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Théorémes limites pour les marches aléatoires avec
branchement et produits de matrices aléatoires

Résumé.

L’objectif principal de ma these est d’établir des théoremes limites pour une marche
aléatoire avec branchement gouvernée par des produits de matrices aléatoires. La these
est composée de quatre chapitres.

Le chapitre 2 est consacré au modele classique d’'une marche aléatoire avec branche-
ment, dans lequel chaque particule donne naissance a un nombre aléatoire de particules
de la génération suivante, qui se déplacent sur la ligne réelle; le nombre d’enfants et les
déplacements des enfants suivent une loi fixe. Nous établissons une borne Berry-Esseen
et une expansion modérée de type Cramér pour la mesure de comptage qui compte le
nombre de particules de n-eme génération située dans une région donnée.

Le chapitre 3 est consacré a 1’étude des produits de matrices aléatoires qui sera utilisé
dans les chapitres suivants pour 1’étude la marche aléatoire avec branchement gouver-
née par des produits de matrices aléatoires. Soit (A,,),>1 une suite de matrices aléatoires
réelles de type d x d, indépendantes et identiquement distribuées. Considérons le produit

Gn = A, ... Ay et la marche aléatoire (G, z), ou x est un point de départ avec la norme

Gnx
unitaire |z| = 1. Le vecteur G,z est uniquement déterminé par sa direction X7 = Gl
x

n

et sa norme S* = log |G, x|. Nous nous sommes intéressés par les propriétés asymptotiques

de la chaine de Markov (X7, S*). Pour matrices inversibles, Le Page [63] a établi un théo-
réme central limite et un théoréme limite local pour (X7, S¥). Avec une motivation pour
des applications aux marches aléatoires avec branchement gouvernées par des produits
de matrices aléatoires, ses résultats sont améliorés et étendus dans deux aspects : 1) le
théoreme central limite est établi uniformément en x et un développement asymptotique
est donné dans le théoreme local limite avec une fonction continue f agissant sur X! et
une fonction h directement Riemann intégrable agissant sur S? ; 2) les résultats sont aussi
établis au cas des matrices non-négatives.

Au chapitre 4, nous considéronson un modele de marches aléatoires avec branchement,
ou les movements des individus sont gouvernés par des produits de matrices aléatoires,
ou les particules donnent naissance a un nombre aléatoire d’enfants selon un processus
de Galton-Watson, qui se déplacent dans R? dont les positions sont déterminées par
I’action de matrices aléatoires indépendantes et identiquement distribuées sur la position

du parent. Nous nous intéressons aux propriétés asymptotiques de la mesure de comptage
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Z% sur R? qui compte le nombre de particules de génération n située dans une région
donnée, lorsque le processus démarre avec une particule initiale située a x € R¢\ {0}.
A Taide des résultats établis au chapitre 3 pour les produits de matrices aléatoires, nous
établissons un théoreme central limite et une expansion asymptotique a grande déviation
de type Bahadur-Rao pour Z? avec une normalisation appropriée. En tant que sous-
produit, nous obtenons une condition nécessaire et suffisante pour la non-dégénérescence
de la limite de la martingale fondamentale, qui étend le théoreme de type Kesten-Stigum
de Biggins.

Dans le chapitre 5, nous considérons toujours la marche aléatoire avec branchement
gouvernée par des produits de matrices aléatoires. Dans ce chapitre nous établissons une
borne Berry-Esseen et une expansion modérée de type Cramér pour la mesure de comptage
Z7 définie comme ci-dessus. Dans la preuve, nous construisons une nouvelle martingale,

et établissons son uniforme convergence ainsi que celle de la martingale fondamentale.
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Limit theorems for branching random walks
and products of random matrices

Abstract.

The main objective of my thesis is to establish limit theorems for a branching random
walk with products of random matrices. The thesis is composed of four chapters.

Chapter 2 is devoted to the classical branching random walk, in which each particle
gives birth to a random number of particles of the next generation, which move on the real
line; the number of children and the displacements of the children are governed by a fixed
law. We establish a Berry-Esseen bound and a Cramér type moderate deviation expansion
for the counting measure which counts the number of particles of nth generation situated
in a given region.

Chapter 3 is devoted to establishing limit theorems for products of random matrices
which will be used in the following chapters for the study of a branching random walk with
products of random matrices. Let (A,),>1 be a sequence of independent and identically
distributed random d x d real matrices. Consider the product G, = A, ... A; and the
random walk (G,z), where x is a starting point with unit norm |z| = 1. The vector G,z

n®

is uniquely determined by its direction X = and its log norm ST = log |G,z|.

Bl |Gzl
We consider asymptotic properties of the Markov chain (X7, S?). For invertible matrices,

Le Page [63] established a central limit theorem and a local limit theorem on (XZ, S%).
Motivated by some applications in branching random walks, we improve and extend his
theorems in the sense that: 1) we prove that the central limit theorem holds uniformly in
x, and give an asymptotic expansion in the local limit theorem with a continuous function
f acting on X* and a directly Riemann integrable function h acting on S¥; 2) we extend
the results to the case of nonnegative matrices.

In Chapter 4, we consider a branching random walk with products of random matrices,
where particles give birth to a random number of children as a Galton-Watson process,
which move in R? whose positions are determined by the action of independent and
identically distributed random matrices on the position of the parent. We are interested
in asymptotic properties of the counting measure Z% on R? which counts the number
of particles of generation n situated in a given region, when the process starts with one
initial particle located at x € R?\ {0}. With the help of the results established in
Chapter 3 for products of random matrices, we establish a central limit theorem and a

large deviation asymptotic expansion of Bahadur-Rao type for Z* with suitable norming.

5
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As a by-product, we obtain a sufficient and necessary condition for the non-degeneracy of
the limit of the fundamental martingale, which extends the Kesten-Stigum type theorem
of Biggins.

In Chapter 5 we still consider a branching random walk with products of random
matrices. In this chapter we establish a Berry-Esseen bound and a Cramér type moderate
deviation expansion for the counting measure Z? defined as above. In the proof, we
construct a new martingale, and establish its uniform convergence as well as that of the

fundamental martingale.

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



REMERCIEMENTS

Ce paragraphe me permet d’exprimer ma gratitude envers toutes les personnes qui m’ont
soutenu lors de ces quatre années et ont rendu cette these possible.

Je remercie tout particulierement mes deux directeurs de these, M. Quansheng Liu
et M. Ion Grama pour la chance que vous m’avez donnée de travailler a vos cotés. Vous
m’avez fait partager votre enthousiasme et votre passion pour le domaine de la recherche
que je ne connaissais pas. Je vous remercie également des conseils que vous avez pu me
prodiguer et du temps que vous m’avez consacré malgré vos nombreuses responsabilités.

Je souhaite également remercier les rapporteurs de cette these M. Sebastian Mente-
meier et M. Yueyun Hu d’avoir accepté de relire ce manuscrit et pour leurs commentaires
constructifs. Je remercie les membres du jury M. Francis Comets, Mme Francoise Pene, M.
Jean-Chistophe Breton et M. Paul Doukhan d’avoir accepté de prendre le temps d’évaluer
mon travail.

Merci en particulier au Professeur Jean-Chistophe Breton et Centre Henri Lebesgue
pour m’avoir donné une chance d’avoir cette these.

Merci également a tous les membres du laboratoire qui m’ont chaleureusement accueilli
et avec qui j’ai pu avoir de tres beaux échanges. Il y a dans cette université a taille
humaine un cadre agréable qui m’a permis de travailler tres sereinement. Je remercie
Hui mon compagnon doctorant pour ses conseils tres productifs. Merci également aux
autres membres du laboratoire et plus particulierement Véronique ainsi que Sandrine
pour m’avoir énormément aidé avec les taches administratives pour lesquels vous savez
mon attachement.

Merci & tous mes amis proches que j’ai parfois un peu négligés sous le prétexte de
travailler ma theése. A Thuy, Phuong, Nga, Hoang, Tue, Thieu, Thinh, Co Hanh, Tam.

Merci également a toute ma famille et belle-famille, pour tout ce que vous m’apportez
au quotidien. Toute ma reconnaissance et mes remerciements vont au dela des mots.

Enfin, merci a toi, Erwan, pour ton Amour, et sans qui tout ceci n’aurait aucun sens.

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



TABLE OF CONTENTS

1 Introduction 11
1.1 Context . . . . . . . e 11
1.2 Background and main objectives . . . . . . . .. ..o 12

1.2.1  The classical branching random walk . . . . . . .. ... ... ... 12
1.2.2  Branching random walks with products of random matrices . . . . . 15
1.3 Mainresults . . . . . ..o 18

1.3.1 Berry-Esseen bound and Cramér moderate deviation expansion for

a supercritical branching random walk . . . . . .. ... ... ... 18

1.3.2  Asymptotic expansions in central and local limit theorems for pro-

ducts of random matrices . . . . . . ... 22

1.3.3 Central limit theorem and precise large deviations for branching

random walks with products of random matrices . . . . . . . . ... 26

1.3.4 Berry-Esseen bound and Cramér moderate deviation expasion for

a branching random walk with products of random matrices . . . . 33

2 Berry - Esseen bound and Cramér moderate deviation expansion for a

supercritical branching random walk 37
2.1 Imtroduction . . . . . . . .. 37
2.2 Notation and results . . . . . . ... o 40
2.3 Proof of Theorems 2.2.1 and 2.2.3 . . . . . . . . .. ... ... ... ..., 44
2.4 Proof of Theorem 2.2.2 . . . . . . . . . . .. . ... 49

3 Asymptotic Expansions in central and local limit theorems for products

of random matrices 54
3.1 Introduction . . . . . .. . .. 54
3.2 Mainresults . . . . . .. 56
3.2.1 Notation and preliminaries . . . . . . . . ... ... ... ... 56
322 Mainresults . . . . . ... 59
3.3 Spectral gap property . . . . . . ... 60
3.4 Proof of Theorem 3.2.1 . . . . . . . . . . .. ... ... ... 63
3.5 Proof of Theorem 3.2.2 . . . . . . . . . . .. . . ... 65
9

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



TABLE OF CONTENTS 10

4 Central limit theorem and precise large deviations for branching random

walks with products of random matrices 78
4.1 Introduction . . . . . . . .. 78
4.2 Mainresults . . . . . ... 82
4.2.1 Notation and assumptions on products of random matrices . . . . . 82
4.2.2 Mainresults . . . . ... 86
4.3 Proof of Theorem 4.2.1 . . . . . . . . . . . . .. ... 91
4.3.1 Basic decomposition . . . . . ..o 91
4.3.2 Proof of Theorem 4.2.1 . . . . . . . . . .. .. ... ... ...... 93
4.4 Proof of Theorem 4.2.2 and Corollary 4.2.3 . . . . . . . . . ... ... ... 100
4.4.1 Proof of Theorem 4.2.2 . . . . . . . . . .. ... .. ... ...... 102
4.4.2 Proof of Corollary 4.2.3 . . . . . ... . ... ... ... 105
4.5 Proof of Theorem 4.2.4 . . . . . . . . . . . ... 107
4.5.1 Auxiliary results . . . . ... 107
4.5.2 Proof of Theorem 4.2.4 . . . . . . . . .. ... . ... ... ..., 119

5 Berry-Esseen bound and precise moderate deviations for branching ran-

dom walks with products of random matrices 130
5.1 Introduction . . . . . . . . . .. 130
5.2 Mainresults . . . . . . L 134
5.2.1 Notation and assumptions on products of random matrices . . . . . 134
522 Mainresults . . . . . ... 137

5.3 Preliminary results on products of random matrices . . . . . . . .. .. .. 141
5.4 Associated martingales . . . .. ... oL 143
5.5 Proof of Theorems 5.2.1 and 5.2.3 . . . .. .. ... ... ... ...... 151
5.5.1 Proof of Theorem 5.5.1 . . . . . .. .. .. ... ... .. ..... 152
5.5.2 Proof of Theorem 5.5.2 . . . . . . . . . .. . ... ... . ...... 157

5.6 Proof of Theorem 5.2.2 . . . . . . . . . . .. . ... 166
Bibliography 173

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapitre 1

Introduction

1.1 Context

My thesis focuses on limit theorems for a supercritical branching random walk. As the
name suggests, a branching random walk is a system of particles performing random walks
while branching. An introduction to branching random walks and an overview of classical
results can e.g. be found in the books [77, 84, 81]. A striking feature of the model is the
large number of interactions that it possesses, not only with other fields in probability
and mathematics, but also in other sciences such as statistical mechanics [79, 74] and
biology [37, 61, 58, 42]. In recent years, this topic has attracted the attention of many
authors, see for example, [1, 52, 35, 5, 30, 55, 65]. The model is closely related to various
applied probability settings, such as Mandelbrot’s cascades (cf. e.g. [56, 67, 6, 25, 72]),
perpetuities (see e.g. [77, 26, 54]) and branching Brownian motion (cf. e.g. [59, 29, 12,
71]). For extensions to random environments in space and time, see e.g. [44, 33] and [19,
62, 69, 39, 40]. For other related works and many references, see e.g. the recent books [77,
26, 54].

In the classical branching random walk, the moving is a simple random translation,
that is, a particle, whose parent is at position y, moves to position y+(, with independent
and identically distributed (i.i.d.) displacements [. Although this model can be applied
to many fields, it does not cover the interesting cases occurring in many situations where
the movements are determined by linear transformations such as rotations, dilations,
shears, reflections, projections etc. Motived by this observation, we consider a branching
random walk with products of random matrices, in which the position of a particle in
R? (d > 1) is obtained by the action of a matrix on the position of its parent. In other
words, the positions of particles are obtained by the action of products of random matrices
on the position of one initial particle. This permits us to extend significantly the domains
of applications of the theory of branching random walks, but the study of the model
becomes much more involved. For such a model, we consider the counting measure Z7,

which counts the number of particles of generation n situated in a given region, when the

11
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Introduction 12

process begins with one initial particle situated at . The main goal of this thesis is to
give precise asymptotics of the counting measure Z! as n — 0o, by establishing central
limit theorems, large and moderate deviation results. The study is interesting because it
gives a good description of the configuration of the process at time n. In fact, finding the
asymptotic properties of the counting measure is one of the fundamental problems in the
theory of branching random walks.

In recent years, important progress has been made in the study of products of random
matrices, see for example Guivarc’h and Le Page [46], and Benoist and Quint [7, 8, 9, 10,
11]. In our approach, we benefit much from the results and methods recently developed
on this subject (e.g. [46, 28, 82, 83]).

1.2 Background and main objectives

1.2.1 The classical branching random walk

The classical branching random walk on the real line can be defined as follows. At time
0, there is one initial particle () generation 0, located at Sy = 0. At time 1, it is replaced
by N = Ny new particles i (1 <i < N) of generation 1, located at L; = Ly;, 1 <i < N,
where N is of distribution p = {py : & € N}, each random variable L; is of distribution
G. Both N and L; are defined on a probability space (2, F,P). In general, each particle
u = uj...u, of generation n is replaced at time n + 1 by N, new particles of generation
n + 1, with displacements Ly, Ly, . .., Lyn,, so that the i-th child is located at

where N, is of distribution p and each L,; is of distribution GG. All the random variables N,
and L, indexed by all finite sequences u € U := U (N*)" (by convention (N*)? = {0}),
are independent of each other.

Denote by T the genealogical tree associated to the elements {N, : u € U}. It is
defined by the following properties : 1) ) € T; 2) when u € T, then for i € N, ui € T if
and only if 1 <i < N,; 3) ui € T implies u € T. Let

T,={ueT:|u=n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and
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represents the number of generation to which u belongs; by convention |()| = 0. Consider

the counting measure

Zn(A) = Y 1ygeay, ACR, (1.1)
ueT,
which counts the number of particles of n-th generation situated in A, where for a set D,
1, denotes its indicator function.
We assume that m := EN = E[Z;(R)] € (1,00) and that N > 0 a.s., so that the
Galton-Watson process formed by the generation sizes survives with positive probability.

Denote
my = /a:G(dx) and of = /(x —mg)*G(dr).

Harris [48, Chapter III. §16] conjectured a central limit theorem for Z,,, which states that
if 0 < 09 < 00, then for any x € R,

(00, wow/n -+ mmg]) ¥ Wa(r) (1.2)

in probability, where ®(x) = \/% . e~"/2dt is the normal distribution function and
W is the a.s. limit of the fundamental martingale (Z:n—(flm) of the Galton-Watson process
(Z,(R)). This conjecture has first been solved by Stam [78], then improved by Asmussen
and Kaplan [2] to L?-convergence and almost sure (a.s.) convergence. A more general
process where the two families (N, ),cy and (L, )uey are not necessarily independent, and
the family (L, )yeu is not necessarily i.i.d., was introduced by Biggins [13] : instead, he just
assumed that the random vectors (N, Ly1, Ly2, - - - ) indexed by all the finite sequences u
are i.i.d. This model is called the general branching random walk. For this model, results
like (1.2) were established by Klebaner [60] and Biggins [16].

The rate of convergence in (1.2) has been studied in several papers. Révész [76] consi-
dered the special case where the displacements follow the same Gaussian law and conjec-
tured the exact convergence rate; his conjecture was solved by Chen [29]. Gao and Liu
[39] improved and extended Chen’s result to the general non-lattice case, while the lattice
case has been considered by Griibel and Kabluchko [45]. All the above mentioned results

are about the point-wise convergence without uniformity in x.

Objective 1 : establish a uniform bound for the rate of convergence in (1.2) of type
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Berry-Esseen. We will prove that, under suitable conditions, a.s. for n > 1,

WanZ"((_OO’ oo/ n + nmo]) - Wo(z)

<M
_\/ﬁ7

where M is a positive and finite random variable. In fact, a similar result will be established

sup (1.3)

zeR

for the general branching random walk.

The problem of large deviations for the counting measure Z,(-) has been considered
by Biggins : he established in [14] a large deviation principle, which was subsequently
improved in [15] to a Bahadur-Rao large deviation asymptotic. Here we consider the

moderate deviations :

Objective 2 : establish a Cramér type moderate deviation expansion for Z,. We will

prove that, under suitable conditions, for x € [0, 0(y/n)], as n — oo, a.s.,

Zn((xao\/ﬁ+nm0,+oo)) £ g r+1
Y = e ? A {1 +0( NG )] (1.4)

where t — Z(t) is the Cramér series (see (1.13) for details). Actually, as in the case of

Berry-Esseen bound, a similar result will be established for the general branching random

walk.

An important role in the study of large deviations for 7, is played by the martingale

of Biggins with complex parameter :

1 At
(B[ oy e 5 )

1
= > M n>0,)eC.

(B2 o) &

WHO‘) =

Set m(\) = E[Zi]\il eALZ}, A€ Cand D = int{l € R : m(f) < oo} # ), where
int(A) denotes the interior of the set A. When A = 0, W,, := W, (0) = Zr’;—(}?) is the
fundamental martingale of the Galton -Watson process (Z,(R)), whose limit is denoted
by W. The famous Kesten-Stigum theorem states that W is non degenerate if and only
if ENlog, N < oo (see [4]), where log, * = max{0,logz} denotes the positive part of

log x. By the martingale convergence theorem for non-negative martingales, we have for
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all 6 € D,
W, (0) "= W (), as.

Biggins [13, Theorem A] gave a necessary and sufficient condition for the non-degeneracy
of W(6) : EW(#) > 0 if and only if

E[W;i(0)log, Wi(0)] <oo and 60 € (6_,04), (1.5)

om/’ (9)
m(0)

where (0_,60,) C D denotes by the open interval on which < logm(#), i.e.

_ om’(0)
0_:mﬂ0€D:7M; <logm(6)},

om/ (6
0, = sup {9 €D: m(é)) < logm(H)}.

Moreover, when N > 0 a.s. and (1.5) hold,
W) >0a.s. and EW(0) = 1.
It has been shown in [18, Theorem 2] that if
E[W{(0)] < oo, for some v > 1 and for all 6 € (6_,0,), (1.6)
then for every compact subset C' in the trip V:={A=60+in:0 ¢ (0_,0,),n € R}, as.

sup |W,(A) = W(A)| =30 and W()) is analytic in V.
AeC

Our next objectives are to establish analogous results for a branching random walk

with products of random matrices.

1.2.2 Branching random walks with products of random ma-

trices

To introduce the model we need some notation. Assume that on a probability space
(Q, F,P) we are given a set of independent identically distributed random variables

(Ny)ueu of the same law p = {px : k£ € N}, and a set of independent identically dis-

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Introduction 16

tributed d x d random matrices (A, )ucy of the same law p on the set of d X d matrices
M(d,R), where d > 1. The two families (N,).cy and (A, )ucu are also assumed to be
independent.

A branching random walk with products of random matrices is defined as follows. At
time 0, there is one initial particle {) of generation 0, with initial position Yy := z € R\ {0}.
At time 1, the initial particle () is replaced by N = Ny new particles i = ()7 of generation
1, located at Y; = A;Yp, 1 < i < N. In general, at time n+ 1, each particle u = uy ... u, of
generation n, located at Y, € RY, is replaced by N, new particles ui of generation n + 1,
located at Y,; = A,;Y,,1 < i < N,. Namely, the position of the particle ui is obtained
from the position Y, of u by the action of the matrix A,;, so that the position Y, of a
particle u in generation n > 1 is given by the action of products of random matrices on
the initial position x :

Y, =Gyux, where G,=Ay u, - Ay-
The space R? is equipped with the Euclidean norm | - |. The position G, of the particle
u is completely described by two components : its norm |G,x| and its projection on the
unit sphere S := {y € R? |y| = 1} denoted by

Gz
XT = )
“ |G|

Accordingly, we consider the following counting measure of particles of generation n which

describes the configuration of the branching random walk at time n : for measurable sets
B, C S 1 and B; C R,

Zy(B1, By) = Z LixzeB), 10g |Gurl|eBa} (1.7)

ueTn

In particular when B = S?! the measure (1.7) reduces to

ZEST Ba) = 3 Ljiog|GualeBa}- (1.8)

u€Ty,

When d =1, x = 1 and A, # 0 for all u € T, the measure defined by (1.8) is exactly
the counting measure considered in the classical branching random walk on R starting
from the origin 0 € R, where the position S, of a particle u = uy---u, is given by

Sy =Ly, + -+ Ly,..u,, with L, = log|A,|. So our model in the one dimensional case
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d = 1 reduces essentially to the classical (additive) branching random walk. For this

reason, in the following we will focus on the case d > 2.

We will prove limit theorems for the counting measure Z;. both in the case when the

matrices A, are nonnegative, and in the case when the matrices A, are invertible.

Objective 3 : establish a central limit theorem for the counting measure Z* with
suitable norming. In particular, we will prove that, under suitable conditions, for any

r €S and y € R, as n — o0, a.s.,

LZJC (Sd_l, (—o0, ny + yaﬁ]) —Wo(y) — 0, (1.9)

mnr "

where the constants v and o are explicitly defined (see (C6) and (1.15) in the following
section). In fact, the result is established in a more general setting : a result similar to

(1.9) is proved when S%! is replaced by a measurable set B; C S4-1.

Objective 4 : strengthen the central limit theorem (1.9) and its integral version (with
a target function on X7) to a Berry-Esseen bound for the counting measure Z*. We prove

that, under suitable conditions, for any z € S*~! and n > 1, a.s.,

Tinzif (S‘“, ny + oy/n(—oo, y]) - W<I>(y)‘ < \]yﬁ (1.10)

where M is a finite and positive random variable. In fact, an integral version of (1.10) is

sup
yeR

established with a target function ¢ on XZ, which reduces to (1.10) when ¢ = 1. .

