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A B S T R A C T

Epithelial tissues are ubiquitous in animal life, covering surfaces and separating body
compartments in diverse organs and species. Epithelium is the first tissue to form,
playing a key role in structuring the intricate steps of an organism’s development. In
such a complex system, the interplay between cell division, chemical signaling, and
mechanical forces permits the emergence of different tissues with specific functions.

To uncover the mechanisms at play in epithelial tissue mechanics, a useful tool is pro-
vided by vertex models, in which cells are idealized as juxtaposed polygons. Numerical
simulations of cell division in vertex models yield geometrically irregular cells, similar to
empirical observations in epithelia, even when cell mechanical properties are homoge-
neous. Nevertheless, existing theoretical analyses are mostly confined to the mechanics
of regular hexagonal lattices.

Here, we develop an analytical description of geometrically disordered vertex models.
We first quantify, in numerical simulations, geometric and mechanical cell properties in
the presence of diverse sources of disorder, including various division rules or relaxation
in the presence of noise. We then develop a simple mean-field description able to account
for these properties. This description is expanded to address the interaction of isolated
and clustered cells with mechanical properties differing from the surrounding tissue
relevant in a wide range of biological contexts. This allows us to bridge the gap between
theory and experiments, quantitatively predicting how variation in forces may affect
geometry and topology as well as fitting mechanistic model parameters to the observed
geometry of cell membranes in a tissue.

Finally, in a collaborative work with the Payre’s lab (U. de Toulouse), we apply our anal-
ysis to account for the statistics of cell geometry and division dynamics in experiments
performed on epidermis differentiation in the fly. We particularly focus on characterizing
the mechanical properties of clustered clonal cells with distinct proliferation rates from
their environment.
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R E S U M É

Les tissus épithéliaux sont ubiquitaires dans les organismes vivants, couvrant des surfaces
et séparant différents compartiments dans divers organes et espèces. L’épithélium est
le premier tissu qui apparaît au cours du développement et il joue un rôle central pour
en structurer les étapes. Dans ce processus complexe, les interactions entre les divisions
cellulaires, la signalisation chimique et les forces mécaniques permettent l’émergence de
différents tissus avec des fonctions diverses.

Dans l’élucidation des mécanismes en jeu dans la mécanique des tissusépithéliaux,
un outil utile est constitué par les modèles de vertex, dans lesquels les cellules sont
représentées de façon simplifiée par des polygones. La simulation de la division cellulaire
dans ces modèles, produit des tissus avec des cellules géométriquement irrégulières,
semblablesà celles observées dans lesépithéliums naturels, même quand les propriétés
mécaniques des différentes cellules sont identiques. Les analyses théoriques existantes
sont cependant, pour la plupart, confinées aux réseaux réguliers hexagonaux.

Dans ce travail, nous proposons une analyse théorique d’un modèle de vertex géométrique-
ment désordonné. Nous commençons par quantifier à l’aide de simulations numériques,
les propriétés géométriques et mécaniques des cellules, dans des tissus désordonnés
produits par différentes règles de division cellulaires ou simplement par la relaxation
en présence de bruit. Nous développons ensuite une analyse simple de type "champ
moyen" pour décrire ces propriétés. Cette description est étendue au cas d’une cellule ou
d’un clone de cellules interagissant avec le tissu environnant aux propriétés mécaniques
différentes, une situation qui se retrouve dans différents contextes biologiques. Cela
nous permet de jeter un pont entre la théorie et l’expérience et de prédire quantitative-
ment comment cette variation mécanique affecte la géométrie et la topologie et d’ajuster
un modèle mécanique aux observations empiriques de la géométrie des membranes
cellulaires dans un tissu.

Finalement, en collaboration avec le groupe de F. Payre (Université de Toulouse),
nous appliquons cette analyse pour décrire la géométrie et la dynamique des divisions
cellulaire au cours de la différenciation de l’epiderme de la mouche. Nous nous attachons
particulièrement à caractériser les propriétés mécaniques d’un clone de cellules qui
prolifère différemment du tissu environnant.
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Part I

I N T R O D U C T I O N





1
M O D E L L I N G C O M P L E X A N D B I O L O G I C A L S Y S T E M S

La biologie occupe parmi les sciences une place à la fois marginale et centrale. Marginale en ce
que le monde vivant ne constitue qu’une infime et très "spéciale" partie de l’univers connu, de

sorte que l’étude des êtres vivants ne semble pas devoir jamais révéler des lois générales,
applicables hors de la biosphère. Mais si l’ambition ultime de la science entière est bien, comme je

le crois, d’élucider la relation de l’homme à l’univers, alors il faut reconnaître à la biologie une
place centrale puisqu’elle est, de toutes les disciplines, celle qui tente d’aller le plus directement au
coeur des problèmes qu’il faut avoir résolus avant de pouvoir seulement poser celui de la "nature

humaine" en termes de métaphysique.
Le hasard et la nécessité, 1970.

Jacques Monod .

As our understanding of biological system develops, so does our fascination for the
wealth of subtle mechanisms underlying life. Indeed, biological systems are more than
the sum of their parts: while no particular part is sufficient in isolation, unveiling complex
interactions between parts is the key to understanding how life emerges.

In the past, physicists once were reckless enough to affirm "[...] the future truths
of physical science are to be looked for in the sixth place of decimals"( Albert A. Michelson,
1896 ), even though Michelson himself was to shed light upon one of the two Kelvin’s
"clouds". A century has passed, and that perspective has long fallen apart. On the
contrary, fundamental physics is far from being complete. Complex system encourage
physicists to research more sophisticated tools to understand emergent properties. As the
power of the mathematical laws to explain the nature around us was once overestimated,
it is worth to ask again what the limits of current models are.

Models are limited by their assumptions: a usual strategy in physics would be to
assume the simplest model. Indeed, spherical cows have successfully explained a wide va-
riety of phenomena in physics. As well, diverse biological systems have been successfully
explained by simple models [Doyle, 2001]. Notorious examples range from the Vicsek
model to describe flocks of birds, as a group of simple random particles with a tendency
to follow their neighbors [Vicsek et al., 1995, Giardina, 2008]; to the Kuramoto model to
describe large-scale neural networks and cognitive function [Breakspear et al., 2010].

In the context of developmental biology, a beautiful example of how simple physical
models can provide insight into the mechanisms and processes underlying animal
development is provided by the Turing patterns [Turing, 1990].Turing equation can
explain pattern formation in seashells [Meinhardt, 2009], coat patterns in mammals like
zebras [Bard, 1981], and even the formation of our very own fingers [Raspopovic et al.,
2014], among other patterns [Schweisguth and Corson, 2019].

However, a simple Turing pattern cannot scale with the variable size found in different
individuals of the same species, as it is associated with characteristic determined length at
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12 modelling complex and biological systems

the molecular level [Gregor et al., 2007]. Nevertheless, Nature had time to explore a wider
variety of ways. For instance, the patterning in drosophila—and other insects—embryos,
where the gradient of diverse transcription factors signals the relative position to each
cell, and defines its fate with an astonishing precision of 1% at the level of individual
cells [Tkačik et al., 2015,Petkova et al., 2019]. It is not easy task to find general mechanisms,
which makes modeling complex biological systems with reductionist mathematical
models an adventure in muddy waters, but multiple success stories prove it is a path
that can expand our understanding of such complex systems.

1.1 physics of modeling epithelial tissues

In the case of the epithelium, things do not get easier. As one of the four basic animal
tissues, the study of epithelium is crucial to understanding animal development. Formed
by one or more layers of cells, it is the first tissue to form during development. Among
other functions, epithelia cover the free surfaces of an organism, constitute the inner
covering of the cavities, hollow organs, ducts of the body as well as form mucous
membranes and the inside of glands, protecting from mechanical damage, the entry of
micro-organism. They physically separate body compartments, allowing the coexistence
of distinct biochemical and mechanical micro-environments, controlling, such as water
evaporation in the skin epidermis. They also liberate substances in glands, or absorb
them in the guts.

The epithelium is the playground where mechanical forces and chemical signals enact
the tissue towards specific functions and behavior. While one should not loose sight
of genetic and chemical processes occurring in parallel, mechanics has been shown
to account for many empirical observations in epithelia. Indeed, several models have
captured the mechanical ingredients that give rise to the morphology and dynamics
observed in epithelial cells. A simple Vicsek-like model can explain the self-organized
patterns that emerge in epithelial cell migration [Sepúlveda et al., 2013]. Potts models
have been applied to model epithelium, where a spin-like hamiltonian determines
the domain of each cell to address cell sorting problems [Graner and Glazier, 1992].
Nowadays, a popular choice to model epithelium is the vertex model, where cells are
idealized as juxtaposed polygons tesselating the space, leaving no free space. Forces
are a function of cell perimeter and area. The model has been intensively used to
shape wound healing [Nagai and Honda, 2006, Staddon et al., 2018], applied to unveil
cancer propagation and the conditions tumoral cells migrate into healthy tissue [Osborne
et al., 2010, Tsuboi et al., 2018]. Some other variants of the model went further, adding
complexity, such as to account for the cell tridimensionality cues that an epithelial cell
use to know when has achieved its correct final size [Hufnagel et al., 2007].

This model, even in its relative simplicity, exhibits a wide range of behaviors and
captures the mechanical complexity found in biological epithelial tissues in-vivo. If other
factors are at play, the model can be generalized to integrate additional parameters. If
something is observed in the model, we may have good reasons to expect to also find it
in nature. In this thesis, we will explore how proliferation and cell forces, especially in
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cases when different cells interact, give rise to different geometries. Alternatively, the
way back: what the observed experimental data tells us about the forces that created it.
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2
B A C K G R O U N D

2.1 ddrosophila a model organism

Nowadays, Drosophila melanogaster 1 is a model of choice in the study of animal devel-
opment. A comparatively simple organism with a low maintenance cost, small, with
a short life cycle (15-21 days). These advantages have made that no other animal of
similar or greater complexity is better understood in their development [Wolpert et al.,
2011]. Not only that, Drosophila development is analogous in many aspects with the
development of other animals, including vertebrates and humans [Wolpert et al., 2011].
This discovery was a revolution in biology for more than a century, it was assumed
that different types of animals had completely divengent genetics since they differ in
their morphology, pointed to a very diverse development [Carroll, 2005]. Ernst Mayr,
one of the 20th century’s leading evolutionary biologists, once said: Much that has been
learned about gene physiology makes it evident that the search for homologous genes is quite futile
except in very close relatives [Mayr, 1970]. To the astonishment of most of the biologists
of his time, Mayr was deeply mistaken in this matter. Improving our understanding
of Drosophila development, very likely, will directly expand our knowledge of animal
development in general.

2.2 mechanical features of epithelial tissues

Epithelial cells have a cytoskeleton formed by actin filaments that provide the cells with
structural resistance. These cells are polarized along their apical-basal axis: In the basal
side, cells directly attached to the extracellular matrix by a basal membrane that separates
it from the connective tissue. In the apical side, cells are attached to each other.

Four main types of specialized cell-cell junctions are found in between epithelial cells,
namely: tight junctions, gap junctions, desmosomes, and adherents junctions. Tight
junctions seal the paracellular space, gap junctions allow ions and small water-soluble
molecules to transit between cells. Desmosomes have proteins that link together with the
basal domain of cells.

However, and for the fortune of our models, it is in the apical domain where the
adherent junctions are found and which dominates several of the mechanical properties
of the tissues. Here, actomyosin filaments are concentrated in the form of an inherently
contractile ring in the interior of the cell membrane. It contains the protein actin, as well
as molecular motors (myosin) and adherent molecules (cadherins). Cells are subjected to
forces such as osmotic pressure and passive forces derived from the structure of their

1 Drosophilidae is a diverse family of flies, but often in the literature the Drosophila melanogaster is just referred as
Drosophila.
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20 background

cytoskeleton and membrane. Nevertheless, cellular force generation typically is the result
of the myosin activity, responsible for actively contracting actin fibers. These forces are
transmitted to neighboring cells by cadherins [Heisenberg and Bellaïche, 2013].

Mechanically, in general, animal tissue is dominantly viscoelastic, exhibiting an elastic
solid-like behavior at short time scales, and fluid-like behavior at long time scales (above
one second) [Hoffman et al., 2006, Lu et al., 2006, Park et al., 2005].

2.3 cell division

Cell proliferation is essential in tissue development. The development of a multicellular
organism from a single egg cell requires several cycles of cell divisions, each of them
precisely regulated in time and according to the body plan of the organism [Edgar
and O’Farrell, 1989, Edgar and O’Farrell, 1990]. Though some morphogenetic events
occur with a basically constant number of cells, for instance, in the early stages of
gastrulation [Martin et al., 2010], correct modeling of tissue involves in several cases the
consideration of cell division.

2.3.1 Hertwig’s rule

Introduced by Oscar Hertwig in 1884 while studying frog eggs [Hertwig, 1884], Hertwig’s
rule states that a mitotic cell divides along its long axis. It is easy to visualize that this
must be true in a very elongated cell. Nevertheless, this has been tested to be a rule
that is followed to a surprising extent, experimentally. Observing cell division during
development in the Drosophila wing [Bosveld et al., 2016b], in particular, those cells
compute the main axis according to the orientation of the tricellular junctions (TCJ). More
precisely, one can define the TCJ bipolarity matrix as,

V =
nv

∑
i=1

ûi ⊗ ûi, (2.1)

where ûi are the unitary vectors that go from the barycentre of the cell to each vertex.
Given the eigenvalues λ1 > λ2 and eigenvectors ê1 ⊥ ê2 of V, e1 will be the direction of
the division, and the anisotropy is defined by

ηTCJ = 1− λ2
λ1

(2.2)

In the simulations performed in this work, cells divide according to an internal clock,
not depending on their area or another measure, as the apical shape weakly correlates
with the actual size of the cell [Aegerter-Wilmsen et al., 2010]. Details on the way the
biological cycle of division is modeled can be found in section 4.1.

Nonetheless, Hertwig’s rule is followed under conditions of mechanical homogeneity
and anisotropy, and it has been shown how it is over-written in the presence of mechanical
constrains [Mao et al., 2013], or in the presence of a tension, cable [Scarpa et al., 2018].
This effect can play a crucial role, and one example of it will be explored in chapter 7.
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Figure 2.1: Comparison between two choices of the axis of division obtained for two cells. Top:
using the TCJ matrix. Bottom: using the main axis from the second moment of area. In
many cases, these two directions will be similar (as in the cells are on the left), but they
differ significantly in cells with an asymmetric distribution of TCJ along their boundaries
(right). Image reproduced from ref. [Bosveld et al., 2016b].

That division is not a cell-autonomous process is not surprising, since at a microscopic
level, cell division in an epithelium does involve not only the mitotic cell but also its
immediate neighbors. They respond to the imminent cell division with a local reduction
in cadherin at the ingressing junction and self-organized actomyosin flows, leading to
accumulation of myosin [Pinheiro et al., 2017].

2.4 cells as polygons : the vertex model

Introduced initially to describe foam [Weaire and Rivier, 1984], the vertex model has been
widely used to describe epithelia. The tissue is represented as a planar graph of polygons
tessellating the space, where each polygon represents the shape of the cell membrane.
An example is shown in figure 2.2.

2.4.1 Energy function

To describe dynamical and equilibrium states of the network, the following energy
function is introduced [Farhadifar et al., 2007],

E = ∑
edges

Λle + ∑
cells

1
2

Γp2
c + ∑

cells

1
2

K (Ac − A0)
2 (2.3)
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Figure 2.2: Example of a vertex model network. Six-sided cells are the most common. In the image,
cells with fewer or more than 6 neighbors are filled with a cyan-orange respectively.

The sums run over the cell apical areas Ac, perimeters pc, and individual edge length
le. The first term describes the line tension Λ along edges, and the second term models
the contractility of the apical ring with the parameter Γ, and creates a force proportional
to the perimeter pc of the cell c. The last term describes the area elasticity with the elastic
coefficient K, A0 is the preferred area of the cells. The vertex coordinates are used as
dynamical variables moving following the gradient of the energy function (2.3) (details
in appendix A).

As it is a phenomenological model, the parameters cannot be explicitly related to
microscopic quantities. The area term is based on the presupposition that cells tend to
have a preferred apical area. The main contributor to the value of Γ is expected to be
the contractility of the actual actin-myosin ring. The value Λ could be decomposed in a
part that increases with the actin-myosin contractility, and another part that decreases
with the increase of cell-cell adhesion. Thus, it makes biological sense to have Γ > 0 and
K > 0. The line tension Λ can have negative values if cell-cell adhesion is strong enough.
In that case, it may be useful to present the energy function as,

E = ∑
cells

1
2

K(Ac − A0)
2 + ∑

cells

1
2

Γ(pc − p0)
2. (2.4)

This model differs by a constant from (2.3) and it is related to it by the change of
variable p0 = −Λ/2Γ, with p0 represented by a preferred perimeter.

Eventually, the parameters of the model can vary from cell to cell, as well as from edge
to edge. The case where one or a group of cells has different mechanical properties from
the surrounding tissue will be an important topic in this thesis. Otherwise specified, we
will use uniform values.
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T2 transition Cell division

T1 transition 

Figure 2.3: In addition to cells changing their shape under mechanical forces, cells can exchange
neighbors (so called T1 transitions), undergo apoptosis (so called T2 transition), and,
cells can undergo cell division modifying the topology of the network.

2.4.2 T1 transitions

In addition to the relaxation of the energy by the displacement of the vertices, the
evolution of the tissue involves the exchange of cell neighbors, the so-called T1 transitions.
Two cells in contact lose their common edge, and a new edge is formed to connect the
two common neighbors, as shown in figure 2.3. Without this process, the tissue would
be frozen into a solid-state, where each cell keeps its neighbors.

Experimentally, it has been shown that the occurrence of T1 events is controlled by
the tumor suppressor PTEN, which prevents the lengthening of newly formed junctions,
as well as cell rearrangements [Bardet et al., 2013]. This shows that T1 transitions are
actively controlled in tissue.

2.4.3 Line tension and intrinsic noise

Noise is not only unavoidable, given the microscopic scale of cells, but also a feature that
allows rearrangements in tissues. In-silico in the vertex model, T1 transitions have an
energetic barrier [Bi et al., 2014]. In general, noise is needed to allow cells to rearrange [Bi
et al., 2015], and only in energetically very unfavorable configurations, a noiseless cell
group will exchange neighbors.

In our model, noise will be included by promoting the line tension to a stochastic
function of time, independent in each edge Λ→ Λ(t). For details, see appendix A.
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Figure 2.4: Two examples of epithelial tissues showing different packings. Cellular arrangement in
the new wing blade [Iyengar, 2012]. Array of ommatidium from Drosophila retina [Hayashi
and Carthew, 2004].

2.5 cell packing

The way that cells are packed in epithelia is strongly linked to their function. Therefore,
it varies among different regions and stages of development. In Drosophila, the wing
epithelium starts as an irregular packed tissue then becomes hexagonally packed during
pupal development. The number of defects diminishes until the tissue becomes almost
honeycomb-like [Classen et al., 2005] (see figure 2.4). In the notum, the epithelium is
also organized in hexagonal arrays, except for the inclusion of sensory organ precursors
(SOP) that appear in patterns in the tissue [Corson et al., 2017].

Other interesting examples can be found in the different epithelia forming the eye:
cells in the eye lens are arranged in a precise honeycomb structure of almost identical
cells to optimize the lens transparency [Tardieu and Delaye, 1988]. In contrast, the retina
consists of a hexagonal array of ommatidia, groups of twenty cells arranged with four
cone cells at their centers, shaped to optimize the contact between them [Hayashi and
Carthew, 2004].

The packing of cells is also affected by the shape of the tissue, and it cannot necessarily
be fully characterized by its two-dimensional representation. Epithelium forming a
curved surface will adopt a scutoid morphology, where cells will have different neighbors
in the apical and basal domain [Nelson, 2018].

To the greatest extent, an epithelium is mostly composed of six-sided cells of similar
size [Classen et al., 2005, Gibson et al., 2006, Farhadifar et al., 2007, Narimatsu et al.,
2009]. This kind of packing will be the subject of the following subsections. Some
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properties arise from fundamental geometry, others are a consequence of processes like
cell proliferation, and others are the result of the interplay of mechanical forces.

