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Nous sommes comme des nains juchés sur les épaules de géants.
Bernard de Chartres, d’après Jean de Salisbury, Metalogicon (Livre III).

...
...

...
...

...

Figure 1: Les ancêtres mathématiques1de l’auteur sur 16 générations.

1Chaque parent dans l’arbre a été directeur de thèse de son enfant (source : www.mathgenealogy.org).





Remerciements

Certain·e·s seront remercié·e·s plusieurs fois, c’est parce qu’ils·elles le méritent. Certain·e·s ont
le même nom, c’est comme ça. Certain·e·s ne seront même pas mentionné·e·s, c’est parce que
ma gratitude est tellement immense qu’elle ne peut pas tenir sur ces quelques pages2. Lorsqu’ils
sont appelés par leurs prénoms, les gens sont listés par ordre alphabétique, n’y voyez qu’une
convention et non une préférence hiérarchisée dénuée de sens.

Commençons par les personnes impliquées au plus proche du processus de la thèse et de sa
soutenance. À Érick Herbin, pour m’avoir pris sous votre aile depuis ma plus tendre enfance
mathématique, j’ai beaucoup appris de vous et grandement apprécié notre dynamique durant
toutes ces années. À Pauline Lafitte, pour avoir été disponible et à l’écoute tout du long, ton
encre a coulé bien plus d’une fois pour moi, que ce soit pour d’innombrables lettres de recom-
mandation ou pour le rapport final de mon jury où tu m’as fait l’honneur d’en être la Présidente.
À Robert J. Adler, pour m’avoir fait l’honneur de rapporter ma thèse, vos écrits et votre humour
m’accompagneront encore longtemps. À Antoine Ayache, pour m’avoir fait l’honneur de rap-
porter ma thèse, pour nos échanges et ta grande bienveillance. À Nicolas Curien, pour m’avoir
fait l’honneur d’être examinateur, j’ai beaucoup appris du temps où j’étais parmi vos élèves. À
Yimin Xiao, pour m’avoir fait l’honneur d’être examinateur, votre intérêt envers mes travaux
m’a beaucoup touché. À Ely Merzbach, pour m’avoir fait l’honneur d’être invité, votre théorie
a été mon plus fidèle compagnon tout au long de cette thèse. À Pierre, pour avoir streamé
ma soutenance sur Twitch avec brio. À Christophe, Emma, Érick et Mahmoud, pour avoir relu
sans rechigner un manuscrit mal dégrossi (ou au moins une portion), vos retours m’ont été fort
précieux.

Grande a été ma chance d’être doctorant à l’EDMH et d’avoir un bureau au sein du labora-
toire MICS où le cadre était idéal pour ma thèse, un idéal qui ne l’aurait pas autant été sans la
contribution des personnes à venir. À Paul-Henry, pour ton accueil au sein du labo, du temps
du parcours recherche, du stage de master et enfin pour la thèse. À Sylvie, notre fée aux pulls
anachroniques et à la bécane jaune (dans ses rêves), qui me voyait bien en petit Schwarzie.
À Fabienne, pour ta gentillesse et ta disponibilité. À Suzanne Thuron, pour votre serviabilité,
votre efficacité et votre bonne humeur. À Farid, avec qui j’ai fini nombre de mes soirées au labo,
pipelette intarissable et grand bonhomme jovial. À un autre agent d’entretien dont je n’ai jamais
su le nom, j’espère que votre projet de vie se réalisera. Aux innombrables autres petites mains
qui facilitent notre quotidien et avec qui mes échanges ont été plus brefs, mais je l’espère non
moins agréablement reçus.

2et éventuellement aussi parce que je suis étourdi... mais non moins reconnaissant !

iii



iv

Plus largement, un bon nombre de personnes ont plus ou moins directement contribué à cette
thèse, les voici. À Adrien, Alexandre G., Alexandre R., Antonin, Arthur, Aymeric, Christophe,
Emma, Emmanuel, Emmanuelle, Érick, Fragkiskos, Gurvan, Houda, Léo, Léopold, Ludovic,
Mahmoud, Pauline, Quentin, Romain, Sarah, Stéphane et Yoann pour au moins une3 discus-
sion mathématique, impromptue ou non, qui m’aura marqué. À Mathilde, pour la Figure 1 de
ce manuscrit. À Rémi et Guillaume, dont le bureau est bizarrement situé sur une étonnante
singularité où le temps se déforme au fil des discussions rôlistes. À Gautier, Rémi, Stefania et
Sylvain pour nos échanges musicaux. À la Franc-Pâtisserie, Mathilde, Myriam — sans oublier
ta vorace moitié Manu m’ayant dépêtré de la jungle qu’est LATEX— et Jun, pour nos confections
culinaires en tous genres. À Andreas, Fan, Laura, Ruiwen, Sophie et Xueyan, pour nos échanges
gastronomiques extra-confrérie. À Gautier et Yoann pour les roustes au babyfoot4. Au chocolat
aux noisettes de Gautier, dont la rareté ne faisait qu’accroître le plaisir de mettre la main (et la
dent) dessus. Aux membres du groupe Magis pour avoir attisé ma flamme. À mes camarades
du laboratoire que je n’ai pas encore remerciés, pour l’excellente et saine ambiance qui y règne :
Agathe, Blandine, Chloé, Dimitri, Erwan, Elvrire, Enzo, Julie, Léo, Maria P., Maria V., Mihir, Oth-
mane, Théo et Wallid. À Damien et Irène, dont la présence rayonnante a éclairé nombre de
mes journées ces derniers temps. À mes élèves, vous êtes la source de mes exaspérations, mais
aussi de mes joies les plus grandes. À Vincent, pour ton amitié depuis la nuit des temps, ou au
moins du nôtre. À mes amis plus généralement, qui m’ont épaulé par leur présence et envers qui
j’ai une dette de gratitude : Ambroise, la smala Bonnet, Edwige, Gaétan, Guillemette, Jérôme,
Louis-Marie, Mallory, Marie, Matthieu, Nathalie, Romain, Shuhui, Yuguang et 5.

Comme tout chercheur en herbe, j’eus l’occasion de participer à des rallyes entre chercheurs.
Je chéris ces épisodes comme des points particulièrement heureux et productifs de ma thèse. Je
tiens donc à remercier tout particulièrement les organisateurs et les participants des Journées
de Probabilités et de l’école d’été de probabilités de Saint-Flour de l’année 2019.

Une thèse, c’est également une "traversée du désert" comme le dit si justement Érick6. Cette
traversée est heureusement ponctuée de quelques oasis, à la manière du célèbre épisode du
marche-pied [81] que je veux brièvement rapporter ici.

Cette sieste dans le canapé à Bordeaux après une journée de calculs infructueux et avant
un dîner entre amis qui n’allait pas me permettre de rallonger mes efforts outre mesure, réveillé
d’une semi-torpeur à dix minutes de leur arrivée par une soudaine inspiration, je griffonne fréné-
tiquement les détails du calcul qui s’avéra le plus délicat de ma thèse juste avant que mes convives
ne sonnent à la porte.

Au Pérou en compagnie de Renaud, ce mail anodin sur l’abstract d’un prochain séminaire à
l’autre bout du monde, qui m’expliquait que j’avais déjà effleuré la solution à mon problème il
y a quelques mois déjà alors que je l’avais abandonné, il fallait juste que je reprenne mes notes,
les mette au clair, relise une paire de références et la solution allait m’apparaître, ce que je fis
dans les mois qui suivirent.

Cette journée de co-travail en compagnie de Zénon où les dernières pièces de la dernière
preuve de ce manuscrit7 se sont agencées avant le grand saut dans la rédaction.

3et pour certain·e·s, beaucoup plus !
4Bien qu’on sache très bien qui est le meilleur de vous deux...
5Ceux·elles non cité·e·s ailleurs, si vous n’apparaissez pas dans cette liste et que vous sentez devoir en faire partie,

c’est que vous avez certainement raison : imprimez une version de ce manuscrit et ajoutez votre nom après le "et "
laissé à cet effet.

6D’autres personnes ont déjà employé cette terminologie il y a une paire de millénaires, mais les lois sur le plagia
étaient encore un peu floues à l’époque.

7techniquement située au beau milieu de celui-ci
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Mot de bienvenue

Cher·ère lecteur·rice, voici quelques mots pour adoucir votre entrée dans ce manuscrit. Plonger
dans les pensées mathématiques d’autrui n’est que rarement chose aisée, d’où mon envie d’essayer
d’alléger votre peine, ne serait-ce qu’un peu.

Vous trouverez page xix l’ensemble des notations et conventions qui seront utilisées. Même
si j’essaierai autant que possible de rappeler ce qu’il est bon d’avoir en tête à un moment donné,
les hyperliens vers les notions pertinentes pourront toujours y être retrouvés.

Par ailleurs, comme il n’y a pas de conclusion définitive à ce travail, il n’y a pas de conclusion
générale à ce manuscrit non plus. Vous trouverez cependant des perspectives de recherche (en
français et en anglais) à la fin de chaque chapitre.

Passons maintenant à une introduction portant sur la structure du manuscrit ainsi que ses
principaux résultats.

Comme le titre de cette thèse le suggère, l’objet central de ce manuscrit est un processus
stochastique X=

�
Xt : t ∈ T

	
indexé par un ensemble général T . L’objectif du Chapitre 1 est de

partir d’hypothèses minimales sur T et de développer un cadre général riche en exemples et en
applications. La structure dont est équipé T est un triplet (T ,´,D) où´ est une relation d’ordre
partiel mimant un écoulement de temps et D un sous-ensemble dénombrable dense8. Un temps
(long) est passé en Section 1.2.2 pour donner des exemples et montrer comment en construire
de plus variés à partir d’une poignée d’exemples simples. Les deux qu’on pourra avoir en tête à
tout moment sont les suivants :

×t

×
t

. . .

Rp
+ (certains) arbres continus

Figure 2: Deux exemples fondamentaux d’espaces T indexant nos processus d’intérêt.

8Chose fort appréciée des probabilistes, car elle leur permet de transformer certaines intersections indénombrables
d’événements en intersections dénombrables, bien plus digestes.
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� Le cas multiparamétrique T = Rp
+ (Exemple 1.2.10) où ´ est la relation d’ordre partielle

comparant coordonnée à coordonnée, i.e.

∀s = (s1, ..., sp), t = (t1, ..., tp) ∈ Rp
+, s ´ t ⇐⇒ ∀i ∈ ¹1, pº, si ¶ t i . (0.0.1)

Le sous-ensemble dénombrable dense D peut alors être choisi comme étant l’ensemble Qp
+

ou plus malin encore9, l’ensemble
�

k2−n : k, n ∈ N
	p

des vecteurs de Rp
+ à coordonnées

dyadiques. Il s’agit probablement de la première généralisation au-delà de R+ qui a intéressé
les probabilistes. Celle-ci a fait l’objet de nombreuses investigations, qui ont abouti sur une
solide théorie qui leur est propre [56]. Il sera intéressant de voir que si certaines de leurs
méthodes peuvent s’adapter, d’autres échouent et l’intuition donnée par notre cadre permet
de découvrir des résultats multiparamétriques jusque-là encore inconnus (Exemple 3.5.16).

� Le cas où T est un arbre continu (ou R-arbre, cf. Exemple 1.2.25) obtenu comme recollement
d’une famille au plus dénombrable de segments, qui feront office d’arêtes, et enraciné en un
point ρ ∈ T . La relation d’ordre ´ est alors définie par

∀s, t ∈ T , s ´ t ⇐⇒ ¹ρ, sº ⊆ ¹ρ, tº
où ¹ρ, sº (resp. ¹ρ, tº) est l’unique segment géodésique entre la racine ρ et s (resp. t). Pour
le sous-ensemble dénombrable dense D, il suffit de choisir de prendre l’image par l’application
de recollement d’un sous-ensemble dense sur chaque arête (c’est là où intervient la nécessité
d’avoir une quantité au plus dénombrable d’arêtes).

Même s’il s’agit de nos deux exemples phares, le texte en est émaillé d’autres pour varier les
plaisirs et exhiber une pluralité de comportements.

Par ailleurs, le Théorème 1.2.5 montre qu’étudier X=
�
Xt : t ∈ T

	
revient à étudier un autre

processus X =
�

XA : A ∈ A 	 indexé par une classe A de sous-ensembles spécifiques de T . Ces
ensembles sont définis très naturellement à partir de la relation d’ordre ´ :

A =
�
A(t) : t ∈ T

	∪ �∅	 où A(t) = {s ∈ T : s ´ t}. (0.0.2)

×t

×
t

. . .

Figure 3: Illustrations d’un A(t) dans les deux cas de la Figure 2.

Cela nous permet de faire le parallèle avec la théorie des processus indexés par des ensembles
développée par Ivanoff, Merzbach et leurs co-auteurs [47]. Nous leur empruntons de nombreux
concepts, notamment sur deux sujets :

9Plus malin pour des raisons qui apparaitront plus clairement par la suite, mais disons pour l’instant que les
dyadiques sont bien mieux "organisés" que les rationnels.
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� Dans la Section 1.2.3, la définition d’un certain nombre de collections d’ensembles D con-
tenant A et permettant de considérer plusieurs notions d’accroissements pour le processus
X . En particulier, nous mettons en évidence (Proposition 1.2.44 et 1.6.4) la nécessité de la
condition dite SHAPE (Définition 1.2.1) pour l’existence du processus d’accroissement ∆X de
X 10. Les diverses extensions (et leur ordre d’introduction) deA et X sont résumées dans les
Figures 4 et 5 : vous êtes invité·e à vous y reporter en cas de doute durant votre lecture.

T A C /C (u) B

E L(X )

t 7→A(t)

(semi-)anneau
d’ensembles

engendréA7→t(A)

vect(1A:A∈A )

tribu
engendrée

complétion

Figure 4: Principales collections (de points, d’ensembles ou de fonctions) indexant les processus
d’intérêt dans cette thèse.

X : T X :A ∆X :C (u) ∆X :B

X : E X : L(X )

XA=Xt(A)

∆XA=XA
& additivité

Xt=XA(t)

X(1A)=XA
& linéarité

continuité

continuité

Figure 5: Le processus X (ou X ), ses extensions et les collections sur lesquelles elles sont définies.

� Dans la Section 1.3.2, la définition de la notion de flots qui sont des fonctions croissantes11 φ :
[0,1]→A (ou toute autre collection D contenantA ) L’intérêt pour l’intuition est immédiat
car un processus X peut alors se projeter le long de φ pour donner le processus Xφ =

�
Xφ(t) :

t ∈ [0,1]
	
. Ainsi, on peut ramener dans certains cas l’étude de X à celle de ses projections

(Théorème 1.3.13), ce qui se révèlera crucial dans le Chapitre 2 pour établir des formules de
représentation lorsque X est à accroissements échangeables (Théorèmes 2.5.30 et 2.5.31).

Une comparaison détaillée de la théorie développée ici avec celle d’Ivanoff et Merzbach est
menée en Section 1.6. On y montre notamment que notre cadre est plus général, sans toutefois
minimiser les avantages offerts par la première théorie, notamment en ce qui concerne l’étude
des martingales indexées par des ensembles où notre cadre est moins adapté, même si quelques
résultats subsistent (cf. Section 2.3.3).

Outre les hypothèses décrites précédemment, nous équipons T dans la suite du Chapitre 1
de trois nouvelles structures, plus modulaires dans le sens où elles se seront pas nécessaires à

10i.e. l’existence d’une extension additive à l’anneau d’ensembles engendré parA
11A étant une collection d’ensembles, elle est munie de la relation d’ordre naturelle qu’est ⊆.
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l’ensemble des résultats du manuscrit. Nous vous invitons à les voir comme des "patchs" que
vous pourriez vouloir ajouter à T au gré de vos besoins.

� Le premier "patch" est la présence d’une mesure m sur B = σ(A ) (Section 1.3) avec une
certaine propriété de point milieu qui donne une qualité continue à T jusqu’alors non requise
par notre théorie, contrairement à celle d’Ivanoff et Merzbach. Elle nous permet de construire
en Section 1.3.2 des flots particuliers, dits géodésiques : ce sont des flots φ continus à droite
tels que m◦φ est une fonction affine. Comme mentionné précédemment, ils seront utiles pour
faire le lien avec la théorie unidimensionnelle. Une autre utilisation de la mesure m est de
donner en Section 2.5 une notion de "taille" aux accroissements, et donc permet de considérer
des notions de stationnarité des accroissements dans ce cadre très général.

� Le second est une distance dT sur T (ou dA surA comme rappelle la Figure 6) introduite en
Section 1.4. Celle-ci permet enfin de rendre justice au premier mot dans la titre de la thèse :
régularité. En effet, étudier la régularité fine des trajectoires du processus X=

�
Xt : t ∈ T

	
—

objectif principal du Chapitre 3 — nécessite au bas mot d’avoir une distance sur T .

T A

dT dA

t 7→A(t)

A7→t(A)

dA (A,A′)=dT (t(A),t(A′))

dT (s,t)=dA (A(s),A(t))

Figure 6: Correspondance entre les espaces métriques (T , dT ) and (A , dA ).

Une nouveauté notable par rapport au cadre d’Ivanoff et Merzbach est la notion de vicinity
V(A,ρ) introduite à la Section 1.4.3 et donnée pour A∈A et ρ > 0 par

V(A,ρ) =
⋃

A′∈A :
dA (A,A′)<ρ

A4A′.

Bien que sa définition puisse paraître obscure à première vue, elle constitue la bonne région
à regarder lorsqu’on étudie des quantités de la forme XA − XA′ lorsque A′ est proche de A.
Cette notion sera mise à profit pour démontrer des inégalités maximales pour des martingales
(Section 2.3.3), une loi du 0-1 (Section 2.3.4) et donner des bornes plus pertinentes sur la
régularité hölderienne ponctuelle des processus étudiés dans le Chapitre 3 (Section 3.5).

� Le troisième est une notion pour T (ou A ) d’être de dimension finie qui est développée en
Section 1.5. Reprenant l’ensemble dénombrable D permettant d’approcher tout élément de
T , il est possible de construire une suite (An)n∈N de discrétisations finies deA . Pour chaque
n ∈ N, on est capable de plonger An dans Rpn

+ en respectant la structure d’ordre12 où pn ∈ N

12L’ordre surAn est donné par l’inclusion ⊆ tandis que l’ordre sur Rpn
+ est l’ordre partiel défini en (0.0.1).
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est la dimension d’ordre de An. De plus, An induit une partition de T dont les éléments sont
de la forme A \⋃A′∈An:A′⊂A A′ pour tout A ∈ An mais dont l’écriture peut être simplifiée en
enlevant les doublons en A \⋃q

i=1 Ai où q = q(A) est choisi le plus petit possible. En notant
qn = maxA∈An

q(A), on obtient une autre manière de décrire la dimension de An
13. Le nom-

bre supn∈N max{pn, qn} donne à son tour une notion de dimension pour A qui correspond
intuitivement au nombre minimal de paramètres requis pour décrireA ainsi que son approx-
imation (An)n∈N comme schématisé dans la Figure 7.

A An dimA
discrétisation nombre de

paramètres

Figure 7: La dimension deA exprime à quel pointA est bien approchée par ses discrétisations.

Nous montrons que cette définition implique queA est nécessairement une classe de Vapnik-
Červonenkis, permettant ainsi un nombre d’arguments à base d’entropie métrique pour obtenir
la continuité des trajectoires de certains processus. Ceci dit, notre définition ne s’arrête pas
là car elle nous permet non seulement d’étudier plus finement dans le Chapitre 3 l’aspect
"càdlàg"14 de processus présentant des sauts mais aussi leur régularité hölderienne ponctuelle.

Le Chapitre 2 se concentre sur l’étude des propriétés de ∆X en tant que "prémesure stochas-
tique". Plus précisément, on commence par présenter en Section 2.2 les travaux de Kwapień, Ra-
jput, Rosiński, Urbanik, Woyczyński et leurs co-auteurs afin de donner des conditions nécessaires
et suffisantes pour que ∆X puisse s’étendre en une mesure stochastique ∆X sur les boréliens.
Cela permet de considérer l’intégraleX de fonctions déterministes f : T → R contre X (cf. partie
droite de la Figure 5), intégrale dont l’effet régularisant est étudié dans le Chapitre 3.

Certaines propriétés distributionnelles de ∆X sont ensuite étudiées. Nous commençons par
le cas des accroissements indépendants (Section 2.3), qui se traduit peu ou prou15 par la pro-
priété suivante :

∀C , C ′ ∈ C , C ∩ C ′ = ∅ =⇒ ∆XC ⊥⊥∆XC ′ .

Ce cas est bien compris largement grâce aux travaux de Rajput et Rosiński [83] qui montrent
que dans ce cas, X doit nécessairement être un processus infiniment divisible possédant une
représentation de Lévy-Khintchine. Notre contribution dans les Sections 2.3.1 et 2.3.2 est large-
ment de l’ordre de l’exposition, à l’exception du calcul d’un certain nombre d’exposants de Lévy-
Khintchine que nous n’avons pas trouvé ailleurs dans la littérature. On en profite ensuite pour
démontrer quelques inégalités maximales (Section 2.3.3) et une loi du 0-1 (Section 2.3.4) qui
se révèleront utiles pour une étude de la régularité hölderienne menée dans le Chapitre 3.

En guise d’interlude en Section 2.4, on présente les processus de Lévy indexés par des en-
sembles possédant deux propriétés remarquables : leurs accroissements sont indépendants dans
le sens mentionné ci-dessus en plus d’être stationnaires au sens suivant16 :

∀C , C ′ ∈ C , m(C) = m(C ′) =⇒ ∆XC
loi
= ∆XC ′ .

13Les Exemples 1.5.6 et 1.5.7 montreront qu’aucune de ces deux notions n’implique l’autre.
14Continues à "droite" avec limites à "gauche", même si "droite" et "gauche" doivent être interprétées au travers du

prisme de la relation d’ordre ´ dont T est muni.
15Il faudrait techniquement prendre une famille finie quelconque d’éléments de C deux à deux disjoints.
16À nouveau, il faudrait prendre une famille finie quelconque de C entre autres précautions.
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Ces processus ont été introduits et étudiés par Herbin et Merzbach [41] où il est montré qu’une
représentation de Lévy-Itô a lieu. Nous précisons ici ce résultat (Corollaire 2.4.9) et fournissons
une preuve différente qui permet de préparer d’autres résultats de représentation par la suite
(Théorèmes 2.5.30 et 3.3.8 entre autres).

Cette notion de stationnarité basée sur une mesure m mérite cependant que la Section 2.5
lui soit entièrement dédiée. Une vision globale sur le sujet est développée en Section 2.5.1 et
donne naissance à plusieurs notions tour à tour étudiées :

� être à A -accroissements stationnaires (Section 2.5.2) qui est certainement la bonne notion
pour appréhender la stationnarité du mouvement brownien fractionnaire indexé par des en-
sembles (sifBm),

� être à accroissements échangeables (Section 2.5.3) et être échangeable au sens fonctionnel (Sec-
tion 2.5.4) qui mènent pour leur part à des théorèmes de représentation (Théorèmes 2.5.30
et 2.5.31) qui généralisent ceux de Bühlmann et Kallenberg [55, Theorems 1.19 and 3.15]
pour les processus indexés par R+. Nous montrons qu’un processus X =

�
XA : A ∈ A 	 est à

accroissements échangeables si et seulement si il peut s’écrire sous la forme suivante :

∀A∈A , XA = bm(A) + σ
︷︷
W A + eQA

où (b,σ, J) : Ω→ R×R+ ×M(R∗) est un triplet aléatoire, J une mesure de Lévy ponctuelle

aléatoire,
︷︷
W un pont brownien indépendant indexé par des ensembles et eQ un processus

ponctuel compensé d’intensité J17 indépendant de ce qui précède conditionnellement à J .

Le Chapitre 3 est quant à lui consacré à l’étude des trajectoires des processus généralisés.
Nous développons tout d’abord un espace de fonctions "continues" CΦ(A ) (Section 3.2) et "càdlàg"
DΦ(A ) (Section 3.3) adaptés à notre cadre. En particulier, l’hypothèse de dimension finie pour
A donne une condition suffisante pour l’appartenance d’un grand nombre de processus à ces es-
paces (Proposition 3.2.2 et Théorème 3.3.8). Sous ces hypothèses et pour un processus de Lévy
X indexé par des ensembles et une fonction f : T → R localement X -intégrable, la primitive Y
de f par rapport à X donnée par

∀A∈A , YA = X( f 1A) =

∫

A

f dX

est presque sûrement à trajectoires dans DΦ(A ).
Dans la suite, nous investiguons plus en détails la régularité de Y. À cet effet, la Section 3.4

expose et étend le cadre posé par Herbin et Richard [42] pour l’étude de la régularité hölderienne
ponctuelle des processus généralisés. Pour une fonction h : R+→ R, la définition de son exposant
ponctuel en t ∈ R+ ne fait aucun doute18 : il s’agit du meilleur α ∈ R+ tel que pour tout s ∈ R+
suffisamment proche de t, on ait |h(s)−h(t)|¶ |s− t|α. Cependant, pour notre cadre général, les
choses ne sont pas aussi simples lorsqu’on veut parler de la régularité ponctuelle d’une fonction
h : A → R en A = A(t) ∈ A : de quels accroissements veut-on parler ? À cette question nous
proposons deux réponses :

17Il s’agit d’un processus similaire à la partie poissonienne d’un processus de Lévy dans sa représentation de Lévy-Itô.
En particulier, c’est une limite de processus ponctuels compensés (cf. Exemple 2.5.23).

18Techniquement, nous commettons un impair de taille ici puisque nous oublions d’enlever à h une partie polynomiale
représentant son développement de Taylor. Cependant, nous avons été bien en peine de trouver un ersatz de polynôme
satisfaisant pour notre cadre.
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� Les différences h(A)− h(A′) où A′ est proche de A, qui mènent à la notion d’exposant d’Hölder
ponctuelαh(A) donnée en (3.4.1). Probablement la définition la plus instinctive, mais peut-être
pas la plus naturelle. En effet, regarder ce genre d’accroissements fait intervenir des points
t ∈ T "loins" de A : ce sont précisément ceux appartenant à la vicinity V(A,ρ) introduite
précédemment et potentiellement beaucoup plus grosse que la boule BA (A,ρ)19. Dans un cas
simple, le Théorème 3.5.2 implique presque sûrement :

αY (A) = αX (A) + α f ,V(t)1 f (t)6=0 (0.0.3)

où α f ,V(t) est une forme d’exposant d’Hölder ponctuel pour f , mais où la distance dT est
remplacée par une autre grandeur d, appelée divergence, reliée à V(A,ρ) et donnée dans la
Définition 1.4.6.

� Les accroissements ∆h(C) où C ∈ C est inclus dans une petite boule centrée en A20, qui mè-
nent à la notion (nouvelle) d’exposant d’Hölder dT -localisé αh,dT (A) donnée en (3.4.7). Comme
mentionné précédemment, cet exposant a l’avantage de ne faire intervenir que les points t ∈ T
"proches" de A. Dans un cas simple, le Théorème 3.5.12 implique presque sûrement :

αY,dT (A) = αX ,dT (A) + α f (t)1 f (t)6=0 (0.0.4)

où α f (t) est l’exposant d’Hölder ponctuel "usuel" de f en t.

Quoiqu’il en soit, (0.0.4) et (0.0.4) confirment bien qu’intégrer, même contre une mesure stochas-
tique, est une opération régularisante en un certain sens. Mentionnons également que les
Théorèmes 3.5.2 et 3.5.12 ne se réduisent pas à ces seules estimées et laissent entrevoir un
mélange des régularités de f et X plus subtil qu’il n’y paraît dans des cas plus complexes.

Si ces quelques lignes ont plus attisé qu’assouvi votre curiosité, je vous souhaite une belle
lecture !

19Léger abus ici, on devrait plutôt parler d’une boule dans T (et non A ), mais ce n’est pas un soucis grâce à la
correspondance donnée par (0.0.2).

20Second abus identique au précédent.





A word of welcome

Dear reader, here are a few words to ‘ease your way’ into reading this thesis. Delving into
another’s mathematics is not always an easy task, hence the need I felt to lighten your burden,
even in some small way.

You will find page xix all the notations and conventions that I will be using. Even though I
will try as much as possible to remind the reader of what they need to have in mind at a given
point, all the links to the relevant concepts may be found over there.

Also, there is no definite conclusion to this work, but the reader may find perspectives at the
end of each chapter.

The next few figures and their arrows in this introduction are meant to indicate the de-
pendency between several concepts that will be introduced later on. I proceed to give a brief
introduction about them.

T A C /C (u) B

E L(X )

t 7→A(t)

generated
ring (of sets)

A7→t(A)

span(1A:A∈A )

generated
σ-algebra

completion

Figure 8: Main collections (points, sets or functions) indexing the processes of interest in this
thesis.

As the title of the thesis suggests, my main object of interest has been stochastic processes
X =

�
Xt : t ∈ T

	
indexed by quite a general set T . A bit of time on examples is taken at the

beginning (Section 1.2.2) to demonstrate the variety of situations the theory encompasses. In
Chapter 1, we will see that, given only a couple of simple axioms on T , it becomes equivalent
to study processes X =

�
XA : A∈A 	 whereA is some specific collection of subsets of T called

indexing collection. This ties in nicely with the theory of set-indexed processes exposed by Ivanoff
and Merzbach [47] from which we borrow quite a few concepts. In particular, the classA may
be extended to bigger ones — and the process X along with it — to consider increments and
linear extensions. All the steps are illustrated in Figures 8 and 9 and treated in Chapter 1 but for
the rightmost part of Figure 9 — i.e. the extensions needing continuity — which is carried out

xv
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X : T X :A ∆X :C (u) ∆X :B

X : E X : L(X )

XA=Xt(A)

∆XA=XA
& additivity

Xt=XA(t)

X(1A)=XA
& linearity

continuity

continuity

Figure 9: The basic process X (or X ) and all its future extensions (and on which collections they
are defined).

at the beginning of Chapter 2. Even though the details of these figures may appear a tad cryptic
for now, we put them here for future reference. Whenever the reader has a doubt about which
concept comes before which, they may hopefully find an answer here.

Three additional structures are added to the basic axioms on T . They are described in Chap-
ter 1 and are put to use in the subsequent chapters.

� The first one is a measure m onB = σ(A )with a particular midpoint (or bissection) property
that enables us to construct the key notion of geodesic flow. The initial motivation is that for
a process X =

�
XA : A∈A 	 and a geodesic flow φ : [0, 1]→A (or on the bigger classA (u)

made of finite unions of elements of A ), the projection Xφ =
�

Xφ(t) : t ∈ [0, 1]
	

becomes
a one-dimensional process for which intuition may be keener. In particular, the measure m
is used in Chapter 2 to define several notions of stationarity and geodesic flows are used to
prove corresponding representation theorems (Theorems 2.5.30 and 2.5.31).

Φ(D)

D B m

geodesic
flow

generated
σ-algebra

measure

midpoint property

Figure 10: Geodesic D-flows Φ(D) (usually for D = A or A (u)), a crucial bridge with the
one-dimensional theory.

Flows are also used in the first half of Chapter 3 to define the space DΦ(A ) of ‘càdlàg gener-
alized maps’ in which quite a few processes of interest live.

� Finally tackling the word ‘Regularity’ of this thesis’s title, a metric dT is introduced on T , or
equivalently a metric dA on A (see Figure 11). This allows us to discuss more quantitative
regularity considerations like Hölder exponents in the second half of Chapter 3. Bounds on
the pointwise Hölder regularity are given for the process Y =

�
YA : A∈A 	 defined by

∀A∈A , YA = X( f 1A) =

∫

A

f dX
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T A

dT dA

t 7→A(t)

A7→t(A)

dA (A,A′)=dT (t(A),t(A′))

dT (s,t)=dA (A(s),A(t))

Figure 11: Correspondence between the metric spaces (T , dT ) and (A , dA ).

where f : T → R is a deterministic function and X is a generalized Lévy process (Theo-
rems 3.5.2 and 3.5.12). What is observed especially is how the regularities of f and X interact
and blend together to give that of Y.

� Among the ‘couple of simple axioms’ that T is endowed with lies the existence of a count-
able subset, dense for some specific topology, that enables us to approximate the elements of
T . Equivalently, the elements of A are approximated by a sequence of finite ‘discretizations’
(An)n∈N and the number of parameters required to describe such an approximation yields a
notion of dimension for A . Having a finite dimension has a lot of convenient consequences
that will be used throughout the thesis, even if infinite dimensional examples will be consid-
ered as well.

A An dimA
discretization number of

parameters

Figure 12: The dimension ofA translates how well it is approximated by its discretizationAn.

Last but not least, even though I will start employing the personal pronoun ‘we’, all the work
that is not explicitly stated as others’ is my own21 or well-known general knowledge. We wish
you a nice reading!

21As far as I know!





Notations and conventions

The notations being consistent throughout the thesis, we factorized them here. First are those
known to every mathematician, but for which we felt their corresponding notations are not
truly universal. Then are given the notations specific to our field together with the first time
they appear in the thesis (together with the definition).

N, N∗ Set of non-negative (resp. positive) integers
Z,Q,R,C Usual number sets

R+ Set of non-negative real numbers
(.)+, (.)− Respectively positive and negative part of a real number

# Cardinal of a set
⊆, ⊂ Respectively large and strict inclusions of sets
t Disjoint union of sets
' Bijection between two sets

�, ,→ Surjective (resp. injective) mapping
⊗ Product of σ-algebras or measures

ϕ∗µ Pushforward of a measure µ by a map ϕ
bµ(ξ) Fourier transform of a probability measure µ
B(Rk) Borel σ-algebra of Rk

C0(E; F) Set of all continuous maps from E to F
o, O Landau’s ‘small o’ and ‘big O’

max, ∨ (resp. min, ∧) Maximum (resp. minimum) with respect to a partial order
S (E) Group of all permutations of E

(Ω,F ,P) Complete probability space
X ∼ µ Random variable X has distribution µ

X
law
= Y Random variables X and Y have the same distribution

X
fdd
= Y Processes X and Y have the same finite-dimensional distributions
⊥⊥, ⊥⊥

Z
Independence between random variables (conditionally on Z)

N(m,σ2) Gaussian distribution of mean m and variance σ2

Poi(λ) Poisson distribution of intensity λ
Uni(0,1) Uniform distribution on [0, 1]

xix
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A ,A ∗,An, An(t) Definition 1.2.1
A (u),An(u), C (u), D(u), ... Definition 1.2.34

Aut(T ) Definition 2.5.24
αh(A) Equation (3.4.1)

αh,C (A) Equation (3.4.3)
αh,dT (A) Equation (3.4.7)

B Section 1.2.1
Bloc Section 2.2.2

Bm ,Bµ Section 1.3.1
B(X ) Remark 2.2.11

BA (A,ρ), BT (t,ρ) Section 1.4.1
BC (C ,ρ) Definition 1.4.4

β Equation (3.5.5)
C , C(k) Definition 1.2.35

C `, C `(A ′), C `(An), Cn(t) Definition 1.2.38
CΦ(A ) Equation (3.2.4)

Γ j Equation (3.4.21)
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dA Definition 1.4.1
dC Definition 1.4.4

dD(0,1) Equation (3.3.1)
dΦ Equation (3.3.4)
dH Equation (1.4.2)
dT Equation (1.4.1)
dm Equation (1.3.2)

[D, D′] Equation (1.3.1)
dimA Definition 1.5.3
∆h, ∆X Proposition 1.2.44

∆X Theorem 2.2.8
d Definition 1.4.6
E Definition 1.2.40

Eδj|L Equation (3.4.20)

Eδ|L Equation (3.4.22)

Φ(D), Φmax(D) Definition 1.3.5
gn(A) Definition 1.2.1
h, X Proposition 1.2.44
H(ε) Definition 1.5.11

Lγ(b,σ2,ν) Section 2.4.2
Lφ Definition 2.2.4

L(X ), Lloc(X ) Definition 2.2.9
Lp(m) Section 1.3.3
Lp(Ω) Section 2.2.1

L f ,α(A), L f ,α(A,ρ), Lûf ,α(A,ρ) Equation (3.5.6)

L′f ,α(A), L′f ,α(A,ρ), L
′û
f ,α(A,ρ) Equation (3.5.29)

m Definition 1.3.1
Mon(T ) Definition 2.5.24
M(T ) Section 1.3.1

ν j Equation (3.5.9)
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1.1 Introduction

We develop here a theory to study stochastic processes X=
�
Xt : t ∈ T

	
indexed by a very general

‘time’ space T . By ‘time’, we only mean that some elements may happen ‘before’ or ‘after’ others,

1



2 1. SET-INDEXED FRAMEWORK FOR GENERALIZED PROCESSES

i.e. there will be a partial order ´ as the basic structure on T . Keeping Birkhoff’s theorem [19,
Chapter III, Corollary 2] in the back of our mind, we know that it is often possible to represent
the elements of T as sets and the partial order ´ as the inclusion relation ⊆ . Hence we ‘put
the cart before the horse’ and first expose in Section 1.2 this theory of generalized processes as
the study of set-indexed processes X =

�
XA : A ∈ A 	 where A is a collection of sets instead of

points. The reason we do so is twofold:

1. A successful theory for set-indexed processes has already been developed by Ivanoff and
Merzbach in [46, 47, 71] together with many contributors. We turn to the previous ref-
erences for an exhaustive bibliography on the matter. Even though we will not entirely
follow their setting, we still borrow their notations in the hope that the already accustomed
reader will find it more convenient this way.

2. Even though we will make a case in Section 1.2.2 for the equivalence between studying
generalized and set-indexed processes (especially with Theorem 1.2.5), being indexed by
sets has advantages of its own. Some concepts are indeed more naturally formulated in
the set-indexed setting and we intend to take full advantage of it.

After exposing the relation between generalized and set-indexed processes in Section 1.2, we
progressively introduce additional structures on the indexing set: a measure m in Section 1.3,
a metric dA in Section 1.4 and some finite-dimensional assumptions in Section 1.5. This pre-
sentation of the theory allows as much ‘modularity’ as possible. We invite the reader to see each
new structure as some ‘package’ that they may download — and why not tweek at will — when
necessary. We conclude in Section 1.6 by comparing this theory with Ivanoff and Merzbach’s.

In the sequel, T will always denote a ‘generic’ non-empty set. As mentioned above, it will
progressively be endowed with additional structures. Specific choices for T will be considered
in examples.

1.2 Indexing collections as partially ordered sets

1.2.1 The classA of indices

The following definition is inspired from [42, Definition 2.1], which is itself a careful selection
of the required properties of [47, Definition 1.1.1]. We emphasize the fact that even though we
borrow notations from Ivanoff and Merzbach’s theory, they will not always designate the exact
same objects. The differences will be highlighted and discussed in Section 1.6.

DEFINITION 1.2.1 (Indexing collection). A classA ⊆P (T ) of subsets of T is an indexing collec-
tion on T if the following properties hold:

1. (Countably complete meet-semilattice). ∅ ∈ A and the collection A ∗ = A \ {∅} is closed
under countable intersections.

2. (Separability from above). There exists a non-decreasing sequence of finite subcollections
An =

�
An

1, ..., An
kn

	 ⊆ A (n ∈ N) closed under intersections such that given the functions
gn :A →An ∪ {T } defined by

∀A∈A , gn(A) =
⋂

A′∈An∪{T }:
A⊆A′

A′,

the elements ofA may be approximated as follows: for all A∈A , A=
⋂
n∈N

gn(A).



1.2. Indexing collections as partially ordered sets 3

3. (TIP assumption). The map

T −→ A ∗
t 7−→ A(t) =

⋂
n∈N An(t),

where An(t) =
⋂

A∈An∪{T }:
t∈A

A, is one-to-one.

Its inverse map is denoted by t : A ∗ → T and called the TIP bijection. Moreover, for all
A∈A ∗, the point t(A) ∈ T is called the tip of A.

4. (SHAPE condition). For any k ∈ N∗ and A, A1, ..., Ak ∈ A , if A⊆⋃1¶i¶k Ai , then A⊆ A j for
some j ∈ ¹1, kº.

In the sequel, unless otherwise specified, A will stand for such an indexing collection and
B = σ(A ) for the σ-algebra it generates. Even if Definition 1.2.1 might appear daunting at
first, we ask the reader to bear with us until Section 1.2.2 where another — simpler — point of
view is given alongside examples.

REMARK 1.2.2. What we mean by ‘indexing collection’ differs from parts of the literature. However,
each time we quote a result from the litterature, we will argue on why the conclusions still hold in
our case. In order to make a difference, we refer to the setting presented by Ivanoff and Merzbach
in [47] as being the classical setting.

For instance, a classical indexing collection [47, Definition 1.1.1] is usually supposed to be closed
under arbitrary intersections, but this property also holds in our framework. Indeed, consider a
subcollection A ′ ⊆ A . Then, separability from above tells that

⋂
A∈A ′ A=

⋂
n∈N

⋂
A∈A ′∩An

A so it
still belongs toA by stability under countable intersections. Likewise, for all t ∈ T ,

⋂
A∈A :t∈A A=⋂

n∈N

⋂
A∈An:t∈A A= A(t), which links back to the usual meaning of A(t) in the literature.

In particular,A has a global minimum:

∅′ = A(0T ) =
⋂

A∈A :A6=∅
A. (1.2.1)

where the point 0T ∈ T will also be understood as the global minimum for T as soon as it is endowed
with a partial order´ in Definition 1.2.3. The notation will be consistent with the usual 0 whenever
T has one. Without loss of generality, we suppose that both ∅ and ∅′ belong toAn for all n ∈ N.

Before proceeding any further, let us share some preliminary thoughts about each of the
conditions appearing in Definition 1.2.1.

1. HavingA ∗ =A \{∅} closed under countable intersections implies thatA as well, which
is a condition required in the classical setting. Remark that it is a nice setting for measure-
theoretic constructions to apply.

But perhaps more importantly, it is a necessary condition if one wants to look at set-indexed
processes X =

�
XA : A∈A 	 which are ‘continuous from above’ in some sense, i.e. for any

non-increasing sequence (Ak)k∈N inA , XAk
→ X⋂

i∈N Ai
as k→∞. This property is a natural

generalization of being right continuous for R+-indexed processes, which is a condition
required more often than not. In general, one often imposes the stronger condition of
being càdlàg, that is being right continuous with left limits. This aspect will be addressed
in a different way from the classical setting (see Sections 1.3.2 and 3.3).
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Another reason to require stability under intersections would be that filtrations play a
crucial role while studying processes such as martingales or Markov processes. In order
to impose intuitive ’time consistent’ relations between the σ-algebras in a set-indexed
filtration, stability under intersections is necessary. For more details, we refer to [47].

2. Another key element arising in the study of R+-indexed càdlàg processes is the use of
dyadics. They are useful to get results in the continuous case from their discrete alter
egos.

In the second assumption, the classAn indeed plays a role similar to the dyadics of order n
in that endeavour. In the classical setting, one usually imposes some topological structure
on T so that A lies in the interior of gn(A) for all n ∈ N instead. This implies a ‘separability
strictly from above’ property, but we chose against it here since A will be endowed with
a metric in Section 1.4 so that there is no competition with another topology.

3. The TIP assumption has also been introduced in [47, Assumption 2.4.2] and draws a clear
correspondence between general processes

�
Xt : t ∈ T

	
and set-indexed processes

�
XA :

A∈A 	 such that X∅ = 0 through the relation Xt = XA(t) for all t ∈ T .

This bijection is the key element that allows the correspondence given by Theorem 1.2.5
to hold.

As a quick sidenote, one may remark that gn(A(t)) = An(t) for all n ∈ N and t ∈ T .

4. The SHAPE condition has been first introduced in [47, Assumption 1.1.5] as a sufficient
condition to ensure the existence of increment maps In lattice-theoretic vocabulary, this
condition is known as join irreducibility.

1.2.2 A categorical point of view: to fundamental examples and beyond

In the classical setting so far, few examples of indexing collections have been given explicitly,
which might lead the reader new to this field to think that this theory might be not so rich after all.
In this section, we strive to make this opinion sink into oblivion by giving a wealth of examples
and indicating how to build new ones from old ones. Those examples will be continuously
quoted throughout this thesis in order to illustrate the concepts at play.

In order to provide a wider view and a better grasp on what may or may not be considered as
part of the theory, we chose a ‘categorical’ point of view where we derive general constructions,
from which examples become mere applications. However, we neither expect the reader to know
anything about category theory nor particularly strive to write in a ‘category-friendly’ manner.
This approach will just show that indexing collections are nice structures by themselves.

A slight disclaimer beforehand: we do not directly study indexing collections, but another
structure — called indexing semilattice — which turns out to be equivalent. We feel that some
concepts we develop are more natural and better understood that way. This has the downside
of introducing vocabulary specific to indexing semilattices. But outside of that section, we will
stick as much as possible to the usual vocabulary from set-indexed theory since it has perks of
its own and the reader might already be more familiar with the set-indexed theory.

Definitions and fundamental correspondence

Let us start by giving a few definitions and simple examples. First is the indexing semilattice
(Definition 1.2.3) whose couple of simple axioms will turn out to be equivalent to the apparently
more complex indexing collection (Theorem 1.2.5).
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DEFINITION 1.2.3 (Indexing semilattice and sub-structures). An indexing semilattice is a triplet
(T ,´,D) such that:

1. (Countably complete meet-semilattice). (T ,´) is a non-empty poset (i.e. partially ordered
set) such that any countable subset

�
t i : i ∈ N

	 ⊆ T admits a minimum
∧

i∈N t i ∈ T .

2. (Separability from above). The set D is included in T , at most countable, and such that for
any t ∈ T , there exists a non-increasing sequence (tn)n∈N in D such that t =

∧
n∈N tn.

An indexing sub-semilattice of T is a subset T ′ ⊆ T such that (T ′,´,D ∩ T ′) is an indexing
semilattice.

An ideal of T is an indexing sub-semilattice T ′ of T such that for all (s, t) ∈ T ×T ′, s∧ t ∈ T ′.
DEFINITION 1.2.4 (Morphism of indexing semilattices). Let (T ,´,D) and (T ′,´′,D′) be two in-
dexing semilattices. A map ϕ : T → T ′ is a morphism (of indexing semilattices) if the following
properties hold:

1. (Compatibility of semilattices). For all countable subset
�

t i : i ∈ N
	

of T ,

ϕ
�∧

i∈N

t i

�
=
∧
i∈N

′
ϕ(t i)

where
∧

(resp.
∧′) is the minimum in T (resp. T ′).

2. (Comptability of dense subsets). ϕ(D) ⊆ D′.
Moreover, if ϕ is bijective and ϕ−1 is also such a morphism, then ϕ is called an isomorphism

(of indexing semilattices).

One may directly realize that
�A ,⊆,

⋃
n∈NAn

�
itself is an indexing semilattice. But one may

actually say a bit more than that and establish a correspondence.

THEOREM 1.2.5 (Correspondence (T ,A )↔ (T ,´,D)). Any indexing collection A induces an
indexing semilattice in the following way: the order relation ´ is given by

∀s, t ∈ T , s ´ t ⇐⇒ A(s) ⊆ A(t) (1.2.2)

and D =
�
t(A) : A∈⋃n∈NAn

	
.

Conversely, any indexing semilattice (T ,´,D) induces an indexing collection A = �A(t) : t ∈
T
	∪ �∅	 on T where A(t) = {s ∈ T : s ´ t} for all t ∈ T .

Proof. The following is plain abstract nonsense.
Suppose that A is an indexing collection on T and define ´ by (1.2.2). This is an order

relation: it is trivially reflexive, antisymmetric by the TIP bijection and transitive since ⊆ also
is. Still thanks to the TIP bijection t, ´ verifies the first property of Definition 1.2.3. Indeed, if�

t i : i ∈ N
	

is a countable subset of T , we directly have t
�⋂

i∈N A(t i)
�
= t

�
A(
∧

i∈N t i)
�
=
∧

i∈N t i .
As for the separability from above, the subset D = t

�⋃
n∈NAn

�
does the job.

Conversely, consider an indexing semilattice (T ,´,D) and define A as described in Theo-
rem 1.2.5. Then ∅ ∈ A by definition and the stability by intersections of A ∗ = A \ {∅} is
trivial. For the separability from above and the TIP assumption, since T is closed under mini-
mum, without loss of generality, we may write D =

⋃
n∈N Dn where (Dn)n∈N is a non-decreasing

sequence of finite subsets of D closed under minimum. The subcollections defined for all n ∈ N
byAn =

�
A(t) : t ∈ Dn

	∪�∅	 then do the job. As for the SHAPE condition, consider k ∈ N and
A(t), A(t1), ..., A(tk) ∈ A such that A(t) ⊆ ⋃1¶i¶k A(t i) (the case with the emptyset is trivial).
Since t ∈ A(t), there exists j ∈ ¹1, kº such that t ∈ A(t j). Hence A(t) ⊆ A(t j).
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In the sequel, unless otherwise specified, (T ,´,D) will stand for the indexing semilattice
induced by the indexing collectionA considered throughout this thesis.

First, a trivial example.

EXAMPLE 1.2.6 (Indexing collection on T =
�
0T
	
). A =

�
∅,∅′

	
is an indexing collection on

T =
�
0T
	
(=∅′) called the trivial indexing collection.

Now, let us move on to a first interesting — and fundamental! — example, which is the link
between the usual theory of one-dimensional processes and the theory of generalized processes.

EXAMPLE 1.2.7 (Indexing collection on T = R+). Since it is the first one, we present the indexing
collection A on R+ from both perspectives, i.e. the one of Definition 1.2.1 and the one of Theo-
rem 1.2.5.

Let us begin with the latter: R+ is endowed with a natural total order ¶, directly making it into
a complete meet-semilattice. Moreover, if we denote for all n ∈ N the set Dn =

�
k2−n : 0¶ k ¶ n2n

	
of dyadics of order n in [0, n], any real number t ∈ R+ may be approximated by a non-increasing
sequence in D =

⋃
n∈N Dn, which is countable.

According to Theorem 1.2.5, this yields an indexing collectionA that could directly be described
as follows:

A =
�
[0, t] : t ∈ R+

	∪ �∅	 and ∀n ∈ N, An =
�
[0, t] : t ∈ Dn

	∪ �∅	.

EXAMPLE 1.2.8 (Indexing collection on T = R). In that case, an order relation ´ on R may be
defined as follows:

∀s, t ∈ R, s ´ t ⇐⇒ |s|¶ |t| and s× t ¾ 0

and D =
⋃

n∈N Dn where for all n ∈ N, Dn is the set of dyadic of order n in [−n, n]. The resulting
triplet (R,´,D) easily turns out to be an indexing semilattice and the corresponding indexing col-
lection isA = �[0, t] : t ∈ R+

	∪ �[t, 0] : t ∈ R−
	∪ �∅	. The reason why one does not choose the

usual total order on R is that it would not yield an indexing semilattice structure. Indeed, R has no
global minimum for its ususal order, which would contradict ∅ 6=∅′ (see (1.2.1)).

This construction may seem a bit arbitrary at first, but we will show that it is part of a more
general construction scheme. Namely, A may be seen as the ‘gluing’ of two copies of the indexing
collection on R+ (Proposition 1.2.26).

In the next few sections, we provide several methods to build new indexing collections out
of old ones. The exposition goes from simple constructions to more involved ones. At the end,
the table page 17 summarizes and compares all of them.

Product of indexing collections

Since the one-dimensional case has been shown to be a particular case of indexing collection
in Example 1.2.7, let us rightly follow along with a construction yielding the multiparameter
case. By virtue of Theorem 1.2.5, we will freely switch from indexing collections to indexing
semilattices depending on which feels easier to explain.

PROPOSITION 1.2.9 (Product of indexing collections). Let
�
(Ti ,Ai) : 1 ¶ i ¶ k

	
be a finite

sequence of spaces each endowed with an indexing collection. Then
∏

1¶i¶kAi =
�
A1 × ...× Ak :

∀i ∈ ¹1, kº, Ai ∈Ai

	
is an indexing collection on

∏
1¶i¶k Ti .
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Let
�
(Ti ,Ai) : i ∈ N

	
be an infinite sequence of spaces each endowed with an indexing collection.

With the additional assumption that Ti ∈ Ai for all i > k for some k ∈ N, the previous result still
holds for the countable product, i.e.

∏
i∈N Ai is an indexing collection on

∏
i∈N Ti .

Proof. Consider the finite case first and denote by (Ti ,´i ,Di) the indexing semilattice induced
byAi thanks to Theorem 1.2.5. Define the component-wise order ´ on

∏
1¶i¶k Ti by

∀s, t ∈
∏

1¶i¶k

Ti , s ´ t ⇐⇒ ∀i ∈ ¹1, kº, si ´i t i

and denote D =
∏

1¶i¶k Di . It is then straightforward to check that (
∏

1¶i¶k Ti ,´,D) is an in-
dexing semilattice whose indexing collection corresponds to

∏
1¶i¶kAi .

For the infinite case, the order relation still is the component-wise order, but the dense sub-
set is defined a bit differently: D =

⋃
n¾k

eDn where k is the one from the statement of Propo-
sition 1.2.9 and for all n ¾ k, eDn = D1 × ... × Dn ×

�
tn+1(Tn+1)

	 × �tn+2(Tn+2)
	 × ... where

ti : (Ai)∗ → Ti is the TIP bijection given by the indexing collection Ai . The result follows once
more by Theorem 1.2.5.

EXAMPLE 1.2.10 (Indexing collection on T = Rp
+). For p ∈ N∗, a direct application of Proposi-

tion 1.2.9 enables us to endow T = Rp
+ with an indexing collection on its own.

t

A(t)

Figure 1.1: An element A(t) (hatched) of the indexing collection on R2
+.

This indexing collection is the same as the one given through Theorem 1.2.5 if one were to
endow Rp

+ with the natural component-wise partial order and take the set of all p-tuples with dyadic
coordinates as a dense subset. This is one of the core examples and whenever new hypotheses are
considered, we made sure not to exclude this case.

Pushforward of an indexing collection

Here, we give some ways to transport an indexing collection structure from one space to another.

PROPOSITION 1.2.11 (Pushforward of an indexing semilattice). Let T ′ be a set and ϕ : T � T ′
be a surjective map such that for all s, t, u, v ∈ T where ϕ(s) = ϕ(u) 6= ϕ(t) = ϕ(v), we have s ´ t
if and only if u´ v. Then, the binary relation ´′ on T ′ given for all s′, t ′ ∈ T ′ by

s′ ´′ t ′ ⇐⇒ ∀(s, t) ∈ ϕ−1({s′})×ϕ−1({t ′}), s ´ t
⇐⇒ ∃(s, t) ∈ ϕ−1({s′})×ϕ−1({t ′}) : s ´ t.

is a well-defined partial order,
�
T ′,´′,ϕ(D)

�
is an indexing semilattice and ϕ is a morphism.
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Proof. The condition on ϕ ensures that the equivalence defining ´′ is correct. It readily follows
that ´′ is a partial order and that any element of T ′ is approximated from above by elements of
ϕ(D). Only the stability under countable minimum is left. Let

�
t ′i : i ∈ N

	
be a countable subset

of T ′ and fix for all i ∈ N an element t i ∈ T such that ϕ(t i) = t ′i . Then, denote t =
∧

i∈N t i and
t ′ = ϕ(t). We know that for all i ∈ N, t ´ t i and thus t ′ ´′ t ′i . If s′ = ϕ(s) ∈ T is such that for all
i ∈ N, s′ ´′ t ′i , then we know that for all i ∈ N, s ´ t i , thus s ´ t and s′ ´′ t ′. Hence t ′ =

∧′
i∈N t ′i .

The result follows.

However, this general principle might not be so practical after all, so we specialized it to
simpler cases. The proofs are direct applications of Proposition 1.2.11.

COROLLARY 1.2.12 (Projection of an indexing semilattice). Suppose that T ′ is a subset of T and
that ϕ : T � T ′ is a map which verifies the hypotheses of Proposition 1.2.11 and such that π|T ′ =
idT ′ . Then

�
T ′,´,ϕ(D)

�
is an indexing semilattice and ϕ is a morphism.

Sketch of proof. By Proposition 1.2.11, we already know that
�
T ′,´′,ϕ(D)

�
is an indexing semi-

lattice and ϕ is a morphism. Then, one just needs to exploit the fact that π|T ′ = idT ′ to show
that ´ and ´′ are equal. The result follows.

EXAMPLE 1.2.13 (An is also an indexing collection). Let n ∈ N. ThenAn is an indexing collection
on t(An) by Corollary 1.2.12 applied to the projection ϕ = t ◦ An(.). One aspect of our approach
compared to the classical setting is that discrete indexing collections are still available at this level of
generality. This may lead to some constructions expressing a given ‘continuous’ indexing collection
A as the ‘limit’ of the indexing collectionsAn as n→∞. We refer to the discussion in Section 1.7
for more ideas down this line.

EXAMPLE 1.2.14 (Indexing collection on T = [0, 1]). T = [0, 1]may be endowed with an indexing
collection from the one of R+ (Example 1.2.7) using Corollary 1.2.12 with the projection ϕ : t 7→
t ∧ 1. It corresponds to the indexing collectionA = �[0, t] : t ∈ [0,1]

	∪ �∅	.

EXAMPLE 1.2.15 (Indexing collection for T = N). T = N may be endowed with an indexing
collection from the one of R+ (Example 1.2.7) using Corollary 1.2.12 with the projectionϕ : t 7→ btc.
It corresponds to the indexing collectionA = �¹0, tº : t ∈ N

	∪ �∅	.

EXAMPLE 1.2.16 (More products). Combining those previous examples with Proposition 1.2.9 en-
ables us to create indexing collections on Np and the Hilbert cube [0, 1]N for instance. But beware
of the fact that even though R+ may be endowed with an indexing collection, RN

+ cannot be, at
least by a product procedure. Indeed, if there was such an indexing collectionA , then the sequence�
1+maxA∈An

t(A)n
�

n∈N
cannot be approximated from above. This is the reason why there is an

additional condition for the countable product of indexing collections in Proposiition 1.2.9.

COROLLARY 1.2.17 (Bijective pushforward of an indexing semilattice). Let T ′ be a set and ϕ :
T → T ′ be a bijective map. Then, the binary relation ´′ on T ′ given for all s′, t ′ ∈ T ′ by

s′ ´′ t ′ ⇐⇒ ϕ−1(s′)´ ϕ−1(t ′)

is a well-defined partial order,
�
T ′,´′,ϕ(D)

�
is an indexing semilattice and ϕ is a morphism.

Sketch of proof. Since ϕ is bijective, the partial orders ´′ defined in Proposition 1.2.11 and
Corollary 1.2.17 are one and the same. The result follows.
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EXAMPLE 1.2.18 (Indexing collection on T = [0, 1)). T = [0,1)may be endowed with an indexing
collection from the one of R+ (Example 1.2.7) using Corollary 1.2.17 with the bijection ϕ : t 7→
t/(1+ t). It corresponds to the indexing collectionA = �[0, t] : t ∈ [0, 1)

	∪ �∅	.

EXAMPLE 1.2.19 (Indexing collection on T = R∗∪{∞}). Compound Poisson processes indexed by
R+ may be seen as an integrals against a (R+ ×R∗)-indexed Poisson process. This idea will later be
exploited in the set-indexed setting (Example 2.4.6), but first requires to endow R∗ with an indexing
collection. However, according to (1.2.1), indexing collections require a global minimum, which is
why we consider R∗ ∪ {∞} instead. For that, use Corollary 1.2.17 with the bijection

ϕ : R −→ R∗ ∪ {∞}
t 7−→

§
1/t if t 6= 0,
∞ if t = 0.

This corresponds to the indexing collection

A =
�
[t,+∞)∪ {∞} : t ∈ R∗+

	∪ �{∞}∪ (−∞, t] : t ∈ R∗−
	∪ �∅, {∞}	.

EXAMPLE 1.2.20 (Indexing collection on a graph). If ϕ : T → T ′ is a map on the indexing semi-
lattice T , then its graph Gr(ϕ) =

�
(t,ϕ(t)) : t ∈ T

	
may be endowed with an indexing collection

by Corollary 1.2.17 with the bijection

T −→ Gr(ϕ)
t 7−→ (t,ϕ(t)).

At this stage, this might not appear to amount to much. However, if ϕ is a map with an irregular
behavior — e.g. the sample path of a stochastic process — this gives a way to endow rough surfaces
with an indexing collection.

