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Abstract

The aim of this thesis project was to study the coherent turbulent structures
(convective rolls & streaks) and more generally the medium to large fluctuations in the
atmospheric boundary layer using the observations recorded by a single Doppler (wind)
lidar during a 2-month campaign in Paris, France. An innovative method was developed
in order to classify automatically the radial wind speed patterns visible on the quasi-
horizontal lidar scans, based on texture analysis parameters and supervised machine
learning algorithms. A 150-case training ensemble was built using ancillary data (satellite
pictures and weather observations) to ascertain the manual classification into four types:
rolls, thermals, streaks and “others”. The performance of the classification process was
assessed on the training ensemble using the 10-fold cross-validation method. A very
satisfying 9% error was obtained for the Quadratic Discriminant Analysis algorithm, using
only 5 texture analysis parameters classifiers. This process was then applied to classify
the whole dataset (4577 lidar scans) and the results showed that the classified structures
respected a plausible diurnal cycle and were associated with the meteorological
parameters as expected by the theoretical knowledge. The size of the coherent structures
in the direction transverse to the mean wind were estimated from the wind spectrums on
a four-day case study. They ranged from 400 to 800 m for the cases classified as streaks,
and from 1.3 to 2.0 km for the cases classified as rolls. These results pave the way for
future long-term studies providing statistical insight on the frequency of occurrence of the
different structure types, their physical properties, and their impact on pollutants’
concentrations.

Keywords: atmospheric turbulence, coherent structures, boundary layer meteorology,

texture analysis, supervised machine learning, image classification



Abstract in French

Le but de ce projet de thése était d’étudier les structures turbulentes cohérentes
(rouleaux de convection et trainées) et plus généralement les fluctuations de taille
moyenne a grande dans la couche limite atmosphérique en utilisant les observations
recueillies par un unique lidar Doppler (lidar vent) pendant une campagne de deux mois
a Paris (France). Une méthode innovante a été développée pour classer de facon
automatisée les motifs visibles sur les balayages quasi-horizontaux du lidar, basée sur
des parameétres de texture et des algorithmes d’apprentissage supervisé. Un ensemble
d’entrainement de 150 cas a été construit en utilisant des informations auxiliaires (images
satellite, observations météorologiques) pour vérifier la classification établie
manuellement entre quatre types: rouleaux, thermiques, trainées et « autres ». La
performance du processus de classification a été évaluée par la méthode de validation
croisée a 10 blocs. Une erreur trés satisfaisante de 9% a été obtenue avec un algorithme
d’analyse discriminante quadratique et en utilisant seulement 5 paramétres de texture
comme classificateurs. Ce processus a ensuite été appliqué a I'ensemble des données
(4577 balayages lidar). Dans la classification obtenue, les type de structures suivent un
cycle diurne plausible et sont associées avec les parameétres météorologiques d’une fagon
logique au regard des considérations théoriques. La taille des structures cohérentes dans
la direction perpendiculaire au vent dominant a été estimée en utilisant les spectres du
vent pour un cas d’étude de quatre jours. Elle allait de 400 a 800 m pour les cas classés
comme trainées, et de 1,3 a 2,0 km pour cas classés comme rouleaux. Ces résultats
ouvrent la voie a de futures études de long terme qui fourniront une vision statistique de
la fréquence d’occurrence des différents types de structures, de leurs propriétés et de leur
impact sur les concentrations de polluants.

Mots clés en francais : turbulence atmosphérique, structure cohérentes, météorologie

de la couche limite, analyse de texture, apprentissage supervisé, classification d'images
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Preface

Boundary layer meteorology is a field that has always excited me. | find the
understanding of weather phenomena and atmospheric processes in the part of the
atmosphere that has direct impact on human life particularly interesting. For this reason,
during my Bachelor degree in physics and Master degree in climate studies | followed
several theoretical, practical and numerical weather simulation courses in Boundary Layer
Meteorology. | wanted to deepen my knowledge and expertise in a related topic and this
Ph.D. project offered me the opportunity to do so by working on the coherent structures in
the atmospheric boundary layer. Furthermore, | had the privilege to gain a hands-on
experience in large datasets recorded by a Doppler wind lidar. | extended my knowledge
in programming as | developed several algorithms for the analysis of the results
throughout my Ph.D. thesis.

| hope that this study can stimulate interest in the scientific community to perform
long term studies for coherent structures and likewise understand their behavior to a
greater extent. A long term study that correlates the structures with the pollution dispersion
could be significantly beneficial for the scientific community as well as the general public.
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Chapitre 1 - Physique de la couche Ilimite &
classification des images

Couche limite atmosphérique et turbulence

La troposphére est la partie la plus basse de 'atmosphére qui s’étend de la surface
de la Terre a environ 10 km d’altitude aux latitudes moyennes. En plus d'étre la partie de
I'atmosphére ou vivent les humains, c'est aussi le lieu ou se produisent la grande majorité
des événements météorologiques et ou se développent les nuages. Seule une fraction de
la tropospheére, a savoir la couche limite atmosphérique (ABL en anglais?), peut étre
directement affectée par la surface de la terre, via des phénomeénes tels que frottement,
le transfert de chaleur, I'émission de polluants, I'évaporation et la transpiration des
végétaux etc. L'ABL représente la couche la plus basse de I'atmospheére et varie en
profondeur entre plusieurs dizaines de métres et quelques kilomeétres selon le lieu et le
moment. La couche située au-dessus de I'ABL est connue sous le hom d'atmosphére
libre. La principale distinction entre les deux est la variation diurne de la température de
I'air qui est évidente dans I'ABL, mais pas dans I'atmosphére libre. Au fur et a mesure que
le sol réagit au rayonnement solaire (ou a son absence) en devenant plus chaud ou plus
froid, I'air preés de la surface sera affecté par des processus de transport. Il est possible
gue ces processus influencent I'ensemble de la troposphére. Cependant, au-dessus de
I'ABL, le changement sera lent en comparaison, ce qui permet de distinguer les deux
parties de la troposphére.

La compréhension des processus atmosphériques au sein de I'ABL est vitale pour
divers domaines de recherche. Que ce soit le transport et la dispersion des polluants
atmosphériques ou leur dépét sec a la surface de la Terre, le développement de nuages
bas ou un fort cisaillement du vent (par exemple des jets de basses couches ou LLJ?) qui
affectent les décollages et les atterrissages dans le secteur de l'aviation, tous ont lieu dans
I'ABL. En outre, la précision des prévisions météorologiques et des prévisions climatiques
dépend énormément de la représentation réaliste des processus atmosphériques de
'ABL dans les modéles numériques de prévision météorologique et dans les modéles
climatiques respectivement. Par conséquent, il est important de simuler avec succes
I'écoulement dans ABL afin de prédire le transport, le mélange et la dispersion, la
transformation et l'interaction avec le sol et la végétation des variables météorologiques
et atmosphériques au sein de I'ABL. A cet égard, les variables météorologiques et

1 Dans ce résumé, tous les acronymes sont indiqués en anglais afin de permettre au lecteur de
faire la correspondance avec le corps du manuscrit de théese.

2 LLJ: Low-Level Jet



atmosphériques les plus importantes sont le vent, la température de I'air, 'humidité de I'air
et les composés atmosphériques inertes et réactifs.

L’ABL peut étre divisée en sous-catégories en ce qui concerne le développement
de son cycle diurne. Pendant la journée, le chauffage de surface est le moteur du
développement de I'ABL. Les instabilités thermiques, générées par le chauffage de
surface, créent des conditions convectives qui donnent le nom de couche limite convective
(CBL) ou couche mixte (ML). L'ABL est séparée de l'atmosphére libre par la zone
d'entrainement ou les échanges entre I'ABL et I'atmosphére libre se produisent pendant
la journée. D'autre part, le refroidissement radiatif pendant la nuit, crée une couche d’air
stable prés de la surface conduisant ainsi & une couche limite stable (SBL), également
connue sous le nom de couche limite nocturne (NBL). Les périodes de passage de la SBL
a la CBL et vice versa sont respectivement appelées transitions du matin et du soir. Une
couche de stabilité neutre persiste au-dessus de la SBL pendant la nuit, qui n'est pas
affectée par les propriétés liées a la surface. Celle-ci est connue sous le nom de couche
résiduelle (RL).

Le comportement des polluants a l'intérieur de I'ABL varie selon les conditions de
stabilité, donc differe selon la sous-catégorie d’ABL considérée. Les instabilités intenses
de la CBL peuvent disperser les polluants loin de la source et nettoyer I'atmosphére prés
de la surface. Cependant, dans les conditions stables de la SBL, les polluants peuvent
étre piégés pres de la surface et éventuellement s'accumuler en grandes concentrations.
Le transport a I'échelle régionale ou continentale des polluants dans I'atmosphére est di
au champ de vent synoptique, tandis que les mouvements turbulents provoquent leur
dispersion dans toutes les directions et leur dépét. L’évolution des concentrations des
polluants est la résultante de leur transport ainsi que les taux d’émission des sources. Ces
informations sont essentielles pour déterminer les zones propices a linstallation de
sources potentielles de pollution ainsi que pour prévoir les éventuelles conséquences a
long terme de leur utilisation. De cette maniére, plusieurs modéles numériques de
dispersion sont développés pour la prédiction de la distribution spatiale et temporelle des
contaminants rejetés dans I'atmosphere.

Structures turbulentes cohérentes

L'influence du frottement et du chauffage par la surface, 'humidité, les polluants
etc., tout cela est rapidement et efficacement transmis a lI'ensemble de I'ABL par le
mécanisme de transfert ou de mélange turbulent. La quantité de mouvement, la chaleur
et les espéces chimiques peuvent également étre transférés dans la direction inverse,
vers le bas, par le méme mécanisme. Bien que les écoulements turbulents soient



caractérisés par une imprévisibilité élevée, des structures cohérentes peuvent toujours se
former dans une atmosphere turbulente. Les structures cohérentes se produisent lorsque
les tourbillons sont organisés selon un schéma quasi-périodique dans les deux
dimensions horizontales. Cette zone organisée s'étend sur une grande surface (c'est-a-
dire qu’elle compte un grand nombre de motifs adjacents). En outre, une structure
cohérente doit conserver sa forme pendant une période de temps suffisante pour les
calculs de statistigues moyennées dans le temps. Les structures cohérentes dont traite
ce travail sont les stries turbulentes et les rouleaux de convection.

Les stries turbulentes sont des bandes étroites, alignées avec la direction
horizontale du vent, dans lesquelles alternent des zones de vents horizontal plus fort et
plus faible. L'espacement entre les stries est généralement de l'ordre de quelques
centaines de metres ; les stries sont en général localisées dans la SBL mais elles
atteignent parfois la couche mélangée. Leur cycle de vie est plutot court : elles durent
guelques dizaines de minutes avant de se régénérer. Le principal facteur de formation de
stries est le développement d’un cisaillement de vent élevé entre la surface et le bas de
la couche mélangée (ou la couche résiduelle le nuit). En effet, lorsque des tourbillons se
forment, I'air ascendant provient d’altitudes ou le vent est moins rapide (et inversement),
ce qui crée au niveau du sommet de la SBL des zones de vent plus faible (ou plus fort)
qui ont naturellement tendance a s’aligner. Cela se produit en particulier sous un jet de
basses-couches, c’est-a-dire un maximum de vent se produisant dans les premiéres
centaines de meétres de I'atmosphére.

Les rouleaux de convection sont également des motifs allongés alignés avec la
direction horizontale du vent et ils se développent dans la couche mélangée convective.
Les variations spatiales du flux thermique issu de la couche de surface, le cisaillement du
vent a basse altitude et 'homogénéité de la surface favorisent le développement et le
maintien des rouleaux. A I'opposé des stries, les rouleaux se forment lorsque l'instabilité
thermique est forte, c’est-a-dire lorsque la flottabilité est le paramétre dominant pour la
formation de tourbillons, par rapport au cisaillement du vent. La rotation des grands
tourbillons entraine des mouvements ascendants et descendants dans I'ABL. Lorsque des
cumulus de beau temps se forment au sommet des zones d’ascendance des rouleaux,
on observe des allées de nuages séparée de bandes de ciel clair qui permettent de
détecter visuellement les rouleaux, notamment sur les images satellites. Cette étude se
concentre sur la détection et l'identification des structures cohérentes dans I'ABL.

Des instruments de télédétection, tels que le lidar, peuvent étre utilisés mesurer la
vitesse du vent le long du faisceau laser (vent radial) puis reconstruire le profil des
composantes horizontale et verticale du vent en combinant plusieurs directions de visée
obliques. A partir d’'un balayage horizontal, c’est-a-dire d’'une mesure du vent radial dans



un disque autour de l'instrument, il est possible d'estimer la vitesse et la direction du vent
horizontal moyen, ainsi que les fluctuations turbulentes du vent radial. En effet, sile champ
de vent était homogéne dans I'espace entourant I'instrument, le vent radial mesuré le long
d'un « anneau » (a une distance fixée de l'instrument) serait une fonction sinusoidale de
la direction du faisceau. Les écarts a cette fonction que I'on observe correspondent aux
fluctuations turbulentes du vent radial. Cette méthode est connue sous le nom de
d'affichage azimutal de la vitesse (VAD). Cette méthode présente 'avantage de permettre
de visualiser tout le champ des fluctuations et de reconnaitre certains motifs ressemblant
aux structures cohérentes.



Chapitre 2 — Données et méthodologie

Campagne et instrumentation

Afin d'étudier les structures cohérentes, les balayages horizontaux réalisés par un
lidar Doppler (lidar vent) installé au sommet d’une tour de 75 m de haut au centre de Paris
(campus Jussieu) pendant une campagne de deux mois (04/09/2014-06/11/2014) ont été
utilisées. Des profils verticaux du vent, des aérosols et de I'ozone ont également été
mesurés durant cette campagne. Les instruments utilisés étaient le lidar Doppler
Leosphere WLS100, le lidar aérosol CAML® de la société CIMEL et la version modifiée du
Lidar aéroporté pour I'ozone troposphérique (ALTO). Pour cette étude, les observations
enregistrées par le lidar ozone n'ont pas été utilisées.

Paris est un endroit intéressant pour les observations, car bien qu'il s’agisse d’une
meégalopole de presque 12 millions d’habitants, la hauteur des batiments en centre-ville
ne dépasse pas 50 m, a quelques exceptions pres, en raison de la réglementation locale.
Par conséquent, un faisceau émis depuis un batiment de 75 m de hauteur, méme pour
des balayages quasi horizontaux, n'est pas interrompu par d'autres batiments. La portée
maximale théorique du lidar vent était de 5 km pour toutes les méthodes de balayage avec
une zone aveugle de 100 m. La zone couverte par les balayages horizontaux était
entiérement urbanisée, avec peu d'espaces verts et une portion de la Seine. La résolution
spatiale était de 50 m, il était donc possible d'étudier des fluctuations turbulentes
associées a des structure cohérentes de taille moyenne a large (mlf-cs*), mais pas de
petites structures turbulentes. Les balayages prés de la surface étaient quasi horizontaux,
mais l'angle d'élévation de 1° entrainait malgré tout une différence de hauteur de 87 m
entre la position du lidar au centre et l'altitude du faisceau au niveau les bords de la zone
de balayage. Cependant, la portée effective était plutét de 'ordre de 3 a 4 km (celle-ci est
limitée par le niveau de signal) et I'altitude du faisceau par rapport au sol ne variait pas de
plus de 20 a 30 m pour les 3 premiers km autour du lidar.

Quatre types de balayage ont été réalisées par le lidar Doppler au cours de la
campagne. Le profil vertical du vent était mesuré par la méthode DBS® (une combinaison
de 4 faisceaux inclinés + 1 vertical) ; le profil de la variance du vent vertical était estimée

3 CAML : Cloud and Aerosol Micro-Lidar
4 mlf-cs : medium to large fluctuations coherent structures
5 DBS : Doppler Beam Swinging



grace a des séries de tirs verticaux (LOS® au zénith) ; les balayages verticaux ou RHI’
permettaient notamment de visualiser le sommet de la NBL ; enfin, les balayages
horizontaux ou PPI® ont servi a observer les structures turbulentes.. Il y a eu plus de 10000
balayages au total pendant la campagne, dont 4577 étaient horizontaux. Les observations
du lidar aérosols, quant a elles, ont été utilisées pour estimer I'épaisseur de 'ABL au cours
de la journée. Ce lidar était installé sur le toit d’'un batiment adjacent a la tour sur laquelle
le lidar vent était installé, mais a seulement 20 m d’altitude. L'instrument a fonctionné en
continu pendant la période 04/09/2014-06/11/2014 et a fourni des observations
moyennées sur des périodes de 10 minutes.

Type de motifs observés sur les balayages

Une fois la méthode VAD appliquée a 'ensemble des 4577 balayages horizontaux,
l'inspection visuelle des mif-cs a montré que certains d'entre eux contenaient des motifs
allongés bien définis avec des bandes de vent radial turbulent alternativement positives
et négatives. |l était également a noter que pendant la nuit, ces motifs allongés étaient
étroits (quelques centaines de metres de largeur) alors que pendant la journée, ils étaient
plus larges (de I'ordre de 1 a 2 km de largeur). D'autres mlf-cs enregistrés au cours de la
journée présentaient de grands zones fermés de valeurs positives et négatives (de 1 a
2 km de diamétre).

Les motifs allongés étroits observés durant la nuit étaient alignés avec la direction
du vent moyen et ressemblaient aux stries décrites dans la littérature. Par ailleurs, les
profils verticaux de la vitesse horizontale du vent montraient de dans de nombreux cas,
ces motifs allongés nocturnes se produisaient dans des conditions de fort cisaillement du
vent prés de la surface, ce qui confirmait qu’il s’agissait bien de stries (cette catégorie sera
donc nommé « stries » dans la classification). Les motifs allongés plus larges observés
pendant la journée étaient également alignés avec la direction moyenne du vent et
ressemblaient a des rouleaux de convection. Pour confirmer la présence de rouleaux dans
la couche mélangée, les images fournies par les instruments satellites MODIS® ont été
utilisées pour détecter les allées de nuages. Les satellites Terra et Aqua a bord desquels
volent les instruments MODIS ne passent au-dessus de Paris que vers 1100 et 1300 UTC,
mais de larges motifs allongés ont été observés a d’autres moments de la journée ; ceux-
ci ont été attribués a des rouleaux (catégorie «rouleaux » dans la classification) a

6 LOS : Line Of Sight

7 RHI : Range-Height Indicator

8 PPI : Plan Position Indicator

9 MODIS : Moderate resolution Imaging Spectroradiometer



condition qu'ils appartiennent a une série de balayages consécutifs montrant tous la
présence de rouleaux, dont 'un au moins coincide avec une image MODIS montrant des
allées de nuages.

Les grands motifs fermés qui peuvent étre observés pendant la journée
correspondent a des cellules de convection thermique non alignées en rouleaux et
disposées de facon aléatoire (catégorie « thermiques » dans la classification). Pour le
confirmer, le nombre d’heures d'ensoleillement quotidien et les valeurs horaires du
rayonnement solaire enregistrés par la station Météo-France de Paris-Montsouris ont été
utilisées. Les grands motifs fermés se produisaient les jours ou les valeurs de
rayonnement solaire étaient supérieures aux moyennes mensuelles et avec un
ensoleillement persistant. Les images satellitaires des instruments MODIS (lorsqu'elles
sont disponibles) ont confirmé que ce type de motif coincidait souvent avec la présence
de cumuli de beau temps non disposés en allées de nuages.

Enfin, de nombreux balayages ne présentaient aucun des trois types de motifs
définis précédemment. Il s'agissait soit de motifs chaotiques dans les champs mlf-cs, a
une échelle plus petite que les modeles thermiques, soit le plus souvent de cas ou la
méthode VAD n'avait pas été appliquée avec succes en raison d'un champ de vent radial
non symétrique. Pendant les 2 mois de la campagne, les cas de ce type se sont produits
principalement par temps calme (vent moyen <2 m-s?) ou par vent faible (2-4 m-s?),
lorsque le vent n'a pas une direction bien définie. Ce type de motif a été regroupé dans la
catégorie « autres » de la classification.

Classification automatisée des types de motifs

Malgré la similarité des motifs observés, la classification du type de motif dans un si
grand ensemble de données avec des milliers d'observations est une tache fastidieuse,
voire impossible. A cette fin, une nouvelle méthode automatisée a été développée pour
l'identification des quatre types de motifs mentionnés ci-dessus. La méthodologie est
basée sur les paramétres d'analyse de texture des fluctuations du champ de vent radial.
Chaque champ de vent radial est associé a un ensemble de matrices de cooccurrences
(CM) calculées pour les différentes dispositions de paires de points de grille en termes de
distance et d’orientation. Pour chaque CM, plusieurs paramétres d'analyse de texture
peuvent étre estimés ; ici c’est I'homogénéité, le contraste, la corrélation et I'énergie de la
CM qui ont été utilisés. Ensuite, ces parameétres peuvent étre fournis a un algorithme
d'apprentissage automatique qui va déterminer lesquels sont les plus significatifs pour la
classification des types de motifs. L'algorithme peut étre utilisé de fagcon non supervisée,
c’est-a-dire directement pour I'ensemble des balayages, auquel cas il déterminera les



différentes classes de motifs sans aucune implication du chercheur. Il est aussi possible
de sélectionner un sous-ensemble spécifique avec des cas préalablement classés par le
chercheur (ensemble d’entrainement) et de le fournir a l'algorithme qui cherchera a
reproduire la classification fournie. Cette derniére technique, dite apprentissage
supervisé, a été choisie pour cette étude car chaque type de motif est associé a des
caractéristiques physiques spécifiques.

Construction de I’ensemble d’entrainement

Dans cette étude, 'ensemble d’entrainement qui a été construit se composait de 30
cas de stries, 30 cas de rouleaux, 30 cas de thermiques et 60 cas appartenant a la
catégorie «autres» sur un total de 4577 balayages horizontaux. Les 30 cas de stries
sélectionnés correspondent a des motifs étroits et allongés (avec une dimension
transverse de quelques centaines de meétres) observés de facon concomitante avec un
fort cisaillement du vent prés de la surface (sous un jet). Afin de s'assurer que les motifs
étroits et allongés étaient principalement dus au fort cisaillement du vent et non aux
thermiques, les 30 cas de stries sélectionnés ont été choisis pendant la nuit, en particulier
entre 1800 UTC et 2200 UTC. Aprés 2200 UTC, le vent était généralement plus faible,
conduisant a un champ de vent radial non symétrique sans structures cohérentes et pour
lequel la méthode VAD ne fonctionnait pas ou mal. La moitié des 30 cas sélectionnés
proviennent des 15 premiers jours de la campagne, les cas restants étant répartis sur le
reste des deux mois.

En ce qui concerne les rouleaux de convection, seule la présence de allées de
nuages peut confirmer leur formation, aussi les 30 cas sélectionnés étaient soit
concomitants avec des allées de nuages visibles sur les images satellites de MODIS Aqua
ou Terra, soit ils appartenaient a des séries continues de balayages consécutifs
présentant des motifs similaires (motifs allongés de largeur supérieures a 1 km) dont 'un
balayages coincidait avec I'observation d’allées de nuages. Pendant la campagne, il y a
eu 8 jours pour lesquels les images satellite montrent des allées de nuages ; ainsi sur les
30 balayages de type «rouleaux » inclus dans I'ensemble d’entrainement, 6 se sont
produit début septembre, 9 mi-septembre et 15 la mi-octobre. Tous ces balayages ont été
enregistrés entre 1030 UTC et 1400 UTC.

Les 30 balayages de type « thermiques » de 'ensemble d’entrainement proviennent
de 23 jours différents répartis sur toute la campagne entre 900 UTC et 1500 UTC, avec
un cas vers 1700 UTC. La sélection était basée sur la présence de grands motifs fermés
(zones homogenes dans le champ mif-cs d'environ 1 km ou plus) observés pendant des
périodes avec des valeurs de rayonnement solaire horaire beaucoup plus élevées que la
moyenne mensuelle affichée par le systéme d'information géographique photovoltaique.



Enfin, le type « autres » était représenté par 60 cas, soit deux fois plus que chacun
des autres types. La raison de ce choix est la sensibilité des algorithmes a I'ensemble
d'apprentissage. Si I'ensemble d'entrainement n'est pas équilibré en fonction du résultat
attendu de la classification, cela peut résulter sur de mauvaises performances. On
s'attendait a ce que le jeu de données complet contienne une majorité significative du type
« autres » en raison des nombreux épisodes de vents faibles observés au cours de la
campagne. Par conséquent, il a été décidé d’inclure deux fois plus de cas du type
« autres ». Afin de représenter les différents sous-type du groupe « autres », les champs
de vent radial étaient non symétriques pour 53 des 60 cas tandis que pour les 7 derniers,
les champs de vent radiaux étaient symétriques, mais il n'y avait pas de motif défini. Parmi
les 53 cas avec un champ de vent radial non symétrique, 46 se sont produits dans des
conditions de vent calme ou faible : en revanche, les 7 cas sans motif défini se sont tous
produits dans des conditions de vent modéré (6-8 m-s). Les balayages du type « autres »
sont répartis sur les deux mois de la campagne, la majorité étant nocturne, avec
cependant 10 balayages enregistrés entre 0800 UTC et 1600 UTC.

Calcul des matrices de cohérence et des parametres de texture

Avant d'estimer les CM et par la suite les parameétres d'analyse de texture, il était
nécessaire de faire un prétraitement des champs de fluctuation du vent radial. Pour
commencer, une rotation a été appliqué a chaque champs mlf-cs pour que le vent moyen
semble toujours provenir du nord. En effet, on souhaitait que les structures soient classées
indépendamment de leur orientation (alignée avec le vent moyen pour les stries et
rouleaux). Ensuite, comme les points de mesure du vent radial sont localisés en
coordonnées polaires (direction du faisceau laser et distance le long du faisceau), il a fallu
interpoler les observations sur une grille réguliere en coordonnées cartésiennes, ce qui
est nécessaire afin de trouver les paires de pixels voisins. Pour terminer, il fallait répartir
les valeurs de vitesse radiale du vent dans un nombre réduit de classes de vitesse. La
priorité était de séparer les valeurs positives et négatives de la vitesse radiale du vent, car
elles correspondent a différentes directions des fluctuations du vent, donc différentes
zones dans la structure turbulente. Pour ce faire, les valeurs des fluctuations du vent ont
été divisées en 8 classes : la premiére classe contenait toutes les valeurs supérieures a
+0,5 m's?, les six classes suivantes étaient équitablement réparties entre +0,5 m-'s™ et
-0,5 m-s? et la derniére classe contenait toutes les valeurs inférieures a -0,5 m-s™. Ce
prétraitement a amélioré les motifs et les a rendus plus visibles méme a I'ceil nu.

Une fois le prétraitement effectué, les matrices de cohérence ont été calculées pour
chaque balayage, pour les paires de pixels du premier au trenti€me voisin (ordre nde 1 a
30 soit 50 & 1500 m de distance réelle) et pour 'ensemble des orientations possibles des
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paires (azimut ¢ de —90° soit une paire nord—sud, a +90° soit une paire sud—nord).
Ensuite, afin de mettre en évidence les différences entre les CM calculées pour les
différents types de motifs, les quatre parameétres d'analyse de texture ont été calculés a
partir de chaque CM de I'ensemble. Par conséquent, il était possible de tracer la variation
des parametres d'analyse de texture en fonction de I'azimut ¢ de la paire, pour un ordre
n donné. Les courbes des cas de rouleaux, et surtout des cas de stries, montrent un pic
proéminent a 0° pour certaines valeurs de n, par comparaison aux courbes plus lisses
des cas de thermiques et des cas du type « autres ». En effet, I'orientation 0° correspond
aux paires de pixels orientées ouest—est (perpendiculaires au vent moyen aprés rotation
des champs) pour lesquelles des valeurs similaires de la fluctuation du vent radial peuvent
étre observées lorsque n correspond a une période des stries ou des rouleaux. Au final,
cela signifie que I'amplitude de la courbe des paramétres de texture (différence maximum-
minimum) doit varier selon le type de structures observé. Un motif parfaitement aligné
avec le vent moyen doit également étre symétrique autour du 0°, alors que pour les motifs
aléatoires comme ceux des types thermiques et « autres », cela n’est pas nécessairement
le cas. Le parameétre de symétrie ainsi que la somme des points (intégrale de la courbe)
ont donc également été calculés, en plus de 'amplitude. Le calcul de ces « paramétres
de courbe » ne fait pas partie du processus standard de classification des images décrit
dans la littérature. Cette étape a été ajoutée afin de réduire le nombre de parameétres
fournis a l'algorithme de classification automatisée. En effet, un trop grand nombre de
paramétres peut créer un probléme de multi-dimensionnalité dans l'algorithme, ce qui
diminue ses performances.

