
HAL Id: tel-03258224
https://theses.hal.science/tel-03258224v1

Submitted on 11 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A framework for the definition of a system model
MoC-based semantics in the context of tool integration

Papa Issa Diallo

To cite this version:
Papa Issa Diallo. A framework for the definition of a system model MoC-based semantics in the
context of tool integration. Embedded Systems. Université de Bretagne occidentale - Brest, 2014.
English. �NNT : 2014BRES0067�. �tel-03258224�

https://theses.hal.science/tel-03258224v1
https://hal.archives-ouvertes.fr

THÈSE / UNIVERSITÉ DE BRETAGNE OCCIDENTALE
sous le sceau de l’Université européenne de Bretagne

pour obtenir le titre de
DOCTEUR DE L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE

Mention : Informatique

École Doctorale Santé, Information, Communication, Mathématique, Matièr e

présentée par

Papa Issa DIALLO
préparée au
Lab-STICC UMR CNRS 6285
École Nationale Supérieure de Techniques Avancées

ENSTA Bretagne

Un cadre de définition de la sémantique
basée MoC des modèles de systèmes

dans le contexte de l'intégration d'outils

A Framework for the definition of a System

Model MoC-based Semantics in the
context of Tool Integration

Thèse soutenue le 16 Mai 2014
devant le jury composé de :

Koen BERTELS
Professeur, Delft University of Technology / Président du Jury

Ingo SANDER
Enseignant-chercheur, Royal Institute of Technology (KTH) / Rapporteur

Jean-Michel BRUEL
Professeur, Université de Toulouse / Rapporteur

Loïc LAGADEC
Professeur, ENSTA Bretagne / Directeur de Thèse

Joël CHAMPEAU
Enseignant-chercheur, ENSTA Bretagne / Encadrant

c© 2014 Papa I. Diallo
All rights reserved

Acknowledgements

This thesis “A Framework for the definition of a System Model MoC-based Semantics
in the context of Tool Integration” took place within the research laboratory on Model-
Driven Engineering at ENSTA Bretagne (STIC-IDM), and was funded by the iFEST
ARTEMIS project.

There are many people that helped me accomplish this work. This is all for you !

I want to thank from the bottom of my heart my supervisor Mr Joël Champeau
and PhD advisor Mr Löıc LAGADEC. For their availability and support on technical
and scientific aspects during this thesis, and moreover for their human quality. I have
been privileged to work with you, and I will be eternally grateful.

I thank the members of the Jury and the reporters, Mr Koen BERTELS, Mr Ingo
SANDER, and Mr Jean-Michel BRUEL for agreeing to assess this work and for having
donated their time to attend to the defense.

I thank all the colleagues from the iFEST project. But also, all members of the
STIC-IDM laboratory: researchers, engineers, PhD students and students with which
I had the pleasure to work in recent years. I do not forget Michèle and Annick.

A special nod to: Ali Koudri, Vincent Leilde, Stephen Creff and Christophe Guy-
chard. I cannot thank you enough for your availability and your supports.

Finally, I thank,
my friends: Papy, Ousman, M. FALL, F.K DIOP, Diouf Seck, Ndokh Ndiaye,

GALLEDOU family, CISSE family, J.G. Each of you is a part of who I am.
my family: DIEYE family, BADIANE family, DIALLO family.
My uncle D. DIEYE, more than a father you are a model for me. Believing in

someone is priceless, so I will stain to live up to your expectations for the rest of my
days.

My mother, for all the sacrifices conceded for the success of my sisters and me. I
promise an eternal and unconditional love.

April 24, 2014
Papa Issa DIALLO

ii

Abstract

L’utilisation des systèmes embarqués (EmS) connait un essor conséquent dans plusieurs domaines
actuels tels que la téléphonie, l’industrie automobile et l’avionique. Dans ces différents domaines,
la croissance des besoins en termes de fonctionnalités a pour conséquence l’augmentation de la
taille et de la complexité des systèmes conçus. Dans ce contexte, les chaines de conception des
systèmes deviennent de plus en plus complexes et requièrent l’utilisation d’outils provenant de
différents domaines d’ingénieries.

L’intégration des paradigmes hétérogènes associés aux outils posent beaucoup de problèmes
de fiabilité à l’échange des modèles entre outils d’une même chaine de conception. Par exemple,
dans le cadre des EmS, les outils d’ingénierie dirigés par les modèles (IDM) ne sont pas acceptés
par les communautés de recherches pour la conception formelle d’EmS qui requièrent des bases
solides et formelles de définition des sémantiques d’exécution pour réaliser les activités d’analyses,
de validation et de synthèse des systèmes embarqués. En effet, les outils IDM dédiés aux EmS
ne sont à ce jour pas encore suffisamment matures concernant l’expression et la prise en compte
de la sémantique d’exécution formelle mettant explicitement en avant les modèles de concurrence
des systèmes. Par ailleurs, la théorie du calcul est identifiée comme le domaine permettant de
décrire de manière formelle les modèles de concurrences qui sont utilisés pour la description de
systèmes embarqués.

La motivation de cette thèse est de mettre en oeuvre cette théorie du calcul pour réduire
l’écart existant entre différents outils de conception qui possèdent des sémantiques d’exécution
de modèles différentes dans une chaine de conception. La thèse propose une méthodologie
d’identification et de comparaison des sémantiques d’exécution de modèles qui se base sur la
théorie des Modèles de Calcul (MoCs) et leur classification existante, ainsi qu’un langage de
capture des sémantiques basées MoC. Ces dernières sont utilisées pour enrichir les modèles et
préserver leur sémantique entre les outils d’une chaine de conception. Pour illustrer l’utilisation
de l’approche, nous avons défini un flot de conception permettant de connecter trois outils im-
pliqués dans diverses activités du processus “Design & Implementation” (Spécification, Analyse,
Exploration de l’espace des choix de Conception). La chaine d’outils présentée adresse la connex-
ion de l’outil UML Modeler (IBM Rhapsody) (pour la spécification et l’analyse), Forsyde (cadre
de simulation multi-MoC et de synthèse) et Spear (pour l’exploration de l’espace des choix de
Conception et l’analyse). La chaine est appliquée sur un modèle de Radar simplifié fourni comme
cas d’utilisation dans le cadre du projet iFEST.

Embedded systems (EmS) are increasingly used in various areas such as telephony, automo-
tive and avionics industries. In these different areas, the growth of functionality requirements
causes an explosion of the size and complexity of the systems.

In this context, system design flows are becoming more complex and require the use of
tools from different engineering domains. The heterogeneous paradigms on which the tools rely
on pose as well many reliability problems when it comes to consistent data exchanges between
tools. For example, nowadays, the high-level modeling (e.g. Model-Driven Engineering) tools are
unaccepted by research communities for the formal design of systems that require solid grounds
on the execution semantics to carry out analysis, validation and synthesis of embedded systems
activities. Indeed, the Model-Driven Engineering tools dedicated to EmS design are not yet
sufficiently mature on aspects involving expression of the formal execution semantics reflecting
the concurrency model of system modules. Besides, the theory of computation is identified as the
field to describe formally the concurrency models that are used for the description of embedded
systems.

iii

iv

Our motivation is to use this theory to reduce the gap between different design tools that
have different semantics for executing models in a design flow. We propose a methodology for
the identification and comparison of the concurrency model of systems based on the theory of
the Models of Computation (MoCs) and their existing classifications; we also propose a language
to capture MoC-based semantics which is used to enrich system models and preserve their se-
mantics through a tool chain. To prove the effectiveness of our approach, we defined a design
flow connecting three tools that are involved in various activities of the Design & Implementation
process (Specification, Analysis, Design Space Exploration). The tool chain highlights the con-
nection of the UML modeling tool (IBM Rhapsody) (for specification and analysis), Forsyde (for
multi-MoC simulation and synthesis) and Spear (Design Space Exploration and analysis). The
chain is applied on a simplified version of a Radar Streaming application provided as use case in
the context of the iFEST project.

Contents

1 Introduction 1
1.1 Context . 2

1.1.1 Current EmS Design Trends . 2
1.1.2 Integration Framework Requirements 3

1.2 Problematic and Motivation . 4
1.2.1 Relationships between Tools from a Semantics Viewpoint 5
1.2.2 Summary . 8

1.3 Contributions . 8
1.3.1 Making MoC explicit for behaviors and semantics preservation

between models . 8
1.3.2 Compositionality between Heterogeneous Semantics based on

MoC Classification . 9
1.3.3 Defining a formalism to express MoC-Based Execution Control . 10

1.4 Document Layout . 10

2 Real Time Embedded Systems Design 12
2.1 Introduction . 13
2.2 Historical study and basic concepts for Embedded Systems 13

2.2.1 Description of the concept of Embedded System 14
2.2.2 Evolution of Embedded System 15

2.3 Embedded System Design and Implementation 16
2.3.1 Design Methodologies and Design Flows 17

2.3.1.1 Improved Methodologies for improved Design Flows . . 17
2.3.1.1.a Raising the level of Abstraction 18
2.3.1.1.b Separation of Concerns 18
2.3.1.1.c IP Reuse . 19
2.3.1.1.d Analysis, Verification and Validation 19

2.3.1.2 Well-Known Foundations for Embedded System Design 19
2.3.1.2.a Electronic System Level 20
2.3.1.2.b Platform-Based Design 21

2.3.1.3 Examples of Frameworks for RTES 22
2.3.2 From Design Automation to building Tool Chains for RTES . . . 24
2.3.3 Interoperability and Integration for Embedded System Design . . 24

v

vi

2.3.3.1 Tool Interoperability in the RTES 25
2.3.3.2 Tool Interoperability within Tool Integration 26

2.3.3.2.a Common Design Flow Infrastructure (CDFI) . . 26
2.3.3.2.b Levels of Conceptual Interoperability Model (LCIM) 26

2.3.3.3 Summary . 27
2.3.4 Remaining Issues . 28

2.4 Conclusion . 29

3 Towards Formal Semantics in MDE 30
3.1 Introduction . 31
3.2 Model-Driven Engineering . 31

3.2.1 MDE principles and basic concepts 32
3.2.1.1 Models, Metamodels . 32
3.2.1.2 Relations between Models, Metamodels and Meta-Metamodels 32

3.2.2 Model Transformation . 34
3.2.3 MDE methodologies and Standards 35

3.2.3.1 MDA . 35
3.2.3.2 Other Standards . 37

3.2.4 Challenges . 37
3.3 Semantics in General and Semantics in MDE 37

3.3.1 The types of Semantics . 37
3.3.1.1 Axiomatic Semantic . 38
3.3.1.2 Denotational Semantics 39
3.3.1.3 Operational Semantics 39

3.3.2 Semantic expression in MDE . 40
3.3.2.1 Defining OCL constraints for models 41
3.3.2.2 Kermeta . 41
3.3.2.3 fUML . 42

3.3.3 Challenges . 42
3.4 The MoC Theory . 43

3.4.1 Data-Flow Oriented MoCs . 43
3.4.2 Control-Flow Oriented MoCs . 44
3.4.3 MoC Classification . 45
3.4.4 MoC Composition . 47
3.4.5 Frameworks for System Design based on MoCs 49

3.5 MoC in the context of MDE . 50
3.5.1 MARTE . 50
3.5.2 SysML . 50
3.5.3 MoPCoM . 51
3.5.4 Metropilis . 52
3.5.5 Challenges . 52

3.6 Conclusion . 52

4 The Cometa Concepts, Models and Validation 54
4.1 Introduction . 55
4.2 Foundations of the Cometa Approach 55

4.2.1 Semantic Layer Definition . 55
4.2.2 The system’s MoC characterization 56
4.2.3 Formal Description of the Cometa concepts 58

4.2.3.1 Structure Description 60

vii

4.2.3.1.a Cometa StructureLibrary 61
4.2.3.1.b Cometa StructureContainer 61
4.2.3.1.c Cometa MoCConnector 62
4.2.3.1.d Cometa MoCComponent 63
4.2.3.1.e Cometa BasicComponent 63
4.2.3.1.f Cometa CompositeComponent 64
4.2.3.1.g Cometa Part . 64
4.2.3.1.h Cometa MoCPort 64
4.2.3.1.i Semantic Layer Configurations 65

4.2.3.2 Execution Control Description 66
4.2.3.2.a Cometa MoCLibrary 67
4.2.3.2.b Cometa MoCDomain 68
4.2.3.2.c Cometa MoCEvent 68
4.2.3.2.d Cometa Behavior 68

4.2.3.3 Data Description . 71
4.2.3.4 Relationships between Structure, Execution Control and

Data . 72
4.2.3.4.a Between Structure and Behavior 72
4.2.3.4.b Between Structure and Data 72

4.2.3.5 Description of the Cometa Interfaces to other DSML . 72
4.2.3.5.a Specification of MoCInterface 73
4.2.3.5.b Specification of RTInterface 74

4.2.4 Operational Semantics: FSM-Based Control 74
4.2.4.1 Operation Semantics of the Block requests 75
4.2.4.2 Labelled Transition System for Cometa 76

4.3 Execution Control Mechanisms description 80
4.3.1 Scheduling in Cometa . 80

4.3.1.1 Centralized scheduling in Cometa 81
4.3.1.2 Distributed Scheduling in Cometa 82

4.3.2 Methodology for Applying Semantic Layers 83
4.3.2.1 Application of semantic layers: from MoC Aware to

MoC Unaware tools . 83
4.3.2.2 Rules to Identify MoC relations and Compliance 85

4.3.3 MoC Semantics Modeling with Cometa: Sender/Receiver with CSP 87
4.3.3.1 Mathematical validation 89
4.3.3.2 By Simulation . 92

4.3.4 Time Description: Time-Based Control 93
4.3.4.1 Cometa TimeModel . 95
4.3.4.2 Cometa TimeStructure 96
4.3.4.3 Cometa TimeBase . 96
4.3.4.4 Cometa Instant . 96
4.3.4.5 Cometa ClockType . 97
4.3.4.6 Cometa ClockConstraint 97
4.3.4.7 Cometa ClockRelation 97

4.4 Conclusion . 98

viii

5 Semantics Interoperability and Experimentation 99
5.1 Introduction . 100
5.2 Integrating Semantic Layers into Design Flows 100

5.2.1 Overview of the Approach . 100
5.2.2 Defining a Tool Chain for a Radar Streaming Application 101

5.2.2.1 Description of the Radar Streaming Application 102
5.2.2.2 Focus on The Radar Burst Processing Application . . . 104
5.2.2.3 Tool Selection for the Design Flow 105

5.2.2.3.a Design Process Activities 105
5.2.2.3.b Tool Description 107
5.2.2.3.c The envisioned Design Flow 109

5.2.2.4 Semantic constraints . 109
5.2.2.4.a Explicit Model Semantics 110
5.2.2.4.b Explicit Tool Semantics 112

5.2.2.5 Analysis of the Semantic Compliancy between Tools . . 112
5.3 A Novel Design Flow connecting: Rhapsody, Spear and ForSyDe 115

5.3.1 Capturing Semantic Layers for the Design Flow 116
5.3.2 Weaving Cometa Models with IBM Rhapsody 118
5.3.3 Connecting the Tools within the Tool Chain 119

5.3.3.1 Connecting Rhapsody and ForSyDe-SystemC 121
5.3.3.1.a Overview . 121
5.3.3.1.b Transformation rule patterns: Rhapsody/ ForSy-

deSystemC . 121
5.3.3.2 Connecting Rhapsody and ForSyDe-Backend 122

5.3.3.2.a Overview . 122
5.3.3.2.b Transformation rule patterns: Rhapsody/ ForSy-

deBackEnd . 123
5.3.3.3 Connecting Rhapsody and SpearDE 124

5.3.3.3.a Overview . 124
5.3.3.3.b Transformation rule patterns: Rhapsody/ SpearDE125

5.3.4 Metrics . 126
5.3.5 Burst Processing System Design and Analysis 128

5.3.5.1 Transformation results from Rhapsody to ForSyDe and
Spear . 133

5.3.5.2 Generation of NoC architecture for ForSyDe BackEnd . 137
5.3.5.3 Generation of Spear model of the BurstProcessing module138

5.4 Conclusion . 139

6 Conclusions and Perspectives 142
6.1 Conclusions . 143
6.2 Perspectives . 144

6.2.1 Definition of an Execution Engine 144
6.2.2 From Denotational semantics to formal MoC model description . 145
6.2.3 Differential Equation Description 146

Appendices 161

ix

A Appendix 162
A.1 Metamodel Excerpts . 163

A.1.1 Spear Excerpt . 163
A.1.2 ForSyDe front-end Metamodel Excerpt 163
A.1.3 NoC Mapping Metamodel Excerpt 164
A.1.4 NoC Generator Metamodel Excerpt 164

A.2 Sample of Models . 165
A.2.1 Sample of Mapping Model for the UseCase 165

List of Figures

1.1 An Example of ToolChain Description 3
1.2 Advantages and Disadvantages of both Modeling and Formal Design

Approaches . 4
1.3 Different Scenario couplings Specification and Analysis Tools 6
1.4 Highlighting Execution Semantics issues in Tool Interoperability 7

2.1 Example of Embedded Systems Integration 15
2.2 Some elements integrated within a SoC [89] 16
2.3 An simple Abstraction-Refinement Process 17
2.4 Platform-based Design Principles . 21
2.5 Allocation model from SESAME . 23
2.6 CDFI Model integration for different external Tools 26
2.7 The Levels of the LCIM Model . 27

3.1 The Pipe example . 32
3.2 The Layers between Models, Metamodels and Meta-Metamodels 33
3.3 Example of relations between Models, Metamodels and Meta-metamodels 33
3.4 The Types of Model Transformation . 34
3.5 The different parts of MDE . 35
3.6 MDA Separation of concerns . 36
3.7 Mapping of syntax to semantic domains 38
3.8 Example of Semantics Classification . 38
3.9 Excerpt of operational semantics expressed in Kermeta 42
3.10 Example of MoC Semantic Classification 46
3.11 Models from Ptolemy and ForSyDe . 48
3.12 MoPCoM methodology . 51

4.1 Some ADL notations . 56
4.2 Overview of the concerns related to Structure, Data and MoC-behavior 59
4.3 Excerpt of the structure description in Cometa 62
4.4 Topologies described using Cometa . 66
4.5 Content of a MoCLibrary . 68
4.6 Excerpt of the Cometa FSM Behavior concern 69
4.7 Highlighting the Interfaces . 73

x

LIST OF FIGURES xi

4.8 Simple example of Layer representation 77
4.9 Example of container (Top) with an MoC-based FSM for centralized

Scheduling . 82
4.10 Example of container (Top) with MoC-based FSM for distributed Schedul-

ing . 83
4.11 Application Block mapping into Semantic Layers 84
4.12 Positioning Semantic Layers between Tools in a Design Flow 85
4.13 Language and MoC-Based semantic domains 86
4.14 Sender/ Receiver example . 88
4.15 The different steps for scenario demonstration 90
4.16 Sender/Receiver model in Rhapsody . 93
4.17 Sender/Receiver Simulation Traces . 94
4.18 Excerpt of the Time concern in Cometa DSML 95
4.19 Representation of Time model Usage in Semantic Layers 98

5.1 Guidelines for MoC model integration with Application Models 101
5.2 Radar Detection System: Target Detection 102
5.3 Modules of the Radar Detection System 103
5.4 Presentation of the BurstProcessing module 104
5.5 Positioning Cometa Models within a Design Process with heterogeneous

semantics . 106
5.6 Conceptual Model of concepts to describe component models in Rhapsody107
5.7 ForSyDe-SystemC sample model . 108
5.8 ForSyDe-BackEnd: Layered view of the platform 109
5.9 Conceptual Model of the Spear Application Model main concepts 109
5.10 Tool Selection according to Design Process and Purpose 110
5.11 Rhapsody-Spear and the positioning of semantics. 113
5.12 The Rhapsody-Cometa-ForSyDe and SpearDE Design Flow 115
5.13 Array-OL semantic domain (static and operational) capture in the Cometa

DSML . 116
5.14 Excerpt of the Execution control FSM for Array-OL in Cometa Modeler:

(up) BasicComponent, (down) MoCPort FSM. 117
5.15 Example of 3 inter-connected components with Array-OL semantics . . 118
5.16 Overview of the implemented Transformation rules with MDWorkBench 120
5.17 Cometa Libraries in the UML Rhapsody Modeler 129
5.18 MultiDimentional Data Arrays in Rhapsody 129
5.19 Allocated Radar System Model in Rhapsody: The AntennaSystemAlloc 130
5.20 Allocated Radar System Model in Rhapsody: The BurstProcessingSys-

temAlloc . 131
5.21 Excerpt of the BeamForm computation 133
5.22 Excerpt of the Simulation Results . 134
5.23 Intermediate representations of the Cometa (left) and ForSyDe (right)

Radar model . 135
5.24 Generated Intermediate representations of the Spear XMI (left) and

Spear MOML (right) Radar models . 140

6.1 Positioning Cometa in the GEMOC Approach 145

A.1 Excerpt of the Spear Metamodel used for Model Transformation with
Cometa . 163

LIST OF FIGURES xii

A.2 Excerpt of the ForSyDe Metamodel used for Model Transformation from
Cometa to ForSyDe-SystemC . 163

A.3 Excerpt of the Metamodel used for the mapping of SW Processes into
HW Architecture . 164

A.4 Excerpt of the Metamodel used for the description of the NoC Generator 164

List of Tables

5.1 Concepts taken into account during transformation of basic models ac-
cording to MoC Criteria . 127

5.2 Concepts taken into account during transformation of enriched models
according to MoC Criteria . 128

5.3 Use Case Activities Coverage . 139

xiii

1
Introduction

Contents

1.1 Context . 2

1.1.1 Current EmS Design Trends 2

1.1.2 Integration Framework Requirements 3

1.2 Problematic and Motivation 4

1.2.1 Relationships between Tools from a Semantics Viewpoint . . 5

1.2.2 Summary . 8

1.3 Contributions . 8

1.3.1 Making MoC explicit for behaviors and semantics preservation
between models . 8

1.3.2 Compositionality between Heterogeneous Semantics based on
MoC Classification . 9

1.3.3 Defining a formalism to express MoC-Based Execution Control 10

1.4 Document Layout . 10

1

CHAPTER 1. INTRODUCTION 2

1.1 Context

With the recent hardware (HW) technological improvements (e.g. FPGA-Based Multi-
Processor Systems), the developed systems are qualitatively improved in terms of per-
formance. Indeed, HW technologies offer significant computing power improving the
reaction of systems as well as decreasing their processing times. Accordingly, there
is more and more embedded applications in various areas such as transportation (e.g.
avionics, automotive and railway), multimedia (e.g. video, telephony, and imaging),
medical, etc. In fact, Embedded Systems (EmS) are present in most of the domains
with important constraints on performance and reactivity. On the automotive domain,
the part given to embedded systems is significantly growing both on critical aspects
(e.g. airbag, brake, auto-pilot system) or other less critical aspects such as (onboard
computer, integrated GPS, etc.).

In these mentioned domains, the development of embedded systems uses design
processes that are becoming more and more complex. The Complexity is compounded
by the increasing ability of systems to integrate new components.

1.1.1 Current EmS Design Trends

To deal with the complexity of the systems in terms of sizes and features, development
processes integrate steps for high-level specification and analysis. The newly integrated
design steps advocate modular design with: separation of concerns, abstraction of pro-
gramming languages, designs on several levels of abstractions, analysis and verification
steps at each level of abstraction. The B method is one of the design methodologies
promoting: the use of multiple levels of abstraction to describe the systems, and to
proceed by successive refinement until a final implementation is generated.

The language abstractions allow defining formalisms that are more easily manip-
ulated by engineers for: specification, reasoning, etc. The separation of concerns en-
hances modularity1. Modularity facilitates the reuse of implemented functional blocks.

Several methodologies have emerged these last decades (e.g. languages and high-
level design techniques) implementing these development methodologies [55] [131] [104],
[68] [157]. With these new methodologies, the management of the complexity is better
ensured since the specification and analysis phases incrementally reduce errors. Addi-
tionally, automation mechanisms between the abstraction levels allow reducing human
interventions and ensure faster refinements of models between abstraction levels.

For the abstraction of languages and separation of concerns, Model-Driven Engi-
neering (MDE) [177] significantly contributes to the description of Domain Specific
Languages (DSL) and Domain Specific Modeling Languages (DSML) allowing to raise
the abstraction level of common languages (e.g. C / C + +, VHDL).

Multiple languages for the description of software (SW) and HW were proposed in
research or industry (e.g. AADL [50], UML[173], MARTE [148] and SysML [73]), and
many code generators were specified for these languages [200] [23]. Modeling languages
allow defining application models, architecture models, and HW platforms that can
be used for analysis and incremental system specification. These formalisms hide fine
grain system properties and put the focus on the relevant aspects of a system. In this
context, systems are seen as a set of interacting modules designed using different tools
during the progressive design steps (e.g. abstraction-refinement steps).

1A module is a sub-part of a system to perform a specific functionality of the system. In this thesis,
the term module is used in the same way as subsystem.

CHAPTER 1. INTRODUCTION 3

Unfortunately, the more improvements of design methodologies are noticed, the
more we are witnessing a proliferation of specific tools for the realization of the different
modules, their analyses, but also their integration.

As shown in Figure 1.1, during the initial stages, the engineering process helps to
specify the required sequences of activities leading to the achievement of the system (e.g.
activity 1, activity 2, activity 3). For each activity (or set of activities), combinations
of tools help to meet the requirements established by this activity. The diversity of
tools in the development process is a real problem for integration environments that
usually take into account only a subset of predefined tools.

1.1.2 Integration Framework Requirements

Nowadays, integration environments require solutions responding to several scientific
and technical issues such as lifecycle management, design automation or tool’s inter-
operability. Tool interoperability approaches are interested in: how to exchange data
(i.e. syntactical interoperability); how to manage the semantics of the exchanged data
(i.e. semantics interoperability); how to manage access to the data repositories; how
to define the technical interfaces of tools; how to manage and implement services for
function calls in modules, etc. Design automation allows having faster design flows with
less manual intervention. Several approaches [75][171][169] have managed to provide
solutions in this sense in order to describe tool chains.

Figure 1.1: An Example of ToolChain Description

For the management of the data exchanges, the Tool Integration Frameworks tradi-
tionally define common infrastructures and formalisms for the communication of data
e.g. the Interface description language (IDL) [143] of the Common Object Request
Broker Architecture (CORBA) [99], the Extensible Markup Language (XML) [22],
or the model-based techniques e.g. the Meta-Object Facility (MOF) [142], or the
Query/View/Transformation (QVT) [156]. More recently the Open Services for Life-
cycle Collaboration (OSLC) [12] infrastructure defines services and common formats
ensuring the exchange of data between heterogeneous models.

Several researches on tool integration (e.g. Caesar, iFEST2) define frameworks for
system design and highlight the need to solve these syntaxes and semantics issues. In
particular, the iFEST project of which this thesis is a part and thus receives funds
thereof promotes such similar goals, among others.

2The iFEST project (industrial Framework for Embedded Systems Tools) aims at specifying and
developing an tool integration framework for HW/SW co-design of heterogeneous and multi-core em-
bedded systems. http://www.artemis-ifest.eu/

CHAPTER 1. INTRODUCTION 4

iFEST is a European Artemis project targeting the development of a Tool Inte-
gration Framework for the design of embedded systems. The Framework must allow
to integrate or remove, on the fly, tools for design activities such as Requirement and
Analysis (R & A), Design and Implementation (D & I), or Verification and Validation
(V & V), etc.

The iFEST project uses OSLC infrastructure for the connection between the tools
and each tool provides a specification determining how it connects to the Framework
and complying with the OSLC standard.

1.2 Problematic and Motivation

As shown in Figure 1.2, SLM tools often offer accurate abstractions and model trans-
formation mechanisms improving the automation process for model exchanges. Unfor-
tunately, such tools fail to accomplish what is done best by traditional EmS formal
design tools, i.e. the formal description of the semantics of models (including the exe-
cution semantics). Not considering these semantics the earliest possible might end up
into inconsistent model.

Figure 1.2: Advantages and Disadvantages of both Modeling and Formal Design Ap-
proaches

Beside the technical interoperability matters, obviously, interoperability cannot be
assumed unless all the semantics issues are handled: the module’s engineering domain’s
semantics, the tool’s execution semantics and the inter-module’s communication seman-
tics. For EmS design, the semantics are related to engineering domains (e.g. signal
processing, control-command), and includes: static properties or execution properties
of a domain.

The preservation of the module’s semantics between tools is currently not guaran-
teed. The main reason for this disillusionment comes from the fact that the semantics
of models are not sufficiently studied and correlated with the semantics of the tools.
In fact, the semantics of the tools is rarely known to developers. If the consistency of
the models (at a semantics level) is not guaranteed from one tool to another, then the
analysis activities don’t maintain the reliability, and correctness of systems.

Indeed, the heterogeneity of the modules causes that their consistent and reliable ex-
changes between tools is difficult to guarantee. Firstly, the formalisms used to describe
heterogeneous models are often different. Secondly, the levels of semantics expressive-
ness of the formalisms are different. Finally the execution semantics implemented in

CHAPTER 1. INTRODUCTION 5

the tools may vary from one tool to another. So far, especially in the integration of tool
chains, these semantic shortcomings are solved in an ad-hoc manner which is likely to
increase the skepticism of the industrials.

The problematic of the semantics of exchanged models in tool chains was already
raised in several works for tool integration as in [75]. Indeed, for design flows based on
the use of the metamodels for communication, there is no explicitly defined formalism
to address these semantic breaches. Consequently, this shortcoming is reflected dur-
ing the transformation and analysis steps of models belonging to different engineering
domains. For instance, for system engineering, we note that nowadays, there is a real
need for reducing the semantic gap between model-based development formalisms and
the formalisms traditionally used for embedded system development that implement
semantics based on formal Models of Computations (MoC) [77] [174].

The computational models are formal semantics describing an abstract represen-
tation of the manner in which the elements of a model are evolving. They describe
the static and dynamic semantic properties governing the execution of a model. The
MoC semantics is then directly implemented by the execution engine or incrementally
integrated in the form of behavioral MoC libraries i.e. (protocols, Schedulers, etc).

During the EmS design steps, refined models are semantically derived from the
model’s parallelism properties as well as their real time properties. These properties are
often formally described by MoCs relating to the engineering domains. The definition
of a global MoC for a system is equivalent to describing the set of MoCs of each of its
modules and the MoCs representing their interconnection.

Our interest for the MoCs is justified by the fact that they will enable to explicitly
identify underlying semantics in different engineering domains of the (D & I) activities
(e.g. signal processings, control) and the semantics underlying the tool’s execution
engine.

In order to analyze the consequences of not taking into account semantics (static
and dynamic) in the design flows, we propose to analyze the relationships between tools
of a design flow from a semantics viewpoint.

1.2.1 Relationships between Tools from a Semantics Viewpoint

These early definitions characterize the tools based on their ability to express MoCs
i.e. their MoC awareness.

Definition of MoC Aware Tool: An MoC Aware tool is a tool that offers imple-
mentations or abstractions of MoCs. These MoCs are necessary to complete and
analyze models of a system. The MoC Aware tools generally propose effective
implementations for a proper interpretation of the specification, except for cases
where the specification’s model properties are not compatible with the execution
semantics of the analysis tools.

Definition of MoC Unaware Tool: An MoC Unaware tool is a tool that does not
natively relate to any forms of MoC representation. For instance, the execution
engines of the analysis tools are mainly based on standard principles for execution
(Turing machine, etc) without any consideration for other existing MoCs (e.g.
related to engineering domains). This type of tool cannot be used for analysis
of models with strong semantics, due to the risk of obtaining results that are
unreliable.

CHAPTER 1. INTRODUCTION 6

For the MoC Aware analysis tools, the MoCs defined in execution engines are fine
grained and strongly coupled to the platform on which they are implemented. They
offer finer description granularity and are used to implement the mechanisms of ex-
ecution and simulation. In this case, their execution engines are able to provide an
interpretation of a program or of an executable model.

In the following paragraphs, we identify the coupling scenarios of tools for spec-
ification and analysis (MoC Aware / MoC Unaware) abstracted in Figure 1.3. The
identification of the relationships between tools highlights the issues related to MoC
semantics. The arrows define the model exchanges from a source to a target tool and
the question marks refer to questionings on the consequences of the lack of semantics
definition between tools. The square boxes represent tools, and boxes with rounded
corners inside are interconnected architectural models (AM).

Figure 1.3: Different Scenario couplings Specification and Analysis Tools

Scenario 1 describes the analysis of an MoC Unaware AM in an environment where
the execution engine implements an MoC-based execution semantics. The lack
of MoC properties may result from the lack of concepts for the addition of the
missing MoC properties. A consistent analysis cannot be made on this type of
models since the analysis tool does not manipulate the correct information related
to the MoC properties to provide a correct execution.

Scenario 2 poses the problem of coupling AM and analysis tools that are MoC Un-
aware. In this context, the analyses produced are not specific to an engineering
domain and in fact, are not relevant at all. The lack of description of the proper-
ties and the semantics of the models can be due to a lack of adequate formalisms
to express specific properties.

Scenario 3 presents two MoC Aware tools for AM specification and analysis. This
particular case is divided into two cases. In the first case, specification and
analysis tools are properly connected and are not incompatible. Most of the EmS
tools are based on this scenario by defining tightly coupled tools where different
semantics are mastered and analyses are accurate because the coupling between
specification models and simulation engine is relatively well defined. However,
the choice of tools is not open inducing several drawbacks such as the difficulty
of outdated tool replacements. In the second case, the problem is related to the

CHAPTER 1. INTRODUCTION 7

incompatibility of the MoCs between specification and analysis tools. In this
case, the analysis tool already has an implementation of an incompatible MoC
compared to the ones that are expressed in the specification models.

Scenario 4 is problematic in a sense that the target tool cannot interpret the semantics
implemented in the AM.

For analysis, different specification tools can use the same runtime engine (e.g.
Figure 1.4: Spec A and Spec C specification tools are connected to Simu A); or the
specification tools can rely on different execution engines.

In the first case, if there is a formal and consistent semantic translation between
elements of Spec A→Spec C, then Spec A→Simu A simulation has (a priori) the same
results as simulation from Spec C→Simu A models; if there isn’t a consistent seman-
tics translation between the specifications and simulation tools, this reflects the issues
expressed in Scenario 2.

Figure 1.4: Highlighting Execution Semantics issues in Tool Interoperability

In the second case, if there is a formal and correct semantic translation between
elements of Spec A and elements of Spec B, then we can consider the simulation results
(i.e. execution traces) of simulation Spec A→Simu A and Spec B→Simu B as follows:
if Simu A and Simu B tools have the same execution semantics then Spec A→Simu A
and Spec B→Simu B simulation results will be (a priori) the same; if the execution
semantics of Simu A are different from those of Simu B, then it is necessary to add
an adaptation between (Spec A and Spec B), or to edit the Spec B model so as to
obtain the same simulation results (semantic adaptation). Semantic adaptations can
also be set between the specification tool Spec B and the analysis tool Simu B. In this
case, we return to Scenario 2 of Figure 1.3. The semantic adaptations are based on the
properties to be manipulated and their link of compositionality.

The heterogeneous AM s pose the same problems as those presented in the scenarios
listed above. Heterogeneous analyses are made by two different methods: using analysis
tools implementing heterogeneous semantics, or by the co-simulation tools. In the case
of “single” analysis tool, the difficulty focuses on compositionality of modules and
their ability to interact in a coherent manner while preserving the overall behavioral
semantics. The co-simulation tools also face strong issues: synchronization, timing,
interfacing and translation of the artifacts that are exchanged, etc.

Remarkable works have resulted in so-called high-level “single” design and analysis
tools to study and analyze the semantics of system models based on MoC. The best-
known tools include: Ptolemy [43] developed by UC Berkeley, the ForSyDe framework
[174] from KTH, or the HetSC [77] from the University of Cantabria, to cite only these
examples. Around the MDE, the Modhel’X [19] and [30] frameworks also allow anal-
ysis of the dynamic semantics of heterogeneous models. Despite the efforts, several

CHAPTER 1. INTRODUCTION 8

disadvantages come from the fact that these tools are hardly acceptable for system en-
gineering at high-level of abstraction. Among other disadvantages, firstly the fact that
the levels of abstraction offered by these tools still remain very close to programming
languages (C++, Java, etc), or, at best, on the so-called high-level language i.e. Sys-
temC. Thus they are hardly manipulated by systems engineers who are more interested
at defining and reasoning on semantic models specified from abstract formalism such
as modeling languages (UML, AADL, etc). Moreover, one can legitimately question
the consequences when models are reused and exchanged with other tools (exogenous
transformation).

1.2.2 Summary

The different scenarios that we have presented indicate the need for semantic consis-
tency between specification and analysis tools for the reliability and the preservation
of the semantics of models. To achieve this goal, the following points are important for
improving the interoperability of tools during design and analysis of systems:

• Aim 1 : clarify the semantic differences induced by formalisms and engineering
domains as soon as possible to ensure the reliability and consistency of mod-
els during all design stages. Thus, there is a need for methodologies to deduce
possible adaptations between heterogeneous MoC representations [38];

• Aim 2 : use the identified semantic differences to capture adaptation models pre-
serving the semantics of the exchanged models between design tools. The cap-
tured models are defined using a formalism to express MoCs, in our case based
on metamodels. The added value is to ensure that the models produced in each
tool can be reused coherently through an integrated tool chain without losing
semantics between tools.

1.3 Contributions

Our contribution in this thesis aims at improving the intermediate steps of exchanges
between tools where the semantics are important. We address the design stages rang-
ing from high-level specification, analysis to refinement onto finer descriptions such as
SystemC that provides facilities for heterogeneous simulation and code generators for
HW synthesis.

We believe that semantics preservation can be achieved based on three criteria that
are developed in the sections below.

The study of engineering domain and tool semantic properties helps to unambigu-
ously reason on the system behaviors, and to be able to separate the semantics that
belong to applications from the tool semantics; while being able to relate both seman-
tics.

1.3.1 Making MoC explicit for behaviors and semantics preservation
between models

For each engineering domain and tool, we can find a set of formally defined proper-
ties and execution rules. Such formal properties and rules are given by theory a of
computation (MoC) [96] [113]. A MoC is generally defined by:

CHAPTER 1. INTRODUCTION 9

• a static representation: the set of properties (parameters, data type) that is
specific to a domain. These properties make explicit the information relevant to
determine the execution;

• a dynamic representation: the description of how the behavior dynamically evolves
over time, and its impact in terms of Input/output (I/O);

As an illustration, let us take the example of image processing (which can be ex-
tended to multimedia processing’s in general). An image processing application is based
on the definition of several modules (Filters, Stream Parser, Dequantizers, etc.) that
work in parallel or in sequential to read and modify an input image and write an output
one.

The sequential or parallel execution depends on several parameters including: the
available platform (single processor, multiprocessor), and the type of dependency re-
lationships (partial or total order) between the various components (e.g. precedence,
succession, independence, etc). Those relations influence the execution and scheduling
policies; each application module can also be completed by properties that represent
e.g. the maximum size of data read or written.

These parameters are similar for many multimedia applications that define static
properties (e.g. size of data in modules I/O), and properties which are induced by the
dependency relationships between the different modules of an application. For example,
multimedia applications use the SDF MoC [113] for early analysis. This MoC is later
refined through several steps to reach the final implementation.

Studying explicitly the MoCs related to tools and engineering domains is an addi-
tional step to moving towards a better understanding of the semantics interoperability
problems. The next concern raises the importance of the semantics correlation to de-
termine their compositionality. Logically, if the semantics are not compliant, there is a
significant risk of producing inconsistent models.

1.3.2 Compositionality between Heterogeneous Semantics based on
MoC Classification

To meet the challenges posed by Aim 1, we define a methodology addressing the iden-
tification of semantics: either to determine and adapt semantics between models; or
to index connections and exchanges between tools that are not relevant. The theo-
retical results of the semantics comparison may also play a role in the choice of tools
to integrate into a design chain. Indeed, there is no logic into connecting tools with
incompatible semantics and this information can be obtained before any physical in-
tegration. At the modeling level, the semantics of the exchanged elements are studied
with respect to the static semantics of the elements and the behavioral semantics (or
dynamic semantics) both are MoC-based. According to the execution rules imposed on
models, we consider the semantic adjustments to be added to preserve the semantics of
the executable models. The semantic adaptations are described in the form of reusable
models whenever they allow a response to a specific need for adaptation.

Studying the compositionality between the various MoCs is mandatory to provide
consistent semantics interoperability for environments implementing different MoC. In
this context, it is important to determine to which extent the MoCs share common
properties, and to identify there differences. The properties ensure the preservation of
(static, dynamic) semantics on several levels of abstraction and between different tools.

CHAPTER 1. INTRODUCTION 10

Once the identification of semantics (MoC-based) and the compositionality issues
are resolved, then we can focus on the capture of semantics to enrich and adapt models
with distinct semantics.

The compliance relationships between MoC have been addressed in [176] [62] [88].
However, it was in the context of heterogeneous behavior simulation within single tools.
For tool integration, there is still a lack of contributions addressing the explicit study
of semantics compliance between tools and models. In this thesis we provide such
methodology.

1.3.3 Defining a formalism to express MoC-Based Execution Control

While the selection of formalisms for capturing static properties is relatively simple and
can be done with metamodels for example; the representation of dynamic properties to
adapt model’s behaviors is much more difficult to provide.

Indeed, such formalism must be flexible and abstract enough to be compliant with
different MoC semantics. For instance, at some levels of abstraction, if the analysis
tool’s execution semantics is DE, the intermediate adaptation models will manipulate
control-events to connect with the DE execution engines and also represent dynamic
execution rules of the MoC that conforms to an engineering domain.

In the literature, and more particularly in MDE and tool integration, approaches
are lacking to provide: abstract and flexible representation of MoC-based dynamic
semantics; mechanisms for adaptation between different environments and tools.

To meet the challenges posed by Aim 2, we redefine the Cometa language the
preliminary work of which was directed by [106]. This first experimentation gave the
opportunity to express a set of MoC semantics from a dedicated DSML.

The Cometa language has been extended to a more flexible DSML, which allows
new previously unaddressed semantics to be taken into account, and the language’s
semantics is now formalized. The new DSML allows, in the context of model-based
tool integration, the capture of reusable semantics between interconnected (D & I)
tools with different semantics.

The MoCs will be used at every design stage between the models and tools to
express an abstract representation of the manner in which the tool models must be
executed in the source and target environments.

The iFEST project is the ideal framework to design, to experiment and to validate
a solution aiming to respond to the two aims previously stated. The targeted objectives
(i.e. Aim 1 and Aim 2) make sense for (D & I) and (V & V) activities of iFEST.

1.4 Document Layout

Our concerns are focused on three main issues that are: the need to make the seman-
tic differences explicit between the models from various engineering domains, the need
to express and formalize solutions to analyze these semantic differences, the need to
demonstrate the ability to integrate such semantics into model-based tool chains result-
ing in the preservation of semantics between different heterogeneous models and tools.
The following chapters describe the work that was carried out to solve the shortcomings
raised.

Chapter 2 presents a state of the art on embedded systems and their development.
In this part, we give descriptions of the different recommendations for the design of
systems, and we also present some Frameworks for embedded system design.

CHAPTER 1. INTRODUCTION 11

Chapter 3 also features a state of the art on MDE techniques and their basis: this
part highlights the basic grounds defined in this research area as well as the useful
elements for the description of the semantics of models in an MDE context. This
chapter also gives state-of-the-art on MoC when it comes to embedded systems. Several
examples of known MoC families in the literature are presented. Finally, we give a
description of a few Frameworks using the MoC approaches, some of which were stated
earlier.

Chapter 4 presents the new Cometa DSML, its formalization and operational rules
allowing executability of models described from Cometa. The DSML will be later used
for the description of adaptation between tools with different MoCs.

Chapter 5, presents a typical use of our approach for the prototyping of a design
flow emphasizing the design of a Radar Streaming Application. The experimentation
addresses several steps of the (D & I) activities from the choice of the tools in the
development process, until the final design with use of semantic adjustments between
the various tools. Finally, Chapter 6 presents the conclusion of this work and the
perspectives.

2
Real Time Embedded Systems Design

Contents

2.1 Introduction . 13

2.2 Historical study and basic concepts for Embedded Systems 13

2.2.1 Description of the concept of Embedded System 14

2.2.2 Evolution of Embedded System 15

2.3 Embedded System Design and Implementation 16

2.3.1 Design Methodologies and Design Flows 17

2.3.2 From Design Automation to building Tool Chains for RTES . 24

2.3.3 Interoperability and Integration for Embedded System Design 24

2.3.4 Remaining Issues . 28

2.4 Conclusion . 29

12

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 13

2.1 Introduction

Embedded systems are increasingly important in the design of various products. In
fact, they currently represent a considerable proportion of various sectors such as the
automotive industry, avionics, telephony, medicine, etc.

In this chapter, we look at the evolution of embedded systems over several decades.
This work is important because it reflects the enormous progress that has been made in
this domain. Through this progress, engineers can integrate entire systems on electronic
chips. Such technological advances have paved the way for new achievements, which
have led to the increase in system functionality and consequently to the heterogeneity
of systems. Indeed, the new system designs incorporate various functionalities such
as wireless devices, GPS, multimedia (image, video processing), etc. Each of these
technologies is implemented using dedicated tooling and paradigms.

The heterogeneous and complex systems necessarily have an impact upon the de-
velopment processes used for their development. We also address the evolution of
development techniques over the last few years. Particularly, we address new design
methodologies that are intended to improve the development phases and that propose
the best practices and recommendations for embedded system development.

