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Introduction & motivations

“Essentially, all models are wrong, but some are still useful" (G.E. Box)

In structural mechanics and computational engineering, complex physical systems are now commonly studied

by means of modeling and simulation tools, in order to analyze their mechanical behavior or make predictions. In

this context, systems are thus represented by physics-based models, described by PDEs, that provide an idealized

mathematical abstraction of the physical reality. Out of recent trends that aim at representing and predicting from

full data-based information, such mathematical models are the basic ingredient for further numerical analysis which

is a daily industrial and research practice; they constitute a fundamental pillar in science and engineering activities.

For a given system, the mathematical representation may be picked in a hierarchical list of possible models, with

increasing complexity. The selection is traditionally performed from a priori knowledge on the system; merely

speaking about the material behavior representation, one may for instance select a simple linear homogeneous

elasticity law, but nonlinear multiscale laws may be preferred to represent complex physical phenomena at various

scales. The chosen mathematical model is then further numerically processed by means of a discretization scheme

such as the finite element method (FEM), leading to a numerical model used as a virtual twin.

Insights of computational approaches depend on the models being a faithful abstraction of the real world, but all

models are wrong to some extent. In the framework of computational mechanics based on FE analyses, there are

various uncertainties and error sources along the modeling and simulation chain, coming from: (i) partial and noisy

experimental information (observations) on the system feeding the virtual representation; (ii) model bias due to an

always imperfect representation of the physical system behavior and its environment (related to ignorance, vari-

ability in the process, or intentional reduction of complexity); (iii) numerical approximation in terms of discretization

error associated with computational solution schemes. For the sake of quantitative computed information, accurate

prediction, and safe decision making, there is thus a need for certification of the computed outputs, with consis-

tency between physical, mathematical, and numerical models. This is the matter of verification and validation (V&V)

approaches, with procedures for model identification (or updating) from available experimental information, model

verification controlling the accuracy of numerical methods (e.g. mesh adaptivity), and model validation (Figure 1);

all this should be complemented with uncertainty quantification in order to get quantitative confidence information.
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V&V has been an active research topic for more than 30 years [Roache, 1998,Oberkampf et al., 2003]; it has been

listed as one of the most challenging applications of simulation-based engineering sciences (SBES) [Oden et al.,

2006].

Nevertheless, there is also an increasing need for computational efficiency, with fast simulation and predictions.

This is a typical constraint in industry to accommodate engineering times and affordable simulations, and it is be-

coming a major requirement for online control of systems from modeling and assimilation of in-situ measurements,

in the framework of Dynamic Data-Driven Application Systems [Darema, 2004, Darema, 2015]. In this framework,

which falls into the broader concept of Cyber-Science & Technology involving a new generation of connected and

autonomous systems [Russel and Norvig, 2016], computational and physical capabilities are integrated by means of

embedded sensors, processors, and controllers in order to perform a numerical feedback loop in which experiments

and simulations synergistically and continuously interact (see Figure 1). In modern computational engineering, the

goal is thus to compute right at the right cost, with appropriate physics and a smart management of computing

resources (trade-off between reliability and computational cost) depending on the objective and on information com-

ing from the physical system. This resorts to model adaptivity in terms of discretization, model upscaling, but also

appropriate selection of a reference mathematical model (multi-fidelity approach) with respect to available experi-

mental data. It furthermore requires the use of advanced numerical methods (such as model reduction techniques)

in order to address computationally demanding problems with both fast and credible numerical strategies.

Figure 1: General overview of V&V activities.

In this PhD work, we consider all these issues and requirements in the context of model identification or updating

from physical observations. This is a fundamental topic as nowadays, and after two last decades that have seen

major advances in terms of computational infrastructure and methods to address complex problems, a recurrent

limitation in the reliable numerical simulation of material or structural mechanics problems comes from the setting

of input model parameter values. We specifically focus on the case of full-field measurements that have also been

a major breakthrough of the last two decades, with much increased availability of data. In particular, quantitative
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imaging by means of Digital Image Correlation (DIC) (or Digital Volume Correlation (DVC)) techniques is an ad-

vanced experimental technology that has become a very active research topic over the last two decades (see [Hild

and Roux, 2012b] for a review). It is now a common practice for the acquisition of measured displacement fields on

materials and structures in research labs and industry; a typical illustration, among others, is the research develop-

ment of the Correli software [Hild and Roux, 2006, Roux and Hild, 2008, Leclerc et al., 2015, Neggers et al., 2018].

Combined with FE numerical simulations and inverse analysis, DIC is a tool of choice in order to accurately iden-

tify the material behavior from full-field measurements. These permit to retrieve several parameters from a single

heterogeneous test. Measurements coming from DIC are experimental information which is large but with limited

accuracy (as any measurement), due to noise coming from both image acquisition and post-processing. For robust-

ness and effectivity in the V&V process, this uncertainty on observations (which can be quantitatively characterized

a priori) needs to be taken into account in a consistent manner. It not only needs to be propagated throughout the

identification procedure, but it also needs to be compared and considered with respect to other error sources (mod-

eling, discretization) which are involved in the identification process and which may question identification relevance

if not contained or compensated [Mottershead and Friswell, 1993,Simoen et al., 2015].

In recent years, there have been some important works to make the DIC process more efficient in terms of credi-

bility of the obtained experimental information from images (e.g. [Pan et al., 2013,Tomicevic et al., 2013]). Much less

progress has been made when it comes to the identification problem itself, i.e. to the way the associated computa-

tional model is defined and managed (in terms of ignorance or limited accuracy) from the content of experimental

information coming from DIC. On the one hand, an appropriate mathematical (physics-based) model with optimized

complexity should be considered as a representation of the observed physics, in order to perform a consistent in-

terpretation and comparison with available data. If the model is too coarse, it will not be able to account for all the

richness that is included in experimental observations; if it is too complex, it will lead to expensive computations

with no beneficial (and potentially detrimental) impact on identification results, as measurement noise prevents from

capturing this extra-level of complexity. It is also intended that the model ignorance be learned from informative DIC

data, when the situation occurs. On the other hand, and due to the specific features of the experimental information

which is considered here (full-field measurements, not sparse sensing), a special attention should be paid to the

mesh size selection (associated with discretization error) in order to exploit measurement information at best with

meaningful accuracy; a typical example is given in [Hild et al., 2016]. All these aspects are the topic of the present

research work.

Most of applications using DIC measurements do not consider modeling of discretization error; the first source

is usually poorly known a priori, while the second source is usually neglected by assuming sufficiently fine meshes

(which is questionable). We wish here to propose an alternative vision in which all a priori knowledge and uncertainty

sources (coming from both model and experimental data) are considered, informed, connected, and propagated

throughout the identification procedure in order to build a consistent and unified methodology. In particular, we
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wish to inform on bias in the numerical model (coming from an uncertain constitutive law, or inexact fulfillment

of equilibrium) in order to better account for the measured data. In this way, the proposed identification procedure

appears as a balance between errors in the numerical model and noise corrupting the measurements, with modeling

and simulation accuracy governed by that of available experimental information, and providing for the best efficiency

for robust, consistent, and effective model updating purposes.

We consider the previously mentioned aspects, referring to predictive data science and smart data assimilation,

by designing a suitable approach to combine DIC experimental information and numerical tools. We address this

issue by introducing an appropriate identification metric that merges a measurement metric and a metric in the

modeling space. This is performed by referring to the deterministic Constitutive Relation Error (CRE) concept

associated with duality aspects. This concept, strongly based on physics and material science notions, has been

used for a long time in V&V activities (a review can be found in [Ladevèze and Pelle, 2005]). It has sound foundations

in material and computational mechanics, and provides for quantitative information on the quality of a model. Its

modified version, designed for identification/updating and denoted mCRE [Ladevèze et al., 1994a, Deraemaeker

et al., 2002], showed performance in many applications and appears as a convenient tool for the PhD objectives.

Indeed, the mCRE approach is based on splitting the knowledge on the problem into a reliable part (which is

strongly enforced in the inversion process) and an uncertain part (which is relaxed and satisfied at best). The

associated hybrid variational formulation thus resorts to reliability of information and provides for a natural metric

mixing measurement and modeling uncertainties. Out of various properties (convexity, robustness) and higher

performance compared to some alternative inversion techniques, as reported in several works [Ben Azzouna et al.,

2015, Waeytens et al., 2016], the mCRE approach directly defines a data-based model enrichment that takes into

account features of the physical solution which are not represented a priori in the considered physical model. This

is performed by recovering the best state estimation (in terms of so-called admissible fields) from both mathematical

model and experimental data, similarly to alternative recent methodologies putting forward the concept of hybrid

twins [Maday et al., 2015a,Peherstorfer and Willcox, 2015,Chinesta et al., 2020].

In the context of full-field measurements, the mCRE has been surprisingly employed in quite few works [Calloch

et al., 2002, Ben Azzouna et al., 2015, Barbarella et al., 2016, Hild et al., 2016], despite the fact that DIC (for the

processing of images) and mCRE (for model inversion) share the common feature to make benefit of the a priori

mechanical knowledge. It is shown in this PhD work that the mCRE concept is a dedicated tool to perform correct

(and at correct cost) modeling and simulation for identification purposes, for both linear and nonlinear models and

from full-fields measurements. In particular, it naturally provides error indicators on modeling and discretization

that identify the computational model inaccuracies and permit to select the optimal one depending on the quality of

experimental data. The associated adaptive strategy is in terms of constitutive model class (among a manifold of

model classes with various complexity levels), but also in terms of discretization mesh. We mention that the obtained

adaptive mesh, dedicated to parameter identification and implicitly considering sensitivity analysis and experimental
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uncertainties, is naturally different from the one that would be designed for accurate prediction in a direct problem

(see [Arridge et al., 2006] for a similar adaptive mesh philosophy in another inverse analysis context). In the mCRE

context, it is shown that the a posteriori construction of a fully equilibrated admissible stress field, verifying the

balance equations in a strong sense, enables one to obtain estimates on both discretization and modeling errors,

which can then be compared with measurement noise in order to drive model and mesh adaptivity. Therefore, bias

in the numerical model (deviations between model predictions and reality observed through full-field measurements)

can be corrected and adjusted so that model complexity and outputs remain consistent with physical observations

and noise level. Furthermore, the adaptive procedure can also be seen as a way to filter useless or redundant

experimental information for model identification purposes. The proposed approach is first introduced and validated

on linear elasticity models, before being extended to more complex nonlinear (elastoplasticity) material behaviors.

In addition, the PhD addresses the use of advanced numerical approaches in combination with mCRE. These

aim at complementing the robust inversion method with powerful numerical tools in order to enhance the computa-

tional efficiency [Neggers et al., 2018]. One aspect which is investigated is the use of reduced order modeling (ROM)

which facilitates the solution of the multi-query parametric problems which are involved in the mCRE inversion pro-

cess (as in any other inversion process). The employed ROM technique is the Proper Generalized Decomposition

(PGD) [Chinesta et al., 2014], and the focus is in its use for the minimization of the mCRE functional and for the

construction of equilibrated fields, which usually are some computationally intensive procedures. Another aspect is

the setting of a specific and efficient solver, based on the LATIN method [Ladevèze, 1989], when considering mCRE

with nonlinear material behaviors. A last aspect, which appears as a preliminary study, is the design of a multiscale

approach based on MsFEM [Hou and Wu, 1997] when addressing image-based measurements and mCRE with

complex material microstructures.

The manuscript is organized as follows:

• a bibliographic review is performed in Chapter 1. It focuses on general aspects of inverse problems, on the

(modified) CRE concept applied to address such problems, and on model identification based on DIC;

• the general implementation of the mCRE concept in association with full-field measurements is addressed in

Chapter 2, in which a consistent framework taking measurement noise into account is designed. An integrated

version of the coupling between image-based experimental techniques and mCRE is also proposed;

• in Chapter 3, a specific interpretation of the modeling error term involved in mCRE is made, in order to inform

on the quality of the numerical model (mesh, constitutive relation) with respect to experimental information.

An adaptive strategy is proposed in this context for optimal model and mesh selection;

• advanced numerical tools referring to reduced order modeling and based on the Proper Generalized Decom-

position (PGD) technique are developed in Chapter 4. They enable the computational cost to be decreased
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and the numerical performance of the overall identification process to be enhanced;

• an extension of the proposed inversion procedure to nonlinear models is performed in Chapter 5, and is

complemented with a specific solver. Model adaptivity is again illustrated in this context, showing how an

initial coarse model can be automatically enriched in order to be consistent with experimental information and

uncertainties;

• another extension of the inversion strategy to multiscale problems using the MsFEM framework is proposed in

Chapter 6;

• last, conclusions are listed and prospects to the work are drawn.
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Chapter 1

Bibliography

In this first chapter, we give a bibliographic review on two topics which are at the heart of the PhD work. The first one

is the (modified) CRE concept, which provides for a specific variational formulation with energy-based functional for

model identification or updating. The second one deals with the acquisition of full-field measurements from DIC,

and their post-processing for identification purposes. We show here the general philosophy and highlight the main

features on these two topics.

1.1 Modified CRE concept in the context of inverse analysis

1.1.1 Basics on inverse problems

Context

Material and structural mechanics, as other scientific fields, involves models with unknown or at least not perfectly

known parameters. A typical case, which is considered here, is constitutive parameters i.e. parameters involved in

the modeling of the local material behavior. For credible numerical simulation, analysis, and prediction, a classical

procedure is then to infer the missing knowledge on model input parameters by exploiting experimental informa-

tion on the response of the mechanical system, in terms of indirect measurements from sensors (accelerometers,

strain gauges, fiber-optic sensors, cameras. . . ). This refers to model identification or updating, which falls into the

larger framework of inverse problems in which the best fit is searched by comparing model outputs and available

observations. Inverse analysis is an important topic of mechanical engineering with many applications such as

health monitoring and defect identification [Mottershead and Friswell, 1993, Doebling et al., 1996, Andrieux and

Bui, 2006], geophysical exploration [Menke, 2012], or biomechanical imaging [Arridge, 1999,Barbone and Gokhale,

2004], among others. As stated before, it is also of paramount importance for the identification of unknown material

parameters (e.g. elastic moduli), possibly heterogeneous, of constitutive laws that feed computational mechanics
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models.

Mathematically speaking, we are given a parametrized model M(p) chosen in a manifold of possible models,

representing a physical system of interest, and generically described by a PDE of the form AM(u;p) = 0. The

forward problem consists in computing the state u and related output quantities d(u) by means of the model and

from specified input parameters p 2 P (usually chosen dimensionless). Conversely, the inverse problem consists in

learning parameters p from overabundant (and usually noisy) observations dobs (Figure 1.1). The idea is to find, by

comparison between d(u(p)) and dobs, the parameter set that represents at best experimental data. This ill-posed

problem (in the Hadamard sense, with issues on uniqueness and continuity of the solution with observed data) can

be solved by means of two families of approaches:

• deterministic approaches in which the inverse problem is formulated as a constrained optimization problem

with minimization of the discrepancy between model outputs and observations [Bui, 1993, Cailletaud and

Pilvin, 1994,Kern, 2002,Bonnet and Constantinescu, 2005]. Approaches differ one from another in the nature

of the imposed constraints and on the choice of the cost function that defines (in a certain metric) the distance

between computed and measured data [Roux and Hild, 2020]. Such deterministic approaches will be mainly

considered in the PhD work;

• stochastic approaches (referring to statistical inverse analysis) in which the inverse problem is formulated in

a probabilistic manner, using the Bayesian framework [Kaipio and Somersalo, 2004, Tarantola, 2005, Stuart,

2010, Vigliotti et al., 2018]. Several variants can be derived depending on additional assumptions which are

made.

Figure 1.1: Configuration of an inverse problem.

A major concern, which will be further discussed, is the fact that the inversion process is plagued with several

error and uncertainty sources. On the one hand, there is measurement error due to noise and possibly systematic

error (caused by imperfections in the measurement setup or during subsequent signal processing). Considering

an additive measurement noise ✏ (that may be characterized or not), the observed outputs read dobs = dtrue + ✏

with dtrue the physical (undisturbed) output value. On the other hand, the model contains bias as it never exactly

describes the behavior of the system (due to errors when translating physics into equations, and when solving
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these equations numerically); there is thus no value of p such that d(u(p)) = dtrue. Measurement and model

uncertainties combine in the total error d(u(p)) � dobs obtained as the difference between model prediction and

observed quantities. Consequently, the results of an identification/updating procedure are by definition uncertain,

and one should account for this uncertainty by returning not only the identified value of the parameter set but also

confidence information (e.g. in terms of covariance matrix).

Remark. The balance between the richness of experimental information and the number of parameters to be iden-

tified is an important aspect of effective inversion. A practical issue in inverse problems, which will not be addressed

here, is the case of a high-dimensional parametric space as encountered for instance with discretized parameter

fields (spatially distributed parameters). In such a case, and with sparse measurements, a strategy to manage

numerical difficulties (e.g. ill-conditioning) is to a priori reduce the number of parameters by using projection-based

methods [Teughels et al., 2002, Lieberman et al., 2010] or sensitivity analysis methods which aim at keeping pa-

rameters having the largest influence on outputs of the model [Saltelli et al., 2000, Saltelli et al., 2004, Borgonovo

and Plischke, 2016, Neggers et al., 2017]. Also, the richness of experimental information may be increased by an

optimal placement of sensors (experimental design) which can also been performed from sensitivity analysis ap-

proaches [Kleiber et al., 1997, Daescu and Carmichael, 2003, Waeytens et al., 2013], or using information entropy

criteria [Papadimitriou, 2004,Huan and Marzouk, 2013].

Deterministic inversion approaches

Deterministic approaches for solving inverse problems are based on the definition of a suitable cost (or misfit) func-

tion F(p) that reports on the correlation between the numerical model outputs and the experimental observations.

This function is minimized over the parameter space P in order to get the solution psol of the inverse problem:

psol = argmin
p2P

F(p) (1.1)

Typical and most intuitive cost functions are (weighted) least squares functions also referred as squared resid-

uals, based on a measure in the (weighted) Euclidian norm of the mismatch between computed and measured

responses [Cailletaud and Pilvin, 1994, Mahnken and Stein, 1996, Doyley et al., 2006, Brigham and Aquino, 2009].

They are of the form:

F(p) =
1

2
(d(u(p))� dobs)

T
G
�1
obs(d(u(p))� dobs) (1.2)

with Gobs a weighting matrix that is assumed diagonal in many practical applications, with coefficient (Gobs)ii pro-

portional to 1/d2obs,i for the sake of normalization. Alternative cost functions may be defined, such as these based

on auxiliary fields and reciprocity gap [Andrieux et al., 1999,Calderon, 2006], or energy-based functions as defined

later with the CRE concept.
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A well-known difficulty of deterministic approaches, related to the ill-posed and/or ill-conditioned features of in-

verse problems, is that the cost function F is usually not convex due to a lack of experimental data (underdetermined

minimization problem), with several local minima and high sensitivity to small perturbations in these data. To cir-

cumvent this issue and increase robustness, the inversion process is usually complemented with a regularization

procedure that consists in replacing the initial inverse problem with an approximate inverse problem such that the

committed error is compensated by a better conditioning [Bui, 1993, Engl et al., 1996]. A typical class of regular-

ization methods is Tikhonov regularization [Tikhonov and Arsenin, 1977, Tikhonov et al., 1995], in which a priori

knowledge or constraints (smoothness, sparsity. . . ) on parameter values is informed by augmenting the cost func-

tion with a regularizing quadratic term bringing a convex component [Engl et al., 1996, Hansen, 1998, Neumaier,

1998, Titurus and Friswell, 2008]. As an example, when a prior guess p0 is known, the regularized cost function

may read:

Fr(p) = F(p) +
↵

2
(p� p0)

T
G
�1
0 (p� p0) (1.3)

The balance of the two terms that constitute Fr is given by the magnitude of the dimensionless regularization

parameter ↵ that should be set conveniently: if too small, the regularization effect may be insufficient and the problem

may remain ill-posed; if too large, the solved problem has little connexion with the original one. Various methods

may be employed to set an optimized value of ↵, such as (i) the L-curve method [Miller, 1970,Hansen, 1992,Hansen,

1998, Vogel, 2002] that heuristically identifies the highest curvature point in a log-log plot of the regularization term

versus F (balance of the two terms) with varying ↵; (ii) the Morozov discrepancy principle [Morozov, 1968,Morozov,

1984,Nair et al., 2003] that adapts the regularization parameter to the noise level in the data (assuming this level is

known a priori). This latter method will be further discussed in Chapter 3.

As regards the practical solution of the inverse problem (1.1) (or its regularized version), it is usually performed by

means of nonlinear numerical optimization schemes with iterative algorithms fed by local Jacobian and/or Hessian

information [Gill and Murray, 1978]. As a basic method, the steepest descent (gradient) scheme

p(k+1) = p(k) � �r(k)
p F = p(k) � �S

(k)T

p G
�1
obs(d(u(p

(k)))� dobs)

can be used even though it is associated with slow convergence. Sp =
@d(u(p))

@p
is the Jacobian (or sensitivity)

matrix, which may be computed from the adjoint state method or a perturbation method. The Newton-Raphson

scheme

p(k+1) = p(k) � H
(k)�1

r
(k)
p F = p(k) � H

(k)�1

S
(k)T

p G
�1
obs(d(u(p

(k)))� dobs)

with H =
@2F

@p2
the Hessian matrix (assumed to be full column rank), can also be used; it has much faster con-

vergence but also higher computational cost. In most situations, quasi-Newton methods (such as BFGS) or in-

exact Newton methods are preferred due to their ease of implementation (only the computation of gradients is
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required) [Nocedal and Wright, 2000, Oberai et al., 2003]. We may list in this last category the Gauss-Newton

method

p(k+1) = p(k) � (S(k)T

p G
�1
obsS

(k)
p )�1

S
(k)T

p G
�1
obs(d(u(p

(k)))� dobs)

or the Levenberg-Marquardt method

p(k+1) = p(k) � (S(k)T

p G
�1
obsS

(k)
p + µId)

�1
S
(k)T

p G
�1
obs(d(u(p

(k)))� dobs)

where µ is a damping parameter. As an alternative to previous local methods, which are sensitive to the initial guess

and converge to local minima in the absence of convexity, global methods (e.g. the simulated annealing method)

may be used to explore the whole space. Eventually, in extreme cases with non-differentiable functions, the simplex

method [Nelder and Mead, 1965] or genetic algorithms may also be implemented.

Stochastic approaches

Stochastic approaches have been used in several engineering applications of inverse problems, particularly for

the monitoring and control of structures [Beck, 2010]. They have also been recently investigated in the context of

identification from full-field measurements [Zhang et al., 2020]. They are based on a probabilistic description of

uncertain model inputs as random variables with corresponding probability density. Consequently, the result of the

inverse problem is a conditional probability density function (pdf) on parameters p, that represents the degree of

belief on the value of these parameters given some observations, and that can further be used to derive confidence

intervals or for uncertainty quantification on model outputs of interest [Rebba et al., 2006]. Stochastic approaches

lead to an automatic regularization procedure as the whole space of possibilities for parameter values is explored.

The classical mathematical framework for inverse analysis in a stochastic context is Bayesian inference [Beck

and Katafygiotis, 1998,Tarantola, 2005,Kaipio and Somersalo, 2004,Stuart, 2010,Rosic et al., 2013]. It proposes a

complete probabilistic description which naturally and rigorously considers measurement and modeling (epistemic)

uncertainties, as well as natural irreducible (aleatory) uncertainties. The formalism refers to the Bayes theorem that

reads (for a given model class M):

⇡(p|dobs) =
1

C
⇡(dobs|p).⇡(p) (1.4)

where

• ⇡(p) is a prior pdf on p, constructed from a priori knowledge on parameter values. It is chosen independently

of measurement results, but rather based on engineering judgment. Several methods have been developed to

obtain consistent prior pdfs, such as the conjugate prior method (where the prior pdf is chosen in such a way

that the posterior pdf belongs to the same family of distributions), or methods based on information theory e.g.

the principle of maximum entropy [Gull, 1988,Soize, 2008]. Nevertheless, in situations where a large amount
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of informative observations is at hand (as in DIC), the choice of the prior pdf is not extremely determinative

since almost any prior (sufficiently smooth in the region of high likelihood) leads in practice to similar final

conclusions;

• ⇡(p|dobs) is the updated or posterior pdf on p, obtained after taking the observations dobs into account. This

conditional probability is the end result that quantifies the learning permitted by measured data, reducing

uncertainty and giving the most likely values of p. A solution to the inverse problem may thus be derived from

the mean value or the maximal value (maximum a posteriori (MAP) estimator) of ⇡(p|dobs). Out of specific

cases, the description of ⇡(p|dobs) is usually analytically intractable (e.g. due to complex physical models) and

remains implicit. Furthermore, its exploration in potentially high-dimensional spaces needs to be performed

with specific techniques in order to recover useful statistics (means, covariances, marginals. . . ) or propagate

uncertainties through the model. A typical sampling technique is the Markov Chain Monte Carlo (MCMC)

technique based on the Metropolis-Hastings algorithm and an acceptance-rejection procedure, with several

variants (adaptive MCMC, delayed rejection MCMC, hybrid MCMC. . . );

• ⇡(dobs|p) is the likelihood (or forward) pdf, informing on probability of observations given input parameter

values. It embeds the mapping from parameter input to noisy observations by means of the forward model

and a representation of modeling and measurement uncertainties. It should be understood as a function

of p, and can be interpreted as a measure of how good the parametrized model succeeds in explaining

the observations dobs. Obtaining ⇡(dobs|p) is in practice the computationally intensive part of the Bayesian

process, with multi-query evaluation of the model; it usually requires advanced numerical methods to keep the

approach tractable [Marzouk et al., 2007,Rubio et al., 2018];

• C is a normalization constant, which ensures that the posterior pdf integrates to 1. It is usually not computed,

but is equal to the probability of having dobs for the given model class M. This is often referred to as the

evidence for M that plays a determining role in Bayesian model class selection [Beck and Yuen, 2004].

With additional assumptions (e.g. Gaussian pdfs, uncorrelated variables), a linearized and lighter version of

Bayesian inference can be obtained. This is the framework of Kalman filtering [Kalman, 1960] and its extensions to

nonlinear models (extended Kalman filtering (EKF), unscented Kalman filtering (UKF) [Julier and Uhlmann, 1997])

that are well-known in signal processing or robotics, and that have been used in many applications for the solution

of inverse problems [Hoshiya et al., 1984, Corigliano and Mariani, 2001, Mariani and Corigliano, 2004, Yang et al.,

2006,Mariani and Ghisi, 2007,Liu et al., 2009,Moireau and Chapelle, 2011,Marchand et al., 2016]. Kalman filtering

considers low-order statistics (mean, covariance) of parameters alone, so that the computational cost is much lower

than in the case where a full probabilistic model is considered.

Alternative strategies for modeling and propagating uncertainties in inverse problems have been developed [Zim-
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mermann, 1991, Helton et al., 2004]. In particular, in the case of small uncertainties, some techniques avoid a full

probabilistic study or make it more affordable. We mention here (i) perturbation methods based on first- or second-

order expansion of random variables; (ii) non-probabilistic methods based on interval analysis (propagation of value

range intervals) such as fuzzy set approaches [Haag et al., 2012, Simoen et al., 2015] relying on the fuzzy set

theory [Zadeh, 1965], or hybrid interval approaches e.g. the random set theory or the Lack-Of-Knowledge the-

ory [Ladevèze et al., 2004, Ladevèze et al., 2006, Louf et al., 2010] in which interval bounds are considered to be

random variables. These last interval approaches may be interesting when only very little information concerning

the uncertain input parameters is available, as carrying out a complete probabilistic study becomes unreasonable

in this specific case.

Eventually, and contrary to parametric approaches [Schueller, 2007] which are considered here, non-parametric

approaches [Soize, 2005] based on random matrix theory may be used to construct a probabilistic model and

implement it in inverse analysis.

Remark. Besides model parameters, measurement and modeling errors may also be modeled as random variables

and identified/updated from observed data in the Bayesian inference process. This avoids incorrect or unsuitable

assumptions that unfairly influence the Bayesian updating results. Usually, variance parameters of uncorrelated

zero-mean Gaussian representations are included [Zhang et al., 2011], but correlation parameters such as corre-

lation lengths can be included as well. In the PhD work, we will propose an alternative identification approach that

estimates the modeling error along the inversion process.

Remark. When a large amount of experimental data is available, the posterior pdf can be asymptotically approxi-

mated by a Gaussian pdf centered at the maximum a posteriori (MAP) point pMAP [Papadimitriou et al., 1997]. It

is characterized by a covariance matrix ΣΣp such that ΣΣ�1
p = r2

pFMAP |pMAP
with FMAP = � log(⇡(p|dobs)). This

(Laplace) approximation can be used as a cost-effective alternative to computationally demanding methods (e.g.

MCMC sampling) for uncertainty quantification and propagation.

Link between deterministic and stochastic approaches

Considering the Bayesian inference framework with Gaussian multivariate distributions for prior and likelihood pdfs,

the previously described deterministic and stochastic approaches for inverse problems can be linked [Tarantola,

2005]. Indeed, prior and likelihood pdfs are written in this context as:

⇡(p) = C0.e
� 1

2 (p�p0)
T
ΣΣ

�1
0 (p�p0)

⇡(dobs|p) / ⇡obs(dobs � dtrue).⇡mod(dtrue � d(u(p))|p) = C1.e
� 1

2 (dobs�d(u(p)))T [ΣΣobs+ΣΣmod]
�1(dobs�d(u(p)))

(1.5)

where ΣΣ0, ΣΣobs, and ΣΣmod are covariance matrices related to a priori knowledge on parameters (with mean p0),

additive measurement noise on exact observations dtrue (with zero mean), and modeling uncertainties at measure-
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ment points (with mean d(u(p))), respectively. This latter information might be given from estimates on discretization

or modeling errors [Oden and Prudhomme, 2002], even though it is most often neglected as very little or no quan-

titative information is at hand. C0 and C1 are normalization constants of the form 1/
p

(2⇡)n|ΣΣ| with ΣΣ and n the

associated covariance matrix and size of the vector variable, respectively.

Remark. Uncorrelated Gaussian distributions (with diagonal covariance matrices) are usually selected, but this is

not valid in some cases when errors show correlations. A typical example for observations is densely populated

sensor grids or full-field measurements (see later), or in the presence of a systematic error component (faulty

measurement equipment/setup).

Using Bayesian inference, the previous framework leads to a posterior pdf of the form ⇡(p|dobs) = Ce�S(p) with:

S(p) =
1

2
(dobs � d(u(p)))T [ΣΣobs + ΣΣmod]

�1(dobs � d(u(p))) +
1

2
(p� p0)

T
ΣΣ

�1
0 (p� p0) (1.6)

and the MAP approach indicates that the optimal value popt of the parameter set is such that

popt = argmax⇡(p|dobs) = argmin[� log(⇡(p|dobs))]

It thus leads to the following problem:

min
p2P

✓

1

2
(dobs � d(u(p)))T [ΣΣobs + ΣΣmod]

�1(dobs � d(u(p))) +
1

2
(p� p0)

T
ΣΣ

�1
0 (p� p0)

◆

(1.7)

which turns out to be a deterministic least squares minimization problem with Tikhonov regularization similar to (1.3),

and involving Mahalanobis distances with inverse covariance matrices as weights (giving more weight to reliable

information). Therefore, as such, the deterministic counterpart of the Bayesian inference scheme incorporates

regularization and choice of norm in a natural way, without any heuristic procedure.

When the model is linear with respect to parameters p, that is d(u(p)) = Dp, it is straightforward to observe

from (1.6) that the posterior ⇡(p|dobs) is a Gaussian pdf with covariance matrix ΣΣp =
⇥

DT [ΣΣobs + ΣΣmod]
�1D + ΣΣ

�1
0

⇤�1
,

and that the optimal parameter value (mean or MAP estimate) reads:

popt =
⇥

D
T [ΣΣobs + ΣΣmod]

�1
D + ΣΣ

�1
0

⇤�1 �
D
T [ΣΣobs + ΣΣmod]

�1dobs + ΣΣ
�1
0 p0

�

(1.8)

It is thus obtained as a weighted average of the data set dobs and the prior knowledge p0. The expressions obtained

in this particular case for the posterior mean value popt and the covariance matrix ΣΣp are equivalent to the Kalman

filter equations with optimal gain [Kalman, 1960].

When the model is nonlinear, an iterative optimization scheme needs to be used to solve (1.7), in a similar way
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as in Section 1.1.1. Introducing again the Jacobian or sensitivity matrix Sp =
@d(u(p))

@p
, the use of a Gauss-Newton

method (for instance) yields:

p
(k+1)
opt = p

(k)
opt � H

(k)�1
⇣

S
(k)T

p [ΣΣobs + ΣΣmod]
�1(d(u(p(k)))� dobs) + ΣΣ

�1
0 (p(k) � p0)

⌘

(1.9)

with H(k) = S
(k)T

p [ΣΣobs + ΣΣmod]
�1S

(k)
p + ΣΣ

�1
0 the (inexact) Hessian matrix.

At convergence, it is fruitful to observe that a perturbation �dobs in measurements leads to a variation �popt in

the optimal parameter value, such that:

�popt =
⇥

S
T
p [ΣΣobs + ΣΣmod]

�1
Sp + ΣΣ

�1
0

⇤�1
S
T
p [ΣΣobs + ΣΣmod]

�1�dobs (1.10)

Therefore, the covariance matrix ΣΣpopt = h�popt · �p
T
opti on parameters can be recovered from that of measurement

noise ΣΣobs = h�dobs · �dT
obsi, from other covariance matrices ΣΣmod and ΣΣ0, and from the sensitivity matrix Sp

evaluated at p = popt. This piece of information may be used to get a confidence level on identified parameters, or

to perform experimental design with minimization of uncertainties on popt (e.g. minimization of the largest eigenvalue

of ΣΣpopt
with respect to sensor positions [Bertin et al., 2016a]).

