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Résumé

L’étude des problèmes d’interaction fluide-structure à bas nombre de Reynolds en situ-
ations confinées est une étape fondamentale pour comprendre la locomotion de micro-
organismes dans les sols ou dans des conduits biologiques ou biomédicaux mais aussi
les mouvements des longues fibres optiques introduites dans des fractures rocheuses et
utilisées comme sondes dans l’industrie pétrolière.

Dans ce travail de thèse, nous nous intéressons à la dynamique d’un système modèle,
constitué d’une fibre libre transportée par un écoulement laminaire dans une cellule de
Hele-Shaw. La hauteur de la fibre est voisine de la hauteur du canal et ce confinement a
des conséquences importantes sur le transport des fibres, qui présente des propriétés très
spécifiques, comme par exemple la dérive d’une fibre inclinée par rapport à l’écoulement.
En raison des frottements visqueux avec les murs supérieur et inférieur du canal, la fi-
bre agit comme un obstacle mobile et perturbe l’écoulement. Ces perturbations sont à
l’origine d’une anisotropie des forces hydrodynamiques qui amènent à la dérive et aux
oscillations de l’objet entre les murs latéraux du canal. La question à laquelle ce travail
répond est la suivante : comment la dynamique de transport d’une fibre initialement droite
et rigide est-elle modifiée lorsque celle-ci est remplacée par un objet plus complexe ? Nous
avons choisi d’étudier le cas de fibres flexibles transportées par un écoulement visqueux
en géométries confinées en nous concentrant sur les cas de fibres orientées perpendicu-
lairement et parallèlement à l’écoulement. Les fibres perpendiculaires se courbent, et nous
montrons que la flèche de la déformation est proportionnelle à un nombre élasto-visqueux.
Nous caractérisons quantitativement l’influence du confinement sur la déformation. Les
fibres parallèles se déforment et acquièrent une forme sinusoïdale dont l’amplitude décroit
au niveau des exterminées. Nous mettons en évidence expérimentalement l’existence d’un
seuil d’instabilité. Afin de compléter ce travail, nous avons choisi de nous intéresser au
rôle de la géométrie dans le cas de fibres rigides. En ajoutant un bras supplémentaire à
une fibre initialement droite nous obtenons une fibre en forme de L. Ce nouvel objet subit
sous écoulement une rotation jusqu’à une orientation d’équilibre suivie d’une dérive lors de
laquelle la fibre s’approche des murs latéraux du canal. Lorsque la fibre est su�samment
proche du mur, la dérive s’arrête et l’interaction entre l’objet et le mur est à l’origine
d’une dynamique très riche. De plus, en jouant sur leurs propriétés de symétrie, nous
montrons que nous pouvons contrôler de façon très robuste la trajectoire des particules.

Ces e�ets sont étudiés à l’aide d’expériences de microfluidiques combinées à des simu-
lations numériques basées sur la résolution de l’équation de Brinkman modifiée. Nous con-
trôlons la géométrie, l’orientation et les propriétés mécaniques des particules d’hydrogels
à l’aide d’une technique de micro-fabrication. Afin de caractériser le module d’Young et
le coe�cient de Poisson des hydrogels, nous avons développé deux nouvelles techniques
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de mesure in-situ permettant d’accéder à ces propriétés sans avoir besoin de les extraire
du liquide environnant.
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Abstract

Studying confined situations of fluid structure interactions in viscous flows is important
to understand locomotion of micro-organisms in soils or medical conducts as well as the
movement of long fibers in fractures, where they are used as in-situ probes in oil recovery.

Here we look at the dynamics of a model system, constituted by a fiber freely trans-
ported in a Hele-Shaw cell by pressure-driven flows. The fiber height is comparable to
the channel height and the confinement plays a fundamental role in fiber transport, which
shows specific characteristics, as for example lateral drift for fibers not aligned with the
flow. Due to viscous friction with top and bottom walls particles act like moving ob-
stacles and induce strong flow perturbations. These perturbations are at the origin of
anisotropy in the friction forces leading to lateral drift and oscillatory movement between
lateral walls. In this PhD we study how the transport dynamics are perturbed when the
particle becomes more complex than a straight and rigid fiber. Two degrees of complex-
ity have been studied in parallel: we either add flexibility to the fiber or we change its
shape and focus our investigations on their transport. Flexible fibers perpendicular to
the flow bend while parallel fibers deform in a sine shape that flatten out at the edges.
We show that the bending of the perpendicular fiber is proportional to an elasto-viscous
number and we fully characterize the influence of the confinement on the deformation
of the fiber. Experiments on parallel flexible fibers reveal the existence of an instability
threshold. Complementary, we change the shape of the fiber by adding an additional
arm, forming an L-shaped fiber. This induces fiber rotation until a stable equilibrium
orientation. Lateral drift is subsequently observed until the interaction with side walls
becomes important. Tuning the fiber asymmetry allows for a precise control of particle
trajectories, including the approach of side walls, robust even against small perturbations.

We investigate these e�ects with a combination of well-controlled microfluidics ex-
periments and simulations using modified Brinkman equations. We control the shape,
orientation and mechanical properties of our particles using micro-fabrication techniques.
To characterize the Young’s modulus and the Poisson’s ratio of the hydrogels we develop
two independent novel in-situ measurement methods.

Keywords

FIBERS, CONFINEMENT, VISCOUS FLOW, MICROFLUIDICS, MICROFABRICATION, HELE-
SHAW CELL, FLUID-STRUCTURE INTERACTION, FLEXIBILITY, COMPLEX SHAPE, SYM-
METRY, TRAJECTORY, IN-SITU MECHANICAL CHARACTERIZATION, YOUNG’S MOD-
UlUS, POISSON’S RATIO
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Introduction

Fibers and suspensions of fibers have been a paramount source of interest since many
thousands of years, as they are omnipresent in nature and of broad use in industry.
Paper fabrication [1] is the older of these industries. The invention of paper - thin sheets
fabricated from plantlike fibers - is attributed to China during 140 to 87 B.C. Papermaking
knowledge moved out from China to the Arabic world and arrived in Europe through Sicily
and Spain in the XIIth century. Figure 0.1 shows the entangled structure of fibers of a
paper sheet observed with scanning electron microscopy. The oil industry also makes
extensive use of fibers, from fiber suspensions used to seal leaks in rock fractures to
single optical fibers introduced into these rock fractures as in situ probes. In this case,
confinement due to the shallow structure of the fractures plays an important role in
fiber dynamics during insertion and during removal from the fracture. This situation of
confined geometries is also relevant to a broad range of fields. For example, in industries
where injection processes in porous media are needed [2] or in biomedical sciences where
there is a lot of interest in the locomotion of microorganisms such as sperm cells [3] in
soils or in medical conducts.

Figure 0.1: Scanning electron micrograph of ordinary paper made from wood pulp fiber.
Figure extracted from [4].

Situations where an object interacts with a flow are called fluid-structure interaction
problems: the flow makes the object, here a fiber, reorient, rotate or change its shape if
flexible and in return the presence of the object in the fluid has an impact on the flow.
The richness of fluid-structure interaction problems emerges from the non-trivial coupling
between the object reorientation or deformation and the flow perturbation.

These topics, of very fundamental interest, have also many practical applications: one
of those is, for instance, the sorting of particles which is of major importance in the

xiii
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biomedical field or in the food industry. To answer these particular questions, in the
last decade, a lot of e�ort have been put onto the design of microfluidic tools (hydraulic
channels of characteristic height of the order of tens to hundreds of microns) aiming to
sort particles according to their shapes or flexibility [5, 6, 7].

In this thesis, we primarily focus on fluid-structure interaction problems in confined
viscous flows (i.e. where inertia is negligible). Our work benefited from the rich literature
on the dynamics of isolated fibers in viscous flows. Such investigations started with
Je�ery [8], who described in 1922 the motion of an elongated object in a shear flow (more
details are given in chapter I). This work has been followed by studies on the dynamics
of sedimenting fibers in viscous fluids, which have largely profited from the slender-body
theory [9, 10] developed in the 70’s. This theory is used to approximate the flow field
around an elongated object and hence the force exerted by the fluid on the body (see
section I.2.1 of chapter I). However, little is known on the transport of isolated fibers in
confined geometries. Semin et al. studied the interactions of a fixed cylinder confined
between two parallel walls. They focused on the calculation of the drag force exerted on
the fiber as a function of its orientation parallel or perpendicular to the flow [11, 12]. This
work has been followed by the investigations of Berthet et al. [13, 14] on free rigid fibers
transported in confined microchannels by an external viscous flow. Similar to Semin et
al., Berthet et al. focused on the two simple configurations of fibers oriented parallel or
perpendicular to the flow direction. Both of these works shed light on the role of the
fiber confinement on its dynamics. Confinement, here, needs to be understood in two
ways, firstly the flow is nearly two dimensional as it takes place in a channel of Hele-
Shaw geometry (channel of height much smaller than width). Secondly, the fiber occupies
almost all the channel height and is thus confined by the channel top and bottom walls.

The work of Berthet et al. performed at PMMH has been enabled by the development
in the group of Patrick S. Doyle of an in situ technique of fabrication of hydrogel particles
directly inside a microchannel [15, 16]. This technique enables the fabrication of objects of
di�erent and well controlled shapes and allows for a good control of the particle position
and orientation.

Uspal et al. [17] used this experimental technique to study the impact of the shape
of a particle on its transport dynamics in confined geometries. Using particles composed
of two disks bridged to each other, they showed that the particle trajectory is controlled
by the symmetry properties of the object. Up to our knowledge, this study is the first
investigation of the coupling between geometry and trajectory of particles transported by
an external flow in a confined geometry.

Here, starting from the study of Berthet et al. [13, 14], we ask how the transport
dynamics are perturbed when going from an initially straight and rigid particle to a more
complex object. Two directions have been studied here: we either add flexibility to the ob-
ject and focus our investigations on the deformations of perpendicular and parallel fibers
during their transport by an external viscous flow in confined geometry. Complementary,
we also choose to change the shape and study the trajectory and the transport dynamics
of rigid "L-shaped" fibers.

The first chapter of this manuscript reviews past studies on isolated fibers evolving in
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viscous flows or fluids. Bridging the gap between the flow dynamics of a single fiber to
collective fiber behavior is outside the scope of this work. We will thus restrict this review
on the dynamics of individual fibers. First, we introduce a dimensionless number which
compares viscous forces and inertia, named Reynolds number, and we present some basic
properties of flows at low Reynolds number i.e. flow where inertia is negligible. Among
the rich literature on fibers in flows, we choose to review studies on the sedimentation
of rigid fibers with di�erent shapes, in the second section of the chapter. This allows
us to introduce important notions such as drag anisotropy and to discuss the impact of
the geometry of a particle on its trajectory. We then present investigations on fibers
interacting with a viscous flow in a confined geometry. In the last section of the chapter,
we introduce the theoretical framework used to describe the flexibility of an elongated
object. We show that in any system where a flexible fiber interacts with a viscous flow
the fiber deformation scales with a dimensionless parameter - the elasto-viscous number
- comparing the viscous forces to restoring elastic forces. Finally, we present studies on
the dynamics of flexible fibers sedimenting in quiescent fluids and investigations of the
deformation, by an external flow, of a fixed fiber in confined geometries. We also briefly
discuss the buckling of flexible fibers in compressive flows.

u0

(a) (b) (c)

200 µm 100 µm 1 mm

Figure 0.2: (a) Picture of an Ei�el tower particle fabricated into the microchannel using
a photolithography technique. (b) and (c): Characterization of Young’s modulus using
an in situ technique (b), or a cantilever experiment (c).

The second chapter is dedicated to the description of the technique used to fabricate
our fibers directly inside micro-fluidic channels. The principle of the technique and the
experimental protocols are detailed, followed by a description of the geometrical charac-
teristics of the hydrogel particles. To give an indication of the strength of the versatil-
ity/accuracy of the particle synthesis, we created a particle resembling the Ei�el tower
(Figure 0.2 (a)).We then discuss the mechanical properties of these particles, present the
method chosen to tune their Young’s modulus and describe four di�erent experimental
techniques to measure these Young’s moduli (two of them are shown in Figures 0.2 (b)
and (c)). For each technique we discuss pros and cons. We show that it is very di�cult
to measure the Young’s modulus of very soft hydrogels without extracting them to a dry
environment. As a consequence, the role of the surrounding fluid and possible swelling
e�ects cannot be taken into account. This highlights the need of a novel measurement
method of Young’s moduli of very soft hydrogels in the presence of a surrounding fluid.

The third chapter, is divided in two sections. The first section describes a novel mea-
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surement technique allowing for in situ determination of the Young’s modulus of very
soft particles. A trapezoidal particle is pushed through a constriction by means of an
external flow and eventually reaches an equilibrium position (while the flow is still on).
In the constriction the particle is compressed by the channel’s lateral walls. Measuring
its geometry before and during compression enables us to derive its Young’s modulus.
Figure 0.3 (a) shows a superposition of pictures of an undeformed and deformed trape-
zoidal particle. In the second section of the chapter, we describe another independent
technique allowing for the determination of the Poisson’s ratio of the hydrogels. We use
rectangular particles fabricated in a wide channel that we compress uni-axially by moving
them to a narrower region of the channel. Again, measurements of the deformation en-
able us to determine the Poisson’s ratio of the particle. Figures 0.3 (b) and (c) illustrate
the experiment. This technique is used to characterize hydrogels of di�erent compositions.

200 µm200 µm

(b) (c)

Figure 0.3: Mechanical characterization of the hydrogels. (a) Superposition of a trape-
zoidal particle just after fabrication and when pushed through the constriction and com-
pressed by the lateral walls. This experiment is used to determine the Young’s modulus
of the hydrogel. (b) and (c): Picture of a rectangular particle in its undeformed (b) and
deformed (c) state. From the deformation of the particle one can derive the Poisson’s
ratio of the hydrogel.

In the fourth chapter, we study the deformation of a free, flexible fiber transported by
an external viscous flow in a confined geometry. We focus on the simple configuration of
a fiber oriented perpendicular to the flow direction. Figure 0.4 illustrates the transport
and the deformation of a flexible fiber. Due to the finite length of the fiber and the
resulting edges e�ects, it experiences a non-homogeneous drag force. The variations of
the drag force along the fiber deforms the latter. Combining well controlled experiments
using our microfluidic tools together with numerical simulations - based on the resolution
of the Brinkman equation supplemented with a gap flow model - we characterized the
deformation of the fiber and we quantitatively describe the impact of the confinement.
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The study presented in this chapter has been published in [18].

Figure 0.4: Chronophotography of a transported and deformed flexible fiber initially
oriented perpendicular to an external flow. The yellow arrow indicates the bent state of
a deformed fiber perpendicular to the flow. The fluid flows from left to right.

The fifth chapter describes the transport dynamics of flexible fibers oriented parallel
to the flow direction. We show that under certain experimental conditions fibers deform
into a wavy sine shape that flattens out towards the fiber ends (see Figure 0.5). This
instability is observed only for very long fibers (the length must be almost one order of
magnitude larger than the observed wavelength). We characterize the shape of the fiber
and we extract, from the temporal evolution of the amplitude of the deformation, the char-
acteristic growth time of the perturbation for di�erent fiber geometries, flow strengths,
and mechanical properties of the fiber. Other dynamical quantities such as the angular
frequency of the wave and its phase velocity are also characterized experimentally. In
the last section of the chapter we present models aiming to describe the origin of the
instability and predict the wavelength.

1000 µm

Figure 0.5: Picture of a parallel fiber transported in a confined geometry by an external
flow. The fluid flows from left to right.

In the sixth chapter, we study the impact of the shape of a particle on its trajectory.
We investigate geometries with di�erent properties of symmetry: straight fibers, T-fibers
and L-fibers. We primarily focus on the most complex shape: the L-fibers which do not
have any axis of symmetry. Experimental chronophotographies of L-fibers transported
by an external flow in confined geometries are shown in Figure 0.6. The particle rotates,
until it reaches an equilibrium orientation and then drifts toward one of the walls of the
channel. We characterize the dynamics of this rotation and the equilibrium configuration,
both numerically - using again the modified Brinkman equation - and experimentally, for
very wide channels. We then focus on the interaction of the particle with the lateral
walls of the channel and show that straight fibers oscillate laterally, T fibers are either
pushed toward the channel center or toward the lateral walls (depending on the lateral
confinement) and L-fibers are always captured by the lateral walls. The study led to the
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publication [19].

(a)

(b)

(c)

500 µm

500 µm

500 µm

Figure 0.6: Experimental chronophotographies of transported L-fibers fibers of di�erent
geometries and initial configurations. The fluid flows from left to right.

The last chapter concludes this thesis. We give a general conclusion of the work pre-
sented in the manuscript and the main results obtained in each project. This discussion
is followed by a presentation of the di�erent outlooks that emerge from our work.

Experimental and numerical methods are detailed in appendices A and C. And the
appendices B and D, present analytical calculations.

Collaborations
All the experiments presented in this study have been done in close collaboration with
Camille Duprat from LadHyX (Polytechnique, Palaiseau).
The numerical simulations and discussions presented in chapters IV and VI have been per-
formed in collaboration with François Gallaire and Mathias Bechert from LFMI (EPFL,
Lausanne). Close discussions with them, also, enabled the study presented in chapter V.
The experiments presented in chapter III have been carried out together with Vincent
d’Herbemont, intern in the group, and the experiments of chapter VI are the results of a
collaboration with Marine Daïe�, former PhD student in the group.



Chapter I
State of the art

In this chapter we give a review of some of the important studies on the transport dynamics
of objects in viscous flows or fluids that are relevant for our study.

We start this review with a quick presentation of the flow at low Reynolds numbers,
introducing the theoretical framework used in our studies.

We then focus on the coupling between the shape of a rigid particle and its trajectory.
The example of sedimentation is used to present important notions such as the drag
anisotropy for an elongated object and the impact of the symmetries of a particle on its
trajectory.

The discussion is followed by a presentation of studies on the dynamics of confined
particles i.e. particles confined by the top and bottom walls of a microfluidic channel.
This situation shares some similarities with sedimentation. Indeed, in confined geometries
one also observes a drag anisotropy with all its consequences, as for instance the drift of
a fiber or the reorientation of an asymmetric particle.

In the last part of the chapter we discuss the role of the flexibility of a slender ob-
ject on its dynamics. We present the Euler-Bernoulli theory used to describe the fiber
deformation. We introduce the elasto-viscous number, a dimensionless parameter that
compares the e�ects of hydrodynamic forces and the e�ects of restoring elastic forces.
We finish the review with the presentation of studies on the dynamics of flexible fibers
in these two flow geometries: quiescent fluids (sedimentation) and plug flow (confined
geometry) and we also briefly touch on the discussion of fibers evolving in a shear flow.

1



2 Chapter I. State of the art

I.1 Flow at low Reynolds numbers: theoretical framework

The velocity field u and the pressure p in a Newtonian fluid (a fluid with constant viscosity
µ for any shear rates), incompressible and of homogeneous density fl can be described by
the continuity and the Navier-Stokes equations [20]:

Ò · u = 0 and fl
3

ˆu
ˆt + u · Òu

4
= ≠Òp + µÒ2u + flf

b

, (I.1)

where fb is an external body force per unit mass. For instance, this force per unit mass can
be due to gravity and in that case fb = g. The continuity equation (equation on the left)
describes the incompressibility of the flow and the Navier-Stokes equation (equation on
the right) corresponds to the conservation of momentum. In the Navier-Stokes equation
all terms have the dimension of a force per unit volume. The left hand side of the
Navier-Stokes equation corresponds to inertial terms and the terms on the right hand
side correspond, from left to right, to pressure forces, viscous forces and external body
forces.

These two equations form a system of coupled, non-linear, partial di�erential equa-
tions which does not have any general solution. It is generally required to use numerical
simulations to solve this system, however, in some cases, the equations can be simplified
and analytical solutions can be found. These situations correspond, for example, to the
case of inviscid flows or the case of flow at low Reynolds number. In the following we will
focus on this last case.

I.1.1 The Reynolds number
The Reynolds number (Re) is a dimensionless number which compares the magnitude of
inertial and viscous terms in the Navier-Stokes equation.

We consider the flow of a Newtonian fluid of viscosity µ, density fl, characteristic
velocity u, and typical dimension ¸. According to equation I.1 the inertial term scale as
flu2/¸ and the typical magnitude of the viscous term is µu/¸2. Thus the Reynolds number
is given by [21]:

Re = inertial term
viscous term = flu2/¸

µu/¸2

= flu¸

µ
. (I.2)

The Reynolds number can also be interpreted as a comparison of time scales [21]:

Re = characteristic time of viscous di�usion
characteristic time of convection = ¸2/‹

¸/u
, (I.3)

where ‹ = µ/fl is the kinematic viscosity of the fluid and has the dimension of a di�usion
coe�cient.

As can be seen in equation I.3 the Reynolds number characterizes the relative im-
portance of the transport of momentum over a distance ¸ by convection and by viscous
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di�usion. The fastest mechanism will be the dominant one and will impose the charac-
teristics of the velocity field.

At low Reynolds number, Re π 1, transport by viscous di�usion is much faster than
transport by convection. Inertia being negligible, the flow results from an equilibrium be-
tween viscous forces and pressure gradients. According to the expression of the Reynolds
number, low Reynolds number flows occur for low velocities, in systems of small size or
for very viscous fluids.

I.1.2 The Stokes equations
For low Reynolds number flow, Re π 1, equations I.1 simplify to the continuity and
Stokes equations [20]:

Ò · u = 0 and 0 = ≠Òp + µÒ2u + flf
b

. (I.4)

The Stokes equation is a linear partial di�erential equation. Since the equation is
linear there is a unique solution for given boundary conditions, and it is possible to apply
the principle of superposition. Moreover, a consequence of the time-independence of the
Stokes equation is the kinematic reversibility. Kinematic reversibility can be understood
as follows [22]: if we reverse time in the boundary condition (t æ ≠t), in a flow due to
the movement of the boundaries (as for instance in a Couette flow), we reverse the sign
of u and p (u æ ≠u and p æ ≠p). Due to the linearity and the time-independence of the
Stokes equation, ≠u and ≠p are still solutions of the equation. Using the uniqueness of
the solution, reversing time implies that the flow field is exactly reversed i.e. the stream-
lines are not modified but the direction of the flow along these streamlines is reversed.

I.1.3 Sedimentation of a sphere
Let us consider the situation of a flow induced by a sedimenting sphere at low Reynolds
number in a quiescent fluid. We denote V the velocity of the sphere and a its radius. In
the frame of reference of the translating sphere the continuity and the Stokes equations
are given by equations I.4 with fb = 0 and the boundary conditions are u(r = a) = 0 and
u(r æ Œ) = ≠V. The solutions are given by [20]:

p ≠ pŒ = 3
2µa

V · r
r3

and u = 3
4aV ·

3I
r + rr

r3

4
+ 1

4a3V ·
3 I

r3

≠ 3rr
r5

4
, (I.5)

with I the identity tensor and rr the dyadic tensor.
The hydrodynamic force FH is given by:

FH =
⁄

S
n · ‡dS, (I.6)

with S the surface of the sphere, n the unit normal vector directed from the sphere
surface to the fluid and ‡ = ≠pI + µ

1
Òu + (Òu)T

2
the stress tensor. The result is

FH = ≠6fiµaV and is known as the Stokes drag force.
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An important consequence of the absence of inertia is that any object evolving in a
viscous fluid or flow at low Reynolds number will be subject to zero total force and zero
total torque. Hence, in the case of a sedimenting sphere of density fls in a fluid of density
fl, the net gravitational force Fext = (4fia3/3)(fls ≠ fl)g is balanced by the viscous drag
FH = ≠6fiµaV. Thus, the velocity of the sedimenting sphere reads

V = 2a2(fls ≠ fl)g
9µ

. (I.7)

The velocity is proportional to a2, thus if the radius of the sphere is doubled the
velocity is multiplied by a factor four. Moreover, V is proportional to g and the sphere
sediments following a vertical line. The situation changes when two spheres interact
hydrodynamically. Depending on their initial configuration, the spheres can drift and
their velocity is altered. For instance, the velocity of two spheres close to each other, in a
vertical or a perpendicular configuration, is larger than the velocity of an isolated sphere.
This simple result will be used later in section I.4.

I.1.4 The Stokeslet
We now consider that the radius of the sphere a æ 0. As a consequence this new situation
corresponds to a flow due to a point force Fext. In this situation the continuity and the
Stokes equations read

Ò · u = 0 and 0 = ≠Òp + µÒ2u + Fext”(r). (I.8)

The solution of these equations {p, u, ‡} - named Stokeslet - is [23]:

p = Fext · r
4fir3

, u = Fext

8fiµ

3 I
r

+ rr
r3

4
, ‡ = ≠3Fext

4fi

rrr
r5

, (I.9)

with ‡ = ≠pI + µ
1
Òu + (Òu)T

2
the stress tensor.

The determination of the flow due to a point-force is of major interest since it paves
the way for the determination of flows due to more complex forces. For instance the flow
caused by a sedimenting elongated object will be presented in the next section.

I.2 Sedimentation of an isolated fiber: coupling between the
particle configuration and its trajectory

A fiber is an elongated object whose geometry can be fully characterized by the shape
of its cross section and the ratio between length and thickness (aspect ratio). Slender
objects such as fibers are ubiquitous in nature and industry and, from the flagella of a
bacteria or a sperm cell to optical fibers, their characteristic length and aspect ratio can
vary over several orders of magnitude.

Here, we focus on the sedimentation of isolated fibers in viscous fluids. First, we
present a powerful theoretical framework: the slender body theory, which is particularly
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adapted for the description of very elongated objects evolving in viscous flows. This theory
is then used to describe the sedimentation of a rigid and straight fiber. Secondly, we
review studies on the sedimentation of particle of complex shapes and we primarily focus
on the coupling between the particle symmetries and its trajectory. The sedimentation of
slender structures is used, here, to introduce important notions and observations which
bear similarities to what is obtained in confined geometry.

I.2.1 Slender body theory
The slender body theory relies on the approximation of the flow field around an elongated
body using asymptotic techniques justified by its slenderness [9, 10]. For a cylinder of
radius a and length ¸ the aspect ratio is ‘ = ¸/a. The slender body theory approximation
applies whenever ‘ ∫ 1. It gives a relation between the translation speed of the slender
object with respect to the surrounding fluid and the force per unit length exerted by the
fluid on the body.

The simplest form of the slender body approximation is the resistive force theory.
It assumes that locally the fluid motion is the same as the flow past a cylinder with a
hydrodynamic force per unit length di�erent if tangential or normal to the local body axis.
If we call the velocity of the body in the tangential and normal directions, respectively
vÎ and v‹, the force per unit length on the body reads

fH = ≠›ÎvÎ ≠ ›‹v‹, (I.10)

where the resistance coe�cients ›Î and ›‹ depend on the aspect ratio of the slender body
‘ and the fluid viscosity µ [20]

›Î = 2fiµ

ln(‘) ≠ 1

2

and ›‹ = 4fiµ

ln(‘) + 1

2

. (I.11)

This approximation is purely local and, consequently, the force per unit length at a given
location cannot depend in any way on the velocities at other positions along the slender
object.

Note that for ‘ ∫ 1, ›‹ ¥ 2›Î i.e. an elongated object with a motion perpendicular
to its orientation experiences an hydrodynamic resistance almost twice as big as the one
experienced by an elongated object with a motion parallel to its orientation.

We can also notice that the force per unit length only weakly depends on the aspect
ratio of the slender structure, which appears as the argument in the logarithm. The total
force on the particle can be approximated by the force per unit length multiplied by the
particle length ¸.

One can derive similar formulas using the results presented in section I.1: the distur-
bance created by the elongated object is equivalent to that due to a line of point forces
f ext (forces per unit length) distributed along its length. Thus, the velocity field around
the slender structure at a position r corresponds to the integral of Stokeslets along the
centerline [23]:

u(r) ¥ 1
8fiµ

⁄ ¸/2

≠¸/2

f ext

3 I
r ≠ rÕ(s) + (r ≠ rÕ(s))(r ≠ rÕ(s))

|r ≠ rÕ(s)|3
4

ds, (I.12)



6 Chapter I. State of the art

with rÕ(s) the position on the centerline and s the curvilinear abscissa.
Assuming the external force per unit length does not depend on s we obtain the

velocity v of the elongated object

v = 1
4fiµ

ln(‘)(I + ⁄⁄)f ext, (I.13)

with ⁄ a unit vector indicating the orientation of the centerline. Inverting equation I.13
we obtain:

≠f ext = fH = ≠ 4fiµ

ln(‘)(I ≠ 1
2⁄⁄)v. (I.14)

We notice that equation I.14 is equivalent to equations I.10 and I.11 up to leading
order in ln(‘).

I.2.2 Sedimentation of straight fibers in a quiescent fluid

For a sedimenting rigid fiber the external force per unit length is f ext = Fg/¸ (with Fg
the gravitational force) and the translation speeds of vertical and perpendicular fibers are
given respectively by vÎ = Fg

¸›Î
and v‹ = Fg

¸›‹
. Both cases are sketched in Figures I.1 (a)

and (b). An important consequence of the anisotropy of the velocities is that a fiber
neither horizontal nor vertical drifts with a constant angle (see Figure I.1 (c)). According
to the principle of reversibility of Stokes flows the fiber cannot rotate and its velocity has
a constant drift angle ◊.

v�

v
�

�

g

v� � 2v�

(a) (b) (c)

v = drift velocity

Figure I.1: Sedimentation of fibers with di�erent orientations: perpendicular fiber (a),
parallel fiber (b), fiber oriented with an angle – with respect to gravity (c). As a con-
sequence of the velocity anisotropy the translation velocity in (c) is oriented at an angle
– ≠ ◊ with respect to gravity.
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\ 

FIGURE 1. Glancing and reversing turns of a sedimenting rod, as predicted by the asymptotic 
theory of $2, with K = &-. The glancing turn starts from 0 = 20' when X = 3 and the reversing 
turn starts from 0 = 70' when X = 3. The rods are shown at  time intervals of 4npl2/FO. 

smoothly through the vertical and drifts away with the same end leading, a 'glancing ' 
turn. At orientations closer to the horizontal the wall primarily retards the near end of 
the rod, causing it to pivot and then move away with the opposite end leading, a 
'reversing ' turn. While the far-field analysis indicates the orientation of approach 
separating the two modes to be 45", we shall see that terms which have been neglected 
decrease the critical orientation. 

In  a tall container there is the possibilityof a small rod repeatedly being turned away 
from the sides before it reaches the bottom. In the case of two vertical sides, symmetry 
requires the rod to oscillate periodically and not to approach a terminal position or 
orientation. This effect would lead to a fairly uniform distribution of the rods in the 
interior of the container, so long as interactions between the rods can be neglected. 

The following ,sections contain an analysis of the interaction between a slender 
circular cylinder and a single plane wall. We first formulate the problem in terms of 
slender-body theory and present an asymptotic solution for the instantaneous motion. 
Then an independent, and more accurate, numerical solution of the integral equations 
is discussed and the trajectories calculated by the two different approaches are com- 
pared. As an aside, numerical results for the friction coefficients of a slender particle in 
an infinite fluid are compared with the third-order asymptotic solutions of Batchelor 
(1970) and the non-slender-body results of Youngren & Acrivos (1975). Finally we 
describe some simple experiments which verify the main theoretical predictions. 

2. Theory 
Slender-body analysis 

Within the past decade slender-body theory, originally proposed for potential flows, 
has been extensively developed to describe the translation and rotation of rodlike 
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Figure I.2: Chronophotographs of a rod sedimenting close to a wall. Depending on the
initial orientation of the fiber two cases are possible: glancing for an initially almost
vertical fiber and reversing for an initially almost horizontal fiber. Figure extracted from
[24].

As discussed by Russel et al. in [24] the situation changes if the fiber approaches a
wall: a rotation occurs, the drift angle varies and the fiber eventually escapes from the
wall. This experimental study together with the slender body theory and the mirror image
method - which model the interaction of the fiber with the wall - yields results on the
orientation, position and velocity of the rod. Depending on the initial orientation of the
fiber two di�erent trajectories are possible: glancing (for an initially almost vertical fiber)
and reversing (for an initially almost horizontal fiber). The positions and orientations
of a slender particle sedimenting close to a wall experiencing glancing and reversing are
shown, respectively, in Figures I.2 (a) and (b). During glancing the fiber first rotates until
it aligns with the wall, when vertical its drift angle changes sign and the fiber escapes
from the wall. On the contrary, during reversing the fiber rotates until perpendicular to
the wall, at this stage the sign of the drift angle inverts and the fiber moves away from it.
Note that, due to the principle of reversibility, the orientation of the fiber escaping from
the wall is the symmetric with respect to the wall axis of the orientation that the fiber
had when approaching the wall.

I.2.3 Sedimentation of slender objects with complex geometries

The examples of the sedimenting sphere and fiber presented in sections I.1.3 and I.2.2
show that, at low Reynolds numbers, the trajectory of a particle highly depends on its
geometry. A sphere, an object with an infinite number of symmetry axes, sediments
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Gravitaxis (known historically as geotaxis) describes the
response of motile microorganisms to an external
gravitational field and has been studied for several

decades. In particular, negative gravitaxis, that is, a swimming
motion opposed to a gravitational force FG, is frequently observed
for flagellates and ciliates such as Chlamydomonas1 or
Paramecium2. Since this ability enables microorganisms to
counteract sedimentation, gravitaxis extends the range of their
habitat and allows them to optimize their position in
environments with spatial gradients2. In case of photosynthetic
flagellates such as Euglena gracilis, gravitaxis (in addition to
phototaxis) contributes to their vertical motion in water, which
enables them to adjust the amount of exposure to solar radiation3.
To achieve a gravitactic motion, in general, a stable orientation of
the microorganism relative to the gravitational field is required.
While in some organisms such an alignment is likely to be
dominated by an active physiological mechanism4,5, its origin in
other systems is still controversially discussed1,2,6–13. It has been
suggested that gravitaxis can also result from purely passive
effects like, for example, an inhomogeneous mass density within
the organism (bottom heaviness), which would lead to an
alignment similar to that of a buoy in the ocean14,15. (We use the
term ‘gravitaxis’, which is not uniformly defined in the literature,
also in the context of passive alignment effects.) Under such
conditions, the organism’s alignment should be the same
regardless whether it sediments downward or upward in a
hypo- or hyperdensity medium, respectively, as indeed observed
for pluteus larvae12. However, corresponding experiments with
immobilized Paramecium and gastrula larvae showed an
alignment reversal for opposite sedimentation directions12. This
suggests another mechanical alignment mechanism that is caused
by the organism’s fore–rear asymmetry1,2,11,12.

To explore the role of shape asymmetry on the gravitactic
behaviour and to avoid the presence of additional physiological
mechanisms, in our experiments, we study the motion of colloidal
micron-sized swimmers with asymmetric shapes in a gravita-
tional field. The self-propulsion mechanism is based on
diffusiophoresis, where a local chemical gradient is induced in
the solvent around the microswimmer16. It has been shown that
the corresponding type of motion is similar to that of biological
microorganisms17–23. On the basis of our experimental and
theoretical results, we demonstrate that a shape anisotropy alone
is sufficient to induce gravitactic motion with either upward or
downward swimming. In addition to straight trajectories, also
more complex swimming patterns are observed, where the
swimmers perform a trochoid-like (that is, a generalized
cycloid-like24) motion transversal to the direction of gravity.

Results
Experiments. For our experiments we use asymmetric L-shaped
microswimmers with arm lengths of 9 and 6mm, respectively, and
3 mm thickness that are obtained by soft lithography25,26 (see
Methods for details). To induce a self-diffusiophoretic motion,
the particles are covered with a thin Au coating on the front side
of the short arm, which leads to local heating on laser
illumination with intensity I (see Fig. 1d). When such particles
are suspended in a binary mixture of water and 2,6-lutidine at
critical composition, this heating causes a local demixing of the
solvent that results in an intensity-dependent phoretic propulsion
in the direction normal to the plane of the metal cap26–28. To
restrict the particle’s motion to two spatial dimensions, we use a
sample cell with a height of 7 mm. Further details are provided in
Methods. Variation of the gravitational force is achieved by
mounting the sample cell on a microscope, which can be inclined
by an angle a relative to the horizontal plane (see Fig. 1b).

Passive sedimentation. Figure 1a shows the measured orienta-
tional probability distribution p(f) of a sedimenting passive
L-shaped particle (I¼ 0) in a thin sample cell that was tilted by
a¼ 10.67! relative to the horizontal plane. The data show a clear
maximum at the orientation angle f¼ " 34!, that is, the
swimmer aligns slightly turned relative to the direction of gravity
as schematically illustrated in Fig. 1b. A typical trajectory for such
a sedimenting particle is plotted in Fig. 1c,1. To estimate the effect
of the Au layer on the particle orientation, we also performed
sedimentation experiments for non-coated particles and did not
find measurable deviations. This suggests that the alignment
cannot be attributed to an inhomogeneous mass distribution.
The observed alignment with the shorter arm at the bottom
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ûll

yCM

M

F

xCM

CM

b

b b

b

y 
(µ

m
)

x (µm)

α

!

Figure 1 | Characterization of the experimental setup. (a) Measured
probability distribution p(f) of the orientation f of a passive L-shaped
particle during sedimentation for an inclination angle a¼ 10.67! (see
sketch in b). (c) Experimental trajectories for the same inclination
angle and increasing illumination intensity: (1) I¼0, (2–5)
0.6mWmm" 2oIo4.8 mW mm" 2, (6) I44.8mWmm" 2. All trajectories
start at the origin of the graph (red bullet). The particle positions after 1 min
each are marked by yellow diamonds (passive straight downward
trajectory), orange squares (straight upward trajectories), green bullets
(active tilted straight downward trajectory) and blue triangles (trochoid-like
trajectory). (d) Geometrical sketch of an ideal L-shaped particle (the Au
coating is indicated by the yellow line) with dimensions a¼ 9mm and
b¼ 3 mm and coordinates xCM¼ " 2.25 mm and yCM¼ 3.75mm of the
centre of mass (CM) (with the origin of coordinates in the bottom right
corner of the particle and when the Au coating is neglected). The
propulsion mechanism characterized by the effective force F and the
effective torque M induces a rotation of the particle that depends on the
length of the effective lever arm c. û jj ðfÞ and û?ðfÞ are particle-fixed unit

vectors that denote the orientation of the particle (see Methods for details).
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Figure I.3: (a) Measured probability distribution p(„) of the orientation angle „ of a
passive L-shaped particle during sedimentation. (b) Sketch of the particle geometry and
angles definitions. Figure extracted from [25].

vertically. On the contrary, a straight fiber, with two axes of symmetry, drifts if oriented
neither parallel nor perpendicular to gravity and cannot rotate unless it approaches a
wall.

The complexity of the object geometry can be even further increased by releasing one
of the symmetries of the straight fiber: for instance by adding a second arm to the fiber
giving an "L-shaped" object. Ten Hagen et al. have investigated the sedimentation of such
L-shaped fibers both experimentally and theoretically [25]. It appears that the asymmet-
ric particle rotates until it reaches an equilibrium orientation and then slowly drifts while
maintaining this orientation. Figure I.3 (a) shows the experimental results of the prob-
ability distribution of the orientation angle „ of a L-shaped particle (see Figure I.3 (b)).
The data shows a clear maximum of the orientation angle corresponding to the situation
where the shorter arm of the fiber is at the bottom and the orientation angle is close to
„ ≥ ≠45¶. The authors demonstrate that the selection of an equilibrium orientation is
due to the asymmetry of the particle, and they were able to derive the equilibrium angle
by applying the slender body theory on the two arms of the particle.

Decreasing the number of symmetries of the particle even further leads to the work
of Tozzi et al. [26]. In this study, the authors investigated, both experimentally and
numerically, the relation between the trajectory of a particle and its shape. The 3D
trajectory of a particle, tracked using a set of two synchronized cameras, shows that,
after a transient reorientation, the particle reaches an asymptotic motion that depends
on the geometry of the particle. Some examples are given in Figure I.4. Particle (a) has
two axes of symmetry but its center of hydrodynamic resistance (point where the total
sum of the hydrodynamic forces act on a body) does not coincide with its center of mass.
As a consequence a torque is applied on the particle. The particle rotates until the torque
vanishes i.e. when the direction defined by the two centers aligns with gravity. Then
the particle sediments keeping its equilibrium orientation and no drift is observed. The
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Fibers of natural origin can have nonuniform density distri-
bution, which can cause their center of gravity to be located
at a different point than their center of buoyancy. In such
cases, an additional gravity-buoyancy torque must be added
to the model.22 In this work, we used a material with con-
stant density, and thus the gravity-buoyancy torque is absent.

The fiber translational motion is defined by

ṙ = U , #4$

where ṙ is the time derivative of the position vector r.
Particle orientation was represented by Euler

parameters,23,24 which have four components p0, p1, p2, and
p3. The time evolution of the Euler parameters is obtained
using

ṗ = 1
2E† · ! , #5$

where the auxiliary matrix E is

E = 2%− p1 p0 − p3 p2

− p2 p3 p0 − p1

− p3 − p2 p1 p0
& . #6$

The body-fixed reference frame is related to the laboratory
frame by a rotation matrix R, which is expressed in terms of
Euler parameters via

R = 2% p0
2 + p1

2 − 1
2 p1p2 − p0p3 p1p3 + p0p2

p1p2 + p0p3 p0
2 + p2

2 − 1
2 p2p3 − p0p1

p1p3 − p0p2 p2p3 + p0p1 p0
2 + p3

2 − 1
2

& . #7$

Position and orientation of the fiber as a function of time
are obtained by numerical integration of Eqs. #4$ and #5$
using the Adams–Bashforth predictor-corrector method of
order three.23

FIG. 3. Diagram of the experimental setup. Dimensions are in mm. Diagram
not to scale.
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t=133 s

FIG. 4. Examples of captured pairs of images for fiber E5.
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FIG. 5. #Color online$ Different views of a fiber and the corresponding
views of the bead-shell model of the same fiber.
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FIG. 6. #Color online$ Qualitative motion of fibers having different types of
symmetry #see Ref. 8$: In all four fibers, the center of buoyancy does not
coincide with the center of hydrodynamic resistance, thus the particles have
a tendency to reorient to a position where the central segment is below the
other two. After this transient reorientation, they can follow various types of
asymptotic motion. Particles #a$ and #b$ have no translation-rotation cou-
pling, and they do not achieve a rotational motion as they fall. In particles
#a$ and #c$, the translational velocity does not have a horizontal component,
so they attain a state where their center of mass moves in a vertical fashion.
Fiber #b$, in contrast, tends to drift sideways with a nonzero horizontal
component, falling with a diagonal trajectory. Fiber #d$ is like #b$, plus it has
translation-rotation coupling, and therefore the diagonal fall is compounded
with a rotational motion, resulting in a helical path.