Gluing together indexing collections

Keeping on building new indexing collections from old ones, we introduce several ways to ‘glue
together’ indexing collections. The main idea comes from the fact that if T may be covered by a
family

�
(Te,´e,De) : e ∈ E

	
of indexing semilattices in a consistent way — a bit like local maps

of a manifold — then T may be considered as an indexing semilattice itself.

In the probabilistic literature, gluing spaces is not a new idea, but is often used to define
random metric spaces as in e.g. [7, 8, 26, 33, 89] and references therein. Our approach is
slightly different since an indexing collection will end up being a space on which a stochastic
process is studied, and not an object of study in itself.

We first recall a few fact about what a disjoint union is. If
�

Te : e ∈ E
	

is a collection of sets
indexed by some set E, then the disjoint union of the Te ’s is defined by⊔

e∈E

Te =
⋃
e∈E

�
(t, e) : t ∈ Te

	
. (1.2.3)

Remark that for all e ∈ E, we may identify the set
�
(t, e) : t ∈ Te

	
with Te itself, which is what we

will usually do. However, do keep in mind that for e 6= e′ in E, even if Te∩Te′ may be non-empty,
it will be considered as such in

⊔
e∈E Te precisely due to this definition. For instance, R+ tR+ is

different from R+ ∪R+.

The simplest gluing is when T can be realized as a disjoint union of indexing semilattices that
can be ordered by means of an overarching discrete indexing semilattice E. This construction is
in a stark contrast to the classical set-indexed theory where such a construction would not be
allowed due to the ban on discrete structures.
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PROPOSITION 1.2.21 (Disjoint union of indexing semilattices). Let (E,´E , E) be an at most count-
able indexing semilattice and

�
(Te,´e,De) : e ∈ E

	
a family of indexing semilattices indexed by E.

Define the order relation ´ on the disjoint union
⊔

e∈E Te by

∀e, e′ ∈ E, s ∈ Te, t ∈ Te′ , s ´ t ⇐⇒ �
e ≺E e′

�
or
�
e = e′ and s ´e t

�
. (1.2.4)

If each Te admits an upper bound whenever e is not maximal in E, then
�⊔

e∈E Te,´,
⊔

e∈E De

�
is

an indexing semilattice.

Proof. Checking that (1.2.4) defines an order relation is straightforward. Now let us prove that
(T ,´,D) =

�⊔
e∈E Te,´,

⊔
e∈E De

�
is an indexing semilattice. For each non-maximal e ∈ E,

denote by Me the upper bound in Te.
We claim that for all s, t ∈ T , s ∧ t is well-defined. Indeed, for s ∈ Te and t ∈ Te′ , three cases

may happen:

� s and t are comparable for ´, so s ∧ t is equal to either s or t.

� s and t are not comparable for ´ and e = e′, so s ∧ t = s ∧e t.

� s and t are not comparable for ´ and e 6= e′, so s ∧ t = Me∧E e′ .

Hence (T ,´) is closed under finite minimum.
Now consider a countable subset

�
t i : i ∈ N

	 ⊆ T such that t i ∈ Tei
for all i ∈ N and let us

show that
∧

i∈N t i exists. Since (T ,´) is closed under finite minimum, we may suppose without
loss of generality for all i ∈ N that t i+1 ´ t i . Denote by e the minimum in (E,´E) of {ei : i ∈ N}.
From here, two mutually exclusive cases may happen:

� There exists j ∈ N such that ei = e for all i ¾ j, so
∧

i∈N t i is the minimum in (Te,´e) of�
t i : i ¾ j

	
.

� For all i ∈ N, e ≺E ei for all i ∈ N, so
∧

i∈N t i = Me.

Since it is also clear that
⊔

e∈E De is a countable dense subset, it makes
�⊔

e∈E Te,´,
⊔

e∈E De

�
into an indexing semilattice.

As a first application of Proposition 1.2.21, we give the compactification of an indexing semi-
lattice, very similar in spirit to Alexandrov’s compactification procedure. Although compactifi-
cation does not have in general nice enough properties for the set-indexed setting (see the table
page 17), it still has its uses for some constructions that follow (see e.g. Proposition 1.2.21) and
examples like the hypersphere Sp (Example 1.2.29).

COROLLARY 1.2.22 (Compactification of an indexing semilattice). Let∞ be a point that does not
belong to T and extend ´ to T ∪ {∞} so that t ´∞ for all t ∈ T . The triplet (T ∪ {∞},´
,D ∪ {∞}) is then an indexing semilattice of which T is an ideal.

The proof being straightforward, we choose to skip it. Remark however the possible following
interpretation: the indexing semilattice T ∪{∞} corresponds to the disjoint union

⊔
e∈E Te where

(E,´E) = ({0, 1},¶), T0 = T and T1 = {∞} is the trivial indexing semilattice from Example
1.2.6.

Proposition 1.2.21 also constitutes the first step towards more interesting kinds of gluings.
They are better described if split into two steps: series gluing and parallel gluing.
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The series gluing’s statement is longer than its proof — that we skip — and is just to ex-
press the fact that, in any disjoint union

⊔
e∈E Te of indexing semilattices, one may identify the

maximum of Te together with the minimum of Te′ whenever e is a maximal in
�

e′′ ∈ E : e′′ ≺E e′
	
.

PROPOSITION 1.2.23 (Series gluing of indexing semilattices). Consider the following:

1. (E,´E , E) an at most countable indexing semilattice,

2.
�
(Te,´e,De) : e ∈ E

	
a family of indexing semilattices where for all e ∈ E, 0e denotes the

global minimum of Te and whenever e is not maximal in E, Te has a global maximum Me ∈ Te,

3.
�
T =

⊔
e∈E Te,´,D

�
the disjoint union indexing semilattice from Proposition 1.2.21,

4. ∼ the finest equivalence relation on T such that Me ∼ 0e′ whenever e is a maximal element
in
�

e′′ ∈ E : e′′ ≺E e′
	
, and

−→T = T /∼ (resp. π : T � −→T ) the corresponding quotient space
(resp. canonical projection).

Then ´ is compatible with ∼, making
�−→T ,´,π(D)

�
into an indexing semilattice, called the series

gluing of T along E. Moreover, π is a morphism and for all e ∈ E, the set π(
−→Te ) — where

−→Te =⊔
e′´E e Te′ — is an ideal.

As an application, we use series gluing to make the natural indexing collection on a dis-
crete tree (Example 1.2.24) into a continuous one where edges are part of the indexing space
(Example 1.2.25).

EXAMPLE 1.2.24 (Indexing collection on a discrete tree). Following Neveu’s convention from [78],
a (discrete) tree is a non-empty subset U ⊆⋃k∈N Nk with the convention N0 =∅′ = {0U} and such
that for all k ∈ N∗ and t = (t1, ..., tk) ∈ U , (t1, ..., tk−1) also belongs to U (with the convention
that (t1, ..., t0) = 0U). Per tradition and for an easier notation, we will write t1...tk instead of
(t1, ..., tk).

The element 0U — which must then belong to U — is called the root of U and for any t1...tk ∈ U
and any j ∈ ¹0, k− 1º, t1...t j ∈ U is called an ancestor of t.

The set U may be endowed with the partial order ´ for which s ´ t if and only if s is an ancestor
of t. In particular, for any subset

�
t i : i ∈ N

	 ⊆ U ,
∧

i∈N t i is the biggest common ancestor to all
t i ’s. Since U is at most countable, it makes (U ,´,U) into an indexing semilattice.

EXAMPLE 1.2.25 (Indexing collection on a continuous version of a discrete tree). Consider a
discrete tree U as defined in Example 1.2.24 and denote T = {0T } t

⊔
u∈U\{0U }[0,1].

The series gluing
−→T of T along U may be endowed with an indexing collection by Proposi-

tion 1.2.23. This is illustrated in Figure 1.2.
This construction may be seen as a related — albeit simpler — case of Aldous’s [7, 8] stick-

breaking construction of the Continuouum Random Tree (CRT).

The series gluing however has serious limitations since indexing semilattices may only be
glued together by their extremal elements. We wish to express a different kind of gluing which
allows for bigger overlaps between the indexing semilattices Te that cover T . This is what the
parallel gluing achieves, without however supplanting the series gluing (see Example 1.2.27 for
a related discussion).

To our knowledge, most of the gluing procedures that have been considered by probabilists
so far have been by gluing points. This construction provides a way to glue along more general
surfaces.
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×
0T

×
0T

Figure 1.2: Series gluing of {0T } t
⊔

u∈U\{0U }[0,1] along the discrete tree U =�
0U , 0, 1, 2, 00,01, 20

	
.

PROPOSITION 1.2.26 (Parallel gluing of indexing semilattices). Consider a set T and an at most
countable set E with a point 0E ∈ E. Suppose that there exists a family of indexing semilattices�
(Te,´e,De) : e ∈ E \ {0E}

	
and denote by T0E

= {0T } the trivial indexing semilattice from Exam-
ple 1.2.6. Define the order relation ´E on E as follows:

∀e, e′ ∈ E, e ´E e′ ⇐⇒ e = 0E .

Denote by
−→T the resulting series gluing along (E,´E) and suppose that the following hold:

1. (Covering of T ). There is a surjective map π :
−→T � T such that for all e ∈ E, πe = π|Te

is
injective. Denote by ϕe : π(Te)→ Te its inverse.

2. (Compatibility of the covering). For all e, e′ ∈ E, the set Tee′ = ϕe

�
π(Te)∩π(Te′)

�
is an ideal

of Te isomorphic to Te′e = ϕe′
�
π(Te′)∩π(Te)

�
. Denote by ϕee′ : Tee′ → Te′e the isomorphism.

3. (Retraction of the covering). For all e, e′ ∈ E, there exists a projection πee′ : Te � Tee′ in the
sense of Corollary 1.2.12.

Define a binary relation ´ on T by

∀s, t ∈ T , s ´ t ⇐⇒ ∃e ∈ E : s, t ∈ π(Te) and ϕe(s)´e ϕe(t). (1.2.5)

Then
�
T ,´,π(

⊔
e∈E De)

�
is an indexing semilattice and π :

−→T � T is a morphism.

Proof. For the diagram-lovers among us, the notations are summarized in the commutative di-
agram of Figure 1.3 where � represents ‘purely’ surjective maps, ,→ canonical injections (due
to the inclusions between the sets at play) and↔ bijections.

Let us prove that (1.2.5) defines an order relation. First, we claim that

∀s, t ∈ T , s ´ t ⇐⇒ �∀e ∈ E, t ∈ π(Te) =⇒ s ∈ π(Te) and ϕe(s)´e ϕe(t)
�
. (1.2.6)

The converse implication is obvious. For the direct one, consider s, t ∈ T such that s ´ t and
e ∈ E such that the right-hand side of (1.2.5) holds. Then take e′ ∈ E such that t ∈ π(Te′). Since
ϕe(t) ∈ Tee′ ,ϕe(s)´e ϕe(t) and Tee′ is an ideal of Te, we getϕe(s) ∈ Tee′ . Thus s, t ∈ π(Te)∩π(Te′).
In particular, it means that ϕe(s),ϕe(t) ∈ Tee′ and ϕe′(s),ϕe′(t) ∈ Te′e. Since Tee′ and Te′e are
isomorphic, ϕe(s)´e ϕe(t) if and only if ϕe′(s)´e′ ϕe′(t). The claim follows.

Let us prove that ´ is an order relation on T . Reflexivity is trivial since T =
⋃

e∈E π(Te) and
the ´e ’s are all reflexive. For antisymmetry, consider s, t ∈ T such that s ´ t and t ´ s. By
(1.2.5) and (1.2.6), it means that there exists e ∈ E such that ϕe(s) = ϕe(t). Hence s = t. As for
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Te π(Te)

Tee′

π(Te)∩π(Te′) T

Te′e

Te′ π(Te′)

πee′

πe

ϕe

ϕee′

idTee′

idπ(Te )∩π(Te′ )ϕe′ e

idTe′ e

πe′ e

πe′

ϕe′

Figure 1.3: Diagram illustrating the parallel gluing from Proposition 1.2.26.

triangle inequality, consider s, t, u ∈ T such that s ´ t and t ´ u. By (1.2.5), there exists e ∈ E
such that t, u ∈ π(Te) and ϕe(t)´e ϕe(u). By (1.2.6), s ∈ π(Te) as well and ϕe(s)´e ϕe(t). Thus
ϕe(s)´e ϕe(u), which implies that s ´ u.
Hence ´ is an order relation.

Consider s, t ∈ T and let us show that their minimum s ∧ t is well-defined. For all e, e′ ∈
E, denote by ψe′e : π(Te′) → Tee′ the map ψe′e = ϕe′eπe′eϕe′ (we recommend looking at the
diagram to see what this map does). Let s, t ∈ T , consider e ∈ E such that s ∈ π(Te) and denote
u = π(ϕe(s) ∧e ψe′e(t)) where ∧e is the minimum in Te (we know that ∧e is well-defined since
Te is an ideal of

−→T by Proposition 1.2.23). By (1.2.5), u ´ s. Moreover, since Tee′ and Te′e
are isomorphic, we also have u = π(ψee′(s) ∧e′ ϕe′(t)). Thus u ´ t as well. In order to show
that u = s ∧ t, it remains to prove the following: ∀v ∈ T , (v ´ s and v ´ t) =⇒ v ´ u. So
consider v ∈ T such that v ´ s and v ´ t. Fix e ∈ E (resp. e′ ∈ E) such that v, s ∈ π(Te) and
ϕe(v) ´e ϕe(s) (resp. v, t ∈ π(Te′) and ϕe′(v) ´e′ ϕe′(t)). Applying the morphism ϕe′eπe′e to
ϕe′(v) ´e′ ϕe′(t) yields ψe′e(v) ´e ψe′e(t). But since v ∈ π(Te)∩π(Te′), we get ψe′e(v) = ϕe(v).
Thus ϕe(v)´e (ϕe(s)∧e ψe′e(t)), which implies v ´ u by (1.2.5). Hence u= s ∧ t.

Let us now prove that (T ,´) is closed under countable minimum. Since it is already closed
under finite minimum, it is enough to prove that for any non-decreasing sequence (t i)i∈N ∈ T ,∧

i∈N t i exists. For such a sequence, consider e ∈ E such that t0 ∈ π(Te). Since for all i ∈ N, we
have t i ´ t0, we know that t i ∈ π(Te). So we may define u= π

�∧
e

i∈N
ϕe(t i)

�
. It is obvious that for

all i ∈ N, u ´ t i . Conversely, if v ∈ T is such that for all i ∈ N, v ´ t i , then v ∈ π(Te) and for all
i ∈ N, ϕe(v)´e ϕe(t i). Thus ϕe(v)´e

∧
e

i∈N
ϕe(t i), which implies that v ´ u. Hence u=

∧
i∈N

t i .

Now, what remains is to prove that π(
⊔

e∈E De) is a countable dense subset of T and that π
is a morphism, both of which are straightforward.
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EXAMPLE 1.2.27 (Why such conditions for the parallel gluing?). We wish to comment on some
assumptions of Proposition 1.2.26 that might appear unnecessary at first glance. Namely, we want
to argue why the Tee′ ’s need to be ideals and why there is a need for the projections πee′ : Te� Tee′ .

First, one could try to use parallel gluing to give an indexing collection for the circle S1 by gluing
two copies of the unit segment [0,1]. However, nothing in the hypotheses — apart from the ideal
condition — prevents you from doing it in the silly fashion illustrated in Figure 1.4 which does not
allow for a consistent indexing semilattice structure (every point is both smaller and greater than
all the others).

×

×

'

×0

×1

×0

×1

Figure 1.4: Gluing two unit segments head-to-toe fails to make an indexing collection on T = S1.

Moving on, the ‘retraction of the covering’ condition also is necessary since gluing does not
always preserve the semilattice structure. Indeed, consider once more two copies of the unit segment
[0,1] and glue them so that each copy of [0, 1/2) is identified with one another, i.e. T =

�
[0, 1]t

[0,1]
�
/∼ where

∀(x , i), (y, j) ∈ T , (x , i)∼ (y, j) ⇐⇒ �
(x , i) = (y, j) or x = y < 1/2

�
.

In that case, the minimum between the 1/2 belonging to the first copy of [0, 1] and the 1/2 of the
second one is ill-defined. And remark that the only hypothesis that this example fails to verify is
indeed the ‘retraction of the covering’.

EXAMPLE 1.2.28 (Indexing collection on T = Rp). Let p ∈ N∗. Consider for all ε ∈ {±1}p a copy
Tε of the indexing semilattice Rp

+ from Example 1.2.10. The projection πε : Tε � Rp is then given by
πε(x) = ε.x for all x ∈ Rp

+, so πε(Tε) is one of the 2p ‘quadrants’ of Rp as illustrated in Figure 1.5.

×
0

R2
+R2

+

R2
+ R2

+

Figure 1.5: Parallel gluing of
⊔
ε∈{±1}2 R2

+ onto R2.

Then for all ε,ε′, Tεε′ and Tε′ε are both isomorphic to Rk
+ where k = k(ε,ε′) = #{i ∈ ¹1, pº :

εi = ε′i}, so the compatibility of the covering is easy to check. As for the projectionπεε′ , it corresponds
to the usual linear projection: ∀x = (x1, ..., xp) ∈ Tε, πεε′(x) = (x j1 , ..., x jk) where j1 < ... < jk is
such that for all i, ε ji = ε

′
ji
. Hence Proposition 1.2.26 endows T = Rp with an indexing collection.
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Another way to go about it is to directly specify the order relation ´ on Rp, which corresponds
here to

∀s, t ∈ Rp, s ´ t ⇐⇒ ∀i ∈ ¹1, pº, si t i ¾ 0 and |si |¶ |t i |.
Remark that we cannot consider the usual component-wise order on Rp for the same reason as in
the case T = R (Example 1.2.8).

EXAMPLE 1.2.29 (Indexing collection on T = Sp). Let p ∈ N∗ and denote by ϕ : Sp → Rp ∪ {∞}
a stereographic projection (it is a bijection). By compactification (Corollary 1.2.22), we have
an indexing semilattice structure

�
Rp ∪ {∞},´,D

�
. Since ϕ is bijective, by pushforward (Corol-

lary 1.2.17), we know that
�
Sp,´′,ϕ−1(D)

�
is an indexing semilattice where

∀s, t ∈ Sp, s ´′ t ⇐⇒ ϕ(s)´ ϕ(t).

More generally, manifolds may be endowed with an indexing collection as long as one is able to
order the local maps in a way consistent with a gluing procedure.

EXAMPLE 1.2.30 (Indexing collection on a continuous tree, 2nd version). In Example 1.2.25, we
told how to use series gluing to endow a non-fractal continuous tree with an indexing collection.
Here, we do an equivalent construction, but based on parallel gluing instead. This way is interesting
as well because it respects the flows (Definition 1.3.4) in T . We refer to Section 1.3.2 for more
details.

Consider a discrete tree U as defined in Example 1.2.24 and define the height function h : U → N
such that for all k ∈ N, h|U∩Nk = k. Define for all u ∈ U , Tu = [0, h(u)] endowed with its usual
indexing semilattice structure (see Example 1.2.14). One should think about Tu as a path from the
root to u. Obviously, two paths to u and v respectively should coincide until they reach their highest
common ancestor u∧ v and then part ways, so the quotient space T should reflect that.

×
0T

×
0T

Figure 1.6: Parallel gluing based on the discrete tree U =
�
0U , 0, 1, 2, 00, 01, 20

	
.

Just like in Proposition 1.2.26, consider the indexing semilattice
−→T obtained by identifying all

the 0Tu
together in

⊔
u∈U Tu. Using the definition of the disjoint union (1.2.3), we make a slight

abuse of notation quotient-wise and denote a generic element of
−→T by (s, u) for some u ∈ U and

s ∈ Tu. Define an equivalence relation ∼ on
−→T by

∀(s, u), (t, v) ∈ −→T , (s, u)´ (t, v) ⇐⇒ s = t ¶ h(u∧ v)

and denote T = −→T /∼ the corresponding quotient space. This is what is illustrated in Figure 1.6
where

−→T is represented on the left and T on the right.
In order to endow T with an indexing collection through parallel gluing, we just need to specify

the elements that appear in the statement of Proposition 1.2.26. First, we have π :
−→T � T as
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the canonical projection associated with the quotient. For all u, v ∈ U , we have Tuv =
�
(s, u) : s ∈

[0, h(u∧ v)]
	

as well as

ϕuv : Tuv −→ Tvu and πuv : Tu −→ Tuv

(s, u) 7−→ (s, v) (s, u) 7−→ �
min{s, h(u∧ v)}, u

�
.

All of those elements readily check the hypotheses of Proposition 1.2.26, so T may be endowed with
an indexing semilattice structure by parallel gluing.

EXAMPLE 1.2.31 (Indexing collection on a continuous tree, 3rd version). The astute reader might
have already remarked that Examples 1.2.25 and 1.2.30 are but specific cases of a (rooted) R-tree,
i.e. a metric space (T , dT ) with a distinguished point ρ ∈ T called the root and such that for any
s, t ∈ T , there is a unique isometric embedding φs,t : [0, dT (s, t)]→ T such that φs,t(0) = s and
φs,t(dT (s, t)) = t. Denote then by [s, t] = φs,t([0, dT (s, t)]) the geodesic segment of extremities s
and t. Using this structure, define the partial order ´ on T by:

∀s, t ∈ T , s ´ t ⇐⇒ [ρ, s] ⊆ [ρ, t].

The ordered set (T ,´) is closed by (finite) minimum and is such that for all s, t ∈ T , [ρ, s]∩[ρ, t] =
[ρ, s∧ t] (see [31, Lemma 3.20]). So in order to show that T is closed under countable minimum,
it is enough to check that

∧
i∈N t i ∈ T for all non-increasing sequence (t i)i∈N in T . In this case, since

φρ,t0
is an increasing map, it is easy to see that

∧
i∈N t i = φρ,t0

(infi∈N dT (ρ, t i)). Hence T may be
endowed with an indexing collection provided that it is separated from above by a countable dense
subset.

Remark however that might not always be the case since (T ,´) may have uncountably many
‘leaves’ (or ends, see [31, Section 3.4.1]) which cannot be approximated from above by anything
else than themselves since they are maximal elements for ´. We refer to [31, 65] for more general
and systematic overviews on R-trees and their importance in modern probability.

Summary

Later on, the indexing semilattice T will be endowed with a compatible measure m (Section 1.3)
and a compatible metric dT (Section 1.4). Sometimes, it may even be supposed finite-dimensional
in a specific sense (Section 1.5). We collected in Table 1.1 how the several constructions we have
just presented interact with those additional structures. The notations used are either the same
as the corresponding propositions or sufficiently clear not to be stated more explicitly (e.g. m i
corresponds to a compatible measure on the indexing semilattice Ti). The cases where addi-
tional hypotheses are required for all the properties to hold are indicated in red. A ‘×’ indicates
a case where we did not find any obvious compatibility. The proofs are not provided since we
felt they are essentially straightforward and do not bring much more to the table.

Compatible measure
m (Def. 1.3.1)

Compatible metric
dT (Def. 1.4.1)

Dimension
(Def. 1.5.3)

Finite
product

(Prop. 1.2.9)
m =

k⊗
i=1

m i
dT = sup

1¶i¶k
dTi dimT =

k∑
i=1

dimTi

Countable
product

(Prop. 1.2.9)
m =

⊗
i∈N

m i dT = sup
i∈N
(dTi
∧ 2−i) dimT =

∑
i∈N

dimTi
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Projection
(Cor. 1.2.12)

m = π∗m′ dT = dT ′ |T ×T dimT ¶ dimT ′

Compactifi-
cation

(Cor. 1.2.22)
m(A∪ {∞}) =m(A) × dim

�
T ∪ {∞}�=
dimT

Disjoint
union

(Prop. 1.2.21)
m =

∑
e∈E

me(Te ∩ .)

Quotient metric such
that ∀e ∈ E,

dT |Te×Te
= dTe

and
dT (Me, 0e′) = 0
whenever e is

maximal in [0E , e′).

dimT =max
�

dim E, sup
e∈E

dimTe

	

Series gluing
(Prop. 1.2.23)

m =

π∗

�∑
e∈E

me(Te ∩ .)

� Projection of the
metric given by the

disjoint union.

dimT =max
�

dim E, sup
e∈E

dimTe

	

Parallel
gluing

(Prop. 1.2.26)

m =

π∗

�∑
e∈E

me(Te ∩ .)

� Projection of the
metric given by the

disjoint union.

dimT =max
�

dim E, sup
e∈E

dimTe

	

Table 1.1: Compatibilities between constructions of indexing semilattices and additional struc-
tures on them.

Further examples

Even though infinite-dimensional examples might not be our focus point later on, we also wanted
to give infinite-dimensional examples different from Hilbert’s cube (Example 1.2.16).

EXAMPLE 1.2.32 (Indexing collection on the set of concave, non-negative functions). Suppose
that T is the set of all concave functions f : [0, 1]→ R+ endowed with the pointwise partial order
´, i.e. f ´ g if and only if f (x)¶ g(x) for all x ∈ [0,1]. Since a function is concave if and only if
it may be written as the minimum of affine functions, (T ,´) is closed under any minimum.

Let n ∈ N and denote by Dn =
�

k2−n : 0 ¶ k ¶ 2n
	

the dyadics of order n in [0, 1] and by Dn
the set of all functions f ∈ T such that for all d ∈ Dn, f (d) ∈ nDn and f |(d,d+2−n) is affine. Since
any tangent of a concave function may be approximated from above by a function in D =

⋃
n∈N Dn

and that D is closed un finite minimum, the set D verifies the separability from above condition.

EXAMPLE 1.2.33 (Indexing collection on T = C0(K;R+)). Suppose that K is a compact metric
space. Like Example 1.2.32, the space T = C0(K;R+) is endowed with the pointwise partial order
´ . C0(K;R+) is obviously closed under finite minimum, but also under countable ones by Dini’s
first theorem [63, Chapter IX, Theorem 1.3]. Moreover, since it is separable by [9, Lemma 3.99],
we may consider a countable subset D of C0(K;R+) which is dense for the uniform convergence. Let
us show that any fixed function f ∈ C0(K;R+) may be approximated from above by a sequence in
D. For all n ∈ N, there exists a function fn ∈ D such that ‖( f +2−n+2)− fn‖∞ ¶ 2−n. In particular,
we have

∀n ∈ N, f + 3.2−n ´ fn ´ f + 5.2−n

from which we deduce that the sequence ( fn)n∈N decreases to f . Hence
�
C0(K;R+),´,D

�
is an

indexing semilattice.
More generally, a lot of infinite-dimensional examples of indexing semilattices may be found

among the positive cones of function spaces in the sense of [9, Definition 1.1].
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1.2.3 A ’s friends

The indexing collectionA does not go alone, it naturally generates new classes of sets that we
introduce here. All of them can already be found in [47], apart from the class C(k) which is new,
but has ties with the class Bk(U ,ρ) considered in [42, Section 3.2].

DEFINITION 1.2.34 (Class D(u)). For any subset D ⊆ B , the class of finite unions of elements in
D is denoted by

D(u) =
¨

k⋃
i=1

Di : k ∈ N, D0, ..., Dk ∈ D
«

.

The classA (u) has its importance when looking at the distribution of a set-indexed process
X =

�
XA : A∈A 	. In Section 1.3.2, we will see that the distribution of X is characterized by its

distribution along increasing paths inA (u), but is not along paths inA (see Theorem 1.3.13 for
a precise statement). Remark that phenomenon is invisible in dimension one sinceA (u) =A .
for the usual indexing collection on R+ (Example 1.2.7).

DEFINITION 1.2.35 (Increment classes). The class of (simple) increment sets is denoted by

C =
�

A\ U : A∈A , U ∈A (u)	.

For any k ∈ N, the subclass C(k) ⊆ C of k-increments is given by

C(k) =
¨

A0 \
k⋃

i=1

Ai : A0, ..., Ak ∈A
«

.

One obviously hasA ⊆C(k) ⊆ C(k+1) ⊆ C ⊆ C (u) ⊆B for all k ∈ N where each inclusion is
strict in general.

The classes C and C (u) are a semiring of sets and a ring of sets respectively (see [59, Defini-
tions 1.8 and 1.9]). Thus they are well-adapted to measure-theoretic constructions, just like in
Section 2.2.2 where we extend set-indexed processes to stochastic measures. The class C is also
a natural extension of the rectangular increments of R2

+-indexed processes (see Example 1.2.37).
The subclasses C(k) will play an important role to characterize a dimensional property of

A (see Section 1.5). They also are used to define Hölder exponents for set-indexed maps (see
Section 3.4). The particular case ofC(1) — classically denoted byC0 — has been used in [39, 40]
(resp. [41]) to characterize increment stationarity for set-indexed fractional Brownian motion
(resp. set-indexed Lévy processes). Those processes are defined respectively in (1.6.3) and
Definition 2.4.1 and a study of increment stationarity properties is carried out in Section 2.5.
The reason why we chose not to stick with the former notation is that making the notation C(k)
consistent with C0 felt too confusing for us. The parentheses are here not to mix up the two.
We apologize and beg the reader to bear with us on this one.

The following result appears as [47, Assumption 1.1.5]. It is useful to get rid of some redun-
dancies when writing an element of C .

PROPOSITION 1.2.36 (Extremal representation). Any C ∈ C may be written as C = A0 \
⋃k

i=1 Ai
where k ∈ N and A0, ..., Ak ∈ A are all maximal for ⊆, i.e. for all i ∈ ¹1, kº, Ai ⊆ A0 and for all
i, j ∈ ¹1, kº, Ai ⊆ A j implies i = j. This representation, called the extremal representation of C, is
unique up to a relabelling of A1, ..., Ak.

Moreover, if C ∈ C( j) for j ∈ N, then its extremal representation is such that k ¶ j.
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Proof. Let us consider C ∈ C and write C = A0 \
⋃ j

i=1 Ai where j ∈ N and A0, ..., A j ∈A . Denote
the setA ′ = �A0 ∩ A1, ..., A0 ∩ A j

	
. Then, the following writing

C = A0 \
⋃

A∈A ′\{∅}:
A maximal inA ′

A

is an extremal representation of C . Hence the existence. Moreover, since we took C ∈ C( j) by
definition and #

�
A ∈ A ′ \ {∅} : A maximal inA ′	 ¶ j, it also proves the second claim about

the extremal representation.
Let us establish unicity up to relabelling. Suppose that C = A0 \

⋃k
i=1 Ai = A′0 \

⋃k′

j=1 A′j are
two extremal representations of C . We have

A0 = C ∪
k⋃

i=1

Ai ⊆ A′0 ∪
k⋃

i=1

Ai .

Since A0 cannot be included in any Ai for i ∈ ¹1, kº, the SHAPE condition (Definition 1.2.1)
implies that A0 ⊆ A′0. By symmetry, we get A0 = A′0 and also

⋃k
i=1 Ai =

⋃k′

j=1 A j .

Let i ∈ ¹1, kº. Then Ai ⊆
⋃k′

j=1 A′j . By SHAPE, there exists ϕ(i) ∈ ¹1, k′º such that Ai ⊆ A′
ϕ(i).

By symmetry, there also exists a map ψ such that for all j ∈ ¹1, k′º, A′j ⊆ Aψ( j). Since the Ai ’s
(resp. the A j ’s) are maximal, ψ ◦ ϕ = id¹1,kº (resp. ϕ ◦ψ = id¹1,k′º). Hence the unicity up to
relabelling.

EXAMPLE 1.2.37 (Increments classes for T = Rp
+). In Figure 1.7, we drew some increment sets for

T = Rp
+ endowed with its indexing collectionA from Example 1.2.10.

C(2) C(2) C (u)

Figure 1.7: Increment sets for the indexing collection on R2
+.

Remark that, even though C is considered as the natural extension of the notion of ‘rectangular
increments’ from the two-parameter setting, some elements of C are far less ‘well-behaved’ (e.g.
the middle one of Figure 1.7) than others (e.g. the leftmost one in Figure 1.7). Hence the need to
introduce a subclass of C which consists of increments sets among the best that C has to offer. This
class may be found in [47, Assumption 1.1.7].

DEFINITION 1.2.38 (Left neighborhoods C `). For all finite subsetA ′ ⊆A , denote

C `(A ′) =
¦

A\
⋃

A′∈A ′:
A*A′

A′ : A∈A ′
©
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The class of left neighborhoods is then defined as

C ` =
⋃
n∈N

C `(An).

For all t ∈⋃C∈C `(An)
C , let Cn(t) denote the unique element of C `(An) containing t.

For t /∈⋃C∈C `(An)
C , set Cn(t) = T .

The classC `(A ′) is made of the ’indivisible’ (i.e. smallest for the inclusion), pairwise disjoint
elements of C that one can create from A ′. We will give a more lengthy comment about this
class — especially C `(An)— in Section 1.6.

EXAMPLE 1.2.39 (Left neighborhoods for T = Rp
+). When T = Rp

+ is endowed with its usual
indexing collection (Example 1.2.10), the elements of C `(An) are the ’hypercubes’

Rp
+ ∩

p∏
i=1

(di − 2−n, di]

where the di ’s are dyadics of order n in [0, n]. So the leftmost increment set of Figure 1.7 is a left
neighborhood as long as its corner are dyadics.

1.2.4 Increment map and linear functional

We mentioned in Section 1.2.2 that the usual set-indexed formulation has been prefered in the
rest of this thesis over the one of indexing semilattices. One reason of this preference is exposed
here: any set-indexed process X =

�
XA : A ∈ A 	 may be considered as a kind of cumulative

distribution function of an additive map ∆X =
�
∆XU : U ∈ C (u)	. This has two interesting

consequences:

1. The concept of increments for X is well-defined (see Proposition 1.2.44) and generalizes
its usual meaning in R+- and R2

+-indexed theories.

2. An integral against X becomes a perfectly natural object to consider and study.

This section is devoted to progressing towards those two goals. The first one is further studied
in Chapter 2 whereas the construction for the second one is finished in Chapter 2 and studied in
Chapter 3.

DEFINITION 1.2.40 (Simple functions). The space of simple functions is the linear subspace E of
RT spanned by the indicator functions 1A where A∈A .

REMARK 1.2.41. By the usual inclusion-exclusion formula, we know that for all C = A0 \
⋃k

i=1 Ai ∈
C ,

1C = 1A0
−

k∑
i=1

(−1)i
∑

j1<...< ji

1A0∩A j1
∩...∩A ji

, (1.2.7)

hence 1C belongs to E . Since any element of U ∈ C (u)may be written as a disjoint union of elements
in C , its corresponding indicator function will also belong to E . Hence

�
1U : U ∈ C (u)	 ⊆ E .

The following straightforward result highlights an important aspect of C : it enables us to
write simple functions as sums of pairwise disjoint indicators. We give a statement a bit more
specific that will be helpful to identify which elements of C one may choose for such a repre-
sentation.
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PROPOSITION 1.2.42 (C -representation of simple functions). Let A ′ be a finite subset of A ∗
closed under intersections. Then, for all f ∈ span (1A : A∈A ′) , there exists a unique (aC)C∈C `(A ′) ∈
RC

`(A ′) such that
f =

∑
C∈C `(A ′)

aC1C . (1.2.8)

Proof. Consider A ′ and f as stated above. The existence of the representation (1.2.8) directly
follows from the fact that

∀A∈A ′, 1A =
∑

C∈C `(A ′)
1C .

As for unicity, first remark that any C ∈ C `(A ′) is non-empty since it would otherwise contradict
the SHAPE condition. In particular, we may fix for any C ∈ C `(A ′) an element tC ∈ C . Since
the elements of C `(A ′) are pairwise disjoint, we actually have for all C ∈ C `(A ′), aC = f (tC).
The unicity follows.

Beware of the fact that the unicity in Proposition 1.2.42 depends on the choice ofA ′. If one
wanted a unicity independent from this choice, then one would have to rely on the class C (u)
instead.

LEMMA 1.2.43. The family
�
1A : A∈A ∗	 is linearly independent in RT , and thus forms a basis of

E .

Proof. Assume the family is linearly dependent. We can write a dependence relation
∑k

i=1αi1Ai
=

0 where k ∈ N∗, α1, ...,αk ∈ R∗ and A1, ..., Ak ∈A ∗ are pairwise distinct.
By writing for all j ∈ ¹1, kº,

1A j
=

k∑
i=1
i 6= j

αi

α j
1Ai

,

we deduce that

A j ⊆
k⋃

i=1
i 6= j

Ai .

By the SHAPE condition (see Definition 1.2.1), we get that for all j ∈ ¹1, kº, there exists i j ∈
¹1, kº\{ j} such that A j ⊂ Ai j

. Notice that the inclusion is strict since the Ai ’s are pairwise distinct.
Let us show that this brings a contradiction. Since i1 6= 1, instead of relabelling, we might

as well suppose that i1 = 2 so that A1 ⊂ A2. Suppose that A1 ⊂ ... ⊂ A j , then i j > j since i j 6= j
by definition and i j < j would yield the contradiction A j = Ai j

. Hence, up to relabelling, we may
suppose that i j = j + 1 so that A1 ⊂ ... ⊂ A j+1. By iteration, we get A1 ⊂ ... ⊂ Ak, but this is a
contradiction since Ak must also be included in some Ai for i < k.

From this lemma, we deduce the existence of an additive extension ∆h to C (u) of any map
h :A → R. Previously, it was known that SHAPE is a sufficient condition to the existence of such
extensions (see discussion [47, p.25]), but it is also necessary to ensure the existence of all such
extensions (Proposition 1.6.4).

PROPOSITION 1.2.44 (Increment map and linear functional). Consider a map h : A → R such
that h(∅) = 0.
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� There exists a unique additive extension ∆h : C (u)→ R of h, i.e. such that ∆h|A = h and for
all pairwise disjoint U1, U2 ∈ C (u), ∆h(U1 t U2) =∆h(U1) +∆h(U2).

The map ∆h is called the increment map of h.

� There exists a unique linear map h : E → R such that h(1A) = h(A) for all A ∈ A . Moreover,
h(1U) =∆h(U) for all U ∈ C (u).
The map h is called the linear functional associated with h.

Proof. The existence and unicity of h are but a direct consequence of Lemma 1.2.43. For the
increment map, according to Remark 1.2.41, we may define ∆h(U) = h(1U) for all U ∈ C (u),
which is obviously additive.

It remains to prove uniqueness by induction. First, remark that ∆h is uniquely determined
onA since we must have ∆h|A = h. Suppose now that for a fixed integer k ∈ N,∆h is uniquely
determined on the class C(k) (given in Definition 1.2.35) where we recall that C(0) = A . Let

us consider an element Ck+1 = A0 \
⋃k+1

i=1 Ai ∈ C(k+1) and show that the value ∆h(Ck+1) is
determined by ∆h|C(k) .

Denote Ck = A0 \
⋃k

i=1 Ai . Since Ck = Ck+1 t (Ak+1 ∩ Ck), the additivity of ∆h tells us that

∆h(Ck+1) = ∆h(Ck) − ∆h(Ak+1 ∩ Ck)

where both Ck and Ak+1 ∩ Ck actually belong to C(k). Hence ∆h(C(k)) is uniquely determined by
the induction hypothesis.

Thus ∆h is uniquely determined on C =⋃k∈NC(k), but since any element of C (u) may be
written as a disjoint union of elements of C , ∆h is uniquely determined on C (u) by additivity.

1.3 Indexing collections as measured spaces

Indexing collections are generally not ‘rigid’ nor symmetric. By that, we mean in particular that
there is no group acting onA which could give a notion of stationarity beloved by probabilists.
Instead of a rigid group action, we capitalize on the set-indexed setting and consider a ‘softer’
concept by means of a measure m.

This idea, first introduced by Herbin and Merzbach, will be further explored in Section 2.5.

1.3.1 Measure m onB = σ(A )
In the following, for any D ⊆ D′ ⊆ T , we denote the ‘segment’

[D, D′] =
�
A∈A : D ⊆ A⊆ D′

	
. (1.3.1)

Recall that B = σ(A ). Denote M(T ) =
�
µ measure on (T ,B) : ∀A ∈ A , µ(A) <∞	

and
for all µ ∈M(T ),Bµ =

�
B ∈B : µ(B)<∞	

.

DEFINITION 1.3.1 (Set-indexed compatible measure). A measure m on (T ,B) is said to be (set-
indexed) compatible if the following properties hold:

1. (Local finiteness). For all A∈A , m(A)<∞ (i.e. m ∈M(T )).

2. (Midpoint property). For all A0 ⊆ A1 in A , there exists A ∈ [A0, A1] such that m(A \ A0) =
m(A1 \ A).
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3. (Shrinking mesh property). For all A∈A ,

max
A0,A1∈[∅, A]∩An:

A0 maximal proper subset of A1

m(A1 \ A0) −→ 0 as n→∞

where by ‘maximal proper subset’, we mean that A0 ⊂ A1 and there is no A′ ∈ An such that
A0 ⊂ A′ ⊂ A1.

In the sequel, unless otherwise specified, m will stand for such a compatible measure. Before
moving on, let us give a few comments about Definition 1.3.1.

1. The local finiteness assumption ensures thatA ⊆Bm so that it may be endowed with the
metric dm given by:

∀B, B′ ∈Bm , dm(B, B′) = m(B4B′) (1.3.2)

where B4B′ = (B \ B′)∪ (B′ \ B) is the symmetric set difference between B and B′. Topo-
logical properties will be studied in Section 1.3.3 (for dm) and 1.4.4 (for more general
metrics).

2. The midpoint property has this name due to the geometric fact it represents: for all A⊆ A′

inA , there exists a point in the middle of the segment [A, A′] with respect to dm . Remark
that it bestows the indexing collectionA with a ‘continuous’ quality, so all discrete exam-
ples from Section 1.2.2 are hereby cast away. It is an hypothesis reminiscent of the stan-
dard setting of geodesic spaces and its relevance will be further discussed in Sections 1.3.2
and 1.6.4.

3. The shrinking mesh property ensures that the ‘mesh’ created by An shrinks correctly as
n goes to ∞. A similar, quantitative — hence more restrictive — hypothesis is found in
[42, Assumption HA ]. A closely related assumption may also be found in [48, Assumption
2.4] where a lattice-indexed Poisson process is studied. Remark that the shrinking mesh
property is weaker than what is usually required for Talagrand’s chaining argument (see
[102, Section 2]).

REMARK 1.3.2. By a ‘metric’ d on a set D, we actually mean ‘pseudo-metric’, i.e. we only require
d(t, t) = 0 for all t ∈ D instead of the stronger separability axiom d(s, t) = 0 if and only if
s = t for all s, t ∈ D. Such generality is welcome since any reasonable metric dA on A will verify
dA (∅,∅′) = 0 (see Definition 1.4.1) and important examples may only be pseudo-metrics (see
Examples 1.4.2 and 1.4.3). In particular, this abuse explains why we called dm a metric onBm .

EXAMPLE 1.3.3. Consider A as any ‘continuous’ indexing collection taken from Examples 1.2.10,
1.2.25, 1.2.28 or 1.2.31. Then m may be taken as any measure which admits a density with respect
to the relevent ‘Lebesgue measure’ in each context.

Notable exceptions though are indexing collections obtained through compactification (see Corol-
lary 1.2.22 and Example 1.2.29). In that case, the midpoint property and the shrinking mesh
property do not generally hold.

1.3.2 Geodesic flows

As promised, let us now delve into the consequences of the midpoint property (Definition 1.3.1)
for m.
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DEFINITION 1.3.4 (Flow, adapted from [47, Definition 5.1.1]). Let D be a subset of P (T ). A
D-flow is a non-decreasing map φ : [0,1]→D.

The notion of flow is well-known in classical set-indexed theory. One often requires more
properties on the flow than monotonicity and this is where we split from the classical theory
since our topological setting is a bit different. A more thorough comparison between the two is
provided in Section 1.6.

DEFINITION 1.3.5 (Geodesic flow). LetD be a subset ofBm . AD-flowφ : [0,1]→D is a geodesic
D-flow if the following properties hold:

1. (Outer continuity). φ is outer continuous, i.e.

∀t ∈ [0, 1), φ(t) =
⋂
s>t
φ(s).

2. (Geodesic). There exists a constant v(φ)¾ 0 called the speed of the geodesic such that

∀t ∈ [0, 1], m(φ(t) \φ(0)) = v(φ) t. (1.3.3)

The set of all geodesic D-flows is denoted by Φ(D). A geodesic D-flows φ is maximal if m(φ(0)) = 0
and φ(1) is maximal for ⊆ in D. The set of all maximal geodesic D-flows is denoted by Φmax(D).

The main use of flows is that they constitute a bridge between the set-indexed theory and
the [0,1]-indexed one by means of projections.

DEFINITION 1.3.6 (Projection along a flow, adapted from [47, Section 5.1]). Let X =
�

XA : A ∈
A 	 be a set-indexed process and φ be anA -flow. We define the projection of X along φ to be the
[0,1]-indexed process Xφ =

�
Xφ(t) : t ∈ [0, 1]

	
.

The projection along a D-flow for D ∈ �A (u),C ,C (u)	 is similarly defined and denoted by
∆Xφ .

As usual, let us give a few comments about Definition 1.3.5.

1. When studying a one-dimensional process, one often supposes — or already knows — that
it has a version with right continuous sample paths. For the same reasons, when studying
a set-indexed process, a property of ‘continuity from above’ is welcome. Outer continuity
plays a role when this property holds by making sure that for any ‘continuous from above’
X =

�
XA : A∈A 	 and outer continuousA -flowφ, the projection Xφ is a right continuous

process.

2. The reason why the second property is called as such is because any φ ∈ Φ(D) is an actual
geodesic with respect to dm . Indeed, (1.3.3) is equivalent to

∀s, t ∈ [0, 1], dm(φ(s),φ(t)) = v(φ) |s− t|. (1.3.4)

An idea related to projecting of along a geodesic flow may already be found in [40, Defi-
nition 2.3] under the terminology m-standard flow.

Before going on, we review well-known properties about dm and set operators that will be
useful later on.
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LEMMA 1.3.7. For any (Bk)k∈N, (B′k)k∈N sequences inBm ,

dm

�⋂
k∈N

Bk,
⋂
k∈N

B′k

�
¶

∞∑
k=0

dm(Bk, B′k) and dm

�⋃
k∈N

Bk,
⋃
k∈N

B′k

�
¶

∞∑
k=0

dm(Bk, B′k).

Proof. Let (Bk)k and (B′k)k be such sequences. Then,

dm

�⋂
k Bk,

⋂
k B′k

�
= m

��⋃
j Bûj
� ∩ �⋂k B′k

��
+ m

��⋂
k Bk

� ∩ �⋃ j B′ûj
��

¶
∑

j

m
�
Bûj ∩

�⋂
k B′k

��
+
∑

j

m
��⋂

k Bk

�∩ B′ûj
�

¶
∑

j

m(B′j \ B j) +
∑

j

m(B j \ B′j)

=
∑

j

dm(B j , B′j).

The inequality for
⋃

is may be immediately deduced from the previous one and the relation

dm

�⋃
k∈N

Bk,
⋃
k∈N

B′k

�
= dm

�⋂
k∈N

Bûk,
⋂
k∈N

B′k
û
�

.

REMARK 1.3.8. Lemma 1.3.7 implies the continuity of ∩ and ∪ with respect to dm . Actually, we
have

∀B1, B2, B′1, B′2 ∈Bm , dm(B1 � B2, B′1 � B′2) ¶ dm(B1, B′1) + dm(B2, B′2)

where � is any of ∩, ∪ or \. In particular, \ is also continuous.

The following result has a classical alter ego in [47, Lemma 5.1.6].

PROPOSITION 1.3.9 (Existence of A -flows). Let A0, A1 ∈ A such that A0 ⊆ A1. There exists a
continuous (for dm)A -flow φ such that φ(0) = A0 and φ(1) = A1.
Moreover, there exists φ ∈ Φ(A ) such that A0 ⊆ φ(0), m(φ(0) \ A0) = 0 and φ(1) = A1.

Proof. Let A0, A1 ∈ A such that A0 ⊆ A1. The first statement follows from the second one.
Indeed, if φ ∈ Φ(A ) verifies the second statement, then the map

φ′ : [0, 1] −→ A
t 7−→

§
A0 if t = 0,
φ(t) if t > 0

is a continuousA -flow such that φ′(0) = A0 and φ′(1) = A1.
So only the second statement is left. For all n ∈ N, denote by Dn the set of dyadics of order n

in [0, 1] and D =
⋃

n∈N Dn. Starting from {A0, A1} and repeatedly applying the midpoint property
gives a family {Ad}d∈D such that for all d < d ′ in D, Ad ⊂ Ad ′ and for all n ∈ N∗ and d ∈ Dn\Dn−1,
m(Ad \ Ad−2−n) =m(Ad+2−n \ Ad). Define the map φ by

∀t ∈ [0, 1], φ(t) =

� ⋂
d∈D:
d>t

Ad if t < 1,

A1 if t = 1.
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It is obviously an outer continuous A -flow. Moreover, a proof by induction readily shows that
(1.3.3) holds for all t ∈ D where v(φ) = m(A1 \ A0). By outer continuity of φ and m1, (1.3.3)
easily extends to all t ∈ [0,1]. Lastly,φ(0) =

⋂
d∈D:d>0 Ad does contain A0 and since m(A1)<∞,

m(φ(0) \ A0) = lim
d∈D:
d→0+

m(Ad \ A0) = 0.

The result follows.

EXAMPLE 1.3.10. Some might wonder whether one could improve on Proposition 1.3.9 and find
φ ∈ Φ(A ) such that A0 = φ(0) instead, but that is not true. Indeed, if A0 = ∅ and m(A1) > 0,
then for all t > 0, φ(t) 6= ∅. Since A ∗ is closed under intersections and φ is outer continuous,
φ(0) =

⋂
t>0φ(t) 6=∅.

Even taking∅ out the picture does not solve everything. To see that, consider the set T = [0,1]∪{0+}
where 0+ is a point such that 0≺ 0+ and for all t ∈ (0, 1], 0+≺ t. Suppose that m is the measure
on T such that m([0,1] ∩ .) is the usual Lebesgue measure on [0,1] and m({0+}) = 0. Then the
same problem occurs for A0 = {0} and A1 = T even though A0 6= ∅ since φ(0) will necessarily be
equal to {0, 0+}.
PROPOSITION 1.3.11 (Existence of C -flows). Let C0, C1 ∈ C such that C0 ⊆ C1. There exists a
continuous (for dm) C -flow φ such that φ(0) = C0 and φ(1) = C1. Moreover, if C0 = ∅, we may
choose φ so that for all t ∈ [0, 1], C1 \φ(t) ∈ C .

In general, geodesic C -flows do not exist since outer continuity fails most of the time as the
proof may suggest. The additional property at the end will prove to be useful much later to
establish Lemma 2.5.14 when studying increment stationarity for set-indexed processes.

Such a result also holds for C (u) and the proof is a straightforward adaptation.

Proof. Let C0 = A0 \
⋃k

i=1 Ai and C1 = A′0 \
⋃l

j=1 A′j in C and such that C0 ⊆ C1. Without loss
of generality, we may suppose that k, l ∈ N∗ since if it is not the case, one may add the empty
set. By the SHAPE condition, we know that A0 ⊆ A′0. Using Proposition 1.3.9, we denote φ0 a
continuous A -flow from A0 to A′0 and for all (i, j) ∈ ¹1, kº × ¹1, lº, φi j a continuous A -flow
from Ai ∩ A′j to Ai . Then define

φ : [0,1] −→ C

t 7−→





A0 \
⋃

1¶i¶k
1¶ j¶l

φi j(1− 2t) if t ¶ 1/2,

φ0(2t − 1) \
⋃

1¶ j¶l

A′j if t > 1/2.

The map φ is obviously a C -flow such that φ(0) = C0 and φ(1) = C1. It is also continuous on
[0,1] \ {1/2} by continuity of the set operations with respect to dm (see Remark 1.3.8). As for
the continuity at 1/2, we just need to show that

lim
t→1/2+

φ(t) = φ(1/2) = A0 \
⋃

1¶i¶k
1¶ j¶l

(Ai ∩ A′j) = A0 \
⋃

1¶ j¶l

A′j = lim
t→1/2−

φ(t)

which is equivalent to show that
⋃

1¶i¶k
1¶ j¶l

(A0 ∩ Ai ∩ A′j) =
⋃

1¶ j¶l

(A0 ∩ A′j). (1.3.5)

1By outer continuity for m, we mean that for all sequence (Bk)k∈N inBm decreasing to B, m(Bk) ↓m(B) as k→∞.
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The direct inclusion in (1.3.5) is trivial. Let t ∈ A0 ∩ A′j for some j ∈ ¹1, lº. Since t ∈ A0, we
know that either t ∈⋃1¶i¶k Ai or t ∈ C0. But the latter is impossible since it would imply that
t ∈ C1 and thus t /∈ A′j . Hence t ∈⋃1¶i¶k Ai , which proves (1.3.5). Hence φ is continuous.

Now, suppose that C0 = ∅. Instead of the previous flow, we may consider a continuous A -
flow ψ from ∅ to A′0 and define for all t ∈ [0, 1], ψ(t) = A′0 \

�
ψ′(1− t)∪⋃1¶ j¶l A′j

�
. Since

for all t ∈ [0, 1], we have C1 \ψ(t) = C1 ∩ψ′(1 − t) ∈ C : this flow answers our additional
requirement.

PROPOSITION 1.3.12 (Interpolation of a chain inA (u)). For any k ∈ N and finite chain U0 ⊆ ... ⊆
Uk inA (u), there exists a continuous (for dm)A (u)-flow φ such that {U0, ..., Uk} ⊆ φ([0, 1]).
Moreover, there also exists φ ∈ Φ(A (u)) and t0 ¶ ... ¶ tk in [0, 1] such that for all i ∈ ¹0, kº,
Ui ⊆ φ(t i) and m(φ(t i) \ Ui) = 0.

Proof. For the first statement, we only prove the case k = 1 since the general one is deduced
by ‘piecing together’ several flows. Write U0 =

⋃ j
i=1 A0i and U1 =

⋃ j′

i=0 A1i . Using the SHAPE
condition and without loss of generality, we may suppose that j = j′ and that for all i ∈ ¹1, jº,
A0i ⊆ A1i . According to Proposition 1.3.9, for all i ∈ ¹1, jº, there exists a continuousA -flow φi

such that φi(0) = A0i and φi(1) = A1i . Then the map φ =
⋃ j

i=1φi is obviously an A (u)-flow.
According to Remark 1.3.8, it is also continuous. The first statement follows.

As a direct consequence, this result tells in particular that the midpoint property of Defini-
tion 1.3.1 also holds for elements in A (u). More precisely, if A( j)(u) denotes the class of finite
unions of at most j elements of A , then for all U0 ⊆ U1 in A( j)(u), there exists U ∈ A( j)(u)
such that U0 ⊆ U ⊆ U1 and m(U \ U0) = m(U1 \ U). Using this property and the fact that
A( j)(u) is closed under monotone intersections, one may redo the proof of the second statement
of Proposition 1.3.9. The second statement follows.

The next result says that knowing the finite-dimensional distributions of a set-indexed process
is equivalent to knowing those of each projection along a geodesic flow inA (u). A similar result
in the classical setting can already be found in [46, Lemma 6].

THEOREM 1.3.13 (Characterization by projection alongA (u)-flows). Let X , Y be two set-indexed
processes. Then,

X
fdd
= Y ⇐⇒ For all continuous (for dm)A (u)-flow φ, ∆Xφ

fdd
= ∆Yφ .

Suppose that for all C ∈ C , m(C) = 0 implies ∆XC = 0=∆YC a.s. Then,

X
fdd
= Y ⇐⇒ ∀φ ∈ Φ(A (u)), ∆Xφ

fdd
= ∆Yφ .

REMARK 1.3.14. In Theorem 1.3.13, Φ(A (u)) may be replaced by
⋃

n∈NΦmax({U ∈ A (u) : U ⊆
Tn}). Indeed, any φ ∈ Φ(A (u)) is such that φ(1) ⊆ Tn for some n ∈ N, so those maximal flows
are enough to cover all elements inA (u). This will be used to establish representation theorems for
certain classes processes (see Theorems 2.5.30, 2.5.31 and 3.3.8).

Proof. The first statement being simpler to prove, we only prove the second one. More precisely,
we solely focus on the ‘if’ part since the ‘only if’ part is trivial. Suppose that for all φ ∈ Φ(A (u)),
∆Xφ

fdd
= ∆Yφ .

Consider k ∈ N, A0, ..., Ak ∈ A and let us show that
�
XA0

, ..., XAk

� law
=
�
YA0

, ..., YAk

�
. Without

loss of generality, we may also suppose that the family
�
A0, ..., Ak

	
is made of pairwise distinct
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elements, closed under intersection and consistently ordered, i.e. Ai ⊂ A j implies i < j for all
i, j ∈ ¹0, kº. From there, define for all j ∈ ¹0, kº, U j =

⋃
0¶i¶ j Ai . They constitute a chain of

elements inA (u).
Then we may consider φ ∈ Φ(A (u)) and t0 ¶ ...¶ tk in [0, 1] just like in Proposition 1.3.12.
Let i ∈ ¹0, kº. The set Vi = φ(t i) \ Ui belongs to C (u) and is such that m(Vi) = 0. Since

any element in C (u) may be written as a union of elements in C , we get that ∆XVi
= 0 a.s. In

particular, �
∆XU0

, ...,∆XUk

�
=
�
∆Xφ(t0), ...,∆Xφ(tk)

�
a.s. (1.3.6)

and likewise for Y.
Moreover, since ∆Xφ

fdd
= ∆Yφ , we obtain that

�
∆Xφ(t0), ...,∆Xφ(tk)

� law
=
�
∆Yφ(t0), ...,∆Yφ(tk)

�
. (1.3.7)

Combining (1.3.6) and (1.3.7) yields

�
∆XU0

, ...,∆XUk

� law
=
�
∆YU0

, ...,∆YUk

�
(1.3.8)

Let us show that one can reconstitute the Ai ’s from the Ui ’s by proving that span
�
1Ai

: i ¶ j
�
=

span
�
1Ui

: i ¶ j
�

by induction on j. The converse inclusion being a straightforward consequence
of the inclusion-exclusion formula (and not the one needed anyway), we only prove the direct
inclusion.

The case j = 0 is true since A0 = U0. Suppose the result holds up to j−1 for j ∈ ¹1, kº. Then

A j =
�
A j ∩

�⋃
i< j Ai

��
∪
�
A j \

�⋃
i< j Ai

��

=
�⋃

i< j(Ai ∩ A j)
�
∪ �U j \ U j−1

�
.

Since
�
A0, ..., Ak

	
is closed under intersections and has been ordered consistently, by the induc-

tion hypothesis, we get that for all i < j, 1Ai∩A j
∈ span

�
1Uk

: k ¶ j
�

. Hence, due to the expression

of A j above and the inclusion-exclusion formula, we have 1A j
∈ span

�
1Ui

: i ¶ j
�

. In particular,

there exists an endomorphism ϕ : Rk+1→ Rk+1 such that
�
1A0

, ...,1Ak

�
= ϕ

�
1U0

, ...,1Uk

�
. (1.3.9)

Combining (1.3.8) and (1.3.9), we get

�
XA0

, ..., XAk

�
= ϕ

�
∆XU0

, ...,∆XUk

� law
= ϕ

�
∆YU0

, ...,∆YUk

�
=
�
YA0

, ..., YAk

�
.

Hence X
fdd
= Y.

EXAMPLE 1.3.15 (Projections along A -flows are not enough). To our opinion, Theorem 1.3.13
is the main reason why the class A (u) is important in itself and not just as an intermediate step
to define other classes. Indeed, the statement of the theorem becomes false once one replaces A (u)
by A . To see that, suppose that T and A are the ones from Example 1.2.25 with discrete tree
U =

�
0U , 0, 1

	
as illustrated in Figure 1.8.

For notation’s sake, we simply write T =
�

a + i b ∈ C : a, b ∈ [0, 1] and a × b = 0
	
, A =�

∅
	 ∪ �[0, a] : a ∈ [0, 1]

	 ∪ �[0, i b] : b ∈ [0, 1]
	

and m the restriction to T of the Hausdorff
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×
0T

Figure 1.8: Continuous tree T obtained from U =
�
0U , 0, 1

	
.

measure H1 on C. Then consider two independent Brownian motions W and W ′ on [0, 1] and
define the set-indexed processes X and Y by

∀A∈A , XA =





0 if A∈ �∅, {0}	,
Wa if A= [0, a] where a ∈ [0, 1],
W ′

b if A= [0, i b] where b ∈ [0, 1],

and

∀A∈A , YA =





0 if A∈ �∅, {0}	,
Wa if A= [0, a] where a ∈ (0,1],
Wb if A= [0, i b] where b ∈ (0, 1],

For allA -flow φ, Xφ
fdd
= Yφ while X and Y cannot have the same finite-dimensional distributions.

