Branching random walks with products of random matrices

To introduce the model we need some notation. Assume that on a probability space (Ω, F, P) we are given a set of independent identically distributed random variables (N u ) u∈U of the same law p = {p k : k ∈ N}, and a set of independent identically dis-

Théorèmes limites pour les marches aléatoires avec branchement et produits de matrices aléatoires

Résumé.

L'objectif principal de ma thèse est d'établir des théorèmes limites pour une marche aléatoire avec branchement gouvernée par des produits de matrices aléatoires. La thèse est composée de quatre chapitres.

Le chapitre 2 est consacré au modèle classique d'une marche aléatoire avec branchement, dans lequel chaque particule donne naissance à un nombre aléatoire de particules de la génération suivante, qui se déplacent sur la ligne réelle ; le nombre d'enfants et les déplacements des enfants suivent une loi fixe. Nous établissons une borne Berry-Esseen et une expansion modérée de type Cramér pour la mesure de comptage qui compte le nombre de particules de n-ème génération située dans une région donnée.

Le chapitre 3 est consacré à l'étude des produits de matrices aléatoires qui sera utilisé dans les chapitres suivants pour l'étude la marche aléatoire avec branchement gouvernée par des produits de matrices aléatoires. Soit (A n ) n≥1 une suite de matrices aléatoires réelles de type d × d, indépendantes et identiquement distribuées. Considérons le produit G n = A n . . . A 1 et la marche aléatoire (G n x), où x est un point de départ avec la norme unitaire |x| = 1. Le vecteur G n x est uniquement déterminé par sa direction X x n =

G n x |G n x| et sa norme S x n = log |G n x|. Nous nous sommes intéressés par les propriétés asymptotiques de la chaîne de Markov (X x n , S x n ). Pour matrices inversibles, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] a établi un théorème central limite et un théorème limite local pour (X x n , S x n ). Avec une motivation pour des applications aux marches aléatoires avec branchement gouvernées par des produits de matrices aléatoires, ses résultats sont améliorés et étendus dans deux aspects : 1) le théorème central limite est établi uniformément en x et un développement asymptotique est donné dans le théorème local limite avec une fonction continue f agissant sur X x n et une fonction h directement Riemann intégrable agissant sur S x n ; 2) les résultats sont aussi établis au cas des matrices non-négatives.

Au chapitre 4, nous considéronson un modèle de marches aléatoires avec branchement, où les movements des individus sont gouvernés par des produits de matrices aléatoires, où les particules donnent naissance à un nombre aléatoire d'enfants selon un processus de Galton-Watson, qui se déplacent dans R d dont les positions sont déterminées par l'action de matrices aléatoires indépendantes et identiquement distribuées sur la position du parent. Nous nous intéressons aux propriétés asymptotiques de la mesure de comptage Z x n sur R d qui compte le nombre de particules de génération n située dans une région donnée, lorsque le processus démarre avec une particule initiale située à x ∈ R d \ {0}. A l'aide des résultats établis au chapitre 3 pour les produits de matrices aléatoires, nous établissons un théorème central limite et une expansion asymptotique à grande déviation de type Bahadur-Rao pour Z x n avec une normalisation appropriée. En tant que sousproduit, nous obtenons une condition nécessaire et suffisante pour la non-dégénérescence de la limite de la martingale fondamentale, qui étend le théorème de type Kesten-Stigum de Biggins.

Dans le chapitre 5, nous considérons toujours la marche aléatoire avec branchement gouvernée par des produits de matrices aléatoires. Dans ce chapitre nous établissons une borne Berry-Esseen et une expansion modérée de type Cramér pour la mesure de comptage Z x n définie comme ci-dessus. Dans la preuve, nous construisons une nouvelle martingale, et établissons son uniforme convergence ainsi que celle de la martingale fondamentale.

Limit theorems for branching random walks and products of random matrices

Abstract.

The main objective of my thesis is to establish limit theorems for a branching random walk with products of random matrices. The thesis is composed of four chapters.

Chapter 2 is devoted to the classical branching random walk, in which each particle gives birth to a random number of particles of the next generation, which move on the real line; the number of children and the displacements of the children are governed by a fixed law. We establish a Berry-Esseen bound and a Cramér type moderate deviation expansion for the counting measure which counts the number of particles of nth generation situated in a given region.

Chapter 3 is devoted to establishing limit theorems for products of random matrices which will be used in the following chapters for the study of a branching random walk with products of random matrices. Let (A n ) n≥1 be a sequence of independent and identically distributed random d × d real matrices. Consider the product G n = A n . . . A 1 and the random walk (G n x), where x is a starting point with unit norm |x| = 1. The vector G n x is uniquely determined by its direction X x n =

G n x |G n x| and its log norm S x n = log |G n x|. We consider asymptotic properties of the Markov chain (X x n , S x n ). For invertible matrices, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established a central limit theorem and a local limit theorem on (X x n , S x n ). Motivated by some applications in branching random walks, we improve and extend his theorems in the sense that: 1) we prove that the central limit theorem holds uniformly in x, and give an asymptotic expansion in the local limit theorem with a continuous function f acting on X x n and a directly Riemann integrable function h acting on S x n ; 2) we extend the results to the case of nonnegative matrices.

In Chapter 4, we consider a branching random walk with products of random matrices, where particles give birth to a random number of children as a Galton-Watson process, which move in R d whose positions are determined by the action of independent and identically distributed random matrices on the position of the parent. We are interested in asymptotic properties of the counting measure Z x n on R d which counts the number of particles of generation n situated in a given region, when the process starts with one initial particle located at x ∈ R d \ {0}. With the help of the results established in Chapter 3 for products of random matrices, we establish a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao type for Z x n with suitable norming.

As a by-product, we obtain a sufficient and necessary condition for the non-degeneracy of the limit of the fundamental martingale, which extends the Kesten-Stigum type theorem of Biggins.

In Chapter 5 we still consider a branching random walk with products of random matrices. In this chapter we establish a Berry-Esseen bound and a Cramér type moderate deviation expansion for the counting measure Z x n defined as above. In the proof, we construct a new martingale, and establish its uniform convergence as well as that of the fundamental martingale.
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Enfin, merci à toi, Erwan, pour ton Amour, et sans qui tout ceci n'aurait aucun sens. My thesis focuses on limit theorems for a supercritical branching random walk. As the name suggests, a branching random walk is a system of particles performing random walks while branching. An introduction to branching random walks and an overview of classical results can e.g. be found in the books [START_REF] Shi | Branching random walks[END_REF][START_REF] Zeitouni | Branching random walks and Gaussian fields[END_REF][START_REF] Woess | Denumerable Markov chains. Generating functions, boundary theory, random walks on trees EMS Textbk[END_REF]. A striking feature of the model is the large number of interactions that it possesses, not only with other fields in probability and mathematics, but also in other sciences such as statistical mechanics [START_REF] Talagrand | Ergebnisse der Mathematik und ihrer Grenzgebiete[END_REF][START_REF] Panchenko | The Sherrington-Kirkpatrick model[END_REF] and biology [START_REF] Fisher | The wave of advance of advantageous genes[END_REF][START_REF] Kolmogorov | Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique[END_REF][START_REF] Kessler | Evolution on a smooth landscape[END_REF][START_REF] Golding | Studies of bacterial branching growth using reaction-diffusion models for colonial development[END_REF]. In recent years, this topic has attracted the attention of many authors, see for example, [START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Hu | How big is the minimum of a branching random walk?[END_REF][START_REF] Derrida | Slower deviations of the branching Brownian motion and of branching random walks[END_REF][START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF][START_REF] Chen | On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements[END_REF][START_REF] Iksanov | Stable-like fluctuations of Biggins' martingales[END_REF][START_REF] Liang | Regular variation of fixed points of the smoothing transform[END_REF]. The model is closely related to various applied probability settings, such as Mandelbrot's cascades (cf. e.g. [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF]), perpetuities (see e.g. [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes, Probability and its Applications[END_REF]) and branching Brownian motion (cf. e.g. [START_REF] Kesten | Branching Brownian motion with absorption[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF][START_REF] Maillard | 1-stable fluctuations in branching Brownian motion at critical temperature I: The derivative martingale[END_REF]). For extensions to random environments in space and time, see e.g. [START_REF] Greven | Branching random walk in random environment: phase transitions for local and global growth rates[END_REF][START_REF] Comets | On multidimensional branching random walks in random environment[END_REF] and [START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Kuhlbusch | On weighted branching processes in random environment[END_REF][START_REF] Liu | Branching random walks in random environment[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF]. For other related works and many references, see e.g. the recent books [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes, Probability and its Applications[END_REF].

In the classical branching random walk, the moving is a simple random translation, that is, a particle, whose parent is at position y, moves to position y + l, with independent and identically distributed (i.i.d.) displacements l. Although this model can be applied to many fields, it does not cover the interesting cases occurring in many situations where the movements are determined by linear transformations such as rotations, dilations, shears, reflections, projections etc. Motived by this observation, we consider a branching random walk with products of random matrices, in which the position of a particle in R d (d ≥ 1) is obtained by the action of a matrix on the position of its parent. In other words, the positions of particles are obtained by the action of products of random matrices on the position of one initial particle. This permits us to extend significantly the domains of applications of the theory of branching random walks, but the study of the model becomes much more involved. For such a model, we consider the counting measure Z x n , which counts the number of particles of generation n situated in a given region, when the Introduction 12 process begins with one initial particle situated at x. The main goal of this thesis is to give precise asymptotics of the counting measure Z x n as n → ∞, by establishing central limit theorems, large and moderate deviation results. The study is interesting because it gives a good description of the configuration of the process at time n. In fact, finding the asymptotic properties of the counting measure is one of the fundamental problems in the theory of branching random walks.

In recent years, important progress has been made in the study of products of random matrices, see for example Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF], and Benoist and Quint [START_REF] Benoist | Mesures stationnaires et fermés invariants des espaces homogènes[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (II)[END_REF][START_REF] Benoist | Stationary measures and invariant subsets of homogeneous spaces (III)[END_REF][START_REF] Benoist | Central limit theorem for linear groups[END_REF][START_REF] Benoist | Random walks on reductive groups[END_REF]. In our approach, we benefit much from the results and methods recently developed on this subject (e.g. [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]).

Background and main objectives 1.2.1 The classical branching random walk

The classical branching random walk on the real line can be defined as follows. At time 0, there is one initial particle ∅ generation 0, located at S ∅ = 0. At time 1, it is replaced by N = N ∅ new particles ∅i (1 ≤ i ≤ N ) of generation 1, located at L i = L ∅i , 1 ≤ i ≤ N , where N is of distribution p = {p k : k ∈ N}, each random variable L i is of distribution G. Both N and L i are defined on a probability space (Ω, F, P). In general, each particle u = u 1 . . . u n of generation n is replaced at time n + 1 by N u new particles of generation n + 1, with displacements L u1 , L u2 , . . . , L uNu , so that the i-th child is located at

S ui = S u + L ui ,
where N u is of distribution p and each L ui is of distribution G. All the random variables N u and L u , indexed by all finite sequences u ∈ U := ∪ ∞ n=0 (N * ) n (by convention (N * ) 0 = {∅}), are independent of each other.

Denote by T the genealogical tree associated to the elements {N u : u ∈ U}. It is defined by the following properties : 1) ∅ ∈ T ; 2) when u ∈ T, then for i ∈ N, ui ∈ T if and only if 1 ≤ i ≤ N u ; 3) ui ∈ T implies u ∈ T. Let T n = {u ∈ T : |u| = n} be the set of particles of generation n, where |u| denotes the length of the sequence u and represents the number of generation to which u belongs ; by convention |∅| = 0. Consider the counting measure

Z n (A) = u∈Tn 1 {Su∈A} , A ⊂ R, (1.1) 
which counts the number of particles of n-th generation situated in A, where for a set D, 1 D denotes its indicator function.

We assume that m := EN = E[Z 1 (R)] ∈ (1, ∞) and that N > 0 a.s., so that the Galton-Watson process formed by the generation sizes survives with positive probability. Denote m 0 = xG(dx) and σ 2 0 = (x -m 0 ) 2 G(dx).

Harris [48, Chapter III. §16] conjectured a central limit theorem for Z n , which states that if 0 < σ 0 < ∞, then for any x ∈ R,

1 m n Z n (-∞, xσ 0 √ n + nm 0 ] n→∞ -→ W Φ(x) (1.2) 
in probability, where Φ(x) = 1 √ 2π

x -∞ e -t 2 /2 dt is the normal distribution function and W is the a.s. limit of the fundamental martingale Zn(R) m n of the Galton-Watson process (Z n (R)). This conjecture has first been solved by Stam [START_REF] Stam | On a conjecture by Harris[END_REF], then improved by Asmussen and Kaplan [START_REF] Asmussen | Branching random walks. I[END_REF] to L 2 -convergence and almost sure (a.s.) convergence. A more general process where the two families (N u ) u∈U and (L u ) u∈U are not necessarily independent, and the family (L u ) u∈U is not necessarily i.i.d., was introduced by Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] : instead, he just assumed that the random vectors (N u , L u1 , L u2 , • • • ) indexed by all the finite sequences u are i.i.d. This model is called the general branching random walk. For this model, results like (1.2) were established by Klebaner [START_REF] Klebaner | Branching random walk in varying environments[END_REF] and Biggins [START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF].

The rate of convergence in (1.2) has been studied in several papers. Révész [START_REF] Révész | Random walks of infinitely many particles[END_REF] considered the special case where the displacements follow the same Gaussian law and conjectured the exact convergence rate ; his conjecture was solved by Chen [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF]. Gao and Liu [START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF] improved and extended Chen's result to the general non-lattice case, while the lattice case has been considered by Grübel and Kabluchko [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]. All the above mentioned results are about the point-wise convergence without uniformity in x.

Objective 1 : establish a uniform bound for the rate of convergence in (1.2) of type Introduction 14 Berry-Esseen. We will prove that, under suitable conditions, a.s. for n ≥ 1,

sup x∈R 1 m n Z n (-∞, xσ 0 √ n + nm 0 ] -W Φ(x) ≤ M √ n , ( 1.3) 
where M is a positive and finite random variable. In fact, a similar result will be established for the general branching random walk.

The problem of large deviations for the counting measure Z n (•) has been considered by Biggins : he established in [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF] a large deviation principle, which was subsequently improved in [START_REF] Biggins | Growth rates in the branching random walk[END_REF] to a Bahadur-Rao large deviation asymptotic. Here we consider the moderate deviations :

Objective 2 : establish a Cramér type moderate deviation expansion for Z n . We will prove that, under suitable conditions, for x ∈ [0, o( √ n)], as n → ∞, a.s.,

Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O x + 1 √ n , (1.4) 
where t → L (t) is the Cramér series (see (1.13) for details). Actually, as in the case of Berry-Esseen bound, a similar result will be established for the general branching random walk.

An important role in the study of large deviations for Z n is played by the martingale of Biggins with complex parameter :

W n (λ) = 1 E N i=1 e λL i n R e λt Z n (dt) = 1 E N i=1 e λL i
n u∈Tn e λSu , n ≥ 0, λ ∈ C.

Set m(λ) = E

N i=1 e λL i , λ ∈ C and D = int{θ ∈ R : m(θ) < ∞} = ∅, where int(A) denotes the interior of the set A. When λ = 0, W n := W n (0) = Zn(R) m n is the fundamental martingale of the Galton -Watson process (Z n (R)), whose limit is denoted by W . The famous Kesten-Stigum theorem states that W is non degenerate if and only if EN log + N < ∞ (see [START_REF] Athreya | Branching processes, Die Grundlehren der mathematischen Wissenschaften[END_REF]), where log + x = max{0, log x} denotes the positive part of log x. By the martingale convergence theorem for non-negative martingales, we have for all θ ∈ D, W n (θ) n→∞ → W (θ), a.s.

Biggins [13, Theorem A] gave a necessary and sufficient condition for the non-degeneracy of W (θ) : EW (θ) > 0 if and only if

E[W 1 (θ) log + W 1 (θ)] < ∞ and θ ∈ (θ -, θ + ), (1.5) 
where (θ -, θ + ) ⊂ D denotes by the open interval on which θm (θ) m(θ) < log m(θ), i.e.

θ -= inf θ ∈ D : θm (θ) m(θ) < log m(θ) , θ + = sup θ ∈ D : θm (θ) m(θ) < log m(θ) .
Moreover, when N > 0 a.s. and (1.5) hold, W (θ) > 0 a.s. and EW (θ) = 1.

It has been shown in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]Theorem 2] that if

E[W γ 1 (θ)
] < ∞, for some γ > 1 and for all θ ∈ (θ -, θ + ), (1.6) then for every compact subset C in the trip V := {λ = θ + iη : θ ∈ (θ -, θ + ), η ∈ R}, a.s. Our next objectives are to establish analogous results for a branching random walk with products of random matrices. A branching random walk with products of random matrices is defined as follows. At time 0, there is one initial particle ∅ of generation 0, with initial position Y ∅ := x ∈ R d \{0}. At time 1, the initial particle ∅ is replaced by N = N ∅ new particles i = ∅i of generation 1, located at

Y i = A i Y ∅ , 1 ≤ i ≤ N .
In general, at time n + 1, each particle u = u 1 . . . u n of generation n, located at

Y u ∈ R d , is replaced by N u new particles ui of generation n + 1, located at Y ui = A ui Y u , 1 ≤ i ≤ N u .
Namely, the position of the particle ui is obtained from the position Y u of u by the action of the matrix A ui , so that the position Y u of a particle u in generation n ≥ 1 is given by the action of products of random matrices on the initial position x :

Y u = G u x, where G u = A u 1 ...un . . . A u 1 .
The space R d is equipped with the Euclidean norm | • |. The position G u x of the particle u is completely described by two components : its norm |G u x| and its projection on the unit sphere S d-1 := {y ∈ R d , |y| = 1} denoted by

X x u := G u x |G u x| .
Accordingly, we consider the following counting measure of particles of generation n which describes the configuration of the branching random walk at time n : for measurable sets

B 1 ⊂ S d-1 and B 2 ⊂ R, Z x n (B 1 , B 2 ) = u∈Tn 1 {X x u ∈B 1 , log |Gux|∈B 2 } . (1.7)
In particular when B = S d-1 the measure (1.7) reduces to

Z x n (S d-1 , B 2 ) = u∈Tn 1 {log |Gux|∈B 2 } . (1.8)
When d = 1, x = 1 and A u = 0 for all u ∈ T, the measure defined by (1.8) is exactly the counting measure considered in the classical branching random walk on R starting from the origin 0 ∈ R, where the position S u of a particle u = u 1 • • • u n is given by

S u = L u 1 + • • • + L u 1 ...un , with L u = log |A u |.
So our model in the one dimensional case d = 1 reduces essentially to the classical (additive) branching random walk. For this reason, in the following we will focus on the case d ≥ 2.

We will prove limit theorems for the counting measure Z x n both in the case when the matrices A u are nonnegative, and in the case when the matrices A u are invertible.

Objective 3 : establish a central limit theorem for the counting measure Z x n with suitable norming. In particular, we will prove that, under suitable conditions, for any

x ∈ S d-1 and y ∈ R, as n → ∞, a.s., 1 m n Z x n S d-1 , (-∞, nγ + yσ √ n] -W Φ(y) → 0, (1.9) 
where the constants γ and σ are explicitly defined (see (C6) and (1.15) in the following section). In fact, the result is established in a more general setting : a result similar to (1.9) is proved when S d-1 is replaced by a measurable set

B 1 ⊆ S d-1 .
Objective 4 : strengthen the central limit theorem (1.9) and its integral version (with a target function on X x u ) to a Berry-Esseen bound for the counting measure Z x n . We prove that, under suitable conditions, for any x ∈ S d-1 and n ≥ 1, a.s.,

sup y∈R 1 m n Z x n S d-1 , nγ + σ √ n(-∞, y] -W Φ(y) ≤ M √ n , (1.10)
where M is a finite and positive random variable. In fact, an integral version of (1.10) is established with a target function ϕ on X x u , which reduces to (1.10) when ϕ = 1. .

Objective 5 : establish the Cramér type moderate deviation expansion for Z x n . We prove that, under suitable conditions, for any x ∈ S d-1 and 0

≤ y = o( √ n), as n → ∞, a.s., Z x n S d-1 , nγ + σ √ n(y, +∞) m n W [1 -Φ(y)] = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n ,
where t → ζ(t) is the Cramér series (see (1.34)). In fact, a similar result will be established with a target function ϕ on X x u .

Objective 6 : establish a large deviation asymptotic expansion of Bahadur-Rao type for Z x n . We prove that, under suitable conditions, for any x ∈ S d-1 , with q s > γ, we have

Introduction 18 a.s., 1 m n Z x n S d-1 , [nq s , +∞) = W x s r s (x)e -nΛ * (qs) sσ s √ 2πn 1 + o(1) , (1.11)
where r s is a function bounded from below and from above by two positive constants, s, σ s , Λ * (q s ) are positive constants and W x s is the limit of a martingale associated to branching random walks with products of random matrices. As in the case of central limit theorem, a result similar to (1.11) is proved when S d-1 is replaced by a measurable subset B 1 of S d-1 . Moreover, an integral version for the large deviation expansion with target functions on the two components X x u and log |G u x| is also established.

To achieve our objectives, as important ingredients in the approach, we mention in particular the following :

• asymptotic expansions in central and local limit theorems for products of random matrices ;

• the non-degeneracy of the limit of the fundamental martingale associated to branching random walk with products of random matrices ;

• the uniform convergence of the fundamental martingale and the construction of a new martingale.

Main results

The main results of the thesis, together with some key ideas of the proofs, are presented below in four subsections. For the detailed proofs, we refer to Chapters 1-4. Each of the four subsections corresponds to the content of one of the four chapters.

Berry-Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk

In this subsection we present our main results on the Berry-Esseen bound and Cramér moderate deviation expansion for the counting measure Z n defined in (1.1), for a general branching random walk on the real line, generated by

(N u , L u1 , L u2 , • • • ), which are independent copies of (N, L 1 , L 2 , • • • ).

Conditions and statement of main results

We will use the following standard assumptions.

C1. N > 0 a.s. with m = EN ∈ (1, ∞), and E N i=1 L 2 i < ∞.
The first condition in C1 implies that the underlying Galton -Watson process is supercritical and

F (A) = E[Z 1 (A)], A ⊂ R,
is a finite measure on R with mass m. Let F be the probability mesure on R defined by

F (A) = F (A) m , A ⊂ R.

Denote its mean and variance by

m 0 = xF (dx) and σ 2 0 = (x -m 0 ) 2 F (dx). (1.12) 
We will assume that C2. F is non-degenerate, i.e. it is not concentrated on a single point.

The last condition in C1, together with condition C2, implies that the mean m 0 and the variance σ 2 0 defined by (1.12) are finite with σ 0 > 0.

C3. D is non-empty.

We will need the following moment condition which is weaker than (1.6).

C4.

There are γ > 1 and

K 0 > 0 with (-K 0 , K 0 ) ⊂ (θ -, θ + ) such that EW γ 1 (θ) < ∞ ∀θ ∈ (-K 0 , K 0 ).
By the argument of the proof of [18, Theorem 2], we know that under hypothesis C4, for every compact subset

C of V := {λ = θ + iη : θ ∈ (-K 0 , K 0 ), η ∈ R}, a.s. sup λ∈C |W n (λ) -W (λ)| n→∞ -→ 0 and W (λ) is analytic in C.
Our first result gives the Berry-Esseen bound for Z n : 

sup x∈R Z n (-∞, xσ 0 √ n + nm 0 ] m n -W Φ(x) ≤ M √ n ,
where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion for Z n , we need more notation. Consider the measure

F θ (dx) = e θx m(θ) F (dx), θ ∈ D.
We see that F θ is a distribution function with finite mean m θ and variance σ 2 θ , given by

m θ = m (θ) m(θ) , σ 2 θ = m (θ) m(θ) - m (θ) m(θ) 2 ;
moreover, σ θ > 0 when F is non-degenerate. Consider the change of measure of type Cramér for Z n : for θ ∈ D,

Z θ n (dx) = e θx Z n (dx), namely, Z θ n (A) = u∈Tn e θSu 1 {Su∈A} , A ⊂ R .
Let X be a random variable with distribution F := F m , and Λ(θ) := log Ee θX = log m(θ) -log m be its cumulant generating function. Then Λ(θ) is analytic on D, with Λ (θ) = m θ and Λ (θ) = σ 2 θ . Denote by γ k := Λ (k) (0) the cumulant of order k of the random variable X. We shall use the Cramér series (see [75, Theorem VIII.2.2]) : 

L (t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
≤ x = o( √ n), as n → ∞, a.s. Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O x + 1 √ n ,
and

Z n (-∞, -xσ 0 √ n + nm 0 ) m n W Φ(-x) = e -x 3 √ n L (-x √ n ) 1 + O x + 1 √ n .
As a by-product in the proof of Theorem 1.3.2, we obtain a Berry -Esseen bound for the changed measure Z θ n with uniformity in θ.

Theorem 1.3.3. Assume conditions C1 -C4. Then, there exists a constant 0 < K < K 0 such that a.s. for all n ≥ 1,

sup θ∈[-K,K] sup x∈R Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n -W (θ)Φ(x) ≤ M √ n ,
where M is a positive and finite random variable.

Key ideas of the proofs

Let us explain briefly the key ideas in the proofs. To prove the Berry-Esseen bound (1.3), we use Esseen's smoothing inequality ([75, Theorem V.2.2.]). The key point in this proof is the formula of the characteristic function of

1 m n Z n (-∞, xσ 0 √ n + nm 0 ] , which can be interpreted as W n ( it σ 0 √ n )f n (t), t ∈ R, where (W n (λ)
) is Biggins' martingale with complexed valued parameter λ for the branching random walk (see [START_REF] Biggins | Uniform convergence of martingales in the one-dimensional branching random walk[END_REF][START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]), and f n (t) is the characteristic function of the n-fold convolution of F . Using the results of Biggins [START_REF] Biggins | Uniform convergence of martingales in the one-dimensional branching random walk[END_REF][START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], Grübel and Kabluchko [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF] about the uniform convergence of W n (λ), together with the approach of Petrov [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF] for the proof of the Berry-Esseen bound for sums of i.i.d. random variables, we are able to establish (1.3). The Berry-Esseen bound (1.3) is then extended to the changed measure of type Cramér,

Z θ n (A) = A e θt Z n (dt), A ⊂ R, θ ∈ R.
This is an important step in establishing the moderate deviation expansion (1.4). Our approach in proving (1.4) is very different to the method of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF] on the Bahadur-Rao large deviation asymptotic, but is inspired by the ideas in the proof of Cramér's moderate deviation expansion on sums of i.i.d. random variables (see [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF]), and the arguments in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] that Biggins used to prove the local limit theorem with large deviations for Z n . Introduction 22

Asymptotic expansions in central and local limit theorems for products of random matrices

This subsection is devoted to the presentation of our main results about a central limit theorem and a local limit theorem for products of random matrices, which will be used to establish limit theorems for the branching random walk with products of random matrices. A matrix a ∈ M (d, R) is said to be proximal if it has an algebraic simple dominant eigenvalue. Denote by M + the set of matrices with nonnegative entries. A nonnegative matrix a ∈ M + is said to be allowable if every row and every column has a positive entry.

Conditions and statement of main results

Let

We say that the measure µ is arithmetic if there is t > 0 together with θ ∈ [0, 2π) and a function ϑ :

S d-1 + → R such that ∀a ∈ Γ, ∀x ∈ V (Γ) : exp[it log |ax| -iθ + i(ϑ(a • x) -ϑ(x))] = 1,
where S d-1 + = {x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive quadrant. Notice when d = 1, we have S d-1 + = {1}, and the above arithmetic condition reduces to the following more usual form : log a is almost surely concentrated on an arithmetic progression a 0 + a 1 N for some a 0 , a 1 > 0.

We will need the following assumptions on the law µ. For invertible matrices we have ι(a) = a -1 -1 and N (a) = max{ a , a -1 }.

C5.

For invertible matrices : (a) (Strong irreducibility)There is no finite union

W = n i=1 W i of proper subspaces 0 = W i R d which is Γ µ -invariant (in the sense that aW = W for each a ∈ Γ µ ) (b) (Proximality) Γ µ contains at least one proximal matrix.

C6. (Moment condition)

There exists η 0 ∈ (0, 1) such that

E[N (A 1 ) η 0 ] < ∞.
We will consider the action of invertible matrices on the projective space P d-1 which is obtained from S d-1 by identifying x and -x, and the action of nonnegative matrices on S d-1

+ . For convenience, we identify x ∈ P d-1 with one of its representants in S d-1 . To unify the exposition, we use the symbol S to denote P d-1 for invertible matrices, and S d-1 + for nonnegative matrices. The space S will be equipped with the metric d, which is the angular distance (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) for invertible matrices, and the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) for nonnegative matrices. Moreover, S is a separable metric space equipped with Borel σ-field.

Let G n = A n . . . A 2 A 1 be the product of i.i.d. d × d real random matrices A i , defined on the probability space (Ω, F, P), with common law µ. Let x ∈ S be a starting point. As mentioned in the introduction, the random walk G n x is completely determined by its log Introduction 24 norm and its projection on S, denoted respectively by

S x n := log |G n x|, X x n := G n • x = G n x |G n x| , n ≥ 0, with the convention that G 0 x = x. Since S x n = log |A n X x n-1 | + S x n-1 and X x n = A n • X x n-1 , the sequence (S x n , X x n ) n≥0 is a Markov chain.
Denote by E the expectation corresponding to P. By the law of large numbers of Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF], under conditions C5 and C6, we have

lim n→∞ 1 n S x n = lim n→∞ 1 n E[S x n ] = γ P-a.s., (1.14) 
where γ = inf n∈N 1 n E log G n is the upper Lyapunov exponent associated with the product sequence (G n ). Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] and Henion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] showed that

σ 2 = lim n→∞ 1 n E (S x n -nγ) 2 (1.15)
exists and is independent of x for invertible matrices and nonnegative matrices, respectively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]) ; the µ-stationarity of ν means that µ * ν = ν, that is, for any continuous function ϕ on S,

(µ * ν)(ϕ) := S Γµ ϕ(a • x)µ(da)ν(dx) = ν(ϕ).
where ν(ϕ) = S ϕ(x)ν(dx). This notation for the integral will be used for any function and any measure.

We state first a central limit theorem for the couple (X x n , S x n ) with uniform convergence in x ∈ S. For nonnegative matrices, assume C5.2. For both cases, assume additionally C6.

For any continuous function f on S, we have

lim n→∞ sup (x,t)∈S×R E f (X x n )1 S x n -nγ σ √ n ≤t -ν(f )Φ (t) = 0. (1.16)
2. For any measurable set B ⊂ S with ν(∂B) = 0, we have

lim n→∞ sup (x,t)∈S×R P X x n ∈ B, S x n -nγ σ √ n ≤ t -ν(B)Φ (t) = 0. (1.17)
For invertible matrices, a point-wise version (by considering a fixed x ∈ S instead of sup x∈S ) has been established by Le Page in [63, Theorem 4]. For nonnegative matrices, the asymptotic for the Markov chain (X x n , S x n ) is new even for a fixed x. The uniformity in x ∈ S is new for both invertible matrices and nonnegative matrices. Theorem 1.3.4 will be deduced form a result on the convergence rate in (1.16) which has been established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for the case when f is Hölder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for products of random matrices. 

For any continuous function f on S and any directly Riemann integrable function

h on R, we have as n → ∞, sup (x,y)∈S×R |σ √ nE [f (X x n )h(y + S x n -nγ)] - ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz| → 0, (1.18) 
where

H x (u) = 1 - b(x) σ 2 √ n u + m 3 6σ 6 √ n (3σ 2 u -u 3 ),
with m 3 and b(x) defined in Proposition 3.3.3.

For any measurable set B ⊂ S with ν(∂B) = 0 and any directly Riemann integrable function

h on R, we have as n → ∞ sup (x,y)∈S×R |σ √ nE [1 B (X x n )h(y + S x n -nγ)] - ν(B) R h(z)φ y -z σ √ n H x y -z √ n dz| → 0. (1.19) When y = 0, f = 1 and h = 1 [a,b] , the integral E [f (X x n )h(y + S x n -nγ)] reduces to the local probability P(S x n ∈ nγ + [a, b]
), which is the usual object studied in local limit theorems.
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The expansions (1.18) and (1.19) are new for both invertible matrices and nonnegative matrices. The first expansion implies the local limit theorem established in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 6] for invertible matrices, which states that (1.18) holds when the polynomial H x (•) is replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 1.3.4 follows from Theorem VII.2.7 of Petrov [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF], while expansion (1.18) in Theorem 1.3.5 was proved by Feller (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]Theorem XVI.4.1]) under the same non-arithmetic condition on µ and when h = 1 [a,b] is the indicator function of an interval. Breuillard (see [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF]Theorem 3.2]) proved an expansion like (1.18) but for any finite order, when µ is strongly non-arithmetic (in the sense that its characteristic function μ(t) = e itx µ(dx) satisfies Cramér's condition lim sup |t|→∞ |μ(t)| < 1) with finite moments of order high enough and when h is integrable and regular enough (he assumed in particular that h has continuous and integrable derivatives h (k) for 0 ≤ k ≤ K with K ≥ 2 large enough). Compared with the result of Breuillard, the novelity in Theorem 1.3.5 is that we assume the non-arithmetic condition instead of the strongly arithmetic condition, and we use the direct Riemann integrability of h instead of the smoothness condition on h.

Key ideas of the proofs

Our approach is mainly based on the spectral gap theory recently developed for the norm cocycle by Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices, and by Buraczewski, Damek, Guivarc'h and Mentemeier (see [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]) for nonnegative matrices. Smoothing techniques are also used for the approximation of functions : in the proof of Theorem 1.3.4, we use a smooth approximation of the indicator function of a Borel set (see Lemma 3.4.1), while in the proof of Theorem 1.3.5, we use a suitable approximation of a directly Riemann integrable function with the techniques develepped in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF].

Central limit theorem and precise large deviations for branching random walks with products of random matrices

The goal of this section is to present our main results about a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao type on Z x n for a branching random walk with products of random matrices defined in (1.7). Note that in our model, along each branch we encounter a product of random matrices. We introduce some notation and the necessary assumptions on products of random matrices in order to formulate our main results. We shall consider two cases, the case when the matrices are nonnegative and the case when the matrices are invertible.

Notation on products of random matrices

In addition to the notation introduced in the precedent, we need some others. Let C(S) be the space of continuous complex-valued functions on S. Set

I µ = {s ≥ 0 : E A 1 s < ∞}.
Note that I µ is an interval of R + . Let s ∞ = sup I µ . Define the transfer operator on the set C(S) of continuous functions on S as follows : for any s ∈ (-η 0 , s ∞ ), and f ∈ C(S),

P s f (x) = E[|A 1 x| s f (A 1 • x)], for all x ∈ S. (1.20) 
It is known that under conditions C5, and C6, there exists a small constant 0 < η 1 < η 0 such that for any s ∈ (-η 1 , s ∞ ), there are a unique probability measure ν s and a unique Hölder continuous normalized function r s (under the normalizing condition ν s (r s ) = 1) on S satisfying 

ν s P s = κ(s)
Λ(0) = 0, Λ (0) = γ, Λ (0) = σ 2 > 0, and Λ (s) > 0 ∀s ∈ (-η 1 , s ∞ ).

Statement of main results

Note that the population size at time n is Z n = Z x n (S, R), which does not depend on the starting point x and forms a Galton-Watson process with Z 0 = 1 and Z 1 = N . Recall that m = EN which is supposed that 1 < m < ∞. We will need the following condition.

