
HAL Id: tel-03259401
https://theses.hal.science/tel-03259401v1

Submitted on 14 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating devices in FPGA using an end-to-end
hardware/software co-designedmessage-based approach

Thomas Baumela

To cite this version:
Thomas Baumela. Integrating devices in FPGA using an end-to-end hardware/software co-
designedmessage-based approach. Embedded Systems. Université Grenoble Alpes [2020-..], 2021.
English. �NNT : 2021GRALM004�. �tel-03259401�

https://theses.hal.science/tel-03259401v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
ALPES
Spécialité : Informatique

Arrêté ministériel : 25 mai 2016

Présentée par

Thomas Baumela

Thèse dirigée par Frédéric Pétrot
et codirigée par Olivier Gruber

préparée au sein des laboratoires TIMA (UMR5159) et LIG (UMR5217) et
de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique

Integrating devices in FPGA using
an end-to-end hardware/software
co-designed message-based approach

Thèse soutenue publiquement le 24 février 2021,
devant le jury composé de :

M. Tanguy Risset
Professeur, Laboratoire CITI, INSA-Lyon, Rapporteur

M. Gaël Thomas
Professeur, Laboratoire SAMOVAR, Telecom SudParis, Rapporteur

M. Noël de Palma
Professeur, Laboratoire LIG, Univ. Grenoble Alpes, Président

M. Kevin Martin
Maître de conférences, Laboratoire Lab-STICC, Université de Bre-
tagne Sud, Examinateur

M. Frédéric Pétrot
Professeur, Laboratoire TIMA, Grenoble INP, Directeur de thèse

M. Olivier Gruber
Professeur, Laboratoire LIG, Univ. Grenoble Alpes, Co-Directeur de thèse

Contents

1 Introduction 1

2 Context and Problem overview 9
2.1 Problem illustration . 9
2.2 SoC approaches for HW/SW integration 11
2.3 OS approaches to simplify device driver development 12
2.4 Summary . 16

3 Message-Based Integration for Embedded Systems 17
3.1 The Current Integration Challenge . 18
3.2 Background . 21
3.3 Message-Based Integration Solution . 23

3.3.1 The Software Perspective . 23
3.3.2 The Hardware Perspective . 27
3.3.3 The Overall Lifecycle . 29

3.4 Messages and Class-Genericity . 30
3.4.1 Using Messages . 31
3.4.2 Class-Generic Protocols . 34
3.4.3 Heterogeneity . 35

3.5 Evaluation . 39
3.5.1 Overhead Evaluation . 40
3.5.2 Small Embedded Systems . 45

3.6 Summary . 49

4 Linux Integration 51
4.1 Background . 52

4.1.1 Linux kernel modules . 52
4.1.2 User-space interfaces . 54
4.1.3 Linux Device Driver Model . 56

4.1.3.1 Devices, Drivers, Buses 57
4.1.4 Software-Hardware communication in Linux 61
4.1.5 Some bus implementation examples in Linux 62

4.1.5.1 PCI drivers . 62
4.1.5.2 USB drivers . 64

4.2 The Extension Proposal . 67

iii

iv CONTENTS

4.2.1 A new message bus for Linux 68
4.2.2 Driver API . 69
4.2.3 Low Level Driver API . 71

4.3 Experiments . 75

5 Xen Integration 79
5.1 The FPGA Adoption in the cloud . 79

5.1.1 The architecture of the cloud 79
5.1.2 The state of FPGA adoption in the cloud 83

5.2 The impact of our proposal for the cloud 84
5.2.1 Message-based communication 85
5.2.2 Class genericity . 86

5.3 Feasibility . 87
5.3.1 Concepts offered by hypervisors 87
5.3.2 Description of our solution . 88

5.4 Deeper Analysis . 97
5.4.1 Integration in Xen . 97
5.4.2 Consequences of our solution for cloud systems 102

6 Conclusion 105
6.1 Summary . 105
6.2 Perspectives . 108

Bibliography 111

Chapter 1

Introduction

The pace of hardware development tends to be continuously increasing. This is the
case for instance with MultiProcessor System-On-a-Chip (MPSoC), embedding a lot
of specific Intellectual Properties (IPs). Those systems evolve very quickly to match a
specific consumer market. For instance, several versions of a Snapdragon platform can
be released over a year1. Integrating hardware, meaning, making its features available
to a high-level software application, is thus a very important issue. Indeed, as hard-
ware is evolving, having new and changing capabilities, and systems become more
and more complex thanks to more efficient tools and higher developers expertise, in-
tegrating hardware has a growing cost. If this is true for MPSoCs, this is worse for
Field Programmable Gate Arrays (FPGA) for which their high programmability makes
hardware development even faster and thus the hardware integration an even more
critical problem.

The work addressed by this thesis aims therefore at improving the hardware integra-
tion in the context of FPGAs. FPGA technology is incrementally used across a wide
variety of domains, from small embedded systems to cloud computing. They are of-
ten used to associate programmable hardware logics with processing systems. In such
systems, hardware components can be designed and integrated by programming a
preexisting chip without having to change the actual hardware. This opens great pos-
sibilities regarding programmability, power efficiency and performances. Though, this
comes with some drawbacks: Not only programming FPGAs can be complex but inte-
grating the newly created hardware with the software is also a heavy task.

1https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_processors

1

https://en.wikipedia.org/wiki/List_of_Qualcomm_Snapdragon_processors

2 Chapter 1 Introduction

The advantages of using FPGAs for tasks with fine-grain parallelism increased their
adoption in a lot of domains. In particular, their reprogrammability offers great evolu-
tion possibilities. It makes system updates easier by simply reprogramming the FPGA
without having to change the actual hardware. Reprogramming an FPGA can even be
made remotely, making the maintenance of such system easier. Their power efficiency,
even though still lower than pure Application Specific Integrated Circuits (ASICs), is
far better than running software on a CPU. They also allow faster prototyping thanks
to their ability to design and implement hardware without having to build an actual
chip. Implementations on an FPGA are made at the transistor level, allowingmuch bet-
ter parallelization for applications that need it. This offers overall great performances
compared to software implementations, making FPGAs a great solution for embedded
systems, medium size systems and cloud computing systems.

In embedded systems, programmable logic is used to deploy hardware logic as devices.
These devices can be controllers of external devices such as human interface devices
(controllers and displays), storage and network devices, or sensors and actuators. They
can also be accelerators for encryption, video and audio processing, and nowadays
artificial neural network inference. This reduces the power consumptionwhile offering
better performances compared to software implementation running on a CPU.

Figure 1.1 depicts the overall view of how FPGAs are integrated in embedded systems.
This allows the FPGA to have access to an I/O interface allowing it to access external
peripherals and buses such as USB, Ethernet or I2C. It also interfaces the FPGA with
the system bus making possible for the software running on it to access devices on
the FPGA. Devices deployed in such FPGAs are integrated through a software driver
running on the processing system. Each device has an available driver that integrates
the features it offers to upper layers of software.

FPGAs are also used this way for bigger systems, running full fledged operating sys-
tems. In those systems the FPGA either sits in the same SoC or board as the processing
system or on a separate board usually connected through a PCI link. Even though
those systems are bigger than embedded systems, FPGAs are integrated in similar
ways. Hardware components are deployed in FPGAs and seen as devices from the
software. Those devices must be integrated with their driver within the operating sys-
tem. A task that can be very challenging regarding the fact that driver updates must
follow the rules of each operating system update schedule.

Chapter 1 Introduction 3

Processing System

FPGA Integration bus

Device 0 Device 1 Device 2

Processing system bus

FPGA FPGA interface

I/O
i
n
t
e
r
f
a
c
e

Driver 0 Driver 1

FiguRe 1.1: FPGA Integration for Embedded Systems

FPGAs are also more and more used in cloud computing. Those systems are intrinsi-
cally made to share hardware resources to multiple clients. It means that no matter the
level at which the client stands (virtual machine, operating system or application level),
the FPGA resources must be shared among multiple clients. We decided to focus only
on sharing devices implemented on FPGAs. Indeed, sharing the FPGA itself, meaning,
allowing multiple clients to reprogram part or all the FPGA is a different topic and is
currently addressed by several works. In our case, devices are deployed within FPGAs
and shared with the clients that can come and go at any time. As these devices are on
a FPGA, they may be updated, removed or new devices may come at any time. This
means that integrating such devices requires more dynamicity in all layers.

Figure 1.2 shows the overall picture of how FPGAs are integrated in cloud systems.
Hardware side, the architecture is the same. Devices are deployed on the FPGA, inte-
grated with the processing system bus to let the software access those devices. Soft-
ware side the situation is different as multiple operating systems share the same hard-
ware resources. A first layer of software called the hypervisor is in charge of sharing
the hardware and thus the devices on the FPGA. There are multiple ways of sharing
devices but the general idea is that each operating system has its own set of driver for
the devices it wants to handle. Drivers communicate with the hypervisor to handle the
device. The hypervisor is then in charge of sharing device operations coming from the
drivers of all operating systems. Additionally, some devices may also be completely
allocated to one specific guest, making the situation exactly the same as for previous
systems.

4 Chapter 1 Introduction

Processing System

FPGA Integration bus

Device 0 Device 1 Device 2

Processing system bus

FPGA FPGA interface

I/O

OS 0 OS 1

Hypervisor

Driver 0 Driver 0 Driver 1

i
n
t
e
r
f
a
c
e

FiguRe 1.2: FPGA Integration for Embedded Systems

As FPGAs come with many power and performance advantages for a lot of different
applicative domains, one may ask why the adoption of such a great technology, even
though it is moving forward, is so slow. The big part of the answer is that FPGAs
come with a major drawback: Integrating devices deployed within FPGAs in an actual
software intensive system is a real challenge. This challenge impacts both the hardware
and the software sides, making it a co-design issue.

Device makers must adapt their device interfaces to the interrupts controller, Direct
Memory Access (DMA) engine, and integration bus specifications of every system.
Hardware interfaces are hard to standardize. Even though some efforts have been
made no real standard has emerged. The two major actors of the industry recognized
this challenge and started to address it, though only partially. They have drastically
improved their tools over the years, offering great support for developing hardware
with both Hardware Description Languages (HDLs) and High Level Synthesis (HLS).
They have also grown their libraries of hardware components making it easier to reuse
hardware commodities such as buffers, bus controllers or DMA engines. They also
make a great effort into pushing the AXI standard offering great tools and components
allowing to more easily interface with the standard. But those tools and resources are
essentially focused on improving the design, integration and deployment of hardware
on the programmable logic. Even though this is a major and necessary step to help
integrate devices in FPGAs, it is only half of the challenge we address.

Chapter 1 Introduction 5

The integration challenge we face is across software and hardware. Of course, hard-
ware features must be designed and deployed on the programmable logic, but software
must be written and installed on the processing system to be able to exploit these hard-
ware features. This means writing software drivers to drive hardware devices. Writ-
ing drivers requires both hardware and software skills that not everybody has, making
their development time-consuming and costly. Developers must deal with the current
hardware-software frontier based on registers and interrupts, exposing a lot of hard-
ware implementation details. They have to work with ever growing documentations
often being hundreds of pages long and describing every bit of every hardware reg-
ister, as they must dive deeply into details to allow driver developers to understand
how to drive the device. Those documentation are always evolving as devices are re-
vised every few months, and are usually not free of ambiguity. Also, new devices are
appearing all the time, making writing drivers a never-ending struggle. This leads to
drivers being hard to maintain safe as they must be updated often, and as such are
an important potential source of bug. Considering the diversity of software stacks for
which drivers are needed, from bare-metal to various popular versions of the Linux
kernel, the situation may become critical if not addressed.

In this thesis, we propose a new simple and effective approach to tackle this issue. Our
approach does not require expensive or new technologies. It can be adopted incremen-
tally without having to throw every existing solution out. It is compatible with existing
FPGA and processing system technologies without having to change the existing tools.
Our solution requires to follow an end-to-end design, taking into consideration a com-
prehensive view of the integration process across both the software and the hardware.
This design can be followed using existing tools and technologies, meaning that a lot
of existing improvements can be integrated in our design.

Our approach was inspired by the principles behind the Universal Serial Bus (USB)
and adapted to devices deployed on FPGAs. The two core principles we retain from
USB are: 1) provide a message conduit between devices and drivers, completely hiding
the old frontier made of interrupts and registers, 2) define device classes allowing to
have one driver able to drive multiple devices of the same class. Using a message
conduit decouples the driver from its device, bringing a much needed separation of
concerns. No more awkward documentations that are several hundreds of pages long,
nomore dozens ofmemory-mapped hardware registers and interrupt needed. The only
requirement is a high-level message protocol. This will make driver smaller, easier to
write and safer to operate. Additionally, it opens the possibility to standardize message

6 Chapter 1 Introduction

protocols for classes of devices rather than have one specific protocol for each specific
device. With class-generic protocols, only one driver is necessary to drive an entire
class of device.

The two principles, a message conduit and class-generic protocols, are the two key
reasons why any USB key can be plugged into almost any host and work out of the
box. It works first and foremost because the physical key itself can be plugged in,
which requires standard plugs and cables. Then it works because the USB key is seen
as a mass storage device, a class of device that support a standard mass storage pro-
tocol. Finally, it works because the processing system runs a generic driver for that
specific class of device, integrating it with the rest of the software stack. The overall
message-based approach provides the right separation of concerns between hardware
design and software coding. Both sides only see the other side as a message sender
and receiver ensuring a smooth and cost-effective integration. Unfortunately, the USB
specification cannot be leveraged for this. USB is not open, not free and not abstract
enough. Its specification is a closed world that locks adopters in and forces for certain
cables and plugs, making it hard to customize for certain needs.

Our proposal is to define an open and abstract conduit for sending and receiving mes-
sages across the frontier between the programmable logic and the processing system.
Fortunately, we do not need to build new cables and plugs. FPGAs already have in-
tegration solutions with processing systems that work well either being on the same
SoC, board or through existing buses such as PCI. On the FPGA itself, the standardiza-
tion efforts of the industry, in particular related to the AXI standard, are completely
reusable in our solution. In particular, we built our solution using the AXI and AXI-
stream standards, using existing tools from FPGA vendors without feeling the need
to change them or completely reinvent the wheel. Thus, the challenge is not here, all
the building blocks we need exist and will be reused. The challenge is to design the
message conduit in terms of its two interfaces:

1. The software interface that all drivers will be using to send and receive messages,

2. The hardware interface that all devices will be using to receive and send mes-
sages.

The first objective of this thesis is to define a fully abstracted interface that is simple
and safe to use. Having an abstract interface is key because all the systems we will
target are very heterogeneous. We thus cannot impose one specific existing standard

Chapter 1 Introduction 7

as some users may need low-power low-performances interface while other may need
high-performances. With an abstract interface, board providers will have the imple-
mentation freedom to adapt our proposal to the specifics of their boards, from small
embedded systems to larger ones. Indeed, our proposal can accommodate with very
different technologies in terms of processing systems, programmable logics and the
interconnect buses between them. Adding a layer of abstraction means that we must
be mindful of important requirements. Using messages must not introduce any undue
overheads in terms of latency or throughput. We must also preserve the footprint and
power consumption on the programmable logic side.

We designed our solution first for small embedded systems. This design addresses the
integration challenge we described by defining both the software and the hardware
interface of our new message conduit. Software side, we designed an asynchronous
interface inspired from the Linux driver model, which is familiar to driver developers.
Hardware side, we designed an abstract interface based on streaming interfaces used
to send and receive messages with the software. The implementation of these stream-
ing interfaces is not imposed by our solution, only the message protocol traveling in
them is. This means that one may build our solution with a different implementation
than ours and still benefits from its advantages. The prototype we built demonstrates
that our solution fits for small systems with low latency and low throughput devices
without growing much the size of the implementation.

We also integrated our solution within a Linux kernel, demonstrating its feasibility for
bigger systems. We demonstrated that our solution can fit for high-performance de-
vices with negligible performance overheads. We showed that our design integrates
well within a Linux kernel without disturbing the existing solutions. It shows that
our solution is flexible and can be incrementally adopted by having some devices inte-
grated in our design and some other in existing solutions.

In the context of cloud computing, we analysed that our solution can offer great ben-
efits to improve FPGA integration but also hardware support. Indeed, messages are
good solution to share device among multiple guests. They also fit well in famous hy-
pervisors, in particular Xen, which have all the features our solution requires without
the need of modifying it. In addition, cloud computing benefits from class genericity
enabled by our message-based solution. It allows guest operating systems to require
less drivers to support hardware. Our solution also allows to reuse message-based
drivers from a non-supervised operating system to a supervised one.

8 Chapter 1 Introduction

The manuscript is organized as follows. Chapter 2 gives an overview of the context
in which our work takes place, and discusses the related works that we believe are
relevant to our proposal. Chapter 3 presents our first contribution, the design and
implementation of a message-based approach that targets the context of embedded
systems. Chapter 4 presents our second contribution, that details how our solution
can be integrated in bigger systems, in particular those running the Linux kernel, and
presents how it can be realized in Linux. Chapter 5 is a less mature contribution, more
specifically the implementation is yet to be demoed, that shows how our solution can
be useful for the cloud and how it can be integrated to a cloud system, through the Xen
hypervisor. Finally, Chapter 6 summarizes the problemwe addressed and the solutions
we propose, and draws some perspectives.

Chapter 2

Context and Problem overview

Chapter contents
2.1 Problem illustration . 9
2.2 SoC approaches for HW/SW integration 11
2.3 OS approaches to simplify device driver development 12
2.4 Summary . 16

The work we address in this thesis is at the crossroad of several initiatives, some com-
ing from System-on-a-Chip research, others from Operating System research. SOC
and OS research have very different objectives, while at the end of the day the inte-
gration of both is mandatory to building a useful silicon-based system. We start this
chapter by an illustration of the rapid pace of hardware development and the software
difficulties it induces. Then, we analyse it by first focusing on the approaches that tar-
get integration of IPs into Systems-on-a-Chip from a bottom-up perspective. We then
take the opposite standpoint in which Operating System is the core of the work and
hardware is a necessary evil. Finally, we draw some conclusions about some missing
pieces that would ease the integration of ad-hoc hardware in legacy OS software.

2.1 Problem illustration

Multiprocessor System-on-a-Chip are today what Application Specific Integrated Cir-
cuits were yesterday: pieces of silicon optimized towards an application or a class
of applications. Even though they tend to be reusable and are able to handle more
and more applications efficiently, the power and price budgets makes it necessary to

9

10 Chapter 2 Context and Problem overview

embed specific hardware Intellectual Properties (IPs) depending on the target usage
and market. Platform-based design [1] has been a keyword driving the industry, as it
maximizes hardware reuse and thus shortens its development time.

Looking at mobile platforms is quite instructive: Qualcomm has released more than
150 different Snapdragon platform instances to its customers between 2007 and 2020,
Texas Instruments advertised 25 until it left this market and other players in the mar-
ket have similar numbers. These platforms have become so complex overtime that
the industry does not even try to give rough diagrams of what the SoC contains, as
illustrated Figure 2.1.

(a) OMAP 3430 block diagram (b) Snapdragon 865 block diagram

FiguRe 2.1: Typical marketing representation of a SoC in (a) 2010, (b) 2020

Even though fast and power efficient hardware design for SoC is still a real challenge,
the huge number of platform versions only exacerbates the already difficult problem
of hardware/software integration. Indeed, each platform contains a variable number
of IPs and in most cases even the ones which provide the same features are slightly
different. Thus, the hardware/software integration process has to deal with ten to a
hundred IPs, each having themselves tens to hundreds registers. Morevover, each reg-
ister has potentially a bit field with up to many functions. Even for the somewhat
modest SoC in the Raspberry Pi 4 (Broadcom BCM2711), we counted already more
than 2500 registers. Engineers at Texas-Instrument report that the sole bring-up of
the clocks and power modes in modern SoCs involves reading and writing more than
1000 different registers [2]. In this context, using (and reusing) an IPs is a twofold
problem. First, accessing, using loads and stores, the registers/bitfields at the correct
addresses/offsets in the correct order at the right time, which can be seen as a ”syntac-
tic” problem. Second, setting the correct values in these resources so that the device
does what it is expected to do, which is more of a ”semantic” problem. Overall, having
a working hardware/software system is a tremendous amount of work and debug. It

Chapter 2 Context and Problem overview 11

thus comes at no surprise that the vast majority of bugs in operating systems comes
from the device drivers (about 70% of the bugs, with drivers being 70% of the source
code in Linux kernel), among which a third is due to the interface between the OS and
the device [3]. Provisioning for detecting part of these bugs at run-time is very costly
and lead to overheads in the order of 100% [4].

The problem is even worse in the context of FPGAs. Their high programability makes
the number of IP version growing even faster. Indeed, it is very easy to implement an
IP using either an Harware Description Language (such as verilog or VHDL) or High
Level Synthesis (which makes IP development even easier). For instance, only on the
Xilinx IP public catalog more than 800 IPs can be found in their last version. Updating
an FPGA-based platform is also very fast compared to ASICs or System-on-a-chip. In
a couple of hours (sometime minutes), it is possible to update an IP, run a couple of
tests, implement a platform embedding the new version and finally program the FPGA
with the updated platform. After that, a software update is often required and a huge
amount of work can be required to update and debug drivers, even for tiny updates.

2.2 SoC approaches for HW/SW integration

In the SoC domain, easy and early HW/SW integration has been of interest for long.
This is due to the fact that because of high cost constraints, the easy exploration of the
hardware/software design space is required to optimize the target system for a given
application or a class of applications. Taking as an example SoCs that handle flows of
data, which is typical for consumer applications, at some point the application ends
up specified as a set of interconnected tasks. A first step is then to decide which tasks
will be realized in hardware and which will be realized in software. How this parti-
tion is done depends on many factors, the least of which is the existence of an HW
IP that would be suited for the tasks. Once this choice done, the tasks, independently
of their hardware or software nature, have to communicate, taking into account la-
tency and bandwidth constraints. Communication synthesis aims thus at automating
the generation of hardware and software required for the communication [5]. Tak-
ing the example of streaming applications, [6] proposes a layered approach in which
application level, system level, OS level and physical level interfaces are predefined
using templates. Synthesizing the communications boils down to instantiating the

12 Chapter 2 Context and Problem overview

right hardware and software elements and setting the appropriate parameters. The ap-
proaches based on these principles are well suited for an ad-hoc usage, for applications
that can be specified using a static task graph and data-flow like communications [7, 8].

More general approaches have been proposed which also target shared memory com-
munication, as reviewed in [9]. They actually build finite state machines for the hard-
ware and software parts from high level specifications. An orthogonal strategy based
on the concept of remote procedure call is proposed in [10]. The principle here is to
describe the communication in the application through what the authors call “shared
objects”, that are able to serialize requests and perform actions, either internally if they
are hardware IPs, or forward them to a software task otherwise. Although interesting
as a different abstraction, the management of the shared objects is a bit unusual, and
describing applications with this semantic cumbersome, which make the proposal dif-
ficult to generalize.

Overall, the SoC centric approaches are not concerned with the notion of driver per
se, and do not deal with kernel interfaces, device sharing, process isolation, etc. They
focus on communication abstraction, which is nice, but set aside the OS legacy that
simply cannot be ignored when targeting actual processor centric products.

2.3 OS approaches to simplify device driver develop-
ment

As far as operating systems are concerned, the issue is known and recognized, and
different solutions have been attempted, but all under the assumption that the hard-
ware/software boundary remains unchanged. Hardware is seen as a (possibly huge)
set of registers that has to be read and written following the constraints expressed in
a datasheet.

The first relevant work is automatic driver generation. Most approaches start by defin-
ing a domain specific language (DSL) in which the device specificities, described as a
mix of hardware resources and behavior, are captured. Then, a tool, specific to an op-
erating system (or even to a version of it to be fully accurate, for example Linux pre 2.6
had a big kernel lock, and now each device has its own set of locks), is used to generate
the actual driver [11, 12]. The driver generation tool can be itself parameterized by a
formal description of the OS interface [4, 13]. Figure 2.2 summarizes the idea.

Chapter 2 Context and Problem overview 13

Device−class

Device

OS

Termite

Device driver

.c

specification

specification

specification

FiguRe 2.2: Principle of driver generation from a DSL (taken from [4])

Another approach has been to push for writing device drivers using high-level pro-
gramming languages, targetting software challenges such as memory management
or synchronization. The work [14] proposes to write drivers in Java, running a Java
Virtual Machine inside the kernel. The work [15] even argues to rewrite the kernel
entirely in a high-level language, in this case the Go language.

Using DSLs is a direction, but not the only one. Tools and DSLs are expected to help
with the syntactic issues, not really the semantic ones. Consequently, they do not help
that muchwith robustness with respect of the complexities of using a particular device.
They do help however regarding the driver integration with the operating system by
abstracting its API. They ease the following the programming rules defined by the
operating system, in particular the complex ones regarding dynamic driver loading
and unloading.

Other efforts of the software community have been pushing tools rather than frame-
works. Tools like Coccinelle [16] or Coverity [17] are efforts to help write safer kernel
code and better support code evolutions. The tools help on the usual software chal-
lenges of writing kernel code, such as memory management or synchronization, but
the challenges of actually driving hardware devices are not addressed. The work [18]
discusses the integration flows based on IP-XACT, an XML format that describes hard-
ware components in order to facilitate their integration.