Objective 5 : establish the Cramér type moderate deviation expansion for Z¥. We
prove that, under suitable conditions, for any z € S*! and 0 < y = o(y/n), as n — oo,

a.s.,

ZE( ST ny + oy/n(y, +00) oy
b ) W R

where t — ((t) is the Cramér series (see (1.34)). In fact, a similar result will be established

with a target function ¢ on X.

Objective 6 : establish a large deviation asymptotic expansion of Bahadur-Rao type

for Z%. We prove that, under suitable conditions, for any z € S¥71, with ¢, > 7, we have

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Introduction 18

a.s.,
1 -~ Wzr (x)e_”A*((Is)
— 7% (S [ng,, + — s s <1+ 1 > 1.11
2y (87, [y, +00)) o o(1) (1.11)

where r4 is a function bounded from below and from above by two positive constants,
s,05,A*(qs) are positive constants and W2 is the limit of a martingale associated to
branching random walks with products of random matrices. As in the case of central
limit theorem, a result similar to (1.11) is proved when S?! is replaced by a measurable
subset B; of S~!. Moreover, an integral version for the large deviation expansion with

target functions on the two components X and log |G| is also established.

To achieve our objectives, as important ingredients in the approach, we mention in

particular the following :

o asymptotic expansions in central and local limit theorems for products of random

matrices ;

o the non-degeneracy of the limit of the fundamental martingale associated to bran-

ching random walk with products of random matrices ;

o the uniform convergence of the fundamental martingale and the construction of a

new martingale.

1.3 Main results

The main results of the thesis, together with some key ideas of the proofs, are presented
below in four subsections. For the detailed proofs, we refer to Chapters 1-4. Each of the

four subsections corresponds to the content of one of the four chapters.

1.3.1 Berry-Esseen bound and Cramér moderate deviation ex-

pansion for a supercritical branching random walk
In this subsection we present our main results on the Berry-Esseen bound and Cramér
moderate deviation expansion for the counting measure Z,, defined in (1.1), for a gene-

ral branching random walk on the real line, generated by (N, Ly1, Lys, - - - ), which are

independent copies of (N, Ly, Lo, -+ ).
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Conditions and statement of main results

We will use the following standard assumptions.
Cl. N >0 a.s. withm =EN € (1,00), and IE{ N Lﬂ < 0.

The first condition in C1 implies that the underlying Galton -Watson process is super-
critical and
F(A) =E[Z(A), ACR,

is a finite measure on R with mass m. Let F' be the probability mesure on R defined by

_ F(A
F(A) = Q, ACR
m
Denote its mean and variance by
my = /xf(dm) and of = /(:v —mg)*F(dr). (1.12)

We will assume that
C2. F is non-degenerate, i.e. it is not concentrated on a single point.

The last condition in C1, together with condition C2, implies that the mean mg and the
variance op defined by (1.12) are finite with oy > 0.

C3. D is non-empty.
We will need the following moment condition which is weaker than (1.6).

C4. There are v > 1 and Ky > 0 with (—Ky, Ko) C (0_,0,) such that
EWF(Q) <oo VOe (—Ko,Ko).

By the argument of the proof of [18, Theorem 2], we know that under hypothesis C4, for
every compact subset C' of V:={A=0+1in:0 € (—Ky, Ky),n € R}, a.s.

sup |W,(A) = W(A)| =30 and W()) is analytic in C.
AeC

Our first result gives the Berry-Esseen bound for Z,, :

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Introduction 20

Theorem 1.3.1. Assume conditions C1 -C4. Then, a.s. for alln > 1,

Zn((—oo, xog/n + nmo])

mn

sup — Wo(z)

zeR

<
- \/ﬁ,
where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion

for Z,,, we need more notation. Consider the measure

Fy(dz) = F(dz), 0¢€D.

m(0)

We see that Fy is a distribution function with finite mean my and variance o3, given by

CwlO)  , mO) ()2,
707 ) <m<9>) !

moreover, og > 0 when F' is non-degenerate. Consider the change of measure of type
Cramér for Z,, : for 6 € D,
7%(dx) = " 7, (dx),

namely,

Zz(A) = Z eesu]l{sueA}, ACR.

uETn

Let X be a random variable with distribution F := %, and

A(0) := log Ee’™ = logm(6) — logm
be its cumulant generating function. Then A(#) is analytic on D, with A’(f#) = my and

A"(0) = o2. Denote by v := A®(0) the cumulant of order k of the random variable X.
We shall use the Cramér series (see [75, Theorem VIII1.2.2]) :

— 372 2—10 1573
Pty = B W25, | 060 = IR DYy (1.13)
6vs/ 2473 12073/

which converges for |¢| small enough.

Theorem 1.3.2. Assume conditions C1 -C4. Then we have, for 0 < x = o(y/n), as
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n — 00, a.S.

Zn< (zogy/n + nmo, —1—00)) _ e%g(iﬂ) {1 n O<x + lﬂ

m"W(l — @(z)] vn
and
Zn | (=00, =x00y/n + nimy) _2d gz x+1
( MW o (—z) ) = e T [HO( NG )}

As a by-product in the proof of Theorem 1.3.2, we obtain a Berry - Esseen bound for

the changed measure Z? with uniformity in 6.

Theorem 1.3.3. Assume conditions C1 -C}4. Then, there exists a constant 0 < K < K|
such that a.s. for allm > 1,

Zg((—oo, xog\/n + nng

sup sup
0e[—K,K] z€R

< M
\/ﬁ’
where M is a positive and zimte random variable.

Key ideas of the proofs

Let us explain briefly the key ideas in the proofs. To prove the Berry-Esseen bound
(1.3), we use Esseen’s smoothing inequality ([75, Theorem V.2.2.]). The key point in this
proof is the formula of the characteristic function of #Zn((—oo, rogy/n + nmo]), which
can be interpreted as W, (=%=)f,(t), t € R, where (W, (\)) is Biggins’ martingale with

oov/n
complexed valued parameter A for the branching random walk (see [17, 18]), and f,(t) is

the characteristic function of the n-fold convolution of F. Using the results of Biggins [17,
18], Griibel and Kabluchko [45] about the uniform convergence of W,,(\), together with the
approach of Petrov [75] for the proof of the Berry-Esseen bound for sums of i.i.d. random
variables, we are able to establish (1.3). The Berry-Esseen bound (1.3) is then extended
to the changed measure of type Cramér, Z%(A) = [,e"Z,(dt), A C R,0 € R. This is an
important step in establishing the moderate deviation expansion (1.4). Our approach in
proving (1.4) is very different to the method of Biggins [15] on the Bahadur-Rao large
deviation asymptotic, but is inspired by the ideas in the proof of Cramér’s moderate
deviation expansion on sums of i.i.d. random variables (see [75]), and the arguments in

[18] that Biggins used to prove the local limit theorem with large deviations for Z,,.
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1.3.2 Asymptotic expansions in central and local limit theorems

for products of random matrices

This subsection is devoted to the presentation of our main results about a central limit
theorem and a local limit theorem for products of random matrices, which will be used to

establish limit theorems for the branching random walk with products of random matrices.

Conditions and statement of main results

Let M(d,R) be equipped with the operator norm : for any a € M(d,R) we set ||a| =
SUp,cqa—1 |az|, where | - | is a given vectorial norm on R?, and S*! = {x € R?: |z| = 1}
is the unit sphere in R% Denote by ', := [supp p| the smallest closed semigroup of
M (d,R) generated by the support of u. Let us recall some definitions in matrix theory.
A matrix a € M(d,R) is said to be prozimal if it has an algebraic simple dominant
eigenvalue. Denote by M the set of matrices with nonnegative entries. A nonnegative
matrix a € M is said to be allowable if every row and every column has a positive entry.

We say that the measure u is arithmetic if there is ¢t > 0 together with 6 € [0, 27) and
a function 9 : S47' — R such that

Va € I',Vz € V(I') : explitlog|az| —i0 +i(d(a-x) — J(x))] = 1,

where S4' = {# > 0 : |z| = 1} is the intersection of the unit sphere with the positive
quadrant. Notice when d = 1, we have Si’l = {1}, and the above arithmetic condition
reduces to the following more usual form : loga is almost surely concentrated on an
arithmetic progression ay + a1 N for some ag,a; > 0.

We will need the following assumptions on the law pu.
C5.

1. For invertible matrices :

(a) (Strong irreducibility) There is no finite union W = Ui, W; of proper subspaces
0 # W; C R? which is T ,-invariant (in the sense that aVW = W for eacha € T',,)

(b) (Proxzimality) I'), contains at least one prozimal matriz.
2. For nonnegative matrices :

(a) (Allowability) Every a € '), is allowable.
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b) (Positivity) I';, contains at least one matriz belonging to int(M_ ).
n

(¢) (Non-arithmeticity) The measure pi is non-arithmetic.

Notice that when d = 1, the strong irreducibility and proximality conditions are always
satisfied. It is known that when d > 2, condition C5.1 implies C5.2.c (see [47, Proposition
4.6]).

For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a € M(d,R), set

ar
t(a) :=inf |az|, and a-z:=—— whenaz #0,
z€S lax|
where a - z is called the projective action of the matrix a on the vector € S!. Then
t(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an

invertible or nonnegative matrix a,
N(a) = max{al|, «(a)~"}.
For invertible matrices we have c(a) = ||[a~!||7! and N(a) = max{||a||, [|[a~*||}.

C6. (Moment condition) There exists ng € (0,1) such that

]E[N(Al)nO] < Q.

We will consider the action of invertible matrices on the projective space P4~! which
is obtained from S°! by identifying  and —z, and the action of nonnegative matrices
on Sfl[l. For convenience, we identify € P4~! with one of its representants in S**. To
unify the exposition, we use the symbol S to denote P4~ for invertible matrices, and S‘i—l
for nonnegative matrices. The space S will be equipped with the metric d, which is the
angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric (see
[49]) for nonnegative matrices. Moreover, S is a separable metric space equipped with
Borel o-field.

Let G,, = A,, ... A3A; be the product of i.i.d. d x d real random matrices A;, defined
on the probability space (€2, F,P), with common law p. Let z € S be a starting point. As

mentioned in the introduction, the random walk G, x is completely determined by its log
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norm and its projection on S, denoted respectively by

G,
v n >0,

ST =log|Gpz|, XTi=G, = —""" pn>
n = log |G| M T Gl

with the convention that Goz = x. Since S = log |A, X?_ || + 5% _, and X? = A, - X7 |,

n

the sequence (S¥, X¥),>o is a Markov chain.

Denote by E the expectation corresponding to P. By the law of large numbers of
Furstenberg [38], under conditions C5 and C6, we have

1 1
lim —S7 = lim —E[S;] =~ P-as., (1.14)

n—oo n, n—oo n,

where v = inf, ¢y %Elog |G| is the upper Lyapunov exponent associated with the pro-
duct sequence (G,,). Le Page [63] and Henion [49] showed that

1
0% = lim ~E(S% — ny)? (1.15)

n—oo n,

exists and is independent of x for invertible matrices and nonnegative matrices, respec-
tively. Moreover, there exists a unique p-stationary probability measure v on S (see [46,
25]) ; the p-stationarity of v means that p* v = v, that is, for any continuous function ¢
on S,

(nxv)(e) = [ [ ola-x)u(da)v(dr) = v(p).

where v(¢) = [g¢(x)v(dx). This notation for the integral will be used for any function

and any measure.

We state first a central limit theorem for the couple (X7, S7) with uniform convergence

inzes.

Theorem 1.3.4. For invertible matrices, assume C5.1 if d > 1, and C5.2.c if d = 1.

For nonnegative matrices, assume C5.2. For both cases, assume additionally C6.

1. For any continuous function f on S, we have

lim sup |E

N0 (2 1) ESXR

f(ij)]l{Sﬁ_mq}] ~ V(N )] =0. (1.16)

ovn =
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2. For any measurable set B C S with v(0B) = 0, we have

lim sup
00 (4 ) ESXR

P(X,ff € B, S;Z—\/%w < t) —u(B)® (t) ‘ ~0. (1.17)

For invertible matrices, a point-wise version (by considering a fixed z € S instead of
sup,cg) has been established by Le Page in [63, Theorem 4]. For nonnegative matrices,
the asymptotic for the Markov chain (X7, S%) is new even for a fixed z. The uniformity
in x € § is new for both invertible matrices and nonnegative matrices. Theorem 1.3.4 will
be deduced form a result on the convergence rate in (1.16) which has been established in
[83] for the case when f is Holder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for

products of random matrices.
Theorem 1.3.5. Assume the conditions of Theorem 1.5.4.

1. For any continuous function f on & and any directly Riemann integrable function

h on R, we have as n — o0,
sup |ov/nE [f(X7)h(y + Sy —ny)] -

(z,y)ESXR
y<f)/Rh(z)gb(@;_;)ffx(y\;;)dz| 0, (1.18)

where

b(x) I
o2\/n 605/n

with my and b(x) defined in Proposition 3.5.3.

Hy(u)=1- (30%u — u®),

2. For any measurable set B C S with v(0B) = 0 and any directly Riemann integrable

function h on R, we have as n — oo
sup  |ov/nE [1p(X7)h(y + S5 —nv)] =

(z,y)eSXR
V(B)/Rh(z)¢<i_;>[{$<y\;ﬁz>dz] 0. (1.19)

When y = 0, f = 1 and h = 1,4, the integral E [f(X7)h(y + S; — ny)] reduces to
the local probability P(S? € nvy + [a,b]), which is the usual object studied in local limit

theorems.
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The expansions (1.18) and (1.19) are new for both invertible matrices and nonnegative
matrices. The first expansion implies the local limit theorem established in [63, Theorem
6] for invertible matrices, which states that (1.18) holds when the polynomial H,(-) is
replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 1.3.4 follows from
Theorem VII.2.7 of Petrov [75], while expansion (1.18) in Theorem 1.3.5 was proved by
Feller (see [36, Theorem XVI.4.1]) under the same non-arithmetic condition on p and
when h = 1, is the indicator function of an interval. Breuillard (see [21, Theorem 3.2])
proved an expansion like (1.18) but for any finite order, when p is strongly non-arithmetic
(in the sense that its characteristic function i(t) = [ €"*u(dz) satisfies Cramér’s condition
lim supy, o [1(t)] < 1) with finite moments of order high enough and when £ is integrable
and regular enough (he assumed in particular that h has continuous and integrable de-
rivatives h®) for 0 < k < K with K > 2 large enough). Compared with the result of
Breuillard, the novelity in Theorem 1.3.5 is that we assume the non-arithmetic condition
instead of the strongly arithmetic condition, and we use the direct Riemann integrability

of h instead of the smoothness condition on h.

Key ideas of the proofs

Our approach is mainly based on the spectral gap theory recently developed for the norm
cocycle by Guivarc’h and Le Page [46] for invertible matrices, and by Buraczewski, Damek,
Guivarc’h and Mentemeier (see [25, 28]) for nonnegative matrices. Smoothing techniques
are also used for the approximation of functions : in the proof of Theorem 1.3.4, we use
a smooth approximation of the indicator function of a Borel set (see Lemma 3.4.1), while
in the proof of Theorem 1.3.5, we use a suitable approximation of a directly Riemann

integrable function with the techniques develepped in [82].

1.3.3 Central limit theorem and precise large deviations for
branching random walks with products of random ma-
trices

The goal of this section is to present our main results about a central limit theorem and a

large deviation asymptotic expansion of Bahadur-Rao type on Z? for a branching random

walk with products of random matrices defined in (1.7). Note that in our model, along

each branch we encounter a product of random matrices. We introduce some notation
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and the necessary assumptions on products of random matrices in order to formulate our
main results. We shall consider two cases, the case when the matrices are nonnegative

and the case when the matrices are invertible.

Notation on products of random matrices

In addition to the notation introduced in the precedent, we need some others. Let C(S)

be the space of continuous complex-valued functions on S. Set
I, ={s>0:E|A]° < oo}

Note that I, is an interval of Ry. Let s = sup I,. Define the transfer operator on the

set C(S) of continuous functions on § as follows : for any s € (—ng, S« ), and f € C(S),
Pif(z) =E[|Aiz f(A; -x)], forallz € S. (1.20)

It is known that under conditions C5, and C6, there exists a small constant 0 < 7, < 19
such that for any s € (—ny, S5 ), there are a unique probability measure vy and a unique
Holder continuous normalized function 7 (under the normalizing condition vg(rs) = 1)

on § satisfying
vsPs = k(s)vs and  Pyrg = k(s)rs, (1.21)

where k(s) is the unique dominant eigenvalue of P, vsP; is the measure on S such that
(vsPs)(f) = vs(Psf) for all f € C(S). For s € [0, s), the property (1.21) is proved in
[25, Proposition 3.1] and [28, Corollary 7.3] for positive matrices, and in [46, Theorem
2.6 and Corollary 3.20] for invertible matrices. For both positive matrices and invertible
matrices, the existence of 7; > 0 and the property (1.21) for s € (—n,m) are proved in
[83, Proposition 3.1], where the following properties are also established : the functions
s+ k(s) and s +— r4(x) are strictly positive and analytic in (—n, s ), for x € S. Below
we shall make use of normalized function ry, i.e. r4(x) < 1 for all z € S;s € (=11, S00)-
Moreover, it is proved (see [46, Lemma 3.5], [25, Lemma 6.2], [83, Propositions 3.12 and
3.14]) that, under conditions C5 and C6, the function

A(s) = log k(s)
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is finite and analytic on (—71, S« ), and satisfies
A(0) =0, A'(0) =7, A"(0)=0? >0, and A"(s) >0 Vs € (=11, 50).

Statement of main results

Note that the population size at time n is Z,, = Z*(S,R), which does not depend on the
starting point = and forms a Galton-Watson process with Z; = 1 and Z; = N. Recall
that m = EN which is supposed that 1 < m < co. We will need the following condition.

C7. There exists a constant n > 1 such that
ENlogT™ N < oco.

We start with a central limit theorem for the normalized counting measure (1.7). For
t € R, let

Z,ra;(B,t) :Z;E(B,(—OO,TL’V-}-tO'\/_) Z ]]'{XZEB log\Gux\ n'y<t}
u€Ty,
Theorem 1.3.6. Assume that the law p of the radom matrices satisfies conditions C5
and C6. Assume also that the offspring distribution satisfies condition C7. Then, for any
xr € S, any measurable set B C S with v(0B) =0 and any t € R, we have, as n — oo,

Zn(B,1)

m?’L

— v(B)®o(t)W  P-a.s. (1.22)

For the one dimensional case (where d = 1), the result is due to Asmussen and Kaplan
[3, Theorem 1]. Theorem 1.22 open ways for extending some results on central limit
theorem in [2, 29, 41, 39, 40] to the multi-dimensional case where the moving of particles

is determined by products of random matrices.

Our second main result is on the large deviation for the counting measure Z;. To study
the large deviation of the measure Z7, a natural way would be to consider its Laplace
transform defined by, for (s1, s5) € R? x R,

Z2(s1,82) = /R L EE L dyy dy) = 3 e (1.23)

u€eTy,

where s,y is the inner product of vectors s; and y; in R
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In the one dimensional case, when x = 1 and A, > 0, we have X7 = 1, so that
Z%(s1, 82) /EZ%(s1, s2) reduces to Biggins’ fundamental martingale of the branching ran-

dom walk :

595%
Zue?l‘n € “

E [Yuer, €2%]

n >0, (1.24)

which has been well studied (see [13], for example), and which plays an essential role in
many problems. However, in the multidimensional case, in general the sequence (1.24) is

no longer a martingale, nor the sequence

Zﬁ(31782)  Duer, g1 Xuts2S

Z - ——, n2>0,
]EZ%(Sl, 82) E [ZUGTn 681Xu+525u]

for (s1,s9) € R? x R. So an important difficulty arises when we mimic Cramér’s change

of measure for random walks by use of the Laplace transform of Z7.

However, there is still a natural martingale in the present setting. By the spectral gap
property (1.21), it is easy to verify that (see Section 4.4 for more details), for s € (—ny, So0)

and x € §, the sequence

Eue'ﬂ‘n 6555 Ts (Xif)
mrr(s)"rs(x)

n >0,

Wszn =
constitutes a positive martingale with respect to the natural filtration
Fo=1{0,Q} and Z, = 0(N,, Ay : 1 > 1,|u| <n) forn > 1,

as observed by Mentemeier [72] in the study of the multivariate smoothing transform. By
the martingale convergence theorem, the limit

W7 = lim W  existsin R P-as.

n—oo SN

It turns out that the martingale (WW7,) in the multidimensional case plays the same rule

s,n
as Biggins’ fundamental martingale for one dimensional case, for large deviations.

Just as in the case of Biggins’ martingale, it is crucial to know when the limit variable
W5 of the fundamental martingale W¢, is non-degenerate. When the matrices A, are
nonnegative and s > 0, Mentemeier [72, Proposition 4.4] gave a sufficient condition for

WZ¥ to be non-degenerate. In the following we complete his result by considering the
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necessary and sufficient conditions, and by treating meanwhile the case s < 0 and the

case of invertible matrices. To state the result, we need some notation. For s € (=1, Soo),
set A*(gs) = sqs — A(s) with g, = A'(s). Since A”(s) > 0 and ZA*(q,) = sA”(s), A*(qs)
attaints its minimum at s = 0, so that A*(¢s) > A*(qo) = —A(0) =0 for all s € (=11, Seo)-

Theorem 1.3.7. Assume conditions C5, C6. If
A*(gs) —logm < 0
and
E[rggg Wi log, max W] < oo,

then for allxz € S,
Conversely, if

for some x € S, then (1.25) holds, and
E[glelgl Wi log, 15161‘51 W] < oo

Corollary 1.3.8. Suppose the conditions C5, C6.

1. Assume (1.25) together with

ENlog, N <oo and E|A;[*log, ||A] < oo.

Then (1.27) holds for all x € S.

(1.25)

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)

2. Assume that the random matrice Ay = (Ai1(i,7)) satisfies the Furstenberg- Kesten

condition : there exists a constant C > 1 such that

maXlgi,jgd ‘Al (Za ])’
minlgiJgd ‘Al (Z7 ])’

<C a.s

Then the three conditions (1.26), (1.29) and (1.30) are equivalent, and (1.28) holds
for all x € S if and only if (1.25) and (1.30) hold. Moreover, if (1.28) holds for

some x € S, then (1.27) holds for all x € S.
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Notice that by Sheffé’s theorem, for each x € S, if (1.28) holds, then W7, — W in L'.
So the martingale (W7, ) converges in L' for some z € S if and only if (1.25) and (1.30)
hold ; moreover, when the martingale converges in L' for some z € S, then it converges
in L' forall z € S.

When the matrices A, are nonnegative and s > 0, Part (1) has been established by
Mentemeier [72, Proposition 4.4]. When d = 1, Part (2) is essentially the well-known
Kesten-Stigum type theorem for the classical branching random walk on the real line, due
to Biggins [13]; see also [56] for Mandelbrot’s cascades and [70, 66] for versions which are
slightly different to the initial result of Biggins [13].

Now we consider the precise large deviations for Z7 with target functions f and g
on the components X? = G, -« and S¥ = log |G,z|. More precisely, we shall study the

asymptotic of the large deviations of the following integral :

/SXR f(W)g(z —ngs)Z;(dy,dz) = Z F(X)g(SE — ngs). (1.31)

UET'n

Our result will be stated under the very general assumption that e **¢(z), z € R is

directly Riemann integrable, see Feller [36], Chapter XI.
Theorem 1.3.9. Assume conditions C5 and C6, and let s € (—m1, So) be fized such that
A*(qs) —logm < 0 and that

E max Wi(s)loght™ max Wf(s)] < oo for somed§ > 3/2. (1.32)

Then for any continuous function f on S and any measurable function g on R such that

z e **g(2) is directly Riemann integrable, we have

V2mnoge™t
lim

n—oo mn

[ FW)g(z = na) Z:(dy, d2)

:Wfrs(x)ﬁs(f>/ﬂge_szg(z)dz, P-a.s.,

Ts

where 7rs<f> %, and o2 = N'(s).