In the current development context, designers are facing a series of issues (e.g. het-
erogeneity, size) which have a strong impact upon the development time, productivity
and reliability of the final products. Because of the increasing heterogeneity of the
systems, the number of tools required in the design flows are also increased. Conse-
quently, these problems are mainly due to: a lack of maturity of the solutions developed
for connecting tools (integration); lack of trusted automated or semi-automated devel-
opment processes; or even the complete failure of solution providers to enable semantic
interoperability i.e. guarantee reliability and consistency of models that are exchanged
between the various tools during the development phases.

In this thesis we tackle this problem of semantic interoperability of models produced
by the design tools in the domain of embedded systems (EmS).

2.2 Historical study and basic concepts for Embedded
Systems

Throughout history, one can find an untold number of transdisciplinary systems in-
volved in revolutionizing our daily lives. The very idea of designing systems or devel-
oping new mechanisms to solve problems is implicitly related to the notion of system.
Since the 1940s, research contributions in the domain of system theory and Cybernet-
ics have given rise to important formalizations of the concept of system. In particular
[7][24] in the domain of Cybernetics, for the general theory of systems [15] and the
complexity theory [29]. Based on these, my vision of a system is as follows:

Definition: A system is designed for a specific purpose; the achievement of this pur-
pose depends on the proper functioning of all its parts (sub-system) working in-
dividually or in interdependent manner. Each component of the system may not
have knowledge of the overall system objective, while being undoubtedly a guaran-
tee of its consistent running.

In the literature, there are several classifications of systems depending on their ob-
jectives and their specificities e.g. transformational systems [71], and reactive systems

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 14

[71] [205]. In this thesis, we pay particular attention to reactive systems that are very
close to embedded systems. For more information on transformational systems, [71]
provides substantial material on the subject.

Reactive systems are described as being in perpetual interaction with their environ-
ment and respondent to the stimuli of the latter. In [13] and [10], reactive systems are
divided into two sub-categories: conversational systems in which no constraint exists on
the response time of the system to an external request. These systems are deterministic
to the extent that they may choose to send or not in response to a stimulus and decide
the moment of response (e.g. databases, network systems). On the other hand, purely
reactive systems are forced to respond instantaneously to their environment.

Embedded systems are part of the category of reactive systems since they are de-
signed to produce an instantaneous result with their environment.

2.2.1 Description of the concept of Embedded System

The family of embedded systems is a variant of reactive systems given that they are
governed by the same computing rules. However, a peculiarity of embedded systems
lies in the fact that they jointly incorporate software (SW) and hardware (HW) parts,
which gives them a heterogeneous appearance.

Quote: “An embedded system is an engineering artifact involving computation that
is subject to physical constraints. The physical constraints arise through the two
ways that computational processes interact with the physical world: reaction to a
physical environment and execution on a physical platform” [76].

From a platform point of view, this definition highlights the heterogeneous nature
of the EmS defined as interacting HW/SW parts. The heterogeneity is accentuated by
the diversity of the types of integrated SW and HW.

The software programs are mainly supported by Real Time Operating Systems
(RTOS), Middleware, Internet Modules, Graphical User Interfaces (GUI) [192], and so
on; the platforms are mainly composed of Processors, Memories, Mass storages, Sensors,
Actuators, etc. However, even being composed of different modules, the objective of an
embedded system is unique over time. They thus accomplish a repetitive task whenever
they are accessed by their environment.

Quote: “An Embedded System (EmS) is an electronic system with dedicated function-
ality built into its HW and SW. The HW is microprocessor-based, and uses some
memory to keep the SW and data. It provides an interface to the world or system
it is part of. In most cases, it is a part of a larger heterogeneous system where it
plays a computing, measuring, controlling and monitoring role. ” [192]

Nowadays, embedded systems are present in several sectors e.g. avionics/ the auto-
motive industry, mobile telephony, networks, etc. (Figure 2.1). The design of systems
in each domain is based on design requirements of the domain (e.g. standards, con-
sumption and space constraints). Each requirement is a realization constraint that may
even have an impact on the choice of the HW for its design. Constraints are various i.e.
functional, non-functional (HW constraints, performance, power consumption), etc.

Based on the business domains, sub-classes of EmS are identified such as Real Time
EmS (RTES) and critical EmS [208].

An RTES [184] [119] imposes functioning or reaction constraints on a fixed time
basis. Such a system is doubly constrained by the behavior it must achieve and the

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 15

Figure 2.1: Example of Embedded Systems Integration

time of realization of the behavior. For example, the braking system of a car integrates
EmS with real time constraints e.g. a braking from environmental action should provoke
a reaction taking into account appropriate braking delays (required by the system). A
braking action is performed from the environment; accordingly the system must be
designed to respond to such a request in real time.

With these strong critical constraints, the description of the design flow of such
a system must not neglect any aspect having an impact on the reaction time of the
final system to be implemented. Therefore, the modules produced in the chain must
be precise as regards to the functionality they perform and their interaction must be
handled throughout the design process.

For the critical systems, any misinterpretation of constraints can lead to tragic
consequences [187] (physical damage or serious economic damage). For example the
railway signal systems are critical systems.

2.2.2 Evolution of Embedded System

Between the 1960s and the 1990s, the use of embedded systems experienced unprece-
dented growth. Indeed, we saw the emergence of new electronic components to facilitate
the design of systems and master their complexity. For example, in the 1980’s, DSP
processors (first single chip 1980, NEC µ PD7720 and AT & T DSP1) and FPGAS were
designed with component integration capabilities such as microprograms, specialized
and reconfigurable circuits. More broadly, to meet space and portability constraints
(while maintaining the capacity of the EmS); we witnessed the emergence of System-
on-Chips (SoCs) [192]. SoCs allow the integration of whole system in a single chip of
reduced size. These chips can integrate (DSP, FPGA, Converters Analog/Digital and
Digital/Analog, control modules (micro-controllers), etc) otherwise known as Intellec-
tual Property (IP). Figure 2.2 proposes a description of the abstraction of a system on
chip SoC based on [89]. As a result, several features are now integrated and designed in
the form of a package or IP. This modular component interconnection approach creates
interfacing requirements [192]. For interfacing to components, during the last decades,
several efforts to standardize HW parts have led to the realization of communication
modules such as (VMEBus [122], PCIbus [28], Avalon Bus [4] of Altera) for the board-
based systems. At the time, this enabled more complex systems to be developed. Such
evolution was predicted by Moore’s law in 1965 on the possibility of doubling the num-
ber of transistors in chips every 18 months in the years to come. The complexity of
the system design depends strongly on the diversity and size of the SW and HW. The

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 16

Figure 2.2: Some elements integrated within a SoC [89]

larger and more heterogeneous the system, the more the technologies required for their
design are sophisticated and complex (DSPs, FPGAs, Shared Memory, etc). Other
factors such as space restrictions and Energy consumed also have an impact on the
design choices.

The integration of these different technologies is also an important design issue since
many formalisms and engineering domains interact under the imposed constraints. In
this context, several design challenges are posed. We examine some of them in the next
sections.

Quote: “Modern cell phones may have four to eight processors, including one or more
RISCs for user interfaces, protocol stack processing and other control functions:
a DSP for voice encoding and decoding and radio interface; an audio processor
for music playback; a picture processor for camera functions; and even a video
processor for new video-on-phone capabilities.”[126].

Nowadays, most of the “Computing Systems” are EmS. In 2012, the EmS market
represented a significant investment of about $ 56 billion (25 % annual growth). In
this context, the competitiveness of the EmS design firms is measured on their ability
to reduce costs and design time [54], while ensuring the production of more efficient
systems. To achieve these objectives, design methodologies have an important role
to play. Unfortunately, with the ever increasing level of performance and number
of features offered, the methodologies, languages and development processes are less
suitable for the design of systems. In the next section we are interested in EmS design
techniques as well as future challenges to improve design techniques.

2.3 Embedded System Design and Implementation

With the old development methods HW and SW partitioning was very early in the
design process. Each engineer used to work in isolation and independently, and then
integrated the various modules in late stages. The use of this same process with the
current complex systems is problematic because the addition of new features involves an
increasing number of engineering domains. As a consequence, the systems integration
phases are tedious and error prone. Searching for errors at this level is very time-
consuming.

Quote: “Designing embedded systems requires addressing concurrently different engi-
neering domains, e.g. mechanics, sensors, actuators, analog/digital electronic

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 17

hardware, and software.” [51]

2.3.1 Design Methodologies and Design Flows

To compensate for these different breaches, the development processes were improved
to allow, the earliest possible, consideration of the issues related to the heterogeneity
of the systems as well as their verification and validation.

2.3.1.1 Improved Methodologies for improved Design Flows

The major trends for harmonized system design advocate raising the abstraction of
system models to provide a common reasoning framework for the different stakeholders
of the development process. This reasoning framework facilitates decision-making after
consultation between engineers and the partitioning comes at very late design stages.

In fact, several levels of abstraction are defined, allowing successive model refine-
ment steps to be included up to the implementation. This process also allows the
design of systems that are correct-by-construction with the activities of analysis and
validation of models at each level (Figure 2.3).

Figure 2.3: An simple Abstraction-Refinement Process

The refinement of the behavior occurs horizontally, vertically and across different
tools. In both cases, the formalisms to express behavior play an important role. In
fact, the high-level behaviors are increasingly expressed by high-level languages such as
activity diagrams and state machines. However, successive refinements of behavioral
models tend to make a vertical refinement using action languages, or very low level
programming languages.

The Horizontal heterogeneity (decomposition) raises the problem of decomposition
of behaviors and interactions. The models that are decomposed must remain consistent
before and after their refinement. The structure modification implies changes on the
interaction mechanisms. For this reason, the newly refined models often require an
adaptation of the interaction mechanisms to preserve the behavioral logic.

Vertical refinement raises the problem of the hierarchical heterogeneity. In other
words, considering one level of abstraction, all the system modules obey the behavioral
logic induced by a given MoC; after hierarchical refinement of each module, the different
parts might, in turn, obey different MoC rules. In such cases, the adaptation between
the hierarchical levels that require different MoC semantics should be provided.

The functional behaviors of the different modules are the basis for the interactions.
The Cometa approach does not aim to describe such behaviors. They are in fact

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 18

incorporated as “legacy codes” that can read (or receive) , transform, and write (or
send) data. The functional blocks must not introduce side effects on the functioning.
In addition, they do not handle global variables of the system. In the various system
configurations, the data are to be stored in storage entities such as FIFO, LIFO, or
transported by communication mechanisms such as Message Passing.

Besides, separation of concerns is encouraged because the design of applications
still suffers from a lack of clear separation of aspects related to the description of
the communication between components that are often built inside the description of
application behavior which does not facilitate the understanding of the mechanisms of
communication between modules as well as the reuse of application behaviors. Several
solutions have been developed over the past decades to encourage these new design
methodologies. For instance, the ESL community has made considerable efforts in
terms of methodologies and tools [36]: several extensions of SystemC aim at raising
the level of abstraction of the primitives e.g. TLM (Transaction-Level Modeling) [61],
and also to allow heterogeneous modeling of the modules in accordance with different
semantics of execution e.g. HetSC [80] or SystemC-AMS (Analog/Mixed-Signal) [196].
The improvement of development processes will significantly reduce the efforts required
for verification of highly heterogeneous systems (that currently represents 70 % of the
design efforts).

“Boeing 777 had $ 4 billion development costs, 40 to 50 % of integration and vali-
dation efforts.”

2.3.1.1.a Raising the level of Abstraction

Higher levels of abstraction are recommended in all communities developing complex
systems. They are parts of the techniques to abstract away the bulky properties. Thus,
designers have the opportunity not only to focus on specific parts of the system, but also
to opt for an incremental approach for design, where models are refined on several levels
of abstraction. With abstraction, designers reason, analyze and validate a particular
aspect of a system.

Moreover, development on several levels of abstraction greatly improves the “de-
bugging” phases because it allows errors to be located more easily.

Unfortunately, one of the main issues is to define and fix the aspects related to the
interaction or exchange of data between different modules at each abstraction level,
which is our motivation in this thesis. To this end, the management of concurrency
and communication on different levels of abstraction also allows the development of
the mechanisms of execution control and synchronization of applications before their
synthesis on a highly parallel architecture. In addition, the separation of the computa-
tion and communication allows a clearer description of the system modules and their
interactions.

2.3.1.1.b Separation of Concerns

The separation of concerns is complementary with the abstraction/refinement ap-
proach.

Separation of concerns is a design principle that promotes the separation of the
system into several autonomous entities each addressing a particular problem. The
entities (or modules) are given to qualified engineers that implement solutions for each

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 19

problem. Besides, the integration phase of entities is a mandatory step because it can
affect the overall system behavior.

In this approach, at each level of abstraction, designers use virtual models represent-
ing architectures and virtual structures for analysis of the models. While abstracting
the description of architectures and behaviors, users also separate the communication
rules.

2.3.1.1.c IP Reuse

This solution is based on the reuse of IP blocks (Intellectual Property) [56]. A core IP
is defined as an electronic component implemented and offering guarantees for a given
functionality.

IP-Blocks are used in very late stages of design because they correspond to final im-
plementations to integrate in the HW (or interacting with the other HW components).
In high-level design steps, the IP-Blocks under consideration can be summarized in
terms of their functional properties and their interfacing characteristics with external
modules. In a development process, the use of these components helps prevent their re-
implementation and therefore offers a gain in precious time for design and verification
steps, thus improving productivity.

2.3.1.1.d Analysis, Verification and Validation

These activities allow the detection of design errors for the SW and HW. For the SW
part, it is mainly behavioral analysis on computation, synchronization mechanism and
scheduling; on the HW part it comes to performance and energy consumption testing.
Analysis activities should also oppose the HW/SW co-design with their global proper-
ties (behavioral, performance, space, etc.) at each level of abstraction. For example,
sequential SW design and programming techniques currently cause many problems with
the new parallel platforms because they do not integrate consistent concurrency [65].
Indeed, the various features of the systems were previously developed with a “sequential
reasoning” i.e. succession of statements to make a computation. Nowadays, designers
must also take into account the concurrency of the different modules and the properties
of host platforms as soon as possible. These new constraints must be part of the process
of analyzing the behavior of the system using platform virtualizations.

The above ideas were the basis of numerous initiatives of research, publications,
standardization and frameworks [8] [60]. As a result, there are a large number of tools
on the market that are used during the design phases [90] [199]. In this context, tools
and framework designers are increasingly constrained to ensure compliance between
tools.

2.3.1.2 Well-Known Foundations for Embedded System Design

Due to the engineering domain differences, SW and HW parts have long been designed
separately (early partitioning between SW and HW). On the one hand, to design SW,
languages such as C [100], Ada [111], or recently C++ [188] are used for behavioral
modules of the systems. While the HW parts are implemented using languages such as
VHDL [160] or Verilog [190]. The above languages very quickly became difficult to use
for large systems. Therefore, we are witnessing the emergence of the first languages
providing more abstraction in the way to describe the behavior of the systems, but above
all, which allow the SW and HW to be described jointly. Most of these languages are

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 20

based on paradigms of design with very strong semantics. We can refer to the languages
based on the purely synchronous approach such as LUSTRE (declarative) [70] and
ESTEREL [14] and SIGNAL [11]. The LUSTRE language addresses the continuous
real time treatment of data-flow synchronous systems. On the other hand, the arrival of
the SystemC language has enabled the standard for the design of EmS. System models
are described as processes interconnected via ports and channels that implement the
properties of the system. The approaches around SystemC allow system analysis and
Design Space Exploration 1. The language is implemented on top of the standard C++
libraries and offers primitives for the description of properties related to data types
specific to EmS, the types of communication supports, and the description of structures
composed of interconnecting concurrent entities. In addition, the framework natively
implements a simulation engine for the analysis of the system models. The execution
engine has wrappers allowing the description of several execution semantics such as
Kahn Process Network (KPN) [96], Synchronous Data Flow (SDF) [113] semantics.
The SystemC language has currently become the reference for abstract descriptions
of EmS and defines several levels of abstract representation of models and has more
abstractions such as SystemC TLM or SystemC-AMS.

However, it still has many shortcomings for: heterogeneous semantic expression
and accurate abstraction levels to describe the system models. In fact, the language
remains very close to the implementation. The above languages are popular in EmS
design communities, especially as they are integrated into several tools for modeling
and analyzing heterogeneous systems. In particular, SystemC appears as the target of
many high-level modeling frameworks because it provides adequate support to move
towards code generation for the implementation. Somehow, this choice is motivated
by the fact that formalization, standardization and tooling efforts were made around
the language. To have a good vision of how embedded systems are designed, it is also
important to clearly distinguish between the different constituting activities.

The specification phases allow system engineers to come to an agreement and an-
alyze what the system must do. In this step, engineers focus on a very abstract de-
scription of the system by building representative high-level models of the structure of
the system, its behavior and possibly its I/ O and expected performances. The aim
is to agree on a first draft of the system and its behavior taking into account func-
tional and non-functional properties. In [159], the authors describe such models as
analysis models that are made using different notations and supports depending on the
objectives. The description formalisms range from mathematical representations (on
paper) to graphical descriptions of the structure and behavior analyzed by tools. There
are several tools to manipulate these formalisms e.g. the Unified Modeling Language
(UML) [140], MATLAB Simulink tools [199]. The specification phases are followed by
so-called Electronic System Level (ESL) [127] Design activities.

2.3.1.2.a Electronic System Level

Previously known as System Level Design (SLD) [127], it brings together several method-
ologies and tools aimed at the synthesis of an implementation from abstract models of
an electronic system. Mainly adopted by designers of SoCs, it aims to optimize and
improve the performance of the systems on chips.

1Design Space Exploration activities always participate in the choice of architectures optimization by
reducing the number of configuration of architectures possible for a type system based on the properties
of virtual platforms.

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 21

Quote: “Any level of abstraction above RTL, can be considered as part of the ESL”
[175]

The ESL design adopts the Y-chart [103] principles and promotes the separation of
concern. Thus, the experts in EmS design tend to describe functional and architectural
systems separately: functional design refers to the design of the applications that make
up the system, and architectural design is separated into logical architecture design
and physical architecture design. Logical architectural design refers to all the activities
of architecture choices and deployment of the applications onto the logical architecture
for analysis and refinement, while physical architecture design refers to activities of
building the final physical platform. The functional description can be accomplished
in several stages (depending on the stage of design). The functional descriptions are
interested in the description of the structure, behavior and mechanisms for communi-
cation of the subsystems of the system. These activities enable a simple way (FSM,
algorithms) to represent abstract and formal application model behaviors the specifi-
cation of their execution properties. The abstract representations are based on formal
models of computation (MoC) such as KPN, CSP [82]). These MoCs are defined in the
section 3.4.2.

2.3.1.2.b Platform-Based Design

During architecture design phases, engineers choose different platforms to assemble in
order to boost the performance and increase system efficiency once they are imple-
mented. The HW choices take into account physical and spatial constraints (resources,
communication, energy, size, etc). The analysis of application mapping onto HW ar-
chitectures has an impact on the effectiveness of the final realization because it helps
to explore the best architecture assembly to optimize the performance of the systems.
Platform-Based Design (PBD) is a Meet-In-The Middle approach (Figure 2.4) that
associates the efforts of functional design top-down with the efforts of abstraction for
architectures “bottom-up” [201][101]. Each architecture abstraction hides details and

Figure 2.4: Platform-based Design Principles

properties of the lower architecture abstraction it depends on. Nevertheless, the ab-

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 22

stractions contain sufficient details to be easily refined from one upper architecture
model to a lower model. A platform in the PBD approach is an abstraction layer of
architecture that allows a number of properties of architecture to be displayed, and
also offers opportunities to refine this architecture to provide detailed properties. For a
given level of abstraction, the platform is defined by a library of components and rules
(for component assembly). The concept of Platform Stack [201] is defined to represent
all of the methods and tools to refine an abstract platform to its next refined plat-
form. This means, all the relevant techniques for the refinement from one abstraction
to another. During the analysis activities, the platform Application Program Interface
(API) is used for the recognition of the interfaces between the SW and HW. Today, the
difficulty of using the PBD techniques resides in a lack of design flows associated with
this approach which weakens the proposed solutions and slow its evolution. Indeed,
designers remain quite skeptical about changing their development processes to these
approaches. Besides, the platforms are generally poorly characterized because their
definition is hard to achieve for a given abstraction level.

2.3.1.3 Examples of Frameworks for RTES

It would be difficult to draw up an inventory of all the tools and languages dedicated
to the design of EmS and based on the previous recommendations in section 2.3.1.1.
The following references are also environments for EmS design [199] [18] [8] [158] [105],
and yet the list is far from exhaustive. However, we will present two of the well-
known environments for EmS design: one widely used in industry i.e. Simulink and
an academic framework [45]. This choice allows us to briefly illustrate the solutions
that exist in these communities to solve the problem of EmS design following the
recommendations.

Simulink [97] is a tool from the Mathworks suite of tools for the specification, analy-
sis and simulation of dynamic systems such as signal processing (control-flow, stateflow
and data-flow). This framework is used to describe models as the interconnection of
linear or non-linear components graphically represented by a “Block Diagram”. In
a “Block Diagram”, the Hierarchical components are connected via ports and lines
(branches). Thus, specification activities allow the graphic representation of com-
plex models that can be simulated using the Simulink execution engine. The latter
is able to interpret models according to the several execution semantics which it im-
plements. Simulink has mainly 3 categories of execution semantics corresponding to
the implementation of models of computation: Continuous-Time, Discrete-Time and
Event-Triggered. For each of these types of semantics, Simulink not only defines specific
types of Blocks (Block CT, Block DT, etc.) but also allows their internal combination
(heterogeneous). As long as the semantics of models remain in these 3 categories, the
runtime engine is able to interpret their combination and then to provide results of
simulations based on signal (data) input of the system.

Regarding our approach, the major shortcoming of Simulink is related to its lack of
openness to the description of the model semantic, in case of exchange between tools.
There are no guarantees that the Simulink model will be correctly interpreted outside
its own framework by another analysis tool. Similarly, the lack of explicit and formal
description of the semantics of Simulink models causes difficulties in proposing external
solutions (from external tools) to interpret correctly the output models of Simulink.

SESAME [45] is another approach based on the above design methodologies. In-
deed, SESAME is a framework for modeling and simulation (for multimedia embedded
systems). It is primarily aimed at Pruning on the designs of system architecture as

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 23

well as Design Space Exploration (DSE). The methods applied in the framework for a
high-level design separate the description of behaviors (communicating processes and
features KPN); the description of system architecture (constraints and topology). The
high-level models (including Khan communicating processes) are associated with a code
generator KPNGen for the production of C/C++ code for the simulation of the ap-
plication. Apart from the separation of concerns, the framework defines an engine
allowing the co-simulation of model behaviors and architecture models with an exe-
cution semantics based on execution trace handling (trace-driven) as shown in Figure
2.5.

Figure 2.5: Allocation model from SESAME

Nowadays, significant efforts have been made to solve the problems of the ESL
and offer innovative solutions with best abstractions [101] [90]. However, many of the
solutions suffer from a lack of maturity of the semantic consistency of models and the
preservation of the semantics of models between tools as stated by [175] [8]. Indeed, the
design by refinement principle will be difficult to apply on several levels of abstraction
when several independent design tools are used and they do not provide guarantees on
the semantics and behavior preservation during the stages of refinement. Therefore, the
models are not necessarily correct-by-construction. This observation is made by [207]
stating that ESL methodologies such as the High-level Synthesis (HLS) while offering
added value for the synthesis of implementation, the rapid prototyping, or the analysis
of performance, they remain quite immature in so far as synthesizers (code generators)
still suffer from the existing gap between: the so-called high-level languages promoting
(separation of concerns and design by refinement) and the lower level implementations
(i.e. Register Transfer Level (RTL)) associated with different tools using fine grain
implementations. Moreover, most of the tools in this context are academic tools [45]
[8][39] and only few of them are accepted by industry.

To cope with the complexity of the systems on the one hand, and the semantic gap
between design tools on the other, it is necessary to use several intermediate tools during
the development process to perform high-level analysis, refinement and incremental
code generation. In other words, these tools must have compilers and interpreters at

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 24

each level of abstraction.

2.3.2 From Design Automation to building Tool Chains for RTES

In this section, we describe the relationship between the design automation and the
tool chain descriptions while trying to make explicit the constraints related to this
relationship.

With the multiplication of the number of engineering domains and the number of
steps involved during the design phases, there is also an increase in the number of tools.
In this context, there are many challenges that are posed, especially for the automation
of the design phases. However, automation is strongly constrained by problems of tool
interoperability.

Automation aims to enable easier data exchanges and transformations between
tools without loss of information. It must allow automation of design activities while
taking into account the translations of data between tools. These procedures usually
contain phases of data handling which can cause loss of information or poor semantics
translation leading to misinterpretations of the data. The interoperability targets the
ability of specific frameworks to ensure a solid connection/integration of tools using
reliable definitions of infrastructures (interfaces, communication protocols, data format,
etc.). The problems of interoperability between tools exist in different communities
including embedded systems. In the context of embedded systems, interoperability is
a major concern regarding the heterogeneity of systems and their strong underlying
semantics.

For EmS, design automation is often related to the analysis or RTL code synthesis
from high-level models (e.g. SystemC, TLM, etc). The generated code artifacts are:
tasks to run on processors; communication protocols connecting modules [207], etc. For
this reason, high-level Synthesis (HLS) activities are considered as part of the process
of automating the Design because their goal is to provide the tools and methodologies
required to generate / synthesize (implementation) code for the HW. The early HLS
tools failed to deliver satisfactory results for large scale systems because generators are
ad-hoc and are often difficult to adapt to new components or architecture properties.

The new design methodologies and tools are opting for a more reasonable approach
since they focus on a particular aspect of the system for which they generate adequate
optimized code. In this context, tools such as Catapult C Synthesis [18], Bluespec
System Verilog [138] focus on the synthesis of implementation for parts such as DSP,
or control, etc [128], and so on.

In a context where the design approaches focus more on methodologies based on
abstraction and refinement, we can also integrate design automation to ensure a good
connection between the tools at each level of abstraction. Design Automation, thus,
guarantees the proper exchange of data between the various tools while strengthening
the interoperability between tools. We address this matter in the next sections.

2.3.3 Interoperability and Integration for Embedded System Design

The variety of modules that make up the systems imposes new design flow (or design
flow refactoring) integrating several design tools. In the EmS domain, integration of
these tools poses huge problems of interoperability that are managed by the definition
of tightly coupled tool integration frameworks for which the set of tools is known in
advance and integration efforts are made around these specific tools.

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 25

2.3.3.1 Tool Interoperability in the RTES

Tool interoperability refers to the ability of different tools to exchange and communicate
(data, services, etc) in a consistent way. Process automation tools (e.g. BPMN [204])
allow the subsequent firing of activities based on a sequence of scheduled activities.
The interoperability of data refers to the exchange of data between tools. The EmS
world is relatively late in addressing these concerns, which is explained by the complex
nature of the data that are produced by the various tools.

The problem of interoperability in this context is exacerbated by the lack of a
common infrastructure serving as support for exchanges between tools in the domain
of EmS. Moreover, the reluctance of the tool-providers to invest in the production of
bond interfaces for different tools is an obstacle for consistent tool interoperability.
However, there is hope with a few approaches and projects which are more interested
in the interoperability aspect of tool chains [163][202][167].

Interoperability, generally speaking, is defined as the ability of several environments
(e.g. tools, people, physical entities) to exchange information seamlessly clearly speci-
fied interfaces and protocols.

In this case, the specification of the information exchange techniques is mainly based
on foundations such as the resolution of the syntactic and semantic interoperability.

On the one hand, syntactic interoperability is revealed as being the ability of several
tools and environments to exchange data using common data formats , interfaces and
formally defined protocols.

On the other hand, semantic interoperability provides various tools with the abil-
ity to exchange data in a consistent and efficient manner, thanks to the definition of
upstream common interpretation mechanisms or via semantic transformations between
tools .

Tool integration in a development process is the description of the common rules
and techniques used as supports for communication between tools. These supports
respond to integration issues such as the definition of the common data formats, the
common interfaces and functions between tools.

There are several works in the literature along the lines of improving tool inte-
gration in the SW development processes [75] [169] [168]. However, the pioneering
work of Wassermann [203] provides a structured vision of tool integration by providing
dimensions to characterize the tools:

• The platform scale used to describe the services implemented in a framework of
integration;

• Presentation dimension allows you to find solutions to improve the interaction
between users through integration environment;

• The Data dimension allows the improvement of the use of data by the integrated
tools. Data must in this case be handled in a consistent manner;

• The Control dimension improves environment handling functions and must take
into account the design process of the environment;

• The Process dimension focuses on the role of tools in a development process. This
dimension ensures that the interaction tools are effectively a chain.

Quote: What does “integration” mean? Integration is a property of tool interrelation-
ships. Understanding it will help us design better tools and integration mecha-
nisms. [191]

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 26

2.3.3.2 Tool Interoperability within Tool Integration

2.3.3.2.a Common Design Flow Infrastructure (CDFI)

Pimentel [163] defends the idea of the necessary definition of a common infrastructure
to ensure good interoperability between tools in a design flow (System Level Design
tools). Their approach would be based on the definition of a standardized “Meta-Tool”
framework for designing System Level Design Flows (SLDF). In such case, the design
stages are plug-ins. The framework presents descriptions of data and the file formats
that are standard, thus facilitating exchanges with external tools (plug-ins). With
CDFI, one can build some pre-packaged, standardized and customized design flows.

The data produced in design flows are saved in a structured manner within a com-
mon repository and with a format which is comprehensible to the tools connected to
the repository. The tools in the flow play different roles from : system model design,
refinement of models, to system synthesis.

As shown in Figure 2.6 tools manipulating the repository of CDFI models formally
declare the type of data they input and those they produce on output. Moreover,
each tool should produce the following information (pre-conditions, input requirements,
semantics, post-conditions and output definition).

Figure 2.6: CDFI Model integration for different external Tools

For example, a tool such as SESAME must specify that the models it takes as input
are the KPNs and that it is capable of generating output composed of performance
metrics and multiple architecture instances for DSE.

2.3.3.2.b Levels of Conceptual Interoperability Model (LCIM)

The work of A. Tolk et al. [202] presents a more conceptual vision of the problem
of interoperability. In these works dedicated to modeling and simulation, the authors
define a conceptual interoperability called Levels of Conceptual Interoperability Model

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 27

(LCIM) that describes the different levels of interoperability not only for systems but
also for the tools. In their approach (see Figure 2.7), we are mainly interested in the
levels of interoperability from 2 to 6 that emphasize one major challenge i.e. semantic
interoperability. For a detailed description of the different levels, the reader can refer
to [202] [193].

Figure 2.7: The Levels of the LCIM Model

Syntactic interoperability as outlined in Level 2 is reached once several systems
(tools in our case) are capable of exchanging data the format of which is known to the
various tools. Thus, the formal definition of a common format for data exchange is one
of the first steps in a process of interoperability definition.

Level 3 defines interoperability at the semantic level (static) that focuses on the
definition of the meaning of data between tools regardless of the manner in which they
are represented.

Levels 4, 5, 6 define interoperability at the semantic level (dynamic). This is mate-
rialized by the description of the way in which the data are handled; the ability of tools
to understand and exploit the changes related to the data over time; finally the ability
of tools to have an alignment on the constraints and the assumptions which allow a
correct and common interpretation of models.

2.3.3.3 Summary

There are a large number of standard data formats for syntactic interoperability be-
tween tools. Among other formalisms, we can cite XML [22], XMI [149] for MDE,
RDF [98], etc. In the MDE community the metamodels are used to achieve syntac-
tic interoperability and are serialized in XMI (Section 3.2 presents the MDE and the
use of metamodels). Besides the ability to exchange information based on the same
formalism, the second challenge raises the important issue of the semantics of models
(static and dynamic) [193][163]. Static semantics defines the meaning of a concept in

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 28

a language or in a given context (domain). While the dynamic semantics clarify the
dynamic evolution of the model elements based on formal rules (e.g. MoC described in
1.2). The two semantics are important to ensure automatic meaningful and accurate
interpretation of data from one tool to another.

The above issues are addressed in several major projects targeting the interoper-
ability of design tools. These projects include the following iFEST [86], CESAR[95],
MBAT[129], etc. Our work in this thesis is part of the iFEST project. The iFEST
project seeks to solve the problems related to the integration of tools for embedded
systems. Specifically the project tries to provide an integration environment to trou-
bleshoot data exchange between tools and offers a better management of the product
life cycle. The idea is to define high-level interface and interaction services based on an
exchange standard called OSLC [12]. From the services, engineers can define prototypes
of well integrated tool chains. The services are grouped around the concept of “Tool
Adaptor ”. A Tool Adaptor allows the data generated by a tool to be transformed in
conformity with the OSLC data representation standard (RDF) and uses the services
defined to transmit data through the framework.

2.3.4 Remaining Issues

Automation of design activities is tedious mainly because of the number of tools in-
volved during the development processes. Indeed, modern systems are composed of
several heterogeneous components and levels of abstraction, for which we can imagine
different tools for their realizations. This has the consequence of making the definition
of generic design automation almost impossible since the new tools are weakly inte-
grated. In fact, for various reasons (e.g. policy, complexity), most existing automation
techniques are done ad-hoc inside a “closed” Framework as in Computer-Aided Soft-
ware Design tools [168]. Indeed, for EmS, the tools of the same chain are efficiently
and tightly integrated, and have generators that allow the data to be moved from one
tool to another with minor losses of information. The Frameworks such as Daedalus
[139], SESAME, and Metropolis [8] are based on this approach.

Nowadays technical infrastructures to ensure automation allow functionality and
service definition to facilitate exchanges between the tools. However, the problem
of automation is not just summed up in a question of “technical mechanisms” but
also of exploitability of the data that are produced. Indeed, the heterogeneity of the
engineering domains and data pose the problem of the consistency of exchanged data.
Such consistency of data is limited by syntactic and semantic interoperability problems.
While the syntactic interoperability is well addressed with the definition of several
common formats to exchange data, the semantic aspect remains a challenge for the
definition of automated and integrated design flows.

Moreover, the integration of new tools becomes difficult when it comes to the preser-
vation of the semantics of data that are exchanged. So far there are no sufficiently ma-
ture solutions in the different proposed approaches that allow the semantic aspects to
be consistently taken into account. Semantic interoperability is achieved when there is a
common interpretation and unambiguous understanding of exchanged models, regard-
less of their representation. The negative consequences of the use of models in different
tools come mainly from this breach which constitutes a particularly important hand-
icap when it comes to exchange of executable models the behaviors and semantics of
which must be preserved across different tools.

CHAPTER 2. REAL TIME EMBEDDED SYSTEMS DESIGN 29

2.4 Conclusion

The important work in the domain of embedded systems has allowed the emergence of
several new design approaches that advocate abstraction to reduce complexity of system
realization. These efforts have enabled the rise of technologies, languages, methodolo-
gies and Frameworks including industrial environments as well as tool-providers.

In the previous sections we have seen some of these significant contributions which
now constitute an important basis for the development of EmS.

However, there are several observations that are made regarding the current solu-
tions:

• Most of the environments with an efficient design automation as those stated
earlier are based on the use of a single framework that defines strong and fixed
couplings of data between tools. Therefore, the tool connection mechanisms are
defined ad-hoc and are not visible to users. Consequently, blind faith should not
be made to tool providers regarding the semantics of the data being exchanged.

• These environments incorporating fixed sets of activities and (well-integrated)
tools have difficulties in accepting the integration of new design tools with unsup-
ported semantics. Indeed, the integration of the necessary semantic adaptations
for new tools is a failure and not yet addressed in the context of tool integration.
For ESL, the community still suffers very complex and costly manual integration
phases where the intervention of experts capable of determining a good integra-
tion of heterogeneous environments is needed. This issue has been raised in other
works on tool integration pointing out the lack of solutions to address the se-
mantics of data exchanged between the tools of an integration environment [75]
[107].

• Our last observation relates to the lack of tools offering higher levels of abstrac-
tion. For ESL, the abstract executable languages are at best the SystemC lan-
guage and its abstractions [90], or libraries on top of existing programming lan-
guages such as C, C++ [100][188]. In the context of system engineering, such
languages are still very low level.

In summary, ESL currently lacks solutions to offer more abstraction for the description
of systems; automated, flexible and reliable environments to connect tools not belong-
ing to the same environment; and environments allowing tool’s replacements without
weakening the design flow and the data produced.

In the rest of our approach, we present the successful solutions solving some of these
shortcomings. Especially in the next chapter, MDE techniques are presented: for better
abstraction languages for system design and better design automation definitions. In
recent decades, communities such as the MDE have offered solutions dedicated to em-
bedded systems with better abstractions for the specification, analysis and refinement
of models of systems. These techniques are accompanied by tools that allow automa-
tion of exchanges between different environments to be defined more easily. Indeed, the
transformation of modeling tools are often more intuitive and less complex than those
handled in other communities, including ESL. In the next chapter, we will precisely
study the theoretical basis of the modeling approaches. Such approaches will be used
to compensate the failings of the ESL design languages for abstractions. In addition,
we examined the failings of the MDE and MBE from the ESL perspective.

3
Towards Formal Semantics in MDE

Contents

3.1 Introduction . 31

3.2 Model-Driven Engineering . 31

3.2.1 MDE principles and basic concepts 32

3.2.2 Model Transformation . 34

3.2.3 MDE methodologies and Standards 35

3.2.4 Challenges . 37

3.3 Semantics in General and Semantics in MDE 37

3.3.1 The types of Semantics . 37

3.3.2 Semantic expression in MDE 40

3.3.3 Challenges . 42

3.4 The MoC Theory . 43

3.4.1 Data-Flow Oriented MoCs . 43

3.4.2 Control-Flow Oriented MoCs 44

3.4.3 MoC Classification . 45

3.4.4 MoC Composition . 47

3.4.5 Frameworks for System Design based on MoCs 49

3.5 MoC in the context of MDE 50

3.5.1 MARTE . 50

3.5.2 SysML . 50

3.5.3 MoPCoM . 51

3.5.4 Metropilis . 52

3.5.5 Challenges . 52

3.6 Conclusion . 52

30

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 31

3.1 Introduction

As we discussed in the previous chapter, the methodological aspects of systems design
advocate raising the abstraction level of languages, the separation of concerns, etc.
Moreover, for productivity increase and reduction of time-to-market, tool integration
supporting design automation is an important aspect. Besides, we acknowledged that
an ideal development framework must be based on the aspects mentioned while ensuring
good tool interoperability in terms of data, process, control, etc. Specifically, data
exchange must ensure a syntactic and semantic interoperability.

In this chapter, we look at current solutions improving the methodological aspects
mentioned as well as the technical aspects (e.g. design automation). We especially
describe these solutions in their ability to express abstract languages syntaxes and
their ability to preserve the semantics of the data produced from these languages.

This chapter provides solutions based on Model-Driven Engineering and on the
opening of this field to ensure a better preservation of model semantics. MDE is
a serious candidate to overcome the shortcomings induced by the lack of sufficient
abstractions and separation of concerns. MDE does so by promoting the use of Domain-
specific modeling languages (DSML) [197] [123].

A Domain Specific Modeling language intends to describe a system focusing on its
primer properties. It uses abstracted key concepts that define the system representa-
tion.

For embedded systems, the preservation of semantics focuses not only on the syn-
tactic elements (i.e. meaning of exchanged items), but also on the operational aspect,
which mainly provides means for parallelism control of system models. Currently, the
parallelism control of exchanged models is done through the description of formal mod-
els of computation (MoC) that are implemented in tools. Therefore we present two
other sections respectively dedicated to the description of MoC approaches and the
analysis of the relationships between MoC approaches regarding the MDE features and
requirements.

3.2 Model-Driven Engineering

This section aims at describing basic concepts that make the foundations for Model-
Driven Engineering. Many of the approaches around MDE were and are motivated
by the common ambition of different communities to reduce the complexity of system
development processes. These attempts are more or less all based on the same princi-
ple i.e. the use of more abstracted descriptions to represent systems and make them
understandable for different users.

Quote: “Model engineering is the disciplined and rationalized production of models.
Model-driven engineering is a subset of system engineering in which the process
heavily relies on the use of models and model engineering. ”[48]

Model-Driven Engineering stands for the definition of the concepts and principles
to offer better abstractions for development processes, it also encompasses process and
analysis concerns.

MDE approach as defined by [49] is an integrative approach that aims to integrate
different technical spaces (Grammarware, Dataware, etc). Technical space is defined by
the set of formalisms, tools and theoretical foundations that helps to describe a model

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 32

within a domain. Although the technical spaces might be different there are similar
key concepts in the different spaces, that emphasis the concept of abstraction. Indeed,
concepts such as model, metamodel and processing exist in the different technical spaces
even if they carry different names.

3.2.1 MDE principles and basic concepts

3.2.1.1 Models, Metamodels

A model is an abstract representation of “something” (system, house, car). This rep-
resentation does not represent the concrete artifact, however, it has enough abstract
details regarding this “something” to be understood and interpreted or viewed as that
“something”. The “Pipe” example in Figure 3.1 shows a picture of a “Pipe” which is
actually just a picture of it, that is understood as a “Pipe”[16].

Figure 3.1: The Pipe example

For system design, a model is seen as a formal specification of the structure and
behavior of a system reflecting its properties without being its final realization. Thus,
at a given level of abstraction , a model exhibits enough details to be representative of
a system and to address a particular aspect of a system.

After the definition of what a model stands for, it is convenient to think in terms
of the means currently available for defining models.

Models are realized using modeling languages (DSMLs), also called metamodels. In
the context of MDE, all metamodels are defined from the same set of concepts from
the Meta Object Facility (MOF) standard [142].

According to [17], a metamodel is a set of concepts and the relationships between
them.

Indeed, a Metamodel (UML, DSMLs) defines the boundaries of the model and the
relationship between the different elements of the model. Therefore it is considered
itself as a model describing a set of concepts and their relationship in order to be used
to describe other model instances. At some point, a metamodel can be self descriptive,
i.e. it can be used to describe itself using its own concepts; such a model is called
meta-metamodel (e.g. MOF, Ecore).

3.2.1.2 Relations between Models, Metamodels and Meta-Metamodels

The layered description of the modeling approach is a result of the efforts from the
MDE community to find solutions to federate the different emerging metamodeling
facilities [140], [147], [144]. As a solution, the Meta Object Facility (MOF [142] was
proposed to represent the metamodeling language on top of the other metamodeling
languages i.e. (meta-meta modeling) language (self-defining) [17]. This is illustrated

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 33

by the pyramid classification exposing the relationships between the different layers of
modeling languages (Figure 3.2).

Figure 3.2: The Layers between Models, Metamodels and Meta-Metamodels

In the Pyramid, the lower level represents the real artifacts from the real world (M0),
these concrete artifacts can be abstracted into models with various representations,
the representations are defined at the (M1) level; the M1 models are defined using
modeling languages i.e., meta-models defined at the (M2) level; and finally the (M3)
level corresponds to the description of the MOF used to represent all meta-models.

However, this representation is very controversial since it does not give any formal
definition of the relationships between the different layers i.e. the formal relationship
between a model, metamodel and a meta-meta model. Therefore, such approaches face
skepticism within several communities [48].

Quote: “Is MDA about studying the Egyptology? ” [48]

Several attempts to formalize the different relationships have been made, and [48]
is one of the prominent researchers [49] [124] proposing a formalization of the relation-
ships.

As shown in Figure 3.3, the models, metamodels and meta-meta models highlight
basic relations [47]. These relations are in most cases derived from conformance (e.g.
conformsTo) and representation (e.g. representationOf) relations e.g. a model conforms
to metamodel a while a model can be a representationOf a system. The conformance
relationship is also reusable between the metamodel and the meta-meta models.

Figure 3.3: Example of relations between Models, Metamodels and Meta-metamodels

All these parts of the MDE framework participate into using strong abstractions
as key elements giving good definition of uncoupled domain specific concerns fostering
reuse and automatic generation of models for different targets (tools, platforms, etc).

In the next section, we address model transformation that basically controls how
synthesis or binding between models are made using models and metamodels.

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 34

3.2.2 Model Transformation

The transformation rules are cornerstone design elements. It is through the trans-
formations defined between different models, different views, and different levels of
abstraction that designers provide a link between the artifacts they handle and com-
municate. Several works are currently interested in the definition and classification of
different types of transformations. For instance, [194][104][34] have taxonomies describ-
ing different types of transformations. The transformation in this context addresses the
refinement and translation of a given model into its corresponding output model both
conforming to metamodel definitions (we previously defined the possible transforma-
tions between the PIM, and PSM PDM in the context of MDA.).

The objective of the processing steps is to provide one or several outputs from
given input models. The output result can be a synthesized code in a given language
(code generation); a different representation of the model (model’s syntax and semantic
translation); or documentation.

We can classify transformations as horizontal or vertical. Horizontal transforma-
tion (e.g. refactoring) do not necessarily include a refinement of the input model, it
may materialize, for example, a change of view. The vertical transformation allows
refinement of the models. For instance, in the MDA context, all transformations are
potentially vertical due to the refinement of behavior models and architecture mod-
els. The transformations can also be horizontal except the PIM → PSM that is a
refinement in all cases.

The description of transformations in MDA relies on the description of rule patterns
executed by the transformation engine. The rule syntaxes conform to a transformation
metamodel to describe them (see Figure 3.4-a). Transformation metamodels are defined
from MOF thus providing a uniform format complying with the format of the candidate
models for transformation.

The transformation rules are divided into exogenous or endogenous transformation
depending on the models and metamodels involved for the transformation. As shown
in Figure 3.4-b: an exogenous transformation involves at least two modeling languages.
The transformation goes from a source model (with a given abstract syntax) to a target
model representation (conforming to a different abstract syntax). For this particular
case, the problem of semantic translation is a recurrent difficulty. In the case of the en-
dogenous transformation, source and target models are defined using the same modeling
language (same abstract syntax).

