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Résumé

En 1915, Albert Einstein publia sa théorie de la relativité générale et prédit à la fois l’existence
d’ondes gravitationnelles et des trous noirs. Les ondes gravitationnelles sont des oscillations de la
courbure de l’espace-temps engendrées par des masses accélérées se déplaçant à la vitesse de la
lumière. Les objets les plus susceptibles de produire des ondes gravitationnelles détectables (pour le
moment et sur Terre) sont les coalescences de systèmes binaires, comme des binaires de trous noirs
ou d’étoiles à neutron. Après avoir introduit brièvement le concept des ondes gravitationnelles, le
chapitre 1 présente quelques autres sources d’ondes gravitationnelles importantes. Ces évènements
astronomiques libèrent des quantités d’énergie quasiment incomparables à quelque autre évènement
physique, et pourtant, l’amplitude relative de la courbure spatiale due au passage de l’onde est
extrêmement faible : 10−21.

Bien que la théorie de la relativité générale fut relativement vite acceptée, l’existence des
ondes gravitationnelles, quant à elle, prit beaucoup plus de temps : ce fut seulement après la
conférence de Chapel Hill de 1954 que la communauté aboutit à un consensus ; une fois l’existence
des ondes gravitationnelles entérinée, le développement d’instruments capables de détecter de
telles ondes put commencer. C’est ainsi que Joseph Weber mit au point, dans les années 1960, la
barre de Weber qui est composée de plusieurs couches d’aluminium (AL5056), agissant comme
une antenne. Cependant, ses observations n’ont pu être confirmées. Il faudra encore attendre
plus de 40 ans pour obtenir la première détection directe : le 14 septembre 2015. En parallèle du
travail de Weber, Mikhail Gertsenshtein et Vladimir Pustovoit travaillèrent sur un dispositif plus
sensible, ayant une bande fréquentielle de détection plus large, et étant sensible aux déplacements
différentiels : un interféromètre de Michelson. Cette solution vit le jour par la création du Laser
Interferometer Gravitational-wave Observatory (LIGO), dont les deux détecteurs furent terminés
en 2000 ; et de Virgo, terminé en 2003. Ces deux collaborations travaillent ensemble et permirent
cette fameuse première détection, qui fut le signal produit par la coalescence d’un système binaire
de trous noirs. Avant cette observation, seulement l’étude de la décroissance orbitale du pulsar
binaire PSR1913+16 avait fourni une preuve indirecte de l’existence de telles ondes. Depuis la
première observation directe, la collaborations LIGO-Virgo a annoncé quanrante-neuf nouvelles
détections. Des informations supplémentaires sur quelques-unes de ces détections sont données en
fin de chapitre 2.

Le principe de détection interférométrique est le suivant : on cherche à mesurer une différence
de variation de longueur des bras de l’interféromètre lorsqu’une onde graviationnelle passe. En
effet, les ondes graviationnelles sont des ondes transverses, donc les deux bras de l’interféromètre ne
seront pas étirés ou compressés de la même manière, au même moment. Toutefois, un interféromètre
de Michelson basique nécessiterait des bras de plusieurs centaines de kilomètres afin de pouvoir
espèrer être sensible à des déplacements aussi faibles que ceux engendrés par le passage d’une onde
graviationnelle. C’est pourquoi, un détecteur inteférométrique d’ondes gravitationnelles est une
version améliorée d’un interféromètre de Michelson, auquel des cavités optiques ont été ajoutées
afin d’améliorer sa sensibilité. Aujourd’hui, la version la plus optimisée comprend quatre cavités
optiques : deux dans les bras pour alonger artificiellement le chemin optique, une au niveau du
port symétrique (entrée) pour recycler la puissance, et une au niveau du port antisymétrique
(sortie) pour régler la sensibilité à des fréquences d’intérêt. Ces améliorations permettent à la fois
d’augmenter la variation de puissance mesurée due au passage d’une onde graviationnelle, et de
diminuer certains bruits ; ces deux aspects reviennent à améliorer la sensibilité du détecteur. Tout

1



Résumé

ceci est détaillé au chapitre 2.

Instabilités optomécaniques

Parmi tous les aspects physiques et technologiques qui peuvent être améliorés dans la quête d’une
meilleure sensibilité, augmenter la puissance laser en entrée d’interféromètre est une priorité. Par
contre, une puissance plus importante signifie également que l’effet de la pression de radiation des
photons sur les miroirs est plus importante ; ce qui peut avoir comme conséquence l’apparition
d’instabilités paramétriques optomécaniques optomechanical parametric instability (OPI), qui sont
au centre du chapitre 3. Ces instabilités — qui peuvent avoir lieu au sein de n’importe quelle
cavité optique — sont dues à des effets non linéaires provenant du couplage de trois modes : un
mode mécanique propre d’un miroir, le mode fondamental de la cavité optique (TEM00), et un
mode optique de plus haut ordre, appelé higher-order mode (HOM). Ce type de couplage non
linéaire est proche de la diffusion Mandelstram-Brillouin : dans une cavité, un photon de fréquence
ω0 du mode fondamental est diffusé vers un photon de plus basse fréquence ω1 (un autre mode de
la cavité optique), et vers un phonon de fréquence ωm ; ce phonon excite le mode mécanique du
miroir. La relation de conservation d’énergie suivante peut être écrite

~ω0 = ~ω1 + ~ωm. (1)

Comme le photon diffusé a moins d’énergie que le photon absorbé, ce procédé est appelé processus
de Stokes. La fréquence de battement (« beat note ») entre les deux modes optiques génère une
oscillation de la radiation de pression à la différence de fréquences ω0 − ω1 ≈ ωm, fournissant de
l’énergie au mode mécanique. À son tour, le mode mécanique intéragit avec le mode fondamental
et intensifie le processus de diffusion du phonon. Si l’intensité du mode fondamental atteint un
certain seuil, le couplage non linéaire entre les trois modes produit ladite instabilité paramétrique.
Figure 1(a) montre le processus de Stokes. Il faut également tenir compte du processus inverse,
c’est-à-dire le processus d’anti-Stokes, pour lequel le photon diffusé a plus d’énergie que le mode
fondamental (~ω1 = ~ω0 + ~ωm). À l’inverse du processus « chauffant », celui-ci prend de l’énergie
au mode mécanique, ce qui l’affaiblit. Ce processus est montré par figure 1(b). Dans le cas
d’un processus de Stokes, l’amplitude du mode mécanique se vera croitre exponentiellement,
jusqu’à ce qu’elle atteigne un plateau après un certain temps. Le signal associé à l’excitation
mécanique du miroir pourrait saturer l’électronique de mesure, et, ainsi, faire perdre le contrôle
de l’interféromètre.

Le phénomène d’instabilité entre les trois modes, déclanché par le mouvement thermique du
miroir à ωm, peut être décrit comme une boucle de rétroaction classique. Cette approche est très

Photon
ω1

Phonon
ωm

Stokes anti-Stokes

Photon
ω0

ω0

ωm

ω1

(a) (b)

Figure 1 : (a) Processus de Stokes : émission d’un phonon ω0 = ω1 + ωm. (b) Processus
d’anti-Stokes : absorption d’un phonon ω0 = ω1 − ωm. Image créée par Daniel Schwen http:
//commons.wikimedia.org, modifiée, sous les termes de Creative-Commons-License CC-BY-SA-
2.5.
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pratique car elle peut être adaptée à n’importe quelle configuration d’interféromètre, avec les
mêmes formules analytiques. Dans cette approche, le gain paramétrique d’un mode mécanique m
avec tous les HOM, prenant en compte et le processus de Stokes et le processus d’anti-Stokes,
s’écrit

Rm = 8πQmP

Mω2
mcλ︸ ︷︷ ︸

préfacteur

∞∑
n=0

 Re [Gn]︸ ︷︷ ︸
coefficient de transfert optique

× B2
m,n︸ ︷︷ ︸

chevauchement spatiale

 , (2)

où Qm est le facteur de qualité (Q factor) du mode mécanique m et ωm sa fréquence, P la
puissance intracavité, λ la longueur d’onde optique, M la masse du miroir, c la vitesse de la
lumière ; Gn est le coefficient de transfert optique du nème mode optique ; finalement, Bm,n est
l’intégrale du chevauchement spatial des trois modes. Un mode mécanique est amplifié si Rm > 0,
et affaiblit si Rm < 0. Il devient instable si Rm > 1.

Durant la phase d’observation Observing Run 1 (O1), en 2015, LIGO observa une OPI lorsqu’un
mode mécanique d’un miroir à 15 kHz devint instable, pour une puissance optique dans les cavités
de bras (puissance intracavité) de 50 kW. Nous nous attendions à observer un phénomène similaire
à Virgo puisque sa puissance intracavité était déjà bien plus élevée que celle de LIGO. Ce qui
devait arriver, arriva : le 7 janvier 2020, un mode mécanique à 155 kHz entra en instabilité jusqu’à,
également, faire perdre le contôle de l’instrument. Étant donnés le temps moyen d’un évènement
d’onde gravitationnelle de l’ordre de la milliseconde à la seconde, et de leurs fréquences, on doit, à
tout prix, éviter de perdre le contrôle de l’interféromètre. D’où l’étude de ces instabilités au sein
de la collaboration Virgo.

Modes mécaniques des miroirs de Virgo

Dans le chapitre 4, j’introduis le calcul des modes mécaniques des cavités de bras de Virgo : ils
ont été calculés par analyse des éléments finis, par Paola Puppo (INFN Roma). Son analyse a
permit d’obtenir les modes mécaniques jusqu’à 157 kHz, avec leur fréquence et facteur de qualité.
De plus, elle a effectué des mesures, sur site, des facteurs de qualité et des fréquences des modes
mécaniques jusqu’à 40 kHz : ceci a permi d’estimer une incertitude sur les fréquences, et d’ajuster
les facteurs de qualité.

Modes optiques des cavités de bras de Virgo

En ce qui concerne les modes optiques de cavités de bras, dans le chapitre 5, j’étudie deux
conditions aux limites : miroirs infinis et miroirs finis. La première aboutit à des bases de modes
connues, telle que la base des modes Hermite-Gaussian modes (HGM). La deuxième nous impose
de résoudre une équations aux valeurs propres afin de trouver les modes propres ; ils sont nommés
finite-sized mirror modes (FSMM). C’est une opération beaucoup plus complexe et couteuse
d’un point de vue CPU. Cependant, elle permet plusieurs avantages : on peut calculer les modes
pour n’importe quelle forme de miroir (déformations intrinsèques, déformations thermiques, etc.) ;
les modes obtenus sont a priori plus proches de la réalité ; on obtient directement les pertes de
diffraction des modes. En effet, ce dernier point est particuler dans le cas des HGM puisque, par
définition, ces modes sont ceux si les miroirs sont infinis. C’est pour cela que, pour les HGM, nous
devons estimer les pertes de diffraction.

Enfin, je confronte les deux bases. Pour cela, j’ai choisi trois paramètres permettant de décrire
complètement les modes optiques : la forme du mode, la perte de diffraction (définit la largeur
à mi-hauteur de la résonance optique), et la phase de Gouy (définit la fréquence de résonance
optique). En ce qui concerne la forme du mode, j’ai choisi de montrer la projection, sur la base
des HGM, de quelques FSMM : on se rend compte qu’à partir de l’ordre 7, les projections ne sont
plus une combinaison linéaire de HGM de même ordre. Pour la perte de diffraction, on observe
que notre évaluation des pertes de diffraction des HGM est sousestimée pour tous les modes, mais
devient non négligeable à partir de l’ordre 5. Et à propos des phases de Gouy, on observe une
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nette déviation des phases de Gouy des FSMM, par rapport à celles des HGM, dès l’ordre 8. On
en conclut que, dès l’ordre 5, les HGM ne sont plus suffisants pour décrire proprement les modes
des cavités de bras de Virgo.

Calcul du gain paramétrique dans la configuration de Virgo

Afin de calculer le gain paramétrique des modes mécaniques, j’ai écrit un programme orienté
objet. Ce programme a été vérifié au moins grâce à une comparaison avec le logiciel Finesse et une
reproduction de résultats d’un article scientifique. Grâce à cela, j’ai pu vérifier les résultats attendus
quant à la différence des deux bases optiques. Puis, j’ai pu faire tourner des simulations dans
différentes configurations de Virgo : celles d’O3 et O4. De plus, ces simulations sont effectuées pour
différents points de fonctionnement (rayons de courbure) des miroirs de fin de cavité des bras. En
effet, cela est nécessaire pour de multiples raisons : l’incertitude du point réel de fonctionnement ;
des anneaux chauffant sont fixés autour des miroirs afin de pouvoir modifier le rayon de courbure de
ces derniers, et c’est ce qui peut être utilisé afin d’atténuer ou supprimer une éventuelle instabilité ;
il existe une incertitude non négligeable sur les fréquences mécaniques, et je montre qu’au lieu de
faire varier ces fréquences, il revient au même de faire varier les rayons de courbure des miroirs.

Les premiers résultats obtenus, donnés en chapitre 6, ceux d’O3, ont permis, etre autres, de
vérifier que la densité d’instabilité était en effet relativement faible. Puis, lorsque le 7 janvier 2020
Virgo observa pour la première une OPI, nous avons pu utiliser nos outils de simulations pour
s’assurer de l’origine OPI de cette instabilité d’une part, et de vérifier, encore, la fonctionnabilité
de nos outils de simulation d’autre part.

Pour la prochaine phase d’observation, O4, la cavité de recyclage du signal sera installée.
Cette cavité pourrait permettre à certains HOM de perdurer dans l’interféromètre. Ceci se traduit
par un mode avec moins de pertes, ce qui se traduit à son tour par des résonances ayant une
largeur à mi-hauteur plus fine. Donc, la densité d’instabilité devrait diminuer, mais, comme la
hauteur maximum des résonances est augmentée, les gains paramétriques pourraient être plus
élevés. C’est effectivement ce que l’on observe, et ce que je montre en figure 2, où les lettres sont
les labels des OPI, dont on retrouve les informations en tableau 1. Au final, 15 modes mécaniques
ont été identifiés comme potentiellement instables ; ces instabilités, si elles ont lieu, auront des
gains paramétriques plus élevés qu’ils ne l’auraient été dans la configuration d’O3, impliquant
une instabilité plus rapide ; par contre, les résonances étant plus fines, il sera plus facile de s’en
éloigner grâce aux anneaux chauffants.
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Figure 2 : (a) Rm vs rayons de courbure des miroirs de fin de cavité, utilisant les FSMM,
à puissance d’entrée 50 W (puissance nominale), pour la configuration de O4 ; tous les 12 750
modes mécaniques jusqu’à 157 kHz. L’échelle de nuances de gris représente les gains paramétriques
inférieurs à 1, alors que la colorée indique les instabilités (Rm > 1). Chaque résonance de mode
mécanique peut se voir sur les deux cavités de bras ; cependant, par soucis de clareté, seulement
une cavité est pointée pour chaque mode mécanique, et le choix de l’axe est purement arbitraire.
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Résumé

Label Fréquence
(kHz)

∆νmax
(±102 Hz)

Ordre
optique R (m) ∆Rmax

(±m) Rm

A 16.015 0.80 3 1660.8 0.89 1.7344
B 23.128 1.2 4 1675.9 1.0 5.3664
C 23.258 1.2 4 1676.1 1.0 1.3776
D 61.154 3.1 2 1669.3 5.2 7.6253
E 61.160 3.1 2 1669.4 5.2 2.9983
F 61.216 3.1 2 1670.4 5.2 1.0805
G 61.231 3.1 2 1670.6 5.2 1.3914
H 61.676 3.1 2 1678.4 5.2 2.5652
I 61.705 3.1 2 1679.0 5.2 3.3382
J 61.759 3.1 2 1679.9 5.2 2.6389
K 66.150 3.3 3 1662.7 3.7 1.1813
L 66.784 3.3 3 1669.7 3.7 2.0182
M 66.888 3.3 3 1670.9 3.7 14.0449
N 66.912 3.3 3 1671.2 3.7 2.4578
O 67.567 3.4 3 1678.9 3.8 0.8203
P 67.616 3.4 3 1679.5 3.8 2.1297
Q 72.971 3.6 4 1674.8 3.0 1.7454
R 105.112 5.3 1 1655.6 18 1.4159
S 115.812 5.8 3 1659.3 6.4 1.0308
T 155.756 7.8 1 1678.4 26 4.4221
U 155.765 7.8 1 1678.7 26 3.2889
V 155.768 7.8 1 1678.8 26 4.6354
W 155.770 7.8 1 1678.9 26 3.9399
X 155.780 7.8 1 1679.2 26 1.3523

Table 1 : Tous les modes mécaniques instables d’O4 sur toute la gamme de rayon de courbure
choisie. ∆νmax est la déviation maximale en fréquence due aux incertitudes. R est le rayon de
courbure auquel le mode mécanique résonne. Rm est le gain paramétrique maximum sur toute la
gamme de rayon de courbure. L’ordre optique est l’ordre du mode optique qui contribue le plus à
cette OPI, c’est-à-dire au rayon de courbure correspondant (ou phase de Gouy de cavité de bras).
∆Rmax est la déviation maximale en rayon de courbure correspondant à la déviation maximale
en fréquence. Les lignes en vert-beu foncé représentent les modes mécaniques qui pourront être
instables au point de fonctionnement 1667 m. H, I, J , O, P , et Q pourraient être dans le voisinage
de ce point de fonctionnement (en vert-bleu clair) ; ils pourraient donner lieu à une OPI si le point
de fonctionnement est un peu modifié.
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Introduction

In 1915, Albert Einstein published the General Relativity theory and predicted the existence
of gravitational waves. But gravitational waves are so weak that the first direct detection only
occurred a century later; on 14th September 2015, ground-based interferometric gravitational-wave
detectors finally recorded a signal produced by a Binary Black Holes coalescence. In the meantime,
the study of the binary pulsar PSR1913+16 had provided an indirect evidence of the existence of
gravitational waves.

The operating principle of interferometric gravitational-wave detectors is based on an enhanced
version of a Michelson interferometer, to which optical cavities are added to improve its sensitivity.
To date, the most enhanced configuration includes four optical cavities: two in the arms to
artificially lengthen the optical path, one at the symmetric port (the input) to recycle the power,
and one at the antisymmetric port (the output) to tune the sensitivity at specific frequencies of
interest.

Since the first direct observation, the LIGO-Virgo Collaboration announced 49 new detections.
On 1st August 2017, the Virgo detector joined the two LIGO detectors for a first joint data taking
period with three advanced (second generation) detectors. For Virgo, this was the outcome of a
multi-year upgrade program during which most components of the detector were upgraded, with
the goal of improving its sensitivity by an order of magnitude.

Amongst all the physical and technological aspects that can be improved in the pursuit
of a better sensitivity, increasing the laser input power is a major key. A higher power also
implies that effects due to the radiation pressure of the photons on the mirrors are increased.
Among those effects, an optomechanical parametric instability, referred to as optomechanical
parametric instability (OPI), can occur. That is why, after introducing the gravitational waves
and their sources in chapter 1, and the principle of interferometric detection in chapter 2, I
give a presentation of the OPI process and the computational formalism for interferometric
gravitational-wave detectors in chapter 3.

The OPI is driven by three modes: the fundamental optical mode, a higher-order mode (HOM),
and a mechanical mode. An OPI can occur if the optical beat note — that is the frequency
difference between the two optical mode frequencies — is near the mechanical mode frequency,
such that the mechanical mode is coherently driven. Hence, we need to evaluate the optical modes
of Advanced Virgo (AdV)’s arm cavities and the mechanical modes of its mirrors. In chapter 4, I
briefly introduce how we obtained the mechanical modes. Chapter 5 tackles the optical modes: I
study and compare two different bases from two different boundary conditions.

Finally, in chapter 6, I briefly introduce the validation of my program thanks to which we
can forecast AdV’s OPI behaviour in various configurations, namely those of Observing Run
3 (O3) and Observing Run 4 (O4). This thesis is written between these two Observing Runs;
therefore, O3 results are a validation rather than a prediction. I will show, as well, that, due to
non-negligible uncertainties, we cannot provide thorough prognoses. Notwithstanding, the results
obtained for O4 configuration can considerably help apprehend how AdV may behave with regard
to OPIs; furthermore, they provide us with a good idea of what mechanical mode frequencies can
lead to an OPI.
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Chapter 1

Gravitational waves

Gravitational waves are ripples of the curvature of spacetime. They are emitted by accelerating
massive bodies and travel at the speed of light. The existence of such waves were first discussed in
1893 by Oliver Heaviside following an analogy between electricity and gravitation [1] 1. In 1905,
Henri Poincaré suggested that those waves (ondes gravifiques as he himself called them) emerge
from massive bodies in motion and travel at the speed of light such that they respect the Lorentz
transformation [2], which describes the relation between the three space coordinates and the time
for a flat space (Minkowski space).

From Lorentz and Poincaré’s work arose Albert Einstein’s special relativity in 1905, in which
he posited that nothing can travel faster than the speed of light. The instantaneous aspect of
Newton’s theory of gravitation does not fit this last assertion and this is how, in 1915, Albert
Einstein unveiled his general relativity theory [3] — generalising the relativity to curved space —
and predicted the existence of gravitational waves shortly thereafter. But, the main difference
from his forerunners lies in the fact the space and the time are not absolute but relative to the
observer 2. These two notions, formerly completely independent, are now part of a single concept:
a four-dimensional manifold, the so-called spacetime, which is curved by masses. He thus opened
an entirely novel field of physics, which can both extrapolate Newton’s theory of gravitation to
relativistic speeds and solve some built-in problems, such as the decoupling of gravity to massless
objects. One hundred years later, on 14 September 2015, the first gravitational waves (emitted by
a Binary Black Holes (BBH)) were detected by the LIGO-Virgo collaboration [4]. Before this
observation, the existence of gravitational waves had only been indirectly detected by the decrease
of the orbital period of the binary pulsar PSR B1916+13, discovered in 1974 by Russel Hulse and
Joseph Taylor [5]. Since the very first observation, many new detections have been performed [6,7],
which endorse the existence of gravitational waves.

1.1 General relativity and gravitational waves

According to general relativity, the gravitation results of the curvature of spacetime by mass
and energy, through the Einstein equation. In other words, ‘space tells matter how to move’
and ‘matter tells space how to curve’ [8]. This is actually pretty similar to the determination
of electromagnetic waves by the Maxwell’s equations. Indeed, charges and currents allow to
determine electromagnetic fields, as well as mass-energy and momentum allow to determine the
spacetime geometry. The Einstein equation is:

Gµν = 8πG
c4 Tµν (1.1)

1In this article, he also mentioned that gravitation could propagate at the speed of light, which goes against
Newton’s theory of gravitation, for which gravitation interaction is instantaneous.

