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Résumé

Le sujet de cette thèse concerne la modélisation de la turbulence des écoulements in-
fluencés par la flottabilité, qui émanent de l’interaction de la force gravitationnelle avec
une différence de densité. Cette étude est motivée par des problématiques rencontrées par
le groupe PSA dans la simulation des écoulements à convection naturelle dans le compar-
timent moteur des véhicules.
L’objectif principal de ce travail est de tester plusieurs modéles pour prendre en compte la
flottabilité et de proposer des améliorations efficaces qui pourraient fournir un modèle ap-
plicable aux écoulements engendrés par la flottabilité. En outre, ces modifications doivent
pouvoir être mises en œuvre dans le code Ansys Fluent pour le calcul des écoulements de
convection naturelle dans les problèmes typiques cités ci-dessus.
Dans le cadre de cet objectif, nous avons adapté trois modèles à viscosité turbulente aux
effets de la flottabilité. La première approche qui offre le meilleur cadre physique implique
l’extension des lois de comportement pour le tenseur de Reynolds et le flux thermique tur-
bulent de manière linéaire, pour tenir compte de l’influence anisotrope de la flottabilité.
Cette approche, appliquée à trois modèles différents, permet d’améliorer considérablement
les résultats en reproduisant l’écoulement moyen et les quantités turbulentes. Dès lors, on
se rend compte que cette approche conduit à des améliorations significatives en terme de
physique.
De plus, on observe que l’utilisation d’une approche simple d’hypothèse de diffusion par
simple gradient “SGDH” pour modéliser le terme source de flottabilité conduit à une sous-
estimation de l’effet de la flottabilité sur la turbulence. En outre, la comparaison avec les
données de la simulation numérique directe (DNS) montre que l’hypothèse de diffusion
par gradient généralisé “GGDH” donne de meilleures prédictions de l’écoulement moyen
et du champ de température.
Un autre aspect abordé dans ce travail concerne la sensibilité au modéle du terme de pro-
duction par flottabilité dans l’equation de ε ou ω. Après une analyse détaillée, on constate
que les résultats sont tré s sensibles à ce terme et que la valeur optimale du coefficient est
liée au choix du modèle de turbulence. Pour éviter cette sensibilité, on utilise une autre
expression du terme source pour la modélisation de la flottabilité dans les équations ε ou
ω qui tient compte du nombre de Richardson de flux et on observe une amélioration de la
prédiction des profils moyens.
Trois régimes différents d’écoulement convectif sont étudiés, à savoir les régimes de con-
vection forcée, mixte et naturelle. Parmi ceux-ci, la configuration de canal vertical dif-
férentiellement chauffé est considérée pour développer le modèle adapté à la flottabilité.
C’est celle qui pose le plus grand défi pour les modèles à viscosité turbulente. Ces études
ont abouti à la proposition d’une forme plus physique et simplifiée de modèles adaptés à
la flottabilité, qui est considérée comme le meilleur compromis entre la précision physique
et la stabilité numérique pour des écoulements induits par la flottabilité.
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Ces modèles sensiblisés à la flottabilité offrent des perspectives pour étudier d’autres con-
figurations d’écoulements de convection mixte et naturelle et ouvrent la voie à l’utilisation
de ces modèles dans les simulations dans le compartiment moteur des véhicules.

Abstract

The subject of this thesis is the turbulence modeling of buoyancy-driven flows, which
emanate through the interaction of the gravitational force with a density difference. The
motivation of this investigation comes from the problem faced by the PSA group in sim-
ulating natural convection flows in the underhood-space of cars.
The main goal of the present investigation is to test several models to account for buoy-
ancy and to propose effective improvements which could provide a model applicable in
buoyancy-driven flows and in addition to that, can be easily implemented in the software
Ansys Fluent for the computation of natural convection flows in the Underhood-space of
cars.
In the context of this goal, three eddy-viscosity turbulence models are sensitized to the
effects of buoyancy. The first approach which offers the better physical framework involves
the extension of the constitutive relations for the Reynolds stress and turbulent heat flux
in a linear way, to account for the anisotropic influence of buoyancy. This approach is
applied to three different models and brings in drastic improvement of the results in re-
producing the mean flow and the turbulent quantities and thus it is realized that this
approach leads to physically based improvements.
Furthermore, it is observed that, using a simple gradient diffusion hypothesis (SGDH) ap-
proach to model the buoyancy source terms leads to underestimate the effect of buoyancy
on turbulence and the comparison with the DNS data shows that the generalized gradient
diffusion hypothesis (GGDH) give improved predictions of the mean flow and tempera-
ture field. Another issue addressed in this work involves the sensitiveness to buoyancy
production term in ε or ω equations and after the detailed analysis, it is realized that
the results are very sensitive to this term and the optimal value of the coefficient (Cε3) is
linked to the choice of turbulence model. To avoid this limitation, another expression for
the model of the buoyancy source term in the ε or ω equations is tried which considers the
flux Richardson number and it is observed that there is an improvement in the prediction
of mean flow profiles.
Three different regimes of convective flows are studied namely, forced, mixed and natural
convection and the more challenging differentially heated vertical channel flow configura-
tion which poses a major challenge to the eddy-viscosity models is considered to develop
the buoyancy sensitized model. As an outcome of these studies, the more physical and
simplified forms of buoyancy sensitized model are proposed which is considered as the
best compromise between the physical accuracy and numerical stability for buoyancy-
driven flows. These buoyancy-sensitized models provide an opportunity to investigate
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other buoyancy-driven flows and paves the way for these models to be applied in the
under hood space simulation.
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INTRODUCTION

1.1 Introduction

Heat transfer flows are of great importance to many industrial applications of interest,
particularly in the designing of the underhood-space of automobiles. One of the important
phases during the development process of a passenger car is to ensure that the components
in the engine compartment do not overheat. Underhood aerothermal management is an
important phase in the vehicle design and manufacturers spend considerable engineering
resources and research activities in the early development phase of new cars [Gu et al.,
2013, Kaushik, 2007, Mansor and Passmore, 2013].

(a) Top view

(b) Side view from front of vehicle (c) Side view from back of vehicle

Figure 1.1 – Different components housed in the underhood space of a vehicle [Figures are
taken from Khaled et al., 2015]

The heat transfer from the engine greatly affects the components placed in the un-
derhood space. E.g., turbine, compressor, cold box (zone comprising battery), apron,
cylinder head insulation, alternator, inlet and outlet pipes of charge air cooler (CAC) and
the engine right side, screen shield, turbo screen, air conditioning compressor, gearbox,
catalyseur.
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The different components housed in the underhood space in schematic representation are
shown in Fig. 1.1 with different views. The important air zones are those near the cold
box, apron, air filter, cylinder head cover, the CAC inlet, and outlet pipes, engine right
side and downstream of the engine, CAC, and the fan [Khaled et al., 2015]. In addition to
the engine performance, geometry restrictions due to the compactness and sealing of the
car underhood compartment are required from the style constraint point of view. Thus,
a restricted space must be imposed on the underhood space of cars that restrains the
airflow. Moreover, a large number of components need to be housed in the compartment,
and owing to this, heat transfer phenomena become complex.
Experimental analyses of aerothermal phenomena are few [Fournier and Bayne, 2007, 2004,
2006]. For instance, Fournier and Bayne [2004] measured the underhood temperature of
four different vehicles in order to identify the range of temperatures reached in under hood
that the spilled fluids may be exposed to. Comparisons were made against the auto igni-
tion temperatures of various automotive fluids. The measurements of temperature were
conducted for both level road and uphill driving conditions where the vehicles were loaded
to their rated capacity. The temperatures were recorded when the vehicles pulled off to
the side of the road and engine turned off. This condition corresponds to the collision in
which the vehicle may come to a sudden stop. For both the driving conditions that is
when the vehicle is running on level road and uphill, the estimated temperatures initially
increased with the maximum temperatures being reached within 1 to 2 minutes after the
vehicle was stopped and engine turned off. For both driving conditions, increased temper-
atures were observed which was sufficient to ignite most of the engine compartment fluids,
particularly for coolant which shows the highest auto ignition temperature.
Another study related to the efficiency of thermocouples and its attachment methods was
conducted by Fournier and Bayne [2006]. The tests were conducted on only one vehicle
at one speed (96 km/h) during level road and uphill driving conditions. Five different
K-type thermocouple and attachment methods were selected for the surface temperature
measurements. Brazed on, welded on, clamped on and cemented on thermocouple attach-
ment methods were selected to measure the surface temperatures at two different locations
along the exhaust system. For the two measurement locations and under both the driving
conditions, the brazed on thermocouple bead registered the highest surface temperature
and the clamp on surface temperature thermocouple measured the lowest temperature. It
was interpreted that the difference in the temperature range between the two measured
locations may be due to the turbulence of the exhaust gas flow which travelled different
distances. Furthermore, the increase in temperature after the engine was turned off was
a phenomenon which is likely related to the specific thermocouple and its attachment
method. The brazed-on thermocouple bead was recommended for the further measure-
ments under similar conditions.
Temperatures in the underhood compartment are sensitive to all three modes of heat trans-
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fer namely conduction, convection, and radiation. Furthermore, multi-mode heat transfer
calculation has been performed [Bendell, 2005, Reister and Maihöfer, 2003, Schuster, 2003].
Numerical studies mainly focus on temperature analyses [Franchetta et al., 2005, 2006,
Khaled et al., 2008, 2009, Kumar et al., 2009, Weidmann et al., 2009]. Most of the studies
deal with a vehicle driving at maximum speed or traveling uphill at 35 km/h. In both
cases, the temperature of components is dominated by forced convection owing to the high
velocities in the engine compartment.

Figure 1.2 – Cut section view of the simulation after stabilising of forced convection phase
[Plots are taken from simulation performed at PSA Group, Courtsey (V. Herbert)]

Steady forced flow simulation has proven to be reliable [Alajbegovic et al., 2006, Juan,
2008, Kini and Thoms, 2009]. Also in PSA Group, computations have been performed
in cruising stages by categorizing the flow into three cycles based on load, speed, and
temperature, and the cycles are named as Mountain, Highway, and City cycle respectively.
The situation after the stabilizing of forced convection phase is shown in Fig. 1.2, where
it is observed that temperature levels are high, particularly close to the turbo and exhaust
manifold for both the Mountain and Highway cycle and the results were found to be
reliable in this phase dominated by forced convection. However, when the vehicle is
driven at high load and then shut down, phase known as a thermal soak appears. In this
situation, underhood cooling through airflow circulation is provided only by fan rotation
and natural convection. Simulating such a phase is challenging due to the lack of validated
studies [Chen et al., 2006, Franchetta et al., 2005, 2006, Weidmann et al., 2005]. Recently,
experiments were performed at PSA group to realize this phase where natural convection
is a dominant phenomenon.
From the study of Khaled et al. [2015], it has been infered that during the first phase
of thermal soak, the flow is maintained by a fan which runs for a short time about 1-
5 minutes and then stops. In the second phase of thermal soak, the flow is completely
governed by natural convection such that the thermal inertia allows the temperature to
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rise even though the engine has stopped. In the second phase of thermal soak, Khaled et al.
[2015] have categorized the flow into two categories namely ’Category 1’ and ’Category 2’.
In the flow of ’Category 1’, it has been observed that the temperature drops with time,
however in ’Category 2’, the temperatures reach peak values and the components affected
are screens of the turbine, pre-catalyst, steering junction, compressor oil pump, and water
outlet plenum respectively. In this case, the components heat up after stopping the engine
for 3 to 24 minutes depending upon the position in the underhood space. The temperature
of some components increases by almost 80◦C (pre-catalyst) and by 40◦C in the air zones
(crawl area) [Khaled et al., 2015].
The dimensionless numbers which describe natural convection flow are the Grashof and
Rayleigh numbers relating buoyancy forces to viscous forces, are expressed as follows:

Gr = βg∆Tδ3

ν2

Ra = βg∆Tδ3

να

(1.1)

where, β, ∆T , ν and α are the thermal expansion coefficient, temperature difference,
kinematic viscosity and thermal diffusivity, respectively.
The order of magnitude of Grashof and Rayleigh numbers based on the width and height
of underhood-space of car is reported in the experiments performed in PSA Group

— based on width:

GrL = [5.0× 105 − 1.7× 107]; RaL = [3.0× 105 − 1.0× 107] (1.2)

— based on height:

GrH = [6.0× 107 − 6.0× 108]; RaH = [4.0× 107 − 4.0× 108] (1.3)

These orders of magnitude suggest that the flow becomes turbulent in the natural con-
vection regime and therefore it is crucial to better understand the natural convection
phenomena occurring in the underhood space of automobiles. In the context of under-
hood space thermal design, researchers have tried to use Computational Fluid Dynamics
(CFD) as a tool by importing CFD calculations into thermal analysis code [Bendell, 2005,
Reister and Maihöfer, 2003]. In view of this context, a discussion on the rationale of the
CFD and turbulence model is discussed briefly in the next section of this chapter.

1.2 Computational Fluid Dynamics

Computational fluid dynamics is the method of doing analysis of fluid flow, heat trans-
fer, and related phenomena by means of computer-based simulation. The CFD technique
is very vigorous and encompasses a wide range of industrial and academic applications.
In the mid-nineties, the aerospace industry had integrated CFD in the design of air-
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craft. Moreover, this technique has been applied consistently in the automotive industry
to predict drag forces and underhood space design which is our concern. Owing to the
availability of high computing resources, CFD concept is the mainstay of the wider indus-
trial community. The advancement of turbulence theory is slow owing to the robustness
of experimental instruments and also due to the fact that many turbulent flows are too
expensive to be investigated by existing experimental techniques. Indeed, CFD reduces
some expensive phases of physical tests and gives better insight into the effective design
of the cars. Recent developments in the computational technique, such as supercomputers
have significantly improved the way turbulence is analyzed.

1.2.1 Why CFD is important

Highly precise types of equipment are very expensive and difficult to modify as per the
requirement, for instance changing the Rayleigh number, requires great effort. Nonetheless
experimental data are always useful for the validation of computational results owing to
the direct measurement of situations which are a reflection of real-life problems. However,
using experiments could hardly provide all the information to the engineers or researchers
and therefore CFD attracted the attention.

1.2.2 Importance of RANS

There are mainly three different approaches in the computational fluid dynamics study
of turbulent flows: Direct numerical simulation (DNS), Large-eddy simulation (LES), and
Reynolds averaged Navier-Stokes equation (RANS) and, in addition, Hybrid RANS-LES
strategies have been developed to couple RANS and LES in the same computation. There
are pros and cons of each approach over the others and therefore it is difficult to predict
which approach is the more appropriate one in computing turbulent flows as one approach
is suitable in a few cases while the other is suitable for other cases.
The DNS approach involves the calculation of instantaneous turbulent variables, such an
approach uses no approximation, and the results represent the real characteristics of tur-
bulence. Indeed, with DNS, it is possible to calculate the complete budget of turbulent
quantities that cannot be accessed by experimental studies. However, it is not possible to
perform DNS for turbulent flows in most engineering applications owing to a large number
of scales to be solved, which range from large scale of the size of the geometry to the small-
est scale that must be resolved. As the smallest scale is of the order of the Kolmogorov
scale, (η∗ = ν3/ε

1/4), such a simulation requires refined meshes with cell sizes of the order
of η∗. Consequently, the number of cells (Ng) far from the wall depends on the Reynolds
number such that Ng is proportional to Re9/4. For the computation of natural convection
flows, it is crucial to predict the behavior close to the wall which requires even a large
number of grid cells. Therefore, the development of computational resources is not at the
pace with which the DNS of most of the flows is possible.
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To overcome the limitation of DNS, an alternative way is to use the Large Eddy Sim-
ulation (LES) approach. This approach resolves the large scales, while the small scales
are modeled. The rationale behind the LES approach is that most of the transport of
momentum or energy is carried out by large scales while small scales do not significantly
contribute to the transport process but rather to dissipation processes. Therefore, the LES
approach needs coarser mesh relatively and thus requires less computational resources. In
the case of buoyancy-driven flows, most of the important heat transfer process occurs close
to the wall and woefully large scale eddies in the near-wall regions are of the same size
as small scale ones. And undoubtedly, buoyancy-driven flows require much attention to
the treatment of the near-wall region which requires refined meshes which is indeed too
expensive for most of the industrial applications.
The Reynolds-Averaged Navier-Stokes Equation (RANS) approach has been widely used
by most of the researchers and engineers due to the available computational resources.
However, the turbulence variables calculated using models based on the RANS approach
are only the approximation of turbulence due to the fact that the RANS approach is based
on statistical averaging in a manner that the variables are decomposed into mean and fluc-
tuating variables instead of solving instantaneous quantities. For the engineers, the mean
flow field is of major interest and that is why the RANS approach has been widely used
in the industrial community.

1.2.3 Turbulence model

In the last decades, modeling of turbulence had received a great deal of attention among
the industrial and academic research community. A lot of attention has been focussed on
the improvement of models. Despite substantial progress in the turbulence modeling, there
is still a need to formulate a more fundamental approach so that the general behavior of
turbulence can be predicted with adequate accuracy. Turbulence modeling is a procedure
to close the system of Reynolds averaged mean flow equations. The Reynolds averaging
introduce two unknown quantities in the conservation equations, namely Reynolds stresses
and turbulent heat fluxes and to close the system of equations, these two unknown quan-
tities need to be modeled.
One of the first known turbulence models is the mixing length model based on turbulent
viscosity hypothesis which considers the relation of Reynolds stress to the velocity gradi-
ents and a prescribed length scale. This approach is relatively successful in simple flows.
However, there are serious discrepancies in this approach that limit its applicability. Fur-
ther improvement is made by proposing two-equation models. For instance, k-ε models
which solve the transport equation of turbulent kinetic energy and its dissipation rate. An
important feature of two-equation models is that it is independent of any prior details of
the flow parameters and owing to this the range of application is wider. However, it has
been revealed that the two-equation models show numbers of deficiencies, for instance, the
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anisotropy of normal stress is not correctly represented in the models. To overcome the
limitations of two-equation models, it is required to move to a higher level of modeling
Reynolds stresses and turbulent heat fluxes by introducing differential equations for these
two quantities. The modeling approach at this level is known as second-moment closure.
For the turbulence model to be reliable, it should possess a few characteristics, like physical
relevance, and more importantly, it should reproduces the physical phenomenon. Besides,
the model ought to be primarily based on physical phenomena, and also it has to be simple
without skipping the critical features. However, these crucial requirements are very tough
to be fulfilled via the available turbulence models. As we know that the turbulence takes
place almost everywhere ranging from simple to complicated configurations. It is very
difficult to have one version of model which can correctly compute turbulent flows with
the desired accuracy. Since the eddy-viscosity based models are nevertheless the mainstay
for industrial computations particularly models used in PSA Group, so the goal of the
present work is to recommend models in such a way that there may be a compromise
between robustness and accuracy. The precedence is given to introduce buoyancy effects
in the eddy-viscosity based turbulence models.

1.3 Objective of the work

The main objective of the work is to improve and expand eddy-viscosity based turbu-
lence models for thermal buoyancy-driven flows, which would be applicable to a span of
buoyancy-affected flows encountered in industry, particularly in the underhood space of
automobiles.
At the earlier step, three new buoyancy-extended models are developed, in such a way that
the weak equilibrium hypothesis is introduced into the k-ω-SST, BL-v2/k and Launder-
Sharma models. The buoyancy contribution is introduced in the Boussinesq relation for
the Reynolds stress and in thermal heat flux relation using the generalized gradient dif-
fusion hypothesis (GGDH). The main purpose of this modification is to propose a simple
and linear buoyancy extension to the Reynolds stress relation by keeping the first part
of Reynolds stress that corresponds to Boussinesq relation and including the buoyancy
contribution that comes from the exact Reynolds stress equation. The models are then
applied to the buoyancy modified flows namely natural and mixed convection in a differ-
entially heated vertical channel and differentially heated cavities. Despite the success of
the buoyancy extended model, it is diagnosed that the modeling of tensorial diffusivity is
difficult in commercial codes specifically in ANSYS Fluent utilized by PSA Group. So it
is for the practical purpose that simple buoyancy-extended models is also proposed. In
this approach, the effect of buoyancy on the Reynolds stress is accounted for via adding
buoyancy extension as is done within the previous model. However, the simple gradi-
ent diffusion hypothesis (SGDH) instead of the generalized gradient diffusion hypothesis
(GGDH) is considered to model heat fluxes appeared in temperature equation.
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For completion, the detailed evaluation of introducing only buoyancy production terms in
the transport equation of turbulent kinetic energy and its dissipation rate are also ana-
lyzed with three turbulence models, namely k-ω-SST, BL-v2/k, and low-Reynolds number
Launder-Sharma models. These model modifications are also related to buoyancy param-
eter known as flux Richardson number which is integrated into the dissipation or specific
dissipation of k-ω-SST and BL-v2/k.
The open source code "Code Saturne" is utilised to develop these models owing to the flex-
ibility of modifying the turbulence models and also due to the open access to the source
code.

1.4 Thesis outline

The present work consists of six chapters namely Introduction, RANS modeling of tur-
bulent flows, Influence of buoyancy on turbulent channel flows, Development of buoyancy
extended models, Rectangular cavity, and conclusion and perspectives respectively.
After the introduction chapter (Chapter 1), Chapter 2 summarises the mathematical de-
scription of the governing equations. A brief description of the transport equation of
Reynolds stress and turbulent heat flux equations are given, accompanied by the discus-
sion of the modeling of the various terms. Attention is given to the buoyancy sensitized
models by means of looking into the effect of introducing buoyancy production terms, the
impact of turbulent Prandtl number and subsequently a detailed discussion on the sim-
plification of Reynolds stress and heat flux models which take into account of buoyancy
effects.
Chapter 3 presents the description of test cases which covers the span of turbulent convec-
tion regimes. A short discussion on the choice of turbulence models is given accompanied
with the aid of the description of their overall performance through simulating the differ-
ent convection regimes.
Chapter 4 presents the proposed buoyancy extended models. In the Reynolds stress re-
lation, attention is paid to the enhancement of Boussinesq relation while maintaining the
linearity of the relation. In the thermal part, improvement of generalized gradient diffusion
hypothesis (GGDH) is made with the aid of introducing the buoyancy extension. Owing
to the impossibility of modeling tensorial diffusivity in ANSYS Fluent, simple versions
of buoyancy-extended models are proposed in which the simplicity is coming from the
modeling of turbulent heat fluxes using the simple gradient diffusion hypothesis (SGDH).
In addition to that, the effect of only including buoyancy production terms is analyzed
along with the sensitivity of the coefficient (Cε3) in the ε or ω equations.
Chapter 5 describes the differentially heated cavity case and reviews the utility of buoyancy-
extended k-ω-SST and BL-v2/k models. In order to validate the proposed modified model,
the comparison is made with DNS data of Trias [Trias et al., 2007, 2010].
Chapter 6 provides the overall conclusion and perspective of the study.
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2.1. INTRODUCTION

2.1 Introduction

This chapter provides an overview of the fundamental concepts that govern the basis
for studying turbulent convective regimes that can be affected or driven with the aid of
buoyancy. The chapter starts with the description of differential form for the conservation
of mass, momentum, and energy equation that govern fluid flows and also their time-
averaged form is discussed. This is followed by the discussion of turbulence models of
various levels, starting from the Reynolds stress models to eddy-viscosity based models.
The simplified form of turbulent kinetic energy and its dissipation equation of its exact
form is also discussed. In addition to that, a brief evaluation of the turbulence closure is
presented. Consequently, the issue of modeling the transport equation for Reynolds stress,
heat flux, and temperature variance is also discussed. To shed light on the influence of
including the buoyancy source terms in eddy-viscosity models, a detailed discussion of
various proposals is made. Finally, this chapter discusses the weak and strong equilibrium
hypotheses for the truncation of the transport equations for Reynolds stress and turbulent
heat flux which results in the formulation of algebraic stress or algebraic heat flux models.

2.1.1 Navier Stokes equations

Continuity equation

The differential form of the continuity equation writes:

1
ρ

Dρ

Dt
+∇.u = 0 (2.1)

Where ρ = ρ(x, y, z, t) is the density and u is the velocity vector.

Momentum equation

The momentum relation in differential form is expressed as follows :

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+ ∂τij
∂xi

+ ρgi (2.2)

Where p, τij and gi are pressure, viscous stress and acceleration due to gravity respectively.
Viscous stresses are proportional to strain rates and coefficient of viscosity and expressed
as follows:

τij = 2µ
(
Sij −

1
3Skkδij

)
(2.3)

11



CHAPTER 2. RANS MODELING OF TURBULENT FLOWS

where Sij is the strain rate, Sij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
Substituting Eq. 2.3 into Eq. 2.2 yields

ρ

(
∂u
∂t

+∇u.u
)

= −∇p+∇.(µ(∇u+ (∇u)T )− 2
3µ(∇.u)I) + ρg (2.4)

Eq. 2.4 is the differential momentum equation for newtonian fluid.

Energy equation

The simplified form of energy equation in terms of temperature (T) is expressed as
follows:

ρCp
DT

Dt
= λ∇2T (2.5)

where Cp and λ are specific heat at constant pressure and thermal conductivity respec-
tively.

Boussinesq approximation

The Boussinesq approximation states that the density variation is only considered in
the buoyancy term, ρg, of the momentum equation and can be neglected in the rest of
equation Eq. 2.4. Assuming this Eq. 2.4 becomes:

ρ0

(
∂u
∂t

+∇u.u
)

= −∇p+∇.(µ(∇u + (∇u)T )− 2
3µ(∇.u)I) + ρg (2.6)

With ρ = ρ0 = constant, the Eq. 2.1 becomes

∇.u = 0 (2.7)

and that makes −2
3µ(∇.u)I to be zero in the Eq. 2.6. It is also assumed that the viscosity,

µ, is constant which makes Eq. 2.6 to yield:

ρ0

(
∂u
∂t

+∇u.u
)

= −∇p+ µ∇2u + ρg (2.8)

The buoyancy term (ρg) can be written as (ρ0 + ∆ρ)g such that the Eq. 2.8 becomes:

ρ0

(
∂u
∂t

+∇u.u
)

= −∇p+ µ∇2u + (ρ0 + ∆ρ)g (2.9)

In order to avoid the evaluation of the fluid density based on the local temperature, for
small temperature differences, it is usual to assume a linear variation of density with
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temperature, such that the buoyancy source term (∆ρg = (ρ− ρ0)g) can be written as:

(ρ− ρ0)g = −βρ0(T − Tref )g (2.10)

where β is the thermal expansion coefficient and Tref is the reference temperature.
With this approximation, Eq. 2.9 becomes:

ρ0

(
∂u
∂t

+∇u.u
)

= −∇p+ µ∇2u + ρ0g− ρ0gβ(T − Tref ) (2.11)

Taking into account of hydrostatic pressure,

P = p+ ρ0gh (2.12)

Eq. 2.11 becomes:

ρ0

(
∂u
∂t

+∇u.u
)

= −∇P + µ∇2u− ρ0gβ(T − Tref ) (2.13)

In the next section, we discuss the turbulence phenomena and how they change the be-
havior of the flow by inducing mixing and other effects.

2.1.2 Turbulence

There are many engineering applications to observe turbulent flows such as flows in
compressors, pumps, flow around vehicles, mixing of air and fuel in engines and in many
other applications. One of the important characteristics of turbulence is the mixing of
fluid and more effective transport than laminar flow. Because of this effective mixing of
fluids and transport, turbulence phenomena are of vital importance to many industrial
applications. The Reynolds number of the flow determines the relative importance of the
inertial forces and the viscous forces. From experiments on fluid flows, it is observed that
below the threshold value of Reynolds number (Recritical), adjacent layers of fluid past
each other in an orderly manner and the flow is smooth. This part of the flow regime is
known as laminar flow. However, above the value of Recritical, a series of complex events
takes place which gradually leads to significant changes in the flow behaviour and the flow
becomes random and chaotic. The flow properties vary in a very random way and such
type of chaotic regime of flow is called turbulent flow. This agitated nature of turbulent
flow needs complete description of the motion of all the fluid particles. Statistical study
of turbulent flows involves the decomposition of instantaneous quantities into its mean
and fluctuating components. Turbulent fluctuations are three-dimensional in character
which is varied in space. In addition to that, there are rotational flow structures which is
known as turbulent eddies and these eddies have a wide span of length scales. Moreover,
length scales of these eddies can be comparable to the dimensions of the flow configuration
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as well as there are intermediate and small size scales. Fluid particles are brought close
to each other by the motion of eddies in turbulent flows. The consequence of this is the
significant exchange of mass, momentum and heat. This leads to the mixing of fluid which
amplifies the diffusion for mass, momentum and heat.
In the next section of this chapter, a brief discussion of the Reynolds averaging of the
conservation of mass, momentum and energy equation is done.

2.1.3 Reynolds averaged Navier Stokes Equation

In order to avoid very high computational cost of simulating turbulent structures, the
standard method for industrial simulations is the RANS method, based on the Reynolds
decomposition, which consists of calculating only certain statistical moments of the vari-
ables. Reynolds average is a statistical average and the Reynolds averaged equations
provide the basis for analysing and calculating the transport phenomena in engineering
application problems. In this approach, the variable φ is decomposed into the mean part
φ and the fluctuating part φ′ such that:

φ(t) = φ(t) + φ
′(t) (2.14)

For stationary flows, φ can be computed as:

φ = lim
τ→∞

1
τ

∫ t0+τ

t0
φ̃(t)dt (2.15)

where τ represents a time interval which is large enough to average the unsteadiness of
the flow. The time average of the fluctuations φ′ is zero:

φ′ = 0 (2.16)

Some information related to the intensity of the fluctuations can be obtained from the
root-mean-square, which is expressed as follows:

φrms =
√

(φ′)2 (2.17)

To investigate the effect of turbulent fluctuations on averaged equations, we need to replace
the flow variable u, v, w and p in Eq. 2.1, Eq. 2.4 and in Eq.2.5 by the sum of mean and
fluctuating components such that

ui = Ui + u
′
i; p = P + p

′ ; Θ = T + θ (2.18)

Also by assuming the Boussinesq hypothesis, the averaged equations become

∂Ui
∂xi

= 0 (2.19)
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DUi
Dt

= − ∂P
∂xi

+ ∂

∂xj

[
ν

(
∂Ui
∂xj
− u′iu

′
j

)]
− giβ(T − Tref ) (2.20)

DT

Dt
= ∂

∂xi

(
ν

Pr

∂T

∂xi
− θu′i

)
(2.21)

The time averaging of the equations introduces the second moments u′iu
′
j in the momentum

equation and θu
′
i in energy equation. To close the system of equations, information is

required on turbulent momentum fluxes and turbulent heat fluxes. The most detailed and
natural way to have these fluxes is to solve their transport equations and the process of
closing this system of equations is known as second moment closure. Moreover, the goal
of most commercial CFD code is to provide simple, applicable and economical turbulence
model to compute wide variety of flows. Next section of this chapter deals with the
discussion of turbulence closure of Reynolds stress and heat flux models.

2.1.4 Reynolds Stress Models

This part of the chapter involves the discussion of the Reynolds stress equation and
its closure. The Reynolds stress and turbulent heat flux terms that comes out due to the
averaging in the momentum and energy equations is the second moments for the exact
differential transport equations. These differential equations consist of number of terms
that cannot be calculated exactly, but these terms need modeling for the closure of the
equations. Since the second moments are obtained by solving the modeled transport equa-
tions, closure at this level provides more accurate predictions of the turbulent quantities
as compared to the standard eddy-viscosity/eddy-diffusivity based models. Simplest lin-
ear models mainly for pressure-strain and pressure-temperature-gradient correlation are
discussed for both the Reynolds stress and heat flux equations.
The partial differential equation for Reynolds stress under the Boussinesq hypothesis
writes:

Dui
′uj
′

Dt
=
[
− ∂

∂xk
(u′iu

′
ju
′
k)︸ ︷︷ ︸

Dtij

+ ∂

∂xk
(ν
∂u
′
iu
′
j

∂xk
)︸ ︷︷ ︸

Dνij

− ∂

∂xk

(
p′

ρ
(u′iδjk + u

′
jδik)

)
︸ ︷︷ ︸

Dpij

]
−
(
u
′
iu
′
k

∂Uj
∂xk

+ u
′
ju
′
k

∂Ui
∂xk

)
︸ ︷︷ ︸

Pij

−

β(gjθu
′
i + giθu

′
j)︸ ︷︷ ︸

Gij

− p′

ρ

(
∂u
′
i

∂xj
+
∂u
′
j

∂xi

)
︸ ︷︷ ︸

φij

− 2ν ∂u
′
i

∂xk

∂u
′
j

∂xk︸ ︷︷ ︸
εij

(2.22)
Dt
ij ≡ Turbulent diffusion; Dν

ij ≡ Viscous diffusion; Dp
ij ≡ Pressure diffusion

Pij ≡ Dynamic Production; Gij ≡ Buoyancy production
φij ≡ Pressure velocity correlation; εij ≡ dissipation tensor
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Dt
ij , Dp

ij , φij and εij needs modelling. The function of pressure-strain correlation is
merely to redistribute the energy between normal components of the Reynolds stress and
this term is modeled as a sum of three contributions

φ∗ij = φ1
ij︸︷︷︸

Slow−term

+ φ2
ij︸︷︷︸

Rapid−term

+ φ3
ij︸︷︷︸

Buoyancy−term

(2.23)

Since Reynolds stress models (RSM) are not the focus of this work, a very short description
is given here. The reader is requested to refer Hanjalić and Launder [2011] for a complete
introduction.

Modeling of pressure-strain correlation terms

For modeling the slow-term, Rotta [1951] have proposed the return-to-isotropy model
which is expressed as follows:

φ1
ij = −C1

ε

k

(
u
′
iu
′
i −

2
3kδij

)
(2.24)

The Isotropization-of-production model by Naot [1970] is used to model the rapid-term of
the pressure-strain term:

φ2
ij = −C2

(
Pij −

2
3δijPk

)
with C2 = 0.6 (2.25)

Buoyancy effects play an important role on the pressure-strain correlation and the role of
buoyancy is to reduce the anisotropy of buoyancy production. The buoyancy contribu-
tion to pressure-strain can be modeled by using the isotropization-of-model proposed by
Launder [1975, 1976] or by Gibson and Launder [1976] which is expressed as:

φ3
ij = −C3

(
Gij −

2
3Gkδij

)
with C3 = 0.6 (2.26)

Modeling of the dissipation tensor

Small scale motions are isotropic for high Reynolds number and assuming this to model
dissipation tensor leads to

εij = 2ν ∂u
′
i

∂xk

∂u
′
i

∂xk
= 2

3εδij (2.27)

Modeling diffusion terms

One of the way of modeling the turbulent diffusion is by using generalized gradient
diffusion hypothesis (GGDH) of Daly and Harlow [1970], the pressure diffusion is generally
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modeled along with turbulent diffusion as it participates in the overall diffusion.

