove this, we first notice that

if a >
2

c
, then u̇ ≤ −u < 0. (3.151)

Moreover, we set

a1 :=
1 + ρc

4c
,

and we claim that,

if a > a1 and u > u0
s, then v̇ < 0. (3.152)

Indeed, we recall that the function σ defined in (3.26) represents the points in [0, 1]×
[0, 1] where v̇ = 0 and separates the points where v̇ > 0, which lie on the left of the
curve described by σ, from the points where v̇ < 0, which lie on the right of the curve
described by σ.
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Therefore, in order to show (3.152), it is sufficient to prove that the curve described
by σ is contained in {u ≤ u0

s} whenever a > a1. For this, one computes that,
if u = σ(v) and a > a1, then

u− u0
s = σ(v)− ρc

1 + ρc
= 1− ρv2 + a

ρv + a
− ρc

1 + ρc

=
ρv − ρv2

ρv + a
− ρc

1 + ρc
=
ρv(1− v)

ρv + a
− ρc

1 + ρc

≤ ρ

4(ρv + a)
− ρc

1 + ρc
≤ ρ

4a
− ρc

1 + ρc

≤ ρ

4a1

− ρc

1 + ρc
≤ 0.

This completes the proof of (3.152).
Now we define

a2 :=

(
ρ+

1

c
+ ξ

)
2

u0
scξ

.

and we claim that

if a > a2 and u > u0
s, then v̇ <

(
1

c
− ξ
)
u̇. (3.153)

Indeed, under the assumptions of (3.153), we deduce that

v̇ −
(

1

c
− ξ
)
u̇ = ρv(1− u− v)− au−

(
1

c
− ξ
)(

u(1− u− v)− acu
)

= (1− u− v)

(
ρv −

(
1

c
− ξ
)
u

)
− acξu ≤ 2

(
ρv +

u

c
+ ξu

)
− acξu

< 2

(
ρ+

1

c
+ ξ

)
− a2 cξu

0
s = 0,

and this establishes the claim in (3.153).
Then, choosing

a∗ := max

{
2

c
, a1, a2,M

}
,

we can exploit (3.151), (3.152) and (3.153) to deduce (3.150), as desired.
Now we claim that, for any a > a∗, there exists T ≥ 0 such that the trajec-

tory (u(t), v(t)) starting from (ū, v̄) satisfies

u(T ) = u0
s and v(T ) < vS. (3.154)

Indeed, we define T ≥ 0 to be the first time for which u(T ) = u0
s. This is a fair

definition, since u(0) = ū ≥ u0
s and u̇ is negative, and bounded away from zero

till u ≥ u0
s, thanks to (3.151). Then, we see that

v(T ) = v̄ +

∫ T

0

v̇(t) dt < v̄ +

∫ T

0

(
1

c
− ξ
)
u̇(t) dt = v̄ +

(
1

c
− ξ
)

(u(T )− u(0))

= v̄ +

(
1

c
− ξ
)

(u0
s − ū) = vS,
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thanks to (3.148) and (3.150), and this establishes (3.154).
Now we observe that

v(T ) < vS < v0
s = γ0(u0

s) = γ0(u(T ))

due to (3.149) and (3.154)
As a result, recalling Lemma 3.21, we can choose a∗ < 1/M such that

v(T ) < γa∗(u(T )).

Accordingly, by Proposition 3.16, we obtain that (u(T ), v(T )) ∈ E(a∗). Hence, apply-
ing the strategy in (3.146), we accomplish the desired result and complete the proof
of the first claim in Proposition 3.22.

Now we focus on the proof of the second claim in Proposition 3.22. For this, let

(u0, v0) ∈ Q, (3.155)

and consider the trajectory (u0(t), v0(t)) starting from (u0, v0) for the strategy a = 0.
In light of formula (3.106) of Proposition 3.19, we have that

the trajectory (u0(t), v0(t)) converges

to a point of the form (uF , 1− uF ) as t→ +∞.
(3.156)

We define

vF := 1− uF , v∞ := 1− u∞ =
1

c+ 1
, (3.157)

where the last equality can be checked starting from the value of u∞ given in (3.18).
Using the definition of ζ in (3.18) and the information in (3.109), we also notice that
the curve given by v = ζ(u) is a trajectory for a = 0. Moreover

ζ(u∞) =
1

c(u∞)ρ−1
uρ∞ =

c

c(c+ 1)
= v∞

and, recalling (3.157) and formula (3.106) of Proposition 3.19, we get that the graph
of ζ is a trajectory for a = 0 that converges to (u∞, 1− u∞) as t→ +∞.

Also, by (3.155), we have that v0 < ζ(u0). Thus, since by Cauchy’s uniqueness
result for ODEs, two orbits never intersect, we have that

the orbit (u0(t), v0(t)) must lie below the graph of ζ. (3.158)

Since both (uF , vF ) and (u∞, v∞) belong to the line given by v = 1− u, from (3.158)
we get that

u∞ < uF (3.159)

and
v∞ > vF . (3.160)

Thanks to (3.159) and (3.160) and recalling the values of u∞ from (3.18) and of v∞
from (3.157), we get that

vF < v∞ =
u∞
c
<
uF
c
. (3.161)
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As a consequence, since the inequality in (3.161) is strict, we find that there ex-
ists T ′ > 0 such that

v0(T ′) <
u0(T ′)

c
. (3.162)

Moreover, since u̇ < 0 for v > 1 − u and a = 0, we get that u0(t) is decreasing in t,
and therefore uF < u0(T ′) < u0.

By the strict inequality in (3.162), and claim (ii) in Proposition 3.20, we have
that (u0(T ′), v0(T ′)) ∈ E∞, where E∞ is defined in (3.111). In particular, we have
that (u0(T ′), v0(T ′)) ∈

⋃
a>a′
E(a), for every a′ > 0. Consequently, there exists a∗ > M

such that (u0(T ′), v0(T ′)) ∈ E(a∗). Therefore, applying the strategy

a(t) =

{
0, t < T ′,
a∗, t ≥ T,

we reach the victory.

3.4.2 Proof of Theorem 3.3

To avoid repeating passages in the proofs of Theorems 3.3 and 3.4, we first state
and prove the following lemma:

Lemma 3.23. If ρ = 1, then for all a > 0 we have E(a) = Sc, where Sc was defined
in (3.114).

Proof. Let (u(t), v(t)) be a trajectory starting at a point in [0, 1]×[0, 1]. For any a > 0,
we consider the function

µ(t) :=

v

(
t

a

)
u

(
t

a

) .
Notice that

(u(0), v(0)) ∈ E(a) if and only if there exists T > 0 such that µ(T ) = 0. (3.163)

In addition, we observe that

µ̇(t) =

v̇

(
t

a

)
u

(
t

a

)
− v

(
t

a

)
u̇

(
t

a

)
au2

(
t

a

)

=

−u2

(
t

a

)
+ cu

(
t

a

)
v

(
t

a

)
u2

(
t

a

)
= cµ(t)− 1.

(3.164)
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The equation in (3.164) is integrable and leads to

µ(t) =
ect (cµ(0)− 1) + 1

c
.

From this and (3.163), we deduce that

(u(0), v(0)) ∈ E(a) if and only if cµ(0)− 1 < 0.

This leads to

(u(0), v(0)) ∈ E(a) if and only if
v(0)

u(0)
<

1

c
,

which, recalling the definition of Sc in (3.114), ends the proof.

Now we provide the proof of Theorem 3.3, exploiting the result obtained in Sec-
tion 3.4.1.

Proof of Theorem 3.3.
(i) Let ρ = 1. For the sake of simplicity, we suppose that c ≥ 1, and therefore the
second line in (3.15) is not present (the proof of (3.15) when c < 1 is similar, but one
has to take into account also the set (c, 1]× [0, 1] and show that it is contained in VA
by checking the sign of the component of the velocity field in the normal direction).

We claim that
VA = Sc, (3.165)

where Sc was defined in (3.114) (incidentally, Sc is precisely the right-hand-side of
equation (3.15)).

From Lemma 3.23 we have that for ρ = 1 and a > 0 it holds Sc = E(a) ⊂ VA.
Thus, to show (3.165) we just need to check that

VA ⊆ Sc, (3.166)

which is equivalent to
SCc ⊆ VCA , (3.167)

where the superscript C denotes the complement of the set in the topology of [0, 1]×
[0, 1].

First, by definition we have that

SCc ∩ ((0, 1]× {0}) = ∅. (3.168)

Now, we analyze the behavior of the trajectories at ∂SCc . By Proposition 3.1, no
trajectory can exit SCc from a point on ∂([0, 1] × [0, 1]) \ ((0, 1] × {0}). Moreover,
∂SCc ∩ ((0, 1] × {0}) = ∅ thanks to (3.168) and the fact that SCc is closed in the
topology of [0, 1]× [0, 1]. Hence,

no trajectory can exit SCc from a point on ∂([0, 1]× [0, 1]). (3.169)

Furthermore, it holds that

∂SCc ∩
(
(0, 1)× (0, 1)

)
=
{

(u, v) ∈ (0, 1)× (0, 1) s.t. v =
u

c

}
.
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The velocity of a trajectory starting on the line v = u
c

in the orthogonal direction
pointing inward SCc is

(u̇, v̇) · (−1, c)√
c2 + 1

=
1√
c2 + 1

(cv − u)(1− u− v) = 0,

the last equality coming from the fact that cv = u on ∂SCc ∩
(
(0, 1) × (0, 1)

)
. This

means that

no trajectory can exit SCc from a point on the line v = u
c
. (3.170)

From (3.169) and (3.170), we get that no trajectory exits SCc . Then, by (3.168),
no trajectory starting in SCc can reach the set (0, 1] × {0}, therefore SCc ∩ VA = ∅
and this implies that (3.167) is true. As a result, the proof of (3.166) is established
and the proof is completed for ρ = 1.

(ii) Let ρ < 1. For the sake of simplicity, we suppose that ρc(c+1)
1+ρc

≥ 1. Let Y be

the set in the right-hand-side of (3.16), and

F0 :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < γ0(u) if u ∈ [0, 1]
}
. (3.171)

Notice that
Y = F0 ∪ P , (3.172)

being P the set defined in (3.145).
Moreover,

P ⊆ VA, (3.173)

thanks to Proposition 3.22.
We also claim that

F0 ⊆ VK, (3.174)

where K is the set of constant functions. Indeed, if (u, v) ∈ F0, we have that v < γ0(u)
and consequently v < γa(u), as long as a is small enough, due to Lemma 3.21.

From this and Proposition 3.16, we deduce that (u, v) belongs to E(a), as long
as a is small enough, and this proves (3.174).

From (3.174) and the fact that K ⊆ A, we obtain that

F0 ⊆ VA. (3.175)

Then, as a consequence of (3.172), (3.173) and (3.175), we get that Y ⊆ VA.
Hence, we are left with proving that

VA ⊆ Y . (3.176)

For this, we show that

on ∂Y ∩
(
(0, 1)× (0, 1)

)
the outward normal derivative is nonnegative. (3.177)

To prove this, we calculate the outward normal derivative on the part of ∂Y lying on
the graph of v = γ0(u), that is

v̇ − uρ−1u̇

c(u0
s)
ρ−1

= ρv(1− u− v)− au− uρ(1− u− v − ac)
c(u0

s)
ρ−1

.
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By substituting v = γ0(u) = uρ

ρc(u0s)
ρ−1 we get

v̇ − uρ−1u̇

c(u0
s)
ρ−1

=
uρ

c(u0
s)
ρ−1

(1− u− v)− au− uρ(1− u− v − ac)
c(u0

s)
ρ−1

= −au+
acuρ

c(u0
s)
ρ−1

= auρ
(
−u1−ρ +

1

(u0
s)
ρ−1

)
.

As a result, since ρ < 1, we have

v̇ − uρ−1u̇

c(u0
s)
ρ−1
≥ 0 for u ≤ u0

s. (3.178)

On the part of ∂Y contained on the line v = u
c

+ 1−ρ
1+ρc

, the outward normal derivative
is

v̇ − u̇

c
= ρv(1− u− v)− au− u(1− ac− u− v)

c
=
(
ρv − u

c

)
(1− u− v)

=

(
ρu

c
+
ρ(1− ρ)

1 + ρc
− u

c

)(
1− u− u

c
− 1− ρ

1 + ρc

)
=

(
(ρ− 1)u

c
+
ρ(1− ρ)

1 + ρc

)(
−u(c+ 1)

c
+
ρ(1 + c)

1 + ρc

)
.

(3.179)

We also observe that, when u > u0
s = ρc

1+ρc
, the condition ρ < 1 gives that

(ρ− 1)u

c
+
ρ(1− ρ)

1 + ρc
<
ρ(ρ− 1)

1 + ρc
+
ρ(1− ρ)

1 + ρc
= 0

and

−u(c+ 1)

c
+
ρ(1 + c)

1 + ρc
< −ρ(c+ 1)

1 + ρc
+
ρ(1 + c)

1 + ρc
= 0.

Therefore, when u > u0
s, we deduce from (3.179) that

v̇ − u̇

c
> 0.

Combining this and (3.178), we obtain (3.177), as desired.
Now, by (3.177), we have that, for any value of a, no trajectory starting in

(
[0, 1]×

[0, 1]
)
\Y can enter in Y , and in particular no trajectory starting in

(
[0, 1]× [0, 1]

)
\Y

can hit {v = 0}, which ends the proof of (3.176).

(iii) Let ρ > 1. For the sake of simplicity, we suppose that c
(c+1)ρ

≥ 1. Let X be

the right-hand-side of (3.17). We observe that

X = Sc ∪Q, (3.180)

where Sc was defined in (3.114) and Q in (3.147). Thanks to Proposition 3.20, one
has that Sc ⊆

⋃
a>a′
E(a), for every a′ > 0, and therefore Sc ⊆ VA. Moreover, by the

second claim in Proposition 3.22, one also has that Q ⊆ VA. Hence,

X ⊆ VA. (3.181)
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Accordingly, to prove equality in (3.181) and thus complete the proof of (3.17), we
need to show that VA ⊆ X . First, we prove that

(0, 1]× {0} ⊆ X . (3.182)

Indeed, for u > 0 we have v = u
c
> 0, therefore (u, 0) ∈ X for u ∈ (0, u∞]. Then, ζ(u)

is increasing in u since it is a positive power function, therefore v = ζ(u) > 0 for u ∈
(u∞, 1], hence (u, 0) ∈ X for u ∈ (u∞, 1]. These observations prove (3.182).

We now prove that the component of the velocity field in the outward normal
direction with respect to X is nonnegative on

∂X ∩ ∂(XC) ={
(u, v) ∈ (0, u∞]× (0, 1) : v =

u

c

}
∪ {(u, v) ∈ (u∞, 1)× (0, 1) v = ζ(u)} .

To this end. we observe that on the line v = u
c
, the outward normal derivative is

v̇ − 1

c
u̇ = ρv(1− u− v)− au− u

c
(1− ac− u− v) = (ρv − u

c
)(1− u− v). (3.183)

The first term is positive because for ρ > 1 we have

ρv > v =
u

c
.

Moreover, for u ≤ u∞ we have that

1− u− v ≥ 1− u∞ −
u∞
c

= 0,

thanks to (3.18). Thus, the left hand side of (3.183) is nonnegative, which proves that
the component of the velocity field in the outward normal direction is nonnegative
on ∂X ∩

{
v = u

c

}
.

On the part of ∂X lying in the graph of v = ζ(u), the component of the velocity
field in the outward normal direction is given by

v̇ − ρuρ−1u̇

ρc(u∞)ρ−1
= ρv(1− u− v)− au− ρuρ

ρc(u∞)ρ−1
(1− u− v − ac). (3.184)

Now we substitute v = ζ(u) = uρ

ρc(u∞)ρ−1 in (3.184) and we get

v̇ − uρ−1u̇

c(u∞)ρ−1
= au

(
−1 +

uρ−1

(u∞)ρ−1

)
which leads to

v̇ − ρuρ−1u̇

ρc(u∞)ρ−1
> 0 if u > u∞,

as desired.
As a consequence of these considerations, we find that no trajectory starting

in XC can enter in X and therefore hit {v = 0}, by (3.182). Hence, we conclude
that VA ⊆ X , which, together with (3.181), establishes (3.17).
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3.4.3 Proof of Theorem 3.4

In order to prove Theorem 3.4, we will establish a geometrical lemma in order
to understand the reciprocal position of the function γ, as given by Propositions 3.8
and 3.14, and the straight line where the saddle equilibria lie. To emphasize the
dependence of γ on the parameter a we will often use the notation γ = γa. More-
over, we recall the notation of the saddle points (us, vs) defined in (3.11) and of the
points (uM, vM) given by Propositions 3.8 and 3.14, with the convention that

(us, vs) = (0, 0) if ac ≥ 1, (3.185)

and we state the following result:

Lemma 3.24. If ρ < 1, then

u

ρc
≤ γa(u) for u ∈ [0, us] (3.186)

and
γa(u) ≤ u

ρc
for u ∈ [us, uM]. (3.187)

If instead ρ > 1, then

γa(u) ≤ u

ρc
for u ∈ [0, us] (3.188)

and
u

ρc
≤ γa(u) for u ∈ [us, uM]. (3.189)

Moreover equality holds in (3.186) and (3.188) if and only if either u = us or u = 0.
Also, strict inequality holds in (3.187) and (3.189) for u ∈ (us, uM).

Proof. We focus here on the proof of (3.187), since the other inequalities are proven
in a similar way. Moreover, we deal with the case ac < 1, being the case ac ≥ 1
analogous with obvious modifications.

We suppose by contradiction that (3.187) does not hold true. Namely, we assume
that there exists ũ ∈ (us, uM] such that

γa(ũ) >
ũ

ρc
.

Since γa is continuous thanks to Propositions 3.8, we have that

γa(u) >
u

ρc
in a neighborhood of ũ.

Hence, we consider the largest open interval (u1, u2) ⊂ (us, uM] containing ũ and
such that

γa(u) >
u

ρc
for all u ∈ (u1, u2). (3.190)

Moreover, in light of (3.11), we see that

γa(us) = vs =
1− ac
1 + ρc

=
us
ρc
. (3.191)
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Hence, by the continuity of γa, we have that γa(u1) = u1
ρc

and

either γa(u2) =
u2

ρc
or u2 = uM. (3.192)

Now, we consider the set

T :=

{
(u, v) ∈ [u1, u2]× [0, 1] s.t.

u

ρc
< v < γa(u)

}
,

that is non empty, thanks to (3.190). We claim that

for all (u(0), v(0)) ∈ T , the ω-limit of its trajectory is (us, vs). (3.193)

To prove this, we analyze the normal derivative on

∂T = T1 ∪ T2 ∪ T3,

where T1 :=
{

(u, γa(u)) with u ∈ (u1, u2)
}
,

T2 :=

{(
u,

u

ρc

)
with u ∈ (u1, u2)

}
and T3 :=

{
(u2, v) with v ∈

(
u2

ρc
,min{γa(u2), 1}

)}
,

with the convention that ∂T does contain T3 only if the second possibility in (3.192)
occurs.

We notice that the set T1 is an orbit for the system, and thus the component
of the velocity in the normal direction is null. On T2, we have that the sign of the
component of the velocity in the inward normal direction is given by

(u̇, v̇) ·
(
− 1

ρc
, 1

)
= v̇ − 1

ρc
u̇ = ρv(1− u− v)− au− u

ρc
(1− u− v) +

au

ρ

=
u

c

(
1− u− u

ρc

)(
1− 1

ρ

)
− au

(
1− 1

ρ

)
=
u

c

(
1− 1

ρ

)(
1− u− u

ρc
− ac

)
.

(3.194)

Notice that for u ≥ us we have that

1− u− v − ac ≤ 0, (3.195)

thus the sign of last term in (3.194) depends only on the quantity 1− 1
ρ
. Consequently,

since ρ < 1 the sign of the component of the velocity in the inward normal direction
is positive.

Furthermore, in the case in which the second possibility in (3.192) occurs, we
also check the sign of the component of the velocity in the inward normal direction
along T3. In this case, if γa(u2) < 1 then u2 = 1, and therefore we find that

(u̇, v̇) · (−1, 0) = −u̇ = −u(1− u− v) + acu = v + ac,
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which is positive. If instead γa(u2) = 1

(u̇, v̇) · (−1, 0) = −u̇ = −u(1− u− v) + acu = −u(1− ac− u− v),

which is positive, thanks to (3.195).
We also point out that there are no cycle in T , since u̇ has a sign. These consid-

erations and the Poincaré-Bendixson Theorem (see e.g. [113]) give that the ω-limit
set of (u(0), v(0)) can be either an equilibrium or a union of (finitely many) equilib-
ria and non-closed orbits connecting these equilibria. Since (0, 0) and (0, 1) do not
belong to the closure of T , in this case the only possibility is that the ω-limit is the
equilibrium (us, vs). Consequently, we have that u1 = us, and that (3.193) is satisfied.

Accordingly, in light of (3.193), we have that the set T is contained in the stable
manifold of (us, vs), which is in contradiction with the definition of T . Hence, (3.187)
is established, as desired.

Now we show that strict inequality holds true in (3.187) if u ∈ (us, uM). To this
end, we suppose by contradiction that there exists ū ∈ (us, uM) such that

γa(ū) =
ū

ρc
. (3.196)

Now, since (3.187) holds true, we have that the line v − u
ρc

= 0 is tangent to the

curve v = γa(u) at (ū, γa(ū)), and therefore at this point the components of the
velocity along the normal directions to the curve and to the line coincide. On the
other hand, the normal derivative at a point on the line has a sign, as computed
in (3.194), while the normal derivative to v = γa(u) is 0 because the curve is an orbit.