2One does not consider Poincaré as the spacetime’s father because he first thought that the ‘local time’
introduced by the Lorentz transformation was only a mathematical tool.
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1. Gravitational waves

where Gµν is the Einstein tensor, which describes the curvature of a manifold, Tµν the stress-energy
tensor, which describes the matter distribution, G the Newton’s gravitational constant, and c the
speed of light. The coefficient 8πG/c4 being of the order of 10−43, spacetime is extremely rigid,
explaining, thus, the weakness of the gravitational waves. The Einstein tensor can be written as:

Gµν = Rµν −
1
2Rgµν (1.2)

where Rµν is the Ricci curvature tensor, which describes the spacetime curvature, gµν the metric
tensor, and R the scalar curvature.

Usually, the Einstein equation cannot be directly solved, but it can be linearised in the case of
small perturbations:

gµν = ηµν + hµν (1.3)

where ηµν describes an infinite space without gravitation, and |hµν | � 1. This weak-field
approximation is suitable for the Solar system or for weak gravitational waves [8]. Then, using
such a linearisation alongside with a Lorentz gauge yields a wave equation from eq. (1.1) [8, 9]:(

∇2 − 1
c2
∂2

∂t2

)
hµν︸ ︷︷ ︸

propagation term

= −16πG
c4

(
Tµν −

1
2gµνT

k
k

)
︸ ︷︷ ︸

source term

(1.4)

with:
hµν = hµν −

1
2η

µνhµνηµν (1.5)

If the assumption of being far from the source is valid, the source term can be neglected. Hence,
the general solution of eq. (1.4) is a superposition of monochromatic plane waves: the gravitational
waves. A single monochromatic wave can be written as [10]:

hµν =
(
h+ε

+
µν + h×ε

×
µν

)
e−i(ωGWt−kGWz) (1.6)

where ωGW and kGW are respectively the pulsation and the wave vector of the gravitational wave,
and ε+

µν and ε×µν the polarisation tensors of a wave propagating along the z-axis; they are defined
as:

ε+
µν =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 and ε×µν =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (1.7)

Indeed, alongside with electromagnetic waves, gravitational waves are transverse, that is, the
forces are perpendicular to the direction of propagation. However, a gravitational wave stretches
and squeezes an object along two axes. Half a period later, the axis that was stretched is then
squeezed and vice versa. Thus, two polarisations can describe this configuration: one called +
and the other one called ×. An effect of a gravitational wave over a test mass circle is shown in
fig. 1.1. Both stretch and squeeze are proportional to the length of the object: the larger the
object, the more it stretches, as [11,12]

δL

L0
= h

2 (1.8)

where L0 is the length of the object, δL the length variation due to the gravitational wave, and h
the gravitational wave strain amplitude. In fig. 1.1 it is also shown that the relative displacement
along two orthogonal axes is opposite. Using an interferometer permits to have a signal twice
higher than that of a single cavity, and cancel out a lot of noises that would be dominant with a
single cavity.
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1.2. Sources of gravitational waves

ωGWt = 0 ωGWt = π/2 ωGWt = π ωGWt = 3π/2 ωGWt = 2π

Figure 1.1: Effect of a gravitational wave over a ring of free-falling masses for a + polarisation
(top) and a × polarisation (bottom).

1.2 Sources of gravitational waves

As already mentioned, gravitational waves are emitted by accelerating massive bodies. However,
only astrophysical compact bodies can be detectable by ground-based detectors [13]. Indeed, the
gravitational luminosity of a source can be written as [11,12]

L ∼ c5

G
ε2
(
RS
R

)2 (v
c

)6
(1.9)

where ε is the source asymmetry, R the source radius, RS = 2GM
c2 the Schwarzschild radius, which

is the radius of a mass-equivalent black hole 3, thus RS

R represents the object compactness, and v
its velocity.

Table 1.1 shows some compactness factors of astronomical objects of interest:

Object Black hole Neutron star Sun Earth
RS

R 1 0.30 10× 10−6 3× 10−8

Table 1.1: Compactness factors of some astronomical objects. The black hole’s value is 1 by
definition of the Schwarzschild radius.

Hence, according to eq. (1.9), to be a good gravitational-wave emitter, a source has to be
asymmetric (ε ∼ 1), compact (RS/R ∼ 1), and relativistic (v/c ∼ 1). According to these conditions,
four major expected source categories can be detectable by ground-based detectors: ‘burst’ signals,
compact binary system coalescences, neutron stars, and the stochastic background. The two first
of these are extremely energetic events occurring during the life of some very massive stars (from
6–10M� 4) Let us summarise here the main different faiths of stars, which will eventually help to
introduce these events.

The story of a star depends on its mass: the heavier, the higher the gravity, the hotter, the
faster it consumes its hydrogen. Therefore, the heavier, the younger the star dies. In the first
stage of their life, almost all stars experience the same process called main sequence, during which
they mainly fuse their hydrogen into helium. This fusion reaction allows a hydrostatic equilibrium
and, thus, the existence of the star itself as it induces an outward thermal pressure balancing the
inward gravity pull. Once all the hydrogen is fused, if its mass is high enough, the star continues
fusing heavier elements until the iron (the most stable element). Eventually, as nuclear fusion
reactions cease (when the iron core reaches the Chandrasekhar limit of about 1.4M�), the star is
only subjected to its own gravitational pull and hence collapses until the iron core reaches nuclear
densities, leading its protons to catch electrons and form neutrons; this leads to a very compact

3This general relativity definition matches the one which can be derived in classical (Newtonian) physics by
setting the escape velocity equal to the light speed.

4The symbol M� stands for solar mass.
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1. Gravitational waves

neutron core that can withstand the whole collapse energy, which produces an outward shock
wave and gives birth to an astonishing astronomical show: the so-called supernova. The ‘corpse’
of a star dying this way can be either a neutron star or, if the core mass reaches a certain limit
(the Tolman–Oppenheimer–Volkoff limit [14–17]), a black hole.

1.2.1 ‘Burst’ signals
One calls a ‘burst’ signal a high bandwidth signal over a short period of time. They are categorised
as ‘transient sources’. In terms of gravitational waves, one expects to observe this kind of signal
for some supernova events like type-II supernovas 5 or for hypothetical cosmic strings.

The former should emit gravitational waves mostly because of its asymmetry. One used to
expect that supernovas would emit a significant amount of energy as gravitational waves, but
simulations have shown that the gravitational radiation fraction with respect to the total mass
energy of the star would be of the order of 10−6 [18]. Moreover, the rate of supernovas is rather
low: between three and five within a century in the Milky Way (whose diameter is estimated to
460–710 kpc 6), one every other year at 3–5 Mpc, one per year at 12 Mpc, and maybe two or three
per year if one includes the Virgo cluster located at 16.5 Mpc.

1.2.2 Compact binary system coalescences
In the Universe can be formed systems of two very compact bodies, like neutron stars and black
holes, spiralling around each other, thus radiating power through gravitational waves. The more
the energy is lost (by radiation), the faster the objects spiral and the closer they get until they
eventually merge into an even more massive object. By turning faster, the strain amplitude of
the emitted gravitational waves increases (see eq. (1.9)); this phenomenon is directly observed
in the detected signal by its so-called ‘chirp’ shape (see fig. 2.12): both the signal amplitude
and frequency increase with respect to time. This kind of source is definitely a good emitter of
gravitational waves: it is clearly asymmetric and compact, and the closer the two objects get, the
faster they spiral, the more relativistic the system speed gets. While the two objects are spiralling,
the emitted gravitational wave frequency is too low for detection (mHz) and the only part of the
event that is observable by ground-based detectors is its very end, right before the merge, when
the wave frequency is within the detection bandwidth (> 10 Hz). Hence, these sources are also
considered as transient sources even though they actually emit gravitational waves over a very
long period of time (hundreds of millions of years).

To date, this is the only kind of event that has been detected: fifty events, of which only two
Binary Neutron Stars (BNS) have yet been confirmed. All these events were recorded during
Observing Run 1 (O1), Observing Run 2 (O2), and Observing Run 3 (O3) (see section 2.4). The
expected rates of binary system coalescences are between 10−10 and 10−5 Mpc−3 yr−1 [19]. These
values consider the uncertainties and the different binary system types: BNS, Neutron Star –
Black Hole (NS-BH), and BBH.

The detection range of ground-based gravitational-wave detectors — which is directly linked
to the sensitivity (see section 2.2.1) — is traditionally given by a figure of merit called BNS range,
which corresponds to the distance at which the coalescence of two 1.4M� neutron stars would be
detected with a Signal-to-Noise Ratio (SNR) of 8.

A realistic BBH system could emit a gravitational wave with a strain amplitude of [20]

h ∼ 10−21. (1.10)

This order of magnitude is the highest that one can expect to observe from astronomical sources.
5This notation can be misleading. Indeed, originally, the type of a supernova determines its spectrum: type-I

has no hydrogen, whereas type-II does. However, one can also classify them according to the way they are produced:
either by thermal runaway (type-Ia) or by core collapse (all the others). Only the latter is expected to produce
(observable) gravitational waves; hence this ‘mistake’ including type-Ib supernovas within type-II ones.

6A parsec (pc) is defined as 648000
π

au, that is to say about 3.26 ly (lightyear). And an astronomical unit (au)
is the distance from the Earth to the Sun, which is about 150× 106 km or 8 ‘lightminute’.
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1.3. From idea to reality

1.2.3 Neutron stars
Neutron stars are objects spinning very fast and emitting a high magnetic field. As they are
very dense objects (table 1.1), if their mass happen to be asymmetrical, then they could emit
gravitational waves. Pulsars are neutrons stars whose magnetic field axis is not parallel to its
spinning axis. This produces a very stable periodic signal of radio waves that can be precisely
measured; that is why there are seen as astronomical ‘lighthouses’. In terms of gravitational waves
detection, this helps reconstruct the signal, whose frequency is twice that of the star rotation.
These sources are continuous sources: one can integrate the signal over time to increase the SNR.

1.3 From idea to reality

Unlike the the existence of gravitational waves, general relativity was quickly acknowledged by
academics. Albert Einstein himself proposed three tests to validate his theory: the perihelion
precession of Mercury, the light deflection by the Sun, and the gravitational redshift.

The perihelion precession of Mercury In 1859, Urbain Le Verrier reported that the perihe-
lion precession 7 of Mercury calculated theoretically taking into account the motion of all
planets disagreed with the experimental value. Only by adding the gravitational field effects
could Albert Einstein resolve this anomaly.

The light deflection by the Sun The idea that the light should be bent by the attraction of
a massive body, such as the Sun, was already stated by Henry Cavendish in 1786 [21] and
Johann Georg von Soldner in 1804 [22]. However, taking into account only Newton’s theory
of gravitation yields a wrong estimation of the deflection that can be corrected considering
general relativity. The Eddington experiment, organised by Arthur Eddington and Frank
Dyson in 1919, was the first attempt to verify Einstein’s prediction by measuring the starlight
deflection passing near the Sun during a solar eclipse [23].

The gravitational redshift Einstein expected gravitational fields to shift spectral rays towards
red. This effect should be weak for the Sun but detectable with white dwarf stars, which
are much more dense. A first observation of this effect was made in 1925 by Walter Adams
for the Sirius-B white dwarf star [24]. Again, the reliability of this measure was questioned
and the first accepted accurate measurement was done in 1954 by Daniel Popper for the
Eri B white dwarf [25].

Concerning the existence of gravitational waves, it was another business. Einstein himself never
fully believed in Poincaré’s idea. In 1922 (six years after Einstein’s general relativity), Eddington
stated that ‘gravitational waves propagate at the speed of thought’. Not until the Chapel Hill
conference in 1957 was reached a consensus about their existence: a couple of thought experiments
explaining how gravitational waves could transmit energy were proposed to the audience and put
an end to the matter. Subsequently, the development of instruments able to detect such elusive
signals started (detailed in the next chapter).

The first observation of gravitational waves, though, was not made directly. In 1974, Russel
Hulse and Joseph Taylor discovered the binary pulsar PSR B1916+13 (or PSR J1915+1606, or
PSR 1913+16, or the Hulse–Taylor binary), which was the first binary pulsar ever observed.
General relativity predicts that such systems should see their orbital momentum decay by emitting
gravitational waves, and this is exactly what Hulse and Taylor measured and found to be in
agreement with the theory. A Nobel Prize of Physics in 1993 ‘for the discovery of a new type of
pulsar, a discovery that has opened up new possibilities for the study of gravitation’ rewarded
their double achievement.

7The perihelion is, for a Solar System object, the closest point to the Sun of its orbit. For any two-body system
it is called periapsis and is fixed. However, as many bodies are in the Solar System, one another’s gravitational
interaction causes this point to move around the Sun: this is the precession.
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Chapter 2

Advanced Virgo: a ground-based
gravitational-wave detector

In the previous chapter, I have introduced the basics about gravitational waves and their sources.
Here, I will focus on how gravitational waves are detected and the technical solutions to improve
their detections, and I will present some recent detections.

After the Chapel Hill conference of 1954, the interest to gravitational waves took off and the
challenge to detect them was launched. In the 1960s, Joseph Weber pioneered the challenge — or
at least he was eventually convinced he had — by designing a device, called after him, the Weber
bar [26–28]. The principle of this detector consists in several aluminium (AL5056) cylinders acting
as an antenna, whose fundamental mechanical mode (1660 Hz for Weber’s device [28]) is expected
to get excited by strains in space due to the passage of a gravitational wave. Tiny variations of
the antenna’s length are read out with piezo crystals. Although the sensitivity of his detector was
not good enough and nobody could reproduce his results [28], improvements were carried on to
improve the sensitivity of bar detectors up to 3× 10−22 Hz−1/2 in a ∼ 1 Hz bandwidth back in
the 1990s [29]. This technology was still being investigating, together with spherical versions of
it, whose strain sensitivity is expected to be from 5× 10−22 to 4× 10−23 Hz−1/2 within a 200 Hz
bandwidth [30].

In parallel to Weber’s bar technological development, a novel idea was first thought by Mikhail
Gertsenshtein and Vladislav Pustovoit: an optical interferometric gravitational-wave detector [31].
This technology enables a much wider detection bandwidth (for it is not only sensitive to the
resonance frequency, unlike Weber bars) and is sensitive to differential displacements. In 1967,
Rainer Weiss started the construction of a prototype [32]. This solution came forth in 1984 with
the foundation of Laser Interferometer Gravitational-wave Observatory (LIGO) as a Caltech/MIT
project by Ronald Drever, Kip Thorne, and Rainer Weiss. The two last ones, together with Barry
Barish, won the Nobel Prize in Physics in 2017 ‘for decisive contributions to the LIGO detector
and the observation of gravitational waves’. Only after ten years passed did the construction of
the two LIGO sites (Hanford and Livingston) start and last until 2000; operation was initiated
from 2002 to 2011.

In regard to the Virgo Collaboration, the first design proposal for a detector was delivered
to funding agencies in 1992, and approved by the Centre National de la Recherche Scientifique
(CNRS) and the Istituto Nazionale di Fisica Nucleare (INFN) in 1994. Its construction lasted from
1996 to 2003 on the site of Cascina, Italy, where European Gravitational Observatory (EGO) was
created in 2000. From 2007 to 2011, Virgo performed a series of four scientific runs, among which
three were in coincidence with LIGO, but the sensitivity of neither of the detectors was good
enough to expect gravitational-wave observations. That is why Virgo experienced an upgrade
phase from 2012 to 2016 leading to Advanced Virgo (AdV)1, and allowing it to join LIGO for the
end of Observing Run 2 (O2) (more explanation on Observing runs will be given in section 2.4),
during which the first triple detection, GW170814, was made.

1LIGO was upgraded to Advanced LIGO (aLIGO) from 2010 to 2015.
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2. Advanced Virgo: a ground-based gravitational-wave detector
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Figure 2.1: Schematic of a Michelson interferometer.

2.1 Michelson interferometry

The Michelson interferometer was invented for the Michelson-Morley experiment, with which
Albert Michelson and Edward Morley attempted to detect the effect of the aether2 on light. They
believed that motion of matter would induce a change of the speed of light and wanted to measure
this difference between two perpendicular paths of beam lights originally coming from the same
source. It happened to be a negative outcome, in that they did not detect any difference of speed.
Yet, this gave the ‘the first hint [...] in exactly two hundreds years [...] that Newton’s laws might
not apply all the time everywhere’ [33], and helped physics go beyond, towards what eventually
became Einstein’s special relativity theory.3

2.1.1 General
The Michelson interferometer principle consists of injecting a laser beam towards a half reflecting
Beam Splitter (BS), which splits the beam light into two perpendicular beams. These beams
travel down the interferometer arms, are reflected off the end mirrors towards the BS as shown
in fig. 2.1. The recombination of the two beam gives birth to interferences that can be either
constructive or destructive, according to the optical path difference (∆L) between the beams,
which is related to the beam phase difference (∆φ) as

∆φ = 2π
λ0

∆L = 2π
c
ν0 ∆L = k0 ∆L (2.1)

where λ0 is the laser wavelength, ν0 its frequency, k0 its wavenumber, and c the speed of light.
Let us consider a perfect Michelson interferometer: optics without losses, which can be rewritten

T + R = 1 with T the transmittance in energy and R the reflectance in energy; end mirrors
2The aether — or æther in a more old-fashioned way — has had various definitions throughout history and

different branches of knowledge, even if one omits the organics compounds that are only spelled ethers. For
physicists contemporary to Michelson and Morley, one refers to the luminiferous aether, which was believed to be
the medium thanks to which light could propagate.

3It is interesting to notice how the Michelson interferometer brought about the collapse of the aether idea, from
which emerged new ideas that led to the conclusion of the existence of gravitational waves that are now observed
thanks to this same instrument.
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2.1. Michelson interferometry

are strictly reflective, i.e. Tx,y = 1 − r2
x,y = 0 and Rx,y = r2

x,y = 1; and the BS splits
perfectly the beam into to beams of same energy, i.e. TBS = RBS = 0.5. Then arises the output
power expression

Pout = Pin
2 (1 + cos ∆φ) (2.2)

∆φ = 2k∆L0 = ∆φ0 (2.3)
∆L0 = Lx − Ly (2.4)

where Pin the input power of the interferometer, and Lx,y the arm lengths. Regarding eq. (2.1),
∆L = 2∆L0, given that each beam performs a round trip within its arm before recombining.

One can notice that

Pout = Pin ⇒ ∆L0 = n
λ0
2 , n ∈ Z (2.5)

Pout = 0 ⇒ ∆L0 = (2n+ 1) λ0
4 , n ∈ Z (2.6)

Pout = Pin/2 ⇒ ∆L0 = (2n+ 1) λ0
8 , n ∈ Z (2.7)

which correspond to the bright fringe (constructive interferences), the dark fringe (destructive
interferences), and the grey fringe (the intermediate situation).

2.1.2 Effect of a gravitational wave
The detection principle consists of measuring a phase change between the laser beams coming
from the two arms of the interferometer. Indeed, the passage of a gravitational wave perpendicular
to the detector plane (optimal case) induces a change in the optical path length, which induces a
phase shift (see eq. (2.1)). This phase shift is directly linked to the shape of the gravitational
wave as [34]

δΦ = GδL (2.8)
with G the optical gain and δL the length variation, which follows

δLx,y = ±h2 Lx,y (2.9)

with L a baseline length and h the gravitational wave strain amplitude. Therefore, the passage
of a gravitational wave is detected by a change in the interference produced at the output — or
antisymmetric port —, which receives all the differential field. The input — or symmetric port
— gets all the common field. A Michelson interferometer is a sensitive instrument thanks to the
differential measurement due to the two orthogonal arms, which removes all the common noises.

When a gravitational wave passes, the phase difference is

∆φ = 2k∆L0 + 2k(δLx − δLy)
= ∆φ0 + δφGW

(2.10)

where δLx = hLx

2 and δLy = −hLy

2 (see eq. (2.9)), and δφGW represents the additional phase
shift due to the passage of the gravitational wave (see eq. (2.3)). Considering the gravitational
wave strain amplitude as very small, one can let δL/L � 1, then δφGW � 1, which allows to
write cos (δφGW) ' 1 and sin (δφGW) ' δφGW. Hence, the output power detected is obtained by
reporting eq. (2.10) in eq. (2.2)

PGW
out '

Pin
2 [1 + cos (∆φ0)− sin (∆φ0)δφGW] (2.11)

The detected power variation due to a gravitational wave δPGW is then

δPGW = −Pin2 sin (∆φ0)2khL (2.12)
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Figure 2.2: On the left: aerial view of the AdV detector. On the right: interior of the central
building. Credits: Virgo Collaboration.

where L = Lx+Ly

2 is the interferometer average length. The detected power variation is optimised
at grey fringe and is proportional to the interferometer arm length and the input power.

2.2 Advanced Virgo detector

The Advanced Virgo is an interferometric gravitational-wave detector built in Cascina, Tuscany,
Italy. It was initially a project carried by both the CNRS (France) and the INFN (Italy). Nowadays,
it includes 106 institutions in 12 different countries, counting more than 550 members [35].

On the photograph showing the aerial view of Virgo in fig. 2.2, one can see the entire North arm
and a part of the West arm. At the junction is the Central Building (CB), in which the injection
laser, the Power Recycling Mirror (PRM) (see section 2.2.2), the BS, and the Input Mirrors (IMs)
(see section 2.2.2). The End Mirrors (EMs) are situated in the two buildings that are at the end
of the arms (one can see the North one). Each optic, or test mass, is suspended by a series of
inverted pendulums (see section 2.2.1) that are inserted within a vacuum tower. The photograph
on the right in fig. 2.2 shows the inside of the CB with the towers of the aforementioned test
masses.

The AdV detector is a Michelson interferometer as described in section 2.1. However, to be
able to detect the extremely weak signal of gravitational waves, the basic Michelson interferometer
needs to be enhanced to improve its sensitivity.

2.2.1 Sensitivity and noise sources

The sensitivity is defined as the smallest signal that can be detected; therefore, the objective is to
maximise the detected power variation due to a gravitational wave δPGW. We shall see that noises
limit the detectable power. Therefore, to improve the sensitivity, one can both try to reduce
noises and try to increase the detected power variation (see eq. (2.12)). This section introduces
some noises importantly limiting the detector sensitivity, while section 2.2.2 treats of the main
technical features that help both increase the detected power variation and decrease the noises.