After these previous general considerations, we introduce in the next section a deterministic inversion method

based on a specific cost function which is constructed from the Constitutive Relation Error (CRE) concept.

1.1.2 The CRE concept

Definition

The energy-based CRE concept has been used for the robust verification of FEM models, that is the a posteriori

estimation of discretization error, for more than thirty years. Pioneering ideas can be found in [Ladevèze, 1975,

Ladevèze and Leguillon, 1983,Ladevèze and Rougeot, 1997,Destuynder and Métivet, 1999], and a general overview

is given in [Ladevèze and Pelle, 2005,Ladevèze and Chamoin, 2015]. The CRE concept, based on dual analysis, is

actually the only way to compute both strict and effective discretization error bounds for linear or nonlinear models of

computational mechanics, that can further be used in mesh adaptivity procedures. We detail here the CRE concept

in the context of linear elasticity models.

We consider an open bounded domain Ω ⇢ Rd, with boundary @Ω, occupied by a linear elastic material (Fig-

ure 1.2). We assume that a displacement field ud is prescribed on part @1Ω of the boundary, and that tractions

fsd are prescribed on the complementary part @2Ω such that @1Ω \ @2Ω = ; and @1Ω [ @2Ω = @Ω. A body force

field fvd may also be given in Ω. Sufficient regularity is assumed for the prescribed data, that is ud 2 [H1/2(@1Ω)]
d,

fsd 2 [H�1/2(@2Ω)]
d, and fd 2 [H�1(Ω)]d. The associated (well-posed) problem is then classically written by splitting
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in 3 groups of equations:

• kinematic admissibility (defining the space Uad of compatible displacement fields verifying Dirichlet boundary

conditions):

u 2 [H1(Ω)]d ; u|∂1Ω
= ud (1.11)

• static admissibility (defining the space Sad of H(div,Ω) stress fields satisfying equilibrium equations written

here in the weak form of the principle of virtual work):

σ 2 [L2(Ω)]d(d+1)/2
s ; r · σ 2 [L2(Ω)]d ;

Z

Ω

σ : ε(v) =

Z

Ω

fvd · v +

Z

∂2Ω

fsd · v 8v 2 U
0
ad (1.12)

• constitutive relation (Hooke’s law):

σ = Kε(u) (1.13)

ε(u) = rrSu denotes the infinitesimal strain associated with the displacement u, K is the symmetric positive definite

Hooke tensor, and U
0
ad is the vectorial space associated with Uad.

!"Ω$%

Ω

&%

&%

:	Sensor	location

!'Ω
v

)

Figure 1.2: Configuration of the reference problem.

A classical primal FE approximation of the problem yields uh 2 U
h
ad ⇢ Uad (with associated stress field σh =

Kε(uh) /2 Sad) and leads to a discretization error field eh = u � uh. A measure kehk2K =
R

Ω
ε(eh) : Kε(eh) of this

error in the energy norm can be defined, and the objective of FE model verification is to compute an a posteriori

error estimate on kehkK. This may be addressed in two ways:

• a primal variational approach, involving the potential energy J1(v) =
1
2

R

Ω
Kε(v) : ε(v)�

R

Ω
fvd · v �

R

∂2Ω
fsd · v

and the search space Uad of compatible displacement fields, leads to:

J1(u) = inf
v2Uad

J1(v) ; kehk2K = 2 (J1(uh)� J1(u)) � 2 (J1(uh)� J1(v)) 8v 2 Uad (1.14)
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so that a computable lower error bound on kehkK can be obtained from a field u⇤ 2 Uad at disposal (which

should live in a larger space than U
h
ad in order to get a meaningful bound);

• a dual variational approach, involving the complementary energy J2(⌧⌧) =
1
2

R

Ω
K�1⌧⌧ : ⌧⌧ �

R

∂1Ω
⌧⌧n · ud and the

search space Sad of equilibrated stress fields, leads to:

J2(σ) = inf
τ2Sad

J2(⌧⌧) ; kehk2K = 2 (J1(uh) + J2(σ))  2 (J1(uh) + J2(⌧⌧)) 8⌧⌧ 2 Sad (1.15)

so that a fully computable (i.e. without any unknown multiplicative constant) upper error bound on kehkK is

obtained from a field σ̂ 2 Sad at disposal. This bound may be used as a guaranteed error estimate for the

assessment of accuracy and as a criterion for mesh adaptivity.

Introducing the energy norm k • kK�1 on stress fields, the previous upper bound on kehk2K/2 is written as:

J1(uh) + J2(σ̂) =
1

2

Z

Ω

(σ̂ �Kε(uh)) : K
�1(σ̂ �Kε(uh)) =

1

2
kσ̂ �Kε(uh)k2K�1 = E2

CRE(uh, σ̂) (1.16)

It is interpreted as a measure of the residual on the constitutive relation for the admissible pair (uh, σ̂) 2 Uad ⇥ Sad;

this is the definition of the CRE functional ECRE .

The bounding property given by E2
CRE(uh, σ̂) is also explained from the Prager-Synge theorem [Prager and

Synge, 1947], that relates the computable CRE term with distances, in energy norms, to the unknown exact solution

(u, σ) of (1.11)-(1.13):

ku� uhk2K + kσ � σ̂k2K�1 = 2.E2
CRE(uh, σ̂) (1.17)

The potential of this theorem in the field of error evaluation, even if not originally applied in the FE context, has been

known for a long time [Tottenham, 1970,Aubin and Bouchard, 1970].

Remark. For any admissible pair (v, ⌧⌧) 2 Uad⇥Sad, the property ECRE(v, ⌧⌧) � 0 naturally yields, and ECRE(v, ⌧⌧) = 0

means that (v, ⌧⌧) corresponds to the exact solution (u, σ) of the problem. Using the CRE concept, the reference

problem can thus be formulated as:

(u, σ) = argmin
(v,τ)2Uad⇥Sad

ECRE(v, ⌧⌧) (1.18)

Geometrical interpretation

Two geometrical representations of the CRE philosophy are now given (see Figure 1.3). The first one, classical, is in

the space of stress fields with inner product hσ1, σ2i =
R

Ω
σ1K

�1
σ2 and associated energy norm. It illustrates the or-

thogonality property involved in the Prager-Synge theorem. The distance between σ̂ and σh, that is
p
2ECRE(uh, σ̂),

is an upper error bound on the discretization error ku� uhkK.
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The second one, not classical but that will be later reused, is in the space of strain-stress couples s = (ε, σ).

This space is equipped with the energy inner product hs1, s2i =
R

Ω
(ε1Kε2 + σ1K

�1
σ2) and associated energy

norm. We denote (Ad) the space of (kinematically and statically) admissible couples, and Γ the space (linear here)

associated with the constitutive law. The exact solution of the well-posed problem (1.11)-(1.13) is defined by the

intersection between (Γ) and (Ad). It is then easy to show that the value ECRE exactly corresponds to the distance

from the solution ŝ = (ε(uh), σ̂) 2 (Ad) at hand to (Γ), with orthogonal projection. The stress field σm obtained after

projection is the average field σm = 1
2 (σ̂ + σh). The Prager-Synge theorem reads in this framework:

hs� ŝ, s� ŝi = 2.E2
CRE(ŝ)

Figure 1.3: Geometrical representations of the CRE concept.

Construction of an equilibrated stress field

The quality of the upper error bound
p
2ECRE(uh, σ̂) depends on that of the statically admissible field σ̂. The suitable

construction of such a fully equilibrated stress field is the key and technical point of the CRE concept. For this

purpose, a first approach may consist in using equilibrated elements in a dual version of FEM [Fraeijs de Veubeke,

1965,Fraeijs de Veubeke and Hogge, 1972,Debongnie et al., 1995,Fraeijs de Veubeke, 2001,Moitinho de Almeida

and Almeida Pereira, 2006,Moitinho de Almeida and Maunder, 2017]. It is the most effective approach, but also the

most technical (use of non-conventional FE spaces in the general case, which are not suited to commercial codes)

and expensive (another global problem needs to be solved). Other approaches in the literature are based on the

post-processing of the approximate FE field σh using:

• a hybrid flux (or Element Equilibration Technique - EET) technique [Ladevèze and Leguillon, 1983, Coorevits

et al., 1992,Ladevèze and Maunder, 1996,Florentin et al., 2002,Ladevèze et al., 2010a,Pled et al., 2011];

• a flux-free technique [Pares et al., 2006,Cottereau et al., 2009,Gallimard, 2009,Pares et al., 2009];

• Raviart-Thomas-Nédélec elements over a dual mesh [Ern et al., 2007,Vohralik, 2007,Vohralik, 2008,Ern and

Vohralik, 2010,Vohralik, 2011].
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We briefly describe here the hybrid flux (EET) technique; more details will be given in Chapter 4. It is made of two

steps:

1. polynomial tractions f̂K|Γ, equilibrated with the external loading (fvd , fsd ), are built on edges Γ of each element

K. They should satisfy f̂K|Γ = fsd if Γ ⇢ @2Ω, as well as equilibrium at the element level:

Z

K

fvd · u⇤
R +

Z

∂K

f̂K · u⇤
R = 0 8u⇤

R 2 UR(K) (1.19)

where UR(K) denotes the space of rigid body motions on K. In practice, tractions are defined as f̂K|Γ = ⌘ΓK f̂Γ,

with ⌘ΓK = ±1 a signed scalar value that ensures continuity of the stress vector across element boundaries,

and they are searched as a linear combination of FE shape functions: f̂K|Γ(x) =
P

j2JΓ
f̂
j
K|Γ�j(x). JΓ denotes

the set of nodes connected to the edge/face Γ.

2. in each element K, a stress field σ̂h|K that satisfies equilibrium:

r · σ̂h + fvd = 0 inK ; σ̂hn = f̂K on @K (1.20)

is constructed. The associated local problems are in practice solved with a quasi-explicit technique and poly-

nomial basis [Ladevèze and Rougeot, 1997], or with a dual approach with degree enrichment (i.e. using

higher-order elements).

The construction of f̂h in the first step leans on the following prolongation (energy) condition:

Z

K

(σ̂h � σh)r�i = 0 =)
Z

∂K

f̂K�i =

Z

K

(σhr�i � fvd�i) (1.21)

which is enforced for all elements K and all nodes i connected to K; �i is the FE shape function associated with

node i. This condition, which automatically ensures the equilibration of f̂K over K (as
P

i �i|K = 1), leads to the

solution to a system of the form:

Rn
X

r=1

br
Kn

(i) = QKn
(i) with QKn

(i) =

Z

Kn

(σhr�i � fvd�i)

b̂r
Kn

(i) =

Z

Γr

⌘Γr

K f̂Γr�i

(1.22)

over the set of elements Kn connected to each node i (patch). Rn is the number of edges of the element Kn

connected to node i. The existence of a solution for the unknowns b̂r
Kn

(i) (projections of tractions f̂Γ on FE shape

functions) of the system is ensured by the equilibrium property (in the FE sense) verified by σh, and uniqueness

may be obtained minimizing a cost function [Ladevèze and Pelle, 2005].

Remark. It can be shown that using the hybrid-flux technique to construct an admissible stress field σ̂h also yields
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ECRE(uh, σ̂h)  CkehkK, where C is a constant independent of the mesh size [Ladevèze and Leguillon, 1983]. This

proves that the CRE-based error estimate has the same convergence rate as the true discretization error.

Extensions to complex models

The CRE concept, primarily used for linear thermal and elasticity problems, can be extended to more complex prob-

lems involving a larger class of constitutive laws, using the duality and convex analysis tools developed in [Moreau,

1966, Nayroles, 1973]. It then enables all numerical error sources of FEM simulations to be controlled, which are

space or time discretizations, as well as algebraic errors generated by iterative algorithms.

For nonlinear material behavior, such as hyper-elasticity, the key concept is the use of the convex dual potentials  

and  ⇤ that define the material law as σ = ∂ψ
∂ε

or ε = ∂ψ⇤

∂σ
. Potentials  and  ⇤ are dual in the Legendre-Fenchel

sense, i.e.:

 ⇤(σ) = sup
ε

{σ : ε �  (ε)}

Linear elasticity corresponds to quadratic potentials  (ε) = 1
2ε : Kε and  ⇤(σ) = 1

2σ : K�1
σ.

The definition of the CRE measure then refers to the previous definition of Legendre-Fenchel duality (related

to the symmetrized Bergman divergence used in statistics [Chen et al., 2008]) and reads for an admissible pair

(ε̂, σ̂) 2 (Ad):

E2
CRE(ε̂, σ̂) =

Z

Ω

( (ε̂) +  ⇤(σ̂)� σ̂ : ε̂) � 0 (1.23)

A geometrical interpretation of this error measure is given in Figure 1.4: for a given point (ε̂, σ̂),  (ε̂) is the area in

blue,  ⇤(σ̂) is the area in red, and σ̂ : ε̂ is the area in grey. The residual quantity  (ε̂) +  ⇤(σ̂) � σ̂ : ε̂ is then the

remaining blank area.

Figure 1.4: Geometrical representation of the CRE measure for nonlinear material behaviors.

For dissipative material behaviors with standard formulation, the clue is the use of internal variables associated

with the thermodynamics framework. This framework leads to the introduction of two pairs of Legendre-conjugate

convex potentials that describe the two complementary parts of the overall material behavior: (i) state equations

ee = Λ(s) = ∂ψ⇤

∂s
; (ii) evolution laws ėp = B(s) = ∂ϕ⇤

∂s
. The CRE measure is then constructed from residuals
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⌘ψ(êe, ŝ) =  (êe) +  ⇤(ŝ)� ŝ · êe and ⌘ϕ( ˙̂ep, ŝ) = '( ˙̂ep) + '⇤(ŝ)� ŝ · ˙̂ep on these two parts, with admissible solution

(êe, êp, ŝ) such that êe+ êp = ê. Terms y ·x correspond to the duality product between variables x and y. Residuals

⌘ψ and ⌘ϕ are local in space and time quantities, so that the global CRE functional reads [Ladevèze, 1998,Ladevèze

et al., 1999,Ladevèze, 2001,Ladevèze and Pelle, 2005]:

E2
CRE|t =

Z

Ω

⌘ψ(êe, ŝ) +

Z t

0

Z

Ω

⌘ϕ( ˙̂ep, ŝ) (1.24)

More details on this functional, with specific application to the elasto-plastic case, will be given in Chapter 5.

Remark. A variant of the literature is to define the CRE measure from the residual on evolution laws alone, enforcing

state equations in the definition of admissibility [Ladevèze, 1998]. This is the concept of dissipation error which has

a clear mechanical meaning and emphasizes the dissipation properties of the model.

Moreover, an alternative CRE measure denoted Drucker’s error can be defined for dynamics problems [Gallimard

et al., 1996,Ladevèze, 1999]; it is based on the Drucker material stability principle [Drucker, 1964].

The CRE concept has been the topic of many studies and applications for FE model verification. Out of early

works, several developments have been proposed over the last two decades for various problems such as stochas-

tics [Chamoin et al., 2012], transient dynamics [Waeytens et al., 2012] and vibratory dynamics [Wang et al., 2016],

or plasticity [Ladevèze et al., 2012]. Applications to several variants of FEM have also been addressed such as

XFEM [Panetier et al., 2010], domain decomposition [Parret-Fréaud et al., 2010, Rey et al., 2014], model reduc-

tion [Ladevèze and Chamoin, 2011, Chamoin et al., 2017], non-conforming approximations (e.g. Discontinuous

Galerkin) [Ern and Vohralik, 2015], isogeometric analysis [Thai et al., 2019], or multiscale analysis [Chamoin and

Legoll, 2018]. Eventually, coupled with adjoint-based techniques, the CRE concept was effectively used for goal-

oriented error estimation [Chamoin and Ladevèze, 2008,Ladevèze, 2008,Ladevèze and Chamoin, 2010,Ladevèze

et al., 2013,Wang et al., 2016,Chamoin and Legoll, 2021].

1.1.3 Modified CRE - mCRE

Definition

During the 1990s, the CRE functional was extended to the framework of inverse problems with overabundant data

and uncertain parameters. This energy-based objective functional, with much physical content, is actually a strong

alternative to conventional least square approaches for parameter identification or updating. When unknown pa-

rameters are constitutive parameters, it is natural to consider cost functions that measure a residual on constitutive

equations (which are less reliable than other equations of the problem) from an admissible solution. These equations

are thus relaxed (with primal (displacement) and dual (stress) variables treated independently) so that the inverse
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problem is regularized by a lower constraint from the model. This is in the same philosophy as regularization coming

from the discretization of a continuous problem, even though the present CRE regularization is much stronger.

In this context of inverse analysis, the CRE functional is related to Kohn-Vogelius functionals introduced inde-

pendently in conductivity imaging (electrical impedance tomography) [Kohn and Vogelius, 1984, Kohn and Lowe,

1988, Kohn and McKenney, 1990, Knowles, 2001]. It leads to a primal-dual formulation of inverse problems, with

physics-guided regularization (see [Chavent et al., 1999] for a mathematical description on these aspects).

For the sake of simplicity, we consider the previous linear elasticity problem with prescribed displacement ud on

@1Ω, tractions fsd on @2Ω, and body force fvd in Ω. In addition, observations dobs are made in order to compensate

the lack of information on material parameters p defining the Hooke tensor K(p); these observations may be local

displacements, strains, load resultants. . .

A first approach for using the CRE concept in the context of this ill-posed problem, in order to identify or up-

date parameters p, consists in selecting the classical CRE functional (1.16) as a cost function and integrating

experimental data as additional constraints to be fulfilled in admissibility [Kohn and Lowe, 1988, Ladevèze and

Reynier, 1989, Ladevèze et al., 1994b, Rota, 1994, Constantinescu, 1995, Geymonat and Pagano, 2003, Latourte

et al., 2008,Florentin and Lubineau, 2010]. In other words, the definition of the admissibility space is revisited, pre-

scribing observations in addition to standard (reliable) kinematic and static information such as equilibrium. Denoting

by (A+
d ) this enriched admissibility space, the resulting optimization problem reads:

psol = argmin
p2P

"

min
(û,σ̂)2(A+

d )
E2
CRE(û, σ̂;p)

#

with E2
CRE(û, σ̂;p) =

1

2
kσ̂ �K(p)ε(û)k2K�1 (1.25)

It is in practice solved in an iterative process.

The optimal admissible solution (ûopt, σ̂opt) 2 (A+
d ) which is obtained at the end of this process satisfies a

relation which (in general) is different from the constitutive relation of the model; this mismatch is directly measured

by the CRE functional, with ECRE(ûopt, σ̂opt;psol) > 0. In the idealistic case where all admissibility conditions,

including these associated with measurements, are compatible with the constitutive relation defined by K(psol),

then ECRE(ûopt, σ̂opt;psol) = 0.

The CRE strategy for inverse problems can be geometrically interpreted as shown in Figure 1.5, as an extension

of Figure 1.3; the minimal distance is searched between an admissible solution (û, σ̂) 2 (A+
d ) and the manifold (Γp)

generated by the parametrized constitutive model. In most situations, (A+
d ) \ (Γp) = ;.

Remark. Duality arguments indicate that the optimal admissible field σ̂, for given p, derives from a displacement

field v, i.e. σ̂ = K(p)ε(v). This property may be advantageously used when solving the problem numerically (see

later).

Remark. The CRE functional still leads two dual formulations in the case of ill-posed problems. Introducing any
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Figure 1.5: Geometrical interpretation of the CRE concept in inverse problems, with (A+
d ) \ (Γp) = ;.

solution (û0, σ̂0) 2 (A+
d ) and noticing that

R

Ω
(σ̂�σ̂0) : ε(u�u0) = 0, the CRE functional is written as E2

CRE(û, σ̂;p) =

J1(û;p) + J2(σ̂;p) with

J1(û;p) =
1

2

Z

Ω

K(p)ε(û) : ε(û)�
Z

Ω

σ̂0 : ε(û)� 1

2

Z

Ω

σ̂0 : ε(û0)

J2(σ̂;p) =
1

2

Z

Ω

K�1(p)σ̂ : σ̂ �
Z

Ω

σ̂ : ε(û0)�
1

2

Z

Ω

σ̂0 : ε(û0)

(1.26)

Remark. In the specific case where both Dirichlet (ũd) and Neumann (f̃sd ) conditions are prescribed on the whole

boundary @Ω, through the enriched admissibility space (A+
d ) with over-specified boundary data, one defines ûD

and ûN that satisfy the well-posed problems:

�r · (K(p)ε(ûD)) = �r · (K(p)ε(ûN )) = f̃vd ; ûD
|∂Ω = ũd ; K(p)ε(ûN )|∂Ω = f̃sd (1.27)

Then, it is easy to show that:

E2
CRE(û

D,K(p)ε(ûN );p) =
1

2

Z

Ω

(ε(ûN )� ε(ûD)) : K(p)(ε(ûN )� ε(ûD))

=
1

2

Z

∂Ω

(K(p)ε(ûD)n� f̃sd ) · (ũd � ûN )

(1.28)

which again illustrates that the CRE functional informs on incompatibilities between prescribed conditions and the

constitutive relation.

In the original procedure (described above) that uses the CRE functional for inverse problems, strongly enforcing

measured data as admissibility constraints is often inappropriate as these data are polluted with measurement noise,

if not corrupted. A more flexible and effective approach is obtained with a modified version of the CRE functional,

called modified CRE (mCRE) and initially studied for model updating in vibration problems [Ladevèze et al., 1994a,

Chouaki et al., 1996,Ladevèze and Chouaki, 1999]. This version is associated with a general framework in which a

distinction is made between:

32



• reliable information on the inverse problem, such as equilibrium equations, location of sensors, or known

boundary conditions;

• less reliable information, such as constitutive relations, measurement values, or imperfectly known boundary

conditions (when applicable, e.g. see [Feissel and Allix, 2007,Diaz et al., 2015]).

Only reliable information is enforced through an admissibility space denoted (A�
d ), e.g. using Lagrange multipliers,

while other information is relaxed and verified at best when minimizing an appropriate residual functional E2
mCRE .

The inverse procedure thus reads:

psol = argmin
p2P

"

min
(û,σ̂)2(A�

d )
E2
mCRE(û, σ̂;p)

#

(1.29)

where the mCRE functional is defined as (considering here that only the constitutive relation and measurement

values are relaxed):

E2
mCRE(û, σ̂;p) = E2

CRE(û, σ̂;p) +
↵

2
(d(û)� dobs)

T
G
�1
obs(d(û)� dobs) (1.30)

Gobs is a scaling matrix similar to that introduced in Section 1.1.1, while ↵ is a positive scalar factor that has here the

dimension of an energy. Therefore, the mCRE cost function appears as a weighted additive combination between

the CRE functional (that corresponds to a distance to the constitutive model) and a quadratic error term (that

corresponds to a distance to experimental data). As seen later, modeling error and measurement noise can naturally

be taken into account in this framework.

Through its formulation, the mCRE approach thus prescribes measurements in a weak manner through penal-

ization. It can also be seen as a classical least squares formulation regularized by physical information on the model

(with regularization parameter 1/↵).

Remark. In [Chavent et al., 1999], it is highlighted that the state constraint in a deterministic least-squares for-

mulation can be included through a penalized potential energy J1, thus minimizing 1
2 (d(û) � dobs)

TG
�1
obs(d(û) �

dobs) +
1
α
J1(û). As the minimal value of J1 is problem-dependent, making this approach somewhat impractical, it

is proposed to define the penalty term as the sum J1 + J2 of potential and complementary energies (with problem-

independent minimal value). This comes down to the definition of the mCRE functional.

The optimal admissible solution (ûopt, σ̂opt) obtained at the end of the process represents a compromise be-

tween modeling and experimental information, which may also be used for data completion in inverse Cauchy prob-

lems [Andrieux and Baranger, 2008]. This compromise between satisfying the less reliable modeling information

(particularly the constitutive relation) and matching the measured data is performed through the value of the scalar

weight ↵. Limiting values correspond to the solution of a classical least-squares minimization (when ↵ ! 0, with
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emphasis put on satisfying the constitutive relation) and of a pure CRE minimization (when ↵ ! 1, with emphasis

put on reducing the discrepancy with data). The influence of ↵ on the sensitivity with respect to measurement uncer-

tainties, and therefore on the quality of the inversion performed using mCRE, was illustrated in [Deraemaeker et al.,

2004, Feissel and Allix, 2007, Banerjee et al., 2013]. In any case, the value ↵ should generally be set in regards

to the a priori knowledge on model and measurements (e.g. using the Morozov principle or the L-curve method)

which is a fundamental aspect of inverse problems participating in their regularization; we will come to this point in

Chapter 3.

The mCRE strategy can again be geometrically interpreted as shown in Figure 1.6; the minimal distance is

searched between an admissible solution (û, σ̂) 2 (A�
d ) and a manifold (Γ+obs

p ) generated by the parametrized

constitutive model and noisy observations. Here again, (A�
d ) \ (Γ+obs

p ) = ; in most situations.

Figure 1.6: Geometrical interpretation of the mCRE strategy, with (A�
d ) \ (Γ+obs

p ) = ;.

Properties and applications

Several advantages and attractive properties have been reported in the literature when using the mCRE functional.

We may list:

• improved convexity (empirically observed) over its least-squares counterpart, and much less sensitivity to

initial guess, with experimental evidence [Bonnet and Constantinescu, 2005, Feissel and Allix, 2007, Hadj-

Sassi, 2007] or mathematical proof [Aquino and Bonnet, 2019];

• excellent capability for spatial localization of errors (to localize defects or erroneous sensors for instance) [Bon-

net and Abdallah, 1994,Bui and Constantinescu, 2000,Banerjee et al., 2013,Ben Azzouna et al., 2015,Bonnet

and Aquino, 2015,Barbarella et al., 2016];

• robustness to measurement noise [Allix et al., 2005,Feissel and Allix, 2007,Nguyen et al., 2008,Ben Azzouna

et al., 2015];
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• tolerance to incompletely specified boundary conditions [Bonnet and Aquino, 2015, Diaz et al., 2015, Aquino

and Bonnet, 2019].

Inheriting from the flexibility of the CRE concept, the mCRE strategy was successfully applied in many situations

of inverse problems, involving:

• forced vibrations dynamics [Ladevèze et al., 1994a,Chouaki et al., 1996,Ladevèze and Chouaki, 1999,Derae-

maeker et al., 2002,Barthe et al., 2004,Deraemaeker et al., 2004,Ladevèze et al., 2006,Faverjon and Sinou,

2008,Banerjee et al., 2013,Charbonnel et al., 2013,Diaz et al., 2015,Guchhait and Banerjee, 2016,Silva and

Maia, 2017,Guchhait and Banerjee, 2018];

• transient dynamics [Allix et al., 2003,Allix et al., 2005,Feissel and Allix, 2007,Nguyen et al., 2008,Bonnet and

Aquino, 2015];

• acoustics [Decouvreur et al., 2004,Decouvreur et al., 2007,Decouvreur et al., 2008,Warner et al., 2014];

• nonlinear material behaviors [Chouaki et al., 1998,Chouaki et al., 2000,Nguyen et al., 2008,Marchand et al.,

2019];

• probabilistic models (when considering a family of similar structures) [Ladevèze et al., 2006, Faverjon et al.,

2009];

• joint or connexion parameters [Gant et al., 2011,Oliveira et al., 2016,Oliveira et al., 2020];

• corrupted measurements [Allix et al., 2005,Feissel and Allix, 2007];

• measurements from imaging [Ben Azzouna et al., 2015,Huang et al., 2016,Ghosh et al., 2017];

• in-situ measurements [Charbonnel et al., 2013,Bouclier et al., 2013].

In recent years, a goal-oriented variant of the mCRE approach was also proposed [Chamoin et al., 2014, Djatouti

et al., 2020, Djatouti et al., 2021], and the mCRE was used with Kalman filtering for sequential data assimila-

tion [Alarcon et al., 2011, Alarcon, 2012, Marchand et al., 2016] with evolving model parameters such as structural

damage.

Simple 1D illustration

As a simple illustration of the mCRE philosophy, let us consider a bar of length L and cross section S. It is clamped

at x = 0, with prescribed traction loading Fd (assumed to be known) and measured displacement uobs at end point

x = L (Figure 1.7). The goal is to identify Young’s modulus E.
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Figure 1.7: Ill-posed problem on an elastic bar.

In this simple case, the mCRE functional reads:

E2
mCRE(û, N̂ ;E) =

1

2

Z L

0

1

ES
(N̂ � ES

dû

dx
)2 +

↵

2

(û(L)� uobs)
2

�2
u

(1.31)

with �2
u a normalization factor (e.g. variance of the measurement noise), and (û, N̂) an admissible axial displacement-

force pair. The admissibility constraints are:

û(0) = 0 ;
dN̂

dx
= 0 on ]0, L[ ; N̂(L) = Fd (1.32)

so that the admissible force field reads N̂(x) = Fd and is unique.

Introducing � = ↵/�2
u, the minimization of the mCRE functional with respect to û (for fixed E) reads:

Z L

0

(ES
dû

dx
� Fd)

dû⇤

dx
+ �(û(L)� uobs)û

⇤(L) = 0 8û⇤ such that û⇤(0) = 0 (1.33)

and integration by parts leads to the following conditions:

d2û

dx2
= 0 on ]0, L[ ; ES

dû

dx
(L)� Fd + �(û(L)� uobs) = 0 (1.34)

Consequently, the optimal admissible displacement field reads:

û(x) =
Fd + �uobs

ES + �L
x (1.35)

We recover that this field corresponds to (Fd/ES)x when ↵! 0 (classical least-squares formulation) and (uobs/L)x

when ↵ ! 1 (pure CRE formulation). In any case, the solution of the inverse problem is Esol = FdL/Suobs,

independently of ↵ and with EmCRE(ûopt, N̂opt;Esol) = 0 in this simple case.

Practical implementation

The minimization (1.29) of the mCRE functional is in practice performed from an iterative two-steps algorithm (al-

ternating direction strategy of block Gauss-Seidel type), in which optimal admissible fields are first computed (for

fixed p), before minimizing the obtained mCRE cost function with respect to model parameters (for fixed admissible
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fields). This appears as a relaxation method. Also, a convergence criterion is defined such as a threshold ✏ on the

value of the mCRE cost function. The algorithm is summarized as:

0. Initialize the parameter set p(0) and define the stopping criterion threshold ✏

Iteration loop (iteration n+ 1)

1. Compute optimal admissible fields (û(n+1), σ̂(n+1)):

(û(n+1), σ̂(n+1)) = argmin
(û,σ̂)2(A�

d )

E2
mCRE(û, σ̂;p

(n)) (1.36)

2. Update model parameters:

p(n+1) = argmin
p2P

FmCRE(p) with FmCRE(p) = E2
mCRE(û

(n+1), σ̂(n+1);p) (1.37)

3. Stop if FmCRE(p
(n+1))  ✏. Otherwise, increment n and go to Step 1.

Remark. With the previous iterative scheme, the two partial and complementary minimization steps are made inde-

pendent. Consequently, the cost function used to update model parameters in Step 2 may be defined in alternative

ways, such as from the CRE term E2
CRE(û

(n+1), σ̂(n+1);p) alone [Feissel and Allix, 2007,Nguyen et al., 2008] or from

the Fröbenius norm on constitutive discrepancy [Guchhait and Banerjee, 2016]. Nevertheless, such approaches do

not allow for the direct evaluation of gradients of the cost function any longer (see below).

When p contains a large number of parameters (e.g. when describing a parameter field [Banerjee et al., 2013]),

the spatial distribution of the cost function FmCRE(p) may be used to select and update only parameters that

contribute most to the mismatch [Deraemaeker et al., 2002], in addition to detecting corrupted sensors. This is the

so-called localization step, performed at the end of Step 1. The associated hierarchical updating, with correction

of parameters in zones with high local error alone (similarly to mesh adaptation procedures), is associated with a

minimization problem in a lower-dimension parameter space. It thus reduces the computational cost and participates

in the regularization process by guiding the identification/updating (since naturally favoring an optimal configuration

close to the initial one). Zones may correspond to sub-structures in engineering applications, or to finite elements

when identifying a parameter field.

We now describe the numerical implementation of the two minimization steps. We still consider an elasticity

problem with constitutive materials to be identified or updated. We also assume that out of overabundant measured

data dobs, the prescribed loading and boundary conditions are reliable and correspond to these of the well-posed

problem (1.11)-(1.13), so that (A�
d ) = (Ad); alternative situations will be considered in Chapter 2.
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In Step 1 of the iterative algorithm, the problem to be solved reads:

min
(û,σ̂)2(A�

d )
E2
mCRE(û, σ̂;p) (1.38)

and thus consists in finding optimal admissible fields for given p (= p(n) at iteration n + 1). The associated con-

strained minimization is conducted by introducing a Lagrangian functional

L(û, σ̂,�;p) = E2
mCRE(û, σ̂;p)�

Z

Ω

σ̂ : ε(�)�
Z

Ω

fvd · ��
Z

∂2Ω

fsd · �

�

(1.39)

in order to enforce the static admissibility constraint on σ̂ (while the kinematic admissibility constraint on û is directly

included in the search space here). � is a Lagrange multiplier field chosen in U
0
ad in order not to reveal unknown

reaction forces on @1Ω. As such, the approach is a mixed one; however it is possible from dualization to derive σ̂

from a displacement field v̂, under the form σ̂ = K(p)ε(v̂) [Ladevèze et al., 1994b].

After discretization in space using the FEM (neglecting discretization error for the moment), and using the defi-

nition (1.30) of the mCRE, the Lagrangian functional reads:

Lh(Û, V̂,Λ;p) =
1

2
(Û� V̂)TK(p)(Û� V̂) +

↵

2
(ΠÛ�Uobs)

T
Gobs(ΠÛ�Uobs)�Λ

T (K(p)V̂ � F) (1.40)

with Û, V̂, and Λ the vectors of nodal values for û, v̂, and �, respectively. K and F are the global stiffness

matrix and global load vector, respectively, while Π is a Boolean operator that extracts observation outputs from the

displacement field. As û should be kinematically admissible, we introduce the notation Û = [Ud, Ûa]
T with Ud the

vector of prescribed dofs (obtained from the discretization of ud on @1Ω), and Ûa the complementary vector of active

(or free) dofs. Similarly, as � 2 U
0
ad, we write Λ = [0,Λa]

T .

