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New robust and probabilistic models for shelter location in wild fire context

In this chapter we introduce our model for shelter location in a forest fire context and specifically a new original evacuation strategy called Under Pressure. We then define the two main problems studied in this thesis, namely the Probabilistic p-Center under Pressure problem and the Robust p-Center under Pressure problem. We determine the set of feasible solutions for these problems. Finally, we emphasize the differences of these new problems with existing models in the literature.

REMERCIEMENTS

Je tiens à remercier très chaleureusement mes encadrants, Cécile Murat et Marc Demange, et à leur exprimer toute ma gratitude. Vous m'avez assuré un environnement de travail agréable, autonome et sécurisant. Merci pour vos conseils, votre professionnalité et votre amitié. Merci Cécile pour ta disponibilité à tout moment. Merci Marc pour l'accueil et le temps passé ensemble à Melbourne. Je repenserai surement avec nostalgie à nos réunions skype/teams/framatalk matins et soir, à adapter selon les différences de fuseaux horaires du moment. Merci à Virgine Gabrel également, pour les séances de travail passées avec Cécile et les fous rire, entre autres sous le soleil andalou.

Une thèse c'est un encadrement, et c'est aussi un environnement propice pour l'esprit et le corps. Je tiens à remercier mes proches, en premier lieu mes parents, qui se faisaient du soucis pour mon bac. Je vous dédie cette thèse. Je tiens à remercier particulièrement ma mère, qui m'a soutenu en cette dernière année de retraite et de confinement covid. Merci à vous deux, Petra et Alexandre, pour l'amitié et l'adelphité qui nous lie et qui me rassure. Merci à mes ami.e.s, ma famille choisie, qui avez partagé le plus mon quotidien et mes questionnements d'une certaine manière. Merci Floriane, Titi, Nasr, Rémi, Noémie, Diane, Marine, Anais, Luce, Thibaut, Julie, Louise, Cornelia, Karim, Celine, Elma, Fantin, Noémie, Pleu et les autres, de toute façon vous n'allez pas lire ces lignes. Merci à tous.tes celleux avec qui j'ai passé des bons moments tout simplement.

Merci aux camarades du Lamsade. Merci à Vangelis Paschos de m'avoir invité à boire un café il y a 5 ans de cela. Je ne sais pas si je serai venu faire un master de recherche à Dauphine sans cette invitation, et du coup l'opportunité d'effectuer cette thèse. Merci aux collègues et amis doctorants, pour nos débats et l'ambiance studieuse au laboratoire. Justin, Ian, George, Mehdi et Mehdi, Hiba, Thomas, Axel, Diana, Amin, Khalil, Beatrice, Ioannis, Celine, Aude, Maude, Olivier, Annaelle et j'en oublie surement, ça fait trop longtemps que l'on ne s'est plus vus. Merci à tous mes collègues du Lamsade, je suis content d'avoir été membre de ce laboratoire à vos côtés. Merci aux personnes qui m'ont conseillé il y a des années de cela, quand j'étais fraîchement diplomé de l'UTC. Je pense en particulier à Taha Araboui et Veronique Misseri.

Enfin, j'aimerai remercier le compositeur Joe Hisaishi, dont la musique m'a tant accompagné durant mon travail. Elle m'a apporté le sourire et la volupté dans les moments les plus difficile.

SUMMARY

Due to the effects of global warming, the increase in number and in severity of forest fires, or wild fires, is a matter of concern around the world. Natural disasters like forest fires require an emergency management. Emergency management consists in a continuous process with four key components: mitigation & prevention; preparedness; response; and recovery. In this context, we address the problem of locating shelters to mitigate the casualties caused by a fire. We propose new shelter location models as two-phase problems, where the first phase incorporates elements of prevention and preparedness, while the second phase corresponds to the response.

A shelter is a safe place that provides cover from the fire. They can reduce the evacuation time and thus the number of casualties, and they allow to save resources that would otherwise have to be employed to ensure people safety. Recent studies have highlighted the need to develop new models for the location of fire shelters which was confirmed in discussions with final users as part of the GEO-SAFE project.

The problems of determining the "best" location for a set of facilities in order to serve a set of demand points are generally referred as Facility Location problems. These problems lie at the core of the Location Science research area in the field of Operations Research, and more precisely of Combinatorial Optimization. The meaning of "best" depends on the nature of the problem under study, in particular the constraints and of the optimality criteria considered. Problems where the input data available to decision-makers are incomplete, or non deterministic at the time of decision-making, are said under indeterminacy.

We want to locate a limited number of shelters on a territory where the general objective is to minimize the risk of having people trapped by the flames, i.e., to maximize their chance to reach a safe shelter before the fire gets too close. We represent the territory by a graph. The uncertainty of fire outbreaks is introduced taking into account a finite set of fire scenarios. A scenario defines a fire outbreak on a single zone with the main consequence of modifying the operational paths.

At most p shelters are to be located on vertices in the preparedness phase, thus our solution is a p-set. In the response phase, that is when a scenario occurs, everyone in the territory must reach a shelter following an evacuation path. The main novelty of our model is the Under pressure evacuation strategy. With this evacuation strategy, we propose a robust representation of the evacuation of the source vertex: as there may be different people in different places within the source vertex, and given the pressure induced by the imminent danger and the disruptions caused by the fire on the internal transport network in the source vertex, we consider that any of the paths leaving the vertex may be used for evacuation.

We introduce two problems with the Under Pressure evacuation strategy, which differ by the indeterminacy environment considered. We introduce then two new facility location problems, incorporating the UP evacuation strategy, as non deterministic variants of the classicMin p-Center problem. The PpCP problem for a risk environment, and the RpCP problem for an uncertainty environment.

In our thesis, we analyze the hardness of RpCP and PpCP. We present NPhardness results for RpCP and non-approximation results for PpCP. We take care of establishing hardness results on classes of graphs with practical significance, like planar graphs or subgrids. Then we present polynomial approaches to generate exact or approximation results for PpCP and RpCP. We use auxiliary subproblems that reveal to be interesting on their own. Finally, we present different mathematical methods to compute exact solutions of RpCP and PpCP. In particular, we propose an efficient algorithm for RpCP, tractable on large instances as shown by our experimental results.

R ÉSUM É

A cause du réchauffement climatique, le nombre et l'intensité des feux de forêts augmentent autour du globe. Ces feux provoquent d'importants dommages sociauxéconomiques et écologiques. De nombreuses études récentes soulignent la nécessité d'élaborer de nouvelles politiques qui tiennent compte des interrelations complexes et dynamiques entre les facteurs sociaux, économiques, environnementaux et politiques. Des campagnes de sensibilisation doivent être développées sur le risque d'incendie dans toutes les régions touchées afin que les individus et les collectivités puissent se préparer à ce type d'événements. De plus, la communauté scientifique développe de nouvelles méthodes et de nouveaux outils pour aider à limiter les impacts des incendies sur nos sociétés et notre environnement. Cette thèse, organisée en cotutelle entre Paris-Dauphine Université et RMIT University, s'inscrit dans le cadre du projet "Geospatial based Environment for Optimization Systems Addressing Fire Emergencies", GEO-SAFE financé par Horizon 2020 Marie Sklodowska-Curie RISE. Le projet GEO-SAFE vise à proposer des méthodes innovantes dans la gestion de problèmes liés aux incendies de forêt. Les situations d'urgence liées aux catastrophes naturelles se caractérisent par un environnement décisionnel difficile, des autorités publiques confrontées à des délais serrés, des ressources limitées, une énorme quantité de données à analyser, une incertitude extrême et des objectifs multiples qui peuvent entrer en conflit ainsi que de fortes contraintes lorsqu'il s'agit de traiter des questions de sécurité et de sauver des vies. La gestion des urgences consiste en un processus continu comportant quatre éléments clés : la prévention et l'atténuation, la préparation, l'intervention et le rétablissement. Dans ce contexte, nous abordons le problème de la localisation d'abris anti-feu, ou refuges, dans le but d'atténuer le plus possible le nombre de victimes d'un incendie. Un refuge est un bâtiment équipé pour protéger les personnes contre les flammes, mais il peut aussi s'agir d'un point de rassemblement d'urgence sécurisé. Les autorités publiques ont manifesté un intérêt croissant pour ce type de refuge. Bien que l'idée ne soit pas nouvelle, son efficacité dépend fondamentalement de la méthode de localisation des refuges : comme le territoire à couvrir par un ou plusieurs refuges peut être arbitrairement grand, le décideur doit prendre en considération les voies et le temps nécessaire aux personnes dispersées sur le territoire pour atteindre un refuge. Il est en effet nécessaire de garantir des conditions d'évacuation sûres pour les randonneurs et autres utilisateurs de la forêt. Comme les incendies et leurs conséquences sont par nature imprévisibles, il peut être difficile de localiser les refuges de façon adaptée à chaque configuration possible de feux. Des études récentes ont mis en évidence la nécessité de développer de nouveaux modèles pour la localisation des refuges ce qui a été confirmé lors des discussions avec les utilisateurs finaux dans le cadre du projet GEO-SAFE. Nous proposons de nouveaux modèles non-déterministes de localisation des refuges en deux phases. La première phase comporte des éléments de prévention et de préparation. La deuxième phase décrit l'intervention déclenchée par un départ de feu. Ces problèmes s'inscrivent dans le domaine plus large des problèmes de localisation (en anglais Facility Location), domaine appartenant au champ de la recherche opérationnelle et de l'optimisation combinatoire. L'approche non-déterministe permet de mieux appréhender l'incertitude et le manque de données inhérents aux problèmes liés aux feux de forêts. Dans ce cadre, notre objectif est de localiser sur un territoire un nombre limité de refuges, de sorte à minimiser le risque que des individus soient piégés par des flammes.

Nous considérons dans cette thèse un territoire avec une faible densité d'individus présents (résidents ou utilisateurs de la forêt). Le territoire est représenté par un graphe connexe non-orienté. Chaque sommet du graphe correspond à une zone, et deux sommets sont connectés par une arête pondérée si on peut aller d'une zone à l'autre. Une longueur peut-être associée à chaque arête, celle-ci corresponds alors à la distance d'une zone à l'autre ou à la durée nécessaire pour se déplacer d'une zone à l'autre. Quand un feu se déclare sur une zone, nous appelons le sommet correspondant le sommet source. Nous utilisons des scénarios pour décrire les possibles évolutions de l'état du système causés par un départ de feu. Nous considérons que lorsqu'un feu de forêt se déclare, il existe des systèmes d'alerte rapides et efficaces (mais non personnalisés, par exemple des sirènes) pour appeler tous les individus présents sur le territoire à évacuer vers un refuge. Dans cette thèse nous ne prenons pas en compte la capacité des refuges vu que, dans notre contexte, les refuges sont bâtis avec des capacité relativement très larges. Dans cette thèse, nous considérons des scénarios où le feu est restreint à une zone. En effet, une fois l'alarme donnée, nous considérons que les individus doivent évacuer dans un délai de temps très court, avant que le feu ne se propage au-delà de sa zone de départ. Ces hypothèses dépendent de la méthode de modélisation du ter-ritoire en zones. Notre problème peut alors être décrit comme un cas particulier de problèmes de localisation-allocations. Une solution décrit une localisation de refuge sur les graphe, qui correspond à un sous-ensemble de sommets. De plus, une solution induit, pour chaque scénario et pour les individus présents sur une zone, une possible allocation à refuge à rejoindre. Plus précisément, une allocation correspond à un chemin d'évacuation. On appelle stratégie d'évacuation les actions attendues prises par les individus évacuant le territoire lorsqu'un feu se déclare. La stratégie d'évacuation induit les chemins d'évacuations qui seront empruntés par les individus selon leur position et le scénario. La principale contribution de notre thèse est de proposer la nouvelle stratégie d'évacuation nommée Under Pressure, qui décrit plus fidèlement les décisions prises sous pression du danger. La principale originalité de cette stratégie est la suivante : si aucun refuge n'est localisé sur le sommet source, alors on considère qu'il existe un chemin d'évacuation vers chaque sommet adjacent. Cette hypothèse de modélisation peut-être doublement justifiée : le feu dans la zone source peut restreindre la mobilité interne, interdisant d'accès certaines voies de sorties ; la proximité, l'intensité et l'immédiateté du danger peut affecter la prise de décision des individus sur cette zone. Dans les 2 cas, on ne peut déterminer la direction d'évacuation immédiate choisie par les individus sur la zone source, nous devons donc considérer que n'importe quelle arête sortante peut être empruntée. Pour tous les autres sommets du graphe, un chemin d'évacuation est un plus court chemin entre ce sommet et le plus proche refuge. On appelle distance d'évacuation du sommet la longueur maximum d'un de ses chemins d'évacuation. Notre stratégie d'évacuation induit des distances d'évacuations particulières qui marquent la spécificité de notre modèle. Nous introduisons deux problèmes s'appuyant sur la stratégie d'évacuation Under Pressure, qui diffèrent par l'environnement non-déterministe considéré. Nous présentons ces deux problèmes comme des variantes non-déterministe du problème déterministe classique du Min p-Center: le Min p-Center est le problème de trouver un ensemble de au plus p sommets, appelés centres, tel que la distance d'un sommet du graphe à un plus proche centre soit minimale. Dans notre cas les centres correspondent aux refuges.

Sous la stratégie d'évacuation Under Pressure, la valeur d'une solution pour un scénario donné est le rayon d'évacuation, dont la valeur est donnée par la distance d'évacuation maximum d'un sommet pour ce scénario. Nous définissons deux nouveaux problèmes sur la base de deux catégories d'environnements nondéterministe : l'environnement d'incertitude et l'environnement de risque. Dans un environnement de risque, la valeur de certains paramètres non-déterministes suivent des lois de probabilité connues par le décideur. Cette configuration s'inscrit alors dans le cadre de l'optimisation stochastique ou probabiliste. Le Probabilist p-Center Under Pressure noté PpCP est le problème de localiser au plus p refuges de sorte à minimiser le rayon d'évacuation moyen sur tous les scénarios. Dans un environnement d'incertitude, aucune information probabiliste n'est connue ou utilisée pour les paramètres non-déterministes. Cette configuration s'inscrit alors dans le cadre de l'optimisation robuste. Le Robust p-Center Under Pressure noté RpCP est le problème de localiser au plus p refuges de sorte à minimiser le rayon d'évacuation maximum sur tous les scénarios. Voici une liste des fortes hypothèses de notre modèle: Dans le chapitre 2, nous décrivons en détail notre modèle. Nous présentons nos hypothèses de modélisation pour représenter le territoire, les refuges et l'incertitude liée aux départs de feu. Nous introduisons les problèmes du RpCP et du PpCP et l'ensemble des solutions réalisables pour ces 2 problèmes. Nous comparons également nos problèmes à certains travaux pertinents, relevant de la littérature sur le sujet. Dans le chapitre 3, nous analysons la NP-difficulté des problèmes RpCP et PpCP. Nous proposons différentes réductions de problèmes déterministes classiques. Nous présentons également des résultats de non-approximation pour le PpCP. Nous proposons des résultats sur des classes de graphes pertinentes pour notre problème, comme la classe des graphes planaires ou les sous grilles. Dans le chapitre 4, nous présentons des approches polynomiales pour générer des solutions exactes ou approximables pour le PpCP. Nous proposons une solution explicite pour les chemins avec des longueurs d'arêtes uniforme en utilisant des problèmes auxiliaires. La preuve est étonnamment non triviale. Nous présentons également un algorithme pour PpCP garantissant un ratio d'approximation fixe sur les graphes de degrés bornés et de longueur d'arêtes bornée. Dans le chapitre 5, nous proposons des algorithmes exacte à temps polynomial pour RpCP sur différentes classes de graphes acycliques aux arêtes pondérées. Nous utilisons des propriétés structurelles identifiées dans le chapitre précédent pour introduire une méthode basée sur une recherche dichotomique. Nous proposons des algorithmes pour les chemins, les étoiles, les chenilles, et les arbres. Dans le chapitre 6, nous proposons des méthodes mathématiques basées sur la programmation linéaire pour résoudre le RpCP et du PpCP. Ces méthodes sont des généralisations étendues de programmes linéaires existants pour le problème du Min p-Center, qui permettent de prendre en compte l'indétermination et la stratégie l'évacuation Under Pressure.

Présentation des Problèmes

Dans ce chapitre, nous définissons les problèmes étudiés dans cette thèse. Notre objectif est de déterminer le meilleur emplacement pour les refuges dans un territoire menacé par les incendies.

Modélisation

Nous représentons le territoire par un graphe connexe G = (V, E) avec V = {1, . . . , n} l'ensemble de sommets, et E l'ensemble des arêtes pondérées. Pour x, y ∈ V , nous dénotons d(x, y) la distance entre les sommets x et y dans G i.e., la longueur d'un plus court chemin entre x et y. Selon notre modèle, les refuges doivent être placés sur des sommets. Les emplacements des refuges correspondent alors à un sous-ensemble C ⊆ V . Nous utilisons des scénarios pour modéliser les risques de catastrophes. Un ensemble de scénarios S est une description des états du système après qu'un feu se soit déclaré. Nous considérons l'ensemble des scénarios correspondant à un seul sommet en feu, et nous désignons le scénario associé à un départ de feu sur le sommet s ∈ V comme le scénario s ∈ S. Le graphe opérationnel associé au scénario s, dénoté G s = (V s , E s ), est obtenu à partir de G comme suit: toute les arêtes dans E sont gardées dans E s à l'exception des arêtes (s, v), v ∈ V adjacentes au sommet s. Ces arêtes sont remplacées par des arêtes orientées (s, v) (appelés aussi arcs) sortantes de s. Pour x, y ∈ V , nous dénotons d s (x, y) la distance entre les sommets x et y dans G s . Si aucun chemin existe entre x et y dans G s , on note d s (x, y) = +∞.

Une solution décrit également, pour chaque scénario et pour les personnes d'une zone donnée, un ou plusieurs refuge(s) à atteindre sur la base d'une stratégie d'évacuation. La stratégie d'évacuation décrit les mesures que prennent les personnes qui évacuent un territoire une fois qu'un feu se déclare. Cette stratégie d'évacuation doit essayer de prendre en compte les actions que les personnes sur place sont le plus susceptibles d'entreprendre. Nous proposons la stratégie Under Pressure, noté UP. Dans la stratégie UP, nous considérons que, lorsqu'un feu se déclare, tout les individus du territoire doivent rejoindre un refuges. Dans le scénario s, nous avons alors trois cas:

• Pour les individus sur le sommet s, nous avons 2 possibilités:

-Si un refuge est localisé sur le sommet s, nous considérons que les individus peuvent s'y réfugier. Cependant, ce refuge est inaccessible pour tout individus en dehors de cette zone.

-Sinon, nous considérons que les individus fuiront dans un premier temps dans n'importe quelle direction pour atteindre une zone adjacente j. Une fois arrivés à la zone j, ils se dirigeront alors vers un refuge accessible parmi les plus proches depuis j dans G s .

• Pour les individus sur les autres sommets, nous considérons que les individus se dirigent vers un refuge accessible parmi les plus proches dans G s .

Pour garantir un niveau de risque acceptable, nous envisageons le scénario le plus défavorable. La distance d'évacuation d'un sommet v dans le scénario s est alors la longueur maximum d'un chemin d'évacuation de v dans le scénario s. Cette valeur est donnée par:

r s (C, v) =          0 si v = s et v ∈ C max j∈Γ(v) {l v,j + d s (j, C)} si v = s et v ∈ C d s (v, C) si v = s
Fonctions Objectives Robust p-Center Under Pressure (RpCP) Instance:

Un graphe aux arêtes pondérées G = (V, E), un ensemble de scenarios S, un entier p Feasible solutions: Un sous-ensemble C ⊆ V de taille au plus p, avec un rayon robuste fini.

Objective:

Trouver une solution de rayon robuste minimum, si elle existe.

RpCP est étroitement lié à un autre problème d'optimisation qui nous sera utile par la suite.

k-RCP Instance:

Un graphe aux arêtes pondérées G = (V, E), un ensemble de scenarios S, un entier k Feasible solutions: Un sous-ensemble C ⊆ V , avec I R(C) ≤ k.

Objective:

Trouver une solution réalisable de taille minimum.

Dans une approche probabiliste, une probabilité π s est assignée à chaque scénario s. Nous proposons dans ce cas la fonction objective I E, donnée par:

I E(C) = s∈V π s × r s (C)
I E(C) est dit le rayon probabiliste de C. Dans cette thèse, nous nous intéressons uniquement à des scénarios avec une probabilité uniforme i.e., ∀s ∈ V, π s = 1 n .

Probabilistic p-Center under Pressure (PpCP) Instance:

Un graphe aux arêtes pondérées G = (V, E), un ensemble de scenarios S, un entier p Feasible solutions: Un sous-ensemble C ⊆ V de taille au plus p, avec un rayon probabiliste fini.

Objective:

Trouver une solution de rayon probabiliste minimum, si elle existe.

Par la suite, nous dénotons (G, p) une instance du problème RpCP ou PpCP, l'ensemble des scénarios (et leur probabilité dans le cas probabiliste) étant défini en fonction du graphe. Il s'ensuit que, pour tout graphe G, (G, 1) n'admet pas de solution. Pour p ≥ 2, nous pouvons vérifer en temps polynomial si (G, p) admet des solutions. Enfin, un dernier corollaire est la nécessité pour toute solution réalisable de (G, p) d'inclure tout sommet pendant (sommet de degré 1). 

Conditions de faisabilité

Comparaison avec Min p-Center

Considérons le graphe de la figure 1. Pour p = 2, on observe que la solution optimale pour Min p-Center est la solution C = {2, 3} de rayon 1. Le rayon robust de C est de M + 3, induit par les scénarios 2 et 3. Le rayon probabiliste de C est également de l'ordre de M . Dans le même temps, la solution D = {5, 6}, de rayon 2, assure néanmoins un rayon robuste de 3 et un rayon probabiliste de 16/6. Globalement on observe donc que la solution optimal pour Min p-Center peut engendrer une erreur relative d'ordre M .

Enfin, dans la deuxième partie du chapitre 2, nous comparons les problèmes RpCP et PpCP à des problèmes pertinent de la littérature existante s'inscrivant dans le même cadre non-déterministe. À notre connaissance, il s'agit de la première tentative de modélisation du processus d'évacuation de cette manière pour un problème de localisation de refuges. Ce modèle se différencie de la plupart des modèles existants en ce que nous appliquons l'indétermination sur la structure du graphe et non sur la longueur des arêtes. Ce faisant, nous considérons que nous pouvons mieux appréhender l'impact de l'incendie sur les distances d'évacuation.

Résultats de NP-difficulté

Dans ce chapitre, nous analysons la NP-difficulté des problèmes RpCP et PpCP. Nous considérons la version du RpCP avec un seuil de rayon d'évacuation constant, RpCP k . Nous donnons différentes réductions de Min Vertex Cover et Min Dominating Set à RpCP k pour différentes valeurs de k. Il s'ensuit que :

• sur toutes les classes héréditaires de graphes pour lesquelles la version décisionnelle du problème Min Vertex Cover est NP-complète : RpCP 1 est NP-complet et RpCP est NP-difficile.

• sur toutes les classes héréditaires de graphes pour lesquelles la version décisionnelle du problème Min Vertex Cover peut être résolu en temps polynomial : RpCP 1 est résoluble en temps polynomial.

• sur toutes les classes de graphes uniformes sans triangle et de degré minimum 2, pour lesquelles la version décisionnelle du problème Min Dominating Set est NP-complète : RpCP 2 est NP-complet et RpCP est NP-dur.

• dans toutes les classes de graphes uniformes sans triangle et de degré minimum 2, pour lesquelles la version décisionnelle du problème Min Dominating Set est résoluble en temps polynomial : RpCP 2 est résoluble en temps polynomial. RpCP 2 est résoluble en temps polynomial. RpCP 2 est résoluble en temps polynomial. RpCP 2 est résoluble en temps polynomial. RpCP 2 est résoluble en temps polynomial.

Pour le cas robuste, notre résultat le plus solide, soit que RpCP est NP-difficile dans les sous-grilles avec des sommets de degré 2 ou 3, est obtenu par une réduction de Min Vertex Cover à RpCP 2 , par le biais de la relation entre RpCP 2 et Min Dominating Set. En outre, nous avons souligné l'existence de classes de graphes sur lesquelles RpCP 1 est difficile mais RpCP 2 est trivial. Cela semble confirmer qu'une réduction de RpCP k à RpCP k + 1 n'existe pas dans le cas général et, par conséquent, la difficulté de RpCP k sur une classe de graphe donnée doit être étudiée pour toute valeur de k et ne peut être déduite, en général, des résultats de difficulté avec différentes valeurs de k.

En ce qui concerne PpCP, nous donnons deux résultats de non approximation. Premièrement, nous prouvons qu'il n'y a pas d'approximation polynomiale du temps pour PpCP garantissant un rapport inférieur à 20 19 pour les graphes planaires bipartites de degrés 2 ou 3. En particulier, dans la section 3, nous réexaminons la réduction précédente pour prouver que PpCP n'est pas approximable avec un rapport inférieur à [START_REF] Joseph S Martinich | A vertex-closing approach to the p-center problem[END_REF] 55 sur des sous-grilles de degré au plus 3. Même si ce dernier résultat ne généralise pas celui que nous avons obtenu précédemment (la classe est plus restrictive mais la nouvelle limite est plus proche de 1), la preuve nécessite une analyse beaucoup plus approfondie.

Dans le chapitre suivant, nous proposons des méthodes polynomiales pour générer des solutions exactes ou garantissant un ratio d'approximation pour PpCP.

Résults polynimiaux et d'approximation pour le PpCP

Nous avons vu dans le chapitre précédent que PpCP est NP-difficile sur les graphes planaires et les sous-grilles de degrés {2, 3}. Dans ce chapitre, nous proposons des méthodes polynomiales pour calculer des solutions pour PpCP avec des garanties de performance. Nous montrons dans la section 4. 

Méthodes mathématiques

Dans ce chapitre nous proposons des méthodes de programmation mathématique pour résoudre le RpCP et le PpCP dans le cas général. Notre objectif est de fournir un algorithme exact pour les deux problèmes même sur les instances pour lesquels il n'existe pas de méthode polynomiale pour résoudre. Sur la base des formulations de type Mixed Integer Programming (MIP) pour Min p-Center, nous proposons trois formulations MIP pour RpCP et PpCP. Nous proposons également une formulation pour k-RCP, baséee sur une formulation en couverture d'ensemble (Set Covering). La taille des instances générées par nos formulations est cependant en pratique trop importante. Afin de proposer une méthode de résolution efficace pour RpCP, nous proposons des algorithmes exacts basés sur la formulation P rob et en utilisant un schéma de décomposition. Nous présentons trois méthodes différentes pour calculer les limites inférieure et supérieure de RpCP. Pour réduire la taille d'une instance et le nombre d'itérations, nous proposons une généralisation de la recherche binaire : la recherche σ-quantile. Nous testons différents algorithmes, chacun d'entre eux intégrant une méthode différente pour générer les limites inférieure et supérieure. Une de ces méthodes se basent sur une relaxation de P rob , la formulation RP rob , qui correspond à une sous-variante de notre problème pour lequel on ne s'intéresse qu'à l'évacuation du sommet en feu. Nos résultats expérimentaux montrent que l'algorithme EA3* est le meilleur : son efficacité vient de la qualité de la limite inférieure obtenue avec un algorithme de recherche 4-quantile très efficace pour RP rob et du faible temps de calcul. Nous avons testé notre algorithme et généré les différentes limites sur le répertoire d'instances OR et un ensemble domestique de sous-grilles aux longueurs d'arêtes uniformes et non-uniforme. Dans l'ensemble, l'algorithme basé sur RP rob reste le plus efficace en termes de temps de calcul. En outre, nos expériences mettent en évidence les performances d'une solution optimale RpCP par rapport à une solution optimale Min p-Center: nous avons comparé la valeur d'une solution optimale pour Min p-Center prise pour RpCP avec la valeur optimale. Même si nous excluons les cas non réalisables, il apparaît que l'écart peut être assez important, jusqu'à 92% pour des instances avec plus de 100 sommets. * Ces résultats sur RpCP peuvent être directement déduits des resultats correspondants sur PpCP.

Conclusion

Notre travail a encore un grand potentiel de développement, tant d'un point de vue théorique que pratique. Nous concluons notre discussion en énumérant quelques pistes possibles de future recherche. D'un point de vue théorique, une première question ouverte concerne la complexité de la résolution PpCP sur des graphes acycliques pondérés par les bords. Bien qu'on puisse garantir un ratio d'approximation de 3 pour les arbres avec des longueurs d'arêtes non-uniformes mais bornées, nous disposons de peu d'informations sur la structure d'une solution optimale pour PpCP sur des graphes acycliques, ne serait-ce que sur un chemin avec arêtes pondérées. Une piste de recherche serait d'analyser la qualité de la solution optimale de RpCP, calculable en temps polynomial sur ces graphes par rapport à PpCP. Pour RpCP, nous avons commencé à mettre en oeuvre nos algorithmes polynomiaux pour les graphes acycliques. Il serait intéressant d'évaluer leur efficacité à l'aide de résultats expérimentaux. En outre, nous n'avons pas eu le temps de concevoir un algorithme d'approximation spécifique pour RpCP sur des graphes et sous-grilles planaires. Un bon point de départ serait de considérer des graphes avec exactement un sommet pendant, et aucun point d'articulation. Dans cette configuration, le problème serait de décider de l'emplacement des autres refuges. Notez que la NP-difficulté de RpCP n'est pas établie sur de tels graphes. Cette approche s'inspire des algorithmes d'approximation des graphes acycliques. En effet, comme les refuges doivent être situés sur les sommets en attente, ces sommets en attente sont la base de nos solutions.

Une autre piste de recherche significative consisterait à améliorer notre algorithme exact basé sur IP pour RpCP et à développer un algorithme exact efficace pour PpCP. Pour ces deux problèmes, nous devrions être en mesure de mettre en oeuvre une décomposition de Benders pour résoudre le problème soulevé par la taille des problèmes. Compte tenu de la qualité observée d'une solution optimale pour RP rob dans le chapitre 6, RP rob peut être considéré comme le problème maître initial. De plus, il serait intéressant de déterminer et de générer des contraintes spécifiques à la classe du graphe considéré.

Une ligne de recherche intéressante serait de considérer les distances vérifiant les inégalités des triangles, et d'analyser si elles induisent des propriétés structurelles pour nos problèmes.

Enfin, certaines hypothèses initiales (propriété des refuges, définition de scénarios, etc.) peuvent être adaptées pour générer différentes variantes de nos problèmes. La pertinence de ces variantes dépend principalement de leur application pratique. D'un point de vue pratique, notre modèle peut être adapté à différentes configurations de feu. Nous en énumérons quelques-unes. Notez que notre modèle de programmation mathématique pourrait facilement intégrer ces variantes, mais nos résultats combinatoires peuvent changer de manière significative.

1. Nous pouvons prendre en compte différentes contraintes ou conséquences de l'implantation d'un refuge sur une zone.

• Le territoire peut limiter l'emplacement des refuges à certaines zones spécifiques. Dans ce cas, on peut définir dans un premier temps le sous-ensemble des sommets sur lesquels il est possible de localiser un refuge. Cette variante inclut notre modèle comme cas spécifique, ainsi nos résultats de difficulté restent valables. Cependant, des recherches supplémentaires sont nécessaires pour étendre nos résultats de complexité et d'approximation à cette variante.

• Construire un refuge dans une zone peut impliquer de sécuriser complètement la zone correspondante, auquel cas un incendie ne peut pas se produire dans une zone sur laquelle se trouve un refuge. Nous utilisons un problème auxiliaire relativement proche de ce problème dans la section 4. Due to the effects of global warming, the increase in number and in severity of forest fires, or wild fires, is a matter of concern around the world [START_REF]Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[END_REF]. New territories, previously free of such risk, become subject to fires [START_REF] Paton | Wildfire hazards, risks, and disasters[END_REF]. Populations living in these areas and even first responders are not accustomed to such events and thus poorly prepared. As for populations culturally accustomed to facing this kind of challenges, they find themselves increasingly overwhelmed by exceptional events. A new term, "megafire", has appeared in the scientific literature to describe these wildfires of gigantic proportions and breaking free from the rules and observations previously established for smaller fires [START_REF] Williams | Exploring the onset of high-impact mega-fires through a forest land management prism[END_REF]. This trend seems set to normalize: each year, new records are broken by the wildfires in the two hemispheres of the globe. These fires cause significant social and ecological losses. To give an idea, in 2018, the U.S. Fire Administration counted at least 3655 death, and estimated $25 billion (2018 USD) of loss [4]. For the 2019-20 Australian bushfire season, more than 400 direct and indirect human casualties were counted, more than a billion animals were killed, and more than 9000 buildings including 3500 houses were destroyed [5]. Given the high stakes involved, many scientific disciplines are mobilized in order to better understand these new phenomena. Numerous recent studies highlight the need to move on to new policies that attend to the complex and dynamic interrelations between social, economic, environmental, and political drivers [START_REF] Paton | Wildfire hazards, risks, and disasters[END_REF]. Awareness campaigns must be developed over the risk of fires in all affected regions, so that individuals and collectives can prepare for this type of events. In addition, the scientific community develops new methods and tools to help limiting the impacts of fires on our societies and environment.
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CONTEXT AND MOTIVATIONS

This joint PhD was carried out as part of the European project "Marie Sklodowska-Curie Research and Innovation Staff Exchange (RISE)" between Europe and Australia entitled "Geospatial based Environment for Optimization Systems Addressing Fire Emergencies", GEO-SAFE [START_REF]GEO-SAFE project[END_REF]. The GEO-SAFE project started in May 2016 and aims at proposing innovative methods to deal effectively with problems related to forest fires. The project tackles various issues related to fire management, consolidated under 4 different work packages. The first work package, Stochastic Mapping, concerns spatial statistical analysis for the development of a stochastic risk, vulnerability and hazard cartography of a region regarding the likelihood and impact of a wildfire. The second work package, Innovative Models, is primarily concerned with designing new models or improving existing ones in the following fields: fuel management, fire suppression and protection and large scale evacuation modeling. The third work package, Robustness and Efficiency, aims the development of robust models for wildfire management and the design of new algorithms for efficient and flexible responses for initial and extended attack in wildfire emergencies. This thesis is part of this work package. Finally, the fourth work package, Implementation and Training Tools, involves modeling and managing fire risk, evacuation models and protocols, and training scenarios for all those engaged in fire management, including the general public.

Natural disasters like forest fires require an emergency management. A characteristic of natural disaster emergencies is the difficult decision environment, public authorities facing tight timelines, constrained resources, huge amount of data to analyze, extreme uncertainty and multiple objectives that may conflict as well as strong constraints when dealing with security issues and lives saving [7]. Emergency management consists in a continuous process with four key components: mitigation & prevention; preparedness; response; and recovery [START_REF] Bullock | Introduction to emergency management[END_REF]. The goal of mitigation and prevention is to decrease the need for emergency response. The goal of emergency preparedness is to ensure that a rapid, coordinated and effective response is possible when an emergency occurs. Preparedness involves an investment of time and commitment of resources but is irreplaceable when an emergency arises. When the disaster occurs, it is time to follow an established response plan -not the time to create one. The goal of an effective recovery is to restore the affected infrastructure as quickly as possible. It leads directly into the mitigation and prevention phase to minimize the risk of a recurrence or development of a similar emergency situation in the future.

In this context, we address the problem of locating shelters to mitigate the casualties caused by a fire. We propose new shelter location models as two-phase problems, where the first phase incorporates elements of prevention and preparedness, while the second phase corresponds to the response.

CONTEXT AND MOTIVATIONS

A shelter is a safe place that provides cover from the fire. It is typically a building equipped to protect people against flames, but it can also be an emergency gathering point. Public authorities have shown increasing interest for such kind of shelters [START_REF]Community fire refuges[END_REF]. Although the idea is not new, its effectiveness fundamentally depends on the location of the shelters: as the territory to be covered by one or more shelters can be arbitrarily large, the decision-maker must take into consideration the paths traveled and the amount of time needed for people scattered in the territory to reach a shelter. It is unfortunately common to find victims in their cars, trapped by the fire while evacuating [START_REF] Thomas J Cova | Protective actions in wildfires: evacuate or shelter-in-place?[END_REF]. In addition, the question of guaranteeing safe evacuation conditions for hikers and other forest users also arises. Unless public access to forests and natural parks is completely prohibited for long periods of the year, which can be culturally hard to accept, it is necessary to think about new solutions. In both cases, public infrastructures as fire shelters can reduce the evacuation time and thus the number of casualties. In addition, it allows to save resources (fire fighters, first responders) that would otherwise have to be employed to ensure these people's safety. As fire outbreaks and their impacts are by nature unpredictable, it can be difficult to choose shelter locations that remain suited to each fire configuration. Recent studies have highlighted the need to develop new models for the location of fire shelters [START_REF] Thomas J Cova | Protective actions in wildfires: evacuate or shelter-in-place?[END_REF], [START_REF] Steer | On the utility of shelters in wildfire evacuations[END_REF], which was confirmed in discussions with final users as part of the GEO-SAFE project.

The problems of determining the "best" location for a set of facilities in order to serve a set of demand points are generally referred as Facility Location problems [START_REF] Laporte | Introduction to location science[END_REF]. These problems lie at the core of the Location Science research area in the field of Operations Research, and more precisely of Combinatorial Optimization. The meaning of "best" depends on the nature of the problem under study, in particular the constraints and of the optimality criteria considered. Stimulated by real-world problems, facility location has been applied in many areas with great success, for example in logistics, telecommunications, routing and transportation [START_REF] Charles | Location analysis: A synthesis and survey[END_REF][START_REF] Melo | Facility location and supply chain management-a review[END_REF]. In the case of an emergency service (ambulances, fire brigades, police stations, etc.), facility location models have been proposed to minimize response time. A whole section of Location Science is devoted to problems where the input data available to decision-makers are incomplete or non deterministic at the time of decision-making. Such models are said under indeterminacy. Indeterminacy can affect demand, or the availability of facilities service, or the infrastructure availability. Models under indeterminacy are commonly used for natural disaster situations, such as floods, earthquakes, or forest fires. Indeed, a natural disaster, like forest fires, is an unforeseeable event, that produces sudden demand (areas are affected only once the hazard occurs) for services (e.g. emergency care, evacuation) and potentially various disruptions on the transport network. We present a 1.1. CONTEXT AND MOTIVATIONS new shelter location model within this setup in what follows.

We want to locate a limited number of shelters on a territory where the general objective is to minimize the risk of having people trapped by the flames, i.e., to maximize their chance to reach a safe shelter before the fire gets too close. We consider territories with weak density of residents and forest users. We represent the territory by an adjacency graph. Each vertex corresponds to an area and two vertices are connected by an edge if the related areas are adjacent. The fire starts on an area, the corresponding vertex is called the source vertex. We call scenario a description of a potential future situation; we will define it more formally later on. In a real case, the fire can spread over very large areas and the impacted zone grows dynamically. However, it might be relevant to focus on a relatively short period after ignition or after the alert, seen as the time required for all people present in the area to reach a shelter. This motivates us to consider only scenarios where the fire is restricted to its source vertex. We assume an efficient early warning system with clear messages to evacuate, and that people are safe after reaching the shelter; this hypothesis is relevant depending on the exact nature and design of the shelters. As the fire is likely to spread over the whole territory, everybody in the territory is expected to evacuate to a shelter once the warning is triggered. In our context, shelters are generally build with relatively large capacity [START_REF]Community fire refuges[END_REF], thus we are not concerned with shelter capacity. In theory, we should consider two different networks in order to distinguish between the paths people can follow, and the fire spread. However, as we consider only scenarios where the fire is restricted to one area, we can simplify our problem by considering only the network along which people can move and represented by a graph.

Our problem can then be described as a particular case of location-allocation problems. A solution describes the location of shelters among the vertices of the graph, which corresponds to a subset of vertices. In addition, a solution also involves, for each scenario and for the people in a given area, a possible allocation of shelters to reach. The location can be addressed during the preparedness phase and may involve significant time consuming computation. The allocation however is mainly addressed during the response phase, which usually requires efficient and simple processes. More precisely, these allocations correspond to evacuation paths followed by the people evacuating the territory. We call evacuation strategy the actions that are expected to be taken by the people evacuating a territory once a fire hazard occurs.

The main contribution of this thesis is to propose a new evacuation strategy, the Under Pressure evacuation strategy, which describes evacuation decisions made under pressure. Its main originality is as follows: if no shelter is located on the source vertex, then we consider there is an evacuation path leaving the source 1.1. CONTEXT AND MOTIVATIONS vertex towards every adjacent vertex. The justification is twofold: the fire in the source vertex restricts the internal mobility; the immediate threat of the fire may affect in different ways the behavior of the people in this area. The evacuation path of other vertices of the graph is a shortest path between the vertex and a nearest reachable shelter. We call evacuation distance of a vertex the maximum length of one of its evacuation paths. For a real case implementation, this could be supported by simple informative signs deployed on site, or marked on hiking maps, indicating the direction and distance of the closest accessible shelters. This evacuation strategy induces particular evacuation distances which render our model specific. To our knowledge, it is the first attempt to model the evacuation strategy in such manner for a shelter location problem. We introduce two problems with the Under Pressure evacuation strategy, which differ by the indeterminacy environment considered. We present our problems as variants under indeterminacy of the deterministic Min p-Center problem [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF]: the Min p-Center problem is a minimax facility location problem that consists in locating at most p identical facilities, on a graph to minimize the maximum distance between demand vertices and a closest facility. This model is however insufficient to address the indeterminacy induced by the fire and the evacuees' behavior.

With the Under Pressure evacuation strategy, the value of a solution for a given scenario is given by the maximum evacuation distance in that scenario, called the evacuation radius. We propose to study two categories of indeterminacy environment: risk and uncertainty [START_REF] Rosenhead | Robustness and optimality as criteria for strategic decisions[END_REF]. In risk situations, there are uncertain parameters whose values follow some probability distributions that are known by the decision maker; this setup corresponds then to stochastic or probabilistic optimization. The Probabilistic p-Center Under Pressure problem is the problem of locating at most p shelters such that the expected evacuation radius, given a probability distribution on scenarios, is minimized. In uncertainty situations, parameters are uncertain and no information about probabilities is used; this setup corresponds then to robust optimization. The Robust p-Center Under Pressure problem is the problem of locating at most p shelters such that the maximum evacuation radius, given uncertain scenarios, is minimized.