Dp
ij +Dt

ij = ∂

∂xk

[
Cs
k

ε
u
′
ku
′
l

∂u
′
iu
′
j

∂xl

]
(2.28)

2.1.5 Turbulent heat flux equation

The exact equation of the turbulent heat flux writes:

Dθui
Dt

=
[

∂

∂xk

(
ν
∂ui

′

∂xk
θ + αui

′ ∂θ

∂xk

)
︸ ︷︷ ︸

Dν
θi

− ∂

∂xk
(ui′uk

′θ)︸ ︷︷ ︸
Dt
θi

+ ∂

∂xk

(
∂

∂xj

(
θp

ρ
δij

))
︸ ︷︷ ︸

Dp
θi

]

︸ ︷︷ ︸
Dθi

−u′
iu

′
j

∂T

∂xk︸ ︷︷ ︸
P th
θi

− θu′
k

∂Ui
∂xk︸ ︷︷ ︸

Pm
θi

− giβθ2︸ ︷︷ ︸
Gθi

− ∂p

∂xi

θ

ρ︸ ︷︷ ︸
φθi

− (ν + α) ∂u
′
i

∂xk

∂θ

∂xk︸ ︷︷ ︸
εθi

(2.29)

where,
Dt
θi ≡ Turbulent diffusion; Dν

θi ≡ Molecular diffusion; Dp
θi ≡ Pressure diffusion

P thθi ≡ Thermal production; Pmθi ≡ Mechanical production; Gθi ≡ Buoyancy production
φθi ≡ Pressure scrambling; εθi ≡ Molecular dissipation
The terms showed in boxes need to be modeled. It is worth noting that molecular diffusion
also needs to be modeled. The terms involve gradients of mean velocity and mean temper-
ature which shows that turbulent heat fluxes depend on thermal as well as velocity field.
Pressure-scrambling has a significant effect on turbulent heat fluxes and so the precise
prediction of this term is vital. Pressure-scrambling is composed of three terms.

φθi = φ1
θi︸︷︷︸

Slow−term

+ φ2
θi︸︷︷︸

Rapid−term

+ φ3
θi︸︷︷︸

Buoyancy−term

(2.30)

The simplest model for the slow term (φ1
θi) was proposed by Monin [1965] which is based

on a linear return to isotropy approximation.

φ1
θi = −Cθ1θu

′
i

1
τ

(2.31)

The model for the rapid term (φ2
θi) proposed by Owen [1974] is based on the isotropization

of production due to velocity gradient.

φ2
θi = Cθ2θu

′
k

∂Ui
∂xk

(2.32)

Although the temperature gradient does not appear in the exact expression of φ2
θi [Launder,

1975]. Durbin [1993] proposed an additional contribution for φ2
θi which is based on the
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isotropization due to gradient of temperature.

φ2′
θi = C

′
θ2u

′
iu
′
j

∂θ

∂xj
(2.33)

However, this appears artificial since the temperature gradient does not appear in the
exact expression of φ2

θi. The effect of buoyancy on pressure-scrambling is denoted by φ3
θi

and the modeling of this term is done analogous to φ3
ij part based on the isotropization of

production due to buoyancy of Owen [1974].

φ3
θi = Cθ3βgiθ2 (2.34)

Finally, the pressure scrambling term by assembling all the proposals reads:

φθi = −Cθ1
1
τ
u
′
iθ + Cθ2u

′
jθ
∂Ui
∂xj

+ Cθ3βgiθ2 + C
′
θ2u

′
iu
′
j

∂θ

∂xj
(2.35)

The coefficients used by different authors are listed in Table 2.1.

Researchers Cθ1 Cθ2 Cθ3 Cθ2
′

Launder [1975] 3.2 0.5 0.5 −
Gibson and Launder [1978] 3.0 0.33 0.33 −
Launder [1988] 3.0 0.4 0.33 −
Lai and So [1990] 3.0 0.4 − −
Peeters and Henkes [1992] 3.75 0.5 0.5 −
Durbin [1993] 2.5 0 − 0.45
Dol et al. [1997] 3.75 0.5 0.5 −
Kenjeres [1998] 5.0 0.4 0.4 −
Dol et al. [1999] 3.75 0.5 0.5 −
Dol and Hanjalić [2001] 3.75 0.5 0.5 −
Shin et al. [2005] 2.5 0 − 0.45
Shin et al. [2008] 3.0 0.4 0.33 0
Choi and Kim [2008] 3.75 0.5 0.5 −

Table 2.1 – Different values of constants for φθi

Using the analogy of Daly and Harlow [1970], the turbulent diffusion term can be
modeled using the model of Wyngaard and Coté [1974].

Dt
θi = ∂

∂xk

[
Cθτu

′
ku
′
l

∂θu
′
i

∂xl

]
(2.36)

Peeters and Henkes [1992] proposed the model for molecular diffusion which is as follows:

Dν
θi = ν

∂2u
′
iθ

∂xk2 + (α− ν)u′i
∂2θ

∂xk2 + (α− ν) ∂u
′
i

∂xk

∂θ

∂xk
(2.37)
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Rearranging this leads to:

Dν
θi = ∂

∂xk

(
ν + α

2
∂u
′
iθ

∂xk

)
− 1

2θ
∂2u

′
i

∂xk2 + 1
2(α− ν)u′i

∂2θ

∂xk2 (2.38)

2.1.6 Temperature variance equation

The Reynolds-averaged transport equation for the temperature variance writes

Dθ2

Dt
=
[

∂

∂xk

(
α
∂θ2

∂xk

)
︸ ︷︷ ︸

Dν
θ

− ∂

∂xk

(
θ2u

′
k︸ ︷︷ ︸

Dt
θ

) ]
− 2θu′k

∂T

∂xk︸ ︷︷ ︸
Pθ

− 2α ∂θ

∂xk

∂θ

∂xk︸ ︷︷ ︸
εθ

(2.39)

where,
Dν
θ ≡ Molecular diffusion; Dt

θ ≡ Turbulent diffusion
Pθ ≡ Thermal production; εθ ≡ Dissipation rate
Turbulent diffusion and dissipation rate in the boxes needs modeling. Dt

θ can be modeled
using Wyngaard and Coté [1974] model expressed as follows:

Dt
θ = ∂

∂xj

(
Cθθ

k

ε
u
′
iu
′
j

∂θ2

∂xj

)
; with Cθθ = 0.22 (2.40)

However, thermal production and molecular diffusion can be computed exactly. Eq. (2.39)
is similar to the turbulent kinetic energy equation. In order to close the temperature
variance equation, one has to either solve the dissipation rate of temperature variance or
model it. It can be simply expressed from the definition of the time-scale ratio, R, which
represents the ratio between the thermal (τθ) and the mechanical time scale, τm:

R = τθ
τm

=
θ2

2εθ
k
ε

(2.41)

Where R is considered as constant, generally taken as 0.5.
However, for inhomogeneous flows, R cannot be constant and there are several proposals
to model R. For instance, Ince and Launder [1989] suggested a correlation of the time scale
which is expressed in terms of a scalar flux invariant, Aθ2, which is defined as follows:

Aθ2 = θu
′
kθu

′
k

kθ2
(2.42)

The definition of R by using Eq. (2.42) yields:

R = 1
1.5(1 +Aθ2) (2.43)
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2.1.7 Eddy viscosity based models

The simplest method to model the Reynolds stresses and heat fluxes is based on eddy-
viscosity and diffusivity model, where Reynolds stresses and heat fluxes are expressed in
terms of velocity and temperature gradients respectively.
The Boussinesq constitutive relation for Reynolds stresses writes:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
(2.44)

and the simple gradient diffusion hypothesis (SGDH) is expressed as follows:

θu
′
i = − νt

Prt

∂T

∂xi
(2.45)

Where Prt is the turbulent Prandtl number which is considered constant in many flows
and most of the CFD codes assume the values of Prt close to 1.0.

k-ε model

Based on dimensional grounds, the eddy-viscosity can be defined based on a velocity
scale υ and a length scale ` which are representative of large-scale turbulence

νt ∝ υ` (2.46)

It is very common to relate eddy-viscosity with quantities that have a clear physical
meaning. The square root of turbulent kinetic energy has been used as a velocity scale
and the length scale of energy containing eddies has been used as length scale. Using
Kolmogorov assumptions, [Kolmogorov, 1941], the length scale ` can be related to the
dissipation rate by l = k3/2

ε , such that

νt = Cµ
k2

ε
(2.47)

Where the coefficient Cµ is equal to 0.09.

Turbulent kinetic energy and dissipation rate equations

In this part of the section, exact equations of the turbulent kinetic energy and its
dissipation rate is discussed along with modeling different terms in the exact equations so
that the more simplified form of equation can be achieved and this makes possible to solve
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the equation computationally. The exact equation of turbulent kinetic energy writes:

∂k

∂t︸︷︷︸
Lk

+Uk
∂k

∂xk︸ ︷︷ ︸
Ck

=
[

∂

∂xk

(
− u′ku

′
lu
′
l

)
︸ ︷︷ ︸

Dt
k

− ∂

∂xk

(
1
ρ
u
′
kp
′

)
︸ ︷︷ ︸

Dp
k

+ ∂

∂xk

(
ν
∂k

∂xk

)
︸ ︷︷ ︸

Dν
k

]

︸ ︷︷ ︸
Dk

−u′iu
′
k

∂Ui
∂xk︸ ︷︷ ︸

Pk

−βgiθu
′
i︸ ︷︷ ︸

Gk

− ν
∂u
′
i∂u

′
i

∂xk∂xk︸ ︷︷ ︸
ε

(2.48)

where,
Lk ≡ Rate of change of k, Ck ≡ Transport of k by convection
Dt
k ≡ Transport of k by turbulent diffusion, Dp

k ≡ Transport of k by pressure diffusion
Dν
k ≡ Transport of k by viscous diffusion, Pk ≡ Production rate of k

Gk ≡ Production of k due to buoyancy ε ≡ Dissipation
The terms in boxes need modeling. Pressure diffusion is modeled with turbulent diffusion
using the simple gradient diffusion hypothesis (SGDH):

Dt
k = ∂

∂xk

(
νt
σk

∂k

∂xk

)
(2.49)

So the final modeled form of turbulent kinetic energy is as follows:

∂k

∂t
+ Uk

∂k

∂xk
= ∂

∂xk

[(
ν + νt

σk

∂k

∂xk

)]
− u′iu

′
k

∂Ui
∂xk
− βgiθu

′
i − ε (2.50)

The exact transport equation for the dissipation rate of turbulent kinetic energy can be
written as:

∂ε

∂t︸︷︷︸
Lε

+Uk
∂ε

∂xk︸ ︷︷ ︸
Cε

=
[

∂

∂xk

(
− 2ν

ρ

∂p′

∂xl

∂u
′
k

∂xl

)
︸ ︷︷ ︸

Dpε

− ∂

∂xk

(
νuk

′

(
∂ui

′

∂xl

)2)
︸ ︷︷ ︸

Dtε

+ ∂

∂xk

(
ν
∂ε

∂xk︸ ︷︷ ︸
Dνε

)]

︸ ︷︷ ︸
Dε

−2ν ∂Ui
∂xk

(
∂ui

′

∂xl

∂uk
′

∂xl
+ ∂ul

′

∂xi

∂ul
′

∂xk

)
︸ ︷︷ ︸

Pε1+Pε2

−2νuk ′ ∂ui
′

∂xl

∂2Ui
∂xk∂xl︸ ︷︷ ︸

Pε3

−2ν ∂ui
′

∂xl

∂uk
′

∂xl

∂ui
′

∂xl︸ ︷︷ ︸
Pε4

−2ν
(

∂2ui
′

∂xk∂xl

)2

︸ ︷︷ ︸
Yε

−2βνgi
∂ui

′

∂xl

∂θ

∂xl︸ ︷︷ ︸
Gε

(2.51)

where, Lε ≡ Rate of change of ε, Cε ≡ Transport of ε by convection
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Dt
ε ≡ Transport of ε by turbulent diffusion, Dp

ε ≡ Transport of ε by pressure diffusion
Dν
ε ≡ Transport of ε by viscous diffusion, Pε1 + Pε2 ≡ Mixed Production of ε

Pε3 ≡ Production by the Hessian of velocity, Pε4 ≡ Turbulent production of ε
Yε ≡ Major destruction of ε, Gε ≡ Buoyancy production term
The terms in boxes need modeling. Turbulent diffusion of ε is modeled using the simple
gradient diffusion hypothesis (SGDH),

Dt
ε = ∂

∂xk

(
νt
σε

)
(2.52)

Far from the walls, the main production of ε is due to Pε4 which is modeled along with
destruction term Yε such that:

Pε4 − Yε = ε

k

(
Cε1Pk − Cε2ε

)
(2.53)

Terms Pε1, Pε2 and Pε3 can be neglected in regions far from the walls. The modeled
transport equation of dissipation rate becomes:

∂ε

∂t
+ Uk

∂ε

∂xk
= ∂

∂xk

[(
ν + νt

σε

∂ε

∂xk

)]
+ Cε1

ε

k
(−u′iu

′
k

∂Ui
∂xk

) + Cε3
ε

k
G− Cε2ε

ε

k
(2.54)

The standard k − ε model uses following values of the constants:

Cµ = 0.09;σk = 1.0;σε = 1.30;Cε1 = 1.44;Cε2 = 1.92 (2.55)

2.1.8 Low-Reynolds number models

In the industrial applications, the success of the turbulence models for the prediction of
wall-bounded shear flows is dependent to a large extent on the use of wall functions which
relates the surface boundary conditions to the point in the flow far away from the surface
and so avoids the problem of modeling the viscous effects. However, there are several flows
in which this approach has to be stranded. For instance, in turbulent boundary layers at
transitional Reynolds numbers and in seperated flows. An alternative approach to avoid
the use of wall functions is the use of low-Reynolds number models, where the equations
are solved right up to the wall. Over the last few decades, many proposals have been made
for turbulence closures to enable their use to describe the flow close to a wall. Most of
the models use either a wall damping effect on the empirical coefficients and on functions
in the turbulence equations. These modifications are mainly dependent upon numerical
experiments and comparisons of global parameters. The general form of low-Reynolds
number k − ε type model is expressed as follows:

∂k

∂t
+ Uj

∂Ui
∂xj

= ∂

∂xj

[(
ν + νt

σk

)
∂k

∂y

]
− u′iu

′
j

∂Ui
∂xj
− ε̃−D (2.56)
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∂ε̃

∂t
+ Uj

∂ε̃

∂xj
= ∂

∂xj

[(
ν + νt

σε

)
∂ε

∂y

]
− Cε1f1

ε̃

k

(
u
′
iu
′
j

∂Ui
∂xj

)
− Cε2f2

ε̃2

k
+ E (2.57)

νt = Cµfµ
k2

ε̃
; RT = k2

νε̃
; Ry =

√
ky

ν
(2.58)

Researchers Model Cε1 Cε2 Cµ σk σε
Jones and Launder [1972, 1973] JL 1.45 2.0 0.09 1.0 1.3
Launder and Sharma [1974] LS 1.44 1.82 0.09 1.0 1.3
Hoffman [1975] HO 1.81 2.0 0.09 2.0 3.0
Hassid and Poreh [1978] HP 1.45 2.0 0.09 1.0 1.3
Lam and Bremhorst [1981] LB 1.44 1.92 0.09 1.0 1.3
Chien [1982] CH 1.35 1.8 0.09 1.0 1.3
Lai and So [1990] LSO 1.35 1.8 0.09 1.0 1.3
So et al. [1991] SZS 1.5 1.83 0.096 0.75 1.45
Yang and Shih [1993] YS 1.44 1.92 0.09 1.0 1.3
Fan et al. [1993] FLB 1.4 1.8 0.09 1.0 1.3
Rodi and Mansour [1993] RMM 1.44 1.92 0.09 1.3 1.3
Michelassi et al. [1993] MR 1.44 1.92 0.09 1.3 1.3

Table 2.2 – Numerical values of constants Cε1, Cε2, Cµ, σk and σε for different models

Table 2.2 summarises the details of the low-Reynolds number functions for the k − ε
group of models. To have better representation of the near-wall behavior, extra terms
denoted by D and E were added as listed in Table 2.4. Mainly three different definition of
D were used by researchers listed in Table 2.3. Moreover, the models from the k− ε group
are different from the basic version by introducing the viscous diffusion terms and by the
inclusion of damping functions (f) to modify constants (Cε1 and Cε2). ε̃ is defined as :

ε̃ = ε+D (2.59)

This definition of ε̃ is chosen so that it has zero value at the wall which explains the ap-
pearance of D. This definition of ε̃ has decisive advantages as this condition is numerically
stable.

D Near wall value of ε

2ν
(

k
y2

)
ν (a1

2 + a3
2)

ν
y
∂k
∂y ν (a1

2 + a3
2)

2ν
(
∂
√
k

∂y

)2

ν (a1
2 + a3

2)

Table 2.3 – Near-wall values of D
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Model D E Wall boundary condition

JL 2ν
(
d
√
k

dy

)2

2ννt

(
d2U
dy2

)2

k = 0; ε = 0

LS 2ν
(
d
√
k

dy

)2

2ννt

(
d2U
dy2

)2

k = 0; ε = 0

HO ν
y
∂k
∂y 0 k = 0; ε = 0

HP 2ν k
y2 −2ν

(
∂
√
ε̃

∂y

)2

k = 0; ε = 0

LB 0 0 dk
dy = 0, ε = ν d

2k
dy2

CH 2ν k
y2 (−2ν ε

y2 ) exp (−0.5y+) k = 0; ε = 0

LSO 0 2νCε2f2
ε
k

(
d
√
k

dy

)2

+ exp [−(RT64 )2][( 7
9Cε2 − 2)

ε
k

(
ε− 2ν

(
d
√
k

dy

)2)
− 1

2k

(
ε− 2νk

y2

)2

]

k = 0, ε = 2ν

(
d
√
k

dy

)2

SZS 0 2νCε2f2
ε
k

(
d
√
k

dy

)2

+ exp [−(RT64 )2]

−2ε
k

(
ε− 2ν

(
d
√
k

dy

)2)
+ 3

2k

(
ε− 2νk

y2

)2

]

k = 0, ε = 2ν
(
d
√
k

dy

)2

YS 0 ννT

(
d2U
dy2

)2

k = 0, ε = 2ν
(
d
√
k

dy

)2

FLB 0 0 k = 0, ∂ε∂y = 0

RMM 0 1.2ννt

(
d2U
dy2

)2

+ 0.0075ν kε

(
dk
dy

)(
dU
dy

)(
d2U
dy2

) k = 0, ε = 2ν
(
d
√
k

dy

)2

Table 2.4 – Summary of D and E terms, and wall boundary conditions for k and ε

The term D should asymptote to the non-zero value of ε at the wall if ε̃ = 0 is specified
and also to have the correct balance with the k equation. Using Taylor series expansions
in the vicinity of the wall, the fluctuating component of velocity is expressed as follows:

u
′ = a1y + b1y

2 + ...

v
′ = b2y

2 + ...

w
′ = a3y + b3y

2 + ...

(2.60)

this leads to
k = 1

2(a1
2 + a3

2)y2 + (a1b1 + a3b3)y3 + ... (2.61)
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The value of ε close to wall writes,

ε = νa1
2 + 4ν(a1b1 + a3b3)y + ... (2.62)

Near wall values for ε for three different definitions of D are mentioned in Table 2.3. In
the fully turbulent regime, ε̃ should be equal to ε as the value of D vanishes in this zone.
From the Table 2.3, it is observed that all the three different definition of D lead to the
correct value of ε at the wall that is ν (a1

2 + a3
2).

Model fµ f1 f2
JL exp [ −2.5

(1+RT /50) ] 1.0 1.0− 0.3 exp (−RT 2)
LS exp [ −3.4

(1+RT /50)2 ] 1.0 1.0− 0.3 exp (−RT 2)
HO exp [ −1.75

(1+RT /50) ] 1.0 1.0− 0.3 exp (−RT 2)
HP 1− exp (−0.001RT ) 1.0 1.0− 0.3 exp (−RT 2)
LB [1− exp (−0.0165Ry)]2(1 + 20.5

RT
) 1 + (0.05

fµ
)3 1− exp (−RT )2

CH 1− exp (−0.0115y+) 1.0 1− 0.22 exp [−(RT6 )2]
LSO 1− exp (−0.0115y+)

1 + [1− 0.6 exp (−Re104 )]

exp [−(RT64 )
2
]

1− 0.22 exp [−(RT6 )2]

SZS (1 + 3.45√
RT

) tanh ( y
+

115) 1.0 1.0
YS

(1 + 1√
RT

)(1− exp (−1.5× 10−4Ry

−5.0× 10−7Ry
3

−1.0× 10−10Ry
5))0.5

√
RT

1+
√
RT

√
RT

1+
√
RT

FLB

0.4 fw√
RT

+ (1− 0.4 fw√
RT

)

×[1− exp−( Ry
42.63)]

3

1.0 (1 −
0.22 exp [−(RT6 )2])fw2

RMM fµ
′

[1−exp (−0.095Ry)] 1.0 [1 −
0.22 exp (−0.3357

√
RT )]×

[1− exp (−0.095Ry)]
+ exp (1.8Rp3)− 1

Table 2.5 – Details of functions fµ, f1, f2
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The function fµ is multiplied to the eddy-viscosity relation and the purpose of this
function is to model the influence of the wall on the shear stress. The shear stress near the
wall is further reduced by the action of non-viscous effects, although this effect cannot be
modeled separately using this kind of damping function and so the fµ attempts to model
both the viscous and pressure strain effects simultaneously. Various proposals for fµ are
listed in Table 2.5. The extra term E is added to represent the effects in the near-wall
region of the terms Pε1, Pε2 and Pε3, which are neglected far from the wall. A number of
proposals are listed in Table 2.4.

Low-Reynolds Launder-Sharma model [Launder and Sharma, 1974]

The low-Reynolds number Launder-Sharma model is presented in this section which
proves to be a robust versions of low-Reynolds number model. The transport equation of
turbulent kinetic energy (k) and its dissipation (ε) is expressed as follows:

∂k

∂t
+ Uk

∂k

∂xk
= Pk + ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
−
[
ε̃+ 2µ

ρ

(
∂
√
k

∂xj

)2]
(2.63)

∂ε̃

∂t
+ Uk

∂ε̃

∂xk
= Cε1f1

ε̃

k
Pk + ∂

∂xj

[(
ν + νt

σε

)
∂ε̃

∂xj

]
− Cε2f2

ε̃

k
+ 2ννt

[(
∂2Ui
∂x2

j

)2]
(2.64)

The damping functions used in this model are expressed as follows:

f1 = 1.0; ; f2 = 1− 0.3 exp (−Ret2); fµ = exp
[
−3.4

(1 + Ret
50 )2

]
; Ret = ρk2

µε̃
(2.65)

2.1.9 v2-f models

Non-homogenous inner region predictions have been performed by using ad hoc damp-
ing functions, but the limitations of this damping functions is that they are fitted to
experimental or DNS data and so lost its universality. The k − ε models are based on a
single velocity scale,

√
k, although a second important scale is involved in the near-wall

region,
√
v2, where v2 is the wall-normal component of the Reynolds stress. The cor-

rect representation of νt near the wall is due to v2 scaling [Durbin, 1991]. The inviscid
blocking of v2 is represented by an elliptic partial differential equation. The rationale of
different variants of v2-f models is to take into account the kinematic blocking due to solid
boundaries. In the next section, the most recent and robust version of v2-f model that is
BL-v2/k is discussed.

BL-v2/k Billard and Laurence [2012]

In BL-v2/k model, in addition to the transport equation of turbulent kinetic energy
(k) and dissipation (ε), two more extra transport equation of wall normal energetic scale
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(v2) and the elliptic equation (f) is solved. The primary objective of BL-v2/k model is to
improve the numerical stability of the model by using the variable v2/k. The boundary
condition is more robust than of v2 by replacing the elliptic relaxation of Durbin [1991]
with the elliptic blending of Manceau and Hanjalić [2002]. The objective of the BL-v2/k

model is to correct the discrepancy observed with previous versions of v2-f models, for
instance the behaviour of the model to represent buffer layer is enhanced and also near-
wall peak of y+ dU+

dy+ is very well reproduced. Another favourable aspect of this model is
weak dependency on Reτ which allows the improved predictions of y+ε+ and y+ dU+

dy+ in
the logarithmic layer. Further the reduction of the Cε2 coefficient in the defect layer have
a great influence in the correct prediction of k+

y+ε+ and hence νt+

y+ is better predicted in the
defect layer whereas all the other versions of v2-f model over-predict these variables. The
equations of this model are:

Dk

Dt
= Pk − ε− 2Cε3ννt(1− α)3k

ε

(
∂2Ui
∂xk∂xj

)2

+ ∂

∂xj

[(
ν

2 + νt
σk

)
∂k

∂xj

]
(2.66)

Dε

Dt
= Cε1Pk − Cε2∗ε

T
+ ∂

∂xj

[(
ν

2 + νt
σε

)
∂ε

∂xj

]
(2.67)

Dϕ

Dt
= −(1− α3)ε2

ϕ

k
+ α3fh − P

ϕ

k
+ 2
k

νt
σk

∂k

∂xj

∂ϕ

∂xj
+ ∂

∂xj

[(
ν

2 + νt
σϕ

)
∂ϕ

∂xj

]
(2.68)

fh = − 1
T

(
C1 − 1 + C2

P

ε

)(
ϕ− 2

3

)
(2.69)

α− L2∆α = 1 (2.70)

k|y=0 = 0; ε|y=0 = lim
y→0

νk

y2 ; ϕ|y=0 = 0; α|y=0 = 0 (2.71)

Cε1 Cε2
∗ Cε2 Cε3 Cε4 σk σε

1.44 Cε2 + α3(Cε4 − Cε2) tanh
(∣∣∣∣∣ ∂∂xj

(
νt
σk

∂k
∂xj

)
/ε

∣∣∣∣∣
3/2)

1.83 2.3 0.4 1.0 1.5

Table 2.6 – Constants of the BL-v2/k model

T CT L CL Cη νt Cµ√√√√(k
ε

)2

+ CT
2
(
ν
ε

)
4.0 CL

√√√√√k3

ε2 + Cη
2
(
ν3

ε

)1/2

0.164 75 CµϕkT 0.22

Table 2.7 – Related constants, time, length scales and turbulent viscosity
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2.1.10 k − ω model Wilcox [1993]

Another possibility to avoid the use of damping functions was proposed by Wilcox
[1993] where the equation for the dissipation (ε) is replaced by an equation for the so-
called specific dissipation (ω = ε/k). The model derived by Wilcox [1993] is integrable
down to the solid wall and another reason for its popularity in comparison with k − ε
models is its ability to predict the effect of adverse pressure gradients in boundary layers.
The turbulent viscosity is expressed as follows:

νt = k

ω
(2.72)

The transport equations of k and ω are:

∂k

∂t
+ Uk

∂k

∂xk
= P − β′kω + ∂

∂xk

[(
ν + νt

σk

)
∂k

∂xk

]
(2.73)

∂ω

∂t
+ Uk

∂ω

∂xk
= αS2 − βω2 + ∂

∂xk

[(
ν + νt

σω

)
∂ω

∂xk

]
(2.74)

Where S is defined as
S =

√
2SijSij (2.75)

The constants are listed in Table 2.8 respectively.

β
′

α β σk σω
0.09 5/9 3/40 2.0 2.0

Table 2.8 – Constants of k − ω model

k-ω-SST model [Menter, 1994]

The main limitation of the k−ω model of Wilcox [1993] is its sensitivity to the arbitrary
values used for k and ω outside of the boundary layer in external aerodynamics. To address
this issue, Menter [1994] derived the k-ω-SST model. This is achieved by using a blending
function F1 which is one in the internal region of the boundary layer and logarithmic
region and gradually becomes zero in the wake zone. The role of the blending function is
to switch to the Wilcox [1993] model near the wall, and to the k − ε model in the outer
wake region. For this purpose, the equations of the k − ε model are written under the
form of a k−ω model by introducing the change of variable ω = ε/k. The equations then
read:

∂k

∂t
+ Uk

∂k

∂xk
= Pk − β∗kω + ∂

∂xk

[(
ν + σkνt

)
∂k

∂xk

]
(2.76)

∂ω

∂t
+ Uk

∂ω

∂xk
= γ

νt
P − βω2 + ∂

∂xk

[(
ν + σωνt

)
∂ω

∂xk

]
+ 2(1− F1)σω2

1
ω

∂k

∂xk

∂ω

∂xk
(2.77)
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The last term of Eq. 2.77 is the only term that distinguishes the k-ω model of Wilcox
[1993] and the k-ε model written under the form of a k-ω model. Therefore, when the
function F1 goes from one at the wall to zero far from the wall, the system of equations
Eq. 2.76 - 2.77 gradually switches from the k-ω model to the k-ε model. The next step
will be to modify the eddy-viscosity such that Bradshaw constraint (u′v′ < a1k) can be
taken into account and turbulent viscosity is expressed as follows:

νt = a1k

max(a1ω, SF2) (2.78)

where S is the strain rate and F2 is a function that is one for boundary layer flows and
zero for free shear layers and it is expressed as follows:

F2 = tanh [φ2
2], φ2 = max

(
2
√
k

β∗ωy
,
500ν
y2ω

)
(2.79)

The dynamic production is:
Pk = min(P, 10β∗kω) (2.80)

The constants are defined in Table 2.9, Table 2.10 and Table 2.11

α1 β1 σk1 σω1
5/9 3/40 0.85 0.5

Table 2.9 – Constants of k-ω-SST model

α2 β2 σk2 σω2
0.44 0.0828 1.0 0.856

Table 2.10 – Constants of k-ω-SST model

β∗ a1
0.09 0.31

Table 2.11 – Constants of k-ω-SST model

In order for the model to switch from the k-ω to the k-ε model, the constants φ of the
model are calculated from constants, φ1, φ2 as follows:

φ = φ1F1 + φ2(1− F1) (2.81)

F1 = tanh (arg1
4) (2.82)

arg1 = min

[
max

( √
k

β∗ωy
,
500ν
y2ω

)
,

4σω2k

CDkωy2

]
(2.83)
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where y is the distance to the wall and CDkω is the positive portion of the cross-diffusion
term.
The arg1 term goes to zero far from the wall. The first argument in Eq. (2.83) is the
turbulent length scale divided by y and it is equal to 2.5 in the log layer and becomes zero
towards the boundary layer edge. The role of the second argument is to ensure that F1 is
1.0 in the sublayer and goes to zero in the log region. The third argument is an additional
term to make free stream-dependent solution and it also ensure that arg1 goes to zero
near the boundary layer edge.

CDkω = max

(
2ρσω2

1
ω

∂k

∂xi

∂ω

∂xi
, 10−20

)
(2.84)

The boundary condition for ω at wall is:

ω = 10 6ν
β1(y1)2 at y = 0 (2.85)

where, y1 is the distance to the next point away from wall.
The next section of this chapter presents the literature review of various proposals of the
buoyancy modifications in the eddy viscosity models.

2.2 Survey of turbulence models for buoyancy-driven flows

This part of the chapter sheds light on the buoyancy sensitized eddy-viscosity models
used by several researchers. Buoyancy-driven flows arise in the environment and many
industrial applications ranging from nuclear, automotive, solar receivers, indoor air man-
agement and in several other applications. Buoyancy forces influences the turbulent mixing
and movement of fluid in the enclosure.

2.2.1 Buoyancy sensitized models based on buoyancy production

In flows driven by buoyancy, additional production terms Gk and Gε appear in the
k-equation (Eq. 2.48) and the ε equation (Eq. 2.51), respectively. The effect of buoyancy
is to enhance the turbulence level in a unstably stratified flows and to reduce it in a stably
stratified flow region. It is usual practice to model buoyancy production terms based on
simple gradient diffusion hypothesis (SGDH) Annarumma et al. [1991], Cox and Kumar
[1987], Crauford et al. [1985], Fletcher et al. [1994], Markatos et al. [1982], Nam and Bill Jr
[1993] which is expressed as follows:

u
′
iθ = − νt

Prt

∂T

∂xi

Gk = −βgiui′θ
(2.86)
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However, with this simple gradient diffusion hypothesis (SGDH), the effects of buoyancy
on turbulence is underestimated [Yan and Holmstedt, 1999]. To overcome this problem,
authors [Brescianini and Delichatsios, 2003, Ince and Launder, 1989, Van Maele and Merci,
2006, Worthy et al., 2001, Yan and Holmstedt, 1999] have tried generalized gradient dif-
fusion hypothesis (GGDH) of Daly and Harlow [1970] or algebraic flux model (AFM) of
Liu and Wen [2002] to model buoyancy source terms.

GGDH : u
′
iθ = −Cθ

k

ε
u
′
iu
′
j

∂T

∂xj

AFM : u
′
iθ = −Cθ

k

ε

[
u
′
iu
′
j

∂T

∂xj
+ ξu

′
jθ
∂Ui
∂xj

+ ηβgiθ2

] (2.87)

The main difference of Eq. (2.87) with Eq. (2.86) is the inclusion of transverse temperature
gradient into the buoyancy source term and this has a strong effect on the predictions, as
in weakly stratified flows, the gradient of temperature in the vertical direction is negligible
and using the Eq. (2.86) approach will lead to the underestimation of the buoyancy effect
on turbulence. In this context, Ince and Launder [1989] have simulated natural convection
in infinite cavity, with aspect ratios 5:1 and 30:1 using low-Reynolds number k−ε model of
Jones and Launder [1972]. In this study, buoyancy production terms are modeled using a
generalized gradient diffusion hypothesis (GGDH) and the favorable effect of introducing
these terms in the transport equation of k and ε is observed. Further, as far as the modeling
of Gε or Gω is concerned, it is not very established whether it is crucial to include these
terms, and different authors consider different formulation for modeling this term. Some
authors neglect the effect of this term which is also the default condition in Ansys Fluent.
Several authors Bilger [1994], Brescianini and Delichatsios [2003], Cox and Kumar [1987],
Crauford et al. [1985], Davidson [1990], Liu and Wen [2002], Shabbir and Taulbee [1990]
used the definition mentioned below:

Gε = Cε3
ε

k
Gk (2.88)

such that the ε-equation reads

∂ε

∂t
+ Uk

∂ε

∂xk
= ∂

∂xk

[(
ν + νt

σε

∂ε

∂xk

)]
+ Cε1

ε

k
Pk + Cε3

ε

k
Gk − Cε2

ε2

k︸ ︷︷ ︸
Sε

(2.89)

where Cε3 is considered constant or variable. Based on the Eq. (2.88), a review of the
source term in the ε equation used by several researchers is listed in Table. 2.12 where
different value of the coefficient Cε3 is tried by the researchers.
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References Cε3

Sε = Cε1
ε
kPk + Cε3

ε
kGk − Cε2

ε2

k −
Crauford et al. [1985] 1.4− 3.4(kε

∂u
∂x)3

c
Cox and Kumar [1987] 1.44
Shabbir and Taulbee [1990] 1.44
Annarumma et al. [1991] 1.44
Nam and Bill Jr [1993] 1.44
Luo and Beck [1994] 1.44
Bilger [1994] 1.44
Rho and Ryou [1999] 1.44
Murakami et al. [2000] 1.44
Liu and Wen [2002] 0.8
Brescianini and Delichatsios [2003] 1.0

Table 2.12 – Value of Constant for definition of Sε

Markatos et al. [1982] performed the sensitivity analysis of the coefficient Cε3 in buoy-
ant smoke flow and found that there were no significant effect of changing the value of
this coefficient. Parametric study of the coefficient Cε3 is also performed by Worthy et al.
[2001] in buoyant plume but due to lack of consistent experimental data, optimization
of this coefficient was not made. Chung and Devaud [2008] simulated turbulent plume
and the modified k− ε model by introducing buoyancy production terms in the transport
equations of turbulent kinetic energy and its dissipation rate. It was observed that the
SGDH approach (to model buoyancy source terms) leads to underpredict the influence
of buoyancy on turbulence. So in order to overcome this problem, they used the GGDH
approach and also performed the sensitivity analysis of coefficient Cε3. In this study, they
observed that the results are sensitive to this coefficient Cε3 and the best-suited value is
0.23 for GGDH and 0.3 for SGDH.
For mixed flows, Heindel et al. [1994] used another definition of Cε3 (Cε3 = tanh (UV )),
where U is the local horizontal velocity and V is the local vertical velocity.
Some authors, listed in Table. 2.13, formulate the buoyancy source term as follows:

Gε = Cε3
ε

k
max(Gk, 0) (2.90)

This buoyancy source term is based on the distinction of stable or unstable stratification
in flows. Moreover, this formulation of buoyancy source term is a default option in Ansys
Fluent. The expression of Sε mentioned in Table 2.13 was also tried by some authors
Fletcher et al. [1994], Hara and Kato [2004], Novozhilov [2001], Sinai and Owens [1995]
and the definition of Sε is different from other definition (Table. 2.12) in such a way that
in a stably stratified flow, buoyancy has a tendency to damp the turbulence and Gk is
negative and due to the max in the relation, the influence of buoyancy on the transport
equation for ε is 0 in this case. For unstably stratified flows, Eq. (2.90) reduces to Eq.
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(2.88).

