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Résumé

L'objet de cette thèse est d'étudier les asymptotiques précises des grandes déviations et des déviations modérées pour les produits de matrices aléatoires. La thèse se compose de six parties.

Dans la première partie, nous établissons des asymptotiques exactes de types Bahadur-Rao et Petrov pour les probabilités de grandes déviations supérieurs et inférieurs pour le cocycle de la norme, log |G n x|, où G n = g n . . . g 1 est le produit des matrices aléatoires g i , de type d × d, indépendantes et identiquement distribuées, x est un vecteur unitaire de R d . Nos résultats sont valables à la fois pour les matrices inversibles et les matrices positives. Plus généralement, nous prouvons des résultats de grandes déviation de types Bahadur-Rao et Petrov pour le couple (X x n , log |G n x|) avec des fonctions cibles ϕ sur X x n = G n x/|G n x| et ψ sur log |G n x|). Comme applications, pour la norme d'opérateur G n , nous déduisons un principe de grandes déviations pour les matrices inversibles et un principe de grandes déviations renforcé pour les matrices positives. Nous dérivons aussi des théorèmes de limites locales avec grandes déviations pour le cocycle de la norme.

La deuxième partie est consacrée à l'établissement des résultats de grandes déviations de types Bahadur-Rao et Petrov pour les entrées (i, j)-ème G i,j n de G n , pour les matrices inversibles et les matrices positives. En particulier, nous obtenons un principe de grandes déviations avec une fonction de taux explicite, qui améliore de manière significative les bornes de grandes déviations établies récemment dans la littérature. Pour les preuves, une étape importante, qui a un intérêt indépendant, est d'établir la propriété de régularité höldérienne pour la mesure stationnaire de la chaîne de Markov X x n sous la mesure changée sur l'espace projectif. Comme applications, nous obtenons des théorèmes limites locales avec grandes déviations pour les entrées G i,j n , et un principe renforcé de grandes déviations pour le rayon spectral ρ(G n ), pour les matrices positives.

Dans la troisième partie, nous obtenons la borne de Berry-Esseen pour la vitesse de convergence dans le théorème central limite, et le développement de déviations modérées de type Cramér pour le cocycle de la norme des produits de matrices aléatoires. Nous établissons d'abord une borne de Berry-Esseen et un développement de type Edgeworth pour le couple (X x n , log |G n x|) avec une fonction cible ϕ sur la chaîne de Markov X x n , pour les matrices inversibles et les matrices positives. Ces résultats sont prouvés en élaborant une nouvelle approche basée sur une inégalité de lissage dans le plan complexe et sur la méthode du point-selle. Le développement de déviations modérées de type Cramér pour le couple (X x n , log |G n x|) est démontré en utilisant la borne de Berry-Esseen sous la mesure changée.

La quatrième partie est consacrée à l'étude des bornes de type Berry-Esseen et des développements de déviations modérées de type Cramér pour la norme d'opérateur G n , les entrées G i,j n et le rayon spectral ρ(G n ) des produits de matrices aléatoires pos-iii itives. Les résultats sur G n sont prouvés sous les conditions usuelles d'admissibilité et de positivité; les résultats sur G i,j n et ρ(G n ) sont établis sous une condition de bornetude plus faible que celle de Furstenberg-Kesten.

Dans la cinquième partie, nous étudions les bornes de type Berry-Esseen et les déviations modérées pour la norme d'opérateur G n et le rayon spectral ρ(G n ), pour les matrices inversibles. Nous établissons d'abord, sous la condition de proximalité, les principes de déviations modérées pour les couples (X x n , log G n ) et (X x n , log ρ(G n )) avec des fonctions cibles sur la chaîne de Markov X x n , en utilisant les résultats de déviations modérées sur le couple (X x n , log |G n x|) prouvés dans la troisième partie. Nous prouvons ensuite les principes de déviations modérées pour G n et ρ(G n ) sans supposer la condition de proximalité. Nous prouvons également des développements de déviations modérées dans la zone [0, o(n 1/6 )] pour les couples (X x n , log G n ) et (X x n , log ρ(G n )) avec des fonctions cibles. La sixième partie est consacrée à la démonstration des développements de déviation modérée de type Cramér pour les entrées G i,j n de produits de matrices inversibles dans le groupe linéaire spécial SL 2 (R). Notre résultat implique un principe de déviation modérée pour log |G i,j n | et des théorèmes de limites locales avec des déviations modérées. Dans notre preuve, nous utilisons la méthode du point selle, la régularité höldérienne de la mesure stationnaire de la chaîne de Markov X x n , et les progrès récents sur la propriété non-arithmétique forte de l'opérateur perturbé.

Abstract

The purpose of this Ph.D. thesis is to study precise large and moderate deviation asymptotics for products of random matrices. The thesis consists of six parts corresponding to Chapters 2-7.

In the first part (Chapter 2), we establish Bahadur-Rao type and Petrov type exact asymptotics of the upper and lower large deviation probabilities for the norm cocycle log |G n x|, where G n = g n . . . g 1 is the product of independent and identically distributed random d × d matrices g i , x is a unit vector in R d . Our results are valid for both invertible matrices and positive matrices. More generally, we prove analogous Bahadur-Rao-Petrov type large deviation results for the couple (X x n , log |G n x|) with target functions ϕ on X x n = G n x/|G n x| and ψ on log |G n x|. As applications, for the operator norm G n , we deduce large deviation principles for invertible matrices, and reinforced large deviation principles for positive matrices. We also derive precise local limit theorems with large deviations for the norm cocycle.

The second part (Chapter 3) is devoted to establishing Bahadur-Rao type and Petrov type large deviations for the (i, j)-th entries G i,j n of G n , for both invertible matrices and positive matrices. In particular, we obtain a large deviation principle with an explicit rate function, which improves significantly the large deviation bounds established recently in the literature. In our proof, an important issue is to prove the Hölder regularity property for the stationary measure of the Markov chain X x n under the changed measure on the projective space, which is of independent interest. As applications, we obtain precise local limit theorems with large deviations for the entries and reinforced large deviation principles for the spectral radius of products of positive random matrices.

In the third part (Chapter 4), we investigate the Berry-Esseen bound of the rate of convergence in the central limit theorem, and Cramér type moderate deviation expansion, for the norm cocycle of products of random matrices. We first establish the Berry-Esseen bound and the Edgeworth expansion for the couple (X x n , log |G n x|) with a target function ϕ on the Markov chain X x n , for both invertible matrices and positive matrices. This is proved by elaborating a new approach based on a smoothing inequality in the complex plane and on the saddle point method. Using the Berry-Esseen bound under the changed measure, we then establish the Cramér type moderate deviation expansion for the couple (X x n , log |G n x|). The fourth part (Chapter 5) is devoted to studying Berry-Esseen bounds and Cramér type moderate deviation expansions for the operator norm G n , the entries G i,j n and the spectral radius ρ(G n ), for positive matrices. The approach is based on the results established in the third part. The results on G n are proved under the usual allowability and positivity conditions; the results on G i,j n and ρ(G n ) are established under a boundedness condition weaker than that of Furstenberg-Kesten. In the fifth part (Chapter 6), we study the Berry-Esseen type bounds and moderate v deviations for the operator norm G n and the spectral radius ρ(G n ), for invertible matrices. First, under the proximality condition, we establish moderate deviation principles for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on the Markov chain X x n , using the moderate deviation results on the couple (X x n , log |G n x|) proved in the third part. Next, we prove the moderate deviation principles for G n and ρ(G n ) without assuming the proximality condition. We then prove the moderate deviation expansions in the range [0, o(n 1/6 )] for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions. The sixth part (Chapter 7) is devoted to proving the Cramér type moderate deviation expansion for the entries G i,j n of products of invertible matrices in the special linear group SL 2 (R). Our result implies the moderate deviation principle for log |G i,j n | and local limit theorems with moderate deviations, which are also new. In our proof, we use the saddle point method, the Hölder regularity of the stationary measure of the Markov chain X x n and the strong non-lattice property of the perturbed operator established recently. vii des souvenirs inoubliables. En particulier, je suis très reconnaissant à Françoise d'avoir offert d'excellents cours de français, qui m'ont vraiment aidé à améliorer mon français. Je suis également très reconnaissant à Mme Liu de m'avoir apporté beaucoup d'aide, de soutien et de réconfort dans ma vie quotidienne à Vannes pendant toutes ces années.
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Chapter 1 Introduction 1.1 Context

The topic of this thesis is concerned with limit theorems, especially with large deviations for products of independent and identically distributed random matrices. The products of random matrices can be viewed as random walks on linear groups or semigroups. The topic is therefore closely related to probability theory, group theory and dynamical systems. The study of products of random matrices was formally initialed by Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], and then greatly developed by Guivarc'h, Ledrappier, Le Page, Raugi and many others, cf. for example the book of Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Important progress on this subject has been made recently, see for example Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], and Benoist and Quint [START_REF] Benoist | Mesures stationnaires et fermés invariants des espaces homogènes[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (III)[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. This topic has not only its own vitality, but also broad application prospects in many related areas.

The study of products of random matrices can be dated back to the middle of 20th century when Bellman [START_REF] Bellman | Limit theorems for non-commutative operations[END_REF] conjectured the central limit theorem in the noncommutative case. His conjecture was confirmed in the pioneering work of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF] for the semigroup of positive matrices, where they also established the law of large numbers. Important developments can be found in Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF]. In the setting of general linear groups, Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] established the law of large numbers; Tutubalin [START_REF] Tutubalin | On limit theorems for the product of random matrices[END_REF] proved the central limit theorem in the restrictive case where the common law of the random matrices has a density with respect to the Haar measure. Without assuming the density condition, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established the central limit theorem by proving the spectral gap property for the associated Markov chain on a special designed Banach space. Other laws of large numbers and central limit theorems were established by Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF], Guivarc'h [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF], and Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF].

The law of large numbers and the central limit theorem are the most fundamental results in probability theory and statistic sciences. For a number of applications, we need to know the rates of convergence in these limit theorems. It is therefore important to study large deviations and Berry-Esseen bounds, which describe respectively the rate of convergence in the law of large numbers and that in the central limit theorem. This motivates us to study such limit theorems for products of random matrices. Another motivation of this study lies in the fact that the theory of products of random matrices turns out to be very useful in a number of branches of mathematics. For instance, it plays crucial roles in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] to investigate the spectral theory of random CHAPTER 1. INTRODUCTION Schrödinger operators, in [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF] to study the stationary measure and the quantitative distribution properties on the torus, in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] to obtain the tail behavior of the multidimensional affine stochastic recursions, in [START_REF] Benoist | Mesures stationnaires et fermés invariants des espaces homogènes[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (III)[END_REF] to understand the dynamics of group actions on finite volume homogeneous spaces, in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] to study the multidimensional Mandelbrot cascades, and in [START_REF] Page | The survival probability of a critical multitype branching process in iid random environment[END_REF] to investigate the survival probability of critical multi-type branching processes in random environment.

For sums of independent and identically distributed real-valued random variables, precise large and moderate deviation results were established respectively by Bahadur-Rao and Petrov [START_REF] Bahadur | On deviations of the sample mean[END_REF][START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF], and by Cramér and Petrov [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF][START_REF] Petrov | Sums of independent random variables[END_REF]. The main goal of this thesis is to prove analogous results for products of random matrices.

Background and main objectives 1.2.1 Background

For any integer d 2, let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.) d×d real random matrices defined on some probability space (Ω, F, P), with common law µ. Consider the random matrix product G n defined by

G n = g n . . . g 1 .
It has been of great interest to investigate the asymptotic behaviors of the product G n since the groundwork of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], where the strong law of large numbers (SLLN) for the operator norm G n was established: if E(log + g 1 ) < ∞ (with log + a = max{log a, 0} for a > 0), then lim n→∞ 1 n log G n = λ, a.s., (1.2.1) with λ a constant called the upper Lyapunov exponent of the product sequence (G n ). Note that (1.2.1) remains valid when the operator norm is replaced by any matrix norm since all matrix norms are equivalent. The SLLN (1.2.1) can be considered as a direct consequence of Kingman's subaddtive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF]. The central limit theorem (CLT) for ( G n ) was considered by Tutubalin [START_REF] Tutubalin | On limit theorems for the product of random matrices[END_REF] under the restrictive density assumption that the measure µ is absolute continuous with respect to the Haar measure. Further developments can be found in the work of Kaijser [START_REF] Kaijser | A limit theorem for Markov chains in compact metric spaces with applications to products of random matrices[END_REF]. A cornerstone result in this direction is due to Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]. To state this result, we need some notation and conditions. Denote by Γ µ the smallest subsemigroup generated by supp µ, the support of µ. We say that: (a) Γ µ is irreducible (resp. strongly irreducible) if there is no proper subspace (resp. finite union of proper subspaces) of R d which is Γ µ -invariant; (b) Γ µ is proximal if Γ µ contains at least one matrix with a dominant eigenvalue; (c) µ has exponential moment (second moment) if E[N (g 1 ) η ] < ∞ for some constant η > 0 (E[log 2 N (g 1 )] < ∞), where N (g) = max{ g , g -1 }. Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established the following CLT for G n : under the strong irreducibility, proximality and the exponential moment conditions on µ, for any y ∈ R,

lim n→∞ P log G n -nλ σ √ n y = Φ(y), (1.2.2) 
where σ 2 := lim n→∞ 1 n E (log G n -nλ) 2 > 0 is the asymptotic variance, Φ is the standard normal distribution function on R. Gol'dsheid and Margulis [START_REF] Gol | Lyapunov indices of a product of random matrices[END_REF] showed that the strong irreducibility and proximality conditions are equivalent to the condition that the action of the Zariski closure of the Γ µ is strogly irreducible and proximal. Gol'dsheid and Guivarc'h [START_REF] Gol | Zariski closure and the dimension of the Gaussian law of the product of random matrices[END_REF] extended the CLT to the Cartan projection under the condition that Γ µ is Zariski dense in GL(d, R). Later on, Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] proved the CLT (1.2.2) when the proximality condition is replaced by the unboundedness of the semigroup Γ µ . The latter condition holds if and only if the multiplicity of the dominating eigenvalue lies between 1 and d -1. Note that in the case when Γ µ is not assumed to be proximal, the Markov chain X x n := G n x/|G n x| may not have a unique stationary measure ν on the projective space in R d . The only remaining assumption to relax was the exponential moment condition. Jan [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF] proved the CLT (1.2.2) under the weaker condition that all the p-th moments of µ are finite. Very recently, under the optimal second moment condition on µ, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] have established the CLT (1.2.2) based on Gordin's martingale approximation method and the log-regularity of the stationary measure ν.

Equip the Euclidean space R d with the canonical Euclidean norm | • |. Let S d-1 = {x ∈ R d , |x| = 1} be the unit sphere in R d , and P d-1 = S d-1 /± be the projective space obtained from S d-1 by identifying -x with x. We consider the random walk (G n x) starting from a point x ∈ P d-1 , governed by the products G n of the random matrices (g i ). Now we recall some results for the Euclidean norm |G n x| of the position G n x at time n of the random walk. The SLLN for (|G n x|) was established by Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF]: if E(log + g 1 ) < ∞ and Γ µ is irreducible, then for any x ∈ For related results on the Iwasawa cocycle on the flag variety we refer to the nice work of Gol'dsheid and Margulis [START_REF] Gol | Lyapunov indices of a product of random matrices[END_REF]. Under the same conditions as those used for (1.2.2), Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] proved the following CLT for (|G n x|): for any y ∈ R, it holds uniformly in x ∈ P d-1 that lim n→∞ P log |G n x| -nλ σ √ n y = Φ(y).

(1.2.4) Applying Gordin's martingale approximation method, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] have recently improved the CLT (1.2.4) by relaxing the exponential moment condition to the optimal second moment condition on µ.

We now turn to the entries of the product G n . Denote by G i,j n the (i, j)-th entry of G n . It turns out that the study of the asymptotic behavior of G i,j n is more delicate and difficult. Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] proved the following SLLN for G i,j n : under the strong irreducibility, proximality and the exponential moment conditions on µ, for any 1 i, j d,

lim n→∞ 1 n log |G i,j n | = λ, a.s.. (1.2.5)
Under the same conditions, in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] a CLT for the entries has been established: for any 1 i, j d and y ∈ R,

lim n→∞ P log |G i,j n | -nλ σ √ n y = Φ(y). (1.2.6)
Compared to the one dimensional case, both the exponential moment condition and the proximality condition for (1.2.5) and (1.2.6) are unnatural. However, it is still open how to relax these conditions to the optimal ones. In our work, we shall also use these conditions. Denote by ρ(G n ) the spectral radius of the product G n . Compared with the operator norm G n , the submultiplicativity is no longer valid for the spectral radius ρ(G n ), but a SLLN still holds for ρ(G n ), as established by Guivarc'h [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF]: under the strong irreducibility, proximality and the exponential moment conditions on µ,

lim n→∞ 1 n log ρ(G n ) = λ, a.s.. (1.2.7)
Recently, Aoun and Sert [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF] have proved (1.2.7) under the second moment condition on µ, without assuming the strong irreducibility and proximality assumptions. However, it still remains an open question to prove (1.2.7) under the first moment condition.

As to the CLT for ρ(G n ), Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] established the following: under the strong irreducibility, proximality and the exponential moment conditions on µ, for any y ∈ R,

lim n→∞ P log ρ(G n ) -nλ σ √ n y = Φ(y). (1.2.8)
This result has been recently improved by Aoun [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF] by relaxing the exponential moment condition to the second moment condition, and by relaxing the proximality condition to the assumption of the unboundedness of the semigroup Γ µ .

Classical results on precise large and moderate deviations

In this section we briefly recall some classical results on precise large and moderate deviations for sums of i.i.d. real-valued random variables. Let (X i ) i 1 be a sequence of i.i.d. real-valued random variables and S n = n i=1 X i . Denote by I Λ the set of real numbers s 0 such that Λ(s) := log E[e sX 1 ] < +∞ (1.2.9)

and by I • Λ the interior of the interval I Λ . Let Λ * be the Frenchel-Legendre transform of Λ. Assume that s ∈ I • Λ and q are related by q = Λ (s). Set σ 2 s = Λ (s). The following theorem is due to Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF]: Theorem 1.2.1 ([4]). Let s ∈ I • Λ and q = Λ (s). Assume that the law of X 1 is non-lattice. Then, as n → ∞, P(S n nq) = exp(-nΛ * (q)) sσ s √ 2πn (1 + o(1)).

(1.2.10)

When the law of X 1 is lattice, an analogous precise large deviation result has also been established in [START_REF] Bahadur | On deviations of the sample mean[END_REF].

Later on, Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] improved Theorem 1.2.1 by considering a vanishing perturbation l on q: Theorem 1.2.2 ([73]). Let s ∈ I • Λ and q = Λ (s). Assume that the law of X 1 is non-lattice. Then, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in |l| l n , P(S n n(q + l)) = exp(-nΛ * (q + l)) sσ s √ 2πn (1 + o(1)).

(1.2.11)

Note that the exact asymptotics for the lower tail large deviation probabilities can be deduced easily from upper tail large deviation asymptotics (1.2.10) and (1.2.11) by considering -X 1 instead of X 1 .

Denote γ k = Λ (k) (0), k 1, where Λ is the cumulant generating function of X 1 defined in (1.2.9). Let λ := γ 1 = EX 1 and σ 2 := γ 2 = E(X 1 -λ) 2 be the mean and variance of X 1 . Denote by ζ the Cramér series of Λ (see [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF] and [START_REF] Petrov | Sums of independent random variables[END_REF]):

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ 3 3 120γ 9/2 2 t 2 + • • •
which converges for |t| small enough. Let Φ be the standard normal distribution function on R. We recall the following Cramér type moderate deviation expansion for S n .

Theorem 1.2.3 ([74]). Assume that σ 2 > 0 and that Ee δ|X 1 | < ∞ for some δ > 0.

Then, as n → ∞, uniformly in y ∈ [0, o( √ n)),

P Sn-nλ σ √ n y 1 -Φ(y) = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n ,
and

P Sn-nλ σ √ n -y Φ(-y) = e -y 3 √ n ζ(-y √ n ) 1 + O y + 1 √ n .

Main objectives and previous results

1. Our first objective is to establish the Bahadur-Rao type and Petrov type precise large deviation results for the norm cocycle log |G n x|. In other words, we are interested in the precise asymptotic behavior of the forms (1.2.10) and (1.2.11) for the large deviation probabilities P(log |G n x| nq) and P(log |G n x| n(q + l))

with q > λ, x ∈ P d-1 , and l a vanishing perturbation on q. The case when the norm cocycle log |G n x| is replaced by the logarithm of the operator norm log G n will also be considered.

Previously, for the norm cocycle log |G n x|, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] first established a Bahadur-Rao type precise large deviation result (of form (1.2.10)) for invertible matrices in the case when q is sufficiently near to λ; Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] recently proved the following precise large deviation bounds (also called reinforced large deviation principle) for log |G n x|: for some constants c, C > 0, exp(-nΛ * (q)) C √ n P(log |G n x| nq) exp(-nΛ * (q)) c √ n , q > λ (1.2.12)
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for both invertible matrices and positive matrices: see (1.3.7) for details. For the operator norm G n , much less results are known in the literature. In Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], an exponential upper bound for the large deviation probability P(log G n nq) was proved, without giving an explicit form of the rate function. Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have generalized this result to the setting of general framework of reductive groups. Very recently, Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF] has given the rate function of the large deviation principle for log G n under a stronger exponential moment condition, i.e., the exponential moments of all orders are finite.

2. Our second objective is to establish the Bahadur-Rao type and Petrov type precise large deviation results of the forms (1.2.10) and (1.2.11), for the entries G i,j n : we want to study the precise asymptotic behavior of the large deviation probabilities P(log |G i,j n | nq) and P(log |G i,j n | n(q + l)), with q > λ and l a vanishing perturbation on q. The case when the entry G i,j n is replaced by the spectral radius ρ(G n ) will also be considered.

Previously, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] established upper exponential large deviation bounds for the entries G i,j n and for the spectral radius ρ(G n ); however, the rate functions were not known in the literature. Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF] conjectured that the large deviation principle for the spectral radius ρ(G n ) holds with the same rate function as for the norm cocycle log |G n x|.

3. Our third objective is to quantify the error in the normal approximation (1.2.4), which can be achieved in two ways. The first way is to estimate the following absolute error: for any starting point x ∈ P d- 1 and n 1, The second way is to study the relative error in the normal zone y ∈ [0, o( √ n)]: for any starting point x ∈ P d-1 and n 1,

P log |Gnx|-nλ σ √ n y 1 -Φ(y) (1.2.15) and E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) . (1.2.16)
Previously, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established the Berry-Esseen type rate of convergence in (1.2.13) for invertible matrices. For positive matrices, Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] proved an analog of the Berry-Esseen type bound in (1.2.13). However, the Berry-Esseen bound for the couple (X x n , log |G n x|) with general target function ϕ (ϕ = 1) in (1.2.14) becomes more complicated and delicate and were not known in the literature, neither for invertible matrices nor for positive matrices.

Concerning (1.2.15) and (1.2.16), Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have recently established the moderate deviation principle for log |G n x| using the strategy of Kolmogorov for the law of iterated logarithm. Cuny, Dedecker and Merlevède [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF] have proved the functional moderate deviation principle based on the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. However, the Cramér type moderate deviation expansion for log |G n x| was not known in the literature, neither for invertible matrices nor for positive matrices. Moreover, it turns out to be delicate to establish the Cramér type moderate deviation expansion for the couple (X x n , log |G n x|) with a target function, even for the moderate deviation principle for the couple. [START_REF] Bahadur | On deviations of the sample mean[END_REF]. Our fourth objective is to quantify the absolute errors as well as the relative errors in the normal approximations (1.2.2), (1.2.6) and (1.2.8) for the operator norm G n , the entries G i,j n and the spectral radius ρ(G n ), respectively. In other words, we are interested in the asymptotic behaviors of (1.2.13), (1.2.14), (1.2.15) and (1.2.16) when the vector G n x is respectively replaced by the operator norm G n , the entries G i,j n and the spectral radius ρ(G n ). Previously, very few were solved for the above-mentioned problems. Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] announced the Berry-Esseen bound for the entries G i,j n of products of invertible matrices. We shall prove the Berry-Esseen bounds and Cramér type moderate deviation expansions for the operator norm G n , the entries G i,j n and the spectral radius ρ(G n ) for products of positive matrices. The situation for invertible matrices is more complicated and delicate and will be considered in ongoing work [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the random walk on GL d (R)[END_REF][START_REF] Xiao | Moderate deviation expansions for the entries of products of random matrices[END_REF].

Presentation of main results of the thesis

As already mentioned, the main goal of the present thesis is to study precise large and moderate deviation asymptotics for products of random matrices. The remaining part of the thesis consists of six chapters.

Chapter 2 is mainly devoted to the study of Bahadur-Rao type and Petrov type large deviations for the norm cocycle log |G n x|, for both invertible matrices and positive matrices; see Section 1.3.2 for the presentation of the main results. Using the spectral gap theory for products of random matrices and the saddle point method, we establish Bahadur-Rao-Petrov type exact asymptotics of the upper and lower tail large deviation probabilities for the norm cocycle. More generally, we also prove analogous Bahadur-Rao-Petrov type large deviation results for the couple (X x n , log |G n x|) with target functions. As applications, we deduce new results on large deviation principles for the operator norm G n for invertible matrices, and reinforced large deviation principles for G n for positive matrices. Moreover, we derive precise local limit theorems with large deviations for the norm cocycle.
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In Chapter 3, our main goal is to establish Bahadur-Rao type and Petrov type large deviations for the entries G i,j n , for both invertible matrices and positive matrices; see Section 1.3.3 for the presentation of the main results. As in Chapter 2, we also prove Bahadur-Rao-Petrov type upper and lower tail large deviation results for the couple (X e i n , log |G i,j n |) with target functions. In particular, we obtain the large deviation principle with an explicit rate function, thus improving significantly the large deviation bounds established earlier. In our proof, a very important issue is to prove the Hölder regularity property for the stationary measure corresponding to the Markov chain X x n under the changed measure on the projective space, which is one of the central points of the proof and is of independent interest. As applications, we obtain new results on precise local limit theorems with large deviations for the entries and on reinforced large deviation principles for the spectral radius of products of positive random matrices.

Chapter 4 is devoted to investigating the Berry-Esseen bound and Cramér type moderate deviation expansion for the norm cocycle of products of random matrices; see Section 1.3.4 for the presentation of the main results. We first establish the Berry-Esseen bound and the Edgeworth expansion for the couple (X x n , log |G n x|) with a target function ϕ on the Markov chain X x n , for both invertible matrices and positive matrices. This is proved by elaborating a new approach based on a smoothing inequality in the complex plane and on the saddle point method. Using the Berry-Esseen bound under the changed measure, we then establish Cramér type moderate deviation expansion for the couple (X x n , log |G n x|). In Chapter 5, we study Berry-Esseen bounds and Cramér type moderate deviation expansions for the operator norm G n , entries G i,j n and spectral radius ρ(G n ) of products of positive random matrices; see Section 1.3.5 for the presentation of the main results. The results for the operator norm G n are proved under general conditions; the results for the entries G i,j n and the spectral radius ρ(G n ) are established under a boundedness condition weaker than that of Furstenberg-Kesten.

Chapter 6 is devoted to studying the Berry-Esseen type bounds and moderate deviations for the operator norm G n and the spectral radius ρ(G n ) of products of random matrices in the general linear group GL d (R); see Section 1.3.6 for the presentation of the main results. Under the proximality condition, we first prove the moderate deviation principles for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions based on the moderate deviation results for the norm cocycle log |G n x| established in Chapter 2. Then we prove the moderate deviation principles for G n and ρ(G n ) without assuming the proximality condition. We also prove the moderate deviation expansions in the range [0, o(n 1/6 )] for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions. In Chapter 7, we establish the Cramér type moderate deviation expansions for the entries G i,j n of products of invertible matrices in the special linear group SL 2 (R); see Section 1.3.7 for the presentation of the main results. Our result implies the moderate deviation principle for log |G i,j n | and local limit theorems with moderate deviations, which are also new. In our proof, we use the saddle point method, the Hölder regularity of the stationary measure corresponding to the Markov chain X x n , and the recent progress on the strong non-lattice result for the perturbed transfer operator. 0 : |x| = 1} be its intersection with the positive quadrant. Consider the projective space P d-1 := S d-1 /± by identifying -x with x. To unify the exposition, we use the symbol S to denote S d-1 in the case of invertible matrices, and S d-1 + in the case of positive matrices. The space S is equipped with the metric d which we proceed to introduce. For invertible matrices, the distance d is defined as the angular distance (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), i.e., for any x, y ∈ P d-1 , d(x, y) = | sin θ(x, y)|, where θ(x, y) is the angle between x and y. For positive matrices, the distance d is the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) defined by d(x, y) = 1-m(x,y)m(y,x) 1+m(x,y)m(y,x) , where m(x, y) = sup{λ > 0 : λy i x i , ∀i = 1, . . . , d}, for any two vectors x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ) in S d- 1 + . Let C(S) be the space of complex-valued continuous functions on S. We write 1 for the identity function 1(x), x ∈ S. In the sequel, let γ > 0 be a fixed small constant. For any ϕ ∈ C(S), set For both invertible matrices and allowable positive matrices, it holds that ι(g) > 0. Note that for any invertible matrix g, we have ι(g) = g -1 -1 .

Notation and conditions

Let (g n ) n 1 be a sequence of i.i.d. random matrices of the same probability law µ on M (d, R). Set G n = g n . . . g 1 , for n 1. We denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by supp µ (the support of µ). Let

I µ = {s 0 : E( g 1 s ) < +∞},
and I • µ be its interior. We always assume that I • µ is non-empty. One can easily see that I µ is an interval by applying Hölder's inequality to E( g 1 s ). We make use of the following exponential moment condition.

A1. There exist s ∈ I • µ and 0 < α < 1 such that E g 1 s+α ι(g 1 ) -α < +∞.

For g ∈ Γ µ , set N (g) = max{ g , ι(g) -1 }, which reduces to N (g) = max{ g , g -1 } for invertible matrices. The following is the two-sided exponential moment condition.

A2. There exists a constant 0 < η < 1 such that E[N (g 1 ) η ] < +∞.

A matrix g is said to be proximal if it has an algebraic simple dominant eigenvalue. For invertible matrices, we introduce the following conditions: (ii)(Proximality) Γ µ contains at least one proximal matrix.

For positive matrices, introduce the following conditions:

A4. (i) (Allowability) Every g ∈ Γ µ is allowable.

(ii) (Positivity) Γ µ contains at least one matrix belonging to G • + . In the groundwork [START_REF] Furstenberg | Products of random matrices[END_REF], Furstenberg and Kesten established the strong law of large numbers and the central limit theorem for the entries of positive matrices under the condition that there exists a constant C > 1 such that for any g = (g i,j ) 1 i,j d ∈ supp µ, 1 max 1 i,j d g i,j min 1 i,j d g i,j C.

(1.3.1)

In this thesis we shall relax it to:

A5. There exists a constant C > 1 such that for any g = (g i,j ) 1 i,j d ∈ supp µ, and 1 j d, we have

1 max 1 i d g i,j min 1 i d g i,j C. (1.3.2)
Condition A5 is clearly weaker than (1.3.1); the latter one means that all the entries g i,j of the matrix g ∈ supp µ are comparable, while A5 requires only that all the entries in the same columns of the matrix g ∈ supp µ are comparable.

The following condition ensures the harmonic moments of the entries of g 1 :

A6.

For any 1 i, j d, there exists a constant δ > 0 such that E (g i,j 1 ) -δ < ∞. Clearly, condition A6 implies condition A2. Note also that the conditions A5 and A6 do not imply each other. However, under the assumption A2, condition A5 (and therefore also (1.3.1)) implies condition A6. The converse is not true.

For g ∈ Γ µ and x ∈ S, we write g • x = gx |gx| for the projective action of g on S. With the starting point x ∈ S, define a Markov chain on the projective space S by setting

X x n := G n • x = G n x |G n x| , n 1.
Under either condition A3 for invertible matrices, or condition A4 (A5 or A6) for positive matrices, the Markov chain (X x n ) n 1 has a unique stationary measure ν on S such that for any ϕ ∈ C(S), S Γµ ϕ(g 1 •x)µ(dg 1 )ν(dx) = S ϕ(x)ν(dx).

(1.3.3)

For positive matrices, it will be shown in Proposition 4.3.15 that under conditions A2 and A4, for any x ∈ S, the asymptotic variance

σ 2 = lim n→∞ 1 n E (log |G n x| -nλ) 2
exists with value in [0, ∞). To establish the Berry-Esseen theorem and the moderate deviation expansion, we need the following condition:

A7. The asymptotic variance σ 2 satisfies σ 2 > 0.

We need the following non-arithmeticity condition for positive matrices:

A8. (Non-arithmeticity) For t > 0, θ ∈ [0, 2π) and a function ϕ : S → R, the equation ϕ(g • x)|gx| it = e iθ ϕ(x), ∀g ∈ Γ µ , ∀x ∈ supp ν, has no trivial solution except that t = 0, θ = 0 and ϕ is a constant.

It can be easily checked that in the unidimensional case d = 1, this condition coincides with the usual non-lattice condition that log |g| is not concentrated on a set of the form aZ + b. For positive matrices, a simple sufficient condition established in [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] for the measure µ to be non-arithmetic is that the additive subgroup of R generated by the set {log λ g : g ∈ Γ µ , g ∈ G • + } is dense in R (see [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]). For any s ∈ (-s 0 , 0) ∪ I µ with small enough s 0 > 0, define the transfer operator P s and the conjugate transfer operator P * s as follows: for any ϕ ∈ C(S) and x ∈ S,

P s ϕ(x) = Γµ |g 1 x| s ϕ(g 1 •x)µ(dg 1 ), P * s ϕ(x) = Γµ |g T 1 x| s ϕ(g T 1 •
x)µ(dg 1 ), (1.3.4) where the matrix g T 1 denotes the transpose of g 1 . Under suitable conditions, the operator P s (resp. P * s ) has a unique probability eigenmeasure ν s (resp. ν * s ) on S corresponding to the eigenvalue κ(s): Then, r s is the unique, up to a scaling constant, strictly positive eigenfunction of P s : P s r s = κ(s)r s ; similarly r * s is the unique, up to a scaling constant, strictly positive eigenfunction of P * s : P * s r * s = κ(s)r * s . It is easy to see that ν s (r s ) = ν * s (r * s ) := s . The stationary measure π s is defined by π s (ϕ) = νs (ϕrs) s , for any ϕ ∈ C(S). Define Λ = log κ : (-s 0 , 0) ∪ I µ → R, then the function Λ is convex and analytic (it plays the same role as the log-Laplace transform of X 1 in the real i.i.d. case). Condition A8 implies that σ s = Λ (s) is strictly positive for any s ∈ (-s 0 , 0) ∪ I µ . For invertible matrices, condition A3 implies A8, hence σ s is also strictly positive under condition A3 (see [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF]). Denote by Λ * the Fenchel-Legendre transform of Λ, then we have Λ

* (q) = sq -Λ(s) > 0 if q = Λ (s) for s ∈ (-s 0 , 0) ∪ I • µ .

Precise large deviations for the norm cocycle of products of random matrices

Precise large deviations for the norm cocycle

The large deviation theory, which is an important and active research area in probability theory, allows us to describe the rate of convergence in the law of large numbers. For sums of i.i.d. real-valued random variables, the most remarkable large deviation results in this direction are due to Bahadur-Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] and Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF]. These milestone results have numerous applications in various domains of probability and statistics; see, for example, Buraczewski, Collamore, Damek and Zienkiewicz [START_REF] Buraczewski | Large deviation estimates for exceedance times of perpetuity sequences and their dual processes[END_REF] for a recent application to the asymptotic of the ruin time in some models of financial mathematics. Our main goal of this section is to present the analogous Bahadur-Rao type and Petrov type precise large deviation asymptotics for the norm cocycle log |G n x|. Our results are valid for both invertible matrices and positive matrices. As applications we improve previous results on large deviation principles for the operator norm G n and we obtain precise local limit theorems with large deviations.

The standard approach to establish Bahadur-Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] and Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] types large deviation asymptotics for sums of i.i.d. real-valued random variables consists of making a change of measure and then proving an Edgeworth expansion under the changed measure, see also Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]. In the case of products of random matrices, this approach has been recently employed by Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], where the main result is the following:

Theorem 1.3.1 ([17]). Let s ∈ I •
µ and q = Λ (s). Assume either conditions A1, A3 for invertible matrices, or conditions A1, A4, A8 for positive matrices. Then,

lim n→∞ sup x∈S sσ s √ 2πn e nΛ * (q) E r s (X x n )1 {log |Gnx| nq} -r s (x) = 0. (1.3.6)
In particular, there exist constants c, C > 0 such that for all x ∈ S,

c < lim inf n→∞ √ n e nΛ * (q) P log |G n x| nq lim sup n→∞ √ n e nΛ * (q) P log |G n x| nq < C. (1.3.7)
It is worth mentioning that Theorem 1.3.1 turns out to be useful in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] to investigate the precise tail asymptotics for multidimensional affine stochastic recursion.

The appearance of the eigenfunction r s inside the expectation in the statement (1.3.6) is somehow unpleasant, even though we know that r s is strictly positive and uniformly bounded on the projective space S. We would like to sharpen the inequality (1.3.7) by giving an exact limit instead of upper and lower bounds. To achieve this goal, our approach becomes different from the standard one employed in [START_REF] Bahadur | On deviations of the sample mean[END_REF][START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF][START_REF] Dembo | Large deviations techniques and applications[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], as mentioned above. Our proof is carried out by making use of the spectral gap theory developed in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices and in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices, by employing the saddle point method (see for instance [START_REF] Fedoryuk | Asymptotic, Integrals and Series[END_REF]), and by using smoothing and approximation techniques; we refer to Chapter 2 for details.

The following result concerns the exact asymptotics of the upper tail large deviation probabilities for the norm cocycle.

Theorem 1.3.2. Let s ∈ I •

µ and q = Λ (s). Assume either conditions A1, A3 for invertible matrices, or conditions A1, A4, A8 for positive matrices. Then, as n → ∞, uniformly in x ∈ S,

P log |G n x| nq = r s (x) s exp (-nΛ * (q)) sσ s √ 2πn (1 + o(1)). (1.3.8)
More generally, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| n(q + l) = r s (x) s exp (-nΛ * (q + l)) sσ s √ 2πn (1 + o(1)).
(1.3.9)

Our first result (1.3.8) is parallel to Bahadur-Rao type [START_REF] Bahadur | On deviations of the sample mean[END_REF] large deviation asymptotic in the case of sums of i.i.d. real-valued random variables, and the second one (1.3.9) is parallel to Petrov type [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] large deviation asymptotic. For invertible matrices, in the case when s > 0 is sufficiently small, under a stronger exponential moment condition, a non-uniform version of (1.3.8), without sup x∈S , has been first established by Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]. For positive matrices, the asymptotic (1.3.8) is new and implies the large deviation bounds (1.3.7) established by Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF].

Petrov's proof of the extension (1.2.11) requires the analyticity of the function s → Λ(s) over compact subsets of I • Λ . However, for products of random matrices it is necessary that the constants appearing in the spectral gap property of the perturbed transfer operator R n s,it (cf. Proposition 2.3.4) do not depend on s over compact subsets of

I • µ . Denote γ k,s = Λ (k) (s), k 1
, where Λ = log κ with the function κ defined in (1.3.5). In particular, we have γ 1,s = q and γ 2,s = σ 2 s . For l in a small neighborhood of 0, the rate function Λ * (q + l) has the following expansion:

Λ * (q + l) = Λ * (q) + sl + l 2 2σ 2 s - l 3 σ 3 s ζ s l σ s ,
where ζ s (t) is the Cramér series (under the changed measure Q x s ) given by µ and q = Λ (s). Assume either conditions A1, A3 for invertible matrices, or conditions A1, A4, A8 for positive matrices. Then, for any ϕ ∈ B γ and any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (s -η, s + η) with η > 0 sufficiently small, we have, as n → ∞, uniformly in x ∈ S and |l| l n , for y ∈ R. For invertible matrices, with l = 0, the asymptotic (1.3.10) strengthens the large deviation result stated in Theorem 3.3 of Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], since we do not assume the function ψ to be compactly supported. By the way we would like to remark that in Theorem 3.3 of [49] κ n (s) should be replaced by κ -n (s), and ν s (ϕr -1 s ) should be replaced by νs (ϕ) νs(rs) . For positive matrices, Theorem 1. As mentioned before, for sums of i.i.d. real-valued random variables, Bahadur-Rao-Petrov type upper tail large deviation asymptotics (1.2.10) and (1.2.11) imply the lower tail large deviation asymptotics by considering -X 1 instead of X 1 . However, the situation is more delicate for products of random matrices; Theorems 1.3.2 and 1.3.3 do not imply the similar asymptotic for lower tail large deviation probabilities P(log |G n x| nq), where q < Λ (0). We state our results under the two-sided exponential moment condition A2. Theorem 1.3.4. Assume either conditions A2, A3 for invertible matrices, or conditions A2, A4, A8 for positive matrices. Then, there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), we have, as n → ∞, uniformly in x ∈ S,

ζ s (t) = γ 3,s 6γ 3/2 2,s + γ 4,s γ 2,s -3γ 2 3,s 24γ 3 2,s t + γ 5,s γ 2 2,s -10γ 4,s γ 3,s γ 2,s + 15γ
E ϕ(X x n )ψ(log |G n x| -n(q + l)) = r s (x) s exp (-nΛ * (q + l)) σ s √ 2πn ν s (ϕ)
P log |G n x| nq = r s (x) s exp (-nΛ * (q)) -sσ s √ 2πn (1 + o(1)).
More generally, for any s ∈ (-s 0 , 0) and q = Λ (s), for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| n(q + l) = r s (x) s exp (-nΛ * (q + l)) -sσ s √ 2πn (1 + o(1)).
For invertible matrices, this result sharpens the large deviation principle established in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. For positive matrices, our result is new, even for the large deviation principle. It would be interesting and challenging to investigate the precise lower tail large deviation asymptotic when s < 0 is far from the origin.

More generally, we have the precise large deviation asymptotic for the couple (X x n , log |G n x|) with target functions.

Theorem 1.3.5. Assume either conditions A2, A3 for invertible matrices, or conditions A2, A4, A8 for positive matrices. Then, there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), for any ϕ ∈ B γ and any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for all s ∈ (s -η, s + η) with η > 0 sufficiently small, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

E ϕ(X x n )ψ(log |G n x| -n(q + l)) = r s (x) s exp (-nΛ * (q + l)) σ s √ 2πn ν s (ϕ) R e -sy ψ(y)dy + o(1) .
In particular, taking ϕ = 1 and ψ(y) = 1 {y 0} for y ∈ R, we obtain Theorem 1.3.4.

Applications to large deviation principle for the matrix norm

Theorems 1.3.2 and 1.3.4 can be used to deduce large deviation principles for the operator norm G n . Our first result concerns invertible matrices and the second one deals with positive matrices.

Theorem 1.3.6. Let s ∈ I • µ and q = Λ (s). Assume conditions A1, A3 for invertible matrices. Then, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, uniformly in |l| l n ,

lim n→∞ 1 n log P log G n n(q + l) = -Λ * (q).
With l = 0, Theorem 1.3.6 improves the large deviation bounds established by Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 14.19], where the authors consider general groups, but without giving the rate function Λ * . Theorem 1.3.6 concerns the upper tail large deviation principle for the operator norm G n . The situation for its lower tail large deviation principle is more delicate. In fact, we can deduce easily from Theorem 1.3.4 the following upper bound: there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), for any > 0, we have, uniformly in |l| l n , lim sup

n→∞ 1 n log P log G n n(q + l) -Λ * (q).
However, it remains an open question to prove the following lower bound: .3.11) We are able to give an affirmative answer to the question (1.3.11) for positive matrices, and moreover, we have the reinforced large deviation principles: Theorem 1.3.7. The following two assertions hold:

lim inf n→∞ 1 n log P log G n n(q + l) -Λ * (q). ( 1 
(1). Let s ∈ I • µ and q = Λ (s). Assume conditions A1, A4, A8 for positive matrices. Then, for any positive sequence

(l n ) n 1 satisfying lim n→∞ l n = 0, there exist constants 0 < c < C < +∞ such that uniformly in |l| l n , c < lim inf n→∞ √ n e nΛ * (q+l) P log G n n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log G n n(q + l) < C.
(2). Let s ∈ (-s 0 , 0) and q = Λ (s), where s 0 > 0 is a small constant. Assume conditions A2, A4, A8 for positive matrices. Then, for any positive sequence

(l n ) n 1 satisfying lim n→∞ l n = 0, there exist constants 0 < c < C < +∞ such that uniformly in |l| l n , c < lim inf n→∞ √ n e nΛ * (q+l) P log G n n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log G n n(q + l) < C.
Theorem 1.3.7 clearly implies the upper and lower tail large deviation principles for log G n , which are also new to our knowledge. An interesting open question is to obtain the exact value of the constants in statements (1) and (2) in Theorem 1.3.7, i.e., to establish the Bahadur-Rao type and Petrov type large deviation asymptotics for the operator norm G n .

Local limit theorems with large deviations

For sums of i.i.d. real-valued random variables, local limit theorems with large and moderate deviations have been studied by Gnedenko [START_REF] Gnedenko | On a local limit theorem of the theory of probability[END_REF], Sheep [START_REF] Sheep | A local limit theorem[END_REF], Stone [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distribution functions[END_REF], Breuillard [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF], Borovkov and Borovkov [START_REF] Borovkov | Asymptotic analysis of random walks[END_REF]. For products of random matrices, local limit theorems with moderate deviations have been recently established by Benoist and Quint [10, Theorems 17.9 and 17.10], and have important applications to study dynamics of group actions on finite volume homogeneous spaces, see [START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF]Proposition 4.7].

In Theorem 1.3.3, taking ψ = 1 [a 1 ,a 2 ]
, where a 1 < a 2 are fixed real numbers, we get the following a local limit theorem with large deviations. Theorem 1.3.8. Let s ∈ I • µ and q = Λ (s). Assume either conditions A1, A3 for invertible matrices, or conditions A1, A4, A8 for positive matrices. Then, for any ϕ ∈ B γ , for any real numbers -∞ < a 1 < a 2 < ∞, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

E ϕ(X x n )1 {log |Gnx|∈n(q+l)+[a 1 ,a 2 )} = r s (x) s e -sa 1 -e -sa 2 exp(-nΛ * (q + l)) sσ s √ 2πn ν s (ϕ) + ϕ γ o(1) .
In particular, with ϕ = 1, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| ∈ n(q + l) + [a 1 , a 2 ) = r s (x) s e -sa 1 -e -sa 2 exp(-nΛ * (q + l)) sσ s √ 2πn 1 + o(1) .
Theorem 1.3.8 can be compared with Theorem 3.3 in [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], where the above equivalences are established for l = 0.

From Theorem 1.3.5, we can obtain that the assertions of Theorem 1.3.8 remain valid for s < 0 small enough under the additional assumption A2.

Precise large deviations for entries of products of random matrices

The goal of this section is to investigate exact large deviation asymptotics for the entries G i,j n , and more generally for the scalar product f, G n x , where f, x ∈ S. To the best of our knowledge, the precise large deviations for the entries G i,j n and, in particular, even the large deviation principles for the entries G i,j n , have not been studied by now in the literature.

Throughout this section, for invertible matrices, all the statements are valid only for 2 × 2 matrices; for positive matrices, all the statements are valid for d × d (d 2) matrices under condition A5, and only for 2 × 2 matrices otherwise.

As mentioned before, the standard approach to establish precise large deviation asymptotics for sums of i.i.d. real-valued random variables consists in performing a change of measure and proving an Edgeworth expansion under the changed measure (see [START_REF] Bahadur | On deviations of the sample mean[END_REF][START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF][START_REF] Dembo | Large deviations techniques and applications[END_REF]). Applying this strategy to the entries G i,j n of products of random matrices turns out to be way more difficult. We have to overcome three main difficulties: prove an Edgeworth expansion for the couple (X For the first point, it turn out that the techniques which work for log |G i,j n | alone cannot be applied for the couple. Dealing with the couple (X e j n , log |G i,j n |) with a target function ϕ on X x n needs considering a new kind of smoothing inequality on a complex contour, instead of the usual Esseen one on the real line. We make use of the saddle point method to obtain precise asymptotics for the integrals of the corresponding Laplace transforms on the complex plane. For this method we refer to Chapter 4 where an Edgeworth expansion with a target function on X x n for the norm cocycle log |G n x| has been established.

Secondly, from the previous works (see e.g. [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]) on limit theorems such as the law of large numbers, the central limit theorem and the law of iterated logarithm for G i,j n , we know that the difference | log |G i,j n |-log |G n e j || generally diverges to infinity as n → ∞. It is controlled by the corresponding norming factors in the above-mentioned limit theorems. However, such a control is not enough to obtain precise large deviation expansions for G i,j n , nor even for a large deviation principle with explicit rate function. A precise account of the contribution of the error term is given by the following decomposition:

log |G i,j n | = log |G n x| + log |f (X x n )|, n 1, (1.3.12)
where x = e j , f = e i , and f (X x n ) is seen as a linear functional f acting on the Markov chain X x n . The main difficulty here is that the Markov chain X x n may stay in or very close to the hyperplane ker f := {x ∈ S : f, x = 0}, which makes log |f (X x n )| meaningless. Our idea to circumvent this difficulty is to discretize the values of the function x → log | f, x |. Consequently, this discretization together with the exact decomposition (1.3.12), allows to deduce the precise large deviation asymptotic from the results for the couple (X x n , log |G n x|) with a target function on X x n established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. The details will be presented in Chapter 3.

The third important difficulty is to prove the Hölder regularity property of the stationary measure π s : there exist constants c, C > 0 such that for any 0 < t < 1,

sup f ∈S π s {x ∈ S : | f, x | t} Ct c . (1.3.13)
This is one of the central points of the proof and is of independent interest. The inequality (1.3.13) for s = 0 has been proved in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and further studied in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. With s = 0 it was used to establish limit theorems for the entries G i,j n , see [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. For other applications see [START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF][START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF]. Overall, to prove (1.3.13) when s > 0 for invertible matrices, we adapt the arguments from [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] where (1.3.13) was established for s = 0. For s > 0 the arguments are much more delicate. One of the difficulties is that the sequence (g n ) n 1 becomes dependent under the changed measure Q x s . We need to extend the results in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] to this case. Of crucial importance are the simplicity of the dominant Lyapunov exponent for G n under the changed measure recently established in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], and the key proximality property which states that M n •m (with M n = g 1 . . . g n ) converges weakly to the Dirac measure δ Zs , where the law of the random variable Z s is the stationary measure π s and m is the unique rotation invariant measure on the projective space S.

We also establish an analog of (1.3.13) for positive matrices, but under either assumption A5 of Furstenberg-Kesten type, or assumption A6 on the harmonic moments of the entries. The techniques of the proofs are quite different from those used in the CHAPTER 1. INTRODUCTION case of invertible matrices. Under condition A5, they rely on the fact that the Markov chain X x n is separated from the coordinates e i and the support of the stationary measure π s of X x n coincides with the support of the stationary measure π 0 = ν. Under condition A6, the proofs are based on the large deviation bounds for the norm cocycle log |G n x| under the changed measure, see Theorem 3.4.4.

We now present the Bahadur-Rao type upper tail large deviation asymptotic for the scalar product f, G n x for both invertible matrices and positive matrices.

Theorem 1.3.9. Let s ∈ I • µ and q = Λ (s). Assume either conditions A2, A3 for invertible matrices, or conditions A1, A5, A8 (or conditions A1, A6, A8) for positive matrices. Then, as n → ∞, uniformly in f, x ∈ S,

P log | f, G n x | nq = r s (x)r * s (f ) s exp (-nΛ * (q)) sσ s √ 2πn 1 + o(1) . (1.3.14)
The result (1.3.14) particularly implies the large deviation asymptotic for the entries G i,j n by taking f = e i and x = e j . It is easy to see that (1.3.14) implies a large deviation principle for the scalar product f, G n x : under the assumptions of Theorem 1.3.9, we have, uniformly in f, x ∈ S,

lim n→∞ 1 n log P log | f, G n x | nq = -Λ * (q). (1.3.15) 
The asymptotic (1.3.15) clearly improves the following large deviation bound established by Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] for invertible matrices: there exists a constant c > 0 such that uniformly in f, x ∈ P d-1 ,

P(log | f, G n x | > nq) e -cn .
An important field of applications of large deviation asymptotics for the entries of type (1.3.14) is the study of the asymptotic behavior of the branching processes in random environment with several types of particles. For results in the case of single type branching processes we refer to [START_REF] Grama | Harmonic moments and large deviations for a supercritical branching process in a random environment[END_REF][START_REF] Grama | Berry-Esseen's bound and Cramer's large deviation expansion for a supercritical branching process in a random environment[END_REF] and for the relation between the entries of products of random matrices and the multi-type branching processes we refer to [START_REF] Cohn | On the growth of the multitype supercritical branching process in a random environment[END_REF].

It is worth some comments on the moment assumptions for Theorem 1.3.9. For positive matrices, if we assume the Furstenberg-Kesten type condition A5, the assertion of Theorem 1.3.9 holds without assuming the moment condition A2. However, it is not clear whether condition A2 is necessary for invertible matrices. This question is open, the main difficulty being to establish the Hölder regularity of the stationary measure π s for invertible matrices without assuming condition A2 (see Proposition 3.3.4). In the same line, we note that a Bahadur-Rao-Petrov type large deviation result for the norm cocycle log |G n x| has been recently shown in Theorem 1.3.2 for invertible matrices under conditions A1 and A3.

Our next result is an improvement of Theorem 1.3.9 by allowing a vanishing perturbation l on q = Λ (s), in the spirit of the Petrov result [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF], called the Bahadur-Rao-Petrov type large deviation asymptotics.

Theorem 1.3.10. Let s ∈ I •

µ and q = Λ (s). Assume either conditions A2, A3 for invertible matrices, or conditions A1, A5, A8 (or conditions A1, A6, A8) for positive matrices. Then, we have, as n → ∞, uniformly in f, x ∈ S and |l| 1) , (1.3.16) and, more generally, for any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (0, s), we have, as n → ∞, uniformly in f, x ∈ S, ϕ ∈ B γ and |l|

1 √ n , P log | f, G n x | n(q + l) = r s (x)r * s (f ) s exp (-nΛ * (q + l)) sσ s √ 2πn 1 + o(
1 √ n , E ϕ(X x n )ψ log | f, G n x | -n(q + l) (1.3.17) = r s (x) s exp(-nΛ * (q + l)) σ s √ 2πn S ϕ(u)| f, u | s ν s (du) R e -sy ψ(y)dy + ϕ γ o(1) .
Now we are going to give asymptotics of the lower tail large deviation probabilities P(log | f, G n x | nq), where q = Λ (s) < λ = Λ (0) for s < 0. These results cannot be deduced from Theorems 1.3.9 and 1.3.10; moreover the proofs are quite different and require to develop the corresponding spectral gap theory for the transfer operator P s . In addition we need the Hölder regularity for the eigenmeasure ν s for s < 0 sufficiently close to 0, which is of independent interest; this is established using a different approach compared to the case s > 0.

Theorem 1.3.11. Assume either conditions A2, A3 for invertible matrices, or conditions A6, A8 for positive matrices. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), as n → ∞, uniformly in f, x ∈ S,

P log | f, G n x | nq = r s (x)r * s (f ) s exp (-nΛ * (q)) -sσ s √ 2πn 1 + o(1) . (1.3.18)
In particular, with f = e i and x = e j in (1.3.18), we obtain the Bahadur-Rao type lower tail large deviation asymptotic for the entries G i,j n . From (1.3.18) one gets a lower tail large deviation principle for the scalar product f, G n x : under the assumptions of Theorem 1.3.11, we have, uniformly in f, x ∈ S,

lim n→∞ 1 n log P log | f, G n x | nq = -Λ * (q). (1.3.19)
The result (1.3.19) sharpens the following lower tail large deviation bound established by Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 14.21] for invertible matrices: there exists a constant c > 0 such that uniformly in f, x ∈ P d-1 ,

P(log | f, G n x | nq) e -cn .
Now we give a Bahadur-Rao-Petrov version of the above theorem.

Theorem 1.3.12. Assume either conditions A2, A3 for invertible matrices, or conditions A6, A8 for positive matrices. Then, there exists s 0 > 0 such that, for any s ∈ (-s 0 , 0) and q = Λ (s), we have, as n → ∞, uniformly in f, x ∈ S and |l| 1) , (1.3.20) and, more generally, for any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (-s 0 , s), we have, as n → ∞, uniformly in f, x ∈ S, ϕ ∈ B γ and |l|

1 √ n , P log | f, G n x | n(q + l) = r s (x)r * s (f ) s exp (-nΛ * (q + l)) -sσ s √ 2πn 1 + o(
1 √ n , E ϕ(X x n )ψ log | f, G n x | -n(q + l) (1.3.21) = r s (x) s exp(-nΛ * (q + l)) σ s √ 2πn S ϕ(u)| f, u | s ν s (du) R e -sy ψ(y)dy + ϕ γ o(1) .
Consider the reversed random walk M n defined by M n = g 1 . . . g n . Since the two probabilities P log | f, G n x | n(q+l) and P log | f, M n x | n(q+l) are equal (as G n and M n have the same law), for M n we have the same large deviation expansions as for G n . It is interesting to note that, this fact and the symmetry in the definition of the eigenfunctions r s and r * s , imply that in condition A5 one can replace the bound (1.3.2) on columns of g by a similar one on rows, namely, by the bound: there exists a constant C > 1 such that for any g ∈ supp µ, and 1 i d, we have

1 max 1 j d g i,j min 1 j d g i,j
C.

(1.3.22)

Local limit theorems with large deviations

From Theorem 1.3.10, we easily get the following local limit theorem with large deviations for scalar products f, G n x .

Theorem 1.3.13. Let s ∈ I • µ and q = Λ (s). Assume either conditions A2, A3 for invertible matrices, or conditions A1, A5, A8 (or conditions A1, A6, A8) for positive matrices. Then, for any real numbers -∞ < a 1 < a 2 < ∞, we have, as n → ∞, uniformly in f, x ∈ S and |l|

1 √ n . P log | f, G n x | ∈ n(q + l) + [a 1 , a 2 ) (1.3.23) = e -sa 1 -e -sa 2 r s (x)r * s (f ) s exp (-nΛ * (q + l)) sσ s √ 2πn 1 + o(1) ,
More generally, we have, as n → ∞, uniformly in f, x ∈ S, ϕ ∈ B γ and |l|

1 √ n , E ϕ(X x n )1 {log | f,Gnx |∈n(q+l)+[a 1 ,a 2 )} (1.3.24) = e -sa 1 -e -sa 2 r s (x) s exp(-nΛ * (q + l)) sσ s √ 2πn S ϕ(u)| f, u | s ν s (du) + ϕ γ o(1) .
The following local limit theorem with large deviations for s < 0 is deduced from Theorem 1.3.12.

Theorem 1.3.14. Assume either conditions A2, A3 for invertible matrices, or conditions A6, A8 for positive matrices. Then, for any real numbers -∞ < a 1 < a 2 < ∞, we have, as n → ∞, uniformly in f, x ∈ S and |l|

1 √ n , P log | f, G n x | ∈ n(q + l) + [a 1 , a 2 ) = e -sa 2 -e -sa 1 r s (x)r * s (f ) s exp (-nΛ * (q + l)) -sσ s √ 2πn 1 + o(1) .
More generally, we have, as n → ∞, uniformly in f, x ∈ S, ϕ ∈ B γ and |l|

1 √ n , E ϕ(X x n )1 {log | f,Gnx |∈n(q+l)+[a 1 ,a 2 )} = e -sa 2 -e -sa 1 r s (x) s exp(-nΛ * (q + l)) -sσ s √ 2πn S ϕ(u)| f, u | s ν s (du) + ϕ γ o(1) .

Large deviation principle for the spectral radius of positive matrices

We are able to derive from Theorems 1.3.10 and 1.3.12 the reinforced large deviation principles for the spectral radius of products of positive random matrices. According to the Perron-Frobenius theory, the spectral radius ρ(g) of a positive matrix g actually coincides with its largest eigenvalue.

Theorem 1.3.15.

(1) Let s ∈ I • µ and q = Λ (s). Assume conditions A1, A5, A8 (or conditions A1, A6, A8) for positive matrices. Then, there exist constants 0 < c < C < +∞ such that uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) (1.3.25) lim sup n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) < C.
(2) Assume conditions A6, A8 for positive matrices. Then, there exist constants s 0 > 0 and 0 < c < C < +∞ such that for any s ∈ (-s 0 , 0) and q = Λ (s), we have, uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) < C.
A more general version of Theorem 1.3.15 with a target function ψ on log ρ(G n ) will be presented in Section 3.8: see Theorem 3.8.1. The statements (1) and ( 2) in Theorem 1.3.15 clearly imply the following large deviation principle for log ρ(G n ): under the assumptions of Theorem 1.3.15, uniformly in |l|

1 √ n , lim n→∞ 1 n log P log ρ(G n ) n(q + l) = -Λ * (q); (1.3.26)
a similar assertion also holds for the lower tail. Note also that statements (1) and ( 2) of Theorem 1.3.15 still hold when the product G n is replaced by

M n := g 1 . . . g n .
The upper bound of part (1) in Theorem 1.3.15 follows from the reinforced large deviation principle for the matrix norm G n recently established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. The lower bound is deduced from Theorem 1.3.10 in conjunction with the Collatz-Wielandt formula for positive matrices. Note that, the Collatz-Wielandt formula does not hold in general for invertible matrices, hence the question of proving Theorem 1.3.15 for invertible matrices remains open, even for the large deviation principle for ρ(G n ); the latter has been recently conjectured by Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF]. The corresponding upper bound in large deviation principle for invertible matrices can be easily deduced from the results in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]: under conditions A2, A3, for any s ∈ I • µ and q = Λ (s), uniformly in |l|

1 √ n , lim n→∞ 1 n log P log ρ(G n ) n(q + l) -Λ * (q).

Berry-Esseen bound and precise moderate deviations for the norm cocycle of products of random matrices

The goal of this section is to present the Berry-Esseen bound, the Edgeworth expansion and the Cramér type moderate deviation expansion for the couple (X x n , log |G n x|) with a target function ϕ on the Markov chain X x n . It is surprising that our proof of the Berry-Esseen bound and of the Edgeworth expansion with a non-trivial target function ϕ = 1 is way more difficult than the analogous results with ϕ = 1. On one hand, instead of using Esseen's smoothing inequality, we have to develop a new smoothing inequality on the complex plane C; see Proposition 4.4.1. An important issue is to construct a Schwartz density function ρ such that its Fourier transform ρ has a compact support on the real line R and can be extended analytically on a neighborhood of 0. On the other hand, we have to rework on the spectral gap theory for the transfer operators P z and R s,z , by considering the case when s can take values in the interval (-η, η) with η > 0 small, and z belongs to a small complex ball centered at the origin, which allows to define the change of measure Q x s for s < 0. The new smoothing inequality, the extended spectral gap theory, and the saddle point method enable us to establish the Berry-Esseen bound for the couple (X x n , log |G n x|) with a target function ϕ on X x n . Note that the non-arithmeticity condition is not needed for the validity for the Berry-Esseen bound. Under the non-arithmeticity condition, we prove an Edgeworth expansion for the couple (X x n , |G n x|) with a target function ϕ on X x n . For the Cramér type moderate deviation expansions, our proof is different from those in [START_REF] Benoist | Random walks on reductive groups[END_REF] and [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF]: in [START_REF] Benoist | Random walks on reductive groups[END_REF] the moderate deviation principle for log |G n x| is obtained by following the strategy of Kolmogorov [START_REF] Kolmogorov | Über das Gesetz der iterierten Logarithmus[END_REF] suited to show the law of iterated logarithm (see also de Acosta [START_REF] De Acosta | A new proof of the Hartman-Wintner law of the iterated logarithm[END_REF] and Wittman [START_REF] Wittmann | A general law of iterated logarithm[END_REF]); in [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF] the proof of the functional moderate deviation principle is based on the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. In our proof, the moderate deviation expansion is established by using the Berry-Esseen bound for the the couple (X x n , log |G n x|) under the changed measure and by adapting the techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF].

It is worth mentioning that the approach developed in this section opens a way to investigate the Berry-Esseen theorem, the Egdeworth expansion and the Cramér type moderate deviation expansion with target functions for general Markov chains.

The following result concerns the Berry-Esseen bound for the couple (X x n , log |G n x|) with a target function ϕ on X x n . Theorem 1.3.16. Assume either conditions A2, A3 for invertible matrices, or conditions A2, A4, A7 for positive matrices. Then, there exists a constant C > 0 such that for all n 1, x ∈ S, y ∈ R and ϕ ∈ B γ ,

E ϕ(X x n )1 log |Gnx|-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ . (1.3.27)
Theorem 1.3.16 extends the Berry-Esseen bounds from [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF] for invertible matrices, and [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] for positive matrices to versions with target functions on X x n . Note that the results in [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF][START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] have been established under some polynomial moment conditions. However, proving (1.3.27) 

E ϕ(X x n )1 log |Gnx|-nλ σ √ n y (1.3.29) -ν(ϕ) Φ(y) + Λ (0) 6σ 3 √ n (1 -y 2 )φ(y) + b ϕ (x) σ √ n φ(y) = ϕ γ o 1 √ n .
The proof of this theorem is based on a new smoothing inequality on the complex plane C (see Proposition 4.4.1) and the saddle point method. Theorem 1.3.17 is new even for ϕ = 1.

Moderate deviation expansions

Denote γ k = Λ (k) (0), k 1, where Λ = log κ with the function κ defined in (1.3.5). In particular, we have γ 1 = λ and γ 2 = σ 2 . We write ζ for the Cramér series of Λ:

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ 3 3 120γ 9/2 2 t 2 + • • • (1.3.30)
which converges for |t| small enough. We start by formulating a Cramér type moderate deviation expansion for the couple (X x n , log |G n x|) with a target function ϕ on X x n , for both invertible matrices and positive matrices.

Theorem 1.3.18. Assume either conditions A2, A3 for invertible matrices, or conditions A2, A4, A7 for positive matrices. Then, uniformly in

x ∈ S, y ∈ [0, o( √ n)] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , E ϕ(X x n )1 {log |Gnx|-nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n .
In particular, under conditions of Theorem 1.3.18, with ϕ = 1 we obtain:

P log |Gnx|-nλ σ √ n y 1 -Φ(y) = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , P log |Gnx|-nλ σ √ n -y Φ(-y) = e -y 3 √ n ζ(-y √ n ) 1 + O y + 1 √ n .
When ϕ ∈ B γ is a real-valued function satisfying ν(ϕ) > 0, Theorem 1. The asymptotic expansions in Theorem 1.3.18 remain valid even when ν(ϕ) = 0. In this case, for example, the first expansion becomes

√ n → ∞, uniformly in x ∈ S, -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log |Gnx|-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log |Gnx|-nλ bn ∈B} -inf y∈ B y 2 2σ 2 , ( 1 
E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} = (1 -Φ(y))e y 3 √ n ζ( y √ n ) ϕ γ O y + 1 √ n .
It is an open question to extend the results of Theorem 1.3.18 to higher order expansions under the additional condition of non-arithmeticity. We refer to Saulis [START_REF] Saulis | An asymptotic expansion for probabilities of large deviations for sums of independent random variables (Russian)[END_REF] and Rozovsky [START_REF] Rozovsky | Asymptotic expansions for probabilities of large deviations[END_REF] for relevant results in the i.i.d. real-valued case. In the case of products of random matrices this problem seems to us challenging because of the presence of the derivatives in s of the eigenfunction r s and of the eigenmeasure ν s in the higher order terms.

Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices

In the previous Section 1.3.4 we presented the Berry-Esseen bound and moderate deviation expansions for the norm cocycle log |G n x| jointly with the Markov chain X x n . However, this type of results for other quantities like the matrix norm, the entries and the spectral radius of G n are notably absent in the literature. The goal of this section is to fill the gap and to extend the results of Section 1.3.4 to the matrix norm G n , to the entries G i,j n and to the spectral radius ρ(G n ) for the product G n of positive random matrices, jointly with X x n .