To summarize, we list the strong assumptions in our problems, which has been discussed with final users as part of the GEO-SAFE project. We would like to thank particularly the Pau Costa Foundation [17], the Fire Organisation of Andalucia (INFOCA) [18], the Fire Organisation of Corsica (SDIS2B) [19], and the Country Fire Authority of Victoria, Australia (CFA) [20].

• The territory, with weak density of populations, is represented by an adjacency graph.

• Each vertex corresponds to an area.

BASIC NOTATIONS

• The fire is restricted to one vertex during the short period we consider. We consider only scenarios with one fire outbreak.

• The fire is likely to spread over the whole territory and for this reason, everybody in the territory is expected to evacuate to a shelter.

• Shelters protect from the fire and have large capacity.

• An efficient early warning system exists.

• Simple guidance signs are deployed on site, or marked on hiking maps, indicating the direction and distance of the closest accessible shelters.

• Fire can start in an area where a shelter is located. In this case, we assume that the shelter location in the area and the local layout guarantee easy accessibility [START_REF] Thomas J Cova | Protective actions in wildfires: evacuate or shelter-in-place?[END_REF] during the phase just after the fire outbreak for the people in the immediate surrounding. Given the risk of fire spread, this shelter is however inaccessible to people in other areas.

• The evacuation decisions made by the evacuees correspond to the Under Pressure evacuation strategy.

Basic Notations

In this section we introduce basic notations and notions needed for the understanding of our work.

Graphs

These notations are inspired from [START_REF] Korte | Combinatorial optimization[END_REF] by Korte and Vygen.

Undirected graph An undirected graph G is a couple (V, E) where V = {1, . . . , n} is the set of vertices and E = {X ⊆ V : |X| = 2} the set of edges, with |E| = m. We denote (i, j) the edge joining vertices i and j, which are also called the endpoints of (i, j). An edge whose endpoints coincide is called a loop. Two edges with identical endpoints are said parallels. A graph without parallel edges nor loop is said simple. We say G is edge-weighted when a natural number l i,j , called the length or the weight of the edge (i, j), is associated to each edge (i, j). We will refer as the uniform case the case where all edge lengths are equal. G is said vertex-weighted graph when a natural number, called the demand or the weight of the edge (i, j), is associated to each vertex v ∈ V . In this thesis, undirected graphs are exclusively simple graphs, therefore we do not specify it each time.

BASIC NOTATIONS

Unless specified otherwise, we consider non-weighted graphs. In addition, if i and j are joined by an edge, then i and j are called adjacent, and i is the neighbor of j (and vice versa). The degree of a vertex i is the number of vertices adjacent to i. A vertex of degree 1 is called a pending vertex.

Directed graph or Digraph A directed graph or digraph G is a couple (V, E) where V = {1, . . . , n} is the set of vertices and E = {(i, j) ∈ V × V : i = j} the set of directed edges.

Mixed graph A mixed graph is a graph with both directed and non-directed edges. If (i, j) is a directed edge, we say (i, j) leaves i and enters j.

When no ambiguity occurs, we will use similar notations for directed, undirected and mixed graphs. We will just indicate directed edges an denote them with an arrow in the related drawing. We use mainly undirected and mixed graphs. All non-directed notions in graphs also apply to mixed graphs by considering the non-directed version of the mixed graph obtained by replacing directed edges by non-directed ones, and then replacing multiple parallel edges by a simple edge. Similarly, all directed notions apply to mixed graphs since a mixed graph can be seen as a digraph with non-directed edges replaced by two directed edges in opposite directions.

Subgraph and partial graph A subgraph of a mixed graph G = (V, E) is a mixed graph H = (X, Y ) where X ⊆ V and Y = {(i, j) : (i, j) ∈ E and i, j ∈ X}. We also write H = G[X] and say H is the subgraph of G induced by X. A partial graph of G is a mixed graph (V, E ) with E ⊆ E obtained from G by deleting zero or some edges. A partial subgraph of G is a partial graph of a subgraph of G. For some

U ⊂ V , we denote G \ U the graph G[V \ U ]. For some v ∈ V , we denote G -v the induced subgraph G \ {v}. If H is a partial subgraph of G, we say G contains H. Path An undirected path is an undirected graph P = ({v 1 , . . . , v k+1 }, {(v 1 , v 2 ), . . . , (v k , v k+1 )} such that v i = v j for 1 ≤ i ≤ j ≤ k + 1.
G is also called a path from v 1 to v k+1 , or between v 1 and v k+1 . v 1 and v k+1 are the extremities of P . When speaking about directed paths in a mixed graph, paths are meant to respect the edge orientations. The length of a path is then the sum of the lengths of its edges. In a general graph G, if G contains as partial subgraph a path P , we say P is a path in G.

BASIC NOTATIONS

Connected components Let G = (V, E) be some undirected graph. G is connected if there is a path between all pairs of vertices, otherwise G is disconnected. Sometimes we identify the connected components with the vertex sets inducing them. A vertex v is called an articulation vertex if the induced subgraph G -v has more connected components than G. We denote by A(G) the set of articulation vertices of G. We call articulation components of G the set of connected components of G -a with a ∈ A(G). A graph is 2-connected if it has no articulation point; in this case there is no articulation component.

Acyclic graphs A cycle is a graph G = ({v 1 , . . . , v k+1 }, {(v 1 , v 2 ), (v 2 , v 3 ), . . . , (v k , v k+1 )} such that v 1 = v k+1 and v i = v j for 1 ≤ i ≤ j ≤ k.
A forest is a graph without any cycle as a partial subgraph. A connected forest is a tree. A star is a tree where at most one vertex is not a pending vertex. A caterpillar is a tree in which all the vertices are within a central path or adjacent to it. It can also be described as a tree in which all vertices that are not pending form a path.

Planar graph A planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints.

Grid, subgrid and partial subgrid A n × m grid is the planar graph G = (V, E) with vertex set V = {v i,j , i ∈ {0, . . . n -1}, j ∈ {0, . . . , m -1}} and (v i,j , v k,l ) ∈ E if and only if |i-k|+|j -l| = 1. A (partial) subgrid is a (partial) subgraph of a grid.

Let G = (V, E) a mixed graph, and C ⊆ V . We denote:

• d(i, j) the distance between i and j i.e., the length of a shortest path from i to j. If no such path exists, d(i, j) = +∞. When speaking about distances in a mixed graph, paths are meant to respect the edge orientations and thus, the matrix of distances is not symmetric anymore.

• d(i, C) = min j∈C d(i, j). • r(C) = max v∈V d(v, C) is called the radius of C.
• Γ(i) ⊂ V is called the set of neighbors of vertex i.

• deg(i) = |Γ(i)| the degree of vertex i.

BASIC NOTATIONS

Algorithmic and Mathematical Notions

Decision problems and optimization problems A decision problem is a problem that can be posed as a yes-no question on the input values."An optimization problem is a problem of determining a best solution among the set of solutions satisfying some properties imposed by the very definition of the problem" [START_REF] Vangelis T Paschos | Complexité et approximation polynomiale: optima locaux et rapport différentiel[END_REF]. An optimization problem I can be expressed as the following mathematical program:

optf ( x) x ∈ C I
where x is a vector describing a solution, C I is the constraints of the problem, f is the objective function and opt ∈ {min, max}. An optimization problem has always a decision version. Let Π = (I, z) be the problem of deciding whether there is a

y ∈ C I , such that f ( y) ≤ z if opt = min (respectively f ( y) ≥ z if opt = max). Π
is the decision version of optimization problem I. We use decision versions of an optimization problem when discussing its complexity.

NP-completeness and NP-hardness Roughly speaking, a decision problem Π is in NP if a certificate that an instance is a yes-instance can be checked in polynomial time. A decision problem Π is NP-complete if Π is in NP, and all other problems in NP polynomially reduce [START_REF] Richard | Reducibility among combinatorial problems[END_REF] to Π. An optimization problem is said in NP if its decision version is in NP. An optimization problem is called NP-hard if and only if its decision version is NP-complete [START_REF] Vangelis T Paschos | Complexité et approximation polynomiale: optima locaux et rapport différentiel[END_REF].

Approximation An α-approximation algorithm for an optimization problem is a polynomial-time algorithm that, for all instances of the problem, produces a feasible solution whose value is within a factor of α of the optimal value [START_REF] David | The design of approximation algorithms[END_REF]. Therefore the approximation ratio of an algorithm is always larger than 1 for minimization problems (smaller than 1 for maximization problems). The closer to 1, the better the algorithm. For example, a 2-approximation algorithm for a minimization problem is a polynomial-time algorithm that always returns a solution whose value is at most twice the optimal value.

Binary search Binary search refers to successively halving a finite list of numbers using a median element of the list and discarding either the lower or the upper half in each step until its size is smaller or equal than a predetermined positive natural number, by default 1 in this thesis.

BASIC NOTATIONS

Argument of the minimum For a real-valued function f with domain S,

argmin x∈S f (x)
is the set of elements in S that achieve the global minimum in S:

argmin x∈S f (x) = {x ∈ S : f (x) = min y∈S f (y)}
Next we present some classical optimization problems relevant to our thesis, defined on an undirected graph G = (V, E).

Usual problems

The p-Center problem denoted Min p-Center [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF] Min p-Center Instance:

A graph G = (V, E), an integer p Feasible solutions: A p-set i.e., a set C ⊆ V of size at most p Objective:

Find a p-set C of minimum radius r(C).

Note that an optimal solution of size p always exists.

The Minimum Vertex Cover problem denoted Min Vertex Cover [START_REF] Michael | Computers and intractability[END_REF] Min Vertex Cover Instance:

A graph G = (V, E) Feasible solutions: A vertex cover i.e., a set U ⊆ V such that every edge of E is incident to at least one vertex of U Objective:

Find a vertex cover of minimum size.

The minimum size of a vertex cover G is denoted τ (G).

The Minimum Dominating Set problem denoted Min Dominating Set [START_REF] Michael | Computers and intractability[END_REF] Min Dominating Set Instance:

A graph G = (V, E) Feasible solutions: A dominating set i.e., a set D ⊆ V such that every vertex of V \ D is adjacent to a vertex of D. Objective:

Find a dominating set of minimum size.

The minimum size of a dominating set in G is called the domination number of G and is denoted γ(G).

The Minimum Set Covering problem denoted Min Set Cover [START_REF] Korte | Combinatorial optimization[END_REF] 1.3. ORGANIZATION OF THE THESIS

Min Set Cover

Instance:

A set system (Ω, Z) with ∪ Z∈Z Z = Ω Feasible solutions: A set cover i.e., a set Y ⊆ Z such that ∪ Y ∈Y Y = Ω Objective:

Find a set cover of minimum size.

The Minimum radius Dominating Set problem denoted Min r-Dominating Set [START_REF] Peter | R-domination in graphs[END_REF] Min r-Dominating Set Instance:

A graph G = (V, E), an integer r Feasible solutions: A set C ⊆ V such that r(C) ≤ r Objective:
Find a feasible solution of minimum size.

Min r-Dominating Set is a generalization of Min Dominating Set and a specific case of Min Set Cover. We define it separately as we will frequently refer to it in this form.

Organization of the thesis

This document is organized as follows.

In Chapter 2, we describe thoroughly our model for shelter location in a forest fire context. We present our modeling hypothesis for representing the territory, the shelters, the uncertainty of fire outbreaks, the evacuation strategy and the objective functions considered. We introduce the Robust p-Center Under Pressure problem (RpCP) and the Probabilistic p-Center Under Pressure problem (PpCP), as well as the set of feasible solutions for these problems. Finally, we compare our models to some relevant related works in the literature.

In Chapter 3, we analyze the hardness of RpCP and PpCP. We present different reductions from classic deterministic problems like Min Vertex Cover and Min Dominating Set to decision versions of RpCP. We also present first nonapproximation results for PpCP. We take care of establishing hardness results on classes of graphs with practical significance, like planar graphs or subgrids. Note that, the more restrictive the class of graph, the stronger the hardness result.

In Chapter 4, we present polynomial approaches to generate exact or approximation results for PpCP. We propose an explicit solution on paths in the uniform case by using auxiliary problems. The proof is surprisingly non-trivial. Then we 1.3. ORGANIZATION OF THE THESIS propose a constant-ratio approximation algorithm for PpCP on general graphs with bounded degrees and bounded length of the edges. Here again, we will use auxiliary problems that reveal to be interesting on their own. In Chapter 5, we propose polynomial algorithms for RpCP on different classes of acyclic edge-weighted graphs. Using structural properties introduced in the previous chapter, we will present different methods based on a binary search. We propose refined polynomial algorithms for paths, extended stars, caterpillars and trees.

In Chapter 6, we present different mathematical methods to compute exact solutions of RpCP and PpCP. These methods are inspired by the main existing integer linear programs for Min p-Center, but require extended generalization to represent the undeterminacy and take into account the Under Pressure evacuation strategy. For RpCP, we propose an even more efficient algorithm, tractable on large instances as shown by our experimental results.

Finally, in Chapter 7, we summarize the contributions of this thesis, and we indicate several lines of future research.

In Appendix A, the reader can find a list of the problems considered in this thesis.

Introduction

The problems of determining the "best" location for a set of facilities in order to serve a set of demand points are generally referred to as Facility Location problems. These problems lie at the core of the Location Science research area [START_REF] Laporte | Introduction to location science[END_REF]. The meaning of "best" depends on the nature of the problem under study, namely in terms of the constraints and of the optimality criteria considered. Facility Location problems have been widely studied for emergency applications, in particular the Min p-Center problem. Min p-Center is particularly suited to decision makers concerned with the reliability of the location for every user and who want to consider a criterion focusing on users who are the poorest served (for an extended description of the state of the art, see Subsection 2.2.1). A main objective in our context is to avoid any death toll, which favors Min p-Center for a shelter location decision-support model. Min p-Center is however not sufficient to handle the indeterminacy induced by the fire hazard. To this end, we propose a new approach, which we present in Section 2.1. Then, in Section 2.2, we compare our approach to the existing state of the art.

Our model was first presented in [START_REF] Demange | The probabilistic k-center problem[END_REF] for the probabilist case, and in [START_REF] Demange | A robust p-center problem under pressure to locate shelters in wildfire context[END_REF] for the robust case.

The Under Pressure model

When a fire occurs, all the people within the territory must head for a safe place, which we will refer to as a shelter. Our objective is to determine the best location for a set of shelters in order to minimize the distance traveled by the people once a fire occurs. We will model the territory as a graph like described in Section 2.1.1, such that shelters locations correspond to a subset of vertices. We will model the indeterminacy relative to fire ignition using scenarios as described in Section 2.1.2.

Our problem is a particular case of location-allocation problems in two phases: a solution describes the a priori location of shelters among the vertices of the graph. This task must be undertaken during the preparedness phase. In addition, our solution must describe, for each scenario, an allocation of areas to shelters. This allocation corresponds to evacuation paths that must be taken by the people during the response phase. The allocation decision is made on the basis of an evacuation strategy. In Section 2.1.3, we describe a new original evacuation strategy called Under Pressure which takes into account some behaviors that may occur in fire emergency situations.
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The examination of the Under Pressure evacuation strategy induces new evacuation distances which renders the problem of choosing a best location for shelters specific compared to the literature and introduces some additional complexity. This new evacuation strategy, applied to a version of Min p-Center under indeterminacy, generates new problems relevant for shelter location under wildfire context. This thesis mainly focuses on two of these problems, presented in Section 2.1.4: the Robust p-Center Under Pressure and the Probabilistic p-Center Under Pressure. We also present some first results on the differences between these problems and Min p-Center.

Finally, in Section 2.1.5 we present the necessary and sufficient conditions for a solution to be feasible for the two previously defined problem. We also present in Section 2.1.6 some first results on the differences between these new problems and Min p-Center.

Modeling the territory

In our model, the territory, typically with low density habitat, is represented by an edge-weighted graph G = (V, E) with V = {1, . . . , n} the set of vertices, and E the set of weighted edges. Each vertex corresponds to an area or zone; the areas are defined based on geographical and spatial criteria such that the center of the area is a candidate location for a shelter. In particular, natural barriers like a river or a cliff will always be placed on boundaries between zones. Typical examples of zones could be a village and its suburb areas or, in case of very sparse habitat, a homogeneous area with easy circulation inside. The size of zones may also vary. We assume that, in absence of fire, it is easy to move inside an area. It is not the intention of this thesis to determine the areas. If adjacent areas correspond to a fragmentation of a large homogeneous territory without clear natural boundaries, then the related edges are just a discrete model of a continuous reality. In other cases however, edges represent an accurate representation of the real transport network environment. Since vertices represent areas, possibly large, the length of an edge can be seen as a distance or a traveling time between adjacent vertices and can be measured between median points in the two related areas or as a maximum distance; these choices has no incidence on the model. According to our model, shelters must be placed on vertices. Hence, shelter locations correspond to a subset of vertices, denoted C in the following. Given the analogy to Min p-Center, we refer to the vertices of C as shelters or centers without distinction.

Next we present how we take into account in our model the indeterminacy induced by the fire hazard.
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Scenarios

A classical approach to model disaster risk is to use scenarios [START_REF] Sheppard | A conceptual framework for dynamic location-allocation analysis[END_REF]. A set of scenarios is a description of the states of the system after a hazard occurs. In real cases applications, the definition of scenarios relies on a preliminary analysis and synthesis of the effects of a vast set of parameters. After which, a finite set of scenarios should be defined based on major uncertainty factors of the decision-making environment. It follows that the quality of the solution produced fundamentally depends on the scenario generation process.

We denote S the set of scenarios. A scenario is associated with a specific fire outbreak in the territory represented by the edge-weighted graph G = (V, E). There is a potentially large number of scenarios (several simultaneous fire outbreaks in different areas, fire spreading more quickly in one direction, fire jumping from one area to another through ambers, etc). We restrict ourselves to a single fire outbreak event with the fire spread limited to its native area. Consequently, we restrict S to the set of scenarios corresponding to a single vertex on fire, and we refer to the scenario associated with a fire outbreak on vertex s ∈ V as scenario s ∈ S. So S = V . This restriction is motivated by our primary focus on a relatively short time period after an outbreak, which assumes an efficient early warning system. In this case, everybody can escape to a shelter before the fire spreads to adjacent areas. In this thesis, we refer to the vertex on fire also as the source vertex: in scenario s, vertex s is the source vertex.

The operational graph associated with the scenario s, denoted by G s = (V, E s ), is a mixed graph obtained from G as follows: all edges e ∈ E are kept in E s except the edges (s, v) incident to s: these edges are replaced by a unique directed edge (s, v). Consequently, paths are directed in G s and vertex s is no longer accessible from another vertex. For a scenario s and for any i, j ∈ V , we denote by d s (i, j) the length of a directed shortest path from i to j in G s . In addition, for C ⊆ V , we denote

d s (i, C) = max j∈C d s (i, j).
Note that, for all j ∈ V \ {s}, there is no path from j to s, thus d s (j, s) = +∞. In addition, if i = s and j = s, d s (i, j) = d s (j, i).

The Under Pressure evacuation strategy

We have seen that a solution does not only describes the location of shelters, it also specifies, for each scenario and for the people in a given area, a shelter to reach on the basis of an evacuation strategy. The evacuation strategy describes the actions that are expected to be taken by the people evacuating a territory once a fire hazard occurs. A good shelter location model for wild fire context must try 2.1. THE UNDER PRESSURE MODEL to take into account the actions people on site are likely to undertake, in order to locate shelters in such way that it serves the population.

The decisions of where to locate shelters and how the evacuation planning is made are equally important as both affect the time to evacuate the region affected by the disaster. Addressing these two problems separately may lead to suboptimal results. There are two classical evacuation planning models [START_REF] Bayram | Optimization models for large scale network evacuation planning and management: A literature review[END_REF]. The first one considers that people will head for the nearest safe shelter, driven by the intuitive reaction of any individual looking for the nearest accessible shelter, which is not necessarily in the interest of the whole system. To our knowledge, all the problems based on this approach model the evacuation path as a shortest path in the operational graph. The second approach involves the assignment of evacuation routes to the travelers, for example in traffic assignment models [START_REF] Bayram | Optimization models for large scale network evacuation planning and management: A literature review[END_REF]. This approach requires rapid customized communication with all the people to be evacuated. The limit of these approaches and the need for new shelter location models have been outlined by different works on the topic [START_REF] Steer | On the utility of shelters in wildfire evacuations[END_REF][START_REF] Bayram | Optimization models for large scale network evacuation planning and management: A literature review[END_REF][START_REF] Thomas J Cova | Protective actions in wildfires: evacuate or shelter-in-place?[END_REF] and confirmed by final users as part of the GEO-SAFE project.

We propose an alternative approach, called the Under Pressure evacuation strategy and denoted the UP evacuation strategy. We consider that rapid customized communication with all the people to be evacuated is not always possible, for example when people on site are daily visitors. However, as shelters have been built well ahead of time, we can assume signals or early warnings are in place such that people know their exact positions. On top of the idea that any individual intuitively looks for the nearest accessible shelter, we propose specific implications on the actual paths traveled by the people once they evacuate.

Consider a territory modeled with an edge-weighted graph G = (V, E), scenarios S, and a set of shelters C ⊂ V . When a fire occurs, all the people within the territory must head for a safe place. An evacuation path of v in scenario s is a path in G s that individuals on v may follow to reach an accessible shelter in C. Three cases emerge, depending on the whereabout of the area v :

1. For people in area s, two cases have to be considered.

(a) If a shelter is located in area s, we assume that all the persons present in that area can safely reach this shelter. To support this hypothesis, we assume that the shelter location in the area and the local layout guarantee easy accessibility [START_REF] Thomas J Cova | Protective actions in wildfires: evacuate or shelter-in-place?[END_REF] during the phase just after outbreak. It is reasonable to assume that clear signs direct people accurately on and around the shelter. However, for people outside the area, attempting to reach the shelter could be dangerous. For this reason s is not accessible from other vertices in the operational graph G s .

2.1. THE UNDER PRESSURE MODEL (b) If there are no shelters in area s, we assume that people in this area will first flee in any other direction to reach an adjacent area j, then they will evacuate to the nearest shelters accessible from j in G s . Without strong evidence (like a shelter in the area), people, especially under pressure, may react in very diverse ways: choosing for instance to run in the opposite direction of the fire, or in the orthogonal direction of the wind or in the most accessible direction, regardless of the best direction for the nearest shelter.

Once evacuees reach a safer adjacent area, they will be able to follow the shortest path to a shelter, i.e an evacuation path of s is a path {s, j, i 1 , . . . , i k } where j ∈ Γ(s),i k ∈ C and the path {j, i 1 , . . . , i k } is a shortest path between j and i k .

2. For people who are not in area s, that is any area v = s, we assume that going to the nearest accessible shelter is safe as long as the area on fire s is avoided. It is reasonable that such strategy will be adopted in practice.

Then, the evacuation path of v in scenario s is the shortest path between v and a shelter in G s .

To ensure an acceptable level of risk, we must consider the worst case scenario. The evacuation distance of a vertex v in scenario s is the distance (maximum distance in the case v = s and v / ∈ C) traveled by the people from v to a nearest reachable shelter i.e., the maximum length of an evacuation path of v in scenario s. The evacuation distance of a vertex v in scenario s is then given by:

r s (C, v) =          0 if v = s and v ∈ C max j∈Γ(v) {l v,j + d s (j, C)} if v = s and v ∈ C d s (v, C) if v = s (2.1)
Note that, for a scenario s, if there is no path from v to a shelter of C, we get

r s (C, v) = +∞.
Example. On a path: We illustrate these definitions in Figures 2.1 and 2.2 on a path of nine vertices in the uniform case. Let C = {0, 5, 8} be the set of shelters represented by pentagons. The value of d(i, C) is given under each vertex i. andd(2, C) respectively since the path to shelter 0 is no more operational. For vertex 1, two evacuation paths exist: {1, 0} and {1, 2, 3, 4, 5}. As we can't know in advance which evacuation path will be used given the local constraints for the evacuees, we consider the worst case. Then 

0 1 2 2 1 0 1 1 0 0 1 2 3 4 5 6 7 8
i ∈ V is the value of d 1 (i, C), i = {0, . . . , 8}. It is underlined when it differs from d(i, C). d 1 (1, C) and d 1 (2, C) differs from d(1, C)
r 1 (C, 1) = max j∈Γ(1) (l 1,j + r 1 (C, j)) = 1 + max{r 1 (C, 0), r 1 (C, 2)} = 1 + max{d 1 (0, 0), d 1 (2, 5)} = 1 + max{0, 3} = 4. 0 4 3 2 1 0 1 1 0 0 1 2 3 4 5 6 7 8

♣

Example. On a subgrid: In Figure 2.3, we consider a graph G = (V, E) of 14 vertices. The figure illustrates the operational graph G 2 , with shelters located on C = {3, 10} . Each edge is labeled by its length. When a fire occurs on vertex 2 (scenario 2), the evacuation paths of each vertex i corresponds to shortest paths from i to its nearest shelters, except for the following vertices:

• vertex 1: in G, the nearest shelter to vertex 1 is on 3 at a distance of 3, using the shortest path {1, 2, 3}. However, in scenario 2, the length of the shortest path from vertex 1 to vertex 3 is 22, using the shortest path {1, 6, 7, 8, 3}.

Instead, the shelter in 10 is at a distance of 8 from vertex 1, using the shortest path {1, 6, 10}. Thus node 1 is evacuated to node 10 and r 2 (C, 1) = 8.

• vertex 7: in G, the nearest shelter to vertex 7 is on 3 at a distance of 5, using the shortest path {7, 2, 3}. However, in scenario 2, the shortest path length from vertex 7 to vertex 3 is 11, using the shortest path 7, 8, 3. Instead, the shelter in 10 is at a distance of 10 from vertex 7, using the shortest path {7, 11, 10}. Thus node 7 is evacuated to node 10 and r 2 (C, 7) = 10.

• vertex 2: in G, the nearest shelter to vertex 2 is on its neighbor 3 at a distance of 2. However, in scenario 2, there are three evacuation paths originating from vertex 2:

the evacuation path passing through the neighbor vertex 1, at a distance of 1. From there the nearest shelter 10 is at a distance of 8. Thus the overall length of this evacuation path is 1 + 8 = 9.
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the evacuation path passing through the neighbor vertex 7, at a distance of 3. From there the nearest shelter 10 is at a distance of 10. Thus the overall length of this evacuation path is 3 + 10 = 13. the evacuation path passing through the neighbor vertex 3, at a distance of 2. A shelter is located there, thus the overall length of this evacuation path is 2.

As any of these three evacuation paths is potentially taken by people evacuating vertex 2, the evacuation distance of vertex 2 is given by the longest of these evacuation paths. In this case, r 2 (C, 2) = 13. In scenario 3, the fire occurs on a vertex with a shelter. The corresponding operational graph is illustrated in Figure 2.4. In this case, r 3 (C, 3) = 0. All other evacuation distances correspond to the length of a shortest path from the originating vertex to shelter 10 in G 3 . For example, the evacuation distance of vertex 4 is given by the length of the path {4, 5, 9, 14, 13, 12, 8, 7, 11, 10}, for a total distance of 36. 

♣

This characterization of the evacuation distances renders our model specific. In Section 2.2, we compare the UP approach to other evacuation strategies in the literature. To our knowledge, it is the first attempt to model the evacuation strategy in such manner for a shelter location problem.

Objective functions

For a scenario s, the quality of a shelter location is determined on the basis of the longest evacuation distance one may travel in G s . Considering the UP evacuation strategy, we define the evacuation radius of a set C ⊂ V for scenario s as follows:

r s (C) = max x∈V r s (C, x) (2.2) If the distance-matrix of G s is known, r s (C) can be computed in O(n 2 ).
Note that C induces potentially different evacuation radius for each scenario s ∈ V . The evaluation of C over all the set of scenarios depends on the considered environmental indeterminacy. We consider two categories of environmental indeterminacy: risk and uncertainty [START_REF] Rosenhead | Robustness and optimality as criteria for strategic decisions[END_REF], [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF]. In the case of risk, a probability distribution is known for the scenarios; this setup corresponds then to stochastic or probabilistic optimization. In the case of uncertainty, no probability is known; this setup corresponds then to robust optimization. We propose to study the two forms of indeterminacy with the UP evacuation strategy.

Robust optimization approach

The robust approach is suitable if no information is known about the probability of scenarios, or if it is critical to guarantee evacuation distances even in the worst case, independently of its likelihood. Minimax is a classical objective function in robustness approach [START_REF] Kouvelis | Robust discrete optimization and its applications[END_REF]. Under a minimax objective function, the optimal decision is that for which the worst case performance of a solution over all scenarios is minimized. The minimax criterion applied to our context corresponds to the minimization of the maximum evacuation radius across all scenarios. Consequently, for a set C ⊂ V , we define the objective function I R as follows:

I R(C) = max s∈V r s (C) (2.3) 
I R(C), called the robust radius of C, is the maximum value of the evacuation radius of C over all the scenarios. Hence, we can define a new problem.

Robust p-Center Under Pressure (RpCP) Instance:

An edge-weighted graph G = (V, E), a set of scenarios S, an integer p Feasible solutions:

A p-set C ⊆ V with finite I R(C) Objective:
Find a solution of minimum robust radius if it exists.

Note that, if an optimal solution exists, an optimal solution of size p always exists. In addition, RpCP is closely related to another optimization problem which will be useful in our study in the following chapters.

THE UNDER PRESSURE MODEL k-RCP Instance:

An edge-weighted graph G = (V, E), a set of scenarios S, an integer k Feasible solutions:

A set C ⊆ V of robust radius I R(C) ≤ k. Objective:
Find a feasible solution of minimum size.

Consider an instance (G, S, p) of RpCP. We can propose an exact solution method using k-RCP coupled to a binary search as follows: Let D be the ordered set of candidate values for the value of RpCP on G i.e., D = {d s (x, y) :

x, y, s ∈ V } ∪ {l sx + d s (x, y) : y, s ∈ V, x ∈ Γ(s)}.
If the optimal value of k-RCP on (G, S, k) is greater than p, then the optimal value of RpCP is greater than k. Else, the optimal value is less or equal to k. We continue the binary search on a restricted subset of D to find the minimum radius k * for which the optimal value of k-RCP is less or equal to p.

In this thesis, as we consider exclusively S = V , we will refer to an instance (G, S, p) of RpCP as (G, p). Similarly, we will refer to an instance (G, S, k) of k-RCP as (G, k)

Probabilistic optimization approach

The probabilistic approach is suitable when it is possible to assign probabilities to the scenarios. A common goal is then to optimize the expected value of the evacuation radius. We denote by π s the probability of scenario s and by Π = (π s ) s∈S the vector of scenario probabilities.

For a set C ⊂ V , we define the objective function I E as follows: A graph G = (V, E), a set of scenarios S and a vector Π of probabilities associated to the scenarios of S, an integer p Feasible solutions:

I E(C) = s∈V π s × r s (C) (2.
A p-set C ⊆ V with I E(C) finite. Objective:
Find a solution of minimum probabilistic radius if it exists.

Note that, if an optimal solution exists, an optimal solution of size p always exists.
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In this thesis, we focus on the analysis of PpCP with a uniform probability distribution over the scenarios. So, we will assume π s = 1 n for all scenarios s ∈ S. In addition, we recall that we consider exclusively S = V . Therefore, to simplify our notations, we will refer to an instance (G, S, Π, p) of PpCP as (G, p). In this thesis, we may refer to both PpCP and RpCP as the UP problems.

Feasibility conditions

In this subsection we analyze necessary and sufficient conditions for a solution to be feasible on an instance (G, p) for both RpCP and PpCP. For both PpCP and RpCP, a solution C is said feasible if its objective value is finite, that is if the evacuation radius of C is finite for all scenarios. In the following, we consider without loss of generality that G is a connected graph. In addition, as the set of feasible solutions is similar for both problem, in this subsection we will refer to the set of feasible solutions for RpCP. We present first some additional notations and observations.

A minimal articulation component, or MAC for short, is an articulation component that does not strictly contain another articulation component. We denote Υ(G) the set of minimal articulation components. Note that an articulation component that is a singleton {v} is necessarily minimal and this occurs if and only if v is a pending vertex. In addition, every vertex a ∈ A(G) is associated to at least 2 articulation components, and every articulation component is associated to one articulation point.

Lemma 1. A is a minimal articulation component of G if and only if A is an articulation component which does not include an articulation point of G.

Proof. ⇒ By contrapositive we prove that if an articulation component A includes an articulation point, then A is not minimal. Let A be an articulation component induced by the articulation point a

∈ V . Suppose b ∈ A is an articulation point of G. Then b induces at least two disjoint connected components in G -b. Since b = a, a is in one connected component of G -b, consequently G \ A is a subset of this connected component. It follows that at least another component of G -b is contained in A, which means that A is not minimal.
⇐ The proof is also by contrapositive. We prove that if A is a non-minimal articulation component, then A includes an articulation point. Let A an articulation component that is not minimal. Then there is an articulation component B ⊂ A induced by the articulation point b ∈ V , such that B = A. Consider x ∈ A \ B and y ∈ B. Since A is connected, x and y are connected in A by a path; this path necessarily crosses b and in particular b ∈ A.

Lemma 2. All minimal articulation components of G are pairwise disjoints.
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Proof. By contrapositive, we assume A ∈ Υ(G) and B an articulation component such that B = A and B ∩ A = ∅. We prove then that B is not minimal.

Let x ∈ A∩B. Since A is a MAC, B ⊂ A. Then there is a vertex y ∈ B∩(V \A). Every path between x and y in G crosses a. As B is a connected component, there is a path from x to y in B, thus a ∈ B, and B is not a MAC by Lemma 1.

Given a graph G = (V, E) and p, we denote with C p (G) the set of feasible solutions of the RpCP-instance (G, p).

Proposition 3. Let (G, p) be an instance of RpCP with |V | ≥ 2. A solution C ⊂ V, |C| ≤ p is in C p (G) if and only if |C| ≥ 2 and C includes at least one vertex in each minimal articulation component of G.
Proof. Suppose C is a feasible solution for RpCP on G. We have seen that C is a feasible solution for RpCP if and only if r s (C, j) ∈ R, ∀j, s ∈ V , i.e. all the evacuation distances over all vertices and all scenarios are finite.

First suppose there is no articulation point, then G has no articulation components. Let s ∈ C, and x ∈ V, x = s. In scenario s, x is assigned to a center that is not s. Thus |C| ≥ 2. Conversely, if |C| ≥ 2, for any scenario s, G -s is connected and contains at least one center.

Second, suppose G has at least one articulation point and consequently at least 2 disjoint articulation components. In addition, if A is an articulation component of G induced by the articulation point a, then ∀j ∈ A, r a (C, j) ∈ R if and only if C ∩ A = ∅. Then C intersects all articulation components. In particular |C| ≥ 2 and C intersects all minimal ones. Conversely, if C intersects all MACs then |C| ≥ 2 and it intersects all articulation components since any articulation component contains a MAC.

Remark 1. For all UP problems considered in this thesis, feasibility conditions do not depend on the lengths, and the objective value is linear with respect to the lengths. As a consequence, the uniform case is equivalent to the case where all edge lengths are equal to 1.

Corollary 4. If G has at least 2 vertices, C 1 (G) = ∅ .
As a consequence, from now we will consider only RpCP instances satisfying p ≥ 2.

Corollary 5. For a given p, we can verify in polynomial time whether C p (G) = ∅.

Proof. For G = (V, E), we generate A(G) in O(|V |+|E|) using Tarjan's Algorithm ( [START_REF] Tarjan | Depth-first search and linear graph algorithms[END_REF]). The minimal connected components of G are the connected components of G \ A(G) adjacent to at most one articulation point in G, where a set V of vertices is said adjacent to a vertex if this vertex has at least one neighbor in V .

There is a feasible solution for RpCP on G if p is greater or equal to the number of MACs. Corollary 6. For all C ∈ C p (G), C necessarily includes all pending vertices.

Proof. Every pending vertex is a MAC of G. Then by Proposition 3, a feasible solution includes all pending vertices.

Examples and comparison with p-Center

We saw that a set C ⊂ V is feasible for RpCP and PpCP if r s (C) is finite for all scenarios s ∈ V . r s (C) is finite if every vertex has a finite evacuation distance in scenario s. In some cases, most of the feasible solutions for Min p-Center are not feasible for the UP problems. For example, consider the path G given in Fig 2 .5. For p = 2, any set of 2 vertices is a feasible solution for Min p-Center while the only feasible solution for the robust 2-Center problem is the set {1, 5} of the extremity vertices of the path as proved previously in Section 2.1.5.. For any C without vertex 1, we necessarily have r 2 (C, 1) = +∞ since vertex 1 cannot reach any shelter. C is thus not feasible. In addition, when the optimal solution of Min p-Center is feasible for RpCP and PpCP, the relative error of using this solution for any of our problems can be arbitrarily large, as shown in the following. Consider the graph represented in Figure 2.6, with M ≥ 1. Let p = 2. The optimal choice for Min p-Center is to locate centers at vertices 2 and 3, for a radius of 1. Consider now this solution in the context of RpCP and PpCP. The evacuation radius of {2, 3} is 3, M + 3, M + 3, 3, M + 1 and M + 1 for each scenario s = 1, 2, . . . , 6 respectively. Thus the robust radius of solution {2, 3} is M + 3, and its probabilistic radius is (4M + 14)/6. However, if we choose instead to locate the shelters at vertices 5 and 6, the worst evacuation radius is 3 induced by scenarios 2, 3, 5 and 6. For scenarios 1 and 4, the evacuation radius is 2. Thus the robust radius of solution {5, 6} is 3, and its probabilistic radius is 16/6. Overall, in this example the relative error of using an optimal solution of Min p-Center for RpCP or PpCP is of order M .

Obviously, on an instance (G, p), p ≥ 2 of RpCP or PpCP, adding a center to C cannot increase the evacuation radius. Therefore, it is straightforward that, if |Υ(G)| ≤ p ≤ |C|, then there is an optimal solution with exactly p shelters. However, this is not a necessary condition for optimal solutions. Consider indeed the graph of Figure 2.7 in the uniform case; if p = 5, then the minimum robust radius is 1, which is satisfied by {1, 3, 5, 7}. Similarly, {1, 3, 5, 7} ensures a minimum probabilistic radius of value 1 for PpCP with p = 5. Note this is also the case with Min p-Center: if p = 2, then the minimum possible radius is 2, but r({3}) = 2. 

STATE OF THE ART

State of the Art

Location problems have long been receiving the attention of scientists. In 1909, Alfred Weber (younger brother of the well-known sociologist Max Weber) developed the first general theory of industrial location. His model took into account several spatial factors for finding the optimal location and minimal cost for manufacturing plants [START_REF] Weber | Theory of the Location of Industries[END_REF], [START_REF] Fearon | Alfred weber: theory of the location of industries[END_REF]. In 1964, the network version of the problem, in which demand areas and facilities are located on an underlying graph representing the real world transportation system, becomes popular with the seminal work of Hakimi [START_REF] Louis | Optimum locations of switching centers and the absolute centers and medians of a graph[END_REF]. This work is often seen as the first step toward the development of the very active research field. Many surveys propose to categorize Facility Location problems according different key features, like the location space (continuous, network or discrete), the context (for example emergency logistics [START_REF] Aakil M Caunhye | Optimization models in emergency logistics: A literature review[END_REF] or evacuation planning [START_REF] Bayram | Optimization models for large scale network evacuation planning and management: A literature review[END_REF]), the different fundamental and advanced models [START_REF] Laporte | Location science[END_REF], the decision-making environment [START_REF] Lawrence | Facility location under uncertainty: a review[END_REF] and many others.

In this section, we list some relevant related works in the literature for the Min p-Center problem and Facility Location problems in relation to shelter location problems for emergency situations. Unless otherwise stated, the results are on undirected graphs.

The p-Center Problem

The Min p-Center problem is a minimax facility location problem that consists in locating p identical facilities, also called centers, on a graph to minimize the maximum distance between demand vertices and a closest facility. The main concern of this problem is to minimize the negative impact of the worst case service level. This sort of objective is meaningful for problems with a time sensitive service structure, where the human life is at stake. Many applications arises in emergency service locations, such as determining optimal locations of police stations, hospitals, fire stations, ambulances and shelters [START_REF] Louis | Optimum locations of switching centers and the absolute centers and medians of a graph[END_REF][START_REF] Laporte | Location science[END_REF].

In [START_REF] Louis | Optimum locations of switching centers and the absolute centers and medians of a graph[END_REF], Hakimi identifies more precisely two separate problems: the Weighted Vertex 1-Center problem and the Weighted Absolute 1-Center problem. In the Vertex case, a center must be located on a vertex of the graph. In an instance of the Absolute case, an edge (i, j) of a graph G = (V, E) can be considered as a set of infinite set of points joining vertices i and j. We can then identify a point x on a edge (i, j) by its distance from the endpoints of (i, j). In the Absolute case, a center can then be located on any point of the graph. In the weighted context, the distance of a vertex to the facility is weighted by the weight of the demand vertex. The maximal weighted distance to all vertices is then called the weighted absolute radius in the absolute case, or the weighted radius in the vertex case. The unweighted case can be reduced to the weighted case with uniform demand on the 2.2. STATE OF THE ART vertices. The Weighted Absolute (respectively Vertex ) 1-Center problem is then to find a point (resp. vertex) whose maximal weighted distance to all vertices is minimum. This optimal point (respectively vertex) is called the weighted absolute (resp. vertex) center. The vertex center of G is not necessarily an absolute center: consider a graph of two vertices of weight 1 connected by an edge with length 1. In this example the absolute radius is 0.5 whereas the radius is 1. In [START_REF] Louis | Optimum distribution of switching centers in a communication network and some related graph theoretic problems[END_REF], Hakimi generalizes the Weighted/Unweighted Absolute/Vertex 1-Center problems to the Weighted/Unweighted Absolute/Vertex p-Center problems.

Note that, for p ∈ {1, . . . , n}, an instance (G, p) of the Weighted Absolute p-Center problem can be reduced to an instance of the Weighted Vertex p-Center as follows: An intersection point is a point x on an edge (i, j) if there exists two distinct vertices u, v ∈ V such that x is the unique point on (i, j) for which the weighted distance from u to x is equal to the weighted distance from v to x. Denote P the set of induced intersection points of G. An optimal solution for Weighted Absolute p-Center can be found in the set of vertices and intersection points [40] [15]. We can then transform G in a vertex-weighted graph G = (V ∪ P, E ), where E is the set of edges induced by the insertion of vertices P , and where the weight of v ∈ V is the same in G and G , and the weight of v ∈ P is 0 in G . The solution for the Weighted Vertex p-Center problem on G is a solution for the the Weighted Absolute p-Center problem on G.