Instrumental and fundamental physical noises are frequency dependent, so is the sensitivity;
this is why it is usually given in terms of Amplitude Spectral Density (ASD), expressed in Hz−1/2

(the amplitude is the square root of the energy). One can, thus, determine the whole sensitivity
curve (see fig. 2.5) and obtain the detector bandwidth for given astronomical events. As introduced
in section 1.2.2, among the Virgo Collaboration, one rather speaks in terms of Binary Neutron
Stars (BNS) range. Figure 2.3 shows the sensitivity both in terms of ASD and BNS range. From
O2 to the end of Observing Run 3 (O3), AdV’s BNS range increased from 30 Mpc to 60 Mpc,
corresponding to a observable volume improved by a factor 8! That is why improving the sensitivity
is a critical work.
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Figure 2.3: AdV’s sensitivity. In the upper part, the sensitivity in terms of ASD at three different
moments: in green, on 14 August 2017 (first triple-detector detection during O2); in black, on 1
April 2019 (beginning of O3); in red, the record. In the bottom part, the sensitivity in terms of
BNS range vs time: O2 and O3 periods are shown. Credits: Virgo Collaboration.

The three main sources of fundamental noises are: the quantum noise — which comprises both
the shot noise and the radiation pressure noise — the seismic noise, and the thermal noise.

Shot noise

The photon shot noise comes from the quantum nature of the photons. In other words, although
the Michelson equations are solved considering the wave nature of the light, photons are actually
particles that reach the photodiode following a Poisson distribution. The number of photons Ndet
detected on the photodiode during ∆t is

Ndet ~ω0 = Pdet ∆t = Ndet
Nout

Pout ∆t = η Pout ∆t (2.13)

where η is the photodiode quantum efficiency, ~ the reduced Planck constant.
The number of photons follows a Poisson distribution, then its uncertainty follows δNdet ∼√

Ndet, and finally its associated power fluctuation is

δPdet = δNdet ~ω0
η∆t =

√
Ndet

~ω0
η∆t =

√
~ω0Pout
η∆t (2.14)

Therefore, the power variation from a gravitational signal must be at least as high as the shot
noise power fluctuation (in other words, the Signal-to-Noise Ratio (SNR) must be at least 1),
which is written ∣∣δPGW

out
∣∣ = δPdet; (2.15)

with eqs. (2.11), (2.12) and (2.14), the smallest strain amplitude that can be detected due to the
shot noise in terms of ASD (if considering ∆t as the process bandwidth) comes

h̃shot(f) = 1
4π L

√
~ω0
η Pin

(2.16)
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Note that the shot noise is independent of the perturbation frequency. Its contribution is
proportional to the square root of the laser frequency [10, 34]. Contrariwise, it is inversely
proportional to both the power at the BS and the length of the arms. Hence, a way to enhance the
sensitivity is either to lengthen the arms (limited by the technology feasibility and the curvature
of the Earth) or to increase the laser power (limited by the radiation pressure noise that would
degrade the sensitivity at low frequency, see section 2.2.1).

The shot noise for a simple Michelson interferometer can be evaluated (for a photodiode
quantum efficiency of 1)

h̃shot ∼ 10−21
(

25 W
Pin

)−1/2(
λ0

1064 nm

)1/2(3 km
L

)
Hz−1/2. (2.17)

This value is of the same order of highest expected gravitational wave strain amplitude (see
eq. (1.10)); therefore, other enhancements (introduced in section 2.2.2) are needed.

Radiation pressure noise

This noise is the displacement of the optics hit by photons; the higher the laser power, the higher
the radiation pressure noise. Its contribution is proportional to 1/f2 as [12]

h̃rad(f) = 1
mf2 L

√
~Pin

2π3 λ0 c
(2.18)

where m is the mirror mass, and f is the frequency at which L varies, or, in other words, the
gravitational wave frequency. That is why this effect is much more important at low frequency.
One way to decrease this effect is to make mirrors heavier. It has actually been done from Virgo
(21 kg) to AdV (42 kg) [36]. This noise is potentially limiting at low frequency.

Seismic noise

One of the specificities of a Michelson interferometer used for detecting gravitational waves is
that mirrors are suspended by an inverted pendulum. There are actually two reasons for such a
design: (i) to make them behave as free-falling test masses; (ii) to insulate them from seismic
noise. Indeed, a pendulum acts as a low-pass filter, more precisely as a second order integrator
(in 1/f2). This implies that high frequencies are quickly cut off, but seismic noise usually occurs
at low frequency. Hence, the very complex design of the so-called Superattenuators (SAs) (see
fig. 2.4). The rejection factor is 1014 above 10 Hz.

Thermal noise

There are two different thermal noises: the suspension thermal noise and the mirror thermal noise.
Both of them are due to a Brownian motion. For the suspensions, the noise is attenuated by
the intrinsic low-pass filter of the pendulum above its resonance frequency. For the mirrors, the
coating noise is distributed all over the surface. Hence, either increasing the size of the mirrors or
the size of the beam, are ways to decrease it; from Virgo to AdV, the beam size has been increased
from about 2 cm to 5 cm [36].

The thermal ASD for a given object (suspensions or mirrors) is [11]

h̃th(f) =
√

kB T f2
res

2π3 mQf

1
(f2 − f2

res)
2 + f4

res
Q2

(2.19)

where kB is the Boltzmann constant, T the object’s temperature, Q its quality factor (Q factor),
and fres its resonant frequency (the object is considered as a oscillator). From this equation, one
can justify the choice of heavy mirrors with high Q factors4. Furthermore, it shows its band-pass

4However, as chapter 3 will show, high Q factor tend to increase the very kind of instability on which this thesis
focuses.
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Figure 2.4: On the left: sketch of an AdV mirror SA. The Virgo suspension is about 8 meter high
and is placed in a vacuum tank. It is composed of a series of pendulum that reduce the horizontal
seismic vibrations that reach the mirrors. Horizontal vibration dampers are also visible. The last
suspended element is a mirror payload. On the right: photograph of a SA. Three pendulums are
visible. The wire used to suspend one to each other is also visible. Credits: Virgo Collaboration.

filter behaviour — the higher the Q factor, the narrower the bandwidth — in order that these
noises be dominant in the medium frequency range.

Noise budget

The knowledge of all noise source ASDs enables to plot what is called the noise budget that
allows to determine the detector’s sensitivity by looking at uncorrelated sum of fundamental noise
contribution. In fig. 2.5, AdV’s sensitivity, accounting the main components of the noise budget.
One can see that the sensitivity is limited by the suspension thermal noise at low frequency and
by the quantum noise at high frequency and the coating thermal noise in the middle.

2.2.2 Improving the sensitivity

Equation (2.12) and eq. (2.16) show that the detected power variation can be increased by the
same means as to decrease the shot noise: increasing the input power and lengthening the arms.
The former can bring about troubles to keep the laser stable, and an increase of the radiation
pressure. The latter is mainly limited by the curvature of the Earth. Down here are explained
three technical solutions used in interferometric gravitational-wave detectors to bypass these limits.

Arm Fabry-Perot Cavities

A technical solution to lengthen the optical path while maintaining the actual length of the arms
is to implement an optical cavity in the arms. Such a cavity is compounded of two mirrors on
the axis: the input one is partially reflective and the end one is almost totally reflective. Light is
stored inside cavities because the resonant frequency travels round trips between the two mirrors.
These optical cavities are traditionally called Arm Fabry-Perot Cavities (AFPCs) within the Virgo
Collaboration, although their mirrors are not plane. Hence, the reader may encounter both ‘AFPC’
and ‘arm cavity’ in the following.
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Figure 2.5: AdV’s designed noise budget. Image from [36].
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Figure 2.6: Schematic of a Michelson interferometer with arm cavities.
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The number of round trips is proportional to the finesse of the arm cavity, which is defined
as [11]

F ≈
π
√
rIMrEM

1− rIMrEM
(2.20)

where rIM,EM are respectively the reflectivities of the IM and the EM, as shown in fig. 2.6. Further
details on the finesse will be given in chapter 5; for now, let us rather consider only the effect of
the arm cavities on the detection.

By travelling round trips down the LAFPC-long arm cavities, the optical path is increased by a
factor GAFPC as [37]

GAFPC = 2F
π
. (2.21)

In the case of AdV, the arm cavity finesse is about 450, yielding

GAFPC ≈ 300. (2.22)

that is, the effective arm length is slightly less than 1000 km. Then, the light acquires an extra
phase δφAFPC

δφAFPC = 2 k GAFPC δLAFPC (2.23)

However, in order to mimic the passage of a gravitational wave, let us consider the motion of an
End Mirror at frequency f ; thus, the phase difference can be rewritten [12]

δφAFPC = 2 k GAFPC
1√

1 +
(
f
fc

)2
δLAFPC, (2.24)

fc = c

4F LAFPC
. (2.25)

The optical phase is then increased by the factor GAFPC. Furthermore, the arm cavity acts as a
low-pass filter, with a cutoff frequency fc. For AdV, fc ∼ 50 Hz.

One can model the new Michelson interferometer as a basic one, as seen in fig. 2.1, for which
the two end mirrors have now complex reflection coefficients [12]

rAFPC = ρAFPC e
iδφAFPC , (2.26)

ρAFPC =
∣∣∣∣∣rIM −

(
r2
IM + t2IM

)
rEM

1− rIM rEM

∣∣∣∣∣ ; (2.27)

therefore, the output power is like in eq. (2.2), taking account of the new complex reflection
coefficients. By substituting eq. (2.24) in eq. (2.12), it yields

δPGW = −Pin2 sin (∆φ0)GAFPC
2 k hLAFPC√

1 +
(
f
fc

)2
(2.28)

The detection power change due to the passage of a gravitational wave is now multiplied by GAFPC
but is attenuated at high-frequency gravitational waves. Similarly, the resulting shot noise is given
by [38]

h̃shot = 1
4πGAFPC LAFPC

√
~ω0
η Pin

√
1 +

(
f

fc

)2
(2.29)

On the one hand, the arm cavities tend to decrease the shot-noise-limited sensitivity by the factor
GAFPC, but, on the other hand, they add a linear dependency with respect to the gravitational
wave frequency when f � fc. Hence, it becomes a major source of noise at high frequencies, as
shown in fig. 2.5.
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Figure 2.7: Schematic of a Michelson interferometer with arm cavities and the PRC. This is AdV’s
O3 configuration.

Then, looking at eqs. (2.21), (2.28) and (2.29), one can see that the finesse should be as high
as possible. Nevertheless, one must keep in mind that a too high finesse would shrink the cavity
linewidth, implying that the length would have to be much more accurately controlled [34]. That
being said, this enhancement decreases the shot noise limit approximately by a factor 300:

h̃shot ≈ 10−23

√
1 +

(
f

fc

)2(25 W
Pin

)−1/2(
λ0

1064 nm

)1/2( 3 km
LAFPC

)
Hz−1/2 (2.30)

Power Recycling Cavity

According to eq. (2.12), the most optimised working point is the grey fringe. However, due to the
photon shot noise (see section 2.2.1), the best sensitivity is obtained when the configuration is close
to the dark fringe [11,39], which causes all the power to return towards the symmetric port 5; this
power is no longer used within the interferometer. Therefore, adding a semitransparent mirror at
the symmetrical port (see fig. 2.7) significantly increases the circulating power in the interferometer
by recycling all this power; hence its name: Power Recycling Mirror (PRM). Considering the rest
of the interferometer as equivalent to a mirror of reflectivity rMICH (which is then supposed to be
around 1), the PRM comes to create an extra resonant cavity, the PRC, whose optical gains is
defined as [39]

GPRM =
(

tPRM
1− rPRM rMICH

)2
(2.31)

where tPRM and rPRM are respectively the transmission and the reflection coefficients of PRM.
The detected power is multiplied by this factor GPRM. Then the resulting shot noise is

h̃shot = 1
4πGAFPC LAFPC

√
~ω0

GPRM η Pin

√
1 +

(
f

fc

)2
(2.32)

5The EMs have a reflective coefficient close to one, therefore the transmission losses in the arm cavities are very
small.
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Figure 2.8: Schematic of a Michelson interferometer with arm cavities, the PRC, and the SRC.
This will be AdV’s O4 configuration.

The sensitivity is improved by a factor
√
GPRM. AdV’s GPRM is

GPRM ≈ 40, (2.33)

Once AdV’s GPRM and GAFPC are known, one can calculate the intracavity power. Indeed,
the intracavity power PAFPC is related to the input laser power Pin as

PAFPC = Pin ·GPRM ·
1
2 ·GAFPC, (2.34)

where the factor 1/2 comes from the BS. Then, for AdV, one can write

PAFPC ≈ 6000Pin. (2.35)

Signal Recycling Cavity

At dark fringe, the PRM is actually impinged only by the common field, which is obviously the
main part of the recombined field. Yet, a remaining differential field arrives to the detection
photodiode. By tuning this signal, one can shape the sensitivity and, thus, improve it at specific
frequency ranges, chosen for detecting signals of specific events. This can be achieved by adding
again an extra mirror — the Signal Recycling Mirror (SRM) giving birth to the SRC — but on
the antisymmetric port this time (see fig. 2.8).

In AdV’s current configuration (which is the one of O3), the arm cavities and the PRM are
installed and made detections possible. The installation of the SRM is foreseen for the next
Observing run, O4, which should start in mid-2022.

Squeezing

The squeezing is a technical solution to beat the standard quantum noise. On an amplitude-phase
diagram, a coherent light (from a laser for instance) is represented by a circle, whose area describes
the Heisenberg uncertainty. While keeping the same area — that is to say the same uncertainty —
it is possible to decrease the phase uncertainty, but the amplitude uncertainty will be increased:
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(a)

(b) (c)

(d)

Figure 2.9: (a) Coherent light. (b) Amplitude squeezing. (c) Phase squeezing. (d) Representation
of advantages and drawbacks of each type of squeezing. Credits: Angélique Lartaux-Vollard,
IJCLab, from [20].

this is the phase squeezing. The opposite is also possible: the amplitude squeezing. The phase
squeezing improve the sensitivity at low frequency, while the phase squeezing improve it at high
frequency. All of this is summarised in fig. 2.9. For further information about squeezing for AdV,
please refer, for example, to [20,40,41].

2.2.3 From Virgo to Advanced Virgo

Increasing the laser beam size to decrease the thermal noise, or increasing the mirror mass to
decrease both the thermal noise and the radiation pressure noise have already been introduced.
Here are summarised other enhancements done from Virgo to AdV, which was designed to improve
its sensitivity by one order of magnitude. Its optical design is given in fig. 2.10.

The AdV column in table 2.1 gives the designed parameters; as we shall see, some have actually
not been reached.

From the whole configuration aspect, the SRC was already planned for AdV but will finally
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Parameters AdV design Initial Virgo
Sensitivity
BNS range 134 Mpc 12 Mpc
Instrument topology
Power enhancement Arm cavities and Arm cavities and

Power Recycling Power Recycling
Signal enhancement Signal Recycling n.a.
Laser and optical powers
Laser wavelength 1064 nm 1064 nm
Optical power at laser output > 175 TEM00 W 20 W
Optical power at interferometer input 125 W 8 W
Optical power at mirrors 650 kW 6 kW
Optical power at BS 4.9 kW 0.3 kW
Test masses
Mirror material fused silica (FS) FS
Mirror diameter 35 cm 35 cm
Mirror mass 42 kg 21 kg
BS diameter 55 cm 23 cm
Mirror surfaces and coatings
Coating material SiO2 SiO2
Mirror radii of curvature IM: 1420 m IM: flat

EM: 1683 m EM: 3600 m
Beam radius at IM 48.7 mm 21 mm
Beam radius at EM 58 mm 52.5 mm
Arm cavity finesse 443 50
Thermal compensation
Thermal actuators CO2 lasers and CO2 lasers

Ring Heater (RH)
Actuation points Compensation Plates (CPs) Directly on mirrors

and directly on mirrors
Suspensions
Seismic isolation system SA SA
Test mass suspensions FS fibres Wires
Lengths
Arm cavity length 3 km 3 km
PRC 11.952 m 12.053 m
SRC 11.952 m n.a.

Table 2.1: Some main parameters of the AdV Reference Design [36].
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Figure 2.10: AdV’s optical design. Image from [36].

be ready for AdV+ phase I, that is, for O4. Regarding the laser power, the interferometer input
power was planned to be increased up to 125 W, while it eventually reached 27 W for Observing
Run 3b (O3b).

Regarding the optical design, not only was increased the mass of the mirrors and the radius of
the beam impinging them, but also the radii of curvature of the mirrors were modified, which
directly affects the stability condition of the interferometer (see section 5.3.1). The PRC length
needed to be retuned, setting, thus, the interferometer configuration closer to instability [38]. As
well, the arm cavity finesse was strongly enhanced by almost a factor 10, which proportionally
improved the sensitivity (see section 2.2.2).

Another AdV’s important enhancement regarding this thesis topic are the Ring Heaters. They
enable the tuning of the radii of curvature of the mirrors by heating them. I shall show how they
are important for our study.

2.3 A detector network

To date, five ground-based detectors work all together within the three following collaborations:
the LIGO Scientific Collaboration (LSC), the Virgo Collaboration, and the Kamioka Gravitational
Wave Detector (KAGRA) Collaboration.

The LSC is constituted of the LIGO Hanford Observatory (LHO) (Hanford site, Washington,
USA), the LIGO Livingston Observatory (LLO) (Livingston, Louisiana, USA), and GEO600
(Sarstedt, Hildesheim, Lower Saxony, Germany). The arms of the two first ones are 4 km
long, whereas those of GEO600 are only 600 m, which make it not sensitive enough to
properly detect gravitational wave signals. However, it is still in use for engineering tests
and coherence between the signals of the whole network. The LSC is also planning to build
a new detector in India within a decade.

The Virgo Collaboration is constituted of the Virgo detector, on the EGO site (Santo Stefano
a Macerata, Cascina, Tuscany, Italy). It has 3-kilometre arms.
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Figure 2.11: Planned sensitivities for LIGO, Virgo, KAGRA, and the foreseen LIGO-India. Image
from [42].

The KAGRA Collaboration is constituted of the KAGRA detector (Kamioka mine, Gifu
Prefecture, Japan). It has 3-kilometre arms.

The main goal of having a network of detectors is to improve the general sensitivity, have
coincidence detections, and help localise the source. Moreover, as the bisector of interferometer
arms is a blind zone, having some detectors misaligned from one another could allow to scan the
whole sky.

2.4 Operation and detections

Any detector faces various phases during its life: upgrade, commissioning, and observation. The
observation periods are called Observing runs. Between each of them, detectors experience
upgrades and commissioning phases, during which various activities are performed to improve the
detectors. A general view of the different phases for each detector can be seen in fig. 2.11. This
figure also shows the increase of sensitivity from an observing run to another.

Without the improvements introduced in section 2.2.2, the detection of gravitational wave
signals, for any type of source, would have been impossible. Each commissioning phase helps gain
more sensitivity, which in turn allows to detect much further or weaker sources. Thanks to this
work, GW150914 the first direct observation was made on 14th September 2015 (during Observing
Run 1 (O1))6 by the two aLIGO detectors [43]. It was the first event of the coalescence of Binary
Black Holes (BBH) ever observed. Each black hole had a mass of about 30M� each. The ‘chirp’
shape (see section 1.2.2) of the signal can be seen in fig. 2.12. First, at the very beginning, the
signal is hidden by the noise as the strain amplitude is really weak. Then, the two black holes are
getting closer to each other, increasing both the amplitude and the frequency of the signal, whose
maximums corresponds to the merging. Finally, the two black holes form another more massive
and is no longer in motion; hence, the signal stops. The interesting part of the signal is rather
close to the numerical prediction because the SNR was 25, which is really high. The detected
signal is the few last milliseconds of a spiralling phase that lasted millions of years.

During the whole O1 from 12th September 2015 to 19th January 2016, the LIGO-Virgo
observed three BBH mergers.

6Gravitational wave events are always labelled ‘GW’ directly followed by the observation date in YYMMDD
format.
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Figure 2.12: The gravitational wave event GW150914 observed by the LHO (H1, left column
panels) and LLO (L1, right column panels) detectors. Top row: band limited filtered aLIGO data.
Bottom row: reconstructed signal and numerical prediction.

Then, O2 started on 30th November 2016 and ended on 25th August 2017. Virgo joined LIGO
on 1st August 2017. Virgo demonstrated its capability of detecting gravitational waves, seeing
that during that very short period of time, all the three detectors observed four gravitational wave
events: GW170814 was the first three-detector observation [44] (see fig. 2.13), and GW170817 was
the first detection of a BNS merger and the first detection of an electromagnetic counterpart [45].
In total, O2 cumulated eight detections. All the O1 and O2 detections are summarised in the
catalogue of O1 and O2 [46].

O3 was separated into two subruns: Observing Run 3a (O3a) from 1st April 2019 to 1st October
2019, and O3b from 1st November 2019 to 27th March 2020. In total, thirty-nine observations
were done during O3a, of which only one is certified to be a BNS. They are all summarised in the
catalogue of the first half of O3 [47].

Among the O3 detections, three are of further interest. The first one, GW190412 could be the
first observation of a merger of two black holes of very distinct masses [48]. The second, GW190425
is the first confirmed gravitational wave detection based on data from a single observatory; it is
the second confirmed BNS, whereas no electromagnetic counterpart was found. Note that the
total mass exceeds that of known galactic neutron star binaries [49]. The last one, GW190521 is
the most massive gravitational wave binary observed to date: the two black holes had masses of
about 85 and 66M�, resulting into an remnant black hole of 142M�. Also, it is considered as the
first clear detection of an ‘intermediate-mass’ black hole [50].

All of these detections have provided us with confirmation on the expected rate of BBH
mergers, & 1 Gpc−3 yr−1 [51], a better understanding of BBHs population [51,52], a better limit
to the mass of the graviton [7] mg ≤ 7.7× 10−23 eV c−2, a first direct evidence of a link between
BNS mergers and short gamma-ray bursts [45], a better understanding of BNS mergers [45], and
a higher precision in constraining the Hubble constant [53].
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Figure 2.13: The gravitational wave event GW170914. First triple-detector observation.
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Chapter 3

Optomechanical parametric instability

This chapter chiefly describes a worrisome nonlinear effect encountered within arm cavities, then
also occurring in the two arms of an interferometric gravitational-wave detector. This effect comes
from the coupling of three modes: a mirror acoustic mode that sets the mirror surface in motion, the
fundamental optical mode of the optical cavity (TEM00), and an optical higher-order mode (HOM).
Hence, there are numerous ways of calling this phenomenon: parametric (oscillatory) instability,
three-mode parametric instability, or optomechanical parametric instability (OPI). In the
following, we will use the last one as it better describes the phenomenon.

Before going further into details, let us summarise here how this effect appears, what it implies,
and why studying it for Advanced Virgo (AdV) matters.

Photons can be scattered from the TEM00 to an HOM through the mechanical mode by
annihilating or creating one phonon in this mode. These photons can generate an optical beat
note if the difference in frequencies of the two optical modes is equal to the resonant frequency of
a structural mechanical mode. This beat note, in turn, can either damp or increase the mechanical
motion via radiation pressure [54]. The latter effect leads to an exponentially growing amplitude
of the mechanical mode, which then reaches a plateau after some time. The signal associated
with this mirror mechanical excitation could saturate the electronics, hence the control of the
interferometer would be lost [55].

