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"For me, electronic music is the classical music of the 21st century." —
Jean-Michel Jarre

"One good thing about music, when it hits you, you feel no pain." — Bob Marley



A B S T R A C T

Rhythm is one of the major characteristics when talking about music. When we
want to describe a piece of music, we often base ourselves on its rhythmic structure.
Automatically detecting this type of information within the music is one of the
challenges of the Music Information Retrieval research field. In recent years, the
advent of technology dedicated to art has allowed the emergence of new musical
trends generally described by the term Electronic/Dance Music (EDM). EDM is
an umbrella term that encompasses a plethora of sub-genres often composed with
electronic instruments such as synthesizers, sequencers but also computer-aided
composition software. The music denoted by this term is often dedicated to dance
and is therefore characterized by its rhythmic structure. With the popularity of
EDM, new sub-genres are emerging every week and are no longer necessarily
defined by their musical aspects.

In this manuscript, we propose a rhythmic analysis that defines certain musical
genres including those of EDM. For this purpose, we wish to perform two tasks,
(i) a task of automatic estimation of the global tempo; and (ii) a task of rhythm-
oriented genre classification. Tempo and genre are two inter-leaved aspects since
genres are often associated with rhythm patterns which are played in specific
tempo ranges.

Some handcrafted tempo estimation systems have shown their efficiency based
on the extraction of rhythm-related features. Among other things, it has been
shown that the harmonic series at the tempo frequency of the onset-energy-function
of an audio signal accurately describes its rhythm-pattern and can be used to per-
form tempo or rhythm pattern estimation. Recently, with the appearance of an-
notated datasets, data-driven systems and deep-learning approaches have shown
progress in the automatic estimation of these tasks. In the case of multi-pitch esti-
mation, the depth of the input layer of a convolutional network has been used to
represent the harmonic series of pitch candidates. We use a similar idea here to
represent the harmonic series of tempo candidates.

In this thesis, we propose a method at the crossroads between handcrafted and
data-driven systems. We propose the Harmonic-Constant-Q-Modulation which
represents, using a 4D tensor, the harmonic series of modulation frequencies (con-
sidered as tempo frequencies) in several acoustic frequency bands over time. This
representation is used as input to a convolutional network which is trained to esti-
mate tempo or rhythm-oriented genre classes. This method, called Deep Rhythm,
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allows us, using the same representation and model, to accomplish the two tasks
of tempo and rhythm-oriented genre estimation automatically.

Then, we propose to extend the different aspects of Deep Rhythm. To allow the
representation of the relationships between frequency bands, we modify this sys-
tem to process complex-valued inputs through complex-convolutions. We study
the joint estimation of both tasks using a multitask learning approach. We also in-
vestigate the addition of a second input branch to the system. This branch, applied
to a mel-spectrogram input, is dedicated to the representation of timbre.

Finally we propose to analyze the effect of a metric learning paradigm on our
representation. Through the study of the rhythmic similarities between tracks, we
try to achieve rhythm-oriented genre classification. We propose for each of the
methods a thorough evaluation of the commonly-used datasets but also of two
datasets annotated in EDM genres that we have created.
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R É S U M É

Le rythme est l’une des caractéristiques majeures lorsqu’on parle de musique.
Lorsque nous voulons décrire un morceau de musique, nous nous basons souvent
sur sa structure rythmique. La détection automatique de ce type d’information au
sein de la musique est l’un des défis du domaine de recherche "Music Informa-
tion Retrieval". Ces dernières années, l’avènement de la technologie dédiées aux
arts a permis l’émergence de nouvelles tendances musicales généralement décrites
par le terme d’"Electronic/Dance Music" (EDM). L’EDM est un terme général qui
englobe une pléthore de sous-genres souvent composés avec des instruments élec-
troniques tels que des synthétiseurs, des séquenceurs mais aussi des logiciels de
composition assistée par ordinateur. La musique désignée par ce terme est sou-
vent dédiée à la danse et se caractérise donc par sa structure rythmique. Avec la
popularité de l’EDM, de nouveaux sous-genres apparaissent chaque semaine et ne
sont plus nécessairement définis par leurs aspects musicaux.

Dans ce manuscrit, nous proposons une analyse rythmique de ce qui définit cer-
tains genres musicaux dont ceux de l’EDM. Pour ce faire, nous souhaitons réaliser
deux tâches, une tâche d’estimation automatique du tempo global et une tâche de
classification des genres axée sur le rythme. Le tempo et le genre sont deux aspects
entremêlé puisque les genres sont souvent associés à des motifs rythmiques qui
sont joués dans des plages de tempo spécifiques.

Certains systèmes d’estimation du tempo dit "handcrafted" ont montré leur effi-
cacité en se basant sur l’extraction de caractéristiques liées au rythme. Il a notam-
ment été démontré que la série harmonique à la fréquence du tempo de la fonction
d’énergie d’attaque d’un signal audio décrit avec précision son motif rythmique et
peut être utilisée pour effectuer une estimation du tempo ou du motif rythmique.
Récemment, avec l’apparition de base de données annotées, les systèmes dit "data-
driven" et les approches d’apprentissage profond ont montré des progrès dans
l’estimation automatique de ces tâches. Dans le cas de l’estimation de fréquence
fondamentale multiple, la profondeur de la couche d’entrée d’un réseau convolutif
a été utilisée pour représenter les séries harmoniques des fréquences fondamen-
tales candidates. Nous utilisons ici une idée similaire pour représenter la série
harmonique des candidats au tempo.

Dans cette thèse, nous proposons une méthode à la croisée des chemins entre les
systèmes "handcrafted" et "data-driven". Nous proposons la "Harmonic Constant
Q Modulation" qui représente, en utilisant un tenseur 4D, la série harmonique des
fréquences de modulation (considérées comme des fréquences de tempo) dans
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plusieurs bandes de fréquences acoustiques au cours du temps. Cette représenta-
tion est utilisée comme entrée d’un réseau convolutif qui est entraîné pour estimer
le tempo ou des classes de genre axées rhythme. Cette méthode, appelée "Deep
Rhythm", nous permet, en utilisant la même représentation et le même modèle,
d’accomplir les deux tâches.

Nous proposons ensuite d’étendre les différents aspects du "Deep Rhythm".
Pour permettre la représentation des relations entre les bandes de fréquences, nous
modifions ce système pour traiter des entrées à valeur complexe par le biais de
convolutions complexes. Nous étudions également l’estimation conjointe des deux
tâches en utilisant une approche d’apprentissage multitâche. Puis nous étudions
l’ajout d’une deuxième branche d’entrée au système. Cette branche, appliquée à
une entrée de type mel-spectrogramme, est dédiée à la représentation du timbre.

Enfin, nous proposons d’analyser l’effet d’un paradigme d’apprentissage mé-
trique sur notre représentation. Par l’étude des similitudes rythmiques entre les
pistes, nous essayons de réaliser notre tache de classification en genres rythmiques.
Nous proposons pour chacune des méthodes une évaluation approfondie des
bases de données de l’état de l’art mais aussi de deux bases de données anno-
tées en genres d’EDM que nous avons créés.
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M O T I VAT I O N S

My academic work in Music Information Retrieval (MIR) domain started with an
internship at IRCAM with my PhD supervisor Geoffroy Peeters. The subject of this
internship was the development of a creative technique called musaicing (Zils and
Pachet, 2001) which consists in concatenating musical elements while preserving
the structure of the music in an automatic way. The method developed consisted
more precisely in the extraction of textures from a "source" track (such as buzzing
bees sounds) and to automatically reconstructe a "target" track (such as "Let it
Be" by The Beatles). Thus we obtained as result the song "Let it Be" "sung" by
bees. This work is based on machine learning methods such as the Non-Negative
Matrix Factorization and its extension to 2 dimensions that we will not detail here.
The beginning of my thesis thus began with the publication of two papers on this
subject (Foroughmand and Peeters, 2017; Foroughmand and Peeters, 2018). The
temporal structure of a track of music was thus very present in this creative work
and made me want to study more deeply one of its main factors which became
the main axis of my thesis: rhythm.

The second axis of this thesis is intrinsically linked to the FuturePulse project
that founded it. The FuturePulse project aims to develop and pilot test a multi-
modal predictive analytic and recommendation platform. In this context, the role
of the IRCAM laboratory is to provide its technologies to estimate among other
things the Beats Per Minute (BPM) tempo and the automatic genre estimation of
the tracks uploaded on the platform. The work carried out during these past three
years has contributed to improve these technologies.

Finally, the third axis concerns the field of application of the tasks developed
in the thesis, i.e. Electronic/Dance Music (EDM). On one hand, my passion for
the specific genres of this "meta-genre" has been growing for several years and
is reflected in many personal projects (creation of musical playlists, first steps in
computer-assisted music) but also in the fact that I am an eclectic listener. On the
other hand, it is a style that is little represented in the field of MIR today, although
its popularity is increasingly becoming vaster all over the world.

Our work on the structure and our interest in the EDM led us to raise the follow-
ing question: the structure of an EDM track is created by superimposing samples
and rhythmic patterns, is it possible to categorize the tracks from this structure?

1
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In other words, we want to extract a characteristic rhythmic representation of the
structure and use it as input to an algorithm which is able to learn a categorization
into genres. In addition, since tempo is a major element of the rhythmic structure,
its automatic estimation allows us to bring more knowledge to such a model.
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I N T R O D U C T I O N

Today, technological advances continue to grow in almost every field including art.
The digitization of art pieces on a computer allows all kinds of creative, analytical
or scientific processing. The use of technology is thus closely linked with visual art
such as cinema in terms of special effects as a creativity tool for directors or pho-
tography and graphic arts. As far as music is concerned, although its digitization
is not as explicit as for the image, a lot of research is also carried out. This thesis
inscribes in the field of automatic analysis of music, that is to say MIR or the ability
to extract information from the musical signal through algorithms. The field of
MIR encompasses many tasks and applications. We are specifically interested here
in the analysis of rhythm and of one of its components, tempo, and their influence
on the musical genre of an audio track.

When it comes to describe music, we refer to fundamental aspects such as: har-
mony, melody, timbre and rhythm. The sound itself is a temporal entity, the word
rhythm is used in musical jargon to refer to the temporal aspect of the music. Any
listener is able to perceive rhythm, it is an element intimately linked to movement
(one can indeed "tap" to the rhythm). Rhythm can be defined, and distinguished,
in almost every kind of music – somehow independently of cultural aspects – and
therefore possesses a certain universality. Musical styles or genres are strongly
characterized by their rhythm. For example, a reggae track and a techno track
beyond their instrumental differences, each has a characteristic rhythm which de-
fines them.

The main objective of this thesis is to study the efficiency of a harmonic repre-
sentation of the rhythm of an audio track in order to estimate its global tempo but
also its musical genre. In order to represent the effectiveness of our methods, we
carry out experimental protocols on various commonly-used datasets annotated
in tempo, musical genre or both. We have also chosen to focus specifically on
Electronic/Dance Music (EDM) whose genres are strongly defined by their rhythm
structure.

In this introduction, we set the context of the thesis in Section 1.1 with an his-
torical and musicological description of EDM. Then, in Section 1.2, we will present
the structure of the manuscript and the main contributions of our work.

3
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1.1 context - electronic dance music

1.1.1 A definition

The term EDM is used to refer to a grouping of heterogeneous musical styles com-
posed with computers and electronic instruments such as synthesizers, drum ma-
chines, sequencers and samplers. Because of the broad spectrum of different styles
that EDM denotes, we can use the term "meta-genre". Slash in "Electronic/Dance
Music" is important here and is used as "and/or" because not all of the music in
this meta-genre is produced exclusively for dancing.

(Butler, 2006), in his book, made the most recent and general analysis of EDM.
In particular, he highlights four aspects that characterize what he considers to be
a heterogeneous group of practices, styles, contexts and geographical situations.
The first one is the central position of the recording as the primary element of
the performance. The second one is the fact that the performing audience are the
dancers in opposition of the majority of other styles of music. The third one is
the location of the performance with dedicated places to dance to recorded music
like clubs, bars, discotheques, warehouse, raves, festivals, and so on. Finally, the
last aspect is the historical common origin of the sub-genres that constitute this
meta-genre: disco.

1.1.2 History and taxonomy

Since the 1950s, recorded music (as opposed to live music) has been played in
clubs to get listeners dancing. Rock-n-roll was the popular genre to dance at that
time before it evolved in the 60s into rock, a music that was disseminated through
live concerts.

The use of synthesizers in popular music in the early 1970s led to the advent of
disco in the United States (Ward, Stokes, and Tucker, 1986, p. 524). Disco is com-
posed of repetitive beats created via electronic instruments mixed with traditional
instruments and vocals. Before becoming mainstream, this genre was associated
with urban Black and gay culture as opposed to rock music associated with White
culture.

During the 1980s, disco took on a more underground aspect and became the
house music of which the city of Chicago was the hometown. It is during this
period that the status of the Disc-Jockey (DJ) evolved as an artist and took the
place of central element of the discotheques. His instruments were as they are
today: two turntables and the musical skills of managing the timing of the two
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tracks in order to make smooth transitions according to their beats (beat-/tempo-
matching). The goal was to make the music last during club performances, so
DJs began recording extended mixes on vinyl. At the same time, and with the
evolution of the technology, they started remixing tracks and creating music from
scratch. They were then called producers.

In the late 1980s, house music crossed the Atlantic to reach the United Kingdom
and drastically increased its audience. To distinguish itself with the "house" label,
the name has been changed to "acid-house". It is strongly associated with the rave
culture in the UK but also with drug use at all-night parties (Gilbert, Pearson, et al.,
1999). As a musical characteristic, acid is much more synthetic than house with a
more frenetic rhythm, instrument sounds and vocals are replaced by synthesized
sounds.

In 1988 the "techno" label was created, so named by a recording company, and
was carried by artists such as Derrick May and Juan Atkins in the city of Detroit.
The "techno" term has been used to detach itself from the one of "acid" which
was tainted by its link with drugs (Thornton, 1996). The term emphasizes the
principle of technology at the service of music by exploiting the expressive power
of drum machines and synthesizers. However, the dark rave party counter-culture
continued to develop leading to the emergence of sub-genres such as hardcore in
the early 1990s. This music has even faster beats and almost no instrumentation
with dense sounds and poly-rhythmic.

The 90s were also marked by the advent of the jungle in 1992, a music in-
fluenced by the black and urban culture of the time. It is characterized by a
much more complex rhythm than house, less repetitive and with a higher BPM.
By 1994, some artists have abandoned this complexity and rather focused on sim-
pler rhythms associated with drum’n’bass.

From that time on, sub-genres began to appear that were the antithesis of dance
or rave music. These sub-genres had little or no beats and were intended to relax
the listener in clubs and concerts. It includes "down-tempo", "ambient" and "chill-
out".

From the beginning of the 70’s and in parallel to the sub-genres mentioned
above, hip-hop has also developed as being included in EDM. It is a rhythm-driven
music that has influenced other genres of EDM just as much as it has been influ-
enced by them. Its productions by "beat-makers" are also composed with synthe-
sizers and reflect the urban culture of street dance. Hip-hop DJ’s were the stars
in the 70’s but due to the popularity of the genre it became more like a recorded
medium.
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Much more extensive histories of the first twenty years of EDM can be found
in the literature. (Reynolds, 2013) describes the entire history of EDM, its origin
and its evolution over time. Shapiro and Lee, 2000 provides more detail for each
sub-genre. (Brewster and Broughton, 2014; Fikentscher, 2000) study the role of the
DJ in society. Finally, Butler focuses his analysis on the origins of EDM, particularly
its geographical origins. In his paper, (McLeod, 2001) presents a brief history and
describes the causes that led to the evolution of the taxonomy of the sub-genre of
which it is composed.

Today, despite the fact that EDM is a fairly recent genre (i.e. less than 50 years
of history), it has a tremendous number of sub-genres. According to the special-
ized journalists, the producers and the consumers, sub-genres evolve very quickly
and new micro-genres1 proliferate more than in any other musical style (Collins
et al., 2013). This can be explained first of all by the fact that anyone can improvise
himself as a composer from home with the constant evolution of sound technolo-
gies such as computer assisted music software but also machines to control them
as well as synthesizers. Second, on online music shop, there are more than thou-
sands new songs that are upload every single day. Those shops have to categorize
the uploaded tracks into sub-genre to make it easier for the users to find what kind
of sound they are looking for, before buying or listening to them. Third, this tax-
onomy is also influenced according to a marketing strategy of music broadcasting
and recording companies but also of specialized media. Another aspect described
by Vitos, 2014 is that it also obeys the requirements of DJs. The exact categoriza-
tion into sub-genres allows them on the one hand to use similar tracks and on the
other hand to inform the listeners about the style of musical performance they are
attending.

Finally, all of these reasons imply that the taxonomy can be qualified as exces-
sive. This over-categorization results in a taxonomy that is sometimes arbitrary,
independent of precise rules. Genres and sub-genres are often defined beyond
the musical aspects that characterize them and can therefore be redundant or ill-
defined. We thus wish to focus our work on a purely musical automatic catego-
rization.

1.1.3 Electronic/Dance Music Musical Characteristics

Certain musicological aspects allow the identification of sub-genres. As in all
"meta-genres" such as rock or jazz (which also include many sub-genres), aficiona-
dos of the musical style will be the most likely to notice a difference between two

1 Or sub-sub-genres



1.1 context - electronic dance music 7

tracks belonging to the same genre. And conversely, someone who is insensitive
to musical style will tend to say: "it is always the same thing". A music listener
will identify the audio features that characterize a piece of music while listening
to it. These features will allow them to naturally get an idea of the musical genre
to which it belongs.

A distinguishing feature of EDM is that it is generally instrumental (with the
exception of hip-hop), singing voices are often sampled from other musical pieces.
Beyond instrumentation, all the sub-genres of EDM have in common their struc-
tural organization based on repetitions. The essential primary unit of their struc-
ture is the loop, a short musical excerpt that is rhythmically aligned and repeated
on different layers. It can be isolated in the track or combined with other loops. To
summarize, a typical EDM track is composed by superimposing and assembling
loops of different sizes on different musical layers.

The musical characteristics that allow to identify a sub-genre of EDM are mainly
oriented on the rhythm and the beat. (Butler, 2006, p. 78) thus makes a distinction
between two major rhythmic streams that encompass the main sub-genres of EDM:
the four-on-the-floor and the breakbeat-driven styles. The four-on-the-floor sub-genres
are influenced by the disco’s steady bass-drum pattern evolving in techno or trance
through house. The associated rhythm pattern is a steady, uniformly accented
beat in which the bass drum is hit on every beat in a 4/4 meter. The breakbeat-
driven, as we have seen in the historic of EDM, appeared during the exportation of
house in UK with sub-genres like jungle or drum’n’bass. It is characterized by the
presence of highly syncopated binary rhythms and the intense use of polyrhythms.
In the words of Butler (2006): "breakbeat patterns exploit the irregularity with an
emphasis on the metrical weak location". The tempo of the different sub-genres
of EDM cover a very broad spectrum. It is nevertheless on average very fast from
120 to 150 BPM. The trip-hop, down-tempo or chill-out have a tempo of about 80

BPM and represents the "slowest" styles. The gabber (a micro-genre derived from
hardcore) and some techno tracks can reach more than 220BPM (Butler, 2006). We
give more details on the rhythmic characteristics of EDM main genres in Section 3.3.
The separation into two main rhythmic categories motivated us to focus on this
type of music.

Beyond the rhythm, an EDM track can be analyzed by its instrumentation on its
other musical layers.

Regarding the four-on-the-floor styles, a house track will often have a very clear
harmonic layer borrowed from other musical styles such as jazz, funk or pop mu-
sic. This type of instrumentation also gives rise to new micro-genres (such as deep-
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house). The trance also has this harmonic borrowing and has despite a very high
BPM and supported beats a particular musicality (psy-trance). On the other hand,
some styles such as techno have much more limited harmonic and melodic layers.
Minimal, for instance, is free of any form of pitched material.

Breakbeat-driven styles are also more sparse in terms of harmonic content. These
musics are oriented on the manipulation of samples interspersed with imposing
basses and complex rhythms. The samples thus used are drum breaks but also vo-
cals borrowed from sub-genres such as hip-hop or reggae and dub (reggae-jungle).

Through our work, we wish to demonstrate that rhythmic features analysis
allows automatic categorization of EDM genres. For this we have developed in
our work different methods based on the harmonic characteristics of the rhythmic
structure. The two tasks mentioned, the estimation of tempo and the classifica-
tion in rhythm-oriented genre, are two elements that allow us to illustrate the
importance of rhythm in the description of EDM. In terms of application, tempo
estimation is essential to the work of the DJ since tempo is the main reference
of transition. It is also an integral part of EDM creation process, particularly with
regard to computer-assisted music software.

1.2 dissertation organization and main contributions

Chapter 2 of this manuscript is dedicated to the definition of the main concepts
and the presentation of research from the state of the art related to our work.
We thus describe in Section 2.2 the fundamentals related to the tasks we wish to
perform, namely rhythm (including tempo) and the notion of musical genre. State
of the art methods are presented under two categories. The first concerns so-called
handcrafted methods based on knowledge of the field. It describes various features
used for automatic tempo detection and genre classification. We detail that in
??. The second concerns more recent data-driven methods, based on large-scale
deep learning networks. We also introduce the basic concepts of deep-learning
and specifically those we have used as tools to develop our methods in Section 2.4.
Finally, in Section 2.5, we emphasize the different works of MIR linking EDM and
rhythm.

In Chapter 3 we present the various datasets that we have used in order to
evaluate the method we have developed. In Section 3.2, we describe in details
the commonly used datasets annotated in tempo and/or in genre to perform the
two tasks. Among these, few are specific to the EDM. This leads us to our first
contribution in Section 3.3: the creation of two annotated datasets in EDM genre.
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We propose to detail the musicological characteristics of the selected genres with
a particular emphasis on their rhythmic structure.

In Chapter 4 we present the Deep Rhythm method developed to perform
the two tasks of tempo estimation and rhythm-oriented genre classification. This
method is based on the use of a representation of the periodic elements of rhythm
at the input of a deep-learning network. For its development, we were inspired
by various works that we describe in Section 4.2. In Section 4.3, we define the har-
monic representation of the rhythm we have created, the HCQM. In Figure 4.6, we
present the architecture of the CNN that we are training in order to achieve the two
tasks. In addition, we describe different ways to exploit the temporal dimension
of the HCQM. This is detailed in Section 4.5. Finally, we explain in Section 4.6 our
evaluation protocols and the results obtained for tempo estimation and genre clas-
sification. For this purpose we compare the results obtained according to several
parameterizations of the DR method with three state-of-the-art methods.

In Chapter 5 we present three extension of the Deep Rhythm method. The
first one in Section 5.2 is the use of a complex-value HCQM as input of a complex
convolution network to allow taking into account the inter-relationship between
accoustic frequency bands. The second one in Section 5.3 is the use of a multitask
learning approach in order to perform the two tasks simultaneously. The third
one in Section 5.4 is the use of a multi-input/multi-branch network in order to
add timbre information in addition to rhythm ones during the learning. For each
of these proposed improvement, we describe our motivations, the method itself,
its evaluation protocol and its results.

In Chapter 6 we present a genre classification method based on metric learning
adapted to DR in order to analyze rhythm similarities between audio tracks. First,
in Section 6.2 the principle of metric learning is exposed. Then in Section 6.3 we
describe the triplet loss which we then adapt to the DR in Section 6.4. Finally,
Section 6.5 is dedicated to the analysis protocol we have set up and comment on
the results.

We conclude in Chapter 7 and propose future works.





2
F U N D A M E N TA L S A N D S TAT E O F T H E A RT

2.1 introduction

In this chapter, the fundamentals related to our work are exposed as base for the
rest of this manuscript. We also present the state of the art methods related to
automatic tempo estimation and music genre classification.

We begin by highlighting general concepts of music description. In Section 2.2,
we define many of the rhythm aspects including the tempo. We also detail the con-
cept of musical genre which arguably comes hand in hand with music description.

We then describe the different methods of the state of the art, specific to the
field of MIR, which can automatically process the aspects of tempo, rhythm and
musical genre. We make a distinction between the two types of systems that have
been used for these purposes. On one hand, the handcrafted systems are based on
signal processing schemes applied to music and sound. Features crafted from mu-
sical knowledge are extracted from the audio signal in order to describe as best as
possible its aspects and are then classified thanks to statistical models. Such tech-
niques for tempo estimation or genre classification are described in Section 2.3. On
the other hand, data-driven systems rely on the use of machine learning (including
deep learning algorithms) applied to large annotated databases as described in
Section 2.4. If these two types of systems are illustrated chronologically in relation
to each other – data-driven systems have indeed appeared more recently with the
emergence of large annotated databases – they are now intimately linked in mu-
sic research. In the upcoming sections, beyond the introduction of state of the art
methods, we also present the tools that have been used in various research and
that are somehow connected to our work. For the handcrafted methods, we insist
on the features oriented towards the representation of rhythm components. For
the data-driven methods, general and more specific machine learning concepts
are presented to better understand the tool we will be manipulating in this thesis.

Finally, we present in Section 2.5 the different works in MIR related to EDM,
whether for rhythmic analysis or for genre classification.

10
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2.2 core definitions

2.2.1 Rhythm

definitions . One of the first known definitions of rhythm dates back to Plato
(-350), who describes it as "order in movement". Both the passing of time (move-
ment), and a presence of regularity, structure (order) were already exposed as
two fundamental elements of the definition of rhythm. Rhythm in general can be
defined in two complementary ways. It is a repetition of identical events in the
course of time. This definition is applicable to any phenomenon with a temporal
periodicity (e.g. from the heartbeat to the lunar cycle). In the case of music, this
definition would concern the musical structure. For example, on the scale of an
EDM track, we can observe the repetition of structurally identical (or really similar)
parts. These parts correspond to different structure level, a kick/snare alternation
at small level and a loop at higher level are common examples. On the other hand,
it can be described as a non-isochronous sequence of events, but which neverthe-
less retains a certain regularity. This last definition is more specific to describe the
"artistic" rhythm whose events that compose it respond to a temporal logic (dance,
sound or silence in music, rhymes for poetry, etc.).