033301-3 Settling dynamics of asymmetric rigid fibers Phys. Fluids 23, 033301 !2011"
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Figure I.4: Qualitative motion of fibers having di�erent types of symmetry. After a
transient regime of reorientation, particles can follow various types of asymptotic motion.
Particles (a) and (b) have no translation-rotation coupling, and they do not achieve a
rotational motion as they sediment. For particles (a) and (c), the translational velocity
does not have a horizontal component, so they attain a state where their center of mass
moves in a vertical fashion. Fiber (b), on the contrary, tends to drift sideways, sedimenting
with a diagonal trajectory. Fiber (d) is similar to (b), but additionally it has translation-
rotation coupling, and therefore the diagonal fall is accompanied with a rotational motion,
resulting in a helical trajectory. Figure extracted from [26]

particle (b) shows one plane of symmetry and, as observed for L-shaped fibers, the particle
reorients toward an equilibrium orientation before drifting. Particles (c) and (d) don’t
have any axis or plane of symmetry, i.e. they are chiral objects. After a transient regime
they reach an helical trajectory resulting from a translation-rotation coupling. Similarly,
according to [27], helicoidal particles - which are as well chiral objects - experience also
helical trajectories. This observation can be generalized to any chiral objects sedimenting
in a viscous fluid.

I.3 E�ect of confinement by bounding walls

We have seen that the interaction of a fiber with a boundary can lead to rich dynamics
(see section I.2.2). Here, we review studies where a fiber is confined between the top
and bottom walls of a channel and we primarily focus on the role of confinement on the
particle trajectory and dynamics.
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I.3.1 Confinement due to top and bottom walls

Semin and co-authors [11, 12] investigated, both experimentally and numerically, the
influence of confinement by top and bottom walls on the drag force acting on a cylinder
held at a fixed position in a viscous flow.

ratio !d"L# for different fluid rheologies while Rehimi
et al.27 used a geometry similar to ours, but did not perform
force measurements.

In the present experiments, forces are measured on a
static cylinder in a long slit of rectangular section where the
flow takes places. Both !=d /h0 and L /W are varied as well
as the distance of the axis of the cylinder from the center
plane of the slit; both cases of a cylinder parallel and perpen-
dicular to the mean flow are studied. In the perpendicular
case, particular attention is given to the influence of the flow
between the ends of the cylinder and the sides of the slit !if
L"W#: flow in this region is highly three dimensional !3D#
and 3D simulations are needed to estimate it.

The other parallel configuration has not been studied up
to now to our knowledge. However, previous authors studied
theoretically in the viscous regime28 and experimentally in
the inertial regime29 the related problem of the forces on a
cylinder located inside another coaxial one. In the viscous
regime, the velocity of a cylinder falling inside another one
has also been investigated.30 In this parallel case, we mea-
sure the drag forces induced by the flow on cylinders of
different diameters !0.04#!=d /h0#0.83# and for different
locations in the aperture of the slit. In order to extend the
range of physical parameters investigated, 2D numerical
simulations are performed; they allow, in addition, to dis-
criminate between the contributions of the pressure and vis-
cous shear forces to the global measured drag force.

The experimental setup is presented in Sec. II and the
numerical method in Sec. III. The experimental and numeri-
cal results are reported in Secs. IV and V, respectively, for
cylinders parallel and perpendicular to the flow.

II. EXPERIMENTAL SETUP AND PROCEDURE

The experimental setups used for the determination of $$

and $! are shown in Fig. 1: they consist of a slit of rectan-
gular cross section placed vertically and made of two trans-
parent milled polymethyl methacrylate !PMMA# plates. The
cell aperture has the constant value h0=4.9 or 0.75 mm ex-
cept in the upper 60 mm of the cell, where it increases with
height from 0.75 !respectively, 4.9# to 5 mm !respectively,

10 mm# for the first !respectively, second# model. This
Y-shape profile was designed to ease the insertion of the
cylinders into the cell.

The cylinders are hung on the hook of computer con-
trolled scales !Sartorius CP 225# measuring drag forces of
the flowing fluid on the cylinder in a range from 10−7 to
8%10−1 N. A precision translation stage allows one to dis-
place the cylinders across the gap of the cell: in this way, the
hydrodynamic forces can be measured as a function of the
distance from the walls. Furthermore, the latter are transpar-
ent allowing one to determine precisely the location of the
cylinders within the cell. For the cell with the largest aper-
ture, side views can also be obtained so that the distance
separating the cylinder from the walls may also be measured;
this also allows one to control the parallelism of the object
with respect to the wall.

A gear pump sucks the fluid at the bottom side of the cell
and reinjects it into a bath covering the top side !the fluid
flows, therefore, always vertically downward#. The fluids are
either pure water or water-glycerol mixtures with a relative
mass concentration of glycerol ranging from 50% to 80%.

The density & of the solutions and their temperature T
are first measured before each series of experiments by
means of an Anton Paar 35N densimeter. Tables of the values
of the dynamic viscosity ' and of the corresponding density
of the solutions at all glycerol concentrations and for differ-
ent temperatures can be found in the literature.31,32 The dy-
namic viscosity ' corresponding to the measured values of
the temperature and of the density is then computed by in-
terpolation between the tabulated values. The final uncer-
tainty on ' is about 3% and is lower for all other parameters:
this value has been confirmed by comparisons to direct mea-
surements of the viscosities of a few test solutions using an
Anton Paar MCR 501 rheometer. The relative influence of
viscous and inertial effects is characterized by the Reynolds
number Re=&h0U /' in which U is the mean velocity far
from the cylinder.

Measurement of $$ was performed for several cylinders
with different diameters !see Table I#, which were either
rigid !glass, copper, iron, or PMMA# or flexible !polyester or
silk threads#. The flexible threads were stretched prior to the
experiments in order to remove their residual curvature.
These threads include multiple fibers so that their diameter is
not constant and varies periodically. Yet, such variations
were found to have a negligible effect on the drag force: in
the next parts, these threads are characterized by their mean
diameter.

For measuring $! !see Table II#, the rigid cylinders are
placed horizontally in the cell of largest aperture !i.e.,
h0=4.9 mm#; their center is halfway between the side walls
of the cell. There are hung using threads of small diameter
!100 (m#, as shown in the right drawing of Fig. 1. There-
fore, the drag forces on the threads and on the vertical rod
add up: the former is, however, generally small compared
with the latter. Moreover, this extra force may be estimated
numerically !see Sec. III# and subtracted from the measure-
ments.

The flow rate is increased stepwise from Q=0 up to
Q=400 ml /min !respectively, Q=1400 ml /min# for the
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FIG. 1. Left: schematic view of the experimental setup used to measure $$,
L! %49,200& mm, l=60 mm, W=90 mm, h0 is either 0.75 or 4.9 mm.
Right: setup for measuring $!, h0=4.9 mm, L! %20,89& mm.
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Figure I.5: Experimental setup used for the study of confined fibers between two parallel
walls. Left and right panels correspond to the configuration where the fiber is respectively
parallel and perpendicular to the flow direction. Figure extracted from [11].

In these studies a cylinder is placed in a rectangular slit either parallel or perpendicular
to an external viscous flow. Figure I.5 illustrates the flow geometry. The slit of height h

0

is made from two vertical walls of width W . h
0

being much smaller than W the flow is
plug-like. The cylinder has a diameter d and the authors define the confinement of the
system — as the ratio d/h

0

.
Additionally to the experimental investigation of the parallel fiber 2D numerical sim-

ulations are performed. In these simulations the fiber is considered as infinitely long.
However, for a perpendicular fiber a 3D numerical simulation is necessary to account
for the experimental results. Indeed, 2D simulations which assume a uniform flow along
the fiber length cannot describe the flow between the cylinder edges and the lateral walls
which have an important impact on the drag forces. As expected for a low Reynolds num-
ber flow, the drag force exerted on the cylinder is proportional to the flow velocity and the
viscosity of the fluid allowing the drag coe�cient to be defined. The evolution of the drag
coe�cient for parallel and perpendicular fibers as a function of the confinement is shown
in Figure I.6. In both cases the drag coe�cient increases for an increasing confinement.
For a parallel cylinder this evolution is linear, whereas, for a perpendicular cylinder the
increase is exponential and eventually diverges for a confinement — æ 1. At Reynolds
numbers larger than 20, the central position of the fiber between the two confining walls
becomes unstable and the fiber starts to oscillate between them [28]. A similar observa-
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Figure I.6: Experimental (symbols) and numerical (lines) results of the evolution of the
drag coe�cient as a function of the confinement — for the parallel fiber (left) and for the
perpendicular fiber (right). — is defined as — = d/h

0

where d is the cylinder diameter and
h

0

the channel height. In the two cases the drag coe�cient increases with the confinement.
For the parallel configuration this evolution is linear. For the perpendicular configuration
the increase is exponential and eventually diverges for — = 1. Figure extracted from [11].

tion has been made for fibers, free to rotate and to move vertically in an upward flow,
in a confined geometry [29]. The authors of [29] reported a critical Reynolds number of 30.

The understanding of the e�ect of the confinement on the dynamics of single fibers was
also the main purpose of the studies of Berthet and co-authors [13, 14]. They investigated
the transport of free fibers confined by top and bottom walls and transported by an
external viscous flow in microfluidic channels. As in the work of Semin et al. [11, 12],
they focus their study on two situations: a fiber oriented parallel to the flow direction
and a fiber oriented perpendicular to the flow direction. These two situations are shown
in Figure I.7.

(a) (b)

side view side view

y

Figure I.7: Geometries of the system for the parallel fiber (a) and perpendicular fiber
(b). Due to the Hele-Shaw geometry of the channel the flow in the Oxy plane is plug-like
expect in the direct vicinity of the fiber and the lateral walls and Poiseuille-like in the
plane Oxz.
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In these studies the fibers have square cross sections of width and height h ≥ H,
with H being the channel height, and are always located in the middle of the channel
height. The confinement of the system is — = h/H. Due to the Hele-Shaw geometry
of the channel, the flow in the (Oxy) plane is plug-like and Poiseuille-like in the (Oxz)
plane.

When an external flow is imposed, the fiber is transported at a velocity V
fiber

propor-
tional to the mean velocity of the external flow V

mean

. The viscous friction occurring in
the gaps between the fiber and the channel top and bottom walls slows down the fiber.
Its velocity is thus always smaller than the maximal flow velocity 3

2

V
mean

. Moreover, the
fiber acts as a moving obstacle and it impacts the external flow di�erently as a function
of its orientation. A perpendicular fiber deforms the streaklines over a distance ¸ (the
length of the fiber), whereas a parallel fiber deforms the streaklines over a typical distance
h (the width of the fiber). As a consequence, the ratio between the fiber velocity and
the mean flow velocity V

fiber

/V
mean

strongly depends on the fiber orientation. Figure I.8
shows the evolution of this ratio for the two situations - parallel and perpendicular fibers
- as a function of the confinement. The results shown are obtained experimentally and
using 2D and 3D numerical simulations based on finite element methods.103601-11 Berthet, Fermigier, and Lindner Phys. Fluids 25, 103601 (2013)

FIG. 10. Experimental and numerical study of the effect of confinement on the fiber velocity. The 2D calculations correspond
to the case of an infinite length fiber. In the 3D computations, the fiber has an aspect ratio of 10 and a square cross-section.

C. Fiber drift

Using our results on the flow of parallel and perpendicular fibers we can understand the fiber drift
observed in our experiments. We experimentally and numerically showed that a fiber perpendicular
to the flow direction is transported faster than a parallel one, in the high confinement range. This
velocity difference is at the origin of the observed drift of fibers where the angle of the fiber with the
flow direction is different from 0◦ or 90◦.

Figure 11 illustrates the case of a fiber transported at an angle θ . The fluid velocity vector
is decomposed into a component along the fiber length direction and one perpendicular to it:
V f low = V f low∥ + V f low⊥ and V f iber∥ = γ∥.V f low∥ and V f iber⊥ = γ⊥.V f low⊥, with γ ⊥ > γ ∥.

Writing the fiber velocity with their components parallel and perpendicular to the flow, we
obtain

V x f iber

V f low

= γ∥ cos2(θ ) + γ⊥ sin2(θ ), (6)

V y f iber

V f low

= (γ∥ − γ⊥) cos(θ ) sin(θ ). (7)

Equation (7) clearly shows that the two necessary ingredients for a drift are a high confinement:
γ ∥ − γ ⊥ ̸= 0, and an angle different from 0◦ or 90◦. We can compare this prediction with our
experimental results on the fiber drift from Sec. III A. For a confinement of β = 0.62 a ratio of
Vy/Vx = 0.06 has been measured for a fiber flowing at an angle of 45◦. From Eqs. (6) and (7) one

Vfiber

Vfiber

Vflow

Vflow

Vflow

Drift velocity

FIG. 11. Decomposition of the fiber velocity and fluid velocity vectors in two components, parallel and perpendicular to the
fiber length.

Figure I.8: Experimental (open symbols) and numerical (filled symbols) rescaled fiber
velocity as a function of the confinement for parallel (red) and perpendicular fibers (black).
Figure extracted from [13].

For parallel fibers, 2D and 3D descriptions yield similar results, whereas, for perpen-
dicular fibers, the two simulations show discrepancies for large confinements. The origin
of these di�erences is the same as in the study of Semin et al. [11]: 2D simulations which
assume that the fiber is infinitely long (i.e. that the flow in uniform along the fiber length)
cannot describe the flow around the fiber edges.

Figure I.8 shows that for the two configurations the fiber velocity decreases nonlinearly
with the confinement. Here, contrary to sedimentation, the velocity of a perpendicular
fiber is larger than the velocity of a parallel fiber. Note that for low confinements the
fiber velocity is the same for both orientations and equal to the maximum velocity of the
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flow 3

2

V
mean

.

103601-7 Berthet, Fermigier, and Lindner Phys. Fluids 25, 103601 (2013)

ratio of ten. Similarly to the 2D case, a no-slip condition is imposed on the flow boundaries: zero
fluid velocity on the channel top and bottom walls, fiber velocity imposed on the faces of the fiber
volume. We use the same strategy as in the 2D computations to determine the fiber velocity, taking
advantage of the linearity between force and velocity and using the zero force condition. We have
verified that the condition of zero torque is automatically satisfied. A constant flow velocity parallel
to the channel length is imposed on the inlet and outlet faces.

We mesh the fluid domain with tetraedra imposing a constant density on each boundary line.
Three-dimensional fluid flow simulations typically require a lot of computation resources and we
were limited to a total number of elements of two millions. As the fiber confinement increases,
the mesh needs to be very fine to have several nodes within the gaps between the fiber and the
channel top or bottom walls. As a consequence, the maximal confinement we were able to solve was
β = 0.9. For all tested confinements, a mesh convergence check was done by increasing the density
of nodes around the fiber until the fiber velocity obtained was constant.

We modify the channel dimensions keeping the fiber dimensions constant to vary the confine-
ment, and focus on the flow of parallel and perpendicular fibers. We will extract in particular the
flow field around the fiber and study its transport velocity.

III. RESULTS AND DISCUSSION

A. Experimental observations

Typical experimental observations can be seen in Figure 6 showing the successive positions of
a fiber as it moves down the channel for two different confinements: β = 0.4 and β = 0.8.

At low confinement (row a), all fibers are transported downstream parallel to the flow direction
without a change in fiber orientation. Observing the distance between positions qualitatively shows
us that for a given fluid velocity and confinement, the fiber moves at the same velocity regardless
of its initial orientations. In the high confinement case (second row b of Figure 6), fibers still flow
without a change in orientation, however the fiber forming an angle of 45◦ with the flow direction is
observed to drift towards the top lateral channel wall. We also observe a notable difference of fiber
velocity between the three initial orientations. The parallel fiber is slower than the perpendicular
fiber and the velocity of the fiber at 45◦ is intermediate.

The ratio of fiber velocity to the mean flow velocity is shown in Figure 7 as a function of confine-
ment. We quantitatively confirm our initial observations that at higher confinement, the perpendicular
fiber moves faster than the parallel one. The velocity difference increases with confinement. Note

FIG. 6. From left to right: parallel configuration, perpendicular, and fiber oriented at 45◦. Positions recorded at equal time
intervals "t indicated in each picture and ⟨U ⟩ = 20 µm/s for all cases. Top row (a) β = 0.4; bottom row (b) β = 0.8. The
fiber is around 200 µm long.Figure I.9: Superposition of successive images for a parallel fiber (left), a perpendicular

fiber (middle) and a fiber oriented at 45¶ to the flow direction (right). The confinement
is — = 0.8. The fiber is 200µm long. Figure extracted from [13].

Similarly to sedimentation, the velocity anisotropy leads to drift of a fiber that has an
arbitrary orientation with the flow direction. But as the velocity anisotropy is inverted
compared to sedimentation (here VÎ < V‹ whereas VÎ > V‹ in sedimentation), the di-
rection of the drift will be the opposite compared to the one observed for a sedimenting
fiber. The velocity anisotropy and the resulting drift of a transported fiber are visible in
Figure I.9.

In our work, we use the same flow geometry as Berthet et al. [13]. Hence, we largely
inspire ourself from reference [13] to describe the flow around transported fibers in confined
geometries.

I.3.2 E�ects of lateral walls

As previously mentioned, the presence of the fiber induces strong flow perturbation over
distances that can be comparable to the fiber length. Thus, one expects the lateral
walls to interact hydrodynamically with the fibers. Such interactions of the channel
lateral wall with the fibers transported in confined microchannels have been investigated
experimentally and numerically by Nagel et al. [30].
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FIGURE 12. (Colour online) Chronophotographs of a fibre flowing near the wall for � =
0.81, ⇠ = 0.81, exhibiting (a) pole vaulting and (b) wiggling, obtained both experimentally
(top) and numerically (bottom). (c) Orbit for pole vaulting for � = 0.78, ⇠ = 0.93. (d)
Orbit for wiggling for � = 0.75, ⇠ = 0.17. (e) Trajectories near the walls for � = 0.86,
⇠ = 0.16. Numerical simulations with the same parameters are shown in solid lines. For
(e) the numerical pole-vaulting and glancing trajectories become so close that they are
indistinguishable near the wall.

4.3. State diagram
We build a state diagram in the parameter space (✓p, yp) to identify the various
trajectories and isolate the regions in the parameter space where the different types
of dynamics occur. We first present the diagram corresponding to a regime of high
confinement, both transverse and lateral (� = 0.8 and ⇠ = 0.8) (figure 13). We report
a remarkable agreement between experiments and simulations, showing that our
2-D scheme captures the physics of this 3-D problem. In addition, the numerical
simulations give access to all possible trajectories to obtain a complete diagram.
The experimental glancing orbit shows a spiralling behaviour that is absent in the
simulation, and that will be discussed further in § 5.

We can observe the pole-vaulting orbits, centred on ✓p = 90�, and the glancing
orbits, i.e. oscillations around the fixed point at ✓p = 0�. For these values of � and
⇠ , reversing oscillations are never observed, neither experimentally nor numerically.

The obtained state diagram is reminiscent of that of an undamped perfect pendulum
(Strogatz 1994). It is characteristic of an Hamiltonian system, with time-reversal
symmetry. In the present case, this property does not result from the absence of
dissipation in the system, but from the symmetries of the fibre and the reciprocal
properties of the Stokes equations. The orbits can be categorized exactly like for
a pendulum. The pole-vaulting orbits are free (unbounded) trajectories, while the
glancing orbits are bound states and both are separated by a separatrix. The state
diagram is organized around two centres, the stable ✓p = 0�, yp = 0 horizontal position
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FIGURE 12. (Colour online) Chronophotographs of a fibre flowing near the wall for � =
0.81, ⇠ = 0.81, exhibiting (a) pole vaulting and (b) wiggling, obtained both experimentally
(top) and numerically (bottom). (c) Orbit for pole vaulting for � = 0.78, ⇠ = 0.93. (d)
Orbit for wiggling for � = 0.75, ⇠ = 0.17. (e) Trajectories near the walls for � = 0.86,
⇠ = 0.16. Numerical simulations with the same parameters are shown in solid lines. For
(e) the numerical pole-vaulting and glancing trajectories become so close that they are
indistinguishable near the wall.

4.3. State diagram
We build a state diagram in the parameter space (✓p, yp) to identify the various
trajectories and isolate the regions in the parameter space where the different types
of dynamics occur. We first present the diagram corresponding to a regime of high
confinement, both transverse and lateral (� = 0.8 and ⇠ = 0.8) (figure 13). We report
a remarkable agreement between experiments and simulations, showing that our
2-D scheme captures the physics of this 3-D problem. In addition, the numerical
simulations give access to all possible trajectories to obtain a complete diagram.
The experimental glancing orbit shows a spiralling behaviour that is absent in the
simulation, and that will be discussed further in § 5.

We can observe the pole-vaulting orbits, centred on ✓p = 90�, and the glancing
orbits, i.e. oscillations around the fixed point at ✓p = 0�. For these values of � and
⇠ , reversing oscillations are never observed, neither experimentally nor numerically.

The obtained state diagram is reminiscent of that of an undamped perfect pendulum
(Strogatz 1994). It is characteristic of an Hamiltonian system, with time-reversal
symmetry. In the present case, this property does not result from the absence of
dissipation in the system, but from the symmetries of the fibre and the reciprocal
properties of the Stokes equations. The orbits can be categorized exactly like for
a pendulum. The pole-vaulting orbits are free (unbounded) trajectories, while the
glancing orbits are bound states and both are separated by a separatrix. The state
diagram is organized around two centres, the stable ✓p = 0�, yp = 0 horizontal position
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Figure I.10: Experimental chronophotographies of fiber trajectories exhibiting (a) glanc-
ing, (b) reversing, (c) wiggling and (d) pole vaulting. The external flow is directed from
left to right. Figures (a) and (b) are extracted from [19], and Figures (c) and (d) are
taken from [30].
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Figure I.10 shows four di�erent families of trajectories. The trajectories presented
in Figures I.10 (a) and (b) correspond, respectively, to glancing and reversing of a fiber
approaching a wall. These two trajectories are very similar to the ones observed for a
sedimenting fiber approaching a wall and, here as well, the observation of either glancing
or reversing is related to the initial orientation of the fiber. If the angle between the flow
direction and the orientation of the fiber in the middle of the cell is small (case (a)) the
fiber mostly exhibits glancing. Whereas, if the fiber is almost perpendicular to the flow
direction (case (b)), it exhibits reversing. Here, due to the presence of two lateral walls,
the fiber first drifts toward one wall, interacts with it, escapes from the wall vicinity,
drifts and approaches the other wall. The sequence is repeated leading to oscillations of
the fiber inside the microchannel. If the fiber is placed horizontally (◊ ≥ 0) in the direct
vicinity of a wall it can exhibit other kinds of trajectories: wiggling and pole-vaulting as
shown in Figures I.10 (c) and (d). For these two types of trajectories the fibers enter the
boundary layer very close to the lateral walls.
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FIGURE 14. (Colour online) Numerical state diagram for � = 0.8, ⇠ = 0.6. displaying
all four orbit types: glancing, reversing, pole vaulting and wiggling together with their
associated fix points. Separatrices exist in between the coloured regions, where the
numerical scheme was unable to resolve trajectories the colour is left grey. The region
in white corresponds to impossible configurations, i.e. the fibre tip touches the wall.

We can compute numerically both the vertical drift velocity ẏp, and the rotation
velocity ✓̇p. We compare the evolution of these velocities as the fibre oscillates
between the walls for two different initial angles (figure 15). As the fibre travels
from the bottom wall to the centre of the channel, the drift velocity increases (with
ẏp > 0) while the fibre rotates away for a horizontal orientation (✓̇p < 0�). Near the
centre of the channel, the rotation velocity ✓̇p = 0� and the curve present an inflection
point; the orientation of the fibre is thus constant, which leads to a constant drift
velocity as seen in figure 15(a). As the fibre travels away from the centre and
approaches the wall, the drift velocity rapidly decreases to reach zero when the fibre
is horizontal, and the rotation velocity increases as the fibre reorients (✓̇p > 0�). The
top to bottom trajectory is symmetrical (with ẏp < 0).

We note that the drift velocity strongly depends on the fibre angle (ẏp(✓ = 20�) '
2ẏp(✓ = 10�)). Indeed, the drift velocity, given in (4.2), is proportional to cos ✓ sin ✓ .
The drift velocity thus increases almost linearly with the orientation angle up to ✓ =
45�. On the contrary, the rotation velocity is nearly independent of the fibre angle.

These results qualitatively explain the observations made on the fibre trajectories.
The fibre drifts and rotates simultaneously. Since the rotation velocity is nearly
constant, the maximum displacement |yp| of the motion depends on the drift velocity:
the faster the drift velocity, the further the fibre can travel in the channel. Indeed,
as we increase the initial angle, the rotation velocity is unaffected while the drift
velocity strongly increases, leading to larger amplitude oscillations (i.e. the fibre
travels a longer distance before it is rotated, hence glances closer to the wall). On the
contrary, small angles lead to slow drift velocities and to small amplitude oscillations,
so that a fibre whose orientation is close to zero remains in the centre of the channel.
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Figure I.11: Trajectory map in the configuration space spanned by orientation angle ◊
and lateral position y. The physical accessible space is shaded in color. Figure extracted
from [30].

The full state diagram, spanned by the orientation angle relative to the flow direction
◊ and the lateral position of the center of mass of the fiber y, is represented in Figure I.11.
It shows the four kinds of trajectories described above (orange: glancing, blue: reversing,
red: wiggling and green: pole-vaulting). This diagram has been obtained using a 2D
numerical simulation based on the resolution of the Brinkman equation and a model flow
profile in the gap between the fiber and the channel top and bottom walls. One obtains
the Brinkman equation by averaging the Stokes equation over the channel height. It
is particularly adapted for the description of porous media or confined flows. The flow
profile in the gaps is assumed to be a Couette-Poiseuille flow. The model used by Nagel et
al. has been used at many occasions in our work and is extensively explained in chapter
IV.

The study of Nagel et al. [30] can be compared to the work of Uspal et al. [17].
Here, the authors investigated both experimentally and theoretically the trajectories of
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In slow viscous flows, suspended particles are coupled by the
flow disturbances they create in the surrounding fluid. These
hydrodynamic interactions (HIs) can drive spatial organiza-

tion of a microparticle or system of microparticles in geometric
confinement. Specific examples include the cross-stream migra-
tion of a single polymer near a wall1, the clustering of red blood
cells in a tube2 and the crystallization of rigid spheres with finite
inertia in a square channel3,4. Both practical and theoretical
considerations motivate interest in hydrodynamic ‘self-steering’
(of a single particle) and self-organization (of multiple interacting
particles). In microfluidic devices, control over particle position
allows the high throughput performance of operations on
individual flowing objects, for example, in on-chip cytometry5

and multiplexed assays with functionalized particles6. Although
particles can be directly positioned with external fields or sheath
flows6,7, these methods can require cumbersome apparatus or
complex channel structure. An elegant alternative is to tailor
particle and channel design for self-steering or self-organization.
Moreover, if the self-steered position of an object depends on a
certain property of the object, a heterogeneous suspension can be
separated by that property. For instance, both the stiffness8 and
shape9 of blood components are of interest for microfluidic
separations. From a theoretical perspective, a unifying framework
for non-equilibrium self-organization and self-steering is highly
sought after10. Specific mechanisms for cross-streamline
migration and focusing in channel flow have been extensively
investigated for Brownian11, inertial3,4 and deformable1,2

particles. In these cases, migration arises from the interplay of
viscous hydrodynamics near a channel boundary and another
physical effect that breaks the reversibility of viscous flow.
Conceptually, it seems difficult to reconcile self-organization and
self-steering, in which any initial state will evolve towards one of a
limited set of dynamical attractors, and reversibility, which
requires particle behaviour to make no distinction between two
possible directions of time.

Confining boundaries can change the spatial decay and even the
tensorial structure of HIs. Interactions take a unique form when
the typical particle size is comparable to the height of a confining
slit, such that the particles are constrained to ‘quasi-two-
dimensional’ (q2D) motion (Fig. 1a). The tightly confined particles
experience strong friction from the confining plates, and will
therefore lag a pressure-driven external flow. In lagging the flow,
the particles create flow disturbances with a characteristic dipolar
structure: moving upstream relative to the fluid, particles push
fluid away from their upstream edges and draw fluid into their
downstream edges. This far-field flow disturbance, the ‘source
dipole’, is given by the conservation and transport of fluid mass,
and decays as 1/r2 (refs 12,13). In contrast, the leading order far-
field disturbance in bulk (three-dimensional) fluid, the ‘Stokeslet’,
is given by the conservation and transport of momentum, and
decays as 1/r. The difference between bulk and q2D arises because
of the confining plates, which, by exerting friction on the fluid,
dissipate momentum and screen its long-range transport, leaving
only mass to determine the far-field disturbance.

These unique features of the dipolar flow disturbance allow the
realization of ‘flowing crystals’ with novel collective modes14–17.
These are configurations of particles that maintain spatial order
as they are advected by an external flow. They are marginally
stable: the amplitude of a collective mode neither grows nor
decays in time. Consequently, realization of crystals is limited by
initial configuration, and they are sensitive to break-up via
nonlinear instabilities and channel defects. A natural question is
how to introduce an effective attraction to the crystalline states,
causing particles to assemble from disorder, and providing a
‘restoring force’ against perturbations. One indication is provided
by a recent study which demonstrated stable pairing of droplets

via the higher flow disturbance multipoles induced by shape
deformation18. This finding suggests a key role for particle shape
in achieving self-steering and self-organization.

In this study, we combine theoretical and experimental
approaches to investigate how particle shape can be tailored to
induce self-steering under flow in q2D microchannels. Our main
finding is that a single rigid, asymmetric particle will sponta-
neously align with the external flow and focus to the channel
centreline. This self-steering can be tuned via channel and particle
geometry. Moreover, it is time reversible; to our knowledge, all
previous instances of hydrodynamic self-steering have been
irreversible. Through a simple theoretical model, confirmed by
experiments, we demonstrate how assembly arises from the
interplay of three viscous effects: rotation and cross-streamline
migration, via a particle’s hydrodynamic self-interaction, and
rotation via a particle’s interaction with hydrodynamic images.
Each effect has an analogue in bulk sedimentation, but not in bulk
channel flow. We demonstrate application of these findings in a
device setting. Finally, we discuss their implications for the design
of self-organizing ‘swarms’ of interacting particles.

Results
Model system and governing parameters. We consider a simple
model geometry that captures the generic effects of asymmetry. A
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Figure 1 | Model particle geometry and behaviours. (a) Schematic
diagram of the model system. A particle comprising two rigidly connected
discs is confined in a thin microchannel and driven by an external flow.
(b) Behaviours obtained as particle asymmetry is varied. A symmetric
particle oscillates between side walls. When the symmetry is slightly broken,
this oscillation is damped and the particle aligns with the flow as it focuses
to the centreline. A very asymmetric particle is ‘overdamped’, and rapidly
aligns before slowly focusing. The trajectories in b were obtained
numerically for the parameters given in the caption of Fig. 5b. The x axes
are scaled by a factor of 1/40 to show the full range of particle behaviours.
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In slow viscous flows, suspended particles are coupled by the
flow disturbances they create in the surrounding fluid. These
hydrodynamic interactions (HIs) can drive spatial organiza-

tion of a microparticle or system of microparticles in geometric
confinement. Specific examples include the cross-stream migra-
tion of a single polymer near a wall1, the clustering of red blood
cells in a tube2 and the crystallization of rigid spheres with finite
inertia in a square channel3,4. Both practical and theoretical
considerations motivate interest in hydrodynamic ‘self-steering’
(of a single particle) and self-organization (of multiple interacting
particles). In microfluidic devices, control over particle position
allows the high throughput performance of operations on
individual flowing objects, for example, in on-chip cytometry5

and multiplexed assays with functionalized particles6. Although
particles can be directly positioned with external fields or sheath
flows6,7, these methods can require cumbersome apparatus or
complex channel structure. An elegant alternative is to tailor
particle and channel design for self-steering or self-organization.
Moreover, if the self-steered position of an object depends on a
certain property of the object, a heterogeneous suspension can be
separated by that property. For instance, both the stiffness8 and
shape9 of blood components are of interest for microfluidic
separations. From a theoretical perspective, a unifying framework
for non-equilibrium self-organization and self-steering is highly
sought after10. Specific mechanisms for cross-streamline
migration and focusing in channel flow have been extensively
investigated for Brownian11, inertial3,4 and deformable1,2

particles. In these cases, migration arises from the interplay of
viscous hydrodynamics near a channel boundary and another
physical effect that breaks the reversibility of viscous flow.
Conceptually, it seems difficult to reconcile self-organization and
self-steering, in which any initial state will evolve towards one of a
limited set of dynamical attractors, and reversibility, which
requires particle behaviour to make no distinction between two
possible directions of time.

Confining boundaries can change the spatial decay and even the
tensorial structure of HIs. Interactions take a unique form when
the typical particle size is comparable to the height of a confining
slit, such that the particles are constrained to ‘quasi-two-
dimensional’ (q2D) motion (Fig. 1a). The tightly confined particles
experience strong friction from the confining plates, and will
therefore lag a pressure-driven external flow. In lagging the flow,
the particles create flow disturbances with a characteristic dipolar
structure: moving upstream relative to the fluid, particles push
fluid away from their upstream edges and draw fluid into their
downstream edges. This far-field flow disturbance, the ‘source
dipole’, is given by the conservation and transport of fluid mass,
and decays as 1/r2 (refs 12,13). In contrast, the leading order far-
field disturbance in bulk (three-dimensional) fluid, the ‘Stokeslet’,
is given by the conservation and transport of momentum, and
decays as 1/r. The difference between bulk and q2D arises because
of the confining plates, which, by exerting friction on the fluid,
dissipate momentum and screen its long-range transport, leaving
only mass to determine the far-field disturbance.

These unique features of the dipolar flow disturbance allow the
realization of ‘flowing crystals’ with novel collective modes14–17.
These are configurations of particles that maintain spatial order
as they are advected by an external flow. They are marginally
stable: the amplitude of a collective mode neither grows nor
decays in time. Consequently, realization of crystals is limited by
initial configuration, and they are sensitive to break-up via
nonlinear instabilities and channel defects. A natural question is
how to introduce an effective attraction to the crystalline states,
causing particles to assemble from disorder, and providing a
‘restoring force’ against perturbations. One indication is provided
by a recent study which demonstrated stable pairing of droplets

via the higher flow disturbance multipoles induced by shape
deformation18. This finding suggests a key role for particle shape
in achieving self-steering and self-organization.

In this study, we combine theoretical and experimental
approaches to investigate how particle shape can be tailored to
induce self-steering under flow in q2D microchannels. Our main
finding is that a single rigid, asymmetric particle will sponta-
neously align with the external flow and focus to the channel
centreline. This self-steering can be tuned via channel and particle
geometry. Moreover, it is time reversible; to our knowledge, all
previous instances of hydrodynamic self-steering have been
irreversible. Through a simple theoretical model, confirmed by
experiments, we demonstrate how assembly arises from the
interplay of three viscous effects: rotation and cross-streamline
migration, via a particle’s hydrodynamic self-interaction, and
rotation via a particle’s interaction with hydrodynamic images.
Each effect has an analogue in bulk sedimentation, but not in bulk
channel flow. We demonstrate application of these findings in a
device setting. Finally, we discuss their implications for the design
of self-organizing ‘swarms’ of interacting particles.

Results
Model system and governing parameters. We consider a simple
model geometry that captures the generic effects of asymmetry. A
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Figure 1 | Model particle geometry and behaviours. (a) Schematic
diagram of the model system. A particle comprising two rigidly connected
discs is confined in a thin microchannel and driven by an external flow.
(b) Behaviours obtained as particle asymmetry is varied. A symmetric
particle oscillates between side walls. When the symmetry is slightly broken,
this oscillation is damped and the particle aligns with the flow as it focuses
to the centreline. A very asymmetric particle is ‘overdamped’, and rapidly
aligns before slowly focusing. The trajectories in b were obtained
numerically for the parameters given in the caption of Fig. 5b. The x axes
are scaled by a factor of 1/40 to show the full range of particle behaviours.
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Figure I.12: (a) Geometry of the channel and the particle. (b) Trajectories of particles
of varying symmetries. A symmetric particle oscillates between side walls. When the
symmetry is slightly broken, these oscillations are damped and the particle aligns with
the flow on the centerline on the channel. For a very asymmetric particle no oscillations
are visible (overdamped regime). Figure extracted from [17].

"dumbbell" particles (see Figure I.12) transported by an external viscous flow in a confined
geometry. They bring to light that a symmetric dumbbell - a dumbbell composed of two
identical discs - which has one axis of symmetry oscillates along the channel similarly to
straight fibers. The same dynamics are also observed for contacting droplets transported
in confined geometries [31]. For asymmetric dumbbells, these oscillations are damped
and the object reorients toward an equilibrium orientation corresponding to the particle
aligned with the flow direction and in the center of the channel. The geometry of the
system and the particle trajectories are shown in Figure I.12 (a) and (b). To model the
system, the authors used a two dimensional description of the flow supplemented by a
model of Couette flow in the gap between the particle and the channel top and bottom
walls. Lateral confinement has been taken into account by the mirror image technique
[32, 33].

More recently Bet and co-authors studied numerically the trajectories of fully asym-
metric particles composed of three disks of di�erent diameters in the same channel and
flow geometry [34]. The study focusses on the temporal dynamics of the orientation and
position of the particle and on the trajectories of particles of di�erent geometries (see
Figures I.13 (a) and (b)). Figure I.13 (a) shows that, after a transient regime, the particle
eventually reaches an equilibrium orientation. The fixed points visible in Figure I.13 (b)
are signatures of these equilibrium orientations and also indicate that when the equilib-
rium orientation is reached the particle does not drift i.e. the particle also reaches an
equilibrium lateral position.

This last observation is in contradiction with the study of Ten Hagen et al. [25], previ-
ously mentioned, which shows that a sedimenting asymmetric L-shaped particle exhibits
a drift when it reaches its equilibrium orientation. Similarly to reference [25], we will see
in chapter VI that an asymmetric fiber transported in a confined viscous flow never reach
any equilibrium lateral position.
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wall. Subsequently, for the shapes with 1.65 � R1/R3 � 1.75 
we observe a slower reorientation determined by a compli-
cated interplay of their shape-determined reorientation and 
the side-wall interactions. In the long-time limit, these shapes 
reach a negative stationary stable orientation, similar to the 
shapes R1/R3 � 1.6. The trajectory of R1/R3 = 1.8 is even 
more complicated, as another rapid reorientation (clock-
wise) is observed at tU0/H � 800. Subsequently, the particle 
qualitatively performs the reorienting motion as dictated by 
its shape, after which another encounter with the side wall 

at y  =  −W/2 at tU0/H � 2000 rotates the particle clockwise 
(see also figure 13).

In figure 13, we show the transversal position y as a function 
of t for the different trimer particles, again for W/H  =  16.7. 
For 1.2 � R1/R3 � 1.6, we clearly observe that the particles 
move to the lower half of the channel (y  <  0) at later times 
(t  >  tc, in the notation of section 3.1). This is consistent with 
our findings without the effects from the side walls, as shown 
in figure  11. However, in the long-time limit, the particles 
move parallel to the side wall. Clearly, a competition between 
the effects of a negative transversal velocity once the stable 
orientation is attained, and the repulsive hydrodynamic inter-
action with the sidewalls, forces the particles to move at a fixed 
distance from the side walls. This is also true for the particles 
with 1.65 � R1/R3 � 1.75, for which we observe a stable 
position in the long-time limit, after a period of oscillating 
motion due to the interplay between the shape-determined 
motion and side-wall effects. For R1/R3 = 1.8, we observe 
even more oscillations, as the particle moves very close to 
the side walls at times tU0/H � 300, 800 and 2000, where a 
rapid counterclockwise reorienting motion takes place as we 
observed in figure 12. Due to this reorientation, the particle 
acquires a large transversal velocity, such that it moves to the 
other side wall where another reorientation takes place. This 
motion is in fact very similar to the oscillating motion of the 
symmetric dumbbell particles discussed in [15], which do 
not rotate due to shape, but do acquire a transversal velocity 
(see section  4). However, after a long time tU0/H � 6000 
(not shown) also this shape attains a stable orientation and  
y-position. This is shown more clearly in figure  14, where 
we show the particle trajectory in the (�, y) phase space, 
where time is running along the curves as indicated by the 
arrows. There, we clearly see that all shapes with R1/R3 > 1 
will move to a stable position y � �0.3W  at a slightly nega-
tive angle in the long-time limit, while the symmetric trimer 

Figure 12. The orientation θ as a function of time t, for trimer 
particles of varying size ratio R1/R3, with R2/R3 = 2.0 and 
� = 50�, for a channel width W/H  =  16.7 (that matches the 
experiments of [15]). Here, �(0) = 5�/6 and y(0) = 0. The points 
show the numerically obtained particle trajectories, the solid lines 
show the analytical solutions. In the inset, the numerical and 
analytical curves of �(t) are enlarged for 0  <  tU0/H  <  400, for the 
trimers with R1/R3 � 1.6.