Pour I'ensemble d'apprentissage, les trois paramétres de courbe pour les quatre
parameétres d'analyse de texture ont été calculés, et ce pour les voisins d'ordre 1 a 30, ce
gui porte le nombre de classificateurs a 360. Trois paramétres physiques ont également
été inclus : la vitesse moyenne du vent et I'erreur quadratique moyenne (RMSE) obtenue
lors de la régression de la méthode VAD, ainsi que I'heure UTC (qui est proche de I'heure
solaire a Paris). Les 363 classificateurs calculés pour chaque balayage de I'ensemble
d’entrainement ont été fournis a l'algorithme d’analyse discriminante quadratique (QDA)
suivant un algorithme glouton de sélection progressive. L'erreur de classification a été
estimée sur la base de la validation croisée en 10 blocs : l'algorithme est entrainé en
utilisant seulement 90% de I'ensemble d'apprentissage, tandis que les 10% restants
(15 cas) sont utilisés pour tester le résultat de la classification en le comparant au résultat
attendu. Ce processus est répété 10 fois afin que les 150 cas de l'ensemble
d’entrainement soient tous utilisés tour a tour pour validation. Dans le méme processus,
I'algorithme sélectionne les classificateurs qui minimisent l'erreur (nombre de cas
incorrectement classifiés).
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Chapitre 3 - Résultats

Classification de I’ensemble d’entrainement et performance
de I'algorithme de tri

L'erreur obtenue était légérement supérieure a 9% avec les cing classificateurs
sélectionnés par la méthode QDA car ils minimisent l'erreur. Ces classificateurs
correspondent a des distances variées dans 'espace réel — 2°™ voisin (100 m), 8™ voisin
(400 m) 18°™me voisin (900 m) etc. — ceci est particuli@rement important pour distinguer les
grands motifs des petits. Il est également confirmé que les amplitudes des courbes
d'homogénéité et de contraste constituent des classificateurs significatifs pour les
structures, ce qui signifie que les pics proéminents des courbes différencient effectivement
les types de motifs. Les intégrales des courbes de contraste et de corrélation ont
également été sélectionnées par l'algorithme. En effet, le type « autres » se caractérise
par des motifs chaotiques tandis que le type « thermiques » se caractérise par de grandes
zones homogenes, ce qui se traduit par des différences dans les intégrales des courbes
pour des paramétres tels que le contraste et la corrélation, en particulier pour les distances
moyennes (8™ voisin / 400 m) a grandes (18°™ voisin / 900 m). Il est & noter que la
symétrie de la courbe d'homogénéité a été sélectionnée par l'algorithme. Cela confirme
I'importance d'aligner tous les champs mlf-cs dans la méme direction. L'un des résultats
les plus frappants, cependant, est qu'aucun des trois parameétres physiques n'a été
sélectionné par l'algorithme, malgré le fait que I'heure de la journée pourrait permettre de
faire la distinction entre les structures nocturnes (stries) et diurnes (thermigues, rouleaux).

L'algorithme QDA a donné les meilleurs résultats pour la classification des
structures de type « stries » : il a classé correctement 29 des 30 cas de stries inclus dans
I'ensemble d'entrainement, le dernier étant incorrectement classé parmi les rouleaux. La
deuxieme meilleure performance concerne la catégorie « autres », pour laquelle 58 des
60 cas ont été classés correctement, les deux derniers étant classés a tort parmi les
thermiques. Les performances de l'algorithme pour les cas de rouleaux étaient également
bonnes, avec 27 cas correctement classées et 3 cas classées a tort comme
« thermiques ». La performance la moins satisfaisante concerne les thermigues, méme si
24 cas ont été correctement classés. Parmi les 6 cas incorrectement classés, 4 cas ont
été a tort classés comme des rouleaux et 2 cas comme du type « autres ». Il est important
de noter que différentes options de I'algorithme de tri, d'autres parameétres d'analyse de
texture ou un ensemble d'apprentissage plus large pourraient encore améliorer les
résultats de la classification. Un algorithme de plus haut niveau qui révelerait la meilleure
combinaison de paramétres minimisant I'erreur serait particulierement utile.
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Classification des deux mois de données, conditions
d’occurrence des structures

Les cinq classificateurs sélectionnés par [lalgorithme lors du processus
d’entrainement ont été utilisés pour classifier 'ensemble des 4577 balayages horizontaux
enregistrés pendant la campagne. L'algorithme a classé 46% des balayages dans la
catégorie « autres », 25% comme stries, 9% comme rouleaux (les structures cohérentes
totalisent ainsi 34%) et 20% comme thermiques. Bien que les classificateurs sélectionnés
n’incluent pas I'heure de la journée, le cycle diurnes moyen des structures observées au
cours de la période de deux mois concorde avec les attendus théoriques. En patrticulier,
la grande majorité des cas de rouleaux (87%) et de thermiques (77%) ont été trouvés
pendant la journée, entre 0800 UTC et 1800 UTC comme attendu puisque ces structures
se développent dans une atmosphére convective. A 'opposé, la plupart des cas de stries
(66%) et des cas de type « autres » (79%) ont été trouvés pendant la nuit, de 1800 a
800 UTC. Cela était attendu pour les stries car des jets nocturnes se sont produits pendant
20 des 63 nuits de la campagne, de sorte que des conditions étaient fréquemment
favorables a la formation de structures de type stries. Concernant les cas de type
« autres », 75% d’entre eux sont associés a des valeurs moyennes de vent inférieures a
4 m-s, ce qui correspond au fait que le type « autre » correspond le plus souvent a des
champs de vent asymétriques observés par vent faible. En revanche, les cas classés
comme stries et comme rouleaux étaient principalement associés a des valeurs de vent
moyen modérées, entre 4 et 10 m-'s™!, comme c'est le cas dans la littérature.

La méthodologie de classification automatique a rendu l'analyse statistique des
conditions d’occurrence des différents types de structures pendant les deux mois rapide,
facile et fluide. En particulier, il était possible de sélectionner uniquement les dates
auxquelles I'épaisseur de 'ABL pouvait étre estimée et d'associer ce paramétre aux
différents types de structures. A noter que la précision sur I'épaisseur de '’ABL n'était pas
essentielle pour les besoins de cette étude, une valeur approximative était suffisante. La
hauteur de 'ABL a été estimée en utilisant les faisceaux LOS verticaux des observations
du lidar Doppler pendant la nuit et les observations du lidar aérosol pendant la journée.
Pendant la nuit, la méthodologie repose sur I'écart type du vent vertical (o,,) calculé a
partir des multiples tirs LOS enregistrés pendant des périodes de 30 secondes. La valeur
de o,, est plus élevée dans la couche limite du fait de la turbulence, passe par un
maximum au sommet de la couche limite, dans la zone d’entrainement, puis décroit au
passage dans la couche résiduelle. La hauteur ABL a donc été estimée grace au
maximum de g,,. Cette méthode fonctionne pendant la nuit, car les aérosols dans la
couche résiduelle fournissent un niveau de signal suffisant pour que le lidar Doppler
mesure le vent au-dessus de I'ABL. Pendant la journée, il n'y a la plupart du temps aucune
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mesure de vent au-dessus de I'ABL car la troposphére libre est trop propre. Par
conséquent, le profil de variance du vent vertical est incomplet et ne peut pas étre utilisé
pour estimer la hauteur de 'ABL.

La survenue de LLJ nocturnes peut également compliquer la détermination de
I'épaisseur d’ABL. En effet, on définit alors le sommet de 'ABL comme la frontiére
inférieure du cceur de jet (altitude du maximum de vent). Cependant, le fort cisaillement
du vent peut générer des turbulences et éventuellement augmenter la hauteur de I'ABL.
Pour I'étude actuelle, la hauteur ABL n'a été estimée que via les valeurs d'écart-type du
vent vertical pendant la nuit, méme lorsque des jets se sont produits, car la précision dans
I'estimation de la hauteur ABL n'était pas une priorité pour cette étude.

De jour, ce sont les observations de lidar d'aérosol qui ont été utilisées pour
déterminer I'épaisseur de la couche limite. La concentration en aérosols étant nettement
plus élevée dans I'ABL, le signal lidar corrigé de I'atténuation géométrique (Pr2) diminue
fortement au passage de 'ABL vers la troposphére libre. Le minimum de la dérivée
premiére du Pr? a ainsi été utilisé pour I'estimation de la hauteur d’ABL. A l'inverse du lidar
Doppler, les observations du lidar aérosols ne peuvent pas étre utilisées pour l'estimation
de la hauteur d’ABL pendant la nuit, ceci en raison de la zone aveugle du lidar CAML, qui
est de 'ordre de 200 m. Par ailleurs, pour les deux types de lidar, I'estimation de la hauteur
ABL n’est possible qu’en ciel clair. En effet, les nuages bas, le brouillard, les précipitations
ou tout autre phénoméne météorologique qui absorbe la lumiére du laser « éteint » le
signal des lidars rend impossible I'estimation de la hauteur d’ABL.

La hauteur ABL a pu étre estimée avec précision pour la majorité de la période de
24 heures pendant 18 des 64 jours de la campagne. Ces 18 jours ont été sélectionnés
afin d'examiner la relation entre la hauteur ABL et les types de structures observés. 94%
des balayages classés comme «rouleaux» et 80% de ceux classés comme
« thermigques » se sont produits dans une ABL en cours de développement (de 350 a
1000 m d’épaisseur) ou déja bien développée (1000 a 2000 m d’épaisseur). Au contraire,
90% des balayages classés comme « stries » et 86% de ceux classés comme « autres »
ont été associés a une ABL fine (moins de 350 m d’épaisseur).

Etude de cas, largeur des structures allongées

Une étude de cas de 4 jours, avec formation d’un LLJ tous les soirs, a montré que
les structures de type stries apparaissent en méme temps que le LLJ. Au cours des
matinées, au fur et & mesure que le LLJ disparait et que les instabilités thermiques se
développent, les stries sont remplacées par des structures de type thermiques ou
rouleaux. La différence de taille horizontale entre stries et rouleaux a été confirmée par
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I'estimation de la période spatiale dans la direction perpendiculaire au vent moyen
(direction transverse). Cette grandeur est estimée grace au spectre de la vitesse radiale
du vent dans la direction transverse, calculée par Transformée de Fourier Rapide (FFT).
Plusieurs études ont montré que ce spectre présente des pics distincts correspondant aux
périodicités des structures. Afin d’accroitre le domaine spatial couvert, donc les longueurs
d’'ondes accessibles, les deux faisceaux opposés du balayage quasi-horizontal et situé
dans la direction transverse sont combinés avant de calculer la FFT. Ces deux faisceaux
sont enregistrés avec 90 secondes d’écart, il faut donc supposer que les structures
gardent les mémes propriétés au fur et a mesure de leur défilement au-dessus du lidar,
c'est-a-dire qu'elles sont homogénes dans la direction du vent moyen (direction
longitudinale) sur une distance de l'ordre de 200 a 700 m (90 s multiplié par la vitesse
moyenne du vent, qui est d'environ 2 a 8 m-s). Cette distance est du méme ordre de
grandeur que les périodicités visibles dans la direction transverse, il est donc raisonnable
de supposer que les structures allongées ne varient pas sur une telle distance dans la
longitudinale.

L'utilisation d'une seule paire de faisceaux produit des spectres trés bruités, de sorte
gue les spectres des cing paires de faisceaux les plus proches de la direction transverse
ont été calculés, puis moyennés. Avant d'appliquer la FFT, le champ de vent radial a été
converti des coordonnées polaires en coordonnées cartésiennes et interpolé sur une grille
réguliere afin que tous les points de la grille aient un espacement égal a 50 m dans la
direction transverse. Les périodicités observées (comprenant une bande positive et une
bande négative dans le mlf-cs) varient entre 400 et 800 m pour les balayages classés
comme stries, et entre 1,3 et 2 km pour les balayages classés comme rouleaux. A noter
gue les spectres étaient limités a 300 m du c6té des courtes longueurs d'onde courtes.
En effet, méme si la résolution du lidar (50 m) devrait permettre de descendre jusqu’a
100 m, la partie du spectre correspondant aux longueurs d’onde comprises entre 100 et
300 m est trop bruitée pour pouvoir y distinguer les pics associés aux stries.

Il est compligué de comparer les valeurs de périodicités obtenues ici avec la
littérature. En effet, dans le cas des rouleaux, on a observé leur taille au niveau de la base
de la structure, dans le bas de la couche de mélange. En revanche, les autres études,
notamment celles basées sur des données aéroportées, ont observé les rouleaux au
milieu de la couche mélangée. Malgré cela, les spectres ont clairement montré des tailles
différentes pour les rouleaux et les stries. Par conséquent, les tailles horizontales
pourraient étre un parametre pour valider la classification. Les tailles horizontales ont été
estimées uniquement pour les structures cohérentes car les modéles aléatoires des
thermiques ne produisent pas de pics clairs dans les spectres.
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Conclusions géneérales

La classification automatisée des mlf-cs fournit un moyen cohérent d'identifier et de
classer les structures. Il peut étre implémenté dans n'importe quel autre ensemble de
données indépendamment de la date, de la durée et du lieu tant que les modéles des
champs mlf-cs sont similaires. Les résultats indiquent une bonne concordance entre les
structures classées et les paramétres physiques. Les résultats pourraient encore étre
améliorés en optimisant la sélection des parametres d'analyse de texture et/ou de
l'algorithme d'apprentissage automatique supervisé. Néanmoins, cela crée des
possibilités passionnantes pour de nouvelles études.

Jusqu'a présent, les observations lidar du vent n'ont pas été utilisées pour une
analyse statistigue des propriétés physiques des structures en raison des limites de
l'identification visuelle des structures dans les grands ensembles de données. La
classification automatisée peut aider de telles études. De plus, elle peut étre combiné
avec des modéles LES' afin d’examiner I'impact des structures sur les concentrations de
polluants. Enfin, comme le lidar est capable d'estimer le profil des paramétres turbulents
(flux de moment et énergie cinétique turbulente) en utilisant une configuration de balayage
appropriée, il serait possible d'alterner entre des balayages horizontaux, donc des champs
mif-cs, et des mesures des parametres turbulents. De cette maniere, la possibilité
d'observer des sous-catégories plus fines de structures pourrait étre examinée.

10 ES : Large Eddy Simulation (simulation a grand tourbillons)
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Introduction

The atmospheric boundary layer is the part of the atmosphere containing the
turbulent motions, which are particularly interesting in meteorology for their chaotic
behaviour and their unpredictability. Nevertheless, in the turbulent atmosphere, it is still
possible to observe some coherent structures. These coherent structures are
characterized by patterns of alternating low and high wind speed areas. They are
important structures as they can affect pollutants’ concentrations, aircraft landing and
takeoff or wind turbine operations. It is possible to identify such structures in radial wind
observations provided by Doppler lidar or radar scans. However, lidar or radar studies so
far are limited to particular cases for short periods of time, as the analysis of large wind
lidar datasets with regards to the coherent structures can be a cumbersome process.
Furthermore, the visual identification of the structures is not consistent as it depends on
the researcher, thus making the participation of multiple researchers necessary in order
to ensure the validity of the identification.

The limitations caused by the visual identification can be overcome by an algorithm
that automatizes the classification of the structures based on their patterns. For the current
study, an innovative method was developed to identify and classify the patterns based on
a single Doppler wind lidar (Windcube WLS100). The methodology relied on the image
classification principle and it was based exclusively on texture analysis parameters. A
supervised machine learning algorithm revealed the texture analysis parameters that
could classify with higher accuracy a training ensemble of coherent structures as well as
other types of patterns. Subsequently, a large dataset of scans recorded in Paris for a two-
month campaign was classified based on these texture analysis parameters. By analyzing
the physical properties of the classified structures it was evident that the different patterns
were characterized by similar physical properties.

The successful development of an automated classification of coherent structures
facilitates the analysis of large datasets while providing consistency. The automated
classification is not dependent on the subjective judgement of the individual researcher.
Moreover, it is not dependent on the location nor on the period of the year. As long as the
patterns in the radial wind fields are similar, the methodology is applicable. This research
can pave the path for unique studies that are currently hard or impossible to perform. For
instance, a statistical analysis of the physical characteristics of the structures can be
carried out. Furthermore, a study examining the correlation between the structures and
pollutants’ concentrations for long periods is feasible. Any study that requires large
datasets and is so far rare or impossible to perform can be achieved.
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In the current manuscript, a step by step presentation of the automated classification
methodology development for medium-to-large fluctuations and coherent structures is
demonstrated. Additionally, the state of the art regarding wind lidar observations with
respect to coherent structures is presented along with all the relevant information
regarding texture analysis and supervised machine learning as means to classify images.
The performance of the classification in the two-month dataset is showcased and the
results are explained and discussed. More analytically, the manuscript is divided in four
chapters as follows:

Chapter 1 contains all the theoretical background information related to this study.
Atmospheric boundary layer, coherent structures, wind lidar observations and the different
scanning techniques are discussed along with illustrations in order to provide a better
understanding for each term. Additionally, all the essential information regarding image
classification are included in Chapter 1. More particularly the different steps for the image
classification process are presented via an ideal case. The texture analysis parameters
and supervised machine learning techniques that are relevant to this study are described
as well.

In Chapter 2 the methodology as well as the means to obtain the observations are
displayed in full details. First by introducing the experimental set-up and the area under
observation and consequently, by describing the implemented methods for the
measurement instruments, namely wind and aerosol lidar, along with their ability to record
parameters useful for this study. The aim of this study was to identify and classify coherent
structures and therefore an analytical description of how to estimate medium-to-large
fluctuations and coherent structures fields based on radial wind observations is featured
in this chapter. Then the methodology is introduced with arguments for each step and
choices that were made. Chapter 2 also includes the description of the estimation for two
important physical parameters in this study, namely the atmospheric boundary layer height
and the horizontal size of the structures.

The results are showcased in Chapter 3 in the form of journal articles. The first paper
presents the automated classification methodology and its’ results for a training ensemble
of 150 cases. This manuscript has been published in the peer-reviewed journal
Atmospheric Measurement Techniques in December 2020. The second article presents
the implementation of the classification in the whole ensemble (4577 cases) of the two-
month campaign in Paris. The physical properties of the structures are displayed as well.
This paper is pending submission in a peer-reviewed journal specialized in atmospheric
physics. An introduction precedes each paper to provide insights about the particular
study. Additionally, a discussion part follows each paper in order to pinpoint the strongest
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remarks and indicate possible suggestions for future studies or improvements of the
results.

Finally, all the major points of the study are summarized in the conclusions including
arguments regarding the improvement of the methodology and possible applications for
future studies.
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1.1 Fundamental concepts

The troposphere is the lowest part of the atmosphere extending from the Earths’
surface to approximately 10 km in altitude in mid-latitudes, 9 km in high latitudes and 16
km in the tropics on average. Aside from being the part of the atmosphere where humans
are living, it is also the home for the vast majority of the weather events and clouds’
development (Shonk, 2013). Notwithstanding only a fraction of the troposphere, namely
the atmospheric boundary layer (ABL), can be affected directly by the earths’ surface, with
incidents such as friction, heat transfer, pollutants’ emission, evaporation and transpiration
etc. The ABL occupies the lowest layer of the atmosphere and ranges in depth from
dozens of meters to few kilometers depending on time and space. The layer above the
ABL is known as the free atmosphere. The main distinction between the two parts is the
diurnal variation of air temperature which is evident in the ABL but not in the free
atmosphere. As the grounds responds to the solar radiation by becoming warmer or
cooler, the air near the surface will be affected via the transport processes. It is possible
that the surface characteristics will influence the entire troposphere. However, above the
ABL, the change will be slow in comparison and thus the two parts of the troposphere can
be distinguished (Stull, 1988). The current study concentrates exclusively on the
atmospheric processes within the ABL.

1.1.1 The atmospheric boundary layer

As stated in Section 1.1, the ABL is defined as the part of the atmosphere that is
affected by the earth’s surface. The understanding of the atmospheric processes within
the ABL is vital for various research fields. The transport and dispersion of atmospheric
pollutants or their dry deposition on the Earths’ surface, the development of low clouds or
severe wind shear (e.g. low-level jets) that affect the take-offs and the landings in the
aviation sector, all take place in the ABL. Furthermore, the accuracy of the weather
forecasts and climate predictions depend immensely on the realistic representation of the
ABL atmospheric processes in the numerical weather prediction and climate models
respectively (Garratt, 1994). More particular, it is important to simulate successfully the
ABL flow in order to predict the transport, mixing and dispersion, transformation and
interaction with soil and vegetation of the meteorological and atmospheric variables within
the ABL. In this regard the most important meteorological and atmospheric variables are
the wind, air temperature, air moisture and the inert and reactive atmospheric compounds.

1.1.1.1 Diurnal cycle and internal layering

The ABL depth is characterized by a strong diurnal evolution over continental
regions. The main driving processes of the diurnal variations of the ABL are the heat
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exchanges in the earths’ surface, namely the shortwave and longwave radiative fluxes,
the sensible and latent heat fluxes and the ground energy fluxes (Garratt, 1994; Pal and
Haeffelin, 2015). These fluxes dictate the surface temperature and as a result, they affect
the air temperature near the surface. Additionally, the meteorological conditions, soil
moisture and the surface roughness can also influence the diurnal variation of the ABL
over a continental region (Davis et al., 2020). On the contrary, over ocean regions which
are defined by large heat capacity and as a result the air temperature near the surface
undergo slow changes, the diurnal variation is insignificant. Moreover the surface
roughness is explicitly related to the waves and is one of the smallest in nature surfaces,
hence its’ impact is also negligible (Larsen, 2013). It is noteworthy that over coastal
regions, the sea-breeze circulations along with the atmospheric and surface conditions
and the orography determine the ABL depth (Anurose et al., 2018; De Tomasi et al., 2011,
Miller, 2003).

The ABL can be divided in subcategories with regards to its’ diurnal cycle
development. During the daytime, the surface heating drives the development of the ABL.
The thermal instabilities, generated by the surface heating, create convective conditions
that give the name convective boundary layer (CBL) or mixed layer (ML). The ABL is
separated from the free atmosphere by the entrainment zone where exchanges between
the ABL and the free atmosphere occur during the day. On the other hand, the radiative
cooling during the night time, creates a stability in the atmosphere near the surface thus
leading to a stable boundary layer (SBL), also known as nocturnal boundary layer (NBL)
(Fernando and Weil, 2010). The shifting periods from the SBL to the CBL and vice versa
are known as morning and evening transitions respectively. A neutrally stratified layer
remains above the SBL during the night that is not being affect by the surface related
properties, known as the residual layer (RL) (Fochesatto et al., 2001). The characteristics
of the RL, such as mean state and concentration variables, remain initially the same as
the ones of the preceded ML (Stull, 1988). There are not many exchanges between the
residual layer and the free atmosphere, hence the layer that separates the two is known
as the capping inversion. Figure 1 showcases the diurnal evolution of the ABL.
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Figure 1: Diurnal evolution of the ABL. Adapted from Stull (1988).

1.1.1.2 Impact on pollutants’ dispersion

Since the different subcategories of the ABL are defined by diverse stability
conditions, consequently the behaviour of the pollutants varies within the ABL. The intense
instabilities in the CBL can disperse the pollutants away from the source and clear the
atmosphere near the surface. However, under the stable conditions in the SBL, the
pollutants can be trapped near the surface and eventually accumulate into large
concentrations (Russell et al., 1974; Sportisse, 2010). The role of the RL can be also
important in the concentration of the pollutants. As pollutants remain in the RL during the
night, they can be entrained near the surface on the following day (Kim et al., 2007). It is
also noteworthy that although pollutants are able to spread rapidly upon entering into the
atmosphere, their removal is a rather slow process. More specifically, pollutants are
removed from the atmosphere explicitly by naturally occurring processes, such as dry
deposition on surfaces, precipitation, radioactive decay and chemical reactions. These
removal processes can be harmful for the environment as well as for human health. The
products of chemical reactions, e.g. photochemical oxidants can be catastrophic for the
atmosphere and combined with phenomena such as acid deposition and acid rain can
cause serious issues on human health (Johnson and Siccama, 1983). The movement of
pollutants in the atmosphere is driven by the synoptic wind field, the turbulent motions
(see Section 1.1.2) causing dispersion in all directions and the deposition (Bolin and
Persson, 1975). Their movement along with the emission rates of the pollutants’ source
and the atmospheric conditions define the evolution of pollutants’ concentrations. This is
essential information in order to determine areas suitable for the installation of potential
sources of pollution as well as to predict possible long-term consequences of their
utilization. In this manner several dispersion models are developed for the mathematical
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description and prediction of the spatial and temporal distribution of contaminants released
in the atmosphere (Heinsohn and Kabel, 1998).

1.1.1.3 Measuring the ABL height

For the aforementioned reasons, the urgency to estimate accurately the ABL height
is apparent. Fortunately, there are various meteorological parameters to exploit in order
to estimate the ABL. Most notably the temperature, the humidity and the aerosol or
molecules’ concentrations. More particularly, in the top of the ABL there is a definite
temperature inversion, meaning that the temperature is increasing with height at that level
(Kotthaus and Grimmond, 2018). In this case the ABL height is considered at the base of
the temperature inversion (Ao et al., 2012; Seibert et al., 2000). Additionally, potential
temperature can provide an estimation of the ABL height, with the maximum vertical
gradient level corresponding to the ABL height (Oke, 1988). Regarding humidity, a
significant decrease is observed in the absolute and relative humidity between the ABL
and the free atmosphere (Guo et al., 2011). For both the specific and the relative humidity,
the ABL height is estimated as the level where the minimum of their vertical gradients is
found (Ao et al., 2012; Chandra et al., 2014). Aerosol or pollutant concentrations can also
reveal the level of the ABL height as a clear separation between the high aerosol or
pollutants concentrations inside the ABL and the clean free atmosphere can be observed
(Cimini et al., 2013; Pal et al., 2010).

Such parameters can be observed by in-situ and/or remote sensing methods, using
different experimental techniques and analysis methods employing sodar, lidar, wind-
profiling radar, tethersonde and radiosonde observations (Seibert et al., 2000). Overall,
radiosonde observations serve as the superior technique for the determination of
boundary-layer height using profiles of temperature and specific humidity (Schmid and
Niyogi, 2012). However, radiosonde observations are expensive so they are practically
limited to fixed time intervals, usually 12 or 6 hours, 3 hours at best (Seidel et al., 2012;
Wang and Wang, 2016; Zhang et al., 2014). The evolution of the convective boundary
layer (CBL) can be rapid during the forenoon period (De Tomasi et al., 2011; Tucker et
al., 2009), hence such observations may have severe limitations for capturing rapid CBL
development. Furthermore, the determination of the daytime CBL height using continuous
sodar observations is often constrained by the upper height limit of observations with
sufficient signal-to-noise ratio (mostly <800 m height) (Lokoshchenko, 2002).

