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Résumeé

L’étude des problemes d’interaction fluide-structure a bas nombre de Reynolds en situ-
ations confinées est une étape fondamentale pour comprendre la locomotion de micro-
organismes dans les sols ou dans des conduits biologiques ou biomédicaux mais aussi
les mouvements des longues fibres optiques introduites dans des fractures rocheuses et
utilisées comme sondes dans l'industrie pétroliére.

Dans ce travail de these, nous nous intéressons a la dynamique d’un systeme modele,
constitué d’une fibre libre transportée par un écoulement laminaire dans une cellule de
Hele-Shaw. La hauteur de la fibre est voisine de la hauteur du canal et ce confinement a
des conséquences importantes sur le transport des fibres, qui présente des propriétés tres
spécifiques, comme par exemple la dérive d’une fibre inclinée par rapport a 1’écoulement.
En raison des frottements visqueux avec les murs supérieur et inférieur du canal, la fi-
bre agit comme un obstacle mobile et perturbe ’écoulement. Ces perturbations sont a
lorigine d’une anisotropie des forces hydrodynamiques qui aménent & la dérive et aux
oscillations de 1’objet entre les murs latéraux du canal. La question a laquelle ce travail
répond est la suivante : comment la dynamique de transport d’une fibre initialement droite
et rigide est-elle modifiée lorsque celle-ci est remplacée par un objet plus complexe 7 Nous
avons choisi d’étudier le cas de fibres flexibles transportées par un écoulement visqueux
en géométries confinées en nous concentrant sur les cas de fibres orientées perpendicu-
lairement et parallelement a I’écoulement. Les fibres perpendiculaires se courbent, et nous
montrons que la fleche de la déformation est proportionnelle & un nombre élasto-visqueux.
Nous caractérisons quantitativement I'influence du confinement sur la déformation. Les
fibres paralleles se déforment et acquiérent une forme sinusoidale dont 'amplitude décroit
au niveau des exterminées. Nous mettons en évidence expérimentalement 1’existence d’un
seuil d’instabilité. Afin de compléter ce travail, nous avons choisi de nous intéresser au
role de la géométrie dans le cas de fibres rigides. En ajoutant un bras supplémentaire a
une fibre initialement droite nous obtenons une fibre en forme de L. Ce nouvel objet subit
sous écoulement une rotation jusqu’a une orientation d’équilibre suivie d’une dérive lors de
laquelle la fibre s’approche des murs latéraux du canal. Lorsque la fibre est suffisamment
proche du mur, la dérive s’arréte et l'interaction entre 'objet et le mur est a l'origine
d’une dynamique trés riche. De plus, en jouant sur leurs propriétés de symétrie, nous
montrons que nous pouvons contrdler de fagon tres robuste la trajectoire des particules.

Ces effets sont étudiés a 'aide d’expériences de microfluidiques combinées a des simu-
lations numériques basées sur la résolution de I’équation de Brinkman modifiée. Nous con-
trolons la géométrie, 'orientation et les propriétés mécaniques des particules d’hydrogels
a l'aide d’une technique de micro-fabrication. Afin de caractériser le module d’Young et
le coefficient de Poisson des hydrogels, nous avons développé deux nouvelles techniques
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de mesure in-situ permettant d’accéder a ces propriétés sans avoir besoin de les extraire
du liquide environnant.

Mots clés

FIBRES, CONFINEMENT, ECOULEMENT VISQUEUX, MICROFLUIDIQUE, MICROFAB-
RICATION, CELLULE DE HELE-SHAW, INTERACTION FLUIDE-STRUCTURE, FLEXI-
BILITE, GEOMETRIE, SYMETRIE, TRAJECTOIRE, CARACTERISATION MECANIQUE
IN-SITU , MODULE D’YOUNG, COEFFICIENT DE POISSON



Abstract

Studying confined situations of fluid structure interactions in viscous flows is important
to understand locomotion of micro-organisms in soils or medical conducts as well as the
movement of long fibers in fractures, where they are used as in-situ probes in oil recovery.

Here we look at the dynamics of a model system, constituted by a fiber freely trans-
ported in a Hele-Shaw cell by pressure-driven flows. The fiber height is comparable to
the channel height and the confinement plays a fundamental role in fiber transport, which
shows specific characteristics, as for example lateral drift for fibers not aligned with the
flow. Due to viscous friction with top and bottom walls particles act like moving ob-
stacles and induce strong flow perturbations. These perturbations are at the origin of
anisotropy in the friction forces leading to lateral drift and oscillatory movement between
lateral walls. In this PhD we study how the transport dynamics are perturbed when the
particle becomes more complex than a straight and rigid fiber. Two degrees of complex-
ity have been studied in parallel: we either add flexibility to the fiber or we change its
shape and focus our investigations on their transport. Flexible fibers perpendicular to
the flow bend while parallel fibers deform in a sine shape that flatten out at the edges.
We show that the bending of the perpendicular fiber is proportional to an elasto-viscous
number and we fully characterize the influence of the confinement on the deformation
of the fiber. Experiments on parallel flexible fibers reveal the existence of an instability
threshold. Complementary, we change the shape of the fiber by adding an additional
arm, forming an L-shaped fiber. This induces fiber rotation until a stable equilibrium
orientation. Lateral drift is subsequently observed until the interaction with side walls
becomes important. Tuning the fiber asymmetry allows for a precise control of particle
trajectories, including the approach of side walls, robust even against small perturbations.

We investigate these effects with a combination of well-controlled microfluidics ex-
periments and simulations using modified Brinkman equations. We control the shape,
orientation and mechanical properties of our particles using micro-fabrication techniques.
To characterize the Young’s modulus and the Poisson’s ratio of the hydrogels we develop
two independent novel in-situ measurement methods.

Keywords
FIBERS, CONFINEMENT, VISCOUS FLOW, MICROFLUIDICS, MICROFABRICATION, HELE-
SHAW CELL, FLUID-STRUCTURE INTERACTION, FLEXIBILITY, COMPLEX SHAPE, SYM-

METRY, TRAJECTORY, IN-SITU MECHANICAL CHARACTERIZATION, YOUNG’S MOD-
UlUS, POISSON’S RATIO
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Introduction

Fibers and suspensions of fibers have been a paramount source of interest since many
thousands of years, as they are omnipresent in nature and of broad use in industry.
Paper fabrication [1] is the older of these industries. The invention of paper - thin sheets
fabricated from plantlike fibers - is attributed to China during 140 to 87 B.C. Papermaking
knowledge moved out from China to the Arabic world and arrived in Europe through Sicily
and Spain in the XII*" century. Figure 0.1 shows the entangled structure of fibers of a
paper sheet observed with scanning electron microscopy. The oil industry also makes
extensive use of fibers, from fiber suspensions used to seal leaks in rock fractures to
single optical fibers introduced into these rock fractures as in situ probes. In this case,
confinement due to the shallow structure of the fractures plays an important role in
fiber dynamics during insertion and during removal from the fracture. This situation of
confined geometries is also relevant to a broad range of fields. For example, in industries
where injection processes in porous media are needed [2] or in biomedical sciences where
there is a lot of interest in the locomotion of microorganisms such as sperm cells [3] in
soils or in medical conducts.

Figure 0.1: Scanning electron micrograph of ordinary paper made from wood pulp fiber.
Figure extracted from [1].

Situations where an object interacts with a flow are called fluid-structure interaction
problems: the flow makes the object, here a fiber, reorient, rotate or change its shape if
flexible and in return the presence of the object in the fluid has an impact on the flow.
The richness of fluid-structure interaction problems emerges from the non-trivial coupling
between the object reorientation or deformation and the flow perturbation.

These topics, of very fundamental interest, have also many practical applications: one
of those is, for instance, the sorting of particles which is of major importance in the

xiii



xiv INTRODUCTION

biomedical field or in the food industry. To answer these particular questions, in the
last decade, a lot of effort have been put onto the design of microfluidic tools (hydraulic
channels of characteristic height of the order of tens to hundreds of microns) aiming to
sort particles according to their shapes or flexibility [5, 6, 7].

In this thesis, we primarily focus on fluid-structure interaction problems in confined
viscous flows (i.e. where inertia is negligible). Our work benefited from the rich literature
on the dynamics of isolated fibers in viscous flows. Such investigations started with
Jeffery [8], who described in 1922 the motion of an elongated object in a shear flow (more
details are given in chapter I). This work has been followed by studies on the dynamics
of sedimenting fibers in viscous fluids, which have largely profited from the slender-body
theory [0, 10] developed in the 70’s. This theory is used to approximate the flow field
around an elongated object and hence the force exerted by the fluid on the body (see
section 1.2.1 of chapter I). However, little is known on the transport of isolated fibers in
confined geometries. Semin et al. studied the interactions of a fixed cylinder confined
between two parallel walls. They focused on the calculation of the drag force exerted on
the fiber as a function of its orientation parallel or perpendicular to the flow [11, 12]. This
work has been followed by the investigations of Berthet et al. [13, 1] on free rigid fibers
transported in confined microchannels by an external viscous flow. Similar to Semin et
al., Berthet et al. focused on the two simple configurations of fibers oriented parallel or
perpendicular to the flow direction. Both of these works shed light on the role of the
fiber confinement on its dynamics. Confinement, here, needs to be understood in two
ways, firstly the flow is nearly two dimensional as it takes place in a channel of Hele-
Shaw geometry (channel of height much smaller than width). Secondly, the fiber occupies
almost all the channel height and is thus confined by the channel top and bottom walls.

The work of Berthet et al. performed at PMMH has been enabled by the development
in the group of Patrick S. Doyle of an in situ technique of fabrication of hydrogel particles
directly inside a microchannel [15, 16]. This technique enables the fabrication of objects of
different and well controlled shapes and allows for a good control of the particle position
and orientation.

Uspal et al. [17] used this experimental technique to study the impact of the shape
of a particle on its transport dynamics in confined geometries. Using particles composed
of two disks bridged to each other, they showed that the particle trajectory is controlled
by the symmetry properties of the object. Up to our knowledge, this study is the first
investigation of the coupling between geometry and trajectory of particles transported by
an external flow in a confined geometry.

Here, starting from the study of Berthet et al. [13, 11], we ask how the transport
dynamics are perturbed when going from an initially straight and rigid particle to a more
complex object. Two directions have been studied here: we either add flexibility to the ob-
ject and focus our investigations on the deformations of perpendicular and parallel fibers
during their transport by an external viscous flow in confined geometry. Complementary,
we also choose to change the shape and study the trajectory and the transport dynamics
of rigid "L-shaped" fibers.

The first chapter of this manuscript reviews past studies on isolated fibers evolving in
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viscous flows or fluids. Bridging the gap between the flow dynamics of a single fiber to
collective fiber behavior is outside the scope of this work. We will thus restrict this review
on the dynamics of individual fibers. First, we introduce a dimensionless number which
compares viscous forces and inertia, named Reynolds number, and we present some basic
properties of flows at low Reynolds number i.e. flow where inertia is negligible. Among
the rich literature on fibers in flows, we choose to review studies on the sedimentation
of rigid fibers with different shapes, in the second section of the chapter. This allows
us to introduce important notions such as drag anisotropy and to discuss the impact of
the geometry of a particle on its trajectory. We then present investigations on fibers
interacting with a viscous flow in a confined geometry. In the last section of the chapter,
we introduce the theoretical framework used to describe the flexibility of an elongated
object. We show that in any system where a flexible fiber interacts with a viscous flow
the fiber deformation scales with a dimensionless parameter - the elasto-viscous number
- comparing the viscous forces to restoring elastic forces. Finally, we present studies on
the dynamics of flexible fibers sedimenting in quiescent fluids and investigations of the
deformation, by an external flow, of a fixed fiber in confined geometries. We also briefly
discuss the buckling of flexible fibers in compressive flows.

1 mm

Figure 0.2: (a) Picture of an Eiffel tower particle fabricated into the microchannel using
a photolithography technique. (b) and (c): Characterization of Young’s modulus using
an in situ technique (b), or a cantilever experiment (c).

The second chapter is dedicated to the description of the technique used to fabricate
our fibers directly inside micro-fluidic channels. The principle of the technique and the
experimental protocols are detailed, followed by a description of the geometrical charac-
teristics of the hydrogel particles. To give an indication of the strength of the versatil-
ity /accuracy of the particle synthesis, we created a particle resembling the Eiffel tower
(Figure 0.2 (a)).We then discuss the mechanical properties of these particles, present the
method chosen to tune their Young’s modulus and describe four different experimental
techniques to measure these Young’s moduli (two of them are shown in Figures 0.2 (b)
and (c)). For each technique we discuss pros and cons. We show that it is very difficult
to measure the Young’s modulus of very soft hydrogels without extracting them to a dry
environment. As a consequence, the role of the surrounding fluid and possible swelling
effects cannot be taken into account. This highlights the need of a novel measurement
method of Young’s moduli of very soft hydrogels in the presence of a surrounding fluid.