References Cε3

Sε = Cε1
ε
k [Pk + Cε3max(Gk, 0)]− Cε2ρ ε

2

k −

Novozhilov [2001] 1.0
Fletcher et al. [1994] 1.0
Hara and Kato [2004] 1.0
Sinai and Owens [1995] 1.0

Table 2.13 – Value of Constant for definition of Sε

Markatos et al. [1982] have investigated that the influence of buoyancy on ε equation
is very small but removal of buoyancy production terms from k and ε has a appreciable
effect on the flow predictions. This prediction was further strengthened by Worthy et al.
[2001]. In their study, they observed that the influence of buoyancy on the ε equation is
negligible when SGDH approach is used to model buoyancy production term in turbulent
kinetic energy equation. Most of the researchers have used the definition of Sε mentioned
in Table. 2.12 for both horizontal and vertical shear layers with the value of Cε3 = Cε1.
Another definition of buoyancy source term is based on flux Richardson number and this
formulation is motivated by the fact that the optimal value of Cε3 is flow-dependent, so
it is interesting to formulate a modification which sensitizes the term to the type of flow.
Van Maele and Merci [2006] have sensitized k− ε and realizable k− ε models to buoyancy
effects by incorporating buoyancy production terms in the turbulent kinetic energy and
its dissipation equations, where the buoyancy production terms were modeled using the
GGDH approach along with flux Richardson number. Usually the flux Richardson number
is defined as the ratio of buoyancy production and shear production,

Rf = −Gk
Pk

(2.91)

Rodi [1984] proposed another definition of flux Richardson number so that the same value
of Cε3 can be used for horizontal and vertical shear layers. The definition of Rf proposed
was:

Rf = − Gk
(Pk +Gk)

(2.92)

According to Rodi [1984], Cε3 = 0 for vertical buoyant shear layers and Cε3 = 1 for
horizontal shear layers. The authors who considered this definition is listed in Table 2.14.
In order to distinguish between the vertical and horizontal buoyant flows, Rodi [1979]
proposes to sensitize both the production terms (P and Gk) by a term which is a function
of a buoyancy parameter and such a parameter is the modified form of flux Richardson
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number as expressed below:

Rf = −1
2

G
v2

Pk +Gk
(2.93)

where G
v2 is the buoyancy production of the cross-stream component of v2 as can be

determined from the Reynolds stress equation. With this definition, the production term
in the ε equation becomes:

Cε1
ε

k
(Pk +Gk)(1 + Cε3Rf ) (2.94)

References Cε3 Rf

Sε = Cε1
ε
k (Pk +Gk)(1 + Cε3Rf )− Cε2ρ ε

2

k − −

Worthy et al. [2001] Different
value

Rf = −Gk
Pk+Gk

Markatos et al. [1982] 0.9 Rf = −Gk
Pk+Gk

Yan and Holmstedt [1999] 0.6 Rf not given
Xue et al. [2001] 0.8 Rf not given

Table 2.14 – Value of Constant for definition of Sε

In fire simulations, Markatos et al. [1982] observed that the buoyancy production (Gk)
term is more important than the coefficient of Rf term, also Bos et al. [1986] and Cox
[1995] have concluded that the Rf have little effect in fire simulations. Worthy et al. [2001]
did the detailed analysis of introducing the flux Richardson number in the ε equation by
considering different modified k − ε models. It was infered that using GGDH approach
to model buoyancy production terms along with Rf term in ε equation yield a significant
improvement of results as compared to using SGDH approach to model buoyancy produc-
tion terms. Liu and Wen [2002] have modified Hanjalic [1994] four equation (k,ε, θ2, εθ)
model and used the Algebraic flux model to model buoyancy production terms in k and ε
equations, which is represented in Eq. 2.95 and Eq. 2.96 respectively.

Gk = −βgiui′θ = βgiCθ
k

ε

[
ui
′uj
′ ∂T

∂xj
+ ξθuj

′ ∂Ui
∂xj

+ ηβgiθ2

]
(2.95)

Gε = −Cε3
ε

k
βgiui

′θ = Cε3
ε

k
βgiCθ

k

ε

[
ui
′uj
′ ∂T

∂xj
+ ξθuj

′ ∂Ui
∂xj

+ ηβgiθ2

]
(2.96)

Cθ ξ η Cε
0.28 0.6 0.6 0.8

Table 2.15 – Coefficients and constants in modified Hanjalic model
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It has been observed that it is important to include all the three terms of the Alge-
braic flux model in simulating diffusion flames. Kumar and Dewan [2013] have studied
the thermal buoyant plume in self-similar region by modifying three turbulence models,
namely standard k-ε, the RNG k-ε and the k-ω respectively. It has been observed in their
studies that using the SGDH approach to model buoyancy source terms leads to incorrect
predictions of spreading rates, mean flow properties and turbulence quantities. In order
to overcome this problem, they have considered the GGDH approach to account for the
cross-stream density variation in turbulence models. For the ε equation, they have used
the proposal of Rodi [1984] by incorporating flux Richardson number and the expression
for source term Sε mentioned in Table. 2.14 with the coefficient Cε3 = 0.8 is used. It
has been concluded that RNG k-ε model along with GGDH approach to model buoyancy
source terms lead to capture the mean and turbulent flow properties quite effectively.

2.2.2 Effects of turbulent Prandtl number

The primary objective of this section is to examine critically the effect of turbulent
Prandtl number based on the available literature. The origin of turbulent Prandtl number
concept dates back from early twentieth century when Taylor [1915] proposed the concept
of eddy-diffusivity for describing heat transfer by turbulent wind field in analogy of ther-
mal diffusivity. From the atmospheric modeling point of view, a correct parametrization
of the turbulent Prandtl number leads to better predictions of weather and climate related
to heat transfer as well as it will have an impact on the estimation of air quality, ecosys-
tem and agricultural management. The limitation of higher level of turbulence models
to be utilised is constrained by the modeling of several terms and calibration of many
constants. This favored the use of eddy-diffusivity models for momentum along with the
eddy-diffusivity for heat transfer using the turbulent Prandtl number which represents the
dissimilarity between turbulent transport of momentum and heat. The eddy-diffusivity
concept introduces the following definitions:

u′v′ = −νt

(
∂U

∂y

)

v′θ = −αt

(
∂T

∂y

) (2.97)

where νt and αt are effective diffusivity for momentum and heat respectively.
The turbulent Prandtl number is defined as follows:

Prt = −
u′v′ ∂T∂y

−v′θ ∂U∂y
(2.98)

One of the accepted concept for most boundary layer to model turbulent Prandtl number
is Reynolds analogy which states that the transport of heat is taking in the same way as
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the transport of momentum and Prt ' 1.0. Garcia-Villalba and Del Alamo [2011] have
performed direct numerical simulation (DNS) of channel flow in a stable stratification con-
dition with different levels of stratification achieved by changing the Richardson number.
It has been reported that corresponding to the cases with the highest stratification, the
turbulent Prandtl number is ill-defined in the center of channel as αt is undefined. More-
over, it has also been reported that the turbulent Prandtl does not vary substantially with
the gradient Richardson number which is defined as:

Rig = − g∂/∂y(ρ)
ρ0(∂/∂y(u))2 (2.99)

In the range, Rig ≤ 0.2, Pr ≈ 1 is a reasonable choice for turbulence models for smaller
values of Rig.

Figure 2.1 – Effect of Prt on air temperature distribution [Plots are taken from Kays
[1994]]

Kays [1994] has analyzed the effect of turbulent Prandtl number (Prt) for air based on
the evaluation of temperature profiles in log layer of isothermal flows. In his study, it has
been observed that the value of Prt = 0.85, seems to underpredict the mean temperature
profile in log layer as compared to the wall law of temperature which is expressed as
follows:

T+ = 2.075 ln y+ + 3.9 (2.100)

So it has been inferred that the value of the turbulent Prandtl number should be variable
with the wall distance and in this context Kays and Crawford [1993] have proposed the
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relation to calculate Prt which is expressed as follows:

Prt = 1[
0.5882 + 0.228(νt/ν)− 0.0441(νt/ν)2

[
1− exp

(
−5.165
(νt/ν)

)]] (2.101)

This relation lead to a better prediction of the mean temperature in the log region as
can be seen in Fig. 2.1. Using the relation of Heskestad [1984], Nam and Bill Jr [1993]
tuned the model for buoyant plume by varying the coefficients (Cµ) and turbulent Prandtl
number (Prt) as these coefficients affect the prediction of mean velocity and temperature.

2.2.3 Thermal to mechanical time scale ratio (R)

In order to close the system of equations involving the momentum, energy and tur-
bulence equations, particularly the temperature variance equation (θ2), the dissipation of
the temperature variance (εθ) needs to be specified. A consistent approach would be to
solve the transport equation of εθ, but it requires further modeling of other terms [Han-
jalić et al., 1996, Kenjereš and Hanjalić, 2000, Kenjeres, 1998, Peeters and Henkes, 1992].
However, modeling of the εθ equation brings in much uncertainty as it involves twice as
many free parameters as compared to the dissipation rate of turbulence (ε). Furthermore,
determining new coefficients requires more information that is impossible to measure even
for simple generic flows and only provided by a very limited number of DNS studies. This
fact motivated researchers [Craft, 1991, Dol et al., 1999] to evaluate (εθ) from thermal to
mechanical time scale ratio as expressed below:

R = τθ
τm
, (2.102)

where τθ = θ2

2εθ is thermal time scale and τm = k
ε is mechanical time scale respectively.

The assumption of the constant time scale ratio works considerably well in number of
flows [Dol et al., 1997, Hanjalić et al., 1996, Kenjereš and Hanjalić, 2000, Kenjeres, 1998].
However an analysis of DNS data shows that the time-scale ratio is not constant everywhere
but varies significantly particularly close to wall. This parameter also depend on the flow
configurations as well as on Ra and Pr numbers [Dol et al., 1999, Kenjeres, 1998, Versteegh
and Nieuwstadt, 1998, Wörner, 1994]. A relation for determining R was proposed by Craft
[1991] which is based on local turbulent flux anisotropy as expressed as follows:

R = 1
1.5(1 +A2θ)

, (2.103)

where A2θ = ui
′θ

2

θ2k
is the scalar flux invariant. This expression is tested in forced convec-

tion in a heated plane and axisymmetric jets. Another proposal was made by Dol et al.
[1999] for buoyancy-driven side heated infinitely long channel for a relatively low Rayleigh
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number, Ra (105 ≤ Ra ≤ 5× 106) as expressed follows:

R = min(2.2Rat−0.13, 0.75), (2.104)

Where Rat = βg
√
θ2k9Pr/ν2ε is the turbulent Rayleigh number. Kenjereš et al. [2005]

proposed a new model which takes into account of flux anisotropy and stress anisotropy
and it is expressed as follows:

R = max

(
A2

1/2

1 +A2θ
, 0.6A

)
, (2.105)

Where A2 = aijaji, A3 = aijajkaki and A = 1−9/8(A2−A3) with aij = ui
′uj
′/k−2/3δij .

In the side heated turbulent natural convection flow, R is almost constant far from the
wall region with a strong peak close to the wall. In view of this behaviour, Dehoux et al.
[2012] proposed a relation to model the thermal to mechanical time scale ratio, R, which
involves the elliptic blending approach:

R = αθ
3Rh + (1− αθ3)Pr (2.106)

where αθ is the elliptic factor which goes from zero at the wall to unity far from the wall.
The value of Rh = 0.5 is constant in regions far from the wall.

2.2.4 Buoyancy-extended Reynolds stress and heat flux models

Approximated transport equations proposed by researchers like Donaldson et al. [1972],
Lumley [1972] and Dehoux et al. [2017] require a formidable task to solve 17 equations for
velocity, pressure, Reynolds stress components, temperature, turbulent heat fluxes, dissi-
pation of turbulent kinetic energy, temperature variance and dissipation of temperature
variance respectively. The presence of a rigid surface significantly changes the character
of pressure fluctuations in its vicinity which affect the level of stress and heat flux [Brad-
shaw, 1973, Launder et al., 1975]. Turbulent pressure fluctuations have been affected by
the gravitational forces and their influence needs to be included in any second-moment clo-
sure. However, these models are too expensive for most practical applications. Motivated
by this fact, authors like Launder [1975] have provided a intermediate model by formulat-
ing algebraic models for turbulent stresses and turbulent heat fluxes which is connected
with the local value of k and ε with the mean velocity and temperature fields. The origin
of these algebraic models is mainly based on two hypotheses which are weak equilibrium
hypothesis and strong equilibrium hypothesis. According to weak equilibrium hypothesis,
the anisotropy tensor is conserved along the streamlines and the diffusion of anisotropy is
negligible [Gatski and Speziale, 1993], such that

dbij
dt

= 0; Dij

Dkk
=
u
′
iu
′
j

u
′
ku
′
k

(2.107)
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where bij = u
′
iu
′
j/(2k)− δij/3 and Dij are the anisotropy tensor and total diffusion of u′iu

′
j

respectively. Using the chain rule, we get(
2kdbij

dt
= 0 =

du
′
iu
′
j

dt
−
u
′
iu
′
j

k

dk

dt

)
(2.108)

such that

Pij +Gij + φij − εij =
u
′
iu
′
j

k
(Pk +Gk − ε) (2.109)

where diffusion terms have canceled out due to Eq. 2.107 and Pij , Gij , φij and εij are
production, buoyant production, redistribution and dissipation tensor of the Reynolds
stress transport equation respectively.
Using the modeling approach for pressure-strain correlations (slow,rapid and buoyancy
terms), for dissipation tensor and for turbulent diffusion as described in equations (2.24),
(2.25), (2.26), (2.27) and (2.28) respectively. Eq. 2.109 becomes:

u
′
iu
′
j = 2

3kδij + k

ε

[
1− C2

C1 + (P+G)
ε − 1

(
Pij −

2
3Pδij

)
+ 1− C3

C1 + (P+G)
ε − 1

(
Gij −

2
3Gδij

)]
(2.110)

This algebraic relation can be simplified further using the strong equilibrium hypothesis,
P +G = ε. Eq. (2.110) becomes

u
′
iu
′
j = 2

3kδij + k

ε

[
1− C2
C1

(
Pij −

2
3Pδij

)
+ 1− C3

C1

(
Gij −

2
3Gδij

)]
(2.111)

In the absence of buoyancy effects (Gij = 0), these simplified relations show that the
main source of turbulence anisotropy is the deviatoric part of production (Pij−2/3Pkδij).
When buoyancy is active, the deviatoric part of buoyancy production (Gij − 1/3Gkkδij)
is also a source of anisotropy, and this effect must be accounted for in turbulence models.

C1 C2 C3
1.8 0.6 0.6

Table 2.16 – Value of Constant for algebraic Reynolds stress model

The values of the coefficients are listed in Table. 2.16 respectively. These two for-
mulation for Reynolds stress have been tested by Hossain [1980] in simulating vertical
buoyant jets and observed that more refined model Eq. (2.110) deteriorated the results
as compared to simple formulation mentioned in Eq. (2.111). Also Shabbir and Taulbee
[1990] have tried both the simple and refined algebraic Reynolds stress models in buoyant
plumes and vertical buoyant jets and found good agreement with experimental results.
Similarly to the case of the Reynolds stress, weak equilibrium hypothesis assumes that the
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nondimensional heat flux vector is conserved which yields following relation:

D

(
θui
′

√
θ2k

)
Dt

= 0

Dθu
′
i

Dt
= 1

2

(
1
k

Dk

Dt
+ 1
θ2
Dθ2

Dt

)
θu
′
i

(2.112)

and diffusion

Dθi = 1
2

(
1
k
Dk + 1

θ2
D
θ2

)
θu
′
i (2.113)

where Dθi, Dk and D
θ2 represents the total diffusion of θu′i, k and θ2, respectively. The

turbulent heat flux algebraic equation becomes:

P thθi + Pmθi +Gθi + φθi − εθi = u
′
iθ

2

(
Pk +Gk − ε

k
+
P
θ2 − εθ2

θ2

)
(2.114)

If the production and the dissipation terms of k and θ2 are assumed to be locally in
balance, i.e., considering strong equilibrium assumption which writes:

Pk +Gk = ε

P
θ2 = ε

θ2

(2.115)

where P
θ2 and ε

θ2 are the production and dissipation terms in the thermal variance trans-
port equation. Using the strong equilibrium hypothesis (Eq. 2.115), Eq. 2.114 reduces
to

P thθi + Pmθi +Gθi + φθi − εθi = 0 (2.116)

Introducing the model (Eq. 2.31, Eq. 2.32 , Eq. 2.33 and Eq. 2.34) for scrambling term
(φθi) and considering that the small scales are isotropic such that dissipation (εθi) is zero.
Eq. 2.116 thus reduces to linear algebraic flux model that reads,

θu
′
i = − 1

Cθ1
τ

(
(1− C ′θ2)u′iu

′
j

∂T

∂xj
+ (1− Cθ2)θu′j

∂Ui
∂xj

+ (1− Cθ3)βgiθ2

)
(2.117)

In the context of buoyancy-extended models, Davidson [1990] proposed buoyancy sensi-
tized k−ε model. In his work, he computed two-dimensional cavity of aspect ratio 5 : 1 in
which horizontal walls were adiabatic and the vertical walls are isothermal. Low-Reynolds
number k − ε model similar to the model of Jones and Launder [1972] and Lam and
Bremhorst [1981] was used. He formulated the algebraic Reynolds stress model which can
take into account of anisotropy of turbulence due to buoyancy. In Eq. 2.110 in forced
convection, Gij = 0 and the third term of the right-hand side is zero. In the framework of
eddy-viscosity models, the Boussinesq relation assumes that the second term can be mod-
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eled as −2νtSij and the idea of Davidson [1990] thus consists in sensitizing the Boussinesq
relation to buoyancy as

u
′
iu
′
j = (u′iu

′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

(u′iu
′
j)Boussinesq = −2νtSij + 2/3kδij

(u′iu
′
j)Buoyancy−extension = k

ε

(1− c3)(Gij − 2
3δijG)

c1 + (P +G)/ε− 1

(2.118)

where Gij = −β(giuj ′θ + (gjui′θ) and G = 1
2Gkk, The constants used are: c1 = 1.8 and

c3 = 0.6. Further, he used generalized gradient diffusion hypothesis (GGDH) to model
the heat flux which is used in the temperature equation. Although the simple gradient
diffusion hypothesis (SGDH) is used to model the heat fluxes in buoyancy extension part
of Reynolds stress and also to model the buoyancy production terms. He concluded that
the buoyancy-extended model is able to take into account the anisotropy of turbulence
in such a way that there is a reduction of vertical turbulent velocity fluctuations and an
increase of horizontal velocity fluctuation in stably stratified flows. Also the turbulent
shear stress is increased significantly by the inclusion of buoyancy extension which is sub-
stantially underpredicted by the original k− ε model. Moreover, the prediction of normal
Reynolds stresses is significantly modified by the inclusion of the buoyancy extension.
Murakami et al. [1996] proposed buoyancy sensitized k−ε model by computing thermally-
stratified flow fields. One of the aspects of stably stratified flow is that there is a suppres-
sion of turbulence in the vertical direction. The role of buoyancy is crucial as it damps
the turbulence and this affects the characteristics of the flow. In order to correct the
limitations of the k − ε model to predict these type of flows, an attempt was made by
Murakami et al. [1996] to formulate the model functions fBV and fBθ which can reflect the
buoyancy damping effect in the Reynolds stress and heat flux equations which is expressed
as follows:

−u′iu
′
j = CµfµfBV

k2

ε

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
− 2

3kδij

−u′iθ = 1
Prt

CµfµfBθ
k2

ε

∂T

∂xi

(2.119)

where the subscript B, V and θ in model functions fBV and fBθ stands for buoyancy,
velocity and temperature, respectively. The model function are expressed as follows:

fBV = CBV 1 − CBV 2
Pk
ε

+ CBV 3
Gk
ε

fBθ = CBθ1 − CBθ2
Pk
ε

+ CBθ3
Gk
ε

(2.120)

Where the value of the coefficients are: CBV 1 = 1.36, CBV 2 = 0.36, CBV 3 = 0.72, CBθ1 =
1.37, CBθ2 = 0.37 and CBθ3 = 1.6. The role of the model function fBV is to damp the
active turbulent shear stress component and fBθ damps the active turbulent heat flux
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component. Also they proposed a new damping function (fµ) based on the model of Abe
et al. [1993] and they have concluded that the inclusion of these damping functions leads
to the better prediction of the results as compared to k-ε model.
Liu and Wen [1999] proposed a buoyancy-modified turbulence model which is based on the
four equation k-ε-θ2-εθ model of Hanjalić et al. [1996]. They computed natural convection
flow in a two-dimensional enclosure in tall rectangular cavity and square cavity at higher
Rayleigh numbers. Three turbulence models namely, the model of Ince and Launder [1989],
three equation and four equation models of Hanjalić et al. [1996] are compared with the
proposed model [Liu and Wen, 1999]. The origin of their model comes from the fact that
buoyancy induces anisotropy in Reynolds stresses which influences the vertical boundary
layer and they have used return-to-isotropy concept in the pressure-strain correlation. For
the Hanjalic model, the reader is requested to refer to [Hanjalić et al., 1996]. However the
major modifications are presented here. In Liu and Wen [1999] work, buoyancy extension
is added to the Boussinesq relation and expressed as follows:

u
′
iu
′
j = 2

3kδij−νt

(
∂Ui
∂xj

+ ∂Ui
∂xj

)
+ k

ε

(1− c3fµ)
(c1fµ + fs)

(
Gij−

2
3δijG

)
+ k

ε

1
(c1fµ + fs)

φijw (2.121)

Where fµ = exp (−3.4/(1 +Ret/50))2 and fs = (1 + 0.1Ret)−1.
Using the Eq. 2.31, Eq. 2.32 and Eq. 2.34 for slow, rapid and buoyancy term of pressure
srambling and neglecting εθi as small eddies are isotropic, Eq. 2.114 become:

θu
′
i =

u
′
iu
′
k
∂T
∂xk

+ ξθu
′
k
∂Ui
∂xk

+ ηβgiθ2

−Cθ1
ε
k + 1

θ2

(
θu
′
k
∂T
∂xk

+ εθ

)
+ 1

2k

(
u
′
iu
′
k
∂Ui
∂xk

+ βgiθu
′
i + ε

) (2.122)

Simplified form of turbulent heat flux equation can be formulated by assuming strong
equilibrium for dynamic (Pk+Gk = ε) and thermal (Pth = εth) turbulence. The simplified
form of turbulent heat flux is expressed as follows:

θu
′
i = − 1

Cθ1

k

ε

[
u
′
iu
′
k

∂T

∂xk
+ ξθu

′
k

∂Ui
∂xk

+ ηβgiθ2

]
(2.123)

where ξ = (1− Cθ2) and η = (1− Cθ3) as per Hanjalić [2002].

Cs Cθ1 Cθ2 Cθ3
0.22 3.0 0.5 0.5

Table 2.17 – Value of constants for heat flux model

In the work of Liu and Wen [1999], the algebraic form of the turbulent heat flux is
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derived from the full transport equation and expressed as follows:

u
′
iθ = −Ck

ε

(
u
′
iu
′
i

∂T

∂xj
+ ξu

′
jθ
∂Uj
∂xj

+ ηβgiθ2 + φiθw

)
(2.124)

where, φiθw is the wall-reflection term [Gibson and Launder, 1978] and can be expressed
as follows:

φiθw = −c1θw
ε

k
uk
′θnkni

k3/2

c1εxn

where, xn is the distance from the wall and ni is the unit vector normal to wall. The
different values of constants used in the model are listed in Table. 2.18.

C ξ η C1θw c1
0.28 0.6 0.6 0.25 1.8

Table 2.18 – Specification of coefficients and constants

These modifications lead to better prediction of velocity fluctuations for the near wall
region. It has been concluded that the predictions of the Reynolds shear stress and the
turbulent kinetic energy were well predicted as compared to the experimental data [Tian,
1997, Tian et al., 1998]. However, the predictions in tall cavity, particularly Reynolds shear
stresses, by all the considered models were not in agreement with experimental data.
In the context of elliptic relation, Kenjereš et al. [2005] have proposed a buoyancy-extended
five equation (k − ε − v2 − f − θ2) model for computing 2D and 3D natural and mixed
convection flows in turbulent regime. The motivation comes from the fact that the low-
Reynolds number models lacks physical justification and the damping functions used in
these models have a non-linear behaviour which requires a strong clustering of grid near the
wall, and it is believed that this low-Reynolds number model approach fails in complex
flows. So in order to avoid this limitation, Durbin [Durbin, 1991] proposed the elliptic
relaxation approach to model non-viscous wall effects in eddy-viscosity models (v2 − f)
or in full Reynolds stress (ui′uj ′ - fij) model, so that there will be compromise between
correct wall treatment and computational robustness. In the Durbin [1991] model, it was
proposed to solve a separate equation for the wall-normal Reynolds stress (v2) which is
reduced significantly close to the wall as compared to k. Kenjeres [Kenjereš et al., 2005]
used the same extension as Davidson [1990] which writes:

u
′
iu
′
j = 2

3kδij − Cµτv
2

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
+ Cθτβ

(
giu

′
jθ + gju

′
iθ −

2
3gku

′
kθδij

)
(2.125)

The model is associated with a nonlinear algebraic heat flux model as expressed below:

u
′
iθ = −Cθτ

(
ζu
′
iu
′
j

∂T

∂xj
+ ξu

′
jθ
∂Ui
∂xj

+ ηβgiθ2

)
+ Cθ1

′
aiju

′
jθ (2.126)
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where the model coefficients ζ, ξ and η corresponds to (1−Cθ2
′), (1−Cθ2) and (1−Cθ3)

respectively and aij = u
′
iu
′
j

k −
2
3δij is the stress anisotropy.

νt = Cµτv2; τ = max

[
k

ε
, CT

ν

ε

1/2
]

(2.127)

The value of the coefficients are listed in Table. 2.19.

ξ η ζ Cθ1
′
Cµ

0.6 0.6 0.6 1.5 0.22

Table 2.19 – Model coefficients

Also in this work, a relation for thermal to mechanical time scale ratio expression was
proposed which takes into account of stress anisotropy and heat flux anisotropy through
its invariants:

R = max

(
A2

1/2

1 +A2θ
, 0.6A

)
(2.128)

Where A2 = aijaji, A3 = aijajkaki and A = 1− 9/8(A2 − A3), with aij = ui
′uj
′

k − 2/3δij .
It was observed that the proposed buoyancy-extended v2 − f model is able to better
predict natural and mixed convection regimes in the differentially heated vertical channel
configuration as compared to the two-equation k− ε type models and this modified model
is found to be numerically robust and requires less grid clustering close to the wall.
This Chapter provides meaningful insight into the RANS models and since our goal is to
sensitize the eddy-viscosity models to buoyancy effects, attention is given to the models
which are commonly used in the industrial computations. Further, in the pursuit of the
various buoyancy modifications in these models, a detailed literature survey is conducted.
This survey provides several methodologies to develop a range of buoyancy sensitized
models and the conclusions of this analysis are used in the next chapters, where new
developments are proposed.
The next chapter is dedicated to the selection of the test cases in three different regimes
and in addition to that, the performance of the selected turbulence models in these regimes
are examined.
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CHAPTER 3. INFLUENCE OF BUOYANCY ON TURBULENT CHANNEL FLOWS

3.1 Introduction

In this chapter, an evaluation of the capacity of three different eddy-viscosity based
turbulence models is performed by simulating different regimes of thermal convective flows.
The first regime corresponds to the forced convection flow with different friction Reynolds
number and the heat flux is imposed on the walls. The second case is Kasagi and Nishimura
[1997]’s mixed convection flow which corresponds to Reτ = 150 and Gr = 9.6 × 105.
The third one is of natural convection corresponding to the DNS data of Versteegh and
Nieuwstadt [1998] at Ra = 5.0 × 106 and Kiš and Herwig [2014] with Ra = 1.7 × 107

respectively. The order of magnitude of Rayleigh number found in the experiments at PSA
groupe are close to the one selected for assessing and developing the buoyancy sensitised
models. The Boussinesq hypothesis is considered for the variation of density in the gravity
term of the Reynolds averaged equations.
In addition to that, the effect of introducing the Yap term [Yap, 1987] in the low-Reynolds
number Launder-Sharma model is analyzed.

3.2 Description of the test cases

3.2.1 Forced convection regime

Numerical simulations of the fully developed turbulent flow in a channel at four differ-
ent Reynolds numbers (Reτ = 180, 395, 640, 1020) is performed and results are compared
with DNS data [Abe et al., 2004]. The flow takes place between two plates which are
separated by a distance of 2δ. The heat flux qw is imposed on the two walls as shown in
Fig. 3.1 and periodic boundary conditions are applied in the streamwise (x) and span-
wise (z) directions. The Reynolds number (Reτ ) is based on the channel half-width (δ)
and the friction velocity (uτ ) and air is considered as the fluid which corresponds to the
molecular Prandtl number Pr = 0.71. The flow and coordinates are normalized by the
friction velocity uτ , channel half-width δ, density ρ and friction temperature Tτ = qw

ρCpuτ
.

Figure 3.1 – Channel flow configuration for the forced convection regime

To maintain periodicity in pressure, the mean pressure gradient is subtracted and the
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modified pressure becomes:

P ∗ = P − dP

dx
x; ∂P

∂x
= −τw

δ
(3.1)

Where τw is the wall shear stress and δ is the channel half-width.
Defining β∗ = τw

δ , Eq. 3.1 becomes

P = P ∗ − β∗x (3.2)

By introducing the decomposition of pressure, the momentum equation becomes:

0 = −∂P
∗

∂x
+ β∗ + ν

∂2U

∂y2 −
∂u′v′

∂y
(3.3)

Using the system of units defined as follows:

M = ρδ3; L = δ; T = δ

uτ
(3.4)

the non-dimensionalized form of Eq. 3.3 becomes:

0 = −∂P̃
∗

∂x̃
+ β̃∗ + 1

Reτ

∂2Ũ

∂ỹ2
− ∂ũ′v′

∂ỹ
(3.5)

When the heat flux (qw) is imposed on the walls, the energy equation needs to be solved
and expressed as follows:

∂UρCpT

∂x
= λ

∂2T

∂y2 −
∂ρCpv

′θ

∂y
(3.6)

where λ and Cp are thermal conductivity and specific heat at constant pressure respec-
tively.
There is a gradient of mean temperature in the streamwise direction that must be sub-
tracted for the periodicity and taking the integral of Eq. 3.6 in the limits of y = 0 to
y = 2δ yields

∂

∂x

[
ρCp

∫ 2δ

0
UTdy

]
= λ

∂T

∂y

∣∣∣∣∣
2δ

− λ∂T
∂y

∣∣∣∣∣
0

(3.7)

Ub = 1
2δ

∫ 2δ

0
Udy (3.8)

Tb = 1
2δUb

∫ 2δ

0
UTdy (3.9)

where Ub and Tb are the bulk velocity and bulk temperature.
By substituting the value of Tb in Eq. 3.7 gives:

ρCpUbδ
∂Tb
∂x

= qw (3.10)
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By decomposing the mean temperature into two contributions, we have

T = Tb + ϑ (3.11)

Eq. 3.6 becomes:

0 = κ
∂2ϑ

∂y2 −
∂v′θ

∂y
− qw
ρCpδ

U

Ub
(3.12)

Where κ is the thermal diffusivity, κ = λ
ρCp

.
The friction temperature (Tτ ) is defined as follows

Tτ = qw
ρCpuτ

(3.13)

where uτ is the friction velocity.
The non-dimensional temperature equation becomes:

0 = 1
PrReτ

∂2ϑ̃

∂ỹ2
− ∂ṽ′θ

∂ỹ
− Ũ

Ũb
(3.14)

The boundary condition at the walls is defined as follows:

∂ϑ̃

∂ỹ

∣∣∣∣∣
0

= −PrReτ (3.15)

3.2.2 Mixed convection regime

Mixed convection is the mode of heat transfer where both pressure and buoyancy
forces interact. These type of flows occurs in many engineering applications like nuclear
reactors, heat exchanger, turbine blades, solar panels, and in many other applications.
These type of convective flows is referred as aiding flows when the buoyancy force is in the
same direction as the pressure force and opposing flows when the buoyancy force is in the
opposite direction. For the turbulent mixed convection in vertical flow passages, major
modifications take place in the turbulence structure and the effects on heat transfer per-
formance is complex. Experimental investigation of ascending mixed convection air flows
has been studied [Carr et al., 1973, Polyakov and Shindin, 1988, Shehata and McEligot,
1998, Steiner, 1971, Vilemas et al., 1992]. The experimental studies on turbulent mixed
convection has been complemented by the Direct Numerical Simulation (DNS) results.
DNS by Kasagi and Nishimura [1997] are among the earliest studies carried out in a ver-
tical differentially heated channel. Moreover, You et al. [2003] performed DNS for the
study of turbulent mixed convection in a vertical uniformly-heated pipe where attention
was restricted to hydrodynamically and thermally fully-developed flow.
The assessment of turbulence models in mixed convection flows have been reported by
Abdelmeguid and Spalding [1979], Cotton and Jackson [1990], Kim et al. [2006], Kirwin
[1995], Mikielewicz [1994], Walklate [1976], Yu [1991], where all those authors have tried
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many variants of two-equation closure models. Authors have also evaluated the perfor-
mances of other models, for example, Richards et al. [2004] and Kim et al. [2006] observed
some success with the v2−f model of Durbin [1991]. Keshmiri et al. [2008] have compared
the performance of four eddy-viscosity models namely Launder and Sharma [1974], Cotton
and Ismael [1998], Craft et al. [1996] and v2−f models against the Large-eddy simulation
(LES) in ascending turbulent mixed convection flows. In this study, the Launder-Sharma
model captures the impairment of heat transfer quite well as compared to other models.
For instance, Cotton and Ismael [1998] show the occurrence of impairment of heat transfer
at high values of buoyancy parameter and the model by Craft et al. [1996] significantly
underestimates the extent of impairment. At maximum impairment, flow and turbulence
profiles were accurately resolved by LES, v2 − f and Launder-Sharma model.
In this study, attempts are made to evaluate the performance of three very different eddy-
viscosity models in reproducing the effect of buoyancy on the statistics of turbulent mixed
convection in a vertical channel. The turbulence models considered are the k-ω-SST,
BL-v2/k and Launder-Sharma models respectively. The thermal condition on the walls
has been chosen to investigate the effect of aiding and opposing flow together. In the
mixed convection, turbulence is enhanced or damped by the additional forces acting on
the flow, and the velocity and temperature profiles in heated flow are described by the
momentum and energy equation together as these equations are coupled. In this work,
differentially heated vertical channel flow is computed and the results are compared with
the DNS data [Kasagi and Nishimura, 1997]. The pressure gradient acts in the upward
direction and buoyancy acts in upward direction (aiding flow) on the hot side of the wall
and a downward direction (opposing flow) on the cold side of the wall. This flow config-
uration is interesting from an application perspective, since it is representative of many
heat transfer applications such as flow inside a hollow wall and double glazed windows. All
the physical properties are constant except the density which is varying in the buoyancy
term only (Boussinesq approximation), where it varies linearly with temperature. The
two walls are kept at different but constant temperature. The friction Reynolds number,
Reτ = 150 is based on the mean wall friction velocity uτ , and the channel-half width
δ. The Prandtl number, Pr = 0.71 and the Grashof number (based on the temperature
difference between two walls and channel width 2δ) are imposed explicitly by the virtue
of non-dimensionalisation. The flow configuration and the convention for axes are given
in Fig. 3.2. Periodic boundary conditions are imposed in the x-direction and to account
the periodicity in pressure, the pressure gradient is subtracted. The momentum equation
in the x-direction reads:

0 = −1
ρ

∂P

∂x
+ ν

∂2U

∂y2 −
∂u′v′

∂y
− g + βg(T − Tref ) (3.16)
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Figure 3.2 – Channel flow configuration for the mixed convection regime

The pressure gradient satisfying the momentum balance can be evaluated by integrat-
ing momentum equation between two walls separated by 2δ,

0 = 2δ
ρ

∂P

∂x
− (uτ h)2 − (uτ c)2 + βg

∫ 2δ

0
(T − Tref )dy − 2δg (3.17)

where uτ h and uτ c are friction velocity at hot and cold walls respectively. By taking the
average of the mean temperature over the channel, the bulk mean temperature is defined
as:

Tm = 1
2δ

∫ 2δ

0
Tdy (3.18)

and the friction velocity is expressed as follows:

uτ
2 = 1

2((uτ h)2 + (uτ c)2) (3.19)

Mean pressure is decomposed into two contributions:

P = P ∗ − ρΓx (3.20)

where Γ is defined as:
Γ = uτ

2

δ
+ g − βg(Tm − Tref ) (3.21)

The pressure gradient becomes:

− 1
ρ

∂P

∂x
= −1

ρ

∂P ∗

∂x
+ Γ (3.22)
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Using the Eq. (3.22), the momentum Eq. (3.16) becomes

0 = −1
ρ

∂P ∗

∂x
+ Γ + ν

∂2U

∂y2 −
∂u′v′

∂y
− g + βg(T − Tref ) (3.23)

Using the system of units:

L = δ; T = δ

uτ
; M = ρδ3; Θ = ∆T (3.24)

The variables become:

T̃ = T

∆T ; g̃ = gh

uτ 2 ; β̃ = β∆T ; β̃g = Gr

8Re2
τ

; Ũ = U

uτ
; P̃ ∗ = P ∗

ρuτ 2 (3.25)

The non-dimensionalized momentum equation reads:

0 = −∂P̃
∗

∂x̃
+ Γ̃ + 1

Reτ

∂2Ũ

∂ỹ2
− ∂ũ′v′

∂ỹ
− g̃ + Gr

8Reτ 2 (T̃ − T̃ref ) (3.26)

where T̃ref is the average of the temperature at hot and cold walls respectively. The source
term of momentum equation, Grashof number and friction Reynolds number reads:

Γ̃ = 1 + g̃ − Gr

8Reτ 2 (T̃m − T̃ref ); Gr = βg∆T (2δ)3

ν2 ; Reτ = uτδ

ν
(3.27)

The non-dimensionalized mean temperature equation writes:

0 = 1
ReτPr

∂2T̃

∂ỹ2 −
∂ṽ′θ′

∂ỹ
(3.28)

With these non-dimensional equations, the three independent parameters that characterize
the flow are Reτ , Pr, and Gr respectively, and these parameters are imposed.
Thermal boundary condition on the walls reads:

T̃ = T̃ref ±
1
2 (3.29)

where T̃ref is the reference temperature.

