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Introduction

The design of procedures aimed at ranking individuals according to how they behave in vari-
ous groups is of great importance in many practical situations. The problem occurs in a variety
of scenarios coming from social choice theory, cooperative game theory or multiattribute de-
cision theory, and examples include: comparing researchers in a scientific department by tak-
ing into account their impact across different teams [Papapetrou et al., 2011]; finding the most
influential political parties in a parliament based on past alliances within alternative majority
coalitions [Marošević and Soldo, 2018]; rating attributes according to their influence in a mul-
tiattribute decision context, where independence of attributes is not verified because of mutual
interactions (see [Bouyssou and Marchant, 2007] for a discussion on winning coalitions of cri-
teria, [Boutilier et al., 2004] for CP-nets concerned by qualitative conditional dependence and
independence of preference statements under a ceteris paribus interpretation); and quantifying
individual’s productivity in the presence of teamwork taking into account that contribution of an
individual to a team may also depend on the individual’s productivity, since individuals who are
more productive bring more expertise, team-building skills, and visibility, and they contribute
more on average [Flores-Szwagrzak and Treibich, 2020].

In many real world applications, a precise evaluation of coalitions’ “power” may be hard or
even impossible due to a bunch of unknown factors: existence of uncertain data, complexity of
the analysis, missing information or difficulties in the update, etc. In such situations, measuring
the importance of individuals using classical power indices is not always straightforward. In this
case, it may be interesting to consider only ordinal information concerning binary comparisons
between coalitions. For instance, suppose director of a department wants to evaluate performance
of professors based on their contribution in scientific groups. Also, assume the only information
provided to the director is that one group performs better than another one or that the two groups
have the same level of performance. This is a valid assumption since it is not possible to evaluate
performance of scientific groups by numbers; the performance of a scientific group depends on a
combination of factors like the number of publication made by the group, the importance of the
subjects to the department, the number of citations, the quality of their papers, and many other
factors that may be hard to quantify.
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Some scientists, modeled the lack of information in such situations with probabilis-
tic methods [Suijs et al., 1999], or with estimating the value of coalitions using intervals
[Branzei et al., 2010]. However, these methods are not always applicable due to various types
of uncertainty. In this thesis, we follow the same approach as in [Moretti and Öztürk, 2017] and
[Bernardi et al., 2017], and model the worth of coalitions in an ordinal way using a binary re-
lation which is defined over the set of coalitions. Therefore, throughout the thesis we provide
answers to the general question of how to obtain a ranking over a finite set N of individuals
(called a social ranking), given a ranking over the elements of a power set 2N (called a power
relation, normally denoted by � or w).

In the problem of professors’ evaluation, suppose given a set of five professors N =
{1, 2, 3, 4, 5}, the director of department wants to rank them. Also, assume the information
provided to the director is the power relation {2, 4, 5} � {1, 3} � {1, 2} � {2, 3} � {2, 4, 5} ∼
{3, 5} � {2, 4} � {2, 5} � {1, 4} that indicates the relative performance of different scientific
groups. For instance, {2, 4, 5} � {1, 3} means a group consisting of three professors 2, 4, and
5 performs strictly better than a group of professors 1 and 3, and {2, 4, 5} ∼ {3, 5} means the
performance of the corresponding groups are the same.

Our goal is not only to define a social ranking over a set of individuals, but the majority of
our research concerns a set of properties (axioms) that social ranking rules should satisfy. To
the best of our knowledge, the issue was first introduced by [Marichal and Roubens, 1998], but
it was formally studied by [Moretti, 2015] and [Moretti and Öztürk, 2017], where social ranking
solutions were analysed following a property-driven approach. They evaluate the effect of basic
properties in the combination of social ranking, and show that the pairwise combination of these
natural properties yields either to impossibility (i.e., no social ranking exists), or to flattening
(i.e., all the individuals are equally ranked), or to dictatorship. Within the same framework,
[Bernardi et al., 2017] axiomatically characterized a social ranking solution based on the idea
that the most influential individuals are those appearing more frequently in the highest positions
in the ranking of coalitions. A more practical approach to this problem have been studied in
[Fayard and Escoffier, 2018] in which the authors implement a social ranking rule proposed in
Chapter 2 in order to find an approximation of the minimum number of coalitions to be removed
in order to satisfy the transitivity. To explore new methods to rank individuals given an ordinal
ranking over their coalitions, in this thesis, we use different notions from classical social choice
theory and cooperative game theory.

Along with the aim of this thesis, in Chapter 1 we do a literature review on the contexts
related to the thesis. We discuss axiomatic study and its components. We also describe the type
of results expected from the study and their importance. We review the axiomatic studies that
have been done in the contexts of voting theory, cooperative game theory, and ranking sets of
objects. We finally study the recent advancement in our ranking problem.

Chapter 2 introduces our first approach to address the ranking problem. In this chapter, we
investigate the use of a ceteris paribus majority principle as a social ranking solution. Accord-
ing to this ranking method, two individuals are ranked using information from ceteris paribus
(i.e., everything else being equal) comparisons over all possible coalitions. This suggests an
interpretation of our problem along the lines of a virtual election, with groups of individuals
(coalitions) playing the role of voters. Unfortunately, the ceteris patibus majority solution can
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lead to a Condorcet-like paradox. Therefore, a domain restriction over the family of ranking
of coalitions is proposed to guarantee the transitivity of the ranking over the individuals. The
chapter concludes by a discussion on possible interpretations of incompleteness of the power
relation. We propose a new social ranking rule to take into consideration a specific interpretation
of incompleteness.

Chapter 3 presents another method to rank individuals. The new solution is defined by the
extension of the notions of marginal contribution and of the Banzhaf index in classical cooper-
ative games, and is called ordinal Banzhaf solution. We restrict our attention to power relations
as linear orders, and we characterize the resulting ordinal Banzhaf solution by means of a set of
axioms inspired from those introduced in Chapter 2. The similarity between the axiomatic study
of the two solutions motivates us to explore the similarities and differences of the solutions in
more detail.

Chapter 4 of the thesis is dedicated to axiomatic study of families of weighted ceteris paribus
majority rules. The social ranking rules in this chapter are weighted extension of the ceteris
paribus majority rule to rank more than two individuals. Based on the interpretation of the rank-
ing problems, the weights assigned to coalitions (voters) can be a function of the coalitions, the
set of individuals getting compared by the coalition, the combination of them, their sizes, and so
on. Since the weight functions can be defined in infinitely many ways, each interpretation results
in a specific family of weighted social ranking rules which is a sub-family of other families.
The inclusion relation between the families forms a tree whose edges show the corresponding
inclusion relations between families, and the main goal of the chapter is to analyse each family
of solutions as a subset of another family of solutions by axiomatic study of their properties.

The contributions of the thesis are published in the proceedings of international conferences,
namely IJCAI 2018 [Haret et al., 2018] and IJCAI 2019 [Khani et al., 2019].
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1
Literature Review

1.1 Social Choice Theory

Social choice theory is a theoretical framework to investigate and analyze how to combine indi-
viduals’ preferences to reach a collective decision or social welfare in some sense. The increasing
interest to social choice comes from its strong connection to other fields of computer science, as
well as a vast exchange between them. Precisely speaking, one reason of this importance stems
from imported notions from computer science to the context of social choice in order to solve
problems originated in social choice, like computing the complexity of methods in social rank-
ing, or, for instance, specifying voting methods where manipulation is hardly plausible. On the
other hand, developed techniques in social choice theory can be used in order to solve problems
in the context of computer science and artificial intelligence [Brandt et al., 2016b]. An example
is the applications of social choice in order to develop page ranking systems in Internet search
engines [Chevaleyre et al., 2007], [Tennenholtz, 2004]. As we will see, in the vast part of the
thesis we benefit from one of the original ideas in social choice theory in order to find solutions
for a complex ranking problem.

The topics covered in (computational) social choice can be classified based on two distinct
lines: the nature of the social choice problem we deal with, and the type of formal or compu-
tational techniques studied [Chevaleyre et al., 2007]. In this thesis, we mainly focus on three of
them: voting theory, coalition formation, and ranking systems.

• Voting theory. Given a set of voters and a set of candidates, the question of interest in
voting theory is how to aggregate the opinion of voters (represented as their ballots over
a set of candidates) to find a ranking over candidates, or to find the best candidate. This
question arises in many areas like business, social organisations, or politics. The root of
this question comes back to Romain times, when Pliny and other senators in the Senate
had to decide on the fate of a number of prisoners: acquittal (A), banishment (B), or con-
demnation to death (C). Although option A, favored by Pliny, had the largest number of
supporters, it did not have an absolute majority. One of the proponents of harsh punish-
ment then strategically moved to withdraw proposal C, leaving its former supporters to
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CHAPTER 1. LITERATURE REVIEW

back option B, which is obviously the winner of majority contest between A and B. If
senators have voted on all three options using plurality rule, then option A would have
won. This example illustrates several interesting features of voting rules. For example it
may be interpreted as demonstrating a lack of fairness of the plurality rule: even though
a majority of voters believes A to be inferior to one of the other options (namely, B), A
still wins [Brandt et al., 2016b]. In fact, when there are just two candidates choosing the
best candidate is straightforward. It goes the way of the majority. However, when there
are more than two candidates there is no one obvious way of choosing the best candidate.
Different methods are proposed that each one takes care of some specific sense of fairness.
Another clue on the use of voting rule in the Middle Ages is the writings of the Catalan
philosopher, poet, and missionary Ramon Llull (1232-1316) about voting rules. He sup-
ported the idea that election outcomes should be based on direct majority contests between
pairs of candidates. The rule that he referred to seems to be the one nowadays known as
Copeland rule [Copeland, 1951], under which the candidate who wins the largest number
of pairwise majority contests is elected.

Another attempts in the field of voting rules are the works of the French engineer Jean-
Charles de Borda (1733-1799) and the French philosopher and mathematician Marquis de
Condorcet (1743-1794). The discussion between these two scientists motivated Borda to
propose a method of voting, today known as the Borda rule. According to this rule, the
winner of an election is chosen by giving each candidate, a number of points corresponding
to the number of candidates ranked lower [Brandt et al., 2016b]. He argued the superiority
of his method over plurality rule by an example indicating the Borda rule is a single-winner
voting rule.

Although early works on the context of collective decision making and voting theory was
completely limited to design various voting rules and comparing their pros and cons, this
manner had changed due to the seminal work of Kenneth Arrow in 1963, in which he
followed a broader view and highlighted some common properties in all the proposed
voting rules. Arrow explained the philosophical and economical motivations to define
different voting rules in mathematical terms as axioms [Arrow, 1963].

• Coalition Formation. Since coalition formation is considered as a choice process involv-
ing more than two individuals [van Deemen, 1991], social choice theory is important in
the context: the process of forming coalitions is considered as a preference aggregation
problem in which each player has a preference over possible coalitions, and the question
is how to aggregate such preferences in order to form the coalitions. Another important
question arises after forming coalitions: how to distribute the sharing benefits or costs of
a coalition among its members. To do so, a kind of ranking over the set of players based
on their performance in the coalition is needed. These problems are studied in the field
of cooperative game theory [van Deemen, 1991]. Cooperative game theory analyzes how
coalitions of individuals can form, and how they should distribute the sharing benefits or
costs of their cooperation. The notion of cooperative games was first introduced in the es-
says of Von Neumann Morgensten [von Neumann and Morgenstern, 2007] as an attempt
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to distinguish two approaches of cooperative and non-cooperative games.

Simple games are cooperative games in which the coalitions are partitioned in two sets,
the set of winning coalitions and the other coalitions. Simple games are used as a model
for binary voting situations: in the case of having two candidates, the agents in favor of
the most appealing one form a winning coalition and the others will be the losing coali-
tion. The decisions of the winners concern the whole set of players and the losers are
obliged to take these decisions for granted, whether the effects of the winners’ decisions
are favourable for them or not [van Deemen, 1991]. An example is the majority voting
game. In this game only a majority coalition of voters can win, i.e. determine a winning
alternative. The Benefit of such abstraction is that simple games can be studied without
referring to specific rules like majority, plurality and so on. Power indices like Shapley-
Shubik [Shapley, 1953], and Banzhaf index [Banzhaf III, 1964] are introduced in order to
measure the power of agents in each coalition. A real situation where power indices are
used is the problem that some Nordic countries were once faced to join or not to join the
European Union. The problem arose since Nordic countries traditionally give high priori-
ties (compared to European Union) to Environmental protections. Hence, the question was
how the new members of the European Union could affect the environmental standards of
European Union, e.g., to adjust them to their own standards. The Shapley value provides
an appropriate solution by evaluating the power of each member when they join the EU
[Holzinger, 1995].

• Ranking sets of objects. Imagine a given set of statements, each one of them with a degree
of plausibility, and suppose the goal is to choose a set of statements that are more plausible
than the others. At the first glance, the answer to this problem seems to be simple: just
order the statements based on their degree of plausibility, and then select the statements at
the top of the ranking as the set of statements which is highly plausible [Packard, 1981].
However, note that in many cases a combination of two plausible statements is not neces-
sarily plausible because combination of two plausible statements may form an inconsistent
set of statements. The consideration of having inconsistency when two plausible items are
combined was the beginning of a field study whose aim is to rank sets of objects when a
ranking over the the set of objects is provided. In [Barberà et al., 2004], the authors cat-
egorize the ranking problem into three classes of complete uncertainty, opportunity sets,
and sets as final outcomes. These categories are defined based on what is the goal of deal-
ing with sets of objects. Different answers are provided for the problem according to the
category that the ranking problem falls into.

1.1.1 Solutions to Social Choice Problems
As we have seen in the previous section, different problems in the context of social choice can be
defined. Given a society of individuals or agents, the problem, in general, deals with a collective
decision making process that best reflects the opinion of the members in the society. The main
parts in all these problems is a set of individuals or agents and a set of candidates. In social choice
theory, the decision making problems are mainly indicated by specifying the data pertaining to
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a set of individuals and the data related to a set of alternatives (which is the opinion of members
in the society about the candidates). For instance, consider a voting scenario in which some
colleagues want to decide on choosing a date for a special event (such as Christmas dinner or a
movie screening). The data related to the voters (colleagues) and candidates (different dates) as
well as the preferences of the colleagues about the dates can be expressed in a Doodle.

In cooperative game theory, consider the example of a football team who wins a match and
suppose there are some bonus to be given to players according to their contribution in the team.
In this case, the level of players’ contribution in the team as well as the ways that the bonus
can be divided among them represents the data related to the cooperative game problem. Note
that it is possible to observe this problem as an aggregation problem in which individuals are
represented by players in the team and alternatives are different possible ways to distribute the
bonus.

In the context of ranking sets of individuals, the goal is to lift ranking over individuals to
ranking(s) over sets of individuals. Considering all possible rankings over sets of individuals as
a set of alternatives, the ranking problem can be defined as selecting alternative(s) that best fits
to the ranking over individuals and possible positive or negative synergy among them.

A solution to social choice problems is, in general, single-valued or multi-valued based on
the context in which the problem is defined and its interpretation. In some contexts, the interest
is on solutions which result in just one outcome, while in the others the interest is to find out
more than one outcome by a solution. For instance, in the context of voting theory, specially in
most of political electoral systems, an admissible solution is to have just one winner candidate.
On the other hand, multi-valued solutions are appropriate, for instance, in the problem of ranking
sets of statements, in which indifference between sets of statements is a possibility.

Note that for a given problem there may exist more than one solution resulting in different
outcomes, and defining such solutions is not a hard task to do. For example, for the voting
problem it is possible to design a voting system that follows the opinion of just one of the voters to
choose the best candidate (called dictatorship), or the system that goes by the concept of majority.
However, what is essential in defining the solutions is to see which one is more reasonable in the
sense of satisfying a set of intuitive and naturally appealing properties. To see the importance of
verifying solutions from property driven approach, consider the voting problem. In the case of
two candidates the most logical way to select the candidates is to go with majority. However, by
having more than two candidates, majority may not be considered as an appealing approach in
some applications, because sometimes it brings about cycles in the final outcome.

[Arrow, 1963] studied the solutions of voting theory from the property driven approach, and
he argued that any acceptable method of aggregation (resulting a pre-order over the set of candi-
dates) should satisfy at least the following three axioms:

1. If every individual ranks x above y, then so should society.

2. It should be possible to determine the relative social ranking of x and y by considering
only the relative ranking of x and y supplied by each of the individuals.

3. The voting system should always return exactly one clear final ranking.
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For example, notice that the majority rule does satisfy two of these requirements, but it may
generate a preference order with cycles, when there are more than two individuals. As we will
see in the next section, analysing properties of solutions in social choice theory is beneficial from
many facets.

In the next section, we discuss axiomatic study and its components. We also investigate the
type of results expected from axiomatic study and their importance.

1.1.2 Axiomatization
Several aspects of computational social choice have been investigated in order to qualify the
solutions for a given social choice problem [Brandt et al., 2016b]. Optimality of a solution in
sense of computation burden is one of the important issues in order to solve concrete problems.
Evaluating solutions according to their complexity in order to solve a problem is widely studied
and investigated in the context of computational social choice. However, the classical approach
to study solutions in social choice theory is to analyze sets of properties or axioms that they
satisfy. In the terminology of social choice, such kind of studies are called axiomatic study
[Thomson, 2001]. Until recently, axiomatic study had been the primary method of investigation
in a few branches of economics and game theory, such as social choice and utility theory. How-
ever, in the last years this method is expanded specially in two domains of bargaining theory and
coalition formation. Such expansions shed new light to axiomatic techniques and nowadays, they
are used more purposefully in order to compare different solutions or even finding new solutions
that satisfy remarkable pleasant properties [Thomson, 2001].

Axiomatic study is urged by the need to differentiate between solutions that are plausible
for a social choice problem. As mentioned in the previous section, for a specific domain of
problems several intuitively appealing solutions may exist. Axiomatic study allows us to validate
the existence of solutions according to simple and natural interpretations. Furthermore, when
there is no solution with intuitive natural interpretation, axiomatic study can help us to find one.
Given a domain of problems, axiomatic study starts with a list of desirable properties for the
domain and ends up by describing the solutions to the problem as precisely as possible using the
given properties. It also allows to investigate the logical relations between axioms, and to see
how changes in the domain of problems can affect the axioms. Normally, axiomatic study of
solutions leads to a characterization theorem which is a description of the solution according to
given properties, although the ultimate goal of axiomatic study goes further than that. In fact,
the goal of axiomatic study should be to understand and describe the implications of the list of
properties as precisely as possible [Thomson, 2001].

There are two reasons that motivate analyzing solutions from the axiomatic perspective. The
first reason is that although defining solutions is not a cumbersome task per se, focusing just on
defining solutions prevents us from exploring the whole space of solutions for a given problem.
There might be other solutions that satisfy much more appealing properties than currently defined
ones, and we cannot achieve them without defining the properties and combining them. Thus,
axiomatic study helps us to have a broader view over the space of all feasible solutions, and to
lighten all the corners of the solutions’ space in order to find nice kind of solutions. It is also
worth mentioning that sometimes axiomatic study frees us from effortless searching for solutions
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[Thomson, 2001]. For instance, the most intuitive voting method in the case of two candidates
is the majority rule that satisfies a set of benign properties, yet moving to the domains with
three candidates or more, majority may result in cyclic ranking over candidates, which is not
appealing in many practical scenarios. Accordingly, one may look for other solutions that meet
the mentioned requirements while avoid cycles in the ranking results. However, [Arrow, 1963]
proved an impossibility result which expresses that such kind of solutions are not available!

The second reason for axiomatic study is that sometimes by intuition a solution may be
recognized to return right answers, however other solutions may exist, in particular situations,
that are equally successful for these examples. These solutions can be reached by axiomatic
evaluation of the properties.

The other important note about axiomatic study is that in many of the cases the character-
ization is done for a specific solution. For instance, solutions like majority rule and Borda are
widely studied and applied in the literature of social choice theory. One may ask what properties
are satisfied by these solutions that make them so practical? Answer to this question is somehow
clarified by the characterization done by [May, 1952]. This kind of characterizations is legiti-
mate when the solution is widely used in practice or in theoretical literature, like majority rule in
voting theory or Shapley value in cooperative game theory. Axiomatic study of these solutions
reveals the reason of their prevalent use in the literature.

As we will see in the next chapters, most of the solutions introduced to solve the ranking
problem in this thesis are inspired from well-known and widely used solutions in other contexts
like voting theory and cooperative game theory. Therefore, figuring out how the properties of
solutions change when they adjusted to other frameworks is worthy, and it gives better insight to
define new solutions specific to different frameworks.

What we have mentioned about the importance of axiomatic study was about merits of char-
acterizing single solutions, however, characterizing families of solutions merits more. In fact,
by considering a big family of solutions (that have a common structure) we can define some
small sets of axioms, even one axiom, and see which members of the family satisfy them. Such
axioms result in theorems that analyze inclusion relation between two families of solutions. The
axiomatic study of the inclusion relation can be continued until reaching a single member whose
belonging to a family is characterized with a set of axioms. Defining axioms again and again
for members of hierarchical families of solutions will branch off in several directions, and each
branch leads to just one single solution. To clarify, consider the family of all scoring methods in
voting theory. Such scoring methods score candidates by some specific scoring systems. Based
on the context that the scoring methods are applied to, there are infinitely many scoring system
in order to score candidates [Chebotarev and Shamis, 1998]. A sub-family of such scoring rules
contains voting methods that score candidates based on their position in voters’ preferences. This
sub-family has infinitely many scoring systems as well. For instance, in the original Borda’s sys-
tem the scoring of the candidates depends on the number of candidates stand in the voting process
[Young, 1974]: if there are five candidates, the highly ranked candidate in a voter’s preference
gets the score of five, the candidate in the second position gets the score of four, and so on until
the last positioned candidate gets the score of one. Other variant of the scoring rule can start
scoring from zero instead of one (in the example of five candidates, assigning the score zero to
the last positioned candidate and score of four to the highly ranked one). Another scoring rule
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can score candidates proportional to their position in a given preference (the highly ranked one
get the score of 1

1 , the second one gets the score of 1
2 and so on) [Fraenkel and Grofman, 2014].

From this sub-family other sub-families are plausible, and the hierarchical structure can be con-
tinued to reach only one member (For instance, Borda rule). The axiomatic study in this context,
is to analyze the inclusion relation between different families, like the family of general scoring
rules and those with scoring systems related to the positioning of candidates, or, for instance,
characterizing a specific scoring method like Borda, as a member of the sub-family of scoring
rules with scoring system based on the positioning of candidates.

The relation between axioms that characterize a solution is the essential part of axiomatic
study that needs more attention. The characterization theorem of a specific solution (rule),
denoted by solution∗ is of form “A solution satisfies a list of properties if and only if it is
solution∗”. It is relatively easy to prove that solution∗ satisfies a set of axioms, since we can
deal with axioms one by one and the interaction between them is not important. However, prov-
ing the other part of the theorem, saying “if a solution satisfies a certain list of properties then
it is the particular solution” needs to consider also the interaction among the axioms. More pre-
cisely, we need to look at all the axioms in the assumption at the same time in order to prove the
theorem. This part of the characterization theorem is called uniqueness part. The importance of
independence of the axioms can be seen in this part of the theorem: independence means deleting
any one of the axioms from the list of axioms, other solutions (different from solution∗) fulfill
the remaining list of axioms. Taking care of the independence of axioms in the characterization
theorem simply guarantees that the results provided in the theorem are in the more general form:
if one of the axioms in the theorem is redundant we widen the scope of the results by deleting it
[Thomson, 2001].

Taking all the considerations into account, in the following sections we review the axiomatic
study of the voting theory introduced by [Arrow, 1963] and [May, 1952]. Also, Section 1.3 is
devoted to axiomatic study in the context of cooperative game theory.

1.2 Voting Theory

In this section, we review some of the literature in the context of voting theory. We study the
problem of aggregating individuals’ preferences, and analyze the famous aggregation methods
(solutions) from property driven approach. Kenneth Arrow is one of the pioneering scientists
who studied the problem of finding aggregation methods as a collective decision making process
given a set of alternatives, among which there is a choice to be made. He introduced the class of
solutions for the aggregation problem, called social welfare functions.

Referring to it as a voting theory, the nature of voters and alternatives depends on the settings
of the problem. For instance, in an electoral system the voters are individuals in a society and the
alternatives stand as the candidates in an election. Because voters and candidates may vary by
the definition of voting problem, conventionally, they indicate voters by natural numbers and the
candidates by lower case letters. Also, since the problem of finding an aggregation method arises
in a very general context, the aggregation methods are normally designed before being used in
an aggregation process. Thus, the question of interest forms more precisely as: Given a set of
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voters and also a set of alternatives, which procedure yields a social ordering of the alternatives,
no matter what voters’ preferences are over the alternatives.

To answer this question, Arrow defined a framework in which voters are illustrated as a set
N = {1, . . . , n} (n ≥ 2), which is a finite set of individuals or voters. Also, he showed the set
of alternatives as X = {x, y, z, . . . }, which is mainly assumed to be finite. In this framework,
Arrow assumed that each voter i in N is endowed with a preference over the alternatives in X ,
which is merely ordinal. The preference of voter i on the set of alternatives is indicated by a
binary relation Ri, which ranks the alternatives from worst to best according to voter i’s view
point. Since the rationality of voters are crucial in Arrow’s framework, he presumed that the
preferences made by voters are complete and transitive. The preferences made by voter i means
that given any x, y ∈ X , x Ri y refers to “individual i weakly prefers x to y”. The main idea for
this assumption is that, in reality, alternatives are not “interpersonally comparable”: in practice,
there is no saying that how much more strongly one voter prefers one alternative to others while
the other voter’s preference on the set of alternatives is other way around. We write x Pi y if
x Ri y and not y Ri x (read it as “individual i strictly prefers x to y”), and x Ii y if x Ri y and
y Ri x (read it as “individual i is indifferent between x and y”). Denoting the set of all binary
relations over the set X as β(X ), we write Ri ∈ β(X ) for all i ∈ N .

A preference profile in this framework is an n-tuple R = (R1, ..., Rn) ∈ β(X )n which is a
vector of binary relations of n voters over the set of alternatives. As an example, a framework
containing three voters and three alternatives is illustrated as a set N = {1, 2, 3} of voter and the
set of alternatives X = {a, b, c}. Also each voter has a preference over the set X . For instance,
the preferences for each voter can be as follows:

a R1 b R1 c

b R2 a R2 c

b R3 c R3 a.

Now a social welfare function,F , is defined as a function that assigns to each profile
(R1, R2, . . . , Rn) (in some domain of admissible profiles) a social preference relation R =
F (R1, R2, . . . , Rn) on X . Everywhere which is clear from the context instead of using F we
refer to the collective ranking over the set of individuals corresponds to (R1, R2, . . . , Rn) as
R [Arrow, 1963]. For instance, in the example above if majority results in a social ordering over
the set of alternatives, then it returns b R a R c as the result of aggregation process. Note that,
in general, for any two alternatives x, y ∈ X the relation x R y refers to the collective weak
preference of x to y, and x I y indicates the collective indifference between the two individuals
(x R y and y R x).

One of the paradigmatic examples of social welfare functions that fits to the model, in
most cases, is the pair-wised majority rule. This social welfare function is widely discussed
by [De Condorcet, 1785]. Based on this solution, for any two individuals x, y ∈ X , x R y if the
majority of voters prefers x to y. From its definition, it is easy to verify that this type of social
welfare does not guarantee transitivity of the final ranking over candidates. In fact, there are situ-
ations where applying majority rule in order to select among more than two alternatives yields a
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cycle in the collective ranking of alternatives, which prevents selection of the best alternative(s).
This case is called Condorcet paradox, named after the Marquis de Condorcet (1743-1794). The
following example explains one of the situations that Condorcet paradox happens.

Example 1. Consider five individuals declare their preferences by providing a ranking of the
elements of a set of alternatives X = {x, y, z}, as table 1.1. If we accept to use majority

Individual 1 x R1 y R1 z
Individual 2 x R2 y R2 z
Individual 3 y R3 z R3 x
Individual 4 z R4 y R4 x
Individual 5 z R5 x R5 y

Table 1.1: Preferences of individuals on {x, y, z}.

rule:rank x above y if and only if a majority of the individuals do, and similarly for all other
pairs of alternatives, then we must rank x above y (as three out of five individuals do) and y
above z (as, again, three out of five individuals do). This suggests that the collective preference
order should be x R y R z. But this solution is in conflict with the fact that three out of five
individuals rank z above x [Endriss, 2011].

[Arrow, 1963] analyzed this kind of situations by abstracting the pairwise majority rule,
which results in extracting a set of axioms. Investigating the relations between the axioms re-
veals cons and pros of the majority rule. Note that, unlike the axiomatic studies in geometry
or logic, where the axioms are appropriate for any case, the axioms provided by Arrow are not
sure truth; some axioms that are appealing in some situations may not be appropriate for others
[Thomson, 2001]. These axioms just arrange a model to judge different social ranking rules from
the sense of fairness or other interesting criteria in contexts of economy and social choice. The
axioms proposed by Arrow are listed here:

• Universal domain: the domain of F is the set of all logically possible profiles of complete
and transitive individual preference orderings.

This property means that the solution should accept all different types of preferences which
are rational.

• Ordering: for any profile (R1, R2, ..., Rn) in the domain of F , the social preference relation
R is weak ordering.

This property refers to the point that the result of collective decision should be rational.
In other words, it must avoid cycles in the final ranking. This is very important since the
goal of many voting problems is to select the uniquely best alternative between a group of
alternatives, and cycles are in conflict with the goal.

Note that ordering is the property that already rules out the pairwise majority rule when it
serves to rank at least three alternatives.
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• Weak Pareto principle: for any profile (R1, R2, ..., Rn) in the domain of F , if for all i ∈ N
it holds x Pi y, then x P y.

This axiom refers to the idea that the collective decision should respect the opinion of all
voters. In the extreme case, if all the voters prefer one candidate than the other one, so
does society. According to the concept of majority, pair-wise majority rule satisfies Weak
Pareto principle.

• Independence of irrelevant alternatives: for any two profiles (R1, R2, . . . , Rn) and
(R∗1, R∗2, . . . , R∗n) in the domain of F and any x, y ∈ X , if for all i ∈ N Ri’s ranking
between x and y coincides with R∗i ’s ranking between x and y, then x R y if and only if
x R∗ y.

This axiom notes that the ranking of any two alternatives like x and y just depends on
the preferences of voters over the two alternatives and not the others. As an example,
consider ranking of three alternatives X = {x, y, z} by preferences of three individuals
N = {1, 2, 3}. Suppose the preference profile R is given by:

x R1 y R1 z

y R2 x R2 z

y R3 z R3 x.

The axiom independence of irrelevant alternatives affirms that if the profile be restricted
to any of two individuals, here let’s say x, y:

x R1 y

y R2 x

y R3 x

then the ranking of x and y should not change. For instance, pairwise majority rule satisfies
the property, and in both cases it ranks y higher than x.

• Non-dictatorship: there does not exist an individual i ∈ N such that, for all
(R1, R2, . . . , Rn) in the domain of F and all x, y ∈ X , x Pi y implies x P y.

Finally, non-dictatorship emphasizes that the ranking solution should not be in favor of
one voter and lets it to dictate its preferences to other voters. Since pair-wise majority rule
respects the opinion of all individuals, it satisfies non-dictatorship

Arrow proved that the five conditions are incompatible. This result called impossibility theorem
is an important turning point in the axiomatic study of voting rules. It very well pictures the
paradox between the above mentioned axioms when it turns to rank more than two candidates:

Theorem 1.2.1. If |X | > 2, there exists no preference aggregation rule satisfying universal
domain, ordering, the weak Pareto principle, independence of irrelevant alternatives, and non-
dictatorship.
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During the years, different versions of impossibility theorem have been stated, and different
proofs have been provided [Geanakoplos, 2005].

As we mentioned earlier, the axiom universal domain assumes non-restricted domain of
preference profiles for a social ranking solution. For example, consider three alternatives
X = {x, y, z} and three individuals N = {1, 2, 3}. Universal domain forces the social rank-
ing solution to map any preference profile formed by the individuals to a collective weak order
over the set of alternatives. For instance, in this case each individual can have 13 different pref-
erences over the three alternatives1 and therefore there are 133 preference profiles to be mapped
to collective weak orders over the set of candidates. In fact, universal domain is a very strong
axiom demanding a lot about social ranking rules (to map each one of 133 preference profiles
to a specific collective ranking). However, sometimes nature of alternatives and preferences of
individuals are so determined that not all individuals’ preferences can arise. When studying such
a case within Arrow’s framework, there is no need for a social welfare function to be able to
handle each and every tuple of individual orderings; some but not all profiles are admissible, and
the domain is said to be restricted. In fortunate cases, it is, then, possible to find a social welfare
function that, apart from the axiom universal domain, meets all assumptions and conditions of
Arrow’s theorem. Such domains are said to be Arrow consistent.

As an example, imagine a situation where the domain of preference profiles are restricted to
those in which majority of individuals have the same preference over the set of candidates. In
the case of three individuals and three alternatives, one preference profile can be as:

a R1 b R1 c

a R2 b R2 c

c R3 b R3 a.

Reckoning the aggregation rule by pair-wise majority rule, it is easy to see that the result
is the majority preference: a R b R c, which is a weak order (satisfaction of ordering axiom).
Considering all such preference profiles, it is easy to see that pair-wise majority rule satisfies all
the other axioms. It meets weak Pareto property because if all individuals rank the same, the
collective ranking would be the preferences of individuals. It is non-dictatorial since it considers
preference of the majority of individuals, and finally it satisfies independence of irrelevant alter-
natives because the aggregation process is done by pair-wise comparing of individuals. Hence,
the domain of preference profiles in which the majority of individuals has the same preferences
is an example of what is called “arrow consistent” domain.

Another well known domain restriction that provides an arrow consistent domain is called
single peakedness, which is introduced by [Black et al., 1958]. Single-peakedness requires the
assumption that there exists a one dimensional scale that orders candidates from left to right
(there is an ordering L over the candidates). In this case, the preference of an individual is single-
peaked when the individual prefers x to y if x is between y and her most preferred alternative

1The preferences are a P b P c,a P c P b, b P a P c, b P c P a, c P a P b ,c P b P a, a I b P c, a P b I c,
a I c P b, b P c I a, b P c P a, c P b I a, a I b I c
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based on the ordering L.
As an example, suppose the alternatives in the set X = {x, y, z} can be ordered on a line from
left to right based on a property, like their political tendencies when it comes to political voting
or their experience when it comes to academic voting. Let’s assume, based on this ordering, x
is the extreme left alternative, y is the middle one, and z is the extreme right alternative. In this
case, a preference profile of a voter i is single peaked if the voter ranks alternatives in any way
except as x Ri z Ri y or z Ri x Ri y. The domain restriction by single peakedness can be justified
by the evidence that people have some ideal points and they do not prefer alternatives that are
far from the ideal point to those that are closer. Therefore, this domain restriction is common in
many real world voting situations.

If the preferences of all the voters are single-peaked then the majority rule guarantees the
transitivity of ranking over candidates when there are more than two candidates. For instance, by
accepting the above mentioned ordering over alternatives x, y, z, if we want to modify the pref-
erence profiles of individuals in Example 1 to avoid cycles (restricting it to single peakedness),
we can change the preference profile of individual 5 in a way that alternative y is not the worst
alternative.

Until now we have reviewed one of the main results in the context of voting theory called
impossibility theory, and analyzed one of the possibilities to avoid such kind of impossibility
results. In the rest of the section, we review another important result in voting theory regarding
the characterization of majority rule which was first introduced by [May, 1952].

Since the pattern of collective ranking may be build up by knowing the ranking over any two
pairs of alternatives, May considered the base case of having only two alternatives. In fact, he
assumed there exists a set of n individuals who have preferences over two individuals x and y.
For any two individual x and y there are three possible ways to rank them: to prefer x to y, to
prefer y to x, or to be indifferent between x and y. Each individual in this setting is associated
with a variable Di that takes the values 1, 0, and −1 respectively if xPiy, xIiy, and yPix. In the
same way, variable D illustrates the decision made by the whole group of voters, and is valued
by 1, 0, and −1 respectively if xPy, xIy, and yPx (P and I are counterparts of Pi and Ii for
collective decisions).

He denoted the social welfare function by D = F (D1, D2, ..., Dn). He referred to this func-
tion as group decision function which maps the n-fold Cartesian product U × U × · · · × U onto
U where U = {−1, 0, 1}.

As we mentioned before, the most familiar form of this social welfare function is simple
majority. It counts the number of times x is preferred to y (Nxy(1)) and compares it to the
number of times that alternative y is preferred to alternative x (Nxy(−1)). By the simple majority
rule, D = −1, 0, 1 respectively if Nxy(1) − Nxy(−1) is negative, zero, or positive. Due to the
importance of majority rule in many practical voting scenarios May made four weak conditions
that provide sufficient and necessary conditions for a group decision function to be majority
rule. These properties are listed below:

• The group decision function is a single valued function defined over the elements of U ×
U × ... × U . This property is called decisiveness. It comes from the need to select only
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one best candidate in many cases. Based on decisiveness, a social welfare function is a
one-valued function for every unique vector as (D1, ..., Dn).

• The group decision function is a symmetric function of its arguments. Referring to this
property as symmetry, it means that the value of the group decision function is determined
only by the preferences, no matter to which individuals those preferences belong. This
axiom is sometimes called anonymity. The idea of the axiom is appealing since it imposes
that the group decision function should be fair in the sense that it does not privilege one
voter over the others.

• The third property is called neutrality. It means that if each individual reverses her pref-
erence over the two alternatives, then the value of the group decision function should be
reversed as well. On the other words, the social welfare function should not have ten-
dency toward one candidate than the others. More formally: F (−D1,−D2, . . . ,−Dn) =
−F (D1, D2, . . . , Dn)

• Finally, the forth property which is called positive responsiveness claims that the group
decision function responds to changes in voters’ preferences in a “positive” way: if
D = F (D1, D2, ..., Dn) = 0 or 1 and D′i = Di for all i 6= j and Dj > Di, then
D′ = F (D′1, D′2, ..., D′n) = 1.

May characterized the simple majority rule using the four axioms in the following theorem
[May, 1952].

Theorem 1.2.2. Given a set of voters and two alternatives, a social welfare function is simple
majority rule if and only if it always satisfies decisiveness, anonymity, neutrality, and positively
responsiveness.

Another formulation of the axiomatic study for majority rule is proposed by [Merlin, 2003].
Suppose a set N = {1, 2, . . . , n} of individuals and a set X = {a1, ..., am} of alternatives

(m ≥ 2) are given. Also, assume the preference of individual i is represented by a complete
preorder Ri over the set X of alternatives. In this setting, a social welfare function is a function
f that maps a n-fold Cartesian product R(N)n onto R(N) (R(N) indicates the set of complete
preorders over the set N ).

In this framework, [Merlin, 2003] introduced three conditions that are considered to be the
basic requirements of democracy, and then concluded that simple majority rule is the social
welfare function that satisfies all the three conditions. Here, we briefly explain these conditions
or axioms.
The first axiom called anonymity. It emphasizes that a democratic social welfare function should
give the same power to individuals or voters who participate in the voting.

Definition 1.2.3 (Anonymity). Suppose V and V ′ are two sets of voters of the same size (|V | =
|V ′|). Also assume Γ(V, V ′) refers to the set of all permutations γ : V → V ′. For a given
profile (Ri)i∈V , γ((Ri)i ∈ N) is equal to (Rj)j∈V ′ such that Ri = Rj if and only if j = γ(i).
A social welfare function f satisfies anonymity if and only if for any γ ∈ Γ(V, V ′) it holds that
f(γ((Ri)i∈V )) = f((Rj)j∈V ′).
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This axiom is equivalent to the axiom symmetry of May, extended to more than two
alternatives. The second axiom takes care of fairness among alternatives in the sense that
the social welfare function should not be biased in favor of one alternative. Reversing the
name of alternatives should also reverse the result of collective ranking. This axiom is called
neutrality. Note that since indifference does not play a role in ranking individuals, we assume
the preferences of individuals are linear orders, i.e., complete, transitive, and antisymmetric (the
preference of individual i is indicated by Li).

Definition 1.2.4 (Neutrality). Consider a set V of individuals, and suppose Σ(A) is the set of
all permutations over the set of alternatives A = {a1, a2, ..., am}. For a binary relation R on
the set A and σ ∈ Σ(A), we define σ(R) by aσ(i) σ(R) aσ(j) if and only if ai R aj . For any
profile of linear orders (Li)i∈V we define σ((Li)i∈V ) as (σ(Li))i∈V . A social welfare function f
satisfies neutrality if and only if for any permutation σ ∈ Σ(A) it holds that f(σ((Li)i∈V )) =
σ(f(Li)i∈V ).

The third axiom affirms the positive respond of social welfare functions to any changes in
preferences of individuals. We refer to it as monotonicity.

Definition 1.2.5 (Monotonicity). Consider a set of individuals V , such that for a preference
profile (Ri)i∈V the social welfare function f results that x P y or x I y. Now lets form another
preference profile (R′i)i∈V such that there exists j ∈ V with (x Ij y and x P ′j y) or (y Pj x and
x I ′j y) and for all i 6= j it holds that Ri = R′i. Then f is monotone if and only if applying it on
(R′i)i∈V results that x P y.

Finally, a characterization of the majority rule is given by [Merlin, 2003].

Theorem 1.2.6. Let A = {x, y}, a social welfare function satisfies anonymity, neutrality, and
monotonicity if and only if it satisfies simple majority rule.

In the next section, we review cooperative game theory. We recall the solutions related to
distribute the share of coalitions among players and we analyse them from property-driven ap-
proach.

1.3 Cooperative Game Theory
One of the approaches to address the ranking problem, in the thesis, is inspired from solutions in
the context of cooperative game theory. In this section, we review some of the basic notions in
cooperative game theory which are used in Chapter 3.

In general, game theory concerns mathematical models of interaction among rational de-
cision makers called players. Rationality in the context of game theory reflects the point that
players always make decisions to increase their utility. Problems of game theory are generally
divided into two branches of cooperative games and non-cooperative games. Non-cooperative
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game is a game with competition between individual players. Such kind of games provide a
rich language to analyze the interaction among players in detail, and to predict the impact of
individuals’ decisions on the final outcome.

Cooperative game theory, on the other hand, assumes that groups of players, called coalitions,
are the actors since players in a coalition bind agreements to cooperate and share utility (when
the utility is quantifiable). The basic framework for cooperative games, which is known as char-
acteristic function, was introduced by [Morgenstern and Von Neumann, 1953]. In this model,
the characteristic function indicates the worth or value of each coalition (not to each individual
in the coalition). Examples of cooperative games can be seen in many real group activities in
which a group of individuals pursue a common goal. For instance, a football team whose goal
is to score and win a match, or a group of researchers who cooperate to achieve new results or
technologies. In all such activities, a binding agreement is conducted between members before
starting to act.

A key concern in cooperative game theory is to find out the rational outcome of a game.
Outcome means how worth of a coalition should be divided among its members. More formally,
in cooperative game theory the problem is how to share the benefits or costs of the grand coalition
(specified by characteristic function) among members in the coalition. Different possibilities for
this sharing are summarized in various vectors called payoff vectors, which indicate value to each
individual in the coalition. In this case, solution to the problem is called solution concept which
for every game identifies some subsets of the possible payoff vectors. Note that, from a set of
all outcomes, only some of them may be desirable. For instance, if the contribution of all agents
in forming a coalition be the same, an outcome that allocates the entire value of coalition to just
one agent is less appealing to one that divide the value among agents equally.

So far, we have talked about sharing the worth of coalitions, but in some cases there is not
really worth to share. Forming coalitions puts individuals in a special state of the world and so
they experience a corresponding satisfaction. From this point of view, games are divided into
two classes of transferable utility games (TU-games) and non-transferable utility games (NTU-
games). Since in this thesis we use some ideas about solution concepts related to TU-games it is
worth studying them. Solution concepts for these games can be evaluated according to two sets
of criteria: fairness, i.e., how well each agent’s payoff reflects his contribution, and stability, i.e.,
what are the incentives for the agents to stay in the coalition structure.