C7. There exists a constant η > 1 such that

EN log η+1 + N < ∞.
We start with a central limit theorem for the normalized counting measure (1.7). For

t ∈ R, let Z x n (B, t) = Z x n B, (-∞, nγ + tσ √ n] = u∈Tn 1 {X x u ∈B, log |Gux|-nγ σ √ n ≤t} .
Theorem 1.3.6. Assume that the law µ of the radom matrices satisfies conditions C5 and C6. Assume also that the offspring distribution satisfies condition C7. Then, for any

x ∈ S, any measurable set B ⊆ S with ν(∂B) = 0 and any t ∈ R, we have, as n → ∞,

Z x n (B, t) m n → ν(B)Φ(t)W P-a.s. (1.22)
For the one dimensional case (where d = 1), the result is due to Asmussen and Kaplan [3, Theorem 1]. Theorem 1.22 open ways for extending some results on central limit theorem in [START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF] to the multi-dimensional case where the moving of particles is determined by products of random matrices.

Our second main result is on the large deviation for the counting measure Z x n . To study the large deviation of the measure Z x n , a natural way would be to consider its Laplace transform defined by, for (s

1 , s 2 ) ∈ R d × R, Z x n (s 1 , s 2 ) = R d ×R e s 1 y 1 +s 2 y 2 Z x n (dy 1 , dy 2 ) = u∈Tn e s 1 X x u +s 2 S x u , ( 1.23) 
where s 1 y 1 is the inner product of vectors s 1 and y 1 in R d .

In the one dimensional case, when x = 1 and A n > 0, we have X x u = 1, so that Z x n (s 1 , s 2 )/E Z x n (s 1 , s 2 ) reduces to Biggins' fundamental martingale of the branching random walk :

u∈Tn e s 2 S x u E [ u∈Tn e s 2 S x u ] , n ≥ 0, (1.24) 
which has been well studied (see [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF], for example), and which plays an essential role in many problems. However, in the multidimensional case, in general the sequence (1.24) is no longer a martingale, nor the sequence

Z x n (s 1 , s 2 ) E Z x n (s 1 , s 2 ) = u∈Tn e s 1 X x u +s 2 S x u E [ u∈Tn e s 1 X x u +s 2 S x u ] , n ≥ 0, for (s 1 , s 2 ) ∈ R d × R.
So an important difficulty arises when we mimic Cramér's change of measure for random walks by use of the Laplace transform of Z x n . However, there is still a natural martingale in the present setting. By the spectral gap property (1.21), it is easy to verify that (see Section 4.4 for more details), for s ∈ (-η 1 , s ∞ ) and x ∈ S, the sequence

W x s,n := u∈Tn e sS x u r s (X x u ) m n κ(s) n r s (x)
, n ≥ 0, constitutes a positive martingale with respect to the natural filtration

F 0 = {∅, Ω} and F n = σ(N u , A ui : i ≥ 1, |u| < n) for n ≥ 1,
as observed by Mentemeier [START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF] in the study of the multivariate smoothing transform. By the martingale convergence theorem, the limit

W x s := lim n→∞ W x s,n
exists in R P-a.s.

It turns out that the martingale (W x s,n ) in the multidimensional case plays the same rule as Biggins' fundamental martingale for one dimensional case, for large deviations.

Just as in the case of Biggins' martingale, it is crucial to know when the limit variable W x s of the fundamental martingale W x s,n is non-degenerate. When the matrices A u are nonnegative and s > 0, Mentemeier [START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF]Proposition 4.4] gave a sufficient condition for W x s to be non-degenerate. In the following we complete his result by considering the Introduction 30 necessary and sufficient conditions, and by treating meanwhile the case s < 0 and the case of invertible matrices. To state the result, we need some notation. For s ∈ (-η 1 , s ∞ ), set Λ * (q s ) = sq s -Λ(s) with q s = Λ (s). Since Λ (s) > 0 and ∂ ∂s Λ * (q s ) = sΛ (s), Λ * (q s ) attaints its minimum at s = 0, so that Λ * (q s ) ≥ Λ * (q 0 ) = -Λ(0) = 0 for all s ∈ (-η 1 , s ∞ ).

Theorem 1.3.7. Assume conditions C5, C6. If

Λ * (q s ) -log m < 0 (1.25)
and

E[max x∈S W x s,1 log + max x∈S W x s,1 ] < ∞, (1.26) 
then for all x ∈ S,

E[W x s ] = 1. (1.27) Conversely, if E[W x s ] > 0 (1.28)
for some x ∈ S, then (1.25) holds, and 

E[min x∈S W x s,1 log + min x∈S W x s,1 ] < ∞. ( 1 
EN log + N < ∞ and E A 1 s log + A 1 < ∞. (1.30)
Then (1.27) holds for all x ∈ S. (1.25) and (1.30) hold ; moreover, when the martingale converges in L 1 for some x ∈ S, then it converges in L 1 for all x ∈ S.

Assume that the random matrice

A 1 = (A 1 (i, j))
When the matrices A u are nonnegative and s > 0, Part (1) has been established by Mentemeier [START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF]Proposition 4.4]. When d = 1, Part (2) is essentially the well-known Kesten-Stigum type theorem for the classical branching random walk on the real line, due to Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] ; see also [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF] for Mandelbrot's cascades and [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF][START_REF] Liu | Sur une équation fonctionnelle et ses applications: une extension du théorème de Kesten-Stigum concernant des processus de branchement[END_REF] for versions which are slightly different to the initial result of Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF]. Now we consider the precise large deviations for Z x n with target functions f and g on the components X x u = G u • x and S x u = log |G u x|. More precisely, we shall study the asymptotic of the large deviations of the following integral :

S×R f (y)g(z -nq s )Z x n (dy, dz) = u∈Tn f (X x u )g(S x u -nq s ). (1.31) 
Our result will be stated under the very general assumption that e -sz g(z), z ∈ R is directly Riemann integrable, see Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], Chapter XI.

Theorem 1.3.9. Assume conditions C5 and C6, and let s ∈ (-η 1 , s ∞ ) be fixed such that Λ * (q s ) -log m < 0 and that

E max x∈S W x 1 (s) log δ+1 + max x∈S W x 1 (s) < ∞ for some δ > 3/2. (1.32)
Then for any continuous function f on S and any measurable function g on R such that z → e -sz g(z) is directly Riemann integrable, we have 

lim n→∞ √ 2πnσ s e nΛ * (qs) m n S×R f (y)g(z -nq s )Z x n (dy, dz) = W x s r s (x)π s f r s R e -
lim n→∞ σ √ 2πn m n S×R f (y)g(z -nγ)Z x n (dy, dz) = W ν(f ) R g(z)dz. When f = 1 and g = 1 [a,b] with -∞ < a < b < ∞, it gives the precise asymptotic of Z x n (S, nγ + [a, b]) as n → ∞.
The following theorem describes the asymptotic size of the number of particles in n-th generation situated in the regions (B, [e nqs , +∞)) for s > 0, and (B, (0, e nqs ])) for s < 0, where B ⊆ S.

Theorem 1.3.11. Assume the conditions of Theorem 1.3.9. Then, for any x ∈ S, any measurable set B ⊆ S with ν(∂B) = 0, we have, P-a.s., for s > 0,

lim n→∞ √ 2πn σ s e nΛ * (qs) Z x n (B, [nq s , +∞)) m n = 1 s W x s r s (x) B 1 r s (y) π s (dy) ,
and for s < 0,

lim n→∞ √ 2πn σ s e nΛ * (qs) Z x n (B, (-∞, nq s ]) m n = 1 s W x s r s (x) B 1 r s (y) π s (dy) .
This theorem is obtained from Theorem 1.3.9 by taking g = 1 [0,+∞) when s > 0, and g = 1 (-∞,0] when s < 0, and by using a smooth approximation of indicator function (see [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF]Lemma 4.1]).

In the one dimensional case (where d = 1), Theorems 1.3.9 and 1.3.11 reduce to the Bahadur-Rao type results of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF]. The large deviation principle was established earlier by Biggins in [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF].

Key ideas of the proofs

The starting point in the proofs of our results is a decomposition formula which permits to express the counting measure as the sum of conditionally independent random variables, using the branching property like in the one dimensional case for which we may refer to [START_REF] Asmussen | Branching random walks. II[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF]. However, there is much to do to arrive to the conclusions in the multidimensional case, due to the appearance of products of random matrices. In particular, for the proof of Theorem 1.3.6 about the central limit theorem and Theorem 1.3.9 about the precise large deviation with target functions, we use respectively the central limit theorem and the recent progress on the spectral gap theory and precise large deviations for products of random matrices. Another step forward in the proof of Theorem 1.3.9 concerns the extension of Biggins' martingale to the case of branching products of random matrices, for which we prove a criterion for the non-degeneracy of the limit of the fundamental martingale (see Theorem 1.3.7) which completes a result of Mentemeier [START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF] obtained in the context of the multivariate smoothing transform, and extends the Kesten-Stigum type theorem of Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] on the classical branching random walk.

Berry-Esseen bound and Cramér moderate deviation expasion for a branching random walk with products of random matrices

This subsection is to present our main results about the Berry-Esseen bound and Cramér moderate deviation expansion on Z x n defined in (1.7), for a branching random walk with products of random matrices. We will use the assumptions on products of random matrices introduced in the subsection 1.3.3.

Statement of main results

Set

J = {s ∈ (-η 1 , η 1 ) : Λ * (q s ) -log m < 0},
which is an open interval containing 0. We assume the following moment condition slightly stronger than (1.26) :

C8. There are constants γ 0 > 1 and 0 < η 2 < η 1 2 with [-η 2 , η 2 ] ⊂ J such that E max x∈S W x 1 (s) γ 0 < ∞ ∀ s ∈ [-η 2 , η 2 ].
It is clear that conditions C5-C8 (together with the hypothesis P(N = 0) = 0 that we assume always), imply that for all x ∈ S, W x (s) > 0 a.s. and E[W x (s)] = 1 ; in particular (when s = 0), W > 0 a.s. and E[W ] = 1.

For β > 0 sufficiently small, we introduce the Banach space B β = {f ∈ C(S) : f β < +∞}, where

f β := f ∞ + |f | β , Introduction 34 with f ∞ := sup x∈S |f (x)|, |f | β := sup x,y∈S,x =y |f (x) -f (y)| d β (x, y) .
Our first result is the Berry-Esseen bound for the counting measure Z x n :

Theorem 1.3.12. Assume conditions C5-C8. Then, for any x ∈ S, ϕ ∈ B β and n ≥ 1, we have, a.s.,

sup y∈R 1 m n u∈Tn ϕ(X x u )1 S x u -nγ σ √ n ≤y -W ν(ϕ)Φ(y) ≤ M √ n , (1.33)
where M is a finite and positive random variable.

This is a Berry-Esseen type bound for the counting measure Z x n with suitable norming because the sum in (1.33) is an integral with respect to Z x n :

u∈Tn ϕ(X x u )1 S x u -nγ σ √ n ≤y = S×R ϕ(z 1 )1 z 2 -nγ σ √ n ≤y Z n (dz 1 , dz 2 ).
Denote γ k = Λ k (0), k ≥ 1, where Λ = log κ defined in (1.21). We write for the Cramér series associated to Λ (see [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF]) : 

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
x ∈ S, ϕ ∈ B β , 0 ≤ y = o( √ n), as n → ∞, a.s., u∈Tn ϕ(X x u )1 {S x u -nγ≥ √ nσy} m n W [1 -Φ(y)] = e y 3 √ n ζ( y √ n ) ν(ϕ) + O y + 1 √ n ,
and

u∈Tn ϕ(X x u )1 {S x u -nγ≤- √ nσy} m n W Φ(-y) = e -y 3 √ n ζ(-y √ n ) ν(ϕ) + O y + 1 √ n .
An important step in the proof of the moderate deviation expansion is to establish a Berry-Esseen bound for the changed measure Z x s,n defined by for measurable sets B 1 ⊂ S d-1 and B 2 ⊂ R,

Z x s,n (B 1 , B 2 ) = B 1 ×B 2 e sz 2 r s (z 1 ) [mκ(s)] n r s (x) Z x n (dz 1 , dz 2 ) = u∈Tn e sS x u r s (X x u ) [mκ(s)] n r s (x) 1 {X x u ∈B 1 ,S x u ∈B 2 } .
Our third result is a Berry-Esseen bound for the changed measure Z x s,n : 

Theorem
e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n ≤y -W x (s)π s (ϕ)Φ(y) ≤ M √ n , (1.35)
where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Z x s,n because, similar to the case of Theorem 1.3.12, the sum in (1.35) is an integral with respect to Z x s,n :

u∈Tn e sS x u r s (X x u )ϕ(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n ≤y = S×R e sz 2 r s (z 1 )ϕ(z 1 ) [mκ(s)] n r s (x) 1 z 2 -nΛ (s) σs √ n ≤y Z x s,n (dz 1 , dz 2 ).

Key ideas of the proofs

An important step in the proof of Theorems 1.3.12 and 1.3.13 is to establish a Berry-Esseen bound for the Cramér type changed measure Z x s,n . This will be done in Theorem 1.3.14. Theorem 1.3.12 will be obtained from Theorem 1.3.14 by taking s = 0, and Theorem 1.3.13 will be established by using Theorem 1.3.14 and by adapting the techniques from Petrov [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF]. We would like to give some ideas on in the proof of Theorem 1.3.14. As in [START_REF] Bui | Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk[END_REF] where the one dimensional case is considered, we need to study the asymptotic of the characteristic function of the changed measure Z x s,n . Inspired by the approach in [START_REF] Bui | Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk[END_REF], we would like to express the characteristic function of Z x s,n in terms of a martingale and a quantity that can be controlled by the theory of products of random matrices. However, in contrast to the one dimensional case, we cannot obtain directly an expression of the Introduction 36 characteristic function in terms of a martingale. Fortunately, using the spectral gap theory for products of random matrices established in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] and recently developed in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], we have been able to define a new martingale which is similar to the fundamental martingale and which can be used for a suitable approximation of the characteristic function of Z x s,n . We conclude by proving the uniform convergence and analyticity with respect to a complex parameter of the new martingale, and by using the asymptotic properties of the eigenvalue of the pertubed transfer operator related to the products of random matrices.

Chapter 2

Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk

We consider a supercritical branching random walk where each particle gives birth to a random number of particles of the next generation, which move on the real line, according to a fixed law. Let Z n be the counting measure which counts the number of particles of nth generation situated in a given region. Under suitable conditions, we establish a Berry-Esseen bound and a Cramér type moderate deviation expansion for Z n with suitable norming.

Introduction

A branching random walk is a system of particles, in which each particle gives birth to new particles of the next generation, whose children move on R. The particles behave independently; the number of children and their displacements are governed by the same probability law for all particles. Important research topics on the model include the study of the asymptotic properties of the counting measure Z n which counts the number of particles of generation n situated in a Borel set (see e.g. [START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Asmussen | Branching random walks. II[END_REF][START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF][START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF][START_REF] Chen | On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements[END_REF]), the study of the fundamental martingale, the norming problem, and the properties of the limit variable (see e.g. [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF][START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Liu | Sur une équation fonctionnelle et ses applications: une extension du théorème de Kesten-Stigum concernant des processus de branchement[END_REF][START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Iksanov | Stable-like fluctuations of Biggins' martingales[END_REF][START_REF] Liang | Regular variation of fixed points of the smoothing transform[END_REF]), and the positions of the extreme particles (which constitute the boundary of the support of the counting measure Z n (see e.g. [START_REF] Hu | Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees[END_REF][START_REF] Hu | How big is the minimum of a branching random walk?[END_REF][START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF][START_REF] Buraczewski | Large deviation estimates for branching random walks[END_REF]), etc. The study of this model is very interesting especially due to a large number of applications and its close relation with other important models in applied probability settings, such as multiplicative cascades, fractals, perpetuities, branching Brownian motion, the quick sort algorithm and infinite particle systems. For close relations to Mandelbrot's cascades, see e.g. [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF]; for relations to other important models, see e.g. the recent books [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes, Probability and its Applications[END_REF] and many references therein. In this paper, we consider the asymptotic properties of the counting measure Z n as n → ∞, Chapter 2 -Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk 38 by establishing the Berry -Esseen bound and Cramér's moderate deviation expansion for a suitable norming of Z n . The study of asymptotic properties of Z n is interesting because it gives a good description of the configuration of the system at time n.

The branching random walk on the real line can be defined precisely as follows. The process begins with one initial particle denoted by the null sequence ∅, situated at the origin S ∅ = 0. It gives birth to N children denoted by ∅i = i, with displacements L i , i = 1, • • • , N . In general, each particle of generation n, denoted by a sequence u = u 1 • • • u n of length n, situated at S u ∈ R, gives birth to N u particles of the next generation, denoted by ui, which move on the real line with displacements L ui so that their positions are

S ui = S u + L ui , i = 1, • • • , N u . All the random variables (N u , L u1 , L u2 , • • • ), indexed by all finite sequences u ∈ U := ∪ ∞ n=0 (N *
) n (by convention (N * ) 0 = {∅}), are independent and identically distributed, defined on some probability space (Ω, F , P), with values in

N × R × R × • • • .
For n ≥ 0, let T n be the set of particles of n-th generation. Consider the counting measure

Z n (A) = u∈Tn 1 {Su∈A} , A ⊂ R,
which counts the number of particles of n-th generation situated in A.

Throughout this paper we assume that

m := EN = E[Z 1 (R)] ∈ (1, ∞),
so that the Galton-Watson process formed by the generation sizes survives with positive probability, and

F (A) = E[Z 1 (A)], A ⊂ R,
is a finite measure on R with mass m. Let F be the probability measure on R defined by

F (A) = F (A) m , A ⊂ R.
Denote its mean and variance by m 0 = xF (dx) and σ 2 0 = (x -m 0 ) 2 F (dx).

(2.1)

Introduction

We will assume that E( N i=1 L 2 i ) < ∞, so that m 0 and σ 2 0 are finite, with

m 0 = 1 m E N i=1 L i and σ 2 0 = 1 m E N i=1 L 2 i -m 2 0 .
A central limit theorem for the special case where (N u ) u∈U and (L u ) u∈U are two independent families of independent and identically distributed (i.i.d.) random variables was conjectured by Harris [START_REF] Harris | The theory of branching processes[END_REF]. His conjecture states that under suitable conditions we have, for any x ∈ R,

1 m n Z n (-∞, xσ 0 √ n + nm 0 ] n→∞ -→ W Φ(x) (2.2)
in probability, where Φ(x) is the normal distribution function and W is the a.s. limit of the fundamental martingale Zn(R) m n of the Galton-Watson process (Z n (R)). This conjecture has first been solved by Stam [START_REF] Stam | On a conjecture by Harris[END_REF], then improved by Asmussen and Kaplan [START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Asmussen | Branching random walks. II[END_REF] to L 2 -convergence and almost sure (a.s.) convergence. The general case has been considered by Klebaner [60] and Biggins [START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF].

In this paper we will study the Berry -Esseen bound about the rate of convergence in (2.2), and the associated Cramér's moderate deviation expansion.

The rate of convergence in (2.2) has been studied in several papers. Révész [START_REF] Révész | Random walks of infinitely many particles[END_REF] considered the special case where the displacements follow the same Gaussian law and conjectured the exact convergence rate; his conjecture was solved by Chen [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF]. Gao and Liu [START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF] improved and extended Chen's result to the general non-lattice case while the lattice case has been considered by Grübel and Kabluchko [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]. All the above mentioned results are about the point-wise convergence without uniformity in x. In this paper, our first objective is to find a uniform bound for the rate of convergence in (2.2) of type Berry-Esseen: we will prove that, under suitable conditions, a.s. for n ≥ 1,

sup x∈R 1 m n Z n (-∞, xσ 0 √ n + nm 0 ] -W Φ(x) ≤ M √ n , ( 2.3) 
where M is a positive and finite random variable (see Theorem 2.2.1).

The problem of large deviations for the counting measure Z n (•) has been considered by Biggins: he established in [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF] a large deviation principle, which was subsequently improved in [START_REF] Biggins | Growth rates in the branching random walk[END_REF] to a Bahadur-Rao large deviation asymptotic. Our second objective in this paper is to establish a Cramér type moderate deviation expansion for Z n (see Theorem 2.2.2): we will prove that a.s. for n → ∞ and

x ∈ [0, o( √ n)], Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O x + 1 √ n , ( 2.4) 
where t → L (t) is the Cramér series (see (2.11)). Here we use the usual notation b n = O(a n ) to mean that the sequence (b n /a n ) is bounded. (We mention that as (2.4) holds a.s., the bound in O x+1 √ n may be random.) Let us explain briefly the key ideas in the proofs. To prove the Berry-Esseen bound (2.3), we use Esseen's smoothing inequality ([75, Theorem V.2.2.]). The key point in this proof is the formula of the characteristic function of

1 m n Z n (-∞, xσ 0 √ n + nm 0 ] , which can be interpreted as W n ( it σ 0 √ n )f n (t), t ∈ R, where (W n (λ)
) is Biggins' martingale with complexed valued parameter λ for the branching random walk (see [START_REF] Biggins | Uniform convergence of martingales in the one-dimensional branching random walk[END_REF][START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]), and f n (t) is the characteristic function of the n-fold convolution of F . Using the results of Biggins [START_REF] Biggins | Uniform convergence of martingales in the one-dimensional branching random walk[END_REF][START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], Grübel and Kabluchko [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF] about the uniform convergence of W n (λ), together with the approach of Petrov [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF] for the proof of the Berry-Esseen bound for sums of i.i.d. random variables, we are able to establish (2.3). The Berry-Esseen bound (2.3) is then extended to the changed measure of type Cramér, Z θ n (A) = A e θt Z n (dt), A ⊂ R, θ ∈ R. This is an important step in establishing the moderate deviation expansion (2.4). Our approach in proving (2.4) is very different from the method of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF] on the Bahadur-Rao large deviation asymptotic; instead, it is inspired by the ideas of the proof of Cramér's moderate deviation expansion on sums of i.i.d. random variables (see [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF]), and the arguments in [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF] for the proof of the local limit theorem with large deviations for Z n .

The main results, Theorems 2. 

Notation and results

We will use the following standard assumptions.

H1. N > 0 a.s. with m = EN ∈ (1, ∞), and E N i=1 L 2 i < ∞.
H2. F is non-degenerate, i.e. it is not concentrated on a single point.

The first condition in H1 implies that the underlying Galton -Watson process is supercritical; the second condition in H1, together with condition H2, implies that the mean

Notation and results

m 0 and the variance σ 2 0 defined by (2.1) are finite with σ 0 > 0. The Laplace transform of F will be denoted by

m(λ) = R e λt F (dt) = E N i=1 e λL i , λ ∈ C.
(2.5)

Denote by int(A) the interior of the set A. Set

D = int{θ ∈ R : m(θ) < ∞}. (2.6)
Throughout, we assume that

H3. D is non-empty.
Denote by Re(λ) the real part of λ ∈ C. An important role in the proof of Berry-Esseen bound and moderate deviation expansion is played by the martingale of Biggins with complex parameter:

W n (λ) = 1 m(λ) n R e λt Z n (dt) = u∈Tn e λSu m(λ) n , n ≥ 0, Re(λ) ∈ D. When λ = 0, W n := W n (0) = Zn(R) m n
is the fundamental martingale of the Galton -Watson process (Z n (R)), whose a.s. limit is denoted by W . The famous Kesten-Stigum theorem states that W is non degenerate if and only if EN log + N < ∞ (see [START_REF] Athreya | Branching processes, Die Grundlehren der mathematischen Wissenschaften[END_REF]), where log + x = max{0, log x} denotes the positive part of log x. By the martingale convergence theorem for non-negative martingales, we have for all θ ∈ D,

W n (θ) n→∞ → W (θ), a.s.
Notice that when N > 0 a.s. we have W n (θ) > 0 a.s. for all n ≥ 0 and θ ∈ D. Biggins [13, Theorem A] gave a necessary and sufficient condition for the non-degeneracy of W (θ): 

EW (θ) > 0 if and only if E[W 1 (θ) log + W 1 (θ)] < ∞ and θ ∈ (θ -, θ + ), (2.7) 
θ -= inf θ ∈ D : θm (θ) m(θ) < log m(θ) , θ + = sup θ ∈ D : θm (θ) m(θ) < log m(θ) .
Moreover, when H1 and (2.7) hold,

W (θ) > 0 a.s. and EW (θ) = 1. (2.8)
We see that 0 ∈ (θ -, θ + ), so that this interval is non-empty. The endpoints of the interval D and the quantities θ -, θ + are allowed to be infinite. We will need the following moment condition which is slightly stronger than (2.7).

H4. There are γ > 1 and

K 0 > 0 with (-K 0 , K 0 ) ⊂ (θ -, θ + ) such that EW γ 1 (θ) < ∞ ∀θ ∈ (-K 0 , K 0 ).
By the argument of the proof of [18, Theorem 2], we know that under hypothesis H4, for every compact subset

C of V := {λ = θ + iη : θ ∈ (-K 0 , K 0 ), η ∈ R}, a.s. sup λ∈C |W n (λ) -W (λ)| n→∞ -→ 0 and W (λ) is analytic in C.
(2.9)

Our first result gives the Berry-Esseen bound for Z n :

Theorem 2.2.1. Assume conditions H1 -H4. Then, a.s. for all n ≥ 1,

sup x∈R Z n (-∞, xσ 0 √ n + nm 0 ] m n -W Φ(x) ≤ M √ n ,
where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion for Z n , we need more notation. Consider the measure

F θ (dx) = e θx m(θ) F (dx), θ ∈ D.
(2.10)
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We see that F θ is a distribution function with finite mean m θ and variance σ 2 θ , given by

m θ = m (θ) m(θ) , σ 2 θ = m (θ) m(θ) - m (θ) m(θ) 2 ;
moreover, σ θ > 0 when F is non-degenerate. Consider the change of measure of type Cramér for Z n : for θ ∈ D,

Z θ n (dx) = e θx Z n (dx),
namely,

Z θ n (A) = u∈Tn e θSu 1 {Su∈A} , A ⊂ R .
Let X be a random variable with distribution F := F m , and

Λ(θ) := log Ee θX = log m(θ) -log m be its cumulant generating function. Then Λ(θ) is analytic on D, with Λ (θ) = m θ and Λ (θ) = σ 2 θ .
Denote by γ k := Λ (k) (0) the cumulant of order k of the random variable X. We shall use the Cramér series (see [75, Theorem VIII.2.2]): 

L (t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ
≤ x = o( √ n), as n → ∞, a.s. Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O x + 1 √ n , (2.12) and Z n (-∞, -xσ 0 √ n + nm 0 ) m n W Φ(-x) = e -x 3 √ n L (-x √ n ) 1 + O x + 1 √ n . (2.13)
As a by-product in the proof of Theorem 2.2.2, we obtain a Berry -Esseen bound for the changed measure Z θ n with uniformity in θ. 

sup x∈R Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n -W (θ)Φ(x) ≤ M √ n ,
where M is a positive and finite random variable.

Proof of Theorems 2.2.1 and 2.2.3

We first recall some known results in the form of two lemmas which will be used for the proof of Theorems 2. Lemma 2.3.1. Let X be a real random variable with distribution G. Suppose that V ar(X) > 0 and that there exist strictly positive constants H, c such that

| log Ee θX | ≤ c for all θ ∈ (-H, H).
Let X θ be a real random variable with distribution G θ defined by

G θ (dx) = e θx G(dx) Ee θX , θ ∈ (-H, H).
Then there exist strictly positive constants

H 1 , c 1 , c 2 with H 1 < H, such that for all θ ∈ (-H 1 , H 1 ), V ar(X θ ) ≥ c 1 and E|X θ -EX θ | 3 ≤ c 2 .
We see that under H2 and H3, the distribution G = F satisfies the conditions of this lemma. Indeed, if X is a random variable with distribution F , then by condition H2 about the non-degeneracy of F, we have V ar(X) > 0. By condition H3, the set D defined by (2.6) is an open interval containing 0. Notice that log Ee θX = log m(θ) m < ∞ for all θ ∈ D. Hence there exist constants

H, c > 0 such that | log Ee θX | ≤ c for all θ ∈ (-H, H).
The second lemma is about the exponential convergence rate of W n (θ), see [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]Lemma 3.3]. In fact in [START_REF] Grübel | Edgeworth expansions for profiles of lattice branching random walks[END_REF]Lemma 3.3] the result is only given for the lattice case, but the proof therein remains valid for the non-lattice case.

Lemma 2.3.2. Assume conditions H1-H4.

There exist two constants 0 < K < K 0 and c ∈ (0, 1) such that a.s. for all n ≥ 0,

sup θ∈[-K,K] |W n (θ) -W (θ)| ≤ M 1 c n ,
where M 1 is a positive and finite random variable.

Notice that Theorem 2.2.1 follows from Theorem 2.2.3 with θ = 0, by the fact that m(0) = m and W (0) = W . So we only proceed to prove Theorem 2.2.3.

Proof of Theorem 2.2.3. From Lemma 2.3.2, to prove Theorem 2.2.3, it is enough to show that there is a constant 0 < K < K 0 such that sup θ∈[-K,K] sup x∈R Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n -W n (θ)Φ(x) ≤ M √ n ,
where M is a positive and finite random variable. Consider the random measure

ν θ n (A) = Z θ n σ θ √ nA + nm θ m(θ) n , A ⊂ R,
with the usual notation aA

+ b = {ax + b : x ∈ A}. Its distribution function is ν θ n (x) = Z θ n (-∞, xσ θ √ n + nm θ ] m(θ) n , x ∈ R.
The characteristic function of the random measure ν θ n is

ψ θ n (t) = R e itx ν θ n (dx) = 1 m(θ) n u∈Tn exp θ + it σ θ √ n S u - it nm θ σ θ √ n = W n θ + it σ θ √ n f θ n (t), t ∈ R, (2.14) 
where

f θ n (t) = 1 m(θ) n m θ + it σ θ √ n n e - it nm θ σ θ √ n . Denote by F * n θ the n-fold convolution of F θ . It is not difficult to see that f θ n (t) = R e it(x-nm θ ) σ θ √ n F * n θ (dx),
which is the characteristic function of Sn-nm θ σ θ √ n , where S n is the sum of independent random variables {X i } n i=1 with the same law F θ .

By Esseen's smoothing inequality (see [75, Theorem V.2.2]), we get for all T > 0, a.s.

sup x∈R ν θ n (x) -W n (θ)Φ(x) ≤ 1 π T -T W n θ + it σ θ √ n f θ n (t) -W n (θ)e -t 2 /2 t dt + W n (θ) c T , (2.15)
where c is a deterministic positive constant. From Lemma 2.3.1, there exist strictly positive constants

K, c 1 , c 2 with K < min{H 1 , K 0 } such that for all |θ| ≤ K σ 2 θ ≥ c 1 and E|X -m θ | 3 ≤ c 2 .
(2.16)

Take T = aσ θ √ n with a = inf θ∈[-K,K] σ 2 θ 4E|X-m θ | 3 ≥ c 1 c 2 > 0.
For 0 < ε < a, we split the integral on the right-hand side of (2.15) into two parts |t| < εσ θ √ n and

εσ θ √ n ≤ |t| ≤ aσ θ √ n to get sup θ∈[-K,K] sup x∈R ν θ n (x) -W n (θ)Φ(x) ≤ 1 π (I 1 + I 2 ) + c a √ n sup θ∈[-K,K] W n (θ) σ θ ,
where

I 1 = sup θ∈[-K,K] |t|<εσ θ √ n W n θ + it σ θ √ n f θ n (t) -W n (θ)e -t 2 /2 t dt, I 2 = sup θ∈[-K,K] εσ θ √ n≤|t|≤aσ θ √ n W n θ + it σ θ √ n f θ n (t) -W n (θ)e -t 2 /2 t dt.
In the following, M i denotes a positive and finite random variable. By Lemma 2.3.2 and the lower bound (2.16

) of σ θ , sup θ∈[-K,K] Wn(θ) σ θ
≤ M 2 a.s. Hence, it remains to show that a.s.,

I 1 ≤ M 3 √ n and I 2 ≤ M 4 √ n .

Proof of Theorems 2.2.1 and 2.2.3

For I 1 , we see that

I 1 ≤ sup θ∈[-K,K] sup |t| σ θ √ n ≤ε W n θ + it σ θ √ n |t|<εσ θ √ n |f θ n (t) -e -t 2 /2 | |t| dt + sup θ∈[-K,K] |t|<εσ θ √ n W n θ + it σ θ √ n -W n (θ) |t| e -t 2 /2 dt.
(2.17)

By the uniform convergence (2.9) of W n (•), we have (2.19) and the fact that R |t| 2 e -t 2 /3 dt < ∞, we see that the first term in (2.17) is bounded by

sup θ∈[-K,K] sup |t| σ θ √ n ≤ε W n θ + it σ θ √ n ≤ M 5 . (2.18) Recall that t → f θ n (t) is the characteristic function of Sn-nm θ σ θ √ n . Then by [75, Lemma V.2.1], for |t| ≤ σ 3 θ √ n 4E|X -m θ | 3 , we have |f θ n (t) -e -t 2 /2 | |t| ≤ E|X -m θ | 3 σ 3 θ √ n t 2 e -t 2 /3 ≤ c 2 c 1 √ n t 2 e -t 2 /3 . (2.19) Therefore (2.19) holds for |t| ≤ εσ θ √ n since εσ θ √ n ≤ σ 3 θ √ n 4E|X -m θ | 3 . From (2.18),
M 6 √ n . Now we consider the second term in (2.17). Since R e -t 2 /2 dt = √ 2π, we need only to show that sup θ∈[-K,K] sup |t| σ θ √ n ≤ε 1 |t| W n θ + it σ θ √ n -W n (θ) ≤ M 7 √ n . (2.20) Notice that W n (λ) is a.s. analytic in the strip Re(λ) ∈ (-K 0 , K 0 ). Let 0 < K 1 < K 0 . By the mean value theorem, when θ ∈ [-K 1 , K 1 ] and |t| σ θ √ n ≤ ε, we have W n θ + it σ θ √ n -W n (θ) ≤ |t| σ θ √ n max η∈[-ε,ε] |W n (θ + iη)| (2.

21)
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W n (λ) = 1 2πi |z|=K 1 W n (z) (z -λ) 2 dz.
By (2.9), a.s. for all n ≥ 1 and all

z ∈ C with |z| ≤ K 1 , |W n (z)| ≤ M 8 . When |λ| ≤ K 1 /2 and |z| = K 1 , |z -λ| ≥ K 1 -K 1 /2 = K 1 /2, so that | Wn(z) (z-λ) 2 | ≤ 4M 8 K 2 1
. Therefore for all n ≥ 1, a.s.

max |λ|≤K 1 /2 |W n (λ)| ≤ 4M 8 K 1 .
Therefore from (2.21) and (2.16), we see that (2.20) holds when K < K 1 /4 and ε < K 1 /4. This concludes that the second term in (2.17) is bounded by M 9 √ n . Therefore from (2.17) we get

I 1 ≤ M 10 √ n .
For I 2 , using the constraint in the integral of I 2 , we have

1 |t| ≤ 1 εσ θ √ n , so that I 2 ≤ sup θ∈[-K,K] 1 εσ θ √ n ε≤ |t| σ θ √ n ≤a W n θ + it σ θ √ n f θ n (t) dt + sup θ∈[-K,K] W n (θ) εσ θ √ n ε≤ |t| σ θ √ n ≤a e -t 2 /2 dt.
It is shown in the proof of [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]Lemma 5] that as n → ∞,

sup θ∈[-K,K] √ n ε≤η≤a W n θ + iη f θ n (σ θ √ nη) dη → 0 a.s.,
which can be rewritten as

sup θ∈[-K,K] 1 σ θ ε≤ |t| σ θ √ n ≤a W n θ + it σ θ √ n f θ n (t) dt → 0 a.s. Therefore, sup θ∈[-K,K] 1 εσ θ √ n ε≤ |t| σ θ √ n ≤a W n θ + it σ θ √ n f θ n (t) dt ≤ M 11 √ n a.s.
This, together with sup θ∈[-K,K]

Wn(θ) σ θ ≤ M 12 , implies that I 2 ≤ M 13 √ n . Thus the proof of 2.4. Proof of Theorem 2.2.2
Theorem 2.2.3 is completed.