This, together with (3.191), proves that equality in (3.187) holds true if u = us,
but strict inequality holds true for all u ∈ (us, uM), and thus the proof of Lemma 3.24
is complete.

For each a > 0, we define (uad, v
a
d) ∈ [0, 1]× [0, 1] as the unique intersection of the

graph of γa with the line {v = 1− u}, that is the solution of the system{
vad = γa(u

a
d),

vad = 1− uad.
(3.197)

We recall that the above intersection is unique since the function γa is increasing.
Also, by construction,

uad ≤ uM. (3.198)

Now, recalling (3.11) and making explicit the dependence on a by writing uas (with
the convention in (3.185)), we give the following result:

Lemma 3.25. We have that:

1. For ρ < 1, for all a∗ > 0 it holds that

γa(u) ≤ γa∗(u) for all a > a∗ and for all u ∈ [ua
∗

s , u
a∗

d ]. (3.199)

2. For ρ > 1, for all a∗ > 0 it holds that

γa(u) ≤ γa∗(u) for all a < a∗ and for all u ∈ [ua
∗

s , u
a∗

d ]. (3.200)
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Proof. We claim that
ua
∗

s < ua
∗

d . (3.201)

Indeed, when a∗c ≥ 1, we have that ua
∗
s = 0 < ua

∗

d and thus (3.201) holds true. If
instead a∗c < 1, by (3.11) and (3.197) we have that

γa∗(u
a∗

s ) + ua
∗

s = 1− a∗c < 1 = γa∗(u
a∗

d ) + ua
∗

d . (3.202)

Also, since γa∗ is increasing, we have that the map r 7→ γa∗(r)+r is strictly increasing.
Consequently, we deduce from (3.202) that (3.201) holds true in this case as well.

Now we suppose that ρ < 1 and we prove (3.199). For this, we claim that, for
every a∗ > 0 and every a > a∗,

γa(u
a∗

s ) ≤ γa∗(u
a∗

s ) with strict inequality when a∗ ∈
(

0,
1

c

)
. (3.203)

To check this, we distinguish two cases. If a∗ ∈
(
0, 1

c

)
, then for all a > a∗

uas = max

{
0, ρc

1− ac
1 + ρc

}
< ρc

1− a∗c
1 + ρc

= ua
∗

s . (3.204)

By (3.204) and formula (3.187) in Lemma 3.24, we have that

γa(u
a∗

s ) <
ua
∗
s

ρc
= γa∗(u

a∗

s ) for all a > a∗. (3.205)

If instead a∗ ≥ 1
c
, then ua

∗
s = 0 and for all a > a∗ we have uas = 0. As a consequence,

γa∗(u
a∗

s ) = γa(u
a∗

s ) for all a > a∗. (3.206)

The claim in (3.203) thus follows from (3.205) and (3.206).
Furthermore, by Propositions 3.8 and 3.14,

γ′a(0) =
a

ρ+ ac− 1
<

a∗

ρ+ a∗c− 1
= γ′a∗(0) for all a > a∗ ≥ 1

c
. (3.207)

Moreover, for all a ≥ a∗ and u > ua
∗
s it holds that, when v = γa∗(u),

−
(
acu−u(1−u− v)

)
= u(1−u−γa∗(u)−ac) < u(1−ua∗s − va

∗

s −ac) ≤ 0. (3.208)

Now, we establish that

u(ρcv−u)(1−u− v)(a− a∗) < 0 for all a > a∗, u ∈ (ua
∗

s , u
a∗

d ), v = γa∗(u). (3.209)

Indeed, for the values of a, u and v as in (3.209) we have that v ≤ γa∗(u
a∗

d ) and hence

(1− u− v) > (1− ua∗d − γa∗(ua
∗

d )) = 0. (3.210)

Moreover, by formula (3.187) in Lemma 3.24, for u ∈ (ua
∗
s , u

a∗

d ) and v = γa∗(u) and
we have that

ρcv − u = ρcγa∗(u)− u < 0.
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From this and (3.210), we see that (3.209) plainly follows, as desired.
As a consequence of (3.208) and (3.209), one deduces that, for all a > a∗, u ∈

(ua
∗
s , u

a∗

d ) and v = γa∗(u),

au− ρv(1− u− v)

acu− u(1− u− v)
− a∗u− ρv(1− u− v)

a∗cu− u(1− u− v)

=
(a− a∗)cρuv(1− u− v)− (a− a∗)u2(1− u− v)(

acu− u(1− u− v)
)(
a∗cu− u(1− u− v)

)
=

(a− a∗)(1− u− v)u(cρv − u)(
acu− u(1− u− v)

)(
a∗cu− u(1− u− v)

)
≤ 0.

(3.211)

Now, we define

Z(u) := γa(u)− γa∗(u) (3.212)

and we claim that

if uo ∈ (ua
∗
s , u

a∗

d ) is such that Z(uo) = 0, then Z ′(uo) < 0. (3.213)

Indeed, since γa is a trajectory for (3.1), if (ua(t), va(t)) is a solution of (3.1), we have
that va(t) = γa(ua(t)), whence

ρva(t)(1− ua(t)− va(t))− aua(t) = v̇a(t) = γ′a(ua(t)) u̇a(t)

= γ′a(ua(t))
(
ua(t)(1− ua(t)− va(t))− acua(t)

)
.

(3.214)

Then, we let vo := γa(uo) and we notice that vo coincides also with γa∗(uo). Hence,
we take trajectories of the system with parameter a and a∗ starting at (uo, vo), and
by (3.211) we obtain that

0 >
auo − ρv(1− uo − vo)
acuo − uo(1− uo − vo)

− a∗uo − ρv(1− uo − vo)
a∗cuo − uo(1− uo − vo)

=
aua(0)− ρv(1− ua(0)− va(0))

acua(0)− u(1− ua(0)− va(0))
− a∗ua∗(0)− ρv(1− ua∗(0)− va(0))

a∗cua∗(0)− u(1− ua∗(0)− va∗(0))

= γ′a(ua(0))− γ′a∗(ua∗(0))

= γ′a(uo)− γ′a∗(uo),

which establishes (3.213).
Now we claim that

there exists u ∈ [ua
∗
s , u

a∗

d ] such that Z(u) < 0

and Z(u) ≤ 0 for every u ∈ [ua
∗
s , u].

(3.215)

Indeed, if a∗ ∈
(
0, 1

c

)
, we deduce from (3.203) that Z(ua

∗
s ) < 0 and therefore (3.215)

holds true with u := ua
∗
s . If instead a∗ ≥ 1

c
, we have that uas = ua

∗
s = 0 and we deduce

from (3.203) and (3.207) that Z(ua
∗
s ) = 0 and Z ′(ua∗s ) < 0, from which (3.215) follows

by choosing u := ua
∗
s + ε with ε > 0 sufficiently small.
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Now we claim that

Z(u) ≤ 0 for every u ∈ [ua
∗

s , u
a∗

d ]. (3.216)

To prove this, in light of (3.215), it suffices to check that Z(u) ≤ 0 for every u ∈
(u, ua

∗

d ]. Suppose not. Then there exists u] ∈ (u, ua
∗

d ] such that Z(u) < 0 for all [u, u])
and Z(u]) = 0. This gives that Z ′(u]) ≥ 0. But this inequality is in contradiction
with (3.213) and therefore the proof of (3.216) is complete.

The desired claim in (3.199) follows easily from (3.216), hence we focus now on
the proof of (3.200).

To this end, we take ρ > 1 and we claim that, for every a∗ > 0 and every a ∈
(0, a∗),

γa(u
a∗

s ) ≤ γa∗(u
a∗

s ) with strict inequality when a∗ ∈
(

0,
1

c

)
. (3.217)

To prove this, we first notice that, if a < a∗ < 1
c
, then

ua
∗

s = ρc
1− a∗c
1 + ρc

< ρc
1− ac
1 + ρc

= uas .

Hence by (3.188) in Lemma 3.24 we have

γa(u
a∗

s ) <
ua
∗
s

ρc
= γa∗(u

a∗

s ) for a < a∗ <
1

c
,

and this establishes (3.217) when a∗ ∈
(
0, 1

c

)
. Thus, we now focus on the case a∗ ≥ 1

c
.

In this situation, we have that ua
∗
s = 0 and accordingly γa(u

a∗
s ) = γa(0) = γa∗(0) =

γa∗(u
a∗
s ), that completes the proof of (3.217).

In addition, by Propositions 3.8 and 3.14 we have that

γ′a(0) =
a

ρ− 1 + ac
≤ a∗

ρ− 1 + a∗c
= γ′a∗(0) for a ∈

[
1

c
, a∗
]
. (3.218)

Moreover, for u > uas , if v = γa(u) we have that v > γa(u
a
s) = vas , thanks to the

monotonicity of γa, and, as a result,

u(1− u− v − ac) < u(1− uas − vas − ac) = 0. (3.219)

Now we claim that, for all a < a∗, u ∈ (ua
∗
s , u

a∗

d ) and v = γa∗(u), we have

u(1− u− v)(a∗ − a)(u− ρcv) < 0. (3.220)

Indeed, by the monotonicity of γa∗ , in this situation we have that v ≤ γa∗(u
a∗

d ), and
therefore, by (3.197),

1− u− v > 1− ua∗d − γa∗(ua
∗

d ) = 1− ua∗d − 1 + ua
∗

d = 0. (3.221)

Moreover, by (3.189) in Lemma (3.24), we have that γa∗(u) > u
ρc

, and hence u−ρcv >
0. Combining this inequality with (3.221), we obtain (3.220), as desired.
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Now, by (3.219), for all a < a∗, u ∈ (uas , u
a∗

d ) and v = γa∗(u),

0 < −u(1− u− v − ac) = acu− u(1− u− v) < a∗cu− u(1− u− v)

and then, by (3.220),

au− ρv(1− u− v)

acu− u(1− u− v)
− a∗u− ρv(1− u− v)

a∗cu− u(1− u− v)

=
u(1− u− v)(a∗ − a)(u− ρcv)(

acu− u(1− u− v)
)(
a∗cu− u(1− u− v)

)
< 0.

(3.222)

Now we recall the definition of Z in (3.212) and we claim that

if uo ∈ (ua
∗
s , u

a∗

d ) is such that Z(uo) = 0, then Z ′(uo) < 0. (3.223)

To prove this, we let vo := γa(uo), we notice that vo = γa∗(uo), we recall (3.214) and
apply it to a trajectory starting at (uo, vo), thus finding that

ρvo(1− uo − va(t))− auo = γ′a(uo)
(
uo(1− uo − vo)− acuo

)
.

This and (3.222) yield that

0 >
au− ρv(1− u− v)

acu− u(1− u− v)
− a∗u− ρv(1− u− v)

a∗cu− u(1− u− v)
= γ′a(uo)− γ′a∗(uo) = Z ′(uo),

which proves the desired claim in (3.223).
We now point out that

there exists u ∈ [ua
∗
s , u

a∗

d ] such that Z(u) < 0

and Z(u) ≤ 0 for every u ∈ [ua
∗
s , u].

(3.224)

Indeed, if a∗ ∈
(
0, 1

c

)
, this claim follows directly from (3.203) by choosing u := ua

∗
s ,

while if a∗ ≥ 1
c
, the claim follows from (3.203) and (3.213) by choosing u := ua

∗
s + ε

with ε > 0 sufficiently small.
Now we claim that

Z(u) ≤ 0 for every u ∈ [ua
∗

s , u
a∗

d ]. (3.225)

Indeed, by (3.224), we know that the claim is true for all u ∈ [ua
∗
s , u]. Then, the

claim for u ∈ (u, ua
∗

d ] can be proved by contradiction, supposing that there exists u] ∈
(u, ua

∗

d ] such that Z(u) < 0 for all [u, u]) and Z(u]) = 0. This gives that Z ′(u]) ≥ 0,
which is in contradiction with (3.213).

Having completed the proof of (3.225), one can use it to obtain the desired claim
in (3.200).

Now we perform the proof of Theorem 3.4, analyzing separately the cases ρ =
1, ρ < 1 and ρ > 1.
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Proof of Theorem 3.4, case ρ = 1. We notice that

VK ⊆ VA, (3.226)

since K ⊂ A.
Also, from Theorem 3.3, part (i), we get that VA = Sc, where Sc was defined

in (3.114). On the other hand, by Lemma 3.23, we know that for ρ = 1 and for
all a > 0 we have E(a) = Sc. But since every constant a belongs to the set K,
we have E(a) ⊆ VK. This shows that VA = E(a) ⊆ VK, and together with (3.226)
concludes the proof.

Proof of Theorem 3.4, case ρ < 1. We notice that

VK ⊆ VA, (3.227)

since K ⊂ A. To prove that the inclusion is strict, we aim to find a point (ū, v̄) ∈
VA \ VK. Namely, we have to prove that there exists (ū, v̄) ∈ VA such that, for all
constant strategies a > 0, we have that (ū, v̄) /∈ E(a), that is, by the characterization
in Proposition 3.16, it must hold true that v̄ ≥ γa(ū) and ū ≤ uaM.

To do this, we define

f(u) :=
u

c
+

1− ρ
1 + ρc

and m := min

{
ρc(c+ 1)

1 + ρc
, 1

}
. (3.228)

By inspection, one can see that (u, f(u)) ∈ [0, 1] × [0, 1] if and only if u ∈ [0,m].
We point out that, by (ii) of Theorem 3.3, for ρ < 1 and u ∈ [u0

s,m], a point (u, v)
belongs to VA if and only if v < f(u). Here u0

s is defined in (3.14). We underline that
the interval [u0

s,m] is non empty since

u0
s =

ρc

1 + ρc
< min

{
ρc(c+ 1)

1 + ρc
, 1

}
= m. (3.229)

Now we point out that
m ≤ uaM. (3.230)

Indeed, by (3.228) we already know that m ≤ 1, thus if uaM = 1 the inequality in
(3.230) is true. On the other hand, when uaM < 1 we have that (uaM, 1)×(0, 1) ⊆ E(a).
This and (3.227) give that (uaM, 1)× (0, 1) ⊆ VK ⊆ VA. Hence, in view of (3.16), we

deduce that ρc(c+1)
1+ρc

≤ uaM. In particular, we find that m ≤ uaM, and therefore (3.230)
is true also in this case.

With this notation, we claim the existence of a value v̄ ∈ (0, 1] such that for
all a > 0 we have γa(m) ≤ v̄ < f(m). That is, we prove now that there exists θ > 0
such that

γa(m) + θ < f(m) for all a > 0. (3.231)

The strategy is to study two cases separately, namely we prove (3.231) for sufficiently
small values of a and then for the other values of a.

To prove (3.231) for small values of a, we start by looking at the limit function γ0

defined in (3.108). One observes that

γ0(u0
s) = v0

s =
1

1 + ρc
=

ρc

c(1 + ρc)
+

1− ρ
1 + ρc

= f(u0
s). (3.232)
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Moreover, for all u ∈ (u0
s,m], we have that

γ′0(u) =
v0
s

(u0
s)
ρ
ρuρ−1 <

v0
s

(u0
s)
ρ
ρ(u0

s)
ρ−1 =

ρv0
s

u0
s

=
1

c
= f ′(u).

Hence, using the fundamental theorem of calculus on the continuous functions γ0(u)
and f(u), we get

γ0(m) = γ0(u0
s) +

∫ m

u0s

γ′0(u) du < f(u0
s) +

∫ m

u0s

f ′(u) du = f(m).

Then, the quantity

θ1 :=
f(m)− γ0(m)

4

is positive and we have
γ0(m) + 2θ1 < f(m). (3.233)

Now, by the uniform convergence of γa to γ0 given by Lemma 3.21, we know that
there exists ε ∈

(
0, 1

c

)
such that, if a ∈ (0, ε],

sup
u∈[u0s,m]

|γa(u)− γ0(u)| < θ1. (3.234)

By this and (3.233), we obtain that

γa(m) + θ1 < f(m) for all a ∈ (0, ε]. (3.235)

We remark that formula (3.235) will give the desired claim in (3.231) for conveniently
small values of a.

We are now left with considering the case a > ε. To this end, recalling (3.11),
(3.197), by the first statement in Lemma 3.25, used here with a∗ := ε, we get

γa(u) ≤ γε(u) for all a > ε and for all u ∈ [uεs, u
ε
d]. (3.236)

Now we observe that
uad ≥ uεs. (3.237)

Indeed, suppose not, namely
uad < uεs. (3.238)

Then, by the monotonicity of γa, we have that γa(u
a
d) ≤ γa(u

ε
s). This and (3.236)

yield that γa(u
a
d) ≤ γε(u

ε
s). Hence, the monotonicity of γε gives that γa(u

a
d) ≤ γε(u

ε
d).

This and (3.197) lead to 1−uad ≤ 1−uεd, that is uεd ≤ uad. From this inequality, using
again (3.238), we deduce that uεd < uεs. This is in contradiction with (3.201) and thus
the proof of (3.237) is complete.

We also notice that
uad ≥ uεd. (3.239)

Indeed, suppose not, say
uad < uεd. (3.240)
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Then, by (3.237), we have that uad ∈ [uεs, u
ε
d] and therefore we can apply (3.236) to say

that γa(u
a
d) ≤ γε(u

a
d). Also, by the monotonicity of γε, we have that γε(u

a
d) ≤ γε(u

ε
d).

With these items of information and (3.197), we find that

1− uad = γa(u
a
d) ≤ γε(u

ε
d) = 1− uεd,

and accordingly uad ≥ uεd. This is in contradiction with (3.240) and establishes (3.239).
Moreover, by (3.11) and (3.14), we know that u0

s > ua
∗
s , for every a∗ > 0. There-

fore, setting ũa
∗

d := min{ua∗d , u0
s}, we have that ũa

∗

d ∈ [ua
∗
s , u

a∗

d ]. Thus, we are in the
position of using the first statement in Lemma 3.25 with a := ε and deduce that

γε(ũ
a∗

d ) ≤ γa∗(ũ
a∗

d ) for all a∗ < ε. (3.241)

We also remark that
ua
∗

d → u0
s as a∗ → 0. (3.242)

Indeed, up to a subsequence we can assume that ua
∗

d → ũ as a∗ → 0, for some ũ ∈
[0, 1]. Also, by (3.197),

γa∗(u
a∗

d ) = 1− ua∗d ,
and then the uniform convergence of γa∗ in Lemma 3.21 yields that

γ0(ũ) = 1− ũ.

This and (3.197) lead to ũ = u0
d. Since

u0
d = u0

s (3.243)

in virtue of (3.14), we thus conclude that ũ = u0
s and the proof of (3.242) is thereby

complete.
As a consequence of (3.242), we have that ũa

∗

d → u0
s as a∗ → 0. Hence, using again

the uniform convergence of γa∗ in Lemma 3.21, we obtain that γa∗(ũ
a∗

d ) → γ0(u0
s).

From this and (3.241), we conclude that

γε(u
0
s) ≤ γ0(u0

s). (3.244)

Now we claim that
uεd > u0

s. (3.245)

Indeed, suppose, by contradiction, that

uεd ≤ u0
s. (3.246)

Then, the monotonicity of γε, together with (3.243) and (3.244), gives that

1− uεd = γε(u
ε
d) ≤ γε(u

0
s) = 1− u0

s.

From this and (3.246) we deduce that uεd = u0
s. In particular, we have that u0

s ∈
(uεs, u

ε
M). Accordingly, by (3.187),

1− u0
s = 1− uεd = γε(u

ε
d) = γε(u

0
s) <

u0
s

ρc
.
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As a consequence,

u0
s >

ρc

1 + ρc
,

and this is in contradiction with (3.14). The proof of (3.245) is thereby complete.
As a byproduct of (3.243) and (3.245), we have that

vεd = γε(u
ε
d) = 1− uεd < 1− u0

s = 1− u0
d = γ0(u0

d) = γ0(u0
s) = v0

s . (3.247)

Similarly, by means of (3.239),

vad = γa(u
a
d) = 1− uad ≤ 1− uεd = γε(u

ε
d) = vεd. (3.248)

In light of (3.239), (3.245), (3.247) and (3.248), we can write that

1 > uad ≥ uεd > u0
s > 0 and 1 > v0

s > vεd ≥ vad > 0. (3.249)

Figure 3.6 – The figures illustrate the functions involved in the proof of Theorem 3.4
for the case ρ < 1. The two vertical lines correspond to the values uεd and m. The
thick black line represents the boundary of VA; the blue line is the graph of γ0(u); the
dark violet lines delimit the area where γa(u) for a ≤ ε might be; the red line is the
upper limit of γa(u) for a > ε. The image was realized using a simulation in Python
for the values ρ = 0.35 and c = 1.2.

Now, to complete the proof of (3.231) when a > ε, we consider two cases de-
pending on the order of m and uεd. If uεd ≥ m, by (3.249) we have that m < 1 and
f(m) = 1. Then,

γa(m) ≤ γa(u
ε
d) ≤ γε(u

ε
d) = vεd < 1 = f(m), (3.250)

thanks to the monotonicity of γa, (3.236) and (3.249). We define

θ2 :=
1− vεd

2
,

which is positive thanks to (3.249). From (3.250), we get that

γa(m) + θ2 ≤ vεd + θ2 < 1 = f(m). (3.251)



138 A New Lotka-Volterra Competitive System

This formula proves the claim in (3.231) for a > ε and uεd ≥ m.
If instead uεd < m, then we proceed as follows. By (3.249) we have

γa(u
a
d) = vad ≤ vεd < v0

s = f(u0
s). (3.252)

Now we set

θ3 :=
f(uεd)− f(u0

s)

2
.