The third chapter, is divided in two sections. The first section describes a novel mea-
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surement technique allowing for in situ determination of the Young’s modulus of very
soft particles. A trapezoidal particle is pushed through a constriction by means of an
external flow and eventually reaches an equilibrium position (while the flow is still on).
In the constriction the particle is compressed by the channel’s lateral walls. Measuring
its geometry before and during compression enables us to derive its Young’s modulus.
Figure 0.3 (a) shows a superposition of pictures of an undeformed and deformed trape-
zoidal particle. In the second section of the chapter, we describe another independent
technique allowing for the determination of the Poisson’s ratio of the hydrogels. We use
rectangular particles fabricated in a wide channel that we compress uni-axially by moving
them to a narrower region of the channel. Again, measurements of the deformation en-
able us to determine the Poisson’s ratio of the particle. Figures 0.3 (b) and (c) illustrate
the experiment. This technique is used to characterize hydrogels of different compositions.

500 pm

200 pm 200 pm

Figure 0.3: Mechanical characterization of the hydrogels. (a) Superposition of a trape-
zoidal particle just after fabrication and when pushed through the constriction and com-
pressed by the lateral walls. This experiment is used to determine the Young’s modulus
of the hydrogel. (b) and (c): Picture of a rectangular particle in its undeformed (b) and
deformed (c) state. From the deformation of the particle one can derive the Poisson’s
ratio of the hydrogel.

In the fourth chapter, we study the deformation of a free, flexible fiber transported by
an external viscous flow in a confined geometry. We focus on the simple configuration of
a fiber oriented perpendicular to the flow direction. Figure 0.4 illustrates the transport
and the deformation of a flexible fiber. Due to the finite length of the fiber and the
resulting edges effects, it experiences a non-homogeneous drag force. The variations of
the drag force along the fiber deforms the latter. Combining well controlled experiments
using our microfluidic tools together with numerical simulations - based on the resolution
of the Brinkman equation supplemented with a gap flow model - we characterized the
deformation of the fiber and we quantitatively describe the impact of the confinement.
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The study presented in this chapter has been published in [18].

SL)pm

Figure 0.4: Chronophotography of a transported and deformed flexible fiber initially
oriented perpendicular to an external flow. The yellow arrow indicates the bent state of
a deformed fiber perpendicular to the flow. The fluid flows from left to right.

The fifth chapter describes the transport dynamics of flexible fibers oriented parallel
to the flow direction. We show that under certain experimental conditions fibers deform
into a wavy sine shape that flattens out towards the fiber ends (see Figure 0.5). This
instability is observed only for very long fibers (the length must be almost one order of
magnitude larger than the observed wavelength). We characterize the shape of the fiber
and we extract, from the temporal evolution of the amplitude of the deformation, the char-
acteristic growth time of the perturbation for different fiber geometries, flow strengths,
and mechanical properties of the fiber. Other dynamical quantities such as the angular
frequency of the wave and its phase velocity are also characterized experimentally. In
the last section of the chapter we present models aiming to describe the origin of the
instability and predict the wavelength.

1000 pm

Figure 0.5: Picture of a parallel fiber transported in a confined geometry by an external
flow. The fluid flows from left to right.

In the sixth chapter, we study the impact of the shape of a particle on its trajectory.
We investigate geometries with different properties of symmetry: straight fibers, T-fibers
and L-fibers. We primarily focus on the most complex shape: the L-fibers which do not
have any axis of symmetry. Experimental chronophotographies of L-fibers transported
by an external flow in confined geometries are shown in Figure 0.6. The particle rotates,
until it reaches an equilibrium orientation and then drifts toward one of the walls of the
channel. We characterize the dynamics of this rotation and the equilibrium configuration,
both numerically - using again the modified Brinkman equation - and experimentally, for
very wide channels. We then focus on the interaction of the particle with the lateral
walls of the channel and show that straight fibers oscillate laterally, T fibers are either
pushed toward the channel center or toward the lateral walls (depending on the lateral
confinement) and L-fibers are always captured by the lateral walls. The study led to the
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publication [19)].
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Figure 0.6: Experimental chronophotographies of transported L-fibers fibers of different
geometries and initial configurations. The fluid flows from left to right.

The last chapter concludes this thesis. We give a general conclusion of the work pre-
sented in the manuscript and the main results obtained in each project. This discussion
is followed by a presentation of the different outlooks that emerge from our work.

Experimental and numerical methods are detailed in appendices A and C. And the
appendices B and D, present analytical calculations.

Collaborations

All the experiments presented in this study have been done in close collaboration with
Camille Duprat from LadHyX (Polytechnique, Palaiseau).

The numerical simulations and discussions presented in chapters IV and VI have been per-
formed in collaboration with Frangois Gallaire and Mathias Bechert from LFMI (EPFL,
Lausanne). Close discussions with them, also, enabled the study presented in chapter V.
The experiments presented in chapter III have been carried out together with Vincent
d’Herbemont, intern in the group, and the experiments of chapter VI are the results of a
collaboration with Marine Daieff, former PhD student in the group.



Chapter |
State of the art

In this chapter we give a review of some of the important studies on the transport dynamics
of objects in viscous flows or fluids that are relevant for our study.

We start this review with a quick presentation of the flow at low Reynolds numbers,
introducing the theoretical framework used in our studies.

We then focus on the coupling between the shape of a rigid particle and its trajectory.
The example of sedimentation is used to present important notions such as the drag
anisotropy for an elongated object and the impact of the symmetries of a particle on its
trajectory.

The discussion is followed by a presentation of studies on the dynamics of confined
particles i.e. particles confined by the top and bottom walls of a microfluidic channel.
This situation shares some similarities with sedimentation. Indeed, in confined geometries
one also observes a drag anisotropy with all its consequences, as for instance the drift of
a fiber or the reorientation of an asymmetric particle.

In the last part of the chapter we discuss the role of the flexibility of a slender ob-
ject on its dynamics. We present the Euler-Bernoulli theory used to describe the fiber
deformation. We introduce the elasto-viscous number, a dimensionless parameter that
compares the effects of hydrodynamic forces and the effects of restoring elastic forces.
We finish the review with the presentation of studies on the dynamics of flexible fibers
in these two flow geometries: quiescent fluids (sedimentation) and plug flow (confined
geometry) and we also briefly touch on the discussion of fibers evolving in a shear flow.
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.1 Flow at low Reynolds numbers: theoretical framework

The velocity field u and the pressure p in a Newtonian fluid (a fluid with constant viscosity
u for any shear rates), incompressible and of homogeneous density p can be described by
the continuity and the Navier-Stokes equations [20]:

V-u=0 and p(%?%—u-Vu) = —Vp+ uViu + pfy, (I.1)
where fj, is an external body force per unit mass. For instance, this force per unit mass can
be due to gravity and in that case f, = g. The continuity equation (equation on the left)
describes the incompressibility of the flow and the Navier-Stokes equation (equation on
the right) corresponds to the conservation of momentum. In the Navier-Stokes equation
all terms have the dimension of a force per unit volume. The left hand side of the
Navier-Stokes equation corresponds to inertial terms and the terms on the right hand
side correspond, from left to right, to pressure forces, viscous forces and external body
forces.

These two equations form a system of coupled, non-linear, partial differential equa-
tions which does not have any general solution. It is generally required to use numerical
simulations to solve this system, however, in some cases, the equations can be simplified
and analytical solutions can be found. These situations correspond, for example, to the
case of inviscid flows or the case of flow at low Reynolds number. In the following we will
focus on this last case.

1.1.1 The Reynolds number

The Reynolds number (R.) is a dimensionless number which compares the magnitude of
inertial and viscous terms in the Navier-Stokes equation.

We consider the flow of a Newtonian fluid of viscosity u, density p, characteristic
velocity u, and typical dimension ¢. According to equation I.1 the inertial term scale as
pu? /¢ and the typical magnitude of the viscous term is pu/¢?. Thus the Reynolds number
is given by [21]:

inertial term u?/l ul
R, = — =L /Q:L. (1.2)
viscous term  pu/¢ L

The Reynolds number can also be interpreted as a comparison of time scales [21]:

characteristic time of viscous diffusion ¢ /v

e

= I.3
characteristic time of convection ju’ (L3)

where v = 11/p is the kinematic viscosity of the fluid and has the dimension of a diffusion
coefficient.

As can be seen in equation 1.3 the Reynolds number characterizes the relative im-
portance of the transport of momentum over a distance ¢ by convection and by viscous



1.1 FLOW AT LOW REYNOLDS NUMBERS: THEORETICAL FRAMEWORK 3

diffusion. The fastest mechanism will be the dominant one and will impose the charac-
teristics of the velocity field.

At low Reynolds number, R. < 1, transport by viscous diffusion is much faster than
transport by convection. Inertia being negligible, the flow results from an equilibrium be-
tween viscous forces and pressure gradients. According to the expression of the Reynolds
number, low Reynolds number flows occur for low velocities, in systems of small size or
for very viscous fluids.

1.L1.2 The Stokes equations

For low Reynolds number flow, R, < 1, equations 1.1 simplify to the continuity and
Stokes equations [20]:

V-u=0 and 0 = —Vp + uViu + pfy,. (1.4)

The Stokes equation is a linear partial differential equation. Since the equation is
linear there is a unique solution for given boundary conditions, and it is possible to apply
the principle of superposition. Moreover, a consequence of the time-independence of the
Stokes equation is the kinematic reversibility. Kinematic reversibility can be understood
as follows [22]: if we reverse time in the boundary condition (¢ — —t), in a flow due to
the movement of the boundaries (as for instance in a Couette flow), we reverse the sign
of uand p (u — —u and p — —p). Due to the linearity and the time-independence of the
Stokes equation, —u and —p are still solutions of the equation. Using the uniqueness of
the solution, reversing time implies that the flow field is exactly reversed i.e. the stream-
lines are not modified but the direction of the flow along these streamlines is reversed.

1.1.3 Sedimentation of a sphere

Let us consider the situation of a flow induced by a sedimenting sphere at low Reynolds
number in a quiescent fluid. We denote V the velocity of the sphere and a its radius. In
the frame of reference of the translating sphere the continuity and the Stokes equations
are given by equations 1.4 with f, = 0 and the boundary conditions are u(r = a) = 0 and
u(r — oco) = —V. The solutions are given by [20]:

3 V.r 3 I rr 1, I 3rr
P =P = 5 Ha— 3 and u:4aV'(r+r3)+4aV'(r3_r5>a (1.5)

with I the identity tensor and rr the dyadic tensor.
The hydrodynamic force FH is given by:

FH :/n-adS, (1.6)
S

with S the surface of the sphere, n the unit normal vector directed from the sphere
surface to the fluid and ¢ = —pIl + p (Vu + (Vu)T) the stress tensor. The result is

FH = —6ruaV and is known as the Stokes drag force.
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An important consequence of the absence of inertia is that any object evolving in a
viscous fluid or flow at low Reynolds number will be subject to zero total force and zero
total torque. Hence, in the case of a sedimenting sphere of density ps in a fluid of density
p, the net gravitational force F¢** = (4wa®/3)(ps — p)g is balanced by the viscous drag
FH = —67paV. Thus, the velocity of the sedimenting sphere reads

2a%(ps — p)g
v =248 1.7
o (L.7)

The velocity is proportional to a?, thus if the radius of the sphere is doubled the
velocity is multiplied by a factor four. Moreover, V is proportional to g and the sphere
sediments following a vertical line. The situation changes when two spheres interact
hydrodynamically. Depending on their initial configuration, the spheres can drift and
their velocity is altered. For instance, the velocity of two spheres close to each other, in a
vertical or a perpendicular configuration, is larger than the velocity of an isolated sphere.
This simple result will be used later in section 1.4.

1.1.4 The Stokeslet

We now consider that the radius of the sphere a — 0. As a consequence this new situation
corresponds to a flow due to a point force F°*'. In this situation the continuity and the
Stokes equations read

V-u=0 and 0 = —Vp + uViu + F>%(r). (L.8)

The solution of these equations {p,u,c} - named Stokeslet - is [23]:

B Fext.p Frext (I rr> ’ 3Fext rrr’ (19)

= - u= —_ —_— g = — —_
P= s S8mu \r 73 4 7P
with o = —pl + (Vu + (Vu)T) the stress tensor.

The determination of the flow due to a point-force is of major interest since it paves
the way for the determination of flows due to more complex forces. For instance the flow

caused by a sedimenting elongated object will be presented in the next section.

1.2 Sedimentation of an isolated fiber: coupling between the
particle configuration and its trajectory

A fiber is an elongated object whose geometry can be fully characterized by the shape
of its cross section and the ratio between length and thickness (aspect ratio). Slender
objects such as fibers are ubiquitous in nature and industry and, from the flagella of a
bacteria or a sperm cell to optical fibers, their characteristic length and aspect ratio can
vary over several orders of magnitude.