Study of solution concepts in a game can be done from two points of view: normative and
descriptive. In the descriptive point of view, the solution concept characterizes what players
actually do. In fact, one may want to predict the likely outcome of the interactions among
players, and the resulting payoff is understood as a natural consequence of the interactions. In
the normative approach, a solution concept characterizes what a rational player should do: one
can set up a number of normative goals, typically illustrated by axioms, and try to derive their
logical implications [Chalkiadakis et al., 2011].

In the next section, we study transferable utility games in more detail. We also review a type
of TU-games which is widely used as a model of voting systems, and we explore the axiomatic
study of solution concepts for these games.
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1.3.1 Transferable Utility Games

Suppose in a cooperative game, each agent has a “utility function” that is expressed in currency
units. In this case, a common currency enables agents compare and share their alternative
outcomes. Such kind of games are called TU games. TU-games involve a set of players and a
characteristic function which represents the value that each coalition can achieve. To formally
define TU-games we need some notations.

We consider a set N = {1, 2, ..., n} of agents, a coalition is a subset of N . The set N is also
called the grand coalition. We indicate the set of all coalitions formed by the members of N
as 2N . During the thesis, we indicate each coalition by upper case Latin alphabet (A,B,...).
TU-games are formally defined as below:

Definition 1.3.1. A transferable utility game (TU-game) is defined as a pair (N, ν), where N is
a set of agents and ν : 2N → R is a characteristic function.

Whenever set of players is clear from the text, we simply refer to games by their characteristic
functions. Note that based on the definition, the worth of each coalition does not depend on
the worth of other coalitions. In general, for TU-games, it is assumed that the worth of empty
coalition (∅) is zero.
It is worthy here to mention some of the properties of TU-games:

• Additive. When a TU-game is additive it means that the worth of each coalition is the
same whether its members cooperate or not. In such games, there is no positive or negative
synergy among the agents in a coalition. Formally ∀S, U ∈ 2N , ν(S ∪U) = ν(S) + ν(U).

• Monotone. When a TU-game is monotone it refers to the idea that as the size of coali-
tion increases it will be worth more. More precisely, ∀S, U ∈ 2N such that S ⊆ U it
holds that ν(U) ≥ ν(S). Note that, many of the TU-games are not monotonic because as
the members added to a coalition, the overhead caused by the cost of communication or
maintenance increases, and as a result the worth of coalition reduces.

• Superaditive. In a TU-game which is superadditive, coalitions can best off by merging
together. Formally, ∀S, U ∈ 2N , S ∩ U = ∅, ν(S ∪ U) ≥ ν(S) + ν(U). In such games,
players have incentive to form the grand coalition.

A family of TU-games, called simple games, is important from the point that they can be
used as a model for many voting situations [Banzhaf III, 1964, Dubey et al., 1981]. The formal
definition of simple games is as follows.

Definition 1.3.2 (Simple game). A game (N, ν) is a simple if ν : 2N → {0, 1}, ν(N) = 1, and
(N, ν) be monotonic.
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Simple games can be used as a model for voting situations like majority game. For a set
of n agents, assume they have to decide to accept or reject an alternative using majority vote.
Majority game is defined as below.

Definition 1.3.3 (majority game). A simple game (N, ν) is majority game when the characteristic
function ν : 2N → {0, 1} is defined as:

ν(S) =
{

1 if |S| > n
2 ,

0 otherwise. (1.1)

In the same way, simple games can be considered as a model of weighted majority rule.

Definition 1.3.4 (weighted majority game). A simple game (N, v) is a weighted majority game
if there is a number q, called quota, and a vector w = (w1, . . . , wn) of weights such that

ν(S) =
{

1 if Σi∈Swi ≥ q,
0 otherwise. (1.2)

In general, this game is identified by [q;w1, w2, ..., wn].

Example 2. Consider a voting scenario with 10 voters who have the same power. In order to
legislate a rule, more than half of the votes should be cast in favor of the rule. This scenario can
be modelled by a weighted majority game as [6; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Example 3. Let’s assume a voting scenario with 5 voters N = {1, 2, 3, 4, 5} is given. Also
suppose the weight of the voters are defined as w1 = 3, w2 = 5, w3 = w4 = w5 = 1. In order
to pass a rule, at least 4 votes should be cast. In this case, the voting scenario is modelled as
[4; 3, 5, 1, 1, 1].

Considering simple games as a model for voting situations allows us to study the solution
concepts for simple games which are beneficial to measure the power of each individual in the
process of decision making. These kinds of solution concepts, also called power indices, are
reviewed with more details in the next section.

1.3.2 Solution Concepts
A solution (or one-point solution) for TU-games is a mapping that assigns a vector of payoffs
(x1, x2, ..., xn) (x1 indicates the payoff assigned to individual 1, x2 the payoff assigned to indi-
vidual 2 and so on) to each characteristic function game (N, ν).

Focusing on semi-values (a class of solution concepts whose members satisfy a set of stan-
dard axioms) [Carreras et al., 2003], [Dubey et al., 1981], two solution concepts the Shapley
value [Shapley, 1953] and the Banzhaf index [Banzhaf III, 1964] are important specially in vot-
ing situations where we want to evaluate the influence of players. In the context of voting theory,
these two solution concepts are referred to as power indices.

In order to define these power indices, we first need to introduce the notion of marginal
contribution.
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Definition 1.3.5 (marginal contribution). For (N, v) be a TU-game, the marginal contribution of
individual i ∈ N w.r.t coalition S ∈ 2N \ {i}, is mci(S, v) = ν(S ∪ {i})− ν(S).

According to Definition 1.3.5, the marginal contribution of individual i to coalition S ∪ {i}
indicates the value that is added or lost from coalition S when individual i joins the coalition.
[Penrose, 1946] and [Banzhaf III, 1964] are the two scientists who independently introduced the
Banzhaf index. This index was first applied to measure the power of players in a voting com-
mittee, thus, it was initially defined only for simple games. By the use of the notion of marginal
contribution we are able to define the Banzhaf index.

Definition 1.3.6 (Banzhaf index). For (N, v) be a TU-game, the Banzhaf index β(v) of v is the
n-vector β(v) = (β1(v), β2(v), . . . , βn(v)), such that for each i ∈ N :

βi(v) = 1
2n−1

∑
S∈2N\{i}

mci(S, v). (1.3)

Example 4. Imagine a voting scenario with three voters a, b, c, and suppose it is modelled by a
simple game [6; 4, 3, 2]. In this scenario the winning coalitions are

ab, ac, abc.

By Banzhaf index the power of each voter is specified as below:

βa(ν) = 3
4 , βb(ν) = 2

4 , βc(ν) = 2
4 .

To clarify the process of calculating the Banzhaf index, let’s explain the Banzhaf index for
individual a. In this case, we need to compute the marginal contribution of a when it joins all
other coalitions, which are 4 coalitions as indicated in table 1.2.

∅ → a mca(a, v) = 0
b→ ab mca(ab, v) = 1
c→ ac mca(ac, v) = 1
bc→ abc mca(abc, v) = 1

Table 1.2: Marginal contributions of individual a entering to coalitions formed by {b, c}.

Since there are three marginal contributions with value one and the others with value zero,
its average implies the Banzhaf index for individual i, which is 3

4 .

Another important solution concept is introduced by [Shapley, 1953] for simple games. Shap-
ley value assumes the formation of the grand coalition, and evaluates the average performance
of individuals based on different ways they join grand coalition.
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Definition 1.3.7 (Shapley value). For (N, v) be a TU-game, the Shapley value φ(v) of v is the
n-vector φ(v) = (φ1(v), φ2(v), . . . , φn(v)) such that for each i ∈ N :

φi(v) = ΣS∈2N\{i}
s!(n− s− 1)!

n! mci(S, v) (1.4)

where s refers to size of coalition S.

Example 5. Consider a simple game as [6; 4, 3, 2] where there are three voters a, b, c with the
weights wa = 4, wb = 3, wc = 2. The Shapley value for individual a is computed using marginal
contributions in table 1.3.

abc mca(a, v) = 0
acb mca(a, v) = 0
bac mca(ba, v) = 1
cab mca(ca, v) = 1
bca mca(bca, v) = 1
cba mca(cba, v) = 1

Table 1.3: Marginal contributions of individual a by different ways of entering to grand coalition

Considering all the ways that individual a can enter into the grand coalition, its marginal
contribution is two times zero and four times one. Therefore, by averaging on the values, we get
the value 4

6 as the Shapley value of individual a.

An axiomatic characterization of Shapley value is given in [Shapley, 1953]. In this paper,
Shapley formulated a number of properties that a one-point solution should (or might) have,
and then he showed that the Shapley value is the only solution with these properties. A
slightly modified version of the axioms are reviewed in the rest of this section [Dubey, 1975],
[Dubey and Shapley, 1979].

• The first axiom called efficiency, and it means that the values assigned to the individuals in
the grand coalition must be equal to the value of the grand coalition (Σn

i=1φi(v) = v(N)).

• The next axiom is null player. Let’s refer to a player who does not change the worth of a
coalition as a “null player” (for all S ∈ 2N , v(S)− v(S \ i) = 0 ). The axiom Null player
asserts that the value assigned to a Null player, by the solution concept, should be zero
(φi(ν) = 0 for all player i which is a null player).

• The third axiom which is called symmetry means that if two players have the same per-
formance when they join a coalition, then they should get the same value. More pre-
cisely, φi(ν) = φj(ν) for any players i, j such that ν(S ∪ {i}) = ν(S ∪ {j}), for every
S ⊆ N \ {i, j}.

• The last axiom additivity points out that if two independent games v and v′ are combined,
their value must be added player by player, e.g., for any player i (φi(ν + ν ′) = φi(ν) +
φi(ν ′)).
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The following theorem indicates the characterization of the Shapley value [Shapley, 1953].

Theorem 1.3.8. There is a unique function φ, which satisfies the axioms Efficiency, Null player,
Symmetry, and Additivity. Moreover, this φ is just the Shapley value.

In addition to the axiomatic study of Shapley value, an axiomatic study is provided to char-
acterize the Banzhaf index [Dubey and Shapley, 1979]. The authors analyse the Banzhaf index
using the four axioms.

The characterization theorem is as follows [Dubey and Shapley, 1979]. In the following the-
orem ηi(ν) refers to the total number of swings of player i, and η̄(v) = Σi∈Nηi(v) (player i ∈ N
said to swing outside S if v(S) = 0 while v(S ∪ {i}) = 1).

Theorem 1.3.9. For the class of all simple games, there is a unique function φ that satisfies the
following properties:

A1. If i is a null player in v then φi(v) = 0.

A2. Σn
i=1φi(v) = η̄(v)

A3. Symmetry.

A4. For any two simple games v and w it holds that φ(v ∨ w) + φ(v ∧ w) = φ(v) + φ(w).
((v ∨ w)(S) = max{v(S), w(S)} and (v ∧ w)(S) = min{v(S), w(S)} for any coalition
S ∈ 2N ).

Moreover, φ is the Banzhaf index.

In this section we have explored the axiomatic study of solution concepts in cooperative game
theory. In the next section, we investigate the axiomatic study in the context of ranking sets of
individuals.

1.4 Ranking Sets of Individuals
One of the problems that is inspired to many individual and collective decision making problems
is the problem of ranking sets of individuals when the ranking over individuals are given. As an
example, suppose you are given a finite set of statements, each of which is plausible to one degree
or another, and asked to pick a most plausible consistent subset. Therefore, what is needed is to
define a ranking over the set of statements based on their degree of plausibility. A natural way
to proceed would be first to order the plausibility of the consistent subsets and then to randomly
choose a most plausible one. The problem reduces, then, to ordering the consistent subsets.

Formally, suppose a decision maker is provided by a ranking R over the set X = {x, y, z} of
objects or individuals. The symmetric and strict parts of the ranking R are respectively indicated
by I and P . The structure of ranking R depends on the context of the ranking problem. In
general, we assume that it is a binary relation. The decision maker, then, faces the problem of
finding a binary relation �⊆ 2X × 2X , which forms an ordinal ranking over the subsets of 2X .
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This problem is extensively studied in recent years due to its importance in many practical
situations. These applications are, for instance, comparing the stability of coalitions in cooper-
ative game theory or evaluating the likelihood of a set of events to occur [Barberà et al., 1984,
Barberà et al., 2004]. This ranking problem is the inverse of the ranking problem that we study
in this thesis. Therefore, it is worthy to briefly study this ranking problem.

Based on the objective of decision maker to rank subsets of objects, the ranking over individ-
uals can be extended to rank over subsets of individuals under three different interpretations.

Complete uncertainty. Suppose the decision maker is endowed with a preference over objects,
and assume the decision making is a two-step process. In the first step, the decision maker
could rank subsets of objects, while in the second step the nature selects one of the alter-
natives from the highest ranked subset (random selection). In this case, the decision maker
should rank subsets with most preferred objects higher. By doing this, the decision maker
increases the probability of favored objects to be selected in the second step, by nature.

Opportunity sets. Suppose the decision maker faces the process of selecting one object from a
set of objects. And since the decision maker is not sure about her preference in the future,
she does the decision making in two steps. In the first step, she selects a set of objects that
provides her a bigger opportunity to choose an object in the second step, after being sure
about her preferences.

Sets as final outcomes. Each set contains objects that are assumed to materialize simultane-
ously. In this kind of problems, in order to rank subsets of objects we need to consider
the possible interaction among the objects as well as their individual ranking. Examples
of this kind of scenarios are ranking coalitions based on how stable they are, or election of
members to join an organization.

Note that in the context of complete uncertainty or the one of opportunity sets, where objects are
mutually exclusive and precisely one object materializes at a later stage, it is quite reasonable to
discard the possibility that complementarity or incompatibility may affect ranking sets.
In order to clarify the idea behind these assumptions, consider a set of two alternatives X =
{x, y}. Suppose alternative x is preferred to alternative y, and the goal is to rank the three
subsets {x}, {y}, and {x, y}. Under the interpretation of complete uncertainty, it is reasonable
to rank {x} over {x, y} since it is possible that y be chosen when {x, y} is selected. The same
way, the set {x, y} is expected to be ranked higher than {y} because selecting {x, y} makes it
possible to choose x at the final step.
As an example, imagine a voting scenario in which the aggregation is done by a social choice
correspondence which maps the preference profiles of voters to a subset of candidates (some
candidates can be equally ranked according to the voting rule). In such scenario, voters tend to
rank different subsets of candidates that can be realized in the outcome. This ranking should
be done based on the fact that some other voters may tend to manipulate their votes in order to
make one of the candidates winner and the others loser. This kind of ranking sets of candidates is
categorized in the context of complete uncertainty, since candidates are mutually exclusive and
just one of them will be materialized as the outcome.
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Under the interpretation of opportunity sets, the two sets {x, y} and {x} could be indifferent,
and {y} could be ranked below them. Example of ranking sets as opportunity sets is selecting a
restaurant to eat based on their menus. For example, suppose someone is eager to eat in French
restaurant and she considers a restaurant as french if they have goose liver in their menu. Now
imagine a restaurant with two types of food in its menu as food x and food y (which are not goose
liver), and another restaurant offers a menu as {x, y, w} where w in the goose liver. Although
the individual is not particularly interested in goose liver, she selects the second set of options
because it assures that he will eat in a French restaurant [Baharad and Nitzan, 2000].

Finally, by the interpretation of sets as final outcomes, if objects are goods, {x, y} might be
ranked higher than the others. However, it completely depends on the nature of the objects x and
y and the kind of incompatibility or complementary effects between them [Barberà et al., 2004].
An example of this ranking problem is the ranking of sets on statements by their level of
consistency when statements are ranked based on their degree of plausibility. This problem
is studied by scientists according to the above mentioned interpretations (see, for instance,
[Bossert, 1995, Kreps, 1979, Roth, 1985]).

In the following sections, based on the interpretation of the ranking problem, we explore the
properties of methods to lift ranking over objects (individuals) to ranking over subsets of them.
Note that during these sections whenever which is needed we interchangeably use the words
object and individual.

1.4.1 Complete Uncertainty
In this section, we consider the problem of ranking sets of objects when the decision maker’s goal
to rank the subsets is to increase the chance of selecting the highly preferred object, by nature,
in the second round. A familiar example of ranking sets categorized in the context of complete
uncertainty is to decide to go to the beach regarding uncertain information about the weather
(if it will be sunny or not). Suppose g indicates your choice “to go to beach” and −g denotes
your choice “not to go to beach”, and s refers to the sunny weather while −s not sunny weather.
If the decision maker chooses to go to the beach, she implicitly selects the set {(g, s), (g,−s)}
and when she chooses not to go she takes the set {(−g, s), (−g,−s)}. In this case, the decision
making problem reduces to the problem of ranking sets regarding the fact that nature chooses one
of the members in the selected set and the decision maker is uncertain about it [Packard, 1979].
In this example, the decision maker faces to rank some subsets of objects (g, s), (g,−s), (−g, s),
and (−g,−s), by knowing that nature selects one of the objects from the most preferred subset
of the decision maker.

Different methods have been proposed in order to solve the problem. For instance, because
the decision maker is not the one who makes the final decision, it seems logical that she makes
decision pessimistically. Therefore, one way to solve this kind of problem can be the maxi-min
method.
Given a set A, object x is the minimum of A (x = min(A)) if for all other objects y ∈ A, the
decision maker prefers y to x (y P x). In the same way, object x is called the maximum of set A
(x = max(A)) if for all the other objects y ∈ A, the decision maker prefers x to y (x P y). The
relation�∈ 2X×2X is maxi-min when for any two setsA andB,A � B ⇔ min(A) ≥ min(B).
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As far as we know, the axiomatic analysis of the ranking methods was first done by
[Fishburn, 1992] with the aim to answer the question of how a voter can compare possible out-
comes of the voting (possible sets of alternatives). His work is based on the interpretation of
complete uncertainty, and the idea is that each voter wants to increase the probability of its most
preferred alternative to be selected in the outcome, with regard to the fact that the other voters
can manipulate their votes. From the same interpretation, more recent approaches to this problem
is done by [Kannai and Peleg, 1984] and [Packard, 1981]. They investigate the possible logical
properties for the solutions in the context of complete uncertainty which somehow justify another
method of ranking sets called mixed min-max method.

One of the properties they inspect is called dominance, also known as Gärdenfors principle.
This property means that adding an object which is better than all the objects in a set will improve
the set. On the other hand, it expresses that adding an object which is worst than the other objects
in the subset will decline the subset, simply because it reduces the chance of selecting the best
object from the subset by nature. Note that this axiom is completely ignorant about the possible
interaction between objects, which is a valid assumption for the context of complete uncertainty.

Definition 1.4.1 (Dominance). A binary relation � on 2X satisfies dominance iff for all A ∈ 2X

and for all x ∈ X ,

• [x P y, ∀y ∈ A]⇒ A ∪ {x} � A

• [y P x, ∀y ∈ A]⇒ A � A ∪ {x}.

Another benign property called independence. It emphasizes that if one set is preferred to
another one by a decision maker, then adding the same object to both of the sets should not
reverse the preference of the decision maker over the sets.

Definition 1.4.2 (Independence). A binary relation � on 2X satisfies independence iff for all
A,B ∈ 2X , for all x ∈ X \ (A ∪B),

A � B ⇒ (A ∪ {x}) � (B ∪ {x}).

Along with the definition of these two properties, the following Lemma plays an important
role in ranking sets of objects [Kannai and Peleg, 1984].

Lemma 1.4.3. Assume that the ranking over sets � is transitive, and A is a nonempty subset of
objects. If � satisfies dominance and independence then A ∼ {min(A),max(A)}.

As indicated in the Lemma, if dominance and independence are satisfied, any set A ∈ X
must be indifferent to a set consisting of the best and the worst elements of the set A. As a result
having access to a restricted ranking over singletons and two-element sets is sufficient to recover
the whole ranking � [Barberà et al., 2004].

[Packard, 1979] introduced different ranking methods in order to lift the ranking from indi-
viduals to the set of coalitions along which a set of axioms that characterize some of the ranking
methods. Also [Kannai and Peleg, 1984] proved an impossibility theorem regarding the axioms
Dominance and Independence which is worth mentioning here.
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Theorem 1.4.4 (Impossibility). Consider a set X , containing more than six objects (|X | > 6).
If the ranking over the objects is a linear order, then there is no complete preorder over 2X

satisfying both Independence and Dominance.

Other results containing both possibility and impossibility results are discussed in
[Barberà et al., 2004] and [Bouveret et al., 2009]. Also many other extensions have been pro-
posed under complete uncertainty [Barberà et al., 2004], particularly lexi-min and lexi-max ex-
tensions [Bossert, 1995] and [Pattanaik and Peleg, 1984].

1.4.2 Opportunity Sets
For this family of problems the sets are interpreted as opportunity sets from which the decision
maker chooses one object. An example is the set of candidates available to a voter in an election.
Also, the budget set of standard consumer theory, which consists of all consumption bundles that
a consumer can afford, given her wealth and the prevailing prices, is an immediate example of
an opportunity set [Gravel, 2009].

As mentioned before, one plausible interpretation is that the decision maker faces a two step
decision making process that selecting a set of objects in the first step constraints the opportunity
of choosing one feasible object in the second step. The problem of choosing a restaurant is one
of this kind. Suppose the decision maker knows about the menus of different restaurants and
consider all the restaurants to be the same except in their menus. Also, assume she wants to eat
in a French restaurant and the sign of a French restaurant is to have a goose liver in the menu.
Thus, she ranks menus with goose liver higher than the others, so that in the future she can
select a food in a French restaurant according to her taste. This explanation entails some ranking
methods as follows:

Suppose A = {a1, a2, ..., am} and B = {b1, b2, ..., bn} are two sets, then it holds that A � B
if and only if for all x ∈ B there exists a member y ∈ A such that y R x (indifference allowed).

It is also easy to verify that ranking methods of this kind satisfy the following property called
Extension Robustness, with the meaning that adding a set A to another set B, which is as good
as A, determines a set that is indifferent to A.

Definition 1.4.5 (Extension Robustness). A binary relation � on 2X satisfies extension robust-
ness iff for all A,B ∈ 2X it holds that A � B ⇔ A ∼ A ∪B

It is possible to prove that every mentioned ranking method can be characterized by the
extension robustness.

Another interpretation of the opportunity sets comes from the notion of flexibility. According
to this notion, decision maker prefers a set of objects that provides her a greater opportunity in
the future to select one object. For instance, look again at the example of restaurants. Suppose
the decision maker prefers a menu containing only steak to a menu containing only chicken. But
she prefers the menu containing both steak and chicken because it engenders more flexibility to
choose between them. This kind of interpretation is discussed in [Kreps, 1979].
The validation of this method comes from the possible uncertainty of decision maker about her
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preferences over objects in the future. For instance, a decision maker who is uncertain about her
future taste prefers to choose a menu with wider range of option. The proposed ranking methods
obviously do not satisfy extension robustness because, according to it, the set A ∪ B provides
more flexibility, to choose in the future, than the set A.

One of the properties of such ranking rules is a kind of monotonicity that implies sets with
bigger cardinality get higher rank by the ranking method.

Definition 1.4.6 (Desire of flexibility). The binary relation � satisfies “desire of flexibility” iff
for any two sets A and B, B ⊆ A implies that A � B.

Mentioning flexibility of choice as a kind of freedom, [Pattanaik and Xu, 1990] analyzed
three well-defined properties that each ranking method should satisfy.

Indifference between no choice situations. Consider a binary ranking � defined over 2X . For
all x, y ∈ X it holds that {x} ∼ {y}.
This axiom explains that all sets that offer only one object to the decision maker have the
same ranking no matter what is the proposed object in the sets.

Simple extension monotonicity. Consider a binary relation � over 2X , for all x, y ∈ X ,
{x, y} � {y}.
This axiom is simply indicates that the ranking method should look at the size of coalitions,
not to the objects inside the sets.

Strong independence. Consider a binary relation � over 2X , then for all A,B ∈ 2X and for
each x ∈ X \ A ∪B it holds that A � B ⇔ A ∪ {x} � B ∪ {x}.
Strong independence reflects that when one set is preferred to another one, increasing the
size of them by adding one arbitrary object will not affect the ranking between the sets.

[Pattanaik and Xu, 1990] defined a ranking method based on the cardinality of the sets.

Definition 1.4.7 (cardinality-based ordering). The binary relation � over the power set of
objects 2X is called cardinality-based ordering iff:

∀A,B ∈ 2X , A � B ⇔ |A| ≥ |B|

Finally, he proved that the three axioms indifference between no choice situations, sim-
ple extension monotonicity, and strong independence characterize cardinality-based ordering
[Pattanaik and Xu, 1990].

Theorem 1.4.8. The binary relation�⊆ 2X ×2X is the cardinality-based ordering iff� satisfies
indifference between no choice situations, simple extension monotonicity, and strong indepen-
dence.

In the next section, we explore another interpretation of ranking sets of objects when the
elements in sets are not mutually exclusive.
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1.4.3 Sets as Final Outcomes
In this section, we review the literature on the problem of ranking sets of objects, when they
materialize simultaneously. Examples of this family of problems are formation of coalitions,
election of new members to join an organisation, and college admissions problem. Different
approaches are proposed to solve this family of problems.

The first approach that we review is proposed by [Roth, 1985] to solve the college admissions
problem. The approach is called fixed cardinality ranking which assumes the sets of a fixed
cardinality can be formed. In the college admissions problem, colleges are assumed to have
a fixed quota q ∈ N, indicating the maximum number of students they can admit. Therefore,
having an initial ranking over students, colleges look for ranking over sets of students of size
q. In order to analyse problems in this approach, [Roth, 1985] introduced a property called
responsiveness. A ranking over sets of objects satisfies responsiveness if for any two sets that
differ in only one object, the ranking prefers the set containing the more preferred objects.

To formally define the property we need a further notation. Given a set of objects X , let’s
indicate the set of subsets of size q withAq = {S ∈ 2X s.t |S| = q}. The responsiveness formally
defined as follows [Roth, 1985].

Definition 1.4.9 (Responsiveness). Let R be a binary relation on the set X . A binary relation �
on the set Aq satisfies responsiveness iff for all S ∈ Aq, for all a ∈ X , and for all b ∈ X \ S we
have that [[S � (S \ {a}) ∪ {b}]⇔ aRb] and [[(S \ {a}) ∪ {b} � S]⇔ bRa]

To solve the problem of ranking subsets of fixed size q, [Bossert, 1995] proposed a lexico-
graphical method called lexicographic rank-ordered rule. He mainly considered existence of a
linear order over the set of individuals, and also assumed the objects in sets are numbered in
decreasing order. This assumption enables the decision maker to lexicographically compare any
two sets of objects. A characterization of the ranking method is given by [Bossert, 1995] using
the Responsiveness and the well-known axiom neutrality which ensures that the names of ob-
jects are irrelevant in establishing the ranking. The neutrality axiom in this context is defined as
below.

Definition 1.4.10. For any two sets A,B ∈ Aq (q ∈ N), the set of individuals X and any one
to one mapping f : A ∪ B → X , a linear order �∈ 2X × 2X satisfies neutrality iff [xRy ⇔
f(x) R f(y)∀x ∈ A, ∀y ∈ B]⇒ [A � B ⇔ f(A) � f(B)].

In this definition f(A) and f(B) refer to sets whose members are obtained by respectively
mapping members in A and B using f .

By considering the domain of the ranking problem to be the set of linear orders, it is pos-
sible to characterize the lexicographic rank-ordered rule using the two axioms neutrality and
responsiveness [Bossert, 1995].

Lemma 1.4.11. Given a set of n objects, a quota 2 ≤ q < n, and a linear order R over the set
X , ranking �∈ 2X × 2X is obtained by lexicographic rank-ordered rule if and only if it satisfies
neutrality and responsiveness.
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A still different approach to solve the problem is proposed by [Fishburn, 1992]. In his ap-
proach Fishburn utilized four types of information that their combination establish an extension
of ranking over objects. These information are not just the primitive information, but information
on complements of alternatives. Three types of these information come from the necessity that
the established ranking over singleton sets must be congruent with the ranking of corresponding
objects. In fact, partitioning the set of objects based on decision maker’s preferences into two
classes of approved objects and disapproved objects helps to induce more rankings over subsets.

The forth type of information is a signed ordering on the complements of the singleton sets.
Considering the set of objects as potential candidates to form a committee of specific size, signed
ordering allows for the consideration of comparisons like “it is more important to prevent a can-
didate a from being in the committee than having candidate b in the committee”, or “leaving can-
didate a off the committee is preferred to leaving b off the committee”, etc [Moretti et al., 2016].
The properties of the signed order as well as possible extensions are available in [Fishburn, 1992].

1.5 Social Ranking Solutions
The problem of ranking individuals given a ranking over coalitions formed by them, is first
studied by [Moretti and Öztürk, 2017], from property driven approach. The authors in the paper
axiomatically study the problem and explore solutions satisfying a set of meaningful properties.

Given a set N of individuals, they denote the ranking over coalitions formed by the individ-
uals as �, which is a total preorder (complete and transitive) over the power set of N (2N ). This
ranking is called a power relation. The authors indicate set of all total preorders over the set of
individuals by T N , and the set of total preorders over the set of coalitions by T 2N . The ranking
problem is to find a total preorder over the set N of individual (social ranking) when a power
relation on subsets of N is given. More formally, a social ranking rule is defined as a function
ρ : T 2N → T N which maps a total preorder on a set of coalitions to a total preorder over the set
of individuals. In this case, for any two individuals i and j the notation iρ(�)j refers to the weak
preference of i to j. The authors introduce two axioms of the ranking methods, and they analyse
the effect of the axioms on defining ranking methods. These properties are listed as follows.

Dominance. A social ranking rule ρ : C2N ⊆ T 2N → T N satisfies dominance on C2N ⊆ T 2N

if and only if for all �∈ T 2N , and for any two individuals i, j ∈ N , if i dominates j in �,
then iρ(�)j (and not jρ(�)i if i strictly dominates j in �).

This axiom states that if each coalition containing specific individual like i always be
ranked higher than coalition S when i is substituted by another individual j, then i should
be ranked higher than j.

The second axiom is symmetry. This axiom rules out the ranking methods that rank indi-
viduals based on their name and not their performance.

Symmetry. A social ranking rule ρ : C2N ⊆ T 2N → T N satisfies symmetry if and only if

iρ(�)j ⇔ pρ(�)q
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for all i, j, p, q ∈ N and �∈ C2N such that |Dk
ij(�)| = |Dk

pq(�)| and |Dk
ji(�)| = |Dk

qp(�)|
for any k = 0, 1, ..., n− 2 (Dk

ij(�) = {S ∈ 2N\{i,j}, |S| = k, S ∪ {i} � S ∪ {j}}).

They examine if the two intuitive ranking methods, primitive and complement primitive, sat-
isfy Dominance and Symmetry. They proved that, for a set of three individuals primitive and
complete primitive social rankings satisfy axioms dominance and symmetry. Given a power re-
lation �∈ T 2N , a social ranking ρ : C2N ⊆ T 2N → T N is called primitive iff for any individuals
i, j ∈ N it holds that iρ(�)j ⇔ {i} � {j}. Also if for a coalition S, the complement of S
is defined as S∗ = N \ S, then the social ranking ρ : C2N ⊆ T 2N → T N is called complete
primitive iff for any two individuals i, j ∈ N we have iρ(�)j ⇔ {j}∗ � {i}∗.

One of the important results in the paper is a theorem that illustrates the incompatibility of the
axioms symmetry and dominance when there are more than three individuals to be ranked. They
show that combination of these natural properties yields either to impossibility (i.e., no social
ranking exists), or to flattening (i.e., all the individuals are equally ranked), or to dictatorship
(i.e., the social ranking is imposed by the relative comparison of coalitions of a given size)
[Moretti and Öztürk, 2017].

Theorem 1.5.1. Let |N | > 3. There is no social ranking solution ρ : T 2N → T N which satisfies
dominance and symmetry on T 2N

.

Within the same framework, [Bernardi et al., 2017] axiomatically characterize a social rank-
ing solution based on the idea that the most influential individuals are those appearing more
frequently in the highest positions in the ranking of coalitions. Following this reasoning, they
fix a set of properties that a solution should meet, and explore the possible ranking methods
satisfying them.

Neutrality. A social ranking rule ρ satisfies neutrality if and only if for any two individuals and
a power relation �∈ T 2N , it holds that

iρ(�)j ⇔ σ(i)ρ(�σ)σ(j)

where σ is a bijection on N such that for any power relation �∈ T 2N , �σ is defined as
below

σ(i) �σ σ(j)⇔ i � j.

The neutrality axiom is based on the idea that a solution should preserve the ranking of
individuals in a society over permutations of the individuals’ names.

Coalitional Anonymity. A social ranking rule ρ satisfies coalitional anonymity if and only if
for any two power relations �,w∈ T 2N , any two individulas i, j ∈ N , and bijection π on
2N\{i,j} it holds that iρ(�)j ⇔ iρ(w)j when for all S, T ∈ 2N\{i,j} we have

S ∪ {i} � T ∪ {j} ⇔ π(S) ∪ {i} � T ∪ {j}.

The axiom essentially states that the ranking between any two elements i, j should be
independent of the other elements.
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Monotonicity. We say that a solution ρ is monotone if for any power relation �∈ T 2N , every
individuals i, j ∈ N such that iρ(�)j and jρ(�)i, and any power relation w∈ T 2N which
is obtained by just strictly improving the ranking of a subset containing i but not j, applying
the social ranking solution on w ranks i strictly better than j (iρ(w)j and not jρ(w)i).

Independence from the worst set. Consider a power relation �∈ T 2N is given as

S1 � S2 � ... � S2n−1,

in which S1, S2, ..., S2N−1 ∈ 2N , and let’s Σ1 � Σ2 � ... � Σ` is an order in which
subsets St are grouped in equivalence class Σk. We say a social ranking rule ρ satisfies
Independence from the worst set if for any power relation � with the associated ordering
Σ1 � Σ2 � ... � Σ` (` > 2), and i, j ∈ N such that i is strictly better that j (iρ(�)j and
not jρ(�)i) we should have i is strictly better than j in the power relation w (iρ(w)j and
not jρ(w)i) when w∈ T 2N is obtained from � by partitioning Σ` to T1, T2, ..., Tm:

Σ1 A Σ2 A ... A Σ`−1 A T1 A ... A Tm

This axiom enlightens a method to rank individuals given a power relation. The axiom
gives more importance to subsets ranked higher in the power relation. A possible interpre-
tation of the property is the evaluation of professors based on their scientific collaboration
in different groups. Once that a total order between two professors is established on the
basis of their scientific productivity over all groups, the possible use of a secondary crite-
rion for groups’ evaluation (e.g., the educational offer of a team) affecting only coalitions
with the lowest scientific productivity, may not impact a total order defined according to
the most important evaluation’s criteria [Bernardi et al., 2017].

They have defined a social ranking rule called lexicographic excellence solution which fol-
lows the notion of lexicographical ordering over the equivalence classes of subsets in a given
power relation. Based on this solution, to rank individuals i and j given a power relation �,
starting from the highly ranked class of subsets, we count the number of times that each one of i
and j shows up in the subsets of the class. Finding difference between the numbers of presence
for the two individuals terminates the process, and ranks the one shows up more upper than the
other one. If we face indifference between the numbers of presence for the two individuals, the
process continues for other equivalence classes. If indifference occurs for all the equivalence
classes then the two individuals are considered to be indifference.

They have proved a theorem that characterizes the lexicographic excellence solution using
the four mentioned axioms [Bernardi et al., 2017].

Theorem 1.5.2. The lexicographic excellence solution is the unique solution fulfilling axioms
neutrality, coalitional anonymity, monotonicity, and independence from the worst set.

The majority of work on the problem of ranking individuals when ranking over coalitions
formed by them are given is done based on axiomatic study of different solutions. A more
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practical approach in this context is given in [Fayard and Escoffier, 2018], which is based on a
solution introduced in Chapter 2. Since the introduced solution does not guarantee transitivity
of ranking over individuals, In Their paper, the authors implement a social ranking rule to find
an approximation of the where a minimum number of coalitions are removed in order to satisfy
the transitivity. They called the solution CP-majority with maximum coalitions. Still another
empirical approach is provided in [Allouche et al., 2020]. In this paper, the authors investigate
the manipulability for social ranking rules when each individual prefers to improve its position
in social ranking. In order to be coherent during the thesis let us fix the notations that we use in
the chapters.

1.6 Conclusion
In this chapter, we have reviewed the literature on the main concepts relating to the ranking
problem in the thesis. Specially, we have got familiar with axiomatic study and its importance
in social choice theory. We have investigated problems in voting theory. We have studied the
corresponding solutions and analyse the properties that they satisfy. Also we have explored the
notions of cooperative game theory. We have inspected the solutions in order to solve the problem
of distributing the sharing of coalitions among their members, and we have studied them from
property driven approach.

We have also considered recent advancement in the inverse of our ranking problem, which is
lifting the ranking over individuals to a ranking over their coalitions (subsets). We have explored
different interpretations of the problem, and for each one we have reviewed the axiomatic study
of the ranking methods. Finally, the chapter is concluded by studying the recent works on the
problem of ranking individuals when ranking over their coalitions are given.

In the next chapter we design a social ranking rule based on the concept of majority in the
classical social choice theory, and we analyse the properties of the ranking method. Also, since
majority rule does not guarantee transitivity of collective ranking, we inspect some restrictions
on structure of power relations to avoid cycles in the final ranking result.
Chapter 3 establishes a ranking rule based on classical solution concepts in cooperative game
theory. Specially, by extending the notion of marginal contribution to ordinal framework we
define a solution and study it from property driven approach.

Finally, Chapter 4 is devoted to explore possible extensions of the ceteris paribus majority
rules to weighted versions. More precisely, considering the ranking rule introduced in Chapter 2,
we categorize possible extensions of the solution to different families of weighted solutions and
investigate the relation between the families from property driven approach.
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2
Ceteris Paribus majority rule

Abstract

In this chapter, we study the problem of finding a social ranking over individuals or objects
given a ranking over coalitions formed by them. We investigate the use of a ceteris paribus
majority principle as a social ranking solution. We study the problem from property driven
approach. Particularly, we follow an axiomatic study inspired from classical axioms of social
choice theory. Faced with a Condorcet-like paradox, we analyze the consequences of restricting
the domain according to an adapted version of single-peakedness. We conclude with a discussion
on different interpretations of incompleteness of the ranking over coalitions and its exploitation
for defining new social rankings, providing a new rule as an example.
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2.1 Introduction

In this chapter, in order to solve the ranking problem, introduced in 1.5, we utilize some of the
well-known concepts in the theory of voting.

The problem of ranking individuals given an ordinal ranking over coalitions formed by them
is of great relevance in the context of decision theory, social choice theory and game theory.
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Consider, for instance, the problem of estimating the “power” of countries in the process of col-
lective decision making in an international parliament, or evaluating the influence of a belief on
making belief bases consistent or inconsistent [Hunter and Konieczny, 2010]. However, in such
situations, as in many others, the worth of each group (or coalition) is, in general, hardly quan-
tifiable, with the only available information about the relative strength of groups being purely
ordinal. Thus, we assume given a set of individuals, as an input we have an ordinal ranking over
subsets (coalitions) of individuals, and as an output we are looking for a ranking over the set
of individuals. Since the aim of the ranking procedure is to compare any two individuals, we
assume the ranking over individuals to be a complete preorder (transitive and reflexive).

More precisely, given a set N of individuals, we consider a power relation (�) as a binary
relation over the set of coalitions, which indicates their relative performance (�⊆ 2N × 2N ).
Given a power relation, we are looking for a mapping that maps the power relation to an ordinal
ranking over the set of individuals. Notice that, during this chapter, we do not impose any
property over the binary relations in the domain of a solution (the set of power relations).

Suppose there is a setN of five researchers in the departmentN = {1, 2, 3, 4, 5}, and assume
a power relation (�) demonstrates the relative performance of teams: 2345 � 245 � 1234 ∼
13 � 12 � 23 � 145 � 35 � 24 � 14 � 34 1. The power relation illustrates that, for instance,
team 2345 performs strictly better that team 245, or teams 1234 and 13 are performing in the
same level of satisfaction. Therefore, we are looking for a map that assigns a total preorder to a
given power relation. We call this mapping a social ranking solution.

The introduced social ranking rule, in this chapter, owes a great deal to the simple majority
rule in classical voting theory. The ubiquitous use of majority in many of practical voting pro-
cedures prompts us to extend it to our coalitional setting and to study it from property driven
approach. More specifically, we propose a social ranking rule based on a ceteris paribus major-
ity principle, provide an axiomatic characterization of it, and analyze conditions under which the
social ranking is transitive.
The simple intuition behind this social ranking rule makes it worthy to study: individuals i and
j are compared using only information from the power relation that ranks them under a ceteris
paribus (i.e., everything else being equal) interpretation. More precisely, if S is a coalition con-
taining neither i nor j, we only look at the relation between S ∪{i} and S ∪{j} in order to infer
some information about the relative strength of i and j, as it is shown in the following example.

Example 6. Consider the power relation in the example of researchers’ evaluation: 2345 �
245 � 1234 ∼ 13 � 12 � 23 � 145 � 35 � 24 � 14 � 34. Suppose researchers 1 and
2 are up for a promotion. The ceteris paribus ranking of candidates 1 and 2 implies that only
three comparisons from � can be used: 245 � 145, 24 � 14 and 13 � 23. These comparisons
are interpreted as saying, e.g., that keeping 45 equal, the team containing 2 (i.e., 245) performs
better than the team containing 1 (i.e., 145). The (ceteris parisbus) majority principle states that
2 should be rewarded, since candidate 2 wins against 1 in two comparisons (i.e., 245 � 145 and
24 � 14) whereas 1 wins against 2 only in one (i.e, 13 � 23).

1Throughout the thesis, we often write teams without commas and parentheses, e.g., we write 245 instead of
{2, 4, 5}.
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Unfortunately, if we do not assume any restriction over the domain of power relations, it is
easy to show that the ceteris paribus majority solution can lead to a Condorcet-like paradox in
the social ranking. In order to mitigate this issue, we were able to identify a restriction on the
power relation domain that is analogous to the classical single-peakedness property from social
choice theory [Black et al., 1958], and prevents the Condorcet paradox.

Applying the ceteris paribus principle on the problem of ranking individuals, it is (virtually)
converted to an electoral system which is different from classical voting scenarios from two
points:

1. The voters are coalitions and may include more than one individual: in example 6 one voter
is coalition 45 containing individuals 4 and 5, and the other voters are singleton coalitions
3, and 4.

2. One individual can be a candidate and also a part of a voter: consider comparison 12 � 23
in the power relation in example (6), the coalition containing only 2 acts as a voter, while
in the comparison 245 � 145, 2 is a candidate.

Another distinguishing feature of this chapter relates to the incompleteness of power rela-
tions. In both papers [Moretti and Öztürk, 2017] and [Bernardi et al., 2017] it is assumed that
one has access to a ranking over all possible coalitions, i.e., that the power relation is a total or
complete preorder over the elements of 2N . However, in many situations this assumption might
not be satisfied, e.g., due to missing data, incomparability of certain coalitions or their impos-
sibility to be formed, etc. Therefore, we also consider power relations that are not necessarily
complete. In Section 2.3 incompleteness does not provide any complementary information for
the social ranking rule, though in other cases the lack of comparisons may be a source of infor-
mation and can be exploited in the definition of a social ranking. In this light, in Section 2.5
we briefly discuss different interpretations of incompleteness and conclude with an example of a
social ranking rule based on the idea of information level for coalitions.

The contributions of this chapter are published in the proceeding of international conference
IJCAI-18 [Haret et al., 2018].

The chapter is organized as follows: In section 2.2 we fix all the notations we are going
to use; Section 2.3 presents the characterization of a social ranking solution based on the ceteris
paribus majority principle; Section 2.4 deals with the analysis of single-peakedness in our frame-
work; Section 2.5 discusses incompleteness of the power relation, and Section 2.6 concludes the
chapter.

