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Une thèse c’est un encadrement, et c’est aussi un environnement propice pour
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particulier à Taha Araboui et Veronique Misseri.

Enfin, j’aimerai remercier le compositeur Joe Hisaishi, dont la musique m’a
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SUMMARY

Due to the effects of global warming, the increase in number and in severity of for-
est fires, or wild fires, is a matter of concern around the world. Natural disasters
like forest fires require an emergency management. Emergency management con-
sists in a continuous process with four key components: mitigation & prevention;
preparedness; response; and recovery. In this context, we address the problem
of locating shelters to mitigate the casualties caused by a fire. We propose new
shelter location models as two-phase problems, where the first phase incorporates
elements of prevention and preparedness, while the second phase corresponds to
the response.

A shelter is a safe place that provides cover from the fire. They can reduce the
evacuation time and thus the number of casualties, and they allow to save resources
that would otherwise have to be employed to ensure people safety. Recent studies
have highlighted the need to develop new models for the location of fire shelters
which was confirmed in discussions with final users as part of the GEO-SAFE
project.

The problems of determining the“best” location for a set of facilities in order to
serve a set of demand points are generally referred as Facility Location problems.
These problems lie at the core of the Location Science research area in the field
of Operations Research, and more precisely of Combinatorial Optimization. The
meaning of “best” depends on the nature of the problem under study, in particular
the constraints and of the optimality criteria considered. Problems where the input
data available to decision-makers are incomplete, or non deterministic at the time
of decision-making, are said under indeterminacy.

We want to locate a limited number of shelters on a territory where the general
objective is to minimize the risk of having people trapped by the flames, i.e., to
maximize their chance to reach a safe shelter before the fire gets too close. We
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represent the territory by a graph. The uncertainty of fire outbreaks is introduced
taking into account a finite set of fire scenarios. A scenario defines a fire outbreak
on a single zone with the main consequence of modifying the operational paths.

At most p shelters are to be located on vertices in the preparedness phase,
thus our solution is a p-set. In the response phase, that is when a scenario occurs,
everyone in the territory must reach a shelter following an evacuation path. The
main novelty of our model is the Under pressure evacuation strategy. With this
evacuation strategy, we propose a robust representation of the evacuation of the
source vertex: as there may be different people in different places within the source
vertex, and given the pressure induced by the imminent danger and the disruptions
caused by the fire on the internal transport network in the source vertex, we
consider that any of the paths leaving the vertex may be used for evacuation.

We introduce two problems with the Under Pressure evacuation strategy, which
differ by the indeterminacy environment considered. We introduce then two new
facility location problems, incorporating the UP evacuation strategy, as non de-
terministic variants of the classicMin p-Center problem. The PpCP problem for a
risk environment, and the RpCP problem for an uncertainty environment.

In our thesis, we analyze the hardness of RpCP and PpCP. We present NP-
hardness results for RpCP and non-approximation results for PpCP. We take care of
establishing hardness results on classes of graphs with practical significance, like
planar graphs or subgrids. Then we present polynomial approaches to generate
exact or approximation results for PpCP and RpCP. We use auxiliary subproblems
that reveal to be interesting on their own. Finally, we present different mathe-
matical methods to compute exact solutions of RpCP and PpCP. In particular, we
propose an efficient algorithm for RpCP, tractable on large instances as shown by
our experimental results.
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RÉSUMÉ

A cause du réchauffement climatique, le nombre et l’intensité des feux de forêts aug-
mentent autour du globe. Ces feux provoquent d’importants dommages sociaux-
économiques et écologiques. De nombreuses études récentes soulignent la nécessité
d’élaborer de nouvelles politiques qui tiennent compte des interrelations complexes
et dynamiques entre les facteurs sociaux, économiques, environnementaux et poli-
tiques. Des campagnes de sensibilisation doivent être développées sur le risque
d’incendie dans toutes les régions touchées afin que les individus et les collectivités
puissent se préparer à ce type d’événements. De plus, la communauté scientifique
développe de nouvelles méthodes et de nouveaux outils pour aider à limiter les
impacts des incendies sur nos sociétés et notre environnement. Cette thèse, or-
ganisée en cotutelle entre Paris-Dauphine Université et RMIT University, s’inscrit
dans le cadre du projet “Geospatial based Environment for Optimization Sys-
tems Addressing Fire Emergencies”, GEO-SAFE financé par Horizon 2020 Marie
Sklodowska-Curie RISE. Le projet GEO-SAFE vise à proposer des méthodes in-
novantes dans la gestion de problèmes liés aux incendies de forêt. Les situations
d’urgence liées aux catastrophes naturelles se caractérisent par un environnement
décisionnel difficile, des autorités publiques confrontées à des délais serrés, des
ressources limitées, une énorme quantité de données à analyser, une incertitude
extrême et des objectifs multiples qui peuvent entrer en conflit ainsi que de fortes
contraintes lorsqu’il s’agit de traiter des questions de sécurité et de sauver des
vies. La gestion des urgences consiste en un processus continu comportant qua-
tre éléments clés : la prévention et l’atténuation, la préparation, l’intervention et
le rétablissement. Dans ce contexte, nous abordons le problème de la localisation
d’abris anti-feu, ou refuges, dans le but d’atténuer le plus possible le nombre de vic-
times d’un incendie. Un refuge est un bâtiment équipé pour protéger les personnes
contre les flammes, mais il peut aussi s’agir d’un point de rassemblement d’urgence
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sécurisé. Les autorités publiques ont manifesté un intérêt croissant pour ce type
de refuge. Bien que l’idée ne soit pas nouvelle, son efficacité dépend fondamentale-
ment de la méthode de localisation des refuges : comme le territoire à couvrir par
un ou plusieurs refuges peut être arbitrairement grand, le décideur doit prendre en
considération les voies et le temps nécessaire aux personnes dispersées sur le terri-
toire pour atteindre un refuge. Il est en effet nécessaire de garantir des conditions
d’évacuation sûres pour les randonneurs et autres utilisateurs de la forêt. Comme
les incendies et leurs conséquences sont par nature imprévisibles, il peut être diffi-
cile de localiser les refuges de façon adaptée à chaque configuration possible de feux.
Des études récentes ont mis en évidence la nécessité de développer de nouveaux
modèles pour la localisation des refuges ce qui a été confirmé lors des discussions
avec les utilisateurs finaux dans le cadre du projet GEO-SAFE. Nous proposons de
nouveaux modèles non-déterministes de localisation des refuges en deux phases. La
première phase comporte des éléments de prévention et de préparation. La deux-
ième phase décrit l’intervention déclenchée par un départ de feu. Ces problèmes
s’inscrivent dans le domaine plus large des problèmes de localisation (en anglais
Facility Location), domaine appartenant au champ de la recherche opérationnelle
et de l’optimisation combinatoire. L’approche non-déterministe permet de mieux
appréhender l’incertitude et le manque de données inhérents aux problèmes liés
aux feux de forêts. Dans ce cadre, notre objectif est de localiser sur un territoire
un nombre limité de refuges, de sorte à minimiser le risque que des individus soient
piégés par des flammes.

Nous considérons dans cette thèse un territoire avec une faible densité d’individus
présents (résidents ou utilisateurs de la forêt). Le territoire est représenté par un
graphe connexe non-orienté. Chaque sommet du graphe correspond à une zone, et
deux sommets sont connectés par une arête pondérée si on peut aller d’une zone
à l’autre. Une longueur peut-être associée à chaque arête, celle-ci corresponds
alors à la distance d’une zone à l’autre ou à la durée nécessaire pour se déplacer
d’une zone à l’autre. Quand un feu se déclare sur une zone, nous appelons le som-
met correspondant le sommet source. Nous utilisons des scénarios pour décrire
les possibles évolutions de l’état du système causés par un départ de feu. Nous
considérons que lorsqu’un feu de forêt se déclare, il existe des systèmes d’alerte
rapides et efficaces (mais non personnalisés, par exemple des sirènes) pour appeler
tous les individus présents sur le territoire à évacuer vers un refuge. Dans cette
thèse nous ne prenons pas en compte la capacité des refuges vu que, dans notre
contexte, les refuges sont bâtis avec des capacité relativement très larges. Dans
cette thèse, nous considérons des scénarios où le feu est restreint à une zone. En
effet, une fois l’alarme donnée, nous considérons que les individus doivent évacuer
dans un délai de temps très court, avant que le feu ne se propage au-delà de sa
zone de départ. Ces hypothèses dépendent de la méthode de modélisation du ter-
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ritoire en zones. Notre problème peut alors être décrit comme un cas particulier
de problèmes de localisation-allocations. Une solution décrit une localisation de
refuge sur les graphe, qui correspond à un sous-ensemble de sommets. De plus,
une solution induit, pour chaque scénario et pour les individus présents sur une
zone, une possible allocation à refuge à rejoindre. Plus précisément, une allocation
correspond à un chemin d’évacuation. On appelle stratégie d’évacuation les actions
attendues prises par les individus évacuant le territoire lorsqu’un feu se déclare. La
stratégie d’évacuation induit les chemins d’évacuations qui seront empruntés par
les individus selon leur position et le scénario. La principale contribution de notre
thèse est de proposer la nouvelle stratégie d’évacuation nommée Under Pressure,
qui décrit plus fidèlement les décisions prises sous pression du danger. La prin-
cipale originalité de cette stratégie est la suivante : si aucun refuge n’est localisé
sur le sommet source, alors on considère qu’il existe un chemin d’évacuation vers
chaque sommet adjacent. Cette hypothèse de modélisation peut-être doublement
justifiée : le feu dans la zone source peut restreindre la mobilité interne, interdis-
ant d’accès certaines voies de sorties ; la proximité, l’intensité et l’immédiateté du
danger peut affecter la prise de décision des individus sur cette zone. Dans les 2
cas, on ne peut déterminer la direction d’évacuation immédiate choisie par les in-
dividus sur la zone source, nous devons donc considérer que n’importe quelle arête
sortante peut être empruntée. Pour tous les autres sommets du graphe, un chemin
d’évacuation est un plus court chemin entre ce sommet et le plus proche refuge. On
appelle distance d’évacuation du sommet la longueur maximum d’un de ses chemins
d’évacuation. Notre stratégie d’évacuation induit des distances d’évacuations par-
ticulières qui marquent la spécificité de notre modèle. Nous introduisons deux
problèmes s’appuyant sur la stratégie d’évacuation Under Pressure, qui diffèrent
par l’environnement non-déterministe considéré. Nous présentons ces deux prob-
lèmes comme des variantes non-déterministe du problème déterministe classique
du Min p-Center: le Min p-Center est le problème de trouver un ensemble de au
plus p sommets, appelés centres, tel que la distance d’un sommet du graphe à un
plus proche centre soit minimale. Dans notre cas les centres correspondent aux
refuges.

Sous la stratégie d’évacuation Under Pressure, la valeur d’une solution pour
un scénario donné est le rayon d’évacuation, dont la valeur est donnée par la dis-
tance d’évacuation maximum d’un sommet pour ce scénario. Nous définissons
deux nouveaux problèmes sur la base de deux catégories d’environnements non-
déterministe : l’environnement d’incertitude et l’environnement de risque. Dans un
environnement de risque, la valeur de certains paramètres non-déterministes suiv-
ent des lois de probabilité connues par le décideur. Cette configuration s’inscrit
alors dans le cadre de l’optimisation stochastique ou probabiliste. Le Probabilist
p-Center Under Pressure noté PpCP est le problème de localiser au plus p refuges
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de sorte à minimiser le rayon d’évacuation moyen sur tous les scénarios. Dans
un environnement d’incertitude, aucune information probabiliste n’est connue ou
utilisée pour les paramètres non-déterministes. Cette configuration s’inscrit alors
dans le cadre de l’optimisation robuste. Le Robust p-Center Under Pressure noté
RpCP est le problème de localiser au plus p refuges de sorte à minimiser le rayon
d’évacuation maximum sur tous les scénarios. Voici une liste des fortes hypothèses
de notre modèle: Dans le chapitre 2, nous décrivons en détail notre modèle. Nous
présentons nos hypothèses de modélisation pour représenter le territoire, les refuges
et l’incertitude liée aux départs de feu. Nous introduisons les problèmes du RpCP

et du PpCP et l’ensemble des solutions réalisables pour ces 2 problèmes. Nous
comparons également nos problèmes à certains travaux pertinents, relevant de la
littérature sur le sujet. Dans le chapitre 3, nous analysons la NP-difficulté des prob-
lèmes RpCP et PpCP. Nous proposons différentes réductions de problèmes détermin-
istes classiques. Nous présentons également des résultats de non-approximation
pour le PpCP. Nous proposons des résultats sur des classes de graphes pertinentes
pour notre problème, comme la classe des graphes planaires ou les sous grilles.
Dans le chapitre 4, nous présentons des approches polynomiales pour générer des
solutions exactes ou approximables pour le PpCP. Nous proposons une solution
explicite pour les chemins avec des longueurs d’arêtes uniforme en utilisant des
problèmes auxiliaires. La preuve est étonnamment non triviale. Nous présentons
également un algorithme pour PpCP garantissant un ratio d’approximation fixe sur
les graphes de degrés bornés et de longueur d’arêtes bornée. Dans le chapitre
5, nous proposons des algorithmes exacte à temps polynomial pour RpCP sur dif-
férentes classes de graphes acycliques aux arêtes pondérées. Nous utilisons des
propriétés structurelles identifiées dans le chapitre précédent pour introduire une
méthode basée sur une recherche dichotomique. Nous proposons des algorithmes
pour les chemins, les étoiles, les chenilles, et les arbres. Dans le chapitre 6, nous
proposons des méthodes mathématiques basées sur la programmation linéaire pour
résoudre le RpCP et du PpCP. Ces méthodes sont des généralisations étendues de
programmes linéaires existants pour le problème du Min p-Center, qui perme-
ttent de prendre en compte l’indétermination et la stratégie l’évacuation Under
Pressure.

Présentation des Problèmes

Dans ce chapitre, nous définissons les problèmes étudiés dans cette thèse. Notre
objectif est de déterminer le meilleur emplacement pour les refuges dans un terri-
toire menacé par les incendies.
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Modélisation

Nous représentons le territoire par un graphe connexe G = (V,E) avec V =
{1, . . . , n} l’ensemble de sommets, et E l’ensemble des arêtes pondérées. Pour
x, y ∈ V , nous dénotons d(x, y) la distance entre les sommets x et y dans G i.e.,
la longueur d’un plus court chemin entre x et y. Selon notre modèle, les refuges
doivent être placés sur des sommets. Les emplacements des refuges correspondent
alors à un sous-ensemble C ⊆ V . Nous utilisons des scénarios pour modéliser
les risques de catastrophes. Un ensemble de scénarios S est une description des
états du système après qu’un feu se soit déclaré. Nous considérons l’ensemble des
scénarios correspondant à un seul sommet en feu, et nous désignons le scénario as-
socié à un départ de feu sur le sommet s ∈ V comme le scénario s ∈ S. Le graphe
opérationnel associé au scénario s, dénoté Gs = (V s, Es), est obtenu à partir de G
comme suit: toute les arêtes dans E sont gardées dans Es à l’exception des arêtes
(s, v), v ∈ V adjacentes au sommet s. Ces arêtes sont remplacées par des arêtes
orientées (s, v) (appelés aussi arcs) sortantes de s. Pour x, y ∈ V , nous dénotons
ds(x, y) la distance entre les sommets x et y dans Gs. Si aucun chemin existe entre
x et y dans Gs, on note ds(x, y) = +∞.

Une solution décrit également, pour chaque scénario et pour les personnes
d’une zone donnée, un ou plusieurs refuge(s) à atteindre sur la base d’une stratégie
d’évacuation. La stratégie d’évacuation décrit les mesures que prennent les per-
sonnes qui évacuent un territoire une fois qu’un feu se déclare. Cette stratégie
d’évacuation doit essayer de prendre en compte les actions que les personnes sur
place sont le plus susceptibles d’entreprendre. Nous proposons la stratégie Un-
der Pressure, noté UP. Dans la stratégie UP, nous considérons que, lorsqu’un feu
se déclare, tout les individus du territoire doivent rejoindre un refuges. Dans le
scénario s, nous avons alors trois cas:

• Pour les individus sur le sommet s, nous avons 2 possibilités:

– Si un refuge est localisé sur le sommet s, nous considérons que les indi-
vidus peuvent s’y réfugier. Cependant, ce refuge est inaccessible pour
tout individus en dehors de cette zone.

– Sinon, nous considérons que les individus fuiront dans un premier temps
dans n’importe quelle direction pour atteindre une zone adjacente j.
Une fois arrivés à la zone j, ils se dirigeront alors vers un refuge acces-
sible parmi les plus proches depuis j dans Gs.

• Pour les individus sur les autres sommets, nous considérons que les individus
se dirigent vers un refuge accessible parmi les plus proches dans Gs.

Pour garantir un niveau de risque acceptable, nous envisageons le scénario le plus
défavorable. La distance d’évacuation d’un sommet v dans le scénario s est alors
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la longueur maximum d’un chemin d’évacuation de v dans le scénario s. Cette
valeur est donnée par:

rs(C, v) =


0 si v = s et v ∈ C
max
j∈Γ(v)

{lv,j + ds(j, C)} si v = s et v 6∈ C

ds(v, C) si v 6= s

Fonctions Objectives

Pour un scénario s, la qualité d’une solution est déterminée sur la base de la
distance d’évacuation maximume induite par cette solution pour ce scénario. Nous
définissons le rayon d’évacuation d’un ensemble C ⊂ V pour le scénario s par:

rs(C) = max
x∈V

rs(C, x)

Nous proposons deux fonctions objectives, s’inscrivant dans deux environnements
non-déterministes distincts.

Dans une approche robuste, aucune information sur la probabilité des scénar-
ios n’est utilisée. Nous proposons dans ce cadre la fonction objective IR de type
Minimax, donnée par:

IR(C) = max
s∈V

rs(C)

IR(C) est nommé le rayon robuste de C.

Robust p-Center Under Pressure (RpCP)
Instance: Un graphe aux arêtes pondérées G = (V,E), un ensemble

de scenarios S, un entier p
Feasible solutions: Un sous-ensemble C ⊆ V de taille au plus p, avec un

rayon robuste fini.
Objective: Trouver une solution de rayon robuste minimum, si elle

existe.

RpCP est étroitement lié à un autre problème d’optimisation qui nous sera utile
par la suite.

k-RCP

Instance: Un graphe aux arêtes pondérées G = (V,E), un ensemble
de scenarios S, un entier k

Feasible solutions: Un sous-ensemble C ⊆ V , avec IR(C) ≤ k.
Objective: Trouver une solution réalisable de taille minimum.
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Dans une approche probabiliste, une probabilité πs est assignée à chaque scé-
nario s. Nous proposons dans ce cas la fonction objective IE, donnée par:

IE(C) =
∑
s∈V

πs × rs(C)

IE(C) est dit le rayon probabiliste de C. Dans cette thèse, nous nous intéressons
uniquement à des scénarios avec une probabilité uniforme i.e., ∀s ∈ V, πs = 1

n
.

Probabilistic p-Center under Pressure (PpCP)
Instance: Un graphe aux arêtes pondérées G = (V,E), un ensemble

de scenarios S, un entier p
Feasible solutions: Un sous-ensemble C ⊆ V de taille au plus p, avec un

rayon probabiliste fini.
Objective: Trouver une solution de rayon probabiliste minimum, si

elle existe.

Par la suite, nous dénotons (G, p) une instance du problème RpCP ou PpCP,
l’ensemble des scénarios (et leur probabilité dans le cas probabiliste) étant défini
en fonction du graphe.

Conditions de faisabilité

Une solution C est réalisable pour PpCP et RpCP si rs(C) est fini pour tout scénario
s. Une instance (G, p) du problème PpCP ou RpCP n’admet pas systématiquement
de solutions réalisables. Nous présentons dans cette partie les conditions néces-
saires et suffisantes pour qu’une solution sur une instance (G, p) du problème PpCP

ou RpCP soit réalisable.

Soit G un graphe connexe composé d’au moins 2 sommets. Une composante
d’articulation deG est une composante connexe du graphe induit par la suppression
d’un point d’articulation de G. Une composante d’articulation minimale, dénotée
MAC, est une composante d’articulation ne contenant aucune autre compostante
d’articulation. Nous montrons qu’une solution n’est réalisable pour RpCP et PpCP

si et uniquement si 2 ≤ |C| ≤ p et C contient au moins un sommet de chaque
composante d’articulation minimale de G.

Il s’ensuit que, pour tout graphe G, (G, 1) n’admet pas de solution. Pour p ≥ 2,
nous pouvons vérifer en temps polynomial si (G, p) admet des solutions. Enfin, un
dernier corollaire est la nécessité pour toute solution réalisable de (G, p) d’inclure
tout sommet pendant (sommet de degré 1).
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Figure 1: Example d’une instance avec une solution optimale différente pour Min
p-Center et RpCP pour p = 2.

Comparaison avec Min p-Center

Considérons le graphe de la figure 1. Pour p = 2, on observe que la solution opti-
male pour Min p-Center est la solution C = {2, 3} de rayon 1. Le rayon robust
de C est de M + 3, induit par les scénarios 2 et 3. Le rayon probabiliste de C
est également de l’ordre de M . Dans le même temps, la solution D = {5, 6}, de
rayon 2, assure néanmoins un rayon robuste de 3 et un rayon probabiliste de 16/6.
Globalement on observe donc que la solution optimal pour Min p-Center peut
engendrer une erreur relative d’ordre M .

Enfin, dans la deuxième partie du chapitre 2, nous comparons les problèmes
RpCP et PpCP à des problèmes pertinent de la littérature existante s’inscrivant dans
le même cadre non-déterministe. À notre connaissance, il s’agit de la première
tentative de modélisation du processus d’évacuation de cette manière pour un
problème de localisation de refuges. Ce modèle se différencie de la plupart des
modèles existants en ce que nous appliquons l’indétermination sur la structure du
graphe et non sur la longueur des arêtes. Ce faisant, nous considérons que nous
pouvons mieux appréhender l’impact de l’incendie sur les distances d’évacuation.

Résultats de NP-difficulté

Dans ce chapitre, nous analysons la NP-difficulté des problèmes RpCP et PpCP. Nous
considérons la version du RpCP avec un seuil de rayon d’évacuation constant, RpCPk.
Nous donnons différentes réductions de Min Vertex Cover et Min Dominating

Set à RpCPk pour différentes valeurs de k. Il s’ensuit que :

• sur toutes les classes héréditaires de graphes pour lesquelles la version dé-
cisionnelle du problème Min Vertex Cover est NP-complète : RpCP1 est
NP-complet et RpCP est NP-difficile.

• sur toutes les classes héréditaires de graphes pour lesquelles la version déci-
sionnelle du problème Min Vertex Cover peut être résolu en temps polyno-
mial : RpCP1 est résoluble en temps polynomial.
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• sur toutes les classes de graphes uniformes sans triangle et de degré mini-
mum 2, pour lesquelles la version décisionnelle du problème Min Dominating

Set est NP-complète : RpCP2 est NP-complet et RpCP est NP-dur.

• dans toutes les classes de graphes uniformes sans triangle et de degré mini-
mum 2, pour lesquelles la version décisionnelle du problème Min Dominating

Set est résoluble en temps polynomial : RpCP2 est résoluble en temps polyno-
mial. RpCP2 est résoluble en temps polynomial. RpCP2 est résoluble en temps
polynomial. RpCP2 est résoluble en temps polynomial. RpCP2 est résoluble en
temps polynomial.

Pour le cas robuste, notre résultat le plus solide, soit que RpCP est NP-difficile
dans les sous-grilles avec des sommets de degré 2 ou 3, est obtenu par une réduction
de Min Vertex Cover à RpCP2, par le biais de la relation entre RpCP2 et Min Dom-

inating Set. En outre, nous avons souligné l’existence de classes de graphes sur
lesquelles RpCP1 est difficile mais RpCP2 est trivial. Cela semble confirmer qu’une
réduction de RpCPk à RpCPk + 1 n’existe pas dans le cas général et, par conséquent,
la difficulté de RpCPk sur une classe de graphe donnée doit être étudiée pour toute
valeur de k et ne peut être déduite, en général, des résultats de difficulté avec
différentes valeurs de k.

En ce qui concerne PpCP, nous donnons deux résultats de non approximation.
Premièrement, nous prouvons qu’il n’y a pas d’approximation polynomiale du
temps pour PpCP garantissant un rapport inférieur à 20

19 pour les graphes planaires
bipartites de degrés 2 ou 3. En particulier, dans la section 3, nous réexaminons
la réduction précédente pour prouver que PpCP n’est pas approximable avec un
rapport inférieur à 56

55 sur des sous-grilles de degré au plus 3. Même si ce dernier
résultat ne généralise pas celui que nous avons obtenu précédemment (la classe est
plus restrictive mais la nouvelle limite est plus proche de 1), la preuve nécessite
une analyse beaucoup plus approfondie.

Dans le chapitre suivant, nous proposons des méthodes polynomiales pour
générer des solutions exactes ou garantissant un ratio d’approximation pour PpCP.

Résults polynimiaux et d’approximation pour le PpCP

Nous avons vu dans le chapitre précédent que PpCP est NP-difficile sur les graphes
planaires et les sous-grilles de degrés {2, 3}. Dans ce chapitre, nous proposons des
méthodes polynomiales pour calculer des solutions pour PpCP avec des garanties
de performance. Nous montrons dans la section 4.1 que, sur un chemin dans le
cas uniforme, une solution monotone équilibrée est une solution optimale pour
PpCP (Théorème 30). Même si le résultat n’est pas surprenant, la preuve est
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étonnamment non triviale. Ce résultat repose sur une décomposition du problème
en sous-problèmes. L’idée principale est d’exprimer la fonction objective comme la
somme de deux parties (contribution des sommets avec refuges d’une part et des
sommets sans refuges d’autre part) et de simultanément borner la fonction obective
par une autre fonction objective plus facilement calculable. Nous introduisons le
rayon d’évacuation local d’une solution pour un scénario donné comme étant la
distance d’évacuation maximum du sommet source et de ses sommets adjacents.
Le rayon d’évacuation local est une limite inférieure au rayon d’évacuation d’une
solution. Lorsque la solution est équilibrée, le rayon d’évacuation équivaut au rayon
d’évacuation locale. En outre, nous considérons une partition des scénarios en deux
ensembles. Pour chaque ensemble de scénarios, nous prouvons indépendamment
qu’une solution équilibrée monotone minimise le rayon d’évacuation local. Ce
résultat n’est toutefois pas valable sur les graphes aux arêtes pondérées.

Dans la section 4.2, nous proposons des résultats d’approximation pour PpCP.
Dans les graphes avec des arêtes de degré borné et avec des longueurs d’arêtes
inclues dans [`, 2`], PpCP est approximable avec un rapport de 4deg(G) + 2 (où
deg(G) est le degré moyen du graphe G). Ce résultat est valable pour une classe
d’instance sur lesquels tous nos résultats de NP-difficulté s’appliquent. Sur les
arbres, PpCP est approximable avec un rapport constant de 3.

En outre, nous introduisons le problème Min MAC p-Center, qui consiste à
trouver un ensemble p de rayon minimum parmi l’ensemble des solutions possibles
pour PpCP i.e., Min MAC p-Center est une variante de Min p-Center où l’ensemble
de solutions réalisables est restreint à l’ensemble de solutions réalisables pour PpCP.
Nous montrons que ce problème est approximable avec un ratio de 2 et que c’est le
meilleur rapport d’approximation constant possible. Il est également polynomial
sur les arbres.

Dans le chapitre suivant, nous considérons le problème RpCP où nous général-
isons certaines notions introduites dans ce chapitre. En effet, l’idée d’une seg-
mentation induite par une solution sera utilisée et généralisée pour développer
des algorithmes polynomiaux pour RpCP sur des graphes acycliques avec arêtes
pondérées.

Résults polynimiaux et d’approximation pour le RpCP

Dans ce chapitre, nous présentons un algorithme générique pour résoudre RpCP en
se basant sur un algorithme pour k-RCP et sur une recherche dichtomique. Consid-
érons l’instance (G, p) de RpCP, avec p ≥ 2 et G un graphe aux arêtes pondérées.
Soit D l’ensemble croissant des valeurs candidates pour le rayon robust de G. Nous
observons que, pour tout k ∈ D, si la solution optimale pour k-RCP est de taille
supérieure à p, alors la solution optimale pour RpCP a un rayon robuste supérieure à
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k. Sur la base de cette relation, nous pouvons effectuer une recherche dichotomique
sur D pour trouver le rayon k∗ minimum pour lequel la taille de la solution op-
timale de k-RCP est inférieur ou égale à p. Cette méthode est implémentée dans
l’Algorithme 2, dans lequel on utilise un algorithme non défini pour résoudre k-RCP.
La complexité de l’Algorithme 2 dépends de la complexité de l’agorithme utilisée
pour résoudre k-RCP. Nous proposons des algorithmes polynomiaux de résolution
exacte de k-RCP sur des classes de graphes acycliques. Ces méthodes efficaces -
de type programmation dynamique - reposent sur des propriétées structurelles de
ces classes de graphes. Nous proposons plusieurs algorithmes polynomiaux raffinés
et en O(n) pour k-RCP sur différentes classes de graphes acycliques: les chemins,
les étoiles étendues, les chenilles et les arbres. En particulier, comme les refuges
doivent être situés sur des sommets pendants, ils constituent une base de départ
pour la solution. En partant de ces sommets pendants, nos algorithmes adoptent
une approche ascendante pour localiser progressivement les refuges.

Méthodes mathématiques

Dans ce chapitre nous proposons des méthodes de programmation mathématique
pour résoudre le RpCP et le PpCP dans le cas général. Notre objectif est de fournir
un algorithme exact pour les deux problèmes même sur les instances pour lesquels
il n’existe pas de méthode polynomiale pour résoudre.

Sur la base des formulations de type Mixed Integer Programming (MIP) pour
Min p-Center, nous proposons trois formulations MIP pour RpCP et PpCP. Nous
proposons également une formulation pour k-RCP, baséee sur une formulation en
couverture d’ensemble (Set Covering). La taille des instances générées par nos
formulations est cependant en pratique trop importante. Afin de proposer une
méthode de résolution efficace pour RpCP, nous proposons des algorithmes ex-
acts basés sur la formulation P rob et en utilisant un schéma de décomposition.
Nous présentons trois méthodes différentes pour calculer les limites inférieure et
supérieure de RpCP. Pour réduire la taille d’une instance et le nombre d’itérations,
nous proposons une généralisation de la recherche binaire : la recherche σ-quantile.
Nous testons différents algorithmes, chacun d’entre eux intégrant une méthode dif-
férente pour générer les limites inférieure et supérieure. Une de ces méthodes se
basent sur une relaxation de P rob, la formulation RP rob, qui correspond à une
sous-variante de notre problème pour lequel on ne s’intéresse qu’à l’évacuation du
sommet en feu. Nos résultats expérimentaux montrent que l’algorithme EA3* est
le meilleur : son efficacité vient de la qualité de la limite inférieure obtenue avec
un algorithme de recherche 4-quantile très efficace pour RP rob et du faible temps
de calcul. Nous avons testé notre algorithme et généré les différentes limites sur le
répertoire d’instances OR et un ensemble domestique de sous-grilles aux longueurs
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d’arêtes uniformes et non-uniforme. Dans l’ensemble, l’algorithme basé sur RP rob

reste le plus efficace en termes de temps de calcul. En outre, nos expériences met-
tent en évidence les performances d’une solution optimale RpCP par rapport à une
solution optimale Min p-Center: nous avons comparé la valeur d’une solution op-
timale pour Min p-Center prise pour RpCP avec la valeur optimale. Même si nous
excluons les cas non réalisables, il apparâıt que l’écart peut être assez important,
jusqu’à 92% pour des instances avec plus de 100 sommets.

Conclusion

RpCP PpCP

Chemin uniforme Exact solution* Exact solution
Chemin, Etoiles,
Chenilles
non-uniforme

O(n2) Inconnu

Tree
O(n2) même dans le
cas non-uniforme

3-approximable dans
le cas uniforme
Inconnu

Graphes avec
longueur d’arêtes et
degrés bornés.

(4deg(G) + 2)-
approximable*

(4deg(G) + 2)-
approximable

Graphe bipartite
planaire de degré 2 ou
3

NP-difficile
Non approximable
sous un ratio de 20

19

Sous-grille de degré 2
ou 3

NP-difficile
Non approximable
sous un ratio de 56

55

Cas général

NP-difficile
Algorithme efficace de
résolution basée sur
une formulation MIP

NP-difficile
Formulation MIP

Table 1: Récapitulatif des principaux résultats pour le RpCP et le PpCP.

* Ces résultats sur RpCP peuvent être directement déduits des resultats corre-
spondants sur PpCP.

Notre travail a encore un grand potentiel de développement, tant d’un point
de vue théorique que pratique. Nous concluons notre discussion en énumérant
quelques pistes possibles de future recherche.
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D’un point de vue théorique, une première question ouverte concerne la com-
plexité de la résolution PpCP sur des graphes acycliques pondérés par les bords.
Bien qu’on puisse garantir un ratio d’approximation de 3 pour les arbres avec des
longueurs d’arêtes non-uniformes mais bornées, nous disposons de peu d’informations
sur la structure d’une solution optimale pour PpCP sur des graphes acycliques, ne
serait-ce que sur un chemin avec arêtes pondérées. Une piste de recherche serait
d’analyser la qualité de la solution optimale de RpCP, calculable en temps poly-
nomial sur ces graphes par rapport à PpCP. Nous savons qu’une solution RpCP

optimale n’est pas toujours optimale pour PpCP, cependant nous avons que de
timides résultats sur les relations structurelles entre les solutions optimales des
deux problèmes. La qualité d’une solution optimale pour RpCP utilisée pour PpCP,
et vice versa, devrait être analysée pour différentes classes de graphes.

Une autre piste de recherche pour identifier des solutions pour PpCP serait
de restreindre notre problème au rayon probabiliste local, introduit dans la sec-
tion 4.1. Le rayon probabiliste local, basé sur le rayon d’évacuation local, nous
permet de concentrer notre analyse sur la distance d’évacuation maximale induite
par le sommet source et son voisinage. La pertinence de cette approche a égale-
ment été démontrée dans la section 6.4. En effet, RP rob correspond au problème
RpCP limité à la distance d’évacuation du sommet source uniquement. Alors que
RP rob est une variante détendue du rayon local robuste (la version robuste du
rayon probabiliste local), il fournit souvent une limite inférieure étroite pour RpCP.
Le rayon d’évacuation local a également un intérêt pratique, sur lequel nous revien-
drons plus tard. Enfin, comme l’écart entre notre algorithme d’approximation et
nos résultat de non-approximation est encore important, il est possible d’améliorer
nos résultats.

Pour RpCP, nous avons commencé à mettre en œuvre nos algorithmes polyno-
miaux pour les graphes acycliques. Il serait intéressant d’évaluer leur efficacité
à l’aide de résultats expérimentaux. En outre, nous n’avons pas eu le temps de
concevoir un algorithme d’approximation spécifique pour RpCP sur des graphes et
sous-grilles planaires. Un bon point de départ serait de considérer des graphes
avec exactement un sommet pendant, et aucun point d’articulation. Dans cette
configuration, le problème serait de décider de l’emplacement des autres refuges.
Notez que la NP-difficulté de RpCP n’est pas établie sur de tels graphes. Cette ap-
proche s’inspire des algorithmes d’approximation des graphes acycliques. En effet,
comme les refuges doivent être situés sur les sommets en attente, ces sommets en
attente sont la base de nos solutions.

Une autre piste de recherche significative consisterait à améliorer notre algo-
rithme exact basé sur IP pour RpCP et à développer un algorithme exact efficace
pour PpCP. Pour ces deux problèmes, nous devrions être en mesure de mettre en
œuvre une décomposition de Benders pour résoudre le problème soulevé par la
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taille des problèmes. Compte tenu de la qualité observée d’une solution optimale
pour RP rob dans le chapitre 6, RP rob peut être considéré comme le problème mâıtre
initial. De plus, il serait intéressant de déterminer et de générer des contraintes
spécifiques à la classe du graphe considéré.

Une ligne de recherche intéressante serait de considérer les distances vérifiant les
inégalités des triangles, et d’analyser si elles induisent des propriétés structurelles
pour nos problèmes.

Enfin, certaines hypothèses initiales (propriété des refuges, définition de scé-
narios, etc.) peuvent être adaptées pour générer différentes variantes de nos prob-
lèmes. La pertinence de ces variantes dépend principalement de leur application
pratique. D’un point de vue pratique, notre modèle peut être adapté à différentes
configurations de feu. Nous en énumérons quelques-unes. Notez que notre modèle
de programmation mathématique pourrait facilement intégrer ces variantes, mais
nos résultats combinatoires peuvent changer de manière significative.

1. Nous pouvons prendre en compte différentes contraintes ou conséquences de
l’implantation d’un refuge sur une zone.

• Le territoire peut limiter l’emplacement des refuges à certaines zones
spécifiques. Dans ce cas, on peut définir dans un premier temps le
sous-ensemble des sommets sur lesquels il est possible de localiser un
refuge. Cette variante inclut notre modèle comme cas spécifique, ainsi
nos résultats de difficulté restent valables. Cependant, des recherches
supplémentaires sont nécessaires pour étendre nos résultats de complex-
ité et d’approximation à cette variante.

• Construire un refuge dans une zone peut impliquer de sécuriser com-
plètement la zone correspondante, auquel cas un incendie ne peut pas
se produire dans une zone sur laquelle se trouve un refuge. Nous util-
isons un problème auxiliaire relativement proche de ce problème dans
la section 4.1, lorsque nous utilisons la fonction objectif EC̄ . EC̄ est la
somme du rayon d’évacuation pour tous les scénarios s ∈ C̄, pondérée
par le nombre total de scénarios (et non par |C̄|). Des recherches sup-
plémentaires sont nécessaires pour réduire cette variante à notre modèle
et étendre nos résultats à celui-ci.

• Au contraire, le refuge situé sur une zone peut ne pas être suffisant pour
sécuriser la zone si le feu commence dans la zone. La formule de calcul
de la distance d’évacuation peut être adaptée en conséquence. Des
recherches supplémentaires sont nécessaires pour réduire cette variante
à notre modèle et étendre nos résultats à celui-ci.

2. Nous pouvons prendre en compte la propagation du feu, de manière statique,
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en considérant des scénarios associés à un sous-ensemble de sommets en feu.
Dans ce cas, tous les sommets en feu ne sont plus atteignables.

3. Dans certaines circonstances, seule une évacuation partielle est nécessaire.
Lorsqu’un incendie se produit sur une zone, seule la zone correspondante
doit être évacuée. Une variante proche est le cas où seule la zone source et
son voisinage doivent être évacués. Cette dernière correspond à l’approche
que nous avons initiée dans la Section 4.1 avec le rayon d’évacuation local.
Cela renforce notre intérêt pour cette variante.
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CHAPTER 1

INTRODUCTION

1.1 Context and Motivations

Due to the effects of global warming, the increase in number and in severity of forest
fires, or wild fires, is a matter of concern around the world [1]. New territories,
previously free of such risk, become subject to fires [2]. Populations living in
these areas and even first responders are not accustomed to such events and thus
poorly prepared. As for populations culturally accustomed to facing this kind of
challenges, they find themselves increasingly overwhelmed by exceptional events.
A new term, “megafire”, has appeared in the scientific literature to describe these
wildfires of gigantic proportions and breaking free from the rules and observations
previously established for smaller fires [3]. This trend seems set to normalize: each
year, new records are broken by the wildfires in the two hemispheres of the globe.

These fires cause significant social and ecological losses. To give an idea, in
2018, the U.S. Fire Administration counted at least 3655 death, and estimated
$25 billion (2018 USD) of loss [4]. For the 2019–20 Australian bushfire season,
more than 400 direct and indirect human casualties were counted, more than a
billion animals were killed, and more than 9000 buildings including 3500 houses
were destroyed [5]. Given the high stakes involved, many scientific disciplines are
mobilized in order to better understand these new phenomena. Numerous recent
studies highlight the need to move on to new policies that attend to the complex
and dynamic interrelations between social, economic, environmental, and political
drivers [2]. Awareness campaigns must be developed over the risk of fires in all
affected regions, so that individuals and collectives can prepare for this type of
events. In addition, the scientific community develops new methods and tools to
help limiting the impacts of fires on our societies and environment.
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This joint PhD was carried out as part of the European project ”Marie
Sklodowska-Curie Research and Innovation Staff Exchange (RISE)” between Eu-
rope and Australia entitled “Geospatial based Environment for Optimization Sys-
tems Addressing Fire Emergencies”, GEO-SAFE [6]. The GEO-SAFE project
started in May 2016 and aims at proposing innovative methods to deal effectively
with problems related to forest fires. The project tackles various issues related
to fire management, consolidated under 4 different work packages. The first work
package, Stochastic Mapping, concerns spatial statistical analysis for the develop-
ment of a stochastic risk, vulnerability and hazard cartography of a region regard-
ing the likelihood and impact of a wildfire. The second work package, Innovative
Models, is primarily concerned with designing new models or improving existing
ones in the following fields: fuel management, fire suppression and protection and
large scale evacuation modeling. The third work package, Robustness and Effi-
ciency, aims the development of robust models for wildfire management and the
design of new algorithms for efficient and flexible responses for initial and extended
attack in wildfire emergencies. This thesis is part of this work package. Finally,
the fourth work package, Implementation and Training Tools, involves modeling
and managing fire risk, evacuation models and protocols, and training scenarios
for all those engaged in fire management, including the general public.

Natural disasters like forest fires require an emergency management. A charac-
teristic of natural disaster emergencies is the difficult decision environment, public
authorities facing tight timelines, constrained resources, huge amount of data to
analyze, extreme uncertainty and multiple objectives that may conflict as well as
strong constraints when dealing with security issues and lives saving [7]. Emer-
gency management consists in a continuous process with four key components:
mitigation & prevention; preparedness; response; and recovery [8]. The goal of
mitigation and prevention is to decrease the need for emergency response. The
goal of emergency preparedness is to ensure that a rapid, coordinated and effective
response is possible when an emergency occurs. Preparedness involves an invest-
ment of time and commitment of resources but is irreplaceable when an emergency
arises. When the disaster occurs, it is time to follow an established response plan
– not the time to create one. The goal of an effective recovery is to restore the
affected infrastructure as quickly as possible. It leads directly into the mitigation
and prevention phase to minimize the risk of a recurrence or development of a
similar emergency situation in the future.

In this context, we address the problem of locating shelters to mitigate the
casualties caused by a fire. We propose new shelter location models as two-phase
problems, where the first phase incorporates elements of prevention and prepared-
ness, while the second phase corresponds to the response.
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A shelter is a safe place that provides cover from the fire. It is typically a
building equipped to protect people against flames, but it can also be an emergency
gathering point. Public authorities have shown increasing interest for such kind of
shelters [9]. Although the idea is not new, its effectiveness fundamentally depends
on the location of the shelters: as the territory to be covered by one or more shelters
can be arbitrarily large, the decision-maker must take into consideration the paths
traveled and the amount of time needed for people scattered in the territory to
reach a shelter. It is unfortunately common to find victims in their cars, trapped
by the fire while evacuating [10]. In addition, the question of guaranteeing safe
evacuation conditions for hikers and other forest users also arises. Unless public
access to forests and natural parks is completely prohibited for long periods of
the year, which can be culturally hard to accept, it is necessary to think about
new solutions. In both cases, public infrastructures as fire shelters can reduce the
evacuation time and thus the number of casualties. In addition, it allows to save
resources (fire fighters, first responders) that would otherwise have to be employed
to ensure these people’s safety. As fire outbreaks and their impacts are by nature
unpredictable, it can be difficult to choose shelter locations that remain suited to
each fire configuration. Recent studies have highlighted the need to develop new
models for the location of fire shelters [10],[11], which was confirmed in discussions
with final users as part of the GEO-SAFE project.

The problems of determining the “best” location for a set of facilities in order
to serve a set of demand points are generally referred as Facility Location problems
[12]. These problems lie at the core of the Location Science research area in the
field of Operations Research, and more precisely of Combinatorial Optimization.
The meaning of “best” depends on the nature of the problem under study, in par-
ticular the constraints and of the optimality criteria considered. Stimulated by
real-world problems, facility location has been applied in many areas with great
success, for example in logistics, telecommunications, routing and transportation
[13, 14]. In the case of an emergency service (ambulances, fire brigades, police
stations, etc.), facility location models have been proposed to minimize response
time. A whole section of Location Science is devoted to problems where the input
data available to decision-makers are incomplete or non deterministic at the time
of decision-making. Such models are said under indeterminacy. Indeterminacy
can affect demand, or the availability of facilities service, or the infrastructure
availability. Models under indeterminacy are commonly used for natural disaster
situations, such as floods, earthquakes, or forest fires. Indeed, a natural disaster,
like forest fires, is an unforeseeable event, that produces sudden demand (areas are
affected only once the hazard occurs) for services (e.g. emergency care, evacua-
tion) and potentially various disruptions on the transport network. We present a
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new shelter location model within this setup in what follows.

We want to locate a limited number of shelters on a territory where the general
objective is to minimize the risk of having people trapped by the flames, i.e., to
maximize their chance to reach a safe shelter before the fire gets too close. We
consider territories with weak density of residents and forest users. We represent
the territory by an adjacency graph. Each vertex corresponds to an area and two
vertices are connected by an edge if the related areas are adjacent. The fire starts
on an area, the corresponding vertex is called the source vertex. We call scenario a
description of a potential future situation; we will define it more formally later on.
In a real case, the fire can spread over very large areas and the impacted zone grows
dynamically. However, it might be relevant to focus on a relatively short period
after ignition or after the alert, seen as the time required for all people present in
the area to reach a shelter. This motivates us to consider only scenarios where
the fire is restricted to its source vertex. We assume an efficient early warning
system with clear messages to evacuate, and that people are safe after reaching
the shelter; this hypothesis is relevant depending on the exact nature and design
of the shelters. As the fire is likely to spread over the whole territory, everybody
in the territory is expected to evacuate to a shelter once the warning is triggered.
In our context, shelters are generally build with relatively large capacity [9], thus
we are not concerned with shelter capacity. In theory, we should consider two
different networks in order to distinguish between the paths people can follow, and
the fire spread. However, as we consider only scenarios where the fire is restricted
to one area, we can simplify our problem by considering only the network along
which people can move and represented by a graph.