On the other hand, continuous profiles of backscattered signal strength and
structure constant observed using wind-profiling radars or lidars are good tracers of the
ABL height and its diurnal variation (Bianco et al., 2011). Lidar observations can provide
the mixed-layer height (Chen et al., 2001; De Tomasi et al., 2011), but in general, the lidar-
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derived mixed layer height is slightly greater than the thermodynamic boundary-layer
height as thermals can overshoot to greater heights than the top of the adiabatic
temperature profile (Caicedo et al., 2017). Another potential tool in order to determine the
ABL height and its diurnal evolution during both cloudy and clear-sky conditions, is the
continuous observation of temperature and humidity profiles derived from a microwave
radiometer profiler (MRP) (Cimini et al., 2006; Coen et al., 2014; Solheim et al., 1998).
High temporal resolution of such observations enables determination of the rapid growth
of the daytime CBL as well as its decay (Renju et al. 2017). In general, the height of the
CBL can reach 5 km in low-latitude deserts during a summer day and only 500 m over the
ocean (Mehta et al., 2017). Concerning the SBL, its’ height is usually below 500 m
(Garratt, 1994).

1.1.2 The turbulent atmosphere

The influence of surface friction, heating etc. is quickly and efficiently transmitted to
the entire ABL through the mechanism of turbulent transfer or mixing. Momentum, heat
and mass can also be transferred downward to the surface through the ABL by the same
mechanism (Arya, 2001). Atmospheric turbulent flows consist of three-dimensional,
rotational motions characterized by high unpredictability. Despite of their unpredictability,
turbulent flows can be analysed as a sequence of coherent patterns of velocity, vorticity
and pressure known as eddies. Eddies vary over a wide range of intensity, as well as
length and time scales. Strong eddies with size equivalent to the depth of the boundary
layer are associated with intense wind shear, complex topography and thermals. On the
other hand, the smallest eddies have diameters of a few millimetres and are particularly
weak due to the molecular viscosity’s impact. The moving air parcels have kinetic energy
with the term related to the turbulent motions known as the turbulent kinetic energy (TKE).
The different eddies’ sizes are associated with different TKE values. By analysing the TKE
in the spectral space, there are three major spectral regions that correspond to the
different eddies’ sizes (see Figure 2). The first region corresponds to the large eddies with
long periods characterized by the maximum TKE values, representing the energy
production. This region is referred as the energy containing region. The second region
showcases a decrease of the TKE, however the energy does not dissipate but rather
passes from big to small eddies and it is known as the inertial region. Finally, there is the
dissipation range representing the smallest scale in atmospheric sciences. As the name
implies it is the region where the TKE dissipates to internal energy (Harnby et al., 1985).
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Figure 2: The TKE spectrum showcasing the different ranges with respect to the atmospheric
scales.

The urban areas present interesting topographies with regard to development of
turbulence. Turbulence is there enhanced by surface roughness due to the complexity of
the topography, along with the potential effect in the atmospheric instability as a result of
the urban heat island effect (Roth, 2007). It is important to note that, in this manuscript,
the focus is only on medium-to-large fluctuations and coherent structures (mlf-cs from few
hundred meters to 2 km) and not the small scale turbulence (below 100 m). Additionally,
this study examines the coherent structures in the atmosphere. Structures associated with
wall turbulence, such as hairpins or packets, are also referred as coherent structures in
studies at laboratory scales (Adrian, 2007; Hutchins and Marusic, 2007), but they were
not examined during this study.

1.1.2.1 Coherent structures

Although turbulent flows are characterized by high unpredictability, coherent
structures can still be formed within a turbulent atmosphere (Tur and Levich, 1992).
Coherent structures occur when the eddies are organized in a quasi-periodic pattern in
the two horizontal dimensions. This organized area extends over a large area (i.e. a large
number of adjacent patterns). Furthermore, a coherent structure must maintain its form
for a time period sufficient for time-averaged statistics calculations (Hussain, 1983). Young
et al. (2002) have presented in their review the most typical types of coherent structures
in details, namely the turbulent streaks, the rolls and the gravity waves.

Turbulent streaks are defined as narrow stripes, aligned with the horizontal wind
direction, alternating from high to low horizontal winds. The spacing between the streaks
is typically in the magnitude of hundreds of meters, with the vertical expansion sometimes
reaching the mixed layer. Their lifecycle is rather short, reaching several tens of minutes
before regenerating (Drobinski and Foster, 2003). The major factor for the formation of
streaks is the high wind shear development between the surface layer and lower mixed
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layer. The turbulent motions driven by the wind shear instead of buoyancy tends to create
these streak patterns (Moeng and Sullivan, 1994). The wind shear near the boundary layer
top generates small scale turbulent motions which create these alterations between high
and low wind values, as the ascending motions diminish the horizontal wind speed and
the descending motions accelerate it (Khanna and Brasseur, 1998). Figure 3 illustrates an
example of the airs motions during streaks formation.

N
“’@ :
s

High wind
Low wind

PHp

Mean wind

Figure 3: Air motions in the surface layer during streaks occurrence with the black cycles
representing eddies.

The streaks can be formed during stable and unstable conditions, but the most
favourable conditions for their formation are under neutral or near-neutral stratifications
(Khanna and Brasseur, 1998). It is possible to visually detect the streaks formation when
they are accompanied by low clouds or fog events (MacDonald et al., 2020;
Nakanishi, 2000). In the review of Young et al., (2002) a picture of streak formation during
a steam fog event over the Lake Michigan, United States of America, when the patterns
are visible, is displayed. It is noteworthy that this type of elongated streak patterns have
been observed in laboratory shear flows as well (Kline et al., 1967).

Rolls are also elongated patterns aligned with the horizontal wind direction. They
develop in the mixed layer extending from the surface to the capping inversion
(LeMone, 1973). The spatial variations of the surface-layer heat flux, the low-level wind
shear and the surface homogeneity favour the development and maintenance of the rolls
(Weckwerth and Parsons, 2006). Opposite to the streaks, the rolls are formed during
strong thermal instabilities when the buoyancy is the dominant parameters compared to
the wind shear (Moeng and Sullivan, 1994). The rotation of the large eddies results in
ascending and descending motions in the ABL. Figure 4 portrays an example of the air
motions during rolls formation.
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Figure 4: Air motions during rolls formation.

The depiction in Figure 4 corresponds to convective rolls when the saturated
atmosphere leads to clouds formation. These cases are particularly interesting as the
clouds are formed in rows separated by clear sky areas, a phenomenon known as cloud
streets (Lohou et al., 1998). In that manner it is possible to visually detect the rolls cases,
especially on satellite images. In Figure 5, an example of cloud streets over Paris and its’
surrounding area as recorded by the MODIS*! instrument aboard the Terra satellite (true
colour reconstructed image) is displayed.

Figure 5: Cloud streets over Paris and its’ surrounding area as recorder by the satellite true color
image of MODIS Terra on 11/09/2014 at 11:10 UTC.

Rolls may also form however under relatively low humidity conditions impeding
cloud formation. This phenomenon is known as “dry streets” (Kuettner, 1959, 1971). Such
formations in the atmosphere were observed by analysing the behaviour of birds’
movement (Woodcock and Wyman, 1947). Furthermore, glider pilots have experienced
the presence of rolls during clear sky days and thereafter radar observations have
confirmed the existence of “dry streets” (Konrad, 1968). Apart from being much larger
structures than streaks, rolls also have a much more extensive lifecycle ranging from
hours to even days (Drobinski and Foster, 2003). Young et al., (2002) further distinguished
the rolls in two types with regards to their size. Ascending areas that are only one thermal
wide correspond to narrow mixed-layer rolls, visually identified as “string of pearls”

11 MODIS: Moderate Resolution Imaging Spectroradiometer
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(Weckwerth et al., 1999) while multiple grouped thermals consist in wide mixed-layer rolls,
visually identified as a “band of froth” (Brimmer, 1999).

When the instability in the mixed layer is strong and the synoptic wind is weak,
convection does not organize into rolls but into cells (Etling and Brown, 1993). Two types
of cells are observed. The first type is the open cell characterized by clear air enclosed by
clouds and it is detected during unstable conditions in the surface layer. The other type is
the closed cell characterized by cloudy areas surrounded by clear air and it is detected
during stable conditions in the surface layer (Lenschow and Agee, 1976). Since a low level
wind shear favours the formation of both rolls and streaks, these structures often coexist
(Farrell and loannou, 2012).

Finally, the gravity waves appear between stable layers of atmosphere with different
density. When the equilibrium is disturbed, waves propagation is caused by the efforts of
gravity or buoyancy to restore the balance(Fritts and Alexander, 2003). The gravity waves
forced from the free troposphere or from within the mixed layer are able to develop
coherent structures in the mixed layer during convective conditions (Balaji and
Clark, 1988). According to theory, convection waves showcase three propagation
behaviours which are: trapping in the capping inversion, trapping in the troposphere, and
propagation into the stratosphere (Young et al.,, 2002). Persistent rolls over a large
distance can eventually fuse into larger structures due to interactions with gravity waves.
The large number of parameters involved in this mechanism complicates its’
understanding (Etling and Brown, 1993). The spatial periodicity of the rolls is an indication
as to whether the rolls are imposed by gravity waves or not. Spatial periodicity values
equivalent to the Brunt-Vaiséla frequency multiplied by the plane velocity presumably
imply the existence of gravity waves (Bernard-Trottolo et al., 2004).

In this work, only the turbulent streaks and rolls structures were considered based
on the description of Young et al. (2002). The main aspects of these structures are
summarized in Table 1. The gravity waves structures were out of the scope of this study,
as the physical parameters available during the campaign for the characterization of the
structures were limited. Similarly, the cells structures were not considered in this work.
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Table 1: Characteristic physical aspects of the rolls and streaks structures.

Rolls Streaks
Height Mixed Layer Near the surface
Horizontal spacing Few km to few 10 km Few 100 m
Duration Hours Tens of minutes
Orientation Aligned with the synoptic wind Aligned with the synoptic wind
Wind conditions High or moderate High or moderate

1.1.2.2 Coherent structures and air pollution dispersion

As already exposed in Section 1.1.1.2, atmospheric instability and turbulence plays
a major role in the dispersion of pollutants. The coherent structures and more particularly
rolls can also affect the pollutants’ concentrations. Ferrare et al. (1991) observed
elongated patterns of ascending and descending motions by utilizing aerosol lidar
observations: at the top of the updrafts the aerosol backscatter signal was enhanced.
Those observations are also supported by a modelling study by Sandeepan et al. (2013),
which used simulations from the Weather and Research Forecasting (WRF) model
coupled with the particle trajectory model FLEXPART (Stohl et al., 2005). The results show
that the pollutants’ concentrations alternate between high and low concentration in the
updraft and downdraft areas of the coherent structures. Since the orientation of the
structures is aligned with the wind direction, the horizontal dispersion of the pollutants is
also determined (Zilitinkevich, 1995). Various other studies have also acknowledged the
significance of the coherent structures in the pollutants’ concentrations (Aouizerats et
al., 2011; Gisch et al., 2018; Soldati, 2005). It is therefore particularly important to observe
and analyse the coherent structures events in a reliable and consistent way.

1.2 Observing coherent turbulent structures

Up to this point several studies focusing on coherent structures with regards to their
characteristics have been addressed. Fortunately, there are various measurement
techniques in order to observe the coherent structures. The first person to indicate that
turbulence measurements can be derived from wind velocity measurements was
Taylor (1938). His hypothesis, known as frozen turbulence, suggests that an eddy can be
considered to remain the same as it passes by a sensor. However, this is not true for all
cases and therefore Taylor's simplifications should be considered only for those cases
where an eddy develops for a longer time span than the one the eddy requires to pass by
a sensor (Powell and Elderkin, 1974). One of the most prevalent technique is by using
aircraft measurements. This is a significantly advantageous technique, as the aircraft not

30



only provides atmospheric measurements in different heights of the ABL, but also visual
identification of the structures; for instance, in Brimmer et al. (1985) a photo taken from
the aircraft showcases the cloud streets formations. Another remarkable benefit of using
aircraft measurements is the ability to obtain observations in areas where other techniques
are difficult or even impossible to apply such as over the sea (e. g. Martin and
Bakan, 1991). Despite the significant benefits of using aircraft measurements, it is not an
accessible technique for the vast majority of researchers and furthermore, it is not possible
to carry out this method for a long period of time. Moreover, the aircraft provides
measurements only in one direction of the structure and performing measurements in two
directions at different altitudes takes several hours. In that regard observations from
meteorological towers can provide continuous measurements for long time periods. For
example the study of Barthlott et al. (2007) covered a 10-month period of observations for
the area of Paris identifying 36% coherent structures cases over the total study period.
However, meteorological towers are limited in height, thus making essential the use of
supplementary measurements in the forms of radiosonde ascents, tethered balloon
soundings etc. (Smedman, 1991). Furthermore, the meteorological towers are installed in
specific locations, most often rural areas, hence limiting the study areas.

1.2.1 A history of remote sensing observations

Remote sensing methods provide the benefits of continuous measurements and the
ability to install the instrument in a plethora of places. Moreover, the remote sensing
instruments are able to scan large areas in a short period of time (Kunkel et al., 1980).
They can provide measurements even over offshore regions with a radar or lidar installed
in a ship (e. g. Achtert et al., 2015; Lund et al., 2012). Cloud streets are even visible via
satellite observations (Figure 5). Some of the references previously cited in
Sections 1.1.2.1 and 1.1.2.2 refer to radar and lidar observations with regards to coherent
structures. The aim of the majority of these studies is to examine the rolls structures in the
mixed layer (e.g. Eymard and Weill, 1988; Kelly, 1982; Lin et al., 2008; Rabin et al., 1982).
However, the added benefit of instruments such as radar and lidar is the capability to
perform horizontal scans near the surface and therefore detect the streaks structures in
the surface layer. The earliest study regarding the observation of coherent structures near
the surface using a lidar was made by (Weckwerth et al., 1997a). The study of Drobinski
et al. (2004) is also a characteristic example where the coherent structures were visible in
the horizontal scans near the surface. Another added benefit is the convenience to switch
between different scanning methods and as result use horizontal or vertical scans, vertical
line-of-sight beams measurements or a combination of the above. In this way, one can
combine vertical and horizontal observations in order to estimate the vertical and
horizontal scales of the structures (e. g. Lothon et al., 2006).
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Kropfli and Kohn, (1978) were the first to implement a dual-Doppler radar to study
horizontal rolls structures. The utilization of two radars allows the retrieval of the wind
speed fields in two and three dimensions with high spatial and temporal resolution.
Therefore, Kropfli and Kohn were able to unveil the wind field in the three dimensions.
Subsequently the dual-Doppler method expanded to the lidars as they operate using the
same principle as radars (Calhoun et al., 2006; Newsom et al., 2005; Xia et al., 2008).
Newsom et al. (2008) presented a qualitative analysis of the wind components’ behaviour
under stable, unstable and neutral conditions achieved by using dual-Doppler
observations. The dual-Doppler lidar can be combined with in-situ measurements, as in
Iwai et al. (2008a). Their study combines dual-Doppler lidar observations with
measurements recorded by a sensor mounted on a helicopter. This measurement
combination provided the ability to observe simultaneously rolls and near surface streaks.

It is clear that the dual-Doppler lidar method has many advantages. However, it is
still limited to one horizontal and the vertical wind components (Davies et al., 2005). Mann
et al. (2008) were the first to use three wind lidars that intersect in a point and so turbulent
statistics for all wind components can be provided. Since the lidars measure in a point we
do not have to assume horizontal homogeneity, hence this method can be applied for a
complex terrain (Klein et al., 2015). Nonetheless, this is a significantly expensive method
and therefore, only a handful of studies with lidars have been performed to date. Despite
the exceptional benefits of radar and lidar observations, the studies thus far refer to short
periods of time and only for particular case studies. An example of such a study is the one
of Traumner et al. (2015) where the data recorded by two lidars were combined with the
subjective identification of the structures by individual researchers. This methodology
complicates the analysis of a large dataset and furthermore it is challenging to retain
consistency. Finally, it is important to mention that several studies combining and
benefiting from both in-situ and remote sensing observations have been carried out in
order to study coherent structures (Bernard-Trottolo et al., 2004; Drobinski et al., 1998;
Lohou et al., 1998). On the other hand, it is noteworthy that there is no study with a
combination of wind lidars with a water vapour lidar or a temperature lidar.

1.2.2 Lidar scanning methods

For convenience, in the rest of this manuscript, the different scanning methods will
be described only for the wind lidar which was used during this study. All the methods,
however, could be applied for a wind radar. The wind lidar emits a laser pulse in the
atmosphere and receives the light backscattered by the particles (e.g. dust, water droplets,
aerosol etc.). Subsequently, the Fourier transform is used to determine the backscattered
signal Doppler frequency shift from which, eventually, it is possible to estimate the winds
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along the beam direction. The particles move in the same direction and at the same speed
as wind (Cariou et al., 2007). So the measured parameter is the radial wind speed u, in
the beam direction. Figure 6 illustrates a single line of sight (LOS) beam with radial wind
speed u,. along with the relative spatial parameters.

Figure 6: Schematic of a single LOS beam with radial wind speed u,., where u is the zonal and v
the meridional components of the targets’ horizontal motion and w is the target’s vertical velocity
along with the relative spatial parameters azimuth angle 6, the angle between the vertical axis and
the beam orientation t and the cardinal directions.

The u, can be analysed in its’ zonal (West-East) and meridional (South-North)

components by the following expression:

U =u-cosf-sint+v-sinf-sint+w-cost+e€ D

where 6 is the azimuth, 7 is the angle between the vertical axis and the beam orientation,
u is the zonal and v the meridional components of the targets’ horizontal motion and w is
the target’s vertical velocity. The term € in Eq. 1 refers to the lidar measurement error. It
is mainly caused by the imperfect frequency control and the random movement of the
scattering particles used as targets (Doviak and Zrnic, 1993).

1.2.2.1 Conical scans

Lhermitte, (1962) and Browning and Wexler, (1968) implemented a method for the
estimation of the horizontal wind speed and direction based on wind radar observations,
which works also for wind lidar observations. The method known as velocity azimuth
display (VAD) or plan position indicator (PPI) method utilizes conical scans for azimuth
angles from 0° to 360° and for a steady elevation angle. An example of a PPI conical scan
representation is portrayed in Figure 7.
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Figure 7: Visual representation of a PPI conical scan.

Figure 8 showcases an example of quasi-horizontal PPI scan (1°elevation) recorded in
Paris during the VEGILOT campaign. The positive values (red colour) correspond to
particles moving away from the lidar and the negative values (blue colour) particles moving
towards the lidar. Therefore, in this example the wind is from the northeast.

:l 5 -
Distance (km)

Radial wind speed (m/s)

Figure 8: Radial wind speed field from a PPI quasi-horizontal scan recorded during the VEGILOT
campaign in Paris at 09:42 on 08/09/2014. The positive values correspond to particles moving
away from and the negative to particles moving towards the lidar.

If we assume horizontal homogeneity so that the wind components depend only on
altitude and time, and not on the azimuth and range (Eberhard et al., 1989), the radial
wind speed measured at a given distance (along a “ring”) will follow a cosine function on
the azimuth (Figure 9). Therefore, the data are fitted using the following function:

f(6) =a+b- cos(6 — Omax) (2)
where 8 is the azimuth angle of the beam, b is the mean wind speed, 6,,. is the direction
the wind is going to, and a is the offset associated with the vertical component of the wind,

i.e. the term w - cost in Equation (1) (Newman et al., 2016). For a horizontal scan with
elevation angle ¢=0° (t=90°), the offset a is zero.
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Figure 9: Radial wind speed (blue dots) as a function of the azimuth angle fitted by a cosine
function, wind lidar observations recorded during VEGILOT campaign in Paris at 09:42 on
08/09/2014.

The difference between the radial wind u, and the fitted curve f(8), equation (2) where
Omax ~ 50° and b ~ 3,5 m-s?, represents the fluctuations of the radial wind speed u;.. If
this method is applied to all the “rings” at various distances from the lidar, it is then
possible to plot the u,. field (Figure 10), which basically represents the mlf-cs field for the
entire scanning area.

Distance (km)
EHET .
-2 -1 0 1 2

Milf-cs field (m/s)

Figure 10: Mlf-cs field with the wind direction (black arrow) during the VEGILOT campaign at 09:42
on 08/09/2014.

Similar patterns of coherent structures near the surface were observed by Drobinski et
al. (2004) studying a rural area in United States of America. On the other hand, Lohou et
al. (1998) have demonstrated the ability to identify convective rolls and cells by combining
20 radar PPI scans, in elevation angles ranging from 0.5° to 50°, with airborne
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observations at different altitudes. The duration of a PPl scan may vary from 1 to 3 minutes
depending on the azimuth resolution. As the wind field have to remain homogeneous
during the scanning period, complex terrains/flows makes the VAD method inapplicable
(Sathe and Mann, 2013).

1.2.2.2 Wind vertical profiling

If the goal is only to estimate the 3 wind components, and not observed the mlf-cs
fields, a faster scanning method is preferable to assure the homogeneity of the wind field
In the Doppler beam swinging (DBS) method (Strauch et al., 1984), u,, measurements are
made only in the north, south, west, east horizontal and vertical directions (Figure 11), so
they depend only on one of the horizontal component of the wind:

Uy = W (3)

Upg = U COSQ + W " Sing 4)
Ups = —V*COSQ + W " Sing (5)
Uy = V- COSQ + W - Ssing (6)
Uy = —UCOSY + W+ Sing (7)

where the radial wind are labelled according to the cardinal direction and V for vertical and
u, v and w are the three component of the wind vector, as in Equation (1) and ¢ is the
elevation angle from the ground. Then a linear combination of these measurements
provides the zonal and meridional wind components at different heights, as well as the
vertical component of the wind. This is exceptionally useful for the identification of high
wind shear or even low level jet (llj) cases (Cheliotis et al., 2020). This technique can be
also applied using only three beams (e.g. north, east and vertical).

nqrth

Figure 11: Visual representation of a DBS scan, from Weitkamp, (2006).
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The measurements of the u and v can lead to the estimation of the total horizontal wind
v, via the following expression:

Vy, =Ju? +v? (8)

If the 1}, is computed for several heights of the DBS scans, the vertical profile of the wind
shear is revealed. This is significantly useful, as the high wind shear near the surface plays
a major role in streaks formation (see Sec. 1.1.2.1).

1.2.2.3 Vertical scans

If one of the goals is to visualize the vertical structures in the ABL, the range height
indicator (RHI) method is more appropriate (Gal-Chen et al., 1992). In this method two
consecutive verticals scans in the North-South and East-West directions are carried out.
The elevation angle rotates from 0° to 180° (Figure 12). It is important to assume horizontal
homogeneity also for the RHI method.

Figure 12: Visual representation of a RHI scan.

An example of the visualization of structures in the vertical plane is presented in
Uy
cos @
vertical scan in the North-South direction. The changes in the sign of v imply the presence
of strong fluctuations. Similar patterns were observed by Drobinski et al. (2004) in RHI

observations.

Figure 13. The horizontal wind component v = is estimated and plotted for the whole
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Figure 13: The horizontal wind component from a RHI scan during the VEGILOT campaign on
08/09/2014 at 13:23. The altitude is given as “above lidar’ because the latter was installed on a
tower (see Sec. 2.1).

If the RHI scan is not aligned with the streamwise and cross-stream direction
relative to the mean wind, there will be cross-contamination in the estimation of the
horizontal wind components (Gal-Chen et al., 1992). Furthermore, the RHI method can
take up more than two minutes to perform both vertical scans. For this reason, many
researchers prefer to do an arc scanning with a low elevation angle (e.g. 0°-20°) to achieve
a higher repetition frequency of the observations. Examples of this approach can be found
in studies regarding the estimation of turbulence parameters (e. g. Banta et al., 2006;
Pichugina et al., 2008) as well as for turbulent structures (e. g. Drobinski et al., 2004). In
particular Banta et al. (2006) and Pichugina et al. (2008) were implementing PPI scans for
20-30 minutes for the retrieval of wind direction and then adjusting the orientation of the
RHI scan accordingly for the estimation of wind variances so the scan was always aligned
with wind direction. Due to the short time period between the scans, it is thus possible to
observe the evolution of the rolls in time.

1.2.2.4 Turbulent fluxes vertical profiling

In the search of the most efficient and rapid method to obtain information about the
wind components observed from a lidar, Sathe et al. (2015) developed the six-beam
technique. Through several testing, they detected the optimal combination of azimuth
angles and number of beams in order to estimate the wind components with a minimum
error. The result of the optimization process indicated that the optimal configuration will be
a modified DBS scan with five beam directions equally spaced in azimuth (instead of four).
Regarding the elevation angle they selected 45° as this is the threshold for considering
horizontal homogeneity of turbulence. This limit is arbitrary and could be higher or lower
according to the homogeneity of the terrain. The validation of their method in relation to a
sonic anemometer showed a good agreement overall. The best results were observed
during stable conditions. More studies have been carried out recently to examine the
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performance of this method compared to the other established scanning methods.
Newman et al., (2016) compared the PPI, the DBS and the six-beam methods with regards
to the atmospheric turbulence measurements. The six-beam technique seems to reduce
some of the errors caused by the PPl and DBS methods. However, under unstable
conditions for two different type of lidars utilizing the six-beam method, the observations
overestimate significantly the wind variances. Bonin et al. (2017) compared the six-beam
method with the PPI and the low elevation RHI methods. The comparison was made for
TKE, turbulence intensity and shear velocity. The lidar observations were validated with
sonic anemometers observations at six different heights. The six-beam method shows
more accurate measurements for TKE and turbulence intensity compared to PPI and RHI.
All methods were unable to systematically give accurate measurements for shear velocity.
Since this is a new method further validation of the six-beam method should be carried
out.

1.3 Automated image Classification

A critical part of this study was the feasibility to identify and classify patterns of
given images. This is not a complicated job for humans when the number of images is
small. However, it becomes cumbersome or even impossible for a large number of images
and therefore it is essential to use another consistent and reliable approach. Fortunately,
computers are able to interpret and categorize images by applying a suitable algorithm.
Once properly trained, such algorithms can separate images based on objects like guitars,
plates, cups even in complex backgrounds (Kuznetsova et al., 2018). Image classification
by computers have spread to many fields, for instance to detect breast cancer in early
stages (e. g. Deniz et al., 2018; Holli et al., 2010).

In meteorology, the classification of satellite images based on cloud types is one
of the most researched topic (e. g. Azimi-Sadjadi and Zekavat, n.d.; Gu et al., 1989). An
accurate classification of the cloud types is a very useful tool for forecasters or nowcasters
who are interested in the interpretation of cloud images (Bankert, 1994). Furthermore, the
image classification can be utilized for weather circulation patterns (e. g. Philippopoulos
et al., 2014) or weather events (e. g. Sokolov et al., 2020) in order to better understand
the association between weather patterns and meteorological parameters or to estimate
statistical parameters respectively. Even more complicated images, such as forest
coverages by satellite observations, can be classified by computers and thus avoiding the
mapping of a region by taking aerial photographs (Kayitakire et al., 2006). Closer to the
subject of this thesis, (Wang et al., 2020) developed an automated detection method for
rolls in the marine boundary layer, based on the images from a synthetic aperture radar.
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There are two ways to perform an image classification. The first one is based on
building a training ensemble, i.e. a set of typical images that need to be classified. Then,
an ensemble of relevant parameters is computed for each image in the training ensemble,
designed to highlight the characteristic features (textures) of the image types. Each image
is at this stage represented by a vector of parameters, i.e. a point in a N-dimension space
(N being the number of texture analysis parameters). Finally, a machine learning algorithm
is applied to examine which of the parameters allow to best cluster the points and minimize
the error for the ensemble (Schowengerdt, 2007). Consequently, the selected parameters
can be used for the classification of a larger ensemble. This method is known as the
supervised classification. On the contrary, the second way does not require a training
ensemble or pre-defined image types: the texture analysis parameters are directly
provided to the algorithm that will classify the images and define the image categories.
This method is named unsupervised classification (Olaode et al., 2014). In the current
study, the aim was to classify the patterns of the mlf-cs fields by providing a training
ensemble built on the patterns as well as some striking atmospheric physics for each
structure. Therefore, the supervised machine learning method was preferred.