2.5.1 Euler characteristic in planar cell arrangements

A constraint in the geometry of tessellations of convex polygons follows from Euler’s
theorem. The number of cells Nc, edges Ne and vertices Nv are related by the following
expression [Springer Verlag GmbH, European Mathematical Society, ]

Nv + Nc − Ne = χ, (2.5)

where χ is called the Euler characteristic of the tessellated surface, for a torus, or
cells under periodic boundary condition, χ = 0. For a sphere χ = 2. Since rosettes are
rarely observed in many tissues, i.e. vertex, where more than three cells converge [Bardet
et al., 2013] (although, there exist cases where more than three cells converge in a
vertex [Blankenship et al., 2006]), each vertex is supposed to connect only three edges,
and the edges connect two vertices. Then it follows 3Nv = 2Ne. Therefore, Nc = Ne/3+χ.
Moreover, given that each edge is the side of two cells, we have that the number of sides
is s = 2Ne, implying Nc = s/6 + χ; the number of neighbors per each cell tends to six as
the number of cells tends to infinity. This happens in simulations with periodic boundary
conditions, where χ = 0, the average number of neighbors is exactly six.

2.5.2 Geometric order in proliferating tissue

Euler’s theorem constrains the average number of cell sides, but not the distribution of
cell sides among cells. In-vivo, it has been observed that the most frequent number of
neighbors is six, even more, when the tissue reaches equilibrium. Cell proliferation is a
key element in explaining the frequency of six-sided cells in the tissue and reproducing
a simple calculation found in ref. [Gibson et al., 2006], we can write a Markov process
to describe how the distribution evolves, counting the probability of creating a cell
of a different number after a division, writing the matrix schematized in figure 2.5.
From this model, a robust quantitative prediction arises; a proliferative tissue approach
exponentially a stable equilibrium distribution of polygons, regardless of the initial
distribution, and without referring directly to any assumption in cell mechanics.

First, the edges of the mother cells will be distributed among the two daughter cells.
The transition matrix P has the elements Pij which represent the probability that a
i-sided cell divides to produce a j-sided cell. To build this matrix, let us consider at
generation t− 1 one cell which has st−1 sides, and define the random variable Kt that
represents the number of edges distributed to one daughter cell, leaving st−1 − Kt to
the other. Right after the mitosis of one cell, each daughter cell must receive at least
two sides from their parent, as no 3-sided cells are observed experimentally, leaving
st−1−Kt junctions to be distributed. If each edge can be picked with the same probability,
Pij = Pr[Kt + 2 = Comb(i− 4, j− 4)/2i−4], where textComb(a, b) is the number of ways
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Figure 2.5: Top: Diagram of possible transitions and their probabilities as result of the n-sided cell
division, defining a Markov chain that produces the distribution shown in b. bottom The
convergence to this distribution is exponential, regarless of the initial condition. Image
reproduced from ref. [Gibson et al., 2006].
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to choose b objects from a group of a objects. Before normalization, the elements of the
matrix P are given by the coefficients of a Pascal’s triangle.

Now we can derive the "shift matrix" S, where the elements Sij account for the effect
on a i-sided cell of a neighbor cell dividing to become a j-sided. Each mitosis adds one
side in two neigboring cells. If there are Nc cells, 2Nc sides are created after a division
cycle. Having then 2Nc cells, in average each cell gains one side. Therefore, the entries in
S are Sij = δj,i+1 = 1 if j = i + 1 otherwise 0.

Recapitulating the matrices are,

post-mitotic class
P 4 5 6 7 8

4 1

5 1 1

6 1 2 1

7 1 3 3 1

8 1 4 6 4 1

9 · · ·

after neighbor divisions
S 4 5 6 7 8

4 0 1

5 0 1

6 0 1

7 0 1

8 0

9 · · ·

Given a distribution of polygonal class pt−1 at time t− 1, where pt−1 is a column vector
with elements pt−1 = [p4, p5, p6, p7, p8, . . . ], the distribution after a cycle of division will
be given by the following Markov chain,

pt = pt−1PS (2.6)

The distribution of polygonal classes converges regardless of the initial distribution, as
shown in figure 2.5.

2.5.3 Lewis’ and Aboav-Weaire’s law

In a disordered tissue, individual cells exhibit a wide variety of shapes. The simplest way
is to classify different cells by their number of neighbors and sides. For each cell, this
number defines its polygonal class. With this categorization, a first observation found
in biological tissues is that cells with more neighbors are usually bigger than cells with
fewer. This can be written approximately as a linear relation.

〈An〉
〈A〉 = 1 + λ(n− 6), (2.7)

where 〈An〉 is the average area of a n-sided cell,〈A〉 the average cell area, and λ a
parameter that depends on the tissue. This relation is known as Lewis’ law [Chiu, 1995].
Section 2.5.4 presents a discussion of the mechanical origin of this effect.

Furthermore, in random tessellations, as epithelia or Dirichlet domains, Lewis observed
that a cell adjacent to a cell with a large area has a bigger probability of having a small
area and having fewer neighbors. Aboav–Weaire’s Law states that n-cells will have
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neighbors with mn sides on average, with a decreasing m as n increases and vice-versa.
Aboav-Weaire’s law [Chiu, 1995] in one (but not the only one) of its approximation reads,

mn = 5 +
6 + σn

n
(2.8)

Here σn is the dispersion in the number of sides for the cells in a particular tissue.
More precise expressions (but not altogether rigorous) can be found in ref. [Chiu, 1995].

2.5.4 Ground states of the vertex model

The ground-states in the variational vertex model (2.3) depend on two normalized

parameters from the model: the normalized line tension Λ̄ = Λ/KA
3
2
0 and the normalized

perimeter contractility Γ̄ = Γ/KA0. The bars will be omitted in the following. The
normalized new parameters measure strength compared to that of area elasticity. On
the one hand, as the normalized perimeter contractility increases, cells minimize their
perimeter, by shrinking their area and also by increasing their roundness. On the other
hand, an increase in the normalized line tensions will induce a decrease in the cell area,
eventually leading to its collapse. A decrease in the line tension will make cells with a
larger perimeter with respect to their areas more energetically favorable.

The interplay of these two forces will give rise to two regions of ground-states. If the Γ
is large enough, cells have a strong preference for rounder shapes, and the ground state
will be a regular hexagonal network. As Λ becomes more negative, related to an increase
in cell-cell adhesion, the system will tend towards cells with bigger perimeters, and the
coexistence of multiple ground states in a soft network, as shown in figure 2.6.

In the case of irregular tissues, the geometry of force-balanced states will vary con-
tinuously with the parameters. As the contractility Γ increases, compression will affect
more cells with large perimeter with respect to their area, increasing the dispersion of
cell areas. The key point is that more sides allow rounder shapes, and the compression
force over the cells will be weak compared to the area elasticity. This effect can be used
to constrain the set of parameters to model a particular biological tissue, measuring the
Lewis’ law effect, the average size of cells with a given number of neighbors, as depicted
in figure 2.7.

However, if the slope of the Lewis’ law depends on the relation between the line
tension and contractility, once fixed the value of, for instance, Γ, we can tune a value
for Λ to match a given slope. An additional measure is needed to select a particular set.
Ref. [Farhadifar et al., 2007] used the response of the tissue to ablation. They conclude
that the parameters of case I (Λ = 0.12 and Γ = 0.04 ) reproduce well the geometry of
epithelium in the wing disc of Drosophila.

Ref. [Farhadifar et al., 2007] defined, apart from case I, four other sets of parameters
highlighted in figure 2.7 to represent different types of geometries that can be obtained
by relaxing irregular tissues. This work will use the set of parameters of case I as default,
and the other cases eventually for comparison.
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Figure 2.6: Ground-State diagram of the Vertex Model, as a function of the normalized line tension
Λ and contractility Γ. The Gray Region, honeycomb networks are the most stable
configuration. In the soft blue region, many configurations coexist. The striped region
cells, the line tension is large, and the cells collapse. Green dots indicate parameter
values of five different cases (case I: Λ =0.12, Γ =0.04; case II: Λ =0, Γ =0.1; case III:
Λ =-0.85, Γ =0.1; case IV: Λ =-0.32, Γ =0.04; and case V: Λ =0, Γ =0.04).reproduced
from ref. [Farhadifar et al., 2007].

2.5.5 Rigidity transition in the vertex model

The description of ground states does not address dynamical aspects of the vertex model.
In particular, a relevant question arises on cell migration, and how it occurs in tightly
packed networks. In a random tessellation, after initial re-arrangements, the tissue stays
in a solid-state where each cell keeps its neighbors indefinitely. A small level of noise does
not change this scenario. Nonetheless, as the level of noise increases, this amorphous
solid will approach a rigidity transition, that is, the diffusion coefficient for the movement
of particles does not vanish, and the system passes from a solid-like behavior with cells
caged in their position to a fluid-like stage [Angelini et al., 2011, Bi et al., 2015].

Usually, the control parameter of the liquid-to-solid transition is the density [Berthier
and Kurchan, 2013, Henkes et al., 2011]. Interestingly, random tessellations are built
without extra-cellular gaps, and therefore, the density is constant. [Bi et al., 2015] shows
that the vertex model, presents a different rigidity transition, where the order parameter
corresponds to the single-cell mechanical parameter; they observed how the energetic
barrier decreases with the increase of the target perimeter p0 in equation (2.4). A small
value of p0 created stronger activation energy for neighbors exchange.

This is not only expected for cells in the epithelium, and has been observed in three-
dimensional embryonic tissue [Schoetz et al., 2013].
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Figure 2.7: Vertex model simulation results for three sets of parameters, here referred as case I
Λ = 0.12, Γ = 0.04; case II Λ = 0, Γ = 0.1; and case III Λ = −0.85, Γ = 0.1, respectively
ordered from top to bottom.Left: Examples of equilibrated tissues under different sets
of parameters, exhibiting some examples of cell packing that can arise from the vertex
model. Each cell is colored by its number of neighbors.Center: Distributions Pn of
polygonal classes in each of the cases, where the green bars in each panel indicate the
same experimentally determined distribution of neighbor numbers in the third instar
wing imaginal disc, for comparison.Right: Average areas of different polygon classes
normalized to the average area of cells in the network, for different parameters, compared
to the experimentally determined values for the third instar wing disc. Image reproduced
from ref. [Farhadifar et al., 2007].
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Figure 2.8: The direct environment of an edge undergoing a T1 transition b, Energy of a four-
cell aggregate during a T1 transition. Negative lengths correspond to length after the
transition. The energy function used is given by the expression (2.4). The maximum of
the energy occurs at the point where the length of the edge vanishes. p0 takes values
from 1.5 to 3.8 in equal increments. c. Energy barrier height as a function of p0. At a
certain critical point, the barrier disappears. Image reproduced from ref. [Bi et al., 2015].

2.6 tension inference from apical geometry

Measuring forces in tissues can provide critical information on mechanics in the tissue
and on its morphogenesis. In general, to measure tension in-vivo, several methods have
been developed [Bonnet et al., 2012]. Here we will focus on the experimental method of
laser ablation and some non-invasive methods.

2.6.1 Laser ablation

The method of laser ablation uses a laser to destroy with a tightly focused laser biological
structures that support force transmission, mainly cell-cell junctions, but also cytoskeletal
filaments of cells [Ma et al., 2009]. The observed recoil movement can be used to infer
the tension [Ishihara et al., 2013] (see figure 2.9).

Here the junction is consider elastic, with E being its elastic constant, moving in
an overdamped media with viscosity µ and a length L. The initial tension is T0, and
assuming the network is in mechanical equilibrium, that must be the magnitude of the
forces produced by adjacent junctions. After the ablation, if the junction reaches a new
equilibrium, it can be modeled as a Kelvin–Voigt material [Fernandez-Gonzalez et al.,
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Figure 2.9: Example of an ablated junction. The horizontal direction shows different frames. Yellow
lines are the initial position of the junction vertices. Red lines are the position evolving
in time. Image reproduced from ref. [Liang et al., 2016].

2009], and the equation that governs the length L after tension in the junction vanishes is
T0 = E [L(t)− L(0)] + µdL/dt The solution of this differential equation reads,

L(t) = −T0
E

(
1− exp

[
−E

µ
t
])

+ L(0) (2.9)

Measuring the trajectory of the vertices of the ablated junction, the distance is fitted
using L(t) = (v0/k) (1− exp [−kt]) + L(0), where k and v0 are free parameters. The
relaxation rate is k related to the mechanical parameters as k = E/µ and the initial
recoil v0 = T0/µ. Assuming the viscosity is similar between junctions, the value of v0 is
considered proportional to the tension.

2.6.2 Non-invasive methods

Laser ablation is destructive, and it can just report the tensions in a few junctions in
tissue. These issues can be overcome with an alternative approach that takes advantage
of the planarity of the network, allowing to write a simple force equation at each vertex.
Assuming that the tissue reaches mechanical equilibrium instantaneously, we can solve
the inverse problem of finding the forces that are compatible with a given geometry.

The simplest force inference method considers the tension as the only relevant force.
Under this assumption, the relative tensions between edges are determined by the
angle between them. If they are equal to 120°, the three edges share the same tension.
Otherwise, the biggest tension corresponds to the edge opposite to the smallest angle.

In one approach, the pressure acts normally along the edge. After the inverse problem
solves simultaneously for the tension and the pressure. In the other approach, the edge
is no longer considered straight.
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Figure 2.10: In the left, infering from the angles. The black edge has a relative low tension. By
contrast, in the right, the relative tension of the yellow edge is bigger.

Dynamical equation and the inverse problem

Let~ri and~rj be the vertices belonging to the interface ab and let~rij be the vector from
vertex i to j. In that way, for each vertex i, the total force Fi produced by its neighbours
{j}is given by

Fα
i = ∑

{j}

rα
ij

|rij|
Tij +

1
2 ∑
{j}

rα
ij

|rij|
(Pa − Pb). (2.10)

Here, α represents the two different coordinates α ∈ {x, y}. Assuming the system
reached the steady state, we can impose Fα

i = 0 for all i and α. To avoid the trivial
solution T = 0 and P = P0, we must impose extra conditions. For instance, [Chiou et al.,
2012] propose adding the equation T̄ = ∑ Ti/E = 1. In a matrix form

MX = C, (2.11)

where M is an (d + 1)× u matrix and XT = (T1, T2, . . . TNe , P1, P2 . . . PNc ) and CT =
(0, . . . 0, 1) . The matrix is not square. However, the system can be solved with the method
of the pseudo-inverse, obtaining as the general solution

X = Ψ + ∑ αnφn, (2.12)

where Ψ = M−1C and φn element of the kernel of M, and αn are the amplitude of
those zero-modes. To choose a particular solution, extra assumptions must be imposed.

Nevertheless, this solution has an important problem, with respect to the stability
under perturbation of the position of the vertices [Chiou et al., 2012]. One way to
address this problem is to reduce the number of parameters, for instance, considering a
constrained pressure Pc = P0 for all cells. The system becomes over-determined, and a
solution for Te can be obtained as the result of a least-square minimization,

Tr
[(

M′X− C
)T (M′X− C

)]
, (2.13)
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Figure 2.11: Scatter plot comparing inferred pressure differential across an interface, Pa − Pb, with
the product of inferred tension Tab and the measured curvature kab of the same interface.
Different colors distinguish results obtained from different images. The scatter plot
exhibits a clear correlation between the two quantities, as expected from Laplace’ law
Pa − Pb = kabTab. Image reproduced from ref. [Chiou et al., 2012].

Where M′ is the matrix derived from M by removing the columns associated with the
pressure, the solution is still given by the pseudo-inverse of the rectangular matrix M′.

Could we, using the more stable framework of an over-determined system of equations,
still take into account the pressure? A method is proposed in [Brodland et al., 2014].
Again, a matrix that relates tensions and forces in each vertex is built, but instead of
assuming straight edges, the edges are considered curved, and the matrix is built as
follows,

Fα
i = ∑

{e}
vα

i,eTe (2.14)

where the unit vectors vi,e are constructed as a tangent to the limiting angle at which
the junction e approaches the i-th triple junction and point away from the junction. The
summation runs over all edges that connect to that vertex. This system has the same
dimensionality as the method with straight edges. A new set of linear equations can be
written to recover the pressures from the inferred tensions, making use of the Laplace’s
Law

∆Pe = keTe (2.15)
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Here, we have a relation between the different of pressure ∆pe, curvature ke and
tension Te of an individual edge e. The curvature ke can be directly obtained from the
tissue image. This can be rewritten as,

GPXP = q (2.16)

where GP is an (Ne + 1)×Nc matrix XT
P = (p1, p2, . . . pNc ), and qT = (k1T1, k2T2, . . . kNe TNe ).





3
A F I R S T V I S I T T O E X P E R I M E N TA L D ATA A N D T H E Q U E S T I O N I T
R A I S E S .

In this section, we will present the aim of our endeavour and introduce an experiment
where the theoretical framework developed during this thesis work will be applied:
how to understand better the disorder found in tissues? Can we infer from mechanical
geometry and cell parameters in epithelial development?

3.1 tackling the heterogeneity of epithelial cells

This thesis presents the research of tools that can be applied to multiple situations in
epithelium development and morphogenesis. We want to deduce the right parameter
to model a tissue from the geometry that can be measured at different stages of the
development of the organism. We discuss an example where these tools can give
us insight into the mechanical forces playing a role in the shape and topology of an
epithelium. In particular, we present briefly an experiment where we apply our tools.

Here we will present the questions taking one experimental situation in particular. In
the following chapters, a framework to address this question will be developed, and
finally, in chapter 7, we will come back to this experiment to give an answer to the
problem.

3.1.1 Examples of non-mechanically homogeneous epithelium

Different types of epithelial cells interacting in a tissue can be found in several situations in
an organism: for instance, in Drosophila, the veins found in the wings [Blair, 2007,de Celis,
2003] or each segment in its larval development [Larsen et al., 2003]; or it can be an
isolated cell as the sensory organ precursor (SOP) found in the thorax, or a group of cells
that are embedded in the middle of a rather homogeneous group of cells. Tumoral cells
in epithelium express different mechanical properties than their healthy counterparts,
and specific mechanical changes can be crucial to tumor metastasis [Wei and Yang, 2016].
Tissues count with tumor suppressors that change mechanical properties and can result
in the sorting of tumorous clones to minimize their contact with wild-type cells [Bosveld
et al., 2016a].

3.2 going back and forth between the model and the experimental data

In this thesis, we focus on a widely used epithelium model to get insight into their
mechanical and geometrical features. Simulations represent a playground where we

37
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can more easily test hypotheses and understand the effect of modification of certain
parameters.

To a great extent, the vertex model recovers the mechanics of epithelium. A deeper
understanding of the model is providing clues of what we can find in the system that
inspired it. A remarkable characteristic of biological tissues is their disordered nature,
and it is one of the obstacles to address the problem conclusively with simple analytical
calculations. However, statistical physics allows us to reduce the dimensionality of the
problem. To achieve that, we need to create a framework that integrates simple average
measures that can capture the disorder of tissue, and in the process, better understanding
how different aspects determined the tissue shape.

Experimentally, geometry from the apical domain is one of the easiest information to
obtain from individual cells in a tissue. For this reason, it is valuable to be able to infer
from the other aspects that drive the development of the cells, for instance, mechanical
forces or topological rearrangement, including cell division.

We will ask this question on two levels:

• How can one relate coarse-grained geometrical features in-silico with forces and
other specifications on the vertex model by simple equations?

• Can we relate geometry from experimental data with the underlying forces in
cellular processes? Furthermore, how does the coarse-grained approximation
found in-silico hold in-vivo? This will depend on whether and to which extent we
have captured the relevant variables in our model. The success found characterizing
three independent features using the vertex model in [Farhadifar et al., 2007], and
many other works, including the present, make us believe that it is possible.

3.2.1 Can we infer mechanical parameters from geometry?

Cells are shaped by internal forces; therefore, we can expect that the answer to the above
question is yes, at least to some extent. How successful we can be in this approach
depends on several aspects that can represent obstacles. We take a partial description
from the cells in the tissue; we focus on the apical domain. We explained in the
introduction that this region is the most relevant playground for the interplay of forces
that rule epithelium morphogenesis, regardless of this, other forces occurring below this
domain could affect the geometry. This thesis focus on the case of static images. In that
case, we assume that the tissue is continuously near mechanical equilibrium. On the
one hand, there are approaches to do force inference [Chiou et al., 2012, Brodland et al.,
2014, Ishihara and Sugimura, 2012], as the methods presented in the background chapter
2.6.2. On the other hand, we will present an analytical approach in chapter 5, where in
particular, a mean-field approximation is presented in section 5.2 to describe individual
polygonal classes.
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3.2.2 How proliferation affects morphogenesis?