During Observing Run 1 (O1), in 2015, Advanced LIGO (aLIGO) observed an OPI when a
mirror mechanical mode at 15 kHz became unstable, for an intracavity power of 50 kW [56]. A
similar phenomenon was expected to occur in AdV, especially since AdV’s intracavity power was
already much higher than that of aLIGO. It eventually happened on 7th January 2020. The
purpose of this work is to investigate possible OPIs within AdV.

As a first step, a pedagogical introduction — both historical and physical — of the OPIs is
given. Second, a section recalls the two OPIs that were observed: one in the aLIGO and the other
one in AdV. Then, the parametric gain of the OPI is introduced.

3.1 Introduction

In chapter 2 were introduced the two quantum noises that limit the detector sensitivity: the
photon shot noise and the radiation pressure noise. The former is the main limitation from 100 Hz
on; that is why it needs to be reduced. To do so, according to eq. (2.16), one can increase the
intracavity power. For example, from Observing Run 3a (O3a) to Observing Run 3b (O3b), the
AdV input power was increased from 18.5 W to 27 W. Then, as a rough estimation — not taking
into account the frequency dependence of the noise — the photon shot noise was decreased by
a factor 1 −

√
18.5
27 ≈ 0.17. On the other hand, increasing the intracavity power increases the

radiation pressure contribution (eq. (2.18)), and may cause nonlinear coupling effects.
These types of nonlinear coupling have been studied, mostly since the 1960s with the advent

of lasers. Among them is the Mandelstram-Brillouin scattering [57,58], which is the interaction
of light with various material waves of the crossed medium, such as mass oscillations via energy
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3. Optomechanical parametric instability

transfer to phonons. The process leading to OPIs is really close to that of the Mandelstram-
Brillouin scattering [59]: in an optical cavity, a photon of frequency ω0 from the fundamental
mode (the carrier) is scattered into a photon of lower frequency ω1 (another optical cavity mode),
and a phonon of frequency ωm; this phonon being an excitation of a mirror mechanical mode.
The energy conservation writes

~ω0 = ~ω1 + ~ωm. (3.1)
This process is shown in fig. 3.1(a). As the scattered photon has less energy than the absorbed
one, this process is called a Stokes process. The beat note between the two optical fields yields a
radiation pressure oscillation at the difference frequency ω0−ω1 ≈ ωm, which drives the mechanical
mode. In turn, the mechanical mode interacts with the optical fundamental mode and intensifies
the photon scattering process. If the fundamental mode intensity reaches a certain threshold [59],
the nonlinear coupling between the three modes yields a parametric instability: the OPI. The
populations of the different energies with respect to the laser power are shown in fig. 3.2.

Note that the reverse process, that is to say the anti-Stokes process, for which the scattered
photon has a higher energy than the carrier one (~ω1 = ~ω0 + ~ωm) is possible. Contrary to the
previous heating process, it takes energy from the acoustic mode, thus damping it. Figure 3.1
shows these two possible irradiations of the Mandesltram-Brillouin scattering.

Braginsky et al. were the first to show the impact of OPIs within an arm cavity in [54], but
they did not take the anti-Stokes process into account. Kells and D’Ambrosio [60] showed that
taking it into account can substantially reduce or even suppress an OPI. Note that they considered
only the longitudinal TEM00 modes. Inasmuch as all TEM00 modes are separated by the Free
Spectral Range (FSR), the Stokes and the anti-Stokes waves are equidistant to the carrier and the
anti-Stokes wave compensates the Stokes one. If one takes into account the HOMs, as they are
not symmetrically distributed (see fig. 3.3), they may not have a suitable anti-Stokes mode [61].

In definitive, OPIs can occur because they are not self-compensated and must then be studied
for the sake of gravitational-wave detections; and this study must include the anti-Stokes processes.

Eventually, both aLIGO and AdV have experienced such instabilities: aLIGO in 2015 [56] and
AdV in 2020.

3.2 Optomechanical parametric instability observations

3.2.1 At LIGO
The first observation of a self-sustaining OPI in a gravitational-wave detector was made in aLIGO
at the LIGO Livingston Observatory (LLO) [56]. The unstable mechanical mode was identified

Photon
ω1

Phonon
ωm

Stokes anti-Stokes

Photon
ω0

ω0

ωm

ω1

(a) (b)

Figure 3.1: (a) Stokes irradiation: emission of a phonon ω0 = ω1 + ωm. (b) Anti-Stokes
irradiation: absorption of a phonon ω0 = ω1 − ωm. Image created by Daniel Schwen http:
//commons.wikimedia.org, modified, under the terms of the Creative-Commons-License CC-BY-
SA-2.5.

34

http://commons.wikimedia.org
http://commons.wikimedia.org
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√
W

Parametric instability

√
W

√
W

√
E0

E1

Em

Figure 3.2: Energy in the fundamental mode E0, energy in the Stokes E1, and energy in the
mechanical mode Em with respect to the laser power W , below and above the OPI threshold.
Image adapted from [59].

?

Main sequence (l = p = 0)

ω1 ω0
Figure 3.3: Schematic structure of optical modes in an optical cavity. The main sequence (higher
peaks in red) contains all the fundamental modes spaced by the Free Spectral Range: a Stokes
mode on the main sequence always have a suitable anti-Stokes mode. Which is not obviously the
case for a Stokes mode at ω1, whose anti-Stokes mode is represented by the question mark. Image
adapted from [59].
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Figure 3.4: On the left, a time-frequency diagram of the ASD of LIGO’s primary output, that
is, the gravitational wave strain channel. The growing instability appears around 845 Hz. It
eventually saturates the electronics between 2000 s and 4000 s. On the right, the amplitude of the
image on the left, together with two fits with different values of the intracavity power to find the
growth (or decay) time-scale. Images from [56].

as a 15.54 kHz mechanical mode of the arm cavity mirrors, and the involved optical mode was
an order 3. The arm intracavity power was 50 kW. The instability gave rise to an electronic
saturation of the detection signal. The two images of fig. 3.4 show the exponential growth and the
electronic saturation. In fig. 3.4(b), one can calculate the e-folding growth (or decay) time τm,
which enables to retrieve the parametric gain Rm (explained in section 3.3) and the quality factor
(Q factor) of the mechanical mode thanks to the following relation

τm = 2Qm
ωm (Rm − 1) . (3.2)

According to Evans et al. in [56], the observation rose an instability with an expected high gain,
at an expected mechanical frequency, and with a Q factor in an expected range.

3.2.2 At Virgo
Virgo, too, observed such an instability on 7th January 2020. Until December 2019, the arm
intracavity power was around 100 kW. This was twice the intracavity power at which aLIGO had
faced an OPI; yet, AdV had not.

The nominal input power of AdV’s Observing Run 3 (O3) configuration is 50 W, which
corresponds to an intracavity power of around 300 kW. A first increase step was made in December
2019 to pass from 18.5 W to 27 W input power. Ultimately, this power increase requires a
commissioning afterwards in order to keep the detector under control, which sufficiently changed
AdV’s configuration, getting closer to an OPI: a 155 kHz oscillation exponentially grew up until
it also saturated the output electronics, as shown in fig. 3.5. We could retrieve the parametric
gain of this instability, and the mechanical Q factor, thanks to the measurement of the growth
time-scale. Few extra details will be given in section 6.5.2, and an article is being written [62].

The main difference with regard to the observation in aLIGO is that the OPI occurred during
the locking phase and the instability directly led to a lock loss. We could not have the time to try
to decrease the input power. That is why we could not obtain, in fig. 3.5, an e-folding decay like
in fig. 3.4.

3.3 Parametric gain: classical feedback system method

The instability phenomenon is triggered by the thermal motion of the mirror at ωm [55]. Starting
from these considerations, Braginsky et al. developed a series of equations in [54, 61], introducing
an expression for the parametric gain Rm. If this gain is higher than one, then the interaction
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Figure 3.5: On the left, a time-frequency diagram of the ASD of Virgo’s primary output, that is,
the gravitational wave strain channel. The growing instability appears around 155 kHz, during the
locking phase of the apparatus. It eventually saturates the electronics. On the right, the amplitude
of Virgo’s primary output: the blue curve is the full signal, the red curve is the contribution of
only the 155 kHz signal. Images done by Paola Puppo (INFN Roma).

between those modes can lead to an OPI. The definition given by Braginsky et al. can also be
found in many articles: [63–68]. In [69], this expression is generalised to sum the contributions of
all the transverse optical modes.

However, our computation does not use that expression, as it is not easy to implement
numerically, but rather the one from [55], whose approach is described in the following.

I describe the approach developed by Evans et al. [55] to compute the parametric gain. In
this framework, the whole interaction between the three implied modes is seen as a classical
feedback system. This modular approach is very suitable since it can be adapted to many different
interferometer configurations with the same analytical formulas. The parametric gain of the
mechanical mode m is given by

Rm = 8πQmP

Mω2
mcλ︸ ︷︷ ︸

prefactor

∞∑
n=0

 Re [Gn]︸ ︷︷ ︸
optical transfer coefficient

× B2
m,n︸ ︷︷ ︸

spatial overlap parameter

 , (3.3)

where Qm is the Q factor of the mechanical mode m and ωm its frequency, P the arm cavity optical
power, λ the optical wavelength, M the mirror mass, c the velocity of light; Gn is the optical
transfer coefficient of the nth optical mode and encapsulates the interferometer configuration;
finally, Bm,n is the spatial overlap integral between the three involved modes. A mechanical
mode is amplified if Rm > 0 and damped if Rm < 0. It becomes unstable if Rm > 1, that is, if
the resonant excitation of the mechanical mode by the radiation pressure force overcomes the
mechanical losses.

3.3.1 The prefactor
Let us just recall the linear dependence of the parametric gain on the intracavity power. As well,
it is directly proportional to the mechanical mode m’s Q factor. The possibility of damping an
OPI by reducing the unstable mechanical mode’s Q factor has been studied in [65]. Indeed, one
does not design mirrors with low mechanical Q factors, in order not to increase the thermal noise
(see eq. (2.19)). Therefore, this is better to keep Q factors as high as possible because the thermal
noise can strongly and continuously deteriorate the detector sensitivity, while the phenomenon of
OPIs happens only for certain configurations.

To lower the parametric gain, trying to build heavier optics seems to be a better solution. This
has been done from LIGO (11 kg) to aLIGO (40 kg) [70], and from Virgo (21 kg) to AdV (42 kg),
as shown in table 2.1. This improvement is first meant to decrease the effect of the radiation
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3. Optomechanical parametric instability

pressure (improving, thus, the sensitivity), not to lower the odds of encountering an OPI; however,
the former leads to the latter.

Note that the parametric gain is inversely proportional to the square of the mechanical mode
frequency. However, contrary to what was expected, even a mechanical mode of very high frequency
can lead to an OPI, as experimentally demonstrated in section 3.2.2.

3.3.2 The spatial overlap parameter

The spatial overlap parameter results from the overlap integral of the the three implied modes
spatial profiles. It writes

Bm,n =
∫∫
S

f0fn (um · z) dr⊥, (3.4)

where S is the optic’s coating surface, f0 and fn are the field distributions of respectively the
fundamental mode and the nth optical mode, and um is the displacement function of the mechanical
mode. The field distributions are normalised as∫∫

∞

|fn|2 dr⊥ = 1 (3.5)

Figure 3.6 shows various couples of mechanical modes and optical modes, together with their
associated squared spatial overlap parameters. The two first couples are arbitrarily chosen for
their weak spatial overlap. The two last couples show very good spatial overlaps. A large overlap
parameter is however not a sufficient condition to get an instability, the resonance condition should
also be verified. This is the subject of the next paragraph.

3.3.3 The optical transfer coefficient

The optical transfer function encapsulates the cavity response to the optical fields. The two carrier
sidebands corresponding to the Stokes and anti-Stokes processes have different optical transfer
coefficients G−n (lower sideband) and G+

n (upper sideband). The total optical transfer coefficient
Gn is defined as

Gn = G−n −G+
n , (3.6)

where G+
n denotes the complex conjugate of G+

n .
At low power, the mirror motion due to the radiation pressure is negligible. The propagation

of optical fields at different frequencies are independent and can be treated separately. At high
power, the radiation pressure depends on both sidebands, and the motion induced by the radiation
pressure modifies the sidebands. Hence, a classical feedback system; according to Corbitt et al.
in [71], the most convenient mathematical framework for this problem is the Caves-Schumaker
two-photon formalism [72, 73].

Evans et al. built their method on this mathematical framework to calculate the scattering
matrix S±n that contains all the transfer coefficients for the nth optical mode from one port of the
optical system to the next one. Therefore, the scattering matrix is a square matrix whose size is
the number of all considered fields of interest.

From the scattering matrices S±n of the two sidebands, one can derive the optical transfer
coefficients

G±n,x = eTx
(
I − S±n

)−1 ex, (3.7)

where ex is the xth column of the identity matrix I, and eTx its transpose. The index x = 1, 2, ..., 12
denotes the fields of interest of figs. 3.7 and 3.8.
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Figure 3.6: On the left, the surface displacements of various mechanical modes. In the middle, some
optical modes. On the right, the associated squared spatial overlap parameters B2

m,n. Downwards,
the optical modes are respectively the FSMM(5) (order 2), the FSMM(3) (order 1), the FSMM(4)
(order 2), and the FSMM(1) (order 0). The FSMM will be introduced in section 5.3.3.
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Figure 3.7: Fields of interest of an arm cavity.
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Figure 3.8: Fields of interest of a power and signal recycled of a Fabry-Perot interferometer. This
is the most general configuration, that is, with a PRC, and an SRC cavity. One can ‘suppress’ a
mirror (and thus its cavity) by setting its transmission to 1.

Single arm cavity

In the case of a single arm cavity of length L, one can use the following simpler formalism where
the fields of interest are those of fig. 3.7; then, the size of the scattering matrix S±n is 5× 5 and
writes

S±n =


0 0 0 0 0
tIM 0 0 0 −rIM
0 p±L 0 0 0
0 0 −rEM 0 0
0 0 0 p±L 0

 , (3.8)

where tIM is the amplitude transmission coefficient of Input Mirror (IM), rIM and rEM the
amplitude reflection coefficients of the mirrors, and p±L the propagation operator as

p±L = exp
[
j

(
φn ±

ωmL

c

)]
. (3.9)

φn is the phase of the nth HOM
φn = φ0 − ψn, (3.10)

where φ0 is the propagation phase of the fundamental mode, and ψn the Gouy phase of the nth
optical mode. Further information on how the Gouy phase is obtained according to the optical
mode basis will be be given in chapter 5.

Full interferometer and losses

Let us now introduce a more general formalism considering a full power- and signal-recycled
interferometer, and the losses.

Figure 3.8 shows the fields of interest for an optical system corresponding to AdV; the size of
the scattering matrix S±n is then 12× 12. One can write the scattering matrix as the product of
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3.3. Parametric gain: classical feedback system method

a propagation matrix P±n , which is diagonal, and a mirror matrix Mn containing the amplitude
reflection and transmission coefficients, as

S±n = MnP
±
n , (3.11)

where

P±n =

p
±
n,1 0 · · ·
0 p±n,2
... . . .

 , (3.12)

with
p±n,x = exp

[
j

(
φn,x ±

ωmLx
c

)]
. (3.13)

Lx is the propagation distance at the field point x, and φn,x the propagation phase of the nth
optical mode at x. The propagation factor yields constructive interferences when the total phase
is 0 [2π], that is to say when

φ0,x − ψn,x = ωm
Lx
c

+ 2kπ

⇒ φ0,x
π

c

2Lx
− ψn,x

π

c

2Lx
= νm + 2kπ

⇒ ν0,x − νn,x = νm + 2kπ,

Stokes (3.14)

φ0,x − ψn,x = −ωm
Lx
c

+ 2kπ
⇒ νn,x − ν0,x = νm + 2kπ.

}
anti-Stokes (3.15)

With these equations, one retrieves the condition for an OPI to occur: the mechanical mode
frequency must be close to that of the optical beat note.

Now, if the mirror transmission coefficient is much smaller than one, one can further split the
mirror matrix into a constant matrix M and a loss matrix Cn, which is diagonal, as

Mn = MCn, (3.16)

where

M =



· −rNEM · · · · · · · · · ·
−rNIM · · · · tNIM · · · · · ·
· · · −rWEM · · · · · · · ·
· · −rWIM · · · · tWIM · · · ·

tNIM · · · · rNIM · · · · · ·
· · · · · · · · · tBS · rBS· · tWIM · · · · rWIM · · · ·
· · · · · · · · · −rBS · tBS· · · · tBS · −rBS · · · · ·
· · · · · · · · −rPRM · · ·
· · · · rBS · tBS · · · · ·
· · · · · · · · · · −rSRM ·


(3.17)

and

Cn =

tn,1 · · · ·
· tn,2
... . . .

 , (3.18)

were tn,x is the amplitude transmission of the aperture of the each fields of interest, and · stands
for 0.

Now that everything needed to compute the optical transfer coefficient has been presented, let
us focus on the role played by this coefficient. By making the mechanical frequency artificially
vary, one can obtain the optical transfer functions of an optical mode, as well as the parametric
gain Rm of a given mechanical mode. The results for AdV’s O3 configuration with the third couple
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Figure 3.9: (a) G+
n (blue curve), G−n (green curve), and Rm (red curve) of the third couple from

fig. 3.6, while artificially modifying the mechanical frequency. The upper sideband at 37 kHz has
a negative optical transfer coefficient. The lower sideband at 63 kHz has a positive one, but the
parametric gain is not high enough to lead to an OPI. (b) Gn of three optical modes of order 1, 2,
and 3. The resonant frequencies are set by the optical mode phase, and, therefore, by the cavity
Gouy phase and the optical mode order. One can also notice that the higher the optical mode
order, the lower its gain, as expected.

of modes from fig. 3.6 are shown in fig. 3.9(a)1; all the optical values used in our simulations are
summarised in table 6.1. One can see that the upper sideband indeed yields a negative parametric
gain, while the lower one yields a positive parametric gain.

An interesting point is that although the spatial overlap parameter between those three modes
is rather high, the optical transfer coefficient does not lead to an OPI. Hence the critical roles of
the optical transfer coefficient and the mechanical mode frequency.

Figure 3.9(b) shows the optical transfer coefficient Gn for three optical modes of order 1, 2,
and 3. Inasmuch as a cavity Gouy phase is fixed, only the mode order modifies the resonant
frequency. Therefore, the main optical contributors to the parametric gain of a mechanical mode
are all of the same order.

3.4 Summary

The OPI in gravitational-wave detectors is a well and long-studied phenomenon since the early
2000s. The OPI results from the interaction between two optical modes of the cavity and
a mechanical mode of a mirror. The motion of a mirror at ωm can scatter photons from the
fundamental mode into two sidebands (ω1 = ω0±ωm), which, in turn, interact with the mechanical
mode via radiation pressure, and so on. This process can either lead to an exponential increase
(lower sideband) of the mechanical motion or its damping (upper sideband). The former case
can lead to a loss of the control of the interferometer and becomes more important and likely to
happen if the available energy of the fundamental mode is higher. Indeed, such instabilities have
already been observed at aLIGO and AdV. That is why we study their behaviours for AdV.

The interaction between a mechanical mode m and all the cavity optical modes can be
quantified by its parametric gain Rm (eq. (3.3)). The mechanical mode is amplified if Rm > 0,
and is damped if Rm < 0. The mechanical mode becomes unstable if Rm > 1. This parametric

1We are always interested to know the parametric gains for fields at mirror locations, that is to say the field
points x = {1, 2, 3, 4}. Therefore, the given results will always be obtained from a mirror field. If the cavity name
or the mirror names matter, then they will be specified.
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3.4. Summary

gain comprises three terms: the prefactor, the optical transfer coefficient Gn, and the spatial
overlap parameter Bm,n.

• The prefactor depends on the mechanical mode (Q factor and frequency), the mirror mass,
the intracavity power, and the laser wavelength.

• The optical transfer function — according to both the fundamental mode (ω0) and the HOM
(ω1) — sets the optical resonance (frequency ω0 − ω1, amplitude, and linewidth), which
depends on both the fundamental mode and the HOM. The optical transfer coefficient (or
optical gain) is the value of the optical transfer function at the mechanical mode frequency
ωm.

• The spatial overlap parameter depends on the amplitudes of the fundamental mode, the
HOM, and the mechanical mode. This factor is higher if the shapes of the three implied
modes match.

The optical gain and the overlap parameter are calculated for a specific HOM. The mechanical
mode’s parametric gain sums up the contributions of all the optical modes taken into account.
Hence, the OPI study primary requires the computation of the arm cavity mirrors’ mechanical
modes and the arm cavities’ optical modes. This will be the topic of the two following chapters.
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Chapter 4

Mechanical modes of Advanced Virgo’s
arm cavity mirror

The mechanical modes were computed by means of finite element analysis (FEA) developed for
the actual Input Mirror (IM) of Advanced Virgo (AdV) arm cavities. We used the program
Ansys®WorkbenchTM. The IM model includes the high-reflectivity coating of the front face, the
flats and the bevels. Moreover the ears and the anchors attached by silicate bonding technique
are included (see fig. 4.1). In the FEA, the multilayered optical coating is modelled as a solid
3D element having the total thickness corresponding to the sum of the thicknesses of the high
reflective and low reflective materials and mechanical parameters averaged over the thicknesses of
the layers. Instead of 3D shell elements, we have used 3D solid elements, for very thin materials
as well, though more CPU time consuming, because they provide the shear deformations and
energies, which are useful for getting the mechanical losses associated to the modes.

Figure 4.1: Geometry used for the FEA, including the ears, the anchors and the magnets attached
on the mirror rear face. The suspension wires are just for sketching but not included in the
simulation as they do not influence the modal frequencies.
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Figure 4.2: (a) Relative differences of measured frequencies with respect to frequencies obtained
with the FEA vs the FEA frequencies. The standard deviation σ(νmeas) is 0.15 %. (b) Distribution
of the relative differences; the bin width is σ(νmeas)/2. There are 153 data, of which 151 (99 %)
are comprised within ±3.5σ(νmeas) ≈ ±0.50 %.

4.1 Finite element analysis simulations results

The flats, the ears, and the anchors play an important role. In particular, since they break the
cylindrical symmetry, they lift degeneracies and increase the number of distinct mode frequencies.

To estimate the accuracy of the model, we used a set of frequencies (νmeas) measured from
ring-down measurements of the North Input Mirror (NIM) up to 40 kHz. Figure 4.2(a) shows
the relative differences (νmeas − νFEA)/νFEA versus the frequency of the FEA νFEA. The stan-
dard deviation is 0.15 %. Figure 4.2(b) shows their distribution: 99 % are comprised within
±3.5σ(νmeas) ≈ ±0.50 %.