For the sake of brevity, we have opted not to discuss the large body of literature on these different versions. As our definition of the Min p-Center as given in Section 1.2 corresponds to the Unweighted Vertex p-Center and is the most relevant to our work, we present in the following the main polynomial algorithms, complexity and approximation results valid for the Unweighted Vertex p-Center. The following complexity results assume that the distance-matrix of the graph is known, which would otherwise take O(nm) to be computed [START_REF] Thorup | Undirected single-source shortest paths with positive integer weights in linear time[END_REF].

We do not include in the following variants the Capacited p-Center problem, which is a variant where facilities are assigned capacities. In this case, a facility can not satisfies more demands than its capacity. As we consider territories with typically low density habitat (Subsection 2.1.1), we can safely consider that shelters are large enough [START_REF] Steer | On the utility of shelters in wildfire evacuations[END_REF].

Polynomial Cases, Complexity and Approximation Results

The problem of finding the 1-Center can be done in O(n 2 ) once the matrix of shortest distances for the graph has been computed: after computing the weighted distance-matrix, we must find a maximum entry in each row and then find a minimum over these maxima [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF]. On a tree, Kariv and Hakimi propose in [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF] an algorithm to solve the 1-Center problem in O(n log n) time. Handler [START_REF] Gabriel | Minimax location of a facility in an undirected tree graph[END_REF] improves this results with an O(n) algorithm.
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For the Min p-Center problem, Minieka is the first to propose a solution method with a finite series of Min Set Cover [START_REF] Minieka | The m-center problem[END_REF]: in order to minimize the number of shelters to be located to cover all vertices within a given radius r, we can use the Min Set Cover where Ω = V and Z i = {j ∈ V : d(i, j) ≤ r}, ∀i ∈ V . This specific problem corresponds to Min r-Dominating Set with radius r. If the optimal value of Min r-Dominating Set with radius r is greater than p, then the optimal value of Min p-Center is greater than r; otherwise, the optimal value is less or equal to r. Then, let D = D 1 , D 2 , . . . , D t be an ordering of the distinct distance values in the matrix of shortest distances for G. We can solve Min r-Dominating Set with radius D i , where D i is taken in D in the decreasing order, until the optimal value of the optimal value is greater than p. Since |D| is in O(n 2 ), the number of steps is finite. This approach has been improved since by using a binary search strategy on |D| which reduces the maximum number of steps to O(log n). In addition, to reduce the search space, lower and upper bound on the optimal value of Min p-Center can be computed. The complexity of the resulting algorithm depends hence on the complexity of Min r-Dominating Set on the given class of graph. More precisely, if on a given graph Min r-Dominating Set

is in O(f (n)), one can solve Min p-Center on that graph in O(f (n) log n).
In [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF], for p ≥ 2, Kariv and Hakimi proved the NP-hardness of Min p-Center on an arbitrary planar graph G of maximum degree 3 and all edge lengths equal to 1. The proof is based on the relation between Min p-Center and Min Dominating Set. We present a few key ideas of this relation, useful in our thesis. An optimal solution for the Min p-Center problem with p = γ(G) is an optimal solution for the Min Dominating Set. However, the Min Dominating Set and the problem of finding the domination number are NP-hard [START_REF] Michael | Computers and intractability[END_REF]. In addition, Min Dominating Set is equivalent to Min r-Dominating Set with radius 1. Consequently, Min r-Dominating Set with radius 1 on a graph G = (V, E) can be reduced to the Min Dominating Set on a graph (V, E r ), where, for vertices i, j ∈ V , (i, j) ∈ E r if and only if d(i, j) ≤ r in G.

The same year, Hsu and Nemhauser [START_REF] Hsu | Easy and hard bottleneck location problems[END_REF] proved it is NP-hard to find an approximation algorithm in a metric space with ratio less than 2. Since then, several 2-approximation algorithms were developed [START_REF] Dorit | A best possible heuristic for the k-center problem[END_REF], [START_REF] Martin | A simple heuristic for the p-centre problem[END_REF], [START_REF] Teofilo | Clustering to minimize the maximum intercluster distance[END_REF], [START_REF] Feder | Optimal algorithms for approximate clustering[END_REF]. Recently, Garcia-Diaz & all. proposed in [START_REF] Garcia-Diaz | Approximation algorithms for the vertex k-center problem: Survey and experimental evaluation[END_REF] a survey and an analytical study and experimental evaluation of the most representative approximation algorithms for Min p-Center.

On a tree, Kariv and Hakimi proved in [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF] that Min p-Center can be solved in O(n log p-1 ). If p = 2, Handler proposed an O(n) algorithm to solve Min p-Center [START_REF] Gabriel | Minimax network location: theory and algorithms[END_REF].
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Exact solutions and heuristics

Apart from the Min r-Dominating Set approach as described previously, other exact solution methods have been proposed.

Daskin [START_REF] Mark S Daskin | Network and discrete location: models, algorithms, and applications[END_REF] proposed the first mixed integer programming (MIP) formulation for Min p-Center. Elloumi, Labbé and Pochet [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF] proposed another IP formulation using the fact that the optimal value of Min p-Center is restricted to a finite set of distance values. Calik and Tansel [START_REF] Calik | Double bound method for solving the p-center location problem[END_REF] developed two new IP formulations, the second one being a tightened formulation using a relationship between their first formulation and the formulation proposed by Elloumi et al. [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. We will describe these formulations and corresponding algorithms more extensively in Chapter 6.

Finally, we present some heuristics for Min p-Center. Mladenovic et al. [START_REF] Mladenović | Solving the p-center problem with tabu search and variable neighborhood search[END_REF] introduced the first meta-heuristic approaches for finding approximate solutions to Min p-Center. They proposed a multistart local search algorithm, a chain substitution Tabu Search algorithm, and a variable neighborhood search algorithm. While conducted experiments on the instances from the OR-Library among other, their algorithm outperformed Hochbaum and Shmoys' [START_REF] Dorit | A best possible heuristic for the k-center problem[END_REF] algorithm. Pullan [START_REF] Pullan | A memetic genetic algorithm for the vertex p-center problem[END_REF] proposed a genetic algorithm for the Min p-Center which combines a population based meta-heuristic with a local search algorithm. Salhi and Al-Khedhairi [START_REF] Salhi | Integrating heuristic information into exact methods: The case of the vertex p-centre problem[END_REF] obtained light lower and upper bounds by using three-level meta-heuristic and integrated these bounds with the algorithm by Daskin [START_REF] Mark S Daskin | Network and discrete location: models, algorithms, and applications[END_REF] to solve the Min p-Center relatively more quickly.

Martinich [START_REF] Joseph S Martinich | A vertex-closing approach to the p-center problem[END_REF] proposed a method called the vertex-closing approach for the Min p-Center on complete networks with distance values satisfying the triangle inequality. Initially, the algorithm places a facility on each vertex. Then the problem is to find (n -p) facilities to be closed, so that the maximum of the distances between the vertices and their facilities is minimized. They proposed two polynomial algorithms of complexity O(m log m) and O(m 2 ). The algorithms are proven to converge to an optimum for special cases, and computational experiments suggest that they produce very good solutions. In particular both algorithms perform very well on problems where p is large relative to the number of vertices n, specifically when p/n ≥ 0.30.

Mihelic and Robic [START_REF] Robič | Solving the k-center problem efficiently with a dominating set algorithm[END_REF] solved the Min p-Center on complete networks with distance values satisfying the triangle inequality by introducing a polynomial time heuristic algorithm based on solving a finite series of minimum dominating set. They experimentally showed that their algorithm performs much better than other existing heuristics (at that time) and is competitive with the best known (nonpolynomial time) algorithms for solving Min p-Center in terms of average quality and deviation of the results as well as execution time.

Finally, Bozkaya and Tansel [START_REF] Bozkaya | A spanning tree approach to the absolute p-center problem[END_REF] showed that there exists a spanning tree of 2.2. STATE OF THE ART any connected network such that the optimal solution to the Min p-Center on this tree is optimal also for the network under consideration. They experimented on two classes of spanning trees to observe how often these trees provide the optimal solution. They concluded that these two classes of spanning trees do not always include the optimizing tree, but they do in most of the instances.

Other Fundamental Facility Location problems

The fundamental problems of Facility Location include p-Median problems, Fixed-Charge Facility Location problems and Covering Location problems. The following definitions are based on the book by Laporte, Nickel and da Gama [START_REF] Laporte | Location science[END_REF] and on the recent survey by Turkoglu and Genevois [START_REF] Celik | A comparative survey of service facility location problems[END_REF].

The p-Median problem

The p-Median problem is the problem of finding a location for p facilities that minimizes the sum of distances between a vertex and the nearest facility, over all vertices. Kariv and Hakimi proved in [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF] that p-Median is NP-hard on a general graph. Often the objective function focuses rather on the costs, which are directly proportional to the distance and can be weighted with regard to the demand vertex.

The Fixed-Charge Facility Location problem

The Fixed-Charge Facility Location problem is a minisum problem like p-Median, where the number of facilities that can be opened is not constrained. However the opening costs of facility opening are added to the objective function. Fixed-Charge Facility Location aims at minimizing the total cost (opening and travel).

Covering Location problems

A covering location problem deals with situations where the service provided by a facility is ensured only within a predefined distance of it. For example, if the facilities correspond to ambulance stations, an area is considered covered only if the ambulance can arrive there in less than 5 minutes. There are two main types of covering location problems: the first one corresponds to Min r-Dominating Set as a particular case of Min Set Cover, as previously described. Min Set Cover has been proved NP-hard by Garey and Johnson in [START_REF] Michael | Computers and intractability[END_REF] and is seen as one the three special structures in pure integer programming with the most wide-spread applications. The second type of covering location problems is Maximal Covering, where the number of facilities that can be located is bounded. Therefore Maximal
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Covering aims to maximize the covered vertices within the restricted number of facilities that can be located.

Models under indeterminacy

Facility location problems in nondeterministic environments are generally described in two stages: first, before the indeterminacy is resolved, we can choose locations. Then, once indeterminacy has been resolved, react for example by assigning vertices to facilities. This description matches real life situations like facility breakdown, natural disaster cutting off communication, etc., and it has already been studied under different setups. Therefore, facility location problems have been subject to many approaches for decision making with indeterminacy (see for example the reviews [START_REF] Lawrence | Facility location under uncertainty: a review[END_REF][START_REF] Aakil M Caunhye | Optimization models in emergency logistics: A literature review[END_REF][START_REF] Laporte | Location science[END_REF]). More specifically, several models for Min p-Center have already been developed for environments where indeterminacy is taken into account.

We propose in this section a brief presentation of some Min p-Center variants under indeterminacy, as well as some other models relevant for our context. When appropriate, we will outline the differences between the introduced work and the UP model. In the following, we consider two analysis axis: the origin of the indeterminacy and the decision-making environment.

Origin of the indeterminacy

When addressing a facility location problem under indeterminacy, indeterminacy can come from different parts of the input data [START_REF] Shen | The reliable facility location problem: Formulations, heuristics, and approximation algorithms[END_REF] [61]:

• provider-side indeterminacy corresponds to indeterminacy in facility capacity, facility reliability, facility availability, etc.

• receiver-side indeterminacy is related to the uncertain structure of the set of users, users demands, users locations etc.

• in-between indeterminacy refers to the lack of complete knowledge about the transportation network topology, transportation times or costs between facilities and users.

Decision-making environment

Conventionally, one distinguish three decision-making environments: certainty, risk and uncertainty [START_REF] Rosenhead | Robustness and optimality as criteria for strategic decisions[END_REF]. In certainty situations, all parameters are deterministic and known, and there is no element of chance between the decision and the outcome. On the other hand, risk and uncertainty both involve randomness in the parameters. In risk situations, the value of some parameters are governed by probability distributions that are known by the decision maker. In uncertainty situations, no probabilistic information is used either because it is not available or because the decision maker prefers not to resort to it.

In Table 2.1, we classify the works we will present following this double analysis grid. We present first some relevant variants of Min p-Center under indeterminacy with regard to the origin of the indeterminacy. We think this approach is the most relevant to outline the difference between these models and the UP model. We will also discuss why our model fits in the in-between indeterminacy type. Secondly, we will categorize these works and discuss some other relevant works from the point of view of the decision-making environment. Finally, we will discuss the representation of indeterminacy with respect to our model. 

About the origin of the indeterminacy

Provider-side indeterminacy Provider-side indeterminacy may relate to randomness in the facility availability or reliability. For example, the q-Neighbor Min p-Center problem [START_REF] Chaudhuri | The p-neighbor k-center problem[END_REF][START_REF] Chen | Optimal algorithms for the α-neighbor pcenter problem[END_REF], also called Fault tolerant Min p-Center problem [START_REF] Calik | p-Center Problems[END_REF], is a generalization of Min p-Center where, given a number q, we have to place p centers so as to minimize the maximum distance of any non-center vertex to its q th closest center. More precisely, each vertex is assigned q-service facilities, so that each demand vertex could withstand the failure of q -1 service facilities. Chaudhuri, Garg and Ravi give in [START_REF] Chaudhuri | The p-neighbor k-center problem[END_REF] a 2-approximation algorithm for this problem, and show it is the best possible. Other exact algorithms and experimental results are proposed in [START_REF] Chen | Optimal algorithms for the α-neighbor pcenter problem[END_REF] by Chen and Chen. In the UP model, in some scenarios the fire occurs in an area with a shelter. We have seen that in this case the shelter is no more reachable for users outside the area (user inside the disaster area can get into the shelter). This situation corresponds to a provide-side type of indeterminacy. However, note that the evacuation strategy, even in these situations, does not correspond to an automatic reassignment to a q th center, for some predetermined q. In the UP model, we do not assign vertex v to some predetermined q th closest center in G, because, among other things, we have no guarantee that the q th closest center for v in G is accessible in G s . If we consider a graph G s , while the vertices v ∈ V \ {s} are evacuated to their closest center in G s , the evacuation strategy of vertex s depends on its neighborhood.

Receiver-side indeterminacy

Receiver-side indeterminacy may express randomness in the demand. For example, Bhattacharya, Kameda and Song [START_REF] Bhattacharya | Minmax regret 1center algorithms for path/tree/unicycle/cactus networks[END_REF] consider the minimax regret 

In-between indeterminacy

In-between indeterminacy corresponds to randomness in travel time or transportation cost for example. Many models consider indeterminacy on the weight (seen as cost or travel time) associated to the edges. The objective function focuses then on the weighted distance. In [START_REF] Averbakh | Complexity of robust single facility location problems on networks with uncertain edge lengths[END_REF] by Averbakh and in [START_REF] Lu | Robust weighted vertex p-center model considering uncertain data: An application to emergency management[END_REF] by Lu, a robust version of Min p-Center is defined by introducing uncertainty on edge weights: each weight may vary in an uncertainty set (usually an interval) and the problem is to determine a solution minimizing the worst case or the maximum regret. In [START_REF] Averbakh | Complexity of robust single facility location problems on networks with uncertain edge lengths[END_REF], Averbakh proved that the corresponding minimax regret Min 1-Center with uncertain edge weight is strongly NP-hard, in contrast with the problem with uncertain vertex-demand weight.

Note that, a model can incorporate different types of indeterminacy. For example, in [START_REF] Averbakh | Algorithms for the robust 1-center problem on a tree[END_REF], Averbakh and Berman consider the minimax regret weighted Min 1-Center on a network with uncertainty in node weights and edge lengths. They showed this problem can be solved on trees with a O(n 2 log n) algorithm.

In [START_REF] Du | A two-stage robust model for a reliable p-center facility location problem[END_REF], the authors Du, Zhou and Leus propose a robust minimax model for a reliable Min p-Center problem. Each scenario corresponds to a set of disrupted facilities and updated demands and costs. Clients are reallocated to the nearest surviving facility. This model incorporates the three types of indeterminacy. We will come back to their model later on to outline its difference with the UP model. Huang, Kim and Menezes propose in [START_REF] Huang | Facility location for large-scale emergencies[END_REF] a variant of the Min p-Center problem for large-scale emergencies, where the disaster affects a single vertex s, including any facility on this vertex. This model incorporates both indeterminacies in the facility availability and in the demand: any facility on an affected vertex is no longer available but only the population on this vertex requires evacuation. This model is motivated by different kind of disasters that affect a single vertex but also by the fact that each vertex corresponds to a large zone, like an entire city. Our context is really different since all zones must be evacuated in each scenario s and a shelter always secures at least the people from the corresponding area.

The UP model corresponds to an in-between type of indeterminacy. One of the main differences between the UP model and all known models is that we apply indeterminacy on the graph structure and not on the values of the edges between the vertices. We think that considering rather indeterminacy over the vertex structure of the graph will allow us to better apprehend the impact of the fire on the transport network. In some of these works, nondeterminate parameters vary independently one from the other. In our context, this independence hypothesis is not relevant since, if a fire ignites on a vertex, then all weights of the edges incident to this vertex are modified in the same way.

About the indeterminacy model

Certainty situations

In certainty situations all parameters are deterministic and known, and there is no element of chance between the decision and the outcome. We apply deterministic optimization to find an optimal decision with the use of an objective or multiobjective function. This environment is not necessarily unsuitable for managing situations which in practice include indeterminacy. In this case, the deterministic models generally adopt a single hazard scenario such as a worst-case or a most probable scenario. A vast literature in evacuation planning mostly relies on such deterministic models (see for example the review in [START_REF] Bayram | Optimization models for large scale network evacuation planning and management: A literature review[END_REF]), as well as in emergency logistics (see for example the review in [START_REF] Aakil M Caunhye | Optimization models in emergency logistics: A literature review[END_REF]). The Min p-Center problem for large-scale emergencies [START_REF] Huang | Facility location for large-scale emergencies[END_REF] and the the q-Neighbor Min p-Center problem [START_REF] Chaudhuri | The p-neighbor k-center problem[END_REF], [START_REF] Chen | Optimal algorithms for the α-neighbor pcenter problem[END_REF] previously introduced correspond also to this case.
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Risk situations

In risk situations probability information on the parameters is available. In this case, stochastic optimization is usually used, generally to optimize the expected value of a given objective function, or to maximize the probability that the solution is "good". The problem is then often solved either by using a specially designed algorithm (for example [START_REF] Martínez-Merino | The probabilistic p-center problem: Planning service for potential customers[END_REF]), or using the general Stochastic Programming (SP) techniques. In a SP problem, there are first stage decision variables and second stage decisions variables. First stage decision variables must be set before risk has been resolved, while second stage decisions variables have to be set after the risk has been resolved. Among SP problems for facility locations, Bayram and Yaman propose for example a stochastic evacuation planning model in [START_REF] Bayram | A stochastic programming approach for shelter location and evacuation planning[END_REF] that optimally locates shelters and assigns evacuees to the nearest shelter so as to minimize the expected total evacuation time. In [START_REF] Shen | The reliable facility location problem: Formulations, heuristics, and approximation algorithms[END_REF], the authors propose a SP problem to solve a variant of Fixed-Charge Facility Location with probability on the accessibility to the facility. Note that PpCP falls into the paradigm of stochastic optimization but not directly of SP. In PpCP, first stage decision variables correspond to the shelter location; while second stage decision variables correspond to the evacuation path followed by each person on the territory. Unlike the shelter location, the choice of the evacuation path followed by a person is not under control of the decision-maker.

Uncertainty situations

In uncertainty situations no probability information on the parameters is used. In this case, a robustness measure is usually considered for evaluating the performance of the system. There are two classical objective functions: minimax and minimax regret [START_REF] Rosenhead | Robustness and optimality as criteria for strategic decisions[END_REF][START_REF] Lawrence | Facility location under uncertainty: a review[END_REF][START_REF] Correia | Facility location under uncertainty[END_REF]. In a minimax problem, an optimal solution minimizes the maximum value of the solution across all scenarios (for example [START_REF] Du | A two-stage robust model for a reliable p-center facility location problem[END_REF]). Minimax regret problems are based on the definition of the regret of solution. There are two common measures: the first one considers the difference between the value of the chosen solution in a given scenario and the value of the optimal value for that scenario (all of the robust problems based on minimax regret cited in Subsection 2.2.2 refer to this definition). The second one measures the ratio between the two previously mentioned values. Note that RpCP falls into the paradigm of minimax robust optimization. In addition, our model includes a layer of minimax robust optimization regarding the measured evacuation distance of the fire-source area: in scenario s, if no shelter is located on s, then the evacuation distance is given by the longest evacuation path originating from s.
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About the indeterminacy representation

In some models, non determinate parameters may vary independently one from each other (for example in [START_REF] Averbakh | Minimax regret p-center location on a network with demand uncertainty[END_REF][START_REF] Taghavi | The p-center problem under uncertainty[END_REF][START_REF] Martínez-Merino | The probabilistic p-center problem: Planning service for potential customers[END_REF]). In our context, this independence hypothesis is not relevant since, if a fire ignites on a vertex, all length of the edges incident to this vertex are modified in the same way. In the UP model, indeterminacy is represented by a set of discrete scenarios. Such scenario-based approach has already been studied for facility location problems [START_REF] Lawrence | Facility location under uncertainty: a review[END_REF][START_REF] Correia | Facility location under uncertainty[END_REF]. Most deal with scenario-based approaches for generalizations of p-Median and Fixed-Charge Facility Location problems. For example, in [START_REF] Serra | The p-median problem in a changing network: the case of barcelona[END_REF], a p-Median problem under scenario-based demand uncertainty is considered. In [START_REF] Snyder | Stochastic p-robust location problems[END_REF], a new robustness measure is introduced and used on a discrete scenario-based approach for the p-Median problem. In [START_REF] Shen | The reliable facility location problem: Formulations, heuristics, and approximation algorithms[END_REF], the authors consider a scenario-based variant of Fixed-Charge Facility Location, where each scenario specifies the set of second-stage accessible facilities. The two reviews [START_REF] Lawrence | Facility location under uncertainty: a review[END_REF][START_REF] Correia | Facility location under uncertainty[END_REF] underline that robust Min p-Center problems are often more difficult than the related p-Median problems. To our knowledge, the only paper studying the robust Min p-Center problem with a scenario approach is the previously presented model by Du, Zhou and Leus [START_REF] Du | A two-stage robust model for a reliable p-center facility location problem[END_REF]. RpCP differs from this model, as it can not be reduced to a robust minimax Min p-Center with a scenario-based approach, where each scenario s defines the length of the distance between two vertices in G s : the evacuation distance r s (C, v) depends on the solution and does not systematically correspond to a shortest path in G s .

Conclusion

In this chapter we define the problems studied in this thesis. Our objective is to determine a best location for shelters in a territory threatened by wildfires. The territory, divided into zones, is represented by a graph in which each zone corresponds to a vertex and two vertices are linked by an edge if it is possible to go directly from one zone to the other. The problem is to locate at most p shelters on vertices so that the maximum evacuation distance of any vertex to its nearest shelter is minimized. When the uncertainty of fire outbreaks is not considered, this problem corresponds to the well-known Min p-Center problem on a graph. A scenario defines a fire outbreak on a single zone with the main consequence of modifying evacuation paths. Several evacuation paths may become impracticable and the ensuing evacuation decisions made under pressure may no longer be rational. We introduce a new evacuation strategy, the UP evacuation strategy, to characterize this behavior. This evacuation strategy induces new evacuation distances which render our approach specific. The evacuation distance of this source area is then the length of a longest evacuation path leaving this area. The evacua-tion distance of any other area is given by a shortest operational path to a shelter. The evacuation radius of a p-set for a scenario is then the maximum evacuation distance in this scenario. We define two problems; they vary by the input data and the objective function considered. In PpCP, we are in a risk environment and the objective function is to minimize the probabilist evacuation radius. In RpCP, we are in an uncertain environment and the objective function is to minimize the robust evacuation radius. A main objective in our context is to avoid any death toll, thus a p-set is considered feasible only if the evacuation distances of all vertices in all scenarios are finite. This constraint is verified for both PpCP and RpCP when p ≥ 2 and the p-set intersects each minimal articulation components of the graph. A direct result is that a shelter must be located on each pending vertex.

Compared to the existing state of the art, our problems fall within the scope of two-stage problems with in-between indeterminacy. To our knowledge, it is the first attempt to model the evacuation strategy in such manner for a shelter location problem.

In the next chapter, we study the NP-hardness of our two new problems.

CHAPTER 3

HARDNESS RESULTS

Abstract

In this chapter, we study the hardness of the problems RpCP and PpCP. We show that RpCP is NP-hard in all hereditary classes of graphs where the decision version of Min Vertex Cover is NP-complete, and NP-hard in subgrids of degree at most 3. In addition, we give a non approximation result for PpCP on bipartite planar graphs and another non approximation ratio on subgrids of degree at most 3. 
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Introduction

In the previous chapter, we introduced two new problems for shelter location: PpCP and RpCP. In this chapter, we analyze the hardness of these two problems. Note that if p was a fixed constant, then the number of subsets of size p would be polynomial and these problems could be polynomially solved on any graph (even thought not tractable in practice). We saw that Min p-Center is NP-hard on planar graphs of maximum degree at least 3. This result does not imply immediately the hardness of PpCP and RpCP. Indeed, we defined our model with non-zero probabilities, which does not count the classic Min p-Center as one of its specific cases.

For a graph G = (V, E), denote L ⊂ V the set of pending vertices. Given the feasibility conditions seen in Subsection 2.1.5, we assume p ≥ |L| and L contained in any feasible solution for PpCP and RpCP. Thus, when p = |L|, we can straightforwardly say that L is the only feasible solution for both PpCP and RpCP. Therefore, we consider in the following that p > |L|.

The case of planar graphs of low degree is particularly relevant for real case applications. Since the graph G represents the adjacency graph of zones in the territory, it is planar and in most cases, each zone has a small number of adjacent zones. In some cases however, the underlying graph has even a simpler structure. A common case is a rectangular grid or subgrid when the territory has some "holes" corresponding to large spaces difficult to traverse, like a lake, steep slopes or marshland. Based on these cases, a natural question is the complexity of RpCP and PpCP in bipartite planar graphs (since subgrids are bipartite) and subgrids. In what follows, we answer these questions.

In Section 3.1 we present some hardness results for RpCP. A significant portion of the work presented in this section has been published in [START_REF] Demange | A robust p-center problem under pressure to locate shelters in wildfire context[END_REF]. In Section 3.2 we present two hardness-in-approximation results for PpCP, one on bipartite planar graphs with degrees 2 or 3, and one on subgrids with degrees 2 or 3. The work presented in this section has been published in [START_REF] Demange | The probabilistic k-center problem[END_REF] (result on bipartite planar graphs) and have been submitted [START_REF] Demange | Hardness and approximation of the probabilistic p-center problem under pressure[END_REF] (result on subgrids).

In this chapter, we present different transformations of graphs. Given an initial graph G = (V, E), our transformations correspond always to an embedding of G into a graph G = (V , E ). For clarity, for every vertex u of G, we will denote as well by u the vertex of G it maps to. Using this convention, we consider that the vertex set of G is a subset of the vertex set of G . A specific transformation considered in this chapter is a grid embedding: given a subgrid G = (V, E), a grid embedding is a one-to-one function from V to V for some dimensions (n, m) such that every edge (u, v) ∈ E maps to an edge of the n × m grid. Unless otherwise stated, each time we will refer to a subgrid, we will assume that a grid embedding is given. As defined in [START_REF] Demange | On some coloring problems in grids[END_REF], for a partial subgrid G and a positive integer f , the f -expansion of G, denoted Exp(G, f ), is obtained from G by inserting f -1 vertices on each edge (each edge becomes a path of

f edges). If f ≥ 2, the f -expansion of any partial subgrid is a subgrid. If G is a subgrid embedded in a n × m grid G, then Exp(G, f ) is a subgrid embedded in the [(n -1)f + 1] × [(m -1)f + 1] grid Exp(G, f ).
The vertex set of G can be seen as a subset of the vertex set of Exp(G, f ) and more precisely, in the related grid embedding of Exp(G, f ), the coordinates of any vertex u ∈ V are multiplied by f compared to its coordinates in the original grid embedding of G in G.

The following Lemma is certainly a known remark but we show it since we did not find any reference for it.

Lemma 7. The Min Vertex Cover problem is NP-hard in planar graphs with vertices of degree 2 or 3.

Proof. The decision version of the Min Vertex Cover is known to be NP-complete on planar graphs of maximum degree 3 [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF]. Consider a planar graph G of maximum degree 3 with a pending vertex v adjacent to vertex y. Consider the graph G obtained from G by adding a triangle {v 1 , v 2 , v 3 } and linking v 1 with v (v is then of degree 2 in G ). G is planar with maximum degree 3 and with one pending vertex less than G.

We prove that G has a vertex cover of size t if and only if G has a vertex cover of size t + 2, which concludes the proof.

⇒ Let U be a vertex cover of size t on G. We build a vertex cover U for G based on U by adding v 1 , v 2 which cover the edges of

G [{v, v 1 , v 2 , v 3 }]. U is then a vertex cover for G of size t + 2.
⇐ Let U be a vertex cover of size t + 2 on G . Notice that U includes at least 3 vertices of {y, v, v 1 , v 2 , v 3 }. We can always chose to include y, v 1 , v 2 in U instead of any three vertices of {y, v, v 1 , v 2 , v 3 } without increasing the size of U . As y ∈ U covers the edge

(v, y), U \ {v 1 , v 2 } is a vertex cover of G \ {v 1 , v 2 , v 3 }. Then U = U \ {v 1 , v 2 } is a vertex cover for G of size t.

RpCP Hardness results

For this section, we consider the version of RpCP with an evacuation radius threshold, RpCP k . For any constant integer k, RpCP k takes as input an instance of RpCP. This problem is to decide whether there is a solution C with a robust radius less or equal to k, i.e. I R(C) ≤ k. This problem is clearly in NP: we consider a polynomial number of scenarios and consequently, for any solution C, checking whether I R(C) ≤ k can be done in polynomial time. For each scenario, it requires evaluating the evacuation distances of each vertex using a minimum path algorithm. Note
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that the set of problems (RpCP k ) k≥1 for any integer k corresponds to the decision problem of RpCP.

In this section, we will address k = 1 or 2 and the uniform case for different classes of graphs. In Section 3.1.1, we outline the relation between RpCP 1 and the decision version of the Min Vertex Cover problem. In Section 3.1.2, we outline the relation between RpCP 2 and the decision version of the Min Dominating Set problem. In both cases, we can deduce hardness results for RpCP 1 , RpCP 2 and RpCP on some classes of graphs. In Section 3.1.3, we consider a particular subclass of bipartite planar graphs, the class of subgrids of maximum degree 3. RpCP 1 is polynomially solvable in this class while RpCP 2 reveals to be NP-complete. We conclude in Section 3.1.4 with some comments about the complexity of RpCP k when k varies.

RpCP 1 and the Min Vertex Cover problem

We consider an undirected graph G = (V, E) where all edges are of length 1. The following elementary proposition leads immediately to a first hardness result: Proposition 8. The robust radius of a set of vertices C ⊆ V is at most 1 if and only if C is a vertex cover that includes all pending vertices.

Proof. Suppose C is a set of vertices with I R(C) ≤ 1. Since its robust radius is finite, it should include all pending vertices. Let u ∈ V \ C, then r u (C, u) = 1, which means that all neighbors of u are in C. Thus, C is a vertex cover.

Conversely, assume C is a vertex cover including all pending vertices; we consider a scenario u and a vertex v such that v / ∈ C (in particular v is not a pending vertex). If v = u, then every neighbor of v is in C since v / ∈ C. If v = u, then v has at least one neighbor in C \ {u} since v is of degree at least 2. In both cases, the evacuation distance is 1 and consequently r u (C) = 1. Therefore, I R(C) ≤ 1, which completes the proof.

In particular, if G has no pending vertex, then I R(C) is at most 1 if and only if C is a vertex cover. We deduce immediately: Corollary 9.

1. RpCP 1 is NP-complete in all classes of graphs in the uniform case and of minimum degree 2, for which the decision version of Min Vertex Cover problem is NP-complete. The problem RpCP is NP-hard in these classes of graphs.

2. RpCP 1 is polynomial-time solvable in all classes of graphs in the uniform case and of minimum degree 2, for which the decision version of Min Vertex Cover problem is polynomial-time solvable.
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For hereditary1 classes of graphs H , we can easily use a pre-processing allowing to reduce the Min Vertex Cover problem in this class to the same problem in the subclass of graphs in H without pending vertices. This leads to the following corollary.

Corollary 10. We transform G using the following pre-processing: while the graph has a pending vertex x and p ≥ 0: add to the cover the unique neighbor y of x, remove from the graph (x, y) and all edges incident to y and subtract 1 to p. If p becomes negative, then the original instance was a no-instance If all vertices of G are removed and p ≥ 0, then it was a yes-instance.

RpCP

In other cases, if (G , p ) are the resulting graph and constant, then the original instance is a yes-instance if and only if (G , p ) is a yes-instance. Since G is in H and has no pending vertex, this is equivalent to deciding whether there is in G a p -center of robust radius at most 1.

(2): Suppose H is an hereditary class of graphs for which the decision version of Min Vertex Cover can be solved in polynomial-time and consider an instance (G, p), with G ∈ H and p ∈ N of RpCP 1 . Using Proposition 8, it is a yes-instance if and only if there is a vertex cover including all pending vertices and of cardinality at most p. If G has p pending vertices, with p > p, then it is a no-instance. If p ≤ p now, then this is equivalent to say that the subgraph obtained by removing the pending vertices and the related incident edges has a vertex cover of size p -p . This question can be answered in polynomial-time since the resulting graph is in H.

In particular, deciding whether the minimum robust radius is 1 (RpCP 1 ) is NPcomplete on planar graphs of maximum degree 3 since the decision version of Min Vertex Cover is NP-complete on this hereditary class [START_REF] Lichtenstein | Planar formulae and their uses[END_REF].

RpCP 2 and the Min Dominating Set problem

We consider an undirected graph G = (V, E) where all edges are of length 1. The following proposition leads to a first hardness result for RpCP 2 :

Proposition 11. Let G = (V, E) be a triangle-free graph. D is a dominating set of G that includes all pending vertices of G if and only if

I R(D) ≤ 2 ⇔ r s (D, v) ≤ 2, ∀v ∈ V, ∀s ∈ V Proof.
Suppose D is a dominating set including all pending vertices, we consider a scenario s and a vertex v such that v / ∈ D (in particular v is not a pending vertex). If v = s, consider then the evacuation path of v crossing any neighbor y of v. Vertex y is either in D or adjacent to a vertex of D which cannot be s. In this case r s (D, v) ≤ 2. If v and s are not adjacent, then v has a neighbor in D and r s (D, v) = 1. The same holds if v and s are adjacent with s / ∈ D. Finally, if v and s are adjacent with s ∈ D, then there is at least one neighbor y = s of v who is at a distance at most 1 of a vertex x ∈ D, where x = s since G is triangle-free. In this case

r s (D, v) ≤ 2. Consequently, r s (D, v) ≤ 2, ∀v ∈ V, ∀s ∈ V .
Conversely, suppose D is a set of vertices with r s (D, v) ≤ 2, ∀v ∈ V and ∀s ∈ V , which is equivalent to statement I R(D) ≤ 2. Since every evacuation distance is finite, D includes all pending vertices. Take a vertex v / ∈ D and u / ∈ D an vertex adjacent to v. Then, for the scenario u, an evacuation path through v leads to a vertex shelter adjacent to v. Therefore, every vertex of G is either in D or adjacent to D. Consequently, D is a dominating set that includes all pending vertices.

In particular, if G is triangle-free of degree at least 2, then I R(C) is at most 2 if and only if C is a dominating set. We deduce:

Corollary 12.
1. RpCP 2 is NP-complete in all triangle-free classes of graphs in the uniform case and of minimum degree 2, for which the decision version of Min Dominating Set problem is NP-complete. The problem RpCP is NP-hard in these classes of graphs.

RpCP 2 and the Min Vertex Cover problem

In this section, we present a reduction from Min Vertex Cover to RpCP 2 which proves the NP-completeness of RpCP 2 in subgrids with vertices of degree 2 or 3. The purpose of this section is mainly to introduce the structural relations between these two problems, which will be needed in the next section when proving the NP-hardness of PpCP in subgrids of maximum degree 3.

To make the presentation easier to read and the proof more intuitive, we first propose a weaker result (Proposition 13) stating the hardness of RpCP 2 in bipartite planar graphs of maximum degree 3. Then, we show how to extend the reduction with a more complex construction to prove Theorem 15 that states the hardness of RpCP 2 in subgrids with vertices of degree 2 or 3. This step uses ideas and techniques proposed in [START_REF] Demange | A note on the np-hardness of two matching problems in induced subgrids[END_REF][START_REF] Demange | On some coloring problems in grids[END_REF] to prove NP-hardness results in subgrids for a large range of problems known to be hard in planar bipartite graphs with vertices of degree 2 or 3.

Proposition 13. RpCP 2 is NP-complete in planar bipartite graphs with vertices of degree 2 or 3, even in the uniform case. RpCP is NP-hard in this case.

Proof. We revisit a reduction from the decision version of Min Vertex Cover to Min Dominating Set in planar graphs with vertices of degree 2 or 3, shown to be NP-complete in [START_REF] Michael | Computers and intractability[END_REF]. Given a planar graph G = (V, E) with degrees 2 or 3, one builds a bipartite graph G = (V , E ) by replacing each edge (u, v) with a gadget L 4 as presented in Figure 3 Proof. ⇒ Suppose that G has a vertex cover U ⊂ V of size t. We add to it a set U ⊂ V of vertices to make it the required solution. To make the following construction non-ambiguous, we consider an orientation of the graph G. Consider any edge (u, v) oriented from u to v. As U is a vertex cover, at least one of the 

• if a uv ∈ C, then U = C \ {b uv , c uv , d uv } ∪ {v}. • else, if c uv ∈ U , then U = C \ {a uv , b uv , d uv } ∪ {u}. • else, we have C ∩ {a uv , b uv , c uv , d uv } = {b uv , d uv }, then U = C \ {b uv , d uv } ∪ {a uv , v}.
It follows that, for any edge (u, v) ∈ E, at least one vertex in {u, v} is included in U . If U has less than t + |E| vertices, then we add vertices in V to make U of cardinality t + |E| without increasing any evacuation distance. In conclusion, U ∩ V is a vertex cover of G of cardinality t, which completes the proof.

Lemma 14 induces that the decision version of Min Vertex Cover in planar graphs with vertices of degree 2 or 3 polynomially reduces to RpCP 2 in bipartite planar graphs with vertices of degree 2 or 3. Since Min Vertex Cover is NPcomplete in planar graphs with vertices of degree 2 or 3 (Lemma 7), so does RpCP 2 , which concludes the proof.

In the following we show how to adapt the proof of Proposition 13 for a stronger result. It seemed to us easier to devise directly a reduction from Min Vertex Cover than reducing RpCP 2 in planar graphs with vertices of degree 2 or 3 to the same problem in a more restrictive class. The proof of Proposition 13 was given only to make this reduction clearer and more intuitive.

Theorem 15. RpCP 2 is NP-complete in subgrids with vertices of degree 2 or 3, even if all edges have length 1. RpCP is NP-hard in this case.

Proof. We already have noted that the problem RpCP 2 is in NP. In the following we present a reduction from Min Vertex Cover in planar graphs of maximum degree 3. For clarity, the reduction from Min Vertex Cover is divided in two steps.

Step 1: This step follows general ideas proposed in [START_REF] Demange | A note on the np-hardness of two matching problems in induced subgrids[END_REF][START_REF] Demange | On some coloring problems in grids[END_REF] for proving NPhardness results in subgrids. Given a planar graph G = (V, E) with vertices of degree 2 or 3, we first embed it in a grid of polynomial size using a result of [START_REF] Yanpei | General theoretical results on rectilinear embedability of graphs[END_REF]: vertices are mapped to vertices of the grid and edges are mapped to non-crossing paths in the grid. Embedding can be done in polynomial time. Thus, any edge (u, v) of G is replaced in the embedding by a path of length uv between u and v for some positive integer uv . The resulting graph is not a subgrid but only a partial subgraph of the grid. The next step will make it a subgrid with, in addition, the required properties to ensure the validity of the reduction.

Step 2: The main idea is inspired from the reduction seen in Proposition 13, where a 4-cycle is inserted on each edge of the original graph (gadget of Figure 3.1). After embedding the graph in a grid, an edge (u, v) of the original graph corresponds to a path of length uv and the idea is to insert on this path a 4cycle like in the previous reduction. The only technical difficulty is to manage the length of the paths between u, v and this 4-cycle to ensure that the reduction works. To this aim, we use the gadget T uv illustrated in Figure 3 3.1. T uv can replace a section of 12 consecutive horizontal edges and similarly, a sequence of 12 vertical edges can be replaced with the same gadget rotated by π 2 radians. To this purpose, the next step is to perform a 12-expansion on every edge (by inserting 11 new vertices). This has few advantages: it produces another embedding of the original graph in a grid that ensures that every path P uv in the grid associated with an edge (u, v) of the original graph has now 12 uv edges and with its 12 first edges from u (or from v) either all horizontal or all vertical. In addition, such an expansion gives enough space to ensure we can insert gadgets T uv while guaranteeing the resulting graph to be a subgrid. The strategy is to insert T uv by replacing the 12 first edges on one side of P uv . Since T uv is non symmetric, we will use an orientation of the original graph G. Starting from the graph obtained at step 1, the second step is summarized below and will conclude the reduction:

• Perform a 12-expansion. The resulting graph, G is a subgrid obtained from G by replacing any edge (u, v) of E with a path P uv of 12 uv edges.

• Select an orientation of each edge of G and the related orientation on G .

• For an edge (u, v) oriented from u to v, replace the 12 first edges of P uv , starting from u, with the gadget T uv represented in Figure 3.2 if the 12 replaced edges are horizontal or with the same gadget rotated by π 2 radians if they are all vertical.

• The resulting graph is denoted by G
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Note that for any edge (u, v) of G oriented from u to v, there is a path of length 12( uv -1) in G from the vertex z 9 uv and v. In particular, if uv = 1, then z 9 uv = v. Else, the vertices of this path are denoted by z 10 uv , . . . , v = z 9+12( uv -1)

uv

. We then denote by T uv the subgraph obtained by adding to T uv the path from z 9 uv to v. If uv = 1, then T uv = T uv . The graph T uv has 6 + 12 uv vertices including u and v. The graph G is obtained from G by replacing each edge (u, v) oriented from u to v with T uv . It is an induced subgrid since for every vertex x of T uv \ {u, v} and for every vertex y of T u v \ {u , v } with (u, v) = (u , v ), (x, y) is not an edge in the grid. In addition, vertices in V have the same degree in G than in G and all other vertices in G have degree 2 or 3. G has |V | + 4|E| + 12L vertices, all of degree 2 or 3, where L = This concludes the construction that can be performed in polynomial time. To conclude the proof of Theorem 15, we need to show that Min Vertex Cover in the graph G reduces to RpCP 2 in the graph G. For this, we establish two claims. Claim 1 is a technical result used to prove Claim 2 that immediately concludes the proof.