1.3.1 Texture analysis parameters

The first step of the image classification is to simplify the image data for the
computer to process them. For the lidar images that will be used in this study, the turbulent
radial wind speed can be represented by a gray-scale with decimal numbers for instance
from -2 to +2 m-s. Then, these numbers can be grouped into a few bins, usually 4 or 8 is
enough, with the boundaries of the bins depending on the details that need to be
highlighted from the images (Partio et al., 2002). It is for instance possible to define more
bins around the center of the scale (if there are little outliers and the central shades hold
more information), or conversely more bins near the edges of the scale (if the extreme
values hold more information).

For a specific distance and angle between two pixels of the image (e.g. first
neighbour in y direction, Figure 14b), a matrix can be constructed, named gray level co-
occurrence matrix (GLCM or CM) (Haralick et al., 1973). In the CM, the cell at the
intersection of column i and row j contains the number of neighbor pixel pairs in the image
whose colors belong to the bins i and j. Figure 14a presents an ideal case with a simplified
wind field in a 24 by 24 pixel image with values divided in 8 bins between -2 and +2 m-s.
Figure 14c presents the CM for the adjacent neighbours in the y direction for this ideal
case. The CM in this case is an 8 by 8 matrix as there are 8 wind bins / colors. Because
the wind field in this case is composed of vertical stripes, the adjacent pairs in the y
direction have always the same color and therefore only the diagonal cells of the CM have
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non-zero values. For a given color, there are 3 stripes on the image, each containing
24 pixels, which means 3x23=69 pairs of pixels.
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Figure 14: Example of an ideal case for the estimation of the CM: (a) Ideal wind field of 24 by 24
pixels (x and y axis), (b) example of adjacent in the y direction neighbour pair and (c) the
corresponding CM for this type of pairs.

Likewise, if we examine the pair of pixels corresponding to the 8" horizontal
neighbour (Figure 15a), as they are separated by one period, the color value is always the
same and there will only be non-zero values in the diagonal of the CM (Figure 15b). On
the contrary, for the 4™ horizontal neighbour (Figure 15c), the pairs are separated by half
a period so the values will be distributed in the sides of the CM (Figure 15d).
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Figure 15: (a) Example of horizontal pair 8 grid cells away with (b) a scheme of the corresponding
CM (non-zero cells are highlighted in orange). (c) Example of horizontal pair 4 grids cells away with
(d) a scheme of the corresponding CM.
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The CM can be calculated for any distance (neighbour order) n and any pair orientation,
measured by an azimuth angle ¢ (Figure 16). In other words, any field can provide a n x
¢ number of CM.

o
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Figure 16: Possible orientations ¢ for a pair of cells.

Haralick et al., (1973) presented 14 parameters computed from the CM and able to
reveal similarities or differences between the CM. The four most commonly used and
characterized as the most important parameters are the contrast, correlation, homogeneity
and energy (e. g. Clausi and Zhao, 2002; Haralick, 1979; Srivastava et al., 2018). These
parameters were estimated for the current study as well. Contrast is related to the
variations of the CM with the value 0 representing constant textures. Correlation refers to
how well correlated are the grid points of the field with the values ranging from -1 (perfect
negative correlation) to 0 (uncorrelated) and to 1 (perfect positive correlation).
Homogeneity is related to the homogeneity of the image with the values ranging from 0 to
1 (diagonal CM). Energy refers to the uniformity of an image with values ranging from 0 to
1 (constant field) (Haralick et al., 1973; Yang et al., 2012). The mathematical expressions
of the aforementioned parameters are presented in the following Equations:

Homogeneity: Hom(p,n) = ¥; ; li(llli)j | 9)

Contrast: Con(gp,n) = ¥ jp(i, )i — j|? (10)
Correlation: Cor(p,n) = Zi,j% (11)
Energy: En(p,n) = ¥, ;p(i,j)* (12)
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the marginal expectations: u; = ;% ;i p(i,j) and u; = ¥;¥;j - p(i,j). o; and o; are the

p(i,j) = is the normalized cell value for the i, j position in the CM. y; and u; are

marginal standard deviations: g; = \/ZiZj(i —u)? p@,j) and

g = Jzizj(/ — 1) (i)

Once the training ensemble is built, the texture analysis parameters can be computed.
The next step is to examine if there is an algorithm that is able to group the imagesf/fields
as expected.

1.3.2 Supervised machine learning

As mentioned previously, the supervised machine learning approach was applied in
this study for the classification of images (Bonamente, 2017; James et al., 2000;
Kubat, 2017). Several machine learning algorithms can be used for image classification,
among which three were utilized during this study (and are among the most frequently
used). The main principle, in all three algorithms, is that an image is represented by a
vector of texture analysis parameters. For example, assuming the images are represented
by two texture analysis parameters, the machine learning algorithm will cluster the images
in two dimensions, based on the values of the texture analysis parameters. This is possible
if the points belonging to each class are gathered into well-separated clouds of points.

Any new image introduced in the algorithm will be classified in a cloud of points
based on the principle of the given algorithm. The simplest of the three algorithms is the
K-Nearest Neighbour (KNN) which classifies an image based on the class attributed to its
nearest neighbour(s) in the texture analysis parameters space (Cover and Hart, 1967).
Depending on how many neighbours are selected for comparison, the results of the
classification may differ and therefore the number of neighbours must be carefully chosen.
Figure 17 illustrates how the KNN method works. If a new image is introduced in the green
circle location and the selected method is the one neighbour KNN, the new image will be
classified as its nearest neighbour, i.e. in class 1 (blue square). However, if the three
neighbour KNN method is used, the new image will be classified as the majority of the
three closest neighbours, i.e. in class 2 (red triangle).
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Figure 17: Principle of the KNN method for two classes and either 1 or 3 neighbours. The position
of the images (blue squares or red triangles) in the plane correspond to their coordinates in a two-
parameter space.

Another relative simple algorithm is the error-correcting output codes-support vector
machine (ECOC-SVM) (Vapnik, 2000). In this method, the different classes are separated
by an imaginary line, and every time a new case is introduced, the algorithm examines on
which side of the line it resides. A simplified example with only two classes is displayed in
Figure 18.

1 ... Class A
" “s@Class B

Y-Axis

Figure 18: Principle of the ECOC-SVM algorithm for two classes and with two relevant texture
analysis parameters for the classification.

The third and final algorithm was also the one which showed the best performance
to classify the lidar images and which results were published (Sec. 3). It is the quadratic
discriminant analysis (QDA) or normal Bayesian algorithm (Hastie et al., 2009). In this
method, the probability density function (PDF) of each class is estimated in the texture
analysis parameter space (Figure 19) and a new image is assigned to the most probable
class at its coordinates in the parameter space (Kubat, 2017).
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Figure 19: Principle of the QDA algorithm for two classes and with two relevant texture analysis
parameters for the classification. (a) Position of the images (red and blue dots) in the two-parameter
space with the probability density function (PDF) contours (red and blue lines) and the separation
line between the areas where each class is more probable than the other (black line). (b) The PDF
represented as a surface plot.

If a new case is introduced in order to be classified, then the probability to fall in
either class will be estimated. The case is eventually classified in the class where it has
higher probability.

1.4 Image classification for the mif-cs fields

Despite the repetitiveness of the mif-cs fields patterns, so far there has not been any
attempt to automatize the identification and classification processes of the mlf-cs. In
particular, the elongated shape of the coherent structures is distinctive compared to
random patterns. In that regard, an automated methodology for the mlf-cs fields was
developed based on the image classification principle. This method can simplify and
provide consistency in the analysis of large datasets (e.g. (Yagi et al.,, 2015)).
Furthermore, the identification of structures for long periods of time, can lead to unique
studies, with a stronger statistical weight, regarding either the physical parameters of the
structures or the correlation between the structures and pollutants’ concentrations. In
Section 2, the detailed development of the methodology is showcased along with its’
performance for a training ensemble.
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2. Materials & methods



2.1 Experimental set-up

In the framework of the VEGILOT [VEGétation et ILOT de chaleur urbain (vegetation
& urban heat island)] project, a campaign was organized by the Université Pierre et Marie
Curie (UPMC) in collaboration with the Muséum National d’Histoire Naturelle in order to
analyze the transport processes and the atmospheric chemistry in the urban ABL in Paris.
The campaign lasted for two months (04/09/2014-06/11/2014), and provided continuous
wind, aerosol and ozone profiles. The observations were recorded by utilizing the
Leosphere WLS100 Doppler lidar (www.leosphere.com), the Cloud and Aerosol Micro-
Lidar (CAML) by the CIMEL company (www.cimel.fr) and the modified version of the
Airborne Lidar for Tropospheric Ozone (ALTO) (Ancellet and Ravetta, 1998) (Figure 20).
For the current study the observations recorded by the ozone lidar were not used and
therefore only the characteristics of the wind and the aerosol lidar will be presented.

Figure 20: Photos of the three lidars operating during the VEGILOT campaign: (a) Wind lidar, (b)
aerosol lidar and (c) ozone lidar.

The primary instrument for the study was the wind lidar, that was used to retrieve
the mif-cs fields from the quasi-horizontal scans. The wind lidar was installed on the roof
of the administration building (75 m high) in the Jussieu Campus, which is located in the
centre of Paris. Paris city center is a rather interesting location for observations, as despite
being a metropolitan city, the building heights do not exceeds 50 m, with minor exceptions,
due to local regulations (Saint-Pierre et al., 2010). Therefore, the emitted signal from a
75 m height building, even for quasi-horizontal scans was not interrupted by other
buildings. Figure 21 illustrates the location of the Jussieu site along with the area covered
by the lidar scans. The maximum range was 5 km across all the scanning methods, with
the minimum range (blind zone) reaching 100 m. The scanning area is completely
urbanized, with few green areas and a part of the Seine river included. The spatial
resolution was 50 m, thus it is possible to study mlf-cs, but not small turbulent structures.
All the other properties of the wind lidar were unchanged for all the scanning methods
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throughout the campaign with the axial resolution (measurement spacing along the beam
direction) being 50 m, the accuracy on the wind observations being + 0.1 m's* and an
accumulation time of 1 sec-beam™. Table 2 showcases the most important wind lidar
properties during VEGILOT.

Figure 21: Jussieu site location and the maximum scanning range of a horizontal scan (red ring)
(Géoportail satellite image).

Table 2: Properties of the Doppler wind lidar (Leosphere WLS100) for all the scanning methods
during VEGILOT.

Altitude of lidar 75 ma.g.l Radial wind speed range | -30 to 30 m-s!
Minimum range 100 m Laser wavelength 1.543 pm
Maximum range 5 km Radial wind accuracy +0.1ms?
Spatial resolution 50 m Accumulation time 1 sec-beam?

The ground level is about 30 to 60 m above mean sea level (a.m.s.l.) within most of the
scanning area, with a few small areas exceeding 100 m a.m.s.l. (low hills) near the
boundaries (Figure 22a). The near-surface scans were quasi-horizontal, but the
1° elevation angle still resulted in a 87 m height difference between the lidar position at
the center and the edges of the scanning area. The beam altitude relative to the ground
does not vary by more than 20 to 30 m for the first 3 km around the lidar (Figure 22b),
which correspond to the area where most of the data were recorded.
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Figure 22: (a) The ground altitude (above sea level) and (b) the beam altitude maps (above ground
level) for the scanning area in Paris.

In total, four scanning methods were implemented in a cycle, with various elevation
and azimuth angle combinations (Table 3). The duration of the cycle, through all the
methods before applying the first method again, was approximately 18 minutes. At first,
the lidar performed two RHI cuts in the East-West then North-South direction. A full scan
with an angular resolution of 2° lasted approximately one and half minute. The
observations were recorded in order to investigate possible structures in the vertical plane.
Eventually however, the observations from this method were not used in this study as the
RHI orientations made most of the time an angle of about 45° from the mean wind
direction, while it would have been necessary to have measurements in the longitudinal
and transverse directions relative to the mean wind. The RHI method was followed by the
two PPI conical scans with an elevation angle of 25° and 1°. For the full 360° with a
2° azimuth angle resolution, each scan duration was 3 minutes. The observations at
25° elevation were carried out in order to reveal information of the structures in the vertical
plane, but eventually there were also not used in this study. The PPI at 1° elevation was
the fundamental method for this study, as the mif-cs fields were constructed based on
these observations. After the PPl method, five LOS in fixed directions were performed, but
only the vertical one was used in this study to determine the nocturnal ABL height
(Section 2.4). The vertical LOS consisted of two sequences of shots lasting 30 s each.
Finally, the DBS method was applied and repeated twice, which took approximately
15 seconds for each DBS. The DBS observations were used for the identification of l|j
cases.
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Table 3: The entire measurement sequence during the VEGILOT campaign with the significant
scanning characteristics for each scanning method.

Scanning area Purpose Elevation & azimuth Scan

angle duration
Range Height = Vertical arc scans Not used in this Azimuth 0° & 90°, 2 x 1,5 min
Indicator (RHI) (North-South & study elevation 2° to 180°
East-West) with 2° resol.
Plan Position = Conical scanning Not used in this Elevation 25°, azimuth 3 min
Indicator (PPI) study 0 to 360° with 2° resol.
Plan Position = Quasi-horizontal Identification of Elevation 1°, azimuth O 3 min
Indicator (PPI) scans near the structures to 360° with 2° resol.
surface
Line of Sight Vertical scans Estimation of the Elevation 75° & 90°, 10 x 30 sec
(LOS) ABL height (during = azimuth 0°, 90°, 180°
the night) & 270°

Doppler Beam Combination of Identification of low = Elevation 75°, azimuth =~ 2 x 15 sec
Swinging (DBS) LOS level jet cases 0°, 90°, 180° & 270°

Although the aerosol lidar observations were not the focus of this study, the
measurements were nonetheless valuable, as the estimation of the ABL height during the
day was performed based on them (see Section 2.4). This instrument records the
backscattered light signal of the particles up to an effective range of about 5 km with a
blind zone of 200 m and a 15 m spatial resolution. It operates at a 532 nm wavelength
with a low pulse energy of 10.6 pJ but a high repetition rate of 4.7 kHz (Pelon et al., 2008).
It is possible to observe aerosols and cloud profiles with this instrument. The lidar was
installed in the roof of building adjacent to the one where the wind lidar was installed, but
only 20 m high. The instrument operated continuously for the period 04/09/2014-
06/11/2014 and provided observations with a 10-minute average. Table 4 recaps the
significant properties and scanning characteristics of the aerosol lidar during the VEGILOT
campaign.

50



Table 4: The significant scanning characteristics and properties of the aerosol lidar CAML during
VEGILOT.

Altitude of lidar 20m a. g.l. | Scanning area Vertical shots
Minimum range 200 m Purpose Estimation of the ABL height (day)
Maximum ~5 km Laser energy 10.6 pJ

effective range

Spatial resolution 15m Averaging period 10 minute

Laser Wavelength 532 nm Repetition rate 4.7 kHz

2.2 Building the training ensemble

The mif-cs classification for this study was performed with the supervised
approach. Therefore, it was necessary to recognize the different patterns and build a
training ensemble to examine the performance of the algorithm. Firstly, the VAD method
(Section 1.2.2.1) was applied to all the 4577 PPI scans at the 1° elevation recorded during
VEGILOT. The data were fitted using Equation (2) including the offset parameter a to take
into account the slight elevation of 1°. By visually observing the mif-cs, it was noticeable
that some of them contained well defined elongated patterns with alternating positive and
negative values of turbulent radial wind. It was also noticeable that during the night these
elongated patterns were narrow (Figure 23a) whereas during the day they were wider
(Figure 24a). Other mlf-cs recorded during the day presented some large enclosed
patterns of positive and negative values (Figure 25a).

2.2.1 Attributing the different patterns to structure types

Streaks

The nocturnal narrow elongated patterns resembled the streaks formation from
literature. As | stated in Section 1.1.2.1, a leading factor for the formation of the streaks is
the high wind shear near the surface which is revealed by the DBS observations
(See Sec. 1.2.2.2). Figure 23a shows a typical scan presenting elongated narrow patterns,
alternating between positive and negative values, and aligned with the mean wind
direction (black arrow) which resemble streaks formation. The time-height cross-section
of the horizontal wind on the same day (Figure 23b) shows a strong wind shear from
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19:00 UTC until 00:00 UTC. By examining more cases, it was evident that many elongated
patterns co-occurred with a high wind shear near the surface, thus indicating the formation
of streaks.

Patterns on 10/09 at 19:57 UTC

5 Horizontal wind speed - DBS above Jussieu on 10-Sep-2014
1.8 T T T
14
4 ‘é‘1_6.(b)
3 1 - %14 12
2 S B2 = i' P‘{‘ 10
N = . w
1 @ g 1" L 8 E
ol 0,'—;- goﬂ | yill! 6 5
z goer §s
=2 Fl 204 g | 1y {d l j 4
2 42 <ouliElE |:. i o a1 B
- 0 s :
3 0 4 8 12 24
-4 Hour UTC
-5 -2

54321012 343%5
Distance (km)

Figure 23: (a) Example of mlf-cs field for the streaks type, with the mean wind direction (black
arrow) recorded on 10/09 at 19:57 UTC and (b) the time-height cross-section of the horizontal wind
speed profile on 10/09.

Rolls

The wider elongated patterns were also characteristic in some mlf-cs recorded
during the day, also aligned with the mean wind direction. To confirm that these wide
patterns observed near the surface could be associated with rolls structures in the mixed
layer, satellite images were used to detect the cloud streets cases. Figure 24a is
showcasing a typical the mlf-cs field presenting wide elongated patterns of positive and
negative values aligned with the wind direction. In Figure 24b, the coincident MODIS Terra
satellite image shows the presence of cloud streets over the scanning area. The
examination of other cloud street cases during the 2-month period under study allowed to
attribute to rolls more wide elongated patterns in the mif-cs fields. The Terra and Aqua
satellites pass over Paris only around 11 and 13 UTC, but wide elongated patterns were
observed at other time of day, and attributed to rolls provided they belong in a consecutive
series of roll scans.
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Figure 24: Example of a mlf-cs field for the rolls type, with the mean wind direction (black arrow)
recorded on 11/09 at 11:00 UTC and (b) the MODIS Terra satellite image with the lidar scanning
area (red ring) recorded on 11/09 at 11:10 UTC.

Thermals

Regarding the large enclosed patterns that can be observed during the day, they
were likely formed during random thermals movements creating ascending and
descending motions in random parts of the mif-cs. To confirm this, the sunshine hours
during these days and the hourly solar radiation values as recorder by the Paris-
Montsouris station were used. The MODIS satellite images (when available) could also
reveal the presence of fair weather cumuli weather. The Paris-Montsouris observations
confirmed that these patterns occurred when the solar radiation values where above the
monthly mean values and the sunshine hours were persistent. Moreover, the MODIS
satellite images confirmed that these patterns occur under fair weather cumuli weather.
Figure 25a presents an example for a mlf-cs field with large enclosed patterns of positive
and negative values along with the Modis Aqua satellite image revealing fair cumuli
weather, thus confirming the presence of large thermals during the day.
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Figure 25: (a) Example of mlf-cs field for the thermals type with the mean wind direction (black
arrow) recorded on 16/09 at 12:52 UTC and (b) the MODIS Aqua satellite image with the horizontal
scanning area marked (red ring) recorded on 16/09 at 12:50 UTC.

“Others”

Apart from the narrow and wide elongated patterns and the large enclosed
patterns, there were also patterns that did not fall in one of the above categories. These
were some chaotic random patterns in the mif-cs fields at a smaller scale than the thermal
patterns, or most often cases where the VAD method had not been applied successfully
due to a non-symmetric radial wind field (Figure 26a). Throughout the 2-month period
under study, there were several such cases that occurred mostly during calm (0-2 m-s?)
or low wind (2-4 m-s™) conditions, when the wind does not have a well-defined direction
(Wilson et al., 1976). In a case like this, the individual rings of measurements do not follow
a cosine function (Figure 26b) so the cosine fit is clearly not accurate. The VAD method
was applied automatically so even this type of scan was processed, however, the patterns
in the mif-cs field resemble large slices (Figure 26¢) and cannot be associated with any
atmospheric structures.
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Patterns on 25/09 at 23:42 UTC Figure 26: (a) Example of non-symetric radial

wind speed field from a PPI quasi-horizontal
scan recorded at 23:42 UTC on 25/09/2014;
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as a function of the azimuth angle at a 2 km
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2.2.2 Composition of the training ensemble

The repetition of the same patterns in the 2-month dataset gave birth to the idea of
an automatic classification of the mlf-cs with regards to their patterns. An automatic
classification requires an algorithm capable of distinguishing the different patterns. A
training ensemble was built in order to test the performance of various algorithms and find
the parameters capable of distinguishing the different patterns. The training ensemble
consisted of 30 streak, 30 roll, 30 thermals and 60 “other” cases out of the 4577 total
cases. The date and time of all the scans included in the training ensemble are displayed
in Figure 27.
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Figure 27: The date and time of each of the 150 cases of the training ensemble: streaks (blue
circle), rolls (red star), thermals (purple rectangle) and others (black triangle).

The 30 streak cases were selected when narrow elongated patterns (periodicity
sizes of the structures of few hundred meters) co-occurred with high wind shear (llj events)
near the surface. In order to ensure that the narrow elongated patterns were mainly driven
by the high wind shear and not by thermals, all 30 streaks cases were selected during the
night, in particular, between 18:00 UTC and 22:00 UTC. After 22:00 UTC the wind field
was usually weaker, leading to a non-symmetric radial wind field without coherent
structures. Half of the streaks cases were selected from the first 15 days of the campaign
with the remaining cases were distributed over the whole campaign.

Regarding the rolls, as only the presence of cloud streets can confirm the rolls
formation, all 30 cases were either co-occurred with cloud streets recorded on MODIS
Aqua or Terra satellite images, or they belonged to chronological series of scans
presenting similar wide patterns (periodicity sizes of the structures larger than 1 km)
among which a scan coincided with the observation of cloud streets. There were 8 days
with cloud streets during the campaign, with 9 cases occurring on mid-September,
15 cases on mid-October and 6 cases at the beginning of September. All of theses cases
were observed between 10:30 UTC and 14:00 UTC.

The 30 thermals cases were selected from 23 different days distributed over the
whole campaign between 9:00 UTC and 15:00 UTC with one case around 17:00 UTC.
The selection was based on the large enclosed patterns (homogeneous areas in the mif-
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cs field of approximately 1 km or above) occurring during periods with hourly solar
radiation values much higher than the monthly average as displayed by the Photovoltaic
Geographical Information System (Huld et al., 2012).

Finally, the type “others” was represented by 60 cases, twice more than each of the
other types. The reason behind this choice is the sensitivity of the algorithms to the training
ensemble. If the training ensemble is not balanced according to the expected outcome of
the classification, it can perform poorly (Kubat, 2017). The whole ensemble was expected
to contain a significant majority of the type “others” due to the many low wind conditions
episodes during the period under study. Therefore, the representation of the type “others”
with twice more cases was preferred. In order to represent the different type of “others”,
for 53 out of the 60 cases, the radial wind fields were non-symmetric, and for 7 cases, the
radial wind fields were symmetric but there were no defined patters. Among the 53 cases
of non-symmetric radial wind fields, 46 cases occurred under calm or low wind conditions
while the 7 cases without any defined pattern all occurred under moderate wind conditions
(6-8 m-s1). The cases were distributed over the two months with the majority being
nocturnal and with 10 cases selected between 8:00 UTC and 16:00 UTC.

2.3 Classifying the training ensemble

After the selection of the training ensemble, it was important to identify the
appropriate classifiers, i.e. the relevant parameters for the algorithms. Inspired by
Srivastava et al., (2018) that were able to identify and classify elongated as well as
enclosed patterns, the same parameters were selected for this classification. These are
the four parameters presented in Section 1.3, namely the homogeneity, contrast,
correlation and energy. For the estimation of these parameters, it is necessary to compute
first the CM.

2.3.1 Pre-processing of the mlf-cs fields

The radial wind speed observations are in polar coordinates and therefore, in order
to find the neighbouring pairs of pixels as explained in Section 1.3.1, it is necessary to
convert the data in the cartesian coordinates. The CM can be then computed directly from
the radial wind speed values, as long as they are divided into bins. The priority was to
separate the positive and negative values of the radial wind speed, because they
correspond to different direction of the wind fluctuations, thus different zones in the
turbulent structure. To do this, the wind fluctuations values were divided into 8 bins with
the first bin containing all the values higher than +0.5 m-s?, the next six bins equally
distributed between +0.5 m-s* and -0.5 m-s™ and the final bin containing all values lower
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than —0.5 m-s™. This bin selection provided a very good contrast between the positive and
negative values, thus the structures were highlighted.

The idea was to classify the structures independently of their orientation. For
example, streaks structures aligned with the northwest direction should be put in the same
class as the streaks structures aligned with the south direction. In this regard, all the mif-
cs fields were rotated as if the wind had a north direction for all the cases. Figure 28
showcases an example mlf-cs with streaks patterns before and after the regriding, binning
and rotation operations have been performed. It is obvious that the patterns have been
enhanced and at least visually is easier to identify the patterns.
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Figure 28: Streaks pattern recorded on 08/09 at 19:21 UTC: (a) observations in polar coordinates
with continuous wind values and a north-east dominant wind and (b) the same after converting to
Cartesian coordinates, rotating the field along the wind direction (black arrow) and separating the
wind values into 8 bins.

2.3.2 Computing of the Co-occurrence Matrices

In order to show how the CM can highlight the patterns in the milf-cs fields, this
section will present two peculiar CMs computed from the mif-cs field of Figure 28b.
Similarly to the ideal case in Section 1.3.1, the first CM is computed for the adjacent
“vertical” neighbours, i.e. aligned with the wind direction (Table 5). The most common pairs
are the ones belonging in the 1-1 or the 8-8 bins combinations, i.e. the wind value is below
-0.5 m/s in both pixels or above +0.5 m/s in both pixels. As the structures were aligned
with the wind direction, which is now the north (vertical) direction, the most probable pair
occurrence is for the ones that belong in the same bin, when the turbulent structure is well
defined like on Figure 28, most wind values in the mlf-cs are not close to zero and fall into
the bins 1 and 8.
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Table 5: The CM for the adjacent vertical neighbours(50 m distance along the mean wind direction).

1 2 3 4 5 6 7 8
1 3819 303 224 134 110 63 43 71
2 311 116 93 95 66 45 31 52
3 244 125 115 88 95 47 45 42
4 151 87 110 109 98 87 67 95
5 91 76 98 113 113 114 93 161
6 77 46 66 86 116 101 105 217
7 33 27 35 67 105 113 93 Silks
8 50 39 68 113 169 240 325 3882

On the contrary, in the CM computed for neighbour pairs located 4 grid cells away (200 m
in real distance) in the horizontal direction (Table 6), the number of pairs that belong to the
1-1 or 8-8 bins combination is equivalent to the ones of the 1-8 and 8-1 combinations. This
means that in many pixel pairs, the wind is below —0.5 m/s for one and above +0.5 m/s for
the other, i.e. pretty opposite values. This was expected as well, since the stripes alternate
between positive and negative values in the transverse (now horizontal) direction and
200 m is the order of magnitude of a half-period on the mlf-cs field of Figure 28b.
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Table 6: The CM for the horizontal neighbours four grids pixels away (200 m in real distance,
perpendicularly to the mean wind direction).

1 2 3 4 5 6 7 8
1 1584 261 254 220 257 230 241 1520
2 239 43 38 40 49 55 35 267
3 228 53 53 46 51 47 44 242
4 250 36 53 41 67 38 48 233
5 262 44 46 38 36 55 46 293
6 221 35 45 65 58 42 40 261
7 252 44 49 50 33 32 44 236
8 1547 251 227 272 272 262 240 1481

As the periodicities in the mif-cs fields were not known a priori, the CMs were
computed for all possible cell-pair orientation (angle ¢ from —-90° to +90°, see Sec. 1.3.1)
and for a neighbour spacing n from 1 (first neighbour) to 30, i.e. for real distances from 50
to 1500 m along the longitudinal/transverse relative to the mean wind.