Our problem can then be described as a particular case of location-allocation
problems. A solution describes the location of shelters among the vertices of the
graph, which corresponds to a subset of vertices. In addition, a solution also
involves, for each scenario and for the people in a given area, a possible allocation
of shelters to reach. The location can be addressed during the preparedness phase
and may involve significant time consuming computation. The allocation however
is mainly addressed during the response phase, which usually requires efficient and
simple processes. More precisely, these allocations correspond to evacuation paths
followed by the people evacuating the territory. We call evacuation strategy the
actions that are expected to be taken by the people evacuating a territory once a
fire hazard occurs.

The main contribution of this thesis is to propose a new evacuation strategy,
the Under Pressure evacuation strategy, which describes evacuation decisions made
under pressure. Its main originality is as follows: if no shelter is located on the
source vertex, then we consider there is an evacuation path leaving the source
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vertex towards every adjacent vertex. The justification is twofold: the fire in the
source vertex restricts the internal mobility; the immediate threat of the fire may
affect in different ways the behavior of the people in this area. The evacuation
path of other vertices of the graph is a shortest path between the vertex and a
nearest reachable shelter. We call evacuation distance of a vertex the maximum
length of one of its evacuation paths. For a real case implementation, this could be
supported by simple informative signs deployed on site, or marked on hiking maps,
indicating the direction and distance of the closest accessible shelters. This evac-
uation strategy induces particular evacuation distances which render our model
specific. To our knowledge, it is the first attempt to model the evacuation strategy
in such manner for a shelter location problem. We introduce two problems with
the Under Pressure evacuation strategy, which differ by the indeterminacy envi-
ronment considered. We present our problems as variants under indeterminacy
of the deterministic Min p-Center problem [15]: the Min p-Center problem is
a minimax facility location problem that consists in locating at most p identical
facilities, on a graph to minimize the maximum distance between demand vertices
and a closest facility. This model is however insufficient to address the indetermi-
nacy induced by the fire and the evacuees’ behavior.

With the Under Pressure evacuation strategy, the value of a solution for a given
scenario is given by the maximum evacuation distance in that scenario, called the
evacuation radius. We propose to study two categories of indeterminacy environ-
ment: risk and uncertainty [16]. In risk situations, there are uncertain parameters
whose values follow some probability distributions that are known by the decision
maker; this setup corresponds then to stochastic or probabilistic optimization. The
Probabilistic p-Center Under Pressure problem is the problem of locating at most p
shelters such that the expected evacuation radius, given a probability distribution
on scenarios, is minimized. In uncertainty situations, parameters are uncertain
and no information about probabilities is used; this setup corresponds then to ro-
bust optimization. The Robust p-Center Under Pressure problem is the problem
of locating at most p shelters such that the maximum evacuation radius, given
uncertain scenarios, is minimized.

To summarize, we list the strong assumptions in our problems, which has been
discussed with final users as part of the GEO-SAFE project. We would like to
thank particularly the Pau Costa Foundation [17], the Fire Organisation of An-
dalucia (INFOCA) [18], the Fire Organisation of Corsica (SDIS2B) [19], and the
Country Fire Authority of Victoria, Australia (CFA) [20].

• The territory, with weak density of populations, is represented by an adja-
cency graph.

• Each vertex corresponds to an area.

7



1.2. BASIC NOTATIONS

• The fire is restricted to one vertex during the short period we consider. We
consider only scenarios with one fire outbreak.

• The fire is likely to spread over the whole territory and for this reason,
everybody in the territory is expected to evacuate to a shelter.

• Shelters protect from the fire and have large capacity.

• An efficient early warning system exists.

• Simple guidance signs are deployed on site, or marked on hiking maps, indi-
cating the direction and distance of the closest accessible shelters.

• Fire can start in an area where a shelter is located. In this case, we assume
that the shelter location in the area and the local layout guarantee easy
accessibility [10] during the phase just after the fire outbreak for the people
in the immediate surrounding. Given the risk of fire spread, this shelter is
however inaccessible to people in other areas.

• The evacuation decisions made by the evacuees correspond to the Under
Pressure evacuation strategy.

1.2 Basic Notations

In this section we introduce basic notations and notions needed for the under-
standing of our work.

Graphs

These notations are inspired from [21] by Korte and Vygen.

Undirected graph An undirected graph G is a couple (V,E) where V = {1, . . . ,
n} is the set of vertices and E = {X ⊆ V : |X| = 2} the set of edges, with
|E| = m. We denote (i, j) the edge joining vertices i and j, which are also called
the endpoints of (i, j). An edge whose endpoints coincide is called a loop. Two
edges with identical endpoints are said parallels. A graph without parallel edges
nor loop is said simple. We say G is edge-weighted when a natural number li,j,
called the length or the weight of the edge (i, j), is associated to each edge (i, j).
We will refer as the uniform case the case where all edge lengths are equal. G is said
vertex-weighted graph when a natural number, called the demand or the weight
of the edge (i, j), is associated to each vertex v ∈ V . In this thesis, undirected
graphs are exclusively simple graphs, therefore we do not specify it each time.

8



1.2. BASIC NOTATIONS

Unless specified otherwise, we consider non-weighted graphs. In addition, if i and
j are joined by an edge, then i and j are called adjacent, and i is the neighbor of
j (and vice versa). The degree of a vertex i is the number of vertices adjacent to
i. A vertex of degree 1 is called a pending vertex.

Directed graph or Digraph A directed graph or digraph G is a couple (V,E)
where V = {1, . . . , n} is the set of vertices and E = {(i, j) ∈ V × V : i 6= j} the
set of directed edges.

Mixed graph A mixed graph is a graph with both directed and non-directed
edges. If (i, j) is a directed edge, we say (i, j) leaves i and enters j.

When no ambiguity occurs, we will use similar notations for directed, undi-
rected and mixed graphs. We will just indicate directed edges an denote them
with an arrow in the related drawing. We use mainly undirected and mixed graphs.
All non-directed notions in graphs also apply to mixed graphs by considering the
non-directed version of the mixed graph obtained by replacing directed edges by
non-directed ones, and then replacing multiple parallel edges by a simple edge.
Similarly, all directed notions apply to mixed graphs since a mixed graph can
be seen as a digraph with non-directed edges replaced by two directed edges in
opposite directions.

Subgraph and partial graph A subgraph of a mixed graph G = (V,E) is a mixed
graph H = (X, Y ) where X ⊆ V and Y = {(i, j) : (i, j) ∈ E and i, j ∈ X}. We
also write H = G[X] and say H is the subgraph of G induced by X. A partial
graph of G is a mixed graph (V,E ′) with E ′ ⊆ E obtained from G by deleting zero
or some edges. A partial subgraph of G is a partial graph of a subgraph of G. For
some U ⊂ V , we denote G \ U the graph G[V \ U ]. For some v ∈ V , we denote
G − v the induced subgraph G \ {v}. If H is a partial subgraph of G, we say G
contains H.

Path An undirected path is an undirected graph P = ({v1, . . . , vk+1}, {(v1, v2),
. . . , (vk, vk+1)} such that vi 6= vj for 1 ≤ i ≤ j ≤ k+1. G is also called a path from
v1 to vk+1, or between v1 and vk+1. v1 and vk+1 are the extremities of P . When
speaking about directed paths in a mixed graph, paths are meant to respect the
edge orientations. The length of a path is then the sum of the lengths of its edges.
In a general graph G, if G contains as partial subgraph a path P , we say P is a
path in G.
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Connected components Let G = (V,E) be some undirected graph. G is con-
nected if there is a path between all pairs of vertices, otherwise G is disconnected.
Sometimes we identify the connected components with the vertex sets inducing
them. A vertex v is called an articulation vertex if the induced subgraph G − v
has more connected components than G. We denote byA(G) the set of articulation
vertices of G. We call articulation components of G the set of connected compo-
nents of G − a with a ∈ A(G). A graph is 2-connected if it has no articulation
point; in this case there is no articulation component.

Acyclic graphs A cycle is a graph G = ({v1, . . . , vk+1}, {(v1, v2), (v2, v3), . . . ,
(vk, vk+1)} such that v1 = vk+1 and vi 6= vj for 1 ≤ i ≤ j ≤ k. A forest is a
graph without any cycle as a partial subgraph. A connected forest is a tree. A star
is a tree where at most one vertex is not a pending vertex. A caterpillar is a tree
in which all the vertices are within a central path or adjacent to it. It can also be
described as a tree in which all vertices that are not pending form a path.

Planar graph A planar graph is a graph that can be embedded in the plane, i.e.,
it can be drawn on the plane in such a way that its edges intersect only at their
endpoints.

Grid, subgrid and partial subgrid A n×m grid is the planar graph G = (V,E)
with vertex set V = {vi,j, i ∈ {0, . . . n− 1}, j ∈ {0, . . . ,m− 1}} and (vi,j, vk,l) ∈ E
if and only if |i−k|+|j−l| = 1. A (partial) subgrid is a (partial) subgraph of a grid.

Let G = (V,E) a mixed graph, and C ⊆ V . We denote:

• d(i, j) the distance between i and j i.e., the length of a shortest path from i
to j. If no such path exists, d(i, j) = +∞. When speaking about distances
in a mixed graph, paths are meant to respect the edge orientations and thus,
the matrix of distances is not symmetric anymore.

• d(i, C) = min
j∈C

d(i, j).

• r(C) = max
v∈V

d(v, C) is called the radius of C.

• Γ(i) ⊂ V is called the set of neighbors of vertex i.

• deg(i) = |Γ(i)| the degree of vertex i.
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Algorithmic and Mathematical Notions

Decision problems and optimization problems A decision problem is a prob-
lem that can be posed as a yes-no question on the input values.”An optimization
problem is a problem of determining a best solution among the set of solutions
satisfying some properties imposed by the very definition of the problem” [22]. An
optimization problem I can be expressed as the following mathematical program:

{
optf(~x)

~x ∈ CI

where ~x is a vector describing a solution, CI is the constraints of the problem, f is
the objective function and opt ∈ {min,max}. An optimization problem has always
a decision version. Let Π = (I, z) be the problem of deciding whether there is a
~y ∈ CI, such that f(~y) ≤ z if opt = min (respectively f(~y) ≥ z if opt = max). Π
is the decision version of optimization problem I. We use decision versions of an
optimization problem when discussing its complexity.

NP-completeness and NP-hardness Roughly speaking, a decision problem Π is
in NP if a certificate that an instance is a yes-instance can be checked in polynomial
time. A decision problem Π is NP-complete if Π is in NP, and all other problems
in NP polynomially reduce [23] to Π. An optimization problem is said in NP if its
decision version is in NP. An optimization problem is called NP-hard if and only
if its decision version is NP-complete [22].

Approximation An α-approximation algorithm for an optimization problem is a
polynomial-time algorithm that, for all instances of the problem, produces a feasi-
ble solution whose value is within a factor of α of the optimal value [24]. Therefore
the approximation ratio of an algorithm is always larger than 1 for minimization
problems (smaller than 1 for maximization problems). The closer to 1, the bet-
ter the algorithm. For example, a 2-approximation algorithm for a minimization
problem is a polynomial-time algorithm that always returns a solution whose value
is at most twice the optimal value.

Binary search Binary search refers to successively halving a finite list of numbers
using a median element of the list and discarding either the lower or the upper half
in each step until its size is smaller or equal than a predetermined positive natural
number, by default 1 in this thesis.
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Argument of the minimum For a real-valued function f with domain S, argmin
x∈S

f(x)
is the set of elements in S that achieve the global minimum in S:

argmin
x∈S

f(x) = {x ∈ S : f(x) = min
y∈S

f(y)}

Next we present some classical optimization problems relevant to our thesis,
defined on an undirected graph G = (V,E).

Usual problems

The p-Center problem denoted Min p-Center [15]

Min p-Center

Instance: A graph G = (V,E), an integer p
Feasible solutions: A p-set i.e., a set C ⊆ V of size at most p
Objective: Find a p-set C of minimum radius r(C).

Note that an optimal solution of size p always exists.

The Minimum Vertex Cover problem denoted Min Vertex Cover [25]

Min Vertex Cover

Instance: A graph G = (V,E)
Feasible solutions: A vertex cover i.e., a set U ⊆ V such that every edge of

E is incident to at least one vertex of U
Objective: Find a vertex cover of minimum size.

The minimum size of a vertex cover G is denoted τ(G).

The Minimum Dominating Set problem denoted Min Dominating Set [25]

Min Dominating Set

Instance: A graph G = (V,E)
Feasible solutions: A dominating set i.e., a set D ⊆ V such that every vertex

of V \D is adjacent to a vertex of D.
Objective: Find a dominating set of minimum size.

The minimum size of a dominating set in G is called the domination number
of G and is denoted γ(G).

The Minimum Set Covering problem denoted Min Set Cover [21]

12



1.3. ORGANIZATION OF THE THESIS

Min Set Cover

Instance: A set system (Ω,Z) with ∪Z∈ZZ = Ω
Feasible solutions: A set cover i.e., a set Y ⊆ Z such that ∪Y ∈YY = Ω
Objective: Find a set cover of minimum size.

The Minimum radius Dominating Set problem denoted Min r-Dominating Set

[26]

Min r-Dominating Set

Instance: A graph G = (V,E), an integer r
Feasible solutions: A set C ⊆ V such that r(C) ≤ r
Objective: Find a feasible solution of minimum size.

Min r-Dominating Set is a generalization of Min Dominating Set and a spe-
cific case of Min Set Cover. We define it separately as we will frequently refer to
it in this form.

1.3 Organization of the thesis

This document is organized as follows.

In Chapter 2, we describe thoroughly our model for shelter location in a forest
fire context. We present our modeling hypothesis for representing the territory,
the shelters, the uncertainty of fire outbreaks, the evacuation strategy and the
objective functions considered. We introduce the Robust p-Center Under Pressure
problem (RpCP) and the Probabilistic p-Center Under Pressure problem (PpCP), as
well as the set of feasible solutions for these problems. Finally, we compare our
models to some relevant related works in the literature.

In Chapter 3, we analyze the hardness of RpCP and PpCP. We present differ-
ent reductions from classic deterministic problems like Min Vertex Cover and
Min Dominating Set to decision versions of RpCP. We also present first non-
approximation results for PpCP. We take care of establishing hardness results on
classes of graphs with practical significance, like planar graphs or subgrids. Note
that, the more restrictive the class of graph, the stronger the hardness result.

In Chapter 4, we present polynomial approaches to generate exact or approxi-
mation results for PpCP. We propose an explicit solution on paths in the uniform
case by using auxiliary problems. The proof is surprisingly non-trivial. Then we

13



1.3. ORGANIZATION OF THE THESIS

propose a constant-ratio approximation algorithm for PpCP on general graphs with
bounded degrees and bounded length of the edges. Here again, we will use auxil-
iary problems that reveal to be interesting on their own.

In Chapter 5, we propose polynomial algorithms for RpCP on different classes of
acyclic edge-weighted graphs. Using structural properties introduced in the pre-
vious chapter, we will present different methods based on a binary search. We
propose refined polynomial algorithms for paths, extended stars, caterpillars and
trees.

In Chapter 6, we present different mathematical methods to compute exact
solutions of RpCP and PpCP. These methods are inspired by the main existing in-
teger linear programs for Min p-Center, but require extended generalization to
represent the undeterminacy and take into account the Under Pressure evacuation
strategy. For RpCP, we propose an even more efficient algorithm, tractable on large
instances as shown by our experimental results.

Finally, in Chapter 7, we summarize the contributions of this thesis, and we
indicate several lines of future research.

In Appendix A, the reader can find a list of the problems considered in this
thesis.

14



CHAPTER 2

PRESENTATION OF THE PROBLEMS

Abstract

In this chapter we introduce our model for shelter location in a forest fire context
and specifically a new original evacuation strategy called Under Pressure. We then
define the two main problems studied in this thesis, namely the Probabilistic p-
Center under Pressure problem and the Robust p-Center under Pressure problem.
We determine the set of feasible solutions for these problems. Finally, we emphasize
the differences of these new problems with existing models in the literature.
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2.1. THE UNDER PRESSURE MODEL

Introduction

The problems of determining the “best” location for a set of facilities in order to
serve a set of demand points are generally referred to as Facility Location prob-
lems. These problems lie at the core of the Location Science research area [12].
The meaning of “best” depends on the nature of the problem under study, namely
in terms of the constraints and of the optimality criteria considered. Facility Loca-
tion problems have been widely studied for emergency applications, in particular
the Min p-Center problem. Min p-Center is particularly suited to decision mak-
ers concerned with the reliability of the location for every user and who want to
consider a criterion focusing on users who are the poorest served (for an extended
description of the state of the art, see Subsection 2.2.1). A main objective in our
context is to avoid any death toll, which favors Min p-Center for a shelter location
decision-support model. Min p-Center is however not sufficient to handle the in-
determinacy induced by the fire hazard. To this end, we propose a new approach,
which we present in Section 2.1. Then, in Section 2.2, we compare our approach
to the existing state of the art.

Our model was first presented in [27] for the probabilist case, and in [28] for
the robust case.

2.1 The Under Pressure model

When a fire occurs, all the people within the territory must head for a safe place,
which we will refer to as a shelter. Our objective is to determine the best location
for a set of shelters in order to minimize the distance traveled by the people once a
fire occurs. We will model the territory as a graph like described in Section 2.1.1,
such that shelters locations correspond to a subset of vertices. We will model the
indeterminacy relative to fire ignition using scenarios as described in Section 2.1.2.

Our problem is a particular case of location-allocation problems in two phases:
a solution describes the a priori location of shelters among the vertices of the
graph. This task must be undertaken during the preparedness phase. In addition,
our solution must describe, for each scenario, an allocation of areas to shelters.
This allocation corresponds to evacuation paths that must be taken by the people
during the response phase. The allocation decision is made on the basis of an evac-
uation strategy. In Section 2.1.3, we describe a new original evacuation strategy
called Under Pressure which takes into account some behaviors that may occur in
fire emergency situations.
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The examination of the Under Pressure evacuation strategy induces new evac-
uation distances which renders the problem of choosing a best location for shelters
specific compared to the literature and introduces some additional complexity.
This new evacuation strategy, applied to a version of Min p-Center under in-
determinacy, generates new problems relevant for shelter location under wildfire
context. This thesis mainly focuses on two of these problems, presented in Sec-
tion 2.1.4: the Robust p-Center Under Pressure and the Probabilistic p-Center
Under Pressure. We also present some first results on the differences between
these problems and Min p-Center.

Finally, in Section 2.1.5 we present the necessary and sufficient conditions for
a solution to be feasible for the two previously defined problem. We also present
in Section 2.1.6 some first results on the differences between these new problems
and Min p-Center.

2.1.1 Modeling the territory

In our model, the territory, typically with low density habitat, is represented by
an edge-weighted graph G = (V,E) with V = {1, . . . , n} the set of vertices, and E
the set of weighted edges. Each vertex corresponds to an area or zone; the areas
are defined based on geographical and spatial criteria such that the center of the
area is a candidate location for a shelter. In particular, natural barriers like a river
or a cliff will always be placed on boundaries between zones. Typical examples of
zones could be a village and its suburb areas or, in case of very sparse habitat, a
homogeneous area with easy circulation inside. The size of zones may also vary.
We assume that, in absence of fire, it is easy to move inside an area. It is not the
intention of this thesis to determine the areas. If adjacent areas correspond to a
fragmentation of a large homogeneous territory without clear natural boundaries,
then the related edges are just a discrete model of a continuous reality. In other
cases however, edges represent an accurate representation of the real transport
network environment. Since vertices represent areas, possibly large, the length of
an edge can be seen as a distance or a traveling time between adjacent vertices and
can be measured between median points in the two related areas or as a maximum
distance; these choices has no incidence on the model. According to our model,
shelters must be placed on vertices. Hence, shelter locations correspond to a subset
of vertices, denoted C in the following. Given the analogy to Min p-Center, we
refer to the vertices of C as shelters or centers without distinction.

Next we present how we take into account in our model the indeterminacy
induced by the fire hazard.
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2.1. THE UNDER PRESSURE MODEL

2.1.2 Scenarios

A classical approach to model disaster risk is to use scenarios [29]. A set of sce-
narios is a description of the states of the system after a hazard occurs. In real
cases applications, the definition of scenarios relies on a preliminary analysis and
synthesis of the effects of a vast set of parameters. After which, a finite set of sce-
narios should be defined based on major uncertainty factors of the decision-making
environment. It follows that the quality of the solution produced fundamentally
depends on the scenario generation process.

We denote S the set of scenarios. A scenario is associated with a specific fire
outbreak in the territory represented by the edge-weighted graph G = (V,E).
There is a potentially large number of scenarios (several simultaneous fire out-
breaks in different areas, fire spreading more quickly in one direction, fire jumping
from one area to another through ambers, etc). We restrict ourselves to a single
fire outbreak event with the fire spread limited to its native area. Consequently,
we restrict S to the set of scenarios corresponding to a single vertex on fire, and
we refer to the scenario associated with a fire outbreak on vertex s ∈ V as sce-
nario s ∈ S. So S = V . This restriction is motivated by our primary focus on
a relatively short time period after an outbreak, which assumes an efficient early
warning system. In this case, everybody can escape to a shelter before the fire
spreads to adjacent areas. In this thesis, we refer to the vertex on fire also as the
source vertex: in scenario s, vertex s is the source vertex.

The operational graph associated with the scenario s, denoted by Gs = (V,Es),
is a mixed graph obtained from G as follows: all edges e ∈ E are kept in Es except
the edges (s, v) incident to s: these edges are replaced by a unique directed edge
(s, v). Consequently, paths are directed in Gs and vertex s is no longer accessible
from another vertex. For a scenario s and for any i, j ∈ V , we denote by ds(i, j)
the length of a directed shortest path from i to j in Gs. In addition, for C ⊆ V ,
we denote ds(i, C) = max

j∈C
ds(i, j).

Note that, for all j ∈ V \ {s}, there is no path from j to s, thus ds(j, s) = +∞.
In addition, if i 6= s and j 6= s, ds(i, j) = ds(j, i).

2.1.3 The Under Pressure evacuation strategy

We have seen that a solution does not only describes the location of shelters, it
also specifies, for each scenario and for the people in a given area, a shelter to
reach on the basis of an evacuation strategy. The evacuation strategy describes
the actions that are expected to be taken by the people evacuating a territory once
a fire hazard occurs. A good shelter location model for wild fire context must try
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to take into account the actions people on site are likely to undertake, in order to
locate shelters in such way that it serves the population.

The decisions of where to locate shelters and how the evacuation planning is
made are equally important as both affect the time to evacuate the region affected
by the disaster. Addressing these two problems separately may lead to suboptimal
results. There are two classical evacuation planning models [30]. The first one
considers that people will head for the nearest safe shelter, driven by the intuitive
reaction of any individual looking for the nearest accessible shelter, which is not
necessarily in the interest of the whole system. To our knowledge, all the problems
based on this approach model the evacuation path as a shortest path in the opera-
tional graph. The second approach involves the assignment of evacuation routes to
the travelers, for example in traffic assignment models [30]. This approach requires
rapid customized communication with all the people to be evacuated. The limit of
these approaches and the need for new shelter location models have been outlined
by different works on the topic [11, 30, 10] and confirmed by final users as part of
the GEO-SAFE project.

We propose an alternative approach, called the Under Pressure evacuation
strategy and denoted the UP evacuation strategy. We consider that rapid cus-
tomized communication with all the people to be evacuated is not always possible,
for example when people on site are daily visitors. However, as shelters have been
built well ahead of time, we can assume signals or early warnings are in place such
that people know their exact positions. On top of the idea that any individual
intuitively looks for the nearest accessible shelter, we propose specific implications
on the actual paths traveled by the people once they evacuate.

Consider a territory modeled with an edge-weighted graph G = (V,E), scenar-
ios S, and a set of shelters C ⊂ V . When a fire occurs, all the people within the
territory must head for a safe place. An evacuation path of v in scenario s is a
path in Gs that individuals on v may follow to reach an accessible shelter in C.
Three cases emerge, depending on the whereabout of the area v :

1. For people in area s, two cases have to be considered.
(a) If a shelter is located in area s, we assume that all the persons present
in that area can safely reach this shelter. To support this hypothesis, we
assume that the shelter location in the area and the local layout guarantee
easy accessibility [10] during the phase just after outbreak. It is reasonable
to assume that clear signs direct people accurately on and around the shelter.
However, for people outside the area, attempting to reach the shelter could
be dangerous. For this reason s is not accessible from other vertices in the
operational graph Gs.
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(b) If there are no shelters in area s, we assume that people in this area
will first flee in any other direction to reach an adjacent area j, then they
will evacuate to the nearest shelters accessible from j in Gs. Without strong
evidence (like a shelter in the area), people, especially under pressure, may
react in very diverse ways: choosing for instance to run in the opposite
direction of the fire, or in the orthogonal direction of the wind or in the most
accessible direction, regardless of the best direction for the nearest shelter.
Once evacuees reach a safer adjacent area, they will be able to follow the
shortest path to a shelter, i.e an evacuation path of s is a path {s, j, i1, . . . , ik}
where j ∈ Γ(s),ik ∈ C and the path {j, i1, . . . , ik} is a shortest path between
j and ik.

2. For people who are not in area s, that is any area v 6= s, we assume that
going to the nearest accessible shelter is safe as long as the area on fire s
is avoided. It is reasonable that such strategy will be adopted in practice.
Then, the evacuation path of v in scenario s is the shortest path between v
and a shelter in Gs.

To ensure an acceptable level of risk, we must consider the worst case scenario.
The evacuation distance of a vertex v in scenario s is the distance (maximum
distance in the case v = s and v /∈ C) traveled by the people from v to a nearest
reachable shelter i.e., the maximum length of an evacuation path of v in scenario
s. The evacuation distance of a vertex v in scenario s is then given by:

rs(C, v) =


0 if v = s and v ∈ C
max
j∈Γ(v)

{lv,j + ds(j, C)} if v = s and v 6∈ C

ds(v, C) if v 6= s

(2.1)

Note that, for a scenario s, if there is no path from v to a shelter of C, we get
rs(C, v) = +∞.

Example. On a path: We illustrate these definitions in Figures 2.1 and 2.2 on a
path of nine vertices in the uniform case. Let C = {0, 5, 8} be the set of shelters
represented by pentagons. The value of d(i, C) is given under each vertex i.

0 1 2 2 1 0 1 1 0

0 1 2 3 4 5 6 7 8

Figure 2.1: Distance to the nearest shelter when no fire occurs.
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In Figure 2.2, we consider the operational graph G1 associated to scenario 1,
where the two undirected edges (i, j) and (j, i) are represented by a unique continu-
ous line. The label under each vertex i ∈ V is the value of d1(i, C), i = {0, . . . , 8}.
It is underlined when it differs from d(i, C). d1(1, C) and d1(2, C) differs from
d(1, C) and d(2, C) respectively since the path to shelter 0 is no more operational.
For vertex 1, two evacuation paths exist: {1, 0} and {1, 2, 3, 4, 5}. As we can’t know
in advance which evacuation path will be used given the local constraints for the
evacuees, we consider the worst case. Then r1(C, 1) = maxj∈Γ(1)(l1,j + r1(C, j)) =
1 + max{r1(C, 0), r1(C, 2)} = 1 + max{d1(0, 0), d1(2, 5)} = 1 + max{0, 3} = 4.

0 4 3 2 1 0 1 1 0

0 1 2 3 4 5 6 7 8

Figure 2.2: Evacuation distances in the scenario 1.

♣

Example. On a subgrid: In Figure 2.3, we consider a graph G = (V,E) of 14
vertices. The figure illustrates the operational graph G2, with shelters located on
C = {3, 10} . Each edge is labeled by its length. When a fire occurs on vertex 2
(scenario 2), the evacuation paths of each vertex i corresponds to shortest paths
from i to its nearest shelters, except for the following vertices:

• vertex 1: in G, the nearest shelter to vertex 1 is on 3 at a distance of 3, using
the shortest path {1, 2, 3}. However, in scenario 2, the length of the shortest
path from vertex 1 to vertex 3 is 22, using the shortest path {1, 6, 7, 8, 3}.
Instead, the shelter in 10 is at a distance of 8 from vertex 1, using the shortest
path {1, 6, 10}. Thus node 1 is evacuated to node 10 and r2(C, 1) = 8.

• vertex 7: in G, the nearest shelter to vertex 7 is on 3 at a distance of 5, using
the shortest path {7, 2, 3}. However, in scenario 2, the shortest path length
from vertex 7 to vertex 3 is 11, using the shortest path 7, 8, 3. Instead, the
shelter in 10 is at a distance of 10 from vertex 7, using the shortest path
{7, 11, 10}. Thus node 7 is evacuated to node 10 and r2(C, 7) = 10.

• vertex 2: in G, the nearest shelter to vertex 2 is on its neighbor 3 at a distance
of 2. However, in scenario 2, there are three evacuation paths originating
from vertex 2:

– the evacuation path passing through the neighbor vertex 1, at a distance
of 1. From there the nearest shelter 10 is at a distance of 8. Thus the
overall length of this evacuation path is 1 + 8 = 9.
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– the evacuation path passing through the neighbor vertex 7, at a distance
of 3. From there the nearest shelter 10 is at a distance of 10. Thus the
overall length of this evacuation path is 3 + 10 = 13.

– the evacuation path passing through the neighbor vertex 3, at a distance
of 2. A shelter is located there, thus the overall length of this evacuation
path is 2.

As any of these three evacuation paths is potentially taken by people evacu-
ating vertex 2, the evacuation distance of vertex 2 is given by the longest of
these evacuation paths. In this case, r2(C, 2) = 13.

1 2 3 4 5

6 7 8 9

10 11 12 13 14

1 2

34

3

6

2

5
7

4

5

3 8 1
7 3 2

Figure 2.3: The operational graph associated with scenario 2 with shelters located on
{3, 10}

In scenario 3, the fire occurs on a vertex with a shelter. The corresponding
operational graph is illustrated in Figure 2.4. In this case, r3(C, 3) = 0. All
other evacuation distances correspond to the length of a shortest path from the
originating vertex to shelter 10 in G3. For example, the evacuation distance of
vertex 4 is given by the length of the path {4, 5, 9, 14, 13, 12, 8, 7, 11, 10}, for a
total distance of 36.

1 2 33 4 5

6 7 8 9

10 11 12 13 14

4

1

3

3

6

2 2

5
7

4

5

3 8 1
7 3 2

Figure 2.4: The operational graph associated with scenario 3 with shelters located on
{3, 10}

♣

This characterization of the evacuation distances renders our model specific.
In Section 2.2, we compare the UP approach to other evacuation strategies in
the literature. To our knowledge, it is the first attempt to model the evacuation
strategy in such manner for a shelter location problem.
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2.1.4 Objective functions

For a scenario s, the quality of a shelter location is determined on the basis of the
longest evacuation distance one may travel in Gs. Considering the UP evacuation
strategy, we define the evacuation radius of a set C ⊂ V for scenario s as follows:

rs(C) = max
x∈V

rs(C, x) (2.2)

If the distance-matrix of Gs is known, rs(C) can be computed in O(n2).
Note that C induces potentially different evacuation radius for each scenario

s ∈ V . The evaluation of C over all the set of scenarios depends on the consid-
ered environmental indeterminacy. We consider two categories of environmental
indeterminacy: risk and uncertainty [16], [31]. In the case of risk, a probability
distribution is known for the scenarios; this setup corresponds then to stochastic
or probabilistic optimization. In the case of uncertainty, no probability is known;
this setup corresponds then to robust optimization. We propose to study the two
forms of indeterminacy with the UP evacuation strategy.

2.1.4.1 Robust optimization approach

The robust approach is suitable if no information is known about the probability
of scenarios, or if it is critical to guarantee evacuation distances even in the worst
case, independently of its likelihood. Minimax is a classical objective function in
robustness approach [31]. Under a minimax objective function, the optimal deci-
sion is that for which the worst case performance of a solution over all scenarios is
minimized. The minimax criterion applied to our context corresponds to the min-
imization of the maximum evacuation radius across all scenarios. Consequently,
for a set C ⊂ V , we define the objective function IR as follows:

IR(C) = max
s∈V

rs(C) (2.3)

IR(C), called the robust radius of C, is the maximum value of the evacuation
radius of C over all the scenarios. Hence, we can define a new problem.

Robust p-Center Under Pressure (RpCP)
Instance: An edge-weighted graph G = (V,E), a set of scenarios

S, an integer p
Feasible solutions: A p-set C ⊆ V with finite IR(C)
Objective: Find a solution of minimum robust radius if it exists.

Note that, if an optimal solution exists, an optimal solution of size p always
exists. In addition, RpCP is closely related to another optimization problem which
will be useful in our study in the following chapters.
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k-RCP

Instance: An edge-weighted graph G = (V,E), a set of scenarios
S, an integer k

Feasible solutions: A set C ⊆ V of robust radius IR(C) ≤ k.
Objective: Find a feasible solution of minimum size.

Consider an instance (G,S, p) of RpCP. We can propose an exact solution
method using k-RCP coupled to a binary search as follows: Let D be the ordered
set of candidate values for the value of RpCP on G i.e., D = {ds(x, y) : x, y, s ∈
V }∪{lsx + ds(x, y) : y, s ∈ V, x ∈ Γ(s)}. If the optimal value of k-RCP on (G,S, k)
is greater than p, then the optimal value of RpCP is greater than k. Else, the
optimal value is less or equal to k. We continue the binary search on a restricted
subset of D to find the minimum radius k∗ for which the optimal value of k-RCP
is less or equal to p.

In this thesis, as we consider exclusively S = V , we will refer to an instance
(G,S, p) of RpCP as (G, p). Similarly, we will refer to an instance (G,S, k) of k-RCP
as (G, k)

2.1.4.2 Probabilistic optimization approach

The probabilistic approach is suitable when it is possible to assign probabilities
to the scenarios. A common goal is then to optimize the expected value of the
evacuation radius. We denote by πs the probability of scenario s and by Π =
(πs)s∈S the vector of scenario probabilities.

For a set C ⊂ V , we define the objective function IE as follows:

IE(C) =
∑
s∈V

πs × rs(C) (2.4)

IE(C), called the probabilistic radius of C, is the expected value of the evacuation
radius of C over all the scenarios. Hence, we can define a new problem.

Probabilistic p-Center under Pressure (PpCP)
Instance: A graph G = (V,E), a set of scenarios S and a vector

Π of probabilities associated to the scenarios of S, an
integer p

Feasible solutions: A p-set C ⊆ V with IE(C) finite.
Objective: Find a solution of minimum probabilistic radius if it ex-

ists.

Note that, if an optimal solution exists, an optimal solution of size p always
exists.
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In this thesis, we focus on the analysis of PpCP with a uniform probability
distribution over the scenarios. So, we will assume πs = 1

n
for all scenarios s ∈ S.

In addition, we recall that we consider exclusively S = V . Therefore, to simplify
our notations, we will refer to an instance (G,S,Π, p) of PpCP as (G, p). In this
thesis, we may refer to both PpCP and RpCP as the UP problems.

2.1.5 Feasibility conditions

In this subsection we analyze necessary and sufficient conditions for a solution to
be feasible on an instance (G, p) for both RpCP and PpCP. For both PpCP and RpCP,
a solution C is said feasible if its objective value is finite, that is if the evacuation
radius of C is finite for all scenarios. In the following, we consider without loss of
generality that G is a connected graph. In addition, as the set of feasible solutions
is similar for both problem, in this subsection we will refer to the set of feasible
solutions for RpCP. We present first some additional notations and observations.

A minimal articulation component, or MAC for short, is an articulation com-
ponent that does not strictly contain another articulation component. We denote
Υ(G) the set of minimal articulation components. Note that an articulation com-
ponent that is a singleton {v} is necessarily minimal and this occurs if and only if
v is a pending vertex. In addition, every vertex a ∈ A(G) is associated to at least
2 articulation components, and every articulation component is associated to one
articulation point.

Lemma 1. A is a minimal articulation component of G if and only if A is an
articulation component which does not include an articulation point of G.

Proof. ⇒ By contrapositive we prove that if an articulation component A includes
an articulation point, then A is not minimal. Let A be an articulation component
induced by the articulation point a ∈ V . Suppose b ∈ A is an articulation point
of G. Then b induces at least two disjoint connected components in G− b. Since
b 6= a, a is in one connected component of G − b, consequently G \ A is a subset
of this connected component. It follows that at least another component of G− b
is contained in A, which means that A is not minimal.

⇐ The proof is also by contrapositive. We prove that if A is a non-minimal ar-
ticulation component, then A includes an articulation point. Let A an articulation
component that is not minimal. Then there is an articulation component B ⊂ A
induced by the articulation point b ∈ V , such that B 6= A. Consider x ∈ A \ B
and y ∈ B. Since A is connected, x and y are connected in A by a path; this path
necessarily crosses b and in particular b ∈ A.

Lemma 2. All minimal articulation components of G are pairwise disjoints.
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Proof. By contrapositive, we assume A ∈ Υ(G) and B an articulation component
such that B 6= A and B ∩ A 6= ∅. We prove then that B is not minimal.

Let x ∈ A∩B. Since A is a MAC, B 6⊂ A. Then there is a vertex y ∈ B∩(V \A).
Every path between x and y in G crosses a. As B is a connected component, there
is a path from x to y in B, thus a ∈ B, and B is not a MAC by Lemma 1.

Given a graph G = (V,E) and p, we denote with Cp(G) the set of feasible
solutions of the RpCP-instance (G, p).

Proposition 3. Let (G, p) be an instance of RpCP with |V | ≥ 2. A solution C ⊂
V, |C| ≤ p is in Cp(G) if and only if |C| ≥ 2 and C includes at least one vertex in
each minimal articulation component of G.

Proof. Suppose C is a feasible solution for RpCP on G. We have seen that C is
a feasible solution for RpCP if and only if rs(C, j) ∈ R,∀j, s ∈ V , i.e. all the
evacuation distances over all vertices and all scenarios are finite.

First suppose there is no articulation point, then G has no articulation compo-
nents. Let s ∈ C, and x ∈ V, x 6= s. In scenario s, x is assigned to a center that is
not s. Thus |C| ≥ 2. Conversely, if |C| ≥ 2, for any scenario s, G− s is connected
and contains at least one center.

Second, suppose G has at least one articulation point and consequently at least
2 disjoint articulation components. In addition, if A is an articulation component
of G induced by the articulation point a, then ∀j ∈ A, ra(C, j) ∈ R if and only if
C ∩ A 6= ∅. Then C intersects all articulation components. In particular |C| ≥ 2
and C intersects all minimal ones. Conversely, if C intersects all MACs then |C| ≥
2 and it intersects all articulation components since any articulation component
contains a MAC.

Remark 1. For all UP problems considered in this thesis, feasibility conditions do
not depend on the lengths, and the objective value is linear with respect to the
lengths. As a consequence, the uniform case is equivalent to the case where all
edge lengths are equal to 1.

Corollary 4. If G has at least 2 vertices, C1(G) = ∅ .

As a consequence, from now we will consider only RpCP instances satisfying
p ≥ 2.

Corollary 5. For a given p, we can verify in polynomial time whether Cp(G) 6= ∅.

Proof. For G = (V,E), we generate A(G) in O(|V |+|E|) using Tarjan’s Algorithm
([32]). The minimal connected components of G are the connected components
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of G \ A(G) adjacent to at most one articulation point in G, where a set V ′ of
vertices is said adjacent to a vertex if this vertex has at least one neighbor in V ′.

There is a feasible solution for RpCP on G if p is greater or equal to the number
of MACs.

Corollary 6. For all C ∈ Cp(G), C necessarily includes all pending vertices.

Proof. Every pending vertex is a MAC of G. Then by Proposition 3, a feasible
solution includes all pending vertices.

2.1.6 Examples and comparison with p-Center

We saw that a set C ⊂ V is feasible for RpCP and PpCP if rs(C) is finite for all
scenarios s ∈ V . rs(C) is finite if every vertex has a finite evacuation distance in
scenario s. In some cases, most of the feasible solutions for Min p-Center are not
feasible for the UP problems. For example, consider the path G given in Fig 2.5.
For p = 2, any set of 2 vertices is a feasible solution for Min p-Center while
the only feasible solution for the robust 2-Center problem is the set {1, 5} of the
extremity vertices of the path as proved previously in Section 2.1.5.. For any C
without vertex 1, we necessarily have r2(C, 1) = +∞ since vertex 1 cannot reach
any shelter. C is thus not feasible.

1 2 3 4 5

Figure 2.5: A path with 5 vertices and shelters on the extremities

In addition, when the optimal solution of Min p-Center is feasible for RpCP

and PpCP, the relative error of using this solution for any of our problems can be
arbitrarily large, as shown in the following. Consider the graph represented in Fig-
ure 2.6, with M ≥ 1. Let p = 2. The optimal choice for Min p-Center is to locate
centers at vertices 2 and 3, for a radius of 1. Consider now this solution in the con-
text of RpCP and PpCP. The evacuation radius of {2, 3} is 3,M + 3,M + 3, 3,M + 1
and M + 1 for each scenario s = 1, 2, . . . , 6 respectively. Thus the robust radius of
solution {2, 3} is M + 3, and its probabilistic radius is (4M + 14)/6. However, if
we choose instead to locate the shelters at vertices 5 and 6, the worst evacuation
radius is 3 induced by scenarios 2, 3, 5 and 6. For scenarios 1 and 4, the evacuation
radius is 2. Thus the robust radius of solution {5, 6} is 3, and its probabilistic ra-
dius is 16/6. Overall, in this example the relative error of using an optimal solution
of Min p-Center for RpCP or PpCP is of order M .

Obviously, on an instance (G, p), p ≥ 2 of RpCP or PpCP, adding a center to
C cannot increase the evacuation radius. Therefore, it is straightforward that,
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1 2 3 4

6 5
1
2

1
1

1
1

2
M

Figure 2.6: An example of different optimal solutions for Min p-Center and RpCP with
p = 2.

if |Υ(G)| ≤ p ≤ |C|, then there is an optimal solution with exactly p shelters.
However, this is not a necessary condition for optimal solutions.

Consider indeed the graph of Figure 2.7 in the uniform case; if p = 5, then the
minimum robust radius is 1, which is satisfied by {1, 3, 5, 7}. Similarly, {1, 3, 5, 7}
ensures a minimum probabilistic radius of value 1 for PpCP with p = 5. Note this
is also the case with Min p-Center: if p = 2, then the minimum possible radius
is 2, but r({3}) = 2.

3

6

7

4 521

Figure 2.7: An example where, for p = 5, there is an optimal solution for RpCP and
PpCP of size 4.
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2.2 State of the Art

Location problems have long been receiving the attention of scientists. In 1909, Al-
fred Weber (younger brother of the well-known sociologist Max Weber) developed
the first general theory of industrial location. His model took into account several
spatial factors for finding the optimal location and minimal cost for manufactur-
ing plants [33],[34]. In 1964, the network version of the problem, in which demand
areas and facilities are located on an underlying graph representing the real world
transportation system, becomes popular with the seminal work of Hakimi [35].
This work is often seen as the first step toward the development of the very ac-
tive research field. Many surveys propose to categorize Facility Location problems
according different key features, like the location space (continuous, network or
discrete), the context (for example emergency logistics [36] or evacuation planning
[30]), the different fundamental and advanced models [37], the decision-making
environment [38] and many others.

In this section, we list some relevant related works in the literature for the Min

p-Center problem and Facility Location problems in relation to shelter location
problems for emergency situations. Unless otherwise stated, the results are on
undirected graphs.

2.2.1 The p-Center Problem

The Min p-Center problem is a minimax facility location problem that consists in
locating p identical facilities, also called centers, on a graph to minimize the maxi-
mum distance between demand vertices and a closest facility. The main concern of
this problem is to minimize the negative impact of the worst case service level. This
sort of objective is meaningful for problems with a time sensitive service structure,
where the human life is at stake. Many applications arises in emergency service
locations, such as determining optimal locations of police stations, hospitals, fire
stations, ambulances and shelters [35, 37].

In [35], Hakimi identifies more precisely two separate problems: the Weighted
Vertex 1-Center problem and the Weighted Absolute 1-Center problem. In the
Vertex case, a center must be located on a vertex of the graph. In an instance of
the Absolute case, an edge (i, j) of a graph G = (V,E) can be considered as a set
of infinite set of points joining vertices i and j. We can then identify a point x
on a edge (i, j) by its distance from the endpoints of (i, j). In the Absolute case,
a center can then be located on any point of the graph. In the weighted context,
the distance of a vertex to the facility is weighted by the weight of the demand
vertex. The maximal weighted distance to all vertices is then called the weighted
absolute radius in the absolute case, or the weighted radius in the vertex case. The
unweighted case can be reduced to the weighted case with uniform demand on the

29



2.2. STATE OF THE ART

vertices. The Weighted Absolute (respectively Vertex ) 1-Center problem is then
to find a point (resp. vertex) whose maximal weighted distance to all vertices is
minimum. This optimal point (respectively vertex) is called the weighted absolute
(resp. vertex) center. The vertex center of G is not necessarily an absolute center:
consider a graph of two vertices of weight 1 connected by an edge with length 1.
In this example the absolute radius is 0.5 whereas the radius is 1. In [39], Hakimi
generalizes the Weighted/Unweighted Absolute/Vertex 1-Center problems to the
Weighted/Unweighted Absolute/Vertex p-Center problems.