3.2.3 Natural convection regime

Now we look at the natural convection case which is purely driven by buoyancy. In
flow configurations like the flow between two infinite walls separated by a distance with
different temperatures, investigation of turbulence is most effectively made as the influence
of various physical processes can be isolated. This flow is important from a fundamental
point of view as the production of turbulence by shear and buoyancy takes place in the
same direction. Also, homogeneity in two directions makes sure there is no disturbing
top/bottom or sidewall effects. In contrast to Section 3.2.2, there is no pressure gradient
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in this flow configuration and the flow is computed in a differentially heated vertical channel
such a way that the walls are kept at different temperatures. Temperature difference makes
the natural convection flow to develop and when the Rayleigh number is sufficiently large,
this flow becomes turbulent. The temperature difference (∆T ) and the distance between
the two walls (δ) are taken as temperature scale and length scale respectively. The flow is
characterized by the Rayleigh number, Ra = βg∆T (δ)3/(νκ), based on the width (δ) of the
channel. The flow is periodic in the vertical x-direction and the flow configuration is shown
in Fig. 3.3. The results are compared with the DNS data of Versteegh and Nieuwstadt
[1998] at Ra = 5× 106 and Kiš and Herwig [2014] at Ra = 1.7× 107, respectively.

Figure 3.3 – Flow configuration for the differentially heated vertical channel

The properties of the fluid are considered to be constant and density is variable only
in the buoyancy force term. With the Boussinesq approximation, Reynolds averaged
momentum equation for a vertical channel flow in the x-direction can be expressed as
follows:

0 = −∂P
∂x

+ ν
∂2U

∂y2 −
∂(u′v′)
∂y

− g + βg(T − Tref ) (3.30)

where β is the thermal expansion coefficient, Tref is the reference temperature, the x-
direction is the streamwise direction, and y is the wall-normal direction respectively.
By taking the hydrostatic pressure contribution into account, the modified pressure reads

P ∗ = P − ρgx (3.31)

Since the flow is homogenous in the x-direction (that is ∂P ∗

∂x = 0), Eq. 3.30 becomes:

0 = βg(T − Tref ) + ν
∂2U

∂y2 −
∂(u′v′)
∂y

(3.32)
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Where ν is the kinematic viscosity and Tref is the reference temperature. The averaged
temperature equation writes:

0 = κ
∂2T

∂y2 −
∂v′θ

∂y
(3.33)

Where κ is the thermal diffusivity. Using the system of units,

L = δ; T = δ2

κ
; M = ρδ3; Θ = ∆T (3.34)

variables become:

Ũ = U

Uref
; Uref = κ

δ
; T̃ = T

∆T ; β̃g = RaPr; ũ′v′ = u′v′

(Uref )2 ; ν̃ = Pr; κ̃ = 1 (3.35)

With these variables, the non-dimensional momentum equation becomes:

0 = RaPr(T̃ − T̃ref ) + Pr
∂2Ũ

∂ỹ2
− ∂̃u′v′

∂ỹ
(3.36)

and non-dimensional temperature equation becomes:

0 = ∂2T̃

∂ỹ2
− ∂ṽ′θ

∂ỹ
(3.37)

The thermal boundary condition on the walls are defined as:

T̃ = T̃ref ±
1
2 (3.38)

where T̃ref = 0.5.

3.3 Selection of turbulence models

In industrial flow computations, standard wall functions are found to be inadequate
for complex flows, specifically in regions where the flow departs from energy equilibrium.
Moreover, to be able to evaluate the influence of buoyancy-related terms in the models, it
is preferable to get away from the standard wall laws, which are only suitable for forced
convection flows and could contaminate all the results. So in this work, the wall-function
approach is not considered with the turbulence models.
Several low-Reynolds number versions have been proposed so that the equations can be
integrated down to the wall. In most of the near-wall modifications of the turbulence
models, non-viscous and molecular effects are modeled using damping functions which are
based on the non-dimensional wall distance and the turbulent Reynolds number [Chien,
1982, Jones and Launder, 1972, Launder and Sharma, 1974]. Despite of the fact that such
functions are unable to capture non-viscous effects, some of the low-Reynolds number
models have proven to be successful in several flows owing to the sagacious tuning of
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damping functions to imitate the wall effects.
Given this fact, three very different turbulence models are selected from three families of
turbulence models. The reason for choosing models from different families is to ensure
that the extensions that will be introduced into the models to take into account buoyancy
effects are not only valid for a particular model or type of model. From the k-ω family,
the k-ω-SST is considered owing to its wide use in industrial flows and relative success
in forced convection. The k-ω-SST model is a blend between the k-ε and the k-ω models
such that the model behaves as the k-ω model in the near-wall region and acts as the k-ε
model in the outer region and thus this model removes the deficiency of the k-ω model in
the computation of the outer region [Menter, 1994].
The selection of BL-v2/k model from v2-f family is based on the fact that the BL-v2/k

model was able to satisfactorily predict mixed and natural convection flows [Billard and
Laurence, 2012]. Also the BL-v2/k model is more robust as compared to other versions
of v2-f models. For instance in the mixed convection regime, the v2-f model by Lien and
Kalitzin [2001] has failed to predict the mean flow and turbulent flow profiles as compared
to DNS data. Moreover, the BL-v2/k model had given encouraging predictions in other
heat transfer flows, e.g., natural convection in a rectangular cavity, impinging jet on a flat
plate, flow in a ribbed channel [Billard and Laurence, 2012] respectively and given these
studies, BL-v2/k model has been selected in the present study.
The selection of low-Reynolds number Launder and Sharma [1974] model among other low-
Reynolds number is based on the ability to prove more accurate in the natural convection
boundary layers [Henkes and Hoogendoorn, 1989, Patel et al., 1985]. The Launder-Sharma
model had been applied in the ascending and descending turbulent mixed convection flows
and found to give reasonable quantitative results with the exception of the descending
flow data of Axcell and Hall [1978] at large buoyancy effects [Cotton and Jackson, 1990].
Subsequent computations in the case of ascending mixed convection flow in vertical pipes
by Cotton and Kirwin [1993] and Jackson and Mikielewicz [1996] had confirmed that
the Launder-Sharma model was superior to other low-Reynolds number k − ε turbulence
models.

3.4 Performance of selected turbulence models

Except in the appendices, where ANSYS FLUENT is applied, all the computations
have been performed using Code_Saturne, developed by EDF [Archambeau et al., 2004].
It is an open-source code, distributed under a Gnu GPL licence. It is an unstructured, finite
volume code, in collocated arrangement, of second order accuracy. Reynolds-averaged
incompressible Navier-Stokes equations are solved using a SIMPLEC algorithm with a
Rhie and Chow interpolation.
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3.4.1 Forced convection flow in a channel

Mean velocity distribution corresponding to Reτ = 180, 395, 640 & 1020 and Pr = 0.71
is shown in Fig. 3.4 and compared with the DNS data [Abe et al., 2004]. Reynolds-
number effect on turbulent quantities is significant and that’s why four different Reynolds
number flows are computed in this study. From Fig. 3.4, it can be observed that the
logarithmic region expands with increasing Reynolds number. There is some discrepancy
in the prediction of mean velocity by k-ω-SST in the defect layer and there is a good
agreement in the apparent log layer. Moreover in the viscous sub-layer, the agreement of
the velocity profile is satisfactory due to momentum balance. The BL-v2/k model gives a
better estimate of mean velocity profiles that matches in the whole domain of the channel.
Overall prediction of mean velocity by all the three models is in agreement with the DNS
data and this can be attributed to the fact that these models are generally calibrated using
this test case.
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Figure 3.4 – Mean velocity at Reτ = 180, 395, 640, 1020 [Plots are shifted for clarity]

Further, a closer look at the velocity distribution can be done by scrutinizing the vari-
able y+ dU+

dy+ (for assessing the predictions in the log region) shown in Fig 3.5. Appreciable
difference between the models can be seen. Near-wall peaks are underpredicted by k-ω-
SST model although predictions from BL-v2/k and Launder-Sharma models seem to be
satisfactory in the near-wall region. In the logarithmic region, only the BL-v2/k model
can slightly better predict the von Karman constant (in the logarithmic region, at infinite
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Reynolds number, y+ dU+

dy+ = 1
κ).
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Figure 3.5 – Premultiplied gradient of mean velocity at Reτ = 180, 395, 640, 1020 [Plots
are shifted for clarity]

The distribution of turbulent kinetic energy is shown in Fig. 3.6 and it is observed that
the peak value of k is Reynolds number dependent as the peak value is varying from 4.10
at Reτ = 180 to 5.11 at Reτ = 1020 as can be seen in DNS data. However, as far as the
predictions by models are concerned, it is observed that there is a severe underestimation
of the peak value of turbulent kinetic energy by k-ω-SST and Launder-Sharma models,
although BL-v2/k model seems to give relatively better prediction when compared with
DNS data. The near-wall behaviour of k is affected by the boundary condition on ε and
ω and this is one of the reasons of the differences in the prediction of turbulent kinetic
energy. Recalling the turbulent viscosity expression for the models:

νt = a1k

max(a1ω, SF2)

νt = Cµ
v2

k
kT

νt = Cµfµ
k2

ε

(3.39)
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Figure 3.6 – Turbulent kinetic energy at Reτ = 180, 395, 640, 1020 [Plots are shifted for
clarity]
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Figure 3.7 – Turbulent viscosity at Reτ = 180, 395, 640, 1020 [Plots are shifted for clarity]
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The turbulent viscosity (νt) predictions are shown in Fig. 3.7. In the wake region
there is severe overestimation of turbulent viscosity (νt) by k-ω-SST and Launder-Sharma
model, although BL-v2/k model seems to better predict this quantity. Mean temperature
(T+) distribution is shown in Fig. 3.8. Similar to mean velocity distribution, there is a
logarithmic region in the temperature profile also [Kader, 1981].

T+ = 1
κT

ln y+ + CT (3.40)

where κT is the von Karman constant of mean temperature profile and this constant is
calculated by the following relation:

κT =
(
y+dT

+

dy+

)−1

(3.41)
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Figure 3.8 – Mean temperature at Reτ = 180, 395, 640, 1020 [Plots are shifted for clarity]

It has been observed that T+ is well predicted up to y+ = 30 by all the models as
expected since qw is imposed. Moreover, in the log region, there is an overestimation of
the mean temperature by all the models. There are some discrepancy in the prediction of
mean temperature by the k-ω-SST and Launder-Sharma model as can be seen in Fig. 3.8.
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Figure 3.9 – Premultiplied temperature gradient at Reτ = 180, 395, 640, 1020 [Plots are
shifted for clarity]
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Figure 3.10 – Normal heat flux at Reτ = 180, 395, 640, 1020 [Plots are shifted for clarity]
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To look further in the temperature distribution, the variable y+ dT+

dy+ is shown in Fig.
3.9, the interest of this quantity is to look at the log layer prediction of models. In the
logarithmic region, there is an overestimation of this quantity which yields an underesti-
mation of the von Karman constant (κT ) by all the three models. However, the BL-v2/k

seems to give relatively better prediction of this quantity (y+ dT+

dy+ ) as compared to other
models.
The wall normal heat flux component observed to be well predicted by all three models
as can be seen in Fig. 3.10 and the component v′θ goes to zero (in the central region)
because of the term U

Ub
.

3.4.2 Mixed convection in the vertical channel flow

The mean velocity profile in computational units is shown in Fig. 3.11. It can be
seen that buoyancy makes mean velocity profile asymmetric in such a way that the mean
velocity increases on aiding side (near the hot wall) and reduces on the opposing side (near
the cold wall). For the comparison of model prediction, it is observed that k-ω-SST model
underpredicts the mean velocity profile. On the contrary, there is overprediction of mean
velocity by the Launder-Sharma model. The prediction by BL-v2/k is observed to be in
good agreement with DNS data of Kasagi and Nishimura [1997] as can be seen in Fig.
3.11.
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Figure 3.11 – Mean velocity at Gr = 9.6 × 105 and Pr = 0.71 [Kasagi and Nishimura,
1997]

This behavior can be interpreted by observing the stress balance by integrating the
momentum equation from the wall to some distance y.
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The momentum equation (Eq. 3.26) becomes:[
ν
dŨ

dỹ
− ν dŨ

dỹ

∣∣∣∣∣
y=0

]
− ũ′v′ + Gr

8Reτ

∫ y

0
(T̃ − T̃m)dỹ = −ỹ 1

ρ

∂P̃ ∗

∂x̃
(3.42)

In Eq. 3.42, the three terms on the left hand side are viscous stresses, the Reynolds shear
stress and buoyancy force respectively, and the pressure gradient balances these three
forces.

(a) Isothermal flows (b) Mixed convection flows

Figure 3.12 – Stress balance [Plots is taken from Kasagi and Nishimura, 1997]
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Figure 3.13 – Turbulent shear stress profile at Gr = 9.6× 105 and Pr = 0.71 [Kasagi and
Nishimura, 1997]

In the isothermal flows, there is a symmetrical distribution of Reynolds stresses and
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viscous stresses as can be seen in Fig. 3.12 a. However, when the flows is affected by
buoyancy such as mixed convection flow in a vertical channel, the stress distribution is
distorted due to the imposed buoyancy and this modifies the shear stress near the wall
and thereby causing the turbulence enhancement (on the opposing side) or suppression
(on the aiding side) as depicted in Fig. 3.12 b.
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Figure 3.14 – Turbulent kinetic energy profile at Gr = 9.6 × 105 and Pr = 0.71 [Kasagi
and Nishimura, 1997]

Based on this behavior, predictions of mean velocity by turbulence models can be an-
alyzed. Looking into Fig. 3.13, it is realized that the better prediction of turbulent shear
stress influences the mean velocity in such a manner that it affects the momentum balance
through viscous stress which is imposed at the wall and thereby allows better prediction
of mean velocity as observed in the case of BL-v2/k model as shown in Fig. 3.11. If this
turbulent shear stress is not properly predicted as observed in the case of k-ω-SST model
and Launder-Sharma model, then it affects the momentum balance through viscous stress
predictions which allows the mean velocity to be underpredicted with k-ω-SST model and
overpredicted with Launder-Sharma model respectively.
The turbulent kinetic energy distribution is shown in Fig. 3.14 and it is observed that the
turbulence is modified by the buoyancy such that there is a reduction (on aiding side) and
an enhancement (on opposing side) of turbulent kinetic energy. Moreover, it is observed
that with k-ω-SST and Launder-Sharma model, there is a severe underestimation of tur-
bulent kinetic energy. However, the predictions are relatively better with BL-v2/k model.
Fig. 3.15 shows the mean temperature profile and if we look into the DNS profile for
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mean temperature, it is observed that the buoyancy influences the mean temperature
predictions such that the profile becomes asymmetric owing to the increase of the tem-
perature gradient in the aiding side (hot wall) while it reduces on the opposing side (cold
wall). As far as the prediction of models is concerned, it is observed that the prediction
of BL-v2/k model is in good agreement with DNS data [Kasagi and Nishimura, 1997].
However, the mean temperature is overpredicted with k-ω-SST and underpredicted with
Launder-Sharma models respectively. Effect of buoyancy on thermal statistics can be bet-
ter interpreted by integrating the temperature equation from the wall to some distance y
towards the center of the channel, which yields

0 = 1
ReτPr

dT̃

dy

∣∣∣∣∣
0

−
∫ y

0
ṽ′θ (3.43)

Looking at the DNS profile of wall-normal heat flux, it is observed that on the aiding side,
wall-normal heat flux is reduced as shown in Fig. 3.16 and to preserve the balance in the
temperature equation (Eq. 3.43), the gradient of temperature increases. Now, when we
look into the prediction of turbulence models, k-ω-SST model overpredicts the wall-normal
heat flux on the aiding side and this makes the gradient of temperature to reduce and as
a consequence the mean temperature is overpredicted close to the hot wall.
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Figure 3.15 – Mean temperature at Gr = 9.6×105 and Pr = 0.71 [Kasagi and Nishimura,
1997]

However, this overprediction of wall-normal heat flux is marginal on the opposing
side and lead to less discrepant mean temperature profiles. The wall-normal heat flux
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predictions by the BL-v2/k model is found to be in relatively good agreement with DNS
data which leads to the better prediction of mean temperature profile as can be seen in
Fig. 3.15. For the Launder-Sharma model, there is a severe underprediction of the wall-
normal heat flux which allows the gradient of temperature in Eq. 3.43 to increase close
to the wall, and thereby the mean temperature is underestimated as can be seen in Fig.
3.15.
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Figure 3.16 – Wall-normal turbulent heat flux profile at Gr = 9.6 × 105 and Pr = 0.71
[Kasagi and Nishimura, 1997]

3.4.3 Natural convection in the vertical channel flow

The mean velocity profile is shown in Fig. 3.17. DNS data of Versteegh and Nieuwstadt
[1996] at Ra = 5 × 106 and Kiš and Herwig [2014] at Ra = 1.7 × 107 are considered to
compare the performance of the turbulence models. To better understand the dynamics
of this flow, we need to integrate the momentum equation from the wall to some distance
y which is expressed as follows:

0 =
∫ y

0
β̃g(T̃ − T̃ref ) + ν̃

dŨ

dỹ

∣∣∣∣∣
0

− ũ′v′ (3.44)
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Figure 3.17 – Mean velocity at Ra = 5×106 [Versteegh and Nieuwstadt, 1996](denoted by
�) and Ra = 1.7× 107 [Kiš and Herwig, 2014](denoted by ◦) [Plots are shifted for clarity]
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Figure 3.18 – Turbulent shear stress profile at Ra = 5 × 106 [Versteegh and Nieuwstadt,
1996](denoted by �) and Ra = 1.7× 107 [Kiš and Herwig, 2014](denoted by ◦) [plots are
shifted for clarity]

65



CHAPTER 3. INFLUENCE OF BUOYANCY ON TURBULENT CHANNEL FLOWS

As can be seen from Eq. (3.44) that there is a balance between buoyancy force, viscous
stress and turbulent stress. It is observed that there is an overprediction of mean velocity
by k-ω-SST and BL-v2/k models owing to the underprediction of the Reynolds shear stress,
which is severely underestimated for k-ω-SST model as can be seen in Fig. 3.18, and this
is compensated by the increase of velocity gradient to maintain the balance as can be seen
in Fig. 3.17. Furthermore, there is a severe underprediction of mean velocity (shown in
Fig. 3.17) by the Launder-Sharma model owing to the misprediction of turbulent shear
stress as can be seen in Fig. 3.18.
Turbulent viscosity distribution is shown in Fig. 3.19. For the DNS data, the Boussinesq
constitutive relation is used to compute the eddy-viscosity which is expressed as follows:

νt = −u
′v′

(dUdy )
(3.45)

Looking into the Fig. 3.19, it is observed that for both the Rayleigh numbers, the tur-
bulent viscosity is underestimated by k-ω-SST and BL-v2/k models and overestimated by
Launder-Sharma model respectively. This prediction of turbulent viscosity is related to the
prediction of Reynolds shear stress as Boussinesq relation is used to model Reynolds stress.

0,1 0,2 0,3 0,4 0,5

0

20

40

60

80

100

120

140

H/X

a C

DNS-'0 = 1.7 × 107

DNS-'0 = 5.0 × 105

:-l-SST

BL-E2/:

Launder-Sharma

Figure 3.19 – Turbulent viscosity at Ra = 5 × 106 [Versteegh and Nieuwstadt, 1996](de-
noted by �) and Ra = 1.7 × 107 [Kiš and Herwig, 2014](denoted by ◦) [plots are shifted
for clarity]
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Figure 3.20 – Turbulent kinetic energy at Ra = 5 × 106 [Versteegh and Nieuwstadt,
1996](denoted by �) and Ra = 1.7× 107 [Kiš and Herwig, 2014](denoted by ◦) [plots are
shifted for clarity]
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Figure 3.21 – Mean temperature at Ra = 5×106 [Versteegh and Nieuwstadt, 1996](denoted
by�) and Ra = 1.7×107 [Kiš and Herwig, 2014](denoted by ◦) [Plots are shifted for clarity]
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Finally, by looking into the turbulent kinetic energy plots shown in Fig. 3.20, it is
observed that the turbulent kinetic energy is severely underestimated by all the selected
turbulence models far from the wall, however close to the wall Launder-Sharma predictions
are relatively better.
The mean temperature distribution is shown in Fig. 3.21. Corresponding to both the
Rayleigh numbers, it is observed that both the k-ω-SST and BL-v2/k models overestimate
T+ owing to the underestimation of friction temperature (as shown in Table. 3.1) by at
least 26% for k-ω-SST and by 8% for BL-v2/k model respectively. This fact is further
reinforced by the predictions of Nusselt number which is also underpredicted by both the
models. However, Launder-Sharma model underestimates T+ (as can be seen in Fig. 3.21)
owing to the overprediction of friction temperature. To better understand the prediction
of mean temperature by the turbulence models, temperature Eq. (3.37) is integrated twice
from the wall to some distance y which yields.

T̃ − T̃w =
∫ y

0
ṽ′θdỹ (3.46)
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Figure 3.22 – Normal turbulent heat flux at Ra = 5 × 106 [Versteegh and Nieuwstadt,
1996](denoted by �) and Ra = 1.7× 107 [Kiš and Herwig, 2014](denoted by ◦) [plots are
shifted for clarity]

It can be seen from the Eq. (3.46) that the good prediction of wall-normal turbu-
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lent heat flux is crucial for a good prediction of mean temperature. For the Launder-
Sharma model, v′θ is overestimated virtually everywhere hence the T+ is underestimated.
However, for the k-ω-SST model, this is just the opposite where the Nusselt number is
underestimated by 22% as shown in the Table. 3.1. With the BL-v2/k model, there is
a compensation in the integral of v′θ due to the underestimation close to the wall and
overestimation far from it. This is the reason why the temperature profile is better and
as a consequence there is less discrepancy in the prediction of the Nusselt number by only
4%.

Models uτ Err(%) Tτ Err(%) Nu Err(%)
DNS [Versteegh and Nieuwstadt, 1996] 200.41 - 0.054 - 10.89 -
k-ω-SST 222.68 +11 0.0362 −33 8.047 −26
BL-v2/k 210.0 +4 0.0487 −10 10.23 −6
Launder-Sharma 197.11 −1.6 0.066 +21 13.06 +20
Launder-Sharma + Yap term 209.75 +4 0.042 −21 8.9 −17.96
DNS [Kiš and Herwig, 2014] 322 - 0.049 - 15.78 -
k-ω-SST 343.05 +6 0.036 −26 12.24 −22
BL-v2/k 328.98 +2 0.045 −8 15.06 −4
Launder-Sharma 312.9 −2 0.065 +32 20.43 +29
Launder-Sharma + Yap term 327.31 +1 0.04 −18 13 −15

Table 3.1 – Comparison of friction velocity, friction temperature and Nusselt number

3.4.4 Effect of Yap term in the Launder-Sharma model

It is well known that when boundary layers are out of equilibrium, the k − ε model
gives large near-wall length scales [Hanjalić and Launder, 1972, Rodi and Scheuerer, 1984].
The problem becomes more severe in separated flows when an equation of ε is solved up
to the wall instead of using wall functions. While studying heat transfer in an abrupt
pipe enlargement, Yap [1987] noticed that Nusselt number is some five times that of
experimental value in the proximity of the reattachment point. To avoid this problem,
near-wall modifications were proposed by introducing the source term in the ε equation
[Yap, 1987], which is expressed as follows.

Sε = 0.83
(
k3/2

clεy
− 1

)(
k3/2

clεy

)2
ε̃2

k
(3.47)

Where y is the distance from the wall and cl(= 2.5) represents the slope of the turbulent
length scale (k3/2

ε ) in the near-wall region. k3/2

ε becomes large as compared to cly in a
near-wall separated region. The role of Sε is to drive the length scale level toward its local
equilibrium value.
Considering the extra source term (Sε), the dissipation equation of the Launder-Sharma
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model is expressed as follows:

∂ε̃

∂t
+Uj

∂ε̃

∂xj
= ∂

∂xj

[(
ν+ νt

σε

)
∂ε

∂xj

]
−Cε1f1

ε̃

k
ui
′uj
′ ∂Ui
∂xj
−Cε2f2

ε̃2

k
+2ννt

(
∂2U

dy2

)
+Sε (3.48)
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Figure 3.23 – Mean velocity at Ra = 5×106 [Versteegh and Nieuwstadt, 1996](denoted by
�) and Ra = 1.7× 107 [Kiš and Herwig, 2014](denoted by ◦) [Plots are shifted for clarity]

Looking into the Fig. 3.23, it is realized that the introduction of the Yap term makes
an improvement in the mean velocity. Moreover, the Yap term corrects the Reynolds
shear stress distribution, particularly close to the wall as can be seen in Fig. 3.24. To look
further into this, turbulent viscosity profile is analyzed which shows drastic improvement
in the prediction of turbulent viscosity with the addition of Yap term as shown in Fig. 3.25.
Furthermore, by looking into the profile of wall-normal heat flux as shown in Fig. 3.27, it
is observed that the introduction of Yap term leads to underestimate v′θ which yields an
overestimation of T+ (as shown in Fig. 3.26) for the compensation in the energy balance.
However, the error in Nusselt number prediction is slightly improved by introducing Yap
term as can be seen in Table. 3.1.
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Figure 3.24 – Reynolds shear stress at Ra = 5× 106 [Versteegh and Nieuwstadt, 1996](de-
noted by �) and Ra = 1.7× 107 [Kiš and Herwig, 2014](denoted by ◦) [Plots are shifted
for clarity]
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Figure 3.25 – Turbulent viscosity at Ra = 5 × 106 [Versteegh and Nieuwstadt, 1996](de-
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Figure 3.26 – Mean temperature at Ra = 5×106 [Versteegh and Nieuwstadt, 1996](denoted
by�) and Ra = 1.7×107 [Kiš and Herwig, 2014](denoted by ◦) [Plots are shifted for clarity]
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3.5 Conclusion

A detailed comparison of three different turbulence models has been performed by
computing three convection regimes namely forced, mixed, and natural convection respec-
tively.
In the forced convection regime, the prediction of mean velocity by all the three turbulence
models is in good agreement with the DNS data close to the wall, owing to the momen-
tum balance. However, there are slight discrepancies in the logarithmic region. For the
thermal characteristics, it has been observed that the mean temperature distributions are
satisfactorily reproduced by all the three models with some discrepancy in the log region.
To probe further in the logarithmic region, the von Karman constant (κ) and von Karman
temperature constant (κt) are also analyzed: it has been inferred that the BL-v2/k leads
to the better predictions of these constants. Moreover, it is realized that there are severe
underprediction of turbulent kinetic energy by k-ω-SST and Launder-Sharma models, al-
though it is relatively better predicted by BL-v2/k model. So the overall performance
of the BL-v2/k model in reproducing mean flow and turbulent quantity is satisfactory in
comparison to the other two models.
A mixed convection flow has been computed in a differentially heated vertical channel, it
has been observed that the buoyancy force has a considerable effect on the mean flow close
to the wall as it drastically changes the near-wall balance of forces, which modify the shear
stress distribution and turbulent kinetic energy production rate. All three turbulence mod-
els can satisfactorily predict mean velocity close to the wall. However, there is discrepancy
in predictions in the center of the channel by the k-ω-SST and Launder-Sharma models.
This discrepancy is due to the misprediction of turbulent shear stress, which affects the
momentum balance and allows the mean velocity to be underpredicted by the k-ω-SST
model and overpredicted by Launder-Sharma model respectively. Although, better pre-
diction of mean velocity is observed with BL-v2/k model. In addition to that, it has been
observed that the BL-v2/k model is able to better predict the turbulent kinetic energy. On
the contrary, it is severely underpredicted by k-ω-SST and Launder-Sharma models. For
the mean temperature predictions by the turbulence models, there is an overprediction of
mean temperature by the k-ω-SST model; on the contrary, Launder-Sharma underpredicts
it; BL-v2/k comes out to be the model which better predicts the mean temperature. This
prediction of the mean temperature is directly linked to the prediction of the wall-normal
heat flux which is also modified due to buoyancy and better prediction of this turbulent
heat flux component leads to better prediction of mean temperature as observed in the
case of BL-v2/k model. So, it is realized that the main effects (viz asymmetry of mean
velocity and mean temperature) of buoyancy are reproduced by all the three models.
For the natural convection flow which is completely driven by buoyancy, results are com-
pared against the two available benchmark DNS data bases which correspond to the high
Rayleigh number. It has been observed that there is a severe overprediction of the mean
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velocity by the k-ω-SST and BL-v2/k models owing to the underprediction of the Reynolds
shear stress. However, for the low-Reynolds number Launder-Sharma model, there is a
severe underprediction of the mean velocity close to the wall. This discrepancy can be
avoided to a certain extent by introducing an additional source term in the ε equation
proposed by Yap [1987]. Moreover, for the predictions of the mean temperature distribu-
tion, it has been observed that the underpredictions of the wall-normal heat flux leads to
the overprediction of the temperature profile and this behavior is reflected in the predic-
tions by the k-ω-SST and BL-v2/k model. On the contrary, the Launder-Sharma model
underestimated the mean temperature and the inclusion of the Yap term leads to an over-
estimation of mean temperature. However, Nusselt number prediction is improved with
the Yap term.
Finally after computing three different regimes it has been observed that the buoyancy
has modified the flow significantly and selected baseline models are unable to predict the
mean and turbulent quantities satisfactorily which is a major concern for industrial ap-
plications particularly in the thermal designing of the under-hood space of automobiles.
This motives us to consider the modifications for these eddy-viscosity models in such a
way that the effect of buoyancy can be introduced in the turbulence equations. The next
chapter of this work is dedicated to the development of buoyancy sensitized turbulence
models and to perform the detailed analysis of the several modifications which is affecting
the predictions of turbulence models.
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4.1 Motivation and Objectives

This chapter describes the main contribution of this thesis by outlining the selected
models in which various terms in the turbulence equations are modified.
The motivation of the work emanates from the problem faced by PSA Group in simulating
natural convection flows in the underhood space of cars. As the available eddy-viscosity
models in most of the commercial codes (particularly Ansys Fluent used by PSA group)
are not accounting for buoyancy effects with sufficient accuracy, and it is not possible to
rely on CFD of natural convection flows in the underhood space of cars. So the main
objective of the work is to develop the span of buoyancy sensitized models by testing
various modifications available in the literature. The modifications are done in three folds
as mentioned below:
(1) Buoyancy extended eddy-viscosity models under algebraic forms.
(2) Simplified buoyancy-sensitized models.
(3) Effect of adding only buoyancy production terms.

4.2 Development of the full buoyancy-extended model

4.2.1 Explicit algebraic models

The explicit algebraic models are derived from the implicit algebraic models and the
rationale of the explicit algebraic models involves the use of integrity bases that is the
polynomial representations for isotropic tensor functions [Pope, 1975]. These types of
models are developed to get an explicit solution and also to avoid the problem that is
numerical stiffness occurs in the implicit models. One of the advantages of these models
is that the saving of computational time is possible by avoiding the need for successive
matrix inversions to formulate the Reynolds stresses for the set of mean velocity gradi-
ents [Demuren and Rodi, 1984]. This explicit algebraic methodology was used by many
researchers such as Gatski and Speziale [1993], Girimaji [1996], Grundestam et al. [2005],
Pope [1975], Rumsey et al. [2000]; among others. Accounting for the effects of buoyancy
makes necessary the inclusion of large number of terms and lead to very complex explicit
algebraic models [So et al., 2004, Vanpouille et al., 2015], which is not required in our
work. Therefore, in the present work, a simpler approach is derived, based on implicit
algebraic modeling.