Berry-Esseen bounds for the norm, entries and spectral radius of products of positive random matrices

In this section, we formulate the Berry-Esseen bounds for the matrix norm G n , the entries G i,j n and the spectral radius ρ(G n ). Let us first state the result for the operator norm G n . We denote (S d-1 If the stronger condition A5 holds instead of condition A4, then we are able to prove the following Berry-Esseen bounds for the scalar product f, G n x and for the spectral radius ρ(G n ).

+ ) • = {x > 0 : |x| = 1},
Theorem 1.3.20. Under conditions A2, A5 and A7, we have:

(1) uniformly in ϕ ∈ B γ , sup y∈R sup f,x∈S d-1 + E ϕ(X x n )1 log f,Gnx -nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ ; (1.3.33) (2) for any compact set K ⊂ (S d-1 + ) • , uniformly in ϕ ∈ B γ , sup y∈R sup x∈K E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ . (1.3.34)
In particular, taking ϕ = 1, f = e i and x = e j in (1.3.33), we get the Berry-Esseen bound for the entries G i,j n . The Berry-Esseen bounds (1.3.33) and (1.3.34) are all new. It would be interesting to establish these bounds under some condition weaker than A5.

Precise moderate deviation expansions

The goal of this section is to formulate the Cramér type moderate deviation expansions for the matrix norm G n , the entries G i,j n and the spectral radius ρ(G n ). The following result concerns the Cramér type moderate deviations for the operator norm G n . Recall that (S d-1 

+ ) • = {x > 0 : |x| = 1}
K ⊂ (S d-1 + ) • , we have, uniformly in x ∈ K, y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (1.3.35) E ϕ(X x n )1 {log Gn -nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n . ( 1 
-inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} -inf y∈ B y 2 2σ 2 , (1.3.37)
where B • and B are respectively the interior and the closure of B.

The target function ϕ in (1.3.37) is not necessary positive and it can vanish on some part of the projective space S d-1

+ . The moderate deviation principle (1.3.37) is new, even for ϕ = 1. As in Theorem 1.3.19, it would be interesting to prove that Theorem 1.3.21 holds uniformly in x ∈ S d-1 + instead of x ∈ K. Now we formulate Cramér type moderate deviation expansions for the scalar product f, G n x as well as for the spectral radius ρ(G n ). Theorem 1.3.23. Assume conditions A2, A5 and A7. Then, we have: 

(1) uniformly in f, x ∈ S d-1 + , y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log f,Gnx -nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (1.3.38) E ϕ(X x n )1 {log f,Gnx -nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n ; (1.3.39) (2) for any compact set K ⊂ (S d-1 + ) • , uniformly in x ∈ K, y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (1.3.40) E ϕ(X x n )1 {log ρ(Gn)-nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n . ( 1 
(1) uniformly in f, x ∈ S d-1 + , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log f,Gnx -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log f,Gnx -nλ bn ∈B} -inf y∈ B y 2 2σ 2 ;
(2) for any compact set K ⊂ (S d-1

+ ) • , uniformly in x ∈ K, -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} -inf y∈ B y 2 2σ 2 .

Berry-Esseen bounds and moderate deviation principles for the random walk on GL d (R)

The goal of this section is to present the Berry-Esseen type bounds and moderate deviation principles for the operator norm G n and the spectral radius ρ(G n ) of products of random matrices in GL d (R).

Berry-Esseen type bounds for G n and ρ(G n ) of invertible matrices

We formulate the Berry-Esseen type bounds for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with a target function ϕ on the Markov chain X x n . Theorem 1.3.25. Assume conditions A2 and A3 for invertible matrices. Then, we have, uniformly in [START_REF] Benoist | Random walks on reductive groups[END_REF]: see Lemma 6.3.2. The proof of (1.3.43) relies on (1.3.42) and the comparison between ρ(G n ) and G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF]: see Lemma 6.3.3.

x ∈ P d-1 , y ∈ R and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ ; (1.3.42) and E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ . ( 1 
One can make conjectures that the optimal rates of convergence on the right hand sides of (1.3.42) 

∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} -inf y∈ B y 2 2σ 2 ; (1.3.44)
and

-inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} -inf y∈ B y 2 2σ 2 ; (1.3.45)
where B • and B are respectively the interior and the closure of B.

Note that the target function ϕ in (1.3.44) is not necessary strictly positive and it can vanish on some part of the projective space P d-1 . The moderate deviation principles (1.3.44) and (1.3.45) are all new, even for ϕ = 1.

When the proximality condition A3 (ii) fails, we are still able to establish moderate deviation principles for the operator norm G n and the spectral radius ρ(G n ): Theorem 1.3.27. Assume conditions A2 and A3 (i) for invertible matrices. Assume also that {|det(g)| -1/d g : g ∈ Γ µ } is not contained in a compact subgroup of G. Then, for any Borel set B ⊆ R and any positive sequence

(b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 ; (1.3.46)
and

-inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B lim sup n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B -inf y∈ B y 2 2σ 2 ; (1.3.47)
where B • and B are respectively the interior and the closure of B.

The proof of (1.3.46) is based on the moderate deviation principle (1.3.26), Chevalley's result (Lemma 6.4.2) on the irreducible representation of the subgroup of GL(d, R), and techniques from Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Using (1.3.46), the proof of (1.3.47) is carried out by a result established by Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 6.3.3) on the comparison between ρ(G n ) and G n .

Moderate deviation expansions for G n and ρ(G n ) of invertible matrices

We formulate the moderate deviation expansions for the operator norm G n and the spectral radius ρ(G n ). The following result concerns the operator norm G n . Theorem 1.3.28. Assume conditions A2 and A3 for invertible matrices. Then, we have, uniformly in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 6.3.2). Note that Theorem 1.3.28 remains valid even in the case when ν(ϕ) = 0.

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), E ϕ(X x n )1 {log Gn -nλ -√ nσy} Φ(-y) = ν(ϕ) + ϕ γ o(1
The following result concerns the moderate deviation expansions for spectral radius ρ(G n ).

Theorem 1.3.29. Assume conditions A2 and A3 for invertible matrices. Then, we have, uniformly in

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), E ϕ(X x n )1 {log ρ(Gn)-nλ -√ nσy} Φ(-y) = ν(ϕ) + ϕ γ o(1).
Theorem 1.3.29 is new even when ϕ = 1. Its proof relies on Theorem 6.2.6 and on an estimate of the difference between spectral radius ρ(G n ) and the operator norm G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 6.3.3). Note that Theorem 1.3.29 remains valid even in the case when ν(ϕ) = 0.

Moderate deviation expansions for the entries of the random walk on SL 2 (R)

The purpose of this section is to formulate the Cramér type moderate deviation expansion for the entries G i,j n of products of random matrices G n in the special linear group SL 2 (R).

Theorem 1.3.30. Assume condition A2 and that Γ µ is Zariski dense in SL 2 (R). Then, we have, uniformly in f, x , where q > λ is fixed and l is vanishing as n → ∞. We study both invertible matrices and positive matrices and give analogous results for the couple (X x n , log |G n x|) with target functions, where X x n = G n x/|G n x|. As applications we improve previous results on the large deviation principle for the matrix norm G n and obtain a precise local limit theorem with large deviations.

∈ P 1 , y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log | f,Gnx |-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ o(1) , E ϕ(X x n )1 {log | f,Gnx |-nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ o(1
-inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log | f,Gnx |-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log | f,Gnx |-nλ bn ∈B} -inf y∈ B y 2 2σ 2 , ( 1 

Introduction

Background and main objectives

One of the fundamental results in the probability theory is the law of large numbers. The large deviation theory describes the rate of convergence in the law of large numbers. The most important results in this direction are the Bahadur-Rao and the Petrov precise large deviation asymptotics that we recall below for independent and identically distributed (i.i.d.) real-valued random variables (X i ) i 1 . Let S n = n i=1 X i . Denote by I Λ the set of real numbers s 0 such that Λ(s) := log E[e sX 1 ] < +∞ and by I • Λ the interior of I Λ . Let Λ * be the Frenchel-Legendre transform of Λ. Assume that s ∈ I • Λ and q are related by q = Λ (s). Set σ 2 s = Λ (s). From the results of Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] and Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] it follows that if the law of X 1 is non-lattice, then the following large deviation asymptotic holds true:

P(S n n(q + l)) ∼ exp(-nΛ * (q + l)) sσ s √ 2πn , n → ∞, (2.1.1)
where Λ * (q + l) = Λ * (q) + sl

+ l 2 2σ 2 s + O(l 3
) and l is a vanishing perturbation as n → ∞. Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] have established the equivalence (2.1.1) with l = 0. Petrov improved it by showing that (2.1.1) holds uniformly in |l| l n → 0 as n → ∞. Actually, Petrov's result is also uniform in q and is therefore stronger than Bahadur-Rao's theorem even with l = 0. The relation (2.1.1) with l = 0 and its extension to CHAPTER 2. LARGE DEVIATIONS FOR THE NORM COCYCLE |l| l n → 0 have multiple implications in various domains of probability and statistics. The main goal of the present paper is to establish an equivalence similar to (2.1.1) for products of i.i.d. random matrices.

Let (g n ) n 1 be a sequence of i.i.d. d × d real random matrices defined on a probability space (Ω, F, P) with common law µ. Denote by • the operator norm of a matrix and by | • | the Euclidean norm in R d . Set for brevity G n := g n . . . g 1 , n 1. The study of asymptotic behavior of the product G n attracted much attention, since the fundamental work of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], where the following strong law of large numbers for log G n has been established:

lim n→∞ 1 n log G n = λ, a.s.,
with λ a constant called the first Lyapunov exponent of the sequence (g n ) n 1 . Under additional assumptions, Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] extended it to log |G n x|, for any starting point x on the projective space P d-1 = {x ∈ R d : |x| = 1}/ ± . A number of noteworthy results in this area can be found in Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF], Kingman [START_REF] Kingman | Subadditive ergodic theory[END_REF], Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF], Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], Goldsheid and Guivarc'h [START_REF] Gol | Zariski closure and the dimension of the Gaussian law of the product of random matrices[END_REF], Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], Furman [START_REF] Furman | Random walks on groups and random transformations[END_REF], Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF], Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF],

Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF] to name only a few.

In this paper we are interested in asymptotic behaviour of large deviation probabilities for log |G n x| where

x ∈ P d-1 . Set I µ = {s 0 : E( g 1 s ) < +∞}. For s ∈ I µ , let κ(s) = lim n→∞ (E G n s ) 1 n
. Define the convex function Λ(s) = log κ(s), s ∈ I µ , and consider its Fenchel-Legendre transform Λ * (q) = sup s∈Iµ {sq -Λ(s)}, q ∈ Λ (I µ ). Our first objective is to establish the following Bahadur-Rao type precise large deviation asymptotic: with q = Λ (s),

P(log |G n x| nq) ∼ rs (x) exp (-nΛ * (q)) sσ s √ 2πn , n → ∞, (2.1.2) 
where σ s > 0, rs = rs νs(rs) > 0, r s and ν s are, respectively, the unique up to a constant eigenfunction and unique probability eigenmeasure of the transfer operator P s corresponding to the eigenvalue κ(s) (see Section 2.2.2 for precise statements). In fact, to enlarge the area of applications in (2.1.2) it is useful to add a vanishing perturbation for q. In this line we obtain the following Petrov type large deviation expansion: under appropriate conditions, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, uniformly in |l| l n → 0 as n → ∞,

P(log |G n x| n(q + l)) ∼ rs (x) exp (-nΛ * (q + l)) sσ s √ 2πn , n → ∞. (2.1.3)
As a consequence of (2.1.3) we are able to infer new results, such as large deviation principles for log G n , see Theorems 2.2.5 and 2.2.6. Our results are established for both invertible matrices and positive matrices. For invertible matrices, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] has obtained (2.1.2) for s > 0 small enough under more restrictive conditions, such as the existence of exponential moments of g 1 and g -1

1

. The asymptotic (2.1.2) clearly implies a large deviation result due to Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] which holds for invertible matrices and positive matrices: for q = Λ (s) 

→ 0 that E ϕ(X x n )ψ(log |G n x| -n(q + l)) ∼ rs (x)ν s (ϕ) R e -sy ψ(y)dy exp (-nΛ * (q + l)) σ s √ 2πn , n → ∞. (2.1.5)
From (2.1.5) we can deduce a local limit theorem with large deviations: for any real numbers -∞ < a 1 < a 2 < ∞, we have uniformly in |l| l n → 0,

P(log |G n x| ∈ [a 1 , a 2 ] + n(q + l)) ∼ (e -sa 1 -e -sa 2 ) rs (x) sσ s √ 2πn e -nΛ * (q+l) , n → ∞. (2.1.6) 
As a special case of (2.1.6) with l = 0 we obtain Theorem 3.3 of Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF]. With l = 0, ψ the indicator function of the interval [0, ∞) and ϕ = r s , we get the main result in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF].

Our third objective is to establish asymptotics for lower large deviation probabilities: we prove that for q = Λ (s) with s < 0 sufficiently close to 0, it holds uniformly in |l| l n that

P log |G n x| n(q + l) = rs (x) exp (-nΛ * (q + l)) -sσ s √ 2πn (1 + o(1)). (2.1.7)
This sharpens the large deviation principle established in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Theorem 6.1] for invertible matrices. Moreover, we extend the large deviation asymptotic (2.1.7) to the couple (X x n , log |G n x|) with target functions. It is expected that the results of this paper can be applied to study large deviations for multivariate perpetuity sequences arising in some models of financial mathematics; we refer, for example, to Buraczewski, Collamore, Damek and Zienkiewicz [START_REF] Buraczewski | Large deviation estimates for exceedance times of perpetuity sequences and their dual processes[END_REF].

Proof outline

Our proof is different from the standard approach of Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF] based on the Edgeworth expansion, which has been employed for instance in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]. In contrast to [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], we start with the identity e nΛ * (q) r s (x) t ; however, the presence of the multiplier r s (X x n ) -1 makes this impossible. Our idea is to replace the function ψ s with some upper and lower smoothed bounds using a technique from Grama, Lauvergnat and Le Page [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF]. For simplicity we deal only with the upper bound ψ s ψ + s,ε * ρ ε 2 , where ψ + s,ε (y) = sup y :|y -y| ε ψ s (y ), for some ε > 0, and ρ ε 2 is a density function on the real line satisfying the following properties: the Fourier transform ρ ε 2 is supported on [-ε -2 , ε -2 ]. Let R s,it be the perturbed operator defined by R s,it (ϕ)(x) = E Q x s [ϕ(X 1 )e it(log |g 1 x|-q) ], for any Hölder continuous function ϕ on the projective space P d-1 . Using the inversion formula we obtain the following upper bound:

P log |G n x| nq = E Q x s ψ s (log |G n x| -nq) r s (X x n ) , ( 2 
E Q x s ψ s (log |G n x| -nq) r s (X x n ) 1 2π R R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt, (2.1.9) 
where R n s,it is the n-th iteration of R s,it . The integral in the right-hand side of (2.1.9) is decomposed into two parts:

|t|<δ + |t| δ R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt. (2.1.10)
Since ρ ε 2 is compactly supported on R and µ is non-arithmetic, for any fixed s ∈ I • µ , the second integral in (2.1.10) decays exponentially fast to 0. The difficulty is to prove that the spectral radius (R s,it ) decays exponentially fast to 0 uniformly in s ∈ K and t ∈ T , where K is a compact set of I • µ and T is a compact set of R \ {0}. This is overcome by employing the techniques from Hennion and Hervé [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]. To deal with the first integral in (2.1.10), we make use of spectral gap decomposition for the perturbed operator R s,it : R n s,it = λ n s,it Π s,it + N n s,it . Of great importance is to prove that the remainder term N n s,it decays exponentially fast to 0, uniformly in s ∈ K. The lower bound of the integral in (2.1.8) is a little more delicate, but can be treated in a similar way. The passage to the targeted version is done by using approximation techniques.

We end this section by fixing some notation, which will be used throughout the paper. We denote by c, C, eventually supplied with indices, absolute constants whose values may change from line to line. By c α , C α we mean constants depending only on the index α. The interior of a set A is denoted by A • . Let N = {1, 2, . . .}. For any integrable function ψ : R → C, define its Fourier transform by ψ(t) = R e -ity ψ(y)dy, t ∈ R. For a matrix g, its transpose is denoted by g T . For a measure ν and a function ϕ we write ν(ϕ) = ϕdν.

Main results

Notation and conditions

The space R d is equipped with the standard scalar product We shall work with products of invertible or positive matrices (all over the paper we use the term positive in the wide sense, i.e. each entry is non-negative). Denote by G = GL(d, R) the general linear group of invertible matrices of M (d, R). A positive matrix g ∈ M (d, R) is said to be allowable, if every row and every column of g has a strictly positive entry. Denote by G + the multiplicative semigroup of allowable positive matrices of M (d, R). We write G • + for the subsemigroup of G + with strictly positive entries.

Consider the projective space P d-1 := S d-1 /± by identifying -x with x. Denote by S d-1 + = {x 0 : |x| = 1} the intersection of the unit sphere with the positive quadrant. To unify the exposition, we use the symbol S to denote P d-1 in the case of invertible matrices, and S d-1 + in the case of positive matrices. The space S is equipped with the metric d which we proceed to introduce. For invertible matrices, the distance d is defined as the angular distance (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), i.e., for any x, y ∈ P d-1 , d(x, y) = | sin θ(x, y)|, where θ(x, y) is the angle between x and y. For positive matrices, the distance d is the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) defined by d(x, y) = 1-m(x,y)m(y,x) 1+m(x,y)m(y,x) , where m(x, y) = sup{λ > 0 : λy i x i , ∀i = 1, . . . , d}, for any two vectors x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ) in S d-1 + . Let C(S) be the space of continuous functions on S. We write 1 for the identity function 1(x), x ∈ S. Throughout this paper, let γ > 0 be a fixed small constant. For any ϕ ∈ C(S), set

ϕ ∞ := sup x∈S |ϕ(x)| and ϕ γ := ϕ ∞ + sup x,y∈S |ϕ(x) -ϕ(y)| d(x, y) γ ,
and introduce the Banach space B γ := {ϕ ∈ C(S) : ϕ γ < +∞}.

For g ∈ M (d, R) and x ∈ S, write g • x = gx |gx| for the projective action of g on S. For any g ∈ M (d, R), set ι(g) := inf x∈S |gx|. For both invertible matrices and allowable positive matrices, it holds that ι(g) > 0. Note that for any invertible matrix g, we have ι(g) = g -1 -1 .

Let (g n ) n 1 be a sequence of i.i.d. random matrices of the same probability law µ on M (d, R). Set G n = g n . . . g 1 , for n 1. Our aim is to establish, under suitable conditions, a large deviation equivalence of type (2.1.1) for the norm cocycle log |G n x| for invertible matrices and positive matrices. In both cases, we denote by Γ µ :=

[supp µ] the smallest closed semigroup of M (d, R) generated by supp µ (the support of µ), that is, Γ µ = ∪ ∞ n=1 {supp µ} n . Set I µ = {s 0 : E( g 1 s ) < +∞}.
Applying Hölder's inequality to E( g 1 s ), it is easily seen that I µ is an interval. We make use of the following exponential moment condition, where we assume that s ∈ I • µ is given.

P1. There exist s ∈ I • µ and α ∈ (0, 1) such that E g 1 s+α ι(g 1 ) -α < +∞.

For invertible matrices, we introduce the following strong irreducibility and proximality conditions, where we recall that a matrix g is said to be proximal if it has an algebraic simple dominant eigenvalue.

P2. (i)(Strong irreducibility) No finite union of proper subspaces of

R d is Γ µ -invariant.
(ii)(Proximality) Γ µ contains at least one proximal matrix.

The conditions of strong irreducibility and proximality are always satisfied for d = 1. If g is proximal, denote by λ g its dominant eigenvalue and by v g the associated normalized eigenvector (|v g | = 1). In fact, g is proximal iff the space R d can be decomposed as R d = Rλ g ⊕ V such that gV ⊂ V and the spectral radius of g on the invariant subspace V is strictly less than |λ g |. For invertible matrices, condition P2 implies that the Markov chain X x n has a unique µ-stationary measure (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), which is supported on

V (Γ µ ) = {v g ∈ P d-1 : g ∈ Γ µ , g is proximal}.
For positive matrices, introduce the following condition:

P3. (i) (Allowability) Every g ∈ Γ µ is allowable. (ii) (Positivity) Γ µ contains at least one matrix belonging to G • + .
It can be shown (see [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.3]) that for positive matrices, condition P3 ensures the existence and uniqueness of the invariant measure for the Markov chain [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.2]). According to the Perron-Frobenius theorem, a strictly positive matrix always has a unique dominant eigenvalue, so condition P3(ii) implies condition P2(ii) for d > 1.

X x n supported on V (Γ µ ) = {v g ∈ S d-1 + : g ∈ Γ µ ∩ G • + }. In addition, V (Γ µ ) is the unique minimal Γ µ -invariant subset (see
For any s ∈ I µ , for invertible matrices and for positive matrices, the following limit exists (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]):

κ(s) = lim n→∞ (E G n s ) 1 n .
The function Λ = log κ : I µ → R is convex and analytic on I • µ (it plays the same role as the log-Laplace transform of X 1 in the real i.i.d. case). Introduce the Fenchel-Legendre transform of Λ by Λ * (q) = sup s∈Iµ {sq -Λ(s)}, q ∈ Λ (I µ ). We have that Λ * (q) = sq -Λ(s) if q = Λ (s) for some s ∈ I µ , which implies Λ * (q) 0 on Λ (I µ ) since Λ(0) = 0 and Λ(s) is convex on I µ .

We say that the measure µ is arithmetic, if there exist t > 0, β ∈ [0, 2π) and a function ϑ : S → R such that for any g ∈ Γ µ and any x ∈ V (Γ µ ), we have exp[it log |gx| -iβ + iϑ(g • x) -iϑ(x)] = 1. For positive matrices, we need the following condition: P4. (Non-arithmeticity) The measure µ is non-arithmetic.

A simple sufficient condition established in [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] for the measure µ to be nonarithmetic is that the additive subgroup of R generated by the set {log λ g : [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 2.7]). Note that condition P4 for positive matrices ensures that σ 2 s = Λ (s) > 0. For invertible matrices, condition P4 is implied by condition P2, so that we also have σ 2 s > 0; for a proof see Guivarc'h and Urban [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF]Proposition 4.6]. For any s ∈ I µ , the transfer operator P s and the conjugate transfer operator P * s are defined, for any ϕ ∈ C(S) and x ∈ S, by 

g ∈ Γ µ ∩G • + } is dense in R (see
P s ϕ(x) = Γµ |g 1 x| s ϕ(g 1 •x)µ(dg 1 ), P * s ϕ(x) = Γµ |g T 1 x| s ϕ(g T 1 •x)µ(dg 1 ), ( 2 

Large deviations for the norm cocycle

The following theorem gives the exact asymptotic behavior of the large deviation probabilities for the norm cocycle.

Theorem 2.2.1. Let s ∈ I •

µ and q = Λ (s). Assume that µ satisfies either conditions P1, P2 for invertible matrices, or conditions P1, P3, P4 for positive matrices. Then, as n → ∞, uniformly in x ∈ S,

P log |G n x| nq = rs (x) exp (-nΛ * (q)) sσ s √ 2πn (1 + o(1)). (2.2.2)
More generally, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| n(q + l) = rs (x) exp (-nΛ * (q + l)) sσ s √ 2πn (1 + o(1)). (2.2.3)
The rate function Λ * (q + l) admits the following expansion: for q = Λ (s) and l in a small neighborhood of 0, we have [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Corollary 3.2]. We note that there is a misprint in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], where e sq should be replaced by e Λ * (q) . Now we consider the precise large deviations for the couple (X µ and q = Λ (s). Assume the conditions of Theorem 2.2.1. Then, for any ϕ ∈ B γ , any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for all s ∈ (s -η, s + η) with η > 0 sufficiently small, and any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n , Unlike the case of i.i.d. real-valued random variables, Theorems 2.2.1 and 2.2.2 do not imply the similar asymptotic for lower large deviation probabilities P(log |G n x| n(q + l)), where q < Λ (0). To formulate our results, we need an exponential moment condition, as in Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]. For g ∈ Γ µ , set N (g) = max{ g , ι(g) -1 }, which reduces to N (g) = max{ g , g -1 } for invertible matrices.

Λ * (q + l) = Λ * (q) + sl + l 2 2σ 2 s - l 3 σ 3 s ζ s l σ s , ( 2 
E ϕ(X x n )ψ(log |G n x| -n(q + l)) = rs (x) exp (-nΛ * (q + l)) σ s √ 2πn ν s (ϕ) R e -
P5. There exists a constant η ∈ (0, 1) such that E[N (g 1 ) η ] < +∞.

Under condition P5, the functions s → κ(s) and s → Λ(s) = log κ(s) can be extended analytically in a small neighborhood of 0 of the complex plane; in this case the expansion (2.2.4) still holds and we have σ s = Λ (s) > 0 for s < 0 small enough. We also need to extend the function r s for small s < 0, which is positive and Hölder continuous on the projective space S, as in the case of s > 0: we refer to Proposition 2.3.2 for details. Theorem 2.2.3. Assume that µ satisfies either conditions P2, P5 for invertible matrices or conditions P3, P4, P5 for positive matrices. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), we have, as n → ∞, uniformly in x ∈ S,

P log |G n x| nq = rs (x) exp (-nΛ * (q)) -sσ s √ 2πn (1 + o(1)).
More generally, for any s ∈ (-η 0 , 0) and q = Λ (s), for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| n(q + l) = rs (x) exp (-nΛ * (q + l)) -sσ s √ 2πn (1 + o(1)).
For invertible matrices, this result sharpens the large deviation principle established in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. For positive matrices, our result is new, even for the large deviation principle.

More generally, we also have the precise large deviations result for the couple (X x n , log |G n x|) with target functions.

Theorem 2.2.4. Assume the conditions of Theorem 2.2.3. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), for any ϕ ∈ B γ , for any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for all s ∈ (s -η, s + η) with η > 0 sufficiently small, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

E ϕ(X x n )ψ(log |G n x| -n(q + l)) = rs (x) exp (-nΛ * (q + l)) σ s √ 2πn ν s (ϕ)
R e -sy ψ(y)dy + ϕ γ o [START_REF] Aoun | Random subgroups of linear groups are free[END_REF] .

With ϕ = 1 and ψ(y) = 1 {y 0} for y ∈ R, we obtain Theorem 2.2.3.

Applications to large deviation principle for the matrix norm

We use Theorems 2. 

n(q + l) = -Λ * (q).
With l = 0, Theorem 2.2.5 improves the large deviation bounds in Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 14.19], where the authors consider general groups, but without giving the rate function.

In the case of invertible matrices, under the conditions of Theorem 2.2.3, since log |G n x| log G n , we deduce easily from Theorem 2.2.3 the following upper bound of the large deviation principle for log G n : there exists s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), we have, uniformly in |l| l n , lim sup

n→∞ 1 n log P log G n n(q + l) -Λ * (q).
However, it remains an open question to prove the following lower bound:

lim inf n→∞ 1 n log P log G n n(q + l) -Λ * (q). (2.2.6)
In the case of positive matrices, we are able to give an affirmative answer to the question (2.2.6), and moreover, we have the following reinforced large deviation principles.

Theorem 2.2.6. The following two assertions hold:

(1) Let q = Λ (s), where s ∈ I • µ . Assume conditions P1, P3, P4 for positive matrices. Then, there exist two constants 0 < c < C < +∞ such that for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, uniformly in |l| l n ,

c < lim inf n→∞ √ n e nΛ * (q+l) P log G n n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log G n n(q + l) < C.
(2) Let s ∈ (-s 0 , 0) and q = Λ (s), where s 0 > 0 is a small constant. Assume conditions P3, P4, P5 for positive matrices. Then, there exist two constants 0 < c < C < +∞ such that for any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, uniformly in |l| l n ,

c < lim inf n→∞ √ n e nΛ * (q+l) P log G n n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log G n n(q + l) < C.
The statements (1) and (2) in Theorem 2.2.6 clearly implies the large deviation principles for log G n , which are also new to our knowledge.

Local limit theorems with large deviations

Local limit theorems and large and moderate deviations for sums of i.i.d. random variables have been studied by Gnedenko [START_REF] Gnedenko | On a local limit theorem of the theory of probability[END_REF], Sheep [START_REF] Sheep | A local limit theorem[END_REF], Stone [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distribution functions[END_REF], Breuillard [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF], Borovkov and Borovkov [START_REF] Borovkov | Asymptotic analysis of random walks[END_REF]. Moderate deviation results in the local limit theorem for products of invertible random matrices have been obtained in [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorems 17.9 and 17.10].

Taking ϕ = 1 and ψ = 1 [a,a+∆] in Theorem 2.2.2, we can deduce the following local limit theorem with large deviations. Theorem 2.2.7. Assume conditions of Theorem 2.2.1 and let q = Λ (s). Then, for any ϕ ∈ B γ , any real numbers -∞ < a 1 < a 2 < ∞, and any positive sequence (l n ) n 1 satisfying lim n→∞ l n = 0, we have, as n → ∞, uniformly in x ∈ S and |l| l n ,

E ϕ(X x n )1 log |Gnx|∈[a 1 ,a 2 ]+n(q+l) = rs (x)(e -sa 1 -e -sa 2 ) exp(-nΛ * (q + l)) sσ s √ 2πn ν s (ϕ) + o(1) .
Taking ϕ = 1, as n → ∞, uniformly in x ∈ S and |l| l n ,

P log |G n x| ∈ [a 1 , a 2 ] + n(q + l) = rs (x)(e -sa 1 -e -sa 2 ) exp(-nΛ * (q + l)) sσ s √ 2πn 1 + o(1) .
We can compare this result with Theorem 3.3 in [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], from which the above equivalence can be deduced for l = 0.

It is easy to see that, under additional assumption P5, the assertion of Theorem 2.2.7 remains true for s < 0 small enough. This can be deduced from Theorem 2.2.4: the details are left to the reader.

Spectral gap theory for the norm 2.3.1 Properties of the transfer operator

Recall that the transfer operator P s and the conjugate operator P * s are defined by (2.2.1). Below P s ν s stands for the measure on S such that P s ν s (ϕ) = ν s (P s ϕ), for continuous functions ϕ on S, and P * s ν * s is defined similarly. The following result was proved in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices, and in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] 

P s r s = κ(s)r s , P s ν s = κ(s)ν s .
Similarly, there exist a unique strictly positive Hölder continuous function r * s and a unique probability measure ν * s on S such that

P * s r * s = κ(s)r * s , P * s ν * s = κ(s)ν * s .
Moreover, the functions r s and r * s are given by

r s (x) = S | x, y | s ν * s (dy), r * s (x) = S | x, y | s ν s (dy), x ∈ S.
It is easy to see that the family of kernels q s n (x, g) = |gx| s κ n (s)

rs(g•x)
rs(x) , n 1 satisfies the following cocycle property:

q s n (x, g 1 )q s m (g 1 •x, g 2 ) = q s n+m (x, g 2 g 1 ). (2.3.1)
The equation P s r s = κ(s)r s implies that, for any x ∈ S and s ∈ I µ , the probability measures Q x s,n (dg 1 , . . . , dg n ) = q s n (x, g n . . . g 1 )µ(dg 1 ) . . . µ(dg n ), n 1, form a projective system on M (d, R) N . By the Kolmogorov extension theorem, there is a unique probability measure Q x s on M (d, R) N , with marginals Q x s,n ; denote by E Q x s the corresponding expectation.

If (g n ) n∈N denotes the coordinate process on the space of trajectories M (d, R) N , then the sequence (g n ) n 1 is i.i.d. with the common law µ under Q x 0 . However, for any

s ∈ I • µ and x ∈ S, the sequence (g n ) n 1 is Markov-dependent under the measure Q x s . Let X x 0 = x, X x n = G n •x, n 1. By the definition of Q x s , for any bounded measurable function f on (S × R) n , it holds that 1 κ n (s)r s (x) E r s (X x n )|G n x| s f X x 1 , log |G 1 x|, . . . , X x n , log |G n x| = E Q x s f X x 1 , log |G 1 x|, . . . , X x n , log |G n x| . (2.3.2)
Under the measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator given by

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x) = 1 κ(s)r s (x) Γµ |gx| s ϕ(g•x)r s (g•x)µ(dg).
It has been proved in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] for positive matrices, and in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices, that Q s has a unique invariant probability measure π s supported on V (Γ µ ) and that, for any ϕ ∈ C(S),

lim n→∞ Q n s ϕ = π s (ϕ), where π s (ϕ) = ν s (ϕr s ) ν s (r s ) . (2.3.3) Moreover, letting Q s = Q x s π s (dx)
, from the results of [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], it follows that, under the assumptions of Theorem 2.2.1, for any s ∈ I µ , we have lim n→∞

log |Gnx| n = Λ (s),
Q s -a.s. and Q x s -a.s., where Λ (s) = κ (s) κ(s) . When s ∈ (-s 0 , 0) for small enough s 0 > 0, define the transfer operator P s as follows: for any ϕ ∈ C(S),

P s ϕ(x) = Γµ |g 1 x| s ϕ(g 1 •x)µ(dg 1 ), x ∈ S,
which is well-defined under condition P5. The following proposition is proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF].

Proposition 2.3.2. Assume that µ satisfies either conditions P2, P5 for invertible matrices, or conditions P3, P5 for positive matrices. Then there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , 0), the spectral radius (P s ) of the operator P s is equal to κ(s). Moreover there exist a unique, up to a scaling constant, strictly positive Hölder continuous function r s and a unique probability measure ν s on S such that

P s r s = κ(s)r s , P s ν s = κ(s)ν s .
Based on Proposition 2.3.2, in the same way as for s > 0, one can define the measure Q x s for negative values s < 0 sufficiently close to 0, and one can extend the change of measure formula (2.3.2) to s < 0. Under the measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator Q s and the assertion (2.3.3) holds true. We refer to [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for details.

Spectral gap of the perturbed operator

Recall that the Banach space B γ consists of all γ-Hölder continuous function on S, where γ > 0 is a fixed small constant. Denote by L(B γ , B γ ) the set of all bounded linear operators from B γ to B γ equipped with the operator norm

• Bγ →Bγ . For s ∈ I • µ and z ∈ C with s + z ∈ I µ , define a family of perturbed operators R s,z as follows: for any ϕ ∈ B γ , R s,z ϕ(x) = E Q x s e z(log |g 1 x|-q) ϕ(X x 1 ) , x ∈ S. (2.3.4)
It follows from the cocycle property (2.3.1) that

R n s,z ϕ(x) = E Q x s e z(log |Gnx|-nq) ϕ(X x n ) , x ∈ S.
We need the following lemma from [54, Lemma III.9].

Lemma 2.3.3. Let s ∈ R, δ > 0 and I s,δ = (s-δ, s+δ). Assume that t ∈ I s,δ → P (t) ∈ L(B γ , B γ ) is a continuous mapping. Let r > (P (s)). Then, there exist constants ε = ε(s) and c = c(s) > 0 such that sup t∈(s-ε,s+ε) P n (t) Bγ →Bγ < cr n .
Moreover, it holds that lim sup t→s (P (t)) (P (s)).

It is easy to check that in the proof of [54, Lemma III.9], the constant c can be chosen to depend only on s.

The following proposition collects useful assertions that we will use in the proofs of our results. Denote B δ (0) := {z ∈ C : |z| δ}. Proposition 2.3.4. Assume that µ satisfies either conditions P1, P2 for invertible matrices, or conditions P1, P3 for positive matrices. Then, for any

s ∈ I • µ , there exists δ = δ(s) > 0 such that for any z ∈ B δ (0), R n s,z = λ n s,z Π s,z + N n s,z , n 1. (2.3.5)
Moreover, for any s ∈ I • µ , the following assertions hold:

(i) Π s,z is a rank-one projection for |z| δ, with Π s,0 (ϕ)(x) = π s (ϕ) for any ϕ ∈ B γ and x ∈ S, Π s,z N s,z = N s,z Π s,z = 0 and λ s,z = e -qz κ(s + z) κ(s) , for z ∈ B δ (0), (2.3.6)
where q = Λ (s).

For any compact set K ⊂ I • µ and fixed integer k 0, there exist constants

δ = δ(k, K), c = c(k, δ, K) and κ = κ(k, δ, K) ∈ (0, 1) such that for all n 1, sup s∈K sup |z|<δ d k dz k Π s,z Bγ →Bγ c, (2.3.7) sup s∈K sup |z|<δ d k dz k N n s,z Bγ →Bγ cκ n . (2.3.8)
In addition, the mappings z → Π s,z :

B δ (0) → L(B γ , B γ ) and z → N s,z : B δ (0) → L(B γ , B γ )
are analytic in the strong operator sense.

(ii) For any compact sets K ⊂ I • µ and T ⊆ R\{0}, there exists a constant C = C(K, T ) > 0 such that for any n 1 and ϕ ∈ B γ , we have

sup s∈K sup t∈T sup x∈S |R n s,it ϕ(x)| e -Cn ϕ γ .
(2.3.9) (iii) For any s ∈ I • µ and q = Λ (s), the mapping z → λ s,z : B δ (0) → C is analytic, and

λ s,z = 1 + σ 2 s 2 z 2 + Λ (s) 6 z 3 + o(z 3 ) as z → 0, where σ 2 s = Λ (s) = lim n→∞ 1 n E Qs (log |G n x| -nq) 2 and Λ (s) = lim n→∞ 1 n E Qs (log |G n x| -nq) 3 .
In addition, if the measure µ is non-arithmetic, then the asymptotic variance σ 2 s is strictly positive.

Proof. Let s ∈ I • µ be fixed. The spectral gap decomposition (2.3.5) and formulae (2.3.7), (2.3.8) and (2.3.9) are proved in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for imaginary-valued z ∈ (-iδ, iδ). The extension for arbitrary complex valued z ∈ B δ (0) is immediate.

We now prove (2.3.6). The operator P s , its spectral radius κ(s) and eigenvector r s can be respectively extended analytically to P s+z , the eigenvalue κ(s + z) and the eigenvector r s+z , with z in the small neighborhood of 0, see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. Specifically, since the transfer operator P s has spectral gap properties and the mapping z → P s+z is analytic in a small neighborhood of 0 in the complex plane, by functional calculus and the perturbation theory (see [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]), the operator P s+z has an isolated spectral value κ(s + z), so that we have the following spectral gap decomposition of P s+z :

P n s+z = κ n (s + z)M s+z + L n s+z , (2.3.10)
where M s+z is a rank-one projection for |z| δ, with

M s+z (ϕ)(x) = ν s+z (ϕ) ν s+z (r s+z ) r s+z (x)
for any ϕ ∈ B γ and x ∈ S, and M s+z L s+z = L s+z M s+z = 0. Moreover, for any fixed s ∈ I • µ and integer k 0, there exist constants

ε(s) = ε(k, s) > 0, δ(s) = δ(k, s) > 0, κ(s) = κ(k, s) ∈ (0, 1) and c(s) = c(k, s) > 0 such that sup s ∈(s-ε(s),s+ε(s)) 1 κ n (s) sup |z| δ(s) d k dz k L n s+z Bγ →Bγ < c(s)κ(s) n . (2.3.11)
By the definition of R s,z and P z , using the change of measure (2.3.2), we obtain for

any ϕ ∈ B γ , n 1, s ∈ I • µ and z ∈ B δ (0), R n s,z (ϕ) = e -nzΛ (s) P n s+z (ϕr s ) κ n (s)r s . (2.3.12)
Substituting the spectral gap decomposition (2.3.10) into the identity (2.3.12), we get

R n s,z = λ n s,z Π s,z + N n s,z ,
where λ s,z is given by (2.3.6), Π s,z and N n s,z are given as follows: for any ϕ ∈ B γ , n 1, 

s ∈ I • µ and z ∈ B δ (0), Π s,z (ϕ) = ν s+z (ϕr s ) ν s+z (r s+z ) r s+z r s , N n s,z (ϕ) = e -nΛ (s)z 1 κ n (s) L n s+z (ϕr s ) r s . ( 2 
(s) = ε(k, s) > 0, δ(s) = δ(k, s) > 0, κ(s) = κ(k, s) ∈ (0, 1) and c(s) = c(k, s) > 0 such that for all n 1, sup s ∈(s-ε(s),s+ε(s)) sup |z| δ(s) d k dz k Π s,z Bγ →Bγ c(s), (2.3.14) and sup s ∈(s-ε(s),s+ε(s)) sup |z| δ(s) d k dz k N n s ,z Bγ →Bγ < c(s)κ(s) n . (2.3.15) Let K ⊂ I • µ be a compact set. Since ∪ s∈K (s-ε(s), s+ε(s)) ⊃ K, applying Heine-Borel's theorem, there exists a sequence {s m } 1 m m 0 such that ∪ m 0 m=1 (s m -ε m , s m + ε m ) ⊃ K, where ε m = ε(s m ). Therefore, from (2.3.14), we take δ = δ(k, K) = min 1 m m 0 δ(k, s m ) and c = c(k, K) = max 1 m m 0 c(k, s m ) to obtain (2.3.7). Similarly, from (2.3.15), taking δ = δ(k, K) = min 1 m m 0 δ(k, s m ), c = c(k, K) = max 1 m m 0 c(k, s m ) and κ = κ(k, K) = max 1 m m 0 κ(k, s m ), we conclude the proof of (2.3.8).
We finally prove (2.3.9). It was established in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] that for any fixed s ∈ I • µ and t ∈ R\{0}, there exists a constant C(s, t) > 0 such that for any n 1 and ϕ ∈ B γ , we have

sup x∈S |R n s,it ϕ(x)| e -nC(s,t) ϕ γ . (2.3.16)
By the formula (2.3.12), we see that the operator R s,it is continuous in s and t. Using Lemma 2.3.3, we get that there exist constants ε(s) > 0 and δ(t) > 0 such that

sup s ∈(s-ε(s),s+ε(s)) sup t ∈(t-δ(t),t+δ(t)) sup x∈S |R n s ,it ϕ(x)| e -nC(s,t) ϕ γ . Let K ⊂ I • µ and T ⊆ R\{0} be compact sets. Since ∪ (s,t)∈K×T s -ε(s), s + ε(s) × t -δ(t), t + δ(t) ⊃ K × T,
by Heine-Borel's theorem, there exists a sequence {s m , t m } 1 m m 0 such that

∪ m 0 m=1 (s m -ε m , s m + ε m ) × (t m -δ m , t m + δ m ) ⊃ K × T,
where ε m = ε(s m ) and δ m = δ(s m ). This concludes the proof of (2.3.9) by taking

C = C(K, T ) = min 1 m m 0 C(s m , t m ).
For negative values s < 0 sufficiently close to 0, we can define the perturbed operator R s,z as in (2.3.4). The following spectral gap property of R s,z is established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF].

Proposition 2.3.5. Assume that µ satisfies conditions P2, P5 for invertible matrices, or conditions P3, P5 for positive matrices. Then, there exist constants s 0 > 0 and δ > 0 such that for any s ∈ (-s 0 , 0) and z ∈ B δ (0),

R n s,z = λ n s,z Π s,z + N n s,z , n 1.
Moreover, for any s ∈ (-s 0 , 0), the assertions (i), (ii), (iii) of Proposition 2.3.4 hold true.

Proof of precise large deviations for the norm cocycle

The goal of this section is to establish Theorems 2.2.1 and 2.2.3.

Auxiliary results

We need some preliminary statements. Following Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], under the changed measure Q x s , define the Cramér series ζ s by

ζ s (t) = γ s,3 6γ 3/2 s,2 + γ s,4 γ s,2 -3γ 2 s,3 24γ 3 s,2 t + γ s,5 γ 2 s,2 -10γ s,4 γ s,3 γ s,2 + 15γ 3 s,3 120γ 9/2 s,2 t 2 + . . . ,
where γ s,k = Λ (k) (s) and Λ(s) = log κ(s). The following lemma gives a full expansion of Λ * (q + l) in terms of power series in l in a neighborhood of 0, for q = Λ (s) and s ∈ I • µ ∪ (-s 0 , 0), where s 0 is from Proposition 2.3.5. Lemma 2.4.1. Assume conditions of Theorem 2.2.1 or Theorem 2.2.3. Let q = Λ (s). Then, there exists δ > 0 such that, for any |l| δ,

Λ * (q + l) = Λ * (q) + sl + h s (l),
where h s is linked to the Cramér series ζ s by the identity

h s (l) = l 2 2σ 2 s - l 3 σ 3 s ζ s ( l σ s ). (2.4.1)
Proof. Let (Λ ) -1 be the inverse function of Λ . With the notation l s = (Λ ) -1 (q +l)-s, we have Λ (s + l s ) = q + l. By the definition of Λ * , it follows that Λ * (q + l) = (s + l s )(q + l) -Λ(s + l s ). This, together with Λ * (q) = sq -Λ(s) and Taylor's formula, gives

h s (l) := Λ * (q + l) -Λ * (q) -sl = l s l - ∞ k=2 Λ (k) (s) k! l k s . (2.4.2)
From Λ (s + l s ) = q + l and Λ (s) = q, we deduce that l = Λ (s + l s ) -Λ (s), so that, by Taylor's formula for Λ (s),

l = ∞ k=1 Λ (k+1) (s) k! l k s . (2.4.3)
The rest of the proof is similar to that in Petrov [START_REF] Petrov | Sums of independent random variables[END_REF] (chapter VIII, section 2). For |l| small enough, the equation (2.4.3) has a unique solution l s given by

l s = l σ 2 s - Λ (3) (s) 2σ 6 s l 2 - Λ (4) (s)σ 2 s -3(Λ (3) (s)) 2 6σ 10 s l 3 + • • • .
Together with (2.4.2) and (2.4.3), this implies

h s (l) = ∞ k=2 Λ (k) (s) k -1 k! l k s = l 2 2σ 2 s - l 3 σ 3 s ζ s ( l σ s ).
We next provide an estimation for the eigenvalue λ n s,it when t = O( √ n), which will be used to deduce the asymptotic properties of the operator R n s,it in Proposition 2.4.4. The proof is similar to that of Lemma 4.4 in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] in the setting of Markov chains. Compared with [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], the novelty here consists in proving the uniformity with respect to s, which plays a crucial role in establishing Petrov type large deviation asymptotics; see Theorem 2.2.1.

Lemma 2.4.2. Assume conditions of Theorem 2.2.1. Then, for any compact set

K ⊂ I • µ , there exist constants δ 1 = δ 1 (K) > 0 and c 1 = c 1 (K) > 0 such that for all s ∈ K, t ∈ [-δ 1 √ n, δ 1 √ n] and n 1, λ n s, it √ n -e -σ 2 s t 2 2 c 1 √ n e -σ 2 s t 2 4 .
Proof. For any s ∈ K ⊂ I • µ , consider the complex-valued function

f s (t) = λ s,it -1 + σ 2 s 2 t 2 , t ∈ R.
From Proposition 2.3.4 (iii), we infer that f s (0) = f s (0) = f s (0) = 0 and f s (0) = -iΛ (s). In view of (2.3.6) we see that for any s ∈ K ⊂ I • µ , there exist constants ε(s) > 0 and δ(s) > 0 such that the mapping (s, t) → f s (t) is analytic on (s -ε(s), s + ε(s)) × (t -δ(s), t + δ(s)). Hence, by Taylor's formula, we get that there exists a constant c = c(s) > 0 such that for all t ∈ (t -δ(s), t + δ(s)),

sup s ∈(s-ε(s),s+ε(s)) |f s (t)| c|t| 3 . Since ∪ s∈K (s -ε(s), s + ε(s)) ⊃ K, by Heine-Borel's theorem, there exists a sequence {s m } 1 m m 0 such that ∪ m 0 m=1 (s m -ε m , s m + ε m ) ⊃ K, where ε m = ε(s m ). Therefore, taking δ 1 = δ(K) = min 1 m m 0 δ(s m ) and c 1 = c 1 (K) = max 1 m m 0 c(s m ), we obtain that for all t ∈ (t -δ 1 , t + δ 1 ), sup s∈K |f s (t)| c 1 |t| 3 .
(2.4.4)

Without loss of generality, we assume that δ 1 inf s∈K

1 σs . For t ∈ [-δ 1 √ n, δ 1 √ n], we write λ n s, it √ n -e -σ 2 s t 2 2 1 - σ 2 s t 2 2n n 1 + f s ( t √ n ) 1 -σ 2 s t 2 2n n -1 + 1 - σ 2 s t 2 2n n -e -σ 2 s t 2 2 = I 1 (s) + I 2 (s). (2.4.5) For I 1 (s), from δ 1 inf s∈K 1 σs and | t √ n | δ 1 we get 1 -σ 2 s t 2 2n
1/2, uniformly in s ∈ K. Hence, using the basic inequality |(1 + z) n -1| (1 + |z|) n -1 which is valid for any z ∈ C, we have

I 1 (s) 1 - σ 2 s t 2 2n n 1 + f s ( t √ n ) 1 -σ 2 s t 2 2n n -1 .
Noting that 1 + y e y holds for any y ∈ R, we get 1 -

σ 2 s t 2 2n n e -σ 2 s t 2 2 . Recall that from (2.4.4) we have sup s∈K |f s ( t √ n )| c 1 ( |t| √ n ) 3 for any t ∈ [-δ 1 √ n, δ 1 √ n].
Using again the inequality 1 + y e y leads to

I 1 (s) e -σ 2 s t 2 2 e c 1 |t| 3 √ n -1 .
From the inequality e y -1 ye y , y ∈ R, and the fact

| t √ n | δ 1 , it follows that I 1 (s) e -σ 2 s t 2 2 c 1 √ n |t| 3 e c 1 δ 1 t 2 e -σ 2 s t 2 2 c 1 C 1 √ n e 2c 1 δ 1 t 2 ,
where in the last inequality we use the fact that

|t| 3 C 1 e c 1 δ 1 t 2 for sufficiently large constant C 1 > 0. Choosing 0 < δ 1 < min{inf s∈K 1 σs , inf s∈K σ 2 s 8c 1 δ 1 }, we obtain that for all s ∈ K and t ∈ [-δ 1 √ n, δ 1 √ n], I 1 (s) c 1 C 1 √ n e -σ 2 s t 2 4 . ( 2.4.6) 
For I 2 (s), applying the inequalities log(1-y) -y -y 2 , y ∈ [0, 1], and 1-e -y y, y ∈ R, we get

I 2 (s) = e -σ 2 s t 2 2 -e n log 1- σ 2 s t 2 2n e -σ 2 s t 2 2 -e -σ 2 s t 2 2 - σ 4 s t 4 4n σ 4 s t 4 4n e -σ 2 s t 2 2 4 n e -σ 2 s t 2 4 , (2.4.7)
where in the last inequality we use the inequality σ 4 s t 4 16e σ 2 s t 2 4 . We conclude the proof of Lemma 2.4.2 by Combining (2.4.5), (2.4.6) and (2.4.7). [START_REF] Aoun | Random subgroups of linear groups are free[END_REF] and is differentiable at the point 0 on the real line. For the existence of such a function, see [START_REF] Ingham | A note on Fourier transforms[END_REF][START_REF] Johnson | Saddle-point integration of C ∞ "bump" functions[END_REF]. For any ε > 0, we define a rescaled density function

Now let us fix a density function ρ satisfying the property that ρ(y)

C y 4 +1 , y ∈ R, for some constant C > 0. Moreover, the Fourier transform ρ(t) = R e -ity ρ(y)dy, t ∈ R, is compactly supported in [-1,
ρ ε (y) = 1 ε ρ( y ε ), y ∈ R. It is easy to see that its Fourier transform ρε (t) = R e -ity ρ ε (y)dy, t ∈ R, has a compact support in [-ε -1 , ε -1 ]
and is differentiable in a small neighborhood of 0 on the real line.

For any non-negative integrable function ψ, following the paper [START_REF] Grama | Bounds in the local limit theorem for a random walk conditioned to stay positive[END_REF], we introduce two modified functions related to ψ and establish some two-sided bounds. For any ε > 0 and y ∈ R, set B ε (y) = {y ∈ R : |y -y| ε} and

ψ + ε (y) = sup y ∈Bε(y) ψ(y ) and ψ - ε (y) = inf y ∈Bε(y) ψ(y ). (2.4.8)
Lemma 2.4.3. Suppose that ψ is a non-negative integrable function and that ψ + ε and ψ - ε are measurable for any ε > 0, then for sufficiently small ε, there exists a positive constant C ρ (ε) with C ρ (ε) → 0 as ε → 0, such that, for any x ∈ R,

ψ - ε * ρ ε 2 (x) - |y| ε ψ - ε (x -y)ρ ε 2 (y)dy ψ(x) (1 + C ρ (ε))ψ + ε * ρ ε 2 (x).
The proof of the above lemma, being similar to that of Lemma 5.2 in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], will not be detailed here.

The next assertion is the key point in establishing Theorem 2.2.1. Its proof is based on the spectral gap properties of the perturbed operator R s,z (see Proposition 2.3.4). Let us introduce the necessary notation. In the following, let ϕ be a γ-Hölder continuous function on S. Assume that ψ : R → C is a continuous function with compact support in R, and moreover, ψ is differentiable in a small neighborhood of 0 on the real line. Recall that π s is the invariant measure of the Markov chain X x n under the changed measure Q x s , see (2.3.3).

Proposition 2.4.4. Assume conditions of Theorem 2.2.1. Then, for any compact set

K ⊂ I • µ , there exist constants δ = δ(K) > 0, c = c(K) > 0, C = C(K) > 0 such that for all x ∈ S, s ∈ K, |l| 1 √ n , ϕ ∈ B γ and n 1, √ n σ s e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt - √ 2πψ(0)π s (ϕ) C √ n ϕ γ + C n ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| + Ce -cn ϕ γ R |ψ(t)|dt.
Proof. We denote

c s (ψ) = √ 2π σ s ψ(0)π s (ϕ).
Taking sufficiently small δ > 0, we write

√ n e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt -c s (ψ) √ n e nhs(l) |t| δ e -itln R n s,it (ϕ)(x)ψ(t)dt + √ n e nhs(l) |t|<δ e -itln R n s,it (ϕ)(x)ψ(t)dt -c s (ψ) = I(n) + J(n).
(2.4.9)

For I(n), since ψ is bounded and compactly supported on the real line, taking into account Proposition 2.3.4 (ii), the fact |e -itln | = 1 and equality (2.4.1), we get

sup s∈K sup x∈S sup |l| 1 √ n |I(n)| C δ e -c δ n ϕ γ |t| δ |ψ(t)|dt.
(2.4.10)

For J(n), by Proposition 2.3.4 (i), we have

R n s,it (ϕ)(x) = λ n s,it Π s,it (ϕ)(x) + N n s,it (ϕ)(x).
Set for brevity

ψ s,x (t) = Π s,it (ϕ)(x)ψ(t). (2.4.11)
It follows that

J(n) √ n e nhs(l) |t|<δ e -itln λ n s,it ψ s,x (t)dt -c s (ψ) + √ n e nhs(l) |t|<δ e -itln N n s,it (ϕ)(x)ψ(t)dt = J 1 (n) + J 2 (n).
(2.4.12)

For the second term J 2 (n), applying Proposition 2.3.4 (i), we get that there exist constants

c δ = c δ (K) > 0 and κ = κ(K) ∈ (0, 1) such that sup s∈K sup x∈S sup |t|<δ |N n s,it (ϕ)(x)| sup s∈K sup |t|<δ N n s,it Bγ →Bγ ϕ γ c δ κ n ϕ γ .
Together with the fact |e -itln | = 1, this implies that uniformly in s ∈ K, |l|

1 √ n , x ∈ S and ϕ ∈ B γ , J 2 (n) C δ e -c δ n ϕ γ |t|<δ |ψ(t)|dt. (2.4.13) 
For the first term J 1 (n), we make a change of variable t = t / √ n to get

J 1 (n) = e nhs(l) δ √ n -δ √ n e -itl √ n λ n s, it √ n ψ s,x (t/ √ n)dt -c s (ψ) .
It follows that

J 1 (n) e nhs(l) δ √ n -δ √ n e -itl √ n λ n s, it √ n ψ s,x (t/ √ n) -ψ s,x (0) dt + ψ s,x (0)e nhs(l) δ √ n -δ √ n e -itl √ n λ n s, it √ n dt -c s (ψ) =J 11 (n) + J 12 (n). (2.4.14) By Lemma 2.4.2, for any compact set K ⊂ I • µ , there exist constants δ = δ(K) > 0 and c = c(K) > 0 such that for all s ∈ K, t ∈ [-δ √ n, δ √ n] and n 1, λ n s, it √ n -e -σ 2 s t 2 2 c √ n e -σ 2 s t 2 4 . (2.4.15)
We now give a bound for J 11 (n) in (2.4.14). From (2.3.7) we get that there exists a constant c = c(K) > 0 such that for all s ∈ K, x ∈ S and t ∈

[-δ √ n, δ √ n], Π s, it √ n (ϕ)(x) -Π s,0 (ϕ)(x) Π s, it √ n -Π s,0 Bγ →Bγ ϕ γ c |t| √ n ϕ γ .
Combining this with (2.4.11), and the fact that the function ψ is differentiable in a small neighborhood of 0, we obtain that there exists a constant c = c(K) > 0 such that for all s ∈ K, x ∈ S and t ∈

[-δ √ n, δ √ n], ψ s,x t √ n -ψ s,x (0) = Π s, it √ n (ϕ)(x)ψ t √ n -Π s,0 (ϕ)(x)ψ(0) Π s, it √ n (ϕ)(x)ψ t √ n -Π s,0 (ϕ)(x)ψ t √ n + Π s,0 (ϕ)(x)ψ t √ n -Π s,0 (ϕ)(x)ψ(0) c |t| √ n ϕ γ sup |t| δ |ψ(t)| + c |t| √ n ϕ ∞ sup |t| δ |ψ (t)| c |t| √ n ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| .
Taking into account (2.4.15) and the fact that e nhs(l) c uniformly in |l|

1 √
n , we get the desired bound for J 11 (n): there exists a constant c = c(K) > 0 such that for all |l|

1 √ n , s ∈ K, x ∈ S and ϕ ∈ B γ , J 11 (n) c ϕ γ δ √ n -δ √ n |t| √ n e -σ 2 s t 2 2 dt + c ϕ γ δ √ n -δ √ n |t| n e -σ 2 s t 2 4 dt sup |t| δ |ψ(t)| + |ψ (t)| = ϕ γ O( 1 √ n ) + ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| O( 1 n ). (2.4.16) 
To estimate J 12 (n) in (2.4.14), we first write

J 12 (n) = π s (ϕ)ψ(0) e nhs(l) δ √ n -δ √ n e -itl √ n λ n s, it √ n dt - √ 2π σ s π s (ϕ)ψ(0) δ √ n -δ √ n e nl 2 2σ 2 s e -itl √ n λ n s, it √ n -e -σ 2 s t 2 2 dt + π s (ϕ)ψ(0) R e nl 2 2σ 2 s e -itl √ n e -σ 2 s t 2 2 dt - R e -σ 2 s t 2 2 dt + π s (ϕ)ψ(0) |t| δ √ n e nl 2 2σ 2 s e -itl √ n e -σ 2 s t 2 2 dt = J 121 (n) + J 122 (n) + J 123 (n).
(2.4.17)

For J 121 (n), using (2.4.15) we get that there exists a constant

c 1 = c 1 (K) > 0 such that J 121 (n) c 1 √ n ϕ ∞ , uniformly in |l| 1 √ n , s ∈ K, x ∈ S and ϕ ∈ B γ . It is easy to see that J 122 (n) = 0. For J 123 (n), using the inequality ∞ y e -t 2 2 dt 1 y e -y 2 2 for y > 0, we get that J 123 (n) e -cn ϕ ∞ .
Combining these bounds yield that there exists a constant

c 1 = c 1 (K) such that for all |l| 1 √ n , s ∈ K and ϕ ∈ B γ , J 12 (n) c 1 √ n ϕ ∞
This, together with (2.4.16) and (2.4.14), implies the desired bound for

J 1 (n): uni- formly in |l| 1 √ n , s ∈ K, x ∈ S and ϕ ∈ B γ , J 1 (n) = ϕ γ O( 1 √ n ) + ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| O( 1 n ).
Combining this with (2.4.13) and (2.4.10), we conclude the proof of Proposition 2.4.4.

Assume that the functions ϕ and ψ satisfy the same properties as in Proposition 2.4.4. The following result, for s < 0 small enough, will be used to prove Theorem 2.2.3. Proposition 2.4.5. Assume conditions of Theorem 2.2.3. Then, there exists s 0 > 0 such that for any compact set K ⊂ (-s 0 , 0), the following assertion holds: there exist

constants δ = δ(K) > 0, c = c(K) > 0, C = C(K) > 0 such that for all x ∈ S, s ∈ K, |l| 1 √ n , ϕ ∈ B γ and n 1, √ n σ s e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt - √ 2πψ(0)π s (ϕ) C √ n ϕ γ + C n ϕ γ sup |t| δ |ψ(t)| + |ψ (t)| + Ce -cn ϕ γ R |ψ(t)|dt.
Proof. Using Propositions 2.3.2 and 2.3.5, the proof of Proposition 2.4.5 can be carried out as the proof of Proposition 2.4.4. We omit the details.

Proof of Theorem 2.2.1

Recall that q = Λ (s), Λ * (q + l) = Λ * (q) + sl + h s (l), x ∈ S, and |l|

1 √ n → 0, as n → ∞. Let K ⊂ I • µ be a compact set.
Taking into account that e nΛ * (q) = e sqn /κ n (s) and using the change of measure (2.3.2), we write

A n (x, l) := √ 2πn sσ s e nΛ * (q+l) 1 r s (x) P(log |G n x| n(q + l)) = √ 2πn sσ s e nsl e nhs(l) e sqn E Q x s 1 r s (X x n ) e -s log |Gnx| 1 {log |Gnx| n(q+l)} .
(2.4.18)

Setting T x n = log |G n x| -nq and ψ s (y) = e -sy 1 {y 0} , from (2.4.18) we get

A n (x, l) = √ 2πn sσ s e nhs(l) E Q x s 1 r s (X x n ) ψ s (T x n -nl) . (2.4.19)
Upper bound. Let ε ∈ (0, 1) and ψ + s,ε (y) = sup y ∈Bε(y) ψ s (y ) be defined as in (2.4.8), i.e.,

ψ + s,ε (y) = sup y ∈Bε(y) ψ s (y ) = 1 {-ε y<ε} + e -s(y-ε) 1 {y ε} .
(2.4.20)

Using Lemma 2.4.3, we get that there exists a constant C ρ (ε) > 0 depending on the density function ρ and the constant ε > 0 such that for all s ∈ K,

A n (x, l) (1 + C ρ (ε)) √ 2πn sσ s e nhs(l) E Q x s 1 r s (X x n ) (ψ + s,ε * ρ ε 2 )(T x n -nl) =: B + n (x, l). (2.4.21)
Denote by ψ + s,ε the Fourier transform of ψ + s,ε . From (2.4.20), elementary calculations yield that

ψ + s,ε (t) = R e -ity ψ + s,ε (y)dy = 2 sin(εt) t + e -iεt 1 s + it , t ∈ R, (2.4.22) 
and for all s ∈ K,

sup t∈R | ψ + s,ε (t)| ψ + s,ε (0) = ε -ε dy + +∞ ε e -s(y-ε) dy = 1 + 2sε s . (2.4.23)
By the inversion formula, for any y ∈ R,

ψ + s,ε * ρ ε 2 (y) = 1 2π R e ity ψ + s,ε (t) ρ ε 2 (t)dt.
Substituting y = T x n -nl, taking expectation with respect to E Q x s , and using Fubini's theorem, we get

E Q x s 1 r s (X x n ) (ψ + s,ε * ρ ε 2 )(T x n -nl) = 1 2π R e -itln R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt, (2.4.24)
where

R n s,it (r -1 s )(x) = E Q x s e itT x n 1 r s (X x n )
.

Note that ψ + s,ε ρ ε 2 is compactly supported in R since the function ρ ε 2 has a compact support. Note that ρ ε 2 is differentiable in a small neighborhood of 0 on the real line. From (2.4.22), one can verify that for any s ∈ K, the function ψ + s,ε is also differentiable in a small neighborhood of 0 on the real line. Using Proposition 2.4.4 with ϕ = r -1

s and ψ = ψ + s,ε ρ ε 2 , it follows that lim n→∞ sup s∈K sup x∈S sup |l| 1 √ n B + n (x, l) -(1 + C ρ (ε))π s (r -1 s )s ψ + s,ε (0) ρ ε 2 (0) = 0. (2.4.25) Since ρ ε 2 (0) = 1, from (2.4.19)-(2.4.25), we have that uniformly in s ∈ K, lim sup n→∞ sup x∈S sup |l| 1 √ n A n (x, l) (1 + C ρ (ε))sπ s (r -1 s ) ψ + s,ε (0) ρ ε (0) (1 + C ρ (ε))(1 + 2sε)π s (r -1 s ).
Letting ε → 0 and noting that C ρ (ε) → 0, we obtain the desired upper bound: uniformly in s ∈ K,

lim sup n→∞ sup x∈S sup |l| 1 √ n A n (x, l) π s (r -1 s ) = 1 ν s (r s ) . ( 2 

.4.26)

Lower bound. For ε ∈ (0, 1), let ψ - s,ε (y) = inf y ∈Bε(y) ψ s (y ) be defined as in (2.4.8), i.e.,

ψ - s,ε (y) = e -s(y+ε) 1 {y ε} , y ∈ R.
Its Fourier transform is given by

ψ - s,ε (t) = R e -ity ψ - s,ε (y)dy = e -2εs e -iεt s + it , t ∈ R.
From (2.4.19) and Lemma 2.4.3, we get

A n (x, l) √ 2πn sσ s e nhs(l) E Q x s 1 r s (X x n ) (ψ - s,ε * ρ ε 2 )(T x n -nl) - √ 2πn sσ s e nhs(l) |y| ε E Q x s 1 r s (X x n ) ψ - s,ε (T x n -nl -y) ρ ε 2 (y)dy := B - n (x, l) -C - n (x, l). (2.4.27)
For the first term

B - n (x, l), applying (2.4.24) with ψ + s,ε ρ ε 2 replaced by ψ - s,ε ρ ε 2 , we get B - n (x, l) = n 2π sσ s e nhs(l) R e -itln R n s,it (r -1 s )(x) ψ - s,ε (t) ρ ε 2 (t)dt.
In the same way as for the upper bound, using ψ - s,ε (0) = e -2sε s and Proposition 2.4.4 with ϕ = r -1 s and ψ = ψ - s,ε ρ ε 2 (one can check that the functions ϕ and ψ satisfy the required conditions in Proposition 2.4.4), we obtain the desired lower bound: for all s ∈ K,

lim inf n→∞ inf x∈S inf |l| 1 √ n B - n (x, l) π s (r -1 s ) = 1 ν s (r s ) . ( 2.4.28) 
For the second term C - n (x, l), noting that ψ - s,ε ψ s and applying Lemma 2.4.3 to ψ s , we get ψ - s,ε

ψ s (1 + C ρ (ε))ψ + s,ε * ρ ε 2 .
We use the same argument as in (2.4.24) to obtain

C - n (x, l) (1 + C ρ (ε)) √ 2πn sσ s e nhs(l) × |y| ε E Q x s 1 r s (X x n ) (ψ + s,ε * ρ ε 2 )(T x n -nl -y) ρ ε 2 (y)dy = (1 + C ρ (ε)) n 2π sσ s e nhs(l) × |y| ε R e -it(ln+y) R n s,it (r -1 s )(x) ψ + s,ε (t) ρ ε 2 (t)dt ρ ε 2 (y)dy. (2.4.29)
To obtain a precise asymptotic for the above integral, we shall apply the Lebesgue dominated convergence theorem to pass the limit n → ∞ through the integral |y| ε . The applicability of this theorem is justified below. We split the integral |y| ε on the right hand side of ( 

= r -1 s , ψ = ψ + s,ε ρ ε 2 to obtain that uniformly in s ∈ K, x ∈ S and |l| 1 √ n , lim sup n→∞ C - n (x, l) (1 + C ρ (ε))sπ s (r -1 s ) ψ + s,ε (0) ρ ε 2 (0) |y| ε ρ ε 2 (y)dy = (1 + C ρ (ε))π s (r -1 s )(1 + 2sε) |y| 1 ε ρ(y)dy → 0, as ε → 0,
since ρ is integrable on R. This, together with (2.4.27)-(2.4.28), implies the lower bound: uniformly in s ∈ K, 

lim inf n→∞ inf x∈S inf |l| 1 √ n A n (x, l) π s (r -1 s ) = 1 ν s (r s ) , ( 2 

Proof of Theorem 2.2.3

Since the change of measure formula can be extended for small s < 0, under the conditions of Theorem 2.2.3, we have, in the same way as in (2.4.18),

-sσ s √ 2πn e nΛ * (q+l) 1 r s (x) P(log |G n x| n(q + l)) = -sσ s √ 2πn e nsl e nhs(l) e sqn E Q x s 1 r s (X x n ) e -s log |Gnx| 1 {log |Gnx| n(q+l)} .
Applying Proposition 2.4.5, we can follow the proof of Theorem 2.2.1 to show Theorem 2.2.3. We omit the details.