We see a possible limitation to these approaches. Indeed, all cases have to be thought
of when defining the high level languages, which is not easy. So either the language
is very abstract and simple to use, but may be limited in scope, or the language allows
to describe many details in which case it is hard to use in a generic manner, and a lot
of work is required to model accurately the behavior. Therefore, each evolution of a
given OS requires new developments, and so does the introduction of a new OS.

14 Chapter 2 Context and Problem overview

The second work is focus at hiding hardware interfaces seen by the software.
RIFFA [19], inspired by Microsoft Research’s SIRC [20], proposes a reusable integra-
tion framework that targets the integration of accelerators deployed on programmable
logic. RIFFA combines both software and hardware parts. Running on the processing
system, RIFFA provides a C library and a Linux device driver. Deployed on the pro-
grammable logic, RIFFA provides a set of harware components. Both sides have been
designed for a PCIe bus and a DMA engine used to pass data between the process-
ing system and the accelerators on the programming logic. The RIFFA design is fo-
cused solely on accelerators with a design that is very DMA and PCIe specific, but the
approach could certainly be extended to other bus technologies and other hardware
devices.

It is interesting to note that the DMA transfers of the early RiFFA-1 [19] was later
better abstracted by communication channels in RIFFA-2 [21], something very inter-
esting that goes toward the idea of abstract conduits. But the RIFFA library is for
applications, running in user mode. While this approach of dedicating accelerators
on the programmable logic to a single application solves problematic issues, they do
not integrate devices at the operating system level. Integrating it at the kernel level
means that there would be a support for a device lifecycle since drivers may be loaded
and unloaded and devices may fail. RIFFA does not include any lifecycle management
which is something quite critical to address when integrating devices. Indeed, devices
are sometimes more than just pieces of hardware booting at power-up and always run-
ning flawlessly. They can encounter issues, have some of their features unavailable for
a certain period of time, or simply fail until they are reset.

Even though RIFFA has been of great help in its time, it is not maintained anymore.
It has suffered a lot from Linux kernel updates making the amount of work to keep it
up to date too much for the people still on the project. This shows that maintaining a
software/hardware interface as they are today with all hardware and software updates
they have to follow is a very hard task even for succesful projects such as RIFFA. It
enlights once again that the complexity of this interface is a source of a lot of struggles,
making us confident that reducing its complexity can help reducing the efforts required
for driver maintenance and debugging.

The work MPRACE [22] follows a similar philosophy as RIFFA, very much centered on
helping the development of PCIe devices that require very high bandwidth. The focus
of the work is to help with being able to saturate a PCIe link, that is, being able to
use all the throughput that a PCIe bus may provide. The C library aims at hidding the

Chapter 2 Context and Problem overview 15

details of the DMA engine from the software developers. The DMA engine is hidden
behind FIFO interfaces for the hardware designers. Those choices are in line with
FPGA vendors pushing for a DMA engine fronting AXI streams. This represents a
great inspiration to push the idea further more to a full message-based solution.

Finally, the third, quite different, domain of operating system research that we believe
is inspiring for our own objective is virtualization. Looking at it from the hypervisor
or microkernel point of view reaches the same conclusion [23]: accesses to devices
by the guest OS are performed through an inter-process communication (IPC) mecha-
nism. However, the intent of these approaches is not to change the hardware-software
boundary, but to wrap interrupts as messages, leaving drivers still loading and storing
values in and out of hardware registers.

Figure 2.3 illustrates the split driver approach promoted by the Xen hypervisor
to provide access to devices through an host OS (most commonly Linux). As explained
in [24], the principle is to provide ”a simple, narrow, and idealized view of hardware”
to the guest OS, which has to be modified so that the drivers are substituted by a front-
end relying on this hardware abstraction. The guest OS has a back-end which receives
the requests of the front-end, and calls the native drivers to actually access the device.
This strategy is simple and clean: the hardware abstraction provided to the front-end
allows to access the legacy drivers unmodified on the host through the back-end. Fur-

Xen

Device VM

Block
Front-end

Driver

Physical
Device
Driver

device
channel

Split Device Drivers in Xen
Physical driver runs in an isolated VM, connected over a shared memory device
channel to a guest VM accessing the device.

Guest OS

Block
Back-end

Driver

FiguRe 2.3: Xen’s split driver hypervisor architecture (borrowed from [24])

thermore, a single (front-end, back-end) couple is required for a given driver class,
which minimizes the modifications to be done on the guest OS.

The work of [25] uses this concept to virtualize the devices on a SoC and provide
access to them as OS services. The approach makes sense, but is very costly in terms
of memory footprint and computing power, as it requires the use of the original Linux
device drivers in the back-end of the split drivers.

16 Chapter 2 Context and Problem overview

2.4 Summary

Whatever the perspective taken, the addition of a piece of hardware into a computing
system requires the software to be aware of its existence and detailed expectations.
This makes the integration of Systems-on-a-Chip, even when using legacy hardware,
very complicated. We believe that raising the hardware-software interface abstraction
above the register map is a way to ease this integration. It does have a hardware
cost, as some wrapping will be necessary to expose an other interface, but the hope is
that it will make system software simpler. We choosed to tackle this problem from the
FPGA perspective, not only because they are a great candidate for fast prototyping but
also because the integration problem we desribed are even worse in this case. Indeed,
as hardware is much faster to implement on FPGAs, new updates come at an even
higher pace requiring a very efficient integration process. Improving the integration
problem for FPGAs thus improves it also for System-on-a-chip in general and makes
the adoption of a solution easier.

Chapter 3

Message-Based Integration for
Embedded Systems

Chapter contents
3.1 The Current Integration Challenge 18
3.2 Background . 21
3.3 Message-Based Integration Solution 23

3.3.1 The Software Perspective . 23
3.3.2 The Hardware Perspective 27
3.3.3 The Overall Lifecycle . 29

3.4 Messages and Class-Genericity 30
3.4.1 Using Messages . 31
3.4.2 Class-Generic Protocols . 34
3.4.3 Heterogeneity . 35

3.5 Evaluation . 39
3.5.1 Overhead Evaluation . 40
3.5.2 Small Embedded Systems 45

3.6 Summary . 49

The “Soc on a Programmable Chip” trend inwhich reconfigurable fabrics are integrated
into System-on-Chip (or the other way around) started in the early 2000’s [26]. It is
now legacy, and this technology is routinely used to associate software running on
processing systems with hardware components in programmable logic. In the embed-
ded system world, these components are often controllers of external physical devices
such as human interface devices, mass storages, or sensors. They may also be accel-
erators such as encryption or audio and video processing components. Moving such

17

18 Chapter 3 Message-Based Integration for Embedded Systems

functionalities from software implementations to hardware components is interesting
when searching for better performance and lower power consumption, especially for
small embedded systems. Moving more and more functionalities in hardware is thus
the way to go to get the better out of a small system, but it comes with a huge trade-off:
the integration challenge. Integrating hardware components is not only harder than
implementing their software equivalent, but it spreads out the range of skills required
by embedded system designers to make their system work. Indeed, the remaining
software running on processor-centric systems have now to communicate with more
hardware components than before, making the integration challenge a major concern
for them.

The approach we propose to tackle the integration challenge is based on two princi-
ples: an abstract message conduit and class-generic protocols. Those concepts are the
origin of the USB success story, showing how easy, low-cost and efficient it is to plug
any device on any system. The philosophy of the approach is to provide to system de-
signers a similar plug-and-play experience to integrate devices in their systems. It also
provides device makers a consistent interface independent of the system in which their
devices may be integrated. Finally it provides driver writers a generic interface sim-
plifying the interface of devices by replacing hardware details with message protocols.
This approach has been implemented and demonstrated for small embedded systems,
including a bare metal software stack running on ARM based processing system and
Xilinx programmable logic.

3.1 The Current Integration Challenge

The integration challenge consists of making hardware components functionalities ex-
ploitable by software. Those hardware components, also known as IPs (Intellectual
Properties) are assembled and wrapped in devices waiting to be exploited by the soft-
ware running in processing systems. The Figure 3.1 illustrates the integration process
that embedded system designers are facing. The integration process requires both
hardware and software skills.

Hardware skills are required to design a device and deploy it in the programmable
logic. Designing and deploying a device consists of assembling one or more hardware
components wired together and wrap them in an interface interconnected in turns to
the processing system. To do that, the device must be implemented and integrated in

Chapter 3 Message-Based Integration for Embedded Systems 19

Programmable Logic

Processing System

Cores and Caches

Memory Controller

Device IPIF

IP

Internal Signals

Interrupt
Controller

System Bus

Bus interface Interrupt signal

FiguRe 3.1: FPGA Device Integration

the system. The implementation phase consists of implementing and assembling all
the components of the device using either Hardware Description Languages (HDL) or
High Level Synthesis (HLS) tools [27–29]. The integration phase consists of putting
the device in an hardware system typically consisting of a system bus and an interrupt
controller. The system bus is used to send commands to the device, check its status
or exchange data. The interrupt controller is used to notify processors of hardware
events via single wires containing no other information than ”something happened,
check it out”.

The software skills are necessary to allow the software stack running on the processing
system to drive the deployed device. Each deployed device thus requires a device driver,
a specific piece of software that knows how to exploit the specific features provided
by the device. Device drivers are the vast majority of the time running in the bottom
of the software stack, inside the operating system kernel. A typical example is a block
device capable of storing blocks of data, exploited by its driver. The driver will perform
read and write data block operations to its hardware device providing the foundation
to a file system within an operating system.

A device driver drives its device through the system bus and the interrupt controller.
This interfacing is done by a specific hardware component, often called an IP InterFace
(IPIF), a hardware component acting as an interface bridge between the internal signals
of the device and the system bus and interrupt controller. Some of these signals are

20 Chapter 3 Message-Based Integration for Embedded Systems

combined to generate interrupt signals to the interrupt controller while others are
grouped as bit fields of hardware registers.

Hardware registers are then memory-mapped within the address space of the proces-
sor by the system bus. That way, the device driver can read or write these hardware
registers by issuing regular load and store operations to the system bus. Traditionally,
the memory mapping of a device reserves a contiguous range of memory addresses
in the processor address space. This means that each device is associated with a base
address, the first address of the reserved range. Each hardware register is then mapped
at a specific offset from that base address.

Hardware registers have two main purposes: control and data transfers. Some control
registers are used to issue commands to the device while others are used to read the
current status of the device. In contrast, data registers are used to send and receive
data to and from a device. This means that data registers are usually implemented in
hardware as FIFO queues. FIFO queues are simple to drive from software, through
load and store operations, but they require the CPU to take charge of data transfers,
something not always the best for performances. Therefore, most modern devices
embed a Direct Memory Access (DMA) engine to optimize data transfers. With a DMA
engine, data transfers to and from memory are under the responsibility of the device,
writing and reading to and from memory buffers. These buffers are setup in memory
by the device driver.

Overall, this integration process is complex, hard to debug, requiring both hardware
and software skills and thus costly. From a hardware perspective, the main challenge
comes from the interface heterogeneity, especially the diversity and number of inter-
faces for system buses and interrupt controllers. As a consequence, this diversity al-
most requires to design a different IPIF for each embedded system. For instance, each
bus specification usually defines its own burst capabilities, cache coherency, or fre-
quency limitations. There are also different interrupt controllers, each with different
interrupt types, using different signals with different signal constraints.

From a software perspective, the situation is not any better. Writing a device driver
is known to be a complex task even for kernel-space software engineers. The main
reason is the complexity of the nature of the software-hardware interface. Each bit of
each hardware register must be understood, along with timing constraints or ordering
constraints across hardware registers. Too often, a deep understanding of some in-
ternal details of the device is necessary to correctly drive that device, which requires

Chapter 3 Message-Based Integration for Embedded Systems 21

software developers to have hardware skills. Furthermore, error conditions are usually
hard to understand and to handle properly from a software perspective. Finally, inter-
rupts are completely asynchronous and requires an accurate handling of complex race
conditions in software, especially when writing device drivers for high-performance
devices.

All this is not good news knowing that device drivers account for 54% of the code
base of the Linux kernel. It is no surprise then to see that 74% of bugs in operating
system kernels are device driver bugs, most of them leading to a complete system
crash [30, 31]. Worse, the integration process is a never ending struggle. New devices
are constantly appearing requiring to repeat the whole process over and over. Indeed,
new devices appear all the time and existing devices constantly evolve. Also, software
stacks and kernel APIs are updated regularly requiring drivers to be updated to stay
compatible. This requires writing new documentations or even worse, evolve existing
documentations with many small edits scattered throughout pages.

This constant struggle makes it hard to have available drivers for the latest devices.
Furthermore, it makes it hard to rely on safe drivers, unless a designer limits its design
to integrate devices that are old enough to have well tested drivers. This leads to the
unfortunate situation where a designer is trading innovation for safety.

3.2 Background

The integration challenge has been the subject of various related work, both on the
hardware and software communities. Though, most of the efforts are rarely on both
the software and the hardware side at the same time. Evenmore rarely has themessage
paradigm been advocated as an end-to-end game changer.

The Universal Serial Bus (USB) [32] standard is one exception. The work started on
the hardware side, trying to solve the flood of plugs and cables in the 80’s by adopting
one unique physical standard to plug external devices to personal computers. In its
hardware architecture, it is based on a master-slave serial bus, organized as a tree in
which each node is a hub and each leaf a device. As a serial bus, the message paradigm
seems logical and the USB standard built on that foundation to define device classes
and promote class-generic drivers. We all know, including non expert people, how
successful that approach has been.

22 Chapter 3 Message-Based Integration for Embedded Systems

The success of the USB standard is explain by two key elements: A message-based in-
terface and class-generic devices. They demonstrated that a message-based interface
can be designed at a very low cost (the additional chip that must be put in front of a
PS2 mouse to makes it a USB mouse cost only a few cents). A message-based inter-
face is great for device drivers development. Drivers do not see hardware registers
and interrupts, they only see a set of pipes connected to device endpoints. In those
pipes, drivers can send and receive messages to drive their devices. For instance, a
USB mouse driver will receive messages containing a set of bytes describing button
states and movements deltas without having to read or write any registers or reacting
to an interrupt. For software developers this is not only very easy to do but it also
removes a lot of points where critical bugs can be introduced. For instance, not having
to write interrupt handlers removes potential bugs that almost always lead to system
failure [33].

Class-generic drivers are key to the success of USB because they tremendously reduce
the number of drivers require to support hardware devices. A class of device is a set of
message protocols that all devices belonging to this class understand. For instance all
storage devices follow the same protocol allowing drivers to use the internal storage of
such devices. This explains why all USB sticks works without ever installing additional
drivers.

Internally, the USB standard is based on a host-device design. The host controller
regroups all device connections in a star topology (that can be extended using hubs).
A host controller driver handles all basic communications to probe existing devices,
get their description. This driver also handles data transfers and provides to higher
level device drivers the ability to open pipes and send and receive messages to their
device.

Unfortunately, the USB standard is a closed world, still very focused on cables and
plugs, and it has not been adopted to connect devices internally in SoC, let alone
deployed in programmable logic. Even though the key concepts could apply to the
challenge we are tackling, the USB standard cannot be adopted as is. The main rea-
son is that the USB standard is not abstract enough, as it is too tied in many ways to
its master-slave serial bus design. Though, the key concepts are inspiring to design
a proposal whose foundation would be an abstract message conduit, insulating both
the device and the driver from the implementation details of that conduit. This opens
then the path to class message protocols that can be specified as completely abstract
protocols, independent of any underlying conduit, even ours.

Chapter 3 Message-Based Integration for Embedded Systems 23

This independence between the protocols and the conduit was inspired by the Small
Computer System Interface (SCSI), an earlier attempt at physically connecting and
transferring data between computers and peripheral devices [34]. SCSI has a much
better separation between generic drivers, using abstract SCSI protocols, and underly-
ing low-level drivers that are actually driving specific hardware devices. In fact, a SCSI
device can be driven through any message conduit, even the Internet, with a mass stor-
age located in a data center half way around the world. But unfortunately, the SCSI
architecture does not address the challenges to write low-level drivers. Drivers are
still written as they always have been, using registers and bitfields tied to hardware
implementations. SPI and I2C are also examples of the SCSI story, even though they
managed to offer abstract conduit, they are most of the time used the old way, using
registers and bitfields [35].

In contrast, there has been quite a number of other efforts from the software com-
munity tackling the difficulty of writing device drivers. Most operating systems pro-
vide high-level frameworks for developing device drivers, helping with the integration
within the surrounding operating system stack. Apple Corp. provides the I/O Kit Fun-

damentals [36]. Microsoft Corp. provides the Windows Driver Framework [37]. But
again, none are improving the situation regarding the challenges of actually driving
a hardware device. Nevertheless, these improvements would equally be applicable to
ease the writing of message-based drivers.

3.3 Message-Based Integration Solution

Our solution proposes to organize the interaction between a device and its driver via
bidirectional channels that permit either side to send or receive messages, each mes-
sage containing a variable-size payloads of uninterpreted bytes. Channels are there-
fore software-hardware constructs, acting as conduits for messages between the soft-
ware stack running on a processing system and hardware devices deployed in pro-
grammable logic.

3.3.1 The Software Perspective

From a software perspective, the solution extends a fairly standard framework for
matching devices with suitable drivers, illustrated in Figure 3.2. Inspired by Linux,

24 Chapter 3 Message-Based Integration for Embedded Systems

Driver

Software Bus

Device(2) matching

(1) registers

FiguRe 3.2: Focus on driver side

it is based on the same software constructs: a bus, drivers, and devices. Both devices
and drivers are registered with the bus (1). For each available hardware device, the
bus creates a corresponding device—a software construct that describes the hardware
device. Once a device is created, the bus searches for a matching driver (2), picked
amongst the drivers that are registered with the bus.

The bus is therefore fully dynamic with respect to available devices and registered
drivers. Devices are created when they become available and removed when devices
fail or become unavailable. Drivers may be registered and unregistered at any time,
using the two functions listed below that are part of the software bus interface:

void register_driver(struct driver* driver);

void unregister_driver(struct driver* driver);

Notice that each driver is described by an in-memory data structure, see the Listing 3.1
below. In that structure, the field devices specifies a list of compatible devices as an
array of device identities, an array that is used by the bus to filter devices that can be
matched with this driver, simply comparing device identities. The identity of a device
is composed of the usual numbers provided by all devices: vendor number, device
number, and release number. Of course, this limited device identity is not enough for
an accurate matching of devices and drivers, it is only a pre-filtering. Therefore, a
driver needs to probe and tries to configure a device before a match can be considered
as valid. This requires a specific matching protocol between the bus and a driver, using
the following two function pointers: matched and unmatched.

Chapter 3 Message-Based Integration for Embedded Systems 25

struct driver {

const struct device_id* devices;

int (* matched)(struct device *);

void (* unmatched)(struct device *);

};

Listing 3.1: ”driver structure”

These two functions are defined by the driver and called by the bus. The bus calls
the function matched to notify a driver that it has been matched with the given device,
based on the simple device identity filtering. This is when the driver starts probing and
configuring its device using messages. This is of course an asynchronous process that
may require sending and receiving several messages. But as far as the bus is concerned,
the driver and the device are matched. At any point in time, the driver may decide that
the device is not a match after all and ask the bus to unmatch that device, calling the
following function unmatch that is part of the bus interface:

void unmatch(struct driver* driver , struct device* device);

Of course, the bus may also decide unilaterally that a device and a driver must be
unmatched. This may be needed for several reasons. A device may have failed. A
device may be controlling an external device that has been unplugged. Or it is an
administrative decision to either unload the driver or to disable the device. To achieve
this unmatching, the bus calls the driver through the callback unmatched setup in the
driver structure, seen earlier in Listing 3.1. Once a device have been umatched from
a driver, that device is never rematched with that driver until the next reboot of the
system or until the driver is unregistered and then registered from the bus.

While a driver and a device are matched, they solely communicate through sending
and receiving messages through channels. The available channels are managed by the
bus and described in the following device structure:

struct device {

struct device_id id;

unsigned int num_channels;

struct channels* channels;

};

Each channel provides the capability to both send and receive messages. The send

function is setup by the bus and called by a driver to send a message through the
channel. The received function is setup by the driver and called by the bus when a

26 Chapter 3 Message-Based Integration for Embedded Systems

message has been received from the device. Note that both sending and receiving
messages are non-blocking asynchronous operations.

struct channel {

void (*send)(struct message msg);

void (* received)(struct message msg);

};

It is the responsibility of the driver to setup the received callback for all the channels
defined by a device and this must happen when the driver is matched with that device.
Thismeans that a driver must, before returning from the matched call, setup the received
callbacks in all the channels and then confirm this setup by asking the bus to connect
the channels via the following bus function:

void connect_channels(struct device* device);

Once channels are connected, a driver can send and receive messages. As discussed
earlier, this usually starts with probing and configuring the device, potentially negoti-
ating which message protocol to use through which channel. Messages are variable-
size payloads of uninterpreted bytes, described by the following structure:

struct buffer {

uint8_t* bytes;

size_t nbytes;

}

struct message {

struct msg_channel* channel;

struct buffer* payloads;

void (* released)(struct message msg);

};

A message refers to the channel it is travelling through and it refers to a payload. The
payload may be only one buffer or a sequence of multiple buffers. This interface allows
to exploit scatter-gather DMA engines and avoids unnecessary memory-to-memory
copies. This is useful not only to add headers without inducing unnecessary copies
but also in permitting application messages to be across multiple buffers. Received
messages may also be scattered across multiple buffers, which is interesting to let de-
vice to send multi-part messages. This also leaves the bus designer the required imple-
mentation freedom when it comes to implementing channels and the corresponding
exchange of messages between the processing system and the programmable logic.

Note the released callback that permits an efficient memory management protocol
that is compatible with our asynchronous send and receive operations. The released

Chapter 3 Message-Based Integration for Embedded Systems 27

callback notifies the creator of a message that the message has been consumed: either
it has been sent or it has been processed once received. When sending, the callback is
set up by the driver and until it is called by the bus, the driver may not modify or free
the message or the message payload. When receiving, the callback is set up by the bus
and until it is called by the driver, the bus may not modify or free the message or the
message payload.

Thanks to this protocol, we can avoid memory-to-memory copies entirely when send-
ing or receiving messages. For received messages, the bus gives a direct pointer to its
internal buffer where the message was received directly from the hardware device. If
the driver is able to handle the message within the received callback, it can call the
released callback before returning. This is the most efficient scenario. However, if
the driver needs to make a copy, it can use a memory-to-memory DMA engine, in
which case it will call the released callback upon the completion interrupt of the DMA
request.

3.3.2 The Hardware Perspective

The Figure 3.3 illustrates the hardware perspective. The device, deployed on the pro-
grammable logic as a set of interconnected hardware components, is interfaced to a
device controller. The device controller acts as a bridge to the software world. The
device controller exposes a set of channels and a reset signal. The device controller
comes as a generic hardware component that is configurable at design time. The de-
signer can choose the number of channels, with the channel 0 being always present.
The designer can also choose between high-performance or low-performance streams,
depending on the expected bandwidth.

This suggests that device controllers will be ultimately designed and provided by the
vendors of the programmable logic, such as Xilinx or Altera. Until then, device con-
trollers can be designed as regular hardware components, using standard design tools
and leveraging standard interfaces to system buses and interrupt controllers. For in-
stance, wewere able to design our device controllers using hardware components avail-
able in the Vivado tool from Xilinx. Although we used existing components, nothing
precludes the complete design of specific device controllers that would exploit specific
hardware features.

28 Chapter 3 Message-Based Integration for Embedded Systems

reset AXI stream
Channels

Device ep0 ep1 ep2 ep3

Device Controller

FiguRe 3.3: Hardware device perspective

From the device perspective, each channel is a pair of unidirectional data streams rep-
resented by endpoints, one endpoint being a stream slave to receive data and the other
being a stream master to send data. These streams seem to require a full specifica-
tion of the corresponding signals. While we suggest to use an existing standard, we
do not impose any specific stream specification, leaving tools and boards designers
with enough implementation freedom. For illustrative purposes, one could choose the
AXI-stream standard that defines for each stream a set of data signals, a pair of con-
trol signals, and an end-of-packet signal that is useful to demarcate the last word of a
message. We will discuss later the pros and cons of imposing a stream specification or
letting each vendor choose their own.

Even though the details of the streams may be specialized, the concept of streams is
not imposed. Furthermore, each stream is used to either send or receive messages, not
both. This design is better than multiplexing channels onto a single pair of streams.
Indeed, it simplifies the handling of messages for the device, with a simple automaton
per endpoint. It also permits the hardware designer to tailor the buffering capabili-
ties of each endpoints, better controlling resource consumption in the programmable
logic. It also offers greater flexibility when it comes to bandwidth and latency. For
instance, certain endpoints may be used to transfer large data messages while other
endpoints are used for out-of-bound small messages. Finally, this allows to configure
each endpoint as either high or low performance.

Messages have a very simple format. Each message includes a fixed-side header fol-
lowed by a variable-size payload. The header contains two fields, one is the message
type and the other is the length in bytes of the payload. The message type is used to
differentiate control and data messages, a distinction that will become clear soon. Each
message must be transmitted as a whole, therefore, each endpoint is a first-in-first-out
lossless stream of messages. However, there is no timing constraints on the stream, a
device may receive or send a message at its own pace.