Besides mechanical forces, the way the tissue is prepared plays an important role in
development. For example, in the emergence of topological order due to the proliferation
reported by [Gibson et al., 2006] presented in the previous chapter, we observe how that
division bias the topology, and therefore the shape of the tissue. This information is more
subtle to obtain from geometry, as it can be overwritten by the dynamics. Nonetheless,
the way cells divide will leave a mark in the tissue topology, a phenomenon already
explored in references [Sahlin and Jönsson, 2010, Li et al., 2012, Aegerter-Wilmsen et al.,
2010] where different divisions’ rules are compared, or in ref. [Mao et al., 2013] where the
influence of differential rates of growth in the different regions is analyzed. That analysis
will be revisited in section 4.3 where different proliferation times and the Hertwig’s rule
found in ref. [Bosveld et al., 2016b]. In section 6.1.2 where the case of a non-proliferative
cell is addressed. The case of bias in the orientation around a certain type of cell is
presented in section 7.3.3, in the context of the experimental data.

3.2.3 How different types of cells interact between them?

All those questions asked with respect to a homogeneous tissue where it is reasonable to
assume very similar mechanical parameters can also be asked on tissues where different
types of cells interact. In our example: which forces are involved behind the round shape
of the clone? Moreover, what forces can be involved in the difference of cell area in both
activator and repressor clones? What can the angles on its surface tell us? Is the topology
coherent with the supposed division rule?

A simple approach to tackle mechanical heterogeneity is presented in different sections
of 6, in particular, to address the case of an individual cell with different mechanical
properties in section 6.1, two cells in section 6.3.2, and a cluster of them in section 6.3.1.

3.3 our tools and model will be contrasted with experimental data

This thesis has been done in collaboration with the group of François Payre at the
University of Toulouse, who has made crucial contributions uncovering the mechanism
of cell differentiation in Drosophila epidermis, and the role of ovo/shavenbaby in the
trichome formation [Kondo et al., 2010]. In one of their current efforts, Maleaume
Soulard—Ph.D. student—in the group has studied under the supervision of François
Payre the interaction between proliferative cells and cells undergoing the differentiation
program [Soulard et al., 2019]. This analysis is done in chapter 7.

3.3.1 Shavenbaby and timing control in trichome formation

All cells have a complete copy of the genetic material to form an organism, and in very
early stages of development, cells are pluripotent, capable of forming any organ. In
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Figure 3.1: Top: Trichome formation in the Drosophila thorax. In the Sbv mutant at the right (b) we
observe that trichomes are replaced by naked regions (Image obtained from ref. [Delon
et al., 2003]). Bottom: The TF shavenbaby is produced in its repressive form. Pri peptides
can catalize the cut and produce the active form of Sbv, acting as a molecular switch of
Sbv activity. Image courtesy of François Payre team.

time, a particular cell will differentiate to express a specific function following a precise
body plan. This depends on the sensing of positional and temporal information. How
a cell-fate is determined given spatial information and how the pattern emerges have
been widely explored [Wolpert et al., 2011, Tkačik et al., 2015]. However, the mechanisms
underlying temporal control are still poorly understood.

The formation of the trichome, the stereotyped array of cells found in the Drosophila
thorax, provides a nice example of time-controlled stop of proliferation and start of a
differentiation program.

The expression or silencing of a particular gene depends on a cascade of transcription
factors (TF). For trichome formation, the transcription factor called Shavenbaby (Sbv)
or ovo is required [Payre et al., 1999]. Shavenbaby is the master regulator of epidermis
differentiation, as mutants that do not form this TF basically display naked cuticle [Delon
et al., 2003]. The production of Shavenbaby is the result of cross regulations of cell signals
and genetic cascades that are the product of normal cell development. Shavenbaby is
produced in an inhibitory form that indeed prevents cells from differentiating.

Outside the epidermal tissue, the hormone Ecdysone is produced, which has the main
role of controlling the timing of post-embryonic development, triggering larval molts,
and the larval–pupal transition [Yamanaka et al., 2013]. This hormone travels through
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Figure 3.2: Diagram of the conditions to produce the active form the Shavenbaby. Svb production
depends on normal cell development. Svb accumulates in its repressive form; cells
are held in it proliferative stage. Pri senses the signals from the external milieu. Its
production and consequent activation of svb depend on the signaling of the hormone
ecdysone. Image reproduced from ref. [Chanut-Delalande et al., 2014].

the larval body. In the epidermal tissue, it induces the production of polished-rice (pri)
peptides that catalyze the cut Svb to transform it from its repressive form into its active
form that will induce cell differentiation [Chanut-Delalande et al., 2014].

3.3.2 Experiment of our collaborators: Of the importance of temporally segregating cell prolifera-
tion and differentiation during development

In normal development, cells in the epidermis undergo differentiation in a coordinated
manner under the action of ecdysone. Our collaborators have produced Drosophila larvae
with isolated clones of cells that are being kept in proliferative states; meanwhile, cells
around start the differentiation program (ovo A or repressor case), and vice-versa, clones
where cells are driven to an early differentiation (ovo B or activator case). Six hours
before the white puparium stage [Pak and Gilbert, 1987], the larvae are subjected to a heat
bath that will drive some cells at random to become ovo mutants, leaving the majority of
cells unaffected. In both cases, ovo A and B, we want to understand how cells change,
and in particular, our contribution is to provide an insight on systemic responses of the
tissue. Examples of those clones at 38 hours after the white puparium can be found in
figure 3.3.
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Figure 3.3: Clones at 38 hours. Clonal cells are highlighted by purple color, and the membranes in
green (GFP-Arm).Top: Repressor clones at 38 hours. They develope into clusters without
a round shape, with cells that are on average smaller than WT cells. Middle: Activator
clones at 38 hours. Clones have only one or two cells, that appear in diverse sizes, but
with a tendency to be bigger than WT cells. Bottom: Control clones. They have many
cells, and, as expected, the cell is not different from WT cells. The first feature that is
evident in the repressor case, is that clones have a rounder shape compared with control
clones, suggesting a superficial tension between the clone and its exterior. This hypothesis
is tested by the study of the effect in disordered tissue of the application of a cable of
tension over a cluster of cells. The activator case is formed by fewer cells; therefore, the
analysis of its roundness is not pertinent. As in this case, proliferation has been stopped
early, these clones tend to have fewer cells, and in many cases, the clones only have one
cell. Regarding cell area, activator cells are in average bigger, especially in the case of
unicellular clones. The images where more than one cell is found, edges between clonal
cells are longer, suggesting that their tension may be relatively low.
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3.4 outline of the thesis

Even though the vertex model is a comparatively simple model in regard to the system
that it aims to represent, yet it is too complex to be studied without numerical simulations.
In the first chapter, a general study of correlations and features of the tissues are presented,
along with justification for how parameters have been chosen in the simulations. In the
second chapter, a novel approach to study the vertex model is presented: a mean-field
approximation that describes a cell by its number of neighbors, and by extension, can
describe a disordered tissue composed of these cells. In the third chapter, we use the same
approximation to address the inclusion of cells that differ from their environment. In the
fourth chapter, we put together the tools that we presented to analyze the experiment
performed by Payre’s lab (U. de Toulouse) that inspired this work, where a group of cells
develops abnormally in the epithelium in the thorax of a Drosophila larvae. Finally, we
present our conclusions.





Part II

T H E S I S W O R K





4
G E N E R A L F E AT U R E S O F D I S O R D E R E D T I S S U E S

Vertex models are the central tool that we use to describe forces and mechanical equi-
librium in epithelial tissues. In order to model proliferative tissues, we need as well to
describe cell division. In this chapter, we introduce our division clock that determines
when a cell will divide and the different division rules that describe how cells divide
in space. We describe the Hertwig’s rule for cell division reported in [Bosveld et al.,
2016b] and compare tissues generated under this rule with other ways of choosing the
axis of division. We describe the main geometrical properties of proliferative tissues
generated by the vertex model with proliferation, analyze statistics from simulations, and
focus on how properties as cell area and perimeter distribute among different polygonal
cell classes. We report that when cells divide following Hertwig’s rule, i.e., according
to their geometry, this generates tissues with fewer defects and that are more ordered.
Finally, to test the sensitivity of our results to the details of the chosen mechanical model,
we introduce a different pressure-less vertex model. We find that it behaves similarly to
the traditional variational vertex model. We will use this alternative model to test the
robustness of our results in the subsequent analyses.

4.1 the division clock

4.1.1 Division time

In order to simulate a growing tissue, cell division needs to be implemented. Cell
division is a complex biological issue. It has been debated whether cells monitor their
size ("sizers"), the time elapsed since their birth ("timers") or yet another biological
process and this is still a matter of investigation (e.g. [Cadart et al., 2018]). Here, we chose
what is perhaps the simplest description: when a cell is born, its lifetime until division is
chosen to be t a random variable drawn according to the probability distribution Pd(t).
For definiteness, Pd(t) is chosen as,

Pd(t) =
1√
2πσ

[
exp

[
− (t− τd)

2

2σ2

]]
+

(4.1)

where the rectification []+ imposes that the probable density is positive, as it should (σ is
chosen small enough so that this does not significantly affect the normalisation).

4.1.2 Rate of proliferation and distribution of cell ages in an exponentially growing population

The relation between the distribution of division time Pd(t) and the global rate k of
proliferation of the tissue is a classic question of population genetics which dates back to

47
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early investigations by Euler (reprinted in [Euler, 1970]) and Lotka [Lotka, 1907] (see also
the review [Painter and Marr, 1968] and the article [Lebowitz and Rubinow, 1974] which
generalizes these early results and takes into account correlations between the lifetime of
a cell and of its daughters).

One way to determine the growth rate k and the distribution of cell ages in a population
is to consider the number n(t, τ) of cells of age τ at time t, the so-called age-time
formalism. The distribution at time t and t + dt are related by

n(t + dt, τ + dt) = n(t, τ)− D(τ)n(t, τ)dt (4.2)

or in differential form
∂tn + ∂τn = −D(τ)n(t, τ). (4.3)

Equation (4.3) simply says that cells age or divide. Cells that divide give rise to 2 daugh-
ters cells of age zero, thus equation (4.3) is supplemented by the boundary condition

n(t, 0) = 2
∫ +∞

0
dτD(τ)n(t, τ) (4.4)

The probability Pd(τ) that a cell divides at age τ is given by a rate of division D(τ)
conditioned on the absence of division up to t. Namely, D(τ) is related to Pd(τ) by

Pd(τ) = D(τ) exp[−
∫ τ

0
D(u)du] (4.5)

or, inversely

D(τ) =
Pd(τ)∫ +∞

τ Pd(u)du
(4.6)

The growth rate and the age distribution for an exponentially growing population in a
steady state are easily obtained if one supposes that n(t, τ) = n(τ) exp(kt), one obtains
from Eq. (4.3),

∂τn = −[k + D(τ)]n(τ), or, n(τ) = n(0) exp[−kτ −
∫ τ

0
D(u)du] (4.7)

The boundary condition Eq. (4.4) then gives the self-consistent equation for the growth
rate

1 = 2
∫ +∞

0
D(τ) exp[−kτ −

∫ τ

0
D(u)du] = 2

∫ +∞

0
Pd(τ) exp[−kτ] (4.8)

where in the second equality, the relation (4.6) between D(τ) and Pd(τ) has been used.
Eq. (4.8) was explicitly written in this form by Lotka [Lotka, 1907]. The distribution of
time τ until the next division, that is the fraction of cells present at time t = 0 that will
divide at time τ is,

PT(τ) = N
∫ ∞

τ
exp

[
−k(τ − τ′)

]
Pd(τ

′)dτ′ (4.9)

= N exp
[

k
kσ2 + 2τ − 2

2

] (
1− erf

[
kσ2 + τ − 1√

2σ

])
, (4.10)
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Figure 4.1: Left: Distribution of division age Pd(τc) (blue) and distribution of time until next
division PT(τc) (green) for σ = 0.2 and k = 0.702. Right: Distribution of number of cells
descendent from a same cell at time t = 0 at different times, for an initial distribution of
cells with next-division time from the distribution (4.10)

where N is a normalization factor, and τd has been taken equal to 1 in the second
equality. In our simulations, we use σ = 0.2τd. With this value, the solution of Eq. (4.8) is
k ≈ 0.703.

4.2 cell features statistics

The energy function (2.3) can be normalized in space and energy, leading to ground states
depending only on two parameters, the line tension Λ and the perimeter contractility
Γ. Two main regions can be distinguished, one where the ground state—the state that
minimizes the energy function—is a hexagonal lattice, and the other one where energy
relaxation produces soft networks. As a representative sample of the different behaviors
that the model exhibits, we will take three of the cases considered in [Farhadifar et al.,
2007], those being:

• Case A Λ = 0.12,Γ = 0.04: this corresponds to parameters that describe well the
epithelium in the wing of drosophila in the larval stage.

• Case B Λ = 0,Γ = 0.1: In this case, the perimeter contractility is high compared
to other forces, and cells of the different polygonal class will have very different
expected areas, with cells of more sides being noticeably bigger than cells with
fewer sides.

• Case C Λ = −0.32,Γ = 0.04: In this case the adherence dominates the tensile force.
Cells of different polygonal classes have similar areas on average, as the preferred
perimeter p0 is positive, and the area term is not opposed by the perimeter term
and both can be minimized, giving rise to a soft network.

Case A and Case B both have as ground state a hexagonal lattice but with a different
equilibrium area per cell. In these two cases, all cells are convex, in contrast to the soft
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Case A Λ =0.12 Γ =0.04 Case B Λ =0 Γ =0.1 Case C Λ =−0.32 Γ =0.04

Figure 4.2: Examples of tissues under different conditions. Cells with more than six neighbors are
shown in orange. Cells with less than six neighbors are shown in cyan. The tissues
were generated after 2 cell cycles of proliferation, i.e, during a time t = 2td, starting out
with 15 cells, following the Hertwig’s rule and the division clock defined in the previous
section.

network case exemplified by Case C, where several concave cells are found. This arises
as in the soft network case, cells have an area close to the preferred one Ac. This makes
the force derived from the cell pressure rather weak as compared to adhesion, and these
biases cells to adopt shapes with longer perimeters.

All our simulations are run under periodic boundary conditions, and more details
about the implementation can be found in the appendix A.

An important aspect is how to choose the noise intensity for a different set of parame-
ters. For case A, the intensity of the noise has been fixed by comparison with fluctuations
in experimental tissue to η = 0.3, meaning that the value of the line tension Λ varies by
30%. We do not have experimental examples of tissues modeled by another set of param-
eters and their level of noise. Therefore, how to choose noise for different parameters is
ambiguous. One way to address this is to simply keep the rule of that the line tension Λ
should vary by the same amount as in case A. However, in case B, Λ vanishes, and as
noise is a crucial ingredient, we need to use different criteria. Instead, the noise intensity
can be chosen such that the total tension varies by a comparable amount in each case,
where the total tension includes the contribution of the perimeter contractility. This and
other details on how the simulations are implemented are described in the appendix.

4.2.1 Polygonal classes as a meaningful category

Throughout this thesis, we will be interested in characterizing the complexity of dis-
ordered tissues by few parameters that can describe a wide range of mechanical and
geometrical features. The energy function in the vertex model depends on the area
and the perimeter of each cell. In the region where the hexagonal lattice is the ground
state, and pressure forces keep cells to have a convex shape, we find that the cell area
strongly correlates with the cell perimeter, as shown in figure (4.3). In this case, the cell
area provides a good guess of its perimeter. Notably, this holds as long as the model
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Figure 4.3: Two-dimensional histogram of the pairs of the square root of cell areas
√

A and cell
perimeters p for cases A, B, and C. The color bar identify different percentages found
for each bin. We observe a strong linear correlation between two values for case A and
B, and a negative correlation in the case of the soft network in case C. The cells are
taken from 150 tissues with 60 cells each, that grew from cells generated by the Voronoi
tesselation of 15 points drawn from a Poissonian distribution—random points to define
cells—under periodical boundary conditions, dividing following Hertwig’s rule.

parameters do not fall in the soft-network region. The correlation becomes tighter as
the cell contractility becomes stronger, contracting the cells and making the cell pressure
more relevant.

In turn, another category that shows weaker correlation with cell area and perimeter,
but still allows us to characterize the tissue, is the number of edges of a cell, the
polygonal class to which it belongs. In this work, several theoretical analyses will be
performed under the assumption that the polygonal class of a cell is a meaningful
category; describing an average cell of each of these categories, we then extrapolate to
the whole tissue. Analyses of relations between features of individual cells are presented.
In particular, between cell area, perimeter, polygonal class, and aspect ratio. To start,
in figure 4.4, the average and distribution of area, perimeter, and edge length by each
polygonal class is presented.

For the standard parameters (case A), cells of different polygonal classes have defined
distributions of area, perimeter, albeit the overlap between different distributions in-
creases for cells with a higher number of sides. However, simultaneously, their dispersion
also decreases. Still, the distribution of length between different polygonal classes are not
that different; the length of an edge does not give much information about the polygonal
class of the cells to which it belongs.

How does this scenario change when choosing parameters in the strong Lewis’ law
region (case B), or the soft network region (case C)? We observe crucial differences. In a
soft network, the polygonal class is no longer a meaningful category. In the strong Lewis’
law region, we observe more dramatical differences between different polygonal types.

4.3 how cell division affects morphogenesis

Cell proliferation is evidently a fundamental ingredient in tissue development. In
epithelia that aspect has been already partially addressed [Gibson et al., 2006, Ranft et al.,
2010]. However, it is not an easy task to integrate the interplay of mechanical forces
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Figure 4.4: Average value (top) and distribution (bottom) for different cell features for each polygonal
type, for Case A, normalized by their average. The mean area and perimeter increases
with the number of sides, meanwhile the length of individual edges shows a small
variation. The cells are taken from 150 tissues, that grew from cells generated by the
Voronoi tesselation of 15 points from a Poissonian distribution under periodic boundary
conditions, dividing following Hertwig’s rule until they reach 60 cells.

Stats. (A) (p) σA σp
Case A 0.549 2.788 0.088 0.199

Case B 0.263 1.904 0.088 0.309

Case C 0.997 4.039 0.005 0.057

Distribution
Pn 4 5 6 7 8

Case A 0.016 0.274 0.445 0.225 0.038

Case B 0.023 0.267 0.437 0.21 0.055

Case C 0.06 0.337 0.421 0.16 0.021

Area per class
An 4 5 6 7 8

Case A 0.282 0.452 0.558 0.64 0.707

Case B 0.081 0.175 0.265 0.343 0.409

Case C 0.990 0.996 0.998 0.999 0.999

Table 4.1: Numerical values of the average and dispersion of cell areas and cell perimeters, frequency
and average area of each polygonal class, for cases A,B, and C. The simulations are the
same that were used in figures 4.4,4.5 and 4.6.
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Figure 4.5: Average value (top) and distribution (bottom) for different cell features for each polygonal
type, for Case B, normalized by their average. In this case, the cells are smaller than in
case A. The average area and perimeter increases with the number of sides. Meanwhile,
the length of individual edges only shows a small variation. Simulations are performed
in the same fashion as for case A (shown in figure 4.4 ), only varying the parameters Γ
and Λ.
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Figure 4.6: Average value (top) and distribution (bottom) for different cell features for each polyg-
onal type, for Case C, normalized by their average. The average area and perimeter
are basically equal among polygonal classes. In this case, the polygonal class is not
informative about other features of the cell. Simulations are executed in the same fashion
as for case A (shown in figure 4.4 ), only varying the parameters Γ and Λ.
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Figure 4.7: Distribution of polygonal classes (Left:) and dispersion (Right: )—measured as the
standard deviation of the number of sides per cell— in the tissue for different average
division time τd. As time increases, the dispersion decreases, and more six-sided cells
are observed. The statistic is recovered from 50 tissues that starting out from 15 cells
proliferate until reaching 60 cells.

with the topological changes that proliferation induces, in a comprehensive theoretical
framework. Rearrangement can allow the tissue to relax stress and change the topology
of the network. In that regard, even non-proliferative tissues created from Voronoi cells
determined by a random Poissonian distribution of points will relax into a topology
similar to a proliferative tissue. To shed more light on this problem, we will focus on
measuring the disorder in tissues regarding the way the cells proliferate, first different
division times, and different ways to choose how to divide a cell.

4.3.1 Fast proliferation rate creates more disordered tissues

A first element to take into account is the rate at which cells divide. In our model, a time
scale is determined by the forces and the noise—that is generated by a stochastic process
with correlation time τ = 3.9—that determines the rate of rearrangements. Proliferation
creates defects, and how the division rate compares with the time scale of rearrangement
determines different levels of disorder in the tissue. A lower proliferation rate will give
more time for fluctuations to rearrange cells and to release local stress. That is what
we observe in figure 4.7. However, beyond τd = 60, there are not important differences
compared with longer times. In the simulations presented in this work, this proliferation
rate will be used as the default value, if not otherwise specified.