Indeed, we have ∆X[0,1]∪[0,i] =W1 +W ′
1 ∼ N(0, 2) while ∆Y[0,1]∪[0,i] = 2W1 ∼ N(0, 4).

Since this particular indexing collection can also be turned into a classical one (see Exam-
ple 1.6.3), this constitutes a counter-example to [40, Theorem 3.4] which claims that a set-indexed
Brownian motion (siBm) is the only set-indexed process such that its projections along A -flows
are (time-changed) Brownian motions. However, [73, Theorem 1] proves that the result holds if
A -flows are replaced byA (u)-flows.

Here, the siBm happens to be the process X . It is a set-indexed generalization of the one-dimensional
Brownian motion and the Rp

+-indexed Brownian sheet [4, Equation (1.4.15)]. It has been intro-
duced together with its fractional counterpart in [39] and has been studied in [39, 41, 42]. Like
in the one-dimensional case, the siBm plays an important role in set-indexed theory and a central
limit theorem [47, Theorem 9.1.2] still holds.

1.3.3 Topological consequences

Section 1.2.3 introduced a whole lot of other classes than A . The hypotheses on m (Defini-
tion 1.3.1) do have some topological consequences on those classes once they are endowed with
the metric dm given in (1.3.2). Here, we derive those specific consequences while the others —
valid for more general metrics than dm — will be treated in Section 1.4.4.

Approximation of Borel sets and functions

In the case when T = R and m = Leb is the Lebesgue measure, Littlewood’s principles [69]
acts as guides to intuition with regards to measure theory and how can one apprehend some
of its hardest concepts. In particular, the first principle tells that any Borel set B ∈ BLeb can
be approximated as a finite union of intervals with respect to the metric dLeb = Leb(.4.). This
principle is much more general and still holds in our setting when finite unions of segments are
replaced by the elements of C (u) and dLeb by dm .
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Another interesting aspect of dm is its link with the metric of Lp(m) = Lp(T ,B , m) for p ¾ 1,
namely

∀B, B′ ∈Bm , ‖1B −1B′‖Lp(m) = dm(B, B′)1/p. (1.3.10)

Our goal in this section is to prove a result similar to Littlewood’s and apply it to approximate
functions in Lp(m).

LEMMA 1.3.16 (σ-finiteness). The increasing sequence (Tn)n∈N ∈A (u)N given by Tn =
⋃

A∈An
A is

such that T =
⋃

n∈N Tn and m(Tn)<∞ for all n ∈ N. In particular, m is σ-finite.

Proof. T =
⋃

n∈N Tn directly follows from the TIP bijection. The σ-finiteness directly follows
from the local finiteness of m and the fact thatAn is finite.

THEOREM 1.3.17 (Set-indexed Littlewood’s first principle). The metric space (Bm , dm) is complete
and C (u) is a dense subset.

Proof. Due to Lemma 1.3.16, we only prove the results when T ∈A (u). The adaptation to the
σ-finite case is straightforward.

Let us show that Bm is complete. Let (Bk)k∈N be a Cauchy sequence in Bm . According to
(1.3.10), (1Bk

)k∈N is a Cauchy sequence in L1(m). Since L1(m) is complete [9, Theorem 13.5],
this sequence has a limit. We claim that this limit is necessarily of the form 1B where B ∈ Bm .
Indeed, since m(T ) <∞, we may apply Borel-Cantelli’s lemma and obtain that (1Bk

)k∈N has
a subsequence that converges m-a.e. Its limit must thus take its values in {0, 1} m-a.e., i.e. be
equal to 1B for some B ∈Bm . Applying (1.3.10) once more yields that dm(Bk, B)→ 0 as k→∞.
The completeness follows.

Let us prove that C (u) is a dense subset of Bm . Denote by C (u) its closure in Bm . Since
A ⊆ C (u) and σ(A ) = Bm — recall that m(T ) <∞ — it is sufficient to prove that C (u)
is a σ-algebra. Since ∅ ∈ A , then ∅ ∈ C (u). Stability by complement is but a consequence
of the relation dm(B14B2) = dm(Bû14Bû2) for all B1, B2 ∈ Bm . As for stability under countable

intersections, consider a sequence (Bk)k∈N in C (u) and ε > 0. For all k ∈ N, consider Uk ∈ C (u)
such that dm(Bk, Uk)¶ ε 2−(k+1). By Lemma 1.3.7,

dm

�⋂
k∈N

Bk,
⋂
k∈N

Uk

�
¶ ε/2. (1.3.11)

Moreover, since m(T )<∞, the monotone continuity of m implies that

dm

�⋂
k∈N

Uk,
⋂
i¶ j

Ui

�
−→ 0 as j→∞. (1.3.12)

Hence (1.3.11), (1.3.12) and the triangle inequality imply that for some j big enough,

dm

�⋂
k∈N

Bk,
⋂
i¶ j

Ui

�
¶ ε.

Since C (u) is closed under finite intersections,
⋂

i¶ j Ui ∈ C (u). Hence
⋂

k∈N Bk ∈ C (u) and the
result follows.

REMARK 1.3.18. Actually, Bm is also separable — and hence Polish — since the density of the
countable class C `(u) = �⋃k

i=1 Ci : k ∈ N, C1, ..., Ck ∈ C `
	

is easily deduced from that of C (u).
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COROLLARY 1.3.19 (Density of simple functions). For any p ¾ 1, E = span (1A : A∈A ) is dense
in Lp(m).

Proof. Since span (1B : B ∈Bm) is dense in Lp(m) [9, Theorem 13.8], we just need to show that
for all B ∈ Bm , 1B belongs to the closure of E in Lp(m), but that is exactly a consequence of
Theorem 1.3.17 and (1.3.10).

Path-connectedness

As a question of independent interest, we use the existence of flows to prove path-connectedness
results for several classes. Even though those results will not be used elsewhere, we hope that
it will strengthen one’s intuition about indexing collections.

PROPOSITION 1.3.20. Any of the following classes A , A (u), C(k) (k ∈ N), C , C (u) and Bm is
path-connected for dm .

Beginning of the proof of Proposition 1.3.20. Path-connectedness for A and A (u) is a conse-
quence of Propositions 1.3.9 and 1.3.12 respectively.
Let us fix k ∈ N and prove that C(k) is path-connected. Consider C = A0 \

⋃k
i=1 Ai and C ′ =

A′0 \
⋃k

i=1 A′i in C(k). For all i ∈ ¹0, kº, consider a continuous path φi : [0, 1] → A such that

φi(0) = Ai and φi(1) = A′i . Then the mapψ= φ0 \
⋃k

i=1φi is such thatψ(0) = C andψ(1) = 1.
Due to Remark 1.3.8, ψ is also continuous. Hence C(k) is path-connected.
Then C =⋃k∈NC(k) is path-connected as a non-decreasing union of path-connected sets.
The class C (u) is path-connected since C is and ∪ is continuous (Remark 1.3.8).

For Bm , we need a bit more effort concerning the kind of paths connecting sets in C and
C (u). Indeed, Theorem 1.3.17 tells that Bm is the closure of C (u). However the result does
not follow directly since the closure of a path-connected space is not necessarily path-connected
itself. A well-known counter-example is the closure in R2 of

�
(t, sin(1/t)) : t ∈ (0, 1]

	
which is

not path-connected. It teaches us that one has to first control the oscillations of the connecting
paths.

LEMMA 1.3.21. For any U , U ′ ∈ C (u), there exists a continuous (for dm) map φ : [0, 1]→ C (u)
such that the following holds:

1. [0,1] 3 t 7→ φ(1/2− t/2) is a C (u)-flow from U ∩ U ′ to U ,

2. [0,1] 3 t 7→ φ(1/2+ t/2) is a C (u)-flow from U ∩ U ′ to U ′.

Proof. This lemma is just a convoluted way of putting together two continuous C (u)-flows. Use
Proposition 1.3.11 to create a C (u)-flow ψ (resp. ψ′) from U ∩ U ′ to U (resp. U ′). Then, the
map defined by

φ : [0, 1] −→ C (u)
t 7−→

§
ψ(1− 2t) if t ¶ 1/2,
ψ′(2t − 1) if t > 1/2

answers our needs.

End of the proof of Proposition 1.3.20. Let us prove thatBm is path-connected. Let B ∈Bm and
let us show that B is connected to ∅. Due to Theorem 1.3.17, there is a sequence (Uk)k∈N∗ in
C (u) such that U1 = ∅ and dm(Uk, B) → 0 as k → ∞. For all k ∈ N∗, let xk = 1 − 1/k and
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φk : [0,1]→C (u) be the map given by Lemma 1.3.21 for U = Uk and U ′ = Uk+1. Then define
for all k ∈ N∗ the map

ψk : [xk, xk+1) −→ C (u)
t 7−→ φk

�
(t − xk)/(xk+1 − xk)

�

as well as
φ : [0,1) −→ C (u)

t 7−→ ψk(t) if t ∈ [xk, xk+1) where k ∈ N∗.

By construction, φ is continuous. Let us show that it may be extended by continuity by posing
φ(1) = B. Let t ∈ [0, 1) and denote by k = k(t) the only positive integer such that t ∈ [xk, xk+1).
Then, since for all s ∈ [0,1], (Uk ∩ Uk+1) ⊆ φk(s) ⊆ (Uk ∪ Uk+1), we have

dm(φ(t), Uk ∩ Uk+1) ¶ max
s∈[0,1]

dm(φk(s), Uk ∩ Uk+1)

= max
s∈[0,1]

m
�
φk(s) \ (Uk ∩ Uk+1)

�

¶ m
�
(Uk ∪ Uk+1) \ (Uk ∩ Uk+1)

�

= dm(Uk, Uk+1).

Thus, since Uk → B as k→∞ and ∩ is continuous (Remark 1.3.8),

dm(φ(t), B) ¶ dm(φ(t), Uk ∩ Uk+1) + dm(Uk ∩ Uk+1, B) −→ 0 as t → 1−.

So setting φ(1) = B defines a continuous path from ∅ to B. HenceBm is path-connected.

1.4 Indexing collections as metric spaces

1.4.1 Metric dA onA
Since we want to have a look at the regularity of set-indexed processes, we require a metric dA
on A . Moreover, we want dA to interact well with the already existing order structure of the
indexing collectionA . A similar approach has been undertaken in [42] to obtain a set-indexed
version of Kolmogorov-Čentsov’s regularity theorem, but here we do not require any quantitative
hypothesis.

Some might say that the metric dm introduced in (1.3.2) should be enough to our purposes
and they would be mostly right. However, dm is not always an intuituive metric when trying to
come up with examples. For instance, even in the simple case when T = R2

+ (Example 1.2.10)
and m is the Lebesgue measure, the balls for dm are not exactly well-behaved per say. Indeed,
when the center is not on the axes, a ball of small radius is delimited by four branches of hyper-
bolae (see Figure 1.9).

Remark that due to the TIP assumption (Definition 1.2.1), it is equivalent to either give a
metric dA onA or a metric dT on T and to define the other through the relations:

∀s, t ∈ T , dT (s, t) = dA (A(s), A(t)),
∀A, A′ ∈A , dA (A, A′) = dT (t(A), t(A′)).

(1.4.1)

with the convention that t(∅) = t(∅′) (= 0T ).
This pushes further the correspondence established by Theorem 1.2.5. We emphasize that

even though T might sometimes by endowed with a natural metric, if dA is given, then dT will
always be defined by (1.4.1) and vice versa.
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t1t1 −ρ/t2 t1 +ρ/t2

t2

t2 −ρ/t1

t2 +ρ/t1

t
×

Figure 1.9: Ball of center t ∈ (R∗+)2 and radius ρ ∈ (0, t1 t2] for dm .

DEFINITION 1.4.1 (Set-indexed compatible metric). A metric dA onA is said to be (set-indexed)
compatible if the following properties hold:

1. (Contractivity). For any A, A′, A′′ ∈A , dA (A∩ A′′, A′ ∩ A′′)¶ dA (A, A′).

2. (Outer continuity). For any non-increasing sequence (Ak)k∈N in A , dA (Ak, A)→ 0 as k→
∞ where A=

⋂
n∈N An.

3. (Shrinking mesh property). For all A∈A ,

max
A0,A1∈[∅, A]∩An:

A0 maximal proper subset of A1

dA (A0, A1) −→ 0 as n→∞.

In the sequel, unless otherwise specified, dA will stand for such a compatible metric. In
particular, the metric dT given by (1.4.1) endows T with a topology, relating back to the usual
definition of indexing collection given in [47] where T is supposed to be a topological space
from the start (see Section 1.6.1 for more details).

Open balls for dA and dT will be denoted by BA (A,ρ) and BT (t,ρ) respectively.

The first two properties of Definition 1.4.1 may already be found in [42, Definition 2.2] and
ensure that dA is compatible with the order structure on T . As for the shrinking mesh property,
it is just a metric version of the one given in Definition 1.3.1 and serves the same purpose.

EXAMPLE 1.4.2. The metric dm = m(.4.) is compatible due to the compatibility of m itself. It
plays an important role in the context of the regularity of stochastic processes. In that endeavor,
the first milestone certainly is the Kolmogorov-Čentsov’s regularity theorem and its variants [80].
They teach us that for a process X =

�
XA : A ∈ A 	 in L2(Ω), a natural metric to consider is

(A, A′) 7→ ‖XA− XA′‖L2(Ω) = E((XA− XA′)2)
1/2.

Moreover, when X is a Gaussian process [4, Section 1.3] or more generally, a Lévy process with
stationarity measure m (Definition 2.4.1), we have E

�
(XA− XA′)2

�∝ dm(A, A′) for all A, A′ ∈A .
Hence the need to study dm . Remark that elevating dm to a power smaller than 1 changes nothing
with regards to its set-indexed compatibility.
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EXAMPLE 1.4.3 (Hausdorff metric). In the case where T itself is endowed with a metric d, instead
of directly defining dA through dT = d, we may also consider the induced Hausdorff metric given
by

∀A, A′ ∈A ∗, dH(A, A′) = inf
�
ε > 0 : A′ ⊆ Aε and A⊆ (A′)ε	 (1.4.2)

where Aε = {t ∈ T : d(t, A)¶ ε} and dH(∅, A) = dH(∅′, A) for all A∈A . The metric dH is always
contractive, outer continuous if d is with respect to the semilattice (T ,´). Similarly, the shrinking
mesh property may be formulated in terms of d.

The Hausdorff metric has been considered in the classical set-indexed setting from the beginning
and many developments have it as a centerpiece (see [47, Chapters 1 and 7] for more details).

1.4.2 Metric dC on C
The metric dA onA may be naturally extended to a metric dC on C with corresponding inter-
esting properties.

DEFINITION 1.4.4 (Metric dC on C ). For any C = A0 \
⋃k

i=1 Ai and C ′ = A′0 \
⋃k′

j=1 A′j in C
written with their extremal representations (Proposition 1.2.36), denote by dC (C , C ′) the Hausdorff
distance between the sets

�
A0, ..., Ak

	
and

�
A′0, ..., A′k′

	
, i.e.

dC (C , C ′) = max
§

max
0¶i¶k

min
0¶ j¶k′

dA (Ai , A′j), max
0¶ j¶k′

min
0¶i¶k

dA (Ai , A′j)
ª

.

(C , dC ) is a metric space for which the canonical injection (A , dA ) ,→ (C , dC ) is an isometry,
i.e. dC (A, A′) = dA (A, A′) for all A, A′ ∈A . Open balls for dC will be denoted by BC (C ,ρ).

In order to comprehend what is going on for dC , the minimum is here in order to ’match’
Ai with the closest A′j and vice versa while the maximum takes the total error into account for
the best matching. dC is well-defined since the extremal representation of an element of C is
unique due to Proposition 1.2.36.

The next lemma basically tells that all constitutive elements of Cn(t) (Definition 1.2.38)
converge to A(t) as n tends to infinity and sheds a new light on the metric dT given by (1.4.1).

LEMMA 1.4.5. For all t ∈ T , dC (Cn(t), A(t))→ 0 as n→∞. Moreover,

∀s, t ∈ T , dT (s, t) = lim
n→∞ dC (Cn(s), Cn(t)). (1.4.3)

Proof. Let t ∈ T and ε > 0. By outer continuity of dA , there exists an integer n0 such that

∀n¾ n0, An(t) ∈An and dA (An(t), A(t)) ¶ ε/2. (1.4.4)

By the shrinking mesh property, there exists n1 ¾ n0 such that

∀n¾ n1, max
A,A′∈[∅, An0

(t)]∩An:
A maximal proper subset of A′

dA (A, A′) ¶ ε/2. (1.4.5)

By (1.4.4), for all n ¾ n0, Cn(t) ∈ C `. In particular, we may write its extremal representation
Cn(t) = A0

n \
⋃kn

i=1 Ai
n. By (1.4.5), we get

∀n¾ n1, ∀i ¶ kn, dA (An(t), Ai
n) ¶ ε/2. (1.4.6)
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Hence it follows that for all n¾ n1,

dC (Cn(t), A(t)) ¶ dC (Cn(t), An(t)) + dA (An(t), A(t))

¶ ε/2 + ε/2 by (1.4.4) and (1.4.6).

Hence dC (Cn(t), A(t))→ 0 as n→∞.
Only (1.4.3) remains to prove. Let s, t ∈ T . Remark that Cn(s) and Cn(t) both belong to C

for all n big enough, say n¾ n2. Then we can write for all n¾ n2,

dT (s, t) = dC (A(s), A(t)) ¶ dC (A(s), Cn(s)) + dC (Cn(s), Cn(t)) + dC (Cn(t), A(t)).

Taking lower limits yields dT (s, t)¶ lim infn→∞ dC (Cn(s), Cn(t)). Conversely, for all n¾ n2,

dC (Cn(s), Cn(t)) ¶ dC (Cn(s), A(s)) + dT (s, t) + dC (Cn(t), A(t)).

Taking upper limits yields limsupn→∞ dC (Cn(s), Cn(t))¶ dT (s, t). The limit (1.4.3) follows.

1.4.3 Divergence d and vicinities

We introduce here a notion of interaction between points t ∈ T and A∈A that the metrics dA
and dT fail to capture. It will prove to be useful when looking at which points in T have an
influence over the regularity of some set-indexed process around a given A∈A .

At the most basic level, looking at the regularity of a set-indexed process X =
�

XA′ : A′ ∈A 	
at some fixed A ∈ A means studying the behavior of increments of the form XA − XA′ for all
A′ ∈A such that dA (A, A′) is small.

Using the additive extension ∆X of X provided by Proposition 1.2.44, we get for all A′,

XA− XA′ =
�
∆XA\A′ + XA∩A′

� − �∆XA′\A+ XA∩A′
�
= ∆XA\A′ − ∆XA′\A. (1.4.7)

So the points in T that are concerned by the increment XA − XA′ are those in A4A′ = (A \
A′) t (A′ \ A). However for some point t ∈ A4A′, having dA (A, A′) small does not necessarily
mean that dA (A, A(t)) is small as well. This is illustrated Figure 1.10 when T = R2

+ and dT is
the euclidean distance. Hence a need to characterize ‘how close’ such t is to A.

A

A′

t

Figure 1.10: Point t ∈ A4A′ where dA (A, A′) is much smaller than dA (A, A(t)).

DEFINITION 1.4.6 (Vicinity V and divergence d). For all A∈A , t ∈ T and ρ > 0, define

V(A,ρ) =
⋃

A′∈BA (A,ρ)

�
A4A′

�
and d(t, A) = inf

¦
ρ > 0 : t ∈ V(A,ρ)

©

with the convention that V(A,ρ) =∅ for ρ ¶ 0.
V(A,ρ) is called the vicinity of A of size ρ and d(t, A) the divergence between t and A.
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This definition naturally yields two notions of ‘open balls’ for t ∈ T , A∈A and ρ > 0:

V(A,ρ) =
�
s ∈ T : d(s, A)< ρ

	
, (1.4.8)

V ′(t,ρ) =
�
A′ ∈A : d(t, A′)< ρ

	
. (1.4.9)

where we check that (1.4.8) is consistent with Definition 1.4.6. V ′(t,ρ) will be called dual
vicinity of t of size ρ.

EXAMPLE 1.4.7. Although d(t, A) = dA (A(t), A) in the case where T = R+ (or a tree more generally,
see Example 1.2.25), other behaviors start to appear in higher-dimensional examples.

When T = R2
+ and dT = d2 is the usual euclidean distance, the vicinities are illustrated in

Figure 1.11.

2ρ

2ρt×

V(A(t),ρ) (hatched) and BT (t,ρ) (crossed)

2ρ

2ρ t×

V ′(t,ρ) (hatched) and BT (t,ρ) (crossed)

Figure 1.11: Vicinity and dual vicinity for (T , dT ) = (R2
+, d2).

Some might wonder whether through the TIP bijection, one could obtain a metric on T with
the formula (s, t) 7→ d(s, A(t)). However that is not the case since both symmetry and triangle
inequality fail in general. Indeed, if symmetry was true, we would have V(A(t),ρ) = t(V ′(t,ρ))
but Figure 1.11 strongly suggests that is generally not the case. As for triangle inequality, Fig-
ure 1.12 illustrates a case where while both d(s, A(t)) and d(t, A(u)) are small — s and t are
contained in corresponding small vicinities — d(s, A(u)) is big, so d(s, A(u))¶ d(s, A(t))+ d(t, A(u))
cannot hold.

×s t×

u×

Figure 1.12: The hatched regions represent vicinities of A(t) and A(u).

Before moving on, let us briefly study V and d in order to see that, even though there is no
metric structure in general, those objects still retains some related nice geometric properties.

PROPOSITION 1.4.8 (Properties of V). The following properties hold:
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1. (Vicinities behave like open balls). For all A, A′ ∈A and ρ > 0,
⋃
ρ′<ρ

V(A,ρ′) = V(A,ρ) ⊆
⋂
ρ′>ρ

V(A,ρ′) (1.4.10)

and
V(A′,ρ − dA (A, A′)) ⊆ V(A,ρ) ⊆ V(A′,ρ + dA (A, A′)). (1.4.11)

2. (Discretization of the vicinity). For all A∈A , ρ > 0 and n ∈ N, denote

Vn(A,ρ) =
⋃

A,A∈An∩BA (A,ρ):
A⊂A

�
A\ A

�
= V n(A,ρ) \ V n(A,ρ) (1.4.12)

where V n(A,ρ) (resp. V n(A,ρ)) is the union (resp. intersection) of all maximal (resp. mini-
mal) elements for ⊆ inAn ∩ BA (A,ρ). Then

V(A,ρ) =
⋃
n∈N

Vn(A,ρ). (1.4.13)

The vicinity V(A,ρ) will actually play an important role to understand the Hölder regularity
of some set-indexed processes (see (3.5.6) and Theorem 3.5.2). As an intermediary step, the
Vn(A,ρ)’s should be seen as a discretized version of V(A,ρ) and will be used to get an upper
bound on the Hölder regularity based on the jumps of the process (Lemma 3.4.8). The vicinity
also intervenes in a set-indexed versions of Doob’s maximal inequality (Corollary 2.3.31) as well
as a 0-1 law similar to Blumenthal’s (Theorem 2.3.33).

Proof. Let us fix A, A′ ∈A , n ∈ N and ρ > 0.

1. The relation (1.4.10) is a straightforward consequence of the definition.

Let us prove the second inclusion of (1.4.11). Consider A′′ ∈ BA (A,ρ). Then

A4A′′ =
�
A\ A′′

�∪ �A′′ \ A
�

⊆ ��
A\ A′

�∪ �A′ \ A′′
��∪ ��A′′ \ A′

�∪ �A′ \ A
��

=
�
A4A′

�∪ �A′4A′′
�
.

Since both dA (A′, A) and dA (A′, A′′) are smaller than ρ + dA (A, A′), we get

A4A′′ ⊆ V(A′,ρ + dA (A, A′)).

Hence V(A,ρ) ⊆ V(A′,ρ+dA (A, A′)). The first inclusion follows from this one by permuting
A and A′ as well as replacing ρ by ρ − dA (A, A′).

2. Let us prove that the definition (1.4.12) of Vn(A,ρ) is consistent.

Denote
V n(A,ρ) = A1 ∪ ...∪ Ak
V n(A,ρ) = A1 ∩ ...∩ A`

where the Ai ’s (resp. Aj ’s) are the maximal (resp. minimal) elements in An ∩ BA (A,ρ).
Then

V n(A,ρ) \ V n(A,ρ) =
⋃

1¶i¶k
1¶ j¶`

�
Ai \ Aj

�
.
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From this expression, the converse inclusion in (1.4.12) is straightforward whereas the
direct inclusion comes from the fact that any A\ A is included in some Ai \ Aj .

Let us prove the direct inclusion in (1.4.13). For A′ ∈ BA (A,ρ), we have A4A′ =
�
A\ (A∩

A′)
� ∪ �A′ \ (A∩ A′)

�
by definition. Hence, by separability from above (Definition 1.2.1),

we get

∀n0 ∈ N, A4A′ ⊆
⋃

n¾n0

�
gn(A) \ gn(A∩ A′)

�∪ �gn(A
′) \ gn(A∩ A′)

�
(1.4.14)

which would then be included in
⋃

n∈N Vn(A,ρ) as long as there exists n0 ∈ N such that

∀n¾ n0, max
¦

dA (A, gn(A)), dA (A, gn(A
′)), dA (A, gn(A∩ A′))

©
< ρ. (1.4.15)

So let us find such n0. Using outer continuity and contractivity for the last inequality (Def-
inition 1.4.1), we get the following:

dA (A, gn(A)) −→
n→∞ dA (A, A) = 0 < ρ

dA (A, gn(A′)) −→
n→∞ dA (A, A′) < ρ

dA (A, gn(A∩ A′)) −→
n→∞ dA (A, A∩ A′) ¶ dA (A, A′) < ρ.

Thus (1.4.15) is true for a big enough n0 ∈ N. Hence

V(A,ρ) ⊆
⋃
n∈N

Vn(A,ρ).

For the converse inclusion in (1.4.13), fix A, A∈ BA (A,ρ) such that A⊂ A. Then,

A\ A =
��

A∩ A
� \ A

�∪ �A\ �A∩ A
��

⊆ ��
A∩ A

�4A
�∪ �A4�A∩ A

��
.

Contractivity then shows that both A∩A and A∩A belong to BA (A,ρ). The result follows.

PROPOSITION 1.4.9 (Ersatz of triangle inequality). For all t ∈ T , the map d(t, .) is 1-Lipschitz,
i.e.

∀A, A′ ∈A , |d(t, A)− d(t, A′)| ¶ dA (A, A′).

Proof. Let us fix t ∈ T , A, A′ ∈ A and ρ > dA (A, A′). Denoting ε = ρ − dA (A, A′) and using
(1.4.11), we obtain

t ∈ V(A, d(t, A) + ε) ⊆ V(A′, d(t, A) +ρ),
V(A′, d(t, A)−ρ) ⊆ V(A, d(t, A)− ε) 63 t.

Hence, by definition of d(t, A′), for all ρ > dA (A, A′),

d(t, A)−ρ ¶ d(t, A′) ¶ d(t, A) +ρ.

The result follows from taking ρ→ dA (A, A′)+ in the previous inequality.
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1.4.4 Topological consequence

The following property will be useful when studying weak convergence in some functional spaces
in Chapter 3.

PROPOSITION 1.4.10 (σ-compacity). For all U ∈ A (u), the set [∅, U] =
�
A ∈ A : A ⊆ U

	
is

compact. In particular, (A , dA ) is σ-compact, i.e. it is a countable union of compact sets.

Proof. Let U ∈A (u). Without loss of generality, we might as well suppose that the constitutive
elements of U all belong toA0 so that for all n ∈ N and A∈ [∅, U], gn(A) ∈A .

Let us consider a sequence (Ak)k∈N in [∅, U] and prove that it has a convergent subsequence
in [∅, U]. By the pigeonhole principle, there exists A′0 ∈ A0 and an extraction ϕ0 such that
g0(Aϕ0(k)) = A′0 for all k ∈ N. Iterating in this manner yields a non-increasing sequence (A′n)n∈N
in [∅, U] and a sequence of extractions (ϕn)n∈N such that

∀n, k ∈ N, gn(Aϕ0◦...◦ϕn(k)) = A′n.

Define then the diagonal extraction ψ by ψ(n) = ϕ0 ◦ ... ◦ϕn(n) for all n ∈ N and A′ =
⋂

n∈N A′n.
By outer continuity, we have

dA (gn(Aψ(n)), A′) = dA (A
′
n, A′) −→ 0 as n→∞. (1.4.16)

By the shrinking mesh property, dA (gn(A), A)→ 0 as n→∞ uniformly in A∈ [∅, U]. In partic-
ular,

dA (gn(Aψ(n)), Aψ(n)) −→ 0 as n→∞. (1.4.17)

Combining (1.4.16) and (1.4.17) yields dA (Aψ(n), A′) → 0 as n → ∞. Hence (Ak)k∈N has a
convergent subsequence in [∅, U], so [∅, U] is compact.

As forσ-compactness, it is a consequence of the previous result and writingA =⋃n∈N[∅,Tn]
where Tn =

⋃
A∈An

A.

EXAMPLE 1.4.11 (A is generally not locally compact). AltoughA is σ-compact, it does not imply
local compacity. To see that, consider the continuous tree T ' {0T } t

�
(0,1] × N

�
from Exam-

ple 1.2.25 with the discrete tree U = {0U} ∪N and illustrated in Figure 1.13.

0T

Figure 1.13: Continuous tree obtained from U = {0U} ∪N.

The space T is endowed with the ‘SNCF metric’ dT given for all s = (x , u) and t = (y, v) in
(0,1]×N by

dT (s, 0T ) = x , dT (0T , t) = y and dT (s, t) =
§ |x − y| if u= v,

x + y if u 6= v.

where we made the non-consequential abuse of considering that the ' above is in fact an equality.
Letρ > 0. The open ball BT (0T ,ρ) cannot be compact since it contains the sequence

�
(ρ/2, u)

�
u∈N

which has no convergent subsequence. By the relation (1.4.1) between dT and dA ,A is not locally
compact around ∅′.
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1.5 Indexing collections of finite dimension

1.5.1 A poset approach

In this part, we propose a set of hypotheses which embodies the notion for an indexing collection
A to have finite dimension. They will be used in particular to establish a strong Lévy-Itô de-
composition (Theorem 3.3.8) and combined with the concepts of the previous section to prove
some martingale related results (Section 2.3.3).

DEFINITION 1.5.1 (Order embedding). If (E,´E) and (F,´F ) are two partially ordered sets, an
order embedding ϕ : E ,→ F is a map such that

∀x , y ∈ E, x ´E y ⇐⇒ ϕ(x) ´F ϕ(y).

DEFINITION 1.5.2 (Order dimension). A partially ordered set (E,´) has poset (or order) dimen-
sion ¶ p where p ∈ N if there exists an order embedding ϕ : E ,→ Np where Np is endowed with the
usual componentwise partial order and N0 = {0} by convention.

Some authors prefer an alternative definition to Definition 1.5.2 based on the intersection of
linear orders. We refer to [79, Theorem 10.4.2] to see they are equivalent.

DEFINITION 1.5.3 (Indexing collection of finite dimension). The indexing collection A is said to
have finite dimension if there exists p ∈ N such that the following properties hold:

1. TheAn’s all have poset dimension ¶ p.

2. C ` ⊆ C(p), i.e. any left-neighborhood C ∈ C ` may be written C = A0 \
⋃p

i=1 Ai where
A0, ..., Ap ∈A .

The smallest of such integers will be called the dimension ofA and denoted dimA .

In the sequel, the dimension of A shall not always be finite. The hypothesis will appear
explicitly each time we suppose so.

As usual, we comment on the definition before moving on. The two properties bound the
local of elements in the ‘mesh’ An as n goes to ∞ but each in a different way. They follow a
philosophy similar to [42, Assumption HA ] albeit without being equivalent.

EXAMPLE 1.5.4. The usual indexing collection of T = Rp
+, Rp or [0, 1]p (see Examples 1.2.10 and

1.2.28) has dimension p.

EXAMPLE 1.5.5. The indexing collection for a continuous tree from Example 1.2.25 or 1.2.30 has
dimension 2 as long as it not a chain (in this cas, it has dimension 1).

Remark that being of finite dimension actually concerns the sequence (An)n∈N more than A
itself. If that were not the case, most of those continuous trees would have a dimension much bigger
than 2.

EXAMPLE 1.5.6 (1��⇒2 in Definition 1.5.3). One might think that if theAn’s have poset dimension
¶ p, then C ` ⊆ C(q) for some q ∈ N possibly greater than p. Unfortunately, that is generally
not the case even for T = [0, 1]2 endowed with the usual component-wise partial order (restrict
Example 1.2.10 to [0,1]2) if (An)n∈N happens to be badly chosen. Figure 1.14 illustrates such a
case where we drew the first steps to a construction where for all n ∈ N, the poset dimension ofAn
is ¶ 2 while Cn(1, 1) ∈ C(n+1) \C(n).
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EXAMPLE 1.5.7 (2��⇒1 in Definition 1.5.3). Just as well, having C ` ⊆ C(p) does not impose a
uniform bound on the poset dimension of the An’s. To present a counter-example, we will make
full use of Theorem 1.2.5 and specify the indexing semilattice (T ,´) together with an increasing
sequence (Dn)n∈N of finite subsets of T closed under minima such that D =

⋃
n∈N Dn satisfies the

separability from above condition (Definition 1.2.3). For all n ∈ N, the class An is then recovered
from Dn through the TIP bijection t: An =

�
t−1(D) : D ∈ Dn

	∪ �∅	.

Denote T =
�

E ⊆ N : #E ¶ 2
	

ordered by inclusion and for all n ∈ N, Dn =
�

E ⊆ ¹0, nº :
#E ¶ 2

	
. The poset (T ,⊆) is closed under any intersections and is countable, so D =

⋃
n∈N Dn = T

directly satisfies separability from above. Hence (T ,⊆) is an indexing semilattice.

In this context, condition 2 of Definition 1.5.3 translates into: for any E ∈ T , E has at most
p maximal proper subsets in T . It is then easily seen that p = 3 works fine here. As for condition
1, [94] tells us that the poset dimension of Dn is of order log2 log2 n (an asymptotic expansion is
worked out in [32], see also [98] for an introductory survey on the matter). In particular, the poset
dimension of Dn cannot be uniformy bounded with respect to n.

Remark that even though this example is discrete — and thus excluded once a compatible mea-
sure m is considered — it can be made into a continuous one by a series gluing of unit segments
similar to Example 1.2.25.

×(1, 1)

C1(1, 1) /∈ C(1)

×(1, 1)

C2(1, 1) /∈ C(2)

×(1, 1)

C3(1, 1) /∈ C(3)

×(1, 1)

C4(1, 1) /∈ C(4)

Figure 1.14: T = [0, 1]2 and a bad choice of (An)n∈N.
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1.5.2 Entropy bound

An important consequence of being finite-dimensional is that it gives a bound on the entropy of
A . This property has been successfully applied by numerous authors to investigate the regularity
of stochastic processes as well as Donsker classes (see [4, 100] and references therein for more
details).

DEFINITION 1.5.8 (VC-class, [100, Section 2.6.1]). Let D be a collection of subsets of T . For any
finite subset E ⊆ T , denote

∆D(E) = #
�

E ∩ D : D ∈ D	.

The class D shatters E if ∆D(E) = #P (E) = 2#E . The VC-index V C(D) of D is defined as

V C(D) = inf

(
k ∈ N : max

E⊆T :
#E=k

∆D(E)< 2k

)

with the convention inf∅=∞. If V C(D)<∞, then D is called a Vapnik-Červonenkis class.

EXAMPLE 1.5.9 (VC-index of the indexing collection on Rp
+). Suppose thatA is the usual indexing

collection of rectangles on T = Rp
+ where p ∈ N∗ (Example 1.2.10). Let us show that V C(A ) =

p+ 1.
First, the canonical basis B = {e1, ..., ep} of Rp is shattered byA . Indeed, for any subset B′ ⊆ B,

we have B ∩ A(tB′) = B′ where tB′ =
∑

e∈B′ e. Hence ∆A (B) = 2p, so V C(A )> p.
Let us show the converse inequality. Let E = {t1, ..., tp+1} be a subset of Rp

+ of cardinal p +
1. Instead of relabelling the vectors, we might as well suppose that for all j ∈ ¹1, pº, tp+1, j ¶
max1¶i¶p t i j . Denote s = (max1¶i¶p t i1, ..., max1¶i¶p t ip) ∈ Rp

+. Then the previous assumption reads
tp+1 ´ s where ´ is the component-wise partial order on Rp

+. Since the smallest set inA containing
{t1, ..., tp} is A(s) and tp+1 ∈ A(s) as well, E cannot be shattered byA . Hence V C(A )¶ p+1. The
result follows.

LEMMA 1.5.10 (Bounding the VC-index by the dimension). The following inequality holds: V C(A )¶
dimA + 1. In particular, ifA is finite-dimensional, it is also a Vapnik-Červonenkis class.

Proof. Denote p = dimA . If p =∞, there is nothing to prove.
Let us suppose that p <∞ and show V C(A )¶ p+1. Let E be a finite subset of T shattered by
A . By separability from above (Definition 1.2.1), E must also be shattered by An for some big
enough n ∈ N. Consider an order embedding ϕ :An ,→ Np and denote F =

�
ϕ(An(t)) : t ∈ E

	 ⊆
Np. Since E is shattered by An and ϕ is injective, we have #E = #F. Moreover, since ϕ is also
order embedding, F is shattered by the indexing collection on Rp

+. In particular, #E = #F ¶ p
according to Example 1.5.9. The result follows.

DEFINITION 1.5.11 (Log-entropy, [4, Definition 1.3.2]). Let (D, dD) be a metric space. For all
ε > 0, denote by N(ε,D, dD) = N(ε) the minimal number — possibly infinite — of balls of radius
ε required to cover D. The log-entropy of D is then defined for ε > 0 as H(ε,D, dD) = H(ε) =
log N(ε).

One could not overstate the importance of log-entropy when studying the regularity of
stochastic processes. For instance, Dudley [28, Theorem 1.1] proved that for a centered Gaussian

process X =
�
Xt : t ∈ T

	
to have continuous sample paths, it is sufficient that

∫ 1

0

H1/2(ε) dε <

∞ where H is the log-entropy on (T , dT ) for dT (s, t) = ‖Xs − Xt‖L2(Ω). Moreover, this condition
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becomes necessary if T is a group and the law X is invariant by translation. We refer to [4,
Theorems 1.3.5 and 1.5.4] for more details.

In order to prepare for the study of sample paths of set-indexed processes, we give an entropy
bound which is mainly a consequence of [100, Theorem 2.6.7].

THEOREM 1.5.12 (Entropy bound, adapted from [100, Theorem 2.6.7]). If p = dimA is finite,
then for all U ∈A (u), there exists κp,m(U) > 0 such that

∀ε ∈ (0, m(U)∧ 1), N(ε, [∅, U], dm) ¶ κp,m(U)

�
1
ε

�p

.

In particular,
H(ε, [∅, U], dm) = O (log(1/ε)) as ε→ 0+.

Proof. Suppose that p = dimA is finite and consider U ∈A (u). If m(U) = 0, then N(ε, [∅, U], dm) =
1 for all ε > 0 so the two estimates are trivial. Now, let us suppose that m(U)> 0. Consider the
class F =

�
1A : A∈ [∅, U]

	
. By (1.3.10),

∀ε > 0, N(ε, [∅, U], dm) = N(ε,F ,‖.‖L1(m)). (1.5.1)

According to [100, Theorem 2.6.7] and since m(U∩ .) is a finite measure, there exists a constant
κV C(F),m(U) > 0 (increasing in both its parameters) such that

∀ε ∈ (0, m(U)), N(ε,F ,‖.‖L1(m)) ¶ κ′V C(F),m(U)

�
1
ε

�V C(F)−1

(1.5.2)

where V C(F) is the VC-index of the class F ′ of subgraphs of F , i.e. F ′ =
�
CA : A ∈ [∅, U]

	
where

∀A∈A , CA =
�
A× (−∞, 1)

�∪ �Aû × (−∞, 0)
�
(⊆ T ×R).

It is straightforward to see that for all A, A′ ∈ A , A ⊆ A′ if and only if CA ⊆ CA′ . Thus A 3 A 7→
CA ∈ F ′ is an order embedding. In particular, we may copy the proof of Lemma 1.5.10 to get
V C(F)¶ p+ 1. Combining (1.5.1) and (1.5.2) then gives

∀ε ∈ (0, m(U)∧ 1), N(ε, [∅, U], dm) ¶ κ′V C(F),m(U)

�
1
ε

�p

and since κ′V C(F),m(U) is increasing in its parameters, we may replace it by some other constant
κp,m(U). The result follows.

1.6 ‘Revamped’ vs ‘classical’ theory

The setting developed in this chapter differs on several account from the classical one presented
in [46, 47, 71]. To our opinion, the main difference between the two resides in the way it is
presented:

� The classical setting puts all the main hypotheses in the definition of the indexing collection
(see Definition 1.6.2 below). Once the definition is well-understood, it has the advantage of
studying a unique object throughout the theory. However, one drawback is that it becomes
hard to think about new examples since they have to check every condition in a long definition.
This has lead a lot of people to mistakenly think that the only example of interest is the
multiparameter case T = Rp

+ (Example 1.2.10).



44 1. SET-INDEXED FRAMEWORK FOR GENERALIZED PROCESSES

� Our ‘revamped’ setting chooses a more ‘modular’ approach in the sense that the definition
of an indexing collection is axiomatically light, especially its formulation through indexing
semilattices (Theorem 1.2.5), and more structure is added as we go on: a measure m (Defini-
tion 1.3.1), a metric dA (Definition 1.4.1) and sometimes some finite-dimensional assumption
(Definition 1.5.3). We hope that this approach will make set-indexed theory more widespread
and accepted among probabilists. Of course, there are still some differences in the choice of
the core assumptions, but that will be explained as we go.

In this section, we will work our way through several concepts of the classical theory and
explain how they tie (or not) with our setting. The goal is not to advocate for one theory or
the other since they have been developed for different purposes. Historically, classical theory
has been developed to study generalisations of multiparameter random fields, especially from
the martingale point of view. Through decades of research, the hypotheses were then tailor-
made to tackle concepts such as stopping and the several types of ‘pasts’ already arising in the
theory of two-parameter martingales. We refer to the introduction of [47] for a more detailed
account and its bibliography for an exhaustive list of references. On the other side, when devising
definitions, we had in mind the regularity of sample paths, which lead to different choices that
will be progressively motivated.

REMARK 1.6.1. In this section and this section only, the notationsA ,An,A (u),An(u), Tn, gn,
m and dA may differ from what we usually mean and may stand for their classical counterparts.

1.6.1 A taste of the classical setting

In the classical setting, the space T is most of the time supposed to be endowed with a (true)
metric dT making it a complete, separable, σ-compact metric space. In our setting, (T , dT ) is
a (pseudo) metric space which is separable (due to (1.4.1) and separability from above) and
σ-compact (Proposition 1.4.10). So far, our setting is a tad more general.

In the following, (.) (resp. (.)◦) denotes the closure (resp. the interior) with respect to the
topology on (T , dT ).

DEFINITION 1.6.2 (Classical indexing collection). A classA of compact, connected subsets of T is
a classical indexing collection on T if the following properties hold:

1. ∅ ∈A and there exists an increasing sequence (Tn)n∈N inA (u) such that T =
⋃

n∈N T ◦n .

2. A is closed under arbitrary intersections and A ∗ =A \ {∅} is closed under finite intersec-
tions. If (Ak)k∈N is an increasing sequence inA and there exists n ∈ N such that Ak ⊆ Tn for
all k ∈ N, then

⋃
k∈N Ak ∈A .

3. σ(A ) =B is the Borel σ-algebra of (T , dT ).

4. (Classical separability from above). There exists a non-decreasing sequence of finite subcol-
lectionsAn =

�
An

1, ..., An
kn

	 ⊆A (n ∈ N) closed under intersections with ∅, Tn ∈An(u) and
a sequence of functions gn :A →An(u)∪{T } such that: (a) gn preserves arbitrary intersec-
tions and finite unions, (b) for all A∈A , A⊆ gn(A)◦, A=

⋂
n∈N gn(A) and gn(A) ⊆ gm(A) if

n¾ m, (c) gn(A)∩ A′ ∈A if A, A′ ∈A and gn(A)∩ A′ ∈An if A′ ∈An, (d) gn(∅) =∅.

A first thing that comes to mind is that a classical indexing collection is almost an indexing
collection but for TIP and SHAPE, which are classical hypotheses. Our choice to have them as
core hypotheses will be defended in the subsequent Sections 1.6.2 and 1.6.3.
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A first difference is that a classical indexing collection is irremediably linked to the topology
on T .
For the first property of Definition 1.6.2, having T =

⋃
n∈N T ◦n instead of T =

⋃
n∈N Tn

(Lemma 1.3.16) is more restrictive. For instance, Example 1.4.11 would not work at all in
the classical setting.
For the second property, as far as we could tell, the closure- and interior-related conditions are
solely to ensure that any element inA may be approximated ‘strictly’ from above and also from
below. Those lead later on to a seemingly more powerful property: the existence of (classical)
flows [47, Definition 5.1.1 and Lemma 5.1.6]. We do get an ersatz though by means ofA -flows
(Proposition 1.3.9). A comparison is made in Section 1.6.4.

The condition that σ(A ) = B is the Borel σ-algebra becomes a consequence of Theo-
rem 1.3.17 in our setting.

Lastly,An and gn play the same role in both settings. However, a few differences are worth
noting. In our setting, gn is unequivocally defined fromAn by the formula gn(A) =

⋂
A′∈An:A⊆A′ A

′

and is An-valued. In the classical one, gn is not so easily accessible. To our opinion, this is
mainly due to the condition A ⊆ gn(A)◦. Taking the latter into account for the formula for gn
would intuitively give gn(A) =

⋂
A′∈An:A⊆(A′)◦ A′ just like in [42, Definition 2.1]. However, it does

not always hold as we illustrate in Example 1.6.3 below. To solve this problem, gn is authorized
to take values inAn(u) instead.

EXAMPLE 1.6.3 (Why classical gn must be An(u)-valued). Consider the set T =
�

a + i b ∈ C :
a, b ∈ [0,1] and a× b = 0

	
and its indexing collectionA = �∅	∪�[0, a] : a ∈ [0, 1]

	∪�[0, i b] :
b ∈ [0, 1]

	
from Example 1.3.15. Let us show thatA is also a classical indexing collection.

Remark that T is endowed with the (metrizable) topology induced by the usual one on C. In
particular, T is compact and each element ofA is compact and connected. The first three properties
of Definition 1.6.2 are straightforward to check for Tn = T for all n ∈ N. Let us show that the
classical separability from above holds as well. Let n ∈ N, denote Dn =

�
k2−n : 0 ¶ k ¶ 2n

	
and

An =
�
∅
	∪�[0, d] : d ∈ Dn

	∪�[0, id] : d ∈ Dn

	
. Let us consider A∈A ∗ and define the classical

gn(A). The issue is that there is no element A′ ∈ An such that A⊆ (A′)◦. Thus gn(A) cannot belong
toAn. However, there is no issue once one accepts to have gn(A) ∈An(u). For all x ∈ [0,1− 2−n],
denote by dn(x) = b2n x + 1c2−n ∈ Dn the smallest dyadic of order n strictly greater than x . Then
define

∀a ∈ [0, 1], gn([0, a]) =
§
[0, dn(a)]∪ [0, i2−n] if a ¶ 1− 2−n,

T if a > 1− 2−n,

∀b ∈ [0, 1], gn([0, i b]) =
§
[0,2−n]∪ [0, idn(b)] if b ¶ 1− 2−n,

T if b > 1− 2−n.

The map gn then easily verifies all the required conditions.
This illustrates the importance to authorize gn to beAn(u)-valued in the classical setting. How-

ever, this is not without repercussions in the structures that follow. For instance, onceA is endowed
with a metric dA , one of the first key quantities that one looks at is dA (A, gn(A)) (see the shrinking
mesh property in Definition 1.4.1 for our setting or [47, Assumption 1.3.2] for the classical one).
So dA has to be extendable toA (u) in a meaningful way.

1.6.2 SHAPE condition

In this section, we study the importance of the SHAPE condition and hopefully convince the
reader that it is needed as a core hypothesis. In the classical literature, if one is given a set-
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indexed process X =
�

XA : A ∈ A 	, the existence of an additive extension ∆X for X (Propo-
sition 1.2.44) is a supplementary hypothesis that is made most of the time, sometimes even
implicitely. SHAPE has been known so far to be a sufficient condition for the existence of the
additive extension of set-indexed processes (see [47, p.27]). What we prove is that SHAPE is
also necessary.

Let us suppose thatA is only a collection of subsets of T such that∅ ∈A andA ∗ =A \{∅}
is closed under finite intersections. The classes C , C(k) and C (u) are then defined as before
(Definition 1.2.35).

PROPOSITION 1.6.4 (Equivalent formulations to SHAPE). The following properties are equivalent:

(i) A verifies the SHAPE condition.

(ii) For any k ∈ N∗ and A1, ..., Ak ∈ A , if
⋃

1¶i¶k Ai ∈ A , then
⋃

1¶i¶k Ai = A j for some j ∈
¹1, kº.

(iii) The family
�
1A : A∈A ∗	 is linearly independent in RT .

Proof. (i)⇒ (iii) follows from Lemma 1.2.43. The reader may readily check that only the sta-
bility ofA under intersections has been used for the proof.

Let us suppose (iii) and consider A1, ..., Ak ∈ A such that U =
⋃

1¶i¶k Ai ∈ A . By the
inclusion-exclusion formula we know that 1U may be expressed as a linear combination of the
1A j1

∩...∩A ji
where 1 ¶ j1 < ... < ji ¶ k. According to (iii), it means that 1U = 1A j1

∩...∩A ji
for some

tuple 1¶ j1 < ...< ji ¶ k. In particular, U = A j1 , which proves (iii)⇒ (ii).
Let us suppose (ii) and consider A, A1, ..., Ak ∈ A such that A ⊆ ⋃1¶i¶k Ai . In particular,⋃

1¶i¶k(Ai ∩ A) = A belongs to A . Since A is closed under intersection, we may apply (ii) to
conclude that there is j ∈ ¹1, kº such that A⊆ (A j∩A). Hence A⊆ A j , which proves (ii)⇒ (i).

PROPOSITION 1.6.5. The following properties are equivalent:

(i) A verifies the SHAPE condition.

(ii) Any map h :A → R such that h(∅) = 0 has an increment map ∆h :C (u)→ R.

(iii) Any map h :A → R such that h(∅) = 0 has an associated linear functional h : E → R.

Proof. (i)⇒ (ii)⇔ (iii) follows from Proposition 1.2.44 (once more, no unwanted property of
A has been used for the proof).

Let us suppose that (i) does not hold. According to Proposition 1.6.4, it means that we can
find α1, ...,αk ∈ R∗ and A0, A1, ..., Ak ∈A ∗ pairwise distinct such that 1A0

=
∑

1¶i¶k αi1Ai
. Then,

the map h defined for all A ∈ A by h(A) = 1A=A0
cannot have an associated linear functional.

Hence (iii)⇒ (i).

In conclusion, as long as one has to consider an additive extension of a set-indexed process,
the SHAPE condition is morally required. And additive extensions are indeed required here for
several reasons:

� Constructing an integral with respect to a set-indexed process X =
�

XA : A∈A 	 first requires
to be able to do so for simple functions, which is exactly what the linear functionalX= �X( f ) :
f ∈ E

	
associated with X is for.
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� In the same way that rectangular increments for R2
+-indexed processes are sometimes better

than regular increments, increments∆XC for C ∈ C do have some advantages over the regular
increments XA− XA′ for A, A′ ∈A . In the classical setting, it is the case whenever one looks at
weak and strong martingales [47, Definition 3.1.1]. Here, it will be the case when trying to
understand the Hölder regularity of set-indexed processes (see Section 3.4).

We see one main objection to this statement, namely that there are classical indexing col-
lections for which some processes still have an additive extension even though SHAPE does not
hold. To our knowledge, there is in essence only one such example in the literature.

EXAMPLE 1.6.6 (Lower layers on T = Rp
+). This example is taken from [47, Example 1.2.4] and

could be adapted to Rp or some other manifold. A lower layer on T = Rp
+ is a compact subset A⊆ Rp

+
such that for all t ∈ Rp

+, t ∈ A implies [0, t] ⊆ A (where [0, t] is the usual ‘rectangle’ in Rp
+). The

collectionA of lower layers does not verify SHAPE (for p ¾ 2) since all three of A1 = [0,1]×{0}p−1,
A2 = {0}p−1× [0,1] and A1∪A2 are lower layers, which would contradict (ii) in Proposition 1.6.4.

Hence in general, a set-indexed process does not have an associated increment map. However, we
will see in Chapter 2 that the set-indexed Brownian motion W =

�
WA : A ∈ A 	 (Example 2.2.12)

still has an increment map. But as we see it, the deeper reason is that W may be extended all the
way to Bm in the first place while still being characterized by the rectangles in Rp

+ (i.e. the ‘usual’
indexing collection in this context). So a study of a process indexed by the lower sets can be still be
attained in our case by studying an extension of one defined on the rectangles.

1.6.3 TIP assumption

For this endeavor, let us suppose thatA verifies all the conditions for being an indexing collection
(Definition 1.2.1) but for the TIP assumption. The goal becomes to study under which conditions
the map

A(.) : T −→ A ∗
t 7−→ A(t) =

⋂
n∈N An(t)

where An(t) =
⋂

A∈An∪{T }:
t∈A

A is one-to-one.

Injectivity of t 7→ A(t)

The TIP map t = A(.)−1 might not always be well-defined in this context, but some approxima-
tions still are.

LEMMA 1.6.7 (TIPn bijections). For all n ∈ N, the map

tn : An −→ C `(An)
A 7−→ A\⋃A′∈An:A′⊂A A′

is one-to-one and such that for all t ∈ Tn, tn(An(t)) = Cn(t).

Proof. Let n ∈ N. By definition ofC `(An), tn is surjective. Let A, A′ ∈An such that tn(A) = tn(A′).
Writing the extremal decomposition for this element of C `(An), we get

A\
⋃

A′′∈An:A′′⊂A

A′′ = A0 \
k⋃

i=1

Ai = A′ \
⋃

A′′∈An:A′′⊂A′
A′′.
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Since the extremal representation is obtained only by selecting elements from
�
A′′ ∈ An : A′′ ⊆

A
	

(see the proof of Proposition 1.2.36), we have A= A0. Likewise, A′ = A0. Hence tn is injective.
Let t ∈ Tn. Since An(t) belongs to An, it is the smallest element in An containing t by

definition. Thus for all A′ ∈ An such that A ⊂ An(t), t /∈ A′. In particular, tn(An(t)) is the only
element of C `(An) containing t, and so is equal to Cn(t) by definition of the latter.

The injectivity of t 7→ A(t) is closely linked with another property that may be found in the
classical setting under [47, Assumption 1.1.7].

PROPOSITION 1.6.8 (Dissecting system). The map t 7→ A(t) is injective if and only if C ` is a
dissecting system, i.e. for all s, t ∈ T such that s 6= t, there exists C , C ′ ∈ C ` such that s ∈ C ,
t ∈ C ′ and C ∩ C ′ =∅.

Proof. Suppose that t 7→ A(t) is injective and consider s, t ∈ T such that s 6= t. By injectivity,
there exists n ∈ N such that An(s) 6= An(t) while they both belong to An. Since the extremal
representation of Cn(s) is of the form Cn(s) = An(s) \ ... and likewise for Cn(t), we have Cn(s) 6=
Cn(t). Hence Cn(s)∩ Cn(t) = ∅ since the elements of C `(An) are pairwise disjoint. So C ` is a
dissecting system.

Conversely, suppose thatC ` is a dissecting system and consider s, t ∈ T such that A(s) = A(t).
Hence for all n ∈ N, An(s) = An(t) and thus Cn(s) = Cn(t) by Lemma 1.6.7. Since the only
elements in C ` that contain s (resp. t) are of the form Cn(s) (resp. Cn(t)) for n ∈ N, it means
that s = t. The injectivity of t 7→ A(t) follows.

This feature tells us in particular that one may ‘pick out’ any element t ∈ T by means of the
sequence (Cn(t))n∈N. It has been used in [41] to define the point mass jumps of a set-indexed
process (Definition 3.3.10). This article shows for instance that although a set-indexed Gaussian
process may have discontinuous sample paths, it remains ‘jumpless’ nonetheless [41, Theorem
7.3].

Since understanding the jump structure of set-indexed processes will be an important point
of focus for us (see Section 3.4.2), the injectivity of t 7→ A(t) is a must-have.

Surjectivity of t 7→ A(t)

What we actually show here it that surjectivity is a non-issue since one may always slightly
modify the indexing collection A into another one [A ] for which the surjectivity of t 7→ A(t)
holds and the previous existing structures (namely, ´, m and dA ) naturally extend.

EXAMPLE 1.6.9. Suppose that T = [0, 1) andA = �[0, t] : t ∈ [0, 1)
	∪ �∅	∪ �[0, 1)

	
. The class

A could be an indexing collection but for the fact that the element [0, 1) is ‘tipless’. A natural way
here is to complete the space [0,1) so that the extra-point 1 given by the completion will serve as a
tip for [0,1). But since the tip has to belong to the set, we need to replace [0, 1) by [0,1].

Any measure m on [0,1) could be extended to [0,1] by imposing that m([0, 1]) = m([0,1)).
Likewise, the relation dA (A, [0,1]) = dA (A, [0, 1)) would extend the metric. Remark that those
extensions modify neither the poset structure of A nor the ‘compatible’ aspect of m and dA in the
sense of Definitions 1.3.1 and 1.4.1.

What follows is just a fancier version of Example 1.6.9. Suppose that m (resp. dA ) is a
measure on σ(A ) (resp. metric onA ). Let us introduce the following:

1. The collection [A ] = �[∅′, A] : A∈A 	.
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2. The measure [m] on the measurable space
�A ,σ([A ])� which is the pushforwad of m

by t 7→ A(t).

3. The metric d[A ] on [A ] defined for all A, A′ ∈A by d[A ]([∅′, A], [∅′, A′]) = dA (A, A′).

THEOREM 1.6.10 (TIP embedding). The map A 3 A 7→ [∅′, A] ∈ [A ] is one-to-one and order
embedding. Moreover, [A ] is an indexing collection onA ∗ for which the tip map is

�
A 7→ [∅′, A]

�−1

and the following holds:

� For all A∈A , [m]([∅′, A]) =m(A), thus if m is compatible, so is [m].

� The map A 7→ [∅′, A] is an isometry, thus if dA is compatible, so is d[A ].

Proof. The map A 3 A 7→ [∅′, A] ∈ [A ] is one-to-one by definition. Being order embedding
and isometric are just straightforward matters. Let us show that [A ] is an indexing collection
onA ∗. The elements relative to [A ] as an indexing collection will be denoted using ‘[]’ such as
[gn].

1. ∅ = [∅′,∅] ∈ [A ] and [A ] \ {∅} is closed under intersections since A ∗ is and for any
collection (Ai)i∈I of sets inA , we have

�
∅′,

⋂
i∈I

Ai

�
=
⋂
i∈I

[∅′, Ai]. (1.6.1)

2. For all n ∈ N, define [An] =
�
[∅′, A] : A ∈ An

	
. The corresponding maps [gn] are given

by

∀A∈A , [gn]([∅′, A]) =
⋂

B∈[An]∪{A ∗}:
[∅′,A]⊆B

B =
⋂

A′∈An∪{T }:
A⊆A′

[∅′, A′] = [∅′, gn(A)]

where the first equality is by definition, the second due to the previous order embedding
and the third to (1.6.1). The approximation from above property readily follows.

3. For all n ∈ N and A∈A , we have

[An](A) =
⋂

B∈[An]∪{A ∗}:
A∈B

B =
⋂

A′∈An∪{T }:
A⊆A′

[∅′, A′] = [∅′, gn(A)] (1.6.2)

for the same reasons as above. From (1.6.1) and (1.6.2), we get for all A∈A ,

⋂
n∈N

[An](A) =

�
∅′,

⋂
n∈N

gn(A)

�
= [∅′, A].