Figure 3.4: The Types of Model Transformation

The rules defined for the transformations mainly rely on techniques, or standards
such as QVT (Query, Views, Transformations) [156], ATL (Atlas Transformation Lan-
guage) [94], etc. Depending on the technique/standard used, the rules are written
differently. For example, the QVT standard uses declarative types of rules, unlike Ker-

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 35

meta [91] which lays down imperative rules. ATL defines both types of rules. The first
solutions for the transformation of models were integrated within CASE environments
[104]. Nowadays, Eclipse [41] offers an integration environment used for different types
of activities, including modeling and transformation. The project Eclipse Modeling
Foundation (EMF) [27] has been an opportunity to integrate functionality to make
tooling for modeling and the transformation of models based on the Ecore1 formalism.
The EMF API in Eclipse allows models to be manipulated directly (transform, inte-
grate and refine) directly models. However, several tools can be developed above the
API. For instance, besides the above transformation languages (i.e. ATL, QVT, etc),
there are more recent environments that tend to propose new solutions for model trans-
formation: the Acceleo [137] of Obeo or MDWorkbench [183] of sodius transformation
tools.

3.2.3 MDE methodologies and Standards

Figure 3.5 shows some of the approaches within the MDE domain.

Figure 3.5: The different parts of MDE

3.2.3.1 MDA

The Object Management Group (OMG) [146] is presented as an institution that aims
to provide solutions to facilitate the integration and interoperability of different envi-
ronments.

Model-Driven Architecture (MDA) [194] [104] [166]is an OMG standard encour-
aging the separation of concerns between the system’s functional models and their
potential target platforms. This separation emphasizes the reuse and refinement of the
functional models into different platforms. Without the platform details, the models
are also more easily analyzed. To this end, the MDA specification defines concepts that
highlight the separation of concerns for system models. The definition of viewpoints
is one of the approaches that provides the separation of concerns that aims to provide
several representations of a system based on specific criteria. The definition of separate

1The Ecore formalism is a standard for the description of metamodels in the same way as the MOF

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 36

viewpoints is an abstraction, because users are limited to a set of elements to study
and to analyze (e.g. behavior, performance, dependability, etc) [194]. Today, a great
difficulty of the MDE is to ensure consistency of the views and more specifically, the
consistency of information exchanged between these views. Since each view is likely to
possess its own models with their syntax and specific semantics, model transformation
from one view to another poses the problem of the preservation of the models’ semantics
during pre / post transformation of models.

The general view in Figure 3.6 illustrates the concerns’ decomposition adopted by
MDA: the Platform Independent Model (PIM) represents the models for which the
platform specific information has been abstracted away. Therefore, any PIM highlights
only concerns related to the structure and functionality of the system model. The
Platform Description Model (PDM) has the purpose of abstracting the characteristics
of agiven platform at one level of abstraction while giving details on its properties
and topology. The model resulting from the mapping of a PIM on a PDM is called
the Platform Specification Model (PSM). The PSM is also an abstract model that
is the refinement of a PIM with details related to its target platform. However, the
final implementation is derived from the PSM by binding mechanisms to generate the
implementation code specific to the environment (e.g. C, VHDL, etc). In some cases
of MDA the designers only consider the two model layers PIM and PSM where PSM
will include the target platform information [104].

Figure 3.6: MDA Separation of concerns

With these basic definitions, several transformation schemes are defined between
the different types of models: PIM → PIM is rather a refinement process where
abstract system models are refined into more precise models; PDM → PDM and
PSM → PSM are both refinements of the model platform; while PIM → PSM

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 37

result from the mapping process that combines PDM with PIM. In order to integrate the
different approaches willing to apply the above methodology, the MDA also encouraged
the use of a common modeling language for the communication between the different
models. We notice that the separation of concerns as described in the MDA is quite
close to the separation of concerns as defined in the ESL community. These similarities
are due to the fact that they are both inspired from the Y-chart methodology [103].

The use of models is central to the MDE approach, therefore we give a few important
definitions on the notions of models, metamodels and transformation of models in MDE
context.

3.2.3.2 Other Standards

There are a large number of standards and tools based on the MDE approach. Among
the standards are: the Unified Modeling Language (UML), the Meta-Object Facil-
ity (MOF), the XML Metadata Interchange (XMI), the Software Process Engineer-
ing Metamodel (SPEM), the MOF Model-to-Text language (MOFM2T) [150] and the
(QVT). A part from the standards, EMF framework is an eclipse project for model-
based design. Many tools are currently developed around the EMF framework. Ecore is
the metamodel description format implemented in EMF as a metamodel (Ecore defines
itself). The use of this formalism allows all Modelers based on Ecore to use the tooling
proposed by EMF. The serialization format associated to Ecore models is the XMI.

3.2.4 Challenges

The use of models is based primarily on the use of a certain abstract syntax. In
this case the transformations between models consist of translations from one abstract
syntax to another. Today one of the major problems for the interoperability is due
to the difficulty in preserving the meaning of models in different contexts. Indeed,
the semantics of models is useful to set a correct interpretation of the models in their
theoretical and technical context of definition. Semantics also ensures that the models
remain valid in other technical spaces for analysis or validation. Several contributions
for the description of the semantics of models were conducted in the MDE community
[72] [136]. In the next section, we propose to study the major semantic categories and
their relationship to the abstract syntaxes (metamodel).

3.3 Semantics in General and Semantics in MDE

The semantics clarifies the meaning of the language constructs allowing models with
unambiguous meaning to be built. The definition of the semantics of models is often
obtained through knowledge of the domain it is supposed to represent. It corresponds
to the identification of what represents each abstract concept in the domain where it
has a meaning.

3.3.1 The types of Semantics

Approaches such as [72] [92] (see Figure 3.7) consider such description as a mapping
between language (concrete syntax / abstract syntax) and the semantic domain that
gives the meaning. This semantic domain is also a set of formal definition that can
be related to any notation. Thus, the semantic mapping must take into account the
nature of the semantics that is mapped. Several types of semantics have been studied

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 38

and classified in the literature. Figure 3.8 shows this classification. There are mainly
two types of semantics: the static and dynamic semantics.

Figure 3.7: Mapping of syntax to semantic domains

Static semantics is very close to axiomatic semantics since it can have the same
representation but is only interested in the statically properties. Such properties can
be analyzed at compile time. Consequently, static semantics gives meaning to model
elements without any assumption on the way they are executed.

In this thesis we examine more closely dynamic semantics also referred as the exe-
cution semantics [206]. Indeed, a consistent analysis (for simulation or model-checking)
is not possible without a formal definition of the execution semantics of models that
are handled by the tools.

Figure 3.8: Example of Semantics Classification

The execution semantics as shown in Figure 3.8 can be divided into several seman-
tics: operational semantics, denotational and axiomatic, etc.

Quote: “The different styles of semantics are highly dependent on each other. For
example, showing that the proof rules of an axiomatic semantics are correct and
are related on an underlying denotational or operational semantics. To show an
correct implementation, as judged against a denotational semantics, requires proof
that the operational and denotational semantics approved. Moreover, in arguing
about an operational semantics it can be an enormous help to use a denotational
semantics, which often has the advantage of abstracting away from unimportant,
implementation details, as well as providing higher-level concepts with which to
understand computational behavior. ”[206]

3.3.1.1 Axiomatic Semantic

Axiomatic semantics [32] is an abstraction of the denotational semantics (described
mathematically) which aims to define the meaning of a program based on the logical
properties that define the semantics. The idea is based on verification of a set of
predicates that specify the meaning of a program (pre and post) execution on the
machine’s memory. The semantics is often associated with the work of C.A.R Hoare

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 39

[81] and R.W. Floyd [53] for proof of program correctness properties. For example,
for proof by Hoare’s method, the axiomatic semantics are described as follows: The
properties are expressed in the form of a triplet {a} E {b}: a is a precondition in the
logic of predicates that the memory of the machine must check before executing the
action/command E. After execution, memory checks for b only if a have been checked
earlier.

• {a} E {b} means: If a is satisfied and E ends, then, after execution, b is satisfied
after execution. Partial Correction;

• and, [a] E [b] means: If a is satisfied, then E ends, and the memory status
satisfies b after execution. Total correction.

3.3.1.2 Denotational Semantics

Denotational semantics [52] gives formal mathematical descriptions of the concepts
from programming languages, or modeling languages. The descriptions give the basis
that facilitates the proof activities [179]. Denotational semantics [69] [178] applies
to the domain theory from which it extracts foundations to provide a complete and
formal description of the meaning of programs. This is materialized by the use of
the partial order, continuous functions and “least fixed point” theories to provide the
formal description of the semantics. Languages such as Haskell [125] are based on
denotational semantics. The denotational semantics are clearly written and restricted
to the set of properties that describe how to run a program. Thus, the description of
the denotational semantics of a language is often associated with translation semantics
consisting of the projection of the language to a formal domain e.g. projection of a
language to Petri networks [162] [161] that has a denotational semantics. Petri networks
are typically used for the description of parallelism and for solving the problems of
synchronization between components (programs).

3.3.1.3 Operational Semantics

The operational semantics addresses the description of the dynamic behavior of lan-
guages and explains how an abstract machine runs a program (model) from the lan-
guage. Thus, it allows the properties of computer programs to be analyzed (correctness
or safety) in an operational manner. The preliminary work on [178] led to the clear
separation between the notion of denotational semantics and operational semantics.
Furthermore, [164] [165] clearly established the idea behind operational semantics and
described its constituents. During this period, several experiments also contributed to
facilitating the understanding of what an operational semantics should be e.g. the use
of lambda-calculus [9] to clarify the operational semantics of LISP [185]. The founding
principles of the operational semantics consider three key elements for the descrip-
tion of the operational semantics of a language: syntax, semantic properties, and the
computation.

• The syntax stands for the syntax of the programming language (or modeling) re-
quired to clarify semantics. The modeling languages must describe the behavioral
model and the operational semantics associated with it using the same language.
To fulfill such a property, the DSMLs need to natively have mechanisms to de-
scribe the execution of the concepts step by step, or integrate mechanisms of
weaving as defined in Kermeta which offer the ability to add an action language
to describe the operational semantics on the abstract syntax [91].

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 40

• The semantic properties describe the evolution of the program step by step. The
idea is to specify and build the set of rules defining the succession of memory state
changes during execution. Memory changes take into account a number of (pre/-
post) conditions. The rules are inductive and represent individual conditions to
move from a memory execution state to another. [164] has identified two types of
operational semantics: natural (big-step/NOS) and structural (small-step/ SOS).
A NOS [21] has less detail and defines the way in which the execution results of
a system as a whole are obtained. Thus, natural semantics only considers the
initial execution state and the final execution state. The SOS is recommended
in most cases because it allows non-determinisms often induced by the NOS to
be avoided. Moreover for SOS, the behavior of a program is described through
the behavior of all its parts. This definition implies that one can have several
intermediate memory execution states and each state is likely to return a percep-
tible and analyzable value. The SOS makes sense in this context since it means a
finer description of the succession of memory states during execution of the pro-
gram. The SOS defines several inference rules defining transition relationships
from one state (stage of execution) to another. The mechanism is quite close to
the definition of a transition system.

• A computation corresponds to the processing that transforms the values in the
memory state. It affects the passage from one execution state to another since
the changed values have an impact on the conditions of state changes (evaluation
of the state successor).

In summary, the definition of the successive memory state changes (in regard to
some conditions) and gives a meaning to a program or a model by relating its execution.
For the objectives that we described earlier (i.e. analysis, implementation, generation of
tools), this last semantic offers more guarantees because it provides more relevant details
for analysis or code generation; it also provide details for the integration between tools
with different execution semantics. In the remainder of this thesis we especially focus on
the use of operational semantics to describe the execution of embedded systems models.
As [206] argues, the different semantics are complementary. As such, to formally prove
operational semantics, it is not uncommon to find their corresponding denotational
semantics. If we take the example of the UML StateChart that describes behaviors in
a operational way, the work of [109] offers a formalization via denotational semantics
of the meaning of the language.

3.3.2 Semantic expression in MDE

With the proliferation of tools in different domains of engineering, the design phases
(particularly the analysis phases) should benefit from the description of the tools’ for-
mal execution semantics, which are tool specific in most cases and based on some
computation paradigm. In this particular context, a correct semantic mapping (static
semantic mapping) cannot guarantee an efficient analysis of the model from one tool
to another.

The implementations of execution semantics are strongly coupled with their imple-
mentation language or platform. The abstraction of the execution semantics of the
models would help the MDE to reach a new milestone by allowing the separation of ex-
ecution semantics with the implementation related to the constraints of the languages
and platforms, keeping only the execution logic. The use of execution logic will have
several objectives:

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 41

• It allows the lack of preservation of the semantics of the models to be addressed
during the analysis which is detrimental to consistent analysis and behavioral
consistency;

• It allows the determination of the level of compatibility between tools based on
the compliance of their underlying execution semantics at the earliest possible
moment;

• It allows the consistent refinement of models until the fine grain code generation
for a given platform, thus constituting the mapping of the behavior of models on
the platform execution semantics.

Several (ongoing) works began a few years back to address the problem of the
description of the models’ execution semantics [136][46] [132] [1].

3.3.2.1 Defining OCL constraints for models

The expression of the semantics of modeling languages is a problem that has long been
managed by the description of constraints on abstract syntaxes, in order to restrict their
underlying models. Constraints are expressed in many ways and start, for example,
with the description of the multiplicity relationships linking the concepts of the ab-
stract syntax. Besides, the OMG has also defined a standard called Object Constraint
Language (OCL) [153] [172] for the description of constraints on the abstract syntax
of the models to clarify their meaning (static semantics). OCL was initially defined
for the UML modeling language to express declarative constraints on these structural
elements. The constraints are described in the form of pseudo-code defining invariance
rules of the model in the form of pre and post conditions; expression for model navi-
gation; or Boolean expression. However, the language does not express the behavior of
models at runtime. The use of the language has been recently extended to MOF [142]
approaches allowing the integration of constraints on the modeling languages derived
from this standard. Thus, several other languages such as QVT [156] transformation
languages are based on OCL for the description of the semantics, navigation (object
query) and the transformation of models. Examples of OCL use are provided in [3]
[64]. More recently, environments such as Kermeta allow the semantics of the models
to be expressed and their behaviors at runtime.

3.3.2.2 Kermeta

Kermeta [91] is an environment which has been developed since 2005 and dedicated
to the implementation of several activities around the manipulation of models (e.g.
modeling, description of constraints on metamodels, model transformation and model
execution). In regard to the activities allowed by the tool, Kermeta uses the concepts
from MOF, QVT, OCL and aspect-oriented programming [102] and the metamodel
implemented in the tool is Essential MOF (EMOF) [151]. The Kermeta framework
proposes an aspect-oriented approach for the weaving of control behaviors (operational
semantics) on the concepts of a language conforming to EMOF. The action language
to describe the operational semantics is imperative and close to the OCL and Java
syntax as shown in Figure 3.9. The Figure illustrates an attempt to express a simple
operational semantics on a metamodel concept called MoCComponent of Cometa. The
description and the weaving of the complete operational semantics of a DSML allow
models not only to be run, but also to be navigated. However, for any model described

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 42

in Kermeta, the proposed execution is purely sequential and the description of the
formal operational semantics is generally defined implicitly.

aspect abstract class MoCComponent inherits NamedElement
{

attribute ownedPorts : MoCPort[0..*]

attribute runnable : ecore::EBoolean

operation fire() : Void raises MoCComponentException is
do

stdio.writeln(self.name + " fired ...")
if(self.getMetaClass.name=="BasicComponent")
then

var basic : BasicComponent
basic ?= self
result := basic.behavior.runBehavior

end
end

}

aspect class BasicComponent inherits MoCComponent
{

attribute behavior : FSM

}

("token")

Figure 3.9: Excerpt of operational semantics expressed in Kermeta

3.3.2.3 fUML

fUML (Foundational UML) [155, 33] is an OMG standard to describe the semantics
(static semantics and dynamic semantics) for a subset of UML accurately and formally.
The chosen subset which is “UML2 Superstructure metamodel” is used to describe
generic concurrent entities or physically distributed systems. In its fundamental form,
any model definition based on fUML must strictly be defined with this subset of con-
cepts; any semantics described must comply with the execution semantics proposed for
this subset of elements. Standardized Action Language For Foundational UML (ALF)
[154] has been developed to serve as an action language for fUML. Some execution
engines for fUML have been developed in environments such as Papyrus [108] [59].

We have chosen to present these three approaches (i.e. OCL, Kermeta, fUML)
expressing semantics in an MDE context, however there is an large number of interesting
works addressing this problem [37] [30] [198].

3.3.3 Challenges

MDE approaches contributed significantly to the design of embedded systems, in terms
of abstraction of system design languages (models, metamodels: MARTE, SysML, etc);
in terms of tooling for automatic code generation and transformation of models between

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 43

tools (code generation between DSMLs and from DSML to SystemC, C++, C, etc.);
and finally in terms of simulation and model-checking of models for analysis at multiple
levels of abstraction.

Unfortunately, on this last point MDE approaches are today suffering from a lack of
consistency and formalization of executable models. The problem of the executability
of models cannot be solved as long as the formal execution semantics of the models are
not sufficiently taken into account in the design process and during exchange between
tools. Specifically, in the domain of ESL, the abstraction of the behavior of the different
modules is done using the abstract descriptions of computation models (MoC) [60]. The
MoC formally determine the model’s execution semantics. For embedded system design
and implementation, they are used to describe the control of parallelism. Therefore,
the lack of MoC description intra and inter tools has an impact on their interpretation.
Given their importance, the next section is dedicated to the description of the MoC
Theory.

3.4 The MoC Theory

There are several types of computation models that can be bound to different engi-
neering domains (e.g. signal processing, control-command). The concept of Model of
Computation is part of a larger domain which is the theory of computation that has
been intensively studied during many decades [181] [117]. The theory of computa-
tion gave birth to most of the current programming languages by providing the basis
for what they should do and how they should operate. Early stages of computation
description include for instance the automata theory [83], the Turing machines [195],
later followed by other theories such as lamba-calculus [9] or process networks such as
[96] [114] for parallel processing’s. There are many definitions of the concept of Model
of Computation, even including decompositions of the term Model of Computation to
Model of Concurrency and Communication. As suggested by last term, it is all about
defining the way in which the different parts composing a program or a system (sub-
components) interact to produce the behavior of the system. Thus, the formalism aims
to express the concurrency of the different parts and the way they communicate. It ad-
dresses the way in which an abstract machine interprets and evaluates the evolution of
computing systems over time. The notion of “evolution over time” is dependent on the
nature of the system. For instance, “evaluation over time” can be measured in terms
of the interaction of the system with its environment, responding to stimuli from the
environment with zero delay, these systems are so called perfectly synchronous [70] [13].
There are different categories of computations based on the properties of the systems.
In the following sub-sections, we will see different groups of formally defined models of
computation and the classifications that have been made over the decades to identify
MoCs according to the properties of the systems. We can note that each category is
close to the engineering domains for which it defines the theoretical foundations for the
realization of components.

3.4.1 Data-Flow Oriented MoCs

The data-flow oriented MoCs relate to the categories of computational models focusing
on the processing of streams of data. The processing of big data streams imposes
requirements on how the streams can be read, processed and written into memories
without causing tremendous memory use, overwriting, or inter-blockings. Even if most

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 44

of the data-flow oriented systems are not critical (except for medical), it is rather
annoying to obtain inconsistent processing results after computation. Therefore, the
MoC theory helps to define the computation rules to avoid such issues, or at least to
detect them at analysis steps.

The data-flow oriented MoCs are based on the description of data-flow graphs.
Data-flow graphs clarify the interdependence relations between the different data pro-
cessing nodes using the size of data that are handled in I/O by each processing node.

In some cases, the connections between nodes (edges) bear a weight highlighting the
size of data that are exchanged between two nodes. In such models, the availability of
the data determines the execution of modules. There are several examples of data-flow
oriented semantics in the literature including Data Flow (DF) [93], Synchronous Data
Flow (SDF) [113]. There are numerous theoretical models of computation for data-flow
and we do not intend to define them all, however we give two examples of such MoCs
and their underlying rules.

• Synchronous Data Flow: most signal processing algorithms can be modeled by
the SDF MoC (Synchronous Data Flow). It is a Data Flow graph for which
the production and consumption data rates are known before execution. Exe-
cution policy is given by static mechanisms searching possible (ordered or par-
tially ordered) execution sequences for the model. The static Scheduling requires
searching for eligible periodic executions called PA (S/P) S (Periodic Admissi-
ble Sequential/Parallel Scheduling). The following techniques are frequently used
when searching for a periodic scheduling: solving equation balances (in Ptolemy)
[26]; building and solving the topological matrix [113]. If no PA (S/P) S is found
the model is flawed and would be impractical.

• Synchronous Data Flow with Multi-Dimensional Data Arrays [20] [31]: is used for
intensive signal/ data processing. The system combines parallelization of tasks
(computation) and a parallelization of the data (data parallel reading/writing).
It is described as a blend of functional blocks (n subcomponents) that produce /
consume data. Each component has a RepetitionSpace (Vector). The execution
of an application based on the Array-OL semantics depends on the following
information: the expression of data parallelism (i.e. the dependencies between
data arrays allowing a minimum order of execution of the components to be
set); the topology of the application (it is obtained by constructing the directed
acyclic graph which gives the relations of dependencies between the components
of the system); the number of times that each component should be executed to
produce or consume an array (is given by the product of the values defined in
the RepetitionSpace for each component). Having the different information, any
scheduling to solve the equations of data dependencies is valid for the system.

3.4.2 Control-Flow Oriented MoCs

Control-Flow oriented MoCs are more frequent for the description of the evolution
of systems and are clearly older than the other MoC families. The first control MoCs
include the automata theories, Turing machines and more recently approaches based on
parallel process networks. The MoC formalisms provide a description of how the various
sub-parts communicate taking into account their concurrent nature. The control-flow
MoC have more impact on critical systems and are regularly used to solve and reason
about the properties of models of systems implemented (rail control systems, landing
gears, etc.).

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 45

The control-oriented MoCs are generally used to describe sequential algorithms
where the different states of execution can be captured. They are represented in the
form of a control graph (Petri Nets), or Finite State Machine (FSM). The evolution
of a control system is thus conditioned by the successive states of the system. The
description of the dependency links between the various states and the verification
of the state change conditions help to describe the sequencing of the computations
between modules.

We present some examples:

• Kahn Process Network [96]: The KPN MoC suggests that write requests are “non-
blocking” and read requests are “blocking” if the memory is empty (empty FIFO).
From this property, we deduce that the implementation of the MoC Scheduler
must guarantee an instantaneous Ack response to each module that enables a
“non-blocking” Write request. For the reception of a “blocking” Read, an Ack
must be sent to retrieve the requested data if available in the FIFO, otherwise
the request is blocked.

• CSP: The underlying operational semantics of the CSP MoC suggests that write
and read requests are synchronized, therefore they are blocking. There is no
need here for a FIFO to store data. Usually, shared variables are sufficient for
the communication. According to this property, the implementation of the MoC
scheduler must ensure that Ack are sent to the reader and the writer if the requests
simultaneously reach a synchronization point in time.

For system design, the overall behavior of system modules is given by the combination
of the behavior of each module and how they communicate (message passing, shared
variable, etc) according to the MoC. The ensuing interactions define the evolution of
the system over time. Such evolution is measured by the transformations applied to
models (change of states) or the processing of the data.

There are several other MoC families that highlight formal properties that are
not necessarily included in the two groups previously cited e.g. the continuous MoC
formalisms like (CT [120], ODE [110]). In the next section, based on the state of the
art we present the relationships between the main MoC families.

3.4.3 MoC Classification

In this section, we show some examples of taxonomies that have been proposed to group
the computation models and study their compliance. [176] proposes a classification of
these different models of computation showing the relationships that can exist between
them (Figure 3.10). In the following figure, we can see a possible classification of some
MoCs as well as their relationships.

Part of the computation models cited in the Figure was implemented in the Ptolemy
II [26] tool. Some of Ptolemy II’s modeling domains [44] are FSM [112], DE [135], Con-
tinuous Time (CT) [120], Communicating Sequential Processes (CSP) [182], Process
Network (PN) [63], etc. A second classification was proposed by [88] based on the
abstraction of time.

According to [87], from specification to implementation, the complexity of a sys-
tem can be managed through several levels of specifications based mainly on four MoC
concerns: computation; communication; data and time. These different concepts de-
termine the level of concurrency in the system model and must be taken into account
during all the development steps (especially the refinement and the analysis).

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 46

Figure 3.10: Example of MoC Semantic Classification

The level of concurrency determines the parts of a system that can be executed
concurrently and the parts that require synchronization or sequential execution.

For example, the high-level models properties can be described without any refer-
ence to the concept of time as a first step: focusing strictly on the representation of
data and dependency relationships between components.

However, to reach an implementation on a platform, the time properties of the
system’s components must be taken into account. These new properties are integrated
in the system model at some point in the refinement process, opening possibilities for
new types of analyses.

In this context, one can classify the properties of models taking into account the
following criteria: Untimed models, Timed models, Asynchronous models, Synchronous
models: The classification presents 3 categories:

• UMoC (Untimed MoC): Processes communicate and synchronize based on the
order of events in the absence of time.

• SMoC (Synchronous MoC): The timeline is abstracted into uniform intervals.
Every computation within an interval occurs at the same time, but the intervals
are completely ordered along the timeline, and the evaluation cycle of processes
lasts exactly one time interval. This category is further separated into two, which
is based on whether the output event of a process occurs in the same time in-
terval as the corresponding input event (perfectly synchronous MoC) or whether
every process undergoes a delay from an input event to an output event (clocked
synchronous MoC).

• TMoC (Timed MoC): This MoC is a generalization of SMoC. Timing information
is conveyed on the signals by transmitting absent events at regular time intervals.
In this way, processes always know when a particular event has occurred and
when no event has occurred. TMoC differs from the synchronous MoC on two
points, the granularity of the timing structure is much finer and a process can
consume and emit any number of events during one evaluation cycle.

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 47

3.4.4 MoC Composition

Each previously presented MoCs belongs to a computing paradigm. Nevertheless, the
heterogeneous nature of the systems requires interaction of the different paradigms for
a global solution. The heterogeneous composition of the MoCs must also be taken into
account in the phases of abstraction at high-level. The work on the classification already
gives answers. Indeed, the classifications provide a basis for the study of compliance
using the existing relationships between different MoC. There are mainly two types of
composition: the hierarchical and non-hierarchical composition.

The hierarchical composition as implemented in Ptolemy exploits the flexibility of
certain MoC implementations such as PN) to define hierarchical composition. In other
words, the composition is defined first by the compatibility of the MoCs, then by the
level of expressiveness and restriction of each MoC. The MoCs with the most restrictive
properties are hardly usable to express those with less restriction. Conversely, the less
restrictive MoCs may serve as a basis for representing other restricted MoCs through
mechanisms adding restriction properties to constrain the flexible MoC. For example,
it is easier to represent SDF from PN than the opposite. In [62], works around the
composition of semantics in Ptolemy helped to define basic composability rules between
the MoCs. The relations are categorized from the most restrictive MoC to the more
expressive thereby defining possible compositions between them.

The non-hierarchical composition is mainly based on the use of interface components
to adapt components that rely on different MoCs. The MoC adaptation is provided
inside the interface component that manipulates the inputs and outputs of the other
modules to which it provides an adaptation. This approach is used in several works
such as [133] with the Heterogeneous Interface Component (HIC); and the work of [174]
with the use of adaptation components called Domain Interface.

In Figure 3.11, the upper part shows how composition between components is real-
ized with Ptolemy. The top-level model is presented on the left. It has two components
A1 and A2 and a Director D1 that implements the rules of a given D1 MoC. A1 and A2
follow the execution rules induced by D1. A1 is an atomic actor while A2 is a composite
actor that contains a sub-system constrained by another Director D2. The hierarchical
decomposition of A2 is the model on the right, composed of two atomic actors A3 and
A4 (and the D2 Director). The composition of D1 and D2 is not explicitly presented
and is hidden in the implementation framework. However, the composition here is hier-
archical. The lower model extracted from ForSyDe, presents several processes: P1, P2
and P3 are based on the MoC A, while P4 and P5 are based on the MoC B. Because
of the connection between (P2 and P4) or (P3 and P5), two Domain Interfaces are
used to translate the semantics of MoC A to the semantics of MoC B. In this example,
the Domain Interfaces are at the same level as the other processes which highlight
non-hierarchical composition.

The two types of compositions have their advantages and disadvantages. The hi-
erarchical composition does not explode the complexity because it offers a better ab-
straction approach since each hierarchical level can be seen as an abstraction that
hides the modeling details of the lower modeling level. However the semantic adapta-
tion layers are not visible for users because they have fled into the kernel. The lack
of visibility of the semantics of the transition is clearly problematic for analysis and
model transformation. On the other hand, the non-hierarchical approach offers more
visibility on how adaptation has been accomplished. Unfortunately, the problem lies
in the multiplication of the number of adaptation components when the systems are
highly heterogeneous.

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 48

Figure 3.11: Models from Ptolemy and ForSyDe

The diversity of properties and formalisms to express MoC has also led to the emer-
gence of works to find an abstract and formal description of a common representation of
MoCs. For instance, [115] proposes the description of the “Tagged Signal” language of-
fering enough abstract concepts to describe different MoC semantics. “Tagged Signal”
theory focuses on the description of the systems as components (Behavior) exchanging
signals. A Signal contains a sequence of partially ordered events. An event has tags
to represent the carried data, and other tags to represent information. Depending on
how the second tag is used, the sequence of events can be totally ordered. In fact, the
meaning of the tags is crucial to the representation of different semantics e.g. discrete
(second tag takes value in the natural set), continuous semantics (tag takes value in
the real set), both implying total ordering of events.

The power of MoCs is their formal nature and their mathematical description.
The mathematical description provides an abstract representation which is easier to
use for Reasoning on execution properties. For instance, if one wishes to abstract
DSP components, the associated MoC abstraction (e.g. SDF) can be used to analyze
properties and find scheduling. However, to dynamically use MoCs for analysis, their
implementation must be provided. In the context of ESL design, tools are strongly
based on such MoC theory [77, 80, 79] [8] for the description of the abstract SW
models as well as the HW models. The MoCs are described in the form of libraries of
execution semantics on top off runtime engines. Within the MDE context, the explicit
definition of MoC-based execution semantics is missing. However, we will try in the
next section to describe some MDE technologies that refer to MoC descriptions.

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 49

3.4.5 Frameworks for System Design based on MoCs

There are many well-known frameworks and tools that propose solutions for EmS de-
sign, where the abstraction and use of MoCs is central. However, it is important to
describe them since most of them are the current best MoC-Based tools on the market
of EmS design and analysis.

• Mescal [66]: aims at heterogeneous, application-specific, programmable multi-
processor design. It is based on an architecture description language. On the
application side, the program should be able to use a combination of MoCs which
is best suited for the application domain, whereas on the architecture side, an ef-
ficient mapping between application and architecture is to be achieved by making
use of a correct-by-construction design path.

• Ptolemy [26]: provides an environment for defining and modeling of communicat-
ing systems based on hierarchical components. They have the two main concepts
that are the actors and directors. The actor (concurrent entity) can be seen as a
component that communicates with other components through MoC rules well-
defined by the Director which describes the communication. Ptolemy defines its
own execution engine that defines how components are built and more specifically
how they communicate and execute at their borders. However, the way MoCs are
implemented is unique and MoC definitions cannot be used outside the context
of Ptolemy.

• ModHel’X [19]: The ModHel’X framework has many similarities with Ptolemy.
However, the author defines the concept of hierarchical blocks and point inter-
face for communication and a system based on snapshot (triggering updates of
data passing among components) to simulate the system. This is a major differ-
ence with Ptolemy which improves the explicit definition of semantic adaptation
between heterogeneous hierarchical levels (using different MoCs).

• ForSyde [174]: addresses the design of heterogeneous embedded systems support-
ing several models of computation (MoCs). In ForSyDe, systems are modeled as
concurrent process networks that communicate with each other via signals. It uses
the concept of process constructors, which leads to a formal and structured model,
where communication is separated from computation. Processes belonging to dif-
ferent MoCs communicate via well-defined domain interfaces. With ForSyDe, it
is possible to model and simulate complex electronic systems, where some parts
are modeled with the continuous time MoC, while digital HW is modeled with
the synchronous MoC, and SW with the untimed MoC.

The tools presented above benefit from capitalizing many years of experience in
the specification and the formal analysis of embedded heterogeneous systems. They
allow the consistency of the overall semantics of heterogeneous models within their
own framework to be analyzed.

However, in relation to the previously established criteria i.e. intake to raise the
abstraction level of languages, to assume syntactic and semantic interoperability of
models, to improve the design automation in tool chains, these tools do not significantly
contribut to those aspects because they are not intended to address them. Moreover,
such tools are not actually considered as MDE based, hence the need to consider the
MDE solutions and their relations to the MoC approaches in the next sections.

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 50

3.5 MoC in the context of MDE

The MDE has experienced important progress in system modeling topics, which has
attracted the attention of the community specialized in heterogeneous system design
(ESL, PBD). Consequently, several approaches have been launched to provide solutions
to EmS design [118] [58] [170] [74] [180] [40]. The solutions not only target description
of heterogeneous models, but also target their execution at high-level. Despite the
considerable efforts, the MoC issues are recurring and not well addressed by MDE
tools. As such, the MDE tools must adjust to the height by providing tools usable
in an ESL context or sufficiently effective to ensure the development of a system flow
on several levels of abstraction with mature MoC descriptions. Waiting for this day to
come, there are at least some hopeful solutions for EmS design in the MDE context such
as [8][189]. In the next sub-sections, some of the MDE-based languages and frameworks
for EmS design are presented.

3.5.1 MARTE

The Modeling and Analysis of Real Time Embedded Systems (MARTE) [148] is a UML
profile for EmS design and analysis. This profile introduces new concepts that allow
the real time aspects to be taken into account, thus filling the gaps in the standard
profile SPT [152] (Scheduling, Performance and Time). MARTE profile allows the
concurrency among different components to be specified by defining the concept of
“RTUnit”, and defining the communication among components with the concept of
“RTConnector”. The profile also allow the reuse and simplification of the concepts in
other EmS profiles. For example, the concept of Quality of Service and Fault Tolerance
in MARTE is derived from the standard profile QoS & FT (Quality of Service and Fault
Tolerance). The MARTE profile is built around 3 packages promoting the separation
of concerns:

• the foundation package provides the basics of language dealing with non-functional
property modeling, time modeling, generic resources and allocations;

• the design package allows execution platforms for HW and SW to be modeled on
several levels of abstraction;

• the analysis package provides mechanisms to annotate models for analytical pur-
poses. It provides generic concepts to cover several types of analysis such as the
possible scheduling or performance.

Advances were made on execution semantics’ aspects (synchronous, asynchronous,
models of time). Even if an important step has been crossed with this profile (by the
explicit description of information related to the execution semantics), the language
does not offer the description of operational semantic models that can be used for
model’s effective execution, or further to adapt the semantic differences between sev-
eral modules of a system. Indeed, the final description of the execution semantics is
provided by formalisms external to the profile. For example, the execution semantics
associated to the MARTE time model are provided by the (CCSL) [5, 35] framework.
Similarly, the runtime properties (i.e. synchronous, asynchronous, etc) attached to the
communication and scheduling elements are implemented with other formalisms.

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 51

3.5.2 SysML

At the structural level, SysML [73] defines an architecture that is based on Blocks
or hierarchical components that are derived from UML components e.g. Composite
Structure diagram. One of the main strengths of SysML is the fact that it describes new
types of diagrams allowing the description of requirements and the parameterization
of system models. One of its disadvantages is that it does not address aspects related
to the execution semantics of the models it describes, thus leaving flexibility for their
interpretation. Besides, even if it allows through mechanisms of profiles computations
to be accessed such as the PN models, DE [135], SR [42]; it does not mention if these
various models of computation will be interoperable in its environment.

3.5.3 MoPCoM

The MoPCoM [200, 106] design process is an MDE oriented methodology dedicated to
the description of systems by abstraction/refinement techniques, including design space
exploration, and PBD (Platform-Based Design). The process defines several levels of
abstraction in the development process, where design and analysis can be performed.
As shown in Figure 3.12, the MOPCOM process applies an MDA (PIM, PDM, PSM)
approach and defines three levels of representation of the system modules.

Figure 3.12: MoPCoM methodology

• Abstract Modeling Level (AML) targets the expression and analysis of concur-
rency and communication of the system modules. It allows the operational spec-

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 52

ification of the interactions between concurrent modules without assumptions or
constraints on the platform resources.

• Execution Modeling Level (EML) targets the expression and analysis of the mod-
els (from the AML level) while they are allocated on physical structure models
that provide coarse-grained details on the nature of the final platform.

• Detailed Modeling Level (DML) targets the description of the fine-grained plat-
form (e.g. by refinement of the physical models from EML) enabling finer analysis
of the allocated system models, which will provide a final implementation of the
system.

3.5.4 Metropilis

Metropolis [8] is an electronic system design environment that provides formal analysis,
simulation and synthesis capabilities. It allows the difficulties from the interconnection
of tools to be reduced including interoperability from a semantic point of view. The
tool relies on a formal metamodel with an unambiguous semantics reusable for the
specification of the application functionality, for their analysis and the description of
the architectures and mappings. In Metropolis, the systems are represented as com-
municating concurrent entities (networks of behaviors). Behaviors produce events con-
trolled and transmitted by the Metropolis execution engine to the different tools with
respect to some chosen MoCs. Analysis steps result in formal verification and simula-
tion activities. The approach offers the abstraction of generic concepts to capture and
translate execution semantics into the concepts of the Metropolis metamodel (execution
semantics model). These concepts separately address aspects related to computations,
communication, synchronization, etc.

3.5.5 Challenges

For the analysis of behavioral models in MDE, the previously presented approaches
(i.e. Kermeta [91] or [37]) propose facilities for the description of the dynamic se-
mantics of models. However, for specific engineering domain semantics, the current
dynamic semantics description approaches are poorly oriented in the capture of these
semantics. For instance, a description of the execution semantics for a specific EmS
domain (e.g. design of a DSP modeling), the abstraction of the structure is easily
provided by DSMLs. But, to describe the dynamic semantics of such models, develop-
ers must provide the semantics properties underlying the different components using
MoCs such as SDF, MDSDF (that need to be captured with metamodels). MARTE
proposes concepts to tackle scheduling issues for (synchronous, asynchronous, timed)
models; unfortunately the communication semantics (synchronous, asynchronous, etc)
are left as semantic variation points. As a consequence, communication between differ-
ent engineering domain experts still poses problems and impacts the interoperability
of models with different execution semantics. Using the MoC theory and classification
also including composition rules, would ease communication between experts and give
a formal foundation for the integration of different semantics.

3.6 Conclusion

The previous chapter allowed us to identify ESL concerns to improve the design of
embedded systems. The major challenges of the future design methodologies include

CHAPTER 3. TOWARDS FORMAL SEMANTICS IN MDE 53

raising the level of abstraction from the programming languages; the definition of con-
sistent and relevant model analysis phases; the automation of the transformations for
model refinements within the tools and between tools; Finally, the above points must
ensure a preservation of the semantics of models during the transformation steps and
analysis stages.

The MDE has demonstrated abilities to respond to some of the above concerns.
Metamodels allow higher levels of abstraction and a common formalism of communi-
cation between various engineering domains and tools. They enable interoperability at
the syntactic level and the transformation tools enable automation of refinement ac-
tivities. Furthermore, modeling tools such as UML offer profile mechanisms to capture
static properties that are specific to the engineering domains, thus allowing analysis.

Unfortunately, ESL tools can hardly take advantage of abstractions and automa-
tion tools offered by the MDE tools because they do not offer guarantees in terms of
formalizing and description of heterogeneous formal execution semantics. Indeed, the
correctness of a model’s behavioral analyses is hardly ensured towards different tools,
especially when the tools rely on different execution semantics that are not explicitly
described. In fact, tools offering execution engines rarely provide information finely de-
scribing the execution semantics behind the engine (synchronous, asynchronous, timed,
continuous, discrete, etc). The lack of such information can be a drag for the analysis
and communication of models, since there are no analyses of their compliance or com-
posability with other environments. For these reasons, the MDE tools are not suitable
for defining a complete design flow stemming the complex analysis issues related to
semantics preservation during all the design steps.

The MoC theory seems to provide answers for the above execution semantics issue.
The MoC controls the consistency of any analysis activity and describes the semantic
properties. For instance, abstracting the implementation of a DSP processor will use
specific implemented mathematical models giving details on how such a model should
be executed. In other types of implementations, event-based paradigms are used as the
abstraction to describe how models are executed.

We believe that the MDE should take into consideration the theory of MoCs for
the description of correct analyses and for the preservation of the semantics of models
throughout the development process. MoCs give bases for the explicit definition of for-
mal semantics for implementation purposes. They also offer bases for the composition
of the execution semantics.

In our approach, we try to have a merging approach between MoC and MDE:

• to improve MDE models with formal execution semantics. The MDE must then
provide DSMLs to capture reusable MoCs for the definition of the adaptations
between executable exchanged models.

• to improve MDE-based design flows. The captured MoC models are used to
ensure semantics preservation between tools (i.e. models from the tools).

• to improve the opening and flexibility of tool chains, thus moving from integrated
design flows to opened design flow with replaceable tools.

The following chapter 4 presents our work in the context of IFEST project to address
the first two points mentioned i.e. redefining and formalization of the Cometa DSML
allowing to express reusable semantic models for the preservation of semantics. Then
we will see in section 5.3 the application of the Cometa semantics models through an
experimentation on a industrial use case.

4
The Cometa Concepts, Models and Validation

Contents

4.1 Introduction . 55

4.2 Foundations of the Cometa Approach 55

4.2.1 Semantic Layer Definition . 55

4.2.2 The system’s MoC characterization 56

4.2.3 Formal Description of the Cometa concepts 58

4.2.4 Operational Semantics: FSM-Based Control 74

4.3 Execution Control Mechanisms description 80

4.3.1 Scheduling in Cometa . 80

4.3.2 Methodology for Applying Semantic Layers 83

4.3.3 MoC Semantics Modeling with Cometa: Sender/Receiver with
CSP . 87

4.3.4 Time Description: Time-Based Control 93

4.4 Conclusion . 98

54

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 55

4.1 Introduction

The Cometa DSML aims at providing MoC models that are used to ensure the con-
sistency and reliability of the system models for the analysis and refinement steps
between tools. The MoC models capture the missing MoC properties (static properties
and operational properties).

MoC-Based operational semantics in Cometa are intermediate layers between the
application models and the execution engines. They allow the behavior of models to
be adapted according to the execution rules of given MoCs. The description of the
layers follows two criteria which are on the one hand, the structure of layers that
define interaction and synchronization topologies; on the other hand, execution control
behaviors that are used by the structure, allowing the synchronization of modules.
Particular concepts and their relations were defined in Cometa to specify the layers.

Accordingly, each model produced by a tool in a tool chain can be woven with
Cometa MoC models providing the missing static and dynamic properties to correctly
interpret the models within different tools. Enriched and woven models have enough
properties to be transformed in a transparent manner while preserving their semantics.

The methodology associated with Cometa combines preliminary steps including:
the identification of MoC semantics and the study of their compositionality that are
presented in Section 4.3.2.2.

In the following sections, we formally describe the concepts and relations in Cometa,
while showing excerpts of their implementation in the form of a metamodel.

4.2 Foundations of the Cometa Approach

The layers describing the execution control define several concepts that we associate
with different concerns e.g. structure and behavior. The abstract concepts in the DSML
can be grouped into two main categories for the description of the structure of so-
called Semantic Layers (SL) and the description of the behaviors for execution control
of the requests issued by the application models. The category for the description of
the execution control is divided into Communication, Time and Data concerns. The
Behavior concern as defined by [87] is not in the scope of our DSML since Cometa
does not aim at the programming of application function blocks. The concepts of these
categories define several relationships that we will discuss in the sections below. The
models produced are defined in the form of libraries.

4.2.1 Semantic Layer Definition

The semantic layer’s structures are inspired by the ADLs [57] [130]. They emphasize the
capture of the hierarchical structure with the possibility of extending each structural
element with a behavior or MoC specification to control the execution of the system
modules. The modularization induced by structures provides better readability of the
models and their reusability. We propose the following definition for SL’s.

Definition: A Semantic Layer combines a virtual structure description and several
execution control behaviors that are MoC related. The virtual structure decom-
position reproduces an existing structure model to add the missing information

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 56

which is related to its MoC properties. It allows several layers of semantics adap-
tations to be captured.

As shown in Figure 4.1, there is an large number of architecture description lan-
guages. This excerpt is a small proportion of all the existing industrial or academic
formalisms. Consequently, a single definition of the notion of system architecture is
hard to provide. In fact the definition varies according to application domains. Never-
theless, significant formalization efforts have been made to identify common semantic
grounds for ADLs.

Figure 4.1: Some ADL notations

4.2.2 The system’s MoC characterization

Cometa criteria for the description of the MoC properties (static and dynamic) include
the four following concerns: Communication concern, Behavior concern, Data concern
and Time concern. The major contributions of Cometa are at the Communication
concern and Behavior concern levels.

• the Communication concern: this concern can explicitly define the high-level
communication mediums and enrich them, at each level, with the MoC semantic
properties related to their engineering domains. The semantic properties are
exploitable by dynamic behavioral mechanisms that define the evolution of the
system and the firing of the modules.

• the Behavior concern: In Cometa, the description of behaviors makes 2 paradigms
of execution explicit: untimed or timed.