Figure 13. The transversal position y as a function of time t, for 
trimer particles of varying size ratio R1/R3, with R2/R3 = 2.0 and 
� = 50� and channel width of W/H  =  16.7. The data is obtained 
from numerically solving the particle trajectories. As before, 
�(0) = 5�/6 and y(0) = 0.

Figure 14. Particle trajectories in the (�, y) phase space, where 
the direction of time is indicated by the arrows, for trimer particles 
with R2 = 2R3 = 2H  and varying 1 � R1/R3 � 1.8. Initially, 
�(0) = 5�/6 and y(0) = 0 for every trimer particle.
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For R1/R3 � 1.65, the interactions with the side walls lead 
to very different (and complicated) trajectories. Initially, we see 
that the particles reorient according to the analytical solution, 
as is also observed in the inset of figure 12, where we show an 
enlarged plot of the �(t) data for 0  <  tU0/H  <  400. However, 
at a later time (tU0/H � 300), the particle moves very close 
to the upper side wall at y  =  W/2 (see also figure 13), causing 
the particle to reverse its rotation. The no-slip boundary con-
dition on the side wall, u(y = W/2) = 0, forces the fluid 
velocity to be low near this side wall, while the fluid velocity 
away from the side wall is much larger, naturally leading to a 
rapid counterclockwise rotation of the particle near this side 

Figure 7. The orientation θ (a) and y-coordinate (b) as a function of 
time t/� , for a disk dimer particle with R1/R2 = 2.0, for different 
initial angles �0 . The points show the numerically integrated 
trajectories, while the solid lines show the analytical solutions. In 
all cases, y(0) = 0.

Figure 8. The timescales �y (blue) and τ (red) as a function of the 
angle φ between the legs of the trimer, with R2/R1 = R2/R3 = 1.5.

Figure 9. The transversal position y (in units of the channel width 
W), as a function of time t/� , for trimers of varying opening angle 
φ, starting at y(0) = 0 and �(0) = 5�/6. In the inset we show y(t) 
(� = 60� excluded) but rescaled by H�/�y.

Figure 10. The orientation θ as a function of time t, for trimer 
particles with R2/R3 = 2.0, � = 50� and varying R1/R3. The initial 
orientation is �0 = 5�/6. The points show the numerically obtained 
trajectories and the solid lines show the analytical solutions. Here, 
the channel side walls are placed at y = ±W/2 = ±100H . The 
inset shows the long-time limit orientation �� = �(t � �).

Figure 11. The transversal position y as a function of time t, for 
trimer particles with R2/R3 = 2.0, � = 50 degrees and varying 
R1/R3. The initial orientation is �0 = 5�/6 and the initial 
position is y(0) = 0. Here, the channel side walls are placed at 
y = ±W/2 = ±100H .
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Figure I.13: (a) The orientation ◊ as a function of time t, for di�erent particles geometry.
In the inset: sketch of the particle geometry. (b) Particle trajectories in the (◊, y) phase
space for di�erent trimers geometries. Figure extracted from [34].

I.4 Flexible fibers
In the last two sections, we presented studies on rigid particles sedimenting in a quiescent
fluid or transported in a confined geometry and we emphasized the coupling between the
shape of a particle and its trajectory. In the following section, we will focus on flexible
objects that can change shape while interacting with the flow.

I.4.1 The Euler-Bernoulli equation
The Euler-Bernoulli equation describes the deformation of a beam on which external forces
are applied. In the Euler-Bernoulli beam theory the beam is taken as a one-dimensional
object. The theory relies on two important assumptions [35, 36]: first, any section of the
beam that was plane before deformation remains plane after the deformation and any
section that was perpendicular to the neutral axis before deformation remains perpendic-
ular to the neutral axis after the deformation. Second, deformations remain small i.e. the
variation of the amplitude of deformation �” over a distance �x verifies �”/�x π 1.
It is important to note that the expression of the Euler-Bernoulli equation given in the
following is only valid at leading order in deformation.

For the case, sketched in Figures I.14 (a) and (b), of a beam centered along the x-axis
and subject to a distributed load (force per unit length) fy(x) perpendicular to its axis,
the Euler-Bernoulli equation writes [35]

ˆ2

ˆx2

A

EI
ˆ2”(x)

ˆx2

B

= fy(x), (I.15)

where ”(x) denotes the beam deflection, E is the Young’s modulus and I =
ss

z2dydz is
the moment of inertia of the beam. For a beam of rectangular cross section of height h
and width w (see Figure I.14 (c)), the moment of inertia is I = wh3/12.
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Often, the product EI, called flexural rigidity or bending modulus, is constant and
equation I.15 reads

EI
ˆ4”(x)

ˆx4

= fy(x). (I.16)

The Euler-Bernoulli equation is a linear fourth order di�erential equation. As a con-
sequence, the solution of the equation needs four boundary conditions. If the beam end
is free then ”ÕÕÕ = 0 and ”ÕÕ = 0, if it is clamped then ” = 0 and ”Õ = 0, if it is subject
to a point force F orthogonal to the beam axis ”ÕÕÕ = F/EI and to a point torque M
”ÕÕ = M/EI.

The situation where the beam is subject to a load transverse to its longitudinal axis,
is called bending. In this case, the deflection of the beam is proportional to the amplitude
of the load.

(e)
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Figure I.14: (a) and (b): bending of a fiber under a transversal load fy(x). (a) Initial
configuration and sketch of the external load. (b) Sketch of the deformed beam. (c)
Rectangular cross section of the beam. (d) and (e): buckling of a beam subject to a
longitudinal load fx(x) and a longitudinal point force Fx. (d) Initial configuration and
sketch of the load and point force. (e) Sketch of the buckled beam.

When the beam is subject to a distributed longitudinal load fx(x) and/or a point
force oriented parallel to its axis Fx, the deformation of the beam occurs only for large
enough loads and is due to an instability named buckling. This situation is sketched in
Figures I.14 (d) and (e). In this case, the Euler-Bernoulli theory reads [35]

ˆT

ˆx
+ fx(x) = 0, (I.17)

EI
ˆ4”(x)

ˆx4

≠ ˆ

ˆx

3
T (x)ˆ”(x)

ˆx

4
= 0, (I.18)

with T (x) a scalar quantity, named tension, corresponding to an internal force within the
beam. It is a Lagrange multiplier ensuring the length conservation of the beam. The
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boundary condition needed to determine the tension is given by the projection of the
longitudinal forces applied on the beam tip Fx on n, the outer-pointing normal vector
at the tip surface. In the case sketched in Figures I.14 (d) and (e), T (x = ¸) = ≠ÎFxÎ.
Negative values of the tension correspond to situations where the beam is compressed,
whereas positive values result in a stretched beam. Buckling only occurs for negative
values of the tension and for ratios ≠T

0

¸2/EI, with T
0

the typical magnitude of the
tension, larger than a critical value (instability threshold), which depends on the force
distribution and on the boundary conditions.

I.4.2 The elasto-viscous number
We now consider an elastic fiber subject to viscous forces. As we have seen in section
I.2.1, the viscous forces per unit length are proportional to µv with µ the viscosity of the
fluid and v the typical velocity of the fiber. Their exact form, f̃µv, with f̃ a dimensionless
vector, will depend on the specific geometry of the flow. On the other hand, the elastic
force per unit length scales with EI/¸3, where E, I and ¸ are respectively the Young’s
modulus, the moment of inertia and the length of the fiber. Thus, one can define a
dimensionless number µ̃, called elasto-viscous number, which compares the viscous forces
and the elastic restoring force

µ̃ = µv¸3

EI
. (I.19)

Another definition gives the elasto-viscous number as a function of the shear rate
“̇ Ã v/¸

µ̃ = µ“̇¸4

EI
. (I.20)

According to equation I.20 the elasto-viscous number can also be interpreted as the
ratio between the characteristic relaxation time of the fiber · = µ¸4/(EI) and the char-
acteristic time of the flow “̇≠1.

In the case where there are only transverse viscous forces (bending), the larger the
elasto-viscous number the larger the deformation. Thus, to increase the deformation of
a fiber one can either increase the fiber length, the flow velocity or the fluid viscosity or
decrease the fiber width, its height or its Young’s modulus.

If the fiber is subject to longitudinal compressive forces, there is a negative tension
inside the fiber and, as previously mentioned, buckling occurs if the quantity ≠T

0

¸2/EI
is larger than an instability threshold. According to equation I.17, ÎT

0

Î Ã vµ¸, and
≠T

0

¸2/EI ≥ vµ¸3/EI = µ̃. Thus for small elasto-viscous numbers the fiber remains
undeformed, and for large enough elasto-viscous numbers the fiber buckles.

I.4.3 Sedimentation of flexible fibers
When a flexible fiber sediments in a quiescent fluid, a competition between viscous forces
and elastic forces leads to a complex deformation and reorientation of the object impacting
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Figure I.15: Sedimentation of flexible fibers. (a) Trajectory of the center of mass of
a fiber. The fiber shape during sedimentation is shown in the inset. Extracted from
[37]. (b) Chronophotographies of a flexible fiber released with di�erent initial conditions.
Extracted from [38]. (c) Sketch illustrating the origin of bending. Extracted from [37].
(d) Final shape of the fiber for di�erent values of the elasto-gravitational number B
(B = Fg¸2/(EI) with Fg the gravitational force). The elasto-gravitational number is a
dimensionless parameter which compares the gravitational force and the elastic restoring
forces. Extracted from [38].

its trajectory. In the following section we review studies on the sedimentation of flexible
fibers.

The first investigation on sedimenting flexible fibers has been done theoretically by Xu
et al. [39] in 1994. This work has been followed by a numerical study by Li et al. describing
the fiber deformation and its trajectory using the slender body theory [37]. Surprisingly,
to our knowledge, the first experiments on sedimenting flexible fibers have been published
only recently [38]. As already discussed for rigid fibers, as the object evolves at low
Reynolds number, its weight is perfectly balanced by the viscous drag. But, because of
the finite length of the fiber, this viscous drag varies along the object i.e. edges e�ects
lead to inhomogeneous hydrodynamic force distributions along the fiber. This causes
deformation and rotation of the fiber. Moreover, as already discussed, a consequence
of the drag anisotropy is a coupling between orientation and drift. Thus, as the fiber
rotates and deforms, this coupling leads to complex trajectories (see Figure I.15 (a)).
The fiber rotates and deforms and eventually reaches an equilibrium configuration. This
configuration corresponds to a bent fiber, whose shape is symmetric about the gravity axis,
sedimenting at constant velocity. As we can see in Figure I.15 (b) the final configuration
of the fiber does not depend on the initial configuration.

The equilibrium shape of the fiber can be understood qualitatively as follows: let
us model the fiber as composed by an assembly of spheres. As previously mentioned in
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The sedimentation of flexible filaments 721

g
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FIGURE 7. (Colour online) Illustration of the source of tension and buckling in model
‘filaments’, as in figure 1. (a) The leading-order effect: larger bodies sediment faster than
smaller bodies in a viscous fluid. (b) The secondary effect: the central bodies in a line of
identical sedimenting spheres experience a stronger disturbance fluid flow, and will sediment
faster than those near the ends. (c) The effects in (a) or (b), along with inextensibility, can
lead to buckling of a sedimenting filament.

be exhibited by an elastic body when compressive forces overcome its structural
rigidity. Potential sources of a buckling instability in the context of sedimentation are
illustrated in figure 7, and are identical to the sources of bending shown in figure 1.
With spheres sedimenting according to their sizes, the array of spheres in figure 7(a)
will separate in the top half of the train, and collapse in the bottom half (in the
direction of gravity). If the spheres are constrained so that their relative positions are
fixed, there will be a positive tension in the top half of the train and a negative
(compressive) tension in the bottom half. This compression can cause a sufficiently
flexible filament to buckle, as we show below. It is similarly argued that this source of
instability will vanish if the filament density increases monotonically in the direction
of gravity.

If the filament is of uniform thickness, the secondary effect from non-local
hydrodynamic interactions can also lead to buckling. As illustrated in figure 7(b), the
spheres nearer to the centre of the train sediment faster than those at the leading and
trailing ends. This effect can also lead to buckling of a sufficiently flexible filament.
Once again, the leading-order effect is now considered by studying a spheroidal
filament shape, and comments on the case r(s) = 1 are included in appendix A.

Choosing the spheroidal filament profile r(s) = 2
p

s(1 � s), so that c(s) = log(1/✏2),
and setting B(s) = 1 as before, considerable buckling is observed in the full
simulations for sufficiently small values of the elasto-gravitation number. Figures 8
and 9 show time sequences of filaments buckling with � = 10�4 and � = 6.25 ⇥ 10�5,
respectively (see also supplementary movie 3, which shows similar sequences with
three values of �). In both cases, an initial transverse perturbation of 10�4 cos(4�s)
is imposed along the entire filament length and is found to amplify and lead to the
observed dynamics. Two points are to be noted here, both of which we analyse in
further detail in the following sections. First, it can be seen that the buckling instability
only occurs in the leading half of the filament, whereas perturbations are observed to
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FIGURE 8. Moderate buckling is observed in simulations for � = 10�4 and
B(s) = 1: (a) t = 0.015; (b) t = 0.030; (c) t = 0.045; (d) t = 0.060; (e)
t = 0.075; (f ) t = 0.090; (g) t = 0.105; (h) t = 0.120; (i) t = 0.135;
(j) t = 0.150. (See also supplementary movie 3, which shows the buckling of sedimenting
filaments with three values of the elasto-gravitation number �.)
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FIGURE 9. Substantial buckling is observed in simulations for � = 6.25 ⇥ 10�5 and B(s) = 1.
The filament is initially placed with its trailing end at the origin: (a) t = 0.015; (b) t = 0.030;
(c) t = 0.045; (d) t = 0.060; (e) t = 0.075; (f ) t = 0.090; (g) t = 0.105; (h) t = 0.120;
(i) t = 0.135; (j) t = 0.150.
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B(s) = 1: (a) t = 0.015; (b) t = 0.030; (c) t = 0.045; (d) t = 0.060; (e)
t = 0.075; (f ) t = 0.090; (g) t = 0.105; (h) t = 0.120; (i) t = 0.135;
(j) t = 0.150. (See also supplementary movie 3, which shows the buckling of sedimenting
filaments with three values of the elasto-gravitation number �.)
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(c)

Figure I.16: (a) Sketch illustrating the origin of the tension and buckling in the vertically
oriented fiber. (b) Illustration of the tension distribution in the filament: the front half
of the fiber is compressed and the rear half of the fiber is stretched. If the fiber is flexible
enough compression leads to buckling. (c) Numerical chronophotographies of a buckling
fiber. (a) (b) and (c) are extracted from [37].

section I.1, two spheres sedimenting close to each other are faster than an isolated sphere.
Thus, we expect the spheres on the edges, which have fewer neighbors, to be slower than
the spheres in the middle. As a consequence, the fiber bends. This idea is sketched in
Figure I.15 (c).

At each moment the drag force balances the gravitational force, and it is thus ap-
propriate to define the gravitational number, B = Fg¸2/(EI) with Fg the gravitational
force, as the control parameter. Figure I.15 (d) shows the increase of the amplitude of the
deformation for increasing B. For large B the deflection of the fiber reaches a maximal
value close to half the fiber length.

The case of a vertical fiber sedimenting in a quiescent fluid is very di�erent. In order
to gain insights on the dynamics of this system, Li and co-authors [37] proposed to model
the fiber as a column of spheres (see Figure I.16 (a)). Again, the spheres placed in the
middle of the fiber are faster than the spheres on the edges of the fiber and one expects
the fiber to be compressed in the leading part and stretched in the rear part. The fiber
is thus subject to an inhomogeneous drag leading to an inhomogeneous tension. If the
elasto-gravitational number B is large enough, the tension leads to a buckling of the fiber
in its leading half. Figure I.16 (b) shows the tension distribution in the fiber and its
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FIGURE 2. Particle paths from a channel with fibre height h = 226 µm, fibre width w =
31 µm and fibre depth d = 34 µm. The channel has height H = 400 µm, depth D = 45 µm and
flow rate Q = 3 µL min�1. The inset displays phase contrast images of the same fibre without
tracer particles, for flow rates of Q = 0, 3, 8, 15 and 30 µL min�1 (left to right). The higher
flow rates are included here for illustrative purposes, and are not considered to be in the linear
regime of our model. Scale bars are 100 µm.

and PDMS is permeable to oxygen. Therefore, next to all surfaces there exists a thin
‘inhibition layer’ that cannot be polymerized (Dendukuri et al. 2008). The existence
of the inhibition layer allows us to create a fibre that partially blocks the channel
depth, but it also presents a difficulty in mounting the fibre because there is a similar
inhibition layer next to lateral walls. To overcome this issue, we polymerize the fibre
so that it attaches to a wall that is also polymerized from PEGDA. The wall, in turn, is
anchored with multiple PDMS posts and gives the fibre a clamped boundary condition
at its base (see Attia et al. (2009) for a similar example using one post).

We observe the inhibition layer to be approximately 5–6 µm, based on observations
that D � d ⇡ 10–12 µm (accounting for an inhibition layer on both the top and
bottom surfaces), where D is the depth of the channel and d is the depth of
the fibre (see figure 1). The channel depth is measured on the silicon mould
using a mechanical profilometer (Dektak). The fibre depth is measured optically, by
polymerizing unanchored fibres in the channel, and applying flow so that they flip
to their side. The cross-section of the fibre is observed to be rectangular, but the
very tip is slightly rounded in the xy-plane as shown in the microscope images of
figure 2. In our experiments, the fibre width, w, varies from 22 to 34 µm, and the fibre
height, h, varies from 144 to 293 µm. A value for the Young’s modulus of a material
polymerized under these specific cross-linking conditions could not be found in the
literature (measurements under different cross-linking conditions can be found in the
work of Berthet (2012)). Thus, we use our model to extract the Young’s modulus as
discussed in § 6.

In our experiments, we pump a solution of 100 wt% PEGDA-575 through the
channels and measure the deflection of the tip of the fibre at varying flow rates. We
use this solution to guarantee that the polymerized fibre, which is a gel, does not swell,
and to avoid accidental polymerization that might occur if the photo-initiator were
included in the solution. The density of the solution is reported by the manufacturer
to be ⇢ = 1.12 g mL�1. The kinematic viscosity of the solution was measured with
a capillary viscometer (Schott) to be µ/⇢ = 50 mm2 s�1, which agrees well with the
value provided by the manufacturer. The fluid is contained in a glass syringe (500 µL,
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of these gels directly in situ, in the conditions of the applica-
tion. Currently, several methods are employed to characterize
gels, but generally require to remove the gel from its environ-
ment. Macroscopic tests, such as uniaxial compression or
tensile tests, or measurements with a rheometer, require
large samples of the gel in a dry environment, which is not
always compatible with a microfluidic fabrication. AFM and
nanoindentation20,21 or rheology are useful and accurate
tools, but require external equipment and the extraction of
the gel particle outside of the micro-channel. There is thus a
need to access the global mechanical properties, such as the
Young's modulus or the average mesh size, of the gel, with
an in situ microfluidic method.

Microfluidics has been extensively used for rheological
measurements,22 but much less to provide information on
the mechanical properties of soft materials such as gels. We
have developed a novel microfluidic based method that
directly access the mechanical properties of a gel upon its
fabrication. We designed a microfluidic channel containing
slots filled with a solution of oligomers and photoinitiator. A
free standing beam of precisely controlled rectangular shape
is fabricated in situ within these slots (Fig. 1(a–b)), using the
stop-flow microscope-based projection photolithography
method.15,23 It will be used as a probe to measure the
mechanical properties of the gel cured in different condi-
tions. When a flow of the uncured solution is imposed in the
channel, the beam is pushed into contact with the edges of
the slot. The solution then flows over the beam, applying an
hydrodynamic force on the gel that deforms accordingly
(Fig. 1(c)). Mechanical properties of the gel are deduced from
the measurement of the deformation of the beam in response
to the flow. This method, where both the load applied to the
beam and its geometry are precisely controlled and known,
gives a direct access to the Young's modulus of the mate-
rial. Furthermore, the gel remains in its own solution, thus
preventing any swelling or conformation changes and

ensuring an accurate determination of its mechanical prop-
erties as used in the application.

2. Implementation of microfluidic-
based mechanical measurements
2.1. Channel and fiber fabrication

We fabricate all-PDMS (polydimethylsiloxane, Sylgard 184,
Corning) microfluidic devices with traditional soft-lithography
techniques. The channels are straight with regularly spaced
slots. Their typical dimensions are width L = 200 μm, height
hc = 40–70 μm, slots length L = 120 μm and channel length of
a few centimeters. In order to fabricate hydrogel beams of
controlled geometry, we use the stop-flow microscope-based
projection photolithography process23 described in Fig. 2(a).
The microfluidic channel is filled with a solution of oligomer
and photo-initiator and placed on an inverted microscope
equipped with a UV light source. The channel is exposed to a
pulse of UV light through a lithography mask placed in the
field-stop position of the microscope. The shape prescribed
by the mask is thus projected into the microchannel. By
focusing the light in the center of the microchannel we initi-
ate the cross linking of the solution and we obtain an hydro-
gel object whose shape is determined by the shape of the
mask. We take advantage of the permeability of PDMS to
dioxygen that inhibits the polymerization, leaving a non-
polymerized lubricating layer of constant thickness along the
walls of the channel24 (Fig. 1(b)).

We use an inverted microscope (Zeiss Axio Observer)
equipped with a UV light source (Lamp HBO 130W) and an
external computer-controlled shutter (Shutter Uniblitz V25).
The shutter opening time, tuv, can be precisely controlled.
The UV light intensity is kept constant in our experiments.
The UV light is filtered through a narrow-UV-excitation filter
set (11004v2 Chroma) and is then projected into the channel
through a beam-shaped mask. There is a reduction in size
between the printed mask and the actual object of width

Fig. 1 (a–b) Photographs of the microfluidic device with a
polymerized beam. The second photograph shows the beam flipped
on its side, showing its constant height hb obtained with the inhibition
layer. Scale bar = 100 μm. (c) Chronophotography showing the
deformation of the beam as the flow rate is increased. Scale bar =
100 μm.

Fig. 2 (a) Principle of stop-flow photo-polymerization. (b) Schematic
of the beam and channel geometries.
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FIGURE 1. Schematic of a planform view of the channel geometry (left), and a cross-
sectional view down the axis of the fibre (right). In experiments the very tip of the fibre
is rounded; it is shown square in this schematic for clarity in defining the dimensions.

because of its slenderness and because it is made of a soft material. We pump a
Newtonian fluid through the channel at known flow rates and record the shape that the
fibre takes as in the inset of figure 2. Experiments are performed over a broad range of
flow rates, but in this work we focus on small deflections of the fibre.

2.1. Experimental methods
The rectangular microfluidic channel is made of polydimethylsiloxane (PDMS, General
Electric) and has a depth D = 66 µm and a height H = 400 µm (see figure 1). The
channels are approximately 3 cm long and are moulded on a silicone wafer using
standard soft-lithography techniques. The fabrication allows for features such as walls
and pillars that span the entire depth of the channel, but features such as the fibre,
which only partially block the depth, present a difficulty and necessitate a different
fabrication method.

We implement the technique of ‘stop-flow lithography’, as introduced by Dendukuri
et al. (2007), and succeed in making highly confined fibres that are anchored in
the channel. We follow the fibre polymerization methods of Berthet (2012), first
filling the channel with a photo-curable solution of 90 wt% polyethylene glycol
diacrylate, with average molecular weight 575 (PEGDA-575, Aldrich Chemistry) and
10 wt% 2-hydroxy-2-methylpropiophenone photo-initiator (Aldrich Chemistry). Great
care is taken in preparing the solution so as to eliminate irreproducibilities in the
polymerization process. A fresh solution is mixed before each experiment, nitrogen is
run through the solution for 30 min to purge dissolved oxygen, and then the solution is
degassed for 30 min to remove nitrogen bubbles. A photomask with the desired fibre
geometry is placed in the light path of the fluorescence lamp (X-Cite) on a microscope
(Zeiss) at 10⇥ magnification, and the shutter is opened for 225 ms. This procedure
cures the unmasked portion of the solution in the channel. The exposure time was
determined to give the most accurate reproduction of the desired fibre geometry with
our specific set-up.

When the shutter is open, the entire depth of the channel not blocked by the
mask is exposed to ultraviolet light. The polymerization reaction can only occur away
from PDMS surfaces however, since the reaction is inhibited by dissolved oxygen
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(a)

(b)

(c)

Figure I.17: (a) Sketch illustrating the channel and fiber geometry. (b) Visualization of
the flow pathlines around a bent fiber. Scale bars are 100 µm. Figures (a) and (b) are
extracted from [40]. (c) Superposition of images showing a flexible fiber deformed by an
external viscous flow of varying velocity. The higher the velocity of the flow, the larger
the deformation. Scale bars is 100 µm. Figure (c) is extracted from [41].

buckled shape. It is an unstable state and buckling is followed by a fast reconfiguration of
the fiber through the previously described equilibrium configuration (see Figure I.16 (c)).

I.4.4 Flexible fibers in confined geometries

In the following section we review two studies investigating the deformation of flexible
fibers in a confined geometry [40, 41]. The fibers are confined by top and bottom walls
i.e. they occupy almost all the channel height.

Figure I.17 (a) shows the geometry of the system studied by Wexler and co-authors
[40]. A flexible fiber is clamped at one edge and free at the other. Upon application
of an external viscous flow, the fiber bends. A picture of the bent fiber is shown in
Figure I.17 (b). In this system, the flow around the particle is complex and its three
dimensional nature is visible in Figures I.17 (a) and (b). Part of the flow goes through
the gaps between the fiber and the channel top and bottom walls while another part of
the flow circumvents the obstacle. The authors observed that in the limit of low flow
velocity, the deformation of the fiber evolves linearly with the external flow velocity. To
explain their observations and to derive the deflection of the fiber as a function of the
flow velocity they used a two dimensional model. In the model, the fiber is considered as
a porous object allowing the flow to pass through the fiber. The flow around the fiber is
modeled as a Hele-Shaw flow.

The study of Duprat et al. [41] investigates, both experimentally and theoretically,
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the deformation by an external flow of a fiber whose both ends are simply supported.
A picture of the experiment is shown in Figure I.17 (c): a flexible fiber is placed in
two slots, an external flow is imposed, which deforms the object. The amplitude of the
deformation is observed to be proportional to the elasto-viscous number µ̃. The authors
model the flow around the fiber using the lubrication theory which enables them to derive
the forces per unit length applied on the fiber. Using Euler-Bernoulli theory Duprat et al.
obtained a very good prediction of the shape of the bent fiber and its deflection amplitude.
This situation is used as a measurement method to characterize the Young’s modulus of
hydrogels. This last point will be developed further in chapter II.
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(a) (b)

Figure 1.6: (a) A particle is immersed in an external flow field v� (r). The particle has a translational
velocity Vp and angular rotation vector ���p. In the neighborhood of the particle the flow field can be
written as a Taylor series, which identifies the local flow velocity v� (0), the local vorticity vector
���� (0), and the local rate-of-strain tensor E� (0). (b) Decomposition of a simple shear flow into a
rotating flow, which represents the contribution of vorticity, and a pure straining flow oriented at 45� to
the flow direction, which represents the contribution of the rate-of-strain.

The first term on the right-hand side of (1.52), v� (0), represents a local uniform motion.
The linear variations of velocity are captured by the vorticity vector ���� and rate-of-strain tensor
E�: the local vorticity ���� represents twice the angular velocity of the fluid and is equivalent
to the anti-symmetric part of the velocity gradient tensor (this topic is standard in graduate text
books). Also, the rate-of-strain tensor E� indicates the rate of stretching of fluid elements, as
well as the orientations of maximum extension and compression. This description highlighting
only the linear variations in the local velocity field in the vicinity of a particle is expected to be
a good approximation when the largest particle dimension is smaller than the typical distance
over which the velocity gradient changes.

In particular, a simple shear flow, as sketched in Figure 1.6b, can decomposed into a locally
rotating (vortical) flow and a straining or extensional flow oriented at 45� to the flow direction.
In this case, the magnitude of the vortical flow is equal to the magnitude of the straining flow.

There are three common types of problems that can be discussed for particles in viscous
flows: (i) motion of the particles in an external applied flow, (ii) the squirming or swimming
of an object produced by a velocity distribution along the particle surface, (iii) the flow field
created by the particle. We briefly discuss these items in the next three sub-sections.

1.6.2 Generalized Forces and Velocities: Forces, Torques and the Stresslet
Tensor

There are many problems that involve the translation and rotation of particles in fluid, e.g.
Figure 1.6a and Figure 1.7a. In some cases the particles move because of an external flow,
in others the particles experience a net force or torque, while in other cases the particles, e.g.
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Figure 1.13: Jeffery orbits in a shear flow. Particle orientations in three dimensions for different values
of the orbit constant C.

1.9.2 Three-dimensional Particle Rotations in a Simple Shear Flow
In this case it is convenient to take the same notation, but now let �(t) denote the angle the par-
ticle axis makes with the z axis; the calculation in the previous section refers to � = �/2;
see Figure 1.11. Then, for the three-dimensional orientation of the particle we write ��� =
(cos � sin �, sin � sin �, cos �). The vorticity vector and rate-of-strain tensor are as above, e.g.

E = �̇
2

�

�
0 1 0
1 0 0
0 0 0

�

�. We can then calculate

��� · E = �̇ (sin � sin �ex + sin � cos �ey) and ��� · E · ��� = 2�̇ sin2 � sin � cos �. (1.106)

Again, it is clear that the typical time scale for particle tumbling is �̇�1.
We then find an equation for �(t) that is identical to equation (1.103) and an equation for

�(t):
d�

dt
=

�̇�

2
sin (2�) sin (2�) . (1.107)

Since �(t) is known, equation (1.105), then it is straightforward to integrate to find �(t). Indeed,
as first found by Jeffrey,

tan � = Cre

�
r2
e cos2 � + sin2 �

��1/2
, (1.108)

(a) (b)

Figure I.18: (a) Decomposition of a simple shear flow into a rotating flow and a pure
straining flow oriented at 45¶ with the flow direction. (b) Je�ery orbits in a shear flow.
The colored lines correspond to the trajectory of one edge of an elongated object during
a Je�ery orbit. Depending on the initial orientation of the elongated object it will have
in-plane rotation (red curve) or will exhibit a "kayaking" motion (orange, green and purple
curves). Extracted from [20].

We primarily focused our literature review on the evolution of particles in quiescent
fluids or in plug flows, but other flow geometries lead to very interesting particle dynam-
ics as well. Let us take the example of the simple shear flow. It can be decomposed
into a rotating flow and a pure straining flow oriented at 45¶ with respect to the flow
direction (see Figure I.18 (a)). When an elongated object is placed in a simple shear
flow, it translates with its center of mass flowing at the velocity of the fluid. At the
same time it experiences periodic rotations and its tips follow orbital trajectories called
"Je�ery orbits". These trajectories are named after George Barker Je�ery who gave a
mathematical description of these motions in 1922 [8]. The rotating flow, together with
the drag anisotropy of an elongated object, are at the origin of these "Je�ery orbits". The
trajectories of the fiber tips, for di�erent initial orientations of the fiber, are shown by
the colored lines in Figure I.18 (b). If the fiber is perpendicular to the axis of vorticity of
the flow (Oz in Figure I.18 (b)) it will rotate in the plane (Oxy) (see the red curve), but
if the fiber axis is neither perpendicular nor parallel to the vorticity axis it will exhibit a
"kayaking" motion (see orange, green and purple orbits). Generalizations of these results



I.5 Conclusion 23

in more complex flow geometries have been done in the cases of shear flows and Poiseuille
flows near a boundary [42, 43].

When the particle is oriented at 45¶ with the flow direction, it experiences a compres-
sion from the straining flow, which can lead to buckling (see Figure I.19). The situation
presented here is very di�erent from the situations encountered in our studies where we
deal with Hele-Shaw flow geometries and thus have a plug-like flow in the (Oxy) plane
and a Poiseuille-like flow in the (Oxz) plane (see Figure I.7). Thus, we do not detail this
argument. Curious readers are invited to refer themselves to the extensive bibliography
on the phenomenon of buckling of flexible fibers in simple shear flow [45, 46, 47, 48, 44].
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Fig. 1. Temporal evolution of the filament shape in planar shear over one period of motion, showing three representative cases corresponding to increasing
elasto-viscous numbers. In each case, we compare fluorescence images from experiments (E) to Brownian dynamics simulations (S). Movies of the dynamics
are provided in SI Appendix, Movies S1–S6.

characteristic period of tumbling (23, 29). In shear flow, the com-
bination of rotation and deformation leads to particularly rich
dynamics (23, 30–35), which have yet to be fully characterized
and understood.

In this work, we elucidate these dynamics in a simple shear
flow by combining numerical simulations, theoretical modeling,
and model experiments using actin filaments. The filaments we
consider here have a contour length L in the range of 4�40 µm
and a diameter of d � 8 nm. By analyzing the fluctuating shapes
of the filaments, we measured the persistence length, as shown
in ref. 36, to be �p = 17 ± 1 µm independent of the solvent
viscosity. We combine fluorescent labeling techniques, microflu-
idic flow devices, and an automated-stage microscopy apparatus
to systematically identify deformation modes and conforma-
tional transitions. Our experimental results are compared against
Brownian dynamics simulations and theoretical models that
describe actin filaments as thermal inextensible Euler–Bernoulli
beams whose hydrodynamics follow slender-body theory (10). By
varying contour length as well as applied shear rates in the range
of �̇ � 0.5�10 s�1, we identify and characterize transitions from
Jeffery-like tumbling dynamics of stiff filaments to buckled and
finally strongly bent configurations for longer filaments.

Results and Discussion
Governing Parameters and Filament Dynamics. In this problem, the
filament dynamics result from the interplay of three physical
effects—elastic bending forces, thermal fluctuations, and viscous
stresses—and are governed by three independent dimensionless
groups. First, the ratio of the filament persistence length �p to
the contour length L characterizes the amplitude of transverse
fluctuations due to thermal motion, with the limit of �p/L� �
describing rigid Brownian fibers. Second, the elasto-viscous num-
ber µ̄ compares the characteristic timescale for elastic relaxation
of a bending mode to the timescale of the imposed flow and is
defined in terms of the solvent viscosity µ, applied shear rate
�̇, filament length L, and bending rigidity B as µ̄ = 8�µ�̇L4/B .
Note that B and �p are related as B = kBT �p , where k

B

is
the Boltzmann constant and T the temperature. Third, the
anisotropic drag coefficients along the filament involve a geomet-
ric parameter c = � ln(�2e) capturing the effect of slenderness,
where � = d/L.

The elasto-viscous number can be viewed as a dimension-
less measure of flow strength and exhibits a strong dependence
on contour length. By varying L and �̇, we have systemati-
cally explored filament dynamics over several decades of µ̄ and
observed a variety of filament configurations, the most frequent
of which we illustrate in Fig. 1 and SI Appendix, Movies S1–S6.

In relatively weak flows, the filaments are found to tumble with-
out any significant deformation in a manner similar to that
of rigid Brownian rods. On increasing the elasto-viscous num-
ber, a first transition is observed whereby compressive viscous
forces overcome bending rigidity and drive a structural instabil-
ity toward a characteristic C -shaped configuration during the
tumbling motion. By analogy with Euler beams, we term this
deformation mode “global buckling” as it occurs over the full
length of the filament. In stronger flows, this instability gives way
to highly bent configurations, which we call U turns, and they
are akin to the snaking motions previously observed with flexible
fibers (23, 32). During those turns, the filament remains roughly
aligned with the flow direction while a curvature wave initiates
at one end and propagates toward the other end. At yet higher
values of µ̄, more complex shapes can also emerge, including an
S turn which is similar to the U turn but involves two opposing
curvature waves emanating simultaneously from both ends (SI

Appendix, Movies S5 and S6). In all cases, excellent agreement
is observed between experimental measurements and Brownian
dynamics simulations. Our focus here is in describing and
explaining the first three deformation modes and corresponding
transitions.

We characterize the temporal shape evolution more quantita-
tively for each case in Fig. 2. To describe the overall shape and
orientation of the filament, we introduce the gyration tensor, or
the second mass moment, as

Gij (t) =
1
L

� L

0

[ri(s, t) � r̄i(t)][rj (s, t) � r̄j (t)] ds, [1]

where r(s, t) is a 2D parametric representation of the fila-
ment centerline with arclength s � [0,L] in the flow-gradient
plane, and r̄(t) is the instantaneous center-of-mass position. The
angle � between the mean filament orientation and the flow
direction is provided by the eigenvectors of Gij , while its eigen-
values (�1, �2) can be combined to define a sphericity parameter
� = 1 � 4�1�2/(�1 + �2)

2 quantifying filament anisotropy: � �
0 for nearly isotropic configurations (�1 � �2), and � � 1 for
nearly straight shapes (�1 � �2 � 0). Other relevant measures
of filament conformation are the scaled end-to-end distance
Lee(t)/L= |r(L, t) � r(0, t)|/L, whose departures from its max-
imum value of 1 are indicative of bent or folded shapes, and
the total bending energy E(t) = B

2

� L

0
�2(s, t)ds , which is an

integrated measure of the filament curvature �(s, t).
As is evident in Fig. 2, these different variables exhibit

distinctive signatures in each of the three regimes and can
be used to systematically differentiate between configurations.
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Figure I.19: Buckling of an actine filament in a simple shear flow. Top: experiments,
bottom: numerical simulations. Figure extracted from [44].

I.5 Conclusion
In this chapter, we reviewed studies on the dynamics of isolated rigid or flexible fibers
evolving in viscous fluids and flows. A lot of work has already been performed to describe
and model the transport of rigid fibers by an external viscous flow in confined geometries
[13, 14, 30]. The role of the flexibility has, however, not clearly been addressed. Investiga-
tions on the deformations of flexible fibers in such geometries mainly dealt with fibers held
at a fixed position [40, 41]. Thus, in our study, we will focus on the situations of freely
transported flexible fibers oriented either perpendicular or parallel to the flow direction.
Contrary to Berthet et al. [13] and Nagel et al. [30], in our investigations we will look at
force distributions along the fiber length and not only at integrated quantities.

When flexible fibers are transported in confined geometries, their shapes change and,
as we have seen in this review, these shape variations impact the trajectories. Thus,
another aspect of our work will focus on the coupling between the shape of a model
rigid fiber and its trajectory. In our studies, motivated by the fact that no experiments
have been carried out on the dynamics of fully asymmetric fibers transported in confined
geometries, we will primarily investigate the dynamics and the trajectories of "L-shaped"
particles.
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Chapter II
Materials and methods

The aim of this work is to study the dynamics of isolated fibers transported by an external
flow in a confined geometry. Special focus is laid on the investigation of the role of the
shape and of the flexibility of the fibers, facing the necessity of using fibers of well-defined
and reproducible shape and mechanical properties.

The introduction of microsized objects into microchannels faces di�erent di�culties.
Indeed, besides the low variety of commercial micro-particles, the introduction of such
an object into a microfluidic channel can lead to clogging of the setup in regions where
constrictions are present. Moreover, the manipulation of single particles of this size to
place them in the desired position and orientation can be extremely di�cult.

In this work we use a technique developed in the group of Patrick Doyle at MIT [15, 16],
that consists in creating the particles directly in situ using a photolithography technique,
which is already well mastered in our group [13]. It allows for an excellent control on the
particle geometry, orientation and position inside the microchannel. In this chapter, we
describe the experimental method of fabrication of the fibers, the di�erent options chosen
to flow them and the protocol used to tune their mechanical properties in order to obtain
very flexible fibers.

25
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II.1 Fiber fabrication

II.1.1 Particle fabrication principle
In order to control the position, shape and mechanical properties of the hydrogel particle,
we use the so called "stop-flow microscope-based projection photo-litography method"
[15, 16]. A schematic of this technique is shown in Figure II.1 (a).

(a) (b)

Figure II.1: (a) In situ fabrication of fibers using a microscope-based projection lithog-
raphy technique. UV-light is projected into the channel through a fiber-shaped mask,
polymerizing the photosensitive solution inside the channel. (b) Examples of lithography
masks.

With an inverted microscope equipped with a UV-source, we expose a polydimethyl-
siloxane (PDMS) channel filled with a photosensitive solution, composed of an oligomer
and a photo-initiator, by flashes of controlled duration. The wavelength emitted by the
source needs to match the excitation wavelength of the photo-initiator in order to get
crosslinking. A mask, consisting of a black disk with any 2D shape drawn in trans-
parency (see Figure II.1 (b)), is placed in the path of the UV-light, in the field stop
position of the microscope. Hence, by focusing the UV-light in the center of the channel
an hydrogel particle is fabricated.

The polymeric fibers are fabricated at zero flow rate and we can control the geometry
of the hydrogel particle using two di�erent methods. The first one simply consists in
using a mask with the desired 2D shape of the particle drawn on it. The second one
takes advantage of a motorized stage that can be controlled using a Labview program:
a long pulse of UV-light pass trough a dot shaped mask while the microscope stage
moves and literally draws the particle. In order to obtain particles with homogeneous
mechanical properties with this process, we ensure a constant velocity of the stage during
the fabrication of the fiber. Hence, each portion of the fiber is illuminated for the same
amount of time. This method is well adapted for the fabrication of long particles of
simple geometries, whereas the first technique allows for the fabrication of objects of
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more complex shapes but smaller dimensions.
As we project the image of a 2D object in a 3D channel the hydrogel particle has a

rectangular cross section.