Chapter 3 Message-Based Integration for Embedded Systems 29

AVAILABLE

Driver Conduit Hardware Device

MATCHED

matched()

connect_channels()

Message exchanges

unmatch()

reset

Rendez-vous

FiguRe 3.4: Device lifecycle

3.3.3 The Overall Lifecycle

The Figure 3.4 illustrates the lifecycle of a hardware device. Notice that this lifecycle in-
volves not only the hardware device and its controller controller on the programmable
logic but also the software bus and the device driver on the processing system. Three
actors are involved: (1) the device on the programmable logic, (2) the device driver
on the processing system, and (3) the message conduit that sits in the middle, across
the programming system and the programmable logic. This conduit is thus a mix of
software and hardware, composed of the software bus on the processing system and
the device controllers on the programmable logic. The conduit is responsible to route
messages through channels but it is also responsible to coordinate the lifecycle of both
devices and device drivers.

Upon a general reset, all device controllers are held in the reset state, in turn holding
their devices in the reset state. When a device controller wakes up from the reset state,
it wakes up its associated device, releasing the reset signal. When a device wakes up
from the reset state, the device initializes internally and then sends a first message to
its device controller, through the endpoint 0. This is entirely asynchronous and each
device may take as long as necessary to send this first message. This means a device
is allowed to never send that first message, which may happen because the device is
currently disabled or because it cannot recover from a previous failure.

This first message, AVAILABLE, contains the identification of the device and indicates
to the device controller that the device has initialized properly and is now available.
Upon the reception of this message, the device controller informs the software bus
running on the processing system that it should reify the available device and attempt

30 Chapter 3 Message-Based Integration for Embedded Systems

to match it with a driver. At this point, the device is waiting for a driver to be matched.
This matching will happen on the processing system at some later time, if it happens at
all. If it happens, the matched driver will call the function connect_channels on the bus
and the bus informs the device controller that in turn will send a message MATCHED

to the device through the endpoint 1.

This message MATCHED finishes the rendez-vous between the hardware device and
the software driver, both sides may now freely send or receive messages. Indeed, re-
member that channels are full-duplex and not master-slave, even though individual
endpoints are master-slave streams. Note that sending messages advantageously re-
place the more traditional scheme of raising interrupts that was used to signal the
processing system. The message can carry the right information describing the condi-
tion that requires the processing system attention rather than having the driver peek
at the hardware register trying to discover what needs to be done.

This lifecycle is designed so that either party may break the rendez-vous. The most
likely scenario is that a driver is unmatched from a device, either because the driver
failed or because it is unregistered. In either case, the function unmatch is called on the
software bus that will inform the corresponding device controller of the unmatch. The
device controller will react by cutting all the data streams to and from all endpoints,
preventing any further message transfers. Next, the device controller will reset the
device, restarting a new lifecycle.

The driver may not be the source of the unpairing, it may be the device because of a
failure. The failure may be a hardware failure or a failure resulting from requests from
the driver. When a device detects a failure, it must send an UNAVAILABLE message
to its device controller. Upon the reception of the UNAVAILABLE message, the device
controller will cut all transfers through the streams to and from all endpoints, prevent-
ing any further message transfers. It will inform the software bus and then it will reset
the device, restarting a new lifecycle. If the device cannot recover after being reset, it
just does not send the AVAILABLE message.

3.4 Messages and Class-Genericity

The software-hardware interface proposed is based on messages. Even though this
is not the only approach, it is superior to the traditional register/bitfield one when

Chapter 3 Message-Based Integration for Embedded Systems 31

dealing with more and more devices to integrate. The fact that USB is based on those
concepts is a good hint but it is important to understand how important messages are.

3.4.1 Using Messages

For software developers using messages is much simpler. With the traditional ap-
proach, developers have to have both software and hardware skills. Furthermore, they
have to be capable of reading and understanding the complex documentations of both
the operating system kernel in which the driver is to be integrated and the complex,
dense, constantly evolving, documentation of the device. This type of knowledge is rel-
atively rare and requires highly competent engineers hence making drivers not only
hard but costly.

With the message approach, almost any kernel developer can write a device driver.
There are no hardware documentations, just a message-based protocol to read and un-
derstand, something that any software developer knows how to do. All the hardware
details are hidden, it is just about receiving and sending messages, just like it would
be over regular POSIX sockets, over the Internet, to a standard web server. Of course,
it is still about writing kernel code, which is harder than user-space code.

Channels and messages are kept as simple as possible. Full-duplex channels and
variable-size payloads is quite standard and feels familiar to software developers. Note
in particular that channels hide the complex setup of scatter-gather DMA engines. Of
course, a DMA engine may be used for performance, but it is an internal implementa-
tion detail of the conduit that channels provide. If there is a DMA engine, it is part of
the device controller, it is no longer part of the device itself. This contrasts with the
traditional approach in which each driver would have to manage a DMA engine that
would be specific to each device since it was part of the device design. The approach
is also safer since devices are no longer provided a direct access to memory.

Failures are addressed by adopting a simple and well-known fail-stop model [38]. In
the real life of a device driver, device failures are not handled very well [39]. In partic-
ular, most device drivers do ignore the overwhelming number of failure-related status
flags that most modern devices exhibit. Worse, some of these flags may only hint at
an error, with the documentation telling you that the device may properly work, or
may not. It explains why most drivers just reset their device at the very first hint of
something not working as it is supposed to. A fail-stop approach makes it clearer for

32 Chapter 3 Message-Based Integration for Embedded Systems

software developers and hardware designers: a device or a driver either works cor-
rectly or it must stop without in-between status.

However, this simplicity does not prevent advanced error management, with complex
error reporting. Indeed, there is a strong distinction between error reporting and life-
cycle. From a lifecycle perspective, a device or a driver either runs correctly or stops.
But regarding individual requests, the request may succeed or fail, without the device
or the driver failing. For instance, a block device may report different error conditions
when a write or read operation of a block fails, but this does not mean the block device
has failed. The status report of a request is simply done by sending a response message
once the request has been processed.

The use of messages provides a better separation of concerns, which impacts the size
and complexity of the documentation. Today, the documentation of a device has
two targeted audiences: the hardware community and the software community. This
makes the writing of the documentation more complex than it ought to be. Also, it
ties in one documentation the public interface of the device with the details of its im-
plementation. With messages, the only public interface is the message-based protocol.

Additionally, this solution opens the way to have message-based protocols be speci-
fied independently from any given hardware implementations. As an example, open
standard bodies such as the Linux Foundation1 may become the reference to define
such standards. Using message-based protocols also becomes really interesting when
evolving existing devices with new functionalities. The new features will be designed
as new messages, extending an already existing protocol. Therefore, it will be easy
in most cases to preserve backward compatibility, it is just about supporting the non-
extended protocol. This way, any previously existing driver would still be able to drive
new releases of the device, just without the extended features. Furthermore, a message-
based protocol is easy to extend, just add new messages or extends existing messages,
in a backward compatible way.

In the case of major revisions, it may not be possible to extend the protocol, a new
protocol may be necessary. This does not mean losing backward compatibility. New
devices may support both the old and the new protocols. It can be done using different
channels for the two protocols. It can also be done through a single channel, with the
negotiation of the appropriate protocol during the probe and configure phase between
the driver and the device.

1https://www.linuxfoundation.org

Chapter 3 Message-Based Integration for Embedded Systems 33

This is better than the current situation where evolving a hardware design usually
changes the bit fields of the memory-mapped hardware registers. This usually means
a rewrite of the documentation and of the code of all software drivers for all software
stacks which always expose the risk of introducing errors and bugs. With larger and
larger devices and more and more large software stacks, the situation is not sustain-
able in the long run. Specifying message-based protocols and offering the ability to
negotiate protocols is just so much simpler.

For hardware designers, message-based protocols introduce some changes compared
to a traditional approach, a device has a bunch of signals that can be easily mapped
to bits in hardware registers and interrupts. This process is well supported by tools.
The maintenance of the documentation is hard and even if the maintenance of the doc-
umentation is improved or automated, the challenge is just past down onto software
developers that must update their drivers.

Usingmessages requires an extra hardware component bridging theworld of messages
with the world of hardware signals. When receiving a message, the message must be
parsed in order to drive hardware signals of the internal device logic. In the opposit
way, a message is composed using output signals and then transmitted. This wrapper
will likely be written in HDL at register transfer level or using high-level synthesis.
Even though it represent an additional component, it is straightforward in most cases,
usually a few hundred lines of relatively simple HDL. The complexity of that extra
component is dependent on the complexity of the message protocol implemented by
the device.

This additional work imposed to hardware developers thankfully comes with major
gains. Device designers no longer have to include a DMA engine, they are only dealing
with stream-based endpoints. This means that hardware device designers are now in-
sulated from all the details of the various bus interfaces andmany interrupt controllers.
Also, the details of their hardware implementations are now fully encapsulated and can
be changed without impacting the public interface of the device. Hardware designers
have also more freedom with a message-based interface. Indeed, the device logic is no
longer so synchronous and entangled with the management of bus transactions. Using
messages completely decouples the device from the system bus timing constraints or
the different policies regarding interrupt signals.

34 Chapter 3 Message-Based Integration for Embedded Systems

3.4.2 Class-Generic Protocols

Adopting messages comes with great benefits, both for hardware designers and soft-
ware developers. This is really important because message-driven devices are the key
to defining class-generic protocols, which is the next game changer. The industry as
a whole as already taken advantage of the power of message-driven devices and more
specifically the power of specified class-generic protocols. Indeed, this has been at the
heart of the success of the Universal Serial Bus (USB) specification.

By hiding the details of the connection between the processing system and the pro-
grammable logic, the solution allows to take advantage of standardized class-generic
protocols. The idea is to identify classes of devices and to specify one standardized
message-oriented protocol for each class. The revolution then comes from the fact
that one driver is now capable of driving any device belonging to a class, not just one
device from one vendor. In fact, many such specifications already exist under one form
or another.

With class-generic protocols specified by an open body such as the Linux Foundation,
any new device that belongs to an existing class can hit its market without any delay,
knowing that there will be a driver already available. This also means that device
makers do not have to define message protocols, they just have to select an existing
class of devices and implement the corresponding protocol. However this may seems
like it imposes limitations on new devices, limiting hardware innovation.

We all know that the industry suffers from a paradox. On one hand, they want new de-
vices to be immediately usable and sold as soon as they are implemented. This requires
to have a device driver available in all software stacks. This means the usual operat-
ing systems such as Windows, Mac-OS, and Linux, but this also means across all the
proprietary and open-source software stacks for embedded systems. This objective is
well-served by class-generic protocols. On the other hand, the companies also want
devices to have unique features that will give them a competitive advantage among
other competitors in the market. From that perspective, class-generic protocols may
seem as refraining innovation.

A class-generic protocol must be seen as a minimum message-based protocol that en-
sures a device is usable across all software stacks because there will always be a corre-
sponding class-generic driver. But this allows to have device-specific drivers as well.
Such device-specific drivers would support the class-generic protocol but would also

Chapter 3 Message-Based Integration for Embedded Systems 35

be able to negotiate vendor-specific extensions with devices that they recognized. This
is why it is so important that a driver can negotiate a protocol with a device before be-
ing matched. Device makers thus don’t have to choose between standard compliance
and a feature-rich competitive edge.

For instance, GPU makers that are known to hide the device specifications could now
have GPU devices exposing both standard and proprietary protocols. Each GPU could
therefore be handled by a standard driver and at the same time offer highly-optimized
drivers using proprietary protocols. This is the direction highlighter by the Khronos
group and more specifically the Vulkan GPU interface underlying an OpenGL pipeline.
While this is future research, it shows that high-performance devices such as GPU have
already adopted drivers that provide asynchronous queues for submitting work to a
GPU.

Additionally, the adoption of class-generic protocols has an interesting side effect: im-
proved safety. Drivers are the source of themost bugs and crashes inmodern operating
systems [40], except for class-generic drivers. There are several reasons for that. First,
they are simpler to write and therefore have less bugs. Second, they do not manipulate
DMA engines and interrupt handlers, where bugs usually induce a complete system
crash. Third, they are widely used as one driver is used across a class of devices, not
just one device, which means they are better field-tested through longer periods of
time since standardized protocols rarely change.

The stability of class-generic protocols greatly improves device safety. Class-generic
drivers will become safer and thereby ensuring that even the greatest and latest devices
can be used, even if it requires to sacrifice using some of the latest features until their
proprietary drivers become stable enough. This could be a real improvement for the
open source industry and Linux in particular.

3.4.3 Heterogeneity

The conduit is a new abstract interface between the software and hardware worlds.
This means that at least one conduit must be provided for each platform. Since the con-
duit starts at the software bus interface facing drivers and ends at device controllers
facing devices, it combines both software and hardware components. Our proposal is
completely abstract and therefore provides the required freedom to adapt the imple-
mentation to the specifics of each platform.

36 Chapter 3 Message-Based Integration for Embedded Systems

Embedded systems are often very heterogeneous systems letting think that a single
software-hardware interface may come with too much restrictions. Indeed, such an
heterogeneous environment might let think that it requires different interfaces. But
even today, we are facing an abstract interface in between software and hardware,
the one with hardware registers and interrupts. The message-based proposal is just
proposing to build one more abstraction above, based on message-based conduit that
could work as well across software stacks and hardware technologies.

The trade-offwe are facing is that on one hand, wewant design flexibility to handle het-
erogeneity and on the other hand we want a generic software-hardware interface stan-
dard based on messages. Flexibility is really important since our proposed approach
must integrate with a wide range of software stacks and a wide range of hardware
platforms. And yet we want one stable software interface available to drivers and one
stable hardware interface available to devices. Though the message-based approach
offers a great balance between those two concerns.

From the hardware side, our proposal specifies a device controller that requires a
stream interface, used by channel endpoints. We could specify a dedicated stream
specification or even better pick an existing one such as the AXI stream. Assuming
we adopt the AXI-stream interface, an interface that is easy to support on any pro-
grammable logic, we could argue that we have a generic interface between devices
and their device controllers. But even with this specified interface, device vendors
will still have to port each of their devices across different programmable logic tech-
nologies, mostly likely using different vendor-specific tools to do so. This is already
the case today, but this difficulty is compounded with the heterogeneity of the system
bus interface and the heterogeneity of the interrupt controllers. With our approach,
with a unique stream specification, the hardware integration would be simpler.

But there is no need to impose a unique stream interface. In fact, the solution allows
a specific vendor to propose a proprietary stream interface, rather than adopting the
AXI-stream specification. Indeed, the strength of the proposal is not in the stream
details, it is in the message-oriented specification that can be implemented over any
data stream interface. This means the added value is in the general adoption of the
overall message-based approach, across different platforms from different vendors. It
would therefore be best if each vendor would integrate in its own tooling a general-
purpose configurable device controller, adopting the stream interface of their choice,
but one device controller that adheres to our proposal.

Chapter 3 Message-Based Integration for Embedded Systems 37

Fortunately, we do not have to wait until programmable logic vendors do so before our
proposal can matter. Indeed, a device controller is a regular hardware component, so
it could also be developed and provided by an open-source community. As a regular
hardware component, it would be connected to the interrupt controller and the system
bus, using memory-mapped hardware registers, even potentially using a DMA engine.
It would be written in an HDL or using high-level synthesis. And as all current hard-
ware components available across platforms today, the device controller would need
to be ported across platforms and tools from different vendors. This is where hetero-
geneity will place the most burden on our proposal. However, this would also be an
opportunity to adapt the device controller and the conduit to the specifics of different
classes of platforms. This represents an extra work, but this is valuable work.

Considering the different platforms and corresponding designs, we start simple with
considering small embedded systems first with a combo of a programmable logic and
a processing system. At the very minimum, the processing system will include a small
processor, a system bus, and some memory, the programmable logic will probably be
small so the size of the device controller matters. For those platforms, a small imple-
mentation of our message conduit is possible. In fact, the device controller can be
reduced to almost nothing.

The minimum device controller is a multiplexer/demultiplexer component connecting
the endpoint streams and a pair of memory FIFO queues. In this case, most of the
conduit is implemented in software. In particular, the lifecycle is entirely managed in
software, with channels being easily implemented above a pair of FIFO queues, one to
receivemessages and one to sendmessages. Eachmessage is composed of a header and
a payload as explained earlier. However, the header has an extra field: the endpoint
number. This extra field allows the device controller to route messages to the correct
endpoint. Conversely, the device controller will add the endpoint number in front of
messages sent by the device.

This design allows for very small implementations. For instance, if a device only has
one endpoint, this multiplexer/demultiplexer component is not even necessary and the
extra field in the message header may be removed. But nevertheless, all implementa-
tions fully respect our software-hardware interface based onmessaging. This improves
the portability of hardware devices, even though there is still some required work to
port a device across different vendors using different programmable logic technologies
and tools.

38 Chapter 3 Message-Based Integration for Embedded Systems

A similar situation is faced with the class-generic drivers. Across platforms, a class-
generic driver could conceptually be reused without any modifications, but in practice,
this is not entirely the case since a driver is dependent upon the surrounding software
stack, even potentially using different programming languages. But this is not the hard
part, software portability is a well-mastered problem and the problem exists with or
without using messages. So drivers will need to be ported and using messages make it
simpler as using messages is less entangled with the surrounding software stack than
using hardware registers, interrupts, and DMA engines.

But how difficult is it to port our software library that provide the framework for
the bus, devices, and drivers. This is not free, especially that the traditional software-
hardware interface is visible internally. Fortunately, most vendors provide a thin hard-
ware abstraction layer (HAL) for standalone embedded applications written in C or
C++. This is all we need to design and implement our proposal on the processing
system. Reusing the Linux kernel entirely is obviously another option, giving us a
portable HAL, but it is only suited for larger embedded systems. Since our framework
is based on the Linux concepts, it can be easily integrated within the Linux kernel as
regular kernel modules, something addressed in the next chapter.

Remains the question of driving the device controllers. Fortunately, the requirements
of our solution are quite simple and quite standard. Device controllers may use simple
FIFO queues on small embedded systems for sending or receiving messages, a simple
design that is low-cost. For larger embedded systems, potentially integrating high-
performance devices, device controllers behind FIFO queues may no longer be suited.
To speed up data transfers, we need to replace FIFO queues by a scatter-gather DMA
engine, relying on a pair of in-memory rings containing buffer descriptors.

With that design, one ring is used to send messages and the other to receive mes-
sages. Both operations are entirely asynchronous, which is well supported by the asyn-
chronous design of our interface. Supporting asynchronous scatter-gather DMA was
a primary design goal when we designed our buffer managements regarding messages
and the asynchronous notification through the released callback we previously dis-
cussed. Although we just introduced a DMA engine, we preserved the overall safety.

Indeed, although we used a regular DMA engine, the DMA engine is not part of each
device, it is part of each device controller. In other words, the DMA engine is hidden
to both the driver and the device. This means that the device is never granted memory
access directly. The only interface the device sees is the stream interface, not the DMA

Chapter 3 Message-Based Integration for Embedded Systems 39

engine. This is a radical change from the traditional approach where the DMA engine
is an integral part of the device and where an IOMMU would be required to preserve
the same level of safety.

Using a DMA engine is the first optimization, but our design can be further improved
by moving the lifecycle management from the processing system to the device con-
troller. On small system which use FIFO queues it is likely that the entire lifecycle
management will be done in software. But for larger embedded systems, with larger
programmable logic, onemay consider to move the lifecycle management in the device
controller. This trades better performance for a larger footprint on the programmable
logic, but the footprint increase is very reasonable, less to a few hundred look-up-tables
(LUTs), the elementary logic element of FPGAs. Also, this design frees the processor
from the lifecycle management, which is a design that scales up much better. Support-
ing the lifecycle management in device controllers is a small development effort, with
a few hundred lines of straightforward HDL.

Having device controllers that manage the lifecycle opens up the path for hot plug and
unplug of devices at the hardware level. This may not be seen as a required capability
for embedded systems, but it actually is the case for several reasons. First, even if the
logic of the device may be deployed once for all, that logic may control an external
device that may be available or not (plugged in or not, powered up or not). Second, dy-
namic management of programmable logic is increasingly relevant as programmable
logic makes its way to larger systems. This means that the loading and unloading
of devices would be handle through our available/unavailable lifecycle. This is really
interesting when considering programmable logic in data centers where rented ser-
vices are associated with applications on demand. This opens the question of how our
solution suits in hypervisors, a question addressed in Chapter 5.

3.5 Evaluation

To evaluate our solution, we built several prototypes and conducted several experi-
ments. The first experiment focuses on the evaluation of the overheads introduced by
the solution. The second experiment highlights the behavior of the solution with very
small embedded systems, showing one part of the flexibility of our solution.

40 Chapter 3 Message-Based Integration for Embedded Systems

Programmable Logic

Processing System

Cores and Caches

Memory Controller

Device ep0

Interrupt
Controller

System Bus

Bus interface Interrupt signal

Dual Cortex A9

Xilinx Zynq 7000 PL

ep1

DMA

AXI Stream

FiguRe 3.5: Baseline design

3.5.1 Overhead Evaluation

The first experiment is to determine the overheads introduced by using messages.
These overheads are overall negligible and we had to design a specific experiment
to expose these overheads. We designed a no-delay block device, a device that drops
all written blocks and always reads zero-filled blocks. Our device is therefore the hard-
ware equivalent to the combo of /dev/null and /dev/zero.

Given this design, since there is no device overheads, any experiment will highlight
the communication overhead: creating requests and receiving responses. We therefore
integrated this device in two ways. First, we integrated that device using a traditional
integration based on MMIO registers, interrupts, and DMA engine. This represents
our baseline for all our measurements, it gives the performance numbers that one can
expect on our hardware platform.

Figure 3.5 illustrates this baseline for the Zybo board from Diligent with the Xilinx
Zynq 7010 System-on-Chip (SoC) integrating a dual Cortex-A9 processing system at
700MHz with 512 MB of DDR memory and a Xilinx programmable logic around 20K
LUTs. Our block device was written using VHDL (236 lines), leveraging the optimized
scatter-gather DMA engine provided by Xilinx with a small footprint (1500 LUTs). This
DMA engine has two AXI stream interfaces connected directly to the device and two
rings in memory, one to transmit and one to receive.

Chapter 3 Message-Based Integration for Embedded Systems 41

The device can handle read requests and write requests, each request being sent as one
buffer, described as one descriptor in the DMA transmit ring. A read request is only
encoded on 5 bytes, with the following format: READ_REQUEST type (1 byte), the offset of
the block (4 bytes). A read response is encoded as a READ_RESPONSE type (1 byte), offset
of the block (4 bytes), a status (2 bytes), and the data block. A write request is encoded
on the same 5-byte header followed by the data block. A write response is encoded as
a WRITE_RESPONSE type (1 byte), the offset of the block (4 bytes), and a status (2 bytes).

As a software stack, we adopted a bare metal approach, avoiding the inherent noise
when measuring large software stacks. This bare metal stack is based on the small
Hardware Abstraction Layer (HAL) provided by Xilinx as a foundation for small em-
bedded system development. We added a small event-oriented scheduler (516 lines of
C), a driver for our block device, and the small code of our benchmarks. The software
stack cannot be smaller, therefore any experiment will measure the communication
performance between the driver and our block device. Our benchmark is a simple
throughput benchmark, a never-ending loop sending the same request over and over,
either a request to read a block or a request to write a block. All requests are pipelined
rather than using a synchronous request-response scheme.

• For each write request, a buffer is initialized with the write request and a data
block. The buffer range of memory addresses is then flushed to DDR memory
from the Cortex A9 caches before the corresponding entry in the DMA transmit
ring is given to the DMA engine to send. An interrupt will signal the asyn-
chronous availability of the status response in the DMA receive ring. For each
response, the memory range corresponding to the response is invalidated from
the Cortex A9 caches before the status response is checked, bringing the status
response in the Cortex A9 L1 cache.

• For each read request, a buffer is initialized with the read request. The buffer
range ofmemory addresses is then flushed tomemory from the CortexA9 caches
before the corresponding entry in the DMA transmit ring is given to the DMA
engine to send. An interrupt will signal the asynchronous availability of the
status response in the DMA receive ring. For each response, the memory range
corresponding to the response is invalidated from the Cortex A9 caches before
the status response is checked and the block contents is read, bringing its con-
tents in the Cortex A9 L1 cache.

42 Chapter 3 Message-Based Integration for Embedded Systems

4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

50000

100000

150000

200000

250000

DMA reads

Msg Reads

Block Size

T
hr

ou
gh

pu
t (

kB
/s

)

FiguRe 3.6: Read Requests

4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

50000

100000

150000

200000

250000

300000

DMA writes

Msg Writes

Block Size

T
hr

ou
gh

pu
t (

kB
/s

)

FiguRe 3.7: Write Requests

Periodically, the benchmark computes the achieved throughput in kilo-bytes per sec-
onds (kB/s). The results are given in Figure 3.6 and in Figure 3.7, comparing the baseline
implementation described above versus the implementation of our proposed solution.
As we can see, the throughput overhead is negligible. The latency overhead is by de-
sign only a few cycles.