Using the definition of f in (3.228), we see that

θ3 =
uεd − u0

s

2c
,

and accordingly θ3 is positive, due to (3.249).
From (3.252) we have

γa(u
a
d) + θ3 < f(u0

s) + θ3 < f(uεd). (3.253)

Now we show that, on any trajectory (u(t), v(t)) lying on the graph of γa, it holds
that

v̇(t) >
u̇(t)

c
provided that u(t) ∈ (uad, u

a
M). (3.254)

To prove this, we first observe that u(t) > uad > uas , thanks to (3.201). Hence, we can
exploit formula (3.187) of Lemma 3.24 and get that

γa(u(t))− u(t)

ρc
< 0. (3.255)

Also, by the monotonicity of γa and (3.197),

γa(u(t)) ≥ γa(u
a
d) = 1− uad > 1− u(t).

From this and (3.255) it follows that(
v̇(t)− u̇(t)

c

)
= ρ

(
γa(u(t))− u(t)

ρc

)
(1− u(t)− γa(u(t))) > 0

provided that u(t) ∈ (uad, u
a
M), and this proves (3.254).

In addition, for such a trajectory (u(t), v(t)) we have that

u̇(t) = u(t) (1− u(t)− γa(u(t))− ac)
< u(t) (1− u(t)− γa(uad)) = u(t) (1− u(t)− 1 + uad) < 0,

provided that u(t) ∈ (uad, u
a
M).

From this and (3.254), we get

γ′a(u(t)) =
v̇(t)

u̇(t)
<

1

c
= f ′(u(t)),

provided that u(t) ∈ (uad, u
a
M).
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Consequently, taking as initial datum of the trajectory an arbitrary point (u, γa(u))
with u ∈ (uad, u

a
M), we can write that, for all u ∈ (uad, u

a
M),

γ′a(u) < f ′(u).

As a result, integrating and using (3.236), for all u ∈ (uad, u
a
M), we have

γa(u) = γa(u
a
d) +

∫ u

uad

γ′a(u) du < γa(u
a
d) +

∫ u

uad

f ′(u) du = γa(u
a
d) + f(u)− f(uad).

Then, making use (3.253), for u ∈ (uad, u
a
M),

γa(u) + θ3 < γa(u
a
d) + f(u)− f(uad) + θ3 ≤ f(u)− f(uad) + f(uεd). (3.256)

Also, recalling (3.249) and the monotonicity of f , we see that f(uεd) ≤ f(uad). Com-
bining this and (3.256), we deduce that

γa(u) + θ3 < f(u) for all u ∈ (uad, u
a
M). (3.257)

We also observe that if u ∈ (uεd, u
a
d], then the monotonicity of γa yields that γa(u) ≤

γa(u
a
d). It follows from this and (3.253) that γa(u) + θ3 < f(uεd). This and the

monotonicity of f give that

γa(u) + θ3 < f(u) for all u ∈ (uεd, u
a
d].

Comparing this with (3.257), we obtain

γa(u) + θ3 < f(u) for all u ∈ (uεd, u
a
M)

and therefore
γa(u) + θ3 ≤ f(u) for all u ∈ [uεd, u

a
M]. (3.258)

Now, in view of (3.230), we have that m ∈ [uεd, u
a
M]. Consequently, we can

utilize (3.258) with u := m and find that

γa(m) + θ3 ≤ f(m) (3.259)

which gives (3.231) in the case a > ε and uεd ≤ m (say, in this case with θ ≤ θ3/2).
That is, by (3.235), (3.251) and (3.259) we obtain that (3.231) holds true for

θ :=
1

2
min {θ1, θ2, θ3} .

If we choose v̄ := f(m)− θ
2

we have that

0 < γa(m) ≤ v̄ < f(m) ≤ 1. (3.260)

This completes the proof of Theorem 3.4 when ρ < 1, in light of the characterizations
of E(a) and VA from Proposition 3.16 and Theorem 3.3, respectively.

Now we focus on the case ρ > 1.
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Proof of Theorem 3.4, case ρ > 1. As before, the inclusion VK ⊆ VA is trivial
since K ⊂ A. To prove that it is strict, we aim to find a point (ū, v̄) ∈ VA such
that (ū, v̄) /∈ VK. Thus, we have to prove that there exists (ū, v̄) ∈ VA such that, for
all constant strategies a > 0, we have that (ū, v̄) /∈ E(a).

To this end, using the characterizations given in Proposition 3.16 and Theo-
rem 3.3, we claim that

there exists a point (ū, v̄) ∈ [0, 1]× [0, 1]

satisfying u∞ ≤ ū ≤ uaM and γa(ū) ≤ v̄ < ζ(ū) for all a > 0.
(3.261)

For this, we let

m := min

{
1,

c

(c+ 1)
ρ−1
ρ

}
.

By (3.18) one sees that
u∞ < m. (3.262)

In addition, we point out that
m ≤ uaM. (3.263)

Indeed, since m ≤ 1, if uaM = 1 the desired inequality is obvious. If instead uaM < 1
we have that (uaM, 1) × (0, 1) ⊆ E(a) ⊆ VK ⊆ VA. Hence, by (3.17), it follows
that c

(c+1)
ρ−1
ρ
≤ uaM, which leads to (3.263), as desired.

Now we claim that there exists θ > 0 such that

γa(m) + θ < ζ(m) for all a > 0. (3.264)

We first show some preliminary facts for γa(u). For all a > 0, we have that E(a) ⊆
VA. Owing to the characterization of E(a) from Proposition 3.16 and of VA from
Theorem 3.3 (which can be used here, thanks to (3.262) and (3.263)), we get that

γa(u) ≤ u

c
for all u ∈ (0, u∞] and a > 0. (3.265)

This is true in particular for u = u∞.
We choose

δ ∈
(

0,
ρ− 1

c

)
and M := max

{
1

c
,
ρ+ 1

c
+ δ

δcu∞

}
, (3.266)

and we prove (3.264) by treating separately the cases a > M and a ∈ (0,M ].
We first consider the case a > M . We let (u(t), v(t)) be a trajectory for (3.1)

lying on γa and we show that

v̇(t)−
(

1

c
+ δ

)
u̇(t) > 0 provided that u(t) > u∞ and a > M. (3.267)

To check this, we observe that

v̇(t)−
(

1

c
+ δ

)
u̇(t) =

[
ργa(u(t))−

(
1

c
+ δ

)
u(t)

]
(1− u(t)− γa(u(t))) + δacu(t)

≥ −
∣∣∣∣ρ+

1

c
+ δ

∣∣∣∣+ δacu∞ > 0,
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where the last inequality is true thanks to the hypothesis a > M and the definition
of M in (3.266). This proves (3.267).

Moreover, for a > M ≥ 1
c

we have u̇ < 0. From this, (3.267) and the invariance
of γa for the flow, we get

γ′a(u(t)) =
v̇(t)

u̇(t)
<

1

c
+ δ, (3.268)

provided that u(t) > u∞ and a > M .
For this reason and (3.265), we get

γa(u(t)) = γa(u∞) +

∫ u(t)

u∞

γ′a(τ) dτ ≤ u∞
c

+

(
1

c
+ δ

)
(u(t)− u∞) (3.269)

provided that u(t) > u∞ and a > M .
Furthermore, thanks to the choice of δ in (3.266), we have

ζ ′(u) =
ρuρ−1

cuρ−1
∞

>
ρ

c
>

1

c
+ δ for all u > u∞.

Since also ζ(u∞) = u∞
c

, by (3.269) we deduce that

γa(u(t)) ≤ u∞
c

+

(
1

c
+ δ

)
(u(t)− u∞) < ζ(u∞) +

∫ u(t)

u∞

ζ ′(τ) dτ = ζ(u(t)), (3.270)

provided that u(t) > u∞ and a > M .
In particular, given any u > u∞, we can take a trajectory starting at (u, γa(u))

and deduce from (3.270) that

γa(u) ≤ u∞
c

+

(
1

c
+ δ

)
(u− u∞) < ζ(u∞) +

∫ u

u∞

ζ ′(τ) dτ = ζ(u),

whenever a > M . We stress that, in light of (3.262), we can take u := m in the above
chain of inequalities, concluding that

γa(m) ≤ u∞
c

+

(
1

c
+ δ

)
(m− u∞) < ζ(m).

We rewrite this in the form

γa(m) ≤
(

1

c
+ δ

)
m− δu∞ < ζ(m). (3.271)

We define

θ1 :=
1

2

[
ζ(m)−

(
1

c
+ δ

)
m+ δu∞

]
, (3.272)

that is positive thanks to the last inequality in (3.271). Then by the first inequality
in (3.271) we have

γa(m) + θ1 ≤
(

1

c
+ δ

)
m− δu∞ + θ1 =

1

2

[(
1

c
+ δ

)
m− δu∞

]
+
ζ(m)

2
.
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Hence, using again the last inequality in (3.271), we obtain that

γa(m) + θ1 < ζ(m), (3.273)

which gives the claim in (3.264) for the case a > M .
Now we treat the case a ∈ (0,M ]. We claim that

uMd > u∞. (3.274)

Here, we are using the notation uMd to denote the point uad when a := M . To
prove (3.274) we argue as follows. Since M ≥ 1

c
, by Propositions 3.8 and 3.14 we

have

γ′M(0) =
M

ρ− 1 +Mc
<

1

c
. (3.275)

Moreover, since the graph of γM(u) is a parametrization of a trajectory for (3.1) with
a = M , we have that v̇(t) = γ′M(u(t))u̇(t). Hence, at all points (ū, v̄) with ū ∈ (0, u∞)
and v̄ = γM(ū) we have

γ′M(ū) =
Mū− ρv̄(1− ū− v̄)

Mcū− ū(1− ū− v̄)
. (3.276)

We stress that the denominator in the right hand side of (3.276) is strictly positive,
since M ≥ 1

c
and ū > 0.

In addition, we have that

1

c
− Mū− ρv̄(1− ū− v̄)

Mcū− ū(1− ū− v̄)
=

(ρcv̄ − ū)(1− ū− v̄)

Mc2ū− cū(1− ū− v̄)
. (3.277)

Also,
uMs = 0 < ū < u∞ < m ≤ uMM,

thanks to (3.262) and (3.263). Hence, we can exploit formula (3.189) in Lemma 3.24
with the strict inequality, thus obtaining that

ρcv̄ − ū = ρcγM(ū)− ū > 0. (3.278)

Moreover, by (3.265),

1− ū− v̄ = 1− ū− γM(ū) ≥ 1− ū− ū

c
> 1− u∞ −

u∞
c

= 0.

Therefore, using the latter estimate and (3.278) into (3.277), we get that

1

c
− Mū− ρv̄(1− ū− v̄)

Mcū− ū(1− ū− v̄)
> 0.

From this and (3.276), we have that

γ′M(u) <
1

c
for all u ∈ (0, u∞).
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This, together with (3.275) and the fact that γM(0) = 0, gives

γM(u) = γM(u)− γM(0) =

∫ u

0

γ′M(τ) dτ <
u

c

for all u ∈ (0, u∞]. This inequality yields that

γM(u∞) <
u∞
c

= 1− u∞. (3.279)

Now, to complete the proof of (3.274) we argue by contradiction and suppose that
the claim in (3.274) is false, hence

uMd ≤ u∞. (3.280)

Thus, by (3.279), the monotonicity of γM(u) and the definition of uMd given in (3.197),
we get

1− uMd = γM(uMd ) ≤ γM(u∞) < 1− u∞
which is in contraddiction with (3.280). Hence, (3.274) holds true, as desired.

Also, by the second statement in Lemma 3.25, used here with a∗ := M ,

γa(u) ≤ γM(u) for all u ∈ [0, uMd ]. (3.281)

We claim that

uMd ≤ uad. (3.282)

Indeed, suppose, by contradiction, that

uMd > uad. (3.283)

Then, by the monotonicity of γa and (3.281), used here with u := uMd , we find that

1− uad = γa(u
a
d) ≤ γa(u

M
d ) ≤ γM(uMd ) = 1− uMd .

This entails that uad ≥ uMd , which is in contradiction with (3.283), and thus estab-
lishes (3.282).

We note in addition that

vMd = γM(uMd ) = 1− uMd < 1− u∞, (3.284)

thanks to the definition of (uMd , v
M
d ) and (3.274).

Similarly, by (3.282),

vad = γa(u
a
d) = 1− uad ≤ 1− uMd = γM(uMd ) = vMd . (3.285)

Collecting the pieces of information in (3.274), (3.282), (3.284) and (3.285), we
thereby conclude that, for all a ∈ (0,M ],

0 < u∞ < uMd ≤ uad < 1 and 0 < vad ≤ vMd < 1− u∞ =: v∞ < 1. (3.286)
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Figure 3.7 – The figure illustrates the functions involved in the proof of Theorem 3.4
for the case ρ > 1. The two vertical lines correspond to the values uMd and m. The
thick black line represents the boundary of VA; the blue line is the graph of the line
v = u

c
; the dark violet line is the upper bound for γa(u) for a > M ; the red line is

φ(u). The image was realized using a simulation in Python for the values ρ = 2.3
and c = 1.3.

Now we consider two cases depending on the order of m and uMd . If uMd ≥ m, by
(3.286) we have m < 1 and ζ(m) = 1. Accordingly, for a ∈ (0,M ], by (3.286) and
(3.281) we have

γa(m) ≤ γa(u
M
d ) ≤ γM(uMd ) = vMd < 1 = ζ(m).

Hence, we can define

θ2 :=
1− vMd

2
,

and observe that θ2 is positive by (3.286), thus obtaining that

γa(m) + θ2 < ζ(m). (3.287)

This is the desired claim in (3.264) for a ∈ (0,M ] and u∗ ≥ m.
If instead uMd < m, we consider the function

φ(u) := vMd

(
u

uMd

)ρ
, for u ∈ [uMd ,m]

and we claim that

γa(u) ≤ φ(u) for all a ∈ (0,M ] and u ∈ [uMd ,m]. (3.288)

To prove this, we recall (3.286) and the fact that γa is an increasing function to see
that

γa(u
M
d ) ≤ γa(u

a
d) = vad ≤ vMd = φ(uMd ). (3.289)

Now we remark that

γM(uMd ) + uMd = 1 > 1−Mc = γM(uMs ) + uMs ,
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and therefore uMd > uMs . Notice also that uMd < m ≤ uMM, thanks to (3.263). As a
result, we find that ρcγM(uMd ) > uMd by inequality (3.189) in Lemma 3.24. Therefore,
if u ≥ uMd and v = φ(u), then

au

(
1− ρc vMd

(uMd )ρ
uρ−1

)
= au

(
1− ρcγM(uMd )

(uMd )ρ
uρ−1

)
< au

(
1−

(
u

uMd

)ρ−1
)
≤ 0 = ρ

(
v − vMd

(uMd )ρ
uρ
)

(1− u− v).

Using this and (3.219), we deduce that, if a ∈ [0,M ], u ∈ [uMd ,m] and v = φ(u),

au− ρv(1− u− v)

acu− u(1− u− v)
− vMd

(uMd )ρ
ρuρ−1

=
au− ρv(1− u− v)−

(
acu− u(1− u− v)

) vMd
(uMd )ρ

ρuρ−1

acu− u(1− u− v)

=
au
(

1− ρc vMd
(uMd )ρ

uρ−1
)
− ρ(1− u− v)

(
v − vMd

(uMd )ρ
uρ
)

acu− u(1− u− v)

< 0.

(3.290)

Now we take a ∈ (0,M ], u ∈ [uMd ,m] and suppose that v = φ(u) = γa(u), we
consider an orbit (u(t), v(t)) lying on γa with (u(0), v(0)) = (u, v), and we notice
that, by (3.219) and (3.290),

γ′a(u) = γ′a(u(0)) =
v̇(0)

u̇(0)
=
au(0)− ρv(0) (1− u(0)− v(0))

acu(0)− u(0)(1− u(0)− v(0))

=
au− ρv (1− u− v)

acu− u(1− u− v)
<

vMd
(uMd )ρ

ρuρ−1 = φ′(u).

(3.291)

To complete the proof of (3.288), we define

H(u) := γa(u)− φ(u)

and we claim that for every a ∈ (0,M ] there exists u ∈ [uMd ,m] such that

H(u) < 0 and H(u) ≤ 0 for every u ∈ [uMd , u]. (3.292)

Indeed, by (3.289), we know that H(uMd ) ≤ 0. Thus, if H(uMd ) < 0 then we can
choose u := uMd and obtain (3.292). If instead H(uMd ) = 0, we have that γa(u

M
d ) =

φ(uMd ) and thus we can exploit (3.291) and find that H′(uMd ) < 0, from which we
obtain (3.292).

Now we claim that, for every a ∈ (0,M ] and u ∈ [uMd ,m],

H(u) ≤ 0. (3.293)

For this, given a ∈ (0,M ], we define

L := {u∗ ∈ [uMd ,m] s.t. H(u) ≤ 0 for every u ∈ [uMd , u∗]} and u := supL.
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We remark that u ∈ L, thanks to (3.292) and therefore u is well defined. We have
that

u = m, (3.294)

otherwise we would have that H(u) = 0 and thus H′(u) < 0, thanks to (3.291), which
would contradict the maximality of u. Now, the claim in (3.293) plainly follows
from (3.294).

We notice that by the inequalities in (3.286) we have

ζ(u) =
v∞

(u∞)ρ
uρ >

vMd
(uMd )ρ

uρ = φ(u). (3.295)

Then, we define

θ3 :=
ζ(m)− φ(m)

2
, (3.296)

that is positive thanks to (3.295). We get that

φ(m) + θ3 < ζ(m). (3.297)

From this and (3.288), we conclude that

γa(m) + θ3 ≤ φ(m) + θ3 < ζ(m) for a ∈ (0,M ]. (3.298)

By (3.273), (3.287) and (3.298) we have that (3.264) is true for θ = min{θ1, θ2, θ3}.
This also establishes the claim in (3.261), and the proof is completed.

3.4.4 Proof of Theorem 3.5

Now, we can complete the proof of Theorem 3.5 by building on the previous work.

Proof of Theorem 3.5. Since the class of Heaviside functions H is contained in the
class of piecewise continuous functions A, we have that

VH ⊆ VA, (3.299)

hence we are left with proving the converse inclusion. We treat separately the cases
ρ = 1, ρ < 1 and ρ > 0.

If ρ = 1, the desired claim follows from Theorem 3.4, part (i).
If ρ < 1, we deduce from (3.16) and (3.172) that

VA = F0 ∪ P , (3.300)

where P has been defined in (3.145) and F0 in (3.171).
Moreover, by (3.174), we have that

F0 ⊆ VK ⊆ VH. (3.301)

Also, in Proposition 3.22 we construct a Heaviside winning strategy for every point
in P . Accordingly, it follows that P ⊆ VH. This, (3.300) and (3.301) entail that VA ⊆
VH, which completes the proof of Theorem 3.5 when ρ < 1.
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Hence, we now focus on the case ρ > 1. By (3.17) and (3.180),

VA = Sc ∪Q, (3.302)

where Sc was defined in (3.114) and Q in (3.147).

For every point (u0, v0) ∈ Sc there exists ā that is a constant winning strategy
for (u0, v0), thanks to Proposition 3.20, therefore Sc ⊆ VH. Moreover, in Proposi-
tion 3.22 for every point (u0, v0) ∈ Q we constructed a Heaviside winning strategy,
whence Q ⊆ VH. In light of these observations and (3.302), we see that also in this
case VA ⊆ VH and the proof is complete.

3.4.5 Bounds on winning initial positions under pointwise
constraints for the possible strategies

This subsection is dedicated to the analysis of VA when we put some constraints
on a(t). In particular, we consider M ≥ m ≥ 0 with M > 0 and the set Am,M of the
functions a(t) ∈ A with m ≤ a(t) ≤ M for all t > 0. We will prove Theorem 3.6 via
a technical proposition giving informative bounds on Vm,M .

For this, we denote by (ums , v
m
s ) the point (us, vs) introduced in (3.11) when a(t) =

m for all t > 0 (this when mc < 1, and we use the convention that (ums , v
m
s ) = (0, 0)

when mc ≥ 1). In this setting, we have the following result obtaining explicit bounds
on the favorable set Vm,M :

Proposition 3.26. Let M ≥ m ≥ 0 with M > 0 and

ε ∈
(

0, min

{
M(c+ 1)

M + 1
, 1

})
. (3.303)

Then

(i) If ρ < 1, we have

Vm,M ⊆
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < fε(u)
}

(3.304)

where fε : [0, uM]→ [0, 1] is the continuous function given by

fε(u) =



(ums )1−ρuρ

ρc
if u ∈ [0, ums ),

u

ρc
if u ∈ [ums , u

0
s),

u

c
+

1− ρ
1 + ρc

if u ∈ [u0
s, u1),

hu+ p if u ∈ [u1, 1],

with the convention that the first interval is empty if m ≥ 1
c
, the second interval
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is empty if m = 0, and h, u1 and p take the following values:

h :=
1

c

(
1− ε2(1− ρ)

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

)
,

u1 :=
c(ρc+ ρ+ ε− ερ)

(1 + ρc)(c+ 1− ε)
,

p :=
c+ 1− hc(ρc+ ρ+ ε− ερ)

(1 + ρc)(c+ 1− ε)
.