Proof of precise large deviations with target functions

We first establish the following assertion which will be used to prove Theorem 2.2.2, but which is of independent interest. Let ψ be a measurable function on R and ε > 0. Denote, for brevity, ψ s (y) = e -sy ψ(y) and

ψ + s,ε (y) = sup y ∈Bε(y) ψ s (y ), ψ - s,ε (y) = inf y ∈Bε(y) ψ s (y ).
Introduce the following condition: for any s ∈ I • µ and ε > 0, the functions y → ψ + s,ε (y) and y → ψ - s,ε (y) are measurable and lim is directly Riemann integrable on R for all s ∈ (s -η, s + η) with η > 0 sufficiently small, Then, we have, as n → ∞, uniformly in s ∈ K, x ∈ S and |l|

ε→0 + R ψ + s,ε (y)dy = lim ε→0 + R ψ - s,ε (y)dy = R e -
1 √ n , √ 2πn σ s e nΛ * (q+l) E ϕ(X x n )ψ(log |G n x| -n(q + l)) = rs (x)ν s (ϕ) R e -sy ψ(y)dy + o(1). (2.5.2)
Before proceeding with the proof of this theorem, let us give some examples of functions satisfying condition (2.5.1). It is easy to see that (2.5.1) holds for increasing non-negative functions ψ satisfying R e -sy ψ(y)dy < +∞, in particular, for the indicator function ψ(y) = 1 {y c} , y ∈ R, where c ∈ R is a fixed constant. Another example for which (2.5.1) holds true is when ψ is non-negative, continuous and there exists

ε > 0 such that R e -sy ψ + ε (y)dy < +∞, (2.5.3) 
where the function ψ + ε (y) = sup y ∈Bε(y) ψ(y ) is assumed to be measurable. Proof of Theorem 2.5.1. Without loss of generality, we assume that both ϕ and ψ are non-negative (otherwise, we decompose the functions

ϕ = ϕ + -ϕ -and ψ = ψ + -ψ -). Let T x n = log |G n x| -nq.
Since e nΛ * (q) = e sqn /κ n (s), using the change of measure (2.3.2), we have

A n (x, l) := √ 2πn σ s e nΛ * (q+l) 1 r s (x) E ϕ(X x n )ψ(log |G n x| -n(q + l)) = √ 2πn σ s e nsl e nhs(l) e sqn E Q x s (ϕr -1 s )(X x n )e -s log |Gnx| ψ(T x n -nl) = √ 2πn σ s e nhs(l) E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ(T x n -nl) .
For brevity, set

Φ s (x) = ϕr -1 s (x),
x ∈ S, and Ψ s (y) = e -sy ψ(y), y ∈ R.

Then,

A n (x, l) = √ 2πn σ s e nhs(l) E Q x s [Φ s (X x n )Ψ s (T x n -nl)] . (2.5.4)
Upper bound. We wish to write the expectation in (2.5.4) as an integral of the Fourier transform of Ψ s , which, however, may not belong to the space L 1 (R). As in the proof of Theorem 2.2.1 (see Section 2.4.2), we make use of the convolution technique to overcome this difficulty. Applying Lemma 2.4.3 to Ψ s , one has, for sufficiently small ε > 0,

A n (x, l) (1 + C ρ (ε)) √ 2πn σ s e nhs(l) E Q x s Φ s (X x n )(Ψ + s,ε * ρ ε 2 )(T x n -nl) := B n (x, l),
(2.5.5) where Ψ + s,ε (y) = sup y ∈Bε(y) Ψ s (y ), y ∈ R. Using the same arguments as for deducing (2.4.24), we have

B n (x, l) = (1 + C ρ (ε)) σ s √ 2π √ n e nhs(l) R e -itln R n s,it Φ s (x) Ψ + s,ε (t) ρ ε 2 (t)dt, (2.5.6) where R n s,it Φ s (x) = E Q x s e itT x n Φ s (X x n ) and Ψ + s,ε
is the Fourier transform of Ψ + s,ε . Note that Φ s is strictly positive and γ-Hölder continuous function on S, and Ψ + s,ε ρ ε 2 has a compact support in R. Applying Proposition 2.4.4 with ϕ = Φ s and ψ = Ψ + s,ε ρ ε 2 (one can verify that the functions ϕ and ψ satisfy the required conditions in Proposition 2.4.4), we obtain, as n → ∞, uniformly in s ∈ K, x ∈ S, ϕ ∈ B γ and |l|

1 √ n , B n (x, l) (1 + C ρ (ε))π s (Φ s ) Ψ + s,ε (0) ρ ε 2 (0) + C √ n Φ s γ + C n Φ s γ sup |t| δ | Ψ + s,ε (t) ρ ε 2 (t)| + |( Ψ + s,ε ) (t) ρ ε 2 (t) + Ψ + s,ε (t)( ρ ε 2 ) (t)| + Ce -cn Φ s γ R | Ψ + s,ε (t) ρ ε 2 (t)|dt. (2.5.7)
Note that the function ρ ε 2 is compactly supported in R and differentiable at the point 0 on the real line, hence ρ ε 2 and ( ρ ε 2 ) are uniformly bounded in the interval (-δ, δ). Since

Ψ + s,ε (t) = R e -ity sup y ∈Bε(y)
e -sy ψ(y )dy, t ∈ R, under the condition that y → e -s y ψ(y) is directly Riemann integrable on R, for all s ∈ (s -η, s + η) with η > 0 sufficiently small, we can verify that the last two terms on the right-hand side of (2.5.7) converge to 0 as n → ∞, uniformly in s ∈ K. Thus, noting that Ψ + s,ε (0) = R sup y ∈Bε(y) e -sy ψ(y )dy and ρ ε 2 (0) = 1, we obtain that uniformly in s ∈ K,

lim n→∞ sup x∈S sup |l| 1 √ n B n (x, l) (1 + C ρ (ε))π s (Φ s ) R sup y ∈Bε(y)
e -sy ψ(y ) dy.

(2.5.8) From (2.5.5) and (2.5.8), letting ε go to 0, using the condition (2.5.1) and the fact that C ρ (ε) → 0 as ε → 0, we get the desired upper bound: uniformly in s ∈ K,

lim n→∞ sup x∈S sup |l| 1 √ n A n (x, l) π s (Φ s )
R e -sy ψ(y)dy.

(2.5.9)

Lower bound. Denote Ψ - s,ε (y) = inf y ∈Bε(y) Ψ s (y ). From (2.5.4), using Lemma 2.4.3, we get

A n (x, l) √ 2πn σ s e nhs(l) E Q x s Φ s (X x n )(Ψ - s,ε * ρ ε 2 )(T x n -nl) - √ 2πn σ s e nhs(l) |y| ε E Q x s Φ s (X x n )Ψ - s,ε (T x n -nl -y) ρ ε 2 (y)dy := B - n (x, l) -C - n (x, l).
(2.5.10)

For B - n (x, l), we proceed as for (2.5.5) and (2.5.6), with Ψ + s,ε replaced by Ψ - s,ε . Using Proposition 2.4.4, with ϕ = Φ s and ψ = Ψ - s,ε ρ ε 2 , and the fact that ρ ε 2 (0) = 1 and Ψ - s,ε (0) = R inf y ∈Bε(y) e -sy ψ(y )dy, in an analogous way as in (2.5.9), we obtain that uniformly in s ∈ K,

lim n→∞ sup x∈S sup |l| 1 √ n B - n (x, l) = π s (Φ s ) R inf y∈Bε(z) e -sy ψ(y)dz → π s (Φ s ) R e -sy ψ(y)dy, as ε → 0, (2.5.11)
where the last convergence is due to the condition (2.5.1). For C

- n (x, l), noting that Ψ - s,ε Ψ s , applying Lemma 2.4.3 to Ψ s we get Ψ - s,ε (1 + C ρ (ε)) Ψ + s,ε ρ ε 2 .
Similarly to (2.5.6), we show that

C - n (x, l) (1 + C ρ (ε)) n 2π σ s e nhs(l) × |y| ε R e -it(ln+y) R n s,it (Φ s )(x) Ψ + s,ε (t) ρ ε 2 (t)dt ρ ε 2 (y)dy.
We want to use the Lebesgue dominated convergence theorem to pass the limit n → ∞ through the integral |y| ε . One can justify the applicability of this theorem by following the strategy for estimating the integral in (2.4.29). Hence, applying Proposition 2.4.4 with ϕ = Φ s and ψ = Ψ + s,ε ρ ε 2 , it follows from the Lebesgue dominated convergence theorem that uniformly in s ∈ K,

lim sup n→∞ sup x∈S sup |l| 1 √ n C - n (x, l) (1 + C ρ (ε))π s (Φ s ) Ψ + s,ε (0) ρ ε 2 (0) |y| ε ρ ε 2 (y)dy → 0 as ε → 0.
Combining this with (2.5.10)-(2.5.11), we get the desired lower bound: uniformly in s ∈ K,

lim inf n→∞ inf x∈S inf |l| 1 √ n A n (x, l) π s (Φ s ) R e -sy ψ(y)dy.
(2.5.12)

Putting together (2.5.9) and (2.5.12), and noting that π s (Φ s ) = π s (ϕr -1 s ) = νs(ϕ) νs(rs) , the result follows.

In the sequel, we deduce Theorem 2.2.2 from Theorem 2.5.1 using approximation techniques.

Proof of Theorem 2.2.2. Without loss of generality, we assume that ϕ 0 and ψ 0. Let Ψ s (y) = e -sy ψ(y), y ∈ R. We construct two step functions as follows: for any η ∈ (0, 1), m ∈ Z and y ∈ [mη, (m + 1)η), set

Ψ + s,η (y) = sup y∈[mη,(m+1)η) Ψ s (y) and Ψ - s,η (y) = inf y∈[mη,(m+1)η) Ψ s (y).
By the definition of the direct Riemann integrability, the following two limits exist and are equal:

lim η→0 + R Ψ + s,η (y)dy = lim η→0 + R Ψ - s,η (y)dy. (2.5.13) Since Ψ s is directly Riemann integrable, we have M := sup y∈R Ψ s (y) < +∞. Let ε ∈ (0, M η) be fixed. Denote I m = [(m -1)η, mη), I - m = mη -ε M 4 |m| ,

mη , and

I + m = mη, mη + ε M 4 |m| , m ∈ Z. Set k + m := M 4 |m| Ψ + s,η (mη)-Ψ + s,η ((m-1)η) ε , m ∈ Z. For the step function Ψ + s,η , in the neighborhood of every possible discontinuous point mη, m ∈ Z, if Ψ + s,η (mη) Ψ + s,η ((m -1)η), then for any y ∈ I m ∪ I m+1 , m ∈ Z, we define Ψ + s,η,ε (y) =        Ψ + s,η ((m -1)η), y ∈ I m \ I - m Ψ + s,η ((m -1)η) + k + m y -mη + ε M 4 |m| , y ∈ I - m Ψ + s,η (mη), y ∈ I m+1 . If Ψ + s,η (mη) < Ψ + s,η ((m -1)η), then we define Ψ + s,η,ε (y) =        Ψ + s,η ((m -1)η), y ∈ I m Ψ + s,η ((m -1)η) + k + m (y -mη), y ∈ I + m Ψ + s,η (mη), y ∈ I m+1 \ I + m .
From this construction, the non-negative continuous function Ψ + s,η,ε satisfies Ψ + s,η

Ψ + s,η,ε and R [Ψ + s,η,ε (y) -Ψ + s,η (y)]dy < ε. Similarly, for the step function Ψ - s,η , one can construct a non-negative continuous function Ψ - s,η,ε which satisfies Ψ - s,η,ε Ψ - s,η and R [Ψ - s,η (y) -Ψ - s,η,ε (y)]dy < ε.
Consequently, in view of (2.5.13), we obtain that, for η small enough,

R |Ψ + s,η,ε (y) -Ψ - s,η,ε (y)|dy < 3ε. (2.5.14)
For brevity, set c s,l,n = √ 2πn σ s e nΛ * (q+l) and T x n,l = log |G n x| -n(q + l). Recalling that Ψ s (y) = e -sy ψ(y), we write

c s,l,n E ϕ(X x n )ψ(T x n,l ) -rs (x)ν s (ϕ) R Ψ s (y)dy c s,l,n E ϕ(X x n )e sT x n,l Ψ s (T x n,l ) -Ψ + s,η,ε (T x n,l ) + c s,l,n E ϕ(X x n )e sT x n,l Ψ + s,η,ε (T x n,l ) -rs (x)ν s (ϕ) R Ψ + s,η,ε (y)dy + r s (x)π s (ϕr -1 s ) R Ψ + s,η,ε (y)dy -rs (x)ν s (ϕ) R Ψ s (y)dy = J 1 + J 2 + J 3 . (2.5.15)
To control J 2 , we shall verify the conditions of Theorem 2.5.1. Noting that the function y → e sy Ψ + s,η,ε (y) is non-negative and continuous, it remains to check the condition (2.5.3). By the construction of Ψ + s,η,ε one can verify that there exists a constant

ε 1 ∈ (0, min{M η, η/3}) such that R sup y ∈Bε 1 (y) Ψ + s,η,ε (y )dy 2η m∈Z sup y∈[mη,(m+1)η) Ψ + s,η (y) = 2η m∈Z sup y∈[mη,(m+1)η) Ψ s (y) < +∞, (2.5.16)
where the series is finite since the function Ψ s is directly Riemann integrable. Hence, applying Theorem 2.5.1 to y → e sy Ψ + s,η,ε (y), we get that uniformly in s ∈ K,

lim n→∞ sup x∈S sup |l| 1 √ n J 2 = 0.
(2.5.17)

For J 3 (x), recall that Ψ - s,η,ε Ψ s Ψ + s,η,ε . Using (2.5.14
) and the fact that r s is uniformly bounded on S, we get that there exists a constant C s > 0 such that

sup x∈S J 3 C s ε ϕ ∞ .
(2.5.18)

For J 1 , note that e sy Ψ - s,η,ε (y) e sy Ψ s (y) e sy Ψ + s,η,ε (y), y ∈ R. Combining this with the positivity of ϕ, it holds that

|J 1 | c s,l,n E ϕ(X x n )e sT x n,l Ψ + s,η,ε (T x n,l ) -Ψ - s,η,ε (T x n,l ) c s,l,n E ϕ(X x n )e sT x n,l Ψ + s,η,ε (T x n,l ) -rs (x)ν s (ϕ) R Ψ + s,η,ε (y)dy + c s,l,n E ϕ(X x n )e sT x n,l Ψ - s,η,ε (T x n,l ) -rs (x)ν s (ϕ) R Ψ - s,η,ε (y)dy + rs (x)ν s (ϕ) R Ψ + s,η,ε (y)dy -rs (x)ν s (ϕ) R Ψ - s,η,ε (y)dy = J 11 + J 12 + J 13 .
Using (2.5.17), as n → ∞, it holds that J 11 → 0, uniformly in s ∈ K, x ∈ S and |l| 1 √ n . For J 12 , note that the function y → e sy Ψ - s,η,ε (y) is non-negative and continuous. By the construction of Ψ - s,η,ε , similarly to (2.5.16), one can verify that there exists ε 2 > 0 such that R sup y ∈Bε 2 (y) Ψ - s,η,ε (y )dy < +∞. We deduce from Theorem 2.5.1 that J 12 → 0 as n → ∞, uniformly in s ∈ K, x ∈ S and |l| 1 √ n . For J 13 , we use (2.5.14) to get that J 13 C s ε. Consequently, we obtain that, as n → ∞,

J 1 C s ε, uniformly in s ∈ K, x ∈ S and |l| 1 √
n . This, together with (2.5.15), (2.5.17)-(2.5.18), implies that as n → ∞, uniformly in s ∈ K, x ∈ S and |l|

1 √ n , c s,l,n E ϕ(X x n )ψ(T x n,l ) -rs (x)ν s (ϕ) R Ψ s (y)dy C s ε.
Since ε > 0 is arbitrary, we conclude the proof of Theorem 2.2.2.

Proof of Theorem 2.2.4. Following the proof of Theorem 2.5.1, one can verify that the asymptotic (2.5.2) holds true for s < 0 small enough and for ψ satisfying condition (2.5.1). The passage to a directly Riemann integrable function ψ can be done by using the same approximation techniques as in the proof of Theorem 2.2.2. 

Proofs of LDP for log G n and local limit theorems with large deviations

x ∈ (S d-1 + ) • , inf g∈Γµ |gx| g > 0.
This implies that for any fixed x ∈ (S d-1 + ) • , there exists a constant C > 1 such that for all n 1, we have log G n log |G n x| + C and hence

P(log G n n(q + l)) P log |G n x| n(q + l -C/n) .
As in the proof of Theorem 2.2.5, by Lemma 2.4.1, there exists a constant 

C s > 0 such that e n[Λ * (q+l-C/n)-Λ * (q+l)] C s ,
n(q + l) < C.
This ends the proof of the assertion (1). Using Theorem 2.2.3, the proof of the assertion (2) can be carried out in the same way.

Chapter 3

Large deviation expansions for the entries of products of random matrices

Abstract. Assume that (g n ) n 1 is a sequence of independent and identically distributed d × d real random matrices. Consider the product G n = g n . . . g 1 . For both invertible matrices and positive matrices, we establish precise large deviation expansions for (i, j)-th entry G i,j n of G n , jointly with X e j n , where X x n = G n x/|G n x| is a Markov chain on the projective space with x a starting point. In particular, for the entries G i,j n we obtain the large deviation principle with an explicit rate function, thus improving significantly the large deviation bounds established earlier. Toward this end we prove the Hölder regularity of the stationary measure corresponding to X x n under the changed measure, which is of independent interest. As an application, we obtain the large deviation principle and its reinforced form for the spectral radius of products of positive matrices. We also derive local limit theorems with large deviations for the entries.

Introduction

Background and objectives

Let d 2 be an integer. Assume that on the probability space (Ω, F, P) we are given a sequence (g n ) n 1 of d × d real random matrices which are independent and identically distributed (i.i.d.) with common law µ. A great deal of research has been devoted to studying the random matrix product G n := g n . . . g 1 . Many fundamental results related to G n , such that the strong law of large numbers (SLLN), the central limit theorem (CLT), the law of iterated logarithm (LIL) and large deviations (LD) have been established by Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], Kingman [START_REF] Kingman | Subadditive ergodic theory[END_REF], Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF], Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF], Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], Furman [START_REF] Furman | Random walks on groups and random transformations[END_REF], Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF], to name only a few. These limit theorems turn out to be very useful in various applications, such as in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Carmona | Spectral theory of random Schrödinger operators[END_REF] to study the spectral theory of random Schrödinger operators, in [START_REF] Crisanti | Products of random matrices: in Statistical Physics[END_REF] to explore disordered systems and chaotic dynamics coming from statistical physics, in [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] to investigate the multidimensional stochastic recursion, in [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF] to study the dynamics of group actions, and in [START_REF] Grama | Conditioned limit theorems for products of random matrices[END_REF][START_REF] Page | The survival probability of a critical multitype branching process in iid random environment[END_REF][START_REF] Grama | The survival probability of critical and subcritical branching processes in finite state space markovian environment[END_REF] to investigate conditioned limit theorems and survival probabilities Denote by G i,j n the (i, j)-th entry of G n , where 1 i, j d. There has been growing interest in the study of the asymptotic behavior of G i,j n , since the pioneering work of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], where the following SLLN has been established for positive matrices:

lim n→∞ 1 n log |G i,j n | = λ,
with λ a constant called the first Lyapunov exponent of the sequence (g n ) n 1 . In [START_REF] Furstenberg | Products of random matrices[END_REF] the CLT has also been proved, thus giving an affirmative answer to Bellman's conjecture in [START_REF] Bellman | Limit theorems for non-commutative operations[END_REF]. In the case of invertible matrices, Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] have established the SLLN and CLT for the entries G i,j n , where the proof turns out to be more involved than that in [START_REF] Furstenberg | Products of random matrices[END_REF], and is based on the regularity of the stationary measure of the Markov chain X x n = G n x/|G n x| with x a starting point on the projective space. Recently, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have proved the following large deviation bound: for q > λ and some constant c > 0,

P(log |G i,j n | > nq) e -cn . (3.1.1)
But the precise decay rate on the large deviation probability in (3.1.1) is not known, neither for invertible matrices nor for positive matrices. The goal of this paper is to establish an exact large deviation asymptotic for the entries G i,j n , which will be called Bahadur-Rao-Petrov type large deviations following the groundwork by Bahadur-Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] and Petrov [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF] for sums of i.i.d. real-valued random variables. Our results will imply the large deviation principle with an explicit rate function and the local limit theorem with large deviations, which clearly improves (3.1.1). Moreover, we establish the corresponding results for the spectral radius of products of positive matrices. Similar results for lower large deviations are also obtained.

Brief overview of the results

Let I µ = {s 0 : E( g 1 s ) < ∞}, where • is the operator norm. For any

s ∈ I µ , set κ(s) = lim n→∞ (E G n s ) 1 n
. Denote Λ = log κ and consider its Fenchel-Legendre transform Λ * , which satisfies Λ * (q) = sq -Λ(s) > 0 for q = Λ (s) > λ and s ∈ I • µ (the interior of I µ ). The projective sphere is P d-1 := {x ∈ R d : |x| = 1}/±. Consider the transfer operator P s defined by Our first objective is to establish a Bahadur-Rao type large deviation asymptotic for the entries G i,j n for both invertible matrices and positive matrices; we refer to Bahadur and Rao [START_REF] Bahadur | On deviations of the sample mean[END_REF] for the case of i.i.d. real-valued random variables. More precisely, we prove that, for q = Λ (s) with s ∈ I • µ , as n → ∞,

P s ϕ(x) = E[e s log |g 1 x| ϕ( g 1 x |g 1 x| )], x ∈ P d-1 , where | • | is the Euclidean norm in R d and
P(log |G i,j n | nq) = r s (e j )r * s (e i ) s exp -nΛ * (q) sσ s √ 2πn 1 + o(1) , (3.1.2)
where (e i ) 1 i d is the canonical orthonormal basis of R d and s = ν s (r s ) = ν * s (r * s ) > 0. For invertible matrices, the asymptotic (3.1.2) clearly implies the large deviation principle for G i,j n with rate function Λ * , which obviously improves the large deviation bound (3.1.1). In addition, we show that the asymptotic (3.1.2) also holds for positive matrices.

In fact, we shall extend (3.1.2) to the scalar product f, G n x , and more generally, to the couple (X x n , log | f, G n x |) with target functions, where 1 and •, • is the standard scalar product in R d . Precisely, we prove that for any Hölder continuous function ϕ on P d-1 and any measurable function

X x n = G n x/|G n x|, f, x ∈ P d-
ψ on R such that y → e -sy ψ(y) is directly Riemann integrable, as n → ∞, uniformly in f, x ∈ P d-1 , E ϕ(X x n )ψ log | f, G n x | -nq = r s (x) s P d-1 ϕ(u)| f, u | s ν s (du) R e -sy ψ(y)dy exp(-nΛ * (q)) σ s √ 2πn 1 + o(1) . (3.1.3)
Our second objective is to establish a Bahadur-Rao type result on the lower large deviation probabilities P log |G i,j n | nq , where q = Λ (s) < λ with s < 0 sufficiently close to 0. Specifically, we prove that, as n → ∞,

P log |G i,j n | nq = r s (e j )r * s (e i ) s exp (-nΛ * (q)) -sσ s √ 2πn 1 + o(1) , ( 3.1.4) 
where the quantities r s , r * s , ν s , s , Λ * and σ s > 0, for small s < 0, are defined in Section 3. The assertions (3.1.2), (3.1.3) and (3.1.4) stated above concern Bahadur-Rao type large deviation asymptotics, but we shall actually establish an extended version of these results with an additional vanishing perturbation, which in the literature is known as Baghadur-Rao-Petrov type large deviation results. It is worth mentioning that such type of extensions has important and interesting implications, for instance, to local limit theorems with large deviations for the entries G i,j n : see Theorems 3.2.5 and 3.2.6.

Proof strategy

The standard approach to obtain precise large deviations for i.i.d. real-valued random variables consists in performing a change of measure and proving an Edgeworth expansion under the changed measure (see [START_REF] Dembo | Large deviations techniques and applications[END_REF]). Applying this strategy to the entries G i,j n of products of random matrices turns out to be way more difficult. We have to overcome three main difficulties: state an Edgeworth expansion for the couple (X For the first point, it turn out that the techniques which work for log |G i,j n | alone cannot be applied for the couple. Dealing with a couple (X e j n , log |G i,j n |) with a target function on X x n needs considering a new kind of smoothing inequality on a complex contour, instead of the usual Esseen one on the real line. We make use of the saddle point method to obtain precise asymptotics for the integrals of the corresponding Laplace transforms on the complex plane. For this method we refer to a recent work of the authors [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] where the Edgeworth expansion with a target function on X x n for the norm cocycle log |G n x| has been established.

Secondly, from the previous works on limit theorems such as SLLN, CLT and LIL for G i,j n , see e.g. [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF], we know that the difference | log |G i,j n | -log |G n e j || generally diverges to infinity as n → ∞. It is controlled by the corresponding norming factors in SLLN, CLT and LIL. However, such a control is not enough to obtain precise large deviation expansions for G i,j n , nor even for a large deviation principle with explicit rate function. A precise account of the contribution of the error term is given by the following decomposition:

log |G i,j n | = log |G n x| + log |f (X x n )|, n 1, (3.1.5)
where x = e j , f = e i , and f (X x n ) is seen as a linear functional f acting on the Markov chain X x n . The exact decomposition (3.1.5) allows to deduce the precise large deviation asymptotic from the results for the couple (X x n , log |G n x|) with a target function on X x n established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. The idea is as follows: with Q x s the changed measure defined in Section 3.3.1, we have

e nΛ * (q) r s (x) P log |G i,j n | nq = E Q x s e -s(log |Gnx|-nq) r s (X x n ) 1 {log |G i,j n |-nq 0} . (3.1.6)
We only sketch how to cope with the upper bound of the right-hand side of (3.1.6). Consider a partition I k := (-δk, -δ(k -1)], k 1, of the interval (-∞, 0], where δ > 0. Using (3.1.5) we get the upper bound

1 {log |G i,j n |-nq 0} ∞ k=1 1 {log |Gnx|-nq-δ(k-1) 0} 1 {log |f (X x n )|∈I k } ,
which we substitute into (3.1.6). Thus we are led to the estimation of the sum

∞ k=1 e -sδ(k-1) E Q x s ψ s (log |G n x| -nq -δ(k -1)) r s (X x n ) 1 {log |f (X x n )|∈I k } , (3.1.7)
where

ψ s (y) = e -sy 1 {y 0} , y ∈ R. Let R s,it (ϕ)(x) = E Q x s [ϕ(X 1 )e it(log |g 1 x|-q)
] be the perturbed transfer operator defined for any Hölder continuous function ϕ on P d-1 , and R n s,it be its n-th iteration. Then, by the inversion formula, the sum in (3.1.7) is bounded from above by

1 2π ∞ k=1 e -sδ(k-1) R e -itδ(k-1) R n s,it (r -1 s Φ s,k,ε 2 )(x) Ψ s,ε 1 (t)dt, (3.1.8)
where we choose some appropriate smooth functions Φ s,k,ε 2 and Ψ s,ε 1 , for ε 1 , ε 2 > 0, which dominate 1 {log | f,• |∈I k } and ψ s , respectively. It has been established recently in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] that, for any k 1, the term under the sign of the infinite sum in (3.1.8), say I n (k), converges as n → ∞ to a limit, say

I(k) = √ 2π
sσsνs(rs) e -sδ(k-1) ν s (Φ s,k,ε 2 ). The interchangeability of the limit as n → ∞ and of the summation over k in (3.1.8) is justified by specifying the rate in the convergence of I n (k) to I(k), as argued in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. This implies that as n → ∞ and ε 1 → 0, (3.1.8) converges to

1 sσ s √ 2πν s (r s ) ∞ k=1 e -sδ(k-1) ν s (Φ s,k,ε 2 ).
It remains to show that the last sum converges to r * s (f ), as δ → 0 and ε 2 → 0. For this we have to overcome the third important difficulty of the paper: prove the Hölder regularity property of the eigenmeasure ν s , i.e. that there exist two constants c, C > 0 such that for any 0 < t < 1, sup

f ∈P d-1 ν s {x : | f, x | t} Ct c . (3.1.9)
This one of the the central points of the paper which is of independent interest. The inequality (3.1.9) for s = 0 has been proved in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and further studied in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. With s = 0 it was used to establish limit theorems for the entries G i,j n , see [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. For other applications see [START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF][START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF].

To prove (3.1.9) when s > 0, for invertible matrices, we adapt the arguments from [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] where (3.1.9) was established for s = 0. For s > 0 the arguments are much more delicate. One of the difficulties is that the sequence (g n ) n 1 becomes dependent under the changed measure. We need to extend the results in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] to this case. Of crucial importance are the simplicity of the dominant Lyapunov exponent for G n under the changed measure Q x s recently established in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] (see Lemma 3.5.6), and the key proximality property which states that M n • m (here M n = g 1 . . . g n ) converges weakly to the Dirac measure δ Zs , where Z s is a random variable whose law is the stationary measure π s of X x n , for s > 0 (see Lemma 3.5.2), and m is the unique rotation invariant measure on P d-1 .

We also establish an analog of (3.1.9) for positive matrices, but under either assumption M4 of Furstenberg-Kesten type, or assumption M5 on the harmonic moments of the entries. The techniques of the proofs are quite different from those used in the case of invertible matrices. Under condition M4, they rely on the fact that the Markov chain X x n is separated from the coordinates e i and the support of the stationary measure π s of X x n coincides with the support of the stationary measure π 0 = ν. Under condition M5, the proofs are based on the large deviation bounds under the changed measure, see Theorem 3.4.4.

The passage to the large deviation asymptotic (3.1.3) with target functions is achieved by using approximation techniques (see [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]).

The proof of the lower large deviation asymptotic (3.1.4) can be carried out in the same way as that of upper large deviation asymptotic (3.1.2). The novelty here consists in the use of the change of measure formula for Q x s when s < 0 and of the spectral gap theory under the changed measure as stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for s < 0. In addition we need the Hölder regularity for the eigenmeasure ν s for s < 0 sufficiently close to 0, which is of independent interest; this is established using a different approach compared to the case s > 0.

Main results

Notation and conditions

Denote by c, C absolute constants whose values may change from line to line. By c α , C α we mean constants depending only on the parameter α. For any integrable function ρ : R → C, denote its Fourier transform by ρ(t) = R e -ity ρ(y)dy, t ∈ R. = {x 0 : |x| = 1} be its intersection with the positive quadrant. It will be convenient to consider the projective space P d-1 := S d-1 /± by identifying -x with x. To unify the exposition, we use the symbol S to denote P d-1 in the case of invertible matrices, and S d-1 + in the case of positive matrices. The projective space S is equipped with the metric d defined as follows. For invertible matrices, d is the angular distance (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), i.e., for any x, y ∈ P d-1 , d(x, y) = |x ∧ y|, where x ∧ y denotes the exterior product of two vectors x and y. For positive matrices, d is the Hilbert cross-ratio distance (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) defined by d(x, y) = 1-m(x,y)m(y,x) 1+m(x,y)m(y,x) , where m(x, y) = sup{β > 0 : βy i x i , ∀i = 1, . . . , d} for any two vectors x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ) in S d-1 + . Let C(S) be the space of complex-valued continuous functions on S. We write 1 for the identity function 1(x), x ∈ S. Throughout this paper, γ > 0 is a fixed sufficiently small constant. For any ϕ ∈ C(S), set 

∈ G (or g ∈ G • + ), denote g = sup x∈S |gx|. Let I µ = {s 0 : E( g 1 s ) < +∞}.
and denote by I • µ its interior. In the sequel we always assume that there exists s > 0 such that

E( g 1 s ) < +∞, (3.2.1) so that I • µ is non-empty and is an interval of R. For any g ∈ G (or g ∈ G • + ), set ι(g) = inf x∈S |gx|.
It is easy to see that ι(g) > 0 for both invertible matrices and positive matrices. We will need the following exponential moment condition: M1. There exist s ∈ I • µ and α ∈ (0, 1) such that E g 1 s+α ι(g 1 ) -α < +∞.

Moreover, we shall use the following one-sided moment condition:

M2. There exists a small constant η > 0 such that E ι(g 1 ) -η < +∞.

For an invertible g we have ι(g) = g -1 -1 , so M2 reads as E g -1 1 η < +∞. By Hölder's inequality, condition M2 together with (3.2.1) implies condition M1.

A matrix g is said to be proximal if it has an algebraic simple dominant eigenvalue, that is, g has an eigenvalue λ g satisfying |λ g | > |λ g | for all other eigenvalues λ g of g. It is easy to verify that λ g ∈ R. The eigenvector v g with unit norm |v g | = 1, corresponding to the eigenvalue λ g , is called the dominant eigenvector. For invertible matrices, we need the following strong irreducibility and proximality conditions:

M3. (i)(Strong irreducibility) No finite union of proper subspaces of R d is Γ µ -invariant.
(ii)(Proximality) Γ µ contains at least one proximal matrix.

For positive matrices, the condition M3(ii) is always satisfied, since by the Perron-Frobenius theorem, any positive matrix g has a dominant eigenvalue λ g > 0, with the corresponding eigenvector v g ∈ S d-1

+ . In the groundwork [START_REF] Furstenberg | Products of random matrices[END_REF], Furstenberg and Kesten studied the SLLN and CLT for the entries of positive matrices under the condition that there exists a constant C > 1 such that for any g = (g i,j ) 1 i,j d ∈ supp µ,

1 max 1 i,j d g i,j min 1 i,j d g i,j C. (3.2.2)
In our paper we shall relax it to:

M4. There exists a constant C > 1 such that for any g = (g i,j ) 1 i,j d ∈ supp µ, and 1 j d, we have

1 max 1 i d g i,j min 1 i d g i,j C. (3.2.3)
Condition M4 is clearly weaker than (3.2.2); the latter one means that all the entries g i,j of the matrix g ∈ supp µ are comparable, while M4 requires only that all the entries in the same columns of the matrix g ∈ supp µ are comparable. An equivalent formulation of M4 will be given in Lemma 3.5.8, from which it follows that the set of matrices satisfying M4 forms a subsemigroup of M (d, R). We will see below that M4 can be replaced by the corresponding condition that all the entries in the same rows are comparable. Finally, we can replace M4, by assuming the existence of the harmonic moments of the entries of g 1 : M5. For any 1 i, j d, there exists a constant δ > 0 such that

E g i,j 1 -δ < ∞.
One can easily verify that condition M5 implies condition M2. Note also that the conditions M4 and M5 do not imply each other. However, under the assumption M2, condition M4 (and therefore also (3.2.2)) implies condition M5. The converse is not true.

For any g ∈ G (or g ∈ G • + ) and x ∈ S, we write g • x = gx |gx| for the projective action of g on S. With the starting point x ∈ S, define a Markov chain on the projective space S by setting

X x n := G n • x = G n x |G n x| , n 1.
Under either condition M3 for invertible matrices, or condition M4 (or M5) for positive matrices, the Markov chain (X x n ) n 1 has a unique stationary measure ν on S such that for any ϕ ∈ C(S),

S Γµ ϕ(g 1 •x)µ(dg 1 )ν(dx) = S ϕ(x)ν(dx). (3.2.4)
Moreover, the support of ν is given by supp ν = {v g ∈ P d-1 : g ∈ Γ µ , g is proximal} for invertible matrices, and by supp ν = {v g ∈ S d-1 + : g ∈ Γ µ } for positive matrices. In addition, for both cases, supp ν is indeed the unique minimal Γ µ -invariant subset: see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] for the proof.

We need the following non-arithmeticity condition for positive matrices:

M6. (Non-arithmeticity) For t > 0, θ ∈ [0, 2π) and a function ϕ : S → R, the equation

ϕ(g • x)|gx| it = e iθ ϕ(x), ∀g ∈ Γ µ , ∀x ∈ supp ν,
has no trivial solution except that t = 0, θ = 0 and ϕ is a constant.

For positive matrices, if the additive subgroup of R generated by the set {log λ g : g ∈ Γ µ } is dense in R, then condition M6 is fulfilled (see [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]). This sufficient condition was introduced by Kesten [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] and is usually easier to verify in practice. For invertible matrices, it was proved in [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF] that condition M3 implies M6.

For any s ∈ (-s 0 , 0) ∪ I µ with small enough s 0 > 0, define the transfer operator P s and the conjugate transfer operator P * s as follows: for any ϕ ∈ C(S) and x ∈ S,

P s ϕ(x) = Γµ |g 1 x| s ϕ(g 1 •x)µ(dg 1 ), P * s ϕ(x) = Γµ |g T 1 x| s ϕ(g T 1 •x)µ(dg 1 ). (3.2.5)
Under suitable conditions, the transfer operator P s has a unique probability eigenmeasure ν s on S corresponding to the eigenvalue κ(s): P s ν s = κ(s)ν s . Similarly, the conjugate transfer operator P * s has a unique probability eigenmeasure ν * s corresponding to the eigenvalue κ(s):

P * s ν * s = κ(s)ν * s . Set, for x ∈ S, r s (x) = S | x, y | s ν * s (dy), r * s (x) = S | x, y | s ν s (dy).
Then, r s is the unique, up to a scaling constant, strictly positive eigenfunction of P s : , for any ϕ ∈ C(S). We refer to Section 3.3.1 for details.

P s r s = κ(s)
Define Λ = log κ : (-s 0 , 0) ∪ I µ → R, then the function Λ is convex and analytic. For any s ∈ (-s 0 , 0) ∪ I µ , condition M6 implies that σ s = Λ (s) is strictly positive. Denote by Λ * the Fenchel-Legendre transform of Λ, then we have Λ * (q) = sq-Λ(s) > 0 if q = Λ (s) for s ∈ (-s 0 , 0) ∪ I • µ .

Precise large deviations for the scalar product

The goal of this section is to state exact large deviation asymptotics for the scalar product f, G n x , where f, x ∈ S. To the best of our knowledge, the precise large deviations for the scalar product f, G n x and, in particular, for the entries G i,j n , have not been studied by now in the literature. Our first result is a large deviation asymptotic of the Bahadur-Rao type (see [START_REF] Bahadur | On deviations of the sample mean[END_REF]) for the upper tails of f, G n x .

Note that throughout this section, for invertible matrices, all the statements are valid only for 2 × 2 matrices; for positive matrices, all the statements are valid for d × d (d 2) matrices under condition M4, and only for 2 × 2 matrices otherwise.

Theorem 3.2.1. Assume either conditions M2, M3 for invertible matrices, or conditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s

∈ I • µ and q = Λ (s). Then, as n → ∞, uniformly in f, x ∈ S, P log | f, G n x | nq = r s (x)r * s (f ) s exp (-nΛ * (q)) sσ s √ 2πn 1 + o(1) . (3.2.6)
The large deviation asymptotic (3.1.2) for the entries G i,j n announced in the introduction, is obtained from (3.2.6) with f = e i and x = e j . It is easy to verify that the asymptotic (3.2.6) implies the following large deviation principle: under the assumptions of Theorem 3.2.1, we have, uniformly in f, x ∈ S,

lim n→∞ 1 n log P log | f, G n x | nq = -Λ * (q). (3.2.7)
In its turn, the asymptotic (3.2.7) improves significantly the bound (3.1.1). An important field of applications of large deviation asymptotics for the entries of type (3.2.6) is the study of the asymptotic behavior of the branching processes in random environment with several types of particles. For results in the case of single type branching processes we refer to [START_REF] Grama | Harmonic moments and large deviations for a supercritical branching process in a random environment[END_REF][START_REF] Grama | Berry-Esseen's bound and Cramer's large deviation expansion for a supercritical branching process in a random environment[END_REF] and for the relation between the entries of products of random matrices and the multi-type branching processes we refer to [START_REF] Cohn | On the growth of the multitype supercritical branching process in a random environment[END_REF].

It may be interesting to precise some details on the moment assumptions for Theorem 3.2.1 to hold true. For positive matrices, if we assume the Furstenberg-Kesten type condition M4, the assertion holds without assuming the moment condition M2. However, it is not clear whether condition M2 is necessary for invertible matrices. This question is open, the main difficulty being to establish the Hölder regularity of the stationary measure π s for invertible matrices without assuming condition M2 (see Proposition 3.3.4). In the same line, we note that a Bahadur-Rao-Petrov type large deviation result for the norm cocycle log |G n x| has been recently established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] for invertible matrices under conditions M1 and M3.

Our next result is an improvement of Theorem 3.2.1 by allowing a vanishing perturbation l on q = Λ (s), in the spirit of the Petrov result [START_REF] Petrov | On the probabilities of large deviations for sums of independent random variables[END_REF], called the Bahadur-Rao-Petrov type large deviation. Large deviations with a perturbation l have been used for example in Buraczewski, Collamore, Damek and Zienkiewicz [START_REF] Buraczewski | Large deviation estimates for exceedance times of perpetuity sequences and their dual processes[END_REF], for a recent application to the asymptotic of the ruin time in some models of financial mathematics. These results are also useful to deduce local limit theorems with large deviations, see Subsection 3. 

P log | f, G n x | n(q + l) = r s (x)r * s (f ) s exp (-nΛ * (q + l)) sσ s √ 2πn 1 + o(1) , (3.2.8)
and, more generally, for any ϕ ∈ B γ and any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (0, s), we have, as n → ∞, uniformly in |l|

1 √ n and f, x ∈ S, E ϕ(X x n )ψ log | f, G n x | -n(q + l) (3.2.9) = r s (x) s S ϕ(u)| f, u | s ν s (du) R e -sy ψ(y)dy exp(-nΛ * (q + l)) σ s √ 2πn 1 + o(1) .
Now we are going to give asymptotics of the lower tail large deviation probabilities P(log | f, G n x | nq), where q = Λ (s) < λ = Λ (0) for s < 0. These results cannot be deduced from Theorems 3.2.1 and 3.2.2; moreover the proofs are quite different and require to develop the corresponding spectral gap theory for the transfer operator P s and to establish the Hölder regularity for the stationary measure π s with s < 0. Recall that all over the paper we assume condition (3.2.1). Theorem 3.2.3. Assume either conditions M2, M3 for invertible matrices, or conditions M5, M6 for positive matrices. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), as n → ∞, uniformly in f, x ∈ S,

P log | f, G n x | nq = r s (x)r * s (f ) s exp (-nΛ * (q)) -sσ s √ 2πn 1 + o(1) . (3.2.10)
In particular, with f = e i and x = e j in (3.2.10), we obtain the Bahadur-Rao type lower tail large deviation asymptotic (3.1.4) for the entries G i,j n . From (3.2.10) one gets a lower tail large deviation principle: under the assumptions of Theorem 3.2.3, we have, uniformly in f, x ∈ S,

lim n→∞ 1 n log P log | f, G n x | nq = -Λ * (q). (3.2.11)
The result (3.2.11) sharpens the following lower tail large deviation bound established by Benoist and Quint [10, Theorem 14.21] for invertible matrices: for q < λ, there exists a constant c > 0 such that uniformly in f, x ∈ P d-1 ,

P(log | f, G n x | < nq) e -cn .
Now we give a Bahadur-Rao-Petrov version of the above theorem.

Theorem 3.2.4. Assume either conditions M2, M3 for invertible matrices, or conditions M5, M6 for positive matrices. Then, there exists s 0 > 0 such that, for any s ∈ (-s 0 , 0) and q = Λ (s), we have, as n → ∞, uniformly in |l| 1 √ n and f, x ∈ S,

P log | f, G n x | n(q + l) = r s (x)r * s (f ) s exp (-nΛ * (q + l)) -sσ s √ 2πn 1 + o(1) , (3.2.12)
and, more generally, for any ϕ ∈ B γ and any measurable function ψ on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (-s 0 , s), we have, as n → ∞, uniformly in |l|

1 √ n and f, x ∈ S, E ϕ(X x n )ψ log | f, G n x | -n(q + l) (3.2.13) = r s (x) s S ϕ(u)| f, u | s ν s (du) R e -sy ψ(y)dy exp(-nΛ * (q + l)) σ s √ 2πn 1 + o(1) .
Consider the reversed random walk M n defined by M n = g 1 . . . g n . Since the two probabilities P log | f, G n x | n(q+l) and P log | f, M n x | n(q+l) are equal (as G n and M n have the same law), for M n we have the same large deviation expansions as for G n . It is interesting to note that, this fact and the symmetry in the definition of the eigenfunctions r s and r * s , imply that in condition M4 one can replace the bound (3.2.3) on columns of g by a similar one on rows, namely, by the bound: there exists a constant C > 1 such that for any g ∈ supp µ, and 1 i d, we have

1 max 1 j d g i,j min 1 j d g i,j C. (3.2.14)

Local limit theorems with large deviations

As before, throughout this section, for invertible matrices, all the statements are valid only for 2 × 2 matrices; for positive matrices, all the statements are valid for d × d (d 2) matrices under condition M4, and only for 2 × 2 matrices otherwise.

In Theorem 3.2.2, taking ψ = 1 [a 1 ,a 2 ]
with fixed real numbers a 1 < a 2 , we get the following local limit theorem with large deviations for the scalar products f, G n x .

Theorem 3.2.5. Assume either conditions M2, M3 for invertible matrices, or conditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s ∈ I •

µ and q = Λ (s). Then, for any real numbers

-∞ < a 1 < a 2 < ∞, we have, as n → ∞, uniformly in |l| 1 √ n and f, x ∈ S, P log | f, G n x | ∈ n(q + l) + [a 1 , a 2 ) = e -sa 1 -e -sa 2 r s (x)r * s (f ) s exp (-nΛ * (q + l)) sσ s √ 2πn 1 + o(1) , (3.2.15)
and, more generally, for any ϕ ∈ B γ , we have, as n → ∞, uniformly in |l| For sums of independent real-valued random variables, local limit theorems with large and moderate deviations can be found for instance in Gnedenko [START_REF] Gnedenko | On a local limit theorem of the theory of probability[END_REF], Sheep [START_REF] Sheep | A local limit theorem[END_REF], Stone [START_REF] Stone | A local limit theorem for nonlattice multi-dimensional distribution functions[END_REF], Borovkov and Borovkov [START_REF] Borovkov | Asymptotic analysis of random walks[END_REF], Breuillard [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF]. For products of random matrices, such types of local limit theorems for the norm cocycle log |G n x| have been recently established in [START_REF] Benoist | Random walks on reductive groups[END_REF][START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Our results (3.2.15) and (3.2.16) extend the results in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] to the case of the scalar product f, G n x .

1 √ n and f, x ∈ S, E ϕ(X x n )1 {log | f,Gnx |∈n(q+l)+[a 1 ,a 2 )} = e -sa 1 -e -sa 2 r s (x) s S ϕ(u)| f, u | s ν s (du) exp(-nΛ * (q + l)) σ s √ 2πn 1 + o(1
The local limit theorem with large deviations for s < 0 can be deduced from Theorem 3.2.4 in the same way as the corresponding results of Theorem 3.2.5. Theorem 3.2.6. Assume either conditions M2, M3 for invertible matrices, or conditions M5, M6 for positive matrices. Then, there exist s 0 > 0 and a sequence ∆ n > 0 converging to 0 as n → ∞ such that, for any s ∈ (-s 0 , 0) and q = Λ (s), and any real numbers

-∞ < a 1 < a 2 < ∞, we have, as n → ∞, uniformly in |l| 1 √ n and f, x ∈ S, P log | f, G n x | ∈ n(q + l) + [a 1 , a 2 ) = e -sa 2 -e -sa 1 r s (x)r * s (f ) s exp (-nΛ * (q + l)) -sσ s √ 2πn 1 + o(1) ,
and, more generally, for any ϕ ∈ B γ , we have, as n → ∞, uniformly in |l|

1 √ n and f, x ∈ S, E ϕ(X x n )1 {log | f,Gnx |∈n(q+l)+[a 1 ,a 2 )} = e -sa 1 -e -sa 2 r s (x) s S ϕ(u)| f, u | s ν s (du) exp(-nΛ * (q + l)) -sσ s √ 2πn 1 + o(1) .

Large deviation principle for the spectral radius of positive matrices

As before, in this section, the statements are valid for d × d (d 2) matrices under condition M4, and for 2 × 2 matrices otherwise. Using Theorems 3.2.2 and 3.2.4, we are able to derive reinforced large deviation principles for the spectral radius of products of positive random matrices. Recall that the spectral radius of a matrix g ∈ M (d, R) is defined by ρ(g) = lim k→∞ g k 1/k . According to the Perron-Frobenius theory, the spectral radius ρ(g) of a positive matrix g actually coincides with its largest eigenvalue. Below we state the results with a perturbation l on q = Λ (s), but, of course, they remain true for l = 0.

Theorem 3.2.7. (1) Assume conditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s ∈ I •

µ and q = Λ (s). Then, there exist constants 0 < c < C < +∞ such that uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) < C. (3.2.17)
(2) Assume conditions M5, M6 for positive matrices. Then, there exist constants s 0 > 0 and 0 < c < C < +∞ such that for any s ∈ (-s 0 , 0) and q = Λ (s), uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) lim sup n→∞ √ n e nΛ * (q+l) P log ρ(G n ) n(q + l) < C.
A more general version of Theorem 3.2.7 with a target function ψ on log ρ(G n ) will be presented in Section 3.8: see Theorem 3.8.1. The statements (1) and (2) in Theorem 3.2.7 clearly imply the following large deviation principle for log ρ(G n ): under the assumptions of Theorem 3.2.7, uniformly in |l|

1 √ n , lim n→∞ 1 n log P log ρ(G n ) n(q + l) = -Λ * (q); (3.2.18)
a similar assertion also holds for the lower tail. Note also that statements ( 1) and

(2) of Theorem 3.2.7 still hold when the product G n is replaced by M n defined by

M n = g 1 . . . g n .
The upper bound of part (1) in Theorem 3.2.7 follows from the reinforced large deviation principle for the matrix norm G n recently established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. The lower bound will be deduced from our Theorem 3.2.2 in conjunction with the Collatz-Wielandt formula for positive matrices. Note that, the Collatz-Wielandt formula does not hold in general for invertible matrices, hence the question of proving Theorem 3.2.7 for invertible matrices remains open, even for the large deviation principle for ρ(G n ); the latter has been recently conjectured by Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF]. The corresponding upper bound in large deviation principle for invertible matrices can be easily deduced from the results in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]: under conditions M2, M3, for any s ∈ I • µ and q = Λ (s), uniformly in |l|

1 √ n , lim n→∞ 1 n log P log ρ(G n ) n(q + l) -Λ * (q).

Hölder regularity of the stationary measure

Spectral gap properties and a change of measure

Recall that the transfer operator P s and the conjugate transfer operator P * s are defined by (3.2.5). Below P s ν s stands for the measure on S such that P s ν s (ϕ) = ν s (P s ϕ), for continuous functions ϕ on S, and P * s ν * s is defined similarly. The spectral gap properties of P s and P * s are summarized in the following proposition which was proved in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices, and in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices.

Proposition 3.3.1. Assume either condition M3 for invertible matrices. Then, for any s ∈ I •

µ , the following assertions hold: (1) the spectral radii of the operators P s and P * s are both equal to κ(s) and there exist a unique, up to a scaling constant, strictly positive Hölder continuous function r s and a unique probability measure ν s on S such that

P s r s = κ(s)r s , P s ν s = κ(s)ν s ;
(2) there exist a unique strictly positive Hölder continuous function r * s and a unique probability measure ν * s on S such that

P * s r * s = κ(s)r * s , P * s ν * s = κ(s)ν * s ;
Moreover, the function κ :

I • µ → R is analytic.
The case of s < 0 is not covered by Proposition 3.3.1. We state below the corresponding result, which is proved in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. Proposition 3.3.2. Assume either conditions M2, M3 for invertible matrices, or condition M5 for positive matrices. Then there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , 0), the assertions ( 1) and ( 2) of Proposition 3.3.1 remain valid. Moreover, the function κ : (-s 0 , 0) → R is analytic.

The following lemma gives explicit formulae for the eigenfunctions r s and r * s .

Lemma 3.3.3.

(1) Assume condition M3 for invertible matrices. Then, for s ∈ I • µ , the eigenfunctions r s and r * s are given by

r s (x) = S | x, y | s ν * s (dy), r * s (x) = S | x, y | s ν s (dy), x ∈ S. (3.3.1) 
(2) Assume either conditions M2, M3 for invertible matrices, or condition M5 for positive matrices. Then there exists a constant s 0 > 0 such that for any s ∈ (-s 0 , 0), the expressions (3.3.1) hold.

The first assertion of Lemma 3.3.3 for s > 0 was proved in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices, and in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices. The proof of the second one for s < 0 is quite different from that in the case s > 0 and is postponed to Section 3.6. It is based on the Hölder regularity of the eigenmeasures ν s and ν * s which is the subject of the next section.

In Propositions 3.3.1 and 3.3.2, the eigenvalue κ(s) and the eigenfunction r s are both strictly positive. This fact allows us to perform a change of measure, as shown below. Under the corresponding assumptions of Propositions 3.3.1 and 3.3.2, for any s ∈ (-s 0 , 0)∪I µ , the family of probability kernels q s n (x, g)

= |gx| s κ n (s) rs(g•x)
rs(x) , n 1, satisfies the following cocycle property: for any x ∈ S and g 1 , g 2 ∈ Γ µ ,

q s n (x, g 1 )q s m (g 1 •x, g 2 ) = q s n+m (x, g 2 g 1 ). (3.3.2)
Thus, the probability measures

Q x s,n (dg 1 , . . . , dg n ) = q s n (x, g n . . . g 1 )µ(dg 1 ) . . . µ(dg n ), n
1, form a projective system on M (d, R) N . By the Kolmogorov extension theorem, there exists a unique probability measure Q x s on M (d, R) N , with marginals Q x s,n . We denote by E Q x s the corresponding expectation. By the definition of Q x s , for any measurable function ϕ on (S × R) n , it holds that

1 κ n (s)r s (x) E r s (X x n )|G n x| s ϕ X x 1 , log |G 1 x|, . . . , X x n , log |G n x| = E Q x s ϕ X x 1 , log |G 1 x|, . . . , X x n , log |G n x| . (3.3.3)
Under the changed measure Q x s , the process

X x 0 = x, X x n = G n •x, n 1.
forms a Markov chain on S with the transition operator given by

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x) = 1 κ(s)r s (x) Γµ |g 1 x| s ϕ(g 1 •x)r s (g 1 •x)µ(dg 1 ).
The Markov operator Q s has a unique stationary probability measure π s such that for any ϕ ∈ C(S),

lim n→∞ Q n s ϕ = π s (ϕ), where π s (ϕ) = ν s (ϕr s ) ν s (r s ) . (3.3.4) Let Q s = S Q x s π s (dx).
Then, the measure Q s is shift-invariant and ergodic since π s is the unique stationary measure of the Markov operator Q s . When s ∈ I µ , the following SLLN was established in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices and in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] for positive matrices, and in our setting can be read as follows: under either conditions M2, M3 for invertible matrices, or condition M4 (or condition M5) for positive matrices, for any x ∈ S,

lim n→∞ 1 n log |G n x| = lim n→∞ 1 n log G n = Λ (s), Q x s -a.s. and Q s -a.s., (3.3.5) 
where Λ (s) = κ (s) κ(s) with the function κ defined in Proposition 3.3.1. Moreover, the CLT for log |G n x| under the changed measures Q x s and Q s was proved in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]. When s ∈ (-s 0 , 0) with small enough s 0 > 0, the SLLN and the CLT for log |G n x| under the measures Q x s and Q s have been recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for both invertible matrices and positive matrices.

Hölder regularity of the stationary measure

We shall present our results on the Hölder regularity of the stationary measure π s and of the eigenmeasure ν s for both invertible matrices and positive matrices. The regularity of π s and ν s is central to establishing the precise large deviation asymptotics for the entries G i,j n and is also of independent interest. Proposition 3.

Assume either conditions M2, M3 for invertible matrices, or conditions M4, M6 (or conditions M1 M5, M6) for positive matrices. Then, for any s ∈ I •

µ , there exists a constant c > 0 such that

sup f ∈S S 1 | f, x | c π s (dx) < +∞ and sup f ∈S S 1 | f, x | c ν s (dx) < +∞. (3.3.6)
In particular, for any s ∈ I • µ , there exist constants c, C > 0 such that for any For s = 0 such regularity was used to obtain limit theorems for the entries G i,j n and for the spectral radius ρ(G n ) by many authors, however, such a result has not been established before neither for invertible matrices, nor for positive matrices under the changed measure. For invertible matrices, the proof of the assertion (3.3.6) is based on the asymptotic properties of the components in the Cartan and Iwasawa decompositions of the reversed random matrix product M n = g 1 . . . g n and on the simplicity of the dominant Lyapunov exponent of G n under the changed measure Q x s : see Section 3.5.1.

0 < t < 1, sup f ∈S π s {x : | f, x | t} Ct c and sup f ∈S ν s {x : | f, x | t} Ct c . ( 3 
For positive matrices, under conditions M4 and M6, the proof of the assertion (3.3.6) relies on the fact that supp ν = supp ν s (s > 0) established in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] and essentially on condition M4 which ensures that the Markov chain (X x n ) n 1 stays forever in the interior of the projective space S d-1 + : see Section 3.5.2. If condition M4 is replaced by M5, the main difficulty to prove (3.3.6) is that the Markov chain (X x n ) n 1 is no longer separated from the coordinates (e k ) 1 k d , hence the proof can not follow directly from the fact that supp ν = supp ν s . Instead, the main ingredient in our proof consists in the large deviation asymptotic for the norm cocycle log |G n x| under the changed measure Q x s established in Theorem 3.4.4. When s is non-positive and sufficiently close to 0, the Hölder regularity of the stationary measure π s is given by the following proposition. For positive matrices, Proposition 3.3.5 is new even for s = 0: in this case π 0 = ν 0 = ν with the stationary measure ν defined by (3.2.4). The corresponding results for invertible matrices with s = 0 (in this case also π 0 = ν 0 = ν) has been obtained in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF]; we also refer to [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] for the detailed description of the method used in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and to [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF] and [START_REF] Benoist | Random walks on reductive groups[END_REF] for a different approach of the proof. When s < 0, Proposition 3.3.5 is deduced from the Hölder regularity of the measure ν and the analyticity of the eigenfunction κ.

The proofs of Propositions 3.3.4 and 3.3.5 are technically involved and are postponed to Sections 3.5 and 3.6.

Auxiliary statements

Under conditions of Theorem 3.2.1, the function Λ = log κ is convex and analytic on (-s 0 , 0)

∪ I µ . Set γ s,k = Λ (k) (s), k 1.
Under the changed measure Q x s , define the Cramér series ζ s (see Petrov [START_REF] Petrov | Sums of independent random variables[END_REF]) by

ζ s (t) = γ s,3 6γ 3/2 s,2 + γ s,4 γ s,2 -3γ 2 s,3 24γ 3 s,2 t + γ s,5 γ 2 s,2 -10γ s,4 γ s,3 γ s,2 + 15γ 3 s,3 120γ 9/2 s,2 t 2 + . . . ,
which converges for small enough |t|. We need the following expansion of Λ * (q + l) with respect to the perturbation l, which is taken from [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]:

Lemma 3.4.1. Assume either conditions of Proposition 3.3.4 when s ∈ I • µ , or conditions of Proposition 3.3.5 when s ∈ (-s 0 , 0) with small enough s 0 > 0. Let q = Λ (s). Then, there exists δ > 0 such that for any |l| δ,

Λ * (q + l) = Λ * (q) + sl + h s (l),
where h s is linked to the Cramér series ζ s by the identity

h s (l) = l 2 2σ 2 s - l 3 σ 3 s ζ s ( l σ s ).
Now let us fix a density function ρ on the real line. Its Fourier transform ρ is supported on a the interval [-1, 1]. For any ε > 0, define the scaled density function ρ ε by

ρ ε (y) = 1 ε ρ( y ε ), y ∈ R, whose Fourier transform ρ ε is compactly support on [-ε -1 , ε -1 ].
For any non-negative integrable function ψ on R, we introduce two modified functions related to ψ as follows: for any y ∈ R, set B ε (y) = {y ∈ R : |y -y| ε} and

ψ + ε (y) = sup y ∈Bε(y) ψ(y ) and ψ - ε (y) = inf y ∈Bε(y) ψ(y ). (3.4.1)
The following smoothing inequality gives the two-sided bounds of the function ψ.

Lemma 3.4.2. Suppose that ψ is a non-negative integrable function and that ψ + ε and ψ - ε are measurable for any ε > 0, then for sufficiently small ε, there exists a positive constant C ρ (ε) with C ρ (ε) → 0 as ε → 0, such that, for any x ∈ R,

ψ - ε * ρ ε 2 (x) - |y| ε ψ - ε (x -y)ρ ε 2 (y)dy ψ(x) (1 + C ρ (ε))ψ + ε * ρ ε 2 (x).
The proof of the above lemma, being similar to that of Lemma 5.2 in [START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF], will not be detailed here.

For any s ∈ (-s 0 , 0) ∪ I µ and t ∈ R, define a family of perturbed operators R s,it as follows: for any ϕ ∈ B γ ,

R s,it ϕ(x) = E Q x s e it(log |g 1 x|-q) ϕ(X x 1 ) , x ∈ S. (3.4.2)
It follows from the cocycle property (3.3.2) that

R n s,it ϕ(x) = E Q x s e it(log |Gnx|-nq) ϕ(X x n ) , x ∈ S.
Under various restrictions on s, it was shown in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that the operator R s,it acts onto the Banach space B γ and has a spectral gap. The next proposition is taken from [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. Its proof is based on the spectral gap properties of the perturbed operator R s,it . In the following, let ϕ be a strictly positive and γ-Hölder continuous function on the projective space S. Assume that the function ψ : R → C is a bounded measurable function with compact support in R, and moreover, ψ is differentiable in a small neighborhood of 0 on the real line. (

1) Assume either conditions M2, M3 for invertible matrices, or conditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s ∈ I •

µ and q = Λ (s). Then, we have, as n → ∞, uniformly in x ∈ S, |l|

1 √ n and ϕ ∈ B γ , √ n σ s e nhs(l) R e -itln R n s,it (ϕ)(x)ψ(t)dt - √ 2πψ(0)π s (ϕ) C √ n + |l| ϕ γ . (3.4.3)
(2) Assume either conditions M2, M3 for invertible matrices, or conditions M5, M6 for positive matrices. Then, there exists s 0 > 0 such that for any s ∈ (-s 0 , 0) and q = Λ (s), the inequality (3.4.3) holds uniformly in x ∈ S, |l| µ be such that s < t and set q s = Λ (s) and q t = Λ (t). Then, we have, as n → ∞, uniformly in x ∈ S and |l|

1 √ n , Q x s log |G n x| n(q t + l) = ν t (r s ) ν t (r t ) r t (x) r s (x) exp{-n(Λ * (q t + l) -Λ * (q s ) -s(q t -q s + l))} (t -s)σ t √ 2πn [1 + o(1)].
Proof. By (3.3.3), we get

Q x s (log |G n x| n(q t + l)) = 1 κ n (s)r s (x) E r s (X x n )|G n x| s 1 {log |Gnx| n(qt+l)} = 1 κ n (s)r s (x) e sn(qt+l) E r s (X x n )ψ s log |G n x| -n(q t + l) ,
where ψ s (y) = e sy 1 {y 0} , y ∈ R. From Theorem 2.2 in [85, ] it follows that for any t ∈ I • µ , q t = Λ (t), ϕ ∈ B γ and measurable function ψ on R such that y → e -t y ψ(y) is directly Riemann integrable for some t ∈ (0, s), we have, as n → ∞, uniformly in x ∈ S and |l| 

1 √ n , E ϕ(X x n )ψ(log |G n x| -n(q t + l)) = r t (x) t exp (-nΛ * (q t + l)) σ t √ 2πn ν t (ϕ)
1 √ n , E r s (X x n )ψ s log |G n x| -n(q t + l) = r t (x) t ν t (r s ) e -nΛ * (qt+l) (t -s)σ t √ 2πn 1 + o(1) .
We conclude the proof of Theorem 3.4.4 by using the fact that Λ * (q) = sq -Λ(s), Λ(s) = log κ(s) and t = ν t (r t ).

Proof of the Hölder regularity of π s for positive s

In this section we prove Proposition 3.3.4, i.e. the Hölder regularity of the stationary measure π s for both invertible matrices and positive matrices for s > 0. These results are of independent interest and play a crucial role in establishing the precise large deviation asymptotics for scalar products and entries, see Theorem 3.2.2.

The study of the regularity of the stationary measure ν defined by (3.2.4), attracted a great deal of attention, see e.g. [START_REF] Aoun | Random subgroups of linear groups are free[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF][START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF][START_REF] Crisanti | Products of random matrices: in Statistical Physics[END_REF][START_REF] Dinh | Random products of matrices: a dynamical point of view[END_REF][START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF][START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF]. As far as we know, there are three different approaches to establish the regularity of ν. The first one, consists in making use of the simplicity of the dominant Lyapunov exponent λ and investigating the asymptotic behaviors of the components in the Cartan and Iwasawa decompositions of the random matrix product M n and is originally due to Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF], see also [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF]. The second one is developed in [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF] for the study of the regularity of the stationary measure on the torus, and has been applied to the setting of products of random matrices in [START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF], where the large deviation bounds for the Iwasawa cocycle and for the Cartan projection play a crucial role. The third one, which is recently developed in [START_REF] Dinh | Random products of matrices: a dynamical point of view[END_REF] for the special linear group SL(2, C) consisting of complex 2×2 matrices with determinant one, is based on the theory of super-potentials introduced in [START_REF] Dinh | Super-potentials of positive closed currents, intersection theory and dynamics[END_REF]. All of the results mentioned above are concerned with the regularity of the stationary measure ν. However, the regularity of the eigenmeasure ν s or of the stationary measure π s for s different from 0 was not known before in the literature, neither for invertible matrices nor for positive matrices.

As the proofs are rather long we split them into two parts. In Subsection 3.5.1 we establish Proposition 3.3.4 for invertible matrices. In Subsection 3.5.2 we prove Proposition 3.3.4 for positive matrices.

Regularity of the stationary measure for invertible matrices

In order to prove Proposition 3.3.4 for invertible matrices, we first extend the some convergence results concerning the Cartan and Iwasawa decompositions of the matrix product M n established earlier in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] under the measure P, to the framework of the changed measure Q s .