Some descriptions from the state of the art show that rhythm cannot be precisely
defined (according to Fraisse (1982)) but at least has many relative definitions.
Honingh et al. (2015) define rhythm as a very general concept like the way that
elements are ordered in time. For Fraisse (1974, p107) the perception of rhythm re-
sults from the perception of structures combined with their repetitions. According
to Cooper, Cooper, and Meyer (1963), to experience rhythm is to group separate
sounds into structured patterns. Some of these definitions are closer to the realm
of perception. According to Schubotz, Friederici, and Von Cramon (2000), Grahn
and Brett (2007) or Chen, Penhune, and Zatorre (2008), rhythm can also be seen
from a sensory-motor point of view in music as the dancing element, the one that
makes us want to move. That is the case of EDM for instance.

rhythm in music . We keep as a definition of rhythm in music the one made
by (Gouyon et al., 2005) and illustrated in Figure 2.1. In the most general way,
rhythm represents all the temporal relations and information in music. It includes
metrical structure, timing and tempo. We define these three elements in more
detail in the next paragraphs.

2.2.1.1 Metrical structure

The Generative Theory of Tonal Music (GTTM) is a theory proposed by Lerdhal
and Jackendoff (1983) at the origin of many works in the field of music theory
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Figure 2.1: Rhythm in music.

and in the perception of music. It describes the way in which a listener, composer
or producer builds an understanding of music. The music is seen as an infinite
set constrained by a finite set of rules. This is also the case in other fields such
as "grammar",since a sentence construction is infinite but limited by grammatical
constraints. In this case, we can speak of "musical grammar", it is an abstract repre-
sentation of the score. According to Lerdhal and Jackendoff (1983), it focuses on hi-
erarchical systems that create the musical intuitions, including grouping structure
(phrasing) and metrical structure that are encompassed in the rhythmic structure.
The grouping structure is linked to temporal durations while the metric structure
is linked to punctual elements in time: the beats.

beat. Beat and pulse are usually described as the same element. Cooper, Cooper,
and Meyer (1963) define a pulse as "one of a series of regularly recurring precisely
equivalent stimuli. [...] Pulses mark off equal units in the temporal continuum".
Gouyon et al. (2005) uses the term pulse as a metric level (a series of beats) and
the term beat as a single element of a pulse. The beats are grouped in series ac-
cording to their respective accentuation. Accentuation is at the basis of any rhythm,
once again according to Cooper "accent is a stimulus (in a series of stimuli) which
is marked for consciousness in some way". In other words, accentuation is the hu-
man being’s ability to identify events when listening to musical excerpts. The way
it is perceived is still not well understood but much research on the subject tends
to conclude that it is influenced by several elements: harmony, duration, intensity,
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regularity, pitch or the perception of timbre (Cooper, Cooper, and Meyer, 1963;
Lerdhal and Jackendoff, 1983; Dixon and Cambouropoulos, 2000). In the GTTM,
Lerdhal and Jackendoff (1983) cites different rules to which the beat obeys:

• They must be equally spaced.

• There must be a beat of the metric structure for each note.

• The division of a series of beats by a specific time duration corresponds
to a metric level. This allows one to identify low metric levels (short time
duration) and high metric levels (long time duration).

• A high level beat must be aligned with a beat at the lowest level, so a high
level beat aligned with beats at the next highest level is called a downbeat.
For a given beat series at a specific metric level, the distance between two
consecutive beats is called the inter-beat interval, which is the period of the
series. Its phase is represented by the position of the first beat.

tatum . Tatum is one of the many names used to describe the smallest level
of the metrical structure. However, according to Bilmes (1993), a better definition
would be that the tatum is "the regular time division that most highly coincides
with all note onsets" (it is defined in details in Section 2.3.2) The tatum is often
at the eighth or sixteenth note level. In a very syncopated music track it is not
necessarily explicit and can be simply induced (Gouyon et al., 2005).

measure . In a music score, the measure refers to the bar line restricted by a
meter of two levels. It is associated with the time signature which represents the
number of faster beat that make up one measure. Time signature is indicated as a
fraction: the denominator corresponds to the basic temporal unit and the numera-
tor to the number of basic temporal units a measure can contain. For instance for a
2
4 time signature, the basic temporal unit is a quarter note and in a measure there
is room for two of them. The GTTM specifies that there must be a beat of the metric
structure for each note, quantized durations are used to match these sound events
to a score (in Western notation). They are rational numbers (1, 14 , 16 , ...) relative to a
chosen time interval (the denominator of the time signature). The use of quantized
duration simplifies the reading of the rhythmic structure of a music track.

dynamic attending theory. A theory other than the GTTM, the Dynamic
Attending theory (DAT) proposed by (Jones and Boltz, 1989), shows the impor-
tance of the context of perception of a temporal event. Indeed, according to the
DAT, each event will be anticipated by the listener according to the events already
passed. It thus summarizes the attention mechanism of the brain which will pro-
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duce the minimum effort possible in order to minimize the duration of attention.
In the case of sound, when listening to a piece of music, the attention will be ampli-
fied at the moment an event occurs, such as a pulse or the presence of a downbeat,
and will diminish the rest of the time. This finally shows that the human being
is capable of perceiving the musical structure. However, it is also shown that the
musical education (Drake and Palmer, 2000) of a listener will strongly influence
his ability to analyze the rhythmic structure.

2.2.1.2 Tempo

The tempo represents generally the speed of a musical excerpt. It is defined as the
rate of the beat at a given metrical level in a given metrical structure.

tactus is the name given to the tempo of the most intense pulsation or beat.
It is the metric level that corresponds to the tempo. Cooper defines it as one of a
series of identical, regular and recurring stimuli. First indicated on musical scores
in an informative way, it is from the appearance of the metronome in the 19th
century that the composer was able to precisely quantify the tempo of one of his
compositions. It is measured in beats per minute (BPM). One of its definitions is
purely perceptive (Scheirer, 2000) and corresponds to the speed at which a listener
will clap his hands, on an object or with his feet while listening to a piece of music.

prefered and perceived tempo. Tempo is still today a concept that can
be described as ambiguous. Indeed, depending on a given piece of music it can
be perceived differently by several listeners and also by one and the same listener.
McKinney and Moelants, 2004; McKinney and Moelants, 2006 highlight the use of
a resonance model to identify the reasons for the appearance of a preferred tempo.
Perceptual experiments in which listeners were asked to "tap" the tempo of a piece
of music showed that the preferred tempo was around 120BPM (Moelants and
McKinney, 2004). If one of the metric levels contains musical excerpts containing
this resonant tempo then listeners will tend to estimate the same tempo. On the
other hand, if an excerpt contains a metric level that has two beats on either side of
the resonance tempo then the listeners will not be unanimous on their estimation.
To date few methods have been developed for the estimation of a perceptual tempo
and those despite more recent experiments (Zapata et al., 2012; Holzapfel et al.,
2012; Peeters and Flocon-Cholet, 2012; Peeters and Marchand, 2013). Differences in
tempo perception correspond in the majority of cases to an estimate in a different
metric level. It can thus be estimated at half or double the inter-beat interval or
at a third or triple of the inter-beat interval. This is referred to as octave error, a
problem that is being actively studied in the field of tempo estimation, with the
aim of reducing it.
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2.2.1.3 Timing

In all styles of music, the timing of the metric structure does not have a fixed
starting point and presents certain variations that are not taken into account by
the GTTM. There are two types of non-metric timing, one based on tempo, the
other on timing. Starting from a series of isochronous beats placed in a strictly
metric way, we can differentiate between two types of timing deviations:

• The shift of a single beat of the metric structure. We speak of systematic
deviation such as the "swing" that has its origin in jazz music (Friberg and
Sundström, 1997).

• The offset of all the beats following a particular beat in the series. In the
case of a piece of music, it may occur after a pause. This is called expressive
deviation used to accentuate the emotion of a listener.

In both cases, the timing change does not affect the inter-beat interval, it is a short-
term change also called "timing deviation". The change in tempo is characterized
by the variation of the inter-beat interval from a particular beat of the series, it is a
long term change. By taking the series in real time, it is impossible to predict these
changes before the shift occurs. According to (Honing, 2001), it is impossible to rep-
resent them mathematically because they are two-dimensional elements projected
onto one, time. From another musically point of view, one can interpret these vari-
ations on the assumption that the tempo is constant and that the deviations are
temporal and local. These deviations are an integral part of the structuring of the
rhythm and are clearly defined by the musicians or the composers (Honing and
De Haas, 2008).

2.2.2 Musical genres

As with rhythm, there is no clear and formal definition of the musical genre. Ac-
cording to Tzanetakis and Cook (2002), the musical genre is defined as a label
created by humans to describe and characterize music. In a way, all the constitu-
tive elements of music illustrated in Figure 2.1 are implicated in the genre descrip-
tion of an audio track. Historically, genre is intrinsically linked to classification:
it responds to this natural human necessity to categorize what surrounds him.
The categorization of music is a vague field that is extremely subjective and lacks
general rules. In everyday life, the genre remains the most used and fastest way
to categorize or to compare pieces of music. For example, when one talks about
a concert to someone who does not know the artist, one will specify the music
genre in order to give an idea of the kind of music one listens to. This is why, with
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increasing popularity over the years, music genre classification is today one of the
most studied tasks in MIR.

(Aucouturier and Pachet, 2003) present the different aspects of the musical
genre concept in their study. In particular, they put forward two concepts that
surround the utility of genre. The "intentional" concept where genre is an inter-
pretation of a music track and give information on a community culture, on the
particular epoch and on the geography. The "extensional" concept where genre
represents a set of music track in an analytic way (e.g. the emotion brought by the
piece).

In this thesis, we perform a music genre automatic classification. The genre
that we use are defined according to their musical characteristics among the other
aspects (cultural, marketing, etc.). The definition of the musical genre being intrin-
sically linked to its automatic analysis, the meaning of the term becomes more
explicit by exploring the various works dedicated to this task. With the specific fo-
cus on EDM, we seek to reconnect the genre of a piece with its rhythmic structure.

2.3 handcrafted systems

Early MIR systems encoded domain knowledge (audio, auditory perception and
musical knowledge) by hand-crafting signal processing and statistical models.
Data were at most used to manually tune some parameters (such as filter fre-
quencies or transition probabilities). Starting from digital signal processing fun-
damentals, we present here the different knowledge-based tools used for rhythm
description, tempo estimation and genre classification. We also present the main
works dedicated to these tasks. It should be noted that these are among the most
explored in the field. To go into details or to have a more precise vision of the state
of the art concerning them, good overviews have been published: (Gouyon et al.,
2006; Zapata and Gómez, 2011; Peeters, 2011) for rhythm description and (Aucou-
turier and Pachet, 2003; Ramírez and Flores, 2019) for music genre classification.

2.3.1 Signal Fundamentals

We only present here the main elements of signal processing that we have used in
this thesis. For a more detailed description, many reference books or articles can
be consulted such as (Rabiner and Gold, 1975) and more recently (Muller et al.,
2011) for a specific application to music.
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discrete-time signal The basic element of any computer music operation
is the audio signal. It is the signal that contains the acoustic information that we
perceive as sound. It allows the transmission, the storage, the creation and, in the
case of MIR, the analysis of music. Music is a continuous-time audio signal. That
is, for a given signal, there is a function f : R → R such that each point in time
t ∈ R has an amplitude f(t) ∈ R. Due to the inherent constraints of digital systems,
the signal cannot be processed in its continuous form. It has to be discretized (i.e.
converted to a finite number of points). To do so, two operations are applied to
the audio signal: sampling and quantization. It can be done using equidistant
sampling (or T-sampling), given a continuous-time signal f, and a positive real
number T > 0, the discrete-time signal x can be define as a function x : Z → R

following:

x(n) := f(n · T) (2–1)

for n ∈ Z. Here T is the sampling period, its inverse is computed to obtain the
sampling rate in Hertz (Hz):

Fs = 1/T (2–2)

According to the Nyquist-Shannon-Kotelnikov theorem, a sampling rate Fs =

44, 100Hz is high enough to perfectly represent sounds with frequencies up to the
Nyquist frequency: Ω = Fs

2 = 22, 050Hz. Human auditory system is able to per-
ceive frequency ranges from 20 to 20,000Hz. Beyond a sampling rate of 44,100Hz,
the gain in sound quality is no longer perceptible.

discrete fourier transform The Discrete Fourier Transform (DFT) is a
digital signal processing tool that allows to decompose a discrete-time signal into
its constituent frequencies (i.e. the spectrum). Given a discrete-time signal x of
length L, the DFT X of x is defined as:

X(k) =

N−1∑
n=0

x(n) · e−
2πi
N kn (2–3)

for k ∈ [0 : N− 1]. X(k) is a complex Fourier coefficient that encodes the magni-
tude and the phase of the sinusoidal components of the signal with frequency:

Fcoef(k) =
k · Fs
N

(2–4)

The frequency resolution (the distance between frequency bins) is expressed as
∆f = Fcoef(1).
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short-time fourier transform In a research field like MIR, we need to
represent the time evolution of the frequencies, the DFT does not allow to do that.
The Short-Time Fourier Transform (STFT) is used to apply the DFT on short parts
of the signal. These time segments are known as frames. In other words, the STFT

allows to represent which frequency occurs in a given frame. It is defined as:

X(t,k) =
N−1∑
n=0

w(n) · x(n+ tH) · e−
2πi
N kn (2–5)

with t ∈ Z the frame index, k ∈ [0 : L− 1] the frequency index, w a window
function centered around time position, N the frame length and H the hop size
(i.e. the distance between two consecutive frames in samples). Here k corresponds
to the frequency band with center frequency:

Fcoef(k) =
k · Fs
N

(2–6)

The spectrogram (frequency/time representation) refers to the magnitude of the
STFT: Y = |X|.

2.3.2 Rhythm handcrafted features

A classic flowchart of commonly used automatic analysis of rhythm system is
presented in Figure 2.2

Audio Signal Onset
Detection

Periodicity
Function

-
Temporal 

representation

Rhythm 
Description

Tempo 
Estimation

Tasks

Figure 2.2: System of automatic analysis of rhythm.

2.3.2.1 Onset

Onsets denote the start time of events in the audio signal. Finding the accents of
the musical signal is equivalent to finding its onsets1. Klapuri (1999) defines it as

1 The onset differs to the beat since it is a physical phenomena (versus perceptual one for the beats).
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"the start of a discrete event in an acoustic signal" while Bello et al. (2005) define
it as the chosen moment to mark a transient (i.e a short time interval in which the
signal evolves rapidly in a non-trivial way). Thus according to the ADSR model,
the onset is identified as the start time of a note, drum beat or other musical event.
As illustrated in Figure 2.3, it is located at the beginning of the attack, it marks the
earliest point in time where the transient can be detected.

E
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Figure 2.3: Schematic of the "ideal-case" ADSR for a given note.

2.3.2.2 Onset detection

The ADSR illustrated in Figure 2.3 is representative of an ideal case. In the musical
context, where the signal is polyphonic, complex and noisy it becomes difficult to
identify the onsets. An onset detection function is used as an intermediate repre-
sentation to describe the changes in quantity or strength that occur in the signal
from one moment to another. Such functions may have several denomination in
the literature, such as Onset Signal Strength (OSS) or Onset Energy Function (OEF).
We use the latter in this manuscript. Three steps are to be considered to perform
an onset extraction of a musical signal:

1. Signal pre-processing such as multi-band separation;

2. Computation of the OEF for example spectral flux (consisting in temporally
differentiating the amplitude of the spectrogram) or the amplitude-weighted
phase deviation (Bello et al., 2004; Dixon, 2006);

3. Extraction of onset by searching for peaks in the OEF often performed by a
search for local maxima.

Analyzing the signal over multiple frequency bands logarithmically spaced al-
lows to better detect onset according to Scheirer (1998) which combined these an-
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alyzes in a second step. This idea has been taken up by Klapuri (1999) and Paulus
and Klapuri (2003) and Dixon, Pampalk, and Widmer (2003) among others.

2.3.2.3 Temporal representations

Analyzing the rhythmic structure often means studying the periodicity of events
related to the rhythm, and in this case the onsets. Also to estimate the tempo from
an OEF it is necessary to determine its dominant pulse i.e. the periodic element
with the highest energy. The comb filter bank, the DFT and the Auto-correlation
Function (ACF) are periodicity representations while others representation such as
similarity matrix, scale transform and modulation spectrum also allows to repre-
sent rhythm.

comb filter banks . Scheirer (1998) proposes the use of band-pass filters
combined with resonating comb filters and peak picking to estimate the domi-
nant pulse positions and so on the tempo. Klapuri, Eronen, and Astola (2006) also
use resonating comb filter banks driven by band-wise accent signals The main
extension they propose is the tracking of multiple metrical levels.

dft. The DFT (presented in Section 2.3.1) has been also used for tempo estima-
tion (Xiao et al., 2008; Grosche and Müller, 2009) It has been applied to the OEF in
(Holzapfel and Stylianou, 2011; Peeters, 2011) or to others representation (Klapuri,
Eronen, and Astola, 2006) for rhythm description.

acf . ACF is the most commonly used periodicity function. It is calculated as
follows:

ACF(m) =

N−1∑
n=0

x(n) · x(n−m) (2–7)

It has been used for beat tracking in (Goto, 2001; Seppänen, Eronen, and Hi-
ipakka, 2006; Davies and Plumbley, 2007; Ellis, 2007) and by extension for tempo
estimation in (Percival and Tzanetakis, 2014). Gainza and Coyle (2011) propose a
hybrid multi-band decomposition where the periodicities of onset functions are
tracked in several frequency bands using auto-correlation and then weighted. In
(Peeters, 2006), a combination of DFT and ACF is applied in order to avoid octave
errors.

For rhythm description, Tzanetakis and Cook (2002) defines a beat histogram
computed from an ACF and Peeters (2011) proposes a harmonic analysis of the
rhythm pattern using again a combination of DFT and ACF.
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others . This is probably due to the difficulty of creating datasets annotated in
such rhythm pattern (defining the similarity between patterns — outside the triv-
ial identity case — remains a difficult task). The recognition of rhythm pattern has
received much less attention. To create such a dataset, one may consider the equiv-
alence between the rhythm pattern and the related dance (such as Tango). This
approach led to the dataset: Ballroom (Gouyon et al., 2006), Extended-ballroom (Marc-
hand and Peeters, 2016b) and Greek-dances (Holzapfel et al., 2012). Foote, Cooper,
and Nam (2002) defines a beat spectrum computed with a similarity matrix of
MFCCs, Holzapfel and Stylianou (2011) proposes the use of the scale transform
(which allows to get a tempo invariant representation), Marchand and Peeters
(2014) and Marchand and Peeters (2016a) extends the latter by combining it with
the modulation spectrum and adding correlation coefficients between frequency
bands.

To estimate tempo or describe rhythm, other representation have been devel-
oped such as wavelet representation (Tzanetakis and Cook, 2002), tempogram
(Cemgil et al., 2000; Wu and Jang, 2014) or inter-onset interval histograms (Sep-
panen, 2001; Gouyon and Herrera, 2003)

2.3.3 Musical genre handcrafted features

Early automatic genre classification systems were based on twofold procedure. A
step of handcrafted feature extraction and a step of classification (relying on a
machine learning algorithms). For feature extraction, a vector of low-level descrip-
tor is computed on an audio signal cut into frames using STFT (Section 2.3.1). As
mentioned earlier, the classification of the musical genre is based on descriptors re-
lated to the characteristic concepts of music: the rhythm, the timbre and the pitch.
We introduced numerous features related to rhythm in the previous section We
present below an exhaustive list of timbre and pitch related features devoted to
automatic genre classification.

timbre related features . The features related to timbre are the most used
for automatic genre classification because they are dedicated to the spectral dis-
tribution of the signal. In other words, timbre features extracted for every frames
encompass the sources (instrument) in the music. Among those, the MFCC which
working as approximation to human auditory system are the most used (Tzane-
takis and Cook, 2000; Pye, 2000; Deshpande, Nam, and Singh, 2001). Other works
use spectral centroid (Tzanetakis and Cook, 2002; Lambrou et al., 1998), spectral
flux, zero crossing rate, spectral roll-off (Tzanetakis and Cook, 2002),
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pitch related features . Ermolinskiy, Cook, and Tzanetakis (2001) use pitch
histograms features vector to represent the harmony of an audio signal. Wakefield
(1999) developed a "chromogram" that describes the harmonic content of the music
and can be used to determine the pitch range of the audio signal. Chroma features
are the main features related to pitch. They enable the modeling of melody and
harmony assuming that humans perceive different pitches as similar if they are
separated by an octave (Müller, 2015).

For good overviews of automatic genre classification, early methods refer to
(Aucouturier and Pachet, 2003) where the extracted features are described in de-
tails. A more recent overview of these methods is presented in (Ramírez and Flores,
2019). They also present all the works that used automatic features learning and
deep learning.

In the next section, we describe deep learning as a tool for data-driven systems.

2.4 data-driven systems

Data-driven systems use machine learning to acquire knowledge from medium
to large-scale datasets. A step of feature extraction from the data is often applied
upstream of the training step. It makes the data more suitable for learning depend-
ing on the task to be learned. In this section, we first present the machine learning
fundamentals. We only describe the tools used in this thesis. Then we list some
of the works using machine learning and deep learning to perform the task of
automatic tempo estimation and genre classification.

2.4.1 Machine learning fundamentals

Machine learning is a research field that, as its name suggests, encompasses the
computer algorithms designed to learn. Contrary to a classical algorithm, devel-
oped according to a certain logic, machine learning methods are expected to learn
this logic from the data they process. For a given task, they automatically target
the patterns contained in the data.

Supervised learning is a paradigm in machine learning that uses labeled data and
where the desired output for a given input is specified. It is opposed to unsuper-
vised learning for which data labels are not available. Other so-called semi-supervised
learning methods can also be used if the data collection is partially labeled. The
methods we have developed in this thesis (Chapter 4, 5, 6) all rely on supervised
learning.
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2.4.1.1 Supervised learning

principle . A labeled data represents an input data xi tagged by the output
response yi that we want the model to find automatically. The learning step of the
model is then to identify the patterns in the input data that lead to the desired
output. Thus, we want to find a function fS that given a set of input/output pairs
S = (x1,y1), (x2,y2), . . . , (x|S|,y|S|) captures the relationships between x and y
using controllable parameters θ:

fS(xi, θ) = ŷi ≈ yi (2–8)

where ŷi is the output of the model. The training pairs (xi,yi) are drawn from a
unknown joint probability distribution p(x,y). The goal is to approximate p(x,y)
thanks to fS by knowing only S and adjusting the parameters θ. Thus, based only
on the prior knowledge S, the main objective of a trained model is to take unseen
input data and correctly determined its output with Equation 2–8. This process is
commonly called prediction. With the annotated dataset available, it is common to
assume that the annotations are relevant and therefore that yi is the correct label
of the input xi. However these annotations, often assigned manually, are subject
to potential errors as we will see in the Chapter 3.

variance . Having access to the labels of the data allows to evaluate a trained
model by computing its accuracy. However, this does not necessarily reflect real-
world performances. The variance error measures the variation in performance for
the different sets that we can draw from p(x, y). The variance decreases as the size
and representativity of the training data S increases. It is formalized as:

Variance = E[(fS(θ] − E[f(θ)])
2] (2–9)

where E[f(θ)] is the expected performance of the model definition function f(θ)
across all possible draws from p(x,y) and fS(θ) the actual performance on S.

bias . The bias describes how close f(θ) is to the unknown function f∗ that best
describes the joint probability distribution p(x,y). It is formalize as:

Bias = E[f(θ)] − f∗ (2–10)

The goal of any supervised learning model is to achieve low bias and low vari-
ance. Thus the perfect model would be able to use an infinite amount of training
data in order to eliminate bias and variance errors.
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loss function. To adjust the complexity of the model θ, a loss function L is
defined. It measures the relationship between the model output ŷ and its ground
truth y. This error function (also known as the cost function) thus allows to evalu-
ate the performance of the model by comparing y to ŷ. The choice of L depends
on the task performed and thus on the characteristics of the target space. The cost
function L, being the total error of variance and bias, is minimized over the train-
ing set S by adjusting θ. Since the target joint probability p(x,y) is unknown, the
contribution of each term (bias and variance) cannot be calculated. Also, bias and
variance evolve in opposite direction as it is illustrate in Figure 2.4 on which the
bias-variance trade-off is represented.

underfitting , overfitting and split. As depicted in Figure 2.4, a "sim-
ple" model that oversimplify the relations between x and y tends to have low
variance and high bias. This phenomenon is known as underfitting. On the other
side, a more "complex" model (with large amount of θ) tends to have high variance
and low bias. It is known as overfitting. The performance of the model will also
depend on the training set S. If the complexity is high and S is small, the model
will tend to overfit i.e. it will learn a function that depends only on the data from
S without learning a trend or a structure present in p(x,y). In other words, the
model will generalize poorly.

In order to control the evolution of the bias-variance trade-off, the available data
S is split into three sets:

• a training set that will be used to train the model;

• a testing set to evaluate the performance of the model.

• a validation set that will allow to find the most optimal model complexity
(i.e. with the minimum error).