Proof of Theorem 2.2.2

In this section we prove Theorem 2.2.2, the Cramér type moderate deviation expansion for Z n .

Proof of Theorem 2.2.2. We will only prove (2.12), as the proof of (2.13) is similar.

For x ∈ [0, 1], Theorem 2.12 is a direct consequence of Theorem 2.2.1, as we will see in the following. For n ≥ 1,

Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)]e x 3 √ n L ( x √ n ) -1 = 1 W [1 -Φ(x)]e x 3 √ n L ( x √ n ) Z n (R) m n - Z n (-∞, xσ 0 √ n + nm 0 ) m n -W (1 -Φ(x))e x 3 √ n L ( x √ n ) . (2.22) Since sup x∈[0,1] | x 3 √ n L ( x √ n )| → 0, there exists n 0 large enough such that for all x ∈ [0, 1] and n ≥ n 0 , e x 3 √ n L ( x √ n ) ≥ 1/2. Using this and the fact that 1 -Φ(x) ≥ c := 1 -Φ(1) for all x ∈ [0, 1], from (2.22) we get for all n ≥ n 0 , Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)]e x 3 √ n L ( x √ n ) -1 ≤ 2 cW Z n (R) m n -W + 2 cW - Z n (-∞, xσ 0 √ n + nm 0 ) m n + W Φ(x) + 2 cW W (1 -Φ(x)) 1 -e x 3 √ n L ( x √ n ) . (2.23)
In the last display, by Theorem 2.2.1, when n → ∞, the two first terms are O 1 √ n . We will show below that the third term is also O 1 √ n . In fact, using the inequality

|1 -e t | ≤ |t|e t for t ∈ R and the fact that sup x∈[0,1] |L ( x √ n )| is bounded for n ≥ n 0 , we 50 obtain for x ∈ [0, 1], as n → ∞, 1 -e x 3 √ n L ( x √ n ) ≤ x 3 √ n L ( x √ n ) e x 3 √ n L ( x √ n ) = O 1 √ n .
This implies that the third term in (2.23) is O 1 √ n . From (2.23) and the above estimations, we see that for x ∈ [0, 1], as n → ∞,

Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)]e x 3 √ n L ( x √ n ) -1 = O 1 √ n , which implies Z n (xσ 0 √ n + nm 0 , +∞) m n W [1 -Φ(x)] = e x 3 √ n L ( x √ n ) 1 + O 1 √ n .
This ends the proof of (2.12) in the case where x ∈ [0, 1].

We now deal with the case 1

< x = o( √ n). For u ∈ (N * ) n , set V u = S u -nm θ σ θ √ n .
Recalling that Λ(θ) = log Ee θX = log m(θ) m and Λ (θ) = m θ , we have

I : = 1 m n Z n (xσ 0 √ n + nm 0 , +∞) = 1 m n u∈Tn 1 Su>xσ 0 √ n+nm 0 = e -n[θΛ (θ)-Λ(θ)] u∈Tn e -θσ θ √ nVu • e θSu m(θ) n 1 Vu> σ 0 x σ θ + (m 0 -m θ ) √ n σ θ .
(2.24)

Because Λ(θ) is analytic on D with Λ(0) = 0, it has the Taylor expansion

Λ(θ) = ∞ k=1 γ k k! θ k , where γ k = Λ (k) (0), θ ∈ D, (2.25) 
which implies that

Λ (θ) -Λ (0) = ∞ k=2 γ k (k -1)! θ k-1 . (2.26) 51 2.4. Proof of Theorem 2.2.2
Consider the equation 

√ n(m θ -m 0 ) = σ 0 x, namely Λ (θ) -Λ (0) = σ 0 x √ n . ( 2 
σ 0 t = ∞ k=2 γ k (k -1)! θ k-1 .
(2.28)

Since γ 2 = σ 2 0 > 0, the equation (2.28) has the unique solution given by

θ = t γ 2 1/2 - γ 3 2γ 2 2 t 2 - γ 4 γ 2 -3γ 2 3 6γ 7/2 2 t 3 + . . . . (2.29)
Observe that from (2.25) and (2.26), for any θ ∈ D,

θΛ (θ) -Λ(θ) = ∞ k=1 γ k (k -1)! θ k - ∞ k=1 γ k k! θ k = ∞ k=2 k -1 k! γ k θ k .
Choosing θ to be the unique real root of the equation (2.28), which is given by (2.29), we obtain (see [75, Theorem VIII.2.2] for details)

θΛ (θ) -Λ(θ) = t 2 2 -t 3 L (t) = x 2 2n - x 3 n 3/2 L x √ n , ( 2.30) 
where L (t) is the Cramér series defined in (2.11), which converges for |t| small enough. Substituting (2.27) into (2.24) and using (2.30), we get

I = e -x 2 2 + x 3 √ n L x √ n u∈Tn e -θσ θ √ nVu e θSu m(θ) n 1 {Vu>0} = e -x 2 2 + x 3 √ n L x √ n ∞ 0 e -θσ θ √ ny Z θ n (dy), (2.31) 
where Z θ n is the finite measure on R defined by

Z θ n (A) = u∈Tn e θSu m(θ) n 1 {Vu∈A} , A ⊂ R, whose mass satisfies EZ θ n (R) = 1. From t = x √ n and x = o( √ n), it follows that t → 0
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as n → ∞. By the inverse function theorem for analytic functions, the series on the right-hand side of (2.29) is absolutely convergent for |t| small enough. Moreover, from (2.29), we have θ → 0 + as n → ∞. Hence, for sufficiently large n 0 and all n ≥ n 0 , we have |θ| ≤ K, where K is defined as in Theorem 2.2.3. Therefore, denoting

l n,θ (y) = Z θ n ((-∞, y]) -W (θ)Φ(y), y ∈ R, from Theorem 2.2.3 we get for all n ≥ n 0 , sup y∈R |l n,θ (y)| ≤ M √ n , (2.32)
where M is a positive and finite random variable independent of n and θ. Notice that

∞ 0 e -θσ θ √ ny Z θ n (dy) = ∞ 0 e -θσ θ √ ny dl n,θ (y) + W (θ) √ 2π ∞ 0 e -θσ θ √ ny-y 2 2 dy =: I 1 + W (θ)I 2 . (2.

33)

Estimate of I 1 . Using the integration by parts and the bound (2.32), we get that for

n ≥ n 0 , |I 1 | ≤ |l n,θ (0)| + θσ θ √ n ∞ 0 e -θσ θ √ ny |l n,θ (y)|dy ≤ 2M √ n . (2.34)
Estimate of I 2 . The integral I 2 appears in the proof of Cramér's moderate deviation expansion theorem for sums of i.i.d. random variables (see [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF]Theorem VIII.2.2]), where the following results have been proved:

(i) there exist some positive constants C 1 , C 2 such that for all θ ∈ [-K, K] and all n large enough,

C 1 ≤ θσ θ √ nI 2 ≤ C 2 ;
(ii) the integral I 2 admits the following asymptotic expansion :

I 2 = e x 2 2 [1 -Φ(x)] 1 + O x √ n . (2.35)
By the definition of σ θ , the mapping θ → σ θ is strictly positive and continuous on [-K, K]. Hence, there exist positive constants C 3 , C 4 such that for all θ ∈ [-K, K], 

C 3 ≤ θ √ nI 2 ≤ C 4 . ( 2 
M 3 ≤ θ √ nW (θ)I 2 ≤ M 4 .
(2.37)

We now come back to (2.33), and let θ be defined by (2.29). Recall that for n ≥ n 0 , |θ| ≤ K. From (2.33), (2.37) and (2.34), we have, as n → ∞,

∞ 0 e -θσ θ √ ny Z θ n (dy) = W (θ)I 2 1 + √ nI 1 √ nW (θ)I 2 = W (θ)I 2 1 + O(θ) . (2.38)
According to the analyticity of W (θ) on [-K, K] and using the mean value theorem one see that

|W (θ) -W | = |W (θ) -W (0)| ≤ M 5 θ. Since θ = O x √ n by (2.29), it follows from (2.38) and (2.35) that ∞ 0 e -θσ θ √ ny Z θ n (dy) = (W + O(θ))I 2 (1 + O(θ)) = W e x 2 2 [1 -Φ(x)] 1 + O x √ n . (2.39)
Combining this with (2.31) yields

I = W e x 3 √ n L x √ n [1 -Φ(x)] 1 + O( x √ n ) ,
which concludes the proof of (2.12).

Chapter 3 Asymptotic Expansions in central and local limit theorems for products of random matrices

Let (A n ) n≥1 be a sequence of independent and identically distributed random

d × d real matrices. Set G n = A n . . . A 1 , X x n = G n x |G n x| and S x n := log |G n x|.
We consider asymptotic properties of the Markov chain (X x n , S x n ). For invertible matrices, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established a central limit theorem and a local limit theorem on (X x n , S x n ) with x a starting point on the unit sphere in R d . In this paper, motivated by some applications in branching random walks, we improve and extend his theorems in the sense that: 1) we prove that the central limit theorem holds uniformly in x, and give an asymptotic expansion in the local limit theorem with a continuous function f acting on X x n and a directly Riemann integrable function h acting on S x n ; 2) we extend the results to the case of nonnegative matrices. Our approach is mainly based on the spectral gap theory recently developed for products of random matrices, and smoothing techniques for the approximation of functions.

Introduction

Let µ be a probability measure on the set of d × d matrices M (d, R) (d ≥ 1), and let (A n ) n≥1 be a sequence of independent and identically distributed random matrices with law µ, defined on some probability space (Ω, F, P). We are interested in the asymptotic behavior of the random walk G n x, where

G n = A n . . . A 1
is the product of the random matrices A i , x is a starting point on the unit sphere

S d-1 = {x ∈ R d : |x| = 1}, with | • | an arbitrary norm on R d . Notice that G n x is completely 3.1. Introduction
determined by its log norm and its projection on the unit sphere, denoted respectively by

S x n := log |G n x| and X x n = G n • x := G n x |G n x| .
We will use the convention that G 0 x = x, and introduce conditions such that G n x = 0. Many authors have contributed to the study of asymptotic properties of S x n . For example, central limit theorems have been established by Benoist and Quint [START_REF] Benoist | Central limit theorem for linear groups[END_REF] for invertible matrices, and by Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] for nonnegative matrices.

While studying branching random walks in R d governed by products of random matrices, we need some asymptotic properties as those given in a central limit theorem and a local limit theorem on the couple (X x n , S x n ), but we find that the known results on this topic are not sharp enough for our purposes. We thus focus our study on the Markov chain (X x n , S x n ) for establishing finer results. The applications in branching random walks will be considered in a forth coming paper [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF].

For invertible matrices, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] established a central limit theorem for (X x n , S x n ) with x a given point in S d-1 , and a local limit theorem for (X x n , S x n ) with target functions f and h acting on X x n and S x n respectively, which are supposed to be continuous and of compact support. Such kind of limit theorems have also been established by Hennion and Hervé [START_REF] Hennion | Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness[END_REF] in a more general setting by considering (X n , S n ) instead of (X x n , S x n ), where (X n ) is a general Markov chain, S n = n i=1 ξ(X i ) with ξ a measurable and real valued function. Very recently, in parallel to the present work, a Berry-Essen type theorem on the rate of convergence in the central limit theorem has been established for (X x n , S x n ) in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for both invertible and nonnegative matrices.

In this paper, our first objective is to improve the central limit theorem of Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] for invertible matrices with a uniform convergence in x (see Theorem 3.2.1), and deepen his local limit theorem by giving an asymptotic expansion under the weaker condition that the target functions f and h are respectively continuous and directly Riemann integrable (see Theorem 3.2.2). Our second objective is to prove that the results also hold for nonnegative matrices.

Our approach is mainly based on the spectral gap theory recently developed for the norm cocycle by Guivarc'h and Le Page [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for invertible matrices, and by Buraczewski, Damek, Guivarc'h and Mentemeier (see [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]) for nonnegative matrices. Smoothing techniques are also used for the approximation of functions: in the proof of Theorem 3.2.1, we use a smooth approximation of the indicator function of a Borel set (see Lemma Chapter 3 -Asymptotic Expansions in central and local limit theorems for products of random matrices 56 3.4.1), while in the proof of Theorem 3.2.2, we use a suitable approximation of a directly Riemann integrable function with the techniques developed in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF].

The paper is organized as follows. In Section 3.2, we fix some notation, introduce our assumptions on the branching products of random matrices and state the main results. In Section 3.3, we recall some results on spectral theory for products of random matrices which will be used in proofs of main results. These proofs are given in Sections 3.4 and 3.5.

Main results

Notation and preliminaries

We first fix some notation. We denote by c or C a constant whose value may change from line to line. For a set B, we use the symbols 1 B , B, B o and ∂B = B \ B o to denote respectively its indicator function, its closure, interior and boundary. For t ∈ R, we write

φ(t) = 1 √ 2π e -y 2 /2 , Φ(t) = t -∞ φ(u)du, and φ σ (t) = 1 σ √ 2π e -t 2 /(2σ 2 )
. For a measure ν and a measurable function f we denote ν(f ) = f dν. For two functions f and g, we write f (t) = o(g(t)) or f (t) = O(g(t)) (t → 0) when lim t→0 f (t)/g(t) = 0 or f (t)/g(t) is bounded for |t| small enough, respectively. Denote by L 1 the class of complexed valued measurable and Lebesgue integrable functions on R; for f ∈ L 1 , denote its L 1 norm by

f L 1 = R |f (x)|dx.
Let M (d, R) be equipped with the operator norm a = sup x∈S d-1 |ax| for a ∈ M (d, R). Denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by the support of µ. Let us recall some definitions in matrix theory. A matrix a is said to be proximal if it has an algebraic simple dominant eigenvalue. Denote by M + the set of matrices with nonnegative entries. A matrix a ∈ M + is said to be allowable if every row and every column has a positive entry.

For invertible matrices, we will use the strong irreducibility and proximality conditions.

M1. (i) (Strong irreducibility) There is no finite union

W = n i=1 W i of subspaces 0 = W i R d which is Γ µ -invariant (in the sense that Γ µ W = W).
(ii) (Proximality) Γ µ contains at least one proximal matrix.

Notice that when d = 1, the strong irreducibility and proximality conditions are always satisfied. 57
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For nonnegative matrices, we will need the allowability, positivity and non-arithmeticity conditions.

M2. (i) (Allowability) Every a ∈ Γ µ is allowable.

(ii) (Positivity) Γ µ contains at least one matrix belonging to M o + .

We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function

ϑ : S d-1 + → R such that for all a ∈ Γ µ and all x ∈ V (Γ µ ), exp{it log |ax| -iθ + i(ϑ(a • x) -ϑ(x))} = 1,
where S d-1

+ = {x ≥ 0 : |x| = 1}
is the intersection of the unit sphere with the positive quadrant. Notice when d = 1, we have S d-1 + = {1}, and the above arithmetic condition reduces to the following more usual form: log a is almost surely concentrated on an arithmetic progression a 0 + a 2 N for some a 0 , a 2 ≥ 0.

M3. (Non-arithmeticity) The measure µ is non-arithmetic.

It is known that when d ≥ 2, condition M1 implies M3 (see [START_REF] Guivarc | Semigroup actions on tori and stationary measures on projective spaces[END_REF]Proposition 4.6]). For both invertible matrices and nonnegative matrices, we will need a moment condition. for the projective action of a matrix a on x ∈ S d-1 when ax = 0. Then ι(a) > 0 for both invertible matrices and allowable nonnegative matrices.

M4.

There is α ∈ (0, 1) such that

EN (A 1 ) α < ∞.
For invertible matrices, this condition is equivalent to the following two-sided exponential moment condition which is usually used in the literature: there is

α 1 > 0 such that EN (A 1 ) α 1 < ∞, where N (A 1 ) = max{ A 1 , A -1 1 }.
We will consider the action of invertible matrices on the projective space P d-1 which is obtained from S d-1 by identifying x and -x, and the action of nonnegative matrices on S d-1

+ . When convenient we identify x ∈ P d-1 with one of its representants in S d-1 . To unify the exposition, we use the symbol S to denote P d-1 for invertible matrices, and + for nonnegative matrices. The space S will be equipped with the metric d, which is the angular distance (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) for invertible matrices, and the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) for nonnegative matrices. Moreover, S is a separable metric space with Borel-σ algebra. For any starting point x ∈ S, as mentioned in the introduction, G n x is completely described by (X x n , S x n ). With the above conditions, X x n is well defined and the sequence (

X x n , S x n ) is a Markov chain because X x n = A n • X x n-1 and S x n = log |A n X x n-1 | + S x n-1 .
For invertible matrices, it was proved in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF]Theorem 2.6] that if condition M1 holds, then the Markov chain X x n has a unique µ-stationary measure, which is supported on

V (Γ µ ) := {v a ∈ P d-1 : a ∈ Γ µ , a is proximal},
where v a denotes the eigenvector with norm |v a | = 1 associated to the dominant eigenvalue of the proximal matrix a.

For nonnegative matrices, it was shown in [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]Lemma 4.3] that condition M2 ensures the existence and uniqueness of the invariant measure for the Markov chain (X x n ) supported on

V (Γ µ ) := {v a ∈ S d-1 + : a ∈ Γ µ , a ∈ M o + }.
In both cases, we write ν for the unique invariant measure of (X x n ).

Central limit theorems have been established in the literature. For invertible matrices, under condition M1 and the two-sided exponential moment condition, Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] 

proved that 1 √ n (S x n -nγ) → N (0, σ 2 ) in law, (3.1) 
where γ = inf n≥1 2 is the asymptotic variance which is positive and independent of x. For nonnegative matrices, under condition M2 and a second moment condition, Hennion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] proved that (3.1) holds for some σ ≥ 0; he also gave a condition of tightness of the sequence (G n ) n≥0 to ensure that σ > 0. As a by-product of our approch, we will show that σ > 0 under the non-arithmeticity condition M3 (see Proposition 3.3.3). 

1 n E log A n • • • A 1 is the Lyapunov exponent, and σ 2 = lim n→∞ 1 n E(S x n - nγ)

Main results

We state first a central limit theorem for the couple (X x n , S x n ) with uniform convergence in x ∈ S. 

For any continuous function f on S, we have

lim n→∞ sup (x,t)∈S×R E f (X x n )1 S x n -nγ σ √ n ≤t -ν(f )Φ (t) = 0. (3.2)
2. For any measurable set B ⊂ S with ν(∂B) = 0, we have

lim n→∞ sup (x,t)∈S×R P X x n ∈ B, S x n -nγ σ √ n ≤ t -ν(B)Φ (t) = 0. (3.3) 
For invertible matrices, a point-wise version (by considering a fixed x ∈ S instead of sup x∈S ) has been established by Le Page in [63, Theorem 4]. For nonnegative matrices, the asymptotic for the Markov chain (X x n , S x n ) is new even for a fixed x. The uniformity in x ∈ S is new for both invertible matrices and nonnegative matrices. Theorem 3.2.1 will be deduced form a result on the convergence rate in (3.2) which has been established in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for the case when f is Hölder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for products of random matrices. Theorem 3.2.2. Assume the conditions of Theorem 3.2.1.

For any continuous function f on S and any directly Riemann integrable function

h on R, we have as n → ∞, sup (x,y)∈S×R |σ √ nE [f (X x n )h(y + S x n -nγ)] - ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz| → 0, (3.4) 
where

H x (u) = 1 - b(x) σ 2 √ n u + m 3 6σ 6 √ n (3σ 2 u -u 3 ),
with m 3 and b(x) defined in Proposition 3.3.3. 

|σ √ nE [1 B (X x n )h(y + S x n -nγ)] - ν(B) R h(z)φ y -z σ √ n H x y -z √ n dz| → 0. (3.5) When y = 0, f = 1 and h = 1 [a,b] , the integral E [f (X x n )h(y + S x n -nγ)] reduces to the local probability P(S x n ∈ nγ + [a, b]
), which is the usual object studied in local limit theorems.

The expansions (3.4) and (3.5) are new for both invertible matrices and nonnegative matrices. The first expansion implies the local limit theorem established in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 6] for invertible matrices, which states that (3.4) holds when the polynomial H x (•) is replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 3.2.1 follows from Theorem VII.2.7 of Petrov [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF], while expansion (3.4) in Theorem 3.2.2 was proved by Feller (see [START_REF] Feller | An introduction to probability theory and its applications[END_REF]Theorem XVI.4.1]) under the same non-arithmetic condition on µ and when h = 1 [a,b] is the indicator function of an interval. Breuillard (see [START_REF] Breuillard | Distributions diophantiennes et théorème limite local sur R d[END_REF]Theorem 3.2]) proved an expansion like (3.4) but for any finite order, when µ is strongly non-arithmetic (in the sense that its characteristic function μ(t) = e itx µ(dx) satisfies Cramér's condition lim sup |t|→∞ |μ(t)| < 1) with finite moments of order high enough and when h is integrable and regular enough (he assumed in particular that h has continuous and integrable derivatives h (k) for 0 ≤ k ≤ K with K ≥ 2 large enough). Compared with the result of Breuillard, the novelity in Theorem 3.2.2 is that we assume the non-arithmetic condition instead of the strongly arithmetic condition, and we use the direct Riemann integrability of h instead of the smoothness condition on h.

Spectral gap property

In this section we recall some spectral gap properties studied in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] which will be used for the proofs of main results.

For z ∈ C, define the operator P z on the set C(S) of continuous functions on S by

P z f (x) = M |ax| z f (a • x)µ(da), for all x ∈ S.

Spectral gap property

For f ∈ C(S) and β > 0, we introduce the norms

f ∞ := sup x∈S |f (x)|; |f | β := sup x,y∈S |f (x) -f (y)| d β (x, y) ; f β := f ∞ + |f | β .
Consider the Banach space B β := {f ∈ C(S) : f β < +∞}. Denote by L(B β , B β ) the set of all bounded linear operators from B β to B β equipped with the operator norm

P B β →B β := sup f =0 P f β f β , ∀P ∈ L(B β , B β ).
The following result describes the quasi-compactness of P 0 . It can be found in [63, Proposition 4] for invertible matrices and in [28, Proposition 4.2] for nonnegative matrices. For P ∈ L(B β , B β ) and n ∈ N, denote by P n the n-fold iteration of P ; by convention P 0 is the identity operator. Proposition 3.3.1. Assume the conditions of Theorem 3.2.1. Let β > 0 be small enough. Then P 0 ∈ L(B β , B β ), and there is an operator L ∈ L(B β , B β ) whose spectral radius is strictly less than 1, such that for all n ∈ N,

P n 0 = Π 0 + L n ,
where Π 0 is a rank-one projection satisfying

Π 0 B β = {f ∈ B β : P 0 f = f } and Π 0 f (x) = ν(f ) for all f ∈ B β and x ∈ S.
For simplicity, in our proofs we will use a slightly different family of operators (R t ) t∈R defined by

R t f (x) := e -itγ P it f (x) = E[e it(S x 1 -γ) f (X x 1 )], for f ∈ C(S), x ∈ S.
By the cocycle property log |a 2 a 1 x| = log |a 2 (a 1 • x)| + log |a 1 x| and an induction, we have

R n t f (x) = E[e it(S x n -nγ) f (X x n )], n ≥ 1.
We collect in the following two propositions some results from [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] that we will use. Although these results are stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] only for d ≥ 2, they remain valid for d = 1. The first proposition concerns the perturbation theory.

Proposition 3.3.2. Assume the conditions of Theorem 3.2.1.
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1. There exists a real number δ > 0 such that for t ∈ [-δ, δ] we have:

(a) For all f ∈ B β and n ≥ 1

R n t f = λ n (t)Π t f + N n t f, with Π t N t = N t Π t = 0. (b) The mappings λ : [-δ, δ] → R, Π : [-δ, δ] → L(B β , B β ), N : [-δ, δ] → L(B β , B β ) are C ∞ . (c) For k 0 ∈ N, there exist ρ = ρ(k 0 ) ∈ (0, 1) and c = c(k 0 ) > 0 such that for all n ≥ 1, max 0≤k≤k 0 sup |t|<δ d k dt k N n t B β →B β ≤ cρ n . 2. Let K ⊂ R \ {0} be compact. Then for each f ∈ B β , there is ρ 1 ∈ (0, 1) such that for all n ≥ 1, sup t∈K R n t f ∞ ≤ ρ n 1 f ∞ .
The second proposition concerns the Taylor expansion of λ and the positivity of the asymptotic variance. 1. The Taylor expansion of λ at 0 of order 3 is given by

λ(t) = 1 - σ 2 2 t 2 -i m 3 6 t 3 + o(t 3 ),
where

m 3 = lim n→∞ 1 n V (Γµ) E(S x n -nγ) 3 dν(x).
2. For each x ∈ S, the limit b(x) = lim n→∞ E(S x n -nγ) exists in R, the function x → b(x) is in B β , and the derivative Π 0 of Π t at 0, satisfies

Π 0 f (x) = i ν(f )b(x), for f ∈ B β , x ∈ S.
3. If µ is non-arithmetic, then σ > 0.

Proof of Theorem 3.2.1

Proof of Theorem 3.2.1, part [START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF]. From [83, Theorem 2.1], for f ∈ B β , we have

lim n→∞ sup (x,t)∈S×R E f (X x n )1 S x n -nγ σ √ n ≤t -ν(f )Φ (t) = 0. (3.6)
Combining this with the fact that the Banach space B β is dense in C(S) with respect to the norm . ∞ gives the conclusion of part (1).

To prove part (2), we first introduce a smooth approximation of an indicator function: 2. Let A ⊂ S be a non-empty measurable set with ν(∂A) = 0, and let ε > 0. Then there exist two continuous functions ϕ -, ϕ

+ : S → [0, 1] such that ϕ -≤ 1 A ≤ ϕ + and ν{x ∈ S : ϕ + = ϕ -} < ε.
Proof. For a non-empty set D ⊂ S and x ∈ S, define dist(x, D) = inf{d(x, z) : z ∈ D}.

(1) Since A, B are closed and disjoint we have dist(x, B) + dist(x, A) = 0 for all x ∈ S. The function defined below satisfies the desired properties:

ϕ(x) := dist(x, B) dist(x, B) + dist(x, A) , x ∈ S.
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(2) Since ν is a Borel measure on S, we have

ν(A) = inf{ν(U ) : A ⊆ U, U open}, ν(A o ) = sup{ν(K) : K ⊆ A o , Kcompact}.
Hence for each ε > 0, there exists a compact

K ⊂ A o such that ν(K) > ν(A o ) -ε 2 .
Since K and (A o ) c are disjoint closed sets, by part (1), there exists a continuous function

ϕ -: S → [0, 1] such that ϕ -(x) = 1 for x ∈ K and ϕ -(x) = 0 for x ∈ (A o ) c .

Similarly, there exists an open set

U ⊃ A such that ν(U ) < ν(A) + ε 2 .
Again by part (1) applied to the disjoint closed sets A and U c , we see that there is a continuous function

ϕ + : S → [0, 1] such that ϕ + (x) = 1 for x ∈ A and ϕ + (x) = 0 for x ∈ U c . Therefore, K ∪ U c ⊂ {x ∈ S : ϕ + (x) = ϕ -(x)}. Consequently, {x ∈ S : ϕ + (x) = ϕ -(x)} ⊂ K c ∩ U = U \ K. Since U \ K = (U \ A) ∪ (A \ A o ) ∪ (A o \ K), it follows that ν{x ∈ S : ϕ + (x) = ϕ -(x)} ≤ ν(U \ A) + ν(A \ A o ) + ν(A o \ K) < ε,
where we have used the hypothesis that ν(A \ A o ) = ν(∂A) = 0. From the construction of ϕ -and ϕ + , it is obvious that ϕ

-≤ 1 B ≤ ϕ + .
Proof of Theorem 3.2.1, part [START_REF] Asmussen | Branching random walks. I[END_REF]. Let ε > 0 be given. By Lemma 3.4.1, there exists two continuous functions ϕ + and ϕ -: S → [0, 1] such that

ϕ -≤ 1 B ≤ ϕ + and ν{x ∈ S : ϕ + = ϕ -} < ε.
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Proof of Theorem 3.2.2

By the triangular inequality in R, we have sup

(x,t)∈S×R E 1 B (X x n )1 S x n -nγ σ √ n ≤t -ν(B)Φ (t) ≤ sup (x,t)∈S×R E (1 B -ϕ + )(X x n )1 S x n -nγ σ √ n ≤t + sup (x,t)∈S×R E ϕ + (X x n )1 S x n -nγ σ √ n ≤t -ν(ϕ + )Φ (t) + sup (x,t)∈S×R ν(ϕ + -1 B )Φ (t) . (3.8)
By part (1), the second term in (3.8) is less than ε for n enough large. The third term is also less than ε by the property (3.7) since

ν(ϕ + -1 B ) ≤ ν(ϕ + -ϕ -) ≤ ν{x ∈ S : ϕ + = ϕ -} < ε. (3.9)
The first term can be estimated as follows:

sup

(x,t)∈S×R E (1 B -ϕ + )(X x n )1 S x n -nγ σ √ n ≤t ≤ sup (x,t)∈S×R E (ϕ + -ϕ -)(X x n )1 S x n -nγ σ √ n ≤t ≤ sup (x,t)∈S×R E ϕ + (X x n )1 S x n -nγ σ √ n ≤t -ν(ϕ + )Φ (t) + sup (x,t)∈S×R E ϕ -(X x n )1 S x n -nγ σ √ n ≤t -ν(ϕ -)Φ (t) + sup (x,t)∈S×R ν(ϕ + -ϕ -)Φ (t) .
In the last display, the first two terms are less than ε for n large enough, again by part (1); the third one is also less then ε by (3.9).

Proof of Theorem 3.2.2

Proof of Theorem 3.2.2, part [START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF]. We assume that both f and h are nonnegative; we can do this by considering the positive and negative parts. We will proceed the proof in 4 steps.
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Step 1. We first establish (3.4) for f ∈ B β and h ∈ L 1 whose Fourier transform

h(u) = R e -itu h(t)dt, ∀u ∈ R,
has a compact support supp( ĥ) ⊂ [-k, k]. By the inversion formula of Fourier transform and Fubini's theorem, for any x ∈ S and y ∈ R,

E [f (X x n )h(y + S x n -nγ)] = E f (X x n ) 2π R e iu(y+S x n -nγ) h(u)du = 1 2π R e iuy h(u)E e iu(S x n -nγ) f (X x n ) du = 1 2π R e iuy h(u)R n u f (x)du.
By the change of variables u = t √ n and using Proposition 3.3.2, we have:

I := √ nE [f (X x n )h(y + S x n -nγ)] = 1 2π R e ity √ n h t √ n R n t √ n f (x)dt = I 1 + I 2 + I 3 ,
where

I 1 = 1 2π |t|≤δ 1 √ n e ity √ n h t √ n λ n t √ n Π t √ n f (x)dt, I 2 = 1 2π |t|≤δ 1 √ n e ity √ n h t √ n N n t √ n f (x)dt, I 3 = 1 2π |t|>δ 1 √ n e ity √ n h t √ n R n t √ n f (x)dt,
with δ 1 ∈ (0, δ] a parameter which will be fixed later. We will prove that I 1 gives the main term of the desired expansion, while I 2 and I 3 tend to 0.

Estimation of I 1 . By Proposition 3.3.3 and an elementary calculation, we obtain, as By Taylor's expansion of the operator Π t on a neighborhood of 0, we have

t √ n → 0, λ n t √ n = e -σ 2 t 2 2 exp - im 3 t 3 6 √ n + o t 3 √ n . ( 3 
Π t √ n f (x) = Π 0 f (x) + t √ n Π 0 f (x) + O t 2 n , ( 3.11) 
where Π 0 and Π 0 are bounded operators on B β defined in Propositions 3.3.1 and 3.3.3 [START_REF] Asmussen | Branching random walks. I[END_REF].

Notice that Π 0 f (x) = ν(f ) and Π 0 f (x) = iν(f )b(x)
. With (3.10) and (3.11) in mind, we do the composition

λ n t √ n Π t √ n f (x) =λ n t √ n Π t √ n f (x) -ν(f ) - itν(f )b(x) √ n + λ n t √ n -e -σ 2 t 2 2 1 - im 3 t 3 6 √ n ν(f ) + λ n t √ n -e -σ 2 t 2 2 itν(f )b(x) √ n + ν(f )e -σ 2 t 2 2 1 + itb(x) √ n - im 3 t 3 6 √ n . ( 3.12) 
Choosing δ 1 ≤ δ small enough such that when |t|/ √ n ≤ δ 1 , we have

- im 3 t 3 6σ 3 √ n + o t 3 √ n ≤ σ 2 t 2 4 and λ n ( t √ n ) ≤ e -σ 2 t 2 4 . (3.13)
In the definition of I 1 , we substitute

λ n ( t √ n )Π t √ n
f (x) by the decomposition (3.12); this leads to a decomposition of I 1 which we write accordingly as

I 1 = J 1 + J 2 + J 3 + J 4 .
We first estimate the integral J 1 . Using (3.11), (3.13) and the fact that h is bounded, we obtain

|J 1 | ≤ 1 2π sup t∈R | h(t)| |t|≤δ 1 √ n e -σ 2 t 2 4 O t 2 n dt ≤ R e -σ 2 t 2 4 |t|dt • O 1 √ n ≤ C √ n .
To estimate J 2 , we use the following inequality (see inequality XVI(2.8) in [START_REF] Feller | An introduction to probability theory and its applications[END_REF]): for all 

|J 2 | ≤ ν(f ) 2π sup t∈R | h(t)| |t|≤δ 1 √ n e -σ 2 t 2 2 |t| 3 o 1 √ n + t 6 O 1 n e σ 2 t 2 4 dt ≤ R (|t| 3 + |t 5 |)e -σ 2 t 2 4 dt • O 1 √ n ≤ C √ n .
For J 3 , we use again inequality (3.14) and the fact that the mapping b belongs to B β , to conclude that

|J 3 | ≤ |t|≤δ 1 √ n |tν(f )b(x)| √ n e -σ 2 t 2 2 1 -λ n it √ n ≤ ν(f ) b ∞ δ 1 R e -σ 2 t 2 4 - im 3 t 3 6 √ n + o t 3 √ n dt ≤ R e -σ 2 t 2 4 |t| 3 dt • O 1 √ n ≤ C √ n .
Hence, we obtain the following estimate of I 1 :

|I 1 -J 4 | ≤ C √ n . (3.15)
Estimation of I 2 . From Proposition 3.3.2, we know that for |t| ≤ δ 1 √ n there exists a constant c > 0 and ρ ∈ (0, 1) such that

N n it √ n f β ≤ cρ n . Hence, |I 2 | ≤ Cρ n R | h(t)|dt. (3.16)
Estimation of I 3 . From Proposition 3.3.2(2), we have sup Using this together with the condition that supp( h) ⊂ [-k, k], we get

δ 1 √ n≤|t|≤c √ n R n it √ n f ∞ < ρ n 1 f ∞ .
|I 3 | ≤ Cρ n R | h(t)|dt. (3.17)
Collecting the bounds (3.15), (3.16) and (3.17), we have

|I -J 4 | ≤ C 1 √ n + ρ n 1 + ρ n . (3.18)
Set

Q(t) = 1 + it √ n b(x) - im 3 t 3 6 √ n .
It is not difficult to see that

ν(f ) 2π |t|>δ 1 √ n e ity √ n h t √ n e -σ 2 t 2 2 Q(t)dt ≤ C e -σ 2 δ 2 1 n 2 R | h(t)|dt + 1 √ n sup t∈R | h(t)| .
Hence we replace the integral on |t| ≤ δ 1 √ n of J 4 in (3.18) by an integral on R. We get sup (x,y)∈S×R

I - ν(f ) 2π R e ity √ n h t √ n e -σ 2 t 2 2 Q(t)dt n→∞ → 0. Note that φ(σt) = e -σ 2 t 2 2 is the Fourier transform of φ σ (t) = 1 √ 2πσ 2 e -t 2 2σ 2 . Then lim n→∞ sup (x,y)∈S×R I - ν(f ) 2π R e ity √ n h t √ n φ (tσ) Q(t)dt = 0.
But one has for all p ≥ 0, (σt

) p φ(σt) = (-i) p φ (p) σ (t)
where the notation f (p) is the derivative of order p of f , it implies

1 2π R e ity √ n h t √ n φ (tσ) Q(t)dt = √ n R h y + u √ n φ σ (u)H x (u)du,
where

H x (u) is a polynomial such that Q -i d dx φ σ (u) = H x (u)φ σ (u)
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H x (u) = 1 - b(x) σ 2 √ n u + m 3 6σ 6 √ n (3σ 2 u -u 3 ).
Using the change of variables z = y + u √ n, we get

lim n→∞ sup (x,y)∈S×R I -ν(f ) R h(z)φ σ y -z √ n H x y -z √ n dz = 0, or, equivalently, lim n→∞ sup (x,y)∈S×R σI -ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz = 0.
So we have established (3.4) for f ∈ B β and Lebesgue integrable function h whose Fourier transform ĥ has a compact support.