We estimated the quality factors (Q factors) of the mechanical modes of the IM taking into
account several kinds of losses: losses of the fused silica (FS) substrate, anchors and supports of
the magnets (loss angle φFS); coating losses (loss angle φIMcoating); losses of bonding layers used
to attach the ears, the anchors, and the magnets (loss angle φBonding). The bonding layers have
a thickness of 60 nm and are modelled as 3D solid elements. Coating losses of the IM and End
Mirror (EM) were recently measured [74]. Note that all the parameters used are given in table 4.1.
Each loss contributor is related to the energy fraction stored in the lossy part and to the material
loss angle, through the relationships

φBonding · Etot = φHCB · Ebonds

φIMcoating · Etot = φCIM · ECIM

φFS · Etot = φSuprasil · EFS,

(4.1)

where HCB stands for hydroxide-catalysis bonds. The overall loss angle for the IM is obtained by
summing up all contributors: φIM = φBonding + φIMcoating + φFS. The mechanical Q factor of the
IM modes then writes

Qm = 1/φIM. (4.2)
Figure 4.3 shows the frequency dependence of the FS substrate loss and the effect of adding

the optical coating and the bonding layers. The influence of the bonding term φBonding is strongly
mode shape dependent through the deformation of the ear and anchor bulks, and it is not negligible.
In fact, its contribution to Qm is dominant. For this reason, from a set of Q factor measurements,
it is possible to infer the value of φHCB by using the energy fractions calculated with the FEA.

Figure 4.4(a) Qm of the IM mass computed by fitting the loss angle φHCB by using the first
set of five modes of the IM of the North arm and supposing that it is does not vary with the
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IM Coating1
Ta2O5 High index Layer Overall Thickness (tIMH ) 2080 nm
SiO2 Low index Layer Overall Thickness (tIML ) 727 nm
Loss angle (φCIM) 1.1 · 10−4f0.05

EM Coating1
Ta2O5 High index Layer Overall Thickness (tEMH ) 3766 nm
SiO2 Low index Layer Overall Thickness (tEML ) 2109 nm
Loss angle (φCEM) 2.2 · 10−4f0.01

TM Suprasil
Young modulus 72.251 GPa
Poisson ratio 0.166 49
Density 2201 kg m−3

Loss angle (φSuprasil) 7.6 · 10−12f0.11

Ear and anchors bonding [75]
Young’s modulus 72.9 GPa
Poisson ratio 0.17
Density 2201 kg m−3

Thickness 60 nm
Loss angle 0.1

IM and EM properties
Mass 42 kg
Thickness 200 mm
Diameter 350 mm
Flats 50 mm

Table 4.1: Mechanical parameters used in the FEA

1For the FEA, the IM multilayered coating was replaced by one layer having the total thickness corresponding to
the sum of the thicknesses of the high reflective and low reflective materials. The mechanical parameters used are
the average values of this layer [74].
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Figure 4.3: Losses present in the FEA model of the IM, computation up to 100 kHz.
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Figure 4.4: (a) Q factors of the mechanical modes up to 157 kHz. (b) Mechanical mode frequency vs
Mechanical mode number. The mechanical mode density considerably increase at high frequency.

frequency. At frequencies higher than 10 kHz, the bondings have a strong damping effect, though
they have a negligible effect on the the thermal noise of the IM. This is a very important result
for the parametric gains computation and, consequently, for identification of the unstable modes.

Figure 4.4(b) shows the total number of mechanical modes with respect to their frequencies.
We computed 12 750 mechanical modes up to 157 kHz. In chapter 6, I explain that we had first
computed only 1600 mechanical modes, up to 70 kHz, but then, we needed to compute much
higher-frequency modes.

Figure 4.5 shows some mechanical modes, arbitrarily chosen over the whole frequency range.
Above each is indicated the measured frequency νmeas.

4.2 Conclusion

The computation of the mechanical modes was done by Paola Puppo (INFN Roma), using 3D
solid elements FEA simulation. It provided us with the mode shapes, the simulated frequencies
νFEA, and the simulated Q factors QFEA. Paola Puppo also measured, on site the frequencies
νmeas and the Q factors Qmeas of the mechanical modes of the IMs from ring-down measurements.
The measured frequencies allowed us to estimate the relative difference between the simulation
and the measurements. The measured Q factors allowed us to fit the QFEA up to 157 kHz. The
three cited parameters obtained by the FEA simulation and the measurements are sufficient to
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4.2. Conclusion

Figure 4.5: Some arbitrarily chosen mechanical modes.

characterise the mechanical modes that we need to compute the parametric gains in chapter 6.

Figure 4.6: Photograph of a 42 kg AdV’s arm cavity mirror suspended inside the payload by two
thin wires of FS. The pink colour is due to a protecting film. Credits: Virgo collaboration.
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Chapter 5

Optical modes of Advanced Virgo’s arm
cavities

The previous chapters showed basics of gravitational waves and ground-based interferometric
gravitational-wave detection. It was explained how to improve the sensitivity of detectors with
various techniques. Then, the optomechanical parametric instability (OPI) phenomenon was
introduced, leading to the computation of the arm cavity mirrors’ mechanical modes and the arm
cavities’ optical modes. This chapter will focus on the description of arm cavities’ modes.

First is introduced some basic concepts of optical resonators. Then is presented the behaviour
of Fabry-Perot resonators (plane-mirror resonators), which will help introduce essential quantities
related to resonators. Then, the case of spherical-mirror cavities is treated. Two different models
that can be used to compute optical modes are compared: a model considering the mirrors as
infinite, and another one considering the real finite size of the mirrors. Optical modes of the former
can be computed thanks to well-known and well-studied bases, such as the Hermite-Gaussian
modes (HGM), whereas optical modes of the latter require a numerical computation. I will show
the limits of the HGM with respect to the finite-sized mirror modes (FSMM). Finally, I introduce
the effect, on optical modes, of the mirror deformation due to light absorption (sometimes referred
to as ‘thermal effects’).

5.1 Wave optics conventions and notation

5.1.1 On light propagation in vacuum

An linearly polarized optical field can be described by a scalar complex wavefuntion E(r, t) of
position r and time t. E(r, t) must satisfy the wave equation

∇2E(r, t)− 1
c2
∂2E(r, t)
∂t2

= 0, (5.1)

where c is the speed of light in vacuum.
In the following, we restrict ourselves to monochromatic waves. For a monochromatic wave

propagating with the wavenumber k = ω
c at the instant t, the wavefunction is

E(r, t) = A(r) ej(ωt−k·r), (5.2)

where ω = 2πν is the pulsation, ν the frequency, and A(r) a complex function. Equation (5.2)
can be rewritten

E(r, t) = E(r) ejωt, E(r) = A(r) e−jk·r, (5.3)

where E(r) is the complex amplitude and is time independent. In all the following, we will study
the properties of E(r), which is the spatial part of the wavefunction.
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5. Optical modes of Advanced Virgo’s arm cavities

Substituting eq. (5.3) into eq. (5.1) yields
∇2E(r) + k2E(r) = 0 (5.4)

known as the Helmholtz equation.

5.1.2 Incident, reflected, and transmitted waves
An incident wave reflecting on a mirror undergoes a π phase shift such that a possible convention
for the scattering matrix is (

Er1

Er2

)
=
(
t −r
−r t

)(
Ei3
Ei4

)
(5.5)

where r is the amplitude reflection coefficient, and t the amplitude transmission coefficient
(fig. 5.1).

Ei3 Er1

Ei4Er2

r, t

Figure 5.1: Incident, reflected, and transmitted field notations.

In the following, we use these results to calculate the different optical fields of a resonator.

5.1.3 Reflection, transmission, and losses
An optical element is characterised by three coefficients: its amplitude reflection coefficient r, its
amplitude transmission coefficient t, and its amplitude losses. By squaring these quantities, one
obtains respectively the intensity reflection coefficient (or reflectivity, or reflectance) R = r2, the
intensity transmission coefficient (or transmissivity, or transmittance) T = t2, and the intensity
losses L. Hence, the energy conservation of the incident wave reads

R+ T + L = 1. (5.6)
Losses can be of various types: absorption in the mirror coatings, scattering on mirrors due to
imperfections, and diffraction loss due to the finite size of the mirrors. The diffraction loss will be
referred to as Ld, and all the others losses as1 Lm. Then comes

L = Ld + Lm. (5.7)

5.2 Fabry-Perot resonators

Interferometric gravitational-wave detectors have optical cavities on both of their arms to increase
the sensitivity inasmuch as the phase shift induced by the passage of a gravitational wave is
multiplied by a factor GAFPC, as explained in section 2.2.2. To better understand longitudinal
modes of these cavities, one can use the model of plane-mirror resonators, called Fabry-Perot
resonators, which consist in two mirrors M1 and M2 with their associated reflection coefficients
r1, r2, and transmission coefficients t1, t22, separated by a distance L, as shown in fig. 5.2.

1For ‘mirror losses’.
2Ideally, the end mirror must be perfectly reflective, whereas the input one should have a non-null transmissivity

such that the light can enter the resonator. In the case of Advanced Virgo, the very small amount of transmitted
light at the end mirror allows to obtain an information about the circulating light field and, thus, to control the
Fabry-Perot resonator length during the acquisition of the global interferometer working point.
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5.2. Fabry-Perot resonators

E1

E5

E2 E3 E4

E6E7

L

M1 M2
r1, t1 r2, t2

Figure 5.2: Optical fields of a Fabry-Perot resonator.

5.2.1 Optical fields and resonant frequencies
Considering the complex amplitude of the electromagnetic field entering the resonator Ein = E1,
the circulating amplitude Ecirc = E2, the transmitted amplitude Etrans = E4, and the reflected
amplitude Erefl = E7 can be calculated. The circulating field is the sum of all the fields circulating
within the resonator (see fig. 5.3) and can then be described as a geometric progression with
common ratio r1 r2 e

−jk2L. In order that the electromagnetic fields constructively interfere, and,
thus, build a mode, they need to be in phase; hence the resonance condition

2kL = q2π ⇐⇒ k = q
π

L
⇐⇒ ν = q

c

2L, q ∈ Z. (5.8)

This shows that only certain frequencies can lead to standing waves within the resonator: in the
following, these modes will be referred to as longitudinal modes. The electromagnetic fields at

M1 M2
r1, t1 r2, t2

E20

E21

E22

Figure 5.3: Travelling waves between both mirrors of a Fabry-Perot resonator.

each point of the resonator are

E2 = t1E1 − r1E6 E5 = −r2E3

E3 = E2 e
−jkL E6 = E5 e

−jkL

E4 = t2E3 E7 = −r1E1 + t1E6.

From these equations one can determine the electromagnetic fields inside the resonator of interest:

Ecirc = t1
1− r1 r2 e−jk2L Ein (5.9)

In practice, the measurable quantity is the intensity (in W m−2), obtained by squaring the
modulus of the amplitude:

Icirc = |Ecirc|2 = Ecirc · E∗circ = T1
1 + r2

1 r
2
2 − 2r1 r2 cos (2kL)Iin, (5.10)
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5. Optical modes of Advanced Virgo’s arm cavities
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Figure 5.4: Circulating intensity within the resonator. The resonator acts as filter letting only some
frequencies be resonant; these frequencies are separated by the Free Spectral Range represented
by the arrow. The circulating intensity is normalised by Icircmax to show that δν increases when L
increases.

where Iin = |Ein|2. The maximum power is

Icircmax = T1

(1− r1 r2)2 Iin (5.11)

and is reached for cos(2kL) = 1, the resonance condition already expressed by eq. (5.8). Equa-
tion (5.10) is called an Airy function (fig. 5.4) and depends on the losses accumulated during
a resonator round trip. This function shows equally separated peaks representing the resonant
frequencies of eq. (5.8) that can travel down the resonator. The frequency difference between two
consecutive resonances is called Free Spectral Range (FSR), and from eq. (5.8) arises

∆νFSR = c

2L. (5.12)

Advanced Virgo (AdV)’s arms are 3 km long, then their FSR ∆νFSR is

∆νFSR ≈ 50.00 kHz. (5.13)

5.2.2 Effect of resonator losses
Mirrors cannot be perfectly reflective and show a non-null transmissivity T and energy losses L.
This modifies the travelling fields and relaxes the resonance condition, increasing, in turn, the Full
Width at Half Maximum (FWHM). The FWHM is also known as the linewidth δν. Inasmuch as
the finesse F can be defined as F = ∆νFSR/δν, from eq. (2.20) arises

δν ≈ ∆νFSR
1− r1 r2
π
√
r1 r2

. (5.14)

One can notice the dependence to the reflection coefficients: the higher they are (or the lower the
losses), the thinner the linewidth. So, increasing losses broadens resonances (fig. 5.4).

Let us now introduce another more practical definition of the finesse:

F = 2π
P
, (5.15)
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5.3. Spherical-mirror resonators

where P = L1 + L2 + T1 + T2 is the resonator total loss, including the mirror transmissions.
In summary, the lower the losses, the higher the finesse, the lower the linewidth. AdV’s arm

cavity3 finesse have been measured on site [76]:

FNorth = 464(7)
FWest = 455(5)

(5.16)
(5.17)

Consequently AdV’s arm cavity linewidths are

δνNorth ≈ 108 Hz
δνWest ≈ 110 Hz

(5.18)
(5.19)

The finesse contains all the information of the resonator losses, and eq. (5.9) can be rewritten

Icirc = Icircmax

1 +G2
AFPC sin2 (kL)

, (5.20)

where GAFPC = 2F/π is the optical gain of a Fabry-Perot resonator (see section 2.2.2) and is, for
AdV, GAFPC ≈ 300.

5.3 Spherical-mirror resonators

In the previous section, I have derived resonant frequencies of Fabry-Perot longitudinal modes,
and discussed the impact of losses on the resonance linewidth. In this section, I substitute plane
mirrors with spherical mirrors and show their impact on the resonant frequencies and on the
resonator stability.

5.3.1 Gaussian beam
Complex amplitude and beam properties

Here, I want to obtain a precise description of the complex amplitude E(r). As the field propagates
along the z direction, we have

E(r) = A(r)e−jkz. (5.21)

Substituting eq. (5.21) into eq. (5.4) yields

∇2A− 2jk ∂A
∂z

= 0. (5.22)

Insofar as the longitudinal envelope variation of the beam is very slow within a distance of a
wavelength λ = 2π/k, one can use the paraxial approximation. It implies that angles to the optical
axis of the system are rather small. Therefore, a Gaussian beam has its energy confined about
its axis. The paraxial approximation helps further simplify eq. (5.22) by neglecting the second
derivative in z of the complex envelope, yielding the paraxial Helmholtz equation

∇2
TA− 2jk ∂A

∂z
= 0, (5.23)

where ∇2
T = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian operator. In the absence of boundary

conditions, a well-known solution is the so-called Gaussian beam, whose complex amplitude
writes [77]

E(ρ, z) = A0
w0
w(z) exp

[
− ρ2

w2(z)

]
exp

[
−j
(
kz + kρ2

2R(z) − ψ(z)
)]
, (5.24)

3Here, I speak in terms of cavity because these resonators are stable.
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Figure 5.5: A Gaussian beam profile, together with its Gaussian function transverse projection.
Around the beam waist, the wavefronts are approximately planar, afar they are approximately
spherical. Image by ℵ (Aleph) http://commons.wikimedia.org, modified, under the terms of
the Creative-Commons-License CC-BY-SA-2.5.

where ρ2 = x2 + y2, w(z) is the beam radius at which the amplitude falls to 1/e (∼ 27%) of the
maximum (which is on the axis) at z4, w0 = w(0) is the waist radius, which is the beam radius at
its focus, that is, where its radius is minimum, R(z) the wavefront radius of curvature at z, and
ψ(z) is the Gouy phase, which is an extra phase accumulated along the z-axis.

Figure 5.5 shows a Gaussian beam along the z-axis, together with all parameters defining such
a wave. Its transverse profile is indeed a Gaussian function. Longitudinally, this Gaussian function
propagates along the z direction, and if one lets the origin of this axis be at the beam waist,
the width of the beam becomes larger while increasing |z| due to diffraction. Around the beam
waist, the wavefronts are approximately planar; afar from the beam waist, they are approximately
spherical. One can then define two approximate regions and a parameter called the Rayleigh range
zR (eq. (5.25)): near field when z � zR and the far field when z � zR.

Let us summarise, here, all parameters defining a Gaussian beam:

• Rayleigh range zR:

zR = πw2
0

λ
(5.25)

• Beam radius w(z):

w(z) = w0

√
1 +

(
z

zR

)2
(5.26)

• Wavefront radius of curvature R(z):

R(z) = z

[
1 +

(zR
z

)2
]

(5.27)

• Gouy phase ψ(z):

ψ(z) = arctan
(
z

zR

)
(5.28)

Equations (5.26) and (5.27) help understand better the longitudinal evolution of the beam radius
and the wavefronts.

4An amplitude drop of 1/e corresponds to an intensity drop of 1/e2 ≈ 0.135; therefore, since the intensity
carried within a circle of radius w(z) represents 86%, it is justified to call w(z) the beam radius.
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5.3. Spherical-mirror resonators

Regarding the beam radius, as described above, the minimum w0 is at the beam focus and
increases in both directions, linearly with z for z/zR � 1 (eq. (5.26)). Its value at zR is

√
2w0.

Regarding the wavefronts, eq. (5.27) shows that lim
z→0±

R(z) = ±∞, that is, the wavefronts are
planar. While w(z) increases, R(z) first decreases until it reaches its minimum at zR: the beam is
curved the most at the Rayleigh range. Then, R(z) slowly increases, tending towards an R(z) = z
asymptote.

Gaussian beam stability in a spherical-mirror resonator

Considering a resonator with two spherical mirrors of different radii of curvature R1 and R2 and
separated by a distance L, one can let the origin of the z-axis be at the beam waist, and the two
mirrors be respectively located at z1 and z2. In the following, such a device will be referred to as
an optical cavity.

If the wavefront of an incident Gaussian beam has the same radius of curvature than a spherical
mirror, then its reflected beam from that mirror will exactly retrace the incident beam. Thus, a
beam within the cavity will be reflected on a mirror and will retrace itself to the second mirror,
where the same phenomenon will occur, and, so on, the beam exists self-consistently and can be
travelling within the cavity. A Gaussian beam can thus be a stable mode of a spherical-mirror
resonator.

Introducing the g parameters as

gi = 1− L

Ri
, i = {1, 2}, (5.29)

and their product
g = g1 g2, (5.30)

it can be shown that the stability condition of an optical cavity writes [77]

0 ≤ g ≤ 1. (5.31)

Figure 5.6 shows different optical resonator configurations, which are represented by a dot
on the diagram. The green area highlights the stable configurations. If R1 = R2, the cavity is a
symmetrical resonator and lies on the first bisector in fig. 5.6.

Here are values of AdV’s cavity parameters for both North and West AdV’s arm cavities [36]:

LAFPC = 2999.8 m RIM = 1420 m REM = 1683 m,

yielding
gAFPC = gIM · gEM = 0.8705, (5.32)

with gIM and gEM < 0. The cavities are indeed stable and are not symmetric yet not that far from
being symmetrical concentric ones, i.e. R1 ≈ R2 ≈ −d/2. In that case, the field is focused at the
centre of the cavity.

Phase and resonant frequencies

From eq. (5.24), one can write the Gaussian beam phase as a function of the radial ρ and the
axial z positions:

φ(ρ, z) = kz + kρ2

2R(z) − ψ(z). (5.33)

The first term is the accumulated phase during the propagation along the z-axis; the second one
is the bending of the wavefront (see eq. (5.27)); and the last one is the Gouy phase: a Gaussian
beam accumulates a delay compare to a planar wave (see eq. (5.28) and fig. 5.7).

From eq. (5.33), one can write the difference in phase on the axis after one round trip

2∆φ(ρ = 0) = 2kL− 2∆ψ (5.34)
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Figure 5.6: Representation of the hyperbola g1 g2 = 1. Each resonator can be represented by a
dot on this diagram. Given the stability condition 0 < g < 1, any point located in the blueish
green area represents a stable resonator. Three resonators of interest are highlighted: a represents
a planar resonator (Fabry-Perot), b represents a symmetric concentric one, and c represents AdV’s
configuration, which is a quasi-symmetric-concentric one.
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Figure 5.7: Gaussian beam’s Gouy phase, which is the accumulated phase by a Gaussian beam
along the z axis with respect to a planar wave. The farther away from the beam waist, the more
phase is accumulated.

where ∆φ(ρ = 0) = φ(0, z2)− φ(0, z1) is the Gouy phase shift accumulated during a single trip
and is defined as [78,79],

∆ψ = ψ(z2)− ψ(z1) = arccos (±√g), (5.35)
where the plus sign is chosen if g1 and g2 are positive, and the minus sign when g1 and g2 are
negative. The approximate g parameter of AdV has been estimated to 0.8705, so the Gouy phase
shift per single trip of AdV’s arm cavity is

∆ψAFPC = 2.774. (5.36)

Due to the Gouy phase, the resonance condition is modified compared to a planar resonator.
The phase accumulated along a cavity round trip must verify

2∆φ(ρ = 0) = q2π, q ∈ Z, (5.37)

which yields
νq = ∆νFSR

[
q + ∆ψ

π

]
. (5.38)
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5.3. Spherical-mirror resonators

5.3.2 Infinite-sized mirror modes: Hermite-Gaussian modes (HGM)
The equation satisfied by the wave function is the Helmholtz equation. One can find infinite,
countable, and complete orthogonal sets of modes that are solutions of this equation (bases). The
chapter 3 of [77] and the article [78] provide detailed mathematical developments to show that
HGM, Laguerre-Gaussian modes, and Bessel-Gaussian modes are sets of solutions to the paraxial
Helmholtz equation, considering infinite-sized mirrors. In the case of perfect spherical mirrors
(radial symmetry), the Laguerre-Gaussian basis is a natural basis because these modes, too, have
such a radial symmetry. Be that as it may, I will focus only on HGM, for they are the simplest
and the most commonly used.

Hermite-Gaussian modes: amplitudes and orders

The HGM are an orthogonal set of modes that can be used to decompose a paraxial beam using
Cartesian coordinates. The transverse profile is the product of a function in x and one in y, whose
referred index is respectively l and m. The complex amplitudes of HGM are

Elp(ρ, z) =Alp
w0
w(z) exp

[
− ρ2

w2(z)

]
×Hl

(√
2x

w(z)

)
Hp

(√
2 y

w(z)

)
× exp

[
−j
(
kz + kρ2

2R(z) − (l + p+ 1)ψ(z)
)]
,

(5.39)

where Alp is a normalisation constant depending on l and p, Hn are Hermite polynomials.
Comparing eqs. (5.24) and (5.39), one can notice that the HGM are waves whose complex

envelope are modulated forms of the Gaussian beam and whose phase is shifted. Both of these
modifications depend on the values of l and p. A Hermite-Gaussian mode’s profile is determined
by a Hermite polynomial multiplied by a Gaussian profile. One can first study the effect of a
single Hermite-Gaussian function, which is defined by

Gn(u) = Hn(u) exp
(
−u2

2

)
. (5.40)

Figure 5.8 shows the shapes of the first Hermite-Gaussian functions. First, note that the index
n is the number of zeros of the polynomial; hence, an odd index yields an odd function, and an
even index yields an even function. Then, a very important piece of information is that the profile
becomes broader when n increases.