2.2 Preliminaries and Notations
Before going into details, let’s unify the notations that we are going to use in different chapters
of the thesis:
Let N = {1, . . . , n} be a finite set of elements or individuals and let R ⊆ N × N be a binary
relation on N (xRy meaning that x is in relation R with y, for x, y ∈ N ). A binary relation
R on N is said to be: reflexive, if for each i ∈ N , iRi; transitive, if for each i, j, z ∈ N , (iRj
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and jRk) ⇒ iRk; total, if for each i, j ∈ N , i 6= j ⇒ iRj or jRi; antisymmetric, if for each
i, j ∈ N , iRj and jRi ⇒ i = j. A preorder is a reflexive and transitive binary relation. A
preorder that is total is called total preorder. An antysimmetric total preorder is called linear
order (each equivalence class is a singleton). We denote by T (N) the set of all total preorders
on N , and by L(2N) the set of all linear orders on 2N . A power relation is a binary relation
�∈ B(2N) where B(2N) is the family of all subsets of 2N × 2N . For all S, T ∈ 2N , S � T
means that (S, T ) ∈� and (T, S) /∈� and S ∼ T means that (S, T ) ∈� and (T, S) ∈�. The
problem that we study is to rank individuals in a setN given a power relation (�) defined over the
power set of individuals(2N ). We refer to ranking over individuals as a social ranking solution or
solution. Given a set of individuals, throughout the thesis, we study the social ranking solutions
that applying them on a power relation results in a total preorder over the set of individuals.
Formally, a social ranking solution on A ⊆ N is a function RA : B(2N) −→ T (A) associating to
each power relation �∈ B(2N) a total preorder RA(�) (or R�A) over the elements of A. By this
definition, the notion iR�Aj means that applying the social ranking solution to the power relation
� gives the result that i is ranked higher than or equal to j. When R�A is a total preorder, we
denote by I�A its symmetric part, and by P�A its asymmetric part. In Chapter 4 a social ranking
solution is defined as a function that maps each power relation to a set of linear orders over the
set of individuals(2L(N)).

2.3 Social Ranking Solutions
Starting from the classical approaches to the voting procedure, in this section we expand the
simple majority rule to the domain of coalitional voting systems and reformulate the properties
introduced by [May, 1952] in our coalitional setting. Investigating how the properties of simple
majority rule will change when we apply them to the domain of our problem helps us to better
understand the advantages and disadvantages of the proposed social ranking rule and, probably,
find out the applications that such method best fits into.

The first property discussed in this section says that each coalition should influence the social
ranking of two alternatives i and j equally, so we can interchange the relation involving coalitions
S ∪ {i} and S ∪ {j} with the one T ∪ {i} and T ∪ {j} involving another coalition T different
from S but having the same kind of relation, and without changing the final social ranking over
i and j. In the following, recall that, given two power relations � and w, the notations ∼ and '
denote indifference in � and in w, respectively.

Definition 2.3.1 (Equality of Coalitions). LetA ⊆ N . A solutionRA : B(2N) −→ T (A) satisfies
the property of Equality of Coalitions (EC) if and only if for all power relations �,w∈ B(2N),
i, j ∈ A and bijection π : 2N\{i,j} → 2N\{i,j} such that S ∪ {i} � S ∪ {j} ⇔ π(S) ∪ {i} w
π(S) ∪ {j} for all S ∈ 2N\{i,j}, it holds that iR�Aj ⇔ iRwAj.

Differently stated, the social ranking of two individuals i and j should only depend on the
ranking expressed by coalitions over i and j, regardless of the number and the identity of coali-
tions’ members. In particular, a coalition of one member has the same influence as a coalition
with many members.
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Example 7. Consider the power relation in example (6), to evaluate researchers’ performance
in a department with five researchers. To compare individuals 1 and 2, a social ranking rule R,
which follows a ceteris paribus majority principle, evaluates their performance in teams 45, 4,
and 3, by referring to ceteris paribus comparisons 245 � 145, 24 � 14 and 13 � 23. Suppose
the social ranking rule R satisfies equality of coalitions. Let’s form another power relation w
in which the coalitions are permuted in the relative ceteris paribus comparisons. Suppose in
a new power relation w, the ceteris paribus comparisons to compare individuals 1 and 2 are
145 A 245, 24 A 14, and 23 A 13 (to form power relation w, coalitions 45 and 3 are permuted).
The social ranking rule R ranks 1 and 2 in the same way as it ranks them in power relation �.
In this example we have 1R�A2⇔ 1RwA2.

The next condition states that a solution should not favor any candidate in A ⊆ N : if the
name of two individuals in A is reversed, the social ranking remains in favor of the individual
who performs better.

Definition 2.3.2 (Neutrality). Let A ⊆ N . A solution RA : B(2N) −→ T (A) satisfies the prop-
erty of Neutrality (N) if and only if for all power relations �,w∈ B(2N) and i, j ∈ A such that
S ∪ {i} � S ∪ {j} ⇔ S ∪ {j} w S ∪ {i} for all S ∈ 2N\{i,j}, it holds that iR�Aj ⇔ jRwAi.

This property points out a very natural demand in many social ranking situations. But satis-
faction of neutrality property is problematic in some ranking problems. Suppose, given a power
relation, the aim of the ranking problem is to extract the only top-ranked individual. In many
of such situations tie breaking rules are beneficial. However, tie breaking rules refer to the idea
that the electoral system has specific mechanisms (like randomness or lexicographical methods)
to select one candidate out of the others, if more than one individual are highly ranked. Such
mechanisms obviously violate the neutrality axiom.

Example 8. Consider the power relation in Example 6, and suppose the aim is to compare
researchers A = {1, 2}. A social ranking, which follows ceteris paribus principle, ranks in-
dividuals by referring to ceteris paribus comparisons 245 � 145, 24 � 14, and 13 � 23.
Assume that the social ranking rule R satisfies neutrality, if the name of individuals 1 and 2 is
reversed by forming another power relation w with ceteris paribus comparisons 145 A 245,
14 A 24, and 23 A 13, then the social ranking rule reverses the ranking of the individuals as
well: 1R�A2⇔ 2RwA1.

The next property states that a solution should be coherent with changes of the power relation
of coalitions. More precisely: if, on a power relation, a social ranking solution is indifferent or
in favor of i with respect to j, and if the power relation of all coalitions remains the same except
that a single coalition becomes favorable to i, then the social ranking becomes strictly favorable
to i.

Definition 2.3.3 (Positive Responsiveness). Let A ⊆ N . A solution RA : B(2N) −→ T (A)
satisfies the property of Positive Responsiveness (PR) if and only if for all power relations �
,w∈ B(2N), i, j ∈ A with iR�Aj and such that for some T ∈ 2N\{i,j}, [T ∪ {i} ∼ T ∪ {j} and
T ∪ {i} A T ∪ {j}], or, [T ∪ {j} � T ∪ {i} and T ∪ {i} ' T ∪ {j}] and S ∪ {i} � S ∪ {j} ⇔
S ∪ {i} w S ∪ {j} for all S ∈ 2N\{i,j} with S 6= T , it holds that iPwA j, but not jPwA i.
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The following example clarifies the idea.

Example 9. Consider the power relation of Example 6, and suppose a social ranking rule R
satisfies positive responsiveness, and the goal is to compare researchers 1 and 2 (A = {1, 2}).
Referring to ceteris paribus comparisons in the power relation� (245 � 145, 24 � 14, and 13 �
23), let’s assume that the social ranking rule ranks individual 2 at least as high as individual 1
in the power relation� (2R�A1). Now, suppose individual 2 starts to perform better when joining
coalition 3 by forming a power relationw, with ceteris paribus comparisons 245 A 145, 24 A 14,
13 ' 23. Based on the property of positive responsiveness, the social ranking R responds
positively to the improvement of individual 2, and ranks it strictly higher than individual 1. In
another way, suppose, given the power relation �, the social ranking rule ranks 1 at least as
high as 2. Now if individual 2 starts to perform poorly when it joins coalition 45, and has the
same performance as 1, by forming power relation w′ with 245 '′ 145, 24 A′ 14, 23 w′ 13, then
the social ranking rule ranks 1 strictly higher than 2 (1Pw′A 2).

In the rest of this section, we introduce the extension of majority rule to our coalitional
framework, and characterize it using the three axioms.
Before formally defining the ranking rule, we need to introduce some further notations. Given
a power relation �∈ B(2N) and two elements i, j ∈ N we define two sets: Dij(�) = {S ∈
2N\{i,j} : S ∪ {i} � S ∪ {j}} and Eij(�) = {S ∈ 2N\{i,j} : S ∪ {i} ∼ S ∪ {j}}. The union
of these two sets represents the informative part of the power relation � for ranking individuals
i and j. We denote the cardinalities of Dij(�) and Eij(�) by d�ij and e�ij , respectively. Ceteris
paribus majority rule ranks one individuals higher than the other one if it performs better in
majority of cooperations:

Definition 2.3.4 (Ceteris Paribus Majority). Let�∈ B(2N). The ceteris paribus majority relation
(CP-majority) is the binary relation R� ⊆ N ×N such that for all i, j ∈ N :

iR�j ⇔ dij(�) ≥ dji(�).

Example 10. Applying ceteris paribus majority rule on the power relation � of example (6)

2345 � 245 � 1234 ∼ 13 � 12 � 23 � 145 � 35 � 24 � 14 � 34

ranks individual 2 higher than individual 1, since individual 2 performs two times better than
individual 1 in coalitions 4 and 45, while 1 just performs one time better than 2 by joining
coalition 3 (Table 2.1).

Coalitions Comparisons

3 13 � 23
4 24 � 14
45 245 � 145

Table 2.1: CP-comparisons to compare individuals 1, 2 in power relation of Example 6.
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The following result characterizes CP-majority rule using the properties introduced above.

Theorem 2.3.5. Let A = {i, j} ⊆ N be a set with only two alternatives. A solution
RA : B(2N) −→ T (A) associates to each �∈ B(2N) the corresponding CP-majority relation
R� ∩ A× A if and only if it satisfies axioms EC, N and PR.

Proof. (⇒) (The existence part)A map assigning to each �∈ 2N × 2N the corresponding CP-
majority relationR�∩A×A is a solution since the two alternatives inA can always be compared
(it also is obviously transitive and reflexive). Hereby, we denote such a map the CP-majority so-
lution (on only two alternatives). EC is satisfied since the CP-majority relation only depends on
the numbers dij(�) and dji(�), and not on which coalitions are in favor of one or the other alter-
native. The Neutrality property is clearly also satisfied, since the interchange of the alternatives
does not affect the definition of the CP-majority relation. Also notice that the CP-majority satis-
fies the PR property: if dij(�) = dji(�), the change of one single indifference S∪{i} ∼ S∪{j}
with S ∈ Eij(�) in favor of i or j breaks the tie.
(⇐) (Uniqueness part) Suppose RA satisfies EC, N and PR. Let �,w∈ B(2N) be such that
dij(�) = dij(w) and dji(�) = dji(w). Define a permutation π of the elements in 2N\{i,j} such
that the elements of Dij(�) are in a one-to-one correspondence with the elements in Dij(w),
the elements of Dji(�) are in a one-to-one correspondence with the elements in Dji(w) and
the elements of Eij(�) are in a one-to-one correspondence with the elements in Eij(w). Then,
property EC implies that:

iR�Aj ⇔ iRwAj. (2.1)

Now, suppose now that dij(�) = dji(�), and dij(w) = dji(w). Define another coalitional
relation <∈ B such that Dij(<) = Dji(�), Dji(<) = Dij(�) and Eij(<) = Eji(�). By the
property N, we have that xR<

Ay ⇔ yR�AxMoreover, since dij(w) = dij(<) and dji(w) = dji(<),
for the previous arguments, by EC we have that iR<

Aj ⇔ iRwAj. So, jR�Ai⇔ iRwAj, and together
with relation (2.1), we have that iR�Aj ⇔ jR�Ai. Since R�A must be total, we have then proved
that:

dij(�) = dji(�)⇒ iI�A j. (2.2)

Now, take a power relation �∈ B(2N) such that dij(�) > dji(�). Take X ⊆ Dij(�) with
|X| = dij(�)− dji(�). Define another power relation w∈ B(2N) such that S ∪ {i} A S ∪ {j}
for all S ∈ Dij(�) \X , S ∪ {i} ' S ∪ {j} for all S ∈ Eij(�) ∪X and S ∪ {j} A S ∪ {i} for
all S ∈ Dji(�). Clearly, dij(w) = dji(w) and therefore, by relation (2.2), iIwA j. Break a tie for
precisely one element S ∈ X such that now S∪{i} A S∪{j}: by property PR, we have that now
iPwA j. By induction, using this result and the PR property, we have that breaking 0 < m ≤ |X|
ties in favour of i for m elements of E, always gives iPwA j. So, if now S ∪ {i} A S ∪ {j} for
all S ∈ X , we have that dij(�) = dij(w) and dji(�) = dji(w), and by EC we obtain that iP�A j.
More precisely, we have proved that:

dij(�) > dji(�)⇒ iP�A j, (2.3)

and by the N property it immediately follows that:

dij(�) < dji(�)⇒ jP�A i. (2.4)
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Relations (2.2), (2.3) and (2.4) are the definition of the CP-majority relation, which concludes
the proof.

Axioms EC, N and PR are independent.

Proof. In order to establish the independence of the three axioms, we show that for each pair of
axioms there are social ranking rules that satisfies them but not the remaining one:

• Consider a setN of individuals and a power relation�. To compare individuals {i, j} = A,
let’s assume dkij indicates number of times S∪{i} � S∪{j} for S ∈ 2N\{i,j} and |S| = k.
If a social ranking solution defined as iR�Aj ⇔ Σkk × dkij(�) ≥ Σkk × dkji(�), then it
is easy to check that it satisfies Neutrality and Positive responsiveness but not Equality of
Coalitions.

• Consider a set N of individuals and a power relation �. Imagine social ranking rules R
such that to compare {i, j} = A we have iR�Aj ⇔ dij(�) ≥ k × dji(�) and jR�Ai ⇔
k × dji(�) ≥ dij(�) when k 6= 1. In this case, when k is greater than one, the ranking
system is in favor of individual j, and when k is less than one, the ranking system is in
favor of individual i. These social ranking rules obviously satisfy Equality of coalitions,
positive responsiveness but not Neutrality.

• Consider a setN of individuals and a power relation�. To compare individuals {i, j} = A
let’s define social ranking rules that rank one individual higher than the other one if it gets
less votes, e.g., iR�Aj ⇔ dji(�)− dij(�) ≥ 0. Such social ranking rules satisfy neutrality,
and anonymity but not positive responsiveness.

The ceteris paribus simple majority solution is grounded in intuitive and appealing principles.
However, it turns out that strict Condorcet-like cycles are possible for more than two candidates,
similarly to classical voting theory.

Example 11. Let’s recall the power relation of Example 6.

2345 � 245 � 1234 ∼ 13 � 12 � 23 � 145 � 35 � 24 � 14 � 34.

If we use the ceteris paribus majority rule to compare the three individuals 1, 2, and 3 we get the
result that:
3R�2, since 13 � 12, 2R�1, since 245 � 145, 24 � 14 and 13 � 23, but 1R�3, since 12 � 23,
which obviously produce a cycle.

The question raised by Example 11 is whether there are reasonable assumptions about the
power relation under which strict Condorcet-like majority cycles can be avoided. Section 2.4
introduces a domain restriction which acts as a sufficient condition for avoiding cycles in the
majority solution. Notice that monotonic power relations (each individual has a positive effect
when joining a coalition) belong to another type of domain restriction. Even if such an assump-
tion seems natural in some contexts (for instance, in multi-attribute decision making), it might be
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violated in others (for instance, in the context of our Example 6, the performance of a researcher
may decrease joining a larger team). Moreover, the ranking generated by the CP-majority is
only affected by comparisons between coalitions of the type S ∪ {i} and S ∪ {j}, where the
monotonicity condition does not apply.

2.4 Single-peakedness of the Power Relation
It is an important insight from the classical voting literature that certain restrictions on the prefer-
ences of the voters are sufficient to guarantee a feasible majority solution. From this perspective,
as mentioned in the last chapter, an interesting restriction is what we will call here individual
single-peakedness [Black et al., 1958]. In a classical voting scenario, a basic assumption is that
there exists a linear order / on candidates; then, supposing voters rank candidates linearly (i.e.,
no ties), it goes on to say that a voter V ’s preference �V over candidates is individually single-
peaked if, for any candidates i, j and k such that i / j / k, it is not the case that both i �V j
and k �V j. [Sen, 1966] proved that if voters’ preference �V is single-peaked for considering
any three candidates in the set of all candidates, then the �V is single peaked over the whole set
of candidates. We will formalize a similar property for the power relation �, which we will, for
simplicity, assume to be a linear order.

Definition 2.4.1 (Social single peakedness). The (linear) power relation � is socially single-
peaked if there exists a linear order / on the set of items N such that for any i, j, k ∈ N for
which i / j / k and any S ∈ 2N\{i,j,k}, none of the following conditions holds:

(sp1) S ∪ {i} � S ∪ {j} and S ∪ {k} � S ∪ {j},

(sp2) S ∪ {i, k} � S ∪ {i, j} and S ∪ {i, k} � S ∪ {j, k}.

Intuitively, the linear order / stands for a dimension along which items in N can be ranked.
We then assume that the power relation � orders coalitions in a manner consistent with /, as
follows: a coalition S containing neither i, j nor k is interpreted as a voter with the power to
rank i, j and k. Then, according to sp1, S does not rank the median candidate j as the least
preferred of the lot; according to sp2, the extreme candidates i and k are not the most preferred
among the combinations {i, j}, {i, k} and {j, k}. Thus, though clearly not identical with it,
single-peakedness evokes the similarly named condition from voting theory.

We further exploit this (by now familiar) tactic of interpreting coalitions as voters in order
to generate an individually single-peaked voting profile out of a socially single-peaked power
relation �.

Definition 2.4.2 (Revealed preferences). Given a power relation� on N , a linear order / on N ,
items i, j, k ∈ N such that i / j / k, and a coalition S ∈ 2N\{i,j,k}, the S-revealed (respectively,
ijkS-revealed) preference relations >S (respectively, >ijkS) based on �, are defined as follows:

• i >S j iff S ∪ {i} � S ∪ {j},

• i >ijkS j iff (S ∪ {i, j, k}) \ {j} � (S ∪ {i, j, k}) \ {i}.
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1 vs. 2 2 vs. 4 1 vs. 4 revealed orders

1 � 2 2 � 4 1 � 4 1 >∅ 2 >∅ 4
13 ≺ 23 23 � 34 13 ≺ 34 2 >3 4 >3 1
14 ≺ 24 12 � 14 12 � 24 2 >124 1 >124 4

134 ≺ 234 123 � 134 123 � 234 2 >1234 1 >1234 4

Table 2.2: Power relation and revealed orders

Intuitively, >s and >ijkS stand in for the preferences of S and S ∪ {i, j, k} over candidates i
and j. Relation >S encodes the fact that coalition S prefers i to j, since adding i to S leads to
better performance than adding j; >ijkS encodes the fact that coalition S ∪ {i, j, k} prefers i to
j, since losing i from S ∪ {i, j, k} leaves the coalition in a worse position than losing j. Stated
differently, >ijkS expresses the fact that i is more valuable to S ∪ {i, j, k} than j.

We can show now that social single-peakedness of � (as introduced in Definition 2.4.1)
implies individual single-peakedness of the revealed preference relations.

Lemma 2.4.3. If � is a power relation on N , i, j, k ∈ N and S ∈ 2N\{i,j,k}, then � is socially
single-peaked iff >S and ijk are individually single-peaked.

Proof. Assume, first, that the power relation � is socially single-peaked but that >S is not indi-
vidually single-peaked, for some coalition S. Then there are i, j, k /∈ S such that i / j / k and
i >S j, k >S j, which implies that S ∪ {i} � S ∪ {j} and S ∪ {k} � S ∪ {j}. But this
contradicts condition sp1, and hence the social single-peakedness of �. Similarly, if >ijkS is not
individually single-peaked, it follows that S ∪ {i, k} � S ∪ {i, j} and S ∪ {i, k} � S ∪ {j, k},
contradicting condition sp2. The proof that individual single-peakedness of>S and>ijkS implies
social single-peakedness of � is analogous.

The revealed preference relations allow us to interpret the ceteris paribus majority solution over
items i, j, k as the result of an election over i, j, k where the voters are coalitions S and S ∪
{i, j, k}, for S ∈ 2N\{i,j,k}. The following example illustrates this.

Example 12. Suppose we want to rank items 1, 2 and 4 from a set N = {1, 2, 3, 4} of items and
we are given a power relation � which generates the revealed relations showed in Table 2.2. We
have orders >∅ and >3, corresponding to the revealed preferences of coalitions S ∈ 2N\{1,2,4},
as well as >124 and >1234, corresponding to revealed preferences of coalitions S ∪{1, 2, 4}. The
majority relation in the election over the revealed preferences is 2 > 1 > 4, which corresponds
to the ceteris paribus majority solution over �. Notice that the revealed preference orders are
individually single-peaked (with linear order 1 / 2 / 3 / 4 over items), and that the social ranking
� is socially single peaked (with the same linear order over items).

Now we can state our main result of this section.

Theorem 2.4.4. If the power relation � is socially single-peaked, then for any items i, j, k ∈ N ,
it does not hold that iR�jR�kR�i (i.e., the ceteris paribus majority solution does produce any
non-transitive cycles).
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Proof. For every coalition S ∈ 2N\{i,j,k}, construct a profile of votes over i, j and k from the
revealed preference relations >S and >ijkS . We have that iR�j iff i is a majority winner over j
in this profile. Since, by Lemma 2.4.3, the relations>S and>ijkS are individually single-peaked,
we get that there is no majority cycle between i, j and k in the final result, which implies that
there is no cycle between i, j and k in the ceteris paribus majority solution.

As an illustration of how a socially single-peaked power relation can be obtained, consider the
fact that a linear order� over the elements of 2N can be numerically represented by a character-
istic function v : 2N → R such that S � T iff v(S) > v(T ) for all S, T ∈ 2N . Suppose now that
the marginal contribution v(S ∪ {i})− v(S) of player i ∈ N \ S is somehow (inversely) related
to the distance, on a policy scale, of the ideal position of player i from the jointly preferred posi-
tion of coalition S ∈ 2N (the lower the distance from the joint position, the higher the marginal
contribution). More precisely, suppose that:

• agents in N have a preferred ideal position xi ∈ [0,+∞), where the line [0,+∞) repre-
sents the policy scale, and

• each coalition S ∈ 2N is also characterized by a jointly preferred position pS ∈ [0,+∞)
on the same policy scale, e.g., resulting from an aggregation process over the individual
positions of players in S, or provided by an external actor (see, e.g., the model of coalition
formation in [Bilal et al., 2001]).

For every S ∈ 2N and i, j ∈ N \ S, we assume that the following monotonicity relation exists
between the distance diS = |pS − xi| and the marginal contribution of i:

diS < djS ⇔ v(S ∪ {i})− v(S) > v(S ∪ {j})− v(S). (2.5)

In addition, we assume that the jointly preferred position of a coalition monotonically increases
over the policy scale with the positions of its members, that is:

xi < xj ⇒ pS∪{i} ≤ pS∪{j}, (2.6)

for every S ∈ 2N and i, j ∈ N \S. This is the case, for instance, when the jointly preferred posi-
tion xS is computed as the median of the individual positions xi in S. The following proposition
shows that the power relation � is single-peaked according to Definition 2.4.1.

Proposition 2.4.5. Let � be a linear order on 2N and let v : 2N → R be such that S � T iff
v(S) > v(T ) for all S, T ∈ 2N . Consider the vectors x ∈ RN

+ and p ∈ R2N

+ satisfying conditions
(2.5) and (2.6) for all S ∈ 2N and i, j ∈ N \ S. Then, � is socially single peaked.

Proof. Take i, j, k ∈ N with xi < xj < xk. Notice that since � is a linear order over 2N , then
by Definition 2.4.2, relations �S and �ijkS , for each S ∈ 2N\{i,j,k}, are linear orders over N .
To prove that �S and �ijkS are single-peaked (with respect the ordering (i, j, k)), it remains to
show that if i �S j and i �ijkS j, then j �S k and j �ijkS k.

Let S ∈ 2N\{i,j,k}. First, suppose that i �S j or, equivalently, S ∪ {i} � S ∪ {j}. Then,
v(S ∪ {i}) − v(S) > v(S ∪ {j}) − v(S) and by relation (2.5) diS < djS . Consequently,
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pS < xi+xj

2 , and since xj < xk we have that djS < dkS . Then, by relation (2.5), we have
v(S ∪{j})− v(S) > v(S ∪{k})− v(S) and, by the definition of v as a numerical representation
of �, it follows that S ∪ {j} � S ∪ {k}, implying that j �S k.

Now, suppose that i �ijkS j or, equivalently, S ∪ {i, k} � S ∪ {j, k}. Then, v(S ∪ {i, k})−
v(S ∪ {k}) > v(S ∪ {j, k}) − v(S ∪ {k}) and by relation (2.5), we have diS∪{k} < djS∪{k}.
Consequently, pS∪{k} <

xi+xj

2 . Moreover, by relation (2.6), since xi < xk we have that pS∪{i} ≤
pS∪{k}. So, pS∪{i} <

xi+xj

2 , then djS∪{i} < dkS∪{i}, and again by relation (2.5), v(S ∪ {i, j}) −
v(S ∪ {i}) > v(S ∪ {i, k})− v(S ∪ {i}). By the definition of v as numerical representation of
�, we obtain S ∪ {i, j} � S ∪ {i, k}, implying that j �ijkS k.

Example 13. Consider a set N = {1, 2, 3, 4} of four agents, with individual preferred position
xi = i for each i ∈ N , the linear power relation � in Table 2.2 that can be numerically rep-
resented by a characteristic function v satisfying condition (2.5), and jointly preferred positions
pS = median([xi]i∈S) − ε for each S ∈ 2N . 2 To be more specific, we have that the jointly
preferred positions are p∅ = 0 (by convention), p{i} = xi, p{i,j} = xi+xj

2 − ε, p{i,j,k} = xj if
xi < xj < xk. The single-peaked linear orders �S and �124S on 1, 2, 4, with S ∈ {∅, {3}},
correspond to the revealed orders in Table 2.2.

A different, though related way to obtain socially single-peaked power relations starts off assum-
ing that there is a valuation v : N → R on the items themselves such that i < j iff v(i) < v(j),
and that v(S) = ∑

i∈S v(i). In other words, coalitions are ranked according to the sum of the
values of their members. This also leads to a socially single-peaked power relation �, which we
will be denoted as �Σ.

Proposition 2.4.6. Power relation �Σ is socially single-peaked.

Proof. Take the linear order / on items of N to be given by the valuation v, i.e., i / j iff v(i) <
v(j). We obtain that v(S ∪ {i}) = v(S) + v(i) and v(S ∪ {i, j}) = v(S) + v(i) + v(j) and it is
straightforward to check that conditions sp1 and sp2 are satisfied.

Finally, note that (as per Theorem 2.4.4) social single-peakedness provides only a sufficient
condition under which � supports application of the ceteris paribus majority rule. As we have
shown in this section, some natural interpretations of the power relation turn out to satisfy it,
but nonetheless social single-peakedness should not be thought of as exhaustive of the cases
favorable to the ceteris paribus majority rule. Consider, for instance, a (total and transitive)
power relation �M such that for all non-empty coalitions S, T ∈ 2N

S �M T ⇔ {b(S)} �M {b(T )}, (2.7)

where, for each S ∈ 2N , S 6= ∅, b(S) is a best element of S, i.e., such that {b(S)} �M {i} for
each i ∈ S. Even if�M is not socially single peaked (some ties may occur in�M ), we show now
that the CP-majority relation R�M is transitive. The CP-majority relation R�M is transitive.

2Since � is a linear order, the factor ε ∈ (0, 1
2 ) is used to break ties diS = djS in favor of the element with the

lowest individual position min{i, j}.
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Proof. First, note that for each x, y ∈ N , if {x} �M {y}, then there is no S ∈ 2N\{x,y} such that
S∪{y} �M S∪{x}. So, d�M

yx = 0. Now, assume that {x} �M {y}. Then, d�M
xy ≥ 1 > 0 = d�M

yx .
On the other hand, if {x} ∼M {y}, we have that S ∪ {y} ∼M S ∪ {x} for each S ∈ 2N\{x,y},
implying d�M

xy = d�M
yx = 0. We have then shown that xR�My if and only if {x} �M {y}, and

the transitivity of R�M follows from the definition of �M .

2.5 When Incompleteness is a Source of Information to Rank
Individuals

In the previous section, we have defined a social ranking rule which ranks individuals accord-
ing to their performance when joining different coalitions. However, as we mentioned in the
introduction, in such a context the relation between individuals in a coalition or (and) the incom-
pleteness of power relation may bring some hidden information that helps to rank individuals
more precisely. By precisely it means ranking individuals in a way to match better to the context
in which a power relation is defined. More clearly, given a power relation � the ranking of indi-
viduals i and j can differ by considering different possibilities cause the power relation to form.
For instance, the incompleteness of power relation may relate to the absence of some coalitions
(let’s refer to it as case 1), or it may reflect the fact that we are not able to compare some of the
coalitions. There are some situations where coalitions have different quality competences and it
is not possible to compare them (Let’s refer to it as case 2). In case 2, the incompleteness may be
related to the heterogeneity of teams and reflects an incomparability. In Example 6, the absence
of coalition 234 may be interpreted as the case that all the coalitions in the power relation are
qualifies in terms of their research activities like the papers they have published, while coalition
234 is a coalition qualified in terms of teaching skills, and, hence, this is the reason it is not
showed up in the power relation.

Moreover, coalitions may not form for other various reasons. For instance, coalitions may
not form because the structure of problem is defined in a way that forming some coalitions is
forbidden. Imagine in a company each project must be done by a team of experts. It seems
reasonable that the teams cannot contain employees of the same expertise (case 1a). On the
other hand, think about a scenario where a coalition forms to permit individuals in the coalition
to evaluate each other. In this case, some coalitions might not form because some members
prefer to focus on small number of individuals to evaluate, or some coalitions form because
the members prefer to explore more and evaluate more number of individuals by cooperating
with them (case 1b). The other possibility is that individuals are free to choose their teammates
according to the level of friendship. In this case, some coalitions do not form because some
individuals are not friend with others and prefer not to cooperate with them (case 1c).

Each one of these scenarios may somehow affect the ranking of individuals in a power rela-
tion. For instance, in case 1c, the absence of a coalition is a negative factor for the individuals
forming it, while it is not the case in 1a. Hence, the exploitation of incompleteness to define a
social ranking rule must depend on the reasons of incompleteness, and different solution must be
considered for alternative contexts.
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Example 14. Consider a set of individual N = {1, 2, 3, 4, 5} and a power relation � given as
435 � 235 � 15 � 25 � 135 � 14 � 24 � 45 � 12. By CP-majority rule we have that
individual 1 is ranked higher than individual 2, and also individuals 2 and 5 are considered to
be indifferent. However, it is possible to extract some information about incompleteness of the
power relation. For instance, coalition 23 is not in the power relation while 235 is in the power
relation. By the interpretation of case 1c, absence of 23 and presence of 235 could be related
to the situation where “2 and 3 are not friend and they do not want to cooperate, however,
if 5 plays the role of a third party between them then the coalition 235 can form”. By this
interpretation, individual 5 can be assumed to have more importance than individual 2. On the
other hand, according to interpretation of case 1b, coalitions 35, 4, and 5 cooperate with the
other individuals to evaluate them. Some coalitions tend to explore more, like coalition 35 that
cooperates with three different individuals (not belonging to coalition 35), and some coalitions
cooperate less like 4 or 5 since they can collaborate with four other individuals (not belonging
to coalitions 4 and 5), yet they only cooperate with three of them. So here the question is that
shall we keep the ranking of individuals 1 and 2 as is given by CP-majority rule? Or shall we
give different weights (more weight or less weight) to the coalitions that explore more?

In the following, we present a new social ranking solution as an example of ranking rules that
can be defined in case 1b. The general idea of this solution is to classify the coalitions in terms
of their information level and to compare two candidates using the information inferred from the
“most" informed coalitions.

Following the interpretation in case 1b, it means that coalitions that involve in more compar-
isons has more experience and a higher level of information. More formally, let S ∈ 2N and
S = N \ S be its complement. We define the set of comparisons in which S is involved in the
power relation � as the set S� = {x ∈ S : ∃y ∈ S \ {x} s.t. S ∪ {x} � S ∪ {y} or S ∪ {y} �
S∪{x}}. Inversely the number of comparisons that a coalition does not participate in shows how
the coalition is ignorant. Consequently, the set of elements that cannot be compared by means
of a coalition S is given by S \ S�, and we call its cardinality |S \ S�| the ignorance of S.

Example 15. Consider the power relation in Example 14: 435 � 235 � 15 � 25 � 135 �
14 � 24 � 45 � 12, and suppose the goal is to compare individuals 1 and 2. By considering the
case 1b the ignorance levels of coalitions 35, 4, and 5 respectively are |3 \ 3| = 0, |4 \ 3| = 1,
and |4 \ 3| = 1.

We denote by ct, t ∈ {0, . . . , n}, the set of all coalitions S such that |S̄ \ S�| = t, and call
it the ignorant class t. So, the class c0 (i.e., the class of most aware coalitions having the lowest
ignorance), contains all coalitions that are involved in the comparison among all the elements in
their complement set (e.g., c0 coincides with the power set 2N if � is total); the class c1 (i.e., the
class with the second lowest ignorance) contains all coalitions involved in the comparison of all
elements, except one, in their complement set, etc. Obviously, some classes ct may be empty,
and each coalition S may belong to at most one class ct. The family of all n + 1 classes defined
over a power relation � is denoted by C� = {c0, . . . , cn}.

For instance, in Example (15) coalition 35 belongs to the class c0 since it is the most aware
coalition in the power relation, while 4 and 5 belong to the class c1 since they ignore doing some
of the comparisons.
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Given two elements i, j ∈ N , with a slight abuse of notation we denote by

Dij(C�) = (Dij(c0,�), . . . , Dij(cn,�))

the restriction of Dij(�) on C�, where Dij(ct,�), for each t ∈ {0, . . . , n}, is the (possibly
empty) set of coalitions S ∈ ct such that S ∪ {i} is strictly stronger than S ∪ {j}, and by

dij(C�) = (dij(c0,�), . . . , dij(cn,�))

the vector of cardinalities dij(ct,�) = |dxy(ct,�)|.
In the following, we introduce a generalized version of the CP-majority relation aimed at giv-

ing more weight to coalitions with a lower ignorance. First, consider the notion of lexicographic
order among vectors v = (v0, . . . , vn) and w = (w0, . . . , wn): v ≥L w if either v = w
or ∃k : vt = wt, t = 1, . . . , k − 1 ∧ vk > wk.

Definition 2.5.1 (Informative CP-Majority). Let �⊆ B(2N). The Informative CP-majority rela-
tion (ICP-majority) is the binary relation RC� ⊆ N ×N such that for all i, j ∈ N :

iRC�j ⇔ dij(C�) ≥L dji(C�).

Example 16. Consider again the power relation of Example 15. The CP-majority ranks individ-
ual 1 higher than individual 2 since the ceteris paribus comparisons are 235 � 135, 15 � 25, and
14 � 24. Coalitions can be classified by their information levels: 35 belongs to c0 and coalitions
4 and 5 belong to c1. Using information level, D12(c0,�) = ∅, D21(c0,�) = {35}. Moreover,
we have that D12(c1,�) = {4, 5} and D21(c1,�) = ∅, whereas all the other sets D12(ct,�)
and D21(ct,�) (t ∈ {2, . . . , n}) are empty. So, d21(C�) = (1, 0, 0, 0, 0, 0) ≥L d15(C�) =
(0, 1, 1, 0, 0, 0), implying that, according to the ICP-majority, 2 is ranked better than 1.

A deeper discussion of the meaning of incompleteness in our context and the information
that can be derived from an incomplete power relation leads to alternative definitions of social
ranking solutions. Such an analysis also concerns the axiomatic characterization of solutions, as
well as their computational aspects.

2.6 Conclusion and Future Works
In this chapter, we have studied a social ranking solution based on a ceteris paribus majority
principle; we have provided an axiomatic characterization (on only two alternatives) and we
have studied a domain restriction which guarantees the transitivity of the generated rankings.
Some hints on how to exploit the incompleteness of a power relation are also provided.

A direction for future research is to further investigate the necessary and sufficient conditions
over the domain of power relations which guarantee the transitivity of the ranking induced by the
CP-majority. Another open issue is the definition of social ranking solutions that benefit from
a larger amount of information in the power relation (and not only focusing on the information
coming from the comparison of ceteris paribus coalitions). Moreover, alternative criteria could
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be used to generate the classes of coalitions used for the ICP-majority rule. For instance, one
could argue that the weight of a class is related to the overall probability that the coalition in that
class form. Another interesting problem is the analysis of the robustness of our social ranking
solutions to “small” changes in the power relation. In this perspective, a related issue deals with
an application to multi-criteria decision making (MCDM) where, given the relative strength of
coalitions of criteria (represented by a power relation), a social ranking solution can be used as
an alternative method to compare the importance of criteria, independently from the (arbitrary to
some extent) weight assigned to coalitions by a capacity [Grabisch and Labreuche, 2010].
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3
Ordinal Banzhaf Solution

Abstract

In this chapter, we introduce a new method to rank single elements given an order over their
sets. For this purpose, we extend the game theoretic notion of marginal contribution and of
Banzhaf index to our ordinal framework. Furthermore, we characterize the resulting ordinal
Banzhaf solution by means of a set of properties inspired from those used to axiomatically
characterize another solution from the literature: the ceteris paribus majority. Finally, we show
that the computational procedure for these two social ranking solutions boils down to a
weighted combination of comparisons over the same subsets of elements.
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3.1 Introduction

In decision making and social choice theory, a number of studies are devoted to ranking individ-
uals based on the performance of coalitions formed by them. As we have studied in Chapter 1,
power indices like the Banzhaf index [Banzhaf III, 1964] and the Shapley value [Shapley, 1953]
are described from the need to measure individual’s a priori power in certain cooperative games
(simple games). These power indices are based on the role that each individual may get when
they join a coalition, which is codified with the notion of marginal contribution. Such methods
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can be used in a variety of applications, such as, finding the most “valuable" items, when the
preferences of a user are defined over their combinations; or comparing the influence of different
countries inside an international council (for instance, the European Union Council).

In cooperative game theory, some assumptions are made conventionally. For instance, it is
assumed that the coalitions are quantifiable, and also their values are monotonic, in the sense that
if one coalition be part of another coalition then the value of the first coalition would be less than
or equal to the value of the second one. However, in many practical situations, it is not possible
to compute the worth of coalitions quantitatively, or even monotonicity may not necessarily hold.
For example, the value of a coalition may decrease by joining new members when there is an
overhead caused by the cost of communication and cooperation, or when some individuals in the
coalitions are not friend and have some negative synergy in between. These possibilities intrigue
us to assume the existence of a binary relation over sets of coalitions.

In this chapter, as in chapter 2, we assume a binary relation over subsets of individuals is
given, and we are looking for a mapping to transform the ranking over subsets of individuals
to a ranking over the set of individuals, which is a complete preorder. Following the main con-
cept of majority, in this section, we utilize a part of comparisons in the power relation that
somehow indicates the ordinal version of the classical marginal contributions of individuals
[Banzhaf III, 1964]. We refer to the social ranking rule in this chapter as ordinal Banzhaf re-
lation. For this solution, we provide an axiomatic characterization which is mostly inspired
from the axiomatic study in Chapter 2 for the ceteris paribus majority solution on a set of two
individuals.

Both the CP-majority rule and the ordinal Banzhaf solution suggest an interpretation of our
social ranking problem along the lines of a virtual election, with groups of individuals (coalitions)
playing the role of voters: according to the CP-majority solution, a coalition S prefers individual
i to individual j if S ∪ {i} � S ∪ {j}, i.e. coalition S ∪ {i} is “stronger” than coalition S ∪ {j};
according to the ordinal Banzhaf solution, coalition S approves an individual i if S∪{i} � S, i.e.
the marginal contribution of i to S ∪ {i} is positive. Under this interpretation, we propose a new
family of relations on the elements of N that we call weighted majority relations. We investigate
some members of the family and we show that the CP-majority and the ordinal Banzhaf solution
are special cases of this family, when the power relation is a linear order over coalitions.

The contributions of this chapter are published in the proceeding of the international confer-
ence IJCAI-19 [Khani et al., 2019].

The remaining of the chapter is organized as follows. Section 3.2 is devoted to the definition
of the ordinal Banzhaf relation and its main features as a social ranking solution. Section 3.3 is
devoted to the discussion of an axiomatic characterization of the ordinal Banzhaf solution and
to its comparison with the CP-majority. Section 3.4 introduces the family of weighted majority
rules, and study some of its members. Section 3.5 concludes the chapter.

3.2 Ordinal Banzhaf Index

In this section, we fix the settings of our ranking method. As mentioned in the Introduction,
classical power indices like the Shapley value and the Banzhaf index are used in games with the
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assumption that the characteristic functions of the cooperative games follow a kind of monotonic
behavior. In this section, we extend the notion of marginal contribution, which is commonly ap-
plied to define frequently used power indices, to our ordinal framework where there is no assump-
tion on the ranking over coalitions to be directly proportional to their size (|S| ≥ |T | ⇔ S � T ).
To motivate our work, we start by showing that the Banzhaf value is very sensitive to small
changes in valuation of coalitions. But before that let’s recall some important notions of cooper-
ative game theory:
A Transferable Utility (TU)-game is a pair (N, v) where v is a function v : 2N → R such that
v(∅) = 0. The Banzhaf value β(v) of v is the n-vector β(v) = (β1(v), β2(v), . . . , βn(v)), such
that for each i ∈ N :

βi(v) = 1
2n−1

∑
S∈2N\{i}

(
v(S ∪ {i})− v(S)

)
. (3.1)

For example, consider a set N = {1, 2, 3} of individuals, and suppose the following power
relation is given over the set of coalitions (power set of N ) :

123 � 12 � 1 � 23 � 2 � 13 � 3 � ∅.

If a real-valued function is available representing the “strength” of each coalition on a numer-
ical scale such that S � T ⇔ v(S) ≥ v(T ), it would be possible to compare the social ranking
(power) of individuals 1 and 2 using the Banzhaf value of v. It is easy to check that the difference
of Banzhaf values βi(v)− βj(v) for each i, j, k ∈ {1, 2, 3} can be written as follows:

βi(v)− βj(v) = 1
2(v(i)− v(j)) + 1

2(v(ik)− v(jk)). (3.2)

One can verify that the difference β1(v)− β2(v) can be made positive or negative with a suitable
choice of v compatible with the constraint v(1) > v(23) > v(2) > v(13). For instance, consider
the functions v′ and v′′ such that v′(1) = 4, v′(23) = 3, v′(2) = 2, v′(13) = 1 + ε and v′′(1) = 4,
v′′(23) = 3, v′′(2) = 2, v′′(13) = 1−ε, with 1 > ε > 0. Both v′ and v′′ satisfy the aforementioned
constraints, but according to equation 3.2, β1(v′) > β2(v′) and β2(v′′) > β1(v′′), even for very
small ε. In order to get more robust results to evaluate individuals, our goal is to introduce a
social ranking solution inspired from the classical notion of Banzhaf value.

As the first step, the extension of the classical marginal contribution to our ordinal framework
is provided.