The first-order Karush-Kuhn-Tucker necessary optimality conditions, by searching the saddle-point of Lh, read:

�ÛT
⇣

K(p)(Û� V̂) + ↵ΠT
Gobs(ΠÛ�Uobs)

⌘

= 0 8�Û = [0, �Ûa]
T

�V̂T
⇣

K(p)(V̂ � Û)� K(p)Λ
⌘

= 0 8�V̂

�ΛT (K(p)V̂ � F) = 0 8�Λ = [0, �Λa]
T

(1.41)

They lead to V̂ = Û+Λ (+ a rigid body displacement which is taken as 0 here) and to the solution of a coupled

linear system of the form:

2

6

4

↵(ΠTGobsΠ)aa �Kaa(p)

Kaa(p) Kaa(p)

3

7

5

0

B

@

Ûa

Λa

1

C

A
=

0

B

@

↵(ΠTGobs)aoUobs � ↵(ΠTGobsΠ)adUd

Fa � Kad(p)Ud

1

C

A
(1.42)
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where we used the block notation

K =

2

6

4

Kdd Kda

Kad Kaa

3

7

5
=

2

6

4

Kdo

Kao

3

7

5
; F =

2

6

4

Fd

Fa

3

7

5
(1.43)

Re-organizing this system yields the following equation for Ûa:

[Kaa(p) + ↵(ΠT
GobsΠ)aa]Ûa = Fa + ↵(ΠT

Gobs)aoUobs � Kad(p)Ud � ↵(ΠT
GobsΠ)adUd (1.44)

This again shows that the mCRE leads to a predicted state, in terms of optimal admissible field Û, that is recov-

ered from both model and measurements. It thus defines a hybrid construction with data-based model enrichment

(i.e. correction of the model ignorance) similarly to other variational data assimilation approaches such as the 3D-

VAR [Law et al., 2015], the PBDW method [Maday et al., 2015a,Maday et al., 2015b], the sparse-PGD [Ibanez et al.,

2018, Ibanez et al., 2019,Chinesta et al., 2020], or other related approaches [Peherstorfer and Willcox, 2015,Rubio

et al., 2019a].

Remark. Properties of the coupled system (1.42), which were mathematically studied [Aquino and Bonnet, 2019],

play a fundamental role in the qualitative and computational aspects of the mCRE minimization. It was shown that

this specific system leads to a unique and stable solution (provided data is abundant enough) even in the case of

missing information on boundary conditions for the forward problem.

In addition, optimized numerical methods may be used to solve the coupled system. As an example, a (block)

successive over-relaxation (SOR) technique was used in [Banerjee et al., 2013] in the case of large-scale inverse

identification, enabling for the use of existing parallel FE codes with minimal modifications. Also, the Sherman-

Morrison-Woodbury formula was used in [Marchand et al., 2019]; it is of the form (K+↵ΠT
Π)�1 = K�1�↵K�1

Π
T (Id+

↵ΠK�1
Π

T )�1
ΠK�1 and enables the system to be solved by the factorization of K and of (Id + ↵ΠK�1

Π
T ) which is

usually a low-rank matrix.

Remark. In case the loading F is uncertain and has to be updated, the mCRE functional should read:

1

2
(Û� V̂)TK(p)(Û� V̂) +

↵1

2
(ΠÛ�Uobs)

T
G
U
obs(ΠÛ�Uobs) +

↵2

2
(F� Fobs)

T
G
F
obs(F� Fobs) (1.45)

and stationarity on fields Û, V̂, Λ and F should be written to solve the saddle-point problem and find optimal fields.

In Step 2 of the iterative algorithm, the problem to be solved reads:

min
p2P

E2
mCRE(û, σ̂;p) or min

p2P
Eh2

mCRE(Û, V̂;p) (discretized version) (1.46)

for fixed admissible fields (û, σ̂) or vectors (Û, V̂) obtained at Step 1. This nonlinear minimization may be advanta-

39



geously conducted using a steepest descent approach, of the form:

p(n+1) = p(n) � BnrpE
h2

mCRE|p(n)

This takes advantage of good convexity properties of the mCRE functional, and of the fact that the gradient of this

functional is easily computed using the adjoint-state method and available fields obtained at Step 1:

d

dp
Eh2

mCRE(Û, V̂;p)|p(n) =
d

dp
Lh(Û, V̂,Λ;p)|p(n)

=
@Û

@p |p(n)

@Lh

@Û
+
@V̂

@p |p(n)

@Lh

@V̂
+
@Λ

@p |p(n)

@Lh

@Λ
+
@Lh

@p |p(n)

=
1

2
(Û� V̂)T

@K(p)

@p |p(n)
(Û� V̂)�Λ

T @K(p)

@p |p(n)
V̂

=
1

2
(Û� V̂)T

@K(p)

@p |p(n)
(Û+ V̂)

(1.47)

In practice, a backtracking line search (Armijo-Goldstein rule [Armijo, 1966]) may be used to set the step length �n,

with Bn = �nId, in the gradient algorithm, but other methods (e.g. BFGS [Shanno, 1970] or Gauss-Newton) may

also be used to define Bn.

Remark. The iterative procedure used to minimize the mCRE functional is multi-query, as a series of similar systems

(with different values for p) needs to be solved to define the saddle-point and compute gradients of the cost function.

Therefore, to highly reduce the computational cost, ROM techniques may be used [Bouclier et al., 2013, Marchand

et al., 2016] in order to find explicit representations of the optimal admissible fields with respect to p (and possibly

to other quantities ↵, dobs. . . ) over the range of input values. This will be the topic of Chapter 4.

The global minimization process is stopped when Eh2

mCRE  ✏ = ✏rE
h2

0 with Eh2

0 = 1
2U

T
0 KU0 (reference value

obtained from an initial U0) and ✏r a relative error threshold. Alternatively, the stopping criterion may be based on

the stagnation of the mCRE functional along successive iterations; this latter criterion is more appropriate in some

cases, particularly when the model is biased (see Chapter 3).

Confidence information

In [Charbonnel et al., 2013], a confidence interval is given for the obtained identified/updated parameter set p(N)

obtained after stopping the iterative process at iteration N , depending on the threshold ✏r. Performing a second-

order Taylor expansion of the mCRE functional around p(N), under the form

FmCRE(p
(N) + �p) = FmCRE(p

(N)) + �pT
rpFmCRE|p(N) + �pT

r
2
pFmCRE|p(N)�p
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the inequality FmCRE(p
(N)+�p)  ✏rE

h2

0 is solved. This provides for possible parameter values inside a confidence

interval associated with the chosen threshold isovalue.

At convergence (n = 1) of the mCRE procedure with solution psol, it is again fruitful to observe how a per-

turbation �dobs in measurements leads to a variation �p in the optimal parameter value. Using a steepest descent

method, we get:

�p = B1[
@

@dobs
rpE

h2

mCRE|psol
]�dobs = B1[

@

@dobs
rpE

h2

CRE|psol
+ S

T
p|psol

Gobs]�dobs (1.48)

with ST
p = @d(û)/@p. In the case of a Gauss-Newton algorithm, it yields B1 = H

�1
mCRE|psol

= [HCRE|psol
+

ST
p|psol

GobsS
T
p|psol

]�1 with HCRE and HmCRE the (approximate) Hessian matrices of CRE and mCRE functionals.

From these pieces of information, the covariance matrix ΣΣp = h�p · �pT i on identified parameters can be

recovered from that ΣΣobs = h�dobs · �d
T
obsi of measurement noise and other computable sensitivity quantities.

Stochastic interpretation

A first attempt to draw a parallel between the CRE concept and the general probabilistic inverse problem theory

can be found in [Bonnet and Abdallah, 1994], in which the local value of the CRE functional is used to evaluate

the relative variances on model parameters. A more general stochastic interpretation of mCRE was proposed

in [Deraemaeker et al., 2004], referring to the Bayesian inference framework introduced in Section 1.1.1. This

interpretation, which we give below, will be useful in further developments of the PhD work, particularly to define the

overall quality of the model and perform model selection with respect to information contained in experimental data

(see Chapters 3 and 5).

Since covariance on the modeling error is usually not known, the idea is to integrate modeling error in a different

manner into Bayesian inference, in a more global and less strict framework that allows for more flexibility in the

model structure. The value of the CRE functional is thus used to globally quantify the confidence on the less reliable

parts of the model (constitutive relation in particular), into a pdf ⇡mod / e�
E2
CRE(û,σ̂;p)

α accounting for modeling error.

The confidence on modeling exponentially decreases when the CRE value E2
CRE(û, σ̂;p) increases, with a rate

specified by scalar value ↵.

The likelihood pdf defined in (1.5) is then revisited and is now written as:

⇡(dobs|p) = C1.e
� 1

2 (dobs�d(û(p)))TΣΣ
�1
obs(dobs�d(û(p))).e�

E2
CRE(û,σ̂;p)

α (1.49)

for any admissible solution (û, σ̂). The MAP principle (with uniform prior ⇡(p)) or the maximum likelihood principle
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then yield the minimization of a mCRE-type functional:

min
p2P

✓

1

↵
E2
CRE(û, σ̂;p) +

1

2
(d(û)� dobs)

T
ΣΣ

�1
obs(d(û)� dobs)

◆

(1.50)

We thus clearly observe how the regularization process is performed with mCRE; this is a regularization from

physics, imposing strong constraints on admissible fields while relaxing unreliable information. Furthermore, the

mCRE metric is here naturally derived from statistics concepts.

1.2 Inverse analysis in the context of DIC

1.2.1 Basics on the DIC method for full-field measurement

Introduction

The definition and exploitation of image-based full-field measurement methods has been one of the main break-

throughs of the last decades in experimental and computational mechanics. Since the late 20th century, the rapid

development of these contactless methods (in which pixels are sensors) has offered rich input information for model

identification and updating from inverse analysis. They permit the design of rich heterogeneous tests (in terms

of material, specimen geometry or loading) in order to characterize behaviors of complex material such as com-

posites [Périé et al., 2009]. They thus progressively replaced traditional time-consuming procedures in with multiple

homogeneous tests were considered. Among all optical techniques that are available to retrieve full-field experimen-

tal data (photoelasticity, interferometry, holography, topography. . . ), digital image correlation (DIC) is an attractive

technique as it provides large quantitative experimental information in the form of displacement/strain fields. Typ-

ically 1,000 to 10,000 independent measurement points are obtained in 2D from 16-bit images of 1 to 100-Mpixel

definition (2-200 MB data sets).

Initiated in the early 80s [Kavanagh and Clough, 1971,Burt et al., 1982,Peters and Ranson, 1982,Sutton et al.,

1983,Chu et al., 1985,Bruck et al., 1989], DIC has been widely studied, developed, and applied during the last two

decades using modern devices such as high-speed CCD cameras [Hild and Roux, 2006,Sutton et al., 2009,Hild and

Roux, 2012b, Sutton, 2013, Sutton and Hild, 2015]. It has now become a common tool in mechanical engineering

and materials science. It has also been extended to stereo correlation (SC) that use several cameras [Bay et al.,

1999, Garcia et al., 2002, Dufour et al., 2015, Pierré et al., 2016], as well as digital volume correlation (DVC) using

X-ray tomography or magnetic resonance imaging (MRI) [Bay, 2008,Leclerc et al., 2011].
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The DIC procedure

The purpose of DIC is to extract the displacement field uDIC(x) that best matches between two images: (i) a

reference image f(x); (ii) a deformed image g(x). Each image is a set of pixels (x denotes the pixel coordinates)

with distribution of light intensity or gray level values. These values are generated by a random texture (speckle),

are encoded over few bits (typically 8 to 16), and are stored as matrices. Invoking the local gray-level conservation

f(x) = g(x+uDIC(x)), and relaxing it in order to tackle ill-posedness due to noise, the field uDIC(x) is determined

by minimizing a nonlinear correlation residual. Introducing the covariance matrix ΣΣpix = [Σpix(x1,x2)] of gray-level

noise, this residual functional is defined as

�2(u) =
1

Npix

X

x12ω

X

x22ω

(f(x1)� g(x1 + u(x1)))Σ
�1
pix(x1,x2) (f(x2)� g(x2 + u(x2))) (1.51)

with ! the domain occupied by the image which is analyzed, and Npix the associated number of pixels. Assuming

that the acquisition noise field is Gaussian and white (i.e. spatially uncorrelated), with zero mean and covariance

Σpix(x1,x2) = �2f .�(x1,x2) (�f being the standard deviation of noise on each pixel), and that this noise affects each

image f and g independently, the previous residual functional reduces to:

�2(u) =
1

2�2fNpix

X

x2ω

(f(x)� g(x+ u(x)))
2 (1.52)

and thus involves the L2-norm which is optimal for white noise.

Remark. Since x+u(x) may be non-integer, a gray level interpolation is required to evaluate g(x+u(x)). This may

be performed using linear or spline interpolation for instance.

Minimizing �2(u) is still an ill-posed problem as it attempts to find a vector u(x) per scalar quantity f(x) and at

every pixel position x. Computational approaches addressing this issue can be split in two categories, depending

on the domains on which the gray level residual is defined and the way the regularization is performed.

On the one hand, local subset-based approaches (widely employed in commercial DIC codes) use a local match-

ing procedure on sub-images or zones of interest (ZOI) which are treated independently [Sutton et al., 1983, Chu

et al., 1985,Bay et al., 1999,Bay, 2008,Sutton et al., 2009,Sutton, 2013]. The associated correlation residual reads:

�2
L(u) =

1

2�2fNpix

X

x2ZOI

(f(x)� g(x+ u(x)))
2 (1.53)

Assuming that u(x) is constant over the ZOI (even though linear or quadratic displacement fields may also be consid-

ered), the minimization of (1.53) is equivalent to maximizing the cross-correlation (f ⇤ g)(u) = P

x2ZOI f(x)g(x+u)

which may be performed using the Fourier transform.

43



In such local approaches, the finite extension of the ZOI naturally introduces a filtering of the displacement field,

whereas the size of the ZOI drives the measurement uncertainties. However, due to the solution of separate prob-

lems with no interconnectivity, a drawback of local approaches is the non-continuity of the recovered displacement

field.

On the other hand, global approaches minimize a correlation residual defined over the whole measurement zone

(region of interest or ROI) [Besnard et al., 2006]:

�2
G(u) =

1

2�2fNpix

X

x2ROI

(f(x)� g(x+ u(x)))
2 (1.54)

This global formulation results in lower measurement uncertainties compared to local approaches [Hild and Roux,

2012a] as the continuity of the searched displacement field u is imposed throughout the ROI.

In order to solve the optimization problem (1.54), a first-order Taylor expansion g(x+�u(x)) ⇡ g(x)+rf(x)·�u(x)

associated with a Gauss-Newton scheme is commonly employed (assuming a small perturbations regime and taking

gradients at theoretical convergence) [Bruck et al., 1989]. This leads to an iterative construction of uDIC(x) with

successive minimization problems of the form:

�u
(k)
DIC = argmin

δu(k)

X

x2ROI

⇣

f(x)� g̃(x)�rf(x) · �u(k)(x)
⌘2

(1.55)

where g̃(x) = g(x + u
(k)
DIC(x)) is the updated deformed image at iteration k, and �u(k) = u

(k+1)
DIC � u

(k)
DIC is the

correction at iteration k + 1.

As the minimization of (1.55) is ill-posed and can not be solved as such (the displacement being only detectable

along the direction of rf ), global approaches enforce additional regularization [Hild and Roux, 2012b]. This may be

performed with global constraint of smoothness on the searched displacement field uDIC (equivalent to a Tikhonov

regularization) [Horn and Schunck, 1981], or using mechanics-based regularization techniques that restrict the

search of uDIC to a kinematic subspace, with decomposition on a meaningful and a priori chosen kinematic basis.

A typical choice is to use a Rayleigh-Ritz formulation over the ROI. Another typical choice, that we use in the PhD

(see Figure 1.8), is to use a Galerkin formulation over a discretized ROI with FE basis [Besnard et al., 2006], i.e.

defining uDIC(x) = N(x)UDIC with N gathering the FEM basis functions and UDIC the vector of unknown nodal

values. Regular elements are usually considered (i.e. quadrilateral 4-node (Q4) elements for 2D images [Hild

and Roux, 2006], and hexahedral 8-node (C8) elements for 3D images) but irregular grids can also be used (e.g.

see [Leclerc et al., 2009,Tomicevic et al., 2013] where unstructured meshes with triangular elements (T3) are used).

The successive minimization problems (1.55) thus lead to solutions of linear systems of the form:

MDIC�U
(k)
DIC = b

(k)
DIC (1.56)
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with MDIC =
P

x2ROI NT
rfrT fN the symmetric semi-positive DIC matrix (computed once for all), and b

(k)
DIC =

P

x2ROI(f � g̃)NT
rf the residual vector at iteration k.

Figure 1.8: DIC procedure with a global approach (from [Leclerc et al., 2009]), the measured displacement field
being obtained from a FE mesh (that is subsequently used for comparison with FE numerical simulations).

Remark. The regularization from a FE basis is a natural approach as it permits a direct comparison with FE sim-

ulations for identification purposes. If the same mesh is used for DIC and simulation, no interpolation/projection

error is introduced and a seamless coupling is obtained between experimental data and FE codes [Avril et al.,

2008a,Leclerc et al., 2009].

Remark. The correlation residual �2
G(u) provides for a good indication on the quality of the recovered displacement

uDIC . It is ideally expected to be of the order of 1. Otherwise, �2
G(u) and its spatial distribution may be used to

enrich the interpolation kinematic basis with mesh refinement or specific basis functions when a priori relevant me-

chanical information is available. A typical case is cracked domains for which the enriched XFEM basis is a suitable

choice [Réthoré et al., 2008,Roux et al., 2009,Rannou et al., 2010] as an alternative to mesh refinement [Fagerholt

and abd O.S. Hopperstad, 2013].

In FE-based DIC methods, the definition of the approximation subspace has a direct impact on the accuracy

of the estimated field uDIC and subsequent parameter identification (see an illustration in Figure 1.9). A very

fine mesh is not necessarily optimal; the number of dofs should indeed be far lower than the number Npix of

pixels in the ROI due to the ill-posedness nature of the correlation problem. The smaller the number of pixels per

element (defining the spatial resolution expressed in pixels), the larger measurement uncertainties that may be a

drawback for further inverse parameter identification. Actually, the image contrast should be sufficiently fine-scaled

with respect to the element size in order to obtain a positive definite matrix MDIC ; if not, MDIC is ill-conditioned if

not rank-defficient. However, the FE space should be rich enough to accurately represent the unknown kinematics

(e.g. strain gradients) [Lindner et al., 2015] and complex geometries [Leclerc et al., 2009].

Consequently, a compromise has to be found (with optimized DIC mesh) in order to manage both measurement

uncertainties and accuracy of the displacement interpolation with small correlation residuals, which may not be
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an easy task [Bornert et al., 2009]. As long as the approximation error due to the mesh remains well below the

uncertainty of DIC, a coarse mesh is beneficial. Conversely, or when the picture contrast is poor, finer meshes

should be used. We will show in Chapter 3 how this can be automatically addressed from the CRE concept.

Figure 1.9: Fitted Poisson ratio versus mesh size (in pixels) in a biaxially loaded elastic specimen: coarse meshes
lead to poor kinematic representations whereas fine meshes lead to high noise sensitivity (from [Leclerc et al.,
2009]).

Remark. The global approach may be associated with a multiscale strategy in order to overcome this compromise

between spatial resolution and uncertainty in measurements [Passieux et al., 2015a]. In this strategy, information

coming from cameras with different resolutions (farfield/nearfield) is used, as well as DIC meshes at different scales.

In any case, the covariance matrix ΣΣDIC of the measured dofs due to image noise �g can be explicitly computed,

so that quantitative information on the signal-to-noise ratio is available. Using (1.56), we directly get �UDIC =

M
�1
DIC

P

x2ROI �gN
T
rf and consequently:

h�UDICi = 0 (no systematic bias) ; ΣΣDIC = h�UDIC · �UT
DICi = 2�2fM

�1
DIC (1.57)

As M
�1
DIC is not diagonal, this shows that the measurement noise stemming from FE-DIC is a spatially correlated

(not white) displacement noise, with higher noise in zones with low contrast, and for edge nodes due to a reduced

connectivity. The spatial correlations thus depend on the image texture and the chosen kinematic basis.

As a result, the output of a FE-based DIC analysis is not only a displacement field over a kinematic basis, but

also correlation residuals map and measurement uncertainty quantification in terms of covariance matrix ΣΣDIC .

These enable to adjust the DIC parameters to make the best out of available images, and to weigh the measured

information as it should. This is an essential aspect of the DIC methodology, since measured displacements are

almost never the ultimate quantity of interest, but rather intermediate data that are to be further processed to

estimate sought mechanical parameters.
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Additional regularization

Out of “hard" regularization using a selected kinematic basis and reduced number of dofs, additional mechanics-

based regularization from a priori information on the mechanical behavior may be introduced in the DIC procedure.

In [Claire et al., 2004,Roux and Hild, 2008,Réthoré, 2010,Ben Azzouna et al., 2011], elastic regularization involving

the balance of momentum equations is used into the DIC algorithm, and it is shown that this acts as a filter removing

the unphysical components of the displacement. Mechanical regularization by forcing equilibrium with penalization

terms is also used in [Tomicevic et al., 2013,Naylor et al., 2019] to limit ill-conditioning and therefore mitigate noise

sensitivity. In this context, a specific treatment of boundary dofs was proposed [Mendoza et al., 2019], distinguishing

the different roles played by Neumann or Dirichlet boundaries in mechanical tests, and proposing a low-pass filtering

(with specific characteristic lengths) of surface tractions and boundary layers.

Also, a specific filtering of the DIC displacement was analyzed in [Avril et al., 2008b,Ben Azzouna et al., 2013] to

decrease measurement noise and improve identification. It is based on a diffuse approximation algorithm (moving

least-squares approximation), with reconstruction of a smooth field from a cloud of data points.

1.2.2 Identification from DIC displacements

The FEMU method

The measured displacement field uDIC previously obtained from (global) DIC can be used as input data for indirect

identification of a set p of constitutive parameters. Among all possible identification methods available with full-

field measurements (see [Avril et al., 2008a] for an overview), the Finite Element Model Updating (FEMU) method

is the most popular and widely employed in practical applications [Grédiac, 2004, Kajberg and Lindkvist, 2004,

Anghileri et al., 2005,Molimard et al., 2005,Giton et al., 2006,Lecompte et al., 2007,Pagnacco et al., 2013,Rahmani

et al., 2013]. In its FEMU-U version, it is a versatile incremental least-squares method that aims at minimizing, by

varying the parameter set p, the gap between the displacement field uDIC and its simulated counterpart us(p) (see

Figure 1.10). The field us(p) is in practice obtained from a FE computation, using a constitutive model parametrized

by p and some Dirichlet boundary conditions extracted from DIC. The same mesh is usually used for the numerical

construction of us and the representation of the DIC displacement uDIC , even though this is not compulsory.

Denoting NDIC the total number of kinematic dofs in the DIC mesh, the following weighted least squares function

involving the appropriate Mahalanobis distance (originating from the Bayesian framework, see Section 1.1.1) is

introduced:

FU (p) =
1

NDIC
(Us(p)�UDIC)

T
ΣΣ

�1
DIC (Us(p)�UDIC) (1.58)

Us and UDIC are nodal value vectors associated with fields us and uDIC , respectively, while ΣΣDIC = 2�2fM
�1
DIC

is the available covariance matrix of DIC measurement noise defined in the previous section (see (1.57)). The
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Figure 1.10: Schematic view of FEMU identification.

use of ΣΣDIC enables to transfer the impact of noise coming from images onto the uncertainty of the identified

parameters [Leclerc et al., 2009,Gras et al., 2013]. Furthermore, the prefactor 1/NDIC is such that, at convergence,

noise in the measured displacement should by itself endow FU (p) = 1. The value of FU is thus an intensive quantity

that may be used to evaluate the quality of the identification and select an appropriate mechanical model [Neggers

et al., 2017]; any deviation from noise induces a level of the cost function that is on average greater than 1.

Remark. When image information is not available (e.g. when considering synthetic data), a simplified weighting

matrix Σ̃Σ
�1

DIC = 1
2γ2

f

R

ROI
NTN may be used in the previous cost function FU (mean field assumption).

Measured reaction forces or applied loads Fobs may also be added in the FEMU identification process in order to

complement kinematic experimental data. Out of providing additional data, different in nature from the kinematics,

they are crucial information when identifying stress-related parameters (as Young’s moduli) since purely kinematic

information (with no data set on scales) does not permit to provide an absolute characterization of such constitutive

parameters; dimensionless quantities such as the ratio of Young’s moduli or Poisson’s ratio can yet be extracted

from purely kinematic data [Gras et al., 2013]. In this framework, it is valuable to compare measured reaction forces

Fobs with simulated counterparts Fs, these being obtained from the parametrized constitutive law and Dirichlet

boundary conditions that are provided by DIC measurements. An additional term may thus be added to the FEMU

cost function [Mathieu et al., 2015,Bertin et al., 2016a]; it reads:

FF (p) =
1

NF
(Fs(p)� Fobs)

T
ΣΣ

�1
F (Fs(p)� Fobs) (1.59)
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where NF is the number of load cells, and ΣΣF is the covariance matrix of the measured loads, usually chosen as

�2F Id with �2F = ⇢21|F|
2 + ⇢20 (sum of load uncertainty, proportional to the magnitude of the load, and measurement

uncertainty). The resulting FEMU identification based on the combined displacement fields and reaction forces,

referred to as FEMU-UF, then involves the global cost function:

FUF (p) =
NDIC

NDIC +NF
FU (p) +

NF

NDIC +NF
FF (p) (1.60)

The optimized weighting in the additivity of functionals FU and FF stems from a Bayesian foundation. It is the

counterpart of the statistical independence between image and load measurements (which implies that probabilities

are multiplied), and it leads to the smallest variance for the estimated parameter set p.

Remark. When FF is minimized alone, it corresponds to a load-based FEMU procedure called FEMU-F [Pagnacco

et al., 2005].

The solution of the FEMU optimization problem can then be performed with iterative correction on the simulated

FE quantities. Considering for instance the FEMU-U functional FU (p) defined in (1.58), a first-order Taylor expansion

is introduced:

Us(p
(n) + �p(n)) = Us(p

(n)) + Sp�p
(n) (1.61)

with �p(n) the correction of p at iteration n + 1 and Sp = ∂Us

∂p
the matrix of sensitivity fields. This matrix may

be obtained analytically [Leclerc et al., 2009], even though it is usually approximated in an offline phase using

(expensive) finite differences or more elaborated strategies based on reduced order modeling [Neggers et al., 2016,

Neggers et al., 2018]. From an initial guess p(0), the Gauss-Newton algorithm then leads to the solution of the

following linear system at iteration n+ 1:

HFEMU�p
(n) = b

(n)
FEMU (1.62)

with

HFEMU = S
T
pΣΣ

�1
DICSp =

1

2�2f
S
T
pMDICSp (inexact Hessian matrix)

b
(n)
FEMU = S

T
pΣΣ

�1
DIC(UDIC �Us(p

(n))

(1.63)

It should be emphasized that HFEMU , which can be seen as the restriction of MDIC to a subspace generated by

sensitivity fields, is thus better conditioned than MDIC .

Remark. The previous iterative algorithm, detailed for the FEMU-U version, can be defined in a similar way for

FEMU-F and FEMU-UF versions [Grédiac and Hild, 2013,Mathieu et al., 2015]. It would involve the Hessian matrix

HFEMU�F = SFT

p ΣΣ
�1
F SF

p with SF
p = ∂Fs

∂p
.
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At convergence, the system (1.62) indicates that the fluctuating part �p of the identified parameters due to noise

is �p = H
�1
FEMUST

pΣΣ
�1
DIC�UDIC . Therefore, h�pi = 0 (unbiased identification) and the covariance matrix ΣΣp of the

identified parameters due to image noise reads:

ΣΣp = h�p · �pT i = H
�1
FEMU (1.64)

It indicates the identification uncertainty (associated with a chosen constitutive law), after tracking down the uncer-

tainties from the measurement step (pixel level) down to the identification step (parameter level) [Roux and Hild,

2020]. Several scalar indicators qualifying the robustness of parameter identification and enabling optimal experi-

mental design (by maximizing these indicators) may then be defined, such as: (i) the smallest eigenvalue (or the

ratio between smallest and highest eigenvalues) of HFEMU [Bertin et al., 2016a, Chamoin et al., 2020]; (ii) the

quantity det(HFEMU ) (inverse of the uncertainty volume). In addition, parameters for which uncertainty is below the

measurement noise can be discarded from the identification procedure.

Alternative identification methods

A large overview of available identification techniques using full-field measurements obtained from imaging tech-

niques is given in [Avril et al., 2008a]. Out of the FEMU method, we mention:

• the Equilibrium Gap Method (EGM) [Claire et al., 2002, Roux and Hild, 2008] based on the minimization of

equilibrium residuals after discretizing the balance equations. It was used for the identification of a distribution

of elastic properties and its evolution during damage tests [Claire et al., 2004, Claire et al., 2007], for the

identification of damage models [Périé et al., 2009, Ben Azzouna et al., 2011] or parameters of orthotropic

composite materials [Crouzeix et al., 2009].

• the Virtual Fields Method (VFM) [Grédiac, 1989, Grédiac et al., 2002a, Grédiac et al., 2006, Grédiac and

Pierron, 2006, Promma et al., 2009] using virtual works principle and consisting in minimizing the difference

between internal and external virtual works by optimizing material parameters. The key point of the method,

which requires full-field measurements over the whole domain, is the appropriate choice of virtual fields in

order to extract relevant information for identification purposes. The VFM was applied in various contexts, in

particular for the characterization of composite materials [Pierron et al., 2000,Pierron et al., 2007] or damage

models [Chalal et al., 2006]. It was also shown [Avril and Pierron, 2007] that the stationarity conditions for cost

functionals associated with alternative identification methods (including FEMU or EGM) could be interpreted

in terms of the virtual fields method for suitably chosen virtual fields.

• the Reciprocity Gap Method (RGM) [Bui, 1993, Andrieux et al., 1999] relying on the Maxwell-Betti reciprocity

relation between the measured field and a fictitious solution field in the absence of the unknown elements to
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be identified. Valid for linear constitutive laws, it was mainly used for source or crack identification [Andrieux

and Abda, 1996, Bui et al., 2004, Andrieux and Bui, 2006, Andrieux et al., 2013] by minimizing the reciprocity

gap. It is a suitable method in situations where mechanical field measurements are available on the full outer

boundary of a body.

• the Constitutive Equation Gap Method (CEGM), using similar ideas as the CRE concept. As detailed in Sec-

tion 1.1.3, a specificity of this method is that it relaxes the constitutive equation (which is an approximate

mathematical representation) and uses the associated residual as a guiding norm for the identification. Con-

versely, reliable information such as equilibrium is strongly enforced. A pure CRE version (with experimental

data imposed as constraints) was used for identification from full-field measurements in [Geymonat et al.,

2002,Geymonat and Pagano, 2003,Florentin and Lubineau, 2010,Florentin and Lubineau, 2011,Pagano and

Bonnet, 2013, Moussawi et al., 2013, Lubineau et al., 2015, Babaniyia et al., 2017] for linear problems and

in [Latourte et al., 2008,Blaysat et al., 2012] for nonlinear elastoplasticity problems. The modified CRE version

was investigated in [Calloch et al., 2002, Ben Azzouna et al., 2015, Barbarella et al., 2016, Barbarella et al.,

2017,Ghosh et al., 2017].

We mention that several of these methods consider strain information, obtained by numerical differentiation of DIC

data, which often causes significant amplification of the original measurement errors.

In the next chapters, we will investigate a robust identification procedure based on the mCRE concept.

1.2.3 Integrated approach: I-DIC

Numerical procedure

In the previously described DIC-FEMU two-step procedure, displacement data are only an intermediate quantity,

whose computation may imply constraints (e.g. coarse mesh for DIC to be well-conditioned) that are not ideal to

FEMU. The idea in integrated DIC (I-DIC) is to merge measurement and identification procedures in a single step

with integration of the identification step into the DIC algorithm [Hild and Roux, 2006]. I-DIC thus directly uses the

images (rather than a measured displacement field) to determine material parameters, as well as bases dedicated

to the mechanical problem which is considered. A specificity of I-DIC is that it allows any mesh size and structure

(avoiding discretization errors), as the mesh size does not prevent the convergence of computations; in [Leclerc

et al., 2009] for instance, the element size was chosen as a decreasing function of the sensitivity with respect to

the studied parameters. I-DIC also allows standard FE codes (e.g. Abaqus) to be used in a non-intrusive way,

and in many contexts [Roux and Hild, 2006, Leclerc et al., 2009, Réthoré, 2010, Mathieu et al., 2012, Lindner et al.,

2015,Mathieu et al., 2015,Bertin et al., 2016b,Neggers et al., 2017].

In the I-DIC framework, dofs in image correlation are directly related to the parameters p to be identified (elasticity
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parameters, stress intensity factors. . . ). A restricted number of dofs is then involved, which is beneficial for the

conditioning of the inverse procedure. I-DIC thus consists in minimizing the gap between image frames f and g

using a specific kinematics us(p) driven by a parametrized model, rather than simple standard FE representations.

The parametrized closed-form solutions us(p), satisfying the constitutive equation and equilibrium, may be obtained

analytically, from classical FEM, or using ROM.