(u,v)∈E ( uv ). u x 1 uv x 2 uv a + uv a - uv d uv z 5 uv z 6 uv z 7 uv z 8 uv z 9 uv b uv c - uv c + uv z 1 uv z 2 uv z 3 uv z 4 uv v = z 9+12( uv -1)
Claim 1. Let C be a set of vertices of robust radius at most 2, then for every edge (u, v) of G oriented from u to v, the following holds: We are now ready to establish Claim 2. The proof requires to define, for an edge (u, v) ∈ E of G oriented from u to v, two disjoint sets of vertices of T uv :

1. C includes at least one vertex from {b uv , d uv , a - uv , c - uv } 2. C includes at least two vertices from {b uv , d uv , a - uv , c - uv , a + uv , c + uv } Proof. (1): If C ∩ {b uv , d uv , a - uv , c - uv } = ∅,
Denote C v+ uv = {z 3i uv , i = 1, . . . , 2 + 4( uv -1)} (last vertex is z 6+12( uv -1) uv ); Denote C v- uv = {z 3i-1 uv , i = 1, . . . , 3 + 4( uv -1)} (last vertex is z 8+12( uv -1)
uv , which is linked to v).

C v+ uv and C v- uv include, after a first vertex z i 0 uv , every third vertex along the path z i uv , i 0 ≤ i ≤ 8 + 12( uv -1). Roughly speaking, C v+ uv (resp. C v- uv ) corresponds to the optimal position of centers along the path from c - uv to v in T uv after deciding to implement a center on vertex c + uv (resp. c - uv ). Note that on a path with 3p + 1 vertices, at least p -1 centers are required in addition to the two extremities to ensure the robust radius to be at most 2. The only solution using this number of centers is to place centers at the extremities of the path and on every third vertex in between. We have |C Proof. Let us first consider a vertex cover U of cardinality p in G = (V, E). We complete U in C U in G by adding, for every edge (u, v) ∈ E of G oriented from u to v, 4 uv + 1 vertices as follows:

If u ∈ U , then we add to C U vertices {a + uv , c - uv } ∪ C v- uv . If u / ∈ U , then we add to C U vertices {x 1 uv , a - uv , c + uv } ∪ C v+ uv .
Since we add 1 + 4 uv vertices for each edge, we have:

|C U | = |U | + 4|L| + |E|.
We can check that the robust radius of C U is at most 2 and it is at least 2 since, in all cases, we have two consecutive vertices in T uv that are not in C U .

To prove the converse, note first that we need at least 1 + 4 uv vertices of T uv \ {u, v} in C U to ensure I R(C U ) ≤ 2. Actually, if there are three consecutive vertices of degree 2 that are not in C U , then the robust radius is at least 3. Consequently, even if u and v are in C U , we need at least 4 uv centers of T uv \{u, v, b uv , d uv , a - uv , c - uv } to ensure that every three consecutive vertices of degree 2 include at least one 3.1. RpCP HARDNESS RESULTS center. The best way to do it is to add {a + uv , c + uv } ∪ C v+ uv , which makes 4 uv centers. Using Claim 1 (first item), we deduce that at least one additional vertex from {b uv , d uv , a - uv , c - uv } should be added in any set of vertices C satisfying I R(C) = 2. Let us now assume that G includes a set of vertices C of robust radius at most 2. As we just noted, for every edge (u, v) of G, C includes at least 1 + 4 uv vertices of T uv \ {u, v} and thus, C includes in all p + |E| + 4L vertices for some non-negative p. Suppose now that, for an edge Claim 2 states that the decision version of Min Vertex Cover in planar graphs with vertices of degree 2 or 3 polynomially reduces to RpCP k with p = 2 in this class of graphs. Since Min Vertex Cover is NP-complete in planar graphs with vertices of degree 2 or 3 (Lemma 7), so does RpCP k . This concludes the proof of Theorem 15.

(u, v) of G, oriented from u to v, neither u nor v is in C. Since I R(C) ≤ 2, we have {x 1 uv , x 2 uv } ∩ C = ∅ and {z 8+12( uv -1) uv , z 7+12( uv -1) uv } ∩ C = ∅.

Does increasing the radius make the decision problem harder?

In Subsection 3.1.1 we saw that RpCP 1 is NP-complete in all classes of graphs of minimum degree 2 in the uniform case for which the decision version of Min Vertex Cover problem is NP-complete. This does not include the class of subgrids in the uniform case and vertices of degree 2 or 3. Meanwhile, in Subsection 3.1.3, we proved that RpCP 2 is NP-complete in subgrids in the uniform case and vertices of degree 2 or 3.

These results make natural the question of the hardness of RpCP k when k varies. We can easily see that RpCP k for k > 1 is NP-complete for classes of graph which are stable by transitivity and for which RpCP 1 is NP-complete: A class H is stable by transitivity if and only if, for a graph

G = (V, E) ∈ H, the graph G = (V, E k ) -obtained from G such that E k = {(i, j) : ∀i, j ∈ V, d(i, j) ≤ k, } -is in H. In this case, the instance (G, p) of RpCP k can be reduced to the instance (G , p) of RpCP 1 .
However, a natural question is whether there exists a reduction allowing to state for a given k the hardness of RpCP k+1 on a class if RpCP k is known to be hard on this class? In particular, can we conclude results for larger values of k for the classes studied here? The following remark gives evidence of graph classes on
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which RpCP 1 is hard but RpCP 2 is trivial. This justifies that such a reduction from k to k + 1 does not exist in the general case and consequently, the hardness of RpCP k on a given graph class requires to be studied for any value of k and cannot be deduced, in general, from hardness results dealing with different values of k. This leaves open avenues for future researches with, in particular, the challenge to devise reductions working for different values of k.

Remark 2. There are graph classes for which RpCP 1 is NP-complete while all graphs in the class have a solution of robust radius 2 using only two centers (thus, RpCP 2 is trivial).

Proof. Consider any class H of graphs with all vertices of degree at least 2 and including at least three independent vertices (i.e., not linked by an edge) such that the decision version of Min Vertex Cover problem is NP-complete on H. The condition that at least three independent vertices exist in any graph G = (V, E) of this class is not restrictive since Min Vertex Cover can be trivially solved in polynomial time on graphs that do not satisfy this condition. The condition ensures that the size of a Min Vertex Cover is at most |V | -3 for any graph G = (V, E) ∈ H. We build the class H of all graphs obtained from a graph G ∈ H by adding two vertices u 0 , v 0 completely linked to all vertices of G. For any graph in H , a Min Vertex Cover includes u 0 , v 0 and a Min Vertex Cover of the graph obtained by removing u 0 , v 0 .

If u 0 or v 0 is not included in the vertex cover, then all other vertices should be included which, by hypothesis, is larger than the proposed solution. Therefore, the decision version of Min Vertex Cover is NP-complete on H , and using Corollary 9 so is RpCP 1 . Note however that, for any graph in H obtained from G = (V, E) ∈ H by adding u 0 , v 0 , the set {u 0 , v 0 } is a solution of RpCP of robust radius 2 with p = 2 not possible with p = 1, which completes the proof.

PpCP NON-APPROXIMATION RESULTS

PpCP Non-Approximation Results

We present in this section two non-approximation results for PpCP. The first one, on bipartite planar graphs of degrees 2 or 3, shows that PpCP can not be approximated with a ratio less than 20 19 (Section 3.2.1). The second one, on subgrids of degrees 2 or 3, shows that PpCP can not be approximated with a ratio less than 56 55 (Section 3.2.2). We first establish a technical lemma about vertex cover in graphs.

Lemma 16. Let G = (V, E) be a graph and G = (V , E ) be the graph obtained by inserting 2k uv vertices on each edge (u, v) ∈ E, where k uv is a non-negative integer. Then we have

τ (G ) = τ (G) + uv∈E k uv
Npte that, if for some integer k we have

∀(u, v) ∈ E, k uv = k, then G is a (2k + 1)- expansion of G.
Proof. For every edge (u, v) ∈ E oriented from u to v, we denote P uv = G [{u, x 1 uv , . . . , x 2kuv uv , v}] the path between u and v in G . Note that at least k uv vertices are needed to cover the edges in P uv \ {u, v}.

Let U ⊂ V a vertex cover of G: ∀(u, v) ∈ E, {u, v} ∩ U = ∅. We can build U ⊂ V in G as follows. We initialize U with all vertices of U . Then, for every edge

(u, v) ∈ E, if u ∈ U , we add vertices x 2i uv , 1 ≤ i ≤ k uv to U . Otherwise, v ∈ U necessarily, then we add vertices x 2i+1 uv , 0 ≤ i ≤ k uv -1 to U .
In both cases we have added exactly k uv vertices and all edges of P G uv are covered by U , with

|U | = |U | + uv∈E k uv . Then τ (G ) ≤ τ (G) + k uv .
Assume now that G has a vertex cover X . For every (u, v) ∈ E, P G uv is covered by at least k uv + 1 vertices. If u, v ∈ X , we can transform X into U such that u or v is in U . Then |U \ V | ≥ uv∈E k uv . Since at least one vertex between u and v is in

U = V ∩ U , U is a vertex cover for G. Then |U | = |U | -k uv , thus τ (G) ≤ τ (G ) -k uv . Hence τ (G ) = τ (G) + k uv
and the proof is complete.

PpCP Non-Approximable on Planar Graphs

In this section, we give an non-approximability result for PpCP on bipartite planar graphs of maximum degree 3. The case of planar graphs, in particular with low degree, is natural for our application. It motivates us to investigate the complexity status of our problem in restricted classes of planar graphs to better discriminate polynomial cases and hard cases.

For our first transformation, we use the same gadget as in Subsection 3.1.3. Given a planar graph G = (V, E) without pending vertex, one builds a bipartite graph G = (V , E ) by replacing each edge uv by the gadget L 4 as presented in Figure 3.1. We have seen in Lemma 14 that G has a vertex cover of size t if and only if G has a set C of size t + |E| with I R(C) ≤ 2. Moreover, for each edge (u, v) ∈ E, C has exactly one vertex in {a uv , c uv } and none in {b uv , d uv }. Given Proposition 11, we can conclude that C is a dominating set of G .

Assume G has a minimal2 vertex cover of size t, we define p t = t + |E| and consider a dominating set C of size p t in G , with exactly one vertex in {a uv , c uv } and none in {b uv , d uv } for any edge uv ∈ E. We evaluate the evacuation radius of C in G for any scenario s ∈ V . We recall that V ⊂ V .

Lemma 17. Using the above notations, we have: ever the escaping direction, people located on s will reach a center at distance 1, which gives r s (C , s) = 1. In addition, since C is a dominating set in G , every other vertex u of the graph is adjacent to at least one element of C , which gives r s (C , u) = 1. Thus, r s (C ) = 1.

r s (C ) = 1 ⇔ s ∈ V \ C 2 ⇔ s ∈ V ∩ C and s / ∈ V Proof. Since G
Consider now s ∈ V ∩ C . Since the considered vertex cover is minimal, there is j ∈ {1, . . . , deg(s)} such that v j / ∈ C and thus C ∩ {a sv j , b sv j , c sv j , d sv j } = {c sv j }. Then {a sv j , b sv j , c sv j } is an evacuation path of a sv j . It follows that the evacuation distance of a sv j is 2, thus r s (C ) = 2.

Consider now s ∈ {b uv , d uv } for uv ∈ E. Consequently, by construction of C , we have that s / ∈ C and that only one neighbor of s is in C . Then s has an evacuation path that crosses its neighbor vertex not in C , which means the evacuation distance of s is 2. Thus r s (C ) = 2.

Finally, consider s ∈ {a uv , c uv } for uv ∈ E. Suppose s = a uv . If s / ∈ C , then c uv ∈ C and the evacuation distance of s is 2. Otherwise, that is if s ∈ C , then the evacuation distance of b uv and d uv is 2. We can proceed similarly with the case s = c uv , thus r s (C ) = 2

In conclusion, for all cases except the first one, r s (C ) = 2. Thus the proof is complete.

At last, we will need the following lemma for our theorem.

Lemma 18. For G = (V, E) a graph with degrees {2, 3} and p < γ(G), the minimum probabilistic radius of any solution of PpCP is greater than 2.

Proof. Let C be a feasible solution of PpCP on G for p < γ(G). As C cannot be a dominating set, there exists v ∈ V such that ({v} ∪ Γ(v)) ∩ C = ∅ i.e., v is not in C or adjacent to any vertex of C. For any scenario s, the evacuation distance of v will be at least 2 as none of its neighboring vertices is in C. Thus r s (C, v) ≥ 2, ∀s ∈ V , which implies r s (C) ≥ 2, ∀s ∈ V . In addition, for any vertex y ∈ Γ(v), the evacuation distance of y in scenario y is at least 3 since y has an evacuation path that crosses v. It follows that r y (C) ≥ 3. Combined to r s (C, v) ≥ 2, ∀s ∈ V , we get I E(C) > 2 for any feasible solution C of PpCP on G.

We are now ready to prove the main result of this section.

Theorem 19. There is no polynomial time approximation for PpCP guaranteeing a ratio less than 20 19 for bipartite planar graphs of degrees 2 or 3, unless P=NP. Proof. The proof is by contradiction. Let ρ satisfy 1 < ρ < 20 19 . Consider ε > 0 such that ρ < 20+2ε 19+2ε < 20 19 . Take q ∈ N, such that 5 q ≤ ε and q ≥ 2. We suppose we have a polynomial approximation algorithm A for PpCP, admitting as argument a planar graph P of degrees 2 or 3 and the number p of centers, and guaranteeing the approximation ratio ρ. We will show how to use this algorithm to solve the Min Vertex Cover problem on planar graphs with vertex degrees 2 or 3. Lemma 7 will give the contradiction, unless P=NP.

Consider a planar graph G = (V, E) with vertex degrees in {2, 3}. We perform first a 2q + 1-expansion on G and denote G q = (V q , E q ) the resulting graph. Next we transform G q in the graph G q = (V q , E q ) by inserting the gadget L 4 as presented in Figure 3.1. We have in particular:

|V q | = |V | + 2q|E| |E q | = (2q + 1)|E| |V q | = |V q | + 4|E q | = |V | + (10q + 4)|E| (3.1) 
From Lemma 16 we have τ (G q ) = τ (G) + q|E| and from Proposition 11 and Lemma 14 we deduce γ(G q ) = τ (G q ) + |E q |. Then we obtain:

γ(G q ) = τ (G) + (3q + 1)|E| (3.2)
We apply the hypothetical approximation algorithm A on G q for different values of p, starting with p = 1 and augmenting it. While p < γ(G q ), the algorithm computes a solution C of probabilistic radius strictly greater than 2 (Lemma 18). Suppose now we use p = γ(G q ) = τ (G q ) + |E q |. Then using Lemma 14, there is a p-set C of graph G q satisfying the conditions of Lemma 17. Thus we obtain:

|V q |I E(C) = 2|V q | -(|V q | -τ (G q ))
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We deduce, using Relations 3.1 and 3.2:

|V q |I E(C) = |V | + (19q + 8)|E| + τ (G) < 2|V | + (19q + 8)|E|
where the last inequality holds because τ (G) < |V |. So, we have:

I E(C) < 2|V | + (19q + 8)|E| |V | + (10q + 4)|E| = 2 - q|E| |V | + (10q + 4)|E|
Since G has vertices of degree at least 2, we have V ≤ |E|, thus:

I E(C) < 2 - q|E| (10q + 5)|E| = 2 - q 10q + 5 ≤ 19 + 2ε 10 + ε
where the last inequality holds since 5 q ≤ ε. As a consequence, since an optimal solution C * will satisfy I E(C * ) ≤ I E(C), the approximation algorithm A will determine an approximated center C in G q of value:

I E(C) ≤ p -1 × 19+2ε 10+ε < 20+2ε 19+2ε × 19+2ε 10+ε = 2 (3.3) 
Since constructing G q and evaluating I E(C) can be done in polynomial time, and since algorithm A will be run less than |V | times, the whole process is polynomial. If P =NP, then this is a contradiction, and the proof is complete.

PpCP Inapproximation subgrids

In this section, we prove that PpCP cannot be approximated with a ratio less than 56 55 on a restricted subclass of bipartite planar graphs, the class of subgrids of degrees {2, 3}. This section is dedicated to prove Theorem 22. In Subsection 3.2.2.1 we explain the general scheme of the demonstration before giving all details in Subsections 3.2.2.2, 3.2.2.3 and 3.2.2.4.

Global blueprint of the proof

In Theorem 22, we will show that a polynomial time approximation algorithm A for PpCP in subgrid of degrees {2, 3} guaranteeing a ratio of at most 56 55 could be used to compute in polynomial time the size of the minimum vertex cover on a planar graph of degrees {2, 3}, which is a contradiction.

We start from a planar graph G = (V, E) with degrees {2, 3}, instance of Min Vertex Cover. We randomly choose an orientation of the edges of G that will be used in our reductions and analysis. We then apply successively two transformations, Transformation 1, denoted ϕ 1 and Transformation 2, denoted ϕ 2 that are detailed in Subsection 3.2.2.2. Figure 3.3 gives a simple schematic representation of the whole reduction. Note that the subgrid H appearing in Figure 3.3 is an intermediate stage not directly used in the analysis.

G = (V, E) τ (G) H = (V H , E H ) H q = (V Hq , E Hq ) F = (V F , E F ) γ(F ) H q = (V Hq , E Hq ) τ ( H q ) ϕ 1 ϕ 2 Figure 3.3:
The different graphs involved in the reduction.

Transformation 1 (ϕ 1 ) constructs from G a subgrid H q = (V Hq , E Hq ), for some positive integer q specified later, in such a way that:

• V ⊂ V Hq ,
• Edges (u, v) of G map to non-crossing paths P Hq uv of even length between u and v in H q .

We then apply Transformation 2 (ϕ 2 ) to construct a subgrid F = (V F , E F ) from H q . Roughly speaking, it consists in replacing the first two edges of P Hq uv (where (u, v) ∈ E is directed from u to v) with a gadget T 2 , and every other edge of H q with a gadget T 1 , both defined in the next subsection.

At this point, note that there is no direct and easy link between τ (G) and τ (H q ) since τ (H q ) can be obtained in polynomial time (H q is bipartite) while G is meant to be an instance of an NP-hard restriction of Min Vertex Cover. For this reason, we introduce an auxiliary graph H q = (V Hq , E Hq ). It can be seen as a perturbation of H q with a direct link between τ ( H q ) and τ (G). It is simply obtained by replacing, for every edge (u, v) ∈ E, the two first edges of the path P Hq uv by a single edge. This way, the path P Hq uv of even length becomes, in H q , a path P Hq uv of odd length and Lemma 16 can be used to write τ ( H q ) as a function of τ (G). On the other hand, as outlined in Lemma 20, the properties of the two gadgets allow to establish a direct link between dominating sets in F and vertex covers in H q . In all, it gives a relation between the Min Dominating Set problem in F and the Min Vertex Cover problem in G.

Then, in Subsection 3.2.2.3, we outline different relations between the Min Dominating Set problem and PpCP in a triangle-free graphs without pending vertices using Lemmas 11 and 20. This can be applied to F .

Finally, in Subsection 3.2.2.4, we use these results to establish Theorem 22. We show that, when applying A on F for p < γ(F ), the output is a solution of PpCP of expected radius at least 2, while applying it for p = γ(F ) gives a solution of expected radius less than 2. Hereby we can use such an algorithm to compute γ(F ), and consequently τ (G). Since constructing H, H q , H q and F , as well as evaluating the value of a PpCP solution, can be done in polynomial time, and since algorithm A is applied less than |V | times, the whole process is polynomial.

Details on the transformations and their properties

Transformation 1. From a planar graph G = (V, E) to a subgrid H q = (V Hq , E Hq ) with q > 0.

Using a result of [START_REF] Yanpei | General theoretical results on rectilinear embedability of graphs[END_REF], we can embed G = (V, E) in a grid H = (V H , E H ) of polynomial size. Vertices of G are mapped to vertices of the grid, and edges (u, v) of G map to non-crossing paths P H uv between u and v in the grid. Note that we cannot control the length and parity of these paths. The resulting graph is a partial subgrid and not necessarily a subgrid yet. We then perform a 2q-expansion for some positive integer q specified later. The resulting graph H q = (V Hq , E Hq ) is a subgrid (q > 0). In addition, since the expansion multiplies by 2q all path lengths from H to H q , edges (u, v) of G map to non-crossing paths P Hq uv of even length between u and v in H q . It means that paths P Hq uv have 2k uv + 1 internal vertices (excluding u and v) for some non-negative integers k uv .

Example. Suppose the planar graph G = (V, E) is a complete graph on four vertices {a, b, c, d} as presented in Figure 3.4 and set q = 2. We choose an orientation of G such that the directed edges of G are {(a, b), (a, c), (b, c), (c, d)}. H = (V H , E H ) corresponds to a possible embedding of G in a grid, where the edge (a, d) ∈ E maps to the path {a, z ad , d} in H. Next, we construct the subgrid H q by applying the 2q-expansion. The resulting graph H q can be seen on the right side of Figure 3.4. Finally, the related graph H q is represented in Figure 3.5. ♣ Analysis of ϕ 1 : As already noticed in Subsection 3.2.2.1, we cannot establish a direct link between τ (G) and τ (H q ). However, since we now control the parity of paths P Hq uv , it is easy to slightly modify H q so as we can apply Lemma 16. This is the role of the graph H q = (V Hq , E Hq ). Recall that this graph is obtained from H q by replacing, for every edge (u, v) ∈ E, the two first edges of the path P Hq uv by a single edge, as illustrated in Figure 3.5. This way, H q can directly be obtained H q for q = 2 embedded in a 9×9 grid. from G by inserting 2k uv vertices on each edge (u, v) ∈ E. As a consequence, by Lemma 16, we have:

τ ( H q ) = τ (G) + (u,v)∈E k uv .
(3.4)

In addition, we have:

|V Hq | = |V | + 2 e∈E k e |E Hq | = |E| + 2 e∈E k e (3.5)
By construction, we have ∀(u, v) ∈ E, 2k uv + 1 ≥ 2q -1, which gives:

∀(u, v) ∈ E, k uv ≥ q -1. (3.6) 3.2. PpCP NON-APPROXIMATION RESULTS a b c d H q Figure 3.5: The graph H q obtained from G through H q . k ab = k bc = k bd = 1, k ad = k cb = 3 and k ac = 7
Transformation 2. From subgrid H q = (V Hq , E Hq ) to subgrid F = (V F , E F ).

Thanks to the 2q-expansion, for (u, v) ∈ E directed from u to v, the first two edges of P Hq uv in H q are both horizontal or vertical. Note as well that the orientation of G immediately defines an orientation of H q and of H q . We can then construct the subgrid F = (V F , E F ) from the subgrid H q as follows.

For every edge (u, v) ∈ E directed from u to v, we replace, in H q , the first two edges (u, i), (i, x) of P Hq uv with T 2 ux defined in Figure 3.7, and every other edges (x, y) ∈ E Hq with T 1 xy defined in Figure 3.6. In the following we use T 12 xy to refer to T Lemma 20. For any t ≤ |V |, H q = (V 

| = |E|. ⇒ Let U ⊂ V Hq
be a vertex cover of H q of size t. We initialize D with all vertices of U , seen as a subset of V F , and complete it in a dominating set of F . Then for every (x, y) ∈ E Hq , oriented from x to y, we have D ∩ {x, y} = ∅. We then apply one of the two following cases: 

• if (x, y) ∈ E Hq 2 : If x ∈ D,
r s (D) = 1 if s ∈ V Hq ⊂ V F and s ∈ D 2 otherwise
Proof. Since D is a dominating set of the triangle-free F , by Lemma 11 D is a feasible solution of PpCP for p = p t such that r s (D, v) ≤ 2, ∀s, v ∈ V F . We recall that every vertex of H q maps a vertex in F by construction, thus we consider V Hq ⊂ V F in the following. Three cases emerge:

1. s ∈ V F \ V Hq : Denote (x, y) ∈ E Hq such that s ∈ T 12 xy .
As D is a minimal dominating set of F , D is build as the resulting dominating set described in Lemma 20. It follows that there is at least one evacuation distance of length 2 for any scenario s ∈ V F \ V Hq , i.e r s (D) = 2.

In the following, s ∈ V Hq and we denote by u 1 , . . . , u d ∈ V Hq the neighbors of s in H q .

2 s ∈ V Hq ∩ D: Since D is minimal, D ∩ V Hq is a minimal vertex cover of H q , thus there is at least one neighbor u ∈ {u 1 , . . . , u d } of s in H q that is not included in D. By construction, z 1 su , z 2 su / ∈ D and z 3 su ∈ D. Then under scenario s, the evacuation distance of z 1 su is 2, i.e. r s (D, z 1 su ) = 2. Under scenario s, the evacuation distance of any other vertex in T su is less than 2 given that D is a minimal dominating set. For any other neighbor u ∈ {u 1 , . . . , u d } of s in H q (u = u), we have |{z 1 su , z 2 su , z 3 su } ∩ D| = 1, and D a minimal dominating set on T su , thus the evacuation distance of any vertex in T su is at most 2. Therefore r s (D) = 2.

3 s ∈ V Hq \ D: We recall that by definition D ∩ V Hq is a minimal vertex cover of H q , then {u 1 , . . . , u d } ⊂ D. In addition, for any edge (s, u) ∈ E Hq oriented from s to u, D includes by construction z 1 su . Then every neighbor of s in F is included in D by construction. Therefore, r s (D, s) = 1. Since D is a dominating set in F , it remains a dominating set in F -s, which guarantees r s (D, v) = 1, ∀v ∈ V F -s. Thus r s (D) = 1.
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So, in all cases except the last one, r s (U ) = 2, and the proof is complete.

We now are ready to prove the main result of this section.

The theorem

Theorem 22. If P = NP, there is no polynomial time approximation for PpCP guaranteeing a ratio less than 56 55 for subgrids with vertex degrees 2 or 3, even in the uniform case.

Proof. The proof is by contradiction. Let us suppose there is a polynomial approximation algorithm A for uniform PpCP which guarantees the approximation ratio ρ satisfying 1 < ρ < 56 55 , on subgrids with vertex degrees 2 or 3 for a parameter p. We will show how to use this algorithm to solve the Min Vertex Cover problem on planar graphs. Lemma 7 gives the contradiction, unless P=NP.

Suppose ε > 0 such that ρ < 56+2ε 55+2ε < 56 55 . Take an integer q ≥ 2 such that ε ≥ 17 q-1 . Consider a planar graph G = (V, E), instance of Min Vertex Cover. Consider the graph H q obtained by Transformation 1, as well as H q = (V Hq , E Hq ) and the vector {k e : e ∈ E} obtained through H q . In addition, consider the graph F = (V F , E F ) obtained from H q through Transformation 2.

Recall that, from Relations 3. 

γ(F ) = τ ( H q ) + 4|E Hq | + |E| = τ (G) + 5|E| + 9 e∈E k e (3.8)
We apply the hypothetical approximation algorithm A on F for different values of p, starting with p = 2 and augmenting it. While p < γ(G q ), the algorithm computes a solution C of probabilistic radius strictly greater than 2 (Lemma 18). Suppose now we set p = γ(F ) = τ (G) + 5|E| + 9 e∈E k e . Given Lemma 21, we obtain the following:

I E(C) = (|V Hq | -τ ( H q )) + 2(|V F | -(|V Hq | -τ ( H q ))) |V F | = 2|V F | -(|V Hq | -τ ( H q )) |V F |
We deduce, using Relations 3.4, 3.7 and 3.8: 

|V F |I E(C) = |V | + 32|E| + 55 e∈E k e + τ (G) < 2|V | + 32|E| + 55
I E(C) < 2 - e∈E k e 17|E| + 28 e∈E k e ≤ 2 - 1 28 + 17|E| e∈E ke ≤ 2 - 1 28 + 17 q-1
As ε ≥ 17 q-1 we get:

I E(C) ≤ 2 - 1 28 + ε ≤ 55 + 2ε 28 + ε
As a consequence, and since an optimal probabilistic solution C * will satisfy

I E(C * ) ≤ I E(C) ≤ 55+2ε
28+ε , the approximation algorithm A will determine an approximated solution C in F of value:

I E(C) ≤ ρ × I E(C * ) ≤ ρ × 55+2ε 28+ε < 56+2ε 55+2ε × 55+2ε 28+ε < 2 (3.9)
Note that, given a solution C, computing its probabilistic radius can be done in polynomial time. Indeed, for any v, s ∈ V F , computing r s (C, v) can be performed using any minimum path algorithm. Hence, we can apply successively the approximation algorithm A on the graph F for increasing values of p, starting with p = 2, until the computed solution C satisfies I E(C) < 2. Thanks to Lemma 18 and Equation 3.9, the algorithm stops for p = γ(F ) = τ (G)+5|E|+9 Since constructing H q and F , as well as evaluating I E(C), can be done in polynomial time, and since algorithm A will be run less than |V | times, the whole process is polynomial. This is a contradiction if P =NP, and the proof is complete.
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Conclusion

In this chapter, we outline the relation between Min Vertex Cover and Min Dominating Set with RpCP and PpCP. Based on these relations, we present different reductions establishing the hardness of PpCP and RpCP. We show that RpCP is NPhard in all hereditary classes of uniform graphs where the decision version of Min Vertex Cover problem is NP-complete, and in all triangle-free classes of uniform graphs without pending vertices where the decision version of Min Dominating Set problem is NP-complete. We also prove that RpCP is NP-hard in subgrids. The main originality of our proof is the use of the intermediate graph H q (see Figure 3.3): it can be seen as a perturbation of the subgrid H q that leads to a hard class for Min Vertex Cover. Planar graphs and subgrids are relevant classes of graphs for our problem, as they are particularly suited for real case applications. Regarding PpCP, we propose two non-approximation results. The first result establishes that PpCP is not approximable with a ratio less than 20 19 on bipartite planar graphs of degree 2 or 3. The second result states that PpCP is not approximable with a ratio less than 56 55 on subgrids of degree at most 3. Even thought the latter result does not generalize the one we former obtained (the class is more restrictive but the new bound is closer to 1), the proof requires a much deeper analysis.

In the next chapter, we propose polynomial methods to generate exact and approximation results for PpCP.

Introduction

We have seen in the previous chapter that PpCP is NP-hard on planar graphs and subgrids of degrees {2, 3}. In this chapter, we study polynomial methods to compute solutions for PpCP with a guarantee of performance.

In Section 4.1, we describe an explicit optimal solution for PpCP on paths in the uniform case. The results of this section have been published as a conference paper in [START_REF] Demange | The probabilistic k-center problem[END_REF]. In Section 4.2, we show that PpCP admits a polynomial approximation algorithm for PpCP guaranteeing the ratio 3 on trees in the uniform case. In addition, for edge-weighted graphs with bounded edge lengths, we present polynomial approximation algorithm for PpCP guaranteeing ratio 4deg(G) + 2, where deg(G) is the average degree of G. The results of this section have been submitted in [START_REF] Demange | Hardness and approximation of the probabilistic p-center problem under pressure[END_REF].

An explicit solution for PpCP on paths in uniform case

The main result of this section is the explicit optimality of a monotone balanced p-set (see Definitions 23,[START_REF] Sheppard | A conceptual framework for dynamic location-allocation analysis[END_REF] for PpCP on paths in the uniform case. However, the proof is non-trivial and require a decomposition of the problem. First, in Subsection 4.1.1 we will present some additional notations and definitions specific for PpCP on paths as well as first preliminary results. In Subsection 4.1.2, we introduce different subproblems of PpCP which allow us to decompose our problem. In Subsection 4.1.2, we prove that a monotone balanced solution is optimum for PpCP on paths. In Subsection 4.1.4, we discuss the case of edgeweighted paths.

Additional notations and preliminary results

We denote P n = {1, . . . , n} a path on n vertices. For a given p ≥ p ≥ 2, consider a p-set C = {c 1 , . . . , c p } ∈ C p (P n ) where C p (P n ) is the set of feasible solutions for PpCP as defined in Section 2.1.5. In this section, we consider p = p. We will see shortly after that an optimal solution for PpCP on a path is always of size p.

Then C induces p -1 segments µ C i of length λ C i , i = 1, . . . , p -1,
where a segment corresponds to the path between two consecutive centers. The vertices between the two centers are called internal vertices. Conversely, we observe that any vector λ 1 , . . . , λ p-1 ∈ N * p-1 with p-1 i=1 λ i = n -1 corresponds to an unique feasible solution on P n . Thus we can consider equivalently a p-set C ⊆ V of size p or the corresponding vector λ(C) = (λ C 1 , . . . , λ C p-1 ). In the following, to harmonize notations, for any p-set C we define

µ C 0 = {1}, µ C p = {n} and λ C 0 = λ C p = 0.
Example. In Figure 4 

|λ C i -λ C j | is minimum over C p (P n ).
We directly outline a characteristic of balanced p-sets on uniform paths.

Corollary 24. On a path in the uniform case, for any i ∈ {1, . . . , p -1}, a balanced

p-set C verifies λ C i ∈ { n-1 p-1 , n-1 p-1 }
Finally we propose a system of equations to compute the evacuation radius of any feasible solution for any scenario.

Proposition 25. On P n , the radius of C ∈ C p (P n ) for scenario s is given by:

• if s ∈ C and i ∈ {1, . . . , p -1} such that s = c i :

r s (C) = max{λ C i-1 -1, λ C i -1, max q∈{1,...,p-1};s ∈µ C q λ C q 2 } (4.1)
• if s ∈ C and i ∈ {1, . . . , p -1} such that s ∈ µ C i :

r s (C) = max{s -c i , c i+1 -s, max q∈{1,...,p-1};s ∈µ C q λ C q 2 } (4.2)
Proof. For scenario s, let Z s be the set of segments including vertex s, i.e.

Z s = {µ C j : s ∈ µ C j , j ∈ {1, . . . , p -1}}. If s ∈ C, then |Z s | = 1, else |Z s | = 2. We can write r s (C) = max{max v∈Zs r s (C, v), max v∈Pn\Zs r s (C, v)}.
We can see that, for any vertex v ∈ P n \ Z s , its evacuation distance in scenario s is equal to its distance to C in G s , which is the same than its distance to C in G i.e., r s (C, v) = d s (v, C) = d(v, C). We obtain:

r s (C) = max{max v∈Zs r s (C, v), max v∈Pn\Zs d(v, C)} (4.3)

AN EXPLICIT SOLUTION FOR PpCP ON PATHS IN UNIFORM CASE

We analyze first max v∈Pn\Zs d(v, C). Let q ∈ {1, . . . , p -1} such that µ C q / ∈ Z s . In scenario s, we observe that the evacuation distance of any vertex on µ C q is less than or equal to the evacuation distance of the middle vertex (or vertices) of µ C q . The evacuation distance of the middle vertex (or vertices) is λ C q 2 , thus we have:

max v∈Pn\Zs d(v, C) = max q∈{1,...,p-1}:s ∈µ C q λ C q 2 (4.4)
Next we analyze max v∈Zs r s (C, v). Two cases emerge:

1. s ∈ C: we define i such that c i = s, and µ C i-1 , µ C i are the two segments adjacent to s. In scenario s, r s (C, s) = 0 and the evacuation paths of the internal vertices of segments µ C i-1 and µ C i are included in the evacuation paths of vertices (s -1) and (s + 1) respectively. Thus we have:

max v∈Zs r s (C, v) = max{r s (C, s-1), r s (C, s+1)} = max{d s (s-1, C), d s (s+1, C)} = max{λ C i - 1, λ C i+1 -1}.
Combined with Equations 4.3,4.4, we obtain Equation 4.1.

s ∈ C:

we define i such that c i < s < c i+1 . Then we have r s (C, s) = 1 + max{d s (s -1, C), d s (s + 1, C)} = 1 + max{s -1 -c i , c i+1 -(s + 1)} = max{s -c i , c i+1 -s}.
In addition, we observe that all the evacuation paths of the vertices of µ C i -s are included in the evacuation path of s -1 or s + 1. Thus we have: max 4.2, the disrupted radius of C for scenario 3 is :

r 3 (C) = max{3 -c 1 , c 2 -3, max{ λ C 2 2 , λ C 3 2 }} = max{3 -1, 6 -3, max{ 3 2 , 8 2 }} = max{2, 3, max{1, 4}} = 4
We observe that, although the fire happens on segment µ C 1 , the radius of the solution C for scenario 3 is induced by the evacuation distance of people on µ C 3 .

AN EXPLICIT SOLUTION FOR PpCP ON PATHS IN UNIFORM CASE

For scenario 9, the disrupted radius is, by Equation 4.1:

r 9 (C) = max{λ C 2 -1, λ C 3 -1, max{ λ C 1 2 }} = max{3 -1, 8 -1, 5 2 } = max{2, 7, 2} = 7

♣

We can prove already, using Proposition 25, that a balanced solution is optimal for PpCP on P n when n 2 < p < n. Proposition 26. On paths, for n 2 < p < n, a balanced solution is optimum for PpCP. Proof. We prove that any feasible solution has a probabilistic radius of value higher than or equal to the probabilistic radius of a balanced solution.

For P n , denote B a balanced solution and λ B its segment vector. By Corollary 24, we know that λ B q ∈ { n-1 p-1 , n-1 p-1 }, ∀q ∈ {1, . . . , p -1}. On the first hand, as p < n, we have n-1 p-1 > 1. On the other hand, as p > n 2 and p is integer, we have p ≥ n+1 2 which induces 1 < n-1 p-1 ≤ 2. It follows that, ∀i ∈ {1, . . . , p -1} we have λ B i ≤ 2, and there exists at least j ∈ {1, . . . , p -1} such that λ B j = 2. Hence, by Proposition 25 we have: r s (B) = 1, ∀s ∈ V . Now suppose C is a non-balanced solution on P n . Then there exists at least i ∈ {1, . . . , p -1} such that λ C i ≥ 3. Based on Proposition 25, it follows that

• for s ∈ P n \ µ C i , we get r s (C) ≥ λ C i 2 ≥ 1.
• for s ∈ µ C i , we get r s (C) ≥ 2.

Consequently, I E(C) = s∈V 1 n r s (C) > s∈V 1 n r s (B) = I E(B)
. Thus, any feasible solution has a probabilistic radius of value higher than or equal to the probabilistic radius of a balanced solution and the proof is complete.

The case 2 ≤ p ≤ n 2 is more complex and requires a decomposition of the problem into subproblems. We introduce next the auxiliary subproblems we will use to identify an exact solution for PpCP on path when 2 ≤ p ≤ n 2 .

Auxiliary sub-problems

In this section, we introduce some subproblems of PpCP, where the evacuation distance of a restricted number of vertices is considered rather than all the vertices of the graph.

The local PpCP problem

We call local area of a vertex v the close neighborhood (Γ(s) ∪ {s}) of v. The local evacuation radius of a solution C for a scenario s is the maximum evacuation distance of a vertex in the close neighborhood of s. It is given by:

r s (C) = max v∈{s}∪Γ(s) r s (C, v) (4.5) Remark 4. For s ∈ C, r s (C) = r s (C, s). If s ∈ C, then r s (C) = max v∈Γ(s) r s (C, v)).
Accordingly, we define the objective function I E, called local probabilistic radius, such that:

I E(C) = s∈V 1 n r s (C)
On G and for a given p, the local PpCP problem is then the problem of finding C ∈ C p (P n ) that minimizes I E(C).

Note that, r s (C) ≤ r s (C) and I E(C) ≤ I E(C). In addition, from Proposition 25 we can induce the following corollary:

Corollary 27. On P n , consider C ∈ C p (P n ), we have:

• if s ∈ C and i ∈ {1, . . . , p -1} such that s ∈ µ C i-1 ∩ µ C i : r s (C) = max{λ C i-1 -1, λ C i -1} • if s ∈ C and i ∈ {1, . . . , p -1} such that s ∈ µ C i : r s (C) = max{s -c i , c i+1 -s} 4.1.2.

PpCP restricted to a subset of scenarios

As we consider an uniform probability distribution, the value of I E(C) is proportional to the sum of the evacuation radius of C over all scenarios. We propose then the following decomposition of I E(C):

I E(C) = I E C (C) + I E C (C)
where In other words, I E C (C) is the contribution to I E(C) of scenarios for which the fire occurs in C, while I E C (C) is the contribution to I E(C) of scenarios for which the fire occurs on another vertex. Note that, if a solution is optimal for both components, then it is optimal for the whole problem. We can treat these components as two different problems. In addition, we define similarly I E C (C) and I E C (C) such that:

I E C (C) = s∈C 1 n r s (C) I E C (C) = s∈V \C 1 n r s (C)
I E(C) = I E C (C) + I E C (C)
Using the previous decomposition, for 2 ≤ p ≤ n 2 , we prove a structural property of a balanced solution.

Lemma 28. On P n , for 2 ≤ p ≤ n 2 , a balanced solution B satisfies

I E C (B) = I E C (B), I E C (B) = I E C (B)
and thus

I E(B) = I E(B) Proof. For 2 ≤ p ≤ n 2 , consider a balanced solution B on P n . • First we prove E C (B) = E C (B). As p ≤ n 2 , then n-1 p-1 > 2 and n-1 p-1 ≥ 2. We obtain: max q∈{1,...,p-1} λ B q 2 ≤ 1 2 n -1 p -1 ≤ n -1 p -1 - 1 
By Corollary 24, we know that λ B q ∈ { n-1 p-1 , n-1 p-1 }, ∀q ∈ {1, . . . , p -1}. Given previous equation, for any given i ∈ {1, . . . , p -1} we then have max • Second we prove E C (B) = E C (B). In line with Proposition 25, we observe that, ∀i ∈ {1, . . . , p -1} and ∀s ∈ µ B i \ C, there exists at least one vertex in µ B i \ C whose evacuation path includes at least one half of segment µ B i . Therefore:

r s (B) ≥ λ B i 2 ≥ 1 2 n -1 p -1 ≥ 1 2 n -1 p -1 ≥ max q∈{1,...,p-1} λ B q 2
Given Proposition 25 and Corollary 27, we can deduce r s (B) = r s (B) :

∀s ∈ V \ C. Thus E C (B) = E C (B).
From the previous results we get:

E(B) = E C (B)+E C (B) = E C (B)+ E C (B) = E(B).
Lemma 28 induces a method for us to find an optimal solution for PpCP: if we can find a balanced solution minimizing E, then this solution minimizes E. In the next section we prove such solution exists, and we provide it.