4.2.2 Buoyancy-extended Boussinesq relation

Buoyancy driven flows show markedly different characteristics as compared to isother-
mal flows due to the influence of buoyancy forces on the internal structure of turbulent
motions. Monin [1965] is the first among other workers who modeled buoyant effects on
turbulence by using the transport equations for the Reynolds stresses and the heat fluxes.
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The rationale behind his modeling approach is to have both the direct and indirect in-
fluence of the force field on Reynolds stresses and heat fluxes and it is assumed that the
empirical correlations which were used for non-buoyant flows can be extrapolated to esti-
mate the buoyancy effects.
Launder [1975] proposed the approximated set of equations for the turbulent stresses and
the turbulent heat fluxes in a buoyancy affected shear flows. The approximation of these
turbulent quantities was performed using the exact equation of the Reynolds stress and
the heat fluxes and then assuming the model for the pressure-containing correlations which
takes into account the buoyancy effects. These types of models were shown to give good
results in free stratified shear flow and atmospheric flows [Gibson and Launder, 1978].
In this context, significant progress was recently achieved by using the elliptic blending
concept to model the Reynolds stresses [Manceau, 2015] which is extended to turbulent
heat flux so that near-wall effects can be taken into account [Choi et al., 2017, Dehoux
et al., 2017].
The transport equation of Reynolds stresses is mentioned below:

Du
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′
j
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k
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− u′ju

′
k

∂Ui
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−β(gju
′
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′
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∂u
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∂xj
+
∂u
′
j

∂xi

)
︸ ︷︷ ︸

φij

−εij (4.1)

where Dij is the diffusion tensor. Buoyancy directly affects the dynamics of the Reynolds
stress due to the buoyancy-production term Gij . However, it also has an indirect influence
through the redistribution term φij . Indeed, φij contains the contribution of three terms
namely the slow-term, the rapid term, and the buoyancy term, respectively. The modeling
of the slow-term is made by "the Rotta model" [Rotta, 1951] which is expressed as follows:

φ1
ij = −C1

ε

k

(
u
′
iu
′
j −

2
3kδij

)
(4.2)

For modeling the rapid term, Naot [1970] proposes the isotropization of production model
which writes:

φ2
ij = −C2

(
Pij −

2
3δijPk

)
, C2 = 0.6. (4.3)

The buoyancy contribution to the pressure-strain can be modeled [Launder, 1975] by the
by the isotropization of buoyancy production model.

φ3
ij = −C3

(
Gij −

2
3δijGk

)
, C3 = 0.6. (4.4)
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The dissipation tensor (εij) is modeled with the assumption that the small scale motion
is isotropic for high Reynolds number flows, and the expression becomes:

εij = 2
3εδij (4.5)

As presented in Section 2.2.4, By assuming weak equilibrium hypothesis in Eq. (4.1), the
algebraic relation for the Reynolds stresses become [Rodi, 1972]:

u
′
iu
′
j = 2

3kδij + k

ε

1− C2

C1 + P+G
ε − 1

(
Pij −

2
3Pδij

)
+ k

ε

1− C2
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ε − 1

(
Gij −

1
3Gkkδij

)
(4.6)

An interesting/favorable feature of this algebraic model as shown in Eq. (4.6) is that
the buoyancy (Gij) term is directly taken from the exact equation of the Reynold stress.
Further simplification can be obtained using the strong equilibrium hypothesis which is
expressed as follow:

P +G

ε
= 1 (4.7)

Following the proposal made by Davidson [1990], the first part of the relation is modeled
by the Boussinesq constitutive relation and second part which represents the anisotropy
due to buoyancy and it is directly taken from the Eq. (4.6). Now the buoyancy-extended
Boussinesq relation for the Reynolds stress can be expressed as:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
︸ ︷︷ ︸

Boussinesq

+C∗θ τ(Gij −
1
3δijGkk)︸ ︷︷ ︸

Buoyancy−extension

Gij = −β(gju
′
iθ + giu

′
jθ)

(4.8)

where the coefficient C∗θ is to be calibrated.
In the present work, the same approach is adopted with the three very different eddy-
viscosity based turbulence models namely k-ω-SST, BL-v2/k and low-Reynolds number
Launder-Sharma respectively.

4.2.3 Buoyancy-extended heat flux model

The same algebraic approach as adopted for the Reynolds stress is considered for the
formulation of an algebraic turbulent heat flux model and the parent equation for the
turbulent heat flux is expressed as follows:

Du
′
iθ

Dt
= Dθi − u

′
iu
′
k

∂T

∂xk︸ ︷︷ ︸
P th
θi

−u′kθ
∂Ui
∂xk︸ ︷︷ ︸

Pm
θi

− giβθ2︸ ︷︷ ︸
Gθi

− ∂p

∂xi

θ

ρ︸ ︷︷ ︸
φθi

− (ν + α)∂u
′
i

xk

∂θ

∂xk︸ ︷︷ ︸
εθi

(4.9)

The pressure scrambling term (φθi) has a significant effect on the turbulent heat fluxes.
This term involves the contribution of three terms namely slow, rapid, and buoyant terms,
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respectively.
φθi = φ1

θi︸︷︷︸
Slow−term

+ φ2
θi︸︷︷︸

Rapid−term

+ φ3
θi︸︷︷︸

Buoyancy−term

(4.10)

For the slow term, the Monin [1965] model is considered which is based on the return to
isotropy approximation and is expressed as follow:

φ1
θi = −Cθ1θu

′
i

1
τ

(4.11)

The model of the rapid term by Owen [1974] is considered which is based on isotropization
of production due to velocity gradient and is given as follow:

φ2
θi = Cθ2u

′
kθ
∂Ui
∂xk

(4.12)

The effect of buoyancy on the pressure-scrambling term is denoted by φθi3 and the mod-
eling of this term is based on isotropization of buoyancy production as proposed by Owen
[1974] and is expressed as follows:

φ3
θi = Cθ3βgiθ2 (4.13)

Under the assumption that the major contribution to εθi comes from the finest scale eddies
and that these eddies are isotropic, the contribution of εθi to turbulent heat flux can be
neglected which yields:

εθi = 0 (4.14)

since the only isotropic vector is the zero vector.
As presented in Section 2.2.4, considering the weak equilibrium hypothesis and the pro-
posed models for pressure scrambling and dissipation in the transport equation of heat
flux (Eq. 4.9) lead to the algebraic relation for heat flux expressed as follows:

u
′
iθ =

u
′
iu
′
k
∂T
∂xk

+ ξu
′
kθ

∂Ui
∂xk

+ ηβgiθ2

−Cθ1
ε
k + 1

θ2

(
u
′
kθ

∂T
∂xk

+ εθ

)
+ 1

2k

(
u
′
iu
′
k
∂Ui
∂xk

+ βgiu
′
iθ + ε

) (4.15)

where ξ = (1− Cθ2) and η = (1− Cθ3), respectively. Simplification of this algebraic heat
flux form can be obtained by considering the strong equilibrium hypothesis (P + G = ε

and Pθ = εθ) in the Eq. 4.15 which yields:

u
′
iθ = − 1

Cθ1

k

ε

(
u
′
iu
′
k

∂T

∂xk
+ ξu

′
kθ
∂Ui
∂xk

+ ηβgiθ2

)
(4.16)

This relation for the heat flux model needs the temperature variance equation to be solved.
In the present work, the generalized gradient diffusion hypothesis (GGDH) is considered
to model heat fluxes, where the anisotropy of turbulence is taken into account from the
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first term of the Eq. (4.16). The generalized gradient diffusion hypothesis (GGDH) for
turbulent heat fluxes thus writes:

u
′
iθ = −Cθ

k

ε

[
(u′iu

′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

]
∂T

∂xj

= −Cθ
k

ε

[{
2
3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)}
︸ ︷︷ ︸

Boussinesq

+
{
C∗θ τ(Gij −

1
3δijGkk)

}
︸ ︷︷ ︸

Buoyancy−extension

]
∂T

∂xj

(4.17)

where C∗θ is to be calibrated.

4.2.4 Constraint and formulation of Cθ

One of the main constraints in our work is that the eddy-viscosity models should be
modified in such a way that the buoyancy-extended model will revert back to the original
eddy-viscosity model when the effect of buoyancy is negligible (forced convection flows). In
forced convection flows, the influence of buoyancy is negligible such that Eq. (4.8) reduce
to Boussinesq relation, but the use of the GGDH (Eq. 4.17) instead of SGDH implies to
pay a careful attention to the coefficient Cθ. To avoid the modification of the predictions
in a thermal boundary layer in the forced convection regime, in which temperature profile
is driven by the wall-normal turbulent heat flux (say v′θ), the model must revert to the
original model, such that

v′θ = − νt
Prt

∂T

∂y︸ ︷︷ ︸
SGDH

= −Cθτv2∂T

∂y︸ ︷︷ ︸
GGDH

(4.18)

Since the turbulent viscosity (νt) for k-ω-SST and BL-v2/k is expressed as follows:

νt = a1k

max(a1ω, SF2)
νt = Cµϕkτ

(4.19)

Using the Eq.(4.18) and Eq.(4.19), and noting that, with the Boussinesq relation, v2 =
2/3k, the final expression of Cθ for k-ω-SST and BL-v2/k model become:

Cθ = 3
2
Cµ
Prt

a1ω

max(a1ω, SF2)

Cθ = 3
2
Cµ
Prt

ϕ

(4.20)
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Figure 4.1 – Effect of the formulation of Cθ on mean temperature profile at Reτ = 640 &
Reτ = 1020 and Pr = 0.71

Simulation of forced convection in a differentially heated channel corresponding to
two friction Reynolds number (Reτ = 640 & Reτ = 1020) has been performed. Mean
temperature distribution is shown in Fig. 4.1, it is realized that the prediction with these
buoyancy-extended models remain the same as with the original models and this confirms
that the buoyancy-extended model reverts back to the original model when the buoyancy
effects are negligible.

4.2.5 Buoyancy-extended k-ω-SST model

In this part of the chapter, a buoyancy-extended k-ω-SST model is formulated and
validation is performed in two different convection regimes, namely mixed and natural
convection flows in a differentially heated channel. The buoyancy extended Reynolds
stress relation for k-ω-SST model is expressed as follows:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
︸ ︷︷ ︸

Boussinesq

+C∗θ
1

Cµω
(Gij −

1
3δijGkk)︸ ︷︷ ︸

Buoyancy−extension

(4.21)

where the turbulent time scale for the model writes:

τ = 1
Cµω

(4.22)

By taking into account the buoyancy contribution, buoyancy extended heat flux relation
for the k-ω-SST model is described as follows:

u
′
iθ = −3

2
1
Prt

a1
max(a1ω, SF2)

[
(u′iu

′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

]
∂T

∂xj
(4.23)
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where the first term
(

3
2

1
Prt

a1
max(a1ω,SF2)

)
in Eq. (4.23) comes from Eq. (4.20). This

buoyancy-modified Reynolds stress and heat flux relations are used in the momentum and
energy equations. The effect of the buoyancy extension should also be considered in the
dynamic production of turbulent kinetic energy as expressed by the following equation:

Pk = −
[
(ui′uj ′)Boussinesq + (ui′uj ′)Buoyancy−extension

]
∂Ui
∂xj

(4.24)

Buoyancy production terms in the transport equation of turbulent kinetic energy and
dissipation equations become:

Gk = −βgiu
′
iθ

Gω = γ

νt
max(Gk, 0)

(4.25)

where C∗θ = 0.1 and other coefficients are the same as per original k-ω-SST model [Menter,
1994].
In the next part of this section, the description of the buoyancy-extended BL-v2/k model
is presented.

4.2.6 Buoyancy-extended BL-v2/k model

In this part of the chapter, the buoyancy extension is provided in the Reynolds stress
and heat flux equation in the framework of the BL-v2/k model. Similar to the formulation
as discussed in Section 4.2.5 for the k-ω-SST model, the buoyancy-extended Reynolds
stress relation for the BL-v2/k model writes:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Ui
∂xj

)
︸ ︷︷ ︸

Boussinesq

+C∗θ τ(Gij −
1
3δijGkk)︸ ︷︷ ︸

Buoyancy−extension

(4.26)

where C∗θ = 0.1 and τ =

√√√√(k
ε

)2

+ CT
2
(
k
ε

)
respectively.

The buoyancy-extended heat flux relation for the BL-v2/k model is described as follows:

u
′
iθ = −3

2
Cµ
Prt

ϕτ

(
(u′iu

′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

)
∂T

∂xj
(4.27)

where the first term
(

3
2
Cµ
Prt

ϕτ

)
in Eq. (4.27) comes from Eq. (4.20). Buoyancy-extended

Reynolds stress and heat flux relations must be considered in the momentum and en-
ergy equation. The buoyancy extension is also considered in dynamic production (Pk) of
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turbulent kinetic energy and expressed as follows:

Pk = −
(

(u′iu
′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

)
∂Ui
∂xj

(4.28)

Buoyancy production terms in the transport equation of turbulent kinetic energy and
dissipation equation are modeled using generalized gradient diffusion hypothesis (GGDH)
and expressed as follows:

Gk = −βgiu
′
iθ

Gε = Cε1
1
τ
max(Gk, 0)

(4.29)

Note that the models developed above are called "Full buoyancy-extended" to distinguish
them from the simplified version developed in the next section.
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4.2.7 Validation in the channel flow in the natural convection regime

In order to investigate the performance of the buoyancy-extended models proposed
in the previous section, the well-documented differentially heated channel is considered
and shown in Fig. 4.2. The flow in a tall or infinite vertical cavity is considered to
be extremely challenging for modeling due to the subtle couplings between dynamic and
turbulent thermal fields. The recent DNS data of Kiš and Herwig [2014] is particularly
relevant due to the realistic values of the Rayleigh number. The highest Rayleigh number,
Ra = βg∆Tδ3/(νκ) available, Ra = 1.7× 107 is based on the width of the channel. Due
to the antisymmetry of the configuration, only the hot side of the flow is plotted. In order
to help the comparison of the predictions of the models against DNS data, mean and
turbulent quantities are plotted in wall units on the ordinate axis. However, the abscissa
axis is plotted in computational units.

Figure 4.2 – Flow configuration for the differentially heated vertical channel

In general, turbulence models including Reynolds stress models have a tendency to
overestimate the mean velocity peak and this is also the case with the original k-ω-SST
and BL-v2/k models as shown in Fig. 4.3 and this is supplemented by the overestimation
of friction velocity as can be seen in Table. 4.1.

84



4.2. DEVELOPMENT OF THE FULL BUOYANCY-EXTENDED MODEL

0 0,1 0,2 0,3 0,4 0,5
0

2

4

6

8

10

12

H/X

*
+

DNS - '0 = 1.7 × 107

:-l-SST

Full Buoyancy-extended :-l-SST

BL-E2/:

Full Buoyancy-extended BL-E2/:

Figure 4.3 – Mean velocity profile at Ra = 1.7 × 107 [Kiš and Herwig, 2014] [Plots are
shifted for clarity]
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Figure 4.4 – Reynolds shear stress profile at Ra = 1.7× 107 [Kiš and Herwig, 2014] [Plots
are shifted for clarity]

This limitation is directly linked to a severe underestimation of Reynolds shear stress
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(u′v′) as can be seen in Fig. 4.4. To probe further, integrating the momentum balance in
the x-direction between the hot wall and to some distance y yields

0 =
∫ y

0
ν
∂2Ũ

∂ỹ2 dỹ −
∫ y

0

∂ũ′v′

∂ỹ
dỹ +

∫ y

0
β̃g(T̃ − T̃ref )dỹ (4.30)
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Figure 4.5 – Turbulent viscosity profile Ra = 1.7× 107 [Kiš and Herwig, 2014] [Plots are
shifted for clarity]

For y located between the peak of mean velocity and center of the channel, the con-
tribution of buoyancy force must be balanced by the viscous friction at the wall and the
sum of viscous friction and turbulent shear stress in y, which is directed downwards such
that ∫ y

0
β̃g(T̃ − T̃ref )dỹ = ρuτ

2 − ν ∂Ũ
∂ỹ

+ ũ′v′ (4.31)

From Fig. 4.4, it is observed that the turbulent stress is severely underestimated, which
is compensated by the viscous stresses in such a manner that the negative slope of mean
velocity and friction velocity are both overestimated. This shortcoming of Boussinesq
constitutive relation is corrected by the buoyancy extension in Eq. (4.21), which in the
present case reads:

ũ′v′ = −νt
∂Ũ

∂ỹ
+ C∗θ τ β̃gṽ

′θ (4.32)

In Fig. 4.8, v′θ is positive such that the buoyancy extension enhances the turbulent shear
stress, and owing to this, the balance in Eq. (4.31) is improved. Viscous friction does not
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need to be overestimated to compensate for the lack of turbulent stress, and eventually
the velocity gradient is corrected.
Looking into the turbulent viscosity distribution, it is observed that the inclusion of this
buoyancy extension leads to the improvement in the prediction of turbulent viscosity which
is severely underestimated by both the original k-ω-SST and BL-v2/k models over a large
part of the channel as shown in Fig. 4.5. This behavior is due to the increase in the total
production (Pk +Pbuo−extension +Gk) far from the wall as shown in Fig. 4.6, owing to the
inclusion of buoyancy production terms namely Gk and Pbuo−extension which is missing in
the original models.

0,01 0,1

0

5e+08

1e+09

1,5e+09

2e+09

H/X

%
:
+
%
�
D>

−
4G
C=
+
�

:

:-l-SST

Full Buoyancy-extended :-l-SST

BL-E2/:

Full Buoyancy-extended BL-E2/:

Figure 4.6 – Total production of turbulent kinetic energy profile at Ra = 1.7 × 107 [Kiš
and Herwig, 2014] [Plots are shifted for clarity]

In order to understand the effect of buoyancy extension on thermal characteristics, the
mean temperature distribution is plotted in wall units and shown in Fig. 4.7. It is observed
that the buoyancy extension leads to the improvement of the predictions, although it is
not sufficient for the k-ω-SST model.
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Figure 4.7 – Mean temperature profile at Ra = 1.7 × 107 [Kiš and Herwig, 2014] [Plots
are shifted for clarity]

To probe the influence of the buoyancy extension on the energy balance, the temper-
ature equation is integrated between the wall and an arbitrary point y, which yields

0 =
∫ y

0
α
∂2T̃

∂ỹ2 dỹ −
∫ y

0

∂ṽ′θ

∂ỹ
dỹ (4.33)

The heat flux at the wall must be balanced by the sum of the molecular and turbulent
heat fluxes. In the wall units, the heat flux at the wall is unity and the balance reduces to

1 = − 1
Pr

∂T+

∂ỹ
+ ṽ′θ

+
(4.34)

In order to satisfy this balance, v′θ
+
goes to one far from the wall (where molecular heat

flux is negligible) as shown in Fig. 4.8 and it does not depend on the heat flux model.
Integrating Eq. (4.34) between the wall and arbitrary distance y leads to

T+

Pr
= ỹ −

∫ y

0
ṽ′θdỹ (4.35)

Eq. (4.35) shows that the departure from the laminar profile is due to the integral of the
turbulent heat flux.

88



4.2. DEVELOPMENT OF THE FULL BUOYANCY-EXTENDED MODEL

0 0,1 0,2 0,3 0,4 0,5
0

0,5

1

1,5

2

H/X

E′ \
+

DNS - '0 = 1.7 × 107

:-l-SST

Full Buoyancy-extended :-l-SST

BL-E2/:

Full Buoyancy-extended BL-E2/:

Figure 4.8 – Wall normal heat flux profile at Ra = 1.7× 107 [Kiš and Herwig, 2014] [Plots
are shifted for clarity]

The misprediction of the temperature profiles as shown in Fig. 4.7 is specifically related
to the fact that v′θ

+
is underestimated. By providing the buoyancy contribution which is

positive as expressed below,
ṽ′θ︸︷︷︸
Buo

= 1
3
C∗θ
Cµω

β̃gũ′θ (4.36)

there is an improvement in the prediction of mean temperature, although the improvement
is insufficient.
The buoyancy-extended BL-v2/k model yields satisfactory velocity and temperature pro-
files. In contrast, for the k-ω-SST model, the buoyancy extension very significantly improve
the prediction of velocity, but does not succeed in fully correcting the temperature profile.
This behavior is summarised by Table 4.1, where it can be seen that the prediction of uτ ,
Umax and Tτ are significantly improved by the buoyancy-extension for the two models. It
is noticeable, as can be seen in Fig. 4.3, that, although the correction is the same for the
two models., with the same coefficient C∗θ = 0.1, the amplitude of the correction depends
upon the initial error. This can be traced to the fact that this extension is not an ad hoc
correction, but a physically based term. The absence of this term in the original models
leads to a misrepresentation of the balance 4.31, compensated by an overestimation of
the velocity gradients which depends on the model. The introduction of the buoyancy
extension restores the correct balance. Another favorable aspect of this modification is
that it fulfills the forced convection constraint where the modified models revert back to
the original model when the buoyancy has negligible influence.
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Models uτ Err(%) Umax Err(%) Tτ Err(%)
DNS Kiš and Herwig [2014] 322 - 5.69 - 0.049 -
k-ω-SST 343.05 +6 6.55 +15 0.036 −26
BL-v2/k 328.98 +2 5.96 +5 0.045 −8
Buoyancy-extended k-ω-SST 334.44 +4 6.10 +7 0.038 −22
Buoyancy-extended BL-v2/k 326.06 +1 5.73 +0.7 0.048 −2

Table 4.1 – Comparison of friction velocity, friction temperature and friction temperature

4.2.8 Validation in the channel flow in the mixed convection regime

In this part of the section, an analysis of buoyancy extended k-ω-SST and BL-v2/k

models is performed by simulating differentially heated mixed convection flow and results
are compared with DNS data of Kasagi and Nishimura [1997] corresponding to Gr =
9.6 × 105 and Pr = 0.71. The schematic diagram of the mixed convection in a vertical
channel is shown in Fig. 4.9

Figure 4.9 – Channel flow configuration for the mixed convection regime

The mean velocity profile for aiding side is shown in Fig. 4.10 and it is observed
that there is an improvement in the prediction with the buoyancy-extended models. The
amplitude of the improvement is modest owing to the modest influence of buoyancy in
this configuration. In order to better understand the influence of the buoyancy extension,
we need to consider the predictions of the shear stress (u′v′) which is playing a crucial role
in the momentum balance. On the aiding side, by integrating the momentum equation
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from the hot wall to some distance y, the momentum equation becomes:

ν̃
dŨ

dỹ
− ν̃ dŨ

dỹ

∣∣∣∣∣
y=0︸ ︷︷ ︸

ρuτ 2

−ũ′v′ + Gr

8Reτ

∫ y

0
(T̃ − T̃ref ) = ỹ

1
ρ

∂P̃ ∗

∂x̃
(4.37)

From Eq. (4.37), it can be seen that the pressure gradient is balanced by three forces
namely, viscous stress, turbulent shear stress, and buoyancy force. On the aiding side,
there is an overprediction of the shear stress (u′v′) with original models particularly with
the k-ω-SST as showed in Fig. 4.11. However, this overprediction is reduced to some
extent with the buoyancy extended models. Owing to the limited contribution of Reynolds
stresses due to buoyancy, this slight improvement of Reynolds shear stress restricts the
underprediction of viscous stress to a certain extent which in turn allows the friction
velocity to increase and leads to the marginal improvement in the mean velocity predictions
as shown in Fig. 4.10.

0 0,2 0,4 0,6 0,8 1
0

5

10

15

20

H/X

*
+

DNS- Gr= 9.6 × 105

:-l-SST

Full Buoyancy-extended :-l-SST
BL-E2/:

Full Buoyancy-extended BL-E2/:

Figure 4.10 – Mean velocity for the aiding side at Gr = 9.6× 105 [Kasagi and Nishimura,
1997][Plots are shifted for clarity]

However, for the opposing side, there is a very small effect of the buoyancy extension
on the turbulent shear stress as can be seen in Fig. 4.13 and thereby there is a slight effect
on mean velocity predictions as shown in Fig. 4.12.
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Figure 4.11 – Shear stress for the aiding side at Gr = 9.6 × 105 [Kasagi and Nishimura,
1997] [Plots are shifted for clarity]
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Figure 4.12 – Mean velocity for the opposing side at Gr= 9.6×105 [Kasagi and Nishimura,
1997] [Plots are shifted for clarity]
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Figure 4.13 – Shear stress for the opposing side at Gr= 9.6× 105 [Kasagi and Nishimura,
1997] [Plots are shifted for clarity]
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Figure 4.14 – Mean temperature for the aiding side at Gr= 9.6×105 [Kasagi and Nishimura,
1997] [Plots are shifted for clarity]
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Figure 4.15 – Mean temperature for the opposing side at Gr= 9.6 × 105 [Kasagi and
Nishimura, 1997] [Plots are shifted for clarity]

For the analysis of the effect of the buoyancy extension on thermal characteristics,
the mean temperature distribution (T+) is plotted in Fig. 4.14 and Fig. 4.15. On
the aiding side, it is observed that there is improvement in mean temperature prediction
particularly with buoyancy-extended k-ω-SST model. To understand about this prediction
it is required to observe the effect of buoyancy extended heat flux on the energy balance
such that energy equation is integrated from the wall to some distance y. In wall units,
we have

1 = 1
ReτPr

dT̃+

dỹ

∣∣∣∣∣
0

− ṽ′θ
+

(4.38)

In Eq. (4.38), it can be seen that the turbulent heat flux is tending towards the value of 1.0
far from the wall, owing to negligible molecular heat flux. However, it is crucial to predict
the turbulent heat flux close to the wall which is marginally improved as shown in Fig.
4.16, which explains the marginal improvement in the mean temperature on the aiding
side which is underestimated with the original k-ω-SST model. Moreover, the prediction
of the mean temperature on the aiding side with the BL-v2/k model is satisfactory. On
the opposing side, the prediction of heat flux with original models is satisfactory as can
be seen in Fig. 4.17 and this explains the better prediction of mean temperature as can
be seen in Fig. 4.15.
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Figure 4.16 – Wall normal heat flux for the aiding side at Gr= 9.6 × 105 [Kasagi and
Nishimura, 1997] [Plots are shifted for clarity]
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Figure 4.17 – Wall normal heat flux for opposing side at Gr= 9.6 × 105 Kasagi and
Nishimura, 1997

4.2.9 Conclusion

In order to avoid ad hoc modifications, Buoyancy extended k-ω-SST and BL-v2/k

models have been developed by extending the constitutive relations using the buoyant
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term derived from the Reynolds stress model under the weak-equilibrium hypothesis. The
approach thus introduces a physically relevant term without sacrificing the linearity of
the models. The extended constitutive relation for the Reynolds stress accounts for the
influence of buoyancy on the turbulent anisotropy in association with the generalized gra-
dient diffusion hypothesis (GGDH), which in turn involves the influence of the buoyancy
extension on the turbulent heat flux.
By simulating two different regimes namely mixed and natural convection flows in a dif-
ferentially heated vertical channel, it is noticed that the buoyancy extended k-ω-SST and
BL-v2/k model are able to predict the mean velocity and turbulent quantities quite well
and certainly the discrepancy of the results obtained with the original k-ω-SST and BL-
v2/k model with respect to DNS data is due to the absence of the contribution of buoyancy
in the turbulent shear stress and normal heat flux in the momentum and energy balance.
These encouraging results pave the way for this model to be validated in natural con-
vection configurations encountered in the industry. In the next section of this work, a
simplified form of buoyancy sensitized model is presented.

4.3 Simplified form of buoyancy sensisitized models

4.3.1 Simple buoyancy extended models

The motivation for the development of this model comes from the fact that the model-
ing of tensorial diffusivity (GGDH) for the heat flux is not possible in Ansys Fluent which
is used by PSA group for the designing of the underhood space of automobiles. So, simple
version of buoyancy extended models are developed in the context of the k-ω-SST and
BL-v2/k models.
The approach is analogous to the model developed by Davidson [1990]. Davidson [1990]
used a low-Reynolds number k-ε model which is similar to the models of Jones and Laun-
der [1972] and Lam and Bremhorst [1981]. In his model, generalized gradient diffusion
hypothesis (GGDH) was used to model heat fluxes in the energy equation but he used
the simple gradient diffusion hypothesis (SGDH) approach to model heat fluxes in the
buoyancy extension part of Reynolds stresses and also to model the buoyancy production
terms of the k and ε equations, respectively.
In the present, simple buoyancy-extended models are developed in such a way that, sim-
ple gradient diffusion hypothesis (SGDH) is used to model heat fluxes everywhere and
additional buoyant contribution is added in the Boussinesq relation of Reynolds stress in
a linear way without changing the coefficients. Validation of this model is performed on
the natural convection flow in a differentially heated vertical channel at available highest
Rayleigh number (Ra = 1.7 × 107) DNS data [Kiš and Herwig, 2014]. In these simple
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models, Eq. (4.21) is still used which reads:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
︸ ︷︷ ︸

Boussinesq

+Cθ
∗τ(Gij −

1
3δijGkk)︸ ︷︷ ︸

Buoyancy−extension

(4.39)

where Gij = −β(gju
′
iθ+ giu

′
jθ) and in this simple buoyancy extended models, the optimal

value of C∗θ is 0.2.
The difference with the models developed in the previous section is that the heat fluxes
are modeled using simple gradient diffusion hypothesis (SGDH) which reads:

u
′
iθ = − νt

Prt

∂T

∂xi
(4.40)

where Prt is the turbulent Prandtl number taken as 1.0.
The buoyancy extension is also considered in the dynamic production terms of turbulent
kinetic energy (k) and dissipation (ε) or specific dissipation (ω) equations respectively:

Pk = −
(

u
′
iu
′
j︸︷︷︸

Boussinesq

+ u
′
iu
′
j︸︷︷︸

Buoyancy−extension

)
∂Ui
∂xj

(4.41)

An intriguing feature of this model is that the buoyancy contribution coming from the
buoyancy production terms in the transport equation of turbulent kinetic energy (Gk)
and dissipation (Gε) is negligible in the weakly stratified flows (in channel flows) as simple
gradient diffusion hypothesis (SGDH) is used to model heat fluxes. since in this case, the
temperature gradient is perpendicular to the direction of gravity, such that

Gk = βgi
νt
Prt

∂T

∂xi
' 0 (weakly stratified flows)

Gε = Cε3
1
T
Gk ' 0; Gω = γ

νt
Gk ' 0

 (4.42)

The fact that the these terms are zero is the reason why the coefficient of the buoyancy
extension, C∗θ must be recalibrated.
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Figure 4.18 – Effect of simple buoyancy-extended on mean velocity profile at Ra = 1.7×107

[Kiš and Herwig, 2014]

In this model the optimal coefficient (C∗θ ) come out to be 0.2, which is 0.1 in the full
buoyancy-extended model presented in the previous section.
From Fig. 4.18, it is observed that the buoyancy extension leads to the improvement of
the mean velocity predictions which are severely overestimated by the original k-ω-SST
and BL-v2/k models. As we have discussed in the Section 4.2.5 and Section 4.2.6, the
buoyancy extension modifies the turbulent shear stress (See Eq. 4.32) in such a way that
it provides the contribution due to buoyancy in turbulent shear stress which is missing in
the Boussinesq constitutive relation used in the original models (see Section 4.2.7). To
complete the comparison, the prediction with full-buoyancy extended version of models is
also compared. It is observed that the results are virtually identical between full buoyancy-
extended and simple buoyancy-extended models, which shows that the lack of buoyancy
contribution in the production terms can be somewhat artificially compensated by an
increase of the coefficient C∗θ , i.e., an increase of the contribution of buoyancy in the
momentum balance.
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Figure 4.19 – Effect of simple buoyancy extended on mean temperature profile at Ra =
1.7× 107 [Kiš and Herwig, 2014]

By looking into the mean temperature distribution as shown in Fig. 4.19, it is realized
that the buoyancy extension is modifying the solution in such a way that there is an
improvement in mean temperature prediction which is relatively overestimated with the
original models. In the energy balance, the heat flux must be balanced by the sum of
molecular and turbulent heat fluxes. Hence, the underprediction of v′θ by the original
k-ω-SST and BL-v2/k models lead to the misprediction of temperature. However, there is
an improvement in the mean temperature prediction with the simple versions of buoyancy-
extended models. Again, it is observed that with the increased coefficient C∗θ , the simple
models are able to provide results very close to those given by the full buoyancy-extended
models.

4.3.2 Effect of only adding buoyancy production terms

As seen in the previous sections, introducing the buoyancy extension in the Boussinesq
relation modifies the momentum balance, the energy balance and the production terms
of the transported turbulent variables. The results obtained with the simplified models
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have shown that the buoyancy production terms have a significant effect, such that their
absence must be compensated by an increase of C∗θ . Thus, a question naturally emerges:
whether the inclusion of buoyancy in the production terms be sufficient to improve the
results, thereby avoiding the need of a buoyancy extension in the Boussinesq relation.
This part of the chapter is dedicated to the influence of adding buoyancy source terms
in the transport equation of turbulent kinetic energy (k) and its dissipation rate (ε) or
specific dissipation rate (ω) without modifying the original Boussinesq relation. The in-
clusion of the effect of buoyancy is generally made by introducing additional source terms
in the transport equations of k and ε. Several authors applied the simple gradient diffu-
sion hypothesis (SGDH) as expressed in Eq. (4.43) to model buoyancy production terms
[Annarumma et al., 1991, Cox and Kumar, 1987, Fletcher et al., 1994, Nam and Bill Jr,
1993, Sinai and Owens, 1995],

u
′
iθ = − νt

Prt

∂T

∂xi
(4.43)

However, as shown above, with the simple gradient diffusion hypothesis (SGDH) approach,
the effect of buoyancy on turbulence can be severely underestimated, since only the com-
ponent of the temperature gradient aligned with the gravity vector is taken into account
and in weakly stratified flows it becomes negligible [Ince and Launder, 1989]. Moreover,
in simple shear flows, with the use of an eddy-diffusivity model, the streamwise flux is
severely underpredicted and this behaviour has an impact on the prediction of the mean
flow owing to the absence of buoyancy effects. To overcome this limitation, authors listed
in Table. 4.2 consider the generalized gradient diffusion hypothesis (GGDH) of Daly and
Harlow [1970] as mentioned in Eq. (4.44) for modeling the buoyancy source terms in the
k − ε turbulence models.

u
′
iθ = −Cθ

k

ε
u
′
iu
′
j

∂T

∂xj
(4.44)

For the ε or ω equations, the formulation (mentioned in the Table. 4.2) of the buoyancy
source terms have been tried in this study and detailed sensitivity analysis of the coefficient
Cε3 have been performed for the k-ω-SST and BL-v2/k models.