In any case, the differences are in all respects small between the tested proliferation
rates. Regardless, in chapter 6, we will explore the case of different proliferation rates
between cells in the same tissue, where these cases will manifest a more evident difference
phenomenologically.
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4.3.2 Comparison between Hertwig’s rule and other division rules

In order to define the proliferative dynamic in a tissue, it is not enough to know when and
how often cells divide; another critical ingredient is the choice of the axis of division. Cells
divide following Hertwig’s rule, which is based on the position of the vertices [Bosveld
et al., 2016b]. However, it is not clear how exactly this will affect the development of a
proliferative tissue in comparison with other alternative rules, such as the simple choice
of a division axis in a random direction. In this section, we will be comparing different
divisions rules, namely:

• TCJ axis: The Hertwig’s rule that takes into account the TCJ position as described
in ref. [Bosveld et al., 2016b] and in the background section. It is the method used
by default in this work in general.

• Main Axis: A different Hertwig’s rule, where the division occurs along the direction
of the main axis of the second moment of area, adding a new edge in the direction
of the shortest axis. This is the method used in ref. [Fletcher et al., 2013].

• Random Axis: The direction of division is chosen at random. A random angle
from a uniform distribution between 0 and π is chosen, and a new edge is cre-
ated passing through the cell geometric center. This is the method used in ref.
[Farhadifar et al., 2007].

In addition, we will consider tissues generated, without proliferation, as:

• Relaxed Poisson: The tissue is generated by relaxing a tissue generated by the
Voronoi cells of points distributed following a Poisson distribution, i.e., points
generated by a uniform distribution in the box.

In all the cases, noise is present and catalyzes T1 transitions. Figure 4.8 shows examples
of tissues generated under those four division rules. The differences are subtle and not
easy detected by the naked eye.

One simple test to measure the discrepancies between these different division rules, it
is to look at the polygonal class distribution resulting from various division rule choices.
We can identify the differences between contrasting types of proliferation. Hertwig’s rule
and cells dividing along their main axis create tissues with less defect than tissues where
the axis of division is chosen at random, or a Poissonian random network relaxed under
noise, as shown in figure 4.9.

However, the discrepancy in the number of defects is not large enough to necessarily
expect important changes in the mechanical and topological properties of the tissue, at
least not as a consequence of the dispersion in the number of sides. But, if we wish to
characterize how organized or disordered the tissue is, a complementary measure is
provided by the radial pair distribution function in two dimensions G(r), defined as

G(r) =
1

2πrρ ∑
i

∑
j 6=i

〈
δ(r− rij)

〉
, (4.11)
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Hertwig Main Axis

Random axis Relaxed Poisson

Figure 4.8: Examples of proliferative tissues generated with different division rules. Cells with more
than six neighbors are in orange, and cells with less than six neighbors are in cyan. The
tissues were generated with the parameters of Case A (Λ = 0.12 and Γ = 0.04) after two
cell cycles of proliferation, starting out with 15 cells generated by the Voronoi cells of a
Poissonian distribution of points. In the case of relaxed Poisson, the tissue starts with 60

cells already.
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Figure 4.9: Left: Example of tissue (case A; Λ = 0.12 and Γ = 0.04) and the direction of the axis of
the division following Hertwig’s rule (blue) and the direction of the main axis of the
second moment of area (orange). No important differences are found between them,
except for very specific cells. Right: Comparison between the distribution of polygonal
classes among cells in tissues that proliferated under different rules. Average among
50 tissues that proliferate starting with 15 cells until they reached 60 cells. The original
cells were created using the Voronoi cells of 15 Poissonian random points. In the case of
relaxed Poisson, the tissue is initialized with 60 Poissonian random points, and there is
no proliferation to relax for five units of time with noise.

where ρ is the mean density of cells in the tissue, the function (4.11) describes the
variation of density as a function of distance from a reference particle, and it reflects the
degree of order of the local environment of a cell. Figure 4.10 shows that random prolif-
eration leads to less structured tissues than when cells divide following the Hertwig’s
rule or along their main axis.

In figure 4.11, we also compared the distribution of aspect ratios between the different
division rules. Dividing a cell along its main axis decreases the average aspect ratio of
daughter cells.

4.4 pressure-less vertex model

Can we trust the vertex model? It depends. Even within the realm of vertex models, a fair
question to ask here is how many of the phenomena obtained for the variational vertex
model are particular to it, and which others are more general properties of a random
tessellation which takes into account inter-cellular forces. To address this question, we
can compare the results obtained for the vertex model to a simpler model.

The first proposal for a simpler vertex model is to assume constant pressure and
tension. However, this model is not stable, as the equilibrium will only depend on the
angles. A meaningful model must have edge tension depending on cell geometry. An
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Figure 4.10: Comparison between the radial pair distribution function of cellular centers in the tissue.
Distance is normalized considering the effective radius of an equilibrated hexagonal
cell. After three cell diameters, pair correlation is almost completely lost in the case of a
random axis and relaxed Poisson. Meanwhile, still clear and coherent oscillations are
observed for the geometrical bias division rules.
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Figure 4.11: Comparison between the distribution of aspect ratio for cells in the tissue under
different division rules. The division rules depending on the shape are indistinguishable,
comparing their aspect ratio distribution. On the other hand, the random division is
indistinguishable from a relaxed Poisson network, and both generate cells on average
more elongated than the shape-depending proliferation rules. The simulation used is
the same as the one in figure 4.9.
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alternative model is one in which the tension of an edge varies with the cell areas. We
take the tension in each junction to be given by

T(Aa, Ab) = T0 + k(Aa + Ab − 2A0), (4.12)

where T is the tension in the edge, T0 a constant tension associated with all edges, and
the second term depends on the areas of the cells a and b on the two sides of the junction,
Aa and Ab respectively. In this model also, we consider a preferred area A0. The system
is simulated in a box with a fixed size of 〈A〉, as a change of scale will represent an
effective change of T0. Indeed, this model has only one effective parameter; the force can
be normalized in units of k 〈A〉 and the space in units of 〈A〉. Defining T̄0 = T0 − 2A0, it
yields

T̄(Aa, Ab) = T̄0 + Aa + Ab. (4.13)

This model is simpler than the variational vertex model, since it has a single parameter
to fit, and still it makes physical sense. It offers an alternative to the energy function
(2.3).

As in the classic vertex model, noise must be introduced to allow rearrangement. This
is done by replacing the constant tension term T0 by T0,e(1 + ηe(t)), where ηe(t) is a
coloured noise independently drawn for each edge e and given by an Ornstein-Uhlenbeck
process with characteristic time τ such that 〈ηe(t), ηe(t′)〉 = η0 exp(−|t− t′|/τ).

T1 transition cannot be produced by evaluating a change of energy. Therefore, in
simulations of this model, to know if a T1 transition is a favorable move when an edge
reaches a length shorter than a threshold, it is tested if the edge increases its length by
changing its orientation.

4.5 conclusions

The most significant difference between tissues in the soft network parameter region and
the region where a hexagonal lattice is the ground state is that in the latter, cells are always
convex, and cells with fewer neighbors tend to be smaller. Here, we proposed to use the
polygonal class of a cell as an informative category for two critical aspects of its geometry:
the cell area and perimeter. This category will be critical for our further analysis. As
compared to previous studies, we implemented a division clock and different division
rules. In particular, we considered Hertwig’s rule based on the position of the vertices of
a cell due to the biological evidence of its occurrence in epithelium development [Bosveld
et al., 2016b]. We characterized the properties of tissues grown with these different rules.
We found, perhaps not surprisingly, that tissues in which cells divide along their main
axis have fewer defects and are more ordered.

Finally, we presented a simple vertex model which has neither an energy function
nor a cell "pressure", but that produces the main features found in the variational vertex
model. It serves as a useful alternative to the classic model, and we will compare results
produced by these two models in the following chapter.
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Figure 4.12: Right: Example of a proliferative tissue simulated with the pressure-less model. The
parameters are k = A0 = 1,and η0 = 0.1, for T0 = 0.5 (top) and T0 = 1.5 (bottom). An
explicit calculation can be found in chapter 5 in section 5.2.4. Distribution of polygonal
classes in the tissue (Center) and relative average area for cells of different number of
neighbours (Left) comparing the pressure-less model and the variational model under
the parameters of case A.
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A M E A N - F I E L D A P P R O X I M AT I O N F O R D I S O R D E R E D T I S S U E

Biological tissues are, by nature, disordered. In this chapter, we present ways to analyti-
cally and numerically characterize disordered epithelial tissues modeled by the vertex
model. First, we obtain some exact relations relating mean values and dispersions of
cell areas and perimeters. We present a mean-field approximation to describe individual
polygonal classes and to describe tissues based on their distribution of polygonal classes.
An average n-sided cell is approximated as a regular polygon surrounded by n identical
cells that represent a typical cell found in the tissue. We derive an analytical expression
for the slope of Lewis’ law and predict the bulk modulus of the tissue.

5.1 analytical study of non-hexagonal tissues

Epithelial tissues are clearly geometrically disordered. Vertex model can provide several
analytical results for the simplified case of a hexagonal lattice [Murisic et al., 2015].
However, it is not trivial to provide an analytical characterization in the disordered case.
In several conditions, we can assume that a solution for the hexagonal lattice can hold in
the case of a disordered tissue. As we will show in this chapter, mechanical properties
such as the bulk modulus are reasonably well approximated by the value found in a
honeycomb lattice. In the vertex model defined by equation (2.3), a cell with area A and
perimeter p has an energy

ε(A, p) =
1
2

K (A− A0)
2 +

1
2
(Γp2 + Λp). (5.1)

Thus the energy of a tissue with N cells is entirely determined by the average area A
and perimeter p, and the dispersion of those variables, σA and σp,

E(A, p, σA, σp) = N
(

1
2

K
[
σ2

A + (A− A0)
2
]
+

1
2

Γ(p2 + σ2
p) +

1
2

Λp
)

(5.2)

From this simple formula, it is possible to obtain exact expressions for several proper-
ties, even in the case of non-hexagonal tissues, where defects modify the tissue behavior.
Considering an affine global change on the area, a pressure P can be defined from
equation (5.2) as,

61
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P = − ∂E
∂A tot

(5.3)

= − 1
2 ∑ Ac

[
∑
c

∂

∂α
ε(α2 Ac, αpc)

]
α=1

(5.4)

= − 1
∑ Ac

[
∑
c

KAc(Ac − A0) +
1
2

Γp2
c +

1
4

Λpc

]
(5.5)

P = K(A0 − A)− 1
A

[
Kσ2

A +
1
2

Γ(p2 + σ2
p) +

1
4

Λp
]

(5.6)

Although we assume a vanishing external pressure as boundary condition in our
simulations, an external pressure Pext can be included in the model by redefining
A0 → A0 − Pext/K. Or equivalently, keeping normalized parameters A0 = K = 1, the
line tension and contractility change as Λ → Λ/(1− Pext) and Γ → Γ/(1− Pext)

3/2.
Notice that in this case the length units will change. This is relevant, as it allows to easily
generalize the results for tissues under an external stress [Bonnet et al., 2012].

5.1.1 Equilibrium state

We can recover the average cell area that corresponds to zero pressure from equation
(5.6) as function of the normalized perimeter µ = p/

√
A, and dispersions σa = σA/A

and σµ = σp/
√

A, where A is the average area. Formally,

Aeq(µ, σa, σµ) = rootA

{
P(A, µ

√
A, σa A, σµ

√
A)
}

(5.7)

An explicit expression for Aeq is possible but cumbersome. Regardless, this expression
will be used for numerical calculations in future analyses. Alternatively, following the
analysis on a hexagonal lattice [Murisic et al., 2015], we can write a compact expression
for value for Λ given the area and perimeter averages A and p and dispersions σA and σp

Λ +
2
p

[
2Kσ2

A + Γσ2
p

]
= −2A

p

[
2K(A− A0) + Γ

p2

A

]
. (5.8)

The expression found in [Murisic et al., 2015] for a hexagonal network is recovered by
taking σA = σp = 0 and p = 2

√
2
√

3A . We can see in a non-hexagonal network that the
value of Λ fixing the parameter A is corrected with a term that effectively increases mean
contractility. This is expected, considering that the honeycomb is the structure that for a
given number of cells and areas to cover, it minimizes the total length. Adding disorder
will increase the density of tensile forces. In figure 5.2, we found that for the three sets of
parameters of the selected cases, the average area is smaller than the corresponding area
in the honeycomb-network case.

The exact amount that the average area per cell decreases due to the disorder of the
tissue varies with the way this disorder has been implemented. Different levels of noise
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Figure 5.1: Countour plot of the equilibrium areas for regular hexagons obtained by minimizing
the energy function (2.3) under different values of Γ and Λ. In the white area there is
no solution. The stars point to the cases that will be used as representative of different
packing in the vertex model.

and proliferation rules will produce more ordered or disordered tissue. In chapter 4, we
included a discussion about how diverse proliferation methods affect the disorder in the
system.

5.1.2 bulk modulus

One of the key characterizations we can make of the tissue is the bulk modulus. Defined
as the ratio of the infinitesimal pressure increase to the resulting relative decrease of
the volume—or the area in a system constrained to two dimensions like ours—it is a
measure of the opposition to compression of a medium. First, we can define a simplified
version of the bulk modulus by evaluating changes in the pressure deriving equation
(5.6), considering an affine rescaling of the tissue.

Ba f f = −Atot
dP

dAtot

∣∣∣
Aeq

tot

(5.9)

Here, Atot refers to the total area of the tissue, defined as the sum of the area of all its
cells, and Aeq

tot is the total area that minimizes the energy function (2.3). Subsequently,
computing the derivative and evaluating in Λ0, yield,

Ba f f =
1

2A

[
A(3A− A0)K +

Γ
2

(
p2 + σ2

p

)
+ 3σ2

AK
]

(5.10)

Where Ba f f is an affine bulk modulus, i.e. the bulk modulus related to the work done
to change the tissue scale where all cells are rescaling by the same factor. The affine
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Figure 5.2: Comparison between hexagonal equilibrium area (dotted lines) and distribution of
average area among different realizations of proliferative tissues with 60 cells, after
allowing the tissue to relax to its optimal scale. The initial state had 15 cells. In case A,
parameters are Λ = 0.12 and Γ = 0.04 ; in case B, parameters are Λ = 0 and Γ = 0.1 ; and
in case C, parameters are Λ = −0.32 and Γ = 0.04. In all cases, disorder decreases the
equilibrium area per cell, an effect that holds for all the parameters as result of equation
(5.8).

bulk modulus must be higher than the real one, as a consequence of the relaxation of
additional degrees of freedom.

Equation (5.10) accounts for an affine transformation of the tissue. In a heterogeneous
tissue, not all the cells will respond in the same way under a change in scale. This is
shown in Figure 5.3, where the affine approximation is compared with the true bulk
modulus obtained by varying the scale of the tissue and allowing its relaxation. This
produces a bulk modulus that is smaller than the affine one, even if by a small amount.
To evaluate cell actual change of energy by imposing a rescaling of a disordered tissue,
we have no option but to run a simulation where this rescaling is imposed by successive
steps, multiplying distances by a factor α, and to relax. From the variation of energy
after different values of α in the tissue, we can obtain the real bulk modulus. The bulk
modulus is defined around the equilibrium, and a non-linear effect will manifest under a
big compression or expansion. Therefore, we consider a maximum of α of 3%. Note that
the distance to the hexagonal case and the differences between the affine bulk modulus
and the one found by relaxing the tissue at different scales will vary with the level and
type of disorder in the tissue.

The expressions found so far are analytical and exact. However, they do not allow us
to go much further. In the next section, a more general method will be presented.
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Figure 5.3: Left: Scatter plot of the values of the bulk modulus obtained for tissues with 60 cells
under the parameters of case A. Ba f f is the affine bulk modulus obtained using equation
(5.10), and Br the bulk modulus obtained by fitting a parabola Ep(A) = (Br/2)(A/Aeq −
1)2 + E0 to the energy as the area changes continuously between plus and minus 3% its
optimal size. The vertical and horizontal lines show the value of the bulk modulus for
a hexagonal network Bhex , and the diagonal line is the identity. The bulk modulus is
dispersed. However, it held that for this set of parameters Bhex > Ba f f > Br . The top
right panel shows the relative average change of area for cells of different numbers of
sides when the tissue is 3% bigger (green) or smaller (red). The response is stronger
in cells with fewer neighbors. The bottom right panel show the energy landscape as a
function of the change of the average area.
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5.2 mean-field approximation

The methods and approaches presented before can describe meso and macroscopic fea-
tures of disordered tissues as the bulk modulus and effective equilibrium area. However,
they cannot provide much insight into several features of individual cells. For instance,
is it possible to theoretically predict the expected area of a cell if its number of sides
is known? The variation of the area with the number of sides is a key feature used to
adjust the parameters in the vertex model [Farhadifar et al., 2007], and gives important
information about the geometry of the tissue. In general, this approach can allow us to
characterize the vertex model under different parameters and address the interaction
between groups of cells with different mechanical properties, observing the effect at the
interface between them.

5.2.1 Individual cells

The shape of a cell in a tissue depends not only on its mechanical properties but also
on its neighboring cells. For instance, the cell apical area, depends on the number of
neighbors, as stated by Lewis’ law. A simple possible way to characterize the tissue could
be to characterize each cell in isolation. Optimizing cell area, constraining the cell shape
to a polygon, under the energy function (5.1) leads to a small difference in area between
different polygonal classes compared with the actual observed Lewis’ law, as we can
see in figure 5.4. The different sizes among different polygonal classes originate from
the fact that cells with fewer neighbors are subjected to less outward forces. Besides the
hexagonal lattice, we need to include the exterior forces of the cell.

Fortunately, we only need to include the mean approximation of the adjacent cell
to recover Lewis’ law. In such mean-field approximation, an average cell of n sides is
described by a simple system where a regular n-sided polygon is surrounded by n equal
cells with the average area Ar, as it is represented in figure 5.5. In a first approach, we
will use the predicted area for a hexagonal lattice (that is the same than one hexagonal
cell in isolation) without considering the dispersion of the network; nonetheless, the
expected area for a disordered tissue is smaller as it was shown in figure 5.2. However,
we will see that the effect on the prediction of the relative behavior between cells with
different numbers of sides is negligible.

Symmetry will impose that each edge and vertex is equivalent, and the force in the
direction perpendicular to the arriving edge will be trivially zero and in the parallel
direction will be given by,

F(A, n; Ar) = 2Tr − 2 sin
(π

n

)
[Tr + Tn(A)]− µn

n

√
A cos

(π

n

)
K(A− Ar) (5.11)
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Figure 5.4: Optimal area for an isolated (or equivalently, if possible, a tessellation of identical
polygons) n-sided cell (shaped as a regular polygon) for a different set of parameters.
The area Amin

n is obtained by minimizing the energy function (5.1) for one single cell
of perimeter µn

√
Amin

n where µn is the perimeter of a regular polygon of n sides with
unitary area. The calculation yields a positive slope as the number of neighbors increases.
However, the effect is far below the trend found in simulations and experimental data.
There is no stable 3-sided cell for case B.

Figure 5.5: Left: Scheme of the mean-field approximation. Edges are explicitly represented as two
opposed cortices, with a total tension equal to the sum of the contribution of each side.
Surrounding cells mimic an average environment. They are assigned with fixed geometry
and mechanical parameters that correspond to the values found in an average cell. Right:
Diagram of forces over the vertices of a cell under our mean-field approximation.
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where µn is the perimeter for a cell of n sides and unit area. Tn is the tension contribution
from one cell,

µn = 2
√

n tan
(π

n

)
(5.12)

Tn(A) = Γµn
√

A +
1
2

Λ (5.13)

Tr = Γpr +
1
2

Λ (5.14)

(5.15)

Here, pr is the perimeter of a neighboring cell. The model receives input from
the parameter of an average configuration (area Ar and perimeter pr), and imposing
F(A, n; Ar) = 0, we calculate the mean size of a n-sided cell embedded in the tissue.
This result will be very useful in many analyses during this work. This straightforward
model is in good agreement with simulations under a different set of parameters, as
shown in Figure 5.6. In this case, we supposed the area and perimeter of adjacent cells to
be minimal for the energy (5.1) in the case of an hexagonal cell, that is Ar = Amin

6 and

pr = µ6

√
Amin

6 where Amin
6 is the optimal area. Later on, this analysis will be refined to

predict the dispersion as well.
The agreement is remarkably good, especially in the case of polygonal classes 5,6 and 7.