Figure 3.8 illustrates the details the hardware design of our message-based block de-
vice. The block device has 4 endpoints bound with 2 RX-TX software channels, One

Chapter 3 Message-Based Integration for Embedded Systems 43

Programmable Logic

Device
Controller

Processing System

Cores and Caches

Memory Controller Interrupt
Controller

System Bus

Bus interface Interrupt signal

DMA

lifecycle

mux/demux

reset AXI stream
Channels

AXI stream

AXI stream

Device ep0 ep1 ep2 ep3

FiguRe 3.8: Our Hardware Design

mandatory to manage the lifeycle, the other to submit read and write requests. The de-
vice controller is composed of three hardware components: a DMA engine, a lifecycle
controller, and a multiplexer/demultiplexer. For the DMA engine, we reused the same
Xilinx DMA engine as for the baseline. We wrote in VHDL the lifecycle controller and
the mux/demux component. The mux/demux component is necessary to route mes-
sages to and from endpoints since all channels are multiplexed through a single DMA
engine.

The lifecycle and demux/mux components add 810 lines of VHDL to the 236 lines of
VHDL for our device. Remember that our device does essentially nothing. For read
request, it parses them and sends back a zero-filled data block. For write request, it
parses them and just consumes the data block. The synthesis of our device controller
VHDL adds 450 LUTs to the Xilinx DMA engine that takes 1500 LUTs, for two channels.
Each new channel adds about 10 lines of VHDL.

The presence of the device controller is of course only half of the story, there is also
a different software stack. Like for the baseline, the software stack is based on the
same HAL from Xilinx and the same event-oriented scheduler. However, the driver

44 Chapter 3 Message-Based Integration for Embedded Systems

4 8 16 32 64 128 256 512 1024 2048 4096 8192
0

50000

100000

150000

200000

250000

DMA reads

DMA writes

Msg Reads

Msg Writes

Block Size

R

eq
ue

st
 p

er
 s

ec
on

d

FiguRe 3.9: Number of requests per second

is now a class-generic driver, sending and receiving messages through channels. This
means that the Figure 3.6 and the Figure 3.7 include both our hardware and software
overheads. The global overhead resulting from using messages seems negligeable at
first glance, but the figures are not telling the entire truth due to their scale. At high
throughput, our proposal does induce negligeable overhead, but it is not the case at
low throughput where the overhead is higher but always remain below 12%.

The Figure 3.9 plotting the number of requests per second reveals the evolution of the
overhead of using messages. It is logical that the impact becomes negligeable as the
payload size increases as the time to write, read, and transfer the payload increases
while our overhead is not proportional to the payload size, but rather fixed software
and hardware overheads, with the usual variability due to architected processor opti-
mizations such as caches and also bus arbitration and memory controller conflicts.

This overhead is acceptable and representative of any device, as there is nothing spe-
cific to the concept of block in our device or in the given performance numbers. Our
device receives and sends messages. The read requests are short messages but the re-
sponse messages are large as they contain large payload. For the write requests, this
is the opposite. The write requests are large as they embed a large payload and the
responses are small as they only embed a status report. By varying the ”block size”,
we are effectively getting performance numbers that are representative of any device,
not just block-oriented devices.

Chapter 3 Message-Based Integration for Embedded Systems 45

The overhead of using messages rather than a traditional DMA is higher with small
requests and smaller with larger requests. This means that the overhead is small for
high-performance devices that are block-oriented devices, such as network cards or
mass storage. Indeed, these devices will have message payloads much larger than 256
bytes, which means that the performance of high-performance devices will not be af-
fected. The performance is essentially governed by the DMA engine performance. For
small messages, the overhead is larger but we believe it to be of no consequences. Most
devices using small messages may be expected to be low-performance devices, such
as mouse or keyboards, sending and receiving few messages per seconds. Therefore,
we believe that 12% overhead is not going to affect the performance of such devices.
Also, let’s not forget that the overhead will melt away with real devices. Remember
our device does nothing, but real devices take time to process requests. The longer the
device processing time, the more negligible our overhead becomes.

3.5.2 Small Embedded Systems

In the previous section, we evaluated a high-performance design. The software stack
was a bare metal design, with minimal software overheads. The Zybo board embeds
the Zynq-7010 SoC integrating a programmable logic with a high-performance Cortex-
A9 processing system. We used the high-performance DMA engine provided by Xil-
inx. But our proposal is not only intended for high-performance embedded systems
running bare metal software stacks. In this section, we want to assess really small
embedded systems.

As an example of an emerging class of small embedded systems we thought it would
be interesting to consider systems with just a programmable logic and no processing
system. So we went somewhat to the extreme with the Xilinx Arty board, a board
with only the Artix-7 programmable logic. For the processing system, we deployed the
Xilinx MicroBlaze on the programmable logic, a low-performance soft-core processor.
The corresponding design illustrated by Figure 3.10.

The block device is the same as before. Notice that there is no device controller since
the Microblaze soft-core has direct support for the AXI-stream. This means that the
device is entirely driven by the software running on the MicroBlaze, handling both
lifecycle and channel messages. The software stack is minimal, reusing our small event
scheduler (516 LoC), our software bus (2205 LoC) and a block driver (348 LoC), running
on top of the Xilinx standalone platform. The overall software footprint is less than

46 Chapter 3 Message-Based Integration for Embedded Systems

FiguRe 3.10: Embedded MicroBlaze design

4 8 16 32 64 128 256 512 1k 2k 4k 8k
0

5000

10000

15000

20000

25000

Baseilne Read

Baseline Write

Msg Read

Msg Write

Block Size

T
hr

ou
gh

pu
t (

kB
/s

)

FiguRe 3.11: Stream vs Message Throughputs

30K bytes. Note that there is no rings in memory since there is no DMA, only one
statically allocated buffer is necessary to receive messages from the device.

We ran the same experiment as before, with the same block-oriented device as before.
We also used the same baremetal software stack based on the Xilinx-providedHAL and
our small event-oriented scheduler. The baseline uses a small driver directly reading
and writing through AXI-stream ports. Our proposal includes a full implementation
of our bus and channels. The driver uses messages sent and received through channels,
as before. However, the implementation of our bus is radically different. We do not
use any DMA engine, we directly read and write to the AXI-stream ports. Since we do
not have a device controller in hardware, the entire lifecycle is managed in software.

Chapter 3 Message-Based Integration for Embedded Systems 47

4 8 16 32 64 128 256 512 1k 2k 4k 8k
0

20

40

60

80

100

120

140

160

Baseilne Read

Baseline Write

Msg Read

Msg Write

Block Size

re

qu
e

st
s/

s

FiguRe 3.12: Number of Requests per second

The Figure 3.11 shows the throughput achieved using directly the AXI-stream or
through our message-oriented channels. We see a similar behavior as before on the
Zybo board, using messages does not introduce any significant overhead. Something
that is confirmed by looking at the number of requests per second, in Figure 3.12.

Of course, we see again the larger overhead with smaller messages, which is confirmed
with the throughput losses in Figure 3.13. The overhead remains below 20%, which is
higher than our previous 12%. But it is not surprising as our overhead is mostly on the
processing system and one can expect a soft-core processor to be slower. But again,
let’s remember that real devices take time to process requests and we are benchmark-
ing here a device that does nothing. Nevertheless, it is clear that the approach puts
more strain on the processing system for smaller embedded systems.

Now, there is another interesting question: how to wemanagemultiple devices? There
are two different approaches possible. One is to leverage the fact that a MicroBlaze can
be configured to support more than a pair of AXI-stream, allowing to connect more
than one device directly. There is another interesting way, one with deploying a tree of
devices connected to one pair of AXI streams on the MicroBlaze. We choose to pursue
this second design because it illustrates the flexibility of using messages and is clearly
more scalable.

The Figure 3.14 illustrates the corresponding hardware design, using AXI-stream inter-
connect hardware components from the Xilinx Vivado tool. In terms of latency, this

48 Chapter 3 Message-Based Integration for Embedded Systems

4 8 16 32 64 128 256 512 1k 2k 4k

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

read

write

Block Size

%
 T

hr
o

ug
hp

ut
 L

os
s/

G
ai

n

FiguRe 3.13: Throughput Gain/Loss in percents

Programmable Logic

Microblaze
and Caches

Device

RXTX

Device

DeviceDevice

Device ControllerDevice Controller

Device ControllerDevice Controller

AXI Stream
Interconnect

AXI Stream
Interconnect

FiguRe 3.14: Device Tree

Chapter 3 Message-Based Integration for Embedded Systems 49

design is efficient with a few extra cycles. Vivado power analysis tool estimate that
power consumption is not impacted, which is understandable as it is mostly forward-
ing hardware signals without much calculation. When N drivers communicate with N
devices, the available throughput is divided between the N interactions. When only 1
driver communicates with its own device, the throughput is not impacted by the added
hardware required to connect multiple device, it simply act as if it was not there.

3.6 Summary

In this chapter we showed that the integration challenge of FPGAs can be greatly
improved using messages. They make a clean separation between the software and
the hardware worlds, understandable by both side. Using messages greatly simplifies
driver development by removing hardware implementation details from the program-
ing interface of devices. This leads to easier device integrations and maintenance. Fi-
nally messages enable the concept of class generic devices, allowing devices to be more
easily available when they fit in already existing classes. The next step in improving
FPGA integration is to move toward bigger systems in particular Linux based systems.

Chapter 4

Linux Integration

Chapter contents
4.1 Background . 52

4.1.1 Linux kernel modules . 52
4.1.2 User-space interfaces . 54
4.1.3 Linux Device Driver Model 56
4.1.4 Software-Hardware communication in Linux 61
4.1.5 Some bus implementation examples in Linux 62

4.2 The Extension Proposal . 67
4.2.1 A new message bus for Linux 68
4.2.2 Driver API . 69
4.2.3 Low Level Driver API . 71

4.3 Experiments . 75

Following our journey in the integration of message-based design, the logical next step
is full fledge operating systems, Linux in particular. Linux is a major actor in the em-
bedded world and must be considered when proposing a solution for this community.
That’s what we will do in this chapter by proposing the design and validating of our
solution in a Linux environment. Our solution is meant to be as well integrated as pos-
sible with existing Linux concepts. This means that we don’t want to reinvent what
already exists so that existing Linux users can take advantage of our solution without
having to choose between our world and the Linux world.

51

52 Chapter 4 Linux Integration

4.1 Background

Device drivers in Linux are designed with modularity in mind. It means in particular
that most of the time, a driver in Linux is a kernel module, a piece of code that can be
loaded and unloaded dynamically. Drivers are part of a stack that eventually ends up
giving a functionality to a user-space process. To do this, Linux uses the file system as
an interface between the user-space and the kernel-space. Special files, like character
device files, can be opened, read andwritten by user processes to exploit a functionality
provided by the kernel and its drivers. Inside the kernel itself, drivers are organized
around what Linux calls the device driver model [41]. This model is based on three
type of elements: devices, drivers and buses. Devices are software constructs, most of
the time representing a real hardware device or an abstraction of it. Those devices are
registered within a bus to be found by drivers. This model provides the basic elements
to allow drivers to find their device and is used by almost all drivers in the kernel
nowadays.

4.1.1 Linux kernel modules

Linux kernel modules are binary object files that can be dynamically loaded and linked
within the kernel. Kernel modules define functions that can be exported and used
throughout the kernel. They can also invoke functions exported by other loaded mod-
ules. A kernel module can thus be seen as a plug-in, being able to extend kernel fea-
tures at runtime. A key advantage of using kernel modules is that a running kernel
can be updated without having to shutdown and rebuild the whole system. Another
advantage is that kernel images are highly configurable by enabling desired modules
and disabling others. Device drivers are typical examples of kernel modules. They are
dynamically loaded when needed to drive a newly plugged-in device, unloaded when
no longer necessary.

Linux kernel modules are written in the C language, as is still (but how long for? [42])
the majority of user space application. Even if basic C programming concepts stay
the same when programming a kernel module, there are several important differences.
First, modules run in kernel space, which grants modules unlimited privileges and
the responsibilities that come with it. Second, if usual applications define a main()

function and run from start to end, modules register themselves with the kernel and
wait for other modules to call functions they define. Every module defines a init()

Chapter 4 Linux Integration 53

function, invoked during its loading process. This function has to perform anymemory
allocation, resource allocation such as registering interrupt handlers, or registration
with other kernel frameworks that it might need. A module also has to define an
exit() function, called when the module is unloaded from the kernel, to release any
resources it has allocated.

Modules are also built differently. Module object files are classical Executable and Link-
able Format (ELF) files, using however the .ko extension. They are built with the Linux
build system. Modules can not be linked to user space libraries. Indeed, a module is
linked directly with the kernel symbol table and loaded into the kernel memory. A
module can only use functions and global variables defined by other modules, primar-
ily declared in the linux/include directory in the Linux source tree. When a module is
linked, its exported functions are added into the kernel symbol table. This table con-
tains addresses of global functions and variables allowing modules to call functions
and use global variables defined throughout the kernel. This linking mechanism al-
lows for stacking modules, each module providing features used by modules in upper
layers. These dependencies are identified at build time, not at load time, and are used
by the modprobe utility to load modules in the proper order.

The programming model of kernel modules is also different, it is not based on multi-
threading, it is fundamentally event driven. Indeed, modules register themselves with
the kernel and wait to be notified of events. Modules typically have two ways of
receiving events: either they define functions and export them to the kernel using
the EXPORT macro and wait for other modules to call them, or they give pointers to
functions they define to other kernel frameworks. These functions can be called at
any time. In contrast to single-threaded applications that run sequentially from start
to end, kernel modules have to be programmed being aware that many functions can
be called at once. There are various sources of concurrency, the most obvious one is
multiple processes concurrently calling module functions via system calls. Interrupt
handlers can also run at the same time than other module functions, as well as other
software abstractions such as timer or tasklets. Fortunately, the Linux kernel provides
all the necessary synchronization tools, in particular locking mechanisms.

Modules also differ from user-space applications with respect to failures. User appli-
cations are running in processes that can be stopped and removed from the running
system by the kernel. Developers can rely when exiting their process on an ultimate
cleanup by the kernel. In contrast, modules are not isolated from the rest of the kernel,
they can easily corrupt the system memory, even because of simple mistakes such as

54 Chapter 4 Linux Integration

copying a non zero terminated string using strcpy(). Segmentation faults and memory
leaks are other forms of module failures. These failures are much harder to track and
debug than user space applications failures. Although, it is possible to use a kernel
debugger, debugging the kernel is not as easy as debugging applications. The kernel
could corrupt the debugger itself. Furthermore, if the kernel is halted, the debugger,
the graphical interface or the terminal would freeze. Of course, virtual machines like
Qemu have drastically improved the situation for kernel debugging at large, but not
so much for device driver debugging because device drivers often need to run on real
hardware. Indeed, running on real hardware increases the number of interwining
events. This is due to the fact that real hardware devices run their logic purely in
parallel rather than virtual emulated devices running on CPU. It makes in particular
forgotten or unpredicted race conditions or wrongly timed events appear. For instance,
in some cases a sequence of two write operations in a device register bank may need
to be made with a minimal delay between them. It is often the case that running in
a simulated hardware makes that kind of condition invisible because the time taken
to switch from one software process to another makes this minimum delay always
respected. Though, running on real hardware will make this issue appear as register
writes will be performed with a much lower latency. Another example is interrupt
triggers. In some cases a hardware device may trigger two interrupts very quickly
with a very small delay between them. It can happen that on a simulated hardware,
the second interrupt always appears after the execution of the handler of the first one
has finished, where on real hardware, the second interrupt may be triggered during
the execution of the handler of the first interrupt. If that case, there’s a chance that
the second interrupt is simply ignored as that particular case doesn’t appear on the
simulated hardware.

4.1.2 User-space interfaces

Linux kernel modules can interface with user space applications using various mecha-
nisms. Themost common are character and block devices. Character and block devices
are special files, visible by the user in the file system. Users can use them as usual file,
using open(), close(), read() and write() system calls. In addition, users can use the
ioctl() function to send requests to character or block device files.

To implement a character device, a module has to define a character driver. A charac-
ter driver is a set of functions, stored as pointers in a structure called file_operations.

Chapter 4 Linux Integration 55

TTY Hardware Interface

TTY DriverTTY dev 0

Linux File System

/dev/tty0
User Space

Kernel Space

Software

Hardware

Implements
read, write, open,

close …

Communicate using
registers and interrupts

FiguRe 4.1: TTY character device

The main functions are open, release, read, write, and ioctl. The open() and release()

functions are called when a user opens a file and when the last user closes it. The
read() and write() functions are called upon reading and writing the file. The ioctl()

function provides special interaction capabilities. A module may also implement asyn-
chronous variants of these functions, for instance the aio_write() that asynchronously
perform a write operation on the character device. Figure 4.1 illustrates the principle
on a teletypewriter (tty), a character device. Its driver directly communicates with the
hardware interface, issuing loads and stores in hardware registers to configure and
transfer data and handling interrupts to be notified of changes.

Block devices are implemented in similar way. Block drivers fill a
block_device_operations structure. The major changes between character drivers
and block drivers are how read() and write() functions and additional operations
called by the kernel are implemented . The block_device_operations structure doesn’t
contain any pointer to a read() or a write() function. Instead, block drivers have
to define a gen_disk structure, representing a virtual disk, and add it to the kernel.
Within the gen_disk structure block drivers add a request queue. This queue contains
a make_request() callback, invoked when an operation (read or write operations for
instance) has to be performed on the disk. The make_request() callback must process
BIO objects (Block Input Output) that contain information on the operation to
perform, such as the type of the request (read or write), the location of the operation
on the disk, and a buffer containing the data to write, or where to put the read data.
This operation is most of the time asynchronous, meaning that the make_request()

callback will initiate the operation then return before it actually ends. Later when the
read or write operation has been completed, the bio_endio() function will be called to
notify the block layer that the request has been completed.

56 Chapter 4 Linux Integration

Network devices are similar to block devices. They also have to implement the open()

and close() functions but they vary on data exchanges. To manage packets, the kernel
provides a special buffer structure called sk_buff. This structure contains not only data
buffers but also control informations such as packet datagrams or cells. This struc-
ture is defined with ring buffer in mind, meaning that they can be linked together in
very efficient ways. This is especially important when dealing with high performance
network cards that organize their reception and transmission buffers in rings.

All these special files have another interface in common called the IOCTL interface. As
its acronym let it think, they are used as I/O control and are used mostly to configure
or get the status of a device. Although it was not intended at the origin, it is also seen
as a generic interface used when the read/write operations do not suit the behavior
of the device. It consists of an ioctl function that has two important parameters: the
code of the command to perform and some data. The command code is always specific
to the device. It can be a configuration command, for instance setting the baud on a
serial device. The data parameter can be either a scalar or a user pointer that can be
used to send bigger data structures.

4.1.3 Linux Device Driver Model

Device drivers are organized in Linux following the concept of hierarchical buses.
Some of these buses are matching hardware buses, such as PCI or USB. Other buses are
about software abstraction such as the bus grouping devices that are Human Interface
Devices. For each bus, three steps are important: reifying devices, registering drivers,
and matching.

First, for each bus, devices must be reified. By reification we mean that a hardware
device be instanciated in software. It must be made handleable using its own software
structure instance1. Indeed, in this kind of model, devices are more than just a base
address so there is a need for a structure containing useful data such as its identifica-
tion, pointers used to remember dynamically allocated data related to the device and
sometimes function pointers. This reification can happen as the result of processing
a given description of which devices are plugged on that bus. An example of such
description is the device tree given to the kernel on ARM that describes the different
hardware buses and the hardware devices that they host. A bus can also support hot

1As we are using the C language, we talk about structures but the linux kernel is almost object
oriented as it happily uses function pointers

Chapter 4 Linux Integration 57

plugging of devices, such as PCI buses, allowing to enumerate hardware devices. The
enumeration is used by the bus implementation to reify devices that are represented
on the bus at any given time.

Second, for each bus, the necessary device drivers must be registered. In Linux, each
device driver is written to register to a given bus, something that happens when the
module containing the device driver is loaded. Modules can be pre-loaded or they can
be loaded on demand as the result of enumerating new devices. This is the case for
example with the USB bus, looping back to the udev mechanism that controls which
modules are loaded for driving devices. Third, each bus matches locally drivers to
devices. To do this matching, the bus relies on devices describing what they are and
on drivers describing which devices they can drive. This is typically done through
different identifiers such as device IDs and vendor IDs.

Then, Linux supports stacking buses, where device drivers in one bus reifies themselves
as devices in other buses. For instance, the driver of an USB mouse, on the USB bus,
might reify itself as an HID device in the HID bus. Stacking buses helps organize
the overwhelming number of devices and their drivers into a hierarchy of concepts
that separate concerns, encapsulate details, and help the necessary composition. For
instance, the HID bus can compose different pointing devices as a single pointer that
can be used by the window manager to drive the mouse icon on the screen.

4.1.3.1 Devices, Drivers, Buses

Linux bus model articulates three core concepts: drivers, devices, and buses. To under-
stand them, it is just easier to look at a PCI bus, which initially motivated the Linux
concept of a bus. Buses, drivers and devices are all visible in the system filesystem
(of type sysfs, usually found at /sys in Linux), the virtual file system Linux uses to
expose informations about kernel subsystems. The Figure 4.2 illustrates this model
with a PCI device example. In this bus, a software construct of the PCI device has been
reified so that its driver has been able to find it. The driver, also registered within the
bus, is able to communicate with traditional registers and interrupts once it has been
matched with its device. This driver then interfaces with higher stacks of the kernel
to eventually provide the device functionality to user processes.

Each device represents a software view of hardware devices such as PS/2 mice, Eth-
ernet controllers, audio controllers, or USB controllers. Devices can be very close to

58 Chapter 4 Linux Integration

PCI Device

PCI DriverPCI Device

PCI Device Bus
Software

HardwareCommunicate using
registers and interrupts

Interfaced with higher
levels in the stack

FiguRe 4.2: PCI bus example

their hardware device or very abstract, or even software devices with no correspond-
ing hardware device. To declare and register a device, a kernel module has to fill a
struct device structure. Listing 4.1 shows the struct device fields. The parent field is
used to build device hierarchy. The bus field is the pointer over the bus in which the
device needs to be registered. The driver field is the driver that the device is bound to.
This field is automatically set by the Linux bus framework. The driver data field is a
pointer that can be freely set by the device driver as a cookie allowing the driver to
retrieve its own data structure for that device. Finally, the release function is called by
the Linux bus framework when the device is unregistered from the bus it was sitting
on. To register or unregister a device, a module has to call the device_register() and
device_unregister() functions.
struct device {

struct device *parent;

struct bustype *bus;

struct device driver *driver;

void *driver data;

void (* release) (struct device *dev);

/* . . . */

}

Listing 4.1: Linux device structure

To declare and register a driver, a module has to fill a struct device_driver structure,
depicted in Listing 4.2 . The field name is the driver name set by the module and shown
in the sysfs. The bus field, as for the device structure, is the pointer to the bus that
the driver will be registered with. The devices field is a linked list of devices bound
with the driver, a list managed by the kernel. The probe() function, set by the mod-
ule, is called when a device is bound to the driver. In this function, the driver must

Chapter 4 Linux Integration 59

check if it can indeed handle the device and perform the needed initialization in or-
der to prepare the device to be used. The remove() function, also set by the module, is
called when a bound device is removed from the system. To register and unregister
a driver, a module must use the driver_register() and driver_unregister() functions.
Once a driver is registered, and bound to a device, it typically communicates with the
device to implement higher-level operations such as implementing a write operation
by communicating with a hard drive.

struct device_driver {

char *name;

struct bustype *bus;

struct list head devices;

int (*probe) (struct device *dev);

int (* remove) (struct device *dev);

/* . . . */

}

Listing 4.2: Linux device driver structure

Buses are also dynamically created bymodules, themodules that have the device driver
for that bus controller. To create and register a bus with the kernel, a module has
to fill the struct bus_type (shown in Listing 4.3) structure and register it using the
bus_register() function. There are very few fields a module must set to define a bus,
most of them being handled by the Linux bus framework. The match() function is called
when the kernel has found a device that could be bound with a driver. The function
has to check if the driver can handle the device, returning a non zero value if the
bus determined that it is the case. The kernel handles all the generic operations such
as updating driver and device lists, calling the right callbacks for instance the driver
probe() callback when a device has been bound, making the interface with the sysfs to
exposed an updated view of the bus at any time.

struct bus {

char *name;

/* Sets of devices and drivers */

struct kset drivers;

struct kset devices;

int (*match) (struct device *dev , struct device_driver *drv);

/* . . . */

}

Listing 4.3: Linux bus structure

60 Chapter 4 Linux Integration

HID Joypad

HID Device bus

Linux File System

/dev/joypad
User Space

Kernel Space

Instantiates

Implements
read, write, open,

close …

PCI Joypad Controller

PCI DriverPCI Joypad

PCI Device Bus
Software

HardwareCommunicate using
registers and interrupts

HID Driver

FiguRe 4.3: Bus stacking example

Finally buses can be stacked on top of each other as illustrated by Figure 4.3. In this
example, a PCI device implementing a hardware Joypad controller sits on the PCI hard-
ware bus. As it is a PCI device, it is logically reified within the PCI device bus and
matched with its PCI driver. The PCI driver then turns around and registers a Human
Interface Device (HID) within the HID bus. This device contains informations about
the device and callbacks to implement its behavior. In particular it contains callbacks
that are called by the PCI driver when buttons are pressed. This device is handled by
a generic HID driver. To let user processes be notified when buttons are pressed, the
HID driver creates a character device file. Those user processes can listen to input
simply by reading the file as if it was a serial interface. Going bottom up on the stack,
when a button is pressed by a human a series of event happen. First, the PCI driver is
being notified by an interrupt and check which button has been pressed by reading the
device registers. Then, one of the HID device callback to notify of the event. The event
is handled by the generic HID driver that will in turns push the code of the button in
the character device file that user processes are listening into.