2.4.1.2 Deep Neural Network

principle . Inspired by a simplified version of the brain, Deep Neural Net-
works (DNN) are today the most widely used models of machine learning algo-
rithms. Neuronal connections in the brain allow the passage and analysis of infor-
mation from one neuron to another. DNN are based on the transfer of information
through successive non-linearity operations. The basic element is a neuron, it is
illustrated in Figure 2.5 and is formalized as:

h(x) = σ(Wx+ b) (2–11)
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Figure 2.4: Bias and variance trade-off contributing to total error. Figure taken from
(Fortmann-Roe, 2012).

where σ is a non-linear activation function, x ∈ RD is the input of the layer,
W ∈ R1xD the weight matrix and b the bias vector. While W perform a linear
transformation of the input data x, bias b allows the model to represent patterns
that do not necessarily pass through the origin. The latter two represent the param-
eters that the model must learn during training. The activation function σ allows
to induce non-linearity to the network in order to learn complex relationships
between input and output.

x1

x2

x3

w1

w2

w3

b

Figure 2.5: Flowchart of a single neuron non-linear operation, vector to scalar, applied to
an input vector.

fully-connected architecture . A DNN is successively composed of an
input layer x, hidden layers taking as input the outputs of the previous layer and
an output layer. The role of the hidden layers is to capture the complex relation-
ships between the dimensions of the previous layer. To do this, each neuron of one
layer is connected to all neurons of the previous and applies its own activation
function. This is called a fully-connected architecture (or dense layer).
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backpropagation. In a DNN, to predict ŷ, the input data are forward prop-
agated through the successive layers to the output layer. Training the model is
equivalent to adjusting the θ parameters to minimize a cost function L. This opera-
tion is performed using Backpropagation (Rumelhart, Hinton, and Williams, 1986).
The Backpropagation algorithm computes the gradient of L by measuring the de-
viation between the output ŷ and ywith respect to θ. In other words, backprofiling
reflects the impact of each parameter on the overall behavior of the network. Thus,
the model error is back-propagated from the output to the input of the network.
The parameters θ are then updated using gradient descent, which requires the
calculation of the partial derivative of the loss function ∂L

∂θ . The negative of the
gradient represents the steepest slope of the error surface. Hence, minimizing the
function means going down in the direction of this slope towards a minimum error
value. The most commonly used method is the Stochastic Gradient Descent (SGD).
It updates, at any step t, each parameter (so called weights) by subtracting the loss
gradient, calibrated by the learning rate η and is formalized as:

θt+1 = θt − η∇L(θt) (2–12)

This operation is called the gradient step in the error surface. The steps of
forward propagation, Backpropagation and weights update are illustrated in Fig-
ure 2.6.

Figure 2.6: Updating weights in a fully-connected neural network. Input layer is repre-
sented in green, hidden layers in blue and output layer in red. Figure taken from
(CS 230 - Deep Learning).

minibatch . Due to the limited computational resources and processing ca-
pacity of a machine but also to the processing of the training data by the DNN
model, the training set is rarely used in its entirety during an iteration. It is split
into smaller subsets called minibatch. The size of a minibatch, commonly called
batch-size, is correlated to the learning rate (which also depends on the type of
S). The minibatch makes the objective change stochastically at each optimization
iteration: with a small batch-size and a large learning rate, we deviate far from the
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desired minimum error value and if the learning rate is too small we never reach
this value.

non-linearities activation functions . The architecture of a DNN is
configurable. The number of neurons restricts the number of input combinations
while the number of layers is correlated with the model’s ability to find hierar-
chical transformations. The more layers there are, the more the abstraction of rep-
resentations from one layer to the next increases. These parameters have a direct
influence on the complexity and thus on the bias-variance trade-off. A complex
model with many layers and many neurons will tend to speed up the training pro-
cess but will also tend to overfit quickly. To avoid this but also to help the model
finding complex relationships, the non-linearity σ is applied to each neuron. The
most commonly used are the rectifier non-linearities illustrated in Figure 2.7. They
prevent the vanishing gradient problem i.e. when the loss function gradient is close
to zero the network has difficulty to train. They are also efficient and help produc-
ing more sparse representations (Nair and Hinton, 2010; Clevert, Unterthiner, and
Hochreiter, 2016).

ReLU Leaky ReLU ELU

Figure 2.7: Rectifier non-linearities activation functions. Rectified Linear Unit (ReLU) is a
non-linear function with a threshold (value below zero are set to zero). Leaky
ReLU and Exponential Linear Unit (ELU) functions represent a non-zero derivate
for negative values. Figure taken from (CS 230 - Deep Learning).

2.4.1.3 Convolutional Neural Network

principle . Fully-connected DNN are not appropriate to process input like im-
ages. Indeed, to process a three-dimensional image (width, height, color channel),
the whole set of pixels must be considered, which drastically increases the num-
ber of parameters to process. As we have seen, too much complexity quickly leads
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to overfitting. It is with the objective of directly processing images as input to a
network that the CNN were developed (LeCun, Bengio, et al., 1995). They thus
allow, based on the same learning process, to effectively reduce the number of
parameters to be updated during training.

During image processing by a CNN, the input image can be seen as a three-
dimensional function img(w,h,d) withw, h and d spatial coordinates. A pixel cor-
responds to a coordinate and its intensity corresponds to the amplitude img(w,h,d).
The information of an image is then processed according to a given pixel and those
surrounding it.

convolution. In the field of image processing, the analysis process is based
on the use of filters (also called kernels). They allow to detect the characteristic
patterns of the image in a spatialized way. To do this, the filter is applied to the
whole image by convolution i.e. it is slid over the whole image. As described in
Figure 2.8, the convolution operation is equivalent to calculating an element-wise
multiplication between each component of the filter and the input on which it
overlaps. This results in a matrix called feature map that captures the applications
of the filters over the entire input image i.e. it stores the filter activations. The filter
is also three-dimensional. The height and width of a filter is smaller than the input
image in order to be able to capture "local" information. However, the depth of the
filter corresponds to the depth of the input. The stride parameter corresponds to
the filter advancement step after each operation in terms of number of pixels for
each dimension.

Input

Input Input

Input

Filter Filter

FilterFilter

Feature map Feature map

Feature mapFeature map

Figure 2.8: Convolution operation steps. Figure taken from (CS 230 - Deep Learning).
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Another type of filter called pooling is usually applied after a convolution oper-
ation. Pooling is equivalent to a subsampling operation, i.e. the size of the feature
map (only height and width) is reduced and only the most important features are
kept. For example, among the pooling strategies, max pooling allows to keep the
maximum values as shown in Figure 2.9.

Input Input Input

OutputOutputOutput

Figure 2.9: Max-pooling operation steps. Figure taken from (CS 230 - Deep Learning).

architecture . As for the DNN architecture, a CNN is composed of several
successive layers. Each layer is generally composed of a convolution operation, a
non-linearity operation and sometimes a downsampling phase successively. At a
given layer, many different convolutions are processed in parallel, each one with
different filters. The specificity of a CNN, compared to others image processing
systems, is that filters are not handcrafted but they are learned during the train-
ing process using the Backpropagation algorithm. The weights correspond to the
filters’ value that are trained to detect important features automatically without
human supervision. After a convolution operation, the resulting feature maps are
stack along the depth axis as a tensor. Each convolutional layer learns filters of in-
creasing complexity while adding many layers increases the abstraction capacity
of the network. The first convolution layer extract low-level features such as edges,
lines or corners. The middle layers learn filters that detect part of the object such
as a wheel in the case of a car. The last layers learn higher-level representations
such as the full object in different shapes and positions.

For a classification task such as automatic musical genre classification, it is usual
to add several dense layer after the last convolutional layer in order to learn pat-
tern from high-level features. A flatten layer makes it possible by reducing the tri-
dimensional output of a convolutional layer to a one-dimensional vector. In this
case, the last fully-connected layer represents all the possible classes. An overall
CNN architecture for a classification task is presented in Figure 2.10.

All the methods we present in this thesis are based on the use of CNN to perform
classification.
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Figure 2.10: Flowchart of a CNN architecture for a classification task. Figure taken from
(Phung, Rhee, et al., 2019).

2.4.1.4 Additional deep neural network elements

In our methods, we exploit the benefits of the following techniques to reinforce
our neural networks.

batch-normalization. The Batchnormalization algorithm introduced by Ioffe
and Szegedy (2015) improves the performance and stability of neural networks.
The input data are generally standadize using a zero mean and a standard devia-
tion of one in order to ensure that each feature has the same contribution, which
reduces the sensitivity of the model to small variations. It is based on this princi-
ple and allows to normalize and standardize the output activations of each layer
of the network. Batch normalization adds two learnable parameters: a shift factor
γ and scale factor β. These parameters encourage the ability of the network to
take advantage of the non-linearity function in case it cannot learn with this con-
straint of zero mean and unit variance. They also control the needed mean and the
variance of the layer which helps the optimization algorithm. It optimizes the train-
ing because networks converge quickly, allows higher learning rates, reduces the
sensitivity to the initial starting weights and keeps a controllable range of values
avoiding saturations for some non-linearity activations (Goodfellow et al., 2016).

dropout. Dropout is a regularization operation that was introduced by Sri-
vastava et al. (2014) It allows to prevent over-fitting during training time. At each
training iteration, some randomly selected neurons are disabled and are discarded
from the training process. Dropped neurons at one step are usually active at the
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next step. Dropout prevents neurons from being highly dependent on only a small
number of previous neurons.

early stopping . In the context of model training, given a training set S di-
vided into minibatch, epoch is a term reffering to one iteration where the model pro-
cesses the whole training set i.e. all the minibatch to update its weights. Early stop-
ping (Prechelt, 1998) is a regularization technique that stops the training process
as soon as the validation loss reaches a plateau or starts to increase (Figure 2.11)
instead of keep decreasing. In other words, it allows the model to automatically
stop training when it reaches the optimal complexity.

Figure 2.11: Early stopping principle. Figure taken from (CS 230 - Deep Learning).

adam optimization. An optimizer allows to optimize the convergence dur-
ing the training process by adaptively changing the parameters θ. The current
most popular method is the ADAM optimizer (Kingma and Ba, 2014). While SGD

maintains a single learning rate η for all weight updates and the learning rate
does not change during training, ADAM computes individual adaptive learning
rates for different parameters from estimates of first and second moments of the
gradients.

2.4.2 Data-driven tempo estimation

Since the pioneer works of (Goto and Muraoka, 1994), many audio datasets have
been annotated into tempo. This therefore encourages researchers to develop data-
driven systems based on machine learning and deep learning techniques.

Such machine learning models have been used for automatic tempo estimation.
They all rely on a twofold procedure, a first step of handcrafted rhythmic fea-
tures extraction such as the ones presented in Section 2.3.2 and a second step
of classification using machine learning algorithms. As an exhaustive list we can
cite among these k-Nearest Neighbors (k-NN) (Seyerlehner, Widmer, and Schnitzer,
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2007), Gaussian Mixture Model (GMM) (Xiao et al., 2008; Peeters and Flocon-Cholet,
2012), Support Vector Machine (SVM) (Chen et al., 2009; Gkiokas, Katsouros, and
Carayannis, 2012; Percival and Tzanetakis, 2014) and bags of classifiers (Levy,
2011).

The first use of deep learning for tempo estimation was proposed by Böck
and Schedl (2011). They propose the use of a bidirectional Long-Term Short Mem-
ory (LSTM)-Reccurent Neural Network (RNN) to perform a frame by frame beat
classification of the signal. The network transforms the signal directly into a beat
activation function with the spectral features of the audio signal used as input. An
ACF is then used to determine the predominant tempo.

They extend this method in (Böck, Krebs, and Widmer, 2015) by using the bidi-
rectional LSTM-RNN to predict the position of the beats inside the signal. This out-
put is then used as the input of a bank of resonating comb filters to detect the
periodicity and so the tempo. This technique still achieves the best results today
in terms of Accuracy2 i.e. by taking into account the octave errors.

Schreiber and Müller (2018b) proposed a “single step approach” for tempo esti-
mation using CNN. The network design is inspired by the flowchart of handcrafted
systems: the first layer is supposed to mimic the extraction of an onset-strength-
function. Their system uses as input mel-spectrograms and the network is trained
to classify the tempo of an audio excerpt into 256 tempo classes (from 30 to 285

BPM). Excellent performances are to be denoted in terms of Class-Accuracy and
Accuracy1. They also proposed in (Schreiber and Müller, 2019) the use of a VGG-
style shallow network to estimate tempo and key. Using musically motivated di-
rectional filters, they were able to obtain good results for both tasks with the same
architecture.

Recently, works that process a multi-task learning frameworks to estimate simul-
taneously tempo and beats (Böck, Davies, and Knees, 2019) and tempo, beats and
down-beats (Böck and Davies, 2020) have been published. They showed that using
such frameworks where one task take benefits of the other, allows to improve the
performance.

2.4.3 Data-driven genre classification

As for tempo estimation, works dedicated to genre classification is based on a first
stage of features extraction presented in Section 2.3.3 and a second one relying on
machine learning algorithms to perform the classification. The work of Tzanetakis
and Cook (2002) used probabilistic and unsupervised approaches with GMM and
k-NN classifiers. In particular, k-NN is a relatively popular model even in recent
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works (Pálmason et al., 2017; Iloga, Romain, and Tchuenté, 2018). They are used for
extracting sequential patterns from music and generating music genre taxonomies.

Soon after the work of Tzanetakis and Cook (2002), SVM gained popularity (Li,
Ogihara, and Li, 2003; Ness et al., 2009; Henaff et al., 2011). For instance, Silla
Jr, Koerich, and Kaestner (2010) combine many different content-based features,
using a genetic algorithm for the feature selection phase, and then use SVM for
genre classification.

More recently, deep learning models have been extensively employed for this
task. The use of CNN as a classifier has become very popular (Kong, Feng, and Li,
2014; Zhang et al., 2016; Schindler, Lidy, and Rauber, 2016). Choi, Fazekas, and
Sandler (2016) and Choi et al. (2017) based their work on a large scale tagging
experimenting various architecture of CNN and RNN. Pons, Lidy, and Serra (2016),
Pons and Serra (2017), and Pons et al. (2017b) classify samples with CNN, experi-
menting with the dimensions of the convolutional filters. As we have seen in Sec-
tion 2.4.1.3 image processing, filters are spatial, whereas in audio spectrograms,
filter dimensions are related to time and frequency. Therefore, filters can be se-
lected to make the models more sensitive to temporal features (tempo, rhythm) or
frequency patterns (instruments, timbre or equalization).

Other works experiment different inputs to a network. Senac et al. (2017) show
that using a fine-tuned selection of CNN input features, related to timbre, tonality
and dynamics, could be more efficient and similar in accuracy than using spec-
trograms. Nanni et al. (2016) and Nanni et al. (2018) explore the idea of merging
visual and acoustic features for music genre classification. To this end, visual de-
scriptors are extracted using a CNN and audio features are extracted with audio
signal feature extraction methods.

While all these works perform music genre classification with a first step of
feature extraction, other works have shown their efficiency in the task by learning
these features automatically. This process of learning audio features is often ap-
proached as an unsupervised learning problem. An overview of these techniques
is given in (Ramírez and Flores, 2019), we will not detail them here. Some other
works have shown better results on very large scale datasets in an end-to-end way
using raw audio as input of deep learning models Pons et al., 2017a.

2.5 electronic/dance music in music information retrieval

For more than a decade, several works in the MIR field have been dedicated to
EDM. If we consider the historical evolution of this type of music (presented in
Section 1.1), we can assume that the number of works concerning it is relatively
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low. We present here a non-exhaustive list of these works which are related to
our research. According to Butler (2006), the structural change in EDM music is
generally dependent on timbre or rhythm variations. Logically, MIR works on EDM

are focused on the two musical dimensions: rhythm and timbre.

Hockman, Davies, and Fujinaga (2012) perform a downbeat detection task on
breakbeat rhythmic style genres of EDM (Hardcore, Jungle and Drum’n Bass) with
a style specific model.

Panteli, Bogaards, Honingh, et al. (2014) developed a model to evaluate rhythm
similarity between EDM tracks. For this, they assume that EDM rhythm is expressed
via the loop which is a repetition of patterns associated with instruments (percus-
sive or not). First, they segment the audio signal based on timbre features using a
segmentation algorithm presented in (Rocha, Bogaards, and Honingh, 2013). It in-
cludes a set of musically informed rules to account for the fact that segment bound-
aries in EDM are usually on the beat. Second, they represent rhythm polyphony2

by separating the audio into rhythmic streams. Features relative to rhythm in each
of those streams are extracted after an onset detection step: the attack, the period-
icity of the onsets and the metrical structure of the rhythm patterns. Finally they
evaluate the rhythm similarity between the concatenated features vectors thanks
to a perceptual rating.

Honingh et al. (2015) also deal with the music similarity in a multidimensional
context through sub-similarities of rhythm and timbre. They lead perceptual exper-
iments with a panel of listener to measure the similarity between rhythm, timbre
and what they called general similarity. They also want to estimate the interaction
between them in terms of two metrics of consistency. Their method have proved
that in EDM when all the sub-similarity are high the output of their study is high,
and when a sub-similarity is low, the output gets lower.

Panteli et al. (2017) present another method for similarity evaluation in EDM

based on rhythm and timbre. They extract several features, some related to the
periodicity of rhythmic events (the degree of repetition as well as the metrical
position of the repeating pattern), others related to the presence or absence of low
frequency instruments in the mix and the roughness. Using the annotated data
on similarity described in (Honingh et al., 2015), they apply a linear regression
model. In other words, they correlate the audio features to the perceptual data.
Doing so, they perform a statistical analysis of the importance of each descriptor
with rhythm and timbre similarities treated separately. Finally, they assume that
the features related to rhythm are the most important to evaluate similarity in
EDM.

2 Since the rhythm in EDM is marked by many instruments.
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Other methods dedicated to EDM analysis are based on data aggregation. The
work of (Hörschläger et al., 2015) aims to address tempo estimation octave errors
in Electronic Music by incorporating style information extracted from Wikipedia3.
Knees et al. (2015) developed two datasets annotated in style (genre), tempo and
key. All the annotations are extracted from Beatport and are improved by gath-
ering and exploiting users’ feedbacks. Tempo annotations have been improved in
(Schreiber and Müller, 2018a) with a tapping experiment. More details of these
datasets are given in Section 3.2.

As we saw in the introduction, the number of genres/sub-genres in EDM is
flourishing. Some research has been dedicated to their automatic classification.
They are all based on the so called handcrafted features designed from domain
knowledge. Among these, we can cite the work of Diakopoulos et al. (2009), the
one of Camara (2017) and more recently the one of Caparrini et al. (2020). The
latter perform an automatic EDM sub-genre classification and a comparison of the
classification and the taxonomy in time. The datasets and their annotations are
taken from Beatport. They aggregate two datasets from the platform at two-year
intervals (2016 and 2018) annotated in 23 different sub-genres. They thus show that
some sub-genres appear and others disappear, illustrating once again the volatile
aspect of EDM taxonomy.

To perform sub-genre classification, they apply an audio features analysis and
several machine learning algorithms dedicated to the classification of those fea-
tures. They first compute for each track audio features with two library: pyAudio-
Analysis Giannakopoulos, 2015 and Essentia Bogdanov et al., 2013. Those libraries
contain several types of audio features relative to timbre and to rhythm. Com-
bining all of those features, their mean and their standard deviation provides 92

inputs variables for the classifiers. As classifiers they use decision tree, random for-
est and extremely randomized trees gradient tree boosting. They finally perform
a study on the statistical importance of the features. It shows that BPM-based
features are the most efficient ones for classification i.e. they have the most dis-
criminative power for sub-genres classification.

2.6 conclusion

Starting from the two main axes of the thesis, i.e. automatic tempo estimation and
automatic classification into musical genres, we have presented in this chapter
some concepts specific to music analysis.

Knowing that tempo is an indivisible concept in rhythmic analysis, we began by
defining the different aspects of rhythm. Thus, we were able to get familiar with

3 https://fr.wikipedia.org/

https://fr.wikipedia.org/
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the theories that shed light on the different perceptual and temporal aspects of the
rhythm. For the musical genre, we have also discussed its general definitions on
the basis that it is an ambiguous and subjective concept. Whether it is for rhythm
or genre, we wish to bring certain answers through our work to disambiguate
these concepts, particularly with regard to EDM. We have divided our state of the
art overview into two distinct parts, one for handcrafted systems and one for data-
driven systems.

In the first one, we first described some signal processing concepts. We started
with the most general notions and then focused on the tools adapted to the de-
scription of rhythm. For this, we have precisely defined the onset and the way
to detect it in a musical signal with the OEF. Through various works, we have
shown that there are different temporal representations allowing to analyze the
OEF. Among these we will further detail the work of (Peeters, 2011; Marchand
and Peeters, 2016a) which serves as a baseline for the development of our Deep
Rhythm method (Chapter 4). In addition to the handcrafted rhythmic features, we
also mentioned two other types of features used for the automatic classification
of musical genres related to timbre and pitch. We will get a closer look to timbre-
related features for the deep rhythm multi-input method in Section 5.4.

In the second part, we have described the large-scale analysis tools allowing a
supervised classification thanks to machine learning. We started by defining what
supervised learning is. Then, we presented an explanation of deep learning algo-
rithms that are DNN and CNN, both ubiquitous in this thesis. Next, we mentioned
the work dedicated to the automatic estimation of tempo with the use of machine
learning. We did the same for the musical genre works. Note that handcrafted fea-
tures based on domain-knowledge are very often used as input to these analysis
models. Our work is derived from a combination of handcrafted features used as
input to a deep learning model.

We ended by presenting the various MIR works dedicated to EDM. It is a musical
genre that has been relatively unexplored. Nevertheless, the work of analysis of
EDM focuses on two musical aspects: rhythm and timbre. The analyses show that
rhythm is a key element in the description of the musical genres in EDM. We wish
to apply this type of analysis by describing certain genres in EDM using rhythmic
features and data-driven genre classification. This will be the main focus of this
thesis and will be found in next chapters. These approaches, however, necessitate
to manipulate datasets that are annotated for the given taks. In the next chapter,
we will introduce such datasets and their link to the two tasks we are aimed at
accomplishing.





3
D ATA S E T S

3.1 introduction

Our work is geared towards two main tasks: a global tempo estimation task and
a rhythm-oriented genre classification task. We discussed the fact that the nerve
center of our methods is based on the combination of rhythmic handcrafted and
data-driven systems. Therefore, the best way to evaluate the results of our methods
is to test them on different annotated datasets.

Tempo is usually defined as (and annotated as) the rate at which people tap
their foot or their hands when listening to a music piece. Several people can
therefore perceive different tempi for the same piece of music (Hainsworth, 2004;
Peeters, 2006; Percival and Tzanetakis, 2014). This is due to the hierarchy of the
metrical structure in music (to deal with this ambiguity the research community
has proposed to consider octave errors as correct) and due to the fact that without
the cultural knowledge of the rhythm pattern(s) being played, it can be difficult
to perceive “the” tempo (or even “a” tempo). This last point, of course, opens the
door to data-driven approaches, which can learn the specifics of the patterns and
their use to infer a given tempo. In this work, we do not deal with the inherent
ambiguity of tempo and consider the values provided by annotated datasets as
ground-truth. Since the tempo of a track can vary over time, different approaches
have been proposed so that an entire piece of music can be annotated with a single
tempo value. Hainsworth (2004) defines it as the mean of the inter-beat intervals
whereas others (Peeters, 2006; Percival and Tzanetakis, 2014; Böck, Krebs, and
Widmer, 2015) recommend to compute the median of the inter-beat intervals to
counter the influence of outliers. For more than a decade, annotated datasets ded-
icated to the global tempo estimation have been developed. Some have been cre-
ated for challenges such as the Music Information Retrieval Evaluation eXchange
(MIREX) 1, others for the evaluation of new methods as we wish to do. Beyond
tempo, other rhythmic features can be annotated such as beat positions.

As for datasets annotated into musical genre, their development is all the more
consequent knowing that it is a very popular task. The application of deep learning
methods for automatic music tagging task requires datsets on a very large scale.

1 https://www.music-ir.org/mirex/wiki/MIREX_HOME
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Music tagging encompasses not only musical genres but also other tags such as
mood, period or theme of a piece of music. The number of labels used in such
context can be very high.

As we will see, the majority of datasets annotated into tempo are also annotated
in musical genres. For some of them, this musical genre labeling is thought to stick
to the rhythmic characteristics. This will allow us to analyze the musical genres
through their overall tempo and rhythmic characteristics. Knowing that we do not
want to carry out a classification in musical genres on a large scale, we will be
satisfied with the annotations in genre of these smaller datasets. From now until
the end of this manuscript we will refer to our task of "rhythm-oriented musical
genre" classification simply as "genre" classification for the sake of readability.

In Section 3.2 we first describe the datasets commonly found for tempo and
rhythm genre estimation. EDM datasets presented have been created specifically
for the automatic estimation of tempo (or key) but not for the classification in
musical genres. This is what motivated us to create two new annotated datasets
wich are balanced in EDM genres. We detail those in Section 3.3.

For all datasets presented, we indicate their distribution in tempo and/or genre
according to their annotations and applications. These distributions highlight the
frequency of annotations for each label in the case of tempo and/or genre.

3.2 commonly used datasets

We first describe the different datasets commonly used for the estimation of the
global tempo. While they have been created for tempo estimation, it will be pos-
sible to exploit some of them for genre classification as well. We only consider
the datasets for which audio data are available and free of charge for research
purposes.

ACM Mirum (ACM) proposed by Peeters and Flocon-Cholet (2012) – 1,410

tracks – tempo (perceptual tempo) annotated dataset. We use it in chapters 4 and
5 as test set for tempo estimation.

Ballroom (BR) proposed by Gouyon et al. (2004) – 698 tracks – tempo and genre
annotated dataset. This dataset is annotated in rhythmic genres, which means that
the classes correspond to the rhythmic patterns that define ballroom dance music.
We use it as test set for tempo estimation in chapters 4 and 5 and as train/test/-
validation set for genre classification in chapters 4, 5, 6.
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Figure 3.1: ACM tempo distribution.
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Figure 3.2: BR tempo distribution.
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Figure 3.3: BR genre distribution.