Asymptotics for the Cartan decomposition

Recall that G n = g n . . . g 1 . We are going to investigate the asymptotic behavior of the components of the Cartan decomposition of the reversed matrix product

M n = g 1 g 2 . . . g n , n 1.
Note that the distributions of the random walks M n and G n coincide. However, as it will be seen below, the asymptotics of the components of their Cartan decompositions are not exactly the same. Let K = SO(d, R) be the orthogonal group, and A + be the set of diagonal matrices whose diagonal entries starting from the upper left corner are strictly positive and decreasing. With these notation, the well known Cartan decomposition states that GL(d, R) = KA + K. The Cartan decomposition of the matrix product M n will be denoted by M n = k n a n k n , where k n , k n ∈ K and a n ∈ A + with its diagonal elements (singular values) satisfying a 1,1 n a 2,2 n . . . a d,d n > 0. Note that the diagonal matrix a n is uniquely determined, but the orthogonal matrices k n and k n are not unique. We choose one such decomposition of M n . The vector k n e 1 ∈ P d-1 is called the density point of M n . It plays an important role in the study of products of random matrices: see [START_REF] Bourgain | Stationary measures and equidistribution for orbits of nonabelian semigroups on the torus[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. The following result shows that the density point converges almost surely to the random variable Z s of the law π s under the changed measure 

Q s = P d-1 Q x s π s (dx).
lim n→∞ |M T n x| M T n = | x, Z s |, Q s -a.s., (3.5.2)
where the law of the random variable Z s (on P d-1 ) is the stationary measure π s . Moreover, the assertions (3.5.1) and (3.5.2) also hold true with the measure Q s replaced by Q x s , for any starting point x ∈ P d-1 .

Before proceeding to proving Lemma 3.5.1, let us first recall the following two results which were established in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. In the sequel, let m be the unique rotation invariant probability measure on the projective space P d-1 . For any matrix g ∈ GL(d, R), denote by g • m the probability measure on P d-1 such that for any measurable function ϕ on P d-1 ,

P d-1 ϕ(x)(g • m)(dx) = P d-1 ϕ(g • x)m(dx). Lemma 3.5.2. Assume condition M3. Let s ∈ I • µ .
Then, the probability measure M n •m converges weakly to the Dirac measure δ Zs , Q s -a.s., where the law of the random variable Z s is given by π s .

Proof. This result is a direct consequence of [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]Theorem 3.2]. More specifically, according to [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], the probability measure G T n • m converges weakly to a Dirac measure δ Z * s , Q s -a.s., where the law of the random variable Z * s is given by π * s . Here π * s is the stationary measure of the conjugate Markov operator Q * s defined by

Q * s ϕ(x) = 1 κ(s)r * s (x) P * s (ϕr * s )(x), x ∈ P d-1
, for any ϕ ∈ C(S). Denote by µ T the image of the measure µ by the map g → g T . Then, Lemma 3.5.2 follows since the measure µ T also satisfies condition M3.

The following result is proved in [50, Lemma 3.5].

Lemma 3.5.3. Assume condition M3. Let s ∈ I •

µ . Then, there exists a constant c s > 0 such that for any

x ∈ P d-1 , it holds that Q x s c s Q s .
The assertion of Lemma 3.5.3 implies that the measure Q x s is absolutely continuous with respect to Q s . Using Lemmas 3.5.2 and 3.5.3, we are now in a position to prove Lemma 3.5.1.

Proof of Lemma 3.5.1. By the Cartan decomposition of M n , we have

M n = k n a n k n ,
where k n , k n ∈ K and a n ∈ A + . By Lemma 3.5.2, the probability measure M n • m converges weakly to the Dirac measure δ Zs , Q s -a.s.. Since m is a rotation invariant measure on P d-1 , we deduce that k n a n • m converges weakly to the random variable Z s , Q s -a.s.. Taking into account that a n is a diagonal random matrix with decreasing diagonal entries, this implies that, as n → ∞, we have a n •m → δ e 1 , a 2,2 n /a 1,1 n → 0 and k n e 1 → Z s , Q s -a.s.. This concludes the proof of the assertion (3.5.1). To show (3.5.2), using again the decomposition M n = k n a n k n , it follows that for any x ∈ P d-1 , 

|M T n x| 2 = M T n x, M T n x = a n k T n x, a n k T n x = d j=1 (a j,j n ) 2 | k T n x, e j | 2 . ( 3 

Asymptotics for the Iwasawa decomposition

In this subsection we study the asymptotic of the components in the Iwasawa decomposition of M n under the changed measure Q x s . Denote by L the group of lower triangular matrices with 1 in the diagonal elements, by A the group of diagonal matrices with strictly positive entries in the diagonal elements, and as before by K the group of orthogonal matrices. The Iwasawa decomposition states that GL(d, R) = LAK and such decomposition is unique. Therefore, for the product M n , there exist unique 

L(M n ) ∈ L, A(M n ) ∈ A and K(M n ) ∈ K such that M n = L(M n )A(M n )K(M n ). With
lim n→∞ L(M n )e 1 = Z s Z s , e 1 , Q s -a.s. and Q x s -a.s..
where Z s is a random variable given by Lemma 3.5.1.

Proof. In view of Lemma 3.5.3, it suffices to prove the assertion under the measure

Q s . Using the Iwasawa decomposition M n = L(M n )A(M n )K(M n ) and noticing that K(M n ) is an orthogonal matrix, it follows that M n M T n e 1 |M T n e 1 | 2 = L(M n )A(M n ) 2 L(M n ) T e 1 |A(M n )L(M n ) T e 1 | 2 = L(M n )e 1 , (3.5.4) 
where the second equality holds since

A(M n ) 2 L(M n ) T e 1 = |A(M n )L(M n )e 1 | 2 e 1 .
By the Cartan decomposition of M n we have

M n = k n a n k n ,
where k n , k n are two orthogonal matrices, hence we get that, for any y ∈ R d ,

M n M T n e 1 , y = (a n ) 2 k T n e 1 , k T n y = (a 1,1 n ) 2 k T n e 1 , e 1 k T n y, e 1 + O(a 1,1 n a 2,2 n ) = (a 1,1 n ) 2 k n e 1 , e 1 k n e 1 , y + O(a 1,1 n a 2,2 n ). (3.5.5)
Consequently, we obtain that Q s -a.s.,

lim n→∞ L(M n )e 1 , y = lim n→∞ M n M T n e 1 , y M n M T n e 1 , e 1 = lim n→∞ k n e 1 , y k n e 1 , e 1 = Z s , y Z s , e 1 ,
where in the first equality we use (3.5.4), in the second one we use (3.5.5) and Lemma 3.5.1, and in the last one we apply again Lemma 3.5.1. Since y ∈ R d is arbitrary, the proof of Lemma 3.5.4 is complete.

For any 1 k d, we briefly recall the notion of exterior algebra ∧ k (R d ) of the vector space R d . The space ∧ k (R d ) is endowed with the scalar product •, • and the norm | • |; we use the same notation as in R d and the distinction should be clear from the context. The scalar product in ∧ k (R d ) satisfies the following property: for any u i ,

v j ∈ R d , 1 i, j d, u 1 ∧ • • • ∧ u k , v 1 ∧ • • • ∧ v k = det( u i , v j ) 1 i,j d ,
where det( u i , v j ) 1 i,j d denotes the determinant of the associated matrix. It is well d,R) and 1 k d, the exterior product ∧ k g of the matrix g is defined as follows: for any v

known that {e i 1 ∧ e i 2 ∧ • • • ∧ e i k , 1 i 1 < i 2 < • • • < i k d} forms a basis of ∧ k (R d ), 1 k d, and that v 1 ∧ • • • ∧ v k is nonzero if and only if v 1 , . . . , v k are linearly independent in R d . For any g ∈ GL(
1 , . . . , v k ∈ R d , ∧ k g(v 1 ∧ • • • ∧ v k ) = gv 1 ∧ • • • ∧ gv k . Set ∧ k g = sup{|(∧ k g)v| : v ∈ ∧ k (R d ), |v| = 1}. Since ∧ k (gg ) = (∧ k g)(∧ k g ), it holds that ∧ k (gg ) ∧ k g ∧ k g for any g, g ∈ GL(d, R).
Besides, if we denote by a 11 , . . . , a dd the singular values of the matrix g, then ∧ k g = a 11 . . . a kk . In particular, we have ∧ k g g k . The following lemma was proved in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. For any g ∈ GL(d, R), by the Iwasawa decomposition we have g = L(g)A(g)K(g), where L(g) ∈ L, A(g) ∈ A and K(g) ∈ K.

In the sequel, we denote N (g) = max{ g , g -1 }. Recall that M n = g 1 g 2 . . . g n . Lemma 3.5.5. For any integers n, m 0, we have

|L(M n+m )e 1 -L(M n )e 1 | n+m-1 j=n ∧ 2 M T j |M T j e 1 | 2 e 2 log N (g j+1 ) ,
where we use the convention that L(M 0 ) = 0 and

∧ 2 M T 0 |M T 0 e 1 | 2 = 0.
The following result shows the simplicity of the dominant Lyapunov exponent for M T n under the changed measure

Q x s . Lemma 3.5.6. Assume condition M3. Let s ∈ I • µ . Then, uniformly in x ∈ P d-1 , lim n→∞ 1 n E Q x s (log |M T n x|) = λ 1 (s), (3.5.6)
and

lim n→∞ 1 n E Q x s (log ∧ 2 M T n ) = λ 1 (s) + λ 2 (s), (3.5.7) 
where λ 1 (s) > λ 2 (s) are called the first two Lyapunov exponents of M T n under the measure Q x s .

The assertion (3.5.6) is proved in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]Theorem 3.10]. The assertion (3.5.7) follows by combining Theorems 3.10 and 3.17 in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. The fact that λ 1 (s) > λ 2 (s) will play an essential role in the proof of the Hölder regularity of the stationary measure π s for invertible matrices, see Proposition 3.3.4.

Using the simplicity of the Lyapunov exponent (see Lemma 3.5.6) we can complement the convergence result in Lemma 3.5.4 by giving the rate of convergence. This result is not used in the proofs, but is of independent interest. 

E Q x s L(M n )e 1 - Z s Z s , e 1 c e -Cn . (3.5.8)
Moreover, the assertion (3.5.8) remains valid when the measure Q x s is replaced by Q s . The proof of Proposition 3.5.7 is postponed to Subsection 3.5.1. By Jensen's inequality, the bound (3.5.8) implies that there exists a constant C > 0 such that uniformly in

x ∈ P d-1 , lim sup n→∞ 1 n E Q x s log L(M n )e 1 - Z s Z s , e 1 -C.
When s = 0, it was proved in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] that C = λ 1 (0) -λ 2 (0). We conjecture that C = λ 1 (s) -λ 2 (s) also for s > 0, but the proof eluded us. 

∈ P d-1 , ρ(g, x) = log ∧ 2 g -2 log |gx|.
It is clear that

E Q x s ρ(M T n , x) = E Q x s log ∧ 2 M T n -2E Q x s log |M T n x| .
By Lemma 3.5.6, we see that

lim n→∞ 1 n sup x∈P d-1 E Q x s ρ(M T n , x) < 0,
which clearly implies that, for large enough n,

sup x∈P d-1 E Q x s ρ(M T n , x) < 0. (3.5.9)
We claim that there exists a small constant c > 0 such that lim sup

n→∞ 1 n log sup x∈P d-1 E Q x s ∧ 2 M T n c |M T n x| 2c < 0.
(3.5.10)

To prove (3.5.10), we denote

a n = log sup x∈P d-1 E Q x s e cρ(M T n ,x)
, for sufficiently small constant c > 0. Using the cocycle property (3.3.2) and the fact that ρ is subadditive, we get that for any n, m 1,

E Q x s e cρ(M T n+m ,x) E q s m (x, G m )e cρ(M T m ,x) E q s n (x, g m+1 . . . g m+n )e cρ(g T m+n ...g T m+1 ,x) = E Q x s e cρ(M T m ,x) E Q x s e cρ(M T n ,x) .
Taking supremum on both sides of the above inequality, this yields that the sequence (a n ) n 1 satisfies the subadditive property: a n+m a m + a n , hence we get a = lim n→∞ an n = inf n 1 an n . To show that a < 0, it suffices to check that there exists some integer p 1 such that sup

x∈P d-1 E Q x s e cρ(M T p ,x) < 1. (3.5.11)
We proceed to verify (3.5.11). Using the fact that sup x |ρ(g, x)| 4 log N (g) and the basic inequality e y 1 + y + y 2 2 e |y| , y ∈ R, we obtain

E Q x s e cρ(M T p ,x) 1 + cE Q x s ρ(M T p , x) + c 2 2 E Q x s 16 log 2 N (M T p )e 4c log N (M T p ) .
(3.5.12)

The second term on the right-hand side of (3.5.12) is strictly negative by using the bound (3.5.9) and taking large enough p. The third term is finite due to the moment condition (3.2.1). Consequently, taking c > 0 small enough, we obtain the inequality (3.5.11) and thus the desired assertion (3.5.10) follows.

Since the bound (3.5.10) holds uniformly over x ∈ P d-1 , taking into account that

Q s = P d-1 Q x s π s (dx)
, it follows that there exist constants C > 0 and 0 < r < 1 such that for any

x ∈ P d-1 , E Qs ∧ 2 M T n c |M T n x| 2c
Cr n .

(3.5.13) Using Lemma 3.5.4, Fatou's lemma and the fact that |Z s | = 1, we have that for sufficiently small constant c > 0,

E Qs 1 | Z s , e 1 | c lim inf n→∞ E Qs |L(M n )e 1 | c . (3.5.14)
From Lemma 3.5.5 with n = 0, it follows that

|L(M n )e 1 | c ∞ j=1 ∧ 2 M T j c |M T j e 1 | 2c e 2c log N (g j+1 ) .
Notice that M T j and g j+1 are not independent under the measure Q s . Using Fubini's theorem, Hölder's inequality and the bound (3.5.13), we get

E Qs |L(M n )e 1 | c ∞ j=1 E Qs ∧ 2 M T j 2c |M T j e 1 | 4c 1/2 E Qs e 4c log N (g j+1 ) 1/2
CE Qs e 4c log N (g 1 ) ∞ j=1 r j < +∞.

Combining this with (3.5.14) leads to E Qs

1

| Zs,e 1 | c < +∞. Note that for any f ∈ P d-1 , we can choose an orthogonal matrix k such that ke 1 = f . If we replace g i by k -1 g i k, then it is easy to see that M n is replaced by k -1 M n k. Moreover, in view of Lemma 3.5.2, the random variable Z s is replaced by k -1 Z s . Since the bound (3.5.13) holds uniformly in x ∈ P d-1 , it follows that

E Qs 1 | k -1 Z s , e 1 | c CE Qs e 4c log N (k -1 g 1 k) ∞ j=1 r j < +∞. Observe that N (k -1 g 1 k) = N (g 1 ) and k -1 Z s , e 1 = Z s , f . Therefore, for any s ∈ I • µ , there exists a constant c > 0 such that sup f ∈P d-1 P d-1 1 | f, x | c π s (dx) = sup f ∈P d-1 E Qs 1 | f, Z s | c < +∞.
This implies that there exists a constant C > 0 such that for any 0 < t < 1, uniformly in

f ∈ P d-1 , π s {x : | f, x | t} = {x:| f,x | t} | f, x | c | f, x | c π s (dx) t c P d-1 1 | f, x | c π s (dx) Ct c .
The proof of Proposition 3.3.4 for invertible matrices is complete.

Proof of Proposition 3.5.7. In view of Lemma 3.5.3, it suffices to prove the assertion of the proposition with Q s instead of Q x s , i.e. we show that there exist constants c, C > 0 such that for all n 1,

E Qs L(M n )e 1 - Z s Z s , e 1 c < e -Cn . (3.5.15)
Using Lemma 3.5.5 and Hölder's inequality, for sufficiently small constant c > 0 and for any n, m 1, we get

E Qs L(M n+m )e 1 -L(M n )e 1 c n+m-1 j=n E Qs ∧ 2 M T j 2c |M T j e 1 | 4c 1/2 E Qs e 4c log N (g j+1 ) 1/2 C n+m-1 j=n E Qs ∧ 2 M T j 2c |M T j e 1 | 4c 1/2 , (3.5.16)
where the last inequality holds due to the moment condition (3.2.1). By the Fatou lemma, taking the limit as m → ∞, we see that

E Qs L(M n )e 1 - Z s Z s , e 1 c C ∞ j=n E Qs ∧ 2 M T j 2c |M T j e 1 | 4c 1/2 Ce -Cn ,
where the last inequality holds due to the bound (3.5.13).

The regularity of the stationary measure for positive matrices

The aim of this section is to prove Proposition 3.3.4 for positive matrices. For small constant > 0, we denote

S d-1 +, = {x ∈ S d-1 + : e i , x
for all 1 i d}.

For any g ∈ supp µ, set g • S d-1

+ = {g • x : x ∈ S d-1 + }.
The following result gives equivalent formulations of conditions M4 and (3.2.14). Lemma 3.5.8. For positive matrices, the following assertions hold:

(1) condition M4 is equivalent to the following statement: there exists ∈ (0, √

2 ) such that

g • S d-1 + ⊂ S d-1
+, , for any g ∈ supp µ;

(2) condition (3.2.14) is equivalent to the following statement: there exists ∈ (0, √

2 ) such that

g T • S d-1 + ⊂ S d-1
+, , for any g ∈ supp µ.

Proof. Part (1) is proved in [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF]. The proof of part (2) can be carried out in a similar way as in [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] and therefore the details are left to the reader.

Proof of Proposition 3.3.4 for positive matrices. As mentioned before, we only need to establish (3.3.6) and (3.3.7) for the stationary measure π s since r s is bounded away from infinity and 0 uniformly on S d-1 + . We first prove Proposition 3.3.4 for positive matrices under conditions M4, M6. By Lemma 3.5.8, the Markov chain (X x n ) n 1 stays in the space S d-1 +, , and therefore the support of its stationary measure ν is included in S d-1 +, . Since supp ν s = supp ν for s ∈ I µ (by [16, Proposition 3.1]), it holds that supp ν s ⊂ S d-1 +, . As a consequence we also have supp π s ⊂ S d-1

+, . This implies that f, x for all f ∈ S d-1 + , x ∈ supp π s , and so the bounds (3.3.6) and (3.3.7) hold for positive matrices.

We next prove Proposition 3.3.4 for positive matrices under conditions M5, M6. The proof is split into two steps. It is worth mentioning that the assertions shown below remain valid when s = 0.

Step 1. We prove that there exist two constants C 1 , C 2 > 0 and an integer n 0 1 satisfying C 1 > Λ (s) such that, for any n n 0 , it holds uniformly in f, x ∈ S d-1

+ that I n := Q x s f, X x n e -C 1 n e -C 2 n .
(3.5.17)

Let s ∈ I µ , t ∈ I • µ be such that s < t and set q s = Λ (s) and q t = Λ (t) (we allow s to be 0). Substituting X x n = Gnx |Gnx| into (3.5.17) , we have

I n Q x s log |G n x| > nq t + Q x s log f, G n x -(C 1 -q t )n . (3.5.18)
Since s < t, using Theorem 3.4.4, we get that there exists a constant c > 0 such that the first term on the right-hand side of (3.5.18) is bounded by e -cn , uniformly in x ∈ S d-1 + . For the second term on the right-hand side of (3.5.18), applying the Markov inequality and the change of measure formula (3.3.3), it follows that for a sufficiently small constant c 1 > 0, uniformly in f, x ∈ S d-1 + ,

Q x s log f, G n x -(C 1 -q t )n e -c 1 (C 1 -qt)n E Q x s 1 f, G n x c 1 = e -c 1 (C 1 -qt)n E |G n x| s κ n (s) r s (X x n ) r s (x) 1 f, G n x c 1 e -c 1 (C 1 -qt)n E |G n x| s κ n (s) r s (X x n ) r s (x) 1 min 1 i,j d e i , G n e j c 1 , (3.5.19)
where for the last line we use the fact that min 1 i,j d e i , ge

j = inf f,x∈S d-1 + f, gx for any g ∈ Γ µ . Since |G n x|
G n and the function r s is uniformly bounded and strictly positive on S d-1

+ , using the Hölder inequality leads to

E |G n x| s κ n (s) r s (X x n ) r s (x) 1 e i , G n e j c 1 κ -n (s)E 1 p G n sp E 1 p 1 e i , G n e j c 1 p κ -n (s)E 1 p G n sp E n p
1 min 1 i,j d e i , g 1 e j c 1 p , (3.5.20) where 1/p + 1/p = 1 with p, p > 1. Recall that c 1 > 0 can be taken sufficiently small. Taking p sufficiently close to 1 (p sufficiently large) and using conditions (3.2.1) and M5, we get that the right-hand side of (3.5.20) is dominated by e Cn with some constant C > 0. Consequently, in view of (3.5.19), choosing the constant C 1 > 0 sufficiently large, we obtain that the right-hand side of (3.5. [START_REF] Chevalley | Théorie des groupes de Lie[END_REF]) is bounded by e -C 2 n with some constant C 2 > 0, uniformly in f, x ∈ S d-1 + .

Step 2. From Proposition 3.3.1, the construction of Q x s , and (3.3.4), one can verify that for any x ∈ S d-1 + and n 1, π s = (Q x s ) * n * π s , where * denotes the convolution between two measures. Combining this with (3.5.17), we get that for any 

s ∈ I µ , uniformly in f ∈ S d-1 + , π s {x : f, x e -C 1 n } = S d-1 + (Q x s ) * n f, X x n e -C 1 n π s (dx) e -C 2 n , ( 3 
+ : e -C 1 (n+1) f, x e -C 1 n }. Choosing c ∈ (0, C 2 /C 1 ), we deduce from (3.5.21) that, uniformly in f ∈ S d-1 + , S d-1 + 1 f, x c π s (dx) = {x: f,x >e -C 1 n 0 } 1 f, x c π s (dx) + ∞ n=n 0 B f,n 1 f, x c π s (dx) e cC 1 n 0 + ∞ n=n 0 e cC 1 e -(C 2 -cC 1 )n < +∞. (3.5.22)
This concludes the proof of Proposition 3.3.4 for positive matrices.

The Hölder regularity of π s for negative s

In this section, we first establish Proposition 3.3.5. Then, we use Proposition 3.3.5 to prove the assertion (2) in Lemma 3.3.3.

Proof of Proposition 3.3.5. We split the proof into two steps.

Step 1. In this step we choose a small enough constant s 0 > 0 and we show that for any ε > 0, there exist c 1 > 0 and n 0 1 such that, for n n 0 , sup

s∈(-s 0 ,0] sup f,x∈S Q x s | f, X x n | e -εn e -c 1 n . (3.6.1)
To prove this, according to the change of measure formula (3.3.3), we write

Q x s | f, X x n | e -εn = E |G n x| s κ n (s) r s (X x n ) r s (x) 1 {| f,X x n | e -εn } .
By Proposition 3.3.1, the eigenfunction r s is strictly positive and bounded on S, uniformly in s ∈ (-s 0 , 0]. Using Hölder's inequality, it follows that, uniformly in s ∈ (-s 0 , 0],

Q x s | f, X x n | e -εn c κ n (s) E|G n x| 2s 1/2 P | f, X x n | e -εn 1/2 . (3.6.2)
Under conditions of Proposition 3.3.5, it has been proved in [START_REF] Benoist | Random walks on reductive groups[END_REF]Proposition 14.3] for invertible matrices and in (3.5.17) (when s = 0) for positive matrices that there exist c 2 > 0 and n 0 1, such that for n n 0 , uniformly in f, x ∈ S,

P | f, X x n | e -εn e -c 2 n . ( 3.6.3) 
We now give a control of E|G n x| 2s in (3.6.2). Since s is negative, by the definition of ι and the fact that ι(gg ) ι(g)ι(g ), it is easy to see that

E|G n x| 2s Eι(G n ) 2s
Eι(g 1 ) 2s n .

Since κ(0) = 1 and the function κ is continuous in a small neighborhood of 0, we deduce that for sufficiently small s 0 > 0, there exists a constant c 3 ∈ (0, c 2 /2) such that sup s∈(-s 0 ,0]

sup x∈S 1 κ n (s) E|G n x| 2s 1/2 e c 3 n .
This, together with (3.6.2)-(3.6.3), proves the desired bound (3.6.1).

Step 2. By Proposition 3.3.2 and the construction of Q x s , it is easy to check that for any s ∈ (-s 0 , 0], x ∈ S and n 1, π s = (Q x s ) * n * π s . Combining this with (3.6.1), we get that, uniformly in s ∈ (-s 0 , 0] and f ∈ S, We now give a proof of the assertion (2) in Lemma 3.3.3 based on the Hölder regularity of the stationary measure π s established in Proposition 3.3.5. The fact that the Hölder regularity of π s holds uniformly in s ∈ (-s 0 , 0] plays an important role.

π s {x : | f, x | e -εn } = S (Q x s ) * n | f, X x n | e -εn π s (dx) e -c 1 n . ( 3 
Proof of (2) in Lemma 3.3.3. For s ∈ (-s 0 , 0), set

r s (x) = S 1 | x, y | -s ν * s (dy), r * s (x) = S 1 | x, y | -s ν s (dy), x ∈ S.
(3.6.5)

We first prove that there exist two constants s 0 > 0 and C > 0 such that r s C and r * s C for all x ∈ S and s ∈ (-s 0 , 0]. The boundedness of r * s can be obtained from Proposition 3.3.5. For the function r s , denote by (Q x s ) * and µ * the images of the measures Q x s and µ under the map g → g T . Taking into account that

π * s is (Q x s ) * - invariant ((Q x s ) * * π * s = π * s )
, and that the measure µ * fulfills all the assumptions of Proposition 3.3.5, for both invertible matrices and positive matrices, we can follow the proof of Proposition 3.3.5 to show that there exist constants c > 0 and s 0 > 0 such that uniformly in s ∈ (-s 0 , 0] and f ∈ S,

S 1 | f, x | c π * s (dx) < +∞, S 1 | f, x | c ν * s (dx) < +∞.
This implies that the function r s is uniformly bounded on S.

By the uniqueness of the eigenfunctions of the operators P s and P * s , to prove the lemma it is enough to show that r s and r * s are the eigenfunctions of P s and P * s corresponding to the eigenvalue κ(s). We show that r s satisfies the equation

P s r s (x) = κ(s)r s (x), x ∈ S. (3.6.6) 
In fact, since r s is uniformly bounded on S, using Fubini's theorem, we get

P s r s (x) = Γµ |g 1 x| s S | g 1 •x, y | s ν * s (dy) µ(dg 1 ) = S Γµ |g T 1 y| s | x, g T 1 •y | s µ(dg 1 )ν * s (dy). (3.6.7)
Recall that for any bounded measurable function ϕ on S, we have

(ν * s P * s )ϕ = S Γµ |g T 1 y| s ϕ(g T 1 •y)µ(dg 1 )ν * s (dy). (3.6.8)
For any fixed x ∈ S and n 1, set

ϕ n,x (y) = 1 | x, y | -s 1 {| x,y |∈( 1 n+1 , 1
n ]} , y ∈ S. From (3.6.7) and (3.6.8), using Fubini's theorem, it follows that

P s r s (x) = (ν * s P * s ) ∞ n=1 ϕ n,x (y) = ∞ n=1 (ν * s P * s )ϕ n,x (y).
(3.6.9)

Since the function ϕ n,x (y) is bounded on S for any fixed n 1, using ν * s P * s = κ(s)ν * s gives that for any n 1,

(ν * s P * s )ϕ n,x (y) = κ(s)ν * s (ϕ n,x ) = κ(s) {y∈S:| x,y |∈( 1 n+1 , 1 n ]} 1 | x, y | -s ν * s (dy).
Summing up the above equality with respect to n, using (3.6.9) and the definition of r s , the identity (3.6.6) follows. The proof for r * s is similar.

Proof of precise large deviations for scalar products

The aim of this section is to establish Theorems 3.2.1, 3.2.2, 3.2.3 and 3.2.4.

Proof of Theorems 3.2.2 and 3.2.4

Let ψ be a measurable function on R and ε > 0. Denote, for brevity, ψ s (y) = e -sy ψ(y) for some s ∈ (-s 0 , 0) ∪ I • µ , and

ψ + s,ε (y) = sup y ∈Bε(y) ψ s (y ), ψ - s,ε (y) = inf y ∈Bε(y)
ψ s (y ).

Introduce the following condition: for any ε > 0, the functions y → ψ + s,ε (y) and y → ψ - s,ε (y) are measurable and lim

ε→0 + R ψ + s,ε (y)dy = lim ε→0 + R ψ - s,ε (y)dy = R e -sy ψ(y)dy < +∞. (3.7.1)
Let ψ be a function on R such that y → e -sy ψ(y) is directly Riemann integrable for some s ∈ I • µ . In particular, it follows that lim y→-∞ ψ(y) = 0.

Proof of Theorem 3.2.2. We shall first establish Theorem 3.2.2 under conditions M2 and M3 for invertible 2 × 2 matrices, and under conditions M5 and M6 for positive 2 × 2 matrices. The proof of Theorem 3.2.2 under conditions M4, M6 for positive d × d (d 2) matrices will be considered separately. We will only prove the second assertion in Theorem 3.2.2, since the first one follows from the second by choosing ϕ = 1 and ψ(y) = 1 {y 0} , y ∈ R. Moreover, with no loss of generality, we assume that the functions ϕ and ψ are non-negative. We assume additionally that the function ψ satisfies the condition (3.7.1), which will be relaxed subsequenly to directly Riemann integrability condition.

Note that log | f, G n x | = log |G n x| + log |f (X x n )|, and that log | f, G n x | = -∞ if and only if log |f (X x n )| = -∞.
Taking into account that ψ(-∞) = 0, we can replace the logarithm of the scalar product log | f, G n x | by the sum log |G n x| + log |f (X x n )| as follows:

A n := √ 2πn σ s e nΛ * (q+l) 1 r s (x) E ϕ(X x n )ψ(log | f, G n x | -n(q + l)) = √ 2πn σ s e nΛ * (q+l) 1 r s (x) E ϕ(X x n )ψ(log |G n x| + log |f (X x n )| -n(q + l)) .
Recall that q = Λ (s), Λ * (q + l) = Λ * (q) + sl + h s (l), x ∈ P d-1 , and |l| 1 √ n → 0 as n → ∞. Taking into account that e nΛ * (q) = e sqn /κ n (s) and using the change of measure (3.3.3), we get

A n = √ 2πn σ s e nsl+nhs(l)+nsq × E Q x s (ϕr -1 s )(X x n )e -s log |Gnx| ψ log |G n x| + log |f (X x n )| -n(q + l) .
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With the notation T x n = log |G n x| -nq, we have

A n = √ 2πn σ s e nhs(l) E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ(T x n + log |f (X x n )| -nl) . (3.7.2)
For short, set Y f,x n := log |f (X x n )|. For any fixed 0 < δ < 1 and k 1 denote

I k := (-δk, -δ(k -1)]. Let M n := [n 1/4 ],
where [a] is the integer part of a. Then, the expectation in (3.7.2) can be written as a sum

A n = √ 2πn σ s e nhs(l) × ∞ k=1 1 {k Mn} E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ(T x n -nl + Y f,x n )1 {Y f,x n ∈I k } + √ 2πn σ s e nhs(l) E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ(T x n -nl + Y f,x n )1 {Y f,x n -δMn} = A n,1 + A n,2 . (3.7.3)
We now give a bound for the second term A n,2 . Since the function y → e -s y ψ(y) is directly Riemann integrable on R for some s ∈ (0, s), one can verify that the function y → e -sy ψ(y) is bounded on R and hence there exists a constant c s > 0 such that

e -s(T x n -nl) ψ(T x n -nl + Y f,x n ) c s e sY f,x n .
Using Lemma 3.4.1 and the fact that the function ϕr -1 s is uniformly bounded on S, we get that, uniformly in |l| 

ψ(T x n -nl + Y f,x n ) ψ + δ (T x n -nl -δ(k -1)).
It follows that

A n,1 √ 2πn σ s e nhs(l) × ∞ k=1 1 {k Mn} E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ + δ (T x n -nl -δ(k -1))1 {Y f,x n ∈I k } .
Set Ψ s,δ (y) = e -sy ψ + δ (y), y ∈ R. Recall that Ψ + s,δ,ε (y) = sup y ∈Bε(y) Ψ s,δ (y ), y ∈ R, is defined by (3.4.1), for ε ∈ (0, 1). From now on we choose δ ∈ (0, ε). Since the function Ψ + s,δ,ε is non-negative and integrable on the real line, using Lemma 3.4.2, we get

A n,1 (1 + C ρ (ε)) √ 2πn σ s e nhs(l) ∞ k=1 1 {k Mn} e -sδ(k-1) × E Q x s (ϕr -1 s )(X x n )1 {Y f,x n ∈I k } (Ψ + s,δ,ε * ρ ε 2 )(T x n -nl -δ(k -1)) =: B + n , (3.7.5)
where the constant C ρ (ε) converges to 0 as ε → 0. For fixed small constant ε 1 > 0, introduce the density function ρε 1 defined as follows: ρε

1 (x) = 1 ε 1 (1 -|x| ε 1 ) for x ∈ [-ε 1 , ε 1 ]
, and ρε 1 (x) = 0 otherwise. For any k 1, setting χ k (x) := 1 {x∈I k } and χ + k,ε 1 (x) = sup x ∈Bε 1 (x) χ k (x ), one can verify that the following smoothing inequality holds:

χ k (x) (χ + k,ε 1 * ρε 1 )(x) χ + k,2ε 1 (x), x ∈ R. (3.7.6)
For short, we denote χk (x) := (χ + k,ε 1 * ρε 1 )(x), x ∈ R, which is Hölder continuous on R. In view of (3.7.5), using the smoothing inequality (3.7.6) leads to

B + n (1 + C ρ (ε)) √ 2πn σ s e nhs(l) ∞ k=1 1 {k Mn} e -sδ(k-1) × E Q x s (ϕr -1 s )(X x n ) χk (Y f,x n )(Ψ + s,δ,ε * ρ ε 2 )(T x n -nl -δ(k -1)) =: B ++ n .
(3.7.7) Let Ψ + s,δ,ε be the Fourier transform of Ψ + s,δ,ε . By the inversion formula, we have

Ψ + s,δ,ε * ρ ε 2 (y) = 1 2π R e ity Ψ + s,δ,ε (t) ρ ε 2 (t)dt, y ∈ R. Note that χk (Y f,x n ) = χk (log |f (X x n )|) = ( χk • log |f |)(X x n ). Substituting y = T x n -nl - δ(k -1)
and taking expectation with respect to E Q x s , by Fubini's theorem, it holds that

E Q x s (ϕr -1 s )(X x n ) χk (Y f,x n )(Ψ + s,δ,ε * ρ ε 2 )(T x n -nl -δ(k -1)) = 1 2π R e -it[ln+δ(k-1)] R n s,it (ϕr -1 s )( χk • log |f |) (x) Ψ + s,δ,ε (t) ρ ε 2 (t)dt, (3.7.8) 
where

R n s,it (ϕr -1 s )( χk • log |f |) (x) = E Q x s e itT x n (ϕr -1 s )( χk • log |f |)(X x n ) .
Substituting the equality (3.7.8) into (3.7.7), we get

B ++ n = (1 + C ρ (ε)) n 2π σ s ∞ k=1 1 {k Mn} e -sδ(k-1) e nhs(l) × R e -it[ln+δ(k-1)] R n s,it (ϕr -1 s )( χk • log |f |) (x) Ψ + s,δ,ε (t) ρ ε 2 (t)dt. (3.7.9)
Since the function χk is Hölder continuous on the real line, one can check that (ϕr -1 s )( χk • log |f |) is also Hölder continuous on the projective space S. Using the fact that the function y → e -s y ψ(y) is directly Riemann integrable on R for some s ∈ (0, s), one can also verify that the function Ψ + s,δ,ε ρ ε 2 is compactly supported in R, and moreover, Ψ + s,δ,ε ρ ε 2 is differentiable in a small neighborhood of 0 on the real line. Using Proposition 3.4.3 with ϕ = (ϕr -1 s )( χk

• log |f |), ψ = Ψ + s,δ,ε ρ ε 2 and with l n,k = l + δ(k-1)
n instead of l, we obtain that for any fixed k 1 and for sufficiently large n, it holds uniformly in f, x ∈ S and |l|

1 √ n that √ nσ s e nhs(l n,k ) R e -itl n,k n R n s,it (ϕr -1 s )( χk • log |f |) (x) Ψ + s,δ,ε (t) ρ ε 2 (t)dt -B + (k) C (ϕr -1 s )( χk • log |f |) γ 1 √ n + δ(k -1) n , ( 3.7.10) 
where

B + (k) := √ 2π Ψ + s,δ,ε (0) ρ ε 2 (0)π s (ϕr -1 s )( χk • log |f |) .
Taking into account that 1 k M n = [n 1/4 ], by Lemma 3.4.1, for any fixed k 1 we have that |e nhs(l)-nhs(l n,k ) -1|

Cδkl n e cδkln as n → ∞ uniformly in |l| 1 √ n . Using (3.7.10) and the fact that B + (k) is dominated by (ϕr -1 s )( χk • log |f |) γ , we can replace e nhs(l n,k ) by e nhs (l) , yielding that uniformly in f, x ∈ S and |l|

1 √ n , √ n σ s e nhs(l) R e -itl n,k n R n s,it (ϕr -1 s )( χk • log |f |) (x) Ψ + s,δ,ε (t) ρ ε 2 (t)dt -D(k)
Cδkl n e cδkln (ϕr (1-e -2ε 1 ) γ . Taking sufficiently small γ > 0, we obtain that, for n large enough, one can verify that the series ∞ k=1 e -sδ(k-1) E n,k is convergent, and moreover, its limit is 0 as n → ∞. Consequently, we are allowed to interchange the limit as n → ∞ and the infinite summation over k in (3.7.9). Therefore, from (3.7.9), (3.7.10) and (3.7.11) we deduce that, as n → ∞, uniformly in f, x ∈ S and |l|

-1 s )( χk • log |f |) γ 1 + 1 √ n + δ(k -1) n + C (ϕr -1 s )( χk • log |f |) γ 1 √ n + δ(k -1) n =: E n,k . ( 3 
1 √ n , B ++ n (1 + C ρ (ε)) Ψ + s,δ,ε (0) ρ ε 2 (0) ∞ k=1 e -sδ(k-1) π s (ϕr -1 s )( χk • log f ) . (3.7.12)
To calculate the sum in (3.7.12), we shall make use of the regularity of the stationary measure π s . Note that Ψ + s,δ,ε (0) = R sup y ∈Bε(y) e -sy ψ + δ (y )dy and ρ ε 2 (0) = 1. Using (3.7.6), we have χk χ + k,2ε 

B + n (1 + C ρ (ε)) R sup y ∈Bε(y) e -sy ψ + δ (y )dy × ∞ k=1 e -sδ(k-1) π s (ϕr -1 s )(χ + k,2ε 1 • log |f |) . (3.7.13) Notice that χ + k,2ε 1 (x) • log |f | = 1 {log | f,• |∈I k } (x) + 1 {log | f,• |∈I k,ε 1 } (x), (3.7.14) 
where

I k,ε 1 = -δk -2ε 1 , -δk ∪ -δ(k -1), -δ(k -1) + 2ε 1 .
For the first term on the right hand-side of (3.7.14), we have

lim δ→0 ∞ k=1 e -sδ(k-1) π s (ϕr -1 s )1 {log | f,• |∈I k } = S | f, x | s ϕ(x)r -1 s (x)π s (dx). ( 3 

.7.15)

To deal with the second term on the right-hand side of (3.7.14), we shall apply the Hölder regularity of the stationary measure π s established in Proposition 3.3.4. Set for brevity J k,δ (ε 1 ) = (e -δk-2ε 1 , e -δk ]. Notice that for 2 × 2 matrices, the projective space S is one-dimensional (S = P 1 for invertible matrices and S = S 1 + for positive matrices), so there exists

f 1 = f 1 (δ, k, ε) ∈ S and f 2 = f 2 (δ, k, ε) ∈ S such that π s x ∈ S : | f, x | ∈ J l,δ (ε 1 ) π s x ∈ S : | f 1 , x | ∈ (0, e -δk -e -δk-2ε 1 ] + π s x ∈ S : | f 2 , x | ∈ (0, e -δk -e -δk-2ε 1 ] . (3.7.16)
Applying Proposition 3.3.4, we get that there exists a constant c > 0 such that, uniformly in f 1 ∈ S,

π s x ∈ S : | f 1 , x | ∈ (0, e -δk -e -δk-2ε 1 ]
C s (e -δk -e -δk-2ε 1 ) c , which converges to 0 as ε 1 → 0. A similar inequality also holds for the second term in (3.7.16). Hence we get that uniformly in f ∈ S,

lim ε 1 →0 π s x ∈ S : | f, x | ∈ J k,δ (ε 1 ) = 0.
(3.7.17)

In the same way we show that (3.7.17) holds with J k,δ (ε 1 ) = (e -δ(k-1)+2ε 1 , e -δ(k-1) ] instead of J k,δ (ε 1 ). Consequently, we have, uniformly in f ∈ S, ), letting n → ∞, ε 1 → 0, δ → 0, ε → 0 and noting that C ρ (ε) → 0 as ε → 0, we obtain that, uniformly in f, x ∈ S and |l|

lim δ→0 lim ε 1 →0 π s ({x ∈ S : log | f, x | ∈ I k,ε 1 }) = 0. ( 3 
1 √ n , A n,1 B + n S | f, x | s ϕ(x)r -1 s (x)π s (dx) lim sup ε→0 R sup y ∈Bε(y)
e -sy ψ(y ) dy. (3.7.20) Lower bound for A n,1 . We are going to establish the lower bound for A n,1 given by (3.7.3)

. Recall that Y f,x n = log |f (X x n )|. On the event {Y f,x n ∈ I k } we have Y f,x n + δ(k -1) ∈ (0, δ]. With the notation ψ - δ (y) = inf y ∈B δ (y) ψ(y), we get ψ(T x n -nl + Y f,x n ) ψ - δ (T x n -nl -δk).
In view of (3.7.3), using Fatou's lemma, it follows that

lim inf n→∞ A n,1 ∞ k=1 lim inf n→∞ √ 2πn σ s e nhs(l) 1 {k Mn} × E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ - δ (T x n -nl -δk)1 {Y f,x n ∈I k } .
Set Ψ s,δ (y) = e -sy ψ - δ (y), y ∈ R. Recall that Ψ - s,δ,ε (y) = inf y ∈Bε(y) Ψ s,δ (y ), y ∈ R, is defined by (3.4.1), for ε ∈ (0, 1). In the sequel we choose δ ∈ (0, ε). Noting that the function Ψ - s,δ,ε is non-negative and integrable on the real line, by Lemma 3.4.2, we get the following lower bound:

lim inf n→∞ A n,1 ∞ k=1 lim inf n→∞ B - n (k) - ∞ k=1 lim sup n→∞ D - n (k), (3.7.21) 
where

B - n (k) = √ 2πn σ s e nhs(l) 1 {k Mn} e -sδk × E Q x s (ϕr -1 s )(X x n )1 {Y f,x n ∈I k } (Ψ - s,δ,ε * ρ ε 2 )(T x n -nl -δk) , D - n (k) = √ 2πn σ s e nhs(l) 1 {k Mn} e -sδk × |y| ε E Q x s (ϕr -1 s )(X x n )1 {Y f,x n ∈I k } Ψ - s,δ,ε (T x n -nl -δk -y) ρ ε 2 (y)dy.
We are going to give a lower bound for B - n (k). We denote χ k (x) = 1 {x∈I k } and

χ - k,ε 1 (x) = inf x ∈Bε 1 (x) χ k (x )
, where ε 1 > 0 is a fixed small constant. Similarly the inequality (3.7.6), one can easily get the following smoothing inequality:

χ - k,2ε 1 (x) (χ - k,ε 1 * ρε 1 )(x) χ k (x), x ∈ R, (3.7.22)
where the density function is the same as that in (3.7.6). For the first term B - n (k) in (3.7.21), using the inequality (3.7.22) gives

B - n (k) √ 2πn σ s e nhs(l) 1 {k Mn} e -sδk × E Q x s (ϕr -1 s )(X x n ) χ- k (Y f,x n )(Ψ - s,δ,ε * ρ ε 2 )(T x n -nl -δk) , (3.7.23)
where, for short, χk (x) := (χ - k,ε 1 * ρε 1 )(x). Denote by Ψ - s,δ,ε the Fourier transform of Ψ - s,δ,ε . Applying the inversion formula to Ψ - s,δ,ε * ρ ε 2 , and using Fubini's theorem, we get

E Q x s (ϕr -1 s )(X x n ) χ- k (Y f,x n )(Ψ - s,δ,ε * ρ ε 2 )(T x n -nl -δk) = 1 2π R e -itn[l+δ k n ] R n s,it (ϕr -1 s )( χ- k • log |f |) (x) Ψ - s,δ,ε (t) ρ ε 2 (t)dt, (3.7.24) 
where

R n s,it (ϕr -1 s )( χ- k • log |f |) (x) = E Q x s e itT x n (ϕr -1 s )( χ- k • log |f |)(X x n ) .
Substituting (3.7.24) into (3.7.23), we obtain

B - n (k) n 2π σ s 1 {k Mn} e -sδk × e nhs(l) R e -itn[l+δ k n ] R n s,it (ϕr -1 s ) χ- k • log |f | (x) Ψ - s,δ,ε (t) ρ ε 2 (t)dt. (3.7.25)
Since the function χk is Hölder continuous for any fixed k 1, one can also check that (ϕr -1 s )( χk •log |f |) is Hölder continuous on the projective space S. One can also verify that the function Ψ - s,δ,ε ρ ε 2 is compactly supported in R, and moreover, Ψ - s,δ,ε ρ ε 2 has a continuous extension in the complex plane and has an analytic extension in the domain

{z ∈ C : |z| < ε 2 , z = 0}. Using Proposition 3.4.3 with ϕ = (ϕr -1 s )( χ- k • log |f |), ψ = Ψ -
s,δ,ε ρ ε 2 and l n,k = l + δk n , we have that for any fixed k 1, as n → ∞, it holds uniformly in f, x ∈ S and |l|

1 √ n that √ nσ s e nhs(l n,k ) R e -itl n,k n R n s,it (ϕr -1 s )( χ- k • log |f |) (x) Ψ - s,δ,ε (t) ρ ε 2 (t)dt -D -(k) C (ϕr -1 s )( χ- k • log |f |) γ 1 √ n + δk n , ( 3.7.26) 
where 4 ], using Lemma 3.4.1, for any fixed k 1 we get that

D -(k) := √ 2π Ψ - s,δ,ε (0) ρ ε 2 (0)π s (ϕr -1 s )( χ- k • log |f |) . Since 1 k M n = [n 1/
|e nhs(l)-nhs(l n,k ) -1| Cδ k √ n e cδk/ √ n as n → ∞ uniformly in |l| 1 √ n .
In the same way as in (3.7.11), we can replace e nhs(l n,k ) by e nhs(l) to obtain that, uniformly in f, x ∈ S and |l|

1 √ n , √ n σ s e nhs(l) R e -itl n,k n R n s,it (ϕr -1 s )( χ- k • log |f |) (x) Ψ - s,δ,ε (t) ρ ε 2 (t)dt -D -(k)
Cδkl n e cδkln (ϕr

-1 s )( χ- k • log |f |) γ 1 + 1 √ n + δk n + C (ϕr -1 s )( χ- k • log |f |) γ 1 √ n + δk n =: E - n,k .
Since the γ-Hölder norm (ϕr -1 s )( χk • log |f |) γ is bounded by e δγk (e 2ε 1 -1) γ , taking sufficiently small γ > 0, we obtain that the series ∞ k=1 e -sδ(k-1) E - n,k converges to 0 as n → ∞. As a result, by virtue of (3.7.26), we obtain that, uniformly in f, x ∈ S and |l|

1 √ n , ∞ k=1 lim inf n→∞ B - n (k) Ψ - s,δ,ε (0) ρ ε 2 (0) ∞ k=1 e -sδk π s (ϕr -1 s )( χ- k • log |f |) .
Note that Ψ - s,δ,ε (0) = R inf y ∈Bε(y) e -sy ψ - δ (y )dy and ρ ε 2 (0) = 1. Using (3.7.22), we have that χk χ - k,2ε 1 . Consequently, we obtain the lower bound for the first term on the right hand side of (3.7.21): uniformly in f, x ∈ S and |l|

1 √ n , ∞ k=1 lim inf n→∞ B - n (k) R sup y ∈Bε(y) e -sy ψ - δ (y )dy ∞ k=1 e -sδk π s (ϕr -1 s )(χ - k,2ε 1 • log |f |) . (3.7.27) Notice that χ - k,2ε 1 (x) • log |f | = 1 {log | f,• |∈I k } (x) -1 {log | f,• |∈I k,ε 1 } (x), (3.7.28) 
where

I k,ε 1 = -δk, -δk + 2ε 1 ∪ -δ(k -1) -2ε 1 , -δ(k -1)
. By the Lebesgue convergence theorem, we have that uniformly in f ∈ S, 

lim ε 1 →0 lim δ→0 ∞ k=1 e -sδk π s (ϕr -1 s )1 {log | f,• |∈I k,ε 1 } = 0. ( 3 
1 {Y f,x n ∈I k } χk (x) = (χ + k,ε 1 * ρε 1 )(x).
Consequently, similarly to (3.7.9), we have the upper bound for D - n (k):

D - n (k) (1 + C ρ (ε)) |y| ε n 2π σ s 1 {k Mn} e nhs(l) e -sδk × R e -itn[l+δ k n + y n ] R n s,it (ϕr -1 s ) χk • log |f | (x) Ψ + s,δ,ε (t) ρ ε 2 (t)dt ρ ε 2 (y)dy. (3.7.31)
As in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF], we use the Lebesgue dominated convergence theorem to interchange the limit n → ∞ and the integral |y| ε . Hence, using Proposition 3.4.3 we obtain that, uniformly in f, x ∈ S and |l|

1 √ n , ∞ k=1 lim sup n→∞ D - n (k) (1 + C ρ (ε)) ∞ k=1 π s (ϕr -1 s ) χk • log |f | Ψ + s,δ,ε (0) ρ ε 2 (0) |y| ε ρ ε 2 (y)dy,
where |y| ε ρ ε 2 (y)dy → 0 as ε → 0. Combining this with (3.7.21) and (3.7.30), we get the lower bound for A n,1 : uniformly in f, x ∈ S and |l|

1 √ n , lim inf n→∞ A n,1 S | f, x | s ϕ(x)r -1 s (x)π s (dx) lim inf ε→0 R inf y ∈Bε(y)
e -sy ψ(y )dy. (3.7.32) This, together with (3.7.3), (3.7.4) and (3.7.20), proves the desired asymptotic (3.2.9) under the condition (3.7.1) on the function ψ. Using the approximation techniques similar to that in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF], we extend it to the case of a function which is directly Riemann integrable. This part of the proof is left to the reader. This concludes the proof of Theorem 3.2.2 under either conditions M2, M3 for invertible matrices, or conditions M5, M6 for positive matrices.

Next we proceed to prove Theorem 3.2.2 under conditions M4, M6 for positive d × d matrices.

Proof of Theorem 3.2.2 for positive matrices under conditions M4, M6. The proof is similar to that of Theorem 3.2.2 in the case of invertible matrices, therefore we will only sketch the differences. Recall that S = S d-1 + for positive matrices. Proceeding as in the proof of Theorem 3.2.2 in the case of invertible matrices, we have to deal with the quantity

A n := √ 2πn σ s e nΛ * (q+l) 1 r s (x) E [ϕ(X x n )ψ(log f, G n x -n(q + l))] .
By the assertion (1) in Lemma 3.5.8, there exists a constant 0 < <

√ 2 2 such that f (X x n ) ∈ [ , 1] for all n 1 and f, x ∈ S d-1 + . For simplicity, set Y f,x n := log |f (X x n )| and so we can write log f, G n x = log |G n x| + Y f,x
n . Therefore, in the same way as in (3.7.3), we get

A n = √ 2πn σ s e nhs(l) × M k=1 E Q x s (ϕr -1 s )(X x n )e -s(T x n -nl) ψ(T x n + Y f,x n -nl)1 {Y f,x n ∈I k } , (3.7.33)
where, in contrast to the proof of Theorem 3.2.2 for invertible matrices, M is a fixed positive integer. Similarly to the proof of (3.7.9), taking into account that χk n , it holds that e nhs(l)-nhs(l n,k ) → 1, as n → ∞. Hence using Proposition 3.4.3, the term under the sign of the sum in (3.7.34) converges to

(Y f,x n ) = χk (log f (X x n )) = ( χk • log f )(X x n ), we obtain A n B + n := (1 + C ρ (ε)) n 2π σ s M k=1 e -sδ(k-1) e nhs(l) × R e -it[ln+δ(k-1)] R n s,it (ϕr -1 s )( χk • log f ) (x) Ψ + s,δ,ε (t) ρ ε 2 (t)dt. ( 3 
e -sδ(k-1) √ 2π Ψ + s,δ,ε (0) ρ ε 2 (0)π s (ϕr -1 s )( χk • log f ) ,
in the same way as in (3.7.10). Moreover, this convergence is uniform in k 1, since M is finite. This allows us to interchange the limit as n → ∞ and the finite summation over k. By the Lebesgue dominated convergence theorem, similarly to (3.7.12), we deduce that, as n → ∞, uniformly in f, x ∈ S d-1 e -sδ(k-1) π s (ϕr : f, x ∈ (e -δk-2ε 1 , e -δk ]} on the d -1 dimensional unit sphere, we can use N ball to cover this set, where N is proportional to 1 e -δk -e -δk-2ε 1 . Specifically, we have, there exists

+ and |l| 1 √ n , B + n (1 + C ρ (ε)) Ψ + s,δ,ε (0) ρ ε 2 (0) M k=1 e -sδ(k-1) π s (ϕr -1 s )( χk • log f ) . ( 3 
-1 s )1 {log f,• ∈I k } = S d-1 + f, x s (ϕr -1 s )(x)π s (dx). ( 3 
f 1 = f 1 (δ, k, ε), f 2 = f 2 (δ, k, ε), . . . , f N = f 1 (δ, k, ε) ∈ S d-1 + such that π s x : f, x ∈ J l,δ (ε 1 ) N j=1 π s x : f j , x ∈ (0, e -δk -e -δk-2ε 1 ] .
According to (3.3.7), we get that there exist constants c s , C s > 0 such that, uniformly in

f j ∈ S d-1 + , π s x : f j , x ∈ (0, e -δk -e -δk-2ε 1 ] C s (e -δk -e -δk-2ε 1 ) Cs ,
where C s > 0 can be sufficiently large (independent of the dimension d). Therefore, we obtain that, uniformly in f ∈ S d-1 + , lim

ε 1 →0 π s x : f, x ∈ J l,δ (ε 1 ) = 0. (3.7.37)
One can also show that (3.7.37) holds with J l,δ (ε 1 ) = (e -δ(k-1)+2ε 1 , e -δ(k-1) ] instead of J l,δ (ε 1 ). Therefore, using the Lebesgue dominated convergence theorem, similarly to (3.7.19), we deduce that lim The lower bound can be deduced using the same techniques. The proof can now be completed as in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] and therefore the details are omitted. This concludes the proof. 

ε 1 →0 sup f ∈S d-1 + M k=1 e -sδ(k-1) π s (ϕr -1 s )1 {log f,• ∈I k,ε 1 } = 0. ( 3 

Proof of

Proofs of large deviation principles for spectral radius

We next give a proof of Theorem 3.2.7, which is based on the reinforced large deviation principles for the matrix norm G n established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF], the Collatz-Wielandt formula and the precise large deviation results for the entries G i,j n established in Theorems 3.2.2 and 3.2.4.

In fact, we are able to establish the following more general version of large deviation results for the spectral radius ρ(G n ) with a target function ψ on log ρ(G n ).

Theorem 3.8.1. (1) Assume conditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s ∈ I •

µ and q = Λ (s). Let ψ be a non-decreasing function on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (0, s) and R e -sy ψ(y)dy > 0. Then, there exist two constants 0 < c < C < +∞ such that uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) lim sup n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) < C. (3.8.1)
(2) Assume conditions M5, M6 for positive matrices. Let q = Λ (s) and s ∈ (-s 0 , 0), where s 0 > 0 is small enough. Let ψ be a non-increasing function on R such that y → e -s y ψ(y) is directly Riemann integrable for some s ∈ (-s 0 , s), and R e -sy ψ(y)dy > 0.

Then, there exist two constants 0 < c < C < +∞ such that uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) lim sup n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) < C. (3.8.2)
Proof of Theorems 3.2.7 and 3.8.1. We only give a proof of Theorem 3.8.1 since Theorem 3.2.7 is a particular case of Theorem 3.8.1.

(1) Recall that the following large deviation bound for the matrix norm G n is proved in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]: uniformly in |l|

1 √ n , lim sup n→∞ √ n e nΛ * (q+l) E ψ log G n -n(q + l) < C.

Since ρ(G n )

G n and the function ψ is non-decreasing on R, the upper bound in (3.8.1) easily follows: uniformly in |l|

1 √ n , lim sup n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) < C.
We now proceed to prove the lower bound in (3.8. Taking x = e 1 , we get ρ(G n ) G 1,1 n . Using Theorem 3.2.2 for f = x = e 1 and taking into account that ψ is non-decreasing on R, we obtain that there exists a constant c > 0 such that uniformly in |l|

1 √ n , c < lim inf n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) , (3.8.4)
which concludes the proof of (3.8.1).

(2) Recall that the following large deviation bound for the matrix norm G n is proved in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]: there exists a constant c > 0 such that uniformly in |l|

1 √ n , lim inf n→∞ √ n e nΛ * (q+l) E ψ log G n -n(q + l) > c.
Since ρ(G n ) G n and the function ψ is non-increasing on R, we get the following lower bound: uniformly in |l|

1 √ n , lim inf n→∞ √ n e nΛ * (q+l) E ψ log ρ(G n ) -n(q + l) > c.
In a similar way as in the proof of ( 

X x n = G n x/|G n x|, n 1, with starting point x ∈ P d-1 .
The study of the asymptotic properties of the Markov chain (X x n ) n 1 and of the product (G n ) n 1 has attracted a good deal of attention since the groundwork of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], where the strong law of large numbers for log G n has been established, which is a fundamental result for the products of random matrices. Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF] proved the following version of the law of large numbers: for any

x ∈ R d , lim n→∞ 1 n log |G n x| = lim n→∞ 1 n E log |G n x| = λ P-a.s.,
where the real number λ is called upper Lyapunov exponent associated with the product G n . Another cornerstone result is the central limit theorem (CLT) for the couple (X x n , log |G n x|), established under contracting type assumptions by Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]: for any fixed y ∈ R and any Hölder continuous function ϕ :

P d-1 → R, it holds uniformly in x ∈ P d-1 that lim n→∞ E ϕ(X x n )1 log |Gnx|-nλ σ √ n y = ν(ϕ)Φ(y),
where ν is the unique stationary probability measure of the Markov chain 2 is the asymptotic variance independent of x, and Φ is the standard normal distribution function. The optimal conditions for the CLT to hold true have been established recently by Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

X x n on P d-1 , σ 2 = lim n→∞ 1 n E (log |G n x| -nλ)
A very important topic is the study of large and moderate deviation probabilities, which describe the rate of convergence in the law of large numbers. For an account to the theory of large deviations for sums of independent random variables we refer to Cramér [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF], Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], Stroock [START_REF] Stroock | An introduction to the theory of large deviations[END_REF], Varadhan [START_REF] Varadhan | Large deviations and applications[END_REF] and Dembo and Zeitouni [START_REF] Dembo | Large deviations techniques and applications[END_REF]. For products of random matrices, precise large deviations asymptotics have been considered e.g. by Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], Buraczewski and Mentemeier [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF], Guivarc'h [START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF], Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF], Sert [START_REF] Sert | Large deviation principle for random matrix products[END_REF], Xiao, Grama and Liu [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. For moderate deviations, very little results are known. Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have recently established the asymptotic for the logarithm of probabilities of moderate deviations for reductive groups, which in our setting reads as follows: for any interval B ⊆ R, and positive sequence (b n ) n 1 satisfying bn n → 0 and bn

√ n → ∞, it holds, uniformly in x ∈ P d-1 , that lim n→∞ n b 2 n log P log |G n x| -nλ b n ∈ B = -inf y∈B y 2 2σ 2 . ( 4 

.1.1)

A functional moderate deviation principle has been established by Cuny, Dedecker and Jan [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF].

The first objective of our paper is to improve on the result (4.1.1) by establishing a Cramér type moderate deviation expansion for log |G n x|: we prove that uniformly in x ∈ P d-1 and y ∈ [0, o( √ n)], 

P log |G n x| -nλ √ nσy 1 -Φ(y) = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , ( 4 
∈ [0, o( √ n)], E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + O y + 1 √ n , ( 4 
x∈P d-1 , y∈R E ϕ(X x n )1 log |Gnx|-nλ σ √ n y -ν(ϕ)Φ(y) = O 1 √ n , (4.1.4)
see Theorem 4.2.1. This extends the result of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established for the particular target function ϕ = 1 (see also Jan [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF]). We further upgrade (4.1.4) to an Edgeworth expansion under a non-arithmeticity condition, see Theorem 4.2.2, which is new even for ϕ = 1.

All the results stated above concern invertible matrices, but we also establish analogous theorems for positive matrices. Some limit theorems for log |G n x| in case of positive matrices such as central limit theorem and Berry-Esseen theorem have been established earlier by Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF], and Hennion and Hervé [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF]. Here, we extend the Berry-Esseen theorem of [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] to the couple (X x n , log |G n x|) with a target function ϕ on the Markov chain X x n . We also complement the results in [START_REF] Furstenberg | Products of random matrices[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] by giving a Cramér type moderate deviation expansion.

Key ideas of the approach

For the moderate deviation expansions (4.1.2) and (4.1.3), our proof is different from those in [START_REF] Benoist | Random walks on reductive groups[END_REF] and [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF]: in [START_REF] Benoist | Random walks on reductive groups[END_REF] the moderate deviation principle (4.1.1) is obtained by following the strategy of Kolmogorov [START_REF] Kolmogorov | Über das Gesetz der iterierten Logarithmus[END_REF] suited to show the law of iterated logarithm (see also de Acosta [START_REF] De Acosta | A new proof of the Hartman-Wintner law of the iterated logarithm[END_REF] and Wittman [START_REF] Wittmann | A general law of iterated logarithm[END_REF]); in [START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF] the proof of the functional moderate deviation principle is based on the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF].

In order to prove (4.1.3) we have to rework the spectral gap theory for the transfer operators P z and R s,z , by considering the case when s can take values in the interval (-η, η) with η > 0 small, and z belongs to a small complex ball centered at the origin, see Section 4.3. This allows to define the change of measure Q x s and to extend the Berry-Esseen bound (4.1.4) for the changed measure Q x s , see Theorem 4.5.1. The moderate deviation expansion (4.1.3) is established by adapting the techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF].

It is surprising that the proof of the Berry-Esseen bound and of the Edgeworth expansion with a non-trivial target function ϕ = 1 is way more difficult than the analogous results with ϕ = 1. This can be seen from the following sketch of the proof.

For simplicity, we assume that σ = 1. Introduce the transfer operator P z : for any Hölder continuous function ϕ on P d-1 and z ∈ C,

P z ϕ(x) = E e z log |g 1 x| ϕ(X x 1 ) , x ∈ P d-1 . (4.1.5)
Let F be the distribution function of log |Gnx|-nλ √ n and f be its Fourier transform:

f (t) = e it √ nλ (P n -it/ √ n 1)(x), t ∈ R.
The Berry-Esseen bound (4.1.4) with target function ϕ = 1 is usually proved using Esseen's smoothing inequality: for all T > 0,

sup y∈R |F (y) -Φ(y)| 1 π T -T f (t) -e -t 2 /2 t dt + C T . (4.1.6)
Inserting the spectral gap decomposition The bound (4.1.8) is proved using Taylor's expansion

P n z = κ n (z)M z + L n z ( n 
L n z 1 = L n 0 1 + z d dz (L n z 1) + o(z) with z = -it/
√ n, and the fact that L n 0 1 = 0. However, when we replace the unit function 1 by a target function ϕ for which in general L n 0 ϕ = 0, instead of (4.1.8), we have

T -T |L n -it/ √ n ϕ(x)|/|t|dt = ∞, (4.1.9) 
even though |L n 0 ϕ(x)| decays exponentially fast to 0 as n → ∞. To overcome it, we have elaborated a new approach based on smoothing inequality on complex contours and on the saddle point method, see Daniels [START_REF] Daniels | Saddlepoint approximations in statistics[END_REF] and Fedoryuk [START_REF] Fedoryuk | Asymptotic, Integrals and Series[END_REF].

Specifically, our smoothing inequality is formulated as follows: for any T > r > 0, The smoothing inequality (4.1.10) together with the spectral gap property (4.1.7) leads to the estimation of the following integrals:

sup y∈R |F (y) -H(y)| 1 π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 1 π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz + 1 π r |t| T f (t) -h(t) t dt + 2 πT T -T |f (t) -h(t)|dt + 3b T sup y∈R |H ( 
C - r κ n (z)M z ϕ(x) -e -z 2 /2
z e izy e -ib z T dz, (4.1.11)

C - r L n z ϕ(x) z e izy e ib z T dz. (4.1.12)
The integral (4.1.11) is handled by using the saddle point method choosing a suitable path for the integration in Section 4.5.2, which is one of the challenging parts of the proof. For the integral (4.1.12) we use the facts that |L n z ϕ(x)| decays exponentially fast as n → ∞ and that | e izy z | 1 T on the contour C - r for y 0, where T = c √ n. In contrast to (4.1.9), this shows that (4.1.12) is bounded by Ce -cn uniformly in y.

The integrals on the semicircle C + r is treated similarly, which allows us to establish (4.1.4). Note that the non-arithmeticity condition is not needed for the validity of (4.1.4). Under the non-arithmeticity condition, in Theorem 4.2.2 we obtain an Edgeworth expansion for (X x n , |G n x|) with the target function ϕ on X x n , which is of independent interest.

Main results

Notation and conditions

Let N = {0, 1, 2, . . .} and N * = N\{0}. The real part, imaginary part and the conjugate of a complex number z are denoted by z, z and z respectively. For y ∈ R, we write φ(y) = 1 √ 2π e -y 2 /2 and Φ(y) = y -∞ φ(t)dt. For any η > 0, set B η (0) = {z ∈ C : |z| < η} for the ball with center 0 and radius η in the complex plane C. We denote by c, C, positive absolute constants whose values may change from line to line. By c α , C α we mean positive constants depending only on the index α. We write 1 A for the indicator function of an event A. For a measure ν and a function ϕ we denote ν(ϕ) = ϕdν.

For d 2, let M (d, R) := M be the set of d×d matrices with entries in R. We shall work with products of invertible or non-negative matrices. Denote by G = GL(d, R) the group of invertible matrices of M . A non-negative matrix g ∈ M is said to be allowable, if every row and every column of g has a strictly positive entry. Denote by G + the multiplicative semigroup of allowable non-negative matrices of M , which will be called simply positive. We write G • + for the subsemigroup of G + with strictly positive entries.

The space R d is equipped with any given norm | • |. Denote by S d-1 = {x ∈ R d , |x| = 1} the unit sphere, and by S d-1 + = {x 0 : |x| = 1} the intersection of the unit sphere with the positive quadrant. It will be convenient to consider the projective space P d-1 = S d-1 /± by identifying x with -x. To unify the exposition, we use the symbol S to denote P d-1 in case of invertible matrices and S d-1 + in case of positive matrices. For x ∈ S and g ∈ G or g ∈ G + , we write g • x = gx |gx| for the projective action of g on S. The space S is endowed with the metric d: for invertible matrices, d is the angular distance, i.e., for any x, y ∈ P d-1 , d(x, y) = | sin θ(x, y)|, where θ(x, y) is the angle between x and y; for positive matrices, d is the Hilbert cross-ratio metric, i.e., for any x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ) in S d-1 + , d(x, y) = 1-m(x,y)m(y,x) 1+m(x,y)m(y,x) , where m(x, y) = sup{λ > 0 : λy i x i , ∀i = 1, . . . , d}. In both cases, there exists a constant C > 0 such that |x -y| Cd(x, y), for any x, y ∈ S.

(4.2.1)

We refer to [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for more details. Let C(S) be the space of continuous complex-valued functions on S and 1 be the constant function with value 1. Let γ > 0. For any ϕ ∈ C(S), set

ϕ γ := ϕ ∞ + [ϕ] γ , ϕ ∞ := sup x∈S |ϕ(x)|, [ϕ] γ := sup x,y∈S |ϕ(x) -ϕ(y)| d γ (x, y) .
Introduce the Banach space B γ := {ϕ ∈ C(S) : ϕ γ < +∞}. Let (g n ) n 1 be a sequence of i.i.d. random matrices with the same law µ, defined on some probability space (Ω, F, P). Set G n = g n . . . g 1 , n 1, then for any starting point x ∈ S, the process with a target function ϕ on the Markov chain (X x n ), for both invertible matrices and positive matrices.