When s = 0 this result reduces to the following local limit theorem for the counting

measure Z, :

Corollary 1.3.10. Assume conditions C5 and C6. Assume also that (1.32) holds with
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s=0. Then
tim TV (e~ n) Zi(dy,d=) = Wu(f) [ g()d

When f =1 and g = 1}, with —oo < a < b < o0, it gives the precise asymptotic of
ZE(S,ny + [a,b]) as n — oo.

The following theorem describes the asymptotic size of the number of particles in n-th
generation situated in the regions (B, [e"%,+00)) for s > 0, and (B, (0, e"?*])) for s < 0,
where B C S.

Theorem 1.3.11. Assume the conditions of Theorem 1.3.9. Then, for any x € S, any
measurable set B C S with v(0B) = 0, we have, P-a.s., for s >0,

lim v27mno e”A*(qs)Zﬁ (B, [ngs, +00))

n—o0 mn

1 1
— - Wona) [

5 @Ws (dy),

and for s <0,

lim vZrn o, enA*(qs)Zﬁ (B, (=00, nqy)) _ 1wx7a8(l,)/ Lﬂs (dy).
n—00 mn s ¢ B 1s(Y)
This theorem is obtained from Theorem 1.3.9 by taking g = 1} ;) When s > 0, and
g = 1(_, When s < 0, and by using a smooth approximation of indicator function (see
[22, Lemma 4.1]).
In the one dimensional case (where d = 1), Theorems 1.3.9 and 1.3.11 reduce to the
Bahadur-Rao type results of Biggins [15]. The large deviation principle was established
earlier by Biggins in [14].

Key ideas of the proofs

The starting point in the proofs of our results is a decomposition formula which permits to
express the counting measure as the sum of conditionally independent random variables,
using the branching property like in the one dimensional case for which we may refer to
[3, 15]. However, there is much to do to arrive to the conclusions in the multidimensional
case, due to the appearance of products of random matrices. In particular, for the proof
of Theorem 1.3.6 about the central limit theorem and Theorem 1.3.9 about the precise
large deviation with target functions, we use respectively the central limit theorem and

the recent progress on the spectral gap theory and precise large deviations for products
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of random matrices. Another step forward in the proof of Theorem 1.3.9 concerns the
extension of Biggins’ martingale to the case of branching products of random matrices,
for which we prove a criterion for the non-degeneracy of the limit of the fundamental
martingale (see Theorem 1.3.7) which completes a result of Mentemeier [72] obtained in
the context of the multivariate smoothing transform, and extends the Kesten-Stigum type

theorem of Biggins [13] on the classical branching random walk.

1.3.4 Berry-Esseen bound and Cramér moderate deviation ex-
pasion for a branching random walk with products of ran-

dom matrices

This subsection is to present our main results about the Berry-Esseen bound and Cramér
moderate deviation expansion on Z? defined in (1.7), for a branching random walk with
products of random matrices. We will use the assumptions on products of random matrices

introduced in the subsection 1.3.3.

Statement of main results

Set

J={s € (—=nm,m): A*(gs) —logm < 0},

which is an open interval containing 0. We assume the following moment condition slightly
stronger than (1.26) :

C8. There are constants v > 1 and 0 < 1y < & with [=ny,1m] C J such that

zeS

]E[max (Wf(s))%} <oo VYV s€E|[—m,mn

It is clear that conditions C5-C8 (together with the hypothesis P(N = 0) = 0 that we
assume always), imply that for all z € S, W*(s) > 0 a.s. and E[IW*(s)] = 1; in particular
(when s =0), W > 0 a.s. and E[W] = 1.

For 5 > 0 sufficiently small, we introduce the Banach space Bg = {f € C(S) : ||flls <

+oo}, where

1£1ls := [1.floe + 15,
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with

B _ () = )]
1Fllee =suplf@)l, 1lo=_ S0 “asmy)

Our first result is the Berry-Esseen bound for the counting measure Z7 :
Theorem 1.3.12. Assume conditions C5-C8. Then, for any x € S, ¢ € Bg andn > 1,

we have, a.s.,

Sup
yEeR

X D sy~ W) < (13

’U,ETH 0\/7 -
where M is a finite and positive random variable.
This is a Berry-Esseen type bound for the counting measure Z* with suitable norming

because the sum in (1.33) is an integral with respect to Z¥ :

ST _ny = 21)Uy., ., \Znldz1,dzs).
> p(X { o) /SX]RSO( ) (2mg) ( )

u€Ty ovn = ovn =

Denote v, = A¥(0), k > 1, where A = log x defined in (1.21). We write for the Cramér

series associated to A (see [75]) :

Y3 Yaye — 3v§t Y575 — 10747372 + 1573

(1) =
@ 675’ 2473 12073

24 (1.34)

which converges for |t| small enough. Our second result is the Cramér’s moderate deviation

expansion for Z7¥.

Theorem 1.3.13. Assume conditions C5-C8. Then, we have for anyx € S, ¢ € B, 0 <
y =o(y/n), as n — oo, a.s.,

S = oo )]

and

Suet, P(XE) Lo ny<— oy} _ j;g(jﬁ){y(@wro y+1 }
m"Wae(—y) vn )1

An important step in the proof of the moderate deviation expansion is to establish a
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Berry-Esseen bound for the changed measure 77, defined by for measurable sets By C
S4! and By, C R,

e*rg(21)
77 (B, By) = B
s,n( 1 2) \/BlXBQ [mli(s)]”rs(x) n(dzladZQ)

_ oy XD
= 2 n(s)]r (o) KBSt}

Our third result is a Berry-Esseen bound for the changed measure 77,

Theorem 1.3.14. Assume conditions C5-C8. Then, for any x € S and ¢ € Bg there
exists a constant 0 < n < ny such that a.s., forn > 1,
e*%iry (X)) o(X7) "
Sup Sup Z [ml‘f,(s)]n’r (ZU) IL{Sran’(s)< } - W (S)ﬂs(@)(b(y) S

s€(=nm) ¥R |y, osvm =Y

(1.35)

B

where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Z7, because, similar to the case of Theorem

1.3.12, the sum in (1.35) is an integral with respect to Z7,, :

ey (X7 )e(X3)
2 T )
B sz27‘5<21)90(21) - s i
 Jsxr [mn( )]”rs(x) {Zzg:\/%s)_ }Zs,n(d 1,d 2)-

Key ideas of the proofs

An important step in the proof of Theorems 1.3.12 and 1.3.13 is to establish a Berry-
Esseen bound for the Cramér type changed measure Z¢,. This will be done in Theorem
1.3.14. Theorem 1.3.12 will be obtained from Theorem 1.3.14 by taking s = 0, and Theo-
rem 1.3.13 will be established by using Theorem 1.3.14 and by adapting the techniques
from Petrov [75]. We would like to give some ideas on in the proof of Theorem 1.3.14. As
in [24] where the one dimensional case is considered, we need to study the asymptotic of
the characteristic function of the changed measure Z7, . Inspired by the approach in [24],
we would like to express the characteristic function of Z7, in terms of a martingale and a
quantity that can be controlled by the theory of products of random matrices. However,

in contrast to the one dimensional case, we cannot obtain directly an expression of the

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Introduction 36

characteristic function in terms of a martingale. Fortunately, using the spectral gap theory
for products of random matrices established in [46, 25, 28] and recently developed in [83],
we have been able to define a new martingale which is similar to the fundamental martin-
gale and which can be used for a suitable approximation of the characteristic function of
Z¢,- We conclude by proving the uniform convergence and analyticity with respect to a
complex parameter of the new martingale, and by using the asymptotic properties of the

eigenvalue of the pertubed transfer operator related to the products of random matrices.
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Chapter 2
Berry - Esseen bound and Cramér moderate
deviation expansion for a supercritical branch-

ing random walk

We consider a supercritical branching random walk where each particle gives birth to a
random number of particles of the next generation, which move on the real line, according
to a fixed law. Let Z,, be the counting measure which counts the number of particles of nth
generation situated in a given region. Under suitable conditions, we establish a Berry-
Esseen bound and a Cramér type moderate deviation expansion for Z, with suitable

norming.

2.1 Introduction

A branching random walk is a system of particles, in which each particle gives birth to
new particles of the next generation, whose children move on R. The particles behave
independently; the number of children and their displacements are governed by the same
probability law for all particles. Important research topics on the model include the
study of the asymptotic properties of the counting measure Z,, which counts the number
of particles of generation n situated in a Borel set (see e.g. [2, 3, 14, 15, 16, 29, 39, 40,
30]), the study of the fundamental martingale, the norming problem, and the properties
of the limit variable (see e.g. [13, 19, 66, 70, 67, 1, 55, 65]), and the positions of the
extreme particles (which constitute the boundary of the support of the counting measure
Zn (see e.g. [53, 52, 5, 27]), etc. The study of this model is very interesting especially
due to a large number of applications and its close relation with other important mod-
els in applied probability settings, such as multiplicative cascades, fractals, perpetuities,
branching Brownian motion, the quick sort algorithm and infinite particle systems. For
close relations to Mandelbrot’s cascades, see e.g. [56, 67, 6, 25, 72]; for relations to other
important models, see e.g. the recent books [77, 26, 54] and many references therein. In

this paper, we consider the asymptotic properties of the counting measure 7, as n — oo,

37
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by establishing the Berry - Esseen bound and Cramér’s moderate deviation expansion for
a suitable norming of Z,,. The study of asymptotic properties of Z,, is interesting because

it gives a good description of the configuration of the system at time n.

The branching random walk on the real line can be defined precisely as follows. The
process begins with one initial particle denoted by the null sequence (), situated at the
origin Sy = 0. It gives birth to N children denoted by ()i = 4, with displacements L;,
i=1,---,N. In general, each particle of generation n, denoted by a sequence u = u; - - - uy,
of length n, situated at S, € R, gives birth to N, particles of the next generation, denoted
by i, which move on the real line with displacements L,; so that their positions are
Sui = Sy + Lyt = 1,--+ | N,. All the random variables (N, Ly1, Ly2, - - - ), indexed by
all finite sequences u € U := U (N*)" (by convention (N*)° = {@}), are independent
and identically distributed, defined on some probability space (2,.%#,P), with values in
NXRXxRXx---.

For n > 0, let T,, be the set of particles of n-th generation. Consider the counting

measure

Zn(A) = Z ]I{SuEA}a AC R:

u€eTy,
which counts the number of particles of n-th generation situated in A.

Throughout this paper we assume that
m:=EN = E[Z;(R)] € (1, 00),

so that the Galton-Watson process formed by the generation sizes survives with positive
probability, and
F(A) =E[Z(4)], ACE,

is a finite measure on R with mass m. Let F' be the probability measure on R defined by

_ F(A
F(A) = L, ACR.
m
Denote its mean and variance by
my = /xf(daz) and o2 = /(a: —mg)*F (dx). (2.1)
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We will assume that E(XY | L?) < oo, so that mg and o2 are finite, with

—1ENL d 2—1ENL2 :
TTLQ—E {; z} an UO_E {; Z}—mo.

A central limit theorem for the special case where (N, ),cu and (L, ),ecy are two inde-
pendent families of independent and identically distributed (i.i.d.) random variables was
conjectured by Harris [48]. His conjecture states that under suitable conditions we have,

for any x € R,

TinZn((—oo, zogy/n + nmo]) = W(x) (22)

in probability, where ®(x) is the normal distribution function and W is the a.s. limit of the
fundamental martingale (Z;;L—(QR» of the Galton-Watson process (Z,(R)). This conjecture
has first been solved by Stam [78], then improved by Asmussen and Kaplan [2, 3] to
L?-convergence and almost sure (a.s.) convergence. The general case has been considered

by Klebaner [60] and Biggins [16].

In this paper we will study the Berry -Esseen bound about the rate of convergence in
(2.2), and the associated Cramér’s moderate deviation expansion.

The rate of convergence in (2.2) has been studied in several papers. Révész [76]
considered the special case where the displacements follow the same Gaussian law and
conjectured the exact convergence rate; his conjecture was solved by Chen [29]. Gao and
Liu [39] improved and extended Chen’s result to the general non-lattice case while the
lattice case has been considered by Griibel and Kabluchko [45]. All the above mentioned
results are about the point-wise convergence without uniformity in z. In this paper, our
first objective is to find a uniform bound for the rate of convergence in (2.2) of type

Berry-Esseen: we will prove that, under suitable conditions, a.s. for n > 1,

<M
_\/ﬁa

where M is a positive and finite random variable (see Theorem 2.2.1).

L2 (=00, 200/ + nmg]) — W ()

m

sup (2.3)

zeR

The problem of large deviations for the counting measure Z,(-) has been considered
by Biggins: he established in [14] a large deviation principle, which was subsequently
improved in [15] to a Bahadur-Rao large deviation asymptotic. Our second objective

in this paper is to establish a Cramér type moderate deviation expansion for Z, (see
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Theorem 2.2.2): we will prove that a.s. for n — oo and x € [0, 0(y/n)],

Zn((xao\/ﬁ+nm0,+oo)) £ g r+1
mrW 1l — ®(x)] = et {1 * O( Vn )]7 (24)

where t — Z(t) is the Cramér series (see (2.11)). Here we use the usual notation b, =
O(a,) to mean that the sequence (b,/a,) is bounded. (We mention that as (2.4) holds
a.s., the bound in O(Lﬂ) may be random.)

Jn
Let us explain briefly the key ideas in the proofs. To prove the Berry-Esseen bound

(2.3), we use Esseen’s smoothing inequality ({75, Theorem V.2.2.]). The key point in this
proof is the formula of the characteristic function of #Zn((—oo, xog\/n + nmoD, which
can be interpreted as Wn(of/ﬁ)fn(t), t € R, where (W, ())) is Biggins’ martingale with
complexed valued parameter A for the branching random walk (see [17, 18]), and f,(t) is

the characteristic function of the n-fold convolution of F'. Using the results of Biggins [17,
18], Griibel and Kabluchko [45] about the uniform convergence of W, (), together with the
approach of Petrov [75] for the proof of the Berry-Esseen bound for sums of i.i.d. random
variables, we are able to establish (2.3). The Berry-Esseen bound (2.3) is then extended
to the changed measure of type Cramér, Z%(A) = [, e Z,(dt), A C R,0 € R. This is an
important step in establishing the moderate deviation expansion (2.4). Our approach in
proving (2.4) is very different from the method of Biggins [15] on the Bahadur-Rao large
deviation asymptotic; instead, it is inspired by the ideas of the proof of Cramér’s moderate
deviation expansion on sums of i.i.d. random variables (see [75]), and the arguments in
[18] for the proof of the local limit theorem with large deviations for Z,.

The main results, Theorems 2.2.1-2.2.3, are presented in Section 2.2. Theorems 2.2.1
and 2.2.3 about the Berry-Esseen bound are proved in Section 2.3, while Theorem 2.2.2

about the moderate deviation is established in Section 2.4.

2.2 Notation and results

We will use the following standard assumptions.
H1. N >0 a.s. withm =EN € (1,00), and E[Zf\il Lﬂ < 0.
H2. F' is non-degenerate, i.e. it is not concentrated on a single point.

The first condition in H1 implies that the underlying Galton -Watson process is super-

critical; the second condition in H1, together with condition H2, implies that the mean
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mg and the variance o2 defined by (2.1) are finite with o > 0.

The Laplace transform of F' will be denoted by
N
m(\) = / MNF(dt) =E[Y ], AeC. (2.5)
R i=1
Denote by int(A) the interior of the set A. Set
D =int{d € R: m(f) < oco}. (2.6)

Throughout, we assume that
H3. D is non-empty.

Denote by Re()) the real part of A € C. An important role in the proof of Berry-
Esseen bound and moderate deviation expansion is played by the martingale of Biggins

with complex parameter:

Wo(\) = m<1)\>n/Re”Zn(dt) =3 oy nEORMED

u€Ty,

When A = 0, W,, .= W,(0) = Z:n(ik ) is the fundamental martingale of the Galton -
Watson process (Z,(R)), whose a.s. limit is denoted by W. The famous Kesten-Stigum
theorem states that W is non degenerate if and only if ENlog, N < oo (see [4]), where
log, © = max{0,logz} denotes the positive part of logz. By the martingale convergence

theorem for non-negative martingales, we have for all 8 € D,
W, (0) "= W (), as.

Notice that when N > 0 a.s. we have W, () > 0 a.s. for all n > 0 and § € D. Biggins
[13, Theorem A] gave a necessary and sufficient condition for the non-degeneracy of W (6):

EW(#) > 0 if and only if

E[W1(0)log, Wi(f)] <oco and 6 € (6-,604), (2.7)
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where (0_,60,) C D denotes by the open interval on which %é{;) < logm(0), i.e.
. L Om’(0)
6. =inf{0cD: i) < logm/(6) },
_om/(0)
6, = sup {9 eD: m(0) < logm(@)}.
Moreover, when H1 and (2.7) hold,
W) >0as. and EW(f) = 1. (2.8)

We see that 0 € (0_,0,), so that this interval is non-empty. The endpoints of the interval
D and the quantities 6_, 0, are allowed to be infinite. We will need the following moment

condition which is slightly stronger than (2.7).
H4. There are v > 1 and Ky > 0 with (— Ky, Ko) C (6—,04) such that
EWY(Q) <oo VOe (—KQ,KO)‘

By the argument of the proof of [18, Theorem 2], we know that under hypothesis H4,
for every compact subset C' of V:={A=0+in:0 € (—Ky, Ky),n € R}, as.

sup [W,(\) — W (A)| =30 and W () is analytic in C. (2.9)
AeC

Our first result gives the Berry-Esseen bound for Z,,:

Theorem 2.2.1. Assume conditions H1 -HJ. Then, a.s. for alln > 1,

Zn((—oo7 zogy/n + nmo])

mn

— Wo(z)

<M
_\/57

sup
z€R

where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion

for Z,,, we need more notation. Consider the measure

Fy(dz) =~ F(dz), 0¢€D. (2.10)

m(0)
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We see that Fy is a distribution function with finite mean my and variance o3, given by

m’(0) m” (6) m’(0)y2
-0, G- Z0- @y,
m(0) m
moreover, g9 > 0 when F' is non-degenerate. Consider the change of measure of type

Cramér for Z,: for § € D,
Z%(dx) = " 7, (dx),

namely,

Zz(A) = Z 60571]1{,5*“614}, ACR.

ueT,

Let X be a random variable with distribution F := £ and

A(6) := log Ee?X = logm(6) — logm

be its cumulant generating function. Then A(#) is analytic on D, with A’(6) = my and
A"(9) = o2. Denote by v, := A¥)(0) the cumulant of order k of the random variable X.
We shall use the Cramér series (see [75, Theorem VIII.2.2]):

_ 2 2_1 1 3
Py = B e 35, , 172 — 1093572 + 1595 5

+.. (2.11)
675/ 2473 12073

which converges for |t| small enough.

Theorem 2.2.2. Assume conditions H1 -HJ. Then we have, for 0 < x = o(y/n), as

n — 00, a.S.

Zn((xao\/ﬁ+nmg,+oo)) £ g r+1
=30 [1 +0( )} (2.12)

and

Zn| (=00, —x09/n + nmyg) S r+1
( MW o (—z) ):e o ﬁ)[HO( \/ﬁ)}

As a by-product in the proof of Theorem 2.2.2, we obtain a Berry - Esseen bound for

(2.13)

the changed measure Z? with uniformity in 6.
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Theorem 2.2.3. Assume conditions H1 -HY. Then, there exists a constant 0 < K < K,
such that a.s. for allmn > 1,

7)((~00, 09/ -+ nme))
oy ~W(O)2(2)

sup sup
e[—K,K] zeR

<M
_\/57

where M is a positive and finite random variable.

2.3 Proof of Theorems 2.2.1 and 2.2.3

We first recall some known results in the form of two lemmas which will be used for the
proof of Theorems 2.2.1 and 2.2.3.

The first lemma concerns the Cramér change of measure (2.10), see [75, Theorem
VIII.2.2, inequalities (2.31) and (2.32)]).

Lemma 2.3.1. Let X be a real random variable with distribution G. Suppose that
Var(X) > 0 and that there exist strictly positive constants H,c such that

|logEe?™| < ¢ for all § € (—H, H).

Let Xy be a real random variable with distribution Gy defined by

" G(dx)

Goldw) = —g5— 0 € (—H.H).

Then there exist strictly positive constants Hy,cy,co with Hy < H, such that for all 0 €
<_H17 Hl);

Var(Xg) > ¢ and E|Xy — EXp|* < co.

We see that under H2 and H3, the distribution G = F satisfies the conditions of
this lemma. Indeed, if X is a random variable with distribution F, then by condition H2
about the non-degeneracy of F, we have Var(X) > 0. By condition H3, the set D defined
by (2.6) is an open interval containing 0. Notice that log Ee?* = log$
0 € D. Hence there exist constants H, ¢ > 0 such that |logEe?*| < ¢ for all § € (—H, H).

The second lemma is about the exponential convergence rate of W,,(6), see [45, Lemma

< oo for all

3.3]. In fact in [45, Lemma 3.3] the result is only given for the lattice case, but the proof
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therein remains valid for the non-lattice case.
Lemma 2.3.2. Assume conditions H1-HJ,. There exist two constants 0 < K < Ky and

c € (0,1) such that a.s. for all n > 0,

sup |[W,(0) — W (0)| < Myc",

o[- K,K]
where My is a positive and finite random variable.

Notice that Theorem 2.2.1 follows from Theorem 2.2.3 with 8 = 0, by the fact that
m(0) = m and W(0) = W. So we only proceed to prove Theorem 2.2.3.

Proof of Theorem 2.2.3. From Lemma 2.3.2, to prove Theorem 2.2.3, it is enough to show
that there is a constant 0 < K < Kj such that

28((—o0. w00/ + nmy))
m(0)"

— Wo(0)®(x)

sup sup <

fe[-K,K] z€R

3l=

where M is a positive and finite random variable. Consider the random measure

Zz (0'9\/514 + nmg)
m(6)" ’

V(A) = ACR,

with the usual notation aA + b = {ax + b : x € A}. Its distribution function is

Zfb((—oo, zrog\/n + nng

() = o e
The characteristic function of the random measure Vz is
Yi(t) = / el (dx) = 1 _ ¥ exp{(& n it )Su B itnmg}
R m(0)" = Ton/1l o
=Wa(0+ =) fal), teR, (2.14)

09\/_

it nmg

where fO(t) = Wm(@ + U;f/ﬁ)n e 0¥ . Denote by Fy™ the n-fold convolution of Fy. It
is not difficult to see that

it(x—nmy)

ft) = [ e o Fy o),
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which is the characteristic function of EZQ_\%L@ , where S, is the sum of independent random

variables { X}, with the same law Fj.