Hence A 7→⋂
n∈N[An](A) is one-to-one and the TIP bijection is indeed the one claimed in

Theorem 1.6.10.

4. The SHAPE condition for [A ] is just a consequence of the same condition forA and the
fact that for all k ∈ N∗ and A1, ..., Ak ∈A ,

k⋃
i=1

[∅′, Ai] =

�
∅′,

k⋃
i=1

Ai

�
.
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Hence [A ] is an indexing onA .
Concerning the measure [m], we have for all A∈A ,

[m]
�
[∅′, A]

�
= m

��
t ∈ T : A(t) ⊆ A

	
︸ ︷︷ ︸

=A

�
= m(A).

The rest follows immediately.

REMARKS 1.6.11. � If we were to use the vocabulary of Section 1.2.2, we could say that [A ] is the
indexing collection associated with the indexing semilattice (A ∗,⊆).

� This construction also provides injectivity for free, but if injectivity did hold in the first place, then
[A ] could be seen as an indexing collection on T ∪ T ′ where T ′ is the set of ‘missing tips’.

� In the classical setting, the TIP assumption is found under [47, Assumption 2.4.2] and suppose
that for all A∈A , A\⋃A′∈A :A′⊂A A′ 6= ∅. A TIP map is then given by an appeal to the axiom of
choice in order to choose an element tA ∈ A \⋃A′∈A :A′⊂A A′ for all A ∈ A . Let us point out that
our TIP assumption implies the classical one and does not rely on the axiom of choice.

1.6.4 ‘Revamped’ vs ‘classical’ flows

Flows have been introduced in [23, §4] while developing a stochastic integration with R2
+-

indexed martingales as integrators. They have then been studied in the set-indexed setting
and are described in [47, Section 5.1].

Flows are a very interesting tool. As mentioned in Section 1.3.2, they constitute the link
between set-indexed and one-dimensional processes. They may serve as a guide for intuition
when defining set-indexed processes. For instance, a set-indexed fractional Brownian motion
(sifBm) with control measure m and Hurst exponent H ∈ (0,1/2] is a centered Gaussian process
W H =

�
W H

A : A∈A 	 with covariance function given by

∀A, A′ ∈A , Cov
�
W H

A , W H
A′
�
=

1
2

�
m(A)2H +m(A′)2H −m(A4A′)2H

�
(1.6.3)

where the expression is non-negative definite by [39, Lemma 2.9].
This definition might appear arbitrary at first glance, but becomes less so if one remarks

that for any geodesic A -flow φ ∈ Φ(A ), v(φ)−H(W H)φ is the usual [0,1]-indexed fractional
Brownian motion of Hurst exponent H.

Since a flow at its bare minimum is the same in both theories ([47, Definition 5.1.1] and
Definition 1.3.4), it is more meaningful to compare the properties that a ‘typical’A -flow usually
has. When A0, A1 ∈ A are such that A0 ⊆ A1, both [47, Lemma 5.1.6] and Proposition 1.3.9
ensure the existence of a continuousA -flow φ from A0 to A1. However, the notion of continuity
depends on the setting. In the classical one, φ is outer continuous and inner continuous in the
sense that

∀t ∈ (0, 1], φ(t) =
⋃
s<t
φ(s). (1.6.4)

In our setting, φ is continuous with respect to the metric dm . Under the additional assumption
that m is a Radon measure, being continuous in the classical sense implies being continuous in
our sense.

Due to our choice of separating order and topological assumptions for the indexing collection,
there is no particular reason for (1.6.4) to hold in our setting. However, the continuity with
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respect to dm is an ersatz that works well enough for our purposes. The tradeoff is that we have
a quicker construction of geodesic flow and do not require the additional classical assumption
that m is Radon, whereas classical flows obey more properties.

1.7 Perspectives

The framework developed here enables us to tackle a variety of situations ranging from the
multiparameter case to some R-trees. By ‘some’, we mean that unfortunately not all R-trees may
be endowed with an indexing collection.

EXAMPLE 1.7.1 (Infinite binary tree with ends). Suppose that T is the ends compactification [31,
Section 3.4.2] of the infinite binary R-tree (Figure 1.15). Since T has an uncountable number of
leaves and each of them is maximal for the order on T , the separability from above cannot hold.
Hence, even though T is an R-tree, it cannot be endowed with an indexing collection.

. . . . . .. . .. . .

Figure 1.15: Infinite binary R-tree where each leaf corresponds to an ever-increasing path in the
discrete infinite binary tree.

However, any (separable) R-tree is the limit — for the Gromov-Hausdorff topology — of
discrete trees, which can be endowed with indexing collections of their own. From that remark,
we would find interesting to develop a topology on the ‘set’ of all indexing collections in the spirit
of the Gromov-Hausdorff topology for R-trees. Indeed, objects arising as limits of a structure
encompassing both finite dimensional vector spaces and R-trees may very well serve as relevant
random environments. Hopefully, this setting would cover:

� R-trees, and especially celebrated objects such as Aldous’s Continuum Random Tree (CRT)
[7],

� manifolds as mentioned in Example 1.2.29, hopefully extending works like [2, 61],

� simplicial complexes from homotopy theory through gluing procedures, with a view to reach-
ing random complexes described in [103] for instance.
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1.8 Perspectives (français)

Le cadre développé ici nous permet d’aborder une variété de situations allant du cas multi-
paramétrique à certains R-arbres. Par "certains", nous voulons bien dire que tous les R-arbres ne
peuvent pas être munis d’une indexing collection.

EXEMPLE 1.8.1 (Arbre binaire infini compactifié par les bouts.). Supposons que T est le compactifié
par les bouts [31, Section 3.4.2] du R-arbre binaire infini (Figure 1.16). Comme T a une infinité
indénombrable de feuilles et que chaque feuille est maximale pour la relation d’ordre sur T , la
séparabilité par au-dessus ne peut avoir lieu. Donc, même si T est un R-arbre, il ne peut être équipé
d’une indexing collection.

. . . . . .. . .. . .

Figure 1.16: R-arbre binaire infini où chaque feuille correspond à un chemin strictement crois-
sant dans l’arbre binaire discret.

Cependant, tout R-arbre (séparable) devrait être la limite — pour la topologie de Gromov-
Hausdorff — d’arbres discrets, qui peuvent eux être équipés d’indexing collections. De ce fait,
nous trouverions intéressant de pouvoir développer une topologie sur l’"ensemble" des indexing
collections dans l’esprit de la topologie de Gromov-Hausdorff pour les R-arbres. En effet, les
objets émergeant comme limites de structures pouvant être des variétés différentielles ou des R-
arbres promet d’être très riche, et pourrait avec un peu de chance servir d’une solide assise pour
des modèles d’environnements aléatoires. Avec un peu d’espoir, ce cadre pourrait englober :

� des R-arbres tels que le célèbre arbre continu d’Aldous (CRT) [7],

� des variétés différentielles comme mentionné dans l’Exemple 1.2.29, faisant on l’espère avec
des travaux comme [2, 61],

� des complexes simpliciaux en théorie homotopique grâce aux procédures de recollement, avec
en tête d’atteindre les complexes aléatoires décrits dans [103] par exemples
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2.1 Introduction

The whole chapter is devoted to the study of the distributional properties of a given set-indexed
process X =

�
XA : A ∈ A 	 and several of its extensions. Namely, we will turn our attention to

the following ones progressively introduced in Section 2.2:

1. The increment map ∆X =
�
∆XU : U ∈ C (u)	 given by Proposition 1.2.44.

2. The stochastic measure ∆X =
�
∆XB : B ∈Bloc

	
given by Theorem 2.2.8.

3. The linear process X= �X( f ) : f ∈ L
	

given by Theorem 2.2.10.

All of those extend X in one way or another, but may not always exist apart from ∆X . We
review in this section some conditions that ensure their existence. This is naturally linked to
the existence of an integral with respect to X , which has been extensively studied by Kwapień,
Rajput, Rosiński, Urbanik, Woyczyński and more.

We then proceed to study the distributional properties of X . Two cases are of particular
interest to us:

� When X has independent increments (Section 2.3), which is already well-known due to the
work of Rajput and Rosiński [83]. As such, Sections 2.3.1 and 2.3.2 are mainly expository
and are meant to link the literature with the set-indexed setting. Then, we take up on the
occasion to prove two kinds of results: martingale inequalities (Section 2.3.3) and a 0-1 law
(Section 2.3.4), both of which will be used to establish regularity results in Chapter 3.

� When X has stationary increments (Section 2.5), which may be formulated in several —
not equivalent — ways in our general setting. The starting idea steams from the works of
Herbin and Merzbach [39, 40, 41] who used m to measure the size of the increments. In
Section 2.5.1, we explain the general scheme that stems from their approach and propose
several definitions all base on the same notion of equality in configuration (Definition 2.5.4):
A -increment stationarity (Section 2.5.2) andC -exchangeability (Section 2.5.3) among others.
For the latter, we prove representation theorems (Theorems 2.5.30 and 2.5.31) which general-
ize Bühlmann’s [55, Theorem 1.19] and Kallenberg’s [55, Theorem 3.15] for one-dimensional
processes with exchangeable increments.

2.2 Extensions of set-indexed processes

2.2.1 Prerequisites on modular spaces

In this section, we recall without proof the few facts about modular spaces that will be required
in building the extensions mentioned in the introduction. For more details about the general
theory of modular spaces, we refer to [76]. In the abundant literature on the subject, not all
authors have had the same definitions. We tried to follow [62], but tailored to the scope of our
needs.

DEFINITION 2.2.1 (Modular, [62, Section 0.7]). Let V be a real vector space. A modular on V is a
map ρ : V → R+ which verifies the following properties:

1. (Separation). For all u ∈ V, ρ(u) = 0 if and only if u= 0V .
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2. (Symmetry and scaling compatibility). For all u ∈ V, the map R 3 λ 7→ ρ(λu) is even and
continuous on R and non-decreasing on R+.

3. (Quasi triangle inequality). There exists a constant κ > 0 such that

∀u, v ∈ V, ρ(u+ v) ¶ κ
�
ρ(u) +ρ(v)

�
. (2.2.1)

The pair (V,ρ) is called a modular space.

PROPOSITION 2.2.2 ([62, Section 0.7]). A modular space (V,ρ) has a natural topology where open
sets are subsets U ⊆ V such that for any u ∈ U , there is r > 0 such that {v ∈ V : ρ(u− v)< r} ⊆ U .
This makes (V,ρ) into a topological vector space where a sequence (uk)k∈N converges to u ∈ V if
and only if ρ(uk − u)→ 0 as k→∞.

EXAMPLE 2.2.3 (Space of random variables). Let L0(Ω) denote the space of (equivalence classes of)
real-valued random variables. The map ρ0 : X 7→ E [|X | ∧ 1] is a modular on L0(Ω). The resulting
topology is metrizable — with the metric (X , Y ) 7→ ρ0(X − Y )— complete and corresponds to the
convergence in probability.

A kind of modular spaces are Musielak-Orlicz spaces or generalized Orlicz spaces. As it has
been shown in [83, 99], they naturally arise when building a stochastic integral with respect to
processes with independent increments. We refer to [36] for a modern and detailed exposition
on those spaces and [62] for their use in stochastic integration.

Recall that L0(m) = L0(T ,B , m) stands for the space of (equivalence classes of) real-valued
Borel maps f : T → R.

DEFINITION 2.2.4 (Musielak-Orlicz space, [62, Section 0.8]). Let φ : T × R+ → R+ be a map
which verifies the following properties:

1. (Measurability). For all f ∈ L0(m), the map φ(., | f (.)|) is measurable.

2. (Scaling compatibility). For all t ∈ T , the map φ(t, .) is continuous, non-decreasing and
φ(t, 0) = 0.

3. (Moderate growth). There exists a constant κ > 0 such that

∀(t, x) ∈ T ×R+, φ(t,κ−1 x) ¶ κφ(t, x).

Then the map ρφ given by

∀ f ∈ L0(m), ρφ( f ) =

∫

T
φ(t, | f (t)|)m(d t)

induces a modular on the space

Lφ =
�

f ∈ L0(m) : ρφ( f )<∞
	

which is called the Musielak-Orlicz space (of modular φ).
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PROPOSITION 2.2.5 (Luxemburg norm). The Musielak-Orlicz space Lφ may be characterized equiv-
alently by

Lφ =
�

f ∈ L0(m) : ‖ f ‖φ <∞
	

where ‖.‖φ is the Luxemburg (quasi)norm given by

∀ f ∈ L0(m), ‖ f ‖φ = inf
�

c ¾ 0 : ρφ(c
−1 f )¶ 1

	
(2.2.2)

with the convention inf∅=∞.

We emphasize the fact that even if ‖.‖φ is called a ‘norm’ by custom, it is not one in general but
only a quasinorm, i.e. a map that verifies the separability, symmetry and quasi triangle inequality
(2.2.1). In particular, ‖.‖φ is also a modular.

EXAMPLE 2.2.6. For the map φ : (t, x) 7→ |x |p where p ∈ R∗+, the space Lφ corresponds to the usual
space Lp(m).

2.2.2 Set-indexed processes as stochastic measures

We mainly follow the construction given in [62, Chapter 7] for stochastic integrals on [0,1]while
making the necessary adjustments to the set-indexed theory. We refer to the bibliographical notes
in loc. cit. for further references.

We also note that a set-indexed theory of stochastic integration has been developed in [72,
86]. However, the integrands may be non-deterministic, which is not our focus for now.

The starting point is the set-indexed process X . From it, Proposition 1.2.44 gives the existence
of the increment map∆X as well as the linear functionalXwhich serve as embryos of a measure
and an integral respectively.

Let us start with the increment map ∆X . It is a L0(Ω)-valued (finitely) additive map defined
on the ring C (u). In particular, it can be seen as a vector-valued premeasure, which should be
extendable under some additional continuity assumption. Denote Bloc =

�
B ∩ Tn : B ∈ B , n ∈

N
	
.

DEFINITION 2.2.7 (Stochastic measure, [62, Section 7.1]). ] A stochastic measure is a map M :
Bloc→ L0(Ω) which verifies the following properties:

1. M∅ = 0 a.s.

2. (σ-additivity). For all sequence (B j) j∈N of pairwise disjoint elements ofBloc such that
⊔

j∈N B j ∈
Bloc (equivalently, B j ⊆ Tn for some n and all j),

k∑
j=0

MB j

P−→ M⊔
j∈N B j

as k→∞.

THEOREM 2.2.8 (Extension of ∆X , adapted from [62, Theorem B.1.1]). ] The following state-
ments are equivalent:

(i) There exists a stochastic measure ∆X =
�
∆XB : B ∈Bloc

	
such that ∆X |A = X .

(ii) For any n ∈ N and any sequence (Uk)k∈N in C (u) included in Tn, if limsupk→∞ Uk =∅, then

∆XUk

P→ 0 as k→∞.
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(iii) For any n ∈ N and any sequence (Uk)k∈N in C (u) included in Tn, if either Uk ↓ ∅ or the Uk ’s

are pairwise disjoint, then ∆XUk

P→ 0 as k→∞.

(iv) a. For any n ∈ N and any sequence (Uk)k∈N in C (u) included in Tn, if Uk ↓ ∅ and a subse-
quence of (∆XUk

)k∈N converges in probability to some Z ∈ L0(Ω), then Z = 0 a.s.

b. For any n ∈ N and any sequence (Ck)k∈N in C included in Tn, if the Ck ’s are pairwise
disjoint, then the series

∑
k∆XCk

converges in probability.

Under those conditions, ∆X is unique up to a version and verifies ∆X |C (u) =∆X . The process ∆X
is called stochastic measure associated with X .

What we mean here by ‘unique up to a version’ here is that if∆X and∆X ′ are two measures
processes associated with X , then for all B ∈Bloc, ∆XB =∆X ′B a.s.

Proof. Suppose that T ∈A0(u) (the general case is a straightforward consequence of this one).
In particular, C (u) becomes an algebra of sets instead of just a ring, i.e. it is stable under com-
plement and not just set difference. Moreover,Bloc =B . Under this additional hypothesis, [62,
Theorem B.1.1] together with the remark that follows it proves (i)⇔ (ii)⇔ (iii)⇒ (iv).

Suppose that (iv) holds and let us prove (iii). Consider a sequence (Uk)k∈N inC (u) of pairwise
disjoint elements. Then, there exists a sequence (C j) j∈N of pairwise disjoint elements of C and

an increasing sequence of integers (nk)k∈N such that for all k ∈ N, Uk =
⊔nk+1−1

j=nk
C j . Applying

(iv)b. yields the convergence of the series
∑

j∆XC j
. In particular, ∆XUk

=
∑nk+1−1

j=nk
∆XC j

P→ 0 as
k→∞.
Now, let us suppose instead that Uk ↓∅ as k→∞. According to (iv)a., it is enough to prove that
(∆XUk

)k∈N converges. Applying (iv)b. to (Uk \ Uk+1)k∈N, we know that the series
∑

k(∆XUk
−

∆XUk+1
) converges. Hence ∆XUp

−∆XUq
=
∑q−1

k=p(∆XUk
−∆XUk+1

)
P→ 0 as p, q→∞ (p ¶ q). So

(∆XUk
)k∈N is a Cauchy sequence and thus converges since L0(Ω) is complete. The equivalence

follows.
Let us establish unicity. Suppose that ∆X and ∆X ′ are two stochastic measures associated

with X and consider the setB ′ = �B ∈B :∆XB =∆X ′B a.s.
	
. Due to the properties of ∆X and

∆X ′, B ′ is a λ-system. By definition, it also contains the π-systemA . Hence, by Dynkin’s π-λ
theorem [59, Theorem 1.19],B ′ =B . The unicity follows.

Now that the stochastic measure is well-defined, let us move on to the integral istelf. All the
results whose proofs are skipped may be found in [62, Section 7.1]. In the same way we began
with the increment map ∆X for the stochastic measure, we take here the linear functional X as
our starting point for the integral. Define

∀ f ∈ E , ρX ( f ) = sup
g∈E:
|g|¶1

E
���X( f g)

��∧ 1
�

. (2.2.3)

Remark that ρX defines a modular on E based on the usual modular space
�
L0(Ω),E [|.| ∧ 1]

�
mentioned in Example 2.2.3. In order to have a ‘good’ integration theory, it is desirable for the
space of so-called ‘integrable’ functions to be complete. In order to do so, we need to define the
following outer measure:

∀B ⊆ T , mX (B) = inf
(Ck)k∈N∈C N:
B⊆⋃k∈N Ck

∑
k∈N

ρX (1Ck
). (2.2.4)
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Indeed, like in usual integration theory, not all integrable functions are pointwise limits of simple
functions, but the statement becomes true if one requires the pointwise convergence to hold
almost everywhere.

DEFINITION 2.2.9 (Integrability, [62, Definition 7.1.1]). ] A map f : T → R is said to be X -
integrable if there exists a sequence ( fk)k∈N of simple functions in E such that:

1. (Almost everywhere convergence). For mX -a.e. t ∈ T , fk(t)→ f (t) as k→∞.

2. (Cauchy sequence for ρX ). ρX ( f j − fk)→ 0 as j, k→∞.

The function f is locally X -integrable if for all A ∈ A , f |A is X -integrable. The space of all X -
integrable (resp. locally X -integrable) functions is denoted by L(X ) (resp. Lloc(X )).

THEOREM 2.2.10 (Extension ofX, adapted from [62, Theorem 7.1.2]). ] The following statements
are equivalent:

(i) X extends to a stochastic measure ∆X =
�
∆XB : B ∈Bloc

	
.

(ii) For any n ∈ N and any sequence ( fk)k∈N of simple functions converging pointwise to 0 and
such that for all k ∈ N, supp( fk) ⊆ Tn and | fk|¶ 1, ρX ( fk)→ 0 as k→∞.

Under those conditions, the modular ρX extends to a modular on L(X ), which then becomes a
complete linear metric space where E is a dense subset. In particular, there exists a unique continuous
linear map X = �X( f ) : f ∈ L(X )

	
such that X

��
E = X. The process X is called the linear process

associated with X . We also use the notation

X( f ) =
∫

T
f dX =

∫

T
f (t)X (d t)

when we want to emphasize that X( f ) should be seen as the stochastic integral of f with respect to
X .

REMARK 2.2.11. Actually, this construction enables us to extend∆X even further thanBloc, that is
on the classB(X ) = �B ∈B : 1B ∈ L(X )

	
by the formula∆X =X(1B). Even though the definition

of stochastic measure does not usually consider this extension, this extra step is no hurdle and the
extended process ∆X =

�
∆XB : B ∈B(X )	 will still be refered to as a stochastic measure.

EXAMPLE 2.2.12 (White noise and isonormal process). Remark that there is in general no hope to
be able to extend a stochastic measure to the whole σ-algebraB . Indeed, even deterministic signed
measures cannot do so in general. But let us give a probabilistic example.

Consider a set-indexed Brownian motion (siBm) W =
�
WA : A ∈ A 	 with control measure

m, i.e. a centered Gaussian process with covariance function given by

∀A, A′ ∈A , Cov (WA, WA′) = m(A∩ A′) (2.2.5)

(where we remark that it indeed corresponds to the sifBm (1.6.3) with Hurst exponent H = 1/2).
Then, it is well-known that W extends to a stochastic measure∆W =

�
∆W B : B ∈Bm

	
, called

white noise, which is a centered Gaussian process with covariance function given by

∀B, B′ ∈Bm , Cov (∆W B,∆W B′) = m(A∩ A′) (2.2.6)

which cannot be extended toB in any meaningful way. One may remark thatBloc 6=Bm , but the
knowledge of the stochastic measure on Bloc is enough to build the resulting integral. In general,
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when it exists, the stochastic measure can be extended to BmX
but identifying the outer measure

mX may prove to be a challenge.
In turn, the white noise extends to the isonormal process W =

�W( f ) : f ∈ L2(m)
	

which is
a centered Gaussian process with covariance function given by

∀ f , g ∈ L2(m), Cov (W( f ),W(g)) =
∫

T
f g dm. (2.2.7)

For more details about those processes, especially in the multiparameter setting, we refer to [4,
Section 1.4.3] where the siBm is called Gaussian m-noise.

EXAMPLE 2.2.13 (Independently scattered random measure). Reformulating Example 2.2.12, we
could say that for a set-indexed Brownian motion W with control measure m, the linear process
W exists and is such that L(W ) = L2(m). More generally, when X has independent increments,
[83, 99] proved that the linear processX always exists and is such that L(X ) = Lφ whereφ depends
on the Lévy-Khintchine triplet of X . We refer to [62, Theorem 8.3.1] for a more precise statement
and its proof.

Terminology-wise, we know that ‘Independently Scattered Random Measure’ (ISRM) is the one
that stuck. However, we will refrain from using it for two reasons: first, it clashes with what ‘random
measure’ means for some authors (see Definition 2.2.14 below) and second, the study we lead in
Section 2.3 on processes with independent increments will require a richer vocabulary anyway (see
Definition 2.3.1).

In Section 1.3.1, we denoted by M(T ) the set of all Borel measures µ on (T ,B) such that
for all A ∈ A , µ(A) <∞. It is endowed with the smallest σ-algebra which makes the maps
M(T ) 3 µ 7→ µ(B) ∈ R+ ∪ {+∞} measurable for all B ∈B .

DEFINITION 2.2.14 (Random measure). A random measure on T is a random variable M : Ω→
M(T ).

In particular, a random measure is almost surely σ-additive, which is a much stronger con-
dition than being a stochastic measure.

Conversely, a non-negative stochastic measure is not always a random measure. Indeed,
suppose that T = R+ is endowed with its usual indexing collection from Example 1.2.7 and M is
a random measure on R+. In particular, we know that the R+-indexed process

�
M [0,t] : t ∈ R+

	
has almost sure finite variation. However, it is known that there are R+-indexed Lévy processes
that extends to non-negative stochastic measures [62, Theorem 8.3.1] while having almost sure
infinite variation [10, Theorem 2.4.25].

In our setting, Lévy processes also play a central role since they have both independent and
stationary increments, which are respectively the focus of the coming Sections 2.3 and 2.5.

2.3 Processes with independent increments

2.3.1 Equivalent definitions

When one thinks about a set-indexed process as a kind of random measure, most authors suppose
that it must have independent increments at the very least (just like in Example 2.2.13). Even
though we will study more general cases, it remains a very rich and interesting one nonetheless.
The following definition ofC -independent increments may be found in [47, Section 3.4] under the
denomination independent increments. Proposition 2.3.2 will argue in favor of that less precise
terminology.
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DEFINITION 2.3.1 (Independent increments). Let D be C or C (u). The process X has indepen-
dent D-increments if for all k ∈ N∗ and pairwise disjoint D1, ..., Dk ∈ D, the random variables
∆XD1

, ...,∆XDk
are independent.

The process X has independent B(X )-increments if the stochastic measure ∆X exists and for
all k ∈ N∗ and pairwise disjoint B1, ..., Bk ∈ B(X ), the random variables ∆XB1

, ...,∆XBk
are inde-

pendent.
The process X has independent E-increments if for all k ∈ N∗ and simple functions f1, ..., fk ∈ E

with pairwise disjoint supports, the random variables X( f1), ...,X( fk) are independent.
The process X has independent L(X )-increments if the linear process X exists and for all

k ∈ N∗ and functions f1, ..., fk ∈ L(X ) with pairwise disjoint supports, the random variables
X( f1), ...,X( fk) are independent.

PROPOSITION 2.3.2. Consider the following statements:

(i) X has independent C -increments,

(ii) X has independent C (u)-increments,

(iii) X has independentB(X )-increments,

(iv) X has independent E-increments,

(v) X has independent L(X )-increments.

Then (i)⇔ (ii)⇔ (iv) and if the stochastic measure ∆X exists, all of them are equivalent.

Proof. Since C ⊆ C (u) and {1U : U ∈ C (u)} ⊆ E due to Remark 1.2.41, we have (iv)⇒ (ii)⇒
(i). According to Proposition 1.2.42, any simple function may be written as a sum of indicators
of pairwise disjoint elements of C , thus (i)⇒ (iv). Hence (i)⇔ (ii)⇔ (iv).

Now let us suppose that ∆X exists. The implication (iii)⇒ (ii) is trivial, let us suppose (ii)
and prove (iii). Let B1, ..., Bk ∈ B(X ) pairwise disjoint. Let j ∈ ¹1, kº. Since 1B j

∈ L(X ), there
exists a sequence ( f jl)l∈N of simple functions converging mX -a.e. to 1B j

as l →∞. For all l ∈ N,
instead of considering 1{ f jl¾1/2}, we might as well suppose that f jl only takes values in {0, 1} and
so may be written as f jl = 1U jl

where U jl ∈ C (u). Hence for all j ∈ ¹1, kº, we have for mX -a.e.
t ∈ T ,

1U jl\
⋃

i 6= j Uil
(t) −→ 1B j\

⋃
i 6= j Bi
(t) = 1B j

(t) as l →∞.

Thus a dominated convergence theorem [62, Proposition 7.1.1] yields

�
∆XU1l\

⋃
i 6=1 Uil

, ...,∆XUkl\
⋃

i 6=k Uil

� P−→ �
∆XB1

, ...,∆XBk

�
as l →∞. (2.3.1)

According to (ii), the left-hand side of (2.3.1) is made of independent random variables, thus so
is the right-hand side. Hence (ii)⇔ (iii).

Let us now prove that (v) is equivalent to the other properties. Since ∆X exists, so does
X by Theorem 2.2.10. The implication (v) ⇒ (iv) is obvious. Suppose (iii) and let us prove
(v). Remark that proving (v) is equivalent to showing that for all f ∈ Lloc(X ) and pairwise
disjoint B1, ..., Bk ∈ B(X ), the random variables X( f 1B1

), ...,X( f 1Bk
) are independent. This

formulation is reachable with the same approximation procedure that we used for (ii) ⇒ (iii).
The equivalence follows.
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2.3.2 Infinitely divisible processes

Surprisingly enough, having independent increments is quite a restriction and implies a much
more precise structure on the distribution of X . In particular, it has to do with being infinitely
divisible. We shall review here the few general facts about infinitely divisibility that we need
afterwards, most of which can be found in [10, 87], where the reader will also find broader and
excellent expositions of the subject as a whole.

The theory of infinitely divisible distributions dates back to the pioneering work of Lévy
in the 30s and opened a now gigantic field of research with numerous ramifications. Among
them, starting with the works of Lee [67] and Maruyama [70], a notion of infinitely divisible
process (ID process) indexed by a general space T has been developed. This theory mirrors that
of Gaussian processes on a general space where the distribution is characterized by a mean and
a covariance function. We shall follow on this matter the more modern point of view developed
by Rosiński [85].

DEFINITION 2.3.3 (Infinitely divisible distribution, [85, Section 2.2]). A probability measure µ
on
�
Rk,B(Rk)

�
where k ∈ N∗ is infinitely divisible if for all n ∈ N∗, there exists a probability

measure µn on
�
Rk,B(Rk)

�
such that µ= µ∗nn (where ∗ is the convolution of probability measures)

or equivalently in terms of Fourier transform, for all ξ ∈ Rk, bµ(ξ) =cµn(ξ)n.
A random vector Z = (Z1, ..., Zk) is infinitely divisible if its law is.
A probability measure µ on

�
RT ,B(R)⊗T

�
for some general set T is infinitely divisible if all its

finite-dimensional distributions are.
A stochastic process Z =

�
Zt : t ∈ T

	
is an ID process if its distribution on

�
RT ,B(R)⊗T

�
is

infinitely divisible.

DEFINITION 2.3.4 (Truncation function, [85, Section 2.2]). A cutoff function is a map χ : R+→
R+ such that χ(x) = 1 + o(x) as x → 0+. For k ∈ N∗, the associated truncation function ¹.º :
Rk → Rk is given by

∀x ∈ Rk, ¹xº = �
x1χ(|x1|), ..., xkχ(|xk|)

�
.

Likewise for a general set T, ¹.º : RT → RT is given by

∀x ∈ RT ,∀t ∈ T, ¹xº(t) = x(t)χ(|x(t)|).

In the sequel, χ will stand for such a cutoff function and ¹.º for the associated truncation
functions. The confusion in the notation should not be an issue once one looks at which set does
the argument belong.

EXAMPLE 2.3.5. There have been quite a few different choices of cutoff functions in the literature,
each with its own set of advantages. Here, we mainly have the cutoff function χ(.) = 1|.|¶1 in mind
since it is the one best suited for the Lévy-Itô decomposition. But we chose to keep the general writing
since it is at its core a mere convention and some readers might be more accustomed to other cutoff
functions such as (1∧ |.|)−1 or (1+ (.)2)−1.

DEFINITION 2.3.6 (Lévy measure, [85, Definition 2.1]). A Lévy measure on Rk is a measure ν on�
Rk,B(Rk)

�
such that

ν
� {0Rk}

�
= 0, (2.3.2)

∀ j ∈ ¹1, kº,

∫

Rk

�
1∧ x2

j

�
ν(d x) < ∞. (2.3.3)
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Likewise, for a general set T, a Lévy measure on RT is a measure ν on (RT ,B(R)⊗T ) such that

∀B ∈B(R)⊗T , ν(B) = ν∗
�
B \ {0RT }

�
, (2.3.4)

∀t ∈ T,

∫

RT

�
1∧ x(t)2

�
ν(d x) < ∞ (2.3.5)

where ν∗ is the inner measure associated with ν.

REMARKS 2.3.7. � Inner measures are a concept dual to outer measures. More details about them
may be found in [35, §14]. An equivalent formulation to (2.3.4) which does not rely on the inner
measure is

∀B ∈B(R)⊗T , ν(B) = sup
I⊆T :

#I<∞
ν
�
B \π−1

I ({0RI })
�

where πI : RT � RI is the canonical projection. When T ' ¹1, kº is finite, (2.3.2) and (2.3.4)
are easily shown to be equivalent, but a problem arises for more general T where one might have
{0RT } /∈B(R)⊗T , hence the more involved condition.

� Another problem of having a possibly uncountable set T is that a Lévy measure ν might not
be necessarily σ-finite. However, using [85, Theorem 2.8], ν is still characterized by its finite-
dimensional distributions.

THEOREM 2.3.8 (Lévy-Khintchine representation, [87, Theorem 8.1]). A probability measure µ
on
�
Rk,B(Rk)

�
where k ∈ N∗ is infinitely divisble if and only if there exists a map ψ : Rk → C such

that bµ= eψ and

∀ξ ∈ Rk, ψ(ξ) = i〈ξ, b〉 − 1
2
〈ξ,Σξ〉 +

∫

Rk

�
ei〈ξ,x〉 − 1− i〈ξ,¹xº〉�ν(d x) (2.3.6)

where b ∈ Rk is a vector, Σ a symmetric non-negative definite k×k matrix and ν a Lévy measure on
Rk. The map ψ is called the Lévy-Khintchine exponent, b the drift, Σ the covariance matrix and
ν the Lévy measure of µ. The triplet (b,Σ,ν) is unique up to the choice of the cutoff function and
is called the Lévy-Khintchine triplet of µ.

REMARK 2.3.9. The formula (2.3.6) might appear to be quite abstruse at first, but tells a story
somewhat simpler than it looks. First, remark that the Lévy-Khintchine exponentψ=ψb+ψΣ+ψν
is the sum of three simpler exponents each only depending on one element of the triplet. In other
words, the distribution µ may be represented as the sum of three independent random vectors:

1. A random vector with Lévy-Khintchine exponentψb(ξ) = i〈ξ, b〉 which is the constant vector
equal to b.

2. A random vector with Lévy-Khintchine exponent ψΣ(ξ) = − 1
2 〈ξ,Σξ〉 which is a centered

Gaussian vector of covariance Σ. It is called the Gaussian part of µ.

3. A random vector with Lévy-Khintchine exponent ψν(ξ) =

∫

R

�
ei〈ξ,x〉 − 1− i〈ξ,¹xº〉�ν(d x)

which is a compensated compound Poisson process of intensity measure ν. It is called the
Poissonian part of µ. This is by far the most intricate part of an infinitely divisible distribution.
For an excellent exposition of Poisson processes, we refer to [58].

This decomposition will be useful to us when tackling the regularity of some specific ID processes
(Section 3.5.1).
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The Lévy-Khintchine representation for a random vector is actually generalizable to processes
as well, provided that one first extends the definition of the Fourier transform to accomodate
more general Lévy-Khintchine triplets.

DEFINITION 2.3.10 (Fourier transform). Let T be a general set and µ a probability measure on
(RT ,B(R)⊗T ). Denote by R(T ) =

�
ξ ∈ RT : supp (ξ) is finite

	
and

∀(ξ, z) ∈ R(T ) ×RT , 〈ξ, z〉=
∑

t∈supp(ξ)

ξ(t) z(t).

The Fourier transform of µ is the function bµ : R(T )→ C given by

∀ξ ∈ R(T ), bµ(ξ) =
∫

RT

ei〈ξ,z〉µ(dz).

Likewise, the Fourier transform of a T-indexed stochastic process Z =
�

Zt : t ∈ T
	

is the Fourier
transform of its distribution PZ on (RT ,B(R)⊗T ), i.e.

∀ξ ∈ R(T ), cPZ(ξ) = E
�
ei〈ξ,Z〉� .

THEOREM 2.3.11 (Lévy-Khintchine representation of ID processes, [85, Corollary 2.9]). A prob-
ability measure µ on

�
RT ,B(R)⊗T

�
for some general set T is infinitely divisible if and only if there

exists a map ψ : R(T )→ C such that bµ= eψ and

∀ξ ∈ R(T ), ψ(ξ) = i〈ξ, b〉 − 1
2
〈ξ,Σξ〉 +

∫

RT

�
ei〈ξ,x〉 − 1− i〈ξ,¹xº〉�ν(d x). (2.3.7)

where b ∈ RT , Σ ∈ RT×T is symmetric non-negative definite and ν is a Lévy measure on RT . The
same terminology as in Theorem 2.3.8 is used for the triplet (b,Σ,ν), which is also unique.

In particular, for any finite subset T ′ ⊆ T, the finite-dimensional µT ′ induced by µ on RT ′ has
Lévy-Khintchine triplet ( b|T ′ , Σ|T ′×T ′ ,νT ′).

We now use all this knowledge to compute particular cases of Lévy-Khintchine triplets of
interest to us. Those results should already be well-known, but we have not been able to find
them in the literature.

LEMMA 2.3.12. (ID process with independent entries) An ID process Z =
�

Zt : t ∈ T
	

with Lévy-
Khintchine triplet (b,Σ,ν) forms an independent family of random variables if and only if for all
s 6= t in T, Σ(s, t) = 0 and for all finite subset T ′ ⊆ T, supp (νT ′) ⊆

⋃
t∈T ′ R1{t} where R1{t} =�

a1{t} : a ∈ R
	
.

Remark that for a finite subset T ′ ⊆ T, the family (1{t})t∈T ′ is nothing but the canonical basis
of RT ′ . In particular,

⋃
t∈T ′ R1{t} is the union of all the coordinate axes of RT ′ .

Proof. The drift corresponding to a constant and the Gaussian case being all too well-known,
we suppose that b = 0 and Σ= 0. Suppose that Z is an independent family and consider a finite
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subset T ′ ⊆ T. Then, for all ξ ∈ RT ′ ,

ψZ(ξ) =
∑
t∈T ′

ψZt
(ξ(t))

=
∑
t∈T ′

∫

R{t}

�
eiξ(t)x(t) − 1− iξ(t)¹x(t)º�ν{t}(d x)

=
∑
t∈T ′

∫

RT ′

�
eiξ(t)x(t) − 1− iξ(t)¹x(t)º�νT ′(d x)

=

∫

RT ′

�
ei〈ξ,x〉 − 1− i〈ξ,¹xº〉�νT ′(E ∩ .)(d x)

where E =
⋃

t∈T ′ R1{t}. We used Theorem 2.3.11 for the first and third equalities. The hypothesis
of independence was used for the second. The last one is just a computation. By unicity of the
Lévy measure, we have νT ′ = νT ′(E ∩ .) and thus supp (νT ′) ⊆ E. Conversely, if supp (νT ′) ⊆ E,
one may do the same computation on ψZ as above, but in reverse order and actually show
that for all ξ ∈ RT ′ , ψZ(ξ) =

∑
t∈T ′ψZt

(ξ(t)) for all finite T ′ ⊆ T. Hence Z is an independent
family.

Denote by M(R) the set of (non-negative) Borel measures on R and by ϕ∗µ the pushforward
of the measure µ by the map ϕ (whenever they are compatible).

THEOREM 2.3.13 (Characterization of set-indexed processes with independent increments). The
set-indexed process X has independent increments if and only if there exists b :A → R, σ2 :A →
R+ and a kernel ν :A →M(R) such that the following holds:

1. For all C ∈ C , ∆σ2(C)¾ 0.

2. For all A∈A , νA is a Lévy measure on R and for all C ∈ C and B ∈B(R) such that 0 /∈ B,
∆νC(B)¾ 0.

3. X is an ID process whose Lévy-Khintchine triplet (b,Σ,ν) may be expressed for all A, A′ ∈A
and finite subcollectionA ′ ofA closed under intersections by

b(A) = b(A),
Σ(A, A′) = σ2(A∩ A′),

νA ′ = ϕA
′

∗

 ∑
C∈C `(A ′)

(ιC)∗∆νC

!
(2.3.8)

where νA ′ is the finite-dimensional Lévy measure induced by ν on RA
′
, C `(A ′) has been

given in Definition 1.2.38, ιC : R ,→ RC
`(A ′) is the injection given for all x ∈ R by ιC(x) =

x1{C} and ϕA
′
: RC

`(A ′)→ RA
′
is the linear map given by

∀x ∈ RC
`(A ′), ϕA

′
(x) : A 7→

∑

C∈C `(A ′):
C⊆A

x(C). (2.3.9)

Conversely, a triplet (b,σ2,ν) which verifies conditions 1 and 2 above uniquely determines through
(2.3.8) the Lévy-Khintchine triplet of a set-indexed process with independent increments.

REMARKS 2.3.14.
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� Due to the assured existence of a finitely additive extension (Proposition 1.2.44),∆b (resp. ∆σ2)
may be seen as a ‘signed pre-measure’ (resp. ‘pre-measure’).

� While checking the condition ∆νC(B) ¾ 0, the reason why one should restrict their attention
to Borel sets B ∈ B(R) such that 0 /∈ B is to avoid substracting infinities together. Indeed, for
A ∈ A , being a Lévy measure for νA implies that for such B, νA(B) <∞ but this might not be
the case anymore if 0 ∈ B.
Actually, this fear is unfounded since under that hypothesis, ∆νC defines a σ-finite pre-measure
on the ring

�
B ∈B(R∗) : 0 /∈ B

	
, and hence may be uniquely extended to a measure onB(R∗).

Setting ∆νC({0}) = 0 makes it a (Lévy) measure onB(R).
� The morphism ϕA

′
given in (2.3.9) might seem a bit mysterious but just comes from the fact that

for all A∈A ′, we have the C -representation 1A =
∑

C∈C `(A ′):C⊆A1C (see Proposition 1.2.42).

Proof of Theorem 2.3.13. Suppose that X has independent increments. Let us prove that X is
infinitely divisible. Let φ be a continuous A (u)-flow. The projection ∆Xφ along φ is then a
one-dimensional process with independent increments. According to [87, Theorem 9.7], ∆Xφ

must be an infinitely divisible process. Hence by Theorem 1.3.13, X also is infinitely divisible.
Its Lévy-Khintchine triplet (b,Σ,ν) is thus well-defined by Theorem 2.3.11. In particular, for all
U ∈ C (u), the random variable ∆XU is infinitely divisible as well. Denote by (b(U),σ2(U),νU)
its Lévy-Khintchine triplet given by Theorem 2.3.8. For all pairwise disjoint elements U , V in
C (u), we have ∆XUtV =∆XU +∆XV where ∆XU and ∆XV are independent. By unicity of the
Lévy-Khintchine triplet, σ2(U tV ) = σ2(U)+σ2(V ). By unicity of the increment map (Proposi-
tion 1.2.44),σ2 =∆(σ2

��
A ). Hence for all C ∈ C ,∆σ2(C) = σ2(C)¾ 0, which proves condition

1 for σ2 in the statement of Theorem 2.3.13. Condition 2 for ν is proven exactly in the same
fashion.

Let us show that (2.3.8) holds. Since each element of the triplet corresponds to an indepen-
dent part of the distribution (Remark 2.3.9), we may cancel two out of the three terms when
computing the third one for our purpose. So suppose that b = 0 and ν = 0 and let us establish
(2.3.8) for Σ and σ2. In this case, X is a centered Gaussian process with covariance Σ. Thus, for
all A, A′ ∈A ,

Σ(A, A′) = Cov (XA, XA′)
= Cov

�
XA∩A′ +∆XA\A′ , XA′∩A+∆XA′\A

�
= Var (XA∩A′) since X has independent increments,
= σ2(A∩ A′).

Now, let us suppose that b = 0 and Σ = 0 and let us establish (2.3.8) for ν and ν. Let A ′ be a
finite subcollection ofA . Then, by definition of ϕA

′
,

(XA)A∈A ′ = ϕA
′ �
∆X |C `(A ′)

�
. (2.3.10)

By definition of νA ′ , the left-hand side of (2.3.10) is an infinitely divisible random vector with
triplet (0, 0,νA ′). As for the right-hand side, when we established condition 2, a by-product was
that for all C ∈ C , ∆XC has triplet (0, 0,∆νC). Moreover, since all the elements of C `(A ′) are
pairwise disjoint, ∆X |C `(A ′) is a random vector with independent coordinates. According to
Lemma 2.3.12, its Lévy-Khintchine triplet is thus (0, 0,

∑
C∈C `(A ′)(ιC)∗∆νC). Hence, by (2.3.10)

and the last point in Remark 2.3.14,

νA ′ = ϕA
′

∗

 ∑
C∈C `(A ′)

(ιC)∗∆νC

!
. (2.3.11)
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Conversely, let us consider a triplet (b,σ2,ν) that checks conditions 1 and 2. Define then (b,Σ,ν)
by (2.3.8) and let us show that it is the Lévy-Khintchine triplet of some set-indexed process with
independent increments. There is nothing to prove for b. The map Σ is symmetric and for all
k ∈ N∗, α1, ...,αk ∈ R and A1, ..., Ak ∈A ,

∑
1¶i, j¶k

αiα jΣ(Ai , A j) =
∑

1¶i, j¶k

αiα jσ
2(Ai ∩ A j) =

∫

T

 
k∑

j=1

α j1Ai

!2

dσ2 ¾ 0

where the integral with respect to σ2 is well-defined at least for simple functions by Proposi-
tion 1.2.44. Thus Σ is non-negative definite.

For ν, one needs to check that it is a well-defined Lévy measure on RA . By [85, Theorem 2.8],
it is enough to check that for all A ∈ A , ν{A} is a Lévy measure and for all finite subcollections
A ′ ⊆A ′′ ofA , (πA

′′
A ′ )∗νA ′′ = νA ′ where πA

′′
A ′ : RA

′′ � RA
′
is the canonical projection.

Let A ∈ A . By definition, ν{A} = νA and thus is a Lévy measure. Let A ′ ⊆ A ′′ be two finite
subcollections ofA . Define the projection

pA
′′

A ′ : RC
`(A ′′) −→ RC

`(A ′)

x 7−→
�
C ′ 7→

∑

C ′′∈C `(A ′′):
C ′′⊆C ′

x(C ′′)
�
. (2.3.12)

Then, since
∀C ′ ∈ C `(A ′), ∆νC ′ =

∑

C ′′∈C `(A ′′):
C ′′⊆C ′

∆νC ′′ ,

we have

(pA
′′

A ′ )∗

 ∑
C ′′∈C `(A ′′)

(ιC ′′)∗∆νC ′′

!
=

 ∑
C ′∈C `(A ′)

(ιC ′)∗∆νC ′

!
. (2.3.13)

Moreover, according to (2.3.9 ), (2.3.12) and the definition of πA
′′

A ′ , the following diagram com-
mutes:

RC
`(A ′′) RA

′′

RC
`(A ′) RA

′

ϕA
′′

pA
′′

A ′ πA
′′

A ′

ϕA
′

Hence, combining (2.3.11) and (2.3.13), we get (πA
′′

A ′ )∗νA ′′ = νA ′ . It follows that (b,Σ,ν) is a
well-defined Lévy-Khintchine triplet. Let us consider an ID process X =

�
XA : A∈A 	 with such

a triplet. What is left to show is that X has independent increments. But back-tracking all the
previous computations readily shows that for all k ∈ N∗ and pairwise disjoint C1, ..., Ck ∈ C , the
random vector (∆XC1

, ...,∆XCk
) is infinitely divisible with Lévy-Khintchine triplet





∆b(C1)

...
∆b(Ck)


 ,



∆σ2(C1) (0)

. . .
(0) ∆σ2(Ck)


 ,

k∑
j=1

(ιC j
)∗∆νC j




from which the independence is easily deduced by Lemma 2.3.12.



2.3. Processes with independent increments 67

From this theorem, one may deduce a necessary and sufficient condition for a set-indexed
process with independent increments to extends to a stochastic measure, improving a well-
known result from [83]. Beforehand, we prove a small lemma that eases the proof of Corol-
lary 2.3.16.

LEMMA 2.3.15. Consider random variables Y0, Y1, ... defined on (Ω,F ,P) and a random variables

Z , Z0, Z1, ... defined on another probability space (Ω′,F ′,P′). If (Yk)k∈N
fdd
= (Zk)k∈N and Zk

P′→ Z as

k→∞, then there exists Y ∈ L0(Ω) such that Yk
P→ Y as k→∞.

Proof. Suppose that (Zk)k∈N converges in probability. In other words, it is a Cauchy sequence in
the complete metric space L0(Ω′) (Example 2.2.3), meaning that

∀ε > 0, ∃N ∈ N : ∀p, q ¾ N , E′
�|Zp − Zq| ∧ 1

�
¶ ε (2.3.14)

where E′ is the expectancy with respect to P′. If (Yk)k∈N
fdd
= (Zk)k∈N, then (2.3.14) implies that

(Yk)k∈N is a Cauchy sequence in L0(Ω). The result follows.

COROLLARY 2.3.16 (Extension of a process with independent increments). Suppose that X has
independent increments and consider the triplet (b,σ2,ν) given in Theorem 2.3.13. Then the fol-
lowing statements are equivalent:

(i) X extends to a stochastic measure ∆X onB(X ),

(ii) ∆b (resp. ∆σ2, ∆ν.(.)) extends to a signed measure ∆b on B (resp. measure ∆σ2 on B ,
measure eν onB ⊗B(R)).

We call (∆b,∆σ2,eν) the modified triplet of X .

If one only looks for the existence of ∆X ‘in law’, i.e. the extension of the distribution of X
on RA to a distribution on RB(X ) that verifies the properties stated in Corollary 2.3.16, then this
has essentially been proven by Rajput and Rosiński in [83]. However, it is another story to build
∆X on the same probability space as X and such that ∆X |A is actually a version of X .

Proof of Corollary 2.3.16. If X extends to a stochastic measure ∆X , then the fact that the triplet
(∆b,∆σ2,∆ν) extends as well is a consequence of [83, Proposition 2.1(a) and Lemma 2.3].

Conversely, suppose that (∆b,∆σ2,∆ν) extends to (∆b,∆σ2,eν) as intended. Then, by [83,
Proposition 2.1(b)], there exists a stochastic process M =

�
MB : B ∈ B(X )	 defined on a

possibly different probability space (Ω′,F ′,P′) such that

� M is a stochastic measure,

� M is an ID process with Lévy-Khintchine triplet (∆b,Σ,ν)whereΣ and ν are given by formulas
very much like (2.3.8) whereA is replaced byB(X ) and ∆νC by eν(B × .).

In particular, we also have M |C (u) fdd
= ∆X .

Let us build an extension of X using M . For any B ∈ B(X ), there exists a sequence (Uk)k∈N in

C (u) such that MUk

P′→ MB as k → ∞. By Lemma 2.3.15, there exists YB ∈ L0(Ω) such that



68 2. DISTRIBUTIONAL PROPERTIES OF GENERALIZED PROCESSES

∆XUk

P→ YB as k→∞. Remark that YB does not depend on the choice of the sequence (Uk)k∈N

since if (Vk)k∈N is another one such that MVk

P′→ MB and ∆XVk

P→ Y ′B as k→∞, then we have

MUk
−MVk

P′−→
k→∞

0
law = = law

∆XUk
−∆XVk

P−→
k→∞

YB − Y ′B.

Hence YB = Y ′B a.s. In particular, since the definition of YB does not depend on the approximating
sequence of B, we indeed have Y |A = X .

What is left to show is that Y =
�

YB : B ∈ B(X )	 is a stochastic measure, which would

imply by Theorem 2.2.8 that ∆X exists and Y =∆X . We know that Y
fdd
= M . Hence Y∅ = 0 a.s.

Moreover, if (Bk)k∈N is a non-decreasing sequence of sets inB(X ) such that B =
⋃

k∈N Bk belongs

to B(X ), then MBk

P′→ MB as k →∞. By Lemma 2.3.12, (YBk
)k∈N converges in probability as

well. We just need to show that the limit is equal to YB. Consider a sequence (Uk)k∈N in C (u)
such that for all k ∈ N, E′

�|MUk
−MBk

| ∧ 1
�
¶ 2−k. Applying Lemma 2.3.12 once more yields

that YUk
− YBk

P→ 0 as k→∞. Since YUk

P→ YB as k→∞ by definition of YB, we have YBk

P→ YB
as k→∞. Since Y is also finitely additive, Y is a stochastic measure. The result follows.

REMARK 2.3.17. In the previous proof, one may also apply a general coupling result like [54, The-
orem 6.10] to deduce the existence of ∆X from that of M . However, one needs to be careful and
find a Borel subspace of RB(X ) for which M has a version with sample paths almost surely residing
in it. We kept the proof above since it is more general and we applied the just-described idea in
Corollary 2.4.9.

Once the Lévy-Khintchine triplet of the stochastic measure∆X has been deduced, it becomes
natural to ask the same about the linear process X = �X( f ) : f ∈ L(X )

	
. Although expressing

the Lévy-Khintchine triplet of X directly from that of X is a bit tedious, using of the modified
triplet (∆b,∆σ2,eν) eases things.

COROLLARY 2.3.18. Suppose that X has independent increments and extends to a stochastic mea-
sure ∆X . Consider the modified triplet (∆b,∆σ2,eν). Then the linear process X = �X( f ) : f ∈
L(X )

	
is a well-defined ID process whose Lévy-Khintchine triplet (b,Σ,ν) may be expressed for all

f , g ∈ L(X ), finite subset f ⊆ L(X ) and B ∈B(R)⊗f by

b( f ) =

∫

T
f d(∆b) +

∫

T ×R

�¹x f (t)º− f (t)¹xº�eν(d t, d x),

Σ( f , g) =

∫

T
f g d(∆σ2),

νf(B) =

∫

T ×R

1B

�
x .f(t)

�eν(d t, d x).

(2.3.15)

where νf is the Lévy measure induced by ν on Rf and for all t ∈ T , x .f(t) is the element of Rf that
maps h ∈ f to xh(t) ∈ R.

Such a computation when X is a one-dimensional Lévy process has been carried out in [88,
Proposition 3.17] for χ(.) = 1|.|¶1. The general case is not much harder, but the computation is
somewhat different for the Poissonian part due to the absence of stationarity.
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Proof. By Theorem 2.2.10, X is well-defined. Moreover, we know that it takes values in the
closure (for the convergence in probability) of span (XA : A∈A ) . Since X is an ID process and
ID distributions are closed under weak convergence, we know that X is an ID process. Hence its
Lévy-Khintchine triplet (b,Σ,ν) is well-defined.

Let us show that (2.3.15) holds. First, remark that each term in (2.3.15) is well-defined due
to the characterization of L(X ) given by [83, Theorem 3.3] (we shall give a bit more details later
in Theorem 2.3.8). By density of E in L(X ) and continuity of X, we may restrict our attention
to simple functions.

Consider k ∈ N∗ and f = ( f1, ..., fk)> ∈ Ek and let us compute the Lévy-Khintchine exponent
ψX( f ) of X( f ) = �X( f1), ...,X( fk)

�
. Using Proposition 1.2.42, we may write

f = M



1C1

...
1Cl


 (2.3.16)

where C1, ..., Cl are pairwise disjoint elements of C and M is a k × l matrix of coefficients. For
ξ ∈ Rk, we have

bPX( f )(ξ) = E
�
ei〈ξ,X( f )〉�

= E
�
ei〈ξ,M(∆XC1

,...,∆XCl
)〉�

= bP(∆XC1
,...,∆XCl

)(M>ξ)

Hence, by independence of (∆XC1
, ...,∆XCl

),

∀ξ ∈ Rk, ψX( f )(ξ) =
l∑

j=1

ψ∆XCj
((M>ξ) j). (2.3.17)

In order to make the computation more palatable, we use Remark 2.3.9 and split the drift,
Gaussian and Poissonian components apart.

If (∆b,∆σ2,eν) = (∆b, 0, 0), then (2.3.17) reads for all ξ ∈ Rk,

ψX( f )(ξ) =
l∑

j=1

i(M>ξ) j∆b(C j)

= i〈M>ξ,∆b(C.)〉
= i〈ξ, M∆b(C.)〉.

Hence, due to (2.3.16), we get

∀ξ ∈ Rk, ψX( f )(ξ) = i
¬
ξ,

∫

T
f d(∆b)

¶
(2.3.18)

where the integral of the vector f is done component-wise.
Suppose that (∆b,∆σ2,eν) = (0,∆σ2, 0) and introduce the diagonal matrix D = (∆σ2(Ci ∩

C j))1¶i, j¶l . Equation (2.3.17) then reads for all ξ ∈ Rk,

ψX( f )(ξ) = − 1
2

l∑
j=1

(M>ξ)2j∆σ
2(C j)

= − 1
2 〈(M>ξ), D(M>ξ)〉

= − 1
2 〈ξ, (M DM>)ξ〉.
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Hence, due to (2.3.16), we get

∀ξ ∈ Rk, ψX( f )(ξ) = −
1
2

¬
ξ,

∫

T
f f >d(∆σ2)ξ

¶
(2.3.19)

where the integral of the matrix f f > is done component-wise.
Suppose that (∆b,∆σ2,eν) = (0, 0,eν). Fix a Borel map ϕ : R × Rk → R+ and denote by

(e1, ..., el) the canonical basis of Rl . Then,

∫

T ×R

ϕ(x , f (t))eν(d t, d x) =
l∑

j=1

∫

C j×R

ϕ(x , f (t))eν(d t, d x).

Using (2.3.16), we have f |C j
= Me j for all j ∈ ¹1, lº. Hence

∫

T ×R

ϕ(x , f (t))eν(d t, d x) =
l∑

j=1

∫

R

ϕ(x , Me j)∆νC j
(d x). (2.3.20)

Let ξ ∈ Rk. Equation (2.3.17) reads

ψX( f )(ξ) =
l∑

j=1

∫

R

�
ei(M>ξ) j x − 1− i(M>ξ) j¹xº

�
∆νC j

(d x).

Since for all j ∈ ¹1, lº, (M>ξ) j = 〈ξ, Me j〉, we have

ψX( f )(ξ) =
l∑

j=1

∫

R

�
ei〈ξ,x .Me j〉 − 1− i〈ξ,¹xº.Me j〉

�
∆νC j

(d x).

Using the usual construction of the integral, we may extend (2.3.20) to ϕ : R× Rk 3 (x , y) 7→
ei〈ξ,x .y〉 − 1− i〈ξ,¹xº.y〉 and get

ψX( f )(ξ) =
∫

T ×R

�
ei〈ξ,x . f (t)〉 − 1− i〈ξ,¹xº. f (t)〉�eν(d t, d x).

Hence

ψX( f )(ξ) = i
¬
ξ,

∫

T ×R

�¹x . f (t)º− ¹xº. f (t)
�eν(d t, d x)

¶

+

∫

T ×R

�
ei〈ξ,x . f (t)〉 − 1− i〈ξ,¹x . f (t)º〉�eν(d t, d x).

(2.3.21)

The result follows from (2.3.18), (2.3.19), (2.3.21) and the unicity of the Lévy-Khintchine triplet.

2.3.3 Martingale inequalities

In this section, we investigate some martingale maximal inequalities that can be proven in the
case of indexing collections of finite dimension (Definition 1.5.3). Such results are not too sur-
prising since the classical set-indexed setting has always been geared towards generalizing mar-
tingale theory. They will be useful to establish regularity results in Chapter 3. For each inequality,
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the basic ingredients are the same: import a discrete version of it from the multiparameter case
through the finite-dimensional assumption and then, deduce a continuous version using addi-
tional regularity of the sample paths.

For this endeavor, we need to borrow a bit more of martingale-related vocabulary from the
classical setting [47] and from the multiparameter setting [56]. We also take up on the occasion
to establish a link between set-indexed and multiparameter martingales (Theorem 2.3.25).

DEFINITION 2.3.19 (Filtration, adapted from [47, Section 1.4]). A (set-indexed) filtration is a
family (FA)A∈A of σ-algebras such that

∀A, A′ ∈A , A ⊆ A′ =⇒ FA ⊆ FA′ .

In the rest of this section, let (FA)A∈A denote such a set-indexed filtration. The classical
setting usually imposes more conditions on the filtration, but we will not use have a use for
them here.

DEFINITION 2.3.20 (Strong history, [47, Section 1.4]). The strong history associated with (FA)A∈A
is the collection (G ∗U)U∈C (u) of σ-algebras defined for all U ∈ C (u) by G ∗U =

∨
A∈A :A∩U=∅FA.

DEFINITION 2.3.21 (Set-indexed martingale, [47, Definition 3.1.1]). The process X is a strong
(set-indexed) martingale with respect to (FA)A∈A if for all A ∈ A , XA ∈ L1(Ω,FA,P) and for all
C ∈ C , E

�
∆XC |G ∗C

�
= 0.

The process X is a (set-indexed) martingale with respect to (FA)A∈A if for all A ∈ A , XA ∈
L1(Ω,FA,P) and for all A, A′ ∈A such that A⊆ A′, E [XA′ |FA] = XA.

We may replace in the terminology above ‘martingale’ by ‘submartingale’ (resp. ‘supermartin-
gale’) if the ‘=’ signs are replaced by ‘¾’ (resp. ‘¶’).

By [47, Proposition 3.1.4], any strong martingale is a martingale. There is also a notion of
weak martingale [47, Definition 3.1.1], but we will not have a use for it here.