Definition 3.2.1 (Ordinal marginal contribution). Let �∈ B(2N). The ordinal marginal
contribution mS

i (�) of individual i w.r.t. coalition S, i /∈ S, in power relation � is defined as:

mS
i (�) =


1 if S ∪ {i} � S,
−1 if S � S ∪ {i},

0 otherwise.
(3.3)

Note that in Definition 3.2.1 we assume that the marginal contribution can be negative due to
the nature of our power relation, which is not necessarily monotonic.
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Example 17. Consider the power relation � such that:

1 � 2 � 12 � 3 � 13 � 23 � 234 � 34 � 14(...)
(...) � 4 � 24 � 124 � 1234 � 134 � ∅ � 123.

1 (3.4)

In �, the ordinal marginal contribution of individual 2 w.r.t. coalition 134, m134
2 (�), is equal

to 1 since 1234 � 134 holds. However, the ordinal marginal contribution of individual 2 w.r.t.
coalition 4, m4

2(�) , is −1 due to 4 � 24.

The possible negative values for an ordinal marginal contribution can be validated by the
assumption that the cooperation between individuals may be forced by an external factor. For
example, in a company, teams may be arranged by external authorities to perform tasks. In
this case, cooperation may sometimes cause increase in the performance or, on the other hand,
may result in a decrease. Also, note that the empty set (∅) in the power relation can be seen
as a benchmark to discriminate between performance of coalitions, as performing positively or
negatively.

The intuitive ranking method, when ordinal marginal contributions are computed, is to follow
the concept of majority. Putting away the cases that the ordinal marginal contribution of an
individual is zero, the number of times that the individual performs more positively and less
negatively indicates the power of individual in cooperation. More precisely, let’s assume Ui
refers to the set of coalitions not containing individual i, Ui = {S ∈ 2N ; i /∈ S}, (in the same
way we define Uij = {S ∈ 2N : i, j /∈ S}) and suppose u+,�

i (u−,�i ) shows the number of
coalitions S ∈ Ui such that mS

i (�) = 1 (mS
i (�) = −1). The difference s�i = u+,�

i − u−,�i ,
which is called ordinal Banzhaf score of individual i in �, represents the number of times one
individual performs positively than negatively. The social ranking rule that corresponds to the
ordinal Banzhaf score is called ordinal Banzhaf relation, and it ranks one individual higher than
the other one if the individual has a higher ordinal Banzhaf score. The social ranking rule is
formally defined as below:

Definition 3.2.2 (Ordinal Banzhaf relation). Let �∈ B(2N) and A ⊆ N . The ordinal Banzhaf
relation is the binary relation R̂�A ⊆ A× A such that for all i, j ∈ A:

iR̂�Aj ⇔ s�i ≥ s�j .

Remark 1. From the definition of the ordinal Banzhaf score, it immediately follows that the
relation R̂�A on A ⊆ N is transitive and total. So, R̂�A is a social ranking solution.

Example 18. Consider the power relation of Example 17 and let A = {1, 2}. To compare
individuals in A, we refer to the comparisons that provide the marginalistic information about
the individuals (marginalistic comparisons). The sets U1 and U2 specify sets of coalitions that
each one of the individuals can join them:

U1 = {∅, 2, 3, 4, 23, 24, 34, 234}
1dots "..." are not part of the power relation, we use it to split the line and avoid line overflow.
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and
U2 = {∅, 1, 3, 4, 13, 14, 34, 134}.

The ordinal marginal contributions and the ordinal Banzhaf scores of individuals 1 and 2 are
reported in Table 3.1. Since s�2 = −2 > −4 = s�1 , it follows 2P̂�A 1.

S ∈ U1 mS
1 (�) S ∈ U2 mS

2 (�)

∅ 1 ∅ 1
2 −1 1 −1
3 −1 3 −1
4 1 4 −1
23 −1 13 −1
24 −1 14 −1
34 −1 34 1
234 −1 134 1

s�1 = −4 s�2 = −2

Table 3.1: Ordinal marginal contributions of individuals 1 and 2 for the power relation (26).

The next example highlights the situation in which individuals are ranked the same

Example 19. Consider 123 ∼ 12 � 1 � 23 � 2 � 13 ∼ 3 � ∅. Let A = {1, 2} be the
set of elements to be ranked. We have that m∅1 = m2

1 = m23
1 = 1, m∅2 = m3

2 = m13
2 = 1,

and m3
1 = m1

2 = 0. As a result, s�1 = s�2 = 4. By the ordinal Banzhaf relation, 1 and 2 are
indifferent, i.e. 1Î�A2.

As shown in Examples 18 and 19, given a power relation � as a linear order on 2N , the
social ranking provided by the ordinal Banzhaf relation does not depend on the choice of a
compatible cardinal function v, and therefore it answers to the initial question of this section
concerning robustness. Another natural question is whether it always exists a cardinal evaluation
v compatible with�, such that the ranking provided by the classical Banzhaf value on v coincides
with the ranking provided by the ordinal Banzhaf relation on �. A negative answer to this
question follows from Example 20.

Example 20. Consider the power relation � such that 123 � 12 � 1 � 23 � 3 � 13 � 2 � ∅.
Let A = {1, 2} be the set of elements to be ranked. Consider every compatible cardinal function
v such that v(S) ≥ v(T )⇔ S � T for each S, T ∈ 2N . By relation (3.2) we have that

β1(v)− β2(v) = 1
2(v(1)− v(2)) + 1

2(v(13)− v(23)).

Since v(1)−v(2) > v(23)−v(13), we have that β1(v) > β2(v) (independently from the choice of
v). On the other handm∅1 = m2

1 = m23
1 = 1 andm3

1 = −1, whereasm∅2 = m1
2 = m3

2 = m13
2 = 1.

So, s�1 = 2 and s�2 = 4. Then, according to the ordinal Banzhaf relation, 2 is strictly better than
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1, i.e. 2P̂�A 1, yielding an opposite conclusion with respect to the classical Banzhaf value for
every compatible function v.

In the next section, we analyse the ordinal Banzhaf rule from property driven approach and
investigate its similarities and differences to the ceteris paribus majority rule.

3.3 Axiomatic Analysis

In this section, we introduce a set of axioms which are inspired from those in classical social
choice theory [May, 1952] and in the axiomatic approach presented in [Haret et al., 2018]. The
axioms in this section follow the same spirit as the axioms in Chapter 2 (the spirit of majority),
however, they are applied to a different informative part of power relations.

The first property states that to rank any two individuals, a social ranking solution should
not care about the name of coalitions (and as a result their size and members) that they join.
What is important is how they perform by joining the coalitions. According to this property,
permuting coalitions in a way that preserves the number of positive and negative ordinal marginal
contributions of individuals should not affect ranking of the individuals. So, a positive (negative)
ordinal marginal contribution to distinct coalitions S and T should carry the same weight.

Definition 3.3.1. (Coalitional Anonymity, CA) Let A ⊆ N . A solution RA : C ⊆ B(2N) →
T (A) satisfies the coalitional anonymity axiom on C if and only if for all power relations �
,w∈ C, for all individuals i, j ∈ A and bijections πi : Ui → Ui and πj : Uj → Uj such that
S ∪ {i} � S ⇔ πi(S) ∪ {i} w πi(S) for all S ∈ Ui and S ∪ {j} � S ⇔ πj(S) ∪ {j} w πj(S)
for all S ∈ Uj , then it holds that iR�Aj ⇔ iRwAj.

The following example clarifies the notion.

Example 21. Consider the power relation of Example 17, and suppose we want to compare
individuals 1 and 2 given a social ranking ruleR that satisfies coalitional anonymity. To compare
individuals 1 and 2, we look at their ordinal marginal contributions reported in Table (3.1). Now,
imagine Table 3.2 illustrates the ordinal marginal contributions of individuals 1 and 2 in the
power relation below.

3 A ∅ A 2 A 12 A 1 A 23 A 123 A 13 A 24(...)
(...) A 124 A 4 A 14 A 34 A 134 A 1234 A 234.
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S ∈ U1 mS
1 (w) S ∈ U2 mS

2 (w)

∅ −1 ∅ −1
2 1 1 −1
3 −1 3 −1
4 −1 4 1
23 −1 13 1
24 −1 14 1
34 −1 34 −1
234 1 134 −1

Table 3.2: Ordinal marginal contributions of individuals 1 and 2 for the power relation w.

It is easy to verify that bijections π1 : U1 → U1 and π2 : U2 → U2 transform ordinal marginal
contributions in Table 3.1 to their counterparts in Table 3.2, when they map every coalition to
themselves, except that:

π1(∅) = 2, π1(2) = ∅
π1(4) = 234, π1(234) = 4
π2(∅) = 4, π2(4) = ∅

π2(34) = 13, π2(13) = 34
π2(134) = 14, π2(14) = 134.

Thus, by the axiom coalitional anonymity the social ranking solution ranks individuals 1 and
2 in the power relation w as they are ranked in the power relation �, 1R�A2⇔ 1RwA2.

The second axiom is a classical neutrality axiom, and it states that a social ranking solution
should not be biased in favor of one alternative. So, if the names of individuals i and j are
reversed (if i and j exchange their performances), the ranking of individuals i and j must also
be reversed. Before introducing its definition, we need some further notation. Let σ : N → N
be a bijection. For a set S = {i, j, k, ..., t} ⊆ N , we denote the image of S through σ, σ(S) =
{σ(i), σ(j), σ(k), ..., σ(t)}.

Definition 3.3.2. (Neutrality, N) Let A ⊆ N . A solution RA : C ⊆ B(2N) → T (A) satisfies
the neutrality axiom on C if and only if for all power relations �,w∈ C and each bijection
σ : N → N such that σ(A) = A and S � T ⇔ σ(S) w σ(T ) for all S, T ∈ 2N , then it holds
that iR�Aj ⇔ σ(i)RwAσ(j) for every i, j ∈ A.

The following example illustrates what is expected from a social ranking rule that satisfies
neutrality.

Example 22. Referring to the power relation � in Example 17, suppose the power relation w is
defined as

2 A 1 A 12 A 3 A 23 A 13 A 134 A 34 A 24(...)
(...) A 4 A 14 A 124 A 1234 A 234 A ∅ A 123.

59



CHAPTER 3. ORDINAL BANZHAF SOLUTION

Applying a social ranking R, which satisfies neutrality, on the power relation w should result a
ranking over individuals 1 and 2 which is the inverse of the ranking obtained from � (1R�A2 ⇔
2RwA1). This is because everywhere that individual 1 (2) performs positively (negatively) in
power relation � individual 2 (1) performs positively (negatively) in w. This can be verified by
comparing Table 3.1 with Table 3.3, which indicates the marginal contributions of individuals 1
and 2 is the power relation w.

S ∈ U1 mS
1 (w) S ∈ U2 mS

2 (w)

∅ 1 ∅ 1
2 −1 1 −1
3 −1 3 −1
4 −1 4 1
23 −1 13 −1
24 −1 14 −1
34 1 34 −1
234 1 134 −1

Table 3.3: Ordinal marginal contributions of individuals 1 and 2 for the power relation w.

The next axiom says that an appealing social ranking rule needs to be coherent with the
modifications on the performance of different coalitions. Therefore, suppose that in a given
power relation, the social ranking rule ranks individual i higher than or indifferent to j. If the
power relation remains the same for all coalitions except the one that becomes in favor of i, then
the social ranking rule must rank individual i strictly better than j.

Definition 3.3.3. (Monotonicity, M) Let A ⊆ N . A solution RA : C ⊆ B(2N)→ T (A) satisfies
the monotonicity axiom on C if and only if for all power relations �,w∈ C and i, j ∈ A such
that:

• there exists a coalition S ∈ Ui such that S � S ∪ i and S ∪ i A S, and

• T ∪ i � T ⇔ T ∪ i A T and T ∪ j � T ⇔ T ∪ j A T for all the other coalitions
T ∈ 2N , T 6= S,

then it holds that iR�Aj ⇒ iPwA j.

The name monotonicity reflects the idea that increases in the number of positive perfor-
mances of one individual enhances its ranking, as long as the number of negative performances
does not change.

Example 23. Consider the power relation � in Example 17, and suppose enhancing perfor-
mance of individual 2 results in a power relation w:

1 A 2 A 12 A 23 A 3 A 13 A 234 A 34 A 14(...)
(...) A 4 A 24 A 124 A 1234 A 134 A ∅ A 123.
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Table 3.4 shows the ordinal marginal contributions of individuals 1 and 2 in the power relation
w.

S ∈ U1 mS
1 (w) S ∈ U2 mS

2 (w)

∅ 1 ∅ 1
2 −1 1 −1
3 −1 3 1
4 1 4 −1
23 −1 13 −1
24 −1 14 −1
34 −1 34 1
234 −1 134 1

Table 3.4: Ordinal marginal contributions of individuals 1 and 2 for the power relation w.

The ordinal marginal contributions of individuals 1 and 2 in Tables 3.1 and 3.4 are the same
except for individual 2 when it joins coalition 3. Suppose social rankingR satisfies Monotonicity.
If it ranks 2 at least as good as 1 in the power relation � (2R�A1), then we expect that applying it
to the power relation w ranks 2 strictly better than 1 (2PwA 1).

The main result of this section is presented as follows. This theorem characterizes the ordinal
Banzhaf solution with the three axioms Coalitional Anonymity, Neutrality, and Monotonicity
when power relations belong to set of all linear orders L(2N).

Theorem 3.3.4. Let A ⊆ N . A solution RA : L(2N)→ T (A) is the ordinal Banzhaf solution if
and only if it satisfies the three axioms CA, N and M on L(2N).

Proof. (⇒) (The existence part.) First, we prove that the ordinal Banzhaf solution R̂�A, satisfies
the three axioms N, CA and M on L(2N). Consider two power relations �,w∈ L(2N) such that
for all individuals i, j ∈ A the following conditions hold:

i) There exists a bijection πi : Ui → Ui with S ∪ i � S ⇔ πi(S) ∪ i A πi(S) for all S ∈ Ui;

ii) there exists a bijection πj : Uj → Uj with S ∪ j � S ⇔ πj(S)∪ j A πj(S) for all S ∈ Uj .

We first show that it holds iR̂�Aj ⇔ iR̂wAj. Since condition (i) holds it means that there is a
bijection from the set of coalitions S ∈ Ui with mS

i (�) = 1 (mS
i (�) = −1) to the set of all

S ∈ Ui with mS
i (w) = 1 (mS

i (w) = −1). Moreover, from condition (ii) it also follows that there
exists a bijection from the set of S ∈ Uj with mS

j (�) = 1 (mS
j (�) = −1) to the set of all S ∈ Uj

with mS
j (w) = 1 (mS

j (w) = −1). Then we have that

s�i = u+,�
i − u−,�i = u+,w

i − u−,wi = swi

and
s�j = u+,�

j − u−,�j = u+,w
j − u−,wj = swj ,
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that directly imply
iR̂�Aj ⇔ iR̂wAj. (3.5)

By conditions (i) and (ii) and relation (3.5) it follows that R̂A satisfies the property of coalitional
anonymity (CA).

Consider two power relations �,w∈ L(2N), two individuals i, j ∈ A and a bijection σ :
N → N with σ(i) ∈ A for each i ∈ A such that S � T ⇔ σ(S) A σ(T ) for all S, T ∈ 2N . We
now show that for these power relations iR̂�Aj ⇔ σ(i)R̂wAσ(j). First, notice that for all S ∈ Ui
S ∪ i � S ⇔ σ(S) ∪ σ(i) A σ(S), as well as for all S ∈ Uj S ∪ j � S ⇔ σ(S) ∪ σ(j) A σ(S).
More precisely, for each S ∈ Ui with mS

i (�) = 1 (mS
i (�) = −1), we have that σ(S) ∈ Uσ(i)

and mσ(S)
σ(i) (w) = 1 (mσ(S)

σ(i) (w) = −1), and for each S ∈ Uj with mS
j (�) = 1 (mS

j (�) = −1), we

have that σ(S) ∈ Ui and mσ(S)
σ(j) (w) = 1 (mσ(S)

σ(j) (w) = −1). From this it follows that

s�i = u+,�
i − u−,�i = u+,w

σ(i) − u
−,w
σ(i) = swσ(i)

and
s�j = u+,�

j − u−,�j = u+,w
σ(j) − u

−,w
σ(j) = swσ(j)

implying that: iR̂�Aj ⇔ σ(i)R̂wAσ(j), as it is required by the neutrality property (N).

Finally, consider two power relations �,w∈ L(2N) and suppose that for any two individuals
i, j ∈ A the following conditions hold:

iii) there exists a coalition S ∈ Ui such that S � S ∪ i and S ∪ i A S

iv) T ∪ i � T ⇔ T ∪ i A T and V ∪ j � V ⇔ V ∪ j A V for all the other coalitions
T ∈ Ui, T 6= S, and V ∈ Uj .

We want to prove that iR̂�Aj ⇒ iP̂wA j. According to condition (iii) and (iv), we have that

swi = u+,w
i − u−,wi > u+,�

i − u−,�i = s�i (3.6)

and
swj = u+,w

j − u−,wj = u+,�
j − u−,�j = s�j . (3.7)

Moreover, if iR̂�Aj, by definition of ordinal Banzhaf score, we have that

s�i = u+,�
i − u−,�i ≥ u+,�

j − u−,�j = s�j (3.8)

Then, by relations (3.6), (3.7) and (3.8) it immediately follows that

swi = u+,w
i − u−,wi > u+,w

j − u−,wj = swj , (3.9)

which means that iP̂wA j.
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(⇐) (The uniqueness part.) We have to prove that if a solutionRA satisfies axioms CA, N and
M on L(2N) then it is the ordinal Banzhaf solution R̂A, i.e. iR�Aj ⇔ s�i ≥ s�j for all �∈ L(2N)
and i, j ∈ A.

We start showing that if RA satisfies axioms CA and N on L(2N), then for all�∈ L(2N) and
i, j ∈ A such that s�i = s�j , we have that iI�A j.

Consider a power relation �∈ L(2N) with s�i = s�j , for some i, j ∈ A. By Remark 1 and by
the fact that there are no indifferences in the power relation, we also have that

u+,�
i = u+,�

j and u−,�i = u−,�j . (3.10)

Now, consider another power relation w such that for all S, T ∈ 2N ,

S � T ⇔ σ(S) w σ(T ),

where σ : N → N is a bijection with σ(i) = j, σ(j) = i and σ(k) = k for all k ∈ A, k 6= i and
k 6= j. By axiom N it holds that

iR�Aj ⇔ jRwAi. (3.11)

Moreover, by construction of w, it holds that

u+,�
i = u+,w

i , u−,�i = u−,wi , u+,�
j = u+,w

j , u−,�j = u−,wj . (3.12)

Then it is easy to define a bijection πi : Ui → Ui such that S∪i � S ⇔ πi(S)∪i A πi(S) for
all S ∈ Ui (defining a one-to-one correspondence between elements S ∈ Ui withmS

i (w) = 1 and
those with mS

i (�) = 1, and a one-to-one correspondence between S ∈ Ui with mS
i (w) = −1,

and those with mS
i (�) = −1) and, in a similar way, another bijection πj : Uj → Uj such that

S ∪ j � S ⇔ πj(S) ∪ j A πj(S) for all S ∈ Uj . Therefore, from the CA axiom, we have that

iR�Aj ⇔ iRwAj. (3.13)

From relation (3.11) and (3.13), and since RA is total, it immediately follows that

iI�A j.

Now, consider a power relation �∈ L(2N) such that q = u+,�
i > u+,�

j = p for some integer
numbers p and q ∈ {0, 1, . . . , 2n−1}. One can opportunely rearrange the relation � within each
set {S ∪ ij, S ∪ i, S ∪ j, S} for all S ∈ Uij to obtain a new power relation �′∈ L(2N) such that
u+,�′
i = u+,�′

j = p (for instance, just taking q − p coalitions S ∈ Uij , with S ∪ ij � S ∪ i or
S∪j � S and inverting the relation). Then, sinceRA satisfies both N and CA, we have that iI�

′

A j.
Using a similar argument, and restoring precisely one of the previously changed comparison to
move from � to �′, we can now form another power relation �′′ with u+,�′′

i = p + 1 and
u+,�′
j = p. By the M axiom of RA we have now that iP�

′′

A j. By applying this procedure a
sufficient number of times, it is then possible to reconstruct the power relation � from �′ in
q − p steps, and by the application of the M axiom of RA at each step, we can conclude that
iP�A j.
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Remark 2. In the claim of Theorem 3.3.4, it is possible to substitute the domain of linear orders
L(2N) with the larger domain of power relations C ⊆ B(2N) such that for each �∈ C and all
S ∈ Uij the following two conditions hold: c.1)� is transitive and total on {S∪ij, S∪i, S∪j, S};
c.2) only strict comparisons hold, i.e. for all A,B ∈ {S ∪ ij, S ∪ i, S ∪ j, S}, A 6= B, we never
have A ∼ B.

Note that the ordinal Banzhaf relation is based on the ordinal Banzhaf score, and the ordinal
Banzhaf score does not consider indifferences in its definition, then it is easy to verify that the
existence part of Theorem 3.3.4 holds when the power relations belong to the set of all binary
relations (the ordinal Banzhaf relation still satisfies the three axioms). However, the uniqueness
part of the theorem holds only if, in addition to the three axioms, the domain be transitive and
complete with no indifferences.

We devote the rest of this section to compare some fundamental features of the ceteris paribus
majority relation introduced in Chapter 2 and the ordinal Banzhaf solution. To do that, we first
recall the definition of the ceteris paribus majority rule as well as some notations from Chapter
2. The set of all coalitions S ∈ Uij for which S ∪ i � S ∪ j (ceteris paribus comparison) is
denoted by Dij(�). In addition, the cardinality of the set Dij(�) is denoted by dij(�). The
ceteris paribus majority relation is then defined as follows:

Definition 3.3.5 (Ceteris Paribus (CP-)Majority relation). Let �∈ B(2N) and A ⊆ N . The
Ceteris Paribus (CP-) majority relation is the binary relation R̄�A ⊆ N × N such that for all
i, j ∈ N :

iR̄�Aj ⇔ dij(�) ≥ dji(�).

The following example reveals how the CP-majority rule and the ordinal Banzhaf index act
differently to rank two individuals.

Example 24. Consider the power relation defined in Example 17. Table 3.5 illustrates the CP-
comparisons between 1 and 2. If R̄ is ceteris paribus majority solution, then it holds that 1P̄�A 2
(d12(�) = 3 and d21(�) = 1), whereas for the ordinal Banzhaf solution R̂ we have 2P̂�A 1,
according to the Table 3.1.

S ∈ U12 S ∪ 1 vs. S ∪ 2
∅ 1 � 2
3 13 � 23
4 14 � 24
34 134 ≺ 234

Table 3.5: CP-comparisons on � of Example 1.

By comparing the axioms equality of coalitions and positive responsiveness as well as the
corresponding characterization theorem in Section 2.3 of Chapter 2 to coalitional anonymity and
monotonicity presented in this chapter and Theorem 3.3.4, we find out two important differences
between the CP-majority rule and the ordinal Banzhaf solution:
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i) As extensively discussed in chapter 2, the CP-majority relation, is not necessarily transi-
tive, if |A| > 2, whereas the ordinal Banzhaf solution yields a transitive relation over the
elements of A, for any A ⊆ N .

ii) The axiomatic characterization for the CP-majority solution holds true over the domain of
all binary relations B(2N), while the one for the ordinal Banzhaf solution applies to the
restricted domain of linear orders L(2N) (or the larger one mentioned in Remark 2).

Even if the CP-majority solution and the ordinal Banzhaf solution may rank individuals in a very
different manner (see, for instance, Example 24), they share some fundamental similarities, at
least over sets with only two elements.

First, for both of the theorems to characterize the CP-majority relation and the ordinal
Banzhaf rule, the same neutrality axiom is used. Actually, the axiom of neutrality as intro-
duced in this chapter implies, on the same domain C ⊆ B(2N), the axiom of neutrality used in
the context of CP-majority relation, that only considers the particular bijection σ : N → N such
that for i, j ∈ N , σ(i) = j and σ(j) = i, and σ(k) = k for all k ∈ N \ {i, j}.

In addition, for the ordinal Banzhaf solution, the coalitional anonymity axiom plays a role
similar to the one played by the equality of coalitions for the CP-majority rule: the social ranking
must be invariant with respect to particular permutations of coalitions. However, how coalitions
are permuted is different in the two axioms, focusing on permutations preserving the number of
CP-comparisons in the axiom equality of coalitions, and on permutations preserving the number
of positive and negative ordinal marginal contributions in the coalitional anonymity.

Finally, the positive responsiveness axiom for the CP-majority solution and the monotonicity
axiom for the ordinal Banzhaf solution follow a similar principle for breaking ties in favour of
individuals that improve their position. However, there are two main differences here: first, in
the CP-majority, we consider improvements on CP-comparisons, while for the ordinal Banzhaf
solution we consider improvements on ordinal marginal contributions; second, due to the domain
restriction onL(2N), the possibility to have indifference is not considered for the characterization
of the ordinal Banzhaf solution. We used different names for the same idea of breaking ties
since in the ceteris paribus majority rule increasing the performance of one individual means
decrease in the performance of the other one, while for the ordinal Banzhad rule increase in
the performance of one individual does not mean decrease in the performance of the other one,
thereby it does not necessarily positively respond to increase of performance in one individual,
the positive respond depends on the other individual to keep the same performances as before.

A further similarity between the two solutions is discussed in the next section, where the
ordinal Banzhaf solution and the CP-majority are presented as two special members of a new
family of the weighted majority relations.

3.4 Weighted Majority Relations
In this section, we define a family of social ranking rules. The members of this family are
extensions of ceteris paribus majority rule to weighted versions. Each member of the family
weighs the ceteris paribus comparisons according to particular features in the power relation,
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for instance, the size of the coalitions in CP-comparisons or the type of members inside the
coalitions. We define a member of this family which coincides with the previously mentioned
ordinal Banzhaf solution on the domain of power relations as linear orders.

We start by rewriting the definition of the CP-majority rule as follows.
Let A ⊆ N and i, j ∈ A. Then,

iR̄�Aj ⇔ | Dij(�) |≥| Dji(�) | ⇔
∑
S∈Uij

d̄Sij(�) ≥ 0,

where

d̄Sij(�) =


1 if S ∪ i � S ∪ j,
−1 if S ∪ j � S ∪ i,

0 otherwise,
(3.14)

for all S ∈ Uij . We can generalize this definition, to any non-negative linear combination of
the terms d̄Sij , for all S ∈ Uij , by multiplying each d̄Sij with a weight value. Since the weight
values can be any non-negative value, this generalization results in a family of social ranking
rules called the family of weighted majority rules.

Definition 3.4.1 (Weighted majority relation). Let �∈ B(2N), A ⊆ N and let w =
[wSij]i,j∈A,S∈Uij

be a weight scheme such that wSij ≥ 0 for all i, j ∈ A and S ∈ Uij . The
weighted majority relation associated to w is the binary relation R�,wA ⊆ A × A such that for
all i, j ∈ A ⊆ N :

iR�,wA j ⇔
∑
S∈Uij

wSij d̄
S
ij(�) ≥ 0.

Obviously, if wSij = 1 for all i, j ∈ A and S ∈ Uij , then we get the CP-majority, i.e.
R�,wA = R̄�A.

Example 25. Let’s recall the power relation in Example 17:

1 � 2 � 12 � 3 � 13 � 23 � 234 � 34 � 14(...)
(...) � 4 � 24 � 124 � 1234 � 134 � ∅ � 123. (3.15)

Suppose we want to compare individuals 1 and 2. The corresponding ceteris paribus compar-
isons are 1 � 2, 13 � 23, 14 � 24, and 234 � 134. Let’s assume that the weight scheme related
to CP-comparisons indicates the sizes of the relevant coalitions:

w∅12 = 0, w{3}12 = 1, w{4}12 = 1, w{34}
12 = 2.

In this case, the weighted CP-majority rule ranks 1 and 2 the same: first note that d∅12 =
1, d{3}12 = 1, d{4}12 = 1, d{34}

12 = 0, and therefore

0× d∅12 + 1× d{3}12 + 1× d{4}12 + 2× d{34}
12 ≥ 0⇔ 1R�A2.

Symmetrically it holds that d∅21 = 0, d{3}21 = 0, d{4}21 = 0, d{34}
21 = 1 and, as a result,

0× d∅21 + 1× d{3}21 + 1× d{4}21 + 2× d{34}
21 ≥ 0⇔ 2R�A1.
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In the following we define a weight scheme corresponding to a weighted CP-majority rule
that coincides with the ordinal Banzhaf solution. The weight scheme is called Banzhaf distance
which is defined as follows.

Definition 3.4.2 (Banzhaf (Bz-) distance). Let�∈ L(2N), i, j ∈ N and let S ∈ Uij . The Banzhaf
(Bz-) distance between i and j with respect to S ∈ 2N\{i,j} is denoted by ŵ = [ŵSij(�)]i,j∈A,S∈Uij

and is defined as the cardinality of an intersection as follows:

| {S, S ∪ ij} ∩ {T : S ∪ i � T � S ∪ j or S ∪ j � T � S ∪ i} | .

Note that ŵSij(�) is just the number of S and S ∪ ij between S ∪ i and S ∪ j in the power
relation �. For instance, if we have S ∪ 1 � S ∪ 12 � S ∪ 2 � S, then ŵS12(�) =1 and if we
have S ∪ 3 � S � S ∪ 34 � S ∪ 4, then ŵS34(�) =2.

The Banzhaf distance of two individuals i and j w.r.t coalition S in a power relation �
partially illustrates how individuals i and j are able to manipulate the performance of coalition
S. For instance, regarding to S ∪ 1 � S ∪ 12 � S ∪ 2 � S, the Banzhaf distance of 1 and
2 w.r.t coalition S is one, and it indicates that substituting 2 with 1 in coalition S ∪ 2 improves
the performance of coalition even more than what it would be when both individuals i and j are
presented in coalition S.

Remark 3. Notice that the Bz-distance ŵSij(�) is a well-defined metric: it can only take values
0,1, or 2 (non-negativity); ŵSii(�) = 0 (identity); ŵSij(�) = ŵSji(�) (symmetry); ŵSik(�) ≤ ŵSij(�
)+ ŵSjk(�) for all S ∈ 2N with i, j, k ∈ S (triangle inequality).

We refer to the member of the family of all weighted majority rules whose weights are the
Banzhaf distances of CP-comparisons as the Banzhaf-distance based CP-majority rule.
The following theorem refers to one of the important results in this section. It shows that the
ordinal Banzhaf index and the Banzhaf-distance based CP-majority rule coincide in the domain
of all linear orders.

Theorem 3.4.3. Let �∈ L(2N) and A ⊆ N . We have that

R�,ŵA = R̂�A.

Proof. In order to prove the theorem we need to indicate the the Banzhaf-distance based CP-
majority rule follows ranking method of the ordinal Banzhaf solution. Precisely we need to
prove that for all i, j ∈ A iR�,ŵA j ⇔ s�i ≥ s�j or

iR�,ŵA j ⇔ s�i − s
�
j ≥ 0.

First note that we can rewrite the difference of ordinal Banzhaf scores s�i − s
�
j as follows

s�i − s
�
j =

∑
S∈Ui

mS
i (�)−

∑
S∈Uj

mS
j (�) =

=
∑
S∈Uij

(mS
i (�) +mS∪j

i (�))− (mS
j (�) +mS∪i

j (�)).
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Consider all coalitions S ∈ Uij such that d̄Sij(�) = 1 as reported in Table 3.6 (the case d̄Sij(�) =
−1 is very similar). According to the values of ŵSij and s�i − s

�
j in the power relation it follows

that ∑
S∈Uij

ŵSij d̄
S
ij(�)

= 1
2

( ∑
S∈Uij

(mS
i (�) +mS∪j

i (�))− (mS
j (�) +mS∪i

j (�))
)
.

Therefore, we have that
∑
S∈Uij

ŵSij d̄
S
ij(�) ≥ 0 iff s�i ≥ s�j , which concludes the proof.

S ∈ 2N\{i,j} ŵSij s�i − s
�
j

S ∪ i � S ∪ j � S ∪ ij � S 0 0
S ∪ i � S ∪ ij � S ∪ j � S 1 2
S ∪ i � S ∪ ij � S � S ∪ j 2 4
S ∪ i � S ∪ j � S � S ∪ ij 0 0
S ∪ i � S � S ∪ j � S ∪ ij 1 2
S ∪ i � S � S ∪ ij � S ∪ j 2 4
S � S ∪ i � S ∪ j � S ∪ ij 0 0
S � S ∪ i � S ∪ ij � S ∪ j 1 2
S � S ∪ ij � S ∪ i � S ∪ j 0 0
S ∪ ij � S ∪ i � S ∪ j � S 0 0
S ∪ ij � S ∪ i � S � S ∪ j 1 2
S ∪ ij � S � S ∪ i � S ∪ j 0 0

Table 3.6: Bz-distance ŵSij and ordinal Banzhaf scores s�i − s
�
j for d̄Sij(�) = 1 (the symmetric

case d̄Sij(�) = −1 is omitted).

Therefore, if a power relation is linear order then comparing any two individuals using the
Banzhaf-distance based majority rule yields the same ranking as the ordinal Banzhaf solution.

Example 26. Consider the power relation � in Example 17.

1 � 2 � 12 � 3 � 13 � 23 � 234 � 34 � 14(...)
(...) � 4 � 24 � 124 � 1234 � 134 � ∅ � 123.

In order to rank individuals 1 and 2 in the given power relation, it is sufficient to compute
the Bz-distance for each of the four CP-comparisons 1 � 2, 13 � 23, 14 � 24, and 234 � 134.
These values are reported in Table 3.7.
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S ∈ U12 S ∪ 1 vs. S ∪ 2 d̄S12 ŵS12

∅ 1 � 2 1 0
3 13 � 23 1 0
4 14 � 24 1 1
34 134 ≺ 234 −1 2

Table 3.7: CP-comparisons on � of Example 1.

By Definition 3.4.1 it results that 2P�A 1.

We showed that the CP-majority and the ordinal Banzhaf solution belong to the family of
weigthed majority relations. Note that one can obtain other members of this family by assigning
other non-negative real values to a weight scheme such (for instance, the size of coalitions, etc.).

3.5 Conclusion and Future Works
In this chapter we have studied the problem of ranking individuals given an ordinal ranking over
the set of coalitions formed by them. Following the analogy with cooperative games, we have
extended the classical notion of Banzhaf value to our ordinal framework. We have analyzed
the ordinal Banzhaf solution using a property-driven approach and we have compared its funda-
mental features with the ones of another solution from the literature, the CP-majority relation.
Finally, we have introduced a new family of relations over the set of individuals that includes the
ordinal Banzhaf solution and the CP-majority one, and many others.

Since we have characterized the ordinal Banzhaf solution over the domain of all linear orders,
as a direction for future work it would be interesting to investigate how the ordinal Banzhaf so-
lution can be extended to other families of power relations, and to see which axioms characterize
this solution on those classes. Another open problem is to study and axiomatically characterize
ordinal versions of other semi-values [Carreras et al., 2003] like, for instance, the Shapley value
[Shapley, 1953].
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4
Weighted Ranking Rules

Abstract
In this chapter, we introduce social ranking rules as weighted extensions of ceteris paribus
majority in order to rank more than two individuals. Different ways to define weighted
extension of the ceteris paribus majority rule result in families of solutions that are in inclusion
relation with each other. The inclusion relation between families forms a tree in which each
edge between any two families indicates the inclusion relation between them. Corresponding to
each edge of the tree, we define axioms that characterize social ranking rules belonging to one
family as members of the other family of solutions.
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4.1 Introduction

In this chapter, we establish a new approach in order to rank individuals when an ordinal rank-
ing over coalitions formed by them is given. Recalling the ceteris paribus majority principle
in Chapter 2, it suggests an interpretation of our ranking problem along the lines of a virtual
election, with groups of individuals (coalitions) playing the role of voters. However, it differs
from a classical voting scenario in which candidates can also be voters. One can argue that the
corresponding ranking rule does not take into account an important part of information about the
power relation. For example, it assigns the same voting power to coalitions (as voters), while
coalitions are formed by different combinations of individuals.

Example 27. Consider the power relation 145 � 245 � 1234 � 23 � 12 � 13 � 35 �
14 � 24. The ceteris paribus majority rule ranks individual 1 higher than individual 2 since,
referring to corresponding CP-comparisons (145 � 245, 14 � 24 and 23 � 13), individual 1
performs better than individual 2 by joining two coalitions, while individual 2 performs better
than individual 1 when it joins one coalition. However, based on the context of the ranking
problem, coalition 45 may have different voting power than coalitions 4 and 3. Also, since
coalition 3 compares more individuals than coalition 4 (coalition 3 compares all possible pairs
of individuals 1, 2, 5 while coalition 4 only compares 1 and 2), they could have different voting
powers.

The possibility that, following the ceteris paribus majority principle, coalitions have different
voting power is valid in many real settings. For example, suppose the president of a company
wants to compare employees based on the evaluations made by committees of the employees.
Each committee can compare any two employees that do not belong to the committee, by saying
that one employee performs better than the other one or they are indifferent. Let’s assume the
company president follows the majority rule in order to combine committees’ evaluations about
any two employees. The company president can weight evaluations made by a committee ac-
cording to the members inside the committee and (or) the other employees that get compared by
the committee. This approach is easy to justify. Suppose committees follow a voting method
in order to do evaluation. If there are some “dictatorial members”, who impose their opinions
to others, in the committee, then the company president may decide to give less values to the
comparisons made by the committee because she knows there are some members in the com-
mittee whose opinion might be different. On the other hand, if all the members in a committee
respect democratic ways of decision making, then the company president, probably, decides to
give higher worth to the evaluation made by the committee because she knows the evaluation has
a big support of the members in the committee. In another setting, suppose the employees are
divided between different projects, let’s say projects A, B, and C. If a committee with members
who work on project A evaluates employees who work on projects B or C, then the company
president may value it less because they do not work on the same topic, or she may value it
more by the justification that the committee can look from outside, and it is more effective in
comparing employees. In a still different approach, if the evaluation process in committees is
based on majority voting, the company president may tend to give more weight to evaluation
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done by committees of bigger size, due to the larger number or proponents of the evaluation. It
is also possible for the company president to assess the worth of evaluations done by a commit-
tee by its level of participation in the process of evaluation, which is reflected in the number of
comparisons made by the committee.

All these considerations suggest to define weighted versions of ceteris paribus majority rule,
in which each coalition, as a voter, is weighted by a weight function. Depending on the settings
of the ranking problem, the weight assigned to a coalition is a function of different factors like
the coalition (its internal structure) and (or) the comparisons made by the coalition, or size of
coalition and (or) the number of comparisons made by the coalition.

So far, we have seen the necessity of weighting coalitions when a ceteris paribus ma-
jority principle is followed to rank individuals given a power relation. In order to rank
more than two individuals, the aggregation function that we use is based on the work
of [Terzopoulou and Endriss, 2019] where they focus on the normative characterisation of voting
methods under which each agent has a weight that depends only on the size of her ballot, i.e., on
the number of pairs of alternatives for which she chooses to report a relative ranking. They have
designed a weight rule that selects an acyclic preference over alternatives which maximizes the
sum of cumulative weights assigned to each pair in a preference profile expressed by the voters.

As we have seen, the weight function in a social ranking rule depends on some factors related
to the structure of power relation (not necessarily complete), which is based on the settings of
the ranking problem. Using alternative factors to define a weight function results in specific
social ranking rules. Because there are infinite ways to define a weight function given a set of
arguments, the corresponding social ranking rules, with together, form a family of social ranking
rules.

Different families of weighted ceteris paribus majority rules have inclusion relation with
each other. The inclusion relation among these families of solutions forms a tree. The leafs of
the tree show weighted extensions of ceteris paribus majority rules, in which the weight function
is uniquely defined. The main goal in this chapter is to analyse the properties that characterize
the inclusion relation between any two families of social ranking rules in the mentioned tree
structure.

The rest of this chapter is structured as follows. In Section 4.2, we review the necessary
notations and concepts in this chapter. Section 4.3 introduces the framework and defines dif-
ferent families of weighted CP-majority rules that we study in this chapter. In section 4.4, we
axiomatically analyse families of weighted CP-majority rules and explore the relation between
them. Finally Section 4.5 concludes the chapter.

4.2 Preliminaries

In this section, we borrow the basic notations about power relations and social ranking rules
from Chapters 2 and 3.

Following the principle of ceteris paribus majority in order to rank individuals given a power
relation in Chapter 2, we define set of all pair-wise comparisons made by a coalition S ∈ 2N in
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power relation � as below:

�S= {(i, j)|i ∪ S � j ∪ S s.t i, j ∈ N, i, j /∈ S, i 6= j}

and we call it the information set of coalitions S in power relation �. For simplicity of notation,
during this chapter, instead of referring to members of an information set as ordered pairs like
(i, j) we denote them as ij. Therefore, we simply write�S= {ij|i∪S � j∪S s.t i, j ∈ N, i, j /∈
S, i 6= j}. Also, we refer to the informative part of the power relation� as�I= {�S: ∀S ∈ 2N}.
Regarding to the informative part of power relations, the concept of “identical except” describes
similarity between any two power relations.

Definition 4.2.1 (Identical-Except). Two power relations �,w∈ B(2N) are called identical ex-
cept for a set of coalitions S iff for all coalitions S /∈ S it holds that �S=wS .

In the next section, we introduce our ranking model as an extended version of ceteris paribus
majority, and we explore ways that the ranking models differ depending on various definitions of
weight function.

4.3 The model
In this section, we establish the settings of the ranking problem, and we extend the concept of
ceteris paribus majority to a weighted rank rule in order to rank more than two individuals.

We first start by defining the general family of weighted ceteris paribus majority rules. Given
a set N of individuals and a power relation �∈ B(2N), let’s refer to |R∩ �S | as the similarity
between a linear order R and an information set �S . A weighted ceteris paribus majority rule
maps each power relation to those linear orders which maximize a weighted sum of correspond-
ing similarities. Formally, it is defined as follows.

Definition 4.3.1 (Weighted Ceteris Paribus (CP)-majority rule). A weighted Ceteris
Paribus(CP)-majority rule is a function Fw that maps any given power relation �∈ B(2N) to
a subset of linear orders over the set N of individuals, i.e., Fw : B(2N)→ 2L(N):

Fw(�) = argmax
R∈L(N)

∑
S∈2N

w(S,�S) · |R∩ �S |. (4.1)

In this definition, w refers to a binary weight function that assigns to any ordered pair of
coalition and its information set ((�S, S)) a positive real number, w : 2N×N × 2N → R+. This
positive number expresses how each pair of individuals ij ∈�S in the information set of coalition
S is weighted by the ranking system. Equivalently, we refer to the value of weight function as
the weight of coalition S in the power relation �.

We refer to the family of all weighted CP-majority rules in Equation 6.1 as Fw(I,C) . Each
member of the family is a ranking rule given by a specific definition of the weight function. The
subscript w(I,C) denotes the structure of the weight function for the members in the family, which
depends on both the information sets of coalitions like S and the coalitions themselves. Also,
note that the outcome of the social ranking rule defined in Equation 6.1 is a set of linear orders.
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Example 28. Consider a set of three individuals N = {1, 2, 3}. The set of all linear orders over
the setN is given as L(N) = {1R 2R 3, 1R 3R 2, 2R 1R 3, 2R 3R 1, 3R 1R 2, 3R 2R 1}.
Now, suppose a power relation � is defined as 12 ∼ 13 � 23 � 1 � 2. In this case, the
information sets �1= {23, 32}, �∅= {12}, �2= {13}, and �3= {12} are extracted from the
power relation. Let’s assume the weight function in Equation 6.1 is defined with respect to
coalitions and their information sets as below:

w(�1, 1) = 1
2 , w(�3, 3) = 1, w(�2, 2) = 1

4 , w(�∅, ∅) = 0.

Note that to compute the weight value for each coalition, its arguments are the information set
of the coalition and the coalition itself. Therefore, the weighted CP-majority rule for the given
power relation � can be reformulated as

Fw(�) = argmax
R∈L(N)

[12 · |R ∩ {23, 32}|+ 1 · |R ∩ {12}|+ 1
4 · |R ∩ {13}|+ 0 · |R ∩ {12}|].