By Esseen’s smoothing inequality (see [75, Theorem V.2.2]), we get for all T' > 0, a.s.

sup [v () — W, (0)®(x)|
zeR
it
< 1/T Wn(9+ 0'9\/77>
T mJ-T
where ¢ is a deterministic positive constant. From Lemma 2.3.1, there exist strictly
positive constants K, ¢y, ¢y with K < min{ H;, Ky} such that for all |0] < K

F2t) = Wa(0)e P

n

t

dt + Wn(e)%, (2.15)

03 >¢  and E|X —myl]® <. (2.16)

2

Take T = aog/n with a = infoc|—r K] m > i—; > 0. For 0 < € < a, we split the

integral on the right-hand side of (2.15) into two parts [t| < eogy/n and eogy/n < |t]| <
acg\/n to get

1 c W,(0
sup sup ’Vﬁ(l’) — Wn(H)@(m)‘ < —(L+1)+ sup )
0e[-K,K] z€R ™ AN/ gc[-K,K] 09

where

W (04 22 fO(t) — W, (0)e /2
I, = sup ‘ ( UQ\M) t( ) ©) dt,
96[_K’K]|t|<sag\/ﬁ
W (04 =2 fO(t) — W, (0)e /2
]2 = sup ‘ ( o’g\/ﬁ) ( ) ( ) dt.
fe[-K,K] t
eog/n<|t|<acg/n

In the following, M; denotes a positive and finite random variable. By Lemma 2.3.2 and
W (6)

g0

the lower bound (2.16) of 04, SuPpe(_f x|

a.s., [ < % and I, < %

< M, a.s. Hence, it remains to show that
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For I, we see that

I; < sup sup ‘W («9—|— i )‘ / Falt) = i e’ /2|dt

e[~ K, K] g@lt\‘/ﬁﬁ o0V/n lt|<eopv/n
W, (0 + W,.(0)
+ sup / ’ ( o9 |\g) ’eit2/2dt. (217)
9€[7K7K}|t|<€0‘9\/ﬁ

By the uniform convergence (2.9) of W,,(-), we have

sup sup |W, (9 +

oe[—K,K]| _Itl
[ ] f<€

opvn —

it
< Ms. 2.18
0'9\/5>‘ - g ( )
Recall that ¢ — fY(¢) is the characteristic function of Su=nmg Then by [75, Lemma V.2.1],

3\/_ ooVn

t] < , we have
4E|IX — my|?

for

2 ~
|f§(t) —e /2| < E[X — me’?’th’tQ/?’ < @ 20717/3

S oivm S avm (2.19)

3
Therefore (2.19) holds for |t| < eog/n since eogy/n < 4]E|00\/_ From (2.18), (2.19)

X m9|3
and the fact that [ [t|2e"/3dt < oo, we see that the first term in (2.17) is bounded by
L

Now we consider the second term in (2.17). Since [ e~*/2dt = /27, we need only to
show that

M
_ Wn(G)‘ < 7

< T (2.20)

sup  sup ‘W
be[-KK] _ \t\ < H

it )
O’@ﬁ
Notice that W, () is a.s. analytic in the strip Re(A) (=Ko, Koy). Let 0 < K < K. By

the mean value theorem, when ¢ € [~Ky, K1] and —=~ vm <€ we have

1t

(79\/_

‘W (6+ )—Wn(e)’ id max W, (6 + in) (2.21)

- 09\/5 ne[—e,e]
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By Cauchy’s formula, when || < K,

/ 1 Wa(2)
Wi = 5 /|z|_1<1 G

By (2.9), a.s. for allm > 1 and all z € C with |z| < K, [W,(2)| < Ms. When || < K;/2
and |z| = Ky, |z — A > Ky — K1/2 = K;/2, so that |(W" J| < 4

n > 1, a.s.

28. Therefore for all

/
amax WM < 7=

Therefore from (2.21) and (2.16), we see that (2.20) holds when K < K;/4 and ¢ < K, /4.

This concludes that the second term in (2.17) is bounded by % Therefore from (2.17)
Mo
Vn©

we get [} <

For I, using the constraint in the integral of I5, we have & m < f’ so that

1 Su ‘W 9—1— f9 ‘dt
2= KK] 809\/_ 09\/_
<1l
+ sup Wa () / e 124t
o]~ KK] eogy/n J
<U \Fga

It is shown in the proof of [18, Lemma 5] that as n — oo,

sup  Vn ‘ <9+m>f9(09\/_77 ‘dn—>0 a.s.,

fe[-K K] e<n<a

which can be rewritten as

1
sup — ‘W (9+

fe ‘dt — 0 a.s.
6c[-K,K] 0@

0'9\/_

Therefore,
sup W, ¢9+ fe ’dt< a.s.
o[- KK 509\/_ / ‘ 09\/_ \/ﬁ
< <a
M
This, together with supye _ ( ) < Mo, implies that I, < — B Thus the proof of

vn
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Theorem 2.2.3 is completed. O

2.4 Proof of Theorem 2.2.2

In this section we prove Theorem 2.2.2, the Cramér type moderate deviation expansion
for Z,.

Proof of Theorem 2.2.2. We will only prove (2.12), as the proof of (2.13) is similar.

For z € [0,1], Theorem 2.12 is a direct consequence of Theorem 2.2.1, as we will see

in the following. For n > 1,

‘Zn( (xogy/n + nmg, +00) ) B
mrWl — @(m)]e%g(%)
Z,(R) Zn( (—o00, xog\/n + nmo))

mn mm

- W(l - @(x))eing(%) :

(2.22)

Since sup e |‘”—\;$ (75)] = 0, there exists ng large enough such that for all = € [0, 1]

and n > no, 6\1T:Z(T > 1/2. Using this and the fact that 1 — ®(z) > ¢ :=1 — &(1) for
all z € [0, 1], from (2.22) we get for all n > ny,

’Zn( (xogy/n + nmy, +oo)> - 1’
mr WL — &(z))e 77

Zn((—oo,mao\/ﬁ—i—nmo))
- cW’ mr ‘ cW’ B mn

2 I
+W‘W(1—®(x))(1—eﬁ$(ﬂ)>‘. (2.23)

+ Wo(x)

In the last display, by Theorem 2.2.1, when n — oo, the two first terms are O(ﬁ)

We will show below that the third term is also O<\}ﬁ) In fact, using the inequality
1 —e'| < |tle! for t € R and the fact that su Z(-2)| is bounded for n > ny, we
‘ p:cE[O,l] N )
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obtain for z € [0, 1], as n — oo,

a3 x

NN

‘1 — eva? )

<

)

ﬁj(i) (1>
AR = o == ).
e NG

This implies that the third term in (2.23) is O(ﬁ) From (2.23) and the above estima-

tions, we see that for x € [0, 1], as n — oo,

‘Zn<(xao\/ﬁ+nmo,+oo)) B 1‘ B O( 1 >
mrWl — @(x)]e%f(i) - ’

n

which implies

nl (wo0y/n + nmg, +00) 23
A m”W[1+— @(x)]+ ) _ e ){”O( : )]

This ends the proof of (2.12) in the case where z € [0, 1].

We now deal with the case 1 <z = o(y/n). For u € (N*)" set

S, — nMmg

V= —"—7—.
0'9\/5

Recalling that A(f) = log Ee’X = log % and A’(0) = my, we have

I:= Wlann<(xao\/ﬁ+ nm, —I—oo)) = Wtﬂ UEZT;H ]l{Su>on\/ﬁ+nmo}
— o TlOA (6)-A(0)] u;;n o 006VVu ﬁn{vpgﬂmoge)ﬁ}. (2.24)
Because A(#) is analytic on D with A(0) = 0, it has the Taylor expansion
AG) =3 %ek, where 7, = A®(0), 6 €D, (2.25)
k=1 IV
which implies that
N(6) — N(0) = Ii C lkl)!ek—l. (2.26)
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Consider the equation

Vn(mg —mg) = ogr, namely A'(6) — A'(0) = oot (2.27)

Vn

Set ¢t = 7=, from (2.26) and (2.27), we get
oot = i Tk 0F (2.28)
= (k—1)!
Since 7o = 02 > 0, the equation (2.28) has the unique solution given by
13 Y3 0 YaY2 — 373 3

= — =St 2t 4 2.29
2 293 6727/2 " ( )

Observe that from (2.25) and (2.26), for any 6 € D,

ON' (0) — A() = Ve gk N~ Tegk 0",

DB P AP PR
Choosing 6 to be the unique real root of the equation (2.28), which is given by (2.29), we
obtain (see [75, Theorem VIII.2.2] for details)

t2 2 3

ON'(6) = A(6) = 5 — £22(t) = ;in - 7;,/23(\%) (2.30)

where Z(t) is the Cramér series defined in (2.11), which converges for [¢| small enough.
Substituting (2.27) into (2.24) and using (2.30), we get

2 .3 0S.
I S 7 e
[=¢ 2 V7 (ﬁ) e—0oev/nVu Ty -0
u%ﬂ:‘n m(Q)” {Vu>0}
_2? 23 = 00 _
—e T VR (ﬁ>/0 e’e"‘)ﬁnyL(dy), (2.31)
where Zi is the finite measure on R defined by
. o0Su
Z,(A) = —1 , ACR,
n(A) u%;n m(6)" {VueA}

whose mass satisfies ]E?Z(R) = 1. From t = 7= and 2 = o(y/n), it follows that ¢ — 0
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as n — oo. By the inverse function theorem for analytic functions, the series on the
right-hand side of (2.29) is absolutely convergent for |¢| small enough. Moreover, from
(2.29), we have § — 07 as n — oo. Hence, for sufficiently large ng and all n > ng, we
have |0| < K, where K is defined as in Theorem 2.2.3. Therefore, denoting

lo(y) = Zo((—00,y]) = W(B)D(y), yER,

from Theorem 2.2.3 we get for all n > ny,

sup [Lo(y)] < (2.32)

y€eR

EE

where M is a positive and finite random variable independent of n and . Notice that

o _ o W(Q) © _¥2
909\/@/29 _ / Oog~/ny / 0og~/ny
/0 e A (dy) ; e dlno(y) + Norll e T dy

— I, + W(0) L. (2.33)

FEstimate of I,. Using the integration by parts and the bound (2.32), we get that for

nzn()a

00 2M
1] < loO)] + 000/ [~ e 1 oyl dy < = - (234)
o Vi

Estimate of I5. The integral I, appears in the proof of Cramér’s moderate deviation
expansion theorem for sums of i.i.d. random variables (see [75, Theorem VIII.2.2]), where

the following results have been proved:

(i) there exist some positive constants C,Cy such that for all § € [-K, K] and all n

large enough,

Cy < Oogy/nly < Cs;

(i) the integral I admits the following asymptotic expansion :

L= e[l — ()] {1 4 0(;%)} (2.35)

By the definition of oy, the mapping 6 + oy is strictly positive and continuous on [— K, K.
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Hence, there exist positive constants C3, Cy such that for all € [- K, K],
Cs < 0y/nly < Cy. (2.36)

Notice that by (2.8), for all § € [- K, K], W(#) > 0 a.s. Moreover, W () is a.s. continuous
in 6 by the continuity and uniform convergence of W, (0) on [—K, K|. Combining this
with (2.36), we get

My < 0/nW(0)I, < M. (2.37)

We now come back to (2.33), and let 6 be defined by (2.29). Recall that for n > ny,
|0] < K. From (2.33), (2.37) and (2.34), we have, as n — o0,

/OOO e 0oV ZY () = W(Q)h(l + m> =W(O)L(1+0(0)). (2.38)

According to the analyticity of W () on [—K, K| and using the mean value theorem one
see that [W(0) — W[ = [W(0) — W(0)] < Msf. Since § = O (2) by (2.29), it follows
from (2.38) and (2.35) that

| etz dy) = (W + 0(0) (1 + 0(6)

— We [1 - ®(x)] [1 + o(\fﬁ)]. (2.39)

Combining this with (2.31) yields

1wt (&) 1 — ®(x)] {1 + O(\fﬁ)},

which concludes the proof of (2.12).
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Chapter 3

Asymptotic Expansions in central and local
limit theorems for products of random ma-

trices

Let (An)n>1 be a sequence of independent and identically distributed random d x d real

Gy
matrices. Set G,, = A4,,... A1, X¥ = v
|G|

properties of the Markov chain (X7, S%). For invertible matrices, Le Page [63] established

and S := log |G,z|. We consider asymptotic

a central limit theorem and a local limit theorem on (X7, S?) with z a starting point on
the unit sphere in R?. In this paper, motivated by some applications in branching random
walks, we improve and extend his theorems in the sense that: 1) we prove that the central
limit theorem holds uniformly in x, and give an asymptotic expansion in the local limit
theorem with a continuous function f acting on X' and a directly Riemann integrable
function h acting on S¥; 2) we extend the results to the case of nonnegative matrices.
Our approach is mainly based on the spectral gap theory recently developed for products

of random matrices, and smoothing techniques for the approximation of functions.

3.1 Introduction

Let p be a probability measure on the set of d x d matrices M(d,R) (d > 1), and let
(An)n>1 be a sequence of independent and identically distributed random matrices with
law p, defined on some probability space (€2, F,P). We are interested in the asymptotic

behavior of the random walk G, x, where

is the product of the random matrices A;, = is a starting point on the unit sphere S4~! =

{x € R?: |z| = 1}, with | - | an arbitrary norm on R¢. Notice that G,z is completely

o4
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determined by its log norm and its projection on the unit sphere, denoted respectively by

Syi=log|Gux| and X =G, -z:=

We will use the convention that Gyz = x, and introduce conditions such that G,z # 0.
Many authors have contributed to the study of asymptotic properties of S¥. For example,
central limit theorems have been established by Benoist and Quint [10] for invertible

matrices, and by Hennion [49] for nonnegative matrices.

While studying branching random walks in R? governed by products of random ma-
trices, we need some asymptotic properties as those given in a central limit theorem and
a local limit theorem on the couple (X%, S%), but we find that the known results on this
topic are not sharp enough for our purposes. We thus focus our study on the Markov
chain (X7, S¥) for establishing finer results. The applications in branching random walks

will be considered in a forth coming paper [22].

For invertible matrices, Le Page [63] established a central limit theorem for (X7Z, S¥)
with  a given point in S*°!, and a local limit theorem for (XZ, S¥) with target functions
f and h acting on X7 and S¥ respectively, which are supposed to be continuous and of
compact support. Such kind of limit theorems have also been established by Hennion and
Hervé [50] in a more general setting by considering (X, S,) instead of (X%, S¥), where
(X,) is a general Markov chain, S,, = >I' | £(X;) with £ a measurable and real valued
function. Very recently, in parallel to the present work, a Berry- Essen type theorem on
the rate of convergence in the central limit theorem has been established for (X7, S¥) in

[83] for both invertible and nonnegative matrices.

In this paper, our first objective is to improve the central limit theorem of Le Page [63]
for invertible matrices with a uniform convergence in = (see Theorem 3.2.1), and deepen
his local limit theorem by giving an asymptotic expansion under the weaker condition that
the target functions f and h are respectively continuous and directly Riemann integrable
(see Theorem 3.2.2). Our second objective is to prove that the results also hold for

nonnegative matrices.

Our approach is mainly based on the spectral gap theory recently developed for the
norm cocycle by Guivarc’h and Le Page [46] for invertible matrices, and by Buraczewski,
Damek, Guivarc’h and Mentemeier (see [25, 28]) for nonnegative matrices. Smoothing
techniques are also used for the approximation of functions: in the proof of Theorem

3.2.1, we use a smooth approximation of the indicator function of a Borel set (see Lemma,
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3.4.1), while in the proof of Theorem 3.2.2, we use a suitable approximation of a directly
Riemann integrable function with the techniques developed in [82].

The paper is organized as follows. In Section 3.2, we fix some notation, introduce our
assumptions on the branching products of random matrices and state the main results.
In Section 3.3, we recall some results on spectral theory for products of random matrices
which will be used in proofs of main results. These proofs are given in Sections 3.4 and

3.5.

3.2 Main results

3.2.1 Notation and preliminaries

We first fix some notation. We denote by ¢ or C a constant whose value may change
from line to line. For a set B, we use the symbols 1g, B, B° and 0B = B\ B° to
denote respectively its indicator function, its closure, interior and boundary. For t € R,
we write ¢(t) = \/%e_yzﬂ, o) = [* ¢(u)du, and ¢, (t) = ﬁe_ﬂ/(%%. For a measure
v and a measurable function f we denote v(f) = [ fdv. For two functions f and g, we
write £(£) = o(g(t)) or () = O(g(t)) (t = 0) when limy o £()/g(t) = 0 or (£)/g(t) is
bounded for || small enough, respectively. Denote by L' the class of complexed valued
measurable and Lebesgue integrable functions on R; for f € L', denote its L! norm by
1l = i | (@) da.

Let M(d,R) be equipped with the operator norm ||a|| = sup,cga-1 |az| fora € M(d,R).
Denote by I'), := [supp p] the smallest closed semigroup of M (d,R) generated by the
support of p. Let us recall some definitions in matrix theory. A matrix a is said to be
proximal if it has an algebraic simple dominant eigenvalue. Denote by M the set of
matrices with nonnegative entries. A matrix a € M is said to be allowable if every row
and every column has a positive entry.

For invertible matrices, we will use the strong irreducibility and proximality conditions.

M1. (i) (Strong irreducibility) There is no finite union W = U, W; of subspaces 0 #
W; € R which is T -invariant (in the sense that T,V =W).

(i) (Proximality) I, contains at least one proximal matriz.

Notice that when d = 1, the strong irreducibility and proximality conditions are always
satisfied.
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For nonnegative matrices, we will need the allowability, positivity and non-arithmeticity

conditions.

M2. (i) (Allowability) Every a € I, is allowable.

(ii) (Positivity) '), contains at least one matrixz belonging to MY..

We say that the measure p is arithmetic if there are t > 0, 6 € [0,27) and a function
¥ : ST — R such that for all a € T', and all z € V(T,,),

exp{itlog |ax| — i +i(d(a-z) — ¥ (z))} =1,

where S9! = {# > 0 : |z| = 1} is the intersection of the unit sphere with the positive
quadrant. Notice when d = 1, we have S = {1}, and the above arithmetic condition
reduces to the following more usual form: loga is almost surely concentrated on an

arithmetic progression ay + asN for some ag, as > 0.
M3. (Non-arithmeticity) The measure p is non-arithmetic.

It is known that when d > 2, condition M1 implies M3 (see [47, Proposition 4.6]).
For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a € M(d,R), set

ax

v(a) :=inf |Jaz|, and a.x:=—
z€S laz|

for the projective action of a matrix a on # € S¥~! when ax # 0. Then «(a) > 0 for both

invertible matrices and allowable nonnegative matrices.

M4. There is a € (0,1) such that
EN(Al)a < Q.

For invertible matrices, this condition is equivalent to the following two-sided expo-
nential moment condition which is usually used in the literature: there is a; > 0 such
that EN(A4;)* < oo, where N(A;) = max{||A;]|, [|A7*]}.

We will consider the action of invertible matrices on the projective space P! which
is obtained from S%! by identifying  and —x, and the action of nonnegative matrices
on S4'. When convenient we identify z € P4~! with one of its representants in S*!.

To unify the exposition, we use the symbol S to denote P?~! for invertible matrices, and
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Sflfl for nonnegative matrices. The space S will be equipped with the metric d, which is
the angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric
(see [49]) for nonnegative matrices. Moreover, S is a separable metric space with Borel-o
algebra. For any starting point z € S, as mentioned in the introduction, G, x is completely
described by (XZ,S¥). With the above conditions, X? is well defined and the sequence
(XZ,SF) is a Markov chain because X? = A, - X?_,and S? =log |A, X | + S,

For invertible matrices, it was proved in [46, Theorem 2.6] that if condition M1 holds,

then the Markov chain X has a unique p-stationary measure, which is supported on

V(T,) :={va € Pl :a €T, ais proximal},

where v, denotes the eigenvector with norm |v,| = 1 associated to the dominant eigenvalue

of the proximal matrix a.

For nonnegative matrices, it was shown in [25, Lemma 4.3] that condition M2 en-
sures the existence and uniqueness of the invariant measure for the Markov chain (X?)

supported on

V() ={va€St':aecT,ac M}

In both cases, we write v for the unique invariant measure of (X?).

Central limit theorems have been established in the literature. For invertible matrices,
under condition M1 and the two-sided exponential moment condition, Le Page [63] proved
that .

%(Sﬁ —ny) — N(0,0%) in law, (3.1)

where v = inf,> 1Elog ||4, - - - 41| is the Lyapunov exponent, and 0% = lim,, o ~E(S¥ —
nvy)? is the asymptotic variance which is positive and independent of z. For nonnegative
matrices, under condition M2 and a second moment condition, Hennion [49] proved that
(3.1) holds for some o > 0; he also gave a condition of tightness of the sequence (G,,),>0
to ensure that o > 0. As a by-product of our approch, we will show that ¢ > 0 under the

non-arithmeticity condition M3 (see Proposition 3.3.3).
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3.2.2 Main results

We state first a central limit theorem for the couple (X7, S¥) with uniform convergence

inx eS.

Theorem 3.2.1. For invertible matrices, assume M1 if d > 1, and M3 if d = 1. For

nonnegative matrices, assume M2 and M3. For both cases, assume additionally M}.

1. For any continuous function f on S, we have

E

lim sup
N0 (2 HESXR

I s ] (N2 0| =0 £

oy/n —

2. For any measurable set B C S with v(0B) = 0, we have

P(X:g € B, S’z\_/_:y < t) —u(B)® (1) ‘ —0. (3.3)

lim sup
N0 (x ) ESXR

For invertible matrices, a point-wise version (by considering a fixed x € S instead of
sup,cg) has been established by Le Page in [63, Theorem 4]. For nonnegative matrices,
the asymptotic for the Markov chain (X?,S¥) is new even for a fixed z. The uniformity
in z € § is new for both invertible matrices and nonnegative matrices. Theorem 3.2.1
will be deduced form a result on the convergence rate in (3.2) which has been established
in [83] for the case when f is Hélder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for

products of random matrices.
Theorem 3.2.2. Assume the conditions of Theorem 3.2.1.

1. For any continuous function f on S and any directly Riemann integrable function

h on R, we have as n — o0,

sup |ov/nE [f(X;)h(y + Sy —ny)] —

(w,y)eSXR
y(f)Ah(z)¢<i;ﬁz>HI<yJﬁz)dz| 0, (3.4)
where
Hy(u)=1- sz(\x/)ﬁu + 60?\3/5(30% —u?),

with ms and b(x) defined in Proposition 3.3.3.
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2. For any measurable set B C S with v(0B) = 0 and any directly Riemann integrable

function h on R, we have as n — oo

sup |ov/nE [15(X;)h(y + Sy — ny)] —

(z,y)eSXR

V(B)/Rh(z)gzﬁC; ;)Hx(y\/{:)dd =0, (3.5)

When y = 0, f =1 and h = 1|y, the integral E [f(X?)h(y + 5% — ny)] reduces to
the local probability P(S% € ny + [a,b]), which is the usual object studied in local limit
theorems.

The expansions (3.4) and (3.5) are new for both invertible matrices and nonnegative
matrices. The first expansion implies the local limit theorem established in [63, Theorem
6] for invertible matrices, which states that (3.4) holds when the polynomial H,(-) is
replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 3.2.1 follows from
Theorem VIL.2.7 of Petrov [75], while expansion (3.4) in Theorem 3.2.2 was proved by
Feller (see [36, Theorem XVI.4.1]) under the same non-arithmetic condition on p and
when h = 1[4 is the indicator function of an interval. Breuillard (see [21, Theorem 3.2])
proved an expansion like (3.4) but for any finite order, when p is strongly non-arithmetic
(in the sense that its characteristic function fi(t) = [e"®u(dx) satisfies Cramér’s con-
dition lim supy_,., [22(t)| < 1) with finite moments of order high enough and when # is
integrable and regular enough (he assumed in particular that h has continuous and in-
tegrable derivatives h®) for 0 < k < K with K > 2 large enough). Compared with the
result of Breuillard, the novelity in Theorem 3.2.2 is that we assume the non-arithmetic
condition instead of the strongly arithmetic condition, and we use the direct Riemann

integrability of h instead of the smoothness condition on h.

3.3 Spectral gap property

In this section we recall some spectral gap properties studied in [63, 28, 83] which will be
used for the proofs of main results.