As deviation for cells with fewer or more edges is to be expected given Aboav’s law, since
the average environment where a four or eight-sided cell is embedded is biased towards
cells that are not the average cell. It is conceivable to extend the present approximation
to include such correlations between neighboring cells.

Since cells are approximated as regular polygons, the present approach cannot capture
the geometry of the tissue in case C, and in general, in the soft-network region.

Lewis’ law slope

The exact expression for An is not linear and the solution of a transcendental equation.
Nevertheless, we can approximate the factor λ by deriving an equation with respect to n
equation (5.11) to obtain dA

dn . Evaluating that expression for A = A6 and n = 6, assuming
that 〈A〉 = A6,

λ =
1

A6

dA
dn

∣∣∣
n=6

=
π√

3A6µ6

2A6Γµ6 +
√

A6Λ√
3A6k + 6Γ

. (5.16)

We note that equation (5.16) allows for external stress to be applied to the tissue,
through the value of A6. Alternatively, if the goal is to obtain parameters Λ, Γ, K and A6
to model empirical data from where λ has been measured,

Λ = − µ6

π
√

A6

[
3(A6K + 2

√
3Γ)λ− 2πA6Γ

]
. (5.17)
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Figure 5.6: Lewis’s law in silico (blue bars) and deduced by a mean-field analysis (black line). Right:
Examples of proliferative tissues for different parameters. Cells with more/fewer than
six sides are marked red/blue. Six-sided cells are white. Left: Comparison between
average area for cells of different number of sides, normalized by the size of six-sided
cells. Top: Case A where parameters are Λ = 0.12 and Γ = 0.04 Bottom: Case B where
parameters are Λ = 0 and Γ = 0.1. In both cases, the value for an regular cell is the

solution for a hexagon in isolation, Ar = Amin
6 and pr = µ6

√
Amin

6 .
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Figure 5.7: Slope of Lewis’ law in case A (in green) and B (in blue). The thick black lines are the
relative size by polygonal class for each of those cases obtained as root of equation (5.11).
The dotted line corresponds to the line y = 1 + λ(n− 6), where λ is given by equation
(5.16).

In figure 5.8, the variation of the Lewis’ slope is shown in a contour plot for different
parameters. As Lewis’ law becomes stronger and we increase the value of Λ and Γ, the
expected difference among the area of polygonal classes becomes bigger.

5.2.2 Area and perimeter dispersion

We have shown that the dispersion in cell areas and perimeters determines how the
mean area will differ from the hexagonal case in equilibrium by using the expression
(5.7). Yet, the use of this expression requires knowing the relative dispersions of cell area
and perimeter. These values can be obtained from simulations, or alternatively, here we
present how using Lewis’ law and the distribution Pn of polygonal classes, we can obtain
a good prediction of the dispersion in the area (see table 5.1 ).

For an hexagonal lattice the equilibrium area A for its cells is given by optimizing
equation (5.1) considering a cell with perimeter p = µ6

√
A (values shown in for case A

and B in the column hex in table 5.1 ). We can use those values as the area and perimeter
for surrounding cells in equation (5.11), and obtain a first prediction for the area An
for each polygonal class. Now, we can predict an average area 〈A〉 = ∑n AnPn and the
dispersion as,

σ2
A = ∑

n
A2

nPn − 〈A〉2 . (5.18)

Similarly, a prediction for the average cell perimeter can be obtained assuming the
cells are regular polygons 〈p〉 = ∑n

√
AnµnPn, and the dispersion analogously σ2

p =

∑n Anµ2
nPn − 〈p〉2. Now that we have the average and dispersion for the area and
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Figure 5.8: Contour plot for Lewis’ law slope for different values of Λ and Γ predicted by equation
(5.16). In the white region there are no stable solutions.

perimeter, we impose zero-pressure using equation (5.7) that provides an equilibrium
area A = Aeq(〈p〉 , σA/ 〈A〉 , σp/

√
〈A〉), that rescales the perimeter p = 〈p〉

√
A′/ 〈A〉

and dispersions analogously. The values obtained by this procedure are shown in table
5.1 in the column mfhex, and a scheme is presented in figure 5.9.

This procedure can be repeated coming back to equation (5.11) but using the updated
value of A as input for the mean-field calculation. The result after the first iteration
is shown in table 5.1 in the column mf, and the result after succesive self-consistent
repetitions in the column mf s.c..

Those two equations are valid when the area is well predicted by the number of
neighbors. As the Lewis’ law slope λ becomes small, cells with different numbers of
sides are not significantly different in average. Therefore, the main source of the area
and perimeter dispersion comes from variations in cell shape, e.g. anisotropy. In case
C, and in general the soft-network region, we cannot be captured by our mean-field
analysis, and in particular, we cannot predict the dispersion (we would trivially predict
zero-dispersion as all the polygon types have the same mean area).

Going one step further, it would be possible to use the distribution of polygonal classes
deduced in [Gibson et al., 2006] and predict the cell and perimeter dispersion purely
from theory. However, the very simple treatment in that reference cannot capture the
changes in the distribution with different vertex model parameters, and we prefer to use
the empirical distributions obtained from our simulations. Doing so also ensures that
deviations between simulations and theory are originated by variations in cell shape.
We run an iterative process, starting with Ar equal to cell area of equilibrium for an
hexagonal lattice, and we predict values for 〈A〉, 〈p〉,σ2

A and σ2
p that we use to obtain

a new Ar by optimizing the area for equation under equation (5.7), to then be injected
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Figure 5.9: Scheme of the method to find the average area and dispersion given a distribution of
polygonal classes Pn.

Case A sim hex mfhex mf mf s.c.
Area A 0.549 0.576 0.558 0.557 0.557

Perimeter p 2.788 2.824 2.777 2.774 2.773

Disp. Area σA 0.088 - 0.092 0.094 0.095

Disp. Perim. σp 0.199 - 0.19 0.197 0.198

Case B sim hex mfhex mf mf x10

Area A 0.263 0.307 0.282 0.281 0.28

Perimeter p 1.904 2.063 1.954 1.949 1.945

Disp. Area σA 0.088 - 0.087 0.089 0.09

Disp. Perim. σp 0.309 - 0.284 0.291 0.295

Table 5.1: Mean-field predicts average area, perimeter and dispersions for tissues in-silico, for case
A and B. The columns have the numerical values found in the simulation, and the rows,
different parts of the statistic for area and perimeter. sim column is the result obtained in
simulations; hex the values for an hexagonal lattice; mfhex the computation obtained as a
result of considering Ar = Ahex ; mf refines the calculation considering for Ar the output
of the mfhex proccess; mf s.c. repeats the process self-consistently until values do not
change. The values for the distribution of polygonal classes for each case are given in the
table 4.1.
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Figure 5.10: Mean-field approximation can predict the relative change in area δAn/An of dissimilar
polygonal classes. Simulation with parameters of case A.

back in the mean-field equation (5.11) for each polygonal class, and repeat until we get
stable values. In the table 5.1 we put the values obtained using this procedure, that is
remarkably good in the aim to predict the equilibrium average equilibrium area, without
running any simulation.

5.2.3 Bulk modulus from mean-field approximation

Let us return to the figure 5.3, where we analyze the dissimilarities between the affine
bulk modulus, and the one obtained by relaxing a tissue varying the pressure. First of
all, the relative change in the area after imposing a rescaling of the tissue can be well
recovered using the mean-field approximation. If an average cell in the tissue has an
area 〈A〉, we can compute the response in various polygonal classes using equation (5.11)
when increasing the total area by a factor α, considering that the area of surrounding
cells increases with the same factor Ar = α 〈A〉. Diverse polygonal classes will change
following

An(α) = rootA {F(A, n; αAr)} (5.19)

Here, F(A, n; αAr) is the force over each vertex of a n-sided cell of area A when is
surrounded by cells with area Ar defined in equation (5.11).
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hexagonal simulation Br affine Ba f f mf correction Bm f
Case A 0.502 0.474 0.484 0.476

Case B 0.307 0.280 0.297 0.283

Case C 1.166 1.017 1.159 -

Table 5.2: Bulk modulus for a tissue for case A and B. Mean-field predicts area and dispersion
for tissues in-silico. The numerical values for the mean area found in the simulation
Ā, the average found in the mean-field approximation 〈A〉, the relative error on the
three representative cases, as well as the dispersion σA for both simulation and mean-
field approximation, for cases A and B. Case C correspond to the soft-network and our
mean-field approximation is not meaningful for the system.

The variation of energy of the tissue can be broken down into the variation under an
affine rescaling.

Ea f f =
1
2

AeqBa f f (α− 1)2, (5.20)

plus the energy drop associated with the non-affine deformations of cells in the various
polygonal classes. The work Wn(α) to take a n-sided cell from αAn(1) to An(α) can be
calculated as the integral of force over the displacement of its vertices,

Wn(α) = n
∫ An(α)

αAn(1)
F(A, n; αAr)

dR
dA

dA (5.21)

= nRn

∫ An(α)

αAn(1)
F(A, n; αAr)

1
2
√

A
dA. (5.22)

Here, Rn is the radius of a n-sided regular polygon, given by the expression,

Rn =
µn

2n

[
sin

π

n

]−1
. (5.23)

For α close to 1, F(A, n; αAr) varies linearly around its equilibrium, and we get

Wn(α) =
1
2

nRn

(√
An(α)−

√
αAn(1)

)
F(αAn(1), n; αAr) (5.24)

The total energy per cell can be calculated as,

Em f (r) = Ea f f + ∑
n

PnWn(α) (5.25)

Using the empirical distribution Pn found in the simulations and adjusting the energy
Em f (α), we can predict the bulk modulus with precision above 1%.
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Figure 5.11: Lewis’s law in silico (blue bars) and deduced by a mean-field given by equation(5.28)
(black line). Right: Examples of proliferative tissues for pressure-less model with
T0. Cells with more/fewer than six sides are marked orange/cyan. Six-sided cells are
white. Left: Comparison between average area for cells of different number of sides,
normalized by the size of six sided cells.

5.2.4 Pressure-less model

.
The same previous analysis can be done in a pressure-less model, pressented in 4.4,

now considering no pressure and a different function for the tension in equation (5.11),

F(A) = T(Ar, Ar) + 2 cos
(π

n

)
T(Ar, A), (5.26)

where Ar is the average area of the cells in the tissue; but in this case as the size of the
box is fixed, we can chose Ar = 1. Therefore,

T(Aa, Ab) = T0 + Aa + Ab − 2. (5.27)

The solution for F(A) = 0 in this case is more compact than the usual vertex model,

An = T0

([
sin
(π

n

)]−1
− 2
)
+ 1. (5.28)

The Lewis’ law slope λ has an exact and simple expression where λ is exactly propor-
tional to the tension T0,

λn =
dA
dn

∣∣∣
n
=

π

2n2
cos

(
π
n
)

sin2 (π
n
)T0, (5.29)

and in particular, λ6 = T0π/
(

12
√

3
)

.
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5.3 conclusions

Epithelia modeled as regular hexagonal lattices provide a good first approximation. But
to go further, the disorder must be taken into account. Our mean-field approximation
allows us to address disordered tissues by characterizing average features for cells of
different polygonal classes. Many features and statistics of a disordered tissue can be
obtained by combining and averaging over different polygonal classes with the right
proportion. Here, we have shown how the dispersion in areas and perimeters can be
predicted by combining the predicted Lewis’ law and the distribution of polygonal
classes. As well, we show that the optimal scale for a tissue under the vertex model
can be obtained only depending on cell area and perimeter mean and dispersion, and
derived from the same analysis; we derive a simplified bulk modulus.

Experimentally and in-silico cells are often elongated, and having an aspect ratio
different from the unit is a universal feature [Atia et al., 2018]. Ignoring this anisotropy
is an obvious limitation of the mean-field approach presented here, although of limited
consequences in the parameter regimes that are proposed to describe Drosophila epithelia.
On the other hand, this approach does not extend to the soft-network regime since cells
in this regime are far from being regular polygons, and the number of sides of a cell tells
us little about their size and perimeter.

We have also noted that our mean-field approximation could be tweaked to refine
its predictions or cover more diverse situations. For instance, to capture that the mean
neighborhood varies depending on the polygonal class of a cell, by changing the mean
area and perimeter according to the number of sides of the cell considered, as stated by
Aboav’s law. Or, as we will present in chapter 6, allowing for non-uniform mechanical
parameters.
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In this chapter, we study the interaction between cells with different mechanical pa-
rameters under the light of mean-field approximations—introduced in the previous
chapter—and topology. First, we study the effect of diverse mechanical parameters in
the vertex model for isolated cells. The effect of differences in proliferation rate, and
how they affect the local topology is also examinated. After this analysis of isolated cells,
we tackle the problem of a group of cells. We studied the effect of a cable of tension
surrounding a cluster of cells. We propose effective Laplace’s law for this discrete system
and present general properties on the topology of these clusters embedded in a tissue.
Finally, we integrated all those ingredients to study the effect of a superficial tension on
a cluster of cells.

6.1 isolated cell with different parameters

6.1.1 Isolated cell with different mechanical properties

The simplest example of a tissue with mechanical heterogeneity is an isolated cell that
differs in its parameters from its environment. Our mean-field approach suits the problem
perfectly, considering an isolated cell with a particular value of prefered area Ac

0, line
tension Λc, or perimeter elasticity Γc, leads to the same equation (5.11) as before, but the
tension Tn(A) and difference of pressure ∆Pn associated with the cell are now given by

Tn(A) = Γcµn
√

A +
1
2

Λc, (6.1)

∆Pn = K [(A− Ac
0)− (Ar − A0)] . (6.2)

The resulting dependency of the area A on the parameters is illustrated in figure (6.1),
showing as expected, that increases with the preferred area Ac

0, and it decreases with the
tension. For a given number of sides n, multiple combinations of parameters produce
the same area. These satisfy a simple linear relation,

Λc = −2Tr

[
csc
(π

n

)
+ 1
]
− 2Γcµn

√
A +

µn

n

√
A cotg

(π

n

)
∆Pn, (6.3)

which expressed in this form gives the change in Λc to keep the same area when the
other two parameters are varied. Nevertheless, the above analysis does not account for
the fact that bigger cells are expected to have more neighbors than smaller cells.

Also, the fact that there are redundant changes of parameters that produce the same
change in the cell area will limit our ability to infer mechanical parameters from experi-
mental data (cf. chapter 7).

77
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Figure 6.1: Right: Equilibrium area of a 6-sided cell under the function of the value of Λc for
different preferred areas. Left: Contour plot of the variation of the area relative to the
area of a normal cell under those parameters. All the plots for Case A Λ = 0.12 and
Γ = 0.04.

6.1.2 Non-proliferative cell

Besides their different mechanical properties, cells may also differ from their environment
by their rate of proliferation. As we show in chapter 4, the main element driving geometry
is mechanical forces, but differences in proliferation also influence the geometry of
tissue, more clearly in the extreme case, considered here, of a non-proliferative cell in a
proliferating tissue.

After a cell divides, the two daughters have equal or fewer neighbors, while two of
their neighbors gain an edge. Non-proliferative cells will constantly gain sides from
the division of their neighbors. Without division to reduce their number of sides, only
neighbor exchanges keep the cells from gaining neighbors indefinitely. A simple model
to describe the process reads,

ds
dt

=
rdiv

3
s− rT1(s− 6), (6.4)

where s is the number of sides of the non-proliferative cell, rdiv the rate of proliferation
for the surrounding cells, and the factor 1/3 assumes that surrounding cells are 6-sided
and that in each division two sides at random are picked to create a new junction (factor
that can be changed if one of those hypothesis is false). rT1 is the rate at which non 6-
sided cells undergo a T1 transition. This equation, with the initial condition s(t = 0) = 6,
has the simple solution

s(t) = 6
3rT1

3rT1 − rdiv

[
1− rdiv

3rT1
exp

[
−
(

rT1 −
rdiv

3

)
t
]]

. (6.5)
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Figure 6.2: Temporal evolution of expected area (left) and number of sides (right) for a non-
proliferative cell embedded in a proliferative tissue. As the cell gains neighbors, its
area increases until it reaches a steady-state. Three values for the mean division time τ
have been tested. The dashed lines correspond to the fit of equation (6.5), considering
rdiv = 0.703/τd, as this is the effective growth rate (see 4.1). The simulations were run
with the parameters of Case A. After relaxing the tissue from a Poissonian distribution, a
cell is chosen at random as non-proliferative, and during 400 units of time, the tissue
around proliferates.

This dynamics simplifies the problem and assumes uncorrelated times for cell divisions.
In our simulations, this model captures well the dynamics observed for isolated non-
proliferative cells, as shown in figure 6.2. The rate rT1 cannot be directly measured, and it
is a function of rdiv, since faster proliferation increases the tissue disorder, which induces
more T1 transitions.

Cells that do not proliferate are slightly bigger on average, even compared to regular
cells of the same polygonal class, as shown in figure (6.3). Their distribution in polygonal
classes is different from the distribution of proliferative cells. They have an average
number of sides that increases as the proliferation rates increases.

6.2 cluster of cells

6.2.1 Compressed isolated cluster

The bulk modulus analysis presented in chapter 5 was performed by a system where the
pressure is applied homogeneously in space. When forces are applied over a bounded
cluster, the deformations maybe even more non-uniform, especially if the pressure is
applied with a tension cable. To well appreciate this, figure 6.4 shows the effect of
increasing the line tension Λs in the frontier of a cluster of hexagonal cells with different
numbers of cells. Most cells change their size but keep their hexagonal shape, except
cells in the boundary, which undergo stronger changes in shape than cells in the interior.
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Figure 6.3: Left: Relative area for different polygonal classes with standard deviation as error bar
(the small offset is for clarity). Right: Histogram of polygonal classes. For both graphs,
the average for regular cells in the tissue is shown in black. In colors, the cases of
non-proliferative case embedded in a tisssue that proliferates with mean division time τd.
These statistics are from the same simulations than figure 6.2.

Clusters eventually collapse as the value of Λs increases. Bigger clusters resist bigger
tensions.

6.2.2 A Laplace’s law for a discrete system

Laplace’s law, also called Young-Laplace law, relates the pressure difference between the
two sides of a continuous surface to its shape. In two dimensions, a surface with tension
T facing a change of pressure ∆P, will locally deform with a curvature R following a
simple equation,

∆P =
T
R

. (6.6)

How this simple continuous law applies to a discrete system is not straightforward.
The work done by the boundary is proportional to its length. The question is how to
coarse-grain to express force balance at the tissue scale, as an apparent paradox emerges:
an irregular surface should induce a bigger drop in energy if an extra tension is applied,
given that the perimeter of the cluster is bigger and the tensile energy proportional to it.

We can break down the energy change around the equilibrium area Aeq and perimeter
Leq induced by a surface tension δT into: i) an energy associated with affine changes in
area, accounted by a harmonic potential for the area A around its equilibrium Aeq with
its constant proportional to the bulk modulus B, ii) a term proportional to the length
and excess of surface tension, obtained by simply multiplying the length of the border L.
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Figure 6.4: Top: Relative average cell area versus relative tension on the boundary for different
cluster sizes. Area and tension are normalized by their values before adding the cable.
Bottom: Example of the cluster geometry for different boundary tensions in the cable for
the case of diameter 7dhex . The vertical lines in the top panel correspond to the tension
levels shown in the bottom panel.

Λs =2%Λ0

area change

0.004
0.003
0.002
0.001

0.000
0.001
0.002
0.003
0.004

roundness change

0.00032
0.00024
0.00016
0.00008

0.00000
0.00008
0.00016
0.00024
0.00032

Figure 6.5: Relative change in the area (left) and roundness (right) for individual cells in an example
of cluster comparing before and after relaxing with a cable of tension Λs = 2%Λ0 = 0.024
in the edges of the boundary. The change of area, calculated as the ratio between the
area difference and the original area, is stronger in cells near the border. The change
of roundness, defined as the ratio between the roundness difference and the original
roundness.
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Where we have used L that the perimeter L is a function of the area A. The total energy
of the system reads,

Elap =
BAeq

2

(
1− A

Aeq

)2
+ L(A)δT + E0. (6.7)

We can approximate L(A) as the perimeter rescaled to the new clone size. Here, it is
convenient to define the roundness of a cluster with area A and perimeter L as ρ = 4π A

L2 ,
which measures how circular it is (in a circle ρ = 1 and in line ρ = 0). Defining as well
the effective radius Re f f =

√
A/π as the radius of a circle with the same area than the

cluster A, the perimeter is given by L(A) = 2π
√

ρRe f f (A). The minimum of equation
(6.7) satisfies,

∆P = B
(

A
Aeq
− 1
)
=

dL
dA

δT =
δT√

ρRe f f (A)
. (6.8)

Equation 6.8 predicts the change of area in a cluster of cells induced by a superficial
tension (see figure 6.6). We recover the continuous Laplace’s law (6.6) in the limit of
ρ = 1. However, the change in area is not uniform, and cells exhibit bigger changes in
area and shape near the boundary, as shown in figure 6.5. The change of the area of cells
in the interior far from the clone boundary is better predicted by a smooth perimeter,
corresponding to the perimeter of a circle that has the same area as the cluster L = 2

√
πA.