(ii) If ρ > 1, we have

Vm,M ⊆
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v < gε(u)
}

where gε : [0, uM]→ [0, 1] is the continuous function given by

gε(u) =


k u if u ∈ [0, u2),
u

c
+ q if u ∈ [u2, u3),

(1− u3)uρ

(u3)ρ
if u ∈ [u3, 1]

for the following values:

k :=
(c+ 1− ε)M

(ρ− 1)εc+ (c+ 1− ε)Mc
, q :=

(kc− 1)(1− ε)
c(k − kε+ 1)

,

u2 :=
1− ε

k − kε+ 1
and u3 :=

c+ 1− ε
(c+ 1)(k − kε+ 1)

.

We observe that it might be that for some u ∈ [0, 1] we have fε(u) > 1 or
gε(u) > 1. In this case, the above proposition would produce the trivial result that
Vm,M ∩ ({u} × [0, 1]) ⊆ {u} × [0, 1]. On the other hand, a suitable choice of ε would
lead to nontrivial consequences entailing, in particular, the proof of Theorem 3.6.

Proof of Proposition 3.26. We start by proving the claim in (i). For this, we will
show that

D :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v ≥ fε(u)
}
⊆ VCm,M . (3.305)

where VCm,M is the complement of Vm,M in the topology of [0, 1] × [0, 1]. We remark
that once (3.305) is established, then the desired claim in (3.304) plainly follows by
taking the complement sets.

To prove (3.305) we first show that

0 ≤ ums < u0
s < u1 < 1. (3.306)

Notice, as a byproduct, that the above inequalities also give that fε is well defined.
To prove (3.306) we notice that, by (3.11), (3.14) and (3.185),

0 ≤ ums = max

{
0,

1−mc
1 + ρc

ρc

}
<

ρc

1 + ρc
= u0

s



3.4 Analysis of the strategies for the first population 149

(and actually the first inequality is strict if m < 1
c
). Next, one can check that,

since ε > 0,

u0
s − u1 =

ρc

1 + ρc
− c(ρc+ ρ+ ε− ερ)

(1 + ρc)(c+ 1− ε)
= − cε

(1 + ρc)(c+ 1− ε)
< 0.

Furthermore, since ε < 1,

u1 − 1 =
c(ρc+ ρ+ ε− ερ)

(1 + ρc)(c+ 1− ε)
− 1 =

(ε− 1)(c+ 1)

(1 + ρc)(c+ 1− ε)
< 0.

These observations prove (3.306), as desired.
Now we point out that

fε is a continuous function. (3.307)

Indeed,
(ums )1−ρ

ρc
(ums )ρ =

ums
ρc

and
u0
s

ρc
=
u0
s

c
+

1− ρ
1 + ρc

. (3.308)

Furthermore, by the definitions of p and u1 we see that

p =
c+ 1

(1 + ρc)(c+ 1− ε)
− hc(ρc+ ρ+ ε− ερ)

(1 + ρc)(c+ 1− ε)

=
c+ 1

(1 + ρc)(c+ 1− ε)
− hu1.

(3.309)

Moreover, from the definition of u1,

u1

c
+

1− ρ
1 + ρc

=
c+ 1

(1 + ρc)(c+ 1− ε)
.

Combining this and (3.309), we deduce that

u1

c
+

1− ρ
1 + ρc

= hu1 + p. (3.310)

This observation and (3.308) entail the desired claim in (3.307).
Next, we show that

fε(u) > 0 for u > 0. (3.311)

To prove this, we note that for u ∈ (0, ums ) the function is an exponential times the

positive constant (ums )1−ρ

ρc
, hence is positive. If u ∈ [ums , u

0
s) then fε(u) is a linear

function and it is positive since ρc > 0. On [u0
s, u1), fε(u) coincide with a linear

function with positive angular coefficient, hence we have

fε(u) ≥ min
u∈[u0s,u1)

fε(u) = fε(u
0
s) =

u0
s

ρc
> 0.

By inspection one can check that h > 0. Hence, in the interval [u1, 1] we have

fε(u) ≥ min
u∈[u1,1]

fε(u) = fε(u1) ≥ u0
s

ρc
> 0.
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This completes the proof of (3.311).
Let us notice that, as a consequence of (3.311),

D ∩
(
(0, 1]× {0}

)
= ∅. (3.312)

Now we show that

for any strategy a ∈ Am,M , no trajectory starting in D leaves D. (3.313)

To this end, we notice that, since ∂D ∩ {v = 0} = {(0, 0)}, and the origin is an
equilibrium, we already have that no trajectory can exit D by passing through the
points in ∂D ∩ ∂([0, 1]× [0, 1]). Hence, we are left with considering the possibility of
leaving D through ∂D ∩ ((0, 1)× (0, 1)). To exclude this possibility, we compute the
velocity of a trajectory in the inward normal direction at ∂D ∩ ((0, 1)× (0, 1)).

For every u ∈ [0, ums ) we have that this normal velocity is

v̇ − (ums )1−ρρ(u)ρ−1u̇

ρc

= ρ

(
v − (ums )1−ρ uρ

ρc

)
(1− u− v)− au

(
1− (ums )1−ρ

u1−ρ

)
.

(3.314)

Notice that the term v− (ums )1−ρ uρ

ρc
vanishes on ∂D∩ ((0, 1)× (0, 1)) when u ∈ [0, ums ).

Also, for all u ∈ [0, ums ) we have

1− (ums )1−ρ

u1−ρ < 0,

thus the left hand side in (3.314) is positive. This observation rules out the possibility
of leaving D through ∂D ∩ ((0, 1)× (0, 1)) at points where u ∈ [0, ums ).

It remains to exclude egresses at points of ∂D ∩ ((0, 1)× (0, 1)) with u ∈ [ums , 1).
We first consider this type of points when (ums , u

0
s). At these points, we have that the

velocity in the inward normal direction on {v = u
ρc
} is

v̇ − u̇

ρc
=

(
ρv − u

ρc

)
(1− u− v) + au

(
1

ρ
− 1

)
Expressing u with respect to v on ∂D ∩ ((0, 1)× (0, 1)) with u ∈ (ums , u

0
s), we have

v̇ − u̇

ρc
= v (ρ− 1) (1− ρcv − v) + aρcv

1− ρ
ρ

= v(1− ρ)(ρcv + v − 1 + ac).

(3.315)

We also remark that, for these points,

v > vms =
1−mc
1 + ρc

≥ 1− ac
1 + ρc

,

thanks to (3.11). This gives that the quantity in (3.315) is strictly positive and, as a
consequence, we have excluded the possibility of exiting D at points of ∂D∩ ((0, 1)×
(0, 1)) with u ∈ (ums , u

0
s).
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It remains to consider the case u ∈ {ums }∪ [u0
s, 1). We first focus on the range u ∈

(u0
s, u1). In this interval, the velocity of a trajectory starting at a point (u, v) ∈

∂D ∩ ((0, 1) × (0, 1)) lying on the line v = u
c

+ 1−ρ
1+ρc

in the inward normal direction
with respect to ∂D is given by

v̇ − 1

c
u̇ =

(
ρv − u

c

)
(1− u− v). (3.316)

We also observe that, in light of (3.14),

u > u0
s =

ρc

1 + ρc
,

and therefore, for any u ∈ (u0
s, u1) lying on the above line,

1− u− v = 1− u− u

c
− 1− ρ

1 + ρc
= (c+ 1)

(
ρ

1 + ρc
− u

c

)
< 0

and

ρv − u

c
=
ρu

c
+
ρ(1− ρ)

1 + ρc
− u

c
= (1− ρ)

(
ρ

1 + ρc
− u

c

)
< 0.

Using these pieces of information in (3.316), we conclude that the inward normal
velocity of a trajectory starting at a point (u, v) ∈ ∂D ∩ ((0, 1) × (0, 1)) with u ∈
(u0

s, u1) is strictly positive. This gives that no trajectory can exit D at this type of
points, and we need to exclude the case u ∈ {ums , u0

s} ∪ [u1, 1).
We consider now the interval [u1, 1). In this interval, the component of the velocity

of a trajectory at a point on the straight line given by v = hu + p in the orthogonal
inward pointing direction is

(u̇, v̇) · (−h, 1)√
1 + h2

=
(ρv − hu)(1− u− v)− au(1− hc)√

1 + h2

=
((1− ρ)hu− ρp)(u+ v − 1)− au(1− hc)√

1 + h2

(3.317)

We observe that, if u ∈ [u1, 1),

(1− ρ)hu− ρp ≥ (1− ρ)hu1 − ρp = hu1 − ρ(hu1 + p)

= hu1 − ρ
(
u1

c
+

1− ρ
1 + ρc

)
= hu1 − ρ

(
ρc+ ρ+ ε− ερ

(1 + ρc)(c+ 1− ε)
+

1− ρ
1 + ρc

)
= hu1 −

ρ(c+ 1)

(1 + ρc)(c+ 1− ε)
,

(3.318)

thanks to (3.310).
We also remark that

hu1 =

(
1− ε2(1− ρ)

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

)
ρc+ ρ+ ε− ερ

(1 + ρc)(c+ 1− ε)
,

=
ρc+ ρ+ ε− ερ

(1 + ρc)(c+ 1− ε)

−
ε2(1− ρ)

(
ρc+ ρ+ ε− ερ

)(
M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

)
(1 + ρc)(c+ 1− ε)

.
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Accordingly,

hu1 −
ρ(c+ 1)

(1 + ρc)(c+ 1− ε)
=

ε(1− ρ)

(1 + ρc)(c+ 1− ε)

−
ε2(1− ρ)

(
ρc+ ρ+ ε− ερ

)(
M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

)
(1 + ρc)(c+ 1− ε)

=
ε(1− ρ)

(1 + ρc)(c+ 1− ε)

(
1−

ε
(
ρc+ ρ+ ε− ερ

)
M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

)

=
ε(1− ρ)

(1 + ρc)(c+ 1− ε)
· M(1 + ρc)(c+ 1− ε)2

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

=
εM(1− ρ)(c+ 1− ε)

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)
.

From this and (3.318), we gather that

(1− ρ)hu− ρp ≥ εM(1− ρ)(c+ 1− ε)
M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)

. (3.319)

Furthermore, we point out that, when [u1, 1) and v = hu+ p,

u+ v − 1 ≥ u1 + hu1 + p− 1 = u1 +
u1

c
+

1− ρ
1 + ρc

− 1

=
(c+ 1)(ρc+ ρ+ ε− ερ)

(1 + ρc)(c+ 1− ε)
− ρ(c+ 1)

1 + ρc
=

ε(c+ 1)

(1 + ρc)(c+ 1− ε)
>

ε

c+ 1− ε
,

thanks to (3.310).
Combining this inequality and (3.319), we deduce that

((1− ρ)hu− ρp)(u+ v − 1) >
ε2M(1− ρ)

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)
.

Therefore, noticing that h < 1
c
,

((1− ρ)hu− ρp)(u+ v − 1)− au(1− hc)

>
ε2M(1− ρ)

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)
−Mu(1− hc)

=
ε2M(1− ρ)(1− u)

M(1 + ρc)(c+ 1− ε)2 + ε(ρc+ ρ+ ε− ερ)
,

which is strictly positive.
Using this information in (3.317), we can thereby exclude the possibility of leav-

ing D through ∂D ∩ ((0, 1) × (0, 1)) with u ∈ [u1, 1). As a result, it only re-
mains to exclude the possibility of an egress from D through ∂D ∩ ((0, 1) × (0, 1))
with u ∈ {ums , u0

s}.
For this, we perform a general argument of dynamics, as follows. We denote by Pm

s

and P 0
s the points on ∂D ∩ ((0, 1) × (0, 1)) with u = ums and u = u0

s, respectively
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(these points may also coincide, as it happens when m = 0). We stress that we
already know by the previous arguments that

if a trajectory leaves D it must pass through {Pm
s , P

0
s }. (3.320)

Our goal is to show that no trajectory leaves D and for this we argue by contradiction,
supposing that there exist P̄ ∈ D and T > 0 such that φT (P̄ ) lies in the complement
of D in [0, 1] × [0, 1]. Here, we have denoted by φT the flow associated to (3.1). We
let Q̄ := φT (P̄ ) and, since the complement of D is open in [0, 1] × [0, 1], we can
find ρ > 0 such that Bρ(Q̄) ∩ ([0, 1]× [0, 1]) is contained in the complement of D.

Also, from (3.320), there exists t̄ ∈ [0, T ) such that φt̄(P̄ ) ∈ {Pm
s , P

0
s }. We

suppose that φt̄(P̄ ) = Pm
s (the case φt̄(P̄ ) = P 0

s being completely analogous). We
let T̄ := T − t̄ and we notice that φT̄ (Pm

s ) = φT (P̄ ) = Q̄. Hence, by continuity with
respect to the data, we can find r > 0 such that

φT̄
(
Br(P

m
s ) ∩ ([0, 1]× [0, 1])

)
⊆ Bρ(Q̄) ∩ ([0, 1]× [0, 1]).

We define U := Br(P
m
s ) ∩ D. We observe that

U has strictly positive Lebesgue measure, (3.321)

since Pm
s ∈ ∂D and D has boundary of Hölder class. In addition,

φT̄
(
U
)
⊆ Bρ(Q̄) ∩ ([0, 1]× [0, 1]) ⊆

(
[0, 1]× [0, 1]

)
\ D.

This and (3.320) give that for every P ∈ U there exists tP ∈ [0, T̄ ] such that φtP (P ) ∈
{Pm

s , P
0
s }. In particular,

P ∈ φ−tP {Pm
s , P

0
s } ⊆

{
φt(Pm

s ), t ∈ [−T̄ , 0]
}
∪
{
φt(P 0

s ), t ∈ [−T̄ , 0]
}
.

Since this is valid for every P ∈ U , we conclude that

U ⊆
{
φt(Pm

s ), t ∈ [−T̄ , 0]
}
∪
{
φt(P 0

s ), t ∈ [−T̄ , 0]
}
. (3.322)

Now we remark that
{
φt(Pm

s ), t ∈ [−T̄ , 0]
}

is an arc of a smooth curve, whence
it has null Lebesgue measure, and a similar statement holds true for

{
φt(P 0

s ), t ∈
[−T̄ , 0]

}
. Consequently, we deduce from (3.322) that U has null Lebesgue measure,

in contradiction with (3.321).
In this way, we have shown that no trajectory can leave D and the proof of (3.313)

is complete.
By (3.312) and (3.313), no trajectory starting in D can arrive in (0, 1]× [0, 1] when

the bound m ≤ a(t) ≤ M holds, hence (3.305) is true. Therefore the statement (i)
in Proposition 3.26 is true.

Now we establish the claim in (ii). To this end, we point out that claim (ii) is
equivalent to

G :=
{

(u, v) ∈ [0, 1]× [0, 1] s.t. v ≥ gε(u)
}
⊆ VCm,M , (3.323)

for all ε ∈ (0, 1), where VCm,M is the complement of Vm,M in the topology of [0, 1]×[0, 1].
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First, we point out that

gε is a well defined continuous function. (3.324)

Indeed, one can easily check for ε ∈ (0, 1) that

0 < u2 =
1− ε

k − kε+ 1
− c+ 1− ε

(c+ 1)(k − kε+ 1)
+ u3 = − cε

(c+ 1)(k − kε+ 1)
+ u3

< u3 <
c+ 1

(c+ 1)(k − kε+ 1)
< 1.

(3.325)

Then, one checks that

ku2 =
u2

c
+ q,

hence gε is continuous at the point u2. In addition, one can check that gε is continuous
at the point u3 by observing that

u3

c
+ q − (1− u3) =

(c+ 1)u3

c
+ q − 1

=
c+ 1− ε

c(k − kε+ 1)
+

(kc− 1)(1− ε)
c(k − kε+ 1)

− 1

=
c+ 1− ε+ (kc− 1)(1− ε)− c(k − kε+ 1)

c(k − kε+ 1)
= 0.

(3.326)

This completes the proof of (3.324).
Now we show that

gε(u) > 0 for every u ∈ (0, 1]. (3.327)

We have that k > 0 for every ε < 1, and therefore gε(u) > 0 for all u ∈ (0, u2).
Also, since gε(u2) = ku2 > 0 and gε is linear in (u2, u3), we have that gε(u) > 0 for
all u ∈ (u2, u3). Moreover, in the interval ∈ [u3, 1] we have that gε is an exponential
function multiplied by a positive constant, thanks to (3.325), hence it is positive.
These considerations prove (3.327).

As a consequence of (3.327), we have that

G ∩
(
(0, 1]× {0}

)
= ∅. (3.328)

Now we claim that

for any strategy a ∈ Am,M , no trajectory starting in G leaves G. (3.329)

For this, we observe that, in light of (3.328), all the points on

∂G \ {(u, gε(u)) with u ∈ [0, 1]}

belong to ∂([0, 1]× [0, 1]) \ {v = 0}, and these three sides of the square do not allow
the flow to exit. Hence, to prove (3.329) it suffices to check that the trajectories
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starting on ∂G ∩
(
(0, 1) × (0, 1)

)
enter G. We do this by showing that the inner

pointing derivative of the trajectory is nonnegative, according to the computation
below.

At a point on the line v = ku, the velocity of a trajectory in the direction that is
orthogonal to ∂G for u ∈ [0, u2) and pointing inward is:

(u̇, v̇) · (−k, 1)√
1 + k2

=
(ρv − ku)(1− u− v)− au(1− kc)√

1 + k2
. (3.330)

We also note that

kc =
(c+ 1− ε)M

(ρ− 1)ε+ (c+ 1− ε)M
< 1, (3.331)

and therefore, at a point on v = ku with u ∈ [0, u2),

1− u− v ≥ 1− u2 − ku2 = 1− (1 + k)(1− ε)
k − kε+ 1

=
ε

k(1− ε) + 1

=
εc

kc(1− ε) + c
>

εc

1 + c− ε
.

This inequality entails that

k =
(1 + c− ε)M

(ρ− 1)εc+ (1 + c− ε)Mc
=

M
(ρ−1)εc
1+c−ε +Mc

>
M

(ρ− 1)(1− u− v) +Mc
.

Consequently,
(ρ− 1)(1− u− v)k > M(1− kc).

From this and (3.330), one deduces that, for all u ∈ (0, u2), a ≤M , and v = ku,

(u̇, v̇) · (−k, 1)√
1 + k2

=
ku(ρ− 1)(1− u− v)− au(1− kc)√

1 + k2

>
Mu(1− kc)− au(1− kc)√

1 + k2
≥ 0.

This (and the fact that the origin is an equilibrium) rules out the possibility of
exiting G from {u ∈ [0, u2) and v = ku}.

It remains to consider the portions of ∂G ∩ ((0, 1)× (0, 1)) given by{
u ∈ [u2, u3) and v =

u

c
+ q
}

(3.332)

and by {
u ∈ [u3, 1] and v =

(1− u3)uρ

(u3)ρ

}
. (3.333)

Let us deal with the case in (3.332). In this case, the velocity of a trajectory in
the direction orthogonal to ∂G for u ∈ [u2, u3) and pointing inward is

(u̇, v̇) · (−1, c)√
1 + c2

=
(ρcv − u)(1− u− v)√

1 + c2
. (3.334)
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Recalling (3.303), we also observe that

k − 1

ρc
=

1

c

(
(c+ 1− ε)M

(ρ− 1)ε+ (c+ 1− ε)M
− 1

ρ

)
=

(ρ− 1)
(
(c+ 1− ε)M − ε

)
ρc
(
(ρ− 1)ε+ (c+ 1− ε)M

) > 0.

(3.335)

Thus, on the line given by v = u
c

+ q we have that

ρcv − u = (ρ− 1)u+ ρcq ≥ (ρ− 1)u2 + ρcq

=
(ρ− 1)(1− ε)
k − kε+ 1

+
ρ(kc− 1)(1− ε)
k − kε+ 1

= (1− ε)(ρ− 1) + ρ(kc− 1)

k − kε+ 1
=

(1− ε)(ρkc− 1)

k − kε+ 1
> 0,

(3.336)

where (3.335) has been used in the latter inequality.
In addition, recalling (3.326),

1− u− v > 1− u3 −
u3

c
− q = 1− u3 − 1 + u3 = 0.

From this and (3.336), we gather that the velocity calculated in (3.334) is positive
in [u2, u3) and this excludes the possibility of exiting G from the boundary given
in (3.332).

Next, we focus on the portion of the boundary described in (3.333) by consider-
ing u ∈ [u3, 1]. That is, we now compute the component of the velocity at a point
on ∂G for u ∈ [u3, 1] in the direction that is orthogonal to ∂G and pointing inward,
that is

(u̇, v̇) ·
(−ρ1−u3

(u3)ρ
uρ−1, 1)√

1 + ρ2 (1−u3)2

(u3)2ρ
u2ρ−2

=
ρ(1− u− v)

(
v − 1−u3

(u3)ρ
uρ
)
− au

(
1− ρc1−u3

(u3)ρ
uρ−1

)
√

1 + ρ2 (1−u3)2

(u3)2ρ
u2ρ−2

=
au
(
ρc1−u3

(u3)ρ
uρ−1 − 1

)
√

1 + ρ2 (1−u3)2

(u3)2ρ
u2ρ−2

≥
au
(
ρc1−u3

u3
− 1
)

√
1 + ρ2 (1−u3)2

(u3)2ρ
u2ρ−2

.