The I-DIC functional to be minimized reads:

FIDIC(p) =
1

2�2fNpix

X

x2ROI

(f(x)� g(x+ us(x,p)))
2 (1.65)

and leads (after discretization with us = NUs) to an iterative strategy with successive linear systems of the form (at

iteration n+ 1):

HIDIC�p
(n) = b

(n)
IDIC (1.66)

with

HIDIC =
X

x2ROI

S
T
pN

T
rfrT fNSp (symmetric semi-positive Hessian matrix)

b
(n)
IDIC =

X

x2ROI

(f � g̃)ST
pN

T
rf

(1.67)

These two quantities come down to HIDIC = ST
pMDICSp and b

(n)
IDIC = ST

pb
(n)
DIC when similar meshes are used

in DIC-FEMU and I-DIC. This shows that I-DIC merely consists of a projection onto the parameter space through

sensitivity fields Sp = @Us/@p [Mathieu et al., 2015].

At convergence, and if only random acquisition noise is present, the expectation value of FIDIC should approach

unity. Also, the system (1.66) implies that the fluctuating part �p of the identified parameters due to image noise is

�p = H
�1
IDICST

p

P

x2ROI �gN
T
rf , so that [Mathieu et al., 2015]:

h�pi = 0 ; ΣΣp = h�p · �pT i = H
�1
IDIC (1.68)

This result indicates that the procedure is unbiased and provides an estimate on the reliability of the identified

parameters.

In theory, if the same mesh is used in DIC and in FEMU (for the computation of sensitivity fields), the two-step

DIC-FEMU procedure and the integrated I-DIC procedure should be equivalent. However, this is valid only for small

noise level [Mathieu et al., 2015, Ruybalid et al., 2016], when an appropriate metric with ΣΣDIC is used in FEMU

(weighted FEMU), and when the smallest element size chosen in I-DIC (addressing complex specimen geometry,

strain concentrations. . . ) is not critical for displacement uncertainty with classical DIC.

Remark. As for FEMU-F and FEMU-UF versions, a load-based term of the form (1.59) may be added in the I-DIC
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procedure [Bertin et al., 2016b,Neggers et al., 2017].

Remark. In the case of insignificant or limited sensitivity, the system (1.66) may remain ill-conditioned. In order to

circumvent this difficulty, a Tikhonov-type regularization can be used [Gras et al., 2015] with penalization from a set

p0 of reference parameters obtained from other sources (other experiments, expert knowledge).

A flowchart showing the different steps of weighted FEMU and I-DIC (U versions) is given in Figure 1.11.

Figure 1.11: Different steps of weighted FEMU-U and IDIC-U.

Illustrative example

As an illustration of parameter identification from I-DIC, we report here a test-case considered in [Neggers et al.,

2018]. It deals with the calibration of elastoplastic material parameters from a tensile experiment (cyclic loading)

on an aluminum alloy (AA2219) sample. This sample has a dog-bone geometry with a hole that increases the

sensitivity to the sought material parameters (Figure 1.12). A 4-Mpixel camera (with 16-bit digitization) is used to

get the surface images, with a pixel physical size of 11.14 µm.

In order to drive I-DIC computations, Dirichlet boundary conditions are measured via global DIC with a triangular

mesh, before being extruded along the thickness of the sample in order to be prescribed on the 3D computation

mesh. Global DIC results are shown in Figure 1.13. Components of the displacement and in-plane strain are plotted

in two cross-sections. They enable to observe four strained bands at the end of the test, emanating from the hole

and developing over the last 200 loading increments.

Ten material parameters are identified (Young’s modulus E, Poisson’s ratio ⌫, yield stress �y, and seven ad-

ditional stress increments ∆�i in a non-parametric hardening law). The identification is performed from images

and measured load data Fobs. Figure 1.14 shows the corresponding sensitivity fields for some of the parameters,

computed using finite differences. Figure 1.15 shows various residuals for the initial step of the I-DIC procedure and
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Figure 1.12: Tensile test on dog-bone sample with a hole (left), and associated FE mesh with measured and
extruded Dirichlet boundary conditions (right), from [Neggers et al., 2018].

at convergence: displacement residuals (expressed in pixels) which are the displacement differences between DIC

and I-DIC analyses; gray-level residuals that characterize the overall quality of the I-DIC registration; load residuals.
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Figure 1.13: Global DIC results for the analyzed test: displacement fields expressed in pixels (top and center left)
and normalized gray level residual with respect to the dynamic range of the picture in the reference configuration
(bottom left); corresponding in-plane strain fields (right), from [Neggers et al., 2018].

Figure 1.14: Sensitivity fields for some of the final set of material parameters, from [Neggers et al., 2018]. The
plotted fields are [Si]pi in order to share the same units and make comparisons.
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Figure 1.15: I-DIC residuals for the analyzed test: displacement residuals, normalized gray level residuals, and load
residuals for the first (left) and converged (right) solutions, from [Neggers et al., 2018].
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Chapter 2

Development and implementation of the

mCRE concept with full-field

measurements

In this chapter, we propose a consistent procedure for parameter identification from the mCRE energy functional (in

replacement of FEMU) when used in association with noisy image-based full-field measurements. The procedure

naturally takes all uncertainty sources (coming from the model and measurements) into account and avoids empir-

ical assumptions. An integrated version of the mCRE-based identification method is also designed. The proposed

strategy is numerically analyzed on several examples.

2.1 mCRE framework with full-field measurements

2.1.1 Motivation and preliminary aspects

The previously described DIC-FEMU or I-DIC methods are committed to propose a convenient and robust process-

ing of measurement perturbations which are inherent to experimental tests and can make the identification problem

difficult to handle (especially for low-strain elasticity where the signal-to-noise ratio is small). This is a sound concern

that has to be kept in any new developments around identification procedures. Nevertheless, and out of discretiza-

tion error which is assumed to be negligible, the error in the mathematical model itself is set aside in the direct

use of FE computations in association with experimental information. Consequently, uncertainty in the model class

(particularly in the structure of the constitutive law which is supposed to fit within a given parametric representation)

is usually not considered, except in some few works e.g. [Hild et al., 2016, ?]. However, quite often, the a priori
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choice of the constitutive law is empirical and does not offer sufficient flexibility with regard to available experimental

data, leading to model errors that may hinder a proper identification. It thus seems valuable to question the reliability

of the constitutive model, relaxing it as well as other uncertain parts of the model.

On the other hand, a feature in DIC-FEMU or IDIC methods is the limitation of the simulation domain to the

spatial subregion that is analyzed with cameras, thereby reducing computational costs. Nevertheless, this is also

associated with the drawback that boundary conditions, prescribed to compute simulated fields, are extracted from

full-field measurements so that measurement uncertainty and high-frequency fluctuations due to noise are directly

transferred to the identification algorithm, even though the associated spurious effects may be attenuated with

empirical interpolation techniques. A sounder procedure would be to consider available information on external

boundary conditions (that may be far for the measurement zone) alone, without adding supplementary assumptions

to recover unavailable information for simulation purposes.

We wish here to address these issues by using the mCRE framework that is based on the reliability of informa-

tion, thus proposing an appropriate metric with natural consideration of all error and uncertainty sources. In this

framework, and as described in Chapter 1, available modeling and experimental information on the identification

problem is partitioned into reliable and less reliable sets. Reliable information (such as local equilibrium or known

conditions on the specimen boundary) is enforced in an admissibility space (A�
d ), while uncertain information on the

model and measurements (constitutive relation, part of boundary conditions, measurement values) is relaxed during

identification. In addition, the mCRE philosophy is perfectly suited to situations where interior data is abundant over

a subset of the medium alone, with a possible lack of information outside the measurement zone or on the boundary

of the specimen (incomplete data).

In the context of identification from full-field measurements, the (modified) CRE concept with metric in a space

of constitutive laws has already been investigated (see [Pagano and Bonnet, 2013] for a review). It was mainly used

in its pure CRE version (referred to as Constitutive Equation Gap method), with compatibility with measurements

strongly enforced in the admissibility space [Geymonat et al., 2002, Geymonat and Pagano, 2003, Latourte et al.,

2008,Florentin and Lubineau, 2010,Florentin and Lubineau, 2011,Blaysat et al., 2012,Moussawi et al., 2013]. Such

a version may not be desirable for the PhD objectives as it presents several drawbacks. On the one hand, and as

mentioned in Section 1.1.3, prescribing displacement data exactly implies that information on measurement noise

is not taken into account. On the other hand, a pure CRE-based inversion method is fed by strain measurements,

obtained in practice by differentiating the displacement measurements; this leads to an increase of the perturbation

level and thus requires the use of specific non-mechanical filters [Avril et al., 2010] that may introduce artificial bias

in the identification results [Ben Azzouna et al., 2013].

The modified CRE version (mCRE), with physical regularization from the model, was considered in association

with full-field measurements in quite few works; we may list [Calloch et al., 2002, Ben Azzouna et al., 2015, Huang

et al., 2016] for elastostatics models, or [Bonnet and Aquino, 2015, Diaz et al., 2015] for (visco-)elastodynamics
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models. In many of these works, the attractive properties of the mCRE functional (in terms of improved convexity

and robustness with respect to perturbations compared to least-squares approaches) were observed and analyzed.

Here, we go one step further by defining a mCRE procedure which is fully consistent with experimental information

and measurement noise; it will be denoted DIC-mCRE when used in combination with DIC measurements, and

mI-DIC in an integrated version that is also proposed.

2.1.2 DIC-mCRE method

Reference identification problem

We consider an elastic medium in a domain Ω with boundary @Ω (Figure 2.1). On this boundary @Ω, we distinguish

3 zones:

• @1Ω on which reliable Dirichlet boundary conditions ud are prescribed (with potential measured load);

• @2Ω on which Neumann boundary conditions fsd are prescribed. These may be reliable (e.g. free edge) or not;

• @;Ω on which there is no modeling or experimental information.

A body force field fvd may also be applied in Ω, even though it will be zero in the following numerical applications.

Figure 2.1: Reference model related to the studied identification problem.

The objective is to recover material parameters p from overabundant and noisy full-field displacement mea-

surements. We assume they are available in a restricted measurement zone Ωm ⇢ Ω, and that they are obtained

from global DIC (for the moment). Additional experimental information may be available such as global loads on

@1Ω [ @2Ω.

The inverse problem is here solved using the mCRE framework, that reads (cf Section 1.1.3):

psol = argmin
p2P

"

min
(û,σ̂)2(A�

d )
E2
mCRE(û, σ̂;p)

#

(2.1)
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From the above ill-posed problem, appropriate admissibility space (A�
d ) and mCRE functional EmCRE need to

be defined depending on the configuration. The definition of the mCRE functional (with associated admissibility

space) proposed below is based on reliability of information, and also takes advantage of a key feature of the DIC

methodology, which is the explicit characterization of measured displacement uncertainty through the covariance

matrix ΣΣDIC = 2�2fM
�1
DIC .

Definition of the cost function

Managing the overall uncertainty in the identification process appears as a compromise between empirical modeling

(in particular with regards to the constitutive law that describes the material behavior) and noise corrupting the full-

field measurements. When phrased this way, it appears that the FEMU metric between measured and computed

displacement fields (see (1.58)) has to be balanced by a metric in the constitutive law space.

In the simple case where information on @2Ω is reliable, with no load measurement, and in agreement with the

stochastic framework of Section 1.1.3, we thus define the following mCRE functional as:

E2
mCRE(û, σ̂;p) = E2

CRE(û, σ̂;p) +
↵

2
.

1

NDIC
(d(û)�UDIC)

T
ΣΣ

�1
DIC(d(û)�UDIC)

with E2
CRE(û, σ̂;p) =

1

2

Z

Ω

(σ̂ �K(p)ε(û))K(p)�1(σ̂ �K(p)ε(û))

(2.2)

ECRE(û, σ̂;p) is the classical CRE functional, and d is an operator that evaluates the admissible displacement field

û on DIC measurement points. The distance to observations is defined from the appropriate norm already used in

weighted FEMU (Mahalanobis distance with inverse covariance matrix ΣΣ
�1
DIC), which enables to track the impact of

measurement noise starting from image acquisition.

In this context, the pair (û, σ̂) lives in an admissibility space (A�
d ) in which reliable information is enforced. This

space exhibits here the following constraints:

û|∂1Ω
= ud

�r · σ̂ = fvd in Ω ; σ̂n|∂2Ω
= fsd or

Z

Ω

σ̂ : ε(v) =

Z

Ω

fvd · v +

Z

∂2Ω

fsd · v 8v 2 U
0
ad

(2.3)

Remark. In order to circumvent mesh projection issues when evaluating û on nodes of the DIC mesh, a possible

strategy is to project both û and uDIC = NUDIC on a shared regular fine grid before comparing nodal values on

this fine grid. Denoting by P the transfer matrix to go from UDIC to the new vector ŨDIC of nodal measurements

on the fine grid, the weighting matrix in the second term of the mCRE functional then reads P�T
ΣΣ

�1
DICP�1.

In its FEM discretized version (neglecting discretization error for the moment), the previous mCRE functional
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reads:

Eh2

mCRE(Û, V̂;p) =
1

2
(Û� V̂)TK(p)(Û� V̂) +

↵

2
.

1

NDIC
(ΠÛ�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC) (2.4)

where Π extracts local dofs from the vector Û (defined over the whole domain Ω) to fit the measurement zone Ωm,

and projects these extracted dofs from the simulation mesh to the DIC mesh thanks to FE shape functions; Π is a

restriction of the identity matrix when the simulation mesh and the DIC mesh coincide locally. Let us remind that

V̂ is statically admissible in the sense that is verifies the discretized FEM equilibrium �VT (K(p)V̂ � F) = 0 for any

virtual vector �V 2 Uh,0
ad .

Consequently, the mCRE functional is composed of two parts with quadratic terms associated with each uncer-

tainty source: one part is related to the constitutive relation error, and the other part represents the gap between

outputs derived from admissible fields and observed data.

Remark. In the case where part of the loading force is measured (in terms of resultant usually), the previous

functional should be generalized as:

Eh2

mCRE(Û, V̂;p) =
1

2
(Û� V̂)TK(p)(Û� V̂)

+
↵

2
.

1

NDIC +NF

h

(ΠÛ�UDIC)
T
ΣΣ

�1
DIC(ΠÛ�UDIC) + (ΠFF� Fobs)

T
ΣΣ

�1
F (ΠFF� Fobs)

i

(2.5)

with ΠF the operator that extracts measured components or resultants from the global loading vector F, and ΣΣF the

covariance matrix of load measurements. The second part of the mCRE (which may merge heterogeneous data

sets) is properly scaled with dimensionless terms.

Also, when part of Neumann boundary conditions is uncertain and not measured, it should not be included in the

admissibility space (A�
d ).

Implementation details

As described in Chapter 1, the minimization (2.1) of the mCRE functional for solving the inverse problem is in

practice conducted by using an iterative two-steps algorithm that is summarized below.
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0. Initialize the parameter set p(0) and set the stopping criterion threshold

Iteration loop (iteration n+ 1)

1. Compute optimal admissible fields (Û(n+1), V̂(n+1)) for given p(n):

(Û(n+1), V̂(n+1)) = argmin
(Û,V̂)2(A�

d )

Eh2

mCRE(Û, V̂;p(n)) (2.6)

2. Update model parameters for fixed admissible fields:

p(n+1) = argmin
p2P

Fh
mCRE(p) with Fh

mCRE(p) = Eh2

mCRE(Û
(n+1), V̂(n+1);p) (2.7)

3. Stop if the stopping criterion is reached ( Fh
mCRE(p

(n+1))  ✏rE
h2

0 , or stagnation criterion). Other-

wise, increment n and go to Step 1.

Remark. The criterion Fh
mCRE(p

(n+1))  ✏rE
h2

0 allows one to determine whether the model is valid or not. If one can

not reduce the mCRE error below the required quality level by acting on model parameters, this indicates that errors

are present in the model itself, not only in its parameters (see Chapter 3). In such a case, a stagnation criterion

should be preferred to stop the iterative algorithm of the inversion process.

The optimization problem (minimization with linear constraint) associated with Step 1 is addressed with a La-

grangian functional. It reads (for the case (2.4)):

Lh(Û, V̂,Λ;p(n)) =
1

2
(Û� V̂)TK(p(n))(Û� V̂)

+
↵

2
.

1

NDIC
(ΠÛ�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC)�Λ

T (K(p(n))V̂ � F)

(2.8)

Referring to Section 1.1.3, the search of the saddle-point leads to V̂(n+1) = Û(n+1) + Λ
(n+1) and to the linear

system:

K
(n)
mCRE

0

B

@

Û
(n+1)
a

Λ
(n+1)
a

1

C

A
= F

(n)
mCRE (2.9)

with

K
(n)
mCRE =

2

6

4

↵. 1
NDIC

(ΠT
ΣΣ

�1
DICΠ)aa �Kaa(p

(n))

Kaa(p
(n)) Kaa(p

(n))

3

7

5

F
(n)
mCRE =

0

B

@

↵. 1
NDIC

(ΠT
ΣΣ

�1
DIC)aoUDIC � ↵. 1

NDIC
(ΠT

ΣΣ
�1
DICΠ)adUd

Fa � Kad(p
(n))Ud

1

C

A

(2.10)

We again used the notation Û = [Ud, Ûa]
T and Λ = [0,Λa]

T to take prescribed dofs into account. Re-organizing
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this system yields the following equation for Û(n+1)
a :

K
(n)

aa Û(n+1)
a = F

(n)

a (2.11)

with

K
(n)

aa = Kaa(p
(n)) + ↵.

1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aa

F
(n)

a = Fa + ↵.
1

NDIC
(ΠT

ΣΣ
�1
DIC)aoUobs � Kad(p

(n))Ud � ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)adUd

(2.12)

It is important to notice again that in Step 1, optimal admissible fields are defined from both modeling and experi-

mental information available, with a compromise on the reliability of each.

Remark. The symmetric semi-positive matrix of the linear system (2.9) may be a rank-deficient matrix when Ωm

is much smaller than Ω. In such a case, the system is solved through a QR decomposition with fixed truncation

level (based on rank-deficiency), as proposed in [Ben Azzouna et al., 2015]. We thus get a particular solution to

the system, which is sufficient as any solution in the matrix kernel does not impact the magnitude of the mCRE

functional.

Also, the system to be solved is twice the size of a classical FE system, but it yields gradients of the cost function at

once (see below).

As regards the nonlinear minimization in Step 2, it is performed using a steepest descent approach:

p(n+1) = p(n) � BnrpE
h2

mCRE|p(n)

with gradient computed using the adjoint-state method and available admissible fields obtained at Step 1:

rpE
h2

mCRE|p(n) =
1

2
(Û(n+1) � V̂(n+1))T

@K(p)

@p |p(n)
(Û(n+1) + V̂(n+1)) (2.13)

The overall DIC-mCRE algorithm is shown in Figure 2.2.

Setting of the weight parameter

The scalar ↵, which has here the dimension of an energy, is a parameter of the mCRE method that can be tuned to

play on the relative weight of the two parts (CRE term, distance to measurements) of the functional. It achieves a

balance between minimizing the CRE and the measurement misfit. Out of the specific continuation scheme which

was studied in the context of mCRE [Banerjee et al., 2013], several approaches related to regularization techniques

can be employed to define an optimized value of ↵. In particular, the impact of ↵ on the robustness with respect to

measurement noise was thoroughly studied [Barthe et al., 2004, Deraemaeker et al., 2004, Warner et al., 2014]; it

was empirically found that an adequate weight, minimizing the effect of noise on the computation of the CRE, could

63



Figure 2.2: Schematic view of the DIC-mCRE identification process.

be obtained by considering the same confidence in the model and in the measurements. After normalization, this

comes down to choosing ↵ such that the two terms of the mCRE functional have the same order of magnitude. This

strategy is closely related to the L-curve technique [Miller, 1970, Calvetti et al., 2000], which was investigated for

mCRE [Huang et al., 2016].

Another technique, which we propose to use here and which takes advantage of the a priori knowledge on the

noise level, is the Morozov discrepancy principle [Morozov, 1968, Morozov, 1984, Nair et al., 2003, Isakov, 2006].

This principle has a clear physical sense and is actually in the philosophy of reliability of information. It comes down

to setting ↵ such that the distance to measurements falls within the noise level. It is indeed meaningless trying to

decrease the distance to measurements below this level, as this corresponds to the experimental uncertainty range.

With the covariance-based weighted norm which is used and the employed prefactors, the term of distance to

measurements in the new definition (2.4) or (2.5) of the mCRE functional appears as an intensive quantity; satisfying

at convergence the Morozov discrepancy principle thus reads:

• when considering (2.4):
1

NDIC
(ΠÛ�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC) ⇡ 1 (2.14)

• when considering (2.5):

1

NDIC +NF

h

(ΠÛ�UDIC)
T
ΣΣ

�1
DIC(ΠÛ�UDIC) + (ΠFF� Fobs)

T
ΣΣ

�1
F (ΠFF� Fobs)

i

⇡ 2 (2.15)

Consequently, in the following, the coefficient ↵ is adjusted as the smallest positive value that enables to reach the

64



previous criterion, ensuring a final discrepancy between computed and measured quantities which is at the level of

the noise. Starting from small values of ↵, a bisection method or a progressive increase is implemented to catch this

value. The procedure for setting ↵ may be performed after reaching convergence of the iterative inversion process,

or along the iterations (during Step 1).

Remark. For small values of ↵, it is easier (i.e. faster convergence) to find a corresponding minimizer for the mCRE

optimization problem as there is less constraint from data. Also, the minimizer (Û(j), V̂(j),p
(j)
sol) obtained with ↵(j)

can be used as an improved initial guess for the optimization problem with the next scalar weight ↵(j+1).

Confidence on identified parameters

As mentioned in Chapter 1, at convergence (n = 1) of the mCRE procedure with solution psol, it is useful to observe

how a perturbation �UDIC in full-field measurements leads to a variation �p in the optimal value of the parameter

set. From the steepest descent algorithm, we get:

�p = B1[
@

@UDIC
rpE

h2

mCRE|psol
]�UDIC = B1[

@

@UDIC
rpE

h2

CRE|psol
+ S

T
p|psol

Π
T
ΣΣ

�1
DIC ]�UDIC (2.16)

with ST
p = @Û/@p. From these pieces of information, the covariance matrix ΣΣp = h�p·�pT i on identified parameters

can be recovered from that ΣΣDIC = h�UDIC · �UT
DICi on measurement noise and other computable sensitivity

quantities. Therefore, the propagation of uncertainties from image acquisition (i.e. from pixels and measured

FE displacement fields) to the sought material parameters can again be performed in the mCRE-based inversion

technique.

2.1.3 Integrated version - mI-DIC

In a similar manner as for the (FEMU-integrated) I-DIC method or integrated versions of other identification methods

(e.g. EGM [Réthoré et al., 2009]), an integrated version of the mCRE functional (denoted mI-DIC) is proposed

here when associated with image-based information. This again circumvents finding a compromise to manage both

measurement uncertainties and kinematic accuracy when designing a DIC mesh. Following the philosophy of I-DIC

(see Section 1.2.3), the corresponding mI-DIC functional is naturally defined as (in its discretized version):

Eh2

mIDIC(Û, V̂;p) =
1

2
(Û� V̂)TK(p)(Û� V̂) +

↵

2
.

1

2�2fNpix

X

x2ROI

⇣

f(x)� g(x+ N(x)Û)
⌘2

(2.17)

It is again minimized in a sequential two-steps procedure. At iteration n + 1, optimal admissible fields are
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computed in a first step by solving:

(Û(n+1), V̂(n+1)) = argmin
(Û,V̂)2(A�

d )

Eh2

mIDIC(Û, V̂;p(n)) (2.18)

Introducing the associated Lagrangian functional:

Lh(Û, V̂,Λ;p(n)) =
1

2
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.
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(2.19)

and linearizing g(x+ N(x)Û), the search of the saddle-point consists in finding Û(n+1) = Û(n) + �Û(n) and Λ
(n+1)

(and V̂(n+1) = Û(n+1) +Λ
(n+1)) solution of the linear system:
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and g̃(x) = g(x+ N(x)Û(n)).

The updating of model parameters (for fixed admissible fields) in the second step reads:

p(n+1) = argmin
p2P

Fh
mIDIC(p) with Fh

mIDIC(p) = Eh2

mCRE(Û
(n+1), V̂(n+1);p) (2.22)

and is still performed by means of a steepest descent algorithm (e.g. BFGS method [Shanno, 1970]) with gradients

obtained from the adjoint-state method.

As regards the setting of the weighting parameter, it is again performed from the Morozov principle; the coefficient

↵ is adjusted as the smallest positive value that enables to reach, at the end of the identification process or along

iterations:
1

2�2fNpix

X

x2ROI

⇣

f(x)� g(x+ N(x)Û)
⌘2

⇡ 1 (2.23)

The overall mI-DIC algorithm is shown in Figure 2.3.
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Figure 2.3: Schematic view of mI-DIC identification.

2.2 Numerical results

In this section, we perform experiments in order to check the performance of the DIC-mCRE or mI-DIC approaches.

We particularly study their robustness with respect to noise and reliability of information. All numerical examples

consider 2D elasticity problems with isotropic behavior and plane stress assumption.

2.2.1 Example 1: simple tensile test

This first example is similar to the one considered in [Ben Azzouna et al., 2015]. It consists in a squared plate simply

supported on its bottom side and subjected to a uniformly distributed traction on its top side (Figure 2.4). Other sides

are free. The material is homogeneous and the objective is to identify the Young modulus E.

Figure 2.4: Model problem with tensile test on a square plate.

We use here synthetic displacement measurements. Kinematic data are built numerically, by considering an
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analytical reference solution U0 for a given reference set of material coefficients (E0, ⌫0). It is projected on a regular

measurement grid of size 50⇥ 50, and measurement noise is generated by adding an uncorrelated Gaussian white

perturbation to the reference field, under the form U i
DIC = U i

0 + �i⌘ with ⌘ a zero-mean and unit variance Gaussian

distributed variable. Consequently, there is no modeling error for this example. The mesh used for simulations is

made of T3 elements.

Robustness with noise level

We evaluate the robustness of the DIC-mCRE approach by studying the dependency of the cost function with the

noise level. For a value of the weight factor ↵ set using the Morozov principle, the values of the mCRE func-

tional Eh2

mCRE(Û, V̂;E) and its two components Eh2

CRE = 1
2 (Û � V̂)TK(E)(Û � V̂) and kΠÛ � UDICk2

ΣΣ
�1
DIC

=

1
NDIC

(ΠÛ�UDIC)
T
ΣΣ

�1
DIC(ΠÛ�UDIC) are represented in Figure 2.5 as a function of E/E0. Various noise levels

are considered, with moderate perturbations from 0% to 5% of the mean of the displacement field; the solid line

corresponds to the case where no perturbation is added. For all tested noise levels, we note that the minimum of

the cost function perfectly corresponds to the reference value. Besides, the component on mismatch with measure-

ments is insensitive to the noise level in this example (the six curves are superposed); this is mainly due to the

strategy used to select ↵.

Figure 2.5: mCRE cost function Eh2

mCRE and its two components as a function of E/E0, for various noise levels (from
0% to 5%).

For more significant noise levels (20% and 50% of the mean of the displacement field), evolutions are given in

Figures 2.6 and 2.7. We observe that the reached minima are a bit shifted but remain close to the reference value.
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Figure 2.6: mCRE cost function Eh2

mCRE and its two components as a function of E/E0, for a 20% noise level.

mI-DIC strategy

We now investigate the integrated version of mCRE (mI-DIC). Using the same reference solution as before with

additional noise to get synthetic data, we now work at the fine grid level that would represented pixels of an image

in practice. The synthetic displacement field over this grid is represented in Figure 2.8. A sub-pixel discretization is

used to obtain the synthetic image g and to compute the updated deformed images g̃ at each iteration.

Using similar simulation meshes, the same identification results as for DIC-mCRE are obtained for a range

of low noise levels (up to 5%). In Figure 2.9, we display the evolution of the obtained confidence interval on the

identified parameter, over a larger range of noise levels. We observe, as expected, that the accuracy on the identified

parameter degrades with the noise level, but it remains acceptable even for large noise levels.

2.2.2 Example 2: plate with a hole

The second example considers a tensile test on a plate with a hole (Figure 2.10). Using symmetry properties, only

one quarter of the plate is conserved. The simulation mesh, also shown in Figure 2.10, is made of 368 T3 elements.

The material is homogeneous and the objective is to identify the Young modulus E. Synthetic data are again

used, considering a reference solution U0 obtained from a simulation with the reference set of material coefficients

E0 = 200 GPa and ⌫0 = 0.26. It is represented in Figure 2.11. Consequently, here again there is no modeling error.
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Figure 2.7: mCRE cost function Eh2

mCRE and its two components as a function of E/E0, for a 50% noise level.

Figure 2.8: Synthetic displacement data on a pixel-like fine grid, with horizontal (left) and vertical (center) compo-
nents, and sub-pixel discretization to compute the deformed images (right).

Analysis with moderate noise level

We first analyze the performance of the mCRE-based identification method when choosing a 10% additive mea-

surement noise. The distribution of noise and resulting measured displacements are given in Figure 2.12.

In order to analyze the effect of the weighting factor ↵, it is defined as ↵ = 10β .UT
0 K0U0 where U0 and K0

are displacement field and stiffness matrix associated with the reference solution. The coefficient � is tuned in the

range [�2, 6], and the curve associated with the Morozov principle is represented in Figure 2.13. We observe that

for small �, and as the model is here compatible with experimental information, the weighted term on model-data

discrepancy stagnates to the desired target 1. Conversely, choosing a too large � makes this term go to 0, which

is undesirable in the case of noisy data. In this specific example, we select the value of � that satisfies the criterion

on Morozov principle (with measurement data approached up to noise level) while not over-smoothing too much the

solution from the model. The curve thus indicates here to choose � = 0.
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Figure 2.9: Mean value and standard deviation of E/E0 with respect to the noise level.

Figure 2.10: Model problem with tensile test on a plate with hole (left), and associated mesh (right).

For this optimal value � = 0, the evolution of the mCRE functional and its two components is represented in

Figure 2.14. We observe that the value of E is correctly identified.

We represent in Figure 2.15 the admissible fields û and v̂ (and their difference, which is actually the field �)

obtained at the end of the identification process. We observe that they differ very slightly, which is due to the

absence of modeling error in this example. We also show the comparison between the kinematically admissible

field and the measurement field in Figure 2.16.

Analysis with large noise level

We now consider a larger 30% additive measurement noise. The distribution of noise and resulting measured

displacements are given in Figure 2.17.

When tuning � in the range [�2, 6], the curve associated with the Morozov principle is represented in Figure 2.18.
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Figure 2.11: Reference solution used to obtain synthetic data for identification.

Figure 2.12: Noise distribution (left) and resulting noisy displacement field used as measurements (right), for a 10%
noise level.

The criterion on Morozov principle thus indicates here to choose � = 0 again.

For the optimal value � = 0, the evolution of the mCRE functional and its two components is represented in

Figure 2.19. We observe that the value of E is again correctly identified.

Last, we show in Figure 2.20 the admissible fields û and v̂ (and their difference) obtained at the end of the

identification process. Again, they differ very slightly due to the absence of modeling error in this example. We also

show the comparison between the kinematically admissible field and the measurement field in Figure 2.21.

2.2.3 Example 3: three-point bending test

We now consider an isotropic beam subjected to three-point bending (Figure 2.22), in a similar way as a test-case

presented in [Ben Azzouna et al., 2015]. Boundary conditions are assumed to be perfectly known. The objective is

again to identify the homogeneous Young modulus E, using the DIC-FEMU method. Displacement measurements

are created from a reference FE calculation with specified boundary conditions and reference parameter E0 (Fig-

ure 2.23), to which Gaussian noise is added. In the present case, the noise is correlated with Σ̃Σ
�1

DIC = 1
σ2

R

ROI
NTN

(mean field assumption). A measurement grid of size 30 ⇥ 70 is then created, over which all integral computations

are performed.
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Figure 2.13: Evolution of the term on discrepancy with measurements as a function of �, for a 10% noise level.

Identification results

In Figure 2.24, we show the evolution of the mCRE cost function with respect to the ratio E/E0, for various pertur-

bation levels. We again observe the good convexity and estimation of the minimum up to quite high perturbation

levels (up to 20%), as well as the convexity of the cost function.

In order to show the practical interest of mCRE, we solve the identification problem by using a restricted measure-

ment zone Ωm ⇢ Ω. Reliable information available outside the measurement zone is then included in admissibility

spaces. We analyze for cases (see Figure 2.25) corresponding to ratios |Ωm|/Ω = 0.48, 0.64, 0.81, and 1, with a

measurement noise of 5%. Results are reported in Figure 2.26, where we show the identified value and confidence

interval. It appears that identification error increases but remains reasonable for smaller measurements zones.

Comparison with FEMU

In this section, we compare identification results obtained from the proposed mCRE method and the classical FEMU

method, using similar data. We assume Ωm = Ω. Available data is the measured displacement field, as well as

reliable information on the boundary @Ω. Boundary conditions for FEMU are thus made of available displacement

measurements on the boundary and free edge conditions which are strongly prescribed (Figure 2.27). In order

to perform sound comparison, the mCRE method only uses free-edge boundary conditions to define admissibility

spaces.

Identification results are shown in Figure 2.28. We observe that mCRE performs better than FEMU. Bad results

obtained with FEMU are due to perturbed boundary conditions which are prescribed to very few nodes (supported

points of the beam), hence avoiding any averaging of the noise and leading to a non-representative loading in the

FEMU simulation; the mCRE method better manages such a case.
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Figure 2.14: Evolutions of the mCRE functional and its two components with � = 0 , for a 10% noise level.

2.2.4 Example 4: identification from real images

As a last example in this chapter, we consider the biaxial test described in [Avril et al., 2008a, Leclerc et al., 2009].

In this test, a cross-shaped specimen (see Figure 2.29) is loaded in a multiaxial testing machine, in an equibiaxial

manner Fx = Fy (same loading magnitude in both directions). The specimen material is made of vinylester matrix

reinforced by glass fibers. The quasi-uniform distribution of fiber orientations leads to a quasi-isotropic elastic

behavior priori to matrix cracking and fiber breakage.