EXAMPLE 2.3.22. If X has independent increments, then it is a strong martingale with respect to
its natural filtration where for all A ∈ A , FA = σ(XA′ : A′ ⊆ A). Basically, this is the main setting
in which we will use martingale inequalities afterwards. This is why we still chose to include this
section here even though a martingale may not have independent increments in general.

We prove a small result about strong martingales that will alleviate the proof of the coming
theorem.

LEMMA 2.3.23. If X is a strong martingale (resp. submartingale, supermartingale), then for all
U ∈ C (u), E

�
∆XU |G ∗U

�
= 0 (resp. ¾ 0, ¶ 0).

Proof. Suppose that X is a strong martingale and consider U ∈ C (u). We write U =
⋃k

i=1 Ci
where the Ci ’s are pairwise disjoint elements of C . Then, since for all i ∈ ¹1, kº, G ∗U ⊆ G ∗Ci

, we
may use the tower rule of conditional expectations to get

E
�
∆XU

��G ∗U
�
=

k∑
i=1

E
�
E
�
∆XCi

��G ∗Ci

� ��G ∗U
�
= 0.

On the side of the multiparameter setting, the notion of maringale has been generalized by
Cairoli and Walsh as follows.
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DEFINITION 2.3.24 (Orthomartingale, [56, Section 2.1]). Let p ∈ N∗ and consider p filtrations
F (1), ...,F (p) on N. A process M =

�
Mt : t ∈ Np

	
is an orthomartingale (resp. orthosubmartin-

gale) with respect to F (1), ...,F (p) if for all t = (t1, ..., tp) ∈ Np and j ∈ ¹1, pº, the process�
M(t1,...,t j−1,s,t j+1,...,tp) : s ∈ N

	
is a one-dimensional martingale (resp. submartingale) with respect

to F ( j).
Actually, there is a link between set-indexed martingales and orthomartingales. We will

exploit it by directly importing results from one to the other.

THEOREM 2.3.25. Consider the following statements:

(i) X is a strong martingale with respect to (FA)A∈A .

(ii) For any finite subsetA ′ ⊆A closed under intersections and order embedding ϕ : (A ′,⊆) ,→
(Np,´) where p ∈ N∗ is such thatA ′ has poset dimension ¶ p, the process X |ϕ = � X |ϕt : t ∈
Np
	

given by

∀t ∈ Np, X |ϕt = ∆X U |ϕt where U |ϕt =
⋃

A∈A ′:
ϕ(A)´t

A (2.3.22)

is an orthomartingale with respect to F (1), ...,F (p) where

∀( j, s) ∈ ¹1, pº×N, F ( j)s =
∨

A∈A ′:
ϕ(A) j¶s

FA.

(iii) X is a martingale with respect to (FA)A∈A .

Then (i)⇒ (ii)⇒ (iii). Moreover, this chain of implications still holds if ‘martingale’ is replaced by
‘submartingale’ or ‘supermartingale’.

REMARK 2.3.26. There is a more intuitive, but also less practical way to think about the process
X |ϕ . As usual, we may consider that X |ϕ is indexed by the rectangles ¹0, tº (t ∈ Np) instead. Then,
X |ϕ is equivalently characterized by

∀t ∈ Np, ∆X |ϕ{t} =
§
∆XC if t ∈ ϕ(A ′) and C ∈ C `(A ′) is such that t(ϕ−1(t)) ∈ C ,

0 otherwise.

Since the elements of C `(A ′) are pairwise disjoint, this definition is well-posed. Proving the equiv-
alence with (2.3.22) is a straightforward computation.

Proof of Theorem 2.3.25. We only prove it for martingales, but the other cases only require
straightforward adjustments. Suppose (i) and consider an order embedding ϕ : A ′ ,→ Np for
some finite subset A ′ ⊆ A closed under intersections and p ∈ N∗. Let us show that X |ϕ is an
orthomartingale. Let t ∈ Np and j ∈ ¹1, pº. Due to the inclusion-exclusion formula and the fact
that A ′ is closed under intersections, X |ϕt is a linear combination of the XA’s such that A ∈ A ′
and ϕ(A)´ t. Hence X |ϕt is integrable and X |ϕt is F ( j)t j

-measurable.
Denote t ′ = (t1, ..., t j−1, t j + 1, t j+1, ..., tp). We claim that

F ( j)t j
⊆ G ∗

U |ϕ
t′\ U |ϕt

. (2.3.23)
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Indeed, consider A∈A ′ such that ϕ(A) j ¶ t j . By definition of U |ϕt and U |ϕt ′ , we have

A∩ (U |ϕt ′ \ U |ϕt ) =
⋃

A′∈A ′:
ϕ(A′)´t ′

(A∩ A′) \
⋃

A′∈A ′:
ϕ(A′)´t

A′. (2.3.24)

Moreover, for all A′ ∈A ′ such that ϕ(A′)´ t ′,

ϕ(A∩ A′) = ϕ(A)∧ϕ(A′) since ϕ is order embedding,
´ ϕ(A)∧ t ′

´ t since ϕ(A) j ¶ t j and for all i 6= j, t ′i = t i .

Combining this result with (2.3.24) yields A∩(U |ϕt ′\U |ϕt ) =∅. Hence (2.3.23) holds by definition

of F ( j)t j
and G ∗

U |ϕ
t′\ U |ϕt

. Then we have

E
�

X |ϕt ′ − X |ϕt
��F ( j)t j

�
= E

�
∆X U |ϕ

t′\ U |ϕt
��F ( j)t j

�

= E
�
E
�
∆X U |ϕ

t′\ U |ϕt
��G ∗

U |ϕ
t′\ U |ϕt

� ��F ( j)t j

�
by (2.3.23),

= 0 by Lemma 2.3.23.

Hence X |ϕ is an orthomartingale, which proves (i)⇒ (ii).
Now suppose (ii) and let us prove (iii). Let A, A′ ∈A such that A⊆ A′. Then, the mapϕ = 1{A′}

is an order embedding from {A, A′} to N. By (ii), we know that X |ϕ is an orthomartingale with
respect to F (1) where

∀s ∈ N, F (1)s =
§ FA if s = 0,
FA′ if s ¾ 1.

It then quickly follows that XA ∈ L1(Ω,FA,P), XA′ ∈ L1(Ω,FA′ ,P) and E [XA′ |FA] = XA. Hence X
is a martingale and (ii)⇒ (iii).

LEMMA 2.3.27 (Discrete set-indexed maximal inequality). Let p ∈ N∗ and suppose that X is a
non-negative strong submartingale. There exists a constant κp,1 > 0 such that for all finite subset
A ′ ⊆A with poset dimension ¶ p and U ∈A ′(u),

∀ε > 0, P
�

max
A∈[∅,U]∩A ′

|XA|> ε
�
¶
κp,1

ε

�
(p− 1) + E

�|∆XU |(ln+ |∆XU |)p−1
� �

(2.3.25)

where ln+ = 0∨ ln and κp,1 may be taken equal to (e/(e− 1))p−1.
For all γ > 1, there exists a constant κp,γ > 0 such that for all finite subset A ′ ⊆ A with poset
dimension ¶ p and U ∈A ′(u),

E
�

max
A∈[∅,U]∩A ′

|XA|γ
�
¶ κp,γ E [|∆XU |γ] (2.3.26)

where κp,γ may be taken equal to (γ/(γ− 1))pγ.

The one-dimensional case is the celebrated Doob’s maximal inequality. The multiparameter
case is called Cairoli’s inequality and its special case γ= 2 in (2.3.26) is also known as Wichura’s
inequality [101, Theorem 1].
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Proof. Suppose that X is a non-negative strong submartingale and consider a finite subsetA ′ ⊆
A and U ∈A ′(u). Without loss of generality for what we want to prove, we may suppose that
A ′ is closed under intersections and that U =

⋃
A∈A ′ A. Fix an order embedding ϕ :A ′ ,→ Np

where p ∈ N∗.
By Theorem 2.3.25, X |ϕ is a non-negative orthosubmartingale for which we may apply

Cairoli’s inequality [56, Theorem 2.5.1] and obtain for all t ∈ Np,

∀ε > 0, P
�

max
0´s´t

X |ϕs
�
¶
κp,1

ε

�
p− 1+ E

�
X |ϕt (ln+ X |ϕt )p−1

� �
(2.3.27)

where κp,1 = (e/(e − 1))p−1. Then apply (2.3.27) for t ∈ Np big enough so that for all A ∈ A ′,
ϕ(A) ´ t and (2.3.25) follows. The inequality (2.3.26) works all the same but for the need to
apply another Cairoli’s inequality [56, Theorem 2.3.1] instead.

As usual, extending those discrete results requires some additional regularity assumption.

DEFINITION 2.3.28 (Outer continuity). A map h : A → R is outer continuous if for all non-
increasing sequence (Ak)k∈N inA , h(Ak)→ h(

⋂
k∈N Ak) as k→∞.

THEOREM 2.3.29 (Set-indexed maximal inequality). Suppose that p = dimA <∞ and X is a
non-negative strong submartingale with an outer continuous version. Then there exists a constant
κp,1 > 0 such that for all U ∈A (u),

∀ε > 0, P

�
sup

A∈[∅,U]
|XA|> ε

�
¶
κp,1

ε

�
p− 1+ E

�|∆XU |(ln+ |∆XU |)p−1
� �

(2.3.28)

where κp,1 may be taken equal to (e/(e− 1))p−1.
For all γ > 1, there exists a constant κp,γ > 0 such that for all U ∈A (u),

E

�
sup

A∈[∅,U]
|XA|γ

�
¶ κp,γ E [|∆XU |γ] (2.3.29)

where κp,γ may be taken equal to (γ/(γ− 1))pγ.

Proof. Let U ∈ A (u) and define for all n ∈ N, A ′n =
�
A∩ U : A ∈ An

	
. Remark that due to the

separability from above, for all n big enough, we have U ∈A ′n(u).
By outer continuity, we have for all ε > 0,

P

�
sup

A∈[∅,U]
|XA|> ε

�
= lim

n→∞P

�
max

A∈[∅,U]∩A ′n
|XA|> ε

�
.

Hence (2.3.28) follows from its discrete counterpart (2.3.25) and the remark at the beginning
of the proof.
For all γ > 1, we also have by outer continuity and Fatou’s lemma,

E

�
sup

A∈[∅,U]
|XA|γ

�
¶ lim inf

n→∞ E

�
max

A∈[∅,U]∩A ′n
|XA|γ

�

which likewise enables us to prove (2.3.29) from (2.3.26) and the remark at the beginning of
the proof.
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REMARK 2.3.30. If X is a strong martingale and not necessarily a non-negative submartingale, then
the maximal inequalities above still work fine. Indeed, by Theorem 2.3.25, we know that for all
order embedding ϕ, X |ϕ is an orthomartingale. Hence, by a classical argument based on Jensen’s
inequality, | X |ϕ | is a non-negative orthosubmartingale, which is the only property on X that is used
in the proofs (apart from the occasional assumption on the sample paths).

The set-indexed setting also permits another kind of maximal inequality which is localized
around some A ∈ A . And for that, an interesting — but not so surprising phenomenon —
appears: controlling the increments XA − XA′ in some neighborhood of A requires a knowl-
edge beyond that neighborhood, knowledge contained in our notion of vicinity V(A,ρ) (Def-
inition 1.4.6).

COROLLARY 2.3.31 (Localized maximal inequality). Suppose that p = dimA <∞, X is inte-
grable, centered, has an outer continuous version, independent increments and extends to a stochas-
tic measure ∆X . Then for all γ > 1, there exists a constant κp,γ > 0 such that for all A ∈ A and
ρ > 0 such that V(A,ρ) ∈B(X ),

E

�
sup

A′∈BA (A,ρ)
|XA− XA′ |γ

�
¶ κp,γ E

�|∆XV(A,ρ)|γ
�

(2.3.30)

where κp,γ may be taken equal to 2γ(γ/(γ− 1))pγ.

Proof. Let A ∈ A , ρ > 0, γ > 1 and n ∈ N. We will use the notations Vn(A,ρ), V n(A,ρ), and
V n(A,ρ) introduced in (1.4.12). Applying (2.3.29) to the strong martingale Y (n) =

�
∆XA\V (A,ρ) :

A∈A 	 and U = V n(A,ρ) where V (A,ρ) =
⋂

k∈N V k(A,ρ) gives

E
�

sup
A′∈A :

A′⊆V n(A,ρ)

|∆XA′\V (A,ρ)|γ
�
¶
�
γ

γ− 1

�pγ

E
�
|∆XV n(A,ρ)\V (A,ρ)|γ

�
. (2.3.31)

Using the inequality |XA − XA′ | ¶ |∆XA\V (A,ρ)| + |∆XA′\V (A,ρ)| together with the convextity of
x 7→ |x |γ yields

∀A′ ∈ BA (A,ρ), |XA− XA′ |γ ¶ 2γ−1
�|∆XA\V (A,ρ)|γ + |∆XA′\V (A,ρ)|γ

�
. (2.3.32)

Combining (2.3.31) and (2.3.32) yields

E
�

sup
A′∈BA (A,ρ):
A′⊆V n(A,ρ)

|XA− XA′ |γ
�
¶ 2γ

�
γ

γ− 1

�pγ

E
�
|∆XV n(A,ρ)\V (A,ρ)|γ

�
. (2.3.33)

Since X has independent increments and V n(A,ρ) \ V (A,ρ) ⊆ V(A,ρ), we know by Proposi-
tion 2.3.2 that

E
�
∆XV(A,ρ)

��∆XV n(A,ρ)\V (A,ρ)

�
= ∆XV n(A,ρ)\V (A,ρ). (2.3.34)

Hence, by convexity of x 7→ |x |γ and Jensen’s inequality, we get

E
�
|∆XV n(A,ρ)\V (A,ρ)|γ

�
¶ E

�|∆XV(A,ρ))|γ
�

. (2.3.35)

Combining (2.3.33) and (2.3.35) yields

∀n ∈ N, E
�

sup
A′∈BA (A,ρ):
A′⊆V n(A,ρ)

|XA− XA′ |γ
�
¶ 2γ

�
γ

γ− 1

�pγ

E
�|∆XV(A,ρ))|γ

�
. (2.3.36)
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The result follows by taking n →∞ in (2.3.36), Fatou’s lemma and outer continuity, just like
the proof of (2.3.29).

REMARK 2.3.32. The only place where we used the independence of the increments in the proof
of Corollary 2.3.31 is to obtain the martingale-like relation (2.3.34). Unfortunately, it seems not
to be a direct consequence of being a strong martingale, even though some additional regularity
assumptions in Lγ(Ω) could also have done the trick. Our proof avoids this caveat, but cannot be
adapted to a L logp−1 L inequality like (2.3.28) due to convexity issues.

2.3.4 A 0-1 law

Among many interesting properties verified by processes with independent increments, one may
find Blumenthal’s 0-1 law at a good place, e.g. [30, Theorem 8.2.3]. We prove a set-indexed
version of such law. The main use we will have for it is to prove that the pointwise Hölder
exponent of a set-indexed process with independent increments at some fixed A ∈ A must be
deterministic (Proposition 3.5.1). Recall that the modular ρX has been introduced in (2.2.3) to
characterize X -integrable functions.

THEOREM 2.3.33 (Set-indexed 0-1 law). Suppose that X has independent increments and extends
to a stochastic measure ∆X . Let A∈A and define

∀ρ > 0, F(A,ρ) = σ
�
XA− XA′ : A∈A , 0< dA (A, A′)< ρ

�
and FA+ =

⋂
ρ>0

F(A,ρ).

If ρX (1V(A,ρ))→ 0 as ρ→ 0+, then any event in FA+ has probability either 0 or 1.

Proof. Define the σ-algebra
F(A,∞) =

∨
ρ>0

F(A,ρ).

Since FA+ ⊆F(A,∞), it is enough to prove that FA+ is independent from F(A,∞).
First, remark that the family of cylinders

¦
XA− XA1

∈ B1, ..., XA− XAk
∈ Bk

©

where k ∈ N∗, and for all j ∈ ¹1, kº, A j ∈ A , dA (A, A j) > 0 and B j ∈ B(R) is a π-system that
generatesF(A,∞). So by a monotone class argument, it is enough to show thatFA+ is independent
from XA−XA1

, ..., XA−XAk
for some fixed A1, ..., Ak ∈A such that for all j ∈ ¹1, kº, dA (A, A j)> 0.

Let ρ > 0. Since FA+ ⊆F(A,ρ) and X has independent increments, FA+ is independent from
the random variables

¦
∆XA\(A j∪V(A,ρ)) −∆XA j\(A∪V(A,ρ)) : j ∈ ¹1, kº

©
.

Since ρX (1V(A,ρ))→ 0 as ρ→ 0+, FA+ is independent from the random variables
¦

lim
ρ→0+

(∆XA\(A j∪V(A,ρ)) −∆XA j\(A∪V(A,ρ))) = XA− XA j
: j ∈ ¹1, kº

©

where the limit holds in probability by Theorem 2.2.10. HenceFA+ is independent fromF(A,∞).
The result follows.

REMARK 2.3.34. Making use of [62, Proposition 7.1.1 (ii) and (iii)] (which basically is a dominated
convergence theorem forX), the conditionρX (1V(A,ρ))→ 0 asρ→ 0+ of Theorem 2.3.33 is actually
equivalent to 1V(A,ρ0) ∈B(X ) for some ρ0 > 0 and mX (

⋂
ρ>0 V(A,ρ)) = 0.
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2.4 Interlude: set-indexed Lévy processes

In Section 2.3, we studied processes with independent increments. In Section 2.5, we will study
processes with stationary increments. Between them, we expose a process that has both of those
properties: the set-indexed Lévy process. It has been introduced by Herbin and Merzbach in
[41]. A multiparameter version has previously been studied by Bass and Pyke in [16].

We first give a few definitions and examples in Section 2.4.1 before commenting in Sec-
tion 2.4.2 on the special form the Lévy-Khintchine representation (2.3.7) has in this case.

2.4.1 Definition and examples

DEFINITION 2.4.1 (Set-indexed Lévy process, adapted from [41, Definition 3.1]). The process X
is a set-indexed Lévy process (siLévy) if it verifies the following conditions:

1. X has independent C -increments,

2. X is C0-stationary, i.e. for all k ∈ N∗, A ⊆ A1 ⊆ ... ⊆ Ak and A′ ⊆ A′1 ⊆ ... ⊆ A′k in

A such that for all j ∈ ¹1, kº, m(A j \ A) = m(A′j \ A′), we have
�
∆XA1\A, ...,∆XAk\A

� law
=�

∆XA′1\A′ , ...,∆XA′k\A′
�
.

The property of C0-stationarity will be commented at length in Section 2.5.2. If one were
to compare this definition to [41, Definition 3.1], one would note that a stochastic continuity
assumption is missing. However, the following result tells us that one may recover ‘for free’ a
similar property.

PROPOSITION 2.4.2. If X is a siLévy, then it is outer continuous in probability, i.e. for all non-

increasing sequence (Ak)k∈N inA , we have XAk

P−→ X⋂
j∈N A j

as k→∞.

Proof. Consider a non-increasing sequence (Ak)k∈N in A and denote A =
⋂

j∈N A j . By patch-
ing together A -flows from Proposition 1.3.9, we may find a continuous A -flow φ and a non-
increasing sequence (tk)k∈N in [0, 1] such that φ(0) = A and for all k ∈ N, φ(tk) = Ak. Then, the
projection Xφ is a [0, 1]-indexed process with independent increments (see Proposition 2.5.2
later). According to [87, Theorem 9.7], we know that

Xφtk
− Xφ0

law−→ 0 as k→∞.

Since the convergence in law to a constant implies convergence in probability, we get

XAk

P−→ XA as k→∞.

The result follows.

Remark that in the proof above, [87, Theorem 9.7] is used on a [0, 1]-indexed process instead
of a R+-indexed one as required by the statement. But that is a non-issue since one may extend
the distribution of Xφ to such a process by independence of increments and 1-periodicity.

By now, the reader may already be familiar with several examples of siLévy’s. The simplest
one is the deterministic drift given by

�
bm(A) : A∈A 	 for some b ∈ R. Another one is the siBm

defined in Example 2.2.12. Both of those being ‘jumpless’ (see [41] for more details), it leaves
out a discontinuous part — the Poissonian one from Remark 2.3.9 — that we describe a bit more
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precisely here. The presentation is made from a standpoint that will generalize easily to several
processes — namely ones with exchangeable increments — that will be encountered later on in
Section 2.5.5.

When studying the jump discontinuities of some stochastic process, arises a particular class
of processes called point processes of independent interest. This class has a long history that dates
back to the 70’s (see e.g. [77] for an early reference). For modern expositions on the theory of
point processes, we refer to [54, Chapter 12] and [64]. We adapt the definitions here to the
set-indexed setting. Note that they differ from the classical one [47, Section 8].

DEFINITION 2.4.3 (Set-indexed point process). A (set-indexed) point process is a process N =�
µ(A) : A∈A 	 where µ : Ω→M(T ) is a N∪ {∞}-valued random measure (Definition 2.2.14).

REMARK 2.4.4 (Random sets). Point processes may be used to represent random countable setsΠ by
considering the measure

∑
t∈Π δt instead. This point of view has been successfully used in [13, 51]

to study the Hölder regularity of R+-indexed Lévy processes. In the Chapter 3, we shall push their
methods further to make use of them in the set-indexed setting.
For a more complete exposition of the theory of random sets, we refer to [64, 75].

DEFINITION 2.4.5 (Set-indexed Poisson process, adapted from [47, Definition 3.4.4]). Let ν ∈
M(T ). A set-indexed Poisson process of intensity ν is a point process N =

�
NA : A ∈ A 	 with

independent C -increments and such that for all A ∈ A , NA ∼ Poi(ν(A)) with the convention that
NA = ν(A) a.s. whenever ν(A) ∈ {0,∞}.

The existence of a set-indexed Poisson process is ensured by [54, Theorem 12.7] even though
we will be explaining part of the construction in Proposition 3.3.11.

EXAMPLE 2.4.6 (Set-indexed compound Poisson process). As expressed in Remark 2.3.9, the Pois-
sonian part of a Lévy process is more than simply a Poisson process. In general, we have what
is called a compensated compound Poisson process. Let us explain here how it is defined in the
set-indexed setting.

Consider ν ∈M(R) such that ν({0}) = 0. Recall that we endowed R∗ ∪ {∞} with an indexing
collection AR∗∪{∞} in Example 1.2.19. In particular, we may consider that ν ∈M(R∗ ∪ {∞}) by
specifying that ν({∞}) = 0. Since the product of indexing collections is still an indexing collection
(Proposition 1.2.9), we thus know that m⊗ν ∈M(T ×(R∗∪{∞})). In particular, we may consider
a set-indexed Poisson process N of intensity m ⊗ ν.

If

∫

R

�
1∧|x |�ν(d x)<∞, we may define a set-indexed compound Poisson process of intensity

ν as the process P given by

∀A∈A , PA =

∫

T ×(R∗∪{∞})

�
x1A(t)

�
N(d t, d x) =

∫

A×R

x N(d t, d x) (2.4.1)

where the integral converges due to the assumption on ν and [54, Lemma 12.13].

Suppose that instead of

∫

R

�
1 ∧ |x |�ν(d x) <∞, we have

∫

R

�
1 ∧ x2

�
ν(d x) <∞ (i.e. ν is a

Lévy measure on R) and introduce a set-indexed compensated Poisson process of intensity ν as
the process eN given by

∀A′ ∈A ×AR∗∪{∞}, eNA′ = NA′ − m ⊗ ν ��(t, x) ∈ A′ : |x |¶ 1
	�

. (2.4.2)
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In that case, we may define a set-indexed compensated compound Poisson process of intensity ν
as the process eP given by

∀A∈A , ePA =

∫

T ×(R∗∪{∞})

�
x1A(t)

� eN(d t, d x) =

∫

A×R

x eN(d t, d x) (2.4.3)

where the integral converges once more due to [54, Lemma 12.13]. Seeing that eP has indepen-
dent C -increments is a consequence of the fact that eN has independent C -increments and Proposi-
tion 2.3.2. We postpone checking the C0-stationarity to Proposition 2.5.22 when we are a bit more
equipped to talk about stationarity.

2.4.2 Weak Lévy-Itô decomposition

In [83], Rajput and Rosiński characterized the space L(X ) of X -integrable functions when X has
independent increments. We state their result when X is a siLévy since we are going to need it
afterwards. For γ ∈ [0,2], b ∈ R, σ2 ∈ R+ and ν a Lévy measure on R, denote by Lγ(b,σ2,ν)
the Musielak-Orlicz space associated with the function

φγ : T ×R+ −→ R+

(t, x) 7−→ sup
z∈R:
|z|¶|x |

����b y +

∫

R

�¹yzº− z¹yº�ν(d y)

���� + σ2 x2

+

∫

T ×R

�|x y|2 ∧ |x y|γ�ν(d y)

(2.4.4)

which does verify the conditions of Definition 2.2.4 due to [83, Lemma 3.1]. The parameter
γ is used to characterize the space of X -integrable functions whose stochastic integrals have a
moment of order γ.

THEOREM 2.4.7 (Lévy-Khintchine representation). The following statements are equivalent:

(i) X is a siLévy.

(ii) X has independent increments and its modified triplet (∆b,∆σ2,eν) may be expressed as
�
∆b, ∆σ2, eν� = �

bm, σ2m, m ⊗ ν� (2.4.5)

where b ∈ R, σ2 ∈ R+ and ν is a Lévy measure on R.

Under those conditions, the triplet (b,σ2,ν) is unique and X extends to a linear ID process X =�X( f ) : f ∈ L0(b,σ2,ν)
	

whose Lévy Khintchine triplet (b,Σ,ν) may be expressed for all f , g ∈
L0(b,σ2,ν), finite subset f ⊆ L0(b,σ2,ν) and B ∈B(R)⊗ f by

b( f ) = b

∫

T
f dm +

∫

T ×R

�¹x f (t)º− f (t)¹xº� (m ⊗ ν)(d t, d x),

Σ( f , g) = σ2

∫

T
f g dm,

ν f (B) =

∫

T ×R

1B

�
x . f (t)

�
(m ⊗ ν)(d t, d x)

(2.4.6)

where ν f is the Lévy measure induced by ν on R f and for all t ∈ T , x . f (t) is the element of R f

that maps h ∈ f to xh(t) ∈ R.



80 2. DISTRIBUTIONAL PROPERTIES OF GENERALIZED PROCESSES

Proof. The equivalence (i)⇔(ii) is essentially the computation that leads to [41, Equation (15)],
the only difference being that our choice of cutoff function is more general.

Now, suppose (i) and (ii). Due to [83, Theorem 3.3], we have L(X ) = L0(b,σ2,ν). The
computation of (2.4.6) is then just a joint consequence of (2.3.15) and (2.4.5).

COROLLARY 2.4.8. Suppose that the cutoff function χ is equal to 1|.|¶1 and consider a Lévy measure
ν on R. Then, the modified triplet of the set-indexed compensated compound Poisson process eP of
intensity ν is equal to (0,0, m ⊗ ν).
Proof. Consider a Lévy measure ν on R and the set-indexed compensated Poisson process eN
from (2.4.2). We already know that eN is an ID process on T × (R∗ ∪ {∞}). Using [54, Lemma
12.2], its modified triplet reads (0,0, m ⊗δ1 ⊗ ν).

Rewriting (2.4.3), the process eP is equivalently defined as follows:

∀A∈A , ePA = fN ( fA) where fA : (t, x) 7→ x .1A(t)

and fN is the linear process associated with eN . Thus, we may compute its Lévy-Khintchine triplet
(b,Σ,ν) using (2.4.6) to get for all A∈A , finite subsetA ′ ⊆A and B ∈B(R)⊗A ′ ,

b(A) =

∫

T ×(R∗∪{∞})×R

�¹x fA(t, y)º− fA(t, y)¹xº� (m ⊗δ1 ⊗ ν)(d t, d y, d x)

=

∫

T ×R

x1A(t)
�
1|x1A(t)|¶1 −1|x |¶1

�
(m ⊗ ν)(d t, d x)

= 0,

Σ= 0 and

νA ′(B) =
∫

T ×(R∗∪{∞})×R

1B

�
x .( fA′(t, y))A′∈A ′

�
(m ⊗δ1 ⊗ ν)(d t, d y, d x)

=

∫

T ×R

1B

�
x .(1A′(t))A′∈A ′

�
(m ⊗ ν)(d t, d x).

Thus, using the unicity from Theorem 2.4.7, the modified triplet of eP is equal to (0, 0, m⊗ν).
COROLLARY 2.4.9 (Weak Lévy-Itô decomposition). The following statements are equivalent:

(i) X is a siLévy.

(ii) There exists a triplet (b,σ2,ν) where b ∈ R, σ2 ∈ R+ and ν is a Lévy measure on R, a siBm
W and an independent set-indexed compensated compound Poisson process eP of intensity ν
such that

∀A∈A , XA = bm(A) + σWA + ePA. (2.4.7)

Under those conditions, the triplet (b,σ2,ν) is unique and the linear extension X of X reads

∀ f ∈ L0(b,σ2,ν), X( f ) = b

∫

T
f dm + σW( f ) + eP( f ) (2.4.8)

where W (resp. eP) is the linear process associated with the process W (resp. eP) in (2.4.7).
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To be precise, the existence of W may not be ensured if σ = 0 without enlarging (Ω,F ,P)
first. But in that case, we would still be able to make sense of (2.4.7) anyway.

The reason why we called it a ‘weak’ representation is because one usually requires a kind of
local uniform convergence in the definition of eP. Here, since ePA is defined as a stochastic integral,
we only know that it is a limit in probability. For now, we do not know much about the sample
paths of eP. A better result is obtained with Theorem 3.3.8.

Proof. Suppose that the cutoff function χ is equal to 1|.|¶1. This will ease the computation of the
upcoming triplets, but does not impact the generality of the statement since only the value of b
is impacted by the choice of χ.

A quick computation shows that the modified triplet of a drift
�

bm(A) : A∈A} (resp. a siBb
W ) is equal to (bm, 0, 0) (resp. (0,σ2m, 0)). Combining these with Corollary 2.4.8, we know
that the modified triplet of the process in the right-hand side of (2.4.7) is equal to (bm,σ2m, m⊗
ν). Hence the equivalence (i)⇔(ii) would be a direct consequence of Theorem 2.4.7 if the =
sign in (2.4.7) were to be replaced by

fdd
= . More precisely, the implication (ii)⇒(i) is already

proven. Suppose now that (i) holds. Then we get

X
fdd
= bm + σW + eP

for some siBm W and set-indexed compensated compound Poisson process eP of intensity ν. In
order to conclude, we need a coupling argument. Since A =⋃n∈NAn is countable, the space
RA endowed with its cylindrical σ-algebra is a Borel space. Thus [54, Theorem 6.10] applies
and we may findA -indexed processes W ′ and eP ′ such that

�
X , W ′, eP ′� fdd

=
�
bm +σW + eP, W |A , eP |A

�
. (2.4.9)

In particular, (2.4.9) implies that (2.4.7) holds for all A ∈ A . In order to extend the version to
A , one just needs to use Lemma 2.3.15 and repeat the argument giving Corollary 2.3.16.

The representation (2.4.8) is deduced in the same fashion.

2.5 Processes with stationary increments

Apart from having independent increments, another distributional property of processes that is
often studied is increment stationarity. For a one-dimensional process X =

�
X t : t ∈ R+

	
, having

stationary increments means that

∀τ ∈ R+, X − X0
fdd
=
�

X t+τ − Xτ : t ∈ R+
	
. (2.5.1)

This definition is adaptable to [0, 1]-indexed processes with obvious restrictions on the possible
values for t and τ. Likewise, (2.5.1) also makes sense for a mutivariate process.

Our interest for those processes sprang from the integral representations it yields. Indeed,
the celebrated Bochner’s theorem [27, Equation (11.1′)] tells that a square-integrable process
X =

�
X t : t ∈ R+

	
with stationary increments may be written as

∀t ∈ R+, X t =

∫

R

Ö1[0,t] dZ (2.5.2)

where c(.) is the usual Fourier transform and Z =
�

Zt : t ∈ R
	

is a square-integrable (complex-
valued) process with orthogonal increments.
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Actually, Bochner’s theorem remains true (and is more natural) for processes with weakly
stationary increments, i.e. where (2.5.1) is replaced by

∀s, t,τ ∈ R+, Cov (Xs+τ − Xτ, X t+τ − Xτ) = Cov (Xs − X0, X t − X0) .

On the other hand, Kallenberg strengthened (2.5.1) and proved that if X has exchangeable
increments (Definition 2.5.11), then it must be a mixture of Lévy processes. Kallenberg’s original
result [53, Theorem 2.1] is a bit different, but he extended it in [55, Theorem 3.15].

This kind of representation brings us two goods news. First, (2.5.2) for instance may be used
to extend X to a linear process X= �X( f ) : f ∈ L(X )

	
by the formula

∀ f ∈ L(X ), X( f ) =
∫

R

bf dZ . (2.5.3)

where L(X ) =
�

f : bf ∈ L(Z)
	
. Secondly, integral representations are a nice way to define more

general processes (see e.g. [12]) and study their sample paths (see e.g. [14, 84]).
Both of those aspects will be explored in the coming sections, but in the set-indexed frame-

work where ‘increment stationarity’ has possibly several meanings that all generalize the usual
one when T = R+. Those properties will be studied from the least to the most restrictive one.

2.5.1 General philosophy for set-indexed stationarity

A first element that comes to mind is that (2.5.1) heavily relies on the additive structure on R+
to give a meaning to ‘stationarity’ whereas no such thing exists in the set-indexed framework.
Herbin and Merzbach proposed in a series of works [39, 40, 41] an answer to this apparent
paradox. Their definition evolved with time (compare [39, Definition 3.5] to [40, Definition
5.1] and [41, Definition 3.1]), but they answered the following requirements (for the lastest
versions at least):

1. Roughly speaking, increments corresponding to sets of same m-measure should have the
same distribution. What may vary is the collection of sets on which the property holds.

2. Once specified to the case where T = R+ and m is the Lebesgue measure, this should give
back the usual definition (2.5.1).

In our attempts to give a satisfactory definition of ‘increment stationarity’, we shall keep those
in mind as well. Moreover, Herbin and Merzbach had another requirement in mind, which was
to encompass in their definition the case of the set-indexed fractional Brownian motion (sifBm)
W H defined in (1.6.3). When T = R+, the fractional Brownian motion (fBm) is probably known
to be the simplest example of a process with stationary increments that still exhibits a longe-
range dependency (when H 6= 1/2) and has been first considered by Kolmogorov in [60]. In this
setting, integral representations of the fBm have proven to be useful at the very least in these
regards:

1. Knowing the regularity of the kernel and the integrator often leads to understand the
regularity of the process itself. This general approach is well illustrated by Rosiński’s [84,
Theorem 4]. For an example of application closer to the fBm and related processes, we
refer to [14].

2. Another use of integral representations is to generalize processes. For instance for the
fBm, they have been used to define the class of multifractional Brownian motions (mBm).
An historic overview gathering all possible definitions of the mfBm is given in [95].
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For all those reasons, it seems to be an interesting goal to study the sifBm from the increment
stationarity perspective, especially with a view to obtaining an integral representation for it.
Unfortunately, we did not quite manage to do so. What we did manage however is to show that
the sifBm actually verifies a stronger increment stationarity property than the one proposed by
Herbin and Merzbach (Proposition 2.5.9). We also studied a more restrictive notion of increment
stationarity and obtained an integral representation for it (Theorem 2.5.30).

As before, we continue to consider in the sequel a set-indexed process X =
�

XA : A∈A 	.

2.5.2 A -increment stationarity

As a starting point, let us give the definition ofC0-stationarity as given by Herbin and Merzbach.
We recall that the notation C0 corresponds to C(1) introduced in Definition 1.2.35.

DEFINITION 2.5.1 (C0-stationarity, [40, Definition 5.1]). The process X is C0-stationary if for all
k ∈ N∗, A⊆ A1 ⊆ ... ⊆ Ak and A′ ⊆ A′1 ⊆ ... ⊆ A′k inA ,

∀ j ∈ ¹1, kº, m(A j \ A) = m(A′j \ A′) =⇒ �
∆XA1\A, ...,∆XAk\A

� law
=
�
∆XA′1\A′ , ...,∆XA′k\A′

�
.

This definition is actually equivalent to a very natural property linked to projection along
geodesic flows (Definition 1.3.6), and related to [40, Proposition 5.4].

PROPOSITION 2.5.2. The following statements are equivalent:

(i) X is C0-stationary.

(ii) For all C ∈ C0 such that m(C) = 0, ∆XC = 0 a.s. and for all φ ∈ Φ(A ), the distribution of
Xφ − Xφ0 only depends on v(φ).

If those conditions hold, then for all φ ∈ Φ(A ), the process Xφ has stationary increments in the
sense of (2.5.1).

Proof. Suppose (i). Consider C ∈ C0 such that m(C) = 0. Since m(C) = m(∅), then ∆XC
law
=

X∅ = 0. Consider φ,φ′ ∈ Φ(A ) such that v(φ) = v(φ′) and let us show that Xφ − Xφ0
fdd
=

Xφ
′ − Xφ

′
0 . Let t1 < ...< tk in [0, 1], then

∀ j ∈ ¹1, kº, m(φ(t j) \φ(0)) = v(φ) t j = v(φ′) t j = m(φ′(t j) \φ′(0)).

Thus, since X is C0-stationary,

�
Xφt j
− Xφ0

�
1¶ j¶k =

�
∆Xφ(t j)\φ(0)

�
1¶ j¶k

law
=
�
∆Xφ′(t j)\φ′(0)

�
1¶ j¶k =

�
Xφ

′
t j
− Xφ

′
0

�
1¶ j¶k.

Hence Xφ − Xφ0
fdd
= Xφ

′ − Xφ
′

0 and (ii) follows.
Conversely, suppose (ii). Consider A = A0 ⊆ A1 ⊆ ... ⊆ Ak. By Proposition 1.3.9, there

exists φ ∈ Φ(A ) and 0 = t0 ¶ t1 ¶ ... ¶ tk = 1 such that for all j ∈ ¹0, kº, A j ⊆ φ(t j) and

m(φ(t j) \ A j). By hypothesis, we know that for all j ∈ ¹0, kº, XA j
= Xφt j

. Hence

�
∆XA1\A, ...,∆XAk\A

�
=
�
Xφt1
− Xφ0 , ..., Xφtk

− Xφ0
�
. (2.5.4)
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Knowing that φ is geodesic, we must have v(φ) =m(Ak \ A) and for all j ∈ ¹1, kº, t j =m(A j \
A)/m(Ak \ A). In particular, if A′ ⊆ A′1 ⊆ ... ⊆ A′k is another sequence in A such that for all
j ∈ ¹1, kº, m(A j \ A) =m(A′j \ A′), then there would exist φ′ ∈ Φ(A ) such that

v(φ) = v(φ′) and
�
∆XA′1\A′ , ...,∆XA′k\A′

�
=
�
Xφ

′
t1
− Xφ

′
0 , ..., Xφ

′
tk
− Xφ

′
0

�
. (2.5.5)

Hence (i) follows from (2.5.4), (2.5.5) and (ii).
So (i) and (ii) are equivalent. Suppose that they both hold and consider φ ∈ Φ(A ). Let

τ ∈ [0,1] and show that Xφ − Xφ0 |[0,1−τ]
fdd
=
�

Xφt+τ− Xφτ : t ∈ [0, 1−τ]	. If τ= 1, then the result
is trivial, so we may suppose that τ < 1. Define for all t ∈ [0, 1], φ′(t) = φ((1−τ) t) andφ′τ(t) =
φ((1−τ) t+τ). Both φ′ and φ′τ are geodesicA -flows. Moreover, v(φ′) = (1−τ)v(φ) = v(φ′τ),

which means by (ii) that Xφ
′−Xφ

′
0

fdd
= Xφ

′
τ−X

φ′τ
0 . In particular, we have for all t1, ..., tk ∈ [0, 1−τ],

�
Xφt j
− Xφ0

�
1¶ j¶k =

�
Xφ

′

t j/(1−τ) − Xφ
′

0

�
1¶ j¶k

fdd
=
�
X
φ′τ
t j/(1−τ) − X

φ′τ
0

�
1¶ j¶k =

�
Xφt j+τ − Xφτ

�
1¶ j¶k.

Hence Xφ has stationary increments.

In the same way that the sifBm is a natural generalization of the fBm (since each of its
projection on geodesic flows is a fBm), Proposition 2.5.2 tells us that C0-stationarity is a natural
generalization of the increment stationarity to the set-indexed setting.

An issue with this property is that it only concerns elements arranged in increasing order.
In particular, no condition is imposed on the distribution of (XA1

, XA2
) when neither A1 ⊆ A2

nor A2 ⊆ A1. For set-indexed Lévy processes (siLévy), that is not a big issue since one may
take advantage of the independence of increments to actually show [41, Corollary 4.5] that C0-
stationarity is equivalent to the stronger C -increment stationarity (see Definition 2.5.12 later).
For the sifBm, this remains an issue since its increments are far from being independent. How-
ever, we will circumvent this by showing that the sifBm verifies a stronger property that does
not have this disadvantage.

EXAMPLE 2.5.3 (Why stationarity on A (u) is a dead end). A first idea that comes to mind is to
find a characterization based onA (u)-flows since we know that projections along those characterize
the set-indexed process (Theorem 1.3.13). As mentioned before, this approach has been successfully
used for instance in [73] to characterize the siBm.

However, any such idea is doomed from the outset since it would imply a kind of ‘weak A (u)-
stationarity’ given by

∀U , V ∈A (u), m(U) = m(V ) =⇒ ∆XU
law
= ∆XV . (2.5.6)

Let us show that the sifBm cannot verify (2.5.6) in general. Suppose that T =
�

a+ i b ∈ C : a, b ∈
[0,1] and a × b = 0

	
is endowed with the indexing collection A given in Example 1.3.15 and

m = H1(T ∩ .) where H1 is the Hausdorff measure of order 1 on C. Let H ∈ (0, 1/2) and consider
a sifBm W H onA . Let U = [0, 1] and V = [0, 1/2]∪ [0, i/2]. Then,

Var
�
∆W H

U

�
= E

��
W H

U

�2�
= m(U)2H = 1

while
Var

�
∆W H

V

�
= E

h�
W H
[0,1/2] +W H

[0,i/2] −W H
{0}
�2i

= 22(1−H) − 1 6= 1.

Hence, even though U , V ∈ A (u) are such that m(U) = 1 = m(V ), ∆W H
U and ∆W H

V do not have
the same law. So (2.5.6) cannot hold for the sifBm.
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In a nutshell, we want an increment stationarity property that may concern any finite-
dimensional distribution of X and which is verified by the sifBm. What Example 2.5.3 explains
is that this goal cannot be reached solely throughA (u)-flows. Hence our idea to consider tuples
ofA -flows instead, which yield more information than a singleA (u)-flow.

DEFINITION 2.5.4 (Equality in configuration). Let k ∈ N∗ and B1, ..., Bk, B′1, ..., B′k ∈ B . We say
that (B1, ..., Bk) and (B′1, ..., B′k) are equal in configuration if

∀J ⊆ ¹1, kº, m

�⋂
j∈J

B j

�
= m

�⋂
j∈J

B′j

�
.

In that case, we write (B1, ..., Bk)
(c)
= (B′1, ..., B′k).

If φ1, ...,φk,φ′1, ...,φ′k are Bm-flows, we say that (φ1, ...,φk) and (φ′1, ...,φ′k) are equal in con-

figuration if for all t1, ..., tk in [0,1], (φ1(t1), ...,φk(tk))
(c)
= (φ′1(t1), ...,φ′k(tk)). In that case, we

write (φ1, ...,φk)
(c)
= (φ′1, ...,φ′k).

REMARKS 2.5.5. � Equality in configuration for (B1, ..., Bk) and (B′1, ..., B′k) is a natural way to
express the fact for those two tuples of sets to be ‘distributed’ in the same way. An equivalent
statement that helps support this point of view is the following:

�
B1, ..., Bk

� (c)
=
�
B′1, ..., B′k

� ⇐⇒ �
1B1

, ...,1Bk

�
∗m =

�
1B′1

, ...,1B′k

�
∗m. (2.5.7)

Moreover, if the B j ’s are pairwise disjoint, we have

�
B1, ..., Bk

� (c)
=
�
B′1, ..., B′k

� ⇐⇒ ∀ j ∈ ¹1, kº, m(B j) = m(B′j). (2.5.8)

� Equality in configuration is easily shown to be an equivalence relation, which enables us to talk
about ‘the configuration’ of some tuple (B1, ..., Bk) or (φ1, ...,φk)when referring to its equivalence
class.

DEFINITION 2.5.6 (A -exchangeability). The process X is A -exchangeable if for all k ∈ N∗,
A0, ..., Ak, A′1, ..., A′k inA ,

�
A1, ..., Ak

� (c)
=
�
A′1, ..., A′k

�
=⇒ �

XA1
, ..., XAk

� law
=
�
XA′1

, ..., XA′k

�
.

DEFINITION 2.5.7 (A -increment stationarity). The process X isA -increment stationary if for all
k ∈ N∗, A, A0, ..., Ak, A′, A′1, ..., A′k inA such that A⊆⋂k

j=1 A j and A′ ⊆⋂k
j=1 A′j ,

�
A1 \A, ..., Ak \A

� (c)
=
�
A′1 \A′, ..., A′k \A′

�
=⇒ �

∆XA1\A, ...,∆XAk\A
� law
=
�
∆XA′1\A′ , ...,∆XA′k\A′

�
.

Any A -increment stationary process is obviously A -exchangeable (take A = A′ = ∅), but
the latter will prove to be useful as well and more relevent when comparing to what already
exists in the literature. In order to facilitate the comparison with C0-stationarity, we prove the
alter ego of Proposition 2.5.2 forA -increment stationarity.

PROPOSITION 2.5.8. Consider the following statements:

(i) X isA -increment stationary.
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(ii) For all C ∈ C0 such that m(C) = 0, ∆XC = 0 a.s. and for all k ∈ N∗ and φ = (φ1, ...,φk) ∈
Φ(A )k such that φ1(0) = ... = φk(0), the distribution of the process Xφ − Xφ0 = (X

φ1 −
Xφ1

0 , ..., Xφk−Xφk
0 ) only depends on the configuration ofφ\φ(0) = (φ1\φ1(0), ...,φk\φk(0)).

(iii) For all k ∈ N∗ and φ = (φ1, ...,φk) ∈ Φ(A )k such that φ1(0) = ...= φk(0), the multivariate
process Xφ = (Xφ1 , ..., Xφk) has stationary increments in the sense of (2.5.1).

Then we have (i)⇒ (ii)⇒ (iii).

Remark that for all φ,φ′ ∈ Φ(A ), we have φ\φ(0) (c)
= φ′\φ′(0) if and only if v(φ) = v(φ′),

so Proposition 2.5.8 is in a sense a generalization of Proposition 2.5.2. The converse (i)⇐ (ii)
should also be true, but proving it requires a multivariate version of Proposition 1.3.9, which we
could not show.

Proof of Proposition 2.5.8. Let us suppose (i). The fact that for all C ∈ C0, m(C) = 0 implies
∆XC = 0 a.s. follows from Proposition 2.5.2. Consider φ = (φ1, ...,φk) ∈ Φ(A )k such that
φ1(0) = ...= φk(0) and t1, ..., t l ∈ [0,1]. Then, we have

�
Xφt j
− Xφ0

�
1¶ j¶l =

�
∆Xφi(t j)\φ1(0)

�
1¶i¶k
1¶ j¶l

whose distribution, according to (i), only depends on the configuration of
�
φi(t j) \ φ1(0)

�
i, j .

Hence the distribution of Xφ − Xφ0 only depends on the configuration of φ \φ(0), which proves
(ii).

Proving (ii) ⇒ (iii) only requires to copy the corresponding part in the proof of Proposi-
tion 2.5.2 since the ‘shift and dilatation trick’ that takes place also preserves the configura-
tion.

PROPOSITION 2.5.9. For any H ∈ (0, 1/2], the sifBm W H with Hurst index H is A -increment
stationary.

Proof. Let H ∈ (0,1/2]. Since W H is a centered Gaussian process, we just need to prove that
the quantity Cov

�
∆W H

A1\A,∆W H
A2\A

�
depends only on the configuration of (A1 \ A, A2 \ A) where

A, A1, A2 ∈A and A⊆ A1 ∩ A2. We have for such A, A1, A2,

2Cov
�
∆W H

A1\A,∆W H
A2\A

�
= 2E

�
(W H

A1
−W H

A )(W
H

A2
−W H

A )
�

= m(A14A)2H +m(A4A2)2H −m(A14A2)2H −m(A4A)2H

Since m(A14A2) =m((A1 \ A)4(A2 \ A)), we obtain

Cov
�
∆W H

A1\A,∆W H
A2\A

�
=

1
2

�
m(A1 \ A)2H +m(A2 \ A)2H −m((A1 \ A)4(A2 \ A))2H

�
(2.5.9)

which indeed only depends on the configuration of (A1 \ A, A2 \ A).

EXAMPLE 2.5.10 (C0-stationarity andA -exchangeability ��⇒ A -increment stationarity). A natu-
ral question is whether or not saying that a process X isA -increment stationary is equivalent to say
that X is C0-stationary and A -exchangeable. The direct implication is obviously true. As for the
converse, let us construct a counter-example. Consider that T is the series gluing of (Tu)u∈U along
the discrete tree U =

�
0U , 0, 1, 10,11

	
where T0U = {0T } and for all u ∈ U \{0U}, Tu = [0, 1]. This

is a special case of Example 1.2.25 and is illustrated in Figure 2.1.
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0T

0 1

10 11

Figure 2.1: Continuous tree T obtained from U = {0U , 0, 1, 10, 11}.

Consider the canonical projection π :
⊔

u∈U Tu � T just like in Proposition 1.2.23. Define
m = π∗m′ where for all u ∈ U , m′(Tu ∩ .) is the usual Lebesgue measure on Tu. Denote by AL
(resp. AR) the indexing collection of π(T0) (resp. π(T1 t T10 t T11)). Remark that the indexing
collectionA of T verifiesA =AL ∪AR andAL ∩AR = {∅,∅′}.

Let H ∈ (0, 1/2) and define X =
�

XA : A ∈ A 	 such that X |AL
and X |AR

are two independent
sifBm with Hurst index H.
A straightforward computation shows that for anyφ ∈ Φ(A ), v(φ)−H

�
Xφ−Xφ0

�
is a [0, 1]-indexed

fBm. Thus, according to Proposition 2.5.2, X is C0-stationary.
Let us show that X is also A -stationary. Since it is a Gaussian process, we just need to consider

A1, A2, A′1, A′2 ∈A such that (A1, A2)
(c)
= (A′1, A′2) and show that Cov

�
XA1

, XA2

�
= Cov

�
XA′1

, XA′2

�
.

� 1st case — (A1, A2) ∈ O where O = (AR ×AL)∪ (AL ×AR), i.e. A1 and A2 belong to ‘opposite
sides’ of the indexing collection. In particular, we know that XA1

and XA2
are independent, hence

Cov
�
XA1

, XA2

�
= 0. Moreover, one may easily check that

(A1, A2) ∈ O ⇐⇒ m(A1 ∩ A2) = 0.

Hence, in this particular case, the condition that (A1, A2) ∈ O depends solely on the configuration

of (A1, A2). Thus, since (A1, A2)
(c)
= (A′1, A′2),

(A1, A2) ∈ O ⇐⇒ (A′1, A′2) ∈ O . (2.5.10)

In particular, we also know that XA′1
and XA′2

are independent and Cov
�
XA′1

, XA′2

�
= 0.

Hence Cov
�
XA1

, XA2

�
= Cov

�
XA′1

, XA′2

�
.

� 2nd case — (A1, A2) /∈ O . Due to (2.5.10), (A′1, A′2) /∈ O as well. In particular, both (A1, A2) and
(A′1, A′2) belong toA 2

R∪A 2
L . Since X |AR

and X |AL
are sifBm, we already know that Cov

�
XA1

, XA2

�
=

Cov
�
XA′1

, XA′2

�
by Proposition 2.5.9.

Hence X is both C0-stationary and A -exchangeable. Let us show however that X cannot be A -
increment stationary. Denote A1 = [0T , 0], A2 = [0T , 1] = A′, A′1 = [0T , 10] and A′2 = [0T , 11].

Then, we have (A1, A2)
(c)
= (A′1 \ A′, A′2 \ A′) but Cov

�
XA1

, XA2

�
= 0 and, according to (2.5.9),

Cov
�
∆XA′1\A′ ,∆XA′2\A′

�
= 1− 22H−1 6= 0.

2.5.3 C -exchangeability

Alas, our approach in Section 2.5.2 to obtain a representation for stationary processes has not
been successful so far. So we choose to take a different approach here. Namely, we study a
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stronger stationarity condition for which it has been possible for us to find a representation
theorem (Theorem 2.5.30). As before, this condition stems from a well-known one-dimensional
one.

DEFINITION 2.5.11 (One-dimensional exchangeable increments, adapted from [55, Section 1.3]).
A [0, 1]-indexed process Z =

�
Zt : t ∈ [0, 1]

	
has exchangeable increments if for all k ∈ N∗ and k

pairwise disjoint intervals I j = (s j , t j] for j ∈ ¹1, kº (resp. I ′j = (s
′
k, t ′k] for j ∈ ¹1, kº) of [0, 1],

∀ j ∈ ¹1, kº, tk − sk = t ′k − s′k =⇒ (X t j
− Xs j

)1¶ j¶k
law
= (X t ′j

− Xs′j
)1¶ j¶k.

The definition given in [55, Section 1.3] is actually the following — weaker — one. A se-
quence (Yk)0¶k<n where n ∈ N ∪ {∞} is exchangeable if its distribution is invariant under per-
mutations, i.e.

∀σ ∈S (N∩ [0, n)) , (Yk)0¶k<n
fdd
= (Yσ(k))0¶k<n. (2.5.11)

A [0,1]-indexed process Z =
�

Zt : t ∈ [0, 1]
	

is then said to have exchangeable increments if for
all n ∈ N∗, the sequence

�
Z(k+1)/n − Zk/n

�
0¶k<n is exchangeable. However this definition is better

suited for Q+-indexed processes (we refer to the numerous related results in [55]). Fortunately,
in the right-continuous case, [55, Theorem 1.15] tells they are equivalent. This is the reason
why we will stick to the terminology of Definition 2.5.11.

DEFINITION 2.5.12 (D-exchangeability). LetD be a subset ofC (u). The process X isD-exchangeable
if for all k ∈ N∗ and D1, ..., Dk, D′1, ..., D′k ∈ D,

�
D1, ..., Dk

� (c)
=
�
D′1, ..., D′k

�
=⇒ �

∆XD1
, ...,∆XDk

� law
=
�
∆XD′1

, ...,∆XD′k

�
.

Likewise, X isBm-exchangeable if X extends to a stochastic measure ∆X =
�
∆XB : B ∈Bm

	
and

for all k ∈ N∗ and B1, ..., Bk, B′1, ..., B′k ∈Bm ,

�
B1, ..., Bk

� (c)
=
�
B′1, ..., B′k

�
=⇒ �

∆XB1
, ...,∆XBk

� law
=
�
∆XB′1

, ...,∆XB′k

�
.

When T = [0, 1] and m is the Lebesgue measure, being D-exchangeable for any D ∈
{C ,C (u),Bm} is equivalent to have exchangeable increments (see Proposition 2.5.13).

The next result should be compared with Proposition 2.5.8. A consequence is that as long
as D ⊇ C , D-increment stationarity (defined in the same way as in Definition 2.5.7 whereA is
replaced by D) is equivalent to D-exchangeability, which is the reason why we did not introduce
this notion here contrary to the previous section.

PROPOSITION 2.5.13. Consider the following statements:

(i) X is C -exchangeable.

(ii) X is C (u)-exchangeable.

(iii) For all C ∈ C such that m(C) = 0, ∆XC = 0 a.s. and for all φ ∈ Φ(A (u)), the process ∆Xφ

has exchangeable increments and its distribution only depends on v(φ).

(iv) X isBm-exchangeable.

Then we have (i)⇔(ii)⇔(iii) and if X extends to a stochastic measure, all of them are equivalent.
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Before proceeding to the proof of Proposition 2.5.13, we need to prove a technical lemma.

LEMMA 2.5.14. Let U , U ′ ∈ C (u) such that m(U) = m(U ′). There exists k ∈ N∗ and C1, ..., Ck,
C ′1, ..., C ′k in C such that U =

⊔k
j=1 C j , U ′ =

⊔k
j=1 C ′j and for all j ∈ ¹1, kº, m(C j) =m(C ′j).

Proof. We proceed by induction. We initiate with the following:

U = U0 =
k0⊔

j=1

C0 j , L0 = ∅, U ′ = U ′0 =
k′0⊔

j=1

C ′0 j and L′0 = ∅

for some k0, k′0 ∈ N and C01, ..., C0k0
(resp. C ′01, ..., C ′0k′0

) pairwise disjoint in C . Remark that

if k0k′0 = 0, then m(U) = m(U ′) = 0 and the result is trivial because the representation in
Lemma 2.5.14 holds with

∀ j ∈ ¹1, k0 ∨ k′0º, C j =
§

C0 j if j ¶ k0,
∅ if j > k0

and C ′j =
�

C ′0 j if j ¶ k′0,
∅ if j > k′0

Now, suppose that for some i ∈ N, there is (ki , k′i) ∈ N2 such that the following predicate holds:

Hi : ”Ui =
ki⊔

j=1

Ci j , Li = (C1, ..., Ci), U ′i =
k′i⊔

j=1

C ′i j and L′i = (C
′
1, ..., C ′i )

where the Ci j ’s and Ci ’s (resp. C ′i j ’s and C ′i ’s) are pairwise disjoint elements of C and

U = Ui t
⊔

C∈Li

C , U ′ = U ′i t
⊔

C ′∈L′i
C ′ and ∀ j ∈ ¹1, iº, m(Ci) = m(C ′i ).”

Now suppose that kik
′
i 6= 0 and m(Ciki

) ¶ m(C ′ik′i
). Then denote Ci+1 = Ciki

. By Proposi-

tion 1.3.11, we may find C ′i+1 ∈ C such that C ′i+1 ⊆ C ′ik′i
, C ′ik′i

\C ′i+1 ∈ C and m(C ′i+1) =m(Ci+1).

Then, denote ki+1 = ki − 1, k′i+1 = k′i , and

∀ j ∈ ¹1, ki+1º, Ci+1 j = Ci j and ∀ j ∈ ¹1, k′i+1º, C ′i+1 j =

�
C ′i j if j < k′i ,

C ′ik′i
\ C ′i+1 if j = k′i .

If m(Ciki
)¾m(C ′ik′i

), then we would have defined C ′i+1 = Cik′i
and applied Proposition 1.3.11 to

Ciki
instead. In any case, we constructed a sequence (ki , k′i)i such that

�
Hi and kik

′
i 6= 0

�
=⇒

�
Hi+1 and ki+1 + k′i+1 < ki + k′i

�
.

Hence the induction terminates at some l ∈ N such that kl k
′
l = 0 and we are back at the case

examined at the beginning of the proof. The result follows.

Proof of Proposition 2.5.13. We first prove (i)⇒(ii)⇒(iii)⇒(i).

Suppose (i). Consider U1, ..., Uk, U ′1, ..., U ′k in C (u) such that (U1, ..., Uk)
(c)
= (U ′1, ..., U ′k). In-

stead of making intersections and set differences, we might as well suppose that the Ui ’s are
pairwise disjoint. In particular, for all i 6= j, m(U ′i ∩ U ′j) = 0 by equality in configuration.
For j ∈ ¹1, kº, denote Vj = U ′j \

⋃
i 6= j U ′i . Since Vj \ U ′j (resp. U ′j \ Vj) is an element of C (u)

of m-measure zero, we may write it as a disjoint union of elements in C of m-measure zero.
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Since X is C -exchangeable, we know that ∆XVj\U ′j = 0 a.s. (resp. ∆XU ′j\Vj
= 0 a.s.). Thus

∆XVj
=∆XU ′j

a.s.. So without loss of generality, we may also suppose that the U ′i ’s are pairwise

disjoint. To summarize, we now have U1, ..., Uk, U ′1, ..., U ′k in C (u) such that U1, ..., Uk (resp.
U ′1, ..., U ′k) are pairwise disjoint and for all j ∈ ¹1, kº, m(U j) = m(U ′j) and we want to prove

that
�
∆XU1

, ...,∆XUk

� law
=
�
∆XU ′1

, ...,∆XU ′k

�
. This result readily follows from Lemma 2.5.14 and

C -exchangeability. Hence (ii) holds.
Suppose (ii). The ‘separability’ property is proven as in Proposition 2.5.8. Consider φ ∈

Φ(A (u)), k ∈ N∗ and k pairwise disjoint intervals I j = (s j , t j] of [0, 1] for j ∈ ¹1, kº. Since
X is C (u)-exchangeable and the (φ(t j) \φ(s j))1¶ j¶k are pairwise disjoint elements of C (u) of
respective m-measure v(φ)|t j − s j |, the distribution of

�
X t j
− Xs j

�
1¶ j¶k only depends on v(φ)

and
�
t j − s j

�
1¶ j¶k. Hence (iii) holds.