The two numbers l and p define the order N of the Hermite-Gaussian mode as

N = l + p, l, p ∈ N (5.41)

and give its name HGlp. There are always N + 1 modes of order N . From eq. (5.39) letting
l = p = 0 arises the same expression as eq. (5.24); therefore the HG00, or the fundamental mode,
is described by eq. (5.24) just as the free space Gaussian beam. The other modes are called
higher-order modes (HOMs). Figure 5.9 shows HGM for l, p ∈ {1, 2}. One can see the zeros of
each polynomial according to the index values; these zeros correspond to dark fringes on the
beam transverse profiles. Moreover, one can see, as well, the broadening of the beam profiles for
increasing N .

Hermite-Gaussian modes: Gouy phases and resonant frequencies

Another interesting point yielded by eq. (5.39) is that the cavity Gouy phase increases with the
mode order as

∆ψN = (N + 1) ∆ψ. (5.42)
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Figure 5.8: Normalised Gn(u) for n = {0, 1, 2, 3}. The profile becomes broader when n increases.

Figure 5.9: HGM intensity profiles for l = 0, 1, 2 and p = 0, 1, 2. One can see the zeros of the
polynomials corresponding to the anti-nodes.
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5.3. Spherical-mirror resonators

The higher the mode order, the more phase the beam will accumulate along the propagation
direction. In chapter 3, the beat note that can lead to an OPI is defined as the frequency difference
between the fundamental mode and an HOM; therefore, when it comes to compute the parametric
gains, we are only interested in the frequency difference rather than the true frequency of an HOM.
That is why we set the fundamental mode frequency to 0 and use ∆ψN = N∆ψ.

From eqs. (5.38) and (5.42) comes the expression of the resonant frequencies:

νlp,q = ∆νFSR
[
q + (N + 1)∆ψ

π

]
. (5.43)

For l = p = 0, this expression yields the same as eq. (5.38). The frequency difference between two
adjacent orders is the Transverse Mode Spacing (TMS) δνTMS and writes

δνTMS = ∆νFSR
∆ψ
π
. (5.44)

The HGM basis is easy to implement as the mode shapes are provided by simple analytical
formulas, but it does not include the effects of the deviations from the spherical shape due to
fabrication imperfections or light absorption within the coating. Finally, it does not include finite
size effects such as the diffraction loss, which must be estimated separately.

Hermite-Gaussian modes: diffraction loss estimation

Diffraction loss5 stems from the finite size of the cavity mirrors. We evaluate diffraction losses
for HGM like in [55], by evaluating the ratio of the light flux within the AdV’s mirrors’ coating
radius Rcoating to the total flux. To do so, we first create a disc mesh larger than the coating
diameter by a factor C — this is the red circle in fig. 5.10. Secondly, we compute the intensity of
the mode over this mesh. Then, we truncate the mode at the disc of the coating diameter — the
green circle in fig. 5.10. Finally, we calculate the energy fraction that is not within the green disc,
that is, the energy that is lost, leading to the diffraction loss:

diffraction loss = 1− intensity in small disc
intensity in large disc (5.45)

Convergence with respect to C The factor C enables an artificial infinite circle. To make
the circle infinite-like, it only needs be large enough so that it comprises most of the energy of
the larger considered HGM. To find this minimum value of C, we compute the diffraction loss of
the HG44 for different values of C at a fixed Γ, where Γ is the number of pixels on the coating
diameter. Γ is set to 3500 (∆x ≈ 10 µm) so that it is high enough to ensure that the results not be
biased. The result is shown in fig. 5.11 (a). A convergence is reached from C = 1.5. We, therefore,
endorse that 1.5 times Rcoating is enough to use order-8 modes.

Convergence with respect to the grid size Making Γ vary instead of C, which is now fixed
to 1.5, we can perform the same process. Figure 5.11 (b) shows the diffraction loss of the same
HG44 with respect to Γ at a fixed C0 = 1.5. From Γ = 650, a convergence is reached.

Conclusion We can estimate HGM’s diffraction losses as in [55], setting C ≥ 1.5 to mimic an
infinite disc, providing that we compute the HGM with Γ ≥ 650. One can now plot the diffraction
losses of the HGM, shown in fig. 5.12. The diffraction losses do increase while increasing the
optical mode order. The diffraction loss of the HG00 (or TEM00) is 3.23× 10−2 ppm. The arm
cavity finesse is determined by the total losses of the arm cavity fundamental mode (eq. (5.15)).
The transmissivities of AdV’s Input Mirrors (IMs) are around 13 760 ppm, dominating the total
arm cavity losses and yielding an arm cavity finesse of approximately 455 ; it matches the measured
AdV’s finesses.

5Sometime referred to as clipping loss
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5. Optical modes of Advanced Virgo’s arm cavities

Figure 5.10: Method to estimate the diffraction losses of the HGM. This one is the HG44. The
green circle highlights the coating radius Rcoating of the mirrors of AdV’s arm cavities. The
red circle highlights a larger radius built to mimic an infinite mirror and is C times larger than
Rcoating.
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Figure 5.11: Convergence tests for the HG44 diffraction loss. (a) Diffraction loss while making C
vary, with a fixed Γ0 = 3500. A convergence is reached for C = 1.5. (b) Diffraction loss while
making Γ vary, with a fixed C0 = 1.5. A convergence is reached from Γ = 650.
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Figure 5.12: Diffraction losses of HGM. The green line shows the IM transmissivity (' 13 760 ppm).
The red dashed lines represent the mode orders. Modes are sorted first by order, then, within an
order, by increasing diffraction loss.

5.3.3 Finite-sized mirror modes (FSMM)

The HGM are solutions to the paraxial Helmholtz equation considering infinite-sized-mirror
spherical resonators. In reality, mirrors have a finite size that originates diffraction losses;
inasmuch as the transverse beam profile is broadening while increasing the mode order, high
order modes will suffer even more from this effect. Therefore, HGM may not be good enough
approximations to describe the transverse optical modes of a finite-sized-mirror resonator. In the
following, I numerically find solution of the paraxial Helmoltz equation with arbitrary boundary
conditions (arbitrary mirror size and shape).

Amplitudes, Gouy phases, and diffraction losses

Consider the linear system introduced in fig. 5.2, where the input is the optical field to the right
of M1 (that is to say the input wave after its transmission through M1), and the output the same
wave after a single round trip; respectively, their complex amplitudes correspond to E20 and E21
in fig. 5.3, which will be recalled E1 and E2 here for convenience. The conditions for a wave to
be a mode is that it retraces both its amplitude (to within a constant) and phase (to within an
integer multiple of 2π) after a cavity round trip, i.e.,

E2(x, y) = µE1(x, y), (5.46)
arg(µ) = q 2π, (5.47)

where µ is then the multiplicative factor of a single round trip, i.e., r1 r2 e
jk2L. On the other hand,

the linear system can be written as [77]

E2(x, y) =
+∞∫∫
−∞

K12(x, y;x′, y′)E1(x′, y′) dx′dy′, (5.48)

where K12(x, y;x′, y′) represents the contribution of the input at x′ and y′ to the output at x
and y. In linear systems theory, such a function is called the impulse-response function, for it is
the output of the system if the input is an impulse signal (Dirac delta function). Substituting

63



5. Optical modes of Advanced Virgo’s arm cavities

eq. (5.46) in eq. (5.48) yields

+∞∫∫
−∞

K12(x, y;x′, y′)E1(x′, y′) dx′dy′ = µE1(x, y). (5.49)

This becomes an eigenvalue problem where the eigenfunctions Elp are the transverse optical modes’
amplitudes, and the eigenvalues µlp are the associated multiplicative factors, from which can
be extracted the diffraction losses and the Gouy phases. The determination of the transverse
optical modes is not straightforward, but, considering some crucial simplifying assumptions, which
are actually very-well describing this problem, the eigenvalue problem becomes tractable. These
assumptions are (i) the dimensions of the resonator are much larger than the wavelength (paraxial
approximation), and (ii) the field travelling within the cavity is essentially transverse electromag-
netic (TEM) [78]. This eigenvalue problem is solvable insofar as the function K12(x, y;x′, y′) is
known. After a single trip, the contribution of the optical field at x′ and y′ to the optical field at
x and y is described by the propagator K12(x, y;x′, y′) as

K12(x, y;x′, y′) = jk

2π
exp [−jk ρ(x, y;x′, y′)]

ρ(x, y;x,′ y′) , (5.50)

where ρ(x, y;x,′ y′) is the optical path length between the input position and the output position.
However, solving the integral equation is tedious and only yields low-loss modes [80]. That is

why another technique has been developed and is introduced in [80]. The idea is to convert the
integral equation to a matrix equation by kernel expansion. The eigenvalue problem becomes

KE = µE ⇐⇒ (K − µ I) E = 0, (5.51)

where K is the propagator matrix, and I is the identity matrix. The propagator matrix is the
operator for which the eigenfunctions and the eigenvalues need to be found. Using eq. (5.50) in
eq. (5.49), one can then identity K from eq. (5.51):

K(x, y;x′, y′) = K12(x, y;x′, y′) dx′dy′, (5.52)

where K(x, y;x′y′) is the value of the matrix K at the indices representing the passage from the
position (x, y) to the position (x′, y′), dx′ and dy′ are the mesh spacing on which the input field is
computed, towards the x axis and the y axis respectively; in the following dx = dy = dx′ = dy′.

Let us again specify a bit more the problem: what has been called input and output so far,
are, in our case of an optical cavity, the mirrors IM and End Mirror (EM) already introduced in
chapter 2. Thus, the propagation from the input mirror to the end mirror can be represented by
the propagator matrix KIM→EM, and the propagator of a cavity round trip is

Kround trip = KEM→IMKIM→EM. (5.53)

Once the propagator matrix is known, the eigenvalue problem

Kround tripEIM
i = µiE

IM
i (5.54)

is tractable: the eigenvector EIM
i is the amplitude fields of the ith transverse optical mode at the

input mirror, and from the eigenvalue µi are calculated the diffraction loss Ld,i and the Gouy
phase ψi [78], as

Ld,i = 1− |µi|2,
ψi = arg (µi).

(5.55)
(5.56)

From the Gouy phase, the resonant frequencies in FSR unit νi|FSR are

νi|FSR = ψi
π
. (5.57)
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Then, to obtain the transverse optical modes at the end mirror, it suffices to multiply the
eigenvectors of the input mirror by the propagator KIM→EM.

The simplification into a matrix eigenvalue problem allows us to compute the transverse optical
modes of AdV’s arm cavities. This mode basis will be referred to as ‘FSMM’. For the study
of OPIs in the next chapter, the optical modes of the cavities play an important role and the
question that arises now is ‘Does the choice between a finite-sized-mirror set of modes and an
infinite-sized-mirror one yield notable different results?’. That is what is going to be studied in
section 5.4. But, first, some crucial tests need to be performed: convergence tests.

Required computation mesh size

A numerical computation forces a discretisation of the problem. Hence, the need of choosing a
proper mesh on which to compute data: too thin and the computation will be too long or lead to
a memory overflow, too wide and the computation will yield erroneous results. In the following,
different tests of convergence will be shown for the HGM and the FSMM, and for two of the three
quantities characterising a transverse optical mode, namely the diffraction loss, and the Gouy
phase.

Notes on computation All of our computations and simulations are implemented in Matlab®

version 9.8.0.1323502 (R2020a) [81]. The diagonalisation of the kernel for the computation of the
FSMM is done thanks to the function eigs [82].

Notation of the FSMM Unlike the HGM, the FSMM cannot be labelled with the two indices
p and l. However, we are still able to define what the closest HGM order is (all of this will be
shown in section 5.4). I sort the FSMM first by increasing mode order, and then, within an order,
by increasing diffraction loss. Hence, the notation FSMM(n), with n starting from 1.

Diffraction losses The diffraction losses of FSMM are directly obtained from the eigenvalues of
the numerical diagonalisation of the propagation kernel over a cavity round trip (see section 5.3.3);
unlike the HGM’s, they need not be estimated separately. To look for a convergence, I computed
the diffraction losses of one hundred FSMM for different mesh sizes, namely for Γ from 30 to 210
(see section 5.3.2 for the definition of the grid thinness). The left panel of fig. 5.13 shows those
diffraction losses for some FSMM; ten modes, chosen from low-order modes to high-order ones,
representing the behaviour of all the sixty-five computed FSMM. Clearly, the grid thinness must
be higher than 50. The right panel shows a zoom in of the left panel in order to better discern the
small variations of non-absurd values; a grid thinness higher than 100 seems preferable; and if one
were to be very picky, one would demand at least 150.

Gouy phase Regarding the FSMM Gouy phases, the same method as for the diffraction losses
can be used. The results are shown in fig. 5.14. The behaviours of the Gouy phases with respect
to the grid thinness are similar to those of the diffraction losses. One can do the same conclusions.

Convergence tests: conclusion According to what I have just showed, a grid thinness of
more than 50 is required, more than 100 is preferable, and more than 150 would be optimal. In
the following simulations, I use 120.

5.4 Comparison between Hermite-Gaussian modes and finite-sized
mirror modes

A first benefit of the FSMM is that they do consider the finite (or the real) size of the mirrors, which
better describes the real problem. Moreover, the diagonalisation of the kernel directly provides
one with the diffraction losses of the modes, being more accurate as well. But a second benefit is
that mirror shapes can be chosen arbitrarily, which enables one to introduce any deformation of
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Figure 5.13: FSMM diffraction loss convergence tests: diffraction losses of ten FSMM for Γ from
30 to 210; the modes are arbitrarily chosen from low to high-order modes, and are representative
of the whole. The right panel is a zoom (Γ from 60 to 210) of the left panel.
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the mirrors due to thermal effects or fabrication imperfections (genuine mirror maps characterised
at the Laboratoire des Matériaux Avancés, Lyon, France). Note that fabrication imperfections
were not included in this thesis and will be the subject of future work.

In the following, I analyse the differences in diffraction loss, mode amplitude, and Gouy phase
between the HGM and FSMM basis sets. To do so, I sort the HGM following the same rule that
I use for sorting the FSMM, that is to say first by increasing mode order, then, within a mode
order, by increasing diffraction loss. Thus, we can use a single index as well (for instance HGM(1)
stands for HG00).

All the following results and conclusions on the comparison between these two sets of modes
are part of an article submitted to Physical Review A [83].

5.4.1 Diffraction losses

Figure 5.15(a) shows the diffraction losses for both sets of modes. Figure 5.15(b) shows the
linewidth differences between the two sets of modes, in unit of arm cavity linewidth. Except for the
HG00, the estimation method depicted in section 5.3.2 underestimates all HGM’s diffraction losses.
Note that the total losses of low-order modes are dominated by the input mirror transmittance
TIM ≈ 13 760 ppm [84–87] (green line in fig. 5.15(a)). The mirror losses Lm for a cavity round trip
are estimated to be around 75 ppm [62]. Hence, one can write P ≈ TIM (see section 5.1.3), and
the difference in diffraction loss Ld between HGM(1) and FSMM(1) does not cause a significant
difference in P. According to fig. 5.15(a), the difference between the diffraction losses of FSMM
and those evaluated for HGM amounts to about 10 % of the input mirror transmittance for mode
orders greater than 4. Therefore, the linewidths of all HGM and FSMM of order lower than 5 are
dominated by the input mirror transmittance: they are close to the measured cavity linewidth,
which is 107 Hz for AdV (see eq. (5.19)). The diffraction losses of HGM and FSMM of order
greater than 4, however, are no longer negligible compared to the input mirror transmittance;
then, diffraction loss discrepancies between the two basis sets will lead to significantly different
linewidths.

5.4.2 Mode amplitudes

In order to compare the mode amplitudes of FSMM and HGM, we decompose the vectors of one
basis set onto the other, by using the decomposition coefficient cij of any FSMM (index i) with
any HGM (index j):

cij =
∫∫
S

dx dy u∗i (x, y) vj(x, y), (5.58)

where i and j are mode integer indices, ui (resp. vj) are the FSMM (resp. HGM) mode amplitudes
and S is the mirror coating surface. Note that the energy of FSMM is distributed over a disc
(mirror coating), whereas HGM’s energy is distributed over the whole space such that a linear
superposition of FSMM will never exactly match a HGM.

In fig. 5.16(a), I represent |cij |2 for i = 2, and j ∈ {1, 2, ..., 36}. This figure is a representation
of the decomposition of FSMM(2) on the HGM basis set. We find that FSMM(2) is a linear
combination of the two order-one HGM: the HG01 and the HG10. Additionally, we noticed that
this is true for all low-order FSMM. It shows that the low-order FSMM amplitudes are always
very close to the HGM ones, as they can always be decomposed within a family of HGM with
same order. Conversely, as shown in fig. 5.16(b), the higher order FSMM(36) (high order mode
arbitrarily chosen) mode cannot be decomposed on only a single order of HGM. In the presented
case, it is a mixture of all odd orders from 7 on, though the higher the order, the lower their
contribution.

After plotting the decomposition of all the FSMM up to the ninth order, we notice that this
deviation initiates after order 6.
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Figure 5.15: (a) Diffraction losses of FSMM (crosses) and HGM (circles). The green line shows
the IM transmissivity. The red dashed lines represent the mode orders. Modes are sorted first
by order, then, within an order, by increasing diffraction loss. (b) Linewidth difference between
FSMM and HGM. It is shown in arm cavity linewidth unit, which is around 110 Hz. The green
line highlights a linewidth difference of half an AdV’s cavity linewidth.

5.4.3 Gouy phases

In section 5.4.2, I showed that, unlike low-order modes, high-order FSMM could not be described
by a linear combination of HGM of a single order. Here, I show that unlike the HGM, the FSMM
resonant frequencies cannot be determined simply by multiplying the HG00 Gouy phase shift by
the order, as in eqs. (5.42) and (5.43).

Figure 5.17 shows the difference between HGM’s and FSMM’s Gouy phases, expressed in
units of FSR (50 kHz) on the left vertical axis, and in units of cavity linewidth δν (110 Hz) on the
vertical right axis. To obtain this curve, the Gouy phases have been wrapped within an interval of
length π, which allows to fold all the modes within a single FSR. The green line splits the graph
into two regions: in the above region, for orders higher than 8, the deviation is more than half a
cavity linewidth.

In chapter 3, we saw that the Gouy phase is definitely an important parameter, in that it sets
the OPI resonance condition. We expect that, if the Gouy phase shift amounts to a frequency
shift of less than half of the cavity linewidth, it will marginally impact the OPI gains.
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Figure 5.16: Decomposition of two FSMM on the HGM basis. The blue dots are the values of cij .
The red dashed lines demarcate the mode orders. (a) cij of the low-order FSMM(2). Non-null
values are all of order 1. (b) cij of the high-order FSMM(36).
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Figure 5.17: Frequency differences between the FSMM and their HGM partners. The left axis
gives the difference in FSR unit (50 kHz) while the right axis gives it in cavity linewidth unit
(110 Hz). The green horizontal line highlights a frequency difference of 0.5 linewidth unit.

5.4.4 Conclusion

For modes of order lower that 5, discrepancies between the two transverse optical mode basis sets
do not lead to any consequence in terms of linewidth, mode shapes, and Gouy phases. Thus, there
should be no consequences on the OPI gains. For mode orders of at least 5, the HGM basis might
lead to wrong results in the OPI gains calculation. Therefore, we consider that for orders higher
than 4, the more resource-consuming FSMM should be required.

5.5 Thermal effect

The laser energy is partially absorbed both by coatings and in the bulk of mirrors. This causes a
temperature gradient, which originates two effects. First, a gradient of refractive index in the bulk
of input mirrors modifies the mode matching condition but affects neither the cavity linewidth
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nor the mode frequencies. Second, a deformation of the mirror surface, which modifies the mode
shapes and frequencies. In this section, I evaluate the impact of this second effect on the properties
of cavity modes by comparing FSMM obtained for purely spherical mirrors with FSMM obtained
for thermally deformed mirrors.
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Figure 5.18: (a) Input mirror profiles with (dashed red line) and without thermal effect (blue
solid line). (b) Frequency difference between FSMM modes with and without thermal effect. It is
expressed in FSR unit (50 kHz) on the left axis, and in cavity linewidth unit (110 Hz) on the right
axis.

The deformation profile is obtained by solving the linear thermoelastic equations [88]. Fig-
ure 5.18(a) shows the purely spherical and thermally deformed profiles of an AdV input mirror6,
for an intracavity power of 300 kW7. In the second case, we fit the centre part of the mirror to
extract a radius of curvature. The results are shown in table 5.1.

In order to evaluate the incidence of this effect on the optical cavity parameters, we compute
the FSMM with and without thermal effect on the two cavity mirrors. Figure 5.18(b) shows the
frequency differences between the two situations. We see that optical modes acquire a different
Gouy phase among a similar order, and that the frequency shift starts to be significant already
for very low orders.

6The deformations profiles were obtained thanks to a code provided by Mikhaël Pichot du Mezeray (Artemis,
Nice, France).

7This intracavity power is obtained for an input laser power of 50 W, which is the Observing Run 3 (O3)
nominal value. Let us recall here eq. (2.35): Pintracavity ≈ 6000Pinput power.
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5.6. Summary

Table 5.1: Radii of curvature of the NIM and the glsnem, with (blue) and without (red) taking
into account the thermal effects.

No thermal effect With thermal effect
NIM 1424.6 m 1432.1 m

North End Mirror (NEM) 1695.0 m 1702.3 m

5.6 Summary

The arm cavities of AdV are built to improve the detector sensitivity by increasing the available
optical power and effective length. The laser beam injected into the interferometer is a Gaussian
beam, which will continue travelling within the cavities by bouncing back and forth between the
two mirrors of the cavities, if the cavity is stable (see eq. (5.31)), and if the beam frequency matches
the resonance condition (see eq. (5.8)). Thus, the circulating field sums up with the constantly
entering field so that the cavity acts as an amplifier for selected frequencies (the different beam
frequencies allowed in the cavity are the longitudinal modes). The optical gain of AdV’s arm
cavities is about 300.