Bus stacking is maybe one of the best features in the Linux device model as it allows
devices that have similar features to have abstract representation in high level buses
while each of them can come from a different hardware bus. In our case, this is a con-
cept we will take advantage of to be able to design a generic message-based interface,
stacked on top of specific bus technologies.

Chapter 4 Linux Integration 61

4.1.4 Software-Hardware communication in Linux

In addition to being interfaced with user space processes through character and block
devices, kernel modules can communicate with the hardware interfaces. This commu-
nication is performed by issuing loads and stores in the device’s hardware registers
and by handling their interrupts. To to this, Linux defines I/O ports, I/O memory and
interrupts which represent part of the Linux Hardware Abstraction Layer (HAL).

Hardware devices are controlled by reading and writing their hardware registers.
These registers are usually accessed in a consecutive address space. I/O ports and
I/O memory are an abstraction concept, defined by Linux to allow modules, and more
specifically device drivers, to access these hardware registers. I/O ports and I/O mem-
ory provide portability across various hardware architectures. I/O ports are used to
access hardware I/O registers. To use I/O ports, a module first needs to allocate a range
of addresses containing them in order to guarantee that the module will have exclusive
access to the I/O registers in that range. To read and write these ports, a module must
use different functions related to different size of registers such as: outb() to write into
a one byte port, or inl() to read into a 32-bit port.

I/O memory is used to access large size of device address spaces. They are used for
various purposes such as sending and receiving Ethernet packets, sending video data or
receiving data blocks. Despite the fact that accessing hardware device address spaces
is highly hardware dependent, the principles are the same, allowing Linux to provide
a unified abstraction as I/O memory. I/O memory, as I/O ports, must be allocated by
a module to be sure it has an exclusive access on the region it wants to use, using the
request_mem_region() function. Before using the allocated I/Omemory region, modules
must ensure it is accessible by the kernel, by first setting up amapping using the ioremap
() function. This function returns a pointer, used to access the I/O memory. However,
directly using the pointer is not considered that portable, and modules must instead
use special functions such as ioread8() or iowrite32() to respectively read 8-bit and
write 32-bit of data.

Some devices have to access big chunks of the main memory. Instead of letting the
CPU writing or reading data to and from the device, drivers setup buffers within the
main memory to be accessed by the device. This way, the CPU is free to perform other
tasks while data is transmitted from or to the main memory by the device itself. The
main concern with this situation is cache coherency. When the driver writes data in
a buffer to be read by the device, it must ensure that all cache lines storing data from

62 Chapter 4 Linux Integration

that buffer are flushed to the actual memory. The other way around, when the device
has written data in the buffer, cache line targeting this buffer must be invalidated in
order to let the driver see the most recent data. All these operations are performed in
Linux by a subsystem allowing to map, unmap and handle IO coherency.

Besides using I/O ports, I/O memory and DMA buffers to control devices, read and
write into their memory, modules may need to access interrupts. Interrupts are 1-
bit signals, sent by devices, to notify of a state change. They are used for instance
by clocks to notify of time changes, or serial ports, notifying that incoming data is
pending. Using interrupts avoids polling devices, wasting CPU time and incurring
power consumption. Linux provides a software abstraction for interrupts, allowing
module to request to be notified of interrupt signals. To request an interrupt, modules
use the request_irq() function, specifying the interrupt number they target and an
interrupt handler that will be called when the interrupt signal is triggered.

4.1.5 Some bus implementation examples in Linux

The Linux bus model offers a generic way to organize devices and drivers, but it does
not get in the way of drivers interacting with their devices. In fact, some details of
this interaction are often bus specific. For instance, drivers often need more details on
their devices than a generic framework can provide. PCI drivers need to access device
configurations. USB drivers need to list device interfaces and endpoints. Moreover,
traditionally, drivers communicate directly with their devices through I/O ports, I/O
memory, and interrupts. This is what makes drivers so hard to write and utterly device
specific. The PCI bus is a typical example of this philosophy. Other buses, such as USB
or I2C, have adopted a different philosophy based on messages, yielding simpler and
safer drivers.

4.1.5.1 PCI drivers

We will see how PCI drivers look with Listing 4.4 that shows how to define and reg-
ister a PCI driver. The ids variable is an identification table containing ID structures
allowing the PCI bus to bind to the driver the devices it can really handle. The struct

pci_driver structure embeds a device_driver structure, filled by the pci_register_driver

() function. In particular, the function will set the bus field of the device driver struc-
ture to the pci bus pointer (usually bus pointers are global variable). When a PCI

Chapter 4 Linux Integration 63

driver is bound to a PCI device, it first needs to access its configuration registers. To
do that, many function that are part of the PCI bus API provide this access. For instance
the pci_read_config_byte(struct pci dev* *dev, int loc, u8 *val) allows to read a byte
with the value val at the location loc in the configuration registers of the device dev. To
access I/O locations a PCI driver uses the PCI resource management to get PCI device
memory addresses. These addresses are then used with the I/O memory Linux API to
read or write in the device address space. To be notified of device events, PCI drivers
can use interrupts. Interrupt numbers are stored in PCI device configuration register.
They can be accessed using the pci_read_config_byte(pci_dev, PCI_INTERRUPT_LINE, &

irq_number) call. The interrupt number can now be used to request interrupts as usual
in Linux.

/* Source taken from the book Linux Device Driver Thrid edition */

static struct pci_device_id ids [] = {

{PCI_DEVICE(PCI_VENDOR_ID_INTEL , PCI_DEVICE_ID_INTEL_82801AA_3)},

{0}

};

static int probe(struct pci_dev *dev , const struct pci_device_id *id)

{

/* various initializations:

e.g. allocating I/O memory , requesting interrupts , etc. */

return 0;

}

static void remove(struct pci_dev *dev)

{

/* clean -up any allocated resources:

e.g. releasing I/O memory and interrupt lines */

}

/* The PCI driver structure */

static struct pci_driver pci_driver = {

.name = "pci_skel",

.id_table = ids ,

.probe = probe ,

.remove = remove

};

static int pci_skel_init(void)

{

/* register the PCI driver with the PCI bus */

64 Chapter 4 Linux Integration

return pci_register_driver (& pci_driver);

}

Listing 4.4: PCI bus example

4.1.5.2 USB drivers

USB is a good example to be compared with PCI. Listing 4.5 shows how to defines and
register a USB driver. As with PCI drivers, USB drivers define an ID table used to bind
them with devices, and register themselves using the similar usb register() function.
The key difference between USB and PCI buses is the way devices are described and
how drivers communicate with them. The USB device structure contains a list of in-
terface, each interface holding a list of endpoint. The Linux USB API allows drivers
to connect to these endpoints in order to send or receive message through them. To
send or receive a message through an endpoint, USB drivers use USB Request Blocks
(URBs). A URB represents a transfer request that a driver can create, submit, and can-
cel. A URB can perform the four data transfer types of the USB specification (Control,
Interrupt, Bulk and Isochronous). URB transfers (more precisely, bulk transfers) are
asynchronous. A completion callback is set before submitting them to allow the driver
to be notified when the transfer will be completed. Listing 4.6 shows an example of a
USB driver submitting a bulk transfer to a device.

/* Source inspired from the book Linux Device Driver Thrid edition */

/* Define these values to match your devices */

#define USB_SKEL_VENDOR_ID 0xfff0

#define USB_SKEL_PRODUCT_ID 0xfff0

/* table of devices that work with this driver */

static struct usb_device_id skel_table [] = {

{USB_DEVICE(USB_SKEL_VENDOR_ID , USB_SKEL_PRODUCT_ID)},

{}

};

static int skel_probe(struct usb_interface *interface ,

const struct usb_device_id *id)

{

/* Allocate any needed resources */

return 0;

}

Chapter 4 Linux Integration 65

static void skel_disconnect (struct usb_interface *interface)

{

/* Release any allocated resources */

return;

}

static struct usb_driver skel_driver = {

.name = "skeleton",

.id_table = skel_table ,

.probe = skel_probe ,

.disconnect = skel_disconnect

};

static int usb_skel_init(void)

{

int result;

/* register this driver with the USB bus */

result = usb_register (& skel_driver);

return result;

}

Listing 4.5: USB bus example

static void bulk_completed(struct urb *urb)

{

/* Transfer has been completed */

}

void start_bulk_transfer(struct usb_device *dev ,

int endpoint_address ,

char *buffer , size_t count)

{

struct urb *urb = NULL;

char *buf = NULL;

/* create the urb */

urb = usb_alloc_urb (0, GFP KERNEL);

/* initialize the urb properly

* create a pipe to the endpoint ,

* sets the buffer to send ,

* and the completion callback */

usb_fill_bulk_urb(urb , dev ,

usb_sndbulkpipe(dev , endpoint_address),

buffer , count ,

bulk_completed ,

66 Chapter 4 Linux Integration

NULL);

urb −>transfer_flags |= URB_NO_TRANSFER_DMA_MAP;

/* send the data out the bulk port */

retval = usb_submit_urb(urb , GFP KERNEL);

}

Listing 4.6: USB bulk transfer example

The communication model between USB devices and drivers follows a master-slave
scheme. It means that every data transfer, either transmitting or receiving amessage, is
initiated by the driver itself. Before USB 3.0, this meant that drivers had to poll devices
like mice or keyboard. Indeed, there was no such mechanism as interrupts coming
from the device to let the driver know that a message is ready to be received. From
USB 3.0 on, when a device has to send a message to its driver, it triggers a notification
signal from its USB controller. This notification is then forwarded to the device which
will then start the transfer as usual.

Even though USB has been a real game-changer in the way drivers are communicating
with their devices, the software interface still lacks a level of abstraction independent
from the hardware bus. As an example, some parts of the API are related to the new
class of USB type C cables. USB defines the notion of bulk, isochronous, interrupts
and control transfers. They are very tightly linked to the specification of the USB
hardware. Actually there are two different transfer types: asynchronous and periodic.
Bulk and control transfers are asynchronous, which means that the driver initiates a
transfer and will be notified when the transfer completes. Isochronous and interrupt
are periodic transfers, which means that the USB controller is set up in such a way
that these transfers are initiated periodically.

We are not arguing that USB should be a multi-master bus or should change its spec-
ification to shrink the four transfer types into two, asynchronous and periodic. In
fact the USB is even completely compatible with our solution as it is a message-based
bus, and a very successful one regarding how it evolved. The potential offered by USB
has been a great motivation for the new Linux device model in the 2.6 version of the
kernel. They also showed the full potential of stacking buses. Indeed, a USB mouse
is actually stacking drivers of, from bottom layers to upper layers, a platform driver
for the PCI controller, a PCI driver for the USB controller, a USB HID generic driver
for the USB mouse controller, a HID driver managing all HID devices either coming
from USB, bluetooth or other buses, and finally the input driver of Linux and even a
character driver when showing the device in the file system.

Chapter 4 Linux Integration 67

There was an opportunity to aggregate every message-based buses behind a unique
API, not only integrating USB as yet another bus. Of course, for the industry, the im-
plementation effort was not worth it, for very good reasons. They had to keep the entry
cost as low as possible and be integrated as fast as possible. Asking Linux to change
was not the best way to sell it rather than being the smallest addition possible to the
kernel. They also have interests in keeping as much people as possible using their tools
and technologies which is completely understandable from a business perspective.

4.2 The Extension Proposal

The extension proposal consists of taking the concepts we develop for small embedded
system and validate that they also fit within a Linux environment. Doing that consists
of taking all the parts of our solution that are common with Linux and merge them in
our extension, then add the new features to it. Linux did such a tremendous amount
of work on their block subsystem, it would make no sense to simply throw it out to
rebuild it. Now, merging our concepts with Linux’s is not a piece of cake, it would be
much simpler to simply exist beside and integrate as yet another kernel module. The
problem is that it would have no future. Simply no one could accept such a partition
inside the kernel, so our choice is to integrate as much as possible with the existing,
while still bringing our new ideas. In particular, the notions of bus, device, driver but
also bus stacking are fully reused as is. The high-level concepts such as char, block and
network devices are also reused, we don’t specify a new user/kernel interface.

What we add is our communication model, meaning the abstract message-based chan-
nels. Today, every bus is basically defining its own communication model with its own
API, even for those exchanging events or messages. So not only our channels are here
to support our new devices, but they also offer a consistent generic message-based in-
terface that basically any existing or future bus technology may use to take advantage
of it. In particular this is very helpful for class-generic devices where devices belong-
ing to the same class, supporting the same message protocol, may sit on very different
hardware buses.

68 Chapter 4 Linux Integration

4.2.1 A new message bus for Linux

As we have seen, the Linux kernel is quite powerful when it comes to integrate device
drivers and in particular aggregating, discovering and matching devices. The aspect of
the interaction between a driver and a device that Linux does not specifically define is a
communication abstraction between drivers and device. Linux separately define useful
abstractions to register interrupt, access hardware registers and even manage DMA
buffers, but no such standard communication layer have been attempted at that level.
Though, Linux demonstrated it is possible. The best example is the block device layer
where every single storage device is represented, no matter how they are implemented
or on which hardware bus they are.

The idea of our extension is to bring the same level of abstraction as the block layer
did in Linux. It brings the concept of message-based communication between devices
and drivers as an addition to the discovering and matching process that already exists.
The goal of doing that isn’t really to help Linux solving an integration issue, the goal
is to show that our approach is feasible not only for small embedded system but also
for larger systems.

Large systems, other than Linux, suffer the most from the device integration challenge
and thus would benefit the most from our solution. They don’t have the titanic code-
base of driver of Linux even though they must be running on more than one small
embedded system. This requires a great level of portability among various hardware,
something that is achievable only when writing a virtual ton of device drivers.

Our extension is not intrusive in existing implementations. It allows to progressively
aggregate compatible devices and hardware buses, while letting unchanged ones work-
ing as usual. In other words, what’s already working continues to work. In our case,
we integrate only our new message-based devices with the hope that others will fol-
low.

In order to be integrated inside Linux, our extension exists as a kernel module, com-
piled and linked separately from the kernel itself. This allows users to insert or remove
our module from the kernel as needed. To let other systems work as before, the bus
implemented by our module is seen as yet another bus among the others. It allows
to match our devices and drivers only inside our extension but still being integrated
with the rest of the kernel. Drivers compatible with our extensions registers like in

Chapter 4 Linux Integration 69

any other buses, meaning that the matching process is very similar to the PCI and USB
we have seen in the background section.

Our extension is divided into two APIs: the driver API and the Low Level Driver API.
The driver API is basically the same API as we presented in the chapter 3. The Low
Level API is an additional API allowing bus controller drivers to register new devices
in our extension. Those API are made to integrate our extension using the pervasive
stacking mechanism, providing all the Linux flexibility. The driver API stacks under
high-level software buses, for instance the block subsystem while the low level API
stacks above low-level drivers, for instance the device controller driver transmitting
messages to devices.

As an example we take a stack of 3 subsystems including our own integrating a hard-
ware AES device. The AES functionality provided by this hardware is ultimately pro-
vided to user-space processes through a character device file in the /dev directory. As
depicted in Figure 4.4, starting from the hardware, the AES device possesses two chan-
nels. The channel 0 receives the data to encrypt while the channel 1 sends the en-
crypted data. The AES is as usual in our solution connected to its device controller.
In this case the controller is designed using a scatter-gather DMA for maximum per-
formances. The device controller is seen as a platform device discovered through the
device-tree and driven by its controller driver. This controller driver instantiates the de-
vice structure and registers it to our bus. This device is thenmatchedwith its driver, the
one that will send and receive messages through the two channels and implement the
character device interface. This character device interface is then shown to userspace
processes as a file in /dev/aes0. To use it, userspace processes would simply have to
write the data to encrypt, and read the encrypted data. Multi-process accesses can be
managed in two ways. Either only one process can open the file at a time, or the driver
manage transactions putting processes in sleep while others are waiting for their data
to be processed.

4.2.2 Driver API

The C API is identical on almost all aspects, with very little coloration from Linux
quirks and features. This shows that whether being on a very small embedded sys-
tem running on a Microblaze, or running the large and powerful Linux kernel on a
general purpose architecture does not impact the way devices should communicate.
The only difference is the transmission buffer management. Linux asks its drivers to

70 Chapter 4 Linux Integration

AES Device

Device Controller

Device Controller DriverDevice Controller

AES Driver AES Device

Platform Device Bus

Message Bus

AES Char Dev

Char Device Subsystem

Linux File System

/dev/aes0
User Space

Kernel Space

Software

Hardware

Instantiates

Instantiates

Implements
read, write, open,

close …

FiguRe 4.4: The full stack integrating an AES device as a character device

use its DMA-mapping interface when dealing with buffers being accessed by DMA.
In particular, the owner of DMA buffers must call map and unmap functions when
allocating and releasing its buffers, and call synchronization functions when having to
flush or invalidate corresponding cache lines. For that reason, drivers have to manage
the mapping and unmapping process of their transmission message buffer. This will
depend on the way they choose to manage their buffer but in general they will have
to map them before starting using them with their device and unmap them when they
become useless.

Having the same API makes drivers really looking like the one running on our stan-
dalone solution. We reuse the same exact functions, types and callbacks, without addi-
tional constraints. This may let think that drivers are portable from system to system.
While it may be the case for the small portion of code interacting with our API, it is
not true for the whole driver. For instance, interfacing with the Linux block subsystem
to register a new block device may be a complete different story on another system.
But that’s our exact goal here. We have reduced and simplified the portion of code

Chapter 4 Linux Integration 71

interacting with the hardware device to let the experts concentrate on interfacing the
driver with the kernel.

Our API heavily makes use of bus stacking in Linux. Drivers are stacked under upper
layers such as block or HID buses. They execute as any kernel module, registering
themselves within their initialization function, the only change is that they interface
with their device via sending and receivingmessages through channels. Our API never
puts them in interrupt context, even when calling their callbacks, making it easier to
interact with the kernel without worrying about it. Once matched with their device,
they can configure it and register a new device in an upper bus.

The simplest stacking example for a driver is when registering a character device, as we
illustrate taking our AES example again. The driver defines its open and close function
as usual. The send function copies the data to be encrypted from the user-space buffer
and send it through the corresponding channel. The read function waits until all the
encrypted data has been received and copy it to the user-space buffer.

4.2.3 Low Level Driver API

To help various hardware implementations of our solution to integrate with our ex-
tension, we allow them to stack under our bus using a low-level API. This API allows
any driver to register devices in our bus and implement its channels. It also allows
multiple implementation of device controllers to coexist using each their own specific
driver. Each of these controller drivers can register its own set of devices in our bus.
We call Low Level Drivers (LLDs for short) all these driver stacking under our bus and
registering devices. This type of stacking is not new and exists for instance with the
HID bus. Both bluetooth drivers and USB drivers have the ability to create HID devices
and register them as abstract devices. 2

The Low Level API is important as we want our extension to be as much integrated
in the kernel as possible. Not only new drivers can be easily integrated as other ker-
nel modules registering message-based drivers in our bus but also other hardware bus
technologies can be integrated without too much pain. The Figure 4.5 illustrates this
with a block device. This block device sits on a hypothetical future hardware bus to
show how one can integrate new hardware ideas in our extension. As usual the device

2They are not actually entirely abstracted as some of the USB or bluetooth details are visible to HID
drivers

72 Chapter 4 Linux Integration

Block Device

Device Controller

Device Controller Driver

Device
Controller

Block Driver Block Device

Future High Efficency Device Bus

Message Bus

Software

Hardware

LLD

Future High Efficiency Hardare Bus

*Connect()
*Disconnect()
*Send()
*Receive()

LLD pointer

FiguRe 4.5: LLD Example

controller is instantiated within the future software bus and matched with its driver.
But this device controller is new and has very specific features so it must implements
its own way of sending and receiving messages and perhaps also to connect and dis-
connect channels. To integrate this new implementation of channels, it defines its own
Low Level Driver containing function pointers to connect and disconnect channels and
also to send and receive messages. When instantiating devices in our message bus, the
controller driver will provide a pointer to this LLD so that every channel operation will
leads to a call of one of these callbacks.

Not only this design helps new hardware technologies to integrate with our bus, help-
ing the extensibility of our design, but also allow very different hardware designs to
coexist. Indeed, a PCI integration of our bus could implements channels its own way
with its own LLD, taking advantage of the last four generations of PCI express features.
Beside, a very small implementation relying on FIFO registers may also implement low
throughput, low latency channels through its own LLD. Both would registers devices
having the exact same channel interface. Each channel implementation would behave

Chapter 4 Linux Integration 73

the same way with the same lifecycle but with very different performance charac-
teristics, in the same system. In addition, one cannot disrupt the other as they exist
separately, being only aggregated at the message interface level.

The last advantage of such a design is to facilitate the aggregation of class generic
devices. Indeed, in the USB world, class generic devices are all sitting on the same
hardware bus, making it not a real problem. In our case though, devices belonging to
the same class could be sitting on very different hardware buses. Using LLD the whole
stack doesn’t have to be replicated, the only change is the channel implementation
at the device controller driver level. This means that a class generic driver may drive
two devices belonging to the same class, one being integrated on a high performance
hardware bus, while the other on a low performance one. Both devices would behave
the same, only with a performance gap between them.

The low-level driver API follows the exact same life-cycle we described in the previ-
ous chapter. Low level drivers create devices when discovered on their hardware bus.
The device discovery is initiated by the driver when it sends its AVAILABLE message,
starting the rendez-vous with its controller. This message will eventually notify the
device controller driver that it should create a new device and registers it with the
bus. At any point, if the device becomes unavailable, the controller will unregister
the driver from the bus, starting the unmatching process. Devices are registered and
unregistered using the two following functions of the LLD API.

void register_device(struct device* device);

void unregister_device(struct device* device);

As usual, the bus manages the matching process and calls the right callbacks to notify
of device events to the driver. When matched, the driver sets-up channel callbacks and
calls the connect_channels() function, allowing it to start exchangingmessages through
its device channels. Implementing those channels is performed through a structure
called low_level_driver that sits in the device structure. This structure is part of the
low level interface and is defined by device controller drivers. This structure consists
of the set of functions and callbacks described next:

struct low_level_driver {

void (* connect_channels)(struct device* device);

void (* disconnect_channels)(struct device* device);

void (* channel_send)(struct message *msg);

void (* channel_received)(struct message *msg);

};

74 Chapter 4 Linux Integration

The connect_channels() function is setup by the LLD and called when the driver
matches its device. As defined by our device lifecycle, when executing this function
the LLD must inform the device controller and eventually the device that a driver is
matched to the corresponding device. This is done by sending theMATCHEDmessage
to the device, completing the rendez-vous.

The disconnect_channels() function is setup by the LLD and called when the driver
is unmatched from its device. The unmatching process can starts from two different
sides. When a device become unavailable the controller driver unregisters it from the
bus. The bus will then notify the driver through the unmatched() callbacks, telling it
to stop using the device. The controller driver will then be informed that is can starts
disconnecting the device through this disconnect_channels() function. The unmatching
process can also start from driver side when it unregisters itself from the bus. Again
the driver will be called with the unmatched() for all its device and disconnect_channels()

will be called by the bus for each of them.

The channel_send() function is setup by the LLD and called when the driver sends a
message on a channel to its device. When executing this function, the LLD will start
sending the given message. When using a scatter-gather DMA for instance, this is
where the LLD will setup the next buffer descriptors, setup the message header and
flush the payload buffer 3. Once the transmission is complete, it will also call the
released() function of the message, allowing the driver to know it can reuse the mes-
sage buffer. This callback must not be called in the interrupt handler of the DMA as
specified by our driver API. The controller driver must thus call it in its bottom inter-
rupt handler.

The channel_received() function is setup by the bus and called by the controller driver
when it has received a message from the device. It also initializes the released() func-
tion pointer to allow the driver to tell when it has finished using the corresponding
payload buffer. Again this function must not be called in interrupt context as specified
by the driver API.

3Flushing the buffer is done through the Linux dma-mapping API, calling a synchronization function.
This is the reason why we ask drivers to map and unmap their buffers

Chapter 4 Linux Integration 75

4.3 Experiments

To validate the Linux integration we integrated our solution and experimented with a
block device. The hardware platform is the same Zybo board as in the previous chapter,
integrating an FPGA and running Linux on the Cortex-A9 processor. The hardware
design integrating the device is the same as before using the same device controller im-
plementation. The only change is really the software part where the device controller
driver has been rewritten for Linux. The rest of the stack is an unmodified Linux kernel
3.6 provided by Xilinx; The only difference with a standard Linux kernel is the addition
of Xilinx drivers to support the Zybo board.