Here, we analyze experimental data obtained for the load level Fx = Fx = 5 kN, which still corresponds to the

elastic regime of the composite material. The displacement field is measured by DIC, with a measurement zone

covering the whole specimen geometry. Images are taken with a 8-bit CCD camera (resolution 1008 ⇥ 1016 pixels).

The measurement noise is evaluated from a first image with almost zero load. Two DIC meshes are considered

(Figure 2.29): a coarser mesh with 781 nodes, and a finer mesh with 2865 nodes. These also correspond to the

simulation meshes in the mCRE strategy.

Reference values E0 = 10 GPa and ⌫0 = 0.28 are considered for the Young modulus and Poisson ratio, respec-

tively. They are taken from identification results in [Avril et al., 2008a]. Here, and as we only consider experimental

information coming from measured displacements (with Dirichlet boundary conditions), we identify the Poisson ratio

⌫ alone. This identification is made difficult due to the fact that Fx = Fy.

Starting with the coarser mesh (and therefore reduced measurement uncertainty), the displacement field ob-
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Figure 2.15: Spatial representation of admissible fields û (left), v̂ (center), and their difference (right), for a 10%
noise level.

tained from DIC is shown in Figure 2.30.

In order to implement the Morozov principle, we again define the weighting factor ↵ as ↵ = 10β .UT
0 K0U0 where

U0 and K0 are displacement field and stiffness matrix associated with a reference solution. The obtained Morozov

curve is shown in Figure 2.31. When � is too small, there is loss of information contained in the measurements and

over-smoothing of the solution, resulting to values of the model-data discrepancy term larger than 1. Nevertheless,

the curve does not go too high for small �, as admissible fields which are compared to measurements are already

constructed from both model and measurements, so that model correction from measurement data is already per-

formed. The curve indicates that the optimal weight value is � = 0. For this value, the evolution of the mCRE cost

function and its two components is displayed in Figure 2.32. We observe that the identified value is ⌫ ⇡ 1.3⌫0, and

that the cost function has good convexity properties.

We represent in Figure 2.33 the admissible fields û and v̂ (and their difference) obtained at the end of the

identification process. The difference is not so small now, as there is modeling error. We also show the comparison

between the kinematically admissible field and the measurement field in Figure 2.34.

We now perform the same analysis but with the second (finer) DIC mesh, and consequently with a larger mea-

surement uncertainty. The associated displacement field obtained from DIC is shown in Figure 2.35 (we removed

black lines of element edges for more readability).

The new Morozov curve, shown in Figure 2.36, indicates the optimal value � = �0.5. For this value, the evolution
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Figure 2.16: Spatial representation the admissible field û (left), measurement field (center), and their difference
(right), for a 10% noise level.

Figure 2.17: Noise distribution (left) and resulting noisy displacement field used as measurements (right), for a 30%
noise level.

of the mCRE cost function and its two components is displayed in Figure 2.37. We observe that the identified value

remains ⌫ ⇡ 1.3⌫0, and that the cost function still has good convexity properties.

We represent in Figure 2.38 the admissible fields û and v̂ (and their difference) obtained at the end of the

identification process. Similar trends as for the coarser mesh are observed. We also show the comparison between

the kinematically admissible field and the measurement field in Figure 2.39.
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Figure 2.18: Evolution of the term on discrepancy with measurements as a function of �, for a 30% noise level.

Figure 2.19: Evolutions of the mCRE functional and its two components with � = 0, for a 30% noise level.
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Figure 2.20: Spatial representation of admissible fields û (left), v̂ (center), and their difference (right), for a 30%
noise level.

Figure 2.21: Spatial representation the admissible field û (left), measurement field (center), and their difference
(right), for a 30% noise level.
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Figure 2.22: Model problem with three-point bending test on a beam.

Figure 2.23: Reference calculation.

Figure 2.24: Evolution of the mCRE cost function for various noise levels: 5%, 10%, 20% (from left to right).

Figure 2.25: Analyzed test cases with restricted measurement zone.
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Figure 2.26: Identification with a restricted measurement zone.

Figure 2.27: Used boundary conditions for FEMU and mCRE.

Figure 2.28: Identification results.
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Figure 2.29: Speckle on the cross-shaped specimen (left), and FEM discretization for DIC with coarser (center) and
finer (right) meshes.

Figure 2.30: Horizontal (left) and vertical (right) components of the measured displacement field when using the
coarser DIC mesh.

Figure 2.31: Morozov curve obtained from mCRE and the coarser DIC mesh.

81



Figure 2.32: Evolutions of the mCRE functional and its two components with � = 0.

Figure 2.33: Spatial representation of admissible fields û (left), v̂ (center), and their difference (right), for � = 0 and
with the coarser DIC mesh.
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Figure 2.34: Spatial representation the measurement field (left), the admissible field û (center), and their difference
(right), for � = 0 and with the coarser DIC mesh.

Figure 2.35: Horizontal (left) and vertical (right) components of the measured displacement field when using the
finer DIC mesh.

Figure 2.36: Morozov curve obtained from mCRE and the finer DIC mesh.
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Figure 2.37: Evolutions of the mCRE functional and its two components with � = �0.5.

Figure 2.38: Spatial representation of admissible fields û (left), v̂ (center), and their difference (right), for � = �0.5
and with the finer DIC mesh.
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Figure 2.39: Spatial representation the measurement field (left), the admissible field û (center), and their difference
(right), for � = �0.5 and with the coarser DIC mesh.
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Chapter 3

Modeling error estimation with adaptive

strategy

In this chapter, we introduce an error estimation method, and an associated adaptive strategy, in order to define

models which are compatible with noisy data information coming from full-field measurements. For this purpose,

we show that the analysis of the CRE term in the context of DIC-mCRE or mI-DIC methods appears as a natural

tool to define appropriate models with optimal accuracy with regards to experimental information. Consequently, we

highlight that the mCRE framework enables the whole structure of a reference model, not only its parameters, to be

selected from available measurements. We also show that parts of the modeling error coming from the simulation

mesh (discretization error) and from the mathematical model itself can be dissociated in order to drive the adaptive

process in an optimal manner. The proposed strategy is here illustrated with several numerical experiments involving

linear models.

3.1 Motivation and objectives

Out of model input uncertainty, that is uncertainty regarding the values of input parameters of a selected model,

modeling uncertainty arises as a result of assumptions and simplifications made in answer to a lack of knowledge

on the physical system. Modeling errors are caused by all hypotheses and shortcuts taken while translating physical

phenomena into equations (mathematical model), and translating these equations into a form that can be solved

numerically (discretization). They may have a large impact in inverse problems due to high sensitivity of the solution;

a global optimum of the inverse problem may for instance be found with unrealistic physical values for the material

properties as a consequence of such modeling errors. Conversely, if the goal of modeling is not further prediction,

but merely the characterization of physical properties from experimental data, a complex model (with large number
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of parameters) may yield large uncertainty intervals on the parameter estimates. Furthermore, the mesh size should

be designed in association with the spatial accuracy of experimental observations. Adaptive modeling (in terms of

model class and discretization mesh) thus appears as an important issue for effective inverse analysis; in particular,

it can be seen as a suitable manner to save computational cost and perform parameter reduction [Lieberman et al.,

2010], with a number of input parameters that progressively increases with local enrichment of the model.

Questioning and assessing the quality of the model, in terms of model class and discretization selection, is not a

common practice in inverse problems. Quite few works addressed this issue [Mottershead and Friswell, 1993,Becker

and Vexler, 2004, Becker and Vexler, 2005, Arridge et al., 2006, Kaipio and Somersalo, 2007, Johansson et al.,

2007, Oden et al., 2010, Simoen et al., 2015, Calvetti et al., 2018], with procedures being usually computationally

intensive.

In Bayesian statistical inversion theory, the computational model inaccuracy may be represented as a random

variable (treated as noise) with statistics that are updated from data. Moreover, information on the quality of the

model can be recovered through the normalization constant C (appearing in (1.4)). This constant corresponds to

the probability of making observations dobs for a given model class M; it is called model evidence and informs on

the relevance of a model with respect to observed data. It can thus be used to discriminate between concurrent

model classes (keeping the most likely to have generated the data), and to perform model class selection [Beck and

Yuen, 2004,Mthembu et al., 2011]. Considering for instance N models {M1, ...,MN}, each model Mk depending

on a parameter set pk, the pdf informing on the probability that model Mk generated data dobs reads:

⇡(Mk|dobs) =
⇡(dobs|Mk).⇡(Mk)

PN
k=1 ⇡(dobs|Mk).⇡(Mk)

/ ⇡(dobs|Mk).⇡(Mk) (3.1)

where ⇡(Mk) is the prior pdf (a priori knowledge) on model Mk, while ⇡(dobs|Mk) is the integrated likelihood

function of Mk, computed by marginalization:

⇡(dobs|Mk) =

Z

⇡(dobs,pk|Mk)dpk =

Z

⇡(dobs|pk,Mk).⇡(pk|Mk)dpk = Ck (3.2)

where Ck is the model evidence associated with Mk. Therefore, when prior pdfs ⇡(Mk) (k 2 {1, ..., N}) are equal,

we may define the Bayes factor Fij between two models Mi and Mj :

Fij =
⇡(Mi|dobs)

⇡(Mj |dobs)
=

Ci

Cj
(3.3)

It indicates when Fij > 1 (resp. Fij < 1), that the model Mi is more (resp. less) likely than the model Mj to be

associated with the considered data dobs.

In a deterministic framework, cross validation may be used to a posteriori assess the quality of a model [Hastie

et al., 2001]. Typically, the original dataset is split in two sets (holdout method): (i) a training set used to iden-
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tify/update the model; (ii) a test set for its validation with error estimation. Goal-oriented estimates on the discretiza-

tion error have also been designed [Becker and Vexler, 2004, Johansson et al., 2007, Johansson et al., 2011] for

identification problems.

In the context of full-field measurements, an important feature is that data are numerous with noise that can

be quantitatively characterized. This rich experimental information not only needs to be propagated throughout the

identification procedure, it also needs be compared and considered with respect to other error sources (modeling,

discretization) involved in the identification process. Most applications using full-field measurements assume that

there is no modeling of discretization error; the first source is usually poorly known a priori, while the second

source is usually neglected assuming that the mesh is fine enough. This last assumption seams sensible for

localized sensors (e.g. strain gauges) where experimental richness is usually far below the kinematics offered by

the mesh, so that discretization error is not an issue, but it is questionable when considering full-field measurements

as discretization error may then become significant compared to the measurement error. Consequently, there is a

need to adapt the numerical model (model class and mesh) used with full-field measurements, in order to obtain

a numerical complexity which is consistent with the available experimental information, and therefore conduct an

effective post-processing of full-field measurement data (right computation at the right cost for the objective of

identification).

On the one hand, a suitable mathematical model with appropriate physics should be considered as a representa-

tion of image-based measurements in order to perform a relevant interpretation and comparison with available noisy

data. Model selection with full-field measurements was addressed in [Neggers et al., 2017] by using information

from correlation residuals toward successive enrichment of the constitutive model in order to progressively reduce

the experiment-model gap; we propose here another numerical strategy.

On the other hand, special attention should be paid to the mesh size selection (associated with discretization

error) in order to exploit measurement information at best with meaningful accuracy. In [Leclerc et al., 2009],

mesh adaptivity was performed in the context of I-DIC by using an empirical (no error estimate) procedure that is

based on sensitivity fields to define the mesh size; an example of obtained adapted mesh is given in Figure 3.1.

In [Wittevrongel et al., 2015], p-adaptive FE analysis was implemented in DIC to obtain a self-adapting higher order

mesh capable of describing high-gradient displacement fields, here again without clear indicator on discretization

error.

The objective in this chapter is to develop error measures capable of quantifying the quality of the approximate

numerical model with respect to full-field measurements. These should consider simplified modeling and discretiza-

tion error, and they should be related to the limited experimental information with noise. Therefore, an associated

question is to define threshold values for these error measures which permit to certify that the numerical model is

valid. We thus propose a framework, based on the mCRE functional, in which all a priori knowledge and uncertainty
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Figure 3.1: Example of adaptive mesh I-DIC procedure, from [Leclerc et al., 2009]. The element size in the adapted
mesh (right) is a decreasing function of sensitivity k@us/@pk.

sources (coming from both model and experimental data) are considered, informed, connected, and propagated

throughout the identification procedure in order to build a consistent and unified methodology for guiding model

adaptation.

The use of the CRE concept in model verification showed that the value of the CRE functional, when computed

with appropriate admissible fields, is a valuable, robust, and quantitative information on the quality of the model (see

Section 1.1.2). The goal is to transfer this powerful tool to image-based identification procedures. A preliminary

study was conducted [Hild et al., 2016], where the CRE functional was a posteriori used with DIC data in order

to control the quality of the mesh, for a given mathematical model and depending on the way boundary conditions

are prescribed from kinematic measurements in I-DIC simulations (e.g. depending on the polynomial order used to

interpolate measured fields).

We propose to take advantage of specific features of parameter identification with mCRE. Actually, the mCRE

functional contains a mCRE term that can be interpreted as a distance to a given model. We show that this provides

a posteriori error indicators on modeling and discretization that identify the computational model inaccuracies with

regards to experimental data. These indicators are further used in a greedy manner for adaptive modeling purposes,

in order to perform mesh adaptivity and select an appropriate model (inside a manifold of model classes with

increasing complexity and number of parameters). Therefore, bias in the numerical model (deviations between

model predictions and reality observed through full-field measurements) can be corrected and adjusted so that

model complexity and outputs remain consistent with physical observations. The idea is to have a confidence in the

model that is driven by confidence in measurements.

The framework proposed in this chapter is geometrically represented (Figure 3.2), as an extension to the repre-

sentation of mCRE proposed in Figure 1.6. We now play with a manifold (Γ+obs
M ) of possible models, with choice on

the model class M (in practice among a list of parametrized constitutive models with hierarchic complexity) and on

the mesh Th used to represent the state of the system.
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Figure 3.2: Geometrical illustration of the proposed model selection strategy from mCRE.

3.2 Global estimate and specific indicators on modeling errors

For the sake of clarity, we develop the strategy proposed in this chapter by considering the DIC-mCRE version of

the identification method; a similar strategy can be developed for mI-DIC. We thus consider the following mCRE

functional:

E2
mCRE(û, σ̂;p) = E2

CRE(û, σ̂;p) +
↵

2
.

1

NDIC
(d(û)�UDIC)

T
ΣΣ

�1
DIC(d(û)�UDIC)

with E2
CRE(û, σ̂;p) =

1

2

Z

Ω

(σ̂ �K(p)ε(û))K(p)�1(σ̂ �K(p)ε(û))

(3.4)

or, in its discretized version:

Eh2

mCRE(Û, V̂;p) =
1

2
(Û� V̂)TK(p)(Û� V̂) +

↵

2
.

1

NDIC
(ΠU�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC) (3.5)

with ↵ a scalar value that has the dimension of an energy.

A dimensionless mCRE functional could also be defined, under the form:

E
2

mCRE(û, σ̂;p) = E
2

CRE(û, σ̂;p) +
↵̃

2
.

1

NDIC
(d(û)�UDIC)

T
ΣΣ

�1
DIC(d(û)�UDIC) (3.6)

with ↵ = ↵̃.E2
0 and E

2

mCRE = E2
mCRE/E

2
0 . The quantity E2

0 is a reference energy value; a typical choice is E2
0 =

1
2Û

(0)T K(p(0))Û(0) where initial values of the parameter set (p(0)) and of admissible fields (Û(0)) are used. In

the following, an alternative definition of the reference energy value is proposed to conduct an adaptive modeling

algorithm.

3.2.1 Estimate on the mathematical model error

In order to define a quantitative criterion for adaptive modeling, we first analyze the idealistic scenario when the

outputs of the updated model perfectly reproduce the real physical observations, that is ΠU = Utrue
obs where U is the
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(admissible) solution of the direct problem K(psol)U = F. In such a scenario, the updated model is compatible with

physics so that there is no modeling error, while UDIC � ΠU is a random vector ⇠ with zero mean and covariance

ΣΣDIC . We also note that in the discretized mCRE framework, the optimal admissible field V̂ (for given p) corre-

sponds to a kinematically admissible field of the form [Ud, V̂a] (as V̂ = Û+Λ + a rigid body displacement which is

considered 0) which further satisfies K(p)V̂ = F. Consequently, for p = psol, V̂ = U.

In the hypothetic case of no measurement noise, then DIC measurements exactly correspond to the outputs of

the updated model K(psol)U = F, i.e. UDIC = ΠU (= ΠV̂ when p = psol). Therefore, at convergence, the system

describing the optimal admissible fields (Step 1 of the mCRE minimization) reads:

[Kaa(psol) + ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aa]Ûa = Fa + ↵.

1

NDIC
(ΠT

ΣΣ
�1
DIC)aoUDIC

� Kad(psol)Ud � ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)adUd

= Kao(psol)V̂ + ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aoV̂

� Kad(psol)Ud � ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)adUd

= [Kaa(psol) + ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aa]V̂a

(3.7)

so that Ûa = V̂a, and consequently Û = V̂ (= U).

Therefore, Eh2

mCRE(Û, V̂;psol) = 0 with its two terms (including Eh2

CRE(Û, V̂;psol) vanishing for any value of ↵.

When now considering DIC measurement noise, still with an exact model, then UDIC = ΠV̂+⇠ (when p = psol).

Step 1 of mCRE minimization thus yields:

[Kaa(psol)+↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aa]Ûa = Kaa(psol)V̂a+↵.

1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aaV̂a+↵.

1

NDIC
(ΠT

ΣΣ
�1
DIC)ao⇠ (3.8)

so that

Ûa = V̂a + [Kaa(psol) + ↵.
1

NDIC
(ΠT

ΣΣ
�1
DICΠ)aa]

�1↵.
1

NDIC
(ΠT

ΣΣ
�1
DIC)ao⇠ (3.9)

Consequently, the value of the CRE term is:

Eh2

CRE(Û, V̂;psol) =
1

2
(Û� V̂)TK(psol)(Û� V̂) =

1

2
(Ûa � V̂a)

T
Kaa(psol)(Ûa � V̂a)

=
↵2

2N2
DIC

.⇠T (ΠT
ΣΣ

�1
DIC)

T
aoK

�T

aa (psol,↵)Kaa(psol)K
�1

aa (psol,↵)(Π
T
ΣΣ

�1
DIC)ao⇠

(3.10)

where we again used the notation Kaa(psol,↵) = Kaa(psol) + ↵. 1
NDIC

(ΠT
ΣΣ

�1
DICΠ)aa.

This value of the CRE term statistically tends to a scalar value denoted E2
ref (↵). For a given ↵, E2

ref (↵) merely

depends on measurement noise statistics and on the considered model; it can thus be computed in an offline

phase (using for instanceMonte-Carlo samplings). The value E2
ref (↵) corresponds to the reference value of the CRE
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term due to measurement uncertainties, taking into account the impact of measurement noise on admissible fields

through a model assumed to be perfect. It is a value of choice for properly scaling the mCRE functional (see below).

Therefore, at the end of the identification process with p = psol, the value of the CRE term Eh2

CRE(Û, V̂;psol)

naturally informs on a mismatch in the mathematical model:

• when the model is compatible with (noisy) observations, we should get Eh
CRE(Û, V̂;psol)/Eref (↵) ⇡ 1 (=1 on

average); this is the configuration shown in Figure 3.3;

• when Eh
CRE(Û, V̂;psol)/Eref (↵) � 1, this indicates bias in the employed mathematical model. This model is

then too poor and deviates from a model that should represent the partial physical reality seen from observa-

tions;

• when Eh
CRE(Û, V̂;psol)/Eref (↵) ⌧ 1, the employed mathematical model appears to be too rich with regards

to available experimental information and associated measurement uncertainty.

Figure 3.3: Optimal configuration which is searched at the end of the adaptive process, with normalized components
on modeling E

2

CRE (in blue) and measurement 1
NDIC

(d(û)�UDIC)
T
ΣΣ

�1
DIC(d(û)�UDIC) (in red).

Remark. We remind that in the strategy developed in the PhD, the value of ↵ is systematically calibrated such that

the measurement error term in the mCRE functional is made consistent with measurement noise (see Section 2.1.2).

This term should satisfy (Morozov principle):

1

NDIC
(ΠÛ�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC) ⇡ 1 (3.11)

indicating that DIC data are approached up to noise level (i.e. that the residual vector on measurements is noise

only).

The value Eh2

CRE(Û, V̂;psol) =
1
2 (Û � V̂)K(psol)(Û � V̂) of the CRE term in the mCRE functional can thus be

interpreted, at convergence of the identification algorithm, as a modeling error estimator ⌘2mod. It informs on the
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quality of the updated model in view of noisy measurements, when compared with the reference value E2
ref (↵). The

estimate ⌘mod can be further used as a criterion in an adaptive strategy, in order to select a model that suitably

explains observations (see later).

Remark. The absolute estimate ⌘mod implicitly takes into account model and measurements as admissible fields Û

and V̂ depend on them.

3.2.2 Error indicators and adaptive strategy

The modeling error estimate ⌘2mod = 1
2 (Û � V̂)K(psol)(Û � V̂), derived from a discretized version of the mCRE

functional, does not consider discretization error as it refers to a reference model which is already discretized in

space. The stress field associated with V̂, that is σ(V̂) = Kε(NV̂), is indeed merely equilibrated in a FE sense. It

satisfies:

�VT (K(p)V̂ � F) = 0 8�V 2 Uh,0
ad (3.12)

The estimate ⌘2mod thus informs on the error due to the mathematical model alone.

In order to capture the discretization error source, and therefore evaluate the strict quality of the mesh, one needs

to refer to a continuous reference model. It is thus necessary to recover a stress field σ̂ which is fully equilibrated

(as performed in FE model verification with CRE, see Section 1.1.2). It should satisfy the property (assuming that

boundary conditions on @2Ω are reliable):

Z

Ω

σ̂ : ε(v) =

Z

Ω

fvd · v +

Z

∂2Ω

fsd · v 8v 2 U
0
ad (3.13)

which is related to static admissibility.

For this purpose, we propose to use the classical hybrid-flux (EET) technique (see Section 1.1.2) with direct post-

processing of the FE stress field σ(V̂) at hand after conducting the identification process with mCRE. The hybrid-flux

can be employed without any change as σ(V̂) satisfies the required properties (in terms of FE equilibration). This

a posteriori construction of a fully equilibrated admissible stress field σ̂ thus enables one to obtain a modeling error

estimate ⌘2tot that integrates both discretization and mathematical model error sources. It is constructed from the

CRE term, and reads:

⌘2tot = E2
CRE(û, σ̂;psol) (3.14)

From orthogonality properties, an error indicator on the discretization error alone is then recovered as:

⌘2dis = ⌘2tot � ⌘2mod (3.15)

Remark. When it is envisioned to generate synthetic measurement data using a FE mesh, and if this same mesh
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is further used for simulation of admissible fields in mCRE, there is no discretization error (with respect to measure-

ments) so that the indicator ⌘dis on discretization error should be close to 0.

Remark. In [Geymonat et al., 2002, Geymonat and Pagano, 2003, Florentin and Lubineau, 2010, Moussawi et al.,

2013], inverse analysis with the CRE concept is performed by using stress fields which are made statically admis-

sible in a strong sense from the start. The strict equilibration is obtained using Airy functions in [Geymonat et al.,

2002,Geymonat and Pagano, 2003,Latourte et al., 2008]. In [Florentin and Lubineau, 2010,Moussawi et al., 2013],

a global finite-dimensional optimization problem is solved by considering a regular simulation grid; unknowns are

then equilibrated polynomial tractions over element edges, after defining a direct link between these tractions and

the inside local stress field. Such procedures may yield an estimate on the global modeling error, but not indicators

on individual error sources.

3.3 Adaptive process

From the above modeling error estimator ⌘tot and indicators (⌘mod, ⌘dis), and by comparison with the reference value

Eref , an adaptive strategy is proposed to drive optimal model and mesh selection. We highlight that optimality has

to be understood with the objective of identification; adapted model and mesh, dedicated to parameter identification

and implicitly considering sensitivity analysis and experimental information, are strongly coupled with the amount

and richness of measurements. They differ from adapted model and mesh that should be used for prediction in a

direct problem.

Starting from an initial coarse configuration for the model class (M(0)) and mesh (T (0)
h ), adaptivity is performed

in a greedy manner at iteration k. When ⌘
(k)
tot � E

(k)
ref , indicating that the numerical model is not consistent with

experimental information, adaptivity is conducted by comparing relative values of M(0) and mesh T
(0)
h , as well as

their local spatial contributions to perform local adaptation. A scheme of the adaptive algorithm is given in Figure 3.4.

Remark. In practice, a change in model class is here performed over the whole domain Ω, but coupling between

concurrent models could also be envisioned in order to permit local change in the model class. This would be a

relevant strategy for keeping coarse model and mesh in regions which are not sensitive to identified parameters.

At the end of the adaptive process, the algorithm should tend to a simulated model that is consistent with

data, yielding savings in modeling complexity without sacrificing accuracy. When writing a normalized mCRE func-

tional (3.6), with normalization from E2
ref , modeling and measurement terms should be of the same unit order (see

Figure 3.3). Also, a balance between modeling and discretization error is intended.

Remark. We define here an adaptive process which is driven by the measurement noise level. We indicate that the

reverse procedure could also be possible, that is with given reference model and mesh, we could define the richness

of experimental information which is consistent to use. In the case of full-field measurements, this would come down
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(k)
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h

Adapt the model from
contributions of ⌘(k)mod

Adapt the mesh from
contributions of ⌘(k)dis

no

yes

yes

no

Figure 3.4: Scheme of the adaptive process.

to selecting a consistent image resolution (e.g. compressing data images with SVD) or a suitable correlation mesh

(e.g. to get iso-measurement noise) within a multiscale storage of images.

Remark. When the same mesh is used between simulations and digital image correlation in DIC-mCRE, or when

mI-DIC is used, the proposed mesh adaptation procedure can also be seen as an automatic manner to filter useless

or redundant experimental information for model identification purposes. It is a pruning process, implicitly based on

sensitivity analysis and measurement reliability, that enables saving in the amount of data [Neggers et al., 2017].
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3.4 Numerical results

3.4.1 Application 1: heterogeneous material

As a first illustration, we consider the identification of elastic properties of a plate with 3 inclusions (with known

positions) inside a matrix, from a tensile test (Figure 3.5). Each material is assumed to be isotropic, with coefficients

(Ei, ⌫i) in each phase (matrix 0 and inclusions 1, 2, and 3). We consider that ⌫i = 0.3 (i = 0, 1, 2, 3) and that

E0 = 200 GPa. The objective is to identify the other Young moduli E1, E2, and E3.

Figure 3.5: Reference model with heterogeneous material.

Measurements are simulated with a reference calculation (with given heterogeneous material parameters) and

additive random noise with magnitude corresponding to 5% of the mean value of displacements. These measure-

ments are then transferred on a regular grid (100⇥ 100).

The adaptive algorithm is started with a homogeneous elastic material (model M(0)) and a quite uniform mesh

made T3 elements (504 dofs). It is shown in Figure 3.6 how the normalized error estimator ⌘tot/Eref and normalized

indicators ⌘mod/Eref and ⌘dis/Eref evolve along iterations. The associated distribution of the global error estimate

⌘2tot and adapted mesh are also given in Figure 3.7. As could be foreseen, the model class is adapted during the

first iterations in order to progressively incorporate the 3 inclusions which are not represented in the initial model,

then the mesh is adapted around inclusions and in the vicinity of the edge with Dirichlet boundary conditions; the

corresponding adapted mesh is 4770 dofs and 7712 dofs, respectively. After iteration 6, the modeling error has a

level which is consistent with experimental information and the algorithm is stopped.

3.4.2 Application 2: anisotropic material

As a second illustration, we consider the identification of homogeneous orthotropic elastic properties. We consider

again the example of Section 2.2.2 (tensile test on a plate with a hole), but now synthetic data are generated from
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Figure 3.6: Normalized error estimator and indicators at each iteration of the adaptive algorithm.

Figure 3.7: Configurations obtained along the six iterations of the adaptive process (from left to right): when the
model is adapted, highest contributions of the estimate ⌘2mod are indicated in red.

an orthotropic model with reference parameters Ex,0 = 130 GPa, Ey,0 = 10 GPa, Gxy,0 = 5 GPa, and ⌫xy,0 = 0.35.

An additive 5% noise is added.

Starting from a priori knowledge on homogeneity and on the value of the Poisson ratio alone, an isotropic

elasticity model class M(0) with regular coarse mesh is first used to identified the associated Young modulus E.

The identification process indicates E ⇡ 80 GPa as well as a very large modeling error mainly coming from the

choice of the mathematical model (too poor model).

Consequently, the model class is then changed into an orthotropic elasticity model, with a larger set of associated

parameters (Ex, Ey, Gxy) to be identified. The mesh size is kept unchanged. At the end of the identification

procedure, the error indicators then show that the modeling error has decreased but the discretization error source

remains high (see Figure 3.8).

Mesh adaptation is thus performed using subdivision of existing elements (with management of hanging nodes)

until error indicators have converged to acceptable values. The values obtained along the adaptive process are

given in Table 3.1.
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Remark. Identification of anisotropic material parameters from full-field measurements was investigated in several

works [Bruno et al., 2002,Grédiac et al., 2002b,Molimard et al., 2005,Lecompte et al., 2007,Rahmani et al., 2014,Bal

et al., 2014,Bal et al., 2015]. It was addressed using the mCRE concept in [Guchhait and Banerjee, 2016].

Figure 3.8: Distribution of the indicator on discretization error ⌘2dis (left), and mesh adaptation process with marking
of elements (center and right).

model class estimate ⌘tot/Eref indicator ⌘mod/Eref indicator ⌘dis/Eref
isotropic elasticity 47.2 44.8 14.8

orthotropic elasticity (same mesh) 15.2 2.1 15.1
orthotropic elasticity (adapted mesh) 3.2 1.9 2.6

Table 3.1: Relative estimate and indicators on modeling error obtained along the adaptive process.
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Chapter 4

Enhanced numerical framework using

reduced order modeling

The numerical approach introduced in previous chapters is associated with the computations of admissible fields for

both identification (within the mCRE functional) and mesh adaptation (within the CRE functional). These computa-

tions are multi-query in the sense that they require many solutions of the same problem, but with various parameter

values (with iterative procedure, or change in the computational domain geometry). The multi-query aspects imply

computationally intensive procedures with a large number of evaluations of a deterministic finite element model. In

order to circumvent this issue, we investigate in this chapter the use of reduced order modeling (ROM) techniques,

and in particular the PGD technique, associated with an offline-online strategy. We show that these can be advan-

tageously coupled to the proposed mCRE inversion approach in order to facilitate implementation and decrease

computational cost, thus leading to a faster and cheaper V&V procedure.

4.1 Reduced order modeling with PGD

4.1.1 Basis on ROM

Applied mathematics, computational mechanics, and computer sciences contributed in the last two decades to

new modeling and simulation procedures in which reduced-order modeling (ROM) techniques are one of the ma-

jor achievements. These advanced techniques address complex high-dimensional engineering problems, with a

large set of parameters, which are out of reach or remain very costly despite constant enhancements in computing

resources. The issue comes from the exponential growth of complexity when using grid-based discretization strate-

gies; this is the so-called curse of dimensionality. Conversely, ROM provides for surrogate simulation models that

are computationally manageable while retaining high levels of accuracy on predicted outputs.
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ROM techniques, unlike meta-modeling techniques, do not simplify physics models but rather decrease their

computational complexity by using specific numerical tools that generate an adequate approximate solution from a

low-dimensional basis (manifold), facilitating the map from the input space to the set of outputs. They exploit the

fact that the response of complex models can often be approximated with a reasonable accuracy using a reduced

basis. Consequently, ROM techniques have the potential to dramatically reduce CPU costs and memory resources

without sacrificing too much of the solution accuracy. They have been in rapid expansion over the last decade and

their performance, in terms of savings in computational time and memory storage, are impressive (several orders of

magnitude).

Most ROM procedures consist of the generation, in an intensive offline (learning) stage, of a relevant reduced-

order basis that captures the dominant dynamics of the physical model. This basis is then operated in an online

phase to obtain approximate solutions at low cost. We may list here:

• the POD method [Chatterjee, 2000, Kunisch and Volkwein, 2001, Kunisch and Xie, 2005, Gunzburger et al.,

2007], which is similar to the Singular Value Decomposition (SVD), the Principal Component analysis (PCA),

or the Karhunen-Loeve Decomposition (KLD);

• the Reduced Basis (RB) method [Maday and Ronquist, 2002,Barrault et al., 2004,Maday, 2006,Rozza et al.,

2008,Drohmann et al., 2012];

• the PGD method [Chinesta et al., 2011,Chinesta et al., 2014], which will be specifically detailed below.

In the case of nonlinear problems, a second reduction procedure aiming at reducing the evaluation step over a

lower dimensional space is needed; this may be performed with several methods such as the Empirical Integration

Method (EIM) [Barrault et al., 2004,Maday and Mula, 2013,Radermacher and Reese, 2016] or the hyper-reduction

method [Ryckelynck, 2009], to name a few.

ROM is effective to address multi-query procedures and parametrized problems encountered in many compu-

tational engineering activities such as optimization (sensitivity analysis), inverse analysis, uncertainty propagation,

or optimal control [Grepl et al., 2007, Nguyen et al., 2010, Ghnatios et al., 2012, Maday et al., 2015a, Cui et al.,

2015,Nadal et al., 2015,Yu and Chakravorty, 2015,Manzoni et al., 2016,Chen et al., 2017,Karcher et al., 2018].