Extended Ballroom (EBR) presented by Marchand and Peeters (2016b) – 4,180

tracks – tempo and genre annotated dataset. It is an extension of the BR dataset
with additional ballroom styles. For the tempo estimation task, we remove from
the dataset the tracks already present in the BR dataset for experimental train-
ing/testing purposes, as in (Schreiber and Müller, 2018b). We therefore refer to
this reduced dataset as tempo Extended Ballroom (tEBR) – 3,826 tracks. For the
genre classification, as in Marchand and Peeters, 2016a, we keep only the nine most
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represented genres. We therefore refer to this reduced dataset as genre Extended
Ballroom (gEBR) – 3,992 tracks. We use tEBR as train set for tempo estimation in
chapters 4 and 5 and gEBR as train/test/validation set for genre classification in
chapters 4, 5, 6.
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Figure 3.4: tEBR, tempo distribution.
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Figure 3.5: gEBR, genre distribution.

tempo GiantSteps (tGS) proposed by Knees et al. (2015) – 664 tracks – tempo
and EDM genre annotated dataset. The audio files are excerpts of music taken from
Beatport2, we detail the platform in the next Section 3.3. We use the annotations
corrected by Schreiber and Müller, 2018a in a perceptual tapping experiment3. We
use it as test set for tempo estimation in chapters 4 and 5.

Greek Dance (Gr) proposed by Holzapfel and Stylianou (2011) – 180 tracks –
greek dance annotated dataset. As for BR and EBR, it is annotated into rhythmic

2 https://www.beatport.com/

3 They asked a panel of participants to tap the tempo along the tracks. By aggregating the results of
the experiments, they were able to define new annotations that are more perceptually relevant

https://www.beatport.com/
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Figure 3.6: tGS tempo distribution.

genres. The tracks are divided into 6 classes equitably distributed (30 tracks per
class): kalamatianos, kontilies, maleviziotis, pentozalis, sousta and kritikos syrtos. We
use it as train/test/validation set for genre classification in chapters 4, 5, 6.

GTzan Tempo (GTzan) initially proposed by Tzanetakis and Cook (2002) for
genre classification and later annotated into tempo by Marchand, Fresnel, and
Peeters (2015) – 1000 tracks. The original dataset is popular for tagging or music
genre classification tasks due to its large size. It is divided into 10 equally dis-
tributed genres (100 tracks per class): blues, classical, country, disco, hip-hop, jazz,
metal, pop, reggae, rock. We use it as test set for tempo estimation in chapters 4 and
5 and as train/test/validation set for genre classification in chapters 4, 5, 6.
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Figure 3.7: GTzan Tempo, tempo distribution.

Hainsworth (Hains.) proposed by Hainsworth, 2004 – 222 tracks – tempo an-
notated dataset. We use it as test set for tempo estimation in chapters 4 and 5.

ISMIR04 Songs (ISMIR04) proposed by Gouyon et al., 2006 – 464 tracks –
tempo annotated dataset. We use it as test set for tempo estimation in chapters 4

and 5.

tempo LMD (tLMD) a subset of the Lack MIDI dataset proposed by Raffel
(2016) and tempo annotated by Schreiber and Müller (2017) – 3,611 tracks. It is
annotated in genre but the quality of the annotations does not allow us to use it
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Figure 3.8: Hains. tempo distribution.
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Figure 3.9: ISMIR04, tempo distribution.

in our experimental protocols (many tracks are annotated as "unknow"). We use it
as train set for tempo estimation in chapters 4 and 5.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

Global tempo value (BPM)

0

10

20

30

%
 o

f t
ra

ck
s

Figure 3.10: tLMD, tempo distribution.

tempo MTG (tMTG) proposed by Faraldo, Jorda, and Herrera (2017) for EDM

key estimation – 1,159 tracks – tempo annotated using a tapping method by
Schreiber and Müller (2018b). We use it as train set for tempo estimation in chap-
ters 4 and 5

genre MTG (gMTG) – 1,823 tracks. We propose to merge the two EDM datasets
of the state of the art, tGS and tMTG. The goal is to obtain a tempo and genre an-
notated dataset for our experiments in both tasks. We use it as test set for tempo
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Figure 3.11: tMTG, tempo distribution.

estimation in chapters 4 and 5 and as train/test/validation set for genre classifica-
tion in chapters 4, 5, 6.
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Figure 3.12: gMTG, tempo distribution.
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Figure 3.13: gMTG, genre distribution.
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SMC proposed by Holzapfel et al. (2012) – 217 tracks – tempo annotated dataset.
It is designed to make the task of beat tracking more difficult. We use it as test set
for tempo estimation in Chapter 4 and 5
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Figure 3.14: SMC tempo distribution.

Combined – 4,675 tracks. Schreiber and Müller, 2017 proposed in their exper-
imental protocol to merge all the tempo annotated test set into one to perform a
large scale analysis. This dataset is the union of ACM, ISMIR04, BR, Hains., GTzan,
SMC, tGS.
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Figure 3.15: Combined, tempo distribution.

We present in Table ?? the involvement and use of the different datasets in our
work.

3.3 electronic dance music datasets

As seen, only the tGS, tMTG and gMTG datasets presented above are dedicated
to EDM. The original purpose of these datasets was the automatic estimation of
tempo and that is the main reason why they are unbalanced in musical genre
(Figure 3.13). As a reminder, we assume that the rhythmic structure of an EDM

track is a major indication of its musical genre. We want to check our assumption
using data-driven methods. We therefore need datasets which are genre-balanced.
Such datasets do not exist in the literature or are not publicly available.
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Table 3–1: Utilization of commonly used datasets

Dataset Tempo Genre

ACM test -

BR test train/test/validation

tEBR train -

gEBR - train/test/validation

tGS test -

Gr - train/test/validation

GTzan test train/test/validation

Hains. test -

ISMIR04 test -

tLMD train -

tMTG train -

gMTG - train/test/validation

SMC test -

Combined test -

For the three EDM datasets, tGS, tMTG and gMTG, audio excerpts and anno-
tations have been retrieved from the same source: the Beatport website. It is one
of the most popular websites for DJs and EDM listeners. It is both a platform for
sales and the promotion of new trends. More than 25,000 new tracks are published
every week. For each track uploaded, Beatport provides precise annotations into
genre, key and tempo. The genre labeling is subject to current trends, despite an
unbreakable core, hence some sub-genres are sometimes removed from the plat-
form and others are added every 6 months. The taxonomy includes no less than
30 different core genres and more than 150 sub-genres. For each track, a 2-minute
audio excerpt is freely available.

We have gathered from Beatport around 67,000 audio excerpts of 30 different
genres and 48 different sub-genre. From these data, we have created two smaller
genre-balanced EDM datasets. Because of computational resources, we have not
kept all the 67,000 tracks. It should be noted that the two smaller datasets are also
balanced in sub-genres (when the core genres are subdivided into sub-genres).
Finally, the amount of collected data has allowed us to only use one track of each
artist.
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large Beatport (lBP) – 3,000 tracks with 100 tracks per genre. The 30 genres se-
lected are all the core genres of the Beatport taxonomy: afro-house, big-room, breaks,
dance, deep-house, dj-tools, drum-and-bass, dubstep, electro-house, electronica-downtempo,
funk-soul-disco, funky-groove-jackin-house, future-house, garage-bassline-grime, glitch-hop,
hard-dance, hardcore-hard-techno, hip-hop-r-and-b, house, indie-dance-nu-disco, leftfield-
bass, leftfield-house-and-techno, minimal-deep-tech, progressive-house, psy-trance, reggae-
dancehall-dub, tech-house, techno, trance, trap-future-bass.

small Beatport (sBP) – 1,100 tracks with 100 tracks per genre. For this dataset
we focus on a subset of genres which have been wisely selected for their rhythmic
characteristics. For some of the genres described, we illustrate below examples of
basic rhythmic drum patterns using a sixteenth-note MIDI grid. This means each
sequence is only one bar long. Each line of a grid corresponds to a percussive
elements played by a drum-machine. In the figures, the elements are represented
by icons, from bottom to top: bass-drum, snare-drum (or hand-clap), open hi-hat
(or crash), closed hi-hat. We have chosen to represent only these 4 elements in
order to illustrate simplified structures but many others elements are also used
in the composition of an EDM track such as tomes, cymbals or sub-kicks. It is
important to note that the examples are indicative. Indeed, Hockman, Davies, and
Fujinaga (2012) mentioned that the breakbeat patterns are not universal.

• dance: Mainly characterized by synthesized riffs, male or female vocals, rap
passages, sampling and a strong bass-drum. Its rhythmic structure is of the
four-on-the-floor type: four percussion beats on four measures (4/4), each
sequence of 16 or 32 beats delimited by a strong moment. The tempo ranges
between 110 and 150 BPM. A rhythm pattern example is illustrated in Fig-
ure 3.19.

• drum-n-bass: Intensive use of "breakbeat chopping", i.e. the repetition of drum
strokes from recording samples. The tempo is often above 160 BPM, with
characteristic bass lines perceptible at half the tempo. A rhythm pattern ex-
ample is illustrated in Figure 3.16.

• dubstep: breakbeat rhythmic structure, influenced by jungle, drum’n’bass,
dub but also techno with a more instrumental approach, more introspec-
tive and guided by the physical energy of the low frequencies. The rhythm
is characterized by the snare-drum specifically placed on the 3rd beat. The
tempo is generally close to 140 BPM. A rhythm pattern example is illustrated
in Figure 3.17.

• electronica-downtempo: Often associated with trip-hop, it can also encompass
more or less experimental and/or minimalist sub-genres such as ambient. Its
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Figure 3.16: Drum-n-bass (110 - 150 BPM) rhythm pattern example.

Figure 3.17: Dubstep (140 BPM) rhythm pattern example.

harmonic texture is often dense and abundant and rhythm is characterized
by groove percussion. Even though it is often defined by breakbeat rhythms,
this genre is mainly defined by its tempo which is very low, between 60 to
90 BPM.

• funk-soul-disco: Mixture of funk for its harmonic component (voice, jazzy
brass-type instrumentation) and disco for the rhythm (four-on-the-floor). It
is also influenced by a new scene, associated with the term "electro-funk".
The pulsations are marked by the bass-drum on each beat of the 4/4 meter
and the offbeats are underlined by a hi-hat often replaced by a hand-clap or
other instruments. Tempo is generally around 120 BPM. A rhythm pattern
example is illustrated in Figure 3.19.

• hardcore-hard-techno: It was historically the first breakbeat genre. Today, many
sub-genres are affiliated with hardcore and their rhythm pattern can be
breakbeat (breakcore) or four-on-the-floor (hard-techno). The bass-drum or
kick is the most recognizable element, it is created by saturation, filter effects
and superimposition of heavy synthetic percussive sounds. The presence of
synthetic "snapping" sounds enhances the classical hi-hat and snare-drum
palette. In a more global way, the accent is generally put on cuts or decreases
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in intensity during the piece often followed by a high4. Many sub-genres
result from this and although the tempo is generally very high: it can varies
between 140 and 220 BPM. A rhythm pattern example is illustrated in Fig-
ure 3.19.

• hip-hop-r-and-b: It is a "meta-genre" in its own in the sense that its taxonomy
is vastly developed. The rhythmic structure is that of breakbeat. It is repre-
sented in this dataset by sounds with rhythmic characteristics "boom bap"
or "trap". "boum bap": Drums and vocals are loudest – samples are often in
the background of the mix. Also, low pass filters are often used to prevent
the mix from getting too bright and maintains lo-fi feel. Kick-drums are usu-
ally on the 1st and 3rd beat to provide the "boom" and the snare on the 2nd
and 4th beat to provide the "bap". Beats are often sparse to allow rappers’
lyrics to take focus in the music. Tempo is usually around 80 to 120 BPM.
A rhythm pattern example is illustrated in Figure 3.18. "trap": Extensive use
of the Roland TR-808 drum-machine kick (characterized by the greater pres-
ence of sub-bass), 16th notes, triplets and other faster time divisions with
hi-hat tones, synthesizer pads and virtual string ensembles. Tempo is usu-
ally around 100 to 140 BPM.

Figure 3.18: Hip-Hop (Boom bap, 80 - 120 BPM) rhythm pattern example.

• house: Typical four-on-the-floor rhythmic pattern consisting in a steady kick-
drum on each downbeat in a 4/4 meter. Rhythmic distinguishing charac-
teristics involve offbeat open hi-hat patterns and snare or claps on the two
and four of every bar. Harmonic content, vocals and instrumentation are of-
ten borrowed from ’disco’. Tempo ranges from 115 to 135 BPM. A rhythm
pattern example is illustrated in Figure 3.19.

• reggae-dancehall-dub: It is a combination of 3 sub-genres sharing the same
rhythmic structures. Historically reggae is at the origin of dub (whose initial

4 In the jargon of electronic music a high is the climax of a rise in intensity.
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Figure 3.19: House (115 - 135 BPM) rhythm pattern example. It is a basic foor-on-the-floor
pattern, it can also correspond to dance (110 - 150 BPM), disco (120 BPM) or
techno (120 - 150 BPM)

term designated the principle of remix) and dancehall. Beyond the "riddims",
rhythmic structure specific to these genres (determined by the bass line),
they are characterized by: a four beat rhythm, with accentuation by the bass
line which executes small riffs of one bar often in figure of eighth note and
drums on the weak beats; the "skank" which designates the after-beat (in fact
an accentuation of the second and fourth beats), generally marked by a flat
chord played by the rhythm guitar or the keyboard; a snare-drum hit on the
one drop (3rd beat). Tempo, even if it is generally perceived at double the
tempo, ranges from 60 to 90 BPM. A rhythm pattern example is illustrated
in Figure 3.20.

Figure 3.20: Reggae-dancehall-dub (stepper style, 60 - 90 BPM) rhythm pattern example.

• techno: The melody is reduced to the background, relying more on bass riffs
and poly-rhythmic drums superimposed on a common bass-drum at the
four-on-the-flour. The defining characteristics of the song is rhythmic, with
grooves and percussive riffs taking precedence over the more traditional
melodic and harmonic structure. Tempo typically ranges from 120 to 150

BPM. A rhythm pattern example is illustrate in Figure 3.19.
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• trance: It is characterized by the use of thick and complex harmonic com-
ponents. The rhythmic structure is less dominant and complex than in other
types of EDM. From a global point of view, trance often uses arpeggios, drum
rolls and long synthesizer crescendos. Tempo ranges from 125 to 150 BPM,
mostly around 140 BPM. A rhythm pattern example is illustrated in Fig-
ure 3.21.

Figure 3.21: Trance (125 - 150 BPM) rhythm pattern example.

In (Knees et al., 2015), it is mentioned that the tempo annotations provided
by Beatport are not reliable since Beatport does not provide information on the
algorithm used for the estimation. To correct the ill-defined BPM values, Knees
et al. (2015) download the user comments associated with each track that refers
to the tempo values, they apply a restrictive filtering to obtain annotations made
by human rather than an unknown algorithm. The corrected dataset is the tGS
one. (Schreiber and Müller, 2018a) on their side proposed an experiment based on
tapping to annotate the tMTG dataset.

We do not perform such a correction here. Indeed, our work with these datasets
focuses mainly on analyzing musical genre. We still use these datasets for tempo
estimation in some of our experiments with the annotations provided by beatport.
To have an idea of the tempo range of these datasets, we display the distribution
of the tempo values annotated by Beatport in figures 3.22 and 3.23 for the lBP
and the sBP, respectively. We can observe on these graphs that the majority of the
tracks are annotated with tempi between 120 and 130 BPM.

3.4 discussion

In this chapter, we have presented the datasets used in our experiments: on one
side for global tempo estimation; on the other side for genre or rhythmic genre
estimation. We have at our disposal two published EDM datasets. The tGS and
the gMTG are reliably annotated in tempo but their musical genre distribution
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Figure 3.22: lBP dataset, tempo distribution.
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Figure 3.23: sBP dataset, tempo distribution.

is unbalanced. This has led us to create two genre-balanced EDM datasets: lBP
and sBP. We have described in details EDM genres within the sBP dataset. Further
details on the genres one can encounter in the different datasets can be found in
the corresponding literature.

The remaining datasets give us the possibility to draw conclusions on a larger
scale. The Ballroom datasets BR and EBR are quite interesting to study since Ball-
room dances share some distinctive features with EDM such as rhythmic patterns,
tempo and repetitions. The Gr dataset is also annotated in rhythmic genres. Thus,
we consider the results of our work on these datasets as an important baseline.
Plus, the GTzan dataset is balanced in popular musical genres and allows us to
analyze the generalization of our classification methods.

It is important to note that the use of annotated datasets for tempo estimation
has been debated for several years. Indeed, some criteria of these datasets (their
size, the quality of their annotations, the examples chosen for their simplicity, etc.)
constitute a ceiling to the evaluation of tempo estimation (Holzapfel et al., 2012;
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Schreiber, Urbano, and Müller, 2020). We are aware of these limitations and for
this reason we have chosen a wide spectrum of different dataset types (in relation
to their musical genres or the features they highlight). Moreover, the objective of
our work is not to outperform the previous scores to the nearest comma but rather
to come up with original methods and analyze their impact on the tasks we wish
to explore.

All information related to the different datasets are stored in an optimized
format as a .json file. We created a .json file by dataset. In the following, we provide
the nomenclature of the file relative to the gEBR dataset.

{

"genres": {

"Chacha": 8,

"Foxtrot": 0,

"Jive": 2,

"Quickstep": 7,

"Rumba": 4,

"Samba": 3,

"Tango": 5,

"Viennesewaltz": 6,

"Waltz": 1

},

"track_infos": {

"100601": {

"album": "Ballroom Swing",

"artist": "Herberman",

"dataset": "Extended_Ballroom",

"filepath": "~/ExtendedBallroom/Waltz/100601.mp3",

"genre": "Waltz",

"hash": "273d858e7eaa59e7970883dfa4d0be97",

"id": "Herberman",

"tempo": 87.0,

"title": "Morning Song"

},

...

}

}





4
D E E P R H Y T H M

4.1 introduction

Our objective is to study the rhythmic structure and more specifically its impact
on the characterization of a musical genre. Motivated by this goal, we define two
tasks:

• A tempo estimation task – as we have seen in the Section 3.3, we emphasize
the fact that tempo ranges are typical of EDM genres.

• A genre classification task based on the assumption that the rhythmic struc-
ture is enough to retrieve the genre classes.

In this chapter, we propose a method to perform these two tasks. In Chapter 2, we
have seen the two main strategies to deal with such objectives: knowledge-driven
(handcrafted) and data-driven systems. Our method is at the crossroads of these
two strategies, we name it Deep Rhythm (DR).

First, we want to obtain a representation of the periodic characteristics that make
up the different levels of the rhythmic structure contained in a track. As we have
described, the rhythm (and by extension the tempo) has a purely perceptive dimen-
sion. This is a substantial part of the development of a harmonic representation of
rhythm.

Then, thanks to the annotated datasets described in Chapter 3, we want to learn
automatically (using supervised training) the information that allows us to per-
form both tasks. This incites us to rely on deep learning schemes. The link between
these two steps is essential: the automatic learning from a periodic representation
of the rhythm annotated data is the essence of our method.

We begin this chapter with a description of the works that has motivated
the development of our DR method (Section 4.2). We then present the Harmonic
Constant-Q Modulation (HCQM) representation of the rhythm we propose, its com-
putation and its different parameters (Section 4.3). This representation is used as
an input to a deep Convolutional Neural Network (CNN) We describe its architec-
ture and its training procedure (Section 4.4). We show that the architecture of this
model with the HCQM as input allows us not only to perform the task of tempo
estimation but also that of rhythm-oriented genre classification.

53
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Within the considered datasets, the tempo inside a track can vary over time (ac-
tually some of the segments contain silence and the tempo is not even defined for
those); however, the ground-truth annotations only provide a single tempo anno-
tation value. To match our local tempo estimation to the global tempo annotation,
we compute the mean of the softmax vectors over frame to estimate this single
tempo. Interestingly, we show that if we would only consider the best softmax
vector (oracle method) among those, the performances would actually be much
higher. We therefore add an Attention Mechanism (AM) on top of DR to infer the
best single tempo estimation from the sequence of predictions. This is describe
in Section 4.5. Finally we evaluate the results of the DR method on the one hand
for the estimation of global tempo and on the other hand for the rhythm-oriented
genre classification (Section 4.6).

4.2 motivations

The method we propose here belongs to the data-driven systems in the sense
that we learn from the data. It also considers both the tempo and rhythm pattern
in interaction by adequately modeling the audio content through a handcrafted
feature representation. The tempo of a track can of course vary along time, but in
this work we focus on the estimation of global tempo and rhythm-oriented genre.

4.2.1 Harmonic representation of rhythm components

From Fourier series, it is known that any periodic signal x(t) with period T0 (or
fundamental frequency f0 = 1/T0) can be represented as a weighted sum of sinu-
soidal components whose frequencies are the harmonics of f0:

x̂f0,a(t) =

H∑
h=1

ah sin(2πhf0t+φh) (4–13)

For the voiced part of speech or pitched musical instrument, this leads to the
so-called "harmonic sinusoidal model" (McAuley and Quatieri, 1986; Serra and
Smith, 1990) that can be a starting point for audio coding or transformation. This
model can also be used to estimate the pitch of a signal (Maher and Beauchamp,
1994): estimating the f0 such that x̂f0,a(t) ' x(t). The values ah can be estimated
by sampling the magnitude of the DFT at the corresponding frequencies ah,f0 =

|X(hf0)|. The vector af0 = {a1,f0 · · ·aH,f0} represents the spectral envelope of the
signal and is closely related to the timbre of the audio signal, hence the instrument
playing. For this reason, these values are often used for instrument classification
(Peeters, 2004).
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For audio musical rhythm, Peeters (Peeters, 2006; Peeters, 2010; Peeters, 2011)
proposes to apply such a harmonic analysis to an OEF. The period T0 is then
defined as the duration of a beat (i.e. the time between two successive beats). In
this harmonic analysis:

• a1,f0 then represents the DFT magnitude at the 4th-note level;

• a2,f0 at the 8th-note level;

• a3,f0 at the 8th-note-triplet level . . .

while:

• a 1
2 ,f0

represent the binary grouping of the beats

• a 1
3 ,f0

the ternary one

Peeters considers that the vector a is representative of the specific rhythm and
that therefore af0 represents a specific rhythm played at a specific tempo f0 (in
this context, tempo is assimilated to the fundamental frequency). He proposes the
following harmonic series: h ∈ {14 , 13 , 12 , 23 , 34 , 1, 1.25, 1.33, . . . , 8}.

With the above-mentioned considerations, he shows:

• in (Peeters, 2011) that given the tempo f0, the vector af0 can be used to
classify different rhythm pattern;

• in (Peeters, 2006), that given manually-fixed prototype vectors a, it is possible
to estimate the tempo f0 (looking for the f such that af ' a);

• in (Peeters, 2010) that the prototype vectors a can be learned (using simple
machine learning) to achieve the best tempo estimation f0.

An example of this harmonic representation of rhythm is described in Figure 4.1.
The method we propose is in the continuation of this last work: learning the

values a to estimate the tempo or the rhythm-oriented genre class. We want to
adapt a to the deep learning formalism proposed by Bittner et al. (2017).

4.2.2 Adaptation to a deep learning formalism

In (Bittner et al., 2017), a task of fundamental frequency estimation in polyphonic
music is achieved. To this aim, the depth of the input to a convolutional network
is used to represent the harmonic series af and f0 denotes the fundamental fre-
quency. Bittner et al. (2017) propose in a first step to compute the CQT of a har-
monic signal.
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Figure 4.1: Example of a harmonic representation of rhythm components of an onset
energy signal. Each beat is divided into 8th-notes. The DFT of the OEF is
represented at the bottom where vertical dashed lines represent ah,f0 with
h = 1, 2, 3, 4 and the vertical dotted lines represent ah,f0 with h = 1

4 , 12 , 34 .
Here, the signal have a tempo of 60BPM (1Hz). Figure taken from (Peeters, 2011).

constant-q transform . In musical audio, the frequencies are logarithmi-
cally spaced (according to the tempered scale): the frequencies of adjacent notes
are closer together at low frequencies and further apart at high frequencies.

The STFT uses the same temporal length of the analysis window for all frequen-
cies, therefore the same frequency resolution for all frequencies. This may be insuf-
ficient to distinguish between the frequencies of adjacent notes at low frequencies
and too high at high frequencies. The use of the CQT (Brown and Puckette, 1992)
solves this problem by adjusting the temporal range of the window with variable
length.

The frequency length of the analysis window is calculated as a function of the
fk frequency considered.

Let the factor Q = fk
fk+1−fk

be constant in frequency such that: Q = fk
Bω = fk.Lk

Cω ,
with Bω = Cω

L the frequency resolution (or bandwidth at -3dB) and Cω the
window characteristic factor.

The length of the window for each frequency can then be calculated as: Lk =
Q.Cω
fk

.
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As the STFT extends the Fourier transform to time frame τ, the CQT can be com-
puted over successive time frame τ. The results is then a matrix of size (time τ, log−
frequency f)

In (Bittner et al., 2017) the CQT is expanded to a third dimension which rep-
resents the harmonic series af of each f (with h ∈ [12 , 1, 2, 3, 4, 5]). When f = f0,
af will represent the specific harmonic series of the musical instrument (plus an
extra value at the 1

2f position used to avoid octave errors). When f 6= f0, af will
represent (almost) random values.

The goal is to estimate the parameters of a filter such that when multiplied
with this third dimension af it will provide very different values when f = f0 or
when f 6= f0. This filter will then be convolved over all log-frequencies f and time
τ to estimate the f0’s. This filter is trained using annotated data. In the method,
there are actually several of such filters; they constitute the first layer of a CNN.
In practice, in (Bittner et al., 2017), the ah,f are not obtained as |X(hf)|; but by
stacking in depth several CQTs each starting at different minimal frequencies i.e. by
multiplying the lowest frequency in the range of the CQT fmin by the h coefficient:
hfmin. A visual identification of f0 is therefore possible when this transformation
is applied on a simple harmonic signal by superimposing the CQT computed using
the various values of h. This is illustrated in Figure 4.2. The representation is
denoted by HCQT: Xhcqt(f, τ,h).
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Figure 4.2: Computation of the CQTs of a harmonic signal according to the harmonic series
h. The fundamental frequency is bordered by the black dotted rectangle. Figure
taken from Bittner’s PhD Thesis.