Step 2. We establish (3.4) for f ∈ B β and h ∈ L 1 satisfying h ∈ H ε for all ε ∈ (0, 1 4 ) and

lim ε→0 R h ε (u)du = lim ε→0 R h ε (u)du = R h(u)du, ( 3.19) 
where H ε , h ε and h ε are defined below. For any nonnegative Lebesgue integrable function h defined on R, and for any ε > 0 and

u ∈ R, set B ε (u) = {u ∈ R : |u -u| ≤ ε}, h ε (u) = sup v∈Bε(u) h(v) and h ε (u) = inf v∈Bε(u) h(v).
For any ε > 0, denote by H ε the set of nonnegative Lebesgue integrable functions h such that h ε and h ε are measurable and Lebesgue integrable: Lemma 3.5.1. Let h ∈ L 1 be such that h ∈ H ε for all ε ∈ (0, 1/4). Then we have, for all ε ∈ (0, 1/4) and u ∈ R,

H ε = {h ∈ L 1 : h ≥ 0, h ε
h ε * κ ε 2 (u) - |v|≥ε h ε (u -v)κ ε 2 (v)dv ≤ h(u) ≤ (1 + 4ε)h ε * κ ε 2 (u),
where κ is defined on R by

κ(u) = 1 2π sin u 2 u 2 2
for u ∈ R * , and κ(0) = 1 2π .

Moreover, we need some properties of the kernel κ that we state in the following. The function κ is integrable and its Fourier transform is given by

κ(t) = 1 -|t| for all t ∈ [-1, 1], and κ(t) = 0 otherwise. Note that R κ(u)du = κ(0) = 1 = R κ(t)dt.
For any ε > 0, we define the function κ ε on R by

κ ε (u) = 1 ε κ u ε , u ∈ R. (3.20) 
Its Fourier transform is given by κ ε (t) = κ(εt). Note also that, for any ε > 0, we have

|u|≥ 1 ε κ(u)du ≤ 1 π +∞ 1 ε 4 u 2 du = 4ε π . (3.21)
For simplicity, we denote, for any f ∈ C(S) and h ∈ L 1 ,

I(n, f, h) = σ √ nE [f (X x n )h(y + S x n -nγ)] , (3.22) K(n, f, h) = ν(f ) R h(z)φ y -z σ √ n H x y -z √ n dz. (3.23) Notice that sup x∈S,u∈R |φ( u σ )H x (u)| < ∞. This implies the following uniform bound in x ∈ S, y, z ∈ R, n ≥ 1: φ y -z σ √ n H x y -z √ n ≤ C. (3.24)
From this we see that for f ∈ C(S) and h ∈ L 1 ,

K(n, f, h) ≤ Cν(f ) h L 1 . ( 3 

.25)
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Remark that, for f and h fixed as in the beginning of Step 2, with the notation (3.22) and (3.23), to prove the desired conclusion (3.4), it suffices to establish the following result: for all ε > 0 small enough, when n is large enough, sup

(x,y)∈(S,R) |I(n, f, h) -K(n, f, h)| ≤ ν(f )δ h (ε) + ε, ( 3.26) 
where

δ h (ε) = C h -h 2ε L 1 + h 2ε -h L 1 + C h 2ε L 1 (ε + ε 2 )
→ 0 as ε → 0 (due to (3.19)).

Below we will prove (3.26) by giving upper and lower bounds of

I(n, f, h) -K(n, f, h).
Upper bound of I(n, f, h) -K(n, f, h). By Lemma 3.5.1, we have, for any x ∈ S, n ≥ 1, y ∈ R and ε ∈ (0, 1/4),

I(n, f, h) ≤ (1 + 4ε)I(n, f, h ε * κ ε 2 ).
Since h ε and κ ε 2 are integrable, the function h ε * κ ε 2 is also integrable; its Fourier transform

h ε κ ε 2 has a compact support included in [-1/ε 2 , 1/ε 2 ]
. Consequently, we can use the result proved in Step 1, applied to f and h ε * κ ε 2 , to conclude that for n large enough,

I(n, f, h) ≤ (1 + 4ε)K(n, f, h ε * κ ε 2 ) + ε. (3.27) Notice that for |v| ≤ ε and u ∈ R, we have [u -v -ε, u -v + ε] ⊂ [u -2ε, u + 2ε].
Therefore, by definition,

h ε (u -v) ≥ h 2ε (u) and h ε (u -v) ≤ h 2ε (u). (3.28)
Consequently, for any u ∈ R,

h ε * κ ε 2 (u) ≤ h 2ε (u) |v|≤ε κ ε 2 (v)dv + |v|≥ε h ε (u -v)κ ε 2 (v)dv ≤ h 2ε (u) + |v|≥ε h ε (u -v)κ ε 2 (v)dv.

Proof of Theorem 3.2.2

From this together with the bound (3.24), inequality (3.27) implies

I(n, f, h) ≤ (1 + 4ε)K(n, f, h 2ε ) + (1 + 4ε)Cν(f ) R |v|≥ε h ε (z -v)κ ε 2 (v)dvdz + ε.
For a bound of the first term in the right hand side, we use the decomposition

K(n, f, h 2ε ) = K(n, f, h)+K(n, f, h 2ε -h) and the inequality (3.25) for K(n, f, h 2ε -h) to get K(n, f, h 2ε ) ≤ K(n, f, h) + Cν(f ) h 2ε -h L 1 . Therefore I(n, f, h) ≤ (1 + 4ε) K(n, f, h) + Cν(f ) h 2ε -h L 1 + (1 + 4ε)Cν(f ) R |v|≥ε h ε (z -v)κ ε 2 (v)dvdz + ε.
For a bound of the last integral, we use (3.20) and (3.21), to obtain

R |v|≥ε h ε (z -v)κ ε 2 (v)dvdz ≤ h ε L 1 4ε π .
Using this and the bound of K(n, f, h) in (3.25), from the preceding bound of I(n, f, h) we get for f ∈ B β and h ∈ H ε ,

I(n, f, h) -K(n, f, h) ≤ 4ν(f )ε h L 1 + Cν(f )(1 + 4ε) h 2ε -h L 1 + 4Cν(f )(1 + 4ε)ε π h ε L 1 + ε ≤ Cν(f ) h 2ε -h L 1 + Cν(f )(ε + ε 2 ) h 2ε L 1 + ε. (3.29) Lower bound of I(n, f, h) -K(n, f, h). With the notation g v,ε (u) = h ε (u -v)
and by Lemma 3.5.1, we have:

I(n, f, h) ≥ I(n, f, h ε * κ ε 2 ) - |v|≥ε I(n, f, g v,ε )κ ε 2 (v)dv.
(3.30)

Bound of I(n, f, h ε * κ ε 2 ). The Fourier transform of h ε * κ ε 2 has a compact support included in [-1/ε 2 , 1/ε 2 ].
So by the the result proved in Step 1, for n large enough,

I(n, f, h ε * κ ε 2 ) ≥ K(n, f, h ε * κ ε 2 ) -ε.
(3.31) 

h ε * κ ε 2 (z) ≥ h 2ε (z) |v|≤ε κ ε 2 (v)dv ≥ 1 - 4ε π h 2ε (z).
From this and the bound (3.25) for K(n, f, h 2ε ), the inequality (3.31) implies

I(n, f, h ε * κ ε 2 ) ≥ K(n, f, h 2ε ) - 4ε π Cν(f ) h 2ε L 1 -ε. Using K(n, f, h 2ε ) = K(n, f, h)+K(n, f, h 2ε -h
) and the bound (3.25) for K(n, f, h 2ε -h), we have (3.30). Using (3.29) with h replaced by g v,ε (which lies in H ε ) and (3.25) for K(n, f, g v,ε ), we get

I(n, f, h ε * κ ε 2 ) -K(n, f, h) ≥ -Cν(f ) h -h 2ε L 1 - 4Cν(f )ε π h 2ε L 1 -ε. (3.32) Bound of |v|≥ε I(n, f, g v,ε )κ ε 2 (v)dv in
I(n, f, g v,ε ) ≤ Cν(f ) g v,ε L 1 + Cν(f ) (g v,ε ) 2ε -g v,ε L 1 + Cν(f )(ε + ε 2 ) (g v,ε ) 2ε L 1 + ε.

This implies that

I(n, f, g v,ε ) ≤ Cν(f )(1 + ε + ε 2 ) (g v,ε ) 2ε L 1 + ε. (3.33)
Note that, for any v ∈ R,

(g ε,v ) 2ε (u) = sup w∈[u-2ε,u+2ε] h ε (w -v) ≤ sup w∈[u-2ε,u+2ε] h(w -v) = h 2ε (u -v). So, (g ε,v ) 2ε L 1 ≤ h 2ε L 1
. This together with (3.33) and(3.21) implies that 

|v|≥ε I(n, f, g v,ε )κ ε 2 (v)dv ≤ Cν(f )(1 + ε + ε 2 ) h 2ε L 1 + ε |v|≥ε κ ε 2 (v)dv ≤ Cν(f )(1 + ε + ε 2 ) h 2ε L 1 + ε 4ε π . ( 3 
I(n, f, h) -K(n, f, h) ≥ -Cν(f ) h -h 2ε L 1 + Cν(f ) h 2ε L 1 (ε + ε 2 ) -ε. (3.35)
Combining the upper bound (3.29), the lower bound (3.35) and the condition (3.19), the desired result (3.26) or (3.4) follows for f ∈ B β and h ∈ H ε for all ε ∈ (0, 1 4 ) and h satisfies (3.19).

Step 3. We prove (3.4) for f ∈ B β and h which is nonnegative and directly Riemann integrable. Since h is directly Riemann integrable, M := sup y∈R h(y) < +∞. Let η ∈ (0, 1) and ε ∈ (0, M η).

By a result of approximation in the proof of Theorem 2.2 in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF], there exist two functions h - η,ε and h + η,ε which belong to H ε 1 for all ε 1 ∈ (0, min{1/4, M η, η/3}) small enough, and which satisfy (3.19), together with

h - η,ε ≤ h ≤ h + η,ε and R h + η,ε (t) -h - η,ε (t) dt < 3ε. (3.36) 
The first inequality in (3.36) gives

K(n, f, h + η,ε -h) ≤ K(n, f, h + η,ε -h - η,ε ), so that |I(n, f, h) -K(n, f, h)| ≤ |I(n, f, h) -I(n, f, h + η,ε )| + |I(n, f, h + η,ε ) -K(n, f, h + η,ε )| + |K(n, f, h + η,ε -h - η,ε )|. (3.37)
In the right hand side, as n → ∞, the second term tends to 0 uniformly in x ∈ S and y ∈ R by the result proved in Step 2. The third one is bounded by Cν(f )3ε from the bound (3.25) for K(n, f, h + η,ε -h - η,ε ) and the property (3.36). Therefore, using (3.37) and passing to the limit as n → ∞, we obtain lim sup 

n→∞ sup (x,y)∈S×R |I(n, f, h) -K(n, f, h)| ≤ lim sup n→∞ sup (x,y)∈S×R |I(n, f, h) -I(n, f, h + η,ε )| + Cν(f )3ε. (3.38) Now I(n, f, h) -I(n, f, h + η,ε ) ≤ I(n, f, h + η,ε ) -I(n, f, h - η,ε ) = I(n, f, h + η,ε ) -K(n, f, h + η,ε ) + K(n, f, h + η,ε -h - η,ε ) + K(n, f, h - η,ε ) -I(n, f, h - η,ε ) . ( 3 
|I(n, f, h) -K(n, f, h)| ≤ Cν(f )6ε. (3.41)
Since ε > 0 est arbitrary, this gives (3.4).

Step 4. We establish (3.4) for f ∈ C(S) and h which is directly Riemann integrable. Let ε > 0. From the fact that B β is dense in C(S) with respect to the norm . ∞ , there is a function f ∈ B β such that f -f ∞ < ε. Hence we have 

I(n, f, h) -K(n, f, h) = I(n, f -f , h) + [I(n, f , h) -K(n, f , h)] -K(n, f -f , h). ( 3 
|I(n, f, h) -K(n, f, h)| ≤ lim sup n→∞ sup (x,y)∈S×R I(n, f -f , h) -K(n, f -f , h) ≤ f -f ∞ sup (x,y)∈S×R I(n, 1, h) + K(n, 1, h) , ( 3 
I(n, 1, h) + K(n, 1, h) < ∞.
Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020 

Chapter 4

Central limit theorem and precise large deviations for branching random walks with products of random matrices

We consider a branching random walk where particles give birth to children as a Galton-Watson process, which move in R d with positions determined by the action of independent and identically distributed random matrices on the position of the parent. We are interested in asymptotic properties of the counting measure Z x n which counts the number of particles of generation n situated in a given region, when the process starts with one initial particle located at x. We establish a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao type for Z x n with suitable norming. An integral version of the large deviation result is also established. One of the key points in the proofs is the study of the fundamental martingale related to the spectral gap theory for products of random matrices. As a by-product, we obtain a sufficient and necessary condition for the non-degeneracy of the limit of the fundamental martingale, which extends the Kesten-Stigum type theorem of Biggins.

Introduction

A branching random walk is a system of particles, in which each particle gives birth to new particles of the next generation, whose children move on R or R d , according to some probability law. For early fundamental results on this model, see for example [START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Asmussen | Branching random walks. II[END_REF][START_REF] Biggins | Martingale convergence in the branching random walk[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF][START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF]. In recent years, this topic has attracted the attention of many authors, see for example, [START_REF] Aidekon | The Seneta-Heyde scaling for the branching random walk[END_REF][START_REF] Hu | How big is the minimum of a branching random walk?[END_REF][START_REF] Derrida | Slower deviations of the branching Brownian motion and of branching random walks[END_REF][START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF][START_REF] Damek | Absolute continuity of complex martingales and of solutions to complex smoothing equations[END_REF][START_REF] Chen | On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements[END_REF][START_REF] Iksanov | Stable-like fluctuations of Biggins' martingales[END_REF][START_REF] Liang | Regular variation of fixed points of the smoothing transform[END_REF]. The model is closely related to various applied probability settings, such as Mandelbrot's cascades (cf. e.g. [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF][START_REF] Liu | On generalized multiplicative cascades[END_REF][START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF]), perpetuities (see e.g. [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes, Probability and its Applications[END_REF]) and branching Brownian motion (cf. e.g. [START_REF] Kesten | Branching Brownian motion with absorption[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Berestycki | Critical branching Brownian motion with absorption: particle configurations[END_REF][START_REF] Maillard | 1-stable fluctuations in branching Brownian motion at critical temperature I: The derivative martingale[END_REF]). For extensions to random environments in space and time, see e.g. [START_REF] Greven | Branching random walk in random environment: phase transitions for local and global growth rates[END_REF][START_REF] Comets | On multidimensional branching random walks in random environment[END_REF] and [START_REF] Biggins | Measure change in multitype branching[END_REF][START_REF] Kuhlbusch | On weighted branching processes in random environment[END_REF][START_REF] Liu | Branching random walks in random environment[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF]. For other related works and many references, see e.g. the recent books [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes, Probability and its Applications[END_REF]. In the classical branching random walk, a particle whose parent is at position 4.1. Introduction y, moves to position y + l with independent and identically distributed (i.i.d.) increments l for different particles, so that the moving is a simple random translation. The classical model does not cover the interesting cases occurring in many applications where the movements are determined by linear transformations such as rotations, dilations, shears, reflections, projections etc. In this paper, we deal with the case where the position of a particle is obtained by the action of a matrix A on the position of its parent, where the matrices A's corresponding to different particles are i.i.d. In other words, the positions of particles are obtained by the action of products of random matrices on the position of one initial particle. This permits us to extend significantly the domains of applications of the theory of branching random walks. However, the study of this model becomes much more involved. One of the fundamental problems in the theory of branching random walks is to give a precise description of the configuration of the process at time n. We will consider this problem by giving precise asymptotics of the counting measure Z x n which counts the number of particles of generation n situated in a given region, when the process begins with one initial particle situated at x. More precisely, for the model that we introduce here, we will establish a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao type for Z x n with suitable norming.

To introduce the model we need some notation. Let N = {0, 1, 2, . . .} and N * = {1, 2, . . .}. Set U := ∪ ∞ n=0 (N * ) n , where by convention (N * ) 0 = {∅}. A particle of generation n will be denoted by a sequence

u = u 1 • • • u n = (u 1 , • • • , u n ) ∈ (N *
) n of length n; the initial particle will be denoted by the null sequence ∅. Assume that on a probability space (Ω, F, P) we are given a set of independent identically distributed random variables (N u ) u∈U of the same law p = {p k : k ∈ N}, and a set of independent identically distributed d × d random matrices (A u ) u∈U of the same law µ on the set of d × d matrices M (d, R), where d ≥ 1. The two families (N u ) u∈U and (A u ) u∈U are also assumed to be independent.

A branching random walk with products of random matrices is defined as follows. At time 0, there is one initial particle ∅ of generation 0, with initial position

Y ∅ := x ∈ R d \{0}. At time 1, the initial particle ∅ is replaced by N = N ∅ new particles i = ∅i of generation 1, located at Y i = A i Y ∅ , 1 ≤ i ≤ N . In general, at time n + 1, each particle u = u 1 . . . u n of generation n, located at Y u ∈ R d , is replaced by N u new particles ui of generation n + 1, located at Y ui = A ui Y u , 1 ≤ i ≤ N u .
Namely, the position of the particle ui is obtained from the position Y u of u by the action of the matrix A ui , so that the position Y u of a particle u in generation n ≥ 1 is given by the action of products of random matrices on 

X x u := G u x |G u x| .
Accordingly, we consider the following counting measure of particles of generation n which describes the configuration of the branching random walk at time n: for measurable sets

B ⊂ S d-1 and C ⊂ R, Z x n (B, C) = u∈Tn 1 {X x u ∈B, log |Gux|∈C} , ( 4.2) 
where for a set D, 1 D denotes its indicator function. In particular when B = S d-1 the measure (4.2) reduces to

Z x n (S d-1 , C) = u∈Tn 1 {log |Gux|∈C} . (4.
3)

The measure C → Z x n (S d-1 , C) counts the number of particles of generation n with a given distance to the origin; the distributional function Z x n (S d-1 , (-∞, y]) counts the number of particles of generation n situated in the ball centered at 0 with radius e y . This information may be important for example when we consider a model describing the infection by a certain transmittable disease (an infected individual at time n leads to a random number of infected individuals at time n+1 who move according to random linear transformations The present work aims to establish asymptotic properties of the counting measure Z x n when it is suitably normalized, with |x| = 1 and d ≥ 2. We will consider two cases: when the matrices A u are nonnegative, and when the matrices A u are invertible. Our first result is a central limit theorem for the counting measure Z x n (see Theorem 4.2.1). It states that for any fixed B ⊂ S d-1 and some constants γ, σ defined explicitly, the counting measure

C → Z x n (B, nγ + σ √ nC)
on R with a suitable norming converges to the standard normal law. This result extends the corresponding one of Asmussen and Kaplan [3, Theorem 1] on the one dimensional case, which was first conjectured by Harris [START_REF] Harris | The theory of branching processes[END_REF]. Our second result is a precise large deviation result of Kesten-Stigum type (see Theorem 4.2.6), namely we give an exact asymptotic for Z x n (B, [na, +∞)) for fixed B ⊂ S d-1 and a in a natural range of R. An extension to an integral version of the large deviation result with target functions on the two components X x u and log |G u x| is also established (see Theorem 4.2.4). These results extend the corresponding ones of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF] on the one dimensional case to the multi-dimensional case.

The starting point in the proofs of our results is a decomposition formula which permits to express the counting measure as the sum of conditionally independent random variables, using the branching property like in the one dimensional case for which we may refer to [START_REF] Asmussen | Branching random walks. II[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF]. However, there is much to do to arrive to the conclusions in the multidimensional case, due to the appearance of products of random matrices. In particular, for the proof of Theorem 4.2.1 about the central limit theorem and Theorem 4.2.4 about the precise large deviation with target functions, we use respectively the central limit theorem and the recent progress on the spectral gap theory and precise large deviations for products of random matrices. Another step forward in the proof of Theorem 4.2.4 concerns the Chapter 4 -Central limit theorem and precise large deviations for branching random walks with products of random matrices 82 extension of Biggins' martingale to the case of branching products of random matrices, for which we prove a criterion for the non-degeneracy of the limit of the fundamental martingale (see Theorem 4.2.2) which completes a result of Mentemeier [START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF] obtained in the context of the multivariate smoothing transform, and extends the Kesten-Stigum type theorem of Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF] on the classical branching random walk.

The outline of the paper is as follows. The main results will be stated in Section 4.2. Theorem 4.2.1 on the asymptotic normality of the counting measure is proved in Section 4.3. The necessary and sufficient condition for the non-degeneracy of the limit of the fundamental martingale is given in Theorem 4.2.2 and Corollary 4.2.3, which are proved in Section 4.4. Theorem 4.2.4 on the precise asymptotic of large deviations, which implies Theorem 4.2.6, is established in Section 4.5.

Main results

In this section, we introduce necessary notation and assumptions, and present the main results.

Notation and assumptions on products of random matrices

Note that in our model, along each branch we encounter a product of random matrices. In this section, we introduce some notation and the necessary assumptions on products of random matrices in order to formulate our main results. We shall consider two cases, the case when the matrices are nonnegative and the case when the matrices are invertible. d,R) is said to be proximal if it has an algebraic simple dominant eigenvalue. Denote by M + the set of matrices with nonnegative entries. A nonnegative matrix a ∈ M + is said to be allowable if every row and every column has a strictly positive entry.

We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function
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ϑ : S

d-1 + → R such that ∀a ∈ Γ µ , ∀x ∈ supp ν : exp[it log |ax| -iθ + i(ϑ(a • x) -ϑ(x))] = 1,
where S d-1 + = {x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive quadrant, and ν is the µ-invariant measure (cf. (4.5)). Notice when d = 1, we have S d-1 + = {1}, and the above arithmetic condition reduces to the following more usual form: log a is a.s. concentrated on an arithmetic progression a 0 + a 1 N for some a 0 , a 1 > 0.

We will need the following assumptions on the law µ.

B1.

For invertible matrices: (a) (Strong irreducibility)There is no finite union

W = n i=1 W i of proper subspaces 0 = W i R d which is Γ µ -invariant (in the sense that aW = W for each a ∈ Γ µ ) (b) (Proximality) Γ µ contains at least one proximal matrix.

For nonnegative matrices:

(a) (Allowability) Every a ∈ Γ µ is allowable.

(b) (Positivity) Γ µ contains at least one matrix belonging to int(M + ). (c) (Non-arithmeticity) The measure µ is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a moment condition. For invertible matrices we have ι(a) = a -1 -1 and N (a) = max{ a , a -1 }.
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B2. (Moment condition)

There exists η 0 ∈ (0, 1) such that

E[N (A 1 ) η 0 ] < ∞.
We will consider the action of invertible matrices on the projective space P d-1 which is obtained from S d-1 by identifying x and -x, and the action of nonnegative matrices on S d-1

+ . For convenience, we identify x ∈ P d-1 with one of its representants in S d-1 . To unify the exposition, we use the symbol S to denote P d-1 for invertible matrices, and S d-1 + for nonnegative matrices. The space S will be equipped with the metric d, which is the angular distance (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) for invertible matrices, and the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) for nonnegative matrices. Moreover, S is a separable metric space equipped with Borel σ-field.

Let G n = A n . . . A 2 A 1 be the product of i.i.d. d × d real random matrices A i , defined on the probability space (Ω, F, P), with common law µ. Let x ∈ S be a starting point. As mentioned in the introduction, the random walk G n x is completely determined by its log norm and its projection on S, denoted respectively by

S x n := log |G n x|, X x n := G n • x = G n x |G n x| , n ≥ 0, with the convention that G 0 x = x. Since S x n = log |A n X x n-1 | + S x n-1 and X x n = A n • X x n-1 , the sequence (S x n , X x n ) n≥0 is a Markov chain.
Denote by E the expectation corresponding to P. By the law of large numbers of Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF], under conditions B1 and B2, we have

lim n→∞ 1 n S x n = lim n→∞ 1 n E[S x n ] = γ P-a.s.,
where γ = inf n∈N 1 n E log G n is the upper Lyapunov exponent associated with the product sequence (G n ). Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] and Henion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] showed that

σ 2 = lim n→∞ 1 n E (S x n -nγ) 2 (4.4)
exists and is independent of x for invertible matrices and nonnegative matrices, respectively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]); the µ-stationarity of ν means that µ * ν = ν, that is, for any continuous function ϕ
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on S,

(µ * ν)(ϕ) := S Γµ ϕ(a • x)µ(da)ν(dx) = ν(ϕ). (4.5)
where ν(ϕ) = S ϕ(x)ν(dx). This notation for the integral will be used for any function and any measure. Set

I µ = {s ≥ 0 : E A 1 s < ∞}.
Note that I µ is an interval of R + . Let s ∞ = sup I µ . Define the transfer operator on the set C(S) of continuous functions on S as follows: for any s ∈ (-η 0 , s ∞ ), and f ∈ C(S),

P s f (x) = E[|A 1 x| s f (A 1 • x)], for all x ∈ S. (4.6) 
It is known that under conditions B1, and B2, there exists a small constant 0 < η 1 < η 0 such that for any s ∈ (-η 1 , s ∞ ), there are a unique probability measure ν s and a unique Hölder continuous normalized function r s (under the normalizing condition ν(r s ) = 1) on 

S
Λ(s) = log κ(s)
is finite and analytic on (-η 1 , s ∞ ), and satisfies Λ(0) = 0, Λ (0) = γ, Λ (0) = σ 2 > 0, and Λ (s) > 0 ∀s ∈ (-η 1 , s ∞ ).
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Note that the population size at time n is Z n = Z x n (S, R), which does not depend on the starting point x and forms a Galton-Watson process with Z 0 = 1 and Z 1 = N . Denote by m = EN the expected value of the offspring distribution. Throughout the paper, we shall assume that 1 < m < ∞, which ensures that the branching process (Z n ) is supercritical, so that Z n → ∞ as n → ∞ with positive probability. It is well known that EZ n = m n . Let

W n = Z n m n for n ≥ 0, and W = lim n→∞ W n .
The sequence {W n } is the fundamental martingale for the Galton-Watson process (Z n ); the limit above exists almost surely (a.s.) by the martingale convergence theorem. The famous Kesten-Stigum theorem states that W is non-degenerate if and only if EN log + N < ∞ (see [START_REF] Athreya | Branching processes, Die Grundlehren der mathematischen Wissenschaften[END_REF]), where and through this paper log + x = max{0, log x} denotes the positive part of log x. We will need the following slightly stronger condition.

B3. There exists a constant η > 1 such that

EN log η+1 + N < ∞. (4.8)
We start with a central limit theorem for the normalized counting measure (4.2). For

t ∈ R, let Z x n (B, t) = Z x n B, (-∞, nγ + tσ √ n] = u∈Tn 1 {X x u ∈B, log |Gux|-nγ σ √ n ≤t} .
Theorem 4.2.1. Assume that the law µ of the random matrices satisfies conditions B1 and B2. Assume also that the offspring distribution satisfies condition B3. Then, for any

x ∈ S, any measurable set B ⊆ S with ν(∂B) = 0 and any t ∈ R, we have, as n → ∞,

Z x n (B, t) m n → ν(B)Φ(t)W P-a.s., (4.9) 
where

Φ(t) = 1 √ 2π t -∞ e -x 2 /2
dx is the distribution function of the standard normal law.

For the one dimensional case (where d = 1), the result is due to Asmussen and Kaplan [3, Theorem 1], which was first conjectured by Harris [48, p.75] but with convergence in probability instead of the a.s. convergence in (4.9). Harris' conjecture was first solved
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by Stam [START_REF] Stam | On a conjecture by Harris[END_REF], then improved by Asmussen and Kaplan [START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Asmussen | Branching random walks. II[END_REF] to L 2 -convergence and a.s. convergence. More general cases have been considered by Klebaner [START_REF] Klebaner | Branching random walk in varying environments[END_REF] and Biggins [START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF], who studied respectively the varying environment case and the general branching random walk where the displacements of particles with the same parent may have different laws. The random environment case has been considered by Gao, Liu and Wang [START_REF] Gao | Central limit theorems for a branching random walk with a random environment in time[END_REF]. The exact convergence rate in (4.9) has been considered by Chen [START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF] and Gao and Liu [START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF]. Asymptotic expansions have been obtained in [START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF]. Theorem 4.9 open ways for extending some results in [START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF] to the multi-dimensional case where the moving of particles is determined by products of random matrices.

Our second main result is on the large deviation for the counting measure Z x n . To study the large deviation of the measure Z x n , a natural way would be to consider its Laplace transform defined by, for (s

1 , s 2 ) ∈ R d × R, Z x n (s 1 , s 2 ) = R d ×R e s 1 y 1 +s 2 y 2 Z x n (dy 1 , dy 2 ) = u∈Tn e s 1 X x u +s 2 S x u , ( 4.10) 
where s 1 y 1 is the inner product of vectors s 1 and y 1 in R d .

In the one dimensional case, when x = 1 and A n > 0, we have X x u = 1, so that Z x n (s 1 , s 2 )/E Z x n (s 1 , s 2 ) reduces to Biggins' fundamental martingale of the branching random walk:

u∈Tn e s 2 S x u E [ u∈Tn e s 2 S x u ] , n ≥ 0, (4.11) 
which has been well studied (see [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF], for example), and which plays an essential role in many problems. However, in the multidimensional case, in general the sequence (4.11) is no longer a martingale, nor the sequence

Z x n (s 1 , s 2 ) E Z x n (s 1 , s 2 ) = u∈Tn e s 1 X x u +s 2 S x u E [ u∈Tn e s 1 X x u +s 2 S x u ]
, n ≥ 0, (4.12)

for (s 1 , s 2 ) ∈ R d × R. So an important difficulty arises when we mimic Cramér's change of measure for random walks by use of the Laplace transform of Z x n .

However, there is still a natural martingale in the present setting. By the spectral gap property (4.7), it is easy to verify that (see Section 4.4 for more details), for s ∈ (-η 1 , s ∞ ) Chapter 4 -Central limit theorem and precise large deviations for branching random walks with products of random matrices 88 and x ∈ S, the sequence

W x s,n := u∈Tn e sS x u r s (X x u ) m n κ(s) n r s (x)
, n ≥ 0, (4.13) constitutes a positive martingale with respect to the natural filtration

F 0 = {∅, Ω} and F n = σ(N u , A ui : i ≥ 1, |u| < n) for n ≥ 1,
as observed by Mentemeier [START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF] in the study of the multivariate smoothing transform. By the martingale convergence theorem, the limit

W x s := lim n→∞ W x s,n
exists in R P-a.s.

It turns out that the martingale (W x s,n ) in the multidimensional case plays the same rule as Biggins' fundamental martingale for one dimensional case, for large deviations.

Just as in the case of Biggins' martingale, it is crucial to know when the limit variable W x s of the fundamental martingale W x s,n is non-degenerate. When the matrices A u are nonnegative and s > 0, Mentemeier [72, Proposition 4.4] gave a sufficient condition for W x s to be non-degenerate. In the following we complete his result by considering the necessary and sufficient conditions, and by treating meanwhile the case s < 0 and the case of invertible matrices.

We first establish the following theorem, whose proof is deferred to Section 4.4. To state the result, we need some notation. For s ∈ (-η 1 , s ∞ ), set Λ * (q s ) = sq s -Λ(s) with q s = Λ (s). Since Λ (s) > 0 and ∂ ∂s Λ * (q s ) = sΛ (s), Λ * (q s ) attaints its minimum at s = 0, so that Λ * (q s ) ≥ Λ * (q 0 ) = -Λ(0) = 0 for all s ∈ (-η 1 , s ∞ ).

Theorem 4.2.2. Assume conditions B1, B2. If

Λ * (q s ) -log m < 0 (4.14)
and

E[max x∈S W x s,1 log + max x∈S W x s,1 ] < ∞, (4.15) 
then for all x ∈ S,

E[W x s ] = 1. (4.16)

Main results

Conversely, if

E[W x s ] > 0 (4.17)
for some x ∈ S, then (4.14) holds, and 2) is essentially the well-known Kesten-Stigum type theorem for the classical branching random walk on the real line, due to Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF]; see also [START_REF] Kahane | Sur certaines martingales de Benoit Mandelbrot[END_REF] for Mandelbrot's cascades and [START_REF] Lyons | A simple path to Biggins' martingale convergence for branching random walk[END_REF][START_REF] Liu | Sur une équation fonctionnelle et ses applications: une extension du théorème de Kesten-Stigum concernant des processus de branchement[END_REF] for versions which are slightly different to the initial result of Biggins [START_REF] Biggins | Martingale convergence in the branching random walk[END_REF]. Now we consider the precise large deviations for Z x n with target functions f and g on the components X x u = G u • x and S x u = log |G u x|. More precisely, we shall study the Chapter 4 -Central limit theorem and precise large deviations for branching random walks with products of random matrices 90 asymptotic of the large deviations of the following integral:

E[min x∈S W x s,1 log + min x∈S W x s,1 ] < ∞. ( 4 
S×R f (y)g(z -nq s )Z x n (dy, dz) = u∈Tn f (X x u )g(S x u -nq s ). (4.21)
Our result will be stated under the very general assumption that e -sz g(z), z ∈ R is directly Riemann integrable, see Feller [START_REF] Feller | An introduction to probability theory and its applications[END_REF], Chapter XI.

Theorem 4.2.4. Assume conditions B1 and B2, and let s ∈ (-η 1 , s ∞ ) be fixed such that Λ * (q s ) -log m < 0 and that

E max x∈S W x 1 (s) log δ+1 + max x∈S W x 1 (s) < ∞ for some δ > 3/2. ( 4 

.22)

Then for any continuous function f on S and any measurable function g on R such that z → e -sz g(z) is directly Riemann integrable, we have

lim n→∞ √ 2πnσ s e nΛ * (qs) m n S×R f (y)g(z -nq s )Z x n (dy, dz) = W x s r s (x)π s f r s R e -sz g(z)dz, P-a.s., (4.23) 
where π s f rs = νs(f ) νs(rs) , and σ 2 s = Λ (s).