In reality, the Gaussian mode, or fundamental mode, can scatter to higher-order transverse
modes for various reasons, such as imperfections on the mirrors or a possible displacement of
a mirror. The latter will be of interest in the next chapter. The photon energy levels that are
authorised by the cavity are those respecting eq. (5.43). The beams fulfilling this equation can
be calculated by solving the paraxial Helmholtz equation (eq. (5.23)). Considering a perfect
spherical-mirror cavity whose mirrors are of infinite size, the HGM is one of the complete, countable,
and infinite sets of modes solving the equation. It is a rather simple basis to use and it does
not consume too much resource in terms of numerical computation. But it does not allow to
consider fabrication imperfections for instance. Moreover, it cannot provide diffraction losses that
must then be estimated. Here comes the interest of computing the transverse optical modes by a
numerical resolution of the paraxial equation with finite-sized mirrors: we refer to this basis as
FSMM. This basis has the advantage of better describing the modes of the cavity but is much
more complex to solve and therefore requires more computing time.

The scattering from the fundamental mode to a higher-order one from the motion of a mirror
is the source of the OPI of the next chapter. This instabilities are driven by the interaction
between these aforementioned optical modes and a mechanical mode. That is why the choice
of the transverse optical mode basis is crucial in our study. Hence, I have compared the two
transverse optical mode bases with respect to three parameters characterising an optical mode:
its diffraction loss (losses playing on the resonance linewidth), its amplitude shape, and its Gouy
phase (setting the resonant frequency). I have shown that low-order modes (up to 5) HGM and
FSMM behave similarly and the choice of the basis does not change anything in terms of resonance
linewidth, nor in terms of Gouy phase. Furthermore, for low-order modes, the passage from a
basis to another can be done via a finite matrix: it is possible to decompose a FSMM of low order
into a linear combination of HGM of the same order. Therefore, any operation on a FSMM can
be transposed onto an operation of a finite linear combination of HGM, and vice versa. However,
none of this is true for high-order modes. I have shown that the two bases eventually depart
from each other and the HGM basis is no longer precise enough to describe the transverse optical
modes of the cavities. That is why we have chosen to use the FSMM basis, although it is much
more resource-consuming.
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Chapter 6

Optomechanical parametric instability
gain computation in the Advanced Virgo
configuration

In chapter 3 was introduced the phenomenon of optomechanical parametric instability (OPI)
within the interferometric gravitational-wave detectors. I defined the mechanical parametric gain
thanks to which we can now estimate the potential unstable mechanical modes of Advanced Virgo
(AdV) in the Observing Run 3 (O3) and Observing Run 4 (O4) configurations.

This chapter focuses on these computations. First, an introduction on the numerical com-
putation that we performed is given: the code and its input parameters, the validation of our
framework, and the various configurations. Second, the impacts and effects on the OPIs of various
parameters, namely the mirrors’ radii of curvature, the diffraction losses, and the optical mode
bases are discussed. Then, I confront the impact of the arm cavities, the Power Recycling Cavity
(PRC), and the Signal Recycling Cavity (SRC). The simulation results are shown in the last
sections of this chapter. They allowed us to track the OPI event observed by AdV in January
2020. Then, as O4 has not started yet, the Virgo collaboration needs to know the interferometer’s
OPI behaviour considering O4 parameters.

6.1 Numerical computation and its validation

6.1.1 Program and parameters
I have written an object-oriented Matlab® program implementing the classical feedback system
method that has been introduced in section 3.3. All the results presented in the following are
obtained with this program. It requires a few inputs: mechanical modes that are obtained by finite
element analysis (FEA) simulations combined with quality factor (Q factor) measurements (see
section 4.1); optical modes obtained with different mirror models (see section 5.3). Ultimately, the
program provides us with the prefactors, the optical transfer coefficients Gn, the spatial overlap
parameters Bm,n, from which it derives the parametric gains Rm for all mechanical modes m. A
block diagram in fig. 6.1 helps visualise the whole OPI computation process.

The parameters that are used are those of table 4.1 and table 6.1. The mechanical Q factors
are those labelled as Qinf in fig. 6.1, which are the QFEA inferred by the Qmeas (see chapter 4).
We chose this set of Q factors, for they are the most accurate ones. When the interferometer
configuration considered is that of O3, the transmittance of Signal Recycling Mirror (SRM) is set
to 1 and SRC’s Gouy phase is set to 0 to mimic the absence of SRC.

6.1.2 Comparison with the Finesse software
To validate our code, we compared its results with those obtained with the Finesse software [89,90].
The parametric gain obtained with Finesse for one mechanical mode and two arm cavity mirrors
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Virgo configuration
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Figure 6.1: Block diagram summarising the links between computations and their outputs.
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6.2. Some interesting effects on the optomechanical parametric instability

Advanced Virgo’s O3 and O4 optical configuration parameters
Arm lengths 2999.8 m
Transmittance NIM 13 770 ppm
Transmittance NEM 4.4 ppm
Transmittance WIM 13 750 ppm
Transmittance WEM 4.3 ppm
Transmittance PRM 48 400 ppm
Transmittance SRM 400 000 ppm
Round trip loss 75 ppm
Distance from BS to NIM (LBS-NIM) 6.0167 m
Distance from BS to WIM (LBS-WIM) 5.7856 m
Distance from BS to PRM (LBS-PRM) 6.0513 m
Distance from BS to SRM (LBS-SRM) 6.015 m
Intracavity power 300 kW
Laser wavelength 1064 nm
Gouy phase of PRC 1.8 mrad
Gouy phase of SRC 1.8 mrad
Radius of curvature of NIM 1424.56 m
Radius of curvature of WIM 1424.58 m

Table 6.1: OPI simulation optical parameters. For convenience, all acronyms have been used in
this table. If they are not defined yet, please refer to the acronym table at the end of this thesis.

is shown in fig. 6.2(a). In fig. 6.2(b), I plot the relative difference between the OPI gain obtained
by Finesse and the OPI gain obtained by eq. (3.3), using finite-sized mirror modes (FSMM)
and Hermite-Gaussian modes (HGM). We note a difference of a few percent at maximum. The
asymmetry between the blue (North End Mirror (NEM)) and red (West End Mirror (WEM))
curve stems from the small parameter differences between the two arm cavities. This comparison
has been performed with many other mechanical modes and showed similar results. Note that
using eq. (3.3) is much faster than using Finesse.

6.1.3 Comparison with Evans et al. article
In [55], Fig. 4 shows the optical gains G±n of a HG11 and the parametric gain Rm,HG11 of a
mechanical mode (shown in fig. 6.3) with this HG11 optical mode, considering a single arm cavity.
The aforementioned figure from [55] is given in fig. 6.4(a), while fig. 6.4(b) shows the outcome of
our program, fed by aLIGO’s input parameters provided in [55]. Note that [55] contains an error
of a factor 2 in the parametric gain (as mentioned in [56]): to obtain this figure, one shall use the
erroneous parametric gain formula.

6.2 Some interesting effects on the optomechanical parametric
instability

6.2.1 Effect of the optical losses
In this section, I demonstrate a counter-intuitive effect of optical losses on the OPI gains. Intuitively,
if optical losses increase, the parametric gains become lower since the optical linewidths increase
as well. Here, I show that, if the OPI resonance condition is not exactly fulfilled, broadening
the optical mode response can increase the gain such that the gain variation does not vary
monotonously with the diffraction loss. This is best shown in fig. 6.5(a), where the parametric
gain of a mechanical mode is plotted against the optical diffraction losses of the main optical
contributor. In this example, the gain first increases from around 0.04 below 102 ppm to 0.1 at
2× 104 ppm, before decreasing at higher loss values, as expected. This appears also in fig. 6.5(b),
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Figure 6.2: (a) OPI gain obtained with Finesse for one mechanical mode on mirror NEM (blue)
and WEM (red). (b) Relative difference between (a) and the OPI gain obtained with eq. (3.3)
using FSMM (solid lines) and HGM (dashed lines).

Figure 6.3: On the left: surface displacement amplitude normal to the surface um ·z of a mechanical
mode of an aLIGO arm cavity mirror near 30 kHz. On the right: basis function fHG11 of a HG11
optical mode. From [55].
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Figure 6.4: (a) Fig. 4 from [55]: optical gains G+
HG11 and G−HG11, and parametric gain Rm,HG11.

m is a LIGO’s mirror mechanical mode shown in Fig. 3 of [55]. (b) Same data obtained by our
program.
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Figure 6.5: (a) Rm of a mechanical mode of frequency 12.552 kHz while varying artificially the
diffraction losses of optical modes. (b) Optical gain Gn of the 12.552 kHz FSMM mode versus
mechanical frequency for two arbitrary diffraction losses: the blue line is for a diffraction loss of
0 ppm, and the red one is for 21 540 ppm (red bullet at the peak on (a)). The arrow points the
minimum between the two resonances on the blue curve and the disappearance of that minimum
on the red curve. The grey-shaded area highlights a frequency band in which Gn is higher when
the diffraction loss is higher.

where the optical gain Gn of the main optical contributor to the parametric gain of the mechanical
mode of fig. 6.5(a) is represented as a function of the mechanical mode frequency, for two different
values of diffraction losses. There exists a whole frequency region where the gain is higher for
higher diffraction losses. At low losses, the two resonance peaks are well separated such that
there is a minimum in between (black arrow). A loss increase from 0 to 21540 ppm (red bullet at
maximum of fig. 6.5(a)) broadens the peaks and lead to the red curve, which has no minimum any
more (black arrow), and which shows higher values in a whole frequency region (grey-shaded area
on fig. 6.5(b)). Finally, if the losses were increased further, the red curve would start lowering and
the grey-shaded area would vanish.
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Figure 6.6: Rm of the 33.750 kHz mechanical mode (see inset) while artificially modifying the
mechanical frequency, using the two different optical mode basis (red: HGM, blue: FSMM). The
dashed lines point the maximums of the two curves, and emphasise the height and frequency
change.

6.2.2 Impact of the optical mode basis
In this paragraph, I study the impact of the model used to compute the optical modes. I compare
the OPI gains obtained with the HGM and FSMM bases. As explained in section 5.4, the HGM
and the FSMM show significant discrepancies from order 5 and should give significantly different
parametric gains at high order. Indeed, a Gouy phase shift causes a resonant frequency shift of
the optical function transfer; a diffraction loss difference implies different linewidths, and, thus, a
different optical gain; different shapes lead to different overlap parameters.

As expected, we find that there is only a marginal difference between the two models if optical
modes of order below 5 are involved. In fig. 6.6, I plot the gain of a mechanical mode versus its
frequency using the two optical mode basis sets. This mode has been chosen because the main
optical contributor to the OPI gain is an order 6 mode. There is a factor 3 between the two gain
maximums, and the two peaks are shifted by around 100 Hz, which corresponds to the optical
linewidth. This is in agreement with the conclusions of section 5.4; therefore, the FSMM basis
should be used.

6.2.3 Impact of a radius-of-curvature shift
Here, I study the impact on the gain of the radii of curvature of the optics. This will be useful to
estimate how the uncertainty on the radii of curvatures propagates. Within a cavity, the radii
of curvature RIM and REM set the resonant frequency, in that they set the cavity Gouy phase:
eqs. (3.10), (5.29), (5.30) and (5.35) for the HGM, and eqs. (3.10) and (5.56) for the FSMM. It is
interesting to quantify the resonant frequency shift with respect to the radius-of-curvature shift.
For this purpose, let us restrict to the HGM, since we have analytical formulas.

To do so, we calculate the derivative of the frequency expressed as a function of the radius of
curvature of the End Mirror (EM). With eqs. (3.10) and (5.42) and setting the fundamental mode
frequency to 0, the frequency in unit of Free Spectral Range (FSR) is

νn(REM) = −
Nn × arccos

(
−√gIMgEM

)
π

, (6.1)

and its derivative
dνn
dREM

= Nn LAFPC
2πR2

EM

√
gIM
gEM

1√
1− gIMgEM

. (6.2)
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Figure 6.7: (a): ν′n(REM)/Nn for an arm cavity, in AdV’s configuration (x = {1, 2, 3, 4}, L1,2,3,4 =
2999.8 m, and FSR ≈ 50 kHz). (b) parametric gain Rm of the mechanical mode of the third couple
of fig. 3.6 for various radii of curvature. A radius-of-curvature shift ultimately leads to a frequency
shit of the HOM, which, in turn, modifies the beat note, and then the optical resonant frequency.
The optical mode is an order 2, then the frequency shift matches the one expected by (a).

Figure 6.7(a) shows the function dνn

dREM
for a Virgo arm cavity, i.e. LAFPC = 2999.8 m and

FSR ≈ 50 kHz. Roughly, the frequency derivative is around 30Nn Hz m−1.
Figure 6.7(b) shows the parametric gain of the mechanical mode of the third couple of fig. 3.6

(again) against its frequency for different radii of curvature. There is a shift of around 600 Hz
when the radius of curvature is shifted by around 10 m. This matches the expected value: the
main optical contributor to this mechanical mode is an order 2 (Nn = 2); therefore the expected
frequency shift is around 30× 2× 10 = 600 Hz for a 10 m-shift of the radii of curvature. However,
the resonance not only is shifted, but also the maximum gain is modified. The reason is that a
radius-of-curvature shift causes a beam radius shift, and the optical mode shapes are consequently
modified; therefore, both the optical gain and the overlap parameter are modified.

6.3 Accounting for mechanical frequency and optical working point
uncertainties

In chapter 4, it is shown that the frequency uncertainty standard deviation is σFEA = 0.15 %.
This uncertainty is equivalent to an uncertainty on the radii of curvature. We can assume that
99 % of the population is included within ±3.5σFEA = 0.5 % (see section 4.1). We have computed
mechanical modes up to 157 kHz. Therefore, the highest uncertainty on the mechanical frequencies
is around ±780 Hz, which can be much larger than optical resonance linewidths. Inasmuch as the
mechanical frequency sets the actual optical gain, those uncertainties can strongly distort the OPI
results.

In the end, we must then take into account both the uncertainty on the radii of curvatures and
the uncertainty on the mechanical mode frequencies. This can be done by doing the simulation
for a range of end mirror radii of curvatures around the nominal values. A frequency shift of
780 Hz matches a radius-of-curvature shift of around 25 m for the fundamental mode. Therefore,
instead of looking for instabilities close to the estimated radii of curvature, we should compute the
parametric gains for a radius-of-curvature range of approximately 50 m centred at the expected
radius of curvature.

Another reason for scanning the radii of curvature of the EMs is that the envisioned OPI
mitigation technique relies on a system that enables the tuning of the mirrors’ radii of curvature.
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It comprises Ring Heaters (RHs) that are around the mirrors: a surface deformation stemming
from induced thermal gradients is used to fine tune the radii of curvature of the arm mirrors.
Only the EMs are heated because if the substrate of the Input Mirrors (IMs) is heated, the mode
matching condition is modified [91].

Note that in the O3 configuration, the designed radii of curvature of EMs are 1683 m [36].
However, the last measurement on site estimated it to be around 1667 m [62]. That is why the
following OPI simulations will be shown over a range centred at that radius of curvature. This
working point will be referred to as ‘estimated working point’.

6.4 Parametric gains for different optical configurations

I study here the impact of the different optical configurations, namely the single arm cavity, the
full interferometer (interferometer with arm cavities), the power-recycled interferometer, and the
power- and signal-recycled interferometer.

Figure 6.8 shows the positive parametric gains of all mechanical modes up to 70 kHz for the
four configurations. The working point is 1669.3 m because it is a working point at which at least
a mechanical mode is unstable in AdV’s O3 and O4 configurations. This mode will be labelled D
in the following. This logarithmic representation enables to distinguish some sort of lines on which
more mechanical modes get higher gains; they are separated by the Transverse Mode Spacing
(TMS) of about 6 kHz of AdV’s arm cavities.

The impact of the full interferometer is not relevant compare to the impact of the recycling
cavities, which multiply by more than 10 the parametric gain of the mechanical mode D. This is
better shown in fig. 6.9, where only the parametric gain of the mechanical mode D is plotted, while
artificially varying its frequency. The peaks of the parametric gain resonances in fig. 6.9 correspond
to the parametric gains of fig. 6.8 because the working point corresponds to the resonant frequency
(see table 6.5).

6.5 Observing Run 3 (O3): power-recycled interferometer

The O3 configuration is that of fig. 6.10. The O3 was actually split into two sub-runs: Observing
Run 3a (O3a) from 1st April 2019 to 1st October 2019, and Observing Run 3b (O3b) from 1st
November 2019 to 27th March 2020. In the meantime, AdV was being commissioned to increase
the input laser power from 18.5 W to 27 W, which is still twice less than the AdV’s O3 nominal
input power. The OPI event observed by AdV occurred during O3b, after the input power increase.
Until then, Virgo had probably never faced any OPI because its mirror Q factors are very low
(< 107).

Prior to that experimental observation of an OPI, we computed 1600 mechanical modes,
from 5.7 kHz to 70 kHz. We did not think it would be useful to compute more modes as aLIGO
experienced its instability at 15.54 kHz (fig. 3.4) and as the parametric gain is inversely proportional
to the square of the mechanical frequency (eq. (3.3)). But, an OPI was finally observed around
155 kHz; therefore, we expanded the mechanical mode computation up to 157 kHz, adding, thus,
11 150 more mechanical modes to the simulation. The mechanical frequency limit at 157 kHz
is minorised by the need to include sufficient mechanical modes whose frequencies are around
155 kHz, and majorised by the increase of mechanical mode density at high frequency.

6.5.1 O3: up to 70-kHz mechanical modes
In the following, I show two sets of results. Each figure is the result of the same parametric gain
calculation but using a different set of optical modes. Figure 6.11(a) shows the results for FSMM,
fig. 6.11(b) for FSMM including thermal effects due to coating absorption (see section 5.5). The
input power is the nominal one (50 W). NEM and WEM are scanned over a five-meter range,
which is within reach of the mirror RH system. In each OPI plot, the colour code is chosen
such that the grey-shaded scale is for gains lower than 1 (no instability), and the colourful scale
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Figure 6.8: Parametric gains Rm for all mechanical modes up to 70 kHz of the IM (blue crosses)
and EM (red crosses), at 50 W input power. The red dashed lines highlight Rm = 1. (a)
Single arm cavity. (b) Full interferometer. (c) Power-recycled interferometer. (d) Power- and
signal-recycled interferometer.
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Figure 6.9: parametric gain Rm of a mechanical mode near 61.15 kHz while artificially modifying
its frequency, for the four different configurations, at 50 W input power.
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Figure 6.10: AdV’s O3 configuration.

is for Rm > 1 (instability). The involved mechanical modes are indicated by the arrows and
corresponding letters; they are represented together with their main optical modes contributors at
the bottom, in fig. 6.11(c resp. f). Note that the results obtained with HGM are indistinguishable
from that of fig. 6.11(a); therefore, I did not include the corresponding figure. Indeed, only
low order optical modes are involved here such that HGM and FSMM give the same result. In
fig. 6.11(c resp. f), I plot the number of unstable modes (red solid line) in the range of fig. 6.11(a
resp. d) versus the optical power for FSMM without (resp. with) thermal effect. Modes that ring
on different mirrors are counted only once; it is referred to as ‘Number of unstable modes’. The
blue curve is the ratio of the area filled by instabilities SRm>1 to the total area Stot in fig. 6.11 (a
resp. d) versus the optical power1.

The three unstable mechanical modes without thermal effects are labelled D, E, and L; their
frequencies are respectively 61.154 kHz, 61.160 kHz, and 66.784 kHz. The mechanical modes D
and E ring with an optical mode of order 2, while the mechanical mode L rings with an order 3.
They become unstable from an optical input power of respectively 9 W, 26 W, and 27 W; as the
parametric gain is proportional to the input power, one can retrieve the parametric gains at any
input power from those power values (at which Rm = 1).

Taking into account the thermal effects, three modes are unstable at the nominal input power:
they are labelled M , N , and F ; their frequencies are respectively 66.888 kHz, 66.912 kHz, and
61.216 kHz. They become unstable from an optical input power of respectively 4.6 W, 35 W, and
42 W. Two other mechanical modes, becoming unstable from an input power of respectively 51 W
and 57 W; they are respectively labelled G and L, and their frequencies are respectively 61.231 kHz
and 66.784 kHz. The contributions of each optical mode to the cited mechanical modes, together
with the input power at which they become unstable (‘critical input power’), are summarised in
tables 6.2 and 6.3.

These results show that an OPI whose frequency is at most 70 kHz could have been observed
at the nominal power of O3a, although it would have been easily escaped with the end mirror
RHs since SRm>1/Stot ' 0.2 at 300 kW intracavity power. They also show that the thermal effect
caused by coating absorption has an important impact on the results at such high optical powers.

These results, too, are part of the article cited in section 5.4 [83].

1The maximum input power of 100 W is twice the nominal power of O4. Note, however, that O4 will have a
different interferometer configuration.
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Figure 6.11: (a) Rm versus radii of curvature of NEM and WEM, using FSMM without thermal
effect, for an input power of 50 W. The grey-shaded scale highlights the parametric gains lower
than 1, while the colourful scale highlights the instabilities (Rm > 1). (b) The mechanical mode
shapes and associated transverse optical mode contributing the most to the aforementioned
instabilities. (c) The red solid line is the number of unstable modes in the radius of curvature
range of (a), with respect to the optical input power (top) or intracavity power (bottom). The
blue curve is the ratio of the area filled by instabilities SRm>1 to the total area Stot in fig. 6.11 (a
resp. b) versus the optical power. The three dashed green lines highlight the input powers 18.5 W
(O3a actual), 27 W (O3b actual), and 50 W (O3 nominal). The figures (d) resp. (e) resp. (f) are
the same than (a) resp. (b) resp. (c), but taking into account the thermal effect.

83



6. Optomechanical parametric instability gain computation in the Advanced
Virgo configuration

α (%) β (%) γ (%) δ (%) Critical input
power (W)

D 93.3 5.5 9
E 77.3 15.2 26
L 89.3 10.2 27

Table 6.2: Optical contributions (in %) of O3 unstable mechanical modes, without thermal effect.
Last column: input power at which the corresponding mechanical mode becomes unstable (in W).

ε (%) ζ (%) η (%) θ (%) Critical input
power (W)

M 83.7 16.3 4.6
N 24.3 75.7 35
F 99.9 42
G 99.9 51
L 97.1 57

Table 6.3: Optical contributions (in %) of O3 unstable mechanical modes, with thermal effect.
Last column: input power at which the corresponding mechanical mode becomes unstable (in W).

6.5.2 O3b: OPI observation at Virgo around 150-kHz mechanical modes

On 7th January 2020 (during the O3b), an instability arose after a tuning of the working point
with the RHs: the detection electronics saturated due to an exponentially growing up 155.408 kHz
oscillation. It was soon identified as an OPI [92, 93] (article being written [62]). The rise time
enables to retrieve both the mechanical Q factor (estimated at around 2× 106) and the parametric
gain (estimated as 1.4 < Rm < 10); they will be referred to as respectively the ‘estimated
mechanical Q factor’ and the ‘estimated parametric gain range’.