For z € C, define the operator P, on the set C(S) of continuous functions on S by

P.f(x) = /M laz|*f(a-x)u(da), forall x € S.
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For f € C(S) and 3 > 0, we introduce the norms

Il i=sup @ 1fls = sup PO =Ly 1 11

z,yeS

Consider the Banach space Bg := {f € C(S) : || f||g < +o0}. Denote by L£(Bg, Bs) the set

of all bounded linear operators from Bg to Bz equipped with the operator norm

P
| Plls,—8, = sup | fHB, VP € L(Bg, Bs).
20 [1flls

The following result describes the quasi-compactness of Py. It can be found in [63,
Proposition 4] for invertible matrices and in [28, Proposition 4.2] for nonnegative matrices.
For P € L(Bs, Bs) and n € N, denote by P™ the n-fold iteration of P; by convention P°

is the identity operator.

Proposition 3.3.1. Assume the conditions of Theorem 3.2.1. Let B > 0 be small enough.
Then Py € L(Bg,Bgs), and there is an operator L € L(Bg, Bg) whose spectral radius is
strictly less than 1, such that for alln € N,

P(?ZHQ—FL”,

where Iy is a rank-one projection satisfying UoBs = {f € Bs : Pof = f} and Il f(x) =
v(f) forall f € Bg and x € S.

For simplicity, in our proofs we will use a slightly different family of operators (R;)ier
defined by

R f(z) = e ™ Py f(zx) = E[e"ST=V f(X2)], for fe€C(S),z€S.
By the cocycle property log |asa;z| = log|as(a; - x)| +log |a;z| and an induction, we have
R} f(x) = B[e"S ) f(XD)], n>1.

We collect in the following two propositions some results from [83] that we will use.
Although these results are stated in [83] only for d > 2, they remain valid for d = 1. The

first proposition concerns the perturbation theory.

Proposition 3.3.2. Assume the conditions of Theorem 3.2.1.
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1. There exists a real number 6 > 0 such that for t € [—0,0] we have:
(a) For all f € Bg andn >1
REf = A0 f + N} f,
with I, Ny = NI, = 0.
(b) The mappings

A:[=6,0] > R, I1: [—0,0] — L(Bs,Bs), N : [~5,6] — L(Bs, B)

are C°.

(c) For kg € N, there exist p = p(ko) € (0,1) and ¢ = c(ko) > 0 such that for all
n>1,

k

dtk

7

< cp".

max sup <
BB —>Bg

0<k<ko <5

Ny

2. Let K C R\ {0} be compact. Then for each f € Bg, there is p; € (0,1) such that
foralln >1,

sup | By flloo < o1l co-
teK

The second proposition concerns the Taylor expansion of A and the positivity of the

asymptotic variance.
Proposition 3.3.3. Assume the conditions of Theorem 3.2.1.

1. The Taylor expansion of X at 0 of order 3 is given by

1
where my = 1imy, 0o — [y, B(SE — ny)*dv(z).
n H

2. For each x € S, the limit b(x) = lim, . E(S?

T —ny) exists in R, the function
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x +— b(x) is in Bg, and the derivative 1T}, of I1; at 0, satisfies

o f(x) = iv(f)b(z), for feBs xze€S8.

3. If p is non-arithmetic, then o > 0.

3.4 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1, part (1). From [83, Theorem 2.1], for f € B, we have

E

lim sup
N0 (2 H)ESXR

ovn —

FED s ] (N2 (0| =0 (3.

Combining this with the fact that the Banach space B is dense in C(S) with respect to

the norm |||« gives the conclusion of part (1). O

To prove part (2), we first introduce a smooth approximation of an indicator function:
Lemma 3.4.1. (Smooth approximation of an indicator function)

1. Let A, B C S be non-empty closed sets with AN B = (). Then there is a continuous
function ¢ : S — [0, 1] such that p(z) =1 for allx € A and p(x) =0 for all z € B.

2. Let A C S be a non-empty measurable set with v(0A) = 0, and let € > 0. Then

there exist two continuous functions ¢, % : S — [0, 1] such that

o <1<t and vizeS:pt#¢p }<e.

Proof. For a non-empty set D C § and x € S, define
dist(x, D) = inf{d(x, 2) : z € D}.

(1) Since A, B are closed and disjoint we have dist(x, B) +dist(x, A) # 0 for all x € S.

The function defined below satisfies the desired properties:

Tz eS.

(2) = dist(x, B)
PAE) = dist(z, B) + dist(x, A)’
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(2) Since v is a Borel measure on S, we have

v(A) = inf{v(U) : A C U,Uopen},
v(A°) =sup{v(K) : K C A’ Kcompact}.

Hence for each ¢ > 0, there exists a compact K C A such that v(K) > v(4°) — 5.

Since K and (A°)¢ are disjoint closed sets, by part (1), there exists a continuous function
¢~ : S = [0,1] such that ¢~ (z) =1 for z € K and ¢~ (x) = 0 for z € (A%)".

Similarly, there exists an open set U D A such that v(U) < v(A) + 5. Again by part
(1) applied to the disjoint closed sets A and U¢, we see that there is a continuous function
¢t : S —[0,1] such that ¢ (z) =1 for z € A and p™(z) = 0 for z € U°. Therefore,

KuUtc{zeS:pt(z)=¢p (x)}.

Consequently,
{zeS:pT(x)£ ¢ (2)} CK°NU=U\K.

Since U\ K = (U\ A) U (A\ A°) U (4°\ K), it follows that
v{r eSS ot (x)# o ()} <v(U\A) +v(A\ A°) +v(A°\ K) <&,

where we have used the hypothesis that (A4 \ A°) = v(0A) = 0. From the construction
of ¢~ and ¢, it is obvious that = < 1z < ¢™*. O

Proof of Theorem 3.2.1, part (2). Let € > 0 be given. By Lemma 3.4.1, there exists two
continuous functions ¢ and ¢~: S — [0, 1] such that

o  <lIp<e" and v{reS:pT#¢ }<ec (3.7)
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By the triangular inequality in R, we have

sup E{]l X)L se_s ]—VBCDt ‘
(z,t)eSXR B( ) {Sg n St} ( ) ( )
< su E|(1,— ot X seny H
i | = e s )
+ e Bl D | -2 @)
(z,t)ESXR ovn =
+ sup |v(pT —1p)P (). (3.8)

(z,t)eSxR

By part (1), the second term in (3.8) is less than ¢ for n enough large. The third term is
also less than € by the property (3.7) since

vt —lp) <v(p" —p ) Sv{z eSS v £y} <e (3.9)

The first term can be estimated as follows:

su E[]l — NYX) T g H
(m,t)EEXIR{ (s —¢7)(X2) {%St}
< su El(oT — o ) (X1 PR ‘
S L L R
< sup |E w*(X,f)]l{sg_mq}} - (80+)<I>(t)’
(z,t)ESXR oTn

b Bl | -2 0]

(z,t)eSxR

+ sup (et = )P (1)
(z,t)eSXR

In the last display, the first two terms are less than ¢ for n large enough, again by part
(1); the third one is also less then € by (3.9). O

3.5 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2, part (1). We assume that both f and h are nonnegative; we can
do this by considering the positive and negative parts. We will proceed the proof in 4
steps.
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Step 1. We first establish (3.4) for f € Bs and h € L' whose Fourier transform

h(u) = / e~ th(t)dt, Vu e R,
R

~

has a compact support supp(h) C [—k, k]. By the inversion formula of Fourier transform

and Fubini’s theorem, for any x € § and y € R,
X 4 .
T JR
1 PN .
= —/ e"Yh(u)E [ew(sn_"”f(Xjf)} du
2m Jr
1 PN
- uy n
o /Re h(u) R f(z)du.

By the change of variables u = ﬁ and using Proposition 3.3.2, we have:

I = VR [f(X")h(y + S* — nv)]

1 ity ~/ 1
—— 7 b —— ) R™,
QW/RG h(\/ﬁ>Rﬁf(x)dt

=1+ I, + Is,
where
1 ity ~( ¢ t
g h( )A"()Htf(x)dt,
21 Jit|<61v/n n n v
1

ity ~/ ¢
I :7/ v h( )N"t dt,
> on |t\§61\/ﬁ€ N4 ﬁf(x)

1 ity ~/ ¢
I = 7/ v h()R"t dt,
37 2 s vn /@

with ¢; € (0,0] a parameter which will be fixed later. We will prove that I; gives the

main term of the desired expansion, while /5 and I3 tend to 0.

Estimation of I,. By Proposition 3.3.3 and an elementary calculation, we obtain, as
_t

ﬁ—>0,

A”(\;ﬁ) = 6_# exp < — zgn\;t; + 0(2)) (3.10)
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By Taylor’s expansion of the operator II; on a neighborhood of 0, we have

I f(r) = Tof () + —=Thyf(e) + (L), (3.11)

where Il and IIj, are bounded operators on Bg defined in Propositions 3.3.1 and 3.3.3(2).
Notice that I f(x) = v(f) and II}, f (z) = iv(f)b(z). With (3.10) and (3.11) in mind, we

do the composition

/) [Tt - <ff%]
=) - (1= )

t) _G}WW

NG

X”(\/tﬁ)ﬂjﬁf(x) e

<

_22 itb(x)  imst?
1 — . 3.12
e (1+ 2 - 5 (312)
Choosing 0; < § small enough such that when |t|/y/n < 1, we have
imgt? ( t? )‘ o*t? t o2
- — )| <—and \'(—=) < . 3.13
6o o\ m)| S T amd M) s e (3:13)

In the definition of I;, we substitute )\"(ﬁ)ﬂ%f(:r) by the decomposition (3.12); this

leads to a decomposition of I; which we write accordingly as
[1:J1+J2+J3—|—J4.

We first estimate the integral J;. Using (3.11), (3.13) and the fact that h is bounded, we

obtain

1 ~ : /2
Tl < 2 suplift / - 0<>dt
|| < 27rst§11§| ()] aennt - O\%

o242 1 C
< ‘4tdt-0<)<.
< [ a0 ) <

To estimate J, we use the following inequality (see inequality XVI(2.8) in [36]): for all
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u,v € C,
U 1 2\ max(|ul,|v])
e —1—v| < (|u—v|+2|v| >e ol (3.14)
t3 t3 mat?
Using (3.14) with u = —Zgl\j_ (\/_> and v = _Zgn\;ﬁ , we have

v(f) o262 [ o ( 1 ) p (],) o242
< —=Z 2 —_ — 4
|Jo| < o stlel]g! (1) t|<5f l|t| 0 7 +t°0 ~)le dt

- 1
< [P+ e ar-of c
R

< —

\/ﬁ>_ﬁ‘

For J3, we use again inequality (3.14) and the fact that the mapping b belongs to Bg, to

conclude that

1— A\
vn

t3 3
o ol )
TL

o
<@
L

< ()]
U= J<ovs Vi

v()lblls [ e
</ e T |t - O(\F>

Hence, we obtain the following estimate of I;:

02t2

C
h— i< (3.15)

Estimation of Iy. From Proposition 3.3.2, we know that for [¢| < d;4/n there exists a

constant ¢ > 0 and p € (0,1) such that ‘N fH < ¢p". Hence,

L] < Cp /]R (1) dt. (3.16)

FEstimation of Is. From Proposition 3.3.2(2), we have

sup HR Slloo < PUI flloo-
siv/A<lti<eym

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



69 3.5. Proof of Theorem 3.2.2

Using this together with the condition that supp(h) C [—k, k], we get
1] < Cp" / I (t)|dt. (3.17)
R

Collecting the bounds (3.15), (3.16) and (3.17), we have

1
= Jil gc<ﬁ+p’;+pn>. (3.18)
Set
. . 3
Q) =1+ 1t b(x) 1tmgt

6V

It is not difficult to see that

y2(7J:) /t|>61

<of

Hence we replace the integral on |t| < d14/n of Jy in (3.18) by an integral on R. We get

_ ”éﬁéei%ﬁ<jﬁ>efﬁQ(t)dt

2,2 1 t2

Note that ¢(ct) = e~ "2 is the Fourier transform of ¢, (t) = e22. Then

ﬂ\@'

B(\;ﬁ) _dthQ(t)dt‘

|dt+—sup|h( )|)

n— o0
0.

—

sup
(z,y)eSXR

2mo?

_ Méei%E(\;ﬁ)&(tU) Q(t)dt‘ = 0.

lim  sup
N0 (2 y)eSXR

—

But one has for all p > 0, (ct)Pd(ot) = (—i)p¢fyp)(z€) where the notation f®) is the

derivative of order p of f, it implies
1 ty~/ T\~
- Vvn R g
3 e R () 1) @yt = Vi [ (/) 6 (u) . ),

where H,(u) is a polynomial such that @ (—i%) bo(u) = Hy(u)d,(u). With an elemen-
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tary calculation, we get

b(x) ms

B 02\/ﬁu + 606/n

Using the change of variables z = y + uy/n, we get

h(z)qbc,(y\;;)}]x(y\;ﬁz)dz

H,(u)=1 (30%u — u?).

lim  sup =0,

T (2 y)ESXR

1-v(f) [

R

or, equivalently,

lim  sup
0 (z4)eSXR

o — v(f) /Rh(z)gb(ya_;)m ({;{) dz| = 0.

So we have established (3.4) for f € Bs and Lebesgue integrable function h whose Fourier
transform h has a compact support.
Step 2. We establish (3.4) for f € Bg and h € L' satisfying h € % for all € € (0, 1)

and

he(u)du = / h(u)du, (3.19)

lim [ h.(u)du = lim
R E— R

e—0 0JR

where ., h. and h. are defined below. For any nonnegative Lebesgue integrable function
h defined on R, and for any ¢ > 0 and u € R, set B.(u) = {v' € R: |/ —u| < e},

=

(u)= sup h(v) and h.(u)= inf h(v).

vEB. (u) vEB, (u)

For any € > 0, denote by . the set of nonnegative Lebesgue integrable functions h such

that h. and h. are measurable and Lebesgue integrable:
H.={he€L": h>0, h. and h, are measurable and integrable}.

We shall use the following result proved in [43, Lemma 5.2].

Lemma 3.5.1. Let h € L' be such that h € S for all € € (0,1/4). Then we have, for
alle € (0,1/4) and u € R,

h, x K2 (u) — / he(u—v)k2(v)dv < h(u) < (14 4e)h, * ke2(u),

lv[>e
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where k is defined on R by

K(u) = 1(sin <12L>)2 forw € R*, and (0) = i

2T

Moreover, we need some properties of the kernel x that we state in the following. The

function k is integrable and its Fourier transform is given by
R(t) =1—[t| for all t € [-1,1], and R(t) = 0 otherwise.

Note that

1
Ke(u) = H<u>, u € R. (3.20)
Its Fourier transform is given by &.(t) = k(et). Note also that, for any € > 0, we have

1 p+>o 4 4e
du < f/ Zdu == 391
/|u|2i Alu)du < T/ u? R (3:21)

For simplicity, we denote, for any f € C(S) and h € L,

I(n, f.h) = o/nE [f(X2)h(y + 5% —n7)]. (3.22)

K(n, f,h) = y(f)/Rh(z)ng(ya\_/g)Hx(y\;ﬁz)dz. (3.23)

Notice that sup,cs ,er [¢(%)H,(u)| < oo. This implies the following uniform bound in
reSy,zeRn>1:

¢<Z\_/_;>H(y\;ﬁz) <c (3.24)

From this we see that for f € C(S) and h € L,

K(n, f,h) < Cv(f)l[hl - (3.25)
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Remark that, for f and h fixed as in the beginning of Step 2, with the notation (3.22)
and (3.23), to prove the desired conclusion (3.4), it suffices to establish the following

result: for all £ > 0 small enough, when n is large enough,

sup |I(n, f,h) — K(n, f,h)|] <v(f)on(e) + ¢, (3.26)
(z,y)€(S,R)

where

(&) = C(1Ih = haulls + ae = bl ) + Clac s (e + )

— 0 as € » 0 (due to (3.19)).

Below we will prove (3.26) by giving upper and lower bounds of I(n, f,h) — K(n, f,h).

Upper bound of 1(n, f,h) — K(n, f,h). By Lemma 3.5.1, we have, for any x € §,n >
L,yeRand e € (0,1/4),

I(n, f,h) < (1+4e)I(n, f,he * Ke2).

Since h. and k.2 are integrable, the function h.*k.2 is also integrable; its Fourier transform
h.R.2 has a compact support included in [—1/€2, 1/£%]. Consequently, we can use the result

proved in Step 1, applied to f and h. * k.2, to conclude that for n large enough,
I(n, f,h) < (1+4e)K(n, f,h. * k) + €. (3.27)

Notice that for |v| < ¢ and u € R, we have [u —v —g,u —v +¢] C [u — 2e,u + 2¢].
Therefore, by definition,

ho(u—v) > hoo(u) and  ho(u—v) < hoo(u). (3.28)

Consequently, for any u € R,

he * Ke2(u) <

2c () /v|§z-: Ke2(v)dv + he(u — v)ke2(v)dv

ju]>e

hoe(u) + /v26 he(u — v)ke2 (v)dv.

=l

IN
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From this together with the bound (3.24), inequality (3.27) implies

I(TL7 f’ h) S (1 + 45)K(’I’L, f7 EQ&)
+ (1 +4¢)Cv(f) / / | he(z — v)ke2(v)dvdz + €.
R J|v|>e
For a bound of the first term in the right hand side, we use the decomposition K (n, f, he.) =
K(n, f,h)+K(n, f, ha.—h) and the inequality (3.25) for K (n, f, ho.—h) to get K (n, f, hy.) <
K(n, f,h) + Cv(f) |hac = ||, . Therefore
I(n, f,h) < (1+4) [K(n, f,h) + Cv(f) [hoe — b ]
+ (1 +4¢)Cv(f) / / | he(z — v)ke2(v)dvdz + €.
R J|v|>e

For a bound of the last integral, we use (3.20) and (3.21), to obtain

n 4e

Lo

/R/Iv|>a he(z = v)ke2 (v)dvdz <

Using this and the bound of K(n, f, h) in (3.25), from the preceding bound of I(n, f, h)
we get for f € Bg and h € JZ,

I(n, f,h) = K(n, f.h) < dv(f)ellblp + Cv(f) (L + 42) || hoe — bl
N ACv(f)(1 + 4e)e

7

< OV(f)HEQE — hHLl + OV(f)(E + 82)||E28||L1 + €. (329)

1hellz + e

Lower bound of I(n, f,h) — K(n, f,h). With the notation g, .(u) = h.(u —v) and by

Lemma 3.5.1, we have:

I(n, f,h) > I(n, f,h. * r.2) — / I(n, f, gu.)kiez (v)do. (3.30)

lv[>e

Bound of I(n, f,h, % k.2). The Fourier transform of h, * k.2 has a compact support

included in [—1/g%,1/€%). So by the the result proved in Step 1, for n large enough,

I(n, f,h. % k2) > K(n, f,h, % K2) — €. (3.31)
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By (3.28) and (3.21),

4e

he k() 2 ban(2) [ wea()dv 2 (1= = )hau(2)

lv[<e

From this and the bound (3.25) for K (n, f, hy.), the inequality (3.31) implies
4e
I(”a f?hs * ’{€2> > K(nv f?hQ&) - ?Cy(f)”h%”lzl —&.

Using K(n, f,ho.) = K(n, f,h)+ K (n, f, ho.—h) and the bound (3.25) for K (n, f, ho.—h),

we have

ACv(f)

15
](TL, f’hs*HEQ) _K<n7 fa h) > _Cy(f)Hh_hQsHLI - HEQEHLI —¢&. (332>

Bound of [,5. I(n, [, gue)ke2(v)dv in (3.30). Using (3.29) with h replaced by gy,
(which lies in .#22) and (3.25) for K(n, f,g,.), we get

I(n, f,90e) < Cv()llgoellr + Cv(f)I(Goe)se = Guellin
+ Cv(f)(e +e*)1(gue)ollr + &

This implies that
I(n, f,90e) < Cv(f) (1 + e+ ) [[(gue)allir +e. (3.33)

Note that, for any v € R,

(gew)oe(w) = sup  h(w—v)<  sup  A(w—v) = ha(u—v).
we[u—2¢e,u+2¢] we [u—2e,u+2¢]
S0, [[(gew)oe| < ‘hge . This together with (3.33) and(3.21) implies that
A A

EQE

[ 1 fana@do < (Cup+e+ o] +e) [ nawy
a7t 6) = (3.34)

™

< (Ou(f)(l +5+52)’h25
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Putting together (3.30), (3.32) and (3.34), we obtain

I(n, f,h) = K(n, f,h) 2 =Cv(f) [|h = hacl|py + Cv(f) [Pz,

(e +€2) —e. (3.35)

Combining the upper bound (3.29), the lower bound (3.35) and the condition (3.19),
the desired result (3.26) or (3.4) follows for f € Bg and h € J# for all € € (0,1) and h
satisfies (3.19).

Step 3. We prove (3.4) for f € Bg and h which is nonnegative and directly Riemann
integrable. Since h is directly Riemann integrable, M := sup,cg h(y) < +o0o. Let n €
(0,1) and € € (0, Mn).

By a result of approximation in the proof of Theorem 2.2 in [82], there exist two

functions h, . and h_ which belong to 2, for all £; € (0, min{1/4, Mn,n/3}) small

7, n,€

enough, and which satisfy (3.19), together with
hpe <0 < hicand [ [t (6) =y (D] dt < 3e. (3.36)
The first inequality in (3.36) gives K'(n, f,ht_—h) < K(n, f,ht_—h, ), so that

[I(n, f,h) = K(n, f,B)| < [I(n, f,h) = I(n, f, hy )|
I, fohy) = Ko, fohg L+ [K(n, £y = by )l (3.37)

In the right hand side, as n — oo, the second term tends to 0 uniformly in x € S and
y € R by the result proved in Step 2. The third one is bounded by Cv(f)3e from the
bound (3.25) for K'(n, f, h; . — h; ) and the property (3.36). Therefore, using (3.37) and

) 175
passing to the limit as n — 0o, we obtain

liInsup sup |I<TL, f7 h) —K(?’L,f, h)|

n—oo  (z,y)eSXR

Sliinﬁs;gp( sup RII(n,ﬁh)—l( Dy )+ Cv(f)3e. (3.38)
Now
I(n, f.h) = I(n, f,hy ) < I(n, fohy ) = I(n, fo0y L)
[ 7h;7~_€>_ ( f7 ne)]+K(n f: ns_hv;,s)
+ (K, f,hy) = I(n, f.1y )] (3.39)
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As in the preceding, in the last display, as n — oo, the first and third terms tend to 0
uniformly in x € § and y € R by the result proved in Step 2; the second one is bounded
by Cv(f)3e (by (3.25) and (3.36)). Therefore,

limsup sup [I(n, f,h) = I(n, f,h' )] < Cv(f)3e. (3.40)

n—o0  (z,y)eSXR

Combining (3.38) and (3.40), we obtain

limsup sup |[I(n, f,h) — K(n, f,h)] < Cv(f)6e. (3.41)

n—o0  (z,y)eSXR
Since € > 0 est arbitrary, this gives (3.4).

Step 4. We establish (3.4) for f € C(S) and h which is directly Riemann integrable.
Let € > 0. From the fact that Bs is dense in C(S) with respect to the norm ||. ||, there
is a function f € Bs such that || f — f|ls < e. Hence we have

](nvfah)_K<n7fvh>:](nvf_fvh)+[l(n7fvh>_K(n7f7h)]
— K(n, f— f,h). (3.42)

It follows from the result proved in Step 3 that

lim sup |I(n,f,h) — K(n, f,h)|=0.