Here, we focus on the sedimentation of isolated fibers in viscous fluids. First, we
present a powerful theoretical framework: the slender body theory, which is particularly
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adapted for the description of very elongated objects evolving in viscous flows. This theory
is then used to describe the sedimentation of a rigid and straight fiber. Secondly, we
review studies on the sedimentation of particle of complex shapes and we primarily focus
on the coupling between the particle symmetries and its trajectory. The sedimentation of
slender structures is used, here, to introduce important notions and observations which
bear similarities to what is obtained in confined geometry.

1.2.1 Slender body theory

The slender body theory relies on the approximation of the flow field around an elongated
body using asymptotic techniques justified by its slenderness [9, 10]. For a cylinder of
radius a and length ¢ the aspect ratio is € = £/a. The slender body theory approximation
applies whenever ¢ > 1. It gives a relation between the translation speed of the slender
object with respect to the surrounding fluid and the force per unit length exerted by the
fluid on the body.

The simplest form of the slender body approximation is the resistive force theory.
It assumes that locally the fluid motion is the same as the flow past a cylinder with a
hydrodynamic force per unit length different if tangential or normal to the local body axis.
If we call the velocity of the body in the tangential and normal directions, respectively
v| and v, the force per unit length on the body reads

= —¢v) —&uvy, (1.10)

where the resistance coefficients £ and §; depend on the aspect ratio of the slender body
e and the fluid viscosity u [20]

21 d ¢ 4
=——— an = —7.
In(e) — 2 + In(e) + 3

This approximation is purely local and, consequently, the force per unit length at a given
location cannot depend in any way on the velocities at other positions along the slender
object.

Note that for € > 1, £; ~ 2§ i.e. an elongated object with a motion perpendicular
to its orientation experiences an hydrodynamic resistance almost twice as big as the one
experienced by an elongated object with a motion parallel to its orientation.

We can also notice that the force per unit length only weakly depends on the aspect
ratio of the slender structure, which appears as the argument in the logarithm. The total
force on the particle can be approximated by the force per unit length multiplied by the
particle length £.

One can derive similar formulas using the results presented in section I.1: the distur-
bance created by the elongated object is equivalent to that due to a line of point forces
fext (forces per unit length) distributed along its length. Thus, the velocity field around
the slender structure at a position r corresponds to the integral of Stokeslets along the
centerline [23]:

(L11)

a) /@/2 o (1 +<r—r’<s>><r—r’<s>)> . Li2)

S8autoap \r—r(s) r—r(s)P
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with r'(s) the position on the centerline and s the curvilinear abscissa.
Assuming the external force per unit length does not depend on s we obtain the
velocity v of the elongated object

_ i ext
v = ooy In(e) (I + AN)E™, (I.13)

with A a unit vector indicating the orientation of the centerline. Inverting equation 1.13
we obtain:

4 1
—fext — fH — I— ~A\)v. 1.14
ln(e)( > v (L14)

We notice that equation 1.14 is equivalent to equations 1.10 and I.11 up to leading
order in In(e).

1.2.2 Sedimentation of straight fibers in a quiescent fluid

For a sedimenting rigid fiber the external force per unit length is £ = Fg/¢ (with Fg
the gravitational force) and the translation speeds of vertical and perpendicular fibers are

given respectively by v = % and v = % Both cases are sketched in Figures 1.1 (a)

and (b). An important consequence of the anisotropy of the velocities is that a fiber
neither horizontal nor vertical drifts with a constant angle (see Figure I.1 (c)). According
to the principle of reversibility of Stokes flows the fiber cannot rotate and its velocity has
a constant drift angle 6.

(a) (b)

8

g

V| & 2v | v = drift velocity

Figure 1.1: Sedimentation of fibers with different orientations: perpendicular fiber (a),
parallel fiber (b), fiber oriented with an angle « with respect to gravity (c). As a con-
sequence of the velocity anisotropy the translation velocity in (c) is oriented at an angle
a — 0 with respect to gravity.
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Figure 1.2: Chronophotographs of a rod sedimenting close to a wall. Depending on the
initial orientation of the fiber two cases are possible: glancing for an initially almost
vertical fiber and reversing for an initially almost horizontal fiber. Figure extracted from

[24]-

As discussed by Russel et al. in [21] the situation changes if the fiber approaches a
wall: a rotation occurs, the drift angle varies and the fiber eventually escapes from the
wall. This experimental study together with the slender body theory and the mirror image
method - which model the interaction of the fiber with the wall - yields results on the
orientation, position and velocity of the rod. Depending on the initial orientation of the
fiber two different trajectories are possible: glancing (for an initially almost vertical fiber)
and reversing (for an initially almost horizontal fiber). The positions and orientations
of a slender particle sedimenting close to a wall experiencing glancing and reversing are
shown, respectively, in Figures 1.2 (a) and (b). During glancing the fiber first rotates until
it aligns with the wall, when vertical its drift angle changes sign and the fiber escapes
from the wall. On the contrary, during reversing the fiber rotates until perpendicular to
the wall, at this stage the sign of the drift angle inverts and the fiber moves away from it.
Note that, due to the principle of reversibility, the orientation of the fiber escaping from
the wall is the symmetric with respect to the wall axis of the orientation that the fiber
had when approaching the wall.

1.2.3 Sedimentation of slender objects with complex geometries

The examples of the sedimenting sphere and fiber presented in sections 1.1.3 and 1.2.2
show that, at low Reynolds numbers, the trajectory of a particle highly depends on its
geometry. A sphere, an object with an infinite number of symmetry axes, sediments
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Figure 1.3: (a) Measured probability distribution p(¢) of the orientation angle ¢ of a
passive L-shaped particle during sedimentation. (b) Sketch of the particle geometry and
angles definitions. Figure extracted from [25].

vertically. On the contrary, a straight fiber, with two axes of symmetry, drifts if oriented
neither parallel nor perpendicular to gravity and cannot rotate unless it approaches a
wall.

The complexity of the object geometry can be even further increased by releasing one
of the symmetries of the straight fiber: for instance by adding a second arm to the fiber
giving an "L-shaped" object. Ten Hagen et al. have investigated the sedimentation of such
L-shaped fibers both experimentally and theoretically [25]. It appears that the asymmet-
ric particle rotates until it reaches an equilibrium orientation and then slowly drifts while
maintaining this orientation. Figure 1.3 (a) shows the experimental results of the prob-
ability distribution of the orientation angle ¢ of a L-shaped particle (see Figure 1.3 (b)).
The data shows a clear maximum of the orientation angle corresponding to the situation
where the shorter arm of the fiber is at the bottom and the orientation angle is close to
¢ ~ —45°. The authors demonstrate that the selection of an equilibrium orientation is
due to the asymmetry of the particle, and they were able to derive the equilibrium angle
by applying the slender body theory on the two arms of the particle.

Decreasing the number of symmetries of the particle even further leads to the work
of Tozzi et al. [26]. In this study, the authors investigated, both experimentally and
numerically, the relation between the trajectory of a particle and its shape. The 3D
trajectory of a particle, tracked using a set of two synchronized cameras, shows that,
after a transient reorientation, the particle reaches an asymptotic motion that depends
on the geometry of the particle. Some examples are given in Figure 1.4. Particle (a) has
two axes of symmetry but its center of hydrodynamic resistance (point where the total
sum of the hydrodynamic forces act on a body) does not coincide with its center of mass.
As a consequence a torque is applied on the particle. The particle rotates until the torque
vanishes i.e. when the direction defined by the two centers aligns with gravity. Then
the particle sediments keeping its equilibrium orientation and no drift is observed. The



1.3 EFFECT OF CONFINEMENT BY BOUNDING WALLS 9

Fo-Fy YU

(a) (b) (c) (d)

Figure 1.4: Qualitative motion of fibers having different types of symmetry. After a
transient regime of reorientation, particles can follow various types of asymptotic motion.
Particles (a) and (b) have no translation-rotation coupling, and they do not achieve a
rotational motion as they sediment. For particles (a) and (c), the translational velocity
does not have a horizontal component, so they attain a state where their center of mass
moves in a vertical fashion. Fiber (b), on the contrary, tends to drift sideways, sedimenting
with a diagonal trajectory. Fiber (d) is similar to (b), but additionally it has translation-
rotation coupling, and therefore the diagonal fall is accompanied with a rotational motion,
resulting in a helical trajectory. Figure extracted from [20]

particle (b) shows one plane of symmetry and, as observed for L-shaped fibers, the particle
reorients toward an equilibrium orientation before drifting. Particles (c¢) and (d) don’t
have any axis or plane of symmetry, i.e. they are chiral objects. After a transient regime
they reach an helical trajectory resulting from a translation-rotation coupling. Similarly,
according to [27], helicoidal particles - which are as well chiral objects - experience also
helical trajectories. This observation can be generalized to any chiral objects sedimenting
in a viscous fluid.

1.3 Effect of confinement by bounding walls

We have seen that the interaction of a fiber with a boundary can lead to rich dynamics
(see section 1.2.2). Here, we review studies where a fiber is confined between the top
and bottom walls of a channel and we primarily focus on the role of confinement on the
particle trajectory and dynamics.
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1.3.1 Confinement due to top and bottom walls

Semin and co-authors [I1, 12] investigated, both experimentally and numerically, the
influence of confinement by top and bottom walls on the drag force acting on a cylinder
held at a fixed position in a viscous flow.
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Figure 1.5: Experimental setup used for the study of confined fibers between two parallel
walls. Left and right panels correspond to the configuration where the fiber is respectively
parallel and perpendicular to the flow direction. Figure extracted from [11].

In these studies a cylinder is placed in a rectangular slit either parallel or perpendicular
to an external viscous flow. Figure 1.5 illustrates the flow geometry. The slit of height hg
is made from two vertical walls of width W. hg being much smaller than W the flow is
plug-like. The cylinder has a diameter d and the authors define the confinement of the
system [ as the ratio d/hg.

Additionally to the experimental investigation of the parallel fiber 2D numerical sim-
ulations are performed. In these simulations the fiber is considered as infinitely long.
However, for a perpendicular fiber a 3D numerical simulation is necessary to account
for the experimental results. Indeed, 2D simulations which assume a uniform flow along
the fiber length cannot describe the flow between the cylinder edges and the lateral walls
which have an important impact on the drag forces. As expected for a low Reynolds num-
ber flow, the drag force exerted on the cylinder is proportional to the flow velocity and the
viscosity of the fluid allowing the drag coefficient to be defined. The evolution of the drag
coefficient for parallel and perpendicular fibers as a function of the confinement is shown
in Figure 1.6. In both cases the drag coefficient increases for an increasing confinement.
For a parallel cylinder this evolution is linear, whereas, for a perpendicular cylinder the
increase is exponential and eventually diverges for a confinement 5 — 1. At Reynolds
numbers larger than 20, the central position of the fiber between the two confining walls
becomes unstable and the fiber starts to oscillate between them [28]. A similar observa-
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Figure 1.6: Experimental (symbols) and numerical (lines) results of the evolution of the
drag coefficient as a function of the confinement 3 for the parallel fiber (left) and for the
perpendicular fiber (right). g is defined as 3 = d/hg where d is the cylinder diameter and
ho the channel height. In the two cases the drag coefficient increases with the confinement.
For the parallel configuration this evolution is linear. For the perpendicular configuration
the increase is exponential and eventually diverges for 5 = 1. Figure extracted from [11].

tion has been made for fibers, free to rotate and to move vertically in an upward flow,
in a confined geometry [29]. The authors of [29] reported a critical Reynolds number of 30.

The understanding of the effect of the confinement on the dynamics of single fibers was
also the main purpose of the studies of Berthet and co-authors [13, 14]. They investigated
the transport of free fibers confined by top and bottom walls and transported by an
external viscous flow in microfluidic channels. As in the work of Semin et al. [11, 12],
they focus their study on two situations: a fiber oriented parallel to the flow direction
and a fiber oriented perpendicular to the flow direction. These two situations are shown
in Figure I.7.

side view side view
for Tou

) us
0 0

Figure 1.7: Geometries of the system for the parallel fiber (a) and perpendicular fiber
(b). Due to the Hele-Shaw geometry of the channel the flow in the Ozy plane is plug-like
expect in the direct vicinity of the fiber and the lateral walls and Poiseuille-like in the
plane Oxz.
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In these studies the fibers have square cross sections of width and height h ~ H,
with H being the channel height, and are always located in the middle of the channel
height. The confinement of the system is § = h/H. Due to the Hele-Shaw geometry
of the channel, the flow in the (Ozy) plane is plug-like and Poiseuille-like in the (Ozz)
plane.