An optimal solution

In this section, we give an optimal solution for PpCP on an uniform path. To this end, we need one last definition.

Definition 29. A solution C ∈ C p (P n ) with λ(C) = (λ C 1 , . . . , λ C p-1 ) is called mono- tone if ∀i, j ∈ {1, . . . , p -1}, i < j we have λ C i ≤ λ C j (or inversely λ C i ≥ λ C j ).
In the following, we consider only monotone non-decreasing solutions. It is straightforward to prove the same results on monotone non-increasing solutions.

Before proceeding, we show an example of an instance where a monotone balanced solution is optimal for PpCP while another balanced solution is not optimal for PpCP.

Example. Consider PpCP with p = 4 on P 12 . In the following Figures 4. ♣ CASE As we have already proved that a balanced solution is optimal when n 2 < p < n (Proposition 26), we now focus on the case 2 < p ≤ n 2 . In Section 4.1.3.1, we prove that any monotone balanced solution minimizes I E C (C), ∀C ∈ C p (P n ). In Section 4.1.3.2, we prove that any monotone balanced solution minimizes I E C (C), ∀C ∈ C p (P n ). Thus, by Lemma 28 a monotone balanced solution minimizes I E(C), ∀C ∈ C p (P n ), and we can state: Theorem 30. On P n , for p > 2, a monotone balanced solution is optimal for PpCP.

The contribution of the centers

In this subsection, we show that a monotone balanced solution minimizes I E C (C) and consequently minimizes I E C (C) too. Note that, based on Proposition 25, for a given solution C we have:

I E C (C) = 1 n • λ C 1 + p-1 i=2 max(λ C i-1 , λ C i ) + λ C p-1 (4.6)
In the following, we define λ ≤ = (λ i 1 , . . . , λ iκ ), where i : {1, . . . , p -1} → {1, . . . , p -1} is a permutation such that λ i 1 ≤ . . . ≤ λ i p-1 , a monotone solution induced by λ. For given solution C, we denote C ≤ the solution such that λ(C ≤ ) = λ ≤ (C).

Lemma 31. For any C ∈ C p (P n ) we have:

I E C (C) ≥ I E C (C ≤ )
Proof. Let C ∈ C p (P n ), we denote λ(C) = (λ 1 , . . . , λ p-1 ). If λ 1 = max{λ i , i = 1, . . . p-1}, then we define r = 0, else let r be the maximum index in {1, . . . , p-1} such that λ 1 ≤ . . . ≤ λ r and ∀j ≥ r, λ j ≥ λ r .

If r = p -1, then C is monotone, thus C = C ≤ and the lemma is verified. The value r = p -2 is not possible: if r = p -2 then λ 1 ≤ . . . ≤ λ p-2 and λ p-2 ≤ λ p-1 which is actually the case r = p -1. Suppose r < p -2. We consider t ∈ argmin {λ j , j = r + 1, . . . , p -1}: by definition, we have λ r+1 ≥ λ r if r > 0, t > r + 1 and λ r ≤ λ t < λ r+1 . Let λ be the vector obtained from λ by moving the t th coordinate at the position r + 1:

λ i = λ i , i = 1, . . . , r λ r+1 = λ t λ i = λ i-1 , i = r + 2, . . . , t λ i = λ i , i > t
We claim that E C (λ) ≥ E C (λ ). Indeed, suppose first t < p-1 and consider the expression of E C (λ ) and E C (λ), as sums of p terms (see Equation 4.6). The three terms max(λ r , λ r+1 ), max(λ t-1 , λ t ) and max(λ t , λ t+1 ) in the expression of E C (λ)
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are replaced respectively in the expression of E C (λ ) by max(λ r , λ t ), max(λ t , λ r+1 ) and max(λ t-1 , λ t+1 ) and all the other terms are identical in both expressions. We conclude:

E C (λ) -E C (λ ) = 1 n (max(λ r , λ r+1 ) + max(λ t-1 , λ t ) + max(λ t , λ t+1 ) -[max(λ r , λ t ) + max(λ t , λ r+1 ) + max(λ t-1 , λ t+1 )]) = 1 n (λ r+1 + λ t-1 + λ t+1 -λ t -λ r+1 -max(λ t-1 , λ t+1 ))) = 1 n (λ t-1 + λ t+1 -λ t -max(λ t-1 , λ t+1 )) ≥ 0
where the last inequality holds since λ t ≤ min(λ t-1 , λ t+1 ). Suppose now t = p -1, then a similar approach without the terms involving t + 1 leads to:

E C (λ) -E C (λ ) = 1 n (max(λ r , λ r+1 ) + max(λ p-1-1 , λ p-1 )- [max(λ r , λ p-1 ) + max(λ p-1 , λ r+1 )]) = 1 n (λ r+1 + λ p-1-1 -λ p-1 -λ r+1 ) ≥ 0
The last inequality is valid since λ p-1-1 ≥ λ p-1 . Note that these arguments hold also if r = 0. The proposition is deduced by induction.

We are now ready to show the main result of this subsection:

Proposition 32. B ∈ argmin {I E C (C), C ∈ C p (P n )}.
Proof. First we claim that B ∈ argmin { I E C (C), C ∈ C p (P n )}. Indeed in order to minimize I E C (C), Lemma 31 ensures we can restrict ourselves to monotone solutions. But for any monotone C, we have

I E C (C) = 1 n (n+λ C p-1
) and consequently a monotone solution minimizing I E C (C) is obtained by solving:

         min λ p-1 λ 1 ≤ . . . ≤ λ p-1 p-1 i=1 λ i = n, λ ∈ N p-1
This system admits B as an optimal solution. Therefore, by Lemma 28 we have:

I E C (B) = I E C (B) = min I E C (C) ≤ min I E C (C), C ∈ C p (P n ) and consequently B ∈ argmin {I E C (C), C ∈ C p (P n )}.
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The contribution of the internal vertices

In this subsection, we show that a monotone balanced solution minimizes

I E C (C), ∀C ∈ C p (P n ). Lemma 33. Given an initial solution C ∈ C p (P n ), let 1 ≤ b < a ≤ p -1 and 1 ≤ m ≤ n -1 such that λ C a + λ C b = m, λ C a ≥ λ C b and |λ C a -λ C b | ≥ 2. There is a solution C ∈ C p (P n ) such that λ C a + λ C b = m, |λ C a -λ C b | ≤ 1, λ C a ≥ λ C b and ∀i ∈ {1, . . . , p -1}, i = a, b, λ C i = λ i which verifies: I E C (C ) ≤ I E C (C) Proof. Let C = {c 1 , . . . , c p-1 }, we denote α(λ C a ) = v∈µ C a \C max{v -c a , c a+1 -v} the contribution of µ C a to the value of E C (C). Then E C (C) = 1 n i=1,...,p-1 α(λ C i ).
We denote also A a logical proposition, and by 1 A the boolean function such that

1 A = 1 if A is true, and 1 A = 0 if A is false. Note that c a+1 -c a = λ C a . Then, for v ∈ λ C
a , we have:

α(λ C a ) = v∈µ C a \C max{v -c a , c a+1 -v} = λ C a -1 i=1 max{i, λ C a -i} = 2 • λ C a -1 j= λ C a 2 (j) -1 (λ C a even) ( λ C a 2 ) = λ C a 2 (λ C a + λ C a 2 -1) -1 (λ C a even) ( λ C a
2 ) The previous result applies also to

α(λ C b ). As λ C b = m -λ C a , we can express α(λ C a ) + α(λ C b ) as a function of λ C a : α(λ C a ) + α(λ C b ) = λ C a 2 (λ C a + λ C a 2 -1) -1 (λ C a even) ( λ C a 2 ) + m-λ C a 2 (m -λ C a + m-λ C a 2 -1) -1 ((m-λ C a ) even) ( m-λ C a
2 ) If we study the different combinations of parities of λ C a and m, we get:

3 2 (λ C a ) 2 -3n 2 λ C a + 3 4 m 2 -m ≤ α(λ C a ) + α(λ C b ) ≤ 3 2 (λ C a ) 2 -3m 2 λ C a + 3 4 m 2 -m + 1 2 Defining the function f (λ C a ) = 3 2 (λ C a ) 2 -3m 2 λ C a , we get: α(λ C a ) + α(λ C b ) - 1 2 ≤ f (λ C a ) + 3 4 m 2 -m ≤ α(λ C a ) + α(λ C b ) (4.7)
The same holds for

(λ C a , λ C b ). In Equation 4.7, note that 3 4 m 2 -m is constant and that f (λ C a ) is a monotone function for λ C a > m 2 . Therefore, since λ C a ≤ λ C a , we have f (λ C a ) ≤ f (λ C a ). We deduce from Equation 4.7: α(λ C a ) + α(λ C b ) ≤ α(λ a ) + α(λ b ).
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C i ) = α(λ C i ), ∀i ∈ {1, . . . , k -1}, i = a, b, we conclude E C (C ) ≤ E C (C).
Lemma 34. For any B, C ∈ C p (P n ) such that B is monotone and balanced, we have:

I E C (C) ≥ I E C (B)
Proof. Let C ∈ C p (P n ). We observe that for any internal vertex s ∈ V \ C, r s (C) depends only on the position of s in its segment. It follows that any permutation on the segments does not impact the overall sum of the local evacuation radius, which induces:

I E C (C) = I E C (C ≤ ).
Therefore, we suppose in the following, without loss of generality, that λ(C) is monotone. We look at the pair of segments 

(λ C 1 , λ C p-1 ) having the largest length difference. If |λ C 1 -λ C p-1 | ≤ 1,
C 1 = n- p-1-1 i=2 λ C i 2 and λ C p-1 = n- p-1-1 i=2 λ C i 2 . As λ C 1 + λ C p-1 = λ C 1 + λ C p-1 , we deduce by Lemma 33 that I E C (C) ≥ I E C (C ).
Let C be the monotone solution induced by

λ C i.e., λ(C ) = λ C ≤ . Then, I E C (C ) = I E C (C ) and ∀j ∈ {1, . . . , p -1}, λ C 1 ≤ λ C j ≤ λ C p-1 .
We can make two observations:

• λ C 1 ≥ λ C 1 and λ C p-1 ≤ λ C p-1 , thus λ C p-1 -λ C 1 ≤ λ C p-1 -λ C 1 .
It means that the maximum length difference between segments in the newly created solution doesn't increase compared to the original solution.

• λ C 1 > λ C 1 and λ C p-1 < λ C p-1 .
This ensures that after at least n 2 iterations, the maximum length difference strictly decreases.

Therefore we can iterate this process with the new extreme segments (λ C 1 and λ C p-1 ) until we get a solution whose extreme segments lengths differ by at most 1, in which case all segments differ by at most 1. This is then a balanced solution, hereby the proof is completed. 

(A) = {λ A 1 , λ A 2 } = {5, 9}. As |λ A 1 -λ A 2 | = 4
is not minimum over all possible solutions, A is not a balanced solution. As in Figure 4.4, the value of r v (A) is given under each vertex v. The value of solution A for the PpCP with p = 3 is given by I E(A) = 9 v=1 1 9 r v (A) = 42 9 < I E(B). Thus B is not the optimal solution. 

♣

We have shown in Theorem 30 that PpCP admits a monotone balanced p-set as an exact solution on paths in the uniform case. However, the approach considered is not valid when we consider edge-weighted paths. While the question of solving

Approximation algorithms

We recall that, for any p-set C of G, the radius of C is r(C) = max In this section we will show that, in graphs of bounded average degree, there is a polynomial approximation algorithm guaranteeing a constant approximation ratio for the uniform PpCP. Our result is even valid if edge lengths lie into [l, 2l] for a positive l. Our strategy is to show that, under these assumptions, the ratio

I E(C)
r(C) is bounded for any p-set C that is feasible for PpCP. In particular, a solution with constant approximation ratio for Min p-Center has a constant ratio for PpCP.

In graphs with general lengths we cannot expect the same as we show it in the next example. Thus, another strategy should be taken. {a, b, c} is the unique feasible solution of the PpCP instance (H, 3). We have r({a, b, c}) = 1. However, for any scenario s, r s ({a, b, c}) = Z + 1, which implies 

Example. Consider the caterpillar H of

I E({a, b, c}) = Z + 1. ♣ Recall that, from Proposition 3 in Section 2.1.5, a set C ⊂ V is in C p (G)

APPROXIMATION ALGORITHMS

Min MAC p-Center Instance:

A graph G = (V, E), an integer p Feasible solutions: C p (G) whose elements are called MAC p-set Objective:

Find a MAC p-set of minimum radius r(C).

In the following, to avoid any ambiguity, we will call MAC p-set a p-set taken as a solution for Min MAC p-Center.

We outline that a balanced p-set on a path, defined in the previous section, is also an optimal solution for Min MAC p-Center. It can be proved through the polynomial algorithm of Kariv and Hakimi [START_REF] Kariv | An algorithmic approach to network location problems. i: The p-centers[END_REF].

In what follows, we describe an approximation preserving reduction between PpCP and Min MAC p-Center (Subsection 4.2.1). A polynomial approximation algorithm for the latter leads to a polynomial approximation algorithm for the former with a ratio that depends on the average degree deg(G) = 2|E|

|V | of G. More precisely, the reduction is even the identity and we analyze how good for the problem PpCP an approximated MAC p-set can be. Then, in Subsection 4.2.2, we show that Min MAC p-Center can be approximated within the ratio 2, which leads to a (4deg(G) + 2)-approximation for the uniform PpCP. Actually, the result still holds if all edge-lengths lie in the interval [ , 2 ] for any positive .

A polynomial approximation preserving reduction

We directly establish the following proposition for general edge lengths. We will denote respectively M and m the maximum and minimum edge lengths.

Proposition 36. On an edge weighted graph with lengths in [ m , M ], ∀C ∈ C p (G), we have:

I E(C) ≤ (2deg(G) + 1)r(C) + ( M -2 m )deg(G)
Proof. Let us consider any scenario s ∈ V of degree deg(s) and number 1, 2, . . . , deg(s) the edges incident to s. We claim that r s (C) ≤ (2deg(s) + 1)r(C).

Consider indeed x ∈ V such that r s (C, x) = r s (C) ≥ r(C). If r s (C, x) = r(C)
, then the claim is satisfied. Let us assume r s (C, x) > r(C). We consider two cases:

1. x = s. r s (C, x) is the length of a path π = [x 0 , x 1 , . . . , x k ], where x 0 = x, x k ∈ C and π is a minimum path in G s . Since d s (x, x k ) > r(C), we can define i = max{j ∈ {0, . . . k -1}, d s (x j , x k ) > r(C)}.
Then all vertices x j , j ∈ {0, . . . , i} are, in G, at distance at most r(C) from s. Indeed, the path x j , . . . , x k is a minimum path of length greater than r(C) in G s . So, in G, the evacuation path of vertices x j , j ∈ {0, . . . , i} passes through s. Figure 4.7 illustrates the distance relation between x, s and x k in the case x = s. In the figure, no shelter is located on s, but the reasoning is the same if there is one. In G, for j ∈ {0, . . . , i}, we consider a minimum path from x j to s, of value at most r(C). We assign to x j a color in N 1 , . . . , N deg(s) depending on the last edge of the minimum path we have fixed for x j : x j is of color N t if the related minimum path between x j and s terminates with the t th edge incident to s.
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x x 1 x i x i+1 x k s d(x, s) ≤ r(C) d(x i , x k ) ≤ r(C) d(x i , s) ≤ r(C)
Note that the distance in G s between two vertices of the same color is at most 2r(C) -2 m . Indeed considering, in G, two minimum paths from these vertices to s and sharing the last edge, we deduce a walk avoiding s between them of total length at most 2r(C) -2 m . This walk includes a path in G s of length at most 2r(C) -2 m between these two vertices.

This allows us to derive an upper bound of d s (x, x i ). Suppose x is of color N i 1 and consider the last vertex x j of color N i 1 along the path π; we have d s (x, x j ) ≤ 2r(C) -2 m . Then, if j < i, the vertex x j+1 is of color N i 2 and d s (x j , x j+1 ) ≤ M . Using the same reasoning for all non-empty colors gives

d s (x, x i ) ≤ deg(s)(2r(C) -2 m ) + (deg(s) -1) M .
Taking into account the edge x i x i+1 and the fact that d s (x i+1 , x k ) ≤ r(C) we have:

r s (C) ≤ (2deg(s) + 1)r(C) + deg(s)( M -2 m ) (4.8) 2. x = s Similarly, r s (C, s) is the length of a path π = [x 0 , x 1 , . . . , x k ],
where

x 0 = s, x k ∈ C and [x 1 , . . . , x k ] is a minimum path in G s .
We define i as in the previous case and use the same argument: x 1 is color N i 1 and we define x j as previously. The only difference is that for any vertex the fixed minimum path from x j to s passes through x 1 and consequently d s (x 1 , x j ) ≤ r(C)m . For the other colors, the same bound as previously holds. We then get a better 4.2. APPROXIMATION ALGORITHMS bound:

r s (C) ≤r(C) -m + (deg(s) -1)(2r(C) -2 m ) + deg(s) M + r(C) ≤2deg(s)r(C) + deg(s)( M -2 m ) + m (4.9)
This bound is better than in Equation 4.8 since m ≤ r(C).

So, in all cases we have r s (C) ≤ (2deg(s) + 1)r(C). We deduce, by taking the average value,

I E(C) = 1 |V | s∈V r s (C) ≤ (2deg(G) + 1)r(C) + ( M -2 m )deg(G)
which concludes the proof.

On a tree, the analysis can be improved: Proposition 37. On a tree with edge lengths in [ m , M ], ∀C ∈ C p (G), we have:

I E(C) ≤ 3r(C) + M -2 m
Proof. Consider, for a scenario s, and a vertex x, r s (C, x) = r s (C), the same analysis as in the proof of Proposition 36. Since there is no cycle, all vertices x, . . . , x i are of the same color. Equation 4.8 becomes

r s (C) ≤ 3r(C) + M -2 m
which concludes the proof.

As noticed in the following example in Figure 4.8, with general weights system the situation may be totally different. In this example, the graph is a path on 8 vertices with only one edge of weight Z > 1 and all other edges of weight 1 and p = 4. There is a unique optimal MAC 4-center and, for large values of Z, its value is very bad compared to an optimal PpCP solution.

Proposition 38. Suppose a class of edge-weighted graphs G = (V, E) with M ≤ 2 m for which Min MAC p-Center can be approximated with ρ(G). Then, PpCP can be approximated with (2deg(G) + 1)ρ(G) on the same class.

Proof. Given a graph G in the class, we build a p-set C in C p (G), if it exists, of value at most ρ(G)r * (G), where r * (G) denotes the optimal radius of a MAC p-set in G. Using Proposition 36 and M ≤ 2 m , we have

I E(C) ≤ (2deg(G) + 1)r(C) ≤ (2deg(G) + 1)ρ(G)r * (G).
Now if C * is an optimum solution for PpCP, we have I E(C * ) ≥ r(C * ) ≥ r * (G). This concludes the proof. 

Min Partial p-Center Instance:

An edge-weighted graph G = (V, E), a set U ⊂ V , an integer p Feasible solutions: Any p-set Objective:

Find a p-set C of minimum partial radius.

APPROXIMATION ALGORITHMS

The underlying logic is that only vertices in U need to be close to a center. However, centers can be any vertex in G and distances are computed in G (within our terminology, it means that evacuation paths are not required to stay in U ). Note that, if U = V , then r(C, V ) = r(C) and Min Partial p-Center is just the usual Min p-Center problem. So, Min p-Center is a particular case of Min Partial p-Center.

In particular, Min Partial p-Center is not approximable within 2 -ε for any ε > 0, unless P=NP by using the same hardness result for Min p-Center proved in [START_REF] Hsu | Easy and hard bottleneck location problems[END_REF]. Note that this hardness result for Min p-Center, directly obtained from the NP-hardness of Min Dominating Set, holds in the uniform case. Since Min Dominating Set remains NP-hard in planar bipartite graphs of degree 3, Min p-Center, and by consequence Min Partial p-Center, are not approximable within 2 -ε for any ε > 0 in planar bipartite graphs of degree 3 with all edge lengths 1, unless P=NP. Note that the argument used for Min Partial p-Center cannot be easily adapted to Min MAC p-Center since this latter problem is not an immediate generalization of Min p-Center.

For an edge-weighted graph G = (V, E), we define K the complete edgeweighted graph over V . Let ˜ ij be the length of (i, j) in K for all i, j ∈ V , we assume

˜ ij = d(i, j)
Note that, for Min p-Center, the instance (G, p) is equivalent to the instance (K, p). Both instances G and K have the same feasible solutions with the same values and thus, the same optimal solutions. To guarantee finite edge lengths in K, we just consider G is connected. Since K is 2-connected as soon as |V | ≥ 2, Min MAC p-Center is equivalent to Min p-Center on K. Since the hardness result for Min p-Center still holds in connected graphs, Min MAC p-Center is not approximable within 2 -ε for any ε > 0, unless P=NP. We can even easily show that this hardness results already holds for the uniform case. To this aim, we just need to show that Min Dominating Set is NP-hard in 2-connected graphs. Given a graph G = (V, E) instance of Min Dominating Set, we construct G from G as follows: for every articulation point a of G, create a twin vertex a linked to a and to all neighbors of a. G is 2-connected and the Min Dominating Set problems in G and G are equivalent. Now, a set of p vertices in G is a dominating set if and only if its radius is 1 and else, the minimum radius of a p-set is at least 2. It immediately implies that Min MAC p-Center in graphs with edge lengths all equal to 1 is not approximable within 2 -ε for any ε > 0, unless P=NP.

In what follows, we propose a polynomial 2-approximation algorithms for Min Partial p-Center and Min MAC p-Center. These approximation results hold even in the case with general lengths.

APPROXIMATION ALGORITHMS

Consider an instance (G, U ) of Min Partial p-Center, where G = (V, E) is an edge-weighted graph and U ⊂ V . We recall n = |V |. We can compute K in O(n 3 ). We denote SL = {d(x, y), x, y ∈ V } the set of edge lengths in K (note that |SL| ≤ n 2 ) and for any d ∈ SL, K d = (V, E d ) is the partial graph of K where E d is the set of edges of length at most d. Note that for any solution of Min p-Center, its radius is in SL.

Theorem 41 can be obtained using the general method in [START_REF] Hochbaum | A unified approach to approximation algorithms for bottleneck problems[END_REF] or by adapting the 2-approximation algorithm for Min p-Center in [START_REF] Dorit | A best possible heuristic for the k-center problem[END_REF]. Since it cannot be deduced from existing results, we give a direct proof. We first introduce the main concepts and claims used for this result since they are used as well in Theorem 42.

A solution to Min p-Center of partial radius d in (G, U ) can be seen as a partial dominating set of (K d , U ), where a partial dominating set X is a set of vertices such that every vertex in U has at least one neighbor in X. If A d is the adjacency matrix of K d with additional 1s on the diagonal (alternatively A d is the adjacency matrix of K d with additional loops on each vertex), we denote A d,U the sub-matrix of A d corresponding to rows in U (it has |U | rows and |V | columns). The problem of finding a minimum partial dominating set can then be formulated by the following mathematical program P DS(G, U, d), where the 1s on the diagonal represent the fact that a vertex dominates itself:

P DS(G, U, d) :      min 1 |V | , x A d,U x ≥ 1 |U | x ∈ {0, 1} |V |
We then consider the mathematical program SIS(G, U, d) that corresponds to finding a maximum strong independent set of K d contained in U , where a strong independent set S ⊂ V is an independent set (every two vertices in S are not adjacent) such that every vertex in V \ S has at most one neighbor in S.

SIS(G, U, d) :

     max 1 |U | , y A d,U y ≤ 1 |V | y ∈ {0, 1} |U |
Claim 3. The cardinality of any strong independent set of K d contained in U is not more than the cardinality of any partial dominating set of (K d , U ). G, U, d) andSIS(G, U, d), replacing the binary conditions with non negative conditions, are dual linear programming problems. The result is an immediate consequence of the weak duality theorem.

Proof. The relaxations of mathematical programs P DS(

Let d max = max(SL). We denote K 2d,U the graph K min(2d,dmax) [U ].

APPROXIMATION ALGORITHMS

Algorithm 1 2-approximation for Min MAC p-Center.

Require: Edge-weighted graph G = (V, E) and p ≥ 2. Ensure: Outputs C, a MAC p-set if it exists. No-solution output 5: else

6:

Compute SL and all distances d(i, j), i, j ∈ V for i ∈ I - d do

12:

Select x ∈ A i 13:

C d ← C d ∪ {x} 14:
end for 15: The idea of the Algorithm is as follows:

V d ← {v ∈ V, d(v, {a i , i ∈ I - d }) > d}
1. If the number of MAC is more than p, then there is obviously no solution.

2. Else, for every distance d ∈ SL, Algorithm 1 tries to compute a MAC pset C d of radius at most 2d; only feasible MAC p-set obtained through this process will be kept and SL is the set of distances d for which it will occur;

3. C d is built as follows:

(a) The algorithm selects one center per small MAC A i , i ∈ I - d ; (b) For each i ∈ I - d , all vertices at distance at most d from a i are allocated to the related center (by definition of I - d , this includes in particular all vertices of A i ).

(c) V d is the set of uncovered vertices. If possible, the algorithm completes Theorem 42. Algorithm 1 is a polynomial 2-approximation algorithm for Min MAC p-Center and this is the best possible constant ratio.

C d with a partial (p -|I - d |)-center of (G \ i∈I - d A i , V d ) of
Proof. We already noted that 2 is a lower bound for constant approximation ratios. So, we only need to prove that this bound can be guaranteed. Assume that k ≤ p; then the instance of Min MAC p-Center has feasible solutions and thus, also an optimal solution.

Fix a distance d ∈ SL. Note first that, by definition of I - d and

I + d , V d computed at line 15 satisfies V d ⊂ V \ i∈I - d A i and ∀i ∈ I + d , A i ∩ V d = ∅.
Then, the algorithm computes the set S d from Lines 16 to Line 23. Claim 6. ∀d ∈ SL, S d is a maximal independent set in K 2d,V d that intersects all A i s, i ∈ I + d .

APPROXIMATION ALGORITHMS

Proof. The algorithm initializes S d by selecting, in each MAC A i , i ∈ I + d , a vertex at maximum distance from a i . This ensures that, at Line 20, S d includes one element per MAC A i , i ∈ I + d and is an independent set (possibly empty) in K 2d,V d . Indeed, if y i , y j are respectively selected at Line 18 for i, j ∈ I + d , i = j, then any path between them passes through a i and a j (we may have a i = a j ) and is of length greater than 2d. As a consequence, S d is a maximal independent set in K 2d,V d . 

SL

This means that C

* M AC ∩ (V \ i∈I - d * A i ) is a (p -|I - d * |)-center of partial radius at most d * in (G \ i∈I - d * A i , V d * ). As a consequence C * M AC ∩ (V \ i∈I - d * A i ) is a partial dominating set in (K d * , V d * ).
Using Claims 5 and 3, we get Finally, C d is selected as approximated solution and Line 29 ensures

|S d * | ≤ |C * M AC ∩ (V \ i∈I - d * A i )| ≤ p -|I - d * |,
r(C d) ≤ r(C d * ) (4.10)
We complete the proof by showing the following claim.

Claim 8. r(C d * ) ≤ 2d * .
Proof. Consider first a vertex v ∈ V d * and use the same argument as in the proof of Theorem 41. We have 

d(v, C d * ) ≤ d(v, C d * \ i∈I - d * A i ) ≤ r(S d * , V d * ).

Conclusion

In this chapter, we show in Section 4.1 that, on a path, and in the uniform case, a balanced monotone solution is an optimal solution for PpCP (Theorem 30). It requires to decompose the problem into subproblems. We introduce, for each scenario, the local evacuation radius as the maximum evacuation distance of the source vertex and its neighborhood. The local evacuation radius is a lower bound to the evacuation radius of a solution. This bound is tight when the solution is balanced. In addition, we consider a partition of the scenarios in two sets. For each set of scenarios, we prove independently that a balanced monotone solution minimizes the local evacuation radius.

In Section 4.2, we propose some approximation results for PpCP. In edge weighted graphs of bounded degree and with edge lengths in [ , 2 ], PpCP is approximable within the constant ratio 4deg(G) + 2. On trees, PpCP is approximable within the constant ratio 3. This approximation result holds for a class of instances on which all our hardness results apply: it provides a first gap between constant approximation ratios and the hardness in approximation results we have obtained.

In addition, we introduce the Min MAC p-Center problem, which is the problem of finding a p-set of minimum radius among the set of feasible solutions for PpCP. We show that this problem is 2-approximable and that this is the best possible constant approximation ratio. It is also polynomial on trees.

In the next chapter, we consider the RpCP problem where we generalize some notions introduced in this chapter. Indeed, the idea of a segment-partition induced

Introduction

We have seen in the Chapter 3 that RpCP is NP-hard on bipartite planar graphs and subgrids of degrees {2, 3}. In this chapter, we propose polynomial algorithms to solve RpCP on several simple classes of graphs.

In Section 5.1, we present a generic algorithm to solve RpCP using a binary search with k-RCP. We show that RpCP can be solved in polynomial time on a graph if k-RCP can be solved in polynomial time on the same graph. In Section 5.2, we propose a polynomial algorithm in O(n) to solve k-RCP on edge-weighted paths. In Section 5.3, we propose a polynomial algorithm in O(n) to solve k-RCP on edge-weighted extended stars. In Section 5.4, we propose a polynomial algorithm to solve k-RCP on an edge-weighted caterpillar. We present also an improved algorithm that narrows the complexity of the problem to O(n). In Section 5.5, we propose a polynomial algorithm to solve efficiently k-RCP on edge-weighted trees. Our algorithm is based on observations and structural properties inferred from the previous cases. We propose an efficient algorithm to solve k-RCP in O(n).

The general approach

In Section 2.1.4, we introduced k-RCP as a problem closely related to RpCP. On an edge-weighted graph and for a given k, k-RCP is the problem of determining a set of vertices of minimum size such that its robust radius is less than or equal to k. We present in this section a generic algorithm for RpCP based on k-RCP.

Consider an instance (G, p) of RpCP, with p ≥ 2 and G an edge-weighted graph. We recall that D is the ordered set of candidate values for the robust radius of G i.e., D = {d s (x, y) : x, y, s ∈ V } ∪ {l sx + d s (x, y) : y, s ∈ V, x ∈ Γ(s)}.

THE GENERAL APPROACH

We observe that, for k ∈ D, if the optimal value of k-RCP on (G, k) is greater than p, then the optimal value of RpCP is greater than k. Else, the optimal value of RpCP is less or equal to k. Based on this relation, we can perform a binary search on D to find the minimum radius k * for which the optimal value of k-RCP is less or equal to p. Note that, if lower and upper bounds are known for the minimum robust radius of G, then we can restrict D before starting the binary search. We implement the method we just described in Algorithm 2.

Algorithm 2 Exact algorithm for RpCP

Require: Graph G, integer p Ensure: An optimal solution C for RpCP on G 1: Generate the increasing ordered set D.

2: Restrict D with known lower and upper bounds. Let k be the median value of the restricted D.

5:

Solve k -RCP with (G, k). Denote C the obtained solution and p its size.

6:

If p ≤ p, restrict D to its first half. Otherwise restrict to its second half.

7: end while

The output of Algorithm 2 is a solution C of size at most p and of radius k. The resulting C is an optimal solution for RpCP as no solution of size p exists with a smaller radius.

The complexity of generating D is given by the complexity of generating the shortest path between every pair of nodes in G s , for every scenario s ∈ V . On general graphs, for every scenario s, there are at most O(n 2 ) shortest paths which can be computed in O(nm) ([41]). As there are n scenarios, the overall complexity of generating D is O(n 2 m), with |D| ≤ n 3 . On specific classes of graphs, the complexity of generating D can be improved. For example, on connected acyclic graphs, there is exactly one path between two vertices. Therefore, the set of evacuation paths is contained in the set of shortest paths and D can be obtained by computing the lengths of all the shortest paths in G. Thus, on all acyclic graphs, as |E| < n, D can be computed in O(n 2 ) and is of maximum size n 2 . In all cases, the while-loop need to be repeated at most log(|D|) = O(log(n)). Finally, the complexity of solving k-RCP depends on the considered class of the graph. In summary, on a class of graph H, if D can be generated in O(g(n)) and k-RCP can be solved in O(f (n)), then RpCP can be solved in O(g(n))+O(f (n) log n) with Algorithm 2. Hence, developing a polynomial algorithm for k-RCP would ensure a polynomial algorithm for RpCP. It follows that k-RCP is NP-hard on the classes of graphs on which RpCP is NP-hard. In the next sections, we consider

EDGE-WEIGHTED PATHS

that D is given and we propose polynomial algorithms for k-RCP on some specific edge-weighted acyclic graphs. We start with paths.

Edge-weighted paths

Let G be an edge-weighted path. We apply the notations introduced in Section 4.1.1. We recall that, for a given solution C = {c 1 , . . . , c q } ⊂ V , we denote c i , c i+1 the extremities of µ C i , where i ∈ {1, . . . , q -1}. We denote a i and b i the vertices of µ C i adjacent to c i and c i+1 respectively. In addition, we denote

α C i = l a i c i , β C i = l b i c i+1 , and φ C i such that α C i + φ C i + β C i = λ C i .
We illustrate these notations on Figure 5.1.

. . . c i a i . . . b i c i+1 . . . λ C i α C i φ C i β C i Figure 5.1: Values λ C i , α C i , φ C i and β C i illustrated on a segment µ C i
On a path G, for a given feasible solution C of k-RCP, every internal vertex has exactly two potential evacuation paths. Indeed, let c i , c i+1 be the nearest shelters on both sides of a vertex x, such that c i < x < c i+1 . The evacuation path of x will always be one of the two paths P xc i or P xc i+1 . If a i and b i do not exist, then we set α C i = λ C i and β C i = 0. In the following, ∀x, y ∈ V, x < y, we say x is located downstream of y, and y is located upstream of x. The direction from x to y is called upstream, the opposite direction is called downstream.

Computing the robust radius of a p-set

Proposition 44. On a path, the robust evacuation radius of a feasible solution C for k-RCP on G is:

I R(C) = max i∈{1,...,q-1} {φ C i + β C i , φ C i + α C i } (5.1) 
Proof. Suppose j ∈ µ i with c i , c i+1 the extremities of µ i . If j ∈ C, then r s (C, j) = 0 for any scenario s, else we observe that the evacuation path of j in any scenario is contained in one of the evacuation paths of a i or b i for scenario a i or b i respectively. Thus, r s (C, j) = max{r

a i (C, a i ), r b i (C, b i )}. It follows that: I R(C) = max i∈{1,...,q-1} {r a i (C, a i ), r b i (C, b i )} = max i∈{1,...,q-1} {l c i a i , λ C i -l c i a i , l b i c i+1 , λ C i -l b i c i+1 } = max i∈{1,...,q-1} {α C i , λ C i -α C i , β C i , λ C i -β C i } = max i∈{1,...,q-1} {α C i , φ C i + β C i , β C i , φ C i + α C i } = max i∈{1,...,q-1} {φ C i + β C i , φ C i + α C i }
For a given C, α C i , φ C i and β C i can be computed for all values of i by scanning all vertices once. Thus I R(C) can be computed in O(n).

Bounds for RpCP

A lower bound for k can be computed from p. For any solution C of size p,

α C i + φ C i ≤ k and φ C i + β C i ≤ k ∀i ∈ {1, . . . , p -1}. Thus λ C i ≤ α C i + 2φ C i + β C i ≤ 2k. p is minimal if all the segments are of maximal length λ C max = 2k, in which case there is at least n-1 i=1 l i,i+1 λ C max segments i.e., p -1 ≥ n-1 i=1 l i,i+1 2k ⇔ k ≥ n-1 i=1 l i,i+1
2(p-1) . Thus, for a given p, when solving RpCP on G, D can be restricted to the set of its values greater or equal to

n-1 i=1 l i,i+1
2(p-1) . An upper bound can be obtained from any randomly computed feasible solution. In the case of a path, a balanced solution (introduced in Section 5.2) can be easily computed and induces an upper bound.

Algorithm

Next we present an algorithm to compute an optimal solution for k-RCP on paths. The idea of the algorithm is to locate shelters greedily as upstream as possible. By doing so, we show that we minimize the number of centers.

In Algorithm 3, for a given C of size q, α, φ and β correspond respectively to α C q-1 , φ C q-1 and β C q-1 . In other words, α, φ and β characterize the last (as in located the most upstream) segment induced by C. 

φ ← φ + β 6: β ← l v-1,v 7: if (φ + α > k) OR (φ + β > k) then 8:
Add {v -1} to C 9:

α ← l v-1,v 10: φ ← 0 11: β ← 0 12:
end if 13: end for 14: Return C Proof. We denote by G(v) the subgraph G[{1, 2, . . . , v}], and by C(v) the state of solution C at the end of iteration v of the loop (steps 3-13). We define similarly α(v), φ(v) and β(v).

The statement to prove is P (v): " C(v) is an optimal solution for G(v)". A secondary statement useful for our proof is P (v): "The centers of C(v) are located maximally upstream in G(v)". More precisely, P (v) states that, if any shelter is moved upstream in G(v), then I R(C(v)) > k. We prove by induction that, ∀v ∈ {2, n}, P (v) and P (v) are true.

Base case The base case is for v = 2. C is initialized with C(2) = {1, 2} which is the trivial optimal solution for G [START_REF] Paton | Wildfire hazards, risks, and disasters[END_REF]. Thus P (2) and P (2) are trivially true.

Inductive step Assume P (v) and P (v) are true at the end of iteration v. We will prove that P (v + 1) and P (v + 1) are true at the end iteration v + 1. By step 4, C(v + 1) = C(v) \ {v} ∪ {v + 1}. Note that, all segments, except the one located the most upstream, are unaffected by this change. So are the evacuation paths of these segments. As the last segment induced by C(v + 1) has been extended with edge (v, v + 1), φ and β are updated accordingly. We then verify whether (φ(v + 1) + β(v + 1)) or (φ(v + 1) + α(v + 1)) exceeds k. There are two cases: Conclusion By induction, P (v) and P (v) are true for all v ∈ {2, n}.

• if φ(v + 1) + β(v + 1) and φ(v + 1) + α(v + 1) do not exceed k, then C(v + 1)
The algorithm ends after less than n iterations and returns C(n), which is an optimal solution for k-RCP on G(n) = G.

The complexity of Algorithm 3 is induced by the number of iterations, that is n -3, thus Algorithm 3 is in O(n). Note that, in Algorithm 3, the size of a solution never decreases between two consecutive iterations. For this reason, while building a solution for k-RCP with Algorithm 3 in step 5 of Algorithm 2, if the size of the solution exceeds p at one point, then we can proceed to the next step of Algorithm 2.

Example

We look for the RpCP for p = 3 solution on the edge-weighted graph G = (V, E) with 9 vertices in Figure 5.2 (similar to Section 4.1.4). We apply Algorithm 2 combined with Algorithm 3 on G. The set D is the range of integer values from 1 to 14. A lower bound for k is given by 14 2(p-1) = a balanced solution. As we have seen in Section 4.1.4, G has a balanced solution of robust radius 7. It follows that D = {4, 5, 6, 7}, and its median value is 5. Then, as set out in Algorithm 2, we solve k-RCP for k = 5 on G using Algorithm 3. Table 5.1 gives a detailed description of the state of the algorithm parameters at step 7 -and step 12 if appropriate -at each iteration. The first column lists the described parameters. The iterations are labeled by the value of v. At iteration 2, we initialize the solution with {1, 2}, the value of α with l 1,2 , and the values of φ and β with 0. As α + φ = 1 and β + φ = 0 are less than 5, C( 2) is feasible for G [START_REF] Paton | Wildfire hazards, risks, and disasters[END_REF]. At iteration 3, we remove 2 from the solution C and add 3 to it. We update φ with φ + β first, then we set the new value of β to l 2,3 = 1. As α + φ = 1 and φ + β = 1, C( 3) is feasible for G [START_REF] Williams | Exploring the onset of high-impact mega-fires through a forest land management prism[END_REF]. We repeat this procedure for each vertex till iteration 7. For C(7) = 7, φ is updated with the value β + φ = 4, then we set the new value of β to l 6,7 = 3. It follows that α + φ = 5, and that β + φ = 7. As the latter sum exceeds 5, C(7) = {1, 7} is not a feasible solution for G (7). Thus, we reinsert 6 in C( 7), and we fix the value of α to l 6,7 = 3, and the values of φ and β to 0. Then α + φ = 3 and β + φ = 0 do not exceed 5, thus C(7) = {1, 6, 7} is a feasible solution on G (7).

The output solution C is given by the feasible solution C(9) = {1, 6, 8, 9} in the last column. We observe that C( 9) is of size 4, which is higher than p = 3. Before proceeding, we will show the solution if we had started the algorithm with the other extremity of the path, namely with v = 9. To this end, consider the graph G , isomorph to G, such that the vertex numbers are inversed. We observe that the optimal solution obtained C = {1, 3, 7, 9} does not correspond to solution C in G, however C is also of size 4. Thereby we know that there is no solution for RpCP for p = 3 on G of radius less or equal to 5, then 5 is a new strict lower bound on k. Hence we proceed to a new iteration in Algorithm 2 with D = {6, 7}. We apply Algorithm 3 on G with k = 6, which gives us the solution {1, 5, 9}. It is optimal on G.

In the next section, we consider the class of extended stars.

Extended star with edges of different lengths

Consider S t an extended star of n vertices, that is a tree with t pending vertices and all the internal vertices of degree two, except one internal vertex of degree t, called the root and denoted o. We call branch the path between o and a pending vertex, both included. We denote the branches B 1 , . . . , B t . We consider the orientation of the branches such that o is always the upstream extremity of a branch. For a solution C = {c 1 , . . . , c q }, if o ∈ C, then we fix c q = o. We also denote C i the subset of solution C located on B i , with c q(i) ∈ C i the nearest center to o on B i (except o itself if o ∈ C). The vertices of C are numbered such that C i \ {o} = {c q(i-1)+1 , . . . , c q(i) }, with q(0) = 0. Note that c q(i) can be the pending vertex of B i . We observe that the set C ∪ {o} induces a set of segments as defined in Section 5.2 (the only difference being that o is not necessarily included in C). The segments are numbered increasingly from each pending vertex to o, such that c j is always the extremity of µ C j the more distant from o. We illustrate these notations on Figure 5.4. We represent a path without shelters with a hashed line, while a dotted line represents a path with or without shelters. In this example, B 1 is the path whose extremities are c 1 and o and c q(1) = c 3 . In addition, we can apply the notation introduced in Section 5.2 on µ C j . More precisely, we consider the configuration where β C q(i) corresponds to the length of the 105 5.3. EXTENDED STAR WITH EDGES OF DIFFERENT LENGTHS edge adjacent to o on µ C q(i) . Note that these notations are independent of whether or not o ∈ C.

c 1 2 c 2 c 3 o c q(2) c q(2)-1 c 4 c q(2)+1 c q(i) c q(i)-1 c q(i-1)+1 µ C 1 µ C 2 µ C 3 µ C q(i) µ C q(i)-1

Computing the robust radius of a p-set

To compute the robust evacuation radius of a feasible solution C on S t , we have to consider two cases: o is in solution C or not.