The description of untimed control behaviors is based on the use of finite state
machines (FSM) to regulate the requests from the application blocks. Cometa
state machines allow a set of control states to be defined. The machines allow the
definition of (as restriction) a processing order of the requests that are sent to the
machine. The state changes represent the different steps of control underlying a
type of communication formally defined by MoC rules. The logic implemented
in the FSMs is abstract and operational. The choice of the FSMs is justified by
several criteria which include the following:

– For consistent system analysis, it is important that their interpretation space
is bounded. The execution control behaviors should also be bounded by

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 57

using a formalism that allows a finite state space for the interpretation of
the system to be kept.

– The FSMs are variants of the Abstract State Machine (ASM). These for-
malisms are known for their solid mathematical foundation facilitating for-
mal validation.

– The FSMs have been used with success in several areas such as sequential,
parallel, distributed, or real-time systems. According to [134], such formal-
ism has formed the basis for the description of the semantics of languages
such as C, C++, SDL [25], and VHDL [160] which are widely used for the
implementation of systems.

– FSMs are executable and easier to understand compared to other fine grain
formalisms such as programming languages. They, thereby, facilitate read-
ability, understanding and expression of algorithms.

– Finally, state machines can be used on several levels of abstraction to repre-
sent, the implementations of a system incrementally (successive refinements
of behavior).

Thus due to various arguments, we have chosen this formalism to represent the
control mechanisms regulating the exchanges between the application blocks and
participating in the monitoring of the requests.

• the Data concern: the types, sizes and structures of data have an important role to
play in defining the executability and the model’s execution control behaviors. In
engineering domains such as multimedia design, the different processing modules
do not necessarily exploit the same amount of data each time they are fired. In
fact, certain types of modules need to read the streams of data several times to
fully process them. It is important to abstract the sizes and types of data to allow
optimal coordination of the different processing modules avoiding data loss.

• the Time concern: The timed paradigm allows the description of control mecha-
nisms; the evolution of which is based on the description of clocks specifying the
evolution of time. To specify this aspect, we propose the abstraction of concepts
allowing the modeling of clocks attached to execution control mechanisms. The
modeling of time opens up the possibility to express broader MoC semantic vari-
eties (e.g. DT or CT). The abstracted concepts are very similar to those described
in the MARTE model of time. However, our approach does not yet offer fine op-
erational semantics’ descriptions for the time models. The idea of using the FSMs
to describe such time evolution and constraint is currently being explored but the
results are not sufficiently mature for presentation in this chapter. We are also
exploring the possibility of coupling our approach to the CCSL formalism which
already provides operational and formal semantics for the interpretation of time
models for MARTE. The time abstraction gives the ability to reason about the
ordering induced by the order relationships and is a first step to the definition of
correct scheduling policies. Depending on the granularity of the time represen-
tation, time abstraction may be logical or physical. Logical representation uses
the notion of time “tick” which is a triggering event that reflects the evolution
of time [6][141]. The discrete time representation defines an execution instant
that can be clearly identified in the time space. As defined by [6][141] [120] such
instants can be represented using the natural numbers set. The continuous time
description can be represented with the real numbers set.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 58

The current work on the time aspect in Cometa is presented in 4.3.4.

In the next section, we firstly provide the relations between the concerns we are ad-
dressing, and we progressively introduce the formalization of the concerns and concepts
of Cometa.

4.2.3 Formal Description of the Cometa concepts

A Cometa execution control layer is mainly composed of a host structure for control
behaviors and the control behaviors themselves. The structure sets up a topology of
interconnected components via ports and connectors. Control behaviors are local or
global: local MoC behaviors are captured as communication protocols and global MoC
behaviors are global scheduling behaviors associated to scheduling components.

In Cometa, the concepts of the metamodel are not specific to pre-existing languages
or tools. These are common generic concepts defined in the literature for the design
of systems that we assemble in a certain way to face the execution control issue. As a
result, the models produced from this language can be reused by different transforma-
tion, analysis or specification tools. The DSML is described in the form of a metamodel
“Ecore”.

Although metamodels and other so-called high-level modeling languages are effec-
tive for abstraction of system models, many of them lack formal definitions to limit the
interpretation of a language. Limiting the interpretation context of a language con-
sists of providing the set of mathematical rules facilitating the unambiguous analysis
of system models designed from such language.

Indeed, the denotational semantics allow reasoning about the properties and inter-
pretation of models through the definition of formal semantics and execution rules that
describe the evolution of a model (e.g. the transition systems). The formalization of
the Cometa DSML below forms the basis for the description of the semantics of Cometa
models.

A Cometaspecification is given by the association of an abstract syntax LCspec; the
semantic domain SCspec of concepts that are described in the abstract syntax; and the
mapping rules associating each element of LCspec with an element of SCspec:

Cometaspecification : 〈LCspec, SCspec,MCspec : LCspec → SCspec〉

LCspec defines a 4-tuple making the modeling concerns of the abstract syntax ex-
plicit. In the same way, semantic domains and mapping rules associated with the
language are divided into as many semantic spaces and rules showing the separation
of the modeling concerns (in our case Structure (Str), MoC (MoC), Data (Data) and
Interface (Int)). For convenience in the formalization, we separate the Data concern
from the description of other MoC concerns (e.g. time, communication).

LCspec : 〈LStr, LMoC , LData, LInt〉
SCspec : 〈SStr, SMoC , SData, SInt〉
MCspec : 〈MStr,MMoC ,MData,MInt〉

(4.1)

The mappings between LCspec and SCspec that take into account the separation of
concerns are formalized and presented as follows:

• ∀LStr, SStr,MStr then MStr : LStr → SStr

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 59

• ∀LMoC , SMoC ,MMoC then MMoC : LMoC → SMoC

• ∀LData, SData,MData then MData : LData → SData

• ∀LInt, SInt,MInt then MInt : LInt → SInt

SStr: the semantic domain of the structure in Cometa is given by the formalized
Abstract Description language (ADL) domain that describes all of the elements to
design a topology of components.

SMoC : represents the semantic domain of a MoC. MoC-Based semantic domains
represent all the properties that are specific to a MoC and which allow to describe the
execution rules of a program or a model based on this MoC.

SData: matches the set of primitives that are known for the specification of data
in general (integer, real, booleans, etc). The semantic domain of the data may also be
considered depending on the data that are handled in a specific engineering domain
(e.g. Multi-dimensional arrays).

SInt: represents the set of concepts formally defined in the literature and allowing
the interfacing of communicating components. For instance, this semantic domain
makes references to the IDL formalism types of services (e.g. Send, Receive).

The mapping functions 〈MData,MStr,MMoC ,MInt〉 respectively associate seman-
tics with the concepts defined in the abstract syntax sets 〈LData,LStr,LMoC ,LInt〉.

The metamodel excerpt presented in Figure 4.2 shows the separation of concerns
highlighting the description of the Structure library (StructureLibrary concept), Data
Library (DataTypeLibrary concept) and the MoC Library (MoCLibrary concept).

Figure 4.2: Overview of the concerns related to Structure, Data and MoC-behavior

In the next sections, we begin the detailed study of the various concerns of the
language and the formal description of the language’s concepts. We introduce the
following useful rules:

• a:A means an element a of type A;

• {A} means a none empty set of elements of type A;

• a.b means the element b of a;

• a.{Y} means the set of elements of type Y from a;

• x::=a;F means x is defined either by the element a, or the sets of elements of
type F, or a combination of these different elements;

• f : A → B means that for all elements a:A then f(a) is an element of B.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 60

The metamodel’s references are defined as functions specifying associations (with
multiplicities) between the concepts (i.e. meta-classes of the metamodel).

4.2.3.1 Structure Description

The specification of a structure highlights the level of parallelism in an interconnection
of communicating components. By level of parallelism we mean the identification of the
parts in the system structure that remain parallel once the execution control behav-
iors have been applied in the model. Indeed, the execution control mechanism allows
the introduction of sequential execution between some parts (entities) of the system.
This structure description also facilitates the mapping of control machines by clearly
separating the control behaviors that are for protocols and those for scheduling.

The description of the semantic layer’s is provided by LStr. The language offers
concepts for the modeling of libraries of interconnected virtual components representing
the topology of a semantic layer. The LStr is formalized as follows:

LStr : 〈StrLib,StrC ,MoCCn,MoCCp, Cc,Bc,MoCP , C,Pt〉

The elements contained in the different sets below are formally defined after the
presentation of the actual various sets.

• StrLib: is a library defined to contain the semantic layers. The networks of
interconnected components form the semantic layers. The library allows the de-
scription not only of several containers of topologies (i.e. StructureContainer and
CompositeComponent), but also atomic components (i.e. BasicComponents).

• StrC : In Cometa, each StructureContainer represents a semantic layer.

• MoCCn: represents the set of connectors that can be defined from the LStr
abstract syntax. The connectors allow the components of the topology to be
linked and are named MoCConnectors in Cometa.

• MoCCp: this set contains various components which we define as MoCCompo-
nent. The MoCCp set is divided into two sub-sets Cc and Bc with MoCCp =
Cc
⋃
Bc.

• Cc: represents the set of composite components named CompositeComponents in
Cometa.

• Bc: refers to the set of atomic components of a Cometa structure. Unlike the
composite components, the BasiCComponents are the entities directly connected
with the application blocks.

• MoCP : represents the set of MoCPorts defined from Cometa. The MoCPorts
are the interconnection points for the components. The MoCPorts are connected
between them by the Cometa MoCConnectors.

• C: represents the set of describable containers from LStr. By definition, the
StructureContainer and CompositeComponent.

• Pt: finally, the Parts are containers insofar as they are able to contain semantic
layers. Therefore:

StrC ⊆ C

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 61

Pt ⊆ C

Cc ⊆ C

The description of the sets is a first step in the description of the LStr language. The
defined sets do not exist independently of each other. Indeed, elements of some sets
(e.g. MoCP) come from the ability of other elements of sets (e.g. MoCCp) to define
them. For instance, the ports are described when instantiating components.

From this observation, we study the properties that bind the various elements of
the sets. The described properties make it possible to design topologies in the form of
interconnected components since they clarify the manner in which these topologies are
built.

4.2.3.1.a Cometa StructureLibrary

For Cometa, a StructureLibrary (4.2) contains all the topology containers (Structure-
Container or CompositeComponent). The specification of atomic components (Basic-
Components) is also accomplished at this level. Consequently, we consider that Struc-
tureContainers and MoCComponents are specified at this level. The formalization for
a StructureLibrary is defined as follows:

∀ stl ∈ StrLib then

stl ::= {StructureContainer}; {MoCComponent}; {Interface}
{StructureContainer} ⊆ StrC
{MoCComponent} ⊆ MoCCp

{Interface} ⊆ LInt
(4.2)

In the language, a function (i.e. reference) mocStructures is associated to the cre-
ation of instances of StructureContainer. The same type of reference exists for the
creation of instances of MoCComponent (i.e. BasicComponent and CompositeCompo-
nent.

The concept Interface, further specialized to MoCInterface and RTInterface is
used to define the different interfaces between the languages for computations and
the Cometa layers. The definition of the interfaces is not relevant in this section and
will be presented in Section 4.2.3.5.

4.2.3.1.b Cometa StructureContainer

A StructureContainer (4.3) represents a possible configuration of interconnected com-
ponents. It allows the description of new components, connectors and the mechanisms
for component’s interconnections. The components are Cometa MoCComponents and
Parts as shown in Figure 4.3. These two concepts are defined and formalized later in
this section.

We can formally define StructureContainer as:

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 62

Figure 4.3: Excerpt of the structure description in Cometa

∀ c ∈ StrC then

c ::= {Part}; {MoCConnector}; {MoCComponent}
{Part} ⊆ Pt,
{MoCComponent} ⊆ MoCCp,

{ MoCConnector } ⊆ MoCCn

(4.3)

In Figure 4.3, the common properties of MoCComponent, MoCConnector and MoC-
Port (described below) are specified through the concept of StructureElement. For
instance, the StructureElement provides associations to Behavior, MoCDomain and
Parameter.

4.2.3.1.c Cometa MoCConnector

A Cometa MoCConnector (4.4 and Figure 4.3) is a structural concept to bind the
ports between the various components (Parts or MoCComponents). Links to ports are
defined by the < source, target > functions that combine each MoCConnector to its
specific input and output ports. The connectors mainly contribute to the definition of
the execution control mechanisms because they carry behaviors to synchronize com-
ponents (< bhv > function in 4.4, also called < behaviorMap > in Figure 4.3). Such
Behavior is defined in 4.2.3.2. A connector is also associated with a type < ckind >.

The< ckind > relationship is defined as a function associating a type to a connector.
For example, in the incoming data exchange for a CompositeComponent, an input port
of a CompositeComponent is associated to an input port of its internal component by
a delegation connector. In the outgoing exchanges, a delegation connector connects an
output port of an internal component with an output port of its CompositeComponent
container. For other cases, they are identified as being of type assembly. We present
the connectors by the following formal definition:

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 63

∀ cn ∈ MoCCn then

cn ::= source; target; ckind; bhv; {Parameter}
source :MoCCn →MoCP ,

target :MoCCn →MoCP ,

ckind :MoCCn → {delegation, assembly},
bhv :MoCCn → Behavior

(4.4)

Parameter is defined in 4.2.3.4.b.

4.2.3.1.d Cometa MoCComponent

The MoCComponent (4.5) of MoCCp are virtual parallel entities used not only for
the hierarchical description of topologies, but also as support for the mechanisms of
execution control. The MoCComponents represent atomic and composite components.
These two types of components have similar properties such as the ability to define
sets of ports and to carry behaviors used for execution control (i.e. < bhv > function
in 4.5, also called < behaviorMap > in Figure 4.3). However, when they are defined
separately, atomic and composite components provide different properties. Descriptions
of the distinct properties are proposed by the 4.6 and 4.7 formal definitions. We propose
the following formalization for the common property description:

∀ cp ∈ MoCCp then

cp ::= {MoCPort}; {Parameter}; bhv;mocdomain

{MoCPort} ⊆ MoCP ,

bhv :MoCCp → Behavior,
mocdomain :MoCCp →MoCDomain

(4.5)

Each MoCComponent has an associated MoCDomain defined by the function <
mocdomain > in 4.5, or called < mocDomain > in Figure 4.3. The concept MoCDo-
main is defined in Section 4.2.3.2.

The behaviors described in Section 4.2.3.2 participate in the definition of the execu-
tion control mechanisms of the components. In the case of composite components, the
execution control mechanisms consist in the specification of global Scheduling mecha-
nisms. For atomic components, they consist in the description of local control behaviors
to associate with other control behaviors defined in the ports, connectors, etc.

4.2.3.1.e Cometa BasicComponent

Basic components (4.6) are the atomic concurrent entities directly interacting with
the application blocks. In our description, their connection to the application blocks
implies the definition of a function < comp > associating the atomic components with
the application blocks. The concept of application block (i.e. Block) is not part of
LStr. The Block notion is defined as part of the interfacing description. By definition,
we consider a BasicComponent as an entity capable of interfacing with such blocks
via its interfaces. In this approach, we assume that the function blocks are executed
sequentially. An atomic component is formalized as follows:

∀ bc ∈ Bc then

{
bc ::= comp

comp : Bc → {Block}
(4.6)

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 64

Block is defined in Section 4.2.3.2.

4.2.3.1.f Cometa CompositeComponent

A CompositeComponent (4.7) objectifies the notion of hierarchy. The concept has the
same properties as a StructureContainer with the difference that it possibly has ports
and behavior when interconnected with other components of the same hierarchical level.
In this case, the control mechanisms carried by the component serve as “semantic glue”
between the sub-topologies and the external components connected to the composite
component, thus ensuring overall consistency of the execution policies. Composite
components are part of the MoCComponents of Cometa. We formalize the concept in
the following manner:

∀ cc ∈ Cc then

cc ::= {Part}; {MoCConnector}; {MoCComponent}
{Part} ⊆ Pt,
{MoCConnector} ⊆ MoCCn,

{MoCComponent} ⊆ MoCCp

(4.7)

4.2.3.1.g Cometa Part

The Part (4.8) participates in the description of topologies by offering the possibility
of describing component reusability. A Part reproduces the behavior of a composite
or atomic execution control module. Elements of type Part have ports connecting
them with the rest of the structure. To declare the component they reproduce, the
< reusedf > function connects each Part to the component to which it reproduces
the behavior (< reusedf > is called < componentType > in Figure 4.3). Parts may
themselves contain other parts which are interconnected via ports. The concept Part
is formalized as follows:

∀ p ∈ Pt then

p ::= {Part}; {MoCPort}; reusedf ; linkedct

{Part} ⊆ Pt,
{MoCPort} ⊆ MoCP

reusedf : {Part} →MoCCp,

linkedct : {Part} → C

(4.8)

4.2.3.1.h Cometa MoCPort

A MoCPort (4.9) is used for the communication between components. It is either the
entry or exit point for data from one component to another. The MoCPort can be
enriched with MoC based behaviors. When applying a MoC behavior to a MoCPort,
this behavior participates in the specification of the communication protocol. The
events (generated) from the application requests are sent to the execution control be-
haviors via MoCPort. Such events define interfaces MoCInterface that are contracts
to guarantee access to the internal MoCPort control behavior (protocol) or to guar-
antee access to the behavior of the component to which the MoCPort is attached e.g.
MoCConnector or MoCComponent. The relation to MoCInterface is defined by the
< int > function in 4.9, also called < portInterface > in Figure 4.3. A MoCPort can

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 65

be directly connected to another access point (MoCPort) of another component. The
MoCPort can be oriented IN/OUT to specify the direction of the communication (see
< dir > function in 4.9, also called < direction > in Figure 4.3). The Behavior and
interfaces of MoCPort constitute its specification. The Cometa MoCPort represent the
interconnection points of the various entities that make up an interconnection of com-
ponents. The description of a MoCPort brings out a set of properties mainly focused
on the description of the mechanisms of execution control distributed between ports,
connectors and components. The MoCPort is formalized as follows:

∀ pr ∈ MoCP then

pr ::= {Parameter}; bhv; int; kindf ; dir; target

bhv :MoCP → {Behavior},
int :MoCP → {Interface},
kindf :MoCP → {end, relay},
dir :MoCP → {IN, OUT},
target :MoCP →MoCP

(4.9)

The distinct concepts presented in this section are involved in the description of
semantic layers, especially in their structural aspect. As noticed in the description of
the MoCComponent and MoCConnector, the associations of behaviors (Behaviors) and
interfaces (Interfaces) with the structural element respectively relate to the description
of the execution control mechanisms and interfacing with the application blocks.

The behaviors for execution control are provided by operational MoC models that
we describe in the next section. The metamodel excerpt shown in Figure 4.3 and 4.2
are parts of the DSML, highlighting the concepts of the LStr.

Cometa allows the description of intermediate execution control layers for concur-
rent system modules. The idea is to control the access to shared memory in order
to ensure proper synchronization between the modules. This is further explained in
section 4.2.3.5.

Before proceeding to the description of execution control mechanisms, we show the
use of LStr to describe the possible topological configurations.

4.2.3.1.i Semantic Layer Configurations

There are several ways to define the synchronization of interconnected concurrent com-
ponents: global synchronization (e.g. synchronous execution); synchronization using
communication (e.g. synchronous communication). The synchronous execution is re-
lated to the theory of “perfect synchrony”; while synchronous communication is more
about defining communication mechanisms that put in place handshakes, semaphores,
etc. Both are related to the theory of computation (MoC). In Cometa, we focus on
defining mechanisms for synchronous or asynchronous communication.

In this context, there may be several topologies with Cometa as presented in the
following Figure 4.4.

• In the first configuration 1©, we consider the direct connection between ports
without connectors. For example, the components A, B emit requests through
their respective MoCPort interfaces. Such a semantic layer configuration will
have the execution control behaviors split in two FSMs and each behavior is

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 66

Figure 4.4: Topologies described using Cometa

placed in a MoCPort (access point of requests). The control behaviors defined in
the two ports protocols handle the synchronization according to MoC rules. The
MoC-based synchronization is described in Section 4.3.1.

• In the second configuration 2©, there are two possibilities for dispatching the
control FSMs. We can consider the case where the control of the execution is
divided into three interconnected FSMs (one on each communication element
MoCPort IN/OUT and MoCConnector); or we can also consider the case where
there is only one FSM for the execution control placed on a MoCConnector.

• In the same configurations as in one and two, the third configuration 3© put in
place a hierarchical component that plays the role of a global scheduler for all
the different elements it includes (MoCComponent, MoCPort, MoCConnector).
Such Scheduler is required if one wishes to make the execution of a composite
component totally sequential.

The communication between FSMs is ensured by using specific events (e.g. Mo-
CEvents described in Section 4.2.3.2).

4.2.3.2 Execution Control Description

To solve the parallelism problem within systems composed of concurrent entities, MDE
must take into account the concerns of controlling the execution of modules at each
level of abstraction considering the synchronization issues that may arise.

Execution control refers to how the constituent modules in the systems interact and
synchronize in time. This should be well controlled to ensure proper execution of the
system on parallel architectures. Unfortunately, MDE is still struggling to describe this
aspect formally and explicitly.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 67

The execution control behaviors associated with the various elements of the seman-
tic layers are designed to regulate the flow of exchanges between application blocks.
The behaviors implement MoC-based rules for such control. In this section, we for-
mally describe the LMoC language to define these rules and execution properties. The
concepts abstracted in LMoC enable the production of executable and reusable behav-
iors to associate with semantic layers.

A LMoC is defined by the 6-tuple : 〈MLib,DMoC ,BMoC ,BFSM ,BOp, Tmod〉. LMoC

defines a library of MoC domains. The MoC domains are divided into two separate
spaces for the description of FSM behaviors and the description of time models. We
formalize these considerations in the following manner:

• MLib: represents the unique library of MoC domains from Cometa.

• DMoC : represents the set of definable MoCDomains based on the concepts of
Cometa.

• BMoC : represents the set of execution control behaviors. This set is divided into
two subsets BFSM and BOp, with BMoC = BFSM

⋃
BOp and BFSM

⋂
BOp = ∅.

• BFSM : represents the set of behaviors that can be described from the FSMs.
Each behavior of this set is defined by the following 3-tuple:

BFSM : 〈S, T , EMoC〉.

– S: is the set of states of a control machine (or FSM). The set of states
includes: an initial state, several final states and several intermediate states.
All the states of a FSM represent the state space of the control behavior.

– T : is the set of transitions to bind states of an FSM.

– EMoC : is the set of (internal) events for the communication between FSMs
in Cometa (i.e. MoCEvent).

• BOp represents the set of opaque control behaviors definable from a program-
ming language, or formalisms sufficiently expressive to specify execution control
mechanisms based on the MoC theory (e.g. Petri nets).

• Tmod is the set of time models that can be modeled from the abstract concepts
in Cometa within specific MoC domains. The formalization of its concepts is
provided in Section 4.3.4.

4.2.3.2.a Cometa MoCLibrary

The models belonging to each of these sets are interlinked so as to ensure the description
of executable and reusable behaviors. The relationships are presented as follows:

∃! m ∈ MLib such that

m ::= {MoCDomain}; {MoCEvent}
{ MoCDomain } ⊆ DMoC ,

{ MoCEvent } ⊆ EMoC

(4.10)

Figure 4.5 introduces an description of the part in the Cometa metamodel related
to the MoC description. The concept of MoCLibrary associated withMLib is composed
of several MoCDomain and several MoCEvents.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 68

Figure 4.5: Content of a MoCLibrary

4.2.3.2.b Cometa MoCDomain

A MoCDomain (4.11 and Figure 4.5) is a concept reifying the concept of MoC modeling
space. A MoC modeling space captures all of the rules, properties and semantics specific
to a MoC. The captured rules include operational behaviors defined through the concept
of Behavior. As a result, a MoCDomain is formalized as follows:

∀ dm ∈ DMoC then

dm ::= {Behavior}
{ Behavior } ⊆ BMoC which means ,

∀b∈{Behavior} then b∈BFSM or b∈BOp
(4.11)

4.2.3.2.c Cometa MoCEvent

The concept of MoCEvent (4.12) is used to describe the communication events between
FSMs of a semantic layer. For example, the distribution of control over ports and
connectors involves the use of these events as triggers for state changes in ports and
connectors. These events are dissociated with interface events that are directly related
to the application blocks. The formalization of the MoCEvent is as follows:

∀ ev ∈ EMoC then , ev ::= {Parameter} (4.12)

4.2.3.2.d Cometa Behavior

The behaviors of the BFSM (4.13) and BOp sets define common properties associated
with all elements of BMoC . This means that the described behaviors have one or more
roles associated with them; several parameters for the description of state variables; a
referenced MoC domain to identify the type of MoC rules they implement. In Figure

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 69

4.5, FiniteSateMachineBehavior refers to elements of the set BFSM and OpaqueBe-
havior refers to elements of the set BOp. Our focus is more on the description of the
formalization of elements of type FiniteSateMachineBehavior :

∀ fsm ∈ BFSM then

fsm ::= {finalS : State}; initS : State; {State}; {Transition};
role; domain; {Parameter}
{State} ⊆ S,
{Transition} ⊆ T ,
role : BFSM → {MoCRole},
mocdomain : BFSM → DMoC ,

{MoCRole} = {Orchestrator,PortBehavior,ConnectorBehavior}
(4.13)

The < role > function is defined to associate the following roles (SchedulingBehav-
ior, PortBehavior, ConnectorBehavior) to the different behaviors (e.g. FiniteSateMa-
chineBehavior), making the elements they are related to explicit i.e. (MoCComponent,
MoCPort, MoCConnector). One can associate several roles with the same execution
control behavior if the mechanism which it describes is reusable in different contexts
(e.g. scheduling, protocol). The function < mocdomain > defines association to a
specific MoC domain the MoC behavior belongs to.

Cometa defines event-based FSMs. The event-based FSMs are machines for which
the variables or symbols that allow the changes of state are events from the system.
As stated earlier, in the context of communicating concurrent entities, such events are
requests such as Send, Receive or Ack.

With the abstracted concepts, one can describe e.g. Moore, or Mealey FSMs. The
choice of one or the other machines to describe a control behavior is left to the discretion
of the user. However, the concepts required to define both of them are present in the
language. We will see the description of the FSM concepts in the following paragraphs.

Figure 4.6: Excerpt of the Cometa FSM Behavior concern

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 70

The concept of State (4.14 and Figure 4.6) in Cometa is a description of a con-
trol state. A control state contributes in regulating incoming and outgoing requests of
various concurrent entities. It allows the definition of the order in which the various
requests must precede or succeed. This is done by describing in each state the autho-
rized events generated from the application’s requests and by defining the successors
and predecessors states (of each state) that are part of the synchronization process and
based on MoC execution logic.

The set of states of a control machine, and the set of transitions define the inter-
action patterns. An interaction pattern shows a possible way of communication and
exchange between the entities of the system. In a Cometa FSM, the state changes
can imply the execution of a sequence of instructions, either on a given state or on
a given transition using the concept of < action > (see Figure 4.6) that references
a Block (OpaqueBlock. In our formalization, the < action > function is represented
differently for the State (i.e. < actionS >) and Transition (i.e. < actionT >). In
the notation of actiona, < a > stands for State or Transition. The referenced blocks
define the sequences of instructions for internal and external Cometa communication.
The internal communication is the communication between Cometa’s control FSMs; in
such case only the control events defined inside Cometa are considered. The external
communication takes into account the events that are external to Cometa (e.g. requests
from a concurrent entity). The description of the contents of Block is detailed in the
Section 4.2.3.5.b. We formalize the State relations as follows:

∀ s ∈ S then

{
s ::= actionS

actionS : S → {Block}
(4.14)

At the most, one b:Block is associated to a s:State.
The concept of Transition (4.15) is used to describe the relationships between the

various states of an FSM. They define relations of succession and precedence between
the control states. The relations are implemented in Cometa using functions to denote
the < source > (i.e. predecessor) state and < target > (i.e. successor) state for a given
transition. There is one source and one target for each Transition.

Thus, starting from the set of transitions between control states, one can deduce all
relations of type predecessor, successor between states. Transitions have < trigger >
functions that are of type Event. The occurrence of an event called the < trigger >
may involve state change during the control process if all additional conditions on the
transition are verified. The conditions on transitions are referenced as the < guard >.
A < guard > is placed on the transition expression and its evaluation is mandatory for
the state change.

• Trigger : This function is used to determine the type of event occurrences that
may cause a change of state. In the context of Cometa, occurrences of events
that are < trigger > are MoCInterface (Send, Receive, Ack) and MoCEvent.
The objective is to provide an order of processing requests by the synchronization
rules.

• Guard: The < guard > are functions to the expressions to evaluate. The expres-
sions are additional conditions of transition from one state to another. In the
context of the Cometa < guard > references Block. The return of the evaluation
of the Block content potentially authorizes the change of state.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 71

We formalize Transition as follows:

∀ t ∈ T then

t ::= source; target; guard; trigger; actionT

source : T → S,
target : T → S,
guard : T → {Block},
trigger : T → {Event},
actionT : T → {Block}

(4.15)

Event is a set of communication events such as MoCInterfaces (for external communi-
cation), MoCEvents (for internal communication).

A Block in Cometa helps to define a sequence of instructions. The defined instructions
allow communication between the control FSMs and the access to shared memory
through the primitives (services) defined in RTInterface. A Block has a body
attribute that is a string representing the sequence of instructions. In a sequence
of instructions one can call services to gain access to the shared memory (e.g.
add, remove on a FIFO); or one can call functions that convey MoCEvent, and
MoCInterface.

The MoC communication strategies are specified within separate libraries of MoC-
based behaviors. The behaviors are responsible for the arbitration of the communica-
tion between the components, and are represented as, e.g. communication protocol’s
behaviors, or Scheduler ’s behaviors.

4.2.3.3 Data Description

The Cometa approach provides bases for the description of abstract data types which
are categorized into 3 subsets: Primitives, Pre-defined and User-Defined.

The following formal definition is proposed: LData : 〈PrimData,PredData,UsrData〉

Primitive types refer to data types such as the Integer, Boolean, Real, etc.
The predefined types are domain specific, and allow the representation of types

suitable for data flow semantics. For example, we abstract the concepts of Array,
Vector, MultiDimensionalArray, or Matrix to capture specific information related to
the size of the vectors, arrays, etc. This information is then exploitable by the execution
control behaviors manipulating production and consumption rates.

Users also have the opportunity to describe their own data structure. The descrip-
tion of these new structures is provided by the abstraction of concepts for the definition
of sequence of typed elements.

PrimData and PredData represent sets of abstract elements predefined in the meta-
model of Cometa (see the above data type examples). While UsrData is based on the
definition of concepts such as:

∀ d ∈ UsrData then
{
d ::= {DefinedType} (4.16)

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 72

DefinedType has a shaping (Shaping) to specify a sequence of elements. A Shaping
can contain a typed set of Elements.

4.2.3.4 Relationships between Structure, Execution Control and Data

There are several inter-concern relationships. These relations allow the association
of a topology with behaviors, behaviors to data structures, and so on. An overall
semantic layer is thus composed of the combination of several concerns related by these
relationships.

4.2.3.4.a Between Structure and Behavior

The structural elements (MoCComponents, MoCPorts, MoCConnectors) are associated
to execution control behaviors defined in the MoCDomain. Every structural entity is
able to share a control Behavior with the other elements of the topology thanks to the
defined < bhv > function. For the purpose of formalization, we separate this function
into 3 types of functions < bhv1 >, < bhv2 >, < bhv3 > (4.17) on the structural
elements mentioned above. In Figure 4.3, there is no separation between these types
of functions which are represented by the same relationship behaviorMap.

bhv ::= {bhv1, bhv2, bhv3}
bhv1 :MoCCp → {Behavior}. Seeformula 4.5,

bhv2 :MoCCn → {Behavior}. Seeformula 4.4,

bhv3 :MoCP → {Behavior}. Seeformula 4.9

(4.17)

Besides, as shown in Figure 4.3, attaching behaviors to structural elements is done
through the concept of StructureElement for which we define a function (behaviorMap)
to the concept of Behavior.

4.2.3.4.b Between Structure and Data

The relationship between the structural elements and the data is not direct. It is
ensured by the use of the Parameter concept.

A Parameter (4.18) is an abstract concept of the metamodel that aims to capture
and store variables and parameters. The elements of the Structure library (MoCCom-
ponents, MoCConnectors, MoCPorts) and those of the MoC-based behavior library
(Behavior), are related to concepts of the data library (Type) through the concept of
Parameter. The following definition provides the formalization:

∀ p : Parameter then
{
p ::= b : Block; t : Type (4.18)

A Parameter has a value (Block) and a type (Type). The value represents the data
stored by the variable. The type represents the type of the stored value.

4.2.3.5 Description of the Cometa Interfaces to other DSML

As depicted in Figure 4.7, the Cometa models are layers receiving requests issued by
their associated application blocks. An application block is interfaced with the layer

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 73

components via MoCInterface. A MoCInterface can trigger the execution control be-
havior defined in Cometa. The behaviors guarantee the consistent transmission of
requests to avoid conflicts between the requests. For example, Send and Receive re-
quests are taken into account only when all the synchronization requirements (defined
by the MoC) are met.

Figure 4.7: Highlighting the Interfaces

The Cometa behaviors allow the Send, Receive or Ack requests to gain access to
the shared memories using services of the runtime interfaces RTInterface of Cometa.
The RTInterface are services that highlight the functions to be implemented in order
to manipulate a shared memory (e.g. add, remove). The RTInterface are also used
to store the component requests in an event queue. The communication primitives
are the set of implemented services understood by a given execution engine to be the
requests between distinct entities. They help to establish communication between en-
tities or provide access (read/write) to shared/distributed memories. There are several
mechanisms of communication. However, Message Passing is the common standard
for the communication between concurrent entities. The Message Passing Interface
(MPI) [67] standard defines mainly three primitives for communication Send, Receive,
Send Receive. For example, the functional programming language Scala defines an ac-
tor based model; each actor has a “mailbox” in which the data conveyed by the requests
(Send/Receive) are stored.

The interfaces that we address in this section have a dual purpose. They serve as
a communication contract between the layer of MoC-FSM and the concurrent entities;
they also serve as access to the memories shared between the different communicating
entities. We define two types of interfaces, MoCInterface to meet the first objective
and RTInterface to meet the latter objective.

4.2.3.5.a Specification of MoCInterface

The concept of MoCInterface captures the subset of events that represent requests
produced between the MoC layer and the concurrent entities. We have restricted this
subset to three types of exchanges (i.e. interfaces): Send and Receive requests (from
entities models to the MoC models), and Ack (from the MoC models to entity mod-
els). On the one hand, the occurrence of events SendEvent, ReceiveEvent are used to
trigger state changes in the control mechanism. On the other hand, the Ack release
the components to continue their computation.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 74

• Send : This concept allows the sending events to be described. The sending events
are the result of data sending requests emitted by an entity behavior. These
events can be parameterized. The parameters are used to specify the receiver of
the request, the communication connector, or the data to be transmitted, etc.

• Receive: This concept allows the reception events to be described. The reception
events are the result of the reception requests issued by an entity behavior. These
events can be parameterized. The parameters are used to specify the communi-
cation connector.

• Ack : The Ack events are sent back to the behavioral entity so they can continue
their execution. The Ack are needed in all running control scenarios with Cometa.
They reify the concept of permission to run. The FSM captures the control
behavior and governs the sending of Ack according to the MoC rules. For example,
depending on MoC rules, the sending of Ack can be unconditional on reception
of a SendEvent or ReceiveEvent ; elsewhere it can be done with some delay when
a request must be blocked. These events can be parameterized. The parameters
are used to specify the receiver of the request, the communication connector, or
the data to be transmitted, etc.

4.2.3.5.b Specification of RTInterface

The concept of RTInterface captures the events (MoCEvents), as well as services and
parameters that are used within the control behavior to interface with the communi-
cation media (shared memory such as FIFO and LIFO). Elsewhere, the services are
used in the same way to store new events in the event queues that are operated by the
schedulers.

The services are captured as annotations. Their implementation is provided as a
library of functions external to the Cometa DSML. The captured services are used in
the Blocks of the control behaviors as a means to call their real implementation in the
runtime.

• Service: The concept of service is used in the context of Cometa to abstract
functions interfacing with the runtime, as well as to abstract functions for com-
munication between machines of control. In our experiments, we have identified
three types of primitives for the above intentions. The primitive sendOfEvent is
used for sending MoCEvents between control machines; the primitives (e.g. add,
remove and check) are used to operate on queues of data or queues of events.

• Queue: The analysis of communicating behavioral entities must take into account
the sizes of the shared memories used because in reality such sizes cannot be
infinite. The concept of Queue is a concept for the virtual representation of the
shared memories such as FIFO, LIFO. The purpose of this virtualization is to
highlight their sizes and the required services to operate on the Queues.

4.2.4 Operational Semantics: FSM-Based Control

In this section, we describe the operational semantics of the semantic layer models
described from Cometa using a Labelled Transition System (LT S). The LT S helps to
study the feasibility of the behaviors represented in the form of states and transitions.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 75

The description of the operational semantics requires several preliminary definition
steps, from the firing of a request by an application block to its definitive processing
via the semantic layers.

A transition system consists of a set of possible states and a set of transitions
involving changes of states. In our particular case, states and transitions in the LT S
are provided by the control FSMs which are described by Cometa. The operational
semantics of the MoC-based control layers is defined through a projection of Cometa
semantic layers on an LT S.

In such an LT S, each semantic layer represents a configuration which is given by
all the states of the semantic layer. In addition to the configurations, the transition
relations describe rules making the possible state changes explicit i.e. the transitions to
move from a source to a target configuration. Each of the transition rules clarifies the
necessary conditions for state changes. State changes are the consequences of external
events from the application blocks, or internal events produced by actions in the states
and transitions of the MoC-based FSMs.

A Structural Operational Semantics (SOS) [164] is defined with the LT S which
allows the definition of the transition rules on the LT S. SOS provide a framework for
the description of the operational semantics and complement the LT S.

The SOS based transition rules are of the form
premises

conclusion
(condition) [2]. In [164],

the validity of the premises of a transition rule (under certain conditions) induces the
validity of the conclusion of the transition rule. In this part, we will define some transi-
tion rules in the form of SOS associated with our LT S, thus providing the operational
semantics of Cometa.

4.2.4.1 Operation Semantics of the Block requests

By definition, the requests issued by the application Block are translated into noticeable
events for the semantic layers and execution control behaviors.

The Block concept is viewed as a sequence of instructions accomplishing internal
processing (i.e. computations), and expressing external requests to other elements.
When the Blocks are used within the FSM, the requests produce specific inter-FSM
communication events MoCEvents. When blocks are defined at the level of the Basic-
Component, requests produce noticeable MoCInterface events. Formally, if we consider:

• R : the set of requests that can be issued from Block, in Cometa we limit these
types of requests to {Send, Receive}. Among the requests from different blocks
(application, related to the MoC-based control machines), we are interested in
send and receive requests. The computations made on these data are not consid-
ered.

• εEvent : the set of events generated from queries above. In this set we have two
categories of events. The first category includes the events that are generated
from the requests of the application blocks. These events are then associated
with those that are defined in MoCInterface. Besides, as previously described,
the states and transitions of control machines are potentially associated to action
blocks respectively defined by the actionS and actionT functions. The events
generated from the requests in these blocks correspond to events of MoCEvent.

This definition provides the following rule:
εEvent ⊆ MoCInterface

⋃
MoCEvent

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 76

In the rules below, we consider that executing the requests from R causes the cre-
ation of noticeable events for the semantic layers of Cometa (external communication).
As a result, φBlock is the function associating a Block ’s requests to the events (MoCIn-
terface) that are generated by the requests. By definition, we restrict the types of
events MoCInterface to 3 subtypes <Send, Receive, Ack>.

Since the states and transitions are associated with blocks by functions actionT and
actionS , the second rule allows the definition for each state and transition, the potential
events which are produced when their internal actions are executed. The selected
premises predict that if there are action blocks defined by (actionS and actionT) for
the states and transitions, there exists a θBlock function that associates each request in
these blocks to the events they generate. We note in this context that the events are
of type MoCEvent (internal communication).

R φBlock−−−−→ εEvent

Rule. 0©

actionS :S→{Block} or actionT :T →{Block}

R
θBlock−−−−→εEvent

Rule. 1©

In summary of the above definitions, we assume that each request issued by a Block
causes the creation of MoCInterface events or MoCEvent exploitable by the semantic
layers.

4.2.4.2 Labelled Transition System for Cometa

The Cometa models aim at describing operational execution control layers based on
the use of the FSMs and the theory of computation (MoC). The FSMs induce the op-
erational aspect of the execution semantics and the MoC specifies the formal execution
rules.

The FSMs are based on using events as a Trigger for the state changes. The
operational semantics of these machines can be described in the form of a transition
system, formally presenting the links between the different states. In fact, the LT S
allow the Cometa models to be described in terms of finite-state space with the links
triggering state changes. In the Cometa LT S, states and transitions of the LT S assets
are equivalent to those from the Cometa layers. The projection phase is described
below by a mechanism to bring the components of a Cometa model to a set of state
and transitions labeled by the events.

We formalize the LT S corresponding to the semantic layers in the following way:
〈ST , I,RT ,L, Et〉.

• ST is the set of states of a structural model. The states of this model come
from the FSM that are associated with the various entities within the topology
description i.e. (MoCComponent, MoCConnector, MoCPort). The following for-
mal definitions represent the projection of the states according to their position
in a structure of Cometa components:

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 77

∀s∈ST then

s ::= [StructureContainer].[X]∗.[FiniteStateMachineBehavior].s,

X ≡ Part, or X ≡ MoCComponent, or X ≡ MoCPort, or

X ≡ MoCConnector,

ST ⊆ S
(4.19)

Each state in ST is identified by the traces of its containing elements i.e. the
traces from the lower hierarchical level container to the top level container. The
containers are separated by brackets

.

The [StructureContainer] specifies the top level container; if the state belongs to
a Part, MoCComponent or MoCConnector inside the top container, then [Struc-
tureContainer].[X].[FiniteStateMachineBehavior].[s:State] identifies the state (with
X = MoCComponent or MoCConnector, etc). For several hierarchical levels, the
same notation is used with:

[StructureContainer].[X1].[X2]...[Xn].[FiniteStateMachineBehavior].[s:State].

This latter representation is simplified with the notation [StructureContainer].[X]∗.
[FSMBehaviorContainer].[s:State].

Figure 4.8: Simple example of Layer representation

In the Figure 4.8-left and the Figure 4.8-right, the States 1, 2 of the structural
model are identified by (S.A.1, S.A.2). For the left example; states are identified
by (S.A.A’.1, S.A.A’.2) for the right example.

• I represents the set of initial states and adheres to the same description rules as
ST States.

• RT ⊆ ST × ST × L and describes the set of transition rules to move from a
given state to its possible successor states. The transitions in this specific case
are conditioned by a label from the set of events L defined below. A transition
of R is then given by the coupling of (current State, successor State, Label).
The labels for the event-based FSM are events capable of causing the activation
of a transition. The FSM being deterministic, one transition condition cannot
help reach two different successors. Each transition reaches only one state with
a single given condition.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 78

• L represents the set of labels or events that may cause state changes. These
already identified events are part of the sets of events MoCInterfaces, or Mo-
CEvents. In the rest of this chapter, L and εEvent are used in an interchangeable
way. Therefore, we propose the following definition:

∀ ev ∈ L then
{
ev ∈ εEvent (4.20)

A transition can be described as the coupling between the source state, the target
state and the event producing the state change. In other words, when a transition
connecting two states is sensitive to an event causing a change of state, the transition
is possible when the event occurs. Based on the fact that the events belong to εEvent, we
can define a function γ combining the occurrences of events (labels) to the transitions
they trigger:

γ : L → RT
The LT S describes the system evolution at every stage of execution, thus, explicitly

giving the overall status of the system. Given a system configuration (application
blocks + Semantic Layer), one can identify the set of states, transitions, events (labels)
between transitions.

The labeling functions are defined at the same level as the various transition rules.
The FMSs are bound together by the communication events that occur between them.
In this case, an event occurring in a state of an FSMA can trigger a transition (change
of State) in an FSMB which is sensitive to this event.

Based on the rules defined for the block’s computations, we can generalize the oper-
ational semantics of the LT S by identifying the conditions that enable the generation
of events capable of stimulating the semantic layer’s control machines. The following
formula specifies these conditions.

(ST
actionS−−−−−→ {Block} , RT

θBlock−−−−→ εEvent)

(ST × εEvent)
θST−−→ εEvent

|

(T actionT−−−−−→ {Block} , RT
θBlock−−−−→ εEvent)

(T × εEvent)
θT−→ εEvent

Rule. 2©

(RT
φBlock−−−−→ εEvent , (ST × εEvent)

θST−−→ εEvent)

(RT
φBlock−−−−→ εEvent)

θST−−→ εEvent

|

(RT
φBlock−−−−→ εEvent , (T × εEvent)

θT−→ εEvent)

(RT
φBlock−−−−→ εEvent)

θT−→ εEvent

Rule. 3©

There are several rule patterns to make the events explicit that are generated from
the states and transitions. In order to facilitate the writing and reading of such se-
quences of rules, we regroup them consistently as described by the first rule above.
The objective of this rule is to present the sequence of premises which allows to define,
for each state or transition, the events that are generated during the execution of their
action blocks.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 79

Firstly, when an event of εEvent allows a transition between states to be triggered,
one can apply the premises of the first formula to determine how the actions of the target
state generate new events. The core idea argues that at each entrance of a target state
(after transition), there is an actionS (and or an actionT) function that determines the
block to run; there is also a θBlock function that associates the block’s request sequence
to the events that are generated at their execution. Consequently, an input event that
triggers state change, potentially, further induces the generation of new events which

is simply written in the bottom part of the formula by (ST × εEvent)
θST−−→ εEvent (or

(T × εEvent)
θT−→ εEvent for actionT), etc.