(3.337)

Now we notice that

ρc(1− u3) = ρc
(u3

c
+ q
)

= ρu3 + ρcq = ρu3 +
ρ(kc− 1)(1− ε)(c+ 1)u3

c+ 1− ε
,

thanks to (3.326).
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As a result, using (3.335),

ρc(1− u3) > ρu3 +
(1− ρ)(1− ε)(c+ 1)u3

c+ 1− ε
=

u3

c+ 1− ε

(
ρ(c+ 1− ε) + (1− ρ)(1− ε)(c+ 1)

)
=
u3

(
(1− ε)(c+ 1) + ερc

)
c+ 1− ε

= u3 +
εcu3(ρ− 1)

c+ 1− ε
> u3.

This gives that the quantity in (3.337) is positive. Hence, we have ruled out also the
possibility of exiting G from the boundary given in (3.333), and this ends the proof
of (3.329).

Since no trajectory can exit G for any a with m ≤ a ≤ M , we get that no
point (u, v) ∈ G is mapped into (0, 1] × {0} because of (3.328), thus (3.323) is true
and the proof is complete.

We end this section with the proof of Theorem 3.6.

Proof of Theorem 3.6. Since by definition Am,M ⊆ A, we have that Vm,M ⊆ VA.
Hence, we are left with proving that the latter inclusion is strict.

We start with the case ρ < 1. We choose

ε ∈
(

0, min

{
ρc(c+ 1)

1 + ρc
,
M(c+ 1)

M + 1
, 1

})
. (3.338)

We observe that this choice is compatible with the assumption on ε in (3.303). We
note that

u1 < min

{
ρc(c+ 1)

1 + ρc
, 1

}
, (3.339)

thanks to (3.338). Moreover, by (3.310) and the fact that h < 1
c
, it holds that

hu+ p = h(u− u1) + hu1 + p = h(u− u1) +
u1

c
+

1− ρ
1 + ρc

<
u

c
+

1− ρ
1 + ρc

(3.340)

for all u > u1.
Now we choose

ū ∈
(
u1,min

{
ρc(c+ 1)

1 + ρc
, 1

})
,

which is possible thanks to (3.339), and

v̄ :=
1

2
(hū+ p) +

1

2

(
ū

c
+

1− ρ
1 + ρc

)
. (3.341)

By (3.340) we get that

hū+ p <
1

2
(hū+ p) +

1

2

(
ū

c
+

1− ρ
1 + ρc

)
= v̄ <

ū

c
+

1− ρ
1 + ρc

. (3.342)
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Using Proposition 3.26 and (3.342), we deduce that (ū, v̄) 6∈ Vm,M . By Theorem
3.3 and (3.342) we obtain instead that (ū, v̄) ∈ VA. Hence, the set Vm,M is strictly
included in VA when ρ < 1.

Now we consider the case ρ > 1, using again the notation of Proposition 3.26. We
recall that u2 > 0 and u∞ > 0, due to (3.18) and (3.325), hence we can choose

ū ∈ (0,min{u2, u∞}) .

We also define

v̄ :=
1

2

(
1

c
+ k

)
ū.

By (3.331), we get that

kū <
kū

2
+
ū

2c
= v̄ <

ū

c
. (3.343)

Exploiting this and the characterization in Proposition 3.26, it holds that (ū, v̄) 6∈
Vm,M . On the other hand, by Theorem (3.3) and (3.343) we have instead that (ū, v̄) ∈
VA. As a consequence, the set Vm,M is strictly contained in VA for ρ > 1. This
concludes the proof of Theorem 3.6.

3.4.6 Minimization of war duration: proof of Theorem 3.7

We now deal with the strategies leading to the quickest possible victory of the
first population.

Proof of Theorem 3.7. Our aim is to establish the existence of the strategy leading
to the quickest possible victory and to determine its range. For this, we consider the
following minimization problem under constraints for x(t) := (u(t), v(t)):

ẋ(t) = f(x(t), a(t)),
x(0) = (u0, v0),
x(Ts) ∈ (0, 1]× {0},

min
a(t)∈[m,M ]

∫ Ts

0

1 dt,

(3.344)

where
f(x, a) :=

(
u(1− u− v − ac), ρv(1− u− v)− au

)
.

Here Ts corresponds to the exit time introduced in (3.8), in dependence of the strat-
egy a(·).

Theorem 6.15 in [115] assures the existence of a minimizing solution (ã, x̃)
with ã(t) ∈ [m,M ] for all t ∈ [0, T ], and x̃(t) ∈ [0, 1] × [0, 1] absolutely continu-
ous, such that x̃(T ) = (ũ(T ), 0) with ũ(T ) ∈ [0, 1], where T is the exit time for ã.

We now prove that
ũ(T ) > 0. (3.345)

Indeed, if this were false, then (ũ(T ), ṽ(T )) = (0, 0). Let us call d(t) := ũ2(t) + ṽ2(t).
Then, we observe that the function d(t) satisfies the following differential inequality:

− ḋ(t) ≤ Cd, for C := 4 + 4ρ+ 2Mc+M. (3.346)
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To check this, we compute that

−ḋ = 2
(
−ũ2(1− ũ− ṽ − ãc)− ṽ2ρ(1− ũ− ṽ) + ũṽã

)
≤ 2ũ2(2 +Mc) + 4ρṽ2 + (ũ2 + ṽ2)M

≤ C(ũ2 + ṽ2)

= Cd,

which proves (3.346).
From (3.346), one has that

0 < (u2
0 + v2

0)e−CT ≤ d(T ) = ũ2(T ) + ṽ2(T ) = ũ2(T ),

and this leads to (3.345), as desired. We remark that, in this way, we have found a
trajectory ã which leads to the victory of the first population in the shortest possible
time.

Theorem 6.15 in [115] assures that ã(t) ∈ L1[0, T ], so ã(t) is measurable. We have
that the two vectorial functions F and G, defined by

F (u, v) :=

(
u(1− u− v)
ρv(1− u− v)

)
and G(u, v) :=

(
−cu
−u

)
,

and satisfying f(x(t), a(t)) = F (x(t)) + a(t)G(x(t)), are analytic. Moreover the set
VAm,M is a subset of R2, therefore it can be seen as an analytic manifold with border
which is also a compact set. For all x0 ∈ VAm,M and t > 0 we have that the trajectory

starting from x0 satisfies x(τ) ∈ VAm,M for all τ ∈ [0, t]. Then, by Theorem 3.1 in
[111], there exists a couple (ã, x̃) analytic a part from a finite number of points, such
that (ã, x̃) solves (3.344).

Now, to study the range of ã, we apply the Pontryagin Maximum Principle (see
for example [115]). The Hamiltonian associated with system (3.344) is

H(x, p, p0, a) := p · f(x, a) + p0

where p = (pu, pv) is the adjoint to x = (u, v) and p0 is the adjoint to the cost
function identically equal to 1. The Pontryagin Maximum Principle tells us that,
since ã(t) and x̃(t) = (ũ(t), ṽ(t)) give the optimal solution, there exist a vectorial
function p̃ : [0, T ]→ R2 and a scalar p̃0 ∈ (−∞, 0] such that

dx̃

dt
(t) =

∂H

∂p
(x̃(t), p̃(t), p̃0, ã(t)), for a.a. t ∈ [0, T ],

dp̃

dt
(t) = −∂H

∂x
(x̃(t), p̃(t), p̃0, ã(t)), for a.a. t ∈ [0, T ],

(3.347)

and

H(x̃(t), p̃(t), p̃0, ã(t)) = max
a(·)∈[m,M ]

H(x̃(t), p̃(t), p̃0, a) for a.a. t ∈ [0, T ]. (3.348)

Moreover, since the final time is free, we have

H(x̃(T ), p̃(T ), p̃0, ã(T )) = 0. (3.349)
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Also, since H(x, p, p0, a) does not depend on t, we get

H(x̃(t), p̃(t), p̃0, ã(t)) = constant = 0, for a.a. t ∈ [0, T ], (3.350)

where the value of the constant is given by (3.349). By substituting the values
of f(x, a) in H(x, p, p0, a) and using (3.350), we get, for a.a. t ∈ [0, T ],

p̃uũ(1− ũ− ṽ − ãc) + p̃vρṽ(1− ũ− ṽ)− p̃vãũ+ p̃0 = 0,

where p̃ = (p̃u, p̃v).
Also, by (3.348) we get that

max
a∈[m,M ]

H(x̃(t), p̃(t), p̃0, a) = max
a∈[m,M ]

[
−aũ(cp̃u+p̃v)+p̃uũ(1−ũ−ṽ)+p̃vρṽ(1−ũ−ṽ)+p̃0

]
.

(3.351)
Thus, to maximize the term in the square brackets we must choose appropriately the
value of ã depending on the sign of ϕ(t) := cp̃u(t) + p̃v(t), that is we choose

ã(t) :=

{
m if ϕ(t) > 0,
M if ϕ(t) < 0.

(3.352)

When ϕ(t) = 0, we are for the moment free to choose ã(t) := as(t) for every as(·)
with range in [m,M ], without affecting the maximization problem in (3.351).

Our next goal is to determine that as(t) has the expression stated in (3.20) for
a.a. t ∈ [0, T ] ∩ {ϕ = 0}.

To this end, we claim that

ϕ̇(t) = 0 a.e. t ∈ [0, T ] ∩ {ϕ = 0}. (3.353)

Indeed, by (3.347), we know that p̃ is Lipschitz continuous in [0, T ], hence almost
everywhere differentiable, and thus the same holds for ϕ. Hence, up to a set of null
measure, given t ∈ [0, T ] ∩ {ϕ = 0}, we can suppose that t is not an isolated point
in such a set, and that ϕ is differentiable at t. That is, there exists an infinitesimal
sequence hj for which ϕ(t+ hj) = 0 and

ϕ̇(t) = lim
j→+∞

ϕ(t+ hj)− ϕ(t)

hj
= lim

j→+∞

0− 0

hj
= 0,

and this establishes (3.353).
Consequently, in light of (3.353), a.a. t ∈ [0, T ] ∩ {ϕ = 0} satisfies

0 = ϕ̇(t) = c
dp̃u
dt

(t) +
dp̃v
dt

(t)

= c
[
− p̃u(t)(1− 2ũ(t)− ṽ(t)− cas(t)) + p̃v(t)(ρṽ(t) + as(t))

]
+ p̃u(t)ũ(t)− p̃v(t)ρ(1− ũ(t)− 2ṽ(t)).

Now, since ϕ(t) = 0, we have that p̃v(t) = −cp̃u(t); inserting this information in the
last equation, we get

0 = −p̃uc(1− 2ũ− ṽ − asc)− p̃uρc2ṽ − p̃uasc2 + p̃uũ+ p̃uρc(1− ũ− 2ṽ). (3.354)
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Notice that if p̃u = 0, then p̃v = −cp̃u = 0; moreover, by (3.350), one gets p̃0 = 0. But
by the Pontryagin Maximum Principle one cannot have (p̃u, p̃v, p̃0) = (0, 0, 0), there-
fore one obtains p̃u 6= 0 in {ϕ = 0}. Hence, dividing (3.354) by p̃u and rearranging
the terms, one gets

ũ(2c+ 1− ρc) + cṽ(1− ρc− 2ρ) + c(ρ− 1) = 0. (3.355)

Differentiating the expression in (3.355) with respect to time, we get

ũ(2c+ 1− ρc)(1− ũ− ṽ − ac) + c(1− ρc− 2ρ)[ρṽ(1− ũ− ṽ)− aũ] = 0,

that yields

as =
(1− ũ− ṽ)(ũ(2c+ 1− ρc) + ρc)

2cũ(c+ 1)
, (3.356)

which is the desired expression. By a slight abuse of notation, we define the func-
tion as(t) = as(ũ(t), ṽ(t)) for t ∈ [0, T ]. Notice that since ũ(t) > 0 for t ∈ [0, T ], as(t)
is continuous for t ∈ [0, T ].
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Chapter 4

Decay estimates for evolution
equations with classical and
fractional time-derivatives

Using energy methods, we prove some power-law and exponential decay estimates
for classical and nonlocal evolutionary equations. The results obtained are framed
into a general setting, which comprise, among the others, equations involving both
standard and Caputo time-derivative, complex valued magnetic operators, fractional
porous media equations and nonlocal Kirchhoff operators.

Both local and fractional space diffusion are taken into account, possibly in a
nonlinear setting. The different quantitative behaviors, which distinguish polynomial
decays from exponential ones, depend heavily on the structure of the time-derivative
involved in the equation.

The content of this chapter comes from the paper [5] in collaboration with En-
rico Valdinoci and the paper [4] in collaboration with Serena Dipierro and Enrico
Valdinoci.

4.1 Introduction and main results

4.1.1 Setting of the problem

Fractional calculus is becoming popular thanks to both the deep mathematics that
it involves and its adaptability to the modelization of several real-world phenomena.
As a matter of fact, integro-differential operators can describe nonlocal interactions
of various type and anomalous diffusion by using suitable kernels or fractional time-
derivatives, see e.g. [71]. Integro-differential equations and fractional derivatives have
been involved in designing, for example, wave equations, magneto-thermoelastic heat
conduction, hydrodynamics, quantum physics, porous medium equations.

A wide literature is devoted to the study of existence, uniqueness, regularity and
asymptotic theorems. Here we study the behaviour of the Lebesgue norm of solutions
of integro-differential equations on bounded domains, extending the method of [43]
to a very broad class of nonlocal equations and obtaining a power-law decay in time
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of the Ls norm with s ≥ 1. Also, for the case of classical time-derivatives, we obtain
exponential decays in time. The difference between polynomial and exponential de-
cays in time is thus related to the possible presence of a fractional derivative in the
operator involving the time variable.

The setting in which we work takes into account a parabolic evolution of a function
under the action of a spatial diffusive operator, which possesses suitable “ellipticity”
properties, can be either classical or fractional, and can also be of nonlinear type. We
work in a very general framework that adapts to both local and nonlocal operators.
We comprise in this analysis also the case of complex valued operators and of a
combination of fractional and classical time-derivatives.

The main assumptions that we take is an “abstract” hypothesis which extends a
construction made in [43], and which, roughly speaking, can be seen as a quantitative
counterpart of the uniform ellipticity of the spatial diffusive operators. In [43], several
time-decay estimates have been given covering the cases in which the time-derivative
is of fractional type and the spatial operator is either the Laplacian, the fractional
Laplacian, the p−Laplacian and the mean curvature equation. In this chapter, we
deal with the cases in which the time-derivative can be either classical or fractional,
or a convex combination of the two, and we deal with new examples of spatial diffu-
sive operators, which include the case of a complex valued operators. In particular,
we present applications to the fractional porous medium equation, to the classical
and fractional Kirchhoff equations, to the classical and fractional magnetic operators.
Referring to [43] for the corresponding results, we also present in Table 4.1 the decay
results for the p−Laplacian, the nonlinear diffusion operator, the graphical mean cur-
vature operator, the fractional p−Laplacian, the anisotropic fractional p−Laplacian,
a second version of fractional porous medium (unfortunately, two different operators
are known under the same name), and the fractional graphical mean curvature.

We recall that the Caputo derivative of order α ∈ (0, 1) is given by

∂αt u(t) :=
d

dt

∫ t

0

u(τ)− u(0)

(t− τ)α
dτ

up to a normalizing constant (that we omit here for the sake of simplicity).
Let also λ1, λ2 ≥ 0 be fixed. We suppose, for concreteness, that

λ1 + λ2 = 1,

but up to a rescaling of the operator we can take λ1, λ2 any nonnegative number with
positive sum. Let Ω ⊂ Rn be a bounded open set and let u0 ∈ L∞(Rn) such that
suppu0 ⊂ Ω. Consider the Cauchy problem

(λ1∂
α
t + λ2∂t)[u] +N [u] = 0, for all x ∈ Ω, t > 0,

u(x, t) = 0, for all x ∈ Rn \ Ω, t > 0,
u(x, 0) = u0(x), for all x ∈ Rn,

(4.1)

where N is a possibly nonlocal operator. Given s ∈ [1,+∞) we want to find some
estimates on the Ls(Ω) norm of u. To this end, we exploit analytical techniques relying
on energy methods, exploiting also some tools that have been recently developed in
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[69, 119, 43]. Namely, as in [43], we want to compare the Ls norm of the solution
u with an explicit function that has a power law decay, and to do this we take
advantadge of a suitable comparison result and of the study of auxiliary fractional
parabolic equations as in [69, 119].

4.1.2 Notation and structural assumptions

Let us recall that for a complex valued function v : Ω→ C the Lebesgue norm is

‖v‖Ls(Ω) =

(∫
Ω

|v(x)|s dx
) 1

s

for any s ∈ [1,+∞). Also, we will call <{z} the real part of z ∈ C. The main
assumption we take is the following: there exist γ ∈ (0,+∞) and C ∈ (0,+∞) such
that

‖u(·, t)‖s−1+γ
Ls(Ω) ≤ C

∫
Ω

|u(x, t)|s−2<{ū(x, t)N [u](x, t)} dx. (4.2)

The constants γ and C and their dependence from the parameters of the problem
may vary from case to case. This structural assumption says, essentially, that N has
an elliptic structure and it is also related (via an integration by parts) to a general
form of the Sobolev inequality (as it is apparent in the basic case in which u is real
valued, s := 2 and Nu := −∆u).

In our setting, the structural inequality in (4.2) will be the cornerstone to obtain
general energy estimates, which, combined with appropriate barriers, in turn produce
time-decay estimates. The results obtained in this way are set in a general frame-
work, and then we make concrete examples of operators that satisfy the structural
assumptions, which is sufficient to establish asymptotic bounds that fit to the dif-
ferent cases of interest and take into account the peculiarities of each example in a
quantitative way.

Our general result also includes Theorem 1 of [43] as a particular case, since, if
N and u are real valued, the (4.2) boils down to hypothesis (1.3) of [43] (in any case,
the applications and examples covered here go beyond the ones presented in [43] both
for complex and for real valued operators).

4.1.3 Main results

The “abstract” result that we establish here is the following:

Theorem 4.1. Let u be a solution of the Cauchy problem (4.1), with N possibly
complex valued. Suppose that there exist s ∈ [1,+∞), γ ∈ (0,+∞) and C ∈ (0,+∞)
such that u satisfies (4.2). Then

(λ1∂
α
t + λ2∂t)‖u(·, t)‖Ls(Ω) ≤ −

‖u(·, t)‖γLs(Ω)

C
, for all t > 0, (4.3)

where C and γ are the constants appearing in (4.2). Furthermore,

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t
α
γ

, for all t > 0, (4.4)
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for some C∗ > 0, depending only on C, γ, α and ‖u0(·)‖Ls(Rn).

Theorem 4.1 here comprises previous results in [43], extending their applicability
to a wider class of equations, which include the cases of both standard and fractional
time-derivatives and complex valued operators.

We also recall that the power-law decay in (4.4) is due to the behaviour of the
solution of the equation

∂αt e(t) = −e(t), (4.5)

for t ∈ (0,+∞). Indeed, the solution of (4.5) is explicit in terms of the Mittag-Leffler
function and it is asymptotic to 1

tα
as t→ +∞ (see [80], [92]); notice that the latter

decay corresponds to the one in (4.5) when γ = 1.
As pointed out in [69], the power law decay for solutions of time-fractional equa-

tions is, in general, unavoidable. On the other hand, solutions of equations driven by
the standard time-derivative of the type

∂tv(t) +N [v](t) = 0

often have a faster decay in many concrete examples, for instance for N = −∆ where
exponential decay is attained. This particular feature of the classical heat equation
is in fact a special case of a general phenomenon, described in details in the following
result:

Theorem 4.2. Let u be a solution of the Cauchy problem (4.1) with only classi-
cal derivative (λ1 = 0) and N possibly complex valued. Suppose that there exist
s ∈ [1,+∞), γ ∈ (0,+∞) and C ∈ (0,+∞) such that u satisfies (4.2). Then, for
some C∗ > 0, depending only on the constants C and γ in (4.2), and on ‖u0(·)‖Ls(Rn),
we have that:

— if 0 < γ ≤ 1 the solution u satisfies

‖u(·, t)‖Ls(Ω) ≤ C∗ e
− t
C , for all t > 0; (4.6)

— if γ > 1, the solution u satisfies

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t
1

γ−1

, for all t > 0. (4.7)

We stress that Theorem 4.2 is valid for a very general class of diffusive opera-
tors N , including also the ones which take into account fractional derivatives in the
space-variables. In this sense, the phenomenon described in Theorem 4.2 is that:

— on the one hand, the fractional behaviour induces power-law decay,

— on the other hand, for long times, the interactions between different derivatives
“decouple”: for instance, a space-fractional derivative, which would naturally
induce a polynomial decay, does not asymptotically “interfere” with a classical
time-derivative in the setting of Theorem 4.2, and the final result is that the
decay in time is of exponential, rather than polynomial, type.
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The fact that long-time asymptotics of mixed type (i.e. classical time-derivatives
versus fractional-space diffusion) reflect the exponential decay of linear ordinary dif-
ferential equations was also observed in [93] for equations inspired by the Peierls-
Nabarro model for atom dislocations in crystal.

As we will see in the proof of Theorem 4.2, the idea is to find a supersolution of
(4.3) and use a comparison principle in order to estimate the decay of the solution u.
For the case of mixed derivatives, Vergara and Zacher [119] find both a supersolution
and a subsolution decaying as t−

α
γ . When α→ 1, thus when the mixed derivative is

approaching the classical one, the subsolution tends to 0. This allows possibly better
decays, which are in fact proven. On the other side, the supersolution gains some
extra decay, possibly reaching an exponential decay.