Note that, for p ∈ {1, . . . , n}, an instance (G, p) of the Weighted Absolute p-
Center problem can be reduced to an instance of the Weighted Vertex p-Center
as follows: An intersection point is a point x on an edge (i, j) if there exists two
distinct vertices u, v ∈ V such that x is the unique point on (i, j) for which the
weighted distance from u to x is equal to the weighted distance from v to x. Denote
P the set of induced intersection points of G. An optimal solution for Weighted
Absolute p-Center can be found in the set of vertices and intersection points [40]
[15]. We can then transform G in a vertex-weighted graph G′ = (V ∪P,E ′), where
E ′ is the set of edges induced by the insertion of vertices P , and where the weight
of v ∈ V is the same in G and G′, and the weight of v ∈ P is 0 in G′. The solution
for the Weighted Vertex p-Center problem on G′ is a solution for the the Weighted
Absolute p-Center problem on G.

For the sake of brevity, we have opted not to discuss the large body of litera-
ture on these different versions. As our definition of the Min p-Center as given
in Section 1.2 corresponds to the Unweighted Vertex p-Center and is the most
relevant to our work, we present in the following the main polynomial algorithms,
complexity and approximation results valid for the Unweighted Vertex p-Center.
The following complexity results assume that the distance-matrix of the graph is
known, which would otherwise take O(nm) to be computed [41].

We do not include in the following variants the Capacited p-Center problem,
which is a variant where facilities are assigned capacities. In this case, a facility
can not satisfies more demands than its capacity. As we consider territories with
typically low density habitat (Subsection 2.1.1), we can safely consider that shelters
are large enough [11].

2.2.1.1 Polynomial Cases, Complexity and Approximation Results

The problem of finding the 1-Center can be done in O(n2) once the matrix of
shortest distances for the graph has been computed: after computing the weighted
distance-matrix, we must find a maximum entry in each row and then find a
minimum over these maxima [15]. On a tree, Kariv and Hakimi propose in [15] an
algorithm to solve the 1-Center problem in O(n log n) time. Handler [42] improves
this results with an O(n) algorithm.
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For the Min p-Center problem, Minieka is the first to propose a solution
method with a finite series of Min Set Cover [40]: in order to minimize the num-
ber of shelters to be located to cover all vertices within a given radius r, we can
use the Min Set Cover where Ω = V and Zi = {j ∈ V : d(i, j) ≤ r},∀i ∈ V .
This specific problem corresponds to Min r-Dominating Set with radius r. If the
optimal value of Min r-Dominating Set with radius r is greater than p, then the
optimal value of Min p-Center is greater than r; otherwise, the optimal value is
less or equal to r. Then, let D = D1, D2, . . . , Dt be an ordering of the distinct
distance values in the matrix of shortest distances for G. We can solve Min r-

Dominating Set with radius Di, where Di is taken in D in the decreasing order,
until the optimal value of the optimal value is greater than p. Since |D| is in
O(n2), the number of steps is finite. This approach has been improved since by
using a binary search strategy on |D| which reduces the maximum number of steps
to O(log n). In addition, to reduce the search space, lower and upper bound on
the optimal value of Min p-Center can be computed. The complexity of the re-
sulting algorithm depends hence on the complexity of Min r-Dominating Set on
the given class of graph. More precisely, if on a given graph Min r-Dominating

Set is in O(f(n)), one can solve Min p-Center on that graph in O(f(n) log n).

In [15], for p ≥ 2, Kariv and Hakimi proved the NP-hardness of Min p-Center

on an arbitrary planar graph G of maximum degree 3 and all edge lengths equal to
1. The proof is based on the relation between Min p-Center and Min Dominating

Set. We present a few key ideas of this relation, useful in our thesis. An optimal
solution for the Min p-Center problem with p = γ(G) is an optimal solution for
the Min Dominating Set. However, the Min Dominating Set and the problem
of finding the domination number are NP-hard [25]. In addition, Min Dominating

Set is equivalent to Min r-Dominating Set with radius 1. Consequently, Min r-

Dominating Set with radius 1 on a graph G = (V,E) can be reduced to the Min

Dominating Set on a graph (V,Er), where, for vertices i, j ∈ V , (i, j) ∈ Er if and
only if d(i, j) ≤ r in G.

The same year, Hsu and Nemhauser [43] proved it is NP-hard to find an ap-
proximation algorithm in a metric space with ratio less than 2. Since then, several
2-approximation algorithms were developed [44], [45], [46], [47]. Recently, Garcia-
Diaz & all. proposed in [48] a survey and an analytical study and experimental
evaluation of the most representative approximation algorithms for Min p-Center.

On a tree, Kariv and Hakimi proved in [15] that Min p-Center can be solved in
O(n logp−1). If p = 2, Handler proposed an O(n) algorithm to solve Min p-Center

[49].
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2.2.1.2 Exact solutions and heuristics

Apart from the Min r-Dominating Set approach as described previously, other
exact solution methods have been proposed.

Daskin [50] proposed the first mixed integer programming (MIP) formulation
for Min p-Center. Elloumi, Labbé and Pochet [51] proposed another IP formu-
lation using the fact that the optimal value of Min p-Center is restricted to a
finite set of distance values. Calik and Tansel [52] developed two new IP formula-
tions, the second one being a tightened formulation using a relationship between
their first formulation and the formulation proposed by Elloumi et al. [51]. We
will describe these formulations and corresponding algorithms more extensively in
Chapter 6.

Finally, we present some heuristics for Min p-Center. Mladenovic et al. [53]
introduced the first meta-heuristic approaches for finding approximate solutions
to Min p-Center. They proposed a multistart local search algorithm, a chain
substitution Tabu Search algorithm, and a variable neighborhood search algorithm.
While conducted experiments on the instances from the OR-Library among other,
their algorithm outperformed Hochbaum and Shmoys’ [44] algorithm. Pullan [54]
proposed a genetic algorithm for the Min p-Center which combines a population
based meta-heuristic with a local search algorithm. Salhi and Al-Khedhairi [55]
obtained light lower and upper bounds by using three-level meta-heuristic and
integrated these bounds with the algorithm by Daskin [50] to solve the Min p-

Center relatively more quickly.

Martinich [56] proposed a method called the vertex-closing approach for the
Min p-Center on complete networks with distance values satisfying the triangle
inequality. Initially, the algorithm places a facility on each vertex. Then the
problem is to find (n − p) facilities to be closed, so that the maximum of the
distances between the vertices and their facilities is minimized. They proposed two
polynomial algorithms of complexity O(m logm) and O(m2). The algorithms are
proven to converge to an optimum for special cases, and computational experiments
suggest that they produce very good solutions. In particular both algorithms
perform very well on problems where p is large relative to the number of vertices
n, specifically when p/n ≥ 0.30.

Mihelic and Robic [57] solved the Min p-Center on complete networks with
distance values satisfying the triangle inequality by introducing a polynomial time
heuristic algorithm based on solving a finite series of minimum dominating set.
They experimentally showed that their algorithm performs much better than other
existing heuristics (at that time) and is competitive with the best known (non-
polynomial time) algorithms for solving Min p-Center in terms of average quality
and deviation of the results as well as execution time.

Finally, Bozkaya and Tansel [58] showed that there exists a spanning tree of
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any connected network such that the optimal solution to the Min p-Center on this
tree is optimal also for the network under consideration. They experimented on
two classes of spanning trees to observe how often these trees provide the optimal
solution. They concluded that these two classes of spanning trees do not always
include the optimizing tree, but they do in most of the instances.

2.2.1.3 Other Fundamental Facility Location problems

The fundamental problems of Facility Location include p-Median problems, Fixed-
Charge Facility Location problems and Covering Location problems. The following
definitions are based on the book by Laporte, Nickel and da Gama [37] and on the
recent survey by Turkoglu and Genevois [59].

The p-Median problem
The p-Median problem is the problem of finding a location for p facilities that
minimizes the sum of distances between a vertex and the nearest facility, over all
vertices. Kariv and Hakimi proved in [15] that p-Median is NP-hard on a general
graph. Often the objective function focuses rather on the costs, which are directly
proportional to the distance and can be weighted with regard to the demand vertex.

The Fixed-Charge Facility Location problem
The Fixed-Charge Facility Location problem is a minisum problem like p-Median,
where the number of facilities that can be opened is not constrained. However the
opening costs of facility opening are added to the objective function. Fixed-Charge
Facility Location aims at minimizing the total cost (opening and travel).

Covering Location problems
A covering location problem deals with situations where the service provided by
a facility is ensured only within a predefined distance of it. For example, if the
facilities correspond to ambulance stations, an area is considered covered only if
the ambulance can arrive there in less than 5 minutes. There are two main types of
covering location problems: the first one corresponds to Min r-Dominating Set

as a particular case of Min Set Cover, as previously described. Min Set Cover

has been proved NP-hard by Garey and Johnson in [25] and is seen as one the
three special structures in pure integer programming with the most wide-spread
applications. The second type of covering location problems is Maximal Covering,
where the number of facilities that can be located is bounded. Therefore Maximal
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Covering aims to maximize the covered vertices within the restricted number of
facilities that can be located.

2.2.2 Models under indeterminacy

Facility location problems in nondeterministic environments are generally described
in two stages: first, before the indeterminacy is resolved, we can choose locations.
Then, once indeterminacy has been resolved, react for example by assigning ver-
tices to facilities. This description matches real life situations like facility break-
down, natural disaster cutting off communication, etc., and it has already been
studied under different setups. Therefore, facility location problems have been
subject to many approaches for decision making with indeterminacy (see for ex-
ample the reviews [38, 36, 37]). More specifically, several models for Min p-Center

have already been developed for environments where indeterminacy is taken into
account.

We propose in this section a brief presentation of some Min p-Center variants
under indeterminacy, as well as some other models relevant for our context. When
appropriate, we will outline the differences between the introduced work and the
UP model. In the following, we consider two analysis axis: the origin of the
indeterminacy and the decision-making environment.

Origin of the indeterminacy

When addressing a facility location problem under indeterminacy, indetermi-
nacy can come from different parts of the input data [60] [61]:

• provider-side indeterminacy corresponds to indeterminacy in facility capac-
ity, facility reliability, facility availability, etc.

• receiver-side indeterminacy is related to the uncertain structure of the set of
users, users demands, users locations etc.

• in-between indeterminacy refers to the lack of complete knowledge about
the transportation network topology, transportation times or costs between
facilities and users.

Decision-making environment

Conventionally, one distinguish three decision-making environments: certainty,
risk and uncertainty [16]. In certainty situations, all parameters are determinis-
tic and known, and there is no element of chance between the decision and the
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outcome. On the other hand, risk and uncertainty both involve randomness in
the parameters. In risk situations, the value of some parameters are governed by
probability distributions that are known by the decision maker. In uncertainty
situations, no probabilistic information is used either because it is not available or
because the decision maker prefers not to resort to it.

In Table 2.1, we classify the works we will present following this double analysis
grid. We present first some relevant variants of Min p-Center under indetermi-
nacy with regard to the origin of the indeterminacy. We think this approach is the
most relevant to outline the difference between these models and the UP model.
We will also discuss why our model fits in the in-between indeterminacy type. Sec-
ondly, we will categorize these works and discuss some other relevant works from
the point of view of the decision-making environment. Finally, we will discuss the
representation of indeterminacy with respect to our model.

Type / Environment Certainty Uncertainty Risk
Provider-side [62, 63, 64] [60, 65]
Receiver-side [64] [66, 67, 68, 69, 65] [70]
In-between RpCP [71, 72, 69, 65] PpCP

Table 2.1: Review

2.2.2.1 About the origin of the indeterminacy

Provider-side indeterminacy
Provider-side indeterminacy may relate to randomness in the facility availability
or reliability. For example, the q-Neighbor Min p-Center problem [62, 63], also
called Fault tolerant Min p-Center problem [73], is a generalization of Min p-

Center where, given a number q, we have to place p centers so as to minimize
the maximum distance of any non-center vertex to its qth closest center. More
precisely, each vertex is assigned q-service facilities, so that each demand vertex
could withstand the failure of q − 1 service facilities. Chaudhuri, Garg and Ravi
give in [62] a 2-approximation algorithm for this problem, and show it is the best
possible. Other exact algorithms and experimental results are proposed in [63] by
Chen and Chen. In the UP model, in some scenarios the fire occurs in an area
with a shelter. We have seen that in this case the shelter is no more reachable for
users outside the area (user inside the disaster area can get into the shelter). This
situation corresponds to a provide-side type of indeterminacy. However, note that
the evacuation strategy, even in these situations, does not correspond to an auto-
matic reassignment to a qth center, for some predetermined q. In the UP model,
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we do not assign vertex v to some predetermined qth closest center in G, because,
among other things, we have no guarantee that the qth closest center for v in G
is accessible in Gs. If we consider a graph Gs, while the vertices v ∈ V \ {s} are
evacuated to their closest center in Gs, the evacuation strategy of vertex s depends
on its neighborhood.

Receiver-side indeterminacy
Receiver-side indeterminacy may express randomness in the demand. For exam-
ple, Bhattacharya, Kameda and Song [66] consider the minimax regret 1 Min 1-

Center with uncertainty restricted to vertex weights. They introduce an O(n)
algorithm for path, an O(n log n) algorithm for trees, an O(n log n) algorithm for
cycle and an O(n log2 n) algorithm for cactus. Mart́ınez-Merino et al. [70] con-
sider a Min p-Center variant with probability on vertex demand on an Euclidean
plane. Averbakh and Berman [67] propose an exact algorithm for minimax re-
gret Min 1-Center. It leads to a O(n2 log2 n log log n) algorithm for trees, and a
O(mn2 log n) algorithm for general graphs. In [68], Taghavi and Shavandi consider
the Min p-Center problem with interval associated to vertex weights.

In-between indeterminacy
In-between indeterminacy corresponds to randomness in travel time or transporta-
tion cost for example. Many models consider indeterminacy on the weight (seen
as cost or travel time) associated to the edges. The objective function focuses
then on the weighted distance. In [71] by Averbakh and in [72] by Lu, a robust
version of Min p-Center is defined by introducing uncertainty on edge weights:
each weight may vary in an uncertainty set (usually an interval) and the problem
is to determine a solution minimizing the worst case or the maximum regret. In
[71], Averbakh proved that the corresponding minimax regret Min 1-Center with
uncertain edge weight is strongly NP-hard, in contrast with the problem with un-
certain vertex-demand weight.

Note that, a model can incorporate different types of indeterminacy. For ex-
ample, in [69], Averbakh and Berman consider the minimax regret weighted Min

1-Center on a network with uncertainty in node weights and edge lengths. They
showed this problem can be solved on trees with a O(n2 log n) algorithm.

In [65], the authors Du, Zhou and Leus propose a robust minimax model for a

1Under a minimax regret objective function, the optimal decision is that for which the largest
difference of performance (called the regret) for each scenario between a solution and the best
solution for the scenario is minimized. More details in subsection 2.2.2.2.
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reliable Min p-Center problem. Each scenario corresponds to a set of disrupted
facilities and updated demands and costs. Clients are reallocated to the nearest
surviving facility. This model incorporates the three types of indeterminacy. We
will come back to their model later on to outline its difference with the UP model.

Huang, Kim and Menezes propose in [64] a variant of the Min p-Center prob-
lem for large-scale emergencies, where the disaster affects a single vertex s, in-
cluding any facility on this vertex. This model incorporates both indeterminacies
in the facility availability and in the demand: any facility on an affected vertex
is no longer available but only the population on this vertex requires evacuation.
This model is motivated by different kind of disasters that affect a single vertex
but also by the fact that each vertex corresponds to a large zone, like an entire
city. Our context is really different since all zones must be evacuated in each sce-
nario s and a shelter always secures at least the people from the corresponding area.

The UP model corresponds to an in-between type of indeterminacy. One of
the main differences between the UP model and all known models is that we apply
indeterminacy on the graph structure and not on the values of the edges between
the vertices. We think that considering rather indeterminacy over the vertex struc-
ture of the graph will allow us to better apprehend the impact of the fire on the
transport network. In some of these works, nondeterminate parameters vary inde-
pendently one from the other. In our context, this independence hypothesis is not
relevant since, if a fire ignites on a vertex, then all weights of the edges incident to
this vertex are modified in the same way.

2.2.2.2 About the indeterminacy model

Certainty situations
In certainty situations all parameters are deterministic and known, and there is no
element of chance between the decision and the outcome. We apply deterministic
optimization to find an optimal decision with the use of an objective or multi-
objective function. This environment is not necessarily unsuitable for managing
situations which in practice include indeterminacy. In this case, the determin-
istic models generally adopt a single hazard scenario such as a worst-case or a
most probable scenario. A vast literature in evacuation planning mostly relies
on such deterministic models (see for example the review in [30]), as well as in
emergency logistics (see for example the review in [36]). The Min p-Center prob-
lem for large-scale emergencies[64] and the the q-Neighbor Min p-Center problem
[62],[63] previously introduced correspond also to this case.
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Risk situations
In risk situations probability information on the parameters is available. In this
case, stochastic optimization is usually used, generally to optimize the expected
value of a given objective function, or to maximize the probability that the solution
is “good”. The problem is then often solved either by using a specially designed
algorithm (for example [70]), or using the general Stochastic Programming (SP)
techniques. In a SP problem, there are first stage decision variables and second
stage decisions variables. First stage decision variables must be set before risk has
been resolved, while second stage decisions variables have to be set after the risk
has been resolved. Among SP problems for facility locations, Bayram and Yaman
propose for example a stochastic evacuation planning model in [74] that optimally
locates shelters and assigns evacuees to the nearest shelter so as to minimize the
expected total evacuation time. In [60], the authors propose a SP problem to solve
a variant of Fixed-Charge Facility Location with probability on the accessibility to
the facility. Note that PpCP falls into the paradigm of stochastic optimization but
not directly of SP. In PpCP, first stage decision variables correspond to the shelter
location; while second stage decision variables correspond to the evacuation path
followed by each person on the territory. Unlike the shelter location, the choice of
the evacuation path followed by a person is not under control of the decision-maker.

Uncertainty situations
In uncertainty situations no probability information on the parameters is used.
In this case, a robustness measure is usually considered for evaluating the perfor-
mance of the system. There are two classical objective functions: minimax and
minimax regret [16, 38, 75]. In a minimax problem, an optimal solution minimizes
the maximum value of the solution across all scenarios (for example [65]). Mini-
max regret problems are based on the definition of the regret of solution. There
are two common measures: the first one considers the difference between the value
of the chosen solution in a given scenario and the value of the optimal value for
that scenario (all of the robust problems based on minimax regret cited in Sub-
section 2.2.2 refer to this definition). The second one measures the ratio between
the two previously mentioned values. Note that RpCP falls into the paradigm of
minimax robust optimization. In addition, our model includes a layer of minimax
robust optimization regarding the measured evacuation distance of the fire-source
area: in scenario s, if no shelter is located on s, then the evacuation distance is
given by the longest evacuation path originating from s.
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2.2.2.3 About the indeterminacy representation

In some models, non determinate parameters may vary independently one from
each other (for example in [67, 68, 70]). In our context, this independence hypoth-
esis is not relevant since, if a fire ignites on a vertex, all length of the edges incident
to this vertex are modified in the same way. In the UP model, indeterminacy is rep-
resented by a set of discrete scenarios. Such scenario-based approach has already
been studied for facility location problems [38, 75]. Most deal with scenario-based
approaches for generalizations of p-Median and Fixed-Charge Facility Location
problems. For example, in [76], a p-Median problem under scenario-based de-
mand uncertainty is considered. In [77], a new robustness measure is introduced
and used on a discrete scenario-based approach for the p-Median problem. In
[60], the authors consider a scenario-based variant of Fixed-Charge Facility Loca-
tion, where each scenario specifies the set of second-stage accessible facilities. The
two reviews [38, 75] underline that robust Min p-Center problems are often more
difficult than the related p-Median problems. To our knowledge, the only paper
studying the robust Min p-Center problem with a scenario approach is the previ-
ously presented model by Du, Zhou and Leus [65]. RpCP differs from this model,
as it can not be reduced to a robust minimax Min p-Center with a scenario-based
approach, where each scenario s defines the length of the distance between two
vertices in Gs: the evacuation distance rs(C, v) depends on the solution and does
not systematically correspond to a shortest path in Gs.

Conclusion

In this chapter we define the problems studied in this thesis. Our objective is to
determine a best location for shelters in a territory threatened by wildfires. The
territory, divided into zones, is represented by a graph in which each zone corre-
sponds to a vertex and two vertices are linked by an edge if it is possible to go
directly from one zone to the other. The problem is to locate at most p shelters
on vertices so that the maximum evacuation distance of any vertex to its nearest
shelter is minimized. When the uncertainty of fire outbreaks is not considered,
this problem corresponds to the well-known Min p-Center problem on a graph.
A scenario defines a fire outbreak on a single zone with the main consequence of
modifying evacuation paths. Several evacuation paths may become impracticable
and the ensuing evacuation decisions made under pressure may no longer be ra-
tional. We introduce a new evacuation strategy, the UP evacuation strategy, to
characterize this behavior. This evacuation strategy induces new evacuation dis-
tances which render our approach specific. The evacuation distance of this source
area is then the length of a longest evacuation path leaving this area. The evacua-
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tion distance of any other area is given by a shortest operational path to a shelter.
The evacuation radius of a p-set for a scenario is then the maximum evacuation
distance in this scenario. We define two problems; they vary by the input data
and the objective function considered. In PpCP, we are in a risk environment and
the objective function is to minimize the probabilist evacuation radius. In RpCP,
we are in an uncertain environment and the objective function is to minimize the
robust evacuation radius. A main objective in our context is to avoid any death
toll, thus a p-set is considered feasible only if the evacuation distances of all ver-
tices in all scenarios are finite. This constraint is verified for both PpCP and RpCP

when p ≥ 2 and the p-set intersects each minimal articulation components of the
graph. A direct result is that a shelter must be located on each pending vertex.

Compared to the existing state of the art, our problems fall within the scope
of two-stage problems with in-between indeterminacy. To our knowledge, it is the
first attempt to model the evacuation strategy in such manner for a shelter location
problem.

In the next chapter, we study the NP-hardness of our two new problems.
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CHAPTER 3

HARDNESS RESULTS

Abstract

In this chapter, we study the hardness of the problems RpCP and PpCP. We show
that RpCP is NP-hard in all hereditary classes of graphs where the decision ver-
sion of Min Vertex Cover is NP-complete, and NP-hard in subgrids of degree
at most 3. In addition, we give a non approximation result for PpCP on bipar-
tite planar graphs and another non approximation ratio on subgrids of degree at
most 3.
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Introduction

In the previous chapter, we introduced two new problems for shelter location:
PpCP and RpCP. In this chapter, we analyze the hardness of these two problems.
Note that if p was a fixed constant, then the number of subsets of size p would be
polynomial and these problems could be polynomially solved on any graph (even
thought not tractable in practice). We saw that Min p-Center is NP-hard on
planar graphs of maximum degree at least 3. This result does not imply immedi-
ately the hardness of PpCP and RpCP. Indeed, we defined our model with non-zero
probabilities, which does not count the classic Min p-Center as one of its specific
cases.

For a graph G = (V,E), denote L ⊂ V the set of pending vertices. Given the
feasibility conditions seen in Subsection 2.1.5, we assume p ≥ |L| and L contained
in any feasible solution for PpCP and RpCP. Thus, when p = |L|, we can straightfor-
wardly say that L is the only feasible solution for both PpCP and RpCP. Therefore,
we consider in the following that p > |L|.

The case of planar graphs of low degree is particularly relevant for real case
applications. Since the graph G represents the adjacency graph of zones in the
territory, it is planar and in most cases, each zone has a small number of adjacent
zones. In some cases however, the underlying graph has even a simpler structure.
A common case is a rectangular grid or subgrid when the territory has some
“holes” corresponding to large spaces difficult to traverse, like a lake, steep slopes
or marshland. Based on these cases, a natural question is the complexity of RpCP
and PpCP in bipartite planar graphs (since subgrids are bipartite) and subgrids. In
what follows, we answer these questions.

In Section 3.1 we present some hardness results for RpCP. A significant portion
of the work presented in this section has been published in [28]. In Section 3.2 we
present two hardness-in-approximation results for PpCP, one on bipartite planar
graphs with degrees 2 or 3, and one on subgrids with degrees 2 or 3. The work
presented in this section has been published in [27] (result on bipartite planar
graphs) and have been submitted [78] (result on subgrids).

In this chapter, we present different transformations of graphs. Given an initial
graph G = (V,E), our transformations correspond always to an embedding of G
into a graph G′ = (V ′, E ′). For clarity, for every vertex u of G, we will denote
as well by u the vertex of G′ it maps to. Using this convention, we consider that
the vertex set of G is a subset of the vertex set of G′. A specific transformation
considered in this chapter is a grid embedding: given a subgrid G = (V,E), a grid
embedding is a one-to-one function from V to V ′ for some dimensions (n,m) such
that every edge (u, v) ∈ E maps to an edge of the n ×m grid. Unless otherwise
stated, each time we will refer to a subgrid, we will assume that a grid embedding
is given. As defined in [79], for a partial subgrid G and a positive integer f , the f -
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expansion of G, denoted Exp(G, f), is obtained from G by inserting f − 1 vertices
on each edge (each edge becomes a path of f edges). If f ≥ 2, the f -expansion
of any partial subgrid is a subgrid. If G is a subgrid embedded in a n × m grid
G, then Exp(G, f) is a subgrid embedded in the [(n − 1)f + 1] × [(m − 1)f + 1]
grid Exp(G, f). The vertex set of G can be seen as a subset of the vertex set of
Exp(G, f) and more precisely, in the related grid embedding of Exp(G, f), the
coordinates of any vertex u ∈ V are multiplied by f compared to its coordinates
in the original grid embedding of G in G.

The following Lemma is certainly a known remark but we show it since we did
not find any reference for it.

Lemma 7. The Min Vertex Cover problem is NP-hard in planar graphs with
vertices of degree 2 or 3.

Proof. The decision version of the Min Vertex Cover is known to be NP-complete
on planar graphs of maximum degree 3 [15]. Consider a planar graph G of maxi-
mum degree 3 with a pending vertex v adjacent to vertex y. Consider the graph
G′ obtained from G by adding a triangle {v1, v2, v3} and linking v1 with v (v is
then of degree 2 in G′). G′ is planar with maximum degree 3 and with one pending
vertex less than G.

We prove that G has a vertex cover of size t if and only if G′ has a vertex cover
of size t+ 2, which concludes the proof.

⇒ Let U be a vertex cover of size t on G. We build a vertex cover U ′ for G′

based on U by adding v1, v2 which cover the edges of G′[{v, v1, v2, v3}]. U ′ is then
a vertex cover for G′ of size t+ 2.

⇐ Let U ′ be a vertex cover of size t + 2 on G′. Notice that U ′ includes at
least 3 vertices of {y, v, v1, v2, v3}. We can always chose to include y, v1, v2 in U ′

instead of any three vertices of {y, v, v1, v2, v3} without increasing the size of U ′.
As y ∈ U ′ covers the edge (v, y), U ′ \ {v1, v2} is a vertex cover of G′ \ {v1, v2, v3}.
Then U = U ′ \ {v1, v2} is a vertex cover for G of size t.

3.1 RpCP Hardness results

For this section, we consider the version of RpCP with an evacuation radius thresh-
old, RpCPk. For any constant integer k, RpCPk takes as input an instance of RpCP.
This problem is to decide whether there is a solution C with a robust radius less
or equal to k, i.e. IR(C) ≤ k. This problem is clearly in NP: we consider a polyno-
mial number of scenarios and consequently, for any solution C, checking whether
IR(C) ≤ k can be done in polynomial time. For each scenario, it requires evaluat-
ing the evacuation distances of each vertex using a minimum path algorithm. Note
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that the set of problems (RpCPk)k≥1 for any integer k corresponds to the decision
problem of RpCP.

In this section, we will address k = 1 or 2 and the uniform case for different
classes of graphs. In Section 3.1.1, we outline the relation between RpCP1 and the
decision version of the Min Vertex Cover problem. In Section 3.1.2, we outline
the relation between RpCP2 and the decision version of the Min Dominating Set

problem. In both cases, we can deduce hardness results for RpCP1, RpCP2 and
RpCP on some classes of graphs. In Section 3.1.3, we consider a particular subclass
of bipartite planar graphs, the class of subgrids of maximum degree 3. RpCP1
is polynomially solvable in this class while RpCP2 reveals to be NP-complete. We
conclude in Section 3.1.4 with some comments about the complexity of RpCPk when
k varies.

3.1.1 RpCP1 and the Min Vertex Cover problem

We consider an undirected graph G = (V,E) where all edges are of length 1. The
following elementary proposition leads immediately to a first hardness result:

Proposition 8. The robust radius of a set of vertices C ⊆ V is at most 1 if and
only if C is a vertex cover that includes all pending vertices.

Proof. Suppose C is a set of vertices with IR(C) ≤ 1. Since its robust radius is
finite, it should include all pending vertices. Let u ∈ V \ C, then ru(C, u) = 1,
which means that all neighbors of u are in C. Thus, C is a vertex cover.

Conversely, assume C is a vertex cover including all pending vertices; we con-
sider a scenario u and a vertex v such that v /∈ C (in particular v is not a pending
vertex). If v = u, then every neighbor of v is in C since v /∈ C. If v 6= u, then v
has at least one neighbor in C \ {u} since v is of degree at least 2. In both cases,
the evacuation distance is 1 and consequently ru(C) = 1. Therefore, IR(C) ≤ 1,
which completes the proof.

In particular, if G has no pending vertex, then IR(C) is at most 1 if and only
if C is a vertex cover. We deduce immediately:

Corollary 9.

1. RpCP1 is NP-complete in all classes of graphs in the uniform case and of mini-
mum degree 2, for which the decision version of Min Vertex Cover problem
is NP-complete. The problem RpCP is NP-hard in these classes of graphs.

2. RpCP1 is polynomial-time solvable in all classes of graphs in the uniform case
and of minimum degree 2, for which the decision version of Min Vertex

Cover problem is polynomial-time solvable.
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For hereditary1 classes of graphs H , we can easily use a pre-processing allowing
to reduce the Min Vertex Cover problem in this class to the same problem in the
subclass of graphs in H without pending vertices. This leads to the following
corollary.

Corollary 10.

1. RpCP1 is NP-complete in all hereditary classes of graphs for which the decision
version of Min Vertex Cover problem is NP-complete. The problem RpCP

is NP-hard in these classes of graphs.

2. RpCP1 is polynomial-time solvable in all hereditary classes of graphs for which
the decision version of Min Vertex Cover problem is polynomial-time solv-
able.

Proof. (1): Suppose H is an hereditary class of graphs for which the decision ver-
sion of Min Vertex Cover is NP-complete. We show Min Vertex Cover reduces
to RpCP1 in this class. Consider (G, p), with G ∈ H and p ∈ N an instance of
the decision version of Min Vertex Cover. We transform G using the following
pre-processing: while the graph has a pending vertex x and p ≥ 0: add to the cover
the unique neighbor y of x, remove from the graph (x, y) and all edges incident
to y and subtract 1 to p. If p becomes negative, then the original instance was a
no-instance If all vertices of G are removed and p ≥ 0, then it was a yes-instance.
In other cases, if (G′, p′) are the resulting graph and constant, then the original
instance is a yes-instance if and only if (G′, p′) is a yes-instance. Since G′ is in H
and has no pending vertex, this is equivalent to deciding whether there is in G′ a
p′-center of robust radius at most 1.

(2): Suppose H is an hereditary class of graphs for which the decision version
of Min Vertex Cover can be solved in polynomial-time and consider an instance
(G, p), with G ∈ H and p ∈ N of RpCP1. Using Proposition 8, it is a yes-instance if
and only if there is a vertex cover including all pending vertices and of cardinality
at most p. If G has p′ pending vertices, with p′ > p, then it is a no-instance. If
p′ ≤ p now, then this is equivalent to say that the subgraph obtained by removing
the pending vertices and the related incident edges has a vertex cover of size
p−p′. This question can be answered in polynomial-time since the resulting graph
is in H.

In particular, deciding whether the minimum robust radius is 1 (RpCP1) is NP-
complete on planar graphs of maximum degree 3 since the decision version of Min
Vertex Cover is NP-complete on this hereditary class [80].

1We call hereditary a class of graphs such that, for any graph in the class, all its subgraphs
are still in the class.
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3.1.2 RpCP2 and the Min Dominating Set problem

We consider an undirected graph G = (V,E) where all edges are of length 1. The
following proposition leads to a first hardness result for RpCP2:

Proposition 11. Let G = (V,E) be a triangle-free graph. D is a dominating set of
G that includes all pending vertices of G if and only if

IR(D) ≤ 2⇔ rs(D, v) ≤ 2,∀v ∈ V, ∀s ∈ V

Proof. Suppose D is a dominating set including all pending vertices, we consider
a scenario s and a vertex v such that v /∈ D (in particular v is not a pending
vertex). If v = s, consider then the evacuation path of v crossing any neighbor y
of v. Vertex y is either in D or adjacent to a vertex of D which cannot be s. In
this case rs(D, v) ≤ 2. If v and s are not adjacent, then v has a neighbor in D and
rs(D, v) = 1. The same holds if v and s are adjacent with s /∈ D. Finally, if v and
s are adjacent with s ∈ D, then there is at least one neighbor y 6= s of v who is
at a distance at most 1 of a vertex x ∈ D, where x 6= s since G is triangle-free. In
this case rs(D, v) ≤ 2. Consequently, rs(D, v) ≤ 2,∀v ∈ V, ∀s ∈ V .

Conversely, suppose D is a set of vertices with rs(D, v) ≤ 2,∀v ∈ V and
∀s ∈ V , which is equivalent to statement IR(D) ≤ 2. Since every evacuation
distance is finite, D includes all pending vertices. Take a vertex v /∈ D and u /∈ D
an vertex adjacent to v. Then, for the scenario u, an evacuation path through v
leads to a vertex shelter adjacent to v. Therefore, every vertex of G is either in D
or adjacent to D. Consequently, D is a dominating set that includes all pending
vertices.

In particular, if G is triangle-free of degree at least 2, then IR(C) is at most 2
if and only if C is a dominating set. We deduce:

Corollary 12.

1. RpCP2 is NP-complete in all triangle-free classes of graphs in the uniform case
and of minimum degree 2, for which the decision version of Min Dominating

Set problem is NP-complete. The problem RpCP is NP-hard in these classes
of graphs.

2. RpCP2 is polynomial-time solvable in all triangle-free classes of graphs in the
uniform case and of minimum degree 2, for which the decision version of Min
Dominating Set problem is polynomial-time solvable.
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3.1.3 RpCP2 and the Min Vertex Cover problem

In this section, we present a reduction from Min Vertex Cover to RpCP2 which
proves the NP-completeness of RpCP2 in subgrids with vertices of degree 2 or 3.
The purpose of this section is mainly to introduce the structural relations between
these two problems, which will be needed in the next section when proving the
NP-hardness of PpCP in subgrids of maximum degree 3.

To make the presentation easier to read and the proof more intuitive, we first
propose a weaker result (Proposition 13) stating the hardness of RpCP2 in bipartite
planar graphs of maximum degree 3. Then, we show how to extend the reduction
with a more complex construction to prove Theorem 15 that states the hardness of
RpCP2 in subgrids with vertices of degree 2 or 3. This step uses ideas and techniques
proposed in [81, 79] to prove NP-hardness results in subgrids for a large range of
problems known to be hard in planar bipartite graphs with vertices of degree 2 or
3.

Proposition 13. RpCP2 is NP-complete in planar bipartite graphs with vertices of
degree 2 or 3, even in the uniform case. RpCP is NP-hard in this case.

Proof. We revisit a reduction from the decision version of Min Vertex Cover to
Min Dominating Set in planar graphs with vertices of degree 2 or 3, shown to be
NP-complete in [25]. Given a planar graph G = (V,E) with degrees 2 or 3, one
builds a bipartite graph G′ = (V ′, E ′) by replacing each edge (u, v) with a gadget
L4 as presented in Figure 3.1. G′ has vertices of degrees 2 and 3.

u auv

buv

cuv

duv

v

Figure 3.1: The gadget L4 for an edge (u, v)

Lemma 14. For any t ≤ |V |, G has a vertex cover of size t if and only if G′ has a
(t+ |E|)-set C with IR(C) ≤ 2. Moreover, for each edge (u, v) ∈ E, C has exactly
one vertex in {auv, cuv} and none in {buv, duv}.

Proof. ⇒ Suppose that G has a vertex cover U ⊂ V of size t. We add to it a
set U ′ ⊂ V ′ of vertices to make it the required solution. To make the following
construction non-ambiguous, we consider an orientation of the graph G. Consider
any edge (u, v) oriented from u to v. As U is a vertex cover, at least one of the
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endpoints of (u, v) is in U . If u ∈ U , then we add cuv to U ′. Otherwise, we add
auv to U ′. As a result, C = U ∪ U ′ is a (t + |E|)-set and as there is no pending
vertex in G′, every vertex has an evacuation distance of value at most 2. Thus,
IR(C) ≤ 2.
⇐ Suppose a set C in G′ with IR(C) ≤ 2. Denote Luv = {u, auv, buv, cuv, duv, v}

Note that, for any edge (u, v) oriented from u to v, |C ∩ Luv| ≥ 2: if it is not the
case, then there is at least one scenario inducing an evacuation path of length 3
contained in Luv. In addition, C ∩ {auv, buv, cuv, duv} 6= ∅: if it was not the case,
then auv for example would have an evacuation path of length 3 in scenario auv
passing through vertices buv, cuv, v. Therefore, |C| = (t+|E|) for some non negative
t. If for any edge (u, v) ∈ E we have |C∩{auv, buv, cuv, duv}| ≥ 2, then we transform
C into a set Ũ such that |Ũ | ≤ |C|, IR(Ũ) ≤ 2 and |Ũ ∩ {auv, cuv}| = 1:

• if auv ∈ C, then Ũ = C \ {buv, cuv, duv} ∪ {v}.

• else, if cuv ∈ U , then Ũ = C \ {auv, buv, duv} ∪ {u}.

• else, we have C ∩ {auv, buv, cuv, duv} = {buv, duv}, then Ũ = C \ {buv, duv} ∪
{auv, v}.

It follows that, for any edge (u, v) ∈ E, at least one vertex in {u, v} is included
in Ũ . If Ũ has less than t + |E| vertices, then we add vertices in V to make Ũ
of cardinality t + |E| without increasing any evacuation distance. In conclusion,
Ũ ∩ V is a vertex cover of G of cardinality t, which completes the proof.

Lemma 14 induces that the decision version of Min Vertex Cover in planar
graphs with vertices of degree 2 or 3 polynomially reduces to RpCP2 in bipartite
planar graphs with vertices of degree 2 or 3. Since Min Vertex Cover is NP-
complete in planar graphs with vertices of degree 2 or 3 (Lemma 7), so does
RpCP2, which concludes the proof.

In the following we show how to adapt the proof of Proposition 13 for a stronger
result. It seemed to us easier to devise directly a reduction from Min Vertex Cover

than reducing RpCP2 in planar graphs with vertices of degree 2 or 3 to the same
problem in a more restrictive class. The proof of Proposition 13 was given only to
make this reduction clearer and more intuitive.

Theorem 15. RpCP2 is NP-complete in subgrids with vertices of degree 2 or 3, even
if all edges have length 1. RpCP is NP-hard in this case.

Proof. We already have noted that the problem RpCP2 is in NP. In the following
we present a reduction from Min Vertex Cover in planar graphs of maximum
degree 3. For clarity, the reduction from Min Vertex Cover is divided in two
steps.
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Step 1: This step follows general ideas proposed in [81, 79] for proving NP-
hardness results in subgrids. Given a planar graph G = (V,E) with vertices of
degree 2 or 3, we first embed it in a grid of polynomial size using a result of [82]:
vertices are mapped to vertices of the grid and edges are mapped to non-crossing
paths in the grid. Embedding can be done in polynomial time. Thus, any edge
(u, v) of G is replaced in the embedding by a path of length `uv between u and v for
some positive integer `uv. The resulting graph is not a subgrid but only a partial
subgraph of the grid. The next step will make it a subgrid with, in addition, the
required properties to ensure the validity of the reduction.

Step 2: The main idea is inspired from the reduction seen in Proposition 13,
where a 4-cycle is inserted on each edge of the original graph (gadget of Fig-
ure 3.1). After embedding the graph in a grid, an edge (u, v) of the original graph
corresponds to a path of length `uv and the idea is to insert on this path a 4-
cycle like in the previous reduction. The only technical difficulty is to manage
the length of the paths between u, v and this 4-cycle to ensure that the reduc-
tion works. To this aim, we use the gadget Tuv illustrated in Figure 3.2 with
vertices x1

uv, x
2
uv, a

+
uv, a

−
uv, buv, duv, c

+
uv, c

−
uv and ziuv for i ∈ {1, . . . , 8} if `uv = 1, or

i ∈ {1, . . . , 9} otherwise. Tuv is inspired from gadget L4 in Figure 3.1. Tuv can
replace a section of 12 consecutive horizontal edges and similarly, a sequence of 12
vertical edges can be replaced with the same gadget rotated by π

2 radians. To this
purpose, the next step is to perform a 12-expansion on every edge (by inserting
11 new vertices). This has few advantages: it produces another embedding of the
original graph in a grid that ensures that every path Puv in the grid associated
with an edge (u, v) of the original graph has now 12`uv edges and with its 12 first
edges from u (or from v) either all horizontal or all vertical. In addition, such an
expansion gives enough space to ensure we can insert gadgets Tuv while guarantee-
ing the resulting graph to be a subgrid. The strategy is to insert Tuv by replacing
the 12 first edges on one side of Puv. Since Tuv is non symmetric, we will use an
orientation of the original graph G. Starting from the graph obtained at step 1,
the second step is summarized below and will conclude the reduction:

• Perform a 12-expansion. The resulting graph, G′ is a subgrid obtained from
G by replacing any edge (u, v) of E with a path Puv of 12`uv edges.

• Select an orientation of each edge of G and the related orientation on G′.

• For an edge (u, v) oriented from u to v, replace the 12 first edges of Puv,
starting from u, with the gadget Tuv represented in Figure 3.2 if the 12
replaced edges are horizontal or with the same gadget rotated by π

2 radians
if they are all vertical.

• The resulting graph is denoted by G̃
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Note that for any edge (u, v) of G oriented from u to v, there is a path of length
12(`uv − 1) in G̃ from the vertex z9

uv and v. In particular, if `uv = 1, then z9
uv = v.

Else, the vertices of this path are denoted by z10
uv, . . . , v = z9+12(`uv−1)

uv . We then
denote by T̃uv the subgraph obtained by adding to Tuv the path from z9

uv to v. If
`uv = 1, then T̃uv = Tuv. The graph T̃uv has 6 + 12`uv vertices including u and v.
The graph G̃ is obtained from G by replacing each edge (u, v) oriented from u to
v with T̃uv. It is an induced subgrid since for every vertex x of Tuv \ {u, v} and for
every vertex y of Tu′v′ \ {u′, v′} with (u, v) 6= (u′, v′), (x, y) is not an edge in the
grid. In addition, vertices in V have the same degree in G̃ than in G and all other
vertices in G̃ have degree 2 or 3. G̃ has |V | + 4|E| + 12L vertices, all of degree 2
or 3, where L = ∑

(u,v)∈E
(`uv).

u

x1
uv x2

uv a+
uv a−uv duv z5

uv z6
uv z7

uv z8
uv z9

uv

buv c−uv

c+
uv z1

uv z2
uv

z3
uv

z4
uv v = z9+12(`uv−1)

uv

Figure 3.2: The subgraph T̃uv for the edge (u, v) oriented from u to v and `uv > 1.
Continuous lines are used for Tuv’s edges while dashed lines correspond to edges

outside Tuv.

This concludes the construction that can be performed in polynomial time. To
conclude the proof of Theorem 15, we need to show that Min Vertex Cover in
the graph G reduces to RpCP2 in the graph G̃. For this, we establish two claims.
Claim 1 is a technical result used to prove Claim 2 that immediately concludes the
proof.

Claim 1. Let C be a set of vertices of robust radius at most 2, then for every edge
(u, v) of G oriented from u to v, the following holds:

1. C includes at least one vertex from {buv, duv, a−uv, c−uv}

2. C includes at least two vertices from {buv, duv, a−uv, c−uv, a+
uv, c

+
uv}

Proof. (1): If C ∩ {buv, duv, a−uv, c−uv} = ∅, then for scenario c−uv, the evacuation
distance of c−uv is at least 3 (induced by the evacuation path through buv and a−uv).
The same occurs for a−uv.
(2): If buv ∈ C and a−uv /∈ C, then duv or c−uv should be in C to ensure an evacuation
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distance at most 2 for a−uv when it is on fire. So, |C∩{buv, duv, a−uv, c−uv, a+
uv, c

+
uv}| ≥ 2.

Similarly, if duv ∈ C, we have then |C ∩ {buv, duv, a−uv, c−uv, a+
uv, c

+
uv}| ≥ 2. Finally, if

buv, duv /∈ C, then we need C ∩ {a−uv, a+
uv} 6= ∅ and C ∩ {c−uv, c+

uv} 6= ∅ to ensure an
evacuation distance at most 2 when duv is on fire.

We are now ready to establish Claim 2. The proof requires to define, for an
edge (u, v) ∈ E of G oriented from u to v, two disjoint sets of vertices of T̃uv:

Denote Cv+
uv = {z3i

uv, i = 1, . . . , 2 + 4(`uv − 1)} (last vertex is z6+12(`uv−1)
uv );

Denote Cv−
uv = {z3i−1

uv , i = 1, . . . , 3 + 4(`uv − 1)} (last vertex is z8+12(`uv−1)
uv ,

which is linked to v).

Cv+
uv and Cv−

uv include, after a first vertex zi0uv, every third vertex along the path
ziuv, i0 ≤ i ≤ 8 + 12(`uv − 1). Roughly speaking, Cv+

uv (resp. Cv−
uv ) corresponds to

the optimal position of centers along the path from c−uv to v in T̃uv after deciding
to implement a center on vertex c+

uv (resp. c−uv). Note that on a path with 3p + 1
vertices, at least p − 1 centers are required in addition to the two extremities to
ensure the robust radius to be at most 2. The only solution using this number of
centers is to place centers at the extremities of the path and on every third vertex
in between. We have |Cv+

uv | = 2 + 4(`uv − 1) and |Cv−
uv | = |Cv+

uv |+ 1. In Figure 3.2,
where `uv > 1, vertices in Cv+

uv and Cv−
uv are represented striped or dashed respec-

tively.