When s = 0 this result reduces to the following local limit theorem for the counting measure Z x n :

Corollary 4.2.5. Assume conditions B1 and B2. Assume also that (4.22) holds with s = 0. Then

lim n→∞ σ √ 2πn m n S×R f (y)g(z -nγ)Z x n (dy, dz) = W ν(f ) R g(z)dz. When f = 1 and g = 1 [a,b] with -∞ < a < b < ∞, it gives the precise asymptotic of Z x n (S, nγ + [a, b]) as n → ∞.
The following theorem describes the asymptotic size of the number of particles in n-th generation situated in the regions (B, [e nqs , +∞)) for s > 0, and (B, (0, e nqs ])) for s < 0, where B ⊆ S. measurable set B ⊆ S with ν(∂B) = 0, we have, P-a.s., for s > 0,

lim n→∞ √ 2πn σ s e nΛ * (qs) Z x n (B, [nq s , +∞)) m n = 1 s W x s r s (x) B 1 r s (y)
π s (dy) , and for s < 0,

lim n→∞ √ 2πn σ s e nΛ * (qs) Z x n (B, (-∞, nq s ]) m n = 1 s W x s r s (x) B 1 r s (y) π s (dy) .
This theorem is obtained from Theorem 4.2.4 by taking g = 1 [0,+∞) when s > 0, and g = 1 (-∞,0] when s < 0, and by using a smooth approximation of indicator function (see [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF]Lemma 4.1]).

In the one dimensional case (where d = 1), Theorems 4.2.4 and 4.2.6 reduce to the Bahadur-Rao type results of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF]. The large deviation principle was established earlier by Biggins in [START_REF] Biggins | Chernoff's theorem in the branching random walk[END_REF].

Proof of Theorem 4.2.1

This section is devoted to prove Theorem 4.2.1, the central limit theorem on the counting measure Z x n .

Basic decomposition

For all u ∈ U, let T(u) be the shifted tree of T at u associated to the elements {N uv }. It is defined by the following properties: 1)

∅ ∈ T(u), 2) vi ∈ T (u) implies v ∈ T(u) and 3) if v ∈ T (u), then vi ∈ T(u) if and only if 1 ≤ i ≤ N uv . Define T n (u) = {v ∈ T(u) : |v| = n}. Then T = T(∅) and T n = T n (∅).
It follows from the additive property of the branching process that, for k ≤ n, any measurable set B ⊆ S and any Borel set C in R, where

Z x n (B, C) = u∈T k v∈T n-k (u) 1 {X x uv ∈B,S x uv ∈C} = u∈T k Z X x u n-k (B, C -S x u ), ( 4 
A n = 1 m kn u∈T kn W X x u n-kn B, tσ √ n -S x u + kγ σ √ n -k -E kn W X x u n-kn B, tσ √ n -S x u + kγ σ √ n -k , B n = 1 m kn u∈T kn E kn W X x u n-kn B, tσ √ n -S x u + kγ σ √ n -k -ν(B)Φ (t) , C n = (W kn -W ) ν(B)Φ (t) .
The idea is now to choose suitable k n with k n → ∞ such that A n , B n , C n → 0 a.s.

Proof of Theorem 4.2.1

We choose β with 1 η < β < 1 and α > 2 β -1 -1 . For each n, let j = j(n) ∈ N be such that j α/β ≤ n < (j + 1) α/β ; set k n = a j = j α , the integer part of j α . We will prove that with this choice of (k n ), we have A n , B n , C n → 0 a.s. By the decomposition (4.25), this will imply Theorem 4.2.1.

By the convergence of the martingale W n to W , we have clearly C n → 0, P-a.s. It remains to show the following two lemmas. 

Lemma 4.3.1. Under the hypothesis of Theorem 4.2.1, we have

A n n→∞ -→ 0 P-a.s. . ( 4 
Y n,u = W X x u n-kn B, tσ √ n -S x u + kγ σ √ n -k -E kn W X x u n-kn B, tσ √ n -S x u + kγ σ √ n -k .
We see that for any u ∈ T kn ,

|Y n,u | ≤ W X x u n-kn (S, R) + E kn W X x u n-kn (S, R) = W X x u n-kn + 1, (4.29)
where the last equality holds because W

X x u n-kn = W X x u
n-kn (S, R) represents the fundamental martingale of the Galton-Watson process beginning with the particle u ∈ T kn . Let

Y n,u = Y n,u 1 {|Yn,u|<m kn } and A n = 1 m kn u∈T kn Y n,u .
We will use the decomposition

A n = (A n -A n ) + (A n -E kn A n ) + E kn A n ,
and prove that each of the three terms on the right side of this identity tends to zero as n → ∞. We divide the proof into 3 steps.

Step 1. We first prove that

A n -A n a.s -→ n→∞ 0, as a consequence of ∞ n=1 P(A n = A n ) < ∞. (4.30)
In fact, by the Lemma of Borel-Cantelli, (4.30) implies that a.s. A n -A n = 0 when n is large enough. By the definition of Y n,u and the inequality (4.29), we have: Since the law of W X x u n-kn conditioned upon F kn is that of W n-kn , it follows that

P kn (A n = A n ) ≤ u∈T kn P kn (Y n,u = Y n,u ) = u∈T kn P kn (|Y n,u | ≥ m kn ) ≤ u∈T kn P kn (W X x u n-kn + 1 ≥ m kn ).
P kn (A n = A n ) ≤ Z kn P(W n-kn + 1 ≥ m kn ) ≤ W kn m kn P(W * + 1 ≥ m kn ) ≤ W kn E (W * + 1)1 {W * +1≥m kn } ≤ W kn (log m kn ) η E [(W * + 1) log η (W * + 1)] .

Taking expectation and denoting

C = E [(W * + 1) log η (W * + 1)] (which is finite by Lemma 4.3.3), we get P(A n = A n ) ≤ C (log m) η k η n . Since k η n ∼ j αη ∼ n βη and βη > 1, (4.30) is proved.
Step 2. We next prove that

A n -E kn [A n ] a.s -→ n→∞ 0, as a consequence of ∞ n=1 P |A n -E kn [A n ]| > ε < ∞ ∀ε > 0 (4.31)
(by the Lemma of Borel-Cantelli). By Chebyshev's inequality we have

P kn (|A n -E kn [A n ]| > ε) ≤ 1 ε 2 E kn (A n -E kn [A n ]) 2 . (4.32)
By the definition of A n and F kn , and the fact that Y n,u u∈T kn is a sequence of independent random variables under E kn , we have

E kn (A n -E kn [A n ]) 2 = 1 m 2kn E kn u∈T kn (Y n,u -E kn [Y n,u ]) 2 = 1 m 2kn u∈T kn E kn Y 2 n,u -E kn Y n,u 2 . (4.33)
By the definition of Y n,u and Fubini's theorem,

E kn Y 2 n,u = ∞ 0 2xP kn (|Y n,u | > x)dx = 2 ∞ 0 xP kn (|Y n,u |1 {|Yn,u|<m kn } > x)dx = 2E kn ∞ 0 x1 {|Yn,u|1 {|Yn,u|<m kn } >x} dx ≤ 2E kn m kn 0 x1 {|Yn,u|>x} dx = m kn 0 xP kn (|Y n,u | > x)dx.
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P kn (|Y n,u | > x) ≤ P kn (W X x u n-kn + 1 > x) = P(W n-kn + 1 > x) ≤ P(W * + 1 > x).
Therefore,

E kn Y 2 n,u ≤ 2 m kn 0 xP(W * + 1 > x)dx. (4.34)
Using (4.32), (4.33) and (4.34) and then taking expectation, we obtain 

P(|A n -E kn [A n ]| > ε) ≤ 2 ε 2 m kn m kn 0 xP(W * + 1 > x)dx. ( 4 
1 log η x dx ≤ b kn + (m kn -b kn ) (k n log b) η .
From (4.35), (4.36) and (4.37), we obtain where C = E (W * + 1) log η (W * + 1) < ∞ by Lemma 4.3.3. Therefore, Step 3. We finally prove that

P(|A n -E kn [A n ]| > ε) ≤ 1 ε 2 m kn e 2 + 2C b kn + m kn -b kn (k n log b) η ,
∞ n=1 P(|A n -E kn [A n ]| > ε) ≤ e 2 ε 2 ∞ n=1 1 m kn + 2C ε 2 ∞ n=1 b kn m kn + ∞ n=1 m kn -b kn m kn (k n log b) η . (4.38) Since k n ∼ j α ∼ n β ,
E kn [A n ] a.s -→ n→∞ 0, as a consequence of ∞ n=1 P |E kn [A n ]| > ε < ∞, ∀ε > 0 (4.39)
(again by the Lemma of Borel-Cantelli). By Markov's inequality, the fact that 0 =

E kn [A n ] = E kn [A n ] + 1 m kn E kn u∈T kn Y n,u 1 {|Yn,u|≥m kn }
, and the inequality (4.29), we obtain:

P(|E kn [A n ]| > ε) ≤ 1 ε E |E kn [A n ]| = 1 εm kn E E kn u∈T kn (-Y n,u )1 {|Yn,u|≥m kn } } ≤ 1 εm kn E E kn u∈T kn (W X x u n-kn + 1)1 {W X x u n-kn +1≥m kn } = 1 ε E (W n-kn + 1)1 {W n-kn +1≥m kn } .
It follows that 

P |E kn [A n ]| > ε ≤ 1 ε (log m kn ) η E [(W * + 1) log η (W * + 1)] . Therefore, with C = E [(W * + 1) log η (W * + 1)] < ∞ (by Lemma 4.3.3), ∞ n=1 P |E kn [A n ]| > ε ≤ C ε log η m ∞ n=1 1 k η n < ∞ since k η n ∼ j αη ∼
P X x n ∈ B, S x n -nγ σ √ n ≤ t -ν(B)Φ (t) = 0.
Proof of Lemma 4.3.2. We first calculate the conditional expectation in the definition of

B n . Denoting t n := tσ √ n -S x u + k n γ σ √
n -k n and using the branching property, we have

E kn W X x u n-kn (B, t n ) = 1 m kn E kn v∈T n-kn (u) 1 X X x u v ∈B, S X x u v -(n-kn)γ σ √ n-kn ≤tn = P kn X X x u n-kn ∈ B, S X x u n-kn -(n -k n )γ σ √ n -k n ≤ t n .
Therefore, by the definition of B n ,

B n = 1 m kn u∈T kn P kn X X x u n-kn ∈ B, S X x u n-kn -(n -k n )γ σ √ n -k n ≤ t n -ν(B)Φ(t) = 1 m kn u∈T kn P kn X X x u n-kn ∈ B, S X x u n-kn -(n -k n )γ σ √ n -k n ≤ t n -ν(B)Φ(t n ) + ν(B) m kn u∈T kn [Φ (t n ) -Φ(t)] .
Hence

|B n | ≤ W kn D n + ν(B) m kn u∈T kn |Φ (t n ) -Φ(t)| (4.40)
where

D n = sup (x,t)∈S×R P X x n-kn ∈ B, S x n-kn -(n -k n )γ σ √ n -k n ≤ t -ν(B)Φ (t) .
The first term in the right hand side of (4.40) tends to 0 a.s. because, by Lemma 4.3.4, We now prove that the second term in the right hand side of (4.40) also tends to 0 a.s. Remarking that

|Φ(t n ) -Φ(t)| ≤ Φ tσ √ n σ √ n -k n -Φ(t) + Φ tσ √ n σ √ n -k n -Φ(t n ) ≤ Φ tσ √ n σ √ n -k n -Φ(t) + tσ √ n σ √ n -k n -t n (since |Φ(x + h) -Φ(x)| ≤ |h| for any x, h ∈ R), we obtain 1 m kn u∈T kn |Φ (t n ) -Φ(t)| ≤ W kn Φ tσ √ n σ √ n -k n -Φ(t) + 1 m kn u∈T kn |S x u -k n γ| σ √ n -k n . (4.41)
It is clear that the first term in the above display tends to 0 a.s. as n → ∞. So we need only to prove that the second term also tends to 0 a.s. Recall that a j = k n and notice that n -k n ∼ n ∼ k 1/β n = j α/β . So it suffices to show that

M j := 1 m a j u∈Ta j j -α 2β |S x u -a j γ| → 0 P-a.s. as j → +∞. (4.42) Notice that ∞ j=1 E[M j ] = ∞ j=1 j -α 2β E[|S x a j -a j γ|] ≤ ∞ j=1 j -α 2β E[(S x a j -a j γ) 2 ] = ∞ j=1 j -α 2β a 1/2 j E[(S x a j -a j γ) 2 ] a j < ∞,
where the last series converges by the expression of σ 2 (cf. (4.4)) and the fact that

j -α 2β a 1 2 j ∼ j -α 2 1 β -1 with α 2 ( 1 β -1) > 1.
Thus ∞ j=1 M j < ∞ a.s., which implies (4.42). So, by (4.41), the second term in the right hand side of (4.40) tends to 0 a.s. This ends 

Proof of Theorem 4.2.2 and Corollary 4.2.3

In this section we establish Theorem 4.2.2 and Corollary 4.2.3 about the non-degeneracy of the limit variable W x s of the fundamental martingale (W x s,n ). Let s ∈ (-η 1 , s ∞ ) and x ∈ S be fixed. Consider the positive function

H(n, y) = e s log |y| r s ( y |y| ) [m κ(s)] n r s (x) , n ≥ 0, y ∈ R * .
Since r s is the eigenfunction of the operator P s with respect to the eigenvalue κ(s) (see (4.7)), we see that H is a mean-harmonic function (see [START_REF] Biggins | Measure change in multitype branching[END_REF]) in the sense that for each

n ≥ 0 and u ∈ T n , E Nu i=1 H(n + 1, A ui G u x)|F n = H(n, G u x).
Indeed, we have:

E Nu i=1 H(n + 1, A ui G u x)|F n = E Nu i=1 e s log |A ui Gux| r s (A ui • X x u ) [mκ(s)] n+1 r s (x) |F n = e s log |Gux| [mκ(s)] n+1 r s (x) E Nu i=1 e s log(|A ui X x u |) r s (A ui • X x u )|F n = e s log |Gux| m P s r s (X x u ) [mκ(s)] n+1 r s (x) = e s log |Gux| r s (X x u ) [m κ(s)] n r s (x) . Therefore W x s,n = u∈Tn H(n, G u x) = u∈Tn e s log |Gux| r s (X x u ) [m κ(s)] n r s (x)
, n ≥ 0 is a positive martingale, so that the limit 

W x s = lim n→∞ W x s,
W X x u s,1 = Nu i=1 e s log |A ui X x u | r s (A ui • X x u ) m κ(s)r s (X x u )
, which represents the first term of the fundamental martingale corresponding to the branching process starting from the particle u; in particular for u = ∅, W

X x ∅ s,1 (∅) = W x s,1
with the usual convention that X x ∅ = x. For fixed s ∈ (-η 1 , s ∞ ) and x ∈ S, the spectral gap property (4.7) allows to define a probability measure Q x s on (Ω, F) such that for any n ∈ N and any bounded and

measurable function h on (S × R) n+1 , E e sS x n r s (X x n ) κ n (s)r s (x) h(X x 0 , S x 0 , . . . , X x n , S x n ) = E Q x s [h(X x 0 , S x 0 , . . . , X x n , S x n )] , (4.43) 
where E Q x s denotes the expectation with respect to Q x s . See [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for s ≥ 0, and [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for s < 0.

With the mean-harmonic function H specified above and the probability measure Q x s introduced here, from [19, Theorem 2.1] we obtain the following result for the non-degeneracy of the limit W x s . We use the usual notation that x ∧ y = min{x, y}, and we denote by

1 n = (1, • • • , 1) ∈ N * n
the sequence of length n whose components are all equal to 1. Lemma 4.4.1. For s ∈ (-η 1 , s ∞ ) and x ∈ S, we have:

(i) E[W x s ] = 1 if ∞ n=1 E W X x 1n s,1 H(n, G 1n x)W X x 1n s,1 ∧ 1 |F n < ∞ Q x s -a.s. (4.44) (ii) E[W x s ] = 0 if either lim sup n→∞ H(n, G 1n x) = ∞ Q x s -a.s. (4.45)
or for all y > 0, 

∞ n=1 E W X x 1n s,1 1 {H(n,G 1n x)W X x 1n s,1 >y} |F n = ∞ Q x s -a.s. ( 4 
E W X x 1n s,1 (H(n, G 1n x)W X x 1n s,1 ) ∧ 1 |F n = E N 1n i=1 e s log |A 1ni X x 1n | r s (A 1ni • X x 1n ) m κ(s)r s (X x 1n ) (H(n, G 1n x)W X x 1n s,1 ) ∧ 1 |F n = E Q x s (H(n, G 1n x)W X x 1n s,1 ) ∧ 1|F n .
By the extended Borel-Cantelli Lemma (see [73, p. 151]), we have

∞ n=1 E Q x s (H(n, G 1n x)W X x 1n s,1 ) ∧ 1|F n < ∞ Q x s -a.s. = ∞ n=1 H(n, G 1n x)W X x 1n s,1 ∧ 1 < ∞ . (4.47)
We shall prove that Q x s -a.s, the term H(n, G 1n x) → 0 exponentially and W

X x 1n s,1
→ ∞ subexponentially. This will imply that the two series in (4.47) converge Q x s -a.s., and thus conclude the proof of (4.44).

We first prove that H(n, G 1n x) → 0 Q x s -a.s. with an exponential rate. We start by rewriting H(n, G 1n x) in form 

H(n, G 1n x) = r s (X x 1n ) r s (x) exp n s S x 1n n -q s + sq s -log[m κ(s)] . ( 4 
1 n log + W X x 1n s,1 = 0 Q x s -a.s.
By the lemma of Borel-Caltelli, it is enough to prove that

∞ n=0 Q x s log + W X x 1n s,1 > εn < ∞ ∀ε > 0. (4.51)
By the definition of Q x s and Fubini's Theorem, we have

∞ n=0 Q x s log + W X x 1n s,1 > εn = ∞ n=0 E W X x 1n s,1 1 {log + W X x 1n s,1 >εn} ≤ E ∞ n=0 max x∈S W x s,1 1 {log + max x∈S W x s,1 >εn} ≤ 1 ε E max x∈S W x s,1 log + max x∈S W x s,1 + 1 ,
which is finite by hypothesis (4.15). Therefore, the property (4.51) is proved.

Necessary condition

It suffices to prove that if either Λ * (q s ) -log m ≥ 0 or E min x∈S W x s,1 log + min x∈S W x s,1 = ∞, then EW x s = 0 for all x ∈ S. In the following we consider three cases.

Case 1. Suppose that Λ * (q s ) -log m > 0. Then by (4.48) and (4.49) we see that

lim n→∞ H(n, G 1n x) = ∞, Q x s -a.s. (4.52)
This implies E[W x s ] = 0 by Lemma 4.4.1.

Case 2. Suppose that Λ * (q s ) -log m = 0. Then by (4.48),

H(n, G 1n x) = r s (X x 1n ) r s (x)
e s(S x 1n -nqs) . Here we have used the following law of iterated logarithm for products of random matrices. For s = 0, it was established in [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF]Theorem 5]. 

lim sup n→∞ S x n -nq s σ s √ 2n log log n = 1 Q x s -a.s.
This lemma can be proved in the same way as in the proof of Theorem 5 of [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF], using Berry-Esseen's bound for S x n under the changed measure Q x s established in [83, Theorem 2.1] for s ∈ (-η 1 , 0] and in [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Theorem 8.1] for s ∈ (0, s ∞ ). Since the proof is very similar, we omit the details.

Case 3. Assume that E min x∈S W x s,1 log + min x∈S W x s,1 = ∞ and Λ * (q s ) -log m < 0. We shall prove that (4.46) holds for all y > 0. By the definition of Q x s , we have

E W X x 1n s,1 1 {H(n,G 1n x)W X x 1n s,1 >y} |F n = E Q x s 1 {H(n,G 1n x)W X x 1n s,1 >y} |F n .
By the extended Borel-Cantelli lemma, we get, for y > 0,

∞ n=0 E Q x s 1 {H(n,G 1n x)W X x 1n s,1 >y} |F n = ∞ Q x s -a.s. = lim sup n→∞ H(n, G 1n x)W X x 1n s,1 > y .
Therefore, for y > 0, (4.46) holds if which is equivalent to

Q x s lim sup n→∞ H(n, G 1n x)W X x 1n s,1 > y = 1. ( 4 
Q x s lim sup n→∞ log + W X x 1n s,1 > M n =:B n+1 = 1 ∀M > 0. (4.54)
We see that (4.54) follows from

Q x s ∞ n=0 1 B n+1 = ∞ = 1. (4.55)
To prove (4.55), notice that by the extended Borel-Cantelli lemma we have

∞ n=0 1 B n+1 < ∞ Q x s -a.s = ∞ n=0 E Q x s [1 B n+1 |F n ] < ∞ . (4.56)
By the definition of Q x s and Fubini's theorem, we have,

Q x s -a.s., ∞ n=0 E Q x s [1 B n+1 |F n ] = ∞ n=0 E W X x 1n s,1 1 {log + W X x 1n s,1 >M n} |F n ≥ ∞ n=0 E min x∈S W x s,1 1 {log + min x∈S W x s,1 >M n} |F n = E ∞ n=0 min x∈S W x s,1 1 {log + min x∈S W x s,1 >M n} ≥ 1 M E[min x∈S W x s,1 log + min x∈S W x s,1 -1 = +∞,
where the second equality holds since min x∈S W x s,1 is independent of F n , and the last equality holds by hypothesis. Hence (4.55) follows from (4.56).

Proof of Corollary 4.2.3

We will need the following result which was established in [START_REF] Liu | An extension of a functional equation of Poincaré and Mandelbrot[END_REF] in a slightly weaker form. We use the convention that the empty sum is taken to be 0.

Lemma 4.4.3. Let N, X 1 , X 2 , • • • be independent random variables with N ∈ N, X i ∈ R + ,
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E N i=1 X i log + N i=1 X i < ∞ if and only if E(X 1 log + X 1 ) < ∞ and E(N log + N ) < ∞.
Proof. The "if" part has been proved in [START_REF] Liu | An extension of a functional equation of Poincaré and Mandelbrot[END_REF]. The "only if" part is slightly stronger than that in [START_REF] Liu | An extension of a functional equation of Poincaré and Mandelbrot[END_REF]. Let us give a short proof which is different to that used in [START_REF] Liu | An extension of a functional equation of Poincaré and Mandelbrot[END_REF]. Since the function f (x) = x log + x (with f (0) = 0) is increasing, we have

E f N i=1 X i ≥ E X 1 log + X 1 1 {N ≥1} = E(X 1 log + X 1 )P(N ≥ 1). Therefore E(X 1 log + X 1 ) < ∞. Together with P(X 1 = 0) < 1, this implies that c := EX 1 ∈ (0, ∞). Since f is convexe on R + , by Jensen's inequality, we have E f N i=1 X i N ≥ f E N i=1 X i N = f (cN ) = (cN ) log + (cN ) .
Taking expectation, we get

E N i=1 X i log + N i=1 X i ≥ E[(cN ) log + (cN )]. Hence we obtain E[(cN ) log + (cN )] < ∞, which is equivalent to EN log + N < ∞.
Then the three conditions (4.15), (4.18) and (4.19) are equivalent, and (4.16) holds for all x ∈ S if and only if (4.14) and (4.19) hold. Moreover, if (4.16) holds for some x ∈ S, then it holds for all x ∈ S.

Proof of Corollary 4.2.3. (1) Note that for s ∈ (-η 1 , s ∞ ), the function r s (.) is strictly positive and continuous on the compact set S. It is therefore bounded from above and from below by two positive constants. From the definition of W x s,1 and . , we observe that

E max x∈S W x s,1 log + max x∈S W x s,1 ≤ E N i=1 c A i s log + N i=1 c A i s .
Therefore by Lemma 4.4. 

A k = max 1≤i,j≤d |A k (i, j)| and A k = min 1≤i,j≤d |A k (i, j)|.
Since all norms on R d are equivalent, we can take the norm

|x| = |x 1 | + |x 2 | + . . . + |x d |.
Then for k ≥ 1 and x ∈ S,

dA k ≤ |A k x| = 1≤i,j≤d |A k (i, j)x j | ≤ dA k .
Since the function r s on S is bounded from above and from below by two positive constants, this implies that for some constant c 1 > 0,

E min x∈S W x s,1 log + min x∈S W x s,1 ≥ E N k=1 c 1 A s k log + N k=1 c 1 A s k .
Remark that under the Furstenberg-Kesten condition (4.20), E A s 

1 log + A s 1 < ∞ if and only if E A 1 s log + A 1 s < ∞.

Proof of Theorem 4.2.4

In this section we will prove Theorem 4.2.4 , the precise large deviation asymptotic of Bahadur-Rao type on the counting measure Z x n , using a uniform local limit theorem for products of random matrices that we recently established in [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF].

Auxiliary results

In the proof of Theorem 4.2.4 we make use of the following three assertions. The first one is a local limit theorem for products of random matrices under the changed measure Q x s (see Proposition 4.5.1). The second is an exponential bound of the large deviation probability of the products of random matrices under Q x s (see Proposition 4.5.2). The We start with a uniform local limit theorem for products of random matrices under the changed measure Q x s . Under the initial measure (when s = 0), it has been established in [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF]. 

σ s √ nE Q x s [f (X x n )h(y + S x n -nΛ (s))] -π s (f ) R h(z)φ z -y σ s √ n dz = 0, (4.57) 
where φ(x) = 1 √ 2π e -x 2 /2 is the density function of the standard normal law.

Proof. For λ > 0 sufficiently small, we introduce the Banach space B λ = {f ∈ C(S) :

f λ < +∞},
where

f λ := f ∞ + |f | λ , with f ∞ := sup x∈S |f (x)|, |f | λ := sup x,y∈S,x =y |f (x) -f (y)| d λ (x, y) .
For s ∈ (-η 1 , s ∞ ) and t ∈ R, define the perturbed operator R s,it on B λ as follows: for any

ϕ ∈ B λ , R s,it ϕ(x) = E Q x s e it[S x 1 -Λ (s)] ϕ(X x 1 ) , x ∈ S.
By induction, it follows that for any n ≥ 1,

R n s,it ϕ(x) = E Q x s e it[S x n -nΛ (s)] ϕ(X x n ) , x ∈ S.
For properties of this operator, we refer the reader to [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF] for s ∈ (0, s ∞ ) and [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for s ∈ (-η 1 , 0]. Since the proof of Theorem 4.2.4 is quite similar to that of Theorem 2.2(1) in [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF], we will not give the details here. The only difference is that, instead of the properties of the operator R 0,it used in the proof in [START_REF] Bui | Asymptotic expansion in central and local limit theorems for products of random matrices[END_REF], here we use the properties of the operator R s,it proved in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF][START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF].

We next present an exponential bound of the large deviation probability of the products of random matrices under Q x s . For s = 0, it has been established in [START_REF] Xiao | Precise large deviation asymptotics for products of random matrices[END_REF].

Proposition 4.5.2. Assume the conditions of Theorem 4.2.4. Let ε > 0. There are C > 0 and 0 < c < 1 such that for all n ≥ 1,

sup x∈S Q x s |S x n -nΛ (s)| n > ε ≤ Cc n . (4.58)
Proof. By the monotonicity in ε of the large deviation probability, it is clear that it suffices to prove the inequality for ε > 0 small enough. By the formula of the changed measure (4.43), for any nonnegative and Borel function ϕ and any point t ∈ (-η 1 , s ∞ ), we have

E Q x s ϕ(S x n ) = κ(t) n r t (x) κ(s) n r s (x) E Q x t e -(t-s)S x n (r -1 t r s )(X x n )ϕ(S x n ) .
Take ϕ(x) = 1 (nΛ (s)+nε,+∞) (x). Because Λ (s) > 0 for all s ∈ (-η 1 , s ∞ ) and Λ (s) is continuous in s, for ε > 0 small enough, there is t ∈ (-η 1 , s ∞ ) with t > s such that Λ (t) = Λ (s) + ε. Hence

Q x s S x n -nΛ (s) > nε = κ(t) n r t (x) κ(s) n r s (x) E Q x t e -(t-s)S x n r s (X x n ) r t (X x n ) 1 {S x n -nΛ (s)>nε} = e n -(t-s)Λ (t)+Λ(t)-Λ(s) r t (x) r s (x) E Q x t f (X x n )h S x n -nΛ (t) , (4.59) 
where f (x) = rs(x) rt(x) and h(x) = e -(t-s)x 1 {x>0} . Notice that h(x) ≤ 1 and that f (x) is bounded from below and above by two positive constants because r t and r s are continuous and strictly positive on the compact set S. Therefore from (4.59), we see that there exists a constant C 1 > 0 such that for all n ≥ 1,

Q x s S x n -nΛ (s) > nε ≤ C 1 e n -(t-s)Λ (t)+Λ(t)-Λ(s) . ( 4 

.60)
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We now prove that

-(t -s)Λ (t) + Λ(t) -Λ(s) < 0. (4.61) 
To do this, we consider the function

ψ(y) = -yΛ (s + y) + Λ(s + y) -Λ(s), y ∈ [0, s ∞ -s),
which is continuous on the interval [0, s ∞ -s). For y ∈ (0, s ∞ -s), ψ (y) = -yΛ (s+y) < 0, so that ψ(y) < ψ(0) = 0. With y = t -s, this implies (4.61). From (4.60) and (4.61), we see that for all n ≥ 1,

sup x∈S Q x s S x n -nΛ (s) > nε ≤ C 1 c n 1 , (4.62) 
where

c 1 = exp -(t -s)Λ (t) + Λ(t) -Λ(s) < 1.
In the same way, if we take ϕ(x) =

1 (-∞,nΛ (s)-nε) (x) and t ∈ (-η 1 , s) such that Λ (t) = Λ (s) -ε, then there are constants C 2 > 0 and 0 < c 2 < 1 such that sup x∈S Q x s S x n -nΛ (s) < -nε ≤ C 2 c n 2 . (4.63)
The conclusion of the proposition follows from (4.62) and (4.63).

We finally establish a relationship between moment conditions on W x s,1 and on W x s, * .

Proposition 4.5.3. Assume the conditions of Theorem 4.2.4. Then

sup x∈S E (W x s, * + 1) log δ (W x s, * + 1) < ∞.
For the proof, we will adapt the approach of Biggins [START_REF] Biggins | Growth rates in the branching random walk[END_REF] on the classical branching random walk. The following recursive relations on W x s,n and W x s will be used. First, it can be easily seen that for 1

≤ k ≤ n, W x s,n = u∈T k H(k, G u x)W X x u s,n-k , where H(k, G u x) = e sS x u r s (X x u ) [m κ(s)] k r s (x) . ( 4.64) 
From this recursive relation on W x s,n , taking n → ∞ we obtain the following recursive 

W x s = u∈T k H(k, G u x)W X x u s , (4.65) 
by our notation. The proof of Proposition 4.5.3 will be done with the help of three lemmas. 

sup x∈S E (W x s + 1) log δ (W x s + 1) < ∞. (4.66) 
Proof of Lemma 4.5.4. Let 3 2 < δ < 2 and

h(u) :=    c 0 u for 0 < u ≤ x 0 , c 1 + c 2 log δ u for u ≥ x 0 > 1,
where x 0 , c 0 , c 1 and c 2 are constants with x 0 > 1, c 0 , c 2 > 0, which make h concave (and hence subadditive) and increasing. Then

h(uv) ≤ C(1 + log δ + u + log δ + v), ∀u, v > 0, (4.67) 
when C > 0 is a large enough constant. Notice that to prove (4.66) we only need show that

sup x∈S E[W x s h(W x s )] < ∞. (4.68) 
Using (4.64) and the subadditivity of h, we have

E[W x s,n+1 h(W x s,n+1 ) F n ] = E u∈Tn H(n, G u x)W X x u s,1 h u∈Tn H(n, G u x)W X x u s,1 F n ≤ E u∈Tn H(n, G u x)W X x u s,1 h t∈Tn,t =u H(n, G t x)W X x t s,1 F n + E u∈Tn H(n, G u x)W X x u s,1 h H(n, G u x)W X x u s,1 F n . ( 4.69) 
For the first term, we see that

H(n, G t x) is F n -measurable, W X x u s,1 and t∈Tn,t =u H(n, G t x)W X x t s,1
Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020

Chapter 4 -Central limit theorem and precise large deviations for branching random walks with products of random matrices 112 are conditionally independent given F n . Hence

E u∈Tn H(n, G u x)W X x u s,1 h t∈Tn,t =u H(n, G t x)W X x t s,1 F n = u∈Tn H(n, G u x) E W X x u s,1 F n E h t∈Tn,t =u H(n, G t x)W X x t s,1 F n ≤ u∈Tn H(n, G u x) h t∈Tn,t =u H(n, G t x)E W X x t s,1 F n ≤ W x s,n h(W x s,n ),
where the last two inequalities hold by Jensen's inequality and the fact that E W X x u s,1 F n = 1 and h is a concave and increasing function. Therefore, from (4.69),

E[W x s,n+1 h W x s,n+1 ] ≤ E[W x s,n h W x s,n ] + E u∈Tn H(n, G u x)W X x u s,1 h H(n, G u x)W X x u s,1
.

So by recurrence on n and Fatou's lemma, we obtain

E[W x s h(W x s )] ≤ lim inf n→∞ E[W x n (s) h(W x n (s))] ≤ E[W x s,1 h(W x s,1 )] + ∞ n=0 E u∈Tn H(n, G u x)W X x u s,1 h H(n, G u x)W X x u s,1
.

Hence to prove (4.68), it is enough to prove that

sup x∈S ∞ n=1 E u∈Tn H(n, G u x)W X x u s,1 h H(n, G u x)W X x u s,1 < ∞. (4.70) 
Note that the hypothesis Λ * (q s ) -log m < 0 implies that there exists b > 0 such that

Λ * (q s ) -log m < -b < 0. (4.71)
Since r s is strictly positive and continuous on S, 

d 1 := max x∈S r s (x) min x∈S r s (x) < ∞. ( 4 
I n,1,1 (x) ≤ CE ∞ n=1 Ws,1 1 + log δ + Ws,1 1 {n≤J} ≤ C 1 E Ws,1 1 + log δ + Ws,1 log + Ws,1 < ∞, and 
sup x∈S ∞ n=1 I n,1,2 (x) ≤ d 1 c 0 E Ws,1 2 ∞ n=1 e -bn 1 {n≥J+1} ≤ C 2 E Ws,1 2 e -b(J+1) ≤ C 3 E Ws,1 < ∞.
Hence we conclude that

sup x∈S ∞ n=1 I n,1 (x) < ∞. (4.74) 
Control of I n,2 (x). Using the property (4.67) of the function h, we obtain

I n,2 (x) ≤ CE u∈Tn H(n, G u x)W X x u s,1 1 + log δ + W X x u s,1 1 {H(n,Gux)>d 1 e -bn } +CE u∈Tn H(n, G u x)W X x u s,1 log δ + H(n, G u x) 1 {H(n,Gux)>d 1 e -bn } .
From hypothesis (4.22), we get for each u ∈ T n ,

E W X x u s,1 1 + log δ + W X x u s,1 F n < ∞.
Taking C 1 > 0 sufficiently large, we have By the definition of Q x s , we have

I n,2 (x) ≤ C 1 E u∈Tn H(n, G u x) 1 + log δ + H(n, G u x) 1 {H(n,Gux)>d 1 e -bn } ≤ C 1 E u∈Tn H(n, G u x) 1 + log δ + H(n, G u x) 1 {sS x u >n(log[mκ(s)]-b)} .
I n,2 (x) ≤ C 1 E Q x s 1 + log δ + H(n, G 1n x) 1 {sS x 1n >n(log[mκ(s)]-b)} , ( 4.75) 
where

1 n = (1, • • • , 1) ∈ N * n
denotes the sequence of length n whose components are all equal to 1, and

H(n, G 1n x) = e sS x
1n rs(X x 1n )

[m κ(s)] n rs(x) by our notation. It is easy to see that if s = 0 then I n,2 (x) = 0 by the choice of b. Hence we only consider the case where s = 0. We will prove that

sup x∈S ∞ n=1 E Q x s 1 + log δ + H(n, G 1n x) 1 {sS x 1n >n(log[mκ(s)]-b)} < ∞. (4.76) 
Set w = log[mκ(s)]-b s , which is equal to log m+Λ(s)-b s

. By (4.71), we see that w > Λ (s) if and only if s > 0 . From Proposition 4.5.2, we have for some constants 0 < c < 1, C > 0, and all k ≥ 1,

sup x∈S Q x s sS x 1n > nsw ≤ sup x∈S Q x s |S x 1n -nΛ (s)| n > |w -Λ (s)| ≤ Cc n . ( 4.77) 
Hence, to prove (4.76), it suffices to show that

sup x∈S ∞ n=1 E Q x s log δ + H(n, G 1n x)1 |S x 1n -nΛ (s)| n >|w-Λ (s)| < ∞. (4.78) 
Using Hölder's inequality and (4.77), for 1 < p < 2 δ and q > 1 with 1 p + 1 q = 1, we obtain

E Q x s log δ + H(n, G 1n x)1 |S x 1n -nΛ (s)| n >|w-Λ (s)| ≤ E Q x s log δp + H(n, G 1n x) 1 p Q x s |S x 1n -nΛ (s)| n > |w -Λ (s)| 1 q ≤ E Q x s log δp + H(n, G 1n x) 1 p (Cc n ) 1 q . ( 4.79) 
By (4.48) and (4.72), we have

E Q x s log δp + H(n, G 1n x) ≤ C 1 (n δp + E Q x s |S x 1n -nq s | δp ),
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lim n→∞ 1 n E Q x s S x 1n -nq s 2 = σ 2 s ,
(see [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 7.1] for s > 0 and [83, Proposition 3.14] for s ≤ 0), we get

E Q x s log δp + H(n, G 1n x) ≤ C 1 n 2 .
Combining this with (4.79) gives

sup x∈S ∞ n=1 E Q x s log δ + H(n, G 1n x)1 |S x 1n -nΛ (s)| n >|w-Λ (s)| < C 1 q C 1 p 1 ∞ n=1 n 2 p c n q .
This gives (4.78), which implies (4.76).