When an external flow is imposed, the fiber is transported at a velocity Viper propor-
tional to the mean velocity of the external flow Vipean. The viscous friction occurring in
the gaps between the fiber and the channel top and bottom walls slows down the fiber.
Its velocity is thus always smaller than the maximal flow velocity %Vmean. Moreover, the
fiber acts as a moving obstacle and it impacts the external flow differently as a function
of its orientation. A perpendicular fiber deforms the streaklines over a distance ¢ (the
length of the fiber), whereas a parallel fiber deforms the streaklines over a typical distance
h (the width of the fiber). As a consequence, the ratio between the fiber velocity and
the mean flow velocity Viper/Vimean strongly depends on the fiber orientation. Figure 1.8
shows the evolution of this ratio for the two situations - parallel and perpendicular fibers
- as a function of the confinement. The results shown are obtained experimentally and
using 2D and 3D numerical simulations based on finite element methods.
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Figure 1.8: Experimental (open symbols) and numerical (filled symbols) rescaled fiber
velocity as a function of the confinement for parallel (red) and perpendicular fibers (black).
Figure extracted from [13].

For parallel fibers, 2D and 3D descriptions yield similar results, whereas, for perpen-
dicular fibers, the two simulations show discrepancies for large confinements. The origin
of these differences is the same as in the study of Semin et al. [11]: 2D simulations which
assume that the fiber is infinitely long (i.e. that the flow in uniform along the fiber length)
cannot describe the flow around the fiber edges.

Figure 1.8 shows that for the two configurations the fiber velocity decreases nonlinearly
with the confinement. Here, contrary to sedimentation, the velocity of a perpendicular
fiber is larger than the velocity of a parallel fiber. Note that for low confinements the
fiber velocity is the same for both orientations and equal to the maximum velocity of the
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Figure 1.9: Superposition of successive images for a parallel fiber (left), a perpendicular
fiber (middle) and a fiber oriented at 45° to the flow direction (right). The confinement
is # = 0.8. The fiber is 200um long. Figure extracted from [13].

Similarly to sedimentation, the velocity anisotropy leads to drift of a fiber that has an
arbitrary orientation with the flow direction. But as the velocity anisotropy is inverted
compared to sedimentation (here V| < VL whereas V| > V| in sedimentation), the di-
rection of the drift will be the opposite compared to the one observed for a sedimenting
fiber. The velocity anisotropy and the resulting drift of a transported fiber are visible in
Figure 1.9.

In our work, we use the same flow geometry as Berthet et al. [13]. Hence, we largely
inspire ourself from reference [13] to describe the flow around transported fibers in confined
geometries.

1.3.2 Effects of lateral walls

As previously mentioned, the presence of the fiber induces strong flow perturbation over
distances that can be comparable to the fiber length. Thus, one expects the lateral
walls to interact hydrodynamically with the fibers. Such interactions of the channel
lateral wall with the fibers transported in confined microchannels have been investigated
experimentally and numerically by Nagel et al. [30].

Figure 1.10: Experimental chronophotographies of fiber trajectories exhibiting (a) glanc-
ing, (b) reversing, (c) wiggling and (d) pole vaulting. The external flow is directed from
left to right. Figures (a) and (b) are extracted from [19], and Figures (c) and (d) are
taken from [30].
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Figure 1.10 shows four different families of trajectories. The trajectories presented
in Figures 1.10 (a) and (b) correspond, respectively, to glancing and reversing of a fiber
approaching a wall. These two trajectories are very similar to the ones observed for a
sedimenting fiber approaching a wall and, here as well, the observation of either glancing
or reversing is related to the initial orientation of the fiber. If the angle between the flow
direction and the orientation of the fiber in the middle of the cell is small (case (a)) the
fiber mostly exhibits glancing. Whereas, if the fiber is almost perpendicular to the flow
direction (case (b)), it exhibits reversing. Here, due to the presence of two lateral walls,
the fiber first drifts toward one wall, interacts with it, escapes from the wall vicinity,
drifts and approaches the other wall. The sequence is repeated leading to oscillations of
the fiber inside the microchannel. If the fiber is placed horizontally (6 ~ 0) in the direct
vicinity of a wall it can exhibit other kinds of trajectories: wiggling and pole-vaulting as
shown in Figures 1.10 (c) and (d). For these two types of trajectories the fibers enter the
boundary layer very close to the lateral walls.

1.0

Wiggling —__
asing Fix points

Pole vaulting )
. Glancing 7
Reversing /

0.5

Excluded region N\
due to fiber-wall contact

TC180 90 0 90 180

Figure 1.11: Trajectory map in the configuration space spanned by orientation angle 6
and lateral position y. The physical accessible space is shaded in color. Figure extracted
from [30].

The full state diagram, spanned by the orientation angle relative to the flow direction
0 and the lateral position of the center of mass of the fiber y, is represented in Figure I.11.
It shows the four kinds of trajectories described above (orange: glancing, blue: reversing,
red: wiggling and green: pole-vaulting). This diagram has been obtained using a 2D
numerical simulation based on the resolution of the Brinkman equation and a model flow
profile in the gap between the fiber and the channel top and bottom walls. One obtains
the Brinkman equation by averaging the Stokes equation over the channel height. It
is particularly adapted for the description of porous media or confined flows. The flow
profile in the gaps is assumed to be a Couette-Poiseuille flow. The model used by Nagel et
al. has been used at many occasions in our work and is extensively explained in chapter
Iv.

The study of Nagel et al. [30] can be compared to the work of Uspal et al. [17].
Here, the authors investigated both experimentally and theoretically the trajectories of
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Figure 1.12: (a) Geometry of the channel and the particle. (b) Trajectories of particles
of varying symmetries. A symmetric particle oscillates between side walls. When the
symmetry is slightly broken, these oscillations are damped and the particle aligns with
the flow on the centerline on the channel. For a very asymmetric particle no oscillations
are visible (overdamped regime). Figure extracted from [17].

"dumbbell" particles (see Figure 1.12) transported by an external viscous flow in a confined
geometry. They bring to light that a symmetric dumbbell - a dumbbell composed of two
identical discs - which has one axis of symmetry oscillates along the channel similarly to
straight fibers. The same dynamics are also observed for contacting droplets transported
in confined geometries [31]. For asymmetric dumbbells, these oscillations are damped
and the object reorients toward an equilibrium orientation corresponding to the particle
aligned with the flow direction and in the center of the channel. The geometry of the
system and the particle trajectories are shown in Figure 1.12 (a) and (b). To model the
system, the authors used a two dimensional description of the flow supplemented by a
model of Couette flow in the gap between the particle and the channel top and bottom
walls. Lateral confinement has been taken into account by the mirror image technique

[32, 33].

More recently Bet and co-authors studied numerically the trajectories of fully asym-
metric particles composed of three disks of different diameters in the same channel and
flow geometry [341]. The study focusses on the temporal dynamics of the orientation and
position of the particle and on the trajectories of particles of different geometries (see
Figures .13 (a) and (b)). Figure .13 (a) shows that, after a transient regime, the particle
eventually reaches an equilibrium orientation. The fixed points visible in Figure 1.13 (b)
are signatures of these equilibrium orientations and also indicate that when the equilib-
rium orientation is reached the particle does not drift i.e. the particle also reaches an

equilibrium lateral position.

This last observation is in contradiction with the study of Ten Hagen et al. [25], previ-
ously mentioned, which shows that a sedimenting asymmetric L-shaped particle exhibits
a drift when it reaches its equilibrium orientation. Similarly to reference [25], we will see
in chapter VI that an asymmetric fiber transported in a confined viscous flow never reach
any equilibrium lateral position.
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Figure I.13: (a) The orientation € as a function of time ¢, for different particles geometry.
In the inset: sketch of the particle geometry. (b) Particle trajectories in the (6, y) phase
space for different trimers geometries. Figure extracted from [34].

1.4 Flexible fibers

In the last two sections, we presented studies on rigid particles sedimenting in a quiescent
fluid or transported in a confined geometry and we emphasized the coupling between the
shape of a particle and its trajectory. In the following section, we will focus on flexible
objects that can change shape while interacting with the flow.

1.4.1 The Euler-Bernoulli equation

The Euler-Bernoulli equation describes the deformation of a beam on which external forces
are applied. In the Euler-Bernoulli beam theory the beam is taken as a one-dimensional
object. The theory relies on two important assumptions [35, 36]: first, any section of the
beam that was plane before deformation remains plane after the deformation and any
section that was perpendicular to the neutral axis before deformation remains perpendic-
ular to the neutral axis after the deformation. Second, deformations remain small i.e. the
variation of the amplitude of deformation Ad over a distance Az verifies Ad/Azx < 1.
It is important to note that the expression of the Euler-Bernoulli equation given in the
following is only valid at leading order in deformation.

For the case, sketched in Figures I.14 (a) and (b), of a beam centered along the z-axis
and subject to a distributed load (force per unit length) f,(x) perpendicular to its axis,
the Euler-Bernoulli equation writes [35]

2 28(x
8a$2 (Ela 3(1(2 )> = f,(2), (L15)

where 6(z) denotes the beam deflection, E is the Young’s modulus and I = [ z2dydz is
the moment of inertia of the beam. For a beam of rectangular cross section of height h
and width w (see Figure 1.14 (c)), the moment of inertia is I = wh3/12.
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Often, the product EI, called flexural rigidity or bending modulus, is constant and
equation I.15 reads

046 (x)

BI—"5 = f,(@). (L.16)

The Euler-Bernoulli equation is a linear fourth order differential equation. As a con-
sequence, the solution of the equation needs four boundary conditions. If the beam end
is free then ¢’ = 0 and ¢” = 0, if it is clamped then 6 = 0 and & = 0, if it is subject
to a point force F' orthogonal to the beam axis ¢/ = F/EI and to a point torque M
8" =M/EI.

The situation where the beam is subject to a load transverse to its longitudinal axis,
is called bending. In this case, the deflection of the beam is proportional to the amplitude
of the load.

(a) (d)
I I I Y, > > > > > > > > Fa
_ _r
10 X 9 xT \1’1
2 ¢ " (c) g ¢

Figure I.14: (a) and (b): bending of a fiber under a transversal load f,(z). (a) Initial
configuration and sketch of the external load. (b) Sketch of the deformed beam. (c)
Rectangular cross section of the beam. (d) and (e): buckling of a beam subject to a
longitudinal load f,(z) and a longitudinal point force F,. (d) Initial configuration and
sketch of the load and point force. (e) Sketch of the buckled beam.

When the beam is subject to a distributed longitudinal load f,(x) and/or a point
force oriented parallel to its axis F;, the deformation of the beam occurs only for large
enough loads and is due to an instability named buckling. This situation is sketched in
Figures 1.14 (d) and (e). In this case, the Euler-Bernoulli theory reads [35]

gz 4 fule) =0, (L17)
4 xr X
pr? 0(1(4 ) _ % (T(x) 8‘;; )> 0, (118)

with T'(z) a scalar quantity, named tension, corresponding to an internal force within the
beam. It is a Lagrange multiplier ensuring the length conservation of the beam. The
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boundary condition needed to determine the tension is given by the projection of the
longitudinal forces applied on the beam tip F, on n, the outer-pointing normal vector
at the tip surface. In the case sketched in Figures 1.14 (d) and (e), T'(z = ¢) = —||Fx]|-
Negative values of the tension correspond to situations where the beam is compressed,
whereas positive values result in a stretched beam. Buckling only occurs for negative
values of the tension and for ratios —7Ty¢?/EI, with Ty the typical magnitude of the
tension, larger than a critical value (instability threshold), which depends on the force
distribution and on the boundary conditions.

1.4.2 The elasto-viscous number

We now consider an elastic fiber subject to viscous forces. As we have seen in section
1.2.1, the viscous forces per unit length are proportional to yv with u the viscosity of the
fluid and v the typical velocity of the fiber. Their exact form, fuv, with f a dimensionless
vector, will depend on the specific geometry of the flow. On the other hand, the elastic
force per unit length scales with ET/¢3, where E, I and ¢ are respectively the Young’s
modulus, the moment of inertia and the length of the fiber. Thus, one can define a
dimensionless number i, called elasto-viscous number, which compares the viscous forces
and the elastic restoring force

~_,uvf?’
F="Er"

(1.19)

Another definition gives the elasto-viscous number as a function of the shear rate
o v/l

oAt
H="Er"

(1.20)

According to equation 1.20 the elasto-viscous number can also be interpreted as the
ratio between the characteristic relaxation time of the fiber 7 = puf*/(EI) and the char-
acteristic time of the flow 471,

In the case where there are only transverse viscous forces (bending), the larger the
elasto-viscous number the larger the deformation. Thus, to increase the deformation of
a fiber one can either increase the fiber length, the flow velocity or the fluid viscosity or
decrease the fiber width, its height or its Young’s modulus.