Claim 2. G = (V,E) has a vertex cover U of size p = |U | if and only if G̃ has a
set CU of (p+ 4|L|+ |E|) vertices with IR(CU) = 2.

Proof. Let us first consider a vertex cover U of cardinality p in G = (V,E). We
complete U in CU in G̃ by adding, for every edge (u, v) ∈ E of G oriented from u
to v, 4`uv + 1 vertices as follows:

If u ∈ U , then we add to CU vertices {a+
uv, c

−
uv} ∪ Cv−

uv .

If u /∈ U , then we add to CU vertices {x1
uv, a

−
uv, c

+
uv} ∪ Cv+

uv .

Since we add 1 + 4`uv vertices for each edge, we have: |CU | = |U |+ 4|L|+ |E|.
We can check that the robust radius of CU is at most 2 and it is at least 2 since,
in all cases, we have two consecutive vertices in Tuv that are not in CU .

To prove the converse, note first that we need at least 1 + 4`uv vertices of T̃uv \
{u, v} in CU to ensure IR(CU) ≤ 2. Actually, if there are three consecutive vertices
of degree 2 that are not in CU , then the robust radius is at least 3. Consequently,
even if u and v are in CU , we need at least 4`uv centers of T̃uv\{u, v, buv, duv, a−uv, c−uv}
to ensure that every three consecutive vertices of degree 2 include at least one
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center. The best way to do it is to add {a+
uv, c

+
uv}∪Cv+

uv , which makes 4`uv centers.
Using Claim 1 (first item), we deduce that at least one additional vertex from
{buv, duv, a−uv, c−uv} should be added in any set of vertices C satisfying IR(C) = 2.

Let us now assume that G̃ includes a set of vertices C of robust radius at
most 2. As we just noted, for every edge (u, v) of G, C includes at least 1 + 4`uv
vertices of T̃uv \ {u, v} and thus, C includes in all p + |E| + 4L vertices for some
non-negative p. Suppose now that, for an edge (u, v) of G, oriented from u to
v, neither u nor v is in C. Since IR(C) ≤ 2, we have {x1

uv, x
2
uv} ∩ C 6= ∅ and

{z8+12(`uv−1)
uv , z7+12(`uv−1)

uv } ∩ C 6= ∅. Then, since we cannot have three consecutive
vertices of degree 2 outside C, |C ∩ {ziuv, i = 1, . . . , 8 + 12(`uv − 1)}| ≥ 4`uv − 1.
Using Claim 1 (second item), at least two vertices from {buv, duv, a−uv, c−uv, a+

uv, c
+
uv}

should be in C. In all, C has at least 4`uv + 2 vertices in T̃uv. These vertices
can be replaced with {u, a+

uv, c
−
uv}∪Cv−

uv without augmenting the cardinality of the
set. By repeating this transformation, we obtain a set of vertices C ′ such that
|C ′| ≤ p + 4|L| + |E|, where C ′ ∩ V is a vertex cover of size at most p. This
completes the proof of Claim 2.

Claim 2 states that the decision version of Min Vertex Cover in planar graphs
with vertices of degree 2 or 3 polynomially reduces to RpCPk with p = 2 in this
class of graphs. Since Min Vertex Cover is NP-complete in planar graphs with
vertices of degree 2 or 3 (Lemma 7), so does RpCPk. This concludes the proof of
Theorem 15.

3.1.4 Does increasing the radius make the decision problem harder?

In Subsection 3.1.1 we saw that RpCP1 is NP-complete in all classes of graphs of
minimum degree 2 in the uniform case for which the decision version of Min Vertex

Cover problem is NP-complete. This does not include the class of subgrids in the
uniform case and vertices of degree 2 or 3. Meanwhile, in Subsection 3.1.3, we
proved that RpCP2 is NP-complete in subgrids in the uniform case and vertices of
degree 2 or 3.

These results make natural the question of the hardness of RpCPk when k varies.
We can easily see that RpCPk for k > 1 is NP-complete for classes of graph which
are stable by transitivity and for which RpCP1 is NP-complete: A class H is stable
by transitivity if and only if, for a graph G = (V,E) ∈ H, the graph G′ = (V,Ek)
- obtained from G such that Ek = {(i, j) : ∀i, j ∈ V, d(i, j) ≤ k, } - is in H. In this
case, the instance (G, p) of RpCPk can be reduced to the instance (G′, p) of RpCP1.

However, a natural question is whether there exists a reduction allowing to
state for a given k the hardness of RpCPk+1 on a class if RpCPk is known to be
hard on this class? In particular, can we conclude results for larger values of k for
the classes studied here? The following remark gives evidence of graph classes on
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which RpCP1 is hard but RpCP2 is trivial. This justifies that such a reduction from
k to k + 1 does not exist in the general case and consequently, the hardness of
RpCPk on a given graph class requires to be studied for any value of k and cannot
be deduced, in general, from hardness results dealing with different values of k.
This leaves open avenues for future researches with, in particular, the challenge to
devise reductions working for different values of k.

Remark 2. There are graph classes for which RpCP1 is NP-complete while all graphs
in the class have a solution of robust radius 2 using only two centers (thus, RpCP2
is trivial).

Proof. Consider any class H of graphs with all vertices of degree at least 2 and
including at least three independent vertices (i.e., not linked by an edge) such that
the decision version of Min Vertex Cover problem is NP-complete on H. The
condition that at least three independent vertices exist in any graph G = (V,E)
of this class is not restrictive since Min Vertex Cover can be trivially solved in
polynomial time on graphs that do not satisfy this condition. The condition ensures
that the size of a Min Vertex Cover is at most |V |−3 for any graph G = (V,E) ∈
H. We build the class H′ of all graphs obtained from a graph G ∈ H by adding
two vertices u0, v0 completely linked to all vertices of G. For any graph in H′, a
Min Vertex Cover includes u0, v0 and a Min Vertex Cover of the graph obtained
by removing u0, v0.

If u0 or v0 is not included in the vertex cover, then all other vertices should be
included which, by hypothesis, is larger than the proposed solution. Therefore, the
decision version of Min Vertex Cover is NP-complete onH′, and using Corollary 9
so is RpCP1. Note however that, for any graph in H′ obtained from G = (V,E) ∈ H
by adding u0, v0, the set {u0, v0} is a solution of RpCP of robust radius 2 with p = 2
not possible with p = 1, which completes the proof.
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3.2 PpCP Non-Approximation Results

We present in this section two non-approximation results for PpCP. The first one,
on bipartite planar graphs of degrees 2 or 3, shows that PpCP can not be approx-
imated with a ratio less than 20

19 (Section 3.2.1). The second one, on subgrids of
degrees 2 or 3, shows that PpCP can not be approximated with a ratio less than 56

55
(Section 3.2.2). We first establish a technical lemma about vertex cover in graphs.

Lemma 16. Let G = (V,E) be a graph and G′ = (V ′, E ′) be the graph obtained
by inserting 2kuv vertices on each edge (u, v) ∈ E, where kuv is a non-negative
integer. Then we have

τ(G′) = τ(G) +
∑
uv∈E

kuv

Npte that, if for some integer k we have ∀(u, v) ∈ E, kuv = k, then G′ is a (2k+1)-
expansion of G.

Proof. For every edge (u, v) ∈ E oriented from u to v, we denote Puv = G′[{u, x1
uv,

. . . , x2kuv
uv , v}] the path between u and v in G′. Note that at least kuv vertices are

needed to cover the edges in Puv \ {u, v}.
Let U ⊂ V a vertex cover of G: ∀(u, v) ∈ E, {u, v} ∩ U 6= ∅. We can build

U ′ ⊂ V ′ in G′ as follows. We initialize U ′ with all vertices of U . Then, for every
edge (u, v) ∈ E, if u ∈ U , we add vertices x2i

uv, 1 ≤ i ≤ kuv to U ′. Otherwise,
v ∈ U necessarily, then we add vertices x2i+1

uv , 0 ≤ i ≤ kuv − 1 to U ′. In both cases
we have added exactly kuv vertices and all edges of PG′

uv are covered by U ′, with
|U ′| = |U |+∑

uv∈E kuv. Then τ(G′) ≤ τ(G) + kuv.
Assume now that G′ has a vertex cover X ′. For every (u, v) ∈ E, PG′

uv is covered
by at least kuv + 1 vertices. If u, v 6∈ X ′, we can transform X ′ into U ′ such that
u or v is in U ′. Then |U ′ \ V | ≥ ∑

uv∈E kuv. Since at least one vertex between u
and v is in U = V ∩ U ′, U is a vertex cover for G. Then |U | = |U ′| − kuv, thus
τ(G) ≤ τ(G′)− kuv. Hence τ(G′) = τ(G) + kuv and the proof is complete.

3.2.1 PpCP Non-Approximable on Planar Graphs

In this section, we give an non-approximability result for PpCP on bipartite planar
graphs of maximum degree 3. The case of planar graphs, in particular with low
degree, is natural for our application. It motivates us to investigate the complexity
status of our problem in restricted classes of planar graphs to better discriminate
polynomial cases and hard cases.

For our first transformation, we use the same gadget as in Subsection 3.1.3.
Given a planar graph G = (V,E) without pending vertex, one builds a bipartite
graph G′ = (V ′, E ′) by replacing each edge uv by the gadget L4 as presented in
Figure 3.1. We have seen in Lemma 14 that G has a vertex cover of size t if and
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only if G′ has a set C ′ of size t + |E| with IR(C) ≤ 2. Moreover, for each edge
(u, v) ∈ E, C ′ has exactly one vertex in {auv, cuv} and none in {buv, duv}. Given
Proposition 11, we can conclude that C ′ is a dominating set of G′.

Assume G has a minimal2 vertex cover of size t, we define pt = t + |E| and
consider a dominating set C ′ of size pt in G′, with exactly one vertex in {auv, cuv}
and none in {buv, duv} for any edge uv ∈ E. We evaluate the evacuation radius of
C ′ in G′ for any scenario s ∈ V ′. We recall that V ′ ⊂ V .

Lemma 17. Using the above notations, we have:

rs(C ′) =
{

1 ⇔ s ∈ V \ C ′
2 ⇔ s ∈ V ∩ C ′ and s /∈ V

Proof. Since G′ is triangle-free with no pending vertex, and C ′ is a dominating set,
then we have: ∀u ∈ V ′, rs(C ′, u) ≤ 2 for any scenario s (Proposition 11).

Consider first s ∈ V \ C ′ and denote by v1, . . . , vdeg(s) all neighbors of s in
G. By definition of a dominating set, {v1, . . . , vdeg(s)} ⊂ C ′. Consequently, by
construction of C ′, we have that {asv1 , . . . , asvdeg(s)} ⊂ C ′. It follows that, what-
ever the escaping direction, people located on s will reach a center at distance 1,
which gives rs(C ′, s) = 1. In addition, since C ′ is a dominating set in G′, every
other vertex u of the graph is adjacent to at least one element of C ′, which gives
rs(C ′, u) = 1. Thus, rs(C ′) = 1.

Consider now s ∈ V ∩C ′. Since the considered vertex cover is minimal, there is
j ∈ {1, . . . , deg(s)} such that vj /∈ C ′ and thus C ′ ∩ {asvj , bsvj , csvj , dsvj} = {csvj}.
Then {asvj , bsvj , csvj} is an evacuation path of asvj . It follows that the evacuation
distance of asvj is 2, thus rs(C ′) = 2.

Consider now s ∈ {buv, duv} for uv ∈ E. Consequently, by construction of
C ′, we have that s /∈ C ′ and that only one neighbor of s is in C ′. Then s has
an evacuation path that crosses its neighbor vertex not in C ′, which means the
evacuation distance of s is 2. Thus rs(C ′) = 2.

Finally, consider s ∈ {auv, cuv} for uv ∈ E. Suppose s = auv. If s /∈ C ′, then
cuv ∈ C ′ and the evacuation distance of s is 2. Otherwise, that is if s ∈ C ′, then
the evacuation distance of buv and duv is 2. We can proceed similarly with the case
s = cuv, thus rs(C ′) = 2

In conclusion, for all cases except the first one, rs(C ′) = 2. Thus the proof is
complete.

At last, we will need the following lemma for our theorem.

Lemma 18. For G = (V,E) a graph with degrees {2, 3} and p < γ(G), the mini-
mum probabilistic radius of any solution of PpCP is greater than 2.

2A set C is minimal for inclusion with respect to a property π if the removal of an element of
C causes this set to no longer verify the property π.
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Proof. Let C be a feasible solution of PpCP on G for p < γ(G). As C cannot
be a dominating set, there exists v ∈ V such that ({v} ∪ Γ(v)) ∩ C = ∅ i.e., v
is not in C or adjacent to any vertex of C. For any scenario s, the evacuation
distance of v will be at least 2 as none of its neighboring vertices is in C. Thus
rs(C, v) ≥ 2,∀s ∈ V , which implies rs(C) ≥ 2,∀s ∈ V . In addition, for any
vertex y ∈ Γ(v), the evacuation distance of y in scenario y is at least 3 since y
has an evacuation path that crosses v. It follows that ry(C) ≥ 3. Combined to
rs(C, v) ≥ 2,∀s ∈ V , we get IE(C) > 2 for any feasible solution C of PpCP on
G.

We are now ready to prove the main result of this section.

Theorem 19. There is no polynomial time approximation for PpCP guaranteeing a
ratio less than 20

19 for bipartite planar graphs of degrees 2 or 3, unless P=NP.

Proof. The proof is by contradiction. Let ρ satisfy 1 < ρ < 20
19 . Consider ε > 0

such that ρ < 20+2ε
19+2ε <

20
19 . Take q ∈ N, such that 5

q
≤ ε and q ≥ 2.

We suppose we have a polynomial approximation algorithm A for PpCP, ad-
mitting as argument a planar graph P of degrees 2 or 3 and the number p of
centers, and guaranteeing the approximation ratio ρ. We will show how to use this
algorithm to solve the Min Vertex Cover problem on planar graphs with vertex
degrees 2 or 3. Lemma 7 will give the contradiction, unless P=NP.

Consider a planar graph G = (V,E) with vertex degrees in {2, 3}. We perform
first a 2q + 1-expansion on G and denote Gq = (Vq, Eq) the resulting graph. Next
we transform Gq in the graph G′q = (V ′q , E ′q) by inserting the gadget L4 as presented
in Figure 3.1. We have in particular:

|Vq| = |V |+ 2q|E|
|Eq| = (2q + 1)|E|
|V ′q | = |Vq|+ 4|Eq|

= |V |+ (10q + 4)|E|

(3.1)

From Lemma 16 we have τ(Gq) = τ(G) + q|E| and from Proposition 11 and
Lemma 14 we deduce γ(G′q) = τ(Gq) + |Eq|. Then we obtain:

γ(G′q) = τ(G) + (3q + 1)|E| (3.2)

We apply the hypothetical approximation algorithm A on G′q for different values
of p, starting with p = 1 and augmenting it. While p < γ(G′q), the algorithm
computes a solution C of probabilistic radius strictly greater than 2 (Lemma 18).
Suppose now we use p = γ(G′q) = τ(Gq) + |Eq|. Then using Lemma 14, there is a
p-set C of graph G′q satisfying the conditions of Lemma 17. Thus we obtain:

|V ′q |IE(C) = 2|V ′q | − (|Vq| − τ(Gq))
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We deduce, using Relations 3.1 and 3.2:

|V ′q |IE(C) = |V |+ (19q + 8)|E|+ τ(G)
< 2|V |+ (19q + 8)|E|

where the last inequality holds because τ(G) < |V |. So, we have:

IE(C) < 2|V |+ (19q + 8)|E|
|V |+ (10q + 4)|E| = 2− q|E|

|V |+ (10q + 4)|E|
Since G has vertices of degree at least 2, we have V ≤ |E|, thus:

IE(C) < 2− q|E|
(10q + 5)|E| = 2− q

10q + 5 ≤
19 + 2ε
10 + ε

where the last inequality holds since 5
q
≤ ε. As a consequence, since an opti-

mal solution C∗ will satisfy IE(C∗) ≤ IE(C), the approximation algorithm A will
determine an approximated center C in Gq

′ of value:

IE(C) ≤ p− 1× 19+2ε
10+ε

< 20+2ε
19+2ε ×

19+2ε
10+ε

= 2
(3.3)

Since constructing G′q and evaluating IE(C) can be done in polynomial time, and
since algorithm A will be run less than |V | times, the whole process is polynomial.
If P6=NP, then this is a contradiction, and the proof is complete.

3.2.2 PpCP Inapproximation subgrids

In this section, we prove that PpCP cannot be approximated with a ratio less than
56
55 on a restricted subclass of bipartite planar graphs, the class of subgrids of de-
grees {2, 3}. This section is dedicated to prove Theorem 22. In Subsection 3.2.2.1
we explain the general scheme of the demonstration before giving all details in
Subsections 3.2.2.2, 3.2.2.3 and 3.2.2.4.

3.2.2.1 Global blueprint of the proof

In Theorem 22, we will show that a polynomial time approximation algorithm A
for PpCP in subgrid of degrees {2, 3} guaranteeing a ratio of at most 56

55 could be
used to compute in polynomial time the size of the minimum vertex cover on a
planar graph of degrees {2, 3}, which is a contradiction.

We start from a planar graph G = (V,E) with degrees {2, 3}, instance of Min
Vertex Cover. We randomly choose an orientation of the edges of G that will be
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used in our reductions and analysis. We then apply successively two transforma-
tions, Transformation 1, denoted ϕ1 and Transformation 2, denoted ϕ2 that are
detailed in Subsection 3.2.2.2. Figure 3.3 gives a simple schematic representation
of the whole reduction. Note that the subgrid H appearing in Figure 3.3 is an
intermediate stage not directly used in the analysis.

G = (V,E)
τ(G) H = (V H , EH) Hq = (V Hq , EHq) F = (V F , EF )

γ(F )

H̃q = (V H̃q , EH̃q)
τ(H̃q)

ϕ1

ϕ2

Figure 3.3: The different graphs involved in the reduction.

Transformation 1 (ϕ1) constructs from G a subgrid Hq = (V Hq , EHq), for some
positive integer q specified later, in such a way that:

• V ⊂ V Hq ,

• Edges (u, v) of G map to non-crossing paths PHq
uv of even length between u

and v in Hq.

We then apply Transformation 2 (ϕ2) to construct a subgrid F = (V F , EF )
from Hq. Roughly speaking, it consists in replacing the first two edges of PHq

uv

(where (u, v) ∈ E is directed from u to v) with a gadget T 2, and every other edge
of Hq with a gadget T 1, both defined in the next subsection.

At this point, note that there is no direct and easy link between τ(G) and
τ(Hq) since τ(Hq) can be obtained in polynomial time (Hq is bipartite) while G
is meant to be an instance of an NP-hard restriction of Min Vertex Cover. For
this reason, we introduce an auxiliary graph H̃q = (V H̃q , EH̃q). It can be seen

as a perturbation of Hq with a direct link between τ(H̃q) and τ(G). It is simply
obtained by replacing, for every edge (u, v) ∈ E, the two first edges of the path
PHq
uv by a single edge. This way, the path PHq

uv of even length becomes, in H̃q, a

path P H̃q
uv of odd length and Lemma 16 can be used to write τ(H̃q) as a function

of τ(G). On the other hand, as outlined in Lemma 20, the properties of the two
gadgets allow to establish a direct link between dominating sets in F and vertex
covers in H̃q. In all, it gives a relation between the Min Dominating Set problem
in F and the Min Vertex Cover problem in G.
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Then, in Subsection 3.2.2.3, we outline different relations between the Min Dom-

inating Set problem and PpCP in a triangle-free graphs without pending vertices
using Lemmas 11 and 20. This can be applied to F .

Finally, in Subsection 3.2.2.4, we use these results to establish Theorem 22.
We show that, when applying A on F for p < γ(F ), the output is a solution of
PpCP of expected radius at least 2, while applying it for p = γ(F ) gives a solution
of expected radius less than 2. Hereby we can use such an algorithm to compute
γ(F ), and consequently τ(G). Since constructing H, Hq, H̃q and F , as well as
evaluating the value of a PpCP solution, can be done in polynomial time, and since
algorithm A is applied less than |V | times, the whole process is polynomial.

3.2.2.2 Details on the transformations and their properties

Transformation 1. From a planar graph G = (V,E) to a subgrid Hq = (V Hq , EHq)
with q > 0.

Using a result of [82], we can embed G = (V,E) in a grid H = (V H , EH)
of polynomial size. Vertices of G are mapped to vertices of the grid, and edges
(u, v) of G map to non-crossing paths PH

uv between u and v in the grid. Note that
we cannot control the length and parity of these paths. The resulting graph is a
partial subgrid and not necessarily a subgrid yet. We then perform a 2q-expansion
for some positive integer q specified later. The resulting graph Hq = (V Hq , EHq)
is a subgrid (q > 0). In addition, since the expansion multiplies by 2q all path
lengths from H to Hq, edges (u, v) of G map to non-crossing paths PHq

uv of even
length between u and v in Hq. It means that paths PHq

uv have 2kuv + 1 internal
vertices (excluding u and v) for some non-negative integers kuv.

Example. Suppose the planar graph G = (V,E) is a complete graph on four ver-
tices {a, b, c, d} as presented in Figure 3.4 and set q = 2. We choose an ori-
entation of G such that the directed edges of G are {(a, b), (a, c), (b, c), (c, d)}.
H = (V H , EH) corresponds to a possible embedding of G in a grid, where the edge
(a, d) ∈ E maps to the path {a, zad, d} in H. Next, we construct the subgrid Hq

by applying the 2q-expansion. The resulting graph Hq can be seen on the right

side of Figure 3.4. Finally, the related graph H̃q is represented in Figure 3.5.
♣

Analysis of ϕ1: As already noticed in Subsection 3.2.2.1, we cannot establish a
direct link between τ(G) and τ(Hq). However, since we now control the parity of
paths PHq

uv , it is easy to slightly modify Hq so as we can apply Lemma 16. This

is the role of the graph H̃q = (V H̃q , EH̃q). Recall that this graph is obtained from
Hq by replacing, for every edge (u, v) ∈ E, the two first edges of the path PHq

uv by

a single edge, as illustrated in Figure 3.5. This way, H̃q can directly be obtained
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ab

cd

Planar graph G

a

b

c

d

zad

zcd

z1
ac

z2
ac

z3
ac

H, an
embedding

of G in
3×3 grid

a

b

c

d

zad z1
ac

z2
ac

zcd z3
ac

Hq for q = 2 em-
bedded in a 9×9 grid.

Figure 3.4: Example of Transformation 1

from G by inserting 2kuv vertices on each edge (u, v) ∈ E. As a consequence, by
Lemma 16, we have:

τ(H̃q) = τ(G) +
∑

(u,v)∈E
kuv. (3.4)

In addition, we have:

|V H̃q | = |V |+ 2 ∑
e∈E

ke

|EH̃q | = |E|+ 2 ∑
e∈E

ke
(3.5)

By construction, we have ∀(u, v) ∈ E, 2kuv + 1 ≥ 2q − 1, which gives:

∀(u, v) ∈ E, kuv ≥ q − 1. (3.6)

60



3.2. PpCP NON-APPROXIMATION RESULTS

a

b

c

d

H̃q

Figure 3.5: The graph H̃q obtained from G through Hq.
kab = kbc = kbd = 1, kad = kcb = 3 and kac = 7

Transformation 2. From subgrid Hq = (V Hq , EHq) to subgrid F = (V F , EF ).

Thanks to the 2q-expansion, for (u, v) ∈ E directed from u to v, the first two
edges of PHq

uv in Hq are both horizontal or vertical. Note as well that the orientation

of G immediately defines an orientation of Hq and of H̃q. We can then construct
the subgrid F = (V F , EF ) from the subgrid Hq as follows.

For every edge (u, v) ∈ E directed from u to v, we replace, in Hq, the first
two edges (u, i), (i, x) of PHq

uv with T 2
ux defined in Figure 3.7, and every other edges

(x, y) ∈ EHq with T 1
xy defined in Figure 3.6.

In the following we use T 12
xy to refer to T 1

xy or T 2
xy. Note that two gadgets T 12

xy

never overlap each other in F and the resulting graph F is a subgrid. Indeed, if
G is embedded in a grid G, Hq is embedded in Exp(G, 2q) and F is embedded in
Exp(G, 14q).

Analysis of ϕ2: By construction we have |V F | = |V H̃q | + 13|EH̃q | + 3|E| and

|EF | = 15|EH̃q |+ 3|E|. Using Relation 3.5, we deduce:
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|V F | = |V |+ 16|E|+ 28 ∑
e∈E

ke

|EF | = 18|E|+ 30 ∑
e∈E

ke
(3.7)

u xz1
ux z2

ux z3
ux

aux bux

cuxdux z6.1
ux z6.2

ux

z7
ux=i z8

ux z9
ux z10

ux z11
ux z12

ux z13
ux

Figure 3.6: Gadget T 2
ux used in F for (u, i), (i, x) ∈ EHq ; z7

ux = i.

x yz1
xy z2

xy

z3
xy

axy

bxy cxy

dxy

z4.1
xy z4.2

xy

z4.3
xy

z4.4
xy

z5
xy z6

xy

Figure 3.7: Gadget T 1
xy used in F for (x, y) ∈ EHq .

Lemma 20. For any t ≤ |V |, H̃q = (V H̃q , EH̃q) has a vertex cover of size t if and

only if F has a dominating set D of size t+ 4|EH̃q |+ |E| such that, for each edge

(x, y) ∈ EH̃q , we have:

• at least one vertex of {axy, cxy} is in D

• at least one vertex of {z1
xy, z

13
xy} if (x, y) is the first edge of a path P H̃q

uv with
(u, v) ∈ E directed from u to v

• at least one vertex in {z1
xy, z

6
xy} in the other cases.

Proof. For this result, it is convenient to see how F could be constructed from H̃q:

for every edge (u, v) ∈ E directed from u to v, the first edge of P H̃q
uv - we denote

E
H̃q
2 the set of such edges corresponding to two edges of PHq

uv - is replaced with
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T 2
uv. All other edges of H̃q - we denote E

H̃q
1 ⊂ EH̃q their set - are replaced with

T 1
uv. Note that |EH̃q

2 | = |E|.
⇒ Let U ⊂ V H̃q be a vertex cover of H̃q of size t. We initialize D with all

vertices of U , seen as a subset of V F , and complete it in a dominating set of F .

Then for every (x, y) ∈ EH̃q , oriented from x to y, we have D ∩ {x, y} 6= ∅. We
then apply one of the two following cases:

• if (x, y) ∈ EH̃q
2 : If x ∈ D, we add to D the vertices z3

xy, cxy, z
7
xy, z

10
xy and z13

xy

of T 2
xy, else if y ∈ D, we add to D the vertices z1

xy, axy, z
6.1
xy , z

8
xy and z11

xy of
T 2
xy. In both cases, 5 vertices are added to D, and all the vertices of T 2

xy are
dominated by D.

• if (x, y) ∈ EH̃q
1 : If x ∈ D, we add to D the vertices z3

xy, cxy, z
4.3
xy and z6

xy of T 1
xy,

else if y ∈ D, we add to D the vertices z1
xy, axy, z

4.1
xy and z4.4

xy of T 1
xy. In both

cases, 4 vertices are added to D, and all the vertices of T 1
xy are dominated

by D.

The resulting set D is a dominating set of F of size t + 4|EH̃q | + |EH̃q
2 | = t +

4|EH̃q |+ |E| and for each edge (x, y) ∈ EH̃q , D has at least one vertex in {axy, cxy}
and one vertex in {z1

xy, z
13
xy} (resp. {z1

xy, z
6
xy}) if (x, y) ∈ EH̃q

2 (resp. E
H̃q
1 ).

⇐ Now suppose we have D a dominating set of F . Then for every (x, y) ∈ EH̃q

oriented from x to y, we have:

• if (x, y) ∈ E
H̃q
2 : D includes at least 6 vertices on T 2

xy, and 5 vertices on
T 2
xy \ {x, y}.

• if (x, y) ∈ E
H̃q
1 : D includes at least 5 vertices on T 1

xy, and 4 vertices on
T 1
xy \ {x, y}.

Then D includes at least t′ + 4|EH̃q |+ |EH̃q
2 | = t′ + 4|EH̃q |+ |E| vertices for some

integer t′. We then perform the following modifications on D:

• for every (x, y) ∈ EH̃q
2 oriented from x to y : if x ∈ D, we can replace at least

5 vertices of D ∩ T 2
xy by z3

xy, cxy, z
7
xy, z

10
xy and z13

xy. If y ∈ D, we can replace at
least 5 vertices of D ∩ T 2

xy by z1
xy, axy, z

6.1
xy , z

8
xy and z11

xy.

• for every (x, y) ∈ EH̃q
1 oriented from x to y : if x ∈ D, we replace at least 4

vertices of D ∩ T 1
xy by z3

xy, cxy, z
4.3
xy and z6

xy. If y ∈ D, we replace at least 4
vertices of D∩T 1

xy by z1
xy, axy, z

4.1
xy and z4.4

xy . If neither x nor y is in D, we can
induce that |D ∩ T 1

xy| ≥ 5. Thus, we replace at least 5 vertices of D ∩ T 1
xy by

x, z3
xy, cxy, z

4.3
xy and z6

xy.
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Note that none of these modifications increases the size of D, and D is still a

dominating set of F . However, we ensured that |D \ V H̃q | ≥ 4|E| + |E|, and

|D∩{x, y}| ≥ 1,∀(x, y) ∈ EH̃q . Then U = D∩V H̃q is a vertex cover for H̃q of size
at least t. This completes the proof.

3.2.2.3 Relations between PpCP and dominating sets

Lemma 21. Let D be a minimum dominating set of F as described in Lemma 20

and of size pt = τ(G) + 4|EH̃q |+ |EH̃q
2 |. Then we have:

rs(D) =
{

1 if s ∈ V H̃q ⊂ V F and s 6∈ D
2 otherwise

Proof. Since D is a dominating set of the triangle-free F , by Lemma 11 D is a
feasible solution of PpCP for p = pt such that rs(D, v) ≤ 2,∀s, v ∈ V F . We recall
that every vertex of H̃q maps a vertex in F by construction, thus we consider

V H̃q ⊂ V F in the following. Three cases emerge:

1. s ∈ V F \ V H̃q : Denote (x, y) ∈ EH̃q such that s ∈ T 12
xy . As D is a minimal

dominating set of F , D is build as the resulting dominating set described
in Lemma 20. It follows that there is at least one evacuation distance of
length 2 for any scenario s ∈ V F \ V H̃q , i.e rs(D) = 2.

In the following, s ∈ V H̃q and we denote by u1, . . . , ud ∈ V H̃q the neighbors of
s in H̃q.

2 s ∈ V H̃q ∩ D: Since D is minimal, D ∩ V H̃q is a minimal vertex cover of
H̃q, thus there is at least one neighbor u ∈ {u1, . . . , ud} of s in H̃q that
is not included in D. By construction, z1

su, z
2
su /∈ D and z3

su ∈ D. Then
under scenario s, the evacuation distance of z1

su is 2, i.e. rs(D, z1
su) = 2.

Under scenario s, the evacuation distance of any other vertex in Tsu is less
than 2 given that D is a minimal dominating set. For any other neighbor
u′ ∈ {u1, . . . , ud} of s in H̃q (u′ 6= u), we have |{z1

su′ , z
2
su′ , z

3
su′} ∩ D| = 1,

and D a minimal dominating set on Tsu′ , thus the evacuation distance of any
vertex in Tsu′ is at most 2. Therefore rs(D) = 2.

3 s ∈ V H̃q \D: We recall that by definition D ∩ V H̃q is a minimal vertex cover

of H̃q, then {u1, . . . , ud} ⊂ D. In addition, for any edge (s, u) ∈ EH̃q oriented
from s to u, D includes by construction z1

su. Then every neighbor of s in
F is included in D by construction. Therefore, rs(D, s) = 1. Since D is a
dominating set in F , it remains a dominating set in F − s, which guarantees
rs(D, v) = 1, ∀v ∈ V F − s. Thus rs(D) = 1.
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So, in all cases except the last one, rs(U) = 2, and the proof is complete.

We now are ready to prove the main result of this section.

3.2.2.4 The theorem

Theorem 22. If P6= NP, there is no polynomial time approximation for PpCP guar-
anteeing a ratio less than 56

55 for subgrids with vertex degrees 2 or 3, even in the
uniform case.

Proof. The proof is by contradiction. Let us suppose there is a polynomial approx-
imation algorithm A for uniform PpCP which guarantees the approximation ratio ρ
satisfying 1 < ρ < 56

55 , on subgrids with vertex degrees 2 or 3 for a parameter p.
We will show how to use this algorithm to solve the Min Vertex Cover problem
on planar graphs. Lemma 7 gives the contradiction, unless P=NP.

Suppose ε > 0 such that ρ < 56+2ε
55+2ε <

56
55 . Take an integer q ≥ 2 such that

ε ≥ 17
q−1 .

Consider a planar graph G = (V,E), instance of Min Vertex Cover. Consider

the graph Hq obtained by Transformation 1, as well as H̃q = (V H̃q , EH̃q) and
the vector {ke : e ∈ E} obtained through Hq. In addition, consider the graph
F = (V F , EF ) obtained from Hq through Transformation 2.

Recall that, from Relations 3.5 and 3.7, we have |V H̃q | = |V |+2 ∑
e∈E

ke, |EH̃q | =

|E|+2 ∑
e∈E

ke and |V F | = |V |+16|E|+28 ∑
e∈E

ke. Then we deduce from Lemma 20:

γ(F ) = τ(H̃q) + 4|EH̃q |+ |E|
= τ(G) + 5|E|+ 9 ∑

e∈E
ke

(3.8)

We apply the hypothetical approximation algorithm A on F for different values
of p, starting with p = 2 and augmenting it. While p < γ(G′q), the algorithm
computes a solution C of probabilistic radius strictly greater than 2 (Lemma 18).
Suppose now we set p = γ(F ) = τ(G) + 5|E| + 9∑e∈E ke. Given Lemma 21, we
obtain the following:

IE(C) = (|V H̃q | − τ(H̃q)) + 2(|V F | − (|V H̃q | − τ(H̃q)))
|V F |

= 2|V F | − (|V H̃q | − τ(H̃q))
|V F |

We deduce, using Relations 3.4, 3.7 and 3.8:

|V F |IE(C) = |V |+ 32|E|+ 55 ∑
e∈E

ke + τ(G)
< 2|V |+ 32|E|+ 55 ∑

e∈E
ke
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where the last inequality holds because τ(G) < |V |. So, we have:

IE(C) <
2|V |+ 32|E|+ 55 ∑

e∈E
ke

|V |+ 16|E|+ 28 ∑
e∈E

ke
= 2−

∑
e∈E

ke

|V |+ 16|E|+ 28 ∑
e∈E

ke

Using Equation 3.6, we have
∑
e∈E

ke ≥ (q − 1)|E|. In addition, since G is of

degree 2 or 3, we have |V | ≤ |E|. It follows:

IE(C) < 2−

∑
e∈E

ke

17|E|+ 28 ∑
e∈E

ke
≤ 2− 1

28 + 17|E|∑
e∈E

ke

≤ 2− 1
28 + 17

q−1

As ε ≥ 17
q−1 we get:

IE(C) ≤ 2− 1
28 + ε

≤ 55 + 2ε
28 + ε

As a consequence, and since an optimal probabilistic solution C∗ will satisfy
IE(C∗) ≤ IE(C) ≤ 55+2ε

28+ε , the approximation algorithm A will determine an approx-
imated solution C in F of value:

IE(C) ≤ ρ× IE(C∗)
≤ ρ× 55+2ε

28+ε
< 56+2ε

55+2ε ×
55+2ε
28+ε

< 2

(3.9)

Note that, given a solution C, computing its probabilistic radius can be done
in polynomial time. Indeed, for any v, s ∈ V F , computing rs(C, v) can be per-
formed using any minimum path algorithm. Hence, we can apply successively the
approximation algorithm A on the graph F for increasing values of p, starting with
p = 2, until the computed solution C satisfies IE(C) < 2. Thanks to Lemma 18
and Equation 3.9, the algorithm stops for p = γ(F ) = τ(G)+5|E|+9 ∑

e∈E
ke. Using

Equations 3.8 we can deduce τ(G) = p− 5|E| − 9 ∑
e∈E

ke.

Since constructing H̃q and F , as well as evaluating IE(C), can be done in poly-
nomial time, and since algorithm A will be run less than |V | times, the whole
process is polynomial. This is a contradiction if P6=NP, and the proof is complete.
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Conclusion

In this chapter, we outline the relation between Min Vertex Cover and Min Dom-

inating Set with RpCP and PpCP. Based on these relations, we present different
reductions establishing the hardness of PpCP and RpCP. We show that RpCP is NP-
hard in all hereditary classes of uniform graphs where the decision version of Min
Vertex Cover problem is NP-complete, and in all triangle-free classes of uniform
graphs without pending vertices where the decision version of Min Dominating

Set problem is NP-complete. We also prove that RpCP is NP-hard in subgrids.
The main originality of our proof is the use of the intermediate graph H̃q (see
Figure 3.3): it can be seen as a perturbation of the subgrid Hq that leads to a hard
class for Min Vertex Cover. Planar graphs and subgrids are relevant classes of
graphs for our problem, as they are particularly suited for real case applications.
Regarding PpCP, we propose two non-approximation results. The first result estab-
lishes that PpCP is not approximable with a ratio less than 20

19 on bipartite planar
graphs of degree 2 or 3. The second result states that PpCP is not approximable
with a ratio less than 56

55 on subgrids of degree at most 3. Even thought the latter
result does not generalize the one we former obtained (the class is more restrictive
but the new bound is closer to 1), the proof requires a much deeper analysis.

In the next chapter, we propose polynomial methods to generate exact and
approximation results for PpCP.
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CHAPTER 4

POLYNOMIAL AND
APPROXIMATION RESULTS FOR

PpCP

Abstract

In this chapter we present an explicit solution for PpCP on uniform paths. The proof
requires a decomposition of PpCP in multiple auxiliary subproblems. In addition,
we propose some approximation results for PpCP on edge-weighted graphs with
bounded edge lengths. These results require approximation results for two variants
of Min p-Center called Min MAC p-Center and Min Partial p-Center.
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4.1. AN EXPLICIT SOLUTION FOR PpCP ON PATHS IN UNIFORM
CASE

Introduction

We have seen in the previous chapter that PpCP is NP-hard on planar graphs
and subgrids of degrees {2, 3}. In this chapter, we study polynomial methods to
compute solutions for PpCP with a guarantee of performance.

In Section 4.1, we describe an explicit optimal solution for PpCP on paths in
the uniform case. The results of this section have been published as a conference
paper in [27]. In Section 4.2, we show that PpCP admits a polynomial approxima-
tion algorithm for PpCP guaranteeing the ratio 3 on trees in the uniform case. In
addition, for edge-weighted graphs with bounded edge lengths, we present poly-
nomial approximation algorithm for PpCP guaranteeing ratio 4deg(G) + 2, where
deg(G) is the average degree of G. The results of this section have been submitted
in [78].

4.1 An explicit solution for PpCP on paths in uniform

case

The main result of this section is the explicit optimality of a monotone balanced
p-set (see Definitions 23, 29) for PpCP on paths in the uniform case. However, the
proof is non-trivial and require a decomposition of the problem.

First, in Subsection 4.1.1 we will present some additional notations and defi-
nitions specific for PpCP on paths as well as first preliminary results. In Subsec-
tion 4.1.2, we introduce different subproblems of PpCP which allow us to decompose
our problem. In Subsection 4.1.2, we prove that a monotone balanced solution is
optimum for PpCP on paths. In Subsection 4.1.4, we discuss the case of edge-
weighted paths.

4.1.1 Additional notations and preliminary results

We denote Pn = {1, . . . , n} a path on n vertices. For a given p ≥ p′ ≥ 2, consider
a p-set C = {c1, . . . , cp′} ∈ Cp(Pn) where Cp(Pn) is the set of feasible solutions
for PpCP as defined in Section 2.1.5. In this section, we consider p′ = p. We will
see shortly after that an optimal solution for PpCP on a path is always of size
p. Then C induces p − 1 segments µCi of length λCi , i = 1, . . . , p − 1, where a
segment corresponds to the path between two consecutive centers. The vertices
between the two centers are called internal vertices. Conversely, we observe that
any vector λ1, . . . , λp−1 ∈ N∗p−1 with

∑p−1
i=1 λi = n − 1 corresponds to an unique

feasible solution on Pn. Thus we can consider equivalently a p-set C ⊆ V of size p
or the corresponding vector λ(C) = (λC1 , . . . , λCp−1). In the following, to harmonize
notations, for any p-set C we define µC0 = {1}, µCp = {n} and λC0 = λCp = 0.
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Example. In Figure 4.1, C = {1, 6, 9, 17} is a feasible solution of PpCP for p = 4
on P17. C induces 3 segments µC1 , µ

C
2 and µC3 and λ(C) = {5, 3, 8}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

µC1 µC2 µC3

Figure 4.1: Segments induced by solution {1, 6, 9, 17} on P17

♣

Two specific kinds of solutions emerge on paths, which we define next.

Definition 23. On a path, a p-set C ∈ Cp(Pn) with λ(C) = (λC1 , . . . , λCp−1) is called
balanced if max

i,j∈{1,...,p−1}
|λCi − λCj | is minimum over Cp(Pn).

We directly outline a characteristic of balanced p-sets on uniform paths.

Corollary 24. On a path in the uniform case, for any i ∈ {1, . . . , p−1}, a balanced
p-set C verifies λCi ∈ {bn−1

p−1 c, d
n−1
p−1 e}

Finally we propose a system of equations to compute the evacuation radius of
any feasible solution for any scenario.

Proposition 25. On Pn, the radius of C ∈ Cp(Pn) for scenario s is given by:

• if s ∈ C and i ∈ {1, . . . , p− 1} such that s = ci:

rs(C) = max{λCi−1 − 1, λCi − 1, max
q∈{1,...,p−1};s 6∈µCq

bλ
C
q

2 c} (4.1)

• if s 6∈ C and i ∈ {1, . . . , p− 1} such that s ∈ µCi :

rs(C) = max{s− ci, ci+1 − s, max
q∈{1,...,p−1};s 6∈µCq

bλ
C
q

2 c} (4.2)

Proof. For scenario s, let Zs be the set of segments including vertex s, i.e. Zs =
{µCj : s ∈ µCj , j ∈ {1, . . . , p − 1}}. If s 6∈ C, then |Zs| = 1, else |Zs| = 2. We can
write rs(C) = max{max

v∈Zs
rs(C, v), max

v∈Pn\Zs
rs(C, v)}.

We can see that, for any vertex v ∈ Pn \Zs, its evacuation distance in scenario
s is equal to its distance to C in Gs, which is the same than its distance to C in
G i.e., rs(C, v) = ds(v, C) = d(v, C). We obtain:

rs(C) = max{max
v∈Zs

rs(C, v), max
v∈Pn\Zs

d(v, C)} (4.3)
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We analyze first max
v∈Pn\Zs

d(v, C). Let q ∈ {1, . . . , p − 1} such that µCq /∈ Zs. In

scenario s, we observe that the evacuation distance of any vertex on µCq is less than
or equal to the evacuation distance of the middle vertex (or vertices) of µCq . The

evacuation distance of the middle vertex (or vertices) is bλ
C
q

2 c, thus we have:

max
v∈Pn\Zs

d(v, C) = max
q∈{1,...,p−1}:s 6∈µCq

bλ
C
q

2 c (4.4)

Next we analyze max
v∈Zs

rs(C, v). Two cases emerge:

1. s ∈ C: we define i such that ci = s, and µCi−1, µ
C
i are the two segments

adjacent to s. In scenario s, rs(C, s) = 0 and the evacuation paths of the
internal vertices of segments µCi−1 and µCi are included in the evacuation paths
of vertices (s − 1) and (s + 1) respectively. Thus we have: max

v∈Zs
rs(C, v) =

max{rs(C, s−1), rs(C, s+1)} = max{ds(s−1, C), ds(s+1, C)} = max{λCi −
1, λCi+1 − 1}. Combined with Equations 4.3,4.4, we obtain Equation 4.1.

2. s 6∈ C: we define i such that ci < s < ci+1. Then we have rs(C, s) =
1 + max{ds(s− 1, C), ds(s + 1, C)} = 1 + max{s− 1− ci, ci+1 − (s + 1)} =
max{s− ci, ci+1 − s}. In addition, we observe that all the evacuation paths
of the vertices of µCi − s are included in the evacuation path of s − 1 or
s + 1. Thus we have: max

v∈Zs
rs(C, v) = max{s − ci, ci+1 − s} Combined with

Equations 4.3,4.4, we obtain Equation 4.2.

Remark 3. Given Proposition 25, note that adding shelters can only contribute to
decrease the evacuation radius of the solution. For this reason, in this section, we
consider that only p-sets of maximum size.

Example. Illustrating our proposition, we will give examples based on Figure 4.1.
By Equation 4.2, the disrupted radius of C for scenario 3 is :

r3(C) = max{3− c1, c2 − 3,max{bλ
C
2
2 c, b

λC3
2 c}}

= max{3− 1, 6− 3,max{b3
2c, b

8
2c}}

= max{2, 3,max{1, 4}}
= 4

We observe that, although the fire happens on segment µC1 , the radius of the
solution C for scenario 3 is induced by the evacuation distance of people on µC3 .
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For scenario 9, the disrupted radius is, by Equation 4.1:

r9(C) = max{λC2 − 1, λC3 − 1,max{bλ
C
1
2 c}}

= max{3− 1, 8− 1, b5
2c}

= max{2, 7, 2}
= 7

♣

We can prove already, using Proposition 25, that a balanced solution is optimal
for PpCP on Pn when n

2 < p < n.