Substituting in (6.7) and minimizing for A yields,

B
(

A
Aeq
− 1
)
=

δT
Re f f (A)

, (6.9)

where we defined the effective radius. This suggests that the cells in the interior of the
cluster do not sense the details of the geometry of the surface of the cluster; instead, they
only sense a homogeneous force similar to a pressure applied over a smoothed surface.
In figure 6.6 those two predictions provided by equation (6.8) and (6.9) are compared.

6.2.3 Geometrical relations between interior and outward angles

In the vertex model, a cluster of cells defines a closed curve formed by discrete edges.
A general property in a polygon is that external angles must add up to 2π radians (see
figure 6.7). As we are interested in studying clusters with mechanical differences with
their environment, there are two relevant categories of angles: internal (or convex) angles
and outward (or concave) angles. If tensions in the interior of the clone are big, outward
angles will tend to be smaller than internal, and if tensions in the boundary are big, then
both types of angles will straighten. With this distinction, we can write,

∑
i:internal

(π − θi)− ∑
j:outward

(
π − θj

)
= 2π (6.10)
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Figure 6.6: Scatter plot comparing the rate of compression δA/(AδT) obtained in simulations with
parameters of case A of clusters of different sizes and our predictions. The size of the
clone is represented by its effective radius Re f f =

√
A/π in the x-axis. Normalized by

the average effective radius of a single cell rcell =
√

0.55/π. We compare the predictions
of equation (6.8) (red dots) with the rate of compression of the whole cluster (blue dots).
As well, we compare the prediction of equation (6.9) (orange dots) with the rate of
compression of interior cells (green dots), defined as cells whose centers are at least a
distance 6re f f from the surface. The continuous lines are the values that predicted by
equation (6.8) considering the average roundness (blue), and by equation (6.9) (black).
The cluster is prepared by taking all the cells inside a radius and adding cells that share
most of their perimeter as part of the surface. The average roundness is ρ = 0.61. The
cable in these simulations has a tension 4%Λ.
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Figure 6.7: Left: Example of a small cluster and the angles over its surface. Right: Examples of a
compact cluster in violet, and a non-compact cluster in red, with one cell that is only
connected with one other cell in the group.

We can see that not only tensions influence the value of the boundary angles, but also
topology. If the number of one type of angle increases and the other remains constant,
then the average of the difference between the mean of each category must increase.

6.2.4 Compact clusters

The following analysis is more straightforward in the case of a compact cluster, i.e. a
cluster where each cell has at least two neighbors that also belong to the cluster (see
figure 6.7 for an example). Moreover, the analysis assumes and is more accurate for
clusters that tend to be round, as produced by surface tension. Round clusters also tend
to be compact in the above sense.

In compact clusters, by definition, each interior angle θi matches with an arriving
junction between two adjacent cells, and each outward angle θj matches with a junction
between two inner cells. Then, if there are Ns cells in the surface of the cluster and Na
cells adjacent to the cluster we can write,

Na
(
π − θ̄in

)
− Ns

(
π − θ̄out

)
= 2π (6.11)

where, θ̄out and θ̄in are the mean interior and outward angle respectively. This relation
constrains the value of the mean angles θout and θin.

6.2.5 Topological approximations

Now that we can relate angles and the number of cells at both sides of a cluster boundary,
we can go a step further and estimate those numbers from simple geometrical features.

A first property that produces an exact relation between the number of cells in the
surface of the cluster Ns (i.e. cells that have as neighbor at least one cell outside the
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cluster), and the number cells adjacent to the cluster Na can be obtained by simple
topological arguments. For the cluster, the Euler equation states that v + c− e = 1, where
v is the number of vertices, c the number of cells in the cluster, and e the number of edges
of the cells part of the cluster. In the case of trivalent junctions we have 3v = 2e. In the
case of a cluster we have vertices connecting only two edges,therefore 3v = 2e + Na, from
which we get 3c− e = 3− Na. On the other hand,e = (n̄c + Ns + Na)/2, where n̄ is the
mean number of sides for the cells in the cluster. Therefore, we obtain the exact relation,

n̄ = 6 +
Na − Ns − 6

c
(6.12)

We can predict the average number of sides per cells in the cluster by only knowing
the total number of them and the difference between the number adjacent and surface
cells. The quantity q = Na − Ns − 6 is a topological charge of the cluster, i.e. the number
of edges that need to be added or removed to have six sides on average.

We can approximate the numbers Na and Ns by supposing that the cluster has a round
shape, c cells inside with average area ac, and regular cells with area a0. The number of
cells adjacent to the clone can be approximated by counting the number of hexagonal
cells that can be packed along a perimeter. Considering a round clone, its perimeter can
be approximated as the perimeter of a circle with the same area Lc = 2πR , with radius
R =

√
cac/π. For the outer (and respectively inner) ring of cells, dividing this length

by the width—distance between two opposing sides—of an hexagon of the area of the
cells at each side (ha =

√
a0
√

3µ6 for an adjacent cell and hs =
√

ac
√

3µ6 for a cell in the
cluster). We consider an augmented radius by half cell diameter for the outer ring, and
respectively, a reduced radius for the inner ring, which gives a difference of ±π/2. This
is an approximation, and since the difference must be six on average in a uniform tissue
(from equation (6.12)), we replace the ±π/2 by 3 to recover the exact result in that limit,

Na =
Lc

ha
+ 3 (6.13)

=

√
2π
√

3
√

c
ac

a0
+ 3 (6.14)

Ns =
Lc

hs
− 3 (6.15)

=

√
2π
√

3
√

c− 3. (6.16)

We compare these approximations with simulations in figure 6.8, and find reasonable
agreement. They slightly underestimate the number of cells since clones are not perfectly
round.

6.3 interaction between heterogeneous cells

Finally, we have all the ingredients to address the initial problem from the theory: Can
we predict the geometry of cells in an epithelium when they differ in their mechanical
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of cells adjacent to a clone Na and in its surface Ns and the actual value, for a set of
clusters that proliferate under different values for the surface tension. Edges in the
boundary have a line tension Λ0 + Λs, where Λ0 = 0.12 is the default value for case A.

a

c

b
1

2

3

Figure 6.9: To write equations (6.17) and (6.18) for a given vertex, the labelling of cells, edges, and
angles presented in the figure is used.
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Figure 6.10: Simple geometry that can represent the properties in the surface of a large cluster
of cells, as the frontier of two domains of cells: regular average cells of area Ar and
perimeter pr in white, and light violet cells representing cells in the clone of area A and
n sides. In the frontier of the two domains of cells, a cable of tension Λs is added. Two
degrees of freedom are captured by the outward angle β and internal angles γ formed
in the frontier.

parameters? While the predictions cannot be expected to be exact, and need to be tested
against simulations, it turns out that we can predict many relevant features with relatively
simple expressions. The key will be, as before, to replace the details of individual cells
by suitable averages, defined here for different classes of cells, to express force balance in
the tissue. In general, the force equation in a vertex is given by the tension at their three
edges and the difference on pressure,

F|| = T1 + T2 cos(θ1,2) + T3 cos(θ1,3)

+
1
2

l2∆Pb,a sin(θ1,2) +
1
2

l3∆Pb,c sin(θ2,3) (6.17)

F⊥ = T2 sin(θ1,2)− T3 sin(θ1,3)

−1
2

l1∆Pc,a −
1
2

l2∆Pa,b cos(θ1,2)−
1
2

l3∆Pb,c cos(θ2,3) (6.18)

Where F|| designates the projection of the force over the direction of the edge 1 and
F⊥ designates the projection perpendicular to this direction, and is positive towards the
direction of the edge 2. li is the length of the edge i = 1, 2, 3, θi,j the angle between the
edge i and j. ∆Px,y the difference in pressure between cells y and x.

6.3.1 Mean-field approximation for a cluster of cells

The simplest geometry that we can consider to capture the forces at the interface between
mechanically different cells is presented in figure 6.10. This geometry can represent
diverse situations, like the interface between cells mechanically divergent. Here, we will
consider the case of a cluster of cells that is compressed by a cable of constant tension
Λs on the surface. There are only two types of vertices, corresponding to internal and
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Figure 6.11: Solving the system of equations (6.20),(6.21) and (6.22) for different values of Λs and
c = 12. Dotted lines are results from simulations. Left: Relative change on area as the
tension in the surface increases. The area decreases, but not at the same rate than in
the simulations. Right: Change on surface angles. Both of them get straighten by the
tension as expected.

outward angles. In equilibrium, setting the force F|| as defined in (6.17) to zero for these
two classes of vertices leads to,

0 = 2Tr − 2 cos
(γ

2

)
[Tr + T(A) + Λs]− lK(A− Ar) sin

(γ

2

)
, (6.19)

0 = 2T(A)− 2 cos
(

β

2

)
[Tr + T(A) + Λs] + lK(A− Ar) sin

(
β

2

)
. (6.20)

(6.21)

For these equations we can derive the inner and outward angles, by first computing the
area A using Laplace’s law, then approximating the tensions by their values for hexagonal
cells, T(A) = Γµ6

√
A + Λ/2 for cells in the cluster and Tr = Γµ6

√
Ar + Λ/2 for regular

cells. Computing the area of the cells from equation (6.9), which idealizes the border
of the cluster as a circle with the same area (with an effective radius Re f f =

√
cA/π),

recovers the correct trends in areas and angles, but underestimate compression inside the
clone (figure 6.11 ). Indeed, we have found in section 6.2.2 that the compression is better
predicted by taking into account the full length of the border. There is no simple way to
predict this full length, but if we take the average cluster roundness ρ from simulations
(see figure 6.12), and use the perimeter L = 2π

√
ρRe f f in equation 6.8 yielding

B
(

1− A
Ar

)
=

Λs√
ρRe f f

(6.22)

we find a close agreement with simulations, in terms of both compression and changes
in angles as the tension increases, as shown in figure 6.13

The angles vary accordingly to our intuition: An increase in tension makes them flatter.
However, they do it at a different rate, with the outward angles being more responsive
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Figure 6.12: Roundness of clones subjected to different levels of surface tension.

Figure 6.13: Solving the system of equations (6.20),(6.21) and (6.22) for different values of Λs and
c = 12. Dotted lines are results from simulations. Left: Relative change on area as the
tension in the surface increases. Right: Change on surface angles. Both of them get
straighten by the tension as expected.

than the internal ones. The topology strongly affects the response to an increase in
tension at the clone boundary. We saw as well as its influence in equation (6.11) that
constrains the summation of total angles.

6.3.2 Two identical interacting cells

The exact solution of two interacting cells of diverse polygonal classes can only be
addressed by actually solving over the equations (6.17) over all their vertices. No
symmetry allows us to write a simple system. A simplified system for which explicit
analytical calculation can be performed, is formed by two identical n-sided cells sharing
an edge of length l (that is a chord in the circle of radius r which contains the other edges



90 clone inclusion

Figure 6.14: Diagram of our model for two identical cells interacting, showing the variables used to
describe their geometry.

as well). Each vertex is at a distance r of the center of the circle. This gives the following
values for the angles and edges depicted in figure 6.14,

ωl = 2 arcsin
(

l
2r

)
(6.23)

ω =
2π −ωl

n− 1
(6.24)

l0 = 2r sin
(ω

2

)
(6.25)

A =
r2

2
[(n− 1) sin(ω) + sin(ωl)] . (6.26)

ωl is the center angle associated with the edge of length l, ω the center angle associated
with the other edges, l0 is the length of the other edges of the cell, and A the cell area.
Here, we have only two types of vertices, the two belonging to both cells, and the ones
that only correspond to one cell. In equilibrium, setting the force F|| as defined in (6.17)
to zero for these two classes of vertices leads to,

0 = 2Tr − 2 cos
(ω

2

)
[Tr + T(A) + Λs]− l0K(A− Ar) sin

(ω

2

)
, (6.27)

0 = 2T(A) + 2 cos
(ωl

2

)
[Tr + T(A) + Λs]− lK(A− Ar) sin

(ωl
2

)
. (6.28)

(6.29)
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Figure 6.15: Top: Interaction between two cells for different values of their number of neighbours
n. The dotted lines correspond to the values obtained with the geometry of a cell in
isolation. Angle corresponds to the external angle between the two cells. Length to the
length of the shared junction. Bottom: Examples of the geometry obtained for different
pairs of cells of the polygonal classes 4 to 8.
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Cells bigger than the typical cell will have a bigger perimeter, thus a bigger tension
under the vertex model. Then the angle β = 2(π −ωl) between the two interacting cells
will be flatter. That the effect remains limited may explain in part why the mean-field
approximation is successful in predicting the size of cells according to their number
of edges, even though it ignores correlations between neighbors, which are replaced
by average cells. Even in a relatively extreme case, for instance, two eight-sided cells
interacting together, the effect on their area and geometry is small. And the only case
where we observe a significant difference is a pair of four-sided cells, that is precisely
the case where the area predicted by the mean-field approximation deviates most from
simulations.

6.4 conclusions

In the previous chapter 5, we introduced our mean-field approximation and applied it to
address cell heterogeneity. Simple models can capture the average geometry of isolated
cells that differ from their surroundings in mechanical properties or proliferation rate,
or clusters of cells under a cable of tension. How a tension cable generates pressure
unveils interesting aspects of our discrete system that a continuous approximation cannot
properly capture, as we saw in section 6.2.2.

Our mean-field approximation is based on the idea that beyond the many particular
different topologies and geometries, if there is a way to group vertex under a meaningful
category, then we can study the average vertex for each case and unveil how the average
case will behave. Our approximation is limited to cases where it is possible to exploit
this approximate symmetry.

Not every aspect can be addressed under this mean-field approximation: topology is
still elusive to analysis, it strongly depends on the way cells proliferate - to mention one
factor. We found that a critical ingredient to predict the effect of a cable of tension over a
cluster of cells is knowing how round it is.

The framework that we have developed allows us to understand in the context of the
vertex model how each parameter affects the geometry of cells. Simple equations give
us a good approximation of the geometry and topology of cells that differ mechanically
from their environment. These tools can be applied to experimental data, as we will see
in chapter 7.



7
M O D E L I N G S H AV E N B A B Y M U TA N T C L O N E S

In this chapter, we will apply the tools developed to understand tissues with a hetero-
geneous array of cells to analyze the growth of clones in the Drosophila notum in an
experiment performed in the group of François Payre (University of Toulouse) [Soulard
et al., 2019]. Their differentiation is in one case promoted prematurely (activator case or
ovo B clones), or delayed (repressor case or ovo A clones). First, we present a geomet-
rical analysis of target features and reproduce them using the vertex model with clone
inclusion. We explore the space of mechanical parameters in the vertex model, searching
for the parameters or region of parameters that can accurately describe the experimental
findings. Doing this, we discovered an ingredient that was missing in the activator case:
cells adjacent to the clone tend to divide along an axis that is perpendicular to the surface
of the clone, limiting the addition of new neighbors to the clonal cell. Simulations are
compared with our mean-field approximation with satisfactory results.

7.1 experimental analysis

In this section, we will show the main features found in Shavenbaby mutant clones,
obtained from the segmentation of experimental images and compared to control clones
(examples of those are shown in image 7.1).

7.1.1 Adjusting parameters to model our experimental data

For our experimental analysis, we have used three sets of images: control, repressor, and
activator. For each of those cases, we have experimental data at two different stages: at 20

hours and 38 hours after the white puparium stage. All the mutants were induced six hours
before this stage. By observing the mean area by polygonal class, we chose parameters
that reproduce the Lewis’ law in images at 20 hours of development. We found that the
parameters for case A that well represent the wing disc epithelium [Farhadifar et al.,
2007] is also a good set of parameters to model our experimental data (see figure 7.2).

In all our analyses, we only consider core cells, i.e. cells that are surrounded by other
cells visible in the same image. Also, we excluded clones where one or more cells are in
contact with a precursor sensory organ.

7.1.2 Labeling elements in the tissue with respect to the clone

We will classify cells and junctions in categories, according to their degree of topological
separation with the clone surface: edges in the surface get the index e + 0; edges

93
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Figure 7.1: Left: Example of image obtained from experiment [Soulard et al., 2019]. This example is
a repressor clone at 38 hours. Right: Skeletonatized image where cell boundaries are
detected, obtained by processing the image at the left.
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Figure 7.2: Relative area by polygonal class, comparing experimental images at 20 hours and
simulations for case A. Simulations show very good agreement with simulations under
parameters for case A.
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connecting to a vertex in the surface get the index e− 1 if they belong to the clone, or
e + 1 if they belong to cells adjacent to the clone, etc. Analogously, cells with edges
defining the surface of the cluster get the index c− 1 if they belong to the clone, or c + 1
if they are adjacent to the clone. Note that this is a topological measure of distance to
the clone, which may differ from an ordering based on metric-distance. An illustrative
example is shown in figure 7.3.

This handy notation allows us to generalize and designate new categories easily. For
instance, e > 0 will denote the union of the categories e + n with n > 0 and represents all
the edges that do not belong to clonal cells. In the same way, e > 2 denotes the category
of edges that do not belong to any cell in contact with the clones.

7.2 simulating a clone

To simulate clones, we choose the value of the mechanical parameters associated with
clonal cells to differ from regular cells. The latter keep the value fitted for case A, i.e.
preferred area A0 = 1, cell perimeter contractility Γr = 0.04, and line tension Λr = 0.12.
Edges will be classified into three categories: regular, surface, and interior. ’Regular’ are
the edges that connect two regular cells (e > 0), and they will keep the default value
Λ0; ’interior’ edges, are those that connect two clonal cells (e < 0), and may vary in
their value Λc; and ’surface’ edges, these connect a clonal cell and a regular cell (e + 0),
and will take the value of the average between Λr and Λc, plus an imbalance Λs. As a
summary, the effective Λ at each edge given the position is,

regular e > 0 Λ→ Λ0 (7.1)

surface e + 0 Λ→ Λs +
1
2
(Λc + Λ0) (7.2)

interior e < 0 Λ→ Λc. (7.3)

In this section, the relative area is explored as the preferred area A0 and the value of
line tension in the surface of the clone Λs vary, given a fixed value for the line tension in
the clone Λc.

Although cell elimination may play a role in the experiments, for simplicity we chose
to exclude it from the model. To prevent cells from being compressed to the point where
they collapse, the energy function is modified to diverge at area zero. How pressure
varies far from the equilibrium is not a trivial problem, and we have no reason to stay
attached to the choice. We find convenient to modify the vertex model energy function
as follows,

E = ∑
edges

Λele + ∑
cells

1
2

Γc p2
c + ∑

cells

1
2

K (Ac − Ac
0)

2
[

1 +
ε

A2
c

]
. (7.4)

The parameter ε controls how strong this avoidance of compression is. The chosen
value is ε = 0.001. With such a small value, the effect on the behavior of the model is
negligible, except when a cell approaches exclusion.
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Figure 7.3: Illustrative image of a tissue with examples of edges and angles labels. The indices are
a measure of how topologically far an edge or a cell is from the surface of the clone.
Edges on the surface of the clone are labeled e + 0. Cells that have at least one edge e + 0
are labeled c + 1 if they do not belong to the clone, and c− 1 if they do. The relevant
angles are in the surface of the clone, and we label them as in/ out if they are in the
interior/exterior of the clone.



7.3 activator clones 97

Control Activator

3
8

 h
o
u

rs
  
  

2
0

 h
o
u
rs

Figure 7.4: Examples of activator and control clones at 20 hours and 38 hours.

7.3 activator clones

7.3.1 Experimental analysis

In the activator case, cell division is prematurely arrested, and clones usually comprised
of one or two cells. Examples of these clones compared with control clones are shown in
figure 7.4. The most noticeable characteristic of clonal activator cells is that they tend
to be bigger than wild-type cells, particularly in unicellular clones, as it can be seen in
figure 7.5. We will analyze the unicellular and bicellular cases separately. Clones with
more than two cells are rare at 38 hours.

As expected, unicellular clones tend to have more than six neighbors. On average,
almost seven neighbors are found in our data set. Surprisingly, cells in bicellular clones,
even though they are on average almost as big as seven-sided WT cells, have just above
six sides on average, as it can be seen in figure 7.6.