If the fiber is subject to longitudinal compressive forces, there is a negative tension
inside the fiber and, as previously mentioned, buckling occurs if the quantity —7p¢?/ET
is larger than an instability threshold. According to equation 1.17, ||Tp|| o« vuf, and
~Tol?2/EI ~ vuf3/EI = fi. Thus for small elasto-viscous numbers the fiber remains
undeformed, and for large enough elasto-viscous numbers the fiber buckles.

1.4.3 Sedimentation of flexible fibers

When a flexible fiber sediments in a quiescent fluid, a competition between viscous forces
and elastic forces leads to a complex deformation and reorientation of the object impacting
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Figure 1.15: Sedimentation of flexible fibers. (a) Trajectory of the center of mass of
a fiber. The fiber shape during sedimentation is shown in the inset. Extracted from
[37]. (b) Chronophotographies of a flexible fiber released with different initial conditions.
Extracted from [38]. (c) Sketch illustrating the origin of bending. Extracted from [37].
(d) Final shape of the fiber for different values of the elasto-gravitational number B
(B = Fyl?/(EI) with Fy the gravitational force). The elasto-gravitational number is a
dimensionless parameter which compares the gravitational force and the elastic restoring
forces. Extracted from [38].

its trajectory. In the following section we review studies on the sedimentation of flexible
fibers.

The first investigation on sedimenting flexible fibers has been done theoretically by Xu
et al. [39] in 1994. This work has been followed by a numerical study by Li et al. describing
the fiber deformation and its trajectory using the slender body theory [37]. Surprisingly,
to our knowledge, the first experiments on sedimenting flexible fibers have been published
only recently [33]. As already discussed for rigid fibers, as the object evolves at low
Reynolds number, its weight is perfectly balanced by the viscous drag. But, because of
the finite length of the fiber, this viscous drag varies along the object i.e. edges effects
lead to inhomogeneous hydrodynamic force distributions along the fiber. This causes
deformation and rotation of the fiber. Moreover, as already discussed, a consequence
of the drag anisotropy is a coupling between orientation and drift. Thus, as the fiber
rotates and deforms, this coupling leads to complex trajectories (see Figure 1.15 (a)).
The fiber rotates and deforms and eventually reaches an equilibrium configuration. This
configuration corresponds to a bent fiber, whose shape is symmetric about the gravity axis,
sedimenting at constant velocity. As we can see in Figure 1.15 (b) the final configuration
of the fiber does not depend on the initial configuration.

The equilibrium shape of the fiber can be understood qualitatively as follows: let
us model the fiber as composed by an assembly of spheres. As previously mentioned in
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Figure 1.16: (a) Sketch illustrating the origin of the tension and buckling in the vertically
oriented fiber. (b) Illustration of the tension distribution in the filament: the front half
of the fiber is compressed and the rear half of the fiber is stretched. If the fiber is flexible
enough compression leads to buckling. (¢) Numerical chronophotographies of a buckling
fiber. (a) (b) and (c) are extracted from [37].

section 1.1, two spheres sedimenting close to each other are faster than an isolated sphere.
Thus, we expect the spheres on the edges, which have fewer neighbors, to be slower than
the spheres in the middle. As a consequence, the fiber bends. This idea is sketched in
Figure 1.15 (c).

At each moment the drag force balances the gravitational force, and it is thus ap-
propriate to define the gravitational number, B = F,¢?/(EI) with F, the gravitational
force, as the control parameter. Figure 1.15 (d) shows the increase of the amplitude of the
deformation for increasing B. For large B the deflection of the fiber reaches a maximal
value close to half the fiber length.

The case of a vertical fiber sedimenting in a quiescent fluid is very different. In order
to gain insights on the dynamics of this system, Li and co-authors [37] proposed to model
the fiber as a column of spheres (see Figure 1.16 (a)). Again, the spheres placed in the
middle of the fiber are faster than the spheres on the edges of the fiber and one expects
the fiber to be compressed in the leading part and stretched in the rear part. The fiber
is thus subject to an inhomogeneous drag leading to an inhomogeneous tension. If the
elasto-gravitational number B is large enough, the tension leads to a buckling of the fiber
in its leading half. Figure 1.16 (b) shows the tension distribution in the fiber and its
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Figure I.17: (a) Sketch illustrating the channel and fiber geometry. (b) Visualization of
the flow pathlines around a bent fiber. Scale bars are 100 um. Figures (a) and (b) are
extracted from [10]. (c) Superposition of images showing a flexible fiber deformed by an
external viscous flow of varying velocity. The higher the velocity of the flow, the larger
the deformation. Scale bars is 100 um. Figure (c) is extracted from [11].

buckled shape. It is an unstable state and buckling is followed by a fast reconfiguration of
the fiber through the previously described equilibrium configuration (see Figure 1.16 (c)).

1.4.4 Flexible fibers in confined geometries

In the following section we review two studies investigating the deformation of flexible
fibers in a confined geometry [10, 41]. The fibers are confined by top and bottom walls
i.e. they occupy almost all the channel height.

Figure 1.17 (a) shows the geometry of the system studied by Wexler and co-authors
[10]. A flexible fiber is clamped at one edge and free at the other. Upon application
of an external viscous flow, the fiber bends. A picture of the bent fiber is shown in
Figure 1.17 (b). In this system, the flow around the particle is complex and its three
dimensional nature is visible in Figures 1.17 (a) and (b). Part of the flow goes through
the gaps between the fiber and the channel top and bottom walls while another part of
the flow circumvents the obstacle. The authors observed that in the limit of low flow
velocity, the deformation of the fiber evolves linearly with the external flow velocity. To
explain their observations and to derive the deflection of the fiber as a function of the
flow velocity they used a two dimensional model. In the model, the fiber is considered as
a porous object allowing the flow to pass through the fiber. The flow around the fiber is
modeled as a Hele-Shaw flow.

The study of Duprat et al. [!11] investigates, both experimentally and theoretically,
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the deformation by an external flow of a fiber whose both ends are simply supported.
A picture of the experiment is shown in Figure 1.17 (c): a flexible fiber is placed in
two slots, an external flow is imposed, which deforms the object. The amplitude of the
deformation is observed to be proportional to the elasto-viscous number fi. The authors
model the flow around the fiber using the lubrication theory which enables them to derive
the forces per unit length applied on the fiber. Using Euler-Bernoulli theory Duprat et al.
obtained a very good prediction of the shape of the bent fiber and its deflection amplitude.
This situation is used as a measurement method to characterize the Young’s modulus of
hydrogels. This last point will be developed further in chapter II.

1.4.5 Shear and compressive flows

() | (b)
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=

Figure 1.18: (a) Decomposition of a simple shear flow into a rotating flow and a pure
straining flow oriented at 45° with the flow direction. (b) Jeffery orbits in a shear flow.
The colored lines correspond to the trajectory of one edge of an elongated object during
a Jeffery orbit. Depending on the initial orientation of the elongated object it will have
in-plane rotation (red curve) or will exhibit a "kayaking" motion (orange, green and purple
curves). Extracted from [20].

We primarily focused our literature review on the evolution of particles in quiescent
fluids or in plug flows, but other flow geometries lead to very interesting particle dynam-
ics as well. Let us take the example of the simple shear flow. It can be decomposed
into a rotating flow and a pure straining flow oriented at 45° with respect to the flow
direction (see Figure 1.18 (a)). When an elongated object is placed in a simple shear
flow, it translates with its center of mass flowing at the velocity of the fluid. At the
same time it experiences periodic rotations and its tips follow orbital trajectories called
"Jeffery orbits". These trajectories are named after George Barker Jeffery who gave a
mathematical description of these motions in 1922 [8]. The rotating flow, together with
the drag anisotropy of an elongated object, are at the origin of these "Jeffery orbits". The
trajectories of the fiber tips, for different initial orientations of the fiber, are shown by
the colored lines in Figure 1.18 (b). If the fiber is perpendicular to the axis of vorticity of
the flow (Oz in Figure 1.18 (b)) it will rotate in the plane (Oxzy) (see the red curve), but
if the fiber axis is neither perpendicular nor parallel to the vorticity axis it will exhibit a
"kayaking" motion (see orange, green and purple orbits). Generalizations of these results
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in more complex flow geometries have been done in the cases of shear flows and Poiseuille
flows near a boundary [12, 13].

When the particle is oriented at 45° with the flow direction, it experiences a compres-
sion from the straining flow, which can lead to buckling (see Figure 1.19). The situation
presented here is very different from the situations encountered in our studies where we
deal with Hele-Shaw flow geometries and thus have a plug-like flow in the (Oxy) plane
and a Poiseuille-like flow in the (Ozz) plane (see Figure 1.7). Thus, we do not detail this
argument. Curious readers are invited to refer themselves to the extensive bibliography
on the phenomenon of buckling of flexible fibers in simple shear flow [15, 16, 47, 48, 44].

Figure 1.19: Buckling of an actine filament in a simple shear flow. Top: experiments,
bottom: numerical simulations. Figure extracted from [11].

1.5 Conclusion

In this chapter, we reviewed studies on the dynamics of isolated rigid or flexible fibers
evolving in viscous fluids and flows. A lot of work has already been performed to describe
and model the transport of rigid fibers by an external viscous flow in confined geometries
[13, 14, 30]. The role of the flexibility has, however, not clearly been addressed. Investiga-
tions on the deformations of flexible fibers in such geometries mainly dealt with fibers held
at a fixed position [10, 11]. Thus, in our study, we will focus on the situations of freely
transported flexible fibers oriented either perpendicular or parallel to the flow direction.
Contrary to Berthet et al. [13] and Nagel et al. [30], in our investigations we will look at
force distributions along the fiber length and not only at integrated quantities.

When flexible fibers are transported in confined geometries, their shapes change and,
as we have seen in this review, these shape variations impact the trajectories. Thus,
another aspect of our work will focus on the coupling between the shape of a model
rigid fiber and its trajectory. In our studies, motivated by the fact that no experiments
have been carried out on the dynamics of fully asymmetric fibers transported in confined
geometries, we will primarily investigate the dynamics and the trajectories of "L-shaped"
particles.
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Chapter ||

Materials and methods

The aim of this work is to study the dynamics of isolated fibers transported by an external
flow in a confined geometry. Special focus is laid on the investigation of the role of the
shape and of the flexibility of the fibers, facing the necessity of using fibers of well-defined
and reproducible shape and mechanical properties.

The introduction of microsized objects into microchannels faces different difficulties.
Indeed, besides the low variety of commercial micro-particles, the introduction of such
an object into a microfluidic channel can lead to clogging of the setup in regions where
constrictions are present. Moreover, the manipulation of single particles of this size to
place them in the desired position and orientation can be extremely difficult.

In this work we use a technique developed in the group of Patrick Doyle at MIT [15, 16],
that consists in creating the particles directly in situ using a photolithography technique,
which is already well mastered in our group [13]. It allows for an excellent control on the
particle geometry, orientation and position inside the microchannel. In this chapter, we
describe the experimental method of fabrication of the fibers, the different options chosen
to flow them and the protocol used to tune their mechanical properties in order to obtain
very flexible fibers.

25
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I1.1 Fiber fabrication

11.1.1 Particle fabrication principle

In order to control the position, shape and mechanical properties of the hydrogel particle,
we use the so called "stop-flow microscope-based projection photo-litography method"
[15, 16]. A schematic of this technique is shown in Figure II.1 (a).

(a)
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&5

shutter
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Figure II.1: (a) In situ fabrication of fibers using a microscope-based projection lithog-
raphy technique. UV-light is projected into the channel through a fiber-shaped mask,
polymerizing the photosensitive solution inside the channel. (b) Examples of lithography
masks.

With an inverted microscope equipped with a UV-source, we expose a polydimethyl-
siloxane (PDMS) channel filled with a photosensitive solution, composed of an oligomer
and a photo-initiator, by flashes of controlled duration. The wavelength emitted by the
source needs to match the excitation wavelength of the photo-initiator in order to get
crosslinking. A mask, consisting of a black disk with any 2D shape drawn in trans-
parency (see Figure II.1 (b)), is placed in the path of the UV-light, in the field stop
position of the microscope. Hence, by focusing the UV-light in the center of the channel
an hydrogel particle is fabricated.

The polymeric fibers are fabricated at zero flow rate and we can control the geometry
of the hydrogel particle using two different methods. The first one simply consists in
using a mask with the desired 2D shape of the particle drawn on it. The second one
takes advantage of a motorized stage that can be controlled using a Labview program:
a long pulse of UV-light pass trough a dot shaped mask while the microscope stage
moves and literally draws the particle. In order to obtain particles with homogeneous
mechanical properties with this process, we ensure a constant velocity of the stage during
the fabrication of the fiber. Hence, each portion of the fiber is illuminated for the same
amount of time. This method is well adapted for the fabrication of long particles of
simple geometries, whereas the first technique allows for the fabrication of objects of
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more complex shapes but smaller dimensions.
As we project the image of a 2D object in a 3D channel the hydrogel particle has a
rectangular cross section.