N0 (z,y)eSXR

Consequently, by (3.42)

hmsup sup ’](In'va h) _K(n7 f7h>|

n—oo  (z,y)eSxR

<limsup sup ’[(n,f—f,h)—K(n,f—f,h)‘

n—oo  (z,y)eSxR
<Nf = Floo sup  [I(n,1,h) + K(n,1,h)], (3.43)
(z,y)ESXR
where the last inequality follows directly from the definition of I and K. By the result
proved in Step 3 (applied to f = 1) and the bound (3.25) applied for K(n,1,h), we see
that I(n,1,h) — K(n,1,h) and I(n,1, h) are bounded uniformly in z,y and n > 1. Hence

sup [[(n, 1,h) + K(n,1, h)} < o0.
(z,y)ESXR
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Since ||f — f|loe < € and € > 0 is arbitrary, this together with (3.43) implies

limsup sup |I(n,f,h) — K(n, f,h)| =0,

n—oo  (z,y)eESXR

which completes the proof of part (1) of Theorem 3.2.2.

Proof of Theorem 3.2.2, part (2). For the proof of part (2), we use the conclusion of part
(1) and the approximation of the indicator function by a continuous function (see Lemma
3.4.1). Because the argument is quite similar to the proof of part (2) of Theorem 3.2.1,

we omit the details. O
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Chapter 4
Central limit theorem and precise large devi-
ations for branching random walks with prod-

ucts of random matrices

We consider a branching random walk where particles give birth to children as a Galton-
Watson process, which move in R? with positions determined by the action of independent
and identically distributed random matrices on the position of the parent. We are inter-
ested in asymptotic properties of the counting measure Z? which counts the number of
particles of generation n situated in a given region, when the process starts with one
initial particle located at x. We establish a central limit theorem and a large deviation
asymptotic expansion of Bahadur-Rao type for Z* with suitable norming. An integral
version of the large deviation result is also established. One of the key points in the
proofs is the study of the fundamental martingale related to the spectral gap theory for
products of random matrices. As a by-product, we obtain a sufficient and necessary con-
dition for the non-degeneracy of the limit of the fundamental martingale, which extends

the Kesten-Stigum type theorem of Biggins.

4.1 Introduction

A branching random walk is a system of particles, in which each particle gives birth
to new particles of the next generation, whose children move on R or R?, according to
some probability law. For early fundamental results on this model, see for example [2,
3, 13, 15, 16]. In recent years, this topic has attracted the attention of many authors,
see for example, [1, 52, 35, 5, 34, 30, 55, 65]. The model is closely related to various
applied probability settings, such as Mandelbrot’s cascades (cf. e.g. [56, 67, 6, 25, 72]),
perpetuities (see e.g. [77, 26, 54]) and branching Brownian motion (cf. e.g. [59, 29, 12,
71]). For extensions to random environments in space and time, see e.g. [44, 33] and [19,
62, 69, 39, 40]. For other related works and many references, see e.g. the recent books

[77, 26, 54]. In the classical branching random walk, a particle whose parent is at position

78
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y, moves to position y + [ with independent and identically distributed (i.i.d.) increments
[ for different particles, so that the moving is a simple random translation. The classical
model does not cover the interesting cases occurring in many applications where the
movements are determined by linear transformations such as rotations, dilations, shears,
reflections, projections etc. In this paper, we deal with the case where the position of a
particle is obtained by the action of a matrix A on the position of its parent, where the
matrices A’s corresponding to different particles are i.i.d. In other words, the positions of
particles are obtained by the action of products of random matrices on the position of one
initial particle. This permits us to extend significantly the domains of applications of the
theory of branching random walks. However, the study of this model becomes much more
involved. One of the fundamental problems in the theory of branching random walks is to
give a precise description of the configuration of the process at time n. We will consider
this problem by giving precise asymptotics of the counting measure Z? which counts the
number of particles of generation n situated in a given region, when the process begins
with one initial particle situated at x. More precisely, for the model that we introduce
here, we will establish a central limit theorem and a large deviation asymptotic expansion

of Bahadur-Rao type for Z? with suitable norming.

To introduce the model we need some notation. Let N = {0,1,2,...} and N* =
{1,2,...}. Set U := U (N*)", where by convention (N*)? = {()}. A particle of generation
n will be denoted by a sequence u = uy - u, = (uy,--- ,u,) € (N*)" of length n; the
initial particle will be denoted by the null sequence (). Assume that on a probability
space (€2, F,IP) we are given a set of independent identically distributed random variables
(Ny)ueu of the same law p = {py, : k € N}, and a set of independent identically distributed
d x d random matrices (A, )uecu of the same law p on the set of d x d matrices M(d, R),

where d > 1. The two families (N, ).cu and (A,)qeu are also assumed to be independent.

A branching random walk with products of random matrices is defined as follows. At
time 0, there is one initial particle §) of generation 0, with initial position Yy := z € R4\{0}.
At time 1, the initial particle () is replaced by N = Ny new particles ¢ = (i of generation
1, located at Y; = A;Yp, 1 < i < N. In general, at time n+ 1, each particle u = uy ... u, of
generation n, located at Y, € RY, is replaced by N, new particles ui of generation n + 1,
located at Y,; = A,Y,,1 < i < N,. Namely, the position of the particle ui is obtained
from the position Y, of u by the action of the matrix A,;, so that the position Y, of a

particle u in generation n > 1 is given by the action of products of random matrices on
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the initial position x:
Y, =Gyux, where G, =Au u,- - -Au- (4.1)

Denote by T the genealogical tree associated to the elements {N, : u € U}. It is
defined by the following properties: 1) ) € T; 2) when u € T, then for i € N, ui € T if
and only if 1 <4 < N,; 3) wi € T implies u € T. Let

T,={ueT:|u =n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and
represents the number of generation to which u belongs; by convention || = 0.

The space R is equipped with the Euclidean norm | - |. The position G,z of the
particle u is completely described by two components: its norm |G,z| and its projection
on the unit sphere S := {y € R?, |y| = 1} denoted by

G,x
X% .= =
“ |G|

Accordingly, we consider the following counting measure of particles of generation n which
describes the configuration of the branching random walk at time n: for measurable sets
B c S* 1 and C C R,

Z3(B,C) = Y L{xzeB, log|GualeC}s (4.2)

u€Ty,

where for a set D, 1 denotes its indicator function. In particular when B = S%! the

measure (4.2) reduces to

Zﬁ(Sd_1>C) = Z T 10g|Guzlccy- (4.3)

uETn

The measure C' +— Z%(S?1 (') counts the number of particles of generation n with a given
distance to the origin; the distributional function Z%(S%!, (=00, y]) counts the number of
particles of generation n situated in the ball centered at 0 with radius e¥. This information
may be important for example when we consider a model describing the infection by a
certain transmittable disease (an infected individual at time n leads to a random number

of infected individuals at time n+1 who move according to random linear transformations
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in R? or R?), where we would like to know at time n how many infected individuals there
are in a region with a given distance from the origin. The measure (B,C) — Z¥(B,(C)
gives more information. For example, when d = 2 and B = {e¥ : 0 € [0;,0,]} is an
arc, Z(B, (—o00,y|) counts the number of particles of generation n situated in the region
{re .0 € [0,,05),7 € [0,¢eY]}.

When d =1, x =1 and A, # 0 for all u € T, the measure defined by (4.3) is exactly
the counting measure considered in the classical model of branching random walk on R
starting from the origin 0 € R, where the position S, of a particle u = uy - - - u,, is given
by Sy = Ly, + -+ + Luy,..a,, with L, = log|A,|. So our model in the one dimensional
case d = 1 reduces essentially to the classical (additive) branching random walk. For this

reason, in the following we will focus on the case d > 2.

The present work aims to establish asymptotic properties of the counting measure Z*
when it is suitably normalized, with |z| =1 and d > 2. We will consider two cases: when
the matrices A, are nonnegative, and when the matrices A, are invertible. Our first result
is a central limit theorem for the counting measure Z* (see Theorem 4.2.1). It states that
for any fixed B C S ! and some constants v, o defined explicitly, the counting measure
C — Z%(B,ny+o0y/nC) on R with a suitable norming converges to the standard normal
law. This result extends the corresponding one of Asmussen and Kaplan [3, Theorem 1]
on the one dimensional case, which was first conjectured by Harris [48]. Our second result
is a precise large deviation result of Kesten-Stigum type (see Theorem 4.2.6), namely we
give an exact asymptotic for Z% (B, [na,+00)) for fixed B C S ! and @ in a natural
range of R. An extension to an integral version of the large deviation result with target
functions on the two components X7Z and log |G, x| is also established (see Theorem 4.2.4).
These results extend the corresponding ones of Biggins [15] on the one dimensional case

to the multi-dimensional case.

The starting point in the proofs of our results is a decomposition formula which permits
to express the counting measure as the sum of conditionally independent random variables,
using the branching property like in the one dimensional case for which we may refer to
[3, 15]. However, there is much to do to arrive to the conclusions in the multidimensional
case, due to the appearance of products of random matrices. In particular, for the proof
of Theorem 4.2.1 about the central limit theorem and Theorem 4.2.4 about the precise
large deviation with target functions, we use respectively the central limit theorem and
the recent progress on the spectral gap theory and precise large deviations for products

of random matrices. Another step forward in the proof of Theorem 4.2.4 concerns the
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extension of Biggins’ martingale to the case of branching products of random matrices,
for which we prove a criterion for the non-degeneracy of the limit of the fundamental
martingale (see Theorem 4.2.2) which completes a result of Mentemeier [72] obtained in
the context of the multivariate smoothing transform, and extends the Kesten-Stigum type

theorem of Biggins [13] on the classical branching random walk.

The outline of the paper is as follows. The main results will be stated in Section 4.2.
Theorem 4.2.1 on the asymptotic normality of the counting measure is proved in Section
4.3. The necessary and sufficient condition for the non-degeneracy of the limit of the
fundamental martingale is given in Theorem 4.2.2 and Corollary 4.2.3, which are proved
in Section 4.4. Theorem 4.2.4 on the precise asymptotic of large deviations, which implies
Theorem 4.2.6, is established in Section 4.5.

4.2 Main results

In this section, we introduce necessary notation and assumptions, and present the main

results.

4.2.1 Notation and assumptions on products of random matri-

ces

Note that in our model, along each branch we encounter a product of random matrices.
In this section, we introduce some notation and the necessary assumptions on products of
random matrices in order to formulate our main results. We shall consider two cases, the

case when the matrices are nonnegative and the case when the matrices are invertible.

Let M(d,R) be equipped with the operator norm: for any a € M(d,R) we set ||la|| =
Sup,cqa—1 |az|, where | - | is a given vectorial norm on R?, and S*! = {x € R?: |z| = 1}
is the unit sphere in R?. Denote by ', := [supp p] the smallest closed semigroup of
M (d,R) generated by the support of p. A matrix a € M(d,R) is said to be prozimal if
it has an algebraic simple dominant eigenvalue. Denote by M the set of matrices with
nonnegative entries. A nonnegative matrix a € M is said to be allowable if every row

and every column has a strictly positive entry.

We say that the measure p is arithmetic if there are t > 0, 6 € [0,27) and a function
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¥ : ST — R such that
Va € I',,Vx € supp v : explitlog |az| — 0 +i(J(a-z) — J(x))] =1,

where S4' = {# > 0 : |z| = 1} is the intersection of the unit sphere with the positive
quadrant, and v is the p-invariant measure (cf. (4.5)). Notice when d = 1, we have
S4 = {1}, and the above arithmetic condition reduces to the following more usual form:
log a is a.s. concentrated on an arithmetic progression ag + a;N for some ag,a; > 0.

We will need the following assumptions on the law p.
B1.

1. For invertible matrices:

(a) (Strong irreducibility) There is no finite union W = U, W; of proper subspaces
0 # W; € R which is T ,~invariant (in the sense that aWW = W for eacha € T},)

=

(b) (Proximality) I, contains at least one proximal matriz.
2. For nonnegative matrices:

(a) (Allowability) Every a € '), is allowable.
(b) (Positivity) T',, contains at least one matriz belonging to int(M. ).

(¢) (Non-arithmeticity) The measure p is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a € M(d,R), set

va) = 3161612 laz|, and a-z:= ;; when az # 0,

where a -  is called the projective action of the matrix a on the vector € S¥"!. Then
t(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an

invertible or nonnegative matrix a,
N(a) = max{al|, «(a)~'}.

For invertible matrices we have c(a) = ||a~!||7! and N(a) = max{||a||, [|[a=*||}.
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B2. (Moment condition) There exists ng € (0,1) such that

E[N(A,)™] < cc.

We will consider the action of invertible matrices on the projective space P! which
is obtained from S? ! by identifying x and —z, and the action of nonnegative matrices
on Sfl[l. For convenience, we identify z € P4~! with one of its representants in S~*. To
unify the exposition, we use the symbol S to denote P4~! for invertible matrices, and Si‘l
for nonnegative matrices. The space S will be equipped with the metric d, which is the
angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric (see
[49]) for nonnegative matrices. Moreover, S is a separable metric space equipped with

Borel o-field.

Let G,, = A,, ... AyA; be the product of i.i.d. d x d real random matrices A;, defined
on the probability space (€2, F,P), with common law u. Let x € S be a starting point.
As mentioned in the introduction, the random walk G, x is completely determined by its

log norm and its projection on &, denoted respectively by

Gt

St .=log|Gux|, X! =G, x=———,
n = log |G|, X7 T =Gl

n >0,

with the convention that Goxr = x. Since S¥ = log|A, X7 ||+ SF_, and XF = A, - X?_|,

the sequence (S%, X7),>¢ is a Markov chain.

Denote by E the expectation corresponding to P. By the law of large numbers of
Furstenberg [38], under conditions B1 and B2, we have

1 1
lim —S) = lim —E[S;;] =~ P-as.,

n—oo n, n—oo n,

where v = inf, ey 1 Elog |G, is the upper Lyapunov exponent associated with the prod-
uct sequence (G,,). Le Page [63] and Henion [49] showed that

o? = lim lE (ST — ny)? (4.4)

n—oo n,

exists and is independent of x for invertible matrices and nonnegative matrices, respec-
tively. Moreover, there exists a unique pu-stationary probability measure v on S (see [46,

25]); the u-stationarity of ¥ means that p* v = v, that is, for any continuous function ¢
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on S,
(e v)(g) = [ [ ol x)u(dav(dr) = v(e). (4.5)

where v(p) = [s¢(x)v(dz). This notation for the integral will be used for any function

and any measure. Set
I, ={s>0:E[A]° < oo}

Note that I, is an interval of R;. Let s = sup,. Define the transfer operator on the

set C(S) of continuous functions on S as follows: for any s € (—no, so0), and f € C(S),
P.f(z) = E[|Aiz f(Ay-z)], forallz € S. (4.6)

It is known that under conditions B1, and B2, there exists a small constant 0 < n; < g
such that for any s € (=1, S ), there are a unique probability measure v, and a unique
Holder continuous normalized function rg (under the normalizing condition v(rg) = 1) on

S satisfying
vsP; = k(s)vs and  Pyrg = k(S)rs, (4.7)

where k(s) is the unique dominant eigenvalue of P, v, P; is the measure on S such that
(vsPs)(f) = vs(Psf) for all f € C(S). For s € [0, ), the property (4.7) is proved in
[25, Proposition 3.1] and [28, Corollary 7.3] for positive matrices, and in [46, Theorem
2.6 and Corollary 3.20] for invertible matrices. For both positive matrices and invertible
matrices, the existence of 7; > 0 and the property (4.7) for s € (—n,m;) are proved in
[83, Proposition 3.1], where the following properties are also established: the functions
s — k(s) and s — rs(x) are strictly positive and analytic in (—n,Ss), for z € S.
Moreover, it is proved (see [46, Lemma 3.5], [25, Lemma 6.2], [83, Propositions 3.12 and
3.14]) that, under conditions B1 and B2, the function

A(s) = log k(s)
is finite and analytic on (—7y, Ss ), and satisfies

A(0) =0, A'(0) =, A"(0) =0 >0, and A"(s) >0 Vs € (=11, Se0)-
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4.2.2 Main results

Note that the population size at time n is Z,, = Z*(S,R), which does not depend on the
starting point x and forms a Galton-Watson process with Z; = 1 and Z; = N. Denote by
m = EN the expected value of the offspring distribution. Throughout the paper, we shall
assume that 1 < m < oo, which ensures that the branching process (Z,,) is supercritical,
so that Z,, — oo as n — oo with positive probability. It is well known that EZ,, = m™.
Let

4
W,=-—"= forn>0and W = lim W,,.

mm n—00

The sequence {W,,} is the fundamental martingale for the Galton-Watson process (Z,);
the limit above exists almost surely (a.s.) by the martingale convergence theorem. The fa-
mous Kesten-Stigum theorem states that W is non-degenerate if and only if EN log, N <
oo (see [4]), where and through this paper log, x = max{0,logz} denotes the positive
part of logz. We will need the following slightly stronger condition.

B3. There exists a constant n > 1 such that
EN log’™' N < oo. (4.8)

We start with a central limit theorem for the normalized counting measure (4.2). For
t eR, let

ZY(B,t) =7 (B, (—o0,ny + ta\/ﬁ]) = > ]I{XgeB’log\Gl\t/zi—n»ySt}.
uETn avn
Theorem 4.2.1. Assume that the law p of the random matrices satisfies conditions B1
and B2. Assume also that the offspring distribution satisfies condition B3. Then, for any
xr € S, any measurable set B C S with v(0B) =0 and any t € R, we have, as n — oo,

Z?i(ﬁ’“ —v(B)®HW  P-as., (4.9)

where ®(t) = \/% I e~ /2dx is the distribution function of the standard normal law.

For the one dimensional case (where d = 1), the result is due to Asmussen and Kaplan
[3, Theorem 1], which was first conjectured by Harris [48, p.75] but with convergence in

probability instead of the a.s. convergence in (4.9). Harris’ conjecture was first solved
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by Stam [78], then improved by Asmussen and Kaplan [2, 3] to L?-convergence and a.s.
convergence. More general cases have been considered by Klebaner [60] and Biggins [16],
who studied respectively the varying environment case and the general branching random
walk where the displacements of particles with the same parent may have different laws.
The random environment case has been considered by Gao, Liu and Wang [41]. The
exact convergence rate in (4.9) has been considered by Chen [29] and Gao and Liu [39].
Asymptotic expansions have been obtained in [40]. Theorem 4.9 open ways for extending
some results in [2, 29, 41, 39, 40] to the multi-dimensional case where the moving of

particles is determined by products of random matrices.

Our second main result is on the large deviation for the counting measure Z*. To study
the large deviation of the measure Z?, a natural way would be to consider its Laplace
transform defined by, for (s1,s2) € RY x R,

Z2 (51, 52) = /]R TRy dy) = 3 e NS, (4.10)

u€Ty
where s, is the inner product of vectors s; and y; in R

In the one dimensional case, when x = 1 and A, > 0, we have X? = 1, so that
Z%(s1, 82) /EZ%(s1, s2) reduces to Biggins’ fundamental martingale of the branching ran-

dom walk:

Zue'ﬂ‘n 6825;;
E[Xuer, e2%]

n >0, (4.11)

which has been well studied (see [13], for example), and which plays an essential role in
many problems. However, in the multidimensional case, in general the sequence (4.11) is

no longer a martingale, nor the sequence

er(sl, 52)  Duer, g1 Xuts2Sy
EZ%(Sl; S2) E [ZueTn es1XitsaSi]’

n >0, (4.12)

for (s1,52) € R? x R. So an important difficulty arises when we mimic Cramér’s change

of measure for random walks by use of the Laplace transform of Z.

However, there is still a natural martingale in the present setting. By the spectral gap

property (4.7), it is easy to verify that (see Section 4.4 for more details), for s € (—ny, So0)

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapter 4 — Central limit theorem and precise large deviations for branching random walks
with products of random matrices 88

and x € S, the sequence

uer, € 1s(XF)
mr(s)"rs(x)

r .
W, =

. n>0, (4.13)

constitutes a positive martingale with respect to the natural filtration
Fo=1{0,Q} and F,, = 0(N,, Ay; : i > 1,|u| <n) forn > 1,

as observed by Mentemeier [72] in the study of the multivariate smoothing transform. By
the martingale convergence theorem, the limit

W= lim W7, existsin R P-as.
It turns out that the martingale (WY, ) in the multidimensional case plays the same rule
as Biggins’ fundamental martingale for one dimensional case, for large deviations.

Just as in the case of Biggins’ martingale, it is crucial to know when the limit variable
W5 of the fundamental martingale W, is non-degenerate. When the matrices A, are
nonnegative and s > 0, Mentemeier [72, Proposition 4.4] gave a sufficient condition for
WZ¥ to be non-degenerate. In the following we complete his result by considering the
necessary and sufficient conditions, and by treating meanwhile the case s < 0 and the
case of invertible matrices.

We first establish the following theorem, whose proof is deferred to Section 4.4. To
state the result, we need some notation. For s € (—n1, s+), set A*(qs) = sqs — A(s) with
gs = N'(s). Since A"(s) > 0 and ZA*(g) = sA"(s), A*(g,) attaints its minimum at s = 0,
so that A*(gs) > A*(qo) = —A(0) =0 for all s € (=11, Seo)-

Theorem 4.2.2. Assume conditions B1, B2. If

A*(gs) —logm < 0 (4.14)
and
E[rgrﬁlgg( Wi log, max Wil < oo, (4.15)
then for all x € S,
EW?] =1. (4.16)
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Conversely, if
EW?] >0 (4.17)

for some x € S, then (4.14) holds, and
E[glég Wi log, Iglelg W] < oo. (4.18)
Corollary 4.2.3. Suppose the conditions B1, B2.

1. Assume (4.14) together with
ENlog, N <oco and E|A||*log, ||A] < oo. (4.19)

Then (4.16) holds for all x € S.

2. Assume that the random matrice Ay = (A1(i,7)) satisfies the Furstenberg- Kesten

condition: there exists a constant C' > 1 such that

max <; j<da | A1 (4, J)|
minlgi,jgd ‘A1<Z7 .7>|

<C a.s. (4.20)
Then the three conditions (4.15), (4.18) and (4.19) are equivalent, and (4.17) holds
for all x € S if and only if (4.14) and (4.19) hold. Moreover, if (4.17) holds for
some x € S, then (4.16) holds for all x € S.

Notice that by Sheffé’s theorem, for each x € S, if (4.17) holds, then W¢, — W¢
in L'. So the martingale (W7,) converges in L' for some = € S if and only if (4.14)

and (4.19) hold; moreover, when the martingale converges in L' for some z € S, then it
converges in L! for all z € S.

When the matrices A, are nonnegative and s > 0, Part (1) has been established by
Mentemeier [72, Proposition 4.4]. When d = 1, Part (2) is essentially the well-known
Kesten-Stigum type theorem for the classical branching random walk on the real line, due
to Biggins [13]; see also [56] for Mandelbrot’s cascades and [70, 66] for versions which are

slightly different to the initial result of Biggins [13].

Now we consider the precise large deviations for Z? with target functions f and g

on the components X? = G, -z and S* = log|G,x|. More precisely, we shall study the
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asymptotic of the large deviations of the following integral:

/Sfo(y)g(z —ngy)Z2(dy,dz) = Y F(XZ)g(SE — ngy). (4.21)

u€eT,

Our result will be stated under the very general assumption that e *?g(z), z € R is

directly Riemann integrable, see Feller [36], Chapter XI.

Theorem 4.2.4. Assume conditions B1 and B2, and let s € (—11, Ss0) be fized such that
A*(gs) —logm < 0 and that

E max Wi(s)loght! max W{C(s)} < oo  for some d > 3/2. (4.22)

Then for any continuous function f on S and any measurable function g on R such that

2+ e %g(2) is directly Riemann integrable, we have

.\ 2mnoe™ (@) N
lim [ Fw)e(z — na) Zi(dy, dz)
n—oo m SXR
:strs(éﬂ)ﬂs(f)/e_szg(z)dz, P-a.s., (4.23)
s R

Ts Vs (7’3) ’

where T, (f> = U gpd o2 = N(s).