PDMS

PDMS

H h

b

inhibition layer

Figure II.2: Sketch of the cross section of the microfluidic chip and the hydrogel particle.
The microchannel is entirely made of PDMS. PDMS is porous to oxygen, which di�uses
through the channel. As a result, two layers saturated in oxygen appear on the top and
on the bottom of the channel. Because the oxygen inhibits the cross-linking reaction the
hydrogel does not occupy all the channel height. The height of the inhibition layer is
constant and equal to 6 ± 1.6 µm.

Due to the permeability of PDMS to oxygen, which inhibits the polymerization, a
non-polymerized inhibition layer of constant thickness is left along the top and bottom
walls of the channel [16]. These layers are illustrated in Figure II.2. The presence of the
inhibition layers is particularly important to our purpose: first, it allows us to flow the
particle in the channel (there is no adhesion between the particle and the channel top and
bottom walls), and second, because of their constant thickness, it allows us to tune the
height of the fiber by changing the channel height. The mask being fixed, we control the
particle position by adjusting the position of the channel on the microscope stage.

Figure II.3 shows di�erent geometries of particles created using the stop-flow microscope-
based projection photo-litography method. The long fibers shown in the center of Fig-
ure II.3 are fabricated using the second method (moving stage method) and the others
using the first method (fixed stage method).

Note that in order to fabricate very long fibers one can also use the technique presented
in references [49, 50, 51] which works by illuminating a jet of photosensitive solution with
a continuous and fixed UV-spot.

II.1.2 Fabrication protocol

a) The experimental setup

We adapt the stop-flow microscope-based projection photo-lithography method on our
setup using an inverted microscope Zeiss Axio Observer equipped with a UV-light source
(Lamp HBO 130W) and a ◊5 EC Plan NEOFLUAR objective or a ◊10 ULTRAFLUAR
objective. The exposure time is precisely controlled using an electronic shutter (V25,
Uniblitz) coupled to an external generator (Agilent 33220A). The mechanical response
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200µm

Figure II.3: Examples of particles fabricated using the stop-flow microscope-based pro-
jection photo-lithography method. All the particles are fabricated in the absence of flow
inside the channel. The di�erent shapes are obtained using di�erent masks or by moving
the microscope stage in di�erent ways.

time of the shutter is 10 ms. A band pass filter (11004v2 Chroma) centered at ⁄ = 365nm
with a bandwidth of 10 nm is placed in the path of the UV-light just before the lithography
mask.

Microchannels are made with polydimethylsiloxane (PDMS, Sylgard 184, Corning)
and produced from molds fabricated using a micro-milling machine (Minitech Machinery)
or traditional soft lithography technics. They are bonded to a cover slide, spin-coated
with a thin layer of PDMS, in order to ensure identical boundary conditions on the four
walls. The fabrication protocol of the channels is detailed in the appendix A. The channel
is then placed on the motorized stage of the microscope (ASI MS-2000-500).

b) Channel geometry

We use rectangular cross section channels of height much smaller than width. The aspect
ratio, width over height, is between 10 and 100. The channel height is a few tens of
micrometers, whereas the width is typically one millimeter. The length of the channel
is a few centimeters. Such a shallow geometry of the channel is imposed by the particle
fabrication technique. Indeed, the particle geometry is highly dependent on the channel
height: whereas the geometry of the fiber in the plane of observation is independent
of the channel dimensions, the height of the fiber, as we have seen previously, is solely
determined by the channel height.
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c) Mask design

We design the masks using Clewin or Adobe Illustator softwares. They are printed with
the highest resolution available (2400 dpi) at FGN Espace Numérique or at Institut Pierre
Gilles de Gennes. The masks are black circles of 2.5 cm diameter with the particle
geometry drawn in transparency in its center. Examples of particle masks are shown in
Figure II.1 (b).

d) Optical focusing

The fabrication method requires focusing UV-light onto the channel. Due to the chromatic
aberration of the optics the focusing distance is di�erent for visible light and UV-light.
Practically, the channel will appear out of focus when UV-light is in focus. The "defo-
cusing" distance is found by fabricating particles in test channels with varying focus until
the edges of the particle appear sharp.

e) Oligomer solutions

In this work we use di�erent photosensitive solutions which are all composed of the three
following elements:

• the oligomer: polyethylenglycol diacrylate (PEGDA, Sigma). We vary the chains
length using two di�erent PEGDA mean number-average molecular weights: Mn=700
g/mol and Mn=575 g/mol.

• the photoinitiator (PI): Darocur 1173 (2-hydroxy-2-methylpropiophenone, Sigma).

• the solvent: either water or a solution of polyethylenglycol (PEG, Mn=1000 g/mol,
Sigma, PEG

1000

) and water at the ratio 2:1 in volume.

The nature of the photoinitiator has been carefully chosen in order to match the light
source wavelength with the photoinitiator excitation wavelength. In all the photosensitive
solutions used in this work, we kept a constant ratio of PI, of 10% in volume, to keep the
height of the inhibition layers constant [16].

The mechanical properties of the hydrogel particle directly depend on the nature of
the photosensitive solution. We vary the relative quantities of oligomer and solvent in
order to tune the properties of both the fluid (viscosity, density...) and the hydrogel
(Young’s modulus, Poisson’s ratio...).

The viscosity of the di�erent photosensitive solutions has been measured with an
Antoon Paar rheometer Physica MCR501, using a cone/plate geometry of 0.5¶ angle and
60 mm diameter. As illustrated in Figure II.4, all the tested photosensitive solutions are
Newtonian fluids i.e. the viscosity is constant for varying shear rates. The shaded region
corresponds to sets of parameters where the resolution of the rheometer is low.

The measured viscosities for the di�erent solutions used in our work are summarized
in table II.1.
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Figure II.4: Viscosity of the photosensitive solutions used in the following studies as a
function of the shear rate. No solvent (black diamond) and di�erent solvents (water
(circles) and a solution of PEG

1000

-water at the ratio 2:1 in volume (triangles)) have
been used in di�erent quantities. The region corresponding to a low resolution of the
rheometer is shaded in grey. In all the cases viscosity is constant as a function the shear
rate evidencing the Newtonian character of these fluids.

Volume fraction of solvent water PEG
1000

-water (2:1 in volume)
0% µ = 117 ± 3 mPa·s µ = 117 ± 3 mPa·s
10% µ = 101 ± 3 mPa·s ≠
20% µ = 73 ± 3 mPa·s µ = 108 ± 3 mPa·s
30% µ = 46 ± 3 mPa·s µ = 107 ± 3 mPa·s
40% µ = 29 ± 3 mPa·s µ = 116 ± 3 mPa·s
50% µ = 17 ± 3 mPa·s µ = 112 ± 3 mPa·s
60% ≠ µ = 121 ± 3 mPa·s
65% ≠ µ = 107 ± 3 mPa·s
70% ≠ µ = 85 ± 3 mPa·s

Table II.1: Viscosities of the di�erent photosensitive solutions used in this work. ≠
symbols correspond to unmeasured viscosities.

II.1.3 Particle geometry

a) Two-dimensional geometry

The size of the particle depends not only on the size of the drawing on the mask but also on
the chosen objective. The objective makes the image of the mask into the microchannel,
hence the higher its magnification the smaller the particle.
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For all the objectives used in our studies we measure the linear relation between the
mask dimension and the particle dimension. The reduction factor (mask length over
particle length), the numerical aperture (NA) and the theoretical resolution (D) of the
◊5 and ◊10 objectives are given in table II.2.

Objectives ◊5 EC Plan NEOFLUAR ◊10 ULTRAFLUAR
Reduction factor 1.9 3.9
Numerical aperture (NA) 0.16 0.2
Theoretical resolution (D) 1.1 µm 0.91 µm

Table II.2: Properties of the di�erent objectives used for the fabrication of the hydro-
gel particles. The wavelength (⁄) used for the calculation of the resolution is 365 nm.
Resolution (D) is determined using the equations provided by the microscope objectives
manufacturer (Zeiss): D = ⁄/(2 NA), with NA the numerical aperture of the objective.

It is easier to work with low magnification objectives, because they have a larger depth
of field, simplifying the focus of UV-light. Moreover, the depth of field of the objective
should be large enough to ensure homogeneous mechanical properties along the height of
the particle, orienting the user to prefer small magnification objectives.

We observe that the minimum achievable particle size is around 5 to 10 µm. Smaller
particles are not homogeneous and break when transported in the channel. The maximal
size of the particles depends on the choice of the method. If the microscope stage is
immobile during fabrication, the maximal size is determined by the width of the light
beam at the mask position, which is measured to be 3 mm. Thus, the maximal length
of a particle is for instance 1.5 mm using the ◊5 EC Plan NEOFLUAR objective. The
method that consists in moving the microscope stage during illumination allows for the
fabrication of much longer particles. Their sizes are thus only limited by the channel
length and width.

An example of particle fabricated using a combination of the two techniques is shown
in Figure II.5. The sine shape is fabricated by moving the microscope stage in a con-
trolled way and the vertical lines are fabricated by illuminating the photosensitive solution
through a mask on which a vertical rectangle is drawn in transparency. The vertical lines
are 1.5 mm long and the sine shaped part is around 4 mm long.

b) Three-dimensional geometry

As we have seen in section II.1.1, the 3D geometry of the particle is determined by the
presence of inhibition layers close to the channel walls. Hence, the knowledge of the height
of these layers is of paramount importance for the control of the height of the particle.
According to Dendukuri et al. [16], the height of these thin regions is determined by a
competition between the rate of di�usion of oxygen in the photosensitive solution, the
rate of production of free radicals and the rate of reaction of the oxygen with radicals.
The inhibition layer thus depends on experimental parameters such as light intensity or
photoinitiator concentration but not on the channel height. In our experiments, we choose
to use a constant concentration of PI (10% in volume) and a constant light intensity in
order to have always the same thickness of inhibition layer.
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Figure II.5: Hydrogel representing the PMMH logo fabricated using the stop flow
microscope-based photolithography method. Two techniques have been used to fabri-
cate the particle. The vertical lines have been fabricated using a mask on which a vertical
fiber was drawn in transparency and the sine shape has been fabricated using a dotted
mask and moving the microscope stage in a controlled way. Scale bar is 1000 µm.

The thickness of the inhibition layer is measured by the following method: we use a
channel of known height H, measured using an optical profilometer with a measurement
uncertainty smaller than one micrometer. In this channel, we fabricate a fiber whose
width is smaller than its height. If we then apply an external flow, we observe that the
fiber rotates until it turns on its side. In this configuration, the fiber height, h, can be
measured. Figure II.6 (a) shows a fiber just after fabrication, and Figure II.6 (b) shows
the same fiber after rotation. The height of the inhibition layer b is derived using the
formula b = H≠h

2

.

(a) (b)

Figure II.6: Two pictures of the same fiber, (a) just after fabrication and (b) after it
turned on its side. We adjusted the dimensions of the fiber-shaped mask so that the fiber
height is larger than its width. The initial position (a) of the fiber is unstable and a small
perturbation makes the fiber rotate (b). Picture (b) allows for a direct measurement of
the fiber height h. Knowing the channel height H we derive the height of the inhibition
layer b = H≠h

2

. Scale bars are 200 µm.
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In our setup we measured a constant inhibition layer of b = 6 ± 1.6µm, both for the
◊5 and ◊10 magnification objectives.

The knowledge of the inhibition layer thickness allows us to control one key parameter
of our studies, the confinement —, defined as the ratio h/H. Since the height of the
inhibition layer is constant the confinement is solely defined by the channel height. Thus,
we vary the confinement by changing the channel height. As sketched in Figure II.7, an
increase (decrease) of the channel height leads to an increase (decrease) of the confinement.

H h

Figure II.7: Sketch of the cross section of the microfluidic chip and the hydrogel particle
highlighting the impact of the channel height, H, on the confinement, — = h/H. From
left to right the confinement increases.

In rare situations we wanted to tune the height of the inhibition layers. This can be
achieved by changing the protocol of the channels fabrication. If a plasma treatment is
used to bind the upper part with the bottom part of the channel, the concentration of
oxygen in the PDMS is decreased as well as the height of the inhibition layer. By using
this strategy we manage to reduce the inhibition layer height to a minimum of three
micrometers.

II.2 Flow control

Once the particles are fabricated, an external flow is imposed and the particles are trans-
ported in the channel. In the fluid-structure problems we aim to study, the control of
the flow is of crucial importance. We choose to use either a syringe pump or a pressure
controller to impose the flow. The main advantage of a syringe pump is the direct control
of the the flow velocity by setting the flow rate. The range of flow rate used in our studies
varies from a few nL/s to a few hundreds of nL/s. To accurately deliver such low flow rates
we use a Nemesys (Cetoni) syringe pump. The pressure controller allows us to impose a
pressure di�erence between the inlet and the outlet of the channel. The main hydraulic
resistance is due to the shallow channel and we assume that the inlet tubing and outlet
tubing lead to negligible pressure drops. Hence, the pressure di�erence is mainly applied
across the channel. This second method does not allow for a precise control of the flow
rate, but has much faster response time than the syringe pump systems.

The outlet of the channel is connected to a reservoir. In rare cases we measure the
flow rate by placing the reservoir on a precise scale and monitoring the evolution of the
weight.
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II.3 Data acquisition and image analysis

II.3.1 Image acquisition
We use dark field microscopy for the image visualization. This technique takes advantage
of the fact that the particle and the surrounding fluid do not have the same refractive
index, which allows for a visualization of the interface between the particle and the fluid.
An Hamamatsu Orca-flash 4.0 camera at a frame rate of few images per second (5 to
10 images per second) is used to record the particle transport. The microscope stage is
moved by hand to keep the particle in the field of view of the camera.

II.3.2 Fiber shape and position
The particle shape and position are obtained using standard image treatment procedures
(with ImageJ [52] and Matlab) and recorded as a function of time. The grey-level images
are binarized and we extract the centerline of the fibers using a skeletonization method.
An example of the picture of a bent fiber and its skeletonized shape extracted using our
MatLab routine is shown in Figure II.8.

Figure II.8: Superposition of a picture of a deformed fiber and its skletonized shape (red
line) obtained using standard image treatment procedures with ImageJ [52] and Matlab.
Scale bar is 200 µm.

II.3.3 Velocity measurements
Streaklines and velocity fields around a moving object can be gathered from experiments.
We place a suspension of beads into the photosensitive solution and keep the object in
the field of view of the camera while it moves. Figure II.9 (a) shows the streaklines
around an hydrogel particle. It is a reconstructed image built from processing several
successive snapshots of the flow with suspended latex particles of 1 µm diameter, all
superimposed while keeping the fiber in the center of the image. The velocity field around
the fiber, shown in Figure II.9 (b), is obtained using particle-tracking velocimetry (PTV)
techniques in the frame of reference of the fiber. Velocity is calculated by averaging
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the particles velocities on 64 ◊ 64 pixels windows, and once the system has reached its
stationary regime, by averaging over time. The 10◊ ULTRAFLUAR objective used for
these measures allows us to image the full channel depth, the flow field obtained thus
corresponds to the depth-averaged velocity of the fluid.

Figure II.9: (a) Streaklines of the flow around a rigid fiber transported by an external
flow of velocity u

0

in the reference frame of the fiber. The mean fluid velocity is u
0

= 48
µm·s≠1 and the fiber dimensions are ¸ = 528 ± 5 µm, w = 67 ± 5 µm, and h = 49 ± 3 µm.
Confinement is — = 0.82. Streaklines are obtained by visualizing 1 µm diameter latex
beads flowing around the fiber with a 10◊ objective. Scale bar is 100 µm. (b) Depth-
averaged velocity field around the fiber obtained from the particle tracking by averaging
the particles velocities on time and on 64◊64 pixel windows. The constant velocity of
the fiber has been added to get the velocity field in the reference frame of the laboratory.
The noise on the edges of the window field results from lack of data in these regions.

II.4 Mechanical characterization

In the previous sections, we have seen how to fabricate confined objects directly inside
microfluidic channels with an excellent control of their shape, orientation and position
using the stop flow microscope-based photo-lithography method. Once the particles are
created, it becomes important to characterize their mechanical properties. A major tech-
nical challenge of our study is to develop a robust protocol to fabricate flexible fibers. In
order to tune the bending modulus of a fiber there are two options: either playing with
its geometry (width, height) or with its Young’s modulus. In our study, we explored both
directions: section II.1 already explained how to control and vary the geometry of the
particle and this section aims to explain how to tune and measure the Young’s modulus
of the particle.
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II.4.1 Young’s modulus of PEGDA hydrogels

In order to decrease the Young’s modulus of the hydrogel we based our investigations on
the results presented in the paper of Duprat et al. [41]. In this study the authors presented
an experimental measurement technique of the Young’s modulus of fibers fabricated from
an oligomer solution composed of PEGDA Mn= 575 g/mol and P.I. directly inside a
microchannel.

In their article Duprat et al. [41] showed that the Young’s modulus of an hydrogel
depends on di�erent parameters such as the exposure time tUV and the photo-initiator
concentration [PI].

t
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 [PI]1/2

E 
(M

Pa
)

Figure II.10: Evolution of the Young’s modulus as a function of the rescaled exposure
time tU V [PI]1/2 for various [PI] concentrations (2, 4, 6, 8, 10 vol%). The increasing black

line is a fit of the experimental datas with an exponential function E ƒ Ae
t

UV

[PI]1/2
B .

The horizontal black line corresponds to the value Eplateau = 3flRT
M

n

, where R is the ideal
gas constant, T the temperature (in Kelvin), fl the density, and Mn the number average
molecular weight. From Duprat et al. [41].

Figure II.10 shows the evolution of the Young’s modulus as a function of the rescaled
exposure time tUV [PI]1/2 for di�erent exposure times tUV and di�erent photo-initiator
concentrations [PI]. All the experimental measurements of the Young’s modulus rescale
to a master curve. For low exposure time the Young’s modulus evolves exponentially with
tUV [PI]1/2 until it reaches a plateau. The value of the plateau is given by Eplateau = 3flRT

M
n

,
where R is the ideal gas constant, T the temperature (in Kelvin), fl the density, and Mn

the number average molecular weight.
According to Figure II.10, di�erent options are possible to vary the Young’s modulus

of the hydrogel. For instance, a decrease of the photo-initiator concentration [PI] or of
the exposure time tUV leads to a decrease of the Young’s modulus.
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II.4.2 Measurement techniques

Di�erent techniques have been used to characterize the Young’s modulus of the hydrogels.
Here we briefly present them and focus on their advantages and their limitations.

a) In situ characterization

The in situ measurement of Young’s modulus has been developed by Duprat and coworkers
[41].

The principle of the measurment is illustrated in Figure II.11: in a channel with
regularly spaced slots (see Figure II.11 (a)), the stop flow photo-lithography method is
used to fabricate a rectangular cross section beam inside a notch of the channel (see Fig-
ure II.11 (a) and (b)). When an external flow is imposed, the beam is pushed to the notch
edges. The liquid flows around the fiber and the resulting hydrodynamic forces (viscous
and pressure forces) deform the beam (II.11 (c)). The elasticity of the beam opposes
to the deformation. Due to the competition between these two forces (hydrodynamic
forces and elastic forces) the fiber will eventually reach an equilibrium deformation. A
measure of the beam deflection ” (see Figure II.11 (d)) allows for a direct access to its
bending modulus and thus its Young’s modulus. The main advantage of this technique
relies on the fact that the beam is surrounded by the photosensitive solution and thus the
measurement of the Young’s modulus takes into account the swelling of the hydrogel.

x
z

Fiberu0

BinSyringe pump

(a)

Figure II.11: In situ characterization of Young’s modulus technique: (a) Sketch of the
straight channel presenting regularly spaced notches. (b) Side view of the channel and the
fiber. The fiber has a rectangular cross section and is highly confined by top and bottom
walls. (c) Superposition of pictures showing the deformation of the beam as the flow is
turned on. Scale bar is 100 µm. (d) The fiber is supported on both edges and bent due
to hydrodynamic forces with a maximum deflection ” located at its center.
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To derive the force per unit length acting on the fiber, Duprat et al. assume the flow to
be invariant to translation in the y-direction and they use the lubrication approximation
to describe the flow in the gaps between the fiber and the channel top and bottom walls.
The deformation is then determined using the Euler-Bernoulli equation (I.15) which is
well adapted for slender structures (w, h π ¸). The maximum deflection of the fiber is
given by:

” = µ

E
u

0

�, (II.1)

with E the Young’s modulus, µ the viscosity of the solution, u
0

the mean flow velocity
imposed in the channel, and � = 15H(h+H)¸4

4hw2
(H≠h)

3 a factor uniquely dependent on the fiber and
channel dimensions.

Note that the deformation reads
”

¸
= µ̃�Õ, with �Õ = 15

48
H

w

h2(h + H)
(H ≠ h)3

(II.2)

In equation II.2 the deflection ” is proportional to the elasto-vicous number µ̃, previously
introduced in chapter I. This result was expected since the deflection of the fiber is due
to a competition between viscous drag and elasticity.

Figure II.12: Maximum deflection ” as a function of the external flow velocity for a
beam fabricated from a solution of 90 % of PEGDA Mn = 700 g/mol and 10% of P.I.
illuminated during tUV = 300 ms through a ◊5 objective. The dark blue dots correspond
to experimental measurements and the light blue line is a linear fit. The corresponding
Young’s modulus is E = 6.5 MPa ± 2.0 MPa.

Figure II.12 shows the evolution of the deflection ”, as a function of the flow velocity
u

0

. As expected from equation II.1, ” varies linearly with u
0

. The linear fit is represented
in light blue, and the slope of the curve gives directly the quantity µ/E�. E is then
determined after the measurement of � and of the viscosity of the solution µ.

We use this method to measure the Young’s modulus of gels fabricated from di�erent
oligomer solutions. The hydrogels are created by illuminating the photosensitive solution
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during 600 ms, ensuring the Young’s modulus to have reached its maximal value i.e.
ensuring that the Young’s modulus is in the plateau regime shown in Figure II.10.

Figure II.13: Evolution of the Young’s modulus as a function of the percentage of dilu-
tion in the photosensitive solution. Blue and purple symbols correspond respectively to
dilution with water and with a solution of PEG

1000

-water (ratio 2:1 in volume). Measure-
ments are obtained using the in situ method [41] and are completed with macroscopic
measurements: cantilever experiment (triangles) and micro-indentation experiments (cir-
cles).

Figure II.13 shows the evolution of the Young’s modulus as a function of the volume
fraction of solvent in the photosensitive solution. Two solvents are used: the blue points
correspond to a dilution with water and the purple points correspond to a dilution with
a solution of PEG

1000

- water (ratio 2:1 in volume). For a dilution with more than 50%
of water, the oligomer solution starts to be biphasic and no hydrogel can be fabricated.

As visible in Figure II.13, the larger the dilution, the smaller the Young’s modulus.
Dilution with solvents is thus an e�cient way to decrease the Young’s modulus of our
hydrogels. For instance, diluting PEGDA Mn = 700 g/mol with 70% of solvent decreases
by almost three orders of magnitude the Young’s modulus of the hydrogel.

Note that for very low Young’s modulus (dilution with 60% and 70% of solvent) the
uncertainty of the measure is quite large. Indeed, such measures are very di�cult to
carry out. The fiber, being extremely flexible, deforms a lot and eventually escapes from
the notches even for low flow velocities. Thus, only few measurements of the deflection
as function of the flow velocity are accessible, leading to inaccurate determination of the
Young’s modulus. The two points corresponding to dilution with 60% and 70% of solvent
have been obtained using a suspension of tracer beads of 1 µm diameter in the solution in
order to measure the mean flow velocity. Such an external measurement is required since
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at low flow velocity the flow rate imposed by the syringe pump can be slightly di�erent
than the set point.

b) Cantilever experiment

To supplement the in situ measurements presented previously, we carried out cantilever
experiments.

Figure II.14: Superposition of a picture of a filament fabricated from the 60% PEG
1000

-
water solvent bent by its own weight and a fit (red line) of its shape using equation II.3.
Scale bar is 1 mm.

The experiment relies on the study of the shape of a clamped-free cylindrical cantilever
beam bent under its own weight. This methods allows for a direct measurement of the
bending modulus of the fiber, from which we can extract the Young’s modulus. We fit the
shape of the beam, as it is illustrated in Figure II.14, by the theoretical equation [53, 54]:

”(x) = 2
3

flg

Ed2

1
x4 ≠ 4¸x3 + 6¸x2

2
, (II.3)

with ” the deflection of the fiber, E the Young’s modulus, fl the density of the gel, g the
gravitational acceleration, d the diameter of the beam and ¸ its length.

The derivation of equation II.3 is detailed in appendix B.
We use the numerical least squares method, with the Young’s modulus E as a unique

fitting parameter, to fit the shape of the beam.
The measurements of the Young’s modulus of hydrogels fabricated from solutions with

60%, 65% and 70% of PEG
1000

-water solvent are shown in Figure II.13 (triangles). Each
point corresponds to an average value of the Young’s modulus obtained from experiments
in which we varied the filament length and its diameter. The error bars correspond to
the standard deviation of the di�erent measurements.

Figure II.13 shows an excellent agreement between the in situ (squares) and the can-
tilever (triangles) measurements.

The main advantage of this technique compared to the previous one stands on it
simplicity. Indeed, if the Young modulus is low, one can always decrease the filament
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length to ensure small deformations and apply the measurement method successfully.
But on the other hand, this technique does not take into account the swelling of the
gel. As the hydrogel is dry the impact of the solvent on the mechanical properties of the
hydrogel cannot be evaluated.

c) Microindentation method

A third measurement method - based on micro-indentation - has been used to verify
our results. These measurements have been done in the FAST laboratory with the help
of Ludovic Pauchard and Camille Duprat following the experimental protocol described
in reference [55]. Using a micro-indentation technique, sketched in Figure II.15 (a), we
determine the Young’s modulus of our hydrogels: a spherical tip of radius R initially
in contact with the hydrogel surface is driven inside the sample. The applied normal
force F is measured as a function of the penetration depth p. Figure II.15 (b) shows
indentation force-displacement (F -p) responses for an hydrogel obtained from a solution
of 50% PEG

1000

-water solvent.

(µm)

F

R

p

hydrogel

indenter

load
unload

(a) (b)

Figure II.15: (a) Sketch of the indentation method. (b) Indentation force-displacement
response of an hydrogel obtained from a solution of 50% PEG

1000

-water solvent. The
black curve correspond to a fit of the unloading part of the curve by the Hertz formula
(equation II.4).

Measurements of the applied indentation force as a function of the penetration depth
are well described by the Hertz contact theory. The Young’s modulus is extracted by
fitting the force-displacement response in the unload regime using the Hertz formula:

F = 4
3

E

1 ≠ ‹2

p3/2

Ô
R, (II.4)

with F the loading force, E the Young’s modulus, ‹ the Poisson’s ratio, p the penetration
depth and R the radius of the indenter.

For the fit shown in Figure II.15 (b) we use the Poisson’s ratio determined experimen-
tally in chapter III. We followed the same protocol for gels obtained from solutions diluted
with 40% and 60% of PEG

1000

-water. We do not have measurements of the Poisson’s ra-
tio of the hydrogel obtained from a dilution of the solution with 60% of PEG

1000

-water
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and we took a value ‹
60%

= 0.16. The derived Young’s moduli are represented by circles
in Figure II.13. Good agreements with the other techniques are obtained for the gels
diluted with 40% and 50% of PEG

1000

-water. For the dilution with 60 % of solvent the
measured Young’s modulus is larger than the ones measured with the in situ and with the
cantilever techniques. This is due to low number of experimental points available in the
unloading regime. Indeed, the hydrogel being very soft, large penetration depths p were
obtained even for low normal forces F and the force probe was not sensitive enough to
have reliable measurements. For the hydrogel created from a solution diluted with 70%
of PEG

1000

-water solvent the indentation method was not conclusive, no normal force
measurements were achievable even for large penetration depths.

d) Compression tests

A last technique, relying on compression tests, has been used for the measurement of the
Young’s moduli of our hydrogels. We place a cylindrical sample of gel on the stage of a
rheometer and we impose a compression using a plate-plate geometry of 25 mm diameter.
The rheometer (Anton Paar Physica MCR501) cannot measure normal force larger than
40N corresponding to normal stress of ‡ = 81 kPa thus only low Young’s modulus can be
measured using this tool.
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Figure II.16: Compression test. Normal stress as a function of the gap size between the
two plates of a rheometer.

We impose the gap, wait for 30 minutes until the normal force converges to its final
value and measure the normal force. Figure II.16 shows the evolution of the normal stress
(normal force divided by the area of contact between the hydrogel and the indenter) as
a function of the gap height for an hydrogel fabricated from a solution diluted with 70%
PEG

1000

-water solvent. The slope of the curve is proportional to the Young’s modulus and
a linear fit of the measurements yields to a Young’s modulus Ecomp

70%

= 35 ± 1 kPa. A fair
agreement is obtained between this measurement and the measurements obtained with the
in situ technique Ein situ

70%

= 21±8 kPa and with the cantilever technique Ecantilever

70%

= 27±7
kPa.



Chapter III
Novel in situ techniques to measure
mechanical properties

In the previous chapter, we presented the experimental technique used to fabricate hydro-
gel particles of well-defined shapes, positions and orientations. We also discussed one of
the major advantage of the technique which relies on the possibility to tune the mechanical
properties of these hydrogels. The discussion was followed by a presentation of the di�er-
ent experimental techniques used to measure the Young’s modulus of the hydrogels. We
have seen that the measurement of low Young’s modulus faces many di�culties: low flow
velocities are needed for the in situ method, and in this regime the flow rate imposed by
a syringe pump is not reliable. A way to overcome this problem is to accurately measure
the flow velocity by particle tracking techniques. Such technique implies the use of tracers
(small beads of radius 1 µm) that can impact the flow. This is especially true in the gaps
between the particle and the channel top and bottom wall which have a typical size of 6
µm. The other techniques, such as the compression tests and the cantilever experiments,
allow for the measure of small Young’s modulus but do not take into account swelling
e�ects due to the presence of the uncured solution surrounding the hydrogel particle as
the hydrogel needs to be taken out of the channel in order to carry out the experiments.

To solve these experimental issues, we developed with Vincent D’Herbemont, master
1 intern in the group, a novel in situ technique to measure low Young’s modulus directly
inside the microchannel. This technique is inspired by the work of Wyss et al. [56]
and Li et al. [57, 58] who measured Young’s modulus from the deformation of hydrogel
spheres pushed into conical constrictions. Here we adapt this idea to geometries with
rectangular cross sections. This technique is used to measure the Young’s modulus of
very soft hydrogels.

To completely describe the elasticity of a material, one needs the measure of two quan-
tities among the shear modulus, bulk modulus, Young’s modulus, Lamé’s first parameter
and Poisson’s ratio. In this study, in addition to the measure of the Young’s modulus, we
develop an in situ measurement technique of the Poisson’s ratio that we apply to di�erent
hydrogels.

43
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III.1 Measurements of Young’s modulus

III.1.1 Description of the method
The determination of the Young’s modulus of the hydrogel relies on the following ex-
periment: a trapezoidal particle is pushed through a constriction by applying a pressure
di�erence �P (using a pressure controller). The particle moves into the constriction,
is compressed by the lateral walls of the channel and eventually reaches an equilibrium
position given by the competition of the elastic forces and the hydrodynamic forces (�P
being maintained constant). Figure III.1 shows a superposition of images of an initially
undeformed trapezoidal particle and the same particle pushed trough the constriction by
the external flow.

Figure III.1: Superposition of pictures of a trapezoidal particle just after fabrication and
when pushed through the constriction and compressed by the lateral walls. The red
dotted frame corresponds to the image of the mask used to fabricate the particle. Scale
bar is 500 µm.

When the equilibrium is reached, knowing the forces applied by the flow (viscous forces
and pressure forces) and measuring the compression of the particle in the y-direction we
can determine the Young’s modulus of the particle. We study one trapezoidal particle
taking a movie (one frame per second) of its displacement during at least 1000 s. Once
the particle has reached its equilibrium position, a last image is taken and then we flow
the particle out of the channel and start again the experiment. In some cases, at the end
of the experiment (i.e. after 1000 s), the particle is still moving but at very low velocity
(typically 0.05 µm·s≠1) and we consider this velocity to be zero.

For the sake of simplicity, we directly fabricate trapezoidal particles in the channel
by using a rectangular mask larger than the channel width (see the red dotted frame in
Figure III.1). This fabricates particles that have the exact same geometry as the channel:
symmetry towards the x-axis and same inclination angle ◊ as the channel. Note that
the lateral wall being in PDMS there exists inhibition layers at the lateral sides of the
trapezoidal particle.

We use channels of height H = 57±3 µm or H = 103±3 µm and of small constriction
angle (◊ < 10¶). As described in chapter II the inhibition layer (gap between the particle
and the channel top or bottom walls) has a constant height b = 6 ± 1.6 µm. Thus, the
two channels lead respectively to particle heights h = 45 ± 3 µm or h = 97 ± 3 µm. We
then systematically vary the imposed pressure di�erence �P and the constriction angle
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and study the resulting deformation of the particle.

III.1.2 Modelling

The geometries of the channel and of the particle just after fabrication, are sketched in
Figures III.2 (a) and (b) (dark blue particle). The particle is fully characterized by its
larger width y

0

, length x
0

and height h. When an external flow is imposed, the trapeze
advances in the channel over a distance �x until it reaches its equilibrium position. At
equilibrium, the particle being compressed by the lateral walls, its geometry changes
leading to a new width yf , length xf and height heq (light blue particle). Note that for
usual hydrogels the Poisson’s ratio is larger than zero. As a consequence heq is expected
to be larger than h and the gap height at equilibrium beq is expected to be smaller than
b. The flow in the gap between the particle and the channel top wall is sketched in
Figure III.2 (c).
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Figure III.2: Sketch of the experiment. (a) top view. (b) side view. (c) is a zoom of the
gap between the particle and the channel top wall. At equilibrium the flow in the gap
is Poiseuille-like. The particle just after fabrication is represented in dark blue, and the
particle at equilibrium is represented in light blue.

When the particle reaches its equilibrium position, it is subject to di�erent forces:
a pressure force due to the di�erence of pressure between the front and the back of
the particle (F

�P ), a force due to the shear stress resulting from the flows in the gaps
between the particle and the channel top and bottom walls (F

shear

) and the force (F
wall

=
Fsup

wall

+ Finf

wall

) due to the walls normal reaction. The particle being subject to a zero total
force, these three forces, sketched in Figure III.2, balanced:

F
�P + F

shear

+ F
wall

= 0. (III.1)

Note that we neglect friction forces between the particle and the channel lateral walls
due to the zero velocity of the particle. In other words we assume that there is no solid
friction between the hydrogel and the walls but only friction dependent on the particle
velocity [59, 60, 61].
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Due to the low constriction angle ◊, we assume that the front and the back of the
particle have the same width. Thus, the pressure force F

�P reads

F
�P ≥ �Pyf hequx, (III.2)

with �P the di�erence of pressure across the object and ux the unit vector in the x-
direction.

Assuming Poiseuille flows (see Figure III.2 (c)) and a linear decrease of the pressure
in the gaps between the particle and the top and bottom walls (ˆP

ˆx = ≠�P
x

f

) we obtain
the flow profile [21]

u(z) =
b2

eq

2µ

�P

xf

A
z

beq
≠ z2

b2

eq

B

ux. (III.3)

Thus, if the constriction angle ◊ is small, F
shear

can be approximated by:

F
shear

≥ 2yf xf µ
ˆu
ˆz

----
z=0

= beqyf �Pux. (III.4)

Let us now look at the orders of magnitude. As seen previously, heq & h and beq . b.
Moreover, as mentioned in chapter II, the fabrication technique used here implies h ∫ b.
Hence, heq ∫ beq and �Pyf beq π �Pyf heq. As a consequence one can neglect the shear
force F

shear

with respect to the pressure force F
�P and equation III.1 can be simplified

to

F
�P + F

wall

= 0. (III.5)

By symmetry the y-component of F
wall

is zero.
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Figure III.3: Sketch of the equivalent system. The trapeze particle is decomposed in an
assembly of columns of varying heights compressed by two tilted planes. The undeformed
particle is represented in dark blue, and the compressed particle is represented in light
blue.

In order to derive the x-component of F
wall

, we consider an equivalent system con-
sisting in a trapeze particle decomposed in an assembly of columns of varying heights
compressed by two tilted planes. The situation is sketched in Figure III.3. When com-
pression occurs, each column is subject to a stress ‡yy (stress in the y-direction, normal
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to the y-surface) and experiences a strain ‘yy (strain in the y-direction, normal to the
y-surface). Since each column has a di�erent initial height, ‘yy and ‡yy are functions of
the position x.

A displacement of the particle over a distance �x leads in the equivalent system to
a compression of each column of �y = ≠2�x tan ◊. As a consequence, a column placed
in x, which had an initial height y

init

(x) = y
0

≠ 2x tan ◊ has a final height y
fin

(x) =
y

0

≠ 2x tan ◊ ≠ 2�x tan ◊. Hence, the strain ‘yy reads

‘yy(x) = ≠y
init

(x) ≠ y
fin

(x)
y

fin

(x) = ≠ 2�x tan ◊

y
0

≠ 2x tan ◊
. (III.6)

On the other hand, assuming that the hydrogel is an isotropic elastic material we can
write the stress-strain relations [62]:

‘xx = 1
E

[(1 + ‹)‡xx ≠ ‹(‡xx + ‡yy + ‡zz)], (III.7)

‘yy = 1
E

[(1 + ‹)‡yy ≠ ‹(‡xx + ‡yy + ‡zz)], (III.8)

‘zz = 1
E

[(1 + ‹)‡zz ≠ ‹(‡xx + ‡yy + ‡zz)], (III.9)

with ‘ij , ‡ij being respectively the strain and the stress in the particle in the i direction
and normal to the j surface.

We introduce, here, a new quantity �
wall

: the stress due to the normal reaction of the
wall in the direction normal to the wall. It is related to ‡yy by the following equation:

�
wall

= ≠ ‡yy

cos ◊
. (III.10)

This quantity allows for a simple expression of the x-component of the force due to
the walls normal reaction

F x
wall

= ≠heq

⁄

x
f

2�
wall

sin ◊
dx

cos ◊
. (III.11)

In order to derive ‡yy or �wall from equations III.8 and III.6 one needs to know the
expressions of ‡zz and ‡xx.

First, we suppose that the top and bottom of the particle are free, i.e. that there is
no contact between the particle and the channel top and bottom walls. It yields

‡zz = 0. (III.12)

This assumption will be verified for each experiment by calculating the deformation of
the particle in the z-direction - once the Poisson’s ratio is known - and by comparing it
to the height of the channel.
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Second, we assume a linear decrease of the stress in the x-direction, matching the two
boundary conditions ‡xx(0) = �P and ‡xx(x

0

) = 0:

‡xx = ≠�P
3

1 ≠ x

x
0

4
. (III.13)

Using equations III.10, III.12 and III.13, equation III.8 becomes:

‘yy = 1
E

5
≠�wall cos ◊ + ‹�P

3
1 ≠ x

x
0

46
. (III.14)

From equations III.6 and III.14 we derive the stress applied by the wall on the particle
�wall:

�wall = 1
cos ◊

5
‹�P

3
1 ≠ x

x
0

4
+ 2E�x tan ◊

y
0

≠ 2x tan ◊

6
. (III.15)

Equation III.11 together with equation III.15 lead to

F x
wall

= heq

⁄

x
f

2 tan ◊

cos ◊

5
‹�P

3
1 ≠ x

x
0

4
+ 2E�x tan ◊

y
0

≠ 2x tan ◊

6
dx, (III.16)

F x
wall

= heq
2 tan ◊

cos ◊

C

‹�P

A

xf ≠
x2

f

2x
0

B

+ E�x ln
A

y
0

y
0

≠ 2xf tan ◊

BD

. (III.17)

Using equations III.2 and III.17, the projection on the x-axis of the zero force condition
(equation III.5) reads

�Pyf = 2 tan ◊

cos ◊

C

‹�P

A

xf ≠
x2

f

2x
0

B

+ E�x ln
A

y
0

y
0

≠ 2xf tan ◊

BD

. (III.18)

The larger width of the compressed trapeze yf is related to the distance travelled by
the particle �x as follows yf = y

fin

(x = 0) = y
0

≠ 2�x tan ◊.
Introducing the two quantities � = 1 ≠ 2 tan ◊

Ë
�x
y0

+ ‹
x

f

y0 cos ◊

1
1 ≠ x

f

2x0

2È
and � =

≠2 tan ◊�x
y0 cos ◊ ln

1
1 ≠ 2 tan ◊x

f

y0

2
we eventually obtain:

�P� = E�. (III.19)

� and � depend only on the distance traveled by the particle until the equilibrium is
reached (�x) and on the particle geometries at rest and at equilibrium. Thus, according
to equation III.19, measurements of these parameters for varying pressure di�erences �P
lead directly to the determination of the Young’s modulus of the particle.

III.1.3 Experimental results
Monitoring the displacement of the trapezoidal particle through the constriction we mea-
sure the evolution of �x - which is directly linked to the strain in the y-direction - as a
function of time.
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Figure III.4: Two examples of the displacement of the trapezoidal particle as a function of
time. Two regimes highlighted by the red lines are visible. The first regime corresponds
to a fast increase of the displacement as a function of time due to the elastic compression
of the particle. This first regime is followed by a long time evolution regime that can be
di�erent from one experiment to the other. In (a) the displacement remains constant in
the second regime corresponding to a stop of the particle. In (b) the second regime corre-
sponds to a slow displacement of the particle. We consider the equilibrium displacement
�x as the value at the end of the elastic regime where the two red lines cross each other.