By (

∞ n=1 I n,2 (x) < ∞. 4.75) and (4.76), sup x∈S 
Hence Lemma 4.5.4 is proved.

Lemma 4.5.5. Assume the conditions of Theorem 4.2.4. For any ε > 0, there exists a constant B > 0 such that for any x ∈ S and any n ≥ 0,

P W x s W x s,n -1 > -ε F n ≥ B.
Proof of Lemma 4.5.5. Let ε > 0, x ∈ S and n ≥ 0. Let T > 0. For u ∈ T n , set

Y u = W X x u s -1 and
Y T u :=    Y u if Y u < T T if Y u ≥ T.
Then Y T u ≤ Y u , and Using the facts that Y T u ≤ T and 1

P W x s W x s,n -1 > -ε F n = P 1 W x s,n u∈Tn H(n, G u x)Y u > -ε F n ≥ P 1 W x s,n u∈Tn H(n, G u x)Y T u > -ε F n . ( 4 
W x s,n u∈Tn H(n, G u x) = 1, we have E 1 W x s,n u∈Tn H(n, G u x)Y T u F n = E 1 W x s,n u∈Tn H(n, G u x)Y T u 1 { 1 W x s,n u∈Tn H(n,Gux)Y T u ≤-ε} F n + E 1 W x s,n u∈Tn H(n, G u x)Y T u 1 { 1 W x s,n u∈Tn H(n,Gux)Y T u >-ε} F n ≤ (-ε) + T P 1 W x s,n u∈Tn H(n, G u x)Y T u > -ε F n . ( 4.81) 
We now prove that the expectation in the above display is uniformly bounded from below by -ε/2 when T is large enough. By Theorem 4.2.2, for each

u ∈ T n , Y u satisfies E(Y u |F n ) = E W X x u s |F n -1 = 0.
Using this and the definition of Y T u , we have

E Y T u F n = E Y u 1 {Yu<T } F n + E T 1 {Yu≥T } F n = E Y u (1 -1 {Yu≥T } ) F n + E (T 1 {Yu≥T } F n = -E (Y u -T ) + F n , where (Y u -T ) + = max(Y u -T, 0). Therefore E 1 W x s,n u∈Tn H(n, G u x)Y T u F n = - 1 W x s,n u∈Tn H(n, G u x)E (Y u -T ) + F n . Now E (Y u -T ) + F n ≤ sup y∈S E (W y s -1 -T ) + F n = sup y∈S E (W y s -1 -T ) + ≤ sup y∈S E W y s 1 {W y s >T } T →+∞ -→ 0,
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sup y∈S E W y s 1 {W y s >T } < ε/2.
Then for all x ∈ S and n ≥ 0,

E 1 W x s,n u∈Tn H(n, G u x)Y T u F n > - 1 2 ε. (4.82)
Therefore, from (4.81), we obtain

P 1 W x s,n u∈Tn H(n, G u x)Y T u > -ε F n ≥ ε 2T .
Hence, it follows from (4.80) that the inequality in the lemma holds with B = ε 2T .

Lemma 4.5.6. Assume the conditions of Theorem 4.2.4. For any 0 < a < 1, there exists a constant B > 0 such that for any x ∈ S and any t > 0,

P(W x s ≥ at) ≥ BP(W x s, * ≥ t) ≥ BP(W x s ≥ t).
Proof of Lemma 4.5.6. The second inequality is evident. We now prove the first one. For

t > 0, let E n = {W x s,n ≥ t, W x s,k < t for 0 ≤ k < n}, n ≥ 1.
As E n are pairwise disjoint sets, for each a ∈ (0, 1) and each t > 0,

P(W x s > at) ≥ ∞ n=1 P(W x s > at | E n )P(E n ). (4.83) 
By (4.65), we have for each a ∈ (0, 1) and each t > 0,

P(W x s > at | E n ) = P W x s W x s,n -1 > at W x s,n -1 E n ≥ P W x s W x s,n -1 > a -1 E n ,
where the last step holds because W x s,n ≥ t on E n . By using the fact that E n ∈ F n and applying Lemma 4.5.5, we have

P W x s W x s,n -1 > a -1 E n = E P W x s W x s,n -1 > a -1 F n E n ≥ B > 0,
where B is a constant independent of n. It follows from (4.83) that

P(W x s > at) ≥ B ∞ n=1 P(E n ) = BP(W x s, * ≥ t),
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Recall that for u ∈ T kn , 0

≤ k n ≤ n, H(k n , G u x) = e sS x u rs(X x u )
[m κ(s)] kn rs(x) . From the preceding decomposition of I, we obtain

σ s √ 2πnI -W x s π s f r s R h(z)dz = A n + B n + C n , (4.84) 
where

A n = σ s √ 2πn u∈T kn H(k n , G u x) S×R f (y) r s (y) h(z + S x u -nq s ) W X x u s,n-kn (dy, dz) -E kn W X x u s,n-kn (dy, dz) , B n = u∈T kn H(k n , G u x) σ s √ 2πn S×R f (y) r s (y) h(z + S x u -nq s ) E kn W X x u s,n-kn (dy, dz) -π s f r s R h(z)dz , C n = W x s,kn -W x s π s f r s R h(z)dz.
We choose k n as follows. Let β be such that 3 2δ < β < 1 and α > 2 β -1 -1 . For each n, let j = j(n) ∈ N be such that j α/β ≤ n < (j + 1) α/β ; set k n = a j = j α . Then k n ∼ n β .

We will prove that with the above choice of (k n ), A n , B n , C n → 0 a.s. By the decomposition (4.84), this will imply Theorem 4.2.4. By the convergence of the martingale W x s,n to W x s , we have clearly C n → 0, P-a.s. It remains to show that A n → 0 and B n → 0 P-a.s.

A)

We first prove that A n → 0 P-a.s. For u ∈ T kn , write Then

Y u = S×R f (y) r s (y) h(z + S x u -nq s ) W X x u s,n-kn (dy, dz) -E kn W X x u s,n-kn (dy, dz) , Ỹu = Y u 1 {|Yu|< 1 H(kn,Gux) }
A n = σ s √ 2πn u∈T kn H(k n , G u x)Y u = σ s √ 2πn u∈T kn H(k n , G u x)E kn [ Ỹu ] + σ s √ 2πn u∈T kn H(k n , G u x) Y u -Ỹu + σ s √ 2πn u∈T kn H(k n , G u x) Ỹu -E kn [ Ỹu ] = A n,1 + A n,2 + A n,3 ,
with A n,i denoting the corresponding sum. We will show that each of these three terms tends to zero a.s. as n → ∞. We divide the proof into 3 steps.

Step 1. We prove that A n,1 n→∞ -→ 0 a.s. From the fact that 0

= E kn [Y u ] = E kn [ Ỹu ] + E kn Y u 1 {|Yu|> 1 H(kn,Gux) } , we have |A n,1 | ≤ σ s √ 2πn u∈T kn H(k n , G u x)E kn |Y u |1 {|Yu|> 1 H(kn,Gux) } . ( 4.85) 
Notice that for C > 0 large enough, sup (y,z)∈S×R | f (y)h(z) rs(y) | ≤ C. Using this and the fact that

E kn W X x u s,n-kn (S, R) = E kn W X x u s,n-kn = 1, we obtain |Y u | ≤ C W X x u s,n-kn + 1 . ( 4.86) 
This implies that

E kn |Y u |1 {|Yu|> 1 H(kn,Gux) } ≤ CE kn W X x u s,n-kn + 1 1 {W X x u s,n-kn +1> 1 CH(kn,Gux) } =: E(W X x u s,n-kn ). Let U = {H(k n , G u x) > d 1 e -bn }, (4.87) 
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{H(k n , G u x) ≤ d 1 e -bn }. We have |A n,1 | ≤ I n,1 + I n,2 , (4.88) 
where

I n,1 = σ s √ 2πn u∈T kn H(k n , G u x)E(W X x u s,n-kn )1 U , I n,2 = σ s √ 2πn u∈T kn H(k n , G u x)E(W X x u s,n-kn )1 U c .
For the first term I n,1 , by using the facts that E(W 

X x u s,n-kn ) ≤ 2C and U ⊆ {sS x u > k n (log[m κ(s)] -b)},
Q x s sS x 1 kn > k n (log[m κ(s)] -b) ≤ Q x s |S x 1 kn -k n Λ (s)| k n > |w -Λ (s)| ≤ C 1 c kn .
Hence, by (4.89), we get For the second term I n,2 , we see that

∞ n=1 E[I n,1 ] ≤ C 2 ∞ n=1 c n β n 1 2 < ∞. ( 4 
E(W X x u s,n-kn ) 1 U c ≤ C1 U c E kn (W X x u s,n-kn + 1)1 {W X x u s,n-kn +1≥ e bkn Cd 1 } ≤ C1 U c log δ + e bkn Cd 1 E kn (W X x u s,n-kn + 1) log δ (W X x u s,n-kn + 1) ≤ CC 3 1 U c (bk n ) δ ,
where C 3 = sup x∈S E (W x s, * + 1) log δ (W x s, * + 1) < ∞ by Proposition 4.5.3. Therefore, since k δ n ∼ j αδ ∼ n βδ and βδ > 3/2, we have

∞ n=1 E[I n,2 ] ≤ ∞ n=1 CC 3 σ s √ 2πn (bk n ) δ E[W x s,kn ] ≤ C 4 ∞ n=1 √ n n βδ < ∞. (4.91) 
Putting together (4.88), (4.90) and (4.91), we get

∞ n=1 E[|A n,1 |] < ∞.
Thus ∞ n=0 |A n,1 | < ∞ a.s., which implies that A n,1 n→∞ -→ 0 a.s.

Step 2. We prove that A n,2 n→∞ -→ 0 a.s. By the definition of Ỹu and inequality (4.86), for any ε > 0, 

P kn |A n,2 | > ε ≤ P kn u∈T kn H(k n , G u x)(Y u -Ỹu ) = 0 ≤ u∈T kn P kn Y u = Ỹu = u∈T kn P kn |Y u | ≥ 1 H(k n , G u x) ≤ u∈T kn E kn 1 {W X x kn s,n-kn +1> 1 CH(kn,Gux) } ≤ u∈T kn E kn CH(k n , G u x)(W X x kn s,n-kn + 1)1 {W X x kn s,n-kn +1>
∞ n=1 P(|A n,2 | > ε) ≤ ∞ n=1 C σ s √ 2πn E (I n,1 + I n,2 ) < ∞.
So by the lemma of Borel-Cantelli, we conclude that A n,2 → 0 P-a.s.

Step 3. We prove that A n,3 n→∞ -→ 0 a.s. By Markov's inequality and von Bahr-Esseen's inequality [START_REF] Bahr | Inequalities for the rth absolute moment of a sum of random variables, 1 ≤ r ≤ 2[END_REF]Theorem 2] or Marcinkiewicz-Zygmund's inequality [32, Theorem 1.5],

we have for any ε > 0 and 1 < θ < 2

P kn (|A n,3 | > ε) ≤ (σ s √ 2πn) θ ε θ E kn u∈T kn H(k n , G u x)( Ỹu -E kn Ỹu ) θ ≤ 2(σ s √ 2πn) θ ε θ u∈T kn H θ (k n , G u x)E kn | Ỹu -E kn Ỹu | θ ≤ 4(σ s √ 2πn) θ ε θ u∈T kn H θ (k n , G u x)E kn | Ỹu | θ ≤ K n,1 + K n,2 , ( 4.92) 
where

K n,1 = 4(σ s √ 2πn) θ ε θ u∈T kn H θ (k n , G u x)1 U E kn | Ỹu | θ , K n,2 = 4(σ s √ 2πn) θ ε θ u∈T kn H θ (k n , G u x)1 U c E kn | Ỹu | θ .
For the first term K n,1 , by the definition of Ỹu , it is easy to see that 

K n,1 = 4(σ s √ 2πn) θ ε θ u∈T kn H θ (k n , G u x)1 U E kn |Y u | θ 1 {|Yu|< 1 H(kn,Gux) } ≤ 4(σ s √ 2πn) θ ε θ u∈T kn H(k n , G u x)1 U E kn |Y u |1 {|Yu|<
E[K n,1 ] ≤ 8(σ s √ 2πn) θ ε θ Q x s sS x 1 kn > k n (log[m κ(s)] -b) .
Similar to (4.90), with the same reason we get, for some constants 0 < c < 1 and C > 0,

∞ n=1 E[K n,1 ] < C ∞ n=1 c n β n θ 2 < ∞. (4.93)
For the second term K n,2 , using the definition of Ỹu , Fubini's theorem and inequality (4.86), we have

E kn [| Ỹu | θ ] = ∞ 0 θy θ-1 P kn (| Ỹu | > y)dy = θ ∞ 0 y θ-1 P kn (|Y u |1 {|Yu|< 1 H(kn,Gux) } > y)dy = θE kn 1 H(kn,Gux) 0 y θ-1 1 |Yu|1 {|Yu|< 1 H(kn,Gux) } >y dy ≤ θ 1 H(kn,Gux) 0 y θ-1 P kn (W X x u s,n-kn + 1 > y C
)dy.

By the change of variables z = y C θ-1 , we obtain 

E kn [| Ỹu | θ ] ≤ θC θ [CH(kn,Gux)] 1-θ 0 z 1 θ-1 P kn (W X x u s,n-kn + 1) θ-1 > z dz ≤ θC θ [CH(kn,Gux)] 1-θ 0 E kn (W X x u s,n-kn + 1)1 W X x u s,n-kn +1 θ-1 >z dz. ( 4 
E kn [| Ỹu | θ ] ≤ 2θC 2 θe + θ(θ -1)C θ C 3 1 {[CH(kn,Gux)] 1-θ >e} [CH(kn,Gux)] 1-θ e 1 log δ z dz. (4.95)
By the definition of K n,2 and inequality (4.95), we get 

K n,2 ≤ C 4 n θ 2 u∈T kn H θ (k n , G u x)1 U c • 1 + 1 {[CH(kn,Gux)] 1-θ >e} [CH(kn,Gux)]
= [C 5 d kn 2 ] θ-1 e 1 log δ z dz + [CH(kn,Gux)] 1-θ [C 5 d kn 2 ] θ-1 1 log δ z dz ≤ [C 5 d kn 2 ] θ-1 + [CH(k n , G u x)] 1-θ (θ -1) log(C 5 d kn 2 ) δ ≤ C 6 d (θ-1)kn 2 + [CH(k n , G u x)] 1-θ k δ n . (4.97) When [CH(k n , G u x)]
> k δ n 0 /C θ-1 , since for all 1 ≤ n ≤ n 0 , [CH(kn,Gux)] 1-θ e 1 log δ z dz ≤ [CH(k n , G u x)] 1-θ ≤ C 6 [H(k n , G u x)] 1-θ k δ n .
From (4.96) and (4.97) we obtain

∞ n=1 E[K n,2 ] ≤ C 6 ∞ n=1 n θ 2 E u∈T kn H θ (k n , G u x)1 U c • 1 + d (θ-1)kn 2 + [H(k n , G u x)] 1-θ k δ n ≤ C 6 r s (x) θ-1 ∞ n=1 E[W x s,kn ] n θ 2 (1 + d (θ-1)kn 2 ) e b(θ-1)kn + C 6 ∞ n=1 E[W x s,kn ] n θ 2 k δ n , ( 4.98) 
where the last inequality holds because on U c (see Eq. (4.87)), Gux) [rs(x)e bkn ] θ-1 (for the second term we just use the identity Combining (4.92), (4.93) and (4.99), we conclude that for any ε > 0

H(k n , G u x) ≤ 1 rs(x)e bkn , so that H θ (k n , G u x) = H(k n , G u x)H θ-1 (k n , G u x) ≤ H(kn,
H θ (k n , G u x)[H(k n , G u x)] 1-θ = H(k n , G u x)).
∞ n=1 P(|A n,3 | > ε) < ∞.
By the Lemma of Borel-Cantelli, it follows that A n,3 n→∞ -→ 0 a.s.

B)

We then prove that B n → 0 P-a.s. By the definition of W Hence, by the definition of B n ,

B n = u∈T kn H(k n , G u x) σ s √ 2πnRHS (4.100) -π s f r s R h(z)dz = u∈T kn H(k n , G u x) 2πn n -k n   σ s (n -k n )RHS (4.100) - n -k n 2πn π s f r s R h(z)dz   .
By Proposition 4.5.1, 

σ s n -k n RHS (4.100) -π s ( f r s ) R h(z)φ z -S x u + k n q s σ s √ n -k n dz ≤ sup (x,y)∈S×R σ s n -k n E Q x s f (X x n-kn ) r s (X x n-kn ) h(y + S x n-kn -(n -k n )q s ) -π s ( f r s ) R h(z)φ z -y σ s √ n -k n dz n→∞ -→ 0. Since u∈T kn H(k n , G u x) 2πn n-kn ∼ W x s,kn √ 2π → W x s √ 2π 
u∈T kn H(k n , G u x) 2πn n -k n φ z -S x u + k n q s σ s √ n -k n -1 dz n→∞ -→ 0 a.s.
We shall prove this convergence by the the dominated convergence theorem. Notice that the function in the above integral is bounded by Ch(z)W x s,kn ≤ CW x s, * h(z) which is integrable on R. So it suffices to prove that for z ∈ R,

D n (z) := 2πn n -k n u∈T kn H(k n , G u x)φ z -S x u + k n q s σ s √ n -k n -W x s,kn n→∞ -→ 0 a.s. (4.101)
Using the fact that |φ(x) -φ(y)| ≤ C|x -y|, we see that for all z ∈ R

D n (z) ≤ 2πn n -k n u∈T kn H(k n , G u x) φ z -S x u + k n q s σ s √ n -k n -φ z σ s √ n -k n + W x s,kn 2πn n -k n φ z σ s √ n -k n -1 ≤ C u∈T kn H(k n , G u x) |S x u -k n q s | σ s √ n -k n + W x s,kn 2πn n -k n φ z σ s √ n -k n -1 .
It is clear that the second term converges to 0 a.s. as n → ∞. For the first term, we use the same argument as the proof of (4.42), noting that

E u∈T kn H(k n , G u x) |S x u -k n q s | σ s √ n -k n = E Q x s |S x kn -k n q s | σ s √ n -k n ,
and (see [START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF]Lemma 7.1] for s > 0 and [83, Proposition 3.14] for s ≤ 0)

lim n→∞ 1 n E Q x s S x n -nq s 2 = σ 2 s .
Therefore, (4.101) holds. This shows that B n n→∞ -→ 0 a.s. The proof of Theorem 4.2.4 is therefore completed.

Chapter 5

Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices

We consider a branching random walk where particles give birth to children as a Galton-Watson process, which move in R d according to products of independent and identically distributed random matrices. We establish a Berry-Esseen bound and a Cramér type moderate deviation expansion for the counting measure which counts the number of particles in generation n situated in a region, as n → ∞. In the proof, we construct a new martingale, and establish its uniform convergence as well as that of the fundamental martingale.

Introduction

A branching random walk in R d is a system of particles, where particles behave independently, and each particle gives birth to a random number of children which move in R d with independent and identically distributed (i.i.d.) displacements. One of the fundamental problems on this model is the study of the counting measure which counts the number of particles of generation n situated in a Borel set of R d . This problem has been studied by many authors, see e.g. [START_REF] Harris | The theory of branching processes[END_REF][START_REF] Stam | On a conjecture by Harris[END_REF][START_REF] Asmussen | Branching random walks. I[END_REF][START_REF] Asmussen | Branching random walks. II[END_REF][START_REF] Biggins | Growth rates in the branching random walk[END_REF][START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF][START_REF] Chen | Exact convergence rates for the distribution of particles in branching random walks[END_REF][START_REF] Gao | Exact convergence rates in central limit theorems for a branching random walk with a random environment in time[END_REF][START_REF] Gao | Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time[END_REF][START_REF] Chen | On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements[END_REF], where central limit theorems and large deviations have been considered. For other important topics and closely related models, see for example the recent papers [START_REF] Barral | On exact scaling log-infinitely divisible cascades[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Hu | How big is the minimum of a branching random walk?[END_REF][START_REF] Mentemeier | The fixed points of the multivariate smoothing transform[END_REF][START_REF] Barral | The minimum of a branching random walk outside the boundary case[END_REF], the recent books [START_REF] Shi | Branching random walks[END_REF][START_REF] Buraczewski | Stochastic models with power-law tails[END_REF][START_REF] Iksanov | Renewal theory for perturbed random walks and similar processes, Probability and its Applications[END_REF] and many references therein.

In the classical branching random walk, a particle whose parent is at position y, moves to position y + l with i.i.d. increments l's for different particles, so that the moving is a simple random translation. Recently, in [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF] the authors consider a branching random walk in R d with products of random matrices, in which the position of a particle is obtained by the action of a matrix A on the position of its parent, where the matrices 5.1. Introduction are obtained by the action of products of random matrices on the position of the initial particle. This permits us to extend significantly the domains of applications of the theory of branching random walks, but the study of the model becomes much more involved. In [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF], a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao type for the counting measure have been proved. In this paper, we will establish the Berry-Esseen bound about the rate of convergence in the central limit theorem, and a moderate deviation expansion of Cramér type.

For a precise description of the model we need some notation. Let N = {0, 1, 2, . . .} and N * = {1, 2, . . .}. Set U := ∪ ∞ n=0 (N * ) n , where by convention (N * ) 0 = {∅}. A particle of generation n will be denoted by a sequence

u = u 1 • • • u n = (u 1 , • • • , u n ) ∈ (N *
) n of length n; the initial particle will be denoted by the null sequence ∅. Assume that on a probability space (Ω, F, P) we are given a set of independent identically distributed random variables (N u ) u∈U of the same law p = {p k : k ∈ N}, and a set of independent identically distributed d × d random matrices (A u ) u∈U of the same law µ on the set of d × d matrices M (d, R), where d ≥ 2. The two families (N u ) u∈U and (A u ) u∈U are also assumed to be independent.

A branching random walk in R d with products of random matrices is defined as follows. At time 0, there is one initial particle ∅ of generation 0, with initial position Y ∅ := x ∈ R d \ {0}. At time 1, the initial particle ∅ is replaced by N = N ∅ new particles i = ∅i of generation 1, located at

Y i = A i Y ∅ , 1 ≤ i ≤ N .
In general, at time n + 1, each particle u = u 1 . . . u n of generation n, located at Y u ∈ R d , is replaced by N u new particles ui of generation n + 1, located at Y ui = A ui Y u , 1 ≤ i ≤ N u . Namely, the position of the particle ui is obtained from the position of u by the action of the matrix A ui on the vector Y u . Consequently the position Y u of a particle u in generation n ≥ 1 is given by the action of products of random matrices on the position x of the initial particle ∅:

Y u = G u x, where G u = A u 1 ...un . . . A u 1 .
(5.1)

Denote by T the genealogical tree associated to the elements {N u : u ∈ U}, defined by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for i ∈ N, ui ∈ T if and only if 1 ≤ i ≤ N u ; 3) ui ∈ T implies u ∈ T. Let 

Z x n S d-1 , nγ + σ √ n(-∞, y] m n W [1 -Φ(y)] = e y 3 √ n ζ( y √ n ) 1 + O y + 1 √ n , ( 5.4) 
where t → ζ(t) is the Cramér series (see (5.9)).

An important step in attaining these two objectives is to establish a Berry-Esseen bound for the Cramér type changed measure Z x s,n (see (5.18)). This will be done in Theorem 5.2.3. Theorem 5.2.1 will be obtained from Theorem 5.2.3 by taking s = 0, and Theorem 5.2.2 will be established by using Theorem 5.2.3 and by adapting the techniques from Petrov [START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF].

To facilitate the comprehension, let us present some ideas in the proof of Theorem 5.2.3. As in [START_REF] Bui | Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk[END_REF] where the one dimensional case is considered, we need to study the asymptotic of the characteristic function of the changed measure Z x s,n . Inspired by the approach in [START_REF] Bui | Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk[END_REF], we would like to express the characteristic function of Z x s,n in terms of a martingale and a quantity that can be controlled by the theory of products of random matrices. However, in contrast to the one dimensional case, we cannot obtain directly an expression of the characteristic function in terms of a martingale. Fortunately, using the spectral gap theory for products of random matrices established in [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] and recently developed in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF], we have been able to define a new martingale which is similar to the fundamental martingale and which can be used for a suitable approximation of the characteristic function of Z x s,n . We conclude by proving the uniform convergence and analyticity with respect to a complex parameter of the new martingale, and by using the asymptotic properties of the eigenvalue of the pertubed transfer operator related to the products of random matrices. See Theorem 5.4.3 and Lemma 5.5.6 for details.

The rest of the paper is organized as follows. In Section 5.2, we fix some notation, introduce our assumptions on the branching products of random matrices, and state the main results. In Section 5.3, we recall some spectral gap properties on products of random matrices stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]. In Section 5.4, the uniform convergence and analyticity of the constructed martingale are established. Sections 5.5 and 5.6 are devoted to the proofs of the main results.
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Main results

Notation and assumptions on products of random matrices

Note that in our model, along each branch we encounter a product of random matrices. In this section, we introduce some notation and the necessary assumptions on products of random matrices in order to formulate our main results. We shall consider two cases, the case when the matrices are nonnegative and the case when the matrices are invertible.

The = {1}, and the above arithmetic condition reduces to the following more usual form: log a is almost surely (a.s.) concentrated on an arithmetic progression a 0 + a 1 N for some a 0 , a 1 > 0.

We will need the following assumptions on the law µ.

L1.

For invertible matrices: (a) (Strong irreducibility)There is no finite union

W = n i=1 W i of proper subspaces 0 = W i R d which is Γ µ -invariant (in the sense that aW = W for each a ∈ Γ µ ).
(b) (Proximality) Γ µ contains at least one proximal matrix. For invertible matrices we have ι(a) = a -1 -1 and N (a) = max{ a , a -1 }.

For nonnegative matrices:

L2. (Moment condition)

There exists η 0 ∈ (0, 1) such that

E[N (A 1 ) η 0 ] < ∞.
We will consider the action of invertible matrices on the projective space P d-1 which is obtained from S d-1 by identifying x and -x, and the action of nonnegative matrices on S d-1

+ . For convenience we identify x ∈ P d-1 with one of its representants in S d-1 . To unify the exposition, we use the symbol S to denote P d-1 for invertible matrices, and S d-1 + for nonnegative matrices. The space S will be equipped with the metric d, which is the angular distance (see [START_REF] Bougerol | Products of random matrices with applications to Schrödinger operators[END_REF]) for invertible matrices, and the Hilbert cross-ratio metric (see [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF]) for nonnegative matrices. Moreover, S is a separable metric space equipped with Borel σ-field.

Let C(S) be the space of continuous complex-valued functions on S. For β > 0 sufficiently small, we introduce the Banach space

B β = {f ∈ C(S) : f β < +∞},
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f β := f ∞ + |f | β ,
where

f ∞ := sup x∈S |f (x)|, |f | β := sup x,y∈S,x =y |f (x) -f (y)| d β (x, y) .
Let G n = A n . . . A 2 A 1 be the product of i.i.d. d × d real random matrices A i , defined on the probability space (Ω, F, P), with common law µ. Let x ∈ S be a starting point. As mentioned in the introduction, the random walk G n x is completely determined by its log norm and its projection on S, denoted respectively by

S x n := log |G n x|, X x n := G n • x = G n x |G n x| , n ≥ 0, with the convention that G 0 x = x. Since S x n+1 = log |A n+1 X x n |+S x n and X x n+1 = A n+1 •X x n , the sequence (S x n , X x n ) n≥0 is a Markov chain.
Denote by E the expectation with respect to P. By the law of large numbers of Furstenberg [START_REF] Furstenberg | Noncommuting random products[END_REF], under conditions L1 and L2, we have

lim n→∞ 1 n S x n = lim n→∞ 1 n E[S x n ] = γ P-a.s., (5.5) 
where γ = inf n∈N 1 n E log G n is the upper Lyapunov exponent associated with the product sequence (G n ). Le Page [START_REF] Page | Théorèmes limites pour les produits de matrices aléatoires[END_REF] and Henion [START_REF] Hennion | Limit theorems for products of positive random matrices[END_REF] showed that

σ 2 = lim n→∞ 1 n E (S x n -nγ) 2 (5.6)
exists and is independent of x for invertible matrices and nonnegative matrices, respectively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF][START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF]): µ * ν = ν, that is, for any ϕ ∈ C(S),

(µ * ν)(ϕ) := S Γµ ϕ(a • x)µ(da)ν(dx) = ν(ϕ),
where ν(ϕ) = S ϕ(x)ν(dx), and this notation for the integral will be used for any function and any measure. Define the transfer operator on C(S) as follows: for any s ∈ (-η 0 , η 0 ), 137
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and f ∈ C(S),

P s f (x) = E[|A 1 x| s f (A 1 • x)], for all x ∈ S. (5.7) 
It is known that under conditions L1 and L2, there exists a small constant 0 < η 1 < η 0 such that for any s ∈ (-η 1 , η 1 ), there are a unique probability measure ν s and a unique Hölder continuous function r s on S satisfying ν(r s ) = 1 and

ν s P s = κ(s)ν s and P s r s = κ(s)r s , ( 5.8) 
where κ(s) is the unique dominant eigenvalue of P s , ν s P s is the mesure on S such that (ν s P s )(f ) = ν s (P s f ) for all f ∈ C(S). In particular, r 0 = 1 and κ(0) = 1. For s ∈ [0, η 1 ), the property (5. 

ζ(t) = γ 3 6γ 3/2 2 + γ 4 γ 2 -3γ 2 3 24γ 3 2 t + γ 5 γ 2 2 -10γ 4 γ 3 γ 2 + 15γ 3 3 120γ 9/2 2 t 2 + . . . ( 5.9) 
which converges for |t| small enough.

Main results

Let Z n = Z x n (S, R) be the population size at time n, which does not depend on the starting point x, and which forms a Galton-Watson process with Z 0 = 1 and Z 1 = N . Denote by m = EN the expected value of the offspring distribution. Throughout the paper, we Therefore the branching process (Z n ) is supercritical, and

Z n → ∞ a.s. as n → ∞. It is well known that EZ n = m n . Let W = lim n→∞ W n , where W n = Z n m n , n ≥ 0,
is the fundamental martingale for the Galton-Watson process (Z n ), and the limit exists a.s. by the martingale convergence theorem. An important ingredient in studying Berry-Esseen bound and moderate deviation expansion is the fundamental martingale associated to branching random walks with products of random matrices, defined for s ∈ (-η 1 , η 1 ) and x ∈ S

W x n (s) := u∈Tn e sS x u r s (X x u ) [mκ(s)] n r s (x)
, n ≥ 0.

(5.10) This is a positive martingale with respect to the natural filtration

F 0 = {∅, Ω} and F n = σ(N u , A ui : i ≥ 1, |u| < n) for n ≥ 1.
By the martingale convergence theorem, the limit

W x (s) := lim n→∞ W x n (s) exists in R P-a.s.
Set Λ * (q s ) = sq s -Λ(s) with q s = Λ (s). It is proved in [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF] that under conditions L1 and

L2, if Λ * (q s ) -log m < 0 (5.11)
and

E[max x∈S W x s,1 log + max x∈S W x s,1 ] < ∞, (5.12) 
where log + x = max{0, log x} denotes the positive part of log x, then for all x ∈ S, W x (s) is non-degenerate with

E[W x (s)] = 1. Set J = {s ∈ (-η 1 , η 1 ) : Λ * (q s ) -log m < 0}, (5.13) 
which is an open interval containing 0. We assume the following moment condition slightly stronger than (5.12):

L3. There are constants γ 0 > 1 and 0

< η 2 < η 1 2 with [-η 2 , η 2 ] ⊂ J such that E max x∈S W x 1 (s) γ 0 < ∞ ∀ s ∈ [-η 2 , η 2 ].
It is clear that conditions L1-L3 (together with the hypothesis P(N = 0) = 0 that we assume always), imply that for all x ∈ S, W x (s) > 0 a.s. and E[W x (s)] = 1; in particular (when s = 0), W > 0 a.s. and E[W ] = 1.

Our first result is the Berry-Esseen bound for the counting measure Z x n :

Theorem 5.2.1. Assume conditions L1-L3. Then, for any x ∈ S, ϕ ∈ B β and n ≥ 1, we have, a.s.,

sup y∈R 1 m n u∈Tn ϕ(X x u )1 S x u -nγ σ √ n ≤y -W ν(ϕ)Φ(y) ≤ M √ n , ( 5.14) 
where 

Φ(y) = 1 √ 2π y -∞ e -t
ϕ(X x u )1 S x u -nγ σ √ n ≤y = S×R ϕ(z 1 )1 z 2 -nγ σ √ n ≤y Z x n (dz 1 , dz 2 ). ( 5 

.15)

Our second result is the Cramér's moderate deviation expansion for Z x n .
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n ∈ N * , |κ(z)| > 1 -a 1 and L n z B β →B β ≤ c(1 -a 2 ) n .
For fixed s ∈ (-η 1 , η 1 ) and x ∈ S, the spectral gap property (5.8) allows to define a probability measure Q x s on (Ω, F) such that for any n ∈ N and any bounded and measurable function h on

(S × R) n+1 , E e sS x n r s (X x n ) κ n (s)r s (x) h(X x 0 , S x 0 , . . . , X x n , S x n ) = E Q x s [h(X x 0 , S x 0 , . . . , X x n , S x n )] , (5.23) 
where E Q x s denotes the expectation with respect to Q x s . See [START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF][START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF][START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] for s ≥ 0, and [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] for s < 0.