The second formula’s premises are: The execution of requests by φ is capable of
producing stimulation events of the states; The second condition predicts that for a
given state of an FSM, the event leading to enter such state potentially causes new
requests within the state and therefore the production of new events that will be used
for communication between the MoC-Based FSMs (related to Rule 2©). Rule 2© is a
direct consequence of the combination of Rule 0© and 1©. Similarly, Rule 3© is induced
by the rules 0© and 2©.

Under these conditions, it can be concluded that block requests cause the gener-
ation of control events between FSMs which enables the control of the requests from
application blocks. Consequently, the state changes are made where transitions are
possible. With the definitions provided, when a transition is possible, one can associate
source and target states, as well as the event causing the state change to define the
transition. To simplify the identification of current states, we introduce an alternative
representation : nextFSM : ST × εEvent → ST . Consequently, the following formula
defines such semantics:

∀ (ev∈L; s, s′∈ST) then

{
L γ−→ RT , s

t−→ s′ , t : (s, s′, ev)

s× ev nextFSM−−−−−−→ s′
Rule. 4©

The formula above can be interpreted as follows: if we have premises on the occur-
rence of events that can trigger transitions by γ, and the transition rules specifying the
source and target states ST × ST × L, as a conclusion we can define a transition from
the source state s to the target s′ by the transition t : (s, s′, ev) with ev ∈ L.

The sequence of requests in a system creates as well the sequence of events which
has the consequence of the triggering of transitions when possible. The succession of
transitions between states is formalized in the following manner:{

s
t−→ s′ , s′

t′−→ s′′

(s
t−→ s′)

t′−→ s′′
∃(t, t′) such that t and t’ ∈RT Rule. 5©

If a transition t allows state changes between s′ and s, and a second transition t′

also allows state change between s′ and s′′, then we can conclude that the succession of
t and t′ induces state changes from s to s′′. Generalizing to n, we obtain the operational
semantics below when the transitions are for the same FSM (Rule 6), or when we have
different communicating FSMs (Rule 7).

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 80

s0
t0−→ s1, . . . ,sn−1

tn−1−−−→ sn(
...
(
...

((
s0

t0−→ s1

)
t1−→ s2

)
...
)
...
) tn−1−−−→ sn

∃(t0, ..., tn) such that t0, ..., tn∈RT Rule. 6©

(s0
t0:(s0,s1,ev0)−−−−−−−−→ s1, ev0

θs1−−→ ev1), . . . ,(sn−1
tn−1:(sn−1,sn,evn−1)−−−−−−−−−−−−−→ sn, evn−1

θsn−−→ evn)(
...
(
...

((
s0

t0−→ s1, ev0
θs1−−→ ev1

)
t1−→ s2, ev1

θs2−−→ ev2

)
...
)
...
) tn−1−−−→ sn, evn−1

θsn−−→ evn

(t0 : (s0, s1, ev0), t1 : (s1, s2, ev1), ..., tn−1 : (sn−1, sn, evn−1)) Rule. 7©

The semantic definition allows the current state of each FSM to be traced after the
interception of an event through its premises. The value of the current state is derived
from the transition rules defined by the LT S.

The above definition allows the current state of each FSM to be traced after the
interception of an event. The value of the current state is derived from the transition
rules defined by the LT S.

4.3 Execution Control Mechanisms description

There are several ways to define execution control mechanisms and they can also be
managed by different types of components. A particular entity to implement execution
control rules is the Scheduler. The global schedulers hold all the rules to trigger the ex-
ecution of components, thus controlling their synchronization. Besides, communication
entities can also be used to control the executions. They allow the various components
to synchronize based on their properties. One can imagine cases mixing the use of
schedulers and the communication mechanisms for execution control. In this case, the
elements of communication are seen as components by the schedulers. Based on the
above information, we can classify these mechanisms as follows: communication-based
(asynchronous, synchronous, timed, untimed); or scheduler-based (also asynchronous,
synchronous, timed, and untimed).

4.3.1 Scheduling in Cometa

In the HW/SW co-design domain, scheduling is an important aspect given the parallel
nature of platforms on which the different components and tasks are mapped. This
aspect addresses the management of execution tasks and the communication trans-
actions. Such activities allow the control of the execution of the individual modules
making up a system.

Depending on the level of abstraction and depending on the design activity per-
formed, a type of scheduling can be selected instead of another. For example, central-
ized scheduling is usually recommended for analysis and simulation activities. However,
for parallel architectures, the use of centralized scheduling does not always benefit (in
terms of performance) from the advantages induced by parallel architectures. In this
case, distributed scheduling is favored.

For executable model exchanges between tools, it is necessary to address the de-
scription of the scheduler when the semantics are heterogeneous, or when scheduling

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 81

formalisms require different underlying semantics (i.e. different MoCs) in each tool.
In this context, the MoCs define how a set of interconnected components should

interact, which is implemented in the Schedulers. The operating of a MoC is often
provided by an operational semantics based on the MoC rules.

With Cometa, all the Schedulers are defined in the form of FSM interconnected
via a structure that we call “layer”. The layer is able to interact with the external
computations to monitor their execution. Both centralized and distributed scheduling
is described in Cometa. The FSMs of the Schedulers are the operational versions of
the MoC underlying the Schedulers. The global MoC of the system is provided by the
composition of all the MoC-based FSMs.

In the following sections, we look at both types of scheduling which are the central-
ized scheduling and the distributed scheduling.

4.3.1.1 Centralized scheduling in Cometa

The centralization of the Scheduler makes sense when there is a significant amount of
data exchanged and very frequently requested by the modules composing the system.
In this case, a consistent data update is essential for the proper functioning of the sys-
tem. Indeed, such scheduling controls the overall execution order of all computations on
data, the communication transactions, as well as the updates on data. Unfortunately,
for large systems, they easily become complex compared to the distributed schedul-
ing. For example, the management of the set of requests coming from multiple and
heterogeneous processors can be a bottleneck reducing performance.

As shown in Figure 4.9, the centralized Scheduler implementation in Cometa is
based on: the definition of the execution control (FSM) representing the operational
semantics of the MoC rules; the definition of synchronization events between the mod-
ules issuing requests; the definition of the interfaces between the Scheduler and the
external modules (or computations).

The concepts required for the description of centralized Scheduler are available
through: the concepts of StructureContainer and CompositeComponent (e.g. S:Top
Container in Figure 4.9) that allow the retrieval of the number of sub-components
(e.g. MoCPort A, A: BasicComponent, MoCConnector) on its hierarchical level, as
well as supporting the execution control FSM; the concept of MoCPort defines the
interfacing points and the synchronization events are provided by the MoCInterface;
finally, the link between components is determined through the MoCConnector.

The MoC implemented in a generic Scheduler must be able to keep the same op-
erational mode regardless of the number of sub-components that are at stake. In this
context, the difficulty comes from the dynamic increase in the number of components
(potentially heterogeneous) in the same hierarchical level. The heterogeneity of the
MoCs comes with the heterogeneity of the components.

It is difficult to combine several MoCs at the same level of abstraction using central-
ized scheduling. This is due to the fact that the complexity and size of the Scheduler
increasingly grows depending on the number of MoCs in the hierarchical level. Addi-
tionally, the Scheduler should be able to separate the different semantic groups, pro-
vide their implementation, and ensure the consistency of their composition. Besides,
to communicate with the new components, the Scheduler must include information
for interfacing the heterogeneous new components. Such a generic Scheduler is hard
to specify and implement considering the MoC constraints. Therefore, the centralized
Scheduler usually addresses only a single MoC semantics by hierarchical level i.e. all

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 82

components of this level are managed by the same MoC; which allows a glimpse of the
generic Scheduler implementation based on a MoC.

Under these conditions, the heterogeneous hierarchical levels provide implicit MoC-
based execution semantics’ adaptations from one level to another. For instance, a
Scheduler from a higher hierarchical level has a global vision of the requests at the
borders in terms of I/O. Then, such a Scheduler receives all requests from modules
and decides, according to its implemented MoC, those that have priority and must be
running. The Scheduler is then set as a Cometa component and has to be a container
for a set of sub-components on the same hierarchical level.

Figure 4.9: Example of container (Top) with an MoC-based FSM for centralized
Scheduling

On this basis, and on the formal basis of the MoC rules, it is possible to determine
a Scheduler associated with e.g. the StructureContainer or CompositeComponent to
orchestrate the different components.

4.3.1.2 Distributed Scheduling in Cometa

The distributed scheduling is another execution control mechanism realizable in Cometa.
This solution stands out from the centralized scheduling by its methods of implemen-
tation. Indeed, several local Schedulers are put together to give scheduling decisions
on the set of components they are related to.

One of the main advantages of the approach is the possibility to represent hetero-
geneous execution control mechanisms at the same hierarchical level and further, each
local Scheduler does not need to known its other unrelated components. These two
points are fundamental differences with the centralized scheduling.

The scalability of the system is improved since the addition of new components
does not imply considerable alteration of the local Scheduler more generic than the
centralized Schedulers. The distributed scheduling also improves performance with the
exploitation of parallelism induced by multiprocessors. For a parallel system, the ex-
ecution control is provided through the description of intra-module and inter-module
synchronization policies (when mapped on different processors). In Cometa, the dis-
tributed execution control mechanisms are defined locally by any structural element
capable of supporting behavior. The structural concepts participate in the synchro-

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 83

nization of tasks and modules based on the resources at their disposal and their syn-
chronization links. In this context, the main challenge is the coordination of the dis-
tributed Scheduler. Cometa allows the definition of local synchronization mechanisms
placed on Cometa layer’s (communication links and components) as shown in Figure
4.10. An SDF control behavior can, for example, be dispatched on several concepts i.e.
MoCPort, MoCConnector and MoCComponent. The concurrent computation requests
are received by the ports potentially supporting part of the control mechanism and
the “port-connector-port” link constitutes synchronization between components incor-
porating synchronization semantics. Each interconnection may also define a different
MoC-Based semantics (heterogeneity).

Figure 4.10: Example of container (Top) with MoC-based FSM for distributed Schedul-
ing

The implementation of the different MoC-based control behaviors is provided in
the form of FSMs interfacing with the application blocks via MoCInterface events and
internal control events MoCEvent for FSM communication.

Control behaviors are generic and easily reusable. Indeed, these behaviors are in-
dependent of the number of components and reflect synchronization mechanisms that
can interface with the application computations in some points. A control layer is then
used to assemble them in a certain way to form the desired overall control semantics.
We will see an example of use of this mechanism in Section 4.3.3.

4.3.2 Methodology for Applying Semantic Layers

The Cometa approach is designed to provide semantic enrichments and adaptation
layers for models in an MDE context. The semantic layers integrate MoC-based oper-
ational semantics defined in the DSML. In this section, we present the steps prior to
the description of semantic layers.

4.3.2.1 Application of semantic layers: from MoC Aware to MoC Unaware
tools

The exchange of executable models between tools in a heterogeneous design flow is ac-
companied by the description of semantic adaptation layers. Semantic layers allow the
reification of the execution properties that are specific to the models to be analyzed.
The process of using Cometa’s semantic adaptation models requires the description of

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 84

the topologies giving the structure of SLs. The SLs are then refined with the specifi-
cation of the involvedMoCDomain that make the targeted semantic types explicit for
the model under specification. The functions are sufficient in some case to define the
executability if there are tools capable of interpreting them and provide their execution
semantics implementation.

As shown in Figure 4.12, the initial model has three sub-modules (A, B, C) that
can be exchanged with three different environments that already implement the MoCs
(e.g. ForSyDe, Ptolemy). The first environment refers to a tool that implements a ho-
mogeneous MoC, the second and third environments are tools describing heterogeneous
MoCs.

In some cases, adding operational semantics to the source model induces more com-
plex interpretation issues for the target environment. This is the case when the target
tools already incorporate the required execution semantics. Most heterogeneous simu-
lation tools are part of these categories that implement heterogeneous MoC semantics.
For instance, Ptolemy [26], ForSyDe [174], HetSC [78] are environments already de-
scribing heterogeneous MoC libraries for analysis and model simulation. These tools
define the Schedulers and runtime engines that are able to process the application
blocks according to a certain set of MoC semantics.

When these tools are integrated in a design flow, the use of Cometa is limited to
the definition of references on the BasicComponent to designate the Scheduler or MoC
to put in place in the target environments in order to effectively simulate the models.
Thus, the references are carried by the semantic layers.

For the transformation phases, the references refer to scheduler types in the target
environment to accommodate each application block as shown in Figure 4.11.

Figure 4.11: Application Block mapping into Semantic Layers

For these exchanges, the SLs explicitly describe references to the MoCs that are
implemented in these tools, while providing a structure that preserves the topology of
the initial modules. For the tools with homogeneous MoC (i.e. Single-MoC tools), the
SL offers a topology with Single-MoC Reference for the adaptation. In the case of tools
with heterogeneous MoC, the SL offers a topology with Multi-MoC Reference for the
adaptation. The Libraries of Cometa executable behaviors are not necessarily used as
the targeted tools provide their own implementation of the required MoCs. Tools such
as [26] or [174] provide these implementations.

When the references are not sufficient, the execution control libraries and static
properties are used to complete the models.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 85

For the MoC Unaware tools, the SL not only give references to the required MoC,
but most importantly they include execution control behaviors to make executable
models with appropriate MoC semantics. The MoC-based control FSMs are placed on
the various components that make up the SL. In this case, as shown in Figure 4.12,
we provide the MoC implementation on an SL that targets a MoC Unaware tool. An
example of implementation is shown in Section 4.3.3.

The top-down aspect means that depending on the targeted tools, and starting from
an SL topology referencing the MoCs, we potentially can reach SL topology taking into
account MoC implementations in the form of FSMs.

Figure 4.12: Positioning Semantic Layers between Tools in a Design Flow

However, the feasibility of the model’s semantic adaptations between tools is strongly
dependent on the compliance of the expressed MoCs by models and tools. To reach
a good compromise for adaptation, it is necessary to define the basis for the study of
the compliance of MoCs. Such a basis must be defined in a way that can easily be
used for implementing adaptation properties. This is the goal of the next section. This
description will not only help ensure the consistency of the interconnection of tools;
but also identify compliant semantic properties for which adaptations are possible.

4.3.2.2 Rules to Identify MoC relations and Compliance

In this section, we propose techniques to characterize semantic interoperability using
the different approaches for MoC classification and also the approaches for semantic
domain definition. The semantic domain as defined by D. Harel et al. [72] is reused in
a formal context with the MoC theory.

We define a new term MoC-Based Semantic Domain as the MoC domain on which
the syntax of a given language has its execution formally defined. Consequently, the
models produced become executable and follow the execution rules induced by the
MoC. Before any further argumentation, we introduce some definitions.

Within a design flow, each interconnected tool uses a language LTool to describe
models. For a given language LTool, one defines semantic mappings M to well-defined
semantic domains. More particularly, mappings can be directed to so-called MoC-Based

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 86

semantic domains MBSDMoC to specify the models’ execution rules. The mapping
relation is denoted by M : LTool →MBSDMoC .

The relations between the MBSDMoC allows feasible model exchanges to be exhib-
ited that emphasize semantics and behavior preservation. These relations are provided
by the classification of MoC as defined in [176]. The classification is based on a de-
scription of the properties underlying each MoC and their degree of expressiveness.
According to A. Jantsch [87], the main axes to characterize MoC properties are time,
communication, behavior and data. Therefore, an MBSDMoC is defined by the tuple
〈DMoC , BMoC , CMoC , TMoC〉 where: DMoC characterizes the data types specific to the
MoC domain; BMoC represents the underlying behaviors induced by the MoC rules;
CMoC represents how the communication is expressed in the MoC; TMoC represents the
way in which the time is expressed.

When MBSDMoC are compliant, it is possible to define a transformation T on
the subset of compliant properties (tuples) to provide their translation. For instance,
a transformation can be T : DMoC1 → DMoC2. Based on this, we can study the
relationship between languages and the MBSDMoC . In Figure 4.13, we depict the four
main rules of relations.

Figure 4.13: Language and MoC-Based semantic domains

• In the first rule, the language’s syntaxes are mapped to the same semantic do-
main; e.g. L1 and L2 have their mapping to the same MBSDSR. Here, even
if the syntactic representations are different, there is a clear and common defini-
tion of the MoC domain elements where each syntactic element of L1 and L2 is
mapped. The explicit definition of semantic mappings according to the four axes
should allow the description of the relationship between the syntactic elements of
languages.

• In the second rule, languages are mapped to different MBSDMoC that are dis-
joint; e.g. L1 and L4 have their respective mapping to MBSDSR and MBSDCT ,
plus MBSDSR

⋂
MBSDCT = ∅. Consequently, the set of properties used to

characterizeMBSDSR andMBSDCT are disjoint (e.g. DSR
⋂
DCT = ∅). There-

fore, the exchanges of data between tools from these domains cannot be achieved
consistently because their underlying MoCs are not compliant.

• In the third rule, the languages are mapped to different semantic domains. How-
ever, the semantic domains are not completely disjoint (the semantic domains’
intersection is not empty); e.g. L1 and L3 have their respective mapping to

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 87

MBSDSR and MBSDHS . MBSDSR
⋂
MBSDHS 6= ∅, which means they have

a subset of common properties. Here, at least one of the intersections between
the tuples describing MBSDSR and MBSDHS is not empty. Hence, a subset of
properties exchangeable between these domains exists. As a result, a transforma-
tion T (e.g. T : CSR → CHS) can be defined for the tuples that have compliant
elements. However, having no control over the rest of the MoC properties for
each tool is error-prone. Consequently, it is still difficult to guarantee consistent
model interpretation towards different tools.

• In the fourth rule, the languages are mapped to different semantic domains and
the semantic domains are fully compliant (e.g. inclusion relation on the prop-
erty sets); In this case, the properties of a source MBSDMoC1 can all be trans-
formed to equivalent MBSDMoC2 properties on a target domain, while keeping
the fundamental rules of the source MoC domain. For instance, MBSDCT and
MBSDHS are fully compliant and the semantics expressed by CT [120] is ex-
pressible from HS semantics [121]. In this context, we can define a semantic
transformation on each of the tuples to complement or transform a CT model
into an HS model conforming to the constraints defined in CT.

There are several classification works studying the compliance between MoCs. The
Figure 3.10 of the section 3.4.3 is an example of classification. Our approach is part of
such a set-logic in which we look at the existing common borders between MoCs and
we provide more precise rules for measuring compliance with the four axes of concern.
This opens the study of relationship to all the MoCs. However, the results in Figure
3.10 are indicative of possible relationships in a bounded list of MoCs.

4.3.3 MoC Semantics Modeling with Cometa: Sender/Receiver with
CSP

The Sender/Receiver example shows the description of LT S i.e. the possible states
of the system and their relationships. In this model, we present an example of com-
municating processes. The MoC rules are tested on the mathematical model to prove
the validity of the implemented control mechanism. The modeled components must
synchronize to alternate between Send/Receive requests. This simple example must
implement an interaction semantics inspired by the CSP MoC presented earlier.

The operating rule of CSP requires the synchronization of the (read/write) requests
that must be alternated between each pair of interconnected components. We can
summarize the requirement as follows: Each write requestW is necessarily synchronized
to a read R request, and vice versa. Several execution scenarios are specified below and
tested on the mathematical model.

In Figure 4.14, we have two application blocks A (Sender), B (Receiver). The idea is
that these entities can run concurrently, but require acquittals to enable the processing
of the requests issued during their execution.

We also dispose of the semantic layer composed of 3 basic modules: Sender (BasiC-
Component), Receiver (BasiCComponent) and s2r (MoCConnector). The Sender and
Receiver modules are interconnected by the s2r connector that carries a CSP execu-
tion control FSM between the two components. The components have communication
ports that also carry additional control mechanisms complementary with those of the
connector s2r. All the elements of the semantic layer are contained in the container
named Top.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 88

Figure 4.14: Sender/ Receiver example

A,B ∈ {Block}
Sender,Receiver ∈ Bc
Sender.o ∈ Sender.MoCPort and , Sender.MoCPort ⊆MoCP

Receiver.i ∈ Receiver.MoCPort and , Receiver.MoCPort ⊆MoCP

s2r∈MoCCn

source(s2r) = Sender.o ; target(s2r) = Receiver.i ; bhv(s2r) = fsms2r

If we consider the transitional system LT S associated with our example, 〈ST , I,RT ,L, Et〉

ST = {
Top.Sender.o.Idle, Top.Sender.o.AckState,
Top.S2R.Idle, Top.S2R.WR, Top.S2R.WL, Top.S2R.AckW,
Top.Receiver.i.Idle, Top.Receiver.i.AckState
}

I = {Top.Sender.o.Idle, Top.S2R.Idle, Top.Receiver.i.Idle}

RT = {
(Top.Sender.o.Idle, Top.Sender.o.AckState,SendEvent)
(Top.Sender.o.AckState, Top.Sender.o.Idle,Ack)
(Top.S2R.Idle, Top.S2R.WL,WriteEvt)
(Top.S2R.Idle, Top.S2R.WR,ReadEvt)
(Top.S2R.WL, Top.S2R.AckW,ReadEvt)
(Top.S2R.WR, Top.S2R.AckW,WriteEvt)
(Top.S2R.AckW, Top.S2R.Idle, -)
(Top.Receiver.i.Idle, Top.Receiver.i.AckState,ReceiveEvent)
(Top.Receiver.i.AckState, Top.Receiver.i.Idle,ValuedAck)
}

L = {
Ack, ValuedAck∈MoCEvent
SendEvent,ReceiveEvent∈MoCInterface
WriteEvt,ReadEvt∈MoCEvent
}

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 89

4.3.3.1 Mathematical validation

The following scenarios are used to test the functioning of the execution control mech-
anisms. The CSP execution control mechanism associated to MoCConnector is as
follows: for each supported request, the Idle state of the connector is left as an Read /
Write is issued by one of the application blocks A/ B. The synchronization between the
two components will be reached when the Idle state is regained. From the perspective
of the implemented mechanism, this means that, at some point in the exchange, a read
request and writing were alternated.

The following scenarios highlight the major requests possibilities. We consider the
following scenarios:

• (1) φA(W)∧φA(W) · · · ∧φA(W)∧φA(W): The block A runs several times, while
there are no requests from the block B.

• (2) φB(R) ∧ φB(R) · · · ∧ φB(R) ∧ φB(R): Conversely, block B runs several times
without requests on the part of the block A. In our demonstration, we will only
choose one of the two scenarios, because the result in terms of synchronization is
substantially the same for both.

• (3) φB(R) ∧ φA(W): There are alternations of a read and a write requests.

• (4) φA(W)∧φB(R): There are alternations of a write and a read request requests.
We will only test case 3 because the results are similar.

• (5) φB(R) ∧ φB(R) · · · ∧ φB(R) ∧ φA(W): Multiple read requests are followed by
a write request.

• (6) φA(W) ∧ φA(W) · · · ∧ φA(W) ∧ φB(R): Multiple write requests are followed
by a read request. There too, only the 5 cases will be tested.

Before testing the examples, there are some important questions to answer. For sce-
narios 1, 2, 5, 6 one can ask the question about how successive queries of the same
type are managed. Although our focus is on the respect of the request alterna-
tion property, we can consider two scenarios for managing successive queries of the
same type. In the first scenario, after the first query causing a change of State (e.g.
Top.S2R.Idle → Top.S2R.WR/Top.S2R.WL), the next similar requests are subse-
quently stored in a queue. Once a query of a different kind is processed, there is
acquittal of the synchronization and a return of the synchronization FSM to the initial
state (Top.S2R.Idle). In this case, a request stored in the queue is processed for a new
synchronization (according to a mechanism of FIFO / LIFO).

In the second less likely scenario, the successive requests are not stored for processing
later. If we consider that a request has caused a change of State (e.g.
Top.S2R.Idle → Top.S2R.WR/Top.S2R.WL), a new reception of the same kind of
request will be lost as far as it cannot trigger any transition in the FSM. For the Sender/
Receiver example, we have 3 FSMs (fsmSender; fsms2r, fsmReceiver).

The Figure 4.15 below shows the sequence of transition rules that are used to
validate each of the scenarios. This pattern starts from the requests issued by different
application blocks at 0©, and then, on the basis of the existing properties of the LT S
model, the defined transition rules are followed until reaching the desired CSP property
(or not). After running the rules, each scenario is concluded giving the current states
of the control machines, whether synchronization has taken place or not.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 90

Figure 4.15: The different steps for scenario demonstration

The FSMs are all initially at their initial state. Now, for Scenario 1, the operational
semantics produces the following results: The A block produces several successive write
requests, then:

Scenario 1 Proof

0© φA(W) = SendEvent, SendEvent ∈εEvent

4©
γ(SendEvent) = t : (Top.Sender.o.Idle, Top.Sender.o.AckState, SendEvent)

nextfsmSender
(Top.Sender.o.Idle, SendEvent) = Top.Sender.o.AckState

3© returns the generated event from Top.Sender.o.AckState

φA(W) = SendEvent , θTop.Sender.o.AckState(Top.Sender.o.AckState, SendEvent) = WriteEvt

θTop.Sender.o.AckState(SendEvent) = WriteEvt

4©
γ(WriteEvt) = t : (Top.S2R.Idle, Top.S2R.WL,WriteEvt)

nextfsmS2R
(Top.S2R.Idle,WriteEvt) = Top.S2R.WL

3©
φA(W) = SendEvent , ... , θTop.S2R.WL(Top.S2R.WL,WriteEvt) = ∅

θTop.S2R.WL(WriteEvt) = ∅

0© We introduce a new φA(W) request φA(W) ∧ φA(W)︸ ︷︷ ︸
4©
γ(SendEvent) = ∅ i.e. @tsuchthat(Top.Sender.o.AckState, x∈S,WriteEvt).

nextfsmSender
(Top.Sender.o.AckState, SendEvent) = ∅

Generalizing the requests,
φA0

(W) ∧ ... ∧ φAn (W)︸ ︷︷ ︸ .

.

.
The states remain the same, consequently:

nextfsmSender
(Top.Sender.o.AckState, SendEvent) = ∅

7©
(t1(Top.Sender.o.Idle) = Top.Sender.o.AckState, θTop.Sender.o.AckState(SendEvent) = WriteEvt)(

t2

(
t1(Top.Sender.o.Idle) = Top.Sender.o.AckState, θTop.Sender.o.AckState(SendEvent

)
=

. . .

. . .
(t2(Top.S2R.Idle) = Top.S2R.WL, θTop.S2R.WL(WriteEvt) = ∅)

Top.S2R.WL, θTop.S2R.WL(WriteEvt) = ∅)
)

As a conclusion, there is no synchronization and the current states are:
Top.Sender.o.AckState

Top.Receiver.i.Idle

Top.S2R.WL

The control FSM will be blocked on the WL state. The scenario combining suc-
cessive write requests (2) will have a similar result with a lock on the WR state of the
fsmS2R.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 91

Scenario 3 presents alternate requests where we seek the result of φB(R) ∧ φA(W).

Scenario 3 Proof

0© φB(R) = ReceiveEvent, ReceiveEvent ∈εEvent

4©
γ(ReceiveEvent) = t : (Top.Receiver.i.Idle, Top.Receiver.i.AckState, ReceiveEvent)

nextfsmReceiver
(Top.Reveicer.i.Idle, SendEvent) = Top.Receiver.i.AckState

3© returns the generated event from Top.Receiver.i.AckState

φB(R) = ReceiveEvent , θTop.Receiver.i.AckState(Top.Receiver.i.AckState,ReceiveEvent) = ReadEvt

θTop.Receiver.i.AckState(ReceiveEvent) = ReadEvt

4©
γ(ReadEvt) = t : (Top.S2R.Idle, Top.S2R.WR,ReadEvt)

nextfsmS2R
(Top.S2R.Idle,ReadEvt) = Top.S2R.WR

3©
φB(R) = ReceiveEvent , ... , θTop.S2R.WR(Top.S2R.WR,ReadEvt) = ∅

θTop.S2R.WR(ReadEvt) = ∅

0© We introduce a new φA(W) request φB(R) ∧ φA(W)︸ ︷︷ ︸
φA(W) = SendEvent, SendEvent ∈εEvent

4©
γ(SendEvent) = t : (Top.Sender.o.Idle, Top.Sender.o.AckState, SendEvent)

nextfsmSender
(Top.Sender.o.Idle, SendEvent) = Top.Sender.o.AckState

3©
φA(W) = SendEvent , θTop.Sender.o.AckState(Top.Sender.o.AckState, SendEvent) = WriteEvt

θTop.Sender.o.AckState(SendEvent) = WriteEvt

4©
γ(WriteEvt) = t : (Top.S2R.WR, Top.S2R.AckW,WriteEvt)

nextfsmS2R
(Top.S2R.WR,WriteEvt) = Top.S2R.AckW

3©
φB(R) = ReceiveEvent , φA(W) = SendEvent , ... , θTop.S2R.AckW (Top.S2R.AckW,−) = {Ack,ValuedAck}

θTop.S2R.AckW (−) = {Ack,ValuedAck}

4©
γ(Ack) = t : (Top.Sender.o.AckState, Top.Sender.o.Idle, Ack)

nextfsmSender
(Top.Sender.o.AckState,Ack) = Top.Sender.o.Idle

γ(ValuedAck) = t : (Top.Receiver.i.AckState, Top.Receiver.i.Idle, V aluedAck)

nextfsmReceiver
(Top.Receiver.i.AckState,ValuedAck) = Top.Receiver.i.Idle

3©
φB(R) = ReceiveEvent , φA(W) = SendEvent , ... , θTop.Receiver.i.Idle(Top.Receiver.i.Idle, V aluedAck) = ∅

θTop.Receiver.i.Idle(V aluedAck) = ∅

φB(R) = ReceiveEvent , φA(W) = SendEvent , ... , θTop.Sender.o.Idle(Top.Sender.o.Idle, Ack) = ∅
θTop.Sender.o.Idle(Ack) = ∅

For the fsmS2R,

4©
γ(-) = t : (Top.S2R.AckW, Top.S2R.Idle,−)

nextfsmS2R
(Top.S2R.AckW,−) = Top.S2R.Idle

3©
φB(R) = ReceiveEvent , φA(W) = SendEvent , ... , θTop.S2R.Idle(Top.S2R.Idle,−) = ∅

θTop.S2R.Idle(−) = ∅

7© The rule is not defined here due to its size. However it can be similarly defined as in the previous demonstration of
scenario 1. Here, our main focus is the final current states that demonstrate the synchronization rule we proposed for CSP
in the beginning:

Top.S2R.Idle

Top.Sender.o.Idle

Top.Receiver.i.Idle

Scenario 4 can be shown in a similar manner to Scenario 3. For Scenario 5, 6, one
can imagine that the succession of requests of the same type will lead to both cases

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 92

below.

Scenario 5 Proof

φA0
∧ ... ∧ φAn ⇒

Top.Sender.o.AckState

Top.Receiver.i.Idle

Top.S2R.WL

φB0
∧ ... ∧ φBn ⇒

Top.Receiver.i.AckState

Top.Sender.o.Idle

Top.S2R.WR

In the first case, if we add a φB0
= SendEvent (φA0

∧ ... ∧ φAn ∧ φB0︸ ︷︷ ︸), the coupling of the last two requests ends up as

in the scenario 3. Consequently:

φA0
∧ ... ∧ φAn ∧ φB0︸ ︷︷ ︸⇒

Top.Sender.o.Idle

Top.Receiver.i.Idle

Top.S2R.Idle

Similar results are obtained for φB0
∧ ... ∧ φBn ∧ φA0︸ ︷︷ ︸ QED

In the latter case, since the connector’s FSM has returned to the Idle State, then
we can choose the next synchronization to put in place in the queue of requests (φAn−1

or φBn−1).

4.3.3.2 By Simulation

The Sender/Receiver model has been reproduced in the Rhapsody Modeling and Sim-
ulation environment.

Rhapsody [85] is a proprietary tool that provides a system development environment
(mostly embedded systems) based on the use of UML language and profiles. Rhapsody
incorporates several activities of SW development cycle (requirements specification,
high-level system specification, code generation, simulation and testing, etc.). Regard-
ing the specification of systems, the tool integrates UML component models to specify
communicating concurrent entities. In such models, the components are interconnected
via ports and connectors. These elements are classes that may have a behavior (UML
Statechart) and attributes (UML Attributes). Besides, the communication is provided
by event (signal) exchanges e.g. callEvent, receptionEvent.

The simulation of the Rhapsody engine can interpret models of interconnected
components using the FSMs and relying on the DE execution semantics. Thus, the
exchanges between the system components are considered as sequences of event re-
quests temporarily stored in storage elements (queue, FIFO, LIFO, etc). The system
model defines execution end conditions (e.g. stop Event, variable defining the number
of allowed executions, etc). While the execution stop condition is not reached, the
scheduling behavior constantly observes the storage elements to process events to the
target components, and updates the static values which may affect the execution stop
condition.

For the example, the structural aspect of the semantic layer is shown in Figure
4.16. In this figure, the colored boxes describe two BasicComponent (Sender, Re-
ceiver) to which MoCPort (itsO:o = Sender.o, itsI:i = Receiver.i) are associated; and
functional application blocks (itsA:A, itsB:B) are allocated. The upper hierarchical
view of the model shows the MoCConnector placed between these two components

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 93

(i.e. itsS2R:S2R = Top.s2r). The semantic layer itself is made up of Sender, Receiver,
(itsO:o = Sender.o, itsI:i = Receiver.i) and (itsS2R:S2R = Top.s2r) that control the
execution of (itsA:A, itsB:B).

Figure 4.16: Sender/Receiver model in Rhapsody

Figure 4.17 shows the control FSMs that are placed on Sender.o, Receiver.i, and
the FSM of Top.s2r. These FSMs constrain the execution of the (itsA:A, itsB:B)
modules to obtain the presented execution traces after simulation. The blocks (itsA:A,
itsB:B) being concurrent, itsB:B sends a receive request which is intercepted by the
Receiver.i port of the semantic layer . At this level the SL starts the control mechanism.
Receiver.i sends the event ReadEvt to other components of the SL i.e. Top.s2r. Top.s2r
remains in a blocking state (Top.s2r.WR) until it receives a write event (WriteEvt).
The event arrives as in the other side, the sending request from itsA:A is transformed
into a WriteEvt by the Sender.o port. Finally, Top.s2r unblocks all the components
by sending Ack, since the handshake has been completed. The Ack releases (itsA:A,
itsB:B) to produce new requests.

The simulation traces obtained reflect the same results as those obtained with the
formal models in Scenarios 1 and 3.

4.3.4 Time Description: Time-Based Control

Time models allow the control of exchanges between the parts of semantic layers in the
sense that, linking these elements with explicit clocks provides control over execution
with respect to the rates of clocks. The evolution of time with clocks is driven by the
definition of time bases and constraints expressed between the clocks.
We will see these concepts in more detail later in this chapter. A Cometa model of
time Tmod is described by the 6-tuple 〈TStr, ClkType, ClkCstr, ClkInst, ClkRel, TBase〉

• TStr represents all the time structures that can be described using the TimeStruc-
ture concept which is abstracted in Cometa for time base description.

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 94

Figure 4.17: Sender/Receiver Simulation Traces

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 95

• ClkType represents all the types of clocks that can be set from the concept Clock-
Type in Cometa. The clock types characterize clocks with their specific properties.
This concept is inspired form the MARTE model of time.

• ClkCstr represents the set of constraints that can be described between clocks.
Constraints are relationships such as interdependence (precedence, coincidence,
etc). The Cometa concept for the description of the constraints is ClockCon-
straint.

• ClkInst represents the set of clock instances participating in the control of the
execution for a given model. In Cometa, the concept for such specification is
ClockInstance.

• ClkRel represents the set of relations that it is possible to describe between the
types of clocks.

• TBase represents all the time bases that are defined in the time structures. These
time bases allow the characterization of the types of clock by specifying the kinds
of instants that compose a ClockType. In Cometa, the abstraction of the Time-
Base concept allows the representation of time bases.

In the sequel to our specification, we clarify the meaning of the concepts that are used
for the description of time models. As shown in Figure 4.18, these different concepts
are needed for the description of clocks and their relationship.

Figure 4.18: Excerpt of the Time concern in Cometa DSML

4.3.4.1 Cometa TimeModel

A TimeModel (4.21) allows the capture of different entities participating into the de-
scription of the time as well as the relationships that bind these entities. The concept
is used to describe the structures of time (TimeStructure), clocks (Clock), several types
of relations that could bind the clocks (ClockRelation) and finally constraints that exist
between pairs of clocks. The formalization for a TimeModel is provided below:

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 96

∀ tm ∈ Tmod then

tm ::= {TimeStructure}; {ClockInstance}; {ClockType};
{ClockConstraints}; {ClockRelation}
{TimeStructure} ⊆ TStr
{ClockInstance} ⊆ ClkInst
{ClockType} ⊆ ClkType
{ClockConstraints} ⊆ ClkCstr
{ClockRelation} ⊆ ClkRel

(4.21)

4.3.4.2 Cometa TimeStructure

A TimeStructure (4.22) is a concept enabling the description of several time bases
TimeBase. In our approach, the structures of time serve more to organize the time
bases into libraries.

∀ ts ∈ TStr then

{
ts ::= {TimeBase}
{TimeBase} ⊆ TBase

(4.22)

4.3.4.3 Cometa TimeBase

Each TimeBase (4.23) defines an ordered set of instants in which clocks take a de-
scription of their evolution. From the time bases, each clock has information about
numbers of instants of its cycle; the ordering of the instants; the current instant in
the sequence of instants, as well as the type of the time base. This latter concept is
important because it allows the type of evolution of the clocks (discrete, continuous)
to be specified. The following formalization highlights this aspect.

∀ tb ∈ TBase then

tb ::= {Instant}; currentInstant; kind
currentInstant : TBase → tb.{Instant},
kind : tb.{Instant} → {discrete, continuous}

(4.23)

4.3.4.4 Cometa Instant

The Instant concept (4.24) represents a time evolution step. It allows the capture of
the specific instants that serve as abstract time measurement units. In the Cometa
approach, each Instant has a unit < unit > which allows the fineness of the captured
instant to be specified. The unit types are expressed either as Integers (N) or Reals
(R). The description of Instant is formalized in the following manner:

∀ ti ∈ ClkInst then

ti is defined by the following functions:

index : ClkInst → {N|R},
value : ClkInst → {String}

(4.24)

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 97

4.3.4.5 Cometa ClockType

A ClockType (4.25) allows the definition of a type of clock linked to a time base. A
ClockType can be associated with several time bases already defined from TimeStruc-
ture. The association of a clock to a ClockType allows the specification of the rates
of clock events used in the semantic layers. The following formalization describes the
ClockType:

∀ ck ∈ ClkType then
{
ck ::= {TimeBase} (4.25)

4.3.4.6 Cometa ClockConstraint

A ClockConstraint (4.26) allows the constraints linking two defined clocks to be mod-
eled. Constraints use the relationships (ClockRelation) for coupling the instants of
the time bases related to the clocks in a coherent manner. The formalization of the
ClockConstraint is as follows:

∀ cc ∈ ClkCstr then

cc ::= {ClockType}; rl : ClockRelation; rc : ClockType

rl : ClkCstr → {ClockRelation}
rc : ClkCstr → {ClockType}
express : ClkCstr → {String}

(4.26)

The < express > function (< expression > attribute of ClockConstraint in Figure
4.18) provides a field to more finely describe the relationship between ClockType e.g.
in the form of CCSL constraints. The < rl > function (< relationType > in Figure
4.18) define the type of the constraints in regard to the existing ClockRelation (e.g.
precedence, simultaneity). Finally, the < rc > function (< entryClock > in Figure
4.18) gives the entry ClockType for which relations are defined with other existing
ClockType.

4.3.4.7 Cometa ClockRelation

The ClockRelation (4.27) are used to describe relationships between the types of clocks
(ClockType). In Cometa, elements of type ClockRelation are described in the form of
strings thus, leaving flexibility to the definition of new rules. However, as previously
addressed, relations are of types: e.g. coincidence, precedence, synchronization. The
ClockRelation, once defined, are used for the description of constraints between pairs
of clocks. The formalization is described as follows:

∀ cr ∈ ClkRel then ∃fname such that fname : ClkRel → {String} (4.27)

In the Cometa approach, Clock represents an abstract concept to capture time evo-
lution. Such time evolution is measured thanks to the time bases and events generated
by clocks. Fine descriptions of the relationship between the instants of the supplied
time bases provide the event occurrence rate. The events are injected into the semantic

CHAPTER 4. THE COMETA CONCEPTS, MODELS AND VALIDATION 98

layer’s control FSMs. The Figure 4.19 shows an abstract vision of the impact of a
time base on the communication between control FSMs. The time base is composed of
several instants (i0, i1...in). At the instant i1, there is an occurrence of the clock event
Clk Evt which causes a change of state between SA and SB. The occurrence frequency
of the instants can be based on reals (continuous), or on integer values (discrete).

Figure 4.19: Representation of Time model Usage in Semantic Layers

Only basic experimentations have been made around the modeling and specifica-
tion of a time model in this thesis. We mainly worked on the definition and use of
the mechanisms of execution control using FSMs. Consequently, our focus is on the
description of the contribution around the semantic layers and the control FSMs.

4.4 Conclusion

In this chapter, the focus was on the description of the DSML Cometa, its formalization
and the presentation of simple validation samples of the operational semantics. The
first part of the chapter offers a practical separation of concerns that are represented in
the DSML to meet the need of representing semantic layers. Separating the concerns
adheres to the overall scheme of system representation which nowadays promotes the
separation of concerns as a major principle for complexity reduction.

The Cometa DSML abstract several concepts for the description of the layers. The
resulting metamodel allows the representation of topological and semantic layers for
the execution control of requests from concurrent application blocks. The DSML is
formalized in order to facilitate its use for analysis and validation. Indeed, it offers a
formal and easy description of concepts as well as links between concepts.

With the phases of formal specification of the operational semantics, we can see
the relevance of models that are produced for the execution control on some simple
examples. A transition system model is then associated with each FSM. The FSMs
implement the MoC control rules. These simple examples are representative of the
types of exchanges between components and the modus operandi of the layers. Our
goal in the next chapter is to use semantic layers in design chains to adapt and enrich
the application models for the specification and analysis between different tools.

5
Tool Semantic Interoperability using Cometa and

Experimentation

Contents

5.1 Introduction . 100

5.2 Integrating Semantic Layers into Design Flows 100

5.2.1 Overview of the Approach . 100

5.2.2 Defining a Tool Chain for a Radar Streaming Application . . 101

5.3 A Novel Design Flow connecting: Rhapsody, Spear and
ForSyDe . 115

5.3.1 Capturing Semantic Layers for the Design Flow 116

5.3.2 Weaving Cometa Models with IBM Rhapsody 118

5.3.3 Connecting the Tools within the Tool Chain 119

5.3.4 Metrics . 126

5.3.5 Burst Processing System Design and Analysis 128

5.4 Conclusion . 139

99

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION100

5.1 Introduction

During the System Level Modeling (SLM) steps, reusing models between tools is diffi-
cult despite the important contributions of the MDE (e.g. metamodeling, model trans-
formation). Indeed, it becomes difficult to ensure that a system model will preserve its
consistency after having been manipulated by various tools. This shortcoming is due
to the fact that the design tools often rely on semantics and syntaxes from different for-
malisms and environments. While the syntax aspect is quite well addressed in research,
semantics continues to be the bane of tool-providers and designers. Consequently, the
preservation of semantics and the accuracy of the models is a real challenge for system
designers.

In this chapter, we demonstrate the use of Cometa to ensure the preservation of the
semantics of models during the exchange phases between tools dedicated to SLM and
formal design.

This experiment is done through the description of a methodological approach to
designing a system including several new phases (comparison of semantics, inclusion
of semantic layers, etc.) necessary to avoid inconsistent semantic issues. Through
the Radar application use case, we present the different design steps starting from
the identification of activities, the choice of tools (depending on design activities), to
implementing an executable solution for various SLM and formal design environments
used for the synthesis of a final implementation.

This example also illustrates the positioning of Cometa in the activities of the
design process to reduce the risk of semantic misinterpretations; thus demonstrating its
potential. Finally, we present a novel automated design flow connecting the following
SLM and formal design tools: Modeler IBM Rhapsody, the ForSyDe tool and the
SpearDE environment.

5.2 Integrating Semantic Layers into Design Flows

The enrichment of the models produced by different tools is based on weaving and
allocation mechanisms of: application models with the MoC based semantic layers.

A Semantic Layer, similar to the source application model, is built with Cometa in
order to describe the combination of execution control behaviors. The SLs allow the
missing semantic properties (static and operational semantics) to be placed. Static and
operational semantic properties are captured in the form of reusable libraries.

5.2.1 Overview of the Approach

As shown in Figure 5.1, one can define several models of semantic properties in the
repository (e.g. SDF, KPN, CSP). From the libraries, the designer uses the captured
models to produce a model combining the source application model and a model of
semantic layer called Allocated Semantic Model (ASM).

The ASM now gathers the source model properties and includes new properties
mandatory for their correct interpretation in the source and target environment. The
application blocks allocation / encapsulation are done using BasicComponents.

We provide more details on the mechanisms of allocation/ encapsulation in Section
5.3.2 related to the weaving of application models and semantic layers.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION101

Figure 5.1: Guidelines for MoC model integration with Application Models

As previously stated, the descriptions of semantics can start with static proper-
ties then, if necessary, end with an operational specification of the execution control
mechanism based on the MoCs.

In order to apply the approach in a concrete case, in the next section we propose
to describe the experimentation made with industrial partners in the context of the
iFEST project.