The optimality of the decay estimates obtained in our results and some further
comparisons with the existing literature are discussed in Subsection 4.1.4.

4.1.4 Applications

We now present several applications of Theorem 4.1 to some concrete examples.

The case of the fractional porous medium equation. Let 0 < σ < 1 and

K : Rn → Rn (4.8)

be the positive function
K(x) := c(n, σ)|x|−(n−2σ),

being c(n, σ) a constant. The fractional 1 porous medium operator (as defined in [29])
is

N [u] := −∇ · (u∇K(u)), where K(u) := u ? K (4.9)

where ? denotes the convolution. This operator is used to describe the diffusion of
a liquid under pressure in a porous environment in presence of memory effects and
long-range interactions, and also has some application in biological models, see [29].

In this framework, the following result holds:

Theorem 4.3. Take u0(x) ∈ L∞(Rn) and let u be a solution in Ω× (0,+∞) to (4.1)
with N the fractional porous medium operator as in (4.9). Then for all s ∈ (1,+∞)
there exists C∗ > 0 depending on n, s, σ, Ω such that

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + tα/2
.

1. As a matter of fact, as clearly explained in https://www.ma.utexas.edu/mediawiki/index.

php/Nonlocal_porous_medium_equation, the fractional porous medium equation is “the name
currently given to two very different equations”. The one introduced in [39] has been studied in
details in [43] in terms of decay estimates. We focus here on the equation introduced in [29]. As
discussed in the above mentioned mediawiki page, the two equations have very different structures
and typically exhibit different behaviors, so we think that it is a nice feature that, combining the
results here with those in [43], it follows that a complete set of decay estimates is valid for both the
fractional porous medium equations at the same time.

https://www.ma.utexas.edu/mediawiki/index.php/Nonlocal_porous_medium_equation
https://www.ma.utexas.edu/mediawiki/index.php/Nonlocal_porous_medium_equation
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Also, in the case of only classical derivative (λ1 = 0), we have

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t

where C∗ > 0, possibly different than before, depends on n, s, σ, Ω.

The case of the Kirchhoff operator and the fractional Kirchhoff operator.
The Kirchhoff equation describes the movement of an elastic string that is constrained
at the extrema, taking into account a possible growth of the tension of the vibrating
string in view of its extension. It was first introduced by Gustav Robert Kirchhoff
in 1876, see https://archive.org/details/vorlesungenberm02kircgoog, and
fully addressed from the mathematical point of view in the 20th century, see [23].

Parabolic equations of Kirchhoff type have been widely studied during the ’90s
(see for example [56] and the reference therein). Recently a fractional counterpart to
the Kirchhoff operator has been introduced by Fiscella and Valdinoci [49].

The setting that we consider here is the following. Let m : [0,+∞)→ [0,+∞) be
an nondecreasing function. A typical example is

m(ξ) = m0 + bξ (4.10)

where b > 0 and m0 ≥ 0. We consider here both the cases 2 in which m(0) > 0 and in
which m takes the form in (4.10) with m0 = 0. In this setting, the Kirchhoff operator
that we take into account is

N [u] := m
(
‖∇u‖2

L2(Ω)

)
(−∆)u = 0. (4.11)

Then, we obtain the following decay estimates:

Theorem 4.4. Let u be the solution of problem (4.1) with N the Kirchhoff operator
in (4.11). Then there exist γ > 0 and C > 0 depending on n, s, Ω, inf m(t) such
that

‖u(·, t)‖Ls(Ω) ≤
C

1 + t
α
γ

, for all t > 0,

in the following cases:

(i) for all s ∈ [1,+∞) when m is non-degenerate; in particular, in this case γ = 1.

(ii) for all s ∈ [1,+∞) when m is degenerate and n ≤ 4; in particular, in this
case γ = 3.

(iii) for s ≤ 2n
n−4

when m is degenerate and n > 4; in particular, in this case γ = 3.

Moreover, if we take λ1 = 0, then there exists C∗ > 0, C ′ > 0 depending on
n, s, Ω, inf m(t), for which the following statements hold true:

— in case (i) we have

‖u(·, t)‖Ls(Ω) ≤ C∗ e
− t
C′ , for all t > 0,

2. The case m0 = 0 for (4.10) is usually called the degenerate case and it presents several
additional difficulties with respect with the non-degenerate case.

https://archive.org/details/vorlesungenberm02kircgoog


4.1 Introduction and main results 169

— in cases (ii) and (iii) we have

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t
1
2

, for all t > 0.

Next, we consider the case of the fractional Kirchhoff operator. We take a non-
decreasing positive function M : [0,+∞) → [0,+∞). As for the classic Kirchhoff
operator, we consider either the case when M(0) > 0 or the case M(ξ) = bξ with
b > 0. We fix σ ∈ (0, 1). We define the norm

‖u(·, t)‖Z =

(∫
R2n

|u(x, t)− u(y, t)|2

|x− y|n+2σ
dxdy

) 1
2

. (4.12)

Finally, the fractional Kirchhoff operator reads

N [u](x, t) := −M
(
‖u(·, t)‖2

Z

) ∫
Rn

u(x+ y, t) + u(x− y, t)− 2u(x, t)

|x− y|n+2σ
dy. (4.13)

In this setting, our result is the following:

Theorem 4.5. Let u be the solution of problem (4.1) with N the fractional Kirchhoff
operator in (4.13). Then there exist γ > 0 and C > 0, depending on K, n, s, Ω
and inf M(ξ), such that

‖u(·, t)‖Ls(Ω) ≤
C

1 + t
α
γ

, for all t > 0,

in the following cases:

(i) for all s ∈ [1,+∞) when M is non-degenerate; in particular, in this case γ = 1.

(ii) for all s ∈ [1,+∞) when M is degenerate and n ≤ 4σ; in particular, in this
case γ = 3.

(iii) for s ≤ 2n
n−4σ

when M is degenerate and n > 4σ; in particular, in this case γ = 3.

Moreover, if we take λ1 = 0, then there exists C∗ > 0, depending on n, s, Ω, inf M(t),
such that:

— in case (i) we have

‖u(·, t)‖Ls(Ω) ≤ C∗ e
− t
C′ , for all t > 0,

for some C ′ > 0,

— in cases (ii) and (iii) we have

‖u(·, t)‖Ls(Ω) ≤
C∗

1 + t
1
2

, for all t > 0.

It is interesting to remark that the cases (i), (ii) and (iii) in Theorem 4.5 formally
reduce to those in Theorem 4.4 when σ → 1.
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The case of the magnetic operator and the fractional magnetic operator.
We consider here an operator similar to Schrödinger equation with a magnetic po-
tential (see e.g. [67] and the references therein), that is

N [u] := −(∇− iA)2u(x, t) = −∆u+ |A|2u− iA · ∇u−∇ · (iAu) (4.14)

where A : Rn → Rn has the physical meaning of a magnetic field (in this case, one
usually studies the three-dimensional case n = 3, but our approach is general). The
goal of these pages is to apply Theorem 4.1 to the magnetic operator in (4.14), thus
obtaining decay estimates in time in this framework.

It is interesting to remark that the operator in (4.14) is structurally very different
from the linear Schrödinger operator, which corresponds to the choice

N [u] = −i(∆ + V )u. (4.15)

Indeed, for the operator in (4.15) decay estimates in time do not 3 hold in general,
not even in the case of classical time-derivatives.

The decay estimate for the classical magnetic operator is the following:

Theorem 4.6. Let u be the solution of problem (4.1) with N the magnetic operator
in (4.14). Then for all s ∈ [1,+∞) there exist C1 > 0 depending on A, n, s and σ
such that

‖u(·, t)‖Ls(Ω) ≤
C1

1 + tα
for all t > 0.

Moreover, in the case of classical derivatives (λ1 = 0), we have

‖u(·, t)‖Ls(Ω) ≤ C2 e
− t
C3 for all t > 0

for some C2, C3 > 0, depending on A, n, s and σ.

In [38] D’Avenia and Squassina introduced a fractional operator where a magnetic
field A : Rn → Rn appears. Their aim was to study the behaviour of free particles

3. Indeed, if V ∈ R and u is a solution of the Schrödinger parabolic equation ∂tu+ i(∆+V )u = 0
in Ω with homogeneous data along ∂Ω, the conjugated equation reads ∂tū − i(∆ + V )ū = 0, and
therefore

∂t

∫
Ω

|u(x, t)|2 dx =

∫
Ω

u(x, t) ∂tū(x, t) + ū(x, t) ∂tu(x, t) dx

= i

∫
Ω

u(x, t) ∆ū(x, t)− ū(x, t) ∆u(x, t) dx

=

∫
Ω

∇ ·
(
u(x, t)∇ū(x, t)− ū(x, t)∇u(x, t)

)
dx = 0,

where the last identity follows from the Divergence Theorem and the boundary conditions. This
shows that decay estimates in time are in general not possible in this setting, thus highlighting
an interesting difference between the Schrödinger operator in (4.15) and the magnetic operator
in (4.14).

This difference, as well as the computation above, has a natural physical meaning, since in the
Schrödinger equation the squared modulus of the solution represents the probability density of a
wave function, whose total amount remains constant if no dissipative forces appear in the equation.
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interacting with a magnetic field. For a fixed σ ∈ (0, 1), such an operator in dimension
n reads

N [u](x, t) :=

∫
Rn

u(x, t)− ei(x−y)A(x+y
2

)u(y, t)

|x− y|n+2σ
dy. (4.16)

In the appropriate framework, the fractional magnetic operator in (4.16) recovers the
classical magnetic operator in (4.14) as σ → 1, see [110] (see also [88] for a general
approach involving also nonlinear operators).

In the setting of the fractional magnetic operator, we present the following result:

Theorem 4.7. Let u be the solution of problem (4.1) with N the fractional magnetic
operator in (4.16). Then for all s ∈ [1,+∞) there exist C1 > 0 depending on n, s
and σ such that

‖u(·, t)‖Ls(Ω) ≤
C1

1 + tα
for all t > 0.

Moreover, in the case of classical derivatives (λ1 = 0), we have

‖u(·, t)‖Ls(Ω) ≤ C2 e
− t
C3 for all t > 0,

for some C2, C3 > 0 depending on n, s and σ.

The magnetic operators present a crucial difference with respect to the other
operators considered in the previous applications, since they are complex valued
operators.

Other operators. We point out that condition (4.2) has already been checked in
many cases in [43]. We present here very briefly the operators treated there that may
need an introduction. The list includes the cases of the classical p-Laplacian and
porous media diffusion (see [41, 118])

∆pu
m := div(|∇um|p−2∇um), with p ∈ (1,+∞) and m ∈ (0,+∞),

the case of graphical mean curvature, given in formula (13.1) of [59],

div

(
∇u√

1 + |∇u|2

)
,

the case of the fractional p-Laplacian (see e.g. [26])

(−∆)spu(x) :=

∫
Rn

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|n+sp
dy,

with p ∈ (1,+∞) and s ∈ (0, 1),

and possibly even the sum of different nonlinear operator of this type, with coefficients
βj > 0,

N∑
j=1

βj(−∆)sjpju, with pj ∈ (1,+∞) and sj ∈ (0, 1),
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the case of the anisotropic fractional Laplacian, that is the sum of fractional direc-
tional derivatives in the directions of the space ej, given by

(−∆β)σu(x) =
n∑
j=1

βj(−∂2
xj

)σju(x)

for βj > 0, β = (β1, . . . , βn) and σ = (σ1, . . . , σn), where

(−∂2
xj

)σju(x) =

∫
R

u(x)− u(x+ ρej)

ρ1+2σj
dρ,

considered for example in [46]. The list of possible diffusion operators continues with
a fractional porous media operators (see [39])

P1,s(u) := (−∆)sum with s ∈ (0, 1) and m ∈ (0,+∞),

and the graphical fractional mean curvature operator (see [9])

Hs(u)(x) :=

∫
Rn
F

(
u(x)− u(x+ y)

|y|

)
dy

|y|n+s
,

with s ∈ (0, 1) and F (r) :=

∫ r

0

dτ

(1 + τ 2)
n+1+s

2

,

For the sake of brevity, we recall the corresponding results in Table 4.1.

The examples provided here show that the “abstract” structural hypothesis (4.2)
is reasonable and can be explicitly checked in several cases of interest. We are also
confident that other interesting examples fulfilling such an assumption can be found,
therefore Theorem 4.1 turns out to play a pivotal role in the asymptotics of real and
complex valued, possibly nonlinear, and possibly fractional, operators.

Comparison with the existing literature

In general, in problems of the type (4.1) it is very difficult to provide explicit
solutions and often the system has no unique solution, see e.g. [25]. Therefore, even
partial information on the solutions is important.

In the case of a Kirchhoff parabolic equation with purely classical time-derivative
in the degenerate case m(0) = 0, Ghisi and Gobbino [56] found the time-decay
estimate

c(1 + t)−1 ≤ ‖∇u(·, t)‖2
L2(Ω) ≤ C(1 + t)−1 for all t > 0. (4.17)

for some costants C, c > 0 depending on initial data. From this, performing an
integration of the gradient along paths 4, one can find the estimate

‖u(·, t)‖L2(Ω) ≤ C(1 + t)−
1
2 for all t > 0. (4.19)

4. More precisely, the fact that (4.17) implies (4.19) can be seen as a consequence of the following



4.1 Introduction and main results 173

Operator N Values of λ1, λ2 Range of ` Decay rate Θ

Nonlinear clas-

sical diffusion
∆pum λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1

t
α

m(p−1)

Nonlinear clas-

sical diffusion
∆pum with (m, p) 6= (1, 2) λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = 1

t
1

m(p−1)−1

Bi-Laplacian ∆2u λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−
t
C

Graphical

mean curva-

ture

div

(
∇u√

1+|∇u|2

)
λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1

tα

Graphical

mean curva-

ture

div

(
∇u√

1+|∇u|2

)
λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−

t
C

Fractional

p-Laplacian
(−∆)spu λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1

t
α
p−1

Fractional

p-Laplacian
(−∆)spu, p > 2 λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = 1

t
1
p−2

Fractional

p-Laplacian
(−∆)spu, p ≤ 2 λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−

t
C

Superposition

of fractional

p-Laplacians

∑N
j=1 βj(−∆)

sj
pju, βj > 0 λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1

t
α

pmax−1

Superposition

of fractional

p-Laplacians

∑N
j=1 βj(−∆)

sj
pju,

with βj > 0 and pmax > 2
λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = 1

t
1

pmax−2

Superposition

of fractional

p-Laplacians

∑N
j=1 βj(−∆)

sj
pju,

with βj > 0 and pmax ≤ 2
λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−

t
C

Superposition

of anisotropic

fractional

Laplacians

∑N
j=1 βj(−∂2xj )sju, βj > 0 λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1

tα

Superposition

of anisotropic

fractional

Laplacians

∑N
j=1 βj(−∂2xj )sju, βj > 0 λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−

t
C

Fractional

porous media I
P1,s(u) λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1

t
α
m

Fractional

porous media I
P1,s(u), m > 1 λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = 1

t
1

m−1

Fractional

porous media I
P1,s(u), m ≤ 1 λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−

t
C

Fractional

graphical mean

curvature

Hs(u) λ1 ∈ (0, 1], λ2 ∈ [0, 1) ` ∈ [1,+∞) Θ(t) = 1
tα

Fractional

graphical mean

curvature

Hs(u) λ1 = 0, λ2 = 1 ` ∈ [1,+∞) Θ(t) = e−
t
C

Table 4.1 – Results from [43].
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The latter is exactly the estimate we found in Theorem 4.4 as a particular case of
our analysis.

The fractional porous medium equation with classical derivative has been studied
by Biler, Karch and Imbert in [25], establishing some decay estimates of the Ls norm,
such as

‖u(·, t)‖Ls(Ω) ≤ t−
n

n+2−2σ (1− 1
s). (4.20)

As a matter of fact, this decay is slower than what we find in Theorem 4.3, which is
asymptotic to t−1 (in this sense, Theorem 4.3 here can be seen as an improvement of
the estimates in [25]).

On the other hand, in [25] the Authors also provide a weak solution that has
exactly the decay in (4.20), thus showing the optimality of (4.20) in this generality,
while our result holds for strong solutions. Then, comparing Theorem 4.3 here with
the results in (4.20) we obtain that a better decay is valid for regular solutions with
respect to the one which is valid also for irregular ones.

4.2 Proofs

This section contains the proofs of our main results. We start with the proof of
Theorem 4.1.

observation: for every u ∈ C∞
0 (Ω),

‖u‖L2(Ω) ≤ C ‖∇u‖L2(Ω), (4.18)

where C > 0 depends on n and Ω. Indeed, fix x0 ∈ Rn such that B1(x0) ⊂ Rn \Ω and Ω ⊂ BR(x0),
for some R > 1. Then, for every x ∈ Ω we have that |x− x0| ∈ [1, R] and thus

|u(x)|2 = |u(x)− u(x0)|2 =

∣∣∣∣∫ 1

0

∇u(x0 + t(x− x0)) · (x− x0) dt

∣∣∣∣2
≤ |x− x0|2

∫ 1

0

|∇u(x0 + t(x− x0))|2 dt ≤ R2

∫ 1

0

|∇u(x0 + t(x− x0))|2 dt.

On the other hand, if t ∈ [0, 1/R) we have that

∣∣t(x− x0)
∣∣ < |x− x0|

R
≤ 1

and so x0 + t(x− x0) ∈ B1(x0) ⊂ Rn \ Ω, which in turn implies that ∇u(x0 + t(x− x0)) = 0. This
gives that

|u(x)|2 ≤ R2

∫ 1

1/R

|∇u(x0 + t(x− x0))|2 dt.

Hence, using the substitution x 7→ y := x0 + t(x− x0), we conclude that∫
Ω

|u(x)|2 dx ≤ R2

∫ 1

1/R

[∫
Rn
|∇u(x0 + t(x− x0))|2 dx

]
dt = R2

∫ 1

1/R

[∫
Rn
|∇u(y)|2 dy

tn

]
dt

≤ Rn+2

∫ 1

1/R

[∫
Rn
|∇u(y)|2 dy

]
dt ≤ Rn+2 ‖∇u‖2L2(Rn) = Rn+2 ‖∇u‖2L2(Ω),

which proves (4.18).
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In order to prove Theorem 4.1, we need a comparison result for the equation
involving the mixed time-derivative. As a matter of fact, comparison results for the
case of the Caputo derivative are available in the literature, see e.g. Lemma 2.6 of
[119]. In our arguments we employ the differentiability of u and the fact that u is a
strong solution, and we obtain:

Lemma 4.8. Let T ∈ (0,+∞)∪{+∞} and w, v : [0, T )→ [0,+∞) be two Lipschitz
continuous functions. Assume that w is a supersolution and v is a subsolution at
each differentiability point for the equation

λ1∂
α
t u(t) + λ2∂tu(t) = −kuγ(t) (4.21)

with λ1, λ2, γ, k > 0.

Then: if

w(0) > v(0), (4.22)

we have that

w(t) > v(t) for all t ∈ (0, T ). (4.23)

Proof. By contradiction, let us suppose that for some time t ∈ (0, T ) we have w(t) =
v(t), and let us call τ the first time for which the equality is reached. Then, since w
is a supersolution and v is a subsolution of (4.21), we obtain that

λ1∂
α
t (w − v)(τ) + λ2∂t(w − v)(τ) ≥ −k[wγ(τ)− vγ(τ)] = 0. (4.24)

Now we distinguish two cases, depending on whether or not w − v is differentiable
at τ . To start with, suppose that w − v is differentiable at τ . Since w ≥ v in (0, τ),
we have that

∂t(w − v)(τ) ≤ 0.

From this and (4.24), we obtain that

0 ≤ ∂αt (w − v)(τ)

=
(w − v)(τ)− (w − v)(0)

τα
+ α

∫ τ

0

(w − v)(τ)− (w − v)(ρ)

(τ − ρ)1+α
dρ

= −(w − v)(0)

τα
− α

∫ τ

0

(w − v)(ρ)

(τ − ρ)1+α
dρ

≤ −(w − v)(0)

τα
.

This is in contradiction with (4.22) and so it proves (4.23) in this case.

Now we focus on the case in which w − v is not differentiable at τ . Then, there
exists a sequence tj ∈ (0, τ) such that w−v is differentiable at tj, with ∂t(w−v)(tj) ≤ 0
and tj → τ as j → +∞. Consequently, since w is a supersolution and v is a
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subsolution of (4.21), we obtain that

(w − v)(tj)− (w − v)(0)

tαj
+ α

∫ tj

0

(w − v)(tj)− (w − v)(ρ)

(tj − ρ)1+α
dρ

= ∂αt (w − v)(tj)

≥ ∂αt (w − v)(tj) +
λ2

λ1

∂t(w − v)(tj)

≥ − k

λ1

[wγ(tj)− vγ(tj)].