2.3.3 Computing the texture parameters

The challenging part however, it is not to find differences in the CM for one mlf-cs
field, but between the different types of patterns. For this purpose, the texture analysis
parameters were computed. Each parameter was computed from each CM in the set then,
based on Equations (9) to (12), the texture analysis parameters were calculated with every
n giving multiple values for the different orientations ¢. Therefore, it was possible to plot
the curves of the texture analysis parameters for a specific n against the orientation ¢. In
this way we could examine possible difference in the curves for the different structures in
the mlf-cs. Figure 29 showcases the curves of the homogeneity for n = 3 averaged for all
the cases of streaks, rolls, thermals and ‘others’ of the training ensemble.
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Figure 29: The homogeneity parameter for the third neighbour CMs (n = 3) plotted as a function of
the cell pair orientation ¢ (£90° is horizontal, 0° is vertical) averaged for all the cases of the training
ensemble for each type, streaks (green), rolls (blue), thermals (red) and others (yellow).

Three characteristics of the curves are highlighted in Figure 29, namely the
amplitude, the symmetry line and the integral. The curves of the rolls and especially of the
streaks cases have a prominent peak at 0° compared to the smoother curves for the
thermals and the others types. The 0° orientation correspond to the vertical neighbours,
which in coherent elongated structures aligned with the wind should eventually belong in
the same bin, unless the structures are slightly tilted compared to the mean wind. This
means that the amplitude (difference between the maximum and minimum points) of the
curve should be different between the different types of structures. A perfectly elongated
pattern should also be symmetric about the 0°, whereas for random structures like
thermals and others that should not necessarily be the case. We also see in Figure 29
that the sum of points (integral) differs between the types and therefore this parameter
was also computed. Analytically the expressions for the calculation of the amplitude,
symmetry and integral were the following:

Amplitude: Hom. Amp(n) = max,(Hom(p,n)) — min,(Hom(p,n)) (13)
Symmetry: Hom.Sym(n) = ¥, |[Hom(p,n) — Hom(—¢,n)| (14)
Integral: Hom. Int(n) = ¥, Hom(p,n) (15)

By calculating these so called “curve parameters” for all neighbour spacing n and
for all 150 cases in the training ensemble, it is possible to examine whether the cases can
be clustered based on the texture analysis curve parameters. In Figure 30, the scatter plot
of the 150 cases of the training ensemble is displayed, based on the three first texture
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analysis parameters selected by the automated classification algorithm among the 360
possible (see next section).
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Figure 30: Scatter plot of the 150 cases in the training ensemble, based on three of the texture
analysis curve parameters: amplitude of the 4% neighbour contrast curve (Eg. 13 for n=4 but the
contrast instead of the homogeneity), integral of the 18" neighbour contrast curve (Eg. 15 for n=18
but for the contrast), Amplitude of the second neighbour homogeneity curve (Eq. 13 with n=2).

As we can see in Figure 30, the streak cases (green) are grouped and their cloud of
points is well separated from the other types. The amplitudes of the homogeneity and
contrast parameters are important for the elongated patterns, and this is confirmed by this
scatter plot as well. The same, to a lesser extent, is true for the rolls cases which are also
grouped for the most part, though there is some mixing with the “thermals” and “others”
types. The thermal type is the most spread group, as it is mostly mixed with the types
“rolls” and “others”. Finally, a large part of the “other” type is well distinguishable with only
a small part being mixed with the types “thermals” mainly and “rolls” to some extent. These
preliminary results indicated that it could be possible to classify the structures by utilizing
an automated clustering algorithm

For the training ensemble the 3 curve parameters for the 4 texture analysis
parameters were computed for 30 neighbour order n, thus bringing the number of
parameters to 360. In addition to the 360 texture analysis parameters, three physical
parameters were included in the classifiers. These were the average mean wind speed as
estimated by the VAD method, the time in UTC hour, which is close to solar time in Paris
and the root-mean-square error (RMSE) of the cosine fit. The RMSE is given by the
expression:

(16)

I jzﬁ(ur /0)
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where N is the number of non-missing observations. So the total number of
classifiers was 363.

2.3.4 Evaluating the classification performance on the training ensemble

The classifiers were provided to the QDA algorithm following the greedy algorithm
of stepwise forward selection (Sokolov et al., 2020) and the classification error was
estimated based on the 10-fold cross validation. The principle of this validation process is
that the algorithm is trained using only 90% of the training ensemble while the remaining
10 % (15 cases) are used to test the result of the classification, i.e. the outcome of the
classification is compared to the expected class in order to estimate the classification
error. This process is repeated 10 times to test the entire 150 cases in the training
ensemble. In the process, the algorithm selects the classifiers that minimize the error. For
the training ensemble of this study, the selected classifiers are presented in Figure 31.
The error was slightly above 9 %.

Classification error
0 10% 15% 20% 25% 30%

Hom.Amp(2) .

Figure 31: Classifiers that minimize the classification error of the training ensemble by using the
QDA method. From top to bottom: Amplitude of the homogeneity curve for the 2" neighbour,
integral of the contrast curve for the 18" neighbour, amplitude of the contrast curve for the
4t neighbour, integral of the correlation curve of the 8™ neighbour and symmetry of the
homogeneity curve for the 2" neighbour. The classification error decreases as the number of
classifiers taken into account increases; it reaches a minimum of ~9% for 5 curve parameters.
Adding more classifiers (not shown) makes the error increase again.

The classifiers selected by the QDA method as they minimize the error cover various
distances, from short distance as the 2" -neighbour is equivalent to 100 m, to medium
range distance as the 8" neighbour is equivalent to 400 m to large distance as the
18" neighbour is equivalent to 900 m. This is particularly important for the distinction of

large patterns compared to small. It is also confirmed that the amplitude of the
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homogeneity and contrast curves are significant classifiers for the structures, meaning
that the prominent peaks of the curves indeed differentiate the types.

The integrals of the contrast and correlation curves were also selected by the
algorithm. Indeed, the “others” type is characterized by chaotic patterns while the
“thermals” type is characterized by large homogeneous areas, which results in differences
in the integrals of the curves for parameters such as the contrast and correlation,
especially for medium (8" neighbour) and large distances (18" neighbour). It is
noteworthy, that the symmetry of the homogeneity curve was selected by the algorithm.
This confirms the importance to align all the mlif-cs fields in the same direction. One of the
most striking results, however is that none of the three physical parameters was selected
by the algorithm despite the fact that the time of day could be expected to discriminate
between nocturnal (streaks) and diurnal (thermals, rolls) structures.

The analytical performance of the QDA algorithm for each type of structures is

demonstrated in Figure 32 in the form of a confusion matrix.

QDA Confusion Matrix

Othiois 58 0 0 2 96.7%
38.7% 0.0% 0.0% 1.3% 3.3%
Stesks 0 29 0 0 100%
" 0.0% 19.3% 0.0% 0.0% 0.0%
b
©
-
g- 0 1 27 4 84.4%
2 Rolls iz
8 0.0% 0.7% 18.0% 2.7% 15.6%
Tharraais 2 0 3 24 82.8%
1.3% 0.0% 2.0% 16.0% 17.2%
96.7% 96.7% 90.0% 80.0% 92.0%
3.3% 3.3% 10.0% 20.0% 8.0%
& @ ¥ &
& S o 2
oi(\ ,-962' <& z‘&

Target class

Figure 32: The confusion matrix of the training ensemble showcasing the classification error of the
QDA algorithm for each type of structures. Target class = eye-made classification, output class =
classification by the algorithm. For instance, the cell at the intersection of the “thermals” line and
“rolls” column gives the number of roll cases classified as thermals by the algorithm.

The QDA algorithm performed the best for the classification of streaks structures. It
classified accurately 29 out of the 30 streaks cases in the training ensemble, with only one
misclassification as rolls. The second best performance was for the category “others” with
58 out of the 60 cases classified correctly, and only two cases misclassified as thermals.
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The performance of the algorithm for the classification of rolls cases was also good with
27 cases classified correctly and 3 cases misclassified as thermals. The worst
performance of the algorithm out of all the types was for the thermals. Nonetheless the
algorithm still performed rather good with 24 cases classified correctly, 4 cases
misclassified as rolls and 2 cases misclassified as "others”.

As the classification of the whole ensemble of 4577 scans was carried out based on
the five classifiers selected by the algorithm for the training ensemble, some
misclassifications between thermals, rolls and “others” were expected to occur.

2.4 ABL height estimation

The ABL height is an important parameter with regards to the structures
development. Rolls and large thermals occur during a developing or a well developed
ABL. When the ABL is shallow, it is not physically possible for such large structures to
occur. On the contrary streaks can form during the night (shallow ABL) under high wind
shear conditions near the surface. The ABL height cannot be included as a parameter in
the classification process because it cannot be estimated reliably all the time (for instance,
during the afternoon transition the aerosol lidar profile often ambiguous) and because the
process is more robust if relying on a single instrument, i.e. the Doppler lidar. Instead, the
estimation of the ABL height can be used as a measure of validity for the classification of
the whole ensemble, if the ABL height values are associated with the types of structures
for the corresponding times. It is important to note that precision is not essential, an
approximate value is sufficient for the purpose of this study.

For the estimation of the ABL height during two days (09/09 and 10/09) of the
VEGILOT campaign, Klein et al., (2019) used the vertical LOS beams from the Doppler
lidar observations during the night and the aerosol lidar observations during the day. This
methodology for the estimation of the ABL height was extended to all the days of the 2-
month dataset for this study. During the night, the methodology relies on the vertical wind
standard deviation computed from the multiple LOS scans recorded during 30 seconds
periods. On an example profile of the vertical wind standard deviation (Figure 33), it is
apparent that, near the surface, there is a significant decline above a certain height. This
is an indication of passing from the ABL to the free troposphere (Tucker et al., 2009). The
ABL height was estimated at the maximum of the vertical wind standard deviation.
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Figure 33: Vertical profile of the vertical wind standard deviation based on the LOS vertical shots
recorded on 10/09 at 00:14 UTC.

This method works during the night, because aerosols in the residual layer provide
a sufficient level of signal for the Doppler lidar to retrieve the wind above the ABL. During
the day, there are most of the time no wind measurement above the ABL because the free
troposphere is too clean. Therefore, the vertical wind variance profile is incomplete and
cannot be used to estimate the ABL height.

Fortunately, there were also aerosol lidar observations. The aerosols are located
within the ABL, thus there is a notable decrease in the concentrations at the transition
between the ABL and the free troposphere (Stull, 1988). Flamant et al., (1997) and Menut
et al., (1999) have showcased the estimation of the ABL height based on the maximum of
the variance of the range corrected signal (Pr?) recorded by the aerosol lidar. In the dataset
of VEGILOT, the minimum of the first derivative of the Pr? standard deviation was utilized
for the estimation of the ABL height, as it gave better results compared to the maximum
variance of the Pr2. It is noteworthy that the aerosol observations cannot be utilized for the
estimation of the ABL height during the night due to the blind zone of the lidar, which is
equivalent to 200 m. Figure 34 showcases an example of the vertical profiles of the 10-
minute average and the standard deviation of the Pr? along with the estimated ABL height.
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Figure 34: Vertical profiles of the average (black) and the standard deviation (blue) of the Pr2
recorded by the aerosol lidar on 08/09 at 13:18 UTC.

An example of the results of the implemented methodology for the estimation of the
ABL height is portrayed in Figure 35. The ABL height varied between 200 and 300 m
during the night and grew up to 1300 m in the afternoon. The development of the ABL
started a few hours after sunshine, around 8:00 UTC, and was very fast until around 11:00
UTC. Similar realistic ABL height values were observed for the others days under study
and correspond to previous observations on this site (Dieudonné, 2012).

‘ LOS on 09-Sep-2014
2 T LI T

1.5

Altitude above lidar (km)

10 15
Hour UTC
Figure 35: Time-height cross-section of the vertical wind speed observed by the Doppler lidar using

the vertical LOS on 10/09 along with the ABL height as obtained from the abovementioned
methodology (black dots = wind lidar, black squares with white edges = aerosol lidar).

This methodology for the estimation of the ABL height depends on clear sky
conditions. Low level clouds, fog, precipitation and any other weather phenomena or
events that disturbs the signal of the lidars makes it impossible to estimate the ABL height.
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The ABL height was estimated accurately for the majority of the 24 hours period for 18 out
of the 64 days of the campaign (the exact dates are given in Figure 36). Furthermore, the
occurrence of nocturnal llj events can complicate things. According to Stull (1988), during
a llj event the ABL height is estimated “under the nose of the Ilj’. However, the strong wind
shear can generate turbulence and eventually increase the height of the ABL
(Blackadar, 1957). For the current study the ABL height was only estimated via the vertical
wind standard deviation values during the night, even when Ilj events occurred, because
the precision in the estimation of the ABL height was not the priority for the purpose of this
study.

ABL height estimated

2014/09 + e seee sesce - PR,
2014/10 o . o
201411 ¢

0 10 20 30

Day of the month

Figure 36: Days during VEGILOT that the ABL height could be estimated for the majority of the
day.

2.5 Structure size retrieval

Regarding the validity of the classification, another interesting parameter is the
horizontal size of the structures for the streaks and rolls cases. The patterns of these
coherent structures can be observed in the mif-cs fields, as well as the periodicities of the
alternating stripes of positive and negative values. By applying the Fast Fourier Transform
(FFT) analysis in the radial wind speed observations, one will obtain the spectrum of the
data (Stull, 1988). Several studies have shown that the spectrum of the radial wind speed
in the direction perpendicular (transverse) to the mean wind is characterized by distinct
peaks corresponding to the periodicities of the structures (e. g. Calaf et al., 2013; Drobinski
et al., 2004, 1998).

The two opposite beams of the quasi-horizontal PPI scan that are transverse to the
mean wind direction were stacked together before computing the FFT in order to cover a
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larger domain of space, thus frequency. Those two beams were recorded with a 1,5-
minute difference, so it is necessary to suppose that the structures keep the same
properties as they pass over the lidar, i.e. they are similar in the longitudinal direction over
a distance of an order of magnitude between 200 and 700 m (90 s multiplied by the mean
wind speed, which is around 2 to 8 m/s). This distance is of the same order of magnitude
as the periodicities that are visible in the transverse direction, so it is reasonable to
suppose that elongated structures do not vary over such a distance in the longitudinal
direction.

Using a single pair of beams produces a very noisy spectrum, so the spectrums of
the five pairs of beams closest to the transverse direction were computed, then averaged.
Before applying the FFT, the radial wind field was converted from polar to Cartesian
coordinates and interpolated on a regular grid so that all the grid points have an equal 50-
m spacing in the transverse direction. Figure 37 present an example of streaks case mlf-
cs field and the corresponding spectrum. There is a quite prominent peak in the spectrum
a little above 400 m. This size is in agreement with the periodicity that can be observed
on the mlf-cs field.

Streaks 08/09 at 21:22 UTC
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Figure 37: (a) Example of radial wind field for a streaks case recorded on 08/09 at 21:22 UTC, with
the transverse direction (black line). The dashed line encloses an area covering a single period in
the transverse direction. (b) Corresponding averaged spectrum for the five central lines in the
transverse direction.

Figure 38 is similar to Figure 37 but for a roll case; here the peak for the periodicities
is located at approximately 1300 m, again in agreement with the periodicities visible on

the mif-cs field.
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Rolls 09/10 at 13:24 UTC
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Figure 38: (a) Radial wind field and (b) the corresponding averaged spectrum for the five central
lines in the transverse to the wind direction for a rolls case on 09/10 at 13:24 UTC.

The spectrums are limited to 300 m on the short wavelength side because it was
not realistic to observe smaller structures when the spatial resolution of the lidar was 50 m.
For the rolls cases, we observe the sizes near the surface while other studies, especially
those based on airborne data, observe the rolls in the middle of the mixed layer. Therefore,
it is complicated to compare the values obtained here with other studies. Despite that, the
spectrums clearly showed different sizes for the rolls and the streaks. Therefore, the
horizontal sizes could be a parameter to validate the classification. The horizontal sizes
were estimated only for the coherent structures as the random patterns of the thermals do
not produce clear peaks in the spectrums.

2.6 Implementation of the methodology

Chapter 2 presented a detailed description of the implemented methodology along
with all the important means to perform this study. The performance of the methodology
is displayed in the following chapter in the form of two manuscripts accompanied by
introductory and discussion sections. Section 3.1.2 contains the manuscript with the
performance of the algorithm in the training ensemble (published in the peer-reviewed
journal of Atmospheric Measurement Techniques). The second manuscript (Sec. 3.2.2 —
under review at the Journal of Applied Meteorology and Climatology at the time of
submission) presents the results of the classification for the 2-month VEGILOT dataset
and the physical properties of the classified structures.
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3. Results
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3.1 Automated classification of the coherent structures
3.1.1 The idea for an automated classification method

The main challenge of this study was to discover a way to exploit the information
from the two-month dataset consisting of 4577 quasi-horizontal scans. The careful visual
examination of the mif-cs fields led to the identification of distinct patterns that occurred at
multiple times and dates. This observation generated the idea of an automatic method for
the classification of the structures based on the patterns. An idea that came to life with the
combination of texture analysis parameters and a supervised machine learning algorithm.
The development of the methodology have been presented thoroughly in Sections 2.2 and
2.3. A more compact version, along with the results of the classification for the 4577 cases
has been published in the peer-reviewed journal Atmospheric Measurement Techniques
and it is presented in Section 3.1.2. This article also includes the diurnal variation of the
structures types found for the two-month period. It is apparent that the classified structures
show a realistic behaviour with regards to the time of the day they occur.

In this article, only the algorithm set up that with the best performance for the final
classification was presented. However, various different set ups were tested throughout
this study. In Section 3.1.3 the alternative set ups and their results are discussed in order
to give an insight to interested researchers that would like to use the same methodology.
The classification depends exclusively on the texture analysis parameters of the mlf-cs
fields. This is significant because the methodology can be applied to any dataset
independently of the place and time of the wind lidar observations as long as the mlf-cs
fields contain similar patterns.
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Abstract. Medium-to-large fluctuations and coherent struc-
tures (mlf-cs’s) can be observed using horizontal scans from
single Doppler lidar or radar systems. Despite the ability
to detect the structures visually on the images, this method
would be time-consuming on large datasets, thus limiting
the possibilities to perform studies of the structures prop-
erties over more than a few days. In order to overcome
this problem, an automated classification method was de-
veloped, based on the observations recorded by a scanning
Doppler lidar (Leosphere WLS100) installed atop a 75m
tower in Paris’s city centre (France) during a 2-month cam-
paign (September—October 2014). The mlf-cs’s of the radial
wind speed are estimated using the velocity—azimuth dis-
play method over 4577 quasi-horizontal scans. Three struc-
ture types were identified by visual examination of the wind
fields: unaligned thermals, rolls and streaks. A learning en-
semble of 150 mlf-cs patterns was classified manually re-
lying on in situ and satellite data. The differences between
the three types of structures were highlighted by enhanc-
ing the contrast of the images and computing four texture
parameters (correlation, contrast, homogeneity and energy)
that were provided to the supervised machine-learning algo-
rithm, namely the quadratic discriminant analysis. The al-
gorithm was able to classify successfully about 91 % of the
cases based solely on the texture analysis parameters. The al-
gorithm performed best for the streak structures with a clas-
sification error equivalent to 3.3 %. The trained algorithm
applied to the whole scan ensemble detected structures on
54 % of the scans, among which 34 % were coherent struc-
tures (rolls and streaks).

1 Introduction

Turbulent flows are motions characterized by high unpre-
dictability. Nevertheless, coherent structures are developed
in these flows (Tur and Levich, 1992). The principal aspect
that determines a coherent structure is the maintenance of
the phase-averaged vorticity of the turbulent fluid mass over
the spatial extent of the flow structure (Hussain, 1983). The
most typical types of coherent structures are presented in the
review of Young et al. (2002), who classified structures into
three characteristic types: turbulent streaks, convective rolls
and gravity waves. Several studies have been carried out to
examine the effect of the coherent turbulent structures in the
dispersion of pollutants by utilizing boundary layer simula-
tions. The results of these studies indicate that the coherent
structures can play a significant role in the pollutants’ con-
centrations (Aouizerats et al., 2011; Soldati, 2005). Further-
more, Sandeepan et al. (2013) have demonstrated via simu-
lations that the pollutants’ concentrations can alternate from
low to high during coherent-structure events. It is therefore
important to be able to identify structures in the atmosphere
and observe them in an efficient and consistent way. The term
coherent structures in the aforementioned studies refers ex-
clusively in the atmospheric flow, and it is the main focus in
this study. This term is also encountered in studies at the lab-
oratory scale described as hairpins or packets (Adrian, 2007,
Hutchins and Marusic, 2007), but these are out of the scope
of this study.

Turbulent streaks are structures aligned with the horizon-
tal wind with alternating stripes of stronger horizontal wind
associated with a subsidence and stripes of weaker horizontal
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wind associated with an ascendance (Khanna and Brasseur,
1998). The high wind shear between the surface layer and the
lower planetary boundary layer (PBL) can lead to the forma-
tion of the turbulent streaks in the surface layer that may ex-
tend to the mixed layer. Neutral or near-neutral stratification
favours the formation of streaks, though they may also form
during stable and unstable conditions (Khanna and Brasseur,
1998). The physics behind their formation differs as the con-
tribution of buoyancy varies in relation to the atmospheric
conditions (Moeng and Sullivan, 1994). Formation, evolution
and decay of streaks are rather short, equivalent to several
tens of minutes, before they regenerate. The average streak
spacing is usually hundreds of metres (Drobinski and Fos-
ter, 2003). In the mixed layer, horizontal roll vortices, also
known as convective rolls, develop roughly aligned with the
mean wind (LeMone, 1972). Favourable conditions for the
development and maintenance of convective rolls are the spa-
tial variations of surface-layer heat flux, the low-level wind
shear and the relatively homogeneous surface characteristics
(Weckwerth and Parsons, 2006). As the rolls rotate in the
vertical plane, they generate ascending and descending mo-
tions. These motions under convective conditions can form
clouds in rows separated by clear-sky areas known as cloud
streets, which is a characteristic visual feature used to iden-
tify rolls (Lohou et al., 1998). The rolls usually extend from
the surface to the capping inversion with a large variety of
horizontal sizes from a few kilometres to few tens of kilo-
metres. They are characterized by a long lifespan of hours
or even days as opposed to the short lifespan of the streaks
(Drobinski and Foster, 2003). Young et al. (2002) distinguish
rolls in narrow mixed-layer rolls, where the ascending air
masses are one thermal wide (Weckwerth et al., 1999), and
wide mixed-layer rolls, where multiple thermals are grouped
within each ascending area (Briimmer, 1999). As Young et
al. (2002) stated, both types of rolls can be distinguished vi-
sually, with the narrow rolls having the form of a “string of
pearls”, whereas the wide rolls look like a “band of froth”.
Remote sensors are exceptionally useful for the identifica-
tion of coherent structures. Their ability to scan large areas in
a short period is advantageous compared to in situ measure-
ments (Kunkel et al., 1980). Lhermitte (1962) and Browning
and Wexler (1968) were the first to implement the velocity—
azimuth display (VAD) technique, also known as the plan
position indicator (PPI) method, using Doppler radars. The
PPI technique provides conical scans or even horizontal sur-
face scans with the appropriate combination of elevation
and azimuth angles. Kropfli and Kohn in 1978 were able
to study horizontal roll structures by using a dual-Doppler
radar in order to observe the wind field in the three dimen-
sions. Several studies followed for different types of radars
with more efficient configurations (Kelly, 1982; Lohou et al.,
1998; Reinking et al., 1981). Weckwerth et al. (1999) were
able to study the evolution of horizontal convective rolls by
combining Doppler radar observations with meteorological
measurements, radiosondes, flight measurements and satel-
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lite images. In recent years, various studies have been car-
ried out by using lidars only. It has been well established that
the PPI method can also be applied to Doppler lidars (Car-
iou et al., 2007; Vasiljevi¢ et al., 2016) with the possibility
to compute the mean wind profile by using a modified ver-
sion of the VAD method as has been demonstrated in the
studies of Banta et al. (2002) and Chai et al. (2004). Depend-
ing on the selected scanning method of the Doppler lidar, it
is possible to observe coherent structures in the atmospheric
surface layer (Drobinski et al., 2004) as well as in the mixed
layer (Drobinski et al., 1998). Newsom et al. (2008) and Iwai
et al. (2008) introduced the dual-Doppler lidar method and
revealed its benefits in the observation of coherent structures.
This method was further improved by Triumner et al. (2015)
using an optimized dual-Doppler technique. They were able
to identify different type of structures including elongated
areas resembling turbulent streaks. They combined quanti-
tative characteristics of the coherence such as the integral
scales and the anisotropy coefficients, obtained by a two-
dimensional autocorrelation algorithm, with the visual ob-
servation of the scans. However, the subjective classification
by observing the images is a time-consuming approach and
non-systematic. Furthermore, the use of two Doppler lidars
is limited to the institutes that can afford such a high cost
and collaborations on short-term campaigns. A much less ex-
pensive approach, and suitable for long periods, is to detect
the passage of the structures on sonic anemometer time se-
ries. For instance, Barthlott et al. (2007) analysed 10 months
of data from a meteorological tower located in the surface
layer 20 km south of Paris, France, and they observed coher-
ent structures for 36 % of the cases. However, their study is
limited to point measurements instead of a larger wind field
that it is possible to observe via a lidar.

This study aims to identify the medium-to-large fluctua-
tions and coherent structures (mlf-cs’s) on single Doppler
lidar horizontal scans and develop an automatic classifica-
tion process based on the combination of texture analysis
and a supervised machine-learning technique, namely the
quadratic discriminant analysis (QDA), in order to handle
large datasets. Texture analysis is an effective way to eval-
uate the distribution of the values within an image (Castel-
lano et al., 2004). It is widely used in various scientific fields
in order to classify images, covering meteorology (Alparone
et al., 1990), medical studies (Holli et al., 2010) and forestry
(Kayitakire et al., 2006). There is a lack of long-term stud-
ies of structures based on lidar observations, and the afore-
mentioned automatic classification process can stimulate the
interest in this research field. More particularly, it could fa-
cilitate the statistical analysis of the physical parameters of
the structures, e.g. the structure size as a function of the
height of the planetary boundary layer (PBL). Furthermore, it
will enable us to study the transitions between structures and
how these are associated with the atmospheric conditions.
Finally, the impact of the structures on pollutants’ concentra-
tions could be examined for long-term studies under stable
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Figure 1. (a) The Doppler lidar installed on the tower roof during the VEGILOT campaign and (b) the measurement site in Paris with inside
a circle with a 10 km diameter demonstrating the maximum range of the PPI surface scan (© Google Earth satellite image).

Table 1. Properties of the lidar used for the observation of mlf-cs’s.

Doppler lidar (Leosphere WLS100)

Altitude of lidar 75ma.g.l.
Minimum range 100 m
Radial-wind-speed range ~ —30to 30m sl
Laser wavelength 1.543 pm
Radial wind accuracy +0.1ms™!
Accumulation time 1 sbeam™!

and unstable conditions. The classification method relies on
the observations of radial wind speed recorded using a scan-
ning Doppler lidar settled atop a 75 m high tower in the centre
of Paris, during a 2-month period in late summer and early
fall. Section 2 presents the experimental setup of the study.
The methodology for the identification and classification of
the mlf-cs’s is demonstrated in Sect. 3. Subsequently, the re-
sults of the classification for the training ensemble as well as
for the whole dataset are displayed in Sect. 4. Finally, the key
points of the paper are summarized in Sect. 5.

2 Experimental setup

A 2-month measurement campaign (4 September—6 Novem-
ber 2014) was carried out in order to study the exchange pro-
cesses of ozone and aerosols in the area in the framework of
the VEGILOT (VEG¢étation et ILOT de chaleur urbain; vege-
tation and urban heat island) project in the urban area of Paris
(Klein et al., 2019). The Leosphere WLS100 Doppler lidar
(https://www.leosphere.com, last access: 2 December 2020)
with a minimum range of observations at 100 m (Fig. 1a) was
installed atop a 75 m building on the Jussieu campus, located
in Paris’s city centre (Fig. 1b), and was used for wind mea-
surements. Table 1 shows the significant lidar properties dur-
ing the VEGILOT campaign.

https:/doi.org/10.5194/amt-13-6579-2020
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Figure 2. Ground altitude map above sea level with 75 m spatial
resolution for the scanning area in Paris (credit: Institut National de
I’Information Géographique et Forestiere, https://www.data.gouv.
fr/fr/datasets/bd-alti-r-75-m-250-m-1-000-m/, last access: 2 De-
cember 2020).