References Cε3

Sε = Cε1
ε
k [Pk + Cε3max(Gk, 0)]− Cε2ρ ε

2

k −

Novozhilov [2001] 1.0
Fletcher et al. [1994] 1.0
Hara and Kato [2004] 1.0
Sinai and Owens [1995] 1.0

Table 4.2 – Value of the constant for the definitions of Sε source terms in ε equation
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Buoyancy production terms in k-ω-SST model

In this section, more classical approaches of using the same Boussinesq relation for
Reynolds stresses but introducing buoyancy production terms (definition of these types
of source terms are reported in Table. 4.2) in the transport equation of turbulent kinetic
energy (k) and specific dissipation (ω) are analyzed. Moreover, the sensitivity of the co-
efficient C3 (in the present study Cε3 is denoted by C3) is also examined.
The modified transport equation of turbulent kinetic energy (k) and specific dissipation
(ω) equations are expressed as follows:

∂k

∂t
+ Uk

∂k

∂xk
= Pk +Gk − β∗kω + ∂

∂xk

[(
ν + σkνt

)
∂k

∂xk

]
(4.45)

∂ω

∂t
+ Uk

∂ω

∂xk
= γ

νt
Pk +max

(
C3
νt
Gk, 0

)
︸ ︷︷ ︸

Gω

−βω2 + ∂

∂xk

[(
ν + σωνt

)
∂ω

∂xk

]

+2(1− F1)σω2
1
ω

∂k

∂xk

∂ω

∂xk

(4.46)

Where constants and blending functions are as per standard of k-ω-SST by Menter [1994],
Gk is modeled based on the GGDH approach which writes:

Gk = −βgiu
′
iθ; ui

′θ = −Cθ
1

Cµω

(
u
′
iu
′
j

∂T

∂xj

)
(4.47)

Buoyancy production terms in BL-v2/k model

The modified transport equations of turbulent kinetic energy (k) and its dissipation
rate (ε) are expressed as follows:

Dk

Dt
= Pk +Gk − ε− 2Cε3ννt(1− α)3k

ε

(
∂2Ui
∂xk∂xj

)2

+ ∂

∂xj

[(
ν

2 + νt
σk

)
∂k

∂xj

]
(4.48)

Dε

Dt
= Cε1Pk − Cε2∗ε

T
+max

(
C3
Gk
T
, 0
)

︸ ︷︷ ︸
Gε

+ ∂

∂xj

[(
ν

2 + νt
σε

)
∂ε

∂xj

]
(4.49)

where constants, other functions and equations for ϕ and f are as per BL-v2/k model
[Billard and Laurence, 2012], Gk is modeled based on the GGDH approach, as follows:

Gk = −βgiu
′
iθ; u

′
iθ = −CθT

(
u
′
iu
′
j

∂T

∂xj

)
; T =

√√√√√(k
ε

)2

+ CT
2
(
k

ε

)
(4.50)
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In this study, the Reynolds stresses in the averaged momentum equation are modeled
using the standard Boussinesq constitutive relation:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
(4.51)

The turbulent heat fluxes in the mean temperature equation are modeled using the simple
gradient diffusion hypothesis (SGDH) as mentioned in Eq. (4.52) which writes:

u
′
iθ = − νt

Prt

∂T

∂xi
(4.52)

The max in the definition of Gω (in Eq. 4.46) or Gε (in Eq. 4.49) is considered owing to
the fact that in a stably stratified flow, buoyancy has a tendency to damp the turbulence
such that Gk is negative and due to the max in the relation, the influence of buoyancy
on the transport equation for ε or ω is 0 [Fletcher et al., 1994, Hara and Kato, 2004,
Novozhilov, 2001, Sinai and Owens, 1995]. For unstably stratified flows, the expression for
buoyancy production in ω or ε reduces to

Gω = C3
νt
Gk

Gε = C3
ε

k
Gk

(4.53)

In this part of the chapter, the effect of adding additional buoyancy source terms, Gk and
Gω or Gε is analyzed for k-ω-SST and BL-v2/k model. Moreover, the other aim of this
section is to perform the sensitivity analysis of coefficient, Cε3. The challenging natural
convection regime in a vertical channel at Rayleigh number, Ra = 1.7 × 107 is selected
and results are compared to the DNS data of Kiš and Herwig [2014].
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Figure 4.20 – Mean velocity profile [Plots are shifted for clarity]

For the mean velocity profile as shown in Fig. 4.20, it is observed that there is a
competition between the influence of Gk and the influence of Gω or Gε. The case with
C3 = 0 shows that the Gk term has a tendency to reduce the mean velocity, which is
overestimated with the original models, but can possibly reduce it too much (for the BL-
v2/k model). The Gω or Gε term plays in the opposite direction, with an intensity driven
by the coefficient C3 and there is an optimal value of C3, This behaviour is observed
with both the models. Further, by looking into the turbulent viscosity profile as shown
in Fig. 4.21, it is observed that the original models are underpredicting the turbulent
viscosity in a major portion of the channel. By introducing the buoyancy source terms,
this underprediction is avoided and results are improved. Again it is realized that adding
only Gk (C3 = 0) leads to significantly improve the prediction of turbulent viscosity. Now
looking into the sensitivity to the coefficient (C3), it is realized that if the value of C3 is
increased to some large value, the results gradually revert back to the original model.
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Figure 4.21 – Turbulent viscosity profile [Plots are shifted for clarity]

For instance in the case k-ω-SST model, it is observed that if the value of C3 = 0.539
(which is the same coefficient used for dynamic production of ω), the results are not
as improved as corresponding to C3 = 0.2 and it becomes better at C3 = 0 as shown
in Fig. 4.21. Similar behaviour is observed with BL-v2/k model, when we change the
value of C3 from 1.44 to 0.0. This signifies that the inclusion of only Gk modifies the
turbulent viscosity significantly. This prediction of the turbulent viscosity leads to modify
the Reynolds shear stress (as the Boussinesq constitutive relation is used to model the
Reynolds stresses) which directly affects the momentum balance. To probe more deeply,
total production of turbulent kinetic energy and dissipation (or specific dissipation) budget
are shown in Fig. 4.22 and Fig. 4.23. In the near-wall region, the addition of Gk and Gε
or Gω reduce the total production (Pk + Gk) marginally from 0.01 < y < 0.05 owing to
the negative production of (Gk) as shown in Fig. 4.22. Moreover, it is realized that the
addition of only Gk (C3 = 0.0) has significantly reduced the total production of turbulent
kinetic energy near the wall. In the central region, it is observed that the introduction
of buoyancy source terms Gk and Gε or Gω leads to the enhancement of Pk + Gk in the
range 0.05 < y < 0.35 as can be seen in Fig. 4.22 for both the models.
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Figure 4.22 – Profiles of production of turbulent kinetic energy [Plots are shifted for clarity]

Predictions of Pω + Gω or Pε + Gε are shown in Fig. 4.23. Not introducing the term
Gε or Gω corresponds to C3 = 0. However, adding it corresponds to using a non-zero
coefficient and it is observed that the addition of Gε or Gω leads to increase the total
production in the dissipation (or specific) equation compared to the case with Gk only
(C3 = 0). This tendency is of course enhanced when we increase the coefficient C3.
These predictions contribute to the improvement of the turbulent viscosity which is un-
derpredicted by the original models as can be seen in Fig. 4.21. From the analysis of the
production of turbulent kinetic energy, it has been observed that the inclusion of buoy-
ancy source terms has a significant effect on the budget of turbulent kinetic energy and its
dissipation rate. Moreover, the coefficient C3 has a monotonic influence on the predictions.
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Figure 4.23 – Total production of dissipation equation of turbulent kinetic energy profiles
[Plots are shifted for clarity]

By looking into the prediction of mean temperature as shown in Fig. 4.24, it is observed
that the inclusion of buoyancy source terms acts as a positive contributor in such a way
that it improves the prediction of mean temperature for both the models. It can be seen
that the addition of the Gk term alone (C3 = 0) significantly reduces the value of T+, while
the inclusion of Gε or Gω plays in the other direction. This prediction of mean temperature
is related to the prediction of wall-normal heat flux by the models. For instance, in the
case of original BL-v2/k, there is a better prediction of mean temperature (as seen in Fig.
4.24) owing to the better prediction of wall-normal heat flux.
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Figure 4.24 – Mean temperature profile [Plots are shifted for clarity]

This fact is reinforced by the fact that there is an underprediction of the wall-normal
heat flux close to the wall by the original models (as seen in Fig. 4.25) which explain
the overprediction of the mean temperature and the inclusion of the buoyancy source
term also affects the solution of the energy equation in such a way that the tendency of
underprediction of heat flux is avoided to a certain extent. Furthermore for the BL-v2/k

model, it is realized that the inclusion of only Gk has a significant influence (actually too
strong) on the prediction of wall-normal heat flux and thus the necessity to introduce also
Gε (with C3 = 0.8) is to moderate it. Authors (Hara and Kato [2004], Novozhilov [2001],
Sinai and Owens [1995]) have used the value of the coefficient (C3) to be 1.0 for different
variants of buoyancy modified k-ε models. However, in the present study, it is observed
that the value of this coefficient depends mainly on the type of turbulence model chosen for
the study. Moreover, the optimal value of the coefficient (C3) is 0.0 (introducing only Gk
term) for the k-ω-SST model and 0.8 for the BL-v2/k model respectively. An interesting
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conclusion is that with such a simple model, we can correct the predictions, although it is
less "rich" than the complete buoyancy-extended models.
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Figure 4.25 – Wall normal heat flux profile [Plots are shifted for clarity]

In the next section of this chapter, the effect of including flux Richardson number in
the definition of Gω or Gε is discussed in the context of k-ω-SST and BL-v2/k models.

Effect of flux Richardson number

Several authors (mentioned in Table. 4.3) included the flux Richardson number in the
definition of Gε, and we want to see that if it has some interest in improving the results.
The conventional definition of flux Richardson is expressed as:

Rf = −Gk
Pk

(4.54)
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However, some authors Markatos et al. [1982], Worthy et al. [2001], Xue et al. [2001] used
other definition of flux Richardson number which is expressed as below:

Rf = − Gk
Pk +Gk

(4.55)

The details of the buoyancy source term are listed in Table. 4.3 respectively.

References Cε3 Rf

Sε = Cε1
ε
k (P +G)(1 + Cε3Rf )− Cε2ρ ε

2

k − −

Worthy et al. [2001] Different
value

Rf = −G
(P+G)

Markatos et al. [1982] 0.9 Rf = −G
(P+G)

Yan and Holmstedt [1999] 0.6 Rf not given
Xue et al. [2001] 0.8 Rf not given

Table 4.3 – Value of the constant for the definitions of Sε source terms in ε equation

However, this definition does not distinguish between the horizontal and vertical buoy-
ant flows. Rodi [1984], proposed a definition of flux Richardson to distinguish between
horizontal and vertical buoyant flows and the definition of such modified flux Richardson
number is expressed as follows:

Rf = −1
2

G
v2

Pk +Gk
(4.56)

where G
v2 is the buoyancy production or destruction of the transverse fluctuating com-

ponent. However, such a definition is only applicable to 2D flows, since the notion of
transverse component is not well-defined in 3D flows. In the present study, the effect of
adding buoyancy production terms which consider flux Richardson number in its defini-
tion (Eq. 4.55) is analyzed in the context of the k-ω-SST and BL-v2/k models respectively.

Inclusion of the flux Richardson number in the k-ω-SST model

Considering the flux Richardson number in the k-ω-SST model, the transport equations
of k and ω write:

∂k

∂t
+ Uk

∂k

∂xk
= Pk +Gk − β∗kω + ∂

∂xk

[(
ν + σkνt

)
∂k

∂xk

]
(4.57)
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∂ω

∂t
+ Uk

∂ω

∂xk
= γ

νt
Pk(1 + C3Rf )︸ ︷︷ ︸

Pω

+ γ

νt
Gk(1 + C3Rf )︸ ︷︷ ︸

Gω

−βω2 + ∂

∂xk

[(
ν + σωνt

)
∂ω

∂xk

]

+2(1− F1)σω2
1
ω

∂k

∂xk

∂ω

∂xk
(4.58)

The buoyancy production terms are modeled using generalized gradient diffusion hypoth-
esis (GGDH) such that

Gk = −βgiu
′
iθ; u

′
iθ = −Cθ

1
Cµω

u
′
iu
′
j

∂T

∂xj
; Rf = − Gk

Pk +Gk
(4.59)

Inclusion of the flux richardson number in the BL-v2/k model

Considering the flux Richardson number in the BL-v2/k model, the transport equations
of k, ε and ϕ write:

Dk

Dt
= Pk +Gk − ε− 2Cε3ννt(1− α)3k

ε

(
∂2Ui
∂xk∂xj

)2

+ ∂

∂xj

[(
ν

2 + νt
σk

)
∂k

∂xj

]
(4.60)

Dε

Dt
= Cε1

T
Pk(1 + C3Rf )︸ ︷︷ ︸

Pε

+ Cε1
T
Gk(1 + C3Rf )︸ ︷︷ ︸

Gε

−Cε2
∗ε

T
+ ∂

∂xj

[(
ν

2 + νt
σε

)
∂ε

∂xj

]
(4.61)

Dϕ

Dt
= −(1−α3)ε2

ϕ

k
+α3fh− (Pk +Gk)

ϕ

k
+ 2
k

νt
σk

∂k

∂xj

∂ϕ

∂xj
+ ∂

∂xj

[(
ν

2 + νt
σϕ

)
∂ϕ

∂xj

]
(4.62)

fh = − 1
T

(
C1 − 1 + C2

(Pk +Gk)
ε

)(
ϕ− 2

3

)
(4.63)

The buoyancy production term is modeled using the generalised gradient diffusion hypoth-
esis (GGDH) such that

Gk = −βgiu
′
iθ; u

′
iθ = −Cθ

1
T

(
u
′
iu
′
j

∂T

∂xj

)
; T =

√√√√√(k
ε

)2

+ CT
2
(
k

ε

)
(4.64)

The natural convection case in a differentially heated vertical channel is considered for
this study. By looking into the mean velocity distribution as shown in Fig. 4.26: it is
observed that the inclusion of the flux Richardson number leads to an improvement in
the predictions, and by increasing the value of coefficient C3, mean velocity prediction is
further improved.
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In order to probe how buoyancy source terms are modifying the turbulent quantities,
turbulent viscosity is shown in Fig. 4.27, where it is seen again that there is an under-
prediction of turbulent viscosity with original k-ω-SST and BL-v2/k models respectively.
However, the inclusion of the Rf leads to the improvement of the prediction of turbulent
viscosity particularly corresponding to the value of coefficient C3 that is 0.45, this predic-
tion of turbulent viscosity modifies the Reynolds shear stress (as Boussinesq relation is
considered to model Reynolds stresses) and owing to this there is an improvement in the
prediction of mean velocity distribution. Now to understand the modification of turbulent
viscosity by the inclusion of buoyancy source terms, total production of turbulent kinetic
energy (Pk + Gk) and total production of dissipation (Pε + Gε) or specific dissipation (Pω
+ Gω) are plotted in Fig. 4.28 and Fig. 4.30 respectively.
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Figure 4.28 – Production of turbulent kinetic energy profile at Ra = 1.7× 107 and Pr =
0.71

From Fig. 4.28, it is observed that there is an increase in the production (Pk +Gk) in
the major portion of the channel, and with the increase of the coefficient (C3) from 0.2 to
0.45, this increment in production is further enhanced. This is further reinforced by the
fact that the inclusion of buoyancy source terms reduce the production of dissipation (Pε
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+ Gε) or specific dissipation (Pω + Gω) terms as can be seen in Fig. 4.30. This explains
the improvement in the prediction of turbulent viscosity as shown in Fig. 4.27.
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Figure 4.29 – Flux Richardson number factor profile at Ra = 1.7× 107 and Pr = 0.71

To probe further in this context, flux Richardson number factor (1 +C3Rf ) is plotted
in Fig. 4.29, it is realized that this factor is increased close to the wall and decreased
in the rest of the channel. Moreover, this behavior is enhanced with the increase of the
coefficient (C3), so it is concluded that the role of increasing flux Richardson number factor
(by increasing the value of C3) is to reduce the Pω + Gω or Pε + Gε (as shown in Fig.
4.30) and thereby the production (Pk +Gk) of turbulent kinetic energy is enhanced which
explain the improvement of turbulent viscosity profile.
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and Pr = 0.71

Mean temperature distribution is shown in Fig. 4.31 and it is noticed that the addi-
tional buoyancy source terms improve the prediction of mean temperature. It is noticed
that the optimal value of the coefficient (C3) for both the models is 0.45. In order to
overcome the limitation of providing different values of the coefficient C3 as observed in
the previous section, a formulation based on the flux Richardson number has been formu-
lated and tested for the k-ω-SST and BL-v2/k models. Selecting the optimal value of 0.45
for the two models, it is observed that the inclusion of the flux Richardson number did
improve the prediction of mean and turbulent quantities.
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Figure 4.31 – Effect of the flux Richardson number on the mean temperature (T+) profile
at Ra = 1.7× 107 and Pr = 0.71

4.3.3 Conclusion

In the first part of this section, simple buoyancy-extended k-ω-SST and BL-v2/k mod-
els are formulated and their performances are analyzed in differentially heated vertical
channel. It is realized that the simplified buoyancy-extended models are able to better
predict the mean and turbulent quantities than the original models which shows that,
even with a very simple model for the turbulent heat flux (SGDH), the introduction of a
buoyancy extension in the Boussinesq relation is favourable. Secondly, the effect of only
adding buoyancy source terms (without the buoyancy-extension in the Boussinesq rela-
tion) in the transport equations of turbulent kinetic energy (k) and its dissipation rate
(ε or ω) is examined and in addition to that, the sensitivity analysis of the coefficient C3

is also performed. Two very different turbulence models namely k-ω-SST and BL-v2/k
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are sensitized to the buoyancy effects. It has been observed that the consideration of the
buoyancy source term certainly improves the prediction of mean and turbulent quantities.
However, it is noticed that the effect of the inclusion of Gk is strong in improving the
results and the addition of Gε or Gω is to moderate this effect. As far as the role played
by these additional buoyancy source terms in the context of k-ω-SST and BL-v2/k model
is concerned, it is increasing the eddy-viscosity which is severely underpredicted by the
original version of these models.
As far as the interest of including Flux Richardson number Rf is concerned, it is realised
that the effect is the same as with a constant buoyancy coefficient, but the fact that the
coefficient C3 is the same for the two models show an indication of the fact that this
modification is less arbitrary.

4.4 Buoyancy sensitized Launder-Sharma model

In this part of the chapter, buoyancy-sensitized Launder-Sharma models is formulated
and validated in a challenging natural convection regime in a differentially heated vertical
channel corresponding to the highest available Rayleigh number, Ra = 1.7 × 107 and
results are compared with the DNS data [Kiš and Herwig, 2014].

4.4.1 Buoyancy-extended Launder-Sharma model

As for the others models, the buoyancy-extended Reynolds stress relation for Launder-
Sharma model is formulated from the weak equilibrium hypothesis and expressed as fol-
lows:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
︸ ︷︷ ︸

Boussinesq

+C∗θ
k

ε
(Gij −

1
3δijGkk)︸ ︷︷ ︸

Buoyancy−extension

(4.65)

where C∗θ = 0.1 and Gij = −β(giu
′
jθ + gju

′
iθ).

The buoyancy-extended heat flux relation is described as follows:

u
′
iθ = −Cθ

k

ε

[
(u′iu

′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

]
∂T

∂xj
(4.66)

Cθ is formulated in such a manner that buoyancy-extended model must revert back to
original Launder-Sharma model if the influence of buoyancy is negligible and expressed as
follow:

v′θ = − νt
Prt

∂T

∂y︸ ︷︷ ︸
SGDH

= −Cθ
k

ε
v′2

∂T

∂y︸ ︷︷ ︸
GGDH

Cθ = 3
2
Cµ
Prt

fµ

(4.67)
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This buoyancy modified Reynolds stress and heat flux relations are used in the momentum
and energy equations. The effect of the buoyancy extension is considered in the dynamic
production of turbulent kinetic energy and expressed in the following equation :

Pk = −
[
(u′iu

′
j)Boussinesq + (u′iu

′
j)Buoyancy−extension

]
∂Ui
∂xj

(4.68)

The buoyancy production terms in the transport equation of turbulent kinetic energy
and dissipation equation are modeled using the generalized gradient diffusion hypothesis
(GGDH) and expressed as follows:

Gk = −βgiu
′
iθ

Gε = Cε3
ε

k
max(Gk, 0)

(4.69)

The modified transport equations of k and ε are:

Dk

Dt
= Pk +Gk + ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
−
[
ε̃+ 2µ

ρ

(
∂
√
k

∂xj

)2

︸ ︷︷ ︸
D

]
(4.70)

Dε̃

Dt
= Cε1f1

ε̃

k
Pk + Cε3f1

ε̃

k
max

(
Gk, 0

)
︸ ︷︷ ︸

Gε

+ ∂

∂xj

[(
ν + νt

σε

)
∂ε̃

∂xj

]
− Cε2f2

ε̃

k
+ 2ννt

[(
∂Ui
∂xj

)2]

+ 0.83
(
k3/2

clε̃y
− 1

)(
k3/2

clε̃y

)2
ε̃2

k︸ ︷︷ ︸
Y ap−term

(4.71)
where Cε3 = 2.6 and other functions are as per standard Launder-Sharma model [Launder
and Sharma, 1974]. As we have seen in Chapter-2, the introduction of Yap term leads to
the improvement of the results to some extent, but there are discrepancies in the mean
flow profiles particularly in mean temperature profile. So the goal of this section is to
analyse the effect of the buoyancy-extended Launder-Sharma model which is associated
with the Yap term.
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Figure 4.32 – Mean velocity profile at Ra = 1.7× 107 and Pr = 0.71

0 0,1 0,2 0,3 0,4 0,5

0

1

2

3

H/X

D′ E
′+

DNS-Ra= 1.7 × 107

LS

LS + Yap-term

Buoyancy-extended LS + Yap-term

Figure 4.33 – Turbulent shear stress profile at Ra = 1.7× 107 and Pr = 0.71
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Looking into the Fig. 4.32, it is observed that there is a significant improvement in
the mean velocity with the inclusion of the Yap term as compared to the prediction of the
original Launder-Sharma model which severely underpredicts it. However, mean velocity
remains slightly underestimated even with the inclusion of Yap term. The inclusion of
buoyancy-extension in the Launder-Sharma model, leads to slightly improve the mean
velocity. Again, this improvement in prediction of mean velocity is linked to the better
prediction of turbulent shear stress which is underestimated even with the addition of the
Yap term. Due to the inclusion of buoyancy-extension in the standard Boussinesq relation
of Reynolds stress, the discrepancy in the prediction of shear stress is avoided as shown
in Fig. 4.33, and this leads to the better prediction of mean velocity.
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Figure 4.34 – Mean temperature profile at Ra = 1.7× 107 and Pr = 0.71

Mean temperature distribution is shown in Fig. 4.34 and it is realized that the inclusion
of the Yap term in the Launder-Sharma model does not lead to a correct prediction of
the mean temperature. However, there is a drastic improvement in the mean temperature
prediction with the buoyancy-extended model, and the misprediction of mean temperature
is avoided to a great extent. This prediction of mean temperature is directly linked to the
prediction of the wall-normal heat flux, which is improved with the buoyancy-extended
model as shown in Fig. 4.35 and the better prediction of the wall-normal heat flux is
the root cause for the improved prediction of mean temperature. So it is noticed that the
inclusion of buoyancy extension in association with the Yap term improves the prediction of
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mean and turbulent quantities, which signify that this buoyancy extension is the physically
relevant term which is missing in the original model.
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Figure 4.35 – Wall normal heat flux profile at Ra = 1.7× 107 and Pr = 0.71

In the next section, a detailed analysis of adding only buoyancy source terms in the
Launder-Sharma model is performed.

4.4.2 Effect of adding only buoyancy source terms in the Launder-Sharma
model

Similar to the other models, we have investigated the influence of adding the buoyant
source terms associated with the original Boussinesq relation. After adding the buoyant
source terms, the transport equations of the turbulent kinetic energy and the turbulent
dissipation rate for Launder and Sharma [1974] model is given below:

∂k

∂t
+ Uk

∂k

∂xk
= Pk +Gk + ∂

∂xj

[(
ν + νt

σk

)
∂k

∂xj

]
−
[
ε̃+ 2µ

ρ

(
∂
√
k

∂xj

)2

︸ ︷︷ ︸
D

]
(4.72)

∂ε̃

∂t
+Uk

∂ε̃

∂xk
= Cε1f1

ε̃

k
Pk+C3f1

ε̃

k
max

(
Gk, 0

)
︸ ︷︷ ︸

Gε

+ ∂

∂xj

[(
ν+ νt

σε

)
∂ε̃

∂xj

]
−Cε2f2

ε̃

k
+2ννt

[(
∂Ui
∂xj

)2]

(4.73)
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where constants and other functions are as per Launder and Sharma [1974] model. Note
that the Yap term is not introduced here. Moreover, the max in the definition of Gε in
Eq. 4.73 is included to distinguish between the stably and unstably stratified flows (as
discussed in Section 4.3.2). Gk is modeled based on the GGDH approach:

Gk = −βgiui′θ; ui
′θ = −Cθ

k

ε

(
ui
′uj
′ ∂T

∂xj

)
(4.74)

However, the Reynolds stresses in the momentum equation and the turbulent heat fluxes
in the energy equation are modeled using the original Boussinesq relation and the simple
gradient diffusion hypothesis (SGDH) respectively. Different values of the coefficient C3

are considered to analyse the sensitivity of this coefficient. Moreover, C3 = 0.0 represents
the effect of only adding Gk.
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Figure 4.36 – Mean velocity profile at Ra = 1.7× 107 and Pr = 0.71

In this part of the section, the effect of adding buoyancy source terms in the transport
equation of turbulent kinetic energy and its dissipation rate is analyzed by simulating
differentially heated vertical channel at the available highest Rayleigh number that is Ra
= 1.7× 107. Looking into Fig. 4.36, it can be seen that there is a severe underestimation
of the mean velocity with the original Launder-Sharma model. As discussed previously,
the addition of only Gk brings drastic improvement in the case of k-ω-SST and BL-v2/k

models, since it reduces the mean velocity which is initially overestimated. On the contrary,
in the case of the Launder-Sharma model, adding only Gk term make the prediction of
mean velocity worse, as the mean velocity is initially underestimated.
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Figure 4.37 – Turbulent viscosity profile at Ra = 1.7× 107 and Pr = 0.71

Moreover, it is noticed that by increasing the value of the coefficient C3 (in Gε term),
there is an improvement in the prediction as can be seen in Fig. 4.36.

0,01 0,1

0

5e+08

1e+09

1,5e+09

2e+09

H/X

%
:
+
�

:

LS

LS + Buo-Prod-�3 = 0.0

LS + Buo-Prod-�3 = 2.0

LS + Buo-Prod-�3 = 4.0

Figure 4.38 – Total production of turbulent kinetic energy at Ra = 1.7×107 and Pr = 0.71

Furthermore, it is realized that the inclusion of the Gε term is vital in the case of
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the Launder-Sharma model. In order to better understand the role of these additional
buoyant source terms, the distribution of turbulent viscosity is analyzed. From Fig. 4.37,
it is observed that there is a severe overestimation of the turbulent viscosity by the original
Launder-Sharma model. This discrepancy in turbulent viscosity is further enhanced with
the addition of the Gk (C3 = 0.0) term only. However, with the inclusion of the Gε term,
there is an improvement in the prediction and corresponding to the value of coefficient
C3 = 4.0, the turbulent viscosity is greatly improved. This recovery in the prediction
of turbulent viscosity affects the momentum balance through turbulent shear stress (as
Boussinesq relation is used to model Reynolds stresses) which avoid the misprediction of
the mean velocity gradient and hence there is an improvement in the prediction of mean
velocity. In order to investigate further, analysis of the effect of buoyancy source terms on
the production (Pk + Gk) of the turbulent kinetic energy, and production of dissipation
(Pε + Gε) terms is done. Looking into Fig. 4.38, it is noticed that with the addition of
the Gε term, there is an increase in total production (Pk + Gk) in a major portion of
the channel (except in the near-wall region). However, the total production of dissipation
(Pε+Gε) is greatly enhanced in magnitude (as shown in Fig. 4.39) as compare to Pk+Gk

term, which shows that the role of adding the Gε term in the Launder-Sharma model is
to damp the turbulent viscosity greatly as shown in Fig. 4.37.
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Figure 4.39 – Total production of dissipation rate of turbulent kinetic energy at Ra =
1.7× 107 and Pr = 0.71
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The mean temperature distribution is shown in Fig. 4.40. It is observed that the
original Launder-Sharma model severely underestimates the mean temperature. Moreover,
the addition of only Gk leads to further underestimates the mean temperature and worsen
the results. However, the inclusion of the Gε term leads to the improvement in the mean
temperature and corresponding to the value of coefficient C3 = 4.0, there is a drastic
improvement in mean temperature profile. Again it is confirmed that the addition of Gε
in Launder-Sharma model is necessary.

4.4.3 Conclusion for the Launder-Sharma model

Firstly, the buoyancy-extended Launder-Sharma model in association with the Yap
term is formulated and its performance is analyzed in differentially heated channel cases.
It is interesting to observe that the buoyancy extension applied to Launder-Sharma model
has a strong effect on the mean temperature profile and also corrects the misprediction
of velocity profile. In contrast, for the buoyant source terms alone, the velocity profile is
very well corrected but the temperature profile is not accurate. Moreover, the addition of
the Gε term is necessary in the Launder-Sharma model and the results are improved by
increasing the value of C3 from 0.0 to 4.0.
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4.5 Conclusion

Buoyancy driven flows are observed in many heat transfer applications which is also a
major concern for the industry, in particular for the application that has motivated this
work, the heat transfer in the underhood space of automobiles.
For the thermal under hood design of cars, eddy-viscosity based turbulence models avail-
able in commercial codes are not sufficiently sensitive to buoyancy effects. In Ansys Fluent
used by the PSA group for the designing of the engine compartment, there is a provision
of activating the buoyancy production terms. However, these terms are based on simple
gradient diffusion hypothesis (SGDH) and this will lead to underestimate the influence of
buoyancy on turbulence. On the other hand, these models are able to give good results
in the cruising stages of the vehicle, but for the situation when the buoyancy is playing
a dominant role in modifying turbulence, these models are insufficient to reproduce the
physics and characteristics of the flow. The goal of the present chapter was to develop a
range of buoyancy modified eddy-viscosity models which can provide satisfactory results
in the design of the real underhood compartment of automobiles.
In the pursuit of this objective, three very different turbulence models are sensitized to the
buoyancy effects with the determination that these sensitized models are able to reproduce
the anisotropy of turbulence due to buoyancy which is absent in the original models. The
investigation of turbulent phenomena is most conveniently made in the flow configurations
where the influence of other physical processes can be isolated. In the context of the design
of underhood-space of the automobiles, differentially heated vertical channel flow at high
Rayleigh number is selected to develop and to validate the buoyancy modified turbulence
models namely k-ω-SST, BL-v2/k and Launder-Sharma model respectively. The other
major concern of the work is to sensitize the turbulence models in such a manner that
the physically relevant terms need to be provided in the eddy-viscosity models so that the
anisotropy of turbulence due to buoyancy can be reproduced and the models revert back
to the original version of the model, when it is used to compute flows where buoyancy is
negligible.
In the pursuit of this objective, different versions of buoyancy extended models are devel-
oped based on the complexity and capability of reproducing the characteristics of flow. In
these buoyancy-extended models, the modeling of the buoyancy extension is performed in
such a way that the buoyancy contribution is taken directly from the Reynolds stress equa-
tion in association with the generalized gradient diffusion hypothesis (GGDH) to model
heat fluxes and this buoyancy extension preserves the linearity of the Reynolds stress re-
lation.
Motivated by the limitation to model tensorial diffusivity in the commercial codes, in par-
ticular for Ansys Fluent, simple versions of buoyancy extended models are developed and
validated. It is observed that the buoyancy extension is indeed required for capturing the
effect of buoyancy on turbulence. For instance, original versions of k-ω-SST and BL-v2/k
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model lead to the severe overprediction of the mean velocity and underprediction of tur-
bulent viscosity. By providing this buoyancy extension in the constitutive relation of the
Reynolds stress and heat flux, the results are drastically improved which confirms that
the misprediction of the mean and turbulent quantities by the original models is due to
the lack of this buoyancy contribution.
Further, a simpler approach without the buoyancy extension is considered by adding only
buoyant source terms (in k and ε or ω equations) which is modeled using GGDH approach.
Moreover, the necessity of including the buoyant source term Gε or Gω in the dissipation
equation is also analyzed. It has been observed that the choice of the coefficient C3 (in
Gε or Gω) is dependent on the selected model. For instance, in the case of k-ω-SST and
BL-v2/k model, the results are better by reducing the value of this coefficient and the
addition of only the Gk term (C3 = 0.0) has a strong effect on results and the inclusion
of Gε or Gω moderates the results. On the other hand, for the Launder-Sharma model, it
is noticed that the addition of only Gk (C3 = 0.0) worsens the results and it is necessary
to include the Gε term and the results are better by increasing the value of coefficient C3

from 0.0 to 4.0.
Moreover, the effect of including the flux Richardson number in Gω or Gε is also analysed
in association with the k-ω-SST and BL-v2/k model. It is noticed that the prediction
of mean velocity and mean temperature profiles are improved and strikingly the optimal
value of the coefficient C3 = 0.45 is same for the both the models.
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CHAPTER 5. RECTANGULAR CAVITY

5.1 Description of the test case

This test case is based on the DNS data by Trias et al. [2010] in a differentially heated
rectangular cavity with the aspect ratio of 4 : 1 in the natural convection regime. The
Rayleigh number based on the height of the cavity is 1011. This DNS simulation [Trias
et al., 2010] is the continuation of the work by Trias et al. [2007] where a lower Rayleigh
number was considered. In this DNS, kinematic viscosity (ν) and thermal diffusivity (κ)
are considered to be constant. For the variation of density, the Boussinesq approximation
is used with the linear variation of density with temperature. The testing of the buoyancy-
extended models is performed for this configuration. In addition to that, the analysis of
adding only buoyant source terms in the transport equations of k and ω or ε is made,
where these source terms are modeled using two different approaches, namely the simple
gradient diffusion hypothesis (SGDH) and the generalized gradient diffusion hypothesis
(GGDH), respectively.

Figure 5.1 – Schematic diagram of the rectangular cavity of aspect ratio 4 : 1 [Trias et al.,
2010]

Fig. 5.1 shows the schematic diagram of the flow configuration of the cavity, where
Lx = H and Ly = Lz = 0.25H. The cavity is subjected to a uniform temperature
difference (∆T ) between the hot wall at y = L and the cold wall at y = 0. The bottom
and top walls are considered to be adiabatic. DNS data of Trias et al. [2007] provide
the mean and turbulent quantities to compare the performance of eddy-viscosity models.
No radiation is taken into account, and the momentum and energy equations are non-
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dimensionalized by the Rayleigh number which writes

Ra = gβ∆TH3

νκ
(5.1)

which is based on the height of the cavity, and the Prandtl number is defined as

Pr = ν

κ
(5.2)

The scales used for non-dimensionalization are H for the length scale, H2

κ

√
Ra for the time

scale, ∆T for the temperature scale, and for the dynamic pressure ρ κ2

H2Ra, respectively.
The non-dimensionalized momentum and energy equations become:

DŨi

Dt̃
= Pr√

Ra
∇2Ũi −∇P̃ + f̃i (5.3)

DT̃

Dt̃
= 1√

Ra
∇2T̃ (5.4)

where fi = (PrT̃ , 0, 0)
From the point of view of understanding the physics of this cavity of aspect ratio 4 : 1,
this flow configuration is quite different from the infinite cavity discussed in the previous
chapter. The cavity is characterized by laminar, transitional and turbulent regions, and
it is very different from the fully developed case used before (vertical channel) for the
development of buoyancy sensitized models and it is a challenge for the assessment of
these models, as the models are used in the off-design condition. Moreover, in this type
of cavity flow, boundary layers on the two vertical walls have very marginal interactions
and thereby the level of turbulence is low in the central region.
Saury et al. [2011] performed the experimental investigation of natural convection in an
air-filled rectangular cavity. It has been reported in his study that the stratification pa-
rameter was not significantly modified when the Rayleigh number is changed, and it is
the aspect ratio of 4 : 1 which played an important role in the stratification mechanism.
Moreover, wall radiation modifies wall temperature and it reduces the vertical temper-
ature gradient and thereby the stratification parameter is lower. As far as the general
behavior in the cavity is concerned, it is reported that there is a recirculation area in
the upper part of the cavity and with the increase of Rayleigh number, downward airflow
intensifies on the outer edge of the hot boundary layer. Based on the velocity vectors, two
kinds of airflow behavior are categorized, namely Case-1 and Case-2. In Case-1, the cold
boundary layer is fed by the downward flow and in Case-2, the hot boundary layer is fed
by downward airflow.
Trias et al. [2010] used the same dimensions of the cavity as used in Saury et al. [2011]
but periodicity is applied in the z-direction, which makes this cavity less costly and easier
for testing models. In view of this context, the distribution of turbulent kinetic energy
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is shown in the third line of Fig. 5.2 for the three selected models, namely the k-ω-SST,
BL-v2/k, and low Reynolds Launder-Sharma models. It is observed that the flow is almost
laminar in all the cavity except for two zones in the near-wall region of the upper part on
the side of the hot wall and the lower part on the side of the cold wall (there is a central
symmetry in this flow). Furthermore, it is noticed that the prediction of the transition
from laminar to turbulent is very different for each model. For instance, the k-ω-SST and
Launder-Sharma models predict early transition as compared to the BL-v2/k model. Fig.
5.2 also shows the distribution of the magnitude of the velocity on the first line and tem-
perature on the second line: it is observed that the velocity and temperature are almost
uniform and constant in y, in the center of the cavity, and the boundary layers are very
thin. A stratification is clearly visible on the temperature fields.
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Figure 5.2 – Distribution of velocity (first line), temperature (second line), turbulent
kinetic energy (third line) in 4 : 1 cavity [Trias et al., 2010] for three models:
(a.) k-ω-SST; (b.) BL-v2/k; (c.) Launder-Sharma
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In the next section, the performance of the buoyancy modified models are evaluated
against the DNS of Trias et al. [2010].