Furthermore, the optical signal was visible on a phase camera of the arm cavity and let us
know that this instability rang with an optical mode of order 1. This is an interesting piece
of information, in that it enables to check whether an optical order 1 presents a resonance at
around 155.4 kHz at a working point of around 1667 m; indeed, the radius of curvature sets the
Gouy phase, and, thus, the resonant frequency, which varies according to the optical mode order
(eq. (6.1)). Figure 6.12(a) shows the optical gain functions Gn for orders 1, 2, and 3: AdV’s arm
cavities indeed present an order-1 resonance ringing at around 155.4 kHz. It can be better seen
in fig. 6.12(b). These resonances have been obtained numerically for a radius of curvature of
1666.25 m, which is pretty close to the measured working point (1667 m).

Then, we can compute the parametric gain of a custom mechanical mode. By custom, I mean
that its Q factor is set to the estimated one (2× 106), and its overlap with the two implied optical
modes is set to 1, to mimic a good-enough spatial matching. Thus, we can compare this parametric
gain to the estimated range (1.4 < Rm < 10). Figure 6.13(a) shows this parametric gain against
the mechanical frequency; the estimated mechanical Q factor can yield an OPI that is within the
estimated range. Should the overlap parameter be even lower, the parametric gain could still
be within the estimated range. In fig. 6.13(b) is shown the same type of 2D map already shown
in the previous section, except this time, only a single mechanical mode is considered, and its
frequency and Q factor are set to the estimated values. The same conclusion arises as the highest
parametric gain on the map is also within the expected range. In addition, it provides a second
verification of the working point yielding a resonance at 155.408 kHz.

Finally, to further investigate, we can plot again fig. 6.13(a) but using the computed mechanical
modes (and not the custom one). Thus, we can see whether there is at least a computed mechanical
mode that has a parametric gain between 1.4 and 10 ringing with an order-1 optical mode, at
a 155.408 kHz beat note (this type of plot allows to dispose of the computed mechanical mode
frequency, and, thus, of its uncertainty too). In fig. 6.14, one can see that there are actually
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Figure 6.12: (a) The optical gains Gn of three modes: an order 1, an order 2, and an order 3.
The order 1 has indeed a positive resonance around 155 kHz. (b) Zoom centred at the OPI event
frequency 155.408 kHz. These resonances have been obtained for a working point at 1666.25 m.
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Figure 6.13: (a) Parametric gain Rm, while artificially modifying the mechanical frequency, for a
custom mechanical mode with a 155.408 kHz frequency, a 2× 106 Q factor, and an overlap of 1
with the two optical modes in play. Considering all the measured parameters of the OPI of 7th
January 2020, our simulation indeed yields a parametric gain as 1.4 < Rm < 10 (greyed area).
(b) The maximum parametric gain of the same custom mechanical mode for different working
points. Again, the parametric gain matches that expected, and the resonant Gouy phase is around
the measured working point as well.
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Figure 6.14: Parametric gain Rm, while artificially modifying the mechanical frequency, for all
computed mechanical modes whose resonance rings with a gain Rm as 1.4 < Rm < 3.7. The
frequencies of these computed mechanical modes are comprised from 155.756 kHz to 155.827 kHz,
which is roughly 385 Hz away from the measured frequency.

some of them: the frequencies of all these modes are comprised from 155.756 kHz to 155.827 kHz.
Therefore, we can estimate the unstable mechanical frequency uncertainty to be around 385 Hz;
endorsing the expected uncertainty.

6.5.3 O3: conclusion
From the simulation of O3a, first, we learn that the AdV’s OPI density is very low; therefore,
even though AdV could have experienced an OPI during O3a, it would have been easily mitigated
thanks to the RHs. Also, AdV did not experience any OPI during O3a. The OPI density can
be drastically increased if the mechanical Q factors are 10 to 100 times higher. For example,
fig. 6.15 is the same as fig. 6.11(a) except that all mechanical Q factors have been set to 107. One
can see that the OPI density is much higher: there is almost no working point zone at which
no mechanical mode is unstable. That might explain why Virgo is less likely to face an OPI.
Furthermore, we are comparing two interferometers in two different configurations: AdV’s O3
configuration has no SRC, whereas aLIGO does. Therefore, it can be understandable that aLIGO
faces OPIs while AdV does not, even with a lower input power. Second, we learn that the thermal
effects have a non-negligible impact at such high powers.

The OPI experimental observation of 7th January 2020 permitted us to compare our code
to genuine data. By setting our simulation parameters to the values measured from these data,
we find that we do have mechanical modes that could be good candidates, that is, that have a
Q factor around 2× 106, a resonance with an order-1 optical mode at the measured frequency
of 155.408 kHz, around the measured working points of 1667 m, and whose parametric gain is
between 1.4 and 10. Moreover, it provides us with a good estimation of the unstable mechanical
mode frequency error, confirming that we must perform simulations over a range of at least 30 m
for the EM radii of curvature to take all possible uncertainties into account. So one could say that
what was an issue for Virgo, was actually a marvellous opportunity for the OPI team.

6.6 Observing Run 4 (O4): power- and signal-recycled interferometer

After the end of O3, the AdV detector is being upgraded in two different phases, called Advanced-
Virgo+ Phase I and Phase II, which will respectively lead to O4 and O5. During the first upgrade,
an additional mirror (SRM) will be included in the optical configuration and the input power
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Figure 6.15: Rm versus radii of curvature of NEM and WEM, using FSMM without thermal
effects, at 50 W input power (nominal power). All mechanical Q factors are set to 1× 107. The
grey-shaded scale highlights the parametric gains lower than 1, while the colourful scale highlights
the instabilities (Rm > 1).

will be doubled. Subsequently, the installation of larger END mirrors will be performed, and the
optical configuration will be redesigned during the AdV+ Phase II. In both cases, the optical
configuration of the interferometer will be different with respect to the current one, and a new
simulation campaign is being performed in order to study the possibility that new OPIs could
arise.

The main new feature of O4 is the insertion of the SRM (see section 2.2.2). The AdV’s O4
optical scheme is represented in fig. 6.16. As explained in section 2.2.2, the SRC is designed in such
a way that the sidebands are resonant, whereas the arm cavities are designed so that the carrier is
resonant. Therefore, intuitively, one can imagine that certain HOMs could ‘live’ longer within
the interferometer by being resonant in the SRC. Hence, optical modes with lower diffraction
losses, implying thinner resonances but higher gains. Gurkovsky et al. confirmed in [94] that a
signal-recycled interferometer is less likely to fall into an OPI trap because its optical linewidths
are smaller.

Figure 6.17, like fig. 6.11, shows the maximum parametric gains while making the END mirrors’
radii of curvature vary, considering the same input power, that is to say 50 W. Indeed, although
the actual input power will be doubled from O3 to O4, the nominal one is finally the same.
But, the main interest lies in the fact that, this way, the only visible impact is that of the SRC;
to ensure this, we also take into account the same mechanical modes as in section 6.5.1 in the
computation. The three unstable mechanical modes are labelled D, E, and L; they are the
same ones as in fig. 6.11, as expected. Their frequencies are respectively 61.164 kHz, 61.160 kHz,
and 66.784 kHz. They become unstable from an optical input power of respectively 6.7 W, 17 W,
and 24 W. Table 6.4 summarises these critical input powers, together with the optical mode
contributions. We do observe what was expected: the maximum parametric gains are higher, and
the resonances are sharper. The former statement can also be verified by noticing that the critical
input powers are lower than those of O3. The latter causes a lower density of instabilities, which
can be verified thanks to the ratio SRm>1/Stot in fig. 6.17(b). Note that the instability density
profile evolution in ‘steps’ is a direct effect of the sharper resonances.

This first study of O4 permitted to endorse our intuitions on the SRC impact, as well as what
was foreseen in [94]. The next step is to compute the parametric gains of all the mechanical modes
that we have obtained, that is, the 12 750 modes up to 157 kHz. Also, due to the mechanical
frequency uncertainties, we need to compute for many more working points: an interesting range
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Figure 6.16: AdV’s O4 configuration.

1665 1666 1667 1668 1669 1670
1665

1666

1667

1668

1669

1670

0 1 2 3 4 5 6 7

0 100 200 300 400 500 600
0

0.05

0.1

0.15

0.2

0.25
0 20 40 60 80 100

0

1

2

3

4

D

E
L

(a) (b)

Figure 6.17: (a) Rm versus radii of curvature of NEM and WEM, using FSMM without thermal
effect, at 50 W input power (nominal power); the mechanical modes are the same 1600 modes up
to 70 kHz. The grey-shaded scale highlights the parametric gains lower than 1, while the colourful
scale highlights the instabilities (Rm > 1).
(b) The red solid line is the number of unstable modes in the radius of curvature range of (a),
with respect to the optical input power (top) or intracavity power (bottom). The blue curve is
the ratio of the area filled by instabilities SRm>1 to the total area Stot in (a) versus the optical
power. The three dashed green lines highlight the input powers 18.5 W (O3a actual), 27 W (O3b
actual), and 50 W (O3 and O4 nominal). The O3 powers are left for comparing with fig. 6.11.
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6.7. Summary and conclusion

α (%) β (%) γ (%) δ (%) Critical input
power (W)

D 93.3 5.5 6.7
E 77.8 15.3 17
L 2.7 96.7 24

Table 6.4: Optical contributions (in %) of O3 unstable mechanical modes. Last column: input
power at which the corresponding mechanical mode becomes unstable (in W).

would be ±25 m around the expected working point, that is, from 1640 m to 1690 m. However,
inasmuch as the computation time is roughly proportional to the number of mechanical modes
and the number of working points, such a simulation would be approximately 200 times longer
than the simulation2 for fig. 6.11! Hence fig. 6.18: only five consecutive 5 m× 5 m ranges along
the diagonal have been chosen to compute the parametric gains of the 12 750 mechanical modes.
This should provide enough information, in that the maximum gains (and the minimum ones) are
more or less on the diagonal on the one hand, and the AdV’s working point is usually more or less
on the diagonal on the other hand.

The potential unstable mechanical modes are summarised in table 6.5. This table also shows
the maximum possible deviation due to uncertainties (±0.5 %) from the calculated mechanical
frequency, together with the associated radius-of-curvature deviation, which takes the optical
contributor order into account. This allows us to dismiss some mechanical modes if the working
point remains the same during O4; these modes are those for which |R|m− 1667| > ∆Rmax (dark
blueish green). One can recognise that all of these modes were already in play previously: those
that ring very close to the measured working point and those among which one, at least, has an
frequency uncertainty making it ring at our measured working point. But, they all have higher
parametric gains.

We can conclude that, in O4, the odds that AdV experience another OPI are rather high:
the resonances are at the same frequencies than for O3 and their amplitudes are even higher. If
the working point remains the same, we will be close to the same instability of January 2020
except that the parametric gain will be higher, which decrease the rising time of the OPI eq. (3.2).
By the way, due to all the commissioning work in progress, the working point might be pretty
different once O4 is started. Be that as it may, another interesting conclusion of these simulations
is that, indeed, the resonance linewidths are much sharper, both in terms of frequency or radius
of curvature; therefore, crossing over an instability should even be easier than in O3.

6.7 Summary and conclusion

The study of OPIs within the Virgo Collaboration was made first for O3 configuration; it was
actually mostly performed during the run and had to pass a series of validation tests and others;
hence, it could not be used as a prevision of AdV’s OPI behaviour. However, it helps us understand
that if AdV had never faced any OPI, it not only was a lucky strike, but also a behaviour that
seems to be pretty general in the O3 configuration. Regarding the intracavity power of O3
(relatively high compare to that of aLIGO when they encountered an OPI for the first time), the
main criterion that can explain such low parametric gains is then the fact that mechanical AdV’s
Q factors are much lower than aLIGO’s. We did see how the instability density increases when we
artificially increase the mechanical Q factors to one or two higher orders.

On 7th January 2020, Virgo, ‘at last’, encountered an OPI following a working point tuning.
This event allowed us to confront our code to a real situation and we did find an agreement
between them. This is how we eventually feel highly confident in our simulations and results.

For the next Observing run (O4), AdV’s configuration will be rather different that the previous
one, as the SRC will be installed. This extra cavity, resonant for the sidebands and anti-resonant

2This simulation takes about 2–3 days.
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Figure 6.18: (a) Rm versus radii of curvature of NEM and WEM, using FSMM without thermal
effect, at 50 W input power (nominal power), for the O4 configuration; the mechanical modes
are all the 12 750 modes up to 157 kHz. The grey-shaded scale highlights the parametric gains
lower than 1, while the colourful scale highlights the instabilities (Rm > 1). Any mechanical
mode’s resonance can be seen on both arm cavities; however, for a matter of clarity, only a single
arm cavity is pointed for each unstable mechanical mode, and the choice of the pointed axis is
motivated by nothing but clarity.
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6.7. Summary and conclusion

Label Frequency
(kHz)

∆νmax
(±102 Hz)

Optical
order R (m) ∆Rmax

(±m) Rm

A 16.015 0.80 3 1660.8 0.89 1.7344
B 23.128 1.2 4 1675.9 1.0 5.3664
C 23.258 1.2 4 1676.1 1.0 1.3776
D 61.154 3.1 2 1669.3 5.2 7.6253
E 61.160 3.1 2 1669.4 5.2 2.9983
F 61.216 3.1 2 1670.4 5.2 1.0805
G 61.231 3.1 2 1670.6 5.2 1.3914
H 61.676 3.1 2 1678.4 5.2 2.5652
I 61.705 3.1 2 1679.0 5.2 3.3382
J 61.759 3.1 2 1679.9 5.2 2.6389
K 66.150 3.3 3 1662.7 3.7 1.1813
L 66.784 3.3 3 1669.7 3.7 2.0182
M 66.888 3.3 3 1670.9 3.7 14.0449
N 66.912 3.3 3 1671.2 3.7 2.4578
O 67.567 3.4 3 1678.9 3.8 0.8203
P 67.616 3.4 3 1679.5 3.8 2.1297
Q 72.971 3.6 4 1674.8 3.0 1.7454
R 105.112 5.3 1 1655.6 18 1.4159
S 115.812 5.8 3 1659.3 6.4 1.0308
T 155.756 7.8 1 1678.4 26 4.4221
U 155.765 7.8 1 1678.7 26 3.2889
V 155.768 7.8 1 1678.8 26 4.6354
W 155.770 7.8 1 1678.9 26 3.9399
X 155.780 7.8 1 1679.2 26 1.3523

Table 6.5: All unstable mechanical mode frequencies of O4 over the the chosen range. ∆νmax
is the maximum possible frequency deviation due to uncertainties. R is the radius of curvature
at which the mechanical mode rings. Rm is the maximum parametric gain all over the range.
The optical order is the order of the main optical contributor to that OPI, that is to say at that
radius of curvature (or cavity Gouy phase). ∆Rmax is the maximum possible radius-of-curvature
deviation due to mechanical frequency uncertainties (it takes account of the optical mode order).
The dark blueish green rows point the mechanical modes that could be unstable even at the
measure working point of 1667 m. H, I, J , O, P , and Q could be in the vicinity of this working
point (in light blueish green); therefore, they might raise an OPI in case of working point tuning.

for the carrier, will trap more HOMs within the interferometer; an HOM living longer means a
mode with less losses; less losses induce a smaller linewidth; then resonances are much sharper
and their maximum gains are much higher. A double-recycled interferometer presents higher
instabilities but that can be crossed over more easily by slightly modifying the radii of curvature
of the EMs. After simulating, this is what we indeed notice. We can give the conclusion that
approximately 15 mechanical modes can be unstable in O4. We obtain all necessary information
upon these unstable modes, such as their frequencies, radius of curvature at which it rings, their
parametric gains (which can help know what is the minimum power at which the mode becomes
unstable), and the order of the main optical contributors.
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Conclusion

The OPI has now been observed at both Virgo and LIGO. Its study in AdV is of crucial importance
for at least two reasons: first, it is a power-proportional phenomenon and the power will continue
being increased in the next commissioning phases; second, given the characteristic detection time
of gravitational wave events lasts, at most, a few tens of seconds and the rather low frequency of
these events, one must try not to encounter any instability, lest one looses the apparatus control.

Within the Virgo Collaboration, a dozen of people work on three aspects of the OPI: the OPI
computation, the OPI mitigation, and the precursors3. We have seen that this thesis treats of the
OPI computation, requiring first the computation of the arm cavity mirrors’ mechanical modes
and that of the arm cavities’ optical modes.

Regarding the optical modes, I studied two different bases: one considering the finite size of the
mirrors (FSMM), and the HGM. The former demands to solve an eigenvalue problem but directly
provides us with the diffraction losses of the optical modes, while they need to be estimated for
the HGM. We showed that optical modes are significantly distinct from order 5. In all simulations
of chapter 6, we can see that some OPI ring with order-4 optical modes. Then, we consider that
we should use the FSMM for the OPI computation. Especially given that we also showed that a
higher-diffraction-loss optical mode, that is a higher-order mode, can be more likely to cause an
OPI due to its larger linewidth.

Another advantage of the FSMM is that they can be obtained with any custom mirror shape,
namely including thermal effect or considering the real maps of the mirrors rather than perfectly
spherical ones. A team of the Laboratoire des Matériaux Avancés (LMA), Lyon, France, mapped
the AdV’s mirrors. I tried to use these maps, but the results were not satisfying; this work is still
to be done.

We4 computed the mechanical modes via a FEA simulation that provided us with the mechanical
Q factors. A series of measurements on site allowed us to estimate a limit for the mechanical
frequency uncertainties, of which certain happen to be higher than the optical resonance linewidths.
We showed to what extent a mechanical frequency uncertainty can be transposed into a working
point uncertainty. Hence, we present data taking into account various radii of curvature of both
end mirrors.

Having the optical modes and the mechanical modes enables to calculate the optical gains,
which set the optical resonances, and the parametric gain of each mechanical mode thanks to an
object-oriented program that we have implemented. It is a remarkable tool given its flexibility,
but the process of computing the overlap parameters and the parametric gain between each couple
of optical and mechanical mode can take a non-negligible CPU time. And this process is all the
longer if we include various working points. That is why, the code is being updated to make it
lighter and faster. Also, an interesting technique that we have not used so far is, first, to determine
the optical resonant frequencies up to a certain order, for example 5 or 6, and then to select,
beforehand, the mechanical modes whose parametric gains need calculating according to their
frequencies. This technique would drastically decrease the number of mechanical modes to include
in the OPI computation.

Our first preliminary results arrived after O3 started. We performed a simulation using that
configuration regardless, for we, thus, could verify whether the results matched the observation; or

3Study of the state of some interferometer variables to try to predict an OPI before it arises.
4Here ‘we’ stands for the group, tough I did not participate to this part.
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Conclusion

I should say, the non-observation. Indeed, the first experimental observation of an OPI at Virgo
happened during O3b. We profited from this observation to perform more accurate simulations
that helped endorse the OPI nature of the observation on the one hand, and that gave even more
credit to our simulations for the future on the other hand.

This assurance permitted me to perform a set of simulations for AdV’s O4 configuration. This
configuration adds an extra optical cavity (SRC) and is foreseen to start in 2022. Therefore, we
can try to make our simulations as predictive as possible. That is why, I try to compute the
mechanical parametric gains over a larger range of working points. The simulations shows that
this extra cavity should not noticeably change the potential unstable mechanical modes from
an O3 configuration. It also shows, as expected, that the optical resonances are much thinner
because losses are lower, and, thus, the peaks of the resonances are higher, which, in turn, make
the parametric gains of already resonant modes higher. In definitive, during O4, AdV is likely to
face an OPI whose gain would be higher (increasing the speed of the instability), but it would
be easier to mitigate by slightly modifying the radius of curvature of an EM. As a very near
future work, a simulation with an even larger range and including the thermal effect could be an
interesting improvement.

The main improvement of Observing Run 5 (O5) will be the modification of the IMs: they will
get heavier and larger. The size and the mass of the mirror directly impact its natural modes.
Therefore, a new series of FEA simulations is needed; it is ongoing. As well, the optical modes
will be modified; we have not yet started the computation of these new optical modes. From
a parametric gain prospective, the heavier the mirror, the lower the gain. However, we cannot
state anything before computing at least all the modes. Indeed, the mechanical mode density can
increase, so can the optical mode one. Simulations need performing, also including the thermal
effect because the input power will be again increased.
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Résumé : Le 14 septembre 2015, la collaboration 
LIGO-Virgo 
onde gravitationnelle, produite par la fusion de deux 
trous noirs. Cette détection a confirmé l'existence des 
trous noirs et a permis de prouver celle des ondes 
gravitationnelles. Cela a nécessité de détecter un 
signal extrêmement faible  une amplitude relative 

de 10-22 Hz-1/2. Une telle prouesse a été 

décennie. 
 
Augmenter la puissance du laser entrant dans 

encore plus la sensibilité, parce cela diminue 
l'importance relative du bruit quantique du laser à 
haute fréquence. Cependant, des instabilités 
paramétriques optomécaniques limitent 
l'augmentation de la puissance optique. 
 

Cette thèse présente les simulations que nous 
avons effectuées de ces instabilités. Nous avons 
calculé le gain paramétrique de chaque mode 
mécanique des quatre miroirs suspendus des 

pendant la prise de données O3 (04/2019 
03/2020). Ce calcul met en jeu les modes 
mécaniques des miroirs ainsi que les modes 
optiques des cavités de bras. Nous montrons 

paramétriques de la taille finie des miroirs, ainsi 

thermique du laser dans les miroirs. Enfin, cette 
thèse donne également une prédiction sur les 
modes mécaniques qui seront potentiellement 
instables dans la configuration d'Advanced Virgo 
pendant la prochaine prise de données O4 qui 
devrait démarrer mi-2022. 
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Abstract : On 14 September 2015, the LIGO-Virgo 
collaboration performed the very first direct 
detection of a gravitational wave, emitted from a 
binary black hole merger. This detection 
demonstrated the existence of black holes and that 
of the gravitational waves. It required to detect an 
exceptionally weak signal  the order of 10-22 Hz-1/2 
in terms of strain amplitude. This tour de force was 
made possible thanks to several detector upgrades 
for over a decade. 
 
Increasing the laser power is a way to improve the 
sensitivity of interferometric gravitational-wave 
detectors for it reduces even more the relative 
quantum shot noise at high frequency. However, 
 

optomechanical parametric instabilities can set a 
limit to that power. 
 
This thesis presents the simulations that we have 
performed to compute the parametric gain of each 
mechanical mode of the four suspended 3km-arm-
cavity mirrors of Advanced Virgo during the 
Observing run O3 (04/2019  03/2020). We study 
the influence of mirror finite size effects, and 
deformation due to thermal absorption, on optical 
modes and parametric gains. Finally, this thesis also 
gives a prediction on the potential unstable 
mechanical modes in Advanced Virgo's 
configuration during the next Observing run O4, 
which is expected to start in mid-2022. 
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