The Figure 4.3 illustrates the supervised learning process with the HCQT as in-
put of a CNN and the pitch salience representations (i.e. the perceived energy of
frequencies over time) as output.
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Figure 4.3: Schematic process of training for f0 estimation in polyphonic music using HCQT

as input and deep salience as output. Figure taken from (Bittner et al., 2017).

4.3 harmonic constant-q modulation

Our goal is to adapt the harmonic representation of the rhythm proposed in
(Peeters, 2006; Peeters, 2010; Peeters, 2011) to the deep learning formalism pro-
posed in (Bittner et al., 2017). For this, the HCQT proposed by (Bittner et al., 2017)
is not applied to the audio signal, but to a set of OEFs which represent the rhythm
content in several acoustic frequency bands. Each of those OEF is a low-pass signal
whose temporal evolution is related to the tempo and the rhythm pattern, in this
specific band.

We denote our representation by Harmonic Constant-Q Modulation (HCQM).
As the Modulation Spectrum (MS) (Atlas and Shamma, 2003), which is a time/modulation-
frequency representation, it represents the energy evolution (low-pass signal) within
each acoustic frequency band b of a first time/acoustic-frequency (τ/f).

However, while the MS uses two interleaved STFT for this, we use a CQT for the
second time/frequency representation in order to obtain a better spectral resolu-
tion. Finally, as proposed by Bittner et al. (2017), we add one extra dimension h to
represent the content at the harmonics of each modulation frequency φ.

We denote it by Xhcqm(φ, τ ′,b,h) where τ ′ denotes the times of the CQT frames,
φ the modulation frequencies (which correspond to the tempo frequencies), b the
acoustic frequency bands and h the harmonic series.

4.3.1 Computation

In Figure 4.4, we indicate the computation flowchart of the HCQM. We describe
in detail the calculation steps below. For the implementation of the various signal
processing steps, we use librosa (McFee et al., 2015)1.

1 https://librosa.org/

https://librosa.org/
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1) stft. Given an audio signal x(t), we first compute its STFT, denoted by X(f, τ).
We keep only its modulus.

2) sum over acoustic frequency bands . The acoustic frequencies f of
the STFT are grouped into logarithmic-spaced acoustic-frequency-bands b ∈ [1,B].
We denote the result by X(b, τ). The goal of this is to reduce the dimensionality
while preserving the information of the spectral location of the rhythm events (kick
patterns tend to be in low frequencies while hit-hat patterns in high frequencies).

3) onset energy function. For each band b, we then compute an OEF over
time τ, denoted by Xo(b, τ). The goal is to keep only the most relevant onsets in
each frequency band.

4) cqt. For a specific b, we now consider the signal sb(τ) = Xo(b, τ) and per-
form the analysis of its periodicities over time τ. One possibility would be to com-
pute a time-frequency representation Sb(φ, τ ′) over tempo frequencies φ and time
frame τ ′ and then sample Sb(φ, τ ′) at the positions hφ with h ∈ {12 , 1, 2, 3, 4, 5} to
obtain Sb(φ, τ ′,h). This is the idea used in (Peeters, 2011). However, in the present
work, we use the idea proposed by (Bittner et al., 2017): we compute a set of CQTs,
each one with a different starting frequency hφmin. We set φmin=32.7Hz. Each of
these CQTs gives us Sb,h(φ, τ ′) for one value of h. τ ′ ∈ [0, T ] is the temporal frame
of the CQT applied to a window centered on τ. Stacking them over h therefore
provides us with Sb(φ, τ ′,h). The idea proposed by (Bittner et al., 2017) therefore
allows to mimic the sampling at the hφ but provides the correct window length
to achieve a correct spectral resolution. We finally stack the Sb(φ, τ ′,h) over b to
obtain the 4D-tensors Xhcqm(φ, τ ′,b,h).

parameters . The computation parameters of the HCQM are set such that the
CQT modulation frequency φ coincides with the tempo value in BPM. We set the
STFT parameters as follows: sample rate: sr = 22, 500Hz; hop size: Nhop = 256;
Hanning window length: Nwin = 2, 048; FFT size: Nfft = 16, 384. For the CQT we
set the following parameters: Nbin = 240; Nbin per octave = 60.

Moreover, we set the CQT window in order to have temporal frames τ ′ that repre-
sent the harmonic content within τ = 8s. This is in order to be able to encapsulate
enough information about the rhythmic patterns.

The ranges of the acoustic frequency bands are chosen according to a logarith-
mic scale, B = 8 with:
b ∈ [0, 64, 128, 256, 512, 1024, 2048, 4096, 8192]

Regarding the harmonic series h, we tested two configurations.
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The first one is inspired by (Bittner et al., 2017) where h ∈ {12 , 1, 2, 3, 4, 5} and
describes the harmonic content of the audio signal including the sub-harmonics
(12 ) and the fourth upper harmonics (4). The sub-harmonic is used to avoid octave
errors. When h = 1

2 , the HCQT is supposed to represent the content of the audio
signal an octave below its frequency, therefore with a low energy. In our case, it
will represent the energy of the rhythm content an octave below its tempo, this
frequency represents the periodicity at the half-note level. We denote this configu-
ration as H6.

The second one is inspired by (Peeters, 2011) where
h ∈ {14 , 13 , 12 , 23 , 34 , 1, 1.25, 1.33, . . . , 8} and corresponds to the harmonic content of
the OEF. In this case, the values of amplitudes at the harmonics do not only depend
on the tempo but also depends strongly on the rhythm pattern (starting from the
meter periodicity for 44 ). We denote this configuration as H48.

We discuss the impact of the choice of the number of acoustic frequency bands
B and the harmonic series h (H6 or H48) in the evaluation Section 4.6.

4.3.2 Visual identification of tempo

For easiness of visualization (it is difficult to visualize a 4D-tensor), we illustrate
the HCQM Xhcqm(φ, τ ′,b,h) for a given τ ′ (it is then a 3D-tensor). Figure 4.5 rep-
resents Xhcqm(φ,b,h) on a real audio signal with a tempo of 120 bpm. Each
sub-figure represent Xhcqm(φ,b,h) for a different value of h ∈ {12 , 1, 2, 3, 4, 5},
(H6). Also for the sake of clarity, we represent the Xhcqm(φ,b,h) side by side
(in practice they are stacked together with h as depth). The y-axis and x-axis are
the tempo frequency φ and the acoustic frequency band b. The dashed rectangle
super-imposed to the sub-figures indicates the values Xhcqm(φ = 120BPM,b,h)
which corresponds to the ground-truth tempo.

It is this specific pattern over b and h that we want to learn using the filters W
of the first layer of our convolutional network.

4.4 deep convolutional neural network

4.4.1 Architecture of the Convolutional Neural Network

The architecture of the DR network is both inspired by the one from (Bittner et al.,
2017) (since we perform convolutions over an input spectral representation and
use its depth) and the one from (Schreiber and Müller, 2018b) (since we perform
a classification task). However, it differs in the definition of the input and output.
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Figure 4.4: Flowchart of the HCQM computation steps for a given techno track excerpt of
24s with a tempo at 120BPM. Here B = 8 with H6 configuration and T = 3.

inputs . In (Bittner et al., 2017), the input is the 3D-tensor Xhcqt(f, τ,h) and the
convolution is done over f and τ (with filters of depth H). In our case, the input
could be the 4D-tensors Xhcqm(φ, τ ′,b,h) and the convolution could be done over
φ, τ ′ and b (with filters of depthH). However, to simplify the computation (in term
of memory and computation time2), we reduce Xhcqm(φ, τ ′,b,h) to a sequence
over τ ′ of 3D-tensors Xhcqm(φ,b,h). We denote these inputs as τ ′-HCQM. The
convolution is then done over φ and b with filters of depth H.

2 The memory of the GPU servers is limited and 4D-convolutions are too costly in memory.
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h=1 h=2 h=3 h=4 h=5h=0.5

b

120BPM

Figure 4.5: HCQM example for a given temporal frame τ ′ of a techno track excerpt. φ
denotes the modulation frequency (associated with a candidate tempo), b the
acoustic frequency band and h the harmonic coefficient. The tempo is visually
identifiable at 120BPM by superimposing its rhythmic harmonic components
through h. For h = 0.5, the tempo is detected at its sub-harmonic (orange
dotted lines) that corresponds to the value 240BPM.

Our goal is to learn filtersW narrow in φ and large in bwhich represent the spe-
cific shape of the harmonic content of a rhythm pattern. Convolution are pursued
over b because the same rhythm pattern can be played with instrument transposed
in acoustic frequencies (lower or higher tuning).

output. The output of the network proposed by (Bittner et al., 2017) is a 2D
representation which represents a saliency map of the harmonic content over time.
As in (Schreiber and Müller, 2018b), we consider the tempo estimation problem
as a classification problem (instead of a regression one) into 256 tempo classes
ranging from 30 to 286BPM. In our case, the outputs are either the C = 256 classes
of tempo or the C = genre classes number for rhythm-oriented genre classification.
For instance, C = 9 genre classes for gEBR, C = 6 for Gr or C = 11 for sBP. To
do so, we added at the end of the network proposed by (Bittner et al., 2017) two
dense layers, the last one with C units and a softmax activation function.

architecture . In Figure 4.6, we indicate the architecture of our DR network.
The input is a τ ′-HCQM. The first layer is a set of 128 convolutional filters of shape
(φ = 4,b = 6) (with depth H). As previously mentioned, the convolution is done
over φ and b. The shape of these filters has been chosen such that they are narrow
in tempo frequency φ (to precisely estimate the tempo) but cover multiple fre-
quency acoustic bands b (because the information relative to the tempo/ rhythm



4.4 deep convolutional neural network 63

is found in several bands)3. As illustrated in Figure 4.6 [Left] the goal of the filters
is to identify the pattern over b and h specific to φ = tempo frequency.

D C

dense

flatten

(4, 6) (4, 6) (4, 6) (120, 6)

b

h 128 64 3264 8

φ

Input Convolutional
Layers

Output
classes(4, 6)

Convolution + ReLU + BN Dense + ELU + Dropout = 0.5 softmax

Figure 4.6: DR model Architecture with τ ′-HCQM as input (of size (φ,b,h)), the size of con-
volutional filters is indicated in red (filter_height, filter_width), the number
of kernel is indicated in black under each convolutional layer, D denotes the
number of units in the dense layer while C is the number of units in the output
layer (i.e. the classes logits).

The first layer is followed by two convolutional layers of 64 filters of shape (4, 6),
one layer of 32 filters of shape (4, 6) and finally one layer of 8 filters of shape
(120, 6) (this allows to track down the relationships between the modulation fre-
quencies φ). The output of the last convolution layer is then flattened and followed
by a dropout with p = 0.5 (to avoid over-fitting (Srivastava et al., 2014)), a fully-
connected layer of 256 units, and a last fully-connected layer of C units.

All layers are preceded by a batch-normalization layer (Ioffe and Szegedy, 2015).
We used Rectified Linear Units (ReLU) (Nair and Hinton, 2010) for all convo-
lutional layers, and Exponential Linear Units (ELU) (Clevert, Unterthiner, and
Hochreiter, 2016) for the first fully-connected layer.

4.4.2 Training

The inputs of our network are the 3D-tensors τ ′-HCQM of the music track. The
datasets we will use for our experiments only provide global tempo4 or global

3 Using MIR domain knowledge to choose filter shapes have been explored in details by Pons (Pons
and Serra, 2017). They show that the use of a rectangular shape for filters is suitable for tasks such as
temporal (hence rhythm) or spectral detection. We therefore choose a directional filter size according
to the HCQM representation of the tempo.

4 It should be noted that this does not always correspond to the reality of the track content since some
of them have a tempo varying over time (tempo drift), have a silent introduction or a break in the
middle as we have disscused in Chapter 3.
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rhythm classes as ground-truths. We therefore have several τ ′-HCQM for a given
track which are all associated with the same ground-truth (multiple instance learn-
ing).

losses . We consider the tempo estimation and the rhythm-oriented genre clas-
sification tasks as single-label classification problems. In the case of tempo estima-
tion, the classes are defined as c ∈ [1, 256], for genre classification they are defined
as c ∈ [1,C] with C the number of genre classes in the given dataset.

For the output dense layer, a softmax activation function is generally used for
single label classification and is often associated with a categorical cross-entropy
as loss-function between the predicted class ŷc and the ground-truth yc:

L = −

C∑
c=1

yc log(ŷc) − (1− yc) log(1− ŷc) (4–14)

where c ∈ [1,C] refers either to the 256 tempo classes or to the rhythm-oriented
genre classes.

hyper-parameters . We used the ADAM (Kingma and Ba, 2014) optimizer to
find the parameters of the network with a constant learning rate of 0.001, β1 = 0.9
, β2 = 0.999 and ε = 1e− 8. We used mini-batches of 256 τ ′-HCQM with shuffle
and a maximum of 20 epochs using early-stopping. The number of parameters θ
is around 1,600,000. In terms of computing speed, we note that the model reaches
90% train accuracy between 2 and 5 epochs for tempo estimation and genre classi-
fication.

4.5 aggregating decisions over time

It is important to consider here that the DR network processes each temporal frame
τ ′ independently. We denote by xτ ′ the segment of the audio signal centered on
time τ and of 8 s duration. During training, a Multiple Instance Learning paradigm
is considered: each xτ ′ is seen as an instance of the single global ground-truth
tempo TBPM and the network trained accordingly. For testing, the output of the
network (the softmax output) provides for each xτ ′ a tempo likelihood vector
p(TBPM|xτ ′) which represents the likelihood of each tempo TBPM. The average
over frame τ ′ of this vector is computed, p(TBPM) =

∫
τ ′ p(TBPM|xτ ′)dτ

′, and
used to estimate the global tempo: T̂BPM = arg maxTBPM p(TBPM). During our
experiments, we found that calculating the median rather than the mean of the
softmax output vectors slightly improves the results. This also echoes previous
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works on tempo estimation (Peeters, 2006; Percival and Tzanetakis, 2014; Böck,
Krebs, and Widmer, 2015).

4.5.1 Oracle Frame Prediction

Can we find a better way to infer TBPM from the sequence of tempo likelihood
vectors p(TBPM|xτ ′) ?. We do this by proposing an attention mechanism below. Be-
fore doing so, we would like to know what would be the upper bound achievable
by DR to predict TBPM from the succession of p(TBPM|xτ ′). To do so we define an
Oracle Frame Predictor. This oracle knows which is the best frame τ ′ to be used to
predict TBPM. We denote this best frame by τ ′∗. The oracle defines the best frame
as τ ′∗ = arg minτ ′(TBPM − arg maxTBPM p(TBPM|xτ ′)

2. It is important to note that
the final prediction of the oracle still uses the tempo likelihood vector to estimate
the tempo (but only using the best frame): T̂∗BPM = arg maxTBPM p(TBPM|xτ ′∗).

Typically, if the track only contains a single frame corresponding to TBPM and
if the network is performing well, the Oracle should be able to find τ ′∗ and the
corresponding T̂∗BPM would be a good estimation. In the contrary, the average
value p(TBPM) will be blurred and T̂BPM = arg maxTBPM p(TBPM) would provide
a wrong prediction. Hence T̂∗BPM is an upper bound.

4.5.2 Attention Mecanism

principle . Given the tempo likelihood vectors p(TBPM|xτ ′) at each frame τ ′,
our goal is to train an attention mechanism to estimate the single global tempo
TBPM.

An attention mechanism takes as input a sequence {y1, . . . yi . . . yN} and a context
c and returns a weighted sum of the yi: y =

∑N
i=1 αi(c)yi. The attention weights

αi(c) defines the importance of each yi in the context c. They are trained as the
other parameters of a network.

Attention mechanisms have been previously used in MIR especially in the case
of training with weakly-labeled data (for which the ground-truth only indicates
the presence of the label in a document/media without providing its location in it,
which is our case). For example, Kong et al. (2019) study the use of different types
of attention mechanisms. Those are applied to the output features of a VGG-like
network trained for tagging the AudioSet (a weakly labeled dataset (Gemmeke et
al., 2017)). Their output features represent information at the frame level and are
concatenated along time to be used as an input to the attention network. They then
propose 3 different architectures among which a basic one called “decision level
single attention”. This basic architecture first applies a set of embedding layers
followed by the attention mechanism itself. The latter is made of two branches.
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The attention branch has a softmax activation which is then normalized. It provides
the temporal attention weights αi(c) (here c is the output of the embedding layers).
The prediction branch has a sigmoid activation and provides the yi. Both are then
used to compute the timeless output prediction vector (the number of dimension
is the number of classes): y =

∑N
i=1 αi(c)yi.

The idea of this method is to automatically learn the labels present at the frame
level from a global annotation of an audio track.

adaptation to deep rhythm . The flowchart of our attention mechanism
is illustrated in the bottom right part of Figure 4.7. The input of the attention
mechanism is the sequence of tempo likelihood vectors p(T |xτ ′) each of dimension
256 (the number of tempo classes). Considering that the duration of music track
can vary, zero-padding is applied to store them in a matrix of size (45× 256) (45
being the maximum number of frames). These features are then used as input
to train an attention mechanism network. We tested all the different architectures
presented in Kong et al., 2019 and different activation functions (sigmoid/softmax)
either applied at the prediction or attention layer.

The chosen AM architecture corresponds to the multi-attention architecture pro-
posed by Kong et al., 2019. Input features are the predictions taken from the penul-
timate layer of the DR. It is followed by 3 embedding layers. An attention/predic-
tion layer pair (with a softmax/sigmoid, respectively, as activation function) is
applied at the output of the second and the third embedding layers. Finally, these
two pairs of layers are concatenated and connected to a dense layer with the size
of the number of tempo classes and a softmax as output function.

In order to adapt as well as possible to our problem, we carried out a series of
experiments by modifying certain parameters. Since we have vectors of softmax as
features and our method is a single-class classification, we replaced the sigmoid
activations of the prediction layer by a softmax. We also tried to use the penul-
timate layer of the DR model as a feature while keeping the prediction activation
functions the same (e.g. sigmoid). The results presented in Section 4.6.1.4 are those
obtained with this last parameterization as they are the highest we have obtained
during our experiments.

4.6 evaluation

We evaluate the proposed DR method including the HCQM representation com-
bined with the CNN for the task of global tempo estimation on one side and for
the task of rhythm-oriented genre classification on the other side. We used the
same system (same input representation and same network architecture) for both
tasks. However, considering that the class definitions are different from a dataset
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Figure 4.7: Time-varying tempo strategies flowcharts. [top] Oracle Frame Prediction, [bot-
tom] Attention Mechanism with TZP the number of temporal frame after zero-
padding application.

to another one, we performed two independent trainings of the DR model. Thus,
the evaluation protocol diverges for the two tasks and the results are presented
independently.

4.6.1 Tempo Estimation

4.6.1.1 Evaluation protocol

To be able to compare our results with previous works, we use the same
paradigm (cross-dataset validation5) and the same datasets as (Schreiber and Müller,
2018b) which we consider here as the state of the art.

training set. As indicated in Chapter 3, the training set is the combination
of the LMD, the tMTG and the EBR datasets.

The total size of the training set is 8596 tracks. It covers multiple musical genres
to favor generalization.

testing set. For the testing set, we also define the same datasets as in (Schreiber
and Müller, 2018b): ACM, BR, tGS, GTzan, Hains., ISMIR04, SMC and finally Com-
bined which denotes the union of all test-sets. Again those state-of-the-art datasets
cover various musical genres to show the relative effectiveness of the results.

metrics . Among the metrics used to evaluate the performance of the global
tempo evaluation, we choose the following ones:

5 Cross-dataset validation uses separate datasets for training and testing; not only splitting a single
dataset into a train and a test part.
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• Class-Accuracy (Acc): it measures the ability of our system to predict the cor-
rect tempo class (in our system we have 256 tempo classes ranging from 30

to 285BPM);

• Accuracy1 (Acc1): it measures if our estimated tempo is within ±4% of the
ground-truth tempo;

• Accuracy2 (Acc2): is the same as Accuracy1 but considering octave errors as
correct (global tempo estimated at two or three times the value of its ground
truth or at half or a third of this value within ±4% window).

These metrics allows us to compare the results of our work with those of our peers.

4.6.1.2 Results and comparison to the state of the art

We compare our results to the state of the art represented by the 3 following
systems6:

• sch1 denotes the results published in (Schreiber and Müller, 2017);

• sch2 in (Schreiber and Müller, 2018b);

• böck in (Böck, Krebs, and Widmer, 2015).

Results are provided in Figure 4.8.

discussion. For ACM, Hains. and GTzan, results are quite similar compared
to the other methods in terms of the three accuracies. We can interpret those results
by the good generalization of our method when it is applied to a popular music
dataset.

For the Combined dataset, DR results are always closer to the best state of the
art method (sch2) in terms of Acc and Acc1. In terms of Acc2 the böck method
outperforms the others. One reason for this is that our network (as the ones of
sch1 and sch2) is trained to discriminate BPM classes, therefore it doesn’t know
anything about octave equivalences which are taken into account in böck method
and in Acc2. Except for the SMC dataset (which contains rhythm patterns very
different from the ones represented in our training sets), the DR results are quite
similar to the state of the art methods, especially the sch2 one.

We can observe that in terms of Acc, the DR method have the best score for the
BR dataset (and similar to sch2 for Acc1 and Acc2). In terms of Acc1 and Acc2, the
DR method performs better for the tGS EDM dataset. These results partly confirm
our hypothesis: for rhythm-oriented genres such as ballroom music or EDM,
our system is particularly efficient in terms of tempo estimation. The harmonic

6 Those systems are described in Section 2.4
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Figure 4.8: DR results scores compared to state-of-the-art methods. [Top left] in terms of
Acc, [Top Right] in terms of Acc1, [Bottom] in terms of Acc2.

characteristics of the rhythm included in the HCQM are suitable to obtain relevant
estimation of the tempo. For these results, we used a H48 type h harmonic series.

4.6.1.3 Validation of the HCQM parameters

Through experiments, we have validated the use of certain parameters, for net-
work training or for the calculation of the HCQM. Among the most important ones:
the harmonic series h and the number of acoustic frequency bands B.
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In Figure 4.9, we compare the following settings in terms of Acc, Acc1 and Acc2
only for the Combined dataset:

• H48: same parameters of the DR method as used for Figure 4.8,
h ∈ {14 , 13 , 12 , 23 , 34 , 1, 1.25, 1.33, . . . , 8} and B = 8;

• H6: h ∈ {12 , 1, 2, 3, 4, 5} and B = 8;

• H1: no depth i.e. h = 1 and B = 8;

• B1: sum over all acoustic frequency bands, H6 and B = 1.
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Figure 4.9: Validation of H and B parameters, results of DR for Combined dataset.

discussion. Exploiting this comparison, we first observe that the H48 strat-
egy works better than the H6 one for tempo estimation. It can be explain by the
fact that using such a harmonic series leads to deeper representation of the compo-
nents of rhythm (including the harmonics of the meter frequency) and the network
learns more precise information that allows it to better estimate the tempo. Then,
we can notice the importance of the depth h when comparing the H48 and H6

strategies with H1. Finally, we show the significance of the decomposition into
acoustic frequency bands since H48 and H6 largely outperform B1.
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4.6.1.4 Time varying tempo

We now evaluate our temporal frame selection methods described in Section 4.5.
To do so, we compare in Figure 4.10 the results obtained with:

• Oracle-DR, that denotes the Oracle Frame Prediction. As a reminder, in this
method we chose the best prediction softmax vector among all the temporal
prediction vectors.

• AM-DR, that denotes the Attention Mechanism applied on top of the DR
method. We trained an AM on the trained prediction vectors in order to learn
to automatically select the best prediction softmax vector.

• DR, that denotes our baseline (H48).

• sch2, that denotes the results published in (Schreiber and Müller, 2018b), we
keep this state of the art method among the others because it is the most
recent and it has the best results in terms of Accuracy1 for the Combined
dataset.

discussion. The results obtained with Oracle-DR method are given in Fig-
ure 4.10. It provides us with an upper-bound to reach. High scores in terms of
Acc2 directly reflect the presence of a good estimate in the prediction set obtained
from the τ ′-HCQM of a given track (except for the SMC dataset). The Oracle-DR
method outperforms the DR one (for which the various predictions for a given
track are averaged before the maximum selection) and the sch2 method in terms
of the three metrics Acc, Acc1 and Acc2.

For the AM method, we observe results similar to the DR baseline for the three
accuracies (although slightly higher for 5/7 datasets in terms of acc). These results
do not allow us to conclude on a significant gain compared to the baseline. We
explain these results by the fact that the model fails to generalize. Indeed, the
softmax vectors are used as attention input independently of the DR network. We
want the model to learn how to generalize the selection of the right time frame
corresponding to the right tempo candidate from these vectors. Given the multi-
tude of dataset and the difference between the audio examples composing them
(size, presence of silence or not, audio extracted at various moments of the track),
this does not allow the model to clearly learn the tempo candidate specific posi-
tions. We believe that the automation of the selection of this candidate is currently
limited by the size of the memory and the computing time of the machines at our
disposal. Indeed, we suppose that the use of 4D-convolution in a network with
the attention mechanism as an output (in an end-to-end way) would make this
automation possible.
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Figure 4.10: Results of time aggregation strategies, Oracle-DR and AM-DR, compared to
our baseline DR and a state-of-the-art method sch2. [Top left] in terms of Acc,
[Top Right] in terms of Acc1, [Bottom] in terms of Acc2.

4.6.1.5 Ground-truth Smoothing

principle . Ground-truth smoothing of the tempo annotations have been pro-
posed by Böck, Davies, and Knees (2019). The original tempo classification is based
on reducing the error between a prediction softmax vector (probability vector) and
a one-hot vector with the ground-truth value at 1 and the others at 0. The idea of
smoothing is to extend the range of the global tempo annotation values to ±2BPM
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by weighing the neighboring BPM by 0.5 and 0.25 respectively. Normalizing those
weighting values allows to form a probability distribution suitable for the applica-
tion of a softmax activation function (Figure 4.11).