Under the changed measure Q x s , the process (X x n ) n∈N is a Markov chain with the transition operator Q s defined by, for any s ∈ (-η 1 , η 1 ) and ϕ ∈ B β ,

Q s ϕ(x) = 1 κ(s)r s (x) P s (ϕr s )(x), x ∈ S.
It has been proved in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF]Proposition 3.4] that Q s has a unique stationary probability measure defined by π s (ϕ) := νs(ϕrs) νs(rs) , ϕ ∈ B β , and there exist two constants 0 < a < 1,

c 1 > 0 such that sup s∈(-η 1 ,η 1 ) sup x∈S |E Q x s [ϕ(X x n )] -π s (ϕ)| ≤ c 1 a n . (5.24)
Moreover, the perturbed operator R s,it defined by

R s,it ϕ(x) = E Q x s e it[S x 1 -Λ (s)] ϕ(X x 1 ) , s ∈ (-η 1 , η 1 , ) and t ∈ R, (5.25) 
satisfies for any compact

K ⊂ R \{0}, n ≥ 1 and ϕ ∈ B β , sup s∈(-η 1 ,η 1 ) sup t∈K sup x∈S |R n s,it ϕ(x)| ≤ ϕ β a n K , 0 < a K < 1.
(5.26)

The operator R s,it has eigenvalue λ s,it satisfying for s ∈ (-η 1 , η 1 ) and t ∈ (-δ, δ) ⊂ (-η 1 , η 1 ), λ s,it = e Λ(s+it)-Λ(s)-Λ (s)it .
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Associated martingales

In this section, for the fundamental martingale (W x n (s)) we first reveal a relationship between the moments of W x 1 (s) and W x * (s) := sup n≥0 W x n (s). We next prove the uniform convergence of W x n (z) for z ∈ B η 2 (0). We finally introduce a new martingale and establish its similar properties; this martingale will play a key role in the proof of the main results. 

∈ (0, η 2 ) such that sup s∈(-η,η) sup x∈S E[W x * (s)] γ 0 < ∞. (5.28) 
Proof. In [23, Lemma 5.6], it is proved that if E[W x (s)] = 1, then W x * (s) and W x (s) have similar tail behaviour for s ∈ (-η 2 , , η 2 ) and for all x ∈ S, i.e. for s ∈ (-η 2 , , η 2 ) and for any a ∈ (0, 1), for s ∈ (-η 2 , , η 2 ), there is a constant b > 0 such that for all t > 0, for all

x ∈ S P(W x s ≥ at) ≥ bP(W x s, * ≥ t) ≥ bP(W x s ≥ t).
A slight modification in the proof of [ 

sup x∈S E[W x (s)] γ 0 < ∞. (5.29) Set h(x) = x δ where δ = γ 0 -1 ∈ (0, 1]. Observe that W x n+1 (s) = u∈Tn H x n,u W X x u 1 (s), where H x n,u = e sS x u r s (X x u ) [mκ(s)] n r s (x) . ( 5 

.30)
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E n W x n+1 (s) h W x n+1 (s) ≤ E n u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) + E n u∈Tn H x n,u W X x u 1 (s) h v∈Tn v =u H x n,v W X x v 1 (s) .
Using Jensen's inequality for the conditional expectation and the facts that E n W X x u 1 (s) = 1 and h is an increasing function, the second term in the inequality above is less than

W x n (s) h(W x n (s))
. Then taking expectations in the two sides of the inequality above, we get

E W x n+1 (s) h W x n+1 (s) ≤ E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) + E W x n (s) h W x n (s) .
So by recurrence on n and Fatou's lemma, we obtain

E W x (s) h W x (s) ≤ lim inf n→∞ E W x n (s) h W x n (s) ≤ E W x 1 (s) h W x 1 (s) + ∞ n=1 E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 ( 
s) .

To prove (5.29), it suffices to show that there is a constant η ∈ (0, η 2 ) such that sup s∈(-η,η)

sup x∈S E W x 1 (s) h W x 1 (s) ≤ sup s∈(-η 2 ,η 2 ) E[sup x∈S W x 1 (s)] γ 0 < ∞, (5.31) 
and

sup s∈(-η,η) sup x∈S ∞ n=0 E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) < ∞.
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Associated martingales

For (5.31), we see that for all s ∈ (-η 1 , η 1 ), 

W x 1 (s) = 1 mκ(s) N i=1 e s log |A i x| r s (A i • x) ≤ max x∈S |r s (x)| mκ(s) N i=1 e -η 2 log |A i x| + N i=1 e η 2 log |A i x| . ( 5 
s∈(-η 1 ,η 1 ) κ(s) inf s∈(-η 1 ,η 1 ) κ(s) ≤ d 2 . ( 5.35) 
Hence, from (5.33), (5.34) and (5.35), for all s ∈ (-η 1 , η 1 ),

W x 1 (s) ≤ d 1 d 2 W x 1 (-η 2 ) + W x 1 (η 2 ) .
Therefore, by the inequality

(a + b) γ 0 ≤ 2 γ 0 -1 (a γ 0 + b γ 0 ), a, b ∈ R, (5.36) 
and condition L3, 

sup s∈[-η 2 ,η 2 ] E[sup x∈S W x 1 (s)] γ 0 ≤ (d 1 d 2 ) γ 0 2 γ 0 -1 E sup x∈S [W x 1 (-η 2 )] γ 0 + E sup x∈S [W x 1 (η 2 )] γ 0 < ∞. ( 5 
E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) = E u∈Tn H x n,u W X x u 1 (s) γ 0 ≤ E u∈Tn H x n,u γ 0 E sup x∈S W x 1 (s) γ 0 ≤ d 2γ 0 1 mκ(sγ 0 ) [mκ(s)] γ 0 n E[W x n (sγ 0 )]E sup x∈S W x 1 (s) γ 0 . (5.38) Set f (s) = mκ(sγ 0 ) [mκ(s)] γ 0 , s ∈ (-η 2 , η 2 )
. We see that f (0) = m 1-γ 0 < 1 and f is continous on (-η 2 , η 2 ) by the continuity of κ. Hence there is a small constant η > 0 with (-η, η) ⊂ (-η 2 , η 2 ) such that

c 1 := sup s∈(-η,η) mκ(sγ 0 ) [mκ(s)] γ 0 < 1.
(5.39)

We can choose η > 0 sufficiently small so that sγ 0 ∈ (-η 1 , η 1 ). Then W x n (sγ 0 ) is welldefined and a martingale, so E[W x n (sγ 0 )] = 1. Therefore, from (5.38), (5.39) and (5.37), we obtain

sup s∈(-η,η) sup x∈S ∞ n=1 E u∈Tn H x n,u W X x u 1 (s) h H x n,u W X x u 1 (s) ≤ d 2γ 0 1 sup s∈[-η 2 ,η 2 ] E sup x∈S W x 1 (s) γ 0 ∞ n=1 c n 1 < ∞.
This completes the proof of (5.32). Thus (5.29) is proved.

Now we consider the martingale with complex parameter:

W x n (z) := u∈Tn e zS x u r z (X x u ) [mκ(z)] n r z (x) , n ≥ 0, z ∈ B η 1 (0). ( 5 

.40)

For each fixed z ∈ B η 1 (0), it can be easily checked that (W x n (z)) remains a martingale with respect to (F n ). Throughout, the real par of z ∈ C will be denoted by s, so that z = s + iIm(z).

Associated martingales

The next theorem gives the uniform convergence of W x n (z). Let

Ω 1 α = int z ∈ B η 2 (0) : mκ(αs) |mκ(z)| α < 1 and Ω γ 0 = 1<α≤γ 0 Ω 1 α .
(5.41)

Since the derivative at 1 of the function α → mκ(αs) [mκ(s)] α is equal to Λ * (s) -log m which is negative for s ∈ (-η 2 , η 2 ), we have, for these values of s, mκ(αs) [mκ(s)] α < 1 when α > 1 is close to 1. This shows that the open set Ω γ 0 contains the segment (-η 2 , η 2 ), so that (-η 2 , η 2 ) is the intersection of Ω γ 0 with the real axis. Theorem 5.4.2. Assume conditions L1-L3. Then the sequence (W x n (z)) n≥0 converges a.s. to some complex valued random variable W x (z), uniformly in z on any compact subset K ⊂ Ω γ 0 . Moreover, we have a.s., for all n ≥ 0,

sup z∈K |W x n (z) -W x (z)| ≤ M δ n , ( 5.42) 
where M is a positive and finite random variable and δ ∈ (0, 1), and W x (z) is analytic on Ω γ 0 .

Proof. The basic ideas here are the same as those used in the proof of Theorem 2 in Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF]. To prove the uniform convergence on a compact subset K ⊂ Ω γ 0 , it suffices to show that for each z 0 ∈ Ω γ 0 , the uniform convergence holds in a disc centred at z 0 . Given any z 0 ∈ Ω γ 0 , we can find 1 < α ≤ min{2, γ 0 } and a small η such that B 2η (z 0 ) ⊂ Ω 1 α and

c 1 = sup z∈B 2η (z 0 ) mκ(αs) |mκ(z)| α < 1. (5.43) For any N ≥ n, W x N +1 (z) -W x n (z) is analytic in z on B 2η (z 0 ), so by [18, Lemme 3], we deduce that for all n ≥ 0, sup N ≥n sup z∈Bη(z 0 ) |W x N +1 (z) -W x n (z)| ≤ ∞ k=n sup z∈Bη(z 0 ) |W x k+1 (z) -W x k (z)| ≤ 1 π 2π 0 ∞ k=n |W x k+1 z(t) -W x k z(t) |dt, (5.44) 
where z(t) = z 0 + 2ηe it , 0 ≤ t ≤ 2π. (This can be easily proved by Cauchy's formula.)
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E 2π 0 ∞ k=n |W x k+1 (z(t)) -W x k (z(t))|dt ≤ 2π sup z∈∂B 2η (z 0 ) ∞ k=n E|W x k+1 (z) -W x k (z)|, (5.45) 
where ∂B 2η (z 0 ) = {z ∈ C : |z -z 0 | = 2η}. Therefore, if the right hand side of (5.45) is finite for all n ≥ 0, then the right-hand side of (5.44) goes to 0 a.s. as n → ∞, so that a.s. the sequence (W x n (z)) converges uniformly on B η (z 0 ). Now we prove that the right hand side of (5.45) is finite. Notice that

W x k+1 (z) -W x k (z) = u∈T k e zS x u r z (X x u ) [mκ(z)] k r z (x) W X x u 1 (z) -1 . ( 5.46) 
Taking the α-th absolute moment at both sides of (5.46) conditional on F k and applying Lemma 1 of Biggins [START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], we obtain

E k |W x k+1 (z) -W x k (z)| α ≤ 2 α u∈T k e zS x u r z (X x u ) [mκ(z)] k r z (x) α E k |W X x u 1 (z) -1| α .
(5.47)

Since the function z → r z is analytic on B η 1 (0) and r 0 = 1, there is a constant

d 3 > 0 such that max x∈S |r z (x)| min x∈S |r z (x)| ≤ d 3 for all z ∈ B η 1 (0). (5.48) Recall that s is the real part of z. Because B 3η (z 0 ) ⊂ Ω 1 α ⊂ B η 2 (0) ⊂ B η 1 2 (0), we have z, αs 2 ∈ B η 1 2 (0) for z ∈ ∂B 2η (z 0 ). It follows from (5.48) that for all z ∈ ∂B 2η (z 0 ), e zS x u r z (X x u ) [mκ(z)] k r z (x) α ≤ mκ(αs) |mκ(z)| α k e αsS x u r αs(X x u ) [mκ(αs)] k r αs (x) |r z (X x u )| α r αs (x) |r z (x)| α r αs (X x u ) ≤ d α+1 3 mκ(αs) |mκ(z)| α k e αsS x u r αs(X x u )
[mκ(αs)] k r αs (x) .

(5.49)

On the other hand, from (5.36) and (5.48), we obtain the following estimation, for all

5.4. Associated martingales z ∈ ∂B 2η (z 0 ), E k |W X x u 1 (z) -1| α ≤ 2 α-1 E k |W X x u 1 (z)| α + 1 = 2 α-1 E k v∈T 1 (u) e zS X x u v r z (X X x u v ) mκ(z)r z (X x u ) α + 2 α-1 ≤ 2 α-1 κ(s) |κ(z)| α E k v∈T 1 (u) |r z (X X x u v )|r s (X x u ) |r z (X x u )|r s (X X x u v ) e sS X x u v r s (X X x u v ) mκ(s)r s (X x u ) α + 2 α-1 ≤ d 2α 3 2 α-1 κ(s) |κ(z)| α E sup x∈S (W x 1 (s)) α + 2 α-1 .
Combining this with (5.47) and (5.49) gives, for all z ∈ ∂B 2η (z 0 ),

E k |W x k+1 (z) -W x k (z)| α ≤ c mκ(αs) |mκ(z)| α k W x n (αs) κ(s) |κ(z)| α E sup x∈S (W x 1 (s)) α + 1 .
Taking expectation at both sides of this inequality and using Jensen's inequality, we obtain for all z ∈ ∂B 2η (z 0 ),

E|W x k+1 (z) -W x k (z)| ≤ c 1 α mκ(αs) |mκ(z)| α k α κ(s) |κ(z)| α E sup x∈S (W x 1 (s)) α + 1 1 α .
From (5.43), (5.37), the analyticity of κ(z) on ∂B 2η (z 0 ) ⊂ B η 1 (0) and the fact that

|κ(z)| > 0 for all z ∈ B η 1 (0), we obtain sup z∈∂B 2η (z 0 ) E|W x k+1 (z) -W x k (z)| ≤ Cc k α 1 , (5.50) 
This concludes that (5.45) is finite for all n ≥ 0. We have therefore proved that it is a.s. that the sequence (W x n (z)) converges uniformly on B η (z 0 ) for each z 0 ∈ Ω γ 0 , which implies the uniform convergence on each compact subset K ⊂ Ω γ 0 .

We now come to the speed of convergence (5.42). Clearly, it is enough to prove that there is a δ ∈ (0, 1) such that on each compact subset K ⊂ Ω γ 0 ,

δ -n sup z∈K |W x n+1 (z) -W x n (z)| n→∞ → 0 a.s. ( 5.51) 
From (5.44), (5.45) and (5.50), we have for each z 0 ∈ Ω γ 0 , there is η > 0 small enough Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020
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E sup z∈Bη(z 0 ) |W x n+1 (z) -W x n (z)| ≤ 2 ∞ k=n Cc k α 1 ,
where C and c 1 are constants which may depend on z 0 . Since K is compact, by Borel's theorem, K can be covered by a finite number of open balls B η i (z i ), i = 1, . . . , n 0 , so that there exist two constants C 1 > 0 and c 2 ∈ (0, 1) which may depend on K, such that for

n ≥ 0, E sup z∈K |W x n+1 (z) -W x n (z)| ≤ 2 ∞ k=n C 1 c k 2 ≤ C 2 c n 2 .
(5.52)

Taking δ ∈ (c 2 , 1) and using Fubini's theorem we see that

E ∞ n=0 δ -n sup z∈K |W x n+1 (z) -W x n (z)| ≤ C 2 ∞ n=0 c 2 δ n < ∞, so that ∞ n=0 δ -n sup z∈K |W x n+1 (z) -W x n (z)| < ∞ a.s.
Therefore, (5.51) is proved. This ends the proof of (5.42).

Finally, since a.s. each W x n (z) is analytic on Ω γ 0 and the sequence (W x n (z)) converges uniformly on each compact set of Ω γ 0 , a standard result of complex analysis (see e.g. Corollary 2.2.4 in Hörmander [START_REF] Hörmander | An introduction to complex analysis in several variables[END_REF]) gives the analyticity of W x (z) on Ω γ 0 .

In the following we introduce a new martingale and prove its uniform convergence and the analyticity of its limit. This is an important ingredient in the proof of Theorem 5.2.3 about the Berry-Esseen bound for the changed measure Z x s,n , which is crucial in establishing the main results of this paper. For z ∈ B η 1 (0), x ∈ S and ϕ ∈ B β , set

W x n (z) = u∈Tn e zS x u M z (r s ϕ)(X x u ) [mκ(z)] n r s (x) , n ≥ 0,
where M z is defined in (5.22) and (r s ϕ)(X x u ) := r s (X x u )ϕ(X x u ).

Theorem 5.4.3. Assume conditions L1-L3. Then the sequence ( W x n (z)) n≥0 is a martingale with respect to the filtration (F n ) and converges a.s. to some complex valued random Proof. To prove Lemma 5.5.3, we will use the Borel-Cantelli Lemma. We can obtain the required result once we prove that there exist a small η > 0 and a constant δ ∈ (0, 1) such that for any ε > 0,

∞ n=1 P(δ -n sup s∈(-η,η) |A n (s)| > ε) < ∞.
(5.55) By Markov's inequality,

∞ n=1 P(δ -n sup s∈(-η,η) |A n (s)| > ε) ≤ 1 ε ∞ n=1 δ -n E sup s∈(-η,η)
|A n (s)|.

(5.56)

Because Ω γ 0 is an open set containing 0, we can find a small ρ > 0 such that B ρ (0) ⊂ Ω 1 α for some 1 < α ≤ min{2, γ 0 }. Let η ∈ (0, ρ 3 ) whose value will be fixed later. Then B 3η (0) ⊂ B ρ (0). We see that for every n ∈ N, the function (5.66)

z → A n (z) =
Note that c 1 < 1 is independent of η. Let c 2 ∈ (1, 1 c 1 ). Since Λ is continuous on B η 1 (0) and Λ(0) = 0, there exists a small η 3 > 0 such that sup z∈Bη 3 (0) e [Λ(s)-Λ(z)] ≤ c 2 .

(5.67) Take η small enough such that η < η 3 . Since k n = n 2 , we have n -k n ≥ n 2 -1. So combining (5.65), (5.66), (5.67) we obtain for all η > 0 small enough,

E sup s∈(-η,η) |A n (s)| ≤ c(c 1 c 2 ) n-kn ≤ c(c 1 c 2 ) n 2 -1 .
Therefore, using (5.56) and taking δ ∈ (c 1 c 2 ) e kn[Λ(s)-Λ(z)] W x kn (s), (5.74) where 0 < a 1 < a 2 < 1 is defined in Lemma 5.3.1(4). In the last step we use the fact that r s ϕ β ≤ 3 r s β ϕ β ≤ c and that the map s → r s is analytic with r 0 = 1. Since

k n = n 2 , we have n -k n ≥ n 2 -1 ≥ k n -2, so 1-a 2 1-a 1 n-kn ≤ 1-a 2 1-a 1 n 2 -1 ≤ 1-a 2 1-a 1 kn-2 . Let c 1 ∈ 1, 1-a 1 1-a 2 .
Using the facts that the function Λ is continuous on B η 1 (0) and Λ(0) = 0, This completes the proof of (5.72). So the proof of (5.68) is finished.

The uniform bound of u∈Tn e zS x u (rsϕ)(X x u )

[mκ(z)] n rs(x) is an immediate consequence of (5.68) and the fact that W x (z) is analytic in z (by Theorem 5.4.3).

Proof of Theorem 5.5.2. For simplicity, we suppose that ϕ ≥ 0; otherwise we can consider the positive and negative parts of ϕ to conclude. Consider the distribution functions of finite measures: 

c 0 T u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) = O 1 √ n .
(5.79)

In the following, we denote by M i a positive and finite random variable. Let T := ησ √ n with η > 0 small enough such that the conclusion in Lemma 5.5.6 holds, where σ := inf s∈(-η,η) σ s > 0. By Lemma 5.5.6, we have sup s∈(-η,η) u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) ≤ M 1 . It remains to prove (5.78). We will prove this by showing that there exists a small η ∈ (0, η 2 ) such that as n → ∞, a.s.,

I 1 (n) + I 2 (n) = O 1 √ n , ( 5.80) 
where 

I 1 (n) =
( -it σs √ n ) k -1 ≤ e -t 2 2 + n ∞ k=3 Λ (k) (s) k! -it σs √ n k n ∞ k=3 Λ (k) (s) k! -it σ s √ n k ≤ e -t 2 4 n ∞ k=3 Λ (k) (s) k! -it σ s √ n k .
(5.88)

By choosing δ 1 small enough, we have for all s ∈ (-η, η) and |t| < δ (ii) the integral I 2 admits the following asymptotic expansion: Notice that for all s ∈ (-η, η), W x (s) > 0 a.s. Moreover, W x (s) is a.s. continuous in (-η, η) by the continuity and uniform convergence of W x n (s) on (-η, η). Combining this with (5.111), we get

1 σ √ n, n ∞ k=3 Λ (k) (s) k! -it σ s √ n k ≤ C |t| 3 √ n . ( 5 
I 2 = e
M 3 ≤ s √ nW x (s)I 2 ≤ M 4 .
(5.112)

We now come back to (5.108), and let s be defined by (5.104). Recall that for n ≥ n 0 , s ∈ which concludes the proof of (5.16). The proof of (5.17) can be carried out in a similar way as that of (5.16). The only difference is that, instead of using (5.102), we consider the equation √ n[Λ (s) -Λ (0)] = -σy, where 1 < y = o( √ n) and s ∈ (-η, 0). Since the rest of the argument is the same as that in the proof of (5.16), we omit the details.

  sup λ∈C |W n (λ) -W (λ)| n→∞ -→ 0 and W (λ) is analytic in V.
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 16 d × d random matrices (A u ) u∈U of the same law µ on the set of d × d matrices M (d, R), where d ≥ 1. The two families (N u ) u∈U and (A u ) u∈U are also assumed to be independent.
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 20131 Assume conditions C1 -C4. Then, a.s. for all n ≥ 1,

  M (d, R) be equipped with the operator norm : for any a ∈ M (d, R) we set a = sup x∈S d-1 |ax|, where | • | is a given vectorial norm on R d , and S d-1 = {x ∈ R d : |x| = 1} is the unit sphere in R d . Denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by the support of µ. Let us recall some definitions in matrix theory.

2 .

 2 For nonnegative matrices : (a) (Allowability) Every a ∈ Γ µ is allowable. (b) (Positivity) Γ µ contains at least one matrix belonging to int(M + ). (c) (Non-arithmeticity) The measure µ is non-arithmetic. Notice that when d = 1, the strong irreducibility and proximality conditions are always satisfied. It is known that when d ≥ 2, condition C5.1 implies C5.2.c (see [47, Proposition 4.6]). For both invertible matrices and nonnegative matrices, we will need a moment condition. For a ∈ M (d, R), set ι(a) := inf x∈S |ax|, and a • x := ax |ax| when ax = 0, where a • x is called the projective action of the matrix a on the vector x ∈ S d-1 . Then ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an invertible or nonnegative matrix a, N (a) = max{ a , ι(a) -1 }.
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 135 Assume the conditions ofTheorem 1.3.4. 
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 2 Berry -Esseen bound and Cramér moderate deviation expansion for a supercritical branching random walk 42 where (θ -, θ + ) ⊂ D denotes by the open interval on which θm (θ) m(θ) < log m(θ), i.e.
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  For a ∈ M (d, R), set ι(a) := inf x∈S |ax|, and a.x := ax |ax|
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 321 For invertible matrices, assume M1 if d > 1, and M3 if d = 1. For nonnegative matrices, assume M2 and M3. For both cases, assume additionally M4.
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 333 Assume the conditions of Theorem 3.2.1.
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 634 Proof of Theorem 3.2.1
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 341 (Smooth approximation of an indicator function) 1. Let A, B ⊂ S be non-empty closed sets with A ∩ B = ∅. Then there is a continuous function ϕ : S → [0, 1] such that ϕ(x) = 1 for all x ∈ A and ϕ(x) = 0 for all x ∈ B.
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 675 Proof of Theorem 3.2.2
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  and h ε are measurable and integrable}.We shall use the following result proved in[START_REF] Grama | Conditioned local limit theorems for random walks defined on finite Markov chains[END_REF] Lemma 5.2].

. 42 )

 42 It follows from the result proved in Step 3 that lim n→∞ sup (x,y)∈S×R |I(n, f , h) -K(n, f , h)| = 0.

. 43 )

 43 where the last inequality follows directly from the definition of I and K. By the result proved in Step 3 (applied to f = 1) and the bound (3.25) applied for K(n, 1, h), we see that I(n, 1, h) -K(n, 1, h) and I(n, 1, h) are bounded uniformly in x, y and n ≥ 1. Hence sup (x,y)∈S×R
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 7752 Proof of Theorem 3.2.2 Since f -f ∞ < ε and ε > 0 is arbitrary, this together with (3.43) implies lim sup n→∞ sup (x,y)∈S×R |I(n, f, h) -K(n, f, h)| = 0, which completes the proof of part (1) of Theorem 3.2.Proof of Theorem 3.2.2, part[START_REF] Asmussen | Branching random walks. I[END_REF]. For the proof of part (2), we use the conclusion of part (1) and the approximation of the indicator function by a continuous function (see Lemma 3.4.1). Because the argument is quite similar to the proof of part (2) of Theorem 3.2.1, we omit the details.
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 4 Central limit theorem and precise large deviations for branching random walks with products of random matrices 80 the initial position x: Y u = G u x, where G u = A u 1 ...un . . . A u 1 . (4.1) Denote by T the genealogical tree associated to the elements {N u : u ∈ U}. It is defined by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for i ∈ N, ui ∈ T if and only if 1 ≤ i ≤ N u ; 3) ui ∈ T implies u ∈ T. Let T n = {u ∈ T : |u| = n} be the set of particles of generation n, where |u| denotes the length of the sequence u and represents the number of generation to which u belongs; by convention |∅| = 0. The space R d is equipped with the Euclidean norm | • |. The position G u x of the particle u is completely described by two components: its norm |G u x| and its projection on the unit sphere S d-1 := {y ∈ R d , |y| = 1} denoted by
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 1 Introductionin R 2 or R 3 ), where we would like to know at time n how many infected individuals there are in a region with a given distance from the origin. The measure (B, C) → Z x n (B, C) gives more information. For example, when d = 2 andB = {e iθ : θ ∈ [θ 1 , θ 2 ]} is an arc, Z x n (B, (-∞, y]) counts the number of particles of generation n situated in the region{re iθ : θ ∈ [θ 1 , θ 2 ], r ∈ [0, e y ]}.When d = 1, x = 1 and A u = 0 for all u ∈ T, the measure defined by (4.3) is exactly the counting measure considered in the classical model of branching random walk on R starting from the origin 0 ∈ R, where the position S u of a particleu = u 1 • • • u n is given by S u = L u 1 + • • • + L u 1 ...un , with L u = log |A u |.So our model in the one dimensional case d = 1 reduces essentially to the classical (additive) branching random walk. For this reason, in the following we will focus on the case d ≥ 2.

  Let M (d, R) be equipped with the operator norm: for any a ∈ M (d, R) we set a = sup x∈S d-1 |ax|, where | • | is a given vectorial norm on R d , and S d-1 = {x ∈ R d : |x| = 1} is the unit sphere in R d . Denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by the support of µ. A matrix a ∈ M (

  For a ∈ M (d, R), set ι(a) := inf x∈S |ax|, and a • x := ax |ax| when ax = 0, where a • x is called the projective action of the matrix a on the vector x ∈ S d-1 . Then ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an invertible or nonnegative matrix a, N (a) = max{ a , ι(a) -1 }.

  When the matrices A u are nonnegative and s > 0, Part (1) has been established by Mentemeier [72, Proposition 4.4]. When d = 1, Part (
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 426 Assume the conditions of Theorem 4.2.4. Then, for any x ∈ S, any 4.3. Proof of Theorem 4.2.1
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 43 Proof of Theorem 4.2.1

. 35 ) 2 . ( 4 . 36 )

 352436 We split the above integral according to x ∈ [0, e] and x ∈ (e, m kn ]. UsingP(W * + 1 > x) ≤ 1, we see that e 0 xP(W * + 1 > x)dx ≤ e 2For the integral over (e, m kn ], using x1 {W * +1>x} ≤ (W * + 1) log η (W * + 1) log η x , we havem kn e xP(W * + 1 > x)dx ≤ E (W * + 1) log η (W * + 1)
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 43 Proof of Theorem 4.2.1

1 m 1 (

 11 1 < b < m and βη > 1, the three series ∞ n=1 kn , ∞ n=1 ( b m ) kn and ∞ n=1 kn log b) η converge. Therefore from (4.38), we get (4.31).
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 4 Central limit theorem and precise large deviations for branching random walks with products of random matrices 100 the proof of Lemma 4.3.2.
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 442 Let s ∈ (-η 1 , s ∞ ) and x ∈ S. Under conditions B1 and B2,
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 4 Central limit theorem and precise large deviations for branching random walks with products of random matrices 108 third gives a relationship between moment conditions on W x s,1 and on W x s, * := sup n W x s,n (see Proposition 4.5.3).
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 451 Under the conditions of Theorem 4.2.4, we have, for any continuous function f on S and any directly Riemann integrable function h on R, lim n→∞ sup (x,y)∈S×R
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 45 Proof of Theorem 4.2.4 relation on W x s : for k ≥ 1,
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  and the definition of Q x s , we haveEI n,1 ≤ σ s 2C √ 2πnE u∈T kn H(k n , G u x)1 {sS x u >kn(log[m κ(s)]-b)} = σ s 2C √ 2πnQ x s sS x 1 kn > k n (log[m κ(s)] -b) (4.89) (recall that 1 kn = (1, • • • , 1)is the sequence of length k n whose components are all equal to 1). If s = 0, then E[I n,1 ] = 0 by the choice of b. Hence we only need to consider the case where s = 0, which we assume below. As in the proof of Lemma 4.5.4, setting w = log[m κ(s)]-b s , we have w > Λ (s) if and only if s> 0 by the choice of b. From Proposition 4.5.2, there are constants 0 < c < 1 and C 1 > 0 such that

.90) 123 4 . 5 .

 45 Proof ofTheorem 4.2.4 
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 1454 (kn,Gux) } , where the last inequality holds because |Y u | < 1 H(kn,Gux) , and hence we have [H(k n , G u x)|Y u |] θ-1 < 125 Proof of Theorem 4.2.Using the facts that E kn [|Y u |] ≤ 2 and U ⊂ {sS x u > k n (log[m κ(s)] -b)}, we get that

  integral in the last expression. Take a constant 1 < d 2 < e b , we see that on U c , we have 1 CH(kn,Gux) ≥ 1 C r s (x)e bkn ≥ C 5 d kn 2 . Let n 0 ∈ N * be large enough such that [C 5 d kn 0 2 ] θ-1 > e. Using log z ≥ 1 for z ∈ [e, [C 5 d kn 2 ] θ-1 ], and log z ≥ (θ -1) log C 5 d kn 2 for z > [C 5 d kn 2 ] θ-1 , we see that when [CH(k n , G u x)] 1-θ > e and n > n 0 , we have [CH(kn,Gux)]

2 ,

 2 We choose θ sufficiently close to 1. Since E[W x s,kn ] = 1, k n ∼ j α ∼ n β , 1 < d 2 < e b and βδ > 3

  -kn (dy, dz), the =: RHS (4.100) .

T

  n = {u ∈ T : |u| = n} be the set of particles of generation n, where |u| denotes the length of the sequence u and represents the number of generation to which u belongs; by convention |∅| = 0.

1 +→ 1 +=

 11 set M (d, R) of d × d real matrices is equipped with the operator norm: a = sup x∈S d-1 |ax| for a ∈ M (d, R), where | • | is a given vectorial norm on R d , and S d-1 = {x ∈ R d : |x| = 1} is the unit sphere in R d . A matrix a ∈ M (d, R) is said to be proximal if it has an algebraic simple dominant eigenvalue. Denote by M + the set of matrices with nonnegative entries. A nonnegative matrix a ∈ M + is said to be allowable if every row and every column of a has a strictly positive entry. Let µ be a probability measure on M (d, R). Denote by Γ µ := [supp µ] the smallest closed semigroup of M (d, R) generated by the support of µ. We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function ϑ : S d-R such that ∀a ∈ Γ, ∀x ∈ V (Γ) : exp[it log |ax| -iθ + i(ϑ(a • x) -ϑ(x))] = 1, where S d-{x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive quadrant. Notice that when d = 1, we have S d-1 +

5. 2 .

 2 Main results (a) (Allowability) Every a ∈ Γ µ is allowable. (b) (Positivity) Γ µ contains at least one matrix belonging to int(M + ). (c) (Non-arithmeticity) The measure µ is non-arithmetic. For both invertible matrices and nonnegative matrices, we will need a moment condition. For a ∈ M (d, R), set ι(a) := inf x∈S |ax|, and a • x := ax |ax| when ax = 0, where a • x is called the projective action of the matrix a on the vector x ∈ S d-1 . Then ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an invertible or nonnegative matrix a, N (a) = max{ a , ι(a) -1 }.

  8) is proved in[START_REF] Buraczewski | On multidimensional Mandelbrot cascades[END_REF] Proposition 3.1] and[START_REF] Buraczewski | Precise large deviation results for products of random matrices[END_REF] Corollary 7.3] for positive matrices, and in[START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] Theorem 2.6 and Corollary 3.20] for invertible matrices. For both positive matrices and invertible matrices, the existence of η 1 > 0 and the property (5.8) for s ∈ (-η 1 , η 1 ) are proved in[START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] Proposition 3.1], where the following properties are also established: the functions s → κ(s) and s → r s (x) are strictly positive and analytic in (-η 1 , η 1 ), for x ∈ S. Moreover, it is proved (see[START_REF] Guivarc | Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions[END_REF] Lemma 3.5], [25, Lemma 6.2], [83, Propositions 3.12 and 3.14]) that, under conditions L1 and L2, the function Λ(s) = log κ(s) is finite and analytic on (-η 1 , η 1 ), and satisfies Λ (0) = γ, Λ (0) = σ 2 > 0, and Λ (s) > 0 ∀s ∈ (-η 1 , η 1 ).Denote γ k = Λ k (0), k ≥ 1. Throughout the paper, we write ζ for the Cramér series associated to Λ (see[START_REF] Petrov | Sums of independent random variables, Translated from the Russian[END_REF] Theorem VIII.2.2] for details):
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 5 Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices138 assume that m ∈ (1, ∞) and P(N = 0) = 0.

Theorem 5 . 4 . 1 .

 541 Assume conditions L1-L3. Then there is a constant η

153 5 . 5 .Lemma 5 . 5 . 3 .

 55553 Proof of Theorems 5.2.1 and 5.2.3 three lemmas. Under the conditions of Theorem 5.2.3, there exist two constants η ∈ (0, η 2 ) and δ ∈ (0, 1) such that δ -n sup s∈(-η,η) |A n (s)| n→∞ → 0, a.s.

Chapter 5 -From ( 5 . 5 . 3 From ( 5 .From ( 5 .