X x 0 = x, X x n = G n •x,
For any g ∈ M , set g = sup x∈S |gx| and ι(g) = inf x∈S |gx| > 0, where ι(g) > 0 for both g ∈ G and g ∈ G + . In the following we use the notation N (g) = max{ g , ι(g) -1 }.

From the Cartan decomposition it follows that the norm g coincides with the largest singular value of g, i.e. g is the square root of the largest eigenvalue of g T g, where g T denotes the transpose of g. For an invertible matrix g ∈ G , ι(g) = g -1 -1 , hence ι(g) is the smallest singular value of g and N (g) = max{ g , g -1 }. We need the two-sided exponential moment condition:

C1. There exists a constant η 0 ∈ (0, 1) such that E[N (g 1 ) η 0 ] < +∞.

We denote by Γ µ := [supp µ] the smallest closed semigroup of M generated by supp µ, the support of µ.

For invertible matrices, we will need the strong irreducibility and proximality conditions. Recall that a matrix g is said to be proximal if g has an eigenvalue λ g satisfying |λ g | > |λ g | for all other eigenvalues λ g of g. The normalized eigenvector v g (|v g | = 1) corresponding to the eigenvalue λ g is called the dominant eigenvector. It is easy to verify that λ g ∈ R.

C2. (i)(Strong irreducibility) No finite union of proper subspaces

of R d is Γ µ -invariant.
(ii)(Proximality) Γ µ contains at least one proximal matrix.

For positive matrices, we will use the allowability and positivity conditions:

C3. (i) (Allowability) Every g ∈ Γ µ is allowable.
(ii) (Positivity) Γ µ contains at least one matrix belonging to G • + . It follows from the Perron-Frobenius theorem that every g ∈ G •

+ has a dominant eigenvalue λ g > 0, with the corresponding eigenvector v g ∈ S d-1

+ . Under conditions C1 and C2 for invertible matrices, or conditions C1 and C3 for positive matrices, there exists a unique µ-stationary probability measure ν on S ( [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]): for any ϕ ∈ C(S),

(µ * ν)(ϕ) = S Γµ ϕ(g 1 •x)µ(dg 1 )ν(dx) = S ϕ(x)ν(dx) = ν(ϕ). (4.2.2)
Moreover, for invertible matrices, supp ν (the support of ν) is given by

V (Γ µ ) = {v g ∈ P d-1 : g ∈ Γ µ , g is proximal}; (4.2.3)
for positive matrices, supp ν is given by

V (Γ µ ) = {v g ∈ S d-1 + : g ∈ Γ µ , g ∈ G • + }. (4.2.4)
In addition, for both cases, V (Γ µ ) is the unique minimal Γ µ -invariant subset (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]).

For positive matrices, it will be shown in Proposition 4.3.15 that under conditions C1 and C3, the asymptotic variance

σ 2 = lim n→∞ 1 n E (log |G n x| -nλ) 2
exists with value in [0, ∞). To establish the Berry-Esseen theorem and the moderate deviation expansion, we need the following condition:

C4. The asymptotic variance σ 2 satisfies σ 2 > 0.

We say that the measure µ is arithmetic, if there exist t > 0, β ∈ [0, 2π) and a function ϑ : S → R such that exp[it log |gx| -iβ + iϑ(g • x) -iϑ(x)] = 1 for any g ∈ Γ µ and x ∈ V (Γ µ ). To establish the Edgeworth expansion for positive matrices, we impose the following condition: C5. (Non-arithmeticity) The measure µ is non-arithmetic.

A simple sufficient condition introduced in [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF] for the measure µ to be nonarithmetic is that the additive subgroup of R generated by the set {log λ g : [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 2.7]. We end this subsection by giving some implications among the above conditions. For invertible matrices, it was proved in [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF] that condition C2 implies condition C5. For positive matrices, conditions C1, C3 and C5 imply condition C4, see Proposition 4.3.15.

g ∈ Γ µ , g ∈ G • + } is dense in R, see

Berry-Esseen bound and Edgeworth expansion

In this subsection we formulate the Berry-Esseen theorem and the Edgeworth expansion for (X x n , log |G n x|). We first state the Berry-Esseen theorem with a target function on X x n . Through the rest of the paper we assume that γ > 0 is a fixed small enough constant so that the spectral properties stated in Proposition 4.3.1 hold true. 

E ϕ(X x n )1 log |Gnx|-nλ σ √ n y -ν(ϕ)Φ(y) C ϕ γ √ n . (4.2.5)
The proof of this theorem follows the same line as the proof of the Edgeworth expansion in Theorem 4.2.2 formulated below, and will be sketched at the end of Section 4.5. The presence of the target function in Theorem 4.2.1 turns out to be crucial in the study of the asymptotic of moderate deviations of the scalar product log | f, G n x |, which will be done in a forthcoming paper. Theorem 4.2.1 extends the Berry-Esseen bounds from [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF] for invertible matrices, and [START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] for positive matrices to versions with target functions on X x n . Note that the results in [START_REF]Vitesse de convergence dans le TCL pour des processus associés à des systèmes dynamiques et aux produits de matrices aléatoires[END_REF][START_REF] Hennion | Central limit theorems for iterated random Lipschitz mappings[END_REF] have been established under some polynomial moment conditions. However, proving (4.2.5) with the target function ϕ = 1 under the polynomial moments is still an open problem.

The following result gives an Edgeworth expansion for log |G n x| with the target function ϕ on X x n . To formulate the result, we introduce the necessary notation. Consider the following transfer operator: for any s ∈ (-η, η) with η > 0 small, and ϕ ∈ C(S), 

P s ϕ(x) = E e s log |g 1 x| ϕ(g 1 •x) x ∈ S.
E ϕ(X x n )1 log |Gnx|-nλ σ √ n y (4.2.8) -ν(ϕ) Φ(y) + Λ (0) 6σ 3 √ n (1 -y 2 )φ(y) + b ϕ (x) σ √ n φ(y) = ϕ γ o 1 √ n .
The proof of this theorem is postponed to Section 4.5 and is based on a new smoothing inequality (Proposition 4.4.1) and the saddle point method. Even for ϕ = 1, Theorem 4.2.2 is new.

Moderate deviation expansions

Denote γ k = Λ (k) (0), k 1, where Λ = log κ with the function κ defined in (4.2.6). In particular, γ 1 = λ and γ 2 = σ 2 , see Propositions 4.3.13 and 4.3.15, where we give also an expression for γ 3 . Throughout the paper, we write ζ for the Cramér series of Λ (see [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF] and [START_REF] Petrov | Sums of independent random variables[END_REF]): 

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
[0, o( √ n)] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , E ϕ(X x n )1 {log |Gnx|-nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n .
Note that the above asymptotic expansions remain valid even when ν(ϕ) = 0. In this case, for example, the first expansion becomes

E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} = (1 -Φ(y))e y 3 √ n ζ( y √ n ) ϕ γ O y + 1 √ n .
It is an open question to extend the results of Theorem 4.2.3 to higher order expansions under the additional condition of non-arithmeticity. We refer to Saulis [START_REF] Saulis | An asymptotic expansion for probabilities of large deviations for sums of independent random variables (Russian)[END_REF] and Rozovsky [START_REF] Rozovsky | Asymptotic expansions for probabilities of large deviations[END_REF] for relevant results in the i.i.d. real-valued case. In the case of products of random matrices this problem seems to us challenging because of the presence of the derivatives in s of the eigenfunction r s and of the eigenmeasure ν s in the higher order terms.

In particular, under conditions of Theorem 4.2.3, with ϕ = 1 we obtain: 

P log |Gnx|-nλ σ √ n y 1 -Φ(y) = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , P log |Gnx|-nλ σ √ n -y Φ(-y) = e -y 3 √ n ζ(-y √ n ) 1 + O y + 1 √ n . When ϕ ∈ B γ is a real-valued function satisfying ν(ϕ) > 0,

Spectral gap theory

This section is devoted to investigating the spectral gap properties of some operators to be introduced below: the transfer operator P z , its normalization Q s which is a Markov operator, and the perturbed operator R s,z , for real-valued s and complex-valued z. The properties for these operators have been intensively studied in recent years, for instance in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF], where various results have been established under different restrictions on s and z, which are not enough for obtaining the results of the paper. We shall complete these results by investigating the case when s ∈ (-η, η) with η > 0 small, and z belongs to a small ball of the complex plane centered at the origin. The case of s < 0 turns out to be more difficult than the case s 0 and requires a deeper analysis. We also complement the previous results with some new properties to be used in the proofs of the main results of the paper.

Properties of the transfer operator P z

Recall that the Banach space B γ consists of all the γ-Hölder continuous complexvalued functions on S. We write B γ for the topological dual of B γ endowed with the norm ν B γ = sup ϕ γ =1 |ν(ϕ)|, for any linear functional ν ∈ B γ . Let L(B γ , B γ ) be the set of all bounded linear operators from B γ to B γ equipped with the operator norm

• Bγ →Bγ . Denote by (Q) the spectral radius of an operator Q ∈ L(B γ , B γ ), and by Q| E its restriction to the subspace E ⊆ B γ .

For any z ∈ C with |z| < η 0 , where η 0 is given in condition C1, define the transfer operator P z as follows: for any ϕ ∈ C(S),

P z ϕ(x) = E e z log |g 1 x| ϕ(g 1 •x) x ∈ S. (4.3.1)
The transfer operator P z acts from C(S) to the space of bounded functions on S. The following proposition gives the spectral gap properties of the operator P z for z in a small enough neighborhood of 0 in the complex plane.

Proposition 4.3.1. Assume that µ satisfies either conditions C1 and C2 for invertible matrices, or conditions C1 and C3 for positive matrices. Then, P z ∈ L(B γ , B γ ) for any z ∈ B η 0 2 (0), and the mapping z → P z : B η 0 2 (0) → L(B γ , B γ ) is analytic for γ > 0 small enough, where η 0 is given in condition C1. Moreover, there exists a small η > 0 such that for any z ∈ B η (0) and n 1, we have the decomposition

P n z = κ n (z)M z + L n z , (4.3.2)
where the operator M z := ν z ⊗ r z is a rank one projection on B γ defined by M z ϕ = νz(ϕ) νz(rz) r z for any ϕ ∈ B γ , and the mappings on B η (0)

z → κ(z) ∈ C, z → r z ∈ B γ , z → ν z ∈ B γ , z → L z ∈ L(B γ , B γ )
are unique under the normalizing conditions ν(r z ) = 1 and ν z (1) = 1, where ν is defined in (4.2.2); all these mappings are analytic in B η (0), and possess the following properties:

(a) for any z ∈ B η (0), it holds that M z L z = L z M z = 0;
(b) for any z ∈ B η (0), P z r z = κ(z)r z and ν z P z = κ(z)ν z ;

(c) κ(0) = 1, r 0 = 1, ν 0 = ν, and κ(s) and r s are real-valued and satisfy κ(s) > 0 and r s (x) > 0 for any s ∈ (-η, η) and x ∈ S;

(d) for any k ∈ N, there exist 0 < a 1 < a 2 < 1 such that |κ(z)| > 1 -a 1 and

d k dz k L n z Bγ →Bγ C k (1 -a 2
) n for all z ∈ B η (0).

Grandes déviations pour les produits de matrices aléatoires Hui Xiao 2020

Let us point out the differences between Proposition 4.3.1 and the previous results in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. Firstly, we complement the results in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF] by giving the explicit formula M z ϕ = νz (ϕ) νz(rz) r z in (4.3.2), for z ∈ B η (0), which is one of the crucial points in the proofs of the results of the paper. Basically, it permits us to deduce the spectral gap properties of the operators Q s and R s,z from those of P z . In particular this will enable us to obtain an explicit formula for the operators N s and N s,z in Propositions 4.3.4 and 4.3.8, and the uniformity of the bounds (4.3.36) and (4.3.37). Secondly, for positive matrices, some points of Proposition 4.3.1 have been obtained in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] only for real z 0. The difficulty here is the case when z ∈ R is negative and when z is not real, so Proposition 4.3.1 is new for positive matrices when |z| η. Thirdly, we show that κ(z) and r z take real positive values when z is real, which allows to define the change of measure Q x s for real s, for both invertible matrices and positive matrices. Previously it was shown in [START_REF] Benoist | Random walks on reductive groups[END_REF] that κ(z) is real-valued for real z ∈ (-η, η) for invertible matrices.

In the sequel, without explicitly stated, we always assume that γ > 0 is a sufficiently small constant. 

P * z ϕ(x) = E e z log |g T 1 x| ϕ(g T 1 • x) x ∈ S,
where z ∈ C with z ∈ (-η 0 , η 0 ), and g T 1 denotes the transpose of the matrix g 1 . One can verify that P * z satisfies all the properties of Proposition 4.3.1: under conditions of Proposition 4.3.1, we have the decomposition

P * n z = κ * n (z)ν * z ⊗ r * z + L * n z , z ∈ B η (0), n 1, (4.3.3)
and all the assertions in Proposition 4.3.1 hold for

P * z , κ * (z), ν * z , r * z , L * z instead of P z , κ(z), ν z , r z , L z .
Proof of Proposition 4.3.1. We split the proof into three steps. In steps 1 and 2 we concentrate on the case of positive matrices, since for invertible matrices the results of these steps have been proved in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. In step 1 we follow the same lines as in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. In step 2 we follow [START_REF] Hennion | Stable laws and products of positive random Matrices[END_REF] to prove the spectral gap property of the operator P 0 and we use the perturbation theory to extend it to P z . In step 3 the proof is new and is provided for both invertible and positive matrices by complementing the results in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF].

Step 1. We only need to consider the case of positive matrices. We will show that there exists γ ∈ (0, η 0 6 ) such that P z ∈ L(B γ , B γ ), and that the mapping z → P z is analytic on B η 0 2 (0). For any m 0, z ∈ B η 0 2 (0) and ϕ ∈ B γ , let

P (m) z ϕ(x) = E (log |g 1 x|) m |g 1 x| z ϕ(g 1 •x) , x ∈ S d-1 + .
It suffices to show that for z ∈ B η 0 2 (0) and θ ∈ B η 0 6 (0),

P z+θ = ∞ m=0 θ m m! P (m) z , (4.3.4)
and that there exists a constant C > 0 not depending on θ and z such that

∞ m=0 |θ| m m! P (m) z ϕ γ C ϕ γ . (4.3.5)
From (4.3.5) we deduce that P (0) z = P z ∈ L(B γ , B γ ). Moreover, the bound (4.3.5) ensures the validity of (4.3.4) which implies the analyticity of the mapping z → P z on B η 0 2 (0). It remains to prove (4.3.5). We first give a control of

P (m) z ϕ ∞ . Since | log |gx|| log N (g) for g ∈ Γ µ and x ∈ S d-1 + , we get ∞ m=0 |θ| m m! P (m) z ϕ ∞ ϕ ∞ E e (|θ|+| z|) log N (g 1 ) C ϕ ∞ . (4.3.6)
To control [P (m) z ϕ] γ , note that for any ϕ ∈ B γ , we get

[P (m) z ϕ] γ sup x,y∈S d-1 + ,x =y E (log |g 1 x|) m -(log |g 1 y|) m d γ (x, y) |g 1 x| z ϕ(g 1 •x) + sup x,y∈S d-1 + ,x =y E (log |g 1 y|) m |g 1 x| z -|g 1 y| z d γ (x, y) ϕ(g 1 •x) + sup x,y∈S d-1 + ,x =y E (log |g 1 y|) m |g 1 y| z ϕ(g 1 •x) -ϕ(g 1 •y) d γ (x,
I 1,m 2m ϕ ∞ sup x,y∈S d-1 + ,x =y E (log N (g 1 )) m-γ N (g 1 ) | z| d γ (x, y) log |g 1 x| |g 1 y| γ .
Using (4.2.1), we deduce that for any

g ∈ Γ µ , log |gx| |gy| |g(x -y)| |gy| g ι(g) -1 |x -y| C g ι(g) -1 d(x, y), (4.3.9)
and hence

∞ m=0 |θ| m m! I 1,m 2 ϕ ∞ E (log N (g 1 )) 1-γ e (|θ|+| z|+2γ) log N (g 1 ) . (4.3.10)
Control of I 2,m . Using (4.3.8), we deduce that for any z 1 , z 2 ∈ C,

|e z 1 -e z 2 | 2 max{|z 1 | 1-γ , |z 2 | 1-γ } max{e z 1 , e z 2 }|z 1 -z 2 | γ . (4.3.11)
By this inequality, we find that for any g ∈ Γ µ ,

e z log |gx| -e z log |gy| 2 log N (g)) 1-γ e | z| log N (g) | log |gx| -log |gy|| γ .
Combining this with (4.3.9) implies that Combining this with (4.3.6), (4.3.7), (4.3.10) and (4.3.12), we obtain (4.3.5).

∞ m=0 |θ| m m! I 2,m 2 ϕ ∞ E (log N (g 1 )) 1-γ e (|θ|+| z|+2γ) log N (g 1 ) . ( 4 
Step 2. Again we need only to consider the case of positive matrices. We will prove the decomposition formula (4.3.2) together with parts (a), (b) and (d). Our proof follows closely [START_REF] Hennion | Stable laws and products of positive random Matrices[END_REF]. Define the operator M on B γ by

M ϕ = ν(ϕ)1, ϕ ∈ B γ . Set E = ker M ∩ B γ . We first show that ϕ ∞ [ϕ] γ for any ϕ ∈ E. Since ν(ϕ) = 0 for any ϕ ∈ E, there exist x 1 , x 2 ∈ S d-1 + such that ϕ(x 1 ) = ϕ(x 2 ) = 0. Since d(x, y) ∈ [0, 1], it follows that ϕ ∞ sup x∈S d-1 + | ϕ(x) -ϕ(x 1 )| + sup x∈S d-1 + | ϕ(x) -ϕ(x 2 )| 2[ϕ] γ . (4.3.13)
We next show that (P | E ) < 1, where P = P 0 (see (4.3.1)). For any x, y ∈ S d-1 + , x = y, and ϕ ∈ B γ , there exists a ∈ (0, 1) such that for large n 1,

|P n ϕ(x) -P n ϕ(y)| d γ (x, y) ϕ γ E d γ (G n •x, G n •y) d γ (x, y) ϕ γ a n ,
where for the last inequality we use [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]Lemma 3.2]. Observe that for any ϕ ∈ B γ , we have ϕ -M ϕ ∈ E, thus P n (ϕ -M ϕ) ∈ E for any n 1 since νP = ν. Combining this with (4.3.13) and the above inequality, we get

P n (ϕ -M ϕ) γ 2[P n (ϕ -M ϕ)] γ 2a n [ϕ] γ 2a n ϕ γ , which implies (P | E ) < 1.
This, together with the definition of E and the fact that P 1 = 1, shows that 1 is the isolated dominant eigenvalue of the operator P . Using this and the analyticity of P z ∈ L(B γ , B γ ), and applying the perturbation theorem (see [54, Theorem III.8]), we obtain the decomposition formula (4.3.2) with M z (ϕ) = c 1 ν z (ϕ)r z for some constant c 1 = 0, as well as parts (a), (b) and (d). Using P z r z = κ(z)r z , we get c 1 = 1/ν z (r z ) and thus M z ϕ = νz(ϕ) νz(rz) r z for any ϕ ∈ B γ .

Step 3. We prove part (c) for invertible matrices and positive matrices. From P 1 = 1, we see that κ(0) = 1 and r 0 = 1. Letting z = 0 in ν z P z = κ(z)ν z , we get ν 0 P = ν 0 and thus ν 0 = ν since ν is the unique µ-stationary probability measure. Now we fix z ∈ (-η, η) and we show that κ(z) and r z are real-valued. Taking the conjugate in the equality P z r z = κ(z)r z , we get P z r z = κ(z)r z , so that κ(z) is an eigenvalue of the operator P z . By the uniqueness of the dominant eigenvalue of P z , it follows that κ(z) = κ(z), showing that κ(z) is real-valued for z ∈ (-η, η). We now prove that r z is real-valued. Write r z in the form r z = u z + iv z , where u z and v z are real-valued functions on S. From the normalization condition ν(r z ) = 1, we get ν(u z ) = 1 and ν(v z ) = 0. From the equation P z r z = κ(z)r z and the fact that κ(z) is real-valued, we get that P z u z = κ(z)u z and P z v z = κ(z)v z . By part (a), the space of eigenvectors corresponding to the eigenvalue κ(z) is one dimensional. Therefore, we have either u z = cv z for some constant c ∈ R, or v z = 0. However, the equality u z = cv z is impossible because we have seen that ν(u z ) = 1 and ν(v z ) = 0. Hence v z = 0 and r z is real-valued for z ∈ (-η, η). The positivity of κ(z) and r z then follows from κ(0) = 1, r 0 = 1 and the analyticity of the mappings z → κ(z) and z → r z . This ends the proof of part (c), as well as the proof of Proposition 4.3.1.

Definition of the change of measure Q x s

Proposition 4.3.1 allows us to perform a change of measure. Note that this change of measure for positive s has been extensively studied in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]; however, for negative s it is new. For any s ∈ (-η, η), x ∈ S and g ∈ Γ µ , denote

q s n (x, g) = |gx| s κ n (s) r s (g • x) r s (x) , n 1. (4.3.14)
Note that (q s n ) verifies the cocycle property: for any n, m 1 and

g 1 , g 2 ∈ Γ µ , q s n (x, g 1 )q s m (g 1 •x, g 2 ) = q s n+m (x, g 2 g 1 ). (4.3.15)
Since κ(s) and r s are strictly positive, q s n (x, G n )µ(dg 1 ) . . . µ(dg n ), n 1, is a sequence of probability measures, and forms a projective system on M N * . By the Kolmogorov extension theorem, there is a unique probability measure Q x s on M N * with marginals q s n (x, G n )µ(dg 1 ) . . . µ(dg n ). Denote by E Q x s the corresponding expectation. For any n ∈ N and any bounded measurable function h on (S × R) n+1 , it holds that 

E r s (X x n )|G n x| s κ n (s)r s (x) h X x 0 , log |x|, . . . , X x n , log |G n x| = E Q x s h X x 0 ,

Properties of the Markov operator Q s

For any s ∈ (-η, η) and ϕ ∈ B γ , define the Markov operator Q s by

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x), x ∈ S.
Under the changed measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator given by Q s .

The following assertion will be useful to prove that the function κ is strictly convex (see Lemma 4.3.16). Recall that V (Γ µ ) is the support of the measure ν (cf. (4.2.3), (4.2.4)). Proof. We use the approach developed in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. Set M = sup y∈S ϕ(y) and S + = {x ∈ S : ϕ(x) = M}. From the condition ϕ Q s ϕ and the fact that q s 1 (x, g 1 )µ(dg 1 ) = 1, we get that if x ∈ S + , then g•x ∈ S + for any g ∈ Γ µ , so that Γ µ S + ⊆ S + . Since V (Γ µ ) is the unique minimal Γ µ -invariant set (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] and [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]), we obtain V (Γ µ ) ⊆ S + and the claim follows.

We state the spectral gap property of the Markov operator Q s , whose proof is postponed to Section 4.3.5. 

Q n s = Π s + N n s
, where the mappings s → Π s , s → N s ∈ L(B γ , B γ ) are analytic and satisfy the following properties:

(a) with π s (ϕ) := νs(ϕrs) νs(rs) , we have for any ϕ ∈ B γ ,

Π s (ϕ)(x) = π s (ϕ)1, N n s (ϕ)(x) = 1 κ n (s) L n s (ϕr s )(x) r s (x) , x ∈ S
where ν s , r s , L s are given in Proposition 4. 

Quasi-compactness of the operator Q s+it

For s ∈ (-η, η) and t ∈ R, define the operator Q s+it as follows: for any ϕ ∈ B γ ,

Q s+it ϕ(x) = 1 κ(s)r s (x) P s+it (ϕr s )(x) = 1 κ(s)r s (x) E |g 1 x| s+it ϕ(g 1 •x)r s (g 1 •x) , x ∈ S.
The spectral gap properties of the operator Q s+it for |t| small enough can be deduced from Proposition 4.3.1. However, this approach does not work for large |t|. In order to investigate the spectral gap properties of the operator Q s+it for t ∈ R, we first prove the Doeblin-Fortet inequality and then we apply the theorem of Ionescu-Tulcea and Marinescu [START_REF] Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF] to establish the quasi-compactness of the operator Q s+it . Based on this property, we shall use the non-arithmeticicty condition C5 to prove that the spectral radius of Q s+it is strictly less than 1 when t is different from 0.

The following is the Doeblin-Fortet inequality for the operator Q s+it .

Lemma 4.3.5. Assume the conditions of Proposition 4.3.1. Then, there exist constants 0 < a < 1, and η > 0 small enough, such that for any s ∈ (-η, η), t ∈ R, n 1 and ϕ ∈ B γ , we have

[Q n s+it ϕ] γ C s,t,n ϕ ∞ + C s a n [ϕ] γ . (4.3.18)
For positive-valued s, analogous results can be found in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices and in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] for positive matrices. The proofs in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] rely essentially on the Hölder continuity of the mapping x → q s n (x, g) defined in (4.3.14). However, this property doesn't hold any more in the case when s is negative. Our proof of Lemma 4.3.5 is carried out using the Hölder inequality and the spectral gap properties of the operator P s established in Proposition 4.3.1.

Proof of Lemma 4.3.5. Using the definition of Q s+it and (4.3.15), we get that for any n 1,

Q n s+it ϕ(x) = 1 κ n (s)r s (x) P n s+it (ϕr s )(x), x ∈ S.
It follows that sup

x,y∈S,x =y

|Q n s+it ϕ(x) -Q n s+it ϕ(y)| d γ (x, y) J 1 (n) + J 2 (n), (4.3.19)
where

J 1 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) 1 r s (x) - 1 r s (y) P n s+it (ϕr s )(x) , J 2 (n) = sup x,y∈S,x =y 1 r s (y)d γ (x, y)κ n (s) P n s+it (ϕr s )(x) -P n s+it (ϕr s )(y) .
Note that by Proposition 4.3.1, for any s ∈ (-η, η), we have min x∈S r s (x) > 0, max x∈S r s (x) < ∞ and κ(s) > 0. Control of J 1 (n). Observe that uniformly in x ∈ S,

|P n s+it (ϕr s )(x)| P n s (|ϕ|r s )(x) ϕ ∞ κ n (s) r s ∞ C s ϕ ∞ κ n (s).
Since r s ∈ B γ , this implies that for any s ∈ (-η, η) and t ∈ R,

J 1 (n) C s ϕ ∞ . (4.3.20) Control of J 2 (n).
Using the definition of P s+it and taking into account that r s is strictly positive and bounded on S, we have

J 2 (n) C s (J 21 (n) + J 22 (n) + J 23 (n)), (4.3.21)
where

J 21 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) E (|G n x| s+it -|G n y| s+it )ϕ(X x n ) , J 22 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) E |G n y| s+it (ϕ(X x n ) -ϕ(X y n )) , J 23 (n) = sup x,y∈S,x =y 1 d γ (x, y)κ n (s) E |G n y| s+it ϕ(X y n )[r s (X x n ) -r s (X y n )] .
Control of J 21 (n). Using (4.3.11) and the inequality log u u ε , u > 1, for ε > 0 small enough, we obtain

|G n x| s+it -|G n y| s+it 2(N (G n )) |s|+ε log |G n x| -log |G n y| γ . (4.3.22)
From the inequality (4.2.1), by arguing as in the estimate of (4.3.9), we get

log |G n x| -log |G n y| γ C G n γ ι(G n ) -γ d γ (x, y).
Using first (4.3.22) and then the last bound, we deduce that

J 21 (n) C ϕ ∞ κ n (s) E (N (g 1 )) |s|+ε g 1 γ ι(g 1 ) -γ n C s,t,n ϕ ∞ , (4.3.23)
where the last inequality holds by condition C1. Control of J 22 (n). Since ϕ ∈ B γ , applying the Hölder inequality leads to

J 22 (n) C s [ϕ] γ κ n (s) sup x,y∈S,x =y E |G n y| s d γ (X x n , X y n ) d γ (x, y) C s [ϕ] γ sup x,y∈S,x =y {E [|G n y| 2s ]} 1/2 κ n (s) E d 2γ (X x n , X y n ) d 2γ (x, y) 1/2 . (4.3.24)
Since γ > 0 is small enough, by [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 1] for invertible matrices and [53, Lemma 3.2] for positive matrices, there exists a constant a 0 ∈ (0, 1) such that for sufficiently large n, As κ is continuous in the neighborhood of 0 and κ(0) = 1, one can choose η > 0 small enough and a constant α ∈ (0, 1/a 0 ) such that κ n/2 (2s)/κ n (s) α n , uniformly in s ∈ (-η, η). Substituting this inequality together with (4.3.25) and (4.3.26) into (4.3.24), we obtain that for any s ∈ (-η, η) with η > 0 small, there exists 0 < a < 1 such that uniformly in n 1,

sup x,y∈S,x =y E d 2γ (X x n , X y n ) d 2γ (x, y) 1/2 a n 0 . ( 4 
J 22 (n) C s a n [ϕ] γ , (4.3.27)
Control of J 23 (n). Using (4.3.26) and the fact that r s ∈ B γ , and applying similar techniques as in the control of J 22 (n), one can verify that there exists a constant 0 < a < 1 such that uniformly in n 1, From Lemma 4.3.5 and the fact that Q s+it ϕ ∞ C s ϕ ∞ for any s ∈ (-η, η) and t ∈ R, we can deduce that Q s+it ∈ L(B γ , B γ ). We next prove that the operator

J 23 (n) C s a n ϕ ∞ [r s ] γ C s a n ϕ ∞ . ( 4 
Q s+it is quasi-compact. Recall that an operator Q ∈ L(B γ , B γ ) is quasi-compact if B γ can be decomposed into two Q invariant closed subspaces B γ = E ⊕ F , such that dim E < ∞,
each eigenvalue of Q| E has modulus (Q), and (Q| F ) < (Q) (see [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] for more details). Proposition 4.3.6. Assume the conditions of Proposition 4.3.1. Then, there exists a small η > 0 such that for any s ∈ (-η, η) and t ∈ R, the operator Q s+it is quasicompact.

Proof. The proof consists of verifying the conditions of the theorem of Ionescu-Tulcea and Marinescu [START_REF] Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF]. We follow the formulation in [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]Theorem II.5].

Firstly, by the definition of Q s+it , there exists a constant

C s > 0 such that Q s+it ϕ ∞ C s ϕ ∞ for any s ∈ (-η, η), t ∈ R and ϕ ∈ B γ .
Secondly, by Lemma 4.3.5, the Doeblin-Fortet inequality (4.3.18) holds for the operator Q s+it .

Thirdly, denoting K = Q s+it {ϕ : ϕ γ 1}, we claim that for any s ∈ (-η, η) and

t ∈ R, the set K is conditionally compact in (B γ , • ∞ ). Since Q s+it ϕ ∞ C s ϕ ∞ for any ϕ ∈ B γ , we conclude that K is uniformly bounded in (B γ , • ∞ ). Moreover, by taking n = 1 in (4.3.18), we get that uniformly in ϕ ∈ B γ with ϕ γ 1, |Q s+it ϕ(x) -Q s+it ϕ(y)| C s,t d γ (x, y).
This shows that K is equicontinuous in (B γ , • ∞ ). Therefore, we obtain the claim by the Arzelà-Ascoli theorem.

The assertion of the proposition now follows from the theorem of Ionescu-Tulcea and Marinescu.

The following proposition shows that the spectral radius of the operator Q s+it is strictly less than 1 when t is different from 0. The proof which relies on the nonarithmeticity condition C5, follows the standard pattern in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]; it is included for the commodity of the reader. Proposition 4.3.7. Assume either conditions C1 and C2 for invertible matrices, or conditions C1, C3 and C5 for positive matrices. Then, for any s ∈ (-η, η) with small η > 0, and any t ∈ R\{0}, we have

(Q s+it ) < 1. Proof. By the definition of Q s+it , we have (Q s+it ) (Q s ) = 1.
Suppose that (Q s+it ) = 1 for some t = 0. Then, applying Proposition 4.3.6, there exist ϕ ∈ B γ and β ∈ R such that Q s+it ϕ = e iβ ϕ. From this equation, we deduce that |ϕ| Q s |ϕ|. Using Lemma 4.3.3, this implies that |ϕ(x)| = sup y∈S |ϕ(y)| for any x ∈ V (Γ µ ), so that ϕ(x) = ce iϑ(x) , where c = 0 is a constant and ϑ is a real-valued continuous function on S. Substituting this into the equation Q s+it ϕ = e iβ ϕ gives that for any x ∈ V (Γ µ ),

E Q x s exp[it log |g 1 x| -iβ + iϑ(g 1 •x) -iϑ(x)] = 1. Since ϑ is real-valued, this implies exp[it log |gx| -iβ + iϑ(g • x) -iϑ(x)] = 1 for any x ∈ V (Γ µ )
and µ-a.e. g ∈ Γ µ , which contradicts to condition C5. Therefore (Q s+it ) < 1 for any t = 0. Recalling that condition C2 implies condition C5, the proof of Proposition 4.3.7 is complete.

Spectral gap properties of the perturbed operator R s,z

For any s ∈ (-η, η) and z ∈ C such that s + z ∈ (-η 0 , η 0 ), define the perturbed operator R s,z as follows: for any ϕ ∈ B γ ,

R s,z ϕ(x) = E Q x s e z(log |g 1 x|-Λ (s)) ϕ(X x 1 ) , x ∈ S. (4.3.29)
With some calculations using (4.3.15), it follows that for any n 1,

R n s,z ϕ(x) = E Q x s e z(log |Gnx|-nΛ (s)) ϕ(X x n ) , x ∈ S. (4.3.30)
The following formula relates the operator R n s,z to the operator P n s+z and is of independent interest: for any ϕ ∈ B γ , n 1, s ∈ (-η, η) and z ∈ B η (0),

R n s,z (ϕ) = e -nzΛ (s) P n s+z (ϕr s ) κ n (s)r s . (4.3.31)
The identity (4.3.31) is obtained by the definitions of R s,z and P z using the change of measure (4.

3.16).

There are two ways to establish spectral gap properties of the operator R s,z : one is to use the perturbation theory of operators [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF]Theorem III.8], another is based on the Ionescu-Tulcea and Marinescu theorem [START_REF] Tulcea | Théorie ergodique pour des classes d'opérations non complètement continues[END_REF] about the quasi-compactness of operators. The representation (4.3.31) allows us to deduce the spectral gap properties of R s,z directly from the properties of the operator P z . This has some advantages: it ensures the uniformity in s ∈ (-η, η), allows to deal with negative-vaued s and provides an explicit formula for the projection operator Π s,z and the remainder operator N n s,z defined below.

Recall that Λ = log κ, where κ is defined in (4.2.6).

Proposition 4.3.8. Assume the conditions of Proposition 4.3.1. Then, there exist η > 0 and δ ∈ (0, η) such that for any s ∈ (-η, η) and z ∈ B δ (0),

R n s,z = λ n s,z Π s,z + N n s,z , n 1, (4.3.32) λ s,z = e Λ(s+z)-Λ(s)-Λ (s)z (4.3.33)
and for ϕ ∈ B γ , 

Π s,z (ϕ) = ν s+z (ϕr s ) ν s+z (r s+z ) r s+z r s , (4.3.34) N n s,z (ϕ) = e -n[Λ(s)+Λ (s)z] L n s+z (ϕr s ) r s , ( 4 
d k dz k Π s,z Bγ →Bγ C k , (4.3.36) sup s∈(-η,η) sup z∈B δ (0) d k dz k N n s,z Bγ →Bγ C k a n . (4.3.37)
Note that, for s > 0, similar results have been obtained in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]. The novelty here is that s can account for negative values s ∈ (-η, 0] and that the bounds ( 4 Step 2. We prove parts (a) and (b). The assertion in part (a) follows from the expressions (4.3.33), (4.3.34) and (4.3.35), and the analyticity of the mappings z → κ(z), z → r z , z → ν z and z → L z defined in Proposition 4.3.1. To show part (b), by (4.3.34), we have that Π s,z is a rank-one projection on the subspace w r s+z rs : w ∈ C . The identity Π s,0 (ϕ)(x) = π s (ϕ) follows from (4.3.34) and the fact that π s (ϕ) = νs (ϕrs) νs(rs) . Using Proposition 4.3.1, we get that L z r z = 0 and ν z (L z ϕ) = 0 for any ϕ ∈ B γ . This, together with (4.3.34) and (4.3.35), shows Π s,z N s,z = N s,z Π s,z = 0.

Step 3. We prove part (c). By Proposition 4.3.1, there exists η > 0 such that the mappings z → κ(z), z → r z , z → ν z are analytic and uniformly bounded on B 2η (0). Combining this with (4.3.34), we obtain (4.3.36). We now prove (4.3.37). Since the function r s is strictly positive on the compact set S, by Proposition 4.3.1(d), we deduce that there exists 0 < a 0 < 1 such that uniformly in ϕ ∈ B γ ,

sup s∈(-η,η) sup z∈Bη(0) L n s+z (ϕr s ) r s γ C ϕ γ a n 0 . (4.3.38)
Using the fact that the function Λ is continuous and Λ(0) = 0, there exist a small η > 0, δ ∈ (0, η) and a constant a 1 < 1 a 0 such that sup s∈(-η,η)

sup z∈B δ (0) e -n[Λ(s)+Λ (s)z] Ca n 1 .
Combining this with (4. Let K ⊂ (-η, η) and T ⊆ R\{0} be compact sets. Since

∪ (s,t)∈K×T s -ε(s), s + ε(s) × t -δ(t), t + δ(t) ⊃ K × T,
by Heine-Borel's theorem, there exists a sequence {s m , t m } 1 m m 0 such that

∪ m 0 m=1 (s m -ε m , s m + ε m ) × (t m -δ m , t m + δ m ) ⊃ K × T,
where ε m = ε(s m ) and δ m = δ(s m ). This concludes the proof of Proposition 4.3.10 by taking

C = C(K, T ) = min 1 m m 0 C(s m , t m ).
We now give some properties of the function b s,ϕ defined as follows: for any s ∈ (-η, η) and

ϕ ∈ B γ , b s,ϕ (x) = lim n→∞ E Q x s (log |G n x| -nΛ (s))ϕ(X x n ) , x ∈ S.
In particular, with s = 0, b 0,ϕ = b ϕ , which is defined in (4.2.7). Proof. In view of Proposition 4.3.8, we have that for any ϕ ∈ B γ ,

E Q x s e z(log |Gnx|-nΛ (s)) ϕ(X x n ) = λ n s,z Π s,z ϕ(x) + N n s,z ϕ(x), x ∈ S.
From (4.3.33), we have λ s,0 = 1 and dλs,z dz | z=0 = 0. Differentiating both sides of the above equation w.r.t. z at the point 0 gives that for any x ∈ S, For any s ∈ (-η, η) with η > 0 small, define

E Q x s (log |G n x| -nΛ (s))ϕ(X x n ) = dΠ s,z dz z=0 ϕ(x) + dN n s,z dz z=0 ϕ(x). ( 4 
Q s = S Q x s π s (dx).
The following result will be used to prove the strong law of large numbers for log |G n x| under the changed measure Q s . Lemma 4.3.12. Assume the conditions of Proposition 4.3.1. There exist η > 0 and c, C > 0 such that uniformly in s ∈ (-η, η), ϕ ∈ B γ and n 1, Now let us prove (4.3.44). By Markov's inequality, we have for small δ > 0,

E Qs (log |G n x| -nΛ (s))ϕ(X x n ) C ϕ γ e -cn . ( 4 
Q x s log |G n x| -nΛ (s) nε e -nδε E Q x s e δ(log |Gnx|-nΛ (s)) + e -nδε E Q x s e -δ(log |Gnx|-nΛ (s)) .
From (4.3.30) and Proposition 4.3.8, we deduce that there exist positive constants c, C independent of s, x, δ such that

E Q x s e δ(log |Gnx|-nΛ (s)) + E Q x s e -δ(log |Gnx|-nΛ (s)) Ce n[Λ(s+δ)-Λ(s)-Λ (s)δ] + Ce n[Λ(s-δ)-Λ(s)+Λ (s)δ] + Ce -cn .
Using Taylor's formula and taking δ > 0 small enough, we conclude that

Q x s log |G n x| -nΛ (s) nε Ce -n δ 2 ε ,
which implies the assertion (4.3.44). 

∈ Ω, set h(x, ω) = log |g 1 (ω)x|. Then h is Q s -integrable. Since log |G n x| = n-1 k=0 (h • θ k )(x, ω) and Q s is θ-ergodic, it follows from Birkhoff's ergodic theorem that 1 n log |G n x| converges Q s -a.s.
to some constant c s as n → ∞. If we suppose that c s is different from Λ (s), then this contradicts to (4.3.45). Thus c s = Λ (s) and the assertion of the lemma follows. Now we give the third-order Taylor expansion of λ s,z defined by (4.3.33), w.r.t. z at the origin in the complex plane. Proposition 4.3.15. Assume the conditions of Proposition 4.3.1. Then, there exist η > 0 and δ > 0 such that for any s ∈ (-η, η) and z ∈ B δ (0),

λ s,z = 1 + σ 2 s 2 z 2 + Λ (s) 6 z 3 + o(|z| 3 ) as |z| → 0, (4.3.46) 
where (a) σ 2 s = Λ (s) 0 and Λ (s) ∈ R;

(b) for invertible matrices, σ s > 0 under the stated conditions; for positive matrices, σ s > 0 if additionally σ = σ 0 > 0 or if the measure µ is non-arithmetic;

(c) uniformly in s ∈ (-η, η) and x ∈ S,

σ 2 s = lim n→∞ 1 n E Q x s log |G n x| -nΛ (s) 2 = lim n→∞ 1 n E Qs log |G n x| -nΛ (s) 2 ; (d) uniformly in s ∈ (-η, η), Λ (s) = lim n→∞ 1 n E Qs log |G n x| -nΛ (s) 3 .
The proof of Proposition 4.3.15 is based on the following lemma. Proof. The proof follows [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]. Since Λ = log κ, it suffices to prove Lemma 4.3.16 for the function Λ. For any t ∈ (0, 1), s 1 , s 2 ∈ (-η, η), set s = ts 1 + (1 -t)s 2 . Using Hölder's inequality and the fact that P s r s = κ(s)r s ,

P s (r t s 1 r 1-t s 2 ) κ t (s 1 )κ 1-t (s 2 )r t s 1 r 1-t s 2 . ( 4.3.47) 
Since κ(s ) is the dominant eigenvalue of the operator P s , we obtain κ(s ) κ t (s 1 )κ 1-t (s 2 ) and thus Λ is convex.

To show that the function Λ is strictly convex, we suppose, by absurd, that there exist s 1 = s 2 and some t ∈ (0, 1) such that κ(s ) = κ t (s 1 )κ 1-t (s 2 ). Using this equality, the definition of Q s and (4.3.47), we get Q s (r t s 1 r 1-t s 2 /r s ) r t s 1 r 1-t s 2 /r s . By Lemma 4.3.3, this implies that r t s 1 r 1-t s 2 = cr s on V (Γ µ ) for some constant c > 0. Substituting this equality and the identity κ(s ) = κ t (s 1 )κ 1-t (s 2 ) into (4.3.47), we see that the Hölder inequality in (4.3.47) is actually an equality. This yields that there exists a function c(x) > 0 such that for any g ∈ Γ µ and x ∈ V (Γ µ ), we have κ(s 2 )rs 2 (x) . Substituting this into (4.3.48) and noting that s 1 = s 2 , we find that there exist a constant c 1 > 0 and a real-valued function ϕ on S such that |gx| = c 1 ϕ(g•x) ϕ(x) for any g ∈ Γ µ and x ∈ V (Γ µ ). This contradicts to condition C5. Recall that condition C2 implies condition C5 for invertible matrices. Hence Λ is strictly convex for invertible matrices under stated conditions.

|gx| s 1 r s 1 (g•x) = c(x)|gx| s 2 r s 2 (g•x). ( 4 
Proof of Proposition 4.3.15. The expansion (4.3.46) follows from the identity (4.3.33) and Taylor's formula.

For part (a), by Lemma 4.3.16, we have Λ (s) 0. Since Λ = log κ and it is shown in Proposition 4.3.1 that the function κ is real-valued and strictly positive on (-η, η), we get Λ (s) ∈ R.

For part (b), recall that it was shown in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] that σ 0 > 0 for invertible matrices under the stated conditions, and for positive matrices under the additional condition of non-arithmeticity. Hence, using the continuity of the function Λ , we obtain that σ s > 0.

For part (c), by Proposition 4.3.8, we get that for |z| small,

E Q x s e z(log |Gnx|-nΛ (s)) = λ n s,z (Π s,z 1)(x) + (N n s,z 1)(x). (4.3.49) 
It follows from (4.3.46) that for |z| = o(n -1/3 ),

λ n s,z = 1 + nσ 2 s z 2 2 + nΛ (s) z 3 6 + o(n|z| 3 ). ( 4.3.50) 
Using Taylor's formula, the bound (4.3.36) and the fact Π s,0 1 = 1, we obtain

(Π s,z 1)(x) = 1 + c s,x,1 z + c s,x,2 z 2 + c s,x,3 z 3 + o(|z| 3 ), (4.3.51) 
where the constants c s,x,1 , c s,x,2 , c s,x,3 ∈ C are bounded as functions of s and x. Similarly, using the fact N s,0 1 = 0 and the bound (4.3.37), there exist constants C s,x,n,1 , C s,x,n,2 , C s,x,n,3 ∈ C which are bounded as functions of s, x and n such that

(N n s,z 1)(x) = C s,x,n,1 z + C s,x,n,2 z 2 + C s,x,n,3 z 3 + o(|z| 3 ). (4.3.52)
Taking the second derivative on both sides of the equation (4.3.49) with respect to z at 0, and using the expansions (4.3.50)-(4.3.52), we deduce that

E Q x s [log |G n x| -nΛ (s)] 2 = nσ 2 s + 2c s,x,2 + 2C s,x,n,2 . (4.3.53)
This, together with the definition of Q s and the fact that the constants c s,x,2 , C s,x,n,2 are bounded as functions of s, x, n, concludes the proof of part (c).

For part (d), integrating both sides of the equations (4.3.49), (4.3.51) and (4.3.52) with respect to the invariant measure π s , and using the property (4.3.43) with ϕ = 1 (thus the second term on the right-hand side of (4.3.51) vanishes), in the same way as in the proof of (4.3.53), we get

E Qs [log |G n x| -nΛ (s)] 3 = nΛ (s) + 6c s,3 + 6C s,n,3 .
This implies the assertion in part (d).

Remark 4.3.17. Inspecting the proof of Proposition 4.3.15, it is easy to see that the results in parts (c) and (d) can be reinforced to the following bounds:

sup s∈(-η,η) sup x∈S 1 n E Q x s log |G n x| -nΛ (s) 2 -σ 2 s C n , sup s∈(-η,η) 1 n E Qs log |G n x| -nΛ (s) 3 -Λ (s) C n .
The first bound above also holds with the measure Q x s replaced by Q s .

Smoothing inequality on the complex plane

In this section we aim to establish a new smoothing inequality, which plays a crucial role in proving the Berry-Esseen theorem and Edgeworth expansion with a target function ϕ on X x n ; see Theorems 4.2.1, 4.2.2, 4.5.1 and 4.5.3. From now on, for any integrable function h : R → C, denote its Fourier transform by h(t) = R e -ity h(y)dy, t ∈ R. If h is integrable on R, then using the inverse Fourier transform gives h(y) = 1 2π R e ity h(t)dt, for almost all y ∈ R with respect to the Lebesgue measure on R. Denote by h 1 * h 2 the convolution of the functions h 1 , h 2 on the real line. For any r > 0, we denote

D r = {z ∈ C : |z| < r},
and

D + r = {z ∈ C : |z| < r, z > 0} and D - r = {z ∈ C : |z| < r, z < 0}.
Now we construct a density function ρ T which plays an important role in establishing a new smoothing inequality. As in [START_REF] Petrov | Sums of independent random variables[END_REF], we define a density function ρ on the real line R by setting ρ(0) = 1/2π and

ρ(y) = 1 2π sin y 2 y 2 2 , y ∈ R \ {0}.
Then ρ is a non-negative function bounded by 1 2π and R ρ(y)dy = 1. Its Fourier transform ρ is given by

ρ(t) = 1 -|t|, t ∈ [-1, 1],
and ρ(t) = 0 otherwise.

For any T > 0 and the fixed constant b > 0 satisfying b -b ρ(y)dy = 3/4, define the density function

ρ T (y) = T ρ(T y -b), y ∈ R, whose Fourier transform ρ T is given by ρ T (t) = e -ib t T 1 - |t| T , t ∈ [-T, T ], (4.4.1) 
and ρ T (t) = 0 otherwise. Note that the function ρ T is not smooth at the point 0, so that it can not have an analytic extension in a small neighborhood of 0 in the complex plane C. Now we are ready to establish a new smoothing inequality. Its proof is based on the properties of the density function ρ T , Cauchy's integral theorem and some techniques from [START_REF] Esseen | Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law[END_REF][START_REF] Petrov | Sums of independent random variables[END_REF]. Proposition 4.4.1. Assume that F is non-decreasing on R, and that H is differentiable of bounded variation on R such that

sup y∈R |H (y)| < ∞. Suppose that F (-∞) = H(-∞) and F (∞) = H(∞). Let f (t) = R e -ity dF (y) and h(t) = R e -ity dH(y), t ∈ R.
Suppose that r > 0 and that f and h have analytic extensions on D r . Then, for any T r,

sup y∈R |F (y) -H(y)| 1 π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 1 π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz + 1 π r |t| T f (t) -h(t) t dt + 2 πT T -T |f (t) -h(t)|dt + 3b T sup y∈R |H (y)|,
where b > 0 is a fixed constant satisfying b -b ρ(y)dy = 3/4, and the semicircles C - r and C + r are given by

C - r = {z ∈ C : |z| = r, z < 0}, C + r = {z ∈ C : |z| = r, z > 0}. (4.4.2) 
Proof. Let T r. From the definition of ρ T and the choice of the constant b, we have Upper bound. Since the function F is non-decreasing on R and ρ T is a density function on R, we find that for any y ∈ R, F (y) [START_REF] Bahadur | On deviations of the sample mean[END_REF] 3

y+ 2b T y F (u)ρ T (u -y)du =H(y) + 4 3 y+ 2b T y (F (u) -H(u))ρ T (u -y) + (H(u) -H(y))ρ T (u -y) du H(y) + 4 3 y+ 2b T y (F (u) -H(u))ρ T (u -y)du + 2b T sup y∈R |H (y)|. (4.4.3) Let F 1 (y) = R F (u)ρ T (u -y)du, and H 1 (y) = R H(u)ρ T (u -y)du, y ∈ R. Elementary calculations lead to R e -ity dF 1 (y) = f (t) ρ T (-t), R e -ity dH 1 (y) = h(t) ρ T (-t), t ∈ R.
Restricted on the real line, the function ρ T is supported on [-T, T ]. By the inversion formula we get

F 1 (y) -F 1 (v) = 1 2π T -T e ity -e itv it f (t) ρ T (-t)dt, y, v ∈ R, H 1 (y) -H 1 (v) = 1 2π T -T e ity -e itv it h(t) ρ T (-t)dt y, v ∈ R.
By the definition of ρT (cf. (4.4.1)), we get

F 1 (y) -H 1 (y) -(F 1 (v) -H 1 (v)) = 1 2π T -T f (t) -h(t) it e ity e -ib t T dt - 1 2π T -T f (t) -h(t) it e itv e -ib t T dt - 1 2π T -T f (t) -h(t) it e ity |t| T dt + 1 2π T -T f (t) -h(t) it e itv |t| T dt.
It follows that

F 1 (y) -H 1 (y) -(F 1 (v) -H 1 (v)) 1 2π T -T f (t) -h(t) it e ity e -ib t T dt - 1 2π T -T f (t) -h(t) it e itv e -ib t T dt + 1 πT T -T |f (t) -h(t)|dt. ( 4.4.4) 
We shall use Cauchy's integral theorem to change the integration path [-T, T ] to a contour in the complex plane. In order to estimate the difference |F 1 (y) -H 1 (y)|, we are led to consider two cases: y 0 and y > 0.

Control of |F 1 (y)-H 1 (y)| when y 0. Let C -= C r,T ∪C - r , where C r,T = [-T, -r]∪ [r, T ]
and the lower semicircle C - r is given in (4.4.2). Since the functions f , h and t → e -ib t T are analytic on the domain D r , applying Cauchy's integral theorem gives

1 2π T -T f (t) -h(t) it e ity e -ib t T dt - 1 2π T -T f (t) -h(t) it e itv e -ib t T dt = 1 2π C - f (z) -h(z) iz e izy e -ib z T dz - C - f (z) -h(z) iz e izv e -ib z T dz , ( 4.4.5) 
where the integration is over the complex curve C -oriented from -T to T . The second integral in (4.4.5) converges to 0 as v → -∞, by using the Riemann-Lebesgue lemma on the real segment C r,T and by applying the Lebesgue convergence theorem on the semicircle

C - r . Note that F 1 (-∞) = H 1 (-∞) since F (-∞) = H(-∞).
Consequently, letting v → -∞ in (4.4.5) and substituting it into (4.4.4) we get

F 1 (y) -H 1 (y) 1 2π C - f (z) -h(z) iz e izy e -ib z T dz + 1 πT T -T |f (t) -h(t)|dt.
Therefore,

sup y 0 |F 1 (y) -H 1 (y)| 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 πT T -T |f (t) -h(t)|dt. (4.4.6) Control of |F 1 (y) -H 1 (y)| when y > 0. Let C + = C r,T ∪C + r , where C r,T = [-T, -r] ∪ [r, T ]
and the upper semicircle C + r is given in (4.4.2). In an analogous way as in (4.4.5),

we have

1 2π T -T f (t) -h(t) it e ity e -ib t T dt - 1 2π T -T f (t) -h(t) it e itv e -ib t T dt = 1 2π C + f (z) -h(z) iz e izy e -ib z T dz - C + f (z) -h(z) iz e izv e -ib z T dz , ( 4.4.7) 
where the integration is over the complex curve C + also oriented from -T to T . The second integral in (4.4.7) converges to 0 as v → +∞, by using again the Riemann-Lebesgue lemma on the real segment C r,T and by applying the Lebesgue convergence theorem on the upper semicircle

C + r . Note that F 1 (∞) = H 1 (∞) since F (∞) = H(∞).
Hence, letting v → +∞ in (4.4.7), similarly to (4.4.6), we obtain

sup y>0 |F 1 (y) -H 1 (y)| 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 πT T -T |f (t) -h(t)|dt. ( 4.4.8) 
As a result, putting together (

sup y∈R |F 1 (y) -H 1 (y)| 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 2π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 πT T -T |f (t) -h(t)|dt. ( 4.4.6) and (4.4.8) leads to 
Denote ∆ = sup y∈R |F (y) -H(y)|. Then, taking into account that ρ T is a density function on R, using (4.4.9) and the fact that 2b/T 0 ρ T (y)dy = 3/4, we get

y+ 2b T y (F (u) -H(u))ρ T (u -y)du |F 1 (y) -H 1 (y)| + ∆ 1 - 2b/T 0 ρ T (u)du 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 1 2π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 1 πT T -T |f (t) -h(t)|dt + ∆ 4 .
Substituting this inequality into (4.4.3), we obtain the following upper bound:

F (y) -H(y) 2 3π C r,T f (t) -h(t) t dt + 2 3π sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + 2 3π sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + 4 3πT T -T |f (t) -h(t)|dt + ∆ 3 + 2b T sup y∈R |H (y)|. (4.4.10)
Lower bound. Similarly to (4.4.3), we have for any y ∈ R,

F (y) 4 3 y y-2b T F (u)ρ T (y -u)du H(y) + 4 3 y y-2b T (F (u) -H(u))ρ T (y -u)du - 2b T sup y∈R |H (y)|. Let F 2 (y) = (F * ρ T )(y) and H 2 (y) = (H * ρ T )(y), y ∈ R, then R e -ity dF 2 (y) = f (t) ρ T (t), R e -ity dH 2 (y) = h(t) ρ T (t), t ∈ R.
Proceeding in the same way as in the proof of (4.4.9), we get

sup y∈R |F 2 (y) -H 2 (y)| 1 2π C r,T f (t) -h(t) t dt + 1 2π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + 1 2π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz + 1 πT T -T |f (t) -h(t)|dt.
Following the proof of (4.4.10), we obtain the lower bound: 

F (y) -H(y) - 2 3π C r,T f (t) -h(t) t dt - 2 3π sup y 0 C - r f (z) -h(z) z e izy e ib z T dz - 2 3π sup y>0 C + r f (z) -h(z) z e izy e ib z T dz - 4 3πT T -T |f (t) -h(t)|dt - ∆ 3 - 2b T sup y∈R |H ( 

Proofs of Berry-Esseen bound and Edgeworth expansion 4.5.1 Berry-Esseen bound and Edgeworth expansion under the changed measure

We first formulate a Berry-Esseen bound under the changed measure Q x s . Theorem 4.5.1. Assume either conditions C1 and C2 for invertible matrices, or conditions C1, C3 and C4 for positive matrices. Then there exist constants η > 0 and C > 0 such that for all n 1, s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ ,

E Q x s ϕ(X x n )1 log |Gnx|-nΛ (s) σs √ n y -π s (ϕ)Φ(y) C ϕ γ √ n . ( 4.5.1) 
The following result gives an Edgeworth expansion for log |G n x| with the target function ϕ on X x n under Q x s . The function b s,ϕ (x), x ∈ S, which will be used in the formulation of this result, is defined in Lemma 4.3.11 and has an equivalent expression (4.3.39) in terms of derivative of the projection operator Π s,z , see Proposition 4.3.8. Theorem 4.5.2. Assume either conditions C1 and C2 for invertible matrices, or conditions C1, C3 and C5 for positive matrices. Then there exists η > 0 such that as n → ∞, uniformly in s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ ,

E Q x s ϕ(X x n )1 log |Gnx|-nΛ (s) σs √ n y -E Q x s [ϕ(X x n )] Φ(y) + Λ (s) 6σ 3 s √ n (1 -y 2 )φ(y) + b s,ϕ (x) σ s √ n φ(y) = ϕ γ o 1 √ n .
The following asymptotic expansion is slightly different from that in Theorem 4.5.2, with the term E Q x s [ϕ(X x n )] replaced by π s (ϕ). Theorem 4.5.3. Under the conditions of Theorem 4.5.2, there exists η > 0 such that, as n → ∞, uniformly in s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ ,

E Q x s ϕ(X x n )1 log |Gnx|-nΛ (s) σs √ n y (4.5.2) -π s (ϕ) Φ(y) + Λ (s) 6σ 3 s √ n (1 -y 2 )φ(y) + b s,ϕ (x) σ s √ n φ(y) = ϕ γ o 1 √ n .
With fixed s > 0 and ϕ = 1, the expansion (4.5.2) has been established earlier in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF].

The assertion of Theorem 4.5.3 follows from Theorem 4.5.2, since the bound (4.3.17) implies that there exist constants c, C > 0 such that uniformly in ϕ ∈ B γ , sup s∈(-η,η) 

sup x∈S |E Q x s [ϕ(X x n )] -π s (ϕ)| Ce -cn ϕ γ . ( 4 

Proof of Theorem 4.5.2

Without loss of generality, we assume that ϕ is non-negative. Denote

F (y) = E Q x s ϕ(X x n )1 log |Gnx|-nΛ (s) σs √ n y , y ∈ R, H(y) = E Q x s [ϕ(X x n )] Φ(y) + Λ (s) 6σ 3 s √ n (1 -y 2 )φ(y) - b s,ϕ (x) σ s √ n φ(y), y ∈ R.
Define

f (t) = R e -ity dF (y), h(t) = R e -ity dH(y), t ∈ R.
By straightforward calculations we have

f (t) = E Q x s ϕ(X x n )e -it log |Gnx|-nΛ (s) σs √ n = R n s, -it σs √ n ϕ(x), t ∈ R, (4.5.4 
)

h(t) = e -t 2 2 1 -(it) 3 Λ (s) 6σ 3 s √ n R s,0 ϕ(x) -it b s,ϕ (x) σ s √ n , t ∈ R. (4.5.5) It is clear that F (-∞) = H(-∞) = 0 and F (∞) = H(∞).
Moreover, one can verify that the functions F, H and their corresponding Fourier-Stieltjes transforms f, h satisfy the conditions of Proposition 4.4.1 for r = δ 1 √ n, with some δ 1 > 0 sufficiently small. Then, for any real T r,

sup y∈R |F (y) -H(y)| 1 π (I 1 + I 2 + I 3 + I 4 ), (4.5.6) 
where

I 1 = 3πb T sup y∈R |H (y)|, I 2 = r |t| T f (t) -h(t) t dt, I 3 = sup y 0 C - r f (z) -h(z) z e izy e -ib z T dz + sup y>0 C + r f (z) -h(z) z e izy e -ib z T dz + sup y 0 C - r f (z) -h(z) z e izy e ib z T dz + sup y>0 C + r f (z) -h(z) z e izy e ib z T dz =: I 31 + I 32 + I 33 + I 34 , I 4 = 2 T T -T |f (t) -h(t)|dt, ( 4.5.7) 
with the constant b > 0 and the complex contours C - r , C + r defined in (4.4.2). By virtue of (4.5.6), in order to prove Theorem 4.5.2 it suffices to show that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ , Using the bounds (4.5.9) and (4.5.10), and taking into account that σ 2 s > 0 and Λ (s) ∈ R are bounded by a constant independent of s ∈ (-η, η), we obtain that |H (y)| is bounded by c 1 ϕ γ , uniformly in s ∈ (-η, η), x ∈ S, y ∈ R and ϕ ∈ B γ . Hence, for any ε > 0, we can choose a > 0 large enough, such that, for T = a √ n, uniformly in ϕ ∈ B γ , we have sup s∈(-η,η)

I 1 + I 2 + I 3 + I 4 = ϕ γ o 1 √ n . ( 4 
sup x∈S |E Q x s [ϕ(X x n )]| C ϕ γ . ( 4 
sup x∈S I 1 6πbc 1 T ϕ γ < ε √ n ϕ γ . (4.5.11)
Control of I 2 . Since σ m := inf s∈(-η,η) σ s > 0, we can pick δ 1 small enough, such that 0 < δ 1 < min{a, δσ m /2}, where the constant δ > 0 is given in Proposition 4.3.8. Then with r = δ 1 √ n we bound I 2 as follows:

I 2 δ 1 √ n<|t| a √ n f (t) t dt + δ 1 √ n<|t| a √ n h(t) t dt. ( 4.5.12) 
Let σ M := sup s∈(-η,η) σ s < ∞. On the right-hand side of (4.5.12), using Proposition 4.3.10 with K = {t ∈ R : δ 1 /σ M |t| a/σ m }, the first integral is bounded by Ce -cn ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ; the second integral, by the bounds (4.5.9) and (4.5.10) and direct calculations, is bounded by Ce -c √ n ϕ γ , also uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Consequently, we conclude that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S I 2 Ce -c √ n ϕ γ . (4.5.13)
Control of I 3 . Recall that the term I 3 is decomposed into four terms in (4.5.7). We will only deal with I 31 , since I 32 , I 33 , I 34 can be treated in a similar way. In view of (4.5.4) and (4.5.5), by the spectral gap decomposition (4.3.32), we get

f (z) -h(z) = J 1 (z) + J 2 (z) + J 3 (z) + J 4 (z), (4.5.14) 
where

J 1 (z) = π s (ϕ) λ n s, -iz σs √ n -e -z 2 2 1 -(iz) 3 Λ (s) 6σ 3 s √ n , (4.5.15) J 2 (z) = λ n s, -iz σs √ n Π s, -iz σs √ n ϕ(x) -π s (ϕ) -iz b s,ϕ (x) σ s √ n , ( 4.5.16 
)

J 3 (z) = iz b s,ϕ (x) σ s √ n λ n s, -iz σs √ n -e -z 2 2 , ( 4 
.5.17)

J 4 (z) = N n s, -iz σs √ n ϕ(x) + N n s,0 ϕ(x)e -z 2 2 1 -(iz) 3 Λ (s) 6σ 3 s √ n . ( 4.5.18) 
With the above notation, we use the decomposition (4.5.14) to bound I 31 in (4.5.7) as follows:

I 31 4 k=1 A k , where A k = sup y 0 C - r J k (z) z e izy e -ib z T dz . (4.5.19)
We now give bounds of A k , 1 k 4, in a series of lemmata. Let us start by giving an elementary inequality, which will be used repeatedly in the sequel. Let [z 1 , z 2 ] = {z 1 + θ(z 2 -z 1 )) : 0 θ 1} be the complex segment with the endpoints z 1 and z 2 . 

f (z 2 ) - n-1 k=0 f (k) (z 1 ) k! (z 2 -z 1 ) k sup z∈[z 1 ,z 2 ] |f (n) (z)| n! |z 2 -z 1 | n .
Proof. The proof of this inequality can be carried out by induction. The inequality clearly holds for n = 1 since for any

z 1 , z 2 ∈ D, |f (z 2 ) -f (z 1 )| = [z 1 ,z 2 ] f (z)dz sup z∈[z 1 ,z 2 ] |f (z)||z 2 -z 1 |. (4.5.20) 
For n 2, applying (4.5.20) to

F (z) = f (z) -n-1 k=1 f (k) (z 1 ) k! (z -z 1 ) k , z ∈ D,
leads to the desired assertion. Now we are ready to establish a bound of each term A k . The proof is based on the saddle point method. To be more precise, we deform the integration path, which passes through a suitable point related to the saddle point, to minimise the integral in A k (see (4.5.19)). √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 1 = sup y 0 C - r J 1 (z) z e izy e -ib z T dz c n ϕ ∞ .
Proof. In view of (4.3.33), using Λ = log κ and Taylor's formula, we have

λ n s, -iz σs √ n = e -z 2 2 e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k . ( 4.5.21) 
For brevity, for any z ∈ C - r , denote

h 1 (z) = 1 z e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k -1 -(-iz) 3 Λ (s) 6σ 3 s √ n e -ib z T . (4.5.22)
Then, in view of (4.5.15), the term A 1 can be rewritten as √ n, applying Cauchy's integral theorem, we deduce that

A 1 = π s (ϕ) sup y 0 C - r e -z 2 2 +izy h 1 (z)dz . ( 4 
A 1 c 1 ϕ ∞ sup y 0 -δ 1 √ n-iyn -δ 1 √ n + δ 1 √ n δ 1 √ n-iyn e -z 2 2 +izy h 1 (z)dz + c 1 ϕ ∞ sup y 0 δ 1 √ n-iyn -δ 1 √ n-iyn e -z 2 2 +izy h 1 (z)dz = c 1 ϕ ∞ (A 11 + A 12 ). ( 4 

.5.25)

Control of A 11 . Using a change of variable, we get

A 11 = e -δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty-iδ 1 √ n(t+y) h 1 (-δ 1 √ n -it)dt - yn 0 e t 2 2 +ty+iδ 1 √ n(t+y) h 1 (δ 1 √ n -it)dt e -δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty |h 1 (-δ 1 √ n -it)| + |h 1 (δ 1 √ n -it)| dt . (4.5.26) We first bound |h 1 (±δ 1 √ n -it)|. Since t ∈ [0, y n ] and y n δ 1 √ n, direct calculations give (-i) 3 (±δ 1 √ n -it) 3 = 3δ 2 1 nt -t 3 2δ 3 1 n 3/2 , which implies that for δ 1 > 0 sufficiently small, n ∞ k=3 Λ (k) (s) k! (-i) k (±δ 1 √ n -it) k (σ s √ n) k 1 4 δ 2 1 n. ( 4.5.27) 
Observe that there exists a constant c > 0 such that uniformly in t ∈ [0, y n ] and s ∈ (-η, η),

1 z = 1 ±δ 1 √ n -it c δ 1 √ n , i 3 (±δ 1 √ n -it) 3 Λ (s) 6σ 3 s √ n cn. (4.5.28)
Since the function t → e -ib z T is analytic on the domain D T , we infer that | exp{ ib T (±δ 1 √ n+ it)}| is bounded uniformly in t ∈ [0, y n ] and n 1. Combining this with the bounds (4.5.27) and (4.5.28), uniformly in s ∈ (-η, η),

|h 1 (-δ 1 √ n -it)| + |h 1 (δ 1 √ n -it)| c δ 1 √ n e δ 2 1 4 n + cn c δ 1 √ n e δ 2 1 4 n .
In view of (4.5. 