50 100 150

Tempo [BPM]

0.0

0.2

0.4

0.0

0.5

1.0

Figure 4.11: Ground-truth smoothing principle. [Top] original ground-truth annotation.
[Bottom] Smoothed ground-truth.

As described in Chapter 3, to obtain tempo annotations manually, a panel of
listeners is often asked to "tap" the tempo of an audio piece. A margin of error is
then tolerated knowing that the perceived tempo may not be accurately equal to
the exact BPM (or its integer value). Such a margin also exists for algorithms since
they rarely detected a precise BPM value as shown by the use of the metric Acc1.
This smoothing applied when learning the model allows it to learn how to extend
the tempo estimation to its close neighborhood.

In the same vein, we therefore propose an adaptive smoothing of the ground
truths. This time, the tempo range for a given value is modified by multiplying
the ground-truth by a factor of ±4% in accordance with Acc1.

We present the results in Figure 4.12, the methods compared are the Smooth-DR
(fixed ground-truth smoothing) and the Ada-smooth-DR (adaptive ground-truth
smoothing)

discussion. First, in terms of Acc, we can observe slightly lower results for
the Ada-smooth strategies compared to DR (except for Gtzan and SMC) while the
Smooth-DR performs better for 5/7 of the datasets and for the Combined one.

In terms of Acc1 and Acc2, the Ada-smooth-DR shows the best results for the
Combined dataset, higher than sch2. However, by individually comparing the re-
sults on the datasets, the two smoothing strategies are quite equivalent.
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Figure 4.12: Results of the adaptive smoothing of the tempo ground-truth values com-
pared to our baseline DR and a state-of-the-art method sch2. [Top left] in terms
of Acc, [Top Right] in terms of Acc1, [Bottom] in terms of Acc2.

We can explain the lack of precision in Acc. Since ground truths are smoothed,
the estimated softmax probabilities are unavoidably impacted and this results in a
loss of accuracy in terms of exactness.

Regarding these results, the Smooth-DR becomes our new baseline method.
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4.6.2 Rhythm-oriented genre classification

4.6.2.1 Evaluation protocol

training/testing sets . For the rhythm-oriented genre classification, it is
not possible to perform cross-dataset validation (as we did for tempo estimation)
because the definition of the genre classes is specific to each dataset. Therefore we
perform a k-fold cross-validation on the various datasets independently.

Given a dataset, we separate all the data into k-folds. Each fold is successively
used as testing data set while the remaining k− 1-folds are used to train the model.
As in the work of (Marchand and Peeters, 2016a), we choose k = 10 to perform a
10-fold cross-validation. More precisely, we use a stratified k-fold where the folds
are made by preserving the percentage of samples for each class7.

We choose to evaluate 3 datasets – BR, gEBR and Gr – in order to compare
our results to the state-of-the-art method of Marchand and Peeters (2016a) which
performs a rhythm-pattern recognition. It means that the rhythm-oriented genres
within those 3 datasets are also defined by the rhythmic patterns that are played
in different tempo ranges.

Next, we study the results on EDM datasets gMTG, lBP and sBP. We do not
compare the results with any previous work because none of them uses the same
data as we do for automatic genre classification.

metrics . We measure the performances using the average-mean-recall R̂8. The
recall is computed as: Recall = True Positive

True Positive+False Negative . For a given fold
f, the mean-recall R̂f is the mean over the classes c of the class-recall Rf,c. The
average mean-recall R̂ is then the average over f of the mean-recall R̂f. We also
present the confusion matrices of each dataset evaluated to better understand the
statistical results.

4.6.2.2 Results and confusion matrices

statistical results . The results are indicated in Table 4–2. We compare our
results9 to the ones of Marchand and Peeters (2016a), considered here representa-
tive of the current state of the art for rhythm-pattern recognition.

discussion. Our results are largely lower the ones of Marchand and Peeters
(2016a) for Gr. For BR they are slightly below while for gEBR slightly above.

7 It is important to mention that in all methods of this manuscript we use the same 10-fold split for
each dataset. This allows us to accurately compare the different methods we have implemented.

8 The mean-recall is not sensitive to the distribution of the classes. Its random value is always 1/C for
a problem with C classes.

9 The results presented are the ones obtained using the H48 strategy
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Table 4–2: Results of rhythm-pattern recognition/rhythm-oriented genre classification in
term of average-mean-recall R̂.

Dataset Marchand (2016) Proposed DR

Ballroom (BR) 96% 93.0%

Extended Ballroom (gEBR) 94.9% 95.4%

Greek Dance (Gr) 77.2% 68.9%

genre MTG (gMTG) - 37.6%

Beatport large (lBP) - 40.7%

Beatport small (sBP) - 52.8%

It should be noted that the "Scale and shift invariant time/frequency" repre-
sentation proposed in (Marchand and Peeters, 2016a) takes into account the inter-
relationships between the frequency bands of the rhythmic events while our HCQM

does not. Furthermore, our DR method has a data-driven part since we train a
CNN, such models have to trained on a sufficient amount of data to increase their
efficiency (generalization). The few data contained in the BR and especially Gr
datasets may explain these results.

For EDM datasets, we can notice that the results are better for the genre-balanced
ones than for the gMTG. As we have seen, the genres in the sBP are specifically
selected for their rhythmic characteristics unlike the lBP where all Beatport genres
are represented (this includes some rhythmic ambiguities). The score has therefore
improved significantly (+12.8%).

confusion matrices . The confusion matrices with respect to each evaluated
dataset highlight the predicted genre distribution compared to the ground-truth
labels. We do not show the gMTG and lBP confusion matrices here since, given
their size, they are not subject to a concrete, relevant interpretation. The results are
normalized over classes and represent the class prediction averaged over folds f.

First and foremost we can observe that for the datasets BR and gEBR the predic-
tion score is very high regardless of the genre (Figure 4.13).

As for the Gr, despite good scores for 4/6 Greek dance genres represented, the
results are more disparate (Figure 4.14). Referring to the paper of Holzapfel and
Stylianou (2011), at the origin of the creation of the dataset, we can see that the
tempo ranges of pent and sous overlap which could explain the confusion between
these two genres. Moreover, the dataset is initially used as a proof of concept for a
so-called "handcrafted" method. Rhythmic similarities are evaluated by comparing
the scale transforms of the tracks using a simple distance metric. In our case, even
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Figure 4.13: Confusion matrices of the evaluation of the BR [Left] and the gEBR[Right]
datasets using DR method.
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Figure 4.14: Confusion matrix of the evaluation of the Gr dataset using DR method.

though the rhythmic components are represented via the HCQM, the CNN we are
training is not fully capable of learning from such a small amount of data.

From sBP’s confusion matrix (Figure 4.15), we can see that for all genres the
predictions are correct for the most part (i.e. the score of a given class is higher
than the false negative score for the same class).

We can observe that the genres of breakbeat rhythmic style are the best classified
(drum-and-bass, dubstep), it is also the case of trance which, as we mentioned in
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Figure 4.15: Confusion matrix of the evaluation of the sBP dataset using DR method.

Chapter 3, has a complex rhythmic structure. Looking at the genre classification,
we can also point out that the confusions make sense.

For dance, the results are the most disparate, the tracks annotated with this label
are predicted as funk-soul-disco at 15% but also as house at 14%. This explains why
the dance genre is influenced by both these genres and shares some characteristics
such as the tempo range and the fact that they all have a four-on-the-floor rhythmic
structure.

funk-soul-disco is categorized as hip-hop at 21%, which is also due the funk and
soul influence in the tracks that are annotated hip-hop-r-and-b.

reggae-dancehall-dub is categorized at 17% as "dance", knowing that the barrier
between dancehall and dance is relatively thin. dancehall, reggae and dub are three
genres that share a four-on-the-flour rhythmic structure called "stepper". It is also
11% categorized as dubstep, a genre with which it shares very similar rhythmic
components but also a tempo range perceived often around the same value for
dub music.

For techno, once again, the results make sense since it is categorized at 17%
in hardcore-hard-techno where the rhythmic structure is the same despite a BPM
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often higher for hard-techno. It is also categorized as house, knowing that beyond
the instrumentation, both are four-on-the-floor style and share a common origin
(disco, reminding that techno is categorized at 11% in this genre). This can also be
noticed by looking at the classification distribution of house: 17% in techno.

We can conclude by confirming our assumptions about the link between
rhythm and genres in electronic music. Indeed, the confusion per genres shows
that the classification strongly depends on their rhythmic structure since the
combination of the HCQM and the CNN allows to represent and learn it, respec-
tively.

4.7 conclusion

In this chapter, we have proposed the Harmonic-Constant-Q-Modulation (HCQM)
representation of rhythm inspired by previous works on handcrafted and data-
driven systems. It is defined as a 4D-tensor which represents the harmonic series
at candidate tempo frequencies of a multi-band OEF. The 3D τ ′-HCQM, which
describe temporal slices of HCQM of a given track are then used as input to a
deep convolutional network. The filters of the first layer of this network are ex-
pected to learn the specific characteristic of the various rhythm patterns contained
in the HCQM. We denote this method Deep Rhythm (DR) since the depth of the
HCQM rhythmic representation is directly the input depth of a deep network. We
have evaluated our approach for two tasks: global tempo estimation and rhythm-
oriented genre classification.

For the datasets BR and tGS, the results are higher for the tempo estimation
task than the ones obtained with the state-of-the-art methods in terms of exact ac-
curacy (Acc) and exact accuracy within a ±4% tolerance window (Acc1). The genre
of these datasets are strongly defined by the rhythm patterns played at specific
tempo ranges. We also showed the relative importance of the HCQM parameters:
the number of separation bands B and the harmonic series coefficient h (the depth
through which the network filters are convoluted). Within the considered datasets,
the tempo inside a track can vary over time. However the ground-truth annota-
tions only provide a single global tempo annotation value. While the mean of the
softmax vectors over frame is used as the baseline to estimate this single tempo,
we showed that if we consider the best softmax vector (oracle frame prediction
method), the performance are actually much higher. We therefore added an Atten-
tion Mechanism on top of DR to infer the best single tempo estimation from the
sequence of predictions but the results did not live up to our expectations. Still for
tempo estimation, we propose the use of smoothed ground-truths tempo annota-
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tions. The results slightly increased with this process and outperform the state of
the art in terms of Acc1 and Acc2.

For rhythm-oriented genre classification, our method works better for the gEBR
dataset compared to the state-of-the-art method of (Marchand and Peeters, 2016a)
but doesn’t work as well for the BR and the Gr. However, the confusion matrices
indicate that our recognition is above 90% for the majority of the classes of the BR
and the gEBR. As far as the identification of the genres in EDM is concerned, we
have showed the efficiency of a rhythmic approach thanks to the careful observa-
tion of the confusion matrix obtained by evaluating the dataset sBP using our DR

proposal.

DR method and its evaluation have been published at the ISMIR conference
in 2019 (Foroughmand and Peeters, 2019). It should be noted that the results for
tempo estimation presented in the paper are not the same since an error was
made when retrieving annotations from the ISMIR04 dataset. In addition, for the
estimation of the genre, the results took into account the dataset EBR in its entirety
and not the gEBR as stated in the state of the art. These results have been corrected
in this manuscript.

In the continuation of our work, we have considered three extended DR meth-
ods using not only signal processing principles but also more complex deep learn-
ing principles. We describe that in the next chapter.





5
D E E P R H Y T H M E X T E N S I O N S

5.1 introduction

In the previous chapter, we combined two types of systems in our DR method,
namely the handcrafted system with the HCQM representation of rhythm as a
knowledge-driven feature and a deep learning network as the data-driven system.
In this chapter, we present some extensions of our DR method. The development of
each of these representations has as a starting point a musical intuition. For each
of these extensions, we present our motivations, the resulting method as well as
the analysis of its evaluation.

complex network . In the original Deep Rhythm network, the input HCQM

and the network do not allow to represent the inter-relationship between the var-
ious frequency bands b. This is due to the fact that each OEF is modeled by the
modulus of the CQT, and the modulus does not preserve the information of tempo-
ral location. Therefore, the network cannot consider the inter-relationship between
the various acoustic frequency bands b. To face this, we propose to replace the use
of the modulus of the HCQM by a complex-valued HCQM and turn it into an input
of a complex CNN This is described in Section 5.2.

multitask learning . In the original DR method, independent systems are
trained for the task of tempo estimation and rhythm-oriented genre classification.
We propose here a multitask approach where a single system is trained to solve
both tasks simultaneously. This is done by defining two losses for the optimiza-
tion of the system. We believe that using a single network jointly trained for the
two tasks would allow sharing information in the network. This is described in
Section 5.3.

multi-input network . The DR network was designed to represent the rhythm
content of an audio track. As shown previously, the tempo range and possible
rhythm patterns are strongly correlated to the music genre of the track (especially
in the case of EDM). We therefore study an extension of the Deep-Rhythm by asso-
ciating it with a second input branch. This second branch is a network dedicated
to the representation of timbre with a mel-spectrogram as input. It is based on

81
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a commonly-used network for audio tagging presented in (Choi, Fazekas, and
Sandler, 2016). This is described in Section 5.4.

5.2 complex deep rhythm

5.2.1 Why complex representation/convolution?

A rhythmic pattern can be affiliated to simpler rhythm pattern (quarter note,
eighth note, ...) played by different instruments at different frequency bands. Two
different rhythm pattern examples are represented in Figure 5.1.

1 2

Figure 5.1: Two examples of rhythm patterns.

1 The bass drum (or kick in the case of an EDM track) and the snare drum are
played simultaneously.

2 The bass drum and the snare drum are played alternately.

As mentioned in Section 4.3, in the HCQM representation, the modulations fre-
quencies φ are modeled independently by calculating the HCQT of the OEF in each
acoustic frequency bands b. Since only the modulus of the HCQT is computed, the
temporal information relative to the rhythmic components is not taken into ac-
count. The representation is then passed through a deep CNN. The network does
not consider the inter-relationship between the various frequency bands b when
it learns the different rhythmic structure to perform the tempo (or the rhythm-
oriented genre) estimation. For example, the snare drum and the bass drum being
located on two different frequency bands, we can assume that our DR method
is not able to differentiate between the two rhythmic patterns illustrated in Fig-
ure 5.1. Moreover, ignoring these inter-band relationships impacts the learning of
rhythmic components related to tempo within the HCQM.

Marchand et al. deal with the same limitation with their modulation scale spec-
trum representation (Marchand and Peeters, 2014). They therefore show in (Marc-
hand and Peeters, 2016c) that modeling the inter-relationships between acoustic
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frequency bands using inter-band correlation coefficients allows to better estimate
the rhythm pattern.

In our case, due to the data-driven aspect of our DR method, we would like to
find a way to keep the temporal information of the rhythmic content present in
each acoustic band b of the HCQM and furthermore to be able to train a network
that includes this information.

In a temporal representation of the frequency evolution such as the STFT or the
CQT, the positional information of the windowed signals are contained in the phase
of the complex-values.

Recently, complex neural networks have appeared in the MIR field and allow
model training on inputs with complex values. These models have proven their
efficiency for various tasks such as automatic transcription (Trabelsi et al., 2017) of
music or speech enhancement with a deep U-net (Choi et al., 2019). However, they
have never been used for classification purposes. Trabelsi et al., 2017, adapted the
different elements of a CNN to their complex version.

We propose here to use a complex HCQM as input of a complex layer convo-
lutional network in order to take into account the inter-relationships between the
acoustic bands.

5.2.2 Complex HCQM.

In order to obtain a complex representation of the HCQM, we modify one of its
calculation steps presented in Section 4.3. When the HCQT is computed on the
onset strength function of the STFT summed in acoustic frequency bands we keep
the complex-values (in addition to the modulus). We therefore keep its real and
imaginary parts instead of keeping only its absolute value. To be used as input of
a convolutional neural network, the two parts are then superimposed on top of
each other (Trabelsi et al., 2017), resulting in Cplx-τ ′-HCQM of a size (Φ× b× 2h).

5.2.3 Complex Convolution

The cplx-HCQM input to the layers is denoted by H = H< + iH= (with H< and
H= its real and imaginary parts, respectively). The complex kernel matrix of the
layer (which is the trainable parameter) is denoted by K = K< + iK= (with K< and
K= its real and imaginary parts, respectively). The complex convolution is then
expressed as:

K ∗H = (K< ∗H< −K= ∗H=) + i(K= ∗H< +K< ∗H=) (5–15)
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or expressed in matrix form as:

<(K ∗H)
=(K ∗H)

 =

K< −K=

K= K<

 ∗
H<

H=

 (5–16)

The output of each complex convolution layer is itself complex and is then used
as input to the next complex convolution layer. All convolution layers of the orig-
inal Deep Rhythm network are therefore replaced by complex convolution layers.
Also, each complex convolution layers is followed by a complex batch normaliza-
tion (as described in (Trabelsi et al., 2017)). After the last complex convolution, the
resulting feature maps are flattened, hence by concatenating the real and imagi-
nary outputs.

We illustrate this in Figure 5.2 on which we only detail the complex convolution
for the first convolution layer (the one applied to the input complex HCQM H). On
this figure, HRe and HIm correspond respectively to H< and H= in Equation 5–
15 and 5–16 (this is also holds true for K). Instead of Batch-Normalization (BN),
which is applied only to real-values, we use complex-BN preceding each complex-
convolution layer in order to ensure equal variance in both real and imaginary
components. The whole complex-BN computation process is detailed in (Trabelsi
et al., 2017).

On this figure, the number of feature maps indicated under the layers are dou-
bled compared to the original network since the number of complex-kernel are
considered. For the implementation of the 2D complex convolution layers, we
rely on the package complexnn1 provided in (Trabelsi et al., 2017). We denote this
method as Complex Deep Rhythm (Cplx-DR).

5.2.4 Evaluation

We use the same evaluation protocol as for the DR method.
For the global tempo estimation task, we perform a large scale analysis by train-

ing the network with three combined datasets (LMD, tMTG and EBR) and testing
it with seven datasets and the combined one (ACM, BR, tGS, GTzan, Hains., IS-
MIR04, SMC and Combined).

For the rhythm-oriented genre classification task, we perform again a 10-fold
cross validation on the genre-annotated datasets (BR, gEBR and Gr; gMTG, lBP
and sBP).

1 https://github.com/ChihebTrabelsi/deep_complex_networks

https://github.com/ChihebTrabelsi/deep_complex_networks


5.2 complex deep rhythm 85

...

...
*

*

* *

*

D C

dense

flatten

(4, 6) (4, 6) (4, 6) (120, 6)
Output
classes

b

2h

φ

256

128 128 64 16

Complex Convolution Layer

Complex Convolution Layers

Input

Cplx-

Cplx-kernel ...

Complex
Feature-maps

HRe HIm

H

K

KImKRe

KRe

KRe

KIm

KIm

HIm
HIm

HRe HRe

HReKIm + HImKRe 

HReKRe - HImKIm 

                 Cplx-Convolution + ReLU + Cplx-BN Dense + ELU + Dropout = 0.5 softmax

Figure 5.2: Cplx-convolution applied to Cplx-τ ′-HCQM as input and Cplx-DR model Archi-
tecture. D is the number of units in the dense layer, C is the number of units in
the output layer (i.e. the classes logits).

5.2.4.1 Tempo estimation

We evaluate the method in terms of Accuracy (Acc), Accuracy1 (Acc1) and Ac-
curacy2 (Acc2) (like in Section 4.6.1). First, we analyze the results obtained with
the Cplx-DR method. We also compare the Oracle Frame Prediction (described
in Section 4.5.1) results to the Oracle-DR ones, we denote it by Oracle-Cplx-DR.
In a second step, we further investigate the results of the method including the
ground-truth smoothing described in Section 4.6.1.5. We refer to them as Smooth-
Cplx-DR for the fix smoothing and Ada-smooth-Cplx-DR for the adaptive smooth-
ing. We compare these results to the sch2 state-of-the-art method from (Schreiber
and Müller, 2018b) as well.
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Figure 5.3: Results of Cplx-DR and Oracle-Cplx-DR methods compared to the DR and
Oracle-DR methods. [Top left] in terms of Acc, [Top Right] in terms of Acc1,
[Bottom] in terms of Acc2.

oracle frame prediction. The first remark on can made is that the results
of Oracle-Cplx-DR are better than those of Oracle-DR in terms of Acc1 and Acc2
for all independently evaluated datasets as well as for the combined one. This
clearly demonstrates that the complex version allows a significant improvement in
tempo estimation. It is necessary to mention here that we have verified in practice
that these results were not simply due to the twice as large size of the network
convolutional layers. For this purpose, we have trained a non-complex network
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from the real-valued HCQM with the same kernel sizes as the complex network. If
we look more closely at the results in terms of Acc for these same methods, we
can also see that on the one hand the results are better for 3/7 datasets and on
the other hand that the performance gain for the tGS dataset is drastic (+16.6%).
Hence, the use of Cplx-DR definitely allows a better estimation of global tempo
when applied to EDM music.

Another observation can be made at this stage by comparing the results ob-
tained in terms of Acc2: we can see that DR and Cplx-DR, although slightly below,
are almost at the same level as their Oracle version (except for SMC). This allows
us to state that for a given track, the average of its predictions from its different
τ ′-HCQM (respectively Cplx-τ ′-HCQM) reflects the presence of octave error in the
estimated candidate when using the basic methods.

ground-truth smoothing . We now compare the results obtained with the
methods using ground-truth smoothing and with the state-of-the-art method sch2
(Schreiber and Müller, 2018b). From the previous DR method, we keep only the
adaptive smoothing method Ada-Smooth-DR for comparison. Smooth-Cplx-DR
denotes the fixed smoothing applied to Cplx-DR while Ada-smooth-DR refers
to the adaptive one. Compared to sch2, the results for the complex methods are
similar to the previous analysis provided in Section 4.6.1.5. Indeed, in terms of
Acc1, the results are better for the Combined dataset while compared to the Ada-
smooth-DR, the results are slightly better for the Smooth-Cplx-DR (75%). From a
global point of view, we also can see that the two complex methods approximately
perform equally.

5.2.4.2 Rhythm-oriented genre classification

We provide the results in term of average-mean-recall for the DR and the Cplx-DR
methods in Table 5–3.

By exploiting the results, we find that the complex version of the DR does not
allow a better genre classification for the BR, gEBR, gMTG and Gr datasets. This
can potentially be explained by the fact that including the phase in the learning of
the model does not lead to an optimal generalization for the genres represented
in these datasets. However, for the gender-balanced EDM datasets, we observe an
improvement in the average-mean-recall results of +1.4% for lBP and +1.2% for
sBP.

Looking at the confusion matrix Figure 5.5 of the sBP genre classification, one
can see a gain in some classes compared to the one obtained with the DR method.
Among those, dance (+6%), electronica-downtempo (+7%), hip-hop-r-and-b (+2%), house
(+2%) present improvements that demonstrate that the inter-relationships between
frequency bands are an important factor in the classification of EDM genres. There
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Figure 5.4: Results of Smooth-Cplx-DR and Ada-Smooth-Cplx-DR methods compared to
the Ada-Smooth-DR and sch2 methods. [Top left] in terms of Acc, [Top Right]
in terms of Acc1, [Bottom] in terms of Acc2.

again, dance is classified in similar genres as funk-soul-disco or house. Even if there
is a slight improvement in genre classification, the confusion matrix is quite simi-
lar to the one presented in Section 4.6.2.2. We thus reach the same conclusions on
genre classification based on rhythmic characteristics.
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Table 5–3: Results of rhythm-pattern recognition/rhythm-oriented genre classification us-
ing Cplx-DR method compared to DR method in term of average-mean-recall
R̂.

Dataset DR Cplx-DR

Ballroom (BR) 93.0% 86.5%

Extended Ballroom (gEBR) 95.4% 92.1%

Greek Dance (GR) 68.9% 40.0%

genre MTG (gMTG) 37.6% 36.4%

Beatport large (lBP) 40.7% 42.1%

Beatport small (sBP) 52.8% 54.0%
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Figure 5.5: Confusion matrix of the evaluation of the sBP dataset using Cplx-DR method.
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5.3 multitask learning

5.3.1 Why multitask learning?

The goal of MultiTask Learning (MTL) is to share information between two related
tasks in order to enable a model to generalize better on both of these tasks. The
origin of MTL is biological. For example, babies learn to recognize faces of their
parents before apply this knowledge to recognize other faces. From a machine
learning point of view, MTL can be seen as an inductive transfer that can help
learning a model by introducing an inductive bias. In this case, the inductive bias
is provided by the auxiliary task which lead the model to favor hypotheses that
are beneficial to all several tasks at once.

Taking the example of EDM and the genres (whose rhythmic characteristics we
have described in Section 3.3), we can see that the tempo ranges are characteristic
of certain genres. This observation can be extended more generally, in the case of
ballroom music for instance.

With the DR method, we showed that the same network architecture, but with
two different trainings and hence set of parameters, can be used to achieve two dif-
ferent tasks: tempo estimation and rhythm-oriented genre classification. We want
here to exploit this multitasking aspect through the implementation of a single
network which jointly estimates the tempo and the rhythm pattern class.

Two main strategies stand out when it comes to MTL in the field of deep learn-
ing. These reside in the type of parameter sharing carried out between the hidden
layers of the network.

Task A Task B
Task-specific 

layers

Constrained 
layers

Input

Task A Task B

Task-specific 
layers

Shared layers

Input

Figure 5.6: MTL strategies. [Left] Soft parameter sharing. [Right] Hard parameter sharing.

The two strategies are shown in Figure 5.6. For the soft-sharing [Left], each task
has its own network. In order to learn similar parameters, the distance between
them is regularized for each layer of the networks. This method have been pro-
posed in (Yang and Hospedales, 2016) using the trace norm for regularization



5.3 multitask learning 91

while in (Duong et al., 2015) the l2-norm is used for a language processing task.
For the hard-sharing [Right], the hidden layers are shared between all tasks while
conserving specific layers for each task. This is the most common strategy. Hard
parameter sharing has been proven to limit the risk of overfitting (Baxter, 1997).