Suppose (iii). Consider C1, ..., Ck, C ′1, ..., C ′k ∈ C such that (C1, ..., Ck)
(c)
= (C ′1, ..., C ′k). Similarly

to the proof of (i)⇒(ii), we might as well suppose that the C j ’s (resp. C ′j ’s) are pairwise disjoint.
Then, define A as the collection of all intersections made from elements of A used in the ex-
tremal representations of the C j ’s and order them consistently, i.e. A = �A1, ..., Al

	
where for all

i, j ∈ ¹1, lº, Ai ⊆ A j implies i ¶ j. For all i ∈ ¹1, lº, denote Ui =
⋃i

j=1 A j . By Proposition 1.3.12,
there exists φ ∈ Φ(A (u)) and 0 = t1 ¶ ... ¶ t l ¶ 1 such that for all i ∈ ¹1, lº, Ui ⊆ φ(t i) and
m(φ(t i) \ Ui) = 0. Similarly to the proof of Proposition 2.5.8, we may show that

�
∆XU1

, ...,∆XUl

�
=
�
∆Xφt1

, ...,∆Xφt l

�
a.s. (2.5.12)

SinceA has been consistently ordered, we have

C `(A ) = �
Ui \ Ui−1 : 1¶ i ¶ l

	
with U0 = ∅.

Thus, by definition of C `(A ), we know that there exists a family (I j)1¶ j¶k of pairwise disjoint
subsets of ¹1, lº such that

∀ j ∈ ¹1, kº, C j =
⊔
i∈I j

(Ui \ Ui−1). (2.5.13)

Combining (2.5.12) and (2.5.13), we get

�
∆XC j

�
1¶ j¶k

=

 ∑
i∈I j

�
∆Xφt i

−∆Xφt i−1

�
!

1¶ j¶k

a.s. (2.5.14)

Define the sequence (s j)0¶ j¶k by

s0 = 0 and ∀ j ∈ ¹1, kº, s j − s j−1 =
∑
i∈I j

�
t i − t i−1

�
. (2.5.15)

Since ∆Xφ has exchangeable increments, we may deduce from (2.5.14) and (2.5.15) that
�
∆XC j

�
1¶ j¶k

law
=
�
∆Xφs j

−∆Xφs j−1

�
1¶ j¶k

(2.5.16)

Then define a new geodesicA (u)-flowψ for all t ∈ [0, 1] byψ(t) = φ(sk t). Combining (2.5.13)
and (2.5.15), we may rewrite (2.5.14) to get

�
∆XC j

�
1¶ j¶k

law
=
�
∆Xψu j

−∆Xψu j−1

�
1¶ j¶k

(2.5.17)
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where

v(ψ) = m

�
k⊔

j=1

C j

�
, u0 = 0 and ∀ j ∈ ¹1, kº, u j − u j−1 = m(C j)/v(ψ). (2.5.18)

In particular, (2.5.18) shows that the representation (2.5.17) only depends on the configuration
of (C1, ..., Ck). Thus, we get �

∆XC j

�
1¶ j¶k

law
=
�
∆XC ′j

�
1¶ j¶k

from which (i) follows.
Suppose that X extends to a stochastic measure∆X . The implication (iv)⇒(ii) is trivial since

C (u) ⊆Bm . The converse (ii)⇒(iv) is just a consequence of the fact that any ∆XB for B ∈Bm
is the limit in probability of a sequence

�
∆XUk

�
k∈N where (Uk)k∈N ∈ C (u)N.

2.5.4 Functional exchangeability

We saw that a C -exchangeable process is also Bm-exchangeable provided that it extends to a
stochastic measure (Proposition 2.5.13). We also know that if a process extends to a stochastic
measure, then it has an associated linear process (Theorem 2.2.10). This section just states the
stationarity property that such a linear process inherits.

DEFINITION 2.5.15 (Functional exchangeability). The processX is E-exchangeable if for all k ∈ N∗

and simple functions f1, ..., fk, f ′1 , ..., f ′k in E ,

�
f1, ..., fk

�
∗m =

�
f ′1 , ..., f ′k

�
∗m =⇒ �X( f1), ...,X( fk)

� law
=
�X( f ′1), ...,X( f ′k )

�
.

The process X is L(X )-exchangeable if it extends to a linear process X = �X( f ) : f ∈ L(X )
	

and
for for all k ∈ N∗ and f1, ..., fk, f ′1 , ..., f ′k in L(X ),

�
f1, ..., fk

�
∗m =

�
f ′1 , ..., f ′k

�
∗m =⇒ �X( f1), ...,X( fk)

� law
=
�X( f ′1), ...,X( f ′k )

�
.

PROPOSITION 2.5.16. Suppose that X extends to a linear process. Consider the following state-
ments:

(i) X is C -exchangeable.

(ii) X is E-exchangeable.

(iii) X is L(X )-exchangeable.

Then we have (i)⇔(ii) and if X extends to a stochastic measure, all of them are equivalent.

Proof. Suppose (i). Consider k ∈ N∗, f = ( f1, ..., fk) and f ′ = ( f ′1 , ..., f ′k ) in Ek such that f∗m =
f ′∗m. Consider the finite subset of Rk given by E =

�
a ∈ Rk : m( f = a) > 0

	
. Since f∗m = f ′∗m,

we also have E =
�

a ∈ Rk : m( f ′ = a)> 0
	

and

f =
∑
a∈E

a1{ f=a} and f ′ =
∑
a∈E

a1{ f ′=a} m-a.e.

where
�{ f = a}�a∈E (resp.

�{ f ′ = a}�a∈E) are pairwise disjoint sets such that for all a ∈ E,

m( f = a) = m( f ′ = a). Thus
�{ f = a}�a∈E

(c)
=
�{ f ′ = a}�a∈E . Since f and f ′ are simple
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functions, we also know that those sets belong to C (u). Hence, since X is C (u)-exchangeable

(Proposition 2.5.13), we get X( f ) law
= X( f ′) from which (ii) follows. The converse (ii)⇒(i) is

trivial.
Now, suppose that X extends to a stochastic measure and (i). Consider k ∈ N∗, f = ( f1, ..., fk)

and f ′ = ( f ′1 , ..., f ′k ) in L(X )k such that f∗m = f ′∗m. We denote for all n ∈ N,

fn =
n2n∑

k=−n2n

k2−n1{k2−n¶ f<(k+1)2−n} and f ′n =
n2n∑

k=−n2n

k2−n1{k2−n¶ f ′<(k+1)2−n}.

Since f∗m = f ′∗m, we know that for all n ∈ N, ( fn)∗m = ( f ′n)∗m. By Proposition 2.5.13, we
know that X is Bm-exchangeable. Mimicking the proof of (i)⇒(ii), we show that for all n ∈ N,

X( fn)
law
= X( f ′n). Taking n →∞ gives X( f ) law

= X( f ′), from which (iii) follows. For the same
reason as before, the implication (iii)⇒(ii) is trivial.

EXAMPLE 2.5.17 (Series representation for L2(0, 1)-exchangeable processes). As a quick illustra-
tion and trailer for the next section, let us see what happens for such processes when T = [0, 1] and
m is the Lebesgue measure. Define for all n ∈ N the function

en : [0,1] −→ R

t 7−→
2n∑

k=0

(−1)k+11k2−n¶t<(k+1)2−n .

It is easy to see that under m, (en)n∈N is an iid sequence of Rademacher variables. In particular, if
X is C -exchangeable, we know by Proposition 2.5.16 that the sequence

�X(en)
�

n∈N is exchangeable
and hence is conditionally iid by de Finetti’s theorem (see e.g. [55, Theorem 1.1]).

In particular, if X has an associated linear process X on L2(0, 1), we have the series representa-
tion

∀ f ∈ L2(0, 1), X( f ) =
∞∑
n=0

〈 f , en〉X(en)

where the sum converges almost surely (it is a sum of conditionally independent variables that
converges in probability).

This representation could be extended to a much more general setting as long as one possesses
an appropriate ‘Haar basis’ (en)n∈N.

2.5.5 Examples of C -exchangeable processes

Due to Proposition 2.5.13 and Example 2.5.3, it is clear that the sifBm is not C -exchangeable in
general. However, there are interesting stochastic processes that do verify this property.

Due to [41, Corollary 4.5], a siLévy X is such that for all C , C ′ ∈ C such that m(C) =
m(C ′), ∆XC

law
= ∆XC ′ . Using the independence of C -increments, we readily deduce that X is

C -exchangeable.

Since a siLévy has independent increments, it also has a Lévy-Khintchine representation.
Using the C -exchangeability, we may deduce that the triplet in Corollary 2.3.16 takes the form
(bm,σ2m, m ⊗ ν) where b ∈ R, σ2 ∈ R+ and ν is a Lévy measure on R. This computation has
been carried our in greater details in [41, Equation (15)].

However, there is no reason in general for a C -exchangeable process to have independent
increments. And a neet way to generate some is by mixing siLévy’s. In general, the resulting
process does not have independent increments as the examples below will show.
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EXAMPLE 2.5.18 (Random drift). For any real-valued random variable b ∈ L0(Ω), the process�
b m(A) : A∈A 	 is C -exchangeable.

EXAMPLE 2.5.19 (Set-indexed Brownian bridge). Suppose that 0<m(T )<∞. The set-indexed

Brownian bridge (siBb) is a centered Gaussian process
︷︷
W =

�︷︷
W A : A∈A 	with covariance function

given by

∀A, A′ ∈A , Cov
�︷︷

W A,
︷︷
W A′

�
= m(A∩ A′) − m(A)m(A′)

m(T ) . (2.5.19)

It is straightforward to check that if W is a siBm, then it is possible to consider a siBb as a siBm
with a random drift as follows:

∀A∈A ,
︷︷
W A = WA −

m(A)
m(T )∆WT (2.5.20)

where∆W is the stochastic measure defined onBm which extends W. Its name comes from the fact

that for any geodesic flow φ such that m(φ(0)) = 0 and φ(1) = T , the process v(φ)−1/2∆
︷︷
Wφ is

the usual [0, 1]-indexed Brownian bridge. A similar — but not equivalent — process may be found
in [4, Equation (4.3.8)] under the name set-indexed pinned Brownian sheet.
Let us check that the siBb is C -exchangeable. Using the representation formula (2.5.20), we get for
all C , C ′ ∈ C ,

Cov
�
∆
︷︷
W C ,∆

︷︷
W C ′

�
= m(C ∩ C ′)− m(C)m(C ′)

m(T )
which only depends on the configuration of (C , C ′). The C -exchangeability of the siBb follows.

In particular, a set-indexed Poisson process of intensity m is a siLévy, and thusC -exchangeable.
However, aC -exchangeable process has no reason whatsoever to have independent increments,
so a mixture of Poisson processes (whose existence is once more ensured by [54, Theorem 12.7])
should also be considered.

DEFINITION 2.5.20 (Set-indexed Cox process). Let ν be a random measure on T . A set-indexed
Cox process (siCox) of intensity ν is a point process N =

�
NA : A ∈ A 	 such that, conditionally

on ν, N is a set-indexed Poisson process of intensity ν.

EXAMPLE 2.5.21 (Set-indexed compound Cox process). If instead in Example 2.4.6, ν was a ran-

dom measure on T such that ν({0}) = 0 and

∫

R

(1∧|x |)ν(d x)<∞ or

∫

R

(1∧x2)ν(d x)<∞ a.s.,

then putting a set-indexed Cox process of intensity m⊗ν in (2.4.1) (resp. (2.4.2), (2.4.3)) instead
of N would define a set-indexed compound Cox process (resp. compensated Cox process, com-
pensated compound Cox process) of intensity ν.

PROPOSITION 2.5.22. All the processes defined in Examples 2.4.6 and 2.5.21 are C -exchangeable.

Proof. The rest being similar, we only prove it for the compound Poisson process P in (2.4.1).
Denote by N the linear process associated to N . We have

∀C ∈ C , ∆PC = N ( fC) where fC : (t, x) 7→ x1C(t).

Consider C1, ..., Ck, C ′1, ..., C ′k ∈ C such that (C1, ..., Ck)
(c)
= (C ′1, ..., C ′k). Due to the definition of fC ,

we get �
fC1

, ..., fCk

�
∗(m ⊗ ν) =

�
fC ′1

, ..., fC ′k

�
∗(m ⊗ ν).



94 2. DISTRIBUTIONAL PROPERTIES OF GENERALIZED PROCESSES

By Proposition 2.5.16, this actually implies that

�
∆PC1

, ...,∆PCk

� law
=
�
∆PC ′1

, ...,∆PC ′k

�
.

Thus P is C -exchangeable.

One could be tempted to think that the jump discontinuities of a C -exchangeable process
may always be expressed in terms of Cox processes as in Example 2.5.21. However, that is not
true when 0<m(T )<∞ where there is another way to define a compensated point process.

EXAMPLE 2.5.23 (Another compensated point process). Suppose that 0 < m(T ) <∞ and con-
sider a random measure J =

∑∞
j=0 δJ j

on R∗ such that

∫

R

x2J(d x) =
∞∑
j=0

J2
j < ∞ a.s.

as well as a sequence (τ j) j∈N of iid random variables on T with distribution m(.)/m(T ) and inde-
pendent from J . Define the set-indexed process eM by

∀A′ ∈A ×AR∗∪{∞}, eMA′ =
∞∑
j=0

��
δτ j
− m

m(T )
�⊗δJ j

�
(A′) (2.5.21)

whereAR∗∪{∞} is the indexing collection from Example 1.2.19 and the sum is well-defined since it
is almost surely finite for all A′.

Let us define the set-indexed compensated Kallenberg point process (sicK) of intensity J by

∀A∈A , eQA =

∫

T ×(R∗∪{∞})

�
x1A(t)

� eM(d t, d x) =

∫

A×R

x eM(d t, d x). (2.5.22)

where the name follows from a terminology suggested by Kingman in [57, Section 7].
Let us show that eQ is a well-defined process. In the following, everything is conditioned with

respect to J so that it may be treated as a constant. A direct application of Theorem 2.2.8 shows
that eM extends to a stochastic measure. Denote by fM the associated linear process. Consider
A ∈ A and denote f : (t, x) 7→ x1A(t). We only need to prove that f ∈ L( eM). Introduce the
following discretizations:

∀k ∈ N,∀x ∈ R, x (k) =
b2k xc

2k
∧ k ∨ (−k) and f (k) : (t, x) 7→ x (k)1A(t).

The functions f (k) are simple and converge pointwise to f as k→∞. Thus, by Definition 2.2.9, we
need to show that

ρ eM ( f
(k) − f (l)) = sup

g
E
h���fM �

( f (k) − f (l))g
����∧ 1

i
−→ 0 as k, l →∞ (2.5.23)

where ρ eM is the modular induced by eM defined in (2.2.3) and the supremum is over all simple
functions g on T × (R∗ ∪ {∞}). Consider such a function g. Using Proposition 1.2.42, we write a
C -representation of g as follows

g =
n∑

i=1

ai1Ci×Ii
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where for all i, |ai | ¶ 1, Ci ∈ C , Ii is an interval included in R∗ (we may drop the ∞ since
f (k)A (∞) = 0) and the Ci × Ii ’s are pairwise disjoint.

Denoting by eM j the jth term in the sum (2.5.21) and fM j the associated linear process, we have

fM �
f (k,l)g

�
=

∞∑
j=0

fM j

�
f (k,l)g

�

where f (k,l) = f (k) − f (l) and the terms are independent since we conditioned with respect to J .
Hence

Var
�fM �

f (k,l)g
��
=

∞∑
j=0

∑
1¶i1,i2¶n

ai1 ai2Cov
�fM j

�
f (k,l)1Ci1

×Ii1

�
,fM j

�
f (k,l)1Ci1

×Ii1

��
. (2.5.24)

A tedious but straightforward computation yields for all i1, i2,

Cov
�fM j

�
f (k,l)1Ci1

×Ii1

�
,fM j

�
f (k,l)1Ci1

×Ii1

��
¶
�
J (k,l)

j

�2
1J (k,l)

j ∈Ii1
× m(A∩ Ci1)

m(T ) 1i1=i2 (2.5.25)

where J (k,l)
j = J (k)j − J (l)j . Putting (2.5.25) back into (2.5.24) yields

Var
�fM �

f (k,l)g
��
¶

∞∑
j=0

n∑
i=1

a2
i

�
J (k,l)

j

�2 × m(A∩ Ci)
m(T )

Since for all i, |ai |¶ 1, we get

Var
�fM �

f (k,l)g
��
¶ m(A)

m(T )

∞∑
j=0

�
J (k,l)

j

�2

Since
∑∞

j=0 J2
j <∞, we have

∑∞
j=0

�
J (k,l)

j

�2→ 0 as k, l →∞, and thus

sup
g

Var
�fM �

f (k,l)g
�� −→ 0 as k, l →∞. (2.5.26)

Hence (2.5.23) follows from (2.5.26) and the fact that E [|Z | ∧ 1]¶ Var (Z) for a centered random
variable: the process eQ is well-defined.

Let us now prove that eQ is C -exchangeable. Integrating in (2.5.22) gives

∀A∈A , eQA =
∞∑
j=0

J j

�
1τ j∈A −

m(A)
m(T )

�

which is actually closer to the expression usually employed in the one-dimensional case (see [53,
Equation (2.1)] or [55, Equation (13)]). Then, still conditionally on J , eQ is an infinite linear
combination of independent set-indexed processes

�
1τ j∈A−m(.)/m(T )

	
which are easily shown to

be C -exchangeable.

2.5.6 Representation theorems

In this section, we investigate several representations that one could deduce from a stationarity
assumption on the process X . Our biggest regret is that none of those obtained so far encompasses
the case of the sifBm.
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Analogy with a discrete case

Let us start by giving an illustration of what A -exchangeability and A -increment stationarity
would mean in the special case of the infinitary tree. The reason why we briefly focus on this ‘off-
track’ example is because our notions reduce to more familiar ones in this setting, i.e. stationarity
will be expressed as invariance of the distribution under some group action. Moreover, this
example has also been studied as a ‘toy model’ by Aldous in [6, Section 13].

As hinted in Example 2.5.17, the starting point is the celebrated de Finetti’s theorem [55,
Theorem 1.1] which tells that any exchangeable infinite sequence of random variables is condi-
tionally iid. Aldous and Hoover [5, 6, 45] then reframed and generalized it to come up with the
more general notion of partial exchangeability and the representation theorem for exchangeables
arrays [55, Corollary 7.23] that now bears their name. This result has seen successive gener-
alizations in several directions, see e.g. [11, 24, 25, 52], even some going far beyond classical
probability theory [43].

Since this literature mostly focuses on the discrete case, we will commit a slight infringment
and forget until the end of the section the hypotheses on m (Definition 1.3.1) and dA (Defini-
tion 1.4.1) that make our setting continuous. We do so because we found interesting to see how
our notions would fit in this landscape and hopefully yield more intuition.

For now and until further notice, suppose that T =
⋃

k∈N Nk is the infinitary tree rooted at
0T . It is endowed with its usual partial order´ and indexing collectionA from Example 1.2.24.
We recall that a generic element t ∈ T is denoted t = t1...tk for k ∈ N and t1, ..., tk ∈ N together
with the convention that t = 0T if k = 0. Moreover, two vertices s = s1...sk and t = t1...t l in T
may be concatenated to give the vertex st = s1...sk t1...t l .

DEFINITION 2.5.24 (Morphisms on T ). A monomorphism of T is an injective order embedding
ϕ : (T ,´)→ (T ,´). The set of all monomorphisms on T is denoted by Mon(T ).

An automorphism of T is a bijective order embedding ϕ : (T ,´) → (T ,´). The set of all
automorphisms on T is denoted by Aut(T ).

REMARKS 2.5.25. � These notions of morphims are consistent with the Definition 1.2.4 of mor-
phism of indexing semilattices. For more insight on the automorphisms on a tree, we refer to
[97].

� Mon(T ) (resp. Aut(T )) is a monoid (resp. group) under composition.

� T may be seen as a directed graph (T , E) where T is the set of vertices and the set of edges E is
such that for all s, t ∈ T , (s, t) ∈ E if and only if s ≺ t and there is no u ∈ T such that s ≺ u≺ t.
In particular, everything that is stated may be translated using graph-theoretic vocabulary. But
since we chose to stick with posets since it is the basic structure pertaining to the thesis.

� With the previous remark in mind, what has been told so far is a special case considered by Aldous
in [6, (12.17)]. However, we split apart from what he goes on doing in Section 13 in loc. cit.
where he studies a notion of exchangeability on T , but as a non-directed graph.

To go with the infinitary tree T , we denote by m the counting measure on T . Remark that
Definitions 2.5.6 and 2.5.7 still makes sense for such T and m, even though Proposition 2.5.8
fails.

PROPOSITION 2.5.26 (A -exchangeability on the infinitary tree). Consider the following state-
ments:

(i) X isA -exchangeable.
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(ii) The distribution of the T -indexed process X ◦ A(.) =
�

XA(t) : t ∈ T
	

is invariant under the
action of Aut(T ), i.e.

∀ϕ ∈ Aut(T ), X ◦ A(.)
fdd
=
�

XA(ϕ(t)) : t ∈ T
	
.

(iii) There exists a collection of iid random variables
�

Ut : t ∈ T
	

uniform on [0, 1] and a mea-
surable map f :

⋃
0¶k¶n[0,1]k → R with the convention that [0,1]0 = {0} and such that

∀A∈A , XA = f
�
(Ut)t∈A

�
(2.5.27)

and f (0) = 0.

Then we have (i)⇔(ii)⇐(iii).

We conjecture that the implication (ii)⇒(iii) in Proposition 2.5.26 holds true as well. This
implication is very close to [52, Theorem 3.2] but does not quite fall under the scope of their
assumptions unfortunately. For now, we only know that the equivalence holds if one cuts T at a
finite height. We refer to [52, Example 2.1(c)] for more details.

Proof. Suppose (i). Consider ϕ ∈ Aut(T ), t1, ..., tk ∈ T and let us show that (XA(t1), ..., XA(tk))
law
=

(XA(ϕ(t1)), ..., XA(ϕ(tk))). Since X isA -exchangeable, it is enough to show that (A(t1), ..., A(tk))
(c)
=

(A(ϕ(t1)), ..., A(ϕ(tk))). Let J ⊆ ¹1, kº. Then, repeatedly using the fact that ϕ is an automor-
phism, we get

m
�⋂

j∈J A(ϕ(t j))
�
= m

�
A
�
ϕ
�∧

j∈J t j
���

= #
�
s ∈ T : s ´ ϕ

�∧
j∈J t j

�	

= #
�
s ∈ T : s ´

∧
j∈J t j

	

= m
�⋂

j∈J A(t j)
�

.

Hence (ii) follows.
Conversely, suppose (ii). Consider A(s1), ..., A(sk), A(t1), ..., A(tk) in A such that (A(s1), ...,

A(sk))
(c)
= (A(t1), ..., A(tk)) and let us prove that (XA(s1), ..., XA(sk))

law
= (XA(t1), ..., XA(tk)). Using (ii),

it is enough to find ϕ ∈ Aut(T ) such that for all j ∈ ¹1, kº, ϕ(s j) = t j . Denote for all j ∈ ¹1, kº,
s j = s j

1...s j
l j

and t j = t j
1...t j

l j
where l j ∈ N is indeed the same for s j and t j since l j = #A(s j) =

#A(t j). We build by induction on i ∈ N an automorphism ϕi ∈ Aut(T ) such that for all j ∈ ¹1, kº
and l ¶ i ∧ l j , ϕi(s

j
1...s j

l ) = t j
1...t j

l . For that, remark that an automorphism ϕ on T is fully
characterized once given a permutation of N on each vertex of T , i.e. a map σ ∈S (N)T where
for all t ∈ T , σ(t) indicates how ϕ = ϕσ permutes the children of t. This is explained in greater
details in [11, p.811] and [52, Example 2.3(d)].
Setting ϕ0 = idT is enough for the initialization. Now, suppose that ϕi = ϕσi

exists and let us
define ϕi+1 = ϕσi+1

. For that, denote Ti−1 =
⋃

k<i Nk the subtree of T of height i − 1 (it may

be empty) and define σi+1|Ti−1
= σi |Ti−1

and for all j ∈ ¹1, kº, σi+1(s
j
1...s j

i ) is any permutation

of N such that σi+1(s
j
1...s j

i )(s
j
i+1) = t j

i+1. The only way for this permutation to be inconsistently
defined would be to have some l 6= j such that s j

1...s j
i+1 = sl

1...sl
i+1 but t j

i+1 6= t l
i+1. But this cannot

happen since #(A(s j) ∩ A(sl)) = #(A(t j) ∩ A(t l)). Hence σi+1 is well-defined and ϕσi+1
verifies

the required property. Hence (i) follows.
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Suppose (iii), i.e. that the representation (2.5.27) holds for some f and
�

Ut : t ∈ T
	

as
stated above. Consider t1, ..., tk ∈ T and ϕ ∈ Aut(T ). Since ϕ is an automorphism, we have

�
(Ut)t´t j

�
1¶ j¶k

law
=
�
(Us)s´ϕ(t j)

�
1¶ j¶k .

Hence (XA(t1), ..., XA(tk))
law
= (XA(ϕ(t1)), ..., XA(ϕ(tk))), from which (ii) follows.

PROPOSITION 2.5.27 (A -increment stationarity on the infinitary tree). The following statements
are equivalent:

(i) X isA -increment stationary.

(ii) For T ∗ = T \ {0T }, the distribution of the process Y =
�
∆X{t} : t ∈ T ∗

	
is invariant under

the action of Mon(T ), i.e.

∀ϕ ∈Mon(T ), Y
fdd
=
�

Yϕ(t) : t ∈ T ∗
	
.

Remark that for t = t1...t j ∈ T ∗, we have {t} = A(t) \ A(t1...t j−1), so ∆X{t} is well-defined
in Proposition 2.5.27.

Proof. Suppose (i). Consider ϕ ∈ Mon(T ) and t1, ..., tk ∈ T ∗. Denote for all j ∈ ¹1, kº, t j =
t j
1...t j

i j
where i j ∈ N∗. Since ϕ ∈Mon(T ), we may find ϕ′ ∈ Aut(T ) such that

∀t ∈ T , ϕ(t) = ϕ(0T )ϕ
′(t). (2.5.28)

Since ϕ′ is an automorphism, we have

�
A(t j

1...t j
i )
�

1¶ j¶k
1¶i¶i j

(c)
=
�
A(ϕ′(t j

1...t j
i ))
�

1¶ j¶k
1¶i¶i j

. (2.5.29)

Combining (2.5.28) and (2.5.29) yields

�
A(t j

1...t j
i )
�

1¶ j¶k
1¶i¶i j

(c)
=
�
A(ϕ(t j

1...t j
i )) \ A(ϕ(0T ))

�
1¶ j¶k
1¶i¶i j

.

Since X isA -increment stationary, it follows that

�
XA(t j

1...t j
i )

�
1¶ j¶k
1¶i¶i j

law
=
�
∆XA(ϕ(t j

1...t j
i ))\A(ϕ(0T ))

�
1¶ j¶k
1¶i¶i j

. (2.5.30)

Taking differences between successives terms (with respect to the order of T ) in (2.5.30) yields

�
Yt j

1...t j
i

�
1¶ j¶k
1¶i¶i j

law
=
�
Yϕ(t j

1...t j
i )

�
1¶ j¶k
1¶i¶i j

from which (ii) follows.
Conversely, suppose (ii). Consider A(s1), ..., A(sk), A(t), A(t1), ..., A(tk) inA such that A(t) ⊆⋂k

j=1 A(t j) and (A(s1), ..., A(sk))
(c)
= (A(t1)\A(t), ..., A(tk)\A(t)). Write u1, ..., uk ∈ T such that for

all j ∈ ¹1, kº, t j = tu j . In particular, we have (A(s1), ..., A(sk))
(c)
= (A(u1), ..., A(uk)). So, using the

construction by induction from the proof of Proposition 2.5.26, we may find ϕ′ ∈ Aut(T ) such
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that for all j ∈ ¹1, kº, ϕ′(s j) = u j . By concatenation, ϕ = tϕ′ defines a monomorphism such
that for all j ∈ ¹1, kº, ϕ(s j) = t j . Hence, (ii) implies

(Ys j )1¶ j¶k
law
= (Yt j )1¶ j¶k . (2.5.31)

Making summations along increasing paths in (2.5.31) yields

�
XA(s j)

�
1¶ j¶k

law
=
�
∆XA(t j)\A(t)

�
1¶ j¶k

from which (i) follows.

In Proposition 2.5.27, some could raise the issue that Mon(T ) is not a group per say, but
only a monoid, and they would be right. The reason is that the infinitary tree is not closed under
translation. However, it is possible to extend Y to a bigger tree — on which a group acts this time
— in the same way a stationary N-indexed process may be extended to a stationary Z-indexed
one. This tree is the (1,ω)-regular tree defined as

−→T =
⋃
k∈Z

N(−∞,k]∩Z.

Even though
−→T is not exactly a tree according to Neveu’s definition, its poset structure still makes

it ‘tree-like’ in the sense that each node t = ...tk−1 tk ∈ −→T has one ‘ancestor’ — ...tk−2 tk−1 — and
countably many ‘children’ — all the ...tk−1 tks for s ∈ N — hence the name of (1,ω)-regular tree.

The infinitary tree T is embeddable into
−→T by picking a vertex ρ = ...ρ−1ρ0 ∈ N(−∞,0]∩Z and

using the order embedding T 3 t = t1...tk 7→ ρt = ...ρ−1ρ0 t1...tk ∈ −→T . Then, we may show that

A -increment stationarity for X is equivalent to Y having an extension to
−→T whose distribution

is invariant under the action of Aut(
−→T ).

Unfortunately, we have not been able to establish in Proposition 2.5.27 an Aldous-Hoover type
of representation forA -increment stationary processes in the spirit of (2.5.27).

Let us now turn our attention towards an analog of Proposition 2.5.26 for C -exchangeable
processes.

PROPOSITION 2.5.28 (C -exchangeability on the infinitary tree). The following statements are
equivalent:

(i) X is C -exchangeable.

(ii) The distribution of the T -indexed process Y =
�
∆X{t} : t ∈ T

	
is invariant under the action

of S (T ) , i.e.

∀σ ∈S (T ) , Y
fdd
=
�
∆X{σ(t)} : t ∈ T

	
.

(iii) There exists a collection of iid random variables
�

U∅
	∪�Ut : t ∈ T

	
uniform on [0,1] and a

measurable map f : [0, 1]2→ R such that

∀A∈A , XA =
∑
t∈A

f (U∅, Ut). (2.5.32)
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Proof. This thread of equivalences is just a barely hidden application of de Finetti’s theorem and
the related Aldous-Hoover representation.

Suppose (i). Since
�{t} : t ∈ T

	 ⊆ C , the process Y may be seen as an exchangeable
sequence. Hence (ii) holds.

Conversely, if (ii) holds, then X is
�{t} : t ∈ T

	
-exchangeable. Since any element in C is a

finite union of singletons, X is actually C -exchangeable. Hence (i) and (ii) are equivalent.
Suppose (ii). By [55, Lemma 7.1], we may find a collection of iid random variables

�
U∅
	∪�

Ut : t ∈ T
	

uniform on [0, 1] and a measurable map f : [0, 1]2 → R such that for all t ∈ T ,
∆X{t} = f (U∅, Ut). The representation (2.5.32) — and hence (iii) — immediately follows.

Conversely, if (iii) holds, then we have for all t ∈ T , ∆X{t} = f (U∅, Ut) and thus, the distri-
bution of Y is invariant under permutations. Hence (ii) and (iii) are equivalent.

REMARK 2.5.29. The two representations (2.5.27) and (2.5.32) were given in a form that makes
them easier to compare. This indicates how much more restritive beingC -exchangeable is compared
to being A -exchangeable (which is not too surprising since any process is A -exchangeable when
T = R+). This also shows that any representation for discrete A -increment stationary processes
should lie ‘somewhere in between’ (2.5.27) and (2.5.32). We wish we had one, but that remains to
be proven.

We hope that this interlude in the discrete world helped to clarify our new notions of sta-
tionarity. In the continuous case, it is still not clear to us whether or not they are equivalent to
invariance under the action of some measure-preserving order embeddings.

Representations of C -exchangeable processes

Let us put aside the infinitary tree of the previous section and go back to the more general
case. We prove a generalization of Kallenberg’s [55, Theorem 3.15] which is a representation
for one-dimensional processes with exchangeable increments.

THEOREM 2.5.30 (Representation of C -exchangeable processes when m(T ) < +∞). Suppose
that 0<m(T )< +∞. The following statements are equivalent:

(i) X is C -exchangeable and outer continuous in probability (Definition 2.4.1).

(ii) There exists a random triplet (b,σ2, J) : Ω → R × R+ ×M(R∗) such that J is N-valued,∫

R∗
x2J(d x)<∞ a.s., an independent siBb

︷︷
W (Example 2.5.19) and a sicK eQ of intensity J

(Example 2.5.23) such that eQ ⊥⊥
J
(b,σ2,

︷︷
W ) and

∀A∈A , XA = bm(A) + σ
︷︷
W A + eQA. (2.5.33)

Under those conditions, the distribution of (b,σ2, J) is unique and characterizes the distribution of
X . It is called the directing triplet of X .

Proof. The implication (ii)⇒(i) has already been carried out through Examples 2.5.19 and
2.5.23.

Conversely, suppose (i). We first prove the result in the special case when T ∈A (u). Repeat-
ing the coupling argument giving (2.4.7) indicates that in order to prove (2.5.33), it is enough
to show that

X
fdd
= bm + σ

︷︷
W + eQ. (2.5.34)
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for some siBb
︷︷
W and sicK eQ of intensity J as described in (ii).

Fix φ ∈ Φmax(A (u)) =
�
φ ∈ Φ(A (u)) : m(φ(0)) = 0 and φ(1) = T

	
. By Proposition 2.5.8,

we know that Xφ is a [0,1]-indexed process with exchangeable increments. Thus, by [55, Theo-
rem 3.15], there exists a random triplet

�
b(φ),σ2(φ), J(φ)

�
, an independent Brownian bridge︷︷

W ′ and a [0, 1]-indexed sicK eQ′ of intensity J(φ) such that eQ′ ⊥⊥
J(φ)
(b(φ),σ2(φ),

︷︷
W ′) and

�
∆Xφt : t ∈ [0, 1]

	 fdd
=
�

b(φ)t + σ(φ)
︷︷
W ′

t + eQ′t : t ∈ [0, 1]
	
. (2.5.35)

Consider an siBb
︷︷
W independent from

�
b(φ),σ2(φ), J(φ)

�
and a sicK eQ of intensity J(φ) such

that eQ ⊥⊥
J(φ)
(b(φ),σ2(φ),

︷︷
W ) and define the set-indexed process Y by

∀A∈A , YA = b(φ)m(A) + σ(φ)
︷︷
W A + eQA.

Let us show that X
fdd
= Y, which will be enough to prove (2.5.34). Let C ∈ C such that m(C) = 0.

Since X (resp. Y ) is C -exchangeable and m(C) = m(∅), we have ∆XC
law
= X∅ = 0 a.s. (resp.

∆YC
law
= Y∅ = 0 a.s.). Hence, by Theorem 1.3.13 and Remark 1.3.14, it is enough to show that

∀ψ ∈ Φmax(A (u)), ∆Xψ
fdd
= ∆Yψ. (2.5.36)

We already know by (2.5.35) that ∆Xφ
fdd
= ∆Yφ . Let ψ ∈ Φmax(A (u)). Applying [55, Theorem

3.15] once more similarly yields a triplet
�
b(ψ),σ2(ψ), J(ψ)

�
independent from

︷︷
W such that

∆Xψ
fdd
= ∆Zψ where ∀A∈A , ZA = b(ψ)m(A) + σ(ψ)

︷︷
W A + eRA

and eR is a sicK of intensity J(ψ) such that eR ⊥⊥
J(ψ)
(b(ψ),σ2(ψ),

︷︷
W ). Since the distribution of∆Yψ

(resp. ∆Zψ) is characterized by the distribution of
�
b(φ),σ2(φ), J(φ)

�
(resp.

�
b(ψ),σ2(ψ),

J(ψ)
�
), it is enough to show that

�
b(φ), σ2(φ), J(φ)

� law
=
�
b(ψ), σ2(ψ), J(ψ)

�
. (2.5.37)

For all n ∈ N and j ∈ ¹0, n!º, denote ∆φj,n =∆Xφj/n! −∆Xφ( j−1)/n! and

�
b(n)(φ), γ(n)(φ), J (n)(φ)

�
=

 
∆Xφ1 ,

n!∑
j=1

(∆φj,n)
2,

n!∑
j=1

δ
∆
φ
j,n

!
. (2.5.38)

The notations ∆ψj,n and
�
b(n)(ψ), γ(n)(ψ), J (n)(ψ)

�
are defined similarly. By [55, Theorem 3.8],

we know that there exists a non-negative random variable γ(φ) such that





�
b(n)(φ), γ(n)(φ), J (n)(φ)

� law−→ �
b(φ), γ(φ), J(φ)

�
as n→∞

σ2(φ) = γ(φ) −
∫

R

x2J(φ)(d x)
(2.5.39)
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and likewise for ψ. Since φ,ψ ∈ Φmax(A (u)), we have v(φ) =m(T ) = v(ψ) and

∀n ∈ N,
�
φ
� j

n!

� \φ� j − 1
n!

��
1¶ j¶n!

(c)
=
�
ψ
� j

n!

� \ψ� j − 1
n!

��
1¶ j¶n!

. (2.5.40)

By Proposition 2.5.16, we know that X is C (u)-exchangeable, thus (2.5.40) implies that

∀n ∈ N,
�
∆
φ
j,n

�
1¶ j¶n!

law
=
�
∆
ψ
j,n

�
1¶ j¶n!. (2.5.41)

Due to the definition (2.5.38) of the triplets, (2.5.41) implies that

∀n ∈ N,
�
b(n)(φ), γ(n)(φ), J (n)(φ)

� law
=
�
b(n)(ψ), γ(n)(ψ), J (n)(ψ)

�
. (2.5.42)

Hence, (2.5.37) follows from (2.5.39) and (2.5.42), which concludes the proof when T ∈A (u).
Now suppose that T /∈A (u). Since Tn ↑ T , we may use Proposition 1.3.12 to findφ ∈ Φ(Bm)

such that m(φ(0)) = 0, for all t ∈ [0, 1), φ(t) ∈A (u) and φ(1) = T . Using this flow, the proof
would go as before provided that one is able to ‘extend X by continuity at T ’, i.e. to show that

there exists a random variable Z such that ∆XU
P→ Z as U ∈A (u)→ T in (Bm , dm).

Let us show that. By (1.4.7), we have

∀U , V ∈A (u), |∆XU −∆XV | ¶ |∆XU\V | + |∆XV\U |. (2.5.43)

Fix ψ ∈ Φ(A ) such that m(ψ(0)) = 0. Then for U , V ∈A (u),

∆XU\V
law
= Xψm(U\V )/v(ψ)

P−→ 0 as dm(U , V )→ 0 (2.5.44)

where the equality in law is by C (u)-exchangeability and the convergence by outer continuity
in probability of Xψ at 0. Since m(T ) <∞, we have dm(U , V )→ 0 as U , V → T in (Bm , dm).
Hence (2.5.44) yields

∆XU\V
P−→ 0 as U , V ∈A (u)→ T in (Bm , dm). (2.5.45)

Combining (2.5.43) and (2.5.45), we get

|∆XU −∆XV | P−→ 0 as U , V ∈A (u)→ T in (Bm , dm)

from which the result follows by completeness of L0(Ω).

Making use of the same shenanigans, we may show the following generalization of Bühlmann’s
theorem [55, Theorem 1.19].

THEOREM 2.5.31 (Representation of C -exchangeable processes when m(T ) = +∞). Suppose
that m(T ) = +∞. The following statements are equivalent:

(i) X is C -exchangeable and outer continuous in probability.

(ii) There exists a random triplet (b,σ,ν) : Ω→ R×R+ ×M(R∗) such that

∫

R∗
(1∧ x2)ν(d x)<

∞ a.s., an independent siBm W (Example 2.2.12) and a set-indexed compensated compound
Cox process eP of intensity ν (Example 2.5.21) such that eP ⊥⊥

ν
(b,σ, W ) and

∀A∈A , XA = bm(A) + σWA + ePA. (2.5.46)
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Under those conditions, the distribution of (b,σ,ν) is unique and characterizes the distribution of
X . It is called the directing triplet of X .

COROLLARY 2.5.32 (Integration with respect to a C -exchangeable process). Suppose that X has
the representation (2.5.34). Then, X extends to a stochastic measure and we have the representation

∀ f ∈ L(X ), X( f ) = b

∫

T
f dm + σW( f ) + eP( f ) (2.5.47)

where W (resp. eP) is the linear process associated with W (resp. eP) and

L(X ) =
¦

f ∈ RT : for P-a.e. ω ∈ Ω, f ∈ L0
�
b(ω),σ2(ω),ν(ω)

�©
. (2.5.48)

Proof. The representation (2.5.47) is obtained from (2.5.46) in the same way (2.4.8) is ob-
tained from (2.4.7). What is left to establish is (2.5.48). The direct inclusion is a conse-
quence of (2.5.47). For the converse inclusion, consider f ∈ RT such that for P-a.e. ω ∈ Ω,
f ∈ L0(b(ω),σ2(ω),ν(ω)

�
as well as a deterministic sequence ( f ( j)) j∈N of simple functions

converging pointwise to f . Denote for all j, k ∈ N, f ( j,k) = f ( j) − f (k). By Theorem 2.3.11, we
know that

sup
g∈E:
|g|¶1

E
���X( f ( j,k)g)��∧ 1

�� b,σ2,ν
� a.s.−→ 0 as j, k→∞.

Taking expectation and using the dominated convergence theorem above yields

E


 sup

g∈E:
|g|¶1

E
���X( f ( j,k)g)��∧ 1

�� b,σ2,ν
�

 −→ 0 as j, k→∞.

Hence, permuting supremum and expectation yields

sup
g∈E:
|g|¶1

E
���X( f ( j,k)g)��∧ 1

� −→ 0 as j, k→∞.

Thus f ∈ L(X ) and the result follows.

2.6 Perspectives

As we have done for Chapter 1 before, we give some directions in which the work of this chapter
could be developed.

2.6.1 Characteristics for stochastic measures

When T = R+, it is well-known that ‘good integrators’ are semimartingales. In [62, Theorem
9.4.1], Kwapień and Woyczyński described a way to define a triplet (b,σ2,ν) for a general
semimartingale X and used it to give a description of the space L(X ) that extends Rajput and
Rosiński’s result for siLévy’s. It would be interesting to be able to extend those results in order
to fully characterize ‘good integrators’ for a general T and subsequently describe the space of
integrable functions.
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2.6.2 Towards functional martingale inequalities

Another interesting direction would be to try establish functional maximal inequalities of the
form

E

�
sup
f ∈F
|X( f )|γ

�
¶ κF ,γ E

�|X( f ∗)|γ�

for some subset F ⊆ L(X ), γ > 1, κF ,γ > 0 and f ∗ = sup f ∈F f . This would relegate the inequal-
ities obtained in Section 2.3.3 to the special case F =

�
1A : A∈ [∅, U]

	
for U ∈A (u).

As an application, this kind of inequality could be used to prove a strong version of the
functional Lévy-Itô decomposition (2.4.8).

2.6.3 More representation theorems

As we stated before in Section 2.5.6, we would love to see whether one may be able to estab-
lish a representation theorem for A -increment stationary processes, being for a general T or
the infinitary tree. Maybe an easier task would be to first prove the implication (ii)⇒(iii) in
Proposition 2.5.26, which is much closer to the existing results we are aware of.
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2.7 Perspectives (français)

2.7.1 Caractéristiques pour les mesures stochastiques

Lorsque T = R+, il est bien connu que les "bons intégrateurs" sont les semimartingales. Kwapień
and Woyczyński [62, Theorem 9.4.1] donnent une manière de définir un triplet (b,σ2,ν) pour
une semimartingale quelconque X et l’utilisent pour donner une description de l’espace L(X )
qui rejoint les travaux de Rajput et Rosiński dans le cas des processus de Lévy indexés par des
ensembles. Il serait intéressant de pouvoir étendre ces résultats afin de complètement carac-
tériser les "bons intégrateurs" pour un T général et décrire l’espace des fonctions intégrables
correspondant.

2.7.2 Vers des inégalités fonctionnelles de type martingale

Une autre piste est d’essayer d’établir une inégalité maximale fonctionnelle de la forme

E

�
sup
f ∈F
|X( f )|γ

�
¶ κF ,γ E

�|X( f ∗)|γ�

pour un sous-ensemble F ⊆ L(X ) donné, γ > 1, κF ,γ > 0 et f ∗ = sup f ∈F f . Les inégalités
obtenues en Section 2.3.3 se réduiraient alors au cas particulier où F =

�
1A : A ∈ [∅, U]

	
pour

un U ∈A (u) donné.

L’application que nous avons en la tête serait d’obtenir une version forte de la représentation
de Lévy-Itô fonctionnelle (2.4.8).

2.7.3 Davantage de théorèmes de représentation

Comme nous l’avons mentionné en Section 2.5.6, nous serions ravi de pouvoir obtenir un théorème
de représentation pour les processus à A -accroissements stationnaires, que ce soit pour un T
général ou bien l’arbre binaire infini. Peut-être qu’une première tâche pourrait être de démon-
trer l’implication (ii)⇒(iii) de la Proposition 2.5.26, beaucoup plus proche des résultats existants
dont nous avons connaissance.
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3.1 Introduction

When one wants to study sample path properties of a stochastic process X =
�

XA : A ∈ A 	, it
is not enough to consider X as a random function in RA since the cylindrical σ-algebra of RA

only harbors events concerning at most countably many values of X at the same time. It is thus
not proper to ask questions such that: "What is the probability of X being continuous ?". To our
knowledge, there are two (mainly equivalent) ways to circumvent this issue:

1. Once X is defined on RA through its finite-dimensional distributions, find a version with
better sample paths by means of Kolmogorov-Čentsov or a like-minded theorem.

2. Directly define X as a random object in a functional space H having nicer topological
properties than RA .

As pointed out, those approaches do not differ much in the mathematical details and mainly rely
on building smooth enough discretizations Xn ∈H of X and show two things:

1. The distribution of Xn — as a probability measure PXn
on H — converges weakly to some

distribution. To this effect, Prohorov’s theorem (see e.g. [18, Theorems 5.1 and 5.2]) gives
a practical equivalent condition to the relative compacity of

�
PXn

: n ∈ N
	

called tightness
provided that H is Polish (i.e. a complete and separable metric space).

2. The finite-dimensional distributions of Xn converge to those of X . Combined with the pre-
vious condition, this would imply that X indeed has sample paths in H, provided that the
Borel σ-algebra of H corresponds to the trace of the cylindrical σ-algebra of RA on H.

Following this philosophy, we introduce in Sections 3.2 and 3.3 functional spaces where a
lot of processes introduced in Chapter 2 live. Once a version with well-defined sample paths is
secured, we may begin to talk about pathwise Hölder regularity, which we do in Section 3.4. We
then apply all of the above in Section 3.5 to study the regularity of the integral of a deterministic
function f : T → R with respect to a siLévy X .

3.2 The continuous space CΦ(A )
For a start, we introduce a space of ‘locally continuous’ functions. The main goal is to present
ideas that will carry over to Section 3.3 where we tackle càdlàg functions.

3.2.1 Projective limit of Polish spaces

We start by giving a general result about Polish spaces. Although we suspect it being already
well-known, we could not find any reference stating exactly what we wished for. This result
will later be applied to see several functional spaces E as Polish spaces, a condition craved by
probabilists when they want to look at E-valued random variables and their weak convergence.
For a marvelous treatment of the general theory, we refer to [18].

THEOREM 3.2.1 (Projective limit of Polish spaces). Consider a projective system of Polish spaces,
i.e. a set E and sequences (En)n∈N, (πn)n∈N and (πn

m)m¶n such that the following holds:

1. For all n ∈ N, En is a Polish space and the maps πn
m : En→ Em (m¶ n) are continuous.

2. (Identification). The mapsπn : E→ En (n ∈ N) are such that the map E 3 x 7→ �
πn(x)

�
n∈N ∈∏

n∈N En is injective.
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3. (Compatibility). For all l ¶ m¶ n, the following diagrams commute:

E

En Em En Em El .

πn
πm

πn
m πn

m

πn
l

πm
l

Then, the set E is Polish for the topology induced by metric

∀x , y ∈ E, d(x , y) =
∞∑
n=0

2−n
�
dn

�
πn(x),πn(y)

�∧ 1
�

(3.2.1)

where for all n ∈ N, dn is any metric on En that induces its topology.

Proof. By identification, E may be isometrically embedded into
∏

n∈N En as

E '
¨

x ∈
∏
n∈N

En : ∀m¶ n, πn
m(xn) = xm

«
. (3.2.2)

By [22, Chapitre IX, §6, Proposition 1], we already know that
∏

n∈N En is Polish and that we only
need to show that E is a closed subset of

∏
n∈N En. Rewriting (3.2.2) yields

E '
⋂
m¶n

�
πn ◦πn

m, πm

�−1
(∆m)

where for all m ∈ N, ∆m =
�
(x , x) : x ∈ Em

	
is the diagonal in Em. Since all the projections

are continuous — either by definition or by construction — and the diagonals are closed, E is
closed. The result follows.

3.2.2 The space CΦ(A ) and its topology

Denote for all n ∈ N,
Tn = [∅,Tn] =

�
A∈A : A⊆ Tn

	
(3.2.3)

where we recall that Tn =
⋃

A∈An
A ∈ A (u). By Proposition 1.4.10, we know that (Tn, dA ) is

compact for all n ∈ N. In particular, the space CΦ(Tn) = C0(Tn;R) of continuous maps from Tn
to R endowed with the norm given by

∀h ∈ CΦ(Tn), ‖h‖∞,Tn
= sup

A∈Tn

|h(A)|

is a separable Banach space (see [9, Lemmas 3.97 and 3.99]). In turn, this enables us to endow
the space

CΦ(A ) =
¦

h ∈ RA : ∀n ∈ N, h|Tn
∈ CΦ(Tn)

©
(3.2.4)

with the projective limit topology given by Theorem 3.2.1 applied to the sequence
�
CΦ(Tn)

�
n∈N,

the maps πn
m = (.)|Tm

and πn = (.)|Tn
(m¶ n). In particular, CΦ(A ) is a Polish space. As to why

we used ‘Φ’ in the notation, we refer to the coming Section 3.2.4.

Not all functions in CΦ(A ) are continuous. Indeed, even though A is σ-compact (Propo-
sition 1.4.10), it is not locally compact in general. This has already been illustrated in Exam-
ple 1.4.11. We will make further use of it in Example 3.2.3 to give a process which has sample
paths in CΦ(A ) while not being continuous.
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3.2.3 Some processes living in CΦ(A )
We give some instances when Gaussian processes have sample paths in CΦ(A ). Examples and
counter-examples are then given.

PROPOSITION 3.2.2. Suppose that dA = dm and dimA <∞. Then, the following processes have

a version in CΦ(A ): the sifBm W H for any H ∈ (0,1/2], the siBb
︷︷
W and if f : T → R is a

measurable map such that for all n ∈ N, ‖ f ‖∞,Tn
= supt∈Tn

| f (t)| <∞, the primitive process of
f with respect to the siBm W, i.e. the process Y given by

∀A∈A , YA =

∫

A

f dW.

Proof. Consider H ∈ (0,1/2], n ∈ N and let us show that W H
��
Tn

has a version in CΦ(Tn).
Denote by H the log-entropy (Definition 1.5.11) of (Tn, dH) where for all A, A′ ∈A , dH(A, A′) =
‖W H

A −W H
A′ ‖L2(Ω). Using the covariance of W H , we have for all A, A′ ∈A ,

E
�
(W H

A −W H
A′ )

2
�
= Var

�
W H

A

�
+ Var

�
W H

A′
�− 2Cov

�
W H

A , W H
A′
�

= m(A)2H + m(A′)2H − �m(A)2H +m(A′)2H −m(A4A′)2H
�

= m(A4A′)2H .

Hence dH = (dm)H . Using this relation and the estimate on the log-entropy of (Tn, dm) from
Theorem 1.5.12, we get ∫ 1

0

H1/2(ε) dε < ∞.

Thus, by a classical result from Dudley (see [28, Corollary 2.3] or [4, Theorem 1.3.5]), W H
��
Tn

has a continuous version. Hence

P
�
∀n ∈ N, W H

��
Tn
∈ CΦ(Tn)

�
= 1

which proves that W has a version in CΦ(A ).
The version for the siBb

︷︷
W is then just a consequence of the one for the siBm and its repre-

sentation (2.5.20) in terms of a siBm. As for the primitive process Y, the hypothesis on f enables
us to show that for all n ∈ N, we have

∀A, A′ ∈ Tn, E
�
(YA− YA′)

2
�
=

∫

A4A′
f 2dm ¶ ‖ f ‖2

∞,Tn
dm(A, A′)

which may then be used to do the same entropy argument as we did for W H .

EXAMPLE 3.2.3 (Why Proposition 3.2.2 fails for C0(A ;R)). One of the reasons why we considered
CΦ(A ) instead of C0(A ;R) is because even the siBm does not have continuous sample paths in
general. It is known for some specific indexing collections [4, Theorem 1.4.5], but let us build
another example.

Consider the continuous tree T ' {0T } t
�
(0, 1] × N

�
from Example 1.4.11 endowed with its

‘Lebesgue’ measure m. Remark that the metric dm actually corresponds to the SNCF metric consid-
ered in that very example. Moreover, checking that dimA = 2 is straightforward.
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Let us show that a siBm W cannot have a version in C0(A ;R). For all j ∈ N, denote A j =
A(σ2

j , j) ∈ A for some σ j ∈ (0, 1] to be determined. To be more wordy about A j , it is the segment

that lies on the jth ‘branch’ of T , of which 0T is an extremity and has length σ2
j .

Since for all integers j 6= k, m(A j ∩ Ak) = m({0T }) = 0, the WA j
’s are independent Gaussian

variables. According to Borel’s 0-1 law, we get

lim sup
j→∞

WA j
> 1 a.s. ⇐⇒

∞∑
j=0

P
�
WA j

> 1
�
= ∞. (3.2.5)

A quick study of function shows that for all u ∈ R+, e−u2/2 ¾ u2e−u3
. Integrating this inequality

yields

∀x ∈ R+,

∫ +∞

x

e−u2/2 du ¾ 1
3

e−x3
.

In particular, since for all j ∈ N, WA j
∼ N(0,σ2

j ), we get

∀ j ∈ N, P
�
WA j

> 1
�
¾ 1

3
p

2π
e−σ

−3
j .

Taking for instance σ j = (ln j)−1/3, we obtain the divergence of the series in (3.2.5). Thus
lim sup j→∞ WA j

> 1 a.s. Moreover, since dm(A j ,∅) = σ2
j → 0 as j → ∞ and W∅ = 0 a.s.,

we obtain the a.s. discontinuity of W at ∅.

EXAMPLE 3.2.4 (Why Proposition 3.2.2 may fail when dimA =∞). Assuming that A is finite
dimensional is also not superfluous. We give here an example for which dimA =∞ and where
the siBm has no version in CΦ(A ).

Consider the Hilbert’s cube T =
∏

j∈N∗[0, a j] where for all j ∈ N∗, a j = j−3/2. By Proposi-
tion 1.2.9, we know that T may be endowed with the product indexing collection A . In that case,
since T ∈A , we have CΦ(A ) = C0(A ;R). Let us define the measure m by

m =
∞∑
j=1

δ
⊗ j−1
0 ⊗ Leb|[0,a j] ⊗δ0 ⊗δ0 ⊗ ...

Basically, m only charges the ‘coordinate axes’ of T on which it corresponds to the usual Lebesgue
measure. In particular, we have

∀A∈A , m(A) =
∞∑
j=1

t(A) j (3.2.6)

where t(A) j ∈ [0, a j] is the jth component of the tip t(A) of A (Definition 1.2.1). Using (3.2.6), one
may readily check that a necessary and sufficient condition for m to be compatible (Definition 1.3.1)
is for the series

∑
j a j to converge, which happens to be true for our choice of (a j) j .

Let us consider a sequence (W j) j∈N∗ of independent R+-indexed Brownian motions. A straight-
forward computation shows that the set-indexed process W =

�
WA : A∈A 	 given by

∀A∈A , WA =
∞∑
j=1

W j
t(A) j

(3.2.7)

is well-defined as a limit in L2(Ω) and actually is a siBm with control measure m.
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Let us show that W is not continuous at ∅ for the metric dA = dm (which, due to (3.2.6),
corresponds to the `1-metric). For that, consider a R+-indexed Brownian motion B and define

τ = sup
n

t > 0 : ∀s ¶ t, max
0¶u¶s

Bu > s2/3
o

(3.2.8)

together with the convention sup∅ = +∞. Due to the asymptotic behavior of B at 0 (e.g. [30,
Theorem 8.8.1]) we know that P (τ > 0) = 1. In particular, we may find δ > 0 such that

P (τ > δ) > 1/2. (3.2.9)

We introduce the following

∀ j ∈ N∗, τ j = sup
n

t > 0 : ∀s ¶ t, max
0¶u¶s

W j
u > s2/3

o

Ω∗ =
⋂

k∈N∗
lim inf
n→∞

(
2n∑
j=k

1¦max0¶s¶a j
W j

s > a2/3
j

© > 2n−1

)
.

Since the τ j ’s are iid copies of τ, we may apply the strong law of large numbers to get

1
n

n∑
j=1

1{τ j>δ}
a.s.−→ P (τ > δ) as n→∞.

Hence, cutting the sum at some k and extracting along the subsequence (2n)n∈N, the following holds
with probability one:

∀k ∈ N∗, 2−n
2n∑
j=k

1{τ j>δ} −→ P (τ > δ) as n→∞. (3.2.10)

Since
∑

j∈N∗ a j <∞, there exists j0 ∈ N∗ such that for all j ¾ j0, a j < δ. In particular, we get

∀ j ¾ j0,
�
τ j > δ

	 ⊆
�

max
0¶s¶a j

W j
s > a2/3

j

�
. (3.2.11)

Using (3.2.10) and (3.2.11), the following holds with probability one:

∀k ∈ N∗, lim inf
n→∞

 
2−n

2n∑
j=k

1¦max0¶s¶a j
W j

s > a2/3
j

©
!
¾ P (τ > δ) . (3.2.12)

Using (3.2.9) and (3.2.12), we get P (Ω∗) = 1.

We now wish to exhibit a sequence (Ak)k∈N inA converging to ∅ such that

∀ω ∈ Ω∗, limsup
k→∞

sup
A∈[∅, Ak]

WA(ω) > κ a.s. (3.2.13)

for some constant κ > 0. Since P (Ω∗) = 1, this will immediately imply that W has almost surely
discontinuous sample paths at ∅.
For all k ∈ N∗, define tk = (0, ...0, ak, ak+1, ...) ∈ T and Ak = A(tk). Due to (3.2.6) and the fact
that

∑
j∈N∗ a j <∞, we get

dm(A
k,∅) =

∞∑
j=k

a j −→ 0 as k→∞. (3.2.14)
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Fix k ∈ N∗. We have

sup
A∈[∅, Ak]

WA = sup
s∈Ak

∞∑
j=k

W j
s j

=
∞∑
j=k

max
0¶s j¶a j

W j
s j

¾
∞∑
j=k

a2/3
j 1¦max0¶s¶a j

W j
s > a2/3

j

©.