(4.25)

Now we observe that if f is a Lipschitz function and tj → τ > 0 as j → +∞, then

lim
j→+∞

∫ tj

0

f(tj)− f(ρ)

(tj − ρ)1+α
dρ =

∫ τ

0

f(τ)− f(ρ)

(τ − ρ)1+α
dρ. (4.26)

To check this, let

Fj(ρ) := χ(0,tj)(ρ)
f(tj)− f(ρ)

(tj − ρ)1+α
,

and let E ⊂ (0,+∞) be a measurable set, with measure |E| less than a given δ > 0.
Let also q := 1+α

2α
> 1 and denote by p its conjugated exponent. Then, by Hölder

inequality, for large j we have that∫
E

|Fj(ρ)| dρ ≤ |E|1/p
(∫ +∞

0

|Fj(ρ)|q dρ
)1/q

≤ δ1/p

(∫ tj

0

|f(tj)− f(ρ)|q

(tj − ρ)(1+α)q
dρ

)1/q

≤ L δ1/p

(∫ tj

0

dρ

(tj − ρ)αq

)1/q

= L δ1/p

(∫ tj

0

dρ

(tj − ρ)(1+α)/2

)1/q

= L δ1/p

(
2t

(1−α)/2
j

1− α

)1/q

≤ L

(
2(τ + 1)(1−α)/2

1− α

)1/q

δ1/p,

where L is the Lipschitz constant of f . Consequently, by the Vitali Convergence
Theorem, we obtain that

lim
j→+∞

∫ +∞

0

Fj(ρ) dρ =

∫ +∞

0

lim
j→+∞

Fj(ρ) dρ,

which gives (4.26), as desired.
Now, we take the limit as j → +∞ in (4.25), exploiting (4.26) and the fact

that w(τ) = v(τ). In this way, we have that

−(w − v)(0)

τα
− α

∫ τ

0

(w − v)(ρ)

(τ − ρ)1+α
dρ ≥ 0.
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Since w ≥ v in (0, τ), the latter inequality implies that

−(w − v)(0)

τα
≥ 0.

This is in contradiction with (4.22) and so it completes the proof of (4.23).

It is also useful to observe that Lemma 4.8 holds true also for the classical deriva-
tive (i.e. when λ1 = 0). We give its statement and proof for the sake of completeness:

Lemma 4.9. Let T ∈ (0,+∞) ∪ {+∞}, w, v : [0, T ) → [0,+∞) be two Lipschitz
continuous functions. Assume that w is a supersolution and v is a subsolution at
each differentiability point for the equation

∂tu(t) = −kuγ(t) (4.27)

with γ, k > 0.
Then: if

w(0) > v(0), (4.28)

we have that
w(t) > v(t) for all t ∈ (0, T ). (4.29)

Proof. Suppose that (4.29) is false. Then there exists τ ∈ (0, T ) such that w > v
in (0, τ) and

w(τ) = v(τ). (4.30)

We fix ε > 0, to be taken as small as we wish in the sequel, and define

f(t) := w(t)− v(t) + ε (t− τ). (4.31)

We observe that

f(0) = w(0)− v(0)− ετ ≥ w(0)− v(0)

2
> 0,

as long as ε is sufficiently small, and f(τ) = w(τ) − v(τ) = 0. Therefore there
exists τε ∈ (0, τ ] such that

f > 0 in (0, τε) and f(τε) = 0. (4.32)

We claim that
lim
ε→0+

τε = τ. (4.33)

Indeed, suppose, by contradiction, that, up to a subsequence, τε converges to
some τ0 ∈ [0, τ) as ε→ 0+. Then we have that

0 = lim
ε→0+

f(τε) = lim
ε→0+

w(τε)− v(τε) + ε (τε − τ) = w(τ0)− v(τ0).

This is in contradiction with the definition of τ and so (4.33) is proved.
Now, from (4.32), we know that there exists a sequence tj ∈ (0, τε] such that f is

differentiable at tj, ∂tf(tj) ≤ 0 and tj → τε as j → +∞.
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Accordingly, we deduce from (4.27) and (4.31) that

0 ≥ ∂tf(tj) = ∂t(w − v)(tj) + ε ≥ −k
(
wγ(tj)− vγ(tj)

)
+ ε.

Hence, taking the limit as j → +∞,

ε

k
≤ wγ(τε)− vγ(τε) =

(
v(τε) + ε (τ − τε)

)γ − vγ(τε). (4.34)

We claim that
lim inf
ε→0+

v(τε) > 0. (4.35)

Indeed, if not, by (4.30) and (4.33),

0 = lim inf
ε→0+

v(τε) = v(τ) = w(τ). (4.36)

We observe that this implies that

γ ∈ (0, 1). (4.37)

Indeed, since w is a supersolution of (4.27), we have that

w(t) ≥ w(0) e−kt, when γ = 1

and w(t) ≥ 1(
1

wγ−1(0)
+ k(γ − 1)t

) 1
γ−1

, when γ > 1,

as long as w(t) > 0, and so for all t > 0. In particular, we have that w(τ) > 0, in
contradiction with (4.36), and this proves (4.37).

Then, we use that v is a subsolution of (4.27) and (4.36) to write that, for any t ∈
(0, τ),

−v
1−γ(t)

1− γ
=
v1−γ(τ)− v1−γ(t)

1− γ
=

1

1− γ

∫ τ

t

∂ρ(v
1−γ(ρ)) dρ =

∫ τ

t

∂tv(ρ)

vγ(ρ)
dρ ≤ −k(τ−t).

Therefore, recalling (4.37),

v1−γ(t) ≥ k(1− γ)(τ − t),

and thus
v(t) = v(t) ≥

(
k(1− γ)(τ − t)

)1/(1−γ)
. (4.38)

Similarly, using that w is a supersolution of (4.27) and (4.36) we obtain that, for
any t ∈ (0, τ),

w(t) ≤
(
k(1− γ)(τ − t)

)1/(1−γ)
.

Comparing this and (4.38), we conclude that

w(0) ≤
(
k(1− γ)τ

)1/(1−γ) ≤ v(0),

which is in contradiction with (4.28), and so the proof of (4.35) is complete.
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Then, using (4.34) and (4.35), a Taylor expansion gives that

1

k
≤ vγ(τε)

ε

[(
1 +

ε (τ − τε)
v(τε)

)γ
− 1

]
=

vγ(τε)

ε

[
γε (τ − τε)
v(τε)

+O

(
ε2 (τ − τε)2

v2(τε)

)]
=

γ (τ − τε)
v1−γ(τε)

+O

(
ε (τ − τε)2

v2−γ(τε)

)
.

Then, sending ε→ 0+ and recalling (4.33) and (4.35), we conclude that 1
k
≤ 0. This

is a contradiction and the proof of (4.29) is thereby complete.

With this preliminary work, we are in the position of proving the general claim
stated in Theorem 4.1.

Proof of Theorem 4.1. First, notice that

∂t|u|s = s|u|s−1

(
<(u)∂t<(u) + =(u)∂t=(u)

|u|

)
= s|u|s−2<{ū ∂tu}. (4.39)

Using (4.39) and exchanging the order of the integral and the derivative, we have∫
Ω

|u|s−2<{ū ∂tu} dx =

∫
Ω

∂t|u|s

s
dx =

1

s
∂t

∫
Ω

|u|s dx =
1

s
∂t‖u(·, t)‖sLs(Ω)

= ‖u(·, t)‖s−1
Ls(Ω)∂t‖u(·, t)‖Ls(Ω).

(4.40)

Now we claim that

‖u(·, t)‖s−1
Ls(Ω)∂

α
t (‖u(·, t)‖Ls(Ω)) ≤

∫
Ω

|u(x, t)|s−2<{ū(x, t)∂αt (u(x, t))} dx. (4.41)

This formula is similar to one given in Corollary 3.1 of [119] for general kernels. In our
setting, we provide an easier proof for the case of the Caputo derivative, comprising
also the case of complex valued operators. To prove (4.41), using the definition of
Caputo derivative we see that∫

Rn
|u(x, t)|s−2<{ū(x, t)∂αt u(x, t)} dx

=

∫
Ω

|u(x, t)|s−2<
{
ū(x, t)

[
u(x, t)− u(x, 0)

tα
+ α

∫ t

0

u(x, t)− u(x, τ)

(t− τ)1+α
dτ

]}
dx

=

∫
Ω

|u(x, t)|s−2

(
|u(x, t)|2 −<{ū(x, t)u(x, 0)}

tα

+ α

∫ t

0

|u(x, t)|2 −<{ū(x, t)u(x, τ)}
(t− τ)1+α

dτ

)
dx.
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Hence, by using the Hölder inequality, we get∫
Rn
|u(x, t)|s−2<{ū(x, t)∂αt u(x, t)} dx

≥
‖u(·, t)‖sLs(Ω) − ‖u(·, t)‖s−1

Ls(Ω)‖u(·, 0)‖Ls(Ω)

tα
+ α

∫ t

0

‖u(·, t)‖sLs(Ω)

(t− τ)1+α
dτ

− α
∫ t

0

‖u(·, t)‖s−1
Ls(Ω)‖u(·, τ)‖Ls(Ω)

(t− τ)1+α
dτ

= ‖u(·, t)‖s−1
Ls(Ω)

[
‖u(·, t)‖Ls(Ω) − ‖u(·, 0)‖Ls(Ω)

tα

+ α

∫ t

0

‖u(·, t)‖Ls(Ω) − ‖u(·, τ)‖Ls(Ω)

(t− τ)1+α
dτ

]
= ‖u(·, t)‖s−1

Ls(Ω)∂
α
t ‖u(·, t)‖Ls(Ω).

This completes the proof of (4.41).
Now, to make the notation simpler, we set v(t) := ‖u(·, t)‖Ls(Ω). By combining

(4.40) and (4.41), we find that

vs−1(t) (λ1∂
α
t v(t) + λ2∂tv(t)) ≤

∫
Ω

|u|s−2(x, t)<{ū(x, t) (λ1∂
α
t u(x, t) + λ2∂tu(x, t))} dx

and so, using the fact that u is a solution of (4.1), we conclude that

vs−1(t) (λ1∂
α
t v(t) + λ2∂tv(t)) ≤ −

∫
Ω

|u|s−2(x, t)<{ū(x, t)N [u](x, t)}dx.

From this, we use the structural hypothesis (4.2) and we obtain that

vs−1(t) (λ1∂
α
t v(t) + λ2∂tv(t)) ≤ −v

s−1+γ(t)

C
.

Hence, we have established the claim in (4.3) for all t > 0 such that v(t) > 0. Then,
suppose that for some t̄ > 0 we have v(t̄) = 0. Since v is nonnegative, it follows that

∂tv(t̄) = 0. (4.42)

On the other hand, if v(t) = 0, then

∂αt v(t) ≤ 0, (4.43)

because

∂αt v(t) =
v(t)− v(0)

tα
+

∫ t

0

v(t)− v(τ)

(t− τ)1+α
dτ ≤ −v(0)

tα
−
∫ t

0

v(τ)

(t− τ)1+α
dτ ≤ 0.

So, by (4.42) and (4.43), (λ1∂
α
t v(t̄) + λ2∂tv(t̄)) ≤ 0, which gives (4.3) also in this

case, as desired.
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Now we exhibit a supersolution w(t) of the equation (λ1∂
α
t +λ2∂t)v(t) = −νvγ(t),

where ν := 1
C

. For this, we recall Section 7 of [119], and we have that the function

w(t) :=

{
u0 if t ∈ [0, t0],

Kt−
α
γ if t ≥ t0,

with K := u0t
α
γ

0 is a supersolution of ∂αt w(t) = −νwγ(t) as long as

t0 ≥
u1−γ

0

ν

(
2α

Γ(1− α)
+
α

γ

2α+α
γ

Γ(2− α)

)
.

We claim that ∂tw(t) ≥ −νwγ(t). To prove this, it is equivalent to check that

α

γ
u0 t

α
γ

0 t
−α
γ
−1 ≤ ν uγ0 t

α
0 t
−α,

which is in turn equivalent to

α

γ ν
u1−γ

0 t
α
γ
−α

0 ≤ t1+α
γ
−α,

and the latter equation holds if

t0 ≥ max

{
1,
α

γν
u1−γ

0

}
.

Therefore for t0 big enough we have that w(t) is a supersolution of the equation
(λ1∂

α
t + λ2∂t)v(t) = −νvγ(t). Also, w(t) satisfies

w(t) ≤ c

1 + t
α
γ

for some c > 0 depending only on ν, γ, α and w(0). Hence by the comparison
principle in Lemma 4.8, we infer that v(t) ≤ w(t), which completes the proof of the
desired result in (4.4).

Proof of Theorem 4.2. The proof is identical to the one of Theorem 4.1 a part from
the construction of the supersolution (and from the use of the comparison principle
in Lemma 4.9 rather than in Lemma 4.8). Our aim is now to find a supersolution to
the equation (4.3) in the case λ1 = 0, that we can write as

v′(t) = − 1

C
vγ(t) (4.44)

where C is the constant given in the hypothesis. To construct this supersolution, we
distinguish the cases 0 < γ ≤ 1 and γ > 1.

We define
w0 := ‖u0(·)‖Ls(Ω), (4.45)

t0 :=

{
0 if γ = 1,

max
{

0, C
1−γ (w1−γ

0 − 1)
}

if 0 < γ < 1,
(4.46)
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and

θ0 =

(
w0 −

(1− γ)

C
t0

)
. (4.47)

Notice that, for 0 < γ < 1
θ0 ≤ 1. (4.48)

In fact,
C

1− γ
(w1−γ

0 − 1) ≤ t0

implies (
w1−γ

0 − (1− γ)

C
t0

)
≤ 1

and that proves (4.48). Then, we see that the function

w(t) :=


(
w1−γ

0 − (1− γ)t

C

) 1
1−γ

, if t ∈ [0, t0]

θ0 e
t0−t
C , if t ∈ (t0,+∞)

(4.49)

is a continuous and Lipschitz function, moreover it is a solution of (4.44) in the case
γ = 1 and a supersolution of (4.44) in the case 0 < γ < 1. Indeed, to check this, we
observe that, for t ∈ [0, t0],

w′(t) +
1

C
wγ(t))

= − 1

C

(
w1−γ

0 − (1− γ)t

C

) γ
1−γ

+
1

C

(
w1−γ

0 − (1− γ)t

C

) γ
1−γ

= 0,

while for all t > t0,

C

(
w′(t) +

1

C
wγ(t)

)
= −θ0e

(t0−t)
C + θγ0e

γ(t0−t)
C = θγ0e

γ(t0−t)
C

(
1− θ1−γ

0 e
(1−γ)(t0−t)

C

)
≥ θγ0e

γ(t0−t)
C

(
1− θ1−γ

0

)
≥ 0,

where the inequality holds thanks to (4.48). Notice also that the function w is Lips-
chitz since it is piecewise continuous and derivable and it is continuous in the point
t = t0 because of the definition of θ given in (4.47). These observations estab-
lish the desired supersolution properties for the function in (4.49) for 0 < γ ≤ 1.
From this and the comparison result in Lemma 4.9, used here with w(t) and
v(t) := ‖u(·, t)‖Ls(Ω), we obtain that v(t) ≤ w(t) for any t ≥ 0, and in particular,

‖u(·, t)‖Ls(Ω) ≤ Ke−
t
C for any t > t0 (4.50)

for K := θ0e
t0
C . This proves (4.6).

Now we deal with the case γ > 1. In this case, we set

w0 := max

{
‖u0(·)‖Ls(Ω),

( C

γ − 1

) 1
γ−1

}
.
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Then the function

w(t) :=

{
w0, if t ∈ [0, 1]

w0t
− 1
γ−1 , if t > 1

(4.51)

is a supersolution of (4.44). Indeed, if t > 1,

C

(
w′(t) +

1

C
wγ(t)

)
= − C

γ − 1
w0t

− γ
γ−1 + wγ0 t

− γ
γ−1 = w0t

− γ
γ−1

(
w1−γ

0 − C

γ − 1

)
≥ 0,

while, if t ∈ (0, 1),

w′(t) +
1

C
wγ(t) =

1

C
wγ(t) ≥ 0.

This gives that the function in (4.51) has the desired supersolution property and
consequently we can apply the comparison result in Lemma 4.9 with w(t) and v(t) :=
‖u(·, t)‖Ls(Ω). In this way, we obtain that for all t ≥ 1

‖u(·, t)‖Ls(Ω) ≤ w0t
− 1
γ−1 ,

and so the proof of (4.7) is complete.

Now, we present the applications of the abstract results to the operators intro-
duced in Section 4.1.4.

We start with the case of the fractional porous medium equation.

Proof of Theorem 4.3. In order to prove Theorem 4.3, our strategy is to verify the
validity of inequality (4.2) with γ := 2 for the porous medium operator, which would
put us in the position of exploiting Theorems 4.1 and 4.2.

To this end, by elementary computations, up to changes of the positive constant
c depending on n, s, and σ, we see that∫

Ω

us−1(x, t)N [u](x, t) dx =

∫
Ω

−us−1∇ · (u∇Ku)(x, t) dx

=

∫
Ω

(s− 1)us−1(x, t)∇u(x, t) · ∇Ku(x, t)dx

=

∫
Ω

∇us(x, t) · ∇Ku(x, t) dx

(4.52)

Now, define for ε > 0, the regularized operator

Kεu =

∫
Ω

c(n, σ)
u(x− y, t)

(|y|2 + ε2)
n−2σ

2

dy. (4.53)

where c(n, σ) is the same constant that appears in the definition of K in (4.8). Notice
that, since u is regular, we have∫

Ω

∇us(x, t) · ∇Kεu(x, t) dx

≤
∫∫

Rn×Rn

χΩ(x)sup
x∈Ω
|∇us(x, t)|χΩ(x− y) sup

(x−y)∈Ω

|∇u(x− y, t)|

|y|n−2σ
dxdy (4.54)
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where χ is the characteristic function. Thus, thanks to (4.54) we can apply the
Dominated Convergence Theorem and obtain

lim
ε→0

∫
Ω

∇us(x, t) · ∇Kεu(x, t) dx =

∫
Ω

∇us(x, t) · ∇Ku(x, t) dx. (4.55)

So, using (4.52) and (4.55), we have∫
Ω

us−1(x, t)N [u](x, t) dx = lim
ε→0

∫
Ω

∇us(x, t) · ∇Kεu(x, t) dx

= lim
ε→0

∫
Ω

∇us(x, t) ·
∫

Ω

(−n+ 2σ)c(n, σ)u(y)

(|x− y|2 + ε2)
n−2σ+2

2

(x− y)dy dx

= lim
ε→0

∫∫
Ω×Ω

c(n, σ)u(y, t)∇us(x, t) · (y − x)

(|x− y|2 + ε2)
n−2σ+2

2

dy dx,

(4.56)

up to changes of the positive constant c(n, σ). Now we adapt a method that was
introduced in [29] to obtain Lp estimates. We exchange the order of integration and
have that∫∫

Rn
c u(y, t)

∇us(x, t) · (y − x)

(|x− y|2 + ε2)
n−2σ+2

2

dx dy

=

∫∫
Rn
c u(y, t)

∇(us(x, t)− us(y, t)) · (y − x)

(|x− y|2 + ε2)
n−2σ+2

2

dx dy

=

∫∫
Rn
−c(us(x, t)− us(y, t))u(y, t)

[
−n

(|x− y|2 + ε2)
n−2σ+2

2

+
(n− 2σ + 2)|x− y|2

(|x− y|2 + ε2)
n−2σ+4

2

]
dx dy

=

∫∫
Rn
c
(us(x, t)− us(y, t))(u(x, t)− u(y, t))

2

[
−n

(|x− y|2 + ε2)
n−2σ+2

2

+
(n− 2σ + 2)|x− y|2

(|x− y|2 + ε2)
n−2σ+4

2

]
dx dy.

We observe now that, since (us(x, t)− us(y, t))(u(x, t)− u(y, t)) is always positive,

∫∫
Rn
c
(us(x, t)− us(y, t))(u(x, t)− u(y, t))

2

[
−n

(|x− y|2 + ε2)
n−2σ+2

2

+
(n− 2σ + 2)|x− y|2

(|x− y|2 + ε2)
n−2σ+4

2

]
dx dy

≤
∫∫

Rn
c
(us(x, t)− us(y, t))(u(x, t)− u(y, t))(2− 2σ)

2|x− y|n+2(1−σ)
dx dy.
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Thus, again by the Dominated Convergence Theorem, we can pass to the limit in
(4.56) and obtain∫

Ω

us−1(x, t)N [u](x, t) dx

=

∫∫
Rn
c
(us(x, t)− us(y, t))(u(x, t)− u(y, t))(2− 2σ)

2|x− y|n+2(1−σ)
dx dy.

(4.57)

Now, we define v(x, t) = u
s+1
2 (x, t). Then, by inequality (2.15) of [43] we have, for

some C > 0,

C(us(x, t)− us(y, t))(u(x, t)− u(y, t)) ≥ |v(x, t)− v(y, t)|2.

From this, (4.52) and (4.57) we obtain that

C

∫
Ω

us−1(x, t)N [u](x, t) dx

=

∫∫
Rn
cC

2− 2s

2

(us(x, t)− us(y, t))(u(x, t)− u(y, t))

|x− y|n+2(1−σ)
dx dy

≥
∫∫

Rn
c

2− 2s

2

|v(x, t)− v(y, t)|2

|x− y|n+2(1−σ)
dx dy.

(4.58)

Now we set z := (1− s); then z ∈ (0, 1) and n ≥ 2z. Let also

pz :=
2n

n− 2z
≥ 2.