Two examples are given in Figure III.4 (a) and (b). In each example, two di�erent
regimes are visible. The first one corresponds to a fast increase of �x as a function of time,
which is a signature of the elastic deformation of the trapeze. It is followed by a second
regime where the evolution of �x is di�erent in the two examples. In Figure III.4 (a), �x
does not evolve anymore after the elastic regime corresponding to a complete stop of the
particle in the constriction whereas in Figure III.4 (b) the elastic regime is followed by a
slow displacement of the particle through the constriction which can be due to a creep
of the particle. Aiming to determine the Young’s modulus of the hydrogels we primarily
focus on the elastic regime and consider the equilibrium displacement as the value at the
end of the elastic regime i.e. where the two slopes - highlighted by the red lines in each
situations - cross each other.

We measure the equilibrium displacement for di�erent values of �P , as shown in Fig-
ure III.5 (a) and (b), for di�erent experimental conditions. Figure III.5 (a) shows the
evolution of �P as a function of �x for a gel fabricated from a photosensitive solution
composed by 65% PEG

1000

-water solvent, 25% of PEGDA Mn=700 g/mol and 10 %
P.I.. Figure III.5 (b) corresponds to di�erent series of measurements for a gel fabricated
from a photosensitive solution composed by 70% PEG

1000

-water solvent, 20% of PEGDA
Mn=700 g/mol and 10 % P.I.. The di�erent series correspond to di�erent trapeze geome-
tries and constriction angles.
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Figure III.5: Evolution of the pressure di�erence �P as a function of the particle equilib-
rium displacement �x for two di�erent hydrogels. (a) hydrogel obtained from a solution
composed by 65% PEG

1000

-water solvent, 25% of PEGDA Mn=700 g/mol and 10 %
P.I. and (b) hydrogel obtained from a solution composed by 70% PEG

1000

-water solvent,
20% of PEGDA Mn=700 g/mol and 10 % P.I.. In (b) the di�erent colors correspond
to four di�erent sets of measurements with di�erent constriction angles (◊) and particle
geometries (x

0

and y
0

).

It can be noticed that all these curves seem to evolve linearly, which is, at first sight,
surprising if we compare to equation III.19. It is actually due to the fact that �x, xf

and y
0

are of the same order of magnitude and ◊ is small (always smaller than 10¶). As
a consequence, the second term of � is small compared to unity and can be neglected,
with this simplification the equation III.19 shows a linear relation between �P and �x
with a slope depending on the particle geometry and the Young’s modulus of the hydrogel.

A more straightforward way to determine the Young’s modulus of the hydrogels con-
sists in looking at the evolution of �P� as a function of �, as shown in Figure III.6 (a)
(65% of solvent solution) and (b) (70% of solvent solution). According to equation III.19,
the Young’s modulus of the hydrogel corresponds to the slope of these curves. The deter-
mination of � and � needs the measurement of the particle geometries and the knowledge
of the Poisson’s ratio of the hydrogel. The last quantity can be measured by a comple-
mentary experiment detailed in section III.2. The value of the Poisson’s ratio has a small
impact on the determined Young’s modulus, as it appears in the right term of � which
is small compared to unity and which can be neglected in a first approximation. For the
two gels used in this study, we take a Poisson’s ratio ‹ = 0.16 corresponding to the value
measured for poorly cross-linked hydrogels (see section III.2).

Figures III.6 (a) and (b) show good correlation between the di�erent points of each
series of experiments. However, systematic errors seem to be present since all the points
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(a) (b)

E = 119 ± 25 kPa
E = 78 ± 2 kPa

E = 40 ± 4 kPa

E = 30 ± 3 kPa

E = 21 ± 4 kPa

Figure III.6: Evolution of the �P� as a function of � for two di�erent hydrogels. (a)
Hydrogel obtained from the 65% solvent solution and (b) hydrogel obtained from the
70% solvent solution. In (b) the di�erent colors correspond to four di�erent sets of
measurements with di�erent constriction angles (◊) and particle geometries (x

0

and y
0

).

do not collapse to a master curve and each series leads to a di�erent value of the Young’s
modulus (see Figure III.6 (b)). Di�erent sources of errors can be proposed:

• The measurement of �x needs an excellent determination of the initial moment
when the trapeze touches the lateral walls of the channel which is far from being
easy to achieve. As already mentioned, when the hydrogel is fabricated, there is an
inhibition layer between the trapeze and the lateral walls of size b and the particle
needs to move over a distance ”x = b/ sin ◊ ≥ 50 ≠ 100 µm from its fabrication
position in order to first touch the wall. �x takes into account this displacement,
but small errors on the determination of the constriction angle ◊ lead to large
errors on ”x and thus systematic error on the measurements of �x. Moreover, if a
residual flow is present just after the formation of the particle it may slightly move
(typically of few microns or tens of microns) leading to inaccurate determination of
the fabrication position.

• As shown in Figure III.4, the elastic regime is followed by a regime of long time evo-
lution of �x. The slope, in log-log scale, of this regime varies from one experiment
to the other leading to errors in the determination of the equilibrium displacement.
Note that the set of measurements yielding the larger, and more di�erent, value of
the Young’s modulus (blue curve of Figure III.6 (b)) corresponds to experiments
where the slopes of this second regime were large.

The resulting Young’s modulus of the two hydrogels, measured from Figure III.6 (a)
and (b) are summarized in table III.1. The table also compare these Young’s modulus
values with the measurements obtained from the in situ technique (see chapter II).
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Volume fraction of solvent 65% of PEG
1000

-water 70% of PEG
1000

-water
Econstriction 119 ± 25 kPa 42 ± 13 kPa
Ecantilever 117 ± 64 kPa 27 ± 7 kPa
Ein situ not measured 21 ± 8 kPa

Table III.1: Young’s modulus measurements for two hydrogels fabricated from photosen-
sitive solutions diluted with 65% and 70% of PEG

1000

-water solvent. The second, third
and fourth lines of the table correspond, respectively, to measurements obtained using
the constriction method the cantilever experiment and the in situ technique (see chapter
II).

In table III.1, Econstriction

70%

is the mean value of the Young’s modulus obtained from
the four di�erent series of experiments (see Figure III.6 (b)), and the error corresponds to
the standard deviation of the measurements. For the determination of Econstriction

65%

there
is a unique set of experiments and the value corresponds to the result of the fit.

The method presented here leads to results similar to the ones obtained with cantilever
and the in situ techniques (see chapter II).

III.1.4 Conclusion
The experimental technique of determination of the Young’s modulus of soft hydrogels
relies on the compression of trapezoidal particles pushed through a constriction by means
of an external flow. Using a simple mechanical model we are able to determine their
Young’s modulus and the results obtained are comparable to what was measured with
other methods presented in chapter II. The main advantage of this methods relies on the
fact that Young’s moduli as small as a few tens of kPa can be measured directly inside
the channel in the presence of a surrounding fluid.

We notice that during the compression of the particle, it experiences two di�erent
dynamics: a first regime, of fast dynamics, which corresponds to an elastic compression
is followed by a second regime, of slow dynamics, that could be a signature of a creep.
As a perspective, it would be interesting to carry out further experiments confirming the
creep of our hydrogel and which would allow us to gain a better understanding of the
variation of this phenomenon from one experiment to the other. Moreover, for the gel
obtained from a photosensitive solution diluted with 70% of PEG

1000

-water we noticed
important systematic errors in our measurements: di�erent series of experiments lead to
di�erent Young’s modulus measurements. An investigation on the origins of the second
regime could be, as well, of great interest in order to achieve a better determination of
�x and consequently of the Young’s modulus. In addition, systematic measurements
for varying experimental parameters, as the angle of the constriction or the size of the
particle, would be useful to determine the cause of these errors. The determination of the
Young’s modulus of the hydrogel fabricated from the 65% solvent solution, relies on an
unique set of experiments. A repetition of the experiment is thus needed to quantify the
reproducibility of the measurements.
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III.2 Characterization of the Poisson’s ratio of the hydrogels

In a compressive/tensile test of an elastic specimen, the Young’s modulus is linked to the
compression/elongation whereas the Poisson’s ratio relates the stain in the extensional
direction to the strain in the transverse direction. It quantifies the compressibility of
a material and varies, for an isotropic material, from 0.5 (incompressible material) to
-1. Negative values of Poisson’s ratio are obtained for auxetics metamaterials [63]. Due
to their peculiar structure, when stretched (compressed) these materials become thicker
(thinner) in the direction perpendicular to the applied force. For usual isotropic materials
the Poisson’s ratio varies from 0.5 to 0.

Di�erent techniques have been developed to measure Poisson’s ratio. The most
straightforward method relies on the measure of the strain in two orthogonal directions
during a compressive/tensile test. Yet, this methods usually requires a macroscopic spec-
imen, and thus large amount of material. Moreover, to carry out this experiment the
sample often needs to be dried in order to be fixed onto the stretching machine [64].
To overcome these limits, Wyss et al. [56] proposed a simple measurement method of
the Poisson’s ratio of a soft particle relying on the measurement of the bulk modulus
K = E/(3(1 ≠ 2‹)) together with the Young’s modulus. But the determination of the
Poisson’s ratio via two separate experiments, leading each to measurement uncertainties,
faces problems of precisions that is an important issue since the Poisson’s ratio evolves
in a very small interval. Other techniques, such as micropipette aspirations experiments
[65, 66], atomic force microscopy (AFM) techniques [67], have been used to measure Pois-
son’s ratio with very high accuracy. But, they probe the material very locally at the
surface and not in bulk. Dynamic mechanical tests using acoustic waves are also avail-
able [68]: From the speed of sound waves passing through the sample, in our case the
hydrogel, one can access to the elastic properties of the material. Usually the frequency
of the waves vary from 0.5 to 5.0 MHz, and the measured elastic constant at these fre-
quencies may be di�erent than the static one. Finally, optical techniques such as small
angle X-ray scatterings [69] also enable the measure of Poisson’s ratio but require costly
infrastructures.

Here we propose a simple, novel, and direct method to measure the Poisson’s ratio of
soft hydrogels directly inside a micro-channel. We use a microfluidic setup where hydrogel
particles are fabricated and subsequently transported in a channel whose width is smaller
than the particle width (see Figure III.7). After the full entry of the particle into the
narrow channel, the external flow is stopped and the particle is only submitted to an
uniaxial compression by the lateral walls. This geometry is well adapted to have access
to the Poisson’s ratio by measuring the deformation of the particle in the direction of
the uniaxial compression and the perpendicular one. Here, we detail this method, discuss
its limitations and give the Poisson’s ratio of PEGDA hydrogels for di�erent solvent
compositions. As, in this method, the measurement is done in situ, no drying step is
necessary ensuring no modification of the structure of the material.

III.2.1 Experimental protocol

The channels have a rectangular cross section and a constant height (either H = 57 ± 3
µm or H = 103 ± 3 µm). They are composed of three regions: two linear channels
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with di�erent widths (a large one in the order of mm and a small one in the order of a
few hundreds of micrometers) are connected by a constriction with a small angle (5 to
10 degrees). The channel geometry is sketch in Figure III.7. The inlet of the channel
is connected to a reservoir, and a pressure controller is used to control the flow in the
channel. Once the channel is filled with the photosensitive solution, the flow is stopped
and a particle is fabricated.

uni-axial compression

Figure III.7: Geometry of the system and experimental protocol. An hydrogel particle
surrounded by the uncured solution is pushed through a constriction by applying an
external flow. When the particle has completely entered the narrow region of the channel,
the flow is stopped and the particle experiences uni-axial compression. Measurements of
the particle geometry before and during compression allows for the determination of its
Poisson’s ratio.

The first picture of the particle gives a precise measure of the dimensions before
deformation. Then the particle is pushed through the constriction to the narrow channel
by a flow, which is turned o� once the particle has entirely entered the narrow region.
There, the particle experiences uniaxial compression from the channel’s lateral walls and
its shape changes. A new picture of the particle, in its deformed state, is acquired when
equilibrium is reached i.e. when its length and width do not evolve any more with time
(see Figure III.8). At the end of the experiment, the particle is ejected from the channel
by imposing again an external flow. We repeat this procedure at least 10 times for each
condition.

PEGDA PI water PEG
1000

-water (ratio 2:1 in volume) name
90% 10% 0% 0% pure PEGDA
80% 10% 10% 0% PW

10

70% 10% 20% 0% PW
20

60% 10% 30% 0% PW
30

50% 10% 40% 0% PW
40

40% 10% 50% 0% PW
50

80% 10% 0% 10% PP
10

70% 10% 0% 20% PP
20

60% 10% 0% 30% PP
30

50% 10% 0% 40% PP
40

40% 10% 0% 50% PP
50

30% 10% 0% 60% PP
60

20% 10% 0% 70% PP
70

Table III.2: Volume fraction of each component of the di�erent photosensitive solutions
used in this study.
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In this study we used di�erent photosensitive solution composed of an oligomer PEGDA
Mn = 700 g/mol, a photoinitiator (PI) and a solvent. The solvent can be either pure
water or a mixture of water and PEG

1000

in a proportion of 1:2. While the proportion
of solvent varies, the proportion of photointiator is kept constant at 10%. The volume
fraction of water varies from 0% to 50%. Indeed, as previously mentioned in chapter II,
above 50% the solution becomes biphasic and no particle can be fabricated. The maximal
dilution with the PEG

1000

-water mixture is 70%. The table III.2 shows the composition
of the di�erent solutions used in this study.

For most of the photosensitive solutions experiments have been carried out on two
di�erent days to ensure reproducibility.

We wary the particle height (h
0

= 45 ± 3µm and h
0

= 91 ± 3µm), width (w
0

=
205 ≠ 470µm) and the narrow channel width (W = 175 ≠ 370µm). We keep the length of
the particle constant and equal to ¸

0

= 960 ± 8µm.

(b)(a)

(d)(c) y

x

y

x

Figure III.8: Pictures of the slab in the wide (left column) and in the narrow (right col-
umn) region of the channel. Top row corresponds to direct observations of the undeformed
(a) and deformed (b) particle. In (b) the dark region around the particle correspond to
the channel walls. Bottom row shows the superposition of the raw images (a) and (b)
with the shape extracted using MatLab. Scale bar are 200 µm.

Using standard image treatment procedures (with ImageJ [52] and MatLab), we ex-
tract the shape of the particle before and after deformation and measure the particle
width wi, and length ¸i, with i = 0(1) before (after) deformation (see Figure III.8). As
can be seen in Figure III.8 (b), the narrow channel is deformed by the presence of the
particle. We thus chose not to consider the width of the deformed particle to be equal
to the width of the narrow channel but rather to measure w

1

for each experiment even if
they only slightly di�er. This di�erence depends on to the ratio of the Young’s modulus
of the PDMS and the hydrogel.

III.2.2 Analysis
After the full entry of the particle into the narrow channel, the external flow is stopped
and the particle is only submitted to an uniaxial compression by the lateral walls. As in
the previous section III.1, we assume that the hydrogel is isotropic and homogeneous and
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thus stress-strain relationship are given by equations III.7, III.8 and III.9.
The particule being submitted to an uniaxial compression in the y-direction, one can

write ‡yy = ≠Pwall, with Pwall a constant pressure applied by the PDMS walls on the
particle, and ‡xx = 0. Assuming that the the deformed particle does not touch the top
and bottom walls (i.e. h

1

< H and h
0

‘zz < 2b) there is no stress in the z-direction and
‡zz = 0. This last assumption has to be verified a posteriori by evaluating the strain in
the z-direction.

Equations III.7, III.8 and III.9 then become:

‘xx = ‹

E
‡yy, ‘yy = 1

E
‡yy and ‘zz = ‹

E
‡yy (III.20)

The strains ‘xx and ‘yy are directly related to the changes of particle length and width

‘yy = ln
3

w
1

w
0

4
, ‘xx = ln

3
¸

1

¸
0

4
(III.21)

And the Poisson’s ratio is directly given by their ratio:

‹ = ≠‘xx

‘yy
= ≠ ln (w

1

/w
0

)
ln (¸

1

/¸
0

) (III.22)

III.2.3 Results and discussions

a) Validation of the method

As it is visible in Figures III.8 (a) and (b), when the particle is compressed by the channel
walls both its length and its width change compared to the situation where the particle is
free (in the wide region). According to equations, III.21 and III.22 a measure of the width
and length before and after the deformation is necessary to estimate the Poisson’s ratio
of the hydrogel. Figures III.8 (c) and (d) show the determination of the slab geometry
used to derive its length and its width.

Figure III.9 summarizes experiments where particles have been created in PW
30

solution, with di�erent initial width w
0

and compressed in a channel of width W =
175 ± 0.7µm. The dimensions of the deformed particles are measured after the particle
has reached its equilibrium. Note that the temporal evolution will be discussed in section
c). Figures III.9 (a) and (b) show the increase of the width w

1

and the length ¸
1

of
deformed particles as a function of w

0

. While the increase of ¸
1

is a consequence of the
compressibility of the material and will be used in the following to measure Poisson’s ra-
tio, the increase of w

1

is due to the deformation of the channel and depends on the ratio
of the elastic modulus of the two materials. The Young’s modulus of the particle used
here (E = 8.0 ± 1.6 MPa, see chapter II) is larger than the Young’s modulus of PDMS
(E

PDMS

≥ 2 MPa, [70]), thus the channel deforms more than the particle does. For the
largest value of w

0

= 300µm shown in this figure, this competition between deformation
of the particle and deformation of the walls could lead to the buckling of the slab as the
buckling threshold decreases when width increases. This buckling is the reason why ¸

1

saturates and measured Poisson’s ratio drops at large w
0

/W .
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(c)(a)

(b)

Figure III.9: Direct measurements and derivation of the Poisson’s ratio. Results are shown
for the hydrogel PW

30

in a channel of width W = 175±0.7µm and height H = 103±3µm.
Width (a) and length (b) of the deformed particle at equilibrium as a function of the initial
width w

0

. (c) Evolution of the ratio ≠‘xx/‘yy as a function of the horizontal confinement
w

0

/W . Each light blue dot corresponds to a single experimental measurement, and dark
blue markers correspond to the average and standard deviation of the measurements.
The light (dark) gray region corresponds to particle width that are too small (large)
to ensure good precision of the Poisson’s ratio. The vertical dotted line corresponds
to the limit between linear compression and buckling (see text). Horizontal black lines
correspond to the average and standard deviation of all points except the dark grey
region (w

0

/w
1

Ø 1.53). The measure of the Poisson’s ratio is ‹
30%

= 0, 302 ± 0, 007 for
the photosensitive solution PW

30

.

Figure III.9 (c) shows the evolution of the ratio ≠‘xx/‘yy as a function of the con-
finement w

0

/W for PW
30

hydrogel as an example. As can be seen on the figure, if the
particle is not too narrow nor too wide, the measured Poisson’s ratio is independent on
the particle width as expected for a material property.

b) Limitations

For small w
0

(w
0

/W Æ 1.2, light grey region), particle deformations are too small to
be accurately measured. For large w

0

(w
0

/w
1

Ø 1.53, dark grey region), the particle is
wide enough to buckle preventing any precise measurement to be performed. The critical
stress to induce buckling of a thick plate is given by |‡crit

yy | = –fi2

E
12(1≠‹2

)

1
h0
w0

2
2

[71, 72].
The correction factor – depends on the ratio w

0

/h
0

and takes into account the shear
deformation in the height. According to [72] – = 2.11 for w

0

/h
0

= 2 and – = 1.03 for
w

0

/h
0

= 10. This critical stress is compared to the actual stress exerted by the lateral
walls ‡yy = ‘yyE via the dimensionless number

N = 12(1 ≠ ‹2)
–fi2

3
w

0

h
0

4
2

|‘yy| (III.23)

If N > 1 the particle buckles and, on the contrary, if N < 1 the particule deforms lin-
early. The black vertical dotted line in Figure III.9 (c) corresponds to N = 1 and a good
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(a) (b)

(c)

Figure III.10: Limitations of the method: (a) Evolution of the ratio ≠‘xx/‘yy as a function
of the confinement w

0

/w
1

for a hydrogel particle created with the PW
30

photosensitive
solution in a channel of width W = 370 ± 1µm and height H = 57 ± 3µm. Open circles
represent the results of single experiments and dark red markers represent average values
of the di�erent experiments. The light and dark gray regions of Figure III.9 (c) overlap for
this example. Note that here also the measured ratio ≠‘xx/‘yy is lower than the Poisson’s
ratio when the particle buckles. Images of buckled particles are shown in (b) and (c),
at least two wavelengths are visible in (b), three in (c). They correspond respectively to
w

0

/W = 1.23 and w
0

/W = 1.36.

agreement between the buckling threshold and the experimental observations of buckling
- drops of the ratio w

1

/w
0

- is obtained.

Our model relies on the assumption that the deformation in the vertical direction is
small enough that the particle does not touch the channel top and bottom walls. This
means that ‡zz = 0, which can be verified experimentally by comparing the height of
the compressed particle to the channel height. The height of the deformed particle is
h

1

= h
0

exp(‘zz) ≥ h
0

(1 ≠ ‹‘yy) and the condition ‡zz = 0 is true if ≠h
0

‹‘yy < 2b. As
a consequence the assumption is more likely to be true for particles of small height and
for small deformations. In all our experiments we verify a posteriori that the ‡zz = 0
assumption is valid and disregard experiments where this is not the case.

Increasing the channel width will increase the resolution on the deformation and thus
one could think that the range of measurements will be increased. However, increasing
the width will also decrease the buckling threshold on w

0

/W and may reduce this range.
An illustration of this situation can be found in Figure III.10 (a). In this figure, the
photosensitive solution is the same as the one used in Figure III.9 but for a wider and
thinner channel (W = 370±1µm and H = 57±3µm). The resolution on the deformation
is, as expected, better, and the light grey region limit is pushed to a lower value of w

0

/W
(¥ 1.1 to be compared to ¥ 1.2 in Figure III.9). However, these particles are more prone



III.2 Characterization of the Poisson’s ratio of the hydrogels 59

to buckle and the limit of the dark grey region is decreased to smaller value of w
0

/W
(¥ 1.01 to be compared to ¥ 1.53 in Figure III.9). As can be seen on the figure, the two
grey regions overlap meaning that this channel geometry does not allow for Poisson’s ratio
measurements. In the pictures of Figures III.10 (b) and (c), buckling is clearly visible
through the modulation of the grey intensity along the particle width.

The comparison of the Figures III.9 and III.10 shines light on the compromise that
have to be done between increasing the resolution on the deformation and avoiding par-
ticle buckling. While designing the channel for such measurements, one has to keep in
mind these two opposite e�ects and choose the best geometry based on the knowledge of
the Young’s modulus E which sets the value of w

1

.

c) Transient regime.

Figure III.11 (a) shows the temporal evolution of the length, ¸
1

(t), for di�erent hydrogel
compositions after the flow has been turned o�. The length of the particles fabricated
in presence of solvent (colored curved) decreases with time whereas particles fabricated
in absence of solvent (grey curve) increases. As the walls are slightly deformable, when
pressure di�erence is turned to zero, they will relax and increase the compression on the
particle. This e�ect is probably the reason why pure PEGDA particles further deform
after stopping the flow. Analyzing ¸

1

(t) in this case gives the typical relaxation time of
the channel and has been found to be ·

channel

= 95 ± 3s here.
In the presence of solvent, flow of solvent molecules through the mesh of the hydrogel

takes place and this poroelastic e�ect depends on the porosity of the hydrogel and the
viscosity of the liquid [73, 74]. Exponential fits on the evolution of ¸

1

(t) (black curves
in Figure III.11 (a)) give characteristic times · for the di�erent hydrogels. The di�erent
photosensitive solutions used in this study have comparable viscosity (see table II.1 in
chapter II). On the contrary, the mesh size decreases with dilution as the polymer chains
are further apart during reticulation in presence of solvent molecules. This is in good
agreement with the tendency shown in Figure III.11 (b) in which · decreases when the
solvent fraction increases. Note that as poroelasticity depends also on the dimensions of
the hydrogel [73, 74], the timescales for micron-scale particles like ours are much smaller
than for macroscopic ones. In all our measurements we wait long enough (1200s) to
measure the length of the particles after the poroelastic phenomenon has stopped.

Finally, we also observe a dependence on the velocity at which the particle enter in the
constriction for certain hydrogel compositions. One example is given in Figures III.11 (c)
and (d) which show pictures, taken 1200s after the passage through the constriction, of
two hydrogels fabricated with the same photosensitive solution (PP

70

) and with the same
geometry but with slow (a) or fast (b) dynamics. The length of the deformed particle ¸

1

is smaller for slow dynamics (the particle velocity is approximately one particle length per
minute) than for fast passage (particle velocity larger than one particle length per second).
A possible reason of this observation can be found in the viscoelastic properties of the
gel and/or the complex friction between the hydrogel and the lateral channel walls [59].
In such situation, we consider that the measurement of the Poisson’s ratio can not been
achieved properly. Hydrogels fabricated from the PP

60

solution show similar behaviors.
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(a) (b)

(c)

(d)

Figure III.11: (a) Evolution of the length of the deformed particle as a function of time.
The grey, yellow, orange and red curves correspond to hydrogel fabricated respectively
from the pure PEGDA, the PP

20

, the PP
30

and the PP
40

solutions. The black lines
correspond to exponential fit of the experimental curves for PP

20

, PP
30

and PP
40

. For
the four temporal evolutions we represent with the dotted lines the value of ¸

1

after
1200 s, when equilibrium is reached. (b) Characteristic time scale of the length temporal
evolution as a function of the volume fraction of PEG

1000

-water solvent. The characteristic
time scale are obtained from the exponential fits shown in (a). (c) and (d) correspond to
pictures of a deformed hydrogel after (c) a slow passage through the constriction (particle
velocity of the order of magnitude of one particle length per minute) and (d) a fast passage
through the constriction (velocity larger than one particle length per second). Di�erent
dynamics of passage through the constriction lead to di�erent length of the compressed
particle. Scale bars are 200µm.

d) Dependence of the Poisson’s ratio to solvent composition

We measured the Poisson’s ratio of hydrogel fabricated from di�erent photosensitive so-
lution compositions with di�erent solvent nature and amount. Figure III.12 shows the
measured Poisson’s ratio for dilution of PEGDA Mn = 700 g/mol with water (blue points)
and with a PEG

1000

-water (ratio 2:1 in volume) solution (purple points). In the absence
of solvent the hydrogel is nearly incompressible (‹

0%

= 0.50 ± 0.01), which is in agree-
ment with the literature [75]. The Poisson’s ratio decreases with the dilution but for the
same dilution, it is always smaller in PEG

1000

-water than in water. This result may be
surprising at the beginning, but may be understood in the light of the work of Lee and
co-authors [76], who showed that the presence of long chains of PEG in a solution of
PEGDA Mn = 700 g/mol leads to the formation of hydrogel of larger porosity. One can
thus assume that the hydrogel microstructure depends on the nature of the solvent. In
water, the lower value that we measured ‹

50%

= 0.255 ± 0.009. In PEG
1000

-water the
Poisson’s ratio reaches a plateau corresponding to a value of ‹ = 0.165 ± 0.002.
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Figure III.12: Evolution of the Poisson’s ratio of hydrogels fabricated from di�erent photo-
sensitive solutions as a function of the solvent volume fraction. Two di�erent solvents are
shown: water (blue markers) and a solution of PEG

1000

g/mol -water at a ratio 2:1 in
volume (purple markers).

III.3 Opening and conclusive remarks
Until now we have considered homogenous materials and shown that our experimental
technique is well-suited to determine the Poisson’s ratio of the material they are made of.
Figure III.13 shows the extension of our technique to metamaterials in which the geometry
of the structure changes the mechanical properties. In this example, an auxetic particle
has been fabricated using a specific design of the structure [63]. The superposition of
the shapes of this particle before (grey) and after (black) introduction into the narrow
channel shows that the particle is slightly shorter when compressed which is the signature
of a negative Poisson’s ratio.

(a) (b)

(c)

Figure III.13: Auxetic metamaterial fabricated from a pure PEGDA solution. (a) Before
compression, (b) submitted to an uniaxial compression, (c) superposition of the unde-
formed and deformed shape. The particle width as well as its length decrease while
compressed, signature of a negative Poisson’s ratio.
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In this section we have presented a new technique of measurement of the Poisson’s ratio
of micrometric soft hydrogels. We successfully used this approach to measure Poisson’s
ratio of di�erent hydrogels and show that this Poisson’s ratio varies on a large range of
values (from 0.165 to 0.5). We discussed, here, the limitations of the methods and we
showed how channel and particle geometries should be chosen to accurately measure the
Poisson’s ratio. Compared to other approaches an important advantage of our method is
that it is done in situ directly in the surrounding fluid and does not require any drying
of the sample. Another advantage as compared to other experiments, as for instance
atomic force microscopy (AFM) or micropipette aspirations experiments, which probe
the mechanical properties at nanometer scale is the determination of the Poisson’s ratio
of the entire hydrogel particle. Thanks to these advantages and because of its simplicity,
we think, this method could be used for the characterization of the Poisson’s ratio of
many di�erent soft objects from nature or industry.



Chapter IV
Bending of a flexible fibers transported
in a confined viscous flow

In the Chapters II and III, we have seen how to fabricate fiber with very good control
on their shape, position, orientation and mechanical properties. Here, we focus our study
on the dynamics and the deformation of a flexible fiber transported in a confined viscous
flow.

When transported in confined geometries, rigid fibers show interesting transport dy-
namics induced by friction with the top and bottom walls (see section I.3.1 of chapter
I or references [13, 30]). As we have seen in chapter I, fiber flexibility causes an addi-
tional coupling between fiber deformation and transport, and is expected to lead to more
complex dynamics. A first crucial step for their understanding is the characterization of
the deformed fiber shape. Here, we characterize this shape for a fiber transported in a
confined plug flow, perpendicular to the flow direction using a combination of microfluidic
experiments (presented in chapter II) and numerical simulations that we present in the
following.

We show that a perpendicular fiber bends while transported. This bending is due
to the finite length of the fiber and the resulting non-homogeneous force distribution
acting on the elongated object. When the fiber is confined, friction occurring in the gap
between the fiber and the channel top and bottom walls slows down the fiber. Because its
velocity is smaller than the velocity of the surrounding fluid, the object acts as a moving
obstacle. As a consequence, a maximum of the pressure di�erence (between the front and
the back of the fiber) is observed in the middle of the slender object, which leads to a
C-shape deformation. We show that the amplitude of the deformation is proportional
to an elasto-viscous number (introduced in chapter I), which compares viscous to elastic
forces. We also quantitatively characterize the influence of the confinement on the fiber
deformation. The precise understanding of the deformation of a flexible fiber in a confined
geometry can also be used in the future to understand the deformation and transport of
more complex deformable particles in confined flows, as for example vesicles or red blood
cells [77, 78, 79].

The study presented in this chapter has been done in collaboration with François
Gallaire and Mathias Bechert and have been published in Physical Review Fluids in 2019
[18]. The chapter is constituted by the slightly reorganized manuscript of the article.
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IV.1 Observations

Figure IV.1: Superposition of pictures of a transported and deformed flexible fiber for
di�erent initial orientations. The height of the channel is 65 µm and the confinement is
around 0.81. The length of the fiber is 800 ± 10 µm, its height is 54 ± 3 µm and its
width is 57 ± 3 µm. Scale bar are 500 µm. The mean velocity of the flow is 0.62 mm·s≠1.
The yellow arrow indicates the bent state of a deformed fiber perpendicular to the flow.

An example of trajectory of a flexible fiber transported in a pressure driven flow in
a Hele-Shaw like geometry is shown in Figure IV.1. The fiber is strongly confined by
the top and bottom walls (fiber width and height are comparable to the channel height),
whereas the channel width is much larger than the fiber length.

During downstream transport there is a coupling between fiber deformation and re-
orientation. Depending on the initial orientation of the fiber, di�erent dynamics are
observed, involving in most cases a deformation to a bent state where the fiber is close to
a perpendicular orientation to the flow as highlighted by the yellow arrows in Figure IV.1.
This perpendicular orientation is not stable and, in all cases, the fiber finally aligns with
the flow and is advected downstream without deformation or rotation. Reaching the final
position involves, in some cases, oscillations of the fiber with respect to the lateral walls
similarly to the dynamics expected of a rigid fiber interacting with the channel lateral
walls [30].

The deformation of a freely transported fiber at low Reynolds number in a homoge-
neous plug flow is at first glance surprising. However, due to friction with the top and
bottom walls, the fiber acts as a moving obstacle when pushed down the channel, leading
to a strong flow perturbation (see section I.4 of chapter I or references [13, 30]). Despite
the fact that the total force acting on the fiber is equal to zero, the deformation indicates
that the force distribution is non-homogeneous along the fiber.
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A first step in understanding these complex dynamics is to understand the fiber de-
formation occurring for a fiber oriented perpendicular to the flow, and in particular to
identify the mechanisms leading to a non-homogeneous force distribution responsible for
the observed shape.

IV.2 Experimental setup and geometrical arrangement

Figure IV.2: (a) Geometry of the perpendicularly oriented fiber and the confining channel.
The pressure-driven flow is sketched in blue and defined by a mean velocity u

0

, while the
fiber is moving with a velocity uf so that the total force on the fiber surface becomes
zero. (b) Cross section view of the channel and of a perpendicular fiber. The height of
the gap b is determined by the confinement — = 1 ≠ 2b/H.

The fibers used in the experiments are elongated objects of square cross section with
height (and width) h and length ¸, so that the aspect ratio a = ¸/h is large (19 to 25). The
choice of square cross section has been motivated by two aspects: it allows us to reduce
the number of parameters of the study and, more importantly, it avoids the fiber to rotate
around its long axis while it is transported (see Figure II.6 in chapter II). Typical fiber
dimensions vary from 19 µm to 74 µm for width and height and from 0.5 mm to 1.5 mm
for the length. The channel is rectangular, of constant height H, width W and length L
with W, L ∫ H. Typically W=3500 µm, L is a few centimeters and the channel height
H varies from 30 to 85 µm. Performing particle tracking velocimetry experiments, with
suspensions of 1 µm diameter latex beads, we assess the variation of the channel height
via measurements of the mean flow velocity at di�erent channel locations. We verified
that the channel height does not vary more than 3 µm along the its width or length, even
if the aspect ratio W/H is very large.

The fiber is fabricated using the stop-flow photo-lithography method (detailed in chap-
ter II) and is located at the center of the channel. The confinement — = h/H quantifies
the influence of the top and bottom channel walls on the fiber dynamics and the height
of each gap above and below the fiber is given by b, with 2b = H(1 ≠ —). The fiber is
transported at a velocity uf by an external pressure-driven flow characterized by its mean
velocity u

0

. The velocity field is denoted by u = (u, v, w), with u, v and w the velocity
components in x, y and z direction, respectively. The pressure field is denoted by p.
The fiber evolves in a Newtonian liquid (uncured oligomer solution see chapter II) with
constant shear viscosity µ. Due to the Hele-Shaw geometry of the channel, the flow in
the xy-plane is a plug flow, except close to the side walls and in the vicinity of the fiber.
In the z direction the flow is Poiseuille like.
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Figure IV.3: Evolution of fiber deformation with time. The data corresponds to the
experiment shown on the bottom row of Figure IV.1. (a) Fiber shape evolution. The
time step between two lines is 1s. (b) Top: Evolution of the maximum deflection of the
fiber ”

max

as a function of time. The equilibrium deflection ”
eq

corresponds to the value
of the plateau. Bottom: evolution of the angle – between the fiber and the flow as a
function of time. cos(–) = 1 corresponds to a perpendicular orientation of the fiber.

Once the fibers are fabricated inside the channel, the flow is turned on using a syringe
pump and fiber transport is monitored with a camera. The microscope stage is displaced
by hand to keep the fiber in the field of view. Using MatLab routines (see chapter II for
more details), we extract the fiber shape as a function of time together with the maximum
deflection ”

max

(Figure IV.3 (a)). Figure IV.3 (b) shows that, after a transition period
(green area), the maximum fiber deflection and orientation remain almost constant over
a given time (purple area). During this equilibrium state the fiber remains perpendicular
to the flow and translates along the x-axis only. However, this equilibrium is not stable
and small perturbations lead to a change in fiber orientation and a decrease of fiber de-
formation. The maximum deflection of a perpendicular fiber, ”

eq

, is measured during the
equilibrium regime.

IV.3 Physical mechanisms and scaling arguments

The shape of an elastic fiber interacting with a viscous flow is given by a balance between
drag, i.e. pressure and viscous forces, and elastic restoring forces [80]. In the specific
situation of a freely transported fiber in a viscous flow, the total force acting on the fiber
is zero and fiber deformation can only occur due to a non-homogeneous force distribution
acting on the fiber. This force distribution can, for example, result from the straining part
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of a shear flow [80]. However, here the fiber is transported in a plug flow (see Figure IV.2
(a) and (b)), and in this case the viscous and pressure force distributions result from
the disturbance flow occurring around the fiber. Thus in order to characterize the fiber
deformation we need to determine the disturbance of the flow induced by the fiber.

The fiber shape is determined by first evaluating the flow around a rigid fiber. The
transport velocity of a rigid fiber is given by the balance between the pressure and viscous
forces pushing the fiber and the viscous friction occurring in the small gaps between the
moving fiber and the fixed top and bottom walls. The equilibrium velocity uf is then
obtained by imposing a force-free condition on the fiber surface. Note that, as previously
mentioned in chapter I, all previous analyses considering rigid fibers in confined geometries
have investigated only total force and torque balances [81, 29, 13, 30]. Here we need
to determine the force distribution per unit length along the fiber f(y) resulting from
pressure and viscous friction to explain the deformation of the flexible fiber. Finally,
the fiber deflection ” caused by this force distribution is calculated employing the linear
Euler-Bernoulli beam equation:

EI
ˆ4”

ˆy4

= f(y), (IV.1)

with flexural rigidity EI, E being the material Young’s modulus and I = h4/12 being
the areal moment of inertia. For an homogeneous slender rod, the flexural rigidity is
independent of y. Resolving this equation requires the use of appropriate boundary
conditions, which will be discussed in section IV.6.3.
In the following, we assume the hydrodynamic force f(y) to be invariant to small fiber
deflections, as the symmetry of the fiber with respect to the flow is preserved under
bending and the e�ect of a small fiber deformation on the surrounding flow is considered
negligible. This enables us to calculate the fiber deflection using exclusively the force on
a straight, perpendicular fiber.

We scale x, y, z and ” by the fiber length ¸, the velocity components by u
0

, the pressure
and stress tensor components by µ u

0

/¸ and the forces per unit length f , consequently,
by µ u

0

. This scaling leads to the dimensionless geometry

˜̧= 1, h̃ = 1
a

and H̃ = 1
a —

. (IV.2)

Note that all dimensionless variables are denoted by a tilde throughout this chapter.
Equation IV.1 transforms to

ˆ4”̃

ˆỹ4

= µ̃ f̃(ỹ), (IV.3)

with

µ̃ = µ u
0

¸3

EI
, (IV.4)

referred to as the elasto-viscous number (see section I.4.2 of chapter I or references [80,
82, 83]). With the drag force on the fiber being proportional to u

0

, µ̃ compares viscous
drag to elasticity, which are the main forces controlling the dynamics provided that the
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e�ect of inertia and Brownian motion is negligible. As already mentioned in chapter I
and according to equation IV.3, the scaled fiber deflection is expected to depend linearly
on the elasto-viscous number. While the drag force is proportional to the mean velocity
of the surrounding fluid, its exact form f(y) also depends on the confinement —. The
dependence of the fiber deformation on µ̃ and — is one of the main questions investigated
in the rest of this chapter.

IV.4 Influence of the side walls
In order to determine the impact of the confinement due to the side walls, we systemati-
cally measure the maximal deflection of the fiber for di�erent lateral confinement › = ¸/W .
Figure IV.4 shows such evolution of ”

eq

as a function of ›. One can see that up to
¸/W & 0.6 the fiber deflection is independent of the lateral confinement. Only above
this threshold the influence of the lateral walls becomes noticeable and the deflection is
observed to decrease with increasing confinement. Hence, in the following the fiber length
¸ is always kept smaller than 0.43W in order to neglect the influence of the side walls.

lateral confinement

Figure IV.4: Evolution of the equilibrium deflection of flexible fiber for di�erent lateral
confinements. The lateral confinement is defined as › = ¸/W . Each light blue point corre-
sponds to one single experiment and each dark blue point corresponds to the mean value
and standard deviation of the repetition of experiments for one given lateral confinement.

IV.5 Fabrication of flexible fibers

Compared to other situations studied previously (see chapters I, II and publications [41,
40, 84]), where a flexible fiber is held fixed in the channel, the fiber studied here is free
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and the deformations induced by the fluid are rather small. In order to obtain significant
deformation we work with highly flexible fibers, i.e. fibers with large aspect ratio a or
small elastic modulus, thus small flexural rigidity. The aspect ratio is limited by the
maximum fiber length possible in our set-up (see section II.1 of chapter II) and we thus
attempt to fabricate fibers of low modulus with good accuracy and reproducibility.

As seen in section II.4 of chapter II the Young’s modulus can be tuned either by
varying the composition of the photosensitive mixture or by adjusting the UV exposure
time [41, 85], the latter influencing the Young’s modulus exponentially until a plateau is
reached for large times [41]. As the control over the exposure time is not accurate enough
even with the high-precision shutter we use, we choose to perform all experiments in the
plateau regime using a constant exposure time of 600 ms. We tune the Young’s modulus
by diluting the PEGDA with water or with a mixture of water and PEG

1000

.
As presented in section II.4 of chapter II, the Young’s modulus is measured using the

in situ technique developed by Duprat et al. [41] and we complemented the measures
using cantilever and micro-indentation experiments.