A 11 c δ 1 y n √ n e -δ 2 1 2 n e δ 2 1 4 n c δ 1 e -δ 2 1 4 n . (4.5.

29)

Control of A 12 . Using a change of variable z = t -iy n leads to

A 12 = sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 2 +it(yn+y) h 1 (t -iy n )dt sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 2 |h 1 (t -iy n )|dt , ( 4.5.30) 
where the function h 1 is defined by (4.5.22). To estimate the term A 12 , the main task is to give a control of |h

1 (t -iy n )|. It follows from Lemma 4.5.4 that |e z 1 -e z 2 | e max{ z 1 , z 2 } |z 1 -z 2 | and |e z 2 -1 -z 2 | 1 2 |z 2 | 2 e |z 2 |
for any z 1 , z 2 ∈ C, and hence

|e z 1 -1 -z 2 | e max{ z 1 , z 2 } |z 1 -z 2 | + 1 2 |z 2 | 2 e |z 2 | . (4.5.31)
We shall make use of the inequality (4.5.31) to derive a bound of |h

1 (t -iy n )|. Since yn √ n δ 1
where δ 1 > 0 can be sufficiently small, for any |t| δ 1 √ n, we get that uniformly in s ∈ (-η, η),

[-i(t -iy n )] 3 Λ (3) (s) 6σ 3 s √ n = y n √ n (3t 2 -y 2 n )Λ (3) (s) 6σ 3 s 1 4 t 2 , (4.5.32) n ∞ k=3 Λ (k) (s) k! - i(t -iy n ) σ s √ n k y n √ n (6t 2 -1 2 y 2 n )Λ (3) (s) 6σ 3 s 1 4 t 2 . ( 4.5.33) 
Moreover, elementary calculations yield that there exists a constant c > 0 such that uniformly in s ∈ (-η, η),

n ∞ k=3 Λ (k) (s) k! - i(t -iy n ) σ s √ n k -[-i(t -iy n )] 3 Λ (3) (s) 6σ 3 s √ n = n ∞ k=4 Λ (k) (s) k! - i(t -iy n ) σ s √ n k c t 4 + y 4 n n . (4.5.34) It is clear that sup s∈(-η,η) [-i(t -iy n )] 3 Λ (3) (s) 6σ 3 s √ n 2 c t 6 + y 6 n n . ( 4.5.35) 
Taking into account that both |t| and y n are less than δ 1 √ n, and the fact δ 1 > 0 can be small enough, it follows that

sup s∈(-η,η) exp |[-i(t -iy n )] 3 Λ (3) (s) 6σ 3 s √ n | e 1 4 (t 2 +y 2 n ) .
Combining this with the bounds (4.5.32), (4.5.33), (4.5.34) and (4.5.35), and using the inequality (4.5.31), we conclude that sup 

s∈(-η,η) e n ∞ k=3 Λ (k) (s) k! (-iz σs √ n ) k -1 -(-iz) 3 Λ (3) (s) 6σ 3 s √ n c t 4 +
|h 1 (t -iy n )| c |t| 3 + y 3 n + |t| 5 + y 5 n n e 1 4 (t 2 +y 2 n ) .
Therefore, noting that y -y n and 0 y n δ 1 √ n, we obtain sup s∈(-η,η)

A 12 c n sup y 0 e 3 4 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 4 (|t| 3 + y 3 n + |t| 5 + y 5 n )dt c n sup yn∈[0,δ 1 √ n] e -1 4 y 2 n (1 + y 3 n + y 5 n ) c n .
Substituting this and (4.5.29) into (4.5.25), we conclude the proof of Lemma 4.5.5.

Lemma 4.5.6. Let J 2 (z) be defined by (4.5.16), and C - r be defined by (4.4.2) with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 2 = sup y 0 C - r J 2 (z) z e izy e -ib z T dz c n ϕ γ . Proof. Denote h 2 (z) = e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k Π s, -iz σs √ n ϕ(x) -π s (ϕ) -iz b s,ϕ (x) σ s √ n ρ T (-z) z .
Using (4.5.21), we rewrite A 2 as

A 2 = sup y 0 C - r e -z 2 2 +izy h 2 (z)dz .
As in the estimation of Lemma 4.5.5, the solution of the saddle point equation d dz (-

z 2 2 + izy) = 0 is z = iy. Set y n = min{-y, δ 1 √ n}. Since y n ∈ D - 2r
, where r = δ 1 √ n, and the function h 2 is analytic on the domain D - 2r , by Cauchy's integral theorem we obtain

A 2 sup y 0 -δ 1 √ n-iyn -δ 1 √ n + δ 1 √ n δ 1 √ n-iyn e -z 2 2 +izy h 2 (z)dz + sup y 0 δ 1 √ n-iyn -δ 1 √ n-iyn e -z 2 2 +izy h 2 (z)dz =: A 21 + A 22 .
Control of A 21 . Similarly to (4.5.26), we use a change of variable to get

A 21 e -δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty |h 2 (-δ 1 √ n -it)| + |h 2 (δ 1 √ n -it)| dt .
Using Lemma 4.5.4, the formula (4.3.39) and the bound (4.3.36), for any z = ±δ 1 √ nit with t ∈ [0, y n ], we get that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

1 z Π s, -iz σs √ n ϕ(x) -π s (ϕ) -iz b s,ϕ (x) σ s √ n c |z| n ϕ γ c √ n ϕ γ . (4.5.37)
Recall that the function t → e -ib z T is continuous on the domain

D T , so that |e -ib z T | is bounded uniformly in z = ±δ 1 √ n -it, where t ∈ [0, y n ].
Therefore, taking into account the bound (4.5.27), we get that uniformly in s ∈ (-η, η) , x ∈ S and ϕ ∈ B γ ,

|h 2 (-δ 1 √ n -it)| + |h 2 (δ 1 √ n -it)| c √ n e δ 2 1
4 n ϕ γ .

Since y 0, for any t ∈ [0, y n ], it follows that t 2 2 + ty 0 and thus e t 2 2 +ty

Combining this with the above inequality yields that uniformly in

ϕ ∈ B γ , sup s∈(-η,η) sup x∈S A 21 ce -δ 2 1 2 n y n √ n e δ 2 1 4 n ϕ γ ce -δ 2 1 4 n ϕ γ . ( 4.5.38) 
Control of A 22 . Similarly to (4.5.30), we use a change of variable to get

A 22 sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 2 |h 2 (t -iy n )|dt .
We first estimate |h 2 (t -iy n )|. In the same way as in (4.5.37), with z = t -iy n , we obtain that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

1 z Π s, -iz σs √ n ϕ(x) -π s (ϕ) -iz b s,ϕ (x) σ s √ n c |z| n ϕ γ c |t| + y n n ϕ γ .
Combining this with the bound (4.5.33), we get that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S A 22 c n ϕ γ sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 4 (|t| + y n )dt c n ϕ γ sup yn∈[0,δ 1 √ n] e -1 2 y 2 n (1 + y n ) c n ϕ γ . ( 4.5.39) 
Putting together (4.5.38) and (4.5.39) completes the proof.

Lemma 4.5.7. Let J 3 (z) be defined by (4.5.17), and C - r be defined by (4.4.2) with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 3 = sup y 0 C - r J 3 (z) z e izy e -ib z T dz c n ϕ γ . Proof. Denote h 3 (z) = 1 σ s √ n e n ∞ k=3 Λ (k) (s) k! (-iz σs √ n ) k -1 e -ib z T . (4.5.40)
Using the expansion (4.5.21) and the bound (4.5.10), we have that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

A 3 c ϕ γ sup y 0 C - r e -z 2 2 +izy h 3 (z)dz .
As in Lemma 4.5.5, the saddle point equation d dz (-z 2 2 + izy) = 0 has the solution z = iy. Set y n = min{-y, δ 1 √ n}. It follows from Cauchy's integral theorem that

A 3 c ϕ γ sup y 0 -δ 1 √ n-iyn -δ 1 √ n + δ 1 √ n δ 1 √ n-iyn e -z 2 2 +izy h 3 (z)dz + c ϕ γ sup y 0 δ 1 √ n-iyn -δ 1 √ n-iyn e -z 2 2 +izy h 3 (z)dz =: A 31 + A 32 .
Control of A 31 . Similarly to (4.5.26), we use a change of variable to get

A 31 c ϕ γ e -δ 2 1 2 n sup y 0 yn 0 e t 2 2 +ty |h 3 (-δ 1 √ n -it)| + |h 3 (δ 1 √ n -it)| dt .
Using the bounds (4.5.10) and (4.5.27), we deduce that uniformly in s ∈ (-η, η) and x ∈ S,

|h 3 (-δ 1 √ n -it)| + |h 3 (δ 1 √ n -it)| c √ n e δ 2 1 4 n + 1 c √ n e δ 2 1
4 n .

Since t 2 2 +ty 0 for any t ∈ [0, y n ] and y 0, it follows that e t 2 2 +ty

1. This, together with the above inequality, implies that uniformly in ϕ ∈ B γ , sup s∈(-η,η)

sup x∈S A 31 c y n √ n e -δ 2 1 4 n ϕ γ ce -δ 2 1 4 n ϕ γ . (4.5.

41)

Control of A 32 . Similarly to (4.5.30), we use a change of variable to get

A 32 c ϕ γ sup y 0 e 1 2 y 2 n +yny δ 1 √ n -δ 1 √ n e -t 2 2 |h 3 (t -iy n )|dt .
We first give a control of |h 

e n ∞ k=3 
Λ (k) (s) k! (-iz σs √ n ) k -1 ce 1 4 t 2 |t| 3 + y 3 n √ n ,
and hence sup s∈(-η,η)

sup x∈S |h 3 (t -iy n )| ce 1 4 t 2 |t| 3 + y 3 n n .
It follows that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

A 32 c n ϕ γ sup y 0 e -1 2 y 2 n δ 1 √ n -δ 1 √ n e -t 2 4 (|t| 3 + y 3 n )dt c n ϕ γ . (4.5.42)
Putting together (4.5.41) and (4.5.42), we conclude the proof.

Lemma 4.5.8. Let J 4 (z) be defined by (4.5.18), and C - r be defined by (4.4.2) with r = δ 1 √ n and δ 1 > 0 small enough. Then, for T = a √ n with a > 0 large enough, uniformly in x ∈ S, s ∈ (-η, η) and ϕ ∈ B γ ,

A 4 = sup y 0 C - r J 4 (z) z e izy e -ib z T dz ce -cn ϕ γ .
Proof. Since z 0 on C - r and y 0, we have |e izy | 1. Since the function z → e -ib z T is analytic on the domain D T , we have that |e -ib z T | is uniformly bounded on C - r . Using the bound (4.3.37) and the fact that δ 1 > 0 can be sufficiently small, we deduce that

|J 4 (z)| ce -cn ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Therefore, noting that | 1 z | = (δ 1 √ n) -1 and that the length of C - r is πδ 1 √ n, the desired result follows.
End of the proof of Theorem 4.5.2. Combining Lemmata 4.5.5-4.5.8, we obtain that I 31 c n ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . Now we give a control of the term I 32 defined in (4.5.7). Note that y > 0 in I 32 and the integral in I 32 is taken over the semicircle C + r , which lies in the upper part of the complex plane. In this case we have the saddle point equation d dz (-z 2 2 + izy) = 0 whose solution z = iy also lies in the upper part of the complex plane. Similarly to (4.5.24), we choose a suitable point y n = min{y, δ 1 √ n}. Proceeding in the same way as for bounding I 31 we obtain that I 32 c n ϕ γ , uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ .

Let us now bound the terms I 33 and I 34 defined in (4.5.7). Since the mapping z → ρ T (z) is analytic on C - r and C + r , the estimates of I 33 and I 34 are similar to those of I 31 and I 32 , respectively. From these bounds, we conclude that there exists a constant c > 0 such that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

I 3 c n ϕ γ . ( 4.5.43) 
It remains to estimate I 4 defined in (4.5.7). We can decompose the difference |f (t) -h(t)| in the same way as we did in (4.5.14) (with real-valued t = z). Then proceeding in a similar way as in the estimation of I 31 , I 32 , I 33 and I 34 , one can verify that there exists a constant c > 0 such that uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ ,

I 4 c n ϕ γ . ( 4.5.44) 
Combining (4.5.43), (4.5.43) and the bounds for I 1 and I 2 in (4.5.11) and (4.5.13), and using the fact that ε can be arbitrary small, we obtain (4.5.8), which finishes the proof of Theorem 4.5.2.

Proof of Theorem 4.5.1

Since the proof of Theorem 4.5.1 is quite similar to that of Theorem 4.5.3, we only sketch the main differences. Denote

F (y) = E Q x s ϕ(X x n )1 log |Gnx|-nΛ (s) σs √ n y , y ∈ R, H(y) = E Q x s [ϕ(X x n )] Φ(y), y ∈ R.
By the definition of the operator R s,z in (4.3.29), direct calculations lead to

f (t) = R e -ity dF (y) = R n s, -it σs √ n ϕ(x), t ∈ R, h(t) = R e -ity dH(y) = e -t 2 2 R s,0 ϕ(x), t ∈ R.
One can verify that the functions F, H and their corresponding Fourier-Stieljes transforms f, h satisfy all the conditions stated in Proposition 4.4.1. Instead of using Proposition 4.4.1 with r < T in the proof of Theorem 4.5.3, we apply Proposition 4.4.1 with r = T = δ 1 √ n, where δ 1 > 0 is a sufficiently small constant. Then we obtain a similar inequality as (4.5.6) but with the term I 2 = 0. Since the non-arithmeticity condition C5 is only used in the bound of the term I 2 , following the proof of Theorem 4.5.3 we show that under the conditions of Theorem 4.5.1, the terms I 1 and I 3 defined in (4.5.7) are bounded by c ϕ γ / √ n, uniformly in s ∈ (-η, η), x ∈ S and ϕ ∈ B γ . We omit the details of the rest of the proof.

Proof of moderate deviation expansions

In this section we prove Theorem 4.2.3. The proof is based on the Berry-Esseen bound in Theorem 4.5.1 and follows the standard techniques in Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], and therefore some details will be left to the reader.

We start with the following lemma whose proof uses the analyticity of the eigenfunction r s and the eigenmeasure ν s , see Proposition 4.3.1. Lemma 4.6.1. Assume either conditions C1 and C2 for invertible matrices, or conditions C1 and C3 for positive matrices. Then, there exists η > 0 such that uniformly in s ∈ (-η, η) and ϕ ∈ B γ ,

r s -1 ∞ C|s| and |ν s (ϕ) -ν(ϕ)| C|s| ϕ γ .
Proof. According to Proposition 4.3.1, we have r 0 = 1, ν 0 = ν. In addition, the mappings s → r s and s → ν s are analytic on (-η, η). The assertions follow using Taylor's formula. Now we prove Theorem 4.2.3. When y ∈ [0, 1], Theorem 4.2.3 is a direct consequence of Theorem 4.5.1, so it remains to prove Theorem 4.2.3 in the case when y > 1 with y = o( √ n). We proceed to prove the first assertion Theorem 4.2.3. Applying the change of measure formula (4.3.16), we have

I := E ϕ(X x n )1 {log |Gnx| nΛ (0)+ √ nσ 0 y} (4.6.1) = r s (x)κ n (s)E Q x s (ϕr -1 s )(X x n )e -s log |Gnx| 1 {log |Gnx| nΛ (0)+ √ nσ 0 y} .
Under the assumptions of Theorem 4.2.3, by Proposition 4.3.15, σ 2 s = Λ (s) > 0, for any s ∈ (-η, η) and η > 0 small enough. Denote W x n = log |Gnx|-nΛ (s) σs √ n

. Recalling that Λ = log κ, we rewrite (4.6.1) as follows: Choosing the unique real root s of (4.6.3), it follows from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF] that

I = r s (x)e -n[sΛ (s)-Λ(s)] × E Q x s (ϕr -1 s )(X x n )e -sσs √ nW x n 1 W x n √ n[Λ (0)-Λ (s)] σs + σ 0 y σs . ( 4 
sΛ (s) -Λ(s) = y 2 2n - y 3 n 3/2 ζ( y √ n ), (4.6.4) 
where ζ is the Cramér series defined by (4.2.9). Substituting (4.6.3) into (4.6.2), and using (4.6.4), we get

I = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) E Q x s (ϕr -1 s )(X x n )e -sσs √ nW x n 1 {W x n 0} . ( 4.6.5) 
For brevity, denote

F (u) = E Q x s (ϕr -1 s )(X x n )1 {W x n u} , u ∈ R.
In view of (4.6.5), using Fubini's theorem and the integration by parts, we deduce that

I = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) E Q x s (ϕr -1 s )(X x n ) ∞ 0 1 {0 W x n u} sσ s √ n e -sσs √ nu du = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) ∞ 0 e -s √ nσsu dF (u). (4.6.6) Letting l(u) = F (u) -π s (ϕr -1 s )Φ(u), u ∈ R, we have ∞ 0 e -s √ nσsu dF (u) = I 1 + π s (ϕr -1 s ) √ 2π I 2 , ( 4.6.7 
)

I 1 = ∞ 0 e -s √ nσsu dl(u), I 2 = ∞ 0 e -s √ nσsu-u 2 2 du. (4.6.8)
Estimate of I 1 . Integrating by parts, using the fact that r s ∈ B γ and the Berry-Esseen bound in Theorem 4.5.1 implies that uniformly in s ∈ [0, η), x ∈ S and ϕ ∈ B γ ,

|I 1 | |l(0)| + s √ nσ s ∞ 0 e -s √ nσsu |l(u)|du C √ n ϕ γ . ( 4 
.6.9)

Estimate of I 2 . The function Λ is analytic on (-η, η) and σ 2 s = Λ (s) > 0. By Taylor's formula, Λ (s) -Λ (0) = sσ 2 0 1 + O(s) and σ 2 s = σ 2 0 1 + O(s) . Then, using standard techniques from Petrov [START_REF] Petrov | Sums of independent random variables[END_REF], we obtain The proof of the second assertion of Theorem 4.2.3 can be carried out in a similar way. Instead of (4.6.3), we consider the equation √ n[Λ (s) -Λ (0)] = -σ 0 y, where y > 1 and s ∈ (-η, 0]. We then apply the spectral gap properties of operators P s , Q s , R s,z (see Section 4.3) for negative valued s to deduce the second assertion by following the proof of the first one. We omit the details.

I 2 = I 3 + O 1 √ n , where I 3 = ∞ 0 e - √ n[Λ (s)-Λ (0)] σ 0 u-u 2 2 du. ( 4 
where σ 2 > 0 is the asymptotic variance corresponding to the product G n . In the case of products of invertible random matrices, the CLT (5.1.2) was established by Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], and has been extended by Goldsheid and Guivarc'h [START_REF] Gol | Zariski closure and the dimension of the Gaussian law of the product of random matrices[END_REF] to a multidimensional version, and by Benoist-Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] to the general framework of reductive groups.

In [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] the authors proved a Berry-Esseen bound and a moderate deviation expansion for the norm cocycle log |G n x| jointly with the Markov chain X x n = G n x/|G n x|, where x is any starting point on the unit sphere and | • | is the euclidean norm. For related results for log |G n x| we refer to [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Aoun | Random subgroups of linear groups are free[END_REF][START_REF] Guivarc | Spectral gap properties and limit theorems for some random walks and dynamical systems[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF][START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF][START_REF] Cuny | Large and moderate deviations for the left random walk on GL(d,R). ALEA[END_REF][START_REF] Sert | Large deviation principle for random matrix products[END_REF][START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]. However, this type of results for other quantities like the matrix norm, the entries and the spectral radius of G n are notably absent in the literature. The goal of the paper is to fill the gap and to extend the results of [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] to the matrix norm G n , to the entries G i,j n and to the spectral radius ρ(G n ) for the product G n of positive random matrices, jointly with X x n . Let us explain briefly the main results that we obtain for the matrix norm. We would like to quantify the error in the normal approximation (5.1.2). We do this in two ways. The first way is to estimate the absolute error. In this spirit, under suitable conditions we prove the following Berry-Esseen bound: where ζ is the Cramér series (see (5.2.6)). Note that the expansion (5.1.4) clearly implies the moderate deviation principle for the matrix norm G n , see Corollary 5.2.4, which to the best of our knowledge was not known before. The above results concern the matrix norm G n , but we also prove that all the assertions (5.1.3) and (5.1.4) remain valid (under stronger conditions) when the matrix norm G n is replaced by the entries G i,j n or the spectral radius ρ(G n ): see Theorems 5.2.2 and 5.2.5. The corresponding strong law of large numbers and the central limit theorem were established in [START_REF] Furstenberg | Products of random matrices[END_REF][START_REF] Cohn | Weak ergodicity and products of random matrices[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for the entries G i,j n and in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for the spectral radius ρ(G n ). However, our Theorems 5.2.2 and 5.2.5 on Berry-Esseen bounds and Cramér type moderate deviation expansions for the entries G i,j n and the spectral radius ρ(G n ) are new.

sup y∈R P log G n -nλ σ √ n y -Φ(y) C √ n . ( 5 
The proofs of (5. To prove (5.1.3) and (5.1.4) when the matrix norm G n is replaced by the entries G i,j n , in addition to the use of the aforementioned results established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], we do a careful quantitative analysis of the comparison between log G i,j n := log e i , G n e j and log |G n e j |, where (e i ) 1 k d is the canonical orthonormal basis in R d . This comparison is possible due to a regularity condition which ensures that all the entries in the same column of the matrix g ∈ supp µ (the support of µ) are comparable: see condition H3. Note that this condition is nevertheless weaker than the Furstenberg-Kesten condition (5.2.1) used in [START_REF] Furstenberg | Products of random matrices[END_REF], which says that all the entries of the matrix g ∈ supp µ are comparable.

Using the results mentioned above for the matrix norm G n and for the norm cocycle log |G n x| established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], we then prove the corresponding results for the spectral radius ρ(G n ) based on the Collatz-Wielandt formula: see Theorems 5.2.2 and 5.2.5.

Main results

Notation and conditions

For any integer d 2, denote by G + the multiplicative semigroup of d×d matrices with non-negative entries in R. A non-negative matrix g ∈ G + is said to be allowable, if every row and every column of g contains a strictly positive entry. Any allowable matrix g will be simply called positive matrix. We write G • + for the subsemigroup of G + with strictly positive entries. Equip the space R d with the standard scalar product •, • and the Euclidean norm | • |. For a vector x, we write x 0 (resp. x > 0) if all its components are non-negative (resp. strictly positive). Denote by S d-1 + = {x 0 : |x| = 1} the intersection of the unit sphere with the positive quadrant. The space S d-1 + is endowed with the Hilbert cross-ratio metric d, i.e., for any x = (x 1 , . . . , x d ) and y = (y 1 , . . . , y d ) in S d-1 + , d(x, y) = 1-m(x,y)m(y,x) 1+m(x,y)m(y,x) , where m(x, y) = sup{α > 0 : αy i x i , ∀i = 1, . . . , d}. It is shown in [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] that there exists a constant C > 0 such that |x -y| Cd(x, y) for any x, y ∈ S d-1

+ . We refer to [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for more properties of the metric d. Let C(S d-1

+ ) be the space of continuous complex-valued functions on S d-1 + and 1 be the constant function with value 1. Throughout the paper we always assume that γ > 0 is a fixed small enough constant. For any ϕ ∈ C(S d-1 + ), set

ϕ γ := ϕ ∞ + [ϕ] γ , ϕ ∞ := sup x∈S d-1 + |ϕ(x)|, [ϕ] γ := sup x,y∈S d-1 + |ϕ(x) -ϕ(y)| d γ (x, y) .
Introduce the Banach space B γ := {ϕ ∈ C(S d-1 + ) : ϕ γ < +∞}. Let (g n ) n 1 be a sequence of i.i.d. positive random matrices of the same probability law µ on G + . Consider the matrix product G n = g n . . . g 1 and denote by G i,j n the (i, j)th entry of G n , where 1 i, j d. It holds that G i,j n = e i , G n e j , where (e k ) 1 k d is the canonical orthonormal basis in R d . For any g ∈ G + , denote by ρ(g) the spectral radius of g, and by g its operator norm as follows: g = sup x∈S d-1 + |gx|. By Gelfand's formula, it holds that ρ(g) = lim k→∞ g k 1/k . In this paper, we are interested in Berry-Esseen bounds and Cramér type moderate deviation expansions for the matrix norm G n , the entries G i,j n and the spectral radius ρ(G n ). Let ι(g) = inf x∈S d-1 + |gx| and N (g) = max{ g , ι(g) -1 }. We need the following exponential moment condition: H1. There exists a constant η ∈ (0, 1) such that E[N (g 1 ) η ] < +∞.

Let Γ µ := [supp µ] be the smallest closed semigroup of G + generated by supp µ (the support of µ). We will use the allowability and positivity conditions: H2. (i) (Allowability) Every g ∈ Γ µ is allowable.

(ii) (Positivity) Γ µ contains at least one matrix belonging to G • + . It follows from the Perron-Frobenius theorem that every g ∈ G • + has a dominant eigenvalue which coincides with its spectral radius ρ(g).

The following condition ensures that all the entries in each column of the matrix g ∈ supp µ are comparable.

H3.

For any 1 j d, there exists a constant C > 1 such that for any g ∈ supp µ,

1 max 1 i d g i,j min 1 i d g i,j C.
Note that the set of such type of matrices forms a subsemigroup of G + , because if two positive matrices g 1 and g 2 satisfy condition H3, then so does the product g 2 g 1 , as will be seen from Lemma 5.3.2 where an equivalent description of condition H3 will be provided.

It is easy to see that condition H3 implies condition H2. However, our condition H3 is clearly weaker than the Furstenberg-Kesten condition used in [START_REF] Furstenberg | Products of random matrices[END_REF]: there exists a constant C > 1 such that for any g ∈ supp µ,

1 max 1 i,j d g i,j min 1 i,j d g i,j C. ( 5.2.1) 
This condition plays an essential role in [START_REF] Furstenberg | Products of random matrices[END_REF] for the proofs of the strong law of large numbers and the central limit theorem for entries G i,j n . Under conditions H1 and H2, it is shown in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that uniformly in x ∈ S d-1 + ,

σ 2 := lim n→∞ 1 n E (log |G n x| -nλ) 2 ∈ [0, ∞), (5.2.2)
where the constant λ is the upper Lyapunov exponent defined by (5.1.1). Equivalent formulations of σ 2 will be given in Proposition 5.2.7. We shall need the following condition:

H4. The asymptotic variance σ 2 satisfies σ 2 > 0.

Condition H4 holds if the additive subgroup of R generated by the set {log ρ(g) : [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for details. For any x ∈ S d-1 + and allowable matrix g ∈ G + , we write g • x := gx |gx| for the projective action of g on the projective space S d-1

g ∈ Γ µ , g ∈ G • + } is dense in R, see
+ . For any starting point x ∈ S d-1 + , set X x 0 = x and X x n = G n • x, n 1, which forms a Markov chain on the projective space S d-1

+ . Under conditions H1 and H2, the Markov chain (X x n ) n 0 possesses a unique stationary measure ν on S d-1 + such that for any continuous function ϕ on S d-1 + ,

S d-1 + Γµ ϕ(g 1 •x)µ(dg 1 )ν(dx) = S d-1 + ϕ(x)ν(dx).
We refer to [START_REF] Kesten | Random difference equations and renewal theory for products of random matrices[END_REF][START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for more details.

Berry-Esseen bounds

The goal of this section is to present our results on the Berry-Esseen bounds for the matrix norm G n , the entries G i,j n and the spectral radius ρ(G n ). Let us first state the result for the operator norm G n . Denote (S d-1 + ) • = {x > 0 : |x| = 1}, which is the interior of the projective space S d-1 + .

Theorem 5.2.1. Assume conditions H1, H2 and H4. Then, for any compact set K ⊂ (S d-1 + ) • , we have, uniformly in ϕ ∈ B γ ,

sup y∈R sup x∈K E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ . (5.2.3)
Since all matrix norms are equivalent, it can be easily checked that in Theorem 5.2.1, the operator norm • can be replaced by any matrix norm.

It would be interesting to show that (5.2.3) holds uniformly in x ∈ S d-1 + instead of x ∈ K. Note that Theorem 5.2.1 is proved under the exponential moment condition H1. It is not clear how to establish Theorem 5.2.1 under the polynomial moment condition on the matrix law µ.

If the stronger condition H3 holds instead of condition H2, then we are able to prove the following Berry-Esseen bounds for the scalar product f, G n x and for the spectral radius ρ(G n ). Theorem 5.2.2. Under conditions H1, H3 and H4, we have:

(1) uniformly in ϕ ∈ B γ , sup y∈R sup f,x∈S d-1 + E ϕ(X x n )1 log f,Gnx -nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ ; (5.2.4) (2) for any compact set K ⊂ (S d-1 + ) • , uniformly in ϕ ∈ B γ , sup y∈R sup x∈K E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ .
(5.2.5)

In particular, taking ϕ = 1, f = e i and x = e j in (5.2.4), we get the Berry-Esseen bound for the entries G i,j n . The Berry-Esseen bounds (5.2.4) and (5.2.5) are all new. It would be interesting to establish these bounds under some condition weaker than H3.

Precise moderate deviation expansions

In this section we formulate the Cramér type moderate deviation expansions for the matrix norm G n , the entries G i,j n and the spectral radius ρ(G n ). To present our results, we need some notation. For any s ∈ (-η, η), define the transfer operator P s as follows:

P s ϕ(x) = E[e s log |g 1 x| ϕ(g 1 • x)], where ϕ ∈ C(S d-1 + ) and x ∈ S d-1
+ . Based on the perturbation theorem, it is shown in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that under conditions H1 and H2, the transfer operator P s has spectral gap properties on the Banach space B γ and possesses a dominating eigenvalue κ(s). Moreover, the function κ is analytic, real-valued and strictly convex in a small neighborhood of 0 under the additional condition H4. Denote Λ = log κ and γ k = Λ (k) (0), k 1, then it holds that γ 1 = λ and γ 2 = σ 2 . Throughout this paper, we write ζ for the Cramér series of Λ:

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ 3 3 120γ 9/2 2 t 2 + • • • , (5.2.6)
which converges for |t| small enough. We refer to [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for more details.

The following result concerns the Cramér type moderate deviations for the operator norm G n . Recall that (S d-1

+ ) • = {x > 0 : |x| = 1}.
Theorem 5.2.3. Assume conditions H1, H2 and H4. Then, for any compact set

K ⊂ (S d-1 + ) • , we have, uniformly in x ∈ K, y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (5.2.7) E ϕ(X x n )1 {log Gn -nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n .
(5.2.8)

Like in Theorem 5.2.1, it can also be checked that in Theorem 5.2.3 the operator norm • can be replaced by any matrix norm.

Note that condition H3 is not required in Theorem 5.2.3. Theorem 5.2.3 is new even for ϕ = 1 and the expansions (5.2.7) and (5.2.8) remain valid even when ν(ϕ) = 0. As a particular case, Theorem 5.2.3 implies the following moderate deviation principle for log G n with a target function ϕ on the Markov chain X x n , where the operator norm • can be replaced by any matrix norm. 

-inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} -inf y∈ B y 2 2σ 2 , (5.2.9)
where B • and B are respectively the interior and the closure of B.

Note that the target function ϕ in (5.2.9) is not necessarily positive and it can vanish on some part of the projective space S d-1

+ . The moderate deviation principle (5.2.9) is new, even for ϕ = 1.

As in Theorem 5.2.1, it would be interesting to prove that Theorem 5.2.3 holds uniformly in x ∈ S d-1 + instead of x ∈ K. Now we formulate Cramér type moderate deviation expansions for the scalar product f, G n x as well as for the spectral radius ρ(G n ). Theorem 5.2.5. Assume conditions H1, H3 and H4. Then, we have:

(1) uniformly in f, x ∈ S d-1 + , y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log f,Gnx -nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (5.2.10) E ϕ(X x n )1 {log f,Gnx -nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n ;
(5.2.11)

(2) for any compact set K ⊂ (S d-1

+ ) • , uniformly in x ∈ K, y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (5.2.12) E ϕ(X x n )1 {log ρ(Gn)-nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n .
(5.2.13)

As a particular case of (5.2.10) and (5.2.11) with f = e i and x = e j , we get the Cramér type moderate deviation expansions for the entries G i,j n . The expansions (5.2.10)-(5.2.13) are all new even for ϕ = 1.

From Theorem 5.2.5 we can get the moderate deviation principles with target functions for the scalar product f, G n x and the spectral radius ρ(G n ), just as we obtained (5.2.9) from Theorem 5.2.3. Let us state them below. Recall that for a set B, we write respectively B • and B for its interior and closure. 

(1) uniformly in f, x ∈ S d-1 + , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log f,Gnx -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log f,Gnx -nλ bn ∈B} -inf y∈ B y 2 2σ 2 ;
(2) for any compact set K ⊂ (S d-1

+ ) • , uniformly in x ∈ K, -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} -inf y∈ B y 2 2σ 2 .

Formulas for the asymptotic variance

In this section, we give alternative expresssions for the asymptotic variance σ 2 defined by (5.2.2). These expressions can be useful while applying the theorems and the corollaries stated before, where σ appears.

Proposition 5.2.7. (1) Under conditions H1 and H2, we have

σ 2 = lim n→∞ 1 n E (log G n -nλ) 2 .
(5.2.14)

(2) Under conditions H1 and H3, we have

σ 2 = lim n→∞ 1 n E (log f, G n x -nλ) 2 = lim n→∞ 1 n E (log ρ(G n ) -nλ) 2 , (5.2.15)
where the convergence in the first equality holds uniformly in f, x ∈ S d-1 + .

For invertible matrices, the expression (5.2. 

Proofs of Berry-Esseen bounds

The goal of this section is to prove Theorems 5.2.1 and 5.2.2. In order to prove Theorem 5.2.1, we shall use the following result which is shown in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.5]. Moreover, for any compact set K ⊂ (S d-1 + ) • , it holds that inf x∈K τ (x) > 0.

We now proceed to prove Theorem 5.2.1 based on Lemma 5.3.1 and the Berry-Esseen bound for the norm cocycle log |G n x| established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF].

Proof of Theorem 5.2.1. Without loss of generality, we assume that the function ϕ is non-negative. Under conditions of Theorem 5.2.1, the following Berry-Esseen bound for the norm cocycle log |G n x| with a target function ϕ on the Markov chain X x n has been recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]: there exists a constant C > 0 such that uniformly in n 1 and ϕ ∈ B γ , sup y∈R sup

x∈S d-1 + E ϕ(X x n )1 log |Gnx|-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ . (5.3.1)
On the one hand, using the fact that log |G n x| log G n , we deduce from (5.3.1) that there exists a constant C > 0 such that uniformly in y ∈ R, x ∈ S d-1 + , n 1 and

ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ σ √ n y ν(ϕ)Φ(y) + C √ n ϕ γ .
On the other hand, by Lemma 5.3.1, we see that for any compact set K ⊂ (S d-1 + ) • , there exists a constant C 1 > 0 such that uniformly in n 1 and x ∈ K,

log G n log |G n x| + C 1 . (5.3.2)
Combining this inequality with (5.3.1), we obtain that, with

y 1 = y -C 1 σ √ n , uniformly in y ∈ R, x ∈ K, n 1 and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ σ √ n y ν(ϕ)Φ(y 1 ) - C √ n ϕ γ .
Elementary calculation gives that Φ(y 1 ) -Φ(y) -C √ n , uniformly in y ∈ R and n 1. This, together with the above inequality, yields the desired lower bound. The proof of Theorem 5.2.1 is complete. Now we turn to prove Theorem 5.2.2. For any 0 < < 1, set

S d-1 +, = {x ∈ S d-1 + :
x, e j for all 1 j d}.

The following result provides an equivalent formulation of condition H3, which will be used to prove Theorems 5.2.2 and 5.2.5. For any matrix g ∈ supp µ, we denote g • S d-1

+ = {g • x : x ∈ S d-1 + }.
Lemma 5.3.2. Condition H3 is equivalent to the following statement: there exists a constant ∈ (0, √

2 ) such that

g • S d-1 + ⊂ S d-1
+, , for any g ∈ supp µ.

(

Proof. We first show that (5.3.3) implies condition H3. For any matrix g = (g i,j ) 1 i,j d ∈ supp µ, we have that for any 1 i, j d, e i , g • e j = g i,j d i=1 (g i,j ) 2 .

(5.3.4)

Using (5.3.3) and the definition of S d-1 +, , we get that there exists ∈ (0, √

2 ) such that e i , g •e j for all 1 i, j d. This implies condition H3 with C = 1 d-1 ( 1 2 -1) by taking maxima and minima by rows in (5.3.4).

We next prove that condition H3 implies (5.3.3). For any x ∈ S d-1 + , we write x = d j=1 x j e j , where x j 0 satisfies d j=1 x 2 j = 1. It is easy to see that d j=1 x j 1. For any 1 i d, it holds that

e i , g•x = 1 |gx| d j=1 x j e i , ge j = d j=1 x j g i,j d i=1 ( d j=1 g i,j x j ) 2 .
Since d j=1 x 2 j = 1, using the Cauchy-Schwarz inequality gives ( d j=1 g i,j x j ) 2 d j=1 (g i,j ) 2 . Combining this inequality with condition H3 and the fact that d j=1 x j 1, we obtain e i , g•x

d j=1 x j √ C 2 d 2 1 
Cd , so that (5.3.3) holds with = 1 Cd .

Using Lemma 5.3.2, Theorem 5.2.1 and the Berry-Esseen bound (5.3.1), we can prove Theorem 5.2.2.

Proof of Theorem 5.2.2. Without loss of generality, we assume that ϕ is non-negative.

We first prove the Berry-Esseen bound (5.2.4) for the scalar product f, G n x . On the one hand, using the fact that log f, G n x log |G n x|, we deduce from the Berry-Esseen bound (5.3.1) that there exists a constant C > 0 such that uniformly in y ∈ R, f, x ∈ S d-1 + , n 1 and ϕ ∈ B γ ,

E ϕ(X x n )1 log f,Gnx -nλ σ √ n y ν(ϕ)Φ(y) - C √ n ϕ γ .
On the other hand, note that log f, G n x = log |G n x| + log f, X x n . By Lemma 5.3.2, we see that there exists a constant C 1 > 0 such that uniformly in f, x ∈ S d-1

+ and n 1, log |G n x| log f, G n x + C 1 .
(5.3.5)

Using this inequality and again the Berry-Esseen bound (5.3.1), we obtain that, with

y 1 = y + C 1 σ √ n , uniformly in y ∈ R, f, x ∈ S d-1 + , n 1 and ϕ ∈ B γ , E ϕ(X x n )1 log f,Gnx -nλ σ √ n y ν(ϕ)Φ(y 1 ) + C √ n ϕ γ .
It is easy to show that Φ(y 1 ) -Φ(y)

C √ n , uniformly in y ∈ R. Together with the above inequality, this leads to the desired upper bound and ends the proof of the Berry-Esseen bound (5.2.4).

We next prove the bound (5.2.5) for the spectral radius ρ(G n ). Since ρ(G n ) G n , using Theorem 5.2.1, we get the following lower bound: there exists a constant C > 0 such that uniformly in y ∈ R, x ∈ K, n 1 and ϕ ∈ B γ ,

E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y ν(ϕ)Φ(y) - C √ n ϕ γ .
The upper bound is carried out by using the Collatz-Wielandt formula in conjugation with the Berry-Esseen bound (5.2.4) for the entries G i,i n . Denote by C + = {x ∈ R d : x 0} \ {0} the positive quadrant in R d except the origin. According to the Collatz-Wielandt formula, the spectral radius of the positive matrix G n can be represented as follows:

ρ(G n ) = sup x∈C + min 1 i d, e i ,x >0 e i , G n x e i , x . (5.3.6)
It follows that there exists a constant ∈ (0, √

2 ) such that uniformly in

x ∈ S d-1 + , ρ(G n ) min 1 i d e i , G n x min 1 i d e i , X x n |G n x| |G n x|, (5.3.7)
where in the last inequality we use Lemma 5.3.2. Using the bound (5.3.1) and the inequality (5.3.7), we deduce that there exists a constant C > 0 such that uniformly in x ∈ S d-1 + , y ∈ R, n 1 and ϕ ∈ B γ ,

E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y ν(ϕ)Φ(y) + C √ n ϕ γ .
This ends the proof of the bound (5.2.5) for the spectral radius ρ(G n ).

Proofs of moderate deviation expansions

The aim of this section is to establish Theorems 5. 

∈ S d-1 + , y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) = e y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n , (5.4.1) E ϕ(X x n )1 {log |Gnx|-nλ -√ nσy} Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + ϕ γ O y + 1 √ n .
(5.4.2) Lemma 5.4.1 has been recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] by developing a new smoothing inequality, applying a saddle point method and spectral gap properties of the transfer operator corresponding to the Markov chain (X x n ) n 0 . Note that condition H3 is not assumed in Lemma 5.4.1 and the expansions (5.4.1) and (5.4.2) hold uniformly with respect to the starting point x on the whole projective space S d-1

+ . We now prove Theorem 5.2.3 using Lemmas 5.3.1 and 5.4.1.

Proof of Theorem 5.2.3. Without loss of generality, we assume that ϕ is non-negative on S d-1

+ . We first prove (5.2.7). The proof consists of lower and upper bounds. Lower bound. Since log G n log |G n x|, applying Lemma 5.4.1, there exists a constant C > 0 such that, as n → ∞, uniformly in x ∈ S d-1 

+ , y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) e y 3 √ n ζ( y √ n ) ν(ϕ) -C y + 1 √ n ϕ γ . ( 5 
= y -C 1 σ √ n , there exists a constant C > 0 such that, as n → ∞, uniformly in x ∈ K, y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y 1 ) e y 3 1 √ n ζ( y 1 √ n ) ν(ϕ) + C y 1 + 1 √ n ϕ γ . (5.4.4)
Since the Cramér series ζ is uniformly continuous in a small neighborhood of 0, we have |ζ(

y 1 √ n ) -ζ( y √ n )| C n , uniformly in y ∈ [0, o( √ n)].
Combining this with some simple calculations yield that uniformly in y

∈ [0, o( √ n)], e y 3 1 √ n ζ( y 1 √ n )-y 3 √ n ζ( y √ n ) = 1 + O( y 2 + 1 n ), 1 -Φ(y 1 ) 1 -Φ(y) = 1 + O( y + 1 √ n ).
(5.4.5)

Since 1 n A n → σ 2 as n → ∞ (see (5.2.
2)), it suffices to show that 1 n (B n -A n ) → 0 as n → ∞. Using Minkowski's inequality, we see that there exists a constant C > 0 independent of x ∈ K such that

B n -A n E log G n |G n x| 2 1/2 C,
where the last inequality holds by Lemma 5.3.1. Consequently, it follows that (5.4.8) which leads to the desired assertion in part [START_REF] Aoun | Random subgroups of linear groups are free[END_REF]. Now we proceed to prove part [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF]. Denote

|B n -A n | | B n -A n |(| B n -A n | + 2 A n ) C(C + O( √ n)),
D n = E (log f, G n x -nλ) 2 , E n = E (log ρ(G n ) -nλ) 2 .
As in the proof of part [START_REF] Aoun | Random subgroups of linear groups are free[END_REF], by Minkowski's inequality, we have, uniformly in f, x ∈

S d-1 + , D n -A n E log f, X x n 2 1/2 C,
where the last inequality holds by Lemma 5.3.2. In the same way as in the proof of (5.4.8), one can verify that

1 n (D n -A n ) → 0, as n → ∞, uniformly in f, x ∈ S d-1
+ . This ends the proof of the first equality in part (2). To prove the second one in part (2), using again the Minkowski inequality, we have

E n -B n E log G n ρ(G n ) 2 1/2 .
Taking into account of the Collatz-Wielandt formula (5.3.6) with i = 1 and x 0 = (1, 1, . . . , 1) T , we get that ρ(G n ) e 1 , G n x 0 . Since ρ(G n ) G n and G n C|G n x 0 | (see Lemma 5.3.1), it follows from Lemma 5.3.2 that

E n -B n C + E log e 1 , X x 0 n 2 1/2 C.
Together with part (1), this proves the second equality in part (2).

L2. (Strong irreducibility)

No finite union of proper subspaces of R d is Γ µ -invariant, that is, there do not exist a finite number of proper subspaces

V 1 , • • • , V m of R d such that g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m for all g ∈ Γ µ .
L3. (Proximality) Γ µ contains at least one proximal matrix with a unique eigenvalue of maximal modulus.

Notice that in condition L2, Γ µ can be replaced by G µ , the smallest closed subgroup of G generated by the support of µ. In fact, the set

I = {g ∈ G : g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m } is a subgroup of G, so that Γ µ ⊂ I if and only if G µ ⊂ I, meaning that V 1 ∪ . . . ∪ V m is Γ µ -invariant if and only if V 1 ∪ . . . ∪ V m is G µ -invariant.
The topic of products of random matrices has a very rich history and has been studied by many authors. The main distinct feature compared with the case of a sum of i.i.d. real-valued random variables lies in the fact that the matrix product is no longer commutative. Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF] first established the strong law of large numbers for the operator norm

G n : if E[max{0, log g 1 }] < ∞, then as n → ∞, 1 n log G n → λ almost surely,
where λ is a constant called top Lyapunov exponent of the product G n . This result can be considered as an immediate consequence of Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF]. The central limit theorem for G n is due to Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] (see also Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]): if conditions L1, L2 and L3 hold, then for any y ∈ R and any continuous function ϕ on P d-1 , uniformly in

x ∈ P d-1 , lim n→∞ E ϕ(X x n )1 log Gn -nλ σ √ n y = ν(ϕ)Φ(y), (6.1.1) 
where σ 2 > 0 is the asymptotic variance of the random walk (G n ) n 1 , Φ is the standard normal distribution function, and ν is the unique stationary probability measure of the Markov chain (X x n ) n 1 . Recently, using Gordin's martingale approximation method, Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] have relaxed the exponential moment condition L1 to the optimal second moment condition that E[log 2 N (g 1 )] < ∞.

Similar law of large numbers and central limit theorem have been known for the spectral radius ρ(G n ). Using the Hölder regularity of the stationary measure ν (see [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF]), Guivarc'h [START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF] has established the strong law of large numbers for ρ(G n ): under conditions L1, L2 and L3, 1 n log ρ(G n ) → λ almost surely. Recently, under the same conditions, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] established the central limit theorem for ρ(G n ): for any y ∈ R,

lim n→∞ P log ρ(G n ) -nλ σ √ n y = Φ(y),
Further improvements have been done very recently: Aoun and Sert [START_REF] Aoun | Law of large numbers for the spectral radius of random matrix products[END_REF] proved the strong law of large numbers for ρ(G n ) assuming only the second moment condition E[log 2 N (g 1 )] < ∞, while Aoun [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF] proved the central limit theorem for ρ(G n ) under the second moment condition, the strong irreducibility condition L2 and the unboundedness assumption of the semigroup Γ µ . Very little has been known about the Berry-Esseen bounds and moderate and large deviations, for the operator norm G n and the spectral radius ρ(G n ). For Berry-Esseen type bounds, Cuny, Dedecker and Jan [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF] (see also Cuny, Dedecker and Merlevède [START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF] in a more general setting) have recently established the following result about the rate of convergence in the central limit theorem for G n : assuming E[log 3 N (g 1 )] < ∞, L2 and L3, we have

sup y∈R P log G n -nλ σ √ n y -Φ(y) C √ log n n 1/4 . (6.1.2)
However, the rate of convergence in the central limit theorem for the couple (X x n , log G n ) (cf. (6.1.1)) has not been known in the literature. For the spectral radius ρ(G n ) and the couple (X x n , log ρ(G n )), such type of result has not yet been considered. Moderate deviations have not yet been studied neither for G n nor for ρ(G n ), to the best of our knowledge. For large deviations, the upper tail large deviation principle for G n has been established in [START_REF] Sert | Large deviation principle for random matrix products[END_REF] and [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] under different conditions; it is conjectured in [START_REF] Sert | Large deviation principle for random matrix products[END_REF] that the usual large deviation principle holds for ρ(G n ).

Objectives

In this paper, we shall establish Berry-Esseen type bounds and moderate deviation results for both the operation norm G n and the spectral radius ρ(G n ). Such kinds of results are important in applications because they give the rate of convergence in the central limit theorem and in the law of large numbers.

Our first objective is to establish the following Berry-Esseen type bound concerning the rate of convergence in the central limit theorem (6.1.1): under conditions L1, L2 and L3, for any continuous function ϕ on P d-1 , we have, sup

x∈P d-1 sup y∈R E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n . (6.1.3)
In particular, with ϕ = 1, the bound (6.1.3) clearly improves (6.1.2). Our second objective is to prove the moderate deviation principle for the couple (X x n , log G n ): under conditions L1, L2 and L3, for any non-negative Hölder continuous function ϕ on P d-1 satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in

x ∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} -inf y∈ B y 2 2σ 2 , (6.1.4)
where B • and B are respectively the interior and the closure of B. Note that the moderate deviation principle (6.1.4) is proved under the proximality condition L3. This condition ensures that the Markov chain (X x n ) has a unique stationary measure ν on the projective space P d-1 . When condition L3 is replaced by the weaker one that the set {|det(g)| -1/d g : g ∈ Γ µ } is not contained in a compact subgroup of G, we are still able to prove the following moderate deviation principle for G n : for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have,

-inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 . (6.1.5)
Our third objective is to establish the moderate deviation expansion in the normal range [0, o(n 1/6 )] for the couples (X x n , log G n ) with a target function: under conditions L1, L2 and L3, for any Hölder continuous function ϕ on P d-1 , we have, uniformly in x ∈ P d-1 and y ∈ [0, o(n 1/6 )],

E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = ν(ϕ) + o(1). (6.1.6)
The expansion (6.1.6) has not been considered in the literature even when ϕ = 1.

All the above mentioned results (6.1.3), (6.1.4), (6.1.5), and (6.1.6) are concerned with the operator norm G n , but we shall also establish the analog of these results for the spectral radius ρ(G n ).

Proof outline

In the work [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF][START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF], the proof of (6.1.2) consists of establishing the central limit theorem with rate of convergence in Wasserstein's distance utilizing the martingale approximation method developed in [START_REF] Benoist | Central limit theorem for linear groups[END_REF]. However, using this approach it is difficult to obtain a better convergence rate than that in (6.1.2). Instead, our proof of (6.1.3) is based on the Berry-Esseen bound for the couple (X x n , log |G n x|) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] and on the following precise comparison between G n and |G n x| established in [START_REF] Benoist | Random walks on reductive groups[END_REF]: for any a > 0, there exist c > 0 and k 0 ∈ N such that for all n k k 0 and

x ∈ P d-1 , P log G n G k -log |G n x| |G k x| e -ak > 1 -e -ck . (6.1.7)
The basic idea to utilize this powerful inequality consists in carefully choosing certain integer k, taking the conditional expectation with respect to the filtration σ(g 1 , . . . , g k ) and using the large deviation bounds for log G k . This technique, in conjugation with limit theorems for the norm cocycle log |G n-k x|, makes it possible to prove corresponding results for log G n ; see [START_REF] Benoist | Random walks on reductive groups[END_REF] where a local limit theorem for log G n has been established by taking k = [log 2 n], where [a] denotes the integral part of a. In this paper, the proof of (6.1.3) is carried out by choosing k = [C 1 log n] with a sufficiently large constant C 1 > 0 and by using the Berry-Esseen bound for the couple (X x n , log |G n x|) with a target function ϕ on X x n . In the same spirit, the moderate deviation principle (6.1.4) for the couple (X x n , log G n ) is established using the moderate deviation principle for the couple (X x n , log |G n x|) proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], together with the inequality (6.1.7)

with k = C 1 b 2 n n
, where the constant C 1 is sufficiently large and the sequence (b n ) n 1 is given in (6.1.4).

As to the moderate deviation principle (6.1.5) for log G n without assuming the proximality condition L3, its proof is more technical and delicate than that of (6.1.4). Indeed, when condition L3 fails, the transfer operator of the Markov chain (X x n ) n 0 has no spectral gap in general and it may happen that (X x n ) n 0 possesses several stationary measures on the projective space P d-1 . In this case, it becomes hopeless to prove a general form of (6.1.5) when a target function ϕ on X x n is taken into account. Nevertheless, the proof of (6.1.5) can be carried out by following the approach of Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] (first announced in [START_REF] Bougerol | Stabilité en probabilité des équations différentielles stochastiques linéaires et convergence de produits de matrices aléatoires[END_REF]), where central limit theorems and exponential large deviation bounds for G n and |G n x| were established without giving the rate function. Specifically, employing this approach consists in finding the proximal dimension p of the semigroup Γ µ generated by the matrix law µ and then applying Chevaley's algebraic irreducible representation [START_REF] Chevalley | Théorie des groupes de Lie[END_REF] of the exterior powers ∧ p R d , to show that the action of the semigroup Γ µ is strongly irreducible and proximal on ∧ p R d . Using this strategy together with (6.1.4) for ϕ = 1, we are able to establish (6.1.5) .

For the proof of the Cramér type moderate deviation expansion (6.1.6), when y ∈ [0, 1 2

√

log n], we deduce the desired result from the Berry-Esseen type bound (6.1.3); when y ∈ [ 1 2

√

log n, o(n 1/6 )], we make use of the moderate deviation expansion for the couple (X x n , log |G n x|) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] and the aforementioned inequality (6.1.7) with k = [C 1 y 2 ], where C 1 > 0 is a sufficiently large constant.

All of the aforementioned results (6.1.3), (6.1.4), (6.1.5) and (6.1.6) for the operator norm G n turn out to be essential to establish analogous Berry-Esseen type bounds and moderate deviation results for the spectral radius ρ(G n ). Another important ingredient in our proof is the precise comparison between ρ(G n ) and G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF]; see Lemma 6.3.3 below.

Main results

To formulate our main results, we introduce some notation below. Let C(P d-1 ) be the space of continuous complex-valued functions on P d-1 and 1 be the constant function with value 1. All over the paper we assume that γ > 0 is a fixed small enough constant. We equip the projective space P d-1 with the angular distance d defined by d(x, y) = |x ∧ y| for x, y ∈ P d-1 , where x ∧ y denotes the exterior product of x and y. Consider the Banach space B γ := {ϕ ∈ C(P d-1 ) : ϕ γ < +∞}, where

ϕ γ := ϕ ∞ + sup x =y |ϕ(x) -ϕ(y)| d γ (x, y) with ϕ ∞ := sup x∈P d-1 |ϕ(x)|.
For any g ∈ G and x ∈ P d-1 , we write g • x := gx |gx| for the projective action of g on the projective space P d-1 . Consider the Markov chain

X x 0 = x, X x n = G n • x, n 1.
Under conditions L1, L2 and L3, the chain (X x n ) n 0 possesses a unique stationary measure ν on P d-1 such that µ * ν = ν (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]), where µ * ν denotes the convolution of µ and ν. It is worth mentioning that if the proximality condition L3 fails, then the stationary measure ν may not be unique (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]). It was shown in [START_REF] Benoist | Random walks on reductive groups[END_REF]Proposition 14.17] that under conditions L1 and L2, the asymptotic variance σ 2 of the random walk (G n ) n 1 can be given by

σ 2 = lim n→∞ 1 n E log G n -nλ 2 .
Throughout the paper, we denote by Φ the standard normal distribution function on R. We write c, C for positive constants whose values may change from line to line.

Berry-Esseen type bounds

In this section, we present Berry-Esseen type bounds for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on the Markov chain (X x n ) n 0 . Recall that by Gelfand's formula, it holds that ρ(g) = lim k→∞ g k 1/k for any g ∈ G.

Theorem 6.2.1. Assume conditions L1, L2 and L3. Then there exists a constant C > 0 such that for all n 1,

x ∈ P d-1 , y ∈ R and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ (6.2.1) and E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y -ν(ϕ)Φ(y) C log n √ n ϕ γ . ( 6.2.2) 
Using the fact that all matrix norms are equivalent, one can verify that in (6.2.1), the operator norm • can be replaced by any matrix norm.

In particular, taking ϕ = 1 in (6.2.1) and (6.2.2), we have: under conditions L1, L2 and L3, for all n 1 and y ∈ R,

P log G n -nλ σ √ n y -Φ(y) C log n √ n , ( 6.2.3) 
P log ρ(G n ) -nλ σ √ n y -Φ(y) C log n √ n . ( 6 

.2.4)

As mentioned before, the Berry-Esseen type bound (6.2.3) improves (6.1.2) established recently by Cuny, Dedecker and Jan [START_REF] Cuny | Limit theorems for the left random walk on GL(d,R)[END_REF].

It is natural to make the conjecture that the optimal rate of convergence on the right hand sides of (6.2.1), (6.2.2), (6.2.3) and ( 6

.2.4) should be C √ n instead of C log n √ n .
For positive matrices, these optimal bounds have been proved in [START_REF] Xiao | Large deviation expansions for the entries of products of random matrices[END_REF]. However, the proofs of the conjecture for invertible matrices seem to be rather delicate, for which new ideas and techniques are required. Nevertheless, we can prove the optimal bound C √ n for large values of |y|, as indicated in the following remark which will be seen in the proof of Theorem 6. 

Moderate deviation principles

We first state moderate deviation principles for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on the Markov chain (X x n ) n 0 . Theorem 6.2.3. Assume conditions L1, L2 and L3. Then, for any non-negative function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence

(b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in x ∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log Gn -nλ bn ∈B} -inf y∈ B y 2 2σ 2 , (6.2.5) and -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log ρ(Gn)-nλ bn ∈B} -inf y∈ B y 2 2σ 2 , (6.2.6)
where B • and B are respectively the interior and the closure of B.

Note that the target function ϕ in (6.2.5) and (6.2.6) is not necessarily strictly positive, and it can vanish somewhere on the projective space P d-1 . The moderate deviation principles (6.2.5) and (6.2.6) are all new, even for ϕ = 1.

If we only consider the operator norm G n or the spectral radius ρ(G n ), instead of the couples (X x n , log G n ) and (X x n , log ρ(G n )), we are still able to establish moderate deviation principles without assuming the proximality condition L3: Theorem 6.2.4. Assume conditions L1, L2 and σ 2 > 0. Then, there exists a constant σ 0 > 0 such that for any Borel set B ⊆ R and any positive sequence 1. If Γ µ,1 is not contained in a compact subgroup of G, then σ > 0, as will be seen in the proof of Theorem 6.2.4 .

(b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log G n -nλ b n ∈ B lim sup n→∞ n b 2 n log P log G n -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 , (6.2.7) and -inf y∈B • y 2 2σ 2 0 lim inf n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B lim sup n→∞ n b 2 n log P log ρ(G n ) -nλ b n ∈ B -inf y∈ B y 2 2σ 2 0 , ( 6 

If Γ

µ,1 is contained in a compact subgroup of G, then c 1 = inf{ g : g ∈ Γ µ,1 } > 0 and c 2 = { g : g ∈ Γ µ,1 } < ∞, so that c d 1 |det(g)| g d c d 2 |det(g)| ∀g ∈ Γ µ . (6.2.9) Since log |det(G n )| = n i=1 log |det(g i )|
is a sum of i.i.d. real-valued random variables, from (6.2.9) (applied to g = G n ) it follows directly that the moderate deviation principle (6.2.7) holds with λ

= 1 d E log |det(g 1 )| and σ 2 = E[( 1 d log |det(g 1 )|- λ) 2 ]
(which coincide with their original definitions), provided that |det(g 1 )| is not a.s. a constant (which is equivalent to σ 2 > 0).

In fact, in the second case of the remark above, log G n can be expressed exactly as a sum of of i.i.d. real-valued random variables when the norm • is suitably chosen, as observed by Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. See also Lemma 6.4.5 in subsection 6.2.3.

Moderate deviation expansions

In this subsection we formulate the Cramér type moderate deviation expansions in the normal range for the operator norm G n and the spectral radius ρ(G n ). Our first result concerns the operator norm G n . Theorem 6.2.6. Assume conditions L1, L2 and L3. Then, we have, uniformly in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], and on a fine comparison between the operator norm G n and the vector norm |G n x| established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 6.3.2 below). Note that Theorem 6.2.6 covers the special case where ν(ϕ) = 0; in this case the exact comparison with the normal tail remains open.

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log Gn -nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ o(1), (6.2.10) E ϕ(X x n )1 {log Gn -nλ -√ nσy} Φ(-y) = ν(ϕ) + ϕ γ o(1). ( 6 
Our second result concerns the moderate deviation expansions for the spectral radius ρ(G n ), also in the normal range. Theorem 6.2.7. Assume conditions L1, L2 and L3. Then, we have, uniformly in 1), (6.2.12) 1). (6.2.13) Theorem 6.2.7 is new even when ϕ = 1. Its proof relies on Theorem 6.2.6 and on an estimate of the difference between spectral radius ρ(G n ) and the operator norm G n established in [START_REF] Benoist | Random walks on reductive groups[END_REF] (see Lemma 6.3.3). Like in Theorem 6.2.6, Theorem 6.2.7 also covers the case where ν(ϕ) = 0, for which the exact comparaison with the normal tail is not known.

x ∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(X x n )1 {log ρ(Gn)-nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ o(
E ϕ(X x n )1 {log ρ(Gn)-nλ -√ nσy} Φ(-y) = ν(ϕ) + ϕ γ o(

Berry-Esseen type bounds

The goal of this section is to prove Theorem 6.2.1 about Berry-Esseen type bounds for the operator norm G n and for the spectral radius ρ(G n ). We will need the following Berry-Esseen bound for the norm cocycle log |G n x| established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. Lemma 6.3.1. Assume conditions L1, L2 and L3. Then, we have, uniformly in

x ∈ P d-1 , y ∈ R and ϕ ∈ B γ , E ϕ(X x n )1 log |Gnx|-nλ σ √ n y -ν(ϕ)Φ(y) C √ n ϕ γ .
The following result is an interesting comparison theorem for log G n and log |G n x|.

It shows that the difference between log Gn

G k and log |Gnx| |G k x| is smaller than any exponential rate e -ak for any a > 0 and k n, with large probability. Lemma 6.3.2. Assume conditions L1, L2 and L3. Then, for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 and x ∈ P d-1 ,

P log G n G k -log |G n x| |G k x| e -ak > 1 -e -ck .
Lemma 6.3.2 was established in [START_REF] Benoist | Random walks on reductive groups[END_REF]Lemma 17.8] and has been used to prove the local limit theorem for the operator norm G n : see [START_REF] Benoist | Random walks on reductive groups[END_REF]Theorem 17.9].

Proof of (6.2.1) of Theorem 6.2.1. Without loss of generality, we assume that the target function ϕ is non-negative. On the one hand, using Lemma 6.3.1 and the fact that log G n log |G n x|, we easily get the following upper bound: there exists a constant C > 0 such that for all x ∈ P d-1 , y ∈ R and ϕ ∈ B γ ,

I n := E ϕ(X x n )1 log Gn -nλ σ √ n y ν(ϕ)Φ(y) + C √ n ϕ γ . (6.3.1)
On the other hand, applying Lemma 6.3.2, we deduce that for any a > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 , it holds uniformly in x ∈ P d-1 and ϕ ∈ B γ that

I n E ϕ(X x n )1 log Gn -nλ σ √ n y 1 log Gn -log |Gnx| |G k x| -log G k e -ak E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak σ √ n y -e -ck ϕ ∞ . (6.3.2)
For simplicity, for any n > k 1, we write

G n = G n,k G k with G n,k = g n . . . g k+1 , G k = g k . . . g 1 .
From the large deviation bounds for log G k (see [START_REF] Benoist | Random walks on reductive groups[END_REF] or [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF]), we have that for any q > λ, there exists a constant c > 0 such that for sufficiently large k 1,

P(log G k > kq) e -ck . (6.3.3)
Denote the σ-algebra F k = σ(g 1 , . . . , g k ). From (6.3.2), taking the conditional expectation with respect to the filtration F k , we derive that for any q > λ,

I n E    E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak σ √ n y F k    -e -ck ϕ ∞ E    E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak σ √ n y 1 {log G k kq} F k    -e -ck ϕ ∞ E    E ϕ(X x n )1 log |Gnx|-log |G k x|+kq-nλ+e -ak σ √ n y F k    -2e -c 1 k ϕ ∞ ,
where in the last step we use the large deviation bound (6.3.3) and the constant c 1 > 0 is taken to be small enough. Note that

X x n = G n • x = G n,k • X x k and log |G n x| - log |G k x| = log |G n,k X x k |. It follows that I n E    E ϕ(G n,k • X x k )1 log |G n,k X x k |+kq-nλ+e -ak σ √ n y F k    -2e -c 1 k ϕ ∞ .
Since it is shown in Lemma 6.3.1 that the Berry-Esseen bound for the norm cocycle log |G n x| holds uniformly in x ∈ P d-1 , we obtain

I n ν(ϕ)Φ(y 1 ) - C √ n -k ϕ γ -2e -c 1 k ϕ ∞ ,
where

y 1 = √ n √ n -k y - k(q -λ) + e -ak σ √ n -k . Taking k = [C 1 log n] with C 1 = 1 2c 1 , we get that there exists a constant C > 0 such that 1 √ n-k C √ n and e -c 1 k C √ n . Since Φ is the standard normal distribution function, we write Φ(y 1 ) = Φ(y) - 1 √ 2π y y 1 e -t 2 2 dt.
To estimate the above integral, by elementary calculations, there exists a constant

C 2 > 0 such that |y -y 1 | C 2 log n n |y| + log n √ n ,
and for n > k 0 large enough,

e -y 2 1 2 exp - 1 2 n n -k y 2 + √ n k(q -λ) + e -ak n -k y exp - 1 2 y 2 + C 2 log n √ n |y| .
Thus, it follows that there exists a constant C > 0 such that

y y 1 e -t 2 2 dt |y -y 1 | max e -y 2 2 , e -y 2 1 2 C 2 log n n |y| + log n √ n exp - 1 2 y 2 + C 2 log n √ n |y|    C log n √ n ∀y ∈ R, C 1 √ n if |y| > √ 2 log log n.
Consequently, we get the following lower bound for I n : there exists a constant C > 0 such that for all x ∈ P d-1 and ϕ ∈ B γ ,

I n    ν(ϕ)Φ(y) -C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y) -C √ n ϕ γ if |y| > √ 2 log log n.
Together with the upper bound (6.3.1), this concludes the proof of (6.2.1) of Theorem 6.2.1 and the corresponding results in Remark 6.2.2.