Proposition 26. On paths, for n
2 < p < n, a balanced solution is optimum for PpCP.

Proof. We prove that any feasible solution has a probabilistic radius of value higher
than or equal to the probabilistic radius of a balanced solution.

For Pn, denote B a balanced solution and λB its segment vector. By Corol-
lary 24, we know that λBq ∈ {bn−1

p−1 c, d
n−1
p−1 e},∀q ∈ {1, . . . , p−1}. On the first hand,

as p < n, we have n−1
p−1 > 1. On the other hand, as p > n

2 and p is integer, we have

p ≥ n+1
2 which induces 1 < n−1

p−1 ≤ 2. It follows that, ∀i ∈ {1, . . . , p − 1} we have

λBi ≤ 2, and there exists at least j ∈ {1, . . . , p − 1} such that λBj = 2. Hence, by
Proposition 25 we have: rs(B) = 1, ∀s ∈ V .

Now suppose C is a non-balanced solution on Pn. Then there exists at least
i ∈ {1, . . . , p− 1} such that λCi ≥ 3. Based on Proposition 25, it follows that

• for s ∈ Pn \ µCi , we get rs(C) ≥ bλ
C
i

2 c ≥ 1.

• for s ∈ µCi , we get rs(C) ≥ 2.

Consequently, IE(C) = ∑
s∈V

1
n
rs(C) >

∑
s∈V

1
n
rs(B) = IE(B). Thus, any feasible

solution has a probabilistic radius of value higher than or equal to the probabilistic
radius of a balanced solution and the proof is complete.

The case 2 ≤ p ≤ n
2 is more complex and requires a decomposition of the

problem into subproblems. We introduce next the auxiliary subproblems we will
use to identify an exact solution for PpCP on path when 2 ≤ p ≤ n

2 .

4.1.2 Auxiliary sub-problems

In this section, we introduce some subproblems of PpCP, where the evacuation
distance of a restricted number of vertices is considered rather than all the vertices
of the graph.
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4.1.2.1 The local PpCP problem

We call local area of a vertex v the close neighborhood (Γ(s) ∪ {s}) of v. The
local evacuation radius of a solution C for a scenario s is the maximum evacuation
distance of a vertex in the close neighborhood of s. It is given by:

r̂s(C) = max
v∈{s}∪Γ(s)

rs(C, v) (4.5)

Remark 4. For s 6∈ C, r̂s(C) = rs(C, s). If s ∈ C, then r̂s(C) = max
v∈Γ(s)

rs(C, v)).

Accordingly, we define the objective function ÎE, called local probabilistic ra-
dius, such that:

ÎE(C) =
∑
s∈V

1
n
r̂s(C)

On G and for a given p, the local PpCP problem is then the problem of finding
C ∈ Cp(Pn) that minimizes ÎE(C).

Note that, r̂s(C) ≤ rs(C) and ÎE(C) ≤ IE(C). In addition, from Proposition 25
we can induce the following corollary:

Corollary 27. On Pn, consider C ∈ Cp(Pn), we have:

• if s ∈ C and i ∈ {1, . . . , p− 1} such that s ∈ µCi−1 ∩ µCi :

r̂s(C) = max{λCi−1 − 1, λCi − 1}

• if s 6∈ C and i ∈ {1, . . . , p− 1} such that s ∈ µCi :

r̂s(C) = max{s− ci, ci+1 − s}

4.1.2.2 PpCP restricted to a subset of scenarios

As we consider an uniform probability distribution, the value of IE(C) is propor-
tional to the sum of the evacuation radius of C over all scenarios. We propose
then the following decomposition of IE(C):

IE(C) = IEC(C) + IEC(C)

where
IEC(C) = ∑

s∈C

1
n
rs(C)

IEC(C) = ∑
s∈V \C

1
n
rs(C)
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In other words, IEC(C) is the contribution to IE(C) of scenarios for which the fire
occurs in C, while IEC̄(C) is the contribution to IE(C) of scenarios for which the fire
occurs on another vertex. Note that, if a solution is optimal for both components,
then it is optimal for the whole problem. We can treat these components as two
different problems. In addition, we define similarly ÎEC(C) and ÎEC(C) such that:

ÎE(C) = ÎEC(C) + ÎEC(C)
Using the previous decomposition, for 2 ≤ p ≤ n

2 , we prove a structural prop-
erty of a balanced solution.

Lemma 28. On Pn, for 2 ≤ p ≤ n
2 , a balanced solution B satisfies

IEC(B) = ÎEC(B), IEC̄(B) = ÎEC̄(B)
and thus

IE(B) = ÎE(B)
Proof. For 2 ≤ p ≤ n

2 , consider a balanced solution B on Pn.

• First we prove EC(B) = ÊC(B). As p ≤ n
2 , then n−1

p−1 > 2 and
⌊
n−1
p−1

⌋
≥ 2.

We obtain:

max
q∈{1,...,p−1}

b
λBq
2 c ≤

⌊
1
2

⌈
n− 1
p− 1

⌉⌋
≤
⌊
n− 1
p− 1

⌋
− 1

By Corollary 24, we know that λBq ∈ {bn−1
p−1 c, d

n−1
p−1 e},∀q ∈ {1, . . . , p − 1}.

Given previous equation, for any given i ∈ {1, . . . , p − 1} we then have

max
q∈{1,...,p−1}

bλ
B
q

2 c ≤ λBi − 1. Given Proposition 25 and Corollary 27, we can

deduce rs(B) = r̂s(B),∀s ∈ C. Thus EC(B) = ÊC(B).

• Second we prove EC̄(B) = ÊC̄(B). In line with Proposition 25, we observe
that, ∀i ∈ {1, . . . , p − 1} and ∀s ∈ µBi \ C, there exists at least one vertex
in µBi \ C whose evacuation path includes at least one half of segment µBi .
Therefore:

rs(B) ≥
⌈
λBi
2

⌉
≥
⌈

1
2

⌊
n− 1
p− 1

⌋⌉
≥
⌊

1
2

⌈
n− 1
p− 1

⌉⌋
≥ max

q∈{1,...,p−1}
b
λBq
2 c

Given Proposition 25 and Corollary 27, we can deduce rs(B) = r̂s(B) : ∀s ∈
V \ C. Thus EC̄(B) = ÊC̄(B).

From the previous results we get: E(B) = EC(B)+EC̄(B) = ÊC̄(B)+ÊC(B) =
Ê(B).

Lemma 28 induces a method for us to find an optimal solution for PpCP: if we
can find a balanced solution minimizing Ê, then this solution minimizes E. In the
next section we prove such solution exists, and we provide it.
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4.1.3 An optimal solution

In this section, we give an optimal solution for PpCP on an uniform path. To this
end, we need one last definition.

Definition 29. A solution C ∈ Cp(Pn) with λ(C) = (λC1 , . . . , λCp−1) is called mono-
tone if ∀i, j ∈ {1, . . . , p− 1}, i < j we have λCi ≤ λCj (or inversely λCi ≥ λCj ).

In the following, we consider only monotone non-decreasing solutions. It is
straightforward to prove the same results on monotone non-increasing solutions.

Before proceeding, we show an example of an instance where a monotone bal-
anced solution is optimal for PpCP while another balanced solution is not optimal
for PpCP.

Example. Consider PpCP with p = 4 on P12. In the following Figures 4.2 and 4.3 ,
for a given solution {c1, c2, c3, c4} we display under each center ci the evacuation ra-
dius of the solution for scenario ci. In Figure 4.2 we have a non-monotone balanced
solution C1 = {1, 5, 8, 12} inducing the segments µC1 , µ

C
2 and µC3 of length 4 , 3 and

4 respectively. C1 is non-monotone as λ2 < λ1 < λ3 and IEC(C1) = 3+3+3+3
12 = 1.

Meanwhile, in Figure 4.3 we have a monotone solution C2 = {1, 4, 8, 12} induc-
ing the segments µC1 , µ

C
2 and µC3 of length 3 , 4 and 4 respectively. C2 is monotone

as λ1 ≤ λ2 ≤ λ3 and IEC(C2) = 2+3+3+3
12 = 11

12 .

Thus, IEC(C2) < IEC(C1). In Lemma 34, we will see that IEC̄(C1) = IEC̄(C2) as
C1 and C2 induce segments with the same lengths. Consequently IE(C2) < IE(C1).

3 3 3 3

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.2: Evacuation radius induced by scenarios s ∈ C where C = {1, 5, 8, 12} on
uniform P12.

2 3 3 3

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4.3: Evacuation radius induced by scenarios s ∈ C where C = {1, 4, 8, 12} on
uniform P12.

♣
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As we have already proved that a balanced solution is optimal when n
2 < p < n

(Proposition 26), we now focus on the case 2 < p ≤ n
2 . In Section 4.1.3.1, we prove

that any monotone balanced solution minimizes IEC(C), ∀C ∈ Cp(Pn). In Sec-
tion 4.1.3.2, we prove that any monotone balanced solution minimizes IEC̄(C), ∀C ∈
Cp(Pn). Thus, by Lemma 28 a monotone balanced solution minimizes IE(C), ∀C ∈
Cp(Pn), and we can state:

Theorem 30. On Pn, for p > 2, a monotone balanced solution is optimal for PpCP.

4.1.3.1 The contribution of the centers

In this subsection, we show that a monotone balanced solution minimizes ÎEC(C)
and consequently minimizes IEC(C) too. Note that, based on Proposition 25, for
a given solution C we have:

ÎEC(C) = 1
n
·
(
λC1 +

p−1∑
i=2

max(λCi−1, λ
C
i ) + λCp−1

)
(4.6)

In the following, we define λ≤ = (λi1 , . . . , λiκ), where i : {1, . . . , p − 1} →
{1, . . . , p − 1} is a permutation such that λi1 ≤ . . . ≤ λip−1 , a monotone solution
induced by λ. For given solution C, we denote C≤ the solution such that λ(C≤) =
λ≤(C).

Lemma 31. For any C ∈ Cp(Pn) we have: ÎEC(C) ≥ ÎEC(C≤)

Proof. Let C ∈ Cp(Pn), we denote λ(C) = (λ1, . . . , λp−1). If λ1 = max{λi, i =
1, . . . p−1}, then we define r = 0, else let r be the maximum index in {1, . . . , p−1}
such that λ1 ≤ . . . ≤ λr and ∀j ≥ r, λj ≥ λr.

If r = p − 1, then C is monotone, thus C = C≤ and the lemma is verified.
The value r = p − 2 is not possible: if r = p − 2 then λ1 ≤ . . . ≤ λp−2 and
λp−2 ≤ λp−1 which is actually the case r = p− 1. Suppose r < p− 2. We consider
t ∈ argmin {λj, j = r + 1, . . . , p − 1}: by definition, we have λr+1 ≥ λr if r > 0,
t > r+ 1 and λr ≤ λt < λr+1. Let λ′ be the vector obtained from λ by moving the
tth coordinate at the position r + 1:

λ′i = λi , i = 1, . . . , r
λ′r+1 = λt
λ′i = λi−1 , i = r + 2, . . . , t
λ′i = λi , i > t

We claim that ÊC(λ) ≥ ÊC(λ′). Indeed, suppose first t < p−1 and consider the
expression of ÊC(λ′) and ÊC(λ), as sums of p terms (see Equation 4.6). The three
terms max(λr, λr+1),max(λt−1, λt) and max(λt, λt+1) in the expression of ÊC(λ)
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are replaced respectively in the expression of ÊC(λ′) by max(λr, λt),max(λt, λr+1)
and max(λt−1, λt+1) and all the other terms are identical in both expressions. We
conclude:

ÊC(λ)− ÊC(λ′) = 1
n

(max(λr, λr+1) + max(λt−1, λt) + max(λt, λt+1)
− [max(λr, λt) + max(λt, λr+1) + max(λt−1, λt+1)])

= 1
n

(λr+1 + λt−1 + λt+1 − λt − λr+1 −max(λt−1, λt+1)))
= 1

n
(λt−1 + λt+1 − λt −max(λt−1, λt+1))

≥ 0

where the last inequality holds since λt ≤ min(λt−1, λt+1).
Suppose now t = p − 1, then a similar approach without the terms involving

t+ 1 leads to:

ÊC(λ)− ÊC(λ′) = 1
n

(max(λr, λr+1) + max(λp−1−1, λp−1)−
[max(λr, λp−1) + max(λp−1, λr+1)])

= 1
n

(λr+1 + λp−1−1 − λp−1 − λr+1)
≥ 0

The last inequality is valid since λp−1−1 ≥ λp−1. Note that these arguments hold
also if r = 0. The proposition is deduced by induction.

We are now ready to show the main result of this subsection:

Proposition 32. B ∈ argmin {IEC(C), C ∈ Cp(Pn)}.

Proof. First we claim that B ∈ argmin {ÎEC(C), C ∈ Cp(Pn)}. Indeed in order

to minimize ÎEC(C), Lemma 31 ensures we can restrict ourselves to monotone
solutions. But for any monotone C, we have ÎEC(C) = 1

n
(n+λCp−1) and consequently

a monotone solution minimizing ÎEC(C) is obtained by solving:


min λp−1

λ1 ≤ . . . ≤ λp−1
p−1∑
i=1

λi = n, λ ∈ Np−1

This system admits B as an optimal solution. Therefore, by Lemma 28 we
have: IEC(B) = ÎEC(B) = min ÎEC(C) ≤ min IEC(C), C ∈ Cp(Pn) and consequently
B ∈ argmin {IEC(C), C ∈ Cp(Pn)}.
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4.1.3.2 The contribution of the internal vertices

In this subsection, we show that a monotone balanced solution minimizes IEC̄(C),
∀C ∈ Cp(Pn).

Lemma 33. Given an initial solution C ∈ Cp(Pn), let 1 ≤ b < a ≤ p − 1 and
1 ≤ m ≤ n − 1 such that λCa + λCb = m,λCa ≥ λCb and |λCa − λCb | ≥ 2. There is
a solution C ′ ∈ Cp(Pn) such that λC

′
a + λC

′
b = m, |λC′a − λC

′
b | ≤ 1, λC

′
a ≥ λC

′
b and

∀i ∈ {1, . . . , p− 1}, i 6= a, b, λC
′

i = λi which verifies:

ÎEC̄(C ′) ≤ ÎEC̄(C)

Proof. Let C = {c1, . . . , cp−1}, we denote α(λCa ) = ∑
v∈µCa \C

max{v − ca, ca+1 − v}

the contribution of µCa to the value of ÊC̄(C). Then ÊC̄(C) = 1
n

∑
i=1,...,p−1

α(λCi ).
We denote also A a logical proposition, and by 1A the boolean function such that
1A = 1 if A is true, and 1A = 0 if A is false. Note that ca+1 − ca = λCa . Then, for
v ∈ λCa , we have:

α(λCa ) = ∑
v∈µCa \C

max{v − ca, ca+1 − v}

=
λCa −1∑
i=1

max{i, λCa − i}

= 2 ·
λCa −1∑
j=dλ

C
a
2 e

(j)− 1(λCa even)(λ
C
a

2 )

= bλ
C
a

2 c(λ
C
a + dλ

C
a

2 e − 1)− 1(λCa even)(λ
C
a

2 )
The previous result applies also to α(λCb ). As λCb = m − λCa , we can express

α(λCa ) + α(λCb ) as a function of λCa :

α(λCa ) + α(λCb ) = bλ
C
a

2 c(λ
C
a + dλ

C
a

2 e − 1)− 1(λCa even)(λ
C
a

2 )
+ bm−λ

C
a

2 c(m− λCa + dm−λ
C
a

2 e − 1)− 1((m−λCa ) even)(m−λ
C
a

2 )

If we study the different combinations of parities of λCa and m, we get:

3
2(λCa )2 − 3n

2 λ
C
a + 3

4m
2 −m ≤ α(λCa ) + α(λCb ) ≤ 3

2(λCa )2 − 3m
2 λ

C
a + 3

4m
2 −m+ 1

2

Defining the function f(λCa ) = 3
2(λCa )2 − 3m

2 λ
C
a , we get:

α(λCa ) + α(λCb )− 1
2 ≤ f(λCa ) + 3

4m
2 −m ≤ α(λCa ) + α(λCb ) (4.7)

The same holds for (λC′a , λC
′

b ). In Equation 4.7, note that 3
4m

2−m is constant and

that f(λCa ) is a monotone function for λCa >
m
2 . Therefore, since λC

′
a ≤ λCa , we have

f(λC′a ) ≤ f(λCa ). We deduce from Equation 4.7: α(λC′a ) + α(λC′b ) ≤ α(λa) + α(λb).
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Finally, as α(λCi ) = α(λC′i ),∀i ∈ {1, . . . , k− 1}, i 6= a, b, we conclude ÊC̄(C ′) ≤
ÊC̄(C).

Lemma 34. For any B,C ∈ Cp(Pn) such that B is monotone and balanced, we
have:

ÎEC̄(C) ≥ ÎEC̄(B)

Proof. Let C ∈ Cp(Pn). We observe that for any internal vertex s ∈ V \ C, r̂s(C)
depends only on the position of s in its segment. It follows that any permutation
on the segments does not impact the overall sum of the local evacuation radius,
which induces: ÎEC̄(C) = ÎEC̄(C≤).

Therefore, we suppose in the following, without loss of generality, that λ(C) is
monotone. We look at the pair of segments (λC1 , λCp−1) having the largest length
difference. If |λC1 − λCp−1| ≤ 1, then C is a monotone balanced solution and
the lemma is verified. Otherwise, we create a new solution C ′ by replacing the

extreme segments by a new pair of segments of size λC
′

1 = bn−
∑p−1−1

i=2 λCi
2 c and

λC
′

p−1 = dn−
∑p−1−1

i=2 λCi
2 e. As λC1 + λCp−1 = λC

′
1 + λC

′
p−1, we deduce by Lemma 33 that

ÎEC̄(C) ≥ ÎEC̄(C ′).

Let C ′′ be the monotone solution induced by λC
′

i.e., λ(C ′′) = λC
′
≤ . Then,

ÎEC̄(C ′) = ÎEC̄(C ′′) and ∀j ∈ {1, . . . , p − 1}, λC1 ≤ λC
′′

j ≤ λCp−1. We can make two
observations:

• λC
′′

1 ≥ λC1 and λC
′′

p−1 ≤ λCp−1, thus λC
′′

p−1 − λC
′′

1 ≤ λCp−1 − λC1 .

It means that the maximum length difference between segments in the newly
created solution doesn’t increase compared to the original solution.

• λC
′

1 > λC1 and λC
′

p−1 < λCp−1.

This ensures that after at least n
2 iterations, the maximum length difference

strictly decreases.

Therefore we can iterate this process with the new extreme segments (λC
′′

1 and
λC
′′

p−1) until we get a solution whose extreme segments lengths differ by at most 1,
in which case all segments differ by at most 1. This is then a balanced solution,
hereby the proof is completed.

Proposition 35.

B ∈ argmin {IEC̄(C), C ∈ Cp(Pn)}
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Proof. Using Lemmas 28 and 34 we can state that ∀C ∈ Cp(Pn) : IEC̄(C) ≥
ÎEC̄(C) ≥ ÎEC̄(B) = IEC̄(B)

The proof of Theorem 30 is hence complete. In the next section, we discuss
the case of edge-weighted paths.

4.1.4 The case of edge-weighted path

In this subsection, we show that our approach can not be generalized to edge-
weighted paths.

Example. Consider the edge-weighted path G illustrated in Figure 4.4 and 4.5.
B = {1, 7, 9} where λ(B) = {λB1 , λB2 } = {8, 6} is a balanced solution for PpCP with
p = 3 on G. (as|λB1 − λB2 | is minimum, see Definition 23). The value of rv(B) is
given under each vertex v. Note that r8(B) = r9(B) = 4 due to the evacuation
distance of 5. For the other vertices, rv(B) is equal to the evacuation distance of
v or one of its neighbors. Thus, IE(B) = ∑9

v=1
1
9r
v(B) = 47

9

1 2 3 4 5 6 7 8 91 1 1 1 1 3 3 3

7 7 6 5 4 5 5 4 4

Figure 4.4: The unique balanced solution for PpCP with p = 3 on G

Now consider solution A = {1, 6, 9} as illustrated in Figure 4.5, with λ(A) =
{λA1 , λA2 } = {5, 9}. As |λA1 − λA2 | = 4 is not minimum over all possible solutions,
A is not a balanced solution. As in Figure 4.4, the value of rv(A) is given under
each vertex v. The value of solution A for the PpCP with p = 3 is given by
IE(A) = ∑9

v=1
1
9r
v(A) = 42

9 < IE(B). Thus B is not the optimal solution.

1 2 3 4 5 6 7 8 91 1 1 1 1 3 3 3

4 4 3 3 4 6 6 6 6

Figure 4.5: A non-balanced solution for PpCP with p = 3 on G

♣

We have shown in Theorem 30 that PpCP admits a monotone balanced p-set as
an exact solution on paths in the uniform case. However, the approach considered
is not valid when we consider edge-weighted paths. While the question of solving
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PpCP on acyclic edge-weighted graphs remains open, we propose in the next section
an approximation algorithm for PpCP on edge-weighted trees.
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4.2 Approximation algorithms

We recall that, for any p-set C of G, the radius of C is r(C) = max
v∈V

d(v, C) and

r(C) is the value of C for Min p-Center on G. Note that for any scenario s ∈ V ,
rs(C) ≥ r(C).

In this section we will show that, in graphs of bounded average degree, there
is a polynomial approximation algorithm guaranteeing a constant approximation
ratio for the uniform PpCP. Our result is even valid if edge lengths lie into [l, 2l]
for a positive l. Our strategy is to show that, under these assumptions, the ratio
IE(C)
r(C) is bounded for any p-set C that is feasible for PpCP. In particular, a solution
with constant approximation ratio for Min p-Center has a constant ratio for PpCP.

In graphs with general lengths we cannot expect the same as we show it in the
next example. Thus, another strategy should be taken.

Example. Consider the caterpillar H of Figure 4.6 with three internal vertices
x, y, z and edges (x, y) and (y, z) of length Z and three pending vertices a, b, c,
respectively linked to x, y, z with edges of length 1.

x y y

a b c

Z Z

1 1 1

Figure 4.6: A case where IE(C)
r(C) = Z + 1.

{a, b, c} is the unique feasible solution of the PpCP instance (H, 3). We have
r({a, b, c}) = 1. However, for any scenario s, rs({a, b, c}) = Z + 1, which implies
IE({a, b, c}) = Z + 1.

♣

Recall that, from Proposition 3 in Section 2.1.5, a set C ⊂ V is in Cp(G) if
and only if |C| ≥ 2 and C intersects all minimal articulation components, denoted
MACs.

For any p ≤ |V |, we call MAC p-set a p-set intersecting all MACs. For p ≥ 2,
Cp(G) is then the set of feasible solutions of MAC Min MAC p-Center. We consider
the Min MAC p-Center problem of finding a MAC p-set of minimum radius. The
Min MAC p-Center problem has a feasible solution for a graph G if and only if p
is at least the number of MACs in G, i.e., p ≥ |Υ(G)|.
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Min MAC p-Center

Instance: A graph G = (V,E), an integer p
Feasible solutions: Cp(G) whose elements are called MAC p-set
Objective: Find a MAC p-set of minimum radius r(C).
In the following, to avoid any ambiguity, we will call MAC p-set a p-set taken

as a solution for Min MAC p-Center.
We outline that a balanced p-set on a path, defined in the previous section,

is also an optimal solution for Min MAC p-Center. It can be proved through the
polynomial algorithm of Kariv and Hakimi [15].

In what follows, we describe an approximation preserving reduction between
PpCP and Min MAC p-Center (Subsection 4.2.1). A polynomial approximation
algorithm for the latter leads to a polynomial approximation algorithm for the
former with a ratio that depends on the average degree deg(G) = 2|E|

|V | of G. More
precisely, the reduction is even the identity and we analyze how good for the
problem PpCP an approximated MAC p-set can be. Then, in Subsection 4.2.2, we
show that Min MAC p-Center can be approximated within the ratio 2, which leads
to a (4deg(G) + 2)-approximation for the uniform PpCP. Actually, the result still
holds if all edge-lengths lie in the interval [`, 2`] for any positive `.

4.2.1 A polynomial approximation preserving reduction

We directly establish the following proposition for general edge lengths. We will
denote respectively `M and `m the maximum and minimum edge lengths.

Proposition 36. On an edge weighted graph with lengths in [`m, `M ], ∀C ∈ Cp(G),
we have:

IE(C) ≤ (2deg(G) + 1)r(C) + (`M − 2`m)deg(G)

Proof. Let us consider any scenario s ∈ V of degree deg(s) and number 1, 2, . . . ,
deg(s) the edges incident to s. We claim that rs(C) ≤ (2deg(s) + 1)r(C).

Consider indeed x ∈ V such that rs(C, x) = rs(C) ≥ r(C). If rs(C, x) = r(C),
then the claim is satisfied. Let us assume rs(C, x) > r(C). We consider two cases:

1. x 6= s. rs(C, x) is the length of a path π = [x0, x1, . . . , xk], where x0 = x,
xk ∈ C and π is a minimum path in Gs. Since ds(x, xk) > r(C), we can
define i = max{j ∈ {0, . . . k − 1}, ds(xj, xk) > r(C)}. Then all vertices
xj, j ∈ {0, . . . , i} are, in G, at distance at most r(C) from s. Indeed, the
path xj, . . . , xk is a minimum path of length greater than r(C) in Gs. So,
in G, the evacuation path of vertices xj, j ∈ {0, . . . , i} passes through s.
Figure 4.7 illustrates the distance relation between x, s and xk in the case
x 6= s. In the figure, no shelter is located on s, but the reasoning is the same
if there is one.
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4.2. APPROXIMATION ALGORITHMS

x x1 xi xi+1 xk

s

d(x, s) ≤ r(C)

d(xi, xk) ≤ r(C)

d(xi, s) ≤ r(C)

Figure 4.7: Distance relations between vertices x, s and xk used for Proposition 36

In G, for j ∈ {0, . . . , i}, we consider a minimum path from xj to s, of value at
most r(C). We assign to xj a color in N1, . . . , Ndeg(s) depending on the last
edge of the minimum path we have fixed for xj: xj is of color Nt if the related
minimum path between xj and s terminates with the tth edge incident to s.

Note that the distance in Gs between two vertices of the same color is at
most 2r(C)− 2`m. Indeed considering, in G, two minimum paths from these
vertices to s and sharing the last edge, we deduce a walk avoiding s between
them of total length at most 2r(C)− 2`m. This walk includes a path in Gs

of length at most 2r(C)− 2`m between these two vertices.

This allows us to derive an upper bound of ds(x, xi). Suppose x is of color
Ni1 and consider the last vertex xj of color Ni1 along the path π; we have
ds(x, xj) ≤ 2r(C) − 2`m. Then, if j < i, the vertex xj+1 is of color Ni2 and
ds(xj, xj+1) ≤ `M . Using the same reasoning for all non-empty colors gives
ds(x, xi) ≤ deg(s)(2r(C)− 2`m) + (deg(s)− 1)`M .

Taking into account the edge xixi+1 and the fact that ds(xi+1, xk) ≤ r(C) we
have:

rs(C) ≤ (2deg(s) + 1)r(C) + deg(s)(`M − 2`m) (4.8)

2. x = s Similarly, rs(C, s) is the length of a path π = [x0, x1, . . . , xk], where
x0 = s, xk ∈ C and [x1, . . . , xk] is a minimum path inGs. We define i as in the
previous case and use the same argument: x1 is color Ni1 and we define xj as
previously. The only difference is that for any vertex the fixed minimum path
from xj to s passes through x1 and consequently ds(x1, xj) ≤ r(C)− `m. For
the other colors, the same bound as previously holds. We then get a better
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bound:

rs(C) ≤r(C)− `m + (deg(s)− 1)(2r(C)− 2`m) + deg(s)`M + r(C)
≤2deg(s)r(C) + deg(s)(`M − 2`m) + `m

(4.9)

This bound is better than in Equation 4.8 since `m ≤ r(C).

So, in all cases we have rs(C) ≤ (2deg(s) + 1)r(C). We deduce, by taking the
average value, IE(C) = 1

|V |
∑
s∈V r

s(C) ≤ (2deg(G) + 1)r(C) + (`M − 2`m)deg(G)
which concludes the proof.

On a tree, the analysis can be improved:

Proposition 37. On a tree with edge lengths in [`m, `M ], ∀C ∈ Cp(G), we have:

IE(C) ≤ 3r(C) + `M − 2`m

Proof. Consider, for a scenario s, and a vertex x, rs(C, x) = rs(C), the same
analysis as in the proof of Proposition 36. Since there is no cycle, all vertices
x, . . . , xi are of the same color. Equation 4.8 becomes

rs(C) ≤ 3r(C) + `M − 2`m

which concludes the proof.

As noticed in the following example in Figure 4.8, with general weights system
the situation may be totally different. In this example, the graph is a path on 8
vertices with only one edge of weight Z > 1 and all other edges of weight 1 and
p = 4. There is a unique optimal MAC 4-center and, for large values of Z, its
value is very bad compared to an optimal PpCP solution.

Proposition 38. Suppose a class of edge-weighted graphs G = (V,E) with `M ≤
2`m for which Min MAC p-Center can be approximated with ρ(G).
Then, PpCP can be approximated with (2deg(G) + 1)ρ(G) on the same class.

Proof. Given a graph G in the class, we build a p-set C in Cp(G), if it exists, of
value at most ρ(G)r∗(G), where r∗(G) denotes the optimal radius of a MAC p-set
in G. Using Proposition 36 and `M ≤ 2`m, we have IE(C) ≤ (2deg(G) + 1)r(C) ≤
(2deg(G) + 1)ρ(G)r∗(G).

Now if C∗ is an optimum solution for PpCP, we have IE(C∗) ≥ r(C∗) ≥ r∗(G).
This concludes the proof.
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{1, 3, 6, 8} is an optimal MAC 4-center

r({1, 3, 6, 8}) = 1, IE({1, 3, 6, 8}) = Z
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{1, 4, 5, 8} is PpCP-optimal for p = 4;

r({1, 4, 5, 8}) = 2, IE({1, 4, 5, 8}) = 2

Figure 4.8: With general weights, an optimal MAC p-set can be a very bad PpCP

solution.

4.2.2 Constant approximation algorithms

Proposition 39. Min MAC p-Center is polynomial on edge-weighted trees.

Proof. Given a tree T , for any distance d we consider the tree Td obtained from T
by gluing to each pending vertex v a path of length d. Then, T has a MAC p-set
of radius d if and only if Td has a p-set of radius d. The result immediately follows
from the fact that Min p-Center is polynomial on trees.

Using Proposition 37 and the analysis of Proposition 38, we get:

Corollary 40. There is a polynomial algorithm for PpCP guaranteeing the ratio 3
on trees in the uniform case.

Remark 5. Note however that we leave open the problem of whether PpCP is NP-
hard or polynomial on trees.

Next we address the approximation of PpCP on general graphs. In this subsec-
tion we will need another variant of Min p-Center called Min Partial p-Center

problem and introduced in [83]. Given an edge-weighted graph G = (V,E) and a
set of vertices U ⊂ V , Min Partial p-Center is to minimize the partial radius
r(C,U) of a p-set C, where r(C,U) = max

x∈U
d(x,C).

Min Partial p-Center

Instance: An edge-weighted graph G = (V,E), a set U ⊂ V , an
integer p

Feasible solutions: Any p-set
Objective: Find a p-set C of minimum partial radius.
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The underlying logic is that only vertices in U need to be close to a center.
However, centers can be any vertex in G and distances are computed in G (within
our terminology, it means that evacuation paths are not required to stay in U).
Note that, if U = V , then r(C, V ) = r(C) and Min Partial p-Center is just
the usual Min p-Center problem. So, Min p-Center is a particular case of Min
Partial p-Center.

In particular, Min Partial p-Center is not approximable within 2−ε for any
ε > 0, unless P=NP by using the same hardness result for Min p-Center proved
in [84]. Note that this hardness result for Min p-Center, directly obtained from
the NP-hardness of Min Dominating Set, holds in the uniform case. Since Min

Dominating Set remains NP-hard in planar bipartite graphs of degree 3, Min p-

Center, and by consequence Min Partial p-Center, are not approximable within
2− ε for any ε > 0 in planar bipartite graphs of degree 3 with all edge lengths 1,
unless P=NP. Note that the argument used for Min Partial p-Center cannot be
easily adapted to Min MAC p-Center since this latter problem is not an immediate
generalization of Min p-Center.

For an edge-weighted graph G = (V,E), we define K the complete edge-
weighted graph over V . Let ˜̀

ij be the length of (i, j) in K for all i, j ∈ V ,
we assume ˜̀

ij = d(i, j)
Note that, for Min p-Center, the instance (G, p) is equivalent to the instance

(K, p). Both instances G and K have the same feasible solutions with the same
values and thus, the same optimal solutions. To guarantee finite edge lengths in
K, we just consider G is connected. Since K is 2-connected as soon as |V | ≥ 2,
Min MAC p-Center is equivalent to Min p-Center on K. Since the hardness re-
sult for Min p-Center still holds in connected graphs, Min MAC p-Center is not
approximable within 2 − ε for any ε > 0, unless P=NP. We can even easily show
that this hardness results already holds for the uniform case. To this aim, we just
need to show that Min Dominating Set is NP-hard in 2-connected graphs. Given
a graph G = (V,E) instance of Min Dominating Set, we construct G′ from G as
follows: for every articulation point a of G, create a twin vertex a′ linked to a and
to all neighbors of a. G′ is 2-connected and the Min Dominating Set problems
in G and G′ are equivalent. Now, a set of p vertices in G′ is a dominating set if
and only if its radius is 1 and else, the minimum radius of a p-set is at least 2. It
immediately implies that Min MAC p-Center in graphs with edge lengths all equal
to 1 is not approximable within 2− ε for any ε > 0, unless P=NP.

In what follows, we propose a polynomial 2-approximation algorithms for Min

Partial p-Center and Min MAC p-Center. These approximation results hold
even in the case with general lengths.
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Consider an instance (G,U) of Min Partial p-Center, where G = (V,E) is
an edge-weighted graph and U ⊂ V . We recall n = |V |. We can compute K in
O(n3). We denote SL = {d(x, y), x, y ∈ V } the set of edge lengths in K (note that
|SL| ≤ n2) and for any d ∈ SL, Kd = (V,Ed) is the partial graph of K where Ed is
the set of edges of length at most d. Note that for any solution of Min p-Center,
its radius is in SL.

Theorem 41 can be obtained using the general method in [85] or by adapting the
2-approximation algorithm for Min p-Center in [44]. Since it cannot be deduced
from existing results, we give a direct proof. We first introduce the main concepts
and claims used for this result since they are used as well in Theorem 42.

A solution to Min p-Center of partial radius d in (G,U) can be seen as a
partial dominating set of (Kd, U), where a partial dominating set X is a set of
vertices such that every vertex in U has at least one neighbor in X. If Ad is
the adjacency matrix of Kd with additional 1s on the diagonal (alternatively Ad
is the adjacency matrix of Kd with additional loops on each vertex), we denote
Ad,U the sub-matrix of Ad corresponding to rows in U (it has |U | rows and |V |
columns). The problem of finding a minimum partial dominating set can then be
formulated by the following mathematical program PDS(G,U, d), where the 1s on
the diagonal represent the fact that a vertex dominates itself:

PDS(G,U, d) :


min 〈1|V |, x〉

Ad,Ux ≥ 1|U |
x ∈ {0, 1}|V |

We then consider the mathematical program SIS(G,U, d) that corresponds to
finding a maximum strong independent set of Kd contained in U , where a strong
independent set S ⊂ V is an independent set (every two vertices in S are not
adjacent) such that every vertex in V \ S has at most one neighbor in S.

SIS(G,U, d) :


max 〈1|U |, y〉

Aᵀ
d,Uy ≤ 1|V |

y ∈ {0, 1}|U |

Claim 3. The cardinality of any strong independent set of Kd contained in U is
not more than the cardinality of any partial dominating set of (Kd, U).

Proof. The relaxations of mathematical programs PDS(G,U, d) and SIS(G,U, d),
replacing the binary conditions with non negative conditions, are dual linear pro-
gramming problems. The result is an immediate consequence of the weak duality
theorem.

Let dmax = max(SL). We denote K2d,U the graph Kmin(2d,dmax)[U ].
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Claim 4. For a given distance d ∈ SL, let Sd be a maximal independent set of
K2d,U . Sd is a partial |Sd|-center in (G,U) of partial radius r(Sd, U) ≤ 2d.

Proof. Consider any vertex u ∈ U \ Sd. Since Sd is maximal, Sd ∪ {u} is not
independent in K2d,U , which means d(u, Sd) ≤ 2d and the claim is proved.

Claim 5. Any independent set S of K2d,U is a strong independent set of Kd con-
tained in U .

Proof. By definition, S ⊂ U . Since S is independent in K2d,U , it is independent in
Kd,U , a partial graph of K2d,U . So, it is an independent set of Kd. The result then
follows by contrapositive: if there is a vertex u ∈ V \ S adjacent, in Kd, to two
vertices of S, then these two vertices would be at distance at most 2d, so would
be adjacent in K2d,U .

Claims 3, 4 and 5 immediately allow to derive an approximation algorithm for
Min Partial p-Center.

Theorem 41. Min Partial p-Center is polynomially 2-approximable and this is
the best possible constant ratio.

Proof. We already noted that 2 is a lower bound for any constant approximation
ratio of Min Partial p-Center. So, we only need to prove that this bound can
be guaranteed.

For a given instance (G,U), we can compute SL and all distances d(i, j), i, j ∈
V in O(n3). Then, for any d ∈ SL, we can compute a maximal independent set Sd
of K2d,U and then select Sd̃, where d̃ ∈ argmin

d∈SL,|Sd|≤p
(r(Sd)). In other words, Sd̃ is of

minimum value among all Sds of cardinality at most p. Denote r∗U the minimum
partial radius of a p-set in (G,U). r∗U ∈ SL. Using Claim 5 and Claim 3, |Sr∗U | ≤ p

and thus, d̃ exists and r(Sd̃) ≤ r(Sr∗U ). Using Claim 4, we deduce r(Sr∗U ) ≤ 2r∗U ,
which completes the proof.

Note that, using a binary search on the same model as the 2-approximation
algorithm for Min p-Center proposed in [44], we can design a 2-approximation
algorithm of complexity O(n2 log n) as soon as all distances between two vertices
in G are computed.

We use similar ideas and the same claims to derive a polynomial 2-approximation
algorithm for Min MAC p-Center (Algorithm 1).

To simplify the description of Algorithm 1, we introduce some notations used
in the description of the algorithm. Given the instance G = (V,E), we denote by
k the number of MACs of G. These MACs are denoted A1, . . . Ak and the related
articulation points are called a1, . . . ak (we may have ai = aj, i 6= j). As previously
SL = {d(i, j), i, j ∈ V, }; for any d ∈ SL, we partition I = {1, . . . , k} into I =
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Algorithm 1 2-approximation for Min MAC p-Center.

Require: Edge-weighted graph G = (V,E) and p ≥ 2.
Ensure: Outputs C, a MAC p-set if it exists.

1: Begin
2: Compute A1, . . . Ak, and a1, . . . ak
3: if k > p then
4: No-solution output
5: else
6: Compute SL and all distances d(i, j), i, j ∈ V
7: S̃L← ∅
8: for d ∈ SL do
9: Compute I−d and I+

d

10: Cd ← ∅
11: for i ∈ I−d do
12: Select x ∈ Ai
13: Cd ← Cd ∪ {x}
14: end for
15: V ′d ← {v ∈ V, d(v, {ai, i ∈ I−d }) > d}
16: Sd ← ∅
17: for i ∈ I+

d do
18: Select y ∈ argmax

x∈Ai
d(x, ai)

19: Sd ← Sd ∪ {y}
20: end for
21: while ∃v ∈ V ′d , d(v, Sd) > 2d do
22: Sd ← Sd ∪ {v}
23: end while
24: if |Sd| ≤ p− |I−d | then
25: S̃L← S̃L ∪ {d}
26: Cd ← Cd ∪ Sd
27: end if
28: end for
29: Let d̃ ∈ argmin

d∈S̃L
(r(Cd))

30: C ← Cd̃
31: return C
32: end if
33: End
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I−d t I+
d (t denotes the disjoint union), where I−d = {i ∈ I,max

x∈Ai
d(x, ai) ≤ d} and

I+
d = {i ∈ I,max

x∈Ai
d(x, ai) > d}. MACs Ai, i ∈ I−d are seen as small MACs relative

to d, while MACs Ai, i ∈ I+
d are seen as large ones. “No-solution output” is any

output we use to indicate that the problem has no feasible solution.
The idea of the Algorithm is as follows:

1. If the number of MAC is more than p, then there is obviously no solution.

2. Else, for every distance d ∈ SL, Algorithm 1 tries to compute a MAC p-
set Cd of radius at most 2d; only feasible MAC p-set obtained through this
process will be kept and S̃L is the set of distances d for which it will occur;

3. Cd is built as follows:

(a) The algorithm selects one center per small MAC Ai, i ∈ I−d ;

(b) For each i ∈ I−d , all vertices at distance at most d from ai are allocated
to the related center (by definition of I−d , this includes in particular all
vertices of Ai).

(c) V ′d is the set of uncovered vertices. If possible, the algorithm completes
Cd with a partial (p − |I−d |)-center of (G \ ⋃

i∈I−
d

Ai, V
′
d) of partial radius

at most 2d. To this aim, it uses the same ideas as in Theorem 41: it
constructs a maximal independent set Sd of K2d,V ′

d
, but to ensure it

intersects all Ais, i ∈ I+
d , it initializes it by choosing one vertex in each

of these components. If |Sd| ≤ p− |I−d |, then d ∈ S̃L;

4. The best solution Cd̃, d ∈ S̃L is selected as an approximated solution for Min
MAC p-Center.

Theorem 42. Algorithm 1 is a polynomial 2-approximation algorithm for Min MAC

p-Center and this is the best possible constant ratio.

Proof. We already noted that 2 is a lower bound for constant approximation ratios.
So, we only need to prove that this bound can be guaranteed.

Assume that k ≤ p; then the instance of Min MAC p-Center has feasible solu-
tions and thus, also an optimal solution.

Fix a distance d ∈ SL. Note first that, by definition of I−d and I+
d , V ′d computed

at line 15 satisfies V ′d ⊂ V \ ⋃
i∈I−

d

Ai and ∀i ∈ I+
d , Ai ∩ V ′d 6= ∅. Then, the algorithm

computes the set Sd from Lines 16 to Line 23.

Claim 6. ∀d ∈ SL, Sd is a maximal independent set in K2d,V ′
d

that intersects all

Ais, i ∈ I+
d .
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Proof. The algorithm initializes Sd by selecting, in each MAC Ai, i ∈ I+
d , a vertex

at maximum distance from ai. This ensures that, at Line 20, Sd includes one
element per MAC Ai, i ∈ I+

d and is an independent set (possibly empty) in K2d,V ′
d
.

Indeed, if yi, yj are respectively selected at Line 18 for i, j ∈ I+
d , i 6= j, then any

path between them passes through ai and aj (we may have ai = aj) and is of length
greater than 2d. As a consequence, Sd is a maximal independent set in K2d,V ′

d
.

S̃L, computed by the algorithm (Lines 25), is the set of distances d such that
Sd is of size at most p − |I−d |. Consider now an optimal MAC p-set, C∗MAC , of
radius d∗.

Claim 7. d∗ ∈ S̃L

Proof. Since C∗MAC has at least one center per MAC, C∗MAC has at most
(
p− |I−d∗|

)
centers in V \ ⋃

i∈I−
d∗

Ai. In addition, vertices in V ′d∗ cannot be associated with (i.e.,

evacuated to) centers in
⋃

i∈I−
d∗

Ai since these centers are at distance more than d∗.

This means that C∗MAC ∩ (V \ ⋃
i∈I−

d∗

Ai) is a (p − |I−d∗|)-center of partial radius at

most d∗ in (G \ ⋃
i∈I−

d∗

Ai, V
′
d∗).

As a consequence C∗MAC∩(V \ ⋃
i∈I−

d∗

Ai) is a partial dominating set in (Kd∗ , V
′
d∗).

Using Claims 5 and 3, we get |Sd∗| ≤ |C∗MAC ∩ (V \ ⋃
i∈I−

d∗

Ai)| ≤ p − |I−d∗|, which

means d∗ ∈ S̃L.

Claim 7 ensures in particular that S̃L 6= ∅ and consequently d̃ computed at
Line 29 is well defined. Since d∗ and d̃ are both in S̃L, the algorithm computes
both sets Cd∗ and Cd̃ by selecting one vertex per Ai, i ∈ I−d∗ and one vertex per
Ai, i ∈ I−d̃ , respectively (from Line 10 to Line 14) and completing with Sd∗ and Sd̃,
respectively. Using Claim 6, this ensures that both Cd∗ and Cd̃ are MAC p-set.

Finally, Cd̃ is selected as approximated solution and Line 29 ensures

r(Cd̃) ≤ r(Cd∗) (4.10)

We complete the proof by showing the following claim.

Claim 8. r(Cd∗) ≤ 2d∗.

Proof. Consider first a vertex v ∈ V ′d∗ and use the same argument as in the proof of
Theorem 41. We have d(v, Cd∗) ≤ d(v, Cd∗ \

⋃
i∈I−

d∗

Ai) ≤ r(Sd∗ , V ′d∗). Using Claims 6

and 4, we have r(Sd∗ , V ′d∗) ≤ 2d∗ and thus:

93



4.2. APPROXIMATION ALGORITHMS

∀v ∈ V ′d∗ , d(v, Cd∗) ≤ 2d∗. (4.11)

Consider now a vertex v ∈ V \ V ′d∗ . By definition of V ′d∗ , we have d(v, {ai, i ∈
I−d∗}) ≤ d∗ and by definition of I−d∗ , we have ∃i ∈ I−d∗ ,∀u ∈ Ai, d(v, u) ≤ 2d∗. This
ensures:

∀v ∈ V ′d∗ , d(v, Cd∗) ≤ 2d∗. (4.12)

Equations 4.11 and 4.12 ensure r(Cd∗) ≤ 2d∗.