Figure IV.5: Evolution of the ratio of viscosity to Young’s modulus as a function of
dilution. Blue and purple symbols correspond, respectively, to dilution with water and
with a solution of PEG

1000

-water (ratio 2:1 in volume). While the change in viscosity
cancels the influence of solvent fraction on µ/E for a dilution with water, the quantity
can be tuned within several orders of magnitude by diluting with PEG

1000

-water.

In our experiments, the fibers are surrounded by the uncross-linked photosensitive
mixture. Diluting the photosensitive mixture a�ects not only the Young’s modulus of
the fiber but also the viscosity of the surrounding fluid. The value of interest is actually
the ratio µ/E as the elasto-viscous number µ̃ is proportional to µ/E according to equa-
tion IV.3. We plot this ratio as a function of the dilution fraction in Figure IV.5 . Diluting
PEGDA with water leads to a decrease of the elastic modulus E of the crosslinked fiber
(see Figure II.13 in section II.4 of chapter II), but the ratio µ/E remains constant: the
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gain in flexibility is cancelled out by the loss of viscosity. Diluting PEGDA with the more
viscous PEG

1000

-water mixture on the contrary leads to a variation of µ/E over three
orders of magnitude allowing for larger deformations.
In the following, we use fibers with bending moduli ranging from 5.6 · 10≠16 N·m2 to
8.4·10≠14 N·m2. These values are large compared to typical biological fibers such as motile
cilia or flagella (EI ≥ 10≠21 N·m2) [86], bacterial flagella (EI ≥ 10≠22 N·m2-10≠23 N·m2)
[87] microtubules (EI ≥ 10≠23 N·m2) [88] or actin filaments (EI ≥ 10≠26 N·m2) [88], but
small compared to cellulosic paper fibers (EI ≥ 10≠11 N·m2 ) [89].

IV.6 Modeling
In the following we present two models which have been developed, in collaboration
with Mathias Bechert and François Gallaire of the Laboratory of Fluid Mechanics and
Instabilities at EPFL, to characterize the disturbed flow around the fiber.

We start with introducing a 3D model to calculate the flow around a rigid, perpendic-
ularly oriented fiber and the resulting forces on the fiber surfaces. This model will mainly
serve as a reference for the reduced 2D simplified model introduced in section IV.6.2 and
largely inspired by the work of Nagel et al. [30].

IV.6.1 3D model
The scaled velocity and pressure fields are determined by the well-known continuity and
Stokes equations (see chapter I),

Ò · ũ = 0, (IV.5a)
≠Òp̃ + �ũ = 0. (IV.5b)

We impose slip conditions on the lateral walls of the channel to simulate an infinite
channel width and additionally no-slip conditions on the top and bottom walls. The fiber
velocity ũf ex is prescribed on the surface of the fiber. The inlet velocity is defined to
have a Poiseuille profile in z with unit mean velocity and a normal flow and constant
pressure are specified at the outlet. The forces imposed by the flow on the fiber surfaces
are determined by integrating along the x and z axes, leading to forces per unit length
in x-direction on the fiber front and back, denoted by f̃

front

and f̃
back

, respectively, as
well as to the cumulated force on top and bottom of the fiber f̃

gap

and the total force
on the edge surfaces F̃

e

. As we are restricting the analysis to fibers with perpendicular
orientation, only the force components in x-direction are relevant, which are given as

f̃
front

(ỹ) = ≠
⁄

˜H≠˜b

˜b
dz̃ ‡̃xx|x̃=≠˜h/2

, (IV.6a)

f̃
back

(ỹ) =
⁄

˜H≠˜b

˜b
dz̃ ‡̃xx|x̃=

˜h/2

, (IV.6b)

f̃
gap

(ỹ) =
⁄

˜h/2

≠˜h/2

dx̃
1
‡̃xz|z̃=

˜H≠˜b ≠ ‡̃xz|z̃=

˜b

2
, (IV.6c)

F̃
e

=
⁄

˜H≠˜b

˜b
dz̃

⁄ h/2

≠h/2

dx̃ (‡̃xy|ỹ=0.5 ≠ ‡̃xy|ỹ=≠0.5) , (IV.6d)
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with the stress tensor components

‡̃ij = ≠p̃ ”ij + (ˆiũj + ˆj ũi). (IV.7)

The signs in equations IV.6 are determined by the orientation of the surface normal
vectors. The fiber will move exclusively in x-direction with constant speed ũf , which is
determined by the condition of zero total force F̃

tot

, i.e.,

F̃
tot

=
⁄

1/2

≠1/2

dỹ
1
f̃

front

(ỹ) + f̃
back

(ỹ) + f̃
gap

(ỹ)
2

+ F̃
e

= 0. (IV.8)

With the Stokes equations IV.5 being linear, it is possible to determine ũf by superposition
of two independent solutions [30]. In particular, the flow and the total force are calculated
for two configurations, a fiber fixed in a flow

Ó
ũ(1)

0

= 1, ũ(1)

f = 0
Ô

and a fiber moving in
a quiescent fluid

Ó
ũ(2)

0

= 0, ũ(2)

f = 1
Ô

. The equilibrium velocity fulfilling the force-free
condition IV.8 can then be calculated to

ũf = ≠ F̃ (1)

tot

F̃ (2)

tot

, (IV.9)

where the superscripts indicate the configuration.

IV.6.2 2D depth-averaged model
As the calculations for the 3D model require a lot of computational power, we also intro-
duce a refined version of the depth-averaged 2D model proposed by [30]. This model is
based on the Brinkman equations,

Ò · ū = 0, (IV.10a)
3

Ò2ū ≠ 12
H̃2

ū
4

≠ Òp̄ = 0. (IV.10b)

We use a bar above the variables to indicate averaging across the height of the channel
and the di�erential operators correspond consequently to a two-dimensional space. The
2D flow is then calculated by defining a composite particle containing the fiber and the
fluid in the gap between the fiber and the top and bottom channel walls. A constant
flow velocity in x-direction ūp is imposed on the surface of the composite particle and slip
conditions are set on the lateral walls to simulate an infinite channel width. Moreover, a
plug flow profile with unit velocity at the inlet and a normal flow with constant pressure
at the outlet are prescribed.

In a second step, the forces imposed by the flow on the fiber surfaces are determined. In
contrast to the 3D model, only the height-integrated forces per unit length in x-direction
on the fiber front and back, f̃

front

and f̃
back

, respectively, and the total force on the edge
surfaces F̃

e

are directly given by

f̃
front

(y) = ≠h̃ ‡̄xx|x̃=≠˜h/2

for ≠ 1/2 Æ ỹ Æ 1/2, (IV.11a)
f̃

back

(y) = h̃ ‡̄xx|x̃=

˜h/2

for ≠ 1/2 Æ ỹ Æ 1/2, (IV.11b)

F̃
e

= h̃
⁄

˜h/2

≠˜h/2

dx̃
1
‡̄xy|ỹ=1/2

≠ ‡̄xy|ỹ=≠1/2

2
. (IV.11c)
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In order to evaluate the forces on top and bottom of the fiber, an additional model for
the flow in the gap has to be proposed. As we are considering fibers perpendicular to
the flow, the composite particle and thus the fiber are moving only in the x-direction,
and it is possible to extend the gap flow profile as introduced by [30] to account for
variations along the fiber length ỹ. This leads to a total velocity profile of the composite
particle ūp = ūp q(ỹ, z̃) ex, where the gap flow profile q(ỹ, z̃) has to fulfill the normalization
condition

1
H̃

⁄
1/2

≠1/2

dỹ
⁄

˜H

0

dz̃ q(ỹ, z̃) = 1. (IV.12)

Following [30], q(ỹ, z̃) is assumed to be of Couette–Poiseuille type in z̃, but now has an
additional ỹ-dependence, i.e.,

q(ỹ, z̃) =

Y
___]

___[

q
1

(ỹ, z̃) = C
1

(ỹ)
1

z̃
˜H

2
2

+ C
2

(ỹ) z̃
˜H

for 0 Æ z̃ Æ b̃,

q
2

(ỹ, z̃) = ū
f

ū
p

for b̃ < z < H̃ ≠ b̃,

q
3

(ỹ, z̃) = C
1

(ỹ)
1
1 ≠ z̃

˜H

2
2

+ C
2

(ỹ)
1
1 ≠ z̃

˜H

2
for H̃ ≠ b̃ Æ z̃ Æ b̃,

(IV.13)

where the no-slip condition at the channel walls, q(ỹ, 0) = q(ỹ, H̃) = 0 was already
applied. Note that the gap flow profile presented by [30] is identical to the reduced profile
s

1/2

≠1/2

dỹ q(ỹ, z̃). C
1

(ỹ) and C
2

(ỹ) are determined by the no-slip condition assumed on
the fiber surface, q(ỹ, b̃) = q(ỹ, H̃ ≠ b̃) = ūf /ūp and by applying the Stokes equation in
the gap, which introduces the pressure gradient ˆx̃p̄. Unlike the model proposed by [30],
here, C

1

(ỹ) and C
2

(ỹ) are no longer constants and take into account the variation of the
pressure gradient along the fiber length. Due to symmetry and for the sake of simplicity,
we will restrict the rest of the analysis to the bottom gap flow q

1

, which can finally be
written as

q
1

(ỹ, z̃) = 1
ūp

C

≠H̃2

2 ˆx̃p̄

A
b̃ ≠ z̃

H̃

B
z̃

H̃
+ ūf

z̃

b̃

D

. (IV.14)

Note that the only dependence of q
1

(ỹ, z̃) on y is hidden in the pressure gradient ˆx̃p̄.
For a rigid particle only the mean value of the forces along the fiber contributes to the
movement. The correlation between fiber velocity ūf and composite particle velocity ūp

remains thus identical to the one obtained from the model of [30] and [13] and can be
written as

ūf = 3 (1 + —)
2 (1 + — + —2) ūp. (IV.15)

The average of ˆx̃p̄ along the fiber is implicitly given by equation IV.12 and can be
expressed employing equation IV.14 by

Èˆx̃p̄Í =
⁄

1/2

≠1/2

dỹ ˆx̃p̄ = ≠ 12 ūp

H̃2(1 ≠ —3)
. (IV.16)

The equality in equation IV.16 was separately verified for various values of — as shown
in Figure IV.6. The latter compares the values obtained by numerical calculation to the
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Figure IV.6: Verification of condition IV.16. The single points are calculated based on
the numerical simulation while the solid line corresponds to 12 —2 a2 / (1 ≠ —3) and thus
depends only on — and a, the latter being equal to 21.

prescribed dependence on — and reveals perfect coincidence. This ensures that the pre-
sented model is a consistent extension of the one introduced by [30], where only averaged
values of the forces are used.

Approximating the pressure gradient along the fiber by

ˆx̃p̄ ¥
p̄|x̃=

˜h/2

≠ p̄|x̃=≠˜h/2

h̃
, (IV.17)

the force per unit length in x-direction on top and bottom of the fiber f̃
gap

can thus be
calculated, using equation IV.16, to

f̃
gap

(ỹ) = ≠2 h̃ ‡̄xz|z̃=

˜b = ≠ 12 —2

1 ≠ —3

ūp ≠ —(1 ≠ —)
2 H̃2�ˆ

x̃

p̄, (IV.18)

with the pressure gradient variation

�ˆ
x̃

p̄ = ˆx̃p̄ ≠ Èˆx̃p̄Í. (IV.19)

The factor 2 in equation IV.18 is needed to account for both the bottom and the top
gap and the negative sign originates from the direction of the surface normal vector. The
first term on the right-hand side of equation IV.18 is identical to the gap force resulting
from the model of [30]. The second term directly derives from the consideration of the
variation of the flow velocity around its mean value in the gap. The composite particle
velocity ūp is determined by the condition of zero total force on the composite particle,
which is equivalent to setting the total force on the fiber F̃

tot

to zero, i.e.,

F̃
tot

=
⁄

1/2

≠1/2

dỹ
1
f̃

front

+ f̃
back

2
+ F̃

e

+ 12 —2

1 ≠ —3

ūp = 0. (IV.20)

Only the first two terms on the left-hand side of equation IV.20 are calculated from the
numerical simulation, while the third term, i.e., the gap force, can be determined ana-
lytically once ūp is set. As for the 3D model, it is possible to exploit the linearity of
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the Brinkman equations to determine the composite particle velocity by the superposi-
tion of two reference configurations [90]. The fiber velocity ūf is then directly given by
equation IV.15.

It is important to note that the proposed extension of the gap flow is only valid
for perpendicular fibers moving exclusively in x-direction. In the more general case of
lateral motion, the y-dependence of the gap flow cannot be separated from the composite
particle velocity in a straightforward manner. For this reason, the contribution of the
pressure gradient variation along the fiber on the total force distribution is evaluated in
section IV.7.3, so that possible errors by neglecting this e�ect can be estimated for future
studies.

IV.6.3 Boundary conditions
As already introduced in section IV.3, once the viscous and pressure forces are determined
we derive the fiber deformation from the Euler-Bernoulli equation IV.3. Because of the
fiber being symmetric along ỹ at ỹ = 0, it is su�cient to consider half of it. The force
applied on the two edges of the fiber F̃

e

is taken into account via the boundary conditions,

”̃(±1/2) = 0, ˆỹ ”̃(0) = 0,
1
µ̃

ˆỹỹ ”̃(±1/2) = 0,
1
µ̃

ˆỹỹỹ ”̃(±1/2) = F̃
e

2 . (IV.21)

The first condition arbitrarily sets the deflection to be zero at the edges as reference
point. The second condition is due to the symmetry of the fiber and the last two condi-
tions represent, respectively, the bending moment and the shear force due to the viscous
forces applied on the edges of the fiber. The deflection is obtained by multiple numerical
integration of one half of the obtained force distribution, leading directly to the maximum
deflection ”̃

eq

.

IV.6.4 Numerical implementation
Because we are assuming symmetry at ỹ = 0 and z̃ = 0, it is su�cient to simulate only
a quarter of the channel in the 3D model and half of the channel in the 2D model. The
fiber constitutes a hole in the channel. Figure IV.7 shows the corresponding geometry
and marks the channel domain �c as well as the lateral and top channel boundaries,
denoted by Êw,1 and Êw,2, respectively, the symmetry planes Ês,1 and Ês,2, the inlet and
outlet, denoted by Êi and Êo, respectively, and the fiber surface Êf . For both models, the
dimensionless channel length and width are set to L̃ = 9 and W̃ = 8, while the remaining
lengths are defined by equations IV.2.

We impose a slip condition on Êw,1, a no-slip condition on Êw,2 and a constant ve-
locity, ūp in the 2D simulation and ũf in the 3D simulation, on Êf . At the inlet Êi,
a constant flow velocity ũ

0

ex (2D) or, respectively, a Poiseuille profile in z (3D), i.e.,
3/2

!
1 ≠ (2 z̃ a —)2

"
u

0

ex, are prescribed, while the pressure is fixed to p̃ = 0 at the outlet
Êo together with a normal outflow condition. The channel domain �c is meshed with
tetrahedral (3D) or triangular (2D) elements with maximum element size H̃/2 (3D) or
˜̧/5 (2D) and maximum element growth rate of 1.2. In addition, the number of elements
on the fiber edges is fixed to mh elements per h̃, mh = 60 for the 2D model and mh = 50
for the 3D model, and for the 3D simulation, the maximum element size on Êf is fixed
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Figure IV.7: Geometry of the 2D and 3D simulations: channel domain �c, lateral channel
boundary Êw,1, symmetry plane Ês,1, inlet Êi, outlet Êo and fiber surface Êf . Exploiting
symmetry, only half of the domain in y- and z-direction is modeled. Top: Geometry of
the 2D simulation and xy plane view of the 3D simulation. Bottom: xz plane view of the
3D simulation with additional top channel boundary Êw,2 and symmetry plane Ês,2.

to 3 mh/h̃ together with a maximum element growth rate of 1.2. For both 2D and 3D
simulations, the direct solver pardiso of comsol multiphysics software is utilized. For
2D simulation results are verified by separate calculations with the Ulambator [91].
Convergence for both models was checked with respect to ũf , or, respectively, ūf , and
”̃

eq

, details are given in the appendix C.

IV.6.5 Model validation and assessment

We validate our models against the results from [13] and [30] by comparing the calculated
fiber velocities for a rigid fiber as a function of the confinement — for an aspect ratio
a = 10, as shown by Figure IV.8. The fiber velocity is observed to decrease monotonically
with increasing confinement — due to the increasing friction between the fiber and the
top and bottom channel walls. Our results from both the 3D and the depth averaged 2D
numerical simulations coincide very well with the existing results in literature, indicating
the reliability of the present implementations. We have also displayed results for an aspect
ratio of 21, the value primarily used in the present work, and for — > 0.8 they di�er only
slightly from the ones for a = 10. In both configurations, the 2D model reproduces the
results of the 3D model with high accuracy.

In the following, we will use our models mainly to predict the force distribution f̃ and
the fiber shape, including the maximum deflection ”̃

eq

. The validity of our two models to
predict these quantities will be discussed in detail in section IV.7.1, where we will show
that both models lead to similar results. As the 2D model o�ers a significantly higher
flexibility and reduction of computational power and as the deviations from the 3D model
are in the same range as the experimental error, we will primarily employ this model and
provide additional results from the 3D model when appropriate.
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Figure IV.8: Validation against literature values: Dependency of the rigid fiber velocity
ũf on the confinement — at force-free conditions for the 2D and 3D models for an aspect
ratio a = 10 and a = 21 together with the data presented by Berthet et al. [13] and Nagel
et al. [30].

IV.7 Results

IV.7.1 Mechanism of fiber deformation

Typical experimental observations can be seen in Figure IV.1 showing the successive
positions and shapes of a flexible fiber during its transport along the microchannel. Here
we are interested in the deformed equilibrium shape of fibers of perpendicular orientation
as indicated by the yellow arrows. We investigate the maximum deflection ”

eq

, as well as
the corresponding fiber shapes, as a function of di�erent parameters as the mean velocity
of the surrounding fluid u

0

, the fiber length ¸, or the confinement —.
As previously said, the fiber deformation results from the inhomogeneous distribution

of the drag force along the fiber due to its finite length. While being transported down-
stream, the flow pushes the fiber along the flow direction against the viscous friction, but
it also flows around it. This leads to a specific flow profile and thus a specific pressure
distribution around the fiber. Figure IV.9 (a) shows an experimental visualization of the
flow around a fiber in the reference frame of the fiber. Figure IV.9 (b) shows the corre-
sponding velocity field averaged over the channel height and Figure IV.9 (c) the pressure
distribution. The pressure field is calculated from the experimental velocity field using
the Brinkman equation. To distill the part of the pressure field causing a deformation of
the fiber, we subtract the linear pressure field corresponding to a channel flow without
fiber. The precise image and data treatment to obtain these results is described in the
chapter II. Similar results are obtained from numerical simulations of the 2D model as
shown by Figure IV.9 (d) and (e) for identical conditions. From these pictures two e�ects
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Figure IV.9: Experiments: (a) Streaklines of the flow around a rigid fiber in the reference
frame of the fiber. The mean fluid velocity is u

0

= 48 µm·s≠1, and the fiber dimensions
are ¸ = 528 ± 5 µm, w = 67 ± 5 µm, and h = 49 ± 3 µm. Confinement is — = 0.82.
Streaklines are obtained by visualizing 1 µm diameter beads flowing around the fiber
with a ◊10 objective. Scale bar is 100 µm. (b) Depth averaged velocity field around
the fiber obtained from the particle tracking by averaging the particle velocity on time
and on 64◊64 pixels windows. The constant velocity of the fiber has been added to get
the velocity field in the frame of the laboratory. The noise on the edges of the window
field results from the lack of data in this regions. (c) Pressure distribution minus the
constant gradient in the (Ox) direction. It is obtained from the velocity field using the
2D Brinkman equation. Simulations: (d) Velocity field obtained numerically from the 2D
model, the fiber dimension are length ¸ = 525 µm, width w = 65 µm and height h = 49
µm. Confinement is — = 0.82. In order to compare with experimental data the mean flow
velocity is set to 48 µm·s≠1. (e) Pressure field obtained from simulation with the same
fiber geometry and confinement. The viscosity is set to µ = 67.4 mPa·s.
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can be seen clearly: a non-homogeneous pressure distribution along the fiber length with
a maximum pressure di�erence between the fiber front and back located at the middle
of the fiber, and an increase of the flow velocity close to the edges of the fiber. These
two e�ects have opposite consequences on the fiber deflection: the pressure field leads to
a maximum deformation of the fiber at the middle, whereas the velocity field leads to a
maximum deformation of the fiber at the edges in the opposite direction.
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Figure IV.10: (a) Force distributions and (b) resulting normalized fiber deflections ob-
tained from the 2D and 3D models. A smoothing function has been applied to the 3D
data. For comparison the results from the model by [30] have been added. The confine-
ment is — = 0.8 and the aspect ratio is a = 21. (c) and (d) Decomposition of the force
distributions into the force on fiber front and back and the force on fiber top and bottom
for the 3D and 2D model, respectively. The mean values are subtracted for the sake of
comparison.

From the non-homogeneous pressure and velocity distribution observed experimentally
and numerically we expect a non-homogeneous force distribution along the fiber length.
An example of such a force distribution is shown in Figure IV.10 (a) for — = 0.8 and
a = 21 for the 2D and 3D models. For the sake of completeness, the results from the
model by [30] are shown as well. In all cases a maximum is observed at the center of the
fiber, as indicated by the pressure distribution. This shows that the system is dominated
by pressure e�ect as one would expect from the confined geometry. It can also be seen
that while all three models lead to similar results, the force is slightly underestimated by
the 2D models. Our refined 2D model, however, leads to a correction towards the 3D
results, and constitutes therefore an improvement compared to the model of [30].

Figure IV.10 (b) shows the corresponding fiber shapes. Note that the non-zero shear
force at the edges F̃e, resulting from the increased flow velocity around the latter, is taken
into account through the boundary conditions IV.21. All models lead to the characteris-
tic C-shape obtained in experiments, with a slightly varying amplitude for the di�erent
models. Figures IV.10 (c) and (d) show for the 3D and 2D model, respectively, the decom-
position of the force distribution into the contributions of the pressure di�erence at fiber
front and back and the viscous shear forces on top and bottom. The mean values (sub-
stracted from the force distributions in Figures. IV.10 (c) and (d)) of both f̃

front

+ f̃
back

and f̃
gap

are significant and almost equal in absolute value, as expected from the zero
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force condition and as the edge force F̃e is rather small. However, the variation around
these mean values, which leads to the deflection of the fiber, is clearly more pronounced
for the pressure di�erence than for the gap force. This reveals that the shape of the
fiber is primarily determined by the pressure distribution and also comforts the use of an
averaged 2D model. Nevertheless, it can be seen from this decomposition that while the
force distributions predicted by the 2D and 3D models coincide very well in the gap, the
amplitude of the force distribution calculated with the 2D model is smaller than the one
obtained from the 3D model. This is caused by the implicit assumption used in the aver-
aged 2D model that the force distribution on the composite particle is equally distributed
in z.
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Figure IV.11: Influence of smoothing the force distribution for the 3D model for — = 0.8.
(a) Raw and smoothed force distributions. (b) Resulting fiber deflections.

Note that the presence of sharp edges and corners of the fiber in the numerical im-
plementations of both the 2D and the 3D model leads to fluctuations in the force dis-
tributions. For the 2D results, this can be seen at the edges of the force distribution in
Figures IV.10 (a) and (d), which seems to diverge. While this e�ect is clearly visible in the
force distributions, the calculated deflections were not found to be significantly influenced
by it. This is demonstrated in Figure IV.11 for the 3D model for — = 0.8. Here, the force
distribution appears to be scattered along the fiber, which is caused by averaging across
the height and thus including the e�ect of the top and bottom edges. The magnitude of
variation of the force around zero is rather small compared to the absolute forces at the
fiber surfaces. As a consequence, small fluctuations can already lead to visible uncertain-
ties in the data. We, therefore, smooth the data additionally, which implies truncating
the apparent divergencies at ỹ = ±0.5, as depicted by Figure IV.11 (a). The resulting
calculated deflections visualized by Figure IV.11 (b) exhibit no significant di�erences.

In the following, we will quantitatively discuss the fiber shape and maximum deflection
from experiments and simulations as a function of the control parameters of the system.
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IV.7.2 Fiber deflection as a function of the elasto-viscous number

Figure IV.12: Equilibrium deflection for a given confinement — = 0.8. (a) Evolution
of the equilibrium deflection as a function of the fluid mean velocity for a given fiber
length ¸ = 1300 µm and for two di�erent ratios µ/E = 3.14 ± 0.08 µs (blue) and µ/E =
0.911 ± 0.026 µs (red). (b) Evolution of the dimensionless equilibrium deflection as a
function of fiber length to the power three for a given flow velocity u

0

= 0.41 mm·s≠1.
Each point corresponds to two to four measurements.

As already mentioned in chapter I and as given by equation IV.3, for small defor-
mations we expect the scaled deformation ”̃

eq

to be proportional to the elasto-viscous
number µ̃. We first test the dependence on the fluid velocity by performing several sets of
experiments keeping all other parameters constant. Figure IV.12 (a) illustrates that ”

eq

increases indeed linearly with the fluid velocity as long as the deformation remains small.
For deformations larger than 20%, deviations from the linear behavior are observed. All
the following experiments have been performed in the linear regime. Figure IV.12 (a) also
shows that with increasing ratio µ/E, the deflection increases for identical flow velocities.
Figure IV.12 (b) shows a series of experiments where the fiber length was modified and
all other parameters were kept constant. As expected, ”̃eq Ã ¸3. Note that the range of
length available is small (the length varies from 990 ± 10 µm to 1490 ± 10 µm), as for
too short fibers the deflection is too small to be measurable and for too long fibers the
influence of the lateral channel walls can no longer be neglected (Section IV.4).

Figure IV.13 regroups experiments performed for di�erent flow velocities, ratios µ/E
and several fiber geometries for a constant confinement — = 0.80 ± 0.06. It represents
the scaled deflection ”

eq

as a function of µ̃. The data points of Figure IV.13 align very
well on a straight line, proving that µ̃ indeed controls the amplitude of fiber deflection
linearly. Here, each point corresponds to the average value over several experiments and
the large error bars are mainly due to the uncertainties on the determination of the
Young’s modulus (see chapter II). While the Young’s modulus is accurately controlled,
i.e. similar fabrication conditions lead to identical fibers, its absolute value is determined
with an error. The large error bar reflects this determination error but the alignment of
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Figure IV.13: Evolution of the dimensionless equilibrium deformation as a function of
the elasto-viscous number µ̃. The cross markers correspond to the data shown in Fig-
ure IV.12 (a) and circles are obtained with a smaller fiber, ¸ = 985 ± 10 µm for fluid
velocities varying from 0.46 mm·s≠1 to 0.69 mm·s≠1. The color code is the same as for
Figure IV.12 (a) and distinguishes the di�erent ratios µ/E. Dotted lines correspond to
linear fits.

the data points indicate the good accuracy in the mechanical properties. This remark is
also true for all the figures representing data normalized by the elasto-viscous number.

IV.7.3 E�ect of the confinement

Previous studies, presented in chapter I, have shown that the confinement tunes the flow
perturbation around the fiber and as a consequence the drag forces applied on the fiber
[13, 30]. We thus expect the fiber deformation to strongly depend on the confinement.
Figure IV.14 (a) shows snapshots of fibers transported in channels of di�erent confinement.
A variation of the confinement implies a homothetic variation of the fiber width and
length in order to keep a constant aspect ratio and a square cross section. Despite
the fact that the scaled deflection is normalized by µ̃ in Figure IV.14 (b), in order to
compensate for the geometrical variations, di�erent amplitudes of deflection are observed
for di�erent confinements. In the following we will discuss the influence of the confinement
experimentally and numerically.

The force distribution along the fiber length, obtained numerically using the 2D model,
is shown in Figure IV.15 (a) for confinements varying from — = 0.1 to — = 0.9. The
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Figure IV.14: Role of confinement. (a) Pictures of deformed fiber for confinements of
0.6 ± 0.1 (blue), 0.73 ± 0.08 (yellow) and 0.86 ± 0.04 (red). Fibers dimensions are: h =
18 ± 3 µm, w = 24 ± 5 µm, ¸ = 614 ± 10 µm (blue), h = 29 ± 3 µm, w = 35 ± 5 µm,
¸ = 788 ± 10 µm (yellow), h = 73 ± 3 µm, w = 79 ± 5 µm, ¸ = 1482 ± 10 µm (red). Scale
bar is 500 µm. (b) Dimensionless fiber shapes. ”̃ has in addition been normalized by µ̃.
The color code is the same as for (a). Several fiber shapes for identical conditions have
been superimposed.

amplitude of f̃ increases with increasing confinement. Figure IV.15 (b) shows the related
fiber shape and clearly indicates that the amplitude of fiber deflection also increases with
confinement, as it was observed in experiments. The last panel of this figure shows the
fiber shapes normalized by the maximum deflection, and reveals no significant change in
the deflection shape. This means that the confinement mainly modifies the amplitude of
the force and not its distribution, i.e., the fiber deflection is fully characterized by ”̃

eq

.
Similarly, normalized experimental fiber shapes for di�erent confinements collapse onto a
single shape, coinciding with the numerical result, as shown in the inset of Figure IV.16.

Finally, we quantitatively discuss the amplitude of deflection ”̃
eq

as a function of the
confinement by comparing experimental results to numerical calculations obtained from
both 2D and 3D models. Figure IV.16 superimposes the experimental (blue diamonds)
and the numerical results obtained from the 2D (red squares) and the 3D (black circles)
models. Each experimental point corresponds to 2–30 measurements for di�erent fluid
velocities, Young’s moduli and fiber dimensions. The results obtained from the 3D simu-
lations predict slightly stronger deformations compared to the results obtained from the
2D model. This was already visible from Figure IV.10 (c) and (d). In particular for
high confinements, the results from the di�erent models di�er only slightly, confirming
again the validity of the simplified 2D model which o�ers a significantly higher flexibility
and reduction of computational power. In all cases, the di�erences in predictions of both
models are in the same range as the experimental error and both are found to be in good
agreement with the experimental data.

Even though both model predictions lie in the experimental error range, Figure IV.16
suggests a small overprediction of the deflection, as most of the experimental mean val-
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Figure IV.15: Influence of confinement using the 2D model. (a) Evolution of the force
distribution along the fiber length for confinements varying from — = 0.1 to — = 0.9 for
a fiber with a squared cross section and an aspect ratio a = 21 transported in a confined
channel without lateral walls. (b) Resulting normalized fiber deflections. (c) Fiber shapes
normalized by ”eq for di�erent confinements.

ues lie below the numerical lines. A possible cause for this is the assumption that the
deflected fiber leads to the same force distribution as a straight fiber. However, for high
confinements and thus larger deflections, the e�ective force on the fiber might change due
to the change in fiber shape and the resulting equilibrium state might exhibit a smaller
deflection. An other source of error lies in the beam model we used, we did not consider
any tension among the fiber which is expected to decrease the deformation. But the
current results still exhibiting a good agreement between experiment and theory and the
simplicity of the current approach is nevertheless considered to be more valuable than the
possibly gained accuracy of more complex model refinements.

The deflection is observed to increase strongly with the confinement for — Ø 0.6. For
less confined fibers, only a weak dependence can be observed. A similar observation had
been made for the transport velocity of rigid fibers in confined channels (see Figure IV.7),
where, for confinements above 0.6, a strong decrease of the transport velocity is observed,
whereas, for smaller confinements, only a small influence is present.

Figure IV.17 compares the determined maximum normalized deflection for various
values of the confinement — as obtained from the 3D and 2D models as well as from
the 2D model from Nagel et al. [30], which can be obtained by setting �ˆ

x̃

p̄ = 0 in
equation IV.18, i.e. by considering a constant force per unit length in the gap. While the
2D models systematically underestimate the maximum deflection, this e�ect decreases
with increasing confinement. The di�erence between the two 2D models decreases as well
with increasing confinement and is almost negligible for — Ø 0.8.

For a perpendicular fiber, the complexity of the calculations is not increased by in-
cluding the gap force variations and they have thus been taken into account in the present
work. However, the extension of the gap flow model is only possible for perpendicular
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Figure IV.16: Evolution of the normalized deflection of the fiber ”̃/µ̃ as a function of
the confinement — = h/H for a fiber of aspect ratio a = 21. The blue diamonds show
experimental data, each point corresponding to an average over the normalized deflection
for varying µ̃. The red squares show the prediction of the 2D model and the black
circles correspond to the 3D model. Red and black lines are guidelines. The inset shows
experimental fiber shapes normalized by ”̃

eq

for di�erent confinements (Blue: — = 0.60 ±
0.10, yellow: — = 0.73 ± 0.08, red: — = 0.86 ± 0.04). The black dashed line indicates the
shape obtained from the 2D numerical simulations for a confinement — = 0.8.

fibers and approximating the gap force by its mean value as done by [30] can be advan-
tageous for future studies on inclined fibers.

IV.8 Conclusion
In this chapter we have shown that flexible fibers transported in a plug flow deform when
confined by the top and bottom walls. Fibers transported perpendicularly to the flow
direction exhibit a C-shape, directly reflecting the nonuniform force distribution imposed
on the fiber. The fiber acts as a moving obstacle when pushed by the flow against the
friction with top and bottom walls along the channel. This leads to a perturbation of the
flow and thus to non-homogeneous pressure and force distributions along the fiber, while
the total force remains zero due to negligible inertia. We have seen that the variations
in fiber deflection can be rationalized with an elasto-viscous number µ̃ and that the force
distribution strongly depends on the confinement as reflected by a sharp increase of the
deflection with increasing confinement. This last point can be understood as follows: the
system is dominated by the pressure force distribution since it takes place in a confined
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Figure IV.17: Comparison of the normalized maximum deflection ”̃
eq

/µ̃ as calculated
using the 3D and 2D models.

geometry. Thus the larger the confinement, the larger the pressure di�erence between
the front part and the back part of the fiber, and this leads to larger deformations of the
fiber.

The interaction between deformation and transport of such flexible fibers leads to
interesting dynamics and in particular to a reorientation towards an orientation parallel
to the flow direction. The observed dynamics bear some similarities to the dynamics of
sedimenting flexible fibers, which, however, reach a stable final position perpendicular
to the direction of sedimentation. A stability analysis of the equilibrium state can shed
light on this issue and is left here for future studies. Understanding these dynamics is of
importance for the controlled transport of flexible fibers in confined geometries, such as in
enhanced oil recovery or fiber optics. It could also provide insight in the deformation and
transport of more complex deformable particles in confined geometries, such as vesicles
or red blood cells. In addition, as it was shown here that the deflection of the fiber can
directly be linked to the force distribution, flexible fibers could be used as microfluidic
sensors.
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Chapter V
Buckling instability of a freely trans-
ported fiber in a micro-channel

In this chapter, we use the same flow geometry as in the previous chapter and we focus
on the transport dynamics of flexible fibers oriented parallel to the flow direction. We
show that, under certain conditions, fibers deform into a sine shape that flattens out
towards the fiber ends (see Figure V.1). Such deformation is triggered by a competition
between viscous and elastic forces and is observed only for very long fibers, almost one
order of magnitude larger than the observed wavelength. We characterize this deformation
experimentally and show that the wavelength of the deformation does not depend on the
fiber length and is proportional to an elasto-viscous length. Furthermore, we study the
growth rate of the instability for di�erent fiber geometries, flow strengths, and mechanical
properties of the fibers and we evidence the existence of an instability threshold. Other
dynamical quantities such as the angular frequency of the wave and its phase velocity are
characterized experimentally. In the last section of the chapter, we aim at understanding
the origin of the instability using simple fluid-structure interaction models.

87
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V.1 Observations
Typical experimental observations can be seen in Figure V.1 which shows the shape of
a flexible fiber during its transport along the microchannel at di�erent times. A fiber,
initially straight, deforms in a sine shape with a very well defined wavelength modulated by
an envelope that flattens out at the fiber edges. The dynamics of the deformation is very
rich: the amplitude of the deformation increases with time, the envelope spreads along
the fiber and, comparing the last two images of Figure V.1, one can see the perturbation
wave traveling along the fiber from back to front.

amplitude

wavelength �

�

�end2end

1000 µm

t �

Figure V.1: Chronophotographies of a parallel fiber transported in a confined geometry
by an external flow. Time increases from top to bottom. The external flow of velocity
u

0

= 0.65 mm·s≠1 is oriented from left to right. The fiber has a length ¸ = 10130 ± 15
µm, width w = 75 ± 3 µm, height h = 73 ± 3 µm, Young’s modulus E = 27.2 ± 7.1 kPa.
The viscosity of the fluid is 85 ± 3 mPa·s. Confinement is — = 0.86 ± 0.04. We define the
amplitude of the deformation by the distance between the maximum and the minimum
of the deformation. ¸end2end is the end to end distance of the fiber. Scale bar is 1000 µm.

Note that contrary to what was observed in the case of a perpendicular fiber, the
parallel configuration is stable i.e. the fiber remains parallel to the flow direction even
after deformation.

V.2 Presentation of the experimental setup

The channel and fiber geometries are depicted in Figure V.2 (a) and (b). We use the
same channel geometry as in chapter IV in order to have a plug flow in the (Oxy) plane
and a Poiseuille flow in the (Oxz) plane. The channel width W is varied from W = 1000
µm to W = 3500 µm, and its height is varied from H = 42 µm to H = 85 µm.
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y

Figure V.2: (a) Geometry of the parallel fiber and the confining channel. The pressure-
driven flow is sketched in blue. (b) Cross section view of the channel and of a parallel
fiber.

The straight polymeric fibers are fabricated at zero flow rate using the stop-flow
microscope-based projection photo-lithography method developed by Dendukuri et al.
[16], which was previously presented in chapter II. In order to obtain very elongated
object, we use the "moving stage" method together with the ◊5 EC Plan NEOFLUAR
objective.

Apart from one experiment where we vary the width of the fiber, we adjust the mask
geometry as a function of the channel height in order to fabricate squared cross section
fibers. On the other hand, the length of the fiber is set through the choice of the distance
over which the stage is displaced. Typical fiber dimensions vary from 30 µm to 74 µm
for width and height and from 9174 mm to 15000 mm for the length. The height of the
gap between the fiber and the channel top and bottom walls is, as previously mentioned
in chapter II, b = 6.0 ± 1.6 µm.

According to the discussion in chapters II on the control of the Young’s modulus
of the hydrogel, we move the microscope stage at a constant velocity, 120 µm·s≠1, and
illuminate through a rectangular mask of length 38 µm (the image in the channel has a
length of 72 µm) in order to illuminate each portion of the fiber during 600 ms. It allows
us to have a reproducible and constant Young’s modulus along the fiber. In this study
we use very soft hydrogels fabricated from photosensitive solutions diluted with 65% or
70% PEG

1000

-water solvent.
Once the fibers are fabricated inside the channel, flow is turned on by means of a

syringe pump. The fiber shape is recorded using a X2.5 EC Epiplan-Neofluar or a X1 EC
Epiplan-Neofluar objective and a Hamamatsu Orca-flash 4.0 camera at a frame-rate of 10
images per second. We monitor its evolution by moving the microscope stage by hand to
keep the fiber in the field of view of the camera.

V.3 Results

V.3.1 Spatio-temporal evolution

Figure V.3 corresponds to the spatio-temporal evolution of the deformation of the fiber
shown in Figure V.1 in the frame of reference of the fiber (origin being set at the trailing
edge of the fiber).

This spatio-temporal evolution shows the spreading of the perturbation envelope with
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Figure V.3: Spatio-temporal evolution of a flexible fiber transported by an external flow
in a confined microchannel. The geometry of the fiber is the same as in Figure V.1.

time, the increase of the amplitude and the phase velocity of the traveling wave vf .
Moreover, in the frame of reference of the fiber, the velocity of the receding front is
negative v≠

g < 0 and the perturbation travels upstream. This is a signature of an absolute
instability. Here, even if it is di�cult to accurately determine the abscissa of the point
where the perturbation starts, the perturbation seems to appear close to the center of the
fiber. Note that, due to the finite length of the fiber, when the fiber deforms the end to
end distance ¸end2end decreases.

V.3.2 Wavelength characterization
Taking all the fiber shapes shown in Figure V.3, renormalizing their amplitude by their
maximal amplitude and placing the point of maximal deformation at abscissa x = 0 we
obtain Figure V.4. This figure shows that the wavelength of the perturbation is constant
over time. Again the spreading of the envelope is visible at the edges of the fiber.

Figure V.4: Superposition of fiber shapes at di�erent times renormalized by their maximal
amplitude. The point of maximal amplitude have been placed at x = 0.



V.3 Results 91

no
 d

ef
or

m
at

io
n

Figure V.5: Evolution of the wavelength as a function of the length of the fiber. The fiber
has a Young’s modulus estimated at 201 ± 111 Pa, a width w = 65 ± 3 µm and a height
h = 73 ± 3 µm. The confinement is — = 0.86 ± 0.04.

Using standard Fourier transform of the shape, we measure the wavelength of the per-
turbation and investigate its evolution as a function of di�erent experimental parameters,
such as the fiber length ¸, the mean velocity of the surrounding fluid u

0

, the Young’s
modulus E and the width w of the fiber.

Figure V.5 shows the evolution of the wavelength of the perturbation as a function of
the length of the fiber. The grey area corresponds to experiments where the fiber remains
straight while transported.

Surprisingly the wavelength does not depend on the fiber length, but for small fiber
lengths no perturbations are observable. In order to see a perturbation, the fiber needs
to be almost one order of magnitude larger than the expected wavelength.

As the length of the fiber does not impact the wavelength, it is not the relevant length
scale of the system. Thus, another length-scale needs to be built from the physical pa-
rameters of the system such as the flow velocity u

0

, the fluid viscosity µ, the bending
modulus of the fiber EI, its width w and its height h.