• If o is in the solution, then C induces q -1 segments, and the robust evacuation radius of C can be given like in Proposition 44, by:

I R(C) = max 1≤i≤q-1 {φ C i + β C i , φ C i + α C i } (5.2)
• If o is not in the solution, then C ∪ {o} induces q segments. The robust evacuation radius of C is given by

I R(C) = max{a, b, c} where a = max 1≤j≤q,1≤i≤t,j =q(i), {φ C j + β C j , φ C j + α C j } (5.3a) b = max 1≤i≤t λ C q(i) (5.3b) c = max 1≤i≤t {φ C q(i) + β C q(i) + min 1≤j≤t,j =i
(α C q(j) + φ C q(j) + β C q(j) )} (5.3c) -(5.3a) gives the maximum evacuation distance of all vertices included on all segments µ C j such that o / ∈ µ C j ; it can be computed as in Proposition 44.

-(5.3b) gives the evacuation distance of vertex o for scenario o.

-(5.3c) gives the maximum evacuation distances of the vertices in µ C q(i) . Note first that the downstream evacuation path of any vertex x ∈ µ C q(i) , x / ∈ C is contained in the downstream evacuation path of vertex b q(i) whose length is dominated by the evacuation distance of o (5.3b). On the other hand, the upstream evacuation path of x will cross o to reach a shelter on another branch. The upstream evacuation path of x is then contained in the upstream evacuation path of a q(i) whose length is given by φ C q(i) + β C q(i) + min 1≤j≤t,j =i

(α C q(j) + φ C q(j) + β C q(j) )).
For a given feasible solution C, we can compute α C i , φ C i and β C i for all values of i by scanning all edges once. Thus I R(C) can be computed in O(n).

Algorithm

Algorithm 4 Solving k-RCP-extended stars Require: Edge-weighted extended star S t rooted in o, integer k Ensure: Returns C, k-RCP solution for S t 1:

C i ← Algorithm 3(B i , k) , ∀i ∈ {1, . . . , t} 2: C ← ∪ ∀i C i 3: C * ← C \ {o} 4: if I R(C * ) ≤ k then 5:
Return C * 6: else 7:

Return C 8: end if

We propose Algorithm 4 to solve k-RCP on S t . In the first step, using Algorithm 3, we solve k-RCP on each path B i considered independently of S t . C i is the solution obtained on B i . From these t solutions, we can compute in step 2 a unique solution C = ∪ t i=1 C i on S t . By construction, C is a feasible solution for k-RCP on S t . In addition, o ∈ C as o ∈ C i for being the extremity of B i , i = 1, . . . , t. The remaining steps check whether there is a feasible solution of smaller size than C. We will see later that a smaller feasible solution than C exists if and only if C * = C \ {o} is a feasible solution on S t . Thus, we compute I R(C * ) using Equations 5.3 in step 4. If I R(C * ) ≤ k, then C * is feasible and and we return C * . Otherwise C * is not feasible and we return C.

We explain now the validity of our algorithm i.e., Algorithm 4 returns an optimal solution.

1. If I R(C * ) > k, then C * is not feasible. If we want to construct a feasible solution of size |C * |, then we need to relocate at least one shelter c q(i) for some i upstream on the branch B i . However c q(i) can't be moved upstream without increasing λ C * q(i)-1 . Given properties P and P (introduced in Section 5.2.3) on B i , it is impossible to have a feasible solution of size |C * |. As solution C is feasible by construction, C is an optimal solution and |C| = |C * | + 1 is the minimum size of a solution.

2. If I R(C * ) ≤ k, then C * is feasible. If we want to construct a feasible solution of size |C * | -1, then we need to relocate at least one shelter c i q(i) for a given i towards o. As for the previous case, this is impossible without violating the feasibility condition. Thus there is no feasible solution of size |C * | -1, and C * is an optimal solution of minimum size. 107 5.4. CATERPILLAR Thus, we have proved the validity of the algorithm. Next we clarify its complexity. Let n i be the number of vertices of

B i \ o, such that 1 + 1≤i≤t (n i ) = n. Then Step 1 of Algorithm 4 is done in 1≤i≤t O(n i ) = O(n), while computing I R(C * ) is done in O(n). Therefore Algorithm 4 is in O(n).
In the next section, we consider the class of caterpillars.

Caterpillar

Consider an edge-weighted caterpillar G of n vertices, with 1, . . . , ñ, ñ ≤ n the vertices of the central path. We recall that L ⊂ V is the set of pending vertices. In a caterpillar, we denote L c = L \ {1, ñ}. We consider the central path of maximum length, such that the extremities of the central path are pending vertices. Considering an arbitrary orientation of the central path, we number first the vertices on the central path increasingly. The pending vertices adjacent to a vertex v are labeled v , v , etc. This labeling is illustrated in Figure 5.5, for a caterpillar with n = 16 and ñ = 10. On a path we have seen that, for a given feasible solution of k-RCP, every vertex not included in the solution has exactly two potential evacuation paths: an upstream evacuation path i.e., an evacuation path crossing vertices numbered in the increasing order, and a downstream evacuation path i.e., an evacuation path crossing vertices numbered in the decreasing order. Upstream or downstream describes the direction of an evacuation path depending on the direction they follow along the central path. We use the same notation for caterpillars. The evacuations paths can be characterized as upstream or downstream evacuation paths. When an evacuation path is a sole edge between a vertex of the central path and a pending vertex, its direction is said horizontal.

To build a feasible solution, we want to determine the set of vertices of the central path to be included in the solution in addition to the pending vertices. The caterpillar case has similarities with the path case, however we may encounter more complex situations compared to the path case: on a caterpillar and for a given feasible solution, every vertex not included in the solution can have multiple potential evacuation paths, whereas on a path there are at most 2 evacuation paths. For example, we can see in Figure 5.5 a caterpillar with shelters located on the pending vertices and vertex 7. The edges are labeled by their length. We can observe that the nearest shelter to vertex 4 is located on vertex 7, at a distance of 3. However, in scenario 7, the shelter on 7 being unreachable, the evacuation path of vertex 4 goes through vertices 5 and 6 to shelter 6', at a distance 4. In scenario 6, the nearest shelter to vertex 4 is on vertex 5' at a distance of 5. In scenario 5, the nearest shelter to vertex 4 is on vertex 4' at a distance of 6. Finally, in scenario 4, the evacuation distance of vertex 4 corresponds to the longest evacuation path of vertex 4, that is its path to shelter 1, at a distance of 10. In summary, vertex 4 has 5 potential evacuation distances.

The aim of this section is to present an algorithm that solve k-RCP on a caterpillar in linear time. In addition, the idea introduced in this section will contribute to the design of an efficient algorithm on trees.

Computing the robust radius of a p-set

Let C = {c 1 , . . . , c q } ∪ L c be a feasible solution for RpCP on G, where {c 1 , . . . , c q } is the set of shelters located on the central path, ordered in increasing order (c 1 = 1 and c q = ñ). For 1 ≤ i ≤ q -1, we denote by T C i the subgraph induced by the segment of the central path delimited by the consecutive shelters c i and c i+1 and the pending vertices adjacent to the internal vertices of this segment. T C i is a caterpillar and corresponds to the generalization of the concept of segment in paths to caterpillars. Hence in the following, we refer to T C i as a segment of G. Note that the pending vertices of c i and c i+1 are not included in T C i . We call length of T C i the length of its central path.

For example in Figure 5.5, T C 1 is the subgraph of G induced by vertices {1, 2, 3, 4, 4 , 5, 5 , 6, 6 , 7}, while T C 2 is the subgraph of G induced by vertices {7, 8, 8 , 8 , 9, 10}. Note that vertex 7 is not contained in any of the two segments.

Let δ d (v) be the maximum downstream evacuation distance of a vertex v ∈ V and δ u (v) be the maximum upstream evacuation distance of vertex v over all scenarios. Thanks to the acyclic nature of the graph, any evacuation path of a vertex x ∈ T C i is always included in T C i . We define then δ d (T C i ) (resp. δ u (T C i )) as the maximum downstream (resp. upstream) evacuation distance of a vertex v ∈ T C i i.e., δ d (T

C i ) = max v∈T C i δ d (v) and δ u (T C i ) = max v∈T i δ u (v).
Finally, for every pending vertex y ∈ L c such that x is adjacent to y, x has an horizontal evacuation distance from x to y induced by scenario x. This horizontal 5.4. CATERPILLAR evacuation distance is not recorded as an upstream or downstream evacuation distance. We denote by z(x) the maximum horizontal evacuation distance of a vertex x and by z(T C i ) the maximum horizontal evacuation distance of an internal vertex x ∈ T C i i.e., z(T C i ) = max

x∈T C i ,x / ∈C,y∈L c ∩Γ(x)
l xy . If x has no horizontal neighbor, then z(x) = 0.

Then the robust evacuation radius of a solution C is given by

I R(C) = max 1≤i≤q-1 {δ d (T C i ), δ u (T C i ), z(T C i )} (5.4)
Note that, when building a solution C for k-RCP, it is sufficient to verify if the robust evacuation radius of the solution is less or equal to k. We use this equation to propose a first algorithm for k-RCP on a caterpillar.

A basic algorithm for k-RCP

We present in this subsection a generic method, Algorithm 5, to solve k-RCP for a caterpillar G = (V, E). Algorithm 5 follows the same idea as Algorithm 3 for paths. We locate shelters on the central path greedily, such that the shelters are located as upstream as possible while ensuring a feasible solution.

In Algorithm 5, as any feasible solution contains at least the pending vertices, we focus on determining a subset of vertices C of the central path on which shelters must be located, such that the union of this subset and the pending vertices is an optimal solution of k-RCP for G. In the following, to simplify notations, a set C ⊆ {1, . . . , ñ} is said feasible for G if C ∪ L c is a feasible solution for G. Besides C, a variable of Algorithm 5 is the set T , which corresponds to the most upstream segment induced by C. We initialize both variables C and T with {1, 2} (steps 1 and 2). From steps 3 to 10, we iterate over the vertices 3 to ñ. At iteration v, we start by replacing v -1 with v in C (step 4), and by adding v to T . At step 6, we verify whether δ u (T ) or δ d (T ) or z(T ) exceeds k. We do not specify a method to compute δ u (T ) and δ d (T ) for now. As for z(T ), we can easily compute it as we will see below. If δ u (T ) or δ d (T ) or z(T ) exceeds k, then we reinsert v -1 in C (step 7) and T becomes the set {v -1, v} (step 8). At the end of the iteration, we return the set C (step 11). Proposition 46. Algorithm 5 returns an optimal solution of k-RCP for a caterpillar and an integer k.

Proof. The proof is similar to the idea of the proof of Proposition 45. In the following, for v ∈ {2, ñ}, we refer to the state of variables C and T at iteration v T ← T ∪ {v} and add the pending vertices adjacent to v -1 to T 6:

if (δ d (T ) > k) or (δ u (T ) > k) or (z(T ) > k) then 7:
Add {v -1} to C 8:

T ← {v -1, v} 9:
end if 10: end for 11: Return C as C(v) and T (v) respectively. Note that we consider v = 2 at the initialization stage. In addition, we denote G(v) the subgraph of G such that {1, . . . , v} is the central path of G(v). Note that any pending vertex adjacent to v is not included in G(v).

The statement to prove is P (v): "C(v) is an optimal solution for G(v)". A secondary statement useful for our proof is P (v): "The centers of C(v) are located maximally upstream in G(v)". More precisely, P (v) states that, if any shelter is moved upstream in G(v), then I R(C(v)) > k. We prove by induction that, ∀v ∈ {2, n}, P (v) and P (v) are true.

Base case The base case is for v = 2. C(2) = {1, 2} is trivially the optimal solution for G [START_REF] Paton | Wildfire hazards, risks, and disasters[END_REF]. Thus P (2) and P (2) are true.

Inductive step Assume P (v) and P (v) are true at iteration v. We will prove that P (v + 1) and P (v + 1)

at iteration v + 1. Let C(v) = {c 1 , . . . , c q v }, with c 1 = 1 and c q v = v. By step 4, C(v + 1) = C(v) \ {v} ∪ {v + 1}. C(v + 1)
includes vertices 1 and v + 1, extremities of the central path of G(v + 1). We observe that the only segment that has been affected by the change of the solution is the most upstream segment T (v + 1). By P (v), the evacuation distances of the other segments do not exceed k. Therefore, C(v + 1) is feasible if δ u (T (v + 1)), δ d (T (v + 1)) and z(T (v + 1) do not exceed k. In step 6, we compute δ u (T (v + 1)), δ d (T (v + 1)) and z(T (v + 1)). As z(T (v)) ≤ k by P (v), z(T (v + 1)) ≤ k if and only if z(v) ≤ k, otherwise z(T (v + 1)) > k.

We identify two cases:

• if C(v + 1) is feasible, then, as |C(v + 1)| = |C(v)|, C(v + 1
) is of optimal size byP (v). Hence, P (v + 1) is true. In addition, as the most upstream shelter has been relocated to the upstream extremity of the path, P (v + 1) is true. Conclusion By induction, P (v) and P (v) are true for all v ∈ {2, n}.

• if C(v + 1)
The algorithm ends after less than ñ iterations and returns C(ñ) at the end of iteration ñ. As G = G(ñ), the returned solution is optimal for G. This concludes the proof.

We can observe that the complexity of such an algorithm is ñ times the complexity of computing δ u (T (v)) and δ d (T (v)), for v = 1, . . . , ñ. If we want to determine these values by computing the evacuation distance of all the internal vertices, then the complexity depends on the number of vertices in T . In the worst case, T (v) corresponds to G(v) for each iteration v = 3, . . . , ñ. Note that, if we consider that each internal vertex has at least one pending vertex, then

|L c | ≥ ñ -2 and n = ñ + |L c | ≥ 2ñ -2. It follows that the complexity of Algorithm 5 is O(1) + O(2) + . . . + O(ñ -2) = O(ñ 2 ) = O(n 2 ).

An improved algorithm for k-RCP

In this section, we introduce a new algorithm, Algorithm 6, which is an improvement of Algorithm 5. Algorithm 6 solves k-RCP on a caterpillar in O(n) instead of O(n 2 ) for Algorithm 5. More precisely, we show that, computing δ d (T ) and δ u (T ) are not required: we just need to check whether they exceed k. In Algorithm 6, changes compared to Algorithm 5 are colored in red. The red parts regarding the function z were actually already explained in the previous section, yet not explic-5.4. CATERPILLAR itly introduced in the algorithm.

We introduce the parameter h(v) for every vertex v of the central path. If v is adjacent to at least one pending vertex, then h(v) is the minimum horizontal evacuation distance of v, otherwise we set h(v) = k + 1 (step 3). In addition, we introduce a new variable, ϕ defined below. As in the previous section, we refer to the state of variables C and T at iteration v as C(v) and T (v) respectively. We do the same for ϕ. Assume C(v -1) is a feasible solution, we show that at the end of iteration v, C(v) is a feasible solution.

We can observe that the only downstream evacuation path affected by the shelter relocation is the downstream evacuation path of v -1; the downstream evacuation path of the other vertices located downstream of v are unaffected. In addition, as a shelter is located on (v), δ d (v) = 0. Note that δ d (T (v)) = δ d (v -1)): for example, in Figure 5.5, δ d (T ( 7)) is given by δ d (T (4)) = 10, while δ d (6) = 5. However, if δ d (T (v)) ≤ k, then δ d (T (v)) exceeds k if and only if δ d (v -1) exceeds k. Consequently, it is sufficient to compute the downstream evacuation distance of v -1 to verify whether δ d (T (v)) > k. At initialization, that is for v = 2, we initialize δ d (2) = 0 at step 10. At iteration v, we compute δ d (v -1) in T (v) at step 14: the downstream evacuation path of v -1 is the sum of the distance from v -1 to v -2 and the minimum distance between v -2 and a shelter located downstream or horizontally.

The case δ u (T (v)) is more complex: when relocating the shelter from v -1 to v, the upstream evacuation path of a vertex x that ended on v -1 in G(v -1), may be completely redirected to a pending vertex located between x and v in G(v). We illustrate this situation with an example.

Example. Figure 5.6 shows the downstream portion of some edge-weighted caterpillar G for which a solution of k-RCP with k = 5 is build with Algorithm 5. The edges are labeled by their length. At iteration 7, the shelter located on 6 is relocated to vertex 7, as illustrated by the red arrow and the transparent shelter symbol on vertex 6. First consider the graph G( 6) at the end of iteration 6, when a shelter is located on 6. Note that vertex 6 is the nearest upstream shelter of vertices 2, 3, 4, 5 and is located within a distance 5 of each of these vertices. Globally, δ u (T ( 6)) = 4. Therefore the upstream evacuation paths of 2, 3, 4, 5 are ending in 6 at the end of iteration 6. Now we iterate on G (7), and relocate the shelter from 6 to 7. We can observe that:

• for vertex 2, the distance to shelter 7 exceeds 5, however there is a shelter within a distance 5 in 3'. Then the upstream evacuation path of 2 ends in 3'.

• for vertex 3, the distance to shelter 7 exceeds 5, however there is a shelter within a distance 5 in 5'. Then the upstream evacuation path of 3 ends in 5'.

• for vertex 4, the distance to shelter 7 is 5, and there are shelters within a distance 5 in 5' and 6' too. As shelter 5' is the nearest at a distance 4, the upstream evacuation path of 4 ends in 5'.

• for vertex 5, the distance to shelter 7 is 4, and there is a shelter within a distance 5 in 6'. As shelter 7 is the nearest at a distance 4, the upstream evacuation path of 5 ends in 7.

Notice that, for vertices 2 and 3 who became out of range of shelter 7, their upstream evacuation paths have been rerouted to different shelters. In addition, vertex 4, despite being within radius 5 of shelter 7, has an upstream evacuation path ending in another shelter now. Finally, the upstream evacuation path of vertex 5 is the only upstream evacuation path that has been extended to end at shelter 7. In this case δ u (T ( 7)) = 5, induced by the upstream evacuation distance of vertices 2 and 3. Note that, if the length of edge (5, 5 ) was 4 instead of 5, then vertex 3 would not have any upstream shelter within a distance 5. This example, illustrates that we can not easily compute δ u (T (v)) using δ u (T (v-1)), since some structural characteristics of T (v -1) (the upstream evacuation paths) are not conserved in T (v). ♣

Instead of computing all upstream evacuation distances, we show that δ u (T (v)) > k if and only if the upstream evacuation distance of some critical vertices exceed k when the shelter is relocated from v-1 to v. At the end of iteration v-1 we observe that, for any x ∈ T (v -1), there may be one or more shelters located upstream of x within a distance k. We define X(v -1) the set of vertices such that, at the end of iteration v -1, the unique upstream shelter within a distance k of x ∈ X(v -1) is v -1. Obviously, the upstream evacuation paths of the vertices of X(v -1) are contained in the upstream evacuation path of the most downstream-located vertex of X(v -1), which we denote x * . We define ϕ(v -1) = δ u (x * ) at the end of iteration T (v -1). Using ϕ(v -1), we verify in step 15 if a pending vertex adjacent to v -1 is within a distance k of the vertices of X(v -1). If so, then

x * = v -1 and X(v) = {v -1}. Consequently, ϕ(v) = ϕ(v -1) = l v-1,v . Otherwise, x * is unchanged and X(v) = X(v -1) ∪ {v -1}. Consequently, ϕ(v) = ϕ(v -1) + l v-1,v . Algorithm 6 Solving k-RCP-Caterpillar Require: Edge-weighted caterpillar G = (V, E), integer k Ensure: Give C, k-RCP solution for G 1: T ← {1, 2} 2: C ← {1, 2} 3: for v ∈ {2, . . . , ñ -1} do 4: if Γ(v) ∩ L c = ∅ then 5: z(v) ← max x∈Γ(v)∩L c {l v,x }; h(v) ← min x∈Γ(v)∩L c {l v,x } 6: else 7: z(v) ← 0; h(v) ← k + 1 8:
end if 9: end for 

δ d (v -1) ← l v-2,v-1 + min{δ d (v -2), h(v -2)} 15: if ϕ + h(v -1) ≤ k then 16: ϕ ← l v-1,v 17: else 18: ϕ ← ϕ + l v-1,v 19: end if 20: if δ d (v -1) > k or ϕ > k or (z(v -1) > k) then 21: Add {v -1} to C 22: δ d (v -1) ← 0, ϕ ← 0 23:
end if 24: end for 25: Return C In Algorithm 6, there are ñiterations with O(1) operations, therefore Algorithm 6 is in O(n). It is an improvement over Algorithm 5 which is in O(n 2 ).

In the next section, we consider the class of trees.

TREES

Trees

Let G be an edge-weighted tree. We root G on a non-pending vertex, and we label the vertices following a postorder traversal of the vertices of G (visit the children then the parent). Then, vertex 1 is a pending vertex and n is the root of G. We denote G(v) the subgraph of G rooted in v. For a vertex v, we denote p(v) its parent in G and φ(v) ⊂ V the set of its children. Note that, ∀i ∈ φ(v), we have i < v. An ancestor of a vertex is any other vertex on the path from the vertex to the root. A descendant is the inverse relationship of ancestor. An evacuation path of v is said upstream if it includes the parent of v, and downstream if it includes a child of v. If there is an upstream path between v and a vertex y, then we say y is located upstream of v. If y is a descendant of v, then we say y is located downstream of v. As in the caterpillar case, for a given feasible solution of RpCP, every vertex of G not included in the solution have multiple potential evacuation paths. In addition, any vertex v ∈ C, such that v is of degree greater than 2 or v = n, will have several downstream evacuation paths in scenario v. In the following, the downstream (resp. upstream) evacuation distance of a vertex is the maximum length of one of its downstream (resp. upstream) evacuation paths for a given scenario. Finally, in this section, for a graph H and a set X, we will denote X ∩ H the set of vertices of X included in graph H.

Computing the robust radius of a p-set

Let C = {c 1 , . . . , c q }∪L with q = p-|L| be a feasible solution for RpCP on G, where {c 1 , . . . , c q } is the set of shelters located on the internal vertices of the tree. In addition, we denote c q+1 = n. If n ∈ C, then we assume c q = c q+1 . We generalize the notion of segments from paths to trees. For j ∈ {1, . . . , q +1}, the segment-tree T (c j ) is the maximal subgraph of G rooted in c j such that T (c j ) ∩ (C ∪ {c q+1 }) is the set including c j and the set of pending vertices of T (c j ). More precisely, for each pending vertex c i in T (c j ), c i is a descendant of c j and none of the internal vertices of the path between c i and c j is in C.

Thanks to the acyclic nature of the graph, the evacuation path of a vertex x ∈ T (c j ) is always included in T (c j ). We define then δ d (T (c j )) (resp. δ u (T (c j ))) as the maximum downstream (resp. upstream) evacuation distance of a vertex v ∈ T (c j ) over all scenarios, i.e., δ d (T (c j )) = max (5.5)

TREES

Next we propose an algorithm to iteratively build a solution by generalizing the approaches presented in the previous sections.

Algorithm for k-RCP

Algorithm 7 is a generalization of the k-RCP algorithms introduced in the previous sections: in the for-loop (steps 2-24), we perform a postorder traversal of the vertices of the tree, and we locate shelters such that no shelter can be relocated upstream without breaking the feasibility condition. When we visit v, we verify whether a shelter is needed on v or not. More precisely, we check whether having a shelter on p(v) makes unnecessary to have a shelter on v. We denote, ∀i ∈ φ(v), G(v, i) the graph including of v and G(i). Note that v is a pending vertex in G(v, i).

We start with C an empty set. We label an iteration of the for-loop by the vertex under consideration. At iteration v, if v is a pending vertex (steps 3-5), then we add v and p(v) to C and we initialize the parameters ∇ d (v) and ϕ(v) to zero. We will define these parameters later on. At iteration v, if v < n and v ∈ L (steps 6-16), then we add p(v) to C and we remove v from C (step 7). Next, we check whether C induces a feasible solution on G(p(v), v). If so, C is said feasible, otherwise C is not feasible.

We define T (p(v), v) = T (p(v)) ∩ G(p(v), v). We will see in Proposition 47 that C is feasible if and only if δ d (v) ≤ k and ϕ(v) ≤ k in T (p(v), v). We recall that δ d (v) is the maximum downstream evacuation distance of v. To compute δ d (v) in T (p(v), v), we use ∀i ∈ φ(i), ∇ d (i) defined as the minimum downstream evacuation distance of vertex i in T (v), which is unchanged in T (p(v), v) (step 8). Similarly to the caterpillar case, in T (p(v), v), ϕ(v) is the maximum upstream evacuation distance of a vertex x * in T (p(v), v) with no upstream shelter other then p(v) within a distance k.

To compute ϕ(v), we use the intermediate subset U (v) ⊆ φ(v) such that i ∈ U (v) if and only if there is a descendant x * i of i with no upstream shelter other then p(v) within a distance k in T (p(v), v)(step 9). We consider that, if a min query is performed over an empty set, then it returns the value ∞; and if a max query is performed over an empty set, then it returns the value 0. If U (i) = ∅, then ϕ(v) is given by the maximum distance ∀i ∈ U (i) between x * i and p(v), otherwise x * = v and ϕ(v) is the upstream evacuation distance of v (step 10). Once δ d (v) and ϕ(v) are known, we can check the feasibility of C (step 11). If C is not feasible, then we re-include v in C (step 12), and we update ∇ d (v) and ϕ(v) to zero in preparation of iteration p(v) (step 13). If C is feasible, then ϕ(v) does not change and ∇ d (v) must be updated (step 15).

Finally, at iteration n (steps 17-22), we remove n from C and we verify the 5.5. TREES feasibility of C on G. We compute δ d (n) based on ∇ d (i), ∀i ∈ φ(n). In addition, we check ∀i ∈ φ(n) whether there is a descendant x * i of i whose upstream evacuation distance in T (n) exceeds k (computed within step 20). If so, or if δ d (n) > k, then C is not feasible (see details in Proposition 47), and we re-include v to C. Finally, at step 25 we return solution C. Next, we prove that the solution returned is an optimal solution of k-RCP for the instance (G, k). Proposition 47. Algorithm 7 returns an optimal solution of k-RCP for a tree and an integer k.

Proof. The proof is similar to the idea of the proof of Proposition 46. In the following, for v ∈ {1, n}, we refer to the state of variable C at iteration v as C(v). We denote Y (v) = C(v)∩G(p(v), v). In the following, adding or removing a vertex to or from Y (v) corresponds to adding or removing a vertex to or from C(v). We will start by proving that the first n -1 iterations of the loop ensure that, at the beginning of iteration n and ∀i ∈ φ(n), Y (i) is optimal on G(n, i). In addition, the shelters of Y (i) are located maximally upstream on G(n, i) i.e., if any shelter of Y (i) is moved upstream in G(n, i), then the robust radius of Y (i) exceeds k. Then, we show that the last iteration ensures that C(n) is an optimal solution for G with the shelters located maximally upstream. C(n) is the solution returned.

Let P (v) be the statement: " Y (v) is an optimal solution for G(p(v), v)"; and P (v) be the statement: "The centers of Y (v) are located maximally upstream in G(p(v), v)". We prove by induction that, ∀v ∈ {1, n -1}, P (v) and P (v) are true. Inductive step Assume P (v ) and P (v ) are true at iteration v < n -1. We will prove that P (v + 1) and P (v + 1) are true at iteration v + 1. Note that v + 1 is not necessary the same vertex as p(v ). In the following, to simplify the notations, we denote 

Base case

v = v + 1. If v ∈ L, then G(p(v), v) = G[{v, p(v)}]. Given step 4, we have Y (v) = {v, p(v)}. On G(p(v), v), I R(Y (v)) = 0 and Y (v) is the only feasible solution, thus P (v) and P (v) are true. If v / ∈ L, then G(p(v), v) = p(v) ∪ ( i∈φ(v) G(v, i)). At the beginning of iteration v, ∀i ∈ φ(v), Y (i) ⊆ Y (v). By P (i), Y (i) is an optimal solution for G(v, i). As v is a pending vertex in G(v, i), then v ∈ Y (i) and v ∈ Y (v
(T (p(v), v)) ≤ k and T (p(v), v) ≤ k.
We check these as follows.

• Regarding δ d (T (p(v), v)), the downstream evacuation distances of the vertices in T (p(v), v) \ {v, p(v)} are unchanged. By P (i), i ∈ φ(v), the downstream evacuation distances of these vertices do not exceed k. Thus, we have

δ d (T (p(v), v)) > k if and only if δ d (v) > k.
• As for δ u (T (p(v), v)), similarly to the caterpillar case, it exceeds k if and only if ϕ(v) exceeds k.

We then have two cases:

• if Y (v) is feasible, then |Y (v)| = | i∈φ(v) Y (i)|.
This situation is a bit similar to the extended star case, when we question the location of a shelter on the root. Given ∀i ∈ φ(v), P (i), at least |Y (i)| shelters are needed to cover the descendants of i in T (p(v), v). In addition, the shelter on p(v) is mandatory (p(v) is a pending vertex), and the shelters Y (v) ∩ Y (i) can not be moved upstream in G(p(v), v) without breaking the feasibility condition (P (i)). It follows that P (v) and P (v) are true.

• if Y (v) is not feasible, then | i∈φ(v) Y (i)| shelters are needed to cover v. Therefore, we re-insert v to Y (v) such that Y (v) = p(v) ∪ i∈φ(v) Y (i). By P (i), ∀i ∈ φ(v), Y (i) is optimal on G(v, i), thus i∈φ(v) Y (i) is optimal on T (v)
and by P (i) its shelters are located maximally upstream in T (v). The shelter on p(v) is mandatory, thus Y (v) is optimal on G(p(v), v). It follows that P (v) and P (v) are true.

Conclusion By induction, P (v) and P (v) are true for all v ∈ {1, n -1}.

Thus, at beginning of iteration n, C(n) = i∈φ(n)

Y (i) is a feasible solution for G of size t. We remove the root from C(n) and check the feasibility of the solution. As explained before, it is sufficient to check that the maximum evacuation distances in T (n) does not exceed k. We compute the downstream evacuation distance of n, and the upstream evacuation distance of the vertices x * i in G(n, i). We have two cases:

TREES

• C(n) is not feasible. As seen in the extended star case, the shelters of C(n)

can not be relocated upstream without breaking the feasibility condition, no solution of size t -1 is feasible. Consequently, we re-include n in C(n) and we return C(n), an optimal solution for G.

• C(n) is feasible. As the shelters of C(n) can not be relocated upstream without breaking the feasibility condition, no solution of lower size is feasible. Consequently, we return C(n), an optimal solution for G.

Hence the proof is complete.

In Algorithm 7, at iteration v we perform at most O(deg(v)) operations, for example in steps 8 and 9, 15. Over n iterations, that is at most O(m) iterations (we recall that m is the number of edges in the graph). As G is a tree, the complexity of Algorithm 7 is therefore in O(n). 

∇ d (v) ← 0, ϕ(v) ← 0 6: else if v < n then 7:
Add p(v) to C and remove v from C. 

δ d (v) ← max i∈φ(v) {l v,i + ∇ d (i)} 9: U (v) ← {i ∈ φ(v) : ϕ(i) + min j∈φ(v),j =i {l v,j + ∇ d (j)} > k} 10: ϕ(v) ← max i∈U (v) {ϕ(i)} + l v,p(v) 11: if (δ d (v) > k) or (ϕ(v) > k) then {v is necessary in C} 12:
Add v to C. 

δ d (n) ← max i∈φ(n) {l n,i + ∇ d (i)} 20: if δ d (n) > k or ( max i∈φ(n) {ϕ(i) + min j∈φ(n),j =i {l n,j + ∇ d (j)} > k)

Conclusion

In this chapter we introduce an algorithm to solve RpCP using a binary search with k-RCP. Any algorithm for k-RCP can be integrated to our algorithm to solve RpCP. We propose several refined polynomial algorithms for RpCP on different classes of acyclic graph, which have structural properties that can be taken advantage of. In particular, as shelters must be located on pending vertices, they provide a backbone for the solution. Starting from these pending vertices, we propose a bottom up approach to locate incrementally shelters.

In the next chapter, we propose mathematical programming methods to compute exact solutions for both PpCP and RpCP on general graphs.

INTEGER LINEAR PROGRAMMING MODELS FOR PpCP

In the next section, a new exact algorithm is defined and extensive experimental results show the tractability of our approach.

An exact solution method for RpCP

In this section, we present an exact solution method for RpCP based on formulation P rob introduced previously. The size of the model P rob depends on the size of the list D rob leading to huge integer linear programs: the first computational tests outlined that D rob can be of size bigger than n and have revealed that the generation of the constraints (4 rob ) and (5 rob ) may take a substantial time.

Consequently, in order to obtain optimal solutions we have to reduce its size (fixing some variables) and to define specific exact algorithm based on a generalization of a binary search. To this end, we propose in Section 6.4.1 several methods to determine tight upper and lower bounds. In Section 6.4.2, we present an algorithm for RpCP based on a generalization of binary search. Finally in Section 6.4.3 we present the experimental results of our algorithm on different data sets.

Upper and lower bounds

We propose four different methods to compute upper and lower bounds for RpCP:

• The first method uses an optimal solution of P det with the algorithm proposed in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. Obviously, the value of an optimal solution of RpCP can not be less than the optimal value of P det . We denote LB 1 = v(P det ). When this solution is feasible for RpCP, its value gives an upper bound U B 1 for RpCP.

• The second method allow us to compute a lower bound for RpCP based on SC rob r , presented in Section 6.2.3. A binary search can be performed on D rob to find the minimum radius r * for which v(LSC rob r * ) ≤ p. A lower bound for P rob is then r * , denoted by LB 2 .

• In a third method, we randomly construct solutions and compute their value for RpCP. The lowest obtained value represents a second upper bound U B 2 .

• The fourth method consists in considering P rob without the constraints (4 rob ).

The obtained model, denoted by RP rob , corresponds to the problem where only the evacuation distance of the node s is taken into account for scenario s. It reduces the number of constraints by n 2 T rob . The value of the obtained solution is a lower bound LB 3 for RpCP. Similarly to the first method, if RP rob has an optimal solution, which is feasible for RpCP, it gives a third upper bound U B 3 for RpCP.

In our preliminary experiments, despite using these bounds for P rob , the number of constraints and variables were still too high in order to solve exactly the problem, more precisely even to write the LP instance. For example, for an instance with 6.4. AN EXACT SOLUTION METHOD FOR RpCP 100 nodes, 200 edges and T rob = 400, the number of constraints exceeds 4 millions. It took us more than 9 hours and 120 gigabytes of memory usage to obtain the optimal solution.

Thus we propose a general scheme using a generalization of binary search algorithm. As we will see in the experimental results section, the same instance using our algorithms can be solved in less than 40 seconds. Solve P (D )

Exact solution method

4:

Set q ∈ N + such that D kq ← Optimal value of P (D )

5:

sol ← Optimal solution of P (D )

6:

if q = 1 then end if 12: end while 13: Return LB and sol Algorithm 9 F kernel • Next we solve P (D ). Let v(P (D )) = D kq , then D kq is an upper bound for v(P (D)) as D kq ∈ D. In addition, there is no feasible solution in P (D ) with value D k q-1 and equivalently in P (D), so D k q-1 is a lower bound for v(P (D)).

Require: D = {D 1 , D 2 , . . . , D T }, LB, U B, σ ∈ N, σ ≥ 3 Ensure: Returns a subset of D 1: Find k 1 ∈ {1, . . . , T } such that D k 1 = LB 2: Find k σ ∈ {1, . . . , T } such that D kσ = U B 3: step ← (k 1 + k σ )/(σ -1) 4: for i ← 2 to σ -1 do 5: k i ← k i-1 +
Note that if D kq = D k 1 , then D k 1 is the optimal solution for P (D).

• Finally, LB = D k q-1 and U B = D kq .

Note that for σ = 3, the σ-quantile search is actually a binary search.

Our initial exact algorithm to solve P rob is presented in Algorithm 10. In a first step, all lower and upper bounds are computed and in a second step, a σ-quantile search is performed.

Algorithm 10 Exact Algorithm

Require: G = (V, E), x, σ 1 , σ 2 Ensure: Returns the optimal value and an optimal solution to P rob 1: Generate D rob 2: Solve P det and generate LB 1 and U B • EA3 is a version of the Exact Algorithm in which only LB 3 and U B 3 are computed, its processing time is TEA3. This variant is a new one specific to RpCP and its evacuation strategy.

For pmed35 to pmed40, TEA1 and TEA2 exceed five hours: only EA3 can exactly solve all instances in less than 5 hours.

In Figure 6.1, we represent the processing times for instances from pmed1 to pmed34 for three different values of p: p = n/3 , p = n/10 and p = 10. For each p, three curves represent the processing times TEA1, TEA2 and TEA3, in function of n. We observe that our dedicated algorithm EA3 performs faster than EA1 and EA2. The reason is twofold: in EA1, the poor quality of the lower bound LB 1 (see Table 6.4) increases the number of iterations in step 8 of the Exact Algorithm. Conversely, in EA2 the quality of the lower bound LB 2 highly decreases the number of iterations in step 8, however computing LB 2 is very time consuming. More precisely, the generation of the input CPLEX instance for SC rob r 144 6.4. AN EXACT SOLUTION METHOD FOR RpCP requires a large amount of time (at least 90% of the total computing time for generating LB 2 ). On the other hand, LB 3 and U B 3 can be computed much faster while providing the best quality of bounds. Thus, EA3 is clearly the most efficient of the three algorithms.

Once we have identified EA3 as the best of the three variants, we must verify whether improvements can be made by adjusting parameters σ 1 and σ 2 . Given the quality of LB 3 , increasing σ 2 to values greater than 3 is counterproductive: one iteration with σ-quantile search is enough to prove that the lower bound is an upper bound. In this case, increasing σ 2 would only increase the size of the IP model constructed in the step 8 of Exact Algorithm.

However, we can potentially improve LB 3 processing time by using other values of σ 1 . Therefore, we compare the performance of algorithm EA3 on the 34 first instances from the OR-Library with different values of σ 1 in a range of values between 3 and 11. For larger instances, computational times are not reported since they exceed 5 hours for some values of σ 1 . The results are given in Table 6.5, where, for each instance, the processing time of EA3 is standardised with respect to the processing time of EA3 for σ 1 = 3. Then we use the geometric mean [START_REF] Philip | How not to lie with statistics: the correct way to summarize benchmark results[END_REF] to compare the average processing time for the different values of σ 1 . The experiment reveals that, with σ 1 = 4, EA3 is at least 14 percent faster than the other tested values for σ 1 .

Then we perform a qualitative study to better understand the impact of p on the processing time. In Figure 6.2, the processing time of EA3 is given for three instances with 100 nodes and 200 edges, named pmed1, pmed4 and pmed5. For each instance, the curve describes the evolution of TEA3 in function of p, with p ranging from 2 to 33. For pmed2, the processing time is relatively stable for all values of p. On the contrary, the processing time to solve pmed4 and pmed5 is much more impacted by the variation of p. Precisely, processing times directly depend on the number of iterations to solve P rob with the σ-quantile search (step 8). When the number of iterations is equal to 1 (which corresponds to the case LB 3 = v(P rob )) the computation time is stable. But when LB 3 < v(P rob ), the number of iterations increases (up to 5) and the computation time significantly increases. These results underline that for a given size of instance, there is no obvious relationship between the value of p and the complexity of solving P rob .

Our experimental results allow to conclude that the original algorithm EA3 is the best one. In particular we are able to precisely tune the parameters defining Algorithm 11 called EA3*. The efficiency of EA3* comes from the quality of the lower bound obtained with a very efficient 4-quantile search algorithm. With such a bound, in most cases, only one iteration of the 3-quantile search is enough to determine an optimal solution of P rob in step 5.

AN EXACT SOLUTION METHOD FOR RpCP

Instance pmed2

Instance pmed4

Instance pmed5 To measure the advantage of using RpCP over a classical deterministic p-Center problem, we compare the value on the objective function of RpCP of an optimal solution of p-Center problem (referred to as deterministic solution) to the optimal solution value of RpCP. Let us recall that U B 1 exactly corresponds to the value, on RpCP, of a deterministic solution. Thus, we compute in Table 6.6 the ratio U B 1 /v(P rob ) (none of the instances correspond to n=700 and p = n/3 in OR-Library). It appears that the gap can be quite significant, up to 25%. Consequently, the value of a deterministic solution can be far away from the optimal solution value of RpCP and better solutions can be found solving RpCP. 6.6: Ratio between U B 1 and the optimal value of RpCP on OR-Library instances

In the following, we report our experimental results on randomly generated subgrid instances.

Experimental results on random subgrid instances

We have outlined the relevance of subgrids for real case applications. Thus, we chose to test our algorithms on random subgrid instances. We generated a set of 18 subgrids along the following steps. From an original undirected unit grid of size (l × w), we generate three subgrids by randomly removing a node with probability 0.05, 0.1 and 0.2. For each subgrid, we remove isolated and leaf nodes being mandatory shelter locations. We apply this process to three grids of size 10 × 10, 20 × 10 and 20 × 20, into nine unit subgrids SG1, . . . , SG9. We then generate nine weighted subgrids wSG1, . . . , wSG9 by randomly assigning length edge values, from 1 to 10, applied to the edges of SG1, . . . , SG9 respectively. The data set is available at [START_REF] Haddad | Rpcp subgrid library[END_REF].