Hence

∀n ∈ N∗, sup
A∈[∅, Ak]

WA ¾
2n∑
j=k

a2/3
j 1¦max0¶s¶a j

W j
s > a2/3

j

©. (3.2.15)

Let ω ∈ Ω∗. By definition of Ω∗, there exists nk(ω) ∈ N∗ such that

2nk (ω)∑
j=k

1¦max0¶s¶a j
W j

s (ω)> a2/3
j

© > 2nk(ω)−1. (3.2.16)

Hence (3.2.16) implies that at least 2nk−1 terms in the sum from (3.2.15) are non-zero. Since
a2/3

j = 1/ j is decreasing in j, we may take the last 2nk−1 as a lower bound, i.e.

sup
A∈[∅, Ak]

WA(ω) ¾
2nk (ω)∑

j=2nk (ω)−1

j−1 ¾ ln 2,

which implies (3.2.13). Hence W has almost surely discontinuous (and also unbounded actually)
sample paths at ∅, which explains why we supposed dimA <∞ in Proposition 3.2.2.

EXAMPLE 3.2.5 (Why the conditions in Proposition 3.2.2 are not sharp). We should however men-
tion that the previous example may be tweaked so that the siBm W on the Hilbert’s cube has a version
in CΦ(A ) even though we still have dimA =∞. To show that, we keep all the notations from Ex-
ample 3.2.4 apart from the sequence (a j) j∈N∗ that will be chosen later on.

Let us show that W almost surely has continuous sample paths. Denote the function $ known
as Lévy’s modulus of continuity by

$(0) = 0 and ∀δ ∈ (0, e−1], $(δ) =
Æ

2δ ln(1/δ)

where [0, e−1] is the interval on which $ is increasing. By [30, Theorem 8.4.2], we have for the
one-dimensional Brownian motion B,

sup
u,v∈[0,1]:
|u−v|¶δ

|Bu − Bv |
$(δ)

a.s.−→ 1 as δ→ 0+

Hence, there exists a random variable such that P (η > 0) = 1 and the following holds with proba-
bility one:

∀u, v ∈ [0,1], |u− v|¶ η =⇒ |Bu − Bv | ¶ 2$(|s− t|). (3.2.17)

Since the W j ’s are all iid copies of B, we may consider a sequence (η j) j∈N∗ which are iid copies of η
such that (3.2.17) holds for W j and η j instead of B and η. Since for all j ∈ N∗, P

�
η j > 0

�
= 1, we
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may choose (a j) j∈N∗ in (0, e−1] converging sufficiently fast towards 0 so that

∞∑
j=1

a j < ∞, (3.2.18)

∞∑
j=1

$(a j) < ∞, (3.2.19)

∞∑
j=1

P
�
η j < a j

�
< ∞. (3.2.20)

The condition (3.2.18) ensures that all the processes are well-defined (see Example 3.2.4). By Borel-
Cantelli’s lemma applied to (3.2.20), there exists a random integer n0 such that the following holds
with probability one:

∀ j > n0, a j ¶ η j . (3.2.21)

Let ε > 0. We have

∀A(s), A(t) ∈A , ∀n¾ n0, |WA(s) −WA(t)| ¶
n∑

j=1

|W j
s j
−W j

t j
| +

∞∑
j=n+1

|W j
s j
−W j

t j
|.

Thus, according to (3.2.17) and (3.2.21), the following holds with probability one:

∀A(s), A(t) ∈A , ∀n¾ n0, |WA(s) −WA(t)| ¶
n∑

j=1

|W j
s j
−W j

t j
| +

∞∑
j=n+1

$(a j). (3.2.22)

By (3.2.19), we may find a (random) integer n ¾ n0 big enough so that
∑

j>n+1$(a j) < ε/2 a.s.
Putting that back into (3.2.22), we get that the following holds with probability one:

∀A(s), A(t) ∈A , ∀n¾ n0, |WA(s) −WA(t)| ¶
n∑

j=1

|W j
s j
−W j

t j
| + ε

2
. (3.2.23)

Since for all j ¶ n, the maps A 3 A(t) 7→ t j ∈ [0, a j] and W j are continuous, (3.2.23) actually
shows that

P (Ωε) = 1 where Ωε =
⋃
δ>0

⋂
A,A′∈A :

dm(A,A′)¶δ

�|WA(s) −WA(t)|¶ ε
	
.

Hence P
�⋂

ε∈Q∗+
Ωε

�
= 1, i.e. W almost surely has continuous sample paths.

3.2.4 A link with flows

Up to this point, some might wonder why we chose to denote CΦ(A ) with a ‘Φ’ in exponent,
notation reserved so far for geodesic flows. This section is devoted to unearth the link between
CΦ(A ) and geodesic flows. This link will then be exploited in Section 3.3 to define a càdlàg
counterpart to CΦ(A ). As hinted in Section 1.3.2, we will mainly use the metric dm since it is
the one that works best with flows.

LEMMA 3.2.6. For all n ∈ N, the space Φ(Tn) is compact once endowed with the topology of uniform
convergence. In particular, the space C0

�
Φ(Tn);C0([0, 1];R)

�
is Polish for the topology of uniform

convergence.
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REMARK 3.2.7. Theorem 3.2.1 and Lemma 3.2.6 could be used to endow Φ(A ) with a Polish space
structure by means of the projections defined as follows. For n ∈ N andφ ∈ Φ(A ), denote v(πnφ) =
m(φ(1)∩ Tn) and

∀t ∈ [0, 1], πnφ(t) =





⋂
s∈[0,1]:

m(φ(s)∩Tn)>v(πn)t

�
φ(s)∩ Tn

�
if t < 1,

φ(1)∩ Tn if t = 1

where we check that πnφ is indeed a geodesic Tn-flow with speed v(πn). The projections πn
m are

then defined similarly.

Proof of Lemma 3.2.6. Let n ∈ N. Since Φ(Tn) is a subset of C0([0, 1];Tn), we will be using
Arzelà-Ascoli theorem. We refer for instance to [63, Theorem 3.1] and even though the functions
must be Banach-valued in the statement, it is not an issue here since Tn embeds itself isometri-
cally into L1(m) by (1.3.10). Thus we need to show that for all t ∈ [0,1],

�
φ(t) : φ ∈ Φ(Tn)

	
is totally bounded and that Φ(Tn) is equicontinuous and closed.

First, we have for all t ∈ T ,
�
φ(t) : φ ∈ Φ(Tn)

	 ⊆ Tn, which is compact by Proposition 1.4.10.
Moreover, for all s, t ∈ [0, 1] and φ ∈ Φ(Tn), we have

dm(φ(s),φ(t)) = v(φ) |s− t|
= dm(φ(0),φ(1)) |s− t|
¶ diam(Tn) |s− t|

which settles the equicontinuity. Hence Φ(Tn) is totally bounded.

What is left is to show that Φ(Tn) is closed. Consider a sequence (φk)k∈N converging to
some φ ∈ C0([0,1];Tn). Since for all k ∈ N, v(φk) = dm(φk(0),φk(1)) and for all s, t ∈ [0, 1],
dm(φk(s),φk(t))→ dm(φ(s),φ(t)) as k→∞, we get

∀s, t ∈ [0, 1], dm(φ(s),φ(t)) = v(φ) |s− t| (3.2.24)

where v(φ) = dm(φ(0),φ(1)). The problem is thatφ might be neither non-decreasing nor outer
continuous. So we introduce the map

ψ : [0, 1] −→ Tn

t 7−→
� ⋂

s∈Q∈[0,1]:
s>t

φ(s) if s < 1,

φ(1) if s = 1.

By construction, ψ is an outer continuous Tn-flow and

∀t ∈ [0, 1], ψ(t) = lim
s∈Q→t+

φ(s) (3.2.25)

which implies that (3.2.24) also holds for ψ, so ψ ∈ Φ(Tn). Moreover, (3.2.25) also implies that

∀t ∈ [0,1], dm(φ(t),ψ(t)) = lim
s∈Q→t+

dm(φ(t),φ(s)) = 0.

Hence φk also converges toψ uniformly as k→∞, so Φ(Tn) is closed. Hence Φ(Tn) is compact.
It then readily follows from [9, Lemma 3.99] that C0

�
Φ(Tn);C0([0,1];R)

�
is Polish.
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The link between CΦ(A ) and flows stems from the fact that any map h ∈ CΦ(A ) may be
characterized by its projections along geodesic A -flows, i.e. the maps given for all φ ∈ Φ(A )
by

hφ : [0, 1] 3 t 7−→ h(φ(t)) ∈ R.

In particular, Proposition 3.2.8 below identifies functions in CΦ(A ) with a subset of C0
�
Φ(A )×

[0,1];R
� ' C0

�
Φ(A ); C0([0,1];R)

�
. Using Lemma 3.2.6, we endow this space with the projec-

tive limit topology given by Theorem 3.2.1 in a fashion similar to CΦ(A ) in Section 3.2.2.

PROPOSITION 3.2.8 (Embedding of CΦ(A ) by projection along flows). The map

CΦ(A ) −→ C0
�
Φ(A ); C0([0, 1];R)

�

h 7−→ �
φ 7→ hφ

�

is linear, continuous and injective. Moreover, it is an isometry for the metrics given by (3.2.1).

Proof. This map is well-defined since the evaluation map

Φ(A )× [0, 1] −→ A
(φ, t) 7−→ φ(t)

is continuous. Linearity is obvious. Injectivity as well since any A ∈ A may be written as
A= φ(1) for some φ ∈ Φ(A ) by Proposition 1.3.9. As for the isometry property, it is enough to
prove the following:

∀n ∈ N, ∀h ∈ CΦ(Tn), ‖h‖∞,Tn
= max
(φ,t)∈Φ(Tn)×[0,1]

|hφ(t)|.

Let n ∈ N and h ∈ CΦ(Tn). By definition, we have ‖h‖∞,Tn
¾max(φ,t)∈Φ(Tn)×[0,1] |hφ(t)|. Since Tn

is compact, we may find A∈A such that h(A) = ‖h‖∞,Tn
. The converse inequality then follows

from the same ‘trick’ used for injectivity.

3.3 The càdlàg space DΦ(A )
As in the one-dimensional case, the space of continuous functions does not encompass every
process of interest. In particular, the space D(0,1) of càdlàg — right continuous with left limits
— functions accomodates both continuous and point processes, and so Lévy processes usually
prefer to live there.

Thus it becomes interesting to turn D(0, 1) into a nice enough space. With this goal in mind,
Skorokhod [92] endowed D(0, 1) with four different topologies: J1, J2, M1 and M2. Straf [96]
adapted the J1-topology to the multiparameter case while for the set-indexed case, Bass and
Pyke [17] took care of the M2-topology and Slonowsky [93] developed the J2-topology.

Here, we propose an alternative to Slonowsky’s space for set-indexed maps where we favor
the J1- over the M2-topology and the metric dm over the Hausdorff metric dH.

This actually partially answers a concern raised in [17, §6.4]. Indeed, one could try to apply
the program proposed in [96] to endow set-indexed càdlàg maps with J1-topology. However,
one would then need to build a reasonable class of homeomorphisms serving as ‘time changes’,
which proves to be a challenge. Our construction circumvents this issue.
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3.3.1 A quick review of D(0,1)

We recall here the main properties of the space

D(0,1) =
¦

h ∈ R[0,1] : ∀t ∈ [0, 1], h(t−) and h(t+) are well-defined and h(t+) = h(t)
©

.

and its J1-topology (the favorite one, or so it seems). For a more thorough account, we refer to
[18, Chapter 3] or [54, Chapter 16].

The uniform topology is a bad deal for D(0, 1) for two reasons:

� The (uncountable) family of càdlàg functions
�
1[t,1] : t ∈ [0, 1]

	
is such that s 6= t implies

‖1[s,1] − 1[t,1]‖∞ = 1. In particular, D(0, 1) cannot be separable under the uniform topology,
which is a property required to be Polish.

� 1[tn,1] converges uniformly to 1[t,1] as n→∞ only if tn = t for all n big enough. Intuitively,
we would like càdlàg functions with jumps of similar sizes placed at similar locations to be
close to each other for the topology in D(0, 1).

Hence the need to weaken the rigid uniform topology and allow some ‘wiggling’ time-wise.

DEFINITION 3.3.1 (Class of ‘time changes’ in [0, 1]). Denote by Λ the group made of all the in-
creasing bijections λ : [0,1]→ [0, 1]. Introduce the following ‘group norms’ defined for all λ ∈ Λ
by

‖λ‖Λ = sup
t∈[0,1]

|λ(t)− t|,

‖λ‖′Λ = sup
t∈[0,1]

|λ(t)− t| + sup
s 6=t∈[0,1]

����log
|λ(s)−λ(t)|
|s− t|

���� .

Both of those quantities express ‘how far’ a given λ ∈ Λ is to the identity. They both yield
metrics on D(0, 1) given for all g, h ∈ D(0,1) by

dD(0,1)(g, h) = inf
λ∈Λ

max
�‖λ‖Λ, ‖g − h ◦λ‖∞

	
, (3.3.1)

d ′D(0,1)(g, h) = inf
λ∈Λ

max
�‖λ‖′Λ, ‖g − h ◦λ‖∞

	
. (3.3.2)

It is well-known that those metrics induce the same topology on D(0,1), called J1-topology.
Unfortunately, the simpler metric dD(0,1) does not turn D(0, 1) into a complete metric space, but
d ′D(0,1) does. For an insightful exposition on the subject — formulated in greater generality —
we refer to [96, Sections 1-3]. Let us just mention the fact that the issues raised above are solved
for this topology. In particular, using a piecewise affine time change, one may show that

∀s, t ∈ [0,1], dD(0,1)(1[s,1],1[t,1]) = |s− t|. (3.3.3)

3.3.2 Blind spots of geodesic flows

Mimicking the idea behind Proposition 3.2.8, we want to define the càdlàg space DΦ(A ) as
isometrically embedded into C0

�
Φ(A );D(0,1)

�
thanks to the map φ 7→ hφ . We will see that we

need a couple of ideas to make that work.

EXAMPLE 3.3.2 (The need for maximal flows). A first issue is that two geodesic flows may not be
able to ‘see’ the same things, even while being close to one another. This is not a problem in CΦ(A )
since continuity saves the day, but that is another story when discontinuities appear.
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Suppose that T = [0,1] is endowed with its usual indexing collection from Example 1.2.14.
Take the set-indexed map h = 1{[0,1]}: this is a perfectly reasonable map that should belong to our
càdlàg space. However, consider the geodesicA -flows φ and φε (ε > 0) defined by

∀t ∈ [0, 1], φ(t) =
�
0, t
�

and φε(t) =
�
0, (1− ε)t�.

Even though φε converges uniformly to φ as ε → 0+, there is no way that hφε = 0 converges to
hφ = 1{1} in D(0, 1) as ε→ 0+.

A way to bypass this issue is to restrict our attention to maximal flows
⋃

n∈NΦmax(Tn) so that
close enough flows will be seeing exactly the same subset of T , some Tn namely.

EXAMPLE 3.3.3 (The uniform topology on the flows is not enough). The second and last issue
we could think of is that uniform topology put some flows too close to each other for the following
reason: for a given càdlàg function, even though two flows may see the same jump, one might see it
much sooner than the other.

Suppose that T = [0, 1]2 is endowed with its usual product indexing collection from Exam-
ple 1.2.16. Take once more a set-indexed map h that should reasonably be càdlàg: for all A ∈ A ,
h(A) = 1(1/2,1)∈A. Consider the maximal geodesicA -flows φ and φε (ε > 0) defined by

∀t ∈ [0, 1], φ(t) = [0, (t, 1)] and φε(t) =

� �
0, (1− ε, (1− ε)−1 t)

�
if t ¶ (1− ε)2,�

0, (t, t)
�

if t > (1− ε)2.

0 11− ε

1

1− ε

(1/2, 1)×

Figure 3.1: Tips of φ(t) (in red) and φε(t) (in blue) for t ∈ [0, 1].

As illustrated in Figure 3.1,φ(t) sees the jump of h as soon as t ¾ 1/2 whileφε(t) only discovers
it at t = 1. More precisely, we have hφ = 1[1/2,1] and hφε = 1{1} while φε converges uniformly to
φ as ε→ 0+.

What Example 3.3.3 taught us is that, even for a reasonable càdlàg map h, the projection hφ

might not depend continuously on φ, at least with respect to the uniform topology. For that to
happen, we need a topology such that once a flow ‘discovers’ a jump, all the flows close-by should
expect to discover it quite soon, if not already. With that in mind, we introduce the following
metric defined for all φ,ψ ∈ Φ(A ) by

dΦ(φ,ψ) =

(
sup

s∈[0,1]
min

t∈[0,1]

�|s− t| : φ(s) ⊆ψ(t) and ψ(s) ⊆ φ(t)	 if φ(1) =ψ(1),

1 if φ(1) 6=ψ(1).
(3.3.4)

PROPOSITION 3.3.4. For all n ∈ N, the space
�
Φmax(Tn), dΦ

�
is compact.
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Proof. Let us show that dΦ is well-defined, i.e. that the ‘min’ in (3.3.4) is reached. Let φ,ψ ∈
Φ(A ) such that φ(1) =ψ(1) and denote

∀s ∈ [0, 1], ρ(s) = inf
t∈[0,1]

�|s− t| : φ(s) ⊆ψ(t) and ψ(s) ⊆ φ(t)	.

Let s ∈ [0,1]. By definition, we know that

∀ε > 0, φ(s) ⊆ ψ(s+ρ(s) + ε)1 and ψ(s) ⊆ φ(s+ρ(s) + ε).

By outer continuity of φ and ψ (Definition 1.3.5), we may take ε → 0+ and get that φ(s) ⊆
ψ(s+ρ(s)) and ψ(s) ⊆ φ(s+ρ(s)). Hence ρ(s) is a minimum attained for t = s+ρ(s).

Let us check that dΦ is a metric (a ‘true one’ for once). Forφ,ψ ∈ Φ(A ), having dΦ(φ,ψ) = 0
means that for all t ∈ [0, 1], φ(t) ⊆ ψ(t) and ψ(t) ⊆ φ(t), hence φ = ψ and separability
follows. Symmetry is obvious. As for triangle inequality, consider φ1,φ2,φ3 ∈ Φ(A ). If φi(1) 6=
φ j(1) for some i, j ∈ {1, 2,3}, then at least φ1(1) 6= φ2(1) or φ2(1) 6= φ3(1) must hold. Hence

dΦ(φ1,φ2) + dΦ(φ2,φ3) ¾ 1.

Since dΦ(φ1,φ3)¶ 1, the triangle inequality follows in this case.
If φ1(1) = φ2(1) = φ3(1), we have for all s ∈ [0,1],

∀s ∈ [0,1], φ1(s) ⊆ φ2(s+ dΦ(φ1,φ2)) ⊆ φ3(s+ dΦ(φ1,φ2) + dΦ(φ2,φ3)).

Hence dΦ(φ1,φ2)¶ dΦ(φ1,φ2) + dΦ(φ2,φ3), so dΦ is a metric on Φ(A ).
Fix n ∈ N. Writing Tn =

⋃ j
i=1 Ai where each Ai is maximal for ⊆ in Tn, we get Φmax(Tn) =⋃ j

i=1Φmax([∅, Ai]). So in order to show that Φmax(Tn) is compact, it is enough to show that for
all A∈An, Φmax([∅, A]) is compact. Let A∈An.

Completeness is checked as follows: consider a Cauchy sequence (φk)k∈N in Φmax([∅, A]). By
definition of dΦ, we have

∀ε > 0, ∃nε ∈ N : ∀ j, k ¾ nε, ∀t ∈ [0,1], φk(t − ε) ⊆ φ j(t) ⊆ φk(t + ε)

which enables us to define the geodesic flow φ ∈ Φmax([∅, A]) given by

∀t ∈ [0,1], φ(t) =
⋂
ε∈Q∗+

⋂
j¾nε

φ j(t + ε).

Then it may be shown that dΦ(φk,φ)→ 0 as k→∞: completeness follows.
Let us show that Φmax([∅, A]) is totally bounded. Let k ¾ n. We wish to use the finite subcol-

lection Ak (Definition 1.2.1) to create an εk-cover of Φmax([∅, A]) (where εk → 0 as k →∞).
Using Proposition 1.3.9, we may fix for all chainA ′ ⊆Ak a flow ψA ′ such that for all A∈ A ′,
there is tA ∈ [0,1] such that A⊆ψA ′(tA) and m(ψA ′(tA) \ A) = 0.
Let φ ∈ Φmax([∅, A]) and consider the chain A ′ = �gk(φ(t)) : t ∈ [0, 1]

	 ⊆ Ak. We claim that
φ and ψA ′ are close. Let s ∈ [0,1]. Since

max
A′∈A ′:

A′⊂gk(φ(s))

A′ ⊆ φ(s) ⊆ gk(φ(s)),

1We commit a slight abuse of notation here: consider that ψ(t) = ψ(1) whenever t > 1. The same abuse will be
commited throughout the proof.
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we have

min
t∈[0,1]:

φ(s)⊆ψA′ (t)
m(ψA ′(t) \φ(s)) ¶ δk and min

t∈[0,1]:
ψA′ (s)⊆φ(t)

m(φ(t) \ψA ′(s)) ¶ δk (3.3.5)

where
δk = max

A0,A1∈[∅,A]∩Ak:
A0 maximal proper subset of A1

m(A1 \ A0)

is a quantity that has been introduced back in Definition 1.4.1. Since both φ and ψA ′ are
geodesic flows with speed m(A), we have

∀t ∈ [0,1], m(φ(t)) = m(ψA ′(t)) = m(A) t. (3.3.6)

Without loss of generality, we may suppose that m(A) > 0. It follows from (3.3.5) and (3.3.6)
that

dΦ(φ,ψA ′) ¶ δk/m(A).

Hence
�
ψA ′ :A ′ chain inAk

	
is a δk/m(A)-cover of Φmax([∅, A]). According to the shrinking

mesh property (Definition 1.4.1), we know that δk → 0 as k→∞. ThusΦmax([∅, A]) is complete
and totally bounded, hence compact. The result follows.

PROPOSITION 3.3.5. The topology induced by dΦ is stronger than the topology of uniform conver-
gence, i.e. if dΦ(φk,φ)→ 0 as k→∞, then φk converges uniformly to φ as k→∞.

Proof. Consider geodesic flows φ,φ0,φ1, ... such that dΦ(φk,φ) → 0 as k →∞. Let us show
that the convergence also holds uniformly. Let ε > 0. By definition of dΦ, there exists nε ∈ N
such that

∀k ¾ nε, φk(1) = φ(1) and ∀t ∈ [0, 1], φk(t) ⊆ φ(t + ε). (3.3.7)

Thus, we get for all k ¾ nε and t ∈ [0, 1],

dm(φk(t),φ(t)) ¶ dm(φk(t),φ(t + ε)) + dm(φ(t + ε),φ(t))

=
�
m(φ(t + ε))−m(φk(t))

�
+
�
m(φ(t + ε))−m(φ(t))

�
by (3.3.7),

=
�
v(φ)(t + ε)− v(φk)t

�
+
�
v(φ)(t + ε)− v(φ)t

�

= 2v(φ)ε since v(φk) = v(φ).

This bound being independent from t, the result follows.

3.3.3 The space DΦ(A ) and its topology

For all n ∈ N, denote

DΦ(Tn) =
¦

h ∈ RTn : φ 7→ hφ is continuous from
�
Φ(Tn), dΦ

�
to
�
D(0, 1), dD(0,1)

�©
. (3.3.8)

Those spaces are Polish for the topology of uniform convergence thanks to Proposition 3.3.4 and
[9, Lemma 3.99]. The càdlàg space DΦ(A ) may finally be defined as

DΦ(A ) =
¦

h ∈ RA : ∀n ∈ N, h|Tn
∈ DΦ(Tn)

©
(3.3.9)
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and endowed with the projective limit topology from Theorem 3.2.1 applied to the sequence�
DΦ(Tn)

�
n∈N, the maps πn

m = (.)|Tm
and πn = (.)|Tn

(m ¶ n). In particular, DΦ(A ) is a Polish
space and, as a consequence of Proposition 3.3.5, CΦ(A ) continuously embeds itself into DΦ(A ).

The comparison of DΦ(A ) with Slonowsky’s space D(A ) [47, Definition 7.1.1] is not en-
tirely straightforward, in the sense that our topology stems from dm whereas his is based on the
Hausdorff metric dH given in (1.4.2). What we can say is that his definition appears to be less
restrictive than ours since no continuity is imposed when one changes flow. So it appears that
a function will generally have an easier time belonging to D(A ) than DΦ(A ). However, this
heuristic does not always hold as Proposition 3.3.6 will tell.

This construction has two nice aspects for itself that other constructions do not:

� Bass and Pyke [17, §6.4] raised the concern that endowing a set-indexed càdlàg space with
the J1-topology would be hard due to the difficulty to define and manipulate set-indexed
time changes in the spirit of Definition 3.3.1. Here, we circumvent this issue by having one-
dimensional time changes along paths.

� This construction may be readily adapted to any other Skorokhod topology that one might
fancy. One just has to change the topology of D(0,1) in (3.3.8) and the deal is done.

3.3.4 A Lévy-Itô decomposition

The following result may be compared with [47, Theorem 7.1.6] where set-indexed point pro-
cesses are shown to belong to Slonowsky’s space D(A ), provided they verify an additional geo-
metric assumption.

PROPOSITION 3.3.6. Any set-indexed point process X =
�
µ(A) : A∈A 	 has a version in DΦ(A ).

Proof. It is enough to prove the result for a deterministic measure µ and since DΦ(A ) is a vector
space, we might as well suppose that µ = δt is the Dirac measure for some t ∈ T . Let n ∈ N be
big enough so that t ∈ Tn and consider φ ∈ Φmax(Tn). We need to show that the map

Φmax(Tn) −→ D(0, 1)
ψ 7−→ �

s 7→ 1t∈ψ(s)
�

is continuous at φ. For all ψ ∈ Φmax(Tn), define tψ =min
�
s ∈ [0, 1] : t ∈ψ(s)	. By (3.3.3), we

get
∀ψ ∈ Φmax(Tn), dD(0,1)(1t∈φ(.),1t∈ψ(.)) = dD(0,1)(1[tφ ,1],1[tψ,1]) = |tφ − tψ|.

So we only need to prove that ψ 7→ tψ is continuous at φ. Let ε ∈ (0, 1) and take ψ ∈ Φmax(Tn)
such that dΦ(φ,ψ)< ε. By definition of dΦ, we have

φ(tφ) ⊆ ψ(tφ + ε) and ψ(tψ) ⊆ φ(tψ + ε).
Thus

tψ ¶ tφ + ε and tφ ¶ tψ + ε.

Hence |tφ − tψ|¶ ε and the continuity follows.

DEFINITION 3.3.7 (Primitive process). Suppose that X extends to a stochastic measure and consider
f ∈ Lloc(X ). The primitive process of f with respect to X is the set-indexed process Y =

�
YA : A∈

A 	 given by

∀A∈A , YA = X( f 1A) =

∫

A

f dX .
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When T = R+, A is its usual indexing collection (Example 1.2.7) and ∆X the Lebesgue
measure, the primitive process corresponds to the usual primitive of f that vanishes at 0.

THEOREM 3.3.8 (Lévy-Itô decomposition of the primitive process). Suppose that Y is the primitive
process of f ∈ Lloc(X )with respect to some siLévy X with triplet (b,σ2,ν) and representation (2.4.7)
from Corollary 2.4.9. If dimA <∞, then Y is such that

∀A∈A , YA = b

∫

A

f dm + σ

∫

A

f dW + lim
ε→0+

∫

A×{x∈R:|x |¾ε}

�
x . f (t)

� eN(d t, d x) (3.3.10)

where eN is the compensated Poisson process of intensity ν that appears in (2.4.3) and the conver-
gence as ε→ 0+ happens a.s. uniformly in A ∈ Tn for all n ∈ N. In particular, if f is bounded on
each Tn, then Y has a version in DΦ(A ).

This result seems strictly weaker than [41, Theorem 7.9]when f = 1 (so that X = Y ) because
we further require that dimA <∞. The reason is because we believe to have a counter-example
when dimA =∞ (see Example 3.3.9), meaning that the assumptions of [41, Theorem 7.9]
should be reinforced.

Sketch of proof. The representation (3.3.10) has already been obtained in (2.4.8) but for the
a.s. uniform convergence on each Tn.

As mentioned in the proof of [41, Theorem 7.9], the proof goes like [3, Theorem 4.6], but
for the application of Wichura’s inequality which is replaced by the maximal inequality (2.3.29),
which is exactly why we required dimA <∞.

The fact that the Gaussian (resp. Poissonian) part of (3.3.10) belongs to CΦ(A ) (resp.
DΦ(A )) is a consequence of Proposition 3.2.2 (resp. Proposition 3.3.5).

EXAMPLE 3.3.9 (Why Theorem 3.3.8 may fail when dimA =∞). In Example 3.2.4, we proved
that for a specific Hilbert’s cube T =

∏
j∈N∗[0, a j] and measure m, the siBm W has a.s. discontin-

uous sample paths at∅. This siBm could be constructed as the sum of iid one-dimensional Brownian
motions (3.2.7) due to the particular form (3.2.6) of m.

Let us do the same here for a compensated compound Poisson process, i.e. suppose that T , A
and m are the ones from Example 3.2.4, consider iid R+-indexed compensated compound Poisson
processes (eP j) j∈N of intensity ν and define the process eP = �ePA : A∈A 	 by

∀A∈A , ePA =
∞∑
j=1

eP j
t(A) j

.

The last ingredient used was a knowledge of the (pointwise) Hölder regularity of the Brownian
motion at 0 to prove (3.2.13). No other important fact about the Brownian motion has been used.
In particular, if one carefully chooses ν so that the pointwise Hölder exponent of the eP j ′s are the
same than the Brownian motion, we would still be able to prove (3.2.13) for eP, i.e.

lim sup
A→∅

ePA > κ a.s. (3.3.11)

for some constant κ > 0. This is made possible by taking ν(d x) = |x |−3/21x∈[−1,1]\{0}Leb(d x) and
applying [20, Theorem 3.3].

Now, we may see that (3.3.11) contradicts the uniform convergence in (3.3.10) since eP∅ = 0 a.s.
Hence Theorem 3.3.8 may not hold for some infinite-dimensional indexing collections.
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A big advantage of Theorem 3.3.8 is that it enables us to talk about the ‘jump structure’ of
the primitive process. The notion of point-mass jump given below comes from [41, Definition
7.1] where it has been used to give the Lévy-Itô representation of a siLévy.

DEFINITION 3.3.10 (Point-mass jumps, [41, Definition 7.1]). The point-mass jump of a function
h :A → R at t ∈ T is the quantity Jt(h) = limn→∞∆h(Cn(t)) whenever the limit exists.
The function h has well-defined jumps if Jt(h) is well-defined for all t ∈ T and the set

�
t ∈ A :

|Jt(h)|¾ ε
	

is finite for all A∈A and ε > 0. In that case, the jump set of h is given by

Π(h) =
�

t ∈ T : Jt(h) 6= 0
	
. (3.3.12)

PROPOSITION 3.3.11 (Representation of a set-indexed compensated Poisson process). Let eN be
a set-indexed compensated Poisson process of intensity ν as considered in (2.4.2). Then, there exists
a Poisson random set Π on T ×R∗ such that

∀A′ ∈A ×AR∗∪{∞}, eNA′ =


 ∑
(s,J)∈Π

δ(s,J)(A
′)


−m ⊗ ν��(s, x) ∈ A′ : |x |¶ 1

	�
.

Proof. For a more details about Poisson random sets, we refer to Remark 2.4.4 and the references
mentioned there.

By definition of eN , we know that such a representation exists, at least in distribution. Re-
mark that this representation may live in the Borel space RN since only countable many random
variables are required to define it. Thus, this representation in distribution may be turned into
a version of eN by virtue of [54, Theorem 6.10].

COROLLARY 3.3.12 (Jump structure of the primitive process). If dimA <∞ and Y is the prim-
itive process of f ∈ Lloc(X ) with respect to some siLévy X , then the following holds with probability
one: both X and Y have well-defined jumps, Π(Y ) = Π(X )∩ �t ∈ T : f (t) 6= 0

	
and for all t ∈ T ,

Jt(Y ) = f (t)Jt(X ).

Proof. Due to (3.3.10), the primitive process Y has three parts: a drift, a Gaussian part and a
Poissonian part. We show that each part has well-defined jumps separately.

Since m is compatible, we have m({t}) = 0 for all t ∈ T . Hence m(Cn(t))→ 0 as n→∞
and, by the dominated convergence theorem,

∀t ∈ T , b

∫

Cn(t)
f dm −→ 0 as n→∞. (3.3.13)

For the Gaussian part, one may copy the proof of [41, Theorem 7.3]2 and prove that the following
holds with probability one:

∀t ∈ T , σ

∫

Cn(t)
f dW −→ 0 as n→∞. (3.3.14)

As for the Poissonian part — denoted by eP — let us use Proposition 3.3.11 on the process eN
from (3.3.10). This enables us to write

∀A∈A , ePA = lim
ε→0+

� ∑
(s,J)∈Π:

s∈A, |J |¾ε

f (s)J −
∫

A

f dm

∫

ε¶|x |¶1

x ν(d x)
�

2Indeed, only the fact that the process is Gaussian and has independent increments has been used in the proof, and
not that it is a siBm per say.
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where the convergence as ε→ 0+ happens a.s. uniformly in A∈ Tk for all k ∈ N. Let Ω∗ be the
event where this uniform convergence happens. In particular, we get for all ω ∈ Ω∗ and t ∈ T ,

∀n ∈ N, ∆ePCn(t)(ω) = lim
ε→0+

� ∑
(s,J)∈Π:

s∈Cn(t), |J |¾ε

f (s)J −
∫

Cn(t)
f dm

∫

ε¶|x |¶1

x ν(d x)
�
(ω). (3.3.15)

Since dimA <∞, we know that the left-neighborhoods C ` — which the Cn(t)’s are part of —
are made of at most dimA elements ofA . In particular, the convergence as ε→ 0+ in (3.3.15)
happens uniformly in t ∈ Tk and n ∈ N for all k ∈ N. So we may invert limits to get

∀ω ∈ Ω∗, ∀t ∈ T , ∆ePCn(t)(ω) −→ f (t)J1(t,J)∈Π(ω) as n→∞. (3.3.16)

Specializing (3.3.16) to X instead of Y ( f = 1) proves that

∀ω ∈ Ω∗, ∀t ∈ T , ∆XCn(t) −→ J1(t,J)∈Π(ω) = Jt(X ) as n→∞. (3.3.17)

The result follows from (3.3.13), (3.3.14), (3.3.16) and (3.3.17).

3.4 Hölder exponents for generalized processes

Hölder regularity is expressed in terms of exponents and may vary depending on the context
and the behavior one wishes to capture. In Section 3.4.1, we provide the necessary definitions
to this effect.

In Section 3.4.2, we further push ideas from Jaffard [50, 51] to obtain (deterministic) upper
bounds for the Hölder regularity of a function h : A → R based on its pointwise jumps. The
notion of vicinity developed in Section 1.4.3 is the key concept to improve on the ‘naive’ upper
bound.

This is all preparatory work for Section 3.5 where we give bounds on the Hölder regularity
on the primitive process Y of some deterministic function f with respect to a siLévy X .

In the sequel, we fix a function h :A → R. Contrary to the previous section, we go back to
a more general metric dA than dm .

3.4.1 Set-indexed pointwise Hölder exponents

In [42], Herbin and Richard defined a number of Hölder exponents which localize different
visions of the continuity property in the set-indexed case. In a general fashion, those Hölder
exponents are used to finely study the regularity of h around a given A ∈ A or equivalently
through the TIP bijection, around a given t ∈ T . We will be using the convention sup∅ = 0
which is usual for regularity exponents.

Hölder exponent

First, the (pointwise) Hölder exponent constitutes the natural generalization of its one-dimensional
analog to the metric space (A , dA ):

∀A∈A , αh(A) = sup

�
α¾ 0 : limsup

ρ→0+
sup

A′∈BA (A,ρ)

|h(A)− h(A′)|
ρα

<∞
�

. (3.4.1)
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If positive, for any α ∈ (0,αh(A)), the pointwise Hölder exponent yields the following control
of h in the neighborhood of t:

∃ρα > 0 : ∀A′ ∈ BA (A,ρα), |h(A)− h(A′)| ¶ dA (A, A′)α. (3.4.2)

Conversely, the estimate (3.4.2) implies α¶ αh(A).

In modern literature, one usually uses a slight modification of the above definition where
one substracts the smooth part of the function — its Taylor expansion — before comparing it
to a power of the radius (see [15] for an in-depth comparison in the case T = R+). However,
the set-indexed setting does not seem to have any natural substitutes for polynomials, hence the
definition. Moreover, keeping the polynomial part has even proven to be useful [15] to study
stochastic processes when T = R+.

Herbin and Richard also introduced the (pointwise) HölderC -exponent in order to look at the
variation of h in terms of theC -indexed increment map∆h. The authors proved [42, Proposition
3.2] that the following definition does not depend on the choice of k ∈ N∗:

∀A∈A , αh,C (A) = sup

¨
α¾ 0 : limsup

ρ→0+
sup

C∈C(k)∩BC (A,ρ)

|∆h(C)|
ρα

<∞
«

(3.4.3)

where the class C(k) has been given in Definition 1.2.35. Such a definition leads to the corre-
sponding estimate — apparently stronger than (3.4.2) for now — for α ∈ (0,αh,C (A)):

∀k ∈ N∗, ∃ρα,k > 0 : ∀C ∈ C(k) ∩ BC (A,ρα,k), |∆h(C)| ¶ dC (A, C)α. (3.4.4)

A reason why it is preferred over a more natural definition on C is that C is usually not a
Vapnik-Červonenkis class (since C ` is a dissecting system), so C -indexed processes are far from
having continuous sample paths in general (see [4, Sections 1.4.3 and 1.4.5] for more details).

Finally, it has not been seen in [42] that the usual Hölder exponent and the C -exponent
actually coincide.

PROPOSITION 3.4.1. For all A∈A , αh(A) = αh,C (A).

In particular, we will only mention αh(A) in the following and still use both estimates (3.4.2)
and (3.4.4).

Proof. Let A∈A . Then

sup
C∈C0∩BC (A,ρ)

|∆h(C)|ρ−α = sup
A0,A1∈BA (A,ρ):

A0⊆A1

|∆h(A1 \ A0)|ρ−α

= sup
A0,A1∈BA (A,ρ):

A0⊆A1

|h(A1)− h(A0)|ρ−α

¶ sup
A0,A1∈BA (A,ρ):

A0⊆A1

�|h(A1)− h(A)|+ |h(A)− h(A0)|
�
ρ−α

¶ 2 sup
A′∈BA (A,ρ)

|h(A)− h(A′)|ρ−α.

Hence taking k = 1 in (3.4.3) immediately yields that αh(A)¶ αh,C (A).
Conversely, ifαh,C (A) = 0, then equality immediately holds. Otherwise, takeα ∈ (0,αh,C (A)).

Consider ρα,0 > 0 just as in the estimate (3.4.4) for k = 1 and let A′ ∈ BA (A,ρα,0). Then,

|h(A)− h(A′)| ¶ |∆h(A\ A′)| + |∆h(A′ \ A)|. (3.4.5)
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Since the extremal representation of A\ A′ is A\ (A∩ A′), it follows by definition of dC that

dC (A\ A′, A) = max
�

dA (A, A′), dA (A∩ A′, A)
	
.

By contractivity, it follows that dA (A∩ A′, A) ¶ dA (A, A′), so dC (A\ A′, A) = dA (A, A′). Similarly,
dC (A′ \ A, A) = dA (A, A′). In particular, we may apply the estimate (3.4.4) to (3.4.5) and get

∀A′ ∈ BA (A,ρα,0), |h(A)− h(A′)| ¶ 2dA (A, A′)α.

Hence α¶ αh(A), the result follows.

REMARK 3.4.2 (Why we do not consider a local exponent). Taking α ∈ (0, eαh(A)) where eαh(A)
is the local analog of αh(A) (see [42] and references therein for a precise definition and context)
would yield an estimate similar to (3.4.2): for all α ∈ (0, eαh(A)),

∀A0, A1 ∈ BA (A,ρα), |h(A0)− h(A1)| ¶ dA (A0, A1)
α

from which one could deduce an estimate similar to (3.4.4) of the form

∀C , C ′ ∈ C(k) ∩ BC (A,ρα,k), |∆h(C)−∆h(C ′)| ¶ dC (C , C ′)α. (3.4.6)

The reason why we do not consider such exponent here is because we study the primitive process Y
of some function f with respect to a siLévy X .
If Y were to have a non-trivial local regularity, since it has well-defined jumps by Corollary 3.3.12, it
follows from Lemma 1.4.5 and (3.4.6) that t 7→ Jt(Y )must be Hölder-continuous in a neighborhood
of A (i.e. for points t ∈ T such that dA (A(t), A) is small).
This happens only if the Lévy measure ν is null, in which case Y is Gaussian and [42] shows that it
generally implies that αY = eαY . So local exponents do not constitute the right tools here.

dT -localized exponent

In Section 1.4.3, we talked about the problem that characterizing the regularity of h through
increments of the form h(A)− h(A′)— which is the case for αh(A)— requires to take non-local
information into account. We introduced in Definition 1.4.6 the notion of vicinity especially to
tackle this issue. Another way to solve the problem is to swap the increment h(A)−h(A′) by∆h(C)
for C ∈ C close to A and of small diameter. Not only the shrinking mesh property (Definition
1.4.1) will ensure that this definition is well-posed, but also∆h(C) actually constitutes the ‘right’
notion of increment in the set-indexed setting. This fact has already been noted in two-parameter
literature.

In this section, we momentarily denote p = dimA for notation’s sake.

With that in mind, we define the dT -localized exponent of h :A → R:

∀A∈A , αh,dT (A) = sup




α¾ 0 : lim sup

ρ→0+
sup

C∈C(p)∩BC (A,ρ):
diam(C)<ρ

|∆h(C)|
ρα

<∞





(3.4.7)

with the convention C(∞) = C and where diam(C) = sup
�

dT (s, s′) : s, s′ ∈ C
	
. Remark that,

contrary to (3.4.3) which defines the C -exponent, this definition does depend on p due to the
condition on the diameter. Indeed, elements of C(k+1) with diameter smaller than ρ cannot in
general be only expressed using elements of C(k) with diameter smaller than ρ.

The following proposition gives some properties about the dT -localized exponent in order to
get a better feel for it.
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PROPOSITION 3.4.3. Let A= A(t) ∈A . The following properties hold:

1. (Equivalent definition using the TIP bijection).

αh,dT (A(t)) = sup




α¾ 0 : lim sup

ρ→0+
sup

C∈C(p)∩BC (A(t),ρ):
C⊆BT (t,ρ)

|∆h(C)|
ρα

<∞





. (3.4.8)

2. (Corresponding estimate). For all α ∈ (0,αh,dT (A)), there exists ρα > 0 such that for all
C ∈ C(p) ∩ BC (A,ρα),

C ⊆ BT (t,ρα) =⇒ |∆h(C)| ¶ max
�

dC (A, C), diam(C)
	α

. (3.4.9)

Conversely, (3.4.9) implies α¶ αh,dT (A).

3. (Comparison to the Hölder exponent). If dimA <∞, then αh(A)¶ αh,dT (A).

Proof. Let us fix A= A(t) ∈A .

1. It is just a consequence of the fact that for all ρ > 0 and C ∈ BC (A,ρ),

diam(C)< ρ =⇒ C ⊆ BT (t, 2ρ)
C ⊆ BT (t,ρ) =⇒ diam(C)¶ 2ρ

2. It is straightforward consequence of (3.4.8).

3. SinceC ` ⊆ C(p), it is but a simple comparison between (3.4.3) for k = p, Proposition 3.4.1
and (3.4.7).

This exponent should also be compared to the pointwise continuity exponent introduced in
[42, Definition 3.4]:

∀t ∈ T , α
pc
h (t) = sup

§
α¾ 0 : lim sup

n→∞
|∆h(Cn(t))|
m(Cn(t))α

<∞
ª

. (3.4.10)

However, we found our definition easier to work with since it is more closely linked to a
metric, does not directly rely on the countable class C ` and yields a more powerful estimate at
the end while still answering our need to replace h(A)− h(A′) with a better, more local, notion
of increment.

3.4.2 Regularity of generic OJI functions

In [50], Jaffard used the discontinuities of a càdlàg function h : R+→ R to obtain the following
upper bound on its Hölder exponent:

∀t ∈ R+ \Π(h), αh(t) ¶ lim inf
s∈Π(h)→t

log |Js(h)|
log |s− t| (3.4.11)

where Js(h) = h(s)−h(s−) for all s ∈ R+. In this section, we strive to generalize this approach in
order to use it in a fashion similar to [51]. We start by treating the Hölder exponent only. We
explain how to do a similar (and simpler) study of the dT -localized exponent in Section 3.5.3.
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Jump sets in generic configuration

In order to adapt (3.4.11) to a more general setting, we could consider the point-mass jumps
Js(h) = limn→∞∆h(Cn(t)) of a map h :A → R with well-defined jumps (Definition 3.3.10) in
a neighborhood of t and reproduce Jaffard’s proof. This would yield the following bound:

∀t ∈ T , αh(t) ¶ lim inf
s∈Π(h):

dT (s,t)→0+

log |Js(h)|
log dT (s, t)

∨ 0. (3.4.12)

Recall that αh(A) and αh(t) are the same — provided that A= A(t)— due to the correspon-
dence (1.4.1) between dA and dT . Moreover, the ‘∨0’ ensures that this inequality holds for all
t ∈ T .

Alas, unless T is one-dimensional, this upper bound turns out not to be so sharp. The reason
is that we failed to consider the majority of the point-mass jumps contributing to lessen the
regularity, i.e. the ones in the vicinity V(A,ρ) of A = A(t) (Definition 1.4.6). Continuing our
illustration with (T , dT ) = (R2

+, d2) from Example 1.4.7, the area of BT (t,ρ) in Figure 1.11 is
of order ρ2 whereas the area of V(A,ρ) is of order ρ as ρ → 0, so not taking the jumps in
V(A,ρ) \ BT (t,ρ) into account incurs severe losses in the sharpness of the argument. It means
that, in order to obtain a better upper bound on αh(A), we need to be able to ‘fetch’ the jumps
of h in the vicinity of A while only using elements in BA (A,ρ) for small ρ. We do so for a given
class of functions that fit our purposes.

DEFINITION 3.4.4 (OJI function). A map h : A → R with well-defined jumps is said to be only
jump-irregular (OJI) if it can be written in the form:

∀A∈A , h(A) = lim
ε→0+

� ∑
s∈Π∩A:
|Js |¾ε

Js − a(A,ε)

�
(3.4.13)

where Π is a set such that Π ∩ A is finite for all A ∈ A ,
�
Js

�
s∈Π is a family of real numbers,

a :A × (0, 1)→ R is a map such that for all ε ∈ (0, 1), a(.,ε) ∈ CΦ(A ) and the limit as ε → 0+

happens uniformly in A∈ Tn for all n ∈ N.

The term ‘only jump-irregular’ is meant to indicate that OJI functions are only allowed to
have discontinuities in the form of point-mass jumps. Although OJI functions belong to DΦ(A ),
we do not know whether the converse holds or not. Such a result would be interesting to prove
in order to link it back to a similar study in the multiparameter setting [3].

REMARK 3.4.5. If dimA <∞ and h is an OJI function with representation (3.4.13), then one has
Π(h) = Π and for all s ∈ Π(h), Js(h) = Js.

In order to improve on (3.4.12) and take all the jumps of h in the vicinity of A ∈ A into
account, it may happen that some jumps cannot be picked separately from the viewpoint of a
given A. It is the case for instance whenever Js(h) and Js′(h) are both non-zero in Figure 3.2.

DEFINITION 3.4.6 (Generic configuration). For a given A ∈ A , an OJI function h :A → R with
representation (3.4.13) is said to be in generic configuration in the vicinity of A if there exists
ρ0 > 0 such that for all ρ ∈ (0,ρ0), s ∈ Π∩ V(A,ρ) and ε > 0,

∃A, A∈ BA (A,ρ) : A ⊆ A and |∆h(A\ A)− Js| ¶ ε.
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2ρ

2ρ
s× s′×L(s) = L(s′) t×

Figure 3.2: s, s′ ∈ V(A(t),ρ) cannot be isolated from one another using elements in BA (A(t),ρ).

Remark that there are OJI functions that are not in generic configuration in the vicinity of
A. For instance, take the function defined for all A ∈ A by h(A) = 1s∈A+ 1s′∈A for s and s′ as in
Figure 3.2.

THEOREM 3.4.7 (Generic configuration for a siLévy’s primitive process). Let A∈A . If dimA <
∞ and Y is the primitive process of f ∈ Lloc(X ) with respect to some siLévy X , then both X and Y
are a.s. in generic configuration in the vicinity of A.

Before proving this theorem, we need to introduce some notations in order to correctly define
the following:

� The ‘boundary’ — later called L(s)— on which s (and s′) stands in Figure 3.2.

� Approximating sequences
�
An(s)

�
n∈N and

�
An(s)

�
n∈N such that ∆h

�
An(s) \ An(s)

� → Js(h) as
n→∞. The sets An(s)\An(s) ∈ C0 should be thought of as ‘thick’ versions of L(s) decreasing
to L(s) as n→∞.

Fix A∈A ,ρ > 0 and s ∈ V(A,ρ). By Proposition 1.4.8, we may write V(A,ρ) =
⋃

n∈N Vn(A,ρ)
where

∀n ∈ N, Vn(A,ρ) =
⋃

A,A∈An∩BA (A,ρ):
A maximal proper subset of A

�
A\ A

�
(3.4.14)

and the ‘maximal proper subset’ condition is not a restriction since it just eliminates redundancy
in the definition of Vn(A,ρ).
From (3.4.14), there exists a non-decreasing sequence

�
An(s)\An(s)

�
n¾n0

such that for all n¾ n0,

An(s), An(s) ∈ An ∩ BA (A,ρ), An(s) is a maximal proper subset of An(s) and s ∈ An(s) \ An(s).
Denote, as intended,

L(s) = L(A,ρ, s) =
⋂
n∈N

�
An(s) \ An(s)

�
. (3.4.15)

By the shrinking mesh property (Definition 1.3.1), we necessarily have m(L(s)) = 0.

LEMMA 3.4.8 (Sufficient condition for generic configuration). Let A∈A and h :A → R an OJI
function with representation (3.4.13). A sufficient condition for h to be in generic configuration in
the vicinity of A∈A is that dimA <∞ and there exists ρ0 > 0 such that for all ρ ∈ (0,ρ0)∩Q
and s ∈ Π∩ V(A,ρ),

Π∩L(A,ρ, s) = {s}.
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Proof. Let us fix ρ ∈ (0,ρ0)∩Q and s ∈ Π. Since h is OJI, we may write

∀n¾ n0, ∆h
�
An(s) \ An(s)

�
= lim

ε→0+

� ∑

t∈Π∩(An(s)\An(s)):
|Jt |¾ε

Jt − ∆a
�
An(s) \ An(s),ε

��
(3.4.16)

where the convergence as ε→ 0+ happens uniformly in n¾ n0.
Since m

�
An0
(s)
�
<∞ and An(s) decreases to

⋂
k∈N Ak(s) as n→∞, we have

dm

�
An(s),

⋂
k∈N

Ak(s)
�
−→ 0 as n→∞.

Moreover, the shrinking mesh property tells that dm(An(s), An(s))→ 0 as n→∞. Thus

dm

�
An(s),

⋂
k∈N

Ak(s)
�
−→ 0 as n→∞.

Hence, due to the continuity of a(.,ε) with respect to dm , taking n→∞ in (3.4.16) and using
Π∩L(s) = {s} yields

lim
n→∞∆h

�
An(s) \ An(s)

�
= lim

ε→0+

∑
t∈Π∩L(s):
|Jt |¾ε

Jt = Js.

Hence h is in generic configuration in the vicinity of A.

Proof of Theorem 3.4.7. According to Corollary 3.3.12, it is enough to prove the result for the
siLévy X . Using the Lévy-Itô decomposition (Theorem 3.3.8), we know that X has an OJI version.

Fix A∈A and ρ > 0. Define the event

Ωρ =
¦
∃s, s′ ∈ Π(X )∩ V(A,ρ) : s 6= s′ and s′ ∈ L(s, A,ρ)

©
.

Since Π(X ) is a Poisson random set, we may write Π(X ) =
�
si : i < n

	
for some random variable

n : Ω→ N∪ {∞} and where a.s. for all i, j < n, si 6= s j . In particular, we get

P
�
Ωρ |n

�
¶

∑
i, j<n:

i 6= j

P
�
s j ∈ L(si , A,ρ) |n� . (3.4.17)

Since m(L(s, A,ρ)) = 0 for all s ∈ T , each term in the sum of (3.4.17) is a.s. equal to 0. Thus
for all ρ > 0, P

�
Ωρ
�
= 0. Hence Ω∗ =

⋂
ρ∈Q∗+

Ωûρ is an event of probability one. Lemma 3.4.8
then implies that for all ω ∈ Ω∗, X (ω) is in generic configuration in the vicinity of A∈A .

Bounding regularity with point-mass jumps

As promised, the study of generic OJI functions yields a better bound than (3.4.12). We recall
that d stands for the notion of divergence we introduced in Definition 1.4.6.

THEOREM 3.4.9. Consider A ∈ A , h : A → R an OJI function with representation (3.4.13) in
generic configuration in the vicinity of A and a sequence (sn)n∈N in Π such that d(sn, A) → 0 as
n→∞. Then,

αh(A) ¶ lim inf
n→∞

log |Jsn
|

log d(sn, A)
∨ 0.
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Proof. The case αh(A) = 0 is trivial. Otherwise, take α ∈ (0,αh(A)). Let us consider ρα,0 > 0
such that the estimate (3.4.4) holds for k = 0. Without loss of generality, we may suppose that
for all n, d(sn, A)<min{1,ρ0,ρα,0} where ρ0 is the one of Definition 3.4.6.
Let ε > 0 and n ∈ N. The estimate (3.4.4) yields

∀A, A∈ BA (d(sn, A) + ε), |∆h(A\ A)| ¶ �d(sn, A) + ε
�α

. (3.4.18)

Since sn ∈ Π ∩ V(A, d(sn, A) + ε) and h is in generic configuration, we may find A and A in
BA (d(sn, A) + ε) such that

|∆h(A\ A)− Jsn
| ¶ ε. (3.4.19)

Combining (3.4.18) and (3.4.19) and taking ε→ 0+ yields |Jsn
|¶ d(sn, A)α and thus

α ¶
log |Jsn

|
log d(sn, A)

.

The result follows from taking the lower limit as n→∞ and then α→ αh(A)−.

Following ideas from [51], let us introduce for any given map h :A → R with well-defined
jumps, measurable set L ⊆ T and δ > 0,

∀ j ∈ N, Eδj|L(h) =
⋃

s∈Π(h)∩L:
|Js(h)|∈Γ j

V ′
�
s, |Js(h)|δ

�
(3.4.20)

where V ′ is the dual vicinity given in (1.4.9) and

∀ j ∈ N, Γ j =
�

x ∈ R : 2− j ¶ |x |< 2−( j−1)
	

. (3.4.21)

Let us also introduce
Eδ|L(h) = lim sup

j→∞
Eδj|L(h) =

⋂
k∈N

⋃
j¾k

Eδj|L(h). (3.4.22)

The set L allows to select the jumps of h falling in a specific region. It will prove to be
useful when determining an upper bound for the Hölder regularity of the primitive process in
Theorem 3.5.2. More precisely, we will jointly use Theorem 3.4.9 with the following result to
get an upper bound very much like (11) in [51].

PROPOSITION 3.4.10. If h :A → R has well-defined jumps and A∈A , then

A∈ Eδ|L(h) =⇒ lim inf
s∈Π(h)∩L:
d(s,A)→0

log |Js(h)|
log d(s, A)

¶ 1
δ

.

Proof. Let A ∈ Eδ|L(h). Then there exists an increasing sequence ( jk)k∈N in N and a sequence

(sk)k∈N ∈ (Π(h)∩ L)N such that

∀k ∈ N, 2− jk ¶ |Jsk
(h)| < 2−( jk−1) and d(sk, A) ¶ |Jsk

(h)|δ.

So d(sk, A)→ 0 and |Jsk
(h)| → 0+ as k→∞. In particular, there exists k0 such that

∀k ¾ k0,
log |Jsk

(h)|
log d(sk, A)

¶ 1
δ

.

The result follows from taking the lower limit in the above inequality.
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3.5 Hölder regularity of the primitive with respect to a siLévy

In the sequel, suppose that dimA <∞, X is a siLévy, f ∈ Lloc(X ) and Y is the primitive process
of f with respect to X . The goal of this section is to characterize the almost sure regularity of Y.

In Section 3.5.1, we divide the problem into smaller chunks. Section 3.5.2 gives bounds on
the Hölder regularity of Y . Section 3.5.3 does the same work for the dT -localized exponent.
Finally, Section 3.5.4 is devoted to some examples and applications of the main results.

3.5.1 Divide and conquer

Let us a closer look at the Lévy-Itô decomposition of Y (2.4.7). Recall that we have for some
triplet (b,σ2,ν) depending purely on X ,

∀A∈A , YA = b

∫

A

f dm + σW( f 1A) + eP( f 1A)

whereW (resp. eP) is the linear process associated with a siBm (resp. a set-indexed compensated
compound Poisson process).

Moreover, if

∫

|x |¶1

|x |ν(d x)<∞, we may rewrite (3.3.10) into

∀A∈A , YA = b′
∫

A

f dm + σW( f 1A) + P( f 1A)

where b′ = b−
∫

|x |¶1

xν(d x) and P is the ‘non-compensated version’ of eP, i.e. the linear process

associated to the set-indexed Poisson process of intensity m ⊗ ν considered in Example 2.4.6.

In the case where T = R+ and m is the Lebesgue measure, asking the regularity of the drift
part of Y — the first term of (3.3.10) — is the same as asking the regularity of a primitive of f .
This problem has been entirely dealt with through the use of a tool called the 2-microlocal fron-
tier which characterizes how the regularity evolves when one takes fractional integrals and/or
derivatives of f . The 2-microlocal formalism dates back to [21] and has seen a lot of develop-
ments throughout the years (see for instance [49, 68, 74] and references therein). In order to do
the same in the set-indexed setting, one would need to develop an analog for the 2-microlocal
frontier. Being an entirely deterministic endeavor, we chose to push it aside for this article.

Namely, we are going to cancel the drifts in the expression of Y (i.e. take either b = 0 or
b′ = 0 depending on the case), giving the following simpler expressions for A∈A :

YA =





σW( f 1A) + eP( f 1A) if

∫

|x |¶1

|x |ν(dx) =∞,

σW( f 1A) + P( f 1A) if

∫

|x |¶1

|x |ν(dx) <∞
(3.5.1)

Hence we are going to express the regularity of Y as given in (3.5.1) in terms of (σ2,ν) —
which characterizes the law of X — and f . The following result explains that we may treat the
Gaussian and Poissonian components of Y separately.
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PROPOSITION 3.5.1. Let A ∈ A . If m(V(A,ρ)) → 0 as ρ → 0, then αY (A) is a.s. deterministic
and

αY (A) = ασW( f 1.)(A)∧αP( f 1.)(A) a.s.

The same holds if one replaces P by eP and/or the Hölder exponents α.(A) by the corresponding
dT -localized exponents α.,dT (A).

The condition on the vicinity in Proposition 3.5.1 is not innocuous. The speed at which
m(V(A,ρ)) goes to 0 has actually a great influence on the regularity of Y (see Corollaries 3.5.13
and 3.5.14).

Proof of Proposition 3.5.1. The other proofs being similar, we only prove it for P and the Hölder
exponents α.(A).

Let A ∈ A . Since αY (A), ασW( f 1.)(A) and αP( f 1.)(A) are FA+-measurable, they are deter-
ministic according to Theorem 2.3.33. Thus, there exist αY ,αW ,αP ∈ R+ ∪ {∞} such that the
event

Ω∗ =
¦
αY (A) = αY

©
∩
¦
ασW( f 1.)(A) = αW

©
∩
¦
αP( f 1.)(A) = αP

©

happens with probability one.
It is a classical, deterministic result that αY ¾ αW ∧ αP and equality happens as soon as

αW 6= αP . Suppose that αY > αW = αP and let us show that a contradiction follows. Consider
α= (αW +αP)/2. Since α > αP , there exists (on Ω∗) a random sequence (Ak)k∈N inA such that
dA (A, Ak)→ 0+ as k→∞ and

lim
k→∞

��P( f 1A)−P( f 1Ak
)
��

dA (A, Ak)α
= +∞ a.s.