The Doppler shift frequency between the emitted laser
beam and the light backscattered by the aerosols is mea-
sured by heterodyne detection associated with fast Fourier
transform as explained analytically by Cariou et al. (2007).
A wind lidar measures the radial wind speed, i.e. the wind
projection along the light beam (counted positive when go-
ing away from the lidar). Table 2 showcases the implemented
scanning methods during the VEGILOT campaign. For the
classification of the mlf-cs’s, we focused in the current study
on the almost horizontal PPI scans (1° elevation angle). Dur-
ing those scans, the lidar emitted beams in azimuth angles
from 0 to 360° with a 2° resolution. This scenario was re-
peated every 18 min hence providing 4577 PPI scans dur-
ing the whole campaign. The duration of each scan was
3 min, which is sufficiently fast for the observation of coher-
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Table 2. Scanning methods selected during VEGILOT.

I. Cheliotis et al.: An automated classification method for turbulent structures

Scanning area Purpose Elevation and azimuth Scan duration
angle
Plan position indicator Almost horizontal Identification of structures Elevation 1°, azimuth 0 3 min
(PPI) scans near surface to 360° with 2° resolu-
tion
Doppler beam swinging Combination of Identification of low-level Elevation 75°, azimuth 2x I5s

(DBS) line-of-sight beams jet cases 0, 90, 180 and 270°
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Figure 3. Observations recorded during a quasi-horizontal PPI scan on 8 September 2014 at the Jussieu site, Paris, at 09:26 UTC. (a) Radial
wind speed along with the mean wind direction (black line) and the transverse direction perpendicular to it (black dotted line). (b) Radial
wind speed (blue dots) as a function of the azimuth angle at a fixed 2 km distance from the lidar (black circle on a) along with the cosine fit
function (red line). (¢) Mean wind speed projected on the beam direction. (d) The mlf-cs field.

ent structures with a lifespan of several minutes. The max-
imum range of the scans reached 5km (see white circle of
Fig. 1b) with a spatial resolution of 50 m. It is noteworthy
that the scanning area covers almost exclusively the urban
area of Paris, a city famous for regulating the height of the
buildings to not exceed 50 m in its centre (Saint-Pierre et al.,
2010). The ground altitude enclosed by the scanning area
mostly ranges between 30 and 60 m with the exception of
some hills near the boundaries of the scanning range as can
be seen in Fig. 2. It is fundamental for this study to assume
that the wind field within the scanning area is homogeneous
(see Sect. 3.1). Due to the 1° elevation, the beam was risen
by about 87 m between the central point and the point at
5km. It was also important for this study to retrieve observa-
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tions regarding the vertical wind shear. For this purpose, the
Doppler beam-swinging (DBS) scanning method was imple-
mented. This method consisted of four line-of-sight beams at
azimuth angles of 0, 90, 180 and 270° with an elevation an-
gle of 75°, and it was applied twice. The duration of the four
beams emission was approximately 15s.

3 Preparation of the dataset for the classification
3.1 Turbulent radial wind fields
Assuming a homogeneous wind field for horizontal PPI

scans, the radial-wind measurements u, taken for the differ-
ent beams at a given distance from the lidar should follow a
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Figure 4. A case when the VAD method cannot be applied: (a) radial wind field on 25 September 2014 at 23:42 UTC and (b) radial wind
speed (blue dots) as a function of the azimuth angle at a fixed 2 km distance from the lidar (black circle on a).

cosine function of the azimuth angle, due to the projection
of the wind along the beam direction (Eberhard et al., 1989).
For instance, the observations at 2 km from the lidar (black
ring in Fig. 3a) are displayed in Fig. 3b and can be fitted by
a cosine function in the form of Eq. (1):

Uy =a~+bcos(f — Omax), (D

where b is the mean wind speed, O, is the wind direction,
0 is the azimuth angle of the beam and a is the offset (Brown-
ing and Wexler, 1968; Lhermitte, 1962). It is noteworthy that
the value of a is much smaller than b for our data. It is pos-
sible to retrieve the mean wind from all the “rings” and sub-
sequently calculate the mean wind projected on the beam
direction which is displayed in Fig. 3c. The difference be-
tween the radial wind field u, (Fig. 3a) and the mean wind
projected on the beam direction (Fig. 3c) is the mlf-cs of
the radial wind field u; (Fig. 3d), a parameter that indicates
the existence of a turbulent atmosphere. For this study, the
radial-wind-speed values for which the carrier-to-noise ra-
tio is lower than —27 dB (CNR < —27 dB) were disregarded,
since they were anomalously high, exceeding the values of
the rest of the radial wind field by 2 times or more. Therefore
the effective scanning range showcased in Fig. 3 is approx-
imately 3 km. For a better visual representation of the pat-
terns, the sign of the u,. in the current study is positive when
the radial wind speed is stronger than the mean wind speed
and negative when it is weaker as is illustrated in the sign
convention of Fig. 3b, and it was computed by the following
expression:

up = lug ()| =1 £ (), 2

where f is the fitted curve.

The Jussieu site is located in an urban area near hills;
hence the surface roughness or the orography can affect the
regional wind flow. Troude et al. (2002) and Lemonsu and
Masson (2002) have performed numerical weather simula-
tions in the area of Paris and have observed that during low-
wind conditions (below 3ms™!) the orographic effect and
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the urban heat island effect could be the main drivers for
the local wind speed. As a result, in some cases the radial
wind field does not follow a cosine function, and therefore
the VAD method cannot be applied. This is apparent espe-
cially at night when low winds (below 2ms~!) do not have
a defined direction (Wilson et al., 1976). Figure 4 presents
a case where the radial wind field is not homogeneous. The
radial-wind-speed values e.g. at 2 km did not follow a cosine
function (Fig. 4b).

The visual examination of the mlf-cs fields led to the iden-
tification of three types of remarkable mlf-cs patterns. The
first type was represented by large elongated areas of posi-
tive mlf-cs’s accompanied by large elongated areas of nega-
tive mlf-cs’s aligned with the mean wind (Fig. 5a) during the
day. In the atmosphere, these types of patterns are encoun-
tered concurrently with the existence of rolls, where strong
descending motions enhance the horizontal wind speed and
ascending motions reduce it. The second type of pattern was
characterized by large enclosed areas of a positive mlf-cs
field attached to large enclosed areas of a negative mlf-cs
field (Fig. 5b) during the day. The convergence zones formed
between the positive and negative mlf-cs fields during un-
stable conditions (e.g. high solar radiation) are able to form
strong unaligned thermals. Finally, the third type of pat-
tern consisted of narrow elongated areas alternating between
positive and negative mlf-cs’s aligned with the mean wind
(Fig. 5c). These patterns resemble turbulent streaks as de-
scribed in Sect. 1.

In order to train the classification algorithm (Sect. 4.1),
it was necessary to build an ensemble of cases for which
the presence of rolls, unaligned thermals or streaks was con-
firmed by observations other than the lidar measurements.
Moderate Resolution Imaging Spectroradiometer (MODIS)
true-colour images were used to detect the presence of cloud
streets over Paris (Fig. 5d), which confirmed the existence of
rolls as stated in Sect. 1. Close to the moment when the cloud
streets were present, rolls patterns were observed at the tur-
bulent radial fields (Fig. 5a). It is noteworthy to mention that,
for the training ensemble, we selected only cases of rolls oc-
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Figure 5. The upper part shows the three types of mlf-cs fields to classify: (a) rolls observed on 13 October 2014 at 12:52 UTC, (b) unaligned
thermals observed on 16 September 2014 at 12:52 UTC and (c¢) streaks observed on 9 September 2014 at 20:49 UTC. The lower part shows
the ancillary observations used to ascertain the structure type: (d) and (e) are true-colour images recorded by MODIS Aqua on the same day
as (a) and (b) at 12:50 UTC, and (f) is the horizontal wind speed profile recorded by the Doppler lidar using the DBS technique on the same

day as (c) at 20:51 UTC.

curring around the satellite overpass time to ensure the pres-
ence of cloud streets and thus the existence of rolls. How-
ever, for this classification we are interested in all the cases of
rolls, with or without the formation of cloud streets. It is im-
portant to note that we observed the occurring patterns near
the surface, hence near the lower part of the rolls. Regarding
unaligned thermals, solar-radiation measurements from the
meteorological station of Paris-Montsouris indicated the oc-
casions when the hourly values were higher than the monthly
average hourly values according to the Photovoltaic Geo-
graphical Information System (Huld et al., 2012), signify-
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ing fair-weather cumulus conditions. For approximately the
same time of the day, we observe the unaligned thermals pat-
terns. Figure 5b showcases an example of a turbulent radial
wind field with unaligned thermals along with fair-weather
cumuli over Paris as observed on MODIS true-colour images
at approximately the same time (Fig. Se).

Finally concerning streaks, a driving factor for their for-
mation is the existence of a strong wind shear near the sur-
face. The observation of the horizontal wind profiles from the
DBS scans revealed when the local maxima horizontal wind
speed was higher than 2ms~! compared to the local minima
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Figure 6. The mlf-cs field (a) before and (b) after image pre-processing with the arrow representing the mean wind direction on 10 September

2014 at 19:57 UTC.

Table 3. Co-occurrence matrix after the image pre-processing
(Fig. 6b) for the first neighbour (n = 1) and for a cell pair aligned
with the mean wind and oriented in the same direction (azimuth
@ =0°).

1 2 3 4 5 6 7 8

1 3065 226 164 118 113 57 35 94
2 255 67 77 58 36 26 23 48
3 181 81 59 61 -4 51 35 72
4 133 58 63 91 71 50 40 92
5 98 51 59 65 67 63 58 154
6 58 36 50 53 75 72 78 169
7 46 30 38 53 60 61 55 231
8 73 45 78 104 151 201 246 3402

above it, which is defined as the threshold for nocturnal low-
level jet events (Stull, 1988) (Fig. 5f). It is important to note
that the location of the local maxima and minima of the hor-
izontal wind speed were consistent during the study period,
ranging from 200 to 300 and 400 to 500 m, respectively. The
horizontal wind speed Uy, was estimated by the zonal « and
meridional v winds via the expression

Unor =V u? +v2. 3)

For the training ensemble, only night cases when streaks
patterns (Fig. 5c¢) were accompanied by differences in local
maxima and minima of the Up,, higher than 2 ms~! were se-
lected. In total, 30 cases of each structure type were selected
for the training ensemble with an extra category represent-
ing all the patterns that are not classified in the other three
categories, such as chaotic patterns or cases when the VAD
method cannot be applied (Fig. 4). Regarding rolls, streaks
and thermals, only cases with symmetric radial wind fields
were selected in order to ensure that the VAD method was
applicable. The selection of symmetric radial wind fields was
based on the visual examinations of the radial wind fields and
the individual cosine function fits.
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3.2 Computation of the co-occurrence matrices

In order to retrieve comparable texture analysis parameters
from the mlf-cs field of the scans, the mlf-cs field was rotated
so that the mean wind direction was aligned to the vertical
(0° corresponds to a wind blowing from the north). Then,
the coordinates were converted from polar to Cartesian. It
was also important to adjust the contrast of the image so
that the difference between the areas of positive and nega-
tive turbulent wind speed became more prominent. For this
purpose, the contrast of the images was increased by map-
ping the turbulent-wind-speed values into eight levels. One
bin included all the negative values below —0.5ms™!; six
bins were equally distributed between —0.5; and +0.5 ms™!
and one bin included all the positive values above +0.5 ms ™!
(Fig. 6b).

For the automated classification of patterns, we need to
map them to a space of corresponding numerical parameters.
Each reconstructed mlf-cs field is represented by a matrix
(cells corresponds to pixels) from which 8 x 8 co-occurrence
matrices (CMs) can be constructed (Haralick et al., 1973).
The rows and columns of the CM represent the wind lev-
els from 1 to 8, whereas the cells contain the frequency of
the combination of two neighbour pixels in the image. More
specifically, the element at line i and column j contains the
number of pixels with value i which are neighboured by pix-
els with value j. The first neighbour can be searched at dif-
ferent direction (e.g. left to right, top to bottom or diago-
nally) defining the cell pair orientation. In the same way a
second, third, etc. neighbour can be selected. Thus, the CMs
can be calculated for any cell pair orientations and neighbour
order. CM were computed for various distances, i.e. neigh-
bour orders n from 1 to 30 (distance from 50 m to 1.5 km),
and all possible cell pair orientations, i.e. azimuth angles ¢
from —90° (transverse direction from the mean wind in the
anticlockwise direction) to +90° (transverse direction in the
clockwise direction). Table 3 shows the cell values of the CM
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Table 4. Co-occurrence matrix after the image pre-processing
(Fig. 6b) for the third neighbour (n = 3) and for the transverse di-
rection in the clockwise direction (azimuth ¢ = +90°).

1 2 3 4 5 6 7 8
1 1497 231 203 182 165 168 170 1149
2 185 19 25 43 27 27 25 200
3 183 29 26 29 33 31 21 207
4 195 32 37 39 29 31 28 185
5 203 29 38 31 36 31 26 208
6 201 26 25 25 26 39 29 198
T 175 27 23 26 32 21 37 212
8 1063 179 187 196 243 206 217 1719

built from the image of Fig. 6b for the first neighbour (n = 1)
and for a cell pair aligned with the mean wind and oriented
in the same direction (azimuth ¢ = 0°). It is apparent that the
vast majority of the occurrences are concentrated in the cells
[1,1] and [8,8], as the structures are elongated and aligned
with the mean wind direction.

On the other hand, Table 4 shows the CM of Fig. 6b for
the third neighbour (n = 3) and for a cell pair oriented per-
pendicularly to the mean wind (transverse direction) with a
clockwise rotation (azimuth angle ¢ = +90°). In this case,
the occurrences have been distributed to the cells [1,1] and
[8,8], as well as to the cells [1,8] and [8,1]. As we can see in
Fig. 6b, the structures alternate between positive and nega-
tive values in the direction transverse to the mean wind, thus
creating this difference in the CM compared to Table 3.

3.3 Texture analysis parameters for the classification of
the turbulent structures

It is possible to compute several texture analysis parameters
from each CM. Srivastava et al. (2018) were able to distin-
guish different synthetic patterns by using four texture anal-
ysis parameters: correlation, contrast, homogeneity and en-
ergy. Correlation indicates the existence of linear structures
in the image, with high values associated with a large amount
of linear structure in the image. Contrast reveals the local
variations in an image, where a large amount of variations
leads to high values. Homogeneity is self-explanatory, and
the high values represent a homogeneous image. Finally, en-
ergy measures the uniformity of an image with the highest
values corresponding to constant or periodic forms (Haralick
etal., 1973; Yang et al., 2012). In the study of Srivastava et al.
(2018), the striped patterns resemble the elongated patterns
of streaks and rolls that we observe in the turbulent radial
wind field. Therefore, the same texture analysis parameters
were selected for calculation in our dataset. More particu-
larly, the following parameters were computed by Eqs. (4)—

.
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p(.J)

Homogeneity: Hom (¢,n) = Y —————, 4)
7 LEli=]l
Contrast: Con(g,n) = Zp(i.j)]i — j|2, 5)
ij
Correlation: Cor(g,n) = Z U= ui)J — 1j)pG, J). (6)
i O‘,'O’j
Energy: En(p,n) = Zp(i, e @)

ij
where p(i, j) = % for the i, j position in the CM,
i

marginal expectations jp; = Y i-p(i,j), pj=.> j-
i i

Y36 — 1) pls j)
i

p(i, j), and the marginal SDs o; =

andoj = [3°3(j —uj)? pl.j).
i

At a given neighbour order 7, it is then possible to study
the dependence of the texture parameters to the azimuth an-
gle ¢ (see an example of such a dependence in Fig. 7). The
streaks and rolls have a more prominent peak in the longitu-
dinal direction (¢ = 0°) compared to the unaligned thermals
and patterns of “others”. As streaks and rolls are aligned with
the mean wind (azimuth ¢ = 0°), those peaks result from the
elongated shapes of these patterns.

Three parameters of the curve in Fig. 7 were selected in
order to distinguish the different types of structures. For in-
stance, for the homogeneity curves, these parameters are de-
fined as follows in Egs. (8)—(10).

Amplitude: Hom.Amp(n) = max (Hom(g, n))
@

— min (Hom(g, n)) (8)
7
Integral: Hom.Int(n) = ZHom((p, n) 9)
[
Symmetry: Hom.Sym(n) = Z|Hom(<p,n)
@
— Hom(—g, n)| (10)

These three curve parameters were calculated for the 4 tex-
ture analysis parameters and for each of the 30 neighbour
orders, which gives 360 parameters. In addition to these pa-
rameters, the time in UTC (close to solar time in Paris),
the average mean wind speed and the root-mean-square er-
ror (RMSE) of the cosine fit (Fig. 3b) were included in the
classification parameters. The total number of classification
parameters associated with each scan was therefore 363.
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Figure 7. Third-neighbour homogeneity as a function of azimuth for one selected scan of each type.

4 Classification using supervised machine learning
4.1 Algorithm training and classification error

In order to classify the mlf-cs’s according to the aforemen-
tioned texture analysis parameters, the supervised machine-
learning methodology was applied (Bonamente, 2017; James
et al., 2000; Kubat, 2017). The QDA algorithm was used,
which minimizes the total probability of misclassification,
assuming that features of each class have a multidimensional
Gaussian distribution. QDA or normal Bayesian classifica-
tion (Hastie et al., 2009) is the parametric approach imply-
ing that probability density functions (PDFs) belong to the
family of normal distributions. It is a classical algorithm of
supervised machine learning, based on the principle of max-
imum likelihood. The general idea is to estimate the PDF for
each class and then select the most probable class (Kubat,
2017).

The greedy algorithm of stepwise forward selection was
used in the article, which is the standard and frequently used
method of reduction of the feature space. As indicated in
Sokolov et al. (2020), it can be formulated as follows. The
features are divided into two groups: accepted in the classi-
fication model and remaining, for which an estimate of the
possibility of acceptance into the model is checked. Fea-
tures from the set of “remains” are consecutively added to
the model, and corresponding estimations of the classifica-
tion error are calculated. From the received set of errors, the
minimum is chosen and compared with the error of the pre-
vious model. If a significant reduction of the error occurred,
then the corresponding feature is accepted into the model; if
this is not true, then the process stops. The QDA was trained
(Hastie et al., 2009; Sokolov et al., 2020) with the 150-case
ensemble described in Sect. 3.1: 30 cases of streaks, 30 cases
of rolls, 30 cases of unaligned thermals and 60 cases of oth-
ers. The category of others was represented by twice as many
cases, since it is expected to be the dominant category in
the classification, as it includes the chaotic mlf-cs fields and
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the cases where the mlf-cs field was not computed success-
fully by the VAD method. The algorithm can be sensitive to
an unbalanced training ensemble. Therefore, the selection of
a training ensemble based on the expected results was pre-
ferred (Kubat, 2017).

The total omission error (see Sokolov et al., 2020) of the
classification based on the QDA technique could be esti-
mated for the training ensemble by means of 10-fold cross
validation. This error is referred further as the classification
error. In this method, the algorithm is trained using 90 % of
the training ensemble (135 cases); it is then applied to the
remaining 10 % (15 cases), and the resulting (output) classes
are compared to the expected (target) classes. The process is
repeated 10 times, each time extracting a different 10 % sam-
ple for testing, until the entire training ensemble has been
tested.

As the number of dimensions of the feature space (363)
was significantly higher than the number of patterns of the
training ensemble (150), the application of all the features
leads to the curse of the dimensionality problem, when the
classification works well only for the training data and fails
for the test set. In order to deal with this problem, we re-
duced the feature space by selecting the most informative
components using the stepwise forward-selection algorithm
(Sokolov et al., 2020). The resulting sequence of these com-
ponents and the decrease of the 10-fold cross-validation clas-
sification error are presented in Fig. 8. The classification er-
ror reached a minimum of about 9.2 % when five parameters
were used; taking more into account increased the classifica-
tion error.

Analytically, these parameters are the amplitude of the
2nd-neighbour homogeneity curve, the integral of the 18th-
neighbour contrast curve, the amplitude of the 4th-neighbour
contrast curve, the integral of the 8th-neighbour correlation
curve and the symmetry of the 2nd-neighbour homogeneity
curve. These results show that the prominent peaks are a dis-
tinctive characteristic for the elongated patterns, as the am-
plitude of the homogeneity and contrast curves are two of the
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Figure 8. Parameters selected to minimize the classification error of the training ensemble by the QDA method. From left to right: amplitude
of the homogeneity for the 2nd neighbour, integral of the contrast for the 18th neighbour, amplitude of the contrast for the 4th neighbour,
integral of the correlation of the 8th neighbour and symmetry of the homogeneity for the 2nd neighbour.

significant parameters. Furthermore, the integral or more pre-
cisely the sum of the points of the curves for the contrast and
for the correlation curves are significant parameters as well.
This is important especially for the distinction between the
categories thermals and others, as their amplitude may not
differ substantially, since the patterns are not towards a spe-
cific direction, yet a chaotic area will have higher values of
contrast and lower values of correlation compared to an en-
closed homogeneous area. Finally, the symmetry of the ho-
mogeneity curve as a classifier reveals the urgency to align
the turbulent radial wind fields to the mean wind direction
and thus align the structures such as streaks and rolls with the
mean wind direction in order to be distinguishable from the
random positions of the enclosed structures of the thermals or
the chaotic structures of others. It is also crucial to note that
the parameters cover various distances, from the 2nd neigh-
bour, which in grid points is 100 m, to the 18th neighbour,
which is 900 m. This is necessary for our classification, since
streaks and rolls are both elongated patterns, but their trans-
verse horizontal sizes differ. Furthermore, it demonstrates the
ability of the algorithm to distinguish structures with differ-
ent sizes. It is noteworthy that the curve parameters play a
more significant role in the classification of the structures in
comparison to time, mean wind field and cosine fit RMSE.
The detailed results of the cross validation of the QDA
classification for the algorithm with five predictors are dis-
played in Table 5. The algorithm allowed for classifying cor-
rectly about 91 % of the training ensemble. The algorithm
performs the most precise classification for the streaks with
a classification error of only 3.3 %, as one case was misclas-
sified as rolls. Regarding the category of others, the results
are equivalently accurate with a classification error of 3.3 %,
as two cases were misclassified as thermals. Moreover, the
performance of the algorithm for rolls was good with a clas-
sification error of 10 % with three cases being misclassified
as thermals. Thermals were the most troublesome type for
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Figure 9. Classification of the whole ensemble using the QDA
method according to the parameters of Fig. 8.

classification by the algorithm; the algorithm classified cor-
rectly 24 cases. Four cases were misclassified as rolls, and
two cases were misclassified as others, showing a classifica-
tion error of 20 %.

4.2 Results of the trained algorithm over the 2-month
dataset

The whole dataset, consisting of 4577 scans, was classified
according to the five parameters showcased in Fig. 8. The
results are displayed in Fig. 9.

The algorithm classifies 54 % of the 2-month dataset as
containing mlf-cs’s and 34 % in particular as coherent struc-
tures (streaks and rolls). The most frequent cases of mlf-cs’s
were streaks (25 %), and the least frequent cases were rolls
(9 %). It is important to note that, in our classification, we
considered only thermals and rolls during daytime. Figure 10
illustrates the number of occurrences for each type of struc-
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Table 5. Confusion matrix calculated for the training dataset. The “target class” corresponds to the visual classification, while the “output
class” corresponds to the class attributed by the algorithm. Therefore, the cells in the “roll” column, for instance, give the number of roll
cases that were classified properly (roll line) or improperly (other lines) in the different categories.

Target class

Output class Others  Streaks Rolls  Thermals
Others 58 0 0 2 96.7%
38.7% 0.0 % 0.0 % 1.3% 3.3%
Streaks 0 29 0 0  100.0 %
00% 193% 0.0 % 0.0 % 0.0 %
Rolls 0 1 27 4 844 %
0.0% 07% 18.0% 2.7 % 15.6 %
Thermals 2 0 3 24 82.8%
1.3% 0.0 % 2.0% 16.0 % 17.2 %
96.7% 96.7% 90.0 % 80.0 % 92.0 %
3.3% 33% 10.0% 20.0 % 8.0 %
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Figure 10. Histogram of the number of occurrences of the different types of structures with respect to time in UTC.

ture at a particular time of the day during the 2 months of
the campaign. It is evident that despite time not being one
of the selected classifiers, the number of occurrences of the
structures shows a distribution that can be associated with the
atmospheric conditions. More particularly, rolls and thermals
were mainly classified during the day. This result is notewor-
thy, as these structures are linked to a well-developed atmo-
spheric boundary layer during the day. On the contrary, there
were scarcely any roll cases observed at night, and a few un-
aligned thermals were classified at night. This stems from the
training process, where some cases of thermal were improp-
erly classified as others and the reverse. Regarding the cases
of others, these were mostly observed during the night. This
was expected, since the cases of low winds with no defined
direction — when the VAD method cannot be applied — oc-
cur mainly during the night. We also see that streaks were
observed more frequently during the night, when mechani-
cal turbulence becomes dominant. This was also expected as
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the nocturnal low-level jets are a main driving force for the
formation of streaks, and we observed the occurrence of the
local maxima of the horizontal wind speed near the surface
higher than 2 ms~! compared to the local minima over Paris
for 20 out of the 62 nights during the VEGILOT campaign.

5 Conclusions

The current study showcases that it is possible to identify and
classify mlf-cs’s such as streaks, rolls and unaligned thermals
with horizontal scans from a single Doppler lidar by com-
bining texture analysis parameters and the QDA supervised
machine-learning technique. By applying the VAD method
to the radial-wind observations, it is possible to identify mlf-
cs’s that can be distinguished as narrow elongated (streaks),
wide elongated (rolls), large enclosed (thermals) and chaotic
(others) patterns. The diversity of the patterns was also de-
picted in the curves of the texture analysis parameters with
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the elongated patterns (streaks and rolls) showing a promi-
nent peak compared to more chaotic or enclosed patterns (un-
aligned thermals).

A training ensemble of 150 cases was selected by combin-
ing visual examination of the patterns and studying charac-
teristic physical properties corresponding to streaks, rolls and
unaligned thermals. Subsequently, the QDA algorithm with
stepwise forward selection of the features was applied to the
training ensemble, and its performance was estimated using
the cross-validation technique. The results showed a success-
ful classification for 91 % of the training ensemble using five
texture analysis parameters as predictors. More particularly,
these parameters were the amplitude of the 2nd-neighbour
homogeneity curve and the amplitude of the 4th-neighbour
contrast curve which were associated with the prominent
peaks of the elongated patterns (streaks and rolls). Further-
more, the integral of the 18th-neighbour contrast curve and
the integral of the 8th-neighbour correlation curve which
could distinguish, for example, chaotic patterns (others) with
high contrast and lower values of correlation between neigh-
bour points compared to an enclosed homogeneous type
(thermals). Finally, the symmetry of the 2nd-neighbour ho-
mogeneity curve revealed the importance to align the mlf-cs
fields to the mean wind direction. Another striking outcome
of the QDA classification was the variety of the classifiers in
terms of distance between the grid points. The 2nd neighbour
translates in a distance between two grid points equivalent to
100 m, and for the 18th neighbour this is 900 m. This is es-
sential for the classification between patterns with different
sizes such as streaks and rolls. The algorithm performed best
for the category of streaks with a classification error of only
3.3 %. Time, mean wind speed and the cosine fit RMSE of
the VAD method were not selected by the algorithm for the
classification.