Other benefits of using MTL in deep learning are to be considered. A model that
jointly learn two tasks is able to learn a more general representation: it has an
implicit data augmentation effect. It can be difficult for a model to learn the differ-
ences between relevant and irrelevant features, MTL acts as an attention focusing
on the various features since it combines the relevance of features from two linked
tasks.

MTL methods have already shown their efficiency in various domains like com-
puter vision (Girshick, 2015), natural language processing (Collobert and Weston,
2008) or speech recognition (Deng, Hinton, and Kingsbury, 2013). In MIR field, they
have been used for the estimation of the fundamental frequency (Bittner, McFee,
and Bello, 2018). In the case of rhythm description, the work of Böck, Davies, and
Knees (2019) have showed good results by learning tempo estimation in parallel
with the beat tracking.

5.3.2 Multitask Deep Rhythm

architecture . For our MTL network we choose a hard parameter sharing
strategy. We illustrate the architecture of the network in Figure 5.7. The convo-
lutional part is the same as the original DR network. The extension starts at the
flatten layer that follows the last convolutional layer. The associated vector then
acts as input for two independent branches, each with two fully-connected layers
ending with a softmax activation function. One branch is dedicated to genre clas-
sification, the other to tempo estimation. We choose D = 64 based on parameter
validation experiments. The output of the first (resp. of the second) branch has the
same size as the number of genre to be detected (resp. as the number of tempo
classes).

It is important to note that using the MTL network architecture to deal with
both tasks simultaneously allows to halve the number of trainable parameters.
Indeed, the original DR network is trained to perform the two tasks separately and
therefore requires two independent training.

losses . To train the system, we simultaneously minimize two categorical cross-
entropy losses: one for the rhythm pattern classes Lgenre and one for the tempo
classes Ltempo. Both are applied to the output of the sub-networks ended by a
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Figure 5.7: MTL model Architecture with τ ′-HCQM as input (of size (φ× b× h)), D is the
number of units in the dense layer, C is the number of genre classes in an
output layer and 256 tempo classes in the other.

softmax activation function. We choose the use of an additive loss with equal
weights between the genre loss and the tempo loss.

L = Lgenre +Ltempo

= −

C∑
cg=1

ycg log(ŷcg) − (1− ycg) log(1− ŷcg)

−

256∑
ct=1

yct log(ŷct) − (1− yct) log(1− ŷct) (5–17)

with the predicted genre class ŷcg and the genre ground-truth ycg (ct for the
tempo classes, respectively). We then minimize L (both losses Lgenre and Ltempo

are equally weighted) with the same ADAM optimizer as original DR method.

5.3.3 Evaluation

evaluation protocol . Once again we evaluate the results for both estima-
tion tasks. However, unlike our previous methods, learning is joint between the
two tasks (i.e. the same model is trained/evaluated to estimate both tempo and
genre). The experimental protocol is thus limited to datasets annotated in both
genre and tempo: BR, gEBR, gMTG and GTZAN. We do not present the results
for Gr since data are not annotated into tempo value and for lBP and sBP since
the tempo annotations are considered ambiguous (cf. Section 3.3). Similarly to the
DR method, we choose to perform a 10-fold cross validation.
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We present the results in two tables. The Table 5–4 is dedicated to genre classi-
fication and results are presented in terms of average mean recall. The Table 5–5

concerns tempo estimation and results are presented in terms of Accuracy1 (within
a ±4% tolerance window applied to the ground-truth tempo value). In these two
tables, the results corresponding to the MTL methods are the results obtained by
jointly using the same model. We compare them to the DR and Cplx-DR methods.
For the latter two, the results are not obtained jointly but independently (i.e. for
tempo estimation we have re-trained the networks on the independently evaluated
datasets). It should be noted that for all three types of methods, a fixed smooth-
ing was applied to the ground truths of the tempo value. Finally, we tested the
complex version of the MTL network for comparison, denoted as Cplx-MTL.

Table 5–4: Separate and joint estimation results of rhythm-oriented genre classification in
term of average-mean-recall R̂. MTL and Cplx-MTL results are obtained jointly
with the tempo results of Table 5–5

Dataset DR Cplx-DR MTL Cplx-MTL

Ballroom (BR) 93.0% 86.5% 92.1% 86.1%

Extended Ballroom (gEBR) 95.4% 92.1% 94.8% 92.4%

genre MTG (gMTG) 37.6% 36.4% 37.1% 39.8%

GTzan tempo (GTzan) 59.1% 43.5% 57.1% 44.0%

Table 5–5: Separate and joint estimation results of global tempo estimation in term of Ac-
curacy1. MTL and Cplx-MTL results are obtained jointly with the genre results
of Table 5–4

Dataset DR Cplx-DR MTL Cplx-MTL

Ballroom (BR) 93.3% 90.0% 93.2% 91.4%

Extended Ballroom (gEBR) 96.0% 95.7% 96.4% 95.6%

MTG tempo (gMTG) 92.0% 91.8% 91.2% 92.0%

GTzan tempo (GTzan) 76.3% 72.4% 74.8% 70.8%

discussion. The results of the MTL and Cplx-MTL methods presented in the
two tables for tempo estimation and genre classification show that joint learning
of the both tasks is justified. Indeed, only one model was used to obtain these
results despite the fact that they perform slightly below the DR methods for BR
and GTzan. For the gEBR the best results are achieved with the MTL method. We
also note that for EDM dataset gMTG, the results are better with Cplx-MTL for the
genre classification (+2.2%) and equal for the tempo estimation (92%) compared to
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those of the DR method. This confirms once again the fact that the genres of EDM

are strongly defined by their tempo ranges.
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5.4 multi-input network

5.4.1 Why multi-input network?

The Deep Rhythm network was designed to represent the rhythm content of an
audio track. As shown in (Gouyon et al., 2006) and demonstrated in our previous
methods, the tempo range and possible rhythm patterns are strongly correlated to
the music genre of the track. The DR network, however, focuses exclusively on the
aspects related to rhythm, not on other features like instrumentation or timbre.

Since we want to perform a genre classification, even rhythm-oriented, our
method could benefit from representations describing other musical elements. For
instance in EDM, we have seen that many genres were also defined, beyond their
rhythmic structure, by more instrument-oriented features. In the analysis dedi-
cated to the basic DR method, we can have seen that genres with instrumentation
marked by the presence of vocals and acoustic instruments (disco, hip-hop, dance,
house) were more likely to be confused during classification.

This intuition led us to the creation of a new network in order to introduce
information distinct from rhythm when training the network for genre classifica-
tion. To do so, we keep the convolutional part of the DR dedicated to rhythm with
the HCQM as input and we add a convolutional branch dedicated to the represen-
tation of timbre and instrumentation with a log-mel magnitude spectrogram as
input. We obtain a multi-input, multi-branch network, and to denote this network
we use the term multi-input network (and by extension Multi-Input (MI) method).

5.4.2 Multi-input Network

We first start by describing the branch dedicated to the analysis of timbre and
instrumentation. Our main inspiration is the work of Choi, Fazekas, and Sandler
(2016) and Choi et al. (2017) who uses this type of convolutional layers with a mel-
spectrogram as input to perform an automatic tagging task from large annotated
databases. Pons et al. (2017b) also recommend the use of log-mel magnitude spec-
trogram2 as input of a CNN to analyze timbre patterns through the convolutional
feature maps of the network.

5.4.2.1 Mel-spectrogram

Studies on human frequency perception have shown that we are better at detecting
differences in lower frequencies than in higher frequencies. It was then shown by
Stevens, Volkmann, and Newman (1937), in the field of psychoacoustics, that a

2 For ease of reading we refer to it as mel-spectrogram
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unit of pitch called mel scale was more adapted to represent frequencies for the
human auditory system. Thanks to the mel scale, an equal distance in pitch sounds
equally distant to the listener.

To compute the mel-spectrogram (represented in Figure 5.8), the STFT of a raw
signal is computed, the frequency axis is converted to log scale and the amplitude
are converted to decibels to obtain the log-spectrogram. Finally, the frequency are
mapped onto the mel scale.
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Figure 5.8: Log-mel Magnitude Spectrogram example

Timbre is defined as the character or quality of a musical sound. Also, music
timbre is often associated with the identification of the instrument characteristics.
It is related to the spectral envelope shape and the time variation of the spectral
content (Peeters et al., 2011). Thus, it can be assumed that the mel-spectrogram
is an adequate representation of timbre since it is a time/frequency expression
well-suited to the human auditory system and so to the music perception.

Therefore, the mel-spectrogram contains timbre patterns that are considered as
more pitch invariant than the STFT ones since they are based in a different percep-
tual scale (Pons et al., 2017b). For all these characteristics and also for the gain in
performance it allows, this representation is one of the widespread features used
in deep learning for various MIR tasks. It has notably been used for boundary de-
tection (Ullrich, Schlüter, and Grill, 2014; Cohen-Hadria and Peeters, 2017), onset
detection (Schlüter and Böck, 2014), latent feature learning (Oord, Dieleman, and
Schrauwen, 2013) or tagging (Pons and Serra, 2017; Choi, Fazekas, and Sandler,
2016; Choi et al., 2017; Dieleman and Schrauwen, 2014).

For tagging task, the mel-spectrogram is often used as input representation of
a CNN trained with large-scale datasets. We choose to use a common architecture
dedicated to the timbre branch of our MI network.
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5.4.2.2 Network Architecture

The first branch of the network is the one dedicated to rhythm with the HCQM

as input followed by the DR convolutional layers. The second branch is the one
dedicated to timbre characteristics followed by a network commonly-used for au-
dio tagging with the mel-spectrogram as input. This latter branch is inspired from
the well-known VGG network (Simonyan and Zisserman, 2015). Its architecture is
adapted to large-scale analysis in the sense that its efficiency has been shown on
large annotated databases. It is composed of a series of convolution layers associ-
ated with max-pooling layers.
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Figure 5.9: MI model architecture. [Top] Branch dedicated to "timbre", VGG-like convolu-
tional layers with a mel-spectrogram as input. [Bottom] Branch dedicated to
rhythm, DR convolutional layers with an τ ′-HCQM as input.

The complete architecture of the MI network is described in figure Figure 5.9. We
take the same network parameters described in (Choi, Fazekas, and Sandler, 2016)
and in (Choi et al., 2017). This network uses mel-spectrograms as input followed by
five convolutional layers of (3× 3) kernels3 each connected to a max pooling layer
(2× 4), (2× 4), (2× 4), (3× 5), (4× 4) in order to reduce the size without losing

3 In (Pons et al., 2017b), it has been shown that the use of domain-knowledge inspired kernel size (e.g.
by taking the whole frequency axis) leads to better performance in the case of large-scale training.
However, because the difference in results is not significant on smaller scale analyses, so we choose
to use square filters.
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information during training. In the original network, the last layer then predicts
the tags. We skip it here. The output of the timbre branch does not need to be
flatten since using max pooling already shapes the last layer as a (1× 2048) vector.
The flatten layer of the DR branch is concatenated with the last layer of the timbre
branch and used as input of a dense layer of size 256. The output layer of the
MI network is, as for the previous methods, the softmax activation function of C
classes (C as the genre classes in the case of genre classification task or 256 tempo
classes in the case of global tempo estimation). Again, the network is trained by
minimizing a categorical cross-entropy.

5.4.3 Evaluation

evaluation protocol . In (Choi, Fazekas, and Sandler, 2016), the model is
trained with a large amount of data from the Million Song dataset (Bertin-Mahieux
et al., 2011). We have not this quantity of tempo labeled data in our datasets (we
have seen that we cannot merge them because the genres covered are too disparate
from one dataset to another). In order to evaluate our results, we compare all the
previous methods:

• DR, the original one presented in Chapter 4;

• Cplx-DR, presented in Section 5.2;

• MTL and Cplx-MTL presented in Section 5.3;

• MI and its complex version Cplx-MI. For Cplx-MI, only the DR branch is
converted to its complex version.

To these, we add the MI-MTL method (and its complex version Cplx-MI-MTL).
This architecture combines the two input branches of the MI and their concatena-
tion followed by an MTL output with on one side a dense layer followed by the
softmax dedicated to genre classification and on the other side the same layers
dedicated to tempo classes. The loss minimized is the additive categorical cross-
entropy loss presented in Equation 5–17

We also want to compare the efficiency of our method for genre classification to
a baseline from the state of the art. As in the DR method we choose to train/test all
networks from different methods with a 10-folds cross-validation on our different
datasets including the independent tagging network described in (Choi, Fazekas,
and Sandler, 2016), we denote it by choi in our results analysis.

As for the MTL evaluation in Section 5.3.3, we display the results in the form
of two tables. Table 5–6 presents the results for genre classification in terms of
average mean recall. Table 5–7 presents the results for global tempo estimation
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in terms of Accuracy1. In the two tables, the results of the *-MTL methods are
obtained jointly using the same model for both tasks. The results of the others
methods (DR, Cplx-DR, MI, Cplx-MI) are obtained using a 10-fold cross validation
on tempo estimation task.

Table 5–6: Comparative and joint estimation results of rhythm-oriented genre classification
in term of average-mean-recall R̂ for all methods.

Dataset choi DR Cplx-DR MTL Cplx-MTL MI Cplx-MI MI-MTL Cplx-MI-MTL

BR 60.1% 93.0% 86.5% 92.1% 86.1% 94.2% 92.3% 93.0% 91.9%

gEBR 72.1% 95.2% 92.1% 94.8% 92.4% 96.5% 93.9% 96.2% 94.6%

Gr 38.1% 68.9% 40.0% - - 69.4% 47.2% - -

gMTG 21.7% 37.6% 36.4% 37.1% 39.8% 37.3% 40.6% 39.6% 40.3%

GTzan 74.2% 59.1% 43.5% 57.1% 44.0% 74.3% 74.1% 67.2% 66.0%

lBP 21.3% 40.7% 42.1% - - 31.3% 32.0% - -

sBP 46.4% 52.8% 54.0% - - 54.8% 55.8% - -

Table 5–7: Comparative and joint estimation results of global tempo estimation in term of
Accuracy1 for all methods.

Dataset choi DR Cplx-DR MTL Cplx-MTL MI Cplx-MI MI-MTL Cplx-MI-MTL

BR - 93.3% 90.0% 93.2% 91.4% 91.3% 92.7% 92.2% 92.4%

gEBR - 96.0% 95.7% 96.4% 95.6% 96.1% 94.6% 96.0% 95.7%

gMTG - 92.0% 91.8% 91.2% 92.0% 91.6% 90.1% 91.3% 91.6%

GTzan - 76.3% 72.4% 74.8% 70.8% 73.3% 69.5% 71.5% 68.5%

discussion. First of all, we can observe that the results obtained with our DR

method are much better than the choi baseline for all datasets except for GTzan.
We can thus conclude that a small-scale rhythm-oriented classification method is
much more efficient than a method more generally applied to large-scale dataset
tagging. The results on GTzan can be explained by the fact that the choi method
has shown good results in previous work on dataset balanced in various popular
music genres. As learning takes place on this various data, it allows a VGG-like
model to generalize better.

We can observe that the MI method is the most efficient for genre classification of
BR, gEBR, Gr, GTzan. Moreover, for the MTG and the sBP dataset it is the Cplx-MI
version that performs best. Although learning is joint, the MI-MTL methods fail
to match the previous ones in terms of statistical results. We can still validate the
use of a MI model for genre classification. The timbre branch brings a significant
added value.

Once again, we observe the confusion matrix of the genre classification this time
using Cplx-MI method in Figure 6.10. The addition of the MI branch dedicated to
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Figure 5.10: Confusion matrix of the evaluation of the sBP dataset using Cplx-MI method.

timbre allows to improve the classification performances compared to the Cplx-DR
method for dance (+3%), house (+13%) and reggae-dancehall-dub (+12%). All these
genres are specifically defined by the presence of vocals or acoustic samples (brass,
guitar riffs, etc.) in their composition. The addition of a timbre branch therefore
justifies this improvement.

Regarding the use of MI for tempo estimation the results remain very close
to the DR method and are even slightly higher for gEBR. Using a 10-fold cross
validation protocol, DR still remains the most performant method for the majority
of the datasets.

5.5 conclusion

In this chapter, we presented three main extensions of the Deep Rhythm method
with the aim of exploiting the specific characteristics of this method to perform
tempo estimation and rhythm-oriented genre classification.
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First, we wanted to take into account inter-band acoustic relationships in or-
der to improve our estimation. To do this, we proposed to integrate the temporal
relations between the bands through the combined learning of the module and
the phase of our HCQM representation by a neural network. We kept the complex-
values when calculating the Cplx-HCQM used as input of a complex network
using complex convolution layers. The effectiveness of this complex version of the
DR, the Cplx-DR, is shown through its evaluation for the tempo estimation task.
Indeed this method allows a clear improvement of the results when analyzing the
results obtained via the Oracle Frame Prediction in terms of Acc1 and Acc2. Re-
garding the genre classification, we have noticed that except for an EDM dataset,
the results are inferior to those obtained with the DR method.

Second, in order to better take into account the interdependence between tempo
and genre we proposed a multitask network where the two tasks of tempo and
genre estimation are jointly solved. For this, we proposed a hard parameter shar-
ing network architecture with shared hidden layers and with two independent
output layers dedicated to each task. This network was trained to minimize the
additive categorical cross-entropy losses of the two outputs. We showed that MTL

led to an improvement for both tasks on the only evaluated EDM dataset gMTG. In
addition, even if the results are not better than the ones of the previous methods,
it is important to emphasize that they are obtained using a single network trained
to perform both tasks.

Third, we wanted to take into account an other descriptor in addition to the
rhythm one represented by the HCQM and the DR network. We put forward a
multi-branch/multi-input network where VGG-like convolutional layers with mel-
spectrogram input are added to represent timbre information. We showed that this
MI architecture allowed a much better genre classification for almost all datasets
evaluated especially for EDM.

To conclude, we showed that following these three intuitions, we were able
to extend the DR method effectively and particularly in the context of EDM. We
published these three methods at the MuMe conference 2020 (Foroughmand and
Peeters, 2020). Note that the results for the methods estimating tempo differ from
the article for those prior to the ground-truth smoothing method.

For our last chapter, we wish to exploit the benefits of a rhythmic representation
from another angle. To do this, we want to highlight the quality of the HCQM

representation to emphasize the rhythmic similarities between the tracks. We then
describe the implementation of a metric learning paradigm in order to obtain a
new data space that we evaluate on our two tasks.
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M E T R I C L E A R N I N G D E E P R H Y T H M

6.1 introduction

As we have seen in the case of music genre classification, many features have been
proposed to highlight the similarity of two music tracks (rhythm, timbre, etc).
Classification algorithms estimate a similarity rating between two music tracks by
calculating the distance between the features extracted from them. In section Sec-
tion 2.4, we have presented some of the machine learning methods used to perform
such classification (k-NN, SVM, etc). We also discussed the use of deep learning in
the previous chapters and more specifically the use of CNN to perform classifica-
tion on large-scale dataset for tempo estimation and on independent cross-fold
validation datasets for rhythm-oriented genre classification. In general, algorithms
for genre classification are supervised, all items of a dataset are labeled. In the
opposite, some algorithms like k-means, are unsupervised. In these, the similarity
between items is defined by the metric used (Lloyd, 1982).

Such metric can be effective to estimate the differences between features of a
given type but not for other types. The choice of an adapted metric is one of the
specific problems when performing unsupervised learning. The metric learning
paradigm provides a solution.

In the upcoming content we use the DR method (and by extension the HCQM

representation) is suitable for the metric learning of rhythm similarity. For this, we
develop a method based on a descriptor dedicated to rhythm allowing to create
a space of rhythm similarity. We first introduce the metric learning principle in
Section 6.2. Then in Section 6.3, we focus on one of the loss function used for
metric learning, namely the triplet loss. In Section 6.4, we present the use of this
paradigm to the DR. Finally, we discuss in Section 6.5 the evaluation protocol we
have relied on and the results we have obtained.

6.2 metric learning principles

The terminology of metric learning has been proposed by Lowe (1995) that de-
fines it as a solution for bearing at the low generalization of algorithm such k-NN.
The method aims to learn the parameterization of the metric during the train-

102
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ing of a model on a dataset. The aim is also to improve the probability of a
good classification. Xing et al. (2003) demonstrate that metrics can be learned
from a training dataset and can be expressed as a Mahalanobis distance. Let
Xtrain = [x1, x2, ..., xN] ∈ RD×N be the training samples of a given dataset, D
the dimension of the Euclidean space, N the total number of training samples,
xi the i training sample, the distance between two training samples xi and xj is
expressed:

dM(xi, xj) =
√
(xi − xj)TM(xi − xj) (6–18)

where M denotes a positive semi-definite matrix and can be decomposed as
follow:

M =WTW. (6–19)

ShouldM be the identity matrix, the metric dM is the Euclidean distance. It comes:

dM(xi, xj) =
√

(xi − xj)TM(xi − xj)

=
√
(xi − xj)TWTW(xi − xj)

= ||Wxi −Wxj||2

= dM(xi, xj) = dM(Wxi,Wxj) (6–20)

Learning a metric through M is equivalent to learn a linear transformation and
apply the Euclidean distance to the transformed data. The transformed data are
then called the embedding of the original data (respectively the transformed space
is called the embedding space).

It has been shown in the literature that the automatic learning of metrics is
equivalent to learning the parametrization of M. In (Xing et al., 2003), the purpose
of the training criteria is to minimize the distances between similar pairs of sam-
ples and maximize the ones between dissimilar pairs. Goldberger et al. (2005) intro-
duced the neighborhood component analysis with M learned through a stochastic
method for classification purposes. The probability of a point being correctly clas-
sified is expressed as a function of its distance from all other points in its class. M
is then updated to maximize this probability for all points.

According to Chopra, Hadsell, and LeCun (2005), given a measure c between
a pair of samples and a transformation function f, we can write c(f(xi), f(xj)). For
a sample xi, f(xi) denotes its embedding. Here, a constraint is applied in order
to avoid that all the embedding points representations end up in the same spot. c
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Metric Learning Transformed dataset spaceOriginal dataset space

minimize the distance

maximize the distance

Figure 6.1: Metric learning principle.

is thus the measure of similarity between two training samples. Chopra uses the
term contrastive to refer to the fact that we are not only minimizing c for similar
sample pairs but also maximizing c for dissimilar sample pairs.

To summarize, the original training data are projected from their original space
to a target (embedding) space. A function f is trained in order to perform the best
possible transformation i.e. to allow the best classification. A similarity between
two samples in the original space is equivalent to an estimation of the distance
between their embedding in the target space. In a schematic way, this will allow
to "bring closer" similar samples (into clusters) and to "move away" dissimilar
samples in the embedding space as described in Figure 6.1. For example, in the
case of a classification in musical genres we expect that the clusters formed in the
embedding space group together all tracks belonging to the same genres while
being distant from the other clusters.

In order to apply the metric learning (and by extension the corresponding trans-
formation of the original data) the loss function must be adapted to the task at
hand.

6.3 losses

6.3.1 Evolution of metric learning losses

In the metric learning context, minimizing a loss function means minimizing
the distance between two similar samples; on the contrary, maximizing the loss
function means maximizing the distance between two dissimilar samples. Had-
sell, Chopra, and LeCun (2006) extended the contrastive loss introduced in (Chopra,
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Hadsell, and LeCun, 2005), as the sum of partial losses LP(xi, xj) computed for
each possible sample pairs (xi, xj) in the input space:

L(P) =
∑
xi,xj

LP(xi, xj)

=
∑
xi,xj

δxi,xj
1

2
d2P(xi, xj)

+ (1− δxi,xj)
1

2
[max(0,α− dP(xi, xj))] (6–21)

where dPisthedistance ∈ R+, δxi,xj = 1 if xi and xj are similar samples and zero
if they are dissimilar and α is a margin parameter.

Calculating the distances between all pairs is laborious and the estimation of
similarity or dissimilarity tends to be limited. Weinberger, Blitzer, and Saul (2006)
propose to overcome this problem by considering a limited number k of positive
matches for a given sample. The contrastive loss equation is modified as follows
and is called the large margin nearest neighbours loss:

L(P) =
∑
xi,xj

LP(xi, xj)

=
∑
xi,xj

ηxi,xjd
2
P(xi, xj)

+
∑
xi,xj,xz

ηxi,xj(1− δxi,xj)[max(0,α+ dP(xi, xj)) − dP(xi, xz))] (6–22)

where xz is a negative sample, δxi,xj = 1 if xi and xj are similar (i.e. a positive
pair) and zero otherwise and ηxi,xj = 1 if xj is in the k first similar samples of xi
and zero otherwise. According to the first term, each samples will be pulled near
its k positive elements. The second one implies that a samples will be closer to
its k positive elements than it is to any of its negatives ones ((xi, xz) is a negative
pair) by a margin α. The complementary use of a dissimilar sample xz to similar
samples xi and xj is at the origin of the notion of triplet.

The two losses are schematized in Figure 6.2.

In the field of image analysis and more precisely for a classification task, Simo-
Serra et al. (2015) observe that once the network has strongly learned from data,
the triplets tend to be ineffective for the remaining of the training. In other words,
for similar positive pairs, the distance is already close to zero and for negative
pairs beyond α. We talk about easy triplets in opposition to hard triplets. The latter
are representative of a high distance between positive pairs and, accordingly, a
small distance between negative pairs.
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𝜶

𝜶

: sample from class 1 

: sample from class 2 

: sample from class 3 

Figure 6.2: Schematic representation of the contrastive loss (Left) and the large margin nearest
neighbours loss with k = 3 (Right). Samples movements during training are
represented by large arrow. A double arrow indicates a push a single arrow
indicates a pull between sample pairs.