Instead of extracting a subsequence and potentially replacing Y by−Y , we might as well suppose
that there exists a P-measurable event ΩP ⊆ Ω∗ of positive probability such that

lim
k→∞

P( f 1A)−P( f 1Ak
)

dA (A, Ak)α
= +∞ P (.|ΩP) - a.s. (3.5.2)

Since 0< α < αY , (3.5.2) implies that

lim
k→∞

σW( f 1A)−σW( f 1Ak
)

dA (A, Ak)α
= −∞ P (.|ΩP) - a.s. (3.5.3)

in order to compensate for the divergence. Since (W,P) law
= (−W,P) and the sequence (Ak)k∈N

only depends on P, we may replace W by −W in (3.5.3) and obtain

lim
k→∞

σW( f 1A)−σW( f 1Ak
)

dA (A, Ak)α
= +∞ P (.|ΩP) - a.s.

which contradicts (3.5.3) since P (ΩP)> 0.

3.5.2 Hölder regularity

As explained in Proposition 3.5.1, treating separately the two cases ν= 0 and σ2 = 0 is enough
to obtain a complete characterization of the Hölder regularity of Y (apart from the drift, which
was supposed to be zero in Section 3.5.1).
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The Gaussian part

The case where ν = 0 has already been treated at great lengths in the literature. For the set-
indexed case, [42, Corollary 5.3] ensures that under some entropic condition similar to Dudley’s,
for all A∈A , the following holds with probability one:

αY (A) =
1
2
ασ

∫
A4. f 2dm(A). (3.5.4)

As already pointed out in Section 3.5.1, the Hölder exponent for A′ 7→
∫

A4A′
f 2dm cannot

be deduced solely from the Hölder exponent of f . The knowledge of some kind of 2-microlocal
frontier is required, hence (3.5.4) cannot be readily improved. More precise results for the
one-dimensional gaussian case concerning the 2-microlocal frontier especially adapted to our
exponent are given in [15].

The Poissonian part

In this part, let us suppose that Y is purely Poissonian, i.e. that we take σ2 = 0 in the Lévy-Itô
decomposition (3.5.1). The first study of Hölder regularity of a purely Poissonian Lévy process
happened in [20] where Blumenthal and Getoor determined the value of the pointwise Hölder
exponent αX (0) as defined by (3.4.1). As explained in Section 3.4.1, there seems not to exist
any natural extension of polynomials to the set-indexed setting, hence our choice to substract by
hand the ‘polynomial part’ in the same way as [20]. The authors also introduced the so-called
Blumenthal-Getoor exponent:

β = inf

¨
δ > 0 :

∫

|x |¶1

|x |δν(dx)<∞
«

. (3.5.5)

Remark that since ν is a Lévy measure, β ∈ [0,2]. For T = R+, Blumenthal and Getoor proved in
particular that αY (0) = 1/β almost surely together with the convention 1/0= +∞. This result
has been extended in [13, 51, 82] in much greater detail. Our goal is to extend those results in
the case of the integral process Y , which to our knowledge has not been done even in R+, and
for possibly different spaces than R+.

The coming Theorem 3.5.2 will tell us that the Hölder exponent of Y at some A ∈ A is
governed by the regularity of both f and X . For X , the exponent β and some information about
the vicinity of A will suffice (Corollary 3.5.13). However for Y, we need to know about the
behavior of f in the vicinity of A. That is the reason why L f ,α(A) and L f ,α(A,ρ) are introduced
below and correspond to the ‘irregular part’ of f . As for the sets R f (A) and R f (A), they determine
the proportion of the vicinity where f is indeed irregular.

Recall that the divergence d and the vicinity V(A,ρ) have been given in Definition 1.4.6. We
then define for all A∈A , α¾ 0 and ρ > 0,

L f ,α(A) =
¦

s ∈ T : | f (s)|> d(s, A)α
©

,

L f ,α(A,ρ) = V(A,ρ)∩ L f ,α(A),

Lûf ,α(A,ρ) = V(A,ρ) \ L f ,α(A)

(3.5.6)

and
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R f (A) =

�
(α, q) ∈ R2

+ : lim inf
ρ→0+

m(L f ,α(A,ρ))

ρq
> 0

�
,

R f (A) =



(α, q, q′) ∈ R3

+ : lim sup
ρ→0+


m(L f ,α(A,ρ))

ρq
+

m(Lûf ,α(A,ρ))

ρq′


<∞



 .

(3.5.7)

It is not too surprising that we take the irregularity of f into account only through the mea-
sure m since the integral with respect to X does not differentiate between m-a.e. equal functions.
Comparing the measure of a set ‘of radius ρ’ to a power of ρ is not a new idea per say and may
remind the reader about Ahlfors-David regular measures. Likewise in the stochastic field, mea-
suring the ‘local density’ of a set of interest to get regularity results is not new (see [1, Section
4.6] and references therein).

THEOREM 3.5.2 (Hölder regularity of a Poissonian siLévy’s primitive process). Recall that we
supposed dimA <∞, σ2 = 0 and let A ∈ A . Suppose that f is bounded in the vicinity of A
(i.e. sups∈V(A,ρ0) | f (s)|<∞ for some ρ0 > 0). Then the following holds with probability one:

sup
(α,q,q′)∈R f (A)

min
§

q
β

,
q′

β
+α

ª
¶ αY (A) ¶ inf

(α,q)∈R f (A)

§
q
β
+α

ª

with the conventions that inf∅= 1/0= +∞.

We will comment on this result in Section 3.6.2 and apply it in Section 3.5.4. The proof is
divided into several parts: the upper bound, the lower bound when β ¾ 1 and the lower bound
when β < 1.

Proof of the upper bound in Theorem 3.5.2. The upper bound is very similar in spirit as [51]
and the key step is the covering argument given by Proposition 3.5.5. Remark that if β = 0, the
upper bound is trivial. So let us suppose for this part that β > 0.

For now, let us consider some measurable set L ⊆ T of finite positive m-measure and denote
for all j ∈ N,

Π j|L = L ∩ �s ∈ Π(X ) : Js(X ) ∈ Γ j

	
, (3.5.8)

ν j = ν(Γ j) (3.5.9)

where Γ j =
�

x ∈ R : 2− j ¶ |x |< 2−( j−1)
	

has been introduced in (3.4.21).

LEMMA 3.5.3. Fix γ < β . There exists an increasing sequence ( jk)k∈N in N such that

ν j = O(8 j) as j→∞ (3.5.10)

2 jkγ = O(ν jk) as k→∞ (3.5.11)

Proof. Since β > 0, the convergence of

∫

|x |¶1

|x |γν(dx) is equivalent to the convergence of
∑∞

j=0 ν j2
− jγ. The Cauchy-Hadamard formula for the radius of convergence of power series then

gives

β = lim sup
j→∞

log2 ν j

j
(3.5.12)



136 3. SAMPLE PATH PROPERTIES OF GENERALIZED PROCESSES

which is a relation that was already noted (but not explicitly proven) in [51]. The estimate
(3.5.10) (resp. (3.5.11)) then follows from this formula and the fact that β < 3 (resp. γ <
β).

Recall that the random sets Eδj|L(h) and Eδ|L(h) have been introduced in (3.4.20) and (3.4.22)
respectively.

LEMMA 3.5.4. Let A∈A , then for all δ > 0 and j ∈ N,

exp
�−ν jm

�
L ∩ V(A, 2− jδ)

��
¶ P

�
A /∈ Eδj|L(X )

�
¶ exp

�−ν jm
�
L ∩ V(A, 2−( j+1)δ)

��
.

Proof. We only prove the upper bound, the lower bound being proven in exactly the same way.
Fix δ > 0 and j ∈ N. Then, by definition of V and V ′,

P
�
A /∈ Eδj|L(X )

�
= P

�∀s ∈ Π j|L , A /∈ V ′(s, |Js(X )|δ)
�

¶ P
�∀s ∈ Π j|L , A /∈ V ′(s, 2−( j+1)δ)

�

= P
�∀s ∈ Π j|L , s /∈ V(A, 2−( j+1)δ)

�
.

Since Π j|L is a Poisson random set of intensity measure ν jm(L ∩ .), we may write Π j|L =
{s1, ..., sM j

} where M j is a Poisson random variable of intensity ν jm(L) and the si ’s are iid vari-
ables of distribution m(L ∩ .)/m(L) independent from M j . Hence, conditioning with respect to
M j yields

P
�∀s ∈ Π j|L , s /∈ V(A, 2−( j+1)δ)

�
= E

�
P
�∀i ∈ ¹1, M jº, si /∈ V(A, 2−( j+1)δ) | M j

��

= E
�
P
�
s1 /∈ V(A, 2−( j+1)δ)

�M j
�

= exp
�
ν jm(L)

�
P
�
s1 /∈ V(A, 2−( j+1)δ)

�− 1
��

= exp
�−ν jm

�
L ∩ V(A, 2−( j+1)δ)

��
.

The result follows.

PROPOSITION 3.5.5. Let A∈A and suppose that there exists q > 0 such that

ρq = O
�
m(L ∩ V(A,ρ))

�
as ρ→ 0. (3.5.13)

Then for all δ < β/q, A belongs to Eδ|L(X ) with probability one.

Proof. Fix δ < β/q and A∈A . Then, by (3.5.13) and Lemma 3.5.4, there exists κ > 0 such that

∀ j ∈ N, P
�
A /∈ Eδj|L(X )

�
¶ exp

�−κν j2
− jδq

�
.

Hence, taking γ ∈ (δq,β) and using the sequence ( jk)k∈N of Lemma 3.5.3, we get

∀k ∈ N, P
�
A /∈ Eδjk |L(X )

�
¶ exp

�−κ2 jk(γ−δq)
�

which is a convergent series. The result follows from Borel-Cantelli lemma.

PROPOSITION 3.5.6. For all (α, q) ∈ R f (A), we have

αY (A) ¶
q
β
+α a.s.
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Proof. The following holds with probability one.

αY (A) ¶ lim inf
s∈Π(Y ):
d(s,A)→0

log |Js(Y )|
log d(s, A)

by Theorem 3.4.9,

= lim inf
s∈Π(Y ):
d(s,A)→0

�
log |Js(X )|
log d(s, A)

+
log | f (s)|
log d(s, A)

�
by Corollary 3.3.12,

¶ lim inf
s∈Π(Y )∩L f ,α(A):

d(s,A)→0

log |Js(X )|
log d(s, A)

︸ ︷︷ ︸
¶1/δ

+ lim sup
s∈L f ,α(A):
d(s,A)→0

log | f (s)|
log d(s, A)

︸ ︷︷ ︸
¶α

where the last two inequalities are due to Propositions 3.4.10 and 3.5.5 and the definition of
L f ,α(A).

The upper bound of Theorem 3.5.2 may be readily deduced from Proposition 3.5.6 by taking
a relevant sequence converging to the claimed upper bound.

Proof of the lower bound in Theorem 3.5.2 when β ¾ 1. The main idea of this part relies
on an application of Borel-Cantelli lemma and relevant estimates on the corresponding proba-
bilities.

First, recall that we gave the definitions of the space Lγ(b,σ2,ν) and the function φγ at the
beginning of Section 2.4.2. A consequence of the celebrated result of Rajput and Rosiński [83,
Theorem 3.3] is the continuity of the linear map X

��
Lγ(b,σ2,ν) from Lγ(b,σ2,ν) to Lγ(Ω) for all

γ ∈ (1, 2], i.e. there exists a constant κφγ > 0 such that

∀g ∈ Lγ(b,σ2,ν),
X(g)


Lγ(Ω) ¶ κφγ‖g‖φγ (3.5.14)

where ‖.‖φγ is the Luxemburg norm defined in (2.2.2). We further simplify the use of the Lux-
emburg by means of the following lemma.

LEMMA 3.5.7. For any γ ∈ (1, 2] and measurable map g : T → R,

‖g‖φγ ¶
�∫

R

|x |γν(d x)

�1/γ

‖g‖Lγ(m).

Proof. In the formulation of the Lγ-space as an Orlicz space, we have

‖g‖Lγ(m) = inf

�
c > 0 :

∫

T
c−γ|g(s)|γm(ds)¶ 1

�
.

Comparing this norm with (2.2.2), it follows that it is enough to prove the following:

∀c > 0,

∫

T
φ(c−1 g(s))m(ds) ¶ c−γ

∫

T
|g(s)|γm(ds)

∫

R

|x |γν(d x). (3.5.15)
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Let c > 0 and s ∈ T . Then,

Φ(c−1 g(s)) =

∫

|x g(s)|¶c

|c−1 x g(s)|2ν(d x) +

∫

|x g(s)|>c

|c−1 x g(s)|γν(d x)

= c−2

∫

|x g(s)|¶c

|x g(s)|2−γ|x g(s)|γν(d x) + c−γ
∫

|x g(s)|>c

|x g(s)|γν(d x)

¶ c−2c2−γ
∫

|x g(s)|¶c

|x g(s)|γν(d x) + c−γ
∫

|x g(s)|>c

|x g(s)|γν(d x)

= c−γ|g(s)|γ
∫

R

|x |γν(d x).

Integrating with respect to m yields (3.5.15), from which the result follows.

Recall that we supposed β ¾ 1. From (3.5.14) and Lemma 3.5.7, it follows that for all
γ ∈ (β , 2] (or γ= 2 if β = 2), there exists a finite constant κγ > 0 such that

∀B ∈Bm , E [|∆Y B|γ] ¶ κγ‖ f 1B‖γLγ(m) (3.5.16)

where ∆Y B =X( f 1B).

We are now ready to proceed to the lower bound itself.

PROPOSITION 3.5.8. Suppose that the hypotheses of Theorem 3.5.2 and β ¾ 1 hold. Then, for all
(α, q, q′) ∈ R f (A),

αY (A) ¾ min
§

q
β

,
q′

β
+α

ª
a.s.

Proof. Fix (α, q, q′) ∈ R f (A). We will only prove the result in the case q′/β+α¶ q/β . The second
case is proven in exactly the same fashion, one just has to replace q′ by q and take α = 0 in the
following.

Let δ > β/q′ and η= 1/δ+α. By Borel-Cantelli, it is enough to prove that

∞∑
j=1

P

�
sup

dA (A,A′)<2− j
|YA− YA′ |> 2− jη

�
< ∞. (3.5.17)

Fix γ ∈ (β , 2] (or γ = 2 if β = 2) and denote p = dimA . By Corollary 2.3.31, we get for all
j ∈ N,

P

�
sup

dA (A,A′)<2− j
|YA− YA′ |> 2− jη

�
¶ κp,γ2

jηγ E
���∆YV(A,2− j)

��γ� . (3.5.18)

It follows from (3.5.16) and (3.5.18) that

P

�
sup

dA (A,A′)<2− j
|YA− YA′ |> 2− jη

�
= O

�
2 jηγ ‖ f 1V(A,2− j)‖γLγ(m)

�
as j→∞. (3.5.19)

We split V(A, 2− j) in (3.5.19) into L f ,α(A, 2− j) and Lûf ,α(A, 2− j) to control what is happening.
On the one hand, since (α, q, q′) ∈ R f (A), we have m(L f ,α(A,ρ)) = O(ρq) as ρ→ 0. Moreover,
f is also bounded in the vicinity of A. Thus

‖ f 1L f ,α(A,ρ)‖γLγ(m) = O (ρq) as ρ→ 0. (3.5.20)
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On the other hand, using (α, q, q′) ∈ R f (A) once more yields m(Lûf ,α(A,ρ)) = O(ρq′) as ρ → 0.
Thus

‖ f 1Lûf ,α(A,ρ)‖γLγ(m) = O
�
ρq′+αγ

�
as ρ→ 0. (3.5.21)

Since we supposed that q′/β+α¶ q/β and if we take γ close enough to β , the estimates (3.5.20)
and (3.5.21) give together

‖ f 1V(A,ρ)‖γLγ(m) = O
�
ρq′+αγ

�
as ρ→ 0. (3.5.22)

Combining (3.5.19) and (3.5.22) yields

P

�
sup

dA (A,A′)<2− j
|YA− YA′ |> 2− jη

�
= O

�
2− j(q′+(α−η)γ)� as j→∞. (3.5.23)

Since

q′ + (α−η)γ −→ q′ − β
δ

as γ→ β+

and q′ − β/δ > 0, we may take γ close enough to β in (3.5.23) showing that (3.5.17) holds.
The result follows.

Proof of the lower bound in Theorem 3.5.2 when β < 1. Since we have here σ = 0 and∫

|x |¶1

|x |ν(dx)<∞, we get from (3.5.1) the following expression:

∀A∈A , YA = P( f 1A) = lim
ε→0+

� ∑
t∈Π(X )∩A:
|Jt (X )|¾ε

f (t)Jt(X )
�

(3.5.24)

where the limit as ε→ 0+ happens a.s. uniformly in A∈ Tn for all n ∈ N.
Two problems arise when trying to copy the proof for β ¾ 1: Y is not a martingale anymore,

so the maximal inequality from Corollary 2.3.31 does not hold anymore, and the Luxemburg
norm ‖.‖φγ is harder to control. Instead, we introduce the set-indexed process Z|L given by

∀A∈A , (Z|L)A = lim
ε→0+

� ∑
t∈Π(X )∩L∩A:
|Jt (X )|¾ε

|Jt(X )|
�

(3.5.25)

where L ⊆ T is once more a free parameter set that will be chosen later on. Remark that Z|L is
a siLévy, but with respect to m(L ∩ .) instead of m as stationarity measure.

We first establish a lower bound on the regularity of Z|L and then deduce one for the regularity
of Y .

The following method is inspired from [13]. Denote for all η¾ 0, the ‘truncated’ set-indexed
process (Z|L)η given by

∀A∈A , (Z|L)
η
A = lim

ε→0+

� ∑
t∈Π∩L∩A:

ε¶|Jt (X )|<2−η

|Jt(X )|
�

(3.5.26)
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LEMMA 3.5.9. LetA ∈A and suppose that there exists q > 0 such that

m(L ∩ V(A,ρ)) = O (ρq) as ρ→ 0. (3.5.27)

Then for all δ > β/q, there exists a constant κδ > 0 such that

∀ j ∈ N, P

�
sup

A′∈BA (A,2− j)
∆(Z|L)

j/δ
A4A′ ¾ j2− j/δ

�
¶ κδ e− j .

Proof. The proof is inspired from [13, Lemma 2.1], but we chose to give the details for the sake
of completeness. Fix j ∈ N. Then, since Z is non-negative,

∀A′ ∈ BA (A, 2− j), ∆(Z|L)
j/δ
A4A′ ¶ ∆(Z|L)

j/δ
V(A,2− j).

Hence, by Markov’s inequality,

P

�
sup

A′∈BA (A,2− j)
∆(Z|L)

j/δ
A4A′ ¾ j2− j/δ

�
¶ e− jE

�
exp

�
2 j/δ∆(Z|L)

j/δ
V(A,2− j)

��
.

So we just need to prove that E
�
exp

�
2 j/δ∆(Z|L)

j/δ
V(A,2− j)

��
= O(1) as j→∞ to conclude. Using

(3.5.26), we may compute the Laplace transform of ∆(Z|L)
j/δ
V(A,2− j) and get

E
�
exp

�
2 j/δ∆(Z|L)

j/δ
V(A,2− j)

��
= exp

�
2 j/δm(L ∩ V(A, 2− j))

∫

|x |¶2− j/δ

�
e|x | − 1

�
ν(dx)

�
.

Hence, due to (3.5.27) and the fact that e|x | − 1¶ 2|x | for |x |¶ 1, there exists a constant κ > 0
such that

E
�
exp

�
2 j/δ∆(Z|L)

j/δ
V(A,2− j)

��
¶ exp

�
κ2− j(q−1/δ)

∫

|x |¶2− j/δ

|x |ν(dx)

�
.

Taking γ ∈ (β , 1∧δq) gives

E
�
exp

�
2 j/δ∆(Z|L)

j/δ
V(A,2− j)

��
¶ exp

�
κ2− j(q−1/δ)

∫

|x |¶2− j/δ

|x |1−γ|x |γν(dx)

�

¶ exp

�
κ2− j(q−1/δ+(1−γ)/δ)

∫

|x |¶2− j/δ

|x |γν(dx)

�

¶ exp

�
κ2− j(q−γ/δ)

∫

|x |¶1

|x |γν(dx)

�
.

Since q−γ/δ→ q−β/δ as γ→ β+ and q−β/δ > 0, we may find γ > β showing that the above
expression is bounded as j→∞. The result follows.

LEMMA 3.5.10. Let A∈A and suppose that (3.5.27) holds. Then, the following holds with proba-
bility one: for all δ > β/q, there exists ρδ > 0 such that

∀ρ ∈ (0,ρδ), ∀A′ ∈ BA (A,ρ), (∆Z|L)A4A′ ¶ ρ1/δ.
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Proof. Let us fix δ > β/q. It is enough to prove that the following holds with probability one:
there exists k ∈ N such that

∀ j ¾ k, ∀A′ ∈ BA (A, 2− j), (∆Z|L)A4A′ ¶ 2− j/δ.

According to Lemma 3.5.9, this is already true if we replace (∆Z|L) by (∆Z|L) j/δ. Thus, it is
enough to prove that the following holds with probability one: there exists k ∈ N such that for
all j ¾ k and A′ ∈ BA (A, 2− j), (∆Z|L)A4A′ = (Z|L)

j/δ
A4A′ . In other words, we want to show that

A /∈ Eδ|L(X ) almost surely. By Lemma 3.5.4, we have for all j ∈ N,

P
�
A∈ Eδj|L(X )

�
¶ 1− exp

�−ν jm
�
L ∩ V(A, 2− jδ)

��

¶ ν jm
�
L ∩ V(A, 2− jδ)

�
since 1− e−x ¶ x ,

= O
�
ν j2

− jδq
�

by (3.5.27).

Taking γ ∈ (β ,δq) and using (3.5.12) yields

P
�
A∈ Eδj|L(X )

�
= O

�
2− j(δq−γ)� as j→∞

which then is a convergent series. Thus, by Borel-Cantelli, A /∈ Eδ|L(X ) with probability one. The
result follows.

PROPOSITION 3.5.11. Suppose that the hypotheses of Theorem 3.5.2 and β < 1 hold. Then, for all
(α, q, q′) ∈ R f (A),

αY (A) ¾ min
§

q
β

,
q′

β
+α

ª
a.s.

Proof. Fix (α, q, q′) ∈ R f (A). By definition of Lûf ,α(A,ρ), we have

∀s ∈ Lûf ,α(A,ρ), | f (s)| ¶ ρα

for all ρ > 0 small enough.
Likewise, since f is bounded in the vicinity of A, there exists κ f > 0 such that

∀s ∈ L f ,α(A,ρ), | f (s)| ¶ κ f

for all ρ > 0 small enough. Combining those estimates on f with the expression (3.5.24) of Y
yields for all ρ > 0 small enough

∀A′ ∈ BA (A,ρ), |YA− YA′ | ¶ ρα(∆Z|L f ,α(A)û)A4A′ + κ f (∆Z|L f ,α(A))A4A′ .

Since (α, q, q′) ∈ R f (A), we may apply Lemma 3.5.10 to both L = L f ,α and L = Lûf ,α (for which
(3.5.27) holds if we replace q by q′). Thus, the following holds with probability one: for all
ε > 0, there exists ρ0 > 0 such that

∀ρ < ρ0, ∀A′ ∈ BA (A,ρ), |YA− YA′ | ¶ ρα+q′/β−ε + κ f ρ
q/β−ε.

The result follows immediately.

Just as for the upper bound and Proposition 3.5.6, the lower bound of Theorem 3.5.2 is
deduced from Proposition 3.5.11 by taking a relevant subsequence in R f (A).
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3.5.3 dT -localized regularity

The Gaussian part

Using the same method as in [42] and under the same entropic conditions, one is able to deter-
mine the regularity of Y in the case where ν = 0. Namely, for all A ∈ A , the following holds
with probability one:

αY,dT (A) =
1
2
ασ

∫
. f 2dm,dT

(A). (3.5.28)

The Poissonian part

Similarly to Section 3.5.2, we introduce for all A= A(t) ∈A , α¾ 0 and ρ > 0,

L′f ,α(A) =
¦

s ∈ T : | f (s)|> dT (s, A)α
©

,

L′f ,α(A,ρ) = BT (t,ρ)∩ L′f ,α(A),

L
′û
f ,α(A,ρ) = BT (t,ρ) \ L′f ,α(A)

(3.5.29)

and

R′f (A) =

¨
(α, q) ∈ R2

+ : lim inf
ρ→0+

m(L′f ,α(A,ρ))

ρq
> 0

«
,

R′f (A) =



(α, q, q′) ∈ R3

+ : lim sup
ρ→0+


m(L′f ,α(A,ρ))

ρq
+

m(L
′û
f ,α(A,ρ))

ρq′


<∞



 .

(3.5.30)

THEOREM 3.5.12. Let A ∈ A . Suppose that σ2 = 0 and that f is bounded in the neighborhood of
A. Then, with probability one,

sup
(α,q,q′)∈R′f (A)

min
§

q
β

,
q′

β
+α

ª
¶ αY,dT (A) ¶ inf

(α,q)∈R′f (A)

§
q
β
+α

ª

with the conventions that inf∅= 1/0= +∞.

Such a result should be compared to Theorem 3.5.2. It constitutes an adequate counterpart
to the fact that the former must take non-local information into account. Here, we clearly see
that only properties and behaviors around t are considered relevant.

Sketch of proof. Such a result is similar to Theorem 3.5.2 and its proof may be done using similar
ideas. We will only focus on highlighting the few differences that arise when applying the same
method.

For the upper bound, the key is to prove an estimate using jumps similar to the one in Theo-
rem 3.4.9. It so turns out that the upper bound coming from this approach is the left-hand side
of (3.4.12), which should not come as a surprise since the dT -localized exponent only takes into
account what happens in the neighborhood of t. The rest of the computation is the same once
one has replaced V(A,ρ) by BT (t,ρ).
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As for the lower bound, it is somewhat more involved. For all A= A(t) ∈ A and ρ > 0, we
introduce a localized version Y(.,ρ) =

�
Y(A′,ρ) : A′ ∈A 	 of Y around A as follows:

∀A′ ∈A , Y(A′,ρ) = ∆YA′∩BT (t,ρ).

The set-indexed processes Y(.,ρ) still have independent increments, and so the martingale argu-
ments developed above will still apply. Let us show that.

For the case where β ¾ 1, the key argument lies in Proposition 3.5.8. We claim that, up to
some inconsequential constants, we can replace the probability in (3.5.17) by

P

�
sup

C∈C `∩BC (A,2− j) : C⊆BT (t,2− j)
|∆YC |> 2− jη

�

and the rest of the proof would still follow once one replaces V(A, 2− j) by BT (t, 2− j).
Indeed, for all ρ > 0,

sup
C∈C `∩BC (A,ρ):

C⊆BT (t,ρ)

|∆YC | ¶ sup
C∈C `∩BC (A,ρ)

|∆Y(C ,ρ)|
where ∆Y(.,ρ) is the increment map of Y(,.ρ),

¶ sup
C∈C(p)∩BC (A,ρ)

|∆Y(C ,ρ)|
since C ` ⊆ C(p) where p = dimA ,

¶ 2p sup
A0,...,Ap∈BA (A,ρ)

|Y(A,ρ) − Y(A0∩...∩Ap ,ρ)|
by the inclusion-exclusion formula (1.2.7).

Moreover, for all A0, ..., Ap ∈ BA (A,ρ),

dA (A, A0 ∩ ...∩ Ap) ¶ dA (A, A0 ∩ A) + dA (A0 ∩ A, A0 ∩ ...∩ Ap)
¶ dA (A, A0) + dA (A, A1 ∩ ...∩ Ap) by contractivity,

< ρ + dA (A, A1 ∩ ...∩ Ap).

Thus, by induction, we deduce that

sup
C∈C `∩BC (A,ρ):

C⊆BT (t,ρ)

|∆YC | ¶ 2p sup
A′∈BA (A,(p+1)ρ)

|Y(A,ρ) − Y(A′,ρ)|.

Hence for all j ∈ N,

P

�
sup

C∈C `∩BC (A,2− j) : C⊆BT (t,2− j)
|∆YC |> 2− jη

�
¶ P

�
sup

A′∈BA (A,(p+1)2− j)
|Y(A,2− j) − Y(A′,2− j)|> 2−p2− jη

�

which proves our claim, since Corollary 2.3.31 still applies to Y(.,2− j) and∆Y (V(A,2− j),2− j) =∆Y BT (t,2− j).

For the case when β < 1, the trick of introducing the localized process Y(.,ρ) works in a similar
fashion.

3.5.4 Examples and applications

In the following, we give some simple criteria when applying Theorems 3.5.2 and 3.5.12. We
also give an example showing that the inequalities are not always sharp.
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Cases of equality

We will see that the local geometry of the vicinity (resp. open ball) around A∈A plays a crucial
role in order to determine the Hölder exponent (resp. the dT -localized exponent) of Y at A.

COROLLARY 3.5.13. Let A∈A . Suppose that the following hypotheses hold:

(i) σ2 = 0.

(ii) There exists qV > 0 such that for all ε > 0, there exists ρV,ε > 0 such that:

∀ρ ∈ (0,ρV,ε), ρqV+ε ¶ m(V(A,ρ)) ¶ ρqV−ε. (3.5.31)

(iii) There exists α¾ 0 such that for all ε > 0, there exists ρα,ε > 0 such that:

∀s ∈ V(A,ρα,ε), d(s, A)α+ε ¶ | f (s)| ¶ d(s, A)α−ε. (3.5.32)

Then, with probability one,

αX (A) =
qV
β

and αY (A) =
qV
β
+α.

Proof. The case of X is a particular case of primitive process when f = 1, for which the estimate
(3.5.32) works with α= 0. Thus we only need to prove the result for Y.
Using (3.5.32), we get

∀ε > 0, ∀ρ ∈ (0,ρα,ε), L f ,α+ε(ρ) = V(A,ρ) and L f ,α−ε/2(ρ) = ∅.

Hence, according to (3.5.31) and Theorem 3.5.2, for all ε > 0, the following holds with proba-
bility one:

min

�
ε−1

β
,

qV − ε
β

+α− ε
2

�
¶ αY (A) ¶

qV + ε
β

+α+ ε.

The result follows from taking ε→ 0+ along a subsequence.

Likewise, Theorem 3.5.12 yields the following result. The proof is exactly the same.

COROLLARY 3.5.14. Let A= A(t) ∈A . Suppose that the following hypotheses hold:

(i) σ2 = 0.

(ii) There exists qB > 0 such that for all ε > 0, there exists ρV,ε > 0 such that:

∀ρ ∈ (0,ρV,ε), ρqB+ε ¶ m(BT (t,ρ)) ¶ ρqB−ε. (3.5.33)

(iii) There exists α¾ 0 such that for all ε > 0, there exists ρα,ε > 0 such that:

∀s ∈ BT (t,ρα,ε), dT (s, t)α+ε ¶ | f (s)| ¶ dT (s, t)α−ε. (3.5.34)

Then, with probability one,

αX ,dT (A) =
qB

β
and αY,dT (A) =

qB

β
+α.
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The condition on f for Corollary 3.5.14 is actually equivalent to say that f (t) = 0 and
α f (t) = α f (t) = α where α f (t) is the pointwise Hölder exponent as given in (3.4.1) and α f (t)
is the pointwise Hölder subexponent given by

α f (t) = inf
§
α¾ 0 : lim inf

ρ→0+
inf

s∈BT (t,ρ)

| f (s)− f (t)|
dT (s, t)α

> 0
ª

whenever it is defined. A slightly modified exponent of this kind has already been introduced
in [37] to study the local Hausdorff dimension of trajectories of Gaussian processes. We also
remark one could also express the estimate on the local behavior of the vicinity (or the ball)
with an exponent-like vocabulary.

As a nice consequence to the previous corollaries, we recover a fact that has already been
observed in [15, 38] and many others, namely that even in the context of a stochastic integral,
integrating still regularizes in some sense.

COROLLARY 3.5.15 (Y is more regular than X ). Let A= A(t) ∈A . If the estimate (3.5.31) holds,
then with probability one,

αY (A) ¾ αX (A).

Similarly, if the estimate (3.5.33) holds, then with probability one,

αY,dT (A) ¾ αX ,dT (A) + α f (t)1 f (t)=0.

Stating a better result forαY (A) similar toαY,dT (A) is quite straightforward, but would require
introducing another exponent for f considering d instead of dT . We chose against it since the
dT -localized exponent already illustrates our point.

Proof. Let A = A(t) ∈ A . We only prove the result for the dT -localized exponent, the Hölder
exponent being easier. If ν= 0, then Proposition 3.5.1 and (3.5.28) immediately yield the result.
So we might as well suppose that σ2 = 0. According to Theorem 3.5.12, it is enough to prove
that with probability one,

sup
(α,q,q′)∈R′f (A)

min
§

q
β

,
q′

β
+α

ª
¾ αX ,dT (A) + α f (t)1 f (t)=0. (3.5.35)

Suppose that f (t) 6= 0 or α f (t) = 0 so that α f (t)1 f (t)=0 = 0. Then, remark that according to
(3.5.31), for all ε > 0 and (α, q, q′) ∈ R′f (A), we may always consider that both q and q′ are
greater than qB − ε in the left-hand side of (3.5.35). In particular,

sup
(α,q,q′)∈R′f (A)

min
§

q
β

,
q′

β
+α

ª
¾ qB

β
. (3.5.36)

According to Corollary 3.5.14, qB/β = αX ,dT (A) almost surely. Hence (3.5.35) follows from
(3.5.36) in this case.

Now, suppose that f (t) = 0 and α f (t) > 0. Then, for all α ∈ (0,α f (t)) and small enough
ρ > 0, L′f ,α(A,ρ) =∅. In particular, (α, q, qB − ε) ∈ R′f (A) for all q,ε > 0. Thus

sup
(α,q,q′)∈R′f (A)

min
§

q
β

,
q′

β
+α

ª
¾ min

§
q
β

,
qB − ε
β

+α
ª

.
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Taking q→ +∞, ε→ 0+ and α→ α f (t)+ yields

sup
(α,q,q′)∈R′f (A)

min
§

q
β

,
q′

β
+α

ª
¾ qB

β
+α f (t). (3.5.37)

Hence (3.5.35) follows from (3.5.37) in this case.

We proceed to apply those results to a multiparameter Lévy process in order to show that
various behaviors start to appear when p > 1. The coming example should be compared to the
case p = 1 where it was proven in [20] that almost sure regularity is 1/β .

EXAMPLE 3.5.16 (Set-indexed Lévy process for T = Rp
+). Suppose that T = Rp

+ is endowed with
its product indexing collectionA from Example 1.2.10, m is the Lebesgue measure and dT = ‖.− .‖
is any distance induced by a norm on Rp.

Let also X be a purely Poissonian siLévy and t ∈ Rp
+. According to Corollaries 3.5.13 and 3.5.14

which hold for qV = 1 and qB = p respectively, the following holds with probability one:

αX (A(t)) =
§

1/β if t 6= 0,
p/β if t = 0 and αX ,‖.−.‖(A(t)) = p/β .

When dA = dm is taken instead, the values of αX (A(t)) and αX ,dT (A(t)) do not change as long as
t = (t1, ..., tp) is such that t1...tp 6= 0 since dT stays (Lipschitz-)equivalent to ‖.−.‖ on any compact
set away from the coordinate hyperplanes (see [37, Lemma 3.1]).

Let us now consider t in such an hyperplane. If p = 1, there is nothing much to say and
we recover the result of [20], i.e. αX (0) = 1/β almost surely. However, when p > 1, we have
m(BT (t,ρ)) =∞ for all ρ > 0, so an argument based on Borel-Cantelli ensures that the following
event holds with probability one:

Ω∗ =
⋃
ε>0

⋂
ρ>0

�∃s ∈ Π∩ BT (t,ρ) : |Js(X )|¾ ε
	
.

This means that there are sequences of macroscopic jumps converging to 0. Applying the estimate
(3.4.12) yields αX (t) = αX ,dT (t) = 0 almost surely.

For related results in the multiparameter setting, we refer to [29].

The one-dimensional case T = R+

When T = R+, both exponents are reduced to the usual pointwise one, yielding the following
result.

COROLLARY 3.5.17 (Hölder regularity when T = R+). Suppose that m is the usual Lebesgue mea-
sure on R+ and that σ2 = 0. Then, for all t ∈ R+, the following holds with probability one:

sup
(α,q,q′)∈R f (t)

min
§

q
β

,
q′

β
+α

ª
¶ αY (t) ¶ inf

(α,q)∈R f (t)

§
q
β
+α

ª
. (3.5.38)

Moreover, if there exists α¾ 0 such that for all ε > 0, there exists ρα,ε > 0 such that

∀s ∈ (t −ρα,ε, t +ρα,ε), |s− t|α+ε ¶ | f (s)| ¶ |s− t|α−ε.
then, the following holds with probability one:

αY (A) =
1
β
+α.
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Remark that in this case, by a similar argument to Corollary 3.5.15, we may always take
q ∧ q′ = 1 in the left-hand side of (3.5.38) and q ¾ 1 in its right-hand side, simplifying the
expression in practical applications.

EXAMPLES 3.5.18. We finally address the simplest case and another one where the upper and lower
bounds do not coincide.

� Suppose that f (s) = sα for all s ∈ R+. Consider t ∈ R+. Using Corollary 3.5.17, we get

αY (t) =
1
β
+α1t=0 a.s.

� Let q ¾ 1. Consider a Borel set E ⊆ R+ such that

0 < lim inf
ρ→0+

m(E ∩ [0,ρ])
ρq

¶ lim sup
ρ→0+

m(E ∩ [0,ρ])
ρq

< ∞.

For instance, the set

E =
⋃
j∈N

�
2− j − 2− jq, 2− j

�

works fine. Then consider 0 ¶ α < α′ and define the function f (s) = sα1s∈E + sα
′
1s/∈E for all

s ∈ R+. Using Corollary 3.5.17, it follows that

min
§

q
β

,
1
β
+α

ª
¶ αY (0) ¶ min

§
q
β
+α,

1
β
+α′

ª
a.s.

which is not an equality for a large choice of q,α,α′ and β .

3.6 Perspectives

3.6.1 Improve on the finite-dimensional assumption

Supposing that the indexing collection A is of finite dimension has been very helpful to us
on multiple occasions. Broadly, we used this hypothesis to ease the study of the regularity of
sample paths. However, in quite a few instances here, it was only used through the lens of
the entropy (Definition 1.5.11). This approach to regularity for set-indexed processes has been
undertaken in [42]. However, as mentioned by Ledoux and Talagrand in [66, Chapter 11, §2],
entropy conditions are not suited to spaces that may lack ‘homogeneity’. Due to the possibility
of gluing together all kinds of indexing collections (Propositions 1.2.23 and 1.2.26), this issue
does concern our setting. The authors then go on to expose the theory of majorizing measures
spearheaded by Talagrand to solve this issue. This kind of condition is particularly interesting
here since we already have a measure m that could verify the majorizing measure condition.
In particular, Example 3.2.5 could have been approached from the majorizing measure point of
view and the continuity of the process would have followed from [66, Theorem 11.14].

With those considerations in mind, our finite-dimensional assumption could very well be
improved upon.
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3.6.2 Towards a uniform upper bound for the primitive process

A rightful question would be to know whether or not one may extend Theorems 3.5.2 and 3.5.12
to give an almost sure everywhere upper bound, i.e. permute ‘∀A’ with ‘ a.s.’ in the statement for
the upper bound. This is not a groundless speculation since such a result holds for R+-indexed
Lévy processes by [51, Theorem 1].

For the siLévy, the method used to prove the aforementioned theorems may still be adapted,
but with two caveats:

� The heart of the argument is to establish that the random set Eδ|T (X ) defined in (3.4.22) covers
T almost surely. We may do so by adapting Hoffmann-Jørgensen’s [44, Theorem 2] which is
a generalization of Shepp’s celebrated covering theorems [90, 91] to metric spaces (we refer
to [44] for related results). The ‘cost to pay’ would be to add the weak finite-dimensional
assumption made by Hoffmann-Jørgensen in [44, §4].

� Once the covering holds, one needs to check if Theorem 3.4.9 still holds a.s. for all A ∈ A .
This is the case if the siLévy is a.s. in generic configuration in the vicinity of all A∈ A . This
should hold with the additional assumption that

∀t ∈ T , m (†(t)) = 0

where

†(t) =
⋂
ρ>0

�
s ∈ T : d(s, A(t))< ρ or d(t, A(s))< ρ

	
=
⋂
ρ>0

V(A(t),ρ) ∪ t
�
V ′(t,ρ)

�

represents the ‘cross of center t ’. This ‘cross’ plays a similar role to the ‘half cross’ L(t) in-
troduced in (3.4.15) to prove generic configuration for a siLévy around some fixed A ∈ A
(Lemma 3.4.8). Basically, having all crosses of null m-measure ensures that no two jump’s
crosses of the siLévy share a common branch so that they can be picked apart with the same
method as Lemma 3.4.8.

Alas, the case for the primitive process is harder because the covering set we use is Eδ|L f ,α(A)
,

and thus becomes dependent on A, which makes it impossible for the method to be applied
directly.

3.6.3 Regularity of C -exchangeable processes

Just like one may go from a ‘weak’ Lévy-Itô decomposition (Corollary 2.4.9) to a ‘strong’ one
(Theorem 3.3.8), we should be able to use the ‘weak’ representation of C -exchangeable pro-
cesses (Theorem 2.5.30) and get a version in DΦ(A ) out of it. In the [0,1]-indexed case, this
has already been carried out by Hagberg [34, Theorem 3].

Once this is done, this is the gateway to establish Hölder regularity for C -exchangeable
processes and primitive processes with respect to those in the spirit of Theorems 3.5.2 and 3.5.12.
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3.7 Perspectives (français)

3.7.1 Améliorer l’hypothèse de dimension finie

Supposer que l’indexing collection A de dimension finie nous a été très utile à de nombreuses
reprises. De manière générale, nous avons employé cette hypothèse pour faciliter l’étude de la
régularité des trajectoires. Cependant, dans un certain nombre de cas, elle n’a été utilisée qu’au
travers d’un argument d’entropie métrique (Définition 1.5.11). Cette approche de la régular-
ité pour les processus indexés par des ensembles a déjà été entreprise dans [42]. Néanmoins,
comme très justement noté par Ledoux et Talagrand [66, Chapter 11, §2], les conditions en-
tropiques ne sont pas adaptées à des espaces manquant d’une certaine "homogénéité". Comme
nous sommes en mesure de recoller ensemble des indexing collections de natures très variées
(Propositions 1.2.23 et 1.2.26), notre cadre est bel et bien concerné par cette éventualité. Les
auteurs continuent alors et introduisent la théorie des mesures majorantes, initiée par Tala-
grand, pour résoudre ce problème. Ce type de propriété est particulièrement intéressant dans
notre cadre car nous disposons déjà d’une mesure m qui pourrait très bien vérifier la condition
d’être une mesure majorante. En particulier, l’Exemple 3.2.5 aurait pu être approché de cette
manière et la continuité du processus aurait découlé de [66, Theorem 11.14].

L’ensemble de ces considérations pris en compte, notre hypothèse de dimension finie pourrait
fort bien être améliorée.

3.7.2 Vers une borne supérieure uniforme de la régularité de la primitive

Un questionnement légitime serait de savoir si oui ou on les Théorèmes 3.5.2 et 3.5.12 peuvent
être améliorés pour donner une borne supérieure partout, i.e. si le "∀A" et le "presque sûrement"
peuvent être échangés. Ce n’est pas une spéculation sans fondement car un tel résultat est vrai
pour les processus de Lévy indexés par R+ grâce à [51, Theorem 1].

Pour un processus de Lévy indexés par des ensembles (siLévy), la méthode employée pour
démontrer les théorèmes mentionnés à l’instant peut encore s’adapter, à deux amendements
près :

� Le cœur de l’argument est de montrer que l’ensemble aléatoire Eδ|T (X ) donné en (3.4.22) re-
couvre T presque sûrement. Nous pouvons y arriver à l’aide du [44, Theorem 2] de Hoffmann-
Jørgensen qui est une généralisation aux espaces métriques des théorèmes de recouvrement
de Shepp [90, 91] (se référer à [44] pour d’autres résultats de la littérature). Le "prix à payer"
serait d’ajouter l’hypothèse de faible dimension finie [44, §4].

� Une fois que le recouvrement est assuré, on doit également vérifier que le Théorème 3.4.9 a
lieu presque sûrement pour tout A∈A . C’est le cas si le siLévy est presque sûrement en con-
figuration générique autour de A∈A pour tout A∈A . Cela devrait être vrai sous l’hypothèse
additionnelle que

∀t ∈ T , m (†(t)) = 0

où

†(t) =
⋂
ρ>0

�
s ∈ T : d(s, A(t))< ρ or d(t, A(s))< ρ

	
=
⋂
ρ>0

V(A(t),ρ) ∪ t
�
V ′(t,ρ)

�

représente la "croix de centre t". Cette "croix" joue le même rôle que la "demi-croix" L(t)
introduite en (3.4.15) pour démontrer qu’un siLévy est en configuration générique autour de
n’importe quel A∈A fixé (Lemme 3.4.8). Intuitivement, avoir toutes ces croix de m-mesure
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nulle assure que deux croix dont les centres sont des sauts du siLévy ne partagent aucune
branche en commun, permettant de séparer les sauts avec la même méthode que celle du
Lemme 3.4.8.

Malheureusement, le cas de la primitive d’une fonction contre un siLévy est plus dur car
l’ensemble aléatoire utilisé pour le recouvrement est Eδ|L f ,α(A)

, qui dépend de A, qui rend une

adaptation directe de la méthode précédente caduque.

3.7.3 Régularité des processus C -échangeables

De la même manière qu’on passe d’une représentation de Lévy-Itô "faible" (Corollaire 2.4.9) à
une "forte" (Théorème 3.3.8), nous devrions être capable d’utiliser la représentation "faible" des
processusC -échangeables (Théorème 2.5.30) et d’obtenir une version "forte" à trajectoires dans
DΦ(A ). Dans le cas où T = [0,1], cela a déjà été démontré par Hagberg [34, Theorem 3].

Cette étape constituerait le premier pas vers une étude de la régularité ponctuelle des pro-
cessus C -échangeables et des primitives définies par rapport à eux. Nous imaginons bien que
des analogues aux Théorèmes 3.5.2 et 3.5.12 doivent être vrais.



Bibliography

[1] Robert J. Adler, An introduction to continuity, extrema, and related topics for general Gaus-
sian processes, Institute of Mathematical Statistics Lecture Notes—Monograph Series,
vol. 12, Institute of Mathematical Statistics, Hayward, CA, 1990. MR 1088478

[2] Robert J. Adler, Sunder Ram Krishnan, Jonathan E. Taylor, and Shmuel Weinberger, Con-
vergence of the reach for a sequence of Gaussian-embedded manifolds, Probab. Theory Re-
lated Fields 171 (2018), no. 3-4, 1045–1091. MR 3827227

[3] Robert J. Adler, Ditlev Monrad, Richard H. Scissors, and Richard Wilson, Representations,
decompositions and sample function continuity of random fields with independent incre-
ments, Stochastic Process. Appl. 15 (1983), no. 1, 3–30. MR 694534

[4] Robert J. Adler and Jonathan E. Taylor, Random fields and geometry, Springer Monographs
in Mathematics, Springer, New York, 2007. MR 2319516

[5] David J. Aldous, Representations for partially exchangeable arrays of random variables, J.
Multivariate Anal. 11 (1981), no. 4, 581–598. MR 637937

[6] , Exchangeability and related topics, École d’été de probabilités de Saint-Flour,
XIII—1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1–198. MR
883646

[7] , The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28. MR 1085326

[8] , The continuum random tree. III, Ann. Probab. 21 (1993), no. 1, 248–289. MR
1207226

[9] Charalambos D. Aliprantis and Kim C. Border, Infinite dimensional analysis, third ed.,
Springer, Berlin, 2006, A hitchhiker’s guide. MR 2378491

[10] David Applebaum, Lévy processes and stochastic calculus, second ed., Cambridge Studies
in Advanced Mathematics, vol. 116, Cambridge University Press, Cambridge, 2009. MR
2512800

[11] Tim Austin and Dmitry Panchenko, A hierarchical version of the de Finetti and Aldous-
Hoover representations, Probab. Theory Related Fields 159 (2014), no. 3-4, 809–823. MR
3230009

[12] Antoine Ayache and Murad S. Taqqu, Multifractional processes with random exponent,
Publ. Mat. 49 (2005), no. 2, 459–486. MR 2177638

151



152 BIBLIOGRAPHY

[13] Paul Balança, Fine regularity of Lévy processes and linear (multi)fractional stable motion,
Electron. J. Probab. 19 (2014), no. 101, 37. MR 3275853

[14] , Some sample path properties of multifractional Brownian motion, Stochastic Pro-
cess. Appl. 125 (2015), no. 10, 3823–3850. MR 3373305

[15] Paul Balança and Erick Herbin, 2-microlocal analysis of martingales and stochastic inte-
grals, Stochastic Process. Appl. 122 (2012), no. 6, 2346–2382. MR 2922632

[16] Richard F. Bass and Ronald Pyke, The existence of set-indexed Lévy processes, Z. Wahrsch.
Verw. Gebiete 66 (1984), no. 2, 157–172. MR 749219

[17] , The space D(A) and weak convergence for set-indexed processes, Ann. Probab. 13
(1985), no. 3, 860–884. MR 799425

[18] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Proba-
bility and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999,
A Wiley-Interscience Publication. MR 1700749

[19] Garrett Birkhoff, Lattice theory, Third edition. American Mathematical Society Collo-
quium Publications, Vol. XXV, American Mathematical Society, Providence, R.I., 1967.
MR 0227053

[20] Robert M. Blumenthal and Ronald K. Getoor, Sample functions of stochastic processes with
stationary independent increments, J. Math. Mech. 10 (1961), 493–516. MR 0123362

[21] Jean-Michel Bony, Second microlocalization and propagation of singularities for semilin-
ear hyperbolic equations, Hyperbolic equations and related topics (Katata/Kyoto, 1984),
Academic Press, Boston, MA, 1986, pp. 11–49. MR 925240

[22] Nicolas Bourbaki, Éléments de mathématique. Topologie générale. Chapitres 5 à 10, Her-
mann, Paris, 1974. MR 3822133

[23] Renzo Cairoli and John B. Walsh, Stochastic integrals in the plane, Acta Math. 134 (1975),
111–183. MR 420845

[24] Harry Crane and Henry Towsner, Relative exchangeability with equivalence relations, Arch.
Math. Logic 57 (2018), no. 5-6, 533–556. MR 3828877

[25] , Relatively exchangeable structures, J. Symb. Log. 83 (2018), no. 2, 416–442. MR
3835071

[26] Nicolas Curien and Bénédicte Haas, Random trees constructed by aggregation, Ann. Inst.
Fourier (Grenoble) 67 (2017), no. 5, 1963–2001. MR 3732681

[27] Joseph L. Doob, Stochastic processes, Wiley Classics Library, John Wiley & Sons, Inc., New
York, 1990, Reprint of the 1953 original, A Wiley-Interscience Publication. MR 1038526

[28] Richard M. Dudley, Sample functions of the Gaussian process, Ann. Probability 1 (1973),
no. 1, 66–103. MR 346884

[29] Arnaud Durand and Stéphane Jaffard, Multifractal analysis of Lévy fields, Probab. Theory
Related Fields 153 (2012), no. 1-2, 45–96. MR 2925570



Bibliography 153

[30] Rick Durrett, Probability: theory and examples, fourth ed., Cambridge Series in Statistical
and Probabilistic Mathematics, vol. 31, Cambridge University Press, Cambridge, 2010.
MR 2722836

[31] Steven N. Evans, Probability and real trees, Lecture Notes in Mathematics, vol. 1920,
Springer, Berlin, 2008, Lectures from the 35th Summer School on Probability Theory
held in Saint-Flour, July 6–23, 2005. MR 2351587

[32] Zoltan Füredi, Peter Hajnal, Vojtech Rödl, and William T. Trotter, Interval orders and shift
graphs, Sets, graphs and numbers (Budapest, 1991), Colloq. Math. Soc. János Bolyai,
vol. 60, North-Holland, Amsterdam, 1992, pp. 297–313. MR 1218198

[33] Bénédicte Haas, Asymptotics of heights in random trees constructed by aggregation, Elec-
tron. J. Probab. 22 (2017), Paper No. 21, 25. MR 3622891

[34] Jan Hagberg, Approximation of the summation process obtained by sampling from a finite
population, Teor. Verojatnost. i Primenen. 18 (1973), 790–803. MR 0328985

[35] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950.
MR 0033869

[36] Petteri Harjulehto and Peter Hästö, Orlicz spaces and generalized Orlicz spaces, Lecture
Notes in Mathematics, vol. 2236, Springer, Cham, 2019. MR 3931352

[37] Erick Herbin, Benjamin Arras, and Geoffroy Barruel, From almost sure local regularity
to almost sure Hausdorff dimension for Gaussian fields, ESAIM Probab. Stat. 18 (2014),
418–440. MR 3333997

[38] Erick Herbin and Jacques Lévy-Véhel, Stochastic 2-microlocal analysis, Stochastic Process.
Appl. 119 (2009), no. 7, 2277–2311. MR 2531092

[39] Erick Herbin and Ely Merzbach, A set-indexed fractional Brownian motion, J. Theoret.
Probab. 19 (2006), no. 2, 337–364. MR 2283380

[40] , Stationarity and self-similarity characterization of the set-indexed fractional Brow-
nian motion, J. Theoret. Probab. 22 (2009), no. 4, 1010–1029. MR 2558663

[41] , The set-indexed Lévy process: stationarity, Markov and sample paths properties,
Stochastic Process. Appl. 123 (2013), no. 5, 1638–1670. MR 3027894

[42] Erick Herbin and Alexandre Richard, Local Hölder regularity for set-indexed processes, Is-
rael J. Math. 215 (2016), no. 1, 397–440. MR 3551904

[43] Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang, A convenient category
for higher-order probability theory, 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), IEEE, [Piscataway], NJ, 2017, p. 12. MR 3776963

[44] Jørgen Hoffmann-Jørgensen, Coverings of metric spaces with randomly placed balls, Math.
Scand. 32 (1973), 169–186 (1974). MR 341556

[45] Douglas N. Hoover, Relations on probability spaces and arrays of random variables,
Preprint, Institute for Advanced Study, Princeton (1979).



154 BIBLIOGRAPHY

[46] B. Gail Ivanoff, Set-indexed processes: distributions and weak convergence, Topics in spatial
stochastic processes (Martina Franca, 2001), Lecture Notes in Math., vol. 1802, Springer,
Berlin, 2003, pp. 85–125. MR 1975518

[47] B. Gail Ivanoff and Ely Merzbach, Set-indexed martingales, Chapman & Hall/CRC Mono-
graphs on Statistics & Applied Probability (1999), Taylor & Francis.

[48] B. Gail Ivanoff, Ely Merzbach, and Mathieu Plante, A compensator characterization of point
processes on topological lattices, Electron. J. Probab. 12 (2007), no. 2, 47–74. MR 2280258

[49] Stéphane Jaffard, Pointwise smoothness, two-microlocalization and wavelet coefficients,
vol. 35, 1991, Conference on Mathematical Analysis (El Escorial, 1989), pp. 155–168.
MR 1103613

[50] , Old friends revisited: the multifractal nature of some classical functions, J. Fourier
Anal. Appl. 3 (1997), no. 1, 1–22. MR 1428813

[51] , The multifractal nature of Lévy processes, Probab. Theory Related Fields 114
(1999), no. 2, 207–227. MR 1701520

[52] Paul Jung, Jiho Lee, Sam Staton, and Hongseok Yang, A generalization of hierarchical
exchangeability on trees to directed acyclic graphs, Accepted for Ann. H. Lebesgue 4 (2020).

[53] Olav Kallenberg, Canonical representations and convergence criteria for processes with in-
terchangeable increments, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 27 (1973),
23–36. MR 394842

[54] , Foundations of modern probability, second ed., Probability and its Applications
(New York), Springer-Verlag, New York, 2002. MR 1876169

[55] , Probabilistic symmetries and invariance principles, Probability and its Applications
(New York), Springer, New York, 2005. MR 2161313

[56] Davar Khoshnevisan, Multiparameter processes, Springer Monographs in Mathematics,
Springer-Verlag, New York, 2002, An introduction to random fields. MR 1914748

[57] John F. C. Kingman, Uses of exchangeability, Ann. Probability 6 (1978), no. 2, 183–197.
MR 494344

[58] , Poisson processes, Oxford Studies in Probability, vol. 3, The Clarendon Press, Ox-
ford University Press, New York, 1993, Oxford Science Publications. MR 1207584

[59] Achim Klenke, Probability theory, second ed., Universitext, Springer, London, 2014, A
comprehensive course. MR 3112259

[60] Andrei N. Kolmogorov, Wienersche Spiralen und einige andere interessante Kurven im
Hilbertschen Raum, C. R. (Doklady) Acad. Sci. URSS (N.S.) 26 (1940), 115–118. MR
0003441

[61] Sunder Ram Krishnan, Jonathan E. Taylor, and Robert J. Adler, The intrinsic geometry
of some random manifolds, Electron. Commun. Probab. 22 (2017), Paper No. 1, 12. MR
3607796



Bibliography 155
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Title: Regularity of generalized stochastic processes

Keywords: generalized processes, set-indexed processes, stationarity, sample path properties,

Hölder regularity

Abstract: More and less recent studies pinpoint a need for the probabilistic community to

understand processes indexed by spaces that are more general that N or R+. This thesis focuses
on processes X =

{
Xt : t ∈ T

}
indexed by a very general set T endowed with an order relation that

represents a kind of time �ow. Classes of manifolds and continuous trees of interest are amongst

the great variety of examples, without forgetting about more algebraic-�avored ones.

The order structure allows to seamlessly identify each process X =
{
Xt : t ∈ T

}
to a process

X =
{
XA : A ∈ A

}
indexed by a collection of sets, making a bridge with the set-indexed theory

developed by Ivano� and Merzbach. Under some assumptions, the latter may be extended to a

stochastic measure, leading to the construction of a linear map corresponding to the integral with

respect to X. The case when X has independent increments is well understood since the work

of Rajput and Rosi«ski. However, the case when the increments are stationary or exchangeable

has been mainly limited to R+ so far. New notions of stationarity �t to this general setting are

developed and corresponding representation theorems for X and its extensions are proven.

At last, those representations are re�ned to obtain sample path properties of X: in which

functional space does it live? what about its Hölder regularity?...

Titre : Régularité de processus stochastiques généralisés

Mots clés : processus généralisés, processus indexés par des ensembles, stationnarité, propriétés

trajectorielles, régularité hölderienne

Résumé : De plus et moins récentes études révèlent un besoin par la communauté probabiliste

de comprendre des processus indexés par des espaces plus généraux que N ou R+. Sont donc

étudiés dans cette thèse les processus X =
{
Xt : t ∈ T

}
indexés par un ensemble T très général muni

d'une relation d'ordre représentant une forme d'écoulement temporel. Les situations concernées

sont très variées et englobent certaines classes de variétés di�érentielles et d'arbres continus, sans

négliger certains espaces ayant des saveurs plus algébriques.

La structure d'ordre permet d'identi�er naturellement chaque processus X =
{
Xt : t ∈ T

}

à un processus X =
{
XA : A ∈ A

}
indexé par une certaine collection d'ensembles, créant un

pont avec la théorie des processus indexés par des ensembles développée par Ivano� et Merzbach.

Sous certaines conditions, ce dernier peut être étendu à une mesure stochastique, menant à la

construction d'une application linéaire correspondant à l'intégrale par rapport à X. Si le cas où

X a des accroissements indépendants est bien compris depuis les travaux de Rajput et Rosi«ski,

celui des accroissements stationnaires ou échangeables était principalement resté cantonné à R+.
On développe ici des notions de stationnarité adaptées à ce cadre général et en déduisons sous ces

hypothèses des représentations pour le processus X et ses extensions.

Dans une dernière partie, ces représentations sont peau�nées pour obtenir des propriétés tra-

jectorielles sur X : dans quel espace fonctionnel vit-il ? régularité hölderienne ?...
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