We now proceed to prove the Berry-Esseen type bound (6.2.2) of Theorem 6.2.1 for the spectral radius ρ(G n ). The proof relies on the following comparison lemma between the operator norm G n and the spectral radius ρ(G n ), established in [10, Lemma 14.13] using the Hölder regularity properties of the stationary measure ν. It shows that ρ(G n ) behaves like G n up to a factor lying between 1 and e -εk for any ε > 0 and k n, with high probability. Notice that ρ(G n ) G n by Gelfand's formula and the submultiplicity of the operator norm. Lemma 6.3.3. Assume conditions L1 and L2. Then, for any ε > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 ,

P 1 ρ(G n ) G n > e -εk 1 -e -ck .
Proof of (6.2.2) of Theorem 6.2.1. Without loss of generality, we assume that the target function ϕ is non-negative. The lower bound is a direct consequence of (6.2.1) together with Remark 6.2.2 on it, and the inequality log ρ(G n ) log G n , from which we get that, uniformly in x ∈ P d-1 , y ∈ R and ϕ ∈ B γ ,

I n := E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y    ν(ϕ)Φ(y) -C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y) -C √ n ϕ γ if |y| > √ 2 log log n.
The upper bound is a consequence of (6.2.1) together with Remark 6.2.2 on it and Lemma 6.3.3. In fact, applying Lemma 6.3.3, we deduce that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N, such that for all n k k 0 ,

I n E ϕ(X x n )1 log ρ(Gn)-nλ σ √ n y 1 log ρ(Gn)-log Gn >-εk + e -c 1 k ϕ ∞ E ϕ(X x n )1 log Gn -εk-nλ σ √ n y + e -c 1 k ϕ ∞ . Taking k = [C 1 log n] with C 1 = 1 2c 1 , we have e -c 1 k C √
n for some constant C > 0. Using the bound (6.2.1) with y replaced by y 1 := y + εk σ √ n , we obtain the following upper bound for I n : there exists a constant C > 0 such that for all x ∈ P d-1 , y ∈ R, ϕ ∈ B γ , and n k 0 with k 0 large enough,

I n    ν(ϕ)Φ(y 1 ) + C log n √ n ϕ γ ∀y ∈ R, ν(ϕ)Φ(y 1 ) + C √ n ϕ γ if |y| > √ 2 log log n.
(Notice that |y| > √ 2 log log n implies |y 1 | > √ 2 log log n for n large enough.) By an argument similar to that used in the proof of (6.2.1), it can be seen that Φ(y 1 )

   Φ(y) + C log n √ n ∀y ∈ R, Φ(y) + C √ n if |y| > √ 2 log log n.
This concludes the proof of (6.2.2) and Remark 6.2.2 on it.

moderate deviation principles

The goal of this section is to establish Theorems 6.2.3 and 6.2.4 about moderate deviation principles for the operator norm G n and the spectral radius ρ(G n ). Notice that in the first theorem, we need the proximality condition, while in the second, we do not need it.

Proof of Theorem 6.2.3

We shall make use of the following moderate deviation principle for the couple (X x n , log |G n x|), which is a direct consequence of Cramér type moderate deviation expansion for (X x n , log |G n x|) recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. 

∈ P d-1 , -inf y∈B • y 2 2σ 2 lim inf n→∞ n b 2 n log E ϕ(X x n )1 { log |Gnx|-nλ bn ∈B} lim sup n→∞ n b 2 n log E ϕ(X x n )1 { log |Gnx|-nλ bn ∈B} -inf y∈ B y 2 2σ 2 ,
where B • and B are respectively the interior and the closure of B.

Proof of (6.2.5) of Theorem 6.2.3. Since the rate function I(y) := y 2 2σ 2 , y ∈ R, is strictly increasing on [0, ∞) and strictly decreasing on (-∞, 0] with I(0) = 0, by Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], it suffices to prove the following moderate deviation asymptotics: for any y > 0, uniformly in x

∈ P d-1 , lim n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn y = - y 2 2σ 2 , (6.4.1) lim n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y = - y 2 2σ 2 . (6.4.2)
We first prove (6.4.1) using the moderate deviation principle for the norm cocycle log |G n x| stated in Lemma 6.4.1.

For the lower bound, by Lemma 6.4.1 and the fact that log |G n x| log G n , we easily get: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn y - y 2 2σ 2 .
We now prove the upper bound. Denote by (e i ) 

E ϕ(X x n )1 log Gn -nλ bn y d i=1 E ϕ(X x n )1 log |Gne i |-nλ+c 1 bn y .
Since b n → ∞ as n → ∞, we have that for any ε > 0, it holds that c 1 bn < ε for large enough n. Thus using Lemma 6.4.1, we obtain for any y > 0, lim sup

n→∞ n b 2 n log E ϕ(X x n )1 log |Gne i |-nλ+c 1 bn y lim sup n→∞ n b 2 n log E ϕ(X x n )1 log |Gne i |-nλ bn y-ε = - (y -ε) 2 2σ 2 .
Since ε > 0 can be arbitrary small, we get the desired upper bound. This concludes the proof of (6.4.1).

We next prove (6.4.2). The upper bound is easy: using Lemma 6.4.1 and the fact that log |G n x| log G n , we get that for any y > 0, uniformly in

x ∈ P d-1 , lim sup n→∞ n b 2 n log E ϕ(X x n )1 log Gn -nλ bn -y - y 2 2σ 2 . (6.4.3)
We now come to the proof of the lower bound using Lemma 6.3.2. For any n k, consider the event

A n,k = log G n -log |G n x| |G k x| -log G k e -ak ,
and denote by A c n,k its complement. From Lemma 6.3.2, we know that for any a > 0, there exist c 1 > 0 and k 0 ∈ N, such that for all n k k 0 and x ∈ P d-1 , P(A c n,k ) e -c 1 k . (6.4.4) Using (6.4.4), we see that

I n := E ϕ(X x n )1 log Gn -nλ bn -y E ϕ(X x n )1 log Gn -nλ bn -y 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y -e -c 1 k ϕ ∞ . (6.4.5)
As in the proof of (6.2.1), for any n k k 0 , we write

G n = G n,k G k with G n,k = g n . . . g k+1 , G k = g k . . . g 1 .
Taking the conditional expectation with respect to the filtration F k = σ(g 1 , . . . , g k ), and using the large deviation bound (6.3.3) for the operator norm G k , we derive that for any q > λ, there exists a constant c 2 > 0 such that

I n E    E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y F k    -e -c 1 k ϕ ∞ E    E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak bn -y 1 {log G k kq} F k    -e -c 1 k ϕ ∞ E    E ϕ(X x n )1 log |Gnx|-log |G k x|+kq-nλ+e -ak bn -y F k    -2e -c 2 k ϕ ∞ =: J n -2e -c 2 k ϕ ∞ . (6.4.6)
According to Lemma 6.4.1, for any y > 0 and > 0, we have that for sufficiently large n, uniformly in

x ∈ P d-1 , e - b 2 n n y 2 2σ 2 + E ϕ(X x n )1 log |Gnx|-nλ bn -y e - b 2 n n y 2 2σ 2 -. (6.4.7) Note that X x n = G n,k • X x k and log |G n x| -log |G k x| = log |G n,k X x k |.
In the sequel, we take

k = C 1 b 2 n n , ( 6.4.8) 
where C 1 > 0 is a constant whose value will be chosen sufficiently large. If we denote

b n = b n + k(q -λ) + e -ak y ,
Hence we get for some constant c 2 > 0,

I n e - (b n ) 2 n y 2 2σ 2 +η 1 -e -c 2 k ϕ ∞ . Therefore, using k = C 1 b 2 n n → ∞, we obtain lim inf n→∞ n b 2 n log I n lim n→∞ n b 2 n - (b n ) 2 n y 2 2σ 2 + η + lim n→∞ n b 2 n log(1 -e -c 2 k ϕ ∞ ) = lim n→∞ -1 + εk yb n 2 y 2 2σ 2 + η + 0 = - y 2 2σ 2 + η .
Taking η → 0, we obtain the desired lower bound: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn y - y 2 2σ 2 .
Together with the upper bound (6.4.12), this concludes the proof of (6.4.10).

We next prove (6.4.11). Using (6.4.2) and the fact that ρ(G n ) G n , we easily get the desired lower bound: for any y > 0, uniformly in

x ∈ P d-1 , lim inf n→∞ n b 2 n log E ϕ(X x n )1 log ρ(Gn)-nλ bn -y - y 2 2σ 2 . ( 6.4.16) 
For the upper bound, we still choose k as before:

k = C 2 b 2 n n , ( 6.4.17) 
where C 2 > 0 is a constant whose value will be chosen sufficiently large. By Lemma 6.3.3, we see that for any ε > 0, there exist c 3 > 0 and k 0 ∈ N, such that for all n k k 0 ,

J n : = E ϕ(X x n )1 log ρ(Gn)-nλ bn -y = E ϕ(X x n )1 log ρ(Gn)-nλ bn -y 1 log ρ(Gn)-log Gn -εk + E ϕ(X x n )1 log ρ(Gn)-nλ bn -y 1 log ρ(Gn)-log Gn <-εk E ϕ(X x n )1 log Gn -nλ -ybn+εk + e -c 3 k ϕ ∞ .
By the moderate deviation principle (6.4.2) for G n , we have that for any η > 0, there exists n 0 ∈ N such that for any n n 0 ,

E ϕ(X x n )1 log Gn -nλ bn -y e - b 2 n n y 2 2σ 2 -η . (6.4.18) Let b n = b n -εk y .
In view of (6.4.17), we see that b n √ n → ∞ and b n n → 0, as n → ∞. From (6.4.18), it follows that uniformly in x ∈ P d-1 ,

J n e - (b n ) 2 n y 2 2σ 2 -η + e -c 3 k ϕ ∞ . (6.4.19) Since b n = b n -εk y and k = C 1 b 2 n n , it holds that as n → ∞, b n bn → 1 and, choosing C 1 > 1 c 3 y 2 2σ 2 -η , we have, (b n ) 2 kn y 2 2σ 2 -η → 1 C 1 y 2 2σ 2 -η < c 3 . Thus, lim sup n→∞ n b 2 n log J n lim sup n→∞ n b 2 n log e - (b n ) 2 n y 2 2σ 2 -η = -lim n→∞ b n b n 2 y 2 2σ 2 -η = - y 2 2σ 2 -η .
Since η > 0 is arbitrary, we get the desired upper bound for J n :

lim sup n→∞ n b 2 n log J n - y 2 2σ 2 .
Combining this with the lower bound (6.4.16), we conclude the proof of (6.4.11). Combining (6.4.10) and (6.4.11), we obtain the moderate deviation principle (6.2.6), as mentioned in the beginning of the proof.

Proof of Theorem 6.2.4

We now come to the proof of Theorem 6.2.4 without assuming the proximality condition L3. The proof is based on Theorem 6.2.3 applied to ∧ p G n which will be introduced below and which satisfies the proximality condition L3, using the p-th exterior power representation approach developed in [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. In [13, Theorem V. 6.2], this approach is used to establish large deviation bounds for the vector norm |G n x| and the operator norm G n ; it allows to relax the proximality condition L3, but fails to give the rate function. For moderate deviations, the situation is different: with this approach we are able to get the rate function explicitely.

In order to prove Theorem 6.2.4, we need to introduce some additional notation. For any integer 1 p d, the p-th exterior power ∧ p (R d ) is the d p -dimensional vector space with basis

{e i 1 ∧ e i 2 ∧ • • • ∧ e ip , 1 i 1 < i 2 < • • • < i p d},
where (e i ) 1 i d is the standard orthonormal basis of R d ; it is endowed with the standard norm still denoted by | • | as in the case of R d (there should be no confusion in the context). For any v 1 , . . . , v p ∈ R d , the vector v 1 ∧ • • • ∧ v p is nonzero if and only if v 1 , . . . , v p are linearly independent in R d . We write ∧ p g for the image of g ∈ GL d (R) under the representation ∧ p (R d ); for any v 1 , . . . , v p ∈ R d , the action of the matrix ∧ p g on the vector v

1 ∧ • • • ∧ v p is given by ∧ p g(v 1 ∧ • • • ∧ v p ) = gv 1 ∧ • • • ∧ gv p .
The associated operator norm of ∧ p g is defined by

∧ p g = sup{|(∧ p g)v| : v ∈ ∧ p (R d ), |v| = 1}.
Since ∧ p (gg ) = (∧ p g)(∧ p g ) for any g, g ∈ GL d (R), the submultiplicative property holds: ∧ p (gg ) ∧ p g ∧ p g . If the singular values of a matrix g ∈ GL d (R) is given by a 11 , . . . , a dd (arranged in decreasing order), then it holds that ∧ p g = a 11 . . . a pp .

(6.4.20)

As a consequence, we have ∧ p g g p and ∧ p g ∧ p+2 g ∧ p+1 g 2 .

Let V be a subspace of

∧ p (R d ). A set S ⊂ ∧ p (G) := {∧ p g : g ∈ G} is said to be irreducible on V if there is no proper subspace V 1 of V such that gV 1 = V 1 for all g ∈ S. A set S ⊂ ∧ p (G) is said to be strongly irreducible on V if there are no finite number of subspaces V 1 , . . . , V m of V such that g(V 1 ∪ . . . ∪ V m ) = V 1 ∪ . . . ∪ V m for all g ∈ S.
The strong irreducibility condition L2 means that Γ µ is strongly irreducible on R d , or, equivalently, G µ is strongly irreducible on R d . We refer to [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF] for more details.

The following purely algebraic result is due to Chevalley [START_REF] Chevalley | Théorie des groupes de Lie[END_REF]; see also Bougerol and Lacroix [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]. Lemma 6.4.2. Let G be an irreducible subgroup of GL d (R). Then, for any integer 1 p d, there exists a direct-sum decomposition of the p-th exterior power:

∧ p (R d ) = V 1 ⊕ . . . ⊕ V k such that (∧ p g)V j = V j for any g ∈ G and 1 j k. Moreover, ∧ p (G) := {∧ p g : g ∈ G} is irreducible on each subspace V j , j = 1, • • • , k.
We say that an integer 1 p d is the proximal dimension of the semigroup Γ µ , if p is the smallest integer with the following property: there exists a sequence of matrices {M n } n 1 ⊂ Γ µ such that Mn Mn converges to a matrix with rank p. By definition, it is easy to verify that the proximality condition L3 implies that the proximal dimension of Γ µ is 1. The converse is also true if we assume that Γ µ is irreducible, see [START_REF] Benoist | Random walks on reductive groups[END_REF] for the proof. Under the first moment condition E(log N (g 1 )) < ∞, according to Kingman's subadditive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF], the Lyapunov exponents (λ p ) 1 p d of µ are defined recursively by

λ 1 + . . . + λ p = lim n→∞ 1 n E(log ∧ p G n ) = lim n→∞ 1 n log ∧ p G n , a.s..

This formula, together with the fact that

∧ p-1 G n ∧ p+1 G n ∧ p G n 2 , yields that λ 1 λ 2 . . . λ d .
The following fundamental result is due to Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] and gives a sufficient condition for ensuring that two successive Lyapunov exponents are distinct. It can also be found in [13, Proposition III. 6.2]. Lemma 6.4.3. Assume condition L2. If E log N (g 1 ) < ∞ and the proximal dimension of the semigroup Γ µ is p, then we have

λ 1 = λ 2 = . . . = λ p > λ p+1 .
on the space ∧ p (R d ) coincides with the union of all the Lyapunov exponents of (∧ p G n ) restricted to each subspace V j , 1 j k. Hence we can choose V 1 in such a way that the restrictions of ∧ p G n to V 1 and V 2 ⊕ . . . ⊕ V k , denoted respectively by G n and G n (as usual we identify the linear transform with the corresponding matrice), satisfy: 

lim n→∞ 1 n log G n = λ 1 + • • • + λ p = 0, a.s., (6.4.23) lim n→∞ 1 n log G n = λ 2 + • • • + λ p+1 = λ p+1 < 0, a.s., (6.4.24) 
∧ p G n = max{ G n , G n }. ( 6 
log P log G n b n -y = - y 2 2σ 2 1 , (6.4.27) 
where σ 2 1 > 0 is the asymptotic variance of the sequence (G n ) n 1 given by 

σ 2 1 = lim n→∞ 1 n E (log G n ) 2 . ( 6 
= [G n (G km ) -1 ] [G km (G (k-1)m ) -1 ] • • • [G 2m (G m ) -1 ] G m , it follows that log G n log G n (G km ) -1 + log G km (G (k-1)m ) -1 + • • • + log G m . (6.4.30)
For fixed integer m 1, we denote u m := -E(log G m ) > 0. Notice that 

P(log G n 0) P log G n (G km ) -1 k u m 2 + P log G km (G (k-1)m ) -1 + • • • + log G m + ku m k u m 2 . ( 6 
∈ P d-1 , y ∈ [0, o(n 1/6 )] and ϕ ∈ B γ , as n → ∞, E ϕ(X x n )1 {log |Gnx|-nλ √ nσy} 1 -Φ(y) = ν(ϕ) + ϕ γ O y + 1 √ n , E ϕ(X x n )1 {log |Gnx|-nλ -√ nσy} Φ(-y) = ν(ϕ) + ϕ γ O y + 1 √ n .
Proof of Theorem 6.2.6. Using the Berry-Esseen type bound (6.2.1) for the couple (X x n , log G n ), we get that there exists a constant C > 0 such that for all n 1,

x ∈ P d-1 , y > 0 and ϕ ∈ B γ , E ϕ(X x n )1 {log Gn -nλ -√ nσy} Φ(-y) -ν(ϕ) C log n √ nΦ(-y) ϕ γ . (6.5.1)
Using the basic inequality

1 √ 2π 1 y - 1 y 3 e -y 2 2 Φ(-y) 1 √ 2πy e -y 2 2 for y > 0, (6.5.2) it is easy to see that log n √ nΦ(-y) = O(n -3/8 (log n) 3/2 ) → 0, as n → ∞, uniformly in y ∈ [0, 1 2 √
log n]. Therefore, from (6.5.1) we see that the expansion (6.2.11) holds uniformly in y ∈ [0, 1 2 √

log n]. In the same way, using again the Berry-Esseen type bound (6.2.1) but together with the fact that |Eϕ(X x n ) -ν(ϕ)| Ce -cn ϕ γ , one can also verify that the expansion (6.2.10) also holds uniformly in y ∈ [0, 

√

log n, o(n 1/6 )]. Without loss of generality we assume that the target function ϕ is non-negative (otherwise we can consider the positive and negative parts of ϕ). We only give a proof of (6.2.11), since (6.2.10) can be established in a similar way. For simplicity, we denote for any x ∈ P d-1 and y ∈ [ 1 2

√

log n, o(n 1/6 )],

I n := E ϕ(X x n )1 log Gn -nλ - √ nσy .
The proof consists of establishing the upper and lower bounds. From Lemma 6.5.1 on log |G n x| and the fact that |G n x| G n , the upper bound of I n immediately follows: there exists a constant C > 0 such that for all n 1,

x ∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , I n Φ(-y) ν(ϕ) + C ϕ γ y + 1 √ n . (6.5.3)
For the lower bound of I n , we shall use Lemma 6.3.2. For any a > 0 and n > k 1, consider the event

A n,k = log G n -log |G n x| |G k x| -log G k e -ak ,
and we write A c n,k for its complement. Since the function ϕ is assumed to be nonnegative, using Lemma 6.3.2 we get that for any a > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 , uniformly in x ∈ P d-1 ,

I n E ϕ(X x n )1 log Gn -nλ - √ nσy 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy 1 {A n,k } E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy -e -c 1 k ϕ ∞ =: J n -e -c 1 k ϕ ∞ . (6.5.4)
We now give a lower bound for J n . As before, for any n > k 1, we write

G n = G n,k G k with G n,k = g n . . . g k+1 and G k = g k . . . g 1 .
We take the conditional expectation with respect to the filtration F k = σ(g 1 , . . . , g k ) and use the large deviation bound (6.3.3) for the operator norm G k , to obtain that, for any q > λ, there exists a constant c 2 > 0 such that

J n = E    E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy F k    E    E ϕ(X x n )1 log |Gnx|-log |G k x|+log G k -nλ+e -ak - √ nσy 1 {log G k kq} F k    E    E ϕ(X x n )1 log |Gnx|-log |G k x|+kq-nλ+e -ak - √ nσy F k    -e -c 2 k ϕ ∞ =: J n -e -c 2 k ϕ ∞ . (6.5.5)
For brevity, we set

y 1 = y n n -k - k(q -λ) σ √ n -k - e -ak σ √ n -k , ( 6.5.6) 
then J n can be rewritten as

J n = E    E ϕ(G n,k • X x k )1 log |G n,k X x k |-(n-k)λ - √ n-kσy 1 F k    . For any y ∈ [ 1 2 √ log n, o(n 1/6 )], we take k = C 1 y 2 , (6.5.7)
where C 1 > 0 is a constant whose value will be chosen large enough. From (6.5.6) and (6.5.7), we see that y ∼ y 1 = o(n 1/6 ) as n → ∞. Hence we are allowed to apply Lemma 6.5.1 to obtain the following moderate deviation expansion for J n : as n → ∞, uniformly in 

x ∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , J n Φ(-y 1 ) = ν(ϕ) + ϕ γ O y 1 + 1 √ n . ( 6 

√

log n, o(n 1/6 )],

I n := E ϕ(X x n )1 log ρ(Gn)-nλ √ nσy
.

The remaining part of the proof consists of establishing upper and lower bounds of I n .

Since ρ(G n ) G n , using the moderate deviation expansion (6.2.10) for the operator norm G n , we get the upper bound for

I n : as n → ∞, uniformly in x ∈ P d-1 , y ∈ [ 1 2 √
log n, o(n 1/6 )] and ϕ ∈ B γ , 1). (6.5.10)

I n 1 -Φ(y) ν(ϕ) + ϕ γ o(
We shall apply Lemma 6.3.3 to derive a lower bound for I n . For any ε > 0 and n > k 1, we denote

A n,k = log ρ(G n ) -log G n > -εk .
From Lemma 6.3.3 we know that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N such that for all n k k 0 , we have P(A n,k ) > 1 -e -c 1 k . Thus, 

I n E ϕ(X x n )1 log ρ(Gn)-nλ √ nσy 1 {A n,k } E ϕ(X x n )1 log Gn -nλ √ nσy+εk 1 {A n,k } E ϕ(X x n )1 log Gn -nλ √ nσy+εk -e -c 1 k ϕ ∞ . ( 6 
∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ √ nσy+εk 1 -Φ(y + εk √ nσ ) = ν(ϕ) + ϕ γ o(1). (6.5.12) For y ∈ [ 1 2 √ log n, o(n 1/6 )], we take k = C 1 y 2 , (6.5.13)
where C 1 > 0 is a constant whose value will be chosen large enough. From the asymptotic expansion

∞ y e -t 2 2 dt = 1 y e -y 2 2 [1 + O( 1 y 2 )] as y → ∞, we infer that as n → ∞, uniformly in y ∈ [ 1 2 √ log n, o(n 1/6 )], 1 -Φ(y + εk √ nσ ) 1 -Φ(y) = y y + εk √ nσ exp 1 2 y 2 - 1 2 (y + εk √ nσ ) 2 (1 + o(1)) = y y + εk √ nσ exp -y εk √ nσ - ε 2 k 2 2nσ 2 (1 + o(1)). Since y ∈ [ 1 2 √ log n, o(n 1/6
)], taking into account (6.5.13), we get

y y + εk √ nσ = 1 - εk √ nσ y + εk √ nσ 1 - εk y √ nσ = 1 - ε[C 1 y 2 ] y √ nσ = 1 + o(1), and exp -y εk √ nσ - ε 2 k 2 2nσ 2 = exp -y ε[C 1 y 2 ] √ nσ - ε 2 [C 1 y 2 ] 2 2nσ 2 = 1 + o(1).
Hence, substituting the above estimates into (6.5.12), we get, uniformly in

x ∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , E ϕ(X x n )1 log Gn -nλ √ nσy+εk 1 -Φ(y) ν(ϕ) + ϕ γ o(1).
This, together with (6.5.11), implies the lower bound for I n : uniformly in

x ∈ P d-1 , y ∈ [ 1 2 √ log n, o(n 1/6 )] and ϕ ∈ B γ , I n 1 -Φ(y) ν(ϕ) + ϕ γ o(1) - e -c 1 k 1 -Φ(y) ϕ ∞ ν(ϕ) + ϕ γ o(1) -2y exp -c 1 [C 1 y 2 ] + y 2 2 ϕ ∞ ν(ϕ) + ϕ γ o(1),
where in the second inequality we use (6.5.2) and in the last inequality we take C 1 > 1 c 1 . Consequently, combining this with the upper bound (6.5.10), we conclude the proof of Theorem 6.2.7.

Chapter 7

Cramér type moderate deviation expansions for entries of products of random invertible matrices

Abstract. Let (g n ) n 1 be a sequence of independent and identically distributed random invertible 2 × 2 matrices. Consider the product matrix G n := g n . . . g 1 and its (i, j)th entry G i,j n , where 1 i, j 2. Under suitable conditions, we establish Cramér type moderate deviation expansions for G i,j n . Our result implies a moderate deviation principle for G i,j n , which is also new. The proof is based on the saddle point method and the Hölder regularity of the stationary measure of a Markov chain on the unit sphere.

Introduction

Background and main objective

Equip R 2 with the standard inner product •, • and the canonical Euclidean norm | • |. Denote by (e k ) 1 k 2 the standard orthonormal basis, and by P 1 = {x ∈ R 2 , |x| = 1}/± the projective space obtained from the unit sphere of R 2 by identifying x and -x. Let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.) real random matrices with law µ on the special linear group G := SL 2 (R). Consider the random walk G n := g n . . . g 1 on the group G. Denote by G i,j n := e i , G n e j the (i, j)-th entry of the product matrix G n , where 1 i, j 2. The study of asymptotic properties of the entries G i,j n has attracted a lot of attention since the pioneering work of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF]. The goal of the present paper is to investigate the Cramér type moderate deviation expansion for the entries G i,j n , and more generally, for the scalar product f, G n x , where f, x ∈ P 1 .

For positive matrices, Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF] established the strong law of large numbers and the central limit theorem for G i,j n . Under weaker assumptions, these results were subsequently generalized by Kingman [START_REF] Kingman | Subadditive ergodic theory[END_REF], Cohn, Nerman and Peligrad [START_REF] Cohn | Weak ergodicity and products of random matrices[END_REF], Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]. Precise large and moderate deviation expansions for G i,j n have been recently established in [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF][START_REF] Xiao | Large deviation expansions for the entries of products of random matrices[END_REF].

For invertible matrices, the situation is more complicated and delicate. For g ∈ G, set g = sup x∈P 1 |gx|. Let Γ µ be the smallest closed subgroup of G generated by the

Proof strategy

The standard approach to prove the Cramér type moderate deviation expansion for sums of i.i.d. real-valued random variables consists in performing a change of measure and proving a Berry-Esseen bound under the changed measure; see for example Cramér [START_REF] Cramér | Sur un nouveau théoreme-limite de la théorie des probabilités[END_REF] and Petrov [START_REF] Petrov | Sums of independent random variables[END_REF]. For random walks on groups or semigroups, this approach has been recently employed in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] to establish the Cramér type moderate deviation expansion for the norm cocycle log |G n x| with x ∈ P 1 ; in this case performing a change of measure is essentially reduced to proving the spectral gap properties of a transfer operator of the underlying Markov chain X x n . However, the change of measure formula for the log entry log |G i,j n | has not yet been established and needs some new ideas. Our basic idea is to decompose the log entry log |G i,j n | as the sum of the norm cocycle log |G n e j | and the log scalar product of e i and X e j n := G n e j /|G n e j |:

log |G i,j n | = log |G n e j | + log |f (X e j n )|, with f (u) = e i , u ∀u ∈ P 1 . (7.1.5)
In order to prove the expansions (7.1.3) and (7.1.4), we can not use the method employed in [START_REF] Xiao | Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices[END_REF] where a precise moderate deviation expansion for G i,j n has been proved in the case of positive matrices under a boundedness assumption of type Furstenberg-Kesten. The later assumption plays a key role to ensure that the Markov chain (X e j n ) stays separated from the coordinates (e i ) 1 i 2 , so that f, X e j n is strictly positive. However, such kind of analysis breaks down for invertible matrices. The reason is that the random walk (G n e j ) n 1 may stay in the hyperplane ker f , making log |f (X Since spectral gap properties of P z holds on the Banach space of Hölder continuous functions, an important issue is to make the indicator function 1 {log |f (X e j n )|∈I k } to be smooth. This smoothing techniques, together with the discretization and the decomposition (7.1.5), permits to investigate the precise moderate deviation asymptotics for the couple (X 

Main results

To formulate our results, we need some notation. Denote γ k = Λ (k) (0), k 1, where Λ = log κ with the function κ defined by the dominant eigenvalue of the operator P s (see Proposition 7.3.1). In particular, under conditions B1 and B2, we have γ 1 = λ > 0 and γ 2 = σ 2 > 0. Throughout the paper, we write ζ for the Cramér series: which converges for |t| small enough. For any g ∈ G and x ∈ P 1 , we write g • x := gx |gx| for the projective action of g on the projective space P 1 . Consider the Markov chain

ζ(t) = γ 3 6γ 3/
X x 0 = x, X x n = G n • x, n 1.
Under conditions B1 and B2, the chain (X x n ) n 0 has a unique stationary probability measure ν on P 1 such that for any continuous function ϕ on P 1 , In particular, taking f = e i and x = e j in Theorem 7.2.1, we obtain the moderate deviation expansions (7.1.3) and (7.1.4) for entries G i,j n . More generally, we shall establish the Cramér type moderate deviation expansion for the couple (X x n , log | f, G n x |) with a target function ϕ on the Markov chain (X x n ) n 0 . Let us first introduce some notation. Denote by B γ the Banach space of complex-valued γ-Hölder continuous functions on the projective space P 1 , see Section 7.3.1 for details.

As a generalization of Theorem 7.2.1, the following result concerns the moderate deviation expansion for the couple (X x n , log | f, G n x |). The moderate deviation principle (7.2.3) is new even for ϕ = 1.

Spectral gap theory 7.3.1 A change of measure

We equip the projective space P 1 with the angular distance d, i.e. d(x, y) = 1 -| x, y | 2 for any x, y ∈ P 1 . Denote by C(P 1 ) the space of all continuous complex-valued functions on P 1 . In particular, we write 1 for the constant function with value 1 on the space P 1 . Throughout the present paper, we assume that γ > 0 is a fixed small enough constant. For any ϕ ∈ C(P 1 ), set The following result, which is obtained utilizing the perturbation theory of linear operators [START_REF] Kato | Perturbation theory for linear operators[END_REF][START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF], shows that the operator P z has spectral gap properties when z lies in a small neighborhood of 0 in the complex plane; we refer to [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] A change of measure can be performed utilizing the fact that the eigenvalue κ(s) and the eigenfunction r s of the operator P s are strictly positive for s ∈ (-η, η). For any x ∈ P 1 , s ∈ (-η, η) and n 1, denote q s n (x, G n ) = |Gnx| s κ n (s) rs(X x n )

rs(x) . Then the probability measures q s n (x, G n )µ(dg 1 ) . . . µ(dg n ) form a projective system on G N , so that there is a unique probability measure Q x s on G N by the Kolmogorov extension theorem. Denote by E Q x s the corresponding expectation. With these notation, the following change of measure formula holds: for any n 1 and bounded measurable function h on (P Under the changed measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator Q s defined as follows: for any ϕ ∈ C(P 1 ), Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x), x ∈ P 1 .

It was shown in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that for any s ∈ (-η, η), the Markov operator Q s has a unique stationary measure π s given by π s (ϕ) = ν s (ϕr s ) ν s (r s ) . (7.3.4)

Spectral gap and strong non-lattice

From Proposition 7.3.1, it follows that the function Λ := log κ is convex in a small neighborhood of 0. Indeed, the function Λ plays the same role as the log-Laplace transform in the case of i.i.d. real-valued random variables. For any s ∈ (-η, η) and z ∈ C with | z| sufficiently small, define the perturbed operator R s,z as follows: for ϕ ∈ B γ , R s,z ϕ(x) = E Q x s e z(log |g 1 x|-Λ (s)) ϕ(X x 1 ) , x ∈ P 1 . (7.3.5)

It follows that for n 1, R n s,z ϕ(x) = E Q x s e z(log |Gnx|-nΛ (s)) ϕ(X x n ) , x ∈ P 1 .

The following proposition provides spectral gap properties of the perturbed operator R s,z ; see [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for the proof. Recall that the transfer operator P s+it for s ∈ (-η, η) and t ∈ R is defined by (7.3.1). Due to a lot of applications to the study of limit theorems for products of random matrices (see [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]) and to related topics such as the decay of Fourier coefficients of stationary measure ν (see [START_REF] Li | Decrease of Fourier coefficients of stationary measures[END_REF]), it is of interest to investigate the non-arithmeticity property of P s+it . In the context of general linear group GL d (R), Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] (see also Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]) proved that the spectral radius of P s+it is strictly less than 1 when t lies in a compact set of R \ {0}. In the context of special linear group SL d (R), Li [START_REF] Li | Fourier decay, Renewal theorem and Spectral gaps for random walks on split semisimple Lie groups[END_REF] recently established the following result based on the polynomial decay of Fourier coefficients of stationary measure ν. Proof. For s ∈ (-η, η) and t ∈ R, using the definition of operators P s+it and R s,it (see (7.3.1) and (7.3.5)), together with the change of measure formula (7.3.3), we have that for any n 1 and ϕ ∈ B γ , R n s,it (ϕ) = e -nΛ(s)-itnΛ (s) P n s+it (ϕr s ) r s .

By Proposition 7.3.1, we have that, uniformly in s ∈ (-η, η), the eigenfunction r s is strictly positive and bounded on P 1 . This yields that (R s,it ) e -Λ(s) (P s+it ).

According to Lemma 7.3.3, the spectral radius (P s+it ) is strictly less than 1, uniformly in s ∈ (-η, η) and |t| δ. Noting that Λ(0) = 0 and the function Λ is continuous in a neighborhood of 0, the desired result follows by taking η > 0 small enough.

Regularity of the stationary measure

This section is devoted to establishing the Hölder regularity of the stationary measure π s defined in (7.3.4). Recall that when s = 0, we have π 0 = ν, where the stationary measure ν is defined in (7.2.2). The Hölder regularity of the stationary measure ν has been established in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] (see also [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF][START_REF] Guivarc | Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]): under conditions B1 and B2, there exists a constant α > 0 such that To prove this, using (7.3.3), we write

Q x s | f, X x n | e -εn = E |G n x| s κ n (s) r s (X x n ) r s (x) 1 {| f,X x n | e -εn } .
By Proposition 7.3.1, the eigenfunction x → r s (x) is strictly positive and bounded on P 1 , uniformly with respect to s ∈ (-η, η). It follows that

Q x s | f, X x n | e -εn cE |G n x| s κ n (s) 1 {| f,X x n | e -εn } .
Using Hölder's inequality, we get cκ n (2s) + ce -cn , uniformly in s ∈ (-η, η) and x ∈ P 1 . Since κ(0) = 1 and the function κ is continuous in a small neighborhood of 0, we deduce that there exists η > 0 such that sup s∈(-η,η) 

Q x s | f, X x n | e -εn

The saddle point approximation 7.5.1 Preliminaries

For any integrable function h : R → C, denote its Fourier transform by h(t) = R e -ity h(y)dy, t ∈ R. If h is integrable on R, then using the inverse Fourier transform gives h(y) = 1 2π R e ity h(t)dt, for almost all y ∈ R with respect to the Lebesgue measure on R. Denote by h 1 * h 2 the convolution of the functions h 1 and h 2 on the real line.

For s > 0, let ψ s (u) = e -su 1 {u 0} , u ∈ R. That is, ψ + s,ε (u) = 0 when u < -ε; ψ + s,ε (u) = 1 when u ∈ [-ε, ε]; ψ + s,ε (u) = e -s(u-ε) when u > ε. Similarly, we have ψ - s,ε (u) = e -s(u+ε) 1 {u ε} for u ∈ R. By elementary calculations, one can give the explicit expressions for Fourier transforms of ψ + s,ε and ψ - s,ε : Note that z = 0 is a removable singular point of the function z → sin(εz) z . From (7.5.2) we see that the functions ψ + s,ε and ψ - s,ε are not integrable on the real line. We will see in the proof of Theorem 7.6.3 that smoothing techniques are required. From now on let us fix a non-negative density function ρ on R with compact support [-1, 1], whose Fourier transform ρ is integrable on R and has an analytic extension in a neighborhood of 0 in the complex plane C. For any 0 < ε < 1, define the scaled density function ρ ε (y) = 1 ε ρ( y ε ), y ∈ R, which has a compact support on [-ε -1 , ε -1 ].

ψ + s,

The saddle point approximation

In the sequel, for any fixed y > 1, we shall choose s > 0 satisfying the following equation:

Λ (s) -Λ (0) = σy √ n . (7.5.4)

For brevity we denote σ s = Λ (s). Then σ s > 0 uniformly in s ∈ (0, η) since the function Λ is strictly convex in a small neighborhood of 0.

Proposition 7.5.1. Assume conditions B1 and B2. Let ψ - s,ε (t) be defined in (7.5.1). Suppose that s > 0 satisfies the equation (7.5.4). Then, for any 0 < ε < 1 and sufficiently small η > 0, we have, as n → ∞, uniformly in s ∈ (0, η), x ∈ P For sufficiently large n, the series on the right-hand side of (7.5.7) is absolutely convergent according to the theorem on the inversion of analytic functions. In addition, from (7.5.4) and y = o( √ n) we see that s → 0 + as n → ∞, so that we can assume s ∈ (0, η) for sufficiently small constant η > 0.

Estimate of I 1 (n). By Lemma 7. Together with (7.5.9), this implies Similarly as in (7.5.7), for sufficiently small l, the series on the right-hand side of (7.5.15) is absolutely convergent by the theorem of the inversion of analytic function. It follows from (7.5.15) that z s is real-valued and z s → 0 as l → 0. Moreover, z s > 0 for sufficiently small l > 0, and z s < 0 for sufficiently small l < 0. Since the function Ψ s,x defined in (7.5.12) is analytic in the open disc B 2δ (0), applying Cauchy's integral theorem, we are allowed to choose a integration path which passes through the saddle point z s to rewrite I 3 (n) as

I 3 (n) = -isσ s √ n e nhs(l) L 1 + L 2 + L 3
e n(Ks(z)-zl) Ψ s,x (-iz)dz. (7.5.16) where L 1 = (-iδ, z s -iδ), L 2 = (z s -iδ, z s + iδ), L 3 = (z s + iδ, iδ).

The remaining part of the proof consists of giving precise estimates of these integrals over L 1 , L 2 , L 3 in (7.5.16).

We first deal with the integrals over L 1 and L 3 . From (7.3.7), we get that |Π s,z (ϕ)(x)| c ϕ ∞ uniformly in s ∈ (0, η), |z| 2δ and x ∈ P 1 . In view of (7. Recall that from (7.5.15) we have that z s → 0 as l → 0. From (7.5.6), we get K s (it) = -1 2 σ 2 s t 2 + O(t 3 ), which implies that |e nKs(it) | e -n 3 σ 2 s t 2 , for sufficiently small t. Combining this with the continuity of the mapping z → K s (z) in the neighborhood of 0 yields that |e nKs(z) | e -n 4 σ 2 s δ 2 , for any z ∈ L 1 ∪ L 3 . Since lz s > 0 for sufficiently small l, it holds that |e -nzl | 1 for z ∈ L 1 ∪ L 3 . Consequently, using (7.5.17), for sufficiently large n, we obtain that uniformly in s ∈ (0, η), x ∈ P 1 and |l| = o(1),

-i L 1 + L 3
e n(Ks(z)-zl) Ψ s,x (-iz)dz Cse -cn ϕ ∞ . (7.5.18) In the sequel, the proof is devoted to dealing with the integral over L 2 in (7.5.16). We make a change of variable z = z s + it to get e n[Ks(zs+it)-(zs+it)l] Ψ s,x (t -iz s )dt.

To control I 31 (n) and I 32 (n), we first derive an expansion for K s (z s + it) -(z s + it)l. Using Taylor's formula for K s , we get that for |t| < δ,

K s (z s + it) -(z s + it)l = K s (z s ) -z s l + ∞ k=2 K (k) s (z s )(it) k k! =: -h s (l) + ∞ k=2 K (k) s (z s )(it) k k! , ( 7.5.19) 
where using (7.5.6) and (7. Hence I 31 (n) and I 32 (n) can be rewritten as follows: This, together with the fact that the functions z → Π s,z and z → ρ ε 2 (z) are uniformly bounded in a small neighborhood of 0 in the complex plane, yields that |Ψ s,x (t-iz s )| c s ϕ ∞ , uniformly in s ∈ (0, η), x ∈ P 1 and n - In view of (7.5.12), we decompose the function Ψ s,x into four terms:

I 31 (n) = sσ s √ n n -
Ψ s,x (t n ) = h 1 (t n ) + h 2 (t n ) + h 3 (t n ) + h 4 (t n ),
where

h 1 (t n ) = [Π s,itn (ϕ)(x) -π s (ϕ)] ψ - s,ε (t n ) ρ ε 2 (t n ), h 2 (t n ) = π s (ϕ) ψ - s,ε (t n )[ ρ ε 2 (t n ) -ρ ε 2 (0)], h 3 (t n ) = π s (ϕ)[ ψ -
s,ε (t n ) -ψ - s,ε (0)] ρ ε 2 (0), h 4 (t n ) = π s (ϕ) ψ - s,ε (0) ρ ε 2 (0).

Then we have I 32 (n) = J 1 (n) + J 2 (n) + J 3 (n) + J 4 (n), (7.5.24) where for j = 1, . . . , 4, In view of (7.5.24), putting the bounds (7.5.26), (7.5.27), (7.5.30) and (7.5.32) together, we obtain that uniformly in s ∈ (0, η), x ∈ P 1 , ϕ ∈ B γ and |l| = o(1),

J j (n) =
I 32 (n) - √ 2ππ s (ϕ) c 1 √ n + |l| ϕ γ + c |l| s + 1 s 2 n ϕ ∞ .
Substituting this and (7.5.21), (7.5.18) into (7.5.16), we conclude that

I 3 (n) - √ 2ππ s (ϕ) c 1 √ n + |l| ϕ γ + c |l| s + 1 s 2 n ϕ ∞ .
Together with (7.5.10) and (7.5.11), this completes the proof of Proposition 7.5.1.

For s < 0, let φ s (u) = e -su 1 {u 0} , u ∈ R.

With the notation in (7.5.1), for 0 < ε < 1 the function φ + s,ε is defined as follows: φ + s,ε (u) = 0 when u > ε; φ + s,ε (u) = 1 when u ∈ [-ε, ε]; φ + s,ε (u) = e -s(u+ε) when u < -ε. From basic calculations, one can give the explicit expression for the Fourier transform of φ + s,ε : Proof of Theorem 7.6.1. Without loss of generality, we assume that ϕ is non-negative. The proof of Theorem 7.6.1 consists of establishing the upper and lower bounds. We only establish the first assertion in Theorem 7.6.1 since the proof of the second one can be carried out in a similar way. Upper bound. Recall that it is proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that under conditions B1 and B2, it holds uniformly in x ∈ P Lower bounds. By Lemma 7.6.2, we get that for all ε > 0, there exist c > 0 and k 0 1, such that for all n k k 0 , and for all f, x ∈ P d-1 ,

φ + s,ε (t) =
P log | f, G n x | -log |G n x| -εk ce -ck .
Using this inequality, we get

I n E ϕ(X x n )1 {log | f,Gnx |-nλ √ nσy} 1 {log | f,Gnx |-log |Gnx|>-εk} E ϕ(X x n )1 {log |Gnx|-nλ √ nσy+εk} 1 {log | f,Gnx |-log |Gnx|>-εk} E ϕ(X x n )1 {log |Gnx|-nλ √ nσy+εk} -E ϕ(X x n )1 {log | f,Gnx |-log |Gnx| -εk} E ϕ(X x n )1 {log |Gnx|-nλ √ nσy+εk} -ce -ck ϕ ∞ . (7.6.3)
To establish the first expansion in assertion [START_REF] Aoun | Random subgroups of linear groups are free[END_REF], it suffices to prove that uniformly in f, x ∈ P 1 , y ∈ [0, √ log n] and ϕ ∈ B γ , where ζ is the Cramér series given by (7.2.1). Therefore, A n can be rewritten as With the above notation, it follows from the inequalities (7.6.9) and ψ s ψ - s,ε * ρ ε 

E ϕ(X x n )1 {log | f,Gnx |-nλ √
A n = r s (x)e -y 2 2 + y 3 √ n ζ( y √ n ) E Q x s (ϕr -1 s )(X x n )e -sT x n 1 {T x n +log |f (X x n )| 0} .
(ϕ f s,k,ε 1 )(x) = E Q x s (ϕ f s,k,ε 1 )(X x n )e itT x n .
Since |l| = O( log n n ), using (7.5.20), we have that uniformly in s ∈ (0, η), e -nhs(l) = 1 + O(nl 2 ) = 1 + O( log 2 n n ). (7.6.12) Applying Proposition 7.5.1 with l = δk n and ϕ = ϕ f s,k,ε 1 , and taking into account of (7.6.12), by elementary calculations, we conclude that uniformly in x ∈ P 1 , k ∈ [1, M n ], and y ∈ [n 1/6 , o(

√ n)], R e -itδk R n s,it (ϕ f s,k,ε 1 )(x) ψ - s,ε (t) ρ ε 2 (t)dt -π s (ϕ f s,k,ε 1 ) √ 2π s nΛ (s) - c s √ n 1 √ n + |l| ϕ f s,k,ε 1 γ - c s √ n |l| s + 1 s 2 n + s ϕ f s,k,ε 1 ∞ - c y √ n ϕ f s,k,ε 1 γ - c √ n ϕ f s,k,ε 1 ∞ .
Using the inequality √ 2πye y 2

2 [1 -Φ(y)] 1 for any y > 0, it follows that R e -itδk R n s,it (ϕ f s,k,ε 1 )(x) ψ - s,ε (t) ρ ε 2 (t)dt e We now provide an estimate of the first term in (7.6.14). Using (7.6.9), we have Notice that

χ - k,2ε 1 (x) • log |f | = 1 {log | f,• |∈I k } (x) -1 {log | f,• |∈I k,ε 1 } (x),
where I k,ε 1 = -δk, -δk + 2ε 1 ∪ -δ(k -1) -2ε 1 , -δ(k -1) .

It follows that

Mn k=1 e -sδk π s (ϕ f s,k,ε 1 ) B n,1 -B n,2 , (7. To give a bound for the second term in the above equality, we need to apply the regularity of the stationary measure π s . Specifically, by Theorem 7.4. A similar assertion also holds for the second term in (7.6.18). Hence In the same way as in the proof of (7.6.19), one can check that Mn k=1 π s x : | f, x | ∈ (e -δ(k-1)-2ε 1 , e -δ(k-1) ] C(1 -e -2ε We now give an estimate of the second term in (7.6.14). Note that uniformly in s ∈ (0, η), f ∈ P 1 , ϕ ∈ B γ and k ∈ [1, M n ],

ϕ f s,k,ε 1 ∞ C ϕ ∞ and ϕ f s,k,ε 1 γ C ϕ γ + C ϕ ∞ [e -δk+2ε 1 -e -δk ] γ + C ϕ ∞ [e -δ(k-1) -e -δ(k-1)-2ε 1 ] γ .
Recalling that M n = [log n] and ε 1 = n -β with β > 0 large enough, taking γ > 0 sufficiently small, we get an upper bound for the second term in (7.6.14):

Mn k=1 e -sδk 1 √ n ϕ f s,k,ε 1 γ + y √ n ϕ f s,k,ε 1 ∞ Mn k=1 1 √ n ϕ f s,k,ε 1 γ + y √ n ϕ f s,k,ε 1 ∞ C log n √ n ϕ γ + C n √ n ϕ γ + C n √ n ϕ γ + C y log n √ n ϕ ∞ C n √ n ϕ γ + C y log n √ n ϕ ∞ .
Combining this with (7.6.22), we conclude that

B n e y 3 √ n ζ( y √ n ) [1 -Φ(y)] [1 + O(s)] π s (ϕ| f, • | s ) - C √ n ϕ ∞ -C n √ n ϕ γ -C y log n √ n ϕ ∞ .
Note that uniformly in s ∈ (0, η), we have

π s (ϕ| f, • | s ) = ν(ϕ) + O(s).
This implies the desired lower bound: there exists a constant c > 0 such that uniformly in f, x ∈ P 1 and y ∈ [n 1/6 , o( √ n)],

A n 1 -Φ(y) e

y 3 √ n ζ( y √ n ) ν(ϕ) -c y √ n ϕ γ -c y log n √ n ϕ ∞ .
The proof of the first assertion in Theorem 7.6.3 is completed. Using Proposition 7.5.2 instead of Proposition 7.5.1, the proof of the second assertion in Theorem 7.6.3 can be carried out in a similar way.

  P d-1 , lim n→∞ 1 n log |G n x| = λ, a.s.. (1.2.3) 

  generally, with a target function ϕ on the Markov chain X x n ,

For d 2 ,

 2 let M (d, R) be the set of d × d matrices with entries in R. Denote by G = GL(d, R) the general linear group of invertible matrices of M (d, R). A positive matrix g ∈ M (d, R) (we use the terminology positive in the wide sense, i.e. each entry is non-negative) is said to be allowable, if every row and every column of g has a strictly positive entry. Denote by G + the multiplicative semigroup of allowable positive matrices of M (d, R), and by G • + the subsemigroup of G + with strictly positive entries. Consider the d-dimensional Euclidean space R d equipped with the standard scalar product •, • and the Euclidean norm | • |. Denote by (e i ) 1 i d the canonical orthonormal basis in R d . Let S d-1 = {x ∈ R d , |x| = 1} be the unit sphere in R d , and S d-1 + = {x

ϕ

  ∞ := sup x∈S |ϕ(x)| and ϕ γ := ϕ ∞ + sup x,y∈S |ϕ(x) -ϕ(y)| d(x, y) γ , and introduce the Banach space B γ := {ϕ ∈ C(S) : ϕ γ < +∞}. For any g ∈ M (d, R), set g := sup x∈S |gx| and ι(g) := inf x∈S |gx|.

CHAPTER 1 .

 1 INTRODUCTION A3. (i)(Strong irreducibility) No finite union of proper subspaces of R d is Γ µ -invariant.

P

  s ν s = κ(s)ν s and P * s ν * s = κ(s)ν * s . (1.3.5) For x ∈ S, let r s (x) = S | x, y | s ν * s (dy), r * s (x) = S | x, y | s ν s (dy).

Re

  -sy ψ(y)dy + o(1) . (1.3.10) Theorem 1.3.3 readily implies Theorem 1.3.2 by taking ϕ = 1 and ψ(y) = 1 {y 0}

3 . 3

 33 is new. Since r s is a strictly positive and Hölder continuous function on S, taking l = 0, ϕ = r s and ψ(y) = 1 {y 0} in (1.3.10), we get Theorem 1.3.1.

  e j n , log |G i,j n |) with a target function ϕ on the Markov chain X e j n under the changed measure; give a precise control of the difference between log |G i,j n | and log |G n e j |; establish the Hölder regularity of the stationary measure π s .

3. 1

 1 . INTRODUCTION of branching processes in random environment.

  3.1 similarly to the case s > 0. The asymptotic (3.1.4) is of course much sharper than the corresponding lower large deviation principle for G i,j n . More generally, we extend the scope of the lower large asymptotic (3.1.4) to the couple (X x n , log | f, G n x |) with target functions, in the same line as the asymptotic (3.1.3). As an application of (3.1.2) and (3.1.4), for positive matrices we derive reinforced large deviation principles for the spectral radius ρ(G n ) of G n : see Theorem 3.2.7.

  e j n , log |G i,j n |) with a target function ϕ on the Markov chain X e j n under the changed measure; give a precise control of the difference between log |G i,j n | and log |G n e j |; establish the regularity of the eigenmeasure ν s .

  For a measure ν and a function ϕ we write ν(ϕ) = ϕdν. Let N = {1, 2, . . .}. By convention log 0 = -∞. The space R d is equipped with the standard scalar product •, • and the Euclidean norm | • |. Let (e i ) 1 i d be the canonical orthonormal basis of R d . For d 2, let M (d, R) be the set of d × d matrices with entries in R. Denote by G = GL(d, R) the general linear group of invertible matrices of M (d, R), and by G • + the subsemigroup of M (d, R) with strictly positive entries. We shall work with products of invertible matrices and positive matrices (all over the paper we use the term positive matrix in the strict sense that each entry is strictly positive). Let S d-1 = {x ∈ R d , |x| = 1} be the unit sphere in R d , and S d-1 +

  ϕ ∞ := sup x∈S |ϕ(x)| and ϕ γ := ϕ ∞ + sup x =y |ϕ(x) -ϕ(y)| d(x, y) γ , and consider the Banach space B γ := {ϕ ∈ C(S) : ϕ γ < +∞}. All over the paper (g n ) n 1 is a sequence of i.i.d. random matrices of the same probability law µ on M (d, R). Denote by Γ µ := [supp µ] the smallest closed subsemigroup of M (d, R) generated by supp µ, the support of µ. For any g

2 . 3 . 3 . 2 . 2 .

 23322 Theorem Assume either conditions M2, M3 for invertible matrices, or conditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s ∈ I • µ and q = Λ (s). Then, we have, as n → ∞, uniformly in |l| 1 √ n and f, x ∈ S,

.3. 7 )

 7 Moreover, for positive matrices, under conditions M4, M6, the constant c > 0 in(3.3.6) and (3.3.7) can be sufficiently large (independent of the dimension d -1 of the projective space S = S d-1 + ).

Proposition 3 . 3 . 5 .

 335 Assume either conditions M2, M3 for invertible matrices, or conditions M5, M6 for positive matrices. Then, there exist constants c > 0 and s 0 > 0 such that uniformly in s ∈ (-s 0 , 0], the statements (3.3.6) and (3.3.7) are valid.

Proposition 3 .

 3 4.3.

Re

  -ty ψ(y)dy + o(1) . (3.4.4) Using (3.4.4) with ϕ = r s and ψ = ψ s , we obtain that, uniformly in x ∈ S and |l|

Lemma 3 . 5 . 1 .a 2 , 2 n a 1 , 1 n= 0 ,

 35122110 Let s ∈ I • µ . Under condition M3, with the above notation, we have lim n→∞ Q s -a.s. and lim n→∞ k n e 1 = Z s , Q s -a.s., (3.5.1) and for any x ∈ P d-1 ,

.5. 3 )

 3 The statement (3.5.2) follows from the identity (3.5.3) and the fact thatM T n = a 1,1n . Taking into account of Lemma 3.5.3, we see that the assertions (3.5.1) and (3.5.2) remain valid with the measure Q s replaced by Q x s .

Lemma 3 . 5 . 4 .

 354 these notation, we have the following: Let s ∈ I • µ . Under condition M3, for any x ∈ P d-1 ,

Proposition 3 . 5 . 7 .

 357 Assume condition M3. Let s ∈ I • µ . Then, there exist constants c, C > 0 such that uniformly in x ∈ P d-1 and n 1,

Proof of Propositions 3 . 3 .4 and 3 . 5 . 7

 33357 With the results established in Sections 3.5.1 and 3.5.1, we are well equipped to prove Propositions 3.3.4 and 3.5.7 for invertible matrices.Proof of Proposition 3.3.4 for invertible matrices. Since r s is bounded away from infinity and 0 uniformly on P d-1 , it suffices to establish (3.3.6) and (3.3.7) for the stationary measure π s .Define the function ρ : GL(d, R) × P d-1 → R as follows: for g ∈ GL(d, R) and x

.5. 21 )

 21 where the constants C 1 and C 2 are given in step 1. This proves the assertion (3.3.7). It remains to show(3.3.6). For n 1, denote B f,n := {x ∈ S d-1

.6. 4 )

 4 For any n 1 and f ∈ S, set B f,n := {x ∈ P d-1 : e -ε(n+1) | f, x | e -εn }. In an analogous way as in(3.5.22), taking a constant c ∈ (0, c 1 /ε) with c 1 and ε given in (3.6.4), we deduce from (3.6.4) that, uniformly in f ∈ S and s ∈ (-s 0 , 0],S 1 | f, x | c π s (dx) e εcn 0 + ∞ n=n 0 e εc(n+1) e -c 1 n < +∞.This ends the proof of Proposition 3.3.5.

1 √n

 1 and f, x ∈ S, as n → ∞, A n,2 c s √ 2πn σ s e nhs(l)-sδMn → 0. (3.7.4) The remaining part of the proof is devoted to establishing upper and lower bounds for the first term A n,1 . Upper bound for A n,1 . On the event {Y f,x n ∈ I k }, we have Y f,x n + δ(k -1) ∈ (0, δ]. With the notation ψ + δ (y) = sup y ∈B δ (y) ψ(y ), we get

.7. 18 )e

 18 By the Lebesgue convergence theorem, from (3.7.18) we deduce that lim -sδ(k-1) π s (ϕr-1 s )1 {log | f,• |∈I k,ε 1 } = 0. (3.7.19) Combining (3.7.13)-(3.7.19

.7. 34 )

 34 Denote l n,k = l + δ(k-1) n . For each fixed k, uniformly in |l| 1 √

.7. 38 )

 38 Combining (3.7.33)-(3.7.36) and (3.7.38), letting n → ∞, ε 1 → 0, δ → 0, ε → 0, and noting that C ρ (ε) → 0 as ε → 0, we obtain the upper bound: uniformly in f, x ∈ S d-1 s ϕ(x)r -1 s (x)π s (dx) lim sup ε→0 R sup y ∈Bε(y)e -sy ψ(y )dy.

  1) (4.1.7) into (4.1.6) allows us to obtain the Berry-Esseen bound (4.1.4) with ϕ = 1: after some straightforward calculations, it reduces to showing that, with T = c √ n,

  y)|, (4.1.10) where b > 0 is a fixed sufficiently large constant, C - r and C + r are semicircles given by C - r = {z ∈ C : |z| = r, z < 0} and C + r = {z ∈ C : |z| = r, z > 0}; see Section 4.4 for details. Use Cauchy's integral theorem enables us to establish (4.1.10) and also to give the estimation of the integrals therein.

Theorem 4 . 2 . 1 .

 421 Assume either conditions C1 and C2 for invertible matrices, or conditions C1, C3 and C4 for positive matrices. Then, there exists a constant C > 0 such that for all n 1, x ∈ S, y ∈ R and ϕ ∈ B γ ,

Remark 4 . 3 . 2 .

 432 Define the conjugate transfer operator P * z by

  y) = I 1,m + I 2,m + I 3,m . (4.3.7) We then control each of the three terms I 1,m , I 2,m , I 3,m . Control of I 1,m . Since for any a, b ∈ C, m ∈ N and 0 < γ < 1, |a m -b m | 2m max{|a| m-γ , |b| m-γ }|a -b| γ , (4.3.8)

.3. 12 )

 12 Control of I 3,m . Since ϕ ∈ B γ and d(g•x, g•y) d(x, y) for any g ∈ Γ µ , we get ∞ m=0 |θ| m m! I 3,m ϕ γ E e (|θ|+| z|+2γ) log N (g 1 ) .

Lemma 4 . 3 . 3 .

 433 Assume the conditions of Proposition 4.3.1. Let s ∈ (-η, η) where η is small. If ϕ Q s ϕ for some real-valued ϕ ∈ C(S), then ϕ(x) = sup y∈S ϕ(y) for any x ∈ V (Γ µ ).

Proposition 4 . 3 . 4 .

 434 Assume the conditions of Proposition 4.3.1. Then there exists η > 0 such that for any s ∈ (-η, η) and n 1, we have

3 . 1 ;

 31 (b) Π s N s = N s Π s = 0, and for each k ∈ N, there exist constants C k > 0 and a ∈ (0, 1) such that sup s∈(-η,η) d k ds k N n s Bγ →Bγ C k a n . (4.3.17)

.3. 35 )

 35 where r z , ν z and L z are given in Proposition 4.3.1. In addition, we have:(a) for fixed s, the mappings z → Π s,z : B δ (0) → L(B γ , B γ ), z → N s,z : B δ (0) → L(B γ , B γ )and z → λ s,z : B δ (0) → C are analytic, (b) for fixed s and z, Π s,z is a rank-one projection with Π s,0 (ϕ)(x) = π s (ϕ) for any ϕ ∈ B γ and x ∈ S, and Π s,z N s,z = N s,z Π s,z = 0, (c) for k ∈ N, there exist 0 < a < 1 and C k > 0 such that sup s∈(-η,η) sup z∈B δ (0)

Lemma 4 . 3 . 11 .

 4311 Assume the conditions of Proposition 4.3.1. Then the function b s,ϕ is well-defined, b s,ϕ ∈ B γ and b s,ϕ (x) = dΠ s,z dz z=0 ϕ(x), x ∈ S. (4.3.39)

Proposition 4 . 3 . 14 . 1 n

 43141 Assume the conditions of Proposition 4.3.1. Then, there exists η > 0 such that for any s ∈ (-η, η) and x ∈ S, lim n→∞ log |G n x| = Λ (s), Q s -a.s.. Proof. Taking ϕ = 1 in (4.3.41) leads to lim n→∞ 1 n E Qs log |G n x| = Λ (s). (4.3.45) Let Ω = M (d, R) N * and Ω = S × Ω. Following [50, Theorem 3.10], define the shift operator θ on Ω by θ(x, ω) = (g 1 •x, θω), where ω ∈ Ω and θ is the shift operator on Ω. For any x ∈ S and ω

Lemma 4 . 3 . 16 .

 4316 Assume the conditions of Proposition 4.3.1. Then the functions Λ and κ are convex on (-η, η) for η > 0 small enough. Moreover, Λ and κ are strictly convex for invertible matrices under the given conditions, and for positive matrices under the additional condition C5.

.3. 48 )

 48 Integrating both sides of the equation (4.3.48) w.r.t. µ gives c(x) = κ(s 1 )rs 1 (x)

ρ 1 2π

 1 , the function ρ T is bounded by T /2π. The proof of Proposition 4.4.1 consists in establishing first an upper bound and then a lower bound.

  y)|. (4.4.11) Combining (4.4.10) and (4.4.11), we conclude the proof of Proposition 4.4.1.

.5. 3 )

 3 Theorems 4.2.1 and 4.2.2 follow from the above theorems taking s = 0 and recalling the fact that Λ (0) = λ, σ 0 = σ and b 0,ϕ = b ϕ .

.5. 9 )

 9 By the formula (4.3.39) and the bound (4.3.36), we get that uniformly in ϕ ∈ B γ , sup s∈(-η,η) sup x∈S |b s,ϕ (x)| C ϕ γ . (4.5.10)

Lemma 4 . 5 . 4 .

 454 Let f be an analytic function on the open convex domain D ⊆ C. Then for any z 1 , z 2 ∈ D, and n 1,

Lemma 4 . 5 . 5 .

 455 Let C - r be defined by (4.4.2) with r = δ 1

.5. 23 ) 1 √

 231 The main contribution to the integral in(4.5.23) is given by the saddle point z = iy which is the solution of the equation d dz (-z 2 2 + izy) = 0. Denote by D - 2r = {z ∈ C : |z| < 2r, z < 0} the domain on analyticity of h 1 , where r = δ 1 √ n. Set y n = min{-y, δ 1 saddle point iy belongs to D - 2r . By Cauchy's integral theorem, we change the integration in (4.5.23) to a rectangular path inside the domain on analyticity D - 2r which passes through the saddle point. When y < -δ n is large, the saddle point iy is outside the domain D - 2r . In this case we choose a rectangular path inside D - 2r which passes through the point -iy n = -iδ 1 √ n. Note that π s (ϕ) is bounded by c 1 ϕ ∞ uniformly in s ∈ (-η, η) and ϕ ∈ B γ . Since the function h 1 has an analytic extension on the domain D - 2r with r = δ 1

.6. 2 )

 2 By Proposition 4.3.1, the function Λ is analytic and hence for s ∈ (-η, η), Λ(s) = ∞ k=1 γ k k! s k , where γ k = Λ (k) (0). For any y > 1 with y = o( √ n), consider the equation √ n[Λ (s) -Λ (0)] = σ 0 y. (4.6.3)

.1. 3 )

 3 Our result(5.1.3) is clearly a refinement of (5.1.2) by giving the rate of convergence. In fact a more general version of the Berry-Esseen bound with a target function is given in Theorem 5.2.1.The second way is to study the relative error. Along this line we prove the following Cramér type moderate deviation expansion: uniformly in y ∈ [0, o(

1 . 3 )

 13 and (5.1.4) are based on the recent results established in[START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] about the Berry-Esseen bound and the Cramér type moderate deviation expansion for the norm cocyle log |G n x| and on a comparison between G n and |G n x| (Lemma 5.3.1), where x is a vector in R d with strictly positive components.

Corollary 5 . 2 . 4 .

 524 Assume conditions H1, H2 and H4. Then, for any real-valued function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn n → 0 and bn √ n → ∞, we have, uniformly in x ∈ K,

Corollary 5 . 2 . 6 .

 526 Assume conditions H1, H3 and H4. Then, for any real-valued function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn n → 0 and bn √ n → ∞, we have

Lemma 5 . 3 . 1 .

 531 Under condition H2 (i), for any x ∈ (S d-1 + ) • , we have τ (x) := inf g∈Γµ |gx| g > 0.

.2. 8 )Remark 6 . 2 . 5 .

 8625 where B • and B are respectively the interior and the closure of B. Assume conditions L1 and L2. LetΓ µ,1 = {|det(g)| -1/d g : g ∈ Γ µ }be the set of elements of Γ µ normalized to have determinant 1.

Lemma 6 . 4 . 1 .

 641 Assume conditions L1, L2 and L3. Then, for any non-negative function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in x

  circumvent this, according to the values of log |f (X e j n )|, we split the interval (-∞, 0] into equal pieces I k := (-δk, -δ(k -1)], k ∈ N, for some small constant δ > 0. To deal with each piece I k , we first define the transfer operator of the Markov chain (X e j n ) n 1 as follows: for any z ∈ C with |z| small enough, and any continuous function ϕ on the projective space P 1 , P z ϕ(e j ) = e z log |g 1 e j | ϕ(X e j 1 )µ(dg 1 ).

n

  , log |G n e j |) with a target function on X e j n . To patch up all the pieces I k , k ∈ N, of central importance is to establish the Hölder regularity of the stationary measure π s of the Markov chain X e j n : there exist constants c, C > 0 such that for any 0 < t < 1,π s ({x ∈ P 1 : | f, x | t}) Ct c .We refer to Theorem 7.4.1 for details.

P 1

 1 Γµ ϕ(g 1 •x)µ(dg 1 )ν(dx) = P 1 ϕ(x)ν(dx) := ν(ϕ). (7.2.2)Now we state the Cramér type moderate deviation expansion for the entry G i,j n , and more generally for the scalar product f, G n x , where f, x ∈ P 1 . Theorem 7.2.1. Assume conditions B1 and B2. Then, we have, uniformly in f, x ∈ P 1 and y ∈ [0, o(

Theorem 7 . 2 . 2 . 1 -n-y 3 √Corollary 7 . 2 . 3 . 3 )

 722137233 Assume conditions B1 and B2. Then, we have, uniformly in f, x ∈P 1 , y ∈ [0, o( √ n)] and ϕ ∈ B γ , E ϕ(X x n )1 {log | f,Gnx |-nλ √ nσy} ) ν(ϕ) + ϕ γ o(1) , E ϕ(X x n )1 {log | f,Gnx |-nλ -√ nσy} Φ(-y) = e n ζ(-y √ n ) ν(ϕ) + ϕ γ o(1) .In particular, with ϕ = 1, Theorem 7.2.2 implies Theorem 7.2.1. Theorem 7.2.2 clearly implies the following moderate deviation principle for the couple (X x n , log | f, G n x |) with a target function ϕ on the Markov chain X x n . Assume conditions B1 and B2. Let (b n ) n 1 be a positive sequence satisfying bn n → 0 and bn √ n → ∞. Then, for any Borel set B ⊆ R and for any real-valued function ϕ ∈ B γ satisfying ν(ϕ) > 0, we have, uniformly in f, x ∈ P 1 , where B • and B are respectively the interior and the closure of B.

ϕ ∞ := sup x∈P 1 |ϕ

 1 (x)|, ϕ γ := ϕ ∞ + sup x,y∈P 1 |ϕ(x) -ϕ(y)| d γ (x, y) , and consider the Banach space B γ := {ϕ ∈ C(P 1 ) : ϕ γ < ∞}. We write B γ for the dual space of B γ . Denote by L(B γ , B γ ) the set of all bounded linear operators from B γ to B γ equipped with the operator norm • Bγ →Bγ . For z ∈ C with the absolute value of the real part | z| small enough, we define the transfer operator P z as follows: for any ϕ ∈ C(P 1 ), P z ϕ(x) = Γµ e z log |g 1 x| ϕ(g 1 •x)µ(dg 1 ), x ∈ P 1 . (7.3.1)

Proposition 7 . 3 . 1 .