In the following, we present our synthetic analysis of the results. First, we solve P rob using Exact Algorithm with σ 1 = σ 2 = 3 and x = 10. Table 6.7 gives the values of the upper and lower bounds computed for the instances SG1, . . . , SG9 ordered by the number of their nodes and the value of p. Likewise, the values of the bounds that are equal to optimal values are marked with an * . For bounds corresponding to non-feasible solutions for RpCP the value is 10000. In Table 6.7, NA denotes that the values cannot be computed within 5 hours. Please note that the best values achieved for the unsolved instances can be found in Table 6. [START_REF] Charles | Location analysis: A synthesis and survey[END_REF]. LB 1 is still the worst lower bound while LB 2 performs slightly better than LB 3 and both of them quite often reach optimal values. Concerning the upper bounds, we note that U B 1 and U B 3 are not so good as those of obtained for OR-Library instances.

Table 6.8 gives the value of the upper and lower bounds computed for the instances wSG1, . . . , wSG9 ordered by the number of their nodes and the value of p.

In the weighted case, LB 2 and LB 3 outperform LB 1 . Both lower bounds are not as good when the value of p is very low. U B 3 is the best upper bound sometimes reaching optimal value. In this case, the solution of RP rob obtained with EA3 is also the optimal solution for P rob . In Tables 6.11 and 6.12, we record the processing time of our algorithms on the unit subgrids and the weighted subgrids, for the fixed values of p (5,10 and 20), and relatives values of p (n/5 and n/3). For processing time exceeding 5 hours, we record NA. For each instance, the underlined value is the best. Overall, for both unit and weighted subgrids, EA3 is the most efficient algorithm.

In Tables 6.9 and 6.10, we record the ratio U B 1 /v(P rob ) on the unit subgrids and the weighted subgrids. When the deterministic solution is not feasible, the corresponding ratio value is marked ∞. We observe that the gap, up to 167%, is larger than the one recorded for OR-Library instances. In Table 6.9, when p = n/3, the ratio U B 1 /v(P rob ) equals 1 in all instances. In this case, we also have LB 1 = 1 which means that the optimal solution of the p-Center problem is a dominating set. This is result in Subsection 3.2.1 : if G is a planar triangle-free graph with 

Conclusion

In this chapter we introduce mathematical programming methods for RpCP and PpCP. Based on MIP formulations for Min p-Center, we propose three MIP formulations each for RpCP and PpCP. We also propose an IP formulation for k-RCP, based on a set covering approach. The size of the instances generated by our formulations are however too large in practice. To propose a tractable solution method for RpCP, we develop exact algorithms based on P rob using a decomposition scheme. We present three different methods to compute lower and upper bounds for RpCP. To lessen the size of an instance and the number of iterations, we propose a generalization of the binary search: the σ-quantile search. We test different algorithms, each of which integrates a different method to generate lower and upper bound. Our experimental results shows that algorithm EA3* is the best one: its efficiency comes from the quality of the lower bound obtained with a very efficient 4-quantile search algorithm for RP rob and the low computation time. We have tested our algorithm and generated the different bounds on the OR library and a domestic set of uniform and edge-weighted subgrids. Overall, the RP rob -based algorithm remains the most efficient in terms of computing time.

In addition, our experiments highlight the performance of a RpCP optimal solution compared to a Min p-Center optimal solution: we compared the value of an optimal solution for Min p-Center taken for RpCP with the optimal value. Even if we exclude unfeasible cases, it appears that the gap can be quite significant, up to 92% for instances with more than 100 vertices.

CHAPTER 7

CONCLUSION

In this concluding chapter, we first summarize the contribution of this thesis. Next, we discuss possible applications and variants of our work and some open questions for future research.

Context and contributions

In the prevention phase of wildfire, an important problem is to determine shelters location in a given territory in order to minimize the evacuation time given different fire scenarios. In this thesis, we propose a new two-stage model to locate such shelters on territories with low density of people on it. We present in Chapter 2 the model as well as problems RpCP and PpCP. The uncertainty of fire outbreaks is introduced taking into account a finite set of fire scenarios. A scenario defines a fire outbreak on a single zone with the main consequence of modifying the operational paths. At most p shelters are to be located on vertices in the preparedness phase, thus our solution is a p-set. In the response phase, that is when a scenario occurs, everyone in the territory must reach a shelter following an evacuation path. The main novelty of our model is the UP evacuation strategy. With this evacuation strategy, we propose a robust representation of the evacuation of the source vertex: as there may be different people in different places within the source vertex, and given the pressure induced by the imminent danger and the disruptions caused by the fire on the internal transport network in the source vertex, we consider that any of the paths leaving the vertex may be used for evacuation. We introduce then two new facility location problems, incorporating the UP evacuation strategy, as non deterministic variants of the Min p-Center problem. The PpCP problem for a risk environment, and the RpCP problem for an uncertainty environment. The

CONTEXT AND CONTRIBUTIONS

set of feasible solutions corresponds to solutions ensuring, for all scenarios and all vertices, finite evacuation distance. A direct result is that a shelter must be located on each pending vertex.

To our knowledge, it is the first attempt to model the evacuation process in such manner for a shelter location problem. This model differentiates itself from most existing models in that we apply indeterminacy on the graph structure and not on the values of the edges between the vertices. By doing so, we consider that we can better apprehend the impact of the fire on the evacuations distances.

In Chapter 3, we study the hardness of RpCP and PpCP. Regarding RpCP, we consider the version of RpCP with a constant evacuation radius threshold, RpCP k . We give various reduction from Min Vertex Cover and Min Dominating Set to RpCP k for different values of k. It follows that:

• on all hereditary classes of graphs for which the decision version of Min Vertex Cover problem is NP-complete: RpCP 1 is NP-complete and RpCP is NP-hard.

• on all hereditary classes of graphs for which the decision version of Min Vertex Cover problem is polynomial-time solvable: RpCP 1 is polynomialtime solvable.

• in all triangle-free classes of uniform graphs and of minimum degree 2, for which the decision version of Min Dominating Set problem is NP-complete: RpCP 2 is NP-complete and RpCP is NP-hard.

• in all triangle-free classes of uniform graphs and of minimum degree 2, for which the decision version of Min Dominating Set problem is polynomialtime solvable: RpCP 2 is polynomial-time solvable.

• in subgrids with vertices of degree 2 or 3, RpCP 2 is NP-complete and RpCP is NP-hard.

For the robust case, our strongest result, the NP-hardness of RpCP in subgrids with vertices of degree 2 or 3, is obtained by a reduction from Min Vertex Cover to RpCP 2 , through the relation between RpCP 2 and Min Dominating Set. In addition, we outlined the existence of graph classes on which RpCP 1 is hard but RpCP 2 is trivial. This seems to confirm that a reduction from RpCP k to RpCP k + 1 does not exist in the general case and consequently, the hardness of RpCP k on a given graph class requires to be studied for any value of k and cannot be deduced, in general, from hardness results dealing with different values of k.

Regarding PpCP, we give two non-approximation results. First, we prove there is no polynomial time approximation for PpCP guaranteeing a ratio less than 20 19 for 158 7.1. CONTEXT AND CONTRIBUTIONS bipartite planar graphs of degrees 2 or 3. In particular, in Section 3, we revisit the previous reduction to prove that PpCP is not approximable with a ratio less than 56 55 on subgrids of degree at most 3.

In Chapter 4, we study polynomial and approximation results for PpCP. We give an explicit solution for the uniform case on paths. In this case, a p-set is characterized by the list of lengths of segments between two consecutive centers. A solution is then called balanced if the maximum difference between two segment lengths is minimized and it is monotone if the sequence of segment lengths is monotone. We then show that a monotone balanced solution is optimal for PpCP. Even though the result is not surprising, the proof was surprisingly non-trivial. The main idea is to express the objective function as the sum of two parts (contribution of the centers and the non-center vertices) and simultaneously bound the objective function by another, objective function more easily computable. We prove then independently that a balanced monotone solution minimizes simultaneously both terms. This results is however not valid on edge-weighted path, as we show it by an counterexample.

In addition, we propose some approximation results for PpCP. We propose a 4deg(G) + 2-approximation for graphs of bounded degree and with edge lengths in [ , 2 ]. It results in a 3-approximation on edge-weighted trees. This approximation result holds for a class of instances on which all our hardness results apply: it provides a gap between constant approximation ratios and the hardness in approximation results we have obtained. In the process, we have introduced the Min MAC p-Center problem, which is the problem of finding a p-set of minimum radius among the set of feasible solutions for PpCP. We have shown that this problem is 2-approximable and that this is the best possible constant approximation ratio. It is also polynomial on trees.

In Chapter 5, we propose polynomial algorithms to solve RpCP on acyclic edgeweighted graphs. Our algorithms are based on the auxiliary problem k-RCP. By performing a binary search on the candidate values of k, we can find an optimal solution for RpCP in O(f (n) log(n)), where f (n) is the complexity of an algorithm for k-RCP. By generalizing the approach used for PpCP on paths, we propose iterative algorithms for k-RCP that locate shelters from bottom up. This allows us to develop refined polynomial algorithms for k-RCP on paths, extended stars, caterpillars and trees.

In Chapter 6, we propose mathematical methods to solve RpCP and PpCP. We propose different MIP formulations for RpCP and PpCP and an IP formulation for k-RCP. These programs appear however to be quickly intractable with the size of 7.2. OPEN PROBLEMS optimal solution for PpCP on acyclic graphs, not even on an edge-weighted path. A research track would be to analyze the quality of the optimal RpCP solution, polynomially computable on these graphs with respect to PpCP. We know that an optimal RpCP solution is not always optimal for PpCP, however we have poor results yet on the structural relations between the optimal solutions of both problems. The quality of an optimal solution for RpCP used for PpCP, and vice versa, should be analyzed for different classes of graphs.

Another research track to identify solutions for PpCP, would be to restrict our problem to the local probabilistic radius, introduced in Section 4.1. The local probabilistic radius, based on the local evacuation radius, enables us to focus our analysis on the maximum evacuation distance induced by the source vertex and its neighborhood. The relevance of this approach has also been displayed in Section 6.4. Indeed, RP rob corresponds to the problem RpCP restricted to the evacuation distance of the source vertex solely. While RP rob is a relaxed variant of the local robust radius (the robust version of the local probabilistic radius), it often provides a tight lower bound for RpCP. The local evacuation radius has also a practical interest, which we will come back on later. Finally, as the approximation gap is still large, there is potential for further approximation and/or non-approximation results.

For RpCP, we started implementing our polynomial algorithms for acyclic graphs. It would be interesting to assess their efficiency with experimental results. In addition, we did not have time to design specific approximation algorithm for RpCP on planar graphs and subgrids. A good starting point would be to consider graphs with exactly one pending vertex, and no other minimal articulation component. In this setup, the problem would be to decide the location of the other shelters. Note that the NP-hardness of RpCP is not established on such graphs. This approach is inspired by the acyclic graphs approximation algorithms. Indeed, as shelters must be located on the pending vertices, these pending vertices are the foundation of our solutions.

An additional meaningful research track would be to improve our exact IPbased algorithm for RpCP and to develop an efficient exact algorithm for PpCP. On both problems, we should be able to implement a Benders decomposition to tackle the issue raised by the size of the problems. Given the quality observed of an optimal solution for RP rob in Chapter 6, RP rob can be taken as the initial master problem. In addition, it would be interesting to determine and generate constraints specific to the class of the graph considered.

An interesting line of research would be to consider distances verifying triangles inequalities, and analyze if they induce structural properties for our problems.

Finally, some initial hypothesis (shelter property, scenario definition, etc.) can be adapted to generate different variants of our problems. The relevance of these 161 7.2. OPEN PROBLEMS variants mainly depends on their practical application. We list them next.

Practical open questions

From a practical perspective, our model can be adapted to different fire configurations. We list some of them. Note that our mathematical programming model could easily integrate these variants, but our combinatorial results may change significantly.

1. We can take into account different constraints or consequences of locating a shelter on an area.

• The territory may limit the location of shelters to some specific areas.

In this case, we can define initially the subset of vertices on which it is possible to locate a shelter. This variant includes our model as specific case, thus our hardness results remain valid. However, further research is required to extend our polynomial and approximation results to this variant.

• Building a shelter in an area may involve securing completely the corresponding area, in which case a fire can not occur in an area with a shelter located on it. We use an auxiliary problem that is relatively close to this problem in Section 4.1, when we use the objective function E C . E C is the sum of the evacuation radius for all scenarios s ∈ C, weighted by the total number of scenarios (and not by | C|). Further research is required to reduce this variant to our model and extend our results to it.

• On the contrary, the shelter located on an area may not be sufficient to secure the area if the fire starts within the area. The consequence on the evacuation distance computation formula is straightforward. Further research is required to reduce this variant to our model and extend our results to it.

2. We can take into account the fire spread, in a static way, by considering scenarios associated to a subset of vertices in fire. In this case, all vertices in fire are no longer reachable.

3. Under some circumstances, only a partial evacuation is needed. When a fire occurs on an area, only the corresponding area must be evacuated. A close variant is the case where solely the source area and its neighborhood must be evacuated. The latter corresponds to the approach we initiated Section 4.1 with the local evacuation radius. This strengthens our interest

Min Partial p-Center

Instance:

An edge-weighted graph G = (V, E), a set U ⊂ V , an integer p Feasible solutions: Any p-set Objective:

Find a p-set C of minimum partial radius.

  Pour un scénario s, la qualité d'une solution est déterminée sur la base de la distance d'évacuation maximume induite par cette solution pour ce scénario. Nous définissons le rayon d'évacuation d'un ensemble C ⊂ V pour le scénario s par: r s (C) = max x∈V r s (C, x) Nous proposons deux fonctions objectives, s'inscrivant dans deux environnements non-déterministes distincts. Dans une approche robuste, aucune information sur la probabilité des scénarios n'est utilisée. Nous proposons dans ce cadre la fonction objective I R de type Minimax, donnée par: I R(C) = max s∈V r s (C) I R(C) est nommé le rayon robuste de C.

  Une solution C est réalisable pour PpCP et RpCP si r s (C) est fini pour tout scénario s. Une instance (G, p) du problème PpCP ou RpCP n'admet pas systématiquement de solutions réalisables. Nous présentons dans cette partie les conditions nécessaires et suffisantes pour qu'une solution sur une instance (G, p) du problème PpCP ou RpCP soit réalisable. Soit G un graphe connexe composé d'au moins 2 sommets. Une composante d'articulation de G est une composante connexe du graphe induit par la suppression d'un point d'articulation de G. Une composante d'articulation minimale, dénotée MAC, est une composante d'articulation ne contenant aucune autre compostante d'articulation. Nous montrons qu'une solution n'est réalisable pour RpCP et PpCP si et uniquement si 2 ≤ |C| ≤ p et C contient au moins un sommet de chaque composante d'articulation minimale de G.
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 1 Figure 1: Example d'une instance avec une solution optimale différente pour Min p-Center et RpCP pour p = 2.
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 21 Figure 2.1: Distance to the nearest shelter when no fire occurs.

20 2. 1 .

 201 THE UNDER PRESSURE MODEL In Figure2.2, we consider the operational graph G 1 associated to scenario 1, where the two undirected edges (i, j) and (j, i) are represented by a unique continuous line. The label under each vertex
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 22 Figure 2.2: Evacuation distances in the scenario 1.

Figure 2 . 3 :

 23 Figure 2.3: The operational graph associated with scenario 2 with shelters located on {3, 10}

Figure 2 . 4 :

 24 Figure 2.4: The operational graph associated with scenario 3 with shelters located on {3, 10}

  4) I E(C), called the probabilistic radius of C, is the expected value of the evacuation radius of C over all the scenarios. Hence, we can define a new problem. Probabilistic p-Center under Pressure (PpCP) Instance:

Figure 2 . 5 :

 25 Figure 2.5: A path with 5 vertices and shelters on the extremities

Figure 2 . 6 :

 26 Figure 2.6: An example of different optimal solutions for Min p-Center and RpCP with p = 2.

Figure 2 . 7 :

 27 Figure 2.7: An example where, for p = 5, there is an optimal solution for RpCP and PpCP of size 4.
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 13114 Figure 3.1: The gadget L 4 for an edge (u, v)

3. 1 .

 1 RpCP HARDNESS RESULTSendpoints of (u, v) is in U . If u ∈ U , then we add c uv to U . Otherwise, we add a uv to U . As a result, C = U ∪ U is a (t + |E|)-set and as there is no pending vertex in G , every vertex has an evacuation distance of value at most 2. Thus,I R(C) ≤ 2. ⇐ Suppose a set C in G with I R(C) ≤ 2. Denote L uv = {u,a uv , b uv , c uv , d uv , v} Note that, for any edge (u, v) oriented from u to v, |C ∩ L uv | ≥ 2: if it is not the case, then there is at least one scenario inducing an evacuation path of length 3 contained in L uv . In addition, C ∩ {a uv , b uv , c uv , d uv } = ∅: if it was not the case, then a uv for example would have an evacuation path of length 3 in scenario a uv passing through vertices b uv , c uv , v. Therefore, |C| = (t+|E|) for some non negative t. If for any edge (u, v) ∈ E we have |C ∩{a uv , b uv , c uv , d uv }| ≥ 2, then we transform C into a set U such that | U | ≤ |C|, I R( U ) ≤ 2 and | U ∩ {a uv , c uv }| = 1:

uvFigure 3 . 2 :

 32 Figure 3.2: The subgraph T uv for the edge (u, v) oriented from u to v and uv > 1.Continuous lines are used for T uv 's edges while dashed lines correspond to edges outside T uv .

  v+ uv | = 2 + 4( uv -1) and |C v- uv | = |C v+ uv | + 1. In Figure 3.2, where uv > 1, vertices in C v+ uv and C v- uv are represented striped or dashed respectively. Claim 2. G = (V, E) has a vertex cover U of size p = |U | if and only if G has a set C U of (p + 4|L| + |E|) vertices with I R(C U ) = 2.

Figure 3 . 4 :

 34 Figure 3.4: Example of Transformation 1

Analysis of ϕ 2 : 13 uxFigure 3 . 6 : 6 xyFigure 3 . 7 :

 21336637 Figure 3.6: Gadget T 2 ux used in F for (u, i), (i, x) ∈ E Hq ; z 7 ux = i.

5 and 3 . 7 ,

 37 we have |V Hq | = |V | + 2 e∈E k e , |E Hq | = |E| + 2 e∈E k e and |V F | = |V | + 16|E| + 28 e∈E k e . Then we deduce from Lemma 20:

e∈E k e 65 3. 2 .

 652 PpCP NON-APPROXIMATION RESULTS where the last inequality holds because τ (G) < |V |. So, we have: Using Equation 3.6, we have e∈E k e ≥ (q -1)|E|. In addition, since G is of degree 2 or 3, we have |V | ≤ |E|. It follows:

  e∈E k e . Using Equations 3.8 we can deduce τ (G) = p -5|E| -9 e∈E k e .

  v∈Zs r s (C, v) = max{s -c i , c i+1 -s} Combined with Equations 4.3,4.4, we obtain Equation 4.2. Remark 3. Given Proposition 25, note that adding shelters can only contribute to decrease the evacuation radius of the solution. For this reason, in this section, we consider that only p-sets of maximum size. Example. Illustrating our proposition, we will give examples based on Figure 4.1. By Equation

74 4. 1 .

 741 AN EXPLICIT SOLUTION FOR PpCP ON PATHS IN UNIFORM CASE

- 1 .

 1 Given Proposition 25 and Corollary 27, we can deduce r s (B) = r s (B), ∀s ∈ C. Thus E C (B) = E C (B).

2

 2 

12 = 1 . 11 12 .

 1211112 and 4.3 , for a given solution {c 1 , c 2 , c 3 , c 4 } we display under each center c i the evacuation radius of the solution for scenario c i . In Figure 4.2 we have a non-monotone balanced solution C 1 = {1, 5, 8, 12} inducing the segments µ C 1 , µ C 2 and µ C 3 of length 4 , 3 and 4 respectively. C 1 is non-monotone as λ 2 < λ 1 < λ 3 and I E C (C 1 ) = 3+3+3+3 Meanwhile, in Figure 4.3 we have a monotone solution C 2 = {1, 4, 8, 12} inducing the segments µ C 1 , µ C 2 and µ C 3 of length 3 , 4 and 4 respectively. C 2 is monotone as λ 1 ≤ λ 2 ≤ λ 3 and I E C (C 2 ) = 2+3+3+3 12 = Thus, I E C (C 2 ) < I E C (C 1 ). In Lemma 34, we will see that I E C (C 1 ) = I E C (C 2 ) as C 1 and C 2 induce segments with the same lengths. Consequently I E(C 2 ) < I E(C 1 ).

Figure 4 . 2 :

 42 Figure 4.2: Evacuation radius induced by scenarios s ∈ C where C = {1, 5, 8, 12} on uniform P 12 .

Figure 4 . 3 :

 43 Figure 4.3: Evacuation radius induced by scenarios s ∈ C where C = {1, 4, 8, 12} on uniform P 12 .

Proposition 35 .Figure 4 . 4 :

 3544 Figure 4.4: The unique balanced solution for PpCP with p = 3 on G

Figure 4 . 5 :

 45 Figure 4.5: A non-balanced solution for PpCP with p = 3 on G

  v∈V d(v, C) and r(C) is the value of C for Min p-Center on G. Note that for any scenario s ∈ V , r s (C) ≥ r(C).

Figure 4 . 6 :

 46 Figure 4.6: A case where I E(C) r(C) = Z + 1.

Figure 4 . 7 :

 47 Figure 4.7: Distance relations between vertices x, s and x k used for Proposition 36

1 Z{1, 3 , 6 , 5 , 2 Figure 4 . 8 :Corollary 40 .

 136524840 Figure 4.8: With general weights, an optimal MAC p-set can be a very bad PpCP solution.

1 : Begin 2 :

 12 Compute A 1 , . . . A k , and a 1 , . . . a k 3: if k > p then 4:

  partial radius at most 2d. To this aim, it uses the same ideas as in Theorem 41: it constructs a maximal independent set S d of K 2d,V d , but to ensure it intersects all A i s, i ∈ I + d , it initializes it by choosing one vertex in each of these components. If |S d | ≤ p -|I - d |, then d ∈ SL; 4. The best solution C d, d ∈ SL is selected as an approximated solution for Min MAC p-Center.

  , computed by the algorithm (Lines 25), is the set of distances d such that S d is of size at most p -|I - d |. Consider now an optimal MAC p-set, C * M AC , of radius d * . Claim 7. d * ∈ SL Proof. Since C * M AC has at least one center per MAC, C * M AC has at most p -|I - d * | centers in V \ i∈I - d * A i . In addition, vertices in V d * cannot be associated with (i.e., evacuated to) centers in i∈I - d * A i since these centers are at distance more than d * .

  which means d * ∈ SL. Claim 7 ensures in particular that SL = ∅ and consequently d computed at Line 29 is well defined. Since d * and d are both in SL, the algorithm computes both sets C d * and C d by selecting one vertex per A i , i ∈ I - d * and one vertex per A i , i ∈ I - d , respectively (from Line 10 to Line 14) and completing with S d * and S d, respectively. Using Claim 6, this ensures that both C d * and C d are MAC p-set.

3 :

 3 while |D| > 1 do 4:

Proposition 45 .Algorithm 3 1 :

 4531 Algorithm 3 returns an optimal solution of k-RCP for a path and an integer k. Solving k-RCP-Paths Require: Edge-weighted path G, integer k Ensure: Returns an optimal k-RCP solution C for G Add {1, 2} to C 2: α ← l 1,2 , φ ← 0, β ← 0 3: for v ∈ [3, . . . , n] do 4: Add {v} to C and remove {v -1} from C 5:

  is a feasible solution. As |C(v + 1)| = |C(v)|, then, based on P (v), C(v + 1) is 102 5.2. EDGE-WEIGHTED PATHS of optimal size. Hence, P (v + 1) is true. In addition, as the most upstream shelter has been relocated to the upstream extremity of the path, P (v + 1) is true.• if φ(v + 1) + β(v + 1) or φ(v + 1) + α(v + 1)exceeds k, then by Proposition 44, I R(C(v + 1)) > k. In this case we add vertex v to C(v + 1). As C(v) ⊂ C(v + 1), C(v + 1) ensures evacuation distances less or equal to k on G(v). Hence C(v + 1) is feasible. As the number of shelters of C(v) were minimum (P (v)) and located as upstream as possible (P (v)), no shelter in G(v) can be relocated to an upstream vertex without breaking the feasibility condition. It follows that adding a shelter was necessary to satisfy the feasibility condition, thus P (v + 1) is true. By P (v), the centers of C(v) are located maximally upstream in G(v). As C(v) ⊂ C(v+1) and (v+1) ∈ C(v+1), then the centers of C(v + 1) are located maximally upstream in G(v + 1). Thus P (v + 1) is true.

Figure 5 . 2 :

 52 Figure 5.2: Example graph on which we apply Algorithm 2 for p = 3

Figure 5 . 3 : 3 104 5 . 3 .

 53353 Figure 5.3: Example graph G on which we apply Algorithm 2 for p = 3

Figure 5 . 4 :

 54 Figure 5.4: Example of notations on an extended star.

Figure 5 . 5 :

 55 Figure 5.5: Example of the notation of a caterpillar.

Algorithm 5

 5 Solving k-RCP on a Caterpillar Require: Edge-weighted caterpillar G Ensure: Returns C, k-RCP solution for G 1: C ← {1, 2} 2: T ← {1, 2} 3: for v ∈ [3, . . . , ñ] do 4: C ← C \ {v -1} ∪ {v} 5:

  is unfeasible, then we insert v back to C(v + 1) (step 7), such thatC(v + 1) = C(v) ∪ {v + 1}. By P (v), C(v) is feasible on G(v). As C(v) ⊂ C(v + 1), C(v + 1) ensures evacuation distances less or equal to k on G(v).Hence C(v + 1) is feasible. As the number of shelters of C(v) were minimum (P (v)) and located as upstream as possible (P (v)), no shelter in G(v) can be relocated to an upstream vertex without breaking the feasibility condition. It follows that adding a shelter was necessary to satisfy the feasibility condition, thus P (v + 1) is true. By P (v), the centers of C(v) are located maximally upstream in G(v). As C(v) ⊂ C(v+1) and (v+1) ∈ C(v+1), then the centers of C(v + 1) are located maximally upstream in G(v + 1). Thus P (v + 1) is true.

Figure 5 . 6 :

 56 Figure 5.6: Applying Algorithm 5 on a caterpillar for k-RCP with k = 5, the red arc shows the relocation of the shelter from vertex 6 to vertex 7 at the beginning of iteration 7.

10 :

 10 δ d (2) ← 0, ϕ ← 0 11: for v ∈ {3, . . . , ñ} do 12: T ← T ∪ {v} and add the pending vertices adjacent to v -1 to T 13: C ← C \ {v -1} ∪ {v} 14:

  v∈T (c j ) δ d (v) and δ u (T (c j )) = max v∈T (c j ) δ u (v).Then the robust evacuation radius of a feasible solution C is:I R(C) = max 1≤j≤q+1 {δ d (T (c j )), δ u (T (c j ))}

  The base case is for v = 1, where we consider G(p(1), 1) = G[{1, p(1)}]. Given step 4, we have Y (1) = {1, p(1)}. On G(p(1), 1), I R(Y (1)) = 0 and Y (1) is the only feasible solution, thus P (1) and P (1) are true.

Algorithm 7 1 :

 71 Solving k-RCP on a Tree Require: Edge-weighted tree G, k Ensure: Returns an optimal solution C for k-RCP on G Root G on any non-pending vertex, and label the vertices following a postorder traversal. Initialize C as an empty set. 2: for v = {1, . . . , n} do 3: if (v ∈ L) then 4: Add v and p(v) to C.

13 :

 13 ∇ d (v) ← 0, ϕ(v) ← 0 14:else {v is not necessary in C} 15:∇ d (v) ← min i∈φ(v) {l v,i + ∇ d (i)} Remove v from C.

  then

21 :

 21 Add v to C.

Algorithm 8 σ

 8 -quantile search Require: P (D), LB, U B, σ ∈ N, σ ≥ 3 Ensure: Returns the optimal value and an optimal solution to P (D) 1: while U B = LB do 2: D = {D k 1 , . . . , D kσ } ← F kernel(D, LB, U B, σ) 3:

step 6: end for 7 :•

 7 Return {D k 1 , . . . , D k i , . . . , D kσ } Consider P (D) a linear programming formulation whose objective value (to be minimized) takes a value from an ordered set D = {D 1 , D 2 , . . . , D T }. Denote LB 6.4. AN EXACT SOLUTION METHOD FOR RpCP and U B two initial lower and upper bounds for v(P (D)). A σ-quantile search, presented in Algorithm 8, can be used to solve P (D) by solving at most log σ (T + 1) instances of P (D ) with D ⊆ D. While U B = LB, we repeat the following steps: First we compute a restricted set D = {D k 1 , . . . , D kσ } ⊆ D using function F kernel (Algorithm 9): we delete all values in D that are less than LB or greater than U B, then D k 1 = LB, D kσ = U B and the intermediate values correspond to a (σ -1)-quantile. So, between every two consecutive values of D there are roughly the same number of values of D.

Figure 6 . 2 : 5 :

 625 Figure 6.2: Processing time of EA3 on three different instances for p ranging from 2 to 32

  

  1 que, sur un chemin dans le cas uniforme, une solution monotone équilibrée est une solution optimale pour PpCP (Théorème 30). Même si le résultat n'est pas surprenant, la preuve est étonnamment non triviale. Ce résultat repose sur une décomposition du problème en sous-problèmes. L'idée principale est d'exprimer la fonction objective comme la somme de deux parties (contribution des sommets avec refuges d'une part et des sommets sans refuges d'autre part) et de simultanément borner la fonction obective par une autre fonction objective plus facilement calculable. Nous introduisons le rayon d'évacuation local d'une solution pour un scénario donné comme étant la distance d'évacuation maximum du sommet source et de ses sommets adjacents. Le rayon d'évacuation local est une limite inférieure au rayon d'évacuation d'une solution. Lorsque la solution est équilibrée, le rayon d'évacuation équivaut au rayon d'évacuation locale. En outre, nous considérons une partition des scénarios en deux ensembles. Pour chaque ensemble de scénarios, nous prouvons indépendamment qu'une solution équilibrée monotone minimise le rayon d'évacuation local. Ce résultat n'est toutefois pas valable sur les graphes aux arêtes pondérées. Dans la section 4.2, nous proposons des résultats d'approximation pour PpCP. Dans les graphes avec des arêtes de degré borné et avec des longueurs d'arêtes inclues dans [ , 2 ], PpCP est approximable avec un rapport de 4deg(G) + 2 (où deg(G) est le degré moyen du graphe G). Ce résultat est valable pour une classe d'instance sur lesquels tous nos résultats de NP-difficulté s'appliquent. Sur les arbres, PpCP est approximable avec un rapport constant de 3. En outre, nous introduisons le problème Min MAC p-Center, qui consiste à trouver un ensemble p de rayon minimum parmi l'ensemble des solutions possibles pour PpCP i.e., Min MAC p-Center est une variante de Min p-Center où l'ensemble de solutions réalisables est restreint à l'ensemble de solutions réalisables pour PpCP. Nous montrons que ce problème est approximable avec un ratio de 2 et que c'est le meilleur rapport d'approximation constant possible. Il est également polynomial sur les arbres. Dans le chapitre suivant, nous considérons le problème RpCP où nous généralisons certaines notions introduites dans ce chapitre. En effet, l'idée d'une segmentation induite par une solution sera utilisée et généralisée pour développer des algorithmes polynomiaux pour RpCP sur des graphes acycliques avec arêtes pondérées. Résults polynimiaux et d'approximation pour le RpCP Dans ce chapitre, nous présentons un algorithme générique pour résoudre RpCP en se basant sur un algorithme pour k-RCP et sur une recherche dichtomique. Considérons l'instance (G, p) de RpCP, avec p ≥ 2 et G un graphe aux arêtes pondérées. Soit D l'ensemble croissant des valeurs candidates pour le rayon robust de G. Nous observons que, pour tout k ∈ D, si la solution optimale pour k-RCP est de taille supérieure à p, alors la solution optimale pour RpCP a un rayon robuste supérieure à k. Sur la base de cette relation, nous pouvons effectuer une recherche dichotomique sur D pour trouver le rayon k * minimum pour lequel la taille de la solution optimale de k-RCP est inférieur ou égale à p. Cette méthode est implémentée dans l'Algorithme 2, dans lequel on utilise un algorithme non défini pour résoudre k-RCP. La complexité de l'Algorithme 2 dépends de la complexité de l'agorithme utilisée pour résoudre k-RCP. Nous proposons des algorithmes polynomiaux de résolution exacte de k-RCP sur des classes de graphes acycliques. Ces méthodes efficacesde type programmation dynamique -reposent sur des propriétées structurelles de ces classes de graphes. Nous proposons plusieurs algorithmes polynomiaux raffinés et en O(n) pour k-RCP sur différentes classes de graphes acycliques: les chemins, les étoiles étendues, les chenilles et les arbres. En particulier, comme les refuges doivent être situés sur des sommets pendants, ils constituent une base de départ pour la solution. En partant de ces sommets pendants, nos algorithmes adoptent une approche ascendante pour localiser progressivement les refuges.

Table 1 :

 1 Récapitulatif des principaux résultats pour le RpCP et le PpCP.

	20
	19

  Nous savons qu'une solution RpCP optimale n'est pas toujours optimale pour PpCP, cependant nous avons que de timides résultats sur les relations structurelles entre les solutions optimales des deux problèmes. La qualité d'une solution optimale pour RpCP utilisée pour PpCP, et vice versa, devrait être analysée pour différentes classes de graphes. Une autre piste de recherche pour identifier des solutions pour PpCP serait de restreindre notre problème au rayon probabiliste local, introduit dans la section 4.1. Le rayon probabiliste local, basé sur le rayon d'évacuation local, nous permet de concentrer notre analyse sur la distance d'évacuation maximale induite par le sommet source et son voisinage. La pertinence de cette approche a également été démontrée dans la section 6.4. En effet, RP rob correspond au problème RpCP limité à la distance d'évacuation du sommet source uniquement. Alors que RP rob est une variante détendue du rayon local robuste (la version robuste du rayon probabiliste local), il fournit souvent une limite inférieure étroite pour RpCP. Le rayon d'évacuation local a également un intérêt pratique, sur lequel nous reviendrons plus tard. Enfin, comme l'écart entre notre algorithme d'approximation et nos résultat de non-approximation est encore important, il est possible d'améliorer nos résultats.
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	Type / Environment Certainty	Uncertainty	Risk
	Provider-side	[62, 63, 64] [60, 65]	
	Receiver-side	[64]	[66, 67, 68, 69, 65]	[70]
	In-between		RpCP [71, 72, 69, 65] PpCP

1: Review

  RpCP 2 and the Min Vertex Cover problem . . . . . . . 47 3.1.4 Does increasing the radius make the decision problem harder? . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.2 PpCP Non-Approximation Results . . . . . . . . . . . . . . . . 54 3.2.1 PpCP Non-Approximable on Planar Graphs . . . . . . . 54 3.2.2 PpCP Inapproximation subgrids . . . . . . . . . . . . . . 57

3.1 RpCP Hardness results . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 RpCP 1 and the Min Vertex Cover problem . . . . . . . 44 3.1.2 RpCP 2 and the Min Dominating Set problem . . . . . . 46 3.1.3

  1 is NP-complete in all hereditary classes of graphs for which the decision version of Min Vertex Cover problem is NP-complete. The problem RpCP is NP-hard in these classes of graphs. 2. RpCP 1 is polynomial-time solvable in all hereditary classes of graphs for which the decision version of Min Vertex Cover problem is polynomial-time solvable.

Proof.

[START_REF]Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[END_REF]

: Suppose H is an hereditary class of graphs for which the decision version of Min Vertex Cover is NP-complete. We show Min Vertex Cover reduces to RpCP 1 in this class. Consider (G, p), with G ∈ H and p ∈ N an instance of the decision version of Min Vertex Cover.

  .2 with vertices x 1 uv , x 2 uv , a + uv , a - uv , b uv , d uv , c + uv , c - uv and z i uv for i ∈ {1, . . . , 8} if uv = 1, or i ∈ {1, . . . , 9} otherwise. T uv is inspired from gadget L 4 in Figure

  then for scenario c - uv , the evacuation distance of c - uv is at least 3 (induced by the evacuation path through b uv and a - - uv when it is on fire. So, |C∩{b uv , d uv , a - uv , c - uv , a + uv , c + uv }| ≥ 2. Similarly, if d uv ∈ C, we have then |C ∩ {b uv , d uv , a - uv , c - uv , a + uv , c + uv }| ≥ 2. Finally, if b uv , d uv / ∈ C, then we need C ∩ {a - uv , a + uv } = ∅ and C ∩ {c - uv , c + uv } = ∅ to ensure an evacuation distance at most 2 when d uv is on fire.

	3.1. RpCP HARDNESS RESULTS
	distance at most 2 for a
	uv ).
	The same occurs for a -uv .
	(2): If b uv ∈ C and a -uv / ∈ C, then d uv or c -uv should be in C to ensure an evacuation
	50

  Then, since we cannot have three consecutive vertices of degree 2 outside C, |C ∩ {z i uv , i = 1, . . . , 8 + 12( uv -1)}| ≥ 4 uv -1. Using Claim 1 (second item), at least two vertices from {b uv , d uv , a - uv , c - uv , a + uv , c + uv } should be in C. In all, C has at least 4 uv + 2 vertices in T uv . These vertices can be replaced with {u, a + uv , c - uv } ∪ C v- uv without augmenting the cardinality of the set. By repeating this transformation, we obtain a set of vertices C such that |C | ≤ p + 4|L| + |E|, where C ∩ V is a vertex cover of size at most p. This completes the proof of Claim 2.

  By definition of a dominating set, {v 1 , . . . , v deg(s) } ⊂ C . Consequently, by construction of C , we have that {a sv 1 , . . . , a sv deg(s) } ⊂ C . It follows that, what

is triangle-free with no pending vertex, and C is a dominating set, then we have: ∀u ∈ V , r s (C , u) ≤ 2 for any scenario s (Proposition 11).

Consider first s ∈ V \ C and denote by v 1 , . . . , v deg(s) all neighbors of s in G.

Hq 1 :

 1 we add to D the vertices z 3 xy , c xy , z7 xy , z 10 xy and z 13 If x ∈ D, we add to D the vertices z 3 xy , c xy , z 4.3 xy and z 6 xy of T 1 xy , else if y ∈ D, we add to D the vertices z 1 xy , a xy , z 4.1 xy and z 4.4 xy of T 1 xy . In both cases, 4 vertices are added to D, and all the vertices of T 1 xy are dominated by D.The resulting set D is a dominating set of F of size t + 4|E Hq | + |E Note that none of these modifications increases the size of D, and D is still a dominating set of F . However, we ensured that |D \ V Hq | ≥ 4|E| + |E|, and |D ∩ {x, y}| ≥ 1, ∀(x, y) ∈ E Hq . Then U = D ∩ V Hq is a vertex cover for H q of size at least t. This completes the proof.

	3.2. PpCP NON-APPROXIMATION RESULTS
	3.2.2.3 Relations between PpCP and dominating sets
	Lemma 21. Let D be a minimum dominating set of F as described in Lemma 20
	xy xy of xy and z 11 xy , z 8 xy , a xy , z 6.1 xy , else if y ∈ D, we add to D the vertices z 1 of T 2 and of size p t = τ (G) + 4|E Hq | + |E Hq 2 |. Then we have:
	T 2 xy . In both cases, 5 vertices are added to D, and all the vertices of T 2 xy are
	dominated by D.		
	• if (x, y) ∈ E		
	Hq 2 : D includes at least 6 vertices on T 2 xy , and 5 vertices on
	T 2 xy \ {x, y}.		
	Hq 2 oriented from x to y : if x ∈ D, we can replace at least
	5 vertices of D ∩ T 2 xy by z 3 xy , c xy , z 7 xy , z 10 xy and z 13 xy . If y ∈ D, we can replace at
	least 5 vertices of D ∩ T 2 xy by z 1 xy , a xy , z 6.1 xy , z 8 xy and z 11 xy .
	• for every (x, y) ∈ E	Hq 1	oriented from x to y : if x ∈ D, we replace at least 4
	vertices of D ∩ T 1 xy by z 3 xy , c xy , z 4.3 xy and z 6 xy . If y ∈ D, we replace at least 4
	vertices of D ∩ T 1 xy by z 1 xy , a xy , z 4.1 xy and z 4.4 xy . If neither x nor y is in D, we can
	induce that |D ∩ T 1 xy | ≥ 5. Thus, we replace at least 5 vertices of D ∩ T 1 xy by
	x, z 3 xy , c xy , z 4.3 xy and z 6 xy .	

Hq 2 | = t + 4|E Hq | + |E| and for each edge (x, y) ∈ E Hq , D has at least one vertex in {a xy , c xy } and one vertex in {z 1 xy , z 13 xy } (resp. {z 1 xy , z 6 xy }) if (x, y) ∈ E Hq 2 (resp. E Hq 1

). ⇐ Now suppose we have D a dominating set of F . Then for every (x, y) ∈ E Hq oriented from x to y, we have:

• if (x, y) ∈ E • if (x, y) ∈ E

Hq 1 : D includes at least 5 vertices on T 1 xy , and 4 vertices on T 1 xy \ {x, y}. Then D includes at least t + 4|E Hq | + |E Hq 2 | = t + 4|E Hq | + |E| vertices for some integer t . We then perform the following modifications on D:

• for every (x, y) ∈ E

  .1, C = {1, 6, 9, 17} is a feasible solution of PpCP for p = 4 on P 17 . C induces 3 segments µ C 1 , µ C 2 and µ C 3 and λ(C) = {5, 3, 8}.

			µ C 1				µ C 2			µ C 3
	1	2	3	4	5	6	7	8	9	10 11 12 13 14 15 16 17
			Figure 4.1: Segments induced by solution {1, 6, 9, 17} on P 17
										♣
	Two specific kinds of solutions emerge on paths, which we define next.

Definition 23. On a path, a p-set C ∈ C p (P n ) with λ(C) = (λ C 1 , . . . , λ C p-1 ) is called balanced if max i,j∈{1,...,p-1}

  then C is a monotone balanced solution and the lemma is verified. Otherwise, we create a new solution C by replacing the extreme segments by a new pair of segments of size λ

  if and only if |C| ≥ 2 and C intersects all minimal articulation components, denoted MACs. For any p ≤ |V |, we call MAC p-set a p-set intersecting all MACs. For p ≥ 2, C p (G) is then the set of feasible solutions of MAC Min MAC p-Center. We consider the Min MAC p-Center problem of finding a MAC p-set of minimum radius. The Min MAC p-Center problem has a feasible solution for a graph G if and only if p is at least the number of MACs in G, i.e., p ≥ |Υ(G)|.