4.1.2 PGD technique

In contrast to the POD or RB methods in which the reduced-order basis is extracted from pre-computed solutions

of the system (learning phase), a priori methods follow a different path by progressively building an approximate

representation of the solution, without assuming any prior basis or knowledge on the problem dynamics. The Proper

Generalized Decomposition (PGD) [Chinesta et al., 2010, Nouy, 2010, Chinesta et al., 2011, Chinesta et al., 2014]

belongs to this family. PGD origins go back to the early 1980s with radial loading approximation as a key point
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of the LATIN method framework [Ladevèze, 1985, Ladevèze, 1989, Ladevèze, 1999]. Developed in this context for

the simulation of evolution problems, PGD consists in seeking the multidimensional solution in an offline phase

by using a low-rank modal approximation, i.e. a finite sum of separated-variable functions (modes). The solution

to an evolution problem is, for instance, searched as the sum of products of space by time functions (Figure 4.1).

Additional model parameters (related to material properties, boundary conditions, geometry. . . ) can also be inserted

as extra-coordinates of the problem. With such a modal representation, the complexity scales linearly with the

number of dimensions. Then, a progressive construction of successive best rank-one approximations is performed.

PGD does not require any knowledge on the separated functions; they are computed from scratch by the iterative

solver, using a variational formulation and a greedy algorithm.

The obtained PGD approximation explicitly depends on all model parameters; it constitutes a handbook of solu-

tions that are further particularized in the online phase with cheap and fast evaluation of the modal representation for

any value of the parameters. It thus permits real-time parametric analysis computations, using portable computing

platforms, for optimization, inverse identification, uncertainty propagation, or optimal control purposes.

Figure 4.1: PGD modal decomposition of the solution for a transient thermal problem: space functions (top), time
functions (bottom).

During the last decade, PGD was extensively used to solve multidimensional problems and perform efficient

simulation. We may cite:

• stochastic problems [Nouy, 2008];

• multiphysics problems [Néron and Ladevèze, 2010];

• data assimilation and inverse analysis [Ghnatios et al., 2012, Gonzalez et al., 2012, Louf and Champaney,

2013, Beringhier and Gigliotti, 2015, Nadal et al., 2015, Berger et al., 2016, Chamoin et al., 2016, Marchand

et al., 2016, Berger et al., 2017, Signorini et al., 2017, Badias et al., 2018, Rubio et al., 2018, Rubio et al.,

2019b,Rubio et al., 2019a];
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• problems with varying geometry [Ammar et al., 2014,Modesto et al., 2015,Zlotnik et al., 2015,Courard et al.,

2016,Chamoin and Thai, 2019,Sevilla et al., 2020];

• DVC [Jailin et al., 2018].

A review on PGD applications can be found in [Chinesta et al., 2014].

Also, some approaches have also been proposed to apply the PGD to nonlinear models, using Newton-type

algorithms [Chinesta et al., 2011], the LATIN-PGD method [Ladevèze, 1989,Ladevèze, 1999,Ladevèze et al., 2010b,

Vitse et al., 2014,Néron et al., 2015,Ladevèze, 2016,Vitse et al., 2019], or alternative methods [Ryckelynck, 2009].

In addition, the certification of PGD has been investigated in several works [Ammar et al., 2010, Ladevèze and

Chamoin, 2011,Moitinho de Almeida, 2013,Alfaro et al., 2015,Chamoin et al., 2017,Chamoin and Thai, 2019,Reis

et al., 2020].

The standard approach to compute PGD modes is the so-called progressive Galerkin approach [Nouy, 2010],

which starts from a global weak formulation of the multi-dimensional problem. Consider a general linear D-

dimensional problem of the form:

Lu = g , u 2 X = X1 ⌦ X2 ⌦ · · ·⌦ XD (4.1)

where L is an operator defined on the tensor space X . PGD consists in searching an approximation um of u in a

low-dimensional tensor subspace of X made of canonical format tensors of rank m:

um =

m
X

i=1

w1
i ⌦ w2

i · · ·⌦ wD
i , wµ

i 2 Xµ (4.2)

Introducing the global weak formulation of the problem:

Find u 2 X such that B(u, v) = F (v) 8v 2 X (4.3)

with

B(u, v) =

Z

Ω1

Z

Ω2

. . .

Z

ΩD

b(u, v) ; F (v) =

Z

Ω1

Z

Ω2

. . .

Z

ΩD

f(v) (4.4)

and assuming the rank m�1 decomposition um�1 is known, the rank m decomposition um = um�1+w1⌦w2 · · ·⌦wD

is searched such that:

B(um, �v) = F (�v) 8�v = �w1 ⌦ w2 · · ·⌦ wD + w1 ⌦ �w2 · · ·⌦ wD + · · ·+ w1 ⌦ w2 · · ·⌦ �wD (4.5)

with �wµ 2 Xµ. This formulation naturally leads to a nonlinear system where a set of coupled low-dimensional
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problems have to be solved:

B(w1 ⌦ w2 · · ·⌦ wD, �w1 ⌦ w2 · · ·⌦ wD) = Rm�1(�w
1 ⌦ w2 · · ·⌦ wD) 8�w1 2 X1

B(w1 ⌦ w2 · · ·⌦ wD, w1 ⌦ �w2 · · ·⌦ wD) = Rm�1(w
1 ⌦ �w2 · · ·⌦ wD) 8�w2 2 X2

... =
...

B(w1 ⌦ w2 · · ·⌦ wD, w1 ⌦ w2 · · ·⌦ �wD) = Rm�1(w
1 ⌦ w2 · · ·⌦ �wD) 8�wD 2 XD

(4.6)

with Rm�1(v) = F (v) � B(um�1, v). This system is in practice solved with an iterative fixed-point (or alternated

directions) strategy. Additional ingredients may be added in the modal construction in order to optimize numerical

performance, such as the orthogonalization of PGD modes.

4.2 Minimization of mCRE using PGD

4.2.1 Presentation

In the iterative inversion technique based on the mCRE functional (see Chapter 2), Step 1 of the procedure requires

to solve a potentially large linear system for many values of the parameter set p (sequential minimization). This

enables to recover optimal admissible fields (Û(p), V̂(p)) at each iteration (i.e. each time p is updated), to derive

the cost function FmCRE(p) (or FmIDIC(p)) to be minimized, and to compute its gradient. Also, we detailed in

Chapter 2 how the scaling factor ↵ could be tuned in order to satisfy the Morozov principle; this again requires to

solve the linear system for several values of ↵. In this multi-query context, PGD appears as a natural tool to decrease

the computational cost and accelerate the inversion method. The idea is to compute, in an offline phase, a multi-

parametrized admissible solution that explicitly depends on p and ↵. This solution can then be easily evaluated in

the online stage when conducting the inversion process.

Pioneering works on the use of PGD into the mCRE context can be found in [Bouclier et al., 2013, Chamoin

et al., 2016, Marchand et al., 2016]. An important feature is that PGD modes are computed from both model and

experimental data, so that they integrate sensing information; this is in opposition to approaches where the PGD

solution is constructed from the direct problem [Gonzalez et al., 2012] before being employed for inversion. We also

indicate that reduced basis approaches were also used in [Deraemaeker et al., 2002, Oliveira et al., 2020] when

minimizing the mCRE functional.

We explain the PGD strategy by considering the functional associated with the DIC-mCRE method (Section 2.1.2),

that reads:

Eh2

mCRE(Û, V̂;p) =
1

2
(Û� V̂)TK(p)(Û� V̂) +

↵

2
.

1

NDIC
(ΠÛ�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC) (4.7)
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A similar strategy can be implemented when considering the functional associated with the mI-DIC method (Sec-

tion 2.1.3).

4.2.2 Proposed strategy

The constrained minimization performed in Step 1 of the mCRE minimization is based on the following Lagrangian

functional (written in its FEM discretized form):

Lh(Û, V̂,Λ;p) =
1

2
(Û� V̂)TK(p)(Û� V̂)

+
↵

2
.

1

NDIC
(ΠÛ�UDIC)

T
ΣΣ

�1
DIC(ΠÛ�UDIC)�Λ

T (K(p)V̂ � F)

(4.8)

The first-order Karush-Kuhn-Tucker necessary optimality conditions, by searching the saddle-point of Lh, read:

�ÛT

✓

K(p)(Û� V̂) + ↵.
1

NDIC
Π

T
ΣΣ

�1
DIC(ΠÛ�UDIC)

◆

= 0 8�Û = [0, �Ûa]
T

�V̂T
⇣

K(p)(V̂ � Û)� K(p)Λ
⌘

= 0 8�V̂

�ΛT (K(p)V̂ � F) = 0 8�Λ = [0, �Λa]
T

(4.9)

or, after substituting V̂ (= Û+Λ):

�ÛT

✓

�K(p)Λ+ ↵.
1

NDIC
Π

T
ΣΣ

�1
DIC(ΠÛ�UDIC)

◆

= 0 8�Û = [0, �Ûa]
T

�ΛT
⇣

K(p)(Û+Λ)� F
⌘

= 0 8�Λ = [0, �Λa]
T

(4.10)

This Galerkin formulation (in space) may be written in a more condensed form:

b([Û,Λ], [�Û, �Λ]) = f([�Û, �Λ]) 8[�Û, �Λ] (4.11)

with

b([Û,Λ], [�Û, �Λ]) = ��ÛT
K(p)Λ+ ↵.

1

NDIC
�ÛT

Π
T
ΣΣ

�1
DICΠÛ+ �ΛT

K(p)(Û+Λ)

f([�Û, �Λ]) = ↵.
1

NDIC
�ÛT

Π
T
ΣΣ

�1
DICUDIC + �ΛTF

(4.12)

We implement a PGD reduced model by finding, in an offline phase, parametrized solutions (Û,Λ) with ↵ and p as

extra-parameters. They are searched under the form:

Ûm(↵,p) =

m
X

i=1

2

4Ψ
U
i 

U
i (↵)

P
Y

j=1

�U
j,i(pi)

3

5 ; Λm(↵,p) =

m
X

i=1

2

4Ψ
Λ

i 
Λ

i (↵)

P
Y

j=1

�Λ

j,i(pi)

3

5 (4.13)

Remark. We assume that measurement values in UDIC are known upstream to the updating procedure, and that
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this procedure is conducted for a single set of measurement values. In contrary cases such as data assimila-

tion on time-dependent problems, measurement values could also be considered as extra-parameters in the PGD

decomposition [Bouclier et al., 2013, Marchand et al., 2016]. To limit the number of extra-parameters, full-field

measurements should then be decomposed over a reduced basis (using POD for instance).

The conventional progressive Galerkin approach described before is used with the global bilinear form B and

linear form F , defined as:

B([Û,Λ], [�Û, �Λ]) =

Z

Ωα

Z

P

b([Û,Λ], [�Û, �Λ]) ; F ([�Û, �Λ]) =

Z

Ωα

Z

P

f([�Û, �Λ]) (4.14)

with Ωα = R⇤+ and P the spaces of parameters ↵ and p, respectively.

In the fixed point algorithm used to compute each mode, functions of ↵ and p are normalized. Therefore, the

magnitude of mode i is in the space functions Ψ
U
i and Ψ

Λ
i .

The PGD solutions Ûm(↵,p) and V̂m(↵,p) = Ûm(↵,p) +Λm(↵,p) are then used in the online model updating

phase with mCRE. This has several advantages:

• the explicit dependency on parameters p enables: (i) to evaluate very fast and for any value of p the optimal

admissible fields arising from the first constrained minimization; (ii) to compute gradients of the cost function

FmCRE(p) in a straightforward manner. The second minimization (correction) step of the mCRE approach is

thus performed very easily, by means of simple evaluations;

• the explicit dependency on parameter ↵ makes the definition of its optimal value (with respect to measurement

noise using the Morozov principle) straightforward as well.

4.2.3 Implementation details

For illustration, we consider only one material parameter p, that is p = {p}.

Assuming the order m� 1 PGD decomposition (Ûm�1,Λm�1) is known, the order m decomposition of the form

Ûm(↵, p) = Ûm�1(↵, p) +Ψ
UU (↵)�U (p) and Λm(↵, p) = Λm�1(↵, p) +Ψ

ΛΛ(↵)�Λ(p) is searched by solving:

B([Ûm,Λm], [�Û, �Λ]) = F ([�Û, �Λ]) 8[�Û, �Λ] (4.15)

Test functions are chosen in the tangent space and read:

�Û = �ΨU .U .�U +Ψ
U .�U .�U +Ψ

U .U .��U

�Λ = �ΨΛ.Λ.�Λ +Ψ
Λ.�Λ.�Λ +Ψ

Λ.Λ.��Λ

(4.16)

Consequently, we get the following system of coupled equations:
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• problem in the physical space Ω (P1):

([U ,Λ], [�U ,�Λ]) 7�! [ΨU ,ΨΛ] = g1([
U ,Λ], [�U ,�Λ])

B([ΨU .U .�U ,ΨΛ.Λ.�Λ], [�ΨU .U .�U , �ΨΛ.Λ.�Λ]) = Rm�1([�Ψ
U .U .�U , �ΨΛ.Λ.�Λ]) 8�ΨU , �ΨΛ

(4.17)

• problem in the scalar weight space Ωα (P2):

([ΨU ,ΨΛ], [�U ,�Λ]) 7�! [U ,Λ] = g2([Ψ
U ,ΨΛ], [�U ,�Λ])

B([ΨU .U .�U ,ΨΛ.Λ.�Λ], [ΨU .�U .�U ,ΨΛ.�Λ.�Λ]) = Rm�1([Ψ
U .�U .�U ,ΨΛ.�Λ.�Λ]) 8�U , �Λ

(4.18)

• problem in the material parameter space P (P3):

([ΨU ,ΨΛ], [U ,Λ]) 7�! [�U ,�Λ] = g3([Ψ
U ,ΨΛ], [U ,Λ])

B([ΨU .U .�U ,ΨΛ.Λ.�Λ], [ΨU .U .��U ,ΨΛ.Λ.��Λ]) = Rm�1([Ψ
U .U .��U ,ΨΛ.Λ.��Λ]) 8��U , ��Λ

(4.19)

with Rm�1(•) = B([Ûm�1,Λm�1], •)� F (•).

Remark. In order to take into account the possibly non-homogeneous Dirichlet boundary conditions associated

with Û, an initial mode Û0 = Ψ
U
0 satisfying these conditions is inserted in the PGD decomposition Ûm. The next

modes in this PGD decomposition, as well as those in the PGD decomposition Λm, then contain space functions

that satisfy homogeneous Dirichlet boundary conditions.

The coupled system is solved with a fixed-point strategy; after initializing with (U
(0)

,Λ
(0)

,�U(0)

,�Λ
(0)

) (constant

functions in practice), the following computations are iteratively performed:

1. Solve problem P1 to compute space functions [ΨU(k+1)

,ΨΛ
(k+1)

] from [U
(k)

,Λ
(k)

] and [�U(k)

,�Λ
(k)

]

2. Solve problem P2 to compute scalar weight functions [U
(k+1)

,Λ
(k+1)

] from [ΨU(k+1)

,ΨΛ
(k+1)

] and [�U(k)

,�Λ
(k)

],

and normalize them

3. Solve problem P3 to compute material parameter functions [�U(k+1)

,�Λ
(k+1)

] from [ΨU(k+1)

,ΨΛ
(k+1)

] and

[U
(k+1)

,Λ
(k+1)

], and normalize them

The (discretized) space problem P1 leads to a linear system, while problems P2 and P3 correspond to algebraic

equations, for which a discretization on a fine grid may be performed.

The iterative process to compute mode m may be stopped when it has converged (with stagnation of modal

functions along iterations, or criterion on the global residual in the tangent space). Alternatively, the process may be

stopped after a fixed number kmax of iterations. In the numerical studies, we implemented this second choice.
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4.2.4 Numerical results

We illustrate the approach by considering again the test-case of Section 3.4.1 with heterogeneous material. Imple-

menting PGD on this problem, the first five modes of the PGD decomposition Ûm are shown in Figure 4.2. The

relative energy norm of these modes is also shown in Figure 4.3, indicating that a PGD decomposition with m = 5

modes here captures most of the mechanical content of the solution.

Figure 4.2: First five modes in the PGD decomposition Ûm of the primal admissible field (i = 1, 2, 3, 4, 5 from left to
right).

When implementing the mCRE identification process, an overall speed-up of 56 is obtained in the online phase.

4.3 Construction of equilibrated fields using PGD

4.3.1 Presentation

The hybrid flux (or EET) equilibration technique [Ladevèze and Leguillon, 1983,Ladevèze and Maunder, 1996,Pled

et al., 2011] is used in Section 3.2.2 in order to recover the indicator ⌘dis on the discretization error in the mCRE

identification process. It consists in post-processing the stress field σ(V̂) = Kε(NV̂) at hand (equilibrated in a
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Figure 4.3: Relative energy norm of each PGD mode.

FE sense) in order to derive a stress field σ̂ which is fully equilibrated. As indicated in Chapter 1, the hybrid flux

technique is made of two steps. In the first one, some polynomial tractions f̂K (defined as linear combinations

f̂K|Γ(x) =
P

j2JΓ
f̂
j
K|Γ�j(x) on FE shape functions �i) are constructed on edges of each element K; they should be

balanced with the external loading (fvd , fsd ). In a second step, the stress field σ̂ is locally computed on each element

K of the mesh. It should satisfy:

r · σ̂ + fvd = 0 inK ; σ̂n = f̂K on @K (4.20)

It can be shown that the best stress field σ̂ (i.e. locally minimizing the complementary energy or, equivalently,

the CRE functional) is derived from a displacement field, which is σ̂ = K(p)ε(⇢). Consequently, the independent

problems that are solved in each element K read:

Z

K

K(p)ε(⇢) : ε(v) =

Z

K

fvd · v +

Z

∂K

f̂K · v 8v 2 U(K) (4.21)

with U(K) = [H1(K)]d.

The solution ⇢ of these problems, which is defined up to rigid body motions in UR(K), is in practice numerically

solved with a single FE element with higher-order shape functions (i.e. degree p+ k with p the polynomial degree of

the initial FE computation and k the extra-degrees). Numerical studies [Babuska et al., 1994b] showed that accurate

error estimates are obtained choosing k � 3, even though the stress field is not rigorously balanced in each element

K.

The previous procedure again leads to a multi-query context, as the above problem (4.21) (illustrated in Fig-

ure 4.4) needs to be solved for various p, for various elements (i.e. computational domain geometries), and for
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various boundary loadings (tractions). Even though it involves local computations, it is in practice the costliest part

in the hybrid-flux method (in particular for 3D applications). The PGD technique can thus be advantageously used to

compute, in an offline phase and at the element level, an approximation of ⇢ which is valid for any p, any geometry

of K, and any boundary loading (using superposition). This is performed after parametrization of local problems,

and it leads to locally equilibrated fields (at the element level), valid for any configuration, that can further be used in

the online error estimation phase. Pioneering works on this topic can be found in [Chamoin et al., 2016,Allier et al.,

2018,Chamoin and Thai, 2019] for scalar linear elliptic (thermal) problems; they are here extended to elasticity with

equilibrium on stress fields.

Figure 4.4: Configuration at the level of a 3-node triangle element, with linear tractions f̂K|Γ defined on element
edges.

4.3.2 Proposed strategy

We detail here the PGD procedure in 2D cases, considering 3-node triangle elements; it can be extended to other

cases in a straightforward manner. On each edge Γ of any element K, tractions are linear combinations of FE shape

functions �j and thus read:

f̂K|Γ(x) =
X

j2JΓ

[f̂ jx
K|Γ�

x
j (x) + f̂ jy

K|Γ�
y
j (x)] with (f̂ jx

K|Γ, f̂
jy
K|Γ)

T 2 R
2 (4.22)

where we used the notation �x
j (x) = (�j(x), 0)

T and �y
j (x) = (0,�j(x))

T . JΓ corresponds to the set of two nodes

on Γ. Consequently, the solution ⇢ to (4.21) is written from linearity as:

⇢(x) =
X

Γ⇢∂K

X

j2JΓ

[f̂ jx
K|Γ⇢

jx
Γ
(x) + f̂ jy

K|Γ⇢
jy
Γ
(x)] (4.23)

where ⇢jx/y
Γ

is the solution, up to rigid body motions, to the following elementary problem:

Z

K

K(p)ε(⇢
jx/y
Γ

) : ε(v) =

Z

Γ

�
x/y
j · v �

Z

K

(a1 ^X + a2) · v 8v 2 U(K) (4.24)
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X denotes the barycentric coordinates in element K, and a1 and a2 are defined as:

a1 =

R

Γ
X ^ �x/y

j
R

K
X ·X

; a2 =
1

|K|

Z

Γ

�
x/y
j (4.25)

They ensure equilibrium at the element level, and therefore existence of a solution to elementary problems (4.24).

Remark. The number of elementary problems (4.24) depends on the space dimension and the type of element.

For 3-node triangle elements, there are 12 elementary problems (2 for each of the 2 nodes on each of the 3 edges).

There would be 18 elementary problems for 6-node triangle elements (2 for each of the 3 nodes on each of the 3

edges), and 36 elementary problems for 4-node tetrahedron elements (3 for each of the 3 nodes on each of the 4

faces).

The solution ⇢jx/y
Γ

to each problem (4.24) can be computed with the PGD technique, for any element K, by

parametrizing the geometry of K with a set of parameters pgeo 2 Pgeo. Following the approach described in [Ammar

et al., 2014, Zlotnik et al., 2015], problem (4.24) is reformulated by introducing a parameter-dependent mapping

M(pgeo) : Kref ! K(pgeo) from a reference fixed element Kref to the geometrically parametrized element K(pgeo).

Such a geometrical transformation then allows the problem to be recast in a tensor product space and PGD to be

applied, in order to compute generic parametrized solutions ⇢jx/y
Γ

(xref ,pgeo,p), which can be used for any element

geometry and material properties.

In the present case, the mapping is defined from two transformations:

• a first scaling mapping M1 : K ! K maps a homothetic element K with diameter 1 to the actual element K

with diameter h. This mapping involves a transformation matrix T1 = hId such that x = T1x;

• a second mapping M2 : Kref ! K maps a reference element Kref to element K. This mapping uses an

isoparametric formulation and involves a transformation matrix T2 such that x = T2xref .

The global mapping is therefore M(pgeo) = M1 � M2 with transformation matrix T(pgeo) = hT2, Jacobian matrix

J(pgeo) = T(pgeo), and Jacobian J(pgeo) = det(J(pgeo)).

Considering 3-node triangle elements (Figure 4.5), mapping M2 reads:

0

B

@

x

y

1

C

A
=

0

B

@

P3
i=1 xi�i(⌘, ⇠)

P3
i=1 yi�i(⌘, ⇠)

1

C

A
= T2

0

B

@

⌘

⇠

1

C

A
with T2 =

2

6

4

1 x3

0 y3

3

7

5
(4.26)

where (x3, y3) are local coordinates of node 3 in the coordinate system associated with element K, and (⌘, ⇠) are

local coordinates in the coordinate system associated with element Kref . The global mapping M thus involves 3
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scalar parameters, i.e. pgeo = (h, x3, y3), with:

J =

2

6

4

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

3

7

5
= hT2 = h

2

6

4

1 x3

0 y3

3

7

5
; J

�1 =

2

6

4

∂ξ
∂x

∂ξ
∂y

∂η
∂x

∂η
∂y

3

7

5
=

1

h

2

6

4

1 �x3

y3

0 1
y3

3

7

5
; J = det (J) = h2y3 (4.27)

Figure 4.5: Mapping between reference and parametrized elements for a 3-node triangle element.

Remark. The number of parameters involved in mapping M (i.e. the size of pgeo) again depends on the space

dimension and the type of element. There are 3 geometrical parameters (6 degrees of freedom with 3 rigid body

motions) for 3-node triangle elements, 9 geometrical parameters (12 degrees of freedom with 3 rigid body motions)

for 6-node triangle elements, and 6 geometrical parameters (12 degrees of freedom with 6 rigid body motions) for

4-node tetrahedron elements. In this last case of a 3D problem with 4-node tetrahedron elements, the geometry

parameter vector would read pgeo = (h, x3, y3, x4, y4, z4) (6 scalar parameters) where local coordinates of nodes 3

and 4 in the coordinate system associated with element K are involved.

Consequently, problem (4.24) is parametrized and defined in a fixed reference element Kref under the form:

Z

Kref

JK(p)[J�Trr]s⇢
jx/y
Γ

: [J�Trr]sv =

Z

Γref

Js�
x/y
j · v �

Z

Kref

J(a1 ^X + a2) · v 8v 2 U(Kref ) (4.28)

with Js the Jacobian associated with the transformation of element edge Γ:

Js = h

8

>

>

>

>

<

>

>

>

>

:

1 on Γ12

p

(1� x3)2 + y23 on Γ23

p

x2
3 + y23 on Γ13

(4.29)
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A separated-variable approximation of Js (using HO-SVD) is defined in practice for computational purposes.

We now introduce a reduced model, based on PGD, to obtain parametrized approximations of the solutions

to (4.28). We illustrate the procedure for the approximation of ⇢jx
Γ

corresponding to the boundary loading �x
j (x) =

(�j(x), 0)
T (associated with node j) along the edge Γ. This approximation with variable-separated modal decompo-

sition reads:

⇢
jx
Γ,m(xref ,pgeo,p) =

m
X

i=1

0

@ i(xref )
Y

1kPgeo

k,i(pgeo,k)
Y

1lP

�l,i(pl)

1

A (4.30)

It is computed in an offline phase using the previously described progressive Galerkin approach and introducing the

global forms:

B(⇢jx
Γ
,v) =

Z

Pgeo

Z

P

Z

Kref

JK(p)[J�Trr]s⇢
jx/y
Γ

: [J�Trr]sv

F (v) =

Z

Pgeo

Z

P

"

Z

Γref

Js�
x/y
j · v �

Z

Kref

J(a1 ^X + a2) · v

# (4.31)

Remark. For extremal cases (elements K with bad shape), the number of PGD modes should be chosen carefully

in order to ensure accuracy. However, too much distorted elements are usually avoided in practical meshes, and

a few number of PGD modes leads to a PGD error which is negligible compared to the discretization error that is

assessed.

Combining with (4.23), a PGD representation of the solution to (4.21) is finally obtained as:

⇢m(xref ,pgeo,p, {f̂
jx/y
K|Γ }) =

X

Γ⇢∂K

X

j2JΓ

h

f̂ jx
K|Γ⇢

jx
Γ,m(xref ,pgeo,p) + f̂ jy

K|Γ⇢
jy
Γ,m(xref ,pgeo,p)

i

(4.32)

It provides a parametrized equilibrated stress field at the element level:

σ̂m|K(xref ,pgeo,p, {f̂
jx/y
K|Γ }) = K(p)[J�T (pgeo)rr]s⇢m(xref ,pgeo,p, {f̂

jx/y
K|Γ }) (4.33)

which can be directly used online in the a posteriori error estimation procedure of Chapter 3.

A flowchart of the use of PGD in Step 2 of the hybrid-flux approach is given in Figure 4.6.

4.3.3 Implementation details

For illustration purposes, we consider the PGD decomposition of the solution ⇢jx
Γ

. We also assume that there is only

one geometry parameter pgeo (that is pgeo = {pgeo}) and one material parameter p (that is p = {p}). Consequently,

the decomposition reads:

⇢
jx
Γ,m(xref , pgeo, p) =

m
X

i=1

 i(xref )i(pgeo)�i(p) (4.34)
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Figure 4.6: Flow chart of the hybrid-flux approach without (left) or with (right) the use of PGD in Step 2.

Assuming the order m�1 PGD decomposition ⇢jx
Γ,m�1 is known, the order m decomposition of the form ⇢

jx
Γ,m(xref , pgeo, p) =

⇢
jx
Γ,m�1(xref , pgeo, p) + (xref )(pgeo)�(p) is searched by solving:

B(⇢jx
Γ,m, �⇢jx

Γ
) = F (�⇢jx

Γ
) 8�⇢jx

Γ
(4.35)

Test functions �⇢jx
Γ

are chosen in the tangent space and read:

�⇢
jx
Γ

= � ..�+ .�.�+ ..�� (4.36)

Consequently, we get the following system of coupled equations:

• problem in the physical space Kref (P1):

(,�) 7�!  = g1(,�)

B( ..�, � ..�) = Rm�1(� ..�) 8� 
(4.37)
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• problem in the geometry parameter space Pgeo (P2):

( ,�) 7!  = g2( ,�)

B( ..�, .�.�) = Rm�1( .�.�) 8�
(4.38)

• problem in the material parameter space P (P3):

( ,) 7! � = g3( ,)

B( ..�, ..��) = Rm�1( ..��) 8��
(4.39)

with Rm�1(•) = B(⇢jx
Γ,m�1, •)� F (•).

The coupled system is solved with a fixed-point strategy; after initializing with ((0),�(0)) (constant functions in

practice), the following computations are iteratively performed:

1. Solve problem P1 to compute the space function  (k+1) from (k) and �(k)

2. Solve problem P2 to compute the geometry parameter function (k+1) from  (k+1) and �(k), and normalize it

3. Solve problem P3 to compute the material parameter function �(k+1) from  (k+1) and (k+1), and normalize it

The space problem P1 is solved using FEM with a single element of degree p + k. Problems P2 and P3

correspond to algebraic equations, for which a discretization on a fine grid may be performed. The iterative process

is stopped when it has converged or after a fixed number of iterations.

4.3.4 Numerical results

We illustrate the approach by considering again the test-case of Section 3.4.1 with heterogeneous material. When

implementing PGD for this 2D problem to obtain equilibrated stress fields at the T3-element level, decompositions

of the form:

⇢
jx/y
Γ,m (xref , h, x3, y3, E) =

m
X

i=1

 i(xref )h,i(h)x,i(x3)y,i(y3)�i(E) (4.40)

are computed (E is the local value of the heterogeneous Young modulus to be identified).

We show in Figure 4.7 the first 3 modes (functions  i, x,i and y,i) corresponding to the decomposition ⇢1x
Γ12,m

,

associated with the elementary boundary loading �x
1(x) = (�1(x), 0)

T (thus oriented in the x-direction and evolving

as the shape function of node 1) along the edge Γ12. Evaluations of the PGD solution in the element K, for various

values of x3 and y3, are displayed in Figure 4.8.

When implementing the modeling adaptation process with the PGD strategy, an average speed-up of 16 is

obtained in the online phase. This speed-up level takes into account the CPU time of the offline PGD simulations.
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Figure 4.7: First PGD modes of ⇢1x
Γ12,m

: space functions  i(x) (top), and geometry parameter functions x,i(x3)
(center) and y,i(y3) (bottom), for i = 1, 2, 3 (from left to right).
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Figure 4.8: Representation of the approximate PGD solution ⇢1x
Γ12,m

for various geometry configurations.
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Chapter 5

Extension to nonlinear behavior with

model selection

In this chapter, we extend to nonlinear constitutive (elasto-plasticity) models the mCRE framework in association

with full-field measurements. We first generalize the mCRE functional by using sound thermodynamics concepts,

before introducing a specific solver in order to solve the optimization problem that drives the minimization of this

functional. Model selection and adaptivity are again illustrated in this context.

5.1 Modified CRE functional in the nonlinear framework

5.1.1 Motivation

There is a constant development of new material models with increasing constitutive complexity. As they need to

be identified, considering complex nonlinear behaviors has now become usual when dealing with inverse problems.

We refer to [Constantinescu and Tardieu, 2001, Corigliano and Mariani, 2001, Claire et al., 2004, Azam, 2014] for

general works on this topic, and to [Latourte et al., 2008,Ben Azzouna et al., 2011,Blaysat et al., 2012,Bouterf et al.,

2015,Mathieu et al., 2015,Barbarella et al., 2016,Neggers et al., 2017] for applications with full-field measurements.

From an experimental point of view, parameter identification of such complex nonlinear models appears to be time-

consuming and expensive. It is thus important to master the identification procedure in terms of management of error

sources; in particular, selecting the correct constitutive model among a large manifold with hierarchical complexity

(see [Lemaitre and Chaboche, 1994]) is a fundamental issue. In this context, we wish here to extend the DIC-mCRE

(or mI-DIC) framework that we developed in previous chapters.

Actually, the CRE concept is strongly based on constitutive models, with a sound background on continuum

thermodynamics. Even though originally defined for linear constitutive models, a generalization to complex non-
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linear constitutive models (viscoplasticity, damage) was proposed [Ladevèze and Moës, 1997, Ladevèze et al.,

1999,Ladevèze, 2001] still in the context of model verification. It was derived from a standard formulation of the ma-

terial behavior involving internal variables [Halphen and Nguyen, 1975], and using Legendre-conjugate dual convex

potentials associated with constitutive laws within this formulation.

We propose to use this generalized CRE measure into the mCRE functional, thus performing a natural transition

between CRE and mCRE for nonlinear models, and providing for a unified formulation of mCRE-based inverse

analysis. Preliminary works on the use of nonlinear models with mCRE can be found in [Marchand et al., 2019],

and in [Hadj-Sassi, 2007, Blaysat et al., 2012] to a lesser extent. We also mention that other works proposed

methodologies based on CRE-type identification tools for nonlinear behaviors [Allix and Vidal, 2002, Barbarella

et al., 2016], but these are specific and functionals which are introduced are tuned to the considered problem (e.g.

using an incremental version of the linear elastic case); they do not consider a pure definition of the CRE contrary

to what we propose below.

In this section, we develop and analyze the methodology by considering (elasto-)plasticity models, and using the

local state method (which postulates that the thermomechanical state of the medium, at given point and time, is fully

defined by knowing local values of a given number of variables).

5.1.2 Thermodynamical framework

We consider the quasi-static evolution of an open bounded body Ω over the time interval [0, T ]. Assuming small

deformations and isothermal conditions, the (nonlinear) constitutive relation reads:

σ|t = A(ε̇|τ , ⌧  t) 8(x, t) 2 Ω⇥ [0, T ] (5.1)

where A is a given operator. This is the functional description of the behavior, which will not be kept in the following.

We rather focus on the wide class of nonlinear material behaviors described with standard formulation [Halphen and

Nguyen, 1975,Germain et al., 1983]. In such a formulation, the behavior is described in terms of two complementary

parts (state equations and evolution laws) that are defined by means of convex and dual (in the Legendre-Fenchel

sense) potentials, and use internal variables. The associated thermodynamics framework is recalled here.