We chose to design a ramdisk, a block device that stores blocks in the DDR mem-
ory, rather than driving a real external mass storage, with the intent to compare our
ramdisk with the Linux builtin ramdisk. We reserve a region of memory in the mem-
ory map and use it as storage for our block device. This means that our device reads
and writes blocks in the DDR memory from the programmable logic. The device was
developed with high-level synthesis, using the Vivado tool from Xilinx. The raw per-
formance are 114MB/s for reads and 13MB/s for writes, which is overall slow compared
to the performance of our message conduit with around 200MB/s throughput. It seems
therefore that the Xilinx DMA engine is far better optimized than the logic produced
by high-level synthesis.

Once the Linux module packaging the driver for our block device is loaded in the
Linux kernel, our block device appears as /dev/blka and we could create a file system
and mount it. We compared our performance with the Linux ramdisk /dev/ram0 and
we got encouraging results. The command mksf.vfat ran in 11ms on Linux ramdisk
and 12ms on our device. The command mount took 7ms versus 8ms and the command
umount took 41ms for both devices. To evaluate the throughput, we compare the Linux
ramdisk and ours using the dd command with a block size of 4KB.

The Figure 4.6 gives the throughput when reading from the ramdisks and writing to
/dev/null. The line ram0 shows the throughput for the Linux ramdisk while the line
blka shows the throughput for our ramdisk. Overall, we see that throughput improves
as the size grows, which is logical as there are fixed overheads. With small sizes, these
fixed overheads dominate. With larger size, we are measuring amore realistic through-
put. With larger sizes, we can see that our ramdisk has comparable performance but
there still seems to be an increasing overhead as the size grows.

76 Chapter 4 Linux Integration

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

ram0 READ

dummy blka READ

blka READ

Size read by "dd"

T
hr

ou
gh

pu
t (

M
B

/s
)

FiguRe 4.6: Read Throughput

To identify this overhead, we alsomeasured our dummy block device, the one behaving
as /dev/zero" the throughput is slightly better, so the limiting factor is not the reading
of blocks from memory by the HLS part of our device. So it could be the overhead
of messaging, but it is not. The overhead comes from cache operations, in this case
the cache invalidate operation done by the driver before it can read the block contents.
This is something that any block driver would have to do with a real device on the
programmable logic. The Linux ramdisk can do without because it reads blocks using
a memory copy operation done by the processor, not an external DMA engine. When
removing the cache invalidate operation, our ramdisk performs as the Linux ramdisk.

The Figure 4.7 gives the throughput when writing to the ramdisks and reading from
/dev/zero. Again, the line ram0 show the throughput for the Linux ramdisk while the
line blka shows the throughput for our ramdisk. We see the same overall shapes as for
the read throughput, with the same impact of the fixed overheads inherent to Linux.
Yet, we notice that the write throughput of our ramdisk quickly peaks at 12MB/s. After
investigation, the culprit is the HLS part of our device, with a maximum throughput
of 12MB/s when writing blocks to memory. This is confirmed by the line showing the
throughput for our dummy device, behaving like /dev/null and thus without the HLS
part writing blocks to memory.

Like for reads, we see a performance penalty due to cache operations between our
dummy block device and the Linux ramdisk. Again, the Linux ramdisk can do without

Chapter 4 Linux Integration 77

4K 8K 16
K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16

M

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

ram0 WRITE

dummy blka WRITE

blka WRITE

Size written by "dd"

T
hr

ou
gh

pu
t (

M
B

/s
)

FiguRe 4.7: Write Throughput

because it writes blocks using memory copy operations done directly by the processor.
In contrast, our ramdisk must flush caches before writing blocks, again something
that any block driver would have to do with any real device on the programmable
logic. When removing the cache flush operations, our ramdisk performs as the Linux
ramdisk.

Chapter 5

Xen Integration

We have seen how using messages can improve the integration process of hardware
devices for small embedded systems and bigger Linux based systems. The next logical
step is to see if our solution can also offer solutions for cloud environments. In this
chapter we will see how the cloud is architected and how devices are integrated into
it. We will see what is the state of FPGA adoption in the cloud and how it may evolve
in the future. Finally we will see how we designed and integrated our solution in an
hypervisor and what might be the benefits for the cloud.

5.1 The FPGA Adoption in the cloud

The cloud is a very heterogeneous domain in which various technologies coexist to
provide standardized services. Recently, FPGAs have been integrated in many cloud
solutions [43, 44], providing more hardware programmability, better energy efficiency,
and overall cost efficiency. Despite all those advantages, the adoption of FPGAs is not
fully completed, as understanding how to integrate them seamlessly still requires a
decent amount of work. Indeed, FPGAs are not simple to exploit within applications
while they need to be fully integrated to deliver the benefits they promise [45, 46].

5.1.1 The architecture of the cloud

The core feature of cloud systems is to provide services through a network, either pub-
licly on internet or on private networks. Those services can be split into three main

79

80 Chapter 5 Xen Integration

categories: softwares as a service (SaaS), platforms as a service (PaaS) and infrastruc-
tures as a service (IaaS). SaaS regroup all software applications accessible from a web
browser or a desktop interface. These applications usually access database services
to both run the application and store user data. PaaS provide a full operating system
environment. In this type of service, the operating system and all underlying storage,
network and operating systems are the responsibility of the cloud provider but the user
can install any application or library. IaaS provide one or several virtual machines on
which the user can install any operating system he needs while the underlying hyper-
visor and hardware platform is managed by the provider.

Services are accessible to clients through a network and can be accessible through a
web application, an SSH connection, an FTP server and such. For instance, the famous
application Netflix is a public service, running on a cloud infrastructure, providing
a video and audio streaming service accessible through a web application. Internally,
this service needs other services such as video and audio encoders that are not directly
accessible by users. Some services are even full operating systems executing on what
we call virtual machines. There is thus a high heterogeneity in cloud infrastructures.
Small services interconnected through a network are used internally and assembled to
provide a final service.

Services are implemented in very different ways. They can be implemented as a unique
piece of software, running on one unique machine. More realistically, big services are
implemented by many pieces of softwares and hardware services, running on many
different machines. For instance, the Netflix service is replicated all around the world
to offer maximum performance to all users across the globe. Those services are using
different software and hardware services. We don’t know the exact details of the im-
plementation of Netflix but we can guess that they use hardware services to efficiently
encode audio and video streams. They surely also use software services to manage user
accounts, libraries and high-performance storage. In the end, many different software
and hardware entities interact to implement the end service.

Cloud systems are by nature very heterogeneous. They are geographically spread out
at different scales from a server rack to the entire world. Entities composing a cloud
system are implemented in a variety of manners, both in software or hardware. Hard-
ware accelerators can themselves also be implemented in many ways, either in ASIC
chips or FPGA fabrics. No matter how those accelerators are implemented, they must
be exploitable by software programs. Those software programs can be running on a
lot of different operating systems. Programs must communicate locally on the same

Chapter 5 Xen Integration 81

machine but also distantly using network protocols. In the end, the cloud is a very
heterogeneous world consisting of software and hardware modules working together.

At the very bottom of every cloud stack, there are physical machines and hardware
devices. This bottom layer has three roles: 1) Execute software, 2) Accelerate some
functions (video encoding, neural network inference, data-mining, etc.), 3) commu-
nicate with the outer world. The first role is performed by CPUs and coprocessors
including GPUs. The second role is performed either by ASIC chips or FPGAs. The
last role is performed by network interfaces.

Until now, there is no big difference with usual computers except some very high per-
formance devices. These resources are potentially exploited by software application
programs, running on an operating systems. This is where a big change happens. In
a cloud environment, there is not only one operating system exploiting directly hard-
ware resources. Most of the time in the cloud, for efficiency and cost reasons, operating
systems share the same physical machine. Doing so offers a lot of flexibility. For in-
stance, when two physical machines are running at 50% of their computing capacity,
half of the computing load can be moved from one machine to the other. This allows
to turn off the second machine and save both energy and hardware wear.

To allow different operating systems to share the same physical machine, we add an
additional layer between operating systems and the hardware platform called hypervi-
sor [47]. Figure 5.1 shows an example of an hypervised system using Xen. At the least,
an hypervisor offers an execution scheduler and a virtual memory space. The sched-
uler allows each operating system to run on the same CPU, exactly as a traditional
operating system would schedule processes. The virtual memory space allows each
operating system to have its own memory space preventing one to access the mem-
ory of the other, again exactly as virtual memory space in operating systems isolate
one process from the memory accesses of an other. To make the distinction, we call
machine addresses the addresses used by the hypervisors, physical addresses the ones
used by operating systems and virtual addresses the ones used by processes.

This is what is called virtualisation. Hypervisors virtualize a physical machine to of-
fer a virtual machine in which an operating system can run as usual. These virtual
machines are also known as guests. Some guests run without being aware that they
are hypervized. Each guest managed by the hypervisor is then running without being
aware of other guests, again in the same principle as processes run without knowing
other ones exist. In some guests, the operating system and its processes are running

82 Chapter 5 Xen Integration

FiguRe 5.1: Xen Architecture (gathered from https://wiki.xenproject.org)

as usual on a physical machines, without even knowing the existence of the hypervi-
sor [48]. This allows the operating system running in those guests to be unmodified.

Some other guests, though, can be aware that they are hypervized, a feature called
paravirtualisation. By knowing that it is paravirtualized, a guest can exploit features
offered by its hypervisor. The two most important ones are shared memory and guest-
to-guest interrupts. Hypervisor features are accessed through an hypercall interface.
Hypercalls are similar to system calls (or syscalls), they are traps from a guest to the
hypervisor as syscalls are traps from a process to the operating system.

Having a running environment is not enough to run operating systems, guests need to
access hardware devices such as consoles, displays, network interface, etc. There are
multiple ways to allow hardware devices to be exploited by software services. The first
and very radical way is to fully dedicate hardware devices to one service [49]. This has
the obvious drawback to prevent all other guests to use the same device.

The second way is to split drivers between the guest running the service and a special
guest accessing the hardware [50]. This requires paravirtualization and thus to mod-
ify the operating systems that are meant to be guests. The guest running the service
runs what we call a front-end driver communicating with a back-end driver running in
the special guest to access hardware features. They usually communicate by exchang-
ing with an abstract message protocol made of requests and responses, implemented
through shared memory.

The third way is to virtualize the hardware device using a hardware support. This is for
instance the case in SR-IOV [51]. The idea is to virtualize physical PCI functions into

Chapter 5 Xen Integration 83

virtual functions. Virtual functions can be shared to guests allowing SR-IOV compliant
devices to offer interfaces to different guests.

5.1.2 The state of FPGA adoption in the cloud

FPGAs are more and more integrated in the cloud complementing GPUs solutions.
Indeed, compared to GPUs which are programmed using only software, FPGAs are
facing some issues, in particular regarding programmability and a lack of dynamic-
ity (meaning that they are not easy to reprogram on the fly). But tools are making
progress, in particular HLS solutions which are more attractive to software develop-
pers. HLS offers easier development, debugging and maintenance reducing the cost
of implementing complex features on FPGA making them more and more attractive
compared to GPUs for some classes of application.

Though, programmability is not the only issue to solve; Integrating FPGA is also a big
challenge. Two point of views regarding the integration of FPGAs can be distinguished:
1) FPGAs as a placeholder for devices, 2) FPGAs as programmable logic that must be
shared to end users as such from guest operating systems. The first view is quite
well addressed by some works [52–54] and is focused on sharing the programmable
resources of FPGAs themselves to guests. We chose to target the second view as we
believe that the two are complementary. Even though we see FPGAs as devices place-
holders, it does not prevent works sharing resources of FPGAs to be compatible with
our solution.

In a cloud context, FPGAs are mainly populated with accelerators such as video en-
coding, signal processing and such in order to accelerate software tasks. Integrating
such devices to give guests an access to them has not really been done for FPGAs
specifically but rather for all devices in general. VIRTIO (Virtual Input Output) is a
Linux kernel API in which communications between a guest and its hypervisor are
abstracted [55]. Guests contain front-end drivers for block devices, network devices,
PCI emulation, a balloon driver (used to manage guest memory), and a console driver.
These front-ends communicate with backends in the hypervisor (for instance Linux
KVM [56]) using queues of requests. This design is very inspiring and resembles the
Xen split-driver design. Both influenced our design as they are well proven designs
that works in production systems.

84 Chapter 5 Xen Integration

Another solution to share devices, though limited to PCI interfaces, is Intel’s SR-IOV
(Single Root I/O Virtualization) [57]. With SR-IOV, a physical device, referred as a
Physical Function (PF) appears as multiple Virtual Function (VF). Each VF has its own
configuration space and can be accessed with its own IDs. It also has its own mem-
ory space used to map its register interface. Virtual functions are accessed by guests
exactly in the same way as if they were physical functions. Not all devices are SR-
IOV compliant and this is often used with network cards to improve network perfor-
mances [58]. This solution is also an inspiration for us and shows in particular that
device supporting different contexts of execution (hence multiple guest accesses) is
feasible and can be considered in our design choices.

5.2 The impact of our proposal for the cloud

To help FPGA adoption progress further in the cloud, programmability must be im-
proved [59] as well as device integration [46, 60]. The programmability issue is well
addressed [61–63] and the improvements are made at a good pace [59, 64]. The de-
vice integration issue though needs improvement to help reducing the cost of FPGA
integration. Moreover, interesting works [65–68] such as dynamic partial reconfigu-
ration of FPGAs open new usages and bring more dynamicity [69, 70], and therefore
more challenges, in the lifecycle of devices. Finally, cloud systems have migration ca-
pabilities where guests can move from one hardware platform to another, potentially
changing available devices at runtime. This shows that this dynamicity must be kept
in mind when designing an integration solution for the cloud.

Device integration must be improved to follow these evolutions, although it needs
to accommodate some constraints to keep the solution feasible. These improvements
must follow the needs of cloud systems. It means that direct hardware access is not
a viable solution as devices must always be integrated keeping in mind that they will
be shared among multiple guests. Modifying all drivers to support paravirtualisation
is not sustainable neither, this requires too much work to be done for every existing
operating system. Hardware side, we also can’t make a major revolution by asking to
change neither system interfaces, be it memory, peripheral or processing, nor adding
specific CPU extensions. Instead, we need a solution that fits well in the existing cloud
systems and helps improve FPGA integration with a smooth transition.

Chapter 5 Xen Integration 85

We believe that our solution can help to improve the integration of FPGAs considering
those constraints. The two main strengths of our proposal, message-based communi-
cation and class genericity, are key to address the problem. Indeed, they not only allow
more efficient device integration but fit well in existing hypervisors without the need
of modifying them.

We focus our solution on paravirtualized guests. Indeed, non-paravirtualized guests
can hardly use messages. Their interface with devices can only be the traditionnal
register-based one, they thus can’t be aware of other guests and their channels. The
only types of devices they can handle are thus either fully dedicated hardware devices
(making these devices exclusively usable by one guest) or emulated devices. This type
of guest is interesting to reuse existing device drivers but is less and less common
because devices are hard to share among them and device emulation is not suitable for
high-performance systems.

5.2.1 Message-based communication

Message-based communication is well suited for driver-device communication in
cloud systems. This is in particular confirmed by existing drivers in paravirtualized
operating systems such as the Linux Kernel which already has paravirtualized drivers
using message-based interface, e.g. the block and network drivers. Indeed, compared
to reading and writing in hardware registers, sending and receiving messages is an
easier task to multiplex and demultiplex among multiple guests. Several messages
coming from various guests and going to the same device will simply be sent one after
the other and processed in the same order. In the other way, a device may send mul-
tiple messages to various guests, those messages being routed to the right destination.
This can be done efficiently through producer-consumer queues.

The good news is that message-based drivers are not huge pieces of code. For instance,
in Linux, the frontend part of the paravirtualized block driver is only a little more than
2.7k lines of code long and the backend part is around 3k lines of code. It shows that
with a reasonable implementationwork, a paravirtualizedmessage-based interface can
be implemented and integrated within an operating system.

Hardware side, the impact of messages depends on the programming interface of de-
vices. There are two possibilities here; either devices are integrated with the traditional
register and interrupt based interface, or they are able to process messages themselves.

86 Chapter 5 Xen Integration

In the first case, it means that using messages will require a piece of software that in-
terpret messages coming from guests and perform the appropriate register reads and
writes. In the opposite way it will also produce messages for guests when an event
happens on a device. Even though this works, it may become a problem as it requires
specific drivers interpreting messages differently for each existing device. Linux mit-
igates this issue by having this piece of software interfaced with higher-level layers.
For instance, a message containing a block operation on a storage device will be trans-
lated in a Block I/O request pushed in the right block device request queue. As the
kernel already has drivers for a lot of storage devices, this is not a problem for Linux.

In our solution though we are in the second case, our devices have a message-based
interface and will process messages themselves. It means that software side, small
message proxies making the multiplexing and demultiplexing tasks are needed but no
real message content processing is required. This allows only one generic backend
driver allocated to message transfers, removing the issue of writing many complex
backend drivers.

5.2.2 Class genericity

Using messages not only helps reducing the complexity of backend drivers but also
unlock class-generic drivers. For cloud systems, this is key to reduce the number of
required paravirtualized frontend to develop. This helps to aggregate similar devices,
mitigating a lot the heterogeneity of device hardware implementations. It means that
all devices belonging to the same class are to be driven by the same frontend. For
instance only one frontend for every storage device is required, reducing the amount
of work to interface this frontend with the kernel.

Drastically lowering the number of drivers to implement in order to support a lot of
devices is really the key to help operating systems to be ported in hypervized environ-
ments. Indeed, the less work it requires to write frontends, the more likely operating
systems will be able to run on hypervisors with reasonable hardware support. This of-
fers great possibilities for less popular operating systems to grow up in cloud systems
with a reduced cost.

In a way, Xen related drivers in Linux already have class-generic drivers. Indeed, block
or network devices can be seen as generic classes having their own message-protocol.
The block class uses Block I/O requests while the network class uses sk_buff structures.

Chapter 5 Xen Integration 87

Though, communicating with a block Linux backend from another operating system
is quite hard as it would need to gather a lot of code from Linux. However, it shows
the benefits of grouping devices in classes even for cloud systems.

5.3 Feasibility

With the benefits that our solution can bring to cloud system, we will now see that it
is also feasible to implement it in today hypervisors. We will see what are the base
features of every hypervisors and how our solution can be built on top of that.

5.3.1 Concepts offered by hypervisors

Hypervisors give guests a context of execution that can be compared to a process
execution contexts. This execution context consists of giving guests a set of vCPUs (for
virtual CPUs) as execution units. The number of total vCPUs given to all the guests
on a specific platform can be lower or higher than the number of actual CPUs. These
vCPUs are mapped to actual CPUs by the hypervisor scheduler to equally allow each
guest to advance in its own execution. It means that in opposite to an operating system
running on an actual hardware, a guest operating system can sometimes be completely
halted for a certain period of time while others are running. This must be taken into
consideration in particular when communicating with the hardware. In some cases, it
is required that a guest (for instance communicating with hardware devices) is never
scheduled out. To do that, it is possible to force a vCPU to be always active (or to be
pinned) on an actual CPU.

The memory space is shared between guests in also the same way as with processes
but with an additional layer of address translation. The machine space (the actual
hardware memory being on the system) is shared with a guest by giving the physical
address spaces. Physical addresses are then translated by guests themselves into vir-
tual addresses to allow their processes to share this physical space. This means that to
access the actual data on hardware memory from an address in a process, this address
must be translated to a physical address and then to a machine address. This prevents
guests to corrupt their data and also to access hardware they don’t have the privilege
to interact with.

88 Chapter 5 Xen Integration

Hypervisors also allow vCPUs to receive interrupts. These are virtual interrupts and
are different from actual hardware interrupt. Indeed, as multiple guests can run alter-
natively on the same CPU, we have to make sure that hardware interrupts are trig-
gering the right guest while it is currently running. There are two ways of mapping
real interrupts to virtual guest interrupts. The first and easy one is when a guest has
its vCPU pinned on a particular CPU. In this case, the hardware interrupt can directly
trigger the guest making the situation the same as if the guest operating system was
not hypervized. The other solution is to route the interrupt from the hypervisor. In
this case, the hypervisor receives the interrupt by installing its own interrupt handler.
In its handler, the hypervisor will find to which guest the interrupt is designated (this
can have been setup in various ways, usually at guest startup) and trigger a virtual in-
terrupt to its vCPU. Finally, virtual interrupts can also be used to send guest-to-guest
notifications, allowing a guest to trigger an interrupt in another one, generally notify-
ing that a shared resource has been updated.

The other important feature that hypervisors allow is shared memory. The hypervisor
can setup page translation so that two different physical addresses from two different
guests target the same machine address. This allows two guests to share data and
communicate together. This is in particular very useful when using the split-driver
model, where frontend drivers have to communicate with backends in different guests.

5.3.2 Description of our solution

Our solution is architected as depicted Figure 5.2. In the FPGA, there is a device in-
tegrated into the hardware interface of our conduit. This is the same architecture as
in the previous chapters, nothing new here, the device exchanges messages with its
driver through our conduit. On the software side however, the situation is a bit dif-
ferent due to the fact that we are in a hypervized system. The device driver sits in a
guest operating system (guest1 in Figure 5.2). This driver exchanges messages with its
device using our software interface also sitting in the guest.

Between the driver and its device, there are still channels moving messages between
both ends. To connect channels to its device, the driver has to follow the exact same
procedure as before, with exactly the same API. It first registers itself as a driver with
the software bus to be matched with its device. When matched, it connects channels
and starts exchanging messages with its device. The device lifecycle is also unchanged,

Chapter 5 Xen Integration 89

FPGA

Device

Device
Hardware interface

Processing System
Guest0 Guest1

Hypervisor

Device Driver

Software Bus Interface

Conduit implementation
Frontend sideConduit

Messages traveling
between guests

Conduit Implementation
Backend side

Channels

Streaming endpoints

FiguRe 5.2: Our solution architecture in the cloud

any disconnection event is notified to the driver and it can also disconnect from its
device at any time.

On the hardware side, the device is connected to its controller through the same in-
terface made of streaming endpoints pairs. It sends and receives messages through
these endpoints and honors the same lifecycle protocol we described in Chapter 3. It
exchanges with its device controller a set of generic messages allowing it to follow its
lifeycle. Upon reset, the device sends a first message and exchanges a few messages to
describe itself, and waits for a driver to be matched. The device can also be unmatched
as usual, either because it sent a message notifying it has become unavailable, or be-
cause the driver has been unmatched from the software side.

In a supervised system, our solution thus makes the situation of both ends unchanged
in its principles, both ends keep the same interfaces. The difference stays in the middle,
in the implementation of the channels. Guests have a limited access to the hardware,
they can’t directly access device controllers all at the same time. To do that we need
a unique point used to multiplex hardware accesses, a special guest allocated to this
task, called guest0 in Figure 5.2. This side is commonly called the backend side and con-
tains the first half of the conduit implementation. The guest0 accesses the hardware
and forwards messages to other guests such as guest1 without interacting with device

90 Chapter 5 Xen Integration

FPGA

Device

Device
Hardware interface

Processing System
Guest0 Guest1

Hypervisor

Device Driver

Software Bus Interface

Conduit implementation
Frontend sideConduit

Conduit Implementation
Backend side

4. Open
channels

1. Send AVAILABLE
message

2. Send device
description

3. New device
in the bus

5. Receive
MATCHED
notification

6. Exchanche
messages with

the device

FiguRe 5.3: New device probing

features. These messages are exchanged with the help of the hypervisor and paravirtu-
alized guests in which our conduit implementation sits. In guests, the side commonly
called the frontend side, there is the second part of the conduit implementationmaking
the interface with drivers.

Figure 5.3 shows the scenario of a device waking-up and opening channels with its
driver. When the devicewakes-up it sends its first (AVAILABLE) message containing its
description to the guest0. The guest0 is being notified of the new device and forwards
the device description to the guest1. With this description, the software bus can reify
the device and allow drivers to match it.

Once matched, drivers will open their channels. This will result in the guest0 sending
a MATCHED notification to the device. As multiple drivers among multiple guests
can access the same devices, a device in this situation can receive multiple MATCHED

messages. Thus, each one of these messages contains an extra field, a unique guest-ID
integer used to allow both the device and its controller to track all the guests accessing
it.

Once channels are open, the driver starts sending messages to its device (through the
green path in Figure 5.3). Those messages are sent by the guest1 to the guest0 and

Chapter 5 Xen Integration 91

then forwarded to the device by the guest0. In the other direction, messages are sent
by the device, caught by the guest0 and forwarded through the guest1 to the driver.
The header of messages contains an extra field, the guest-ID used by the device to
know which guest a message is coming from, or which guest a message is going to.

In the case of unmatching a driver from its device the situation is similar as before.
When the unmatching starts from the driver, a notification is sent to the guest0 which
starts shutting down all channels. From here the situation is a little different as multi-
ple drivers from multiple guests access the same device at the same time. This means
that we cannot simply cut all streams and reset the device. Instead, the device con-
troller will only cut the channels of the driver being unmatched using the ID used in
the MATCHED message. The device will then only be reset by its controller when all
drivers have been unmatched to start a new lifecycle.