 555355 u∈T kn e zS x u r z (X x u ) [mκ(z)] kn r z (x) Y u n-kn (z) -E kn Y u n-kn (z)is well-defined as an analytic function on B η 1 (0). Recall that s is the real part of z. By Lemma 3 of Biggins[START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], we havesup s∈(-η,η) |A n (s)| ≤ sup z∈Bη(0) |A n (z)| ≤ 1 π 2π 0 |A n (z(t))|dt,where z(t) = 2ηe it , 0 ≤ t ≤ 2π. Note that, by Fubini's theorem,E sup s∈(-η,η) |A n (s)| ≤ 2π 0 E|A n (z(t))|dt ≤ 2π sup |z|=2η E|A n (z)|.(5.57)Consider now E|A n (z)| for |z| = 2η. Taking the α-th absolute moment of A n (z) Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices 154 conditional on F k and applying Lemma 1 of Biggins[START_REF] Biggins | Uniform convergence of martingales in the branching random walk[END_REF], we obtainE kn |A n (z)| α ≤ 2 α u∈T kn e zS x u r z (X x u ) [mκ(z)] kn r z (x) α E kn |Y u n-kn (z) -E kn Y u n-kn (z)| α . (5.58) Because B 3η (0) ⊂ B ρ (0) ⊂ B η 2 (0) ⊂ B η 1 2 (0), we see that if |z| = 2η, then z, αs 2 ∈ B η 1 2(0). Hence, by (5.48), we get for |z| = 2η,e zS x u (r z ϕ)(X x u ) [mκ(z)] kn r z (x) α ≤ mκ(αs) |mκ(z)| α kn e αsS x u r αs (X x u ) [mκ(αs)] kn r αs (x) |r z (X x u )| α r αs (x) |r z (x)| α r αs (X x u ) ≤ d 1+α 3 mκ(αs) |mκ(z)| α kn e αsS x u r αs (X x u ) [mκ(αs)] kn r αs (x).(5.59)We now estimate the expectation in (5.58). Using |a+b| α ≤ 2 α-1 (|a| α +|b| α ) ≤ 2(|a| α +|b| α ) and (5.48), we have for |z| = 2η,E kn |Y u n-kn (z) -E kn Y u n-kn (z)| α ≤ 2E kn |Y u n-kn (z)| α ≤ 2E kn   v∈T n-kn (u) e sS X x u v r s (X X x u v ) [mκ(s)] n-kn r s (X x u ) |r z ϕ(X X x u v )|r s (X x u ) |r z (X x u )|r s (X 58), (5.59) and (5.60), we have for all η > 0 small enough and |z| = 2η,E kn |A n (z)| α ≤ c mκ(αs) |mκ(z)| α kn κ(s) |κ(z)| α(n-kn) W x kn (αs) sup x∈S E(W x * (s)) α . (5.61) Since αs ∈ (-η 1 , η 1 ), (W x n (αs)) is a martingale, so E[W x n (αs)] = 1. Taking expectations at both sides of (5.61), we obtain for |z| = 2η, E|A n (z)| α ≤ c mκ(αs) Proof of Theorems 5.2.1 and 5.2.57), Jensen's inequality and (5.62), we get that that B 3η (0) ⊂ B ρ (0) ⊂ Ω 1 α and the definition of Ω 1 α 63), (5.64) and the choice of k n which implies that k n ≥ n -k n , we get E sup s∈(-η,η) |A n (s)| ≤ cc n-kn 1 sup |z|=3η e (n-kn)[Λ(s)-Λ(z)] sup x∈S x * (s)) α < ∞.

1 2 , 1 ,

 11 we get that∞ n=1 P(δ -n sup s∈(-η,η) |A n (s)| > ε) ≤ c εc 1 c 2
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 53554111555573 Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices 156This completes the proof of Lemma 5.5.Lemma Under the conditions of Theorem 5.2.3, there exist two constants η ∈ (0, η 2 ) and δ ∈ (0, 1) such thatδ -n sup s∈(-η,η) |B n (s)| n→∞ → 0 a.s.Proof. Using the branching property and the definition of Q x s (5.23), we have for u ∈ T kn ,E kn Y u n-kn (s) = E kn v∈T n-kn (u) e sS X x u v (r s ϕ)(X X x u v ) [mκ(s)] n-kn r s (X x u ) = E kn e sS X x u n-kn (r s ϕ)(X X x u n-kn ) κ n-kn (s)r s (X x u |B n (s)| ≤ u∈T kn e sS x u r s (X x u ) [mκ(s)] kn r s (x) sup x∈S |E Q x s [ϕ(X x n-kn )] -π s (ϕ)| ≤ W x kn (s) sup x∈S |E Q x s [ϕ(X x n-kn )] -π s (ϕ)|.By Theorem 5.4.2 and the bound (5.24), for η ∈ (0, η 2 ), there exist a constant c ∈ (0, 1) and a positive finite random variable M such that for all n ≥ 0,sup s∈(-η,η) |B n (s)| ≤ M c n-kn ≤ M c nTherefore the conclusion of Lemma 5.5.4 holds for each δ ∈ (c Under the conditions of Theorem 5.2.3, there exist two constants η ∈ (0, η 2 ) and δ ∈ (0, 1) such thatδ -n sup s∈(-η,η) |C n (s)| n→∞ → 0 a.s.Proof. This is an immediate consequence of Theorem 5.4.2 and the fact that |π s (ϕ)| ≤ ϕ ∞ . Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices 158 there is a constant η ∈ (0, η 2 ) such that sup The proof of (5.71) is similar to that of Lemma 5.5.3, and is omitted here. It is clear that(5.73) is an immediate consequence of Theorem 5.4.3. It remains to prove(5.72). By the branching property and the definition of the operator P z (see(5.21)), we haveE kn Ỹ u n-kn (z) = E kn v∈T n-kn (u) e zS X x u v (r s ϕ)(X X x u v ) [mκ(z)] n-kn r s (X x u ) = E kn e zS X x u n-kn (r s ϕ)(X X x u n-kn ) κ n-kn (z)r s (X x u ) = P n-kn z (r s ϕ)(X x u ) κ n-kn (z)r s (X x u ).Hence, by the decomposition (5.22) and Lemma 5.3.1(4), for any z ∈ B η 1 (0), we have|B n (z)| ≤ u∈T kn e zS x u r s (X x u ) [mκ(z)] kn r s (x)   P n-kn z (r s ϕ)(X x u ) κ n-kn (z)r s (X x u ) -M z (r s ϕ)(X x u ) r s (X x u ) zS x u r s (X x u ) [mκ(z)] kn r s (x) L n-kn z (r s ϕ)(X x u ) κ n-kn (z)r s (X x u ) ≤ L n-kn z B β →B β |k(z)| n-kn u∈T kn e sS x u r s (X x u ) [mκ(s)] kn r s (x) κ(s) |κ(z)| kn r s ϕ β min y∈S r s (y)
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 55 Proof of Theorems 5.2.1 and 5.2.3 there exist a small η ∈ (0, η 1 ) such that sup z∈Bη(0) e [Λ(s)-Λ(z)] ≤ c 1 .(5.75) By Theorem 5.4.2, for η ∈ (0, η 2 ) small enough, sup s∈(-η,η) W x kn (s) ≤ M, where M is a positive and finite random variable. This together with (5.74) and (5.75) implies that for η ∈ (0, η 2 ) small enough,sup z∈Bη(0) |B n (z)| ≤ c 2 M c 1 (1 -a 2 ) 1 -a 1 kn n→∞→ 0 a.s.

F

  s,n (y) = u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) 1 S x u -nΛ (s) σs √ n ≤y , y ∈ R, H s,n (y) = u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) Φ(y), y ∈ R,and their characteristic functions at -t:f s,n (t) = R e -ity dF s,n (y), h s,n (t) = Re -ity dH s,n (y), t ∈ R.

161 5 . 5 . 3 Hence ( 5 . 79 )

 553579 Proof of Theorems 5.2.1 and 5.2.is proved since sup s∈(-η,η)c 0 T u∈Tn e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x) ≤ c 0 M 1 ησ √ n .

Chapter 5 -=Since γ 2 =t 3 +169 5 . 6 . 2 -t 3 ζ 2 2 + y 3 √Chapter 5 -eI 1 +

 52356232351 Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices r s (x) e -nsΛ (s) κ -n (s) u∈Tn e -sσs √ nV x u e sS x u ϕ(X x u ) [mκ(s)] n r s (x) s) is analytic on (-η 1 , η 1 ) with Λ(0) = 0, it has the Taylor expansionΛ(s) = ∞ k=1 γ k k! s k , where γ k = Λ (k) (0), s ∈ (-η 1 , η 1 σ 2 > 0,the equation (5.103) has the unique solution given by . . . , (5.104) which converges for |t| small enough (see [75, Theorem VIII.2.2] for details). From (5.100) and (5.101), we see thatsΛ (s) -Λ(s) = ∞ k=2 k -1 k! γ k s k .Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020 Proof of Theorem 5.2.2Choosing s given by (5.104), we obtain sΛ (s) -Λ(s) = t 2 ζ is the Cramér series defined in (5.9), which converges for |t| small enough (see [75, Theorem VIII.2.2] for details). Coming back to the expression of I (cf. (5.99)), using (5.105) together with (5.102) and the fact that e -nsΛ (s) κ -n (s) = e -n[sΛ (s)-Λ(s)] , we haveI = r s (x)e s)] n r s (x) 1 {V x u >0} = r s (x)ey is the finite measure on R defined by:Z x s,n (B 2 ) = u∈Tn e sS x u ϕ(X x u ) [mκ(s)] n r s (x) 1 {V x u ∈B 2 } , B 2 ⊂ R. Its mass satisfies E[Z x s,n (R)] ≤ ϕ rs ∞ .Since t = y √ n → 0 as n → ∞, by (5.104) we have s → 0 + as n → ∞. Hence, for sufficiently large n 0 and all n ≥ n 0 , we have s ∈ (0, η) where η is defined in Theorem 5.2.3. Therefore, denotingl n,s (y) = Z x s,n (-∞, y] -W x (s)π s ϕ r s Φ(y), y ∈ R,we get from Theorem 5.2.3 that for all n ≥ n 0 ,sup y∈R |l n,s (y)| ≤ M √ n , (5.107)where M is a positive and finite random variable independent of n and s. In the following,Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020 Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices 170 we write M i for a positive and finite random variable. Notice that -sσs √ ny dl n,s (y) + W x (s)π s (ϕr -1 s ) W x (s)π s (ϕr -1 s )I 2 .(5.108)Estimate of I 1 . Using the integration by parts and (5.107), we get for n ≥ n 0 ,|I 1 | ≤ |l n,s (0)| + sσ s √ n ∞ 0 e -sσs √ ny |l n,s (y)|dy ≤ 2M √ n . (5.109) Estimate of I 2 . The integral I 2 appears in the proof of Cramér's large deviation expansion theorem for sums of i.i.d random variables (see [75, Theorem VIII.2.2]), where the following results have been proved: (i) there exist some positive constants c 1 , c 2 such that for all s ∈ (-η, η) and n large enough, c 1 ≤ sσ s √ nI 2 ≤ c 2 ;

  of σ s , the mapping s → σ s is strictly positive and continuous on (-η, η). Hence, there exist constants c 3 , c 4 > 0 such thatc 3 ≤ s √ nI 2 ≤ c 4 .(5.111)

5. 6 . 2 = 2 =[ 1 -

 6221 Proof of Theorem 5.2.2 (0, η). From (5.108),(5.109) and (5.112), we have, as n → ∞, (dy) = W x (s)I 2 π s (ϕr -1 s ) +I 1 W x (s)I W x (s)I 2 π s (ϕr -1 s W x (s)I 2 π s (ϕr -1 s ) + O(s) .Substituting this into (5.106) and using (5.110), we obtainI = r s (x)W x (s)e y 3 √ n ζ( y √ n ) [1 -Φ(y)] 1 + O y √ n π s (ϕr -1 s ) + O(s) .(5.113)According to Theorem 5.4.2, W x (s) is analytic on (-η, η) and using the mean theorem we see that|W x (s) -W x | = |W x (s) -W x (0)| ≤ M 5 s.On the other hand, by [83, Lemma 6.1], we have r s -1 ∞ ≤ cs and |π s (ϕr -1 s ) -ν(ϕ)| = | νs(ϕ) νs(rs) -ν(ϕ)| ≤ cs ϕ β . Since s = O y √ n by (5.104), it follows from (5.113) that I = 1 + O(s) W x + O(s) e Φ(y)] ν(ϕ) + O y √ n ,
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.29) Corollary 1.3.8. Suppose the conditions C5, C6.

  

	1. Assume (1.25) together with

  ) converges in L 1 for some x ∈ S if and only if

	Notice that by Sheffé's theorem, for each x ∈ S, if (1.28) holds, then W x s,n → W x s in L 1 .
	So the martingale (W x s,n	
		satisfies the Furstenberg-Kesten
	condition : there exists a constant C > 1 such that
	max 1≤i,j≤d |A 1 (i, j)| min 1≤i,j≤d |A 1 (i, j)|	≤ C a.s.
	Then the three conditions (1.26), (1.29) and (1.30) are equivalent, and (1.28) holds
	for all x ∈ S if and only if (1.25) and (1.30) hold. Moreover, if (1.28) holds for
	some x ∈ S, then (1.27) holds for all x ∈ S.	

Corollary 1.3.10. Assume conditions C5 and C6. Assume

  also that (1.32) holds with

	Introduction		32
	s = 0. Then		
			sz g(z)dz, P-a.s.,
	where π s	f rs	= νs(f ) νs(rs) , and σ 2 s = Λ (s).
	When s = 0 this result reduces to the following local limit theorem for the counting
	measure Z x n :	

Theorem 1.3.13. Assume conditions C5-C8. Then, we have for any

  

		3		
	2 120γ 9/2	3	t 2 + . . .	(1.34)
	which converges for |t| small enough. Our second result is the Cramér's moderate deviation
	expansion for Z x n .			

1.3.14. Assume conditions C5-C8. Then

  

		, for any x ∈ S and ϕ ∈ B β there
	exists a constant 0 < η < η 2 such that a.s., for n ≥ 1,
	sup	sup
	s∈(-η,η)	y∈R u∈Tn

  2.1-2.2.3, are presented in Section 2.2. Theorems 2.2.1 and 2.2.3 about the Berry-Esseen bound are proved in Section 2.3, while Theorem 2.2.2 about the moderate deviation is established in Section 2.4.

  Chapter 3 -Asymptotic Expansions in central and local limit theorems for products of random matrices

								68
	u, v ∈ C,						
	|e u -1 -v| ≤ |u -v| +	1 2	|v| 2 e max(|u|,|v|) .	(3.14)
	Using (3.14) with u = -	im 3 t 3 6 √ n	+ o	t 3 √ n	and v = -	im 3 t 3 6 √ n	, we have

  Chapter 3 -Asymptotic Expansions in central and local limit theorems for products of random matrices

	74
	By (3.28) and (3.21),

  .34) Putting together (3.30), (3.32) and (3.34), we obtain

	3.5. Proof of Theorem 3.2.2

  .39) Chapter 3 -Asymptotic Expansions in central and local limit theorems for products of random matrices 76 As in the preceding, in the last display, as n → ∞, the first and third terms tend to 0 uniformly in x ∈ S and y ∈ R by the result proved in Step 2; the second one is bounded

	by Cν(f )3ε (by (3.25) and (3.36)). Therefore,
	lim sup n→∞	sup (x,y)∈S×R	|I(n, f, h) -I(n, f, h + η,ε )| ≤ Cν(f )3ε.	(3.40)
	Combining (3.38) and (3.40), we obtain
	lim sup n→∞	sup (x,y)∈S×R

  and (4.[START_REF] Biggins | Measure change in multitype branching[END_REF]) hold; moreover, when the martingale converges in L 1 for some x ∈ S, then it converges in L 1 for all x ∈ S.

	.18)
	Corollary 4.2.3. Suppose the conditions B1, B2.
	1. Assume (4.14) together with
	EN log

+ N < ∞ and E A 1 s log + A 1 < ∞. (4.19)

Then (4.

[START_REF] Biggins | The central limit theorem for the supercritical branching random walk, and related results[END_REF]

) holds for all x ∈ S.

2. Assume that the random matrice

A 1 = (A 1 (i, j))

satisfies the Furstenberg-Kesten condition: there exists a constant C > 1 such that max 1≤i,j≤d |A 1 (i, j)| min 1≤i,j≤d |A 1 (i, j)| ≤ C a.s. (4.20) Then the three conditions (4.15), (4.18) and (4.19) are equivalent, and (4.17) holds for all x ∈ S if and only if (4.14) and (4.19) hold. Moreover, if (4.17) holds for some x ∈ S, then (4.16) holds for all x ∈ S. Notice that by Sheffé's theorem, for each x ∈ S, if (4.17) holds, then W x s,n → W x s in L 1 . So the martingale (W x s,n ) converges in L 1 for some x ∈ S if and only if (4.14)

  .26) := sup n {W n }, which is proved in Liang and Liu [64, Theorem 1.2].

	Lemma 4.3.2. Under the hypothesis of Theorem 4.2.1, then B n n→∞ -→ 0 P-a.s. . For the proof of Lemma 4.3.1, We shall use the following result on the weighted (4.27) moments of W Lemma 4.3.3. Under the hypothesis of Theorem 4.2.1, then with products of random matrices 94 E(W Chapter 4 -Central limit theorem and precise large deviations for branching random walks Proof of Lemma 4.3.1. By definition, A n = 1 m kn u∈T

* * + 1) log η (W * + 1) < ∞. (4.28) kn Y n,u , where

  n βη and βη > 1. So (4.39) is proved. So the proof of Lemma 4.3.1 is finished.

	Chapter 4 -Central limit theorem and precise large deviations for branching random walks
	with products of random matrices	98
	The proof of Lemma 4.3.2 will be based on the following central limit theorem on the
	couple (X x n , S x n ) (see Theorem 2.1, part (2) in [22]).
	Lemma 4.3.4. Under the hypothesis of Theorem 4.2.1, for any measurable set B ⊆ S
	with ν(∂B) = 0, we have
	lim n→∞	sup (x,t)∈S×R

  n 101 4.4. Proof of Theorem 4.2.2 and Corollary 4.2.3 exists a.s. with values in R + . For u ∈ U, denote

  .46) 

	Chapter 4 -Central limit theorem and precise large deviations for branching random walks	
	with products of random matrices	102
	4.4.1 Proof of Theorem 4.2.2	
	Sufficient condition	
	We assume conditions (4.14) and (4.15), together with B1 and B2, and we will prove
	(4.44) which, by Lemma 4.4.1, will imply that E[W x s ] = 1. By the definition of Q x s (cf.
	(4.43)), we have	

  By Theorem 4.2.2, to prove the second part of Corollary 4.2.3, it is enough to show that (4.15), (4.18) and (4.19) are all equivalent. Now we prove the equivalence according to the scheme: (4.15) ⇒ (4.18) ⇒ (4.19) ⇒ (4.15). The implication (4.15) ⇒ (4.18) is obvious; the implication (4.19) ⇒ (4.15) is just proved above in part (1). So we only need to show that (4.18) ⇒ (4.19). Set for k ≥ 1,

	107	4.5. Proof of Theorem 4.2.4
	(2)	

3, (4.19) implies (4.15). This ends the proof of the fist part of Corollary 4.2.3.

  .72) 

	Chapter 4 -Central limit theorem and precise large deviations for branching random walks
	with products of random matrices	114
	Fubini's theorem and hypothesis (4.22), we have
		∞
	sup	
	x∈S	n=1

  Central limit theorem and precise large deviations for branching random walks with products of random matrices 124 where I n,1 and I n,2 are defined in Step 1. Therefore, from (4.90) and (4.91), we get

	Chapter 4 -			
				1 CH(kn,Gux) }
	=	σ s	C √ 2πn	(I n,1 + I n,2 ),

  .94) We split the above integral according to z ∈ [0, e] and z ∈ (e, [CH(k n , G u x)] 1-θ ]. For the integral over z ∈ [0, e], we use

	Chapter 4 -Central limit theorem and precise large deviations for branching random walks
	with products of random matrices				126
	For the integral over z ∈ (e, [CH(k n , G u x)] 1-θ ], we use
	E kn (W	X x u s,n-kn + 1)1	W	X x u s,n-kn +1	θ-1	>z
	≤	θ -1 log δ z	E kn (W	X x kn s,n-kn + 1) log δ (W	X x kn s,n-kn + 1) ≤	C 3 (θ -1) log δ z	,
	where C 3 = sup x∈S E (W x s, * + 1) log δ (W x s, * + 1) < ∞ by Proposition 4.5.3. Hence, by
	(4.94),						
		E kn (W s,n-kn + 1)1 X x u	W s,n-kn +1 X x u	θ-1	>z	≤ E kn (W	X x u s,n-kn + 1) = 2.

  1-θ > e and n ≤ n 0 , the above inequality (4.97) remains valid by 4.5. Proof of Theorem 4.2.4 choosing C 6 large enough such that C 6

  2 /2 dt is the distribution function of the standard normal law and M is a finite and positive random variable.

	This is a Berry-Esseen type bound for the counting measure Z x n with suitable norming
	because the sum in (5.14) is an integral with respect to Z x n :
	u∈Tn

  .33) Since the functions s → r s and s → κ(s) are strictly positive and analytic on (-η 1 , η 1 ) and r 0 = 1, κ(0) = 1, there are two constants d 1 , d 2 > 0 such that max x∈S r s (x) min x∈S r

s (x) ≤ d 1 for all s ∈ (-η 1 , η 1 )

(5.34)

and sup

  Limit theorems for branching random walks and products of random matrices Thi ThuyBui 2020 Chapter 5 -Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices where the last equality holds by the definition of λ s,it (see(5.27)).Notice that F s,n (-∞) = H s,n (-∞) = 0, F s,n (+∞) = H s,n (+∞) = u∈Tn rs(x) ,F s,n and H s,n are non-decreasing on R, and H s,n is differentiable on R. So by Esseen's smoothing inequality (see [75, Theorem V.2.2.]), for all T > 0 and s ∈ (-η 1 , η 1 ), sup where c 0 is a positive constant. Therefore, to prove Theorem 5.5.2, it suffices to show that there exists a small η ∈ (0, η 2 ) such that as n → ∞, a.s.,

										160
	By straightforward calculations we have				
	h s,n (t) =	u∈Tn	e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x)	e -t 2 2		(5.76)
	f s,n (t) =	u∈Tn	e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x)	e -it	S x u -nΛ (s) σs √ n
	=	u∈Tn	e (s-it σs √ n )S x u (r s ϕ)(X x u ) [mκ(s -it σs √ n )] n r s (x)	 	κ(s -it σs √ κ(s)	n )	 n 	e	itnΛ (s) σs √ n
	=	u∈Tn	e (s-it σs √ n )S x u (r s ϕ)(X x u ) [mκ(s -it σs √ n )] n r s (x)	λ n s, -it σs n √	,	(5.77)
										e sS x u (rsϕ)(X x u )
										[mκ(s)] t dt
						+	c 0 T u∈Tn	e sS x u (r s ϕ)(X x u ) [mκ(s)] n r s (x)	,
	sup s∈(-η,η)	T -T	f s,n (t) -h s,n (t) t	dt = O	1 √ n	,	(5.78)
	and								
		sup							
		s∈(-η,η)						

n y∈R |F s,n (y) -H s,n (y)| ≤ 1 π T -T f s,n (t) -h s,n (t)

  With this notation and using (5.76) and (5.77), we haveI 1 (n) ≤ I 11 (n) + I 12 (n),Chapter 5 -Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices 162 For I 11 (n), by Taylor's formula and the fact that Λ (s) = σ 2 s , we have By choosing δ 1 small enough, we have for all s ∈ (-η, η) and |t| < δ 1 σ √ n, By Lemma 5.5.6, there is a constant η 4 small enough such that for all n ≥ 0, Notice that U n is a.s. analytic on B η 1 (0). Let η, δ 1 > 0 be small enough such that η + iδ 1 ∈ B η 4 3 (0). By the mean value theorem, for s ∈ (-η, η) and t By the Cauchy's formula, when z ∈ B η 4 2 (0), Hence, by (5.85) and the fact that |w -z| ≥ η 4 6 for z ∈ B η 4 3 (0) and |w| = η 4 2 , we have sup Combining this with (5.84), (5.86) and the fact that σ s > σ for all s ∈ (-η, η), we obtain I 11 (n) ≤ sup For I 12 (n), using (5.81), the inequality |e z -1| ≤ |z|e |z| for all z ∈ C and (5.82), we obtain

	163							5.5. Proof of Theorems 5.2.1 and 5.2.3
		λ n s, -it σs √ n	= e n[Λ(s-it σs √ n )-Λ(s)+Λ (s) it σs √ n ] = e n ∞ k=2 Λ (k) (s) k! ( -it σs √ n ) k U n (z) = 1 2πi |w|= η 4 2 U n (w) (w -z) 2 dw.
				= e -t 2 2 e	n	∞ k=3	Λ (k) (s) k!	( -it σs √ n ) k	.	(5.81)
		∞ k=3	Λ (k) (s) k! z∈B η 4 3	-it σ s √ n (0) |U n (z)| ≤ k ≤	t 2 4n 18M 2 , η 4	.	(5.82)
	and so, from (5.81),					
				λ n s, -it σs n √ s∈(-η,η) σ s 18M 2 ≤ e -t 2 4 . √ nη 4 |t|<δ 1 σ √	n	e -t 2 4 dt ≤	M 3 √ n	.	(5.83) (5.87)
		λ n s, -it σs n √	√ -e -t 2 n 2	e -t 2 4 |t| ≤ e -t 2 U n s -2 e ∞ σ s it √ Λ (k) (s) n n k=3 k!	-U n (s) dt.	(5.84)
				sup 2 |z|= η 4	u∈Tn |U n (z)| ≤ M 2 . e zS x u (r s ϕ)(X x u ) [mκ(z)] n r s (x)	.	(5.85)
								σs	√	n ∈ (-δ 1 , δ 1 ), we
	have						
	where	U n (s -I 11 (n) = sup it σ s √ n ) -U n (s) ≤ s∈(-η,η) |t|<δ 1 σ √ ≤	|t| σ s √ n λ n n s, -it t∈(-δ 1 ,δ 1 ) sup σs √ n t U n s -U n (s -it σ s √ |t| σ s √ n sup 3 z∈B η 4 (0) |U n (z)|.	it σ s √ n -U n (s) dt ) n	(5.86)
		I 12 (n) = sup s∈(-η,η) |t|<δ 1 σ	√	n	λ n s, -it σs √ n	-e -t 2 2 t	U n (s)	dt.

sup s∈(-η,η) |t|<δ 1 σ √ n f s,n (t) -h s,n (t) t dt, I 2 (n) = sup s∈(-η,η) δ 1 σ √ n≤|t|≤ησ √ n f s,n (t) -h s,n (t) t dt,

with δ 1 ∈ (0, η) whose value will be fixed later.

Control of I 1 (n). Denote for z = s + it with s ∈ (-η, η) and t ∈ R,

U n (z) =

Therefore, for η and δ 1 small enough,

I 11 (n) ≤ sup s∈(-η,η) |t|<δ 1 σ

  .89) From (5.88) and (5.89), we have for all s ∈ (-η, η) and |t| < δ 1 σChapter 5 -Berry-Esseen bound and precise moderate deviations for branching random walks with products of random matrices 164 (5.90) and the fact that ∞ 0 t 2 e -t 2 4 dt < ∞ implies thatControl of I 2 (n). Using the constraint |t| ≥ δ 1 σ |U n (s)| ≤ M 5 e -t 2 2 .Hence, from (5.92), to prove thatI 2 (n) = O 1√ n , it remains to show that there exist a small η ∈ (0, η 2 ) such that as n → ∞, a.s., By the branching property, we have the following decomposition: for n ≥ 0 and k n = n 2 ,

	I 12 (n) ≤		C sup s∈(-η,η) |U n (s)| √ n	0	∞	t 2 e -t 2 4 dt ≤	M 4 √ n	.	(5.91)
	Putting together (5.87) and (5.91), we get I 1 (n) = O 1 √ n .
											√	n, we have
	I 2 (n) ≤	1 δ 1 σ √	n	sup		
	≤	1 δ 1 σ √	n	sup s∈(-η,η) δ 1 σ	√	n≤|t|≤ησ	√	n	(|f s,n (t)| + |h s,n (t)|)dt	(5.92)
	By (5.76) and Lemma 5.5.6, for η > 0 small enough and δ 1 σ	√	n ≤ |t| ≤ ησ	√ n,
	sup		|h s,n (t)| ≤ e -t 2 2	sup
	s∈(-η,η)						s∈(-η,η)
	This implies that									
	1 δ 1 σ √	n	sup s∈(-η,η) δ 1 σ	√	n≤|t|≤ησ	√	n	|h s,n (t)|dt ≤	M 6 √ n	.
	1 δ 1 σ √	n	λ n s, -it σs √ n s∈(-η,η) δ 1 σ sup √ n≤|t|≤ησ t -e -t 2 2 √ n |f s,n (t)|dt = O ≤ C √ n t 2 e -t 2 4 . √ 1 n	.	√ n,	(5.90) (5.93)

By Lemma 5.5.6, U n (s) is a.s. bounded uniformly in s ∈ (-η, η). This together with Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020

s∈(-η,η) δ 1 σ √ n≤|t|≤ησ √ n |f s,n (t) -h s,n (t)|dt

f s,n (t) = A s,n (t) + B s,n (t),

(5.94) 

2.3. Proof of Theorems 2.2.1 and 2.2.3
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represents the number of descendants of u at time n in the region characterized by (B, C -S x u ), and C-S x u = {y-S x u : y ∈ C}. In this section, we consider C = (-∞, nγ+tσ

For simplicity, we will use the following notation:

Notice that Z X x u n-k (S, R) is the population size of generation n -k of the Galton-Watson process beginning from the particle u (whose genealogical tree is the shifted tree of T at u). So Z X x u n-k (S, R) and W X x u n-k do not depend on the position of u.

For conditional probabilities and expectations, we write

We obtain the following decomposition from (4.24), which will play a key role in our approach: We write

where

Control of I n,1 (x). Using the facts that h is an increase function and

where Ws,1 = max x∈S W x s,1 . Set U = d 1 e -bn Ws,1 ≥ x 0 and its complement U c = d 1 e -bn Ws,1 < x 0 . From the definition and the property (4.67) of h, we have

We observe that d 1 e -bn Ws,1

. By which proves the first inequality of the lemma.

Proof of Theorem 4.2.4

By the definition of Λ * (q s ) and Z x n (dy, dz), we have

Set h(z) = e -sz g(z), z ∈ R. For n ≥ 1 and 0 ≤ k ≤ n, we have the decomposition

where W X x u s,n-kn (dy, dz) is the probability measure defined as follows: for measurable sets B ⊂ S and C ⊂ R, 
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The space R d is equipped with the Euclidean norm | • |. The position G u x of the particle u is completely described by two components: its norm |G u x| and its projection on the unit sphere S d-1 := {y ∈ R d , |y| = 1} denoted by

Accordingly, we consider the following counting measure of particles of generation n which describes the configuration of the branching random walk at time n: for measurable sets

where for a set D, 1 D denotes its indicator function.

In [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF], a central limit theorem for the counting measure Z x n (with the starting point x ∈ S d-1 ) was established for both the case where the matrices A u are nonnegative, and the case where the matrices A u are invertible. It implies that, under suitable conditions, for some constants γ, σ explicitly defined (see (5.5) and (5.6)) , the counting measure

) on R with a suitable norming converges to the standard normal law. In [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF], a precise large deviation result of Bahadur-Rao type was also established, which gives in particular the exact asymptotic of Z x n S d-1 , [na, +∞) for a > γ.

In this paper, our first objective is to strengthen the central limit theorem in [START_REF] Bui | Central limit theorem and precise large deviations for branching random walks with products of random matrices[END_REF] to a Berry-Esseen bound for the counting measure Z x n with a target function ϕ on X x u : see Theorem 5.2.1. With ϕ = 1, it implies that, under suitable conditions, for any x ∈ S d-1 and n ≥ 1, we have, a.s.

where 

)

(5.17)

An important step in the proof of the moderate deviation expansion is to establish a Berry-Esseen bound for the changed measure Z x s,n defined by for measurable sets 

where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Z x s,n because, similar to the case of Theorem 5.2.1, the sum in (5. [START_REF] Biggins | Measure change in multitype branching[END_REF]) is an integral with respect to Z x s,n :

(5.20)

Preliminary results on products of random matrices

Preliminary results on products of random matrices

In this section we recall some spectral gap properties stated in [START_REF] Xiao | Berry-Esseen bound and precise moderate deviations for products of random matrices[END_REF] which will be used for the proofs of main results.

Define the operator P z on C(S) by

Denote by L(B β , B β ) the set of all bounded linear operators from B β to B β equipped with the operator norm

We write B β for the topological dual of B β endowed with the norm ν

for any linear functional ν ∈ B β . For any η > 0, set B η (0) = {z ∈ C : |z| < η} for the ball with center 0 and radius η in the complex plane C.

Lemma 5.3.1. Assume conditions L1 and L2.

There exists a small η 1 ∈ (0, η 0 ) such that for any z ∈ B η 1 (0) and n ≥ 1, we have the decomposition

where the operator M z is a rank one projection on B β , the mappings on B η 1 (0),

are well-defined under the normalizing conditions ν z (1) = ν(r z ) = 1. All these mappings are analytic in B η 1 (0), and possess the following properties:

2. for any z ∈ B η 1 (0), P z r z = κ(z)r z and ν z P z = κ(z)ν z ;

3. κ(s) and r s are real-valued and satisfy κ(s) > 0 and r s (x) > 0 for any s ∈ (-η 1 , η) and x ∈ S;

Proof of Theorems 5.2.1 and 5.2.3

variable W x (z), uniformly in z on any compact subset K ⊂ Ω γ 0 , and the limit W x (z) is analytic on Ω γ 0 .

Proof. The fact that ( W x n (z), F n ) n≥0 is a martingale can be easily shown: it suffices to notice that

, where T 1 (u) represents the descendants of u ∈ T n at time n + 1. Moreover, by the branching property, the definition of P z (5.21) and Lemma 5.3.1(1), we have for u ∈ T n ,

The proof of the uniform convergence and the analyticity of the limit is the same as in the proof of Theorem 5.4.2, whose details are omitted. 

Proof of

where M is a positive and finite random variable and δ ∈ (0, 1). 

where M is a positive and finite random variable (independent of s).

Proof of Theorem 5.5.1

The following decomposition which follows from the branching property will play a key role in our approach with a delicate choice of k for 0

.

(5.53)

Recall that by our definition, for u ∈ T k , T n-k (u) represents the descendants of u at time n.

For each n, we choose an integer k n = n 2 , which is the least integer greater than or equal to n 2 . For brevity, we denote for u ∈ T kn ,

.

Then by (5.53), the following decomposition holds:

where

By virtue of the decomposition (5.54), we shall divide the proof of Theorem 5.5.1 into 5.5. Proof of Theorems 5.2.1 and 5.2.3

Proof of Theorem 5.5.2

To prove Theorem 5.5.2, we need the following result.

Lemma 5.5.6. Under the conditions of Theorem 5.5.2, there is a constant η ∈ (0, η 2 ) such that

(5.68)

[mκ(z)] n rs(x) is a.s. bounded by a positive and finite random variable uniformly in z ∈ B η (0) and n ≥ 0.

Proof. By the branching property, for k ≤ n,

As before, for each n, we take k n = n 2 . For brevity, we denote for u ∈ T kn ,

.

Then by (5.69), the following decomposition holds:

where

By virtue of the decomposition (5.70), in order to prove (5.68), it suffices to show that 

For A s,n (t), using the same argument as in the proof of Lemma 5.5.3, we can prove that for η > 0 small enough, there exists δ ∈ (0, 1) such that sup s∈ (-η,η) sup

(5.95)

For B s,n (t), using the branching property and the definitions of Q x s (see (5.23)) and R s,it (see (5.25)), we have for u ∈ T kn ,

Therefore, by (5.26) and Theorem 5.4.2, there is a constant a ∈ (0, 1) such that for
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(5.96) From (5.94), (5.95) and (5.96), we obtain for c 1 = max{δ, a

which implies (5.93). This concludes that I 2 (n) = O 1 √ n , which ends the proof of (5.80) and (5.78). So Theorem 5.5.2 is proved.

Proof of Theorem 5.2.2

For y ∈ [0, 1], Theorem 5.2.2 is a direct consequence of Theorem 5.2.1, as we will see in the following. For n ≥ 1, We now deal with the case 1 < y = o( √ n). We can suppose that ϕ ≥ 0 by considering the positive and negative parts of ϕ. We will focus on the proof of (5.16), as the proof of (5.17) is similar. For u ∈ (N * ) n , set