When s = 0 this result reduces to the following local limit theorem for the counting

measure 2,

Corollary 4.2.5. Assume conditions B1 and B2. Assume also that (4.22) holds with
s =0. Then

lim a\/ 2mn
im

n—oo SXR

(= = ) Zi(dy,dz) = W) [ g(=)dz

When f =1and g = 1, with —0o0 < a < b < oo, it gives the precise asymptotic of
ZE(S,ny + [a,b]) as n — oo.

The following theorem describes the asymptotic size of the number of particles in n-th
generation situated in the regions (B, [e"%, 4+00)) for s > 0, and (B, (0, €"%])) for s < 0,
where B C S.

Theorem 4.2.6. Assume the conditions of Theorem /.2.4. Then, for any x € S, any
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measurable set B C S with v(0B) = 0, we have, P-a.s., for s > 0,

“(35) Zn (B, [ngs, +00)) 1

1
lim v/27n 0, e = Wery(a) [ i (d
ng{olo ™mose mn g 8 r (I) B Ts(y)ﬂ- ( y)u
and for s < 0,
sa) Lo (B, (— s 1 1
lim 2mn o, enh(as) n (B :o,nq ) = fors(x)/ ——s (dy) .
n—00 m S B TS(y)

This theorem is obtained from Theorem 4.2.4 by taking g = 1jg o) When s > 0, and
g = 1(_0 When s < 0, and by using a smooth approximation of indicator function (see
[22, Lemma 4.1]).

In the one dimensional case (where d = 1), Theorems 4.2.4 and 4.2.6 reduce to the
Bahadur-Rao type results of Biggins [15]. The large deviation principle was established
earlier by Biggins in [14].

4.3 Proof of Theorem 4.2.1

This section is devoted to prove Theorem 4.2.1, the central limit theorem on the counting

measure 2.

4.3.1 Basic decomposition

For all u € U, let T(u) be the shifted tree of T at u associated to the elements { Ny, }. It is
defined by the following properties: 1) () € T(u), 2) vi € T'(u) implies v € T(u) and 3) if
v € T'(u), then vi € T(u) if and only if 1 < i < N,,. Define T,,(u) = {v € T(u) : [v| = n}.
Then T = T(0) and T,, = T,(0).

It follows from the additive property of the branching process that, for & < n, any
measurable set B C § and any Borel set C' in R,

ZiB,C)=Y Y lixsepsiecy

u€T, veT, _k(u)

=Y ZX4(B,C - 8%), (4.24)

u€Ty,
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where

72 (B,C—=8%) = Y 1

(xXieB sXico—s2)
vET), _(u)

represents the number of descendants of u at time n in the region characterized by (B, C' —

S¥), and C—S% = {y—S% : y € C}. In this section, we consider C' = (—oo, ny+toy/nl, t €

R. For simplicity, we will use the following notation:

Zz(B,t) = Z ]]_{XﬁeB’log\izf/a%\fn’ySt},

uETn
75 (B, 1) = 1 " :
PO tten 2iny
Xa —
Zn—k(BvR) - Z 1{X§563}7
veT), _ (u)
ZX&k(B7t)

Wi (B, 1) = =k

n— mn—k

mnfk

Xz Xz
Notice that Z%.(S,R) is the population size of generation n — k of the Galton-Watson
process beginning from the particle u (whose genealogical tree is the shifted tree of T at

T

u). So Z: (S, R) and W% do not depend on the position of .

For conditional probabilities and expectations, we write

We obtain the following decomposition from (4.24), which will play a key role in our

approach:

Wlng(B,t) —U(B)YD ()W

= — Z | B = —v(B)® (t) W
mt U;Tkn n_kn< " ovn—k v(B)2 (1)
= Ay +B,+C,, (4.25)
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where

A, = {WX“ (B, u )
k Z —kn, o /n _ k

« t —S5*+k
- B, W5, (B ovn =St Sl
" ovn—k

o X (e (0 P e

UGTkn

Co = (Wi, — W) v(B)® (1)

The idea is now to choose suitable k,, with k, — oo such that A, B,,,C,, — 0 a.s.

4.3.2 Proof of Theorem 4.2.1

We choose  with % <pf<1landa> % For each n, let j = j(n) € N be such that
7B <n < (j+1)P; set k, = a; = |j*|, the integer part of 7*. We will prove that with
this choice of (k,), we have A,, B,,C,, — 0 a.s. By the decomposition (4.25), this will
imply Theorem 4.2.1.

By the convergence of the martingale W,, to W, we have clearly C,, — 0, P-a.s. It

remains to show the following two lemmas.

Lemma 4.3.1. Under the hypothesis of Theorem 4.2.1, we have

3
3

—

A, — 0 P-a.s. . (4.26)

Lemma 4.3.2. Under the hypothesis of Theorem 4.2.1, then

3
3

B,"™=%0 P-a.s. . (4.27)

For the proof of Lemma 4.3.1, We shall use the following result on the weighted
moments of W* := sup, {W,}, which is proved in Liang and Liu [64, Theorem 1.2].

Lemma 4.3.3. Under the hypothesis of Theorem 4.2.1, then

EW* +1)log"(W* +1) < 0. (4.28)

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapter 4 — Central limit theorem and precise large deviations for branching random walks
with products of random matrices 94

mbkn

Proof of Lemma 4.3.1. By definition, A, = Y ,er, Ynu, Where

. toy/n — ST + kv X toy/n — S* + kv
Yyu = W (B, u )—E [W u (B, u )}
v ovn—k i ovn—k

We see that for any v € Ty, ,

Youl W2 (S R) +Ep, W, (S, R)
— ﬁkn +1, (4.29)

where the last equality holds because ﬁkn = Wﬁkn (S,R) represents the fundamental

martingale of the Galton-Watson process beginning with the particle u € Ty, . Let

%8 — 1
Yn,u = Yn,ul{\Yn’u|<mkn} and An =

We will use the decomposition

and prove that each of the three terms on the right side of this identity tends to zero as

n — oo. We divide the proof into 3 steps.

Step 1. We first prove that A, — A, ni—?o 0, as a consequence of

S B(A, # 4,) < oo, (4.30)

In fact, by the Lemma of Borel-Cantelli, (4.30) implies that a.s. A, — A, = 0 when n is
large enough. By the definition of Y, and the inequality (4.29), we have:

uGTkn UETkn
< > ]P)kn(Wﬁk:n +1>m).
U‘ETkn

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



95 4.3. Proof of Theorem 4.2.1

Since the law of Wﬁkn conditioned upon % is that of W,,_ , it follows that
Pr, (A, # Ay) < Zp, P(Wy_g, +1>m™) < Wy, mFP(W* +1 > mhn)
< W, E {(W* + 1)1{W*+12mkn}}

Wi, . p—
WE (W™ +1)log"(W* +1)].

N

Taking expectation and denoting C' = E[(W* + 1)log"(W* + 1)] (which is finite by
Lemma 4.3.3), we get P(A4, # A,) <
(4.30) is proved.

W. Since k7 ~ j% ~ nf" and pfn > 1,

Step 2. We next prove that A, — Ey, [A,] 7:>—i>o 0, as a consequence of
3 ]P’<|An _ B [A)] > 5) <00 Ve 0 (4.31)
n=1

(by the Lemma of Borel-Cantelli). By Chebyshev’s inequality we have

_ - 1 _ _
P (A, — B (A, > ©) < 5B, (A, — By, [ (432
By the definition of A, and .%;_, and the fact that (Ynu> is a sequence of indepen-
UGTkn

dent random variables under E _, we have

— — 1 _ 2
B, (A — B, () = —o B | ¥ Fow = e[Vl
m UGTk
1 — 12
- 2k, Z <]Ekn {Yi,u] - [Eknyn,u} ) . (433)
m u€Ty,,

By the definition of ?n,u and Fubini’s theorem,

Ekn[Y2} _ /0 2Py (V| > )dz

n,u

= 2/0 xpkn<|yn,u|]l{|Yn,u\<mkn} > J])dl’

{IYn,ul<m
mbn mbn

< 2Ekn/ rlyy, . |>2yde :/ 2Py, (|Ynu| > z)dz.
0 ’ 0
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Using (4.29), we obtain

Py, (|Youl > 2) < Py, (Wi +1>2)=P(W,_4, +1>2)

n

< P(W*+1> ).

Therefore,
kaL
Ey, [YM] <2 [" BV 41> a)de (4.34)
’ 0

Using (4.32), (4.33) and (4.34) and then taking expectation, we obtain

kn

P([A, — By, [A,]| > &) < /0 "UAP(WE 1 > 2)da (4.35)

g2mbkn

We split the above integral according to x € [0,¢] and = € (e, mF»]. Using P(W* +1 >
x) < 1, we see that

62

/6 tP(W* 41> x)de < 5 (4.36)
0

log"(W* +1)

For the integral over (e, m*], using a1y« j15,3 < (W* + 1) oo , we have
og" x
mbn mbn 1
[ P+ 1> 2)de < ]E[(W* + 1) log" (W + 1)] A2 (4.37)
e e og"
Taking a constant b €]1, m[, we get
mkn 1 bkn 1 mkn 1
dr = | dr+ [ d
/e log" x r= log" v ven  log" x *
< pho 4 (M0 Z0)
- (knlogb)n -

From (4.35), (4.36) and (4.37), we obtain

P([A, — By [A]| > &) < — e2+20<bkn+M)
no e — e2mbn (k,logb)n) )’
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where C' = E{(W* + 1) log"(W* + 1)} < 0o by Lemma 4.3.3. Therefore,

i ]P)<|Zn - Ekn [ZTLH > 5)

[e¢] oo bkn o0 mkn _ bkn
< —_— .
- g2 712::1 Z nz:l mkn (k, log b)") (4.38)

Since k, ~ j* ~n? 1 <b < mand 8y > 1, the three series 3.0 ——, Y0° | (L )k and

o] m converge. Therefore from (4.38), we get (4.31).

Step 3. We finally prove that E;, [A,] 7%0 0, as a consequence of

Z (IlEkn nl| > 5) <oo, Ye>0 (4.39)

(again by the Lemma of Borel-Cantelli). By Markov’s inequality, the fact that 0 =
Ey, [A,] = By, [A,] + ﬁEkn [Zue’ﬂ’kn Ynyu]l{yn‘ulzmkn}:l, and the inequality (4.29), we ob-

tain:

P(IEx, [4.]| > ©) < ZE[ B, (4]

1
BB 2 i
< 1 Xz

ue']]‘kn

1

It follows that

P[0, [4,]] > <) < W]E (7 4+ 1) log"(W* + 1] .

Therefore, with C' = E [(W* 4 1) log?”(W* + 1)] < oo (by Lemma 4.3.3),

C <1

Zﬁ<0@

ZP(!Ek )| > 5> <

elog"m

since k" ~ o1 ~ nP" and Bn > 1. So (4.39) is proved.
So the proof of Lemma 4.3.1 is finished. n
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The proof of Lemma 4.3.2 will be based on the following central limit theorem on the
couple (XZ,S%) (see Theorem 2.1, part (2) in [22]).

Lemma 4.3.4. Under the hypothesis of Theorem 4.2.1, for any measurable set B C S
with v(0B) = 0, we have

lim sup
N0 (x ) ESXR

ST —ny
x n___ 'L _ = 0.
]P(Xn el < t) V(B)® (1) ‘ 0

Proof of Lemma 4.3.2. We first calculate the conditional expectation in the definition of
toy/n — SE+ kyy

ovn —k,

and using the branching property, we have

B,,. Denoting t,, :=

M 1
En[Wf_“ B,tn}:]En{ 1 . ]
k kn( ) mknF UGTE @) {szeB,MStn}
n—~rn o/ n—kn
v SN —(n— k)Y
=P <XX“ € B, “nkn v < tn>.
b\ Fn o h
Therefore, by the definition of B,,
By= % {IP’ (XX’ e B, Stk — (= ku)y <t> (B)fb(t)}
n — kn nf » s = Slp | —V
mbn weTh k ovn —ky,
Loy {IP (XX”” e B, Sk — (k) > (B)®(t )}
- kn n_u " s - Sty | —V n
mkn u€Ty,, § ovn — kn
v(B)
i > (@ (t,) — D(1)].
uGTkn
Hence
v(B
|B,| < Wi, Dy, + (k) S|P (t,) — D(2)] (4.40)
mm ’LLGTkn
where
ntey — (= kp)y
D, = su P(Xﬁ_ € B, ~=hn St)—qu)t’.
(x,t)EEXR Fin ovn — kn ( ) ( )

The first term in the right hand side of (4.40) tends to 0 a.s. because, by Lemma 4.3.4,
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we have
D, =% 0 P-as.

We now prove that the second term in the right hand side of (4.40) also tends to 0 a.s.
Remarking that

D(t,) — ()] < '@(%) —q>(t)‘+‘q><%) —B(t,)
< o(ins) o)+ [

(since |®(x + h) — ®(x)| < |h| for any z, h € R), we obtain

> |2 (tn) — (1)

ue’ﬂ‘kn

toy/n 1 |SE — knyl
| ——n— ) — D(¢ u . 4.41
(0\/n—kn> ( )’+mkn ue%:k ovn —k, ( )

m’“n

< Wi,

It is clear that the first term in the above display tends to 0 a.s. as n — oco. So we need
only to prove that the second term also tends to 0 a.s. Recall that a; = k, and notice
that n — k, ~n ~ k'/# = j%/8_ So it suffices to show that

1

M;:=— > J72]ST —a;y| =0 P-as. as j — +oo. (4.42)
maj ueTaj
Notice that
SEM] = > FE[SE — al]
j=1 j 1

< Z] QB\/]E -_aﬂ/ 7]

_ ij_;éalﬂ\l E[(ng —a;7)?]
=1 ! 4

< 00,
where the last series converges by the expression of o2 (cf. (4.4)) and the fact that

j %a a; ~j %(371) with %(% —1) > 1. Thus }32, M; < oo a.s., which implies (4.42).
So, by (4.41), the second term in the right hand side of (4.40) tends to 0 a.s. This ends
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the proof of Lemma 4.3.2. O

4.4 Proof of Theorem 4.2.2 and Corollary 4.2.3

In this section we establish Theorem 4.2.2 and Corollary 4.2.3 about the non-degeneracy
of the limit variable W of the fundamental martingale (W7,). Let s € (=7, 54) and
x € S be fixed. Consider the positive function

eslog Iylrs(%)
y

) = for o)

n >0, yeR".

Since ry is the eigenfunction of the operator Ps; with respect to the eigenvalue k(s) (see
(4.7)), we see that H is a mean-harmonic function (see [19]) in the sense that for each
n>0andueT,,

NU.
E[Z Hin+1, AmGux)|§n] — H(n,Guz).
=1

Indeed, we have:

Ny eslog\AuiGuﬂrs(Aui . X;:)

E[% H(n+1, AmGux)Wn] = JE[Z ()] (2)

i=1 i=1

.]

B 5108 |Gzl N slog(|Ayi XZ) Z
= [mm(S)]”ﬂm(x)E{l;e s (Aui - X0)| Fn
esloglGurl iy P (X7T)
[me(s)]*rg(x)
eslos|Guely. (X )

[m ki (s)]"ra(z)

Therefore

slog |Guz| T
Wi, = Z H(n,Gux) = Z ¢ ra(Xu)

ueT, u€Ty, [m E<S)]nrs(x)

, n>0

is a positive martingale, so that the limit

W = lim W7,

n—oo ’
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exists a.s. with values in R,. For v € U, denote

! i=1 m k(s)rs(X7) ’

which represents the first term of the fundamental martingale corresponding to the branch-
ing process starting from the particle u; in particular for u = (), W£$(®> = W¢, with the
usual convention that Xj = x.

For fixed s € (—m1, so0) and x € S, the spectral gap property (4.7) allows to define
a probability measure Q? on (€, F) such that for any n € N and any bounded and

measurable function h on (S x R)" !,

sy, (X3)
K (s)rs(x)

= Eqz [(X7, 55, - X5, 5], (4.43)

hXy, Sy, X0, Sy)

where Eqg: denotes the expectation with respect to Q. See [25, 28, 46] for s > 0, and [83]
for s < 0.

With the mean-harmonic function H specified above and the probability measure Q7 intro-
duced here, from [19, Theorem 2.1] we obtain the following result for the non-degeneracy
of the limit W¥. We use the usual notation that x A y = min{x,y}, and we denote by

1, =(1,---,1) € N*" the sequence of length n whose components are all equal to 1.
Lemma 4.4.1. For s € (=11, S«) and x € S, we have:

(1) EW7=1if

> E[stfz" (H(n, Gln:z:)WSﬁf” A 1) |ﬁn] <oo Qf-a.s. (4.44)
n=1

(ii) E[W?Z] =0 if either

limsup H(n,Gy,x) =00 Qf-a.s. (4.45)
n—oo
or for all y > 0,
iE{Wﬁnﬂ x| Fa| =00 Q-as. (4.46)
= T {HnGr, )W, " >y} 3
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4.4.1 Proof of Theorem 4.2.2

Sufficient condition

We assume conditions (4.14) and (4.15), together with B1 and B2, and we will prove
(4.44) which, by Lemma 4.4.1, will imply that E[W¥] = 1. By the definition of Q¥ (cf.
(4.43)), we have

N1, eS108 A1, XT ‘7‘5 (Al

B E[ ; m K(S)TS(X%:). ) <(H(n’ Gl”x>Wﬁn) " 1) ly"}

= Eq {<H(n, Gh, )W,

s,1

) A 11%}

By the extended Borel-Cantelli Lemma (see [73, p. 151]), we have

{3 B (0, G0 W) A 112, < o)
n=1

Qe { 3 <H(n, G, x)Wom A 1) < oo}. (4.47)

n=1

We shall prove that Q%-a.s, the term H(n,Gy,x) — 0 exponentially and WS’XE" — 00

subexponentially. This will imply that the two series in (4.47) converge Q%-a.s., and thus
conclude the proof of (4.44).

We first prove that H(n,Gy,z) — 0 Q%-a.s. with an exponential rate. We start by

rewriting H(n, Gy, ) in form

s(XT ST
H(n,Gy,z) = M exp {n{s( ;" - qs) + <$qS — log[m n(s)])} } (4.48)
Recall that the function 7,(.) is strictly positive and Holder continuous on the compact
set §. It is therefore bounded from above and from below by two positive constants. By
the strong law of large numbers for ST under QF (see [83, Proposition 3.12], [25, Theorem
6.1], [46, Theorem 3.10]),

T

S
lim —» = ¢, Q%a.s. (4.49)

n—oo n,
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Therefore

1
limsup — log H(n, G, z) = sqs — loglm k(s)] QY -a.s. (4.50)

n—oo T
By hypothesis sqs — log[m /{(s)] <0, s0 H(n,Gy,x) — 0 exponentially Q%-a.s.

We next prove that W " grows to infinity subexponentially Q?-a.s., in the sense that

lim sup — logJr WXI” =0 Qf-as.

n—oo

By the lemma of Borel-Caltelli, it is enough to prove that

Z@x(long sl">€n><oo Ve > 0. (4.51)

By the definition of Q% and Fubini’s Theorem, we have

{log+ Ws’1

ZQ’”(long "> €n> = ZE{W;?”]I Xz }
=0 ’ " >en}
< E |: Z maXx I/I/vsm,l]l{log7L maxges W§1>8n}:|
=0 z€S ’

1
< E{magWsllongmaXW L+ 1]
€ z€
which is finite by hypothesis (4.15). Therefore, the property (4.51) is proved.

Necessary condition

It suffices to prove that if either A*(gs) —logm > 0 or E [minxeg W) log, minges WS‘”J =

00, then EW? = 0 for all x € S. In the following we consider three cases.

Case 1. Suppose that A*(¢s) —logm > 0. Then by (4.48) and (4.49) we see that

lim H(n,Gy,x) =00, Qi-as. (4.52)

n—oo
This implies E[W?Z] = 0 by Lemma 4.4.1.

Case 2. Suppose that A*(¢gs) — logm = 0. Then by (4.48),

Ts (Xivn) es(an —ngs)
7s() .

H(n,Gy,x) =
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Since rg is bounded from below and from above by two positive constants, using Lemma
4.4.2 below, we see that (4.52) still holds, which implies E[W?] = 0 by Lemma 4.4.1, just

as in the first case.

Here we have used the following law of iterated logarithm for products of random

matrices. For s = 0, it was established in [63, Theorem 5].

Lemma 4.4.2. Let s € (—11, Soo) and x € S. Under conditions B1 and B2,

Sy — ng,
lim sup n_ 14 =1 Q:-a.s.

naeo 0gy/2nloglogn

This lemma can be proved in the same way as in the proof of Theorem 5 of [63], using
Berry-Esseen’s bound for S? under the changed measure Q7 established in [83, Theorem
2.1] for s € (—n,0] and in [28, Theorem 8.1] for s € (0,s4). Since the proof is very

similar, we omit the details.

Case 3. Assume that E [minxeg W, log, minges Wfl} = oo and A*(gs) — logm < 0.
We shall prove that (4.46) holds for all y > 0. By the definition of Q?, we have

E[Wﬁnn X \fn] — Eg. {11 X \3@].
T A{Hn,GLn)W, ">y} “L AH®G, o)W, " >y}

By the extended Borel- Cantelli lemma, we get, for y > 0,

s {H(nlenI)W571n>y}

n=0
B2 im sup {H(n, G’lnx)WS)ff" > y}.
n—o0

Therefore, for y > 0, (4.46) holds if

Qf(lim sup {H(n, Glnx)Wsﬁf” > y}) =1 (4.53)

n—o0

By (4.50), we see that (4.53) achieves if

1 .
lim sup — log . W;(f" = +o0o0, Qf-as.,

n—+oo 1

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



105 4.4. Proof of Theorem 4.2.2 and Corollary 4.2.3

which is equivalent to

Qi(limsup {logJr W;(l%" > Mn}) =1 VM >0. (4.54)

n—oo

=:Bny1

We see that (4.54) follows from

@f( i 1gs,,, = oo) =1 (4.55)

n=0

To prove (4.55), notice that by the extended Borel-Cantelli lemma we have

{1 < oo} X Bgrltn, | 7] < oof. (4.56)
n=0 n=0

By the definition of Q¥ and Fubini’s theorem, we have, Q%-a.s.,

o0

Eg:[lp,., | Z) = E[ Woi1 ‘gz]
S Baltnal il = SEWIEL o, 1
oo
Z E[manSl]l{log+m1nT€5W 1>Mn}|</’ :|
n=0
00

n=0
1 3 T s T
> MIE[glelg Wi log, min W — l]

g +OO7

where the second equality holds since min,es WY, is independent of .%,, and the last

equality holds by hypothesis. Hence (4.55) follows from (4.56).

4.4.2 Proof of Corollary 4.2.3

We will need the following result which was established in [68] in a slightly weaker form.

We use the convention that the empty sum is taken to be 0.

Lemma 4.4.3. Let N, X1, Xo, -+ be independent random variables with N € N, X; € R,
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P(N =0) <1 and P(X =0) < 1. Assume that all the X; have the same law. Then

N N
EKZ)Q») log, (ZXN < oo
i=1 i=1
if and only if
E(Xilog, X;) <oo and E(Nlog, N) < oo.