It is easy to verify that there exist more than one linear order maximizing the value of [1
2 ·

|R∩ {23, 32}|+ 1 · |R∩ {12}|+ 1
4 · |R∩ {13}|]. These linear orders, specifically, should prefer

1 over 3 and 1 over 2. Therefore Fw(�) = {1 R 2 R 3, 1 R 3 R 2}.

Remark 4. We assume that the weight functions in the family of all weighted CP-majority rules
are symmetrical, in the sense that if a pair of individuals in an information set is reversed, then
the weight assigned to the pairs will not change. More precisely, consider two power relations
�,w∈ B(2N) and a set of individuals {i1, j1, ...i`, j`} ⊂ N (` ∈ N). For a coalition S where
i1, j1, ..., i`, j` /∈ S, and information sets �S= {i1j1, i2j2, ..., i`j`} and wS= {j1i1, i2j2, ..., i`j`},
we have w(�S, S) = w(wS, S).

Due to the description of the ranking problem, it is possible that the weight function depends
on various factors. Definition 6.0.3 illustrates the most general case where the weight function
hinges on the members inside the coalitions (their identities, interaction among them,...) and also
the information sets related to each coalition (the identity of individuals getting compared by the
coalition, their relevance to each other,...). However, in more specific situations, as mentioned in
the example of employees’ evaluation in the Introduction, the ranking system may assign weights
to coalitions that depend on a part of the information provided by coalitions and their information
sets.

Let’s come back to the example of employees evaluation. Suppose the rules in the com-
pany allow committees to freely evaluate pairs of employees, and also assume that the evaluation
of employees by the president is based on the number of times one employee ranked higher
than the other by different committees. In this situation, the information set of each committee
(the employees they compared) can affect the competence of the committee in doing specific
comparisons. For example, in the case that the employees are distributed among three differ-
ent projects A,B, and C, the committee whose comparisons made over employees working on
different projects may be less weighted by the company president because she believes the com-
mittee is not able to do its evaluation on different projects simultaneously. On the other hand, she
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may assign bigger weight to the committee since she believes looking employees from outside
of a project brings more insight about their performance. Following this approach the aggrega-
tion function in Definition 6.0.3 should be weighted by a weight function that depends on the
information set of coalitions (�S).

By the same reasoning, the weight function in Definition 6.0.3 can be tailored to many other
settings of a ranking problem.

All the possible families of the weighted CP-majority rules, that we are interested in, are
illustrated in Figure (4.1). Each node of the tree represents a family of weighted ceteris paribus
majority rules whose weight function is a function of the arguments indicated by the node. Any
downward edge identifies the inclusion relation between the two linked nodes. For example,
the node with (�S) refers to the set of all weighted ceteris paribus majority rules, in which the
weight function depends on the information sets of the coalitions in a given power relation �. In
this node, a weight function assigns to any information set a positive real number: w : 2N×N →
R+. All such ranking rules form a family of weighted CP-majority rules which is distinct from
the others by the weight function of its members. Let’s refer to such weight functions as wI .
We illustrate the family of all weighted ceteris paribus majority rules imposed by the weight
functions as FwI

. FwI
∈ FwI

denotes a member of this family:

FwI
(�) = argmax

R∈L(N)

∑
S∈2N

wI(�S) · |R∩ �S |. (4.2)

Note that by Remark 4, the weight functions of the family of weighted ceteris paribus ma-
jority rules FwI

are symmetrical:

Definition 4.3.2. A weight function wI : 2N×N → R+ is symmetrical if for a set of individuals
i1, j1, i2, j2, ...i`, j` ⊂ N , any two coalitions S, S ′ with i1, j1, i2, j2, ...i`, j` /∈ S, S ′, and two
information sets �S= {i1j1, i2j2, ..., i`j`} and �S′= {j1i1, i2j2, ..., i`j`}, it holds that wI(�S) =
wI(�S′).

In the following, we list the weighted rank rules corresponding to nodes of the tree in Figure
4.1.

• Node (S): the weight function of the members of the concerning family associates to each
subset of individuals (coalition) a positive real number as its weight: wC : 2N → R+.
The family of these weighted CP-majority rules is indicated by FwC

, also its members are
specified by FwC

:

FwC
(�) = argmax

R∈L(N)

∑
S∈2N

wC(S) · |R∩ �S |. (4.3)

• Node (| �S |, |S|): the weight function for the members of the related family is w(#I,#C) :
N × N → R+, that assigns to each pair of natural numbers, illustrating the ordered pair
of sizes of information sets and sizes of coalition, a positive real number. We indicate the
family of these weighted CP-majority rules as Fw(#I,#C) , and each member Fw(#I,#C) ∈
Fw(#I,#C) is defined as:

Fw(#I,#C)(�) = argmax
R∈L(N)

∑
S∈2N

w(#I,#C)(| �S |, |S|) · |R∩ �S |. (4.4)
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• Node (| �S |): for the members of the corresponding family, the weight function assigns
to any natural number, representing the size of the information set of a coalition S, a non
negative real number, w#I : N → R+. We show the family of these rank rules as Fw#I

,
and each Fw#I

∈ Fw#I
is as follows:

Fw#I
(�) = argmax

R∈L(N)

∑
S∈2N

w#I(| �S |) · |R∩ �S |. (4.5)

• Node (|S|): the weight function is defined as w#C : N→ R+, that assigns to each natural
number, referring to the size of coalition, a positive real number. We indicate the family of
these ranking rules as Fw#C

, and each member Fw ∈ Fw#C
is defined as below:

Fw#C
(�) = argmax

R∈L(N)

∑
S∈2N

w#C(|S|) · |R∩ �S |. (4.6)

• Nodew#I(| �S |) = 1: this node refers to a weighted CP-majority rule whose weight func-
tion is considered to be the constant function over the size of information sets, w#I(| �S
|) = 1. We refer to this weighted CP-majority rule as F c

(w#I), w#I(| �S |) = 1,∀S ∈ 2N
and is given as below:

F c
w#I

(�) = argmax
R∈L(N)

∑
S∈2N

|R∩ �S |. (4.7)

• Nodew#I(| �S |) = 1
|�S |

: it corresponds to a weighted CP-majority rule with weight func-
tion as w#I(| �S |) = 1

|�S |
. This weighted CP-majority rule is denoted by F p

w#I
, w#I(| �S

|) = 1
|�S |

,∀S ∈ 2N , and is defined as:

F p
w#I

(�) = argmax
R∈L(N)

∑
S∈2N

1
| �S |

· |R∩ �S |. (4.8)

• Node ww(#I,#C)(| �S |, |S|) = |S|
|�S |

: it refers to a weighted CP-majority rule with weight

function as ww(#I,#C)(| �S |, |S|) = |S|
|�S |

. We indicate this weighted CP-majority rule as
F p
w(#I,#C)

as follows:

F p
w(#I,#C)

(�) = argmax
R∈L(N)

∑
S∈2N

|S|
| �S |

· |R∩ �S |. (4.9)

• Node ww#C
(|S|) = |S|: this node represents the weighted CP-majority rule whose weight

function is considered to be the identity function ww#C
(|S|) = |S|. This weighed CP-

majority rule is shown by F I
w#C

, and is defined as:

F I
w#C

(�) = argmax
R∈L(N)

∑
S∈2N

|S| · |R∩ �S |. (4.10)
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One plausible interpretation of the hierarchical structure of the tree is that the members of the
family of social ranking rules which are closer to the root rank individuals with more deliberation
(by using more information) in the power relation. For instance, in the first layer of the tree, the
family of CP-majority rules Fw(I,C) utilizes the whole information provided by the informative
part of power relations, i,e., the coalitions and the information sets. However, social ranking
rules in the second layer of the tree do not use some parts of information in power relations. As
an example, weight functions of members in the family FwI

do not depend on coalitions, and
the members of the family Fw#C

neglect the information sets as well as the possible interaction
between individuals in coalitions.
The following examples illustrates how the precision in ranking individuals changes by choosing
different social ranking rules from families of ranking rules in different layers of the tree.

Example 29. Consider the following power relation, which is incomplete,

12 � 23 � 13 � 35 � 14 � 24 � 25, 35 � 45, 25 � 45

and is defined over the power set of N = {1, 2, 3, 4, 5}. There are five coalitions that form
the CP-comparisons in the power relation, 1, 2, 3, 4 and 5, with the information sets as �1=
{23, 34, 24}, �4= {12}, �3= {21, 25, 15}, �5= {32, 34, 24}, and �2= {34, 45, 35, 13, 14, 15}.
Let’s assume the members of the family Fw(I,C) are used in order to rank the individuals. In this
case, based on how the weight function is defined, there are three possibilities for the pairs (1, 2)
or (2, 1) to appear in the ranking result: if the weight function assigns more weight to coalition 4
than coalition 3, then the final ranking result will contain the pair (1, 2); if coalition 3 is weighted
more than coalition 4, then the pair (2, 1) will appear in the ranking; if the two coalitions are
weighted the same then the corresponding social ranking yields linear orders containing either
(1, 2) or (2, 1). In the same way, there are three possibilities for the pairs of individuals (2, 3)
and (3, 2) based on the weight assigned to coalitions 1 and 5. Therefore, based on how the
weight function is defined, there is a large number of possibilities to rank individuals. However,
if the ranking rule is a member of the family FwI

, then since the coalitions 1 and 5 have the same
weight (they have symmetrical information sets) there is only one possibility for the ranking of
2 and 3: the corresponding social rankings engender linear orders containing either (2, 3) or
(3, 2). Also, depending on weights assigned to coalitions 3 and 4, there are still three possibilities
for the ranking over individuals 1 and 2. Now, if the members of the familyFw#C

are used to rank
individuals, then there is only one possibility for the ranking of individuals 1 and 2: applying the
members of the family results in linear orders containing either (1, 2) or (2, 1), since the weight
functions assign the same weight to coalitions 3 and 4 (they have the same size).
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Figure 4.1: Being sub-family relation between different families.

The main goal in this chapter is to characterize the inclusion relation between any two fami-
lies of the weighted CP-majority rules, represented by the downward edges in the tree. Each edge
of the tree corresponds to at least one axiom (as indicated in Figure (4.1)). In the next section,
we precisely define each axiom and use them to characterize the different social ranking rules as
members of specific families.
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4.4 Axiomatic Analysis
This section is devoted to study the tree structure in Figure 4.1 from property-driven approach.
We define axioms corresponding to each edge of the tree which characterize the inclusion relation
between each two families of the weighted CP-majority rules. First, we informally introduce
axioms as listed below:

• Independence of Information set: the axiom independence of information set provides suf-
ficient and necessary condition for the members of family FwC

as a sub-family of Fw(I,C) .
It states that coalitions with compatible preferences over a set of individuals in two differ-
ent power relations, should have been able to combine their preferences and form a new
power relation, without changing in the social ranking of the individuals.

• Independence of Coalitions: the axiom independence of coalitions characterizes the inclu-
sion relation between the two families Fw(I,C) and FwI

. It states that coalitions should be
able to change their members, without any change in the social ranking of individuals.

• Anonymity: the axiom anonymity is the one that we use in order to characterize inclusion
relation between weighted ceteris paribus majority rules whose weight functions depend
on the ordered pairs of coalitions and their information sets, or coalitions, or informa-
tion sets and those whose weight functions are based on the cardinality of the mentioned
factors. More precisely, depending on the domain in which the axiom is defined, social
ranking rules that satisfy anonymity do not take into consideration the names of individ-
uals and the presence of interactions between them. We use this axiom to characterize
the inclusion relation between Fw(I,C) and Fw(#I,#C) (Fw(#I,#C) ⊂ Fw(I,C)), the inclusion
relation between FwC

and Fw#C
(Fw#C

⊂ FwC
), and the inclusion relation between FwI

and Fw#I
(Fw#I

⊂ FwI
).

• Coalition Separability: to characterize the inclusion relation between Fw(#I,#C) and Fw#I

(Fw#I
⊂ Fw(#I,#C)) we use the axiom coalition separability. Consider a set of coalitions

that have some common members. This axiom states that if they have the same information
sets then one should expect that reducing the size of coalitions by removing the repeated
members in the coalitions will not change the final ranking.

• Separability: this axiom is used to characterize the inclusion relation between Fw(#I,#C)

and Fw#C
(Fw#C

⊂ Fw(#I,#C)). It says that if a set of coalitions of the same size have
mutually compatible preferences over individuals, then representing all of them as one
coalition of that size doing all the comparisons should not change the social ranking.

• Splitting: to characterize the belonging relation between the family Fw#I
and the member

Fpw#I
(Fpw#I

∈ Fw#I
) we benefit from this axiom. The idea is that if several coalitions have

mutually compatible preferences, it should be possible for them to form a pre-election pact
and all report the union of their individual preference sets, and it should not change the
outcome of ranking individuals.
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• Coalition Merging: it is used to characterize F Iw#C
as a member of Fw#C

(F Iw#C
∈ Fw#C

).
This axiom gives the idea that when a group of coalitions have same information sets
(preferences), then they should be able to merge together and form a coalition containing
all the members in the previous coalitions with the same information set, without changing
the ranking over individuals.

• Restricted Majoritarianism: the social ranking rule F cw#I
is characterized as a member

of the family Fw#I
by this axiom which expresses one of the fundamental normative ap-

proaches in ranking individuals (if in more ceteris paribus comparisons i performs better
than j, then it should be ranked higher).

• Also the two axioms Splitting and Coalition Merging can be used in order to characterize
the social ranking rule Fpw(#I,#C)

as a member of the family of Fw(#I,#C) (Fpw(#I,#C)
∈

Fw(#I,#C)).

In the following sections we formalize the axioms and illustrate how they characterize some
members of different families of social ranking rules.

4.4.1 Independence of Information Set
In the example of employees’ evaluation in a company, based on the settings of the problem, the
company president may aggregate committees’ evaluations by weighting them using all features
of the committees (in our framework the members inside the committees and the employees in
their information sets). If the president follows a ceteris paribus majority principle to aggre-
gate committees’ evaluations and codify the features related to committees as weights, then the
most appropriate ranking rules that could be used by the president are those belonging to Fw(I,C) .
However, based on the structure of the company and the methods used by the committees to rank
employees there could be situations where the company president should weight the comparisons
made by a committee (or equivalently weight the committee) based on the members inside the
committee. This happens when the way that the committee decides on employees’ evaluation
is important. For instance, if there are some employees in the committee with dictatorial traits
then they impose their opinion to others, which may diminish the worth of their evaluation. The
pertinent social ranking rules in this case are the members of FwC

. The axiom Independence of
Information set provides necessary and sufficient condition for social ranking rules to be mem-
bers of the family FwC

. Suppose coalitions compare a set of individuals in two power relations
(� and w), the axiom asserts that if coalitions are able to combine their information sets in two
power relations � and w and form a new power relation, then the social ranking of individuals
should be the intersection of individuals’ ranking in the two power relations.

Definition 4.4.1 (Independence of Information Set). A social ranking rule F satisfies the ax-
iom independence of information set iff for any two power relations �,w∈ B(2N) and a
set of individuals {i1, ..., i`} ⊂ N (` ∈ N) if the two power relations are identical ex-
cept for {S1, ..., Sk} with {i1, ..., i`} /∈ S1, ..., Sk such that �S1= {it1it2 , ..., i`1i`2}, ...,�Sk

=
{itkitk+1 , ..., i`ki`k+1} and wS1= {it′1it′2 , ..., i`′1i`′2}, ...,wSk

= {it′
k
it′

k+1
, ..., i`′

k
i`′

k+1
} (1 ≤
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t1, t
′
1, `1, `

′
1, ..., tk+1, t

′
k+1, `k+1, `

′
k+1 ≤ `) and if a power relation E exists for which

ES1=�S1 ∪ wS1 ,...,ESk
=�Sk

∪ wSk
(ES1= {it1it2 , ..., i`1i`2 , it′1it′2 , ..., i`′1i`′2}, ...,ESk

=
{itkitk+1 , ..., i`kj`k+1 , it′kjt′k+1

, ..., i`′
k
j`′

k+1
}), then it holds that F (E) = F (�) ∩ F (w).

Theorem 4.4.2. The unique social ranking rules in Fw(I,C) that satisfy independence of informa-
tion set are social ranking rules in FwC

.

Proof. (⇐)(Existence) We first prove that any social ranking rule Fw ∈ FwC
satisfies the axiom.

Consider two power relations �,w∈ B(2N) and a set of individuals {i1, ..., i`} ⊂ N (` ∈ N),
and suppose the two power relations are identical except for {S1, ..., Sk} with {i1, ..., i`} /∈
S1, ..., Sk such that �S1= {it1it2 , ..., i`1i`2}, ...,�Sk

= {itkitk+1 , ..., i`ki`k+1} and wS1=
{it′1it′2 , ..., i`′1i`′2}, ...,wSk

= {it′
k
it′

k+1
, ..., i`′

k
i`′

k+1
} (1 ≤ t1, t

′
1, `1, `

′
1, ..., tk+1, t

′
k+1, `k+1, `

′
k+1 ≤

`). Also, assume a power relation E exists which is identical to � and w except for
the same set {S1, ..., Sk} of coalitions, and ES1= {it1it2 , ..., i`1i`2 , it′1it′2 , ..., i`′1i`′2}, ...,ESk

=
{itkitk+1 , ..., i`ki`k+1 , it′kit′k+1

, ..., i`′
k
i`′

k+1
}. Since the social ranking rule Fw belongs to the family

FwC
, the weights assigned to pairs of individuals depends only on the coalitions. If we focus on

the parts of the power relations that are different, each pair of individuals (it, ir) (1 ≤ r, t ≤ `)
which belongs to a linear order R ∈ Fw(�) ∩ Fw(w) has the same weight in linear order
R′ ∈ Fw(E). This is because the pair (it, rr) materializes in the linear order R′ if for a coalition
S ∈ 2N , itir ∈�S , and itir ∈wS , which respectively means itir ∈ES . Also, because the value of
weight function only depends on the coalitions, the weight of the pair of individuals itir remains
the same. Therefore, we have Fw(E) = Fw(�) ∩ F (w).

(⇐)(Uniqueness) Now we prove that any member Fw ∈ Fw(I,C) that satisfies independence
of information set belongs to familyFwC

. We prove that the weight function of the social ranking
rule Fw meets the condition w(I,C)(�S, S) = w(I,C)(wS, S) for any two power relations �,w∈
B(2N) and any S ∈ 2N .

To this purpose, consider a set of individuals {i1, j1, i2, j2, ..., i`, j`} ⊂ N (` ∈ N) and
two power relations � and w with informative parts respectively as �I= {�S1 ,�S2 ,�S3} and
wI= {wS1 ,wS2} such that �S1= {i1j1, j2i2}, �S2= {j1i1, i2j2}, and �S3= {j2i2, i1j1}. Also
assume wS1= {i1j1} and wS2= {i2j2, i3j3, ..., i`j`}. Now let us define another power rela-
tion E such that EI= {ES1 ,ES2 ,ES3} with ES1= {i1j1, j2i2}, ES2= {j1i1, i2j2, ..., i`j`}, and
ES3= {j2i2, i1j1}. Note that any information set in E is obtained from the union of the corre-
sponding information sets in� andw, and since Fw satisfies the axiom independence of informa-
tion set then it holds that Fw(E) = Fw(�)∩Fw(w). It is obvious that applying the social ranking
rule on the power relation w results a linear order R = {(i1, j1), (i2, j2), ..., (i`, j`)} ∈ Fw(w).
Let’s assume applying the social ranking rule on the power relation � yields a linear order
R′ ∈ Fw(�). The only way that the intersection Fw(�)∩Fw(w) is not empty, is thatR′ ∈ Fw(�)
contains ordered pairs (i1, j1) and (i2, j2). This happens when for the power relation � we have

w(I,C)(�S1 , S1) + w(I,C)(�S3 , S3) ≥ w(I,C)(�S2 , S2) ≥ w(I,C)(�S1 , S1) + w(I,C)(�S3 , S3).
(4.11)

Therefore the intersection Fw(�) ∩ Fw(w) contains linear orders like R′′ ∈ Fw(E) with
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{(i1, j1), (i2, j2)} ⊂ R′′. This occurs when for the power relation E we have

w(I,C)(ES1 , S1) + w(I,C)(ES3 , S3) ≥ w(I,C)(ES2 , S2) ≥ w(I,C)(ES1 , S1) + w(I,C)(ES3 , S3).
(4.12)

According to 4.11 and 4.12, and since w(I,C)(�S1 , S1)=w(I,C)(ES1 , S1) and w(I,C)(�S3

, S3)=w(I,C)(ES3 , S3) it holds that

w(I,C)(�S2 , S2) = w(I,C)(ES2 , S2) ; �S2⊂wS2 , | �S2 ∩ wS2 | ≥ 2. (4.13)

To conclude the proof, let’s define another power relation w′ in which w′S2= {i3j3, ..., i`j`}.
By Equation 4.13 it holds that w(I,C)(ES2 , S2) = w(I,C)(w′S2 , S2), which by transitivity results
w(I,C)(�S2 , S2) = w(I,C)(w′S2 , S2).

4.4.2 Independence of Coalitions
In the example of employees’ evaluation, as we said, in the extreme case the president wants to
weight committees with respect to the members inside the committees and the employees that
they compare. However, based on the settings of the problem, the weight function may only
be a function of the information set. This happens, for instance, when employees are assigned
to different projects and weighting committees’ evaluations depends on how relevant are the
comparisons made by committees, in the sense that the evaluated employees belong to same
project or not. In such cases, social ranking rules belonging to FwI

are the convenient tools to
aggregate the evaluations made by the committees.

The main goal, in this section, is to characterize the family of FwI
as a sub-family of Fw(I,C) .

We define an axiom called Independence of coalitions, which states that coalitions should be able
to change their members without any effect on social ranking.

Definition 4.4.3 (Independence of coalitions). A social ranking rule F satisfies indepen-
dence of coalitions iff for any two power relations �,w∈ B(2N) and a set of individ-
uals {i1, j1, ..., i`, j`} = A ⊂ N , if the two power relations are identical except for
{S1, ..., Sk, S

′
1, ..., S

′
k} such that S ′t ⊆ N \ {A ∪ St} for 1 ≤ t ≤ k with �S1=�S2= ... =�Sk

=
{i1j1, ..., i`j`} and �S′1= ... =�S′

k
= ∅, and wS1= ... =wSk

= ∅ and wS′1= ... =wS′
k
=

{i1j1, ..., i`j`}, then it holds that F (�) = F (w).

The following example clarifies the definition of independence of coalitions.

Example 30. Consider a set N = {1, 2, 3, 4, 5, 6, 7, 8} of individuals and a power relation �
with the informative part as �I= {�234,�12,�5} such that �234= {67, 87}, �12= {34, 56},
and�5= {12, 32}. Suppose a social ranking rule satisfies the axiom independence of coalitions.
It states that each coalition should be able to change its combination without any change in
social ranking, as long as its preferences do not change. Consequently, if we define another
power relation w in which the coalitions 234, 12, and 5 are transformed to other coalitions by
removing or adding individuals to them (individuals that are not in their information sets), the
social ranking of individuals should not change. Therefore, the power relation w can be defined
with the informative part as wI= {w∅,w127,�578} where w∅= {67, 87}, w127= {34, 56}, and
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w578= {12, 32}. Then applying the social ranking rule that satisfies independence of coalitions
on the two power relations � and w should result the same social rankings.

In the following theorem we prove that a unique subset of rules in Fw(I,C) satisfy Indepen-
dence of coalitions, and the subset is FwI

.

Theorem 4.4.4. The unique social ranking rules inFw(I,C) that satisfy independence of coalitions
are social ranking rules in FwI

.

Proof. (⇒)(Existence) For this part it is easy to verify that the members of FwI
satisfy the axiom

independence of coalitions. To this purpose, consider any social ranking rule Fw ∈ FwI
, any two

power relation �,w∈ B(2N) and assume {i1, j1, ..., i`, j`} = A ⊂ N . Suppose the two power
relations are identical except for a set {S1, ..., Sk, S

′
1, ..., S

′
k} such that �S1=�S2= ... =�Sk

=
{i1j1, ..., i`j`}, as well as wS1= ... =wSk

= ∅ and wS′1=�S1 ,wS′2=�S2 , ...,wS′k=�Sk
where

S ′t = N \ A ∪ St for 1 ≤ t ≤ k. Focusing on the parts of the two power relations that are
different, any pair of individuals irjr (1 ≤ r ≤ `) is weighted the same in both power relations.
If for a coalition S ∈ {S1, ..., Sk} we have irjr ∈�S , then in power relationw we have irjr ∈wT
(T ∈ {S ′1, ..., S ′k}) where �S=wT . Since the weight function in Equation 4.2 depends only on
the information sets, then it holds that Fw(�) = Fw(w).

(⇐)(Uniqueness) For the uniqueness part of the proof it is sufficient to show that given a
social ranking rule Fw ∈ Fw(I,C) that satisfies the axiom, two power relations �,w∈ B(2N)
exist such that, Fw(�) = Fw(w) requires that for any two coalition S1, S2 ∈ 2N we have
w(I,C)(�S1 , S1) = w(I,C)(wS2 , S2) whenever �S1=wS2 . To do so, let’s define the power re-
lations � and w and a set {i1, j1, ..., i`, j`} = A ⊂ N . Suppose the informative part of
the power relation � is given by �I= {�S1 ,�S2} such that �S1= {i1j1, i2j2, ..., i`j`} and
�S2= {j1i1, i2j2, ..., i`j`}. Also, assume for the power relation w we have wI= {wS1 ,wS2}
in which wS1= {j1i1, i2j2, ..., i`j`} and wS2= {i1j1, i2j2, ..., i`j`}. Considering values of the
weight function for w(I,C)(�S1 , S1) and w(I,C)(�S2 , S2) in Fw(�) in Equation 6.1, there are two
possibilities: w(I,C)(�S1 , S1) ≥ w(I,C)(�S2 , S2) or w(I,C)(�S1 , S1) ≤ w(I,C)(�S2 , S2). First
assume

w(I,C)(�S1 , S1) ≥ w(I,C)(�S2 , S2) (4.14)

which results in a linear order R belonging to Fw(�) with (i1, j1) ∈ R. As the social ranking
rule Fw satisfies independence of coalition and since S1 ⊆ N \{A∪S2} and S2 ⊆ N \{A∪S1},
then we have Fw(�) = Fw(w), and, therefore, there must exists a linear order R′ ∈ Fw(w) such
that (i1, j1) ∈ R′. This occurs when

w(I,C)(wS2 , S2) ≥ w(I,C)(wS1 , S1). (4.15)

By the main assumption that the weight functions are symmetrical (Remark 4), we have
w(I,C)(�S1 , S1) = w(I,C)(wS1 , S1) and w(I,C)(�S2 , S2) = w(I,C)(wS2 , S2). By substituting the
values with those in 4.14 and 4.15 we have w(I,C)(�S1 , S1) = w(I,C)(wS2 , S2) when S1 6= S2
and �S1=wS2 . The same argument holds for the case where w(I,C)(�S1 , S1) ≤ w(I,C)(�S2 , S2),
which concludes the proof
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A weaker version of the axiom Independence of coalitions is used in Section 4.4.5 in order
to characterize the family of Fw#I

as a sub-family of Fw(#I,#C) . More precisely, to characterize
the social ranking rules in Fw#I

in the domain of social ranking rules belonging to Fw(#I,#C) we
can use the axiom independence of coalitions, since by the definition of the two axioms coalition
separability and independence of coalitions, whenever the axiom coalition separability holds the
axiom independence of coalitions holds as well.

4.4.3 Anonymity
In this section, we introduce the axiom Anonymity which can be used to characterize three fami-
lies of the weighted CP-majority rules in Figure 4.1.

Consider a ranking problem, like the example of employees’ evaluation in a company. As
discussed in the previous sections, some interpretations of the problem drive the company pres-
ident to weigh committees based on the members inside them, inside their information sets, or
inside both of them. On the other hand, some interpretations of the ranking problem persuade the
president to use ranking rules that assign weights to committees based on their size, size of their
information sets, or size of the both. The anonymity axiom states a property of the social ranking
rules that, according to the context of the ranking problem, does not take into consideration the
effect of names and possible interactions among individuals on their ranking. It considers only
the effect of the size of relevant sets on the worth of coalitions.

More precisely, the ultimate meaning of the axiom is that the name of individuals are not
important. Therefore, availability of one “specific” individual in a coalition does not increase or
decrease weight of the coalition, and also the ranking system is not biased to rank one individual
higher or lower than the others. The anonymity axiom is defined as follows.

Definition 4.4.5. A social ranking rule satisfies anonymity if and only of for any two power
relations� andw and any permutation π : N → N such thatw is obtained from� by permuting
the individuals in � using π, then it holds that F (w) = σπ(F (�)) (where σπ : 2L(N) → 2L(N)

such that for L1, ..., Lk ∈ L(N) (K ∈ N) σπ({L1, ..., Lk}) is obtained from {L1, ..., Lk} by
permuting the individuals using π).

Example 31. Consider a set of six individuals N = {1, 2, 3, 4, 5, 6} and the power relation� as

145 � 245 � 136 � 236 � 436 � 23 � 12 � 13 � 35 � 14 � 24.

The informative part of this power relation is the set �I= {�45,�36,�1,�2,�3,�4},
and �1= {23, 24, 34},�2= {31, 14, 34},�3= {21, 25, 15},�4= {12},�45= {12},�36=
{14, 24, 12}.
The anonymity axiom refers to social ranking rules that do not take into account the names of
the members and the interaction between them. Therefore, if we permute the individuals in the
set N with the function π as π(1) = 2, π(2) = 3, π(3) = 4, π(4) = 5, π(5) = 6, π(6) = 1, a
power relation w with the informative part wI= {w2,w3,w4,w5,w56,w41} forms where w2=
{34, 35, 45},w3= {42, 25, 45},w4= {32, 36, 26},w5= {23},w56= {23},w14= {25, 35, 23}.
The weighted CP-majority rule that satisfies anonymity ranks individuals in the set N just based
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on their performance when no interaction is assumed between them. For instance, if in power
relation � individual 1 is ranked higher than 2, then in power relation w individual 2 is ranked
over 3 since in power relation w individuals 2 and 3 perform the same as individuals 1 and 2 in
power relation �.

In the following sections, we use the axiom anonymity to characterize different inclusion
relations between families of CP-weighed majority rule.

Anonymity on the family of weighted CP-majority rules whose weight function depends on
coalitions

In this part, we analyse the anonymity axiom as the property of the social ranking rules in the
family of FwC

.
The members of the family FwC

which satisfy such a property are those that do not make
difference between the names of individuals in the coalitions and do not consider interaction
among them (these are the members of Fw#C

). The interpretation of the axiom is that, changing
the names of individuals, (individuals who form coalitions to compare the other individuals),
should not affect the final ranking of the individuals. On the domain of FwC

, the anonymity
axiom in Definition 4.4.5 can be reduced to one in which the permutations π : N → N are
restricted to those that only permute the individuals in the coalitions, and keep the individuals in
their information sets as they are.

The following theorem indicates that the Anonymity axiom as defined in Definition 4.4.5
provides sufficient and necessary condition for the members of FwC

to be members of the sub-
family of Fw#C

.

Theorem 4.4.6. The unique social ranking rules inFwC
that satisfy anonymity are social ranking

rules in Fw#C
.

Proof. (⇒)(Existence) It is easy to check that each member of Fw ∈ Fw#C
satisfies anonymity.

(⇐)(Uniqueness) For the other direction, let’s assume a member Fw ∈ FwC
satisfies anonymity.

We prove that it is a member of Fw#C
. To do that, for specific power relations � and w

and permutations π and σπ, we show that F (w) = σπ(F (�)) results wC(S) = wC(S ′)
when |S| = |S ′|, which is the property of the weight functions of the members of the family
Fw#C

. Consider a power relation � with informative part as �I= {�S1 , ...,�Sk
,�S′1 , ...,�S′k}

(k ∈ N) and a set of individuals {i1, j1, i2, j2, ..., i`, j`} ⊂ N (` ∈ N) such that coalitions
S1, S2, ..., Sk, S

′
1, S

′
2, ..., S

′
k are of the same size and i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., Sk, S

′
1, ..., S

′
k.

Also, assume �St= {i1j1, i2j2, ..., i`j`} and �S′t= {j1i1, i2j2, ..., i`j`} for any 1 ≤ t ≤ k. Let’s
define another power relation w with informative part as wI= (wS′1 , ...,wS′k ,wS1 , ...,wSk

) such
that wSt= {i1j1, ..., i`j`} and wS′t= {j1i1, i2j2, ..., i`j`} for 1 ≤ t ≤ k. It is possible to obtain
the power relation w from the power relation � using a permutation π that maps any individual
in {i1, j1, i2, j2, ..., i`, j`} to itself except that π(i1) = j1 and π(j1) = i1, also it permutes S1 with
S ′1, S2 with S ′2,...,Sk with S ′k. Since we assume that the social ranking Fw satisfies anonymity,
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then it holds that Fw(w) = σπ(Fw(�)), where:

Fw(�) = argmax
R∈L(N)

[wC(S1) · |R∩ �S1 |

+ ...+ wC(Sk) · |R∩ �Sk
|+ wC(S ′1) · |R∩ �S′1 |+ ...+ wC(S ′k) · |R∩ �S′k |].

According to power relation � and definition of Fw(�) there are two possibilities for any
linear order R ∈ σπ(Fw(�)) = Fw(w): either (i1, j1) ∈ R or (j1, i1) ∈ R. First, we consider
the case that (j1, i1) ∈ R, and we prove that wC(S1) = wC(S ′1). The same result will be hold for
the case where (i1, j1) ∈ R. By assuming (j1, i1) ∈ R and by definition of π and σπ it holds that
(i1, j1) ∈ R′ ∈ Fw(�). By definition Fw(�), we have (i1, j1) ∈ R′ ∈ Fw(�) when

wC(S1) + wC(S2) + ...+ wC(Sk) ≥ wC(S ′1) + wC(S ′2) + ...+ wC(S ′k). (4.16)

Also, since σπ(Fw(�)) = Fw(w), we have (j1, i1) ∈ R ∈ Fw(w). According to definition of
Fw(w):

Fw(w) = argmax
R∈L(N)

[wC(S1) · |R∩ wS1 |

+ ...+ wC(Sk) · |R∩ wSk
|+ wC(S ′1) · |R∩ wS′1 |+ ...+ wC(S ′k) · |R∩ wS′k |]

it holds that

wC(S ′1) + wC(S ′2) + ...+ wC(S ′k) ≥ wC(S1) + wC(S2) + ...+ wC(Sk). (4.17)

From inequalities (4.16 and 4.17) it holds that wC(S1) +wC(S2) + ...+wC(Sk) = wC(S ′1) +
wC(S ′2) + ... + wC(S ′k). For the special case of k = 1 we have wC(S) = wC(S ′). The same
argument holds for the second possibility that (i1, j1) ∈ R. Since S and S ′ are coalitions of the
same size obtained from any combination of individuals, we conclude that wC(S) = wC(S ′)
when S 6= S ′ and |S| = |S ′|.

Anonymity on weighted CP-majority rules whose weight function depends on the informa-
tion sets

In this part, we explore anonymity axiom as a unique property of the members of Fw#I
as a

sub-family of FwI
.

The anonymity axiom in the domain of the social ranking rules belonging to FwI
uniquely

specifies the social ranking rules which ranks individuals according to their performance and not
their names.

Following theorem provides the main result of this part and validates the claim that anonymity
axiom characterizes the social ranking rules belonging to Fw#I

as members of FwI
.

Theorem 4.4.7. The unique social ranking rules inFwI
that satisfy anonymity are social ranking

rules in Fw#I
.
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Proof. (⇒) (Existence) That the members of Fw#I
satisfy anonymity is easy to verify.

(⇐) (Uniqueness) For the other direction, it is sufficient to prove that for any Fw ∈ FwI
that

satisfies anonymity, its weight function meets the condition wI(�S) = wI(wS′) whenever for
two power relations � and w and two coalitions S, S ′ ∈ 2N it holds | �S | = | wS′ |, which is
the main characteristic of the members belonging to the family of Fw#I

. We do the proof in two
steps. In the first step, we prove that for specific power relations � and �′ and permutations π
and σπ, F (�′) = σπ(F (�)) results wI(�S) = wI(�S′) for the same sized information sets �S
and�S′ (S, S ′ ∈ 2N ) when two individuals {i1, j1} ⊂ N exist such that i1j1 ∈�S and j1i1 ∈�S′ .
In the second step, we extend the result over any two information sets �S and wS′ of the same
size, given any two power relations � and w.

Step 1: Consider a power relation � that for the coalitions S1, ..., Sk, S
′
1, ..., S

′
k, with

|St| = |S ′t|, 1 ≤ t ≤ k (k ∈ N), its informative part is �I= {�S1 , ...,�Sk
,�S′1 , ...,�S′k

}. Also consider a set of individuals {i1, j1, i′1, j′1, ..., i`, j`, i′`, j′`} ⊂ N (` ∈ N) such
that i1, j1, i′1, j

′
1..., i`, j`, i

′
`, j
′
` /∈ S1, ..., Sk, S

′
1, ..., S

′
k and �St= {i1j1, i2j2..., i`j`} and �S′t=

{j1i1, i
′
2j
′
2, ..., i

′
`j
′
`} for 1 ≤ t ≤ k. Let’s define another power relation �′ with the in-

formative part as �′I= {�′S1 , ... �
′
Sk
,�′S′1 , ...,�

′
S′

k
} in which �′St

= {i1j1, i2j2..., i`j`} and
�′S′t= {j1i1, i

′
2j
′
2, ..., i

′
`j
′
`} for 1 ≤ t ≤ k.

It is easy to verify that �′ is obtained from � by applying a bijection π : N → N that
permutes i1 with j1, i2 with i′2, j2 with j′2,...,i` with i′`, j` with j′`, and that keeps the coalitions the
same. Since the social ranking rule Fw satisfies anonymity it means that Fw(�′) = σπ(Fw(�)).
By definition of the power relation � and also Fw(�):

Fw(�) = argmax
R∈L(N)

[wI(�S1) · |R∩ �S1 |

+ ...+ wI(�Sk
) · |R∩ �Sk

|+ wI(�S′1) · |R∩ �S′1 |+ ...+ wI(�S′
k
) · |R∩ �S′

k
|]

there are two possibilities for any linear orderR ∈ Fw(�): either (i1, j1) ∈ R or (j1, i1) ∈ R. Let
us first assume (j1, i1) ∈ R. We prove that wI(�S) = wI(�′S′) when i1j1 ∈�S and j1i1 ∈�′S′ .
The same result will be hold for the case where (i1, j1) ∈ R. From (j1, i1) ∈ R ∈ σπ(Fw(�))
we have (i1, j1) ∈ R′ ∈ Fw(�), which holds when

wI(�S1) + wI(�S2) + ...+ wI(�Sk
) ≥ wI(�S′1) + wI(�S′2) + ...+ wI(�S′

k
). (4.18)

On the other hand, since (j1, i1) ∈ R ∈ Fw(�′) = σπ(Fw(�)), by definition of Fw(�′):

Fw(π(�)) = argmax
R∈L(N)

[wI(�′S1) · |R∩ �′S1 |

+ ...+ wI(�′Sk
) · |R∩ �′Sk

|+ wI(�′S′1) · |R∩ �′S′1 |+ ...+ wI(�′S′
k
) · |R∩ �′S′

k
|]

we have

wI(�′S1) + wI(�′S2) + ...+ wI(�′Sk
) ≤ wI(�′S′1) + wI(�′S′2) + ...+ wI(�′S′

k
). (4.19)
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Since �St=�′St
and �S′t=�

′
S′t

(1 ≤ t ≤ k), and because we have both (4.18) and (4.19) it
holds that wI(�S1) + ... + wI(�Sk

) = wI(�S′1) + ... + wI(�S′
k
). For the special case of k = 1

we have that wI(�S1) = wI(�S′1) when | �S1 | = | �S′1 | and i1j1 ∈�S1 and j1i1 ∈�S1 . The
same result holds when we assume (i1, j1) ∈ R.

Since the anonymity axiom is defined on the domain of FwI
, where that changes in the

members of coalitions does not change the weights of coalitions, we have

wI(�T ) = wI(�S) when | �T | = | �S |, and i1j1 ∈�T and j1i1 ∈�S (S, T ∈ SN). (4.20)

Step 2: Consider a set {i1, j1, i′1, j′1, i′′1, j′′1 , ..., i`, j`, i′`, j′`, i′′` , j′′` } ⊂ N of individuals and a power
relation �∈ B(2N) with �S= {i1j1, i2j2, ..., i`j`} and �T= {j1i1, i

′
2j
′
2, ..., i

′
`j
′
`}, and define a

permutation π : N → N with π(i1) = i2, π(j1) = j2, π(i2) = i3, π(j2) = j3, ..., π(i`) =
i1, π(j`) = j1. Also π(i′2) = i′′2, π(j′2) = j′′2 ..., π(i′`) = i′′` , π(j′`) = j′′` . Suppose applying the
permutation on the information sets of power relation � yields another power relation w for
which wS= {i1j1, i2j2, ..., i`j`} and wT= {j2i2, i

′′
2j
′′
2 , ..., i

′′
` j
′′
` }. By Equation 4.20 we know that

wI(�S) = wI(�T ) and wI(wS) = wI(wT ). Also it is easy to verify that wI(�S) = wI(wS).
These equalities result that wI(�T ) = wI(wT ) when | �T | = | wT |. Finally, since the axiom
anonymity is defined on the domain of FwI

, in which the weights of coalitions do not depend on
their members, it concludes that wI(�S) = wI(wT ) wherever | �S | = | wT | where S, T ∈ 2N .

Anonymity on the family of weighted CP-majority rules whose weight function depends on
both coalitions and the information sets

In this part, we analyse the anonymity axiom as a property that distinguishes the members of the
family Fw(#I,#C) from the other members of the general family of weighted CP-majority rules
Fw(I,C) .

Recalling the example of evaluating employees, the company president might consider all
possible factors in order to aggregate the evaluations made by the committees and benefit from
the social ranking rules in the family of Fw(I,C) . However, if the structure of the company be
such that all the employees are considered to be the same, for instance, the same work experience
and the same expertise, the company president can only consider the number of employees who
participate in the evaluation process (like the number of members in a committee, and the number
of comparison that the committee make). In these cases, members of the family Fw(#I,#C) could
be used.

In the following theorem, we characterize the family of Fw(#I,#C) as a sub-family of Fw(I,C) .

Theorem 4.4.8. The unique social ranking rules in Fw(I,C) that satisfy anonymity are social
ranking rules in Fw(#I,#C) .

Proof. (⇒) (Existence) That the members of Fw(#I,#C) satisfy anonymity is easy to prove.
(⇐) (Uniqueness) For the other direction, we prove every ranking rule Fw ∈ Fw(I,C) that satisfies
anonymity is a member of the sub-family Fw(#I,#C) . We prove w(I,C)(�S, S) = w(I,C)(wT , T )
for two power relations � and w and coalitions S, T ∈ 2N , when | �S | = | wT | and |S| = |T |.
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We do the proof in two steps. In the first step, we show that for specific power relations� and�′
and permutations π and σπ, the equality w(I,C)(�S, S) = w(I,C)(�′T , T ) holds for any coalitions
S, T ∈ 2N with |S| = |T | and information sets�S and�T with | �S | = | �T |when individuals
i1, j1 ∈ N exist with i1j1 ∈�S and j1i1 ∈�T . In the second step, we extend the result to any two
power relations � and w and prove that w(I,C)(�S, S) = w(I,C)(wT , T ) when | �S | = | wT |
and |S| = |T |.

Step 1: Consider the power relation � with informative part �I= {�S1 ...,�Sk
,�S′1

, ...,�S′
k
} (k ∈ N) where |St| = |S ′t| for 1 ≤ t ≤ k, and consider a set of indi-

viduals {i1, j1, i′1, j′1, ..., i`, j`, i′`, j′`} ⊂ N (` ∈ N) such that i1, j1, i′1, j
′
1..., i`, j`, i

′
`, j
′
` /∈

S1, ..., Sk, S
′
1, ..., S

′
k and �St= {i1j1, i2j2..., i`j`} and �S′t= {j1i1, i

′
2j
′
2, ..., i

′
`j
′
`} for 1 ≤ t ≤ k.