5.2.2 Defining a Tool Chain for a Radar Streaming Application

Our approach focuses on the design activities such as specification, analysis and code
generation. In this use case, we look at the description of the BurstProcessing module
of a Radar system; and we look at the semantic properties related to such a type of
system.

The choice of the Radar application is motivated by the fact that the system contains
several sub modules that are heterogeneous in terms of performed computations and
interaction mechanisms between modules. Moreover, we have a system description
which has required the expertise of several engineers. As a result, this is a major
change compared to the simple examples previously used for experimental purposes.

Accordingly, on the one hand, the size of the system and its complexity requires
a high-level design approach (based on system engineering) that will be successively
refined up to the final design of the system. On the other hand, the semantics imple-
mented i.e. CSP, KPN and especially the Array-OL semantics are interesting in terms
of formal specification and execution properties (e.g. synchronous communication, use
of multidimensional data, tasks and data parallelism, and execution semantics based on
the scheduling of dependency graphs with production and consumption rates specifying
the size and the nature of the exchanged data).

The various semantics and methodological constraints cited above imply the use
of several design tools in an operational design flow. The models produced in this
design flow must preserve their semantics towards the different tools. The tool chain
used for the Radar system will be presented in Section 5.3. The use of Cometa in
this tool chain is legitimate because it allows the expression of the missing semantic
models between inter-tool and intra-tool model exploitation. Different semantics will
be formally described in the following sections. In the remainder of this section, we
will describe the components of the Radar model.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION102

5.2.2.1 Description of the Radar Streaming Application

A Radar system has one or more antennas capable of emitting signals in the environ-
ment (see Figure 5.2).

Figure 5.2: Radar Detection System: Target Detection

Radar signals are oriented in preferential detection directions with a minimization
of the impact of parasite data such as: noise (involuntary), jamming (voluntary).

The objective of the system is to be able to detect objects (e.g. aircraft, obstacles,
etc.) in a given detection area. The important information is related to their distance,
their speed, their direction. Thus, signals are sent in all directions. At each send
sequence, an angular area is scanned. Signals to send are grouped in a Dwell. A Dwell
consists of a set of signals to send into the environment according to fixed angular
parameters. Signals are called Burst.The concept of Burst is described in the following
paragraphs. The specific settings of each Dwell determine the type of detection that the
user wants to perform; and according to the type of mission the Dwell settings help to
have accurate results. Several observation modes are defined for the Radar application:

• Search Mode: which consists in sending dwells to achieve a repeated and exhaus-
tive scanning of areas one after the other. For this type of exploration, the dwell
is composed of 3 bursts.

• The Active Tracking Mode: consisting of the tracking and the update of informa-
tion related to previously sent signals. For this type of exploration the dwell is
composed of single bursts that have variable duration (e.g. 1 single Burst with
a send duration fixed between 10 and 20 ms).

A Burst is a signal sent into the environment by an antenna. It produces an echo
after a certain time depending on the intersection with a target obstacle. The Burst
consists of a fixed set of periodic pulses. The specificities of the Burst are described as:
a waveform describing the carrier frequency of a pulse, or the number of times that a
pulse is sent. The echoed burst after a target is met has a signature that relates the
echo to its bound Burst. The nature of the echo allows the distance (the delay of the
echoed pulse), direction, speed (the phase variation of the echoes from pulse to pulse)
of an object or an obstacle to be determined.

The Pulse is characterized by information including: the distance covered d, the
horizontal sending angle of the pulse i.e. azimuth, or the elevation angle of the pulse.
d is also known as range and is given either in the form of a dmax representing the
maximum distance reached by the signal, or it represents the distance covered by the
signal before reaching the target. This value is calculated on the basis of the speed of
light and the time taken to receive the echoedBurst.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION103

The main Radar model consists of 5 modules as shown in Figure 5.3. These modules
are:

Figure 5.3: Modules of the Radar Detection System

• DwellsManagement : The DwellsManagement has responsibility for selecting the
types of Dwell to send to antennas and their instant of sends, depending on the
type of observation that the user wants to perform and on the Dwell’s priority.
The candidate Dwells for sending are stored in a FIFO waiting to be sent by the
antennas.

• AntennaControl : The AntennaControl module includes all of the features for
sending the Burst of a Dwell into the environment, and then retrieving the echoes
generated by these Bursts to transmit them to the BurstProcessing for their pro-
cessing. At this stage, the information that the Radar wants to retrieve depends
on the direction and angle of sending of the Bursts, and the time that has elapsed
before receipt of the echoes corresponding to the different Bursts.

• BurstProcessing : The BurstProcessing module has several features aimed at pro-
cessing the echoes received by the AntennaControl for each Burst. The pro-
cessings allow information related to the presence of targets, their distance, their
speed and direction to be retrieved. The processings allow among other things the
removal of noise in echoed signals in order to render only significant information.
The processed data are multidimensional arrays and contain several parameters
to be taken into account. For each echo, BurstProcessing produces Hits 1 for the
Extraction sub-module.

• Extraction: The Extraction module waits to receive all Hits of a particular Dwell
(i.e. all of the hits generated for all Bursts of a Dwell). Afterwards, it consolidates
the results received by producing lists of Plots 2 with targets. The Plot lists are
transmitted to the Tracking module.

• Tracking : The Tracking module, based on the information that it receives from
Extraction, allows the determination of whether a target is present at a given
environment location and thus identifies it. The parameters that it extracts from
the received data enable the Tracking module to display the position of a target;
as well as to define updates as long as the target is present in the observation area.
To be able to update the position of the targets, tracks are produced allowing

1The hit number stands e.g. for a search radar with a rotating antenna for the number of the received
echo pulses of a single target per antenna turn. source: http://www.radartutorial.eu/01.basics/

2Plot: Detected target echoes against a background noise

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION104

the generation of new specific signals in the environment to follow the target. A
track contains the position and the velocity of a target vector.

We complete the system with a loop back to the DwellsManagement for a new
selection of signals to send depending on the missions and to perform tracking. The
two activities can be done in parallel.

The objective of this experiment is to focus on a subset of the Radar (the BurstPro-
cessing) system and make it executable modeling within and towards different tools.

5.2.2.2 Focus on The Radar Burst Processing Application

For the implementation of the system, each of the modules that we have presented
is refined into several hierarchical sub modules which add complexity to the system
specification. We propose to focus on the computations of BurstProcessing. The choice
of this module is motivated by the fact that it is based on a rich semantic specification
manipulating multidimensional data and parallel task execution mechanisms.

The sub-system below (see Figure 5.4) shows a specific focus on exchanges between
the AntennaControl and the refined BurstProcessing modules.

Figure 5.4: Presentation of the BurstProcessing module

Both modules are refined as hierarchical modules presented in the following para-
graphs:

AntennaControl is a hierarchical module that contains a signal transmitter Trans-
mitter sub-module, and a signal receiver sub-module Receiver.

• Transmitter is connected to the mechanical antenna for signal sending, it allows
Bursts contained in a Dwell in the environment to be sent. The Transmitter
converts the signal (into analog) with a D/A converter before it is sent into the
environment. Each burst has a signature; the signature allows the recognition
of the signal reflected by a target (echo) to the Receiver module. The reflected
signal can also be called echoedBurst. The echoedBurst are the echoes of pulses
contained in the Burst.

• The Receiver is the module responsible for retrieving and transforming (A/D) the
echoed signals before they are transmitted to the BurstProcessing. The received
signals are converted into digital signals by an A/D converter. The resulting
signal is transmitted to the BurstProcessing that applies several processings and

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION105

filterings on the signal sequences to reduce the noise introduced by the environ-
ment in the reflected signal.

In order to calculate the distance to the target, we will need to build a matrix that
stores the signature of a burst, its date of sending, as well as its return date. This
captured information (power, range gate, gate speed, etc) are in the form of multi-
dimensional arrays operated by the BurstProcessing module. For example, the input
data in the detection mode represent a cube of 64 antennas, N pulses and M range
gates (e.g. a 64 x 19 x 2000 data cube to the third mode having 19 pulses per burst
repeating every 0.2ms).

The BurstProcessing module is a signal processing module consisting of five sub
modules as shown in Figure 5.4: CalibrationCorrection, BeamForming, PulseCompres-
sion, DopplerFiltering and CFAR Processing modules.

• The Calibration module takes as input the echoedBurst signals and evaluates their
calibration based on a given calibration table.

• The BeamForming module calculates the filtering coefficients (weights) based
on the input data, i.e. the radar bursts and the calibrated echoedBurst signals
provided by CalibrationCorrection.

• PulseCompression: this phase consists in improving the signal-to-noise ratio and
the interference (time domain convolution). This behavior is implemented in the
classic mode by a point 32 direct FFT on the range gate axis, followed by the
multiplication of the Fourier domain and inverse FFT.

• The Radial velocity (range-speed) of a target is calculated thanks to Doppler-
Filtering. The pulses returned from a reflected signal are processed to calculate
the landslide frequency between the transmitted signal and what is received. To
perform this calculation, an FFT is made on the pulse axis.

• With the CFAR Processing module, the detection step uses the constant false-
alarm rate CFAR to compare a radar signal response to its nearby signal responses
to determine if a target is present and uses the consolidation of targets to eliminate
multiple targets when it is in reality only a single target report.

We will see the functioning implications of these different modules in Section 5.2.2.4
describing the semantic constraints. In what follows, we adopt the SLM design method-
ology and focus on design activities; selection and description of tools for this use case.

5.2.2.3 Tool Selection for the Design Flow

Like most complex system development processes, HW and SW codesign development
integrates several steps such as specification, analysis, refinement and partitioning to
achieve the final implementation of the system. The different activities occur depending
on the direction of the design flow i.e. bottom-up or top-down. For the experimentation
a top-down approach is implemented.

5.2.2.3.a Design Process Activities

As shown in Figure 5.5, a top-down design approach promotes several specification steps
(SLM). The specification stages integrate activities for requirements engineering, struc-
tural modeling, behavioral modeling and refinement of high-level specification models.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION106

The ideal situation in this design schema emphasizes the ability to analyze and validate
the models before refinement, thus finding design flaws that can involve changes in the
models.

Figure 5.5: Positioning Cometa Models within a Design Process with heterogeneous
semantics

Analysis activities include several variations depending on the level of abstraction
and the type of analysis to perform. For instance, analysis can relate to model-checking
based on mathematical foundations for verification of static and dynamic properties.
Analysis also refers to the simulation based on the study of the execution traces induced
by behaviors. Finally, the analyses also include Design Space Exploration activities.
Successive refinements and verification steps lead to a final implementation of the sys-
tem by synthesis (code generation).

The different activities are carried out by different tools. Each of these tools po-
tentially uses a specific formalism to express the models, to offer different services, and
more significantly, to implement different semantics identified by different colors on the
Figure.

In these design flows, we define a reusable semantic specification to adapt models
between the tools. At each connection point between tools, semantic layer models
providing the adaptation are produced, combined with the application model, and then
operated by transformation rules to produce output models containing the required
semantic properties.

For the system of the use case, we primarily focus on the specification and analysis
by simulation and Design Space Exploration. The synthesis part will be managed by
dedicated tools. The exercise is to select effective tools to carry out these activities in
a “user friendly” environment while maintaining a good quality of the system models
i.e. preserving the semantics of the models.

There are a large number of development environments dedicated to the design of

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION107

embedded systems. Some of these environments have been presented in Section 2.3.1.3
and are “user friendly”.

For the above activities, tools such as IBM Rhapsody, Papyrus, TopCased, RSA that
are model-based design environments allow the study of requirements, specification and
simulation of models.

In our experiments we use Rhapsody for specification and analysis as it provides
easy and executable model specification facilities. The specified and analyzed models
from Rhapsody are correlated with dedicated HW/SW codesign environments which
are ForSyDe and Spear. The advantage of ForSyDe is that it allows the description
of heterogeneous, formal and analyzable models (described in SystemC). Finally, the
tool SpearDE from Thales is for simulation, Design Space Exploration and synthesis of
code analysis.

5.2.2.3.b Tool Description

Rhapsody [85] is a tool that provides an environment for system development (mostly
embedded systems) based on the use of the UML formalism and its different profiles for
embedded system development. Rhapsody incorporates several activities of a design
process such as: requirement specification, specification and system level modeling
(SLM), code generation, simulation, etc). For specification, the tool integrates UML
component diagrams to specify connected concurrent entities.

In the models, the components can be directly connected by links (Link), or connect
through ports and connectors (see the conceptual model in Figure 5.6), these elements
are classes that can have behavior (StateChart of UML) and several attributes (UML
attributes) and functions. In addition, the designer can define hierarchical components
through the concept of Composite Class. The communication is ensured by function
calls and through exchange of events (signals) e.g. CallEvent, ReceptionEvent.

Figure 5.6: Conceptual Model of concepts to describe component models in Rhapsody

ForSyDe is a design framework for heterogeneous embedded system modeling and is
implemented in the form of C++ class libraries on top of the IEEE standard SystemC.
These system models are networks of hierarchical concurrent and executable processes

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION108

connected by signals. The signals are mapped to the SystemC FIFOs, and the processes
are defined as SystemC modules that possibly rely on some legacy application functions
provided by designers.

The processes are either composite i.e. they are created by the composition of other
processes; or leaf i.e. that are directly created using process constructors (the process
constructors are related to the semantics’ description. Each process in the network can
belong to a specific MoC.

For example, in Figure 5.7, p3 is made with the mealySY constructor, allowing
under certain initial conditions this process to be carried out using the synchronous
mealey FSM execution semantics. The processes p1, p2, p3 have the same MoC A
and are leafprocesses within the composite process p123 located at a higher level of
abstraction. Similarly, p45 consists of the leafprocess p4 and p5 with the MoC B.
Between the composite processes, MoCDomain Interfaces (di12) are layers to explicitly
adapt the signals belonging to the two environments.

+ + =

Process Constructor Functions Initial Values Process

Signal Domain Interface

MoC A

MoC B

Leaf
Process

Composite
Process

Figure 5.7: ForSyDe-SystemC sample model

Figure 5.8 shows the different layers that compose the ForSyDe BackEnd framework.
The Layers will be used to go towards the synthesis of code on the HW platforms. The
platform targeted in the design chain is a MPSoC, where all processors are connected
via a Network-on-Chip (NoC). The NoC is implemented on an Altera FPGA.

The Backend Part uses a NoC generator to build platforms. The NoC generator
takes an XML file as input describing the topology of the platform, its configuration,
the specific properties, and the mappings of the various SW processes. This step was
done manually before. In our tool chain we have contributed to the semi-automation
of the generation of the XML file using the models described in Rhapsody and the
intermediate ForSyDe-SystemC model. Spear is a Thales tool for the parallelization

of tasks and intensive multidimensional dataflow processing. The framework facilitates
the architecture exploration for heterogeneous distributed architectures. It also allows
the direct generation of code for an internal multiprocessor architecture on FPGA.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION109

Applications

Resource Network Interface

Cpus (NiosII, Leon3, uBlaze)

Custom MPI drivers

On chip network architecture

Figure 5.8: ForSyDe-BackEnd: Layered view of the platform

For the description of applications, Spear [116] uses a formalism defining compo-
nents communicating through ports and connectors (excerpt Figure 5.9). The compo-
nents have a vector defining the number of executions (loop). The multidimensional
arrays are described at the application level by their shape and the elementary process-
ing operations (Elementary-Transform). Each multi-dimensional data sets refers to the
ports that produce it.

Figure 5.9: Conceptual Model of the Spear Application Model main concepts

5.2.2.3.c The envisioned Design Flow

Figure 5.10 describes the design flow for the Radar module with the sequence of activi-
ties and tools to perform these activities. This diagram hides several difficulties related
to the formalisms of the tools and the semantics of the models and environments. In-
deed, different metamodels are implemented in the tools, and the tools have different
native semantics. To ensure the preservation of the semantics, the different semantic
properties of models and tools must be taken into account.

5.2.2.4 Semantic constraints

Indeed, the models and tools have strong semantic properties linked to their functional
requirements; while those for tools are related to the way in which tools interpret

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION110

Figure 5.10: Tool Selection according to Design Process and Purpose

models i.e. operational semantics of the execution engines. To preserve the semantics
of models between tools and through their execution engine, it is important to explicitly
decline all semantics and examine their compliance.

The semantic properties of the models are specified during specification statically or
dynamically. The dynamic semantics in particular reflect the inherent characteristics
of scheduling according to the engineering domain i.e. (control-logic, signal processing,
etc). Static and dynamic properties are based on the formal definition of the MoCs.

For most of the EmS design tools, these scheduling rules are implemented with the
runtime engine and remain implicit for the user. Moreover, SLM tools (e.g. Rhapsody)
runtime engine are not designed to take into account different patterns of scheduling
rules for several particular engineering domain. In this case, the domain-specific se-
mantics must be implemented to complete the system in the form of an intermediate
layer between application models and the execution engine (using Cometa).

Being able to correctly transform the models requires ensuring that their semantics
are correctly represented in the SLM tools and that the exchange of models between
SLM and formal tools take into account sufficient information related to semantics
(static, dynamic) for their correct interpretation towards each other.

Our approach is to identify the MoCs that are used for the representation of each
module in the application, identify the tool MoCs, and provide an effective tool chain
(Rhapsody, ForSyDe and Spear) preserving the semantics of the models.

5.2.2.4.a Explicit Model Semantics

Regarding the system, there are several functioning requirements that can be derived
from the nature of the modules and their context of usage. In the AntennaControl
module, the tasks performed by the Transmitter and Receiver are not interdependent
and can therefore be carried out in parallel without any strong constraint for synchro-
nization. Parallel execution semantics can be assumed by many execution semantics,
including KPN.

The Receiver is however connected to the BurstProcessing. Given that the pro-
cessing of the Bursts is done on a Burst by Burst basis, a synchronization handshake

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION111

between Receiver and BurstController semantics would achieve the Burst by Burst
processing. In the literature, abstract semantics for the synchronous handshake-type
of communication include the Hoare CSP previously described in Section 3.4.2. At
high-level design steps, such abstract MoC can be used to describe the synchronization
between the AntennaControl and BurstProcessing.

From the receipt of echoedBurst, the BurstProcessing module tries to provide the
best estimate of radial speed, distance of reflectivity and signal-to-noise ratio of the
potentially reached targets by applying different filters and computations.

BurstProcessing receives and processes the signals described in the form of multidi-
mensional arrays. However, the computations and filtering only operate on a subset of
the arrays, or only on certain vectors. In general, the size of the data that each function
can process and take as input is different from the size of the data block that came as
input in the BurstProcessing module. Furthermore, in order to build the final output
data, different modules must read several parts of the arrays in parallel and rewrite one
or more arrays of different size as output.

This description implies semantic choices to support such a type of behavior, know-
ing that all the sub modules can potentially be run in parallel (task parallelization).
At the SLM level, it is important to be able to express these properties as early as
possible, and also preserve such properties through all the system refinement process.
There are two abstract semantics in the literature tackling the specification of proper-
ties for the intensive processing of multidimensional dataflow, MDSDF and Array-OL.
We will focus on the Array-OL specification, MDSDF has many similarities with this
semantics, and therefore only studying one of them is sufficient.

The Array-OL specification describes an application as a set of “parallelizable” task
and data (with the data described on multidimensional arrays). In this specification,
there are several static properties that make up the semantics e.g. repetition space,
patterns, paving, fitting, tiling, etc. The idea of the Array-OL semantics is to parallelize
the processing tasks, as well as the data exploitation (read, write) of data arrays. In
fact, the specification includes two main definitions to exploit and process data:

• Task parallelism is obtained with the definition of the dependency graph where
each node is a processing component.

• The Data parallelism is linked to the definition of the repetition component that
has a repetitionSpace. A repetitionSpace sets the number of times a component
is executed to fully exploit an array. These components build multi-dimensional
arrays of different sizes specified by their Shape.

The Data extraction mechanisms are provided by the definition of Tiler vector attached
to ports or connectors of the components. The Tiler is composed of an Origin vector
(determining the starting position for extraction in an given array e.g. when reading
the array / or the starting point to fill an array when writing in the array). The Fitting
matrix determines the spacing between the selected items in the array, and the matrix
Paving allows the Origin in each repetition of the component to be changed.

The above described semantics are requirements on how the system modules should
interact to globally remain coherent.

Besides, we have the way in which the specification and analysis tools interpret the
modules, which strongly depend on the execution semantics implemented on the tools
and that can be different from the semantics described here. In the following, we will
give semantics of the different chosen tools.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION112

5.2.2.4.b Explicit Tool Semantics

The Rhapsody IBM Modeler provides runtime based on Discrete Event (DE) semantics.
The exchanges between the components of the system are considered to be sequences
of requests (corresponding to events) temporarily stored in queues (FIFO, LIFO, etc.).
The execution end conditions are defined in the model’s behaviors. As long as the
condition is not reached, the scheduling behavior observes the elements of the queue to
process, and updates the static values that can affect the execution and end conditions.

In ForSyDe, MoC semantics is defined by the process constructor only attached to
the leaf process. These constructors are formally defined and stored in libraries. Their
implementation is side-effect-free, which allows correct processes to be built. Most of
the implemented semantics are based on the synchrony paradigm defined in Section 3.4.
Several execution semantics are therefore built on top of this paradigm e.g. SDF, CT.
In this purely synchronous approach, the MoC describes the abstraction of time and
how the concurrent components communicate. The description of the different process
constructors (e.g. MealySY, CombSY) in ForSyDe is provided in [145].

In our experiments, the goal is to show that the UML Rhapsody Modeler (specifi-
cation and Simulation in C++) can be enriched with MoC-based operational semantic
layers ensuring the execution of the models in a consistent manner within Rhapsody
with respect to the functioning requirements. And, since ForSyDe offers a more formal
analysis tool than Rhapsody, our benefits will be also to fill the semantic gap between
Rhapsody and ForSyDe by providing these semantic layers facilitating the transforma-
tion of models between the tools. Several references have been defined in Cometa to
match the related MoC definitions in ForSyDe in order to maintain the correctness of
the behavior of the models within ForSyDe.

The other part of the design flow targets the SpearDE design tool. We have already
stated that Spear implements the Array-OL semantics and presented the static prop-
erties. For the dynamic part of the semantics’ description, the Array-OL semantics
requires scheduling descriptions.

The scheduling of tasks depends on the topology of the system (directed acyclic
graphs) that gives the dependencies between the components. Scheduling also depends
on the expression of the data parallelism, where the number of times that each com-
ponent should be repeated to produce or consume an array is given. Any scheduling
that is able to take into account these constraints and to provide a consistent execution
order is usable for execution. Nevertheless, this execution semantics is very similar to
that provided by SDF, where data production and consumption rates are exploited to
provided a scheduling of the components.

We can see that there are various semantics associated with the tools we are planning
to use. In the first place, our motivation was only to select tools that can be candidate
for several activities within the design process. Now, we see that, besides the ability
of tools to carry out activities, there are often several different semantics that should
be carried out in order to keep the accuracy of the models towards different tools. In
the next section, we present the design flow implemented from the connection of the
selected tools.

5.2.2.5 Analysis of the Semantic Compliancy between Tools

The study of the compliance between the tool MoCs can be used for different purposes.
For instance, this can be useful to determine tool selections or to evaluate the feasibility

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION113

of an adaptation between the semantics of models or tools.
In Section 4.3.2.2, we gave the basic rules to effectively study the semantic links

between the tools in a tool chain. In this part, we are implementing this technique
to study semantic compliance between Rhapsody and the other tools of the chain.
This study will allow the clarification of to what extent Rhapsody can be improved
(through Cometa) not only for the internal simulation of semantics other than DE, but
for enriching the models exchanged with other tools in the chain.

The mechanism to study the semantic compliance within a tool chain is similar
for all the tools. Consequently, we will restrict ourselves to the description of the
compliance relations between the semantics of Rhapsody and the Array-OL of SpearDE.

For the connection between Rhapsody and Spear, several questions must be asked by
designers: what are the elements implemented in Spear to run the Array-OL semantics
correctly that the Rhapsody UML environment cannot natively provide? - What are
the elements that Rhapsody must integrate to run the Array-OL semantics and that
Spear does not have?. For the first question, the missing elements are static semantic
properties (e.g. repetition parameters, multidimensional data types, execution control
mechanisms or scheduling policies). For the second question, Spear, a priori, already
has all of the required concepts to express and run the Array-OL semantics; the problem
comes from the adaptation efforts in Rhapsody to integrate the maximum of analyzable
properties of Array-OL, knowing that once it is done, their translation to Spear is less
time-consuming.

Figure 5.11 shows the respective association of the Spear and Rhapsody languages
with their semantic domains when it comes to the execution of the models. The Lan-
guages Luml and Lspear are mapped to their respective SD which are MBSDDE and
MBSDArrayOL.

The Array-OL semantics have different flexibility and expressiveness level compared
to DE. Indeed, as we described earlier, the semantics of DE is mainly based on the use
of event and event queues for the communication between connected components. A
Scheduler manages the queues and decides the transmission of the requests. Array-OL
on the other hand, is more restrictive in terms of properties. The execution constraints
are less flexible because they are specific to an engineering domain which is not the
case for DE. In general, semantics related to tools are more flexible than the models’
semantics because they are used as support for the models semantics. The tuples
defined in Section 4.3.2.2 are used here to compare Array-OL and DE:

Figure 5.11: Rhapsody-Spear and the positioning of semantics.

• DArrayOL
⋂
DDE 6= ∅. see 1© in Figure 5.11. ArrayOL defines the multi-dimensional

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION114

data arrays. The data are read and written in parallel by the modules of the sys-
tem. Such data structures do not exist natively in Rhapsody. However, the basic
concepts of the UML (i.e. class diagrams) allow similar multidimensional data
structures to be built. In fact, a precise description of the array features (sizes,
number of vectors, etc) must be provided. Since it is possible to build the required
data and their properties in Rhapsody, then we can also define a transformation
on the data axis between Spear and Rhapsody UML.

• BArrayOL
⋂
BDE 6= ∅. see 3© in Figure 5.11. The ArrayOL specification defines

rules for the scheduling of concurrent entities. The scheduling properties require
the management of the dependency relationships between entities taking into ac-
count the shape of the input and output multidimensional arrays and the vectors
defining the number of executions authorized for each component. Any mecha-
nism of centralized or distributed execution control respecting these requirements
would describe and simulate the components with respect to the semantics.

The above constraints were partly solved by another variant of dataflow-oriented
semantics i.e. SDF. The proposed scheduling rule is based on the resolution of
linear Diophantine equations [84] that solve systems of equations constructed on
the basis of the relations between production and consumption rates of compo-
nents on their I/O. In the Array-OL semantics, the production and consumption
rates are provided by the Shape defined for each port. The resolution of the
system of equation is not inconsistent with the use of events for communication
between entities. One can define a resolution equation and encapsulated system
data exchanged in events that will serve as a support for communication between
components. Scheduling and control mechanisms are also describable by using
a more abstract formalism such as Event-based FSM. Therefore it is possible to
provide the execution control behaviors that reproduce the Array-OL semantics
in Rhapsody. The execution control for Array-OL is presented in Section 5.3.1.

• CArrayOL
⋂
CDE 6= ∅. see 2© in Figure 5.11. With regard to the communica-

tion infrastructure, in Rhapsody DE and Spear communication is established
using ports, connectors and storage entities available for the components and the
scheduler. However, for the communication mechanism, DE components exchange
events. Therefore, items that are stored in queues are events. This information
is a constraint on the content of storage spaces. Hopefully, storing data in events
is not problematic for the ordering of components. Moreover, in Cometa the for-
mal description of events allows the addition of parameters on the events and,
the parameters can represent objects such as data (e.g. multidimensional data).
Therefore, it is possible to define a transformation that is an encapsulation of the
arrays in events.

• TArrayOL = ∅, andTDE = ∅. The Array-OL specification does not mention the
description of the time as an essential and explicit concept for the description of
the MoC properties and for the mechanisms to control the execution. For the sake
of simplicity, we consider that this concern will not be addressed for our tool chain
as this axis is not required for the model to be executable. It is still important
to know that some implementation of schedulers can explicitly manipulate time
concepts to control the execution of modules.

In light of our compliance analysis, the semantic domains are not disjoint at least
from the data, communication and behavior points of view as shown in Figure 5.11.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION115

In addition, Array-OL semantics by its characteristics is more restrictive than the
semantics DE. As a consequence, DE is the support language that can help to express
the Array-OL semantics.

One can now imagine the capture of semantics properties defining the necessary
adaptations to maintain the Array-OL semantics of the models inside the Rhapsody
tool. Thus, allowing the simulation of the model in a consistent way within the envi-
ronment that natively does not have this type of semantics. In addition, the successive
addition of Array-OL properties systematically reduces the efforts for future customiza-
tion and interpretation of models in the target tool.

The Cometa models corresponding to the capture of the static and dynamic proper-
ties of Array-OL are presented in Section 5.3.1. We enrich models in Rhapsody with the
captured execution control mechanisms to ensure the preservation of the rules imposed
by the Array-OL.

The explicit definition of the MBSDMoC and their relationships (mapping) im-
proves the reasoning on the definition of tool interoperability. It allows less focus on
technical support for interoperability and promotes the possibility of taking decisions
on the consistency and feasibility of certain connections between tool.

5.3 A Novel Design Flow connecting: Rhapsody, Spear
and ForSyDe

In this section, we present the partial tool chain that allowed us to experiment with
the use case. The tool chain connects Rhapsody IBM, Spear and ForSyDe Design and
Implementation tools. As shown in Figure 5.12, the automated design flow is divided
into three steps.

As a first step, we will present the automation phase providing the connection
between Rhapsody and ForSyDe-SystemC. The objective of this connection is to en-
sure consistent specification, simulation and analysis of models in the two different
environments. In the second step, we present the automation that has enabled us to
generate files for the final HW synthesis using ForSyDe. Finally the third stage shows
the connection of IBM Rhapsody and SpearDE tools in order to have Design Space
Exploration in Spear and simulation of specific semantics in Rhapsody. Throughout
the exchange, models remain consistent from the functional and behavioral point of
view. The different model transformation rules will be illustrated in Figure 5.16.

Figure 5.12: The Rhapsody-Cometa-ForSyDe and SpearDE Design Flow

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION116

5.3.1 Capturing Semantic Layers for the Design Flow

In this section, we present the use of Cometa to retrieve the properties of the domain
MBSDArrayOL.

The captured properties focus on the 3 axes where points of compliance were found
i.e. Communication, Behavior and Data. As shown in Figure 5.13, we add an additional
view that corresponds to the topology of the semantic layers. The MoCComponent
parameters are used to capture the repetitionSpace, and the Array-OL control behavior
is attached to the components of the semantic layer. We will see the description of the
behavior in the following sub-section.

The concepts abstracted in the Cometa data concern are used to capture specific
data properties: the concept of Matrix is used to capture the vectors that explore data
arrays (e.g. Tiler, Fitting and Paving); The concept of Vector is used to capture the
data sizes accepted on each port Vector (e.g. Origin, Shape); and the concept of Param-
eter for the capture of the repetition space (Parameter associated to repetitionSpace).

Figure 5.13: Array-OL semantic domain (static and operational) capture in the Cometa
DSML

The execution control mechanisms captured with Cometa (Behavior) is close to
the SDF scheduling policies, applied to multidimensional data. The control behaviors
are distributed; this means that it does not define a global scheduler to manage the
sequences of executions as would a traditional SDF static scheduler. Therefore, the
execution control behaviors are attached to the communication elements such as ports,
connectors, etc. The communication events created (ReadEvent, WriteEvent) have
parameters to contain the multidimensional data. In addition, the shapes of the data
are placed on the communication elements (port, connectors). This variation on the
placement of the control shows new possibilities of express scheduling of parallel tasks.

In Cometa, execution control mechanisms are described with three FSMs attached
to the BasicComponent and the MoCPort (IN/ OUT). The FSMs are presented in
Figure 5.14 and describe the behavior of components and ports to process the data.
The mechanism of Tiling is placed on the ports.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION117

• the FSM attached to the BasicComponent has 2 States: Idle and repetitionState.
In the Idle state, the component waits to be notified by the MoCPort (IN) of the
arrival/ availability of data. On receipt of the notification, the BasicComponent
fires n extraction requests. The value of n depends on the product of the values
defined in the repetitionSpace vector. The items selected in the arrays at each
extraction are also a function of the values of the repetitionSpace vector and the
matrices fitting, paving, etc.

• the behavior of MoCPort (IN) has three States: Idle, Wait and BuildArray. In Idle
mode, the port is waiting for data. Upon receipt of a data array, the port produces
notification to the BasicComponent and waits for a response (Wait state). After
receipt of the request for the extraction of data from the BasicComponent, the
port uses the Tiling matrix to retrieve samples of data on the input array.

Figure 5.14: Excerpt of the Execution control FSM for Array-OL in Cometa Modeler:
(up) BasicComponent, (down) MoCPort FSM.

In the same way, a generic FSM is defined to build the output arrays of data on
(OUT) MoCPort. These descriptions of FSMs are generic and can be reused in multiple
environments and for the different topology of semantic layer.

The Figure 5.15 example represents an abstract description of the exploitation of
the defined FSMs.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION118

Figure 5.15: Example of 3 inter-connected components with Array-OL semantics

A, B and C are composite components, and br is a repetition component which
can be seen as an atomic computation unit. In Phase 1© the Scheduler enables the
execution of component A, which produces an array of a predifined size on its port Oa.
The array and its size are defined using the metaclass Array of Cometa. The data are
received by the port and sent to br → in in the subcomponent br. In Phase 2©, the port
br → in has a generic behavior and mechanism of extracting patterns (Tiler). Once
the Array is received, it notifies the state machine of the br component that data are
available. The BasicComponent after receiving the notification will run 2 times (2x1)
every execution, it will send to br → in request for the construction of a sub-array and
produce a sub-array output on br → out. In Phase 3©, the sub-array output is received
by the port Ob which also has a generic behavior and Tiler mechanism. At each receipt
of a sub-array, using the Tiler, Ob places the elements of the sub-arrays on a defined
position in the output array. Once all repetitions of br are reached, an output array is
built and sent to Ic from Ob. Ic on receipt of the Array, continues processings.

5.3.2 Weaving Cometa Models with IBM Rhapsody

The mechanisms of allocation/encapsulation are often handled by different languages,
which can be a source of difficulty. Indeed, the semantic layers are entirely made in
Ecore, while the source and target models may use other formalisms and formats. This
leaves several interpretations on how source models integrate with Cometa models:

1. The first solution is a complete translation of the source model to the Cometa for-
malism. In Cometa, this is manifested by the use of the concept Block associated
with the BasicComponent to incorporate part(s) of the source model knowing

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION119

that each application block is associated with a BasicComponent. Block will in-
tegrate the content/ functionality of the application block and its interpretation
is delegated to a given runtime capable of parsing the model in its entirety. In
other words, the formal semantics implemented in the target tool must be able
to interpret the transformed allocated model; in this case, each concept and rela-
tionship in the allocated model has semantic equivalence in the formalism of the
language of the target language.

2. The second solution is a full integration of the Cometa models in the source en-
vironment with the source formalism, thus producing a uniform allocation model
in this environment. In this case, the formalism of the source environment should
be sufficiently expressive to allow the integration of semantic layer models. The
UML is one of the formalisms offering such flexibility. With good experience
of the MoC theory and the UML formalism, the designer can directly describe
the semantic layer libraries in the UML language. In this case, the allocation
mechanism remains the same.

From the allocated Cometa model, the designer can define appropriate transforms
to the target formalism. Besides, if the source environment has an engine that
can interpret the model, then the allocated model allows the integration of new
execution semantics based on natively undefined MoCs in this environment.

3. The third solution is based on the combination of the two input formalisms i.e.
source model formalism and semantic layer formalism (Ecore). In such cases,
the Block concept represents an extension point to the part of the source model
to which it is bound (a given application block). This extension link, with the
semantic model, shapes the allocation model. In fact, the link serves as a bridge
between the two input formalisms to parse and to transform into a target model.
All the concepts which are processed must naturally find their semantic equiva-
lence in the target formalism to be relevant.

The process described above explains how the execution control models are com-
bined with application models to form a unique model preserving the semantics.

5.3.3 Connecting the Tools within the Tool Chain

Rhapsody integrates different SLM types of diagrams to describe the structure of the
systems, their functionality, and the types of data exchanged between entities (e.g.
class, structure diagrams). As we previously explained, in this environment, the exe-
cution engine is based on the DE semantics, which means that all models produced in
the environment will be executed according to DE semantics.

In order to integrate new semantics of the other tools, we integrate the semantic
layers defined by Cometa. The semantic layers can preserve the execution logic induced
by the engineering domain of other tools and based on the theory of computational
models. Cometa can be used in two different ways at this level. Either as built-in
profile in Rhapsody to specialize the Rhapsody designed models; or by direct reuse of
Cometa models captured in external libraries.

The description of Cometa models in Rhapsody uses UML classes and stereotypes
(annotations UML) to describe the hierarchical components. The links for application
block allocation are defined and associated to the Cometa components controlling their
execution. At the operational level, since we are using FSMs, this link also highlights the
facts that the blocks generate events that are received and controlled by the semantic

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION120

layer. The control behaviors (FSMs) are hooked to the components in the form of
StateCharts without hierarchical states. Once again, the StateCharts are obtained
either by transformation of the Ecore FSMs or by their internal implementation in
Rhapsody.

With the fully allocated model, the bulk of the work is then to build a mapping
table between the concepts of the allocated model and the concepts in the target tool.
Because the semantic layers are representations of missing semantic information from
the source model based on the semantics of the target model, all the concepts used in
this sense are translatable to the target tool.

To connect the tools of the the design flow, several transformations were defined
to ensure the translation of the UML-based enriched models to various representations
specific to ForSydeSystemC, ForSyDeBackend and SpearDE environments. The dia-
gram below is a summary of the different steps of model transformation which have
been made; its purpose is to situate the upcoming extracts of transformations that will
be shown.

Figure 5.16: Overview of the implemented Transformation rules with MDWorkBench

From enriched UML models (with Cometa libraries), the transformations t1 and t3
allow the production of ForSydeSystemC files used for application analysis in ForSyDe.
The t2 transformation rule produces a duplication of the application model generated
after t1 while filtering out useless information for the definition of the NoCGenerator
model. Indeed, this file (called ProcLink) only contains the names of the application
processes and their relationships in terms of the MoC that they implement and their
sources and targets. The t4 transformation takes the simplified model (ProcLink) and
two other input models i.e. the HW architecture description model and the HW/SW
mapping rule model to provide an output file representing the allocated NoC architec-
ture. We will see excerpts from t1 and t4 in the next sections.

Besides, the t6 and t8 transformations are rules to translate the UML/Cometa mod-
els to the formalism of Spear and vice versa. The set of transformations are available

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION121

in [186].

5.3.3.1 Connecting Rhapsody and ForSyDe-SystemC

In this section, we describe the implementation of the connection between Rhapsody
and ForSyDe dedicated to the formal analysis i.e. ForSyDeSystemC.

5.3.3.1.a Overview

Our goal is to consistently integrate while preserving the behavior of models.
In order to generate the SystemC models of the system using another language,

ForSyDe-SystemC provides an intermediate representation combining the XML for-
malism and the C++ programming language. The XML files describe the hierarchical
structure of the system, while all of the C++ files make up features and libraries of
pre-implemented MoC constructors in ForSyDe.

The addition of a semantic layer in Rhapsody is an independent process. Once it is
done, we offer automatic transformation mechanisms to transform the allocated model
into this intermediate structure representation.

The MDWorkbench transformation tool has a connector to Rhapsody allowing the
exploitation of the models produced in Rhapsody. In order to be fully model-based,
we defined a metamodel for the ForSyDe intermediate format A.1.2. In this DSML,
we abstract the concepts of ProcessNetwork, CompositeProcess, LeafProcess, etc. The
DSML is used to produce the model corresponding to the Rhapsody allocated model.
From the intermediate model generated, we apply a second transformation to produce
the final XML and C++ files.

The alignment between the ForSyDe design concepts and those of Cometa was
made taking into account the structural similarities such as the hierarchical components
(composite), atomic components, ports, etc.

Then, taking into account semantic similarities i.e. semantic roles associated with
execution control behaviors and layers that correspond to process constructors and sig-
nals. The categories of roles that can be associated with a component of the Semantic
Layer were introduced in 5.2.2.4.b and correspond to the different process constructors
detailed in [145]. For example, the named concept of ProcessConstructor is equivalent
to Cometa named Behaviors that have a role “BehaviorScheduler”. To reuse the imple-
mented MoC libraries of ForSyDe, the name of the corresponding Cometa behaviors are
parsed and used only to index their equivalent implementation in ForSyDe. These basic
alignment guidelines are implemented as model transformation rules between Rhapsody
and ForSyDe-XML.

5.3.3.1.b Transformation rule patterns: Rhapsody/ ForSydeSystemC

MDWorkbench allows imperative transformation rules to be set that are similar to Java
code used to parse a Rhapsody UML model, and build other models or generate text
(e.g. code generation xml, C++).

For Rhapsody and ForSyDe, the parsing mechanism adopts the following algorithm:
all the BasicComponents are transformed into LeafProcess, so are all the Compos-
iteComponents transformed into ProcessNetworks, MoCConnectors into Signals, etc.
Similarly, the behaviors with the role “BehaviorScheduler” (formerly “MoCOrchestra-
tor”) associated with the Cometa components are analyzed; each role, and its associated

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION122

behavior settings, is reused to refine the LeafProcess defining their process constructors
and specifying their parameters.

In Listing 1, we show an extract of the rule to transform an entry UML model into
a ForSyDe-XML compliant output model. Several rules based on the same approach
have been developed to translate the entire system model [186]. The resulting model
is a ForSyDe-XML model containing the structure of the system and all its artifacts
required to generate XML files and also a set of C++ files containing the functionalities.

private rule manageCompositeComponentContent (component : CompositeComponent , f o r sydeProce s s
: ProcessNetwork)

{
var a l l c ompos i t e s : MDWList = component . getInstances (” CompositeComponent ”) ;
var a l l b a s i c s : MDWList = component . getInstances (” BasicComponent ”) ;
foreach (composite : cometa . CompositeComponent in a l l c ompos i t e s)

{
var newProcessNet : f o r syde . ProcessNetwork = createProcessNetWork (

composite .Name) ;
@manageCompositeComponentContent (composite , newProcessNet , root) ;
root . processNetworks .add(newProcessNet) ;

}
foreach (ba s i c : cometa . BasiCComponent in a l l b a s i c s)

{
var newLeafProcess : f o r syde . Lea fProcess = crea t eLea fProce s s (ba s i c .

Name) ;
@manageBasicComponentContent (bas ic , newLeafProcess) ;
forsydeProcessN . l e a f p r o c e s s .add(newLeafProcess) ;

}
. . .

}

Listing 5.1: Excerpt of Transformation Rule in MDWorkBench for composite
components

In order to obtain the final SystemC model, a second code generator takes the
ForSyDe XML model and C++ files as input to produce a ForSyDe executable model.
The code generator (based on Extensible Stylesheet Language Transformations XSLT)
was provided by the developers of ForSyDe-SystemC.

5.3.3.2 Connecting Rhapsody and ForSyDe-Backend

In this section, we present the connection of the Rhapsody tool with the BackEnd
of ForSyDe, while taking into account the structural model produced for the formal
analysis (i.e. the ForSyDeSystemC model).

5.3.3.2.a Overview

In the second integration phase, our goal is to automatically reach the description of
NoC architectures targeting different implementations of multicore platforms.

The automation of the NoC architecture generation step requires the use of several
models as input to produce the NoC architecture as output.

The input models are: the intermediate XML ForSyDe system model, a model
describing the NoC HW architecture, as well as a model describing the mapping rules
of the system processes on the architecture. Metamodels defining the last two models
were created for use in MDWorkbench.

The mapping DSML defines associations from the system model processes to the
nodes described on the HW NoC architecture. The NoC architecture model (see ap-
pendix A.1.4) defines networks of nodes and the physical characteristics of the platform.

From the three entry models, several transformation rules were defined to generate
the allocated NoC architecture and the C processes corresponding to the computations
integrating the semantic properties.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION123

5.3.3.2.b Transformation rule patterns: Rhapsody/ ForSydeBackEnd

In this section, we present an excerpt from the rules defined for the production of the
architecture NoC model (NoCGenerator File). This transformation corresponds to t4.
The listings 5.2, 5.6, 5.4, show 3 extracts of transformation rules.