Claim 8 and Equation 4.10 imply r(Cd̃) ≤ 2d∗, which concludes the proof of
Theorem 42.

We immediately deduce from Theorem 41 and Proposition 38:

Corollary 43. For edge weighted graphs with lengths in [`, 2`], PpCP is approx-
imable within 4deg(G) + 2.

Conclusion

In this chapter, we show in Section 4.1 that, on a path, and in the uniform case,
a balanced monotone solution is an optimal solution for PpCP (Theorem 30). It
requires to decompose the problem into subproblems. We introduce, for each
scenario, the local evacuation radius as the maximum evacuation distance of the
source vertex and its neighborhood. The local evacuation radius is a lower bound
to the evacuation radius of a solution. This bound is tight when the solution is
balanced. In addition, we consider a partition of the scenarios in two sets. For
each set of scenarios, we prove independently that a balanced monotone solution
minimizes the local evacuation radius.

In Section 4.2, we propose some approximation results for PpCP. In edge weighted
graphs of bounded degree and with edge lengths in [`, 2`], PpCP is approximable
within the constant ratio 4deg(G) + 2. On trees, PpCP is approximable within
the constant ratio 3. This approximation result holds for a class of instances on
which all our hardness results apply: it provides a first gap between constant
approximation ratios and the hardness in approximation results we have obtained.

In addition, we introduce the Min MAC p-Center problem, which is the problem
of finding a p-set of minimum radius among the set of feasible solutions for PpCP.
We show that this problem is 2-approximable and that this is the best possible
constant approximation ratio. It is also polynomial on trees.

In the next chapter, we consider the RpCP problem where we generalize some
notions introduced in this chapter. Indeed, the idea of a segment-partition induced
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by a solution will be used and generalized to develop polynomial algorithms for
RpCP on edge-weighted acyclic graphs.

95





CHAPTER 5

POLYNOMIAL AND
APPROXIMATION RESULTS FOR

RpCP

Abstract

In this chapter we present polynomial exact algorithms for RpCP on edge-weighted
acyclic graphs. A generic algorithm is presented, based on a binary search coupled
with the auxiliary problem k-RCP. The complexity of the algorithm mainly depends
on the complexity of an algorithm for k-RCP. For this purpose, we propose efficient
algorithms to solve k-RCP in polynomial time on paths, extended stars, caterpillars
and trees.
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Introduction

We have seen in the Chapter 3 that RpCP is NP-hard on bipartite planar graphs
and subgrids of degrees {2, 3}. In this chapter, we propose polynomial algorithms
to solve RpCP on several simple classes of graphs.

In Section 5.1, we present a generic algorithm to solve RpCP using a binary
search with k-RCP. We show that RpCP can be solved in polynomial time on a graph
if k-RCP can be solved in polynomial time on the same graph. In Section 5.2, we
propose a polynomial algorithm in O(n) to solve k-RCP on edge-weighted paths.
In Section 5.3, we propose a polynomial algorithm in O(n) to solve k-RCP on
edge-weighted extended stars. In Section 5.4, we propose a polynomial algorithm
to solve k-RCP on an edge-weighted caterpillar. We present also an improved
algorithm that narrows the complexity of the problem to O(n). In Section 5.5, we
propose a polynomial algorithm to solve efficiently k-RCP on edge-weighted trees.
Our algorithm is based on observations and structural properties inferred from the
previous cases. We propose an efficient algorithm to solve k-RCP in O(n).

5.1 The general approach

In Section 2.1.4, we introduced k-RCP as a problem closely related to RpCP. On an
edge-weighted graph and for a given k, k-RCP is the problem of determining a set
of vertices of minimum size such that its robust radius is less than or equal to k.
We present in this section a generic algorithm for RpCP based on k-RCP.

Consider an instance (G, p) of RpCP, with p ≥ 2 and G an edge-weighted graph.
We recall that D is the ordered set of candidate values for the robust radius of G
i.e., D = {ds(x, y) : x, y, s ∈ V } ∪ {lsx + ds(x, y) : y, s ∈ V, x ∈ Γ(s)}.
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We observe that, for k ∈ D, if the optimal value of k-RCP on (G, k) is greater
than p, then the optimal value of RpCP is greater than k. Else, the optimal value of
RpCP is less or equal to k. Based on this relation, we can perform a binary search
on D to find the minimum radius k∗ for which the optimal value of k-RCP is less
or equal to p. Note that, if lower and upper bounds are known for the minimum
robust radius of G, then we can restrict D before starting the binary search. We
implement the method we just described in Algorithm 2.

Algorithm 2 Exact algorithm for RpCP

Require: Graph G, integer p
Ensure: An optimal solution C for RpCP on G

1: Generate the increasing ordered set D.
2: Restrict D with known lower and upper bounds.
3: while |D| > 1 do
4: Let k be the median value of the restricted D.
5: Solve k− RCP with (G, k). Denote C the obtained solution and p′ its size.
6: If p′ ≤ p, restrict D to its first half. Otherwise restrict to its second half.
7: end while

The output of Algorithm 2 is a solution C of size at most p and of radius k.
The resulting C is an optimal solution for RpCP as no solution of size p exists with
a smaller radius.

The complexity of generating D is given by the complexity of generating the
shortest path between every pair of nodes in Gs, for every scenario s ∈ V . On
general graphs, for every scenario s, there are at most O(n2) shortest paths which
can be computed in O(nm) ([41]). As there are n scenarios, the overall complex-
ity of generating D is O(n2m), with |D| ≤ n3. On specific classes of graphs, the
complexity of generating D can be improved. For example, on connected acyclic
graphs, there is exactly one path between two vertices. Therefore, the set of evac-
uation paths is contained in the set of shortest paths and D can be obtained by
computing the lengths of all the shortest paths in G. Thus, on all acyclic graphs,
as |E| < n, D can be computed in O(n2) and is of maximum size n2.

In all cases, the while-loop need to be repeated at most log(|D|) = O(log(n)).
Finally, the complexity of solving k-RCP depends on the considered class of the
graph. In summary, on a class of graph H, if D can be generated in O(g(n)) and
k-RCP can be solved in O(f(n)), then RpCP can be solved in O(g(n))+O(f(n) log n)
with Algorithm 2. Hence, developing a polynomial algorithm for k-RCP would
ensure a polynomial algorithm for RpCP. It follows that k-RCP is NP-hard on the
classes of graphs on which RpCP is NP-hard. In the next sections, we consider
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that D is given and we propose polynomial algorithms for k-RCP on some specific
edge-weighted acyclic graphs. We start with paths.

5.2 Edge-weighted paths

Let G be an edge-weighted path. We apply the notations introduced in Sec-
tion 4.1.1. We recall that, for a given solution C = {c1, . . . , cq} ⊂ V , we denote
ci, ci+1 the extremities of µCi , where i ∈ {1, . . . , q−1}. We denote ai and bi the ver-
tices of µCi adjacent to ci and ci+1 respectively. In addition, we denote αCi = laici ,
βCi = lbici+1 , and φCi such that αCi + φCi + βCi = λCi . We illustrate these notations
on Figure 5.1.

. . . ci ai . . . bi ci+1 . . .

λCi

αCi φCi βCi

Figure 5.1: Values λCi , αCi , φCi and βCi illustrated on a segment µCi

On a path G, for a given feasible solution C of k-RCP, every internal vertex has
exactly two potential evacuation paths. Indeed, let ci, ci+1 be the nearest shelters
on both sides of a vertex x, such that ci < x < ci+1. The evacuation path of x will
always be one of the two paths Pxci or Pxci+1 . If ai and bi do not exist, then we
set αCi = λCi and βCi = 0.

In the following, ∀x, y ∈ V, x < y, we say x is located downstream of y, and y is
located upstream of x. The direction from x to y is called upstream, the opposite
direction is called downstream.

5.2.1 Computing the robust radius of a p-set

Proposition 44. On a path, the robust evacuation radius of a feasible solution C
for k-RCP on G is:

IR(C) = max
i∈{1,...,q−1}

{φCi + βCi , φ
C
i + αCi } (5.1)

Proof. Suppose j ∈ µi with ci, ci+1 the extremities of µi. If j ∈ C, then rs(C, j) = 0
for any scenario s, else we observe that the evacuation path of j in any scenario is
contained in one of the evacuation paths of ai or bi for scenario ai or bi respectively.
Thus, rs(C, j) = max{rai(C, ai), rbi(C, bi)}. It follows that:
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IR(C) = max
i∈{1,...,q−1}

{rai(C, ai), rbi(C, bi)}

= max
i∈{1,...,q−1}

{lciai , λCi − lciai , lbici+1 , λ
C
i − lbici+1}

= max
i∈{1,...,q−1}

{αCi , λCi − αCi , βCi , λCi − βCi }

= max
i∈{1,...,q−1}

{αCi , φCi + βCi , β
C
i , φ

C
i + αCi }

= max
i∈{1,...,q−1}

{φCi + βCi , φ
C
i + αCi }

For a given C, αCi , φ
C
i and βCi can be computed for all values of i by scanning

all vertices once. Thus IR(C) can be computed in O(n).

5.2.2 Bounds for RpCP

A lower bound for k can be computed from p. For any solution C of size p,
αCi +φCi ≤ k and φCi +βCi ≤ k ∀i ∈ {1, . . . , p−1}. Thus λCi ≤ αCi +2φCi +βCi ≤ 2k.
p is minimal if all the segments are of maximal length λCmax = 2k, in which case

there is at least d

n−1∑
i=1

li,i+1

λCmax
e segments i.e., p − 1 ≥

n−1∑
i=1

li,i+1

2k ⇔ k ≥

n−1∑
i=1

li,i+1

2(p−1) . Thus,
for a given p, when solving RpCP on G, D can be restricted to the set of its values

greater or equal to

n−1∑
i=1

li,i+1

2(p−1) .
An upper bound can be obtained from any randomly computed feasible solu-

tion. In the case of a path, a balanced solution (introduced in Section 5.2) can be
easily computed and induces an upper bound.

5.2.3 Algorithm

Next we present an algorithm to compute an optimal solution for k-RCP on paths.
The idea of the algorithm is to locate shelters greedily as upstream as possible.
By doing so, we show that we minimize the number of centers.

In Algorithm 3, for a given C of size q, α, φ and β correspond respectively to
αCq−1, φ

C
q−1 and βCq−1. In other words, α, φ and β characterize the last (as in located

the most upstream) segment induced by C.

Proposition 45. Algorithm 3 returns an optimal solution of k-RCP for a path and
an integer k.
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Algorithm 3 Solving k-RCP- Paths

Require: Edge-weighted path G, integer k
Ensure: Returns an optimal k-RCP solution C for G

1: Add {1, 2} to C
2: α← l1,2, φ← 0, β ← 0
3: for v ∈ [3, . . . , n] do
4: Add {v} to C and remove {v − 1} from C
5: φ← φ+ β
6: β ← lv−1,v
7: if (φ+ α > k) OR (φ+ β > k) then
8: Add {v − 1} to C
9: α← lv−1,v

10: φ← 0
11: β ← 0
12: end if
13: end for
14: Return C

Proof. We denote by G(v) the subgraph G[{1, 2, . . . , v}], and by C(v) the state of
solution C at the end of iteration v of the loop (steps 3-13). We define similarly
α(v), φ(v) and β(v).

The statement to prove is P (v): “ C(v) is an optimal solution for G(v)”. A
secondary statement useful for our proof is P ′(v): “The centers of C(v) are located
maximally upstream in G(v)”. More precisely, P ′(v) states that, if any shelter
is moved upstream in G(v), then IR(C(v)) > k. We prove by induction that,
∀v ∈ {2, n}, P (v) and P ′(v) are true.

Base case The base case is for v = 2. C is initialized with C(2) = {1, 2} which
is the trivial optimal solution for G(2). Thus P (2) and P ′(2) are trivially true.

Inductive step Assume P (v) and P ′(v) are true at the end of iteration v. We will
prove that P (v + 1) and P ′(v + 1) are true at the end iteration v + 1. By step 4,
C(v + 1) = C(v) \ {v} ∪ {v + 1}. Note that, all segments, except the one located
the most upstream, are unaffected by this change. So are the evacuation paths
of these segments. As the last segment induced by C(v + 1) has been extended
with edge (v, v + 1), φ and β are updated accordingly. We then verify whether
(φ(v + 1) + β(v + 1)) or (φ(v + 1) + α(v + 1)) exceeds k. There are two cases:

• if φ(v+1)+β(v+1) and φ(v+1)+α(v+1) do not exceed k, then C(v+1) is
a feasible solution. As |C(v + 1)| = |C(v)|, then, based on P (v), C(v + 1) is
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of optimal size. Hence, P (v + 1) is true. In addition, as the most upstream
shelter has been relocated to the upstream extremity of the path, P ′(v + 1)
is true.

• if φ(v+1)+β(v+1) or φ(v+1)+α(v+1) exceeds k, then by Proposition 44,
IR(C(v + 1)) > k. In this case we add vertex v to C(v + 1). As C(v) ⊂
C(v + 1), C(v + 1) ensures evacuation distances less or equal to k on G(v).
Hence C(v+ 1) is feasible. As the number of shelters of C(v) were minimum
(P (v)) and located as upstream as possible (P ′(v)), no shelter in G(v) can be
relocated to an upstream vertex without breaking the feasibility condition. It
follows that adding a shelter was necessary to satisfy the feasibility condition,
thus P (v + 1) is true. By P (v), the centers of C(v) are located maximally
upstream in G(v). As C(v) ⊂ C(v+1) and (v+1) ∈ C(v+1), then the centers
of C(v + 1) are located maximally upstream in G(v + 1). Thus P ′(v + 1) is
true.

Conclusion By induction, P (v) and P ′(v) are true for all v ∈ {2, n}.

The algorithm ends after less than n iterations and returns C(n), which is an
optimal solution for k-RCP on G(n) = G.

The complexity of Algorithm 3 is induced by the number of iterations, that
is n − 3, thus Algorithm 3 is in O(n). Note that, in Algorithm 3, the size of a
solution never decreases between two consecutive iterations. For this reason, while
building a solution for k-RCP with Algorithm 3 in step 5 of Algorithm 2, if the size
of the solution exceeds p at one point, then we can proceed to the next step of
Algorithm 2.

5.2.4 Example

We look for the RpCP for p = 3 solution on the edge-weighted graph G = (V,E)
with 9 vertices in Figure 5.2 (similar to Section 4.1.4). We apply Algorithm 2
combined with Algorithm 3 on G.

1 2 3 4 5 6 7 8 91 1 1 1 1 3 3 3

Figure 5.2: Example graph on which we apply Algorithm 2 for p = 3

The set D is the range of integer values from 1 to 14. A lower bound for k is
given by 14

2(p−1) = 14
4 = 3.5. In addition, an upper bound to k can be obtained from
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Iteration v 2 3 4 5 6 7 7 8 9 9
C(v) 1,2 1,3 1,4 1,5 1,6 1,7 1,6,7 1,6,8 1,6,9 1,6,8,9
α 1 1 1 1 1 1 3 3 3 3
φ 0 0 1 2 3 4 0 0 3 0
β 0 1 1 1 1 3 0 3 3 0
α + φ 1 1 2 3 4 5 3 3 6 3
φ+ β 0 1 2 3 4 7 0 3 6 0
Feasibility Y Y Y Y Y N Y Y N Y

Table 5.1: Description of the evolution of the parameters of the Algorithm 3 applied to
G.

a balanced solution. As we have seen in Section 4.1.4, G has a balanced solution of
robust radius 7. It follows that D = {4, 5, 6, 7}, and its median value is 5. Then,
as set out in Algorithm 2, we solve k-RCP for k = 5 on G using Algorithm 3.
Table 5.1 gives a detailed description of the state of the algorithm parameters at
step 7 - and step 12 if appropriate - at each iteration. The first column lists the
described parameters. The iterations are labeled by the value of v. At iteration 2,
we initialize the solution with {1, 2}, the value of α with l1,2, and the values of φ
and β with 0. As α + φ = 1 and β + φ = 0 are less than 5, C(2) is feasible for
G(2). At iteration 3, we remove 2 from the solution C and add 3 to it. We update
φ with φ + β first, then we set the new value of β to l2,3 = 1. As α + φ = 1 and
φ+ β = 1, C(3) is feasible for G(3). We repeat this procedure for each vertex till
iteration 7. For C(7) = 7, φ is updated with the value β + φ = 4, then we set the
new value of β to l6,7 = 3. It follows that α + φ = 5, and that β + φ = 7. As the
latter sum exceeds 5, C(7) = {1, 7} is not a feasible solution for G(7). Thus, we
reinsert 6 in C(7), and we fix the value of α to l6,7 = 3, and the values of φ and β
to 0. Then α + φ = 3 and β + φ = 0 do not exceed 5, thus C(7) = {1, 6, 7} is a
feasible solution on G(7).

The output solution C is given by the feasible solution C(9) = {1, 6, 8, 9} in
the last column. We observe that C(9) is of size 4, which is higher than p = 3.
Before proceeding, we will show the solution if we had started the algorithm with
the other extremity of the path, namely with v = 9. To this end, consider the
graph G′, isomorph to G, such that the vertex numbers are inversed. We observe
that the optimal solution obtained C ′ = {1, 3, 7, 9} does not correspond to solution
C in G, however C ′ is also of size 4.

1 2 3 4 5 6 7 8 93 3 3 1 1 1 1 1

Figure 5.3: Example graph G′ on which we apply Algorithm 2 for p = 3
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Thereby we know that there is no solution for RpCP for p = 3 on G of radius
less or equal to 5, then 5 is a new strict lower bound on k. Hence we proceed to a
new iteration in Algorithm 2 with D = {6, 7}. We apply Algorithm 3 on G with
k = 6, which gives us the solution {1, 5, 9}. It is optimal on G.

In the next section, we consider the class of extended stars.

5.3 Extended star with edges of different lengths

Consider St an extended star of n vertices, that is a tree with t pending vertices
and all the internal vertices of degree two, except one internal vertex of degree t,
called the root and denoted o. We call branch the path between o and a pending
vertex, both included. We denote the branches B1, . . . , Bt. We consider the orien-
tation of the branches such that o is always the upstream extremity of a branch.
For a solution C = {c1, . . . , cq}, if o ∈ C, then we fix cq = o. We also denote
Ci the subset of solution C located on Bi, with cq(i) ∈ Ci the nearest center to
o on Bi (except o itself if o ∈ C). The vertices of C are numbered such that
Ci \ {o} = {cq(i−1)+1, . . . , cq(i)}, with q(0) = 0. Note that cq(i) can be the pending
vertex of Bi.

We observe that the set C ∪ {o} induces a set of segments as defined in Sec-
tion 5.2 (the only difference being that o is not necessarily included in C). The
segments are numbered increasingly from each pending vertex to o, such that cj is
always the extremity of µCj the more distant from o. We illustrate these notations
on Figure 5.4. We represent a path without shelters with a hashed line, while a
dotted line represents a path with or without shelters. In this example, B1 is the
path whose extremities are c1 and o and cq(1) = c3.

c1 2 c2 c3

o

cq(2)cq(2)−1c4
cq(2)+1

cq(i) cq(i)−1 cq(i−1)+1

µC1 µC2 µC3 µCq(i) µCq(i)−1

Figure 5.4: Example of notations on an extended star.

In addition, we can apply the notation introduced in Section 5.2 on µCj . More
precisely, we consider the configuration where βCq(i) corresponds to the length of the
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edge adjacent to o on µCq(i). Note that these notations are independent of whether
or not o ∈ C.

5.3.1 Computing the robust radius of a p-set

To compute the robust evacuation radius of a feasible solution C on St, we have
to consider two cases: o is in solution C or not.

• If o is in the solution, then C induces q− 1 segments, and the robust evacu-
ation radius of C can be given like in Proposition 44, by:

IR(C) = max
1≤i≤q−1

{φCi + βCi , φ
C
i + αCi } (5.2)

• If o is not in the solution, then C ∪ {o} induces q segments. The robust
evacuation radius of C is given by

IR(C) = max{a, b, c}

where

a = max
1≤j≤q,1≤i≤t,j 6=q(i),

{φCj + βCj , φ
C
j + αCj } (5.3a)

b = max
1≤i≤t

λCq(i) (5.3b)

c = max
1≤i≤t
{φCq(i) + βCq(i) + min

1≤j≤t,j 6=i
(αCq(j) + φCq(j) + βCq(j))} (5.3c)

– (5.3a) gives the maximum evacuation distance of all vertices included
on all segments µCj such that o /∈ µCj ; it can be computed as in Propo-
sition 44.

– (5.3b) gives the evacuation distance of vertex o for scenario o.

– (5.3c) gives the maximum evacuation distances of the vertices in µCq(i).
Note first that the downstream evacuation path of any vertex x ∈
µCq(i), x /∈ C is contained in the downstream evacuation path of vertex
bq(i) whose length is dominated by the evacuation distance of o (5.3b).
On the other hand, the upstream evacuation path of x will cross o to
reach a shelter on another branch. The upstream evacuation path of x
is then contained in the upstream evacuation path of aq(i) whose length
is given by φCq(i) + βCq(i) + min

1≤j≤t,j 6=i
(αCq(j) + φCq(j) + βCq(j))).

For a given feasible solution C, we can compute αCi , φ
C
i and βCi for all values

of i by scanning all edges once. Thus IR(C) can be computed in O(n).
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5.3.2 Algorithm

Algorithm 4 Solving k-RCP- extended stars

Require: Edge-weighted extended star St rooted in o, integer k
Ensure: Returns C, k-RCP solution for St

1: Ci ← Algorithm 3(Bi, k) , ∀i ∈ {1, . . . , t}
2: C ← ∪∀iCi

3: C∗ ← C \ {o}
4: if IR(C∗) ≤ k then
5: Return C∗

6: else
7: Return C
8: end if

We propose Algorithm 4 to solve k-RCP on St. In the first step, using Algo-
rithm 3, we solve k-RCP on each path Bi considered independently of St. C

i is the
solution obtained on Bi. From these t solutions, we can compute in step 2 a unique
solution C = ∪ti=1C

i on St. By construction, C is a feasible solution for k-RCP

on St. In addition, o ∈ C as o ∈ Ci for being the extremity of Bi, i = 1, . . . , t.
The remaining steps check whether there is a feasible solution of smaller size than
C. We will see later that a smaller feasible solution than C exists if and only if
C∗ = C \ {o} is a feasible solution on St. Thus, we compute IR(C∗) using Equa-
tions 5.3 in step 4. If IR(C∗) ≤ k, then C∗ is feasible and and we return C∗.
Otherwise C∗ is not feasible and we return C.

We explain now the validity of our algorithm i.e., Algorithm 4 returns an op-
timal solution.

1. If IR(C∗) > k, then C∗ is not feasible. If we want to construct a feasible
solution of size |C∗|, then we need to relocate at least one shelter cq(i) for some
i upstream on the branch Bi. However cq(i) can’t be moved upstream without
increasing λC

∗

q(i)−1. Given properties P and P ′ (introduced in Section 5.2.3)

on Bi, it is impossible to have a feasible solution of size |C∗|. As solution C
is feasible by construction, C is an optimal solution and |C| = |C∗|+ 1 is the
minimum size of a solution.

2. If IR(C∗) ≤ k, then C∗ is feasible. If we want to construct a feasible solution
of size |C∗|−1, then we need to relocate at least one shelter ciq(i) for a given i
towards o. As for the previous case, this is impossible without violating the
feasibility condition. Thus there is no feasible solution of size |C∗| − 1, and
C∗ is an optimal solution of minimum size.
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Thus, we have proved the validity of the algorithm. Next we clarify its com-
plexity. Let ni be the number of vertices of Bi \ o, such that 1 + ∑

1≤i≤t
(ni) = n.

Then Step 1 of Algorithm 4 is done in
∑

1≤i≤t
O(ni) = O(n), while computing IR(C∗)

is done in O(n). Therefore Algorithm 4 is in O(n).
In the next section, we consider the class of caterpillars.

5.4 Caterpillar

Consider an edge-weighted caterpillar G of n vertices, with 1, . . . , ñ, ñ ≤ n the
vertices of the central path. We recall that L ⊂ V is the set of pending vertices. In
a caterpillar, we denote Lc = L\{1, ñ}. We consider the central path of maximum
length, such that the extremities of the central path are pending vertices. Con-
sidering an arbitrary orientation of the central path, we number first the vertices
on the central path increasingly. The pending vertices adjacent to a vertex v are
labeled v′, v′′, etc. This labeling is illustrated in Figure 5.5, for a caterpillar with
n = 16 and ñ = 10.

1 2 3 4 5 6 7 8 9 10

4′

5′

6′ 8′

8′′7′

5 4 1 1 1 1 1 3 1
6

4

2 1

23

Figure 5.5: Example of the notation of a caterpillar.

On a path we have seen that, for a given feasible solution of k-RCP, every ver-
tex not included in the solution has exactly two potential evacuation paths: an
upstream evacuation path i.e., an evacuation path crossing vertices numbered in
the increasing order, and a downstream evacuation path i.e., an evacuation path
crossing vertices numbered in the decreasing order. Upstream or downstream de-
scribes the direction of an evacuation path depending on the direction they follow
along the central path. We use the same notation for caterpillars. The evacuations
paths can be characterized as upstream or downstream evacuation paths. When an
evacuation path is a sole edge between a vertex of the central path and a pending
vertex, its direction is said horizontal.

To build a feasible solution, we want to determine the set of vertices of the
central path to be included in the solution in addition to the pending vertices.
The caterpillar case has similarities with the path case, however we may encounter
more complex situations compared to the path case: on a caterpillar and for a
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given feasible solution, every vertex not included in the solution can have multiple
potential evacuation paths, whereas on a path there are at most 2 evacuation
paths. For example, we can see in Figure 5.5 a caterpillar with shelters located on
the pending vertices and vertex 7. The edges are labeled by their length. We can
observe that the nearest shelter to vertex 4 is located on vertex 7, at a distance of 3.
However, in scenario 7, the shelter on 7 being unreachable, the evacuation path of
vertex 4 goes through vertices 5 and 6 to shelter 6’, at a distance 4. In scenario 6,
the nearest shelter to vertex 4 is on vertex 5’ at a distance of 5. In scenario 5, the
nearest shelter to vertex 4 is on vertex 4’ at a distance of 6. Finally, in scenario 4,
the evacuation distance of vertex 4 corresponds to the longest evacuation path of
vertex 4, that is its path to shelter 1, at a distance of 10. In summary, vertex 4
has 5 potential evacuation distances.

The aim of this section is to present an algorithm that solve k-RCP on a cater-
pillar in linear time. In addition, the idea introduced in this section will contribute
to the design of an efficient algorithm on trees.

5.4.1 Computing the robust radius of a p-set

Let C = {c1, . . . , cq}∪Lc be a feasible solution for RpCP on G, where {c1, . . . , cq} is
the set of shelters located on the central path, ordered in increasing order (c1 = 1
and cq = ñ). For 1 ≤ i ≤ q − 1, we denote by TCi the subgraph induced by
the segment of the central path delimited by the consecutive shelters ci and ci+1
and the pending vertices adjacent to the internal vertices of this segment. TCi is
a caterpillar and corresponds to the generalization of the concept of segment in
paths to caterpillars. Hence in the following, we refer to TCi as a segment of G.
Note that the pending vertices of ci and ci+1 are not included in TCi . We call length
of TCi the length of its central path.

For example in Figure 5.5, TC1 is the subgraph ofG induced by vertices {1, 2, 3, 4,
4′, 5, 5′, 6, 6′, 7}, while TC2 is the subgraph of G induced by vertices {7, 8, 8′, 8′′, 9,
10}. Note that vertex 7′ is not contained in any of the two segments.

Let δd(v) be the maximum downstream evacuation distance of a vertex v ∈ V
and δu(v) be the maximum upstream evacuation distance of vertex v over all
scenarios. Thanks to the acyclic nature of the graph, any evacuation path of a
vertex x ∈ TCi is always included in TCi . We define then δd(TCi ) (resp. δu(TCi ))
as the maximum downstream (resp. upstream) evacuation distance of a vertex
v ∈ TCi i.e., δd(TCi ) = max

v∈TCi
δd(v) and δu(TCi ) = max

v∈Ti
δu(v).

Finally, for every pending vertex y ∈ Lc such that x is adjacent to y, x has an
horizontal evacuation distance from x to y induced by scenario x. This horizontal
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evacuation distance is not recorded as an upstream or downstream evacuation dis-
tance. We denote by z(x) the maximum horizontal evacuation distance of a vertex
x and by z(TCi ) the maximum horizontal evacuation distance of an internal vertex
x ∈ TCi i.e., z(TCi ) = max

x∈TCi ,x/∈C,y∈Lc∩Γ(x)
lxy. If x has no horizontal neighbor, then

z(x) = 0.

Then the robust evacuation radius of a solution C is given by

IR(C) = max
1≤i≤q−1

{δd(TCi ), δu(TCi ), z(TCi )} (5.4)

Note that, when building a solution C for k-RCP, it is sufficient to verify if the
robust evacuation radius of the solution is less or equal to k. We use this equation
to propose a first algorithm for k-RCP on a caterpillar.

5.4.2 A basic algorithm for k-RCP

We present in this subsection a generic method, Algorithm 5, to solve k-RCP for
a caterpillar G = (V,E). Algorithm 5 follows the same idea as Algorithm 3 for
paths. We locate shelters on the central path greedily, such that the shelters are
located as upstream as possible while ensuring a feasible solution.

In Algorithm 5, as any feasible solution contains at least the pending vertices,
we focus on determining a subset of vertices C of the central path on which shelters
must be located, such that the union of this subset and the pending vertices is an
optimal solution of k-RCP for G. In the following, to simplify notations, a set
C ⊆ {1, . . . , ñ} is said feasible for G if C ∪ Lc is a feasible solution for G. Besides
C, a variable of Algorithm 5 is the set T , which corresponds to the most upstream
segment induced by C. We initialize both variables C and T with {1, 2} (steps 1
and 2). From steps 3 to 10, we iterate over the vertices 3 to ñ. At iteration v, we
start by replacing v − 1 with v in C (step 4), and by adding v to T . At step 6,
we verify whether δu(T ) or δd(T ) or z(T ) exceeds k. We do not specify a method
to compute δu(T ) and δd(T ) for now. As for z(T ), we can easily compute it as we
will see below. If δu(T ) or δd(T ) or z(T ) exceeds k, then we reinsert v − 1 in C
(step 7) and T becomes the set {v− 1, v} (step 8). At the end of the iteration, we
return the set C (step 11).

Proposition 46. Algorithm 5 returns an optimal solution of k-RCP for a caterpillar
and an integer k.

Proof. The proof is similar to the idea of the proof of Proposition 45. In the fol-
lowing, for v ∈ {2, ñ}, we refer to the state of variables C and T at iteration v
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Algorithm 5 Solving k-RCP on a Caterpillar

Require: Edge-weighted caterpillar G
Ensure: Returns C, k-RCP solution for G

1: C ← {1, 2}
2: T ← {1, 2}
3: for v ∈ [3, . . . , ñ] do
4: C ← C \ {v − 1} ∪ {v}
5: T ← T ∪ {v} and add the pending vertices adjacent to v − 1 to T
6: if (δd(T ) > k) or (δu(T ) > k) or (z(T ) > k) then
7: Add {v − 1} to C
8: T ← {v − 1, v}
9: end if

10: end for
11: Return C

as C(v) and T (v) respectively. Note that we consider v = 2 at the initialization
stage. In addition, we denote G(v) the subgraph of G such that {1, . . . , v} is the
central path of G(v). Note that any pending vertex adjacent to v is not included
in G(v).

The statement to prove is P (v): “C(v) is an optimal solution for G(v)”. A
secondary statement useful for our proof is P ′(v): “The centers of C(v) are located
maximally upstream in G(v)”. More precisely, P ′(v) states that, if any shelter
is moved upstream in G(v), then IR(C(v)) > k. We prove by induction that,
∀v ∈ {2, n}, P (v) and P ′(v) are true.

Base case The base case is for v = 2. C(2) = {1, 2} is trivially the optimal
solution for G(2). Thus P (2) and P ′(2) are true.

Inductive step Assume P (v) and P ′(v) are true at iteration v. We will prove that
P (v + 1) and P ′(v + 1) at iteration v + 1. Let C(v) = {c1, . . . , cqv}, with c1 = 1
and cqv = v. By step 4, C(v+ 1) = C(v)\{v}∪{v+ 1}. C(v+ 1) includes vertices
1 and v+ 1, extremities of the central path of G(v+ 1). We observe that the only
segment that has been affected by the change of the solution is the most upstream
segment T (v + 1). By P (v), the evacuation distances of the other segments do
not exceed k. Therefore, C(v + 1) is feasible if δu(T (v + 1)), δd(T (v + 1)) and
z(T (v+ 1) do not exceed k. In step 6, we compute δu(T (v+ 1)), δd(T (v+ 1)) and
z(T (v + 1)). As z(T (v)) ≤ k by P (v), z(T (v + 1)) ≤ k if and only if z(v) ≤ k,
otherwise z(T (v + 1)) > k.

We identify two cases:
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• if C(v+1) is feasible, then, as |C(v+1)| = |C(v)|, C(v+1) is of optimal size
byP (v). Hence, P (v + 1) is true. In addition, as the most upstream shelter
has been relocated to the upstream extremity of the path, P ′(v + 1) is true.

• if C(v+1) is unfeasible, then we insert v back to C(v+1) (step 7), such that
C(v + 1) = C(v) ∪ {v + 1}. By P (v), C(v) is feasible on G(v). As C(v) ⊂
C(v + 1), C(v + 1) ensures evacuation distances less or equal to k on G(v).
Hence C(v+ 1) is feasible. As the number of shelters of C(v) were minimum
(P (v)) and located as upstream as possible (P ′(v)), no shelter in G(v) can be
relocated to an upstream vertex without breaking the feasibility condition. It
follows that adding a shelter was necessary to satisfy the feasibility condition,
thus P (v + 1) is true. By P (v), the centers of C(v) are located maximally
upstream in G(v). As C(v) ⊂ C(v+1) and (v+1) ∈ C(v+1), then the centers
of C(v + 1) are located maximally upstream in G(v + 1). Thus P ′(v + 1) is
true.

Conclusion By induction, P (v) and P ′(v) are true for all v ∈ {2, n}.

The algorithm ends after less than ñ iterations and returns C(ñ) at the end of
iteration ñ. As G = G(ñ), the returned solution is optimal for G. This concludes
the proof.

We can observe that the complexity of such an algorithm is ñ times the com-
plexity of computing δu(T (v)) and δd(T (v)), for v = 1, . . . , ñ. If we want to deter-
mine these values by computing the evacuation distance of all the internal vertices,
then the complexity depends on the number of vertices in T . In the worst case,
T (v) corresponds to G(v) for each iteration v = 3, . . . , ñ. Note that, if we con-
sider that each internal vertex has at least one pending vertex, then |Lc| ≥ ñ− 2
and n = ñ + |Lc| ≥ 2ñ − 2. It follows that the complexity of Algorithm 5 is
O(1) +O(2) + . . .+O(ñ− 2) = O(ñ2) = O(n2).

5.4.3 An improved algorithm for k-RCP

In this section, we introduce a new algorithm, Algorithm 6, which is an improve-
ment of Algorithm 5. Algorithm 6 solves k-RCP on a caterpillar in O(n) instead of
O(n2) for Algorithm 5. More precisely, we show that, computing δd(T ) and δu(T )
are not required: we just need to check whether they exceed k. In Algorithm 6,
changes compared to Algorithm 5 are colored in red. The red parts regarding the
function z were actually already explained in the previous section, yet not explic-
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itly introduced in the algorithm.

We introduce the parameter h(v) for every vertex v of the central path. If v
is adjacent to at least one pending vertex, then h(v) is the minimum horizontal
evacuation distance of v, otherwise we set h(v) = k + 1 (step 3). In addition, we
introduce a new variable, ϕ defined below. As in the previous section, we refer to
the state of variables C and T at iteration v as C(v) and T (v) respectively. We do
the same for ϕ. Assume C(v − 1) is a feasible solution, we show that at the end
of iteration v, C(v) is a feasible solution.

We can observe that the only downstream evacuation path affected by the
shelter relocation is the downstream evacuation path of v − 1; the downstream
evacuation path of the other vertices located downstream of v are unaffected. In
addition, as a shelter is located on (v), δd(v) = 0. Note that δd(T (v)) 6= δd(v−1)):
for example, in Figure 5.5, δd(T (7)) is given by δd(T (4)) = 10, while δd(6) = 5.
However, if δd(T (v)) ≤ k, then δd(T (v)) exceeds k if and only if δd(v − 1) exceeds
k. Consequently, it is sufficient to compute the downstream evacuation distance
of v − 1 to verify whether δd(T (v)) > k. At initialization, that is for v = 2, we
initialize δd(2) = 0 at step 10. At iteration v, we compute δd(v − 1) in T (v) at
step 14: the downstream evacuation path of v − 1 is the sum of the distance from
v − 1 to v − 2 and the minimum distance between v − 2 and a shelter located
downstream or horizontally.

The case δu(T (v)) is more complex: when relocating the shelter from v − 1 to
v, the upstream evacuation path of a vertex x that ended on v−1 in G(v−1), may
be completely redirected to a pending vertex located between x and v in G(v). We
illustrate this situation with an example.

Example. Figure 5.6 shows the downstream portion of some edge-weighted cater-
pillar G for which a solution of k-RCP with k = 5 is build with Algorithm 5. The
edges are labeled by their length. At iteration 7, the shelter located on 6 is re-
located to vertex 7, as illustrated by the red arrow and the transparent shelter
symbol on vertex 6. First consider the graph G(6) at the end of iteration 6, when
a shelter is located on 6. Note that vertex 6 is the nearest upstream shelter of ver-
tices 2, 3, 4, 5 and is located within a distance 5 of each of these vertices. Globally,
δu(T (6)) = 4. Therefore the upstream evacuation paths of 2, 3, 4, 5 are ending in
6 at the end of iteration 6. Now we iterate on G(7), and relocate the shelter from
6 to 7. We can observe that:

• for vertex 2, the distance to shelter 7 exceeds 5, however there is a shelter
within a distance 5 in 3’. Then the upstream evacuation path of 2 ends in
3’.
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• for vertex 3, the distance to shelter 7 exceeds 5, however there is a shelter
within a distance 5 in 5’. Then the upstream evacuation path of 3 ends in
5’.

• for vertex 4, the distance to shelter 7 is 5, and there are shelters within a
distance 5 in 5’ and 6’ too. As shelter 5’ is the nearest at a distance 4, the
upstream evacuation path of 4 ends in 5’.

• for vertex 5, the distance to shelter 7 is 4, and there is a shelter within a
distance 5 in 6’. As shelter 7 is the nearest at a distance 4, the upstream
evacuation path of 5 ends in 7.

Notice that, for vertices 2 and 3 who became out of range of shelter 7, their
upstream evacuation paths have been rerouted to different shelters. In addition,
vertex 4, despite being within radius 5 of shelter 7, has an upstream evacuation
path ending in another shelter now. Finally, the upstream evacuation path of
vertex 5 is the only upstream evacuation path that has been extended to end at
shelter 7. In this case δu(T (7)) = 5, induced by the upstream evacuation distance
of vertices 2 and 3. Note that, if the length of edge (5, 5′) was 4 instead of 5, then
vertex 3 would not have any upstream shelter within a distance 5.

1 2 3 4 5 6 7 8 . . .

3′

3′′

5′ 6′

1 1 1 1 1 3 2
4

5

3 4

Figure 5.6: Applying Algorithm 5 on a caterpillar for k-RCP with k = 5, the red arc
shows the relocation of the shelter from vertex 6 to vertex 7 at the beginning of

iteration 7.

This example, illustrates that we can not easily compute δu(T (v)) using δu(T (v−
1)), since some structural characteristics of T (v − 1) (the upstream evacuation
paths) are not conserved in T (v). ♣

Instead of computing all upstream evacuation distances, we show that δu(T (v)) >
k if and only if the upstream evacuation distance of some critical vertices exceed k
when the shelter is relocated from v−1 to v. At the end of iteration v−1 we observe
that, for any x ∈ T (v− 1), there may be one or more shelters located upstream of
x within a distance k. We define X(v− 1) the set of vertices such that, at the end
of iteration v− 1, the unique upstream shelter within a distance k of x ∈ X(v− 1)
is v − 1. Obviously, the upstream evacuation paths of the vertices of X(v − 1)
are contained in the upstream evacuation path of the most downstream-located
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vertex of X(v− 1), which we denote x∗. We define ϕ(v− 1) = δu(x∗) at the end of
iteration T (v−1). Using ϕ(v−1), we verify in step 15 if a pending vertex adjacent
to v − 1 is within a distance k of the vertices of X(v − 1). If so, then x∗ = v − 1
and X(v) = {v − 1}. Consequently, ϕ(v) = ϕ(v − 1) = lv−1,v. Otherwise, x∗ is
unchanged and X(v) = X(v−1)∪{v−1}. Consequently, ϕ(v) = ϕ(v−1)+ lv−1,v.

Algorithm 6 Solving k-RCP- Caterpillar

Require: Edge-weighted caterpillar G = (V,E), integer k
Ensure: Give C, k-RCP solution for G

1: T ← {1, 2}
2: C ← {1, 2}
3: for v ∈ {2, . . . , ñ− 1} do
4: if Γ(v) ∩ Lc 6= ∅ then
5: z(v)← max

x∈Γ(v)∩Lc
{lv,x}; h(v)← min

x∈Γ(v)∩Lc
{lv,x}

6: else
7: z(v)← 0; h(v)← k + 1
8: end if
9: end for

10: δd(2)← 0, ϕ← 0
11: for v ∈ {3, . . . , ñ} do
12: T ← T ∪ {v} and add the pending vertices adjacent to v − 1 to T
13: C ← C \ {v − 1} ∪ {v}
14: δd(v − 1)← lv−2,v−1 + min{δd(v − 2), h(v − 2)}
15: if ϕ+ h(v − 1) ≤ k then
16: ϕ← lv−1,v
17: else
18: ϕ← ϕ+ lv−1,v
19: end if
20: if δd(v − 1) > k or ϕ > k or (z(v − 1) > k) then
21: Add {v − 1} to C
22: δd(v − 1)← 0, ϕ← 0
23: end if
24: end for
25: Return C

In Algorithm 6, there are ñiterations with O(1) operations, therefore Algo-
rithm 6 is in O(n). It is an improvement over Algorithm 5 which is in O(n2).

In the next section, we consider the class of trees.
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5.5 Trees

Let G be an edge-weighted tree. We root G on a non-pending vertex, and we label
the vertices following a postorder traversal of the vertices of G (visit the children
then the parent). Then, vertex 1 is a pending vertex and n is the root of G. We
denote G(v) the subgraph of G rooted in v. For a vertex v, we denote p(v) its
parent in G and φ(v) ⊂ V the set of its children. Note that, ∀i ∈ φ(v), we have
i < v. An ancestor of a vertex is any other vertex on the path from the vertex to
the root. A descendant is the inverse relationship of ancestor. An evacuation path
of v is said upstream if it includes the parent of v, and downstream if it includes
a child of v. If there is an upstream path between v and a vertex y, then we say
y is located upstream of v. If y is a descendant of v, then we say y is located
downstream of v. As in the caterpillar case, for a given feasible solution of RpCP,
every vertex of G not included in the solution have multiple potential evacuation
paths. In addition, any vertex v 6∈ C, such that v is of degree greater than 2
or v = n, will have several downstream evacuation paths in scenario v. In the
following, the downstream (resp. upstream) evacuation distance of a vertex is the
maximum length of one of its downstream (resp. upstream) evacuation paths for a
given scenario. Finally, in this section, for a graph H and a set X, we will denote
X ∩H the set of vertices of X included in graph H.

5.5.1 Computing the robust radius of a p-set

Let C = {c1, . . . , cq}∪L with q = p−|L| be a feasible solution for RpCP on G, where
{c1, . . . , cq} is the set of shelters located on the internal vertices of the tree. In
addition, we denote cq+1 = n. If n ∈ C, then we assume cq = cq+1. We generalize
the notion of segments from paths to trees. For j ∈ {1, . . . , q+1}, the segment-tree
T (cj) is the maximal subgraph of G rooted in cj such that T (cj) ∩ (C ∪ {cq+1}) is
the set including cj and the set of pending vertices of T (cj). More precisely, for
each pending vertex ci in T (cj), ci is a descendant of cj and none of the internal
vertices of the path between ci and cj is in C.

Thanks to the acyclic nature of the graph, the evacuation path of a vertex x ∈
T (cj) is always included in T (cj). We define then δd(T (cj)) (resp. δu(T (cj))) as the
maximum downstream (resp. upstream) evacuation distance of a vertex v ∈ T (cj)
over all scenarios, i.e., δd(T (cj)) = max

v∈T (cj)
δd(v) and δu(T (cj)) = max

v∈T (cj)
δu(v). Then

the robust evacuation radius of a feasible solution C is:

IR(C) = max
1≤j≤q+1

{δd(T (cj)), δu(T (cj))} (5.5)
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Next we propose an algorithm to iteratively build a solution by generalizing
the approaches presented in the previous sections.

5.5.2 Algorithm for k-RCP

Algorithm 7 is a generalization of the k-RCP algorithms introduced in the pre-
vious sections: in the for-loop (steps 2-24), we perform a postorder traversal of
the vertices of the tree, and we locate shelters such that no shelter can be relo-
cated upstream without breaking the feasibility condition. When we visit v, we
verify whether a shelter is needed on v or not. More precisely, we check whether
having a shelter on p(v) makes unnecessary to have a shelter on v. We denote,
∀i ∈ φ(v), G(v, i) the graph including of v and G(i). Note that v is a pending
vertex in G(v, i).