PDMS
(

( (
09 diffusion f—\

h  inhibition layer

b

( CPDMS (

Figure I1.2: Sketch of the cross section of the microfluidic chip and the hydrogel particle.
The microchannel is entirely made of PDMS. PDMS is porous to oxygen, which diffuses
through the channel. As a result, two layers saturated in oxygen appear on the top and
on the bottom of the channel. Because the oxygen inhibits the cross-linking reaction the
hydrogel does not occupy all the channel height. The height of the inhibition layer is
constant and equal to 6 £+ 1.6 um.

Due to the permeability of PDMS to oxygen, which inhibits the polymerization, a
non-polymerized inhibition layer of constant thickness is left along the top and bottom
walls of the channel [16]. These layers are illustrated in Figure I1.2. The presence of the
inhibition layers is particularly important to our purpose: first, it allows us to flow the
particle in the channel (there is no adhesion between the particle and the channel top and
bottom walls), and second, because of their constant thickness, it allows us to tune the
height of the fiber by changing the channel height. The mask being fixed, we control the
particle position by adjusting the position of the channel on the microscope stage.

Figure I1.3 shows different geometries of particles created using the stop-flow microscope-
based projection photo-litography method. The long fibers shown in the center of Fig-
ure I1.3 are fabricated using the second method (moving stage method) and the others
using the first method (fixed stage method).

Note that in order to fabricate very long fibers one can also use the technique presented
in references [19, 50, 51] which works by illuminating a jet of photosensitive solution with
a continuous and fixed UV-spot.

11.1.2 Fabrication protocol
a) The experimental setup

We adapt the stop-flow microscope-based projection photo-lithography method on our
setup using an inverted microscope Zeiss Axio Observer equipped with a UV-light source
(Lamp HBO 130W) and a x5 EC Plan NEOFLUAR objective or a x10 ULTRAFLUAR
objective. The exposure time is precisely controlled using an electronic shutter (V25,
Uniblitz) coupled to an external generator (Agilent 33220A). The mechanical response
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Figure 11.3: Examples of particles fabricated using the stop-flow microscope-based pro-
jection photo-lithography method. All the particles are fabricated in the absence of flow
inside the channel. The different shapes are obtained using different masks or by moving
the microscope stage in different ways.

time of the shutter is 10 ms. A band pass filter (11004v2 Chroma) centered at A = 365nm
with a bandwidth of 10 nm is placed in the path of the UV-light just before the lithography
mask.

Microchannels are made with polydimethylsiloxane (PDMS, Sylgard 184, Corning)
and produced from molds fabricated using a micro-milling machine (Minitech Machinery)
or traditional soft lithography technics. They are bonded to a cover slide, spin-coated
with a thin layer of PDMS, in order to ensure identical boundary conditions on the four
walls. The fabrication protocol of the channels is detailed in the appendix A. The channel
is then placed on the motorized stage of the microscope (ASI MS-2000-500).

b) Channel geometry

We use rectangular cross section channels of height much smaller than width. The aspect
ratio, width over height, is between 10 and 100. The channel height is a few tens of
micrometers, whereas the width is typically one millimeter. The length of the channel
is a few centimeters. Such a shallow geometry of the channel is imposed by the particle
fabrication technique. Indeed, the particle geometry is highly dependent on the channel
height: whereas the geometry of the fiber in the plane of observation is independent
of the channel dimensions, the height of the fiber, as we have seen previously, is solely
determined by the channel height.
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c) Mask design

We design the masks using Clewin or Adobe Illustator softwares. They are printed with
the highest resolution available (2400 dpi) at FGN Espace Numérique or at Institut Pierre
Gilles de Gennes. The masks are black circles of 2.5 cm diameter with the particle
geometry drawn in transparency in its center. Examples of particle masks are shown in
Figure II.1 (b).

d) Optical focusing

The fabrication method requires focusing UV-light onto the channel. Due to the chromatic
aberration of the optics the focusing distance is different for visible light and UV-light.
Practically, the channel will appear out of focus when UV-light is in focus. The "defo-
cusing" distance is found by fabricating particles in test channels with varying focus until
the edges of the particle appear sharp.

e) Oligomer solutions

In this work we use different photosensitive solutions which are all composed of the three
following elements:

e the oligomer: polyethylenglycol diacrylate (PEGDA, Sigma). We vary the chains
length using two different PEGDA mean number-average molecular weights: M, =700
g/mol and M, =575 g/mol.

e the photoinitiator (PI): Darocur 1173 (2-hydroxy-2-methylpropiophenone, Sigma).

e the solvent: either water or a solution of polyethylenglycol (PEG, M,,=1000 g/mol,
Sigma, PEG1gg9) and water at the ratio 2:1 in volume.

The nature of the photoinitiator has been carefully chosen in order to match the light
source wavelength with the photoinitiator excitation wavelength. In all the photosensitive
solutions used in this work, we kept a constant ratio of PI, of 10% in volume, to keep the
height of the inhibition layers constant [16].

The mechanical properties of the hydrogel particle directly depend on the nature of
the photosensitive solution. We vary the relative quantities of oligomer and solvent in
order to tune the properties of both the fluid (viscosity, density...) and the hydrogel
(Young’s modulus, Poisson’s ratio...).

The viscosity of the different photosensitive solutions has been measured with an
Antoon Paar rheometer Physica MCR501, using a cone/plate geometry of 0.5° angle and
60 mm diameter. As illustrated in Figure I1.4, all the tested photosensitive solutions are
Newtonian fluids i.e. the viscosity is constant for varying shear rates. The shaded region
corresponds to sets of parameters where the resolution of the rheometer is low.

The measured viscosities for the different solutions used in our work are summarized
in table II.1.



30 CHAPTER II. MATERIALS AND METHODS

0
10 ' '
——0 % solvent —w—20 % PEGggq - water
—e—10 % water —v—30 % PEGjq - water
——20 % water —v—40 % PEG1000 - water
— —0—30 % water —v—50 % PEGjg - water
2 40 % water 60 % PEG1000 - water
¥ 50 % water 65 % PEGjgo - water
~ 70 % PEG]OOO - water
i -1 = L. AR ® & . E
> 10
-
=
0
Q
QO
2
>
10-2 1 1

10° 10’ 107 10°
shear rate v (s7!)

Figure I1.4: Viscosity of the photosensitive solutions used in the following studies as a
function of the shear rate. No solvent (black diamond) and different solvents (water
(circles) and a solution of PEGiggo-water at the ratio 2:1 in volume (triangles)) have
been used in different quantities. The region corresponding to a low resolution of the
rheometer is shaded in grey. In all the cases viscosity is constant as a function the shear
rate evidencing the Newtonian character of these fluids.

Volume fraction of solvent water PEGigpo-water (2:1 in volume)

0% =117 & 3 mPa-s =117 £ 3 mPa-s
10% u =101 + 3 mPa:s -

20% u =73 + 3 mPa-s u = 108 £ 3 mPa-s
30% @ =46 £ 3 mPa-s u = 107 £ 3 mPa-s
40% u =29 + 3 mPa-s u =116 £ 3 mPa-s
50% uw =17 + 3 mPa-s @ =112 + 3 mPa-s
60% - =121 + 3 mPa-s
65% - u = 107 £ 3 mPa-s
70% - i = 85 + 3 mPa-s

Table II.1: Viscosities of the different photosensitive solutions used in this work. —
symbols correspond to unmeasured viscosities.

11.1.3 Particle geometry
a) Two-dimensional geometry

The size of the particle depends not only on the size of the drawing on the mask but also on
the chosen objective. The objective makes the image of the mask into the microchannel,
hence the higher its magnification the smaller the particle.
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For all the objectives used in our studies we measure the linear relation between the
mask dimension and the particle dimension. The reduction factor (mask length over
particle length), the numerical aperture (INVA) and the theoretical resolution (D) of the
x5 and x10 objectives are given in table I1.2.

Objectives x5 EC Plan NEOFLUAR x10 ULTRAFLUAR
Reduction factor 1.9 3.9
Numerical aperture (N A) 0.16 0.2
Theoretical resolution (D) 1.1 pm 0.91 pum

Table I1.2: Properties of the different objectives used for the fabrication of the hydro-
gel particles. The wavelength (A\) used for the calculation of the resolution is 365 nm.
Resolution (D) is determined using the equations provided by the microscope objectives
manufacturer (Zeiss): D = \/(2 NA), with N A the numerical aperture of the objective.

It is easier to work with low magnification objectives, because they have a larger depth
of field, simplifying the focus of UV-light. Moreover, the depth of field of the objective
should be large enough to ensure homogeneous mechanical properties along the height of
the particle, orienting the user to prefer small magnification objectives.

We observe that the minimum achievable particle size is around 5 to 10 pm. Smaller
particles are not homogeneous and break when transported in the channel. The maximal
size of the particles depends on the choice of the method. If the microscope stage is
immobile during fabrication, the maximal size is determined by the width of the light
beam at the mask position, which is measured to be 3 mm. Thus, the maximal length
of a particle is for instance 1.5 mm using the x5 EC Plan NEOFLUAR objective. The
method that consists in moving the microscope stage during illumination allows for the
fabrication of much longer particles. Their sizes are thus only limited by the channel
length and width.

An example of particle fabricated using a combination of the two techniques is shown
in Figure I1.5. The sine shape is fabricated by moving the microscope stage in a con-
trolled way and the vertical lines are fabricated by illuminating the photosensitive solution
through a mask on which a vertical rectangle is drawn in transparency. The vertical lines
are 1.5 mm long and the sine shaped part is around 4 mm long.

b) Three-dimensional geometry

As we have seen in section II.1.1, the 3D geometry of the particle is determined by the
presence of inhibition layers close to the channel walls. Hence, the knowledge of the height
of these layers is of paramount importance for the control of the height of the particle.
According to Dendukuri et al. [16], the height of these thin regions is determined by a
competition between the rate of diffusion of oxygen in the photosensitive solution, the
rate of production of free radicals and the rate of reaction of the oxygen with radicals.
The inhibition layer thus depends on experimental parameters such as light intensity or
photoinitiator concentration but not on the channel height. In our experiments, we choose
to use a constant concentration of PI (10% in volume) and a constant light intensity in
order to have always the same thickness of inhibition layer.
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Figure I1.5: Hydrogel representing the PMMH logo fabricated using the stop flow
microscope-based photolithography method. Two techniques have been used to fabri-
cate the particle. The vertical lines have been fabricated using a mask on which a vertical
fiber was drawn in transparency and the sine shape has been fabricated using a dotted
mask and moving the microscope stage in a controlled way. Scale bar is 1000 pm.

The thickness of the inhibition layer is measured by the following method: we use a
channel of known height H, measured using an optical profilometer with a measurement
uncertainty smaller than one micrometer. In this channel, we fabricate a fiber whose
width is smaller than its height. If we then apply an external flow, we observe that the
fiber rotates until it turns on its side. In this configuration, the fiber height, h, can be
measured. Figure I1.6 (a) shows a fiber just after fabrication, and Figure I1.6 (b) shows
the same fiber after rotation. The height of the inhibition layer b is derived using the

formula b = %

Figure I1.6: Two pictures of the same fiber, (a) just after fabrication and (b) after it
turned on its side. We adjusted the dimensions of the fiber-shaped mask so that the fiber
height is larger than its width. The initial position (a) of the fiber is unstable and a small
perturbation makes the fiber rotate (b). Picture (b) allows for a direct measurement of
the fiber height h. Knowing the channel height H we derive the height of the inhibition
layer b = # Scale bars are 200 pm.
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In our setup we measured a constant inhibition layer of b = 6 £ 1.6um, both for the
x5 and x10 magnification objectives.

The knowledge of the inhibition layer thickness allows us to control one key parameter
of our studies, the confinement £, defined as the ratio h/H. Since the height of the
inhibition layer is constant the confinement is solely defined by the channel height. Thus,
we vary the confinement by changing the channel height. As sketched in Figure I1.7, an
increase (decrease) of the channel height leads to an increase (decrease) of the confinement.

g| hall D

Figure I1.7: Sketch of the cross section of the microfluidic chip and the hydrogel particle
highlighting the impact of the channel height, H, on the confinement, § = h/H. From
left to right the confinement increases.

In rare situations we wanted to tune the height of the inhibition layers. This can be
achieved by changing the protocol of the channels fabrication. If a plasma treatment is
used to bind the upper part with the bottom part of the channel, the concentration of
oxygen in the PDMS is decreased as well as the height of the inhibition layer. By using
this strategy we manage to reduce the inhibition layer height to a minimum of three
micrometers.