5.2 Performance of the buoyancy sensitised models

5.2.1 Buoyancy-extended models

A brief recall of the full buoyancy-extended model is discussed, where the buoyancy-
extension is derived from the transport equation of the Reynolds stress by considering the
weak equilibrium hypothesis.
The buoyancy-extended Reynolds stress relation writes as follows:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
︸ ︷︷ ︸

Boussinesq

+C∗θ τ(Gij −
1
3δijGkk)︸ ︷︷ ︸

Buo−extension

(5.5)

where C∗θ = 0.1 and Gij = −β(gju
′
iθ + giu

′
jθ).

Heat fluxes in buoyancy production terms is modeled using GGDH approach which reads:

Gk = −βgiui′θ (5.6)

The performance of the buoyancy-extended k-ω-SST and buoyancy-extended BL-v2/k

models are examined by plotting the mean and turbulent quantities at different heights of
the cavity. Due to central symmetry, the following figures only show the hot side of the
wall.
The wall shear stress on the hot side is plotted in Fig. 5.3 and it is observed from the
DNS of Trias et al. [2010] that the flow remains laminar up to the height x = 0.4, the flow
transitions in the region between 0.4 < x/L < 0.6 and finally it is fully turbulent in the
region between 0.6 < x/L < 0.9. Fig. 5.4 shows that this transition does not significantly
affect the Nusselt number up to the end of the transition region, at x/L = 0.6, where a
kink is observed, leading to a higher level of the Nusselt number in the fully turbulent
region.
In Fig. 5.4, it can be seen that the k-ω-SST model experiences an abrupt transition to
turbulence before x/L = 0.2, since the Nusselt number rapidly reaches a turbulent value.
The buoyancy extension significantly delays the transition and also leads to a less abrupt
transition. In contrast, Figs. 5.3 and 5.4 show that the BL-v2/k starts transitioning
around x/L = 0.3, but the transition is very slow and a fully turbulent state is reached
only at x/L = 0.8. Fig. 5.5(a) and Fig. 5.5(d) in the laminar region shows that the
original k-ω-SST model predicts a much too early transition, whereas original BL-v2/k

remains laminar. The transition phenomena by the k-ω-SST model is improved by the
buoyancy-extended version (Fig. 5.5 (d) at x = 0.2). From Fig. 5.5 (b) and Fig. 5.5 (e),
since the k-ω-SST model is already transitioned, the results are acceptable. In contrast,
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the BL-v2/k model predicts too slow a transition, but this is improved by the buoyancy-
extended version (Fig. 5.5 (e) at x = 0.7). This improvement by the buoyancy-extended
models is important as it improves the location and rapidity of transition. Moreover, there
is an improvement in the prediction of the mean velocity by the buoyancy-extended mod-
els in the turbulence zone as shown in Fig. 5.5 (c) and Fig. 5.5 (f), and this improvement
is the consequence of the improvement of results in the transition zone shown in Fig. 5.5
(b) and Fig. 5.5 (e).
To observe the effect of the buoyancy extension on thermal characteristics, mean tempera-
ture profiles are plotted at different heights of the cavity. It is observed in Fig. 5.6 (a) and
Fig. 5.6 (d) that the prediction of mean temperature profile by the k-ω-SST model show
much too early a transition. However, the BL-v2/k model remains laminar and results are
in good agreement with the mean temperature profile of DNS. Fig. 5.6 (b) and Fig. 5.6
(e) show that the k-ω-SST model is already transitioned as can be seen in the prediction
of wall-normal heat flux and BL-v2/k model predicts too slow a transition, but this is
improved by the buoyancy-extended BL-v2/k model (Fig. 5.6 (e) at x = 0.7). Further,
it is observed that there is an improvement in the prediction of mean temperature by
the buoyancy-extended models as can be seen in Fig. 5.6 (c) which is the consequence of
the prediction in the transitioning zone. The misprediction of the mean temperature and
wall-normal heat flux by the BL-v2/k model particularly at x = 0.8 is just due to the very
slow transition.

133



CHAPTER 5. RECTANGULAR CAVITY

Figure 5.3 – Comparison of vertical wall shear stress scaled by Ra−1/4 with DNS data
[Trias et al., 2010] at Ra = 1.0× 1011 and Pr = 0.71

Figure 5.4 – Comparison of local Nusselt number distribution with DNS data [Trias et al.,
2010] at Ra = 1.0× 1011 and Pr = 0.71

134



5.2. PERFORMANCE OF THE BUOYANCY SENSITISED MODELS

0

0,1

0,2

0,001 0,01 0,1

0

0,1

0,2

H/!

G = 0.3

G = 0.2 DNS - '0 = 1.0 × 1011

:-l-SST

BL-E2/:

*
�
/
^
(
'
0
)
1/
2

*
�
/
^
(
'
0
)
1/
2

Buoyancy-extended :-l-SST

Buoyancy-extended BL-E2/:

(a) Laminar developing zone

0

0,1

0,2

0,0001 0,001 0,01 0,1

0

0,1

0,2

H/!

G = 0.7

G = 0.6

(b) End of transitioning zone

0

0,0001 0,001 0,01 0,1

0

0,1

H/!

G = 0.9

G = 0.8

(c) Fully turbulent zone

-0,0001

0

0,0001

0,0002

0,001 0,01 0,1

0

0,0001

H/!

G = 0.3

G = 0.2

D
E
�

2
/
^
2
'
0

D
E
�

2
/
^
2
'
0

(d) Laminar developing zone

-0,0001

0

0,0001

0,0002

0,0003

0,0001 0,001 0,01 0,1

0

0,0002

0,0004

0,0006

0,0008

H/!

G = 0.7

G = 0.6

(e) End of transition zone

0

0,0001

0,001 0,01 0,1

0

0,0001

0,0002

H/!

G = 0.9

G = 0.8

(f) Fully turbulent zone

Figure 5.5 – Comparison of the mean velocity [UH/κ(Ra)1/2] (first line) and turbulence
shear stress [uvH2/κ2Ra] (second line) predictions of the buoyancy-extended k-ω-SST (red
color) and buoyancy extended BL-v2/k (blue color) models with DNS data [Trias et al.,
2010] at Ra = 1.0× 1011 and Pr = 0.71

135



CHAPTER 5. RECTANGULAR CAVITY

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0,001 0,01 0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

H/!

G = 0.3

G = 0.2

DNS - '0 = 1.0 × 1011

:-l-SST

BL-E2/:

)
/
Δ
)

)
/
Δ
)

Buoyancy-extended :-l-SST

Buoyancy-extended BL-E2/:

(a) Laminar developing zone

0,6

0,7

0,8

0,9

1

0,001 0,01 0,1

0,5

0,6

0,7

0,8

0,9

1

H/!

G = 0.7

G = 0.6

(b) End of transitioning zone

0,7

0,8

0,9

1

0,001 0,01 0,1
0,6

0,7

0,8

0,9

1

H/!

G = 0.9

G = 0.8

(c) Fully turbulent zone

-0,0002

-0,0001

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0001 0,001 0,01 0,1
-0,0001

0

0,0001

0,0002

0,0003

0,0004

H/!

G = 0.3

G = 0.2

E
′
\
/
^
(
'
0
)
1/
2
Δ
)

E
′
\
/
^
(
'
0
)
1/
2
Δ
)

(d) Laminar developing zone

-0,0002

-0,0001

0

0,0001

0,0002

0,0003

0,0004

0,0005

0,0001 0,001 0,01 0,1

-0,0002

0

0,0002

0,0004

0,0006

0,0008

H/!

G = 0.7

G = 0.6

(e) End of transitioning zone

-0,0002

-0,0001

0

0,0001

0,0002

0,0001 0,001 0,01 0,1
-0,0001

0

0,0001

0,0002

0,0003

0,0004

H/!

G = 0.9

G = 0.8

(f) Fully turbulent zone
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5.2.2 Effect of adding buoyancy production terms

In this part of the section, the effect of only adding buoyancy production terms in the
transport equation of turbulent kinetic energy (k) and dissipation (ε) or specific dissipation
(ω) is discussed.

Buoyancy sensitised k-ω-SST model

It is recalled here that the transport equations of turbulent kinetic energy and specific
dissipation are expressed as follow:

Dk

Dt
= Pk +Gk − β∗kω + ∂

∂xk

[(
ν + σkνt

)
∂k

∂xk

]
(5.7)

Dω

Dt
= γ

νt
Pk +max

(
γ

νt
Gk, 0

)
− βω2 + ∂

∂xk

[(
ν + σωνt

)
∂ω

∂xk

]

+2(1− F1)σω2
1
ω

∂k

∂xk

∂ω

∂xk

(5.8)

Where constants and blending functions are as per the standard k-ω-SST model [Menter,
1994].

Buoyancy sensitised BL-v2/k model

The transport equations of turbulent kinetic energy and its dissipation rate are ex-
pressed as follows:

Dk

Dt
= Pk +Gk − ε− 2Cε3ννt(1− α)3k

ε

(
∂2Ui
∂xk∂xj

)2

+ ∂

∂xj

[(
ν

2 + νt
σk

)
∂k

∂xj

]
(5.9)

Dε

Dt
= Cε1Pk − C∗ε2ε

T
+max

(
Cε1

Gk
T
, 0
)

+ ∂

∂xj

[(
ν

2 + νt
σε

)
∂ε

∂xj

]
(5.10)

where the constants and other functions are as per the BL-v2/k model [Billard and Lau-
rence, 2012].

Gk = −βgiu
′
iθ (5.11)

The Reynolds stresses in the averaged momentum equation is modeled using the standard
Boussinesq constitutive relation (Eq. 5.12) which writes:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
(5.12)
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The turbulent heat fluxes in the mean temperature equation are modeled using simple
gradient diffusion hypothesis (SGDH) approach (Eq. 5.13) which writes:

u
′
iθ = − νt

Prt

∂T

∂xi
(5.13)

In an infinite cavity (vertical channel), the vertical temperature gradient is zero due to the
absence of stratification and the use of SGDH approach to model buoyancy production
terms is inappropriate as it will not introduce any influence of the buoyancy on turbu-
lence (Gk = −βgiu

′
iθ), such that the GGDH approach has been used for this buoyancy

production terms in Chapter 4. However, in this type of rectangular cavity where the
stratification is present, the SGDH approach is also considered to model the buoyancy
source terms in comparison with the GGDH approach.
The Wall shear stress is shown in Fig. 5.7 and it is observed that the addition of buoy-
ancy production terms tends to delay the transition (early transition point is shifted) and
the SGDH and GGDH approaches give a similar effect as previously observed with the
buoyancy-extended k-ω-SST model. However, the inverse effect is observed with the origi-
nal BL-v2/k model where the delayed transition is observed and the inclusion of buoyancy
source terms worsen the predictions. In the turbulent region, the tendency of adding buoy-
ancy production terms in k-ω-SST model is to slightly improve the predictions. However,
the inverse effect is observed by adding buoyancy source term in BL-v2/k model.
Looking into the distribution of Nusselt number in Fig. 5.8 (plotted for the hot wall), it is
realized that the inclusion of buoyancy production in the k-ω-SST model, using SGDH and
GGDH, has the same effect as previously observed with the buoyancy-extended version
in delaying the transition. In contrast, the buoyancy production terms have virtually no
effect on the Nusselt number prediction of the BL-v2/k model.
From the plots of mean velocity and turbulent shear stress shown in Fig. 5.9 (a) and
Fig. 5.9 (d), it is confirmed that the transition is delayed by adding buoyancy production
terms (see Fig. 5.9 (d)), whereas BL-v2/k model remains laminar. Fig. 5.9 (b) and Fig.
5.9 (e) shows the prediction at the end of the transition zone and it is observed that the
effect of the production terms is weak in this region. However, the BL-v2/k predicts very
late transitioning and with the inclusion of buoyancy production terms, the transition is
further delayed (see Fig. 5.9 (e) at x/L = 0.7) At locations x/L = 0.8 and x/L = 0.9 in
the fully turbulent zone, it is observed that there is an improvement in the predictions of
mean velocity with the addition of buoyancy production terms in the k-ω-SST and this
effect is the consequence of the improvement in the transition zone (see Fig. 5.9 (b) and
Fig. 5.9 (e)). Moreover, the effect of adding buoyancy production terms in the BL-v2/k

model is to further delay the transitioning and the speed to achieve a fully turbulent state
is slower (see Fig. 5.9 (c) and Fig. 5.9 (f)) as compared to the original BL-v2/k model.
From the mean temperature distribution in the laminar developing zone, it is realized that
the addition of buoyancy source term in k-ω-SST model partly corrects the early transition
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phenomenon as can be seen in Fig. 5.10 (a) and Fig. 5.10 (d) and the effect is rather
strong (see Fig. 5.10 (d) at x/L = 0.2). In contrast, the buoyancy production terms have
virtually no effect on the BL-v2/k model in this region. At the end of the transitioning
zone shown in Fig. 5.10 (b) and Fig. 5.10 (e), the addition of buoyancy source terms in
k-ω-SST and BL-v2/k model have virtually no effect on the prediction of the transitioning
phenomena.
In the fully turbulent zone, the inclusion of buoyancy production terms in k-ω-SST model
leads to the improvement in the prediction of mean temperature. However, for the BL-v2/k

model, there are no substantial effect with the addition of buoyancy source terms.
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Figure 5.7 – Comparison of vertical wall shear stress scaled by Ra−1/4 with DNS data
[Trias et al., 2010] at Ra = 1.0× 1011 and Pr = 0.71

Figure 5.8 – Comparison of local Nusselt number distribution with DNS data [Trias et al.,
2010] at Ra = 1.0× 1011 and Pr = 0.71
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Figure 5.9 – Comparison of mean velocity [UH/κ(Ra)1/2] (first line) and turbulence shear
stress [uvH2/κ2Ra] (second line) predictions of buoyancy sensitised k-ω-SST and BL-v2/k
models with DNS data [Trias et al., 2010] at Ra = 1× 1011 and Pr = 0.71
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Figure 5.10 – Comparison of mean temperature[T/∆T ] (first line) and wall normal heat
flux[v′θH/κ

√
Ra∆θ] (second line) predictions of buoyancy sensitized k-ω-SST and BL-

v2/k models with DNS data [Trias et al., 2010] at Ra = 1× 1011 and Pr = 0.71
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5.3 Effect of Yap term in Launder-Sharma model

We have seen in chapter 3 that the inclusion of the Yap term in the Launder-Sharma
model leads to an improvement in the predictions of dynamic and thermal characteristics
in an infinite cavity, so motivated by this fact the Yap term is introduced in the low-
Reynolds Launder-Sharma model and simulation is performed in the rectangular cavity.
The Yap term (Sε) is expressed as follows:

Sε = max

[
0.83

(
k3/2

clεy
− 1

)(
k3/2

clεy

)2
ε2

k
, 0
]

(5.14)

where y is the wall normal distance and cl is the slope of the turbulent length scale (k3/2/ε)
in the near-wall region in constant-stress shear flow.
The distributions of the wall shear stress and the Nusselt number are shown in Fig. 5.11
and Fig. 5.12, respectively. It is realized that the original Launder-Sharma model predicts
an early and rapid transition and the inclusion of Yap term removes this limitation to a
certain extent in such a way that the transition point is shifted towards the DNS profile.
In the turbulent region, the tendency of the original Launder-Sharma model to reach
fully turbulent state is too early and with the inclusion of Yap term, there is a drastic
improvement and fully turbulent state is reached later.
From the plots of mean velocity and turbulent shear stress profiles in laminar zone as
shown in Fig. 5.13 (a) and Fig. 5.14 (a), it is confirmed that the original Launder-Sharma
model predict early transitioning, and this limitation is avoided by introducing Yap term,
which lead to significant improvement in the mean velocity profile. Fig. 5.13 (b) and
Fig. 5.14 (b) show that the predictions at the end of transitioning zone are significantly
improved by the Yap term. At the locations x/L = 0.8 and x/L = 0.9, in fully turbulent
zone, it is also observed that there is an improvement in the prediction of mean velocity
with Yap term (as can be seen in Fig. 5.13 (c)), owing to the better prediction of turbulent
shear stress as can be seen in Fig. 5.14 (c).
From the mean temperature distribution in the laminar zone showed in Fig. 5.15 (a), it
is observed that the early transition leads to a severe misprediction of the temperature
profile. The inclusion of Yap term brings in a drastic improvement in the prediction of
mean temperature owing to the better representation of turbulent heat flux as shown in
Fig. 5.16 (a). In the end of transitioning zone, the original Launder-Sharma model severely
overestimates the turbulent heat flux and this limitation is avoided by the inclusion of Yap
term as shown in Fig. 5.16 (b) and the consequence of this improvement in turbulent heat
flux leads to the better prediction of mean temperature as shown in Fig. 5.15 (b). In
the fully turbulent zone, the inclusion of Yap term also brings in a drastic improvement
in the prediction of turbulent heat flux by improving the speed to transition as shown in
Fig. 5.16 (c) and this provides the better prediction of mean temperature as can be seen
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in Fig. 5.15 (c).

Figure 5.11 – Comparison of vertical wall shear stress scaled by Ra−1/4 with DNS data
[Trias et al., 2010] at Ra = 1.0× 1011 and Pr = 0.71

Figure 5.12 – Comparison of local Nusselt number distribution with DNS data [Trias et al.,
2010] at Ra = 1.0× 1011 and Pr = 0.71
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Figure 5.14 – Comparison of turbulence shear stress [uvH2/κ2Ra] with DNS data [Trias
et al., 2010] at Ra = 1.0× 1011 and Pr = 0.71
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5.4 Conclusion

The performance of buoyancy sensitized models has been examined by computing
a more challenging rectangular cavity where stratification is playing an important role.
Firstly, the performance of the buoyancy-extended k-ω-SST and BL-v2/k models are ex-
amined by computing rectangular cavity of aspect ratio 4 : 1 with adiabatic horizontal
walls corresponding to the highest Rayleigh number, Ra = 1.0 × 1011 which is based on
the height of the cavity.
It is observed that the original k-ω-SST model predicts very early transition to the tur-
bulent state leading to the early increase of the wall shear stress and for the BL-v2/k

model, transition is too late. The buoyancy-extended k-ω-SST model leads to moderate
the early transition. Moreover, the tendency of buoyancy-extended BL-v2/k model is to
trigger the transition which is delayed as predicted by the original BL-v2/k model. It
is observed that both the original and buoyancy-extended versions of the models show
an early effect of the transition on the Nusselt number distribution which is contrary to
the prediction of DNS data in which there is a formation of the kink at the end of the
transition. Attempts were made to investigate the performance of the buoyancy-extended
Launder-Sharma model in this rectangular cavity, but there are convergence issues and so
the results are not presented in this study.
Secondly, the effect of introducing only buoyancy source terms in the transport equations of
turbulent kinetic energy (k) and dissipation (ε) or (ω) is examined. These buoyant source
terms are modeled using SGDH and GGDH approaches, respectively. It is observed that
there is improvement in the prediction of mean velocity and mean temperature when buoy-
ancy source terms are added to the k-ω-SST model as well as the prediction of wall shear
stress is improved and the early transition to turbulence by original k-ω-SST is corrected
to a certain extent. However, there are no substantial changes in the predictions when
the buoyancy source terms are added to the BL-v2/k model. The analysis of adding only
buoyancy source terms explain the superiority of buoyancy-extended models in sensitizing
the original k-ω-SST and BL-v2/k model to buoyancy effects by providing the physically
relevant terms which are missing in the original models.
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6.1 General Conclusion

This thesis proposes modifications into eddy-viscosity based models that take into ac-
count of the buoyancy effects. The selection of the eddy-viscosity models is based on the
ability of models to be integrated down to the wall. This is the primary requirement
for natural convection flows, since the wall function approach is not very established for
natural convection flows and also to isolate the effect of other physical phenomena that
complicate the problem while introducing buoyancy effects into models.
The selected models come from three very different families in order to investigate how the
proposed modifications work independent of the model specificities. From the k-ω family,
the k-ω-SST model, from the v2-f family, the BL-v2/k model, and from the low-Reynolds
number family the Launder-Sharma are selected, respectively. Three different turbulent
convective regimes namely forced, mixed and natural convection are studied and consid-
ered for the model development. Model development is performed based on channel flow
configurations and the models are also tested in cavity flows. The analysis started from the
forced convection flows which are considered while developing most of the eddy-viscosity
models: it has been observed that all the three selected models are able to predict the
mean velocity well in agreement to the DNS data close to the wall. However, there were
discrepancies in the prediction of the logarithmic region particularly with k-ω-SST model.
Moreover, there is a severe underprediction of turbulent kinetic energy by the original
models particularly with the k-ω-SST and Launder-Sharma models whereas the BL-v2/k

model comes out to be the better model in predicting mean flow and turbulent quantities.
Further, it is observed that the predictions of mean temperature by the models are satis-
factory. Overall behavior of the models is in good agreement with DNS data.
For eddy-viscosity models, the standard approach to model the Reynolds stresses is the
Boussinesq constitutive relation and the simple gradient diffusion hypothesis (SGDH) for
modeling turbulent heat fluxes, but we know that using these standard approaches is not
reliable for buoyancy-driven flows. So the objective of the work is to incorporate the buoy-
ancy contribution into the selected eddy-viscosity models and in the pursuit of this goal,
buoyancy-extended Reynolds stress and heat flux models are developed using the weak
equilibrium approach. One of the constraints to formulate the buoyancy-extended model
is to take into account of the fact that the modified models do not change the predictions
of forced convection flows which were found to be reliable particularly in the Underhood
space simulation performed at PSA Group. So keeping in view this constraint, models are
modified in such a manner that in the absence of buoyancy, the modified model will go
back to original models.
The development phase of buoyancy sensitized model is started by checking the robustness
of the models in three convective regimes, particularly for the natural convection regime
where buoyancy has a decisive impact on the mean flow and turbulent quantities.
The buoyancy extension approach has been proposed in association with the three selected
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models. It has been observed that the buoyancy-extended models bring a significant im-
provement in the prediction of mean and turbulent quantities compared to the original
models which confirm that the missing contribution of buoyancy is indeed required in
Reynolds stress and heat flux relations. Another favourable aspect of buoyancy-extended
models is that it preserve the linearity in the Reynolds stress and turbulent heat flux
relations. The open-source code Code_Saturne is used for the development of buoyancy-
extended models due to the flexibility and availability of this open source code.
The goal of the work is to propose a span of buoyancy sensitized model that can be imple-
mented in ANSYS Fluent. So in this context another constraint of the work is the modeling
of tensorial diffusivity (considered in GGDH approach to model the heat flux) which is
not possible in ANSYS Fluent [Fluent]. In view of this, simple versions of buoyancy-
extended models are proposed in association with the k-ω-SST and BL-v2/k models. The
differentially heated vertical channel case of Kiš and Herwig [2014] is considered for the
development and validation of these simple buoyancy-extended models. In these versions
of the models, simple gradient diffusion hypothesis (SGDH) is considered for modeling
turbulent heat fluxes. However, with this approach, the buoyancy contribution coming
from the buoyancy production terms is negligible in weakly stratified flows and becomes
zero for differentially heated vertical channel flow. However, it has been observed that
there is a significant improvement in the prediction of the mean and turbulent quantities
with these simplified buoyancy-extended models.
A simple way of taking into account of buoyancy contribution in the eddy-viscosity mod-
els is to only add buoyancy source terms in the transport equation of turbulent kinetic
energy and its dissipation or specific dissipation rate. However, if these buoyancy source
terms are modeled using the SGDH approach it will underestimate the effect of buoyancy
on turbulence. So in view of this fact, buoyancy source terms were modeled using the
GGDH approach and the sensitivity analysis of the coefficient C3 is done in association
with three models namely k-ω-SST, BL-v2/k and Launder-Sharma model respectively.
The most challenging natural convection case of Kiš and Herwig [2014] is considered for
this analysis. It has been observed that the effect of only adding Gk is strong in k-ω-SST
and BL-v2/k model and bring in significant improvement in the mean velocity and mean
temperature profile. Moreover, it is noticed that, as the value of the coefficient C3 (in Gε
or Gω) is reduced, the results are better. On the contrary, in the case of Launder-Sharma
model, addition of only Gk worsen the results and the addition of Gε is necessary. This
study suggested that the need of buoyancy extension can be avoided by the addition of
only buoyant source terms. However, the buoyancy-extended models are physically richer.
Another analysis of taking into account of the flux Richardson number in association with
the k-ω-SST and BL-v2/k models is performed. It is noticed that the results are improved
and the optimal value of the coefficient C3 is 0.45 for both the models. To complete the
study, the effect of adding the Yap [1987] term in the dissipation rate equation of Launder-
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Sharma model is analyzed. It is observed that the inclusion of only the Yap term improved
the prediction of the mean velocity. However, there is a misprediction of the temperature
profile. This misprediction is greatly reduced by the buoyancy-extended Launder-Sharma
model in association with the Yap term.
Another natural convection case, the rectangular cavity of Trias et al. [2007, 2010] at the
highest Rayleigh number, Ra = 1.0× 1011 is considered for analyzing the performance of
buoyancy sensitized models. It is observed that the buoyancy-extended models lead to an
improvement in the prediction of transition which is crucial for this cavity. To complete
the study, the effects of only adding buoyancy production terms in the k-ω-SST and BL-
v2/k models is also examined in association with the simple gradient diffusion hypothesis
(SGDH) and the generalized gradient diffusion hypothesis (GGDH). It has been observed
that the inclusion of these additional source terms for the k-ω-SST model brings improve-
ment in the mean velocity and mean temperature. However, there are virtually no effect
of adding these source terms on BL-v2/k model.
So it has been concluded that more advanced modeling in terms of buoyancy extension
provided to Reynolds stresses and turbulent heat fluxes is more appropriate as this ap-
proach is more physical, consistent and brings in drastic improvement of results.
Further, the effect of introducing the Yap term in the Launder-Sharma model is also ex-
amined in this cavity flow and it has been realised that the inclusion of this additional
term leads to the improvement not only in the prediction of mean velocity and mean
temperature but also in the turbulent variables. Also the discrepancy of early transition
to turbulence by the original Launder-Sharma model is significantly delayed which made
the improvement in the wall shear stress and Nusselt number. So the consideration of
Yap term in Launder-Sharma model is further reinforced by the prediction in this rect-
angular cavity flow and it has been inferred that the Yap term is indeed required for the
Launder-Sharma model which is in accordance to the available literature.

6.2 Prospects

The detailed analysis of several modifications in the context of three very different
eddy-viscosity models provide significant insight into the flows affected or driven by ther-
mal buoyancy. Validation of these buoyancy modified models needs to be done in the
other buoyancy affected cavity flows such as square cavity of Sebilleau et al. [2018] and
rectangular cavity of Saury et al. [2011] at highest Rayleigh numbers. The other impor-
tant objective of the future work is the testing and validation of these buoyancy modified
models in several other buoyancy dominated flow configurations using Ansys Fluent (used
by PSA Group). In particular the buoyancy modified model will be tested in the simplified
real underhood space of cars at PSA group. Furthermore, this work is the part of ANR
Monaco project, and one of the goals of the project is to predict the buoyancy induced
transient phenomena which pose a barrier that must be overcome. A particular effort
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needs to be given in the future on the extension of the present work to the development of
hybrid RANS/LES methods and to analyze the potential of these methods for buoyancy
driven flows. In the framework of this goal, a particular attention will be given to the
RANS zones while developing Hybrid RANS/LES methods.
This work is motivated by the problem faced by the PSA group in reproducing the differ-
ent buoyancy influenced phases. Moreover, during the thermal designing of the underhood
space of cars, there are certain important factors that needs particular attention, such as
the dimensioning of the car which imposes constraints on the compactness of several parts
of underhood space and this makes the flow to become complex in the cavity between
engine and its auxillary parts. The other important requirement is the reduction of the
weight of the car by using plastic instead of metal for which thermal management in the
underhood space is crucial. These two requirements are directly linked to the overheating
of the underhood components during different phases of vehicle motion. During the cruis-
ing phases, the simulation results are reliable and able to predict high temperature levels.
However, when the vehicle is suddenly stopped, the heat soak phase arises in which there
is a sudden rise of surface temperature of some underhood components and this might
lead to the risk of auto-ignition of fluids in the underhood components. The computation
of this thermal soak phase (where the natural convection phenomena is dominant) is not
possible with the available turbulence model in Ansys Fluent. The present work paves
the way towards the use of CFD to study this problems and to dimension the elements
present in the underhood space.
Moreover, buoyancy plays a crucial role in several heat transfer applications of other in-
dustrial flows like in the nuclear industry, thermal management in buildings, solar power
plants, aeronautics, chemical industies and others. Owing to the complicated geometry,
constraint on the size of the equipments and different temperature levels, the flow becomes
turbulent. The eddy-viscosity models are still the mainstay of the industrial computations,
this work pave the way to compute industrial flows satisfactorily and allows better under-
standing of the natural convection flows in several flow configurations.
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Appendix A

Implementation of the buoyancy
sensitized models in Ansys Fluent

A.1 Introduction

For the thermal designing of the underhood space of vehicules, PSA group uses Ansys
Fluent, but due to the unavailability of the sources of this code, it is not flexible enough
to modify and analyze the effects of modifications done in turbulence models. Keeping in
view this fact, the open source code "Code-Saturne" has been used to develop buoyancy
sensitized models.
Two version of buoyancy sensitized k-ω-SST models are now implemented in Ansys Fluent
using user-defined functions and the main objective of this chapter is to compare the results
given by the two codes. A Comparison of only buoyancy sensitized k-ω-SST models is
performed as the BL-v2/k model is not available in Ansys Fluent.
In the last part of this chapter, attempts are made to analyze the effect of varying turbulent
Prandtl number in association with the Reynolds analogy.

A.2 Comparison of buoyancy sensitised k-ω-SST model

Attempts are made to investigate the performance of buoyancy sensitized k-ω-SST
models by simulating the differentially heated vertical channel case corresponding to the
highest Rayleigh number, Ra = 1.7× 107 and the results are compared to the DNS data
of Kiš and Herwig [2014]. The flow configurtion is shown in Fig. A.1.
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Figure A.1 – Flow configuration for the differentially heated vertical channel

The standard approach to model Reynolds stresses is to use the Boussinesq constitutive
relation (linear stress-strain relation) which is expressed as follows:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
(A.1)

The standard approach to model the heat fluxes is the simple gradient diffusion hypothesis
(SGDH).

u
′
iθ = − νt

Prt

∂T

∂xi
(A.2)

However, these standard approaches are insufficient to predict the thermal buoyancy-
driven flows [Hanjalić, 2002]. In view of this context, k-ω-SST model is sensitized by
using two sensitization methods and the performance of these buoyancy-sensitized k-ω-
SST model is examined in the following section.

A.2.1 Buoyancy-extended k-ω-SST models

The first method of sensitization involves the inclusion of the buoyancy extension into
the Boussinesq relation. The buoyancy-extended model is developed in such a way that
the buoyancy extension is derived from exact Reynolds stress equation using the weak
equilibrium hypothesis and associated with k-ω-SST model. One of the constraints in
developing buoyancy-extended heat flux model is that the modeling of tensorial diffusivity
(GGDH) is not possible in ANSYS Fluent and owing to this, the simple version of the
buoyancy-extended k-ω-SST model is used, where the heat flux is modeled using simple
gradient diffusion hypothesis (SGDH) approach and this simplified buoyancy-extended k-
ω-SST model is implemented in Ansys Fluent using User-defined functions. Under the
weak equilibrium hypothesis, the buoyancy-extended Reynolds stress relation is expressed
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as follows:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
︸ ︷︷ ︸

Boussinesq

+Cθ
∗ 1
Cµω

(Gij −
1
3δijGkk)︸ ︷︷ ︸

Buoyancy−extension

(A.3)

where Gij = −β(gju
′
jθ + giu

′
iθ) and C∗θ = 0.2

The turbulent heat flux is modeled using a simple gradient diffusion hypothesis (SGDH)
approach which writes:

u
′
iθ = − νt

Prt

∂T

∂xi
(A.4)

The buoyancy extension of the Reynolds stresses is also incorporated in the dynamic
production of turbulent kinetic energy and in specific dissipation rate equations which
write:

Pk = −
[
(u′iu

′
i)Boussinesq + (u′iu

′
i)Buoyancy−extension

]
∂Ui
∂xj

(A.5)

Buoyancy production terms in the transport equation of the turbulent kinetic energy
become:

Gk = βgi
νt
Prt

∂T

∂xi
(A.6)

From Fig. A.2, it is observed that there is a severe overestimation of mean velocity by the
original k-ω-SST model as predicted by both the codes. Moreover, there are differences
in the prediction of mean velocity between the original models available in Ansys Fluent
and Code Saturne respectively. These differences in predictions by the original k-ω-SST
model in two codes might be linked to a different way of implementation of the boundary
condition on ω. The boundary condition proposed by Menter [1994] is expressed as follows:

ωw = 10 6ν
β1∆y2

1
at y = 0 (A.7)

where ωw and ∆y1 are the value of ω at the wall and the distance to the next point away
from the wall, respectively. This boundary condition in its true form is implemented in
Code Saturne. However, in Ansys Fluent, this boundary condition is implemented with a
formulation in a manner expressed as follows:

ωw = ρ(uτ )2

µ
ω+ (A.8)

where ω+ for laminar sublayer is defined as follows:

ω+ = 6
β1(y+)2 (A.9)

For the logarithmic region, a wall function is used in such a way that the ω+ becomes:

ω+ = 1√
β∞
∗
duturb

+

dy+ (A.10)
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where β∞∗ = 0.09.
However, it is not clear from the theory guide of Fluent, whether this value is applied at
the wall or imposed at the center of the first cell. This different formulation might be
linked to the differences in the prediction by the original and modified models in the two
codes.
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Figure A.2 – Comparison of mean velocity (U+) profiles for buoyancy extended k-ω-SST
model in Fluent (red color) and in Code Saturne (blue color) with the DNS data Kiš and
Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71

As far as the effect of buoyancy extension on the prediction of mean velocity (see
Fig. A.2) is concerned, it is noticed that the inclusion of the buoyancy extension in the
Boussinesq relation indeed improves the prediction of mean velocity and this improvement
is observed with both the codes. However, with Ansys Fluent with buoyancy extension,
there is an underestimation of mean velocity as compared with the prediction by Code
Saturne which is in good agreement with DNS data. To probe further into this, turbulent
shear stress is plotted in Fig. A.3: it is realized that the inclusion of the buoyancy extension
leads to the improvement in the turbulent shear stress, although the prediction of Code
Saturne seems to be in better agreement with DNS data as compared to the prediction
by Ansys Fluent in which turbulent shear stress is marginally increased. If we analyze the
momentum balance which is integrated from the wall to some arbitrary distance y away
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from the wall, which writes:

0 =
∫ y

0
ν
∂2Ũ

∂ỹ2 dy −
∫ y

0

∂ũ′v′

∂ỹ
dỹ +

∫ y

0
βg(T̃ − T̃ref )dỹ (A.11)

It is observed that in the range between the peak of mean velocity and center of a channel,
the contribution of buoyancy force must be balanced by viscous friction at the wall and
the sum of viscous friction and turbulent shear stress in y, which is directed downwards
such that ∫ y

0
β̃g(T̃ − T̃ref )dỹ = ρu2

τ − ν
∂Ũ

∂ỹ
+ ũ′v′ (A.12)
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Figure A.3 – Comparison of the turbulent shear stress (uv+) for the buoyancy extended
k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data of
Kiš and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71

It is observed from Fig. A.3 that the original k-ω-SST model severely underestimated
the turbulent shear stress and this must be recompensated by the viscous stresses in such
a manner that a negative slope of mean velocity and friction velocity is increased. The
role played by the buoyancy extension in the turbulent shear stress is to provide a positive
contribution to the Boussinesq constitutive relation for the Reynolds stresses expressed as
follows:

ũ′v′ = −νt
∂Ũ

∂ỹ
+ Cθ

∗

Cµω
β̃gṽ′θ (A.13)

From Eq. A.13, it can be seen that the positive contribution of v′θ enhances the turbulent
shear stress such that mean velocity prediction is improved.
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Figure A.4 – Comparison of the mean temperature (T+) for the buoyancy extended k-ω-
SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data of Kiš
and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71
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Figure A.5 – Comparison of wall normal heat flux (v′θ
+
) for buoyancy extended k-ω-SST

model in Fluent (red color) and in Code Saturne (blue color) with DNS data of Kiš and
Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71
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From Fig. A.4 showing the mean temperature predictions, it is observed that the
inclusion of the buoyancy extension improves the prediction of mean temperature. How-
ever, there are differences in the predictions by both the original and buoyancy-extended
k-ω-SST models of the two codes probably due to the difference in the implementation
as discussed above. It is important to have correct prediction of wall-normal heat flux
component (active component in energy balance) and it is observed from Fig. A.5 that
the heat flux far from the wall tends to 1.0 and this is independent of the heat flux model.
With the buoyancy extension, there is an improvement in the prediction of the wall-normal
heat flux close to the wall and this behavior is observed with both the codes, although
there are differences in prediction between the codes. This prediction of the wall-normal
heat flux corrects the misprediction of mean temperature (although it is insufficient) as
can be seen in Fig. A.4.