Also, let’s define another power relation �′ with informative part �′I= {�′S1 ...,�′Sk
,�′S′1

, ...,�′S′
k
} in which �′St

= {i1j1, i2j2..., i`j`} and �′S′t= {j1i1, i
′
2j
′
2, ..., i

′
`j
′
`} for 1 ≤ t ≤ k.

It is possible to obtain the power relation �′ from the power relation � by defining a permu-
tation π : N → N that permutes i1 with j1, i2 with i′2, j2 with j′2,...,i` with i′`, and j` with j′`.
Also assume π permutes S1 with S ′1,...,Sk with S ′k. Since we assume that Fw satisfies anonymity
it holds that Fw(�′) = σπ(Fw(�)). According to power relation � and definition of Fw(�):

Fw(�) = argmax
R∈L(N)

[w(I,C)(�S1 , S1) · |R∩ �S1 |

+...+w(I,C)(�Sk
, Sk)·|R∩ �Sk

|+w(I,C)(�S′1 , S
′
1)·|R∩ �S′1 |+...+w(I,C)(�S′

k
, S ′k)·|R∩ �S′k |]

for any R ∈ Fw(�) there are two possibilities: either (i1, j1) ∈ R or (j1, i1) ∈ R. We prove
that each possibility results in w(I,C)(�S, S) = w(I,C)(�T , T ) when |S| = |T | and | �S | =
| �T |, and individuals {i1, j1} ⊂ N exist with i1j1 ∈�S and j1i1 ∈�T . Let us first assume
(j1, i1) ∈ R ∈ σπ(Fw(�)) = Fw(�′), which respectively means (i1, j1) ∈ Fw(�). This happens
when

w(I,C)(�S1 , S1) + w(I,C)(�S2 , S2) + ...+ w(I,C)(�Sk
, Sk) ≥ w(I,C)(�S′1 , S

′
1)+

w(I,C)(�S′2 , S
′
2) + ...+ w(I,C)(�S′

k
, S ′k). (4.21)

Also, since (j1, i1) ∈ Fw(�′), by definition Fw(�′):

Fw(�′) = argmax
R∈L(N)

[w(I,C)(�′S1 , S1) · |R∩ �′S1 |+ ...+ w(I,C)(�′Sk
, Sk) · |R∩ �′Sk

|

+ w(I,C)(�′S′1 , S
′
1) · |R∩ �′S′1 |+ ...+ w(I,C)(�′S′

k
, S ′k) · |R∩ �′S′

k
|]

we have

w(I,C)(�′S1 , S1) + w(I,C)(�′S2 , S2) + ...+ w(I,C)(�′Sk
, Sk) ≤ w(I,C)(�′S′1 , S

′
1)+

w(I,C)(�′S′2 , S
′
2) + ...+ w(I,C)(�′S′

k
, S ′k). (4.22)
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Based on the two inequalities 4.21 and 4.22, and since the information sets �St=�′S′t (1 ≤
t ≤ k), we have w(I,C)(�S1 , S1) + w(I,C)(�S2 , S2) + ... + w(I,C)(�Sk

, Sk) = w(I,C)(�S′1 , S
′
1) +

w(I,C)(�S′2 , S
′
2) + ...+w(I,C)(�S′

k
, S ′k). Considering the special case where k = 1, it results that

w(I,C)(�S1 , S1) = w(I,C)(�S2 , S2) when | �S1 | = | �S2 | and |S1| = |S2|
i1j1 ∈�S1 and j1i1 ∈�S2 . (4.23)

The same result holds when we assume (i1, j1) ∈ R ∈ F (π(�)) = π(F (�)).
Step 2: Consider a set {i1, j1, i′1, j′1, i′′1, j′′1 , ..., i1, j`, i′`, j′`, i′′` , j′′` } ⊂ N of individuals and

a power relation �∈ B(2N) with informative part �I= {S1, S2} such that |S1| = |S2| and
�S1= {i1j1, i2j2, ..., i`j`} and �S2= {j1i1, i

′
2j
′
2, ..., i

′
`j
′
`}. Let’s define a permutation π : N →

N that permutes S1 with S2 and π(i1) = i2, π(j1) = j2, π(i2) = i3, π(j2) = j3, ..., π(i`) =
i1, π(j`) = j1. Also π(i′2) = i′′2, π(j′2) = j′′2 ..., π(i′`) = i′′` , π(j′`) = j′′` . Suppose applying the
permutation on the information sets of the power relation � yields another power relation w for
which wS2= {i1j1, i2j2, ..., i`j`} and wS1= {j2i2, i

′′
2j
′′
2 , ..., i

′′
` j
′′
` }. By Equation 4.23 we know

that w(I,C)(�S1 , S1) = w(I,C)(�S2 , S2) and w(I,C)(wS1 , S1) = w(I,C)(wS2 , S2). Also it is easy
to verify that w(I,C)(�S1 , S1) = w(I,C)(wS1 , S1). These equalities result that w(I,C)(�′S2 , S2) =
w(I,C)(w′S2 , S2) when | �S2 | = | wS1 | and |S1| = |S2|.

4.4.4 Separability
In this section, we analyse a property of the members of Fw#C

as a sub-family of Fw(#I,#C) .
Particularly, we introduce an axiom called separability which characterizes social ranking rules
in Fw#C

as a subset of social ranking rules in Fw(#I,#C) .

This property states if a set of coalitions of the same size have mutually compatible prefer-
ences over individuals, then all of them can be represented by one coalition of that size doing the
comparisons, without any change in the ranking of individuals.

Definition 4.4.9 (Separability). A social ranking rule F satisfies the axiom separability iff for
any two power relations �,w∈ B(2N) and a set of individuals {i1, j1, ..., i`, j`} ⊂ N(` ∈ N)
if the two power relations are identical except for a set of coalitions {S1, ..., S`, S} with
i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., S`, S and |S1| = |S2| = ... = |S`| = |S| such that �S1=
{i1j1},�S2= {i2j2}, ...,�S`

= {i`j`},�S= ∅ and wS1= ... =wS`
= ∅ and wS= {i1j1, ..., i`j`},

then it holds that F (�) = F (w).

An explanation of the axiom is provided in the example below.

Example 32. Consider a set N = {1, 2, ..., 8} of individuals and assume a power relation
� is given over the power set of N . Suppose the informative part of the power relation is
�I= {�12,�34} such that �12= {56} and �34= {78}. Let’s assume that due to the context
of the ranking problem, the decision maker ranks individuals in the set N using social ranking
rules belonging to Fw(#I,#C) . The separability axiom states that the two coalitions 12 and 34
should be able to reach an agreement and choose a coalition with the same size (of size two) and
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delegate their comparisons to it. Accordingly, another power relation w can be formed with the
informative part as wI= {w23} such that w23= {56, 78}. Applying the social ranking rule sat-
isfying separability on the power relationw, gives the same result as applying the social ranking
on �.

The main result of this section is a characterization theorem that uniquely characterizes the
the family of social ranking rules Fw#C

as a sub-family of Fw(#I,#C) (Fw#C
⊂ Fw(#I,#C)).

Theorem 4.4.10. The unique social ranking rules inFw(#I,#C) that satisfy separability are social
ranking rules in Fw#C

.

Proof. (⇒)(Existence) We first prove that any member of Fw#C
as Fw satisfies separability. To

do so, consider any two power relations�,w∈ B(2N) and a set of individuals {i1, j1, ..., i`, j`} ⊂
N (` ∈ N), and assume the two power relations are identical except for a set of coalitions
{S1, ..., S`, S} with i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., S`, S and |S1| = |S2| = ... = |S`| = |S|
such that �S1= {i1j1},�S2= {i2j2}, ...,�S`

= {i`j`},�S= ∅, wS1= ... =wS`
= ∅, and wS=

{i1j1, ..., i`j`}. We prove that for these two power relations it holds that Fw(�) = Fw(w). Since
the weight function in Equation 6.5 is not depend on the information sets, all the coalitions
S1, ..., S`, S (or, equivalently the pairs of individuals in their information sets) have the same
weight. Therefore, focusing on the parts that are different in the two power relations, each pair
itjt for 1 ≤ t ≤ ` is weighted the same in both Fw(�) and Fw(w). Therefore, because the other
parts of the power relations are the same we conclude that for the two power relations � and w,
as defined, we have Fw(�) = Fw(w).

(⇐)(Uniqueness) For the other direction, suppose a weighted CP-majority rule Fw ∈
Fw(#I,#C) satisfies the axiom separability. We prove that it should be a member of Fw#C

. We do
that by showing that its weight function has the property that for any two coalitions S, S ′ ∈ 2N we
have w(#I,#C)(| �S |, |S|) = w(#I,#C)(| �S′ |, |S ′|) when |S| = |S ′|. Consider a set of individ-
uals {i1, j1, i2, j2, ..., i`, j`} ⊂ N (` ∈ N), and suppose two power relations � and w are given
with informative parts as �I= {�S,�S1 ,�S2 , ...,�S`

} and wI= {wS,wS′} such that |S1| =
|S2| = ... = |Sk| = |S| = |S ′| and �S= {i1j1},�S1= {j1i1},�S2= {i2j2}, ...,�S`

= {i`j`},
wS= {i1j1} and wS′=

⋃̀
i=1
�Si

(wS′= {j1i1, i2j2, ..., i`j`}), while wS1=wS2= ... =wS`
= ∅.

Then according to separability it holds that Fw(�) = Fw(w). Note that

Fw(�) = argmax
R∈L(N)

[w(#I,#C)(| �S |, |S|) · |R ∩ {i1j1}|+ w(#I,#C)(| �S1 |, |S1|) · |R ∩ {j1i1}|

+ w(#I,#C)(| �S2 |, |S2|) · |R ∩ {i2j2}|+ · · ·+ w(#I,#C)(| �S`
|, |S`|) · |R ∩ {i`j`}|] (4.24)

and

Fw(w) = argmax
R∈L(N)

[w(#I,#C)(| wS |, |S|) · |R ∩ {i1j1}|

+ w(#I,#C)(| wS′ |, |S ′|) · |R ∩ {j1i1, i2j2, ..., i`j`}|] (4.25)
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According to (4.24) and as we have w(#I,#C)(| �S |, |S|) = w(#I,#C)(| �S1 |, |S1|) (since
| �S | = | �S1 | and |S| = |S1|), there are some R,R′ ∈ Fw(�) = Fw(w) such that (i1, j1) ∈ R
and (j1, i1) ∈ R′. By (4.25) this only happens when w(#I,#C)(| wS |, |S|) = w(#I,#C)(| wS′
|, |S ′|). Note that in this equality |S| = |S ′| and | wS | 6= | wS′ |. Therefore, we have proved
that w(#I,#C)(| �S |, |S|) = w(#I,#C)(| �S′ |, |S ′|) when |S| = |S ′|, no matter what is the size
of their information sets.

4.4.5 Coalition Separability
Consider the domain of all weighted CP majority rules belonging to the family of Fw(#I,#C) . In
this section, we analyse the properties of the members of the sub-family Fw#I

. Specially, we
define an axiom called coalition separability that uniquely characterizes the members of Fw#I

in
the domain of Fw(#I,#C) .

There is an intuitive interpretation for the axiom coalition separability: considering the social
ranking rules in the domain of Fw(#I,#C) , if overlapped coalitions have the same preferences over
a set of individuals, then all these coalitions should be able to reduce their size by removing the
repeated individuals in the coalitions, while the ranking result does not change.

The formal definition of the axiom is given as below.

Definition 4.4.11 (Coalition Separability). A social ranking ruleF satisfies coalition separability
iff for any two power relations�,w∈ B(2N) and a set of individuals {i1, j1, ..., i`, j`} ⊂ N , if the

two power relations are identical except for {S1, S2, ..., Sk, S1\S, ..., Sk\S}with
k⋂
t=1

St = S such

that �S1=�S2= ... =�Sk
= {i1j1, ..., i`j`} and �S1\S= ... =�Sk\S= ∅, wS1= ... =wSk

= ∅, and
wS1\S= ... =wSk\S= {i1j1, ..., i`j`}, then it holds that F (�) = F (w).

The following example illustrates the use of the axiom.

Example 33. Consider a set of eight individuals N = {1, 2, 3, 4, 5, 6, 7, 8}, and suppose
the power relation � is given with the informative part �I= {�12,�134,�14}, for which
�12=�134=�14= {56, 67, 57}. Let’s assume a social ranking rule F , from the domain of
Fw(#I,#C) , satisfies coalition separability. If coalitions 12, 134 and 14 decide to reduce their
size by removing individual 1 (that is repeated) and to form a power relation w with the infor-
mative part as wI= {w2,w34,w4} such that w2=w34=w4= {56, 67, 57} , then applying F on
the power relation w should provide the same social ranking as when it applies on �.

The following theorem validates the main result of this section, and characterizes the mem-
bers of the family Fw#I

as a sub-family of Fw(#I,#C) .

Theorem 4.4.12. The only social ranking rules in the family Fw(#I,#C) that satisfy coalition
separability are Fw#I

. (Fw#I
⊂ Fw(#I,#C)).

Proof. (⇒)(Existence) Consider any member Fw ∈ Fw#I
. We first prove that it satisfies coalition

separability. To this aim, consider two power relations �,w∈ B(2N) such that for any set of
individuals {i1, j1, ..., i`, j`} ⊂ N (` ⊂ N), power relations � and w are identical except for
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{S1, S2, ..., Sk, S1 \ S, ..., Sk \ S} where
k⋂
t=1

St = S 6= ∅. Suppose �S1=�S2= ... =�Sk
=

{i1j1, ..., i`j`} and �S1\S= ... =�Sk\S= ∅. Also assume wS1= ... =wSk
= ∅ and wS1\S=

... =wSk\S= {i1j1, ..., i`j`}. We prove that Fw(�) = Fw(w). Since the social ranking rule Fw
belongs to Fw#I

, the weight function in Equation 6.4 does not depend on the sizes of coalitions.
Let’s focus on the parts that the two power relations are different. Since coalitions have the same
information sets, each pair of individuals itjt (1 ≤ t ≤ `) is weighted the same in both power
relations: in power relation � its weight is k×C where C indicates the same weight assigned to
each coalition S1, S2, ...Sk. In the same way, in power relation w, the pair of individuals has the
weight k × C where C indicates the weight of coalitions S1 \ S, ..., Sk \ S. Also the pairs have
the same weight in the other parts of power relations. Therefore, for any two described power
relations � and w we have Fw(�) = Fw(w).

(⇐)(Uniqueness) For the other direction, suppose a member Fw ∈ Fw(#I,#C) satisfies
coalition separability. We prove that its weight function meets the condition that for any
two coalitions S, T ∈ 2N it holds w(#I,#C)(| �S |, |S|) = w(#I,#C)(| �T |, |T |) when
| �S | = | �T |. In order to do that, consider two power relations �,w∈ B(2N) and
a set of individuals {i1, j1, i′1, j′1, ..., i`, j`, i′`, j′`} ⊂ N . Assume the informative parts for �
is �I= {�S1 , ...,�Sk

,�S′1 , ...,�S′k}, |St| = |S ′t| for t ∈ {1, ..., k}, and �S1= ... =�Sk
=

{i1j1, i2j2, ..., i`j`} and �S′1= ... =�S′
k
= {j1i1, i

′
2j
′
2, ..., i

′
`j
′
`}. Also suppose the informative

part for the power relation w is given by wI= (wS1\S, ...,wSk\S,wS′1 , ...,wS′k),
k⋂
t=1

St = S 6= ∅,
such that wS1\S=wS2\S= ... =wSk\S= {i1j1, ..., i`j`} and wS′1= ... =wS′

k
= {j1i1, i

′
2j
′
2, ..., i

′
`j
′
`}.

Since Fw satisfies coalition separability, it holds that Fw(�) = Fw(w). Also, by definition of
F (�), in Equation 6.3, and since coalitions St and S ′t (1 ≤ t ≤ `) have the same weights
(|St| = |S ′t| and | �St | = | �S′t |, 1 ≤ t ≤ `), for some R,R′ ∈ F (�) = F (w), we have
(i1, j1) ∈ R and (j1, i1) ∈ R′ (this is because R and R′ are linear orders). This happens only
when w(#I,#C)(| wS1\S |, |S1 \ S|) + w(#I,#C)(| wS2\S |, |S2 \ S|) + ... + w(#I,#C)(| wSk\S
|, |Sk \ S|) = w(#I,#C)(| wS′1 |, |S

′
1|) + ... + w(#I,#C)(| wS′

k
|, |S ′k|). For the special case

when k = 1 it holds that w(#I,#C)(| wS1\S |, |S1 \ S|) = w(#I,#C)(| wS′1 |, |S
′
1|) in which

| wS1\S | = | wS′1 |. Since S1\S and S ′1 are totally different coalitions, in general we have proved
that for any two coalitions S, T ∈ 2N it holds w(#I,#C)(| �S |, |S|) = w(#I,#C)(| �T |, |T |)
when | �S | = | �T |.

4.4.6 Coalition Merging
In this section, we consider the set of all social ranking rules in Fw#C

, and we look for a property
that distinguishes the member F I

w#C
from the other members of the family. The incentive to use

F I
w#C

can be seen in many practical ranking problems. In the example of employees’ evaluation,
suppose the ranking setting, conducted by the company president, forces committees to use ma-
jority voting in order to aggregate the opinion of their members to evaluate employees. In this
case, we can expect that the company president assigns more weight to committees of bigger
size , because she believes their evaluations are supported by more number of employees (the
members of the committee). On possible social ranking rule to be used in such cases is F I

w#C
.
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The axiom that we introduce in this section is called coalition merging. This axiom refers to
the idea that if a group of coalitions have the same preferences, then before starting the ranking
process they can decide to join together and form a single coalition with the same preferences as
before. If a social ranking rule satisfies coalition merging, then the coalitions expect that their
decision (to merge together) does not change the ranking result.

The axiom coalition merging is formally defined as follows.

Definition 4.4.13 (Coalition Merging). A social ranking F satisfies coalition merging iff for any
two power relations �,w∈ B(2N) and a set of individuals {i1, j1, i2, j2, ..., i`, j`} ⊂ N , ` ∈ N
if the two power relations are identical except for a set {S1, ..., Sk,∪ki=1Si} such that S1, ..., Sk
are disjoint coalitions of the same size and i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., Sk, �∪k

i=1Si
= ∅ and

�S1= ... =�Sk
= {i1j1, ..., i`j`} while wS1= ... =wSk

= ∅ and w∪k
i=1Si

= {i1j1, ..., i`j`} then it
holds that F (�) = F (w).

An example of using this axiom is provided below.

Example 34. Consider a set of eight individuals N = {1, 2, 3, 4, 5, 6, 7, 8}, and suppose the
power relation �∈ B(2N) is given with the informative part �I= {�12,�4,�56} such that
�12=�4=�56= {37, 38, 78}. If we use the social ranking rule F ∈ Fw#C

which satisfies the
coalition merging axiom, then merging the coalitions 12, 4, and 56 in order to form a new power
relation w with the informative part as wI= {w12456} with w12456= {37, 38, 78} should not
change the social ranking of individuals.

The following theorem verifies that the weighted CP-majority rule F I
w#C

can be characterised
using coalition merging as a member of Fw#C

.

Theorem 4.4.14. The only member of the familyFw#C
satisfying coalition merging is a weighted

CP-majority rule F I
w#C

(F I
w#C

(�) = argmax
R∈L(N)

∑
S∈2N

|S| · |R∩ �S |).

Proof. (⇒)(Existence) We first prove that F I
w#C

satisfies coalition merging. For this purpose,
suppose two power relations � and w are given, and assume they are identical except for the
set {S1, S2, ..., Sk,∪ki=1Si} of coalitions in which S1, S2, ..., Sk are disjoint coalitions of the
same size. Also, for a set of individuals {i1, j1, i2, j2, ..., i`, j`} ⊂ N , ` ∈ N suppose we
have �∪k

i=1Si
= ∅ and �S1= ... =�Sk

= {i1j1, i2j2, ..., i`j`} while wS1= ... =wSk
= ∅ and

w∪k
i=1Si

= {i1j1, ..., i`j`}, we prove that F I
w#C

(�) = F I
w#C

(w). Referring to the definition of
F I
w#C

(�) in 6.6, the weight function is w#C(|S|) = |S|. Let’s focus on parts of the two power
relations that are different. Each pair of individuals itjt (1 ≤ t ≤ `) has the same weight in both
power relations � and w: suppose the size of coalitions S1, ..., Sk is equal to n. In the power
relation � each pair of individuals shows up in any of the k coalitions, and therefore its weight
is k × n. Also in the power relation w each pair shows up only in the coalition ∪ki=1Si whose
size is equal to k × n. Therefore each pair in w is weighted k × n as well. Note that in the other
parts of the power relations, that are the same, each pair weights the same in both power relation.
Therefore, for any two power relation � and w we have F I

w#C
(�) = F I

w#C
(w).
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(⇐)(Uniqueness) For the other direction, consider two power relations � and w
such that the informative part of � is the set {�S1 , ...,�Sk

,�S′1 , ...,�S′k} for which
{i1j1, i2j2, ..., i`j`} =�S1=�S2= ... =�Sk

, |S1| = ... = |Sk| = |S ′1| = ... = |S ′k| = 1 and
{j1i1, i2j2, ..., i`j`} =�S′1= ... =�S′

k
. Also assume the informative part of the power relation

w is given as {w∪k
n=1Sn

,wS′1 , ...,wS′k} such that w∪k
n=1Sn

= {i1j1, i2j2, ..., i`j`} and �S′n=wS′n
for n ∈ {1, ..., k}. Since we assumed that the weighted CP-majority rule Fw ∈ Fw#C

sat-
isfies coalition merging then Fw(�) = Fw(w). Also because the pairs i1j1 and j1i1 exist
in the power relation � and since in Fw(�) we have wC(St) = wC(S ′t)(1 ≤ t ≤ k), lin-
ear orders R,R′ ∈ Fw(�) = Fw(w) are plausible such that {(i1, j1), ..., (i`j`)} ⊂ R and
{(j1i1), (i2, j2), ..., (i`j`)} ⊂ R′. This happens when in Fw(w) we havew#C(|S1|)+w#C(|S2|)+
...+w#C(|Sk|) = w#C(|∪kn=1Si|), which can be summarized as k×w#C(|S1|) = w#C(|∪kn=1Si|).
Since |S1| = 1 it holds that w#C(| ∪kn=1 Si|) = | ∪kn=1 Si|.

4.4.7 Splitting
In this section, we consider the social ranking rule F p

w#I
as defined in Equation 6.7. What moti-

vates the use of such social ranking rules is the ranking scenarios in which a coalition that made
larger number of comparisons (the bigger size of its information set) deserves to have a smaller
weight. An example is the employees’ evaluation when the larger number of comparisons made
by a committee may indicate that the committee does comparisons regardless of its expertise.
In the same way, in such scenarios a committee that does less number of comparisons merits to
have a bigger weight.

In this section, we restrict our attention to the social ranking rules that weight coalitions
according to the size of their information sets (Fw#I

), and we define an axiom that characterizes
the particular social ranking ruleFpw#I

. The axiom is called splitting axiom. Based on this axiom,
the coalitions that have compatible preferences (information sets) over individuals, can agree on
to have the same preferences as the union of their compatible information sets.
This axiom is formally defined as below.

Definition 4.4.15 (Splitting). A ranking rule F satisfies splitting if and only if for any two given
power relations �,w∈ B(2N) and a set of individuals {i1, j1, i2, j2, ..., i`, j`} ⊂ N , ` ∈ N if the
two power relations are identical except for a set of coalitions of the same size {S1, ..., S`} such
that i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., S` and {i1j1} =�S1 , {i2j2} =�S2 , ..., {i`j`} =�S`

while
{i1j1, i2j2, ..., i`j`} =wS1= ... =wS`

then it holds that F (�) = F (w).

Example 35. Consider a setN of individualsN = {1, 2, 3, ..., 7} and suppose the power relation
� is given with the informative part of �I= {�12,�34,�23} in which �12= {56}, �34= {67},
and �23= {57}. Since the coalitions have compatible preferences over the set of individuals,
they might reach a pre-agreement to all indicate the same preferences as the union of their
current preferences, i.e., they transform the power relation to w with the informative part as
wI= {w12,w34,w23} in which w12=w34=w23= {56, 67, 57}. If the ranking rule F ∈ Fw#I

satisfies splitting, then applying it on both power relations should give the same social ranking
of the individuals.
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Now we can present the main result of this section to characterize Fpw#I
as a member of Fw#I

.

Theorem 4.4.16. The only weighted ranking rule of the family Fw#I
that satisfies splitting is

F p
w#I

(F p
w#I

(�) = argmax
R∈L(N)

∑
S∈2N

1
| �S |

· |R∩ �S |).

Proof. (⇒)(Existence) Suppose Fw is the weighted CP-majority rule F p
w#I

, we will prove
that it satisfies splitting. Consider two power relations � and w and a set of individuals
{i1, j1, i2, j2, ..., i`, j`} ⊂ N . Let’s assume the two power relations are identical except for a
set S = {S1, ..., S`} such that the information sets of coalitions in the set S in power relation �
are disjoint singleton pairs of individuals, i.e., �S1= {i1j1},�S2= {i2j2}, ...,�S`

= {i`j`}. Also
suppose for the power relation w, the information set of each coalition S ∈ S is the union of all
the information sets in the set S, i.e., wS= {i1j1, i2j2, ..., i`j`} for all S ∈ S. By the definition
of the weight function for F p

w#I
, we have that w#I(| �S |) = 1

|�S |
, we know that each pair of

individual in each power relation has the same weight. Focusing on the parts of the two power
relation that are different, consider a pair of individuals itjt, 1 ≤ t ≤ `. This pair has the weight
of one in the power relation � since it shows up only in one coalition S whose information set
has the size of one. Also it has the weight of one in the power relation w because it appears in
` information sets corresponding to the coalitions in S each one with weight of 1

`
. Therefore we

conclude that Fw(�) = Fw(w).
(⇐)(Uniqueness) For the other direction, we prove that if a weighted ranking rule (Fw ∈

Fw#I
) satisfies splitting axiom then it should be F p

w#I
. Suppose the two power relations

�,w∈ B(2N) and a subset {i1, j1, i2, j2, ..., i`, j`} ⊂ N of individuals are given. Now assume
the informative part of power relation � is �I= {�S,�S1 , ...,�S`

} with �S= {i1j1},�S1=
{j1i1},�S2= {i2j2}, ...,�S`

= {i`j`}. Also consider power relation w with informative part
as wI= {wS,wS1 , ...,wS`} with wS= {i1j1} and {j1i1, i2j2, ..., i`j`} =wS1= ... =wS`

. First
since the ranking rule satisfies splitting then it holds that Fw(�) = Fw(w). Also as both
pairs i1j1 and j1i1 are materialized in the two power relations and since they have the same
weight value in the power relation � we must have R,R′ ∈ Fw(�) = Fw(w) for some
{i1j1, i2j2, ..., i`j`} ⊂ R and {j1i1, i2j2, ..., i`j`} ⊂ R′. This forces the weight function
to satisfy w#I(| wS |) = w#I(| wS1 |) + ... + w#I(| wS`

|) which equivalently means
w#I(1) = w#I(`) + ...+ w#I(`)︸ ︷︷ ︸

`

or w#I(1) = ` ·w#I(`), by the assumption that the weights are

normalized (w#I(1) = 1) it concludes the proof.

4.4.8 Constant-Weighted Rank Rule
As we have seen, ranking individuals based on pair-wise comparisons is the most intuitive way
to rank individuals. However, reckless use of it over the set of all binary relations often causes
the problematic ranking results [De Condorcet, 1785]. In Chapter 2, the concept of social single
peakedness is introduced as a restriction over the domain of all binary relations to guarantee
transitivity of the final ranking. In this section, the axiom restricted majoritarianism, emphasizes
that the social ranking of interest should go by the concept of majority on the limited scope of
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independence. In the example of employees’ evaluation suppose there are two employees, let’s
say 1 and 2, who get compared to each others and not to the others (they might have different
skills than others and it does not make sense to compare them with the others). In this case,
if the number of times that 1 is evaluated better than 2 is larger than the number of times 2 is
evaluated better than 1, then 1 should be ranked higher than 2.
The main result of this section indicates that the restricted majoritarianism characterizes the
weighted CP-majority rule Fpw#I

as a member of Fw#I
.

Before formally introducing this axiom we need some preliminary definitions:

Definition 4.4.17 (Independence). Individuals i, j ∈ N are independent of the power relation �
if for any information set �S, S ∈ 2N\{i,j}, we have ij ∈�S or ji ∈�S but ik, ki, jk, kj /∈�S
for k 6= i, j and S ∈ 2N .

Definition 4.4.18 (CP-majority set). The CP-majority set of a power relation � is a set mcp(�
) = {ij|

∑
S∈2N

dSij(�) >
∑
S∈2N

dSji(�)}

Reminder: Note that dSij(�) is one if i ∪ S � j ∪ S, it is minus one if j ∪ S � i ∪ S and it is
zero if i ∪ S ∼ j ∪ S in power relation �.

Definition 4.4.19 (Restricted Majoritarianism). A weighted rank rule Fw satisfies restricted ma-
joritarianism iff for any set N of individuals and power relation �∈ B(2N) and all alternatives
i, j ∈ N that are independent of � it holds that: if ij ∈ mcp(�) then ij ∈ R for all R ∈ Fw(�).

Theorem 4.4.20. The only member of the family Fw#I
that satisfies restricted majoritarianism

coincides with F c
w#I

(F c
w#I

(�) = argmax
R∈L(N)

∑
S∈2N

|R∩ �S |).

Proof. (⇒)(Existence) That the weighted CP-majority rule F c
w#I

satisfies restricted majoritari-
anism is easy to verify.

(⇐)(Uniqueness) For the other direction, consider an arbitrary member of the family of
Fw#I

which satisfies restricted majoritarianism. Let’s show the member as Fw, to prove that
Fw coincides with F c

w#I
it suffices to show that its weight function w#I satisfies the equality

w#I(`) = w(`′) for all `, `′ ∈ N.
Let’s assume ` > `′ and suppose for a sufficiently large set of individuals N we have

i1, j1, i2, j2...., i`, j` /∈ S1, ..., Sk, S
′
1, ..., S

′
k+1 for k ∈ N and also assume the power rela-

tion � with informative part of �I= {�S1 , ...,�Sk
,�S′1 , ...,�S′k+1

} is given such that �St=
{i1j1, i2j2, ..., i`j`} for t ∈ {1, ..., k} and �S′t= {j1i1, i2j2, ..., i`′j`′} for all t ∈ {1, ..., k + 1}.
Clearly, i1, j1 are independent of the power relation � and j1i1 ∈ mcp(�), therefore by re-
stricted majoritarianism it holds that j1i1 ∈ R for all R ∈ Fw(�), which implies that w#I(| �S1

|) + ... + w#I(| �Sk
|) < w#I(| �S′1 |) + ... + w#I(| �S′

k+1
|). Since | �Si

| = | �Sj
| = ` for

all i, j ∈ {1, ..., k} and also | �S′i | = | �S′j | = `′ for all i, j ∈ {1, ..., k + 1} we can shorten the
inequality by writing w`

w′
`
< 1 + 1

k
. Letting k goes to infinity (by considering very large set N of

individuals) results that
w`
w′`

< 1 + ε, 0 < ε < 1 (4.26)
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Now consider another power relation w with the informative part as wI= {wS1 , ...,wSk+1

, ...,wS′1 , ...,wS′k} for which wSt= {i1j1, i2j2, ..., i`j`} for t ∈ {1, ..., k + 1} and wS′t=
{j1i1, i2j2, ..., i`′j`′} for t ∈ {1, ..., k}. Clearly, in this power relation i1, j1 are independent
of the power relation w, and also i1j1 ∈ mcp(w). Again, by restricted majoritarianism it holds
that i1j1 ∈ R for all R ∈ Fw(w). This implies that w#I(wS1) + ... + w#I(wSk+1) > w#I(wS′1
) + ... + w#I(wS′

k
). Since | wSi

| = | wSj
| for all i, j ∈ {1, ..., k + 1} and | wS′i | = | wS′j |

for all i, j ∈ {1, ..., k} the inequality can be written as w`

w`′
> 1 − 1

k+1 . Again letting k goes to
infinity (by considering very large set N of individuals) results that

w`
w`′

> 1− ε, 0 < ε < 1 (4.27)

Note that the size of each information set for {�S1 , ...,�Sk
} is equal to the size of each in-

formation set for {wS1 , ...,wSk+1}, and the same equality holds for each information set for
{�S′1 , ... �S′k+1

} and {wS′1 , ...,wS′k}. Satisfying restricted majoritarianism for the weighted rank
rule means that both (4.26) and (4.27) hold and this can happen when w#I(`) = w#I(`′) for any
` > `′, `, `′ ∈ N. Symmetrically the same result holds for `′ > `, `, `′ ∈ N. By the definition of
the weight function we conclude that w#I(`) = w#I(`′) for all `, `′ ∈ N.

4.4.9 Combination of Splitting and Coalition merging

In this section, we want to characterize the social ranking rule Fpw(#I,#C)
as a member of the fam-

ily of social ranking rules Fw(#I,#C) . The main incentive to study the members of the family of
Fw(#I,#C) is that in our context, considering coalitions as voters, each voter has a different set of
alternatives to rank. Particularly, coalitions of bigger size have less alternative to compare, while
coalitions of smaller size have a larger number of alternatives to compare. Therefore, considering
just the sizes of information sets, as mentioned in Section 4.4.7, cannot truly indicate the degree
to which coalitions are experienced or the extent to which coalitions do relevant comparisons.
In this case, the social ranking rules that weight coalitions based on their size and size of their
information sets can provide an appropriate ranking over the individuals. In some specific rank-
ing scenarios, like in the example of employees’ evaluation, the company president may want to
assign more weight to bigger coalitions that do less number of comparisons. The justification of
this weighting is that coalitions of bigger size doing small number of comparisons may do it with
more deliberation. In such cases, the social ranking rule F p

w(#I,#C)
is worth to be considered.

The main result of this section is a characterization theorem in which we utilize the previously
mentioned axioms coalition merging and splitting in order to characterize the social ranking rule
F p
w(#I,#C)

as a member of Fw(#I,#C) .

Theorem 4.4.21. The unique social ranking rule inFw(#I,#C) that satisfies splitting and coalition

merging is F p
w(#I,#C)

(F p
w(#I,#C)

(�) = argmax
R∈L(N)

∑
S∈2N

|S|
| �S |

· |R∩ �S |).
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Proof. (⇒)(Existence) In this part we prove that the social ranking rule F p
w(#I,#C)

satisfies
the axioms splitting and coalition merging. We first prove that the social ranking rule satis-
fies Splitting. To do so, consider two power relations �,w∈ B(2N) and a set of individuals
{i1, j1, i2, j2, ..., i`, j`} ⊂ N , ` ∈ N, and suppose the two power relations are identical except for
a set of coalitions of the same size {S1, ..., S`} such that i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., S` and
{i1j1} =�S1 , {i2j2} =�S2 , ..., {i`j`} =�S`

while {i1j1, i2j2, ..., i`j`} =wS1= ... =wS`
. Let’s

focus on parts of the two power relations that are different. In Equation 6.8 the weight function
is defined as w(#I,#C)(| �S |, |S|) = |S|

|�S |
. The coalitions in the power relations have the same

size, and let’s indicate it with constant value C. Each pair of individuals itjt (1 ≤ t ≤ `) in
power relation � is weighted by C since the information sets of coalitions have the size of one.
Also each pair of individuals in the power relation w is also weighted by C because each pair
itjt shows up ` times (in ` coalitions), and its weight in each coalition is C

`
. Also the weights

of the coalitions are the same in the other parts of the power relation. Therefore, each pair of
individuals itjt (1 ≤ t ≤ `) has the same size in both power relations and, as a result, it holds
that F p

w(#I,#C)
(�) = F p

w(#I,#C)
(w).

Now let’s consider two power relations �,w∈ B(2N) and a set of individuals
{i1, j1, i2, j2, ..., i`, j`} ⊂ N , ` ∈ N also suppose the two power relations are identical except
for a set {S1, ..., Sk,∪ki=1Si}, where S1, S2, ..., Sk are disjoint coalitions with the same sizes.
Also suppose i1, j1, i2, j2, ..., i`, j` /∈ S1, ..., Sk, �∪k

i=1Si
= ∅ and�S1= ... =�Sk

= {i1j1, ..., i`j`}
while wS1= ... =wSk

= ∅ and w∪k
i=1Si

= {i1j1, ..., i`j`}. We indicate that the weighted CP-
majority rule F p

w(#I,#C)
satisfies coalition merging by proving that F p

w(#I,#C)
(�) = F p

w(#I,#C)
(w).

According to Equation (6.8), each pair of individuals itjt (1 ≤ t ≤ `) in power relation � is
weighted by k × C

`
where C is the size of coalitions S1, ..., Sk. This is because each pair shows

up in k different coalitions, and the weight of each coalition is C
`

. Also the weight of each pair in
the power relationw is equal to k×C

`
since each pair shows up only in the coalition ∪ki=1Si whose

size is k × C. Also the pairs of individuals are weighted the same in other parts of the power
relations. As a result, for the given power relations we have that F p

w(#I,#C)
(�) = F p

w(#I,#C)
(w).

(⇐)(Uniqueness) For the other direction, consider two power relations �,w∈ B(2N) and a
set of individuals i1, j1, i2, j2, ..., i`, j` ∈ N . Let’s assume Fw ∈ Fw(#I,#C) satisfies the two ax-
ioms, we prove that it coincides with F p

w(#I,#C)
and suppose the power relation� is given with the

informative part as �I= {�S11 , ...,�S1k
,�S21 , ...,�S2k

, ...,�S`1 , ...,�S`k
,�S} for k, ` ∈ N for

which |S11| = ... = |S1k| = ... = |S`1| = ... = |S`k| = 1, |S| = k and�S11= ... =�S1k
= {i1j1},

�S21= ... =�S2k
= {i2j2},..., �S`1= ... =�S`k

= {i`j`} and �S= {j1i1}. Also consider the

power relation w with informative part wI= {wS′1 , ...,wS′` ,wS} such that S ′1 =
k⋃
t=1

S1t,...,S ′` =
k⋃
t=1

S`t with wS′1= {i1j1},wS′2= {i2j2}, ...,wS′
`
= {i`j`} and wS= {j1i1}. Since Fw satis-

fies coalition merging, it holds that Fw(�) = Fw(w). Both pairs i1j1 and j1i1 are material-
ized in the power relation w and since w(#I,#C)(| wS1 |, |S1|) = w(#I,#C)(| wS |, |S|), for
some R,R′ ∈ Fw(�) = Fw(w) we have i1j1 ∈ R and j1i1 ∈ R′. This happens only when
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w(#I,#C)(1, 1) + ...+ w(#I,#C)(1, 1)︸ ︷︷ ︸
k

= w(#I,#C)(1, k) or simply

k × w(#I,#C)(1, 1) = w(#I,#C)(1, k). (4.28)

Now consider another power relationw′= (w′S′1 ,w
′
S′2
, ...,w′S′

`
,w′S) such thatw′S1= ... =w′S`

=
{i1j1, i2j2, ..., i`j`}, and w′S= {j1i1}. Again since Fw satisfies splitting and coalition merging,
on one hand it holds that Fw(w) = Fw(w′), and on the other hand Fw(�) = Fw(w). Therefore
we also have Fw(�) = Fw(w′).
We know that for some R,R′ ∈ Fw(�) we have i1j1 ∈ R and j1i1 ∈ R′, this is also the case
for Fw(w′) (for some R,R′ ∈ Fw(w′), we have i1j1 ∈ R and j1i1 ∈ R′). This holds only
when w(#I,#C)(`, k) + ...+ w(#I,#C)(`, k)︸ ︷︷ ︸

`

= w(#I,#C)(1, k) or simply ` × w(#I,#C)(`, k) =

w(#I,#C)(1, k). Since the weight functions are not depend on the power relations (we only deal
with sizes of coalitions and their information sets), we can replace value of w(#I,#C)(1, k) in
equation (4.28). This results in k × w(#I,#C)(1, 1) = ` × w(#I,#C)(`, k). If we normalize
weights and give the value of one to w(#I,#C)(1, 1), then we have k

`
= w(#I,#C)(`, k) which is

the definition of weight function for F p
w(#I,#C)

.

4.5 Conclusion
In this chapter, we have designed another way to rank individuals given a power relation over
coalitions formed by them. Considering the problem as an electoral system, we have defined
weighted social ranking rules which are extended from the ceteris paribus majority rules in
Chapter 2. Particularly, as an input they take a binary relation over subsets of individuals, and
as an output they result in a set of linear order over the set of individuals. Assigning weights to
ceteris paribus comparisons initiates a debate on how the weight functions can form. Based on
different possibilities to define weight functions we have formed different families of weighted
ceteris paribus majority rules that are in inclusion relation with each other. The inclusion relation
among families of weighted ceteris paribus majority rules form a tree structure graph, and the
main results in this chapter concern properties that characterize inclusion relation among the
families of solutions.
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5
Conclusion

We have studied the problem of ranking individuals when ordinal rankings over coalitions formed
by them is given. We have defined several approaches inspired from classical voting theory
and cooperative game theory in order to deal with the ranking problem. In addition to design
procedures to rank individuals, the majority of our work focused on axiomatic study of social
ranking rules.

Summary of contributions

Let us present in more detail the scope of our contributions.
Chapter 1 has been devoted to review the literature on subjects of study that we use in order to

analyse the ranking problem. We have explored problems in social choice theory and investigated
the importance of axiomatic study of solutions in the context. Particularly, we have reviewed
some solutions in the contexts of voting theory, cooperative game theory, and ranking sets of
individuals, and study them from property driven approach.

In Chapter 2, we have formally defined the ranking problem. Given a binary relation over
a set of coalitions, which is called power relation, we are looking for a total preorder over the
set of individuals, which we call social ranking rule. As our first attempt in order to solve the
problem, based on a ceteris paribus principle, we have defined a solution that goes by the concept
of majority. More precisely, we have defined a social ranking rule called ceteris paribus majority
rule, and we have analysed the solution from a property-driven approach. Particularly, the notion
of ceteris paribus transforms the problem into a virtual election in which voters are coalitions.
We have introduced three axioms equality of coalitions, neutrality, and positive responsiveness,
which are inspired from the axiomatic studies in classical voting theory. One of the main results
of the chapter is a theorem that characterizes ceteris paribus majority rule as a unique solution
that satisfies the three mentioned axioms.

From the classical voting theory we know that following the concept of majority in order to
rank more than two individuals may result in a Condorcet paradox. In order to avoid possibility
of cycles in social rankings, we have proposed a restriction on power relations, called social
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single peakedness, which is inspired from single peakedness in voting theory.
Finally, the last section of the chapter has been devoted to investigate the possibility of using

incompleteness of a power relation as a source of information. Particularly, we have explored a
scenario in which each coalition, based on the number of comparisons made in a power relation,
has a level of information. We have defined a social ranking rule called Informative ceteris
paribus majority rule. It ranks individuals following a lexicographic approach over different
classes of coalitions with different levels of information.

Another approach to rank individuals is presented in Chapter 3, which is based on classical
solution concepts in cooperative game theory. This ranking method is motivated by showing that
cardinal solution concepts, like Banzhaf index, are very sensitive to small changes in valuation
of coalitions. We have extended the game theoretic notion of marginal contribution to the ordinal
framework of power relations, and we have defined a social ranking rule called ordinal Banzhaf
relation. The solution goes by the concept of majority over the ordinal marginal contribution of
individuals. Therefore, the axiomatic study of the solution is inspired from the simple majority in
the classical voting theory, and the axiomatic study of ceteris paribus majority rule in Chapter 2.
Particularly, we have defined three axioms coalitional anonymity, neutrality, and monotonicity.
One of the main results of the chapter is a theorem that provides a characterization of ordinal
Banzhaf solution over the domain of power relations as linear orders. The similarity between the
axiomatic study of the ordinal Banzhaf solution and the ceteris paribus majority rule triggered
us to study the similarities and differences of the two social ranking rules in more detail. We
have proved that, over the domain of power relations as linear orders, the two social ranking
rules belong to a family of rules in which each member is a weighed version of ceteris paribus
majority rule.