In the case of a device becoming unavailable, the situation is also similar as before. The
device sends its UNAVAILABLEmessage, making its controller cutting all streams. The
guest0 is then notified of the event by the controller and forwards this notification to
all guests (only guest1 in Figure 5.3). In the guest1, the driver is then notified that it
has lost its device to clean up all resources that are related to it.

There are two stages of communication between devices and drivers: A first stage be-
tween devices and the guest0 and a second stage between the guest0 and other guests.
To allow the guest0 to communicate with devices, we use the exact same hardware
architecture as before. Devices are interfaced with device controllers which typically
contain a DMA engine. The guest0 is given the full access to these controllers allowing
it to drive the DMA engine in order to exchange messages with devices.

Figure 5.4 shows this architecture using a DMA-based controller with ring buffers to
send and receive data. Messages coming and going from and to guests are multiplexed
and demultiplexed through the DMA. When a message comes from a driver, its header
is filled, in particular with the guest-ID and then is put in the transmit (TX) ring. The
DMA consumes messages from the ring and sends them through a stream-based bus
(i.e. an AXI-stream interface) going to the device. The device then receives those
messages from its reception endpoints, processes them and prepares a response. This
response is filled with data and the guest-ID of the destination and then sent through
a transmission endpoint. These responses are then put in the receive (RX) ring by the
DMA. To demultiplex messages, we use the guest-ID field in message headers to know
to which guest the message must be forwarded to ultimately reach the right driver.

92 Chapter 5 Xen Integration

FPGA

Device

Processing System
Guest0 Guest1

Hypervisor

Device Driver

Software bus interface

Conduit

Conduit Implementation
Backend side

Device
Hardware interface

DMA Controller

req1.1

req1.2

req2.1

req1.3

rsp2.1

rsp1.1

rsp1.2

rsp2.2

Guest2

Device Driver

Software bus interface

req1.1
req1.2
req1.3

rsp1.1
rsp1.2

req2.1

rsp2.1
rsp2.2

req1.1
req1.2
req2.1
req1.3

rsp2.1
rsp1.1
rsp1.2
rsp2.2

FiguRe 5.4: DMA based architecture

When there are multiple devices on the same FPGA, two main designs principles are
possible: 1) Using a full device controller for each device, multiplying the number of
DMA controllers by the number of devices, 2) Sharing one DMA controller among
multiple light device controllers. In both case, the situation stays the same from the
point of view of devices and their drivers. In the first case, there is not much changes
compared to using one device. There is one pair of RX and TX rings per device con-
troller and messages are put in their respective TX or RX ring. In the second case, all
devices share the same pair of rings. It means that we need a way to link each mes-
sage with its corresponding device. To do that, we add an extra field in the message
header containing a unique device identification number or device-ID. This ID is set
statically at hardware design time because we assume that there is no modification of
the architecture that resides on the FPGA at runtime. Messages are then put with the
right device-ID in the shared pair of rings.

Figure 5.5 shows an example of a multi-device architecture with multiple guests ac-
cessing them. In this architecture, each device has its own full device controller with
its own DMA controller. Guest1 has drivers connected with devices 0 and 1 and guest
2 has a driver connected with device 1 only. In this example, the rings of the device
controller of the device 1 are shared with two guests. When a message comes from
a guest, it must be put in the right pair of rings to go to the right device. To do that,

Chapter 5 Xen Integration 93

FPGA

Device

Processing System
Guest0 Guest1

Hypervisor

Device Driver

Software bus interface

Conduit Implementation
Backend side

Device
Hardware interface

Dev1 ringsDev0 rings

DMA Controller

Guest2

Device Driver

Software bus interface

(0)req1.1
(0)req1.2
(1)req1.3

(0)rsp1.1
(1)rsp1.2

(1)rsp2.1
(1)rsp2.2

req1.1
req1.2

rsp1.1

Device

Device
Hardware interface

DMA Controller

req2.1
req1.3

rsp2.1
rsp1.2
rsp2.2

(1)req2.1

req1.1
req1.2

rsp1.1 req2.1
req1.3

rsp2.1
rsp1.2
rsp2.2

FiguRe 5.5: Multiple device in a DMA based architecture

guest0 keeps a table associating each pair of rings with an internal device number.
This device number is set beforehand and given to each guest with device descriptions.
Then, when a message is sent from any guest to the guest0, this device number is given
at the same time, allowing the guest0 to know in which TX ring the message must be
put. When receiving a message, this device number is given when forwarding the mes-
sage to the right guest. This will allow the guest to find for which driver the message
is intended.

The second stage of the communication takes place between the guest0 and other
guests. Guests communicate using shared memory and interrupts, but we need to
build a design on top of that to allows messages to be exchanged easily between guests.
The design we choose is suitable for a wide range of devices and is based on shared
memory ring buffers, similar to what we have seen with DMA controllers. For each
guest, we setup a pair of ring buffers to allow it to communicate with guest0. GuestX
to guest0 communication is made in the TX ring and guest0 to guestX is made in the
RX ring. Ring buffers are great lockless structures for producer-consumer communi-
cation. They allow the producer to push any message it wants without locking the
structure while the producer is consuming them at the same time.

Our ring buffers are made of request/response elements. These elements are written
by both sides. The producer writes a request in the ring and the consumer reads and

94 Chapter 5 Xen Integration

Initial State Guest 1 writes 2 requests
in a row

Guest 0 reads one request
and overrite it with a response

Guest 1 reads the response
then writes two requests

Guest 0 reads all requests
and overrite them with responses

Guest 1 reads all responses

FiguRe 5.6: Ring buffer example

processes them then overwrites them with a response. We allow that by defining each
element as a union of requests and responses such that the size of an element is the
biggest size among a request and a response.

Figure 5.6 shows an example of a simple request/response scenario where guest1 is
the producer and guest0 the consumer. Guest1 first fills two requests in a row. After
writing them, it increments a counter indicating which part of the ring has been used
(in other words, this counter indicates the head of the ring). Guest0 reads one request,
processes it and overwrites it with a response. It then increments another counter
indicating that it has filled one response in the ring. Guest1 reads the response and
increments a counter indicating where the tail of the ring is, making the element avail-
able for a new request. It then writes two additional requests in the ring. Guest0
reads all requests and overwrites them with responses, updating the response counter.
Guest1 consumes all responses and empties the ring by updating the tail counter.

We see that there are three relevant counters here, the head counter, the response
counter and the tail counter. The head counter is incremented when the producer
writes a request in the ring. This counter is only incremented by the producer and
never decrements. We also don’t have to take care of overflows because we make the
buffer size a power of two such that the lower bits of a counter indicates an index in
the ring. The response counter indicates where the last response is. It thus indicates
that the request segment is contained between the response counter and the header
counter. The consumer can then process any request and write any response between

Chapter 5 Xen Integration 95

those two counters. The response counter is used by the producer to know the limit
to where it can store requests. It only reads that counter to ensure not to overflow
responses with new requests. When it reads responses, it increments the tail counter
indicating where the end of the read responses is, allowing it to add more request in
the ring.

This type of ring can be full in two cases. Either the ring is full of requests, meaning
that the consumer should consider processing some of them and write responses in
place. This will allow the producer to process these responses and leave place for more
requests. Or the ring is full of responses meaning that the producer should consider
processing some responses before pushing more requests.

Having each pair of guests access these ring buffers requires that they both are able
to access the same data in memory. Thankfully this is a feature that hypervisors give
us using shared memory, allowing us to store ring buffers in pages accessible by both
ends. To do that, the guest0 sets up the pages to store the ring buffers and grants an
access to the other guest using the hypercall interface. The other guest then allocates a
corresponding range of virtual addresses to map them to the shared space. Both ends
can then start using the rings when they know each part is ready.

Having the ring buffer set up in shared memory is not enough to efficiently use them.
Indeed, each end has to knowwhen the other has updated the counters, otherwise, they
would have to poll them indefinitely. To do that, we use guest-to-guest notifications
that we map on interrupt handlers. For each ring, we setup a notification channel in
both ways, allowing each end to notify the other when it has made an update to the
ring.

With ring buffers and notifications, messages can travel between guest0 and other
guests setting up one pair of ring and one two ways notification channel per couple
of guest0/guestX. Ring buffers are setup as scatter-gather rings containing chunks of
messages traveling between guests. Ring buffers elements are filled with a message
buffer descriptor and booleans indicating if the buffer is the first or the last part of a
message. Message buffer descriptors contain a reference to a shared page containing
the chunk of the message, an offset and a length. The shared buffer containing the
chunk is shared exactly in the same way as pages containing rings themselves are.

Message buffers must be allocated and granted to be shared and transported between
two guests, leading to the question of which side allocates those buffers and when it
grants them. This can be managed in two ways. Either they are allocated by each

96 Chapter 5 Xen Integration

end and granted to the other on the fly, or all buffers are allocated and granted by
the guest0. Both solutions have advantages and drawbacks and choosing one over the
other isn’t a trivial choice.

In the first case, each end allocates its own buffers and grants them to the other. The
main advantage is that it avoids copies from the sender of messages. It also is the easi-
est solution to implement as each end never runs out of buffers (except when running
out of physical memory). Though, it can induce copies in the guest receiving messages.
For messages coming from a guestX, going to the guest0 and eventually to the device,
buffers must be in an address space accessible by the hardware. This kind of space is
very often not the whole physical memory space and buffers must thus be copied in
the right space. For messages coming from the hardware, data contained in them are
often copied in guestX to other previously allocated buffers. For instance user owned
buffers, used to interface the kernel space with the user space, are allocated prior to
receiving the message containing the data. Thus, all or part of the data contained in
the message must be copied in this user buffer. The other problem is that each time a
new buffer is allocated, it must be granted on the fly adding non negligible overheads.
Indeed, granting pages ends up in page table manipulation and thus cache flushes im-
pacting performances. Even though this can be mitigated by smartly granting multiple
buffers in one burst, it is not guaranteed that it can be done in optimal ways all the
time.

In the second case, buffers are all allocated and granted beforehand by the guest0. This
solution is a little bit more complex to implement. The guest0 must manage a pool of
buffers and their ownership. Some buffers must be given to guests beforehand in order
to let them write messages to send to devices, giving back the ownership to the guest0.
Some other buffers are given to guests whenmessages are coming from devices, letting
guests process the data into them and give back the ownership to guest0. This has the
advantage that all buffers will be accessible by the hardware, removing the need to
copy buffers before sending them to devices. Though, pre-granted buffers may still
induce copies when sending messages from guestX when the data to send cannot be
put directly into those buffers. This is the case again for user buffers that are allocated
by other layers in the kernel. But even though this is still not always ideal, it still
removes potential copies as we are certain that these buffers are accessible by the
hardware saving some performances. For buffers coming from devices, the situation
is unchanged as the only difference with the former solution is that a pool of buffers
is granted beforehand instead of on the fly.

Chapter 5 Xen Integration 97

It is important to note that this ring buffer design is an example of implementation,
suitable for a lot devices, but is not meant to be a standard. Indeed, some devices may
have very specific throughput requirements, in particular regarding video or audio
streaming devices. In this case, a smarter design may be necessary, for instance using
time allocation (USB call this isochronous). In this type of design, a period of time
is allocated regularly to each devices, such that they are all guarranteed to transmit
messages evenwhen others are saturating the bandwidth. Multiple designs can coexist
in the same system (the low-level driver design is meant to aggregate them) and the
one we just presented is a good start for general-purpose devices.

5.4 Deeper Analysis

To further analyze how our solution can integrate with existing hypervisors we verify
the compatibility with the Xen hypervisor. We will also see what are the consequences
of our solution for device makers and cloud systems.

5.4.1 Integration in Xen

Xen architecture is similar to most hypervisors. It offers guests in which operating
systems are running separately as well as all the features we introduced before. We
chose Xen as it is fairly common in the industry and is quite well documented but
our solution is still compatible with hypervisors offering shared memory and guest-to-
guest interrupts.

Paravirtualization in Xen is architectured around the concept of split-driver [71]. A
normal guest, called DomU (for domain U), has its own little frontend communication
with a backend running in a privileged guest called the Dom0 which has all access to
the real hardware. From now, guests will be called domains as it is the preferred term
in the Xen environment. This Dom0 typically runs a Linux kernel in various available
distribution such as Fedora, Ubuntu, CentOS, etc.

In addition to that, Xen offers a feature called the xenstore. The xenstore is a database
shared between all domains to store and access configuration and status information.
Data in the xenstore are organized as a tree in which nodes are an association of a
key and a string value. It is maintained by the Dom0 which manages read and write

98 Chapter 5 Xen Integration

accesses. At startup a domain is already connected to the xenstore so that it can read
its configuration right at the beginning of its execution. Listing 5.1 shows an example
of the xenstore when only the domain 0 is running. The syntax is fairly simple, each
line associate a key with a value, both being strings and an indentation step represent
one level in the tree.

xenstore-ls : pretty prints current xenstore configuration

local = "" # Local machine

domain = "" # Starting domain definition

0 = "" # Dom0

name = "Domain-0" # Named as expected

device-model = "" # Path to the device model program

(Default used if empty)

state = "running" # Guest state (running , halted , etc)

memory = "" # Domain memory configuration

static-max = "524288" # Maximum domain memory in MB

freemem-slack = "1254331" # Amount of memory left free

(a minimal amount is necessary

to let other guests boot)

Listing 5.1: Xenstore example, borrowed from https://wiki.xenproject.org/

wiki/XenStore

The xenstore is useful in particular when two domains want to share data. Both do-
mains will use the xenstore to store informations about the sharing as well as their
status along the setup of this sharing. This is illustrated by the three following list-
ings which report the evolution of the state of the xenstore during this task. Typically,
things would happen as follows. Let us say that Domain 1 and Domain 2 want to share
a memory page. Domain 1 sets up a space in its xenstore space to allow other guests
to add their domain number when they require a shared page. Then, Domain 2 writes
in the new field connections of Domain 1 to notify that it would like to setup a shared
page as shown in Listing 5.2. Domain 1 then asks xen to grant the page to Domain 2,
giving a granted page number (432 in the example). Domain 1 then writes this number
in the xenstore with its own status as shown in Listing 5.3. This number is then read
by Domain 2 which maps the page in its own address space and update its status in
the xenstore. Finally, Domain 1 updates its status one last time, making its xenstore
space looking like Listing 5.4

local = ""

domain = ""

0 = ""

name = "Domain-0"

https://wiki.xenproject.org/wiki/XenStore
https://wiki.xenproject.org/wiki/XenStore

Chapter 5 Xen Integration 99

1 = ""

name = "Domain-1"

connections = ""

2 = "WaitingForPage" # The state of domain 2

2 = ""

name = "Domain-2"

Listing 5.2: Setting up a shared page in Domain 1
1 = ""

name = "Domain-1"

connections = ""

2 = "WaitingForPage"

PageNumber = "432"

Status = "WaitingOtherEnd"

Listing 5.3: Intermediate state of the sharing procedure. Here Dom2 is waiting for
Dom1 to send the reference to a shared page

1 = ""

name = "Domain-1"

connections = ""

2 = "Shared"

PageNumber = "432"

Status = "Shared"

Listing 5.4: Finalization of the sharing procedure

Xen also implements event channels. They are notification channels allowing a guest
to notify another guest. They are similar to interrupts in the way that they store one
bit of information triggering an event by transitioning from 0 to 1. Also as interrupts,
notifications following an event are masked until the bit is cleared back to 0. Event
channels can also be used to receive hardware notifications, IPIs or VIRQs (the latter
being often use in timers or other CPU events).

Our solution has been implemented for experimentation and debug purpose of top
of all these features. Although we could not achieve proper performance evaluation,
we can still confirm that the solution can be integrated in a Xen environment. The
architecture follows the split-driver model. Front-ends in DomU are implemented as
low-level drivers in our solution as described in Chapter 4. It sits behind the software
bus API implementing channels by communicating with the backend sitting in the
Dom0. These two drivers are fairly small, no more than 1.5k lines of code each. Both
domains run the Linux kernel but we will see later that other solutions are possible.

100 Chapter 5 Xen Integration

To allow both domains to communicate we implemented the ring-buffers we described
in the previous chapter on top of xen features. One pair of RX-TX channels (RX be-
ing from Dom0 to DomU) is setup for each pair of Dom0-DomU domains using the
xenstore. When a DomU starts, the frontend writes in a special xenstore field setup
by the Dom0 to notify that it requires a connection. The Dom0 then sets up an event
channel, binds it to a handler and publishes its reference to the xenstore. It also grant
a page for the RX ring and publish its reference as well. It does not prepare the TX
ring page itself as it is usual that the owner of the page is the one sending requests and
reading responses. When notified of these updates, the DomU connects to the event
channel, maps the RX page and sets up the TX ring page. The setup phase ends when
the Dom0 maps the TX ring page and sends a first event channel to notify that the
communications can start.

The content of the messages between both ends is almost exactly the same as received
by the hardware. This allows the frontend driver to react in the same way as if it
was receiving them directly from the device without any backend in-between. Other
specific requests such as message buffer granting and release are transmitted as other
types of requests. Listing 5.5 shows the structures of both requests and responses
traveling in both rings. It also shows the shared_buffer_descr used to store granted
page references as well as their status to keep track of the current owner of a page.

struct msg_request {

uint32_t type;

union {

struct msg_device_id dev_id;

struct {

/* Small space to store message headers

* Avoid scattered messages to generate

* too much small page sharing */

uint32_t buffer[MSG_HEADER_SIZE /4];

/* Buffer containing the message */

struct shared_buffer_descr buffer_descr;

};

};

};

struct msg_response {

uint32_t type;

Chapter 5 Xen Integration 101

struct shared_buffer_descr buffer_descr;

};

struct shared_buffer_descr {

unsigned int status;

grant_ref_t ref; /* Shared page reference */

};

Listing 5.5: The structure defining messages between domains

When a new device is probed by the Dom0, the backend driver sends its description
through the RX ring filling the dev_id field. Receiving this description, the frontend
instantiates a new device structure and registers it to the software bus, allowing its
driver to connect to it. Once a driver matches its device, the frontend sends the notifi-
cation that the device has been connected, ending in the backend notifying the device
itself. At this point, messages can start being exchanged through the rings.

Messages are transferred along the way between devices and drivers through a decent
amount of layers. From the device, messages sent by it are put in memory by a DMA
(in most practical cases) which triggers an interrupt. This interrupt is normally caught
by the hypervisor and routed to the right guest. This is not a good solution for per-
formance, so what we do, as well as a lot of hypervized systems, is to pin down the
guest accessing the hardware on a specific core, so that the interrupt can be triggered
directly on it. That interrupt will trigger a top handler that will in turn schedule a bot-
tom handler. This bottom handler will look in the DMA ring to find received messages.
These messages are then put in the right frontend ring to forward the message. At this
point two solutions are possible: copying the message in an already shared buffer or
sharing the message buffer on the fly. In both cases the frontend will be notified by
an event triggering a top handler. This handler is as for hardware interrupts in an
interrupt context and will thus schedule a bottom handler that will read all incoming
messages. These messages will be then sent to drivers through the software bus API
triggering their received() callback.

In addition to integrate our solution in guests running a Linux kernel, we experimented
integrating our solution in a smaller operating system called MiniOS. MiniOS is pro-
vided by Xen and can be seen as a hardware abstraction layer, useful to easily im-
plement a small and quick paravirtualized guest. It was first intended to be used to
disaggregate the Dom0 into smaller privileged domains to improve security, isolation

102 Chapter 5 Xen Integration

and reliability in general. In practice, this idea has not been transformed to a final
product but thankfully MiniOS is still maintained enough so that it is possible to inte-
grate our solution in it. This allows small projects to benefits from our solution to have
an easy entry point to integrate in a Xen environment. It also helps to open the way
to move hardware accesses into MiniOS as a Dom0 module and benefits from its small
footprint. Indeed, as good as the Linux kernel is, it is a huge piece of code that may
slow down execution, especially when reacting to hardware interrupts and forward-
ing messages to DomUs. Even though a proper performance analysis is required, we
are confident that such work can be beneficial to remove part of the backend overhead
running inside the Linux Dom0. This solution does not force to change everything, the
Dom0 can still be used as before and is actually crucial as it runs the xenstore. It would
require this MiniOS backend to get a direct access to the FPGA interface (typically the
PCI interface in most cases), the difficult part of this work being to write the DMA
driver in MiniOS.

5.4.2 Consequences of our solution for cloud systems

For hardware devices, our solutions means that they have a message-based interface
with multiple entities (i.e. guests) with which they communicate. We already argued
about the fact that usingmessages for a device does not increase tomuch its complexity,
but managing multiple contexts for a device may become complex. This complexity
depends on the nature of the device and how it works, more specifically on whether or
not the device is stateless. A stateless device has a communication model in which the
same request will have always the same response, no matter how many times it has
been sent before. In other words, a stateless device does not keep amemory of previous
events, its responses only depends on the data contained in requests. These devices can
be sensors, accelerators such as video compression or signal processing. Such devices
are easy to share among multiple guests, multiplexing requests and demultiplexing
responses will do the job. If some global configuration is required though, it is still
possible to reserve a specificmessage channel to a privilege guest, tagging that channel
as an ”exclusive” one.

For stateful devices, the situation is a little more complex, as it will require for the de-
vice to remember the context of each guest. This implies an additional implementation
effort but the benefit is that the device will be available for cloud systems. The amount
of work is hard to evaluate in general; it really depends on the complexity of the device

Chapter 5 Xen Integration 103

itself and whether or not the context memorisation and switching can scale enough
to allow a various number of guests to use this device. Though this is not impossible
as devices under SR-IOV already exist, this particular question needs more research to
evaluate how existing devices can be turned into guest-aware devices.

To mitigate the issue with stateful devices, the idea of context-switching in FPGA [69,
70] can be a solution. This idea is already well developed and offers reasonable perfor-
mance with a low enough latency to be considered interesting to try out. The idea is
to gather the state of the device (i.e. the values of the set of registers that are needed
to characterize its state), store it in memory and replace it with a previously saved
state. As it can take some time (up to a few milliseconds), this is a solution that suits
devices with a non-critical latency but not real-time devices. The impact of the context
switch latency can also be reduced by having a smart message multiplexer that will
reorganize messages to optimize the number of switches to perform.

Another consequence of the solution that exists for every split-driver based solution
is the latency of the Dom0. Indeed, transferring a message from the device to the end
driver in a specific guest requires to schedule the Dom0 first, transfer the message in
its own ring, and schedule the right guest. As we said, reducing the footprint of the
Dom0 by having a small hardware proxy guest can help but there is still room for
improvement. A possible idea is to implement the message proxy in hardware directly
and make it send and receive messages directly in guest rings. This solution could
either perform data transfers in the right addresses by itself or use an IOMMU. Doing
so would still leave the issue of interrupts as all hardware interrupts will wake up only
the Dom0 that must in turn wake up the right guest leaving some latency in the Dom0.
To reduce this latency, it is possible to use a tiny piece of code running exclusively on
one core and dedicated to interrupt routing.

Overall, we believe that our solution is good for cloud systems. It reduces the size of
frontend drivers improving its maintainability and its safety. Our solution also takes
advantage of the concept of device classes, allowing a small backend driver that only
act as a proxy. This makes devices more easily available to guests as the same backend
can be used for future devices.

An interesting side effect about using messages is that frontend drivers can be in a
lot of cases identical, whether in a hypervized or non-hypervized context. Indeed, as
the communication with the hardware is performed either by a paravirtualized low-
level driver under the software bus, or by a low-level driver communicating with the

104 Chapter 5 Xen Integration

hardware directly, the actual device driver will have the same interface in both cases.
This reduces a lot the implementation effort to run an operating system in an hyper-
vized environment, reinforcing our confidence in the fact that our solution eases driver
development, whatever the context.

Chapter 6

Conclusion

FPGA technology opens a lot of great possibilities for silicon-based systems from small
embedded systems to big cloud computing infrastructures. Though all those possibili-
ties come with a major drawback: it worsens the overall integration process of devices
into processor-centric platforms. Indeed, to fully exploit the dynamicity of FPGAs
a new integration approach is necessary. An approach that allows devices to come
and go at any time on the FPGA, having the right responsiveness to load and unload
their drivers at the right time. An approach that simplifies the development of device
drivers by hiding the hardware implementation details of devices. Finally, an approach
that allows devices to share the same drivers, making them readily available and thus
reducing their time-to-market and integration cost.

6.1 Summary

The approach we designed advocates to use messages as the communication paradigm
between devices deployed on FPGAs and their drivers running on the processing
system. This approach is built on existing software and hardware technologies and
concepts. Though, it moves from existing frontier concepts, interrupts and memory
mapped registers, to a simpler, safer and more cost effective frontier made of com-
munication channels. The move can be made incrementally as the approach stays
compatible with existing solutions and does not require a complete move by throwing
out the current practice.

105

106 Chapter 6 Conclusion

One of the key design point of our solution is an abstract conduit for sending and
receiving messages. This conduit has abstract interfaces both with the hardware and
the software, hiding the implementation details to both sides. This leaves only a mes-
sage protocol to follow by both sides. Software side, the interface that faces drivers
provides communication channels. These channels are easy to use to simply send and
receive messages with devices. The interface also allows to discover new devices at
runtime, allowing to dynamically load and unload the corresponding drivers and re-
sources needed to drive devices. Hardware side, the interface that faces devices is
made of simple stream-based endpoints. Each software channel is connected to two
stream-based endpoints, one to receive and one to send messages. Those stream-based
endpoints can be implemented with various standards, allowing to suit the needs of
every user. For instance, we built our demonstration platform with the popular AXI-
stream standard with success. Reusing such popular standards also allows to exploit
existing hardware components and tools and still follow our design rules.