The whole ensemble of the 4577 scans was classified by
the trained QDA algorithm using the five selected texture
analysis parameters. The results showed that 54 % of cases
were classified as mlf-cs’s, among which 34 % were coher-
ent structures (streaks and rolls). The streaks were mostly
observed during night, whereas the thermals and rolls were
almost exclusively observed during the day, with only a few
cases classified between sunset and sunrise. The classified
ensemble can be used for statistical studies of the mlf-cs
physical parameters, such as structure size, as a function of
weather conditions (PBL height, temperature, wind speed,
radiation, etc.). Moreover, the development of the structures
can be analysed and comprehended.

Data availability. All lidar data used in the study are property
of the Laboratoire de Physico-Chimie de 1’Atmosphere (LPCA),
Dunkirk, France, and are not publicly available.
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3.1.3 Additional discussion regarding the classification methodology

The results of the abovementioned paper were rather satisfying as the classification
error was approximately 9 % and the diurnal variation of the structures followed the
expected behaviour according to the atmospheric conditions. This classification was
estimated by converting the mif-cs field into an 8-bins field with the values divided as
explained in Section 2.3.1: one bin with values greater than +0.5 m-s, six equal bins with
values between +0.5 and -0.5 m-s™* and one bin with values lower than —=0.5 m-s™. Other
binning configurations were tested in order to obtain the lowest classification error
possible.

The bins should be selected in a way to enhance the differences, which consist
mainly in distinguishing the positive and negative values in the mlf-cs fields, because they
correspond to opposite wind directions. One may primarily think to use only 2 bins,
containing respectively all the positive and all the negative values. This was indeed one
of the first binning options that was tested. For this case, the KNN (3 neighbours) algorithm
gave the lowest classification error, but it was approximately of 18 % with 13 texture
analysis parameters as classifiers. This unsatisfying result indicated that, apparently, the
size of the co-occurrence matrix is particularly important. The 2 bins will create 2 by 2 co-
occurrence matrices, which appear to be too small to properly compute the texture
analysis parameters. In Equations (9) to (11), it is evident that the difference in bin number
is important for the estimation of the texture analysis parameters and thus, more bins
should be selected for this type of data. It can be noted that, for the 2-bin configuration,
the cosine fit error parameter was selected by the algorithm as 5™ classifier.

Consequently, a 4-bin configuration was tested, with one bin containing all the
values greater than +0.5 m-s, one bin with the values between +0.5 and 0 m-s%, one bin
with the values between 0 and -0.5 m-s™ and finally one bin with the values lower than
-0.5 m-s*. This binning selection slightly lowered the classification error at 16 % for the
KNN (1 neighbour) algorithm with 14 texture analysis parameters as classifiers. One of
the classifiers selected by the algorithm in this case was time (in 6™ position). The selection
of 8 bins allowed to decrease the classification error significantly without any physical
parameter being selected by the algorithm. There were no tests with more than 8 bins
because we concluded that more bins near 0 m-s™* will not be useful for a further significant
decrease of the classification error.

It is noteworthy that one more binning configuration was tested and produced a
classification error below 7 %. It was the default option of the graycomatrix function in
MATLAB for which the 8 bins were divided as follows: one bin with all the negative values,
6 equally distributed bins between 0 and 1 m-s’* and one bin with the values greater than
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1 m-s. For this binning configuration, the classification error reached 6.7 % for the KNN
(1 neighbour) algorithm, with 13 texture analysis parameters as classifiers. However, even
if this binning configuration provided a smaller classification error than the one that was
eventually retained, the difference between the errors was not large and the algorithm
needed 8 more texture analysis parameters. This is not a good sign regarding the stability
of the classification, as the classification error oscillated around the minimum values.
Furthermore, the KNN algorithm with one neighbour, as explained in Section 1.3.2, has
the disadvantage to classify one case according to only one neighbour. For a relatively
small training ensemble of 150 cases, this could introduce systematic errors. As a result,
the binning options with the classification error of approximately 9 % was preferred. The
classification error with the classifiers that minimize it for the three other binning options
test are presented in Figure 39.

2 bins 4 bins 8 bins
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o o o o o 9 IS o
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Figure 39: The classification error with the classifiers that minimize it for the other tested binning
options and for the KNN algorithm using only the first neightbor. From left to right: 2 bins (one for
positive values and one for negative), 4 bins (one for values greater than 0.5 m-s-1, one between
0.5 and 0 m's-1, one between 0 and -0.5 m-s-1 and one lower than -0.5 m-s-1) and 8 bins (one for
values greater than 0.5 m-s-1, six equally distributed bins between 0.5 and -0.5 m's-1 and one
lower than -0.5 m-s-1).

It is also important to note that only four out of the fourteen Haralick parameters
were used for this classification, the same ones that had been used for the classification
of patterns similar to those that exist in the mlf-cs fields. Other Haralick parameters could
be more suitable for the classification of the mlf-cs fields, but they were not tested in this
study, as the number of parameters was already very high (363). The development of an
algorithm that would both identifies the best binning configuration and the appropriate

Haralick parameters in order to minimize the classification error could be a separate
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subject of study. Last but not least, increasing the size of the training ensemble could be
another way to improve the classification error.

3.2 Physical properties of coherent structures over Paris
3.2.1 Analyzing the results of the automated classification for a large dataset

The classification of the whole ensemble of 4577 cases was interesting by itself, but
the actual goal was to associate the classified structures with physical parameters. In
Section 3.1.2, the diurnal variation of the classified structures for the whole ensemble
shows a good agreement with the time of occurrence that can be expected from theoretical
knowledge. Rolls and thermals cases were mostly classified during the day and “others”
and streaks were mostly found mostly during the night. This was a good indication that the
classification was working as intended. In that regard more physical parameters were
associated with the structures in order to validate the classification. Section 3.2.2 presents
the article, under review at the Journal of Applied Meteorology and Climatology at the time
of submission, regarding the physical properties of the structures for the whole dataset
recorded during the VEGILOT campaign.

Apart from revealing the physical parameters associated to the structures and
showcasing the performance of the classification methodology, the study of Section 3.2.2
demonstrates how easy and accessible the data become after the classification. It is
possible to examine all the data simultaneously, as it is the case for the distribution of the
mean wind speed values for each type of the structures. Additionally, a sub-ensemble of
random cases can be also examined, for instance when an additional parameter (the ABL
height for this study) is not available for all times/dates. Furthermore, it facilitates the
depiction of peculiar case studies, as the classification results can be plotted easily against
any parameter. In this article, a case study is depicted with several nllj events observed in
concurrence with streaks cases, followed by rolls cases during the day.

89



3.2.2 The validation of the automated classification based on the physical
properties of the coherent structures

Submitted to the Journal of Applied Meteorology and Climatology

Properties of turbulent coherent structures over Paris: a study based
on an automated classification method for Doppler lidar observations
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! Laboratoire de Physico-Chimie de I’Atmosphére (LPCA), UR 4493, Université du Littoral Cote d’Opale (ULCO), Dunkirk,
France
? Marchuk Institute of Numerical Mathematics Russian Academy of Sciences, Moscow, Russia
3 Laboratory Atmosphere, Backgrounds, Space Observations (LATMOS) / Pierre Simon Laplace Institute (IPSL), Sorbonne
10 University / CNRS, Paris, France

Abstract The previous studies that were carried out in order to examine the coherent structures in the atmosphere, using

Doppler wind lidar observations, focused exclusively on specific cases for short periods of time. In particular, the structures
were visually detected and the lidar images were classified accordingly, making this process time-consuming. We have instead
developed an automated classification based on texture analysis parameters and the quadratic discriminant analysis algorithm

15 for medium-to-large fluctuations and coherent structures as can be observed on the quasi-horizontal scans recorded by a single
Doppler wind lidar. The algorithm classified a training ensemble of 150 cases into four types of patterns, namely streaks
(narrow stripes), rolls (wide stripes), thermals (enclosed areas) and “others™ (impossible to classify), with a good accuracy
(91%). We then applied the trained algorithm to the full dataset of 4577 lidar scans recorded in Paris, atop a 75-m tower for a
2-month period (September-October 2014). In order to assess the quality of the classification, we now examine the physical

20 properties of the classified cases. The results show a realistic classification of the data: roll and thermal cases were mostly
classified during the day, when the atmospheric boundary layer was well developed, whereas the majority of streak cases were
found during the night and often associated with nocturnal low-level jets (nllj) events. Roll and streak cases were mostly
observed under moderate or high wind conditions. The detailed analysis of a four-day period reveals that the occurrence of
streaks coincided exactly with the occurrence of nllj events. The streaks were replaced by rolls in the morning, when the

25 thermal instabilities increased. The analysis of the space spectra in the direction transverse to the mean wind during these four
days revealed a streak spacing of 200 to 400 m, in accordance to previous studies, and rolls sizes, as observed in the lower

level of the mixed layer, of approximately 1 km.

Keywords Coherent structures, Atmospheric boundary layer, Automated classification, Wind lidar
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1.  Introduction

Coherent structures in the atmospheric boundary layer (ABL) have been the subject for a significant number of studies
throughout the years. Their role in the atmospheric processes is substantial as they are key factors in the transport of heat and
moisture (e. g. Brient et al., 2019), the dispersion of pollutants (e.g. Han et al., 2019) and the dust transport (e.g. Zhang et al.,
2018) throughout the ABL. For this purpose, various methods have been developed in order to observe and better understand
those structures. More specifically, some studies have utilized aircraft measurements (e. g. Briimmer et al., 1985; Martin and
Bakan, 1991), some meteorological towers observations (e. g. Barthlott et al., 2007; Smedman, 1991), others remote sensing
methods, such as radar (e. g. Eymard and Weill, 1988; Rabin et al., 1982) and lidar (e. g. Lin et al., 2008; Lothon et al., 2006)
and others numerical simulations (e. g. Bartello et al., 1994; Jiang et al., 2017) or combination of the aforementioned methods
(e. g. Bernard-Trottolo et al., 2004; Drobinski et al., 1998; Lohou et al., 1998). The remote sensing methods have the advantage
to provide the visualization of the coherent structures (Drobinski et al., 2004). Despite this asset of the lidars, the studies so far
have been limited to few cases covering only short periods of time. This is caused mainly because the analysis of the lidar data
requires also the subjective observation of the researcher (e. g. Triumner et al., 2015).

We have developed an automated method with the aim to achieve consistent medium-to-large fluctuations and coherent
structures (mlf-cs) classifications for single Doppler wind lidar observations (Cheliotis et al., 2020). We focus on the streaks
and rolls as presented by Young et al., (2002). The streaks occur in the surface layer with the possibility to extend in the mixed
layer. The main characteristics of the streaks is their formation which resembles stripes where stronger horizontal winds
alternate with weaker ones and their direction is aligned with the mean wind (Khanna and Brasseur, 1998). The average space
between the stronger horizontal winds is equivalent to hundreds of meters and their lifespan is no more than several tens of
minutes (Drobinski and Foster, 2003). One of the main driving factors for the formation of the streaks is the high wind shear
near the surface. The buoyancy contributes also to the streaks formation with the physics varying with regards to the
atmospheric conditions (Moeng and Sullivan, 1994). They usually form under neutral or near-neutral stratification but it is
possible to form under stable or unstable conditions as well (Khanna and Brasseur, 1998). The streaks formation can be visible
during low clouds or fog events (e. g. MacDonald et al., 2020; Nakanishi, 2000).

On the other hand, rolls occur in the mixed layer, extending from the surface to the capping inversion and they are also
aligned with the mean wind (LeMone, 1972). The main factors for the formation and maintenance of rolls are the low-level
wind shear, the spatial variations of surface-layer heat flux and the homogeneity of the surface (Weckwerth and Parsons,
2006).The formation of the rolls resemble also stripes, but they are wider compared to streaks. It is possible to identify the
rolls in the atmosphere during convective conditions. The rotation of the rolls in the vertical plane generates ascending and
descending motions which lead to the formation of cloud rows and clear sky areas. This phenomenon is known as
“cloud streets” (Lohou et al., 1998). However, the convective conditions is not a requirement for the formation of rolls, as they
can form during low relative humidity conditions, in a phenomenon known as “dry streets” (Kuettner, 1971). The horizontal
sizes of the rolls vary from a few kilometres to a few tens of kilometres and their lifespan ranges from hours to days (Drobinski
and Foster, 2003). Regarding their width, Young et al. (2002) separate the rolls in two categories: narrow and wide. The
ascending air masses inside the narrow rolls are one thermal wide (Weckwerth et al., 1999), whereas in the wide rolls each
ascending area contains multiple thermals (Briimmer, 1999).

The remote sensing methods can provide the mif-cs fields; by applying the Velocity Azimuth Display (VAD) method
in the radial wind observations (Browning and Wexler, 1968; Drobinski et al., 2004; Lhermitte, 1962). In a previous article
(Cheliotis et al., 2020), we presented our automated mlf-cs classification methodology based on texture analysis parameters
(Haralick et al., 1973) and a supervised machine learning method, namely the quadratic discriminant analysis (Hastie et al.,
2009) and we assessed its’ performance on a training ensemble of 150 cases. The training ensemble consisted of four mlf-cs

types: streaks (narrow elongated patterns associated with high wind shear near the surface), rolls (wide elongated patterns
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associated with cloud streets), thermals (large enclosed patterns associated with fair weather conditions) and “others” (any
other pattern that does not belong in one of the other types). Our algorithm revealed five texture analysis parameters that
minimized the classification error at approximately 9% for the training ensemble. In the current study, these five texture
analysis parameters were utilized for the classification, in one of the four mlf-cs types, of the 4577 lidar scans recorded in the
urban area of Paris for the period 04 September 2014 — 06 November 2014. The aim of the study is to assess the quality of the
classification in terms of physics/meteorology for a large dataset. In this regard, we examined the physical parameters of the
classified structures for the whole ensemble. These parameters are the time of the day, the ABL height and the horizontal wind
speed during the occurrence of the structures, and the sizes of the structures. Furthermore, we investigated a four-day period
when streaks, rolls and thermals cases were all detected in order to retrieve information regarding the transition between the
types of structures and their life cycle. Up to this point, large datasets mlf-cs classifications have been performed only visually
(e.g. Yagi et al., 2015). This is the first time an automated classification has been used for a large dataset.

The main body of the manuscript is composed of three sections. In Section 2, we present the methodology of our study
which includes the experimental set-up, the mlf-cs fields of our classification, the method to estimate the ABL height and the
horizontal size of the structures, plus the relevant weather conditions in the study area during the study period. Section 3
contains the results, separated into two subsections, one regarding the classification of the whole ensemble and the other

focusing on a peculiar four-day period. Finally, Section 4 summarizes all the main points of the study.

2. Methodology
2.1  Experimental set-up

The current study relies on radial wind observations derived from a two-months campaign (04/09-06/11/2014)
performed in Paris in the framework of the project VEGILOT (VEGétation et ILOT de chaleur urbain, i.e. vegetation & urban
heat island) (Klein et al., 2019). The aim of the VEGILOT campaign was to study the atmospheric chemistry and transport
processes inside the urban boundary layer in Paris. For the radial wind measurements, the Leosphere WLS100 scanning
Doppler lidar (www.leosphere.com) was set up atop a 75 m building in the Jussieu Campus, located in the centre of Paris city
as showcased in Figure 1. The Cloud and Aerosol Micro-Lidar (CAML), manufactured by the CIMEL company
(www.cimel.fr), was installed on the roof of an adjacent building (20 m height) in order to provide aerosol measurements. The
maximum range for the Doppler lidar was 5 km, but the effective range was smaller for the vast majority of the data as
backscatter signals with carrier-to-noise ratio (CNR) lower than -27 dB was filtered out, along with outliers in wind speed
values. The red circle in Figure 1 represents the maximum horizontal scanning range for the Doppler lidar. It is important to
note that despite Paris being a metropolitan city, there is a regulation with respect to the building heights in the center and
therefore these do not exceed 50 m (Saint-Pierre et al., 2010). Specifically, for the scanning area, the ground altitude ranges
between 30 to 60 m with some exceptions near the boundaries where there are some hills. Hence the scanned urban area is
rather homogeneous. The significant lidar properties for the Doppler and the aerosol lidar during the VEGILOT campaign are

displayed in Table 1.
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Figure 1: The Jussieu measurement site with the scanning maximum range (5 km) of the PPI surface scan (Géoportail satellite image
https://www.geoportail.gouv.fr/, last access date: 09/12/2020).

Table 1: Properties of the Doppler and the aerosol lidar utilized during VEGILOT

Doppler lidar (Leosphere Aerosol lidar (CAML)
WLS100)

Altitude of lidar: 75ma.gl 20ma. g. 1.
Minimum range: 100 m 200 m
Maximum range: 5 km 20 km
Spatial resolution: 50 m I15m
Radial wind speed range: -30 to 30 m/s -
Laser wavelength: 1.543 ym 532 nm
Radial wind accuracy: +0.1 m/s -
Accumulation time: 1 sec/beam 10 minutes

The way the Doppler operates has been described extensively by Cariou et al., (2007) It was taking measurements
continuously during the two-month campaign, following a sequence of scanning methods that included quasi-horizontal scans
(Plan Position Indicator or PPI), vertical beams (line of sight or LOS) and vertical profiling using the Doppler Beam Swinging
(DBS). The full measurement cycle was repeated every 18 minutes. The LOS beams consisted of 10 vertical observations
during 30 seconds, which average was used for the estimation of the ABL height during the night (Section 2.3). Concerning
the PPI method, quasi-horizontal scans at a 1° elevation angle were carried out for azimuth angles ranging from 0° to 360°
with a 2° resolution. This 1° elevation created a height difference between the central point and the boundaries of the scans
equivalent to 87 m. The duration of a PPI scan was 3 minutes, which is adequate for the observation of the mlf-cs with an
equivalent or longer lifespan. The DBS method was used to identify the meteorological phenomena relevant to interpret the
classification result, such as low level jets. The DBS method was a combination of LOS beams in the North, East, South and
West directions with a 75° elevation and a total duration of 15 seconds. This method was applied two times consecutively in
each cycle.

Regarding the aerosol lidar, its’ operation has been demonstrated by Pelon et al., (2008). For the current study, the aerosol
lidar observations were used exclusively for the daytime estimation of the ABL height during the two-month campaign
(Section 2.3). The aerosol lidar was emitting beams vertically and data were averaged on 10-minute periods. Table 2

summarizes the different scanning methods selected during the VEGILOT campaign.
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125 Table 2: Scanning methods and their characteristics during VEGILOT
Lidar Scanning area Purpose Elevation & azimuth angle Scan
duration
Doppler-LOS Vertical profile Estimation of the Elevation 90°, azimuth 0° 10 x 30 sec
ABL height (night)
Doppler-PPI Almost horizontal Identification of Elevation 1°, azimuth 0 to 3 min
scans near surface structures 360° with 2° resol.
Doppler-DBS Combination of LOS Identification of Elevation 75°, azimuth 0°, 2x 15 sec
low level jet cases 90°, 180° & 270°
Aerosol Vertical profile Estimation of the Elevation 90°, azimuth 0° 10 min
ABL height (day) average

2.2 The mlf-cs fields

As we stated in Section 1, we have developed an automated methodology in order to detect and classify mlf-cs near the
surface, based on single Doppler lidar observations by applying the VAD method. A detailed description of this process is
presented in a peer-reviewed paper (Cheliotis et al., 2020). A characteristic example for each of the identified mlf-cs fields

130 that we aimed to classify is displayed in Figure 2.
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Figure 2: The mlf-cs types of our classification along with the horizontal wind direction (black arrow). (a) Streaks observed on 08/09
at 21:22. (b) Rolls observed on 09/10 at 13:24. (c) Thermals observed on 04/09 at 13:13. (d) “Others” observed on 10/10 at 03:08.
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Each field showcases some distinctive characteristics. In Figure 2a, representing the streaks case, it is possible to see some
narrow stripes aligned with the horizontal wind direction. Similarly, in Figure 2b, there are some wide stripes aligned with the
horizontal wind direction, representing the rolls case. Figure 2c showcases a more chaotic pattern where it was still possible
to identify some organized enclosed areas of positive and negative values corresponding to the thermals case. Finally, Figure
2d portrays a type that it would not be possible to classify into one of the aforementioned types and as a result it was identified
as a separate type named “others”. The algorithm selected five classifiers based on the texture analysis parameters of the 150
cases training ensemble. Regarding the training ensemble, the algorithm performed the best for the streaks type where 29 out
of the 30 cases were classified accurately. The performance for the “others” type was also impressive as 58 out of the 60 cases
were classified correctly. The rolls type did not lag far behind, with 27 out of 30 cases classified correctly and only 3 cases
misclassified as thermals. Last but not least with respect to the performance, was the category thermals. However, it did not
perform poorly either with 24 out of 30 cases classified correctly, 4 cases misclassified as rolls and two misclassified as
“others”. Apparently, these chaotic enclosed patterns of the thermals were more challenging to distinguish as the “others” type

was also chaotic and the rolls type consisted of large patterns as well.

2.3  Estimation of the ABL height

The Doppler lidar vertical LOS beams and the aerosol lidar observations were used for the estimation of the ABL height
during the night and during the day respectively. Klein et al. (2019) utilized the same VEGILOT observations in order to
estimate the ABL height on 09/09-10/09/2014 for their study related to the surface ozone variability in Paris. The basis for the
estimation of the ABL height was the identification of the maximum variance of the vertical wind speed, as the vertical wind
variance is significantly larger in the transition zone between the boundary layer and the residual layer or the free troposphere
(Tucker et al., 2009). However, this technique is limited to the cases when the wind profile extends above the ABL, hence it
is applicable during the night and early morning, when the aerosols’ concentrations in the residual layer provide a sufficient
CNR for wind retrieval. During the day, the aerosols’ concentrations are low in the free troposphere, thus the CNR is
significantly lower than the -27 dB threshold. Therefore, Klein et al. estimated the ABL height during the day using the
maximum of the variance of the range corrected signal of the aerosol lidar, a principle well described by Flamant et al., (1997)
and Menut et al., (1999). This method takes advantage of the abundance of aerosol in the boundary layer in contrast to the free
troposphere (Stull, 1988). For the current study we applied the same methods as Klein et al. (2019) with slight modifications,
for the two-month dataset of the VEGILOT campaign. More precisely, the ABL height was estimated using the wind variance
method between 0000 UTC and 0800 UTC and between 1800 UTC and 2359 UTC, while from 0800 UTC to 1800 UTC. We
considered the ABL height to be the level where the minimum derivative of the standard deviation of the range corrected signal
occurred because it gave better results than the maximum of the standard deviation. Figure 3 illustrates the estimated ABL
height along with the vertical wind speed LOS observations on 09/09/2014. The ABL height values are in agreement with

previous observations in the area (Dieudonné, 2012).
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Figure 3: Time-height cross-section of the vertical wind speed observations obtained from LOS beams. The black dots represent the
values of the ABL height as estimated by the Doppler wind lidar and the black squares estimated by the aerosol lidar methods on
09/09/2014.

It is important to remark that low clouds, such as stratus and stratocumulus, could inhibit the lidar signal. In such cases,
the abovementioned methodology for the estimation of the ABL height was ineffective. Hence the estimation of the ABL
height was performed solely for low clouds free cases. It was possible to estimate the ABL height for the entire 24-hour day
(or close) for 18 out of the 64 days of the study (noted in Figure 5b). The nocturnal stable boundary layer (SBL) height values
vary between 200 and 300 m during this period. Regarding the ABL height during daytime the values vary between 1.2 and
1.8 km.

2.4  Estimation of the horizontal sizes for the coherent structures

In Figure 2a-b, characteristic cases of coherent structures are displayed. The periodicity of the alternating positive and
negative stripes is evident. It is possible to estimate the sizes of these periodicities by the means of the spectral analysis. The
spectrum is computed by applying the Fast Fourier Transform (FFT) analysis for physical space data (Stull, 1988). Flamant et
al. (1997) indicated the existence of turbulence in the spectrum peaks of the wind speed. Several studies were carried out since
then, which take advantage of the spectrum peaks in order to estimate the horizontal sizes of coherent structures e. g. Calaf et
al., 2013; Drobinski et al., 2004, 1998. The spectrum is calculated for the radial wind speed along the transverse to the mean
wind direction. More precisely the radial wind of the opposite pair of beams closest to the transverse direction were adjoined
before computing the spectrum. In order to reduce the noise, the spectrum was computed for several pairs of beams, then
averaged. We observed that averaging five pairs of beams reduced the noise without blurring the peaks appearing on a single
spectrum. On the other hand, an average on only three pairs of beams did not reduce the noise enough, while using seven pairs
of beams smoothened the peaks significantly. As the five pairs of beams span over an 8°-wide cone, the radial wind speed
values were converted from polar to Cartesian coordinates to maintain a consistent size of the grid throughout the scanning
range. Figure 4a,c showcase the radial wind speed observations from the PPI scans at the same time as Figure 2a,b. Alongside
the corresponding averaged spectrums (Figure 4b,d) in the transverse direction, depicted by the black lines, are displayed.
Furthermore, dashed curves highlighted an adjacent pair of a stronger (positive mlf-cs) and a weaker (negative mlf-cs) radial
wind speed stripe which is the examined periodicity. The effective scanning range for these cases is between 3 and 4 km, thus
we can only observe periodicities within this range. The signal of the spectrum below 300 m it is very noisy and therefore

excluded from the study. The peaks representing the structures are also highlighted.
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Figure 4: Radial wind speed PPI observations with the corresponding spectra (average over five pairs of beams) in the transverse
direction (black line). (a-b) Streaks case observed on 08/09 at 21:22. (c-d) Rolls case observed on 09/10 at 13:24. The dashed curves
contain a stronger and a weaker radial wind speed stripe (one periodicity).

Regarding the streaks case (Figure 4a-b), a prominent peak of periodicity is detected slightly above 400 m. From Figure
4a, it is visible that the dashed curve, equivalent to a stronger and a weaker radial wind speed stripes, contains an area of an
approximate size of 400 m. This value is comparable with the approximate 300 m horizontal spacing of the streaks (distance
between the streaks, weaker radial wind area in Figure 4a-b) observed in other Doppler lidar studies (e.g. Drobinski et al., 2004;
Weckwerth et al., 1997) as well as large eddy simulation studies (e.g. Deardorff, 1972; Moeng and Sullivan, 1994). For the
rolls case (Figure 4c-d), the most prominent peak is detected at approximately 1.3 km. This size is comparable to the
highlighted area in Figure 4b by the dashed curve. So, if we assume that there is half-space between the rolls as well, then the
size of the individual rolls should be smaller than 1 km. According to previous studies, the width of the rolls may vary (Young
et al., 2002). The horizontal size of narrow mixed-layer rolls could be equivalent to one thermal wide of hundreds of meters
(Weckwerth et al., 1999). Although this is a comparable size to the abovementioned case, it is tricky to compare our results to
studies focusing on mixed-layer rolls since the observations of the current study were retrieved near the surface. It is also
important to mention the occurrence of secondary peaks in the spectrums. Therefore, it is of the utmost importance to handpick

the peaks of the spectrums by detecting equivalent size patterns in the mlf-cs fields.

2.5  Weather conditions during the period under study

For a better understanding of the classification results, it was fundamental to examine some relevant meteorological
parameters during the period under study (04/09/2014-06/11/2014). The nearest meteorological station with available results
for that period was the Météo France station of Paris-Montsouris, located in park, at the southern edge of inner Paris, 2.9 km
south-southwest from the Jussieu site. Regarding the thermals pattern, they are expected to occur during fair cumuli weather,

hence the sunshine duration and the atmospheric pressure are appropriate parameters to indicate their development.
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Furthermore, the detection of precipitation events reveals the cases when the estimation of the ABL height via the lidar
observations were not applicable. Figure 5 illustrates the minimum and maximum temperatures, the daily values of sunshine
in hours, the daily accumulated precipitation and the daily average atmospheric pressure for the period under study. The days

were the estimation of the ABL height was feasible are pointed out with the magenta coloured bars in Figure 5b.
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Figure 5: (a) Minimum and maximum temperatures, (b) daily sunshine duration (ABL height estimation only for the magenta

coloured bars), (¢) daily accumulated precipitation, (d) daily average pressure for the period 04/09/2014-06/11/2014. Data are from
the Météo France station Paris Montsouris.