Chapter 4 has been devoted to axiomatic study of families of social ranking rules. The ap-
proach proposed in the chapter is based on a weighted extension of the ceteris paribus majority
rule in order to rank more than two individuals. It assigns to each binary relation over a set of
coalitions, a set of linear orders over individuals. The extended version is based on the interpre-
tation of the ranking problem as a virtual election, which is different from classical elections:
groups of individuals (coalitions) playing the role of voters; and candidates can also be voters.
These differences have motivated us to consider different weight values for coalitions (as voters).
The weights depend on different factors related to structure of the power relation. Different ways
to define weights lead to families of social ranking rules. We have explored the relation between
families of solutions, which results in a tree structure in Figure 4.1. The main goal of the chapter
is to analyze the properties that uniquely characterize a family of social ranking rules as a subset
of another family of social ranking rule. Specially, for each edge of the tree we have defined at
least one axiom, and we have proved the related characterization theorem.

Some Extensions

The main goal of the thesis is to study different solutions from a property-driven approach.
Therefore, it is worthy to study some of the possible extensions related to each chapter of the
thesis.
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Axiomatic study of informative ceteris paribus majority. In Chapter 2, we have proposed a
social ranking rule that takes into account incompleteness of a power relation in order to
rank individuals, which is called informative ceteris paribus majority solution. Based on
this solution, coalitions are classified into different equivalence classes based on their level
of information. It applies ceteris paribus majority in a lexicographic order to equivalence
classes of coalitions (from the high-level informed classes to low-level informed classes).
It can be interesting to define a set of axioms that uniquely characterize the solution when
we restrict our attention to set of all social ranking rules that are based on a ceteris paribus
majority principle. Since informative ceteris paribus majority follows the concept of ma-
jority over different equivalence classes, we can reformulate the two axioms equality of
coalitions and positive responsiveness by restricting them to equivalence classes. The
informative ceteris paribus majority rule satisfies the same neutrality axiom as we have
defined for the ceteris paribus majority rule. Finally, in order to catch the lexico-graphic
nature of the solution, it is possible to define an axiom that states changes in the compar-
isons made by coalitions in low-level information classes do not affect the social ranking
of the individuals.

Extending the axiomatic study of ordinal Banzhaf relation. In Chapter 3, we have axiomat-
ically characterized the ordinal Banzhaf index in domain of linear orders. However, it is
possible to extend the characterization theorem to domain of all weak orders, where in-
difference between coalitions are allowed. The ordinal Banzhaf relation still satisfies the
two axioms coalitional anonymity and neutrality in domain of weak orders. However, we
need to reformulate the monotonicity axiom to take into account presence of indifference
between coalitions. As we have mentioned in Chapter 3, Theorem 3.3.4 is restricted to the
domain of all linear orders due to technical difficulties related to the uniqueness part of the
proof. To avoid such difficulties, it is possible to define a property to avoid indifferences.
The idea of the axiom is that: suppose in a power relation �, adding individuals i and j
to two coalitions (let’s say S ∈ 2N\{i} and T ∈ 2N\{j}) does not change the performances
of coalitions (S ∪ {i} ∼ T ∪ {j}), then forming another power relation w in which, for
instance, individual i improves the performance of coalition S (S ∪{i} A S), and individ-
ual j decreases the performance of coalition T (T A T ∪ {j}) should not change ranking
over the individuals. Such an axiom, which is demanding, transforms each power rela-
tion consisting of indifference between its marginalistic comparisons to a power relation
with no indifference between the marginalistic comparisons. This axiom extends the proof
regardless of the presence of indifference in power relations.

Weaker versions of axioms in Chapter 4. Axioms proposed in Chapter 4 are not the only ax-
ioms that characterize corresponding social ranking rules. For some of the axioms, we
can investigate weaker versions that characterize the same social ranking rules as the main
axiom.

• Separability: we have proved a theorem that says the unique social ranking rules in
the domain of Fw(#I,#C) that satisfy separability are the members of Fw#C

. Sepa-
rability states that if a set of coalitions of the same size have mutually compatible
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information sets (of size one), then all of them can be represented just by one coali-
tion of that size doing comparisons, without any change in the ranking of individuals.
However, it is possible to define a weaker version of the axiom by relaxing the as-
sumption that the compatible information sets must be of size one. Since whenever
separability axiom holds its weaker version holds as well, following the sketch of
the proof in Theorem 4.4.10, it is easy to prove that the weaker version of separabil-
ity uniquely characterizes family of Fw#C

as a sub-family of Fw(#I,#C) . Finally, by
making the axiom any weaker than this version, the theorem will failed to be proved.
Suppose we make the axiom weaker by relaxing the size restriction of the compatible
information sets. In this case, only the “existence” part of the theorem will be hold,
and not the “uniqueness” part.

• Coalition separability: we have proved that the only social ranking rules in the family
Fw(#I,#C) that satisfy coalition separability are Fw#I

. Coalition separability states
that if a set of coalitions have the same set of preferences over individuals, then one
should expect that reducing the size of coalitions by removing the repeated members
in the coalitions will not change the final ranking. A weaker version of the axiom is
plausible by relaxing the assumption that coalitions must have same preferences over
individuals. Following the sketch of the proof in Theorem 4.4.12, and since whenever
coalition separability holds the weaker version of it holds as well, we can conclude
that the weaker version of coaliiton separability uniquely characterizes members of
Fw#I

as members of Fw(#I,#C) .

The other way to define the appropriate property that uniquely characterizes the mem-
bers of the family Fw#I

as members of the bigger family Fw(#I,#C) is that given a
power relation�, any permutation that permutes coalitions with the same information
sets should not change the ranking result. This axiom recalls the idea of coalitional
anonymity axiom, which is extensively studied in Chapter 3. The extended version of
coalitional anonymity characterizes the inclusion relation, although it assumes more
than what needed when the domain of attention is the family of Fw(#I,#C) .

• Coalition merging: the axiom coalition merging has been used to characterize the
social ranking rule F I

w#C
as a member of the family Fw#C

. The axiom states that a
group of coalitions of the same size with same information sets (preferences) should
be able to merge together and form a coalition containing all the members in the pre-
vious coalitions with the same information set, without changing the ranking over
individuals. One can define a weaker version of the axiom, by relaxing the assump-
tion that coalitions must have the same size. Again, since whenever coalition merging
holds the weaker version holds, it is possible to characterize the social ranking rule
F I
w#C

as a member of Fw#C
.
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Future Works

A complementary approach to support the social ranking methods proposed in the thesis is to use
them in real applications. Many real settings are conceivable to apply the ranking methods. For
instance consider the following ranking scenario.

Consider a problem where a marketing agency wants to offer a collection of products to its
customers, and the agency wants the collection to bring more satisfaction to its customers. Cus-
tomers are satisfied with a proposed collection of products if they can easily select one product
among the others, i.e, with confidence that the chosen product is what they have been looking for.
This happens when the proposed bundle of products contains various range of products from the
view point of the customers. However, each customer has a restricted attention to some specific
features of the products. For instance, suppose the marketing agency suggests a collection of
laptops to the customers. Customers have different priorities to select a laptop. For some of them
the computational ability of laptops is important, while for the others their gaming ability is more
essential. Since the marketing agency is not completely aware of the tastes of its customers, the
question is which collection of products should be proposed to bring more satisfaction to the cus-
tomers. One way to answer the question is to rank products by the amount of variety they bring
to different bundles of products when joining them, and use the information to form appropriate
collections. To do so, it is possible to propose a limited numbers of bundles to the customers,
and evaluate their average level of satisfaction. Since the level of satisfaction cannot be estimated
precisely with numbers, we just consider the case that one bundle is more satisfactory or less sat-
isfactory than another one. This information forms a power relation. By applying the ranking
methods proposed in the thesis, we can rank products based on their contribution in making bun-
dles of products more diverse or less diverse. In the example of laptops, consider a case where
the marketing agency has a set of four different laptops {A,B,C,D}, and it wants to propose
the most appropriate bundle of laptops to its customers, i.e., the collection that brings more sat-
isfaction to the customers. In a very simple case, suppose the agency evaluates the satisfaction
of customers by proposing them the four bundles AB and BD, ABD, and AC, and suppose the
power relation � is formed that indicates the average level of satisfaction of customers about the
bundles: AB � AC � ABD � BD. Suppose a social ranking rule R assigns to a given power
relation a set of linear orders over the products, such that each linear order indicates the possi-
ble placement of products on a line based on a similarity scale. For instance, given the power
relation, the social ranking rule considers A and B as two sides of a spectrum (since AB is the
more diverse collection of products), and puts D between A and B (because the bundle ABD is
less diverse) and close to B (since the bundle BD is not diverse enough). Using the ranking over
products, it is possible to modify the power relation by making it more complete or by avoiding
some of the bundles to form. For instance, by the positioning of products in the example of
laptops one can infer that the bundle AD is diverse enough to be proposed to the customers. In
order that the modification be consistent with the power relation, we need to look for ranking
methods (if exist) which are the exact inverse of the methods we applied on the power relation
to rank products. This application covers both problems of lifting ranking from individuals to
ranking over subsets of individuals and mapping ranking over subsets of individuals to tanking
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over individuals.
Another application for our social ranking solutions is in the context of belief aggregation.

In many of the recent applications the problem of measuring the effect of each belief in making
a belief base inconsistent is modelled as a cooperative game. In this game, the characteristic
function of each coalition (belief base) is the amount of inconsistency in the belief base. Using
semi-values like Shapley value, one can measure the quota of each belief in making the belief
base inconsistent [Hunter and Konieczny, 2010]. However since in many real situation quantify-
ing the inconsistency is not straight-forward one can only assume that one belief base is ordinally
more consistent or less consistent than another one and measure the "ordinal marginal contribu-
tion" of each belief to make a belief base inconsistent. For instance, suppose an agent exposed
by a set of beliefs and she wants to regularly update her beliefs. To do so, the agent can imag-
ine hypothetical power relation in which coalitions are formed by adding different beliefs to her
current belief base. Given the power relation the agent can rank the beliefs based on the incon-
sistency they bring about, and add the one which is more consistent with her current belief base.
[Serramia et al., 2020]
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6
Résumé Long en Français

La conception de procédures visant à classer les personnes en fonction de leur comportement
dans les différents groupes est d’une grande importance dans de nombreuses situations pratiques.
Le problème se pose dans différents scénarios exposé par trois thépries: la théorie du choix social,
la théorie des jeux coopératifs ou la théorie de la décision multi-attributs, et en voici quelques ex-
emples. Comparer les chercheurs d’un département scientifique en tenant compte de leur impact
dans différentes équipes [Papapetrou et al., 2011] ; trouver les partis politiques les plus influents
dans un parlement en se basant sur les alliances passées au sein de coalitions majoritaires al-
ternatives [Marošević and Soldo, 2018] ; évaluer les attributs en fonction de leur influence dans
un contexte de décision à attributs multiples, où l’indépendance des attributs n’est pas vérifiée
en raison des interactions mutuelles (voir [Bouyssou and Marchant, 2007] pour une discussion
sur les coalitions de critères gagnantes, [Boutilier et al., 2004] pour les CP-nets concernés par la
dépendance conditionnelle qualitative et l’indépendance des déclarations de préférence selon une
interprétation ceteris paribus) ; et la quantification de la productivité des individus en présence
d’un travail d’équipe en tenant compte du fait que la contribution d’un individu à une équipe peut
également dépendre de la productivité de l’individu, puisque les individus les plus productifs ap-
portent plus d’expertise, de compétences en matière de constitution d’équipes et de visibilité, et
qu’ils contribuent davantage en moyenne [Flores-Szwagrzak and Treibich, 2020].

Dans de nombreuses applications du monde réel, une évaluation précise du "pouvoir" des
coalitions peut être difficile, voire impossible à faire, en raison d’un ensemble de facteurs in-
connus : existence de données incertaines, complexité de l’analyse, informations manquantes
ou difficultés de mise à jour, etc. Dans de telles situations, mesurer l’importance des individus
à l’aide des indices de pouvoir classiques n’est pas toujours simple. Dans ce cas, il peut être
intéressant de ne considérer que les informations ordinales concernant les comparaisons binaires
entre les coalitions. Supposons par exemple que le directeur d’un département souhaite évaluer
les performances des professeurs sur la base de leur contribution dans les groupes scientifiques.
Supposons également que la seule information fournie au directeur soit qu’un groupe est plus
performant qu’un autre ou que les deux groupes ont le même niveau de performance. Cette hy-
pothèse est valable car il n’est pas possible d’évaluer les performances des groupes scientifiques
par des chiffres ; les performances d’un groupe scientifique dépendent d’une combinaison de
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facteurs tels que le nombre de publications faites par le groupe, l’importance des sujets pour le
département, le nombre de citations, la qualité de leurs articles, et de nombreux autres facteurs
qui peuvent être difficiles à quantifier.

Certains scientifiques ont modélisé le manque d’information dans de telles situations avec
des méthodes probabilistes [Suijs et al., 1999], ou en estimant la valeur des coalitions à l’aide
d’intervalles [Branzei et al., 2010]. Toutefois, ces méthodes ne sont pas toujours applicables en
raison de divers types d’incertitude. Dans cette thèse, nous suivons la même approche que dans
[Moretti and Öztürk, 2017] et [Bernardi et al., 2017], et modélisons la valeur des coalitions de
manière ordinale en utilisant une relation binaire qui est définie sur l’ensemble des coalitions.
Par conséquent, tout au long de la thèse, nous apportons des réponses à la question générale de
savoir comment obtenir un classement sur un ensemble fini de N individus (appelé classement
social), en fonction d’un classement des éléments d’un ensemble de pouvoirs 2N (appelé relation
de pouvoir, normalement désigné par � ou w).

Dans le problème de l’évaluation des professeurs, supposons qu’avec un ensemble de cinq
professeurs N = {1, 2, 3, 4, 5}, le directeur du département veut les classer. Supposons égale-
ment que l’information fournie au directeur soit la relation de pouvoir {2, 4, 5} � {1, 3} �
{1, 2} � {2, 3} � {2, 4, 5} ∼ {3, 5} � {2, 4} � {2, 5} � {1, 4} qui indique la performance rel-
ative des différents groupes scientifiques. Par exemple, {2, 4, 5} � {1, 3} signifie qu’un groupe
composé de trois professeurs 2, 4, et 5 fonctionne strictement mieux qu’un groupe de professeurs
1 et 3, et {2, 4, 5} ∼ {3, 5} signifie que les performances des groupes correspondants sont les
mêmes.

Notre objectif n’est pas seulement de définir un classement social sur un ensemble
d’individus. En effet, la majorité de nos recherches portent sur un ensemble de propriétés (ax-
iomes) que les règles de classement social devraient satisfaire. À notre connaissance, la question
a d’abord été introduite par [Marichal and Roubens, 1998], mais elle a été formellement étudiée
par [Moretti, 2015] et [Moretti and Öztürk, 2017], qui analysent les solutions de classement so-
cial selon une approche axée sur les propriétés. Ils évaluent l’effet des propriétés de base dans
la combinaison du classement social, et montrent que la combinaison par paire de ces propriétés
naturelles aboutit soit à l’impossibilité (c’est-à-dire qu’il n’existe pas de classement social), soit
à l’aplatissement (c’est-à-dire que tous les individus sont classés de manière égale), soit à la dic-
tature. Dans le même cadre, [Bernardi et al., 2017] a caractérisé axiomatiquement une solution
de classement social basée sur l’idée que les individus les plus influents sont ceux qui apparais-
sent le plus souvent dans les plus hautes positions du classement des coalitions. Une approche
plus pratique de ce problème a été étudiée dans [Fayard and Escoffier, 2018] dans laquelle les
auteurs mettent en œuvre une règle de classement social proposée au chapitre 2 afin de trouver
une approximation du nombre minimum de coalitions à supprimer pour satisfaire la transitivité.
Afin d’explorer de nouvelles méthodes pour classer les individus en fonction d’un classement
ordinal sur leurs coalitions, nous utilisons dans cette thèse des notions différentes de la théorie
classique des choix sociaux et de la théorie des jeux coopératifs.

Parallèlement à l’objectif de cette thèse, dans le chapitre 1 nous faisons une revue de la
littérature sur les contextes liés à la thèse. Nous discutons de l’étude axiomatique et de ses com-
posantes. Nous décrivons également le type de résultats attendus de l’étude et leur importance.
Nous passons en revue les études axiomatiques qui ont été réalisées dans les contextes de la
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théorie du vote, de la théorie des jeux coopératifs et du classement d’ensembles d’objets. Enfin,
nous étudions les progrès récents de notre problème de classement.

Le chapitre 2 présente notre première approche pour résoudre le problème du classement.
Dans ce chapitre, nous étudions l’utilisation du principe de majorité ceteris paribus comme so-
lution de classement social. Selon cette méthode de classement, deux personnes sont classées à
l’aide d’informations provenant de ceteris paribus (c’est-à-dire, toutes choses égales par ailleurs)
des comparaisons sur toutes les coalitions possibles. Cela suggère une interprétation de notre
problème sur le modèle d’une élection virtuelle, avec des groupes d’individus (coalitions) jouant
le rôle d’électeurs. Malheureusement, la solution de la majorité ceteris paribus peut conduire à
un condorcet-like paradox. Par conséquent, une restriction du domaine sur la famille de classe-
ment des coalitions est proposée pour garantir la transitivité du classement sur les individus. Le
chapitre se termine par une discussion sur les interprétations possibles du caractère incomplet de
la relation de pouvoir. Nous proposons une nouvelle règle de classement social pour prendre en
considération une interprétation spécifique du caractère incomplet.

Le chapitre 3 présente une autre méthode de classement des individus. La nouvelle solution
est définie par l’extension des notions de contribution marginale et de l’indice de Banzhaf dans
les jeux coopératifs classiques, et est appelée ordinale de Banzhaf. Nous limitons notre attention
aux relations de pouvoir en tant qu’ordres linéaires, et nous caractérisons la solution ordinale
de Banzhaf résultante au moyen d’un ensemble d’axiomes inspirés de ceux introduits dans le
chapitre 2. La similitude entre l’étude axiomatique des deux solutions nous motive à explorer
plus en détail les similitudes et les différences des solutions.

Le chapitre 4 de la thèse est consacré à l’étude axiomatique des familles de règles majori-
taires pondérées ceteris paribus. Les règles de classement social de ce chapitre sont une exten-
sion pondérée de la règle de majorité ceteris paribus pour classer plus de deux individus. Selon
l’interprétation des problèmes de classement, les poids attribués aux coalitions (électeurs) peu-
vent être fonction des coalitions, de l’ensemble des individus comparés par la coalition, de leur
combinaison, de leur taille, etc. Comme les fonctions de pondération peuvent être définies d’une
infinité de façons, chaque interprétation aboutit à une famille spécifique de règles de classement
social pondérées qui est une sous-famille d’autres familles. La relation d’inclusion entre les
familles forme un arbre dont les arcs montrent les relations d’inclusion correspondantes entre
les familles, et le but principal du chapitre est d’analyser chaque famille de solutions comme un
sous-ensemble d’une autre famille de solutions par l’étude axiomatique de leurs propriétés.

Les contributions de la thèse sont publiées dans les actes de conférences internationales, à
savoir IJCAI 2018 [Haret et al., 2018] et IJCAI 2019 [Khani et al., 2019].

Chapitre 1: Revue de la Littérature

La théorie des choix sociaux permet d’étudier et d’analyser comment combiner les préférences
des individus pour parvenir à une décision collective ou social welfare dans un certain sens.
L’intérêt croissant pour le choix social provient de son lien étroit avec d’autres domaines de
l’informatique, ainsi que d’un vaste échange entre eux. Une des raisons d’importance provient
des notions importées de l’informatique dans le contexte du choix social afin de résoudre des
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problèmes, comme le calcul de la complexité des méthodes de classement social ou, par ex-
emple, la spécification des méthodes de vote où la manipulation est difficilement plausible.
D’autre part, les techniques développées dans la théorie du choix social peuvent être util-
isées afin de résoudre des problèmes dans le contexte de l’informatique et de l’intelligence
artificielle [Brandt et al., 2016b]. Un exemple est l’application de la théorie du choix social
pour développer des systèmes de classement de pages dans les moteurs de recherche Internet
[Chevaleyre et al., 2007], [Tennenholtz, 2004]. Comme nous le verrons, dans le corps de la thèse,
nous bénéficions d’une des idées originales de la théorie du choix social afin de trouver des so-
lutions à un problème de classement complexe.

Les thèmes abordés dans le choix social peuvent être classés selon deux axes distincts :
la nature du problème de choix social que nous traitons et le type de techniques formelles ou
calculatoire étudiées [Chevaleyre et al., 2007]. Dans cette thèse, nous nous concentrons princi-
palement sur trois d’entre elles : théorie du vote, formation de la coalition, et classement des
ensembles d’objets.

• Théorie du vote. Étant donné un ensemble d’électeurs et un ensemble de candidats,
la question qui intéresse la théorie du vote est de savoir comment agréger l’opinion des
électeurs (représentée par leurs bulletins de vote sur un ensemble de candidats) pour trou-
ver un classement par rapport aux candidats, ou pour trouver le meilleur candidat. Cette
question se pose dans de nombreux domaines comme les affaires, les organisations sociales
ou la politique. L’origine de cette question remonte à l’époque des Romains, lorsque Pline
et d’autres sénateurs devaient décider du sort d’un certain nombre de prisonniers : acquitte-
ment (A), bannissement (B), ou condamnation à mort (C). Bien que l’option A, privilégiée
par Pline, ait le plus grand nombre de partisans, elle n’a pas la majorité absolue. L’un des
partisans de la punition sévère a alors stratégiquement décidé de retirer la proposition C,
laissant ses anciens partisans soutenir l’option B, qui est évidemment la gagnante du con-
cours de majorité entre A et B. Si les sénateurs avaient voté sur les trois options en utilisant
la règle de la majorité, alors l’option A aurait gagné. Cet exemple illustre plusieurs car-
actéristiques intéressantes des règles de vote. Par exemple, il peut être interprété comme
démontrant un manque d’équité de la règle de la majorité relative : même si une majorité
d’électeurs estime que A est inférieur à l’une des autres options (à savoir, B), A gagne
quand même [Brandt et al., 2016a]. En fait, lorsqu’il n’y a que deux candidats, le choix du
meilleur candidat est simple. Cela va dans le sens de la majorité. Cependant, lorsqu’il y a
plus de deux candidats, il n’y a pas de façon évidente de choisir le meilleur candidat. Dif-
férentes méthodes sont proposées, chacune d’entre elles tenant compte d’un certain sens de
l’équité. Les écrits du philosophe, poète et missionnaire catalan Ramon Llull (1232-1316)
sur les règles de vote sont un autre indice sur l’utilisation de la règle de vote au Moyen
Âge. Il soutenait l’idée que les résultats des élections devraient être basés sur des concours
à la majorité directe entre deux candidats. La règle à laquelle il a fait référence semble être
celle connue aujourd’hui sous le nom de règle Copeland [Copeland, 1951], selon laquelle
le candidat qui remporte le plus grand nombre de concours à la majorité par paire est élu.

D’autres tentatives dans le domaine des règles de vote sont les travaux de l’ingénieur
français Jean-Charles de Borda (1733-1799) et du philosophe et mathématicien français
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Marquis de Condorcet (1743-1794). La discussion entre ces deux scientifiques a mo-
tivé Borda à proposer une méthode de vote, aujourd’hui connue sous le nom de règle
Borda. Selon cette règle, le vainqueur d’une élection est choisi en donnant à chaque
candidat, un nombre de points correspondant au nombre de candidats classés plus bas
[Brandt et al., 2016a]. Il a fait valoir la supériorité de sa méthode sur la règle de la plural-
ité par un exemple indiquant que la règle Borda est une règle de vote single-winner.

Bien que les premiers travaux sur le contexte de la prise de décision collective et la théorie
du vote se soient limités à concevoir diverses règles de vote et à comparer leurs avantages
et leurs inconvénients, cette manière de procéder a changé grâce aux travaux fondateurs de
Kenneth Arrow en 1963, dans lesquels il a adopté une vision plus large et mis en évidence
certaines propriétés communes à toutes les règles de vote proposées. Arrow a expliqué
les motivations philosophiques et économiques pour définir différentes règles de vote en
termes mathématiques comme des axiomes [Arrow, 1963].

• Formation de coalitions. La formation de coalitions étant considérée comme un pro-
cessus de choix impliquant plus de deux individus [van Deemen, 1991], la théorie du
choix social est importante dans ce contexte : le processus de formation de coalitions
est considéré comme un problème d’agrégation des préférences dans lequel chaque ac-
teur a une préférence par rapport à d’éventuelles coalitions, et la question est de savoir
comment agréger ces préférences afin de former les coalitions. Une autre question im-
portante se pose après la formation des coalitions : comment répartir entre ses mem-
bres le partage des bénéfices ou des coûts d’une coalition. Pour ce faire, il est néces-
saire d’établir une sorte de classement de l’ensemble des acteurs en fonction de leurs
performances au sein de la coalition. Ces problèmes sont étudiés dans le domaine de
la théorie des jeux coopératifs [van Deemen, 1991]. La théorie des jeux coopératifs anal-
yse comment des coalitions d’individus peuvent se former, et comment ils doivent répartir
le partage des bénéfices ou des coûts de leur coopération. La notion de jeux coopérat-
ifs a été introduite pour la première fois dans les essais de Von Neumann Morgensten
[von Neumann and Morgenstern, 2007] comme une tentative de distinguer deux approches
des jeux coopératifs et non coopératifs.

Les jeux simples sont des jeux coopératifs dans lesquels les coalitions sont divisées en
deux ensembles, l’ensemble des coalitions gagnantes et les autres coalitions. Les jeux
simples sont utilisés comme modèle pour les situations de vote binaire : dans le cas où il y
a deux candidats, les agents en faveur du plus attrayant forment une coalition gagnante et
les autres seront la coalition perdante. Les décisions des gagnants concernent l’ensemble
des joueurs et les perdants sont obligés de prendre ces décisions pour acquises, que les
effets des décisions des gagnants leur soient favorables ou non [van Deemen, 1991]. Un
exemple est le jeu du vote à la majorité. Dans ce jeu, seule une coalition majoritaire
d’électeurs peut gagner, c’est-à-dire déterminer une alternative gagnante. L’avantage d’une
telle abstraction est que des jeux simples peuvent être étudiés sans se référer à des règles
spécifiques comme la majorité, la pluralité, etc. Des indices de pouvoir comme l’indice de
Shapley-Shubik [Shapley, 1953], et l’indice de Banzhaf [Banzhaf III, 1964] sont introduits
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afin de mesurer le pouvoir des agents dans chaque coalition. Une situation réelle dans
laquelle les indices de pouvoir sont utilisés est le problème que certains pays nordiques ont
dû affronter pour rejoindre ou non l’Union européenne. Le problème est apparu parce que
les pays nordiques accordent traditionnellement une grande priorité (par rapport à l’Union
européenne) à la protection de l’environnement. Par conséquent, la question était de savoir
comment les nouveaux membres de l’Union européenne pouvaient influer sur les normes
environnementales de l’Union européenne, par exemple en les adaptant à leurs propres
normes. La valeur de Shapley apporte une solution appropriée en évaluant le pouvoir de
chaque membre lorsqu’il rejoint l’UE [Holzinger, 1995].

• Classement des ensembles d’objets. Imaginez un ensemble donné d’énoncés, chacun
d’eux avec un degré de plausibilité, et supposez que l’objectif soit de choisir un ensem-
ble d’énoncés plus plausibles que les autres. À première vue, la réponse à ce problème
semble simple : il suffit d’ordonner les énoncés en fonction de leur degré de plausi-
bilité, puis de sélectionner les énoncés en haut du classement comme étant l’ensemble
d’énoncés qui est hautement plausible [Packard, 1981]. Toutefois, il convient de noter que
dans de nombreux cas, une combinaison de deux déclarations plausibles n’est pas néces-
sairement plausible car la combinaison de deux déclarations plausibles peut former un
ensemble de déclarations incohérentes. La considération d’avoir une incohérence lorsque
deux énoncés plausibles sont combinés a été le début d’une étude de terrain dont le but
est de classer des ensembles d’objets lorsqu’un classement sur l’ensemble des objets est
fourni. Dans [Barberà et al., 2004], les auteurs classent le problème de classement en trois
classes de incertitude complète, ensembles d’opportunités, et ensembles comme résultats
finaux. Ces catégories sont définies en fonction de l’objectif visé par le traitement des en-
sembles d’objets. Différentes réponses sont fournies pour le problème selon la catégorie
dans laquelle se situe le problème de classement.

Axiomatisation
Plusieurs aspects du choix social ont été étudiés afin de qualifier les solutions pour un problème
de choix social donné [Brandt et al., 2016a]. L’optimisation d’une solution en termes de charge
de calcul est l’une des questions importantes pour résoudre des problèmes concrets. L’évaluation
des solutions en fonction de leur complexité afin de résoudre un problème est largement étudiée
dans le contexte du choix social. Cependant, l’approche classique pour étudier les solutions
dans la théorie du choix social consiste à analyser des ensembles de propriétés ou d’axiomes
qu’elles satisfont. Dans la terminologie du choix social, ce type d’études est appelé étude ax-
iomatique [Thomson, 2001]. Jusqu’à récemment, l’étude axiomatique était la principale méth-
ode d’investigation dans quelques branches de l’économie et de la théorie des jeux, telles que
la théorie du choix social et de l’utilité. Cependant, ces dernières années, cette méthode s’est
développée spécialement dans deux domaines, celui de la théorie du marchandage et celui de
la formation de coalitions. De tells dévéloppement jettent une nouvelle lumière sur les tech-
niques axiomatiques et, de nos jours, elles sont utilisées de manière plus ciblée afin de comparer
différentes solutions ou même de trouver de nouvelles solutions qui satisfont à des propriétés
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accetable et remarquables [Thomson, 2001].
L’étude axiomatique est motivée par la nécessité de différencier les solutions qui sont plau-

sibles pour un problème de choix social. Comme mentionné dans la section précédente, pour un
domaine spécifique de problèmes, plusieurs solutions intuitivement attrayantes peuvent exister.
L’étude axiomatique nous permet de valider l’existence de solutions selon des interprétations
simples et naturelles. De plus, lorsqu’il n’existe pas de solution selon une interprétation intu-
itive et naturelle, l’étude axiomatique peut nous aider à en trouver une. En fonction de domaine
spécifique de recherche, l’étude axiomatique commence par une liste de propriétés souhaitables
pour le domaine et finit par décrire les solutions au problème aussi précisément que possible
en utilisant les propriétés données. Elle permet également d’étudier les relations logiques en-
tre les axiomes, et de voir comment des changements dans le domaine des problèmes peuvent
affecter les axiomes. Normalement, l’étude axiomatique des solutions conduit à un théorème
de caractérisation qui est une description de la solution en fonction de propriétés données, bien
que l’objectif ultime de l’étude axiomatique aille plus loin que cela. En fait, le but de l’étude
axiomatique devrait être de comprendre et de décrire les implications de la liste des propriétés
aussi précisément que possible [Thomson, 2001].

Deux raisons motivent l’analyse des solutions dans une perspective axiomatique. La pre-
mière raison est que bien que la définition des solutions ne soit pas une tâche lourde en soi, se
concentrer uniquement sur la définition des solutions nous empêche d’explorer tout l’espace des
solutions pour un problème donné. Il peut y avoir d’autres solutions qui satisfont des propriétés
beaucoup plus attrayantes que celles définies actuellement, et nous ne pouvons pas les réaliser
sans définir les propriétés et les combiner. Ainsi, l’étude axiomatique nous aide à avoir une vi-
sion plus large de l’espace de toutes les solutions possibles, et à grandir le spectre du champ de
les solutions afin de trouver des solutions optimales. Il convient également de mentionner que
l’étude axiomatique nous libère parfois de la recherche sans effort de solutions [Thomson, 2001].
Par exemple, la méthode de vote la plus intuitive dans le cas de deux candidats est la règle de
la majorité qui satisfait à un ensemble de propriétés bénignes, mais si l’on passe aux domaines
avec trois candidats ou plus, la majorité peut entraîner un classement cyclique sur les candi-
dats, ce qui n’est pas approprié dans de nombreux scénarios pratiques. En conséquence, on peut
chercher d’autres solutions qui satisfont aux exigences mentionnées tout en évitant les cycles
dans les résultats du classement. Cependant, [Arrow, 1963] met en evidence un "improsibility
theory" exprimant la non-disponibilité de ce type de solutions!

La deuxième raison pour laquelle l’etude axiomatique est intéressent et que parfois, par in-
tuition, une solution peut être reconnue pour donner les bonnes réponses, alors que d’autres
solutions peuvent exister, tout aussi efficaces pour ces exemples. Ces solutions peuvent être
obtenues par une évaluation axiomatique des propriétés.

Il faut également noter concernant l’étude axiomatique, que dans de nombreux cas, la car-
actérisation est faite pour une solution spécifique. Par exemple, des solutions comme la règle
de la majorité et Borda sont largement étudiées et appliquées dans la littérature de la théorie du
choix social. On peut se demander quelles sont les propriétés satisfaites par ces solutions qui les
rendent si pratiques ? La réponse à cette question est en quelque sorte clarifiée par la caractéri-
sation effectuée par [May, 1952]. Ce type de caractérisation est légitime lorsque la solution est
largement utilisée dans la pratique ou dans la littérature théorique, comme la règle de la majorité
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dans la théorie du vote ou la valeur de Shapley dans la théorie des jeux coopératifs.

Comme nous le verrons dans les prochains chapitres, la plupart des solutions introduites
pour résoudre le problème de classement dans cette thèse s’inspirent de solutions bien connues
et largement utilisées dans d’autres contextes comme la théorie du vote et la théorie des jeux
coopératifs. Par conséquent, il est utile de comprendre comment les propriétés des solutions
changent lorsqu’elles s’adaptent à d’autres cadres, et cela permet de mieux définir de nouvelles
solutions spécifiques à assez neuvoaux cadres.

Ce que nous avons mentionné à propos de l’importance de l’étude axiomatique concernait
les mérites de la caractérisation de solutions uniques, cependant, la caractérisation de familles
de solutions mérite davantage. En fait, en considérant une grande famille de solutions (qui ont
une structure commune), nous pouvons définir quelques petits ensembles d’axiomes, même un
seul axiome, et voir quels membres de la famille les satisfont. Ces axiomes donnent lieu à des
théorèmes qui analysent la relation d’inclusion entre deux familles de solutions. L’étude ax-
iomatique de la relation d’inclusion peut être poursuivie jusqu’à atteindre un seul membre dont
l’appartenance à une famille est caractérisée par un ensemble d’axiomes. La définition répétée
d’axiomes pour les membres de familles de solutions hiérarchiques se ramifie dans plusieurs di-
rections, et chaque ramification mène à une seule solution. Pour clarifier, considérez la famille
de toutes les méthodes de notation dans la théorie du vote. Ces méthodes de notation attribuent
un score aux candidats selon certains systèmes de notation spécifiques. En fonction du contexte
dans lequel les méthodes de notation sont appliquées, il existe une infinité de systèmes de nota-
tion permettant de noter les candidats [Chebotarev and Shamis, 1998]. Une sous-famille de ces
règles de notation contient des méthodes de vote qui notent les candidats en fonction de leur po-
sition dans les préférences des électeurs. Cette sous-famille comporte également une infinité de
systèmes de notation. Par exemple, dans le système original de Borda, la notation des candidats
dépend du nombre de candidats en lice dans le processus de vote : s’il y a cinq candidats, le
candidat le mieux classé dans les préférences d’un électeur obtient la note de cinq, le candidat en
deuxième position obtient la note de quatre, et ainsi de suite jusqu’à ce que le dernier candidat
positionné obtienne la note de un. D’autres variantes de la règle de notation peuvent commencer
à noter à partir de zéro au lieu de un (dans l’exemple de cinq candidats, on attribue la note zéro au
dernier candidat placé et la note quatre au candidat le mieux classé). Une autre règle de notation
permet de noter les candidats proportionnellement à leur position dans une préférence donnée
(le candidat le mieux classé obtient la note de 1

1 , le second obtient la note de 1
2 et ainsi de suite)

[Fraenkel and Grofman, 2014]. A partir de cette sous-famille, d’autres sous-familles sont plau-
sibles, et la structure hiérarchique peut être poursuivie pour n’atteindre qu’un seul membre (par
exemple, la règle Borda). L’étude axiomatique dans ce contexte, consiste à analyser la relation
d’inclusion entre différentes familles, comme la famille des règles de notation générales et celles
avec des systèmes de notation liés au positionnement des candidats, ou, par exemple, à carac-
tériser une méthode de notation spécifique comme Borda, en tant que membre de la sous-famille
des règles de notation avec système de notation basé sur le positionnement des candidats.
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Solutions de Classement Social
Le problème du classement des individus par rapport aux coalitions formées par eux, est d’abord
étudié par [Moretti and Öztürk, 2017], à partir d’une approche axée sur la propriété. Les au-
teurs de l’article étudient axiomatiquement le problème et explorent des solutions satisfaisant un
ensemble de propriétés significatives.

Étant donné un ensemble deN individus, les auteurs indiquent le classement sur les coalitions
formées par les individus comme�, qui est un préordre total (complet et transitif) sur l’ensemble
de puissance de N (2N ). Ce classement est appelé une relation de pouvoir. Les auteurs indiquent
l’ensemble de tous les préordres totaux sur l’ensemble des individus par T N , et l’ensemble des
préordres totaux sur l’ensemble des coalitions par T 2N . Le problème de classement consiste à
trouver un préordre total sur l’ensemble des N individus (classement social) lorsqu’une relation
de pouvoir sur des sous-ensembles de N est donnée. Plus formellement, une règle de classement
social est définie comme une fonction ρ : T 2N → T N qui fait correspondre un préordre total sur
un ensemble de coalitions à un préordre total sur l’ensemble des individus. Dans ce cas, pour
deux individus quelconques i et j, la notation iρ(�)j fait référence à la faible préférence de i
pour j. Les auteurs présentent deux axiomes des méthodes de classement et analysent l’effet des
axiomes sur la définition des méthodes de classement. Ces propriétés sont énumérées comme
suit.

Dominance. Une règle de classement social ρ : C2N ⊆ T 2N → T N satisfait dominance sur
C2N ⊆ T 2N si et seulement si pour tous �∈ T 2N , et pour chacun des deux individus
i, j ∈ N , si i domine j dans �, alors iρ(�)j (et non jρ(�)i si i domine strictement j dans
�).

Cet axiome indique que si chaque coalition contenant un individu spécifique comme i est
toujours classée plus haut que la coalition S lorsque i est remplacé par un autre individu j,
alors i devrait être classé plus haut que j.

Une règle de classement social ρ : C2N ⊆ T 2N → T N satisfait Indépendance des coali-
tions non pertinentes si et seulement si

iρ(�)j ⇔ iρ(w)j

Le deuxième axiome est symmetry. Cet axiome exclut les méthodes de classement qui
classent les individus en fonction de leur nom et non de leurs performances.

Symétrie . Une règle de classement social ρ : C2N ⊆ T 2N → T N satisfait symétrie si et
seulement si

iρ(�)j ⇔ pρ(�)q
pour tous i, j, p, q ∈ N et �∈ C2N tels que |Dk

ij(�)| = |Dk
pq(�)| et |Dk

ji(�)| = |Dk
qp(�)|

pour tout k = 0, 1, ..., n− 2 (Dk
ij(�) = {S ∈ 2N\{i,j}, |S| = k, S ∪ {i} � S ∪ {j}}).

Les auteurs examinent si les deux méthodes de classement intuitif, primitive et complete
primitif, satisfont Dominance et Symétrie. Ils ont prouvé que, pour un ensemble de trois indi-
vidus, les classements sociaux primitifs et primitifs complémentaires satisfont les axiomes dom-
inance et symétrie. Étant donné une relation de pouvoir �∈ T 2N , un classement social ρ : C2N ,
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un classement social ρ : C2N ⊆ T 2N → T N est appelé primitif si et seulement si pour tout
individu i, j ∈ N il tient que iρ(�)j ⇔ {i} � {j}. De même, si pour une coalition S, le com-
plément de S est défini comme S∗ = N \ S, alors le classement social ρ : C2N ⊆ T 2N → T N
est appelé complete primitive si et seulement si pour deux individus quelconques i, j ∈ N nous
avons iρ(�)j ⇔ {j}∗ � {i}∗.

L’un des résultats importants de l’article est un théorème qui illustre l’incompatibilité de la
symétrie et de la dominance des axiomes lorsqu’il y a plus de trois individus à classer. Ils mon-
trent que la combinaison de ces propriétés naturelles conduit soit à l’impossibilité (c’est-à-dire
qu’il n’existe pas de classement social), soit à l’aplatissement (c’est-à-dire que tous les individus
sont classés de la même façon), soit à la dictature (c’est-à-dire que, le classement social est im-
posé par la comparaison relative des coalitions d’une taille donnée) [Moretti and Öztürk, 2017].

Theorem 6.0.1. Let |N | > 3. Il n’y a pas de solution de classement social ρ : T 2N → T N qui
satisfait la dominance et la symétrie sur T 2N

.

Dans le même cadre, [Bernardi et al., 2017] caractérise axiomatiquement une solution de
classement social basée sur l’idée que les individus les plus influents sont ceux qui apparais-
sent le plus souvent dans les plus hautes positions du classement des coalitions. Suivant ce
raisonnement, ils fixent un ensemble de propriétés qu’une solution doit satisfaire, et explorent
les méthodes de classement possibles qui les satisfont.

Neutralité. Une règle de classement social ρ satisfait à la neutralité si et seulement si pour deux
individus quelconques et une relation de pouvoir �∈ T 2N , elle stipule que

iρ(�)j ⇔ σ(i)ρ(�σ)σ(j)

où σ est une bijection surN telle que pour toute relation de pouvoir�∈ T 2N ,�σ est défini
comme suit

σ(i) �σ σ(j)⇔ i � j.

L’axiome de la neutralité repose sur l’idée qu’une solution doit préserver le rang des indi-
vidus dans une société par rapport aux permutations des noms des individus.

Anonymat de Coalition. Une règle de classement social ρ satisfait anonymat de coalition, si
et seulement si pour deux relations de pouvoir �,w∈ T 2N , deux individus quelconques
i, j ∈ N , et bijection π sur 2N\{i,j} nous avons que iρ(�)j ⇔ iρ(w)j quand pour tous
S, T ∈ 2N\{i,j} on a

S ∪ {i} � T ∪ {j} ⇔ π(S) ∪ {i} � T ∪ {j}.

L’axiome indique essentiellement que le classement entre deux éléments quelconques i, j
doit être indépendant des autres éléments.
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Monotonie. Nous disons qu’une solution ρ est monotone si pour toute relation de pouvoir �∈
T 2N , chaque individu i, j ∈ N tel que iρ(�)j et jρ(�)i, et toute relation de pouvoir w∈
T 2N qui est obtenue en améliorant strictement le classement d’un sous-ensemble contenant
imais pas j, en appliquant la solution de classement social surw classe i strictement mieux
que j (iρ(w)j et non jρ(w)i).