Between both interfaces travel messages made of variable-sized payload. These mes-
sages are general purpose, meaning that the payloads they transport are not inter-
preted by the conduit itself but encapsulated in a generic message protocol. This
generic message protocol defines a generic lifecycle for every device. The lifecycle
allows each device to announce itself at startup (either at FPGA reprogramming time
or at reset time), to announce when it fails, reboots or leaves the FPGA.

Messages and the generic message protocol are the foundations of our solution. They
enable the definition of classes of devices, leading to the specification of class-generic
message-based protocols. This improves time to market of new devices because new
devices belonging to an existing class will likely have an available driver to integrate
them with the operating system. Our approach does not limit next innovations as
message protocols can be extended. This can be useful to allow devices to follow their
own very specific protocol without belonging to any class. It also allows users to define
their own private class or proprietary extensions to existing classes. Even though that
is not something we wish, we acknowledge the fact that some device providers may
want to hide some details of their technology. With proprietary extensions, a device
will still be usable by generic drivers exploiting generic features, but will require the
proprietary driver to exploit all the features it offers.

Following our approach is thus applying the principles behind the USB ecosystem to
the world of programmable logic. It brings enough confidence as messages and class-
generic devices have proven how well they allow easy and cheap integration of a huge

Chapter 6 Conclusion 107

number of different devices. The key elements that allowed the USB success story are
1) A simple and cheap interface for devices, convincing device providers that it is worth
to make the small effort to move to the new interface, 2) Simple software concepts
allowing simpler drivers by hiding hardware details behind a message-based interface
and 3) Defining generic classes of devices allowing one driver to drive thousands of
different implementations of the same type of device. As we retain all those elements,
we have an additional confidence that messages are a very good way to integrate the
device in the context of FPGAs.

Using messages improves the stability and the safety of embedded systems. Indeed,
drivers are simpler to use when using messages to the point of view of a software
developer. Software developers are more used to message protocols and software in-
terfaces rather than to hardware interfaces. In our approach the hardware interface
seen by the software is hidden in our message conduit, a piece of software that is writ-
ten once for every implementation of the conduit, meaning much less often than the
number of drivers and devices in systems. Systems following our approaches are also
safer because the message conduit itself is safer. Indeed, only this conduit has to make
DMA accesses, handle interrupts and have memory mapped registers. It hides this
hardware-software frontier, reducing the risks of bugs leading to wrong memory ac-
cesses from devices, or wrong hardware accesses from the software. Additionally, the
systems are also more secure as devices no longer make direct memory access by them-
selves, they can only send and receive messages through stream interfaces connected
to our message conduit. This means that, intentionally or not, a device cannot make
direct memory accesses to wrong addresses, reducing the risk of memory corruption.
Even if messages are made of completely wrong data bytes, they will simply be treated
as faulty devices without risking the integrity of the system.

We have demonstrated that our proposal is suitable for various environments, showing
that the approach is flexible across a wide range of systems from small embedded
systems to large cloud computing systems. Small systems with low processing power
and small FPGA resources are suitable as the overheadwe add for such systems is small
enough. In those small systems, we built our conduit using existing suitable rather chip
technologies such as memory mapped FIFO queues without big DMA engines. Our
solution is also compatible with bare metal systems since it only adds a small layer of
abstraction including the software side implementation of our message conduit. It can
be adapted with existing hardware abstraction layers offering the basics to access the
hardware, setup interrupts and cache memory management.

108 Chapter 6 Conclusion

Bigger systems with high processing power and huge FPGA resources are also suitable.
In such systems, data transfers are made by full scatter-gather DMA engines. Our im-
pact on those DMA engines is negligible allowing to fully exploit the performances
of existing technologies. Our approach is compatible with the Linux kernel and thus
any Linux distribution. It integrates as a new software bus hosting message-based de-
vices and drivers following our design rules. For cloud environment, we demonstrated
that our approach not only suits well the architecture of the cloud but also offers the
benefits of using messages to enable class-generic devices. Indeed, it allows guest op-
erating systems to have a generic frontend for each class of devices bringing better
device availability and thus a better hardware support in general.

6.2 Perspectives

As a future point of interest, we believe that our approach could benefit for partial
reconfiguration of FPGAs, which might be of interest e.g. for cloud providers. In such
technologies, part or all the FPGA can be reconfigured at runtime by the software,
bringing additional dynamicity to systems integrating FPGAs. It means that devices
deployed in such systems may start, be replaced at runtime by another device, and
comeback later. As our approach allows devices to come and go at any time, it is com-
pletely suitable and may help integrating devices deployed in a partial reconfiguration
context. Each block of partial reconfiguration may be interfaced with a set of end-
points on which devices can connect and start their lifecycle. Once the first messages
exchanges helped recognize the device the right driver notified that a new device it
can handle has appeared and interface it with upper layers of software. Clearly, the
delay of partial reconfiguration can be critical, it means that a detailed investigation
of the delay taken by the first exchanges of messages and potentially find solutions to
reduce it.

Another future point of interest is device-to-device communication. For nowwe follow
a pure host/device view but we see more and more systems in which device-to-device
communication can be useful. For instance, when processing signal, multiple layers
of filters may be used, and some filters may even be used multiple times. Having mul-
tiple layers integrated as devices may benefit from a device-to-device feature instead
of using the CPU and memory between each layer to transfer data between them.
Though, developing such an idea requires to review our message conduit, allowing
channels to be not only from a device to a driver but also between two devices. This is

Chapter 6 Conclusion 109

not something trivial to do as it means that architectures will become more and more
symmetrical, slowly making the concept of host disappear. It will require to review
device lifecycles, ensuring that rendez-vous can be made and broken without loosing
messages or receiving ghost messages from previous channel instances. It will also re-
quire to determine how messages will be buffered. For instance, they can be buffered
in a large external memory, ensuring that messages can fit entirely, or in small buffers
between devices. The topology will also be important. For instance, a star topology
may lead slow devices to slow down all other device communication but is efficient in
term of area usage while a fully connected graph will ensure to have highly parallel
communications but will consume a lot of area. It may also require an additional layer
of generic message protocol to allocate device addresses and negotiate channel opera-
tions between devices. Finally, it means that devices will definitely have the ability to
talk to multiple devices at the same time, leaving the ”one driver to one device” Linux
scheme to something closer to what we have seen in the cloud computing context
where multiple drivers in multiple guests can access the same device.

Bibliography

[1] Kurt Keutzer, A Richard Newton, Jan M Rabaey, and Alberto Sangiovanni-
Vincentelli. System-level design: orthogonalization of concerns and platform-
based design. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 19(12):1523–1543, 2000.

[2] Piyali Goswami, Sushaanth Srirangapathi, Chetan Matad, and Stanley Liu.
Re-target-able software power management framework using soc data auto-
generation. In Proceedings of the 53rd Annual Design Automation Conference,
pages 141–146, 2016.

[3] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, and Gernot Heiser. Dingo: Taming device
drivers. In Proceedings of the 4th ACM European Conference on Computer Systems,
pages 275–288, 2009.

[4] Leonid Ryzhyk, Peter Chubb, Ihor Kuz, Etienne Le Sueur, and Gernot Heiser. Au-
tomatic device driver synthesis with termite. In Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles, pages 73–86. ACM, 2009.

[5] Tarek Ben Ismail and Ahmed Amine Jerraya. Synthesis steps and design models
for codesign. Computer, 28(2):44–52, 1995.

[6] Jean-Yves Brunel, Wido M. Kruijtzer, Harjan J. H. N. Kenter, Frédéric Pétrot, Lau-
rent Pasquier, Erwin A. de Kock, and Wim J. M. Smits. Cosy communication ip’s.
In Proceedings of the Design Automation Conference, pages 406–409, 2000.

[7] Antoine Fraboulet and Tanguy Risset. Master interface for on-chip hardware
accelerator burst communications. The Journal of VLSI Signal Processing Systems

for Signal, Image, and Video Technology, 49(1):73–85, 2007.

[8] Pieter van der Wolf and Ruud Derwig. Modular soc integration with subsystems:
The audio subsystem case. In Proceedings of the Conference on Design, Automation

and Test in Europe, pages 157–162, 2013.

111

Bibliography BIBLIOGRAPHY

[9] Rolf Ernst. Codesign of embedded systems: Status and trends. Design & Test of

Computers, 15(2):45–54, 1998.

[10] Philipp A Hartmann, Kim Grüttner, Philipp Ittershagen, and Achim Rettberg. A
framework for generic hw/sw communication using remote method invocation.
In 2011 Electronic System Level Synthesis Conference (ESLsyn), pages 1–6. IEEE,
2011.

[11] Mattias O’Nils and Axel Jantsch. Operating system sensitive device driver syn-
thesis from implementation independent protocol specification. In Proceedings of

the Conference on Design, Automation and Test in Europe, pages 562–567, 1999.

[12] Fabrice Mérillon, Laurent Réveillère, Charles Consel, Renaud Marlet, and Gilles
Muller. Devil: An idl for hardware programming. In Proceedings of the 4th USENIX
Operating System Design & Implementation Symposium, pages 17–30, 2000.

[13] Shaojie Wang, Sharad Malik, and ReinaldoA. Bergamaschi. Modeling and inte-
gration of peripheral devices in embedded systems. In Ahmed Amine Jerraya,
Sungjoo Yoo, Diederik Verkest, and Norbert Wehn, editors, Embedded Software

for SoC, pages 69–82. Springer, 2003.

[14] S. Chen, L. Zhou, R. Ying, and Y. Ge. Safe device driver model based on kernel-
mode jvm. In Proceedings of the 2nd International Workshop on Virtualization

Technology in Distributed Computing (VTDC ’07), pages 1–8, Nov 2007. doi: 10.
1145/1408654.1408657.

[15] Cody Cutler, M. Frans Kaashoek, and Robert T. Morris. The benefits and costs of
writing a POSIX kernel in a high-level language. In 13th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 18), pages 89–105, Carlsbad,
CA, October 2018. USENIX Association. ISBN 978-1-931971-47-8. URL https:

//www.usenix.org/conference/osdi18/presentation/cutler.

[16] Julia Lawall and Gilles Muller. Coccinelle: 10 years of automated evolution in the
linux kernel. In USENIX Annual Technical Conference, 2018.

[17] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles
Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines
of code later: using static analysis to find bugs in the real world. Communications

of the ACM, 53(2):66–75, 2010.

https://www.usenix.org/conference/osdi18/presentation/cutler
https://www.usenix.org/conference/osdi18/presentation/cutler

Bibliography 113

[18] Wido Kruijtzer, Pieter Van Der Wolf, Erwin De Kock, Jan Stuyt, Wolfgang Ecker,
Albrecht Mayer, Serge Hustin, Christophe Amerijckx, Serge De Paoli, and Em-
manuel Vaumorin. Industrial ip integration flows based on ip-xact standards. In
Design, Automation and Test in Europe, pages 32–37. IEEE, 2008.

[19] M. Jacobsen, Y. Freund, and R. Kastner. Riffa: A reusable integration frame-
work for FPGA accelerators. In Field-Programmable Custom Computing Machines

(FCCM), 2012.

[20] K. Eguro. Sirc: An extensible reconfigurable computing communication api. In
Field-Programmable Custom Computing Machines FCCM, 2010.

[21] M. Jacobsen and R. Kastner. Riffa 2.0: A reusable integration framework for FPGA
accelerators. In Field Programmable Logic and Applications (FPL), 2013.

[22] G. Marcus, W. Gao, A. Kugel, and R. Männer. The mprace framework: An open
source stack for communication with custom fpga-based accelerators. In 2011 VII

Southern Conference on Programmable Logic (SPL), pages 155–160, April 2011. doi:
10.1109/SPL.2011.5782641.

[23] Gernot Heiser and Ben Leslie. The okl4 microvisor: Convergence point of micro-
kernels and hypervisors. In Proceedings of the first ACM Asia-Pacific Workshop on

Systems, pages 19–24. ACM, 2010.

[24] Andrew Warfield, Steven Hand, Keir Fraser, and Tim Deegan. Facilitating the
development of soft devices. In Proceedings of the USENIX Annual Technical Con-

ference, pages 379–382, 2005.

[25] V. Srinivasan, N. Parihar, V. Khurana, and A Gavrilovska. A split driver approach
to soc virtualization - challenges and opportunities. In Proceedings of the 39th

International Conference on Parallel Processing, pages 50–57, September 2010.

[26] Steven JE Wilton and Resve Saleh. Programmable logic ip cores in soc design:
Opportunities and challenges. In Proceedings of the IEEE 2001 Custom Integrated

Circuits Conference (Cat. No. 01CH37169), pages 63–66. IEEE, 2001.

[27] Michael C McFarland, Alice C Parker, and Raul Camposano. The high-level syn-
thesis of digital systems. Proceedings of the IEEE, 78(2):301–318, 1990.

[28] Daniel D Gajski, Nikil D Dutt, Allen C-H Wu, and Steve Y-L Lin. High—Level

Synthesis: Introduction to Chip and System Design. Springer Science & Business
Media, 1992.

Bibliography BIBLIOGRAPHY

[29] Philippe Coussy and Adam Morawiec. High-Level Synthesis: from Algorithm to

Digital Circuit. Springer, 2008.

[30] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia Lawall, and
Gilles Muller. Faults in linux: Ten years later. In Proceedings of the sixteenth

international conference on Architectural support for programming languages and

operating systems, pages 305–318, 2011.

[31] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Gilles Muller, and
Julia Lawall. Faults in linux 2.6. ACM Transactions on Computer Systems, 32(2):
1–40, 2014.

[32] Universal serial bus. http://www.usb.org.

[33] John Regehr. Random testing of interrupt-driven software. In Proceedings of the

5th ACM international conference on Embedded software, pages 290–298, 2005.

[34] X3T9 technical committee of the American National Standards Institute (ANSI).
Small computer system interface, 1994.

[35] Laurentiu-Cristian Duca, Anton Duca, and Aurel-Sorin Lup. Real-time linux
drivers and latency evaluation system for ti omap4 mcspi peripheral. In 2020

International Conference on Electrical, Communication, and Computer Engineering

(ICECCE), pages 1–4. IEEE, 2020.

[36] Introduction to i/o kit fundamentals. https://developer.apple.

com/library/archive/documentation/DeviceDrivers/Conceptual/

IOKitFundamentals/Introduction/Introduction.html.

[37] Windows driver framework. https://developer.microsoft.com/en-us/

windows/hardware.

[38] Fred B Schneider. Byzantine generals in action: Implementing fail-stop proces-
sors. ACM Transactions on Computer Systems (TOCS), 2(2):145–154, 1984.

[39] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S. Tanen-
baum. Failure resilience for device drivers. In 37th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks (DSN’07), pages 41–50. IEEE,
2007.

[40] Tapasweni Pathak. Faults in linux 3.x. Login Usenix Mag., 43(1), 2018.

http://www.usb.org
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/DeviceDrivers/Conceptual/IOKitFundamentals/Introduction/Introduction.html
https://developer.microsoft.com/en-us/windows/hardware
https://developer.microsoft.com/en-us/windows/hardware

Bibliography 115

[41] Patrick Mochel. The Linux kernel driver model. In Proceedings

of the Linux.Conf.Au, 2003. https://www.kernel.org/doc/html/latest/

driver-api/driver-model/overview.html.

[42] Tiobe index for november 2020. https://www.tiobe.com/tiobe-index/. Ac-
cessed: 2020-11-11.

[43] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fow-
ers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young
Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Papamichael, Lisa
Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. A cloud-scale acceler-
ation architecture. In 2016 49th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[44] Feifei Li. Cloud-native database systems at alibaba: Opportunities and challenges.
Proceedings of the VLDB Endowment, 12(12):2263–2272, 2019.

[45] Suhaib A Fahmy, Kizheppatt Vipin, and Shanker Shreejith. Virtualized fpga accel-
erators for efficient cloud computing. In 2015 IEEE 7th International Conference on

Cloud Computing Technology and Science (CloudCom), pages 430–435. IEEE, 2015.

[46] Dario Korolija, Timothy Roscoe, and Gustavo Alonso. Do OS abstractions make
sense on FPGAs? In 14th USENIX Symposium on Operating Systems Design and

Implementation, pages 991–1010, 2020.

[47] Harry Katzan Jr. Operating systems architecture. In Proceedings of the May 5-7,

1970, spring joint computer conference, pages 109–118, 1970.

[48] Gerald J Popek and Robert P Goldberg. Formal requirements for virtualizable
third generation architectures. Communications of the ACM, 17(7):412–421, 1974.

[49] Gary R Allred. System/370 integrated emulation under os and dos. In Proceedings

of the May 18-20, 1971, spring joint computer conference, pages 163–168, 1971.

[50] Wei Huang, Jiuxing Liu, Bulent Abali, and Dhabaleswar K Panda. A case for high
performance computing with virtual machines. In Proceedings of the 20th annual

international conference on Supercomputing, pages 125–134, 2006.

[51] Yaozu Dong, Zhao Yu, and Greg Rose. Sr-iov networking in xen: Architecture,
design and implementation. In Workshop on I/O Virtualization, volume 2, 2008.

https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html
https://www.kernel.org/doc/html/latest/driver-api/driver-model/overview.html
https://www.tiobe.com/tiobe-index/

Bibliography BIBLIOGRAPHY

[52] S. A. Fahmy, K. Vipin, and S. Shreejith. Virtualized fpga accelerators for efficient
cloud computing. In 2015 IEEE 7th International Conference on Cloud Computing

Technology and Science (CloudCom), pages 430–435, 2015. doi: 10.1109/CloudCom.
2015.60.

[53] Fei Chen, Yi Shan, Yu Zhang, Yu Wang, Hubertus Franke, Xiaotao Chang, and
Kun Wang. Enabling fpgas in the cloud. In Proceedings of the 11th ACM Confer-

ence on Computing Frontiers, CF ’14, New York, NY, USA, 2014. Association for
Computing Machinery. ISBN 9781450328708. doi: 10.1145/2597917.2597929. URL
https://doi.org/10.1145/2597917.2597929.

[54] Wei Wang, M. Bolic, and J. Parri. pvfpga: Accessing an fpga-based hardware
accelerator in a paravirtualized environment. In 2013 International Conference on

Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages 1–9, 2013.
doi: 10.1109/CODES-ISSS.2013.6658997.

[55] Rusty Russell. virtio: towards a de-facto standard for virtual I/O devices. ACM
SIGOPS Operating Systems Review, 42(5):95–103, 2008.

[56] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: the Linux Virtual
Machine Monitor. In Proceedings of the Linux Symposium, volume 1, pages 225–
230, 2007.

[57] Byron Gillespie, Marc Goldschmidt, Terry Sych, and Bruce Young. Method and
apparatus for interfacing a device compliant to a first bus protocol to an external
bus having a second bus protocol and for providing virtual functions through a
multi-function intelligent bridge, May 12 1998. US Patent 5,751,975.

[58] Jiuxing Liu. Evaluating standard-based self-virtualizing devices: A performance
study on 10 gbe nics with sr-iov support. In 2010 IEEE International Symposium

on Parallel & Distributed Processing, pages 1–12. IEEE, 2010.

[59] Jason Cong, Zhenman Fang, Yuchen Hao, Peng Wei, Cody Hao Yu, Chen Zhang,
and Peipei Zhou. Best-effort fpga programming: A few steps can go a long way.
arXiv preprint arXiv:1807.01340, 2018.

[60] Fritjof Steinert, Philipp Kreowsky, Eric L Wisotzky, Christian Unger, and Benno
Stabernack. A hardware/software framework for the integration of fpga-based
accelerators into cloud computing infrastructures. In 2020 IEEE International Con-

ference on Smart Cloud (SmartCloud), pages 23–28. IEEE, 2020.

https://doi.org/10.1145/2597917.2597929

Bibliography 117

[61] Antoine Floc’h, Tomofumi Yuki, Ali El-Moussawi, Antoine Morvan, Kevin Mar-
tin, Maxime Naullet, Mythri Alle, Ludovic l’Hours, Nicolas Simon, Steven Der-
rien, et al. Gecos: A framework for prototyping custom hardware design flows.
In 2013 IEEE 13th International Working Conference on Source Code Analysis and

Manipulation (SCAM), pages 100–105. IEEE, 2013.

[62] Konstantinos Krommydas, Ruchira Sasanka, and Wu-chun Feng. Bridging the
fpga programmability-portability gap via automatic opencl code generation and
tuning. In 2016 IEEE 27th International Conference on Application-specific Systems,

Architectures and Processors (ASAP), pages 213–218. IEEE, 2016.

[63] Dirk Koch, Frank Hannig, and Daniel Ziener. FPGAs for software programmers.
Springer, 2016.

[64] Christian Fibich, Stefan Tauner, Peter Rossler, Martin Horauer, Herbert Taucher,
andMartinMatschnig. Preliminary evaluation of high-level synthesis tools-xilinx
vivado and panda bambu. In 2018 IEEE 13th International Symposium on Industrial

Embedded Systems (SIES), pages 1–4. IEEE, 2018.

[65] E. J. McDonald. Runtime fpga partial reconfiguration. In 2008 IEEE Aerospace

Conference, pages 1–7, 2008. doi: 10.1109/AERO.2008.4526368.

[66] J. Heiner, B. Sellers, M. Wirthlin, and J. Kalb. Fpga partial reconfiguration via
configuration scrubbing. In 2009 International Conference on Field Programmable

Logic and Applications, pages 99–104, 2009. doi: 10.1109/FPL.2009.5272543.

[67] W. Lie and W. Feng-yan. Dynamic partial reconfiguration in fpgas. In 2009 Third

International Symposium on Intelligent Information Technology Application, vol-
ume 2, pages 445–448, 2009. doi: 10.1109/IITA.2009.334.

[68] P. Sedcole. Modular dynamic reconfiguration in virtex fpgas. IEE Proceed-

ings - Computers and Digital Techniques, 153:157–164(7), May 2006. ISSN 1350-
2387. URL https://digital-library.theiet.org/content/journals/10.

1049/ip-cdt_20050176.

[69] Arief Wicaksana, Alban Bourge, Olivier Muller, and Frédéric Rousseau. Demon-
stration of a context-switchmethod for heterogeneous reconfigurable systems. In
2016 26th International Conference on Field Programmable Logic and Applications

(FPL). IEEE.

https://digital-library.theiet.org/content/journals/10.1049/ip-cdt_20050176
https://digital-library.theiet.org/content/journals/10.1049/ip-cdt_20050176

Bibliography BIBLIOGRAPHY

[70] S. M. Scalera and J. R. Vazquez. The design and implementation of a context
switching fpga. In Proceedings. IEEE Symposium on FPGAs for Custom Comput-

ing Machines (Cat. No.98TB100251), pages 78–85, 1998. doi: 10.1109/FPGA.1998.
707884.

[71] Andrew Warfield, Steven Hand, Keir Fraser, and Tim Deegan. Facilitating the
development of soft devices. In USENIX Annual Technical Conference, General

Track, pages 379–382, 2005.

	1 Introduction
	2 Context and Problem overview
	2.1 Problem illustration
	2.2 SoC approaches for HW/SW integration
	2.3 OS approaches to simplify device driver development
	2.4 Summary

	3 Message-Based Integration for Embedded Systems
	3.1 The Current Integration Challenge
	3.2 Background
	3.3 Message-Based Integration Solution
	3.3.1 The Software Perspective
	3.3.2 The Hardware Perspective
	3.3.3 The Overall Lifecycle

	3.4 Messages and Class-Genericity
	3.4.1 Using Messages
	3.4.2 Class-Generic Protocols
	3.4.3 Heterogeneity

	3.5 Evaluation
	3.5.1 Overhead Evaluation
	3.5.2 Small Embedded Systems

	3.6 Summary

	4 Linux Integration
	4.1 Background
	4.1.1 Linux kernel modules
	4.1.2 User-space interfaces
	4.1.3 Linux Device Driver Model
	4.1.3.1 Devices, Drivers, Buses

	4.1.4 Software-Hardware communication in Linux
	4.1.5 Some bus implementation examples in Linux
	4.1.5.1 PCI drivers
	4.1.5.2 USB drivers

	4.2 The Extension Proposal
	4.2.1 A new message bus for Linux
	4.2.2 Driver API
	4.2.3 Low Level Driver API

	4.3 Experiments

	5 Xen Integration
	5.1 The FPGA Adoption in the cloud
	5.1.1 The architecture of the cloud
	5.1.2 The state of FPGA adoption in the cloud

	5.2 The impact of our proposal for the cloud
	5.2.1 Message-based communication
	5.2.2 Class genericity

	5.3 Feasibility
	5.3.1 Concepts offered by hypervisors
	5.3.2 Description of our solution

	5.4 Deeper Analysis
	5.4.1 Integration in Xen
	5.4.2 Consequences of our solution for cloud systems

	6 Conclusion
	6.1 Summary
	6.2 Perspectives

	Bibliography