We start with C an empty set. We label an iteration of the for-loop by the
vertex under consideration. At iteration v, if v is a pending vertex (steps 3-5),
then we add v and p(v) to C and we initialize the parameters ∇d(v) and ϕ(v) to
zero. We will define these parameters later on. At iteration v, if v < n and v 6∈ L
(steps 6-16), then we add p(v) to C and we remove v from C (step 7). Next, we
check whether C induces a feasible solution on G(p(v), v). If so, C is said feasible,
otherwise C is not feasible.

We define T (p(v), v) = T (p(v))∩G(p(v), v). We will see in Proposition 47 that
C is feasible if and only if δd(v) ≤ k and ϕ(v) ≤ k in T (p(v), v). We recall that
δd(v) is the maximum downstream evacuation distance of v. To compute δd(v) in
T (p(v), v), we use ∀i ∈ φ(i),∇d(i) defined as the minimum downstream evacuation
distance of vertex i in T (v), which is unchanged in T (p(v), v) (step 8). Similarly
to the caterpillar case, in T (p(v), v), ϕ(v) is the maximum upstream evacuation
distance of a vertex x∗ in T (p(v), v) with no upstream shelter other then p(v)
within a distance k.

To compute ϕ(v), we use the intermediate subset U(v) ⊆ φ(v) such that i ∈
U(v) if and only if there is a descendant x∗i of i with no upstream shelter other then
p(v) within a distance k in T (p(v), v)(step 9). We consider that, if a min query is
performed over an empty set, then it returns the value ∞; and if a max query is
performed over an empty set, then it returns the value 0. If U(i) 6= ∅, then ϕ(v) is
given by the maximum distance ∀i ∈ U(i) between x∗i and p(v), otherwise x∗ = v
and ϕ(v) is the upstream evacuation distance of v (step 10). Once δd(v) and ϕ(v)
are known, we can check the feasibility of C (step 11). If C is not feasible, then we
re-include v in C (step 12), and we update ∇d(v) and ϕ(v) to zero in preparation
of iteration p(v) (step 13). If C is feasible, then ϕ(v) does not change and ∇d(v)
must be updated (step 15).

Finally, at iteration n (steps 17-22), we remove n from C and we verify the
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feasibility of C on G. We compute δd(n) based on ∇d(i),∀i ∈ φ(n). In addition, we
check ∀i ∈ φ(n) whether there is a descendant x∗i of i whose upstream evacuation
distance in T (n) exceeds k (computed within step 20). If so, or if δd(n) > k, then
C is not feasible (see details in Proposition 47), and we re-include v to C. Finally,
at step 25 we return solution C. Next, we prove that the solution returned is an
optimal solution of k-RCP for the instance (G, k).

Proposition 47. Algorithm 7 returns an optimal solution of k-RCP for a tree and
an integer k.

Proof. The proof is similar to the idea of the proof of Proposition 46. In the fol-
lowing, for v ∈ {1, n}, we refer to the state of variable C at iteration v as C(v).
We denote Y (v) = C(v)∩G(p(v), v). In the following, adding or removing a vertex
to or from Y (v) corresponds to adding or removing a vertex to or from C(v). We
will start by proving that the first n− 1 iterations of the loop ensure that, at the
beginning of iteration n and ∀i ∈ φ(n), Y (i) is optimal on G(n, i). In addition,
the shelters of Y (i) are located maximally upstream on G(n, i) i.e., if any shel-
ter of Y (i) is moved upstream in G(n, i), then the robust radius of Y (i) exceeds
k. Then, we show that the last iteration ensures that C(n) is an optimal solution
for G with the shelters located maximally upstream. C(n) is the solution returned.

Let P (v) be the statement: “ Y (v) is an optimal solution for G(p(v), v)”; and
P ′(v) be the statement: “The centers of Y (v) are located maximally upstream in
G(p(v), v)”. We prove by induction that, ∀v ∈ {1, n− 1}, P (v) and P ′(v) are true.

Base case The base case is for v = 1, where we consider G(p(1), 1) = G[{1, p(1)}].
Given step 4, we have Y (1) = {1, p(1)}. On G(p(1), 1), IR(Y (1)) = 0 and Y (1) is
the only feasible solution, thus P (1) and P ′(1) are true.

Inductive step Assume P (v′) and P ′(v′) are true at iteration v′ < n− 1. We will
prove that P (v′+ 1) and P ′(v′+ 1) are true at iteration v′+ 1. Note that v′+ 1 is
not necessary the same vertex as p(v′). In the following, to simplify the notations,
we denote v = v′ + 1.

If v ∈ L, then G(p(v), v) = G[{v, p(v)}]. Given step 4, we have Y (v) =
{v, p(v)}. On G(p(v), v), IR(Y (v)) = 0 and Y (v) is the only feasible solution, thus
P (v) and P ′(v) are true.

If v /∈ L, then G(p(v), v) = p(v) ∪ ( ⋃
i∈φ(v)

G(v, i)). At the beginning of iteration

v, ∀i ∈ φ(v), Y (i) ⊆ Y (v). By P (i), Y (i) is an optimal solution for G(v, i). As
v is a pending vertex in G(v, i), then v ∈ Y (i) and v ∈ Y (v). At step 4, we
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remove v from Y (v) and we add p(v) to Y (v). We observe that T (p(v), v) is
the only segment-tree in G(p(v), v) affected by this change. By P (i), i ∈ φ(v),
the evacuation distances of the other segment-trees in G(p(v), v) do not exceed
k. Therefore, Y (v) is feasible on G(p(v), v) if and only if δd(T (p(v), v)) ≤ k and
T (p(v), v) ≤ k. We check these as follows.

• Regarding δd(T (p(v), v)), the downstream evacuation distances of the ver-
tices in T (p(v), v) \ {v, p(v)} are unchanged. By P (i), i ∈ φ(v), the down-
stream evacuation distances of these vertices do not exceed k. Thus, we have
δd(T (p(v), v)) > k if and only if δd(v) > k.

• As for δu(T (p(v), v)), similarly to the caterpillar case, it exceeds k if and only
if ϕ(v) exceeds k.

We then have two cases:

• if Y (v) is feasible, then |Y (v)| = | ⋃
i∈φ(v)

Y (i)|. This situation is a bit similar

to the extended star case, when we question the location of a shelter on the
root. Given ∀i ∈ φ(v), P (i), at least |Y (i)| shelters are needed to cover the
descendants of i in T (p(v), v). In addition, the shelter on p(v) is mandatory
(p(v) is a pending vertex), and the shelters Y (v) ∩ Y (i) can not be moved
upstream in G(p(v), v) without breaking the feasibility condition (P ′(i)). It
follows that P (v) and P ′(v) are true.

• if Y (v) is not feasible, then | ⋃
i∈φ(v)

Y (i)| shelters are needed to cover v.

Therefore, we re-insert v to Y (v) such that Y (v) = p(v) ∪ ⋃
i∈φ(v)

Y (i). By

P (i),∀i ∈ φ(v), Y (i) is optimal on G(v, i), thus
⋃

i∈φ(v)
Y (i) is optimal on T (v)

and by P ′(i) its shelters are located maximally upstream in T (v). The shel-
ter on p(v) is mandatory, thus Y (v) is optimal on G(p(v), v). It follows that
P (v) and P ′(v) are true.

Conclusion By induction, P (v) and P ′(v) are true for all v ∈ {1, n− 1}.

Thus, at beginning of iteration n, C(n) = ⋃
i∈φ(n)

Y (i) is a feasible solution for G

of size t. We remove the root from C(n) and check the feasibility of the solution. As
explained before, it is sufficient to check that the maximum evacuation distances
in T (n) does not exceed k. We compute the downstream evacuation distance of n,
and the upstream evacuation distance of the vertices x∗i in G(n, i). We have two
cases:
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• C(n) is not feasible. As seen in the extended star case, the shelters of C(n)
can not be relocated upstream without breaking the feasibility condition, no
solution of size t − 1 is feasible. Consequently, we re-include n in C(n) and
we return C(n), an optimal solution for G.

• C(n) is feasible. As the shelters of C(n) can not be relocated upstream
without breaking the feasibility condition, no solution of lower size is feasible.
Consequently, we return C(n), an optimal solution for G.

Hence the proof is complete.

In Algorithm 7, at iteration v we perform at most O(deg(v)) operations, for
example in steps 8 and 9, 15. Over n iterations, that is at most O(m) iterations (we
recall that m is the number of edges in the graph). As G is a tree, the complexity
of Algorithm 7 is therefore in O(n).
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Algorithm 7 Solving k-RCP on a Tree

Require: Edge-weighted tree G, k
Ensure: Returns an optimal solution C for k-RCP on G

1: Root G on any non-pending vertex, and label the vertices following a post-
order traversal. Initialize C as an empty set.

2: for v = {1, . . . , n} do
3: if (v ∈ L) then
4: Add v and p(v) to C.
5: ∇d(v)← 0, ϕ(v)← 0
6: else if v < n then
7: Add p(v) to C and remove v from C.
8: δd(v)← max

i∈φ(v)
{lv,i +∇d(i)}

9: U(v)← {i ∈ φ(v) : ϕ(i) + min
j∈φ(v),j 6=i

{lv,j +∇d(j)} > k}

10: ϕ(v)← max
i∈U(v)

{ϕ(i)}+ lv,p(v)

11: if (δd(v) > k) or (ϕ(v) > k) then {v is necessary in C}
12: Add v to C.
13: ∇d(v)← 0, ϕ(v)← 0
14: else {v is not necessary in C}
15: ∇d(v)← min

i∈φ(v)
{lv,i +∇d(i)}

16: end if
17: else {v = n}
18: Remove v from C.
19: δd(n)← max

i∈φ(n)
{ln,i +∇d(i)}

20: if δd(n) > k or ( max
i∈φ(n)

{ϕ(i) + min
j∈φ(n),j 6=i

{ln,j +∇d(j)} > k) then

21: Add v to C.
22: end if
23: end if
24: end for
25: Return C
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Conclusion

In this chapter we introduce an algorithm to solve RpCP using a binary search with
k-RCP. Any algorithm for k-RCP can be integrated to our algorithm to solve RpCP.
We propose several refined polynomial algorithms for RpCP on different classes
of acyclic graph, which have structural properties that can be taken advantage
of. In particular, as shelters must be located on pending vertices, they provide
a backbone for the solution. Starting from these pending vertices, we propose a
bottom up approach to locate incrementally shelters.

In the next chapter, we propose mathematical programming methods to com-
pute exact solutions for both PpCP and RpCP on general graphs.
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CHAPTER 6

MATHEMATICAL PROGRAMMING
APPROACHES

Abstract

In this chapter we introduce integer programs for RpCP, k-RCP and PpCP. For real
size instances, the sizes of the linear programs are huge so we propose a decompo-
sition scheme to solve RpCP exactly, as well as different methods to compute lower
and upper bounds. On the basis of experimental results, we propose a refined ex-
act algorithm, which is the best current exact algorithm to solve RpCP. We test our
algorithms on public p-Median instances and subgrid instances, the latter being
more realist to our context.
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Introduction

In the two previous chapters, we have proposed polynomial methods to generate
exact solutions or constant-approximation results for RpCP and PpCP. We now ex-
amine the case of general graphs, for which no polynomial method exists to solve
both problems. In this chapter we propose mathematical programming methods
to solve RpCP and PpCP. Our objective is to provide an exact algorithm for both
problems.

We start by presenting in Section 6.1 some integer programming (IP) formula-
tions for Min p-Center from existing exact solution methods for Min p-Center.
On the basis of these models, we develop different IP and mixed-integer program-
ming (MIP) based programs for RpCP in Section 6.2; and PpCP in Section 6.3. As
these first programs appear to be quickly non-tractable (even to write the MIP in-
stance with n = 100), we develop a MIP-based algorithm for RpCP in Section 6.4.
We present extensive experimental results showing the tractability of our approach.
Unfortunately, the designed exact algorithm can not be adapted to PpCP. A sig-
nificant portion of the work presented in Section 6.4 has been published in [28].

In this chapter, with G = (V,E), V = {1, . . . , n} edge-weighted undirected
graph, we introduce new matrixial notations associated to the edge-weighted graph
G = (V,E):

• (lij) is the matrix of edge length, with lii = 0 if i ∈ V and lij = +∞ if
(i, j) /∈ E. Note that (lij) is symmetrical.
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• SP = (dij) is the matrix of the shortest path length between every couple
of vertices, with dii = 0 and dij = +∞ if there is no path between vertices i
and j.

We recall that D is the finite list of distinct distances between pair of vertices
in G, using the shortest distances. D is obtained by sorting in increasing order
the T different finite values of the matrix SP : Dmin = D1 < D2 < D3 < . . . <
DT = Dmax. We consider this list as part of the instance, if necessary it can be
computed in O(n2) from the matrix SP .

We extend some of these notations directly to operational graphs. For any
scenario s, we denote:

• (lsij) the matrix of edge length in Gs. Note that ∀s ∈ V, s 6= j, we have
lsij = lij. If s = j, then lsij = +∞. Therefore, (lsij) is asymmetric.

• SP s = (dsij) the matrix of shortest path lengths from i to j in Gs.

In the following, for an IP program P , we denote by LP the program where the
integer restriction on the variables are relaxed. The optimal value of the programs
P and LP are denoted v(P ) and v(LP ), respectively.

6.1 Integer linear programming models for p-Center

The aim of this section is to present the main formulations for the Min p-Center

problem and the auxiliary problem Min r-Dominating Set. In Section 6.1.1, we
present the MIP formulation introduced by Daskin in [50]. In Section 6.1.2, we
present an IP formulation for Min r-Dominating Set. In Section 6.1.3, we present
a second IP formulation for Min p-Center introduced by Elloumi, Labbé and
Pochet in [51]. In addition, we present a more recent formulation introduced by
Calik and Tensel in [52], which is a variant of the second formulation. This last
model will be the starting point for the IP formulations for RpCP and PpCP in the
next sections.

6.1.1 Daskin’s model

Daskin proposed in [50] the first MIP formulation for the Min p-Center, referred
to as P det

1 . The decision variables of this first model are:

• for all j = 1, . . . , n, yj is a binary variable with yj = 1 if a shelter is located
on j and 0 otherwise,

• for all i, j = 1, . . . , n, xij is a binary variable with xij = 1 if i is affected to
j, and xij = 0 otherwise.
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The formulation by Daskin can be stated as follows:

P det
1



min r (1)

s.t.
n∑
j=1

yj = p (2)

xij ≤ yj ∀i, j ∈ {1, . . . , n} (3)
n∑
j=1

xij = 1 ∀i ∈ {1, . . . , n} (4)

r ≥
n∑
j=1

dijxij ∀i ∈ {1, . . . , n} (5)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
xij ∈ {0, 1} ∀i, j ∈ {1, . . . , n}

Constraint (2) fixes the numbers of centers to be located. Constraints (3) ensure
that vertex i is assigned to vertex j only if a shelter is located on j. Constraints (4)
ensure that every vertex of the graph is assigned to exactly one center. Constraints
(5) ensure that the distance from any vertex to its assigned center is less or equal
than the radius r. The last constraints are the binary restrictions. Finally, the
objective function (1) ensures the computation of a solution of minimum radius r.

6.1.2 A set covering based approach

Daskin also proposed in [50] a mathematical method with a set covering based
algorithm. The radius value of the set covering problem is selected from an interval
of real numbers between pre-determined lower and upper bounds. The approach
is based on a binary search over the range of coverage distances to determine the
smallest coverage distance that allows all vertices to be covered.

We denote SCr, the following IP formulation for this set covering problem,
taken for [51] :

SCr


min

n∑
j=1

yj (1)

s.t.
∑

j:dij≤r
yj ≥ 1 ∀i ∈ {1, . . . , n} (2)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
In SCr the decision variables are the binary variables yj, j ∈ {1, . . . , n} similar

to P det
1 . The objective function (1) minimizes the number of centers to be located

while constraints (2) ensure that every vertex i is within a distance r of at least
one center j.

Considering the linear relaxation LSCr, we can obtain a lower bound for Min

p-Center by solving a finite series of LSCr programs. Indeed, if v(LSCr) > p,
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then v(P det
1 ) > r. When r increases, v(LSCr) decreases and the best lower bound

is the smallest value of r ensuring v(LSCr) ≤ p. We can then perform a binary
search on D to determine such lower bound solving several LSCr [50].

Actually, this approach has been described in Section 2.2.1.1 using Min r-

Dominating Set: a binary search on D is performed to find the minimum radius
r∗ for which the optimal value of Min r-Dominating Set is less or equal to p. The
resulting solution is an optimal solution for Min p-Center. Min r-Dominating

Set is a particular case of Min Set Cover.

6.1.3 The second model

6.1.3.1 Original formulation

Elloumi, Labbé and Pochet [51] proposed a formulation P det
2 using the fact that

the optimal value of Min p-Center is restricted to a finite set of distance values.
The decision variables of the following model are:

• the binary variables yj, j ∈ {1, . . . , n} introduced in P det
1 .

• the binary variables zt, t ∈ {2, . . . , T} where zt = 0 if and only if there is a
solution such that all vertices are at a distance of at most Dt−1 from a center
of the solution. Then zt = 1 if and only if there is at least one vertex with
no center at a distance less or equal of Dt−1.

The previous definition involves that, if zt = 0 then zt+1 = zt+2 = . . . = zT = 0,
and the objective function is strictly lower than Dt. Similarly, zt = 1 implies
zt−1 = . . . = z1 = 1.

P det
2



min D1 +
T∑
t=2

(Dt −Dt−1)zt (1)

s.t.
n∑
j=1

yj ≤ p (2)

zt +
∑

j:dij≤Dt−1

yj ≥ 1 ∀i ∈ {1, . . . , n}, t ∈ {2, . . . , T} (3)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
zt ∈ {0, 1} ∀t ∈ {2, . . . , T}

Constraint (2) limits the numbers of centers to be located. Constraints (3) are
inspired by constraints (2) in SCr: in an optimal solution for P det

2 , constraints
(3) ensures that for a given t, zt = 0, if and only if all clients can be served at a
distance strictly lower than Dt. More precisely, if for a vertex i there is no center
j within a distance Dt−1, then zt = 1. It follows that, when zt = 1 a distance
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Dt−Dt−1 is added to the radius in the objective function (1). Without constraint
(3), all variables zt would equal to zero. The objective function (1) ensures that
all vertices are covered by a center within a radius of the smallest possible value.

The authors proved in [51] that the optimal objective value of LP det
2 is greater

or equal than the optimal objective value of LP det
1 . They also proved that a semi-

relaxation of P det
2 , obtained by removing the binary restriction on the y variables,

provides the best known lower bound for Min p-Center.

6.1.3.2 Variant formulation

In [52], Calik and Tansel introduce the formulation P det, variant of the model
proposed by Elloumi, Labbé and Pochet in [51]. The variables of the problem are:

• the binary variables yj, j ∈ {1, . . . , n} similar to P det
2 .

• the binary variables ut, t ∈ {1, . . . , T}, where ut = 1 if the value of the
solution is equal to Dt and 0 otherwise.

P det



min
T∑
t=1

Dtut (1det)

s.t.
n∑
j=1

yj ≤ p (2det)

T∑
t=1

ut = 1 (3det)

∑
j:dij≤Dt

yj ≥
t∑

q=1
uq ∀i ∈ {1, . . . , n} ,∀t ∈ {1, . . . , T} (4det)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
ut ∈ {0, 1} ∀t ∈ {1, . . . , T}

Constraint (2det) limits the number of shelters to be located. Constraint (3det)
ensures that exactly one variable ut is equal to 1 and the corresponding Dt value
is selected as the objective value according to the objective function (1det). Con-
straints (4det) ensure for each vertex i that at least one shelter is located at a
distance less or equal than Dt. The authors tightened the constraints by taking
into account that: if ut = 1, then

∑t
q=1 uq = 1. The semi relaxation of P det ob-

tained by removing the binary restriction on the y variables, provides the same
tight lower bound as the semi relaxed P det

2 .
When lower and upper bounds are available,we can remove the solutions with

such values and drop associated ut variables from the model, thus decreasing the
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size of the problem to be solved. Knowing a lower bound LB and an upper bound
UB for the optimal value of P det, we can set:

ut = 0 ,∀t : Dt < LB
ut = 0 ,∀t : Dt > UB

Using this property, the algorithm developed by Calik and Tansel [52] solves
their formulations for restricted sets of radius values iteratively to converge to an
optimal solution.

6.1.4 Size of the programs

We present in Table 6.1 the number of variables for each formulation P det
1 , P det

2
and P det, as well as the number of constraints generated. We recall that T is the
size of the set D of candidate values for Min p-Center on G.

P det
1 P det

2 P det

Binary variables nb. n2 + n n+ T − 1 n+ T
Real variables nb. 1 0 0
Constraints nb. n2 + 2n+ 1 n(T−1)+2 nT + 2

Table 6.1: Number of variables and constraints for each presented formulation.

In particular, note that the number of binary variables of P det is equal to n+T
and the number of constraints is nT + 2. The size of this model depends on the
number T of distinct shortest path lengths, which is in O(n2).

In the next section we extend the previous models to RpCP.

6.2 Integer linear programming formulations for RpCP

In this section we introduce three formulations for RpCP, as well as a formulation
for the auxiliary problem k-RCP.

6.2.1 MIP formulation for RpCP

We extend formulation P det
1 to RpCP to propose formulation P rob

1 . We define the
binary decision variable xsij such that: if vertex i is assigned to a shelter located
on vertex j in scenario s, then xsij = 1, else xsij = 0.
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P rob
1



min r (1)

s.t.
n∑
j=1

yj = p (2)

xsij ≤ yj ∀i, j, s ∈ {1, . . . , n} (3)
n∑
j=1

xsij = 1 ∀i, s ∈ {1, . . . , n} (4)

r ≥
n∑
j=1

dsijx
s
ij ∀s, i ∈ {1, . . . , n}, i 6= s (5)

r ≥ lsv(1− ys) +
n∑
j=1

dsvjx
s
vj ∀s ∈ {1, . . . , n}, ∀v ∈ Γ(s) (6)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
xsij ∈ {0, 1} ∀i, j, s ∈ {1, . . . , n}

The first 3 constraints have the same function as the first 3 constraints of
formulation P det

1 . Constraint (2) fixes the number of centers. Constraints (3)
ensure that vertex i is not assigned to a vertex j in scenario s unless j is a center.
Constraints (4) ensure that every vertex is assigned to exactly one center for each
scenario. Constraints (5) ensure that every vertex i 6= s is within a distance r of
at least one center in Gs for every scenario s. Constraints (6) are specific to RpCP

and allow to model the chosen evacuation strategy:

• if ys = 1, then a shelter is located on s and constraints (6) are relaxed;

• if ys = 0, then no shelter is located on s and the set of constraints (6) on
all neighbours of s ensure that the evacuation distance (worst case value) in
scenario s is less than or equal to r

Finally the objective function (1) is to minimizes the robust evacuation radius.

6.2.2 IP formulation for RpCP

Based on formulation P det
2 and P det, we propose two formulations for RpCP. We

need first additional parameters. We have to replace D by Drob, the list of distinct
finite evacuation distance values in all Gs considering the evacuation strategy.
The list Drob is obtained by merging and ordering all the sets Ds of distinct finite
evacuation distances between nodes in Gs, for s ∈ V . For each s, Ds is computed
in two stages:

• step 1: initialize Ds with the different finite shortest path lengths SP s for
all i 6= s.
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• step 2: ∀j 6= s and ∀v ∈ Γ(s) compute the distance lsv + dsvj from s to v to
j and add it to Ds.

Finally, we merge all the lists Ds in one ordered set Drob = {Drob
1 , . . . , Drob

T rob}, with
Drob

min = Drob
1 < Drob

2 < Drob
3 < . . . < Drob

T rob = Drob
max. In the next formulations, we

use the yj decision variables similar to P det.

First formulation:

We introduce the binary decision variables zt, inspired by P det
2 , such that zt = 0

if and only if there is a solution such that for all scenarios, the evacuation distance
of all vertices are less than or equal to Drob

t−1. We propose then the following
formulation:

P rob
2



min Drob
1 +

T rob∑
t=2

(Drob
t −Drob

t−1)zt (1)

s.t.
n∑
j=1

yj ≤ p (2)

zt +
∑

j:dsij<D
rob
t

yj ≥ 1 ∀s, i ∈ {1, . . . , n}, i 6= s (3)

∀t ∈ {2, . . . , T rob}
zt +

∑
j:lsv+dsvj<D

rob
t

yj ≥ 1− ys ∀s ∈ {1, . . . , n}, ∀v ∈ Γ(s), (4)

∀t ∈ {2, . . . , T rob}
yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
zt ∈ {0, 1} ∀t ∈ {2, . . . , T rob}

Constraint (2) limits the number of centers. Constraints (3) ensure that, for a
given t, zt = 0 if and only if, in every scenario s, all vertices i 6= s are within a
distance less than Drob

t of a center. Like constraints (6) for P rob
1 , constraints (4)

are specific to RpCP and are necessary to compute the evacuation distance of the
source vertex with the UP evacuation strategy. The objective function (1) ensures
that the robust evacuation radius is the smallest one.

Second formulation:

We introduce the binary decision variables ut, inspired by P det, such that ut = 0
if and only if, for any given scenario, all the vertices are at an evacuation distance
of a center less than or equal to Drob

t , in which case Drob
t is the evacuation robust

radius. We propose then the following formulation:
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P rob



min
T rob∑
t=1

Drob
t ut (1rob)

s.c.
n∑
j=1

yj ≤ p (2rob)

T rob∑
t=1

ut = 1 (3rob)

∑
j:dsij≤D

rob
t

yj ≥
t∑

q=1
uq ∀s, i ∈ {1, . . . , n}, i 6= s

∀t = 1, . . . , T rob (4rob)∑
j:lsv+dsvj≤D

rob
t

yj ≥
t∑

q=1
uq − ys ∀s = 1, . . . , n, ∀v ∈ Γ(s),

∀t ∈ {1, . . . , T rob} (5rob)
yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
ut ∈ {0, 1} ∀t ∈ {1, . . . , T rob}

Constraint (2rob) fixes the number of centers. Constraint (3rob) are similar to
constraints (3det) with the only difference that T is replaced with T rob. Constraints
(4rob) ensure that, for every scenario s, each vertex i 6= s has at least one shelter
located within a distance Dt. Like constraints (6) for P rob

1 and constraints (4)
for P rob

2 , constraints (5rob) are specific to RpCP and are necessary to compute the
evacuation distance of the source vertex in this model.

Note that, in P det the constraint corresponding to (2rob) limits the number of
centers rather than fixing it. As Daskin, in his formulation, fixes the number of
centers, we conducted basic experiments to compare the efficiency of P rob with the
size of a solution fixed or restricted. The formulation P rob was never outperformed
by the formulation with the constraint of restricting the size.

Finally, note that the size of models P rob
2 and P rob depends on the size of the

list Drob. Similarly to P det, the size of P rob can be reduced knowing a lower bound
LB and an upper bound UB for v(P rob) since some variables can be fixed as follows:

ut = 0 ,∀t : Drob
t < LB

ut = 0 ,∀t : Drob
t > UB
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6.2.3 A set covering based algorithm

It is also possible to extend the IP formulation SCr to our robust model. We
introduce the formulation SCrob

r , extension of the formulation SCr for RpCP. SCrob
r

is actually an IP formulation of the problem k-RCP. We recall that a binary search
can be performed on k-RCP to find the minimum radius r∗ for which the optimal
value of k-RCP is less or equal to p. The corresponding solution is then an optimal
solution for RpCP.

SCrob
r



min
n∑
j=1

yj (1)

s.c.
∑

j:dsij≤r
yj ≥ 1 ∀s, i ∈ {1, . . . , n}, i 6= s (2)∑

j:lsv+dsvj≤r
yj ≥ 1− ys ∀s ∈ {1, . . . , n},∀v ∈ Γ(s) (3)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}

Constraints (2) ensure that every vertex i is within a radius of value r of a center
in every scenario s and constraints (3) are necessary to compute the evacuation
distance of the source vertex. Keeping in with the objective function of SCr, SC

rob
r

minimizes the number of centers to be located.

6.2.4 Additionnal inequalities

Given an instance (G, p) of RpCP, where G is an edge-weighted graph and p ≥ 2, we
have seen in Section 2.1.5, Proposition 3, that any feasible solutions must include
at least one vertex in each minimal articulation component of G.

In our formulations, this property is ensured as for a scenario s, dsij = +∞ if
there is no path between i and j in Gs. In practice, dsij is set to a very high value,
which means these cases are not discarded automatically as they could be. We
can consolidate the previous property by adding constraints (6rob). We recall the
notation Υ(G) for the set of minimal articulation components of G.∑

j∈A
yj ≥ 1 ∀A ∈ Υ(G) (6rob)

In some cases, for example when the graph is a forest, we can straightforward
force pending vertices to be centers, rather than have redundant 6rob constraints.
Constraints (7rob) are then sufficient.

yj = 1 ∀j : deg(j) = 1 (7rob)
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6.2.5 Size of the programs

We present in Table 6.2 the number of variables for each formulation P rob
1 , P rob

2
and P rob, and the number of constraints generated by each formulation, without
inequalities (6rob) and (7rob). We recall that m = |E|.

P rob
1 P rob

2 P rob

Binary variables nb. n3 + n n+ T rob − 1 n+ T rob

Real variables nb. 1 0 0

Constraints nb. n3 +2n2 +2m+1 (n2 − n)(T rob −
1) + 2m(T rob − 1) n2T rob + 2mT rob

Table 6.2: Number of variables and constraints for each presented formulation of RpCP.

In P rob
1 constraints (6) implies deg(v) constraints for every vertex v ∈ V in the

graph. Then the number of constraints is the sum of the vertices degrees of the
graph, which is equal to 2m. Similarly, constraints (4) and (5rob) implies the factor
2m for the number of constraints of P rob

2 and P rob respectively.

Compared to the original formulations for Min p-Center, the above introduced
formulations are clearly bigger: generally, the number of variables and of con-
straints are increased by a factor n. This is not surprising, as the uncertainty
considered in RpCP forces us to take into consideration all n scenarios. Finally, we
point out that half of the constraints for P rob

2 and P rob are induced by constraints
(4) and (5rob). These constraints are specific to our evacuation strategy, particu-
larly to compute the evacuation distance of the source vertex. The other half of
the constraints are linked to the evacuation distances of the vertices distant of the
fire.

In the next section we extend the previous models to PpCP.

6.3 Integer linear programming models for PpCP

In this section we propose three different formulations for PpCP, based on the
formulation for RpCP presented in the previous section. We extend formulations
P rob

1 , P rob
2 and P rob to PpCP.

We recall that we assume an uniform probability distribution over the scenarios,
more precisely the probability of scenario s is 1

n
.
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6.3.1 MIP formulation for PpCP

We extend formulation P rob
1 to PpCP to propose formulation P pro

1 . We can use
the same decision variables yj and xsij as for P rob

1 . In addition, we introduce the
variables rs associated with scenario s ∈ V .

(P pro
1 )



min
n∑
s=1

1
n
rs (1)

s.t.
n∑
j=1

yj = p (2)

xsij ≤ yj ∀i, j, s ∈ {1, . . . , n} (3)
n∑
j=1

xsij = 1 ∀s, i ∈ {1, . . . , n} (4)

rs ≥
n∑
j=1

dsijx
s
ij ∀s, i ∈ {1, . . . , n}, i 6= s (5)

rs ≥ lsv(1− ys) +
n∑
j=1

dsvjx
s
vj ∀s ∈ {1, . . . , n}, ∀v ∈ Γ(s) (6)

yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
xsij ∈ {0, 1} ∀i, j, s ∈ {1, . . . , n}

The main difference in complexity between PpCP and RpCP is the need for PpCP
to register the evacuation radius of every scenario s. This can be easily adapted
on formulation P rob

1 to generate formulation P pro
1 . This is done by modifying

constraints (5) and (6) from P rob
1 such that the evacuation radius rs for every

scenario s is computed. The objective function (1) ensures then the minimization
of the expected evacuation radius over all scenarios. The other constraints remain
the same.

6.3.2 IP formulation for PpCP

We propose two formulations for PpCP adapted from P rob
2 and P rob. Instead of

using Drob solely, we will need to use the n lists Ds, introduced in Section 6.2.2.
We consider Ds ordered such that the elements of Ds are denoted by Ds

min = Ds
1 <

Ds
2 < Ds

3 < . . . < Ds
T s = Ds

max.

First formulation: We introduce the binary decision variable zst : z
s
t = 0 if and

only if there is a solution such that, for scenario s, all vertices are within a radius
of value Ds

t−1 of a center. Formulation P rob
2 can be adapted into formulation P pro

2 :
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(P pro
2 )



min
n∑
s=1

1
n
∗
(
Ds

1 +
T s∑
t=2

(Ds
t −Ds

t−1)zst
)

(1)

s.c.
n∑
j=1

yj ≤ p (2)

zst +
∑

j:dsij<D
s
t

yj ≥ 1 ∀s, i ∈ {1, . . . , n} (3)

∀t = 2, . . . , T s
zst +

∑
j:lsv+dsvj<D

s
t

yj ≥ 1− ys ∀s ∈ {1, . . . , n},∀v ∈ Γ(s), (3)

∀t = 2, . . . , T s + 1
yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
zst ∈ {0, 1} ∀s ∈ {2, . . . , T s + 1}

Constraints (3) and (4) are the extensions of the corresponding constraints in
P rob

2 for PpCP. The objective value (1) is also transformed in order to compute the
expected value of the evacuation radius over all scenarios, and ensure that it is the
smallest possible.

Second formulation: Finally we adapt formulation P rob for PpCP with P pro. We
introduce the variables ust with ust = 1 if in scenario s all vertices are within a
radius of value Ds

t from a center, in which case rs = Ds
t with s = 1, . . . , n and

t = 1, . . . , n.

(P pro)



min
n∑
s=1

1
n
∗
T s∑
t=1

Ds
tu

s
t (1)

s.c.
n∑
j=1

yj = p (2)

T s∑
t=1

ust = 1 ∀s ∈ {1, . . . , n} (3)

∑
j:dsij≤D

s
t

yj ≥
t∑

q=1
uq ∀s, i ∈ {1, . . . , n}, i 6= s

∀t ∈ {1, . . . , T s} (4)∑
j:lsv+dsvj≤D

s
t

yj ≥
t∑

q=1
uq − ys ∀s ∈ {1, . . . , n},∀v ∈ Γ(s),

∀t ∈ {1, . . . , T s} (5)
yj ∈ {0, 1} ∀j ∈ {1, . . . , n}
ust ∈ {0, 1} ∀s ∈ {1, . . . , n}, t ∈ {1, . . . , T s}

136



6.3. INTEGER LINEAR PROGRAMMING MODELS FOR PpCP

Constraints (3) ensures that for each scenario s, exactly one variable ust , t ∈
{1, . . . , T s} will be equal to 1, and the corresponding Ds

t value is the evacuation
radius of the solution for scenario s. Constraints (4) ensure that, for every scenario
s, each vertex i 6= s is within a distance Ds

t of a center. Like constraints (5rob)
for the P rob

3 , constraints (5) are specific to the UP evacuation strategy and are
necessary to compute the evacuation distance of the source vertex.

6.3.3 Size of the programs

We present in Table 6.3 the number of variables for each formulation P pro
1 , P pro

2
and P pro, and the number of constraints generated by each formulation.

P pro
1 P pro

2 P pro

Binary variables nb. n3 + n n+∑n
s=1(T s − 1) n+∑n

s=1 T
s

Real variables nb. 1 0 0

Constraints nb.
n3 + 2n2 +
2m+ 1

(n2 − n)∑n
s=1(T s −

1) + 2m∑n
s=1(T s − 1)

n2∑n
s=1 T

s +
2m∑n

s=1 T
s

Table 6.3: Number of variables and constraints for each formulation introduced for
PpCP.

Compared the size of formulations P rob
2 and P rob with formulations P pro

2 and
P pro, we observe that the probabilistic approach induces a quadratic increase in
the number of constraints. This is not surprising, as the probabilistic approach
considered in PpCP compels us to compute the evacuation radius of the solution
for every scenario. The size of formulation P pro

1 on the contrary remains constant
in comparison with P rob

1 .
Note that the inequalities introduced in Section 6.2.4 relative to feasibility

conditions, are also valid for PpCP and for formulations P pro
1 , P pro

2 and P pro.
In addition, we underline that, unlike for RpCP, it is not possible to extend the

set covering problem SCr to PpCP: for a given expected evacuation radius, there
are numerous possible r1, . . . , r

s, . . . , rn distribution values.
Our first experiments with the different formulations for RpCP and PpCP were

quickly limited with the size of the instance. Starting from 30 vertices, trying
to generate the instance on a computer with 16Gb of RAM would often freeze
the computer. Hence we decided to develop a specific algorithm for RpCP. For
a same graph, the size of our RpCP formulations is smaller than the size of our
PpCP formulations. In addition, we have the auxiliary program SCrob

r to help us
address the RpCP problem. As a basis for our algorithm, we performed nonetheless
experiments on small instances to identify the best performing RpCP formulation.
P rob appeared to be most efficient.
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In the next section, a new exact algorithm is defined and extensive experimental
results show the tractability of our approach.
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6.4 An exact solution method for RpCP

In this section, we present an exact solution method for RpCP based on formula-
tion P rob introduced previously. The size of the model P rob depends on the size
of the list Drob leading to huge integer linear programs: the first computational
tests outlined that Drob can be of size bigger than n and have revealed that the
generation of the constraints (4rob) and (5rob) may take a substantial time.

Consequently, in order to obtain optimal solutions we have to reduce its size
(fixing some variables) and to define specific exact algorithm based on a generaliza-
tion of a binary search. To this end, we propose in Section 6.4.1 several methods to
determine tight upper and lower bounds. In Section 6.4.2, we present an algorithm
for RpCP based on a generalization of binary search. Finally in Section 6.4.3 we
present the experimental results of our algorithm on different data sets.

6.4.1 Upper and lower bounds

We propose four different methods to compute upper and lower bounds for RpCP:

• The first method uses an optimal solution of P det with the algorithm proposed
in [51]. Obviously, the value of an optimal solution of RpCP can not be less
than the optimal value of P det. We denote LB1 = v(P det). When this
solution is feasible for RpCP, its value gives an upper bound UB1 for RpCP.

• The second method allow us to compute a lower bound for RpCP based on
SCrob

r , presented in Section 6.2.3. A binary search can be performed on Drob

to find the minimum radius r∗ for which v(LSCrob
r∗ ) ≤ p. A lower bound for

P rob is then r∗, denoted by LB2.

• In a third method, we randomly construct solutions and compute their value
for RpCP. The lowest obtained value represents a second upper bound UB2.

• The fourth method consists in considering P rob without the constraints (4rob).
The obtained model, denoted by RP rob, corresponds to the problem where
only the evacuation distance of the node s is taken into account for scenario
s. It reduces the number of constraints by n2T rob. The value of the obtained
solution is a lower bound LB3 for RpCP. Similarly to the first method, if
RP rob has an optimal solution, which is feasible for RpCP, it gives a third
upper bound UB3 for RpCP.

In our preliminary experiments, despite using these bounds for P rob, the number
of constraints and variables were still too high in order to solve exactly the problem,
more precisely even to write the LP instance. For example, for an instance with
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100 nodes, 200 edges and T rob = 400, the number of constraints exceeds 4 millions.
It took us more than 9 hours and 120 gigabytes of memory usage to obtain the
optimal solution.

Thus we propose a general scheme using a generalization of binary search algo-
rithm. As we will see in the experimental results section, the same instance using
our algorithms can be solved in less than 40 seconds.

6.4.2 Exact solution method

Algorithm 8 σ-quantile search

Require: P (D), LB, UB, σ ∈ N, σ ≥ 3
Ensure: Returns the optimal value and an optimal solution to P (D)

1: while UB 6= LB do
2: D′ = {Dk1 , . . . , Dkσ} ← Fkernel(D,LB,UB, σ)
3: Solve P (D′)
4: Set q ∈ N+ such that Dkq ← Optimal value of P (D′)
5: sol← Optimal solution of P (D′)
6: if q = 1 then
7: UB ← LB
8: else
9: UB ← Dkq

10: LB ← Dkq−1

11: end if
12: end while
13: Return LB and sol

Algorithm 9 Fkernel

Require: D = {D1, D2, . . . , DT}, LB, UB, σ ∈ N, σ ≥ 3
Ensure: Returns a subset of D

1: Find k1 ∈ {1, . . . , T} such that Dk1 = LB
2: Find kσ ∈ {1, . . . , T} such that Dkσ = UB
3: step← b(k1 + kσ)/(σ − 1)c
4: for i← 2 to σ − 1 do
5: ki ← ki−1 + step
6: end for
7: Return {Dk1 , . . . , Dki , . . . , Dkσ}

Consider P (D) a linear programming formulation whose objective value (to be
minimized) takes a value from an ordered set D = {D1, D2, . . . , DT}. Denote LB
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and UB two initial lower and upper bounds for v(P (D)). A σ-quantile search,
presented in Algorithm 8, can be used to solve P (D) by solving at most dlogσ(T +
1)e instances of P (D′) with D′ ⊆ D. While UB 6= LB, we repeat the following
steps:

• First we compute a restricted set D′ = {Dk1 , . . . , Dkσ} ⊆ D using function
Fkernel (Algorithm 9): we delete all values in D that are less than LB or
greater than UB, then Dk1 = LB, Dkσ = UB and the intermediate values
correspond to a (σ − 1)-quantile. So, between every two consecutive values
of D′ there are roughly the same number of values of D.

• Next we solve P (D′). Let v(P (D′)) = Dkq , then Dkq is an upper bound for
v(P (D)) as Dkq ∈ D. In addition, there is no feasible solution in P (D′) with
value Dkq−1 and equivalently in P (D), so Dkq−1 is a lower bound for v(P (D)).
Note that if Dkq = Dk1 , then Dk1 is the optimal solution for P (D).

• Finally, LB = Dkq−1 and UB = Dkq .

Note that for σ = 3, the σ-quantile search is actually a binary search.

Our initial exact algorithm to solve P rob is presented in Algorithm 10. In a first
step, all lower and upper bounds are computed and in a second step, a σ-quantile
search is performed.

Algorithm 10 Exact Algorithm

Require: G = (V,E), x, σ1, σ2
Ensure: Returns the optimal value and an optimal solution to P rob

1: Generate Drob

2: Solve P det and generate LB1 and UB1

3: Compute LB2

4: Compute UB2 by generating x random solutions
5: LB3, sol← σ - quantile search(RP rob(Drob),max{LB1, LB2},min{UB1, UB2}, σ1)

6: UB3 ← Value of sol for P rob

7: UB ← min{UB1, UB2, UB3} and LB ← max{LB1, LB2, LB3}
8: optV alue, optSolution← σ-quantile search(P rob(Drob), LB, UB, σ2)
9: Return optV alue

In the next section, we evaluate the computational efficiency of the proposed
algorithm.
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6.4.3 Experimental results

We implement the Exact Algorithm in Python 3.7 for two sets of instances: p-
median instances from OR-Library [86] and subgrids randomly generated. We
generate the distance matrices SP = (dij) and SP s = (dsij) for all scenario s ∈ V
using networkx library 2.3. We execute our experiments on a server with 254Gb
of RAM and 14 Intel Core (Haswell; no TSX) Processor at 2.3 Ghz. Mathematical
programs are solved with CPLEX 12.9 (with MIPEmphasis option set to 0).

6.4.3.1 Experimental results on OR-Library Instances

The input data used for the computations are the 40 instances of the p-Median
problem from the OR-Library ([86]) which are used also for solving the p-center
problem ([51, 52]). n varies between 100 and 900 nodes and p varies between 5 and
bn/3c. In the following we focus on the instances which could be solved within 5
hours.

Table 6.4 contains the value of the upper and lower bounds computed for the
instances ordered by the number of their nodes and the value of p. We mark with
an ∗ the values of the bounds that are equal to optimal value. It stands out that
on all the instances considered, LB3 = UB3 = v(P rob). The equality between
UB3 and LB3 is not mandatory since only evacuation paths of a subset of nodes
are considered in LB3. In fact, we record some instances in which LB3 < v(P rob)
(see in Figure 6.2) and, in these cases, the computation time is more important.
The equality between LB3 and UB3 means that the evacuation distance of node s
induces the radius of an optimal solution in scenario s. It may be due to the fact
that OR-Library instances are considerably sparse.

Concerning lower bounds, LB2 is also a tight lower bound very close and often
equal to v(P rob), while LB1 is the worst lower bound. Concerning upper bounds,
UB1 is globally better than UB2.

The Exact Algorithm computes all pairs of lower and upper bounds. In order to
better understand the trade-off between bounds quality and computational time,
we compare the processing time of three variants of the Exact Algorithm:

• EA1 is a version of the Exact Algorithm in which only LB1 and UB1 are
computed, its processing time is TEA1. This variant is mainly based on the
resolution of the deterministic p-Center problem.