Making use of the force inference tools introduced in the background section, we
estimated the relative tensions among diverse categories of edges. We used two different
methods. However, here we focus on just one of them [Chiou et al., 2012], as the results
obtained with the two methods are consistent. Junctions in the clone are slightly bigger
compared to the direct neighbors e + 1 (figure 7.7). In the case of bicellular clones, the
interior edges are inferred to have a much smaller tension. The dissimilarities in the
inferred tension are strongly correlated to differences with average angles at various
positions of the tissue, which are of 120°on average in a tissue where three edges meet
each other (see figure 7.8). The low tension in the interior edges e− 1 is consistent with
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Figure 7.5: Analysis of the average and distribution of cell areas comparing clonal cells (c < 0) and
WT cells (c > 0). In the unicellular activator case (top), clonal cells on average have
an area almost twice bigger than regular cells. In the bicellular activator case (bottom),
clonal cells are slightly bigger than WT cells. The y axis count the number of cells for
clonal cells, and WT cells are normalized in arbitrary units.
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Figure 7.6: Distribution of polygonal classes (left) and number of neighbours (right) for cells given
their relative topological position to the clone in the activator case Top: Unicellular
clones. Bottom: Bicelullar clones.

the flat out angle found in those clones, as well as with the longer edge that separates
clonal cells, as shown in figure 7.7.

7.3.2 Target features

In our simulations, we will aim to find the right parameters to obtain clones that are
geometrically similar to our typical experimental examples. In particular, our target will
be to reproduce the cell area and the number of neighbors for the case of unicellular
clones. In addition to those two features, in the case of bicellular clones, we will aim to
reproduce the mean outward angle and the average length of the edge category e− 1
(between two cells). Table 7.1 makes a summary of all those values. We will accept values
within a tolerance around the average value. This tolerance will be twice the standard
error.

Many parameters may be compatible with each of those values. Here we will present
our simulations in contour plots where the compatible regions are highlighted with a
color mask.

Our collaborators have reported that clonal cells often have their cell cycle disrupted
[Soulard et al., 2019]. They develop until G2 but fail to complete mitosis, as revealed by
the accumulation of nuclear material. For this reason, we expect that a proper model
of ovo B clonal cells will have a bigger value for the preferred area Ac

0. Moreover, the
accumulation of actin and myosin at the clone boundary suggests that the values for
the line tension in the surface Λs and Λc may be divergent. We run simulations with
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Figure 7.7: Average length for edges in diverse positions relative to the clone in the activator case at
38h, for unicellular (left) and bicellular (right) clones. The lengths have been normalized
with the global average.

Activator 38h

Figure 7.8: Left: Example of clones for activator case at 20 hours and (top) 38 hours (bottom). Center
left: Vertex representation of the same clone with the edges colored by their inferred
tension. Center right: Average of inferred tension for edges in different positions relative
to the clone. In this case, we observe that in both cases, the tensions in the interior of the
clone are lower than in the exterior. The surface has a tension higher than the average
over the edges directly adjacent to the clone e + 1, but not significantly higher than edges
far away from e > 3. The differences are more noticeable at 20 hours. Right: Box plot of
angles on the surface of the clone. The dotted line is 120 degrees.
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Unicellular color Value Tolerance
Area Red 1.65 ± 0.32

Neighbors Blue 6.8 ± 0.47

Bicellular color Value Tolerance
Area Red 1.18 ± 0.25

Neighbors Blue 5.89 ± 0.49

Angle out Green 127.35 ± 7.47°
Length e-1 Purple 1.39 ± 0.18

Table 7.1: The experimental values measured for activator clones at 38 hours. Statistics for unicellular
and bicellular clones are shown separately. Area and length are normalized by the area of
cells c + 2 and the length of edges e + 3 respectively. The tolerance corresponds to twice
the standard error. For each feature, the color that will be used to highlight the region of
compatible parameters is shown in the second column.

parameters taken from a grid. For points in between, the value is estimated by linear
interpolation.

Simulations are run for a fixed time, starting with 20 cells. The tissue relaxes, and then
one cell is chosen at random as a clonal cell. In the case of bicellular clones, this clonal
cell will undergo a cell division after a short relaxation time before it is assigned its new
mechanical parameters. For both cases, unicellular or bicellular, the clonal cells do not
divide.

7.3.3 Unicellular clone simulation and division bias

It is not as simple as one might expect to model a single clonal cell. The only features
we can model for an isolated cell are the number of sides and areas. Nonetheless, the
simple analysis presented in section 6.1 is not enough as it does not predict the number
of sides, and simulations showed that there were no parameters that matched both of
these features.

In figure 7.9 we observe, unsurprisingly, that the cell area increases with increasing
preferred clonal area Ac

0, and decreases with the additional line tension Λs. The same
trend is observed for the number of neighbors, and the internal angle cannot but follow
the average number of neighbors as it is constrained by basic geometry. There is no match
for the area and the number of neighbors as we vary the preferred area Ac

0 and the line
tension associated with the clonal cell Λc. Unicellular clones have more neighbors than
a WT cell, but not as much as their area suggests. Even more surprising, if we analyze
this using the model (6.4) in chapter 6 for a sub-proliferative cell: the neighboring cells
divide, the clonal cell continuously gains new sides, and it is predicted to have more
neighbors than a WT cell with the same area. An extra factor must be added. We propose
that division in cells c + 1 around the clone does not follow Hertwig’s rule. Instead, cells
choose an axis that avoids adding a new neighbor to the clone; they preferentially divide
along a division plane perpendicular to the clonal surface. Simulations with this bias
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show that in this case, not only we can find parameters compatible with the experimental
values, but that there is almost a complete overlap in the regions where the area and
number of neighbors coincide with the experiment (see figure 7.9).

Under biased division, clonal cells with no extra tension are still more likely to be
smaller than a normal cell, an opposite trend to the one observed in the unbiased case.

Back to the experimental data, we found that the main axis of cells adjacent to the
clone c + 1 are oriented parallel to the surface of the clonal cell with whom they are in
contact, as can be observed in figure 7.10. In-silico, regardless of the parameters, the
tissues with the unbiased division are oriented against the surface of the clone, providing
more evidence for the bias in cell division,

With this evidence, our collaborators measured and corroborated our hypothesis: cells
around the activator clone did consistently have biased divisions (see figure 7.11 ).

Explaining the mechanism and origin of this division bias are beyond the scope of this
work, but they might be related to the fact that cell division in epithelia is not a process
that involves the mitotic cell alone but also its neighbors, which react to support the
division of the mitotic cell during cytokinesis [Pinheiro et al., 2017]. Also, it has been
found that a cable at compartment boundaries orients division of cells in contact with
it, preventing them from creating a new junction towards the cable [Scarpa et al., 2018].
This example of mechano-sensing factors affecting cell division is consistent with our
results here. However, as we will see later, we do not find the same bias in the repressor
case as both of those explanations would suggest.

7.3.4 Bicellular clone

Having uncovered cell division bias, we consider now the case of bicellular clones. This
case will not necessarily be modeled by the same parameters as the unicellular case.
In this situation, two additional features are the targets for our model, the outward
angle and the internal length. One new mechanical parameter appears, the line tension
associated with the clonal cells Λc, that previously was redundant with Λs.

The trends regarding the change in area and number of neighbors when changing the
surface line tension Λs and preferred clonal area A0 are the same as for the unicellular
clone. The line tension of clonal cells Λc is redundant and has the effect of displacing
the diagram shown in figure 7.12. Furthermore, here, we find a region of parameters
where the area and the number of neighbors under biased division agree with the
experimental observations. Concerning the outward angle and length of c− 1 edges, they
both increase with surface line tension as might be expected. Nevertheless, the length
does not depend much on the preferred area. This discrepancy in behavior constrains
the space of parameters that reproduce the geometry found experimentally.

Note that the total tension of an edge depends on the perimeter as well as on the
line tension parameter. In the regions where we find the best match, we observe a clear
increase for the tension in the clone boundary (see table 7.2). Nonetheless, in the two
cases, we have redundancy in parameters, and therefore, simulations do not completely
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Figure 7.9: Parameter determination for unicellular activator clones. Contour plot of average relative
areas for clonal cells as their preferred area Ac

0 varies in the vertical axis, and the line
tension Λs varies in the horizontal axis. The regions where the target geometrical
features at 38 hours are inside the ranges define in table 7.1 are highlighted with a
semi-transparent color mask; in this case, cell area (red) and the number of neighbors
(blue). Top: All non-clonal cells divide following Hertwig’s rule. There is no possible
value of parameters where both geometrical features are satisfied. Bottom: Non-clonal
cells around the clone have a biased division that avoids giving new sides to the clonal
cell. In this case, there is an almost complete overlap between regions representing the
different constraints. A wide range of parameters can model the observed geometry. In
the left, we show the variation of relative area, number of neighboring cells, and internal
angle, with line tension on the surface. Each line corresponds to a different preferred
area Ac

0. Ac
0 = 1.4 (blue), Ac

0 = 1.2 (green), Ac
0 = 1 (grey).
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  Hertwig's rule                                           Biased division

Main axis
Surface direction

Figure 7.10: Ratio between the projection of the main axis of adjacent cells c + 1 over the surface of
unicellular clones. Top: Example of the main axis in red, and their projection over the
surface of the clonal cells in blue. The precise mathematical definition can be found
in A.1.7 Left: Unbiased division with all cells following Hertwig’s rule. Right: Biased
division, where cells adjacent to the clone divide with the axis of division parallel to
the surface of the clone.

determine the possible values. Preliminar simulations with the pressure-less model
presented in section 4.4 agree with the possible values for the tensions as well.

7.3.5 Mean-field model for two identical clonal cells

Now we can look back and study the case of bicellular clones using our mean-field
approach. As we presented in 6.3.2, we can consider a pair of n-sided cells with the
same area, parameterized by a radius r, and the length l of the shared junction. If our
model captures all the ingredients that shape the geometry of the clones, this model
should be able to reproduce the results found in our previous simulations. The number

Ac
0 Λs/Λ0 Λc/Λ0 Ts/T0 Ti/T0

Unicellular 1.3 0.2 1.0 1.12 -
Unicellular 1.5 0.8 1.0 1.33 -
Bicellular 1.2 0.5 1 1.18 1.04

Bicellular 1.0 0.5 -0.5 1.00 0.63

Table 7.2: Numerical values for the parameter modeling the experimental activator clones, and
tensions in the surface Ts and in interior Ti relative to the tension T0 in a regular cell. In
both cases, we show two sets of possible parameters.
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Perpendicular division 90°      Paralel division 0°

Figure 7.11: Top: Diagram showing the cases of a perpendicular and parallel cell division with
respect to a clone that is represented in blue. Bottom left: Experimental corroboration
of the bias in cell division for cells adjacent to the clonal surface. Angles are measured
between the axis of the division, given by the line that connects the center of the two
daughter cells, and the clonal surface. This result was originally predicted from our
numerical simulations. Bottom right: Example of cells division for each case (clonal
cells are marked in purple)
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Figure 7.12: Parameter determination for bicellular activator clones. Top right: Contour plot of
average relative areas for clonal cells as their preferred area Ac

0 varies in the vertical
axis, and the line tension Λs varies in the horizontal axis. The regions where the target
geometrical features at 38 hours for bicellular clones are inside the ranges define in table
7.1 are highlighted with a semi-transparent color mask (cell area in red and the number
of neighbors in blue). Top left: Variation of relative area, number of neighboring cells,
outward angle, and length of the edge within cells with line tension in the surface. Each
line corresponds to a different preferred area Ac

0. Ac
0 = 1.3 (blue), Ac

0 = 1.15 (green),
Ac

0 = 1 (grey).Bottom: Examples of clone with the parameters Λs/Λ0 = 0.5, A0 = 1.2,
that our simulations suggest are the good region to model clonal cells, at t/τdiv = 3 and
biased division.
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Figure 7.13: Contour plot of the regions where the target features satisfy our constraints, obtained
from the mean-field model proposed in section 6.3.2. The number of neighbors for each
parameter have been obtained directly from simulations.

of neighbors is a feature that the mean-field approximation does not provide, and it
is critical to reproduce clonal geometry. These values will be directly extracted from
simulations.

As can be observed in figure 7.13, the features predicted in our simplified case exhibit
behavior in qualitative agreement with our simulations, reproducing the trends found as
we vary the preferred area Ac

0 and tension in the surface Λs. However, in this case, we
do not find a good quantitative agreement with simulations. Moreover, the angles and
areas tend to be overestimated.

7.4 repressor clones

7.4.1 Experimental analysis

In the repressor case, the clones of cells keep proliferating while their surrounding cells
have started their differentiation. These clones have more cells than control or activator
clones. Some examples of their shape can be observed in figure 7.14. The first noticeable
feature is that in the repressor case, clones have a rounder shape compared with control
clones. Here, roundness is defined according to the perimeter L and total area AT of the
clone as R = 4πAT/L2. In this way, a circle has roundness R = 1 and a line R = 0 (see
figure 7.15).

With respect to the clonal cell area, repressor and activator clones show opposite trends
While activator clones tend to have bigger cells, the repressor clones tend to have smaller
cells, with a significant difference between cells on the surface (that is, cells that are
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Figure 7.14: Examples of repressor and control clones at 20 hours and 38 hours.
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Figure 7.15: Distribution of roundness in clones, measured from the perimeter L and the total
area AT , R = 4πAT/L2. Left: Control case at 38 hours. Right: Repressor case at 38

hours. Repressor clones are consistently rounder than control clones. The vertical line
corresponds to the mean of the distribution.
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neighbors of at least one non-clonal cell) and cells completely embedded in the clone, as
shown in figure 7.16.

In repressor clones, again, this trend still holds even when we compare cells with the
same number of neighbors. As for the distribution of polygonal classes, clonal cells have,
on average, less than the six neighbors expected for a WT cell. Cells in the inner region
of the clone have an even lower average. Cells directly adjacent to the clone c + 1 tend to
have an average number of neighbors above six, explained by the smaller size of clonal
cells (see figure 7.17).

Other features we measured were the angles between edges in the surface of the clone
and the inferred tension among various categories of edges (see figure 7.18). Edges in
the interior of the clone e < 0 have a weaker inferred tension. On the surface, edges e + 0
have an inferred tension that is slightly stronger than the directly adjacent edges e + 1
and e− 1, but still lower than the average. Accordingly, the angles on the surface suggest
a relatively stronger tension in the surface, with outward angles that are substantially
flatter than 120 degrees. This, in addition to the roundness of the clones, goes in the
direction of the existence of a superficial tension in the interface between the clones and
the surrounding tissue.

7.4.2 Target features

The repressor case has more features to be matched compared with the activator case,
namely: The clonal cell area, internal and outward angles, and clone roundness. At the
same time, our collaborators do not have evidence of accumulation of nuclear material
or other reasons suggesting that clonal cells must be modeled with a divergent preferred
area Ac

0. We will only consider two parameters, namely, the line tension in the surface
Λs and the line tension for the clonal cells Λc. In the same spirit, we will present the
result of our exploration as contour plots highlighting the regions compatible with our
experimental examples. Table 7.3 contains a summary of all those values.

7.4.3 Simulating a repressor clone

In the same way, as for the activator case, the compatible regions for the observed
geometry in the repressor clones are explored, this time taking a fixed preferred area
and exploring the values of the line tensions Λc and Λs. For those chosen parameters,
simulations will be run in a grid. For points in between, the value will be estimated by
linear interpolation.

Simulations are run for a fixed time, starting with 20 cells. The tissue relaxes, and then
one cell is randomly chosen as the clonal cell. The duration of the simulation is chosen
such that the number of cells in the clone matches the average number in experiments.

By comparing the average for simulated clones at two different stages—when they
have 4, and 8.8 cells in average—we can obtain a robust conclusion about how the
heterogeneity of line tension affects the clone geometry. Clone roundness depends
above all on the surface line tension Λs, consistent with previous results presented in
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Figure 7.16: Analysis of the area average and distribution in clonal cells (c < 0) and WT cells (c > 0),
for repressor clones at 20 hours (top), 38 hours (middle) and control clones at 38h
(bottom). (Left: ) box plot for comparing each relative position in the clone. (Right:)
we compare distributions for WT and clonal cells. In the control case, clonal cells are
not significantly bigger than regular cells, as expected. Cells completely embedded in
the clone are slightly smaller. In the repressor case, clonal cells are on average almost
twice smaller than regular cells, even when compared by number of neighbours.
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Figure 7.17: Distribution of polygonal classes (left) and number of neighbours (right) for cells given
their relative topological position in the clone in the repressor case. On top, at 20 hours
and at the bottom at 38 hours.

Ovo A at 20h color Value Tolerance
Area Red 0.44 ± 0.04

Angle in Blue 121.69 ± 2.14°
Angle out Green 145.50 ±3.47°
Roundness Purple 0.75 ± 0.03

Number of cells - 4.0 -

Ovo A at 38h color Value Tolerance
Area Red 0.62 ± 0.05

Angle in Blue 119.65 ± 2.01°
Angle out Green 136.08 ± 2.61°
Roundness Purple 0.68 ± 0.04

Number of cells - 8.8 -

Table 7.3: The experimental values measured in our set of images for repressor clones at 20 and
38 hours. Area are normalized by the area of cells c + 2. The tolerance corresponds to
twice the standard error. For each feature, the color that is used to highlight the region of
compatible parameters is given in the second column.
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Figure 7.18: Left: Example of clones for the control case at 20 hours (top) and 38 hours (middle top)
and the repressor case at 20 hours and (middle bottom) 38 hours (bottom). Center left:
Vertex representation of the same clone with the edges colored by their inferred tension.
Center right: Average of inferred tension for edges in different positions relative to the
clone. In this situation, we observe how in both cases the tensions in the interior of the
clone are lower than in the exterior. The surface has tension above the average for edges
directly adjacent to the clone, but lower than edges far away from the clone. Right: Box
plot of angles on the surface of the clone. The dotted line is at 120 degrees.
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c Λs/Λ0 Λc/Λ0 Ts/T0 Ti/T0
Modeling 20h 4 0.75 1.5 1.16 1.00

Modeling 38h 8.8 0.5 1.5 1.19 1.04

Table 7.4: Numerical values for the parameter modeling the experimental repressor clones, and
tensions in the surface Ts and in interior Ti relative to the tension T0 in a regular cell.

ref. [Tsuboi et al., 2017]. The line tension associated with the clonal cells Λc does not
appear to affect the roundness of the clone. A similar situation is found for the outward
angle that becomes flattered when increasing the surface tension Λs, and is only weakly
affected by changes in Λc (increasing Λc yield slightly flatter outward angles, by making
the clonal cells smaller, and thereby reducing the tension of inner junctions). The internal
angle gets flattered with increasing surface tension Λs as we might have expected, as
can be seen in figure 7.19. The clonal area decreases when the surface tension Λs or the
clonal cell line tension Λc increases. As expected, as we increase the number of cells,
there is less compression for the same tension. The increase of clonal cell line tension Λc
is comparable regardless of the strength of the cable of tension in the surface of the clone.

As it can be observed in figure 7.19, we can find a region that reproduces the geometry
of the experimental clones for 20 hours and 38 hours. In both cases, as we expected, a
cable of tension is suggested, as the values for surface line tension Λs are about 50%
stronger in the clone. Also, the line tension Λc inside the clone is predicted to be
higher than in WT cells. These two compressive forces together account for the observed
reduction in area (from figure 7.19, if the compressive forces come only from the border,
with an unchanged tension Λc = Λ0 inside the clone, the model yields clones that are
rounder than observed in experiments).

We observe a significantly higher tension for the tension in the boundary of the clone,
and a slightly higher increase in the internal tension for 38h, and no increase at 20h (see
table 7.4). Preliminar simulations with the pressure-less model presented in section 4.4
agree with the possible values for the tensions as well.

7.4.4 No bias in the division is observed in the repressor case

Similarly to what we found in the activator case, one could suspect that cells adjacent to
repressor clones exhibit biased division. We should observe the same in the repressor
case, especially, if we believe that the bias in the division is produced by problems in cell-
to-cell communication, or the sensing of a cable of tension. However, our experimental
collaborators reported that this bias was not observed for cells c + 1 adjacent to the clone
(see figure 7.21).