The first principe of thermodynamics, which describes conservation of energy, globally reads for any continuous

medium ! ⇢ Ω:
d

dt
(Eint + Ekin) = Pext +Q or

dEint

dt
= �Pint +Q (5.2)

where we introduced:

• the internal energy Eint, with specific density e such that Eint =
R

ω
⇢e;
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• the kinetic energy Ekin = 1
2

R

ω
⇢v2, with v the velocity;

• the received external power Pext =
R

ω
fv · v +

R

∂ω
σn · v;

• the received heat rate Q, coming from volume heat source r and heat flux q such that Q =
R

ω
r �

R

∂ω
q · n;

• the internal power Pint = �
R

ω
σ : rrsv.

This principle thus locally reads:

⇢ė = σ : ε̇ + r �r · q (5.3)

The second principle of thermodynamics is an evolution principle that involves entropy S of the material system; it

reads:
dS

dt
�

Z

ω

r

T
�
Z

∂ω

q · n

T
(5.4)

Introducing the specific entropy density s, this principle locally reads:

⇢ṡ+r · (
q

T
)� r

T
� 0 (5.5)

Combining the two previous local equations, we obtain the fundamental inequality:

σ : ε̇ + ⇢(T ṡ� ė)� q ·rT

T
� 0 (5.6)

Last, introducing the Helmholtz free (stored) energy  = ⇢(e� Ts) as a new thermodynamic quantity, the following

Clausius-Duhem inequality becomes:

σ : ε̇ �  ̇ � q ·rT

T
� 0 (Ṫ = 0 here) (5.7)

It is at the heart of the consistent definition of constitutive laws, as thermodynamically admissible processes should

satisfy this inequality at each time of the material evolution.

Observable variables in the proposed formalism are temperature T and total strain ε. When considering dissi-

pative phenomena, the material state also depends on past history which is represented by internal variables. For

plasticity problems of interest, elastic strain εe and plastic strain εp variables are introduced; they are linked with the

partition ε = εe + εp (so that in practice only the plastic strain εp keeps the status of internal variable). Other phe-

nomena (such as hardening) are represented by additional internal variables Xk (k = 1, 2, . . . ,K) that can be scalar,

vector, or tensor quantities. They are gathered in vector X, so that the full list of state variables is (T, ε, εp,X). We

may also use the notation X0 = εp. In the following, we do not include the temperature variable T in the notations

anymore, due to the assumption on isothermal conditions.
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State equations are derived from the Helmholtz free energy used as a thermodynamical potential  (ε, εp,X);

it reads  (ε � εp,X) =  (εe,X) for elasto-(visco-)plasticity (i.e. strain only appears under its elastic part). It is

assumed to be convex (and concave with respect to T in a more general case) in order to get a sufficient condition

to satisfy stability conditions of the second principle. The Clausium-Duhem inequality then reads:

(σ � @ 

@εe
) : ε̇e + σ : ε̇p �

K
X

k=1

@ 

@Xk
.Ẋk � q ·rT

T
� 0 (5.8)

Considering a reversible elastic transformation with uniform temperature, we directly get σ = ∂ψ
∂εe

which corresponds

to the elastic Hooke law. By analogy, we define variables Yk = ∂ψ
∂Xk

which are thermodynamic forces associated with

internal variables Xk in a duality pairing (k = 1, 2, . . . ,K); they are gathered in a vector Y. The previous relations

between (εe, σ) and (X,Y) are the so-called state equations.

Remark. The free energy  is usually written as the sum of an elastic contribution  e and a plastic contribution  p:

 (εe,X) =  e(εe) +  p(X) (5.9)

Also, it is shown in [Ladevèze, 1999] that for a large class of material behaviors, sets X and Y can be defined (using

a change of variables if required) such that state equations are linear i.e. the Helmholtz free energy is quadratic

(normal formulation).

Remark. It may be useful to work with a potential written in terms of stress rather than strain; this is the Gibbs free

energy  G(σ,X), obtained from the Helmholtz free energy by using a partial Legendre-Fenchel transform on elastic

strain (with given internal variables):

 G(σ,X) = sup
εe

[σ : εe �  (εe,X)] (5.10)

State equations then read εe =
∂ψG

∂σ
and Yk = �∂ψG

∂Xk
.

In order to describe dissipative processes, in particular the evolution of internal variables, a complementary

formalism is required. It is derived from the Clausius-Duhem inequality which reduces to (using state equations):

⇣

σ : ε̇p �Y · Ẋ
⌘

� q ·rT

T
= Φ1 + Φ2 � 0 (5.11)

with Φ1 the intrinsic (or mechanical) dissipation, representing plastic power amputated by the rate of energy stored

in the material, and Φ2 the thermal dissipation.

The definition of evolution laws may be performed by postulating the existence of a dissipation potential '(ε̇p, Ẋ)

expressed as a scalar convex function, non-negative and zero at the origin, such that σ = ∂ϕ
∂ε̇p

and Yk = � ∂ϕ

∂Ẋk
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(normality rule). This is a sufficient condition to ensure Φ1 � '(ε̇p, Ẋ) � 0.

To summarize, defining global flux variables ee = [εe,X]T , ep = [εp,�X]T (with e = [ε,0]T = ee+ep), and global

thermodynamics forces s = [σ,Y]T , the constitutive behavior is described by:

• a set of state equations:

s =
@ 

@ee
or ee =

@ ⇤

@s
(= Λs) (5.12)

• a set of evolution laws:

s =
@'

@ėp
or ėp =

@'⇤

@s
(= B(s)) (5.13)

where Λ is a linear, symmetric and positive operator, while B is a positive but possibly nonlinear and multivalued

operator (as in plasticity). Using these notations, the intrinsic dissipation reads Φ1 = s · ėp. Dual potentials  ⇤ and

'⇤ are defined from the Legendre-Fenchel transform:

 ⇤(s) = sup
ee

[s · ee �  (ee)] ; '⇤(s) = sup
ėp

[s · ėp � '(ėp)] (5.14)

The problem of material modeling is in the determination of analytical expressions for the state potential  (or  ⇤)

and the dissipation potential ' (or '⇤), and their identification from experiments (which is the topic of this chapter).

Remark. The first relation in evolution laws (5.13) drives the (visco-) plasticity flow ε̇p while other relations drive the

evolution of internal variables such as hardening.

Remark. When '⇤ is not differentiable at some points (usual case in elasto-plasticity with behavior independent of

velocity), the evolution laws should be replaced by ėp 2 @s'
⇤ where @s'

⇤ denotes the sub-differential of '⇤ defined

as:

@s'
⇤ = {ėp such that '⇤(s)� '⇤(s) � ėp · (s� s) 8s} (5.15)

Introducing the convex yield function f(s)  0 associated with the indicatrix function '⇤ (that is '⇤ = 0 if f < 0 and

'⇤ = +1 if f = 0), one gets:

ėp = �̇
@f

@s
with �̇ � 0 and �̇f = 0 (consistency condition) (5.16)

This defines associated models as surface f (defining the elasticity domain) also corresponds to the flow potential.

It is equivalent to the Hill principle of maximal work indicating that the rate ėp maximizes the intrinsic dissipation

Φ1 = s · ėp; in this case, �̇ corresponds to a multiplier in Kuhn-Tucker conditions with constraint f  0.
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5.1.3 Definition of the mCRE functional

A suitable CRE measure defined by Legendre-Fenchel residuals and sharing similarities with the so-called sym-

metrized Bregman divergence [Chen et al., 2008] can be defined from the two potential pairs defined in the previous

section [Ladevèze, 1998, Ladevèze et al., 1999, Ladevèze, 2001, Ladevèze and Pelle, 2005]. It reads in its local in

space and time version:

e2CRE|x,t(êe, êp, ŝ) = ⌘ψ(êe, ŝ) +

Z t

0

⌘ϕ( ˙̂ep, ŝ) � 0 8(x, t) 2 Ω⇥ [0, T ] (5.17)

with

⌘ψ(êe, ŝ) =  (êe) +  ⇤(ŝ)� ŝ · êe � 0 ; ⌘ϕ( ˙̂ep, ŝ) = '( ˙̂ep) + '⇤(ŝ)� ŝ · ˙̂ep � 0 (5.18)

the residuals on state equations and evolution laws, respectively. Terms y · x correspond to the duality product

between variables x and y.

Residuals ⌘ψ and ⌘ϕ are local in space and time quantities. They are associated with an admissible solution

(êe, êp, ŝ) such that êe + êp = ê. When they vanish, constitutive laws are locally satisfied [Moreau, 1966]. A

global CRE measure E2
CRE(êe, êp, ŝ) is obtained by integration of e2CRE|x,t(êe, êp, ŝ) over the space-time domain

(see (1.24)). It vanishes when the constitutive relations are verified at any space-time point.

Remark. An alternative CRE measure, introduced in [Ladevèze and Moës, 1997, Ladevèze, 1998, Ladevèze and

Moës, 1999] for visco-elastoplastic materials and referred to as dissipation error, is based on the residual associated

with dissipation phenomena (i.e. evolution laws) alone. In this context, state equations are inserted in admissibility

conditions. This framework was widely used for model verification purposes [Pelle and Ryckelynck, 2000,Chamoin

and Ladevèze, 2007, Chamoin and Ladevèze, 2008, Ladevèze, 2008, Ladevèze et al., 2012]. It may be used in

the context of model identification or updating when elastic properties of the material are well-known or properly

identified in a first step; this will not be considered here.

Also, a more general framework for the definition of dissipation error was proposed [Ladevèze, 2008] when evolution

laws are not given by potentials (but provided the operator B still remains monotonic).

From the definition (5.17) of the CRE measure, a direct and natural extension of the mCRE functional to standard

materials is proposed. It reads for the DIC-mCRE method:

E2
mCRE(êe, êp, ŝ;p) = E2

CRE(êe, êp, ŝ;p) +
↵

2
.

1

NDIC .Nt

Nt
X

nt=1

(d(ûnt)�Unt

DIC)
T
ΣΣ

�1
DIC(d(û

nt)�Unt

DIC)

with E2
CRE(êe, êp, ŝ;p) =

Z T

0

Z

Ω

✓

⌘ψ(êe, ŝ;p) +

Z t

0

⌘ϕ( ˙̂ep, ŝ;p)

◆

(5.19)

where Nt denotes the number of data assimilation time points. As it is naturally derived from the thermodynamics

122



framework, this functional keeps advantages associated with convexity properties. It is applied to an admissible

solution in (A�
d ), that should now also include initial conditions.

As indicated in previous chapters, the solution to the inverse problem corresponds to the parameter set psol that

satisfies the following nested minimization problem:

psol = argmin
p2P

"

min
(êe,êp,ŝ)2(A�

d )
E2
mCRE(êe, êp, ŝ;p)

#

(5.20)

It is in practice solved by means of an alternated minimization scheme in which at iteration k + 1:

• Step 1: an optimal admissible set (ê(k+1)
e , ê

(k+1)
p , ŝ(k+1)) is searched by solving the first partial minimization

over (A�
d ), for given p = p(k):

(ê(k+1)
e , ê(k+1)

p , ŝ(k+1)) = argmin
(êe,êp,ŝ)2(A�

d )

E2
mCRE(êe, êp, ŝ;p

(k)) (5.21)

• Step 2: a new parameter set p(k+1) is computed by solving the second partial minimization over P, for the

previous admissible fields:

p(k+1) = argmin
p2P

E2
mCRE(ê

(k+1)
e , ê(k+1)

p , ŝ(k+1);p) (5.22)

5.1.4 Some model examples

We list here a set of elastoplastic constitutive models which will be used in numerical applications.

Prandtl-Reuss model

We first consider the Prandtl-Reuss plastic model with isotropic hardening, for which ee = [εe, p]
T , ep = [εp,�p]T ,

and s = [σ, R]T , with p =
R t

0
kε̇pkdt the cumulative inelastic strain (k • k = (• : •)1/2) and R the associated

thermodynamic force (isotropic hardening variable on additional yield stress).

The associated free energy potential reads:

 (εe, p) =
1

2
Kεe : εe + g(p) (5.23)

with g a function that characterizes the hardening law (g(p) = 1
2kp

2 for linear hardening, with k a strictly positive

material parameter). We thus obtain the following state laws:

σ =
@ 

@εe
= Kεe ; R =

@ 

@p
= g0(p) (5.24)
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and the dual potential reads:

 ⇤(σ, R) =
1

2
K�1

σ : σ + g⇤(R) (5.25)

with g⇤ the Legendre-Fenchel transform of function g.

The dissipation potential '⇤(σ, R) is the indicator function of the elasticity domain Cf = {(σ, R), z(σ, R)  0, R �

0}, that is:

'⇤(σ, R) = χCf
(σ, R) =

8

>

>

<

>

>

:

0 if (σ, R) 2 C

+1 if (σ, R) /2 C

(5.26)

with z = kσDk�(R+R0) for linear hardening and z = kσDk�( 1
α+1R

α+1+R0) for power hardening, σ
D the deviatoric

part of the stress tensor, and R0 � 0 the yield stress.

Introducing the convex set Ce = {(ε̇p,�ṗ), kε̇pk � ṗ  0,Tr[ε̇p] = 0} with associated indicator function ΨCe , the

dual dissipation potential reads (for linear hardening):

'(ε̇p,�ṗ) = R0kε̇pk+ΨCe
(ε̇p,�ṗ) (5.27)

Remark. In the viscoplastic case (with linear hardening), the dissipation potentials should be changed to:

'⇤(σ, R) =
k

n+ 1
hzin+1

+ ; '(ε̇p,�ṗ) = R0kε̇pk+
k

n0 + 1

✓kε̇pk
k

◆n0+1

+ΨCe
(ε̇p,�ṗ) (5.28)

with n0 = 1/n. The notation h•i+ indicates the positive part, so that the elasticity domain is defined by hzi+ = 0.

When now considering (linear) kinematic hardening, the variable sets are complemented as ee = [εe,↵↵, p]
T ,

ep = [εp � ↵↵,�p]T , and s = [σ,X, R]T with X the kinematic hardening variable (backstress tensor) and ↵↵ the

associated internal variable. The free energy is modified in:

 (εe, p) =
1

2
Kεe : εe +

1

2
C↵↵ : ↵↵+ g(p) (5.29)

and the von Mises yield function is rewritten as:

z(σ,X, R) = kσD � Xk+ 1

2
AX : X � (R+R0) (5.30)

with A and C some constants. The normality rule then yields the following constitutive relations (yielding and

hardening laws):

ε̇p = �̇
σ
D � X

kσD � Xk ; �↵̇↵ = �̇

✓

X � σ
D

kσD � Xk +AX

◆

; ṗ = �̇ ; Ẋ = C(ε̇p �AXṗ) ; Ṙ = g00(p)ṗ (5.31)
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with �̇ =
⇣

σ
D�X

kσD�Xk : σ̇

⌘

.
⇣

C( σ
D�X

kσD�Xk �AX) : ( σ
D�X

kσD�Xk �AX) + g00(p)
⌘�1

.

Marquis-Chaboche model

This model, used in the case of several loading cycles [Ladevèze, 1999], is slightly different from the previous one.

It involves variable sets ee = [εe,↵↵, p̃]
T , ep = [εp � ↵↵,�p̃]T , and s = [σ,X, r̃]T with r̃ � 0. In its viscoplastic version,

the dissipation potential is defined as:

'⇤(σ,X, r̃) =
k

n+ 1
hzin+1

+ with z = kσD � Xk+ 1

2
AkXk2 � (R(r̃) +R0)

k, n and A are positive material parameters, and R(r̃) is a concave increasing function. One thus gets the following

evolution laws:

ε̇p = �̇
σD � X

kσD � Xk ; �↵̇↵ = �̇

✓

X � σ
D

kσD � Xk +AX

◆

; ˙̃p = �̇
@R

@r̃

with �̇ = khzin+.

A priori considering Tr[εp] = 0, the dual dissipation potential ' is given by:

'(ε̇p,�↵̇↵,� ˙̃p) = k
n

n+ 1

✓kε̇pk
k

◆1+1/n

+
k↵̇↵� ε̇pk2
2Akε̇pk

+ �( ˙̃p, kε̇pk) (5.32)

with �( ˙̃p, kε̇pk) = kε̇pk(R0 +R( ˙̃p/kε̇pk)� ˙̃p[∂R
∂r̃ ]

�1( ˙̃p/kε̇pk).

Elasto-plasticity is a limit case where n tends to +1; one then has:

'⇤(σ,X, r̃) = χCf
(σ,X, r̃) with Cf = {(σ,X, r̃), hzi+ = 0} (elasticity domain) (5.33)

and previous evolution laws hold with �̇ such that �̇ � 0, z  0, and �̇z = 0.

5.2 Development of a specific solver

We now introduce a dedicated numerical strategy, taking into account the mathematical structure of the constructed

nonlinear mCRE functional, to drive Step 1 of minimization process, that is to solve (5.21). This strategy, which

shares similarities with the LATIN method [Ladevèze, 1989, Ladevèze, 1999], addresses material nonlinearities in

the inverse problem. It enables to perform inversions in an effective way and with a reasonable CPU cost.
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5.2.1 The LATIN method

The LATIN method was developed [Ladevèze, 1985,Ladevèze, 1989,Boisse et al., 1990,Ladevèze, 1999] in order to

address the numerical complexity associated with nonlinear computational mechanics. As an alternative to classical

step-by-step methods with decomposition of the loading path into small increments, the iterative LATIN solver takes

into account the entire loading path in a single large time increment. It allows the effective solution to be performed

for a large variety of material behaviors; it is used here for elastoplasticity.

The LATIN method makes use of properties of equations of a direct nonlinear mechanical problem, which can

be split into two groups: linear (potentially global in space) equations, such as equilibrium or boundary conditions,

defining a linear manifold (Ad) (admissibility space); local in space (potentially nonlinear) equations, such as con-

stitutive equations, defining a manifold (Γ). The definitions of (Ad) and (Γ) do not exactly correspond to those

introduced in the CRE context (as linear state equations are here placed in (Ad)). The initial problem is then recast

as finding s = (ε, σ) 2 (Γ) \ (Ad) as the converged solution of an iterative strategy that avoids solving a global

time-space nonlinear problem all at once.

An iteration is divided into a local stage and a linear stage, each computing an approximate solution over the

whole space-time interval. Starting from an initial elastic calculation and assuming that a solution s(n) 2 (Ad) is

known, a new solution s(n+1) 2 (Ad) is computed from the two following stages (see Figure 5.1):

• Local stage: from s(n) 2 (Ad), build s(n+1/2) 2 (Γ) such that s(n+1/2) � s(n) 2 H+ (i.e. (σ(n+1/2) � σ
(n) +

H+(ε(n+1/2) � ε
(n)) = 0). H+ is a positive define symmetric operator that can be interpreted as an ascent

search direction; it may be chosen with infinite slope so that ε
(n+1/2) = ε

(n) (vertical direction). In practice,

this local stage boils down to solving a nonlinear problem on [0, T ] at any integration point in space, which is

suited to parallel computing.

• Linear stage: from s(n+1/2) 2 (Γ), build s(n+1) 2 (Ad) such that s(n+1)�s(n+1/2) 2 H� (i.e. σ
(n+1)�σ

(n+1/2)�

H�(ε(n+1) � ε
(n+1/2)) = 0). H� is a positive define symmetric operator that can be interpreted as a descent

search direction; it may be chosen as the tangent operator K, or such that H� = K (elastic direction). This

linear stage boils down to a global but linear problem, parametrized by time t.

The algorithm is stopped when a convergence criterion is reached; it may be based on a CRE measure (i.e.

ECRE(s
(n+1))  "0) or on a norm of s(n+1) � s(n+1/2). Convergence properties of the iterative algorithm can be

found in [Ladevèze, 1999].

Remark. Another important feature of the LATIN method is the use of radial approximation (separated-variable

representation, similar to POD and PGD) when solving the global linear problem parametrized by time t in the

global stage. This enables for the use of the LATIN method as a suitable tool for building reduced models in
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Figure 5.1: General frame of the LATIN algorithm.

nonlinear mechanics [Ladevèze et al., 2010b, Relun et al., 2013, Néron et al., 2015, Ladevèze, 2016, Vitse et al.,

2019]. This feature will not be investigated here.

5.2.2 Illustrative example

A beam in tension serves as an example illustrating how the LATIN method works. The uniaxial problem is given in

Figure 5.2.

Figure 5.2: A uniaxial example.

We assume that the loading is quasi-static and cyclic, and that the material is viscoplastic and described by a

variant (VP2) of the Marquis-Chaboche model. The strain is ✏ = ud/L with ud the prescribed displacement of the

end of the beam and L its length. Besides the inelastic strain ✏p, the internal variables are (↵, p) and their conjugates

(X,R); they all are scalar variables.

The state equations read:

✏e =
�

E
; X = C↵ ; R = a[1� exp(��p)] (5.34)

and we choose E = 137, 600 MPa, C = 24, 800 MPa, � = 10, and a = 80 MPa.

The evolution laws are described by the potential '⇤ such that:

'⇤(�, X,R) =
k

n+ 1
hzin+1

+ , z = |� �X|+ (A/C)X2 � (R+R0) (5.35)
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On the other hand,

dz =
� �X

|� �X|
d(� �X) +

2A

C
XdX � d



a
R�1/2

2a
(2� R�1/2

2a
)

�

=
� �X

|� �X|
d(� �X) +

2A

C
XdX � �1/2(1� R�1/2

2a
)dR

d2z =
2A

C
dXdX +

�

2a
dRdR

(5.41)

so that

d2'⇤ = khzin+


2A

C
(dX)2 +

�

2a
(dR)2

�

+ knhzin�1
+



� �X

|� �X|
d(� �X) +

2A

C
XdX � �1/2(1� R�1/2

2a
)dR

�2

(5.42)

Consequently, the descent direction is defined by

H� = khzin+

2

6

6

6

6

4

0 0 0

2A
C 0

SYM γ
2a

3

7

7

7

7

5

+knhzin�1
+

2

6

6

6

6

4

1 σ�X
|σ�X| (� σ�X

|σ�X| +
2A
C X) � σ�X

|σ�X| (1�
Rγ1/2

2a )�1/2

(� σ�X
|σ�X| +

2A
C X)2 �(� σ�X

|σ�X| +
2A
C X)(1� Rγ1/2

2a )�1/2

SYM �(1� Rγ1/2

2a )2

3

7

7

7

7

5
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The problem is to find (✏
(1)
p ,↵(1), p(1),�(1), X(1), R(1)) defined on [0, T ] satisfying:

✏ =
�

E
+ ✏p =

Ud(t)

L
; X = C↵ ; R = ap ;

2
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(5.44)

with ✏p = ↵ = p = 0 at t = 0.

Writing ✏p = Ud(t)
L � σ

E , we obtain:
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(5.45)

together with � = X = R = 0 at t = 0.

By integrating the previous differential equation, we construct �(1), X(1) and R(1) on [0, T ]. Then, using the state

equations, we obtain on [0, T ]:

✏(1)p =
Ud

L
� σ

(1)

E
, ↵(1) =

X(1)

C
, p(1) =

R(1)

a
(5.46)

The evolution of (✏(1)p ,↵(1), p(1),�(1), X(1), R(1)) on [0, T ] is shown in Figure 5.5.
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These two sets enable to reformulate the initial constrained minimization problem as two coupled minimizations in

reduced spaces:

min
Σ̂ψ2(A�,ψ

d )
E2
ψ(Σ̂ψ;p) ; min

Σ̂ϕ2(A�,ϕ
d )

E2
ϕ(Σ̂ϕ;p) (5.50)

The only variable which is computed in both minimizations is the stress tensor σ.

The constraint Σ̂ψ 2 (A�,ψ
d ) involves equilibrium equations and boundary conditions. The constrained minimiza-

tion of E2
ψ (using Lagrange multiplier fields) is thus associated with a problem which is global over the whole space-

time domain but which is linear. The solution manifold corresponds to the linear space Sψ = {argmin
Σ̂ψ2(A�,ψ

d ) E
2
ψ(Σ̂ψ;p)}.

The constraint Σ̂ϕ 2 (A�,ϕ
d ) involves initial conditions alone. The constrained minimization of E2

ϕ is thus asso-

ciated with a problem which is local in space (and global in time), but which is nonlinear. The solution manifold

corresponds to the nonlinear space Sϕ = {argmin
Σ̂ϕ2(A�,ϕ

d ) E
2
ϕ(Σ̂ϕ;p)}.

The previous split of the mCRE functional thus leads to a formulation with the solution to: (i) a linear and global

in space problem; (ii) a nonlinear and local in space problem. Both problems are global in time. This formulation

invites to use a solution scheme which is similar to the LATIN method, with alternating solutions based on local and

linear stages, in order to find the optimal set Σ̂opt of admissible fields which is Σ̂opt = Sψ \ Sϕ. Convergence of

the scheme is ensured with similar arguments as in the LATIN method [Ladevèze, 1999, Section 4.5.3, Theorem 1].

Consequently, after introducing up and down directions H+ and H�, respectively, the following stages are iteratively

performed:

• Local stage in which internal variables are searched at the integration point level (it can thus be parallelized):

given Σ̂
(n)
ψ 2 Sψ, find Σ̂

(n+1/2)
ϕ 2 Sϕ such that:

(Σ̂(n+1/2)
ϕ � Σ̂

(n)
ψ ) 2 H+ (5.51)

Among the various choices for H+, we consider here the one that prescribes the same strain tensor, that is

ε̂
(n+1/2) = ε̂

(n) (so-called infinity direction in the literature, with vertical slope). This way, ˙̂εp = � ˙̂
εe.

• Linear stage associated with a global in space problem: given Σ̂
(n+1/2)
ϕ 2 Sϕ, find Σ̂

(n+1)
ψ 2 Sψ such that:

(Σ̂
(n+1)
ψ � Σ̂

(n+1/2)
ϕ ) 2 H� (5.52)

The optimal choice for H� is the local tangent direction to Sϕ (similarly to a classical Newton method) but this

requires to compute a tangent operator at each iteration. For the sake of simplicity, we rather consider an

elastic down direction that relates variations in stress and elastic strain tensors.

An illustration of the proposed new version of the LATIN algorithm within the mCRE framework is shown in

Figure 5.8.
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Figure 5.8: New illustration of the LATIN algorithm in the mCRE framework.

Remark. A practical explanation of the proposed LATIN-based strategy is the description of the material integration

step. In the described numerical approach, the material integration step is performed in two stages:

1. local integration: it corresponds to the integration of the evolution laws, i.e. the computation of the nonlinear

evolutions. This stage only implies computations at the integration point level, so that this stage can be strongly

parallelized. More precisely, at a given iteration, the entire evolution of the internal variables characterizing the

nonlinearities is computed from the whole history coming from the linear space Sψ;

2. linear integration: it corresponds to the evaluation of the state equations. This stage implies computations at

the integration point level and an assembly stage to compute a global linear system . This step is performed

knowing the entire evolution of the internal variables coming from the local integration step. The time aspect

is taken into account by solving an incremental linear system explicitly.

Regarding Step 2 of the mCRE strategy, which is the minimization (5.22) of the mCRE functional with respect

to parameters (for a fixed set Σ̂ of admissible fields), it is performed in a classical manner, with the adjoint-state

method and a steepest-descent algorithm.

We mention that over the whole iterative mCRE minimization process, we can fully make benefit of the multi-

resolution aspect of the LATIN algorithm, with restart procedure [Néron et al., 2015]. Once material parameters

p are updated, the previously computed space-time LATIN solution (optimal admissible fields obtained with p(k))

are in practice reused as the initialization of another iterative LATIN procedure with the new set p(k+1) of material

parameters (see Figure 5.9).
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Figure 5.9: Graphical sketch of the employed multi-resolution procedure.

5.2.4 Implementation details

We give here some details on the implementation of linear and local stages in the LATIN algorithm associated with

mCRE, considering a simple Prandlt-Reuss model with linear isotropic hardening.

5.2.5 Linear stage

In the linear stage, the following minimization is performed:

min
Σ̂ψ2(A�,ψ

d )

(Σ̂ψ�Σ̂
(n+1/2)
ϕ )2H�

E2
ψ(Σ̂ψ;p) (5.53)

Assuming that boundary conditions are reliable, this constrained minimization is performed with the following La-

grangian functional:

L(Σ̂ψ,�;p) = E2
ψ(Σ̂ψ;p)�

Z T

0

Z

Ω

σ̂ : ε(�)�
Z

Ω
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∂2Ω

fsd · �

�

(5.54)

with

E2
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Z T
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Ω

⌘ψ(Σ̂ψ;p) +
↵

2
.

1

NDIC .Nt
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and
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✓
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2
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2k
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(5.56)
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Finding the saddle-point, with frozen internal variables, leads to the system:

Z T
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Z

Ω
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(5.57)

After substituting σ̂ = K(p)(ε̂ + ε(�) � ε̂p), and discretizing with FEM, we obtain a linear system of the form (2.9)

which has to be solved at each time t 2 [0, T ].

5.2.6 Local stage

In the local stage, the following minimization is performed:

min
Σ̂ϕ2(A�,ϕ

d )

(Σ̂ϕ�Σ̂
(n)
ψ

)2H+

E2
ϕ(Σ̂ϕ;p) (5.58)

with

E2
ϕ(Σ̂ϕ;p) =

Z T

0

Z

Ω

Z t

0

⌘ϕ(Σ̂ϕ;p) (5.59)

and

⌘ϕ(Σ̂ϕ;p) = R0k ˙̂εpk+χCe
( ˙̂εp,� ˙̂p) +χCf

(σ̂, R̂)� σ̂ : ˙̂εp + R̂ ˙̂p � 0 (5.60)

We recall that Ce = {(ε̇p,�ṗ), kε̇pk � ṗ  0,Tr[ε̇p] = 0} and Cf = {(σ, R), ||σDk � (R + R0)  0, R � 0}. This leads

to a set of ODEs that drive the time evolution of internal variables at each integration point, in particular ˙̂
εp = ˙̂p σ̂

D

kσ̂Dk .

In practice, they are solved with an implicit Euler scheme.

5.3 Model selection using error indicators

The strategy to get indicators on modeling and discretization errors is similar as that employed in Chapter 3. After

tuning the weighting scalar ↵ in order to satisfy the Morozov principle, and after defining the reference energy Eref ,

an indicator on the mathematical model error ⌘mod is computed from the CRE term of the mCRE functional, with the

discretized admissible quantities:

⌘2mod = Eh2

CRE(ê
h
e , ê

h
p , ŝ

h;p) =

Z T

0

Z

Ω

✓

⌘ψ(ê
h
e , ŝ

h;p) +

Z t

0

⌘ϕ( ˙̂e
h
p , ŝ

h;p)

◆

(5.61)
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In order to capture the discretization error, a fully equilibrated stress field is recovered using the hybrid-flux technique

with direct post-processing of the FE stress field at hand (at each loading increment point). This enables an estimate

⌘tot on the whole modeling error to be obtained, then an indicator ⌘2dis = ⌘2tot � ⌘2mod on the discretization error.

The quantities (⌘tot, ⌘mod, ⌘dis) are further used to drive model selection and adaptation with respect to the

observed data, and among a hierarchy of possible nonlinear models with increasing complexity (multi-fidelity ap-

proach). This is performed by means of an adaptive greedy algorithm similar to the one detailed in Section 3.3.

Starting from a coarse model, higher-fidelity models are progressively inserted when dictated by data.

Remark. The choice of a new higher-fidelity mathematical model is here performed quite empirically among a list

of possible models. It may be possible to design a more elaborate procedure in which admissible fields (which are

independent, a priori, of any constitutive equation) are tested with several CRE functionals, in order to select the

best one. Also, results obtained from lower-fidelity models may be reused in order to regularize the identification of

higher-fidelity models.

5.4 Numerical results

We consider a tensile test on a specimen with notches, as represented in Figure 5.10. A uniaxial loading with

magnitude F is applied on left and right edges; other edges are free.

Figure 5.10: Model problem with tensile test on a specimen with notches (left), and associated mesh (right).

Synthetic measurement data are obtained using a reference solution, generated from the Prandtl-Reuss plastic

model with kinematic hardening defined in Section 5.1.4. The associated reference values are E = 200 GPa,

⌫ = 0.3, R0 = 160 MPa, A = 0.63 MPa�1, and C = 48 GPa. A 5% additive Gaussian white noise is added.

The considered loading is pseudo-cyclic, with successive loading-unloading-reloading steps such that F goes

higher than the threshold loading F ⇤ where plasticity is effectively observed in the FEM simulation (theoretically it

appears immediately due to the singularity). The associated evolution curve of longitudinal stress-strain components

is shown in Figure 5.11, while the progressive apparition of cumulative plastic strain is shown in Figure 5.12.

In the following, we perform identification with the DIC-mCRE method using concurrent mathematical models.

The only a priori information which is introduced in the model class is that material parameters are homogeneous.

We also assume that the Poisson ratio is known.

137



Figure 5.11: Relative evolution of stress-strain components (�xx, ✏xx) during the loading history.

Figure 5.12: Maps of the cumulative plastic strain field at three loading increments.

We first start with a purely linear elastic model, and we try to identify the Young modulus E from the set of

measurement data. We show in Figures 5.13 and 5.14 the admissible displacement and stress fields obtained at

the end of the process. The identified Young modulus value, obtained after 8 iterations of the mCRE algorithm, is

E = 186 GPa.

Figure 5.13: Admissible displacement field obtained from an elasticity model, with horizontal (left) and vertical (right)
components.

We then go to an elastoplastic model with material behavior described by the Prandtl-Reuss plastic law with

linear isotropic hardening. With this new model, the identified parameters are E = 206 GPa, R0 = 154 MPa, and
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Figure 5.14: Admissible stress field obtained from an elasticity model, with �xx (left), �zz (center), and �xz (right)
components.

model class indicator ⌘mod/Eref
linear elasticity 124.8

Prandtl-Reuss (isotropic hardening) 33.2
Prandtl-Reuss (kinematic hardening) 1.8

Table 5.1: Relative indicator on modeling error obtained with the three considered models.

k = 0.015 MPa. When using the LATIN method in order to recover optimal admissible fields, about 15 sub-iterations

are necessary for first iterations of the mCRE minimization, while between 2 to 5 sub-iterations are used for other

minimization steps; this is due to the use of previously computed admissible fields to initialize the process (restart

procedure). The identification procedure is performed with 8 iterations.