• EA2 is a version of the Exact Algorithm in which only LB2 and UB2 are
computed, its processing time is TEA2. This variant is adapted from the
Daskin’s algorithm for the RpCP.
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Instance n |E| p OPT LB1 UB1 LB2 UB2 LB3 UB3
pmed1 100 200 5 222 127 251 221 263 222* 222*
pmed2 100 200 10 194 98 229 192 251 194* 194*
pmed3 100 200 10 191 93 226 186 240 191* 191*
pmed4 100 200 20 157 74 184 156 218 157* 157*
pmed5 100 200 33 115 48 144 115* 180 115* 115*
pmed6 200 800 5 180 84 208 180* 205 180* 180*
pmed7 200 800 10 156 64 163 155 180 156* 156*
pmed8 200 800 20 143 55 153 143* 188 143* 143*
pmed9 200 800 40 124 37 136 124* 164 124* 124*
pmed10 200 800 67 100 20 118 100* 136 100* 100*
pmed11 300 1800 5 153 59 157 153* 169 153* 153*
pmed12 300 1800 10 145 51 150 145* 171 145* 145*
pmed13 300 1800 30 129 36 136 128 154 129* 129*
pmed14 300 1800 60 116 26 125 115 145 116* 116*
pmed15 300 1800 100 105 18 118 105* 133 105* 105*
pmed16 400 3200 5 143 47 147 143* 153 143* 143*
pmed17 400 3200 10 136 39 139 136* 150 136* 136*
pmed18 400 3200 40 122 28 127 122* 144 122* 122*
pmed19 400 3200 80 112 18 119 111 132 112* 112*
pmed20 400 3200 133 103 13 113 103* 130 103* 103*
pmed21 500 5000 5 137 40 139 137* 147 137* 137*
pmed22 500 5000 10 133 38 137 133* 147 133* 133*
pmed23 500 5000 50 118 22 122 118* 135 118* 118*
pmed24 500 5000 100 110 15 115 110* 132 110* 110*
pmed25 500 5000 167 103 11 113 103* 131 103* 103*
pmed26 600 7200 5 134 38 137 134* 147 134* 134*
pmed27 600 7200 10 128 32 132 128* 139 128* 128*
pmed28 600 7200 60 114 18 118 114* 134 114* 114*
pmed29 600 7200 120 108 13 113 108* 130 108* 108*
pmed30 600 7200 200 103 9 109 103* 124 103* 103*
pmed31 700 9800 5 128 30 136 124 135 128* 128*
pmed32 700 9800 10 127 29 128 123 164 127* 127*
pmed33 700 9800 70 113 15 119 110 126 113* 113*
pmed34 700 9800 140 107 11 111 107* 125 107* 107*
pmed35 800 12800 5 128 30 130 - 136 128* 128*
pmed36 800 12800 10 125 27 127 - 134 125* 125*
pmed37 800 12800 80 112 15 121 - 130 112* 112*
pmed38 900 16200 5 127 29 129 - 138 127* 127*
pmed39 900 16200 10 122 23 127 - 174 122* 122*
pmed40 900 16200 90 111 13 113 - 123 111* 111*

Table 6.4: Optimal solution values and bound values
for OR-Library instances
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p=n/3 p=n/10

p=10

Figure 6.1: Processing time of each variant of the Exact Algorithm on some
OR-Library instances

• EA3 is a version of the Exact Algorithm in which only LB3 and UB3 are
computed, its processing time is TEA3. This variant is a new one specific to
RpCP and its evacuation strategy.

For pmed35 to pmed40, TEA1 and TEA2 exceed five hours: only EA3 can
exactly solve all instances in less than 5 hours.

In Figure 6.1, we represent the processing times for instances from pmed1 to
pmed34 for three different values of p: p = n/3 , p = n/10 and p = 10. For
each p, three curves represent the processing times TEA1, TEA2 and TEA3, in
function of n. We observe that our dedicated algorithm EA3 performs faster than
EA1 and EA2. The reason is twofold: in EA1, the poor quality of the lower
bound LB1 (see Table 6.4) increases the number of iterations in step 8 of the
Exact Algorithm. Conversely, in EA2 the quality of the lower bound LB2 highly
decreases the number of iterations in step 8, however computing LB2 is very time
consuming. More precisely, the generation of the input CPLEX instance for SCrob

r
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requires a large amount of time (at least 90% of the total computing time for
generating LB2). On the other hand, LB3 and UB3 can be computed much faster
while providing the best quality of bounds. Thus, EA3 is clearly the most efficient
of the three algorithms.

Once we have identified EA3 as the best of the three variants, we must verify
whether improvements can be made by adjusting parameters σ1 and σ2. Given
the quality of LB3, increasing σ2 to values greater than 3 is counterproductive:
one iteration with σ-quantile search is enough to prove that the lower bound is
an upper bound. In this case, increasing σ2 would only increase the size of the IP
model constructed in the step 8 of Exact Algorithm.

However, we can potentially improve LB3 processing time by using other val-
ues of σ1. Therefore, we compare the performance of algorithm EA3 on the 34
first instances from the OR-Library with different values of σ1 in a range of val-
ues between 3 and 11. For larger instances, computational times are not reported
since they exceed 5 hours for some values of σ1. The results are given in Table 6.5,
where, for each instance, the processing time of EA3 is standardised with respect
to the processing time of EA3 for σ1 = 3. Then we use the geometric mean [87] to
compare the average processing time for the different values of σ1. The experiment
reveals that, with σ1 = 4, EA3 is at least 14 percent faster than the other tested
values for σ1.

Then we perform a qualitative study to better understand the impact of p on
the processing time. In Figure 6.2, the processing time of EA3 is given for three in-
stances with 100 nodes and 200 edges, named pmed1, pmed4 and pmed5. For each
instance, the curve describes the evolution of TEA3 in function of p, with p ranging
from 2 to 33. For pmed2, the processing time is relatively stable for all values of
p. On the contrary, the processing time to solve pmed4 and pmed5 is much more
impacted by the variation of p. Precisely, processing times directly depend on the
number of iterations to solve P rob with the σ-quantile search (step 8). When the
number of iterations is equal to 1 (which corresponds to the case LB3 = v(P rob))
the computation time is stable. But when LB3 < v(P rob), the number of iterations
increases (up to 5) and the computation time significantly increases.
These results underline that for a given size of instance, there is no obvious rela-
tionship between the value of p and the complexity of solving P rob.

Our experimental results allow to conclude that the original algorithm EA3 is
the best one. In particular we are able to precisely tune the parameters defining
Algorithm 11 called EA3*. The efficiency of EA3* comes from the quality of the
lower bound obtained with a very efficient 4-quantile search algorithm. With such
a bound, in most cases, only one iteration of the 3-quantile search is enough to
determine an optimal solution of P rob in step 5.
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σ1
Instances 3 4 5 6 9 11
pmed1 1 0.91 1.03 1.15 1.54 1.79
pmed2 1 1.08 1.66 1.48 1.85 1.72
pmed3 1 0.98 1.32 1.34 1.18 1.94
pmed4 1 0.9 1.28 1.33 1.62 1.63
pmed5 1 0.82 1.03 0.98 1.39 1.29
pmed6 1 0.75 0.98 0.87 1.03 1.1
pmed7 1 1.46 1.84 1.91 1.68 2.92
pmed8 1 0.9 0.92 1.09 1.05 1.67
pmed9 1 0.82 0.88 1.12 1.66 1.41
pmed10 1 0.79 0.83 1.04 1.09 1.51
pmed11 1 0.81 0.9 0.89 1 1.26
pmed12 1 0.71 0.74 0.97 0.98 1.19
pmed13 1 0.82 1.47 1.47 0.93 1.69
pmed14 1 0.83 0.92 1.56 4.85 3.06
pmed15 1 1.04 1.07 1.39 1.29 1.89
pmed16 1 0.82 0.9 0.91 1.02 1.22
pmed17 1 0.91 0.98 0.99 1.08 1.27
pmed18 1 0.57 1.1 1.6 1.24 1.96
pmed19 1 0.67 0.94 0.88 1.24 3.86
pmed20 1 1.09 0.93 1.14 1.27 1.38
pmed21 1 0.86 0.9 0.94 1.45 1.24
pmed22 1 0.49 0.8 0.82 0.89 1.75
pmed23 1 0.72 1.39 2.73 2.59 1.69
pmed24 1 0.84 0.73 0.93 1.25 1.84
pmed25 1 2.26 1.64 2.57 3.68 3.73
pmed26 1 0.99 0.92 1.43 1.6 1.39
pmed27 1 0.29 1.22 0.82 0.59 0.58
pmed28 1 0.67 0.87 0.69 5.44 10.55
pmed29 1 0.6 0.53 0.61 2.25 1.33
pmed30 1 0.69 0.68 0.75 1.01 1.96
pmed31 1 1.34 1.2 1.35 1.47 1.96
pmed32 1 1.63 1.59 3.21 1.83 2.05
pmed33 1 1.33 2.21 1.23 3.77 1.38
pmed34 1 0.69 0.66 2.83 2.43 1.42
GEOMEAN 1 0.86 1.04 1.21 1.52 1.74

Table 6.5: Comparison of the standardized execution time of EA3 for different values
of σ1
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Instance pmed2 Instance pmed4

Instance pmed5

Figure 6.2: Processing time of EA3 on three different instances for p ranging from 2 to
32
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Algorithm 11 EA3*

Require: G = (V,E)
Ensure: Returns the optimal value and an optimal solution to P rob

1: Generate Drob = {Drob
1 , . . . , Drob

T rob}
2: LB3, sol← σ−quantile search(RP rob(Drob), Drob

1 , Drob
T rob , 4)

3: UB3 ← value of sol for P rob

4: optV alue, optSolution← σ−quantile search(P rob(Drob), LB3, UB3, 3)
5: Return optV alue

To measure the advantage of using RpCP over a classical deterministic p-Center
problem, we compare the value on the objective function of RpCP of an optimal
solution of p-Center problem (referred to as deterministic solution) to the opti-
mal solution value of RpCP. Let us recall that UB1 exactly corresponds to the
value, on RpCP, of a deterministic solution. Thus, we compute in Table 6.6 the
ratio UB1/v(P rob) (none of the instances correspond to n=700 and p = n/3 in
OR-Library). It appears that the gap can be quite significant, up to 25%. Con-
sequently, the value of a deterministic solution can be far away from the optimal
solution value of RpCP and better solutions can be found solving RpCP.

p
n 5 10 n/10 n/3

100 1.13 1.18 1.18 1.25
200 1.16 1.04 1.07 1.18
300 1.03 1.03 1.05 1.12
400 1.03 1.02 1.04 1.10
500 1.01 1.03 1.03 1.10
600 1.02 1.03 1.04 1.06
700 1.06 1.01 1.05 -

Table 6.6: Ratio between UB1 and the optimal value of RpCP on OR-Library instances

In the following, we report our experimental results on randomly generated
subgrid instances.

6.4.3.2 Experimental results on random subgrid instances

We have outlined the relevance of subgrids for real case applications. Thus, we
chose to test our algorithms on random subgrid instances. We generated a set
of 18 subgrids along the following steps. From an original undirected unit grid
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of size (l × w), we generate three subgrids by randomly removing a node with
probability 0.05, 0.1 and 0.2. For each subgrid, we remove isolated and leaf nodes
being mandatory shelter locations. We apply this process to three grids of size
10 × 10, 20 × 10 and 20 × 20, into nine unit subgrids SG1, . . . , SG9. We then
generate nine weighted subgrids wSG1, . . . , wSG9 by randomly assigning length
edge values, from 1 to 10, applied to the edges of SG1, . . . , SG9 respectively. The
data set is available at [88].

In the following, we present our synthetic analysis of the results. First, we solve
P rob using Exact Algorithm with σ1 = σ2 = 3 and x = 10. Table 6.7 gives the
values of the upper and lower bounds computed for the instances SG1, . . . , SG9
ordered by the number of their nodes and the value of p. Likewise, the values of
the bounds that are equal to optimal values are marked with an ∗ . For bounds
corresponding to non-feasible solutions for RpCP the value is 10000. In Table 6.7,
NA denotes that the values cannot be computed within 5 hours. Please note that
the best values achieved for the unsolved instances can be found in Table 6.13.
LB1 is still the worst lower bound while LB2 performs slightly better than LB3

and both of them quite often reach optimal values. Concerning the upper bounds,
we note that UB1 and UB3 are not so good as those of obtained for OR-Library
instances.

Table 6.8 gives the value of the upper and lower bounds computed for the
instances wSG1, . . . , wSG9 ordered by the number of their nodes and the value of
p.

In the weighted case, LB2 and LB3 outperform LB1. Both lower bounds are
not as good when the value of p is very low. UB3 is the best upper bound some-
times reaching optimal value. In this case, the solution of RP rob obtained with
EA3 is also the optimal solution for P rob.

In Tables 6.11 and 6.12, we record the processing time of our algorithms on the
unit subgrids and the weighted subgrids, for the fixed values of p (5,10 and 20),
and relatives values of p (n/5 and n/3). For processing time exceeding 5 hours, we
record NA. For each instance, the underlined value is the best. Overall, for both
unit and weighted subgrids, EA3 is the most efficient algorithm.

In Tables 6.9 and 6.10, we record the ratio UB1/v(P rob) on the unit subgrids
and the weighted subgrids. When the deterministic solution is not feasible, the
corresponding ratio value is marked ∞. We observe that the gap, up to 167%, is
larger than the one recorded for OR-Library instances. In Table 6.9, when p = n/3,
the ratio UB1/v(P rob) equals 1 in all instances. In this case, we also have LB1 = 1
which means that the optimal solution of the p-Center problem is a dominating
set. This is result in Subsection 3.2.1 : if G is a planar triangle-free graph with
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Instance
Graph p n |E| OPT LB1 LB2 LB3 UB1 UB2 UB3

SG1 5 73 102 7 4 7* 6 10000 9 10000
SG1 10 73 102 4 3 4* 4* 10000 7 6
SG1 20 73 102 2 1 2* 2* 2* 4 2*
SG1 14 73 102 3 2 3* 3* 8 6 7
SG1 24 73 102 2 1 2* 2* 2* 4 2*
SG2 5 92 153 7 4 6 5 8 8 9
SG2 10 92 153 4 3 4* 4* 6 6 6
SG2 20 92 153 3 2 3* 3* 4 5 4
SG2 18 92 153 3 2 3* 3* 4 5 5
SG2 30 92 153 2 1 2* 2* 2* 4 2*
SG3 5 96 167 7 4 5 5 8 8 9
SG3 10 96 167 4 3 4* 4* 6 5 6
SG3 20 96 167 3 2 3* 3* 4 5 4
SG3 19 96 167 3 2 3* 3* 4 4 4
SG3 32 96 167 2 1 2* 2* 2* 3 2*
SG4 5 143 218 11 6 10 9 20 13 13
SG4 10 143 218 7 4 6 6 10 10 10
SG4 20 143 218 4 2 4* 4* 6 7 7
SG4 28 143 218 3 2 3* 3* 5 6 5
SG4 47 143 218 2 1 2* 2* 2* 4 2*
SG5 5 179 304 9 6 8 8 14 11 12
SG5 10 179 304 6 4 6* 5 8 8 9
SG5 20 179 304 4 2 4* 4* 7 7 6
SG5 35 179 304 3 2 3* 3* 4 5 4
SG5 59 179 304 2 1 2* 2* 2* 4 2*
SG6 5 190 332 9 6 8 8 11 12 11
SG6 10 190 332 6 4 5 5 8 9 7
SG6 20 190 332 4 3 4* 4* 6 7 6
SG6 38 190 332 3 2 3* 3* 5 5 6
SG6 63 190 332 2 1 2* 2* 2* 4 2*
SG7 5 306 483 15 9 13 12 10000 10000 10000
SG7 10 306 483 9 6 9* 8 10000 17 10000
SG7 20 306 483 6 4 6* 6* 9 11 8
SG7 61 306 483 3 2 3* 3* 10000 7 10000
SG7 102 306 483 2 1 2* 2* 2* 5 2*
SG8 5 359 620 NA 8 11 10 16 16 16
SG8 10 359 620 NA 6 7 7 11 12 12
SG8 20 359 620 NA 4 5 5 11 9 9
SG8 71 359 620 3 2 3* 3* 5 5 5
SG8 119 359 620 2 1 2* 2* 2* 4 2*
SG9 5 383 704 NA 9 11 11 16 16 18
SG9 10 383 704 NA 5 7 7 11 12 13
SG9 20 383 704 NA 4 5 3 8 8 9
SG9 76 383 704 3 2 3* 3* 4 5 4
SG9 127 383 704 2 1 2* 2* 2* 4 2*

Table 6.7: Optimal solution values and bound values
for unit subgrids150
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Instance
Graph p n |E| OPT LB1 LB2 LB3 UB1 UB2 UB3

wSG1 5 73 102 43 20 41 36 10000 50 10000
wSG1 10 73 102 25 12 24 23 29 39 26
wSG1 20 73 102 16 8 15 16* 19 30 16*
wSG1 14 73 102 20 10 19 20* 29 31 22
wSG1 24 73 102 13 8 13* 13* 20 25 13*
wSG2 5 92 153 29 17 29* 27 35 36 43
wSG2 10 92 153 20 11 20* 20* 25 27 26
wSG2 20 92 153 15 7 15* 15* 18 23 15*
wSG2 18 92 153 16 7 16* 16* 19 23 19
wSG2 30 92 153 12 5 12* 12* 15 20 12*
wSG3 5 96 167 27 14 26 25 35 35 39
wSG3 10 96 167 19 10 19* 19* 25 29 22
wSG3 20 96 167 15 7 15* 15* 20 20 15*
wSG3 19 96 167 15 7 15* 15* 21 22 15*
wSG3 32 96 167 11 5 11* 11* 15 19 11*
wSG4 5 143 218 43 27 42 42 56 53 81
wSG4 10 143 218 31 16 30 29 39 41 41
wSG4 20 143 218 22 11 21 21 29 35 29
wSG4 28 143 218 17 8 17* 17* 25 29 25
wSG4 47 143 218 13 6 13* 13* 25 24 13*
wSG5 5 179 304 39 25 38 37 51 48 45
wSG5 10 179 304 29 17 29* 28 33 39 33
wSG5 20 179 304 22 11 21 21 28 30 23
wSG5 35 179 304 17 8 17* 17* 24 27 29
wSG5 59 179 304 13 6 12 13* 24 24 13*
wSG6 5 190 332 40 26 40* 39 48 55 45
wSG6 10 190 332 30 17 29 28 44 45 49
wSG6 20 190 332 21 11 21* 21* 33 37 40
wSG6 38 190 332 17 8 16 17* 21 27 17*
wSG6 63 190 332 13 6 13* 13* 19 22 13*
wSG7 5 306 483 67 38 65 59 10000 10000 10000
wSG7 10 306 483 44 26 44* 43 10000 88 10000
wSG7 20 306 483 32 17 32* 31 10000 62 10000
wSG7 61 306 483 17 8 17* 17* 10000 35 10000
wSG7 102 306 483 13 6 13* 13* 10000 30 10000
wSG8 5 359 620 53 34 47 44 69 70 71
wSG8 10 359 620 38 23 35 35 51 53 52
wSG8 20 359 620 28 16 27 27 35 40 32
wSG8 71 359 620 17 8 17* 17* 22 29 19
wSG8 119 359 620 13 6 13* 13* 17 24 13*
wSG9 5 383 704 58 34 47 46 79 68 81
wSG9 10 383 704 38 23 36 36 51 51 59
wSG9 20 383 704 28 17 27 27 39 44 35
wSG9 76 383 704 17 8 16 17* 22 29 19
wSG9 127 383 704 13 6 13* 13* 17 24 13*

Table 6.8: Optimal solution values and bound values
for weighted subgrids 151
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p
Instance 5 10 n/5 n/3
SG1 ∞ ∞ 2.67 1
SG2 1.14 1.5 1.33 1
SG3 1.14 1.5 1.33 1
SG4 1.82 1.43 1.67 1
SG5 1.56 1.33 1.33 1
SG6 1.22 1.33 1.67 1
SG7 ∞ ∞ ∞ 1
SG8 NA NA ∞ 1
SG9 NA NA 1.33 1

Table 6.9: Ratio between UB1 and optimal solution value of RpCP on unit subgrids

p
Instance 5 10 n/5 n/3
wSG1 ∞ 1.16 1.45 1.54
wSG2 1.21 1.25 1.19 1.25
wSG3 1.3 1.32 1.4 1.36
wSG4 1.3 1.26 1.47 1.92
wSG5 1.31 1.14 1.41 1.85
wSG6 1.2 1.47 1.24 1.46
wSG7 ∞ ∞ ∞ ∞
wSG8 1.3 1.34 1.29 1.31
wSG9 1.36 1.34 1.29 1.31

Table 6.10: Ratio between UB1 and optimal solution value of RpCP on weighted
subgrids
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no leaf nodes and C a dominating set, then r(C) ≤ 2. Moreover, when p = n/3,
there is no solution with radius equals to 1. So, the deterministic solution is an
optimal solution for RpCP.
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Instance
Graph p n |E| T EA1 T EA2 T EA3
SG1 5 73 102 8.62 6.42 4.62
SG1 10 73 102 4.48 6.14 2.6
SG1 14 73 102 3.37 6.25 2.43
SG1 20 73 102 0.84 5.42 0.31
SG1 24 73 102 0.81 5.58 0.32
SG2 5 92 153 15.02 19.87 13.47
SG2 10 92 153 5.98 11.83 5.46
SG2 18 92 153 2.71 10.19 3.8
SG2 20 92 153 2.86 10.01 2.3
SG2 30 92 153 1.43 10.23 0.59
SG3 5 96 167 29.38 38.74 31
SG3 10 96 167 7.54 9.74 6.08
SG3 19 96 167 3.21 9.82 2.66
SG3 20 96 167 3.28 11.87 2.61
SG3 32 96 167 1.66 10.56 0.67
SG4 5 143 218 61.04 72.64 32.84
SG4 10 143 218 29.54 52.4 27.98
SG4 20 143 218 14.57 39.34 13.16
SG4 28 143 218 13.34 36.56 10.61
SG4 47 143 218 4.75 37.96 1.42
SG5 5 179 304 188.98 281.31 317.06
SG5 10 179 304 70.04 80 57.87
SG5 20 179 304 37.37 72.1 23.35
SG5 35 179 304 15.16 69.52 12.48
SG5 59 179 304 8.8 73.25 2.61
SG6 5 190 332 399.16 855.92 486.3
SG6 10 190 332 143.33 236.57 101.38
SG6 20 190 332 44.3 88.26 30.09
SG6 38 190 332 31.71 83.41 25.69
SG6 63 190 332 10.74 87.64 3.13
SG7 5 306 483 1298.46 1364.17 1683.74
SG7 10 306 483 585.89 394.51 924.87
SG7 20 306 483 205.19 354.8 110.61
SG7 61 306 483 309.12 304.88 136.95
SG7 102 306 483 37.03 324.04 8.53
SG8 5 359 620 NA NA NA
SG8 10 359 620 NA NA NA
SG8 20 359 620 NA NA NA
SG8 71 359 620 355.2 675 258.2
SG8 119 359 620 88.4 791.4 40.3
SG9 5 383 704 NA NA NA
SG9 10 383 704 NA NA NA
SG9 20 383 704 NA NA NA
SG9 76 383 704 196.3 776.4 124.4
SG9 127 383 704 95 837 21.9

Table 6.11: Processing time of each variant of the Exact Algorithm
on the unit subgrids
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Instance
Graph p n |E| T EA1 T EA2 T EA3
wSG1 5 73 102 16.19 15.51 18.27
wSG1 10 73 102 6.06 9.36 3.24
wSG1 14 73 102 4.6 8.57 1.92
wSG1 20 73 102 3.17 8.01 0.54
wSG1 24 73 102 3.1 6.61 0.43
wSG2 5 92 153 22.48 24.17 24.09
wSG2 10 92 153 12.98 18.28 7.99
wSG2 18 92 153 8.41 12.26 4.35
wSG2 20 92 153 7.22 11.92 0.86
wSG2 30 92 153 5.96 12.17 0.66
wSG3 5 96 167 28.39 33.72 27.66
wSG3 10 96 167 9.67 16.74 5.36
wSG3 19 96 167 7.46 13.47 0.9
wSG3 20 96 167 6.77 13.28 0.9
wSG3 32 96 167 5.38 13.73 0.92
wSG4 5 143 218 35.29 74.06 40.19
wSG4 10 143 218 53.41 64.43 45.99
wSG4 20 143 218 33.56 56.6 25.62
wSG4 28 143 218 25.78 45.52 11.73
wSG4 47 143 218 23.7 45 2.29
wSG5 5 179 304 100.58 219.64 134.92
wSG5 10 179 304 166.78 89.13 75.09
wSG5 20 179 304 98.51 150.31 94.4
wSG5 35 179 304 40.31 80.68 22.47
wSG5 59 179 304 50.68 100.62 3.81
wSG6 5 190 332 188.65 137.97 97.1
wSG6 10 190 332 288.23 606.18 393.31
wSG6 20 190 332 108.05 161.24 70.87
wSG6 38 190 332 79.25 155.49 4.13
wSG6 63 190 332 47.53 99.98 4.24
wSG7 5 306 483 1168.59 1902.13 2553.12
wSG7 10 306 483 845.52 701.73 368.59
wSG7 20 306 483 769.56 728.43 886.37
wSG7 61 306 483 648.31 394.3 250.37
wSG7 102 306 483 602.1 396.6 175.92
wSG8 5 359 620 NA NA 17843
wSG8 10 359 620 NA 10098.49 9800.68
wSG8 20 359 620 8700.72 8313.83 17374.92
wSG8 71 359 620 518.06 772.39 201.35
wSG8 119 359 620 356.19 858.28 41.93
wSG9 5 383 704 13189.6 NA NA
wSG9 10 383 704 NA NA 15588.2
wSG9 20 383 704 6358.69 15998.37 9624.58
wSG9 76 383 704 1226.05 2258.24 320.34
wSG9 127 383 704 561.36 1009.85 29.16

Table 6.12: Processing time of each variant of the Exact Algorithm
on the weighted subgrids
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Instance
Graph p n |E| Best Value = UB LB
SG8 5 359 620 14 11
SG8 10 359 620 9 7
SG8 20 359 620 7 5
SG9 5 383 704 13 11
SG9 10 383 704 11 7
SG9 20 383 704 7 5

Table 6.13: Best results obtained on the unsolved instances of unit subgrids

Conclusion

In this chapter we introduce mathematical programming methods for RpCP and
PpCP. Based on MIP formulations for Min p-Center, we propose three MIP for-
mulations each for RpCP and PpCP. We also propose an IP formulation for k-RCP,
based on a set covering approach. The size of the instances generated by our
formulations are however too large in practice. To propose a tractable solution
method for RpCP, we develop exact algorithms based on P rob using a decompo-
sition scheme. We present three different methods to compute lower and upper
bounds for RpCP. To lessen the size of an instance and the number of iterations,
we propose a generalization of the binary search: the σ-quantile search. We test
different algorithms, each of which integrates a different method to generate lower
and upper bound. Our experimental results shows that algorithm EA3* is the
best one: its efficiency comes from the quality of the lower bound obtained with
a very efficient 4-quantile search algorithm for RP rob and the low computation
time. We have tested our algorithm and generated the different bounds on the
OR library and a domestic set of uniform and edge-weighted subgrids. Overall,
the RP rob-based algorithm remains the most efficient in terms of computing time.
In addition, our experiments highlight the performance of a RpCP optimal solution
compared to a Min p-Center optimal solution: we compared the value of an op-
timal solution for Min p-Center taken for RpCP with the optimal value. Even if
we exclude unfeasible cases, it appears that the gap can be quite significant, up to
92% for instances with more than 100 vertices.
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CHAPTER 7

CONCLUSION

In this concluding chapter, we first summarize the contribution of this thesis. Next,
we discuss possible applications and variants of our work and some open questions
for future research.

7.1 Context and contributions

In the prevention phase of wildfire, an important problem is to determine shelters
location in a given territory in order to minimize the evacuation time given different
fire scenarios. In this thesis, we propose a new two-stage model to locate such
shelters on territories with low density of people on it. We present in Chapter 2
the model as well as problems RpCP and PpCP. The uncertainty of fire outbreaks is
introduced taking into account a finite set of fire scenarios. A scenario defines a fire
outbreak on a single zone with the main consequence of modifying the operational
paths. At most p shelters are to be located on vertices in the preparedness phase,
thus our solution is a p-set. In the response phase, that is when a scenario occurs,
everyone in the territory must reach a shelter following an evacuation path. The
main novelty of our model is the UP evacuation strategy. With this evacuation
strategy, we propose a robust representation of the evacuation of the source vertex:
as there may be different people in different places within the source vertex, and
given the pressure induced by the imminent danger and the disruptions caused by
the fire on the internal transport network in the source vertex, we consider that
any of the paths leaving the vertex may be used for evacuation. We introduce then
two new facility location problems, incorporating the UP evacuation strategy, as
non deterministic variants of the Min p-Center problem. The PpCP problem for
a risk environment, and the RpCP problem for an uncertainty environment. The
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set of feasible solutions corresponds to solutions ensuring, for all scenarios and
all vertices, finite evacuation distance. A direct result is that a shelter must be
located on each pending vertex.

To our knowledge, it is the first attempt to model the evacuation process in
such manner for a shelter location problem. This model differentiates itself from
most existing models in that we apply indeterminacy on the graph structure and
not on the values of the edges between the vertices. By doing so, we consider that
we can better apprehend the impact of the fire on the evacuations distances.

In Chapter 3, we study the hardness of RpCP and PpCP. Regarding RpCP, we
consider the version of RpCP with a constant evacuation radius threshold, RpCPk.
We give various reduction from Min Vertex Cover and Min Dominating Set to
RpCPk for different values of k. It follows that:

• on all hereditary classes of graphs for which the decision version of Min

Vertex Cover problem is NP-complete: RpCP1 is NP-complete and RpCP

is NP-hard.

• on all hereditary classes of graphs for which the decision version of Min

Vertex Cover problem is polynomial-time solvable: RpCP1 is polynomial-
time solvable.

• in all triangle-free classes of uniform graphs and of minimum degree 2, for
which the decision version of Min Dominating Set problem is NP-complete:
RpCP2 is NP-complete and RpCP is NP-hard.

• in all triangle-free classes of uniform graphs and of minimum degree 2, for
which the decision version of Min Dominating Set problem is polynomial-
time solvable: RpCP2 is polynomial-time solvable.

• in subgrids with vertices of degree 2 or 3, RpCP2 is NP-complete and RpCP is
NP-hard.

For the robust case, our strongest result, the NP-hardness of RpCP in subgrids with
vertices of degree 2 or 3, is obtained by a reduction from Min Vertex Cover to
RpCP2, through the relation between RpCP2 and Min Dominating Set. In addition,
we outlined the existence of graph classes on which RpCP1 is hard but RpCP2 is
trivial. This seems to confirm that a reduction from RpCPk to RpCPk + 1 does not
exist in the general case and consequently, the hardness of RpCPk on a given graph
class requires to be studied for any value of k and cannot be deduced, in general,
from hardness results dealing with different values of k.

Regarding PpCP, we give two non-approximation results. First, we prove there
is no polynomial time approximation for PpCP guaranteeing a ratio less than 20

19 for
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bipartite planar graphs of degrees 2 or 3. In particular, in Section 3, we revisit the
previous reduction to prove that PpCP is not approximable with a ratio less than
56
55 on subgrids of degree at most 3.

In Chapter 4, we study polynomial and approximation results for PpCP. We
give an explicit solution for the uniform case on paths. In this case, a p-set is
characterized by the list of lengths of segments between two consecutive centers.
A solution is then called balanced if the maximum difference between two segment
lengths is minimized and it is monotone if the sequence of segment lengths is
monotone. We then show that a monotone balanced solution is optimal for PpCP.
Even though the result is not surprising, the proof was surprisingly non-trivial. The
main idea is to express the objective function as the sum of two parts (contribution
of the centers and the non-center vertices) and simultaneously bound the objective
function by another, objective function more easily computable. We prove then
independently that a balanced monotone solution minimizes simultaneously both
terms. This results is however not valid on edge-weighted path, as we show it by
an counterexample.

In addition, we propose some approximation results for PpCP. We propose a
4deg(G) + 2-approximation for graphs of bounded degree and with edge lengths
in [`, 2`]. It results in a 3-approximation on edge-weighted trees. This approxima-
tion result holds for a class of instances on which all our hardness results apply:
it provides a gap between constant approximation ratios and the hardness in ap-
proximation results we have obtained. In the process, we have introduced the Min

MAC p-Center problem, which is the problem of finding a p-set of minimum radius
among the set of feasible solutions for PpCP. We have shown that this problem is
2-approximable and that this is the best possible constant approximation ratio. It
is also polynomial on trees.

In Chapter 5, we propose polynomial algorithms to solve RpCP on acyclic edge-
weighted graphs. Our algorithms are based on the auxiliary problem k-RCP. By
performing a binary search on the candidate values of k, we can find an optimal
solution for RpCP in O(f(n) log(n)), where f(n) is the complexity of an algorithm
for k-RCP. By generalizing the approach used for PpCP on paths, we propose iter-
ative algorithms for k-RCP that locate shelters from bottom up. This allows us to
develop refined polynomial algorithms for k-RCP on paths, extended stars, cater-
pillars and trees.

In Chapter 6, we propose mathematical methods to solve RpCP and PpCP. We
propose different MIP formulations for RpCP and PpCP and an IP formulation for
k-RCP. These programs appear however to be quickly intractable with the size of
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the graph. We develop therefore an efficient algorithm for RpCP based on formu-
lation P rob. It relies on the generation of lower and upper bounds, coupled with
a binary search. Experimental results on general graphs and subgrids outline the
efficiency of our approach.

We summarize in Table 7.1 most of our results.

RpCP PpCP

Uniform path Exact solution* Exact solution
Edge-weighted path,
Star, Caterpillar

O(n2) Unknown complexity

Tree
O(n2) even in the
edge-weighted case

3-approximable in the
uniform case
NP-hardness
unknown

Graph with bounded
edges and bounded
degrees

(4deg(G) + 2)-
approximable*

(4deg(G) + 2)-
approximable

Bipartite-planar
graphs of degrees 2 or
3

NP-hard
Non approximable
under 20

19

Subgrids of degrees 2
or 3

NP-hard
Non approximable
under 56

55

Table 7.1: Hardness, approximation and non-approximation results.

* These RpCP results can be straightforwardly induced from the corresponding
PpCP proofs.

7.2 Open problems

Our work still has a high potential for future improvements, both from a theoretical
and a practical perspective. We conclude our discussion by enumerating some
explicit future research directions.

7.2.1 Theoretical open questions

From a theoretical perspective, a first open question concerns the complexity of
solving PpCP on edge-weighted acyclic graphs. While a 3-approximation result on
trees with bounded edge is ensured, we have few information on the structure of an
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optimal solution for PpCP on acyclic graphs, not even on an edge-weighted path.
A research track would be to analyze the quality of the optimal RpCP solution,
polynomially computable on these graphs with respect to PpCP. We know that an
optimal RpCP solution is not always optimal for PpCP, however we have poor results
yet on the structural relations between the optimal solutions of both problems. The
quality of an optimal solution for RpCP used for PpCP, and vice versa, should be
analyzed for different classes of graphs.

Another research track to identify solutions for PpCP, would be to restrict our
problem to the local probabilistic radius, introduced in Section 4.1. The local
probabilistic radius, based on the local evacuation radius, enables us to focus
our analysis on the maximum evacuation distance induced by the source vertex
and its neighborhood. The relevance of this approach has also been displayed
in Section 6.4. Indeed, RP rob corresponds to the problem RpCP restricted to the
evacuation distance of the source vertex solely. While RP rob is a relaxed variant
of the local robust radius (the robust version of the local probabilistic radius),
it often provides a tight lower bound for RpCP. The local evacuation radius has
also a practical interest, which we will come back on later. Finally, as the ap-
proximation gap is still large, there is potential for further approximation and/or
non-approximation results.

For RpCP, we started implementing our polynomial algorithms for acyclic graphs.
It would be interesting to assess their efficiency with experimental results. In ad-
dition, we did not have time to design specific approximation algorithm for RpCP

on planar graphs and subgrids. A good starting point would be to consider graphs
with exactly one pending vertex, and no other minimal articulation component. In
this setup, the problem would be to decide the location of the other shelters. Note
that the NP-hardness of RpCP is not established on such graphs. This approach is
inspired by the acyclic graphs approximation algorithms. Indeed, as shelters must
be located on the pending vertices, these pending vertices are the foundation of
our solutions.

An additional meaningful research track would be to improve our exact IP-
based algorithm for RpCP and to develop an efficient exact algorithm for PpCP.
On both problems, we should be able to implement a Benders decomposition to
tackle the issue raised by the size of the problems. Given the quality observed
of an optimal solution for RP rob in Chapter 6, RP rob can be taken as the initial
master problem. In addition, it would be interesting to determine and generate
constraints specific to the class of the graph considered.

An interesting line of research would be to consider distances verifying triangles
inequalities, and analyze if they induce structural properties for our problems.

Finally, some initial hypothesis (shelter property, scenario definition, etc.) can
be adapted to generate different variants of our problems. The relevance of these
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variants mainly depends on their practical application. We list them next.

7.2.2 Practical open questions

From a practical perspective, our model can be adapted to different fire configu-
rations. We list some of them. Note that our mathematical programming model
could easily integrate these variants, but our combinatorial results may change
significantly.

1. We can take into account different constraints or consequences of locating a
shelter on an area.

• The territory may limit the location of shelters to some specific areas.
In this case, we can define initially the subset of vertices on which it is
possible to locate a shelter. This variant includes our model as specific
case, thus our hardness results remain valid. However, further research
is required to extend our polynomial and approximation results to this
variant.

• Building a shelter in an area may involve securing completely the cor-
responding area, in which case a fire can not occur in an area with a
shelter located on it. We use an auxiliary problem that is relatively
close to this problem in Section 4.1, when we use the objective function
EC̄ . EC̄ is the sum of the evacuation radius for all scenarios s ∈ C̄,
weighted by the total number of scenarios (and not by |C̄|). Further
research is required to reduce this variant to our model and extend our
results to it.

• On the contrary, the shelter located on an area may not be sufficient to
secure the area if the fire starts within the area. The consequence on the
evacuation distance computation formula is straightforward. Further
research is required to reduce this variant to our model and extend our
results to it.

2. We can take into account the fire spread, in a static way, by considering
scenarios associated to a subset of vertices in fire. In this case, all vertices
in fire are no longer reachable.

3. Under some circumstances, only a partial evacuation is needed. When a
fire occurs on an area, only the corresponding area must be evacuated. A
close variant is the case where solely the source area and its neighborhood
must be evacuated. The latter corresponds to the approach we initiated
Section 4.1 with the local evacuation radius. This strengthens our interest
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for this variant already discussed in the previous section. Further research is
required to reduce this variant to our model and extend our results to it.

7.3 Production

The present thesis is divided into five main chapters. At the time of writing
two articles have been published, one has been submitted, and another is under
preparation.

7.3.1 List of publications

7.3.1.1 Articles published in EURO journals

• Haddad, Marcel A. and Demange, Marc and Gabrel, Virginie and Murat,
Cécile. ‘A robust p-Center problem under pressure to locate shelters in wild-
fire context.” EURO Journal on Computational Optimization 8.2 (2020):
103-139.

7.3.1.2 Articles submitted

• Haddad, Marcel A. and Demange, Marc and Murat, Cécile. ‘Hardness and
approximation of the Probabilistic p-Center problem under Pressure” (sub-
mitted September 2020)

7.3.1.3 Proceedings published

• Haddad, Marcel A. and Demange, Marc and Murat, Cécile., ‘The probabilis-
tic k-center problem’. Proceedings of the GEOSAFE Workshop on Robust
Solutions for Fire Fighting, RSFF 2018, L’Aquila, Italy, July 19-20, 2018.

7.3.2 Conferences

Conference Wildfire Conference | Addressing the Challenges of Bushfire Manage-
ment,
11-15 November 2019, Melbourne, Australia

Title Variants of the Robust p-Center under Pressure problem, A new approach
for robust shelter location

Authors Haddad, Marcel A. and Demange, Marc and Gabrel, Virginie and Murat,
Cécile.
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Conference 6th International Fire Behavior and Fuels Conference,
April 29 – May 3 2019 Marseille, France

Title New mathematical models to locate shelters in wild fire context.

Authors Haddad, Marcel A. and Demange, Marc and Gabrel, Virginie and Murat,
Cécile.

Conference ROADEF 2019
February 19 - 21 2019, Le Havre, France

Title Formulations PLNE pour le problème du p-Centre non déterministe

Authors Haddad, Marcel A. and Demange, Marc and Murat, Cécile.

Conference RSFF 2018, International workshop on robust solutions for fire fight-
ing, 19 - 20 July 2018. L’Aquila, Italy

Title The probabilistic k-center problem

Authors Haddad, Marcel A. and Demange, Marc and Murat, Cécile.

Conference 5th International Combinatorics Conference
December 4–9 2017, Monash University, Melbourne, Australia

Title The k-center problem in graphs with uncertainty on vertices

Authors Haddad, Marcel A. and Demange, Marc and Murat, Cécile.
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APPENDIX A

LIST OF PROBLEMS

Min p-Center

Instance: An edge-weighted graph G = (V,E), an integer p
Feasible solutions: A p-set i.e., a set C ⊆ V of size at most p
Objective: Find a p-set C of minimum radius r(C).

RpCP

Instance: An edge-weighted graph G = (V,E), a set of scenarios
S, an integer p

Feasible solutions: A p-set C ⊆ V with IR(C) finite
Objective: Find a solution of minimum robust radius if it exists.

PpCP

Instance: An edge-weighted graph G = (V,E), a set of scenarios S
and a vector Π of probabilities associated to the scenarios
of S, an integer p

Feasible solutions: A p-set C ⊆ V with IE(C) finite
Objective: Find a solution of minimum probabilistic radius if it ex-

ists.
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k-RCP

Instance: An edge-weighted graph G = (V,E), a set of scenarios
S, an integer k

Feasible solutions: A set C ⊆ V of robust radius IR(C) ≤ k.
Objective: Find a feasible solution of minimum size.

Min Vertex Cover

Instance: A graph G = (V,E)
Feasible solutions: A vertex cover i.e., a set U ⊆ V such that every edge of

E is incident to at least one vertex of U
Objective: Find a vertex cover of minimum size (τ(G)).

Min Dominating Set

Instance: A graph G = (V,E)
Feasible solutions: A dominating set i.e., a set D ⊆ V such that every vertex

of V \D is adjacent to a vertex of D.
Objective: Find a dominating set of minimum size (γ(G)).

Min Set Cover

Instance: A set system (Ω,Z) with ∪Z⊂ZZ = Ω
Feasible solutions: A set cover i.e., a set Y ∈ Z such that ∪Y ∈YY = Ω
Objective: Find a set cover of minimum size.

Min r-Dominating Set

Instance: A graph G = (V,E), an integer r
Feasible solutions: A set C ⊂ V such that r(C) ≤ r
Objective: Find a feasible solution of minimum size.

Min MAC p-Center

Instance: A graph G = (V,E), an integer p
Feasible solutions: Cp(G) whose elements are called MAC p-set
Objective: Find a MAC p-set of minimum radius r(C).
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Min Partial p-Center

Instance: An edge-weighted graph G = (V,E), a set U ⊂ V , an
integer p

Feasible solutions: Any p-set
Objective: Find a p-set C of minimum partial radius.
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[58] Burçin Bozkaya and Barbaros Tansel. A spanning tree approach to the abso-
lute p-center problem. Location Science, 6(1-4):83–107, 1998.

[59] Derya Celik Turkoglu and Mujde Erol Genevois. A comparative survey of
service facility location problems. Annals of Operations Research, pages 1–70,
2019.

[60] Zuo-Jun Max Shen, Roger Lezhou Zhan, and Jiawei Zhang. The reliable facil-
ity location problem: Formulations, heuristics, and approximation algorithms.
INFORMS Journal on Computing, 23(3):470–482, 2011.
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RÉSUMÉ

A cause du réchauffement climatique, le nombre et l’intensité des feux de forêts augmentent autour du globe. Dans
ce contexte, la construction de refuges contre le feu est une solution de plus en plus envisagée. Le problème consiste
essentiellement à localiser p refuges de sorte à minimiser la distance maximale qui sépare un usager du plus proche
refuge accessible en cas de feux. Le territoire considéré est divisé en zones et est modélisé comme un graphe aux
arêtes pondérées. Un départ de feux sur une seule zone (c’est-à-dire sur un sommet). La principale conséquence d’un
feu est que les chemins d’évacuation sont modifiés de deux manières. Premièrement, un chemin d’évacuation ne peut
pas traverser le sommet en feu. Deuxièmement, le fait qu’une personne proche de l’incendie puisse avoir un choix limité
de direction d’évacuation, ou être sous stress, est modélisé à l’aide d’une stratégie d’évacuation nouvellement définie.
Cette stratégie d’évacuation induit des distances d’évacuation particulières qui rendent notre modèle spécifique. Selon le
type de données considéré et l’objectif recherché, nous proposons deux problèmes avec ce modèle: le Robust p-Center
Under Pressure et le Probabilistic p-Center Under Pressure. Nous prouvons que ces deux problèmes sont NP-difficiles
sur des classes de graphes pertinentes pour notre contexte. Nous proposons également des résultats d’approximation
et d’inapproximation. Finalement, nous développons des algorithmes polynomiaux sur des classes de graphes simples,
et nous développons des algorithmes mathématiques basés sur la programmation linéaire.

MOTS CLÉS

Gestion des situations d’urgence, Feux de forêt, Localisation des abris sous incertitude, Variantes du prob-
lème du p-Centre, Stratégie d’évacuation, Optimisation probabiliste, Optimisation combinatoire robuste, Pro-
grammation linéaire en nombres entiers

ABSTRACT

The location of shelters in different areas threatened by wildfires is one of the possible ways to reduce fatalities in a
context of an increasing number of catastrophic and severe forest fires. The problem is basically to locate p shelters
minimizing the maximum distance people will have to cover to reach the closest accessible shelter in case of fire. The
landscape is divided in zones and is modeled as an edge-weighted graph with vertices corresponding to zones and
edges corresponding to direct connections between two adjacent zones. Each scenario corresponds to a fire outbreak on
a single zone (i.e., on a vertex) with the main consequence of modifying evacuation paths in two ways. First, an evacuation
path cannot pass through the vertex on fire. Second, the fact that someone close to the fire may have limited choice, or
may not take rational decisions, when selecting a direction to escape is modeled using a new kind of evacuation strategy.
This evacuation strategy, called Under Pressure, induces particular evacuation distances which render our model specific.
We propose two problems with this model: the Robust p-Center Under Pressure problem and the Probabilistic p-Center
Under Pressure problem. First we prove hardness results for both problems on relevant classes of graphs for our context.
In addition, we propose polynomial exact algorithms on simple classes of graphs and we develop mathematical algorithms
based on integer linear programming.

KEYWORDS

Forest fire emergency, Wildfire emergency, Shelter location under uncertainty, Variants of the p-Center prob-
lem, Evacuation strategy, Under pressure decision model, Probabilistic Optimization, Robust Combinatorial
Optimization, Integer linear programming
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