In the first excerpt, we use both @manageAllHardwareElement and @manageSoft-
wareMappings extraction rules. The model resulting from the execution of these two
rules is operated by the code generator defined in $xmlGenNoCGenerator (t5) produc-
ing the final XML file representing the NoC allocation architecture model.

entry rule main ()
{

// Create the Noc Generator Root
var hardwareSystem : hwmetamodel . System = hwmodel . getInstances (” System ”) .

f i r s t () ;
var rootElement : forsydebackend . System = @ I n i t i a l i z a t i o n (hardwareSystem . name

) ;

// Generating a l l C f i l e s f o r Backend
var source : p roce s s . A l lProce s s = proc l i nk . getInstances (” Al lProce s s ”) . f i r s t ()

;
var procnets : com . sod ius .mdw. core . model .MDWList = source . g e tProce s s e s () ;
foreach (procnet : p roce s s . Process in procnets)
{

i f (procnet . f i l ename != nu l l)
{

$cGen (procnet) ;
}

}

var pro c e s sL inkDe f i n i t i on : p roce s s . A l lProce s s = proc l i nk . getInstances (”
Al lProce s s ”) . f i r s t () ;

// Generate a l l Elements o f Hardware in Noc Generator
@manageAllHardwareElement (hardwareSystem , rootElement) ;

// Use Mappings to get the so f tware in noc generato r
@manageSoftwareMappings (mapmodel , p roce s sL inkDe f in i t i on , rootElement) ;

// Cal l func t i on to generate the template
$xmlGenNoCGenerator (rootElement) ;

}

Listing 5.2: Excerpt of Transformation Rule in MDWorkBench for NoC model generator

The @manageAllHardwareElement rule, as shown in the second excerpt (listing
5.6), takes as input an HW model and reproduces its entire contents in the output NoC
architecture model represented by its entry point “rootElement”.

private rule manageAllHardwareElement (hw : hwmetamodel . System , root : forsydebackend . System)
{

var systParams : com . sod ius .mdw. core . model .MDWList = hw. getParameters () ;
var hardHard : hwmetamodel . Hardware = hw. getHw () ;

foreach (systParam : hwmetamodel . Parameter in systParams)
{

var newNocGenPram : forsydebackend . Parameter = @NoCGeneratorFactory (
nocgen) . NoCGeneratorParameter (systParam . name) ;

newNocGenPram . setValue (systParam . value) ;
root . params .add(newNocGenPram) ;

}
i f (hardHard!= nu l l)
{

var newNocGenHard : forsydebackend . Hardware = @NoCGeneratorFactory (
nocgen) . NoCGeneratorHardware () ;

@manageNoCGeneratorHardwareContent (hardHard , newNocGenHard) ;
root .hw = newNocGenHard ;

}
}

Listing 5.3: Excerpt of Transformation Rule HW exploration

For any property described in the input HW model, then the rules @NoCGenera-
torFactory(nocgen).NoCGeneratorParam and @manageNoCGeneratorHWContent sub

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION124

rules duplicate the property in the NoCGenerator model (more detail on these rules are
provided in the [186]. Once the HW model is fully reproduced, the last excerpt (Listing
5.4) shows the algorithm to operate the mapping rules. The mapping rules are then
used to describe the allocation of the processes on the nodes of the HW architecture in
the NoCGenerator model.

private rule manageSoftwareMappings (ma: mapping , p r o c l i nk i ng : p roce s s . Al lProcess ,
rootElement : forsydebackend . System)

{
var mapp : mapping . Mapping = mapmodel . getInstances (” Mapping ”) . f i r s t () ;
var maprepo : mapping . Repos i tory = mapmodel . getInstances (” Repos i tory ”) . f i r s t ()

;
var maps : com . sod ius .mdw. core . model .MDWList = mapp . getMapProcess () ;
var pro c e s s e s : com . sod ius .mdw. core . model .MDWList = proc l i nk i ng . g e tProce s s e s ()

;
i f (maps!= n u l l)
{

//
var s o f t : forsydebackend . Software = @NoCGeneratorFactory (nocgen) .

NoCGeneratorSoftware () ;
foreach (map : mapping . MapProcessType in maps)
{

foreach (p roce s s : p roce s s . Process in p ro c e s s e s)
{

i f (map . name . equa l s (p roce s s . name)==true)
{
@manageNoCGeneratorSoftwareMaps (map , so f t , p roce s s) ;
}

}
}
var paramRepo : forsydebackend . Parameter = @NoCGeneratorFactory (

nocgen) . NoCGeneratorParameter (maprepo . name) ;
paramRepo . setValue (maprepo . path) ;
s o f t . swparams .add(paramRepo) ;
rootElement . sw = s o f t ;

}

}

Listing 5.4: Excerpt of Transformation Rule @manageSoftwareMapppings

@manageSoftwareMappings allows the addition of an instance of SW in the target
NoCGenerator model. For each process declared in the mapping model, if the process
also exists in the application model of the system (i.e. ProcLink model), then the rule
@manageNoCGeneratorSoftwareMaps allows the addition of the allocation of a process
on the “Node” to which it is linked and provides information on this process such
as: its MoC, its sources and targets. An excerpt of the NoC model produced for the
BurstProcessing module will be shown in the coming sections.

5.3.3.3 Connecting Rhapsody and SpearDE

This last integration step aims at describing the connection between Rhapsody and
Spear.

5.3.3.3.a Overview

The connection between the two tools is bidirectional. Thanks to the semantic prop-
erties provided by Cometa, we make consistent semantic links between the properties
contained in the UML/Cometa model and those present in the Spear formalism. In-
deed, with the semantics compliance analysis performed on both languages (i.e. Spear
and Cometa), mapping tables between their concepts has been established including
structural and semantics details.

With regard to the transformation rules, in one direction, the input Rhapsody
models are transformed into Spear XMI models (t6). The models generated are further

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION125

successively transformed (t7) to generate Moml code corresponding to the formalism
accepted as input for the Spear tool.

The t8 rule produces the opposite result by taking a Spear model as input and
outputs a UML/Cometa model incorporating all of the manageable static semantic
properties in Rhapsody (i.e. Array, repetition vector, structure, etc.). The idea is to
show that models from Spear to Rhapsody can also be simulated using the Cometa
execution control models included in the Rhapsody Modeler. The models produced in
Rhapsody are combined with the FSMs described for the Array-OL execution seman-
tics.

5.3.3.3.b Transformation rule patterns: Rhapsody/ SpearDE

We have implemented the following two transformation rules: the first rule translates
a Rhapsody allocated model into a Spear model, the second transformation defines
translation mechanisms from a Spear model towards a Rhapsody model.

• umlCometa2spear : for this transformation step, the transformation of the topol-
ogy is trivial as for the other transformations. This triviality stems from the fact
that most codesign system architecture description languages are based on an
ADL approach for component description. This is also the case of Rhapsody and
Spear. To transform the multidimensional data models, the rule parses the data
structures defined in Cometa, the matrices, and builds their equivalence using the
concept in the Spear basic language (see Spear metamodel in appendix A.1.1).
Thus, the final Spear model integrates data properties that natively did not exist
in Rhapsody, but were added with Cometa data concern.

• spearCometa2uml : Similarly, the description of the application topology elements
are trivially from Spear to Rhapsody. The Spear parts intrinsically linked to
the static Array-OL semantics are transformed and added into a semantic layer
defined using Cometa. All the static properties such as repetition vectors, the
sizes of array, data types, etc are attached to their supports in the semantic layer.

When it comes to the execution control part, Spear does not provide an explicit
implementation of the mechanisms for scheduling tasks. Therefore, only axes
“data” and “communication” are concerned by the transformation. The execution
control behaviors are taken from the operational MoC libraries captured with
Cometa (inside or outside Rhapsody). The behaviors are mapped on their support
on the semantic layer.

The first transformation steps produce XMI models that conform to the metamodel
of Spear (see appendix A.1.1), the models are further transformed into MOML code
which complies with the format accepted by the Spear tool.

The rule @getSubModule takes a UML/Cometa model as input; the model is parsed
to retrieve multidimensional data arrays, tasks (Computation) structures and their
relations to define the topology of the system. Each Computation retrieves its repetition
vector determining the number of executions to fully consume or produce arrays of data.

As shown in listing 5.5, to retrieve the topology and relations, @manageInstancesIn-
Struct and @manageRelationsInStruct rules are used. The rule @manageInstancesIn-
Struct parses each structural element and creates a new “Computation” in the Spear
output model. For each Computation created, the parsing uses sub rules such as
@manageOperations to retrieve the functions, the unique ID of the Computation and

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION126

semantic properties such as the Loop (repetition vector); @managePorts retrieves the
links between the computations and specifies the arrays produced by the ports.

/∗∗ Getting the Sub−Modules∗∗/
private rule GetSubModule (pack : rhapsody . Package , root : S p e a r l i t e . modeling , app :

S p e a r l i t e . a p p l i c a t i o n) : S p e a r l i t e . a p p l i c a t i o n
{

// Getting Arrays
i f (pack . name . equa l s (” DataTypes ”)==true)
{

// Getting Arrays
@ManageArrays (pack , app) ;

}
// Getting Module Elements
i f (pack . name . equa l s (” RadarSystem ”)==true)
{

var s t r u c t s : com . sod ius .mdw. core . model .MDWList = pack .
getStructureDiagrams () ;

foreach (s t r u c t : rhapsody . StructureDiagram in s t r u c t s)
{

i f (s t r u c t . name . equa l s (” CompositeComponent ”)==true)
{

// Getting the Parameters
app = @ManageHighLevelProperties (pack , app , s t r u c t .

name) ;
// Getting the Computations
@manageInstancesInStruct (s t ruct , app) ;
@manageRelationsInStruct (s t ruct , app) ;

}
}

}
}

Listing 5.5: Excerpt of Transformation Rule for Spear

Listing 5.5 also shows how the algorithm explores and recovers the arrays of data
created in Rhapsody from the Cometa libraries. The @GetSubModule parses the di-
rectory containing the data structures and restores all of the properties related to data
structures and their exploitation. In the @manageArrayrs rule, the data are created,
and for each data array, the rule gets through the corresponding UML structures to
refine the output data arrays produced in Spear. In the experiment, we show an excerpt
of the Spear model corresponding to the BurstProcessing module.

/∗∗ Retr i ev ing Appl i cat ion Arrays ∗∗/
private rule ManageArrays (pack : rhapsody . Package , appl : S p e a r l i t e . a p p l i c a t i o n) :

S p e a r l i t e . a p p l i c a t i o n
{

// Getting Arrays
var c l a s s e s : com . sod ius .mdw. core . model .MDWList = pack . g e tC la s s e s () ;

foreach (c l a s s : rhapsody . Class in c l a s s e s)
{

i f (c l a s s . ge tSte reo type () . name . equa l s (” Array ”)==true)
{

var spearar ray : S p e a r l i t e .
MultiDimensionalArray = @SPEARFactory(
outmodel) . createMult iDimensionArray (c l a s s
. name) ;

@ManageArrayValues (speararray , c l a s s) ;
appl . a r rays .add(spearar ray) ;

}
}

}

Listing 5.6: Excerpt of Transformation Rule in MDWorkBench for Array exploration

5.3.4 Metrics

The efforts to improve the UML models to obtain the maximum number of model
semantic properties in different environments have allowed us to establish qualitative
relationships between the core modules and enriched models. If we restrict ourselves
to the subset of targeted tools i.e. Rhapsody, ForSyde and Spear, one can work on

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION127

Table 5.1: Concepts taken into account during transformation of basic models accord-
ing to MoC Criteria

Transformation/MoC Criteria Data Communication Structure MoCBehavior Time
UML to ForSyDe Yes Yes Yes No No
UML to Spear No Yes Yes No No
ForSyDe to UML Yes Yes Yes No No
Spear to UML No Yes Yes No No

two evaluation results for assessing the improvements that are made. Here are the two
possible analyses of the situation:

• An analysis starting from a basic non-enriched model that was converted in
ForSyDe and Spear environments

• An analysis in the case of enriched models in terms of MoC references and MoC
behavior which is translated to these environments.

Tables 5.1 and 5.2 highlight the elements supported during the transformation in
both analysis cases. The criteria taken into account are the ability to transform infor-
mation from one environment to another, taking into account the criteria related to
Data, Time, MoCBehavior, Structure, and Communication.

The MoCBehvaior criterion gathers all the entities that can contain a reference
and/or MoC behavior to control the execution of the entities.

In the above analysis Table 5.1, a basic application model presents a number of con-
cept that can be translated into ForSyDe. Regarding the concepts of Structure, Data
and Communication, a consistent semantic interpretation can be found in ForSyDe en-
vironment. However, the model would be necessarily incomplete since the properties
related to the MoCBehavior, Time are not expressed in the UML model and therefore
not taken into account. The main consequence of the lack of description of the MoCBe-
havior is that the process constructors are not specified which prevents any possible
interpretation of the model in the target environment.

For the translation of the application model to Spear, the Structure and Compu-
tation criteria have a semantic equivalence between the two environments. The lack of
elements related to the MoCBehavior and Data implies that application models in the
source environment cannot be executed properly according to the Array-OL semantics
of Spear. Thus, no coherent analysis is made at this level without the MoCBehavior
and Data properties. In addition, the data natively described in the UML model are
different from those handled in Spear. In order to further simulate the models in Spear,
a refinement of the Spear model is needed to complete the missing properties and data
structures. The Time criterion is not necessarily significant for this specific case of
semantics i.e. Array-OL.

For the inverse transformations (Spear to UML and ForSyDe to UML), the same
problems arise on the same criteria. In the case of ForSyde, without the Cometa
libraries, the basic UML model produced cannot be interpreted since there is no con-
sistent execution semantics implemented or integrated i.e. the execution control mech-
anisms, nor the expression of time.

In the case of Spear, the Scheduling implementing the control mechanisms according
to Array-OL, as well as the data arrays cannot be supported directly in Rhapsody
without the Cometa data and execution control models.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION128

Table 5.2: Concepts taken into account during transformation of enriched models
according to MoC Criteria

Transformation/MoC Criteria Data Communication Structure MoCBehavior Time
UML/Cometa to ForSyDe Yes Yes Yes Yes No
UML/Cometa to Spear Yes Yes Yes Yes No
ForSyDe to UML/Cometa Yes Yes Yes Yes No
Spear to UML/Cometa Yes Yes Yes Yes No

In the second analysis (Table 5.2), we can see that the concerns not taken into ac-
count previously are added by Cometa. When the transformation starts from Rhapsody
to ForSyDe and Spear, respectively UML models are enriched with the MoCBehavior
and Data concerns i.e. description of the MoC ProcessConstructor and their settings.
For Spear, the concerns related to data structures are taken into account. The mecha-
nisms for execution control defined by the Cometa FSM are not transformed into Spear
since their implementation already exists in the Tool.

In reverse, all the elements handled in one transformation direction, may be pro-
cessed the other way around taking into account the same criteria and transforming
the same elements. However, the Cometa execution control mechanisms will replace
the MoC implementations based on the definition of MoC ProcessConstructor or the
Spear Scheduler.

For Spear to UML/Cometa transformations, all the criteria are taken into account
except for Time. For the MoCBehavior criteria, as for ForSyde, the execution control
mechanism is provided by Cometa models and the data description are also taken into
account with the Cometa multidimensional data types libraries.

5.3.5 Burst Processing System Design and Analysis

In this section, we present the experimentation and the prototypes that have been
made in the context of designing the Radar System. This experiment highlights the
results obtained using the Cometa models presented in the previous sections. In the
UML Rhapsody Modeler, the Figure 5.17 presents the Cometa profile and the libraries
of MoCBehvaior which have been integrated into the tool to allow model enrichment.
These elements are used to add MoC references via the profile and MoC-based opera-
tional semantics to the entities that are handled.

The entire Radar model is not shown in this section. Our approach is rather to
provide a representative subset showing the parts where the Cometa models were used,
thus emphasizing analysis by simulation in Rhapsody. After simulation, the trans-
formations presented earlier are used to generate the output models for ForSyde and
Spear environments taking as many as possible of semantics properties in the trans-
formations. Several examples of generated models will be shown and the properties
preserved throughout the analysis and transformation chain.

Considering the different criteria for the preservation of semantics, we can start by
specifying the data for the system (Figure 5.18).

The data in the system are mostly of multidimensional type. Their description
in Rhapsody is done through the concept of Class for which the various dimensions
are identified in the form of attributes of the Class. As a result, the samples of data
types Beam, Burst, Plot have several dimensions. For the case of Burst, the vector
has three dimensions which are NB PULSE, NB RANGE CELL and NB ANTENNA.
These data types are identified and referenced as Cometa Array. The reference makes

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION129

Figure 5.17: Cometa Libraries in the UML Rhapsody Modeler

Figure 5.18: MultiDimentional Data Arrays in Rhapsody

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION130

the difference between normal data types and those that are multidimensional.
During the transformation steps, all the UML Class with a stereotype Array, are

parsed to retrieve their specificities (size, dimensions) that will be reused and trans-
formed into their corresponding elements in the target tools. These data type excerpts
are used for processings in the BurstProcessing module.

As specified by the Array-OL semantics, since each vector has several dimensions
and different sizes, the execution of modules depends on the scheduling and execution
control mechanisms based on the size of the vectors. Any scheduling mechanism must
find the most optimal execution sequence to avoid accumulations of data, or blocking
states due to lack of data (starvation).

The execution vector (repetition vector) and the execution control mechanisms are
associated with the processing functions (computations) using parallel allocation com-
ponents that form a semantic layer around the processing functions. The below alloca-
tion models (Figure 5.19, Figure 5.20) provide a description of the semantic layer for
the use case. The small part A of Figure 5.19 is illustrated in Figure 5.20; and the
small part B of Figure 5.20 is illustrated in Figure 5.19.

The Multidimensional data types and the semantic layers (with their behavior and
execution vector) capitalize all the properties related to the semantics for the correct
execution of the model in Rhapsody (with the CSP, Array-OL and KPN semantics).

Figure 5.19: Allocated Radar System Model in Rhapsody: The AntennaSystemAlloc

The components in blue represent the semantic layer. The model is decomposed
on 2 hierarchical levels. The first hierarchical level presents the connection between
the antenna control system (AntennaSystemAlloc) and the signal processing system
(BurstProcessingSystemAlloc). These two sub modules have different computing modes
or MoC. The AntennaSystemAlloc module contains five sub modules that interact in
parallel. The BurstProcessingSystemAlloc module interacts with the AntennaSys-
temAlloc by retrieving the echoes produced (which are similar to the Burst signals),

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION131

Figure 5.20: Allocated Radar System Model in Rhapsody: The BurstProcessingSys-
temAlloc

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION132

its computations are based on the Array-OL semantics since the data produced by
AntennaSystemAlloc are multidimensional arrays.

Consequently, the RadarSystemAlloc system presented is defined as a Composite-
Component containing two sub modules also described as CompositeComponent. The
composite sub modules are connected with a CSP connector. The choice of the CSP
connector is justified by the assumption that the Bursts transmitted by the antenna
are processed one by one which has the consequence that each Burst blocks the process
as long as it is not fully consumed. The class describing the connector is referenced as
a MoCConnector and the MoC it references is SY in the context of ForSyDe or CSP
in Rhapsody. The synchronization behavior associated to the class is provided by a
Cometa FSM stored in the libraries of execution control behaviors. The CSP execution
control mechanism was demonstrated in Figure 4.17 of section4.3.3.

In the second hierarchical level, the sub modules of the AntennaSystemAlloc module
are described in the form of classes referenced as BasicComponent and the connectors
are also MoCConnector classes with behavior. The sub components implemented in
AntennaSystemAlloc are transmitter, daConverter, antenna, adconverter and receiver
which are respectively the instances of TransmitterAlloc, DaConverterAlloc, Anten-
naSystemAlloc , AdconverterAlloc and ReceiverAlloc, their composite structures.

The basic components reflect the presence of atomic computations allocated in the
components. Each BasicComponent describes a composite structure that contains the
computation.

BurstProcessingSystemAlloc contains five BasicComponent connected with synchronous
semantics in the case of ForSyde. The sub components are calibration, beamform,
pulscompression, dopplermeasure and cfar which are respective instances of Calibra-
tionAlloc, BeamformAlloc, PulscompressionAlloc, DopplermeasureAlloc and CfarAlloc.
Each BasicComponent also contains repetition vectors in the form of BasicComponent
class attributes.

We have previously emitted a design hypothesis that in Cometa, the execution
control mechanisms for Array-OL are distributed on the structural elements such as
the BasicComponent and the MoCPort as shown in Figure 5.13. Each BasicComponent
of the BurstProcessingSystemAlloc has a matching behavior as defined in Figure 5.14
of Section 5.13. The behaviors associated with the ports are described in the MoCPort
class internal to the structure of the BasicComponent.

The last hierarchical level presents the refinement of the BasicComponent. Taking
the example of the BeamformAlloc (Figure 5.20), its refinement gives a structure com-
posed of an allocated computation beamFormFunction and Cometa MoCPort for the
synchronization according to the Array-OL semantics.

The generic execution control mechanism for Array-OL semantics has been associ-
ated to the input and output MoCPort. The mechanisms are also described in Figure
5.14.

Regarding the computation module, it is described in the form of an FSM and an
application code block. Figure 5.21 shows an excerpt of the FSM corresponding to the
computation of BeamformAlloc. In the operational mode, on receipt of an input Burst,
the module enters a State of processing the data. An excerpt of the operated code
block is provided in the right part of Figure 5.21.

The multidimensional array received as input is parsed and processed depending on
the available steering settings. Once the processing is done, a new array beamOUT is
produced as output and sent to PulseCompression via the MoCPort named beamOUT.

After a complete description of the different computations, behaviors and seman-

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION133

Figure 5.21: Excerpt of the BeamForm computation

tic layers, simulation is performed in Rhapsody. The simulation results presented in
Figure 5.22 highlight execution traces of the Array-OL semantics for the BurstProcess-
ing module in an environment that does not natively integrate such semantics. These
results are promising because the execution orders are consistent with the possible ex-
ecution sequences imposed by the Array-OL semantics taking into account produced
and consumed data arrays.

Focusing on the interactions between BeamformAlloc and PulscompressionAlloc, the
block of data produced by BeamformAlloc is sized (84,32) which equals (2,4) times the
blocks consumed by PulscompressionAlloc sized (42,8). As a result, the BasicCompo-
nent around these two processing modules define repetition vectors that make Pulscom-
pressionAlloc 2x4 times faster than BeamformAlloc when execution is launched. The
observed traces show that to each production of BeamformAlloc, PulscompressionAlloc
executes 8 times to entirely process the data array produced. At the whole system
model scale, execution orders related to the BurstProcessing module obey the semantic
rules introduced in the models.

5.3.5.1 Transformation results from Rhapsody to ForSyDe and Spear

In the following transformation steps toward ForSyDe and Spear, the processed mod-
els preserve the semantic properties. The allocation model is our starting point for
targeting both tools.

The rules to generate ForSyDe models from the Rhapsody model exploit the MoC
semantic layers including the description of the signals, structure and elementary tasks.
Figure 5.23 and Listing 5.7 show respectively the XMI and XML models corresponding
to the highest hierarchical level of the system and resulting from the use of the t1
and t3. In both models, the system is defined as a ProcessNetwork containing two
CompositeProcess connected through a signal csp0. All the details are extracted from
the Cometa semantic layer in Rhapsody.

The csp0 signal between the two modules is provided with its associated semantics,
the type of data supported by the signal and the linked communication ports. At
this hierarchical level, there is no process constructor associated with the MoC since
the MoC process constructors are defined at the leafprocess level, and each composite
component is described in the form of a ProcessNetwork with its own XML description
file. Taking the example of the BurstProcessing module, the following listing 5.8 shows
an excerpt of the generated XML file.

In this model, the communication signals are described, related to their source and

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION134

Figure 5.22: Excerpt of the Simulation Results

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION135

Figure 5.23: Intermediate representations of the Cometa (left) and ForSyDe (right)
Radar model

<?xml version=” 1.0 ” ?>
<?xml−s t y l e s h e e t type=” text / x s l ” h r e f=” . /XSLT/ forsyde−systemc . x s l ”?>
< !−− Automatica l ly generated from MDWorkBench + Cometa −−>
< !DOCTYPE process network SYSTEM ” . /DTD/ fo r syde . dtd” >
<process network name=”RadarSystemAlloc”>

<s i g n a l name=” csp0 ” moc=”sy” type=” in t ” />
<compos i t e proce s s name=” BurstProcess ingSystemAl loc ” >

<port name=”SYPortIN” type=” in t ” d i r e c t i o n=” in ” />
<port name=”SYPortOUT” type=” in t ” d i r e c t i o n=”out” />

</ compos i t e proce s s>
<compos i t e proce s s name=”AntennaSystemAlloc” >

<port name=”SYPortIN” type=” in t ” d i r e c t i o n=” in ” />
<port name=”SYPortOUT” type=” in t ” d i r e c t i o n=”out” />

</ compos i t e proce s s>
</ process network>

Listing 5.7: Excerpt of the ForSyDe XML model of the Radar example

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION136

<?xml version=” 1.0 ” ?>
<?xml−s t y l e s h e e t type=” text / x s l ” h r e f=” . /XSLT/ forsyde−systemc . x s l ”?>
< !−− Automatica l ly generated from MDWorkBench + Cometa −−>
< !DOCTYPE process network SYSTEM ” . /DTD/ fo r syde . dtd” >
<process network name=” BurstProcess ingSystemAl loc ”>

<port name=”SYPortIN” type=” in t ” d i r e c t i o n=” in ” />
<port name=”SYPortOUT” type=” in t ” d i r e c t i o n=”out” />
<s i g n a l name=” f i f oSY 7 ” moc=”sy” type=” in t ” source=” DopplerMeasureAlloc ” sou r c e po r t

=”dopplerOUT” ta rg e t=” CFAR ProcessingAlloc ” t a r g e t p o r t=” cfar IN ”/>
<s i g n a l name=” f i f oSY 4 ” moc=”sy” type=” in t ” source=” Ca l i b r a t i onCor r e c t i onA l l o c ”

sou r c e po r t=”calibOUT” ta rg e t=”BeamFormingAlloc” t a r g e t p o r t=”beamFIN”/>
<s i g n a l name=” f i f oSY 5 ” moc=”sy” type=” in t ” source=”BeamFormingAlloc” sou r c e po r t=”

beamFOUT” ta rg e t=” PulseCompress ionAlloc ” t a r g e t p o r t=”pulseCIN”/>
<s i g n a l name=” f i f oSY 6 ” moc=”sy” type=” in t ” source=” PulseCompress ionAlloc ”

sou r c e po r t=”pulseCOUT” ta rg e t=” DopplerMeasureAlloc ” t a r g e t p o r t=” dopplerIN ”/>
< l e a f p r o c e s s name=” Ca l i b ra t i onCor r e c t i onA l l o c ”>

<port name=”calibOUT” type=” in t ” d i r e c t i o n=”out” bound process=”
BeamFormingAlloc” bound port=”beamFIN”/>

<port name=” ca l ib IN ” type=” in t ” d i r e c t i o n=” in ” />
<p r o c e s s c o n s t r u c t o r >
</ p r o c e s s c o n s t r u c t o r>

</ l e a f p r o c e s s>
< l e a f p r o c e s s name=” PulseCompress ionAlloc ”>

<port name=”pulseCOUT” type=” in t ” d i r e c t i o n=”out” bound process=”
DopplerMeasureAlloc ” bound port=” dopplerIN ”/>

<port name=”pulseCIN” type=” in t ” d i r e c t i o n=” in ” />
<p r o c e s s c o n s t r u c t o r >
</ p r o c e s s c o n s t r u c t o r>

</ l e a f p r o c e s s>
< l e a f p r o c e s s name=” CFAR ProcessingAlloc ”>

<port name=” cfar IN ” type=” in t ” d i r e c t i o n=” in ” />
<port name=”cfarOUT” type=” in t ” d i r e c t i o n=”out” />
<p r o c e s s c o n s t r u c t o r >
</ p r o c e s s c o n s t r u c t o r>

</ l e a f p r o c e s s>
< l e a f p r o c e s s name=” DopplerMeasureAlloc ”>

<port name=”dopplerOUT” type=” in t ” d i r e c t i o n=”out” bound process=”
CFAR ProcessingAlloc ” bound port=” cfar IN ”/>

<port name=” dopplerIN ” type=” in t ” d i r e c t i o n=” in ” />
<p r o c e s s c o n s t r u c t o r >
</ p r o c e s s c o n s t r u c t o r>

</ l e a f p r o c e s s>
< l e a f p r o c e s s name=”BeamFormingAlloc”>

<port name=”beamFOUT” type=” in t ” d i r e c t i o n=”out” bound process=”
PulseCompress ionAlloc ” bound port=”pulseCIN”/>

<port name=”beamFIN” type=” in t ” d i r e c t i o n=” in ” />
<p r o c e s s c o n s t r u c t o r >
</ p r o c e s s c o n s t r u c t o r>

</ l e a f p r o c e s s>
</ process network>

Listing 5.8: Excerpt of the ForSyDe XML model of BurstProcessing Sub-module

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION137

target data types and finally associated with a type of MoC. Since we have Basic-
Component modules, we define the leafprocess and ProcessConstructor associated with
them. We can see that among other generated properties, the different components are
associated with the synchronous combSY ProcessConstructor which was specified in
the UML semantic layer model for BurstProcessingSystemAlloc model. Similarly, for
each port, the data type property is taken into account.

The XML model is an intermediate representation that allows the generation of
SystemC simulation modules. These entities are described in Listing 5.9 which is the
final SystemC executable model associated with the structure of the system. This
representation uses the MoC process constructor (ProcessConstructor) for simulation
defined in the form of libraries and available in the ForSydeSystemC environment.

SCCTOR(System)
{

// l e a f p r o c e s s e s
auto Ca l i b ra t i onCor r e c t i onA l l o c = ForSyDe : : SY : : make comb (” Ca l i b ra t i onCor r e c t i onA l l o c

” , Ca l i b ra t i onCor r e c t i on func , f i f oSY 4 , csp0) ;
Ca l ib ra t i onCor r e c t i onAl l o c−>calibOUT (f i f oSY 4) ;
auto BeamFormingAlloc = ForSyDe : : SY : : make comb (” BeamFormingAlloc ” , BeamForming func ,

f i f oSY 5 , f i f oSY 4) ;
BeamFormingAlloc−>beamFOUT(f i f oSY 5) ;

auto PulseCompress ionAlloc = ForSyDe : : SY : : make comb (” PulseCompress ionAlloc ” ,
PulseCompress ion func , f i f oSY 6 , f i f oSY 5) ;

PulseCompressionAlloc−>pulseCOUT(f i f oSY 6) ;
auto DopplerMeasureAlloc = ForSyDe : : SY : : make comb (” DopplerMeasureAlloc ” ,

DopplerMeasure func , f i f oSY 7 , f i f oSY 6) ;
DopplerMeasureAlloc−>dopplerOUT (f i f oSY 7) ;
auto CFAR ProcessingAlloc = ForSyDe : : SY : : make comb (” CFAR ProcessingAlloc ” ,

CFAR Processing func , f i f oSY 7) ;
CFAR ProcessingAlloc−>c far IN (f i f oSY 7) ;
. . .

}

Listing 5.9: Excerpt of the generated SystemC code from the UML Radar model

In this description, the difficulty comes from how ForSyDe should represent the
structured multidimensional data types, since the execution control relies on these data
types. The Array-OL semantics can be scheduled by SDF like execution semantics
where production and consumption rates of the components are handled. ForSyDe
allows the SDF execution semantics to be supported which gives us the possibility to
encapsulate the Array-OL data types in the SDF MoC data of ForSyDe. The last stage
involves using the right ProcessConstructor in order to enhance the model execution.

This alternative solution can be replaced by a more efficient solution where the
SDF ProcessConstructor of ForSyDe is refined to support specifically a Scheduling for
Array-OL. For instance, the execution control model of Cometa allowing such func-
tionality can be used to automatically generate the corresponding ProcessConstructor.
Unfortunately such a solution was not implemented during this thesis.

5.3.5.2 Generation of NoC architecture for ForSyDe BackEnd

The description of the NoC architecture for the system is accompanied by a description
of the HW model and the mapping model. Excerpts of the concepts of these two
descriptions are provided in A.1.4 and A.1.3).

The HW model specifies 4 parallel nodes forming a 2x2 ring (Node0, Node1, Node2,
Node3). The properties of the nodes are described by different parameters illustrated
in Listing 5.10.

The mapping model combines the Node0 with CalibrationCorrectionAlloc PulseC-
ompressionAlloc CFAR ProcessingAlloc, Node1 with DopplerMeasureAlloc BeamFormin-
gAlloc components, Node2 with AntennaSystemAlloc DigitalAnalogConverterAlloc

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION138

AnalogDigitalConverterAlloc TransmitterAlloc and ReceiverAlloc are mapped to Node3.
The processes were already described in the ProcLinck model with the interactions (e.g.
sources, targets).

After the t4 transformation, the NoCGenerator model defines the allocation of the
processes on their associated parallel nodes. The Listing 5.10 shows two distinct parts
dedicated to the description of the HW and SW allocation. In the lower part, the SW
allocation shows the mapping of the various processes into the nodes, their sources and
targets, and the processing files corresponding to each process with the extension .c.
The type of MoC is also specified knowing that its implementation is provided in the
kernel of ForSyDe. This information is derived from the definition of MoC introduced
in the ProcLink model for ForSydeSystemC. The NoC architecture model generated is
used for the synthesis of code to FPGA platforms, which we did not address.

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<system name=”Ring2x2”>

<parameter name=” ta rg e tD i r e c t o ry ” value=”C:/ Ring2x2 s ing l eproc v52 ”/>
<parameter name=” targetManufacturer ” value=” Altera ”/>
<parameter name=” targetManufacturerVers ion ” value=” 10 .1 ”/>
<parameter name=”boardType” value=”DE3”/>
<parameter name=”boardFrequency” value=”50 MHz”/>
<parameter name=”Clock” value=”{ s y s c l k , T33}”/>
<parameter name=” Reset ” value=”{ r e s e t , U31}”/>
<hardware>

<parameter name=”nocType” value=”Mesh”/>
<parameter name=”nocKind” value=”2DNoC”/>
<parameter name=” r n i v e r s i o n ” value=”v2 . 0 ”/>
<parameter name=”HDLrootDirectory” value=”C:/NoC v52”/>
<parameter name=” nro fCo l s ” value=”2”/>
<parameter name=”nrofRows” value=”2”/>
<parameter name=” nro fLayers ” value=”1”/>
<parameter name=” f rames i z e ” value=”64”/>
<parameter name=”GlobalSync” value=”1 Hz”/>
<parameter name=”LayoutMethod” value=” f l o a t i n g ”/>
<node nr=”0” mem size=”4096” j t ag=” yes ” pe r f c oun t e r=”no” pio=”{o ,16} ”

noc i r q=”no” cpu=”{nios , t iny }” />
<node nr=”1” mem size=”4096” j t ag=” yes ” pe r f c oun t e r=”no” pio=”{o ,8} ” noc i r q

=”no” cpu=”{nios , t iny }” />
<node nr=”2” mem size=”4096” j t ag=” yes ” pe r f c oun t e r=”no” pio=”{o ,8} ” noc i r q

=”no” cpu=”{nios , t iny }” />
<node nr=”3” mem size=”4096” j t ag=” yes ” pe r f c oun t e r=”no” pio=”{o ,8} ” noc i r q

=”no” cpu=”{nios , t iny }” />
</hardware>
<so f tware>

<parameter name=” Repos i tory ” value=”C:/NoC v52/Examples/ENSTA”/>
<proce s s name=” Ca l i b r a t i onCor r e c t i onA l l o c ” node=”0” source s=”{}” t a r g e t s=

”{BeamFormingAlloc}” f i l e s=”{Ca l i b ra t i onCor r e c t i onA l l o c . c}”/>
<proce s s name=” PulseCompress ionAlloc ” node=”0” source s=”{BeamFormingAlloc}”

t a r g e t s=”{DopplerMeasureAlloc}” f i l e s=”{PulseCompress ionAlloc . c}”/>
<proce s s name=” CFAR ProcessingAlloc ” node=”0” source s=”{DopplerMeasureAlloc

}” t a r g e t s=”{}” f i l e s=”{CFAR ProcessingAlloc . c}”/>
<proce s s name=” DopplerMeasureAlloc ” node=”1” source s=”{

PulseCompress ionAlloc}” t a r g e t s=”{CFAR ProcessingAlloc}” f i l e s=”{
DopplerMeasureAlloc . c}”/>

<proce s s name=”BeamFormingAlloc” node=”1” source s=”{
Ca l i b ra t i onCor r e c t i onA l l o c }” t a r g e t s=”{PulseCompress ionAlloc}” f i l e s=”
{BeamFormingAlloc . c}”/>

<proce s s name=”AntennaAlloc ” node=”2” source s=”{Dig i ta lAna logConverte rAl loc
}” t a r g e t s=”{AnalogDig i ta lConverte rAl loc }” f i l e s=”{AntennaAlloc . c}”/>

<proce s s name=” Dig i ta lAna logConverte rAl loc ” node=”2” source s=”{
TransmitterAl loc }” t a r g e t s=”{AntennaAlloc}” f i l e s=”{
Dig i ta lAna logConverte rAl loc . c}”/>

<proce s s name=” AnalogDig i ta lConverte rAl loc ” node=”2” source s=”{AntennaAlloc
}” t a r g e t s=”{Rece ive rA l l oc }” f i l e s=”{AnalogDig i ta lConverte rAl loc . c}”/>

<proce s s name=” TransmitterAl loc ” node=”2” source s=”{}” t a r g e t s=”{
Dig i ta lAna logConverte rAl loc }” f i l e s=”{TransmitterAl loc . c}”/>

</ so f tware>
</ system>

Listing 5.10: NoCGenerator model Sample

5.3.5.3 Generation of Spear model of the BurstProcessing module

Spear is based on the Array-OL semantics; therefore the multidimensional data arrays,
the computations and repetition vectors are natively part of the Spear formalisms.

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION139

Table 5.3: Use Case Activities Coverage

Activities/Tools Rhapsody Modeler Rhapsody/ Cometa Spear DE
UML Specification Yes Yes Yes
(DE) Simulation Yes Yes No
Array-OL Simulation No Yes Yes
Design Space Exploration No No Yes

The semantics models and profile that have been added in Rhapsody by Cometa aim
at providing as many properties as possible related to the Array-OL semantics: first for
a coherent analysis of the models in Rhapsody, then to keep and transform the static
properties through the transformation rules from Rhapsody to Spear. The Cometa
semantic layers and the Spear transformation rules (t6) have allowed the generation
of an intermediate Spear XMI model incorporating these properties (Figure ??-left).
The model is further converted to its equivalent representation in Moml (serialization
format for the Spear tooling).

An extract of the MOML model of the BurstProcessing module is presented in the
right part of Figure ??. The excerpts from the models show automatic integration
of information related to data (Array), the repetition vectors (Loop) and the Compu-
tations. The execution control is assumed by the Scheduler implemented natively in
Spear.

The Spear simulation results also follow the Array-OL possible execution sequences.
In the case of Rhapsody the semantics was not natively defined and was incorporated
thanks to the use of the Cometa libraries. The properties used for simulation were then
transformed into the Spear environment.

5.4 Conclusion

In this chapter, we have tried to describe the impact of the use of Cometa on a tool chain
towards several activities (mainly specification, simulation and code synthesis). The
use case allows the needs to be explained in terms of expression of semantics which often
disappear during model exchanges between tools causing ambiguous interpretation of
the models.

Through this experiment, one can clearly see that semantics’ management through
a design tool chain is tedious and requires several intermediate steps to express the
semantics. Omitting these semantics may end up in inconsistent model exchanges.
Hopefully, our experiment shows that it is possible to integrate heterogeneous mod-
els’ semantics in tools such as Rhapsody in order to foster the coherent analysis of
semantically rich models.

In our example, Table 5.3 shows a subset of the activities (first column) that high-
light the positioning and contribution of Cometa for interoperability and preservation
of semantics in different design processes, especially between the MDE tool oriented
SLM and the formal design tools. For example, in the second column, Rhapsody offers
support for the UML specification and simulation of models based on discrete events.

However, the MoC (e.g. Array-OL) based semantic properties are not natively
present in the UML Modeler. Therefore, they cannot be simulated correctly, which
reduces the consistency and reliability of the models during the exchanges between
tools. Cometa contributes to this specific concern, using the relationship between

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION140

Figure 5.24: Generated Intermediate representations of the Spear XMI (left) and Spear
MOML (right) Radar models

CHAPTER 5. SEMANTICS INTEROPERABILITY AND EXPERIMENTATION141

semantic domains to establish compliance detection and to provide semantics’ capture
when compliance is proven.

6
Conclusions and Perspectives

Contents

6.1 Conclusions . 143

6.2 Perspectives . 144

6.2.1 Definition of an Execution Engine 144

6.2.2 From Denotational semantics to formal MoC model description 145

6.2.3 Differential Equation Description 146

142

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 143

In this part we present the conclusions and perspectives of our research. We will
synthesize our critical opinion on the obtained results in the next two sections.

6.1 Conclusions

The definition of tool chains for complex and heterogeneous embedded systems is a
major challenge which requires the taking into account of several issues which are the
creeds of several research communities.

The heterogeneity of the systems is measured by the number of design paradigms
and the number of engineering domains combining different execution models, models
of communication and scheduling mechanisms (synchronous, asynchronous, directed
data flow, timed, etc).

In the design steps, these constraints can be assimilated to semantic constraints and
must be taken into account throughout the development process and especially during
the exchange of models between tools for design, analysis and refinement. In this thesis,
we try to bring some responses aiming precisely to correct the loss of semantics during
the above mentioned phases.

The thesis allowed contributions to be implemented in the context of the description
of tool chains, analysis and semantics’ preservation of heterogeneous models. The
results presented are evidence of accomplished objectives at least on the description
and preservation of the semantics of exchanged models in a design flow.

The semantics which were available only in dedicated tools could now be expressed
and even analyzed in environments natively implementing a different semantics. This
paves the way for the integration of new design tools in tool chains and to use semantic
adjustments that can be provided in the form of MoC semantics’ libraries.

From this point of view, the results are satisfying, even though there are many
points open to discussion and improvement, which will be certainly addressed in coming
development or in the context of other projects such as GEMOC.

For the preservation of the semantics of models, we could show through the exper-
imentation results in Section 5.3 that it is possible under certain conditions to capture
the missing semantics and re-inject them into models to provide a consistent analysis
of executable models and their refinement in different environments.

The methodological steps for identifying the MoCs and their compatibility partly
meet Aim 1. The specification of the missing semantics and the demonstration of the
semantics’ preservation complete the rest of Aim 1 allowing us to conclude that the
proposed technique is a possible and formal solution.

Through the experimentation of the Radar application, the properties related to
the semantics of this type of model were captured and reflected in several tools that
implement different semantics thus addressing the second target Aim 2.

In General, we have shown that the semantic questions, usually hardly addressed
by integration tool environments or left at the discretion of designers, can be treated
generically by a methodological approach focused on the preservation of the semantics.

With the definition of the MoC operational semantics using Event-based FSMs, we
offer executability to the MoC models thus promoting their use for execution control
during the analysis by simulation phases. Furthermore, the experiments helped show
that it was possible to represent semantics such as CSP, KPN, SDF, Array-OL with
the Cometa DSML.

This ability to express the properties related to the semantics of models in an
executable way also opens up the possibility of using strong value added tools such as

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 144

the model-checking tools that manipulate formalisms such as FSMs, PetriNets, etc.
Similarly, when the homogeneous execution semantics of an analysis tool is known,

our solution allows MoC models to be imported that offer the ability to express hetero-
geneous semantics that natively was not implemented in the tool. Several experiments
have been conducted on use cases with satisfactory results in terms of semantics preser-
vation.

The DSML formalization gives a new dimension to the Cometa approach, since it
makes it possible to formally demonstrate the conformity of the MoC model’s opera-
tional description to the execution properties that constitute their foundation.

The approach has nevertheless some points to improve that we will present in the
perspective. The shortcomings of the approach include: the lack of proper execution
engine for the Cometa Modeler. For the moment, this failure is not annoying since the
implemented models are exclusively reused in a context of tool chains where the source
and target tools are supposed to have exploitable execution engines. The other difficulty
for the use of the approach is related to the MoC theory i.e. the necessary efforts of MoC
learning to be able to identify, represent and compare them. To preserve the semantics,
this step is mandatory. Finally, our approach does not express MoC semantics based
on differential equations at the time.

6.2 Perspectives

The perspectives are divided into three points that we detail in the remainder of this
section.

6.2.1 Definition of an Execution Engine

The definition of an execution engine would make the Cometa Modeler usable for
analysis and simulation regardless of any simulation or analysis tool. Since different
heterogeneous semantics are expressed using the same uniform description format based
on Event-Based FSMs, the execution engine must allow the interpretation of the se-
mantics of this formalism. The operational rules defined in section 4.2.4 can help for
this purpose.

One of the objectives in the ANR GEMOC project is to define an execution engine
for a MoC DSML combining CCSL and Cometa. Indeed, the project has a package
dedicated to the description of a MoC description language reusable for the execution
control of various models (that conform to various DSL and DSML). The language in
question will consist in a merger of the CCSL and Cometa DSML providing a unique
and formal language to describe executable and heterogeneous MoCs (e.g. synchronous,
asynchronous, or timed). The above Diagram 6.1 shows the conceptual vision of the
GEMOC approach with the positioning of Cometa.

In order to provide an execution engine for the Cometa Modeler, a Model Explorer
(NEMO) is currently being developed. The NEMO engine aims at calculating all
possible execution paths for a component based system that integrate FSMs. NEMO
Explorer permits the construction of the execution graph corresponding to all the states
and transitions resulting from the combination of the Cometa MoC model and the
system application models. Each path of the graph represents a possible execution
sequence. The implemented solution will probably be part of the contributions in the
GEMOC project.

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 145

Figure 6.1: Positioning Cometa in the GEMOC Approach

Besides, the use of NEMO opens the door to the use of tools to perform model-
checking activities where execution properties will be observed on the enriched system
model. The observation of property patterns can lead to the identification of implicit
MoC implementations.

6.2.2 From Denotational semantics to formal MoC model description

When we did the state of the art on the MoC theory, we could observe that all the ma-
nipulated MoCs have a mathematical formalization (denotational representation). In
the design and analysis tools, such formal semantics are expressed in the form of opera-
tional implementations. In our case, we have captured them in the form of Event-based
FSMs but manually. The idea of this perspective is to ensure the automatic transla-
tion from the denotational MoC representation to operational representations using
the Cometa FSMs. Even if several works have addressed the passage of denotational
semantics to operational semantics, their relation to MoC theory is not yet established.