1.2 Flow control

Once the particles are fabricated, an external flow is imposed and the particles are trans-
ported in the channel. In the fluid-structure problems we aim to study, the control of
the flow is of crucial importance. We choose to use either a syringe pump or a pressure
controller to impose the flow. The main advantage of a syringe pump is the direct control
of the the flow velocity by setting the flow rate. The range of flow rate used in our studies
varies from a few nL/s to a few hundreds of nL./s. To accurately deliver such low flow rates
we use a Nemesys (Cetoni) syringe pump. The pressure controller allows us to impose a
pressure difference between the inlet and the outlet of the channel. The main hydraulic
resistance is due to the shallow channel and we assume that the inlet tubing and outlet
tubing lead to negligible pressure drops. Hence, the pressure difference is mainly applied
across the channel. This second method does not allow for a precise control of the flow
rate, but has much faster response time than the syringe pump systems.

The outlet of the channel is connected to a reservoir. In rare cases we measure the

flow rate by placing the reservoir on a precise scale and monitoring the evolution of the
weight.
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1.3 Data acquisition and image analysis

11.3.1 Image acquisition

We use dark field microscopy for the image visualization. This technique takes advantage
of the fact that the particle and the surrounding fluid do not have the same refractive
index, which allows for a visualization of the interface between the particle and the fluid.
An Hamamatsu Orca-flash 4.0 camera at a frame rate of few images per second (5 to
10 images per second) is used to record the particle transport. The microscope stage is
moved by hand to keep the particle in the field of view of the camera.

11.3.2 Fiber shape and position

The particle shape and position are obtained using standard image treatment procedures
(with ImageJ [52] and Matlab) and recorded as a function of time. The grey-level images
are binarized and we extract the centerline of the fibers using a skeletonization method.
An example of the picture of a bent fiber and its skeletonized shape extracted using our
MatLab routine is shown in Figure IL.8.

Figure I1.8: Superposition of a picture of a deformed fiber and its skletonized shape (red
line) obtained using standard image treatment procedures with ImageJ [52] and Matlab.
Scale bar is 200 pm.

11.3.3 Velocity measurements

Streaklines and velocity fields around a moving object can be gathered from experiments.
We place a suspension of beads into the photosensitive solution and keep the object in
the field of view of the camera while it moves. Figure I1.9 (a) shows the streaklines
around an hydrogel particle. It is a reconstructed image built from processing several
successive snapshots of the flow with suspended latex particles of 1 wm diameter, all
superimposed while keeping the fiber in the center of the image. The velocity field around
the fiber, shown in Figure I1.9 (b), is obtained using particle-tracking velocimetry (PTV)
techniques in the frame of reference of the fiber. Velocity is calculated by averaging
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the particles velocities on 64 x 64 pixels windows, and once the system has reached its
stationary regime, by averaging over time. The 10x ULTRAFLUAR objective used for
these measures allows us to image the full channel depth, the flow field obtained thus
corresponds to the depth-averaged velocity of the fluid.

z (um)

Figure 11.9: (a) Streaklines of the flow around a rigid fiber transported by an external
flow of velocity ug in the reference frame of the fiber. The mean fluid velocity is ug = 48
um-s~! and the fiber dimensions are £ = 528 +5 um, w = 67+5 um, and h = 49+ 3 pm.
Confinement is § = 0.82. Streaklines are obtained by visualizing 1 um diameter latex
beads flowing around the fiber with a 10x objective. Scale bar is 100 pm. (b) Depth-
averaged velocity field around the fiber obtained from the particle tracking by averaging
the particles velocities on time and on 64x64 pixel windows. The constant velocity of
the fiber has been added to get the velocity field in the reference frame of the laboratory.
The noise on the edges of the window field results from lack of data in these regions.

11.4 Mechanical characterization

In the previous sections, we have seen how to fabricate confined objects directly inside
microfluidic channels with an excellent control of their shape, orientation and position
using the stop flow microscope-based photo-lithography method. Once the particles are
created, it becomes important to characterize their mechanical properties. A major tech-
nical challenge of our study is to develop a robust protocol to fabricate flexible fibers. In
order to tune the bending modulus of a fiber there are two options: either playing with
its geometry (width, height) or with its Young’s modulus. In our study, we explored both
directions: section II.1 already explained how to control and vary the geometry of the
particle and this section aims to explain how to tune and measure the Young’s modulus
of the particle.
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11.4.1 Young’s modulus of PEGDA hydrogels

In order to decrease the Young’s modulus of the hydrogel we based our investigations on
the results presented in the paper of Duprat et al. [11]. In this study the authors presented
an experimental measurement technique of the Young’s modulus of fibers fabricated from
an oligomer solution composed of PEGDA M, = 575 g/mol and P.I. directly inside a
microchannel.

In their article Duprat et al. [11] showed that the Young’s modulus of an hydrogel
depends on different parameters such as the exposure time ¢y and the photo-initiator
concentration [PI].
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Figure I11.10: Evolution of the Young’s modulus as a function of the rescaled exposure
time ¢V [PI)'/2 for various [PI] concentrations (2, 4, 6, 8, 10 vol%). The increasing black

trry (P12
line is a fit of the experimental datas with an exponential function F ~ Ae g
The horizontal black line corresponds to the value Epqteqn = %, where R is the ideal

gas constant, T' the temperature (in Kelvin), p the density, and M,, the number average
molecular weight. From Duprat et al. [11].

Figure I1.10 shows the evolution of the Young’s modulus as a function of the rescaled
exposure time tyy [PI]l/ 2 for different exposure times t;y and different photo-initiator
concentrations [PI]. All the experimental measurements of the Young’s modulus rescale
to a master curve. For low exposure time the Young’s modulus evolves exponentially with
tUV[PI}l/ 2 until it reaches a plateau. The value of the plateau is given by Eplateaun = 3§§T,
where R is the ideal gas constant, T' the temperature (in Kelvin), p the density, and Mn

the number average molecular weight.

According to Figure I1.10, different options are possible to vary the Young’s modulus
of the hydrogel. For instance, a decrease of the photo-initiator concentration [PI] or of
the exposure time ¢y leads to a decrease of the Young’s modulus.
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11.4.2 Measurement techniques

Different techniques have been used to characterize the Young’s modulus of the hydrogels.
Here we briefly present them and focus on their advantages and their limitations.

a) In situ characterization

The in situ measurement of Young’s modulus has been developed by Duprat and coworkers
[41].

The principle of the measurment is illustrated in Figure II.11: in a channel with
regularly spaced slots (see Figure I1.11 (a)), the stop flow photo-lithography method is
used to fabricate a rectangular cross section beam inside a notch of the channel (see Fig-
ure II.11 (a) and (b)). When an external flow is imposed, the beam is pushed to the notch
edges. The liquid flows around the fiber and the resulting hydrodynamic forces (viscous
and pressure forces) deform the beam (II.11 (c¢)). The elasticity of the beam opposes
to the deformation. Due to the competition between these two forces (hydrodynamic
forces and elastic forces) the fiber will eventually reach an equilibrium deformation. A
measure of the beam deflection § (see Figure I1.11 (d)) allows for a direct access to its
bending modulus and thus its Young’s modulus. The main advantage of this technique
relies on the fact that the beam is surrounded by the photosensitive solution and thus the
measurement of the Young’s modulus takes into account the swelling of the hydrogel.
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Figure I1.11: In situ characterization of Young’s modulus technique: (a) Sketch of the
straight channel presenting regularly spaced notches. (b) Side view of the channel and the
fiber. The fiber has a rectangular cross section and is highly confined by top and bottom
walls. (c) Superposition of pictures showing the deformation of the beam as the flow is
turned on. Scale bar is 100 pm. (d) The fiber is supported on both edges and bent due
to hydrodynamic forces with a maximum deflection  located at its center.
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To derive the force per unit length acting on the fiber, Duprat et al. assume the flow to
be invariant to translation in the y-direction and they use the lubrication approximation
to describe the flow in the gaps between the fiber and the channel top and bottom walls.
The deformation is then determined using the Euler-Bernoulli equation (I.15) which is
well adapted for slender structures (w,h < ¢). The maximum deflection of the fiber is
given by:

J
0 = =ugA I1.1
EUO ) ( )
with E the Young’s modulus, u the viscosity of the solution, ug the mean flow velocity
4
imposed in the channel, and A = % a factor uniquely dependent on the fiber and

channel dimensions.
Note that the deformation reads
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In equation I1.2 the deflection § is proportional to the elasto-vicous number ji, previously
introduced in chapter I. This result was expected since the deflection of the fiber is due
to a competition between viscous drag and elasticity.

70

60 | 0

T 40t

=

o 301 L
20} ¥

10 +

0

0 0,05 0,1 0,15 0,2 0,25
up (mm-s!)

Figure I11.12: Maximum deflection § as a function of the external flow velocity for a
beam fabricated from a solution of 90 % of PEGDA M,, = 700 g/mol and 10% of P.I
illuminated during tyy = 300 ms through a x5 objective. The dark blue dots correspond
to experimental measurements and the light blue line is a linear fit. The corresponding
Young’s modulus is £ = 6.5 MPa £+ 2.0 MPa.

Figure I1.12 shows the evolution of the deflection d, as a function of the flow velocity
ug. As expected from equation I1.1, ¢ varies linearly with ug. The linear fit is represented
in light blue, and the slope of the curve gives directly the quantity pu/FEA. FE is then
determined after the measurement of A and of the viscosity of the solution .

We use this method to measure the Young’s modulus of gels fabricated from different
oligomer solutions. The hydrogels are created by illuminating the photosensitive solution
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during 600 ms, ensuring the Young’s modulus to have reached its maximal value i.e.
ensuring that the Young’s modulus is in the plateau regime shown in Figure II1.10.
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Figure I1.13: Evolution of the Young’s modulus as a function of the percentage of dilu-
tion in the photosensitive solution. Blue and purple symbols correspond respectively to
dilution with water and with a solution of PEGjggo-water (ratio 2:1 in volume). Measure-
ments are obtained using the in situ method [11] and are completed with macroscopic
measurements: cantilever experiment (triangles) and micro-indentation experiments (cir-
cles).

Figure I1.13 shows the evolution of the Young’s modulus as a function of the volume
fraction of solvent in the photosensitive solution. Two solvents are used: the blue points
correspond to a dilution with water and the purple points correspond to a dilution with
a solution of PEGyggp - water (ratio 2:1 in volume). For a dilution with more than 50%
of water, the oligomer solution starts to be biphasic and no hydrogel can be fabricated.

As visible in Figure 11.13, the larger the dilution, the smaller the Young’s modulus.
Dilution with solvents is thus an efficient way to decrease the Young’s modulus of our
hydrogels. For instance, diluting PEGDA M,, = 700 g/mol with 70% of solvent decreases
by almost three orders of magnitude the Young’s modulus of the hydrogel.

Note that for very low Young’s modulus (dilution with 60% and 70% of solvent) the
uncertainty of the measure is quite large. Indeed, such measures are very difficult to
carry out. The fiber, being extremely flexible, deforms a lot and eventually escapes from
the notches even for low flow velocities. Thus, only few measurements of the deflection
as function of the flow velocity are accessible, leading to inaccurate determination of the
Young’s modulus. The two points corresponding to dilution with 60% and 70% of solvent
have been obtained using a suspension of tracer beads of 1 pm diameter in the solution in
order to measure the mean flow velocity. Such an external measurement is required since
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at low flow velocity the flow rate imposed by the syringe pump can be slightly different
than the set point.
b) Cantilever experiment

To supplement the in situ measurements presented previously, we carried out cantilever
experiments.

Figure I1.14: Superposition of a picture of a filament fabricated from the 60% PEG1ggo-
water solvent bent by its own weight and a fit (red line) of its shape using equation II.3.
Scale bar is 1 mm.

The experiment relies on the study of the shape of a clamped-free cylindrical cantilever
beam bent under its own weight. This methods allows for a direct measurement of the
bending modulus of the fiber, from which we can extract the Young’s modulus. We fit the
shape of the beam, as it is illustrated in Figure I1.14, by the theoretical equation [53, 54]:

5(z) = %E% (2" - 46a® + 6022) (11.3)
with § the deflection of the fiber, F the Young’s modulus, p the density of the gel, g the
gravitational acceleration, d the diameter of the beam and /¢ its length.

The derivation of equation I1.3 is detailed in appendix B.

We use the numerical least squares method, with the Young’s modulus E as a unique
fitting parameter, to fit the shape of the beam.

The measurements of the Young’s modulus of hydrogels fabricated from solutions with
60%, 65% and 70% of PEGggo-water solvent are shown in Figure I1.13 (triangles). Each
point corresponds to an average value of the Young’s modulus obtained from experiments
in which we varied the filament length and its diameter. The error bars correspond to
the standard deviation of the different measurements.