Then for any q ∈ [2, pz] we can apply the Gagliardo-Sobolev-Slobodetskĭı fractionary
inequality (compare [40], Theorem 6.5) and obtain(∫

Ω

u
s+1
2
q

) 2
q

= ‖v‖2
Lq(Ω) ≤ C

∫∫
|v(x, t)− v(y, t)|2

|x− y|n+2z
dxdy (4.59)

with C depending only on Ω, n, z and q. In particular, choosing q = 2, we deduce
from (4.59) that

‖u(·, t)‖s+1
Ls+1(Ω) ≤ C

∫∫
|v(x, t)− v(y, t)|2

|x− y|n+2z
dxdy (4.60)

On the other hand, using the Hölder inequality, one has that

‖u(·, t)‖s+1
Ls(Ω) ≤ ‖u(·, t)‖s+1

Ls+1(Ω)|Ω|
1/s.

Combining this and (4.60), we obtain

‖u(·, t)‖sLs+1(Ω) ≤ C

∫∫
|v(x, t)− v(y, t)|2

|x− y|n+2z
dxdy,

up to renaming C > 0. This and (4.58) establish the validity of (4.2) for γ := 2, as
desired.
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Now we focus on the Kirchhoff equation, first dealing with the case of classical
derivatives.

Proof of Theorem 4.4. Our objective here is to verify the validity of inequality (4.2)
for suitable values of γ, and then make use of Theorems 4.1 and 4.2.

First we present the proof for the non-degenerate case, that takes place when
m(ξ) has a positive minimum. Let us call m0 := minm(ξ), then

m
(
‖∇u‖L2(Ω)

) ∫
Ω

|u|s−2u(−∆)u dx ≥ m0

∫
Ω

|u|s−2u(−∆)u dx. (4.61)

In Theorem 1.2 of [43], the case of the Laplacian was considered: there it was found
that, for some C > 0 depending on s, n, Ω,∫

Ω

|u|s−2u(−∆)u dx ≥ C‖u‖sLs(Ω).

Combining this with (4.61) we see that (4.2) holds true for γ = 1 and C > 0 depending
on s, n, Ω, minm(ξ).

Now we deal with the degenerate case, which requires the use of finer estimates.
In this case, we have that

b‖∇u‖2
L2(Ω)

∫
Ω

|u(x, t)|s−2u(x, t)(−∆)u(x, t) dx

= b‖∇u‖2
L2(Ω)

∫
Ω

|u(x, t)|s−2|∇u(x, t)|2 dx

≥ C

(∫
Ω

|u(x, t)|
s−2
2 |∇u(x, t)|2 dx

)2

,

(4.62)

where the first passage is an integration by parts and the last inequality holds in view
of the Cauchy-Schwarz inequality.

Now define

v(x, t) := |u|
s+2
4 (x, t). (4.63)

We have that

|∇v|2 =

(
s+ 2

4

)2

|u|
s−2
2 |∇u|2.

This and (4.62) give that(
s+ 2

4

)4

b‖∇u‖2
L2(Ω)

∫
Ω

|u(x, t)|s−2u(x, t)(−∆)u(x, t) dx

≥C

(∫
Ω

(
s+ 2

4

)2

|u(x, t)|
s−2
2 |∇u(x, t)|2 dx

)2

=C

(∫
Ω

|∇v(x, t)|2 dx
)2

.

(4.64)
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We now use Sobolev injections (in the form given, for instance, in formula (2.9)
of [43]), remembering that v is zero outside Ω. The inequality

‖∇v‖L2(Ω) ≥ C‖v‖Lq(Ω) (4.65)

holds

for all q ≥ 1 if n ∈ {1, 2}, and for all q ∈
[
1,

2n

n− 2

]
if n > 2. (4.66)

Therefore, we set

q :=
4s

s+ 2
. (4.67)

Recalling the ranges of s in claim (iii) of Theorem 4.4, when n > 2 we have that

(n− 2)q − 2n =
4s(n− 2)

s+ 2
− 2n =

2

s+ 2

(
(n− 4)s− 2n

)
≤ 0,

which shows that the definition in (4.67) fulfills the conditions in (4.66), and so (4.65)
is valid in this setting.

Hence, making use of (4.63), (4.64) and (4.65), up to renaming C line after line,
we deduce that

b‖∇u‖2
L2(Ω)

∫
Ω

|u(x, t)|s−2u(x, t)(−∆)u(x, t) dx

≥ C‖∇v(·, t)‖4
L2(Ω) ≥ C‖v‖4

Lq(Ω) = C‖u‖s+2
Ls(Ω).

These observations imply that condition (4.2) is satisfied here with γ = 3 and C
depending on s, m(ξ) and Ω.

Now we deal with the case of the fractional Kirchhoff equation.

Proof of Theorem 4.5. As in the case of classical space-derivatives dealt with in the
proof of Theorem 4.4, a quick proof for the non-degenerate case is available. Indeed,∫

Ω

|u|s−2uN [u] dx = m
(
‖∇u‖2

L2(Ω)

)∫
Ω

|u|s−2u(−∆)σu dx ≥
∫

Ω

m0|u|s−2u(−∆)σu dx

and in [43] it was shown that∫
Ω

m0|u|s−2u(−∆)σu dx ≥ ‖u‖sLs(Ω).

Thus, the validity of inequality (4.2) with γ = 1 is established in this case.
We now deal with the degenerate case. We fix

p ∈ [2,+∞) (4.68)

and we define

r :=
s+ 2

2p
and v(x, t) := |u(x, t)|r. (4.69)
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We claim that

|v(x, t)− v(y, t)|p

≤ c0|u(x, t)− u(y, t)|
√

(u(x, t)− u(y, t))(|u(x, t)|s−2u(x, t)− |u(y, t)|s−2u(y, t))

(4.70)

for some c0 > 0, independent of u. To prove this, we first observe that the radicand
in (4.70) is well defined, since, for every a, b ∈ R we have that

(a− b)(|a|s−2a− |b|s−2b) ≥ 0. (4.71)

To check this, up to exchanging a and b, we can suppose that a ≥ b. Then, we have
three cases to take into account: either a ≥ b ≥ 0, or a ≥ 0 ≥ b, or 0 ≥ a ≥ b.
If a ≥ b ≥ 0, we have that

|a|s−2a− |b|s−2b = as−1 − bs−1 ≥ 0,

and so (4.71) holds true. If instead a ≥ 0 ≥ b, we have that

|a|s−2a− |b|s−2b = |a|s−1 + |b|s−1 ≥ 0,

which gives (4.71) in this case. Finally, if 0 ≥ a ≥ b,

|a|s−2a− |b|s−2b = −|a|s−1 + |b|s−1 ≥ 0,

again since −|a| = a ≥ b = −|b|, thus completing the proof of (4.71).
Then, by (4.71), we have that (4.70) is equivalent to

|v(x, t)− v(y, t)|2p ≤ c1(u(x, t)− u(y, t))3(|u(x, t)|s−2u(x, t)− |u(y, t)|s−2u(y, t)).
(4.72)

We also note that when u(x, t) = u(y, t) the inequality in (4.72) is trivially satisfied.
Hence, without loss of generality we can suppose that

|u(x, t)| > |u(y, t)|, for fixed x, y ∈ Rn. (4.73)

We define the function

(−1, 1) 3 λ 7→ g(λ) =
(1− |λ|

s+2
2p )2p

(1− λ)3(1− |λ|s−2λ)
(4.74)

and we claim that
sup

(−1,1)

g(λ) < +∞. (4.75)

To this end, we point out that g is regular for all λ ∈ (−1, 1), so, to establish (4.75),
we only have to study the limits of g for λ→ −1+ and λ→ 1−.

When λ → −1+, this limit is immediate and g(−1) = 0. On the other hand,
when λ→ 1−, we see that

lim
λ→1−

g(λ) = lim
ε→0+

(1− (1− ε)
s+2
2p )2p

(1− (1− ε))3(1− (1− ε)s−1)

= lim
ε→0+

(
s+2
2p
ε+O(ε2)

)2p

ε3((s− 1)ε+O(ε2))

= lim
ε→0+

ε2p−4
(
s+2
2p

+O(ε)
)2p

(s− 1 +O(ε))
,



4.2 Proofs 189

which is finite, thanks to (4.68). Then (4.75) holds true, as desired.
Then, using (4.75) with λ := b

a
, we have that

for any a, b ∈ R with |a| > |b|,(
|a|

s+2
2p − |b|

s+2
2p

)2p

(a− b)3 (|a|s−2 a− |b|s−2 b
) =

|a|s+2

|a|s−2 a4
·

(
1−

∣∣ b
a

∣∣ s+2
2p

)2p

(
1− b

a

)3
(

1−
∣∣ b
a

∣∣s−2 b
a

)
=

(1− |λ|
s+2
2p )2p

(1− λ)3(1− |λ|s−2λ)
= g(λ) ≤ C,

(4.76)

for some C > 0. Then, in view of (4.73), we can exploit (4.76) with a := u(x, t)
and b := u(y, t), from which we obtain that∣∣∣|u(x, t)|

s+2
2p − |u(y, t)|

s+2
2p

∣∣∣2p =
(
|u(x, t)|

s+2
2p − |u(y, t)|

s+2
2p

)2p

≤ C (u(x, t)− u(y, t))3 (|u(x, t)|s−2 u(x, t)− |u(y, t)|s−2 u(y, t)
)
.

This and (4.69) imply (4.70), as desired.
Now, fixed p as in (4.68), we set

z :=
2σ

p
∈ (0, σ] ⊂ (0, 1). (4.77)

We apply the Gagliardo-Sobolev-Slobodetskĭı fractional immersion (for instance, in
the version given in formula (2.18) of [43]) to v. In this way,

for all q ∈ [1,+∞) when n ≤ zp, and for all q ∈
[
1,

np

n− zp

]
when n > zp, (4.78)

we have that

‖u(·, t)‖
s+2
2

L
(s+2)q

2p (Ω)

= ‖v(·, t)‖pLq(Ω) ≤ C

∫∫
R2n

|v(x, t)− v(y, t)|p

|x− y|n+zp
dxdy

= C

∫∫
R2n

|v(x, t)− v(y, t)|p

|x− y|n+2σ
dxdy,

(4.79)

where the first equality comes from (4.69) and the latter equality is a consequence
of (4.77).

Now we choose

p := max

{
2,
s+ 2

2

}
and q :=

2sp

s+ 2
. (4.80)

Notice that condition (4.68) is fulfilled in this setting. Furthermore, recalling (4.77)
and the assumptions in point (iii) of Theorem 4.5, we have that, when n > 2σ = zp,
we have

(n− zp)q − np =
2(n− 2σ)sp

s+ 2
− np =

p

s+ 2

(
2(n− 2σ)s− n(s+ 2)

)
=

p

s+ 2

(
s(n− 4σ)− 2n

)
≤ 0.
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As a consequence, we have that condition (4.78) is fulfilled the setting prescribed
by (4.80), hence we can exploit (4.79) in this framework.

Then, from (4.80) we have that

(s+ 2)q

2p
= s,

and so (4.79) gives that

‖u(·, t)‖
s+2
2

Ls(Ω) ≤ C

∫∫
R2n

|v(x, t)− v(y, t)|p

|x− y|n+2σ
dxdy.

Hence, recalling (4.70), up to renaming C > 0, we have that

‖u(·, t)‖s+2
Ls(Ω)

≤C
( ∫∫

R2n

|u(x, t)− u(y, t)|
√

(u(x, t)− u(y, t))

|x− y|n+2σ

× (|u(x, t)|s−2u(x, t)− |u(y, t)|s−2u(y, t))dxdy
)2

≤C
∫∫

R2n

|u(x, t)− u(y, t)|2

|x− y|n+2σ
dxdy

×
∫∫

R2n

(u(x, t)− u(y, t))(|u(x, t)|s−2u(x, t)− |u(y, t)|s−2u(y, t))

|x− y|n+2σ
dxdy.

(4.81)

Notice also that, in the degenerate case, we deduce from (4.12) and (4.13) that∫
Rn
N [u](x, t) |u(x, t)|s−2 u(x, t) dx

= −Mu

∫∫
R2n

(
u(x+ y, t) + u(x− y, t)− 2u(x, t)

)
|u(x, t)|s−2 u(x, t)

dx dy

|y|n+2σ

= − 2Mu

∫∫
R2n

(
u(y, t)− u(x, t)

)
|u(x, t)|s−2 u(x, t)

dx dy

|x− y|n+2σ

= 2Mu

∫∫
R2n

(
u(x, t)− u(y, t)

)
|u(x, t)|s−2 u(x, t)

dx dy

|x− y|n+2σ

= Mu

∫∫
R2n

(
u(x, t)− u(y, t)

) (
|u(x, t)|s−2 u(x, t)− |u(y, t)|s−2 u(y, t)

) dx dy

|x− y|n+2σ
,

(4.82)

with

Mu := M

(∫
R2n

|u(x, t)− u(y, t)|2

|x− y|n+2σ
dx dy

)
≥ b

∫
R2n

|u(x, t)− u(y, t)|2

|x− y|n+2σ
dx dy,

(4.83)

with b > 0.
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Then, from (4.82) and (4.83),∫
Rn
N [u](x, t) |u(x, t)|s−2 u(x, t) dx ≥ b

∫
R2n

|u(x, t)− u(y, t)|2

|x− y|n+2σ
dx dy

×
∫∫

R2n

(
u(x, t)− u(y, t)

) (
|u(x, t)|s−2 u(x, t)− |u(y, t)|s−2 u(y, t)

) dx dy

|x− y|n+2σ
.

Comparing this with (4.81), we conclude that

‖u(·, t)‖s+2
Ls(Ω) ≤ C

∫
Rn
N [u](x, t) |u(x, t)|s−2 u(x, t) dx,

up to renaming C. This gives that hypothesis (4.2) is fulfilled in this case with
γ = 3.

Now we deal with the case of the magnetic operators. We start with the case of
classical space-derivatives. For this, we exploit an elementary, but useful, inequality,
stated in the following auxiliary result:

Lemma 4.10. Let a, b ∈ R, and α, β, t ∈ Rn. Then

(a2 + b2)
(
|at− β|2 + |bt+ α|2

)
≥ |aα + bβ|2. (4.84)

Proof. For any t ∈ Rn, we define

f(t) := (a2 + b2)
(
|at− β|2 + |bt+ α|2

)
− |aα + bβ|2. (4.85)

We observe that

f(0) = (a2 + b2)(α2 + β2)− |aα + bβ|2

= a2α2 + a2β2 + b2α2 + b2β2 − (a2α2 + b2β2 + 2abαβ)

= a2β2 + b2α2 − 2abαβ

= |aβ − bα|2.

(4.86)

Moreover

lim
|t|→+∞

f(t) =

{
+∞ if a2 + b2 > 0,

0 otherwise.
(4.87)

Now we claim that

f(t) ≥ 0, (4.88)

for all t ∈ Rn. To prove (4.88) we argue by contradiction and assume that

inf
Rn
f < 0.

Then, in view of (4.86) and (4.87), we have that

f(t̄) = inf
Rn
f < 0, (4.89)
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for some t̄ ∈ Rn. As a consequence,

0 = ∇f(t̄) = 2(a2 + b2)
(
a(at̄− β) + b(bt̄+ α)

)
= 2(a2 + b2)

(
(a2 + b2)t̄− aβ + bα

)
,

which implies that

t̄ =
aβ − bα
a2 + b2

.

Thus, we substitute this information into (4.85) and we obtain that

f(t̄) = (a2 + b2)

(∣∣∣∣a2β − abα
a2 + b2

− β
∣∣∣∣2 +

∣∣∣∣abβ − b2α

a2 + b2
+ α

∣∣∣∣2
)
− |aα + bβ|2

= (a2 + b2)

(∣∣∣∣b2β + abα

a2 + b2

∣∣∣∣2 +

∣∣∣∣abβ + a2α

a2 + b2

∣∣∣∣2
)
− |aα + bβ|2

= (a2 + b2)

(
b2

∣∣∣∣bβ + aα

a2 + b2

∣∣∣∣2 + a2

∣∣∣∣bβ + aα

a2 + b2

∣∣∣∣2
)
− |aα + bβ|2

= (a2 + b2)(a2 + b2)

∣∣∣∣bβ + aα

a2 + b2

∣∣∣∣2 − |aα + bβ|2

= 0.

This is in contradiction with (4.89) and so it proves (4.88), which in turn im-
plies (4.84), as desired.

With this, we are now in the position of completing the proof of Theorem 4.6 and
obtain the desired decay estimates for the classical magnetic operator.

Proof of Theorem 4.6. We want to prove inequality (4.2) for the classical magnetic
operator in order to apply Theorem 4.1. To this end, we aim at proving that

<
{
ūNu

}
+ |u|∆|u| ≥ 0. (4.90)

To check this, we observe 5 that we can make the computations in the vicinity of
a point x for which |u(x)| > 0. Indeed, if (4.90) holds true at {|u| > 0}, we can
fix ε > 0 and consider the function uε := u+ ε. In this way, uε(x) = ε > 0, hence we
can apply (4.90) to uε and conclude that

0 ≤ <
{
ūε(x)Nuε(x)

}
+ |uε(x)|∆|uε(x)|

= <
{

(ū(x) + ε)Nu(x)
}

+ |u(x) + ε|∆|uε(x)|.
(4.91)

Notice that, for any test function ϕ ∈ C∞0 (Ω), we have that

lim
ε→0

∫
Ω

∆|uε(y)|ϕ(y) dy = lim
ε→0

∫
Ω

|uε(y)|∆ϕ(y) dy =

∫
Ω

|u(y)|∆ϕ(y) dy,

and so (in the distributional sense)

lim
ε→0

∆|uε| = ∆|u|.

5. For an alternative proof based on fractional arguments, see the forthcoming footnote 6.
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Hence, we can pass to the limit in (4.91) and obtain (4.90).
Accordingly, to prove (4.90), from now on we will focus on the case in which |u| >

0. We write u = a+ ib and we observe that

<{−ū(∇− iA)2u}
= <

{
−ū(∆u− |A|2u− iA · ∇u−∇ · (iAu))

}
= <

{
−ū∆u+ |A|2|u|2 + 2ūiA · ∇u+ i(∇ · A)|u|2

}
= <

{
(−a+ ib)(∆a+ i∆b) + |A|2(a2 + b2) + 2(b+ ia)A · (∇a+ i∇b) + i(∇ · A)|u|2

}
= − a∆a− b∆b+ |A|2(a2 + b2) + 2b∇a · A− 2a∇b · A,

(4.92)

where we used the fact that A is real valued.
On the other hand, at points where |u| 6= 0,

∆|u|2 = 2|u|∆|u|+ 2|∇|u||2

and ∇|u| = a∇a+ b∇b
|u|

,

therefore

|u|∆|u| =
1

2
∆|u|2 − |∇|u||2

=
1

2
∆(a2 + b2)− |a∇a+ b∇b|2

|u|2

= a∆a+ b∆b+ |∇a|2 + |∇b|2 − |a∇a+ b∇b|2

a2 + b2
.

From this and (4.92), we conclude that

<
{
ūNu

}
+ |u|∆|u|

= |∇a|2 + |∇b|2 − |a∇a+ b∇b|2

a2 + b2
+ |A|2(a2 + b2) + 2b∇a · A− 2a∇b · A

=
∣∣aA−∇b∣∣2 +

∣∣bA+∇a
∣∣2 − |a∇a+ b∇b|2

a2 + b2
,

(4.93)

and the latter term is nonnegative, thanks to (4.84) (applied here with t := A,
α := ∇a and β := ∇b). This completes the proof of (4.90).

Then, from (4.90) here and [43] (see in particular the formula before (2.12) in [43],
exploited here with p := 2 and m := 2),∫

Ω

|u|s−2<
{
ūNu

}
dx ≥ −

∫
Ω

|u|s−1∆|u| dx

=

∫
Ω

∇|u|s−1 · ∇|u| dx ≥ C ‖u‖sLs(Ω),

for some C > 0. This establishes inequality (4.2) in this case, with γ = 1. Hence,
Theorem 4.6 follows from Theorems 4.1 and 4.2.
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Now we deal with the fractional magnetic operator.

Proof of Theorem 4.7. We have to verify the structural hypothesis (4.2). We already
know that the desired inequality holds for the fractional Laplacian (−∆)σv for σ ∈
(0, 1) and v ≥ 0 (compare Theorem 1.2 of [43]). We notice that

<

 ū(x, t)
(
u(x, t)− ei(x−y)A(x+y

2
)u(y, t)

)
|x− y|n+2σ


=
|u(x, t)|2 −<

{
ei(x−y)A(x+y

2
)u(y, t)ū(x, t)

}
|x− y|n+2σ

≥ |u(x, t)| |u(x, t)| − |u(y, t)|
|x− y|n+2σ

,

(4.94)

and therefore 6∫
Ω

|u(x, t)|s−2<{ū(x, t)N [u](x, t)} dx ≥
∫

Ω

|u(x, t)|s−1(−∆)σ|u|(x, t) dx. (4.95)

Also, since |u| is a real and positive function, we can exploit formula (2.25) in [43]
(used here with p := 2) and write that∫

Ω

|u(x, t)|s−1(−∆)σ|u|(x, t) dx ≥ C‖u‖sLs(Ω).

From this and (4.95) we infer that condition (4.2) is satisfied in this case with γ = 1.
Then, the desired conclusion in Theorem 4.7 follows from Theorems 4.1 and 4.2.

6. Interestingly, integrating and taking the limit as σ → 1 in (4.94), one obtains an alternative
(and conceptually simpler) proof of (4.90). This is a nice example of analysis in a nonlocal setting
which carries useful information to the classical case.
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