Last, we change the model and consider the Prandtl-Reuss plastic model with kinematic hardening (i.e. the one

used to get measurements). The identified values are E = 203 GPa, R0 = 164 MPa, A = 0.59 MPa�1, and C = 45

GPa, which are very close to the reference values (with relative errors of 1.5%, 2.5%, 6.3%, and 6.2%

In order to confirm the interest of the modeling error indicator used in the adaptive model algorithm, we indicate

in Table 5.1 the value of the relative indicator obtained at the end of the identification process from the 3 models

considered. As expected, we observe that the indicator value is much larger than 1 when the model is not compatible

with observations, while it is of the order of 1 when the reference model is selected.
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Chapter 6

Extension to multiscale analysis with

MsFEM

In this last chapter, we introduce multiscale tools for identification from full-field measurements, using the Multiscale

Finite Element Method (MsFEM). The proposed multiscale imaging-through-analysis approach enables to effectively

capture fine scale details of the microstructure, in a computationally tractable procedure. The performance of the

approach is shown on preliminary numerical experiments.

6.1 Motivation and basic concepts

6.1.1 Multiscale analysis

Materials with complex heterogeneous microstructures are commonly encountered in mechanical engineering.

Model identification and simulation in this context may be tricky, or even unfeasible with conventional approaches.

The development of multiscale numerical methods for such materials is therefore an active research field, and these

methods are becoming a standard approach in material sciences and computational mechanics. As an alternative

to solving a full fine-scale problem, with a usually prohibitive computational cost, multiscale modeling aims at linking

the different scales for the accurate description of physical phenomena and/or the prediction of macroscopic (effec-

tive) properties. A main goal is to capture the impact of the smaller scales on the larger scales, in order to observe

the influence of the microscopic structure on the macroscopic behavior.

In the last 20 years, much effort has been put in the design of multiscale approaches. They are inspired by the

framework of the FEM but take into account scale separation between macroscopic and microscopic features. A

pioneering work using multiscale finite element basis functions is reported in [Babuska et al., 1994a]. It is closely

related to another development, the Generalized Finite Element Method (GFEM) [Strouboulis et al., 2001]. These
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contributions share the idea of adapting the FE space to the particular fine-scale features of the problem by means of

handbook functions and partition of unity. Other classical multiscale methods include the Multiscale Finite Element

Method (MsFEM) [Hou and Wu, 1997] also based on modified basis functions obtained from fine-scale equations

(see [Efendiev and Hou, 2009] for a review), the Variational Multiscale Method (VMS) [Hughes et al., 1998], the

sparse FEM [Hoang and Schwab, 2005], multigrid methods [Hackbusch, 1985], and multilevel finite element meth-

ods such as the Heterogeneous Multiscale Method (HMM) [E et al., 2003] or the FE2 method [Feyel, 2003]. We

also mention the large literature on numerical homogenization from RVEs developed in the structural mechanics

and engineering communities to obtain macroscopic constitutive laws [Suquet, 1987].

In the context of model identification from full-field measurements, multiscale approaches have been proposed [Nguyen

et al., 2015, Passieux et al., 2015a, Zhang et al., 2020]. They are mainly based on a multiscale vision of images

(multiscale field measurements), coupling macroscale and mesoscale analyses. Here, we propose an alternative

approach that focuses on a multiscale numerical post-processing of image information. This is based on MsFEM

which is a powerful tool to capture information at various scales without resorting to a full fine-scale computa-

tion [Hou and Wu, 1997,Hou et al., 1999,Efendiev and Hou, 2009,Efendiev et al., 2013]. It defines an approximate

solution in a finite dimensional space, related to a macroscopic mesh and generated by basis functions which en-

code details of the fine-scale heterogeneities. MsFEM then performs the computations in a two-stage procedure:

(i) an offline stage in which multiscale basis functions are computed solving local fine-scale problems; (ii) an online

stage in which an inexpensive Galerkin approximation problem is solved from these basis functions.

The objective here is to use such a small set of multiscale basis functions that can effectively upscale fine-mesh

behavior at the pixel size. It is in the spirit of approaches, mainly developed for crack analysis [Roux and Hild,

2006,Réthoré et al., 2008,Roux et al., 2009,Rannou et al., 2010], in which specific basis functions are used to take

into account the relevant mechanical information which is available. MsFEM is particularly relevant as it may be

used with a quite coarse macro mesh, much decreasing the online computational cost and circumventing the issue

on measurement uncertainty when using a fine mesh in DIC.

6.1.2 Basics on MsFEM

For simplicity reasons, we detail the MsFEM method on a fine-scale scalar elliptic problem (typically associated

with heat transfer in composite materials or Darcy flow in porous media); the extension to elasticity, which will be

considered in numerical results, is direct. The problem is characterized by strong material heterogeneities, with a

characteristic scale denoted " ("⌧ 1). The associated direct boundary value problem reads:

�r · [Aε
ruε] = fv

d in Ω, uε = ud on @1Ω, (Aε
ruε) · n = fs

d on @2Ω (6.1)

141



We assume that the body loading fv
d 2 L2(Ω) and the traction loading fs

d 2 L2(@2Ω) are given and are slowly varying

(they do not depend on "). The second-order diffusion tensor Aε 2 (L1(Ω))d⇥d is a rapidly oscillating function. We

assume that Aε is a symmetric matrix and that it is uniformly elliptic and bounded, in the sense that there exist ↵ > 0

and � > 0 such that

8" � 0, 8⇠ 2 R
d, ↵|⇠|2  (Aε(x)⇠) · ⇠  �|⇠|2 a.e. in Ω (6.2)

Introducing a mesh TH with characteristic size H, a conventional FE solution to the problem may be computed under

the form uH =
P

i ui�
0
i , where �0i denote classical Lagrange FE basis functions. It is then well-known that obtaining

an accurate approximation uH requires to choose H ⌧ " (as a priori error analysis yields kuε�uHkH1(Ω)  C(H/"),

which leads in practice to a prohibitive computational cost.

From an engineering perspective, it may be sufficient to only predict the macroscopic (effective) properties of

the solution to (6.1). Powerful homogenization methods can be used for this purpose, based on a scale separation

assumption, i.e. considering the regime "⌧ L where L is the characteristic size of the macroscopic variations of uε

inside Ω (see [Bensoussan et al., 1978, Sanchez-Palencia, 1980, Kanouté et al., 2009]. The idea is to approximate

the behavior of the highly heterogeneous medium with an averaged behavior at a macroscopic scale. From a

mathematical point of view, homogenization consists in identifying the limit of the operator
�

�r · [Aε
r·]

��1
when "

tends to zero.

We consider in the following an alternative multiscale numerical approach, the MsFEM, which has the capability

to approximate the full fluctuating solution uε (with fine-scale details) in a convenient manner. Introduced in [Hou and

Wu, 1997], the main idea in the MsFEM approach is to construct a set {�εi} of local multiscale FE basis functions

that encode small scale information within each element of a coarse mesh TH (H � "). The basis functions �εi ,

associated with each node i of the coarse mesh TH (except those with prescribed Dirichlet boundary conditions),

are adapted to the local properties of the operator. They are pre-computed in an offline stage, over each element K

of the coarse mesh (see Figure 6.1), as solutions to local elliptic equations of the form

r ·
⇥

A
ε
r�εi

⇤

= 0 in K (6.3)

complemented with various boundary conditions discussed below. We note that the basis functions are independent

of the loads fv
d and fs

d . In addition, problems (6.3) are decoupled one from each other. The MsFEM approach is

thus well-suited to massively parallel computers; this is an essential feature of the approach.

Once the multiscale basis functions are computed, the MsFEM strategy is the same as that of a classical FE

approach. It consists in performing, in an online stage, a Galerkin approximation with the finite dimensional space

V ε
H = Span{�εi}. The small scale information incorporated in the basis functions is thus brought to the large scales

through couplings in the global stiffness matrix Kε. The assembly of this matrix is inexpensive since it reuses local
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K

K

Figure 6.1: Left: a coarse mesh of the domain Ω is introduced, with elements of diameter H much larger than
the small characteristic size " of the heterogeneities (here the diameter of the inclusions). Right: on each coarse
element, we solve a local problem, using in practice a discretization at the size h adapted to the heterogeneities.

matrices computed and stored in the offline stage to solve (6.3).

Remark. The philosophy of MsFEM, in which the fine-scale equations are solved inside coarser elements and are

thus totally decoupled one from each other, is closely related to that of the VMS method [Hughes et al., 1998] and

the GFEM method [Strouboulis et al., 2001]. However, these methods differ on several points, in particular in the

definition of the local fine-scale problems (computational domain, boundary conditions).

The boundary conditions associated with (6.3) in the construction of basis functions are of critical importance,

since they determine the behavior of the numerical approximation uε
H on element edges, and therefore significantly

affect the accuracy of the MsFEM approach. In a conforming version of MsFEM, the choice is made to impose a

linear evolution of �εi along @K as for classical first-order FE basis functions. Local problems then read:

r ·
⇥

A
ε
r�εi

⇤

= 0 in K, �εi = �0i on @K (6.4)

Note that the support of �εi is identical to that of �0i .

In the regime of interest H � ", and assuming that the oscillations in the material behavior are periodic (and with

regularity assumptions), the following a priori error estimate is shown [Hou et al., 1999]:

kuε � uε
HkH1(Ω)  C

⇣

H +
p

"/H +
p
"
⌘

(6.5)

where C is a positive constant independent of " and H. This result shows that the MsFEM approach converges to

the correct solution in the homogenization limit (namely when first " ! 0 and next H ! 0, which is the regime of

interest). The ratio "/H reflects the so-called cell resonance error, which occurs when H ⇡ ", and which is caused

by the mismatch between the mesh size and the perfect sample size. In practice, this is often the leading error term.

In order to decrease the mismatch between uε (which oscillates everywhere in Ω) and the MsFEM approximation

uε
H (which does not oscillate in the vicinity of @K as a consequence of the non-oscillatory boundary conditions
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�εi = �0i on @K), a possible strategy is to presribe (affine) Dirichlet boundary conditions not on @K, but farther away,

on the boundary of a domain SK which is slightly larger than K, and to only use the interior information on K to

construct the MsFEM basis functions (see Figure 6.2). This is the well-known oversampling technique that leads to

a non-conforming MsFEM approximation since V ε
H 6⇢ H1(Ω). It permits the boundary layer on which the small scale

information is not transmitted to be reduced.

The approach thus consists in first solving the local problems

r ·
⇥

A
ε
r 

ε,K
i

⇤

= 0 in SK ,  
ε,K
i is affine on @SK ,  

ε,K
i (sj) = �ij (6.6)

where SK is a domain which is homothetic to the mesh element K, and sj the coordinates of the vertices of SK .

Second, the MsFEM basis functions are defined as �εi =  
ε,K
i|K in K.

In [Efendiev et al., 2000], an a priori error estimate is derived for the oversampling variant of the MsFEM ap-

proach. When H � " and in the periodic setting, assuming that the distance between K and @SK is of order H, the

estimate reads

kuε � uε
HkH1(Ω)  C1H + C2

"

H
+ C3

p
" (6.7)

where C1, C2 and C3 are independent of " and H, and C2 depends on the oversampling ratio. Since the approach

is non-conforming, the error is measured in the broken H1-norm k · kH1(Ω) =
⇣

P

K2TH
k · k2H1(K)

⌘1/2

.

SK

SK

Figure 6.2: Illustration of the oversampling technique: a domain SK , which is slightly larger than K, is introduced to
solve local fine scale problems.

Remark. A higher-order MsFEM approximation can also be constructed using local Kozlov harmonic coordinates [Al-

laire and Brizzi, 2006]. In the case of a periodically oscillating coefficient Aε and with some regularity assumptions,

an associated a priori error estimate was derived [Allaire and Brizzi, 2006]; it reads:

kuε � uε
HkH1(Ω)  C

⇣

Hk +
p

"/H +
p
"
⌘

(6.8)

where k is the MsFEM approximation order, and C a constant independent of " and H.

144



6.1.3 Illustrative example

As an illustration of the MsFEM philosophy, we consider a one-dimensional problem defined in Ω = (0, 1), with

homogeneous Dirichlet boundary conditions at x = 0 and x = 1, and a non-uniform distributed load f(x) = x2. We

consider a non-periodic diffusion coefficient of the form

Aε(x) = 5 + 50 sin2(⇡x2/") (6.9)

and we set " = 0.025. The evolution of Aε(x) is shown in Figure 6.3.
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Figure 6.3: Evolution of Aε for the considered 1D non-periodic case (left), and MsFEM basis functions (right).

We compute an approximate MsFEM solution using a coarse mesh TH composed of 5 elements with equal size

(HK = 0.2). Oversampling is not needed in the one-dimensional context. We show in Figure 6.3 the computed

MsFEM shape functions considering a fine mesh size hK = "/20 (identical over all coarse elements K).

The MsFEM solution, in terms of primal field uε
H but also gradient duε

H/dx and flux Aεduε
H/dx, is reported in

Figure 6.4. The exact solution uε is also shown for comparison purposes. The flux of the MsFEM solution is

constant here in each coarse element, by definition of the MsFEM basis functions.
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Figure 6.4: Comparison between the exact solution and the approximate MsFEM solution: primal fields uε
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(left), gradients duε
H/dx and duε/dx (center), and fluxes Aεduε

H/dx and Aεduε/dx (right).
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6.2 Multiscale mCRE strategy

6.2.1 Implementation of MsFEM into mCRE

We assume the objective is to identify constitutive parameters of a material described at the microscale, with known

microstructure. The idea is to integrate this knowledge in the basis functions which are used through MsFEM. The

previously developed mCRE-based identification framework is employed with multiscale admissible fields approxi-

mated from the MsFEM basis. They read ûε(x) = Nε(x)Û (kinematically admissible field), and v̂ε(x) = Nε(x)V̂

(statically admissible field), with Nε defined from multiscale MsFEM basis functions. The resulting multiscale mCRE

then reads (in its discretized form):

Eε2

mCRE(Û, V̂;p) =
1

2
(Û� V̂)TK

ε(p)(Û� V̂) +
↵

2
.

1

NDIC
(ΠεÛ�UDIC)

T
ΣΣ

�1
DIC(Π

εÛ�UDIC) (6.10)

when DIC-mCRE is used, and:

Eε2

mIDIC(Û, V̂;p) =
1

2
(Û� V̂)TK

ε(p)(Û� V̂) +
↵

2
.

1

2�2fNpix

X

x2ROI

⇣

f(x)� g(x+ N
ε(x)Û)

⌘2

(6.11)

when mI-DIC is used. The stiffness matrix Kε is computed from MsFEM basis functions.

The classical algorithm is then used to minimize the mCRE functional and recover the identified value psol of

material parameters. It is based on the two following steps, at iteration n+ 1 (and considering DIC-mCRE):

• Step 1: Compute optimal admissible fields (Û(n+1), V̂(n+1)) for given p(n)

(Û(n+1), V̂(n+1)) = argmin
(Û,V̂)2(A�

d )

Eε2

mCRE(Û, V̂;p(n)) (6.12)

• Step 2: Update model parameters for fixed admissible fields

p(n+1) = argmin
p2P

Fε
mCRE(p) with Fε

mCRE(p) = Eε2

mCRE(Û
(n+1), V̂(n+1);p) (6.13)

6.2.2 Error indicators and adaptive process

Here again, the value of the CRE term Eε2

CRE is an indicator on the quality of the numerical model. It can be post-

processed in an effective manner in order to conduct adaptive modeling. Out of error on the mathematical model,

discretization error comes from three sources in the MsFEM context (macro mesh TH , boundary layers related to

oversampling, and local micro mesh Th). Three parameters are then tuned in an adaptive procedure in order to

improve the accuracy:
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• the local size HK of the macro mesh TH ; if the set {HK} is not chosen correctly, the coarse-scale discretization

error may dominate the overall approximation error.

• the size dK (minimum patch radius) of the computational domains SK used to solve the microscale problems;

if the set {dK} is not chosen correctly, the artificial boundary conditions set on @SK may strongly dominate the

overall approximation error.

• the local size hK of the fine mesh used to solve the microscale problems (in each SK); if the set {hK} is not

chosen correctly, a fine-scale discretization error may dominate the overall approximation error.

In order to derive an error estimator on the overall modeling error (with construction of fully equilibrated stress

field from the approximate MsFEM solution σ(V̂) = Kε
ε(NεV̂)) as well as error indicators on each of the MsFEM

error sources, we follow the strategy developed in [Chamoin and Legoll, 2018]. It is compatible with the offline/online

paradigm of MsFEM, with fine-scale computations at the element level only, and it enables an adaptive algorithm to

be driven in which the various MsFEM discretization parameters are automatically chosen.

In this strategy, full equilibration with the hybrid-flux method is first perform to recover and estimate ⌘dis on the

overall MsFEM discretization error. A specificity is that the equilibrated tractions f̂K constructed on the edges of

macro elements are oscillating (Figure 6.5). They are defined from an affine combination of MsFEM basis functions,

i.e. linear combination of MsFEM basis functions complemented by an average on MsFEM fluxes.

Figure 6.5: Illustration of local problems to be solved on the macro element K with prescribed tractions f̂K .

Specific error indicators ∆macro, ∆micro, and ∆over on each discretization error source are also developed,

based on the CRE functional with specific admissibility conditions [Chamoin and Legoll, 2018]. They are split into

local contributions in each element K of the macro mesh TH , and used in a greedy adaptive algorithm after marking

spatial zones which need to be enriched.

We indicate that most of the computations which are required to get the indicators are again performed in the

offline stage of MsFEM. Each iteration in the algorithm consists of three groups of computations: (i) microscale

(possibly costly) computations that can be performed in the offline phase of the iteration; (ii) macroscale compu-

tations that can be performed in this offline phase; (iii) macroscale computations that need to be performed in the

147



online phase of the iteration, but which are relatively cheap. The adaptive procedure is in practice associated with

the following considerations:

• the algorithm is initialized with a regular mesh T
(0)
H , no oversampling (SK = K) and a rough fine mesh size

(namely hK = HK);

• when modifying the parameters hK , two values are considered in the adaptive process: hK = "/5 and hK =

"/20 (finest mesh size at the microscale);

• when modifying the parameters dK from their initial value dK = HK i.e. SK = K, the oversampling size

is determined by adding layers of progressive thickness ", 2", 3", . . . around the element K in the adaptive

process. Such an adaptation is not performed when hK = HK ;

• refining the mesh TH , i.e. modifying the parameters HK , is performed using a quadtree method with nested

elements. This step requires to handle hanging nodes.

The higher-order multiscale technique [Allaire and Brizzi, 2006] based on composition rules is beneficially used

throughout the adaptive process. It enables for independent computations without coming back to the fine scale of-

fline computations (no additional costly computations). The technique is used in its p-refinement version to compute

a fully equilibrated field at the element level, while it is used in its H-refinement version when adapting the macro

mesh. It thus allows us to refine the coarse mesh without the need to solve new fine-scale problems. However,

when modifying parameters hK or dK in the adaptive process, new fine-scale problems need to be solved in order

to define the updated multiscale basis functions.

6.3 Numerical results

We investigate the performance of the proposed methodology on two synthetic examples. For each of them, the mI-

DIC version of the identification approach is used. Artificial images are used by considering a random distribution of

gray levels over a 200 ⇥ 200 regular grid (Figure 6.6), and applying (from the imwarp Matllab command) a simulated

displacement obtained from an overkill solution. A 2% measurement noise is added to images.

6.3.1 Example 1: periodic distribution of the Young modulus

We first consider a problem defined in the unit square domain Ω = (0, 1)2. The loading consists in a uniform

body loading fvd = (�1, 0)T , while homogeneous Dirichlet boundary conditions are applied on @Ω. The material is

assumed to be isotropic linear elastic, with a heterogeneous distribution of the Young modulus of the form:

E(x) = E0.
1

(2 + P cos(2⇡(x� 0.5)/")) (2 + P cos(2⇡(y � 0.5)/"))
(6.14)
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with " = 0.04. The contrast parameter P is chosen as P = 1.8. The spatial evolution of E(x) is shown in Figure 6.6.

Figure 6.6: Artificial speckle considered (left), and evolution of E(x) in the domain (right).

The objective is to identify the value of E0, by means of artificial measurements derived from a reference solution

computed with E0 = 1. This reference solution, numerically obtained from an overkill mesh (with 500 ⇥ 500 Q4

elements), is shown in Figures 6.7, 6.8, and 6.9.

Figure 6.7: Components of the reference displacement field.

When starting the identification process by using MsFEM, an initial coarse mesh TH made of 5 ⇥ 5 macro

elements is considered. Choosing hK = HK for any K, and with no oversampling, the optimal admissible MsFEM

solution is represented in Figure 6.10.

At the end of the identification process with the initial coarse MsFEM model, the error indicator ⌘dis on discretiza-

tion error indicates that this error source is too large, so that adaptive refinement is performed. In Figure 6.11, we

represent a MsFEM shape function used at the beginning of the identification process, and how it is changed after

applying the adaptive strategy.
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Figure 6.8: Components of the reference strain field.

Figure 6.9: Components of the reference stress field.

In Figure 6.12, we show the distribution of the initial error indicator over the macro mesh, as well as the final

configuration obtained for discretization parameters hK (related to the macro mesh), dK (related to oversampling)

and hK (related to the micro mesh) at the end of the adaptive process. This configuration is obtained after 8

iterations, and it results from an optimized compromise between model accuracy and measurement uncertainties.

It is found that the discretization is mainly refined in regions located close to the boundary of Ω, while inexpensive

computations with coarse discretization are sufficient in zones where the fine-scale features of the solution are not

activated.

Eventually, we show in Figure 6.13 the evolution of the ratio E/E0 between the identified value of E and the

reference value E0, after each adaptive iteration. We observe that the E is correctly identified (less than 5% error)

with the optimized model, after starting from a large error (higher than 30%).
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Figure 6.12: Distribution of the discretization error indicator at first iteration (top left) and final configuration after
applying the adaptive process in terms of macro mesh (top right), oversampling size (bottom left), and micro mesh
(bottom right).

computed with E0 = 64
9
p
17

(so that E = 1). This reference solution, numerically obtained from an overkill mesh (with

500⇥ 500 Q4 elements), is shown in Figures 6.15, 6.16, and 6.17.

When starting the identification process by using MsFEM, an initial coarse mesh TH made of 8 ⇥ 8 macro

elements is considered. At the end of the identification process with the initial coarse MsFEM model, the error

indicator ⌘dis on discretization indicates that this source is too large, so that adaptive refinement is performed. In

Figure 6.18, we show the distribution of the error indicator over the macro mesh, as well as the final configuration

obtained for discretization parameters hK (related to the macro mesh), dK (related to oversampling) and hK (related

to the micro mesh) at the end of the adaptive process. This configuration is obtained after 6 iterations, and it results

from an optimized compromise between model accuracy and measurement uncertainties. We observe the adaptive

refinement of the macro mesh TH is performed close to the crack tip, as traditional scale separation assumptions

no longer hold in the vicinity of the crack tip (high variation of the gradients), while a coarser discretization is used

in the remainder of the physical domain.

Eventually, we show in Figure 6.19 the evolution of the ratio E/E0 between the identified value of E and the

reference value E0, after each adaptive iteration. We observe that the E is correctly identified (less than 5% error)

with the optimized model, after starting from a large error (higher than 20%).

Remark. For this example, it would of course be interesting to use a MsFEM version of the XFEM method, which

would consists in defining the MsFEM basis functions by means of local problems (posed on each coarse element
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Figure 6.13: Value of E/E0 along the adaptive modeling iterations.

r

O

M

θ

Figure 6.14: Configuration of the crack domain (left), and evolution of E(x) in this domain (right).

K) complemented by enriched boundary conditions, in the spirit of the XFEM method.
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Figure 6.15: Components of the reference displacement field.

Figure 6.16: Components of the reference strain field.

Figure 6.17: Components of the reference stress field.
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Figure 6.18: Distribution of the discretization error indicator at first iteration (top left) and final configuration after
applying the adaptive process in terms of macro mesh (top right), oversampling size (bottom left), and micro mesh
(bottom right).

Figure 6.19: Value of E/E0 along the adaptive modeling iterations.
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Conclusions & prospects

We developed a general methodology around the duality-based CRE concept in order to produce robust and effec-

tive tools for model updating and selection from full-field measurements. We first proposed a consistent definition of

the mCRE functional, in association with DIC or in an integrated version, with a measurement term that is properly

scaled to take measurement noise into account. We thus defined a relevant metric in which both measurement and

modeling errors are mixed. We then focused on modeling error by developing indicators on various error sources

(model class, discretization), and we designed an associated adaptive algorithm in order to compute right, and at

the right cost, with regards to experimental information. In this context, we implemented ROM tools in order to

effectively address multi-query procedures and enhance the overall performance. We also proposed an extension

to nonlinear models by referring to thermodynamical bases and Legendre-Fenchel duality, as well as by designing

a specific solver. Last, a multiscale approach was introduced in order to address complex material descriptions at

the micro scale.

We think this PhD work brings several scientific advances in the context of model identification from full-field

measurements, and that it strengthens the link between material modeling, numerical methods, and experimental

techniques. It has also some potential for industrial applications related to structural health monitoring, as it offers a

relevant strategy to manage modeling and simulation in association with experimental data.

As it provides for optimized numerical strategies in the identification procedure, that may be useful in many

contexts (e.g. to address complex material descriptions, large experimental data, or real-time applications), the

work naturally invites for further studies and research prospects.

A very first one is the validation of the interest of the approach on more practical situations with experimental

data. It is also the use of the proposed identification approach for complex multiscale behaviors, in particular

anisotropic damage in composites. In this context, an adaptive representation of the damage parameter field could

be investigated using tools on modeling error estimation and adaptive mesh to represent this parameter field (as

used in [Bangerth and Joshi, 2008, Bangerth, 2008, Puel and Aubry, 2011, Buhan and Darbas, 2017] for other

contexts of biomechanical imaging or electromagnetics). This would thus lead to a multiscale updating strategy in

which a global-scale coarse computation (with global low-resolution sensor information) would be first performed,

before locally zooming and considering additional higher-resolution data and models for further analysis in regions
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where damage occurs. We mention that the use of mCRE with parameter fields was investigated [Banerjee et al.,

2013, Bonnet and Aquino, 2015, Babaniyia et al., 2017], and that a multiscale approach with mCRE was designed

for composites [Huang, 2016].

Also, sparse regularization techniques (with L1-norm) coming from compressed sensing could be beneficially

used with mCRE, in order to give a priori on the sparsity of damage phenomena being identified [Mascarenas et al.,

2013,Zhang and Xu, 2015,Nagarajaiah and Yang, 2017,Zhang et al., 2017,Guo et al., 2018].

A second prospect is the extension to 3D full-field measurements with a large amount of noisy experimental

data coming from DVC technologies (several Gigabytes or Terabytes). In this context, and for a given mathematical

model, the proposed mCRE framework could be employed for data pruning, going from big data to smart data

by collecting and selecting right data through the numerical model. This would be in complement to other tools

(e.g. [Passieux et al., 2015b]) already introduced to facilitate the numerical processing of large data.

Another prospect is the integration of the proposed strategy in the general framework of DDDAS [Darema, 2015],

with sequential data assimilation and dynamic updating on evolutionary systems (with evolving properties) within a

global feedback loop. On potential application is the design of numerically-assisted experimental tests on materials,

with controlled loading, or the tracking of structural damage for structural health monitoring (e.g. see [Ding et al.,

2007, Allaire et al., 2012, Prudencio et al., 2015, Kapteyn et al., 2020]). For this purpose, Kalman filtering with

prediction-correction algorithm could be coupled with mCRE as envisioned in [Alarcon, 2012,Marchand et al., 2016]

in order to estimate recursively and in real-time the material state (from optimal admissible fields of mCRE) as

well as parameters (from the Kalman filter algorithm) by processing data sequentially. In this procedure, the state-

observation formulation of the dynamical system is reconsidered by changing the metric of the observation space

compared to the classical metric used with Kalman filtering, and information on modeling error is directly given by

mCRE. This information could be further used for optimal and dynamical management of computing resources,

searching a trade-off between model accuracy and complexity according to experimental information, in order to be

compatible with the real-time constraint.

We mention that real-time sequential data assimilation on mechanical structures with DIC measurements was

recently addressed [Rubio et al., 2019a] for structural integrity on damageable concrete structures (with propagation

of a single crack). It used a full stochastic strategy (Bayesian inference coupled with transport map sampling) and

reduced order modeling to update model parameters, make fast and accurate predictions on outputs of interest,

and perform online control. In order to extend this framework to more complex systems (e.g. with damage at the

structural scale), the coupling between mCRE and Kalman filtering seems to be a relevant option.

In addition, a goal-oriented version of mCRE (as investigated in [Djatouti et al., 2020, Djatouti et al., 2021] for

thermal building) could be used in order to focus the identification effort on outputs of interest which are related to

control aspects of DDDAS, and therefore further reduce the computational cost.
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Eventually, a fundamental aspect which needs to be further analyzed is in the practical choice of a mathematical

model. From the associated error indicator, we here picked a richer mathematical empirically, but an objective could

be to add more insight into the selection of this new model. This may be performed with a proper filtering and deeper

analysis of the CRE term (e.g. using IA and machine learning algorithms [Russel and Norvig, 2016]), in order to

better understand the origins of modeling error. This may also be coupled with information theory, which indicates

that for similar modeling error levels, the best model is the one associated with lowest a priori input. In any case, this

refers to a smart learning of model ignorance from data, using the physics-based mCRE concept in complement

to other advanced techniques such as neural networks [Fang et al., 2005, Raissi et al., 2019]. In this context,

the recent attempts for full or highly data-based modeling and simulation from data mining techniques [Le et al.,

2015, Brunton et al., 2016, Kirchdoerfer and Ortiz, 2016, Bessa et al., 2017, Kirchdoerfer and Ortiz, 2017, Leygue

et al., 2018, Lopez et al., 2018, Gonzalez et al., 2019, Ladevèze et al., 2019] deserve to be analyzed in association

with mCRE, in order to reconsider the issue of the constitutive law representation and introduce the least a priori

constraints and empirism in the identification procedure.

158



Appendices

159



Appendix A

List of personal publications

National & international conferences

[C1] H.N. Nguyen, L. Chamoin, New numerical tools for parameter identification from full-field measurements, 24e

Congrès Français de Mécanique, Brest, France (2019)

[C2] H.N. Nguyen, L. Chamoin, C. Ha Minh, New numerical tools based on PGD in the context of model identifica-

tion from full-field measurements, 5th International Workshop on Reduced Basis, POD and PGD Model Reduction

Techniques, Paris, France (2019)

[C3] H.N. Nguyen, L. Chamoin, C. Ha Minh, Model and mesh selection in the context of model identification from

full-field measurements, 14th World Congress on Computational Mechanics, Paris, France (2021)

Articles in international journals
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Titre: Nouvelles stratégies numériques pour l’identification robuste, cohérente et efficace de modèles à partir

de mesures de champs

Mots clés: Mesures de champs, Problèmes inverses, Erreur de modèle, Techniques adaptatives, Réduction

de modèle, Analyse multiéchelle

Résumé: Le travail de recherche a pour am-

bition l’identification robuste, cohérente, et efficace

de paramètres matériaux à partir de mesures de

champs obtenues par les techniques expérimen-

tales avancées basées sur la corrélation d’image

numérique (CIN). Dans ce contexte, la simulation

numérique joue un rôle majeur car des calculs élé-

ments finis sont effectués en parallèle de l’acquisition

des données expérimentales afin de mener la procé-

dure d’identification. L’objectif de la thèse est d’étudier

et d’optimiser cette procédure en définissant une ar-

chitecture numérique dédiée en terme de choix de

modèle mathématique et du maillage, en fonction de

l’information et du bruit contenus dans les données

expérimentales. Ce choix vise à calculer juste au

juste coût. L’idée est de relier les diverses sources

d’erreur présentes dans la procédure d’identification:

1) bruit de mesure lié à la résolution des images; 2)

erreur de modèle venant de la sélection d’un mod-

èle basé sur la physique qui reste une représenta-

tion imparfaite de la réalité; 3) erreur de discrétisation

due à l’utilisation de maillages générant des approxi-

mations numériques. On cherche donc à définir des

modèles et des maillages dont le coût numérique et

la précision sont gouvernés par l’information expéri-

mentale disponible, avec des niveaux d’erreur simi-

laires. Pour cela, on propose une méthodologie basée

sur l’analyse duale, issue de développements du lab-

oratoire depuis de nombreuses années, et valide

pour une large gamme de modèles linéaires ou non-

linéaires. L’outil d’identification obtenu, basé sur la

fiabilité de l’information, est construit à partir d’une

formulation mathématique hybride avec une fonction

coût composée de termes liés au modèle ou aux ob-

servations. On montre qu’il permet de définir des in-

dicateurs d’erreur spécifiques et de mettre en place

une procédure adaptative afin de corriger les biais

de la modélisation numérique et la rendre cohérente

avec les caractéristiques des mesures de champs.

Un aspect majeur de la procédure est le calcul de

champs admissibles vérifiant l’information pertinente.

L’approche proposée est dans un premier temps

validée sur des modèles d’élasticité linéaire avant

d’être appliquée avec des comportements matériau

non-linéaires afin de mener le processus de sélection

et d’adaptation de modèle. De plus, l’approche est

rendue plus efficace par l’utilisation complémentaire

de méthodes numériques avancées telles que la ré-

duction de modèle, des solveurs non-linéaires spéci-

fiques, ou l’analyse multi-échelle.
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