We do not have experimental measures in cells in the interior of the clone. In sim-
ulations, we observe that the cells c + 1 adjacent to the clone do not have a particular
orientation with respect to the surface of the clone, independently of the parameters, as
shown in 7.22. Meanwhile, cells c− 1 in the first layer of the clone are not aligned. This
is consistent with what is found experimentally.
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Figure 7.19: Parameter determination for repressor case clones. Contour plot of average relative
areas for clonal cells as their line tension Λc varies in the vertical axis and the line
tension Λs varies in the horizontal axis. The regions where the target geometrical
features at 38 hours are inside the ranges defined in table 7.3 are highlighted with a
semi-transparent color mask, in this case cell area (red), outward angle (green), internal
angle (blue) and roundness (purple). Top: Clones at time t = 2τd when in average
they have c = 4.0 as in our experimental images at 20 hours Bottom: Clones at time
t = 3.1τd when in average they have c = 8.8 as in our experimental images at 38 hours.
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Figure 7.20: Examples of clones for the repressor case. Left: Modeling clones at 20h, the surface
line tension is Λs/Λ0 = 0.75, and the clone line tension Λc/Λ0 = 1.5. Right: Modeling
clones at 38h, the surface line tension is Λs/Λ0 = 0.5, and the clone line tension
Λc/Λ0 = 1.5. In both cases, with A0 = Γc/Γ0 = 1.

Figure 7.21: Right: Histogram of cell division orientation measured experimentally. Left: Example
of division in the repressor case. In contrast to the activator case, cells c + 1 adjacent to
an ovo A clone do not exhibit bias in the direction of division.
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Figure 7.22: Left: Cell main axis projection over the clonal surface direction. On the top left the cells
c− 1 in the interior surface of the clone. On the bottom left WT cells adjacent to the
clone surface c + 1. No relevant differences can be found compared with experimental
data (shown in green dashed lines). Right: Comparison of the average ratio between
the number of edges and cells in the surface of the clone considering three cases:
adjacent biased cells around the clone divide perpendicularly; surface biased cells in
the surface of the clone divide perpendicularly against the surface when possible; and
non-biased, compared with experiment. In the three cases, the clones are simulated
with the parameters presented in figure 7.21, the surface line tension Λs/Λ0 = 0.5, and
the clone line tension Λc/Λ0 = 1.5.
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Figure 7.23: Examples of clones with bias division for clonal cells. The surface line tension is
Λs/Λ0 = 0.5, and the clone line tension Λc/Λ0 = 1.5, modeling clones at 38h, but in
this case the number of cells is c = 12 to better appreciate any effect.

We implemented bias in the division for cells inside the clone, by imposing a divi-
sion that avoids the surface when possible, as clones with few cells may not allow it.
Simulations with a bias in the division of cells in the interior of the clone do not show
remarkably divergent features at first sight, as shown by the examples of figure 7.23.
Moreover, they fail to reproduce the topology and angles, with fewer internal angles than
experimental and non-biased clones, as displayed in the bottom right 7.21.

7.4.5 Mean-field model for a clone of several cells

In the previous chapter 6.3.1, we presented an approximation to address the case of a
cluster of cells under a cable of tension. Here, we will apply it to our repressor clones at
38 hours, expanding it to consider clonal cells with a different line tension Λc. Equations
for force equilibrium (6.20) and (6.21) are the same, but the partial tension associated
with the clonal cell now depends on their line tension T(A) = Γµ6

√
A + Λc/2.

0 = 2Tr − 2 cos
(γ

2

)
[Tr + T(A) + Λs]− lK(A− Ar) sin

(γ

2

)
, (7.5)

0 = 2T(A)− 2 cos
(

β

2

)
[Tr + T(A) + Λs] + lK(A− Ar) sin

(
β

2

)
. (7.6)

(7.7)

where l = µ6(
√

A +
√

Ar)/12. The equation for the clonal cells area again makes use of
the roundness ρ obtained from simulations. The equilibrium area Ac

eq for clonal cells
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Figure 7.24: Contour plot of the regions where the target features satisfy our constrains, obtained
from the mean-field approximation solving equations (7.8), (6.20), (6.21). The roundness
for each parameter set has been obtained directly from simulations. In the gray region
in the upper right of the contour plot the system of equation did not converge to a
solution.

is obtained using equation (5.7) considering the new line tension Λc. The average and
dispersion of area and perimeter found in WT cells is rescaled with Ac

eq to calculate the
bulk modulus for the clone, Bc is now a function of the line tension Λc using equation
(5.10). The new area equation reads,

Λs√
ρRe f f

= Bc(Λc)

(
1− A

Ac
eq

)
. (7.8)

where the effective radius is Re f f =
√

cA/π. Solving equation (7.8) for the area A, and
then the force equation (6.20) and (6.21) for the angles, leads to a good description of the
clone. We not only recover the trends for the target features, but also find that the region
in parameter space which reproduces the average geometry of our clones is very close to
that found in our simulations, as can be seen by comparing figure 7.19 and figure 7.24.

If we use the model without any input from simulations, and instead make the
approximation of considering perfectly round clones, i.e. ρ = 1, we still recover the
trends for the diverse features. However, this overestimates the area and angles, as could
be expected from our analysis in section 6.3.1.
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Figure 7.25: Contour plot of the regions where the target features satisfy our constrains, obtained
from the mean-field approximation solving equations (7.8), (6.20), (6.21). The roundness
is supposed to be ρ = 1, in contrast to the diagram in figure 7.24. In the gray region
in the upper right of the contour plot the system of equation did not converge to a
solution.

7.5 conclusions

This chapter connected and applied the tools presented in the previous chapters with
experiments performed by our collaborators. Both the repressor and activator cases show
cells with distinctive geometrical features. The vertex models have been successfully
used to describe the geometry, and even dynamics of epithelial tissues. Here, we applied
it to describe a mechanically heterogeneous tissue with two types of cells.

This study had limitations: On the one hand, the vertex model neglects subtle aspects
that may play a role, for instance, the already mentioned apoptosis, changes of mechanical
properties over time, and differences in the rate of division between the two types of cells.
These elements could be included in a more extensive study. Nevertheless, this should
still leave another kind of limitation: the uncertainty in the estimation of cell geometry
from experimental data (e.g. the imprecision in image segmentation). Features such as
area or length are robust, but especially angles are sensible to imprecision. In spite of
these limitations—our vertex model only included dissimilarities in proliferation rates
and mechanical parameters—we found that we could reproduce the geometry observed
in experiments and even predict unanticipated aspects, such as the bias in cell division
in the activator case.
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The vertex model captures multiple aspects of empirically observed tissue morphogenesis,
including dynamical ones while remaining conceptually simple in that its only parameters
are mechanical and geometry-dependent in origin (cell area elasticity and perimeter-
dependent tensions) and constrained to a two-dimensional description. Furthering
our understanding of the model thus contributes to deepening our comprehension of
epithelial development. In this thesis, we extend the analysis of the vertex model and
apply our approach to account for spatio-temporal features of epithelial morphogenesis
in the presence of disorder and heterogeneity intrinsic to cell tissues.

In particular, we introduce a mean-field approximation, that describes the dynamics of
cells based on their polygonal class. Cells are considered as regular polygons surrounded
by n identical cells with a fixed area. This allows us to accurately predict the average area
per polygonal class alongside the average dispersion of area and perimeter, as well as the
bulk modulus of a tissue. The success of this approach is a non-trivial result, indicating
how cells sense and average forces from their environment. Furthermore, our approach
provides a powerful formal tool to investigate a wide array of features and properties of
disordered tissues.

It is not obvious to translate concepts and relations used in continuous media and
apply them to a discrete media, such as an epithelium. In addition to our study on
pressure and bulk modulus in the vertex model, we show that the analog of Laplace’s law
is quite subtle in this discrete context. We found that the compression on a cluster of cells
subjected to superficial tension involves diverse measures of the clone perimeter length
(full or "coarse-grained") depending on which property is considered (global change in
clone area or compression of inner clone cells).

Beyond exploring how disorder emerges and affect the property of a tissue with
mechanically identical cells, we tackle the problem of modeling the effect of heterogeneity
between cells. Indeed, this issue is crucial to understand healthy tissue development
where diverse cells with various functions interact, as well as abnormal clonal cell growth
as observed in tumors. Our mean-field approximation tackles the problem by taking
advantage of the symmetry between different vertices, allowing us to write a force
balance equation for each class of vertices and making use of other equilibrium equations
to complete the set of equations if necessary (for instance our discrete Laplace’s law).

We model a clone in which mechanics or proliferation rate differ from the surrounding
environment, allowing us to unveil the role of each of these mechanistic ingredients.
Moreover, taking into account topology as a function of cell mechanical parameters,
the mean-field approximation successfully captures quantitative features of collective
dynamics, especially in the limit of large numbers of cells.
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These ideas were compared with experimental data, providing insight about the forces
at play shaping clones. Our model predicted a biased cell division orientation around
activator clones, which was confirmed experimentally. Additionally, that an increased
surface tension, as predicted by our model, plays a crucial role in shaping both types of
clones, activator and repressor, also appears supported by the observed accumulation of
contractile material at the interface between WT and clonal cells.

A natural extension of this work is to further theoretically characterize the emergence
of geometric order from forces and proliferation. On the one hand, some previous ap-
proaches [Gibson et al., 2006] only consider topology, neglecting cell rearrangements due
to mechanical forces. Indeed, in chapter 4 we show that mechanical forces by themselves
can largely account for empirical tissue geometry, even in the absence of cell division.
However, in addition to topology, mechanical forces arising from rearrangements have
also been highlighted to bias the direction of cell division axes [Finegan et al., 2019,Scarpa
et al., 2018]. A theoretical approach that integrates both forces and topology will have
to be developed to provide a complete theoretical description of planar epithelium, in
particular when heterogeneous cells interact.

In summary, the work reported in this thesis provides a theoretical and computational
basis that may be elaborated upon, to unveil the mechanisms that allow the complex yet
robust cellular self-organization from which life emerges.
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AN U M E R I C A L S I M U L AT I O N

a.1 numerical integration

The software to run numerical simulations on tissue development was programmed in
Python, with the use of the standard libraries (Numpy, Scipy, and Matplotlib). Bellow
you can find details on the numerical functions used to simulate the tissue

a.1.1 Computation of forces

All terms in the work function are derived from the position of the vertices. From the
work function, the force over one vertex i has two parts, one that depends on the area of
the cells around Fi

P, and the other that depends on the edges Fi
T . Let us start defining the

force associated with cell area,

~Fi
P = ∑

cell
[K(Ac − Ac

0)∇i Ac] (A.1)

The summation runs over the cells of the tissue. The preferred area per cell Ac
0 has an

index given that in many cases we will choose a different value regarding if the cell c has
been chosen as being a different cell class. The cell area given the position of its vertices
{xi x̂ + yi ŷ} can be calculated using Green’s theorem,

A =
1
2 ∑

i:vertices
(xi + xi+1)(yi − yi+1) (A.2)

With the indexes i numbered in counter-clockwise fashion. Therefore, the derivative of
the area respect the position of one of its vertices i yields,

∇i A =
1
2
[(yi−1 − yi+1)x̂i − (xi−1 − xi+1)ŷi] (A.3)

On the other hand, the forces associated with the edges Fi
T are given by

~Fi
T = ∑

edge

[
Γ
(

p(1)e + p(2)e

)
+ Λe(1 + ζe(t))

]
êi (A.4)

The summation over the edges. p(1)e and p(2) denote the perimeters of the cells that
the edge e delimit, and êi is the unitary vector in the direction of the edge e away from
the vertex i. The perimeter is simply computed by adding the lengths of all the edges
that compose the cell. Λe has an index given that in many cases we will select a different
value regarding its position. The value of ζe(t), that represents the fluctuations in the
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tension of each edge, is computed in parallel solving numerically the following Itô’s
stochastic differential equation with a discrete time step δt,

ζe(t + δt)− ζe(t) = −ζe(t)
δt
τ
+ η0

√
2δt
τ

z(t) (A.5)

where z(t) is a gaussian random variable, with average 〈z(t)〉 = 0 and normalized
correlation 〈z(t), z(t′)〉 = δ(t− t′). This is the numerical implementation of an Ornstein-
Uhlenbeck process with characteristic time τ and 〈ζe(t), ζe(t′)〉 = η0 exp(−|t− t′|/τ).

The total force is then computed adding up this two equations (A.1) and (A.4), ~Fi =
~Fi

P + ~Fi
T . Then, each vertex is displaced proportionally to this force using a discrete time

step δt

~vi(t + δt)−~vi(t) = ~Fiδt (A.6)

The table A.1 shows the particular value for the parameters in equations (A.1) and
(A.4).

K A0 τ δt
Value 1 1 3.9 0.02

Cases Λ Γ η0
Case A 0.12 0.04 0.3
Case B 0.0 0.1 0.0413

Case C -0.32 0.04 0.002

Table A.1: Numerical values of mechanical parameters used by default in the simulations. Three
pairs of values have been used for Λ and Γ and their values are specified. But unless it is
clearly stated otherwise, the values used correspond to Case A.

a.1.2 Neighbor exchange and apoptosis

The length of each edge is checked in each step; if the length goes below a critical value
Lcrit, the edge is rotated perpendicularly to the original configuration. If the energy
decreases, the change is accepted.

In simulations where apoptosis is implemented, cells that become smaller than Acrit
are removed by collapsing them to a vertex. If the cell in the moment of collapse had
more than three sides, edges of zero-length are created to keep each vertex associated
with only three edges.

Acrit Lcrit
Value 0.01 0.01

Table A.2: Critical values for cell area before remove it by apoptosis, and for edge length before
testing for a T1 transition.
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a.1.3 Cell division

To implement cell division, each cell keeps an internal clock from the last division tc, and
a time when the division will occur τc, that is assigned when the cell is created. When
the internal time tc arrives at τc, the cell divides, adding a new edge that divides the cell
in two, creating two new daughter cells. The values for τc are normally distributed, and
they have averaged τdiv = 〈τc〉 and dispersion στ . The table A.3 we present the default
values for τdiv and στ .

Cell division follows Hertwig’s rule presented in the introduction section. The case of
biased division is explained in chapter 7.

τd σ/τd
Value 60 0.2

Table A.3: Default time parameters for cell division.

a.1.4 Periodic boundary conditions

Simulations are performed with periodic boundary conditions. A box of dimensions
Lx × Ly is defined, and distances between two points are computed using an auxiliary
function defined as follows.

d(x, L) =

{
x if 2|x| < L
sgn(x) (|x| − L) otherwise

(A.7)

The distance D between two points v = (x, y) and v′ = (x′, y′) reads as follows,

D =
√

d2(x− x′, Lx) + d2(y− y′, Ly) (A.8)

And a vector u pointing from the point v′ to the point v,

u = (d(x− x′, Lx), d(y− y′, Ly)) (A.9)

To compute the area of a cell or other functions that involve a series of points, they are
all rewritten using coordinates in respect of one point in the list.

a.1.5 Dynamical adjustment of the box size

As the number of cells increases due to successive cell divisions, the size of the box needs
changes.
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From the work of [Batchelor, 1970], the stress tensor N can be evaluated for a large
group of cells using the following expression [Ishihara and Sugimura, 2012],

N =
1

∑c Ac

[
−∑

c
AcPcI2 + ∑

e
Te
~le ⊗~le
|le|

]
(A.10)

This matrix can be used to relax the box dimentions. The diagonal elements determine
the relative change of scale,

dλx

dt
= Nxx (A.11)

dλy

dt
= Nyy (A.12)

where the total length of the box is Lx = λx L0
x and Ly = λyL0

y. Here, our implementa-
tios follow the procedure found in [Sugimura and Ishihara, 2013].

a.1.6 Poisson initialization of the tissue

The tissue is initialized by Nc random points ci = (xi, yi) generated by a uniform
distribution xi ∈ [0, Lx[ and yi ∈ [0, Ly[, that define Voronoi cells, that are the original
state of the tissue.

a.1.7 Inertia matrix and main axis calculation

In several analyses of a simulation, the main axis of the cells is computed. The main
axis is computed as the eigenvector associated with the biggest eigenvalue of the second
moment of area matrix,

I =
(

Ix Ixy
Ixy Iy

)
(A.13)

where its elements are defined as,

Iy =
1
12

n

∑
i=1

(xiyi+1 − xi+1yi)
(

x2
i + xixi+1 + x2

i+1

)
(A.14)

Ix =
1
12

n

∑
i=1

(xiyi+1 − xi+1yi)
(

y2
i + yiyi+1 + y2

i+1

)
(A.15)

Ixy =
1
24

n

∑
i=1

(xiyi+1 − xi+1yi) (xiyi+1 + 2xiyi + 2xi+1yi+1 + xi+1yi) (A.16)

The following operation defines the projection p of the main axis over a vector ~v,

p = ~vT I~v, (A.17)
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a.2 simulations chapter 7

We performed simulations in a grid of points, with 120 clones per set of parameters, and
then the target features are averaged over each of them. Linear interpolation is used to
estimate the values of the target features between points in the grid.

For activator case, the grid is generated by combining,

Ac
0 ∈ {0.8, 1.0, 1.2, 1.3, 1.4, 1.6}

Λc/Λ0 ∈ {1.0, 1.25, 1.5, 1.75}

For repressor case, the grid is generated by combining,

Λs/Λ0 ∈ {1.0, 1.125, 1.25, 1.375, 1.5}
Λc/Λ0 ∈ {0.75, 1.0, 1.25, 1.5, 1.75, 2.0}
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MOTS CLÉS

morphogenèse, mécanique, tissus épithéliaux, mécanique statistique.

RÉSUMÉ

Les tissus épithéliaux sont ubiquitaires dans les organismes vivants, couvrant des surfaces et séparant différents com-
partiments dans divers organes et espèces. L’épithélium est le premier tissu qui apparaît au cours du développement et il
joue un rôle central pour en structurer les étapes. Dans ce processus complexe, les interactions entre les divisions cellu-
laires, la signalisation chimique et les forces mécaniques permettent l’émergence de différents tissus avec des fonctions
diverses.

Dans l'élucidation des mécanismes en jeu dans la mécanique des tissusépithéliaux, un outil utile est constitué par les
modèles de vertex, dans lesquels les cellules sont représentées de façon simplifiée par des polygones. La simulation de
la division cellulaire dans ces modèles, produit des tissus avec des cellules géométriquement irrégulières, semblablesà
celles observées dans lesépithéliums naturels, même quand les propriétés mécaniques des différentes cellules sont iden-
tiques. Les analyses théoriques existantes sont cependant, pour la plupart, confinées aux réseaux réguliers hexagonaux.

Dans ce travail, nous proposons une analyse théorique d’un modèle de vertex géométriquement désordonné. Nous
commençons par quantifier à l'aide de simulations numériques, les propriétés géométriques et mécaniques des cellules,
dans des tissus désordonnés produits par différentes règles de division cellulaires ou simplement par la relaxation en
présence de bruit. Nous développons ensuite une analyse simple de type

Finalement, en collaboration avec le groupe de F. Payre (Université de Toulouse), nous appliquons cette analyse pour

décrire la géométrie et la dynamique des divisions cellulaire au cours de la différenciation de l'epiderme de la mouche.

Nous nous attachons particulièrement à caractériser les propriétés mécaniques d’un clone de cellules qui prolifère dif-

féremment du tissu environnant.

ABSTRACT

Epithelial tissues are ubiquitous in animal life, covering surfaces and separating body compartments in diverse organs
and species. Epithelium is the first tissue to form, playing a key role in structuring the intricate steps of an organism's
development. In such a complex system, the interplay between cell division, chemical signaling, and mechanical forces
permits the emergence of different tissues with specific functions.

To uncover the mechanisms at play in epithelial tissue mechanics, a useful tool is provided by vertex models, in which
cells are idealized as juxtaposed polygons. Numerical simulations of cell division in vertex models yield geometrically
irregular cells, similar to empirical observations in epithelia, even when cell mechanical properties are homogeneous.
Nevertheless, existing theoretical analyses are mostly confined to the mechanics of regular hexagonal lattices.

Here, we develop an analytical description of geometrically disordered vertex models. We first quantify, in numerical
simulations, geometric and mechanical cell properties in the presence of diverse sources of disorder, including various
division rules or relaxation in the presence of noise. We then develop a simple mean-field description able to account for
these properties. This description is expanded to address the interaction of isolated and clustered cells with mechanical
properties differing from the surrounding tissue relevant in a wide range of biological contexts. This allows us to bridge the
gap between theory and experiments, quantitatively predicting how variation in forces may affect geometry and topology
as well as fitting mechanistic model parameters to the observed geometry of cell membranes in a tissue.

Finally, in a collaborative work with the Payre's lab (U. de Toulouse), we apply our analysis to account for the statistics of

cell geometry and division dynamics in experiments performed on epidermis differentiation in the fly. We particularly focus

on characterizing the mechanical properties of clustered clonal cells with distinct proliferation rates from their environment.

KEYWORDS

morphogenesis, mechanics, epithelial tissues, statistical mechanics.
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