Figure V.6 (a) shows the variation of ⁄ as a function of the imposed mean flow ve-
locity u

0

for two di�erent Young’s moduli (E = 117 ± 64 kPa and E = 27.2 ± 7.1 kPa),
di�erent channel widths (W = 3640 ± 10 µm, W = 3500 ± 10 µm and W = 1000 ± 10
µm) and di�erent fiber lengths (¸ = 15636 ± 471 µm and ¸ = 10187 ± 25 µm). Flow
velocity and Young’s modulus have opposite impacts on the wavelength: increasing the
flow velocity decreases the wavelength, whereas increasing the Young’s modulus increases
the wavelength. Moreover, Figure V.6 (a) shows that the wavelength is independent of
the channel width; for a given Young’s modulus (see red, dark blue and light blue mark-
ers), no di�erences on the evolution of ⁄ as a function of u

0

are observed for the di�erent
channel widths.
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Figure V.6: Wavelength characterization. (a) Evolution of the wavelength as a function
of the mean velocity of the external flow for two di�erent fiber moduli and lengths:
E = 117±64 kPa, ¸ = 15636±471 µm (yellow and purple markers) and E = 27.2±7.1 kPa,
¸ = 10187 ± 25 µm (red, dark blue and light blue markers). Di�erent colors correspond
to di�erent channel width: W = 3640 ± 10 µm (red), W = 3500 ± 10 µm (dark blue and
yellow) and W = 1000±10 µm (light blue and purple). The two sets of measurements are
obtained with fibers of width w = 75±9 µm, height h = 73±3 µm and for a confinement
of — = 86 ± 0.04. Dotted black lines correspond to fits of the measurements by a power
law. (b) Evolution of the wavelength as a function of the width w of the fiber for a given
fiber Young’s modulus E = 27.2 ± 7.1 kPa, length ¸ = 10233 ± 78, height h = 73 ± 3 µm
and for a confinement of — = 86 ± 0.04.

The evolutions of the of the wavelength as a function of the flow velocity are well
fitted by a power law ⁄ Ã u

0

–. For both Young’s moduli fits lead to comparable results:
– = ≠0.22 ± 0.09 (E = 117 ± 64 kPa) and – = ≠0.23 ± 0.03 (E = 27.2 ± 7.1 kPa).

The impact of the fiber width on the wavelength is shown on Figure V.6 (b) which
illustrates that the wavelength increases with increasing fiber width. Measurements are
fitted with a power law ⁄ Ã w–

w , which gives a coe�cient –w = 0.6 ± 0.3.
Using the power laws obtained experimentally, one can build another length scale

of the problem. As in chapter IV, the deformation is due to a competition of viscous
and pressure forces which tend to deform the particle and elastic forces which oppose to
the deformation. Thus, one expects that a characteristic elasto-viscous length comparing
these two e�ects is the pertinent length to look at. Such a length can be defined as [92]:

� =
3

EI

µu
0

4
1/3

. (V.1)

This elasto-viscous length is proportional to the velocity at a power ≠1/3 and to the
width of the fiber (through I = hw3/12) at a power 1. It is in fair agreement with what
we measured experimentally. Indeed, the experimental determination of – relies on ex-
periments where u

0

varies over less than two decades and because of the small exponent
– the range of values of ⁄ is rather small. Thus, it is very di�cult to have a reliable
evaluation of – and to di�erentiate a value – = ≠1/3 from a value – = ≠1/4. This
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Figure V.7: Evolution of the wavelength as a function of the elasto-viscous length �. The
color code is the same as in Figure V.6 (a) and (b).

remark holds also for –w; the low range of values of w achievable experimentally does not
allow to distinguish a power law with a coe�cient equal to unity from a power law with
a coe�cient equal to 2/3.

Figure V.7 shows that the measured wavelengths obtained for the di�erent experi-
mental parameters presented above collapse onto a single linear curve when plotted as a
function of �. This confirms � is the correct length-scale of the system.

V.3.3 Amplitude dynamics
As shown in Figure V.8 (a), the amplitude of the perturbation, measured at the position
along the fiber where it is largest (Figure V.1), varies with time. Note that our definition
of the amplitude which is based on the fiber shape, does not exactly correspond to the
amplitude of the envelope of the wave packet (i.e. if the wavelength of maximal amplitude
is not located in the middle of the envelope, our definition of the amplitude is smaller
than the amplitude of the envelope). The evolution of the amplitude is well fitted by an
exponential function with a characteristic growth time · . Such a fit is shown by the black
dotted line in Figure V.8 (a). This exponential growth indicates a linear instability.

Using this fitting method we measured the growth time of the perturbation for di�erent
sets of experimental parameters. Figure V.8 (b) shows the evolution of the amplitude
growth time as a function of the simplest characteristic time one can build � = ¸/u

0

, for
the same series of experiments as in Figure V.6. These measurements are fairly well fitted
by a linear law (dotted black curve). For small growth times, · < 3 s, we observe a large
scatter. Note that this typical range of growth times corresponds to the typical response
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time

experiments
exponential fit

Figure V.8: (a) Evolution of the amplitude as a function of time for the experiments
shown in Figure V.1. The experimental measurements are well fitted by an exponential
law amplitude(t

0

) exp((t ≠ t
0

)/·), with · the growth time of the perturbation. The
exponential fit corresponds to the black dotted line. (b) Evolution of the growth time
as a function of the simplest time-scale of the system � = �/u

0

. The black dotted line
corresponds to a linear fit of the data. The color code is the same as in Figure V.6.

time of the syringe pump used in the experiments, thus the measured characteristic time
could be a superposition of two e�ects: the actual characteristic time of the amplitude
evolution and the time necessary to set the flow.

When the same data is plotted as a function of the dimensionless parameter ¸/�, as
in Figure V.9 (a), all the points collapse onto a single curve well fitted by an hyperbolic
law. This fit highlights the existence of a critical value (¸/�)c = 6.6 for which the growth
time goes to infinity, a signature of the existence of an instability threshold.

(a)
perturbation
no perturbation

1
6.6

(b)

Figure V.9: Instability threshold. (a) Evolution of the growth time as a function of
the dimensionless parameter ¸/�. The black line corresponds to an hyperbolic fit of the
data. Color code is the same as Figure V.6. (b) Phase diagram ¸ as a function of �:
experiments where instability occurs are represented with blue markers and experiments
where the fiber remains undeformed are represented in orange.
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Moreover, this threshold also appears in Figure V.9 (b), phase diagram in the space
spanned by ¸ and �, in which are represented with blue markers the experiments where
instability occurs and with orange markers the experiments where the fiber remains un-
deformed. Indeed, the linear curve of slope (¸/�)c = 6.6 separates the two regions.

V.3.4 Angular frequency and phase velocity
From the temporal evolution of the skeletonized shapes of the fiber shown in Figure V.3,
we measure the angular frequency of the waves Ê = 2fi/T , with T the signal period. T
corresponds to the oscillatory period of the perturbation at a fixed position on the fiber
(as for instance on the vertical grey line shown in Figure V.3).

For the same series of experiments as in Figure V.6, we represent the evolution of
the angular frequency as a function of the mean velocity of the external flow u

0

in Fig-
ure V.10 (a) and as function of � = u

0

/� in Figure V.10 (b). Note that no measurements
of the angular frequency are achievable for large Young’s moduli (E = 117 ± 64 kPa).
Indeed, the larger E the larger � and, as previously mentioned, in order to observe the
instability the fiber needs to be longer than 6.6�. Thus the fiber needs to be very large
and our experimental setup, even using a ◊1 objective, does not enable us to see the total
length of the fiber. The edges of the fibers not being visible, the frame of reference of
the fiber is not well defined and it is then impossible to look at the time evolution of a
specific point on the fiber.

(a) (b)

4
3 1

1

Figure V.10: Angular frequency Ê characterization. (a) Evolution of Ê as a function of
the mean flow velocity u

0

. The black line allows for the visualization of a slope 4/3. (b)
Evolution of Ê as a function of u

0

/�. The black line has a slope 1. Color code is the same
as Figure V.6.

Figure V.10 (a) shows that the evolution of Ê as a function of u
0

is divided into two
regimes: for low values of u

0

, Ê depends on the flow velocity at a power 4/3 (Ê Ã u4/3

0

)
and for large values of u

0

, it eventually reaches a plateau. This observed power law leads
us to represent the evolution of Ê as a function of � = u

0

/� Ã u4/3

0

(see Figure V.10 (b))
where in the first regime Ê can reasonably be described as being linear in �.
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(a) (b)

Figure V.11: Characterization of the traveling wave velocity vf . (a) Evolution of vf as a
function of the mean flow velocity u

0

. The black dotted line is a linear fit of the data. (b)
Same data plotted as a function of the phase velocity v„ = ⁄/T , with ⁄ the wavelength of
the perturbation and T = 2fi/Ê the period of the oscillations. The black line is a linear
curve of slope 1. Color code is the same as in Figure V.6.

An additional characteristic parameter of the wave packet has been investigated: the
traveling wave velocity vf (see Figure V.3 for its definition). As shown in Figure V.11 (a),
where vf is plotted as a function of u

0

, the traveling wave velocity is proportional to the
external flow velocity. This shows that u

0

is the characteristic velocity scale of the system.
Figure V.11 (b) illustrates the evolution of vf as a function of the phase velocity

v„ = ⁄/T . The dotted line is a linear curve of slope one which qualitatively recovers
the evolution of our measurements. Thus, as expected, vf corresponds to the phase
velocity of the wave. Note that the large scatter visible in Figure V.11 (b) for large
vf (vf > 400 µm·s≠1) is due to the fact that the quantities vf and T are measured
experimentally on short temporal signals (the dynamic being fast, measurements are
carried out on just a few points).

V.4 Modeling
In this section, we model the flow around a freely transported parallel fiber and we aim
to determine the causes of the observed instability.

V.4.1 A naive approach
We consider a fiber with a square cross section of height h width w = h and length ¸ ∫ h
transported by an external flow of mean velocity u

0

. The channel has a length L, height
H and width W , with H π W and W π L. The gap in between the fiber and the top
or bottom wall has a height b = H(1 ≠ —)/2, with — = h/H the confinement.

When the fiber is parallel to the flow direction three di�erent forces are acting on
the fiber: the pressure force acting on the front and the back of the fiber F̨p, the viscous
forces acting on the lateral sides of the fiber f̨lat and the viscous forces acting on the top
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(a)

(b) (c)

Figure V.12: (a) Geometry of the beam and representation of the pressure force, the
lateral viscous force per unit length and the viscous forces per unit length acting on the
top and bottom sides of the fiber. (b) Representation of an element of the beam of length
”x together with the forces per unit length acting on it. (c) An element of the beam of
length ”x with a representation of the surrounding pressure. Note that in (b) and (c)
only small deformations are considered.

and bottom sides of the fiber f̨x
t . These forces and forces per unit length are represented

in Figure V.12 (a).

The description given here relies on di�erent assumptions:

• We consider small lateral deformations of the beam y(x, t) from its undeformed
configuration, which is taken to coincide with the x-direction, and we assume that
the angles of incidence, ◊= ˆy

ˆx π 1. ◊ is represented in Figures V.12 (b) and (c).

• The presence of the fiber does not impact the flow. Thus, the pressure decreases
linearly along the filament,

P (x) = �P
3

1 ≠ x

¸

4
, (V.2)

with �P the pressure drop along the fiber.

• The viscous lateral force per unit length f̨lat = flatt̨ is constant along the filament
and is locally tangent to the fiber orientation.

• The viscous force per unit length on the top and bottom sides of the fiber in the
x-direction f̨x

t = fx
t ųx does not vary along the fiber length. Note that for small

deformations, at leading order in deformation t̨ = ųx + ˆy
ˆx ųy.

• When the fiber starts to deform in the y-direction, a viscous force opposes to this
deformation. This viscous force is due to the Couette flows taking place in the gaps
which are induced by the fiber motion. This force per unit length can be weitten
f̨y

t = ≠2µw
b

ˆy
ˆt ųy.
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A similar flow description has been used in appendix D to determine the velocity of a
parallel fiber.

The forces and moments acting on a small element, ”x, of the fiber, which has under-
gone a small lateral deformation y(x, t), are shown in Figure V.12 (b) and (c). The force
balances in the x- and y-directions are (see section I.4.1 of chapter I):

ˆT

ˆx
+ flat + fx

t + fx
p = 0, (V.3)

≠EI
ˆ4y

ˆx4

+ fy
p + flat

ˆy

ˆx
+ ˆ

ˆx

3
T

ˆy

ˆx

4
+ fy

t = 0, (V.4)

with T the tension inside the fiber and fp
x and fp

y , respectively, the force per unit
length due to the outer pressure in the x-direction and in the y-direction. In the following
we derive the expressions of these two forces.

The pressure force per unit length due to the pressure gradient in the surrounding
fluid is [93]:

f̨p = 1
Ÿ◊

5
≠P (x ≠ ◊w

2 )h(Ÿ◊ ≠ w◊

2 ) + P (x + ◊w

2 )h(Ÿ◊ + w◊

2 )
6

n̨ (V.5)

= h
5
≠P (x ≠ ◊w

2 )(1 ≠ w

2Ÿ) + P (x + ◊w

2 )(1 + w

2Ÿ)
6

n̨, (V.6)

with Ÿ the local radius of curvature of the beam defined at leading order in ◊ as 1

Ÿ = ˆ◊
ˆx .

This force per length corresponds to the sum of the pressure forces acting on the left
side and on the right side of the fiber. Here, left and right are considered relatively to the
x-axis.

The first (second) product in the brackets of equation V.5 corresponds to the pressure
in the middle of the left (right) side of the fiber multiplied by the area of the left (right)
side. These two terms are divided by the length Ÿ◊ of the centerline of the element to
obtain a force per unit length.

This force per unit length can be developed as follows:

f̨p =
53

P (x + ◊w

2 ) ≠ P (x ≠ ◊w

2 )
4

h +
3

P (x ≠ ◊w

2 ) + P (x + ◊w

2 )
4

hw

2Ÿ

6
n̨. (V.7)

Using a Taylor expansion of P (x + ◊w
2

) and P (x ≠ ◊w
2

) at first order in ◊, one obtains:

f̨p = wh
5
◊

ˆP

ˆx
+ P

ˆ◊

ˆx

6
n̨ (V.8)

= ˆ

ˆx

3
whP

ˆy

ˆx

4
n̨. (V.9)

Projecting n̨ over ųx and ųy (n̨ = ųy ≠ ◊ųx at first order in ◊), we obtain

fy
p = ˆ

ˆx

3
whP

ˆy

ˆx

4
and fx

p = O(y2). (V.10)
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Note that mathematically fy
p can be considered as an extra tension term.

Thus, equations V.3 and V.4 become at first order in y:

ˆT

ˆx
+ flat + ft = 0, (V.11)

≠EI
ˆ4y

ˆx4

+ flat
ˆy

ˆx
+ ˆ

ˆx

3
(T + hwP (x))ˆy

ˆx

4
+ fy

t = 0. (V.12)

Equation V.12 enables us to define a new "tension":

T Õ = T + hwP (x). (V.13)

In order to solve equations V.11 and V.12 one needs to derive the expression of T .
Using the condition of zero force projected on the x-direction on the overall fiber we

obtain at leading order in ◊

hw�P + ¸(flatt̨ · ųx + fx
t ) = hw�P + ¸(flat + fx

t ) = 0, (V.14)

with hw�P = ÎF̨pÎ the pressure force acting on the front edge of the fiber.
Note that the condition of zero force on the overall fiber at leading order (equation

V.14) is the same as the total zero force condition for a straight fiber.
Using equation V.14, equation V.11 writes:

ˆT

ˆx
= +hw�P

¸
. (V.15)

Thus,

T (x) = T (0) + hw�P
x

¸
= ≠hw�P

3
1 ≠ x

¸

4
, (V.16)

with the boundary condition T (0) = ≠hw�P = ≠ÎF̨pÎ.
Using equations V.13, V.2 and V.16, we find

T Õ(x) = T + hw�P
3

1 ≠ x

l

4
= ≠hw�P

3
1 ≠ x

¸

4
+ hw�P

3
1 ≠ x

l

4
= 0, (V.17)

and there is no tension inside the fiber.
Consequently equation V.12 becomes

≠EI
ˆ4y

ˆx4

+ flat
ˆy

ˆx
+ fy

t = 0. (V.18)

According to equation V.18 the fiber cannot buckle. Indeed, the term fy
t is a stabilizing

term, the term ≠EI ˆ4y
ˆx4 corresponds to an elastic force per unit length which opposes to

the deformation and, as we will discuss further, the term flat
ˆy
ˆx is a term leading to

traveling of the perturbation along the fiber (in the x-direction). Thus, there are no
destabilizing terms in equation V.18.

As a consequence, the assumptions made are too strong to predict an instability. In
order to increase the complexity of our model, in the following, we consider the fact that
the forces per unit length vary along the fiber length i.e. we take into account the finite
length of the fiber and the resulting edges e�ects.
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V.4.2 A more realistic model
In the following, in order to derive the flow around a rigid fiber of finite length and thus
take into account edge e�ects we use, as in chapter IV, a numerical simulation based on the
resolution of the 2D Brinkman equation supplemented with a gap flow model (see chapter
IV for more details). In such a way, we derive the forces per unit length acting of the fiber.

We consider variations of the forces per unit length around their mean values and
variations of the pressure around its linear decrease. Apart from that, the assumptions
made in the previous section remain unchanged i.e. the deformation of the fiber does not
impact the flow, f̨lat is locally tangent to the fiber orientation, f̨x

t is oriented along the
x-axis and f̨y

t = ≠2µw
b

ˆy
ˆt ųy.

These new assumptions lead to the expressions of f̨lat, f̨x
t and P (x):

f̨lat =
1
< flat > +f1

lat

2
t̨, f̨x

t =
1
< fx

t > +ft
x,1

2
ųx and P (x) = �P

3
1 ≠ x

¸

4
+ P 1(x)

(V.19)

We use the < > symbol to indicate averaging over the fiber length, and varying quantities
are denoted with a 1. Using this definition the average over the fiber length of f1

lat and
ft

1 are zero and P 1(0) = P 1(¸) = 0.
Moreover we assume ft

x,1 uniformly zero i.e. the local velocity of the fiber in the
x-direction is assumed to be constant along the fiber length.

The zero total force condition on the overall fiber in the x-direction is now:

¸ (< fx
t > + < flat >) + hw�P = 0, (V.20)

with hw�P being, as in the previous section, equal to the pressure force acting on the
back edge of the fiber ÎF̨pÎ (see Figure V.12 (a)).

And the equations V.11 and V.12 become:

ˆT

ˆx
+ f1

lat ≠ hw

¸
�P = 0, (V.21)

≠EI
ˆ4y

ˆx4

+ flat
ˆy

ˆx
+ ˆ

ˆx

3
(T + hwP (x))ˆy

ˆx

4
+ fy

t = 0 (V.22)

Integrating equation V.21 together with the boundary condition T (0) = ≠hw�P , we
obtain:

T (x) = ≠
⁄ x

0

f1

latdx + hw�P
3

x

¸
≠ 1

4
and T Õ(x) = ≠

⁄ x

0

f1

latdx + hwP 1(x). (V.23)

As already mentioned, to determine the distribution of T Õ(x) we use a numerical
approach based on the resolution of the Brinkman equation, particularly suitable for the
resolution of flows in confined geometries.

The "tension" distribution T Õ(x), represented in Figure V.13, shows that the back part
of the fiber is compressed (T Õ < 0) and the front part of the fiber is stretched (T Õ > 0).
In between the minimum and the maximum of the tension, the evolution is almost linear.
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O

Figure V.13: Tension distribution obtained using ulambator code with a fiber of di�erent
aspect ratios ¸/h and a confinement — = 0.86.

One can understand qualitatively the evolution of T Õ(x) as follows: the fiber acts as a
moving obstacle and the flow perturbation is primarily localized at the fiber edges. Close
to the back tip (x = 0) we expect the pressure (P (0)) to be larger than in the absence
of a fiber (P

0

(0)). The same remark holds for the front tip (x = ¸) were the pressure
(P (¸)) is expected to be smaller than in the absence of the fiber (P

0

(¸)). On the contrary,
the flow on the lateral sides of the fiber remains almost unchanged. Consequently, f1

lat

is expected to be small and the pressure on the lateral sides of the fiber is expected to
evolve as P (x) = (P

0

≠ P
0

(¸))x
¸ + P

0

(0).
As a consequence,

T ≥ hw
3

(P (0) ≠ P (¸))x

¸
+ P (0)

4
and (V.24)

T Õ ≥ hw
3

(P (0) ≠ P (¸))x

¸
+ P (0)

4
≠ hw

3
(P

0

≠ P
0

(¸))x

¸
+ P

0

(0)
4

. (V.25)

By arguments of symmetry (P (0) ≠ P
0

(0)) = ≠(P (¸) ≠ P
0

(¸)) = ”P and T Õ writes

T Õ ≥ hw”P (2x/¸ ≠ 1). (V.26)

Thus, T Õ is expected to start from a negative value, increase linearly, change sign at
x = ¸/2 and be symmetric about x = ¸/2. The expression of the "tension" T Õ (equation
V.26) recovers most of the features shown in Figure V.13.

However, from this tension distribution one expects the fiber to buckle in the rear
region which is not what observed in the experiments.
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V.4.3 Linear stability analysis
In order to carry out a linear stability analysis of the system, we simplify the shape of
the tension obtained from the numerical simulation to a linear tension T Õ = T

0

(2x/¸ ≠ 1),
with T

0

= µu
0

¸T̃
0

and T̃
0

a dimensionless parameter function of the aspect ratio of the
fiber ¸/w and of the confinement —. Here, we focus on the rear part of the fiber (x = 0 to
x = ¸/2), where buckling is expected to take place as the "tension" T Õ is negative in this
part of the fiber.

Using this simple expression for the "tension" equation V.22 becomes

≠EI
ˆ4y

ˆx4

+ flat
ˆy

ˆx
+ ˆ

ˆx

3
(T

0

(2x¸ ≠ 1)ˆy

ˆx

4
= 2µw

b

ˆy

ˆt
. (V.27)

We normalize lengths by ¸/2, forces per unit length by µu
0

, the tension by µu
0

¸/2,
time by w¸

bu0
and denote dimensionless quantities by a .̃ Thus, we obtain

≠8 EI

µu
0

1
¸3

ˆ4ỹ

ˆx̃4
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ˆỹ

ˆx̃
+ T̃

0

ˆ

ˆx̃

3
(x̃ ≠ 1)ˆỹ

ˆx̃

4
= ˆỹ

ˆ t̃
. (V.28)

(V.29)

Developing further we obtain

≠8 EI

µu
0

1
¸3

ˆ4ỹ

ˆx̃4

+ ˜flat
ˆỹ

ˆx̃
+ T̃

0

ˆỹ
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0

(x̃ ≠ 1)ˆ2ỹ

ˆx̃2

= ˆỹ

ˆ t̃
(V.30)

Following the work of Li et al. on the buckling of a sedimenting vertical filament [37], we
decompose the deformation y in a countable Fourier basis. The Fourier transform and
inverse transform, on this interval, are given by

ỹ =
+Œÿ

˜k=≠Œ

û
˜ke2ifi˜kx̃, û

˜k =
⁄

1

0

ỹe≠2ifi˜kx̃dx̃. (V.31)

Inserting these expressions into equation V.30 returns an equation for the perturbation
in the Fourier space,

≠8(2ifik̃)4û
˜k

3�
¸

4
3

+ ( ˜flat + T̃
0

)(2ifik̃)û
˜k ≠ T̃

0

(2ifik̃)2û
˜k + T̃

0

â
˜k = ˆû

˜k

ˆ t̃
, (V.32)

with � the elasto-viscous length (c.f. equation V.1), and â
˜k the Fourier transform of x̃ ˆ2ỹ

ˆx̃2 :

â
˜k =

⁄
1

0
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ˆ2ỹ

ˆx̃2
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By integrating by part equation V.35 we find

â
˜k = 1

2(2ifik̃)2û
˜k +

ÿ

m̃”=˜k

(2ifim̃)2ûm̃
1

2ifi(m̃ ≠ k̃)
. (V.36)

Considering the case of a fiber seeded with a perturbation with a single wavenumber
k̃, assuming that there is no coupling between the Fourier modes, we have

û
˜k(t̃) ≥ û

˜k(0)e‡̃t, (V.37)

with ‡̃(k) the dimensionless growth rate of the mode k̃.
Inserting this ansatz into equation V.32 and neglecting the coupling terms, we obtain

the growth rate,

‡̃(k) = ≠8
3�

¸

4
3

(2ifik̃)4 + ( ˜flat + T̃
0

)(2ifik̃) ≠ 1
2 T̃

0

(2ifik̃)2. (V.38)

The first term on the right hand side of equation V.38 corresponds to a damping
of the perturbation due to bending rigidity (Ã ≠k4), the second term is imaginary and
corresponds to the angular frequency of the oscillations (and leads to traveling of the
perturbation) and the last term corresponds to a growth of the perturbation due to the
filament compression (Ã +k2).

The most unstable wavenumber k̃ú is given by

ˆRe(‡)
ˆk̃

----
˜kú

= 0. (V.39)

Solving equation V.39, we find

k̃ú = T̃
0

1/2

4fi

3
¸

2�

4
3/2

. (V.40)

This wavenumber correspond to the wavelength (in dimensional terms),

⁄ = 2fi
Ú

µu
0

T
0

(2�)3/2 = 2fi
Ò

T̃
0

¸
(2�)3/2 . (V.41)

According to equation V.41, the most unstable wavelength is proporsionnal to �3/2,
and depends on the length of the fiber. These results are in opposition with what found
experimentally i.e. ⁄ Ã � and ⁄ independent of the length of the fiber. Thus, this
description of the system does not describe our experiments, first it predicts that the
instability occurs in the rear part of the fiber which is not what we observe experimentally
(see Figure V.1) and second it does not give the measured scaling law for the wavelength.

V.5 Conclusion and perspectives
In this chapter, we have seen that a parallel fiber transported by an external flow in a
confined geometry can experience an instability. We were able to monitor the instability
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evolution as a function of time and we quantitatively characterized its properties. We have
seen that the wavelength of the perturbation is constant with time and does not depend
on the length of the fiber. Thus, we introduced another length-scale of the system: the
elasto-viscous length � which compares elastic and hydrodynamic forces. We have shown
that the wavelength is proportional to this elasto-viscous length, which thus, takes into
account most of the physical ingredients of the problem. By looking at the evolution
of the amplitude of the perturbation, we have shown that it increases exponentially as
a function of time, enabling us to define an associated growth time. When this growth
time is plotted as a function of (¸/�), a critical value (¸/�)c emerges. The closer (¸/�)
to (¸/�)c, the larger the growth time, going to infinity when (¸/�) = (¸/�)c. This is a
signature of the existence of an instability threshold. This threshold has been highlighted
by another independent experiment (see Figure V.9 (b)). Other quantities, such as the
angular frequency of the oscillations and the traveling wave velocity - which corresponds
to the phase velocity of the wave packet - have been investigated.

vx(µm)

vy(µm) P (Pa)

(a) (b)

(c) (d)

Figure V.14: Flow around a sine shaped rigid particle transported by an external flow of
velocity u

0

= 57µm·s≠1. (a) Streaklines. (b) Flow velocity in the x-direction vx, in the
frame of reference of the laboratory. (c) Flow velocity in the y-direction vy, in the frame
of reference of the laboratory. (d) Pressure distribution minus the constant gradient in
the (Ox) direction. It is obtained from the velocity field using the 2D Brinkman equation.
The confinement is — = 0.76. Scale bar is 200 µm.

We, then, attempted to describe the system in order to understand the origin of the
instability. The models were set on a major assumption which was that the deformation
of the fiber did not impact the flow around it. We started with a very simple model,
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where the fiber was considered as infinitely long, and thus the forces per unit length are
constant along it, and we showed that in this case there is no tension inside the fiber
and consequently no source of instability. We then increased the complexity of the model
by taking into account the finite length of the fiber, and we obtained a non-zero tension
distribution (see Figure V.13). But once again, the tension distribution did not capture
what we observed experimentally. It predicts the instability to occur in the rear half of
the fiber, whereas in our experiments it occurs in the middle or slightly in the front part of
the fiber. Moreover, the linear stability analysis carried out with this tension distribution
gives wrong scalings for the wavelength of the perturbation.

Thus, it seems that our main assumption was too restrictive and we need to consider
the impact of the fiber deformation on the flow. As illustrated in Figure V.14, a sinusoidal
particle deforms the velocity field and the pressure field around it. Both fields show a
sinusoidal perturbation with the same wavelength as the object. As a perspective, in
order to couple the fiber deformation and the flow perturbation, we would like to describe
the flow using the Brinkman equation and take into account the object deformation
through the flow boundary conditions. In this description, the fiber would be considered as
infinitely long and subject to a sinusoidal perturbation of wavelength ⁄. We are currently
working on this description, and hope it will lead to a relation of dispersion where the
growth rate as a function of ⁄ shows a maximum which is positive resulting in an instability
that corresponds to the experimental observations.
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Chapter VI
Controlling transport dynamics of con-
fined asymmetric fibers

As described in the previous two chapters, a flexible fiber changes shape while transported
in a confined geometry and, as mentioned in chapter I, the coupling between the particle
geometry and its dynamics can lead to complex trajectories.

Hence, in this chapter we focus on the role of the particle geometry, or more specifically
on the role of its symmetry properties, on its trajectory. Unlike in the previous chapter,
we bring our attention to the simple case of rigid fibers of complex shapes which can
interact with the lateral walls of a channel in a transversally confined geometry. As
mentioned in chapter I, transport properties of rigid particles in confining geometries show
very specific characteristics as lateral drift or oscillatory movement between lateral walls.
These dynamics result from viscous friction with transversal and lateral channel walls,
inducing strong flow perturbations around the particles that act like moving obstacles. In
this chapter, we modify the fiber shape by adding an additional, small fiber arm, which
leads to T and L shaped fibers with only one or, respectively, zero symmetry axes and
investigate their transport properties.

For this purpose, we combine precise microfluidic experiments, as presented in chapter
II, and numerical simulations based on modified Brinkman equations (see chapter IV).
This study is the results of collaborations with Camille Duprat from LadHyX and Marine
Daïe�, a former PhD student in the group, for the experiments, and with François Gallaire
and Mathias Bechert from EFPL for the simulations.

We will see that, even for small shape perturbations, the transport dynamics change
fundamentally and formerly stable configurations become unstable, leading to non-monotonous
fiber rotation and lateral drift. Our results show that the fundamental transport dynam-
ics change with respect to the level of fiber symmetry and particles that have di�erent
shapes but the same number of axis of symmetry have similar qualitative trajectories.

Thus, tuning the symmetry properties of a particle enables a precise control of parti-
cle trajectories which can in the further be used for targeted delivery, particle sorting or
capture inside microchannels.

The study presented in the chapter have been published in [19].

107
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VI.1 Motivation and experimental observations

Separating and filtering of particles or micro-organisms as a function of their properties
such as flexibility, shape or activity is an important requirement for biomedical or food
science applications. Micronscale filters, including micro-pillar arrays [5, 6, 7] are com-
monly used to sort particles with respect to their size or deformability, but face problems
of filter clogging or damaging of deformable particles. Recently microfluidic devices, re-
lying on specific transport properties, have been developed to overcome these di�culties
[5]. Inertial [94, 6] or viscoelastic e�ects [95] can be used to focus particles at specific
positions inside channels and flexible particles are known to migrate away from bounding
walls, leading for example to a cell free layer as observed in blood flow [96] or migration
of flexible fibers in shear gradients [80].

Some microorganisms use passive reorientation mechanisms to move in gradients, ei-
ther in the gravitational field (gravitaxis)[25] or in a gradient of viscosity (viscotaxis)[97].
In simple unbounded flows, however, when inertia can be neglected, rigid particles mi-
grate across streamlines only when symmetry is broken for example by particle chirality
[98].

As we have seen in the chapter I, this situation changes when particles are confined
by bounding walls and act as moving obstacles to the flow. The induced strong flow per-
turbation leads to particle migration, as for example lateral drift observed for rigid fibers
even at small Reynolds numbers (see section I.3.1 of chapter I). In particular, it has been
shown in section I.3.2 of chapter I, that axisymmetric objects such as fibers or symmet-
ric dumbbells (made of rigid spheres or drops) translate without rotation but drift at a
constant angle, and may oscillate between the lateral walls of the channel. Axisymmetric
particles with fore-aft asymmetry, such as asymmetric dumbbells, will migrate toward the
center of the channel, where they align with the flow [17, 31], while laterally unconfined,
asymmetric trimers (chiral particles) rotate to reach an equilibrium angle [34] (see section
I.3.2 of chapter I for more details). Flexible fibers may be deformed by the viscous forces
and will then rotate and align with the flow as explained in chapterIV.In all these cases,
the particle trajectory is strongly a�ected by the transversal confinement, which tunes
the magnitude and distribution of the viscous force.

Note that, as mentioned in chapter I, this situation bears some similarities with sed-
imenting particles where a drag anisotropy exist as well, in particular, there exists a
coupling between translation and rotation that depends on the particle geometry, and
particles that possess certain symmetries will exhibit specific motions. For example, axi-
ally symmetric objects, such as uniform rods, keep their orientation and merely translate
without rotating [10]; an axisymmetric object that presents a fore/aft asymmetry, such as
a dumbbell composed of spheres of di�erent sizes, will rotate and align with the flow [99].
An asymmetric particle, as for example an L shaped particle, will rotate until it reaches
a stable orientation, at which it will translate without rotating [25]. If in addition the
chiral symmetry is broken, the coupling of translational and rotational movement leads
to helical trajectories [26, 27].

In the following we investigate these e�ects in detail by studying a model system
consisting of a microfiber with increasing degrees of asymmetry transported in a mi-
crochannel. By adding a second arm to an initially straight fiber, we create and analyze,



VI.1 Motivation and experimental observations 109

Figure VI.1: Experimental chronophotographies of transported fibers of di�erent geome-
tries. The fluid flows from left to right. The lateral walls are highlight in red. As reported
previously, straight fibers oscillate in the channel either through glancing (a) or reversing
(b) [30]. T-fibers away from the lateral walls reorient toward a stable orientation parallel
to the flow direction (c) or are captured by the wall (d). L-fibers first rotate toward a
stable orientation and then drift (e-g) until they are captured by the lateral wall (g). From
top to bottom confinements are (a,b) 0.78, (c,d) 0.82, (e-f) 0.76, and (g) 0.72. Scale bars
are 500 µm. Total length of the channels is typically 4 cm. The time interval between
successive snapshots is constant for each panel and varies between 1 s and 7 s (such that
the fiber is translated about its length between successive images).

both experimentally and theoretically, T-shaped fibers with fore/aft asymmetry and fully
asymmetric L-shaped fibers. Fibers are fabricated using the stop-flow lithography tech-
nique presented in chapter II and their dynamics are described using the theoretical model
presented in chapter IV. Examples of these fibers and corresponding chronophotographies
of their transport dynamics are given in Figures VI.1 (c-g).

As mentioned in chapter I, straight fibers, which we will refer to as "I fibers" throughout
this chapter, oscillate between the lateral channel walls while transported downstream (see
Figures VI.1 (a,b)). The fiber rotation accompanying the oscillatory movement results
from interaction with the lateral walls, i.e., away from these walls, the fiber does not
rotate and merely drifts. In contrast, the interplay of the long and short arms of the T
and L fibers induces rotation even away from the lateral walls. T fibers rotate in most
cases until aligned with the flow, with the small branch at the tail, and remain parallel
to the flow while slowly migrating toward the center of the channel (Figure VI.1 (c)).
In some cases, due to the lateral confinement, the fiber is captured by the wall while it
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Figure VI.2: (a) Geometry of an L-shaped fiber in the channel. The pressure-driven flow
is sketched in blue. (b - c) Image treatment and definition of angles. Using MatLab
procedures we derive from the picture of the particle its skeletonized shape (blue) and its
center of mass (yellow circle). The orientation angle ◊ is defined as the angle between the
long arm length of the fiber and the flow direction and the drift angle – correspond to the
angle between the direction of the particle center of mass velocity and the flow direction.
Scale bar is 200 µm. (c) Mirror symmetry: mirror image of the fiber shown in (b).

reorients toward the aligned position (Figure VI.1(d)). L fibers rotate, either clockwise
or anti-clockwise, until they reach an equilibrium angle which they keep while drifting
toward the lateral wall (Figures VI.1 (e,f)). At the wall, two di�erent scenarii can be
observed. Fibers arriving with the sharp edge "rebound" o� the wall, i.e. rotate until
reaching their equilibrium angle and drift toward the opposite wall. Fibers arriving with
the open side impact the wall and remain stuck at the wall (Figures VI.1 (e-g)).

In the following, we will focus on L shaped fibers, being the most asymmetric objects,
and then complete the picture by full trajectory diagrams in the configuration space of I,
T and L fibers, revealing the fundamental di�erence between these three types of fibers
and symmetries.

VI.2 Problem formulation and methods

Figures VI.2 (a,b) depict the configuration of an L fiber in the channel. As in the previous
cases (see: chapter IV and V), the fiber is of square cross section with width and height h,
and ¸a and ¸b denote respectively the lengths of the long and short arms. We will refer to
¸a/h and ¸b/h as the non-dimensional lengths or aspect ratios of respectively the long and
the short fiber arms, and quantify the asymmetry by ¸a/¸b. The asymmetry parameter
¸a/¸b is bounded by unity (¸b = ¸a, symmetric fiber with two arms of equal length) and
¸a/h (¸b = h, I fiber). Starting from ¸a = ¸b, the asymmetry is first enhanced when
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decreasing the length of the short arm with respect to the long arm before the symmetry
is restored when the short arm vanishes and a straight (I) fiber is attained.

The fiber is fabricated and studied in shallow channels with width W much larger
than height H. We varied the aspect ratio of the channel W/H from 15 to 70. The
fiber is created at rest in the channel. It is then subject to a pressure driven flow, fully
characterized by its mean velocity u

0

. As we have seen in chapter IV and V, due to
the Hele-Shaw-like geometry of the channel, the flow in the xy plane is a plug flow, and
in the z direction the flow is Poiseuille-like. The transversal and lateral confinements
of the fiber are quantified by — = h/H and › = ¸a/W , respectively. As the channel is
assumed to be of infinite length, the state of the fiber is completely described by the
lateral position of its center of mass y and the orientation angle ◊, together with the
corresponding velocities ẏ and ◊̇. Moreover we define the drift angle – by tan – = ẏ/ẋ.
Note that there exists a mirror symmetry and that the mirror image of the fiber shown
in Figure VI.2 (b) corresponds to an opposite fiber chirality, shown in Figure VI.2 (c).

In order to have rigid particles, we used a photosensitive solution made from 90% in
volume of PEGDA Mn = 575 g/mol and 10% of P.I. Its viscosity is µ = 68 mPa · s. The
Young’s modulus of the particles is E ≥ 12 MPa [41]. In the experiments we choose to
tune the asymmetry ¸a/¸b by changing the length of the long arm ¸a/h keeping the short
arm length constant.
Due to the low value of the Reynolds number Re ≥ 10≠3, inertia will be neglected imply-
ing also that the dynamics does not explicitly depend on the flow velocity.

To derive the equilibrium orientation of L fibers, we first tried to follow the calculations
of Ten Hagen et al., who described the situation of a sedimenting L fiber in a quiescent fluid
[25] (see chapter I), and use an analogy between the drag anisotropy of a sedimenting fiber
and the transport anisotropy of a confined fiber. In confined geometries, the velocity of the
fiber is proportional to the velocity of the external flow (see chapter I). The coe�cient of
proportionality between the perpendicular or parallel velocity of the fiber and the external
flow velocity is given by the condition of zero force on the particle. Similarly to Ten Hagen
et al. [25], we described the L fiber as the sum of two rigid fibers corresponding to its
two arms. However, it turns out that the analogy holds for an isolated straight fiber but
drops for objects with more complicated shapes. Indeed, here, the zero force condition
applies on the all L fiber and not on each of the two arms.

We, thus, chose to use the two-dimensional Brinkman model supplemented by the flow
model in the gap between the fiber and the channel top and bottom walls, presented in
the chapter IV, to determine the flow around the fiber and the resulting force and torque
distribution. But here, contrary to what have been done in chapter IV, we consider
that the force in the gaps between the particle and the channel top and bottom walls
is constant i.e. the variation of the pressure along the object is not taken into account
for the gap force. Note that the velocity vector is uniquely determined by the particular
state (y, ◊), as inertial e�ects are negligible and the problem is thus reversible in time.
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VI.3 Results

VI.3.1 Dynamics in laterally unbounded channel

We first focus on the equilibrium positions reached by the fiber far from the lateral walls,
i.e. › æ 0 (infinitely wide channel). While for an I fiber all orientations are stable, i.e.
the fiber keeps a constant orientation and translates without rotating, the L fiber reori-
ents toward a stable orientation, and then drifts at a constant angle (Figures VI.1 (e-f)).
We obtain numerically the evolution of the rotation speed ◊̇ ¸a/u

0

as a function of ◊ for
an asymmetric L fiber with ¸a/h = 10, ¸b/h = 5, for di�erent transversal confinements
— = 0.6, — = 0.76 and — = 0.9 (Figure VI.3 (a)). There are two fixed points separated by
180¶: a stable one (◊ = ◊s = ≠47¶) and an unstable one (◊ = ◊u = 133¶). For all initial
orientations, the fiber rotates monotonously until the stable orientation ◊s is reached.
Note that close to the unstable orientation ◊u, a small variation of the angle can change
the direction of rotation as depicted in Figures VI.1 (e,f); although both fibers start at
very similar configurations (◊ ƒ 130¶), the first fiber is rotating counter-clockwise while
the second is rotating in the opposite direction until they both reach the stable orientation.