Figure 11.13 shows an excellent agreement between the in situ (squares) and the can-
tilever (triangles) measurements.

The main advantage of this technique compared to the previous one stands on it
simplicity. Indeed, if the Young modulus is low, one can always decrease the filament
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length to ensure small deformations and apply the measurement method successfully.
But on the other hand, this technique does not take into account the swelling of the
gel. As the hydrogel is dry the impact of the solvent on the mechanical properties of the
hydrogel cannot be evaluated.

c¢) Microindentation method

A third measurement method - based on micro-indentation - has been used to verify
our results. These measurements have been done in the FAST laboratory with the help
of Ludovic Pauchard and Camille Duprat following the experimental protocol described
in reference [55]. Using a micro-indentation technique, sketched in Figure II.15 (a), we
determine the Young’s modulus of our hydrogels: a spherical tip of radius R initially
in contact with the hydrogel surface is driven inside the sample. The applied normal
force F' is measured as a function of the penetration depth p. Figure I1.15 (b) shows
indentation force-displacement (F-p) responses for an hydrogel obtained from a solution
of 50% PEGggo-water solvent.
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Figure I1.15: (a) Sketch of the indentation method. (b) Indentation force-displacement
response of an hydrogel obtained from a solution of 50% PEGgg-water solvent. The
black curve correspond to a fit of the unloading part of the curve by the Hertz formula
(equation II.4).

Measurements of the applied indentation force as a function of the penetration depth
are well described by the Hertz contact theory. The Young’s modulus is extracted by
fitting the force-displacement response in the unload regime using the Hertz formula:

F= g%;o?’/?\/ﬁ, (11.4)
with F' the loading force, E the Young’s modulus, v the Poisson’s ratio, p the penetration
depth and R the radius of the indenter.

For the fit shown in Figure I1.15 (b) we use the Poisson’s ratio determined experimen-
tally in chapter II1. We followed the same protocol for gels obtained from solutions diluted
with 40% and 60% of PEG1ggo-water. We do not have measurements of the Poisson’s ra-
tio of the hydrogel obtained from a dilution of the solution with 60% of PEGiggo-water
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and we took a value vgg = 0.16. The derived Young’s moduli are represented by circles
in Figure 11.13. Good agreements with the other techniques are obtained for the gels
diluted with 40% and 50% of PEGqggp-water. For the dilution with 60 % of solvent the
measured Young’s modulus is larger than the ones measured with the in situ and with the
cantilever techniques. This is due to low number of experimental points available in the
unloading regime. Indeed, the hydrogel being very soft, large penetration depths p were
obtained even for low normal forces F' and the force probe was not sensitive enough to
have reliable measurements. For the hydrogel created from a solution diluted with 70%
of PEGqggo-water solvent the indentation method was not conclusive, no normal force
measurements were achievable even for large penetration depths.

d) Compression tests

A last technique, relying on compression tests, has been used for the measurement of the
Young’s moduli of our hydrogels. We place a cylindrical sample of gel on the stage of a
rheometer and we impose a compression using a plate-plate geometry of 25 mm diameter.
The rheometer (Anton Paar Physica MCR501) cannot measure normal force larger than
40N corresponding to normal stress of ¢ = 81 kPa thus only low Young’s modulus can be
measured using this tool.
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Figure I1.16: Compression test. Normal stress as a function of the gap size between the
two plates of a rheometer.

We impose the gap, wait for 30 minutes until the normal force converges to its final
value and measure the normal force. Figure I1.16 shows the evolution of the normal stress
(normal force divided by the area of contact between the hydrogel and the indenter) as
a function of the gap height for an hydrogel fabricated from a solution diluted with 70%
PEGggp-water solvent. The slope of the curve is proportional to the Young’s modulus and
a linear fit of the measurements yields to a Young’s modulus EZ " = 35+ 1 kPa. A fair
agreement is obtained between this measurement and the measurements obtained with the
in situ technique E%L[;é”“ = 2148 kPa and with the cantilever technique E%%ﬂever =27+7
kPa.



Chapter Il

Novel in situ techniques to measure
mechanical properties

In the previous chapter, we presented the experimental technique used to fabricate hydro-
gel particles of well-defined shapes, positions and orientations. We also discussed one of
the major advantage of the technique which relies on the possibility to tune the mechanical
properties of these hydrogels. The discussion was followed by a presentation of the differ-
ent experimental techniques used to measure the Young’s modulus of the hydrogels. We
have seen that the measurement of low Young’s modulus faces many difficulties: low flow
velocities are needed for the in situ method, and in this regime the flow rate imposed by
a syringe pump is not reliable. A way to overcome this problem is to accurately measure
the flow velocity by particle tracking techniques. Such technique implies the use of tracers
(small beads of radius 1 um) that can impact the flow. This is especially true in the gaps
between the particle and the channel top and bottom wall which have a typical size of 6
um. The other techniques, such as the compression tests and the cantilever experiments,
allow for the measure of small Young’s modulus but do not take into account swelling
effects due to the presence of the uncured solution surrounding the hydrogel particle as
the hydrogel needs to be taken out of the channel in order to carry out the experiments.

To solve these experimental issues, we developed with Vincent D’Herbemont, master
1 intern in the group, a novel in situ technique to measure low Young’s modulus directly
inside the microchannel. This technique is inspired by the work of Wyss et al. [50]
and Li et al. [57, 58] who measured Young’s modulus from the deformation of hydrogel
spheres pushed into conical constrictions. Here we adapt this idea to geometries with
rectangular cross sections. This technique is used to measure the Young’s modulus of
very soft hydrogels.

To completely describe the elasticity of a material, one needs the measure of two quan-
tities among the shear modulus, bulk modulus, Young’s modulus, Lamé’s first parameter
and Poisson’s ratio. In this study, in addition to the measure of the Young’s modulus, we
develop an in situ measurement technique of the Poisson’s ratio that we apply to different
hydrogels.

43



44 CHAPTER III. NOVEL in situ TECHNIQUES TO MEASURE MECHANICAL PROPERTIES

I11.1 Measurements of Young’'s modulus

111.1.1 Description of the method

The determination of the Young’s modulus of the hydrogel relies on the following ex-
periment: a trapezoidal particle is pushed through a constriction by applying a pressure
difference AP (using a pressure controller). The particle moves into the constriction,
is compressed by the lateral walls of the channel and eventually reaches an equilibrium
position given by the competition of the elastic forces and the hydrodynamic forces (AP
being maintained constant). Figure III.1 shows a superposition of images of an initially
undeformed trapezoidal particle and the same particle pushed trough the constriction by
the external flow.

Figure III.1: Superposition of pictures of a trapezoidal particle just after fabrication and
when pushed through the constriction and compressed by the lateral walls. The red
dotted frame corresponds to the image of the mask used to fabricate the particle. Scale
bar is 500 pm.

When the equilibrium is reached, knowing the forces applied by the flow (viscous forces
and pressure forces) and measuring the compression of the particle in the y-direction we
can determine the Young’s modulus of the particle. We study one trapezoidal particle
taking a movie (one frame per second) of its displacement during at least 1000 s. Once
the particle has reached its equilibrium position, a last image is taken and then we flow
the particle out of the channel and start again the experiment. In some cases, at the end
of the experiment (i.e. after 1000 s), the particle is still moving but at very low velocity
(typically 0.05 um-s~!) and we consider this velocity to be zero.

For the sake of simplicity, we directly fabricate trapezoidal particles in the channel
by using a rectangular mask larger than the channel width (see the red dotted frame in
Figure III.1). This fabricates particles that have the exact same geometry as the channel:
symmetry towards the z-axis and same inclination angle 6 as the channel. Note that
the lateral wall being in PDMS there exists inhibition layers at the lateral sides of the
trapezoidal particle.

We use channels of height H = 574+ 3 pm or H = 103+ 3 pum and of small constriction
angle (6 < 10°). As described in chapter II the inhibition layer (gap between the particle
and the channel top or bottom walls) has a constant height b = 6 £ 1.6 pm. Thus, the
two channels lead respectively to particle heights h = 45+ 3 um or h = 97 £ 3 pm. We
then systematically vary the imposed pressure difference AP and the constriction angle
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and study the resulting deformation of the particle.

111.1.2 Modelling

The geometries of the channel and of the particle just after fabrication, are sketched in
Figures II1.2 (a) and (b) (dark blue particle). The particle is fully characterized by its
larger width yg, length zg and height h. When an external flow is imposed, the trapeze
advances in the channel over a distance Ax until it reaches its equilibrium position. At
equilibrium, the particle being compressed by the lateral walls, its geometry changes
leading to a new width y, length x; and height heq (light blue particle). Note that for
usual hydrogels the Poisson’s ratio is larger than zero. As a consequence h., is expected
to be larger than h and the gap height at equilibrium b, is expected to be smaller than
b. The flow in the gap between the particle and the channel top wall is sketched in
Figure IIL.2 (c).
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Figure IIL.2: Sketch of the experiment. (a) top view. (b) side view. (c) is a zoom of the
gap between the particle and the channel top wall. At equilibrium the flow in the gap
is Poiseuille-like. The particle just after fabrication is represented in dark blue, and the
particle at equilibrium is represented in light blue.

When the particle reaches its equilibrium position, it is subject to different forces:
a pressure force due to the difference of pressure between the front and the back of
the particle (Fap), a force due to the shear stress resulting from the flows in the gaps
between the particle and the channel top and bottom walls (Fgpear) and the force (Fyan =
F3' 4 Finf ) due to the walls normal reaction. The particle being subject to a zero total

wall wall
force, these three forces, sketched in Figure III1.2, balanced:

FAP + Fshear + Fwall =0. (IIII)

Note that we neglect friction forces between the particle and the channel lateral walls
due to the zero velocity of the particle. In other words we assume that there is no solid
friction between the hydrogel and the walls but only friction dependent on the particle
velocity [59, 60, 61].
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Due to the low constriction angle 6, we assume that the front and the back of the
particle have the same width. Thus, the pressure force Fap reads

Fap ~ APysheguy, (IT1.2)

with AP the difference of pressure across the object and u; the unit vector in the z-
direction.
Assuming Poiseuille flows (see Figure II1.2 (¢)) and a linear decrease of the pressure

in the gaps between the particle and the top and bottom walls (%—I; = _AP ) we obtain

Tf
the flow profile [21]
V2, AP [z 22
_ VAP (2 2 113

Thus, if the constriction angle € is small, Fgpear can be approximated by:

ou
Fhear ~ nyxfug

= beqy APuy. (II1.4)
z=0

Let us now look at the orders of magnitude. As seen previously, heq 2 h and beg S b.
Moreover, as mentioned in chapter II, the fabrication technique used here implies h > b.
Hence, heg > beqg and APybeq < APysheq. As a consequence one can neglect the shear
force Fgpear with respect to the pressure force Fap and equation III.1 can be simplified
to

Fap+ Fyan = 0. (ITL.5)

By symmetry the y-component of Fy, is zero.

Az tan6

Figure III1.3: Sketch of the equivalent system. The trapeze particle is decomposed in an
assembly of columns of varying heights compressed by two tilted planes. The undeformed
particle is represented in dark blue, and the compressed particle is represented in light
blue.

In order to derive the z-component of Fy,j, we consider an equivalent system con-
sisting in a trapeze particle decomposed in an assembly of columns of varying heights
compressed by two tilted planes. The situation is sketched in Figure I11.3. When com-
pression occurs, each column is subject to a stress oy, (stress in the y-direction, normal
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to the y-surface) and experiences a strain ey, (strain in the y-direction, normal to the
y-surface). Since each column has a different initial height, €,, and o, are functions of
the position z.

A displacement of the particle over a distance Ax leads in the equivalent system to
a compression of each column of Ay = —2Axtanf. As a consequence, a column placed
in z, which had an initial height yinit(z) = yo — 2z tanf has a final height ya,(z) =
Yo — 2xtan € — 2Az tan 0. Hence, the strain €, reads

_ Ymit(7) — yan(z) _ 2Aztand (IIL6)
Yin (2)  yo—2xtanf’ .

eyy(T) =

On the other hand, assuming that the hydrogel is an isotropic elastic material we can
write the stress-strain relations [(62]:

1

€xp = E[(l +V)0gy — V(0gg + Oyy + 022)), (ITL.7)
1

Eyy = E[(l +v)oyy — V(0gz + Oyy + 022)], (ITIL.8)
1

€y = E[(l + V)02, — V(0ga + Oyy + 022)], (I11.9)

with €;;, 0;; being respectively the strain and the stress in the particle in the ¢ direction
and normal to the j surface.

We introduce, here, a new quantity Ily.n: the stress due to the normal reaction of the
wall in the direction normal to the wall. It is related to oy, by the following equation:

o

Hyan = ——2£. I11.10

wall cos 0 ( )

This quantity allows for a simple expression of the z-component of the f