98



225

230

235

240

Submitted to the Journal of Applied Meteorology and Climatology

It is apparent from Figure 5b-d that during the period under study there were many hours when fair cumuli weather
conditions prevailed. So the thermals type was expected to occur frequently during our observations. It is also evident from
Figure Sc that there was precipitation recorded for 30 out of the 64 days of VEGILOT. The ABL height was estimated mostly
during days with abundant sunshine hours, except 05/09 and 23/10 where the total sunshine hours did not exceed two hours.
During these days the aerosol lidar signal was not interrupted by clouds and therefore it was still possible to estimate the ABL
height.

In Section 1, we mentioned the weather phenomena related to coherent structures. More particularly, the high wind shear
near the surface is a driving factor the development of streaks, and the cloud streets are an evidence for the formation of rolls.
Regarding the wind shear, the horizontal wind profile was built from the DBS soundings.

According to Stull, (1988) a nocturnal low-level jet (nllj) is characterized by a low-altitude maximum of the horizontal
wind speed (jet core), with an increment of at least 2 m's” compared to the wind minimum located above it. Figure 6
demonstrates a DBS profile of the horizontal wind speed with a jet core at 300 m altitude and for which it is evident that the

difference in wind speed is more than 2 m's’.
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Figure 6: Vertical profile of the horizontal wind speed from the DBS scan on 07/09 at 2118 UTC.

We identified nllj events for 20 out of the 63 nights based on this description. As a result, we expected to observe
several cases of streaks during the nights. The days when the nllj events were observed are displayed in Figure 7a. Regarding
the cloud streets, MODIS satellite images were used for the identification of such cloud formations. Cloud streets formations
were observed for 8 out of the 64 days of VEGILOT. This is a confirmation for the formation of rolls during these days.
However, it is important to emphasize that the observations we analysed where near the surface, thus we observed the structures

occurring near the surface during rolls formation. Figure 7b displays the days when cloud streets were observed.
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Figure 7: Days of VEGILOT when (a) nllj and (b) cloud streets events occurred.
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3. Results
3.1 Classification of the two-month dataset

In Section 2.2 we briefly summarized the main points of our classification and indicated the classification results for
the training ensemble made by the QDA algorithm. The classification error was minimized at approximately 9% for five
texture analysis parameters (Cheliotis et al., 2020). We thereupon utilized the QDA algorithm using these five texture analysis
parameters in order to classify the whole ensemble consisted of 4577 PPI scans. Table 3 displays the outcome of the
classification. More specifically, the number of occurrences for each type and the corresponding percentage over the whole
ensemble are presented. Apart from the total number of occurrences, we included the individual number of occurrences for the
following time periods 0000-0800 UTC (late night/early morning), 0800-1800 UTC (daytime) and 1800-2359 UTC
(evening/early night) in order to examine whether the results are realistic.

Table 3: Classification of the structure types for the whole PPI scan ensemble, with a distinction between daytime (0800-1800),
evening/early night (1800-2359) and late night (0000-0800).

Classified cases

0000-0800 UTC 0800-1800 UTC 1800-2359 UTC Total
Type
Streaks 376 (8.2%) 394 (8.6%) 375 (8.2%) 1145 (25%)
Rolls 27 (0.6%) 365 (8%) 28 (0.6%) 420 (9.0%)
Thermals 98 (2%) 695 (15%) 107 (3%) 900 (20%)
“Others” 1036 (22.6%) 438 (9.6%) 638 (13.9%) 2112 (46.0%)
4577 (100.0%)

As expected the category “others” was dominant with almost half of the ensemble (46%) classified as such. The second
most frequent type was the streaks, with 25%. In Section 2.5, we discussed the frequent occurrences of nllj during VEGILOT
(approximately 1/3 nights), hence the frequent occurrence of streaks was also expected. The thermals type accounted for 20%
of the total cases. An expected outcome as well, since the duration of sunshine over Paris was long during the 2-month period
under study, as portrayed in Figure 5d-f. Finally, 9% of the cases were classified as rolls. The cloud streets cases were not
frequent during VEGILOT, so the rolls were realistically classified as the least frequent type. However, the most striking result
regarding rolls is the scarcity of the classification during night. This is a remarkable result as the five texture analysis
parameters were the only classifiers used by the algorithm and not the time of the day. The same outcome ensues for the
thermals type to a lesser extent. The number of cases classified as thermals during day-time outweighs the one classified during
night time. However, the number of “night-time thermals” is not negligible. As we explained in Section 2.2, this was due to
the random nature of the patterns in thermals that in some cases resembles the “others” category.

Another interesting outcome from Table 3 is that the vast majority of the “others” cases were classified during night
time. As we stated in Section 1, the estimation of the mlf-cs fields via the VAD method requires a homogeneous mean wind
field resulting in a symmetrical radial wind field. A non-symmetric radial wind field will lead to a bad case of a mlf-cs field
that is included in the “others” type. The most common cause for a non-symmetric radial wind field is the varying wind
direction during calm or low wind conditions (Wilson et al., 1976). It was therefore interesting to examine the horizontal wind
speed distribution for the patterns type. Figure 8 demonstrates the horizontal wind speed distribution through histograms for
the number of occurrences for each wind speed group. It confirms that the vast majority of cases, more than 1500 (75 %),
characterized by calm (<2 m's™") or low wind conditions (2-4m-s™') were classified as “others”. Furthermore, there are no cases
with calm wind conditions classified as streaks or rolls. The cases classified as streaks and rolls were mainly found during

moderate or high wind conditions (4-8 m's™) with approximately 700 (61 %) and 330 (79 %) cases respectively.
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Figure 8: Histogram with the horizontal wind speed distributions for each pattern type.

Table 3 presents the classification of the types for specific time periods in order to examine whether the classification
was realistic. This idea was extended by associating the classified cases with the estimated ABL height for the 18 days when
the estimation was possible for the majority of the observations. The time difference between the PPI scans for the estimation
of the mlf-cs field and the LOS vertical scans was approximately 10 minutes. Regarding the PPI and the aerosol lidar scans,
the time difference was few minutes. These time differences are relatively short and therefore the ABL height was expected
to remain steady. In Figure 9, the distribution of the ABL height in relation to the classified pattern is portrayed via histograms.
The ABL height was divided into three subranges to represent the SBL (0-350 m), the developing ABL (350-1000 m) and the
well-developed ABL (1000-2000 m).
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Figure 9: Histogram with the ABL height distributions for each patterns type.

It is apparent from Figure 9 that there were only 8 cases out of the 124 (6 %) classified as rolls concurrently with the
existence of the SBL. Almost all of the classified rolls cases correspond to the developing or the well-developed ABL.
Moreover, the classified “others” cases during the SBL conditions dominated the number of occurrences, close to 400 cases
(86 %), as expected and analysed from Table 3. During 13 out of the 18 days for which we estimated the ABL height, we
observed a nllj. Therefore, the substantial number of streaks occurrences, more than 240 cases (90 %), during the SBL
conditions was expected as well. Finally, despite the majority of the thermals cases being classified during the developing or
the well-developed SBL, there was also a significant amount during the SBL conditions exceeding 50 cases (20 %). These
misclassifications were associated with the randomness of the patterns as we stated before and not with the atmospheric

physics. The possible addition of more/other texture analysis parameters could improve the classifications of the thermals.
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3.2  Mif-cs during a peculiar four-day period

We examined further the results of the classification by focusing on a period when the three mlf-cs cases (streaks, rolls
and thermals) have been detected (07/09-10/09). These days were characterized by moderate wind conditions and only few
low wind cases. This was important, since as we have previously stated, the mlf-cs fields were constructed by utilizing the
VAD method that is not applicable under low wind conditions. Figure 10 presents the wind rose for the period 07/09-10/09
computed from the PPI scans using the VAD method. The wind speed values ranged between 4 and 8 m/s for more than 70%

of the cases. The wind direction was north-easterly during most of the period.
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Figure 10: Wind rose for the period 07/09-10/09 for the horizontal wind extracted from the PPI observations by utilizing the VAD
method.

During this period there were anti-cyclonic conditions over Paris. Additionally, as we can see in Figure 5Sc, there was
no precipitation during this four-day period, but instead plenty of sunshine hours (Figure 5b). Except on the 07/09 when the
sunshine duration was approximately 6 hours, for the 08/09, 09/09 and 10/09, the sunshine duration exceeded 12 hours. This
allowed a reliable estimation of the ABL height for these days. In Figure 11(a), the ABL height is displayed along with the
time-height cross sections of the horizontal wind speed from the DBS soundings. In order to examine the classification, each
type is represented with different colour and symbol. The first element to notice in Figure 11(a) was the accurate representation
of the ABL height development throughout the four-day period. The ABL height ranged between 200 and 300 m during the
night and 1.2 to 1.8 km during the day. Furthermore, the classification of the cases was realistic with respect to the time and
the ABL height for almost the entire four-day period. Only four cases were misclassified in that regard with three cases of
thermals found on 07/09 between 2230 UTC and 2330 UTC and one case of thermals around 0300 UTC on 09/09. Regarding
rolls, no cases were found on 07/09 which is the day with the least sunshine hours. Most of the rolls cases were found on 10/09.
Since there was no weather system affecting the region at this date, these structures developed mainly due to the thermal
instabilities. The classification of the streaks cases was particularly interesting. It is obvious in all four days that the streaks
are associated with a high wind shear near the surface. The streaks appear for the first time around 1900 UTC simultaneously
with the wind shear presence near the surface. The missing ABL height values on 08/09 between 0000 UTC and 0800 UTC
and between 1800 and 2000 UTC were due to the absence of LOS vertical wind speed observations and therefore the structure

type is plotted at the 0 m altitude. Other missing points were due to the lack of PPI observations.
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DBS for the period 07/09/2014-10/09/2014
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Figure 11: For the period 07/09/2014-10/09/2014: (a) The horizontal wind speed derived from the DBS observations along with the
ABL height points representing the different ty of patterns with the points plotted at zero altitude correspond to missing ABL height

325 data. (b-c) Hourly measurements of the temperature and relative humidity and visibility and solar radiation respectively observed at
the Paris-Montsouris station. (d) Periodicity sizes for the streaks (blue rings) and rolls cases (red stars).
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Additionally, there was a shift in the types of patterns in the early morning on 09/09 and 10/09 from streaks to rolls, as
soon as the wind shear dissipated and the ABL height began to develop. We examined the meteorological parameters for the
period 07/09/2014-10/09/2014, in order to identify the possible changes during the shift in the types of patterns. The
temperature, relative humidity, visibility and solar radiation observed at the Paris-Montsouris station are displayed in Figure
11b,c. An interesting aspect to encounter was the reduced visibility of 5 and 7 km during the early morning on 09/09 and 10/09
respectively (Figure 11c). The Paris-Montsouris station recorded fog events only at 0200 and 0400 UTC. The reduced visibility
signifies possible convections near the surface with the time of the occurrence indicating radiation fog events (Roach et al.,
1976). In Section 1 we referred to studies which observed the streaks formed during fog events. As the surface heat increased
in the morning the smaller structures were replaced by larger ones. The temperature increase during the three-hour period from
0600 UTC to 0900 UTC was at the magnitude of 6 °C which resulted in a drop of relative humidity of 40 % for both days.

In order to reveal possible periodicities for these structures and their corresponding sizes we computed the spectrums
of the radial wind speed in the transverse direction as explained in Section 2.4. Figure 11d contains the values of the highest
peaks of the spectra representing the sizes of the periodicities for the streaks and rolls cases. The sizes of the periodicities differ
between the streaks and rolls cases by a magnitude of at least 500 m. In Section 2.4, we have already stated that the size of the
periodicity referred to the combined red (positive) and blue (negative) stripes (Figure 2a,b). For the streaks cases, the size
ranged from 400 to 800 m. So the width of the stripes would be approximately 200 to 400 m respectively. These sizes, as
showcased in Section 2.4, are in agreement with other studies where the spacing was estimated to be around 300 m (Drobinski
et al., 2004; Weckwerth et al., 1997b). Since the lifespan of the streaks is several minutes and the quasi horizontal PPI scans
in our study had an approximate 18 minutes’ time difference, most of the streaks we observed dissolved and were replaced by
new ones before the next scan occurred, thus we did not observe the evolution of the same structures. Regarding the rolls cases,
the sizes ranged from 1.3 km to 2 km therefore the size of the structures would probably be close to 600 m to 1 km. Since we
observed the structures only near the surface, it is complicated to compare these results to other studies focusing on the rolls
structures. The low values of relative humidity indicated that these were dry rolls cases. Concerning the rolls, it is also
important to note that, for 3 cases out of the 31 it was not possible to estimate the size of the periodicities from the spectrum,

which also led to a misclassification of these cases by the algorithm.

4. Conclusions

In the current study we examined the performance of an automated classification method which we developed in order
to classify mlf-cs based on Doppler lidar observations recorded during two months over Paris. We intended to identify and
classify streaks (narrow stripes), rolls (wide stripes), thermals (enclosed areas) and “others” (impossible to classify). In our
previous work, we had presented the algorithm itself and assessed its’ performance on the training ensemble: a classification
error of approximately 9 % for a training ensemble of 150 cases with five texture analysis parameters as classifiers. We then
applied these five parameters to the full dataset of 4577 quasi-horizontal scans and in this paper, we analyse the results of the
classification from the physical/meteorological point of view.

The results of the classification showed that the most frequent type was the category “others” with 46 %, then the
streaks type with 25 %, the third frequent type was the thermals with 20 % and finally the rolls with 9 %. By examining the
occurrence of each type for three different time periods of the day, in particular 0000 to 0800 UTC, 0800 to 1800 UTC and
1800 to 2359 UTC it was possible to examine the distribution of the types during the day. The results showed a realistic
distribution as rolls and thermals cases were mainly classified during the day. Streaks cases were mostly classified during the
night which is an expected result as nllj events occurred during 20 out of the 63 nights of the study period. Regarding the

category “others” the results were also expected, as the majority of the cases occurred during the night, when the low winds
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result in asymmetric radial wind fields and the VAD method cannot be applied. This observation was confirmed by the
distribution of the classified cases with regards to the horizontal wind speed: for 75 % of the “others” occurred when the
horizontal wind speed was lower than 4 m's'. On the contrary, for streaks and rolls which are driven by wind shear, the
majority of the cases were characterized by moderate or high winds (4-10 m's™") for approximately 67 % and 89 % of the cases
cases respectively. The accurate representation of the types as a function of the time of day was further supported by the
distribution of the estimated ABL height. For the 18 days, during which it was possible to estimate the ABL height for the
majority of the 24 hours, the vast majority of the rolls cases occurred in a developing or developed ABL, whereas the vast
majority of streaks and “others” cases were found in the SBL or the nocturnal boundary layer. The thermals had the worst
performance but still 80% of the cases were found in the developed or developing ABL.

The investigation for a four-day period, when the three types of structures were classified, showed that the streaks occur
at the same time as nllj and dissolve during the morning when the thermal instabilities prevail. During the two days with more
than 12 sunshine hours, which resulted in strong thermal instabilities, rolls cases were classified. The spectrum of the radial
wind speed in the direction transverse to the horizontal wind vector was estimated in order to detect periodicities during the
two days when the streaks cases were followed by rolls. The spectra exhibited prominent peaks for almost all but three rolls
cases. The periodicities of the streaks and rolls were clearly separated, with at least a 500 m difference. Regarding the streaks,
the sizes of periodicities ranged between 400 and 800 m; and for rolls, they were between 1.3 and 2.0 km, indicating realistic
sizes of the structures that would be around 200 and 400 m for the streak spacing and more than 1 km for the rolls.

Overall the performance of the algorithm with regards to the classification of the structures based solely on texture
analysis parameters is in agreement with the physical parameters. The results were as expected, especially for the coherent

structures rolls and streaks. However, there is room for improvement, especially for the category thermals.

Data availability

All lidar data used in the study are property of the Laboratoire de Physico-Chimie de I’ Atmosphere (LPCA), Dunkirk,

France and are not publicly available.
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3.2.3 Additional discussion regarding the physical properties of the coherent
structures

The association of the available physical properties with the structures revealed a
realistic classification. The time, the mean wind speed, the ABL height (when available),
the horizontal sizes of the coherent structures (when available) and the occurrence of
particular weather events (nllj) were associated to the appropriate structures as expected.
It is important to mention that for the coherent structures, when the texture analysis
parameters were plotted against the neighbor order in the transverse direction, they
showed a peak for a distance comparable to the size retrieved by the spectrum. Figure 40
showcases an example of the amplitude of the homogeneity curve plotted against the
neighbor order n for the pair orientation ¢=0°, as defined in Section 1.3.1, for a case of
streaks and for a case of rolls. For the example of streaks (Figure 40a) there is a peak at
the 3" neighbor order, meaning at 150 m distance. For the example of rolls (Figure 40b),
the peak appears for the 14" neighbor order, equivalent to 700 m. These peaks are
indications that the horizontal sizes could be retrieved from such figures, but more testing
is necessary in order to find which texture analysis parameter is more suitable for an
accurate estimation of the horizontal sizes.
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Figure 40: The amplitude of the homogeneity curve plotted as a function of the neighbor order in
the transverse direction (cell pair orientation ¢=0°) for a case of streaks (a) and for a case of rolls

(b).

Itis also important to note that the estimation of the nocturnal ABL height was limited
due to the addition of the height of the building where the lidar was installed and the
minimum range of the lidar. These can cause some overestimation of the height of shallow
ABL. However, for the purpose of this study an approximate value for the height was
sufficient as the aim was to reveal the distributions of the cases with respect to the ABL
evolution. It is particularly interesting that during the two-month period under study,
coherent structures formations seemed to be frequent over Paris (1145 streaks and
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420 rolls cases out of the 4577 scans). An observation also made by Barthlott et al. (2007)
for a 10-month period study using sonic anemometer measurements 20 km southwest
from Paris.

As stated in this manuscript, regarding the streaks cases, the wind shear near the
surface plays a significant role in their formation. Under a llj, the shear can be defined as
the horizontal wind gradient between the near-surface and jet nose, but this definition
cannot be applied all the time and used in order to examine the association with the
streaks cases. Therefore, it was decided to define the near-surface wind shear as the
horizontal wind speed (Eq. (8) difference between the lidar level (~70 m a.g.l.) and 400 m
above it, computed using the DBS observations. The 400 m level was selected as it was
the altitude where the maximum horizontal wind speed of the Ilj was approximately located
during the period 07/09 — 11/09. Figure 41 shows the distribution of the streaks cases
according to the aforementioned wind gradient. The results show more than about 40% of
the streak cases occurred under low wind differences (<3 m.s?). The number of
occurrences then declined for wind speed differences higher than 3 m-s, with very few
cases corresponding to wind speed difference above 10 m-s. Further analysis is
necessary in order to extract conclusions regarding the association of the wind shear and
the streaks cases. Nevertheless, these preliminary results are an indication that a net
majority of the classified cases were related to a significant wind shear near the surface
as about 72% of the streaks cases were associated with wind speed differences between
the lidar level and 400 m above it higher than 2 m-s™,
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Figure 41: Distribution of streaks cases based on the horizontal wind speed difference between the
lidar level and 400 m above it as recorded by the DBS scans.

A two-month or a longer dataset classification provides the ability to perform
statistical studies. In the future, monthly, seasonal or annual variations could be estimated
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and analyzed in order to reveal possible modifications of the structures throughout the
year. This type of study has not been done yet based on lidar measurements, since it
would have required the subjective identification of the structures by the researcher, which
is a cumbersome process. A consistent automated classification like the one presented in
this study can overcome this issue and allow the statistical estimation of structure
parameters. For this purpose, it would be crucial to combine the lidar measurements with
other meteorological instruments, such as a sonic anemometer in order to validate the
wind lidar observations and estimate the atmospheric stability and vertical momentum
fluxes, or a water vapour lidar for the estimation of the latent heat fluxes. Unfortunately,
the nearest meteorological instruments (the Paris-Montsouris station) are located too
close to the ground to allow a proper comparison of the wind observations with the results
from the VAD method. There was a significant difference in wind direction between the
two for several cases, that would be interesting to investigate. However, the closest
meteorological tower offering observations more in altitude (including turbulent fluxes) is
located on the Saclay plateau, ~20 km southwest from the Jussieu site (SIRTA site,
https://sirta.ipsl.fr/) in a suburban area.

Additional cloud images, taken at different time of the day, would also have been
exceptionally useful. Indeed, the Terra and Aqua satellites that were used in this study
follow sun-synchronous orbits, so they pass over Paris region around the same time every
day (~11 UTC for Terra and ~13 UTC for Aqua). Having satellite images throughout the
day would not only have allowed to enlarge the training ensemble, by selecting more rolls
cases based on possible cloud streets formations, but it would also have served for the
verification of the cases classified as rolls. However, time lacked during this project to
obtain and exploit images from a geostationary satellite (for instance from the SEVIRI
instrument aboard MetOp).

Also, the scanning sequence in the VEGILOT campaign alternated between the
different scanning techniques, among which only a part was finally used for this study. An
optimized measurement cycle could therefore be implemented in future campaigns to
achieve a higher repetition frequency of the quasi-horizontal scans. Moreover, these types
of measurements are sufficient for the estimation of the mean wind speed and the mif-cs,
but not for turbulent parameters such as momentum flux, turbulence intensity or TKE. For
the estimation of turbulent parameters, it is vital to record continuous observations using
one single scanning technique as, by definition, the average in time of the radial wind
speed is mandatory. In a future campaign this should be taken into account. A study
combining the structures with turbulent parameters would be exceptionally interesting for
the scientific community as it could reveal subcategories of the structures.
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It would be also interesting to use LES models to simulate the days when multiple
cases of rolls were found in order to examine whether the simulations reveal similar
patterns and if the model predict correctly the time when the thermals/rolls transitions
occur. These results would be compelling, as the studies so far have shown a connection
between rolls structures and pollutants’ concentrations. Another interesting aspect to
examine is whether the models can simulate the formation and dissipation of coherent
structures during nllj events and the effect on pollutants’ concentrations in this case.

Finally, it is important to note that the range and the resolution of the scans play an
important role in the sizes and shapes of the observable patterns. In addition, the
meteorological conditions and the topography have an impact in the patterns as well. Even
minor differences in the sizes and shapes of the patterns can make the texture analysis
parameters used for the classification of this study irrelevant. In that regard, for the
replication of this method for a new dataset, a new training ensemble should be built in
order to retrieve the appropriate texture analysis parameters for the classification of the
ensemble.
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General Conclusions

The current manuscript presented three years of work in the analysis of the two-
month of mif-cs observations recorded by a single Doppler wind lidar in Paris. The most
astonishing outcome of this study is the possibility to identify and classify the mlf-cs based
on the patterns of their fields, retrieved from the radial wind observations by implementing
the VAD method. In this manner, an innovative classification methodology was developed
by combining texture analysis and the supervised machine learning technique. The
identified mlf-cs for this study were: streaks represented by narrow elongated patterns,
rolls represented by wide elongated pattern, thermals represented by large enclosed
areas and “others” represented by any other pattern that cannot be classified in one of the
other three previous categories. The differences between these patterns were evident
when observing the texture analysis parameters as a function of the cell pair orientation.
The so called curve parameters (amplitude, integral and symmetry of the curves)
differentiated the pattern types in a noticeable degree.

A training ensemble of 150 cases (30 streaks, 30 rolls, 30 thermals, 60 “others”) was
built based on the visual examination of the mlf-cs patterns and ancillary information
(satellite images, weather parameters). When comparing the texture analysis curves
parameters, it was apparent that cases belonging to the same type formed clusters of
points. Consequently, the texture analysis curves parameters were provided to the QDA
algorithm with the stepwise forward selection of the process. The 10-fold cross-validation
on the algorithm revealed a classification error of approximately 9% with five texture
analysis curves parameters as classifiers. For the individual type of structures, the
classification errors were 3.3 % for streaks and “others”, 10 % for rolls and 20 % for
thermals. The misclassified thermals cases were classified as rolls and “others” types by
the algorithm. The inclusion of three curve amplitude parameters in the classifiers shows
the necessity to rotate all the mif-cs in the same wind direction so that the peak in the
texture analysis curve occurs for the same angle. Furthermore, the classifiers cover
various neighbour distances from short (2" neighbour — 100 m) to medium (8" neighbour
— 400m) and to large (18" neighbour — 900 m) which is fundamental for the distinction
between structures with different sizes such as streaks and rolls. Along with the texture
analysis curves parameters, three physical parameters (time of day, mean wind speed,
RMSE from the VAD cosine fit) were also provided to the algorithm but they were not
selected as relevant classifiers.

The five classifiers which gave the classification error of 9 % were utilized for the
classification of the whole 4577 cases ensemble. The algorithm classified 46 % of the
cases as “others”, 25 % as streaks, 9 % as rolls (coherent structures sum up to 34 %) and
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20 % as thermals. Despite the classifiers being only texture analysis parameters, the
diurnal variations of the structures during the two-month period agreed with the theoretical
knowledge. In particular, the vast majority of rolls (87%) and thermals (77 %) cases were
classified during the day between 08:00 UTC and 18:00 UTC as expected because these
structures develop after strong instabilities. Oppositely, most of the cases of streaks
(66 %) and “others” (79 %) were classified during the night, from 18:00 to 08:00 UTC. This
was expected for streaks as nllj events occurred during 20 out of the 63 nights of the
campaign, so that favorable conditions for the formation of streaks structures occurred
frequently. Regarding the “others” cases, this type is mainly composed of asymmetric
radial wind field for which the VAD method does not work, and this type of field is mainly
associated with calm and low wind conditions that occur primarily during the night, which
was confirmed by analyzing the mean wind conditions. The cases classified as “others”
associated with mean wind values lower than 4 m-s* made up 75 % of the total “others”
cases. Cases classified as streaks and rolls, on the other hand, were mostly associated
with moderate mean wind values between 4 and 10 m-s™?, as it is the case in to other
studies.

The automatic classification methodology made the analysis of random cases within
the two-month dataset fast, easy and smooth. More particularly, the 18 days during which
it was possible to estimate the ABL height for the majority of the 24 hours were selected
in order to examine the relationship between ABL height and the structures types. The
94 % of the cases classified as rolls and 80% of the cases classified as thermals occurred
in a developing or a well-developed ABL. On the contrary, cases classified as streaks and
“others” were associated with SBL for 90 % and 86 % respectively.

A 4-day case study with daily nllj events showed that streaks structures appeared
concurrently with the occurrence of the nllj. During the morning, as the nllj disappeared
and the thermal instabilities prevailed, the streaks were replaced by thermals or rolls
structures. The difference in horizontal sizes were confirmed by the estimation of the
periodicity sizes in the direction transverse to the mean wind, via the spectrum graphs of
the radial wind speed. The periodicity sizes (including one positive and one negative stripe
in the mif-cs) ranged between 400 and 800 m for the cases classified as streaks cases
and between 1.3 and 2 km for the cases classified as rolls.

The automated classification of the mlf-cs provides a consistent way to identify and
classify the structures. It can be implemented in any other dataset independently of the
date, duration and place as long as the patterns of the mlf-cs fields are similar. The results
indicated a good agreement between the classified structures and the physical
parameters. There is still room for improvement by optimizing the selection of the texture
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analysis parameters and/or the supervised machine learning algorithm. Nevertheless, it
creates the possibilities for various new exciting studies.

So far the wind lidar observations have not been used for a statistical analysis of the
physical properties of the structures due to the limitations of visually identifying structures
in large datasets. The automated classification can assist such studies. Furthermore, it
can be combined with LES models in order to examine the impact of the structures on the
pollutants’ concentrations. Finally, as the lidar is capable to estimate turbulent parameters,
with the appropriate scanning configuration, it could be possible to alternate between
horizontal scans, thus mif-cs fields, and turbulent parameters. In this way, the possibility
to observe subcategories of the structures could be examined.
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