The amplitude of ◊̇ increases for increasing confinement, i.e., the reorientation of
the fiber towards its equilibrium orientation is faster when the transversal confinement
increases. For orientation angles close to the stable orientation angle ◊s, the evolution
of ◊̇ as a function of ◊ can be approximated by a linear function. The shaded region of
Figure VI.3 (a) indicates this linear regime (|◊ ≠ ◊s| < 30¶), where the evolution of the
orientation angle as a function of time is consequently expected to be exponential.

Figure VI.3 (b) shows the evolution of ◊ as a function of the dimensionless time tu
0

/¸a

for three di�erent confinements in the vicinity of the stable orientation angle ◊s. After
some time, the orientation angle reaches a plateau, which corresponds to the equilibrium
orientation ◊s. For increasing transversal confinement ◊s increases and the equilibrium
orientation is reached faster, which can be explained by the higher rotation velocity as
shown in Figure VI.3 (a).

The time evolution of the orientation angle can be fitted by an exponential saturation
function:

◊(tu
0

/h) = (◊s ≠ ◊
0

)
3

1 ≠ exp
3

≠ t u
0

¸a·̃

44
+ ◊

0

, (VI.1)

with ·̃ , and ◊s being the two fitting parameters, and initial orientation ◊
0

.
Figure VI.3 (b) shows the fit (black curve) of the orientation angle evolution for the

lowest confinement. The characteristic dimensionless time ·̃ characterizes the dynamics of
the particle orientation and depends on the fiber lenghts ¸a/h, ¸b/h and on the transver-
sal confinement. These dependencies are shown in Figure VI.3 (c), where ¸b = 5h in
order to remain consistent with the experiments. In particular, we found that increasing
the transversal confinement increases the rotation speed ◊̇, i.e., the higher (lower) the
transversal confinement, the faster (slower) the fiber approaches the stable orientation.
On the contrary increasing ¸a leads to an increase of the characteristic time and thus
slows down the approach of the equilibrium configuration.

We will use these results to determine experimentally ◊s, the stable orientation angle
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Figure VI.3: (a-b) Dynamics of orientation of an L fiber with ¸a/h = 10 and ¸b/h = 5 for
di�erent confinements — = 0.6 (yellow), — = 0.76 (orange) and — = 0.9 (red), as obtained
from numerical calculations. (a) Evolution of the dimensionless rotation velocity ◊̇¸a/u

0

as a function of the angle ◊ far away from the lateral walls. The green circle indicates
a stable fixed point and the red circle an unstable fixed point. In the vicinity of the
stable orientation angle ◊s, ◊̇ depends approximately linearly on ◊. (b) Evolution of the
orientation angle as a function of the dimensionless time. The black curve corresponds
to an exponential fit of the data using equation VI.1. From the fit one can determine
the dimensionless characteristic time of the orientation process ·̃ . (c) Evolution of the
dimensionless characteristic time as a function of ¸a/h for transversal confinements varying
from 0.6 to 0.9. In all cases the short length of the fiber is kept constant ¸b = 5h.
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Figure VI.4: Experimentally observed evolution of the orientation angle ◊ as a function
of the dimensionless time (dark blue) for an L fiber with ¸a/h = 7.5, ¸b/h = 5, and
— = 0.76. A fiber initially in its equilibrium orientation hits an obstacle (yellow stripe)
and deviates from the equilibrium orientation. It then rotates back to the latter. The
reorientation dynamics close to the equilibrium orientation (grey area) are well adjusted by
an exponential fit (red curve in the zoom). The calculated dynamics from the simulation
is represented in light blue.

of a L fiber transported in an infinitely wide channel, using an exponential fit. For short
fibers (¸a/h < 12.5 and ¸b/h = 5) the influence of the lateral walls is negligible and the
transient evolution of the orientation angle exhibits as expected an exponential evolution
toward a plateau. For instance, Figure VI.4 shows the evolution of the orientation angle
of a short fiber (¸a/h = 7.5 and ¸b/h = 5) pushed out of the equilibrium orientation by
an obstacle in the channel which rotates immediately back to the equilibrium position.
The zoom on the left shows the superposition of this evolution obtained experimentally
(dark blue curve) and in the simulation (light blue dots), as well as the exponential fit
(red curve). The three curves show very good agreement, validating both the numerical
results and the pertinence of the exponential fit.

For larger fibers, the orientation angle never reaches a plateau, which makes a direct
measurement of the equilibrium angle impossible. Moreover, the fiber reorients with a
longer characteristic time as compared to shorter fibers and drifts toward a lateral wall,
which impacts the fiber trajectory and the orientation angle evolution. However, knowing
the dimensionless characteristic time ·̃ , one can extrapolate the experimental observation
of the orientation angle evolution. To distinguish the dynamics caused solely by to the
particle shape (and the external flow) from those caused by an interaction with the wall,
we fit a portion of the transient evolution of ◊, corresponding to the situation where
the fibers is far from the walls, by the exponential function (equation VI.1). We keep
◊s as a fitting parameter but set the value of ·̃ to the one obtained numerically. This
one-parameter fitting method allows us to extract the steady orientation angle from the
experiments. Note that this procedure shows very good agreement between numerical
results and experiments (see Figure VI.4) not only for the equilibrium angle, but also for
the transient evolution, i.e., the characteristic time of reorientation ·̃ .
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VI.3.2 Equilibrium orientation angle and drift angle

The stable orientation angle ◊s and the corresponding drift angle –s are uniquely defined
by fiber geometry and transversal confinement. Figure VI.5 shows both quantities as
determined in the experiment for di�erent lengths of the long arm ¸a/h, i.e. for varying
asymmetry, and compared to the numerical results. While the drift angle varies only
slightly in the examined regime, the stable orientation angle ◊s evolves non-monotonously
with increasing length of the long arm ¸a/h: it first increases, reaches a maximum at
¸a/h ≥ 7.5, and then decreases again. A variation of the transversal confinement impacts
both ◊s and –s, as visualized by the gray shaded regions in Figure VI.5. While the e�ect
of — is almost negligible for low confinement, for — > 0.6 the orientation and drift angles
increase rapidly with increasing confinement.

In order to obtain a general overview of the dependence of ◊s and –s on the fiber
geometry, we systematically compute these quantities in the parameter space (¸a/h, ¸b/h)
and visualize the results in a map as shown in Figure VI.6. Due to symmetry, we restrict
the space to ¸a Æ ¸b and combine the two maps for –s (top) and ◊s (bottom) in one.
The black line corresponds to ¸a = ¸b, where the fiber is symmetric and is transported
with ◊s = ≠45¶ along the flow direction, i.e. –s = 0¶. For ¸a > ¸b the L fiber is fully
asymmetric as long as ¸b > h, and the map of stable orientations ◊s can be divided into
two distinct regions. For large values of the aspect ratios ¸a/h and ¸b/h, the isolines of
constant ◊s approach straight lines i.e. ◊s depends on the asymmetry ratio ¸a/¸b only
and is independent of the fiber height h and thus the fiber aspect ratios. In this region,
increasing asymmetry (¸a/¸b decreasing) leads to a decrease of ◊s, as evidenced by the
white dots and the corresponding fiber shapes.

At small values of the aspect ratios (Æ 10), the isolines exhibit a di�erent tendency:
changing ¸a or ¸b while keeping ¸a/¸b constant leads to di�erent values of ◊s, i.e ◊s depends
not only on the fiber asymmetry, but also on the fiber aspect ratios. Keeping for example
¸b/h constant and changing ¸a/h (red dots in Figure VI.6), as we did in the experiments
shown in Figure VI.5, leads to a non-monotonous evolution of the orientation angle.
The crossover between these two regimes can be evidenced by following the isoline for
◊s = ≠46¶ (black dots and corresponding shapes). Along this line, the fiber shape first
changes significantly at small fiber arm aspect ratios, but finally reaches an homothetically
similar shape at large values of the aspect ratio.

For asymmetric fibers, which form an angle ◊s with the flow direction, there is a
lateral drift whose magnitude depends on a combination of both equilibrium angle and
asymmetry. For a fixed ¸b/h, changing ¸a/h (red dots) leads to a small change in drift
angle although the orientation angle varies significantly. On the contrary, for a given
orientation (black dots), changing the shape leads to a significant change in drift angle.
In the limit of large fiber arm aspect ratios, changing the asymmetry ¸a/¸b (white dots)
leads to significant variations in orientation and drift angle.

These findings demonstrate, at least for small fibers aspect ratios, that it is not possible
in general to rationalize the fiber transport using only the fiber asymmetry ¸a/¸b, but that
the two-dimensional geometry of the fiber has to be taken into account instead of a one-
dimensional skeleton.
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Figure VI.5: Stable orientation angle ◊s (a) and corresponding stable drift angle –s (b) as
a function of the long arm aspect ratio ¸a/h, for ¸b/h = 5. Red squares show experimen-
tal measurements, black circles correspond to numerical calculation with a transversal
confinement of — = 0.76. The two grey shades correspond to the numerically determined
variations for — = 0.76±0.08 and — = 0.76±0.16 respectively. The error bars correspond
to the standard deviation of the measurements.
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Figure VI.6: Numerically determined isolines of constant stable orientation angle ◊s (bot-
tom right corner) and constant stable drift angle –s (top left corner) as a function of the
fiber arm aspect ratios ¸a/h and ¸b/h. Both maps are symmetric around the black line
defined by ¸a = ¸b, where ◊s = 45¶ and –s = 0. Numerically inaccessible regions are
shaded in gray.
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VI.3.3 Trajectories and impact of the lateral walls

In the presence of lateral walls, the overall fiber trajectories are given by a combination of
rotation toward ◊s, drift, and interaction with the lateral walls. For a more global view, we
plot the trajectories in the configuration space spanned by ◊ and y for I, T and L fibers
in Figure VI.7. The experiments (right panel) are obtained for a range of parameters
(transversal confinement 0.7 Æ — Æ 0.8, lateral confinement 0.12 Æ › Æ 0.8, and long
arm aspect ratio 10 Æ ¸a/h Æ 20). In the left panel, we present the fiber trajectories
obtained numerically for a single set of parameters (› = 0.5, — = 0.76 and ¸a/h = 10) for
qualitative comparison. The qualitative trends are well reproduced; di�erences may arise
from the di�erent values of the lateral confinement › as will be discussed later.

As already discussed in chapter I, I fibers show mostly permanent lateral oscilla-
tions, clockwise around the fixed point at ◊ = 0¶ (red trajectory, Figure VI.1(a)) or
anti-clockwise around the fixed point at ◊ = ±90¶ (green trajectory, Figure VI.1(b))
except if they are located very close to the wall (blue trajectory).

If we reduce the level of symmetry by analyzing a T shaped fiber, the picture changes
significantly. The stable fixed points at the center of the channel for ◊ = 0¶, ±90, ± 180¶

are reduced to one at ◊ = 0¶. Apart from trajectories ending at this configuration (red
trajectory, Figure VI.1(c)), there are also attracting points at the lateral channel walls
(blue and green trajectories, the latter corresponds to Figure VI.1(d)). While approaching
these final positions, the T fiber may exhibit non-monotonous lateral movement as it
is rotating. Moreover, the interaction with the lateral walls can lead to a change of
rotation direction, as two of the four unstable fixed points observed for I fibers are still
present (highlighted by red dots in Figure VI.7). The green trajectory (Figure VI.1(d))
corresponds to an example of such a non-monotonous evolution of the orientation angle.

For the fully asymmetric L fibers, the centrally located fixed points finally disappear
completely and the only permanent configurations correspond to the fiber being captured
by one of the walls, with the sharp edge pointing toward the channel center. Even though
there exist trajectories pointing away from this configuration, they finally lead back to
it and the fiber cannot escape. The stable and unstable orientations observed without
lateral confinement do not appear as fixed points, as they lead to lateral drift, but as ridges
with the trajectories either leading away from them (unstable orientation) or attracting
to them (stable orientation). In other words, after rotating toward its stable orientation,
the L fiber drifts toward the wall where it will remain stuck. In some cases (light red
area), the fiber is captured by the opposite wall during the reorientation. We highlight the
trajectories of the three cases presented in Figure VI.1 (e-g). The fiber, initially close to
the unstable orientation, leaves the orientation by rotating either clockwise (green curve,
Figure VI.1 (e)) or anti-clockwise (red curve, Figure VI.1 (f)) to reach equilibrium. When
approaching the wall with the sharp edge toward it (blue curve, Figure VI.1 (f)), the fiber
is first repelled, rotates until reaching its equilibrium angle, and finally drifts across the
channel width to reach the top wall where it will remain. Note that for a mirrored fiber
of opposite chirality, there exists a mirror-symmetric diagram where most fibers collect
at the opposite wall.

For T and L fibers, we can quantify the percentage of fibers being trapped at one
of the channel walls or localized at the channel center. The corresponding sets of initial
configurations which end up in the channel center (light green) or at the walls (light red or



VI.3 Results 119

-180 -135 -90 -45 0 45 90 135 180

0

-180 -135 -90 -45 0 45 90 135 180

0

-180 -135 -90 -45 0 45 90 135 180

0

-180 -135 -90 -45 0 45 90 135 180

0

-180 -135 -90 -45 0 45 90 135 180
-0.5

0

0.5

-180 -135 -90 -45 0 45 90 135 180

0

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

-0.5

0.5

Figure VI.7: Trajectory map in the configuration space spanned by orientation angle ◊
and lateral position y for (a) an I fiber, (b) a T fiber, and (c) an L fiber for numerics (left)
and experiments (right). The physical accessible space is shaded in color. For T fibers,
the space of trajectories ending at the channel center is shaded in light green. The space
of trajectories ending at the wall at y = 0.5 (resp. y = ≠0.5) is shaded in light blue (resp.
light red). Stable and unstable fixed points are highlighted in green and red, respectively.
Experiments: transversal confinement 0.7 Æ — Æ 0.8, lateral confinement 0.12 Æ › Æ 0.8,
and arm lengths 10 Æ ¸a/h Æ 20, ¸b/h = 5. Numerics: Long arm aspect ratio ¸a/h = 10,
lateral confinement › = 0.5 and transversal confinement — = 0.76. The short arms of the
T and L fibers have half the length of the long arm, i.e., ¸b/h = 5. Some numerical and
experimental trajectories are highlighted for comparison.
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(c)(b)(a)

(f)(e)(d)

Figure VI.8: Distribution of lateral position in the channel for T ((a)-(c)) and L ((d)-(f)
fibers: Initial distribution for › = 0.5 (a) and (d), and distribution after L = 103 ¸a for
(b) and (e) › = 0.5 and › = 0.3 for (c) and (f).

blue) are highlighted in Figure VI.7. Consequently, the areas of these regimes represent
the statistical probability of finding a fiber with random initial orientation and lateral
position at the channel center or wall.

An other way of quantification of these probabilities sets on the calculation of the
trajectories of T and L fibers for at least 104 initial configurations equally distributed in
the configuration space. Figures VI.8 (a) and (d) show the distribution in lateral position
for, respectively, T and L fibers and for a lateral confinement of › = 0.5. We then analyze
the distribution after transportation in a channel of length L = 102 ≠ 103 ¸a for lateral
confinements › = 0.5 (Figure VI.8 (b) and (e)) and › = 0.3 (Figure VI.8 (c) and (f)).

As shown in Figure VI.8 (b), for a lateral confinement of › = 0.5 (corresponding to the
situation of Figure VI.7), approximately 40 % of the T fibers end in the channel middle and
the rest are captured by the lateral walls. Looking at the trajectories ending at the walls
(Figure VI.7 (b)), we can see that they correspond to the case where the fiber is captured
by the wall during reorientation toward the central position (Figure VI.1(d)). This means
that we can tune this ratio by varying the lateral confinement ›. In fact, for › = 0.3,
we find approximately 73 % of the fibers in the channel center (see Figure VI.8 (c)).
Decreasing the lateral confinement thus increases the probability of finding a T fiber in
the middle of the channel. It has to be noted, however, that close to the end points at
the walls, there exist trajectories which lead away again from the wall. Assuming some
experimental noise, this can easily lead to a higher amount of fibers finally ending in the
channel center than obtained from a noise-free theoretical study.

By doing the same analysis with L fibers (Figure VI.8 (d): initial configuration for
› = 0.5, (e): final configuration for › = 0.5, and (f): final configuration for › = 0.3), we
can see that most of them end at the same lateral wall (approximately 86 % for › = 0.5,
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light blue area in Figure VI.7 (c)), which is determined by the sign of drift angle at stable
orientation of a fiber without lateral confinement. Analogue to the T fiber, the partition
of fibers being captured by the opposite wall can be reduced (increased) by decreasing
(increasing) the lateral confinement (approximately 93 % fibers at one wall for › = 0.3).

VI.4 Conclusion
These findings show that it is possible to control the lateral position of fibers transported
in confining micro-channels by tuning their geometry, in particular their symmetry prop-
erties, and/or the lateral confinement, i.e. the channel width.

As mentioned in the chapter I, I fibers (two axes of symmetry) are mostly laterally
oscillating, or tend to end in the channel center due to small imperfections (damped
oscillation in the case of small fore/aft asymmetry). Note that these damped oscillations
are also observed for flexible perpendicular fibers (see chapter IV). T fibers (left/right
symmetry, fore/aft asymmetry) are either pushed toward the channel center or toward
the lateral walls, depending on the level of lateral confinement. Similar observations
have been reported by Uspal et al. for fore/aft asymmetric "dumbbell" particles [17]
(see chapter I). On the contrary, L fibers (fully asymmetric) are always captured by the
lateral walls. Depending on their chirality being left- or right-handed, most of the fibers
end hereby at one or the other wall. This is in contradiction with the numerical study of
Bet et al. [34], presented in chapter I, where authors state that fully asymmetric particles
reach an equilibrium orientation which is not accompanied by a drift.

The reorientation time, i.e., the time needed to reach the equilibrium orientation
in the absence of lateral walls, strongly depends on the transversal confinement — but
is typically · ≥ 10 ≠ 100¸a/u

0

(see Figure VI.3 (c)), indicating that a fiber reaches
its equilibrium position after traveling a few tens of its length. For fibers of length
¸a ≥ 100 µm, equilibrium is thus reached after a few centimeters. In addition, for laterally
confined channels, starting from a broad initial distribution, all fibers have reached the end
point of their trajectories (at the wall or at the center of the channel) after 100≠1000¸a (see
Figure VI.8). Typically, a channel of length 4 cm is su�cient for fibers to reach their final
configuration (Figure VI.1). This dynamics can be tuned by adjusting both transversal
(—) and lateral (›) confinements. The presented results thus open new doors toward the
design of sorting devices or filters as a function of, for example, micro-organism shape.
In addition they can be used to design targeted delivery or particle capture applications
in microfluidic devices.
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Chapter VII
Conclusion

In this thesis, we studied the dynamics of freely transported isolated fibers in a confined
geometry. We focused on the dynamics of free flexible particles, whose shape varies while
transported and on the role of the geometry of a rigid particle on its trajectory.

These situations correspond to simple model systems, which can be further used,
as building blocks, to describe more complex fluid-structure interaction problems where
other ingredients, such as activity or complex fluids, are involved.

We hope that the understanding of our model situations can, for instance, help in the
description of the dynamics of optical fibers that are introduced into rock fractures as in
situ probes in the oil industry. Also, the study of the deformation of flexible fibers can
shed light on the description of the locomotion and transport of microorganisms in soils
or in medical conducts. Moreover, our study provides insights into the sorting of particles
based on their shape or flexibility which is of fundamental interest in the biomedical field
or in the food industry.

We used a microfluidics system, combining in a single experiment the fabrication and
the flow of particles. Recently developed soft-lithography techniques have been used to
fabricate microchannels of adjustable geometry with an excellent control of the (laminar)
flow. A technique, based on the photo-polymerization of an oligomer, has been used to
fabricate hydrogel particles directly inside the micro-channel. This technique enables the
fabrication of objects of rectangular cross section in a confined geometry: we used Hele-
Shaw-like cells, where a two dimensional flow develops, and the particles are confined by
the top and bottom walls. Complementary to the standard "stop-flow lithography tech-
nique" we develop a second method of fabrication of particles which takes advantage of
the use of a motorized microscope stage. The combination of these two methods allowed
us to fabricate particles of very di�erent shapes with an excellent control of their posi-
tions, their orientations but also of their mechanical properties. Indeed, we implemented
a reliable protocol of fabrication of soft hydrogels: instead of varying the duration of the
photosentive solution illumination, we dilute the oligomer with varying proportions of sol-
vent. We chose either water or a non-reactive oligomer solution as the solvent to be able
to adjust the its viscosity. Characterizing the mechanical properties of the hydrogels, we
realized that measuring the Young’s modulus of soft hydrogels is extremely complicated.
We thus decided to develop an in situ measurement inspired by compression tests. With
this method Young’s moduli as low as few tens of kPa can be measured directly inside
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the microchannel. We also develop an in situ technique of measurement of the Poisson’s
ratio of hydrogels, and applied it to hydrogels of di�erent compositions. This way, we
could show that the Poisson’s ratio decreases from 0.5 to 0.165 when diluting the oligomer
solution with 0% to 50% of PEG

1

000-water solvent in volume.

We experimentally and numerically - using a model based on the resolution of the
Brinkman equation supplemented with a gap flow model - investigated the transport of
an isolated flexible fiber in a confined geometry. A first study focussed on the dynamics
of a fiber oriented perpendicular to the flow direction. We showed that while the fiber is
transported it bends into a C-shape. This bending is due to the finite length of the fiber
and the resulting non-homogeneous force distribution along the slender object. When the
fiber is confined, its velocity is smaller that the velocity of the surrounding fluid. As a
consequence, the object acts as a moving obstacle and a maximum of the pressure di�er-
ence (between the front and the back of the fiber) is observed in the middle of the slender
object leading to a C-shape deformation. Moreover, we have shown that the amplitude of
the deformation is proportional to an elasto-viscous number, which compares the hydro-
dynamic forces to the elastic restoring forces. We also quantitatively characterized the
influence of the confinement on the fiber deformation and evidenced the fact that increas-
ing confinement increases the deflection of the fiber. Indeed, increasing the confinement
decreases the height of the gap between the fiber and the channel top and bottom walls
and increases the pressure di�erence leading to larger deformations. We hope the precise
understanding of the deformation of a flexible fiber in a confined geometry can pave the
way to the understanding of the deformation and transport of more complex deformable
particles in confined flows, as for example vesicles or red blood cells. Last, we also noticed
that the perpendicular configuration is unstable and the fiber reorients until it aligns with
the flow direction.

Then, we studied the situation of a parallel fiber transported in similar flow and chan-
nel geometries. Under certain conditions, while the fiber was transported by the external
viscous flow, it experienced an instability resulting in a deformation of the fiber in a sine
shape flatten at the edges. We were able to monitor the instability, and quantitatively
characterize its wavelength, the dynamics of the amplitude, its angular frequency and
the velocity of the traveling waves. We have shown that the wavelength does not depend
on the length of the fiber and is proportional to an elasto-viscous length, constructed
by dimensional analysis. Even if the wavelength does not depend on the length of the
fiber, the length triggers the instability onset. Indeed, we highlighted the existence of
an instability threshold, expressed as a critical ratio of the fiber’s length over the elasto-
viscous number. In order to understand the origins of the instability, we tried to model
the hydrodynamic forces acting on the fiber. We assumed that these forces were the same
as the ones acting on an undeformed fiber, i.e. we did not take into account the impact
of the fiber deformation on the flow. However, the model derived did not describe the ex-
perimental observations correctly. Thus, it seems that one needs to take the impact of the
fiber deformation on the flow into account to describe the instability. We are currently
working on a description of the flow around an infinitely long fiber with an sinusoidal
perturbation using the Brinkman equation and we hope to be able to correctly capture
the local instability.



125

After studying the dynamics of objects whose shape changed while transported, we
focussed our investigations on the impact of the particle geometry on its trajectory. We
chose to look at model system consisting of rigid particles of complex shape and we pri-
marily focussed on L fibers, two dimensional chiral objects without any axis of symmetry.
The dynamics of such objects are very rich: far from lateral walls the fiber rotates until it
reaches an equilibrium orientation and then drifts. We characterized, both experimentally
and numerically (using the modified Brinkman equation), the evolution of the equilibrium
orientation angle and of the drift angle as a function of the fiber geometry and of the con-
finement. We also describe the dynamics of rotation of these fibers when they are close to
the equilibrium orientation and we showed that the characteristic time of rotation toward
the equilibrium configuration is an increasing function of the length of the fiber and a
decreasing function of the confinement. We then investigated the dynamics of straight
fibers, T fibers and L fibers in laterally confined geometries. The observed trajectories
were di�erent for each fiber geometry. A straight fiber, with two axes of symmetry, os-
cillates along the channel length, a T fiber, with one axis of symmetry, rotates until it
aligns with the flow direction in the middle of the channel or is captured at a channel wall
during the rotation if the lateral confinement is large and an L fiber is always captured
at one of the channel walls. Depending on the chirality of the object, most of the L fibers
are captured at one or the other channel wall. A possible application could be the design
of a microfluidic tool to sort particles (as for example micro-organisms) based on their
symmetries.

This PhD work led to two published papers, one on the transport of flexible perpendic-
ular fibers [18] and one on the dynamics and the trajectory of asymmetric rigid particles
[19]. A manuscript on the development of the Poisson’s ratio measurement method is
currently in preparation. The study on parallel flexible fiber is an on going work and we
would like to fully understand the origin of the instability before considering publication.

In the future, we would like to study the lubricated friction between the hydrogel and
the PDMS walls. Indeed all movement of a compressed hydrogel particle in a microchannel
implies friction between the particle and the PDMS surrounding walls. In our models
presented in chapter III we neglected friction arguing that the latter depends on the
hydrogel velocity and is zero when the hydrogel does not move. In order to verify this
statement, with the help of Vincent d’Herbemont, intern in the group, we performed
some preliminary experiments to investigate friction between a moving hydrogel disk
and two lateral PDMS walls. The hydrogel disk of initial diameter D and height h was
transported by an external flow in a rectangular cross section channel of width W < D
and height H > h. The experiment was very similar to the one used for the measurement
of Poisson’s ratio of hydrogels presented in chapter III, the only di�erences were the
geometry of the particle (disks instead of rectangular slabs) and the fact that after passing
through the constriction the compressed hydrogel was forced to travel along the channel by
applying a pressure di�erence. Measuring the velocity of the disk V for di�erent pressure
di�erences applied across the particle �P we obtained the results shown in Figure VII.1.
We observe that even for low pressure di�erences the particle moves. The absence of a
pressure threshold above which the hydrogel starts to move implies the absence of solid
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Figure VII.1: Velocity of a compressed hydrogel disk in a narrow channel as a function
of the imposed pressure di�erence in log-log scale. One can observe two regimes: for
�P < �P ú, V Ã �P 2 and for �P > �P ú, V Ã �P 5.

friction between the particle and the side walls. Two regimes are visible in Figure VII.1:
for low pressure di�erences the particle velocity is proportional to �P 2 and for large
pressure di�erences V Ã �P 5. The first regime could be seen as a signature of elasto-
hydrodynamic friction where the friction force is proportional to the velocity at a power
1/2 [100, 101]. In our case friction is balanced by the pressure force applied on the disk
leading to �PhW Ã V 1/2 and thus V Ã �P 2. The cross-over between these two regimes
is obtained for a pressure di�erence �P ú ≥ E = 27 ± 7 kPa, with E the Young’s modulus
of the hydrogels. Note that according to Li et al. [58], for pressure di�erences comparable
to the Young’s modulus of an hydrogel flow starts to occur through the pores of the
hydrogels.

The origin of the power coe�cient 5 remains unclear. It could be due to poroelastic
e�ects or to the complex deformation of the hydrogel due to the applied pressure di�erence
and the compression by the channel lateral walls.

These are promising results yet we realized that the geometry used for the particle
was not ideal. Indeed uniaxial compression of a disk, known as Brazilian test [37, 102],
leads to complex strain and stress distributions inside the material and thus the role of
elasticity is di�cult to quantify. An option could be to carry out similar experiments,
with rectangular particles and vary the width and thus the compression of these particles.

In this PhD, we limited ourselves to the study of the transport dynamics of isolated
fibers but the study of fibers suspensions will also be of great interest. Such complex
fluids are expected to have non-Newtonian properties reflecting the interactions at a
microscopic scale between the suspending fluid and the suspended objects. They will
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depend on the geometry and the elastic properties of the suspended objects. Indeed,
under flow the fibers may reorient, deform and even create topological entanglements,
leading to a macroscopic response of the material [50]. In particular, the theoretical
study of Becker et al. [48] predicts that the buckling of individual fibers under shear
leads to the macroscopic appearance of normal stresses. Moreover, it has been shown
theoretically by Banaei et al. that at finite inertia the first normal stress increases with
the Reynolds number [103]. They also evidence that the relative viscosity of the complex
suspension depends on both the fiber flexibility and the Reynolds number [103].

In this manuscript, we presented several techniques to control and characterize the
fibers properties (geometry and flexibility) that are of paramount importance in order to
establish a link between the macroscopic properties of suspension made of these objects
and their microscopic properties. Moreover, increasing the characteristic size of our ex-
periment, we could extend the range of possibilities and explore the rheology of complex
suspensions at finite inertia.

In summary, we believe that our model investigation of flexible and complex-shaped
individual particles in confined flows, paves the way not only for promising applications
but also opens numerous novel fundamental questions.
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Appendix A

Microfluidic channel fabrication

A.1 Fabrication of the channel mold

We use standard soft lithography methods to fabricate the negative mold of the microflu-
idic channel. The main steps of the fabrication process are sketched in Figure A.1.
We design the mask using the softwares Clewin or Adobe Illustrator and we print these
masks using the maximal resolution available (2400 dpi) at Institut Pierre Gille de Gennes
(IPGG) or in the FGN company. Once the masks are printed we fabricate the molds of the
microfluidic channels in the clean room of IPGG. Two options are available to fabricate
the molds. The first one consists of spin-coating a negative photoresist (SU8 20XX series,
MICROMECH) onto a silicon wafer previously cleaned using isopropanol and ethanol
and baked at 200¶C for 10 minutes. The second option uses the dry film lamination
technique: we deposit a dry film of well defined thickness directly onto the wafer instead
of spin-coating the resin. After the spin-coating step or the film lamination, the wafer is
soft backed at 65¶C and 95¶C. The wafer is then placed in a mask aligner where it will be
exposed to UV-light (365nm) through the lithography mask. Only the region correspond-
ing to the transparent areas of the mask will be exposed. The exposing step is followed
by the curing of the resin - named post bake - which consists of placing the wafer on the
hot plates at 65¶C and 95¶C once again. After the post bake step the wafer is placed in
a bath containing a developer (PGMEA, Propylene Glycol Monomethyl Ether Acetate),
which dissolves the resin that has not been exposed to UV-light. As a result, we obtain
a channel mold presenting positive relief. The two dimensional geometry corresponds to
the mask shape and the height is defined by the choice of the photoresist, the rotation
speed of the spin-coating and the duration of soft and hard bake for the first technique
and by the choice of the film height in the second. A last bake of the wafer at 200¶C
during 15 minutes is needed in order to remove any solvent which can be still present in
the cured resist.
After fabrication, the height of the molds are measured using either a mechanical pro-
filometer (Veeco Dektak 6M) or an optical profilometer (Veeco Wyko NT9100). The
accuracy of the measurement is in the order of 1µm.
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Figure A.1: Schematic drawing of the three main steps of microchannel fabrication. a: fabrica-
tion of the negative channel mold on a silicon wafer. b: making the PDMS channel c: sealing
the PDMS channel onto a flat surface. Source: Bdml.stanford.edu

A.3 PDMS-glass channels

The second fabrication technique with superparamagnetic particles doesn’t require all the
channel walls to be in PDMS. These flow devices were prepared by pouring PDMS (10 wt%
of crosslinker) over the silicon wafer and curing it for one hour at 70○C. The cured PDMS is
peeled off the wafer; individual channels are cut and prepared. We plasma-bond them to mi-
croscope glass slides to close them. Finally we place them in the oven for one day at 95○C so
that they recover their hydrophobicity.

Figure A.1: Sketch of the main steps of the microfluidic channel fabrication. (a) Fabri-
cation of the mold by illuminating a photoresist through a mask on which the desired
channels are drawn in transparency. (b) Fabrication of the top part of the channel using
PDMS. (c) Assembly of the two parts of the channel by sealing the PDMS channel onto
a flat surface. Source: Bdmsl.standford.edu.

A.2 Fabrication of the all-PDMS microfluidic channels
As seen in the chapter II, the lithography technique used for the fabrication of the hydrogel
particles requires the microchannel to have all PDMS walls. It ensures the presence of
an inhibition layer close to the walls due to the permeability of PDMS to oxygen which
prevents the particle to stick on the walls and allows the fiber to flow in the channel. The
channel is composed of two parts: the top of the channel and the bottom. The top part
is obtained by pouring PDMS with 20 wt% of crosslinkers and is then half cured for 40
minutes in an oven at 70¶C. The bottom part of the channel is fabricated by spin-coating
PMDS with 5 wt% of crosslinkers on a glass slide (10 s at 500 rpm followed by 40 s at
1000 rpm). The glass slide is, as well, cured for 40 minutes at 70¶C. The top part of the
channel is then peeled o� the wafer, the inlet and outlet holes are drilled and it is placed
on the top of the PDMS-coated glass slide. The full channel is then left in the oven at
70¶C for one day to fully cure.



Appendix B
Cantilever experiment

In the chapter II, we introduced the cantilever measurement technique of Young’s mod-
ulus. This technique is based on the measure of the deformed shape of a beam bent by
its own weight. In this appendix, we derive the mathematical formula which relates the
shape of the beam and its Young’s modulus.
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Figure B.1: Bending of a beam subjected to its own weight. (a) The beam of length ¸ is
subjected to a constant force per unit length f . (b) Sketch of the deformed beam under
its own weight. � corresponds to the deflection of the beam. (c) Sketch of the circular
cross section of the beam. The diameter of the cross section is d.

We consider the general case, illustrated in Figure B.1, of a beam of length ¸, of cir-
cular cross section (diameter d), clamped at x = 0. The other edge of the beam is free
and the beam bends under its own weight.

The force per unit length applied on the beam of constant section is f(x) = flgfid2/4,
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with fl the beam density and g the gravitational acceleration. One can derive the defor-
mation of the beam ”(x) from the Euler-Bernoulli equation (equation I.15):

ˆ2

ˆx2

A

EIz
ˆ2”

ˆx2

B

= flgfid2/4, (B.1)

with Iz the moment of inertia relative to the z≠axis and E the Young’s modulus.
If the section of the beam is constant, Iz is also constant and equation B.1 becomes:

EIz
ˆ4”

ˆx4

= flgfid2/4, (B.2)

with Iz = fid4/64 for a beam of circular cross section of diameter d. Equation B.2
simplifies further as:

ˆ4”

ˆx4

= 16 flg

Ed2

. (B.3)

Integrating four times equation B.4 one obtains:

”(x) = 2flg

3Ed2

x4 + Ax3 + Bx2 + Cx + D, (B.4)

with A, B, C and D constants that need to be derived from the boundary conditions.
The beam being clamped at x = 0, ”(x) = ”Õ(x) = 0. At x = ¸ the beam is free -

no point force and no point torque are applied on the beam edge - and we have ”ÕÕÕ(¸) =
”ÕÕ(¸) = 0. The Boundary conditions give:

A = ≠ 8flg

3Ed2

¸, B = ≠ 4flg

3Ed2

¸2, C = 0 and D = 0. (B.5)

The shape of the deformed beam is thus given by the following equation:

”(x) = 2flg

3Ed2

1
x4 ≠ 4¸x3 + 6¸2x2

2
. (B.6)

One can also derive the deflexion of the cantilever:

� = ”(¸) = 2flg

Ed2

. (B.7)

Using the equations B.6 and B.7 one can derive the Young’s modulus of the beam by
a fit of its deformed shape.



Appendix C
Convergence of numerical simulations

In order to ensure convergence of the numerical implementations presented in chapter IV,
the influence of the mesh parameter mh on the fiber velocity and the normalized maxi-
mum deflection is analyzed for — = 0.8 for the 2D and the 3D models and is depicted by
Figure C.1. A convergent behavior can be observed for both models with respect to the
observed quantities. Especially in the case of the 3D model, the necessary computational
power increases strongly with increasing number of mesh elements. Consequently, a com-
promise between e�ciency and accuracy leads to mh = 50 (≥ 7 ◊ 105 mesh elements) for
the 3D model and mh = 60 (≥ 3 ◊ 104 mesh elements) for the 2D model. Note that the
mesh is independent of the confinement for the 2D model.
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Figure C.1: Dependencies of fiber velocity ũf or, respectively, ūf , and normalized max-
imum deflection ”̃

eq

/µ̃ on the mesh parameter mh for (a) the 3D model and (b) the 2D
model, with — = 0.8 in both cases. The highlighted configuration is chosen for all calcu-
lations in this work and the dashed lines indicate the corresponding value for the sake of
readability.
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Appendix D
Velocity of a freely transported paral-
lel fiber

D.1 Presentation of the system
As in chapter V, we consider a free fiber with a square cross section of height h, width
w = h and length ¸ ∫ h transported at a velocity uf by an external flow of mean velocity
u

0

and viscosity µ. The channel has a length L, height H and width W , with H π L
et h π L. The gap in between the fiber and the top or bottom wall has an height
b = (H ≠ h)/2 and we define the confinement as — = h/H.

w
h

(c)

Figure D.1: (a) Geometry of the fiber and the channel. (b) Top view of the freely
transported fiber. The flow on the two sides of the fiber is represented in red. (c) Side
view of the system. The flow in the gap between the fiber and the top wall is assumed to
be Couette-Poiseuille-like.

When the fiber is parallel to the flow direction, three di�erent forces are acting on the
fiber (see chapter V): the pressure force acting on the front and the back of the fiber Fp,
the viscous forces per unit length acting on the top and bottom sides of the fiber fx

t and
the viscous forces per unit length acting on the lateral sides of the fiber flat. We will lead
the calculation of these forces in the referential of the fiber.

D.2 Pressure force acting on the fiber
We consider that the presence of the fiber does not modify the pressure gradient (w π W ).
Thus this pressure gradient is given by ˆp/ˆx = ≠�p/¸ = ≠12µ

H2 u
0

. The pressure force
acting on the fiber is Fp = �phw = 12µ

H2 u
0

hw¸.
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D.3 Force on the top and bottom of the fiber
To derive the viscous force acting on the top and bottom sides of the fiber, we first describe
the flow in the (x, z) plane. We assume that there is a Couette-Poiseuille flow in the gaps,
and the flow in a gap is given by:

vxt(z) = 1
2µ

ˆp

ˆx
z(z ≠ b) ≠ vf

z

b
. (D.1)

The stress is then given by

·t = µ
ˆvx

ˆz

----
z=0

= ≠ b

2
ˆp

ˆx
≠ µ

vf

b
, (D.2)

And then the viscous force per unit length is

fx
t = 2·tw = ≠2w¸

3
b

2
ˆp

ˆx
+ µ

vf

b

4
. (D.3)

Here the factor 2 takes into account the viscous forces acting on the top and bottom sides.
From the expression of the pressure gradient we obtain:

fx
t = ≠2w

3
≠ b

2
12µ

H2

u
0

+ µ
vf

b

4
. (D.4)

D.4 Force on the lateral sides of the fiber
To determine the viscous force acting on the lateral sides of the fiber, we assume that the
flow in the (x, y) plan is Poiseuille-like in a region of length H close to the fiber side (see
Figure D.1).

Thus the stress acting on one lateral side of the fiber is

·lat = 2(umax ≠ vf )µ
H

= (3u
0

≠ 2vf )µ
H

. (D.5)

Consequently the lateral force is

flat = 2·lath = 2h
2(umax ≠ vf )µ

H
= 2(3u

0

≠ 2vf )µ
H

h. (D.6)

D.5 Determination of the fiber velocity
Assuming that flat and fx

t do not vary along the fiber length, we determine the fiber
velocity from the zero force condition:

flat¸ + fx
t ¸ + Fp = 0 … 2(3u

0

≠ 2vf )µ
H

h¸ ≠ 2w¸
3

≠ b

2
12µ

H2

u
0

+ µ
vf

b

4
+ 12µ

H2

u
0

hw¸ = 0,

(D.7)
with h = w = —H and b = 1≠—

2

H.
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Figure D.2: Evolution of the fiber velocity as a function of the confinement. The curve
corresponds to the equation D.11, the bullet (•) to a 2D simulation and the diamond (�)
to a 3D simulation. Both simulations have been done by Berthet et al. [13].

Equation D.7 is equal to:

2—
(3u

0

≠ 2vf )
H

≠ 2—
3

≠3(1 ≠ —)u
0

+ 2
1 ≠ —

vf

4
+ 12—2u

0

=0 (D.8)

(3u
0

≠ 2vf ) ≠
3

≠3(1 ≠ —)u
0

+ 2
1 ≠ —

vf

4
+ 6—u

0

=0 (D.9)

3(2 + —)u
0

≠ 22 ≠ —

1 ≠ —
vf =0. (D.10)

Thus,

vf

u
0

= 3
2

(1 ≠ —)(2 + —)
2 ≠ —

. (D.11)

The evolution of the velocity as a function of the confinement is given in Figure D.2.
The bullet (•) are obtained using a 2D simulation and the diamond (�) using a 3D
simulation. Both simulations have been done by Berthet et al. [13]. The red curve
corresponds to the above calculation of the parallel fiber velocity. An excellent agreement
between the simulations and the analytical expression of the fiber velocity is obtained.
Thus, our simple model correctly describes the fiber velocity.
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