Indépendance par rapport au ensemble moins bon. Considérons qu’une relation de pouvoir
�∈ T 2N est donnée comme

S1 � S2 � ... � S2n−1,

dans lequel S1, S2, ..., S2N−1 ∈ 2N , et disons Σ1 � Σ2 � ... � Σ` est un ordre dans lequel
les sous-ensembles St sont regroupés dans la classe d’équivalence Σk. Nous disons qu’une
règle de classement social ρ satisfait Indépendance par rapport au ensemble moins bon
si pour toute relation de pouvoir � avec l’ordre associé Σ1 � Σ2 � ... � Σ` (` > 2),
et i, j ∈ N tel que i est strictement meilleur que j (iρ(�)j et non jρ(�)i) nous devrions
avoir i est strictement meilleur que j dans la relation de pouvoir w (iρ(w)j et non jρ(w)i)
lorsque w∈ T 2N est obtenu à partir de � en subdivisant Σ` par T1, T2, ..., Tm :

Σ1 A Σ2 A ... A Σ`−1 A T1 A ... A Tm

Cet axiome éclaire une méthode pour classer les individus en fonction d’une relation de
pouvoir. L’axiome donne plus d’importance aux sous-ensembles classés plus haut dans
la relation de pouvoir. Une interprétation possible de cette propriété est l’évaluation des
professeurs sur la base de leur collaboration scientifique dans différents groupes. Une
fois qu’un ordre total entre deux professeurs est établi sur la base de leur productivité
scientifique dans tous les groupes, l’utilisation éventuelle d’un critère secondaire pour
l’évaluation des groupes (par exemple, l’offre éducative d’une équipe) n’affectant que les
coalitions ayant la plus faible productivité scientifique, peut ne pas avoir d’impact sur un
ordre total défini selon les critères d’évaluation les plus importants [Bernardi et al., 2017].

Ils ont défini une règle de classement social appelée solution d’excellence lexicographique
qui suit la notion d’ordonnancement lexicographique sur les classes d’équivalence des sous-
ensembles dans une relation de pouvoir donnée. Sur la base de cette solution, pour classer
les individus i et j ayant une relation de pouvoir �, en partant de la classe de sous-ensembles
la mieux classée, on compte le nombre de fois que chacun des i et j apparaît dans les sous-
ensembles de la classe. Le fait de trouver une différence entre les nombres de présence des deux
individus met fin au processus, et le classement de l’un apparaît plus haut que celui de l’autre. Si
nous constatons une indifférence entre les nombres de présence des deux individus, le processus
se poursuit pour les autres classes d’équivalence. Si l’indifférence se produit pour toutes les
classes d’équivalence, alors les deux individus sont considérés comme indifférents.

Les auteur ont prouvé un théorème qui caractérise la solution de l’excellence lexicographique
en utilisant les quatre axiomes mentionnés [Bernardi et al., 2017].

Theorem 6.0.2. La solution d’excellence lexicographique est la solution unique qui remplit les
axiomes neutralité, anonymat de coalition, monotonie, et Indépendance par rapport au ensemble
moins bon.
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La majorité des travaux sur le problème du classement des individus lors de l’établissement
de classements par rapport aux coalitions formées par eux sont effectués sur la base
de l’étude axiomatique. Une approche plus pratique dans ce contexte est donnée dans
[Fayard and Escoffier, 2018], qui est basée sur une solution introduite dans le chapitre 2. Comme
la solution introduite ne garantit pas la transitivité du classement sur les individus, dans leur doc-
ument, les auteurs mettent en œuvre une règle de classement social pour trouver une approxi-
mation de l’endroit où un nombre minimum de coalitions sont supprimées afin de satisfaire la
transitivité. Ils ont appelé la solution CP-majorité avec coalitions maximales. Une autre ap-
proche empirique est fournie dans [Allouche et al., 2020]. Dans cet article, les auteurs étudient
la manipulabilité des règles de classement social lorsque chaque individu préfère améliorer sa
position dans le classement social. Afin d’être cohérent dans la thèse, fixons les notations que
nous utilisons dans les chapitres.

Chapitre 2: Ceteris Paribus Règle de la majorité

Dans ce chapitre, nous présentons notre première approche pour résoudre le problème du classe-
ment des individus lorsqu’un classement ordinal sur les coalitions formées par eux est donné. Ce
problème est d’une grande pertinence dans le contexte de la théorie de la décision, de la théorie du
choix social et de la théorie des jeux. Considérons, par exemple, le problème de l’estimation de
la "puissance" des pays dans le processus de prise de décision collective au sein d’un parlement
international, ou l’évaluation de l’influence d’une croyance sur la cohérence ou l’incohérence des
bases de croyance [Hunter and Konieczny, 2010]. Cependant, dans de telles situations, comme
dans beaucoup d’autres, la valeur de chaque groupe (ou coalition) est, en général, difficilement
quantifiable, les seules informations disponibles sur la force relative des groupes étant purement
ordinales. Ainsi, nous supposons qu’étant donné un ensemble d’individus, nous avons en entrée
un classement ordinal sur des sous-ensembles (coalitions) d’individus, et en sortie nous recher-
chons un classement sur l’ensemble des individus. Étant donné que l’objectif de la procédure de
classement est de comparer deux individus quelconques, nous supposons que le classement sur
les individus est un préordre complet (transitif et réflexif).

Prenant l’exemple d’un département scientifique où les chercheurs collaborent à différents
projets en formant des équipes. Supposons que certaines promotions soient disponibles et que le
directeur du département veuille les répartir entre les chercheurs qui obtiennent de meilleurs ré-
sultats en collaboration avec d’autres. Pour ce faire, le directeur doit être en mesure de classer les
chercheurs du meilleur au moins bon. Supposons que la seule information fournie au directeur est
la performance relative des équipes ou des coalitions : une équipe est meilleure qu’une autre, ou
les deux équipes ont la même performance. Nous appelons le classement sur les coalitions rela-
tion de pouvoir. Plus précisément, étant donné un ensemble de N individus, si nous interprétons
des sous-ensembles d’individus comme des coalitions, une relation de pouvoir (�) est une rela-
tion binaire sur l’ensemble des coalitions, qui indique leur performance relative (�⊆ 2N × 2N ).
Notez que, dans ce chapitre, nous n’imposons aucune propriété sur les relations binaires dans le
domaine d’une solution (l’ensemble des relations de pouvoir).
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Chapitre 3: Solution Banzhaf Ordinale

Dans la théorie de la prise de décision et du choix social, un certain nombre d’études sont con-
sacrées au classement des individus en fonction des performances des coalitions qu’ils forment.
Comme nous l’avons étudié au chapitre 1, les indices de pouvoir de l’individu, comme l’indice de
Banzhaf [Banzhaf III, 1964] et la valeur de Shapley [Shapley, 1953] sont décrits à partir de la né-
cessité de mesurer le pouvoir a priori de l’individu dans certains jeux coopératifs (jeux simples).
Ces indices de pouvoir sont basés sur le rôle que chaque individu peut obtenir lorsqu’il rejoint
une coalition, role est codifié avec la notion de contribution marginale . Ces méthodes peuvent
être utilisées dans diverses applications, par exemple pour trouver les objets les plus "précieux",
lorsque les préférences d’un utilisateur sont définies par rapport à leurs combinaisons ; ou pour
comparer l’influence des différents pays au sein d’un conseil international (par exemple, le Con-
seil de l’Union européenne).

Dans la théorie des jeux coopératifs, certaines hypothèses sont faites de manière convention-
nelle. Par exemple, on suppose que les coalitions sont quantifiables et que leurs valeurs sont
monotones, en ce sens que si une coalition fait partie d’une autre coalition, la valeur de la pre-
mière coalition sera inférieure ou égale à la valeur de la seconde. Cependant, dans de nombreuses
situations pratiques, il n’est pas possible de calculer la valeur des coalitions de manière quantita-
tive, de même la monotonie ne tient pas nécessairement. Par exemple, la valeur d’une coalition
peut diminuer en raison de l’adhésion de nouveaux membres lorsque le coût de la communi-
cation et de la coopération entraîne des frais généraux, ou lorsque certaines personnes au sein
des coalitions ne sont pas amies et ont une synergie négative entre elles. Ces possibilités nous
incitent à supposer l’existence d’une relation binaire sur des ensembles de coalitions.

Dans ce chapitre, comme dans le chapitre 2, nous supposons qu’une relation binaire sur des
sous-ensembles d’individus est donnée, et nous cherchons une cartographie pour transformer
le classement sur des sous-ensembles d’individus en un classement sur l’ensemble des indi-
vidus, qui est un préordre complet. En suivant le concept principal de majorité, dans cette
section, nous utilisons une partie des comparaisons dans la relation de pouvoir qui indique
d’une certaine manière la version ordinale des contributions marginales classiques des individus
[Banzhaf III, 1964]. Dans ce chapitre, nous appelons la règle de classement social relation or-
dinale de Banzhaf. Pour cette solution, nous fournissons une caractérisation axiomatique qui
s’inspire principalement de l’étude axiomatique du chapitre 2 pour la solution majoritaire ce-
teris paribus sur un ensemble de deux individus.

La règle de la majorité CP et la solution ordinale de Banzhaf suggèrent toutes deux une
interprétation de notre problème de classement social sur le modèle d’une élection virtuelle, avec
des groupes d’individus (coalitions) jouant le rôle d’électeurs : selon la solution de la majorité
CP, une coalition S préfère l’individu i à l’individu j si S ∪ {i} � S ∪ {j}, c’est-à-dire que la
coalition S ∪{i} est "plus forte" que la coalition S ∪{j} ; selon la solution ordinale de Banzhaf,
la coalition S approuve un individu i si S ∪ {i} � S, c’est-à-dire que la contribution marginale
de i à S ∪ {i} est positive. Selon cette interprétation, nous proposons une nouvelle famille de
relations sur les éléments de N que nous appelons relations majorité pondérée. Nous enquêtons
sur certains membres de la famille et nous montrons que la majorité CP et la solution Banzhaf
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ordinale sont des cas particuliers de cette famille, lorsque la relation de pouvoir est un ordre
linéaire sur les coalitions.

Les contributions de ce chapitre sont publiées dans les actes de la conférence internationale
IJCAI-19 [Khani et al., 2019].

Chapitre 4: Famille de Règles de Classement Pondéré
Dans ce chapitre, nous établissons une nouvelle approche afin de classer les individus lorsqu’un
classement ordinal sur les coalitions qu’ils forment existe. Rappelant le principe de majorité
ceteris paribus du chapitre 2, il suggère une interprétation de notre problème de classement
sur le modèle d’une élection virtuelle, avec des groupes d’individus (coalitions) jouant le rôle
d’électeurs. Toutefois, il diffère d’un scénario de vote classique dans lequel les candidats peuvent
également être des électeurs. On peut avancer que la règle de classement correspondante ne tient
pas compte d’une partie importante des informations sur la relation de pouvoir. Par exemple, elle
attribue le même pouvoir de vote aux coalitions (en tant qu’électeurs), alors que les coalitions
sont formées par différentes combinaisons d’individus. En outre, étant donné que les individus
dans une relation de pouvoir peuvent jouer différents rôles en tant que membres de l’électorat
ou en tant qu’alternative (sur la base de la comparaison ceteris paribus), l’identité des individus
comparés par une coalition peut affecter la valeur des comparaisons effectuées par cette coalition.

Example 36. Considérez la relation de pouvoir 145 � 245 � 1234 � 23 � 12 � 13 � 35 �
14 � 24. La règle de la majorité ceteris paribus classe l’individu 1 plus haut que l’individu 2
puisque, en se référant aux comparaisons de la CP correspondantes (145 � 245, 14 � 24 et
23 � 13), l’individu 1 obtient de meilleurs résultats que l’individu 2 en rejoignant deux coali-
tions, tandis que l’individu 2 obtient de meilleurs résultats que l’individu 1 lorsqu’il rejoint une
coalition. Cependant, en fonction du contexte du problème de classement, la coalition 45 peut
avoir un pouvoir de vote différent de celui des coalitions 4 et 3. De plus, comme la coalition
3 compare plus d’individus que la coalition 4 (la coalition 3 compare toutes les paires possi-
bles d’individus 1, 2, 5 alors que la coalition 4 ne compare que 1 et 2), ils pourraient avoir des
pouvoirs de vote différents.

La possibilité que, selon le principe de la majorité ceteris paribus, les coalitions aient un pou-
voir de vote différent est valable dans de nombreux contextes réels. Par exemple, supposons que
le président d’une entreprise veuille comparer les employés sur la base des évaluations faites par
les comités des employés. Chaque comité peut comparer deux employés qui n’en font pas partie,
en disant qu’un employé est plus performant que l’autre ou qu’ils sont indifférents. Supposons
que le président de l’entreprise applique la règle de la majorité afin de combiner les évaluations
des comités concernant deux employés quelconques. Le président de la société peut pondérer
les évaluations faites par un comité en fonction des membres du comité et (ou) des autres em-
ployés qui sont comparés par le comité. Cette approche est facile à justifier. Supposons que les
comités suivent une méthode de vote afin de procéder à l’évaluation. S’il y a des "membres statu-
taires" qui imposent leurs opinions aux autres membres du comité, le président de l’entreprise
peut décider d’accorder moins de valeur aux comparaisons faites par le comité parce qu’il sait
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que certains membres du comité peuvent avoir une opinion différente. D’autre part, si tous les
membres d’un comité respectent les modes de décision démocratiques, le président de la société
décide probablement d’accorder une plus grande valeur à l’évaluation faite par le comité, car il
sait que cette évaluation bénéficie d’un grand soutien de la part des membres du comité. Dans un
autre contexte, supposons que les employés soient répartis entre différents projets, disons les pro-
jets A, B et C. Si un comité dont les membres travaillent sur le projet A évalue les employés qui
travaillent sur les projets B ou C, le président de l’entreprise peut alors accorder moins de valeur
à l’évaluation parce qu’ils ne travaillent pas sur le même sujet, ou il peut l’apprécier davantage
en justifiant que le comité peut regarder de l’extérieur, et que cette evaluation est plus efficace
pour comparer les employés. Dans une approche encore différente, si le processus d’évaluation
dans les comités est basé sur le vote à la majorité, le président de l’entreprise peut avoir tendance
à donner plus de poids à l’évaluation faite par des comités de plus grande taille, en raison du
plus grand nombre des partisans de l’évaluation. Il est également possible pour le président de
l’entreprise de mesurer la valeur des évaluations effectuées par un comité en fonction de son
niveau de participation au processus d’évaluation, ce qui se reflète dans le nombre de compara-
isons effectuées par le comité.

Toutes ces considérations suggèrent de définir des versions pondérées de la règle de majorité
ceteris paribus, dans laquelle chaque coalition, en tant qu’électeur, est pondérée par une fonction
de pondération. Selon les paramètres du problème de classement, le poids attribué à une coalition
est fonction de différents facteurs comme la coalition (sa structure interne) et (ou) les compara-
isons effectuées par la coalition, ou la taille de la coalition et (ou) le nombre de comparaisons
effectuées par la coalition.

Jusqu’à présent, nous avons vu la nécessité de pondérer les coalitions lorsqu’un principe
de majorité ceteris paribus est suivi pour classer les individus ayant une relation de pouvoir.
Pour classer plus de deux individus, la fonction d’agrégation que nous utilisons s’appuie sur les
travaux de [Terzopoulou and Endriss, 2019] où ils se concentrent sur la caractérisation normative
des modes de scrutin selon lesquels chaque agent a un poids qui ne dépend que de la taille de
son bulletin de vote, c’est-à-dire du nombre de paires d’alternatives pour lesquelles il choisit
de déclarer un classement relatif. Ils ont conçu une règle de pondération qui sélectionne une
préférence acyclique par rapport aux alternatives et qui maximise la somme des poids cumulés
attribués à chaque paire dans un profil de préférence exprimé par les électeurs.

Nous pensons que cette règle de pondération, que nous appellerons règle de classement so-
cial, correspond le mieux à notre modèle puisque, quelle que soit la relation de pouvoir, elle
donne toujours un classement collectif acyclique sur un ensemble d’individus.

Comme nous l’avons vu, la fonction de pondération dans une règle de classement social
dépend de certains facteurs liés à la structure de la relation de pouvoir (pas nécessairement com-
plète), qui est basée sur les paramètres du problème de classement. L’utilisation de facteurs
alternatifs pour définir une fonction de pondération donne lieu à des règles de classement social
spécifiques. Comme il existe une infinité de façons de définir une fonction de pondération en
fonction d’un ensemble d’arguments, les règles de classement social correspondantes forment,
ensemble, une famille de règles de classement social.

Les différentes familles de règles de majorité ceteris paribus pondérées ont une relation
d’inclusion les unes avec les autres. La relation d’inclusion entre ces familles de solutions forme
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un arbre. Les feuilles de l’arbre présentent des extensions pondérées des règles de majorité ce-
teris paribus, dans lesquelles la fonction de pondération est définie de manière unique. L’objectif
principal de ce chapitre est d’analyser les propriétés qui caractérisent la relation d’inclusion entre
deux familles de règles de classement social dans l’arborescence mentionnée.

Afin de définir le modèle de classement dans ce chapitre, nous appelons une relation de
pouvoir un ensemble d’"ensembles d’informations". L’ensemble d’informations d’une coalition
S ∈ 2N dans la relation de pouvoir � est défini comme suit :

�S= {(i, j)|i ∪ S � j ∪ S s.t i, j ∈ N, i, j /∈ S, i 6= j}

C’est pourquoi nous formulons une famille générale de règles de classement par poids comme
une règle de classement de type Kemeny : Étant donné un ensemble N d’individus et une re-
lation de pouvoir �∈ B(2N), appelons |R∩ �S | la similarité entre un ordre linéaire R et un
ensemble d’informations �S . Une règle de majorité pondérée ceteris paribus met en correspon-
dance chaque relation de pouvoir avec les ordres linéaires qui maximisent une somme pondérée
de similarités correspondantes. Formellement, elle est définie comme suit.

Definition 6.0.3 (Règle de majorité pondérée Ceteris Paribus(CP)). Une règle de majorité
pondérée Ceteris Paribus(CP) est une fonction Fw qui fait correspondre une relation de pou-
voir donnée �∈ B(2N) à un sous-ensemble d’ordres linéaires sur l’ensemble N des individus,
c’est-à-dire Fw : B(2N)→ 2L(N) :

Fw(�) = argmax
R∈L(N)

∑
S∈2N

w(S,�S) · |R∩ �S |. (6.1)

Dans cette définition, w fait référence à une fonction de pondération binaire qui attribue
à toute paire de coalition ordonnée et à son ensemble d’informations ((�S, S)) un nombre réel
positif, w : 2N×N×2N → R+. Ce nombre positif exprime la façon dont chaque paire d’individus
ij ∈�S dans l’ensemble d’informations de la coalition S est pondérée par le système de classe-
ment. De même, nous désignons la valeur de la fonction de pondération comme étant le poids de
la coalition S dans la relation de pouvoir �.

La définition de la famille générale des règles de classement des poids ainsi que la structure
des relations de pouvoir ouvrent la possibilité de spécifier différentes sous-familles de règles de
classement des poids où la fonction de pondération dépend d’une partie spécifique des informa-
tions relatives aux ensembles d’informations et aux coalitions.

La figure 6.1 représente une structure arborescente dont les nœuds sont différentes façons
possibles de définir les règles de classement des poids. Cette structure met en évidence la relation
"être un sous-ensemble de" entre deux règles de pondération quelconques.
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Figure 6.1: Being sub-family relation between different families.

La liste suivante illustre les règles de classement des poids relatives à chaque nœud de l’arbre:

• Noeud (S) : la fonction de pondération des membres de la famille concernée associe à
chaque sous-ensemble d’individus (coalition) un nombre réel positif comme son poids :
wC : 2N → R+. La famille de ces règles de majorité CP pondérées est indiquée par FwC

,
ses membres sont également spécifiés par FwC

:

FwC
(�) = argmax

R∈L(N)

∑
S∈2N

wC(S) · |R∩ �S |. (6.2)

• Noeud (| �S |, |S|) : la fonction de pondération pour les membres de la famille apparentée
est w(#I,#C) : N×N→ R+qui attribue à chaque paire de nombres naturels un nombre réel
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positif. Chaque paire de nombre naturels illustre la paire ordonnée de tailles d’ensembles
d’informations et de tailles de coalition. Nous indiquons la famille de ces règles de majorité
CP pondérée comme étant Fw(#I,#C) , et chaque membre Fw(#I,#C) ∈ Fw(#I,#C) est défini
comme :

Fw(#I,#C)(�) = argmax
R∈L(N)

∑
S∈2N

w(#I,#C)(| �S |, |S|) · |R∩ �S |. (6.3)

• Nœud (| �S |) : pour les membres de la famille correspondante, la fonction de pondération
attribue à tout nombre naturel, représentant la taille de l’ensemble d’informations d’une
coalition S, un nombre réel non négatif, w#I : N→ R+. Nous montrons la famille de ces
règles de rang comme Fw#I

, et chaque Fw#I
∈ Fw#I

est le suivant :

Fw#I
(�) = argmax

R∈L(N)

∑
S∈2N

w#I(| �S |) · |R∩ �S |. (6.4)

• Nœud (|S|) : la fonction de pondération est définie comme w#C : N→ R+, qui attribue à
chaque nombre naturel, se référant à la taille de la coalition, un nombre réel positif. Nous
indiquons la famille de ces règles de classement comme étant Fw#C

, et chaque membre
Fw ∈ Fw#C

est défini comme ci-dessous :

Fw#C
(�) = argmax

R∈L(N)

∑
S∈2N

w#C(|S|) · |R∩ �S |. (6.5)

• Nœud w#I(| �S |) = 1 : ce nœud se réfère à une règle de majorité CP pondérée dont
la fonction de pondération est considérée comme la fonction constante sur la taille des
ensembles d’informations, w#I(| �S |) = 1. Nous appelons cette règle de majorité CP
pondérée F c

(w#I), w#I(| �S |) = 1,∀S ∈ 2N et elle s’écrit comme ci-dessous :

F c
w#I

(�) = argmax
R∈L(N)

∑
S∈2N

|R∩ �S |. (6.6)

• Noeud w#I(| �S |) = 1
|�S |

: il correspond à une règle de majorité CP pondérée avec la
fonction de pondération w#I(| �S |) = 1

|�S |
. Cette règle de majorité CP pondérée est

désignée par F p
w#I

, w#I(| �S |) = 1
|�S |

, ∀S ∈ 2N , et elle est défini comme suit:

F p
w#I

(�) = argmax
R∈L(N)

∑
S∈2N

1
| �S |

· |R∩ �S |. (6.7)

• Noeud ww(#I,#C)(| �S |, |S|) = |S|
|�S |

: il se réfère à une règle de majorité CP pondérée avec

la fonction de pondération ww(#I,#C)(| �S |, |S|) = |S|
|�S |

. Nous indiquons cette règle de
majorité CP pondérée sous la forme F p

w(#I,#C)
comme suit :

F p
w(#I,#C)

(�) = argmax
R∈L(N)

∑
S∈2N

|S|
| �S |

· |R∩ �S |. (6.8)
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• Nœud ww#C
(|S|) = |S| : ce nœud représente la règle de majorité CP pondérée dont la

fonction de pondération est considérée comme la fonction d’identité ww#C
(|S|) = |S|.

Cette règle de majorité CP pondérée est indiquée par F I
w#C

, et est définie comme suit:

F I
w#C

(�) = argmax
R∈L(N)

∑
S∈2N

|S| · |R∩ �S |. (6.9)

Notez que selon les paramètres de notre problème de classement, une des familles de règles
de classement par poids peut être utilisée afin de classer les individus.

Une autre chose importante à propos de la Figure 6.1 est l’étiquetage des bords de l’arbre
qui indique les axiomes qui peuvent caractériser une famille de règles de classement par poids
comme une sous-famille d’autres règles. Le reste du chapitre est consacré à la justification de
l’utilisation des axiomes ainsi que des théorèmes qui caractérisent les familles de solutions.

Étant donné l’arborescence de 6.1, dans le dernier chapitre de la thèse, l’auteur a étudié
la possibilité de définir des axiomes afin de caractériser chaque famille de solutions comme
une sous-famille des autres. La liste des axiomes ainsi que leur interprétation est présentée ci-
dessous. Les proves relatives aux théorèmes de caractérisation se trouvent dans le chapitre 4.

Axiomes
• Independence of Information set : l’axiome independence of information set fournit une

condition suffisante et nécessaire pour les membres de la famille FwC
en tant que sous-

famille de Fw(I,C) . Elle indique que les coalitions ayant des préférences compatibles sur
un ensemble d’individus se trouvant dans deux relations de pouvoir différentes, auraient
dû être en mesure de combiner leurs préférences et de former une nouvelle relation de
pouvoir, sans modifier le classement social des individus.

• Independence of Coalitions: l’axiome independence of coalitions caractérise la relation
d’inclusion entre les deux familles Fw(I,C) et FwI

. Elle indique que les coalitions doivent
pouvoir changer leurs membres, sans que le classement social des individus ne soit modifié.

• Anonymity : l’axiome anonymity est celui que nous utilisons pour caractériser la re-
lation d’inclusion entre les règles de majorité ceteris paribus pondérées dont les fonc-
tions de pondération dépendent des paires ordonnées de coalitions et de leurs ensembles
d’informations, ou coalitions, ou ensembles d’informations et celles dont les fonctions
de pondération sont basées sur la cardinalité des facteurs mentionnés. Plus précisément,
selon le domaine dans lequel l’axiome est défini, les règles de classement social qui satis-
font à l’anonymity ne prennent pas en considération les noms des individus et la présence
d’interactions entre eux. Nous utilisons cet axiome pour caractériser la relation d’inclusion
entre Fw(I,C) et Fw(#I,#C) (Fw(#I,#C) ⊂ Fw(I,C)), la relation d’inclusion entre FwC

et Fw#C

(Fw#C
⊂ FwC

), et la relation d’inclusion entre FwI
et Fw#I

(Fw#I
⊂ FwI

).

• Coalition Separability : pour caractériser la relation d’inclusion entre Fw(#I,#C) et Fw#I

(Fw#I
⊂ Fw(#I,#C)) nous utilisons l’axiome coalition separability. Considérons un en-

semble de coalitions qui ont quelques membres communs. Cet axiome indique que si elles
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ont les mêmes ensembles d’informations, on doit s’attendre à ce que la réduction de la
taille des coalitions par la suppression des membres répétés dans les coalitions ne change
pas le classement final.

• Separability : cet axiome est utilisé pour caractériser la relation d’inclusion entre Fw(#I,#C)

et Fw#C
(Fw#C

⊂ Fw(#I,#C)). Elle indique que si un ensemble de coalitions de même
taille a des préférences mutuellement compatibles sur des individus, le fait de les représen-
ter toutes comme une seule coalition de cette taille effectuant toutes les comparaisons ne
devrait pas modifier le classement social.

• Splitting : nous utilisons cet axiome pour caractériser la relation d’appartenance entre la
famille Fw#I

et le membre Fpw#I
(Fpw#I

∈ Fw#I
). L’idée est que si plusieurs coalitions ont

des préférences mutuellement compatibles, il devrait leur être possible de former un pacte
préélectoral et de signaler l’union de leurs ensembles de préférences individuelles, et cela
ne devrait pas changer le résultat du classement des individus.

• Coalition Merging : il est utilisé pour caractériser F Iw#C
comme membre de Fw#C

(F Iw#C
∈ Fw#C

). Cet axiome donne l’idée que lorsqu’un groupe de coalitions dispose
des mêmes ensembles d’informations (préférences), elles devraient pouvoir fusionner et
former une coalition contenant tous les membres des coalitions précédentes disposant du
même ensemble d’informations, sans modifier le classement des individus.

• Restricted Majoritarianism : la règle de classement social F cw#I
est caractérisée comme un

membre de la famille Fw#I
par cet axiome qui exprime une des approches normatives fon-

damentales dans le classement des individus (si dans plus de comparaisons ceteris paribus
i fait mieux que j, alors il devrait être classé plus haut).

• Les deux axiomes separability et coalition merging peuvent également être utilisés pour
caractériser la règle de classement social Fpw(#I,#C)

comme un membre de la famille de
Fw(#I,#C) (Fpw(#I,#C)

∈ Fw(#I,#C)).

Chapitre 5: Les Travaux à Venir
Une approche complémentaire pour soutenir les méthodes de classement social proposées dans
la thèse consiste à les utiliser dans des applications réelles. De nombreux contextes réels sont
envisageables pour appliquer les méthodes de classement. Considérons par exemple le scénario
de classement suivant:

Imaginez un problème où une agence de marketing veut offrir une collection de produits à
ses clients, et où l’agence veut que la collection apporte plus de satisfaction à ses clients. Les
clients sont satisfaits d’une collection de produits proposée s’ils peuvent facilement sélection-
ner un produit parmi les autres, c’est-à-dire en étant sûrs que le produit choisi correspond à ce
qu’ils recherchent. C’est le cas lorsque le lot de produits proposé contient une gamme variée
de produits du point de vue des clients. Toutefois, chaque client ne peut accorder qu’une atten-
tion limitée à certaines caractéristiques spécifiques des produits. Par exemple, supposons que
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l’agence de commercialisation propose aux clients une collection d’ordinateurs portables. Les
clients ont des priorités différentes pour choisir un ordinateur portable. Pour certains d’entre
eux, la capacité de calcul des ordinateurs portables est importante, tandis que pour les autres,
leur capacité de jeu est plus essentielle. Comme l’agence de marketing n’est pas totalement
consciente des goûts de ses clients, la question est de savoir quelle collection de produits de-
vrait être proposée pour apporter plus de satisfaction aux clients. Une façon de répondre à cette
question est de classer les produits en fonction de la variété qu’ils apportent aux différents lots
de produits lorsqu’ils les rejoignent, et d’utiliser ces informations pour former des collections
appropriées. Pour ce faire, il est possible de proposer un nombre limité de lots aux clients et
d’évaluer leur niveau moyen de satisfaction. Comme le niveau de satisfaction ne peut être estimé
précisément à l’aide de chiffres, nous considérons simplement le cas où une liasse est plus ou
moins satisfaisante qu’une autre. Cette information forme une relation de pouvoir. En appli-
quant les méthodes de classement proposées dans la thèse, nous pouvons classer les produits en
fonction de leur contribution à la diversification ou à l’hétérogénéité des lots de produits. Dans
l’exemple des ordinateurs portables, considérons le cas où l’agence de marketing possède un
ensemble de quatre ordinateurs portables différents {A,B,C,D}, et qu’elle veut proposer à ses
clients le lot d’ordinateurs portables le plus approprié, c’est-à-dire la collection qui apporte le
plus de satisfaction aux clients. Dans un cas très simple, supposons que l’agence évalue la sat-
isfaction des clients en leur proposant les quatre offres groupées AB et BD, ABD et AC, et
supposons que se forme la relation de pouvoir � qui indique le niveau moyen de satisfaction des
clients à propos des offres groupées : AB � AC � ABD � BD. Supposons qu’une règle de
classement social R attribue à une relation de pouvoir donnée un ensemble d’ordres linéaires sur
les produits, de sorte que chaque ordre linéaire indique le placement possible des produits sur
une ligne en fonction d’une échelle de similarité. Par exemple, étant donné la relation de pouvoir,
la règle de classement social considère A et B comme les deux côtés d’un spectre (puisque AB
est la collection de produits la plus diversifiée), et place D entre A et B (parce que l’ensemble
ABD est moins diversifié) et près deB (parce que l’ensembleBD n’est pas assez diversifié). En
utilisant le classement des produits, il est possible de modifier le rapport de force en le rendant
plus complet ou en évitant que certains des lots ne se forment. Par exemple, en positionnant les
produits dans l’exemple des ordinateurs portables, on peut déduire que l’offre groupée AD est
suffisamment diversifiée pour être proposée aux clients. Afin que la modification soit cohérente
avec la relation de pouvoir, nous devons rechercher des méthodes de classement (si elles existent)
qui sont l’inverse exact des méthodes que nous avons appliquées sur la relation de pouvoir pour
classer les produits. Cette application couvre à la fois les problèmes de passage du classement
des individus au classement sur des sous-ensembles d’individus et de mise en correspondance du
classement sur des sous-ensembles d’individus avec le classement sur des individus.

Une autre application de nos solutions de classement social se situe dans le contexte de
l’agrégation des croyances. Dans de nombreuses applications récentes, le problème de la mesure
de l’effet de chaque croyance sur l’incohérence d’une base de croyances est modélisé comme un
jeu coopératif. Dans ce jeu, la fonction caractéristique de chaque coalition (base de croyance)
est le degré d’incohérence de la base de croyance. En utilisant des demi-valeurs comme la valeur
de Shapley, on peut mesurer la part de chaque croyance dans l’incohérence de la base de croy-
ance [Hunter and Konieczny, 2010]. Cependant, comme dans de nombreuses situations réelles,
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la quantification de l’incohérence n’est pas simple, on peut seulement supposer qu’une base de
croyances est ordinairement plus ou moins cohérente qu’une autre et mesurer la "contribution
marginale ordinale" de chaque croyance pour rendre une base de croyances incohérente. Sup-
posons par exemple qu’un agent exposé par un ensemble de croyances souhaite mettre régulière-
ment à jour ses croyances. Pour ce faire, l’agent peut imaginer une relation de pouvoir hy-
pothétique dans laquelle des coalitions se forment en ajoutant différentes croyances à sa base de
croyances actuelle. Compte tenu de la relation de pouvoir, l’agent peut classer les croyances en
fonction de l’incohérence qu’elles provoquent et ajouter celle qui est la plus cohérente avec sa
base de croyances actuelle [Serramia et al., 2020].

130



Bibliography

[Allouche et al., 2020] Allouche, T., Escoffier, B., Moretti, S., and Ozturk, M. (2020). Social
ranking manipulability for the CP-majority, Banzhaf and lexicographic excellence solutions.
In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pa-
cific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}, pages 17–
23. International Joint Conferences on Artificial Intelligence Organization.

[Arrow, 1963] Arrow, K. J. (1963). Social choice and individual values. New York 1951b. Arrow
Social Choice and Individual Values1951.

[Baharad and Nitzan, 2000] Baharad, E. and Nitzan, S. (2000). Extended preferences and free-
dom of choice. Social Choice and Welfare, 17(4):629–637.

[Banzhaf III, 1964] Banzhaf III, J. F. (1964). Weighted voting doesn’t work: A mathematical
analysis. Rutgers L. Rev., 19:317.

[Barberà et al., 1984] Barberà, S., Barrett, C. R., and Pattanaik, P. K. (1984). On some axioms
for ranking sets of alternatives. Journal of Economic Theory, 33(2):301–308.

[Barberà et al., 2004] Barberà, S., Bossert, W., and Pattanaik, P. K. (2004). Ranking sets of
objects. In Handbook of utility theory, pages 893–977. Springer.

[Bernardi et al., 2017] Bernardi, G., Lucchetti, R., and Moretti, S. (2017). Ranking objects from
a preference relation over their subsets. Social Choice and Welfare, pages 1–18.

[Bilal et al., 2001] Bilal, S., Albuquerque, P., and Hosli, M. O. (2001). The probability of coali-
tion formation: Spatial voting power indices.

[Black et al., 1958] Black, D., Newing, R. A., McLean, I., McMillan, A., and Monroe, B. L.
(1958). The theory of committees and elections.

131



BIBLIOGRAPHY

[Bossert, 1995] Bossert, W. (1995). Preference extension rules for ranking sets of alternatives
with a fixed cardinality. Theory and decision, 39(3):301–317.

[Boutilier et al., 2004] Boutilier, C., Brafman, R. I., Domshlak, C., Hoos, H. H., and Poole,
D. (2004). CP-nets: A tool for representing and reasoning withconditional ceteris paribus
preference statements. Journal of artificial intelligence research, 21:135–191.

[Bouveret et al., 2009] Bouveret, S., Endriss, U., and Lang, J. (2009). Conditional importance
networks: A graphical language for representing ordinal, monotonic preferences over sets of
goods. In Twenty-First International Joint Conference on Artificial Intelligence.

[Bouyssou and Marchant, 2007] Bouyssou, D. and Marchant, T. (2007). An axiomatic approach
to noncompensatory sorting methods in MCDM,I: the case of two categories. European Jour-
nal of Operational Research, 178(1):217–245.

[Brandt et al., 2016a] Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia, A. D.
(2016a). Handbook of computational social choice.

[Brandt et al., 2016b] Brandt, F., Conitzer, V., Endriss, U., Lang, J., and Procaccia, A. D.
(2016b). Introduction to computational social choice.

[Branzei et al., 2010] Branzei, R., Branzei, O., Gök, S. Z. A., and Tijs, S. (2010). Cooperative
interval games: a survey. Central European Journal of Operations Research, 18(3):397–411.

[Carreras et al., 2003] Carreras, F., Freixas, J., and Puente, M. A. (2003). Semivalues as power
indices. European Journal of Operational Research, 149(3):676–687.

[Chalkiadakis et al., 2011] Chalkiadakis, G., Elkind, E., and Wooldridge, M. (2011). Compu-
tational aspects of cooperative game theory. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 5(6):1–168.

[Chebotarev and Shamis, 1998] Chebotarev, P. Y. and Shamis, E. (1998). Characterizations of
scoring methodsfor preference aggregation. Annals of Operations Research, 80:299–332.

[Chevaleyre et al., 2007] Chevaleyre, Y., Endriss, U., Lang, J., and Maudet, N. (2007). A short
introduction to computational social choice. In International Conference on Current Trends
in Theory and Practice of Computer Science, pages 51–69. Springer.

[Copeland, 1951] Copeland, A. H. (1951). A reasonable social welfare function. Technical
report, mimeo, 1951. University of Michigan.

[De Condorcet, 1785] De Condorcet, M. (1785). Essai sur l’application de l’analyse à la proba-
bilité des décisions rendues à la pluralité des voix. 1785. Imprimerie Royale, Paris.

[Dubey, 1975] Dubey, P. (1975). On the uniqueness of the shapley value. International Journal
of Game Theory, 4(3):131–139.

132



BIBLIOGRAPHY

[Dubey et al., 1981] Dubey, P., Neyman, A., and Weber, R. J. (1981). Value theory without
efficiency. Mathematics of Operations Research, 6(1):122–128.

[Dubey and Shapley, 1979] Dubey, P. and Shapley, L. S. (1979). Mathematical properties of the
banzhaf power index. Mathematics of Operations Research, 4(2):99–131.

[Endriss, 2011] Endriss, U. (2011). Logic and social choice theory. Studies in Logic, (30).

[Fayard and Escoffier, 2018] Fayard, N. and Escoffier, M. O. (2018). Ordinal social ranking:
simulation for cp-majority rule.

[Fishburn, 1992] Fishburn, P. C. (1992). Signed orders and power set extensions. Journal of
Economic Theory, 56(1):1–19.

[Flores-Szwagrzak and Treibich, 2020] Flores-Szwagrzak, K. and Treibich, R. (2020). Team-
work and individual productivity. Management Science.

[Fraenkel and Grofman, 2014] Fraenkel, J. and Grofman, B. (2014). The Borda count and its
real-world alternatives: Comparing scoring rules in nauru and slovenia. Australian Journal of
Political Science, 49(2):186–205.

[Geanakoplos, 2005] Geanakoplos, J. (2005). Three brief proofs of Arrow’s impossibility theo-
rem. Economic Theory, 26(1):211–215.

[Grabisch and Labreuche, 2010] Grabisch, M. and Labreuche, C. (2010). A decade of applica-
tion of the Choquet and Sugeno integrals in multi-criteria decision aid. Annals of Operations
Research, 175(1):247–286.

[Gravel, 2009] Gravel, N. (2009). Freedom. Technical report, Edward Elgar Publishing.

[Haret et al., 2018] Haret, A., Khani, H., Moretti, S., and Öztürk, M. (2018). Ceteris paribus
majority for social ranking. In IJCAI, pages 303–309.

[Holzinger, 1995] Holzinger, K. (1995). The influence of the new member states on EU envi-
ronmental policy-making: A game theoretical approach. Technical report, WZB Discussion
Paper.

[Hunter and Konieczny, 2010] Hunter, A. and Konieczny, S. (2010). On the measure of con-
flicts: Shapley inconsistency values. Artificial Intelligence, 174(14):1007–1026.

[Kannai and Peleg, 1984] Kannai, Y. and Peleg, B. (1984). A note on the extension of an order
on a set to the power set. Journal of Economic Theory, 32(1):172–175.

[Khani et al., 2019] Khani, H., Moretti, S., et al. (2019). An ordinal banzhaf index for social
ranking. In Proceedings of the 28th International Joint Conference on Artificial Intelligence,
pages 378–384. AAAI Press.

133



BIBLIOGRAPHY

[Kreps, 1979] Kreps, D. M. (1979). A representation theorem for preference for flexibility.
Econometrica: Journal of the Econometric Society, pages 565–577.

[Marichal and Roubens, 1998] Marichal, J.-L. and Roubens, M. (1998). Power indices based on
ordinal games.
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RÉSUMÉ

La conception de procédures visant à classer les personnes en fonction de leur comportement dans des groupes est
d’une grande importance dans de nombreuses situations. Le problème se pose dans une variété de scénarios de la
théorie du choix social, de la théorie des jeux coopératifs ou de la théorie de la décision multi-attributs. Cependant, dans
de nombreuses applications du monde réel, une évaluation précise sur les "coalitions de pouvoir" peut être difficile pour
de nombreuses raisons. Dans ce cas, il peut être intéressant de ne considérer que les informations ordinales concernant
les comparaisons binaires entre les coalitions. L’objectif de cette thèse est d’étudier le problème de la recherche d’un
classement ordinal sur l’ensemble N d’individus (appelé classement social),en lui attribuant un rang ordinal par rapport
à son ensemble de pouvoir (appelé relation de pouvoir). Pour ce faire, nous utilisons des notions de la théorie de vote
classique et la théorie des jeux coopératifs. Nous avons principalement défini des concepts de solution nommés règle de
majorité ceteris paribus, et l’indice ordinal Banzhad, qui sont respectivement inspirées de la théorie de vote classique et
de la théorie des jeux coopératifs. Comme la majorité de notre travail de thèse consiste à étudier des solutions à partir
d’une approche fondée sur la propriété, nous étudions axiomatiquement les solutions en reformulant les axiomes dans
la théorie classique du vote. Enfin, l’exploration des extensions pondérées de la règle de la majorité ceteris paribus pour
classer plus de deux personnes, engendre une étude des familles de solutions pondérées.

MOTS CLÉS

Indices de Pouvoir Ordinale, Classement Sociale, Étude Axiomatique, La majorité de Ceteris Paribus, Rela-
tion Ordinalel Banzhaf,Règles Pondérées.

ABSTRACT

The design of procedures aimed at ranking individuals according to how they behave in various groups is of great im-
portance in many practical situations. The problem occurs in a variety of scenarios coming from social choice theory,
cooperative game theory or multi-attribute decision theory, and examples include: comparing researchers in a scientific
department by taking into account their impact across different teams; finding the most influential political parties in a
parliament based on past alliances within alternative majority coalitions; rating attributes according to their influence in
a multi-attribute decision context, where independence of attributes is not verified because of mutual interactions. How-
ever, in many real world applications, a precise evaluation on the coalitions’ “power” may be hard for many reasons (e.g.,
uncertain data, complexity of the analysis, missing information or difficulties in the update, etc.). In this case, it may be
interesting to consider only ordinal information concerning binary comparisons between coalitions. The main objective
of this thesis is to study the problem of finding an ordinal ranking over the set N of individuals (called social ranking),
given an ordinal ranking over its power set (called power relation). In order to do that, during the thesis we use notions
in classical voting theory and cooperative game theory. Mainly, we have defined solution concepts named ceteris paribus
majority rule, and ordinal Banzhad index, which are respectively inspired from classical voting theory and cooperative
game theory. Since the majority of our work in the thesis is to study solutions from property-driven approach, we ax-
iomatically study the solutions by reformulating axioms in classical voting theory. Finally, exploring weighted extensions
of the ceteris paribus majority rule to rank more than two individuals result in an axiomatic study of families of weighted
solutions.
KEYWORDS

Ordinal power indices, Social ranking, Axiomatic Study, Ceteris Paribus majority, ordinal Banzhaf relation,
weighted rules.
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