 731 for the proof. Throughout this paper let B η (0) := {z ∈ C : |z| < η} be the open disc with center 0 and radius η > 0 in the complex plane C. Assume conditions B1 and B2. Then, there exists a constant η > 0 such that for any z ∈ B η (0), we haveP n z = κ n (z)ν z ⊗ r z + L n z , n 1, (7.3.2)wherez → κ(z) ∈ C, z → r z ∈ B γ , z → ν z ∈ B γ , z → L z ∈ L(B γ , B γ )are analytic mappings which satisfy, for any z ∈ B η (0), (a) the operator M z := ν z ⊗ r z is the rank one projection on B γ , i.e. M z ϕ = ν z (ϕ)r z for any ϕ ∈ B γ ;(b) M z L z = L z M z = 0, P z r z = κ(z)r z with ν(r z ) = 1,and ν z P z = κ(z)ν z ; (c) κ(0) = 1, r 0 = 1, ν 0 = ν with ν defined by (7.2.2), and κ(z) and r z are strictly positive for z ∈ (-η, η); (d) for any k ∈ N, there exist 0 < a 1 < a 2 < 1 such that |κ(z)| > 1 -a 1 and d k dz k L n z Bγ →Bγ c(1 -a 2 ) n , uniformly in z ∈ B η (0).

Proposition 7 . 3 . 2 .

 732 Assume conditions B1 and B2. Then, there exist constants η, δ > 0 such that for any s ∈ (-η, η) and z ∈ B δ (0),R n s,z = λ n s,z Π s,z + N n s,z , with λ s,z = e Λ(s+z)-Λ(s)-Λ (s)z , (7.3.6)where, for fixed s, the mappings z → Π s,z :B δ (0) → L(B γ , B γ ), z → N s,z : B δ (0) → L(B γ , B γ) and z → λ s,z : B δ (0) → R are analytic. In addition, for fixed s and z, the operator Π s,z is a rank-one projection with Π s,0 (ϕ)(x) = π s (ϕ) for any ϕ ∈ B γ and x ∈ P 1 , and Π s,z N s,z = N s,z Π s,z = 0. Moreover, for any k ∈ N, there exist constants c > 0 and 0 < a < 1 such that sup

Lemma 7 . 3 . 3 .Lemma 7 . 3 . 4 .

 733734 Assume conditions B1 and B2. Then for any fixed δ > 0, there exist constants 0 < η, α < 1 such thatsup s∈(-η,η) sup |t|>δ (P s+it ) < 1 -α.This result, together with Proposition 7.3.2, allows to deduce the following: Assume conditions B1 and B2. Then for any fixed δ > 0, there exist constants 0 < η, α < 1 such that sup s∈(-η,η) sup |t|>δ (R s,it ) < 1 -α.

sup f ∈P 1 P 1 1Theorem 7 . 4 . 1 . 2 )∈P 1 π

 174121 | f, x | α ν(dx) < +∞. (7.4.1) Using (7.4.1) and the spectral gap properties of the transfer operator P z shown in Proposition 7.3.1, the following result gives the Hölder regularity of the stationary measure π s uniformly with respect to s in a small neighborhood of 0. Assume conditions B1 and B2. Then, there exist constants η, α > 0 such that sup s∈(-η,η)sup f ∈P 1 P 1 1 | f, x | α π s (dx) < +∞. (7.4.In particular, there exist constants c, C > 0 such that for any 0 < t < 1, we havesup s∈(-η,η) sup f s {x ∈ P 1 : | f, x | t} Ct c . (7.4.3)Proof.Step 1. We choose a small enough constant η > 0 and we show that for any ε > 0, there exist c 0 > 0 and n 0 ∈ N such that for n n 0 , sup s∈(-η,η)sup f,x∈P 1 Q x s | f, X x n | e -εne -c 0 n .(7.4.4) 

c κ n (s) E|G n x| 2s 1/ 2 P 2 . ( 7 . 4 . 5 )

 22745 | f, X x n | e -εn 1/It was shown in[START_REF] Benoist | Random walks on reductive groups[END_REF] Proposition 14.3] that there exist c 1 > 0 and n 0 ∈ N, such that for n n 0 , uniformly in f, x ∈ P 1 ,P | f, X x n | e -εn e -c 1 n . (7.4.6)Let us now give a control of E|G n x| 2s . By Proposition 7.3.1, we have E|G n x| 2s = P n 2s 1(x) = κ n (2s)(M 2s 1)(x) + (L n 2s 1)(x). Using Proposition 7.3.1 again, we get that uniformly in s ∈ (-η, η) and x ∈ P 1 , the first term on the right-hand side of the above equality is bounded by cκ n (2s), and the second term is bounded by ce -cn . Hence we have E|G n x| 2s

sup x∈P 1 1 1 1

 11 κ n (s) E|G n x| 2s 1/2 e c 2 n ,where the constant c 2 ∈ (0, c 1 /2). This, together with (7.4.5)-(7.4.6), concludes the proof of the desired bound (7.4.4).Step 2. From Proposition 7.3.1 and the construction of Q x s , one can verify that for any x ∈ P 1 and n 1,π s = (Q x s ) * n * π s .Combining this with (7.4.4), we get that, uniformly in s ∈ (-η, η) and f ∈ P 1 ,π s {x : | f, x | e -εn } = P 1 (Q x s ) * n | f, X x n | e -εn π s (dx) e -c 0 n . (7.4.7)For any n ∈ N andf ∈ P 1 , denote B f,n := {x ∈ P 1 : e -ε(n+1) | f, x | e -εn }. Choosing α ∈ (0, c 0 /ε), we deduce from (7.4.7) that, uniformly in s ∈ (-η, η) and f ∈ P 1 , P | f, x | α π s (dx) = {x∈P 1 :| f,x |>e -εn 0 } 1 | f, x | α π s (dx) + ∞ n=n 0 B f,n 1 | f, x | α π s (dx)e εn 0 α + ∞ n=n 0 e εα(n+1) e -c 0 n < +∞. This ends the proof of Theorem 7.4.1.

For 0

 0 < ε < 1 and u ∈ R, set B ε (u) = {u ∈ R : |u -u| ε}. With this notation, define ψ + s,ε (u) = sup u ∈Bε(u) ψ s (u ), ψ - s,ε (u) = inf u ∈Bε(u)ψ s (u ), u ∈ R. (7.5.1)

For 1 γ 3 +

 13 simplicity we denote K s (z) = log λ s,z and we choose the branch where K s (0) = 0. It follows from(7.3.6) and Taylor's formula that for any z ∈ C with |z| < δ,K s (z) = ∞ k=2 Λ (k) (s) k! z k, where Λ(s) = log κ(s). (7.5.6) Since γ 2 = σ 2 > 0, we deduce that for any y > 1 and sufficiently large n, the equation (7.5.4) has a unique solution given by s = • • • . (7.5.7)

3 . 4 ,

 34 there exist constants c, C > 0 such that sup ϕ(x)| Ce -cn ϕ γ .(7.5.8) From (7.5.2) and the fact that ρ ε 2 is a density function on R, we see thatsup t∈R | ψ - s,ε (t)| ψ - s,ε (0) = 1 s e -2εs , sup t∈R | ρ ε 2 (t)| ρ ε 2 (0) = 1.(7.5.9) Combining (7.5.8) and the first inequality in (7.5.9), and taking into account that the function ρ ε 2 is integrable on R, we obtain|I 1 (n)| Ce -cn √ n e nhs(l) e -2εs ϕ γ Ce -cn ϕ γ . (7.5.10) Estimate of I 2 (n). Using the bound (7.3.7), we have that uniformly in s ∈ (0, η), t ∈ [-δ, δ] and x ∈ P 1 , |N n s,it (ϕ)(x)| N n s,it Bγ →Bγ ϕ γ Ce -cn ϕ γ .

|I 2 (l 3 +

 23 n)| Ce -cn √ n e nhs(l) e -2εs ϕ γ Ce -cn ϕ γ .(7.5.11) Estimate of I 3 (n). The saddle point method plays a crucial role in deriving a precise asymptotic expansion for the integral I 3 (n). For brevity, we define the function Ψ s,x as follows: for z ∈ C with |z| < 2δ,Ψ s,x (z) := Π s,iz (ϕ)(x) ψ - s,ε (z) ρ ε 2 (z), (7.5.12)which is analytic in the open disc B 2δ (0) = {z ∈ C : |z| < 2δ} due to the analyticity of the mappings z → Π s,iz , z → ψ - s,ε (z) and z → ρ ε 2 (z). Recalling that K s (z) = log λ s,z , making a change of variable z = it, we rewrite I 3 (n) asI 3 (n) = -isσ s √ n e nhs(l) iδ -iδe n(Ks(z)-zl) Ψ s,x (-iz)dz.(7.5.13) Consider the saddle point equation:K s (z) -l = 0, that is, ∞ k=2 γ s,k z k-1 (k -1)! = l, where γ s,k = Λ (k) (s). (7.5.14) This equation has a unique solution z s which is called the saddle point given by z s = z s (l) • • • . (7.5.15)

  5.3), by simple calculations we see that| ψ - s,ε (-iz)| c δ , uniformly in s ∈ (0, η) and z ∈ L 1 ∪ L 3 . Since ρ ε 2 is analytic in a small neighbourhood of 0, we have | ρ ε 2 (-iz)| c for all z ∈ L 1 ∪ L 3 .

2 e

 2 n(Ks(z)-zl) Ψ s,x (-iz)dz= sσ s √ n e nhs(l) δ -δ e n[Ks(zs+it)-(zs+it)l] Ψ s,x (t -iz s )dt = I 31 (n) + I 32 (n),where we assume n 3 andI 31 (n) = sσ s √ n e nhs(l) n -1 2 log n |t| δ e n[Ks(zs+it)-(zs+it)l] Ψ s,x (t -iz s )dt, I 32 (n) = sσ s √ n e nhs(l)|t|<n -1 2 log n

ReLemma 7 . 6 . 2 .

 762 -itu φ + s,ε (u)du = 2i cos(εt) t + e iεt 1 -s -it , t ∈ R. (7.5.33) This function can be extended analytically to a small neighborhood of 0 in the complex plane: for any z ∈ C with |z| < s,φ + s,ε (z) = 2i cos(εz) z + e iεz 1 -s -iz . (7.5.34)In the sequel, for any fixed y > 1, we choose s < 0 satisfying the equation:Λ (s) -Λ (0) = -σy √ n . (7.5.35) Under conditions B1 and B2, for all ε > 0, there exist c > 0 and k 0 ∈ N, such that for all n k k 0 and f, x ∈ P 1 , P | f, X x n | e -εk ce -ck .

4 )

 4 Take k = [C 1 log n] in (7.6.3) and denote y 1 = y + C 1 log n σ √ n , where C 1 > 0 is a fixed sufficiently large constant. Applying (7.6.1), there exists a constant c > 0 such that uniformly in f, x∈ P d-1 , y ∈ [0, √ log n] and ϕ ∈ B γ , E ϕ(X x n )1 {log |Gnx|-nλ √ nσy+εk} 1 -Φ(y 1 ) = ν(ϕ) -c ϕ γ y 3 1 + 1 √ n . (7.6.5)for the norm cocycle log |G n x|, the upper bound has been shown in (7.6.2), hence it remains to establish the lower bound.From the change of measure formula (7.3.3) and the fact λ = Λ (0), we getA n := E ϕ(X x n )1 {log | f,Gnx |-nΛ (0) √ nσy} = r s (x)κ n (s)E Q x s (ϕr -1 s )(X x n )e -s log |Gnx| 1 {log | f,Gnx | nΛ (0)+ √ nσy} . (7.6.7) Denote T x n = log |G n x| -nΛ (s) and observing that log | f, G n x | = log |G n x| + log |f (X x n )|.Choosing s > 0 satisfying the equation (7.5.4), it follows from (7.6.7) thatA n = r s (x)e -n[sΛ (s)-Λ(s)] E Q x s (ϕr -1 s )(X x n )e -sT x n 1 {T x n +log |f (X x n )| 0} .Using (7.5.4), one can verify that sΛ (s) -Λ(s) = y

For 2 2 + y 3 √0} 1 2 2 + y 3 √

 23123 brevity, set Y f,x n := log |f (X x n )| and M n := [log n], where [a] denotes the integer part of a real number a. For fixed 0 < δ < 1, denoteI k := (-δk, -δ(k -1)], k ∈ N.Since the functions ϕ and r s are positive, we haveA n r s (x)e -y s (ϕr -1 s )(X x n )e -sT x n 1 {T x n +Y f,x n {Y f,x n ∈I k } r s (x)e -y s (ϕr -1 s )(X x n )1 {Y f,x n ∈I k } e -sT x n 1 {T x n -δk 0} . Introduce ρε 1 (x) := 1 ε 1 (1 -|x| ε 1 ) for x ∈ [-ε 1 , ε 1 ], and ρε 1 (x) = 0 otherwise. For anyk ∈ N, denoting χ k (x) := 1 {x∈I k } and χ - k,ε 1 (x) = inf x ∈Bε 1 (x) χ k (x ), one can verify that χ - k,2ε 1 (x) (χ - k,ε 1 * ρε 1 )(x) χ k (x), x ∈ R. (7.6.9)For short, denote χk (x) := (χ - k,ε 1 * ρε 1 )(x), x ∈ P 1 , which is Hölder continuous. Let ψ s (u) = e -su 1 {u 0} , u ∈ R, and ϕ f s,k,ε 1 (x) = (ϕr -1 s )(x) χk (log | f, x |), x ∈ P 1 .

y 2 2

 2 [1 -Φ(y)] -π s (ϕ f s,k,ε 1 ) 2πy s nΛ (s) -c √ n ϕ f s,k,ε 1 γ -cy √ n ϕ f s,k,ε 1 ∞ . (7.6.13) Note that Λ (s) = σ[1 + O(s)]. From (7.5.7), we have y sσ √ n = 1 + O(s), and thus y s √ nΛ (s) = 1+O(s). Note also that |r s (x)-1| = O(s), uniformly in x ∈ P 1 . Therefore, taking the summation with respect to k ∈ [1, M n ] in (7.6.13), we get

e

  -sδk π s (ϕ f s,k,ε 1 ) = Mn k=1 e -sδk P 1 χk (log | f, x |)ϕ(x)π s (dx) 1 (log | f, x |)ϕ(x)π s (dx).

P 1 1P 1 1P 1 1

 111 {log | f,• |∈I k } (x)ϕ(x)π s (dx), {log | f,• |∈I k,ε 1 } (x)ϕ(x)π s (dx). Control of B n,1 . It is easy to see that B n,1 = {log | f,• |∈I k } (x)ϕ(x)π s (dx) -∞ k=Mn+1 e -sδk P 1 1 {log | f,• |∈I k } (x)ϕ(x)π s (dx) = π s (ϕ| f, • | s ) -∞ k=Mn+1 e -sδk P 1 1 {log | f,• |∈I k } (x)ϕ(x)π s (dx).

  Observe thatπ s ({x : log | f, x | ∈ I k,ε 1 }) = π s x : | f, x | ∈ (e -δk , e -δk+2ε 1 ] + π s x : | f, x | ∈ (e -δ(k-1)-2ε 1 , e -δ(k-1) ] .(7.6.17)Notice that there existf 1 = f 1 (δ, k, ε) ∈ P 1 and f 2 = f 2 (δ, k, ε) ∈ P 1 such that π s x : | f, x | ∈ (e -δk , e -δk+2ε 1 ] π s x : | f 1 , x | ∈ (0, e -δk+2ε 1 -e -δk ] + π s x : | f 2 , x | ∈ (0, e -δk+2ε1 -e -δk ] . (7.6.18)From Theorem 7.4.1, we get that there exists a constant c > 0 such that, uniformly inf 1 ∈ P 1 , π s x : | f 1 , x | ∈ (0, e -δk+2ε 1 -e -δk ]C(e -δk+2ε 1 -e -δk ) c= Ce -cδk (e 2ε 1 -1) c .

π

  s x : | f, x | ∈ (e -δk , e -δk+2ε 1 ] C(e 2ε 1 -1) c . (7.6.19) 

  (1.3.28) is well defined, belongs to B γ and has an equivalent expression (4.3.39) in terms of derivative of the projection operator Π 0,z , see Proposition 4.3.8.

with the target function ϕ = 1 under the polynomial moments is still an open problem. The following result gives an Edgeworth expansion for log |G n x| with the target function ϕ on X x n . To formulate the result, we introduce the necessary notation. It is shown in Lemma 4.3.11 that for any ϕ ∈ B γ , the function b ϕ (x) = lim n→∞ E (log |G n x| -nλ)ϕ(X x n ) , x ∈ S Theorem 1.3.17. Assume either conditions A2, A3 for invertible matrices, or conditions A2, A4, A8 for positive matrices. Then, as n → ∞, uniformly in x ∈ S, y ∈ R and ϕ ∈ B γ ,

  3.18 clearly implies the following moderate deviation principle for log |G n x| with target function on X x n : for any Borel set B ⊆ R, and positive sequence (b n ) n 1 satisfying bn n → 0 and

	bn

  .3.31) where B • and B are respectively the interior and the closure of B. With ϕ = 1, our result (1.3.31) implies the moderate deviation principle established in [10, Proposition 12.12] for invertible matrices. The moderate deviation principle (1.3.31) with a target function ϕ on X x n is new for both invertible matrices and positive matrices. Note that in (1.3.31) the function ϕ is not necessarily positive.

  It can be easily checked that in Theorem 1.3.19, the operator norm • can be replaced by any matrix norm since all matrix norms are equivalent. It would be interesting to show that (1.3.32) holds uniformly in x ∈ S d-1 Note that Theorem 1.3.19 is proved under the exponential moment condition A2. It is not clear how to establish Theorem 1.3.19 under the polynomial moment condition on the matrix law µ.

	sup y∈R	sup x∈K	E ϕ(X x n )1 log Gn -nλ σ √ n	y	-ν(ϕ)Φ(y)	C √ n	ϕ γ .	(1.3.32)

which is the interior of the projective space S d-1 + . Theorem 1.3.19. Assume conditions A2, A4 and A7. Then, for any compact set K ⊂ (S d-1 + ) • , we have, uniformly in ϕ ∈ B γ , + instead of x ∈ K.

  and the Cramér series ζ is defined by(1.3.30).

	Theorem 1.3.21. Assume conditions A2, A4 and A7. Then, for any compact set

  .3.36) Like in Theorem 1.3.19, it can also be checked that in Theorem 1.3.21 the operator norm • can be replaced by any matrix norm. Note that condition A5 is not required in Theorem 1.3.21. Theorem 1.3.21 is new even for ϕ = 1 and the expansions (1.3.35) and (1.3.36) remain valid even when ν(ϕ) = 0. As a particular case, Theorem 1.3.21 implies the following moderate deviation principle for log G n with a target function ϕ on the Markov chain X x n .

Corollary 1.3.22. Assume conditions A2, A4 and A7. Then, for any real-valued function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn n → 0 and bn √ n → ∞, we have, uniformly in x ∈ K,

Corollary 1.3.24. Assume conditions A2, A5 and A7. Then

  , for any real-valued function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and any positive sequence (b n ) n 1 satisfying bn n → 0 and bn

	√	n → ∞, we have
		.3.41)
	As a particular case of (1.3.38) and (1.3.39) with f = e i and x = e j , we get
	the Cramér type moderate deviation expansions for the entries G i,j n . The expansions
	(1.3.38)-(1.3.41) are all new even for ϕ = 1.
	From Theorem 1.3.23 we can get the moderate deviation principles with target
	functions for the scalar product f, G n x and the spectral radius ρ(G n ), just as we
	obtained (1.3.37) from Theorem 1.3.21.	

Moderate deviation principles for G n and ρ(G n ) of invertible matrices We

  first state moderate deviation principles for the operator norm G n and the spectral radius ρ(G n ).

	CHAPTER 1. INTRODUCTION
	and (1.3.43) should be of order O( 1 √ n ) instead of O( log n √ n ). However,
	the proofs seem to be delicate and new ideas and techniques are required.

Theorem 1.3.26. Assume conditions A2 and A3 for invertible

  

	matrices. Then, for
	any non-negative function ϕ ∈ B γ satisfying ν(ϕ) > 0, for any Borel set B ⊆ R and
	any positive sequence (b n ) n 1 satisfying bn √ n → ∞ and bn n → 0, we have, uniformly in
	x

  ). Its proof is based on the Cramér type moderate deviation expansions for the couple (X x n , log |G n x|) shown in Theorem 1.3.18, and on a delicate comparison between the operator norm G n and the vector norm |G n x| established in

	Theorem 1.3.28 is new even when ϕ = 1.

Corollary 1.3.31. Assume condition A2 and

  ) . that Γ µ is Zariski dense in SL 2 (R).

	Theorem 1.3.30 clearly implies the following moderate deviation principle for the
	couple (X x n , log | f, G n x |) with a target function ϕ on the Markov chain X x n . Let (b n ) n 1 be a positive sequence satisfying bn n → 0 and bn √ n → ∞.
	Then, for any Borel set B ⊆ R and for any real-valued function ϕ ∈ B γ satisfying
	ν(ϕ) > 0, we have, uniformly in f, x ∈ P 1 ,

. Chapter 2 Precise large deviation asymptotics for products of random matrices Abstract

  .3.48) where B • and B are respectively the interior and the closure of B. . Let (g n ) n 1 be a sequence of independent identically distributed d × d real random matrices with Lyapunov exponent λ. For any starting point x on the unit sphere in R d , we deal with the norm |G n x|, where G n := g n . . . g 1 . The goal of this paper is to establish precise asymptotics for large deviation probabilities P(log |G n x| n(q + l))

	The moderate deviation principle (1.3.48) is new even for ϕ = 1

  •, • and the Euclidean norm | • |. For d 1, let M (d, R) be the set of d × d matrices with entries in R equipped with the operator norm g = sup x∈S d-1 |gx|, for g ∈ M (d, R), where S d-1 = {x ∈ R d , |x| = 1} is the unit sphere.

  .2.1) which are bounded linear on C(S). Under condition P2 for invertible matrices, or condition P3 for positive matrices, the operator P s has a unique probability eigenmeasure ν s on S corresponding to the eigenvalue κ(s): P s ν s = κ(s)ν s . Similarly, the operator P * s has a unique probability eigenmeasure ν * s corresponding to the eigenvalue κ(s): P s ν s = κ(s)ν s , where P s ν s stands for the measure on S such that P s ν s (ϕ) = ν s (P s ϕ)

	for any ϕ ∈ C(S). Similarly, the operator P * s has a unique probability eigenmeasure
	ν * s corresponding to the eigenvalue κ(s): P * s ν * s = κ(s)ν * s , where P * s ν * s is defined in a
	similar way as P s ν s . Set, for x ∈ S,		
	r s (x) =	S	| x, y | s ν * s (dy), r * s (x) =	S	| x, y | s ν s (dy).
	Then, r s is the unique, up to a scaling constant, strictly positive eigenfunction of P s :
	P s r s = κ(s)r s ; similarly r * s is the unique, up to a scaling constant, strictly positive
	eigenfunction of P * s : P * s r * s = κ(s)r * s . We refer for details to Section 2.3.
	Below we shall also make use of normalized eigenfunction rs defined by rs (x) =
	rs(x) νs(rs) , x ∈ S, which is strictly positive and Hölder continuous on the projective space
	S, see Proposition 2.3.1.				

Theorem 2.2.2. Let s ∈ I •

  x n , log |G n x|) with target functions ϕ and ψ on X x n := G n •x and log |G n x|, respectively.

  2.1 and 2.2.3 to deduce large deviation principles for the matrix norm G n . Our first result concerns invertible matrices and the second one deals with positive matrices.

	Theorem 2.2.5. Assume the conditions of Theorem 2.2.1 for invertible matrices. Let
	q = Λ (s), where s ∈ I • µ . Then, for any positive sequence (l n ) n 1 satisfying lim n→∞ l n =
	0, we have, uniformly in |l| l n ,
	lim n→∞	1 n	log P log G n

  for invertible matrices.

	Proposition 2.3.1. Let s ∈ I µ . Assume either conditions P1, P2 for invertible
	matrices, or conditions P1, P3 for positive matrices. Then the spectral radii (P s )
	and (P * s ) are both equal to κ(s), and there exist a unique, up to a scaling constant,
	strictly positive Hölder continuous function r s and a unique probability measure ν s on
	S such that

  Hence, by Proposition 2.4.4, the function on the right hand side of (2.4.29) under the integral √

	2.4.29) into two parts: √ Lemma 2.4.1, it holds uniformly in |y| √ n and |l| n |y| ε and |y|> √ 1 √	n . For the first part, from

n that e nhs(l)-nhs(l+ y n ) → 1 as n → ∞. n |y| ε is dominated by Cρ ε 2 , which is integrable on R. For the second part |y|> √ n , since the density function has polynomial decay, i.e. ρ ε 2 (y) Cε 1+y 4 , |y| > √ n, we get that √ ne nhs(l) ρ ε 2 (y) Cε 1+|y| 3 , which is integrable on R. Consequently, we can interchange the limit as n → ∞ and the integral |y| ε , and then use Proposition 2.4.4 again with ϕ

  .4.30) as required. We conclude the proof of Theorem 2.2.1 by combining (2.4.26) and (2.4.30).

  Proof of Theorem 2.2.5. Since log |G n x| log G n and the function rs is strictly positive and uniformly bounded on P d-1 , applying Theorem 2.2.1 we get the lower bound: For the upper bound, since all matrix norms are equivalent, there exists a positive constant C which does not depend on the product G n such that log G n max 1 i d log |G n e i |+C, where (e i ) 1 i d is the canonical orthonormal basis in R Using Lemma 2.4.1, there exists a constant C s > 0 such that e n[Λ * (q+l-C/n)-Λ * (q+l)] C s , uniformly in |l| l n and n 1. Again by Theorem 2.2.1, we obtain the upper bound: We first prove the assertion (1). The proof consists of lower and upper bounds. Since log G n log |G n x|, using Theorem 2.2.1 and the fact that the function r s is strictly positive on S d-1 + , we deduce that there exists a constant c > 0 such that uniformly in |l| l n , • if and only if each component of the vector x is strictly positive. Recalling that Γ µ is the smallest closed semigroup generated by the support of the measure µ, it was shown in [16, Lemma 4.5] that for any fixed

	lim sup n→∞	sup |l| ln	1 n	log P(log G n	n(q + l)) -Λ * (q).
	This, together with (2.6.1), proves Theorem 2.2.5.
	Proof of Theorem 2.2.6. c < lim inf n→∞	√	n e nΛ
	lim inf n→∞	inf |l| ln	1 n	log P(log G n	n(q + l)) -Λ * (q).	(2.6.1)

d 

. From this inequality, we deduce that

P(log G n n(q + l)) d i=1 P log |G n e i | n q + l -C/n . * (q+l) P log G n n(q + l) .

It remains to prove the upper bound. Denote by (S d-1 + ) • the interior of the projective space S d-1

+ . In other words, x ∈ (S d-1 + )

  ϕ is a continuous function on P d-1 ; the conjugate transfer operator P * s is defined similarly: see (3.2.5). The operators P s and P * s have unique continuous strictly positive eigenfunctions r s and r * s on P d-1 and unique probability eigenmeasures ν s and ν * s , respectively, satisfying P s r s = κ(s)r s , P s ν s = κ(s)ν s , P *

	s r * s = κ(s)r * s and P * s ν * s = κ(s)ν * s . Denote σ s := Λ (s) > 0. For
	details see Section 3.3.1.

  The perturbation l as well as the explicit rate of convergence in(3.4.3) are important in the sequel. They play the crucial role to establish the Bahadur-Rao type large deviations for the entries G i,j n in Theorems 3.2.1 and 3.2.3. We end this section by giving a precise large deviation result for the norm cocycle log |G n x| under the changed measure Q x s . It is is deduced from [85, Theorem 2.2] and will be used in the proof of regularity of the stationary measure π s for positive matrices under conditions M5, M6 (see Proposition 3.3.4).

	1 √
	Theorem 3.4.4. Assume either conditions M2, M3 for invertible matrices, or con-
	ditions M1, M4, M6 (or conditions M1, M5, M6) for positive matrices. Let s ∈ I µ ,
	t ∈ I •

n and ϕ ∈ B γ .

  that the constant C 1 in Proposition 3.3.4 can be sufficiently large. Set for brevity J l,δ (ε 1 ) = (e -δk-2ε 1 , e -δk ]. One can verify that for the set {x ∈ S d-1

	+

.7.36) 

In order to show a relation similar to

(3.7.18)

, we have to make use of the Hölder regularity of the stationary measure π s established in Proposition 3.3.4 under conditions M4 and M6 for positive d × d matrices: the main distinct feature in this case is

1 Introduction 4.1.1 Background and objectives For

  is an arbitrary norm in R d and x ∈ R d is a starting point with |x| = 1. For both invertible matrices and positive matrices, under suitable conditions we prove a Berry-Esseen type theorem and an Edgeworth expansion for the couple (X x n , log |G n x|). These results are established using a brand new smoothing inequality on complex plane, the saddle point method and additional spectral gap properties of the transfer operator related to the Markov chain X x n . Cramér type moderate deviation expansions are derived for the couple (X x

	Chapter 4
	Berry-Esseen bound and precise
	3.8.4), using the Collatz-Wielandt formula (3.8.3) moderate deviations for products of and Theorem 3.2.4, one can verify the upper bound of (3.8.2). The proof of (3.8.2) is complete. random matrices

Abstract. Let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.)

d × d real random matrices. Set G n = g n g n-1 . . . g 1 and X x n = G n x/|G n x|, n 1, where | • | n , log |G n x|) with a target function ϕ on the Markov chain X x n .

4.any integer

d 2, denote by GL(d, R) the general linear group of d × d invertible matrices. Equip R d with any norm | • |, denote by P d-1 = {x ∈ R d , |x| = 1}/± the projective space in R d , and let g = sup x∈P d-1 |gx| be the operator norm for g ∈ GL(d, R). Let (g n ) n 1 be a sequence of i.i.d. d × d real random matrices of the same law µ on GL(d, R), and consider the product G n = g n g n-1 . . . g 1 and the process

  , log |G n x|) which describes completely the random walk (G n x) n 1 . We prove that, for any Hölder continuous function ϕ on P d-1 , uniformly in x ∈ P d-1 and y

	.1.2)
	where t → ζ(t) is the Cramér series of the logarithm of the eigenfunction related to the
	transfer operator of the Markov walk associated to the product of random matrices
	(see Section 4.2.3).
	It is useful to extend the moderate deviation expantion (4.1.2) for the couple
	(X x n

  It will be shown in Proposition 4.3.1 that there exist a measure ν s and a Hölder continuous function r s on S such that ν s P s = κ(s)ν s and P s r s = κ(s)r s ,

			(4.2.6)
	where κ(s) is the unique dominant eigenvalue of P s . Set Λ(s) = log κ(s). It is shown
	in Lemma 4.3.11 that for any ϕ ∈ B γ , the function	
	b ϕ (x) = lim n→∞	E (log |G n x| -nλ)ϕ(X x n ) , x ∈ S	(4.2.7)
	is well defined, belongs to B γ and has an equivalent expression (4.3.39) in terms of
	derivative of the projection operator Π 0,z , see Proposition 4.3.8.	
	Theorem 4.2.2. Assume either conditions C1 and C2 for invertible matrices, or
	conditions C1, C3 and C5 for positive matrices. Then, as n → ∞, uniformly in

x ∈ S, y ∈ R and ϕ ∈ B γ ,

  x n is new for both invertible matrices and positive matrices; (4.1.1) is new for positive matrices. Note that in (4.2.10) the function ϕ is not necessarily positive.

	-inf y∈B •	y 2 2σ 2 lim inf n→∞	n b 2 n	log E ϕ(X x n )1 { log |Gnx|-nλ bn	∈B}
		lim sup n→∞	n b 2 n	log E ϕ(X x n )1 { log |Gnx|-nλ bn	∈B}	-inf y∈ B y 2 2σ 2 ,	(4.2.10)

Theorem 4.2.3 clearly implies the following moderate deviation principle for log |G n x| with target function on X x n : for any Borel set B ⊆ R, and positive sequence (b n ) n 1 satisfying bn n → 0 and bn √ n → ∞, uniformly in x ∈ P d-1 , where B • and B are respectively the interior and the closure of B. In fact it is enough to show (4.2.10) only for the case where B is an interval, the result for general B can be established using Lemma 4.4 of Huang and Liu [58]. With ϕ = 1, (4.2.10) implies the moderate deviation principle (4.1.1) established in [10, Proposition 12.12] for invertible matrices. The moderate deviation principle (4.2.10) with target function on X

  .3.36) and (4.3.37) hold uniformity in s ∈ (-η, η). This plays a crucial role in establishing Theorem 4.2.3.

	Proof of Proposition 4.3.8. The proof is divided into three steps.
	Step 1. By Proposition 4.3.1,
	P n s+z (ϕr

s ) = κ n (s + z) ν s+z (ϕr s ) ν s+z (r s+z ) r s+z + L n s+z (ϕr s ). Substituting this into (4.3.31) shows (4.3.32), (4.3.33), (4.3.34) and (4.3.35).

  3.38) proves(4.3.37) with k = 0. The proof of (4.3.37) when k 1 can be carried out in the same way as in the case of k = 0. Bγ →Bγ < cr n . Assume the conditions of Proposition 4.3.7. For any compact set K ⊆ R\{0}, there exist a constant C K > 0 and small η > 0 such that for any n 1 and ϕ ∈ B γ , Proof. By Proposition 4.3.7, we have ρ(s 0 , t 0 ) (R s 0 +it 0 ) = (Q s 0 +it 0 ) < 1. Hence it follows that for any fixed s ∈ (-η, η) and t ∈ R\{0}, there exists a constant C(s, t) > 0 such that for any n 1 and ϕ ∈ B γ , we have sup

	Moreover, it holds that			
	lim sup	(P (t))	(P (s)).
		t→s	
	Proposition 4.3.10. sup s∈(-η,η)	sup t∈K	sup x∈S	|R n s,it ϕ(x)| e -nC K ϕ γ .

Proof of

Proposition 4.3.4

. The assertion is obtained from Proposition 4.3.8 taking z = 0.

We need the following lemma from [54, Lemma III.9]. Lemma 4.3.9. Let s ∈ R, δ > 0 and I s,δ = (s-δ, s+δ). Assume that t ∈ I s,δ → P (t) ∈ L(B γ , B γ ) is a continuous mapping. Let r > (P (s)). Then, there exist constants ε = ε(s) and c = c(s) > 0 such that sup t∈(s-ε,s+ε)

P n (t) x∈S |R n s,it ϕ(x)| e -nC(

s,t) ϕ γ . From (4.3.31) we see that the operator R s,it is continuous in s and t. By Lemma 4.3.9, it follows that there exist constants ε(s) > 0 and δ(t) > 0 such that sup s ∈(s-ε(s),s+ε(s)) sup t ∈(t-δ(t),t+δ(t)) sup x∈S |R n s ,it ϕ(x)| e -nC(s,t) ϕ γ .

  .3.40) Using the bounds (4.3.36) and (4.3.37), we find that the first term on the right-hand side of (4.3.40) belongs to B γ , and the second term converges to 0 exponentially fast as n → ∞. Hence, letting n → ∞ in (4.3.40), we obtain(4.3.39). This shows that the function b s,ϕ is well-defined and b s,ϕ ∈ B γ .

  Integrating both sides of this equation w.r.t. π s and using the fact that Π s,0 = π s , we find that By the Borel-Cantelli lemma, it suffices to show that for any ε > 0, s ∈ (-η, η) and x ∈ S, we have

	∞					
	Q x s	log |G n x| -nΛ (s)	nε < ∞.	(4.3.44)
	n=1					
						x n )
	= π s	dΠ s,z dz z=0	ϕ + π s	dN n s,z dz z=0	ϕ .	(4.3.42)
	Since Π 2					
		π s	dΠ s,z dz z=0	ϕ = 0.	(4.3.43)
	It follows from (4.3.37) that uniformly in ϕ ∈ B γ and s ∈ (-η, η), the second term
	on the right-hand side of (4.3.42) is bounded by C ϕ γ e -cn . Therefore, from (4.3.42)
	and (4.3.43) we obtain (4.3.41).				
	We now establish the strong laws of large numbers for log |G n x| under the measures
	Q x s and Q s , which are of independent interest.	

.3.41) Proof. We follow the proof of the previous lemma. Integrating both sides of the identity (4.3.40) w.r.t. π s , we get, for any ϕ ∈ B γ , E Qs (log |G n x| -nΛ (s))ϕ(X s,z ϕ = Π s,z ϕ, it follows that 2Π s,0 ( dΠs,z dz | z=0 ϕ) = dΠs,z dz | z=0 ϕ. Proposition 4.3.13. Assume the conditions of Proposition 4.3.1. Then, there exists η > 0 such that for any s ∈ (-η, η) and x ∈ S, lim n→∞ 1 n log |G n x| = Λ (s), Q x s -a.s.. Proof.

  Control of I 1 . From (4.5.3) we deduce that uniformly in ϕ ∈ B γ ,

	sup
	s∈(-η,η)

.5.8) 

  [START_REF] Cuny | Rates of convergence in invariance principles for random walks on linear groups via martingale methods[END_REF], we have t y n -y and thus e

	that y n δ 1	t 2 2 +ty n by (4.5.24). Consequently, we obtain the bound: 1 for any t ∈ [0, y n ]. Note √
		sup
		s∈(-η,η)

  3 (t -iy n )|. It follows from Lemma 4.5.4 that |e z -1| e max{ z,0} |z| for any z ∈ C.

	Using this inequality and taking into account of the bound
	(4.5.33), we obtain
	sup
	s∈(-η,η)

  .6.10) Since σ s is strictly positive and bounded uniformly in s ∈ (0, η), using (4.6.3) and the fact that y > 1, for sufficiently large n, we get that s C 2 holds for large enough n, where C 1 < C 2 are two positive constants independent of n and s. Combining this two-sided bound with (4.6.7), (4.6.9) and (4.6.10), . By Lemma 4.6.1, we have r s -1 ∞ Cs and |π s (ϕr-1 s )ν(ϕ)| Cs ϕ γ , uniformly in s ∈ [0, η) and ϕ ∈ B γ . Since s = O( y √ n ),this concludes the proof of the first assertion of Theorem 4.2.3.

	This implies that C 1	s	√ nI 2		√ n σ s	y 2σ 0 σ s	c 1 > 0.
			0	∞	e -s √	nσsu dF (u) = I 3	π s (ϕr -1 s ) √ 2π	+ ϕ γ O(s) .	(4.6.11)
	Substituting (4.6.3) into (4.6.11), it follows that
	0	∞	e -s √	nσsu dF (u) = e	y 2 2	y	∞	e -1 2 u 2 du	π s (ϕr -1 s ) √ 2π	+ ϕ γ O(s) .
	Together with (4.6.6), this implies	
			I = r s (x)e	y 3 √ n ζ( y √ n ) 1 -Φ(y) π s (ϕr -1 s ) + ϕ γ O(s) ,	(4.6.12)
	where π s (ϕr -1 s ) = νs(ϕ) νs(rs)				

  14) has been established in [10, Proposition 14.7]. For positive matrices, both (5.2.14) and (5.2.15) are new.

  2.3 and 5.2.5 on moderate deviation expansions, and Proposition 5.2.7 about the expressions of the asymptotic variance σ 2 . For the proof of Theorem 5.2.3 we need the following Cramér type moderate deviation expansion for the norm cocycle log |G n x|.

	Lemma 5.4.1. Assume conditions H1, H2 and H4. Then, as n → ∞, we have,
	uniformly in x

  2.1. Under the same conditions as in Theorem 6.2.1, if we consider |y| > √ 2 log log n instead of y ∈ R, then the bound C log n

	Remark 6.2.2. √	n	in (6.2.1), (6.2.2), (6.2.3) and
	(6.2.4) can be improved to be C √ n .		

  Its proof is based on the Cramér type moderate deviation expansion for the couple (X x

.2.11) Theorem 6.2.6 is new even when ϕ = 1. n , log |G n x|) proved recently in

  1 i d the standard orthonormal basis of R d . Since all matrix norms in R d are equivalent, and both g → g and g → max 1 i d |ge i | are matrix norms, there exists a positive constant c 1 such that log G

n max 1 i d log |G n e i | + c 1 .

From this inequality, we derive that

  .4.25) As in the case of G n , G n and G n are products of i.i.d. invertible matrices of the formG n = g n • • • g 1 and G n = g n • • • g 1 .We denote by µ 1 the law of the random matrix g 1 , by d 1 the dimension of the vector space V 1 , and by Γ µ 1 the smallest closed subsemigroup of GL d 1 (R) generated by the support of µ 1 . Then, following the analogous argument used in the proof of the central limit theorem for G n (see [13, Theorem V.5.4]), one can verify, under Condition L2 on µ, that the semigroup Γ µ 1 is strongly irreducible and proximal on R d 1 . Therefore, µ 1 satisfies Conditions L2 and L3, so that we are allowed to apply the moderate deviation principle (6.2.5) with ϕ = 1 and G n replaced by G n , to get the following moderate deviation asymptotics: for any y > 0,

	lim n→∞	n b 2 n	log P	log G n b n	y = -	y 2 1 2σ 2	,	(6.4.26)
	lim n→∞	n b 2 n						

  In the sequel we prove that (6.2.12) holds uniformly in y ∈ [ 1 2√log n, o(n 1/6 )]. Without loss of generality, we assume that the target function ϕ is non-negative. For brevity, we denote for any x ∈ P d-1 and y ∈ [ 1 2

	Using the inequality (6.5.2), Using the inequality (6.5.2), one can verify that 0, as n → ∞, uniformly in y ∈ [0, 1 2 √ log n]. Hence the expansion (6.2.12) holds uni-log n √ n(1-Φ(y)) → formly in y ∈ [0, 1 2 √ log n].
	.5.8)

  1 ×R) n , E r s (X x n )|G n x| s κ n (s)r s (x) h X x 1 , log |g 1 x|, . . . , X x n , log |G n x| = E Q x s h X x 1 ,log |g 1 x|, . . . , X x n , log |G n x| . (7.3.3)

  These two functions can be extended analytically to a small neighborhood of 0 in the complex plane: for any z ∈ C with |z| < s,

	ε (t) = 2	sin(εt) t	+ e -iεt 1 s + it	, ψ -s,ε (t) = e -2εs e -iεt s + it	, t ∈ R.	(7.5.2)
	ψ + s,ε (z) = 2	sin(εz) z	+ e -iεz 1 s + iz	, ψ -s,ε (z) = e -2εs e -iεz s + iz	.	(7.5.3)

  1 , y ∈ [1, o( √ n)], ϕ ∈ B γ and l ∈ R with |l| = o(s),Proof. It is sufficient to prove the result in the case when ϕ is nonnegative. Taking δ > 0 small enough, we use Proposition 7.3.2 to decompose the integral into three parts:

	where						
		I 1 (n) = sσ s	√	n e nhs(l)	|t| δ	e -itln R n s,it (ϕ)(x) ψ -s,ε (t) ρ ε 2 (t)dt,
		I 2 (n) = sσ s	√	n e nhs(l)	|t|<δ	e -itln N n s,it (ϕ)(x) ψ -s,ε (t) ρ ε 2 (t)dt,
		I 3 (n) = sσ s	√	n e nhs(l)	|t|<δ	e -itln λ n s,it Π n s,it (ϕ)(x) ψ -s,ε (t) ρ ε 2 (t)dt.
		sσ s	√	n e nhs(l)	e -itln R n s,it (ϕ)(x) ψ -s,ε (t) ρ ε 2 (t)dt -	√	2ππ s (ϕ)
							R
		c		1 √ n	+ |l| ϕ γ + c	|l| s	+	1 s 2 n	ϕ ∞ .
	sσ s	√ n e -nhs(l)					(7.5.5)

R e -itln R n s,it (ϕ)(x) ψ - s,ε (t) ρ ε 2 (t)dt = I 1 (n) + I 2 (n) + I 3 (n),

  Estimate of I 31 (n). Since Λ (s) > 0, using (7.5.6) we see that K(k) s (z s ) > 0 and thus ( ∞ < -ct 2 , uniformly in s ∈ (0, η). By (7.5.3), it holds uniformly in n -1 2 log n |t| δ that

				1 2 log n |t| δ	e n ∞ k=2	K s (zs)(it) k (k) k!	Ψ s,x (t -iz s )dt,
	I 32 (n) = sσ s	√	n	2 log n |t|<n -1	e n ∞ k=2	K s (zs)(it) k (k) k!
	k=2 s t 2 | ψ -K (k) s (zs)(it) k k! ) < -1 8 σ 2 s,ε (t -iz s )| = e -2εs-iεt+εzs s + z s + it		c (s + z s ) 2 + t 2	c |s + z s |	c s	.

Ψ s,x (t -iz s )dt.

  Estimate of I 32 (n). Since σ s = Λ (s) > 0, by a change of variable t = tσ s √ n, we getI 32 (n) = s. Note that as n → ∞, uniformly in |t| σ s log n and s ∈ (0, η),

		σs log n -σs log n	e -t 2 2 e	∞ k=3	α k (s)(it) k k!n k/2-1 Ψ s,x (	t nΛ (s)	-iz s )dt,
	s (zs) where α k (s) = K (k) σ k s it holds that							
	e	∞ k=3	α k (s)(it) k k!n k/2-1 = 1 -	iα 3 (s)t 3 6 √ n	+ O(	log 6 n n	).	(7.5.22)
	For brevity, we denote							
				t n =	σ s	t √	n	-iz s .	(7.5.23)

1 2 

log n |t| δ. Consequently, we get

|I 31 (n)| c ϕ ∞ √ n n -1 2 log n |t| δ e -cnt 2 dt Ce -c(log n) 2 ϕ ∞ . (

7

.5.21) 

  s Estimate of J 1 (n). Using Proposition 7.3.2 and (7.5.15), we have, uniformly in x ∈ P 1 , s ∈ (0, η) and |t| σ s log n,|Π s,itn (ϕ)(x) -π s (ϕ)| c|t n | ϕ γ c |t| √ n + |l| ϕ γ .where in the last inequality we use (7.5.7) and (7.5.15). Combining the above two inequalities with (7.5.9) gives |h 1 (t n )| + |l|) ϕ γ . Hence, we obtain that uniformly in s ∈ (0, η), x ∈ P 1 and ϕ ∈ B γ ,Estimate of J 2 (n). It is easy to verify that | ρ ε 2 (t n ) -ρ ε 2 (0)| c ε 4 |t n |Combining this with(7.5.25) gives|h 2 (t n )| + |l|) ϕ ∞ . Hence, uniformly in s ∈ (0, η), x ∈ P 1 and ϕ ∈ B γ , Estimate of J 3 (n).A careful quantitative analysis is required to provide a precise estimate of J 3 (n). In view of (7.5.23), we have Using the inequality |e z -1| e z |z| for z ∈ C, and taking into account of (7.5.23) and(7.5.25), we have e -2εs e -iεtn -1 s + it n = e -2εs |e -iεtn -1| |s + it n | Thus, using the fact that ρ ε 2 (0) = 1 and |π s (ϕ)| c ϕ ∞ , Estimate of J 4 (n). From (7.5.2) and ρ ε 2 (0) = 1, we see that J 4 (n) = π s (ϕ)e -2εs σs log n

	Consequently we conclude from (7.5.28) and (7.5.29) that
							c s ( |t| √ 1 s 2 n + n |J 1 (n)| c |J 3 (n)| c |l| s + 1 √ + |l| ϕ γ . 1 √ n ϕ ∞ . n -σs log n e -t 2 2 1 + O( log 6 n n	) dt.	(7.5.30) (7.5.26) (7.5.31)
	Since estimates into (7.5.31) gives √ 2π > σs log n -σs log n e -t 2 2 dt >	√	c ε 4 n and e -2εs = 1 + O(s), substituting these |t| √ + |l| . 2π -1 n
	J 4 (n) = It follows that	√	c ε 4 log 6 n n n |J 2 (n)| c 1 s ( |t| √ 2ππ s (ϕ)e -2εs 1 + O( ) = 1 √ n + |l| ϕ ∞ . √ 2ππ s (ϕ)(1 + O(s)). J 4 (n) -√ 2ππ s (ϕ) Cs ϕ ∞ .	(7.5.27) (7.5.32)
													c s	|t| √ n	+ |l| .
	s	σs log n -σs log n	e -t 2 2	1 -	iα 3 (s)t 3 6 √ n	+ O(	log 6 n n	) e -2εs e -iεtn -1 s + it n	dt ρ ε 2 (0)π s (ϕ)
	Note that	c	1 √ n	σs log n -σs log n + |l| ϕ ∞ .	e -t 2 2	1 -	iα 3 (s)t 3 6 √ n	+ O(	log 6 n n	) h j (t n )dt.	(7.5.28)
					1 s + it n	-	1 s	=	1 s	-z s (s + z s ) -is t σs √ σ 2 s n n -t 2 σ 2 s n (s + z s ) 2 + t 2	.
	Since the integral of an odd function over a symmetric interval is identically zero, by
	simple calculations, we obtain				
	s	σs log n -σs log n	e -t 2 2		1 -	iα 3 (s)t 3 6 √ n	+ O(	log 6 n n	)	1 s + it n	-	1 s	dt ρ ε 2 (0)π s (ϕ)
		c	|l| |s + l|	+	1 (s + l) 2 n		ϕ ∞ c	|l| s	+	1 s 2 n	σ 2 s n ϕ ∞ . |s + z s | c	c s	,	(7.5.25) (7.5.29)

From (7.5.3), we get

| ψ - s,ε (t n )| = e -2εs-iεtn s + it n c s + it n = c (s + z s ) 2 + t 2 ψ - s,ε (t n ) -ψ - s,ε (0) = e -2εs e -iεtn -1 s + it n + e -2εs 1 s + it n -1 s .

  1 , y ∈ [0, o( √ n)] and ϕ ∈ B γ that Since log | f, G n x | log |G n x|, this implies that there exists a constant C > 0 such that uniformly in f, x ∈ P 1 and y ∈ [0, o(

	E ϕ(X x n )1 {log |Gnx|-nλ √ 1 -Φ(y)	nσy}	= e	y 3 √ n ζ( y √ n ) ν(ϕ) + ϕ γ O	y + 1 √ n	.	(7.6.1)
					√	n)],
	E ϕ(X x n )1 {log | f,Gnx |-nλ √ 1 -Φ(y)	nσy}	e	y 3 √ n ζ( y √ n ) ν(ϕ) + C ϕ γ	y + 1 √ n	.	(7.6.2)

  2 that A n r s (x)e Since the function ρ ε 2 is integrable on R, by the inversion formula, we have (t) ρ ε 2 (t)dt, u ∈ R.Substituting u = T x n -δk, taking the expectation with respect to E Q x s , and using the Fubini theorem, we get

			-y 2 2 + y 3 √ n ζ( y √ n )	Mn	E Q x s (ϕr -1 s )(X x n ) χk (Y x n )e -sT x n 1 {T x n -δk 0}
				k=1
	= r s (x)e	-y 2 2 + y 3 √ n ζ( y √ n )	Mn	e -sδk E Q x s ϕ f s,k,ε 1 (X x n )ψ s (T x n -δk)
				k=1
	r s (x)e	-y 2 2 + y 3 √ n ζ( y √ n )	Mn	e -sδk E Q x s ϕ f s,k,ε 1 (X x n )(ψ -s,ε * ρ ε 2 )(T x n -δk)
				k=1
	=: B n .				(7.6.10)
	ψ -s,ε * ρ ε 2 (u) = s,ε B n = 1 2π R e itu ψ -r s (x) k=1 2π e -y 2 2 + y 3 √ n ζ( y √ Mn n ) e -sδk

R e -itδk R n s,it (ϕ f s,k,ε 1 )(x) ψ - s,ε (t) ρ ε 2 (t)dt,

(7.6.11)

where

R n s,it

  1, we get that uniformly in s ∈ (0, η),P 1 1 {log | f,• |∈I k } (x)ϕ(x)π s (dx) ϕ ∞ π s {x : | f, x | ∈ (0, e -δMn ]Control of B n,2 . Again, the Hölder regularity of the stationary measure π s is required to handle B n,2 . Note that

	∞			
	e -sδk			
	k=Mn+1			
				Ce -αδMn ϕ ∞	1 √ n	ϕ ∞ .
	Consequently, we obtain			
		B n,1 π s (ϕ| f, • | s ) -	1 √ n	ϕ ∞ .	(7.6.16)
		Mn		
	B n,2	ϕ ∞	π	
		k=1		

s ({x : log | f, x | ∈ I k,ε 1 }) .

  1 ) c .(7.6.20) Combining(7.6.19) and(7.6.20), taking ε 1 = n -β with β > 0 sufficiently large, we obtainB n,2 C ϕ ∞ (e 2ε 1 -1) c + C ϕ ∞ (1 -e -2ε 1 ) c -sδk π s (ϕ f s,k,ε 1 ) π s (ϕ| f, • | s ) -

		C √ n	ϕ ∞ .	(7.6.21)
	Substituting (7.6.16) and (7.6.21) into (7.6.15), we conclude that
	Mn k=1	e C √ n	ϕ ∞ .	(7.6.22)
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Chapter 5

Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices Abstract. Let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.) d×d positive random matrices and consider the matrix product G n = g n . . . g 1 . Denote by G n any matrix norm of G n , by G i,j n its (i, j)-th entry, and by ρ(G n ) its spectral radius. Under suitable conditions, we establish Berry-Esseen bounds and precise moderate deviation expansions for the matrix norm G n , the entries G i,j n , and the spectral radius ρ(G n ). As corollaries, moderate deviation principles are derived.

Introduction

Let (g n ) n 1 be a sequence of independent and identically distributed (i.i.d.) d × d (d

2) positive random matrices of the same probability law µ. Set G n = g n . . . g 1 and denote by G n any matrix norm of the product G n . It has been of great interest in recent years to investigate the asymptotic behaviors of the random matrix product G n since the fundamental work of Furstenberg and Kesten [START_REF] Furstenberg | Products of random matrices[END_REF], in which the following strong law of large numbers (SLLN) for the matrix norm G n was established: if E(max{0, log g 1 }) < ∞, then lim n→∞ 1 n log G n = λ, a.s., (5.1.1) where λ is a constant called the upper Lyapunov exponent of the product G n . This result can be seen as a direct consequence of Kingman's subaddtive ergodic theorem [START_REF] Kingman | Subadditive ergodic theory[END_REF]. The central limit theorem (CLT) for G n was also considered in [START_REF] Furstenberg | Products of random matrices[END_REF]; it was established by Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] under the second moment condition together with the allowability and positivity condition (that we will present later): for any y ∈ R,

e -t 2 2 dt =: Φ(y), (5.1.2)

Note that y 1 +1

√ n = O( y+1 √ n ). Combining this with (5.4.4)- (5.4.5), we obtain

Together with (5.4.3), this concludes the proof of (5.2.7). The proof of the expansion (5.2.8) is similar to that of (5.2.7) by using the expansion (5.4.2) and Lemma 5.3.1.

We next prove Theorem 5. n , we obtain that there exists a constant c > 0 such that

In an analogous way as in the proof of the upper bound in Theorem 5.2.3, one can verify that |ζ(

Combining this with (5.4.7), we obtain

Together with the upper bound (5.4.6), this concludes the proof of (5.2.10). The proof of (5.2.11) is similar to that of (5.2.10) by using (5.4.2) and Lemma 5.3.2. The proof of the expansions (5.2.12) and (5.2.13) for the spectral radius ρ(G n ) can be carried out in an analogous way using Theorem 5.2.3, Lemma 5.4.1 and inequality (5.3.7). We omit the details.

We finally prove Proposition 5.2.7 based on Lemmas 5.3.1, 5.3.2 and the Collatz-Wielandt formula (5.3.6).

Proof of Proposition 5.2.7. We first prove part [START_REF] Aoun | Random subgroups of linear groups are free[END_REF]. For fixed x ∈ K ⊂ (S d-1 + ) • , we denote

Chapter 6

Berry-Esseen bounds and moderate deviations for the random walk on GL d (R)

Abstract. Let (g n ) n 1 be a sequence of independent and identically distributed random d × d matrices with law µ. Consider the random walk G n := g n . . . g 1 on the general linear group GL d (R) and the Markov chain X x n := G n x/|G n x|, where x is a starting point on the unit sphere S d-1 . Denote respectively by G n and ρ(G n ) the operator norm and the spectral radius of G n . For log G n and log ρ(G n ), we prove moderate deviation principles under exponential moment and strong irreducibility conditions on µ; we also establish moderate deviation expansions in the normal range [0, o(n 1/6 )] and Berry-Esseen bounds under the additional proximality condition on µ. Similar results are found for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions.

Introduction

Background and previous results

For . The goal of this paper is to investigate Berry-Esseen type bounds and moderate deviation results for the operator norm G n and the spectral radius ρ(G n ), and more generally, for the couples (X x n , log G n ) and (X x n , log ρ(G n )) with target functions on X x n . Let Γ µ be the smallest closed subsemigroup of G generated by the support of µ. Denote N (g) = max{ g , g -1 } for any g ∈ G. Consider the following conditions.

L1. (Exponential moments) There exists a constant

then the term J n defined in (6.4.6) can be rewritten as

Applying the moderate deviation bound (6.4.7) with n replaced by n -k, and with b n replaced by b n , we obtain the following upper and lower bounds for J n : with fixed y > 0 and > 0, for n large enough, uniformly in

(6.4.9)

From (6.4.6) and (6.4.9), it follows that, there exists a constant

where the last inequality holds due to the fact that as n → ∞,

Taking → 0, we get the desired lower bound: for any y > 0, uniformly in

Combining this with the upper bound (6.4.3), we obtain (6.4.2) and thus conclude the proof of (6.2.5).

Using the moderate deviation principle (6.2.5) for the couple (X x n , log G n ) and Lemma 6.3.3, we are now in a position to establish the moderate deviation principle (6.2.6) for the couple (X x n , log ρ(G n )). Proof of (6.2.6) of Theorem 6.2.3. As explained in the proof of (6.2.5), according to Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], it is sufficient to prove the following moderate deviation asymptotics: for any y > 0, uniformly in

We first prove (6.4.10). On the one hand, since the function ϕ is non-negative, using the moderate deviation principle (6.2.5) for the operator norm G n and the fact that ρ(G n )

G n , we immediately get the upper bound: for any y > 0, uniformly in

On the other hand, using Lemma 6.3.3, we obtain that for any ε > 0, there exist c 1 > 0 and k 0 ∈ N, such that for all n k k 0 ,

As in the proof of (6.2.5) of Theorem 6.2.3, we take

where C 1 > 0 is a constant whose value will be chosen sufficiently large. By the moderate deviation principle (6.2.5) for the couple (X x n , log G n ), it follows that for any y > 0 and η > 0, there exists n 0 ∈ N such that for all n n 0 ,

It is easy to see that the sequence

Using the bound (6.4.15), we get that uniformly in

Substituting this bound into (6.4.13), we obtain

Taking into account of (6.4.14), by elementary calculations, choosing

From (6.4.20) we have seen that ∧ p g g p for 1 p d. The following result (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Lemma III. 1.4]) provides a two-sided comparison between ∧ p g and g p , where p is the proximal dimension of the semigroup Γ µ . Lemma 6.4.4. Assume condition L2. If E log N (g 1 ) < ∞ and the proximal dimension of the semigroup Γ µ is p, then there exists a constant c > 0 such that for all g ∈ Γ µ , c g p ∧ p g g p .

The following lemma was proved in [13, Proposition III. 1.7 and Remark III. (b) If the set Γ µ,1 is contained in a compact subgroup of G, then there exists a scalar product on R d for which all the matrices in Γ µ,1 are orthogonal. In this case, log G n can be written as a sum of i.i.d. real-valued random variables. Now we are equipped to prove the moderate deviation principle (6.2.7) for the operator norm G n without assuming the proximality condition L3.

Proof of (6.2.7) of Theorem 6.2.4. We assume that Γ µ,1 is not contained in a compact subgroup of G; the opposite case was already proved in Remark 6.2.5 [START_REF] Aoun | The central limit theorem for eigenvalues[END_REF]. Note that λ = λ 1 . Without loss of generality, we assume that λ 1 = 0 since otherwise we can replace each matrix g ∈ Γ µ by e -λ 1 g. As mentioned before, by Lemma 4.4 of [START_REF] Huang | Moments, moderate and large deviations for a branching process in a random environment[END_REF], in order to prove (6.2.7), it is sufficient to establish the following moderate deviation asymptotics: for any y > 0, We first give a proof of (6.4.21). Let p be the proximal dimension of the semigroup Γ µ . Since the set Γ µ,1 is not contained in a compact subgroup of G, by Lemma 6.4.5 (a), we have 1 p d -1. Using Lemma 6.4.3, under condition L2, this implies that the Lyapunov exponents (λ p ) 1 p d of µ satisfy

It follows that the two largest Lyapunov exponents of ∧ p G n are given by λ [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]Proposition III. 1,[START_REF] Aoun | The central limit theorem for eigenvalues[END_REF]). Applying Lemma 6.4.2 to G = G µ (the smallest closed subgroup of G generated by the support of µ), we get the following direct-sum decomposition of the p-th exterior power ∧ p (R d ):

where V j are subspaces of ∧ p (R d ) such that (∧ p g)V j = V j for any g ∈ G µ and 1 j k, i.e. each V j is invariant under ∧ p (G µ ) := {∧ p g : g ∈ G µ }. Moreover, ∧ p (G µ ) is irreducible on each subspace V j . Note that the set of all Lyapunov exponents of ∧ p G n Using (6.4.25) and the fact that ∧ p g g p for any g ∈ Γ µ , we get that for constant c > 0 small enough,

which is finite by Condition L1. By Markov's inequality and the fact that u m > 0 is a constant, it follows that there exist constants c, C > 0 such that where σ 2 0 = (σ 2 1 )/p 2 > 0. We next give a proof of (6.4.22). From (6.4.25) and (6.4.27), the upper bound easily follows: for any y > 0, lim sup

To prove the lower bound, observe that from (6.4.25) we have

Similarly to (6.4.33), with fixed integer m 1 and u m = -E(log G m ) > 0, taking into account (6.4.30), we write

In an analogous way as in the proof of (6.4.32), by Markov's inequality and the fact that k = O(n) and b n = o(n), the first term on the right hand side of the above inequality is bounded by Ce -ck , where c, C > 0 are constants. It has been shown in the proof of (6.4.33) that the second term is also bounded by Ce -ck . Therefore, taking into account k n/(m + 1), we get that there exist constants c, C > 0 such that

Combining this bound with (6. where σ 2 0 = (σ 2 1 )/p 2 > 0. Putting together (6.4.37) and (6.4.38), we conclude the proof of (6.4.22). Combining (6.4.21) and (6.4.22), we get the desired moderate deviation principle (6.2.7) for the operator norm G n .

Proof of (6.2.8) of Theorem 6.2.4. Using Lemma 6.3.3, we can obtain (6.2.8) from (6.2.7) just as we obtained (6.2.6) from (6.2.5). The details are omitted.

Moderate deviation expansions

This section is devoted to proving Theorems 6.2.6 and 6.2.7 about Cramér type moderate deviation expansions in the normal range, for the operator norm G n and the spectral radius ρ(G n ). We will use the following moderate deviation expansion for the norm cocycle log |G n x| recently established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] (where the usual range

Taking into account (6.5.6) and (6.5.7), one can calculate that, as

)], we have y 1 y = 1 + o( 1) and

Consequently, substituting the above estimates into (6.5.8), we get that, as n → ∞, uniformly in

This, together with (6.5.5), implies the following lower bound for I n : there exists a constant c 3 > 0 such that uniformly in -y) .

Using the inequality (6.5.2) and taking C 1 > 1 c 3 , it follows that, uniformly in

log n, o(n 1/6 )] and ϕ ∈ B γ ,

Combining this with the upper bound (6.5.3), we conclude the proof of the expansion (6.2.11).

We proceed to establish Theorem 6.2.7 based on Theorem 6.2.6, Lemma 6.3.3 and the Berry-Esseen type bound (6.2.2).

Proof of Theorem 6.2.7. We only prove the first expansion (6.2.12) since the proof of the second one (6.2.13) can be carried out in an analogous way. Using the Berry-Esseen type bound (6.2.2) and the fact that |Eϕ(X

CHAPTER 7. MODERATE DEVIATIONS FOR ENTRIES support of µ. Consider the following conditions.

B1. There exists a constant η > 0 such that G g 1 η µ(dg 1 ) < ∞.

B2.

The subgroup Γ µ is Zariski dense in SL(2, R).

Guivarc'h and Raugi [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF] first established the strong law of large numbers for G i,j n : under conditions B1 and B2, for any 1 i, j 2, lim n→∞ 1 n log |G i,j n | = λ a.s., (7.1.1) where the constant λ is called the upper Lyapunov exponent of the product sequence (G n ). Under the same conditions, the central limit theorem for G i,j n was also established in [START_REF] Guivarc | Frontiere de Furstenberg, propriétés de contraction et théorèmes de convergence[END_REF]: for any 1 i, j 2 and y ∈ R,

where Φ is the standard normal distribution function and σ 2 > 0 is the asymptotic variance of 1 √ n log |G i,j n |. The proof of (7.1.1) and (7.1.2) is based on the Hölder regularity of the stationary measure of the Markov chain X e j n := G n e j /|G n e j | on the projective space P 1 . Recently, Benoist and Quint [START_REF] Benoist | Random walks on reductive groups[END_REF] have extended (7.1.1) and (7.1.2) to the framework of the general linear group GL(d, K), where K is a local field. Due to a large number of applications in probability theory and statistics, it is important to investigate the rate of convergence in (7.1.1) and (7.1.2). Bahadur-Rao type and Petrov type large deviation asymptotics for G i,j n have been recently established in [START_REF] Xiao | Large deviation expansions for the entries of products of random matrices[END_REF]. However, moderate deviations have not yet been considered in the literature.

The objective of this paper is to establish the following Cramér type moderate deviation expansion for the entries G i,j n : under conditions B1 and B2, for any 1 i, j 2, we have, uniformly in y ∈ [0, o( √ n)], 1) , (7.1.3) 1) , (7.1.4) where ζ is the Cramér series (see (7.2.1)). More generally, we shall prove the Cramér type moderate deviation expansion for the scalar product f, G n x and for the couple

with a target function ϕ on the Markov chain X x n := G n x/|G n x| on the projective space P 1 (see Theorem 7.2.2). In particular, the expansions (7.1.3) and (7.1.4) clearly imply the following moderate deviation principle which is also new: for any Borel set B ⊆ R, any positive sequence (b n ) n 1 satisfying bn n → 0 and bn √ n → ∞, we have,

where B • and B are respectively the interior and the closure of B.

Proposition 7.5.2. Assume conditions B1 and B2. Let φ + s,ε (t) be defined in (7.5.33). Suppose that s < 0 satisfies the equation (7.5.35). Then, for any 0 < ε < 1 and sufficiently small η > 0, we have, uniformly in s ∈ (-η, 0),

The proof of Proposition 7.5.2 can be carried out in an analogous way as that Proposition 7.5.1. We omit the details.

Proof of Cramér type moderate deviation expansions

We now formulate the moderate deviation expansion in the normal range y ∈ [0, o(n 1/6 )] for the couple (X

Theorem 7.6.1. Assume conditions B1 and B2. Then, we have:

The proof of Theorem 7.6.1 is based on the moderate deviation expansion for the norm cocycle log |G n x| proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] and on the following lemma established in [START_REF] Benoist | Random walks on reductive groups[END_REF]Lemma 14.11].

We claim that uniformly in y ∈ [0, √ log n],

Indeed, when y ∈ [0, 2], one can easily see that the inequality holds; when y ∈ This, together with the fact that e -ck /[1 -Φ(y)] decays to 0 faster than 1 n , concludes the proof of (7.6.4).

To establish the first expansions in assertions ( 2) and (3), we take k = C 1 y 2 in (7.6.3), where C 1 > 0 is a fixed sufficiently large constant. In the same way as in (7.6.5), we get that, with y 1 = y + C Taking into account that

√ n ) and that e -cC 1 y 2 /[1 -Φ(y)] decays to 0 faster than 1 n , we obtain the first expansions in (2) and (3). Without loss of generality, we assume that ϕ is non-negative. We first establish the first assertion in Theorem 7.6.3. Using the Cramér type moderate deviation expansion