Since the denotational descriptions are more abstract than the operational, the MoC
models could then be expressed directly in the form of mathematical models more easily
handled and related to MoC specifications. When it is necessary that these models are
expressed for analysis or dynamic specification then automatic transformation will allow
the translation from one formalism to another.

Accomplishing such translation would require the consideration of a fixed set of
symbols to express a denotational semantics on mathematical basis. The mathematical
language should be flexible enough to express most of the formal MoCs.

Afterwards, the difficult part involves the specification of translation rules from
mathematical representation to FSM models knowing that all the semantics might not
be expressed in the form of FSMs.

This allows us to switch on the last perspective which addresses the expression of
untreated MoC families.

CHAPTER 6. CONCLUSIONS AND PERSPECTIVES 146

6.2.3 Differential Equation Description

The expression of semantics based on differential equations is one of the limitations
of Cometa. That would mean, in a sense, the extension of the Cometa DSML to
add the description of concepts to express ODE or ADE formalism. Consequently, we
should also give their associated operational semantics, their composition semantics
with the other parts of the DSML using FSMs. This task is very difficult and we did
not spend time on this aspect. A second solution would be to consider the modules
described with ODE semantics as black-boxes where the I/O exchanges are captured
and adapted according to the external semantics around the modules.

Bibliography

[1] Thomas Abdoul, Joel Champeau, Philippe Dhaussy, P-Y Pillain, and J Roger.
Aadl execution semantics transformation for formal verification. In Engineering
of Complex Computer Systems, 2008. ICECCS 2008. 13th IEEE International
Conference on, pages 263–268. IEEE, 2008.

[2] Luca Aceto, Wan Fokkink, and Chris Verhoef. Structural operational semantics.
In Handbook of Process Algebra, pages 197–292. Elsevier, 1999.

[3] Jörg Ackermann and Klaus Turowski. A library of ocl specification patterns
for behavioral specification of software components. In Eric Dubois and Klaus
Pohl, editors, Advanced Information Systems Engineering, volume 4001 of Lecture
Notes in Computer Science, pages 255–269. Springer Berlin Heidelberg, 2006.

[4] Altera. Avalon interface specifications. http://www.altera.com/literature/

manual/mnl_avalon_spec.pdf.

[5] Charles André. Syntax and Semantics of the Clock Constraint Specification Lan-
guage (CCSL). Rapport de recherche RR-6925, INRIA, 2009.

[6] Charles André, Frédéric Mallet, and Robert De Simone. Time Modeling in
MARTE. In ECSI Forum on specification & Design Languages (FDL), pages 268–
273, Barcelona, Espagne, 2007. ECSI, ECSI. The original publication is available
at http://www.ecsi-association.org/ecsi/main.asp?l1=library&fn=def&id=268.

[7] W R Ashby. An introduction to cybernetics, volume 16 of University Paperbacks.
Chapman & Hall, 1956.

[8] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli. Metropolis: an integrated electronic system design
environment. Computer, 36(4), 2003.

[9] Henk Barendregt and Erik Barendsen. Introduction to Lambda Calculus. Nieuw
archief voor wisenkunde, 4(March):337–372, 2000.

[10] A Benveniste and G Berry. The synchronous approach to reactive and real-time
systems, 1991.

147

BIBLIOGRAPHY 148

[11] Albert Benveniste, Paul Le Guernic, and Christian Jacquemot. Synchronous
programming with events and relations: the signal language and its semantics.
Sci. Comput. Program., 16(2):103–149, 1991.

[12] Olivier Berger, Sabri Labbene, Madhumita Dhar, and Christian Bac. Introducing
OSLC, an open standard for interoperability of open source development tools.
In ICSSEA, pages ISSN–0295–6322, Paris, France, 2011. FUI.

[13] G. Berry, P. Couronne, and G. Gonthier. Synchronous programming of reactive
systems: an introduction to esterel. In Proceedings of the first Franco-Japanese
Symposium on Programming of future generation computers, pages 35–56, Ams-
terdam, The Netherlands, The Netherlands, 1988. Elsevier Science Publishers B.
V.

[14] Gérard Berry and Georges Gonthier. The esterel synchronous programming lan-
guage: Design, semantics, implementation. Sci. Comput. Program., 19(2):87–152,
November 1992.

[15] Ludwig Von Bertalanffy. General System Theory: Foundations, Development,
Applications, volume 21. George Braziller, 1969.

[16] Jean Bézivin. Model engineering for software modernization. In WCRE, page 4,
2004.

[17] Jean Bézivin and Olivier Gerbé. Towards a precise definition of the omg/mda
framework. In Proceedings of the 16th IEEE International Conference on Auto-
mated Software Engineering, ASE ’01, pages 273–, Washington, DC, USA, 2001.
IEEE Computer Society.

[18] T Bollaert. Catapult synthesis: a practical introduction to interactive C synthesis.
In High-Level Synthesis from Algorithm to Digital Circuit, pages 29–52. Springer
Verlag, 2008.

[19] Frédéric Boulanger and Cécile Hardebolle. Simulation of Multi-Formalism Models
with Modhel’X. In ICST ’08: Proceedings of the 2008 International Conference
on Software Testing, Verification, and Validation, pages 318–327, Washington,
DC, USA, 2008. IEEE Computer Society.

[20] Pierre Boulet. Array-OL Revisited, Multidimensional Intensive Signal Processing
Specification. Rapport de recherche RR-6113, INRIA, 2007.

[21] Franz-Josef Brandenburg, Guy Vidal-Naquet, and Martin Wirsing, editors.
STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer Science,
Passau, Germany, February 19-21, 1987, Proceedings, volume 247 of Lecture
Notes in Computer Science. Springer, 1987.

[22] Tim Bray, J Paoli, and CM Sperberg-McQueen. Extensible Markup Language
(XML), 2000.

[23] L.B. Brisolara, M.F.S. Oliveira, R. Redin, L.C. Lamb, and F. Wagner. Using
UML as Front-end for Heterogeneous Software Code Generation Strategies. 2008
Design, Automation and Test in Europe, 2008.

[24] Allan R Broadhurst and Donald K Darnell. An Introduction to Cybernetics and
Information Theory. Quarterly Journal of Speech, 51(4):442–453, 1965.

BIBLIOGRAPHY 149

[25] Manfred Broy. Towards a formal foundation of the specification and description
language SDL, 1991.

[26] Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. Ptolemy:
a framework for simulating and prototyping heterogeneous systems. IEEE,
10:527–543, 2002.

[27] Frank Budinsky. Eclipse modeling framework: a developer’s guide. Addison-
Wesley Professional, 2004.

[28] Ravi Budruk, Don Anderson, and Ed Solari. PCI Express System Architecture.
Pearson Education, 2003.

[29] David Byrne. Complexity theory and the social sciences: an introduction, vol-
ume 67. Routledge, 1998.

[30] Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring
infrastructure for domain-specific modeling languages. In Proceedings of the 5th
ACM International Conference on Embedded Software, EMSOFT ’05, pages 35–
43, New York, NY, USA, 2005. ACM.

[31] Michael J Chen and Edward A Lee. Design and implementation of a multidimen-
sional synchronous dataflow environment. In Signals, Systems and Computers,
1994. 1994 Conference Record of the Twenty-Eighth Asilomar Conference on,
volume 1, pages 519–524. IEEE, 1994.

[32] Patrick Cousot. Methods and logics for proving programs. In Handbook of The-
oretical Computer Science, Volume B: Formal Models and Sematics (B), pages
841–994. 1990.

[33] Arnaud Cuccuru, Chokri Mraidha, Franois Terrier, and Sbastien Grard. Enhanc-
ing UML Extensions with Operational Semantics. In Model Driven Engineering
Languages & Systems (MoDELS), pages 271–285, 2007.

[34] Krzysztof Czarnecki and Simon Helsen. Classification of model transformation
approaches. In Proceedings of the 2nd OOPSLA Workshop on Generative Tech-
niques in the Context of the Model Driven Architecture, volume 45, pages 1–17,
2003.

[35] Julien DeAntoni and Frédéric Mallet. Timesquare: Treat your models with logical
time. In Objects, Models, Components, Patterns, pages 34–41. Springer, 2012.

[36] D. Densmore and R. Passerone. A Platform-Based Taxonomy for ESL Design.
IEEE Design & Test of Computers, 23(5), 2006.

[37] Davide Di Ruscio, Frédéric Jouault, Ivan Kurtev, Jean Bézivin, and Alfonso
Pierantonio. Extending AMMA for Supporting Dynamic Semantics Specifications
of DSLs. RR 06.02 RR 06.02.

[38] Papa Issa Diallo, Jo”el Champeau, and Lo”ic Lagadec. A Model-Driven Ap-
proach to Enhance Tool Interoperability using the Theory of Models of Compu-
tation. In Richard F. Paige Martin Erwig and Eric van Wyk, editors, 6th In-
ternational Conference on Software Language Engineering (SLE 2013), Lecture
Notes in Computer Science, Indianapolis, ’Etats-Unis, 2013. Springer-Verlag.

BIBLIOGRAPHY 150

[39] Rainer Dömer, Andreas Gerstlauer, Junyu Peng, Dongwan Shin, Lukai Cai,
Haobo Yu, Samar Abdi, and Daniel D. Gajski. System-on-chip environment: A
specc-based framework for heterogeneous mpsoc design. EURASIP J. Embedded
Syst., 2008:5:1–5:13, January 2008.

[40] Cormac Driver, Sean Reilly, Éamonn Linehan, Vinny Cahill, and Siobhán Clarke.
Managing embedded systems complexity with aspect-oriented model-driven en-
gineering, 2010.

[41] Inc Eclipse Foundation. About the Eclipse Foundation, 2010.

[42] Stephen Anthony Edwards, Stephen Anthony Edwards, and Stephen Anthony
Edwards. The specification and execution of heterogeneous synchronous reactive
systems. Technical report, University of California, Berkeley, 1997.

[43] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Sonia Sachs, and Yuhong Xiong. Taming heterogeneity - the ptolemy approach.
Proceedings of the IEEE, 91(1):127–144, January 2003.

[44] Johan Eker, Jorn Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Sonia Sachs, Yuhong Xiong, and Stephen Neuendorffer. Taming heterogeneity -
the ptolemy approach. Proceedings of the IEEE, 91(1):127–144, 2003.

[45] Cagkan Erbas, Andy D. Pimentel, Mark Thompson, and Simon Polstra. A frame-
work for system-level modeling and simulation of embedded systems architec-
tures. EURASIP J. Emb. Sys., 2007, 2007.

[46] Rik Eshuis and Roel Wieringa. A real-time execution semantics for uml activity
diagrams. In Heinrich Hussmann, editor, Fundamental Approaches to Software
Engineering, volume 2029 of Lecture Notes in Computer Science, pages 76–90.
Springer Berlin Heidelberg, 2001.

[47] Jean-Marie Favre. Foundations of meta-pyramids: Languages vs. metamodels-
episode ii: Story of thotus the baboon1. Language Engineering for Model-Driven
Software Development, 4101, 2004.

[48] Jean-Marie Favre. Foundations of Model (driven) (Reverse) Engineering - Episode
I: Story of the Fidus Papyrus and the Solarus. In postproceedings of Dagsthul
Seminar on Model Driven Reverse Engineering, 2004.

[49] Jean-Marie Favre. Towards a Basic Theory to Model Model Driven Engineering.
In 3rd Workshop in Software Model Engineering WiSME, volume 1, pages 262–
271. Citeseer, 2004.

[50] Peter H. Feiler, David P. Gluch, and John J. Hudak. The architecture analysis
& design language (AADL): An introduction. Technical Report CMU/SEI-2006-
TN-011, Software Engineering Institute, Carnegie Mellon University, 2006.

[51] Alberto Ferrari. An Overview of (Electronic) System Level Design: beyond
hardware-software co-design. http://www.sti.uniurb.it/events/sfm06hv/

slides/Ferrari.pdf.

[52] Marcelo P. Fiore, Achim Jung, Eugenio Moggi, Peter O’Hearn, Jon Riecke,
Giuseppe Rosolini, and Ian Stark. Domains and Denotational Semantics: History,

BIBLIOGRAPHY 151

Accomplishments and Open Problems. Bulletin of the European Association for
Theoretical Computer Science, 59:227–256, 1996.

[53] R W Floyd. Assigning meanings to programs. Mathematical aspects of computer
science, 19(19-32):19–32, 1967.

[54] The International Technology Roadmap for Semiconductors. 2007 edition. Tech-
nical report, ITRS, 2007.

[55] Daniel D. Gajski, Nikil D. Dutt, Allen C.-H. Wu, and Steve Y.-L. Lin. High-level
synthesis: introduction to chip and system design. Kluwer Academic Publishers,
Norwell, MA, USA, 1992.

[56] D.D. Gajski, A.C.-H. Wu, V. Chaiyakul, S. Mori, T. Nukiyama, and P. Bricaud.
Essential issues for IP reuse. Proceedings 2000. Design Automation Conference.
(IEEE Cat. No.00CH37106), 2000.

[57] David Garlan, Robert Monroe, and David Wile. Acme: an architecture de-
scription interchange language. In CASCON First Decade High Impact Papers,
CASCON ’10, pages 159–173, Riverton, NJ, USA, 2010. IBM Corp.

[58] Sebastien Gerard, Jean-Philippe Babau, and Joel Champeau. Model Driven En-
gineering for Distributed Real-Time Embedded Systems. Wiley-IEEE Press, 2010.

[59] Sébastien Gérard, Cédric Dumoulin, Patrick Tessier, and Bran Selic. Papyrus:
A UML2 Tool for Domain-Specific Language Modeling. In Holger Giese, Gabor
Karsai, Edward Lee, Bernhard Rumpe, and Bernhard Schätz, editors, Model-
Based Engineering of Embedded Real-Time Systems, volume 6100 of Lecture Notes
in Computer Science, pages 361–368. Springer Berlin / Heidelberg, 2011.

[60] Andreas Gerstlauer, Christian Haubelt, Andy D. Pimentel, Todor Stefanov,
Daniel D. Gajski, and Jürgen Teich. Electronic system-level synthesis methodolo-
gies. IEEE Trans. on CAD of Integrated Circuits and Systems, 28(10):1517–1530,
2009.

[61] F. Ghenassia. Transaction level modeling with systemc: Tlm concepts and appli-
cations for embedded systems. Springer Verlag, 2005.

[62] Antoon Goderis, Christopher Brooks, Ilkay Altintas, Edward A. Lee, and Carol
Goble. Heterogeneous composition of models of computation. Technical Report
UCB/EECS-2007-139, EECS Department, University of California, Berkeley, Nov
2007.

[63] Mudit Goel. Process networks in Ptolemy II. PhD thesis, UNIVERSITY of
CALIFORNIA, 1998.

[64] Martin Gogolla, Fabian Büttner, and Mark Richters. Use: A uml-based spec-
ification environment for validating {UML} and {OCL}. Science of Computer
Programming, 69(13):27 – 34, 2007. Special issue on Experimental Software and
Toolkits.

[65] Ananth Grama, Anshul Gupta, George Karypis, and Vipin Kumar. Introduction
to Parallel Computing; 2nd Edition. Search, page 856, 2003.

BIBLIOGRAPHY 152

[66] Matthias Gries and Kurt Keutzer. Building ASIPs: The Mescal Methodology.
Springer Publishing Company, Incorporated, 1st edition, 2010.

[67] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: portable parallel
programming with the message-passing interface, volume 1. MIT press, 1999.

[68] T. Grötker, S. Liao, G. Martin, and S. Swan. System design with SystemC. Kluwer
Academic Pub, 2002.

[69] Carl A Gunter, Peter D Mosses, and Dana S Scott. Semantic domains and
denotational semantics. Technical report, DTIC Document, 1989.

[70] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous dataflow
programming language lustre. In Proceedings of the IEEE, pages 1305–1320, 1991.

[71] D. Harel and A. Pnueli. Logics and models of concurrent systems. chapter On
the development of reactive systems, pages 477–498. Springer-Verlag New York,
Inc., New York, NY, USA, 1985.

[72] David Harel and Bernhard Rumpe. Meaningful modeling: What’s the semantics
of ”semantics”? Computer, 37(10):64–72, October 2004.

[73] M Hause. The SysML Modelling Language. Fifteenth European Systems Engi-
neering Conference, 9(September), 2006.

[74] David Hearnden, Michael Lawley, and Kerry Raymond. Model Driven Engineer-
ing Languages and Systems. In Oscar Nierstrasz, Jon Whittle, David Harel,
and Gianna Reggio, editors, Proceedings of the 9th international conference on
Model Driven Engineering Languages and Systems - MoDELS’06, volume 4199 of
Lecture Notes in Computer Science, pages 321–335. Springer Berlin Heidelberg,
2006.

[75] Christian Hein, Tom Ritter, and Michael Wagner. Model-Driven Tool Integration
with ModelBus. Workshop Future Trends of ModelDriven Development, pages
35–39, 2009.

[76] Thomas A Henzinger and Joseph Sifakis. The Embedded Systems Design Chal-
lenge. Foundations, 4085:1–15, 2006.

[77] F. Herrera and E. Villar. A framework for embedded system specification un-
der different models of computation in SystemC. 2006 43rd ACM/IEEE Design
Automation Conference, 2006.

[78] F Herrera, E Villar, C Grimm, M Damm, and J Haase. Heterogeneous Spec-
ification with HetSC and SystemC-AMS : Widening the Support of MoCs in
SystemC. In Eugenio Villar, editor, Embedded Systems Specification and Design
Languages, chapter 8. Springer Netherlands, 2008.

[79] Fernando Herrera, Pablo Sánchez, and Eugenio Villar. Modeling of csp, kpn and
sr systems with systemc. pages 133–148, 2004.

[80] Fernando Herrera and Eugenio Villar. A framework for heterogeneous specifica-
tion and design of electronic embedded systems in systemc. ACM Trans. Des.
Autom. Electron. Syst., 12:22:1–22:31, May 2008.

BIBLIOGRAPHY 153

[81] C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[82] C. A. R. Hoare. Communicating sequential processes, 1978.

[83] John E. Hopcroft. Introduction to Automata Theory, Languages, and Computa-
tion. Pearson Addison Wesley, 3rd edition, 2007.

[84] Gérald Huet. An algorithm to generate the basis of solutions to homogeneous
linear diophantine equations. Information Processing Letters, 7(3):144–147, 1978.

[85] IBM Telelogic. Rational Rhapsody UML modeler. http://www.telelogic.com/
products/rhapsody/index.cfm.

[86] iFEST ARTEMIS Joint Undertaking (JU). Industrial Framework for Embedded
Systems Tools. http://www.artemis-ifest.eu/.

[87] Axel Jantsch. Modeling Embedded Systems and SoCs - Concurrency and Time in
Models of Computation. Systems on Silicon. Morgan Kaufmann Publishers, June
2003.

[88] Axel Jantsch. Models of embedded computation. In Richard Zurawski, editor,
Embedded Systems Handbook. CRC Press, 2005. Invited contribution.

[89] Axel Jantsch and Ingo Sander. Models of computation in the design process.
System-on-Chip, page 161, 2005.

[90] Tor Jeremiassen, Grant Martin, Tim Kogel, Adam Donlin, Andres Takach, and
Karam Chatha. From ESL 2010 to ESL 2015. 2010 IEEE/ACM/IFIP In-
ternational Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS), pages 61–62, 2010.

[91] Jean-Marc Jézéquel, Olivier Barais, and Franck Fleurey. Model driven language
engineering with kermeta. In Proceedings of the 3rd international summer school
conference on Generative and transformational techniques in software engineering
III, GTTSE’09, pages 201–221, Berlin, Heidelberg, 2011. Springer-Verlag.

[92] Jean-Marc J’ez’equel, Benoit Combemale, and Didier Vojtisek. Ing’enierie
Dirig’ee par les Mod‘eles : des concepts ‘a la pratique... R’ef’erences sciences.
Ellipses, February 2012.

[93] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances in
dataflow programming languages. ACM Comput. Surv., 36(1):1–34, March 2004.

[94] Frédéric Jouault and Ivan Kurtev. Transforming models with atl. In Satellite
Events at the MoDELS 2005 Conference, pages 128–138. Springer, 2006.

[95] CESAR ARTEMIS Joint Undertaking (JU). Cost-efficient methods and processes
for safety relevant embedded systems. http://www.cesarproject.eu/.

[96] G. Kahn. The Semantics of a Simple Language for Parallel Programming. In J. L.
Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP Congress,
pages 471–475. North-Holland, New York, NY, 1974.

[97] S Karris. Introduction to Simulink R© with engineering applications. In Mathe-
matics, page 572. Orchard Publications, 2006.

BIBLIOGRAPHY 154

[98] Shirl Kennedy. Resource Description Framework (RDF). Computers in Libraries,
24(2):27, 2004.

[99] Birman Kenneth. The Common Object Request Broker Architecture. Guide to
Reliable Distrubuted System, Springer London, pages 249–269, 2012.

[100] Brian W Kernighan and Dennis M Ritchie. The C programming language, vol-
ume 78. Prentice Hall, 1988.

[101] K Keutzer, S Malik, R Newton, and J Rabaey. System Level Design : Orthogo-
nalization of Concerns and Platform-Based Design. 19(12), 2000.

[102] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented
Programming. ACM Computing Surveys, 28(June):220–242, 1997.

[103] Bart Kienhuis, EdF. Deprettere, Pieter Wolf, and Kees Vissers. A methodology
to design programmable embedded systems. In EdF. Deprettere, Jürgen Teich,
and Stamatis Vassiliadis, editors, Embedded Processor Design Challenges, vol-
ume 2268 of Lecture Notes in Computer Science, pages 18–37. Springer Berlin
Heidelberg, 2002.

[104] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model
Driven Architecture: Practice and Promise, volume 83 of Object Technology Se-
ries. Addison-Wesley, 2003.

[105] Tim Kogel, Malte Doerper, Torsten Kempf, Andreas Wieferink, Rainer Leupers,
and Heinrich Meyr. Virtual architecture mapping: a systemc based methodology
for architectural exploration of system-on-chips. IJES, 3(3):150–159, 2008.

[106] Ali Koudri, Joël Champeau, Jean-Christophe Le Lann, and Vincent Leilde. Mop-
com methodology: Focus on models of computation. In Proceedings of the 6th
European Conference on Modelling Foundations and Applications, ECMFA’10,
pages 189–200, Berlin, Heidelberg, 2010. Springer-Verlag.

[107] G. Kramler, G. Kappel, T. Reiter, E. Kapsammer, W. Retschitzegger, and
W. Schwinger. Towards a semantic infrastructure supporting model-based tool
integration. In Proceedings of the 2006 international workshop on Global inte-
grated model management, GaMMa ’06, pages 43–46, New York, NY, USA, 2006.
ACM.

[108] Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien Ger-
ard, Patrick Tessier, Remi Schnekenburger, Hubert Dubois, and François Terrier.
Papyrus uml: an open source toolset for mda. In Richard F. Paige, A. Hartman,
and Arend Rensink, editors, ECMDA-FA 09: Model driven architecture - foun-
dations and applications: 5th European conference, ECMDA-FA 2009, Enschede,
the Netherlands, June 23-26, 2009 ; proceedings, volume 5562 of Lecture Notes
in Computer Science, page 14, Berlin and New York, 2009. Springer.

[109] Diego Latella, Istvan Majzik, and Mieke Massink. Towards a formal operational
semantics of uml statechart diagrams. In Formal Methods for Open Object-Based
Distributed Systems, pages 331–347. Springer, 1999.

BIBLIOGRAPHY 155

[110] Jiŕı Lebl. Ordinary differential equations. Methods in molecular biology (Clifton,
N.J.), 930(January):475–98, 2013.

[111] Henry Ledgard. Reference Manual for the ADA Programming Language.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1983.

[112] Edward A Lee. Finite State Machines and Modal Models in Ptolemy II. Technical
report, University of California at Berkeley, 2009.

[113] Edward A. Lee and David G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75:1235–1245, September 1987.

[114] Edward A Lee and Thomas M Parks. Dataflow process networks. Proceedings of
the IEEE, 83(5):773–801, 1995.

[115] Edward A Lee and Alberto Sangiovanni-Vincentelli. A framework for compar-
ing models of computation. Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, 17(12):1217–1229, 1998.

[116] E Lenormand and G Edelin. An Industrial Perspective : A pragmatic High end
Signal processing Design Environment at Thales, 2003.

[117] Harry R. Lewis and Christos H. Papadimitriou. Elements of the Theory of Com-
putation. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2nd edition, 1997.

[118] P. Liggesmeyer and M. Trapp. Trends in Embedded Software Engineering. IEEE
Software, 26(3), 2009.

[119] Jane W. S. W. Liu. Real-Time Systems. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 2000.

[120] Jie Liu. Continuous time and mixed-signal simulation in ptolemy ii. Technical
report, Dept. of EECS, University of California, Berkeley, CA, 1998.

[121] Jie Liu, Xiaojun Liu, and Edward A. Lee. Modeling distributed hybrid systems
in Ptolemy ii. In In Proceedings of the American Control Conference, pages
4984–4985, 2001.

[122] Marc Lobelle. VME bus interfacing: A case study, 1983.

[123] Janne Luoma, Steven Kelly, and Juha pekka Tolvanen. Defining domain-specific
modeling languages: Collected experiences. In In Proceedings of the 4th OOPSLA
Workshop on Domain-Specific Modeling (DSM04, 2004.

[124] Jean marie Favre. Towards a basic theory to model model driven engineering. In
In Proc. of the UML2004 Int. Workshop on Software Model Engineering, 2004.

[125] Simon Marlow. Haskell 2010 Language Report. Language, page 329, 2010.

[126] Grant Martin. Overview of the mpsoc design challenge. In Proceedings of the 43rd
Annual Design Automation Conference, DAC ’06, pages 274–279, New York, NY,
USA, 2006. ACM.

[127] Grant Martin, Brian Bailey, and Andrew Piziali. ESL Design and Verification: A
Prescription for Electronic System Level Methodology. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2007.

BIBLIOGRAPHY 156

[128] Grant Martin and Gary Smith. High-Level Synthesis: Past, Present, and Future.
IEEE Design & Test of Computers, 26(4):18–25, 2009.

[129] ARTEMIS Project MBAT. Combined Model-based Analysis and Testing of Em-
bedded Systems. https://www.mbat-artemis.eu/home/.

[130] Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame-
work for software architecture description languages. IEEE Trans. Softw. Eng.,
26(1):70–93, January 2000.

[131] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. Model-Driven Ar-
chitecture. In Jean-Michel Bruel and Zohra Bellahsene, editors, Advances in
Object-Oriented Information Systems, volume 2426 of Lecture Notes in Computer
Science, pages 290–297. Springer Berlin Heidelberg, 2002.

[132] StephenJ. Mellor, Stephen Tockey, Rodolphe Arthaud, and Philippe Leblanc.
An action language for uml: Proposal for a precise execution semantics. In
Jean Bézivin and Pierre-Alain Muller, editors, The Unified Modeling Language.
UML98: Beyond the Notation, volume 1618 of Lecture Notes in Computer Sci-
ence, pages 307–318. Springer Berlin Heidelberg, 1999.

[133] Aimé Mokhoo Mbobi, Frédéric Boulanger, and Mohamed Feredj. An Approach of
Flat Heterogeneous Modeling based on Heterogeneous Interface Components. In-
ternational Review on Computers and Software (IRECOS), 2(2):179–189, March
2007.

[134] Wolfgang Mueller, Rainer Dömer, and Andreas Gerstlauer. The formal execu-
tion semantics of specc. In IN PROCEEDINGS OF THE INTERNATIONAL
SYMPOSIUM ON SYSTEM SYNTHESIS, 2002.

[135] Lukito Muliadi. Discrete event modeling in Ptolemy II. Master’s report, Dept.
of EECS, University of California, Berkeley, CA, 1999.

[136] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving ex-
ecutability into object-oriented meta-languages. In Proc. of MODELS/UML,
LNCS, Montego Bay, Jamaica, 2005. Springer.

[137] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe, William Piers, Cédric
Brun, Laurent Goubet, Yvan Lussaud, and Freddy Allilaire. Acceleo user guide,
2006.

[138] R. Nikhil. Bluespec System Verilog: efficient, correct RTL from high level specifi-
cations. Proceedings. Second ACM and IEEE International Conference on Formal
Methods and Models for Co-Design, 2004. MEMOCODE ’04., 2004.

[139] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zis-
sulescu, and E. Deprettere. Daedalus: Toward composable multimedia MP-SoC
design. 2008 45th ACM/IEEE Design Automation Conference, 2008.

[140] O M G Document Number and Superstructure Associated Files. OMG Unified
Modeling Language TM (OMG UML), Superstructure. InformatikSpektrum,
21:758, 2010.

BIBLIOGRAPHY 157

[141] Roman Obermaisser, Christian El Salloum, Bernhard Huber, and Hermann
Kopetz. Modeling and verification of distributed real-time systems using periodic
finite state machines. Comput. Syst. Sci. Eng., 23(4), 2008.

[142] Object Management Group. Meta object facility (MOF) 2.0 core specification.
Technical Report formal/06-01-01, Object Management Group, 2001. OMG
Available Specification.

[143] Object Management Group. Interface definition language, version 2.0. http:

//www.omg.org/gettingstarted/omg_idl.htm, 2003.

[144] Object Management Group. Spem 1.1. Technical Report ptc/05-01-06, Object
Management Group, 2005.

[145] KTH Royal Institute of Technology. Introduction to forsyde. http://www.ict.

kth.se/forsyde/files/tutorial/ar01s03.html.

[146] OMG. Object Management Group. http://www.omg.org/.

[147] OMG. Common Warehouse Metamodel (CWM) Specification Volume 2 . Ex-
tensions, 2001.

[148] OMG. UML Profile for MARTE, Beta 1. http://www.omg.org/omgmarte/

Documents/Specifications/08-06-09.pdf, 2007.

[149] OMG. XML Metadata Interchange (XMI). OMG, 2007.

[150] OMG. Mofm2t 1.0. http://www.omg.org/spec/MOFM2T/1.0/, 2012.

[151] Object Management Group OMG. Mof 2.0 core final adopted specification. http:
//www.omg.org/cgi-bin/doc?ptc/03-10-04, 2004.

[152] Object Management Group OMG. Spt 1.1 uml profile for schedulability, perfor-
mance, and time. http://www.omg.org/spec/SPTP/, 2005.

[153] Object Management Group OMG. OCL : Object Constraint Language. Language,
36:1–11, 2012.

[154] Object Management Group OMG. Alf 1.0.1 action language for foundational uml
(alf). http://www.omg.org/spec/ALF/, 2013.

[155] Object Management Group OMG. fuml 1.1 semantics of a foundational subset
for executable uml models. http://www.omg.org/spec/FUML/, 2013.

[156] Qvt Omg. Meta Object Facility (MOF) 2 . 0 Query / View / Transformation
Specification. Transformation, (January):1–230, 2008.

[157] P.R. Panda. SystemC - a modeling platform supporting multiple design abstrac-
tions. International Symposium on System Synthesis (IEEE Cat. No.01EX526),
2001.

[158] Joann M. Paul, Donald E. Thomas, and Andrew S. Cassidy. High-level modeling
and simulation of single-chip programmable heterogeneous multiprocessors. ACM
Trans. Des. Autom. Electron. Syst., 10(3):431–461, July 2005.

BIBLIOGRAPHY 158

[159] Vincent Perrier. A look inside electronic system level (ESL) design. http://www.
eetimes.com/document.asp?doc_id=1276969.

[160] Douglas L. Perry. VHDL. McGraw-Hill, Inc., New York, NY, USA, 3rd edition,
1998.

[161] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, September
1977.

[162] Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Universität Ham-
burg, 1962.

[163] Andy D. Pimentel, Todor Stefanov, Hristo Nikolov, Mark Thompson, Simon
Polstra, and Ed F. Deprettere. Tool integration and interoperability challenges
of a system-level design flow: A case study. In SAMOS, pages 167–176, 2008.

[164] GD Plotkin. A structural approach to operational semantics. Journal of Logic
and Algebraic Programming, 60-61(January):17–139, 1981.

[165] Gordon D. Plotkin. The origins of structural operational semantics, 2004.

[166] JD Poole. Model-driven architecture: Vision, standards and emerging technolo-
gies. . . . on Metamodeling and Adaptive Object Models . . . , (April):1–15, 2001.

[167] INTERESTED EU Project. Interoperable embedded systems Tool-
chain for enhanced rapid design, prototyping and code generation.
http://www.esterel-technologies.com/news-events/press-releases/

eus-interested-project-concludes-goals-achieved/.

[168] J. Rader, E.J. Morris, and A.W. Brown. An investigation into the state-of-the-
practice of CASE tool integration. 1993 Software Engineering Environments,
1993.

[169] Clemens Reichmann, Markus Kühl, Philipp Graf, and Klaus D. Müller-Glaser.
Generalstore - a case-tool integration platform enabling model level coupling of
heterogeneous designs for embedded electronic systems. In ECBS, pages 225–232.
IEEE Computer Society, 2004.

[170] E. Riccobene, P. Scandurra, A. Rosti, and S. Bocchio. A model-driven design
environment for embedded systems. 2006 43rd ACM/IEEE Design Automation
Conference, 2006.

[171] Scott Rich. Ibm’s jazz integration architecture: building a tools integration ar-
chitecture and community inspired by the web. In Michael Rappa, Paul Jones,
Juliana Freire, and Soumen Chakrabarti, editors, WWW, pages 1379–1382. ACM,
2010.

[172] Mark Richters and Martin Gogolla. OCL: Syntax, Semantics, and Tools. Object
Modeling with the OCL, 2263(July 1997):42–68, 2002.

[173] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

[174] Ingo Sander and Axel Jantsch. System modeling and transformational design
refinement in ForSyDe. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 23(1):17–32, January 2004.

BIBLIOGRAPHY 159

[175] A. Sangiovanni-Vincentelli. Quo Vadis, SLD? Reasoning About the Trends and
Challenges of System Level Design. Proceedings of the IEEE, 95(3), 2007.

[176] Alberto L. Sangiovanni-Vincentelli, Sandeep K. Shukla, Janos Sztipanovits,
Guang Yang, and Deepak Mathaikutty. Metamodeling: An emerging represen-
tation paradigm for system-level design. IEEE Design & Test of Computers,
26(3):54–69, 2009.

[177] Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

[178] Dana Scott and Christopher Strachey. Toward A Mathematical Semantics for
Computer Languages. In Jerome Fox, editor, Proceedings of the Symposium on
Computers and Automata, volume XXI, pages 19–46. Polytechnic Press, 1971.

[179] Dana S. Scott. Domains for denotational semantics. Automata, Languages and
Programming, 140:577–610, 1982.

[180] Sandeep K. Shukla. Model-Driven Engineering and Safety-Critical Embedded
Software, 2009.

[181] Carl Smith. A Recursive Introduction to the Theory of Computation. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1994.

[182] Neil Smyth. Communicating Sequential Processes Domain in Ptolemy II. Elec-
tronics Research Laboratory, College of Engineering, University of California,
1998.

[183] SODIUS. Mdworkbench platform. http://www.mdworkbench.com.

[184] J.A. Stankovic. Misconceptions about real-time computing: a serious problem
for next-generation systems, 1988.

[185] Guy L. Steele and Richard P. Gabriel. The evolution of Lisp, 1993.

[186] Ensta Bretagne STIC-IDM. Mdworkbench transformation rules defined with
cometa. https://gforge.ensieta.ecole/svn/cometa, 2011-2013.

[187] Neil R. Storey. Safety Critical Computer Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1996.

[188] B Stoustrup. The C++ programming language, volume 78. Prentice Hall, 1997.

[189] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer, 30(4),
1997.

[190] Donald E. Thomas and Philip R. Moorby. The VERILOG Hardware Description
Language. Kluwer Academic Publishers, Norwell, MA, USA, 3rd edition, 1996.

[191] I. Thomas and B.A. Nejmeh. Definitions of tool integration for environments.
IEEE Software, 9(2), 1992.

[192] M Timmerman. Embedded Systems: Definitions, Taxonomies, Field, 2007.

[193] Andreas Tolk and James Muguira. The Levels of Conceptual Interoperability
Model. In Fall Simulation Interoperability Workshop, pages 1–9, 2003.

BIBLIOGRAPHY 160

[194] Frank Truyen. The fast guide to model driven architecture: The basics of model
driven architecture. URL: http://www. omg. org/mda/presentations. htm, Jan-
uary, 2006.

[195] A. M. Turing. On computable numbers, with an application to the Entschei-
dungsproblem. 42:230–265, 1936.

[196] A. Vachoux, C. Grimm, and K. Einwich. SystemC-AMS requirements, design ob-
jectives and rationale. 2003 Design, Automation and Test in Europe Conference
and Exhibition, 2003.

[197] Arie van Deursen, Paul Klint, and Joost Visser. Domain-specific languages: An
annotated bibliography. SIGPLAN Not., 35(6):26–36, June 2000.

[198] Dániel Varró and András Pataricza. Metamodeling mathematics: A precise and
visual framework for describing semantics domains of UML models. In Proceedings
of the 5th International Conference on The Unified Modeling Language, UML ’02,
pages 18–33, London, UK, UK, 2002. Springer-Verlag.

[199] Simulink Design Verifier. Simulink R© Verification and Validation . Update, pages
1–16, 2011.

[200] J. Vidal, F. de Lamotte, G. Gogniat, P. Soulard, and J.-P. Diguet. A co-design
approach for embedded system modeling and code generation with UML and
MARTE. 2009 Design, Automation & Test in Europe Conference & Exhibition,
2009.

[201] A.S. Vincentelli and J. Cohn. Platform-based design. IEEE Design e Test,
18(6):23–33, 2001.

[202] Wenguang Wang, Andreas Tolk, and Weiping Wang. The levels of conceptual
interoperability model: Applying systems engineering principles to m&s. In Pro-
ceedings of the 2009 Spring Simulation Multiconference, SpringSim ’09, pages
168:1–168:9, San Diego, CA, USA, 2009. Society for Computer Simulation Inter-
national.

[203] AnthonyI. Wasserman. Tool integration in software engineering environments.
In Fred Long, editor, Software Engineering Environments, volume 467 of Lecture
Notes in Computer Science, pages 137–149. Springer Berlin Heidelberg, 1990.

[204] Stephen A White. Introduction to BPMN. BPTrends, (July):1–11, 2004.

[205] Roel Wieringa. Design Methods for Reactive Systems: Yourdan, Statemate, and
the UML. Morgan Kaufmann Publishers, Boston, 2003.

[206] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-
duction. MIT Press, Cambridge, MA, USA, 1993.

[207] Zhiru Zhang and Deming Chen. Challenges and opportunities of esl design au-
tomation. In Solid-State and Integrated Circuit Technology (ICSICT), 2012 IEEE
11th International Conference on, pages 1–4. IEEE, 2012.

[208] Richard Zurawski, editor. Embedded Systems Handbook. CRC Press, 2005. In-
dustrial Information Technology.

Appendices

161

A
Appendix

162

APPENDIX A. APPENDIX 163

A.1 Metamodel Excerpts

A.1.1 Spear Excerpt

Figure A.1: Excerpt of the Spear Metamodel used for Model Transformation with
Cometa

A.1.2 ForSyDe front-end Metamodel Excerpt

Figure A.2: Excerpt of the ForSyDe Metamodel used for Model Transformation from
Cometa to ForSyDe-SystemC

APPENDIX A. APPENDIX 164

A.1.3 NoC Mapping Metamodel Excerpt

Figure A.3: Excerpt of the Metamodel used for the mapping of SW Processes into HW
Architecture

A.1.4 NoC Generator Metamodel Excerpt

Figure A.4: Excerpt of the Metamodel used for the description of the NoC Generator

APPENDIX A. APPENDIX 165

A.2 Sample of Models

A.2.1 Sample of Mapping Model for the UseCase

MDW: ForSyde BackEnd Mapping Model

<?xml version=” 1.0 ” encoding=”UTF−8”?>
<xmi:XMI xmi :ve r s i on=” 2 .1 ” xmlns:xmi=” ht tp : //schema . omg . org / spec /XMI/2 .1 ” xmlns:mapping=”

ht tp : //www. mdworkbench . com/mapping”>
<mapping:Mapping>
<mapProcess name=” Ca l i b ra t i onCor r e c t i onA l l o c ” toNode=”0”/>
<mapProcess name=” PulseCompress ionAlloc ” toNode=”0”/>
<mapProcess name=” CFAR ProcessingAlloc ” toNode=”0”/>
<mapProcess name=” DopplerMeasureAlloc ” toNode=”1”/>
<mapProcess name=”BeamFormingAlloc” toNode=”1”/>
<mapProcess name=”AntennaAlloc ” toNode=”2”/>
<mapProcess name=” Dig i ta lAna logConverte rAl loc ” toNode=”2”/>
<mapProcess name=” AnalogDig i ta lConverte rAl loc ” toNode=”2”/>
<mapProcess name=” TransmitterAl loc ” toNode=”2”/>

</mapping:Mapping>
<mapping:Repository name=” Repos i tory ” path=”C:/NoC v52/Examples/ENSTA”/>

</xmi:XMI>

Listing A.1: Sample of Mapping Model for the UseCase

Un cadre de définition de la sémantique basée MoC des modèles de systèmes
dans le contexte de l'intégration d'outils

Résumé :

L’utilisation des systèmes embarqués (EmS) connait un essor conséquent dans plusieurs domaines actuels tels que la
téléphonie, l’industrie automobile et l’avionique. Dans ces différents domaines, la croissance des besoins en termes de
fonctionnalités a pour conséquence l’augmentation de la taille et de la complexité des systèmes conçus. Dans ce contexte, les
chaines de conception des systèmes deviennent de plus en plus complexes et requièrent l’utilisation d’outils provenant de
différents domaines d’ingénieries.

L’intégration des paradigmes hétérogènes associés aux outils posent beaucoup de problèmes de fiabilité à l’échange des
modèles entre outils d’une même chaine de conception. Par exemple, dans le cadre des EmS, les outils d’ingénierie dirigés par
les modèles (IDM) ne sont pas acceptés par les communautés de recherches pour la conception formelle d’EmS qui requièrent
des bases solides et formelles de définition des sémantiques d’exécution pour réaliser les activités d’analyses, de validation et
de synthèse des systèmes embarqués. En effet, les outils IDM dédiés aux EmS ne sont à ce jour pas encore suffisamment
matures concernant l’expression et la prise en compte de la sémantique d’exécution formelle mettant explicitement en avant les
modèles de concurrence des systèmes. Par ailleurs, la théorie du calcul est identifiée comme le domaine permettant de décrire
de manière formelle les modèles de concurrences qui sont utilisés pour la description de systèmes embarqués.

La motivation de cette thèse est de mettre en œuvre cette théorie du calcul pour réduire l’écart existant entre différents outils de
conception qui possèdent des sémantiques d’exécution de modèles différentes dans une chaine de conception. La thèse
propose une méthodologie d’identification et de comparaison des sémantiques d’exécution de modèles qui se base sur la
théorie des Modèles de Calcul (MoCs) et leur classification existante, ainsi qu’un langage de capture des sémantiques basées
MoC. Ces dernières sont utilisées pour enrichir les modèles et préserver leur sémantique entre les outils d’une chaine de
conception. Pour illustrer l’utilisation de l’approche, nous avons défini un flot de conception permettant de connecter trois outils
impliqués dans diverses activités du processus “Design & Implementation” (Spécification, Analyse, Exploration de l’espace des
choix de Conception). La chaine d’outils présentée adresse la connexion de l’outil UML Modeler (IBM Rhapsody) (pour la
spécification et l’analyse), Forsyde (cadre de simulation multi-MoC et de synthèse) et Spear (pour l’exploration de l’espace des
choix de Conception et l’analyse). La chaine est appliquée sur un modèle de Radar simplifié fourni comme cas d’utilisation dans
le cadre du projet iFEST.

Mots clés : Ingénierie dirigée par les modèles, sémantique des modèles de calcul, interopérabilité, iFest

A Framework for the definition of a System Model MoC-based Semantics in the
context of Tool Integration

Abstract :

Embedded systems (EmS) are increasingly used in various areas such as telephony, automotive and avionics industries. In
these different areas, the growth of functionality requirements causes an explosion of the size and complexity of the systems.

In this context, system design flows are becoming more complex and require the use of tools from different engineering domains.
The heterogeneous paradigms on which the tools rely on pose as well many reliability problems when it comes to consistent
data exchanges between tools. For example, nowadays, the high-level modeling (e.g. Model-Driven Engineering) tools are
unaccepted by research communities for the formal design of systems that require solid grounds on the execution semantics to
carry out analysis, validation and synthesis of embedded systems activities. Indeed, the Model-Driven Engineering tools
dedicated to EmS design are not yet sufficiently mature on aspects involving expression of the formal execution semantics
reflecting the concurrency model of system modules. Besides, the theory of computation is identified as the field to describe
formally the concurrency models that are used for the description of embedded systems.
Our motivation is to use this theory to reduce the gap between different design tools that have different semantics for executing
models in a design flow. We propose a methodology for the identification and comparison of the concurrency model of systems
based on the theory of the Models of Computation (MoCs) and their existing classifications; we also propose a language to
capture MoC-based semantics which is used to enrich system models and preserve their se- mantics through a tool chain. To
prove the effectiveness of our approach, we defined a design flow connecting three tools that are involved in various activities of
the Design & Implementation process (Specification, Analysis, Design Space Exploration). The tool chain highlights the con-
nection of the UML modeling tool (IBM Rhapsody) (for specification and analysis), Forsyde (for multi-MoC simulation and
synthesis) and Spear (Design Space Exploration and analysis). The chain is applied on a simplified version of a Radar
Streaming application provided as use case in the context of the iFEST project.

Keywords : Model driven engineering, semantic of models of computation, interoperability, iFest