  MACs A i , i ∈ I - d are seen as small MACs relative to d, while MACs A i , i ∈ I + d are seen as large ones. "No-solution output" is any output we use to indicate that the problem has no feasible solution.

			4.2. APPROXIMATION ALGORITHMS
		I -d	I + d ( denotes the disjoint union), where I -d = {i ∈ I, max x∈A i	d(x, a i ) ≤ d} and
		I + d = {i ∈ I, max x∈A i	d(x, a
	16:	S d ← ∅
	17:	for i ∈ I + d do
	18:		Select y ∈ argmax	d(x, a i )
				x∈A i
	19:		S d ← S d ∪ {y}
	20:	end for
	21:		
	22:		S d ← S d ∪ {v}
	23:	end while
	24:	if |S d | ≤ p -|I -d | then
	25:		SL ← SL ∪ {d}
	26:		C d ← C d ∪ S d
	27:	end if
	28:	end for
	29:	Let d ∈ argmin	(r(C d ))
			d∈ SL
	30:	C ← C d
	31:	return C
	32: end if	
	33: End	
				91

while ∃v ∈ V d , d(v, S d ) > 2d do i ) > d}.

  Using Claims 6 and 4, we have r(S d * , V d * ) ≤ 2d * and thus: 4.2. APPROXIMATION ALGORITHMS ∀v ∈ V d * , d(v, C d * ) ≤ 2d * . (4.11) Consider now a vertex v ∈ V \ V d * . By definition of V d * , we have d(v, {a i , i ∈ I - d * }) ≤ d * and by definition of I - d * , we have ∃i ∈ I - d * , ∀u ∈ A i , d(v, u) ≤ 2d * . This ensures: ∀v ∈ V d * , d(v, C d * ) ≤ 2d * . (4.12) Equations 4.11 and 4.12 ensure r(C d * ) ≤ 2d * . Claim 8 and Equation 4.10 imply r(C d) ≤ 2d * , which concludes the proof of Theorem 42. We immediately deduce from Theorem 41 and Proposition 38: Corollary 43. For edge weighted graphs with lengths in [ , 2 ], PpCP is approximable within 4deg(G) + 2.

Table 5 .

 5 1: Description of the evolution of the parameters of the Algorithm 3 applied to G.

	14 4 = 3.5. In addition, an upper bound to k can be obtained from
	103

  ). At step 4, we 5.5. TREES remove v from Y (v) and we add p(v) to Y (v). We observe that T (p(v), v) is the only segment-tree in G(p(v), v) affected by this change. By P (i), i ∈ φ(v), the evacuation distances of the other segment-trees in G(p(v), v) do not exceed k. Therefore, Y (v) is feasible on G(p(v), v) if and only if δ d

1 3 :

 3 Compute LB 2 4: Compute U B 2 by generating x random solutions5: LB 3 , sol ← σ -quantile search(RP rob (D rob ), max{LB 1 , LB 2 }, min{U B 1 , U B 2 }, σ 1 ) 6: U B 3 ← Value of sol for P rob 7: U B ← min{U B 1 , U B 2 , U B 3 } and LB ← max{LB 1 , LB 2 , LB 3 } 8:optV alue, optSolution ← σ-quantile search(P rob (D rob ), LB, U B, σ 2 ) 9: Return optV alue

		6.4. AN EXACT SOLUTION METHOD FOR RpCP
	Instance n	|E|	p	OPT LB1 UB1 LB2 UB2 LB3 UB3
	pmed1	100 200	5	222	127 251 221	222* 222*
	pmed2	100 200	10	194	98	229 192	194* 194*
	pmed3	100 200	10	191	93	226 186	191* 191*
	pmed4	100 200	20	157	74	184 156	157* 157*
	pmed5	100 200	33	115	48	144 115* 115* 115*
	pmed6	200 800	5	180	84	208 180* 180* 180*
	pmed7	200 800	10	156	64	163 155	156* 156*
	pmed8 pmed9	200 800 200 800	20 40 p=n/3	143 124	55 37	153 143* 143* 143* 136 124* 124* 124* p=n/10
	pmed10 200 800	67	100	20	118 100* 100* 100*
	pmed11 300 1800	5	153	59	157 153* 153* 153*
	pmed12 300 1800	10	145	51	150 145* 145* 145*
	pmed13 300 1800	30	129	36	136 128	129* 129*
	pmed14 300 1800	60	116	26	125 115	116* 116*
	pmed15 300 1800	100 105	18	118 105* 105* 105*
	pmed16 400 3200	5	143	47	147 143* 143* 143*
	pmed17 400 3200	10	136	39	139 136* 136* 136*
	pmed18 400 3200	40	122	28	127 122* 122* 122*
	pmed19 400 3200 pmed20 400 3200	80 133 103 112	18 13	119 111 113 103* 103* 103* 112* 112* p=10
	pmed21 500 5000	5	137	40	139 137* 137* 137*
	pmed22 500 5000 Figure 6.1: Processing time of each variant of the Exact Algorithm on some 10 133 38 137 133* 133* 133*
	pmed23 500 5000	50	118	22 OR-Library instances 122 118* 118* 118*
	pmed24 500 5000	100 110	15	115 110* 110* 110*
	pmed25 500 5000	167 103	11	113 103* 103* 103*
	pmed26 600 7200	5	134	38	137 134* 134* 134*
	pmed27 600 7200	10	128	32	132 128* 128* 128*
	pmed28 600 7200	60	114	18	118 114* 114* 114*
	pmed29 600 7200	120 108	13	113 108* 108* 108*
	pmed30 600 7200	200 103	9	109 103* 103* 103*
	pmed31 700 9800	5	128	30	136 124	128* 128*
	pmed32 700 9800	10	127	29	128 123	127* 127*
	pmed33 700 9800	70	113	15	119 110	113* 113*
	pmed34 700 9800	140 107	11	111 107* 107* 107*
	pmed35 800 12800 5	128	30	130 -	128* 128*
	pmed36 800 12800 10	125	27	127 -	125* 125*
	pmed37 800 12800 80	112	15	121 -	112* 112*
	pmed38 900 16200 5	127	29	129 -	127* 127*
	In the next section, we evaluate the computational efficiency of the proposed pmed39 900 16200 10 122 23 127 -122* 122*
	algorithm. pmed40 900 16200 90	111	13	113 -	111* 111*
			Table 6.4: Optimal solution values and bound values
				for OR-Library instances
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 6 6.4. AN EXACT SOLUTION METHOD FOR RpCP 7: Optimal solution values and bound valuesfor unit subgrids

	Instance							
	Graph p	n	|E| OPT LB 1 LB 2 LB 3 U B 1	U B 2	U B 3
	SG1	5	73	102 7	4	7*	6	10000		10000
	SG1	10	73	102 4	3	4*	4*	10000		6
	SG1	20	73	102 2	1	2*	2*	2*		2*
	SG1	14	73	102 3	2	3*	3*	8		7
	SG1	24	73	102 2	1	2*	2*	2*		2*
	SG2	5	92	153 7	4	6	5	8		9
	SG2	10	92	153 4	3	4*	4*	6		6
	SG2	20	92	153 3	2	3*	3*	4		4
	SG2	18	92	153 3	2	3*	3*	4		5
	SG2	30	92	153 2	1	2*	2*	2*		2*
	SG3	5	96	167 7	4	5	5	8		9
	SG3	10	96	167 4	3	4*	4*	6		6
	SG3	20	96	167 3	2	3*	3*	4		4
	SG3	19	96	167 3	2	3*	3*	4		4
	SG3	32	96	167 2	1	2*	2*	2*		2*
	SG4	5	143 218 11	6	10	9	20		13
	SG4	10	143 218 7	4	6	6	10		10
	SG4	20	143 218 4	2	4*	4*	6		7
	SG4	28	143 218 3	2	3*	3*	5		5
	SG4	47	143 218 2	1	2*	2*	2*		2*
	SG5	5	179 304 9	6	8	8	14		12
	SG5	10	179 304 6	4	6*	5	8		9
	SG5	20	179 304 4	2	4*	4*	7		6
	SG5	35	179 304 3	2	3*	3*	4		4
	SG5	59	179 304 2	1	2*	2*	2*		2*
	SG6	5	190 332 9	6	8	8	11		11
	SG6	10	190 332 6	4	5	5	8		7
	SG6	20	190 332 4	3	4*	4*	6		6
	SG6	38	190 332 3	2	3*	3*	5		6
	SG6	63	190 332 2	1	2*	2*	2*		2*
	SG7	5	306 483 15	9	13	12	10000 10000
	SG7	10	306 483 9	6	9*	8	10000		10000
	SG7	20	306 483 6	4	6*	6*	9		8
	SG7	61	306 483 3	2	3*	3*	10000		10000
	SG7	102 306 483 2	1	2*	2*	2*		2*
	SG8	5	359 620 NA	8	11	10	16		16
	SG8	10	359 620 NA	6	7	7	11		12
	SG8	20	359 620 NA	4	5	5	11		9
	SG8	71	359 620 3	2	3*	3*	5		5
	SG8	119 359 620 2	1	2*	2*	2*		2*
	SG9	5	383 704 NA	9	11	11	16		18
	SG9	10	383 704 NA	5	7	7	11		13
	SG9	20	383 704 NA	4	5	3	8		9
	SG9	76	383 704 3	2	3*	3*	4		4
	SG9	127 383 704 2	1	2*	2*	2*		2*

Table 6 .

 6 9: Ratio between U B 1 and optimal solution value of RpCP on unit subgrids

			p		
	Instance 5	10	n/5 n/3
	wSG1	∞	1.16 1.45 1.54
	wSG2	1.21 1.25 1.19 1.25
	wSG3	1.3	1.32 1.4	1.36
	wSG4	1.3	1.26 1.47 1.92
	wSG5	1.31 1.14 1.41 1.85
	wSG6	1.2	1.47 1.24 1.46
	wSG7	∞	∞	∞	∞
	wSG8	1.3	1.34 1.29 1.31
	wSG9	1.36 1.34 1.29 1.31

Table 6 .

 6 10: Ratio between U B 1 and optimal solution value of RpCP on weighted subgrids 152 6.4. AN EXACT SOLUTION METHOD FOR RpCP no leaf nodes and C a dominating set, then r(C) ≤ 2. Moreover, when p = n/3, there is no solution with radius equals to 1. So, the deterministic solution is an optimal solution for RpCP.

	6.4. AN EXACT SOLUTION METHOD FOR RpCP
	Instance					
	Graph p	n	|E| T EA1 T EA2 T EA3
	SG1	5	73	102 8.62	6.42	4.62
	SG1	10	73	102 4.48	6.14	2.6
	SG1	14	73	102 3.37	6.25	2.43
	SG1	20	73	102 0.84	5.42	0.31
	SG1	24	73	102 0.81	5.58	0.32
	SG2	5	92	153 15.02	19.87	13.47
	SG2	10	92	153 5.98	11.83	5.46
	SG2	18	92	153 2.71	10.19	3.8
	SG2	20	92	153 2.86	10.01	2.3
	SG2	30	92	153 1.43	10.23	0.59
	SG3	5	96	167 29.38	38.74	31
	SG3	10	96	167 7.54	9.74	6.08
	SG3	19	96	167 3.21	9.82	2.66
	SG3	20	96	167 3.28	11.87	2.61
	SG3	32	96	167 1.66	10.56	0.67
	SG4	5	143 218 61.04	72.64	32.84
	SG4	10	143 218 29.54	52.4	27.98
	SG4	20	143 218 14.57	39.34	13.16
	SG4	28	143 218 13.34	36.56	10.61
	SG4	47	143 218 4.75	37.96	1.42
	SG5	5	179 304 188.98	281.31	317.06
	SG5	10	179 304 70.04	80	57.87
	SG5	20	179 304 37.37	72.1	23.35
	SG5	35	179 304 15.16	69.52	12.48
	SG5	59	179 304 8.8	73.25	2.61
	SG6	5	190 332 399.16	855.92	486.3
	SG6	10	190 332 143.33	236.57	101.38
	SG6	20	190 332 44.3	88.26	30.09
	SG6	38	190 332 31.71	83.41	25.69
	SG6	63	190 332 10.74	87.64	3.13
	SG7	5	306 483 1298.46 1364.17 1683.74
	SG7	10	306 483 585.89	394.51	924.87
	SG7	20	306 483 205.19	354.8	110.61
	SG7	61	306 483 309.12	304.88	136.95
	SG7	102 306 483 37.03	324.04	8.53
	SG8	5	359 620 NA	NA	NA
	SG8	10	359 620 NA	NA	NA
	SG8	20	359 620 NA	NA	NA
	SG8	71	359 620 355.2	675	258.2
	SG8	119 359 620 88.4	791.4	40.3
	SG9	5	383 704 NA	NA	NA
	SG9	10	383 704 NA	NA	NA
	SG9	20	383 704 NA	NA	NA
	SG9	76	383 704 196.3	776.4	124.4
	SG9	127 383 704 95	837	21.9

Table 6 .

 6 11: Processing time of each variant of the Exact Algorithm on the unit subgrids
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 6 [START_REF] Charles | Location analysis: A synthesis and survey[END_REF]: Best results obtained on the unsolved instances of unit subgrids

Nous pouvons prendre en compte la propagation du feu, de manière statique,

Under a minimax regret objective function, the optimal decision is that for which the largest difference of performance (called the regret) for each scenario between a solution and the best solution for the scenario is minimized. More details in subsection

2.2.2.2.

We call hereditary a class of graphs such that, for any graph in the class, all its subgraphs are still in the class.

RpCP 2 is polynomial-time solvable in all triangle-free classes of graphs in the uniform case and of minimum degree 2, for which the decision version of Min Dominating Set problem is polynomial-time solvable.

A set C is minimal for inclusion with respect to a property π if the removal of an element of C causes this set to no longer verify the property π.

The work contained in this joint PhD thesis undertaken between RMIT and Universite Paris-Dauphine has not been previously submitted to meet requirements for an award at these or any other higher education institutions. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made. I acknowledge the support I have received for my research through the provision of an Australian Government Research Training Program Scholarship.

CHAPTER 4

POLYNOMIAL AND APPROXIMATION RESULTS FOR PpCP

Abstract

In this chapter we present an explicit solution for PpCP on uniform paths. The proof requires a decomposition of PpCP in multiple auxiliary subproblems. In addition, we propose some approximation results for PpCP on edge-weighted graphs with bounded edge lengths. These results require approximation results for two variants of Min p-Center called Min MAC p-Center and Min Partial p-Center. Proof. Using Lemmas 28 and 34 we can state that ∀C ∈ C p (P n ) :

The proof of Theorem 30 is hence complete. In the next section, we discuss the case of edge-weighted paths.

The case of edge-weighted path

In this subsection, we show that our approach can not be generalized to edgeweighted paths.

Example. Consider the edge-weighted path G illustrated in Figure 4.4 and 4.5. B = {1, 7, 9} where λ(B) = {λ B 1 , λ B 2 } = {8, 6} is a balanced solution for PpCP with p = 3 on G. (as|λ B 1 -λ B 2 | is minimum, see Definition 23). The value of r v (B) is given under each vertex v. Note that r 8 (B) = r 9 (B) = 4 due to the evacuation distance of 5. For the other vertices, r v (B) is equal to the evacuation distance of v or one of its neighbors. Thus, I E(B) = 9 Proof. Consider any vertex u ∈ U \ S d . Since S d is maximal, S d ∪ {u} is not independent in K 2d,U , which means d(u, S d ) ≤ 2d and the claim is proved.

Claim 5. Any independent set S of K 2d,U is a strong independent set of K d contained in U .

Proof. By definition, S ⊂ U . Since S is independent in K 2d,U , it is independent in K d,U , a partial graph of K 2d,U . So, it is an independent set of K d . The result then follows by contrapositive: if there is a vertex u ∈ V \ S adjacent, in K d , to two vertices of S, then these two vertices would be at distance at most 2d, so would be adjacent in K 2d,U . Claims 3, 4 and 5 immediately allow to derive an approximation algorithm for Min Partial p-Center.

Theorem 41. Min Partial p-Center is polynomially 2-approximable and this is the best possible constant ratio.

Proof. We already noted that 2 is a lower bound for any constant approximation ratio of Min Partial p-Center. So, we only need to prove that this bound can be guaranteed.

For a given instance (G, U ), we can compute SL and all distances d(i, j), i, j ∈ V in O(n 3 ). Then, for any d ∈ SL, we can compute a maximal independent set S d of K 2d,U and then select S d, where d ∈ argmin Note that, using a binary search on the same model as the 2-approximation algorithm for Min p-Center proposed in [START_REF] Dorit | A best possible heuristic for the k-center problem[END_REF], we can design a 2-approximation algorithm of complexity O(n 2 log n) as soon as all distances between two vertices in G are computed.

We use similar ideas and the same claims to derive a polynomial 2-approximation algorithm for Min MAC p-Center (Algorithm 1).

To simplify the description of Algorithm 1, we introduce some notations used in the description of the algorithm. Given the instance G = (V, E), we denote by k the number of MACs of G. These MACs are denoted A 1 , . . . A k and the related articulation points are called a 1 , . . . a k (we may have a i = a j , i = j). As previously SL = {d(i, j), i, j ∈ V, }; for any d ∈ SL, we partition I = {1, . . . , k} into I = CHAPTER 5

POLYNOMIAL AND APPROXIMATION RESULTS FOR RpCP

Abstract

In this chapter we present polynomial exact algorithms for RpCP on edge-weighted acyclic graphs. A generic algorithm is presented, based on a binary search coupled with the auxiliary problem k-RCP. The complexity of the algorithm mainly depends on the complexity of an algorithm for k-RCP. For this purpose, we propose efficient algorithms to solve k-RCP in polynomial time on paths, extended stars, caterpillars and trees.

CHAPTER 6

MATHEMATICAL PROGRAMMING APPROACHES

Abstract

In this chapter we introduce integer programs for RpCP, k-RCP and PpCP. For real size instances, the sizes of the linear programs are huge so we propose a decomposition scheme to solve RpCP exactly, as well as different methods to compute lower and upper bounds. On the basis of experimental results, we propose a refined exact algorithm, which is the best current exact algorithm to solve RpCP. We test our algorithms on public p-Median instances and subgrid instances, the latter being more realist to our context. 

Introduction

In the two previous chapters, we have proposed polynomial methods to generate exact solutions or constant-approximation results for RpCP and PpCP. We now examine the case of general graphs, for which no polynomial method exists to solve both problems. In this chapter we propose mathematical programming methods to solve RpCP and PpCP. Our objective is to provide an exact algorithm for both problems.

We start by presenting in Section 6.1 some integer programming (IP) formulations for Min p-Center from existing exact solution methods for Min p-Center. On the basis of these models, we develop different IP and mixed-integer programming (MIP) based programs for RpCP in Section 6.2; and PpCP in Section 6.3. As these first programs appear to be quickly non-tractable (even to write the MIP instance with n = 100), we develop a MIP-based algorithm for RpCP in Section 6.4. We present extensive experimental results showing the tractability of our approach. Unfortunately, the designed exact algorithm can not be adapted to PpCP. A significant portion of the work presented in Section 6.4 has been published in [START_REF] Demange | A robust p-center problem under pressure to locate shelters in wildfire context[END_REF].

In this chapter, with G = (V, E), V = {1, . . . , n} edge-weighted undirected graph, we introduce new matrixial notations associated to the edge-weighted graph G = (V, E):

• SP = (d ij ) is the matrix of the shortest path length between every couple of vertices, with d ii = 0 and d ij = +∞ if there is no path between vertices i and j.

We recall that D is the finite list of distinct distances between pair of vertices in G, using the shortest distances. D is obtained by sorting in increasing order the T different finite values of the matrix SP :

We consider this list as part of the instance, if necessary it can be computed in O(n 2 ) from the matrix SP .

We extend some of these notations directly to operational graphs. For any scenario s, we denote:

) the matrix of shortest path lengths from i to j in G s . In the following, for an IP program P , we denote by LP the program where the integer restriction on the variables are relaxed. The optimal value of the programs P and LP are denoted v(P ) and v(LP ), respectively.

Integer linear programming models for p-Center

The aim of this section is to present the main formulations for the Min p-Center problem and the auxiliary problem Min r-Dominating Set. In Section 6.1.1, we present the MIP formulation introduced by Daskin in [START_REF] Mark S Daskin | Network and discrete location: models, algorithms, and applications[END_REF]. In Section 6.1.2, we present an IP formulation for Min r-Dominating Set. In Section 6.1.3, we present a second IP formulation for Min p-Center introduced by Elloumi, Labbé and Pochet in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. In addition, we present a more recent formulation introduced by Calik and Tensel in [START_REF] Calik | Double bound method for solving the p-center location problem[END_REF], which is a variant of the second formulation. This last model will be the starting point for the IP formulations for RpCP and PpCP in the next sections.

Daskin's model

Daskin proposed in [START_REF] Mark S Daskin | Network and discrete location: models, algorithms, and applications[END_REF] the first MIP formulation for the Min p-Center, referred to as P det 1 . The decision variables of this first model are: • for all j = 1, . . . , n, y j is a binary variable with y j = 1 if a shelter is located on j and 0 otherwise,

• for all i, j = 1, . . . , n, x ij is a binary variable with x ij = 1 if i is affected to j, and x ij = 0 otherwise.

INTEGER LINEAR PROGRAMMING MODELS FOR p-CENTER

The formulation by Daskin can be stated as follows:

x ij ≤ y j ∀i, j ∈ {1, . . . , n} (3)

Constraint (2) fixes the numbers of centers to be located. Constraints (3) ensure that vertex i is assigned to vertex j only if a shelter is located on j. Constraints (4) ensure that every vertex of the graph is assigned to exactly one center. Constraints (5) ensure that the distance from any vertex to its assigned center is less or equal than the radius r. The last constraints are the binary restrictions. Finally, the objective function [START_REF]Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[END_REF] ensures the computation of a solution of minimum radius r.

A set covering based approach

Daskin also proposed in [START_REF] Mark S Daskin | Network and discrete location: models, algorithms, and applications[END_REF] a mathematical method with a set covering based algorithm. The radius value of the set covering problem is selected from an interval of real numbers between pre-determined lower and upper bounds. The approach is based on a binary search over the range of coverage distances to determine the smallest coverage distance that allows all vertices to be covered.

We denote SC r , the following IP formulation for this set covering problem, taken for [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF] :

. , n}

In SC r the decision variables are the binary variables y j , j ∈ {1, . . . , n} similar to P det 1 . The objective function (1) minimizes the number of centers to be located while constraints [START_REF] Paton | Wildfire hazards, risks, and disasters[END_REF] ensure that every vertex i is within a distance r of at least one center j.

Considering the linear relaxation LSC r , we can obtain a lower bound for Min p-Center by solving a finite series of LSC r programs. Indeed, if v(LSC r ) > p,

INTEGER LINEAR PROGRAMMING MODELS FOR p-CENTER then v(P det

1 ) > r. When r increases, v(LSC r ) decreases and the best lower bound is the smallest value of r ensuring v(LSC r ) ≤ p. We can then perform a binary search on D to determine such lower bound solving several LSC r [START_REF] Mark S Daskin | Network and discrete location: models, algorithms, and applications[END_REF].

Actually, this approach has been described in Section 2.2.1.1 using Min r-Dominating Set: a binary search on D is performed to find the minimum radius r * for which the optimal value of Min r-Dominating Set is less or equal to p. The resulting solution is an optimal solution for Min p-Center. Min r-Dominating Set is a particular case of Min Set Cover.

The second model 6.1.3.1 Original formulation

Elloumi, Labbé and Pochet [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF] proposed a formulation P det 2 using the fact that the optimal value of Min p-Center is restricted to a finite set of distance values. The decision variables of the following model are:

• the binary variables y j , j ∈ {1, . . . , n} introduced in P det 1 .

• the binary variables z t , t ∈ {2, . . . , T } where z t = 0 if and only if there is a solution such that all vertices are at a distance of at most D t-1 from a center of the solution. Then z t = 1 if and only if there is at least one vertex with no center at a distance less or equal of D t-1 .

The previous definition involves that, if z t = 0 then z t+1 = z t+2 = . . . = z T = 0, and the objective function is strictly lower than D t . Similarly, z t = 1 implies z t-1 = . . . = z 1 = 1.

limits the numbers of centers to be located. Constraints (3) are inspired by constraints (2) in SC r : in an optimal solution for P det 2 , constraints (3) ensures that for a given t, z t = 0, if and only if all clients can be served at a distance strictly lower than D t . More precisely, if for a vertex i there is no center j within a distance D t-1 , then z t = 1. It follows that, when z t = 1 a distance D t -D t-1 is added to the radius in the objective function [START_REF]Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[END_REF]. Without constraint (3), all variables z t would equal to zero. The objective function [START_REF]Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[END_REF] ensures that all vertices are covered by a center within a radius of the smallest possible value.

The authors proved in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF] that the optimal objective value of LP det 2 is greater or equal than the optimal objective value of LP det 1 . They also proved that a semirelaxation of P det 2 , obtained by removing the binary restriction on the y variables, provides the best known lower bound for Min p-Center.

Variant formulation

In [START_REF] Calik | Double bound method for solving the p-center location problem[END_REF], Calik and Tansel introduce the formulation P det , variant of the model proposed by Elloumi, Labbé and Pochet in [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF]. The variables of the problem are:

• the binary variables y j , j ∈ {1, . . . , n} similar to P det 2 .

• the binary variables u t , t ∈ {1, . . . , T }, where u t = 1 if the value of the solution is equal to D t and 0 otherwise.

u q ∀i ∈ {1, . . . , n} , ∀t ∈ {1, . . . , T } (4 det )

) limits the number of shelters to be located. Constraint (3 det ) ensures that exactly one variable u t is equal to 1 and the corresponding D t value is selected as the objective value according to the objective function (1 det ). Constraints (4 det ) ensure for each vertex i that at least one shelter is located at a distance less or equal than D t . The authors tightened the constraints by taking into account that: if u t = 1, then t q=1 u q = 1. The semi relaxation of P det obtained by removing the binary restriction on the y variables, provides the same tight lower bound as the semi relaxed P det 2 . When lower and upper bounds are available,we can remove the solutions with such values and drop associated u t variables from the model, thus decreasing the 128
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size of the problem to be solved. Knowing a lower bound LB and an upper bound U B for the optimal value of P det , we can set:

Using this property, the algorithm developed by Calik and Tansel [START_REF] Calik | Double bound method for solving the p-center location problem[END_REF] solves their formulations for restricted sets of radius values iteratively to converge to an optimal solution.

Size of the programs

We present in Table 6 In particular, note that the number of binary variables of P det is equal to n + T and the number of constraints is nT + 2. The size of this model depends on the number T of distinct shortest path lengths, which is in O(n 2 ).

In the next section we extend the previous models to RpCP.

Integer linear programming formulations for RpCP

In this section we introduce three formulations for RpCP, as well as a formulation for the auxiliary problem k-RCP.

MIP formulation for RpCP

We extend formulation P det 1 to RpCP to propose formulation P rob 1 . We define the binary decision variable x s ij such that: if vertex i is assigned to a shelter located on vertex j in scenario s, then

The first 3 constraints have the same function as the first 3 constraints of formulation P det 1 . Constraint (2) fixes the number of centers. Constraints (3) ensure that vertex i is not assigned to a vertex j in scenario s unless j is a center. Constraints (4) ensure that every vertex is assigned to exactly one center for each scenario. Constraints (5) ensure that every vertex i = s is within a distance r of at least one center in G s for every scenario s. Constraints (6) are specific to RpCP and allow to model the chosen evacuation strategy:

then a shelter is located on s and constraints (6) are relaxed;

• if y s = 0, then no shelter is located on s and the set of constraints (6) on all neighbours of s ensure that the evacuation distance (worst case value) in scenario s is less than or equal to r

Finally the objective function ( 1) is to minimizes the robust evacuation radius.

IP formulation for RpCP

Based on formulation P det 2 and P det , we propose two formulations for RpCP. We need first additional parameters. We have to replace D by D rob , the list of distinct finite evacuation distance values in all G s considering the evacuation strategy. The list D rob is obtained by merging and ordering all the sets D s of distinct finite evacuation distances between nodes in G s , for s ∈ V . For each s, D s is computed in two stages:

• step 1: initialize D s with the different finite shortest path lengths SP s for all i = s.
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• step 2: ∀j = s and ∀v ∈ Γ(s) compute the distance l sv + d s vj from s to v to j and add it to D s . Finally, we merge all the lists D s in one ordered set

In the next formulations, we use the y j decision variables similar to P det .

First formulation:

We introduce the binary decision variables z t , inspired by P det 2 , such that z t = 0 if and only if there is a solution such that for all scenarios, the evacuation distance of all vertices are less than or equal to D rob t-1 . We propose then the following formulation: [START_REF]GEO-SAFE project[END_REF] for P rob 1 , constraints (4) are specific to RpCP and are necessary to compute the evacuation distance of the source vertex with the UP evacuation strategy. The objective function [START_REF]Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change[END_REF] ensures that the robust evacuation radius is the smallest one.

Second formulation:

We introduce the binary decision variables u t , inspired by P det , such that u t = 0 if and only if, for any given scenario, all the vertices are at an evacuation distance of a center less than or equal to D rob t , in which case D rob t is the evacuation robust radius. We propose then the following formulation: 131

INTEGER LINEAR PROGRAMMING FORMULATIONS FOR RPCP

) fixes the number of centers. Constraint (3 rob ) are similar to constraints (3 det ) with the only difference that T is replaced with T rob . Constraints (4 rob ) ensure that, for every scenario s, each vertex i = s has at least one shelter located within a distance D t . Like constraints (6) for P rob 1 and constraints (4) for P rob 2 , constraints (5 rob ) are specific to RpCP and are necessary to compute the evacuation distance of the source vertex in this model. Note that, in P det the constraint corresponding to (2 rob ) limits the number of centers rather than fixing it. As Daskin, in his formulation, fixes the number of centers, we conducted basic experiments to compare the efficiency of P rob with the size of a solution fixed or restricted. The formulation P rob was never outperformed by the formulation with the constraint of restricting the size.

Finally, note that the size of models P rob 2 and P rob depends on the size of the list D rob . Similarly to P det , the size of P rob can be reduced knowing a lower bound LB and an upper bound U B for v(P rob ) since some variables can be fixed as follows:

A set covering based algorithm

It is also possible to extend the IP formulation SC r to our robust model. We introduce the formulation SC rob r , extension of the formulation SC r for RpCP. SC rob r is actually an IP formulation of the problem k-RCP. We recall that a binary search can be performed on k-RCP to find the minimum radius r * for which the optimal value of k-RCP is less or equal to p. The corresponding solution is then an optimal solution for RpCP.

s.c. 

Constraints (2) ensure that every vertex i is within a radius of value r of a center in every scenario s and constraints (3) are necessary to compute the evacuation distance of the source vertex. Keeping in with the objective function of SC r , SC rob r minimizes the number of centers to be located.

Additionnal inequalities

Given an instance (G, p) of RpCP, where G is an edge-weighted graph and p ≥ 2, we have seen in Section 2.1.5, Proposition 3, that any feasible solutions must include at least one vertex in each minimal articulation component of G.

In our formulations, this property is ensured as for a scenario s, d s ij = +∞ if there is no path between i and j in G s . In practice, d s ij is set to a very high value, which means these cases are not discarded automatically as they could be. We can consolidate the previous property by adding constraints (6 rob ). We recall the notation Υ(G) for the set of minimal articulation components of G.

In some cases, for example when the graph is a forest, we can straightforward force pending vertices to be centers, rather than have redundant 6 rob constraints. Constraints (7 rob ) are then sufficient.

Size of the programs

We present in Table 6 In P rob 1 constraints (6) implies deg(v) constraints for every vertex v ∈ V in the graph. Then the number of constraints is the sum of the vertices degrees of the graph, which is equal to 2m. Similarly, constraints (4) and (5 rob ) implies the factor 2m for the number of constraints of P rob 2 and P rob respectively. Compared to the original formulations for Min p-Center, the above introduced formulations are clearly bigger: generally, the number of variables and of constraints are increased by a factor n. This is not surprising, as the uncertainty considered in RpCP forces us to take into consideration all n scenarios. Finally, we point out that half of the constraints for P rob 2 and P rob are induced by constraints (4) and (5 rob ). These constraints are specific to our evacuation strategy, particularly to compute the evacuation distance of the source vertex. The other half of the constraints are linked to the evacuation distances of the vertices distant of the fire.

In the next section we extend the previous models to PpCP.

Integer linear programming models for PpCP

In this section we propose three different formulations for PpCP, based on the formulation for RpCP presented in the previous section. We extend formulations P rob 1 , P rob and P rob to PpCP. We recall that we assume an uniform probability distribution over the scenarios, more precisely the probability of scenario s is 1 n .

MIP formulation for PpCP

We extend formulation P rob

to PpCP to propose formulation P pro 1 . We can use the same decision variables y j and x s ij as for P rob 1 . In addition, we introduce the variables r s associated with scenario s ∈ V .

x s ij ≤ y j ∀i, j, s ∈ {1, . . . , n} (3) 6)

. , n}

The main difference in complexity between PpCP and RpCP is the need for PpCP to register the evacuation radius of every scenario s. This can be easily adapted on formulation P rob 1 to generate formulation P pro 1 . This is done by modifying constraints ( 5) and ( 6) from P rob 1 such that the evacuation radius r s for every scenario s is computed. The objective function (1) ensures then the minimization of the expected evacuation radius over all scenarios. The other constraints remain the same.

IP formulation for PpCP

We propose two formulations for PpCP adapted from P rob 2 and P rob . Instead of using D rob solely, we will need to use the n lists D s , introduced in Section 6.2.2. We consider D s ordered such that the elements of D s are denoted by

First formulation: We introduce the binary decision variable z s t : z s t = 0 if and only if there is a solution such that, for scenario s, all vertices are within a radius of value D 1) is also transformed in order to compute the expected value of the evacuation radius over all scenarios, and ensure that it is the smallest possible.

Second formulation: Finally we adapt formulation P rob for PpCP with P pro . We introduce the variables u s t with u s t = 1 if in scenario s all vertices are within a radius of value D s t from a center, in which case r s = D s t with s = 1, . . . , n and t = 1, . . . , n.

Constraints (3) ensures that for each scenario s, exactly one variable u s t , t ∈ {1, . . . , T s } will be equal to 1, and the corresponding D s t value is the evacuation radius of the solution for scenario s. Constraints (4) ensure that, for every scenario s, each vertex i = s is within a distance D s t of a center. Like constraints (5 rob ) for the P rob 3 , constraints (5) are specific to the UP evacuation strategy and are necessary to compute the evacuation distance of the source vertex.

Size of the programs

We present in Table 6.3 the number of variables for each formulation P pro 1 , P pro 2 and P pro , and the number of constraints generated by each formulation. Compared the size of formulations P rob 2 and P rob with formulations P pro 2 and P pro , we observe that the probabilistic approach induces a quadratic increase in the number of constraints. This is not surprising, as the probabilistic approach considered in PpCP compels us to compute the evacuation radius of the solution for every scenario. The size of formulation P pro 1 on the contrary remains constant in comparison with P rob 1 . Note that the inequalities introduced in Section 6.2.4 relative to feasibility conditions, are also valid for PpCP and for formulations P pro 1 , P pro 2 and P pro . In addition, we underline that, unlike for RpCP, it is not possible to extend the set covering problem SC r to PpCP: for a given expected evacuation radius, there are numerous possible r 1 , . . . , r s , . . . , r n distribution values.

Our first experiments with the different formulations for RpCP and PpCP were quickly limited with the size of the instance. Starting from 30 vertices, trying to generate the instance on a computer with 16Gb of RAM would often freeze the computer. Hence we decided to develop a specific algorithm for RpCP. For a same graph, the size of our RpCP formulations is smaller than the size of our PpCP formulations. In addition, we have the auxiliary program SC rob r to help us address the RpCP problem. As a basis for our algorithm, we performed nonetheless experiments on small instances to identify the best performing RpCP formulation. P rob appeared to be most efficient.

Experimental results

We implement the Exact Algorithm in Python 3.7 for two sets of instances: pmedian instances from OR-Library [START_REF] Beasley | Or-library: distributing test problems by electronic mail[END_REF] and subgrids randomly generated. We generate the distance matrices SP = (d ij ) and SP s = (d s ij ) for all scenario s ∈ V using networkx library 2.3. We execute our experiments on a server with 254Gb of RAM and 14 Intel Core (Haswell; no TSX) Processor at 2.3 Ghz. Mathematical programs are solved with CPLEX 12.9 (with MIPEmphasis option set to 0).

Experimental results on OR-Library Instances

The input data used for the computations are the 40 instances of the p-Median problem from the OR-Library ( [START_REF] Beasley | Or-library: distributing test problems by electronic mail[END_REF]) which are used also for solving the p-center problem ( [START_REF] Sourour Elloumi | A new formulation and resolution method for the p-center problem[END_REF][START_REF] Calik | Double bound method for solving the p-center location problem[END_REF]). n varies between 100 and 900 nodes and p varies between 5 and n/3 . In the following we focus on the instances which could be solved within 5 hours. Table 6.4 contains the value of the upper and lower bounds computed for the instances ordered by the number of their nodes and the value of p. We mark with an * the values of the bounds that are equal to optimal value. It stands out that on all the instances considered, LB 3 = U B 3 = v(P rob ). The equality between U B 3 and LB 3 is not mandatory since only evacuation paths of a subset of nodes are considered in LB 3 . In fact, we record some instances in which LB 3 < v(P rob ) (see in Figure 6.2) and, in these cases, the computation time is more important. The equality between LB 3 and U B 3 means that the evacuation distance of node s induces the radius of an optimal solution in scenario s. It may be due to the fact that OR-Library instances are considerably sparse.

Concerning lower bounds, LB 2 is also a tight lower bound very close and often equal to v(P rob ), while LB 1 is the worst lower bound. Concerning upper bounds, U B 1 is globally better than U B 2 .

The Exact Algorithm computes all pairs of lower and upper bounds. In order to better understand the trade-off between bounds quality and computational time, we compare the processing time of three variants of the Exact Algorithm:

• EA1 is a version of the Exact Algorithm in which only LB 1 and U B 1 are computed, its processing time is TEA1. This variant is mainly based on the resolution of the deterministic p-Center problem.

• EA2 is a version of the Exact Algorithm in which only LB 2 and U B 2 are computed, its processing time is TEA2. This variant is adapted from the Daskin's algorithm for the RpCP. * These RpCP results can be straightforwardly induced from the corresponding PpCP proofs.

Open problems

Our work still has a high potential for future improvements, both from a theoretical and a practical perspective. We conclude our discussion by enumerating some explicit future research directions.

Theoretical open questions

From a theoretical perspective, a first open question concerns the complexity of solving PpCP on edge-weighted acyclic graphs. While a 3-approximation result on trees with bounded edge is ensured, we have few information on the structure of an 7.3. PRODUCTION for this variant already discussed in the previous section. Further research is required to reduce this variant to our model and extend our results to it.

Production

The present thesis is divided into five main chapters. At the time of writing two articles have been published, one has been submitted, and another is under preparation. 
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LIST OF PROBLEMS

Min p-Center Instance:

An edge-weighted graph G = (V, E), an integer p Feasible solutions: A p-set i.e., a set C ⊆ V of size at most p Objective:

Find a p-set C of minimum radius r(C).

RpCP

Instance:

An edge-weighted graph G = (V, E), a set of scenarios S, an integer p Feasible solutions: A p-set C ⊆ V with I R(C) finite Objective:

Find a solution of minimum robust radius if it exists.

PpCP

Instance:

An edge-weighted graph G = (V, E), a set of scenarios S and a vector Π of probabilities associated to the scenarios of S, an integer p Feasible solutions: A p-set C ⊆ V with I E(C) finite Objective:

Find a solution of minimum probabilistic radius if it exists.

k-RCP Instance:

An edge-weighted graph G = (V, E), a set of scenarios S, an integer k Feasible solutions: A set C ⊆ V of robust radius I R(C) ≤ k. Objective:

Find a feasible solution of minimum size.

Min Vertex Cover

Instance:

A graph G = (V, E) Feasible solutions: A vertex cover i.e., a set U ⊆ V such that every edge of E is incident to at least one vertex of U Objective:

Find a vertex cover of minimum size (τ (G)).

Min Dominating Set

Instance:

A graph G = (V, E) Feasible solutions: A dominating set i.e., a set D ⊆ V such that every vertex of V \ D is adjacent to a vertex of D. Objective:

Find a dominating set of minimum size (γ(G)).

Min Set Cover

Instance:

A set system (Ω, Z) with ∪ Z⊂Z Z = Ω Feasible solutions: A set cover i.e., a set Y ∈ Z such that ∪ Y ∈Y Y = Ω Objective:

Find a set cover of minimum size.

Min r-Dominating Set Instance:

A graph G = (V, E), an integer r Feasible solutions: A set C ⊂ V such that r(C) ≤ r Objective:

Find a feasible solution of minimum size.

Min MAC p-Center Instance:

A graph G = (V, E), an integer p Feasible solutions: C p (G) whose elements are called MAC p-set Objective:

Find a MAC p-set of minimum radius r(C).

RÉSUMÉ

A cause du réchauffement climatique, le nombre et l'intensité des feux de forêts augmentent autour du globe. Dans ce contexte, la construction de refuges contre le feu est une solution de plus en plus envisagée. Le problème consiste essentiellement à localiser p refuges de sorte à minimiser la distance maximale qui sépare un usager du plus proche refuge accessible en cas de feux. 

ABSTRACT

The location of shelters in different areas threatened by wildfires is one of the possible ways to reduce fatalities in a context of an increasing number of catastrophic and severe forest fires. The problem is basically to locate p shelters minimizing the maximum distance people will have to cover to reach the closest accessible shelter in case of fire. The landscape is divided in zones and is modeled as an edge-weighted graph with vertices corresponding to zones and edges corresponding to direct connections between two adjacent zones. Each scenario corresponds to a fire outbreak on a single zone (i.e., on a vertex) with the main consequence of modifying evacuation paths in two ways. First, an evacuation path cannot pass through the vertex on fire. Second, the fact that someone close to the fire may have limited choice, or may not take rational decisions, when selecting a direction to escape is modeled using a new kind of evacuation strategy. This evacuation strategy, called Under Pressure, induces particular evacuation distances which render our model specific.

We propose two problems with this model: the Robust p-Center Under Pressure problem and the Probabilistic p-Center Under Pressure problem. First we prove hardness results for both problems on relevant classes of graphs for our context.

In addition, we propose polynomial exact algorithms on simple classes of graphs and we develop mathematical algorithms based on integer linear programming. 
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