A.2.2 Effect of adding only buoyancy production terms in the k-ω-SST
model

A simpler way of taking into consideration of buoyancy effect is to add the buoyancy
source terms in the transport equation for the turbulent kinetic energy (k) and the specific
dissipation (ω), respectively. In the context of k-ε models, several researchers applied the
simple gradient diffusion hypothesis (SGDH) approach to model these buoyancy source
terms [Annarumma et al., 1991, Cox and Kumar, 1987, Fletcher et al., 1994, Luo and
Beck, 1994, Markatos et al., 1982, Nam and Bill Jr, 1993, Rho and Ryou, 1999, Sinai
and Owens, 1995, Xue et al., 2001]. However, with this approach, the effect of buoyancy
on turbulence is severely underestimated and in order to overcome this limitation, Other
authors Brescianini and Delichatsios [2003], Worthy et al. [2001], Yan and Holmstedt [1999]
have applied the generalized gradient diffusion hypothesis (GGDH) of Daly and Harlow
[1970] to model the buoyancy source terms.
In this part of the chapter, the effect of only adding buoyancy production terms in the
transport equation of k and ω equation in the k-ω-SST model is analyzed by the simulating
differentially heated vertical channel case of Kiš and Herwig [2014] corresponding to the
highest available Rayleigh number, Ra = 1.7× 107.
The transport equations of the modified k-ω-SST model can be expressed as follows:

∂k

∂t
+ Uk

∂k

∂xk
= Pk +Gk − β∗kω + ∂

∂xk

[(
ν + σkνt

)
∂k

∂xk

]
(A.14)

∂ω

∂t
+ Uk

∂ω

∂xk
= γ

νt
Pk +max

(
C3
νt
Gk, 0

)
︸ ︷︷ ︸

Gω

−βω2 + ∂

∂xk

[(
ν + σωνt

)
∂ω

∂xk

]

+2(1− F1)σω2
1
ω

∂k

∂xk

∂ω

∂xk

(A.15)
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Where constants and blending functions are as per standard k-ω-SST model of Menter
[1994], except constant C3 in the buoyancy source term (Gω) which is most of the time
considered to be equal to the coefficient (γ) applied to the dynamic production term
(Pω). Gk is modeled using the generalized gradient diffusion hypothesis (GGDH) approach
expressed as follows:

Gk = −βgiu
′
iθ; Gω = max

(
C3
νt
Gk, 0

)
; u

′
iθ = −Cθ

1
Cµω

(
u
′
iu
′
j

)
∂T

∂xj
(A.16)

Where C3 = 0.2.
The Boussinesq constitutive relation for the modeling of Reynolds stresses is used, which
writes:

u
′
iu
′
j = 2

3kδij − νt

(
∂Ui
∂xj

+ ∂Uj
∂xi

)
(A.17)

The simple gradient diffusion hypothesis (SGDH) is used to model the turbulent heat
fluxes in the temperature equation as mentioned below:

u
′
iθ = − νt

Prt

∂T

∂xi
; Prt = 1.0 (A.18)

The mean velocity distribution is shown in Fig. A.6. It is observed that the inclusion of the
buoyancy source terms leads to the improvement in the mean velocity which is severely
overestimated by the original k-ω-SST model. This improvement in mean velocity is
observed with both codes. However, it has been observed that the modified models through
buoyancy source terms give a larger difference of improvement in the case of Ansys Fluent
which is probably linked to the way the boundary conditions on ω is imposed on the
original k-ω-SST model.
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Figure A.6 – Comparison of mean velocity (U+) profiles for buoyancy sensitized k-ω-SST
model in Fluent (red color) and in Code Saturne (blue color) with DNS data Kiš and
Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71
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Figure A.7 – Comparison of turbulent shear stress (uv+) profiles for buoyancy sensitized
k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data Kiš
and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71

In order to probe the effect of buoyancy source terms on turbulent statistics, the
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turbulent shear stress distribution is shown in Fig. A.7. It is realized that there is a
marginal change of u′v′ as compared to the original k-ω-SST model.
From Fig. A.8, it is realized that the effect of adding these buoyancy source terms is to
improve the prediction of mean temperature which is mispredicted by the original k-ω-SST
model in both codes. Nevertheless, it is intriguing to see that the effect of introducing Gk
and Gω in Ansys Fluent have a larger influence on temperature prediction such that there
are differences in improvement in mean temperature corresponding to the same value of
coefficient C3 which is utilized in Code Saturne.
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Figure A.8 – Comparison of mean temperature (T+) profiles for buoyancy sensitised k-ω-
SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data Kiš and
Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71

This prediction of mean temperature is linked to the prediction of turbulent heat flux
which is underestimated by the original k-ω-SST model as observed in both codes and
the inclusion of the buoyancy source terms make an improvement in the wall normal
component of the turbulent heat flux, and this explains the improvement of the mean
temperature. By analyzing the influence of these buoyancy source terms in predicting
the dynamics and thermal characteristics in the context of comparing two codes, it is
observed that the inclusion of these buoyancy source terms is indeed favorable for taking
into account the buoyancy effects.
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Figure A.9 – Comparison of wall normal heat flux (vT+) profiles for buoyancy sensitised
k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data Kiš
and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71

A.3 Influence of the turbulent Prandtl number

Precise computation of the turbulent heat fluxes plays a major role in buoyancy-driven
flows. In industrial simulations where the RANS approach is the most considered ap-
proach, first moment turbulence closures are still the mainstay of the engineers, where Prt
can be viewed as a key input that links the eddy diffusivity for heat to the eddy viscosity
for momentum. The origin of the turbulent Prandtl number concept dates back from the
early twentieth century when Taylor [1915] proposed the concept of eddy-diffusivity. More
precisely, the turbulent Prandtl number is a pertinent concept for turbulent heat trans-
fer. The turbulent Prandtl number is mainly an indication of the dissimilarity between
turbulent transports of momentum and heat and can be expressed as follows:

Prt = νt
αt

(A.19)

Where νt and αt are the eddy viscosity and eddy diffusivity for heat, respectively. Ac-
cording to the Reynolds analogy, heat is transported in a similar way as momentum in
turbulent flows such that Prt = 1.0. This analogy continues to find its way in engineering
applications.
From the atmospheric modeling point of view, precise predictions of the turbulent Prandtl
number leads to better predictions of heat transfer for weather and climate. Moreover it
will have an impact on the measurement of air quality, ecosystem and agriculture manage-
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ment. The scientific community for atmospheric flows has a different point of view for the
role of the turbulent Prandtl number and researchers have discovered the role of thermal
stratification in inducing the dissimilarity between turbulent transport of momentum and
heat [Ertel, 1942, Priestley and Swinbank, 1947]. Thermal stratification has a significant
role in the atmospheric boundary layer and there are several models proposed by the au-
thors [Businger, 1988, Mellor and Yamada, 1982, Zilitinkevich et al., 2007] to take into
account the dissimilarity of turbulent transport of momentum and heat. A Discussion of
these proposals have been made in the bibliography chapter. Moreover, the span of the
atmospheric boundary layer is several orders of the magnitude as compared to the bound-
ary layer developed in industrial flows and it is not known whether the models developed
for the estimation of turbulent Prandtl number for atmospheric flows is going to work for
industrial flows.
Keeping in view this aspect, the goal of this section is to analyze the effect of different
constant values of turbulent Prandtl number in the permissible range. The differentially
heated vertical channel case is computed corresponding to the highest Rayleigh number,
Ra = 1.7×107 available and the results are compared to the DNS data of Kiš and Herwig
[2014].
Looking into Fig. A.10, it is observed that by reducing the value of the turbulent Prandtl
number from 1.0 to 0.85, there is a marginal improvement in the prediction of mean veloc-
ity in such a way that the peak value of mean velocity reduces by 1% and this reduction
is observed with both the codes. Nevertheless there are differences in the prediction of
mean velocity by the two codes. Another undesirable feature of changing the turbulent
Prandtl number to a lower value (from 1.0 to 0.85) is that the turbulent shear stress is un-
derestimated far from the wall as compared to the value observed with Prt = 1.0 and this
phenomenon is predicted by the two codes as shown in Fig. A.11. From the distribution
of mean temperature as shown in Fig. A.12, it is observed that there is an improvement
in the prediction of mean temperature by changing the value of Prt from 1.0 to 0.85. To
probe into this prediction further, the prediction of the wall-normal heat flux component
is examined in Fig. A.13. It is observed that corresponding to the lower value of turbulent
Prandtl number that is 0.85, the heat flux is increased by 17% which is affecting the energy
balance in such a way that the misprediction of temperature is avoided to a certain extent
although in an insufficient manner.
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Figure A.10 – Comparison of mean velocity (U+) profiles for different Prandtl number in
the k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data
Kiš and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71
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Figure A.11 – Comparison of turbulent shear stress (uv+) profiles for for different Prandtl
number in the k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with
DNS data Kiš and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71
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Figure A.12 – Comparison of mean temperature (T+) profiles for different prandtl number
in k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with DNS data
Kiš and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71
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Figure A.13 – Comparison of wall normal heat flux (vT+) profiles for different Prandtl
number in k-ω-SST model in Fluent (red color) and in Code Saturne (blue color) with
DNS data Kiš and Herwig [2014] at Ra = 1.7× 107 and Pr = 0.71

179



APPENDIX A. IMPLEMENTATION OF THE BUOYANCY SENSITIZED MODELS IN
ANSYS FLUENT

Conclusion and Future prospects

An analysis of the comparison between Ansys Fluent and Code Saturne codes is made
in reproducing the dynamics and turbulent quantities in a differentially heated vertical
channel. The first part of this appendix is dedicated to the comparison of simple buoyancy-
extended k-ω-SST model in Ansys Fluent and Code Saturne. A simple buoyancy-extended
k-ω-SST model is developed in such a way that the buoyancy contribution is taken from
Reynolds stress equation and added explicitly to the Boussinesq constitutive relation.
Another favorable aspect of this buoyancy-extended model is its simplicity in a way that it
does not require the modeling of tensorial diffusivity which is not possible in Ansys Fluent.
It is realized that there is a drastic improvement in the prediction of mean and turbulent
quantities by this simple buoyancy-extended k-ω-SST model and also it is observed that
this modification is not an adhoc modification rather it provides a better momentum
balance which is missing in the original k-ω-SST model.
In the second part of this appendix, attempts are made to analyze the effects of adding only
buoyancy source terms which are modeled using generalized gradient diffusion hypothesis
(GGDH) approach. However, the Reynolds stresses and turbulent heat fluxes are modeled
using the Boussinesq constitutive relation and the SGDH approach respectively, which is
the standard way of modeling in most of the commercial codes, particularly Ansys Fluent.
It is noticed that the inclusion of the additional buoyancy source terms made it possible
to take into account the buoyancy mechanism to a certain extent in such a way that it
improves the prediction of mean velocity and mean temperature. However, this buoyancy
sensitized k-ω-SST model is sensitive to the choice of the coefficient (as can be seen in
Chapter 4) and this limits the generality of this type of modification.
Finally, the effects of changing the turbulent Prandtl number in the context of Reynolds
analogy is estimated. It has been observed that the mean velocity and mean temperature
is improved in an insufficient manner corresponding to the value of turbulent Prandtl
number, Prt = 0.85, which is the default value in Ansys Fluent. This work is the part of
ANR Monaco project, and the long term goal of the project is to predict the buoyancy
induced transient phenomena which poses a barrier that must be overcome by the extension
of this work to the development of hybrid RANS/LES methods for buoyancy driven flows.
Moreover, during the development of Hybrid RANS/LES methods, special attention will
be given to the RANS zones.
During the thermal designing of the underhood space of cars, reducing the weight of the
car by using plastic instead of metal is of paramount importance, which is crucial in
thermal management in the underhood space. This is directly linked to the overheating of
the underhood components during different phases of vehicle motion. During the thermal
underhood managment, the simulation results are reliable during cruising phases and able
to predict high temperature levels. However, during the heat soak phase, there is a sudden
rise of surface temperature of some underhood components and this might lead to the risk
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of auto-ignition of fluids in the underhood components. The computation of this thermal
soak phase (when the natural convection is a dominant phenomenon) is a challenge that
the buoyancy sensitized models developed in the present work will help to tackle.
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ABSTRACT
Eddy-viscosity turbulence models are sensitized to the effects

of buoyancy, in order to improve the prediction in natural convec-
tion flows. The approach extends in a linear way the constitutive
relations for the Reynolds stress and the turbulent heat flux, in
order to account for the anisotropic influence of buoyancy. The
novelty of this work involves the buoyancy extension applied to
two very different eddy-viscosity models, which leads to encour-
aging results for the highly challenging case of the differentially
heated vertical channel.

INTRODUCTION
Turbulent flows influenced by thermal buoyancy are present

in many technological applications, in particular in the automo-
tive industry. For instance, CFD is consistently used in the de-
sign cycle in order to avoid the recourse to costly wind-tunnel
experiments, for dimensioning the underhood compartment. Al-
though this methodology reproduces the flow and heat transfer
correctly at cruising speed, it is not reliable in phases where nat-
ural convection dominates, i.e., when the car stops, mainly be-
cause turbulence-buoyancy interactions are not accounted for in
a comprehensive manner. Such computations are performed us-
ing commercial softwares and linear eddy-viscosity turbulence
models, such that the objective of the present work is to introduce
the mechanisms involved in the turbulence-buoyancy interaction
in such models.

In linear eddy-viscosity models, the Reynolds-stress tensor is
proportional to the mean strain tensor, such that the influence
of complex phenomena on the turbulence anisotropy cannot be
directly taken into account. In particular, for flows driven by
thermal buoyancy, such models lead to inaccurate prediction of
turbulent dynamics and mean flow properties [1]. In contrast,
second moment closures, based on the resolution of transport
equations for the Reynolds stress and the turbulent heat fluxes,
naturally contain source terms originating from the volume force
appearing in the Navier-Stokes equations [2], such that buoy-
ancy effects on turbulence can be accounted for without the
need for ad hoc modifications. Certainly, Reynolds stress and
turbulent heat flux transport equations require the modelling of
unknown correlations, such as pressure-strain φi j and pressure-

temperature-gradient φθi terms which are of decisive importance.
In this context, it can be shown [3] that there are buoyant con-
tributions which needs to be incorporated and, with term by
term modelling, it is possible to correctly treat the turbulence-
buoyancy interactions [3; 4]. Significant progress was recently
achieved by using the elliptic blending concept to model the
Reynolds stresses [5] extended to the turbulent heat flux to take
into account near-wall effects [6; 7]. However, as mentioned
above, second moment closure is not used for design in the car
industry, such that the objective of the present work is to sensitize
eddy-viscosity models to buoyancy, by incorporating physically-
based terms derived from second-moment closure.

In the literature, inclusion of buoyancy effects has mainly
been considered in the context of strongly stratified flows, by
adding buoyancy source terms to the transport equations for k
and ε or ω. However, since the turbulent heat fluxes are gen-
erally modelled using the simple gradient diffusion hypothesis
(SGDH) the influence of buoyancy on turbulence is consider-
ably underestimated [8] and exactly zero for unstratified flows.
However, in the engine compartement of a vehicule, the most
critical region, at the origin of the natural convection motion ob-
served, is the volume between the engine and the radiator. This
region is similar to a tall vertical differentially-heated cavity, i.e.,
a weakly stratified configuration. Since introducing buoyancy
source terms based on the generalized gradient diffusion hypoth-
esis (GGDH) is not sufficient [8; 9], it is necessary to extend
the constitutive relations for the Reynolds stress and turbulent
heat flux [10; 11]. In particular, Davidson [10] sensitized the
low-Reynolds-number k-ε model by the inclusion of a buoyancy
extension for the Reynolds stress derived from a second-moment
closure. The present study aims at extending this work to two
very different eddy-viscosity models, namely the k-ω-SST [12]
and BL-v2/k models [13], respectively, in order to demonstrate
that this approach is physically sound and not limited to a partic-
ular type of models, with the short-term objective of its applica-
tion to real underhood configuration.

GOVERNING EQUATIONS
Using the Boussinesq approximation, the Reynolds-averaged

conservation equations for mass, momentum and energy reduce



to
∂Ui

∂xi
= 0, (1)

DUi

Dt
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ρ
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∂
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∂xi

−θui

)
, (3)

where, β, gi, ν and Pr are thermal expansion coefficient, gravi-
tational vector, kinematic viscosity and Prandtl number, respec-
tively. In the two standard turbulence models used herein, the
Reynolds stress is modelled using the Boussinesq relation

uiu j =
2
3

kδi j −νt

(
∂Ui

∂x j
+

∂U j

∂xi

)
(4)

and the turbulent heat flux using the SGDH

θui =− νt

Prt

∂T
∂xi

. (5)

where, νt and Prt , are turbulent viscosity and turbulent Prandtl
number, respectively. In the BL-v2/k model [13], similar to other
eddy-viscosity models using ε, buoyancy appears in the k on ε
equations through the buoyancy production terms

G =−βgiθui (6)

and Gε. The latter is modelled as a function of the former, Gε =
Cε1G/τ, where τ is the turbulent time scale, in a way similar
to the production term due to velocity gradients, such that the
equations write as follows [13]

Dk
Dt

= P+G− ε−2Cε3ννt(1−αp)
k
ε
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+C2
T

(ν
ε

)2
, (9)

with CT = 4, and Dk and Dε stand for diffusion terms, which do
not need to be explicited here. The specificity of the BL-v2/k
model compared to other k-ε models is that, in order to account
for the wall-blockage effect on turbulence, which is crucial for
heat transfer [5], the eddy-viscosity is computed as

νt =Cµϕkτ, (10)

where ϕ is the ratio of the energy of the wall-normal fluctuations
to the turbulent energy k. This ratio is solution of the transport
equation as follows [13]

Dϕ
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ε
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fh =− 1
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ε
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ϕ− 2

3

)
. (12)

In constrast, in the k-ω-SST model [12], the eddy-viscosity is
modelled as

νt =
a1k

max(a1ω,SF2)
, (13)

where ω = ε/(β∗k), and the k- and ω-equations also involve
buoyancy-production terms G and Gω, respectively, where Gω is
again modelled as a function of G, since Gω =Gε/(β∗k) = G/νt ,
which yields

Dk
Dt

= P+G−β∗kω+Dk (14)

Dω
Dt

= α
(P+G)

νt
−βω2 +Dω +2(1−F1)σω2

1
ω

∂k
∂xi

∂ω
∂xi

(15)

However, with the SGDH model (5) for the turbulent heat flux
θui, the buoyancy-production terms in the above equations for
k and ε or ω are negligible for weakly stratified flows, such a
way that buoyancy as virtually no influence on turbulence, which
contradicts the observations [14]. Indeed, in the absence of strat-
ification, the temperature gradient and the gravity vector are or-
thogonal, such that, Eqs. (5) and (6) yield G = 0.

BUOYANCY-EXTENDED EDDY-VISCOSITY MODELS
Buoyancy effects can be taken into account by extending the

constitutive relation (4) for the Reynolds stress uiu j and the ratio-
nale for this buoyancy extension comes from the weak equilib-
rium hypothesis applied to the Reynolds stress transport equation

Duiu j

Dt
= Pi j +Gi j +φi j − εi j +Di j, (16)

where Pi j, εi j and Di j stand for the production, dissipation and
diffusion tensors, respectively. The buoyancy production term
writes

Gi j =−β(giθu j +g jθui) (17)

and the model for the pressure-strain correlation includes buoy-
ancy effects [3]. Assuming that turbulence is in weak equi-
librium, i.e., that the anisotropy of turbulence is in local equilib-
rium, an implicit algebraic relation is obtained for the Reynolds
stress that involves buoyancy production,

uiu j =
2
3

kδi j +
k
ε

1−C2

C1 +
P+G

ε −1

(
Pi j −

2
3
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)

+
k
ε

1−C3

C1 +
P+G

ε −1

(
Gi j −

2
3

Gδi j

)
,

(18)

where C1, C2 and C3 are coefficients of the model for φi j used
in Eq. (16), for the slow, rapid and buoyant parts, respectively.
As mentioned in the introduction, our purpose is not to use such



an algebraic Reynolds-stress model, but to extend standard lin-
ear eddy-viscosity models to buoyancy effects. Therefore, the
second term of Eq. (18), which is the part related to the mean
velocity gradient, is kept unchanged, i.e., is modelled by the lin-
ear Boussinesq relation (4). However, Eq. (18) suggests that the
Boussinesq relation can be extended by introducing the influ-
ence of buoyancy production [10; 11]. Assuming that turbulence
is close to equilibrium, i.e., P+G = ε, the buoyancy-extended
constitutive relation reads

uiu j =
2
3

kδi j −νt

(
∂Ui

∂x j
+

∂U j

∂xi

)

︸ ︷︷ ︸
uiu jBouss

+C∗
θτ
(

Gi j −
2
3

Gδi j

)

︸ ︷︷ ︸
uiu jBuo

, (19)

where C∗
θ = 0.1 ; G = 1

2 Gkk. This extension directly influences
momentum conservation (2), but also the transport equations for
the turbulent variables via the modification of the production
term

P =−uiu j
∂Ui

∂x j
=−

(
uiu jBouss +uiu jBuo

) ∂Ui

∂x j
. (20)

This extended constitutive relation can be associated to any eddy-
viscosity model, in particular to the BL-v2/k and k-ω-SST mod-
els used herein. It can be seen as a linear algebraic correction to
the eddy-viscosity based turbulence model.

TURBULENT HEAT FLUX MODEL
A correct representation of turbulent heat flux is of uttermost

importance for accurate prediction of heat transfer for natural
convection flows. In particular, since Eq. (19) aims at represent-
ing the influence of buoyancy on the anisotropy of turbulence,
using the SGDH (5) is inadequate, such that a more general heat
flux model must be considered. Such a relation can be ob-
tained from the full transport equation for the turbulent heat flux,
using the same algebraic methodology as for the Reynolds stress
used above [1], leading to the Algebraic Flux Model (AFM)

θui =−Cθτ
[

uiuk
∂T
∂xk

+(1−C2θ)θuk
∂Ui

∂xk
+(1−C3θ)βgiθ2

]
, (21)

where τ is the turbulent time scale and coefficients come from
the model for the scrambling term in the original model. Al-
though this relation can be useful in the future, in the present
work the Generalized Gradient Diffusion Hypothesis (GGDH) is
used, which corresponds to the first term in Eq. (21),

θui = θuiBouss +θuiBuo

= −Cθτuiu jBouss
∂T
∂x j

−Cθτuiu jBuo
∂T
∂x j

, (22)

in which the decomposition into two terms highlights the con-
tribution of the Boussinesq part and the extension in Eq. (19).
It is thus to be noted that this extension has an influence, via
Eq. (22), on the mean temperature equation (3), as well as in the
equations of the turbulence models (7)-(8) or (14)-(15), via the
buoyancy-production term

G =−βgi
(
θuiBouss +θuiBuo

)
. (23)
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Figure 1. Forced convection case at Reτ = 640 [15]. Mean
temperature. Profiles are shifted for clarity.

As mentioned in the introduction, our purpose is not to modify
the turbulence models used in the industry, but rather to extend
their validity to buoyant flows. Therefore, a particular constraint
to take into account is that the buoyancy-extended model must
not spoil the satisfactory results obtained in forced convection.
In such a situation, the influence of buoyancy is negligible, such
that Eq. (19) reduces to the Boussinesq relation, but the use of
the GGDH (22) instead of the SGDH (5) imposes the value of
the coefficient Cθ. Indeed, in order to avoid a modification of the
predictions in a thermal boundary layer in the forced convection
regime, in which the mean temperature profile is driven by the
wall-normal turbulent heat flux, say θv, the model must revert to
the original model, such that

θv =− νt

Prt

∂T
∂y︸ ︷︷ ︸

SGDH

=−Cθτv2 ∂T
∂y︸ ︷︷ ︸

GGDH

, (24)

in which v2 = v2Bouss =
2
3 k, which imposes
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3

2kτ
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Prt
. (25)

In the k-ω-SST model, this constraint yields

Cθ =
3
2

Cµ

Prt

a1ω
max(a1ω,SF2)

, (26)

and in the BL-v2/k model,

Cθ =
3
2

Cµ

Prt
ϕ . (27)

With this particular value of the coefficient Cθ, the buoyancy ex-
tension does not modify the predictions of the models in forced
convection, such that the k-ω-SST and BL-v2/k models still sat-
isfactorily reproduce the friction temperature T+ = (Tw−T )/Tτ,
as shown in Fig. 1 for the case at Reτ = 640 [15].

VALIDATION
The computations are carried out using EDF in-house open

source code (www.code-saturne.org). , a collocated finite volume
solver based on the SIMPLEC algorithm and the Rhie and Chow
interpolation, with second order accuracy in space. Details can
be found in Archambeau et al. [16]. For all the computations, a
grid-convergence study was performed.



Figure 2. Natural and mixed convection configurations.

Case uτ/Uref Error Tτ/∆T Error

DNS 322 - 0.049 -

k-ω-SST 343.05 +6 % 0.036 -26%

k-ω-SST + Buoyancy extension 334.43 +4% 0.038 -22%

BL-v2/k 328.98 +2% 0.045 -8%

BL-v2/k + Buoyancy extension 326.04 +1% 0.048 -2%

Table 1. Friction velocity and friction temperature

As mentioned in the introduction, one of the most critical sit-
uation for flows in the underhood compartment of vehicules is
the generation by buoyancy of a vertical flow due to the differ-
ential heating between the radiator and the engine. In order to
investigate the performance of the extended models proposed in
the previous sections in such a situation, the well-documented
academic configuration of the flow in a differentially heated ver-
tical channel is selected. Flows in tall or infinite vertical cav-
ities are known for being extremely challenging for modelling
[6; 7], since the flow is entirely driven by buoyancy, which in-
duces subtle couplings between the dynamic and thermal turbu-
lent fields. The recent DNS database of Kiš and Herwig [14] is
particularly relevant due to the realistic values of the Rayleigh
number. The configuration is described in Fig. 2. The highest
Rayleigh number available, Ra = βg∆T h3/(νκ), based on the
width h of the channel, is 1.7 × 107. The flow is periodic in
the vertical x-direction. For the computation, physical quanti-
ties are made non-dimensional using the width h of the channel,
the temperature difference ∆T , the reference density ρ and the
reference velocity Uref =

√
βg∆T h, such that the molecular vis-

cosity is Ra−1/2 and the molecular diffusivity Pr−1Ra−1/2, with
Pr = 0.71.

Results are presented in Figs. 3 to 4. Due to the antisymme-
try of the configuration, only the flow on the hot side is plotted.
In order to better evaluate the predictions of the models against
DNS data, results are plotted in wall units, i.e., units based on
the friction velocity uτ, the friction temperature Tτ and the vis-
cosity ν. The values of uτ and Tτ are compared with the DNS in
Tab. 1. Turbulence models in general, including Reynolds-stress
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Figure 4. Turbulent shear stress. Profiles are shifted for clarity.

models [7], have a tendency to overestimate the mean velocity
peak. Fig. 3 shows that this is the case with the original versions
of the two models, in wall-units, and this is reinforced by the
fact that the friction velocity is overstimated, in particular with
the k-ω-SST model (Tab. 1). This weakness is directly related
to a misprediction of the turbulent shear stress uv by the Boussi-
nesq relation (4). Indeed, integrating the x-momentum balance
between the wall and an arbitrary point y yields

0 =

y∫

0

ν
∂2U
∂y2 dY −

y∫

0

∂uv
∂y

dY +

y∫

0

βg(T −Tre f )dY. (28)

For a point y located between the mean-velocity peak and the
centre of the channel, the driving force, the contribution of buoy-
ancy, must be balanced by the viscous friction at the wall and
the sum of the viscous friction and the turbulent shear stress in y,
which are directed downwards, such that

y∫

0

βg(T −Tre f )dY = ρuτ
2 −ν

∂U
∂y

+uv. (29)

It is observed in Fig. 4 that the turbulent stress is severely under-
estimated in the region between the velocity peak and the centre,
and this must be compensated by the viscous stresses, such that
the negative slope of the velocity profile and the friction velocity
are both overestimated, as seen in Fig. 3 and Tab. 1. This lim-
itation of the Boussinesq relation is corrected by the buoyancy
extension in Eq. (19), which yields

uv =−νt
∂U
∂y

+C∗
θτβgθv (30)
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As seen in Fig. 6, θv is positive, such that the buoyancy exten-
sion increases the turbulent shear stress, as can be seen in Fig. 4.
Consequently, the balance (29) is improved, such that the viscous
friction does not need to be overestimated to compensate for the
lack of turbulent stress, and eventually the velocity gradient is
corrected. This mechanism is beneficial for both turbulence mod-
els. It is worth pointing out that, despite the fact that the buoy-
ancy extension is the same for the two models, with the same
coefficient C∗

θ , the correction for the BL-v2/k model is moder-
ate compared to the k-ω-SST model, in accordance with the fact
that the prediction by the original model is less discrepant. This
results confirms that the buoyancy extension is not an ad hoc cor-
rection, but rather a physically sound mechanism, which favours
the correct balance of the terms in the momentum equations.
While the mean velocity profile is significantly improved with
both models, the friction velocity remains overestimated, as seen
in Tab. 1. In particular, with the k-ω-SST model, although the
error is reduced by a factor of 1.5, it remains as large as 4%.

Now, integrating the temperature equation (3) between the
wall and an arbitrary point y yields

0 =

y∫

0

α
∂2T
∂y2 dY −

y∫

0

∂θv
∂y

dY , (31)

such that the heat flux from the wall to the fluid must be balanced
by the sum of the viscous and the turbulent heat fluxes. Since in
wall units, the heat flux at the wall is unity, the balance reduces
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Figure 7. Mixed convection case. Mean velocity. Profiles are
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to

1 =− 1
Pr

∂T+

∂y+
+θv

+
, (32)

such that, whatever the model, θv
+

goes to one far from the wall,
where molecular diffusivity is negligible, as seen in Fig. 6. In-
tegrating Eq. (32) between the wall and an arbitray value of y+

leads to

T+

Pr
= y+−

y+∫

0

θv
+

dY+, (33)

which shows that the departure from the linear, laminar profile
of mean temperature is due to the integral of the turbulent heat
flux. The misprediction of the temperature profiles seen in Fig. 5,
which is particularly large for the k-ω-SST model, is uniquely re-
lated to the fact that θv

+
is underestimated in the near-wall region

(Fig. 6). However, with the BL-v2/k model, it can be observed
that the much better prediction of the temperature profile is due
to a compensation of errors in the integral of θv

+
. Substituting

Eq. (30) into Eq. (22) shows that the contribution of the buoyancy
extension is

θvBuo =
1
3

C∗
θτβgθu, (34)

which is positive. Therefore, via its contribution to θv, the buoy-
ancy extension improves the temperature profile, although the
correction is not sufficient for the k-ω-SST model. As seen in
Tab. 1, the friction temperature at the wall, which is related to
the Nusselt number, is significantly underestimated by the orig-
inal models, in particular the k-ω-SST model. The introduction
of the buoyancy extension helps reducing the error, in an insuf-
ficient way for the k-ω-SST model. For the buoyancy-extended
BL-v2/k model, the error is acceptable, which is rather satisfac-
tory owing to the difficulty of predicting such a flow and the sim-
plicity of the eddy-viscosity formulation.

Finally, although this test case is much less difficult to repro-
duce, the mixed convection case of Kasagi and Nishimura [17] is
computed in order to confirm that the buoyancy extended mod-
els perform in a satisfactory way for this regime. The configura-
tion, depicted in Fig. 2, is identical to the natural convection case,



except for the presence of an imposed pressure gradient, which
generates a flow directed upwards. The flow is characterized by
three non-dimensional numbers, Reτ = 150, Gr = 9.6×105 and
Pr = 0.71. Fig. 7 confirms the conclusions drawn for the natu-
ral convection case: mean velocity predictions are improved by
the introduction of the buoyancy extension, and the correction is
stronger for the k-ω-SST model which is exhibiting less accurate
results. However, in this case, the contribution of buoyancy to
the momentum balance is small, such that the influence of the
buoyancy extension remains modest.

CONCLUSION
In the present work, eddy-viscosity turbulence models are sen-

sitized to the effects of buoyancy, with the short-term objective
of an application to industrial flows encountered in the automo-
tive industry, in particular in the engine compartment. In order
to avoid ad hoc modifications, the models are modified by ex-
tending the constitutive relations using the buoyant term derived
from a Reynolds-stress model under the weak-equilibrium as-
sumption. The approach thus introduces a physically relevant
term without sacrificing the linearity of the models. The consti-
tutive relation for the Reynolds stress accounts for the influence
of buoyancy on the turbulent anisotropy, in association with the
GGDH, which in turn involves the influence of the buoyancy ex-
tension on the turbulent heat flux. Using the proper constraint
for the coefficient for the GGDH model, it is shown that the ex-
tension does not modify the original models in the case of forced
convection flows.

In order to evaluate the validity of the assumptions and the
improvement of the predictions, the buoyancy extension is ap-
plied to two very different eddy-viscosity models, the k-ω-SST
and the BL-v2/k. The challenging test case of the differentially
heated vertical channel flow of Kiš and Herwig [14], which is
purely driven by buoyancy, is selected. Computation performed
with the open-source solver Code Saturne show that the predic-
tions are significantly improved by the buoyancy extension. It
is worth noting that the amplitude of the correction depends of
the initial error, which supports the statement that the buoyancy
extension is not only an ad hoc correction, but is a physically rel-
evant term. Indeed, it can be shown that the discrepancy of the
results obtained with the original models with respect to DNS is
due to the absence of the contribution of buoyancy in the turbu-
lent shear stress and normal heat flux in the momentum balance
and the energy balance, respectively, which is corrected by the
buoyancy extension. These encouraging results call for a broader
validation of this approach in cavity flows representative of nat-
ural convection configurations encountered in the automotive in-
dustry.

ACKNOWLEDGMENT
This work was jointly conducted by PSA Group and the
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