In order to avoid the exclusive selection of easy triplets during training, Simo-
Serra et al. (2015) propose to select only hard triplets in what they call a pair
mining strategy and more precisely a hard mining strategy. Our strategy for music
genre classification is based on the use of the semi-hard triplet loss.

6.3.2 Triplet loss

According to the literature but also for for the sake of readability, we rede-
fine the syntax of a triplet as {a,p,n} where a is an anchor, p one of its positive
samples and n one of its negative samples. The triplet loss aims to minimize the
distance between an anchor and a positive sample knowing that they have both
the same class label and maximize the distance between the anchor and the neg-
ative knowing that they have a different class label. By pairing the samples into
anchor/positive and anchor/negative triplets, the network learns the distribution
of samples from each class with respect to all other classes.

The loss function is formulated as follow:

L(a,p,n) = max(0,d(a,p) +α− d(a,n)) (6–23)

where d(a,p) and d(a,n) represent the Euclidean distances between the anchor
and the positive or the negative respectively, and α is the margin parameter. The
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anchor-positive should have a small distance between them whereas the anchor-
negative should have a large distance.

To perform classification on large scale dataset, with a large amount of triplets,
the hard-mining strategy shows some limitations. First, the selection of triplets
during training can be ambiguous. Second, the training may be time consuming if
the computation of all pairwise distance happened every n training step.

Schroff, Kalenichenko, and Philbin (2015) overcome these problems by propos-
ing a semi-hard mining strategy. It consists in the selection of all embedding as
anchor paired with all its positive in the successive batch. Each respective an-
chor/negatives pairs are selected according to three categories:

1. The easy negatives: d(a,n) > d(a,p) +α

2. The semi-hard negatives: d(a,p) < d(a,n) < d(a,p) +α

3. The hard negatives: d(a,n) < d(a,p)

The negatives are then selected at each training step according to few rules.
If they are in the easy negative category, they can’t be selected. If there is some
negatives in the semi-hard category, the closest one to the positive is selected (Fig-
ure 6.3. Left). If there is only hard negatives, the closest one to the positive is also
selected (Figure 6.3. Right).

a

p

n1

n2

easy negatives

semi-hard negatives

hard negatives

easy negatives

semi-hard negatives

hard negatives

a

p n2

n1

n3

n3

𝜶 𝜶

Figure 6.3: Schematic representation of the anchor/negative pairs (a,n) selection for a
given anchor/positive (a,p) pair. (Left) Category 2., n2 is selected. (Right) Cat-
egory 3., n1 is selected.

During training, the distance between anchor and semi-hard and hard negatives
respectively keeps gradually increasing. This method has to respect some condi-
tions in order to remain effective. To prevent the training from reaching a deadlock,
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it is important to have a large training set with equally distributed classes. The use
of large batches is also crucial to maintain a high amount of anchor/positive and
anchor/negative pairs to learn the mining from.

Triplet loss has been used mainly for image recognition task (Oh Song et al.,
2016; Sohn, 2016; He et al., 2016; He et al., 2018) and more recently in the MIR field
for cover detection task (Doras and Peeters, 2020b; Doras and Peeters, 2020a).

In the next section, we apply the metric learning paradigm on the task of genre
classification.

6.4 triplet loss deep rhythm

As we have seen, metric learning has proven its effectiveness for image recogni-
tion tasks. A more recent study shows that it can be applied to music tagging
tasks (Prétet, Richard, and Peeters, 2020) because it allows the study of similarities
between samples of large-scale datasets. To use it in our context, we adapt our DR

method to allow the application of the triplet loss. On the one hand, we want to
apply it to different datasets annotated in genre in order to perform a classifica-
tion. On the other hand, we want to study its impact on tempo estimation for the
large-scale dataset. Given the subjective concept of similarity relative to the origi-
nal space of our data, we want to learn a function f that will map this data onto a
new space. In our case the term "sample" refers to a temporal slice of the HCQM of
a track: τ ′-HCQM.

In the context of genre classification, we hope that the model will learn the
similarities between music tracks from the rhythmic representation of the HCQM.

In the following, we define the architecture of the model and the training pro-
cess.

6.4.1 Architecture

We used the baseline model of Schroff, Kalenichenko, and Philbin (2015) for learn-
ing f using the triplet loss. We adapted it for the use of the HCQM as input of a DR

convolutional network. We refer to this model as the TriDR.
The TriDR architecture is presented in Figure 6.4. The inputs of the network

are the HCQM temporal slices of a given track τ-HCQM of size (h × b ×Φ). It
is followed by the DR model convolutional part with the same parameters de-
scribed in details in Section 4.4. After flattening the last convolutional layer, a
L2-normalization is applied on a dense layer which constitutes the output of the
layer: the embedding vector of size E. An ELU activation function is applied to the
last layer. We indicate that the model is trained according to the triplet loss to learn
the transformation function f.
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Figure 6.4: Architecture of the TriDR model.

6.4.2 Training

The semi-hard mining strategy, based on the triplet loss, aims to learn a transfor-
mation function f by selecting successively each sample in the batch as the anchor.
As the anchor designates a temporal slice of a music track at a given moment of
the training, this track will have as positive (resp. negative) the tracks belonging to
the same class (resp. to another class). Through parameter optimization, we have
set α = 1.5 and E = 128. We perform a training using mini-batch gradient descent
with batch of size Bs. It is important that an anchor have enough positive and neg-
ative sample in one batch. Thus, the dataset must be large enough and the classes
evenly distributed. For this the batch-size must be set correctly, we set Bs = 256.
The loss function is minimized thanks to ADAM optimizer and the number of
epoch is automatically set using early stopping.

6.5 evaluation and analysis

The embedding space resulting from the training allows to define a similarity
between samples as the Euclidean distance between the embedding of our data.
The observation of the embedding clusters in a 2-dimensional space already allows
us to make early conclusions on the efficiency of the method. In order to obtain
precise scores, a classifier trained on the embedding is necessary. Its role is to
evaluate the probabilities of a test sample to belong to a class in the test samples
based on the estimated distance between the embedding points. The distance is
equivalent to the c function and can be the Euclidean distance.

Like the other methods we have developed, TriDR model is trained according to
a 10-fold cross validation on each dataset for genre classification. For the sake of
comparison, we also keep the same train/test/valid splits.
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6.5.1 Datasets

It is mentioned in the literature (Schroff, Kalenichenko, and Philbin, 2015) that the
larger the train dataset, the more efficient the triplet loss. The fact that the repre-
sentations are separated in temporal slices for training already allows to increase
the number of annotated samples. We therefore apply the TriDR method to the var-
ious genre annotated datasets presented in Chapter 3 namely BR, gEBR, GTzan,
gMTG, lBP and sBP. We choose to not apply the TriDR method on the Gr dataset
beacause of its small size.

6.5.2 Embedding space

6.5.2.1 Protocol

We apply a metric learning method based on the HCQM/DR combination. Datasets
are labeled in genre, but the learning of f is done using a rhythm-oriented repre-
sentation as input of the TriDR. Once f is learned, the next step is to evaluate
its efficiency. To do so, we apply f to a set of test samples that are independent
from the train samples. Since we perform 10-fold cross validation on the various
datasets, the test set represent 1/10th of the whole dataset. First we project the test
data in the embedding space through the transformation function f. As for other
methods, a music track is divided in temporal slice (8 seconds long). We compute
the median of all the temporal slice embedding for a given test sample to get only
one embedding vector per test sample1.

We represent the embedding space in 2-dimension in order to make a visual
identification of the sample clusters. The embedding vectors obtained using the
trained TriDR network are in E-dimension (E being the size of an embedding vec-
tor). Thus we want to reduce the E-dimension embedding vectors to 2-dimension.
Several methods of dimensionality reduction for data visualization have been de-
veloped. Among the various dimentionality reduction algorithms, we have chosen
the t-distributed Stochastic Neighbouring Entities (t-SNE) introduced by Maaten
and Hinton (2008) for its flexibility. It allows the exploration of high-dimensional
data. It is a non-linear algorithm and adapts to the underlying data which tries
to preserve the local structure of data. The benefit of t-SNE is that it gives a guess
about the number of close neighbors each sample has, also it can handle outliers.
It is important to notice that the t-SNE algorithms help us for the visual observation
of the data but don’t give us a precise statistical score of good classification.

1 This allows to have more sparse visualization to identify the clusters
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6.5.2.2 Observations and discussion

In this part, we observe the projection of each test sample contained in a specific
fold in the embedding space in 2 dimensions. Since we use a 10-fold cross valida-
tion, we choose to represent the embedding space corresponding to the fold with
the highest results in term of mean over class recall. We use here the same 10 folds
as the previous methods. However, it appears that there are not enough examples
per class in the case of the gMTG because it is strongly unbalanced (for example
dub class has only one instance as discussed in Section 3.2). For the lBP, there are
30 different genre classes. It is difficult to visualize a space with so many classes
in a figure. As a result, for these two datasets we choose not to represent their
embedding spaces even if we applied the TriDR method to them.

For all the figures we display, one can see on the left the embedding space before
training (i.e. the test data are projected to the space through a randomly initialized
TriDR network) and on the right after training the TriDR network. Each class of the
dataset is represented using a specific, unique color.
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Figure 6.5: Embedding space for the BR dataset.

ballroom datasets . For the BR dataset (Figure 6.5), we can observe a well-
defined cluster corresponding to genres. These results are even more pronounced
for the gEBR dataset (Figure 6.6) knowing that there are many more examples
per class. In addition, the clusters are more widely spaced, demonstrating that the
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Figure 6.6: Embedding space for the gEBR dataset.

method works very well for these datasets. The efficiency of our methods based on
the HCQM and thus on the harmonic components of the rhythm through analysis
by convolutional neural networks is no longer to be proven on these two datasets.
As a reminder from the Chapter 3, they were derived from the characteristics of
ballroom music, music dedicated to dance and therefore inseparable from their
rhythmic structure. Strictly based on the rhythmic aspects, we are able to classify
these datasets. The similarities observed in the embedding spaces makes sense
and explains the good results we have been able to obtain so far.

gtzan dataset. GTzan is a dataset whose labels are selected to correspond to
the most popular genres of today popular music. It can thus already be seen that
the projection of the test data does not allow the formation of genre-clusters as
defined as for the previous datasets in Figure 6.7. However, it is interesting to note
that it is still possible to identify scattered clusters. Among these, the genres reggae,
jazz, classical or hip-hop are visually identifiable. Other genres are located "in the
middle" of the space and even if groupings are observable, they are intermingled.
We believe that for some genres (such as reggae or hip-hop), the rhythmic structure
is essential to their description and prevails over other features, hence the clusters
formation for these genres.
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Figure 6.7: Embedding space for the GTzan dataset.
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Figure 6.8: Embedding space for the sBP dataset.

beatport small dataset. Finally, we analyze the use of metric learning
on an EDM dataset, the sBP (Figure 6.8). By observing embedding space, we can
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see the grouping in genre of 6 labels. On one side the breakbeat genres (such
as drum-and-bass and dubstep) and on the other side the four-on-the-floor genres
(such as techno, trance, hard-techno) are gathered in distinct clusters. The examples
labeled reggae-dancehall-dub, house, down-tempo and funk-soul-disco are located in the
"center" of the space and remain indistinctly mixed. These observations echo our
previous analysis. Indeed, the genres with the most distinctive rhythmic structures
such as the breakbeat pattern genres have well-defined clusters. The examples
belonging to genres with more ambiguous rhythmic structures are intermingled
such as dance with disco and house, the latter have similar rhythmic structures, so
it is not surprising to find this mixture of clusters on the embedding space. One
can also observe a certain logic when some examples of hard-techno are located
within the cluster related to techno. It should be noted that some hardcore tracks
may contain breakbeat patterns while some hard-techno tracks are structured with
four-on-the-floor patterns (as techno). The mixing of both genres included in the
label hardcore-hard-techno could explain the confusion with the techno example. We
can conclude that a metric learning paradigm with the HCQM as an input to the DR

network allows an estimation of similarity between the music tracks that makes
sense.

6.5.3 Classifiers

To evaluate the ability of TriDR to learn projections (embedding) that are close to
their similar siblings we need to analyze the distance between them. Classifiers are
the algorithms that evaluate that distance in order to assign a class to each sample.
To train a classifier we use the trained embedding vectors of size E as input. We
then evaluate the classification performances on the test data. We tested two types
of classifiers, the k-NN and the Nearest Centroid (NC).

k-nn. An unlabeled sample (query point) is classified by assigning the label
which is most frequent among its k nearest training samples. The k value repre-
sents the margin that encompasses the k training observations around the query
point. Within this margin, the label assigned to the query is the one of the most
represented class.

nc . Each class is represented by its centroid in the embedding space (equivalent
to the mean of the training samples), the test samples are classified by assigning
to the query the label of the class of training samples whose centroid is the closest
to the query.
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6.5.4 Classification Results

Because the results obtained using the NC are higher than those using k-NN, we
have chosen to only comment the former. We compare the efficiency of the TriDR

for rhythm-oriented genre classification in terms of average recall to the original
DR method and with the best of our methods for this task, the MI.
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Figure 6.9: Results comparison between TriDR and previous methods in terms of average
mean recall.

We compare the results in Figure 6.9: the baseline method choi, the original DR

method, the most efficient method MI and the TriDR method. First of all, results
obtained using the choi method appear to be largely below the TriDR ones for all
datasets (except for the GTzan). TriDR performs almost as DR or as MI, for gEBR, BR,
lBP while for the sBP EDM dataset results are slightly higher (+0.3%) than DR. Even
if the results obtained with the TriDR method are not superior to those obtained
with the MI, method we can see that treating the similarity between pieces using a
metric learning paradigm allows a good classification into genres.

It is satisfying to note that for the balanced dataset of EDM sBP the results are
superior to the original DR method. They are also better than MI method for lBP
which contains more genres. The analysis of the similarities between the tracks
allows us once again to conclude that the genres of EDM can be retrieved according
to their rhythmic structure.

On the confusion matrix in Figure 6.10, we can observe a certain concordance
with the embedding space of the sBP dataset of Figure 6.8. For example, we can
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Figure 6.10: Confusion matrix of the evaluation of the sBP dataset using TriDR method.

see that some of the examples in each class are classified as dance. The cluster
corresponding to this genre is located at the intersection of the clusters and is
intertwined with several other genres. This distribution can be explained by the
fact that dance is a kind of ambiguous EDM genre (as we have seen in previous
analyses).

6.6 conclusion

In this chapter, we have proposed another approach to perform a rhythm-
oriented genre classification. We have developed a method to estimate automat-
ically the similarity between tracks strictly based on their rhythm characteristics.
To do so, we have studied the metric learning principle. We started from a general
description that has gradually evolved through various works of the state of the
art. Thus the learning metric allows us to automatically learn the distance or met-
ric most likely to represent similarities between two samples. Indeed, in applying
such a paradigm one expects similar samples to be close and dissimilar samples to
be distant. Using the learning metric, we learn a function that projects the original
data into a new trained space, the embedding space. From a mathematical point
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of view, several losses have been defined in order to allow the training of models
able to learn embedding vectors. Among these, we have selected the triplet loss
and adapted it to our task. During training, each sample is successively selected
as an anchor and is compared to a positive (a sample from the same class) and a
negative (a sample from another class).

The rhythm characteristics are once again represented through the HCQM as
input to a convolutional neural network with the same architecture than in the
original DR method. We replaced the dense output layers by an embedding vector
preceded by an L2-normalization. We called this method TriDR. During training
the network learns these embedding vectors from the genre label assigned to the
HCQM time slice of the input track. These vectors of size 128 are then reduced
to two dimensions thanks to the t-SNE algorithm which allows us to visualize the
embedding space.

By projecting the test data in the embedding space, we can observe the cluster
formation depending on the similarity/dissimilarity between the examples. We
have seen that for BR and gEBR datasets these clusters are perfectly defined. This
shows that the method works well in grouping examples with a similar rhyth-
mical structure and in spacing these clusters when they correspond to dissimilar
classes. The observation of the embedding space of the sBP dataset reinforced our
assumptions and the results to the previous methods. The genre groupings corre-
spond to the rhythmic similarity shared by the different classes. It highlights some
ambiguities in the very definition of these genres when analyzing more precisely
their rhythmic characteristics. These results are also reflected in the observation of
the confusion matrix of this EDM dataset.

To sum up, by applying a metric learning paradigm and analyzing the embed-
ding spaces obtained, we were able to highlight the fact that the use of a descriptor
and a network dedicated to rhythm allows a good classification in genre based on
the similarities between pieces of music. When genres are defined by their rhyth-
mic structure, this analysis is all the more relevant (as in the case of EDM genres).

Nevertheless, we have limited ourselves to a single metric learning method
and we assume that this work remains open to improvements. Recent works in
MIR such as the one of Lee et al. (2020) shows us other facets of the use of metric
learning than triplet loss for classification tasks. In our future work, it could be
interesting to explore other techniques such as proxy-based models.





7
C O N C L U S I O N

To conclude this manuscript, we review in Section 7.1 all the chapters highlighting
our main contributions. We then present in Section 7.2 the various points which
would deserve to be extended in future work. Finally, in Section 7.3 we end with
an overall conclusion on the work we have done during this thesis.

7.1 summary and main contributions

In Chapter 1, we introduced the manuscript by defining two MIR tasks: (i) auto-
matic tempo estimation and (ii) automatic rhythm-oriented genre classification.
We also set the context of our thesis, namely the analysis of EDM genres from their
rhythmic description. In other words, the guideline of our thesis was to analyze
the rhythmic components of music (in particular through tempo estimation) as
the main descriptor of the musical genre, especially in the case of EDM. In order to
better understand the origin of the flourishing taxonomy of EDM, we proposed a
brief history of this type of music.

In Chapter 2, we presented the state-of-the-art methods dedicated to rhythm
description, tempo estimation and genre classification. We also got familiar with
the set of tools that we used to develop our methods. We defined the rhythm and
its components (metrical structure, tempo and timing) and the musical genre. We
have seen that both of these musical concepts do not have a clear, formal definition.
The presentation of the state-of-the-art work allowed a general understanding of
these concepts. The systems dedicated to rhythm analysis and genre classifica-
tion fall into two categories: the handcrafted (based on music knowledge) and the
data-driven (based on the processing of large scale datasets). For the first category
basic signal processing tools as well as the different features calculated for the
realization of these automatic analysis were exposed. For the second category, we
detailed the general concepts of machine learning and deep learning, with a mean-
ingful focus on supervised learning. Finally, we presented the MIR works related
to EDM, which emphasizes rhythm as an essential element for the description of
musical genre.

In Chapter 3, we described the commonly-used datasets for the task of tempo
estimation. Some of them are also used for genre classification since they can

118
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also annotated into genres. We then introduced two datasets that we developed
in order to evaluate our method in the perspective of EDM. To do this, we have
gathered audio excerpts annotated in genres from Beatport. We made sure to
create two datasets balanced in genres. One is annotated with the full Beatport
taxonomy (lBP), and for the second we selected some of these genres to highlight
differences/similarities in rhythmic structure and tempo ranges (sBP).

In Chapter 4, we described our first method: Deep Rhythm. Its purpose is to
estimate the global tempo value of a music track and also to classify it according
to its musical genre. These two operations are performed separately but using the
same framework. In order to understand the development of this method, we have
presented the various works used for inspiration. Starting from a representation of
the harmonic components of the rhythm, we proposed the computation of a repre-
sentation called the HCQM. This 4-dimensional representation allows to represent
on different frequency bands the periodic rhythmic components of the onsets of
the signal of a music track contained in a time window of 8 seconds. We have
been inspired by the work of Peeters (2011) for the harmonic analysis of rhythm
and of Marchand and Peeters (2016a) for the separation into frequency bands. The
fourth dimension allows to shift the rhythmic components and thus to identify the
fundamental frequency – directly corresponding to the global tempo of the music
track – and its harmonics. This dimension called h is primarily inspired by the
work of Bittner et al. (2017) that relies on such a representation at the input of a
CNN (where h is the depth) for fundamental frequency estimation. We also train
a CNN for the automatic classification into tempo classes and into music genre
classes using the HCQM as input.

We conducted a strong evaluation to analyze the results of the method.
On one hand, we evaluated the model for tempo estimation by performing a

large-scale analysis (i.e. 3 large datasets for the training of our network and 7

datasets for the evaluation). We compared the results to the ones of state-of-the-art
systems. Thus, we found out that our method performs better than these systems
for 2 of the 7 datasets tested: BR dataset of ballroom music whose genres corre-
spond to rhythmic patterns and tGS dataset of EDM. The results of our method
with oracle estimation is also at the state of the art for almost all datasets. Finally,
by applying a ground-truth smoothing we obtained the best results in terms of
Accuracy1.

On the other hand, we evaluated the performance of our model for the classi-
fication in musical genres. We mentioned rhythm-oriented classification because
our HCQM representation, describing the rhythm components, was given as input
to the network. We evaluated each dataset independently for this task because the
labels were not the same from one dataset to another. We have observed good
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results in terms of average mean recall for all datasets even if they only surpassed
the state of the art for the gEBR dataset. By observing the confusion matrix of EDM

sBP dataset, we concluded that our method succeded to classify the different gen-
res in a relevant way (with respect to their rhythmic description and tempo ranges
on which they are defined). The confusions observed make sense because they
mainly concern the most ambiguous EDM genres, i.e. those that can be inseparable
from the point of view of their rhythmic structure.

In Chapter 5, we put forward three extensions of the DR method. Each of them
consider a different aspect inherent to music.

The first proposal is to consider the possible relationships between the different
frequency bands. Indeed, we have seen that the rhythmic structure rely on the
relation between the components detected in various frequency bands. Thus, we
opted for the use of complex inputs and convolution by using a complex-valued
HCQM as input. The results obtained using this method were higher than those of
the original DR method for tempo estimation (with oracle selection) but lower for
genre classification.

The second idea is to take into account the rhythm/genre relationship and treat
them as two intrinsically linked concepts. Thus, we developed a joint learning
method through a multitask learning paradigm, allowing to classify in genre and
tempo simultaneously. The model was parameterized so that the learning proce-
dure would take into account the influences of both tasks. The results obtained
were encouraging, given that the network has only half the number of parameters
of the original DR network. We also found out that such a method has an impact
on the genre classification of EDM since the results for datasets associated with this
type of music were better.

The third extension is to consider a second musical descriptor in addition to
rhythm as input of our network. We have chosen to add a branch dedicated to tim-
bre analysis to the CNN of DR with a VGG-Net architecture and a mel-spectrogram
input. The objective of this branch is to let the model to capture features related to
timbre alongside features related to rhythm for genre classification. The results for
the classification in genre surpassed the previous ones in terms of average mean
recall.

Finally, in Chapter 6, we proposed a metric learning paradigm to analyze the
automatic genre classification based on the learning of the similarity between
tracks. We first described the metric learning paradigm and in particular the triplet
loss. This type of method allowed us to learn a function whose role is to project
the data in an embedding space such that the distance between the embbeded
data informed about their similarity/dissimilarity. We adapted the DR method to
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a metric learning paradigm. To evaluate this method (named TriDR), we have visu-
alized the embedding spaces of the test data of each dataset. From the latter, we
were able to identify clusters specific to each genre. In the case of the sBP dataset,
the observations allowed us to validate one more time the rhythmic characteristics
of EDM genres. Indeed, we managed to map the different genres with respect to
their respective similarities. Finally, by applying a simple classifier to the predicted
embedded data, we achieved a classification into musical genres. The results were
not as high as the MI method but still were encouraging.

7.2 future works

To extend the research done during the thesis, we are propose here some future
works. Some of them may have already been addressed in the course of our
manuscript, we have chosen to leave them aside in order to concentrate more
effectively on the different methods developed in this manuscript.

In Chapter 3, we mentioned that the use of annotated datasets may have some
limitations. Among those, we can cite a problem inherent to deep learning when
training networks on a limited amount of data. Indeed, if we had access to an-
notated datasets in tempo or genre on a very large scale, we could reinforce the
robustness of our models and allow them to better generalize. Unfortunately, ac-
cess to such datasets has not been possible for copyright reasons or simply because
very large-scale datasets annotated in tempo are not available. As far as EDM is con-
cerned, having access to correct annotation in global tempo value for the 64,000

tracks we gathered from Beatport would have allowed us to extend our analysis.
To do so, it would be sufficient to analyze the comments collected on Beatport to
correct the initial global tempo annotations. Note that for the genre classification
of EDM, we could have use the 64,000 annotated tracks for larger-scale analysis.
However, the computation time involved would have been considerable.

In Chapter 4, we discussed on the Oracle frame selection method. The results of
it showed that our DR method and some of its extensions have a certain margin in
terms of automatically estimating the best temporal candidate for the global tempo
value. An attempt at automatically selecting the frames was done by developing an
attention mechanism. Other techniques have been explored without success (such
as the use of RNN). As the attention mechanism has shown good results in other
tasks of music classification, we believe that this lead should not to be excluded.
Knowing that the HCQM is a 4-dimensional representation, we would like to find
a way to train an end-to-end network with the attention mechanism as an output.
We believe that with a larger computation capacity we could obtain better results.
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As we have seen in Chapter 5, the multi-input method proved to be quite
promising. In this, we have added another type of features related to timbre (as a
complement to rhythm) by combining mel-spectrograms with a commonly used
CNN. Adding other types of timbre-related, and pitch-related as well, features
would be a good starting point towards further investigations.

7.3 overall conclusion

Our main objective was to highlight the importance of the rhythmic structure of
a piece of music for the description of its genre, especially in the case of Electron-
ic/Dance Music. Indeed, with the constant emergence of new genres in music (as
it is the case in EDM), the categorization of music does no longer only depend on
its musical characteristics. Through the different methods we have developed and
their analysis, we have emphasized the rhythmic relationships between some of
the main genres in EDM. These methods have been developed with the additional
objective of performing the two tasks of tempo estimation and classification into
musical genres automatically. We have developed a method allowing, not without
limits, to perform these two tasks while taking into account an essential aspect of
music: rhythm.
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