Proof. The "if" part has been proved in [68]. The "only if" part is slightly stronger than
that in [68]. Let us give a short proof which is different to that used in [68]. Since the

function f(z) = xlog, x (with f(0) = 0) is increasing, we have

E[f(i X)} > E (X log, Xily=1y) = E(X; log, X1)P(N > 1),
=1

Therefore E(X;log, X;) < oo. Together with P(X; = 0) < 1, this implies that ¢ :=

EX; € (0,00). Since f is convexe on R, by Jensen’s inequality, we have

N

SHCHE

i=1

N
E[ f(ZXi) ND = f(eN) = (eN) log, (cN) .

i=1
Taking expectation, we get E [Zf\il X; 10g+< N Xl)] > E[(cN)log, (cN)]. Hence we
obtain E[(c¢N)log, (cN)] < oo, which is equivalent to EN log, N < oo. O

Then the three conditions (4.15), (4.18) and (4.19) are equivalent, and (4.16) holds for
all x € § if and only if (4.14) and (4.19) hold. Moreover, if (4.16) holds for some z € S,
then it holds for all z € §.

Proof of Corollary 4.2.3. (1) Note that for s € (=, sx), the function r4(.) is strictly

positive and continuous on the compact set S. It is therefore bounded from above and

from below by two positive constants. From the definition of W, and ||.[|, we observe
that
N N
E max W log, max Wfl] < E{Z c|| Aill* log, (Z C”Azusﬂ .
v v i=1 i=1

Therefore by Lemma 4.4.3, (4.19) implies (4.15). This ends the proof of the fist part of
Corollary 4.2.3.
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(2) By Theorem 4.2.2, to prove the second part of Corollary 4.2.3, it is enough to show
that (4.15), (4.18) and (4.19) are all equivalent.

Now we prove the equivalence according to the scheme: (4.15) = (4.18) = (4.19) =
(4.15). The implication (4.15) = (4.18) is obvious; the implication (4.19) = (4.15) is just
proved above in part (1). So we only need to show that (4.18) = (4.19). Set for k > 1,

Ap = max [A(i,j)] and Ay = min |A(, 7).

Since all norms on R? are equivalent, we can take the norm |z| = |z1| + |z2| + ... + |z4|.
Then for k> 1 and z € S,

1<i,j<d

Since the function r; on § is bounded from above and from below by two positive con-

stants, this implies that for some constant ¢; > 0,

N N
E[glelg W log, 2161‘181 le} > EL; 145 log | <k§1 C1AZ> ] .
Remark that under the Furstenberg-Kesten condition (4.20), E {Ai log, Aﬂ < oo if and

only if E [||A1HS log, ||A1H5} < 00. Therefore, by Lemma 4.4.3 and the above inequality,
(4.18) implies (4.19). O

4.5 Proof of Theorem 4.2.4

In this section we will prove Theorem 4.2.4 | the precise large deviation asymptotic of
Bahadur-Rao type on the counting measure Z7, using a uniform local limit theorem for

products of random matrices that we recently established in [22].

4.5.1 Auxiliary results

In the proof of Theorem 4.2.4 we make use of the following three assertions. The first
one is a local limit theorem for products of random matrices under the changed measure
Q7 (see Proposition 4.5.1). The second is an exponential bound of the large deviation

probability of the products of random matrices under Q? (see Proposition 4.5.2). The
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third gives a relationship between moment conditions on W, and on W¢, := sup, W¢,
(see Proposition 4.5.3).

We start with a uniform local limit theorem for products of random matrices under
the changed measure Q. Under the initial measure (when s = 0), it has been established
in [22].

Proposition 4.5.1. Under the conditions of Theorem 4.2.4, we have, for any continuous

function f on S and any directly Riemann integrable function h on R,

lim  sup US\/EEQg Lf(X)h(y +S; — nA'(s))]

N0 (1 y)eSXR

—m(f) [ h(z)gb(j;/%>dz’ 0, (4.57)

where ¢p(x) = \/%6_932/2 is the density function of the standard normal law.

Proof. For A > 0 sufficiently small, we introduce the Banach space By, = {f € C(S) :
| fllx < 400}, where

11 = 1 lloo + 1f 15,
with
_ _ [f(z) — f(y)]
1flloc = sup[f(z)],  [£]x = LS iy

For s € (—n1, Soo) and t € R, define the perturbed operator R;;; on By as follows: for any
% € B/\,

Rs,it@(w) = ]E@

v {eit[s%_A,(s)]go(Xf)] , x€S8.
By induction, it follows that for any n > 1,
RYp(x) = By M55 Wlp(X )], 2 €.

For properties of this operator, we refer the reader to [82] for s € (0, s ) and [83] for
s € (—m,0]. Since the proof of Theorem 4.2.4 is quite similar to that of Theorem 2.2(1)
in [22], we will not give the details here. The only difference is that, instead of the

properties of the operator Ry ;; used in the proof in [22], here we use the properties of the
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operator R;;; proved in [82, 83].

We next present an exponential bound of the large deviation probability of the prod-

ucts of random matrices under Q¥. For s = 0, it has been established in [82].

Proposition 4.5.2. Assume the conditions of Theorem 4.2.4. Let € > 0. There are
C >0 and0 < c <1 such that for alln > 1,

S —nN
sup QF <|”n(8)| > 5) < Cc™. (4.58)
z€S n

Proof. By the monotonicity in € of the large deviation probability, it is clear that it suffices
to prove the inequality for ¢ > 0 small enough. By the formula of the changed measure

(4.43), for any nonnegative and Borel function ¢ and any point ¢t € (—n;, S ), we have

K(t)"ri(x)

r(s)mrs(x)

Eqzp(S5) = Egy [e” 9% (r7 ) (X2)(SE)]

Take o(x) = L(nar(s)4ne+00)(2). Because A”(s) > 0 for all s € (—m1,5.) and A'(s) is
continuous in s, for £ > 0 small enough, there is t € (—n, s) with £ > s such that

N (t) = N'(s) + . Hence

Qf(sg —n(s) > na)

SOy [0, |
- 7 X« Sz —nA’(s)>ne
Als)rs(e) L (X))
_n| =N O+AB-A()| Te(T) 2 (GF _ Al
—e |- ]rs (x)E@? F(XDR(SE = nN(1)], (4.59)
where f(z) = :(i and h(z) = e" =921, . Notice that h(z) < 1 and that f(z) is

bounded from below and above by two positive constants because r; and r4 are continuous
and strictly positive on the compact set S. Therefore from (4.59), we see that there exists

a constant C7 > 0 such that for all n > 1,

Q" <S,if —nA(s) > ns) < oyl ene-aw)] (4.60)
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We now prove that
—(t—s)N(t)+ A(t) — A(s) < 0. (4.61)
To do this, we consider the function

Y(y) = —yN(s+y) + A(s+y) —A(s), y€0,80 —5),

which is continuous on the interval [0, soo—S$). Fory € (0, s0o—5), ¥'(y) = —yA"(s+y) < 0,
so that ¥(y) < ¥(0) = 0. With y =t — s, this implies (4.61). From (4.60) and (4.61), we
see that for all n > 1,

sup Q7 (Sﬁ —nlN(s) > ne) < C4cf, (4.62)
€S

where ¢; = exp{ —(t—s)N(t)+ At) — A(s)} < 1. In the same way, if we take ¢(x) =
T (—oonn/(s)—ne)(x) and t € (=, s) such that A'(t) = A’(s) — €, then there are constants
Cy >0 and 0 < ¢y < 1 such that

sup Qf(Sﬁ —nA(s) < —n&t) < Oyl (4.63)

z€S
The conclusion of the proposition follows from (4.62) and (4.63).
[

We finally establish a relationship between moment conditions on W, and on W¢,.

Proposition 4.5.3. Assume the conditions of Theorem 4.2.4. Then

supE {(Wf* + 1) log® (W=, + 1)} < 00.
zeS ’

For the proof, we will adapt the approach of Biggins [15] on the classical branching
random walk. The following recursive relations on W, and W will be used. First, it
can be easily seen that for 1 < k <mn,

W2, =" H(k,Gua)W,iiy, where H(k,G\,x) =

s,n—k» [
UETk

(4.64)

From this recursive relation on W7 | taking n — oo we obtain the following recursive

S,
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relation on WZ: for k > 1,

We= 3" H(k,G,x)W.), (4.65)

S
u€Ty

by our notation. The proof of Proposition 4.5.3 will be done with the help of three lemmas.

Lemma 4.5.4. Assume the conditions of Theorem 4.2.4. Then

supE [(W7 + 1) log’ (W + 1)] < oc. (4.66)

reS

Proof of Lemma 4.5.4. Let % << 2and

h(u) ::{ Coll for 0 < u < x,

cl+0210g5u for u > xg > 1,

where xg, cg, c; and ¢y are constants with z¢ > 1, ¢, co > 0, which make h concave (and

hence subadditive) and increasing. Then
h(uwv) < O(1 + log® u +log’ v), Yu,v >0, (4.67)

when C' > 0 is a large enough constant. Notice that to prove (4.66) we only need show
that

sup E[WZh(WY)] < oc. (4.68)

€S

Using (4.64) and the subadditivity of h, we have

E[Wszrlh(WinJrl)

~B|( X #n. G ) n( X Hn Gux)wsﬁzf)’yn}

Fnl

ueTy, ucTy,
< E{ Z H(n, Gux)Wﬁz ( Z H(n, Gtx)WffT> ﬁn}
u€Ty teTy t#u
+]E[ S Hn, Gua)W. (H(n,Gugc)Wﬁ)’an} (4.69)
’U,G’]Tn

For the first term, we see that H (n, Gyx) is .%,,-measurable, Wsﬁi and Y e, 120 H(n, Gtx)Wﬁx
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are conditionally independent given .%,. Hence
{ZHnGx)W < > H(n,Gx) Sl)‘J]
u€Ty teTy,t#u
= Y H(n,Gz) [ } { < 3 H(n,Gta;)Wff)‘ﬁn]
ueT, teT, t#u
< > H(n,G,x) < > H(n,Gu)E [W;ﬂtz L%ZD
u€Ty teTh t#u

< W, MWL),

where the last two inequalities hold by Jensen’s inequality and the fact that E [Wﬁf ﬁn} =

1 and h is a concave and increasing function. Therefore, from (4.69),

EWS 0 h(Wiia)) < BIVE, h(WE,)]
+E| > H(n, Gux)Ws’ngf ( (n,G x)WXz”

UGTn

So by recurrence on n and Fatou’s lemma, we obtain

E[WE h(WF)] < liminf E[W(s) h(W7(s))]

n—oo

<E[W?, h(W2)] + ZE{ S Hn, )W < (n,G x)WXI)}

n=0 ueTn

Hence to prove (4.68), it is enough to prove that

SupZE[ > H(n, Guz)WX (H(n,Gux)WfF)] < 0. (4.70)

€S n=1 weT,

Note that the hypothesis A*(¢s) — logm < 0 implies that there exists b > 0 such that
A*(gs) —logm < —b < 0. (4.71)

Since r, is strictly positive and continuous on S,

g, i PeesTs(r) (4.72)
Milpes 75(2)
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We write

E[ S H(n, Gua)W. b (Hn, Gux)Wﬁ)] = Lo (2) + Lns(2),

u€eT,

where

[n,l(w) = E|: Z H(n, GULU)W;?: h (H(n, Gu$)Wﬁg) ]I{H(n,Gux)Sdleb"}:|7

’U,ETn
X3 Xy
Lo(@) =E| Y H(n, Gua)W2 h(H(n,Gux)Ws,l)1{H(n,gum)>d1€_bn}}

UETn

Control of I, 1(x). Using the facts that h is an increase function and E [ e, H(n, Gux)} =
E[WZ,] =1, we have

Li(2) <E| 3 H(n, Guo)yW (dleb"W )}
-ueTy,
<E| Y H(n,Gu) E|WY (dlebnwﬁ)‘%”
'UETn

<E W&l h(dle_b"W&l)],

where WSJ = MmaXgcs W;l. Set U = {dle_b"VstJ > xo} and its complement U°¢ =

{dle_b”Ws,l < xo}. From the definition and the property (4.67) of h, we have

Iml(m) S C ]E[WSJ (1 + logfr (dle_bn) + logi Ws,l)ﬂU]

+ oo [Wl (dye™" V1) 1o

< CE |:VVVS71 (1 + logi W371> ]lU

=In11(x) + Inio(x). (4.73)

+ dycoe ™ ™E {(Wsyl)zﬂm

o

We observe that dye "W, > x leads ton < & Llog &t leé L Tet J = { log., A W, 1J By
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Fubini’s theorem and hypothesis (4.22), we have

Sugz [nll [Z Wsl( +10gj— Ws,l)]l{ngJ}}
TES p=1 n=1

<O { i ( + logi W&l) log,. Ws,1] < 00,

and

SupZ[n12 < dlcoE|:< ) ZG ]l{nZJ—l-l}

€S -1

< O,E {(W ) —b(J+1)

<] <
Hence we conclude that

sup Z LA (4.74)

z€S -1

Control of I, 2(x). Using the property (4.67) of the function h, we obtain

Loa(z) < CE[ S Hin, Gue)W5E (1+log, W) Lo, Guz)>d16_bn}}

’lLETn

+C]E[ Z H(n,Gux)VVéi{ff logi (H(n, Gul‘)>]l{H(n7Gux)>dle—bn}:|.

’U,ET’VL

From hypothesis (4.22), we get for each u € T,
E{Wffgj (1 + logi Wstg‘c> ‘ﬁn} < 00.
Taking C > 0 sufficiently large, we have

]n,Q(x) < ClE{ Z H(nv Gux){l + logj- (H(’I’L, Gux)> }1{H(n,Gux)>d1eb”}]

u€eT,

< CIE|: Z H(na Gu$){1 + lOgi (H(TL, Gux)> }]1{855>n(10g[mn(5)}—b)}:| .

u€eT,
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By the definition of Q?, we have
]n,2($) < ClEQg {{1 + logi (H(n, Glnl’)) }]l{sSi”n>n(log[mH(s)]—b)} , (475)

where 1, = (1,---,1) € N** denotes the sequence of length n whose components are all

sST =
equal to 1, and H(n,Gy,z) = % by our notation. It is easy to see that if s =0
then I, 2(x) = 0 by the choice of b. Hence we only consider the case where s # 0. We will

prove that

sup Z EQ: |:<1 + 10gi_ H(n, Glnx))]l{san>n(log[mn(s)]—b)} < 0. (476)

€S =1

Set w = w, which is equal to M. By (4.71), we see that w > A/(s) if and
only if s > 0 . From Proposition 4.5.2, we have for some constants 0 < ¢ < 1, C' > 0, and
all k > 1,

¢ _ N\
sup Q% (san > nsw) < supQ? (W > |w— N(s)]) < Cc. (4.77)

€S TES

Hence, to prove (4.76), it suffices to show that

sup Z EQ:SE {logi H(n, Glnl‘)]l{ ST —na/(s)| >|WA’(3)}] < Q. (478)

zeS n=1

n

Using Holder’s inequality and (4.77), for 1 < p < % and ¢ > 1 with % + % =1, we obtain

Eqs

n

log? H(n, Gy )1 (150 —nare ]
og} H(n,G1,x) {'Sln A(>‘>\W—A'(s)|}

Q=

|51, — ' (s)]

n

< (E@g log’? H (n, Glnx)); {Qi( > [w — A,(S)|>}

B =

< <EQ§ log®? H(n,Glnx)> (CeMi. (4.79)
By (4.48) and (4.72), we have

Egs logff’ H(n,Gy,z) < Cl(nﬁp + Eq:|ST, — nqs|5p),
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where (] is independent of z. Since

lim lEQg (an - qus)2 = Ug?

n—oo n,
(see [28, Lemma 7.1] for s > 0 and [83, Proposition 3.14] for s < 0), we get

Eqs log’”? H(n,Gh,z) < Cin’.

Combining this with (4.79) gives

sup Y Egs

€S n=1 n n=1

1 el 2 n
log® H(n, Gy )1 ¢ 55 —narce }<Clcp FCh
0g (n, Gy, ) {‘Sln A()‘>|W—A’(s)|} 109 ancq

This gives (4.78), which implies (4.76).
By (4.75) and (4.76),

sup Y I o(z) < oo
€S -1

Hence Lemma 4.5.4 is proved. O

Lemma 4.5.5. Assume the conditions of Theorem 4.2.4. For any e > 0, there exists a

constant B > 0 such that for any x € S and anyn > 0,

IP’(I?//; —1> —¢

S,n

%) > B.

Proof of Lemma 4.5.5. Let ¢ > 0, x € Sand n > 0. Let T > 0. For u € T,, set
Y, =W2X« —1 and

y! .=

Y, itY,<T
T itY,>T.

Then Y,/ <Y, and

%% 1
P<W;n —1> —¢ L%L> = P<W§n u;T:n H(n,Gux)Y, > —¢ gfn)
1
>P(—— > H(n Gua)Y, >—¢ 3‘}) (4.80)
Wi uet,

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



117 4.5. Proof of Theorem 4.2./

Using the facts that Y, < T and = Y ,er, H(n, Gux) = 1, we have

u

E{ ! > H(n,Gu)Y,

ﬁn]

Fn

B [(W Z H(n, Gu2)Y, )ﬂ{ - Yuer, HnGua)Y I <—c}

s;n ueTy,

+E[<W Z H(n, Gu2)Y, )]l{ = e, Hn,Gu2)Y, >}

s,n ueTy
1

<(—e)+T P(V[/f’f > H(n,Gu)Y, > —¢

s, ueTn

%}

%) (4.81)

We now prove that the expectation in the above display is uniformly bounded from below

by —e¢/2 when T is large enough. By Theorem 4.2.2; for each u € T,,, Y,, satisfies
E(Y.|Z,) =E W |Z,] -1=0.
Using this and the definition of Y., we have

E [YUT 7,

yn] = E[Yu]l{Yu<T}

+E {T]l (Yu>T)

2

—E[Va(l - Lpnor)| %] + (71 |2

— —E|(vy = )| %],

where (Y, — T); = max(Y, — 7,0). Therefore

(Yo = T)y

3"4 = _W}x Z H(n,G,x)E 9}

s, UETn

E{VVlﬂf > H(n,G.2)Y,"

Ss,n UETn

Now

E{(Y T). } <supIE‘l[(I/Vsy—1—T)Jr ffn} :sup]E[(Wsy—l—T)+]
yeS yes
< supE[W Liwyst) gmarey 0,

yes

where the last step holds because by Lemma 4.66, the family of random variables W,y €
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S is uniformly integrable. Let T > 0 be sufficiently large such that

supE[W Liwysty| < €/2.
yes
Then for all z € S and n > 0,
{ > H(n,Gyu2)Y, §]>—15 (4.82)
WS n ueTy, 27 ‘
Therefore, from (4.81), we obtain
P H(n, G e F) 2 o
(W:n %T: (1, Gua)Ys > —e 2T
Hence, it follows from (4.80) that the inequality in the lemma holds with B = . O

Lemma 4.5.6. Assume the conditions of Theorem 4.2.4. For any 0 < a < 1, there exists
a constant B > 0 such that for any r € S and any t > 0,

P(W? > at) > BP(W?, > t) > BP(W? > t).

Proof of Lemma 4.5.6. The second inequality is evident. We now prove the first one. For
t >0, let
E,={W;, >t Wi, <tfor0<k<n}, n>1

As E,, are pairwise disjoint sets, for each a € (0,1) and each ¢ > 0,
P(W > at) Z (W >at | E,)P(E,). (4.83)
By (4.65), we have for each a € (0,1) and each t > 0,

xT

1% t
P(W§>at|En):IP( s> —1’En)

Wen Wen
S ]

where the last step holds because W¢, >t on E,. By using the fact that F, € %, and
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applying Lemma 4.5.5, we have

P(VVVV; —1>a—1’En>=E[IP’<MM//x “1>a-1|7) | E|>B>0

s,n s,n

where B is a constant independent of n. It follows from (4.83) that

P(W? > at) Z = BP(W;, > 1),

which proves the first inequality of the lemma.

4.5.2 Proof of Theorem 4.2.4

By the definition of A*(¢s) and Z*(dy, dz), we have

7 e (gs) e
o m"rs(z) /SXR Fy)g(z — nqs) 2, (dy, dz)
eSTds
- X.Z’ Z‘ S).
(o), TS

Set h(z) = e **¢g(z),z € R. For n > 1 and 0 < k < n, we have the decomposition

— 444444}44444, T T _n esS
= norne) & f XS —na)

u€eTy,

= o 2 % Y eSS 1 5] - na)

UGTkn veTnchu)
1 h ASI'_ S
= —k; Z 6 urs XZ f(y) (Z * S = >WS T}f kn <dy7 dZ),
[m /i(s) TS( weTy, SxR rs(y)

where Ws ;; k, (dy,dz) is the probability measure defined as follows: for measurable sets

BcSand C CR,

S ro (X X5)
m k(s)]rFry(Xo) (X0 teBsitecy

Wi (B,C) = 3

s,n—k [
UeTnkaO
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Recall that for u € Ty, ,0 < k, < n,H(k,,G,z) = @i (X)  Byom the preceding

[m k(s)]Frrs (z)

decomposition of I, we obtain

oov/2n] — Wfﬂs(f) | )z = Ay + B+ G, (4.84)
rs/) Jr
where
A, =o0sV2mn Z H(kp, Gyux) ) h(z 4+ S —ngs)
u€Ty,, SxR T'g (y) w
(W{Lk (dy, dz) — By, WXL, (dy, d2)] ) ,
B,= > H(k,, Gux){as\/ 2mn Mh(z + S — ngs)
ue'[[‘kn SxR Ts(y)

Eg, [Wﬁ_kn(dy,dz)} —Ws(i) /Rh(z)dz},
C, = ( ok Wf) s (f> /Rh(z)dz.

Ts

We choose k,, as follows. Let 3 be such that 2375 <pf<1land a> ﬁ For each n, let

j=j(n) € N be such that j*% <n < (j + 1)*/?; set k,, = a; = [j*|. Then k, ~ n”.

We will prove that with the above choice of (k,), A, Bn, C;, — 0 a.s. By the decom-
position (4.84), this will imply Theorem 4.2.4. By the convergence of the martingale W7,
to W¥

S

P-a.s.

we have clearly C,, — 0, P-a.s. It remains to show that A, — 0 and B, — 0

A) We first prove that A, — 0 P-a.s. For u € Ty, write

) . xg X3
SxR rs(y) h(z + Su - nqs) (Ws,nkn (dya d’z) - Ekn [Ws,nfkn (dy> dZ)}),

1
<#@tm.cun )
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Then

A, = osV21n Z H(k,, Gux)Y,

u€Ty,,
— o2 Y H(kn, Gut)Ey, [Va] + 00210 3" H(kn, Gut) (Yu - ffu)
’LLGTkn UGTkn
+ oV 21N Z H(kyp, Gyux) (f/u — Eg, [Y/u]>
uETkn

- An,l + An,2 + An,?)a

with A, ; denoting the corresponding sum. We will show that each of these three terms

tends to zero a.s. as n — oo. We divide the proof into 3 steps.

Step 1. We prove that A, ; "% 0 a.s. From the fact that 0 = E; [Y,] = Ej, [ffu] +
]Ek;n Yu]l{|yu‘> 1

H(kn,Guz) }

} , we have

[Anal S ouv/2mn 3 Hka, Gu)B, [Vl Ly oy (4.85)

uETkn

Notice that for C' > 0 large enough, sup, .)csxr |LWE) | < & Using this and the fact

s (y)
that By, [WE, (S, R)] = Ex, [Wi,, | = 1, we obtain
Y, < C(Wﬁkn + 1). (4.86)

This implies that

En, [Val g, ] < CEL | (WAL, + 1)1

1 1
> e Gumy sn—kpn T CHO oy

= E(Whi ).
Let
U= {H(k,,Gyux) > die™"}, (4.87)

where b is chosen as in the proof of Lemma 4.5.4. Denote its complement by U¢ =
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{H (k,,Gyx) < die®}. We have
[Ani| < Loy + I, (4.88)
where

I, = o0,V21mn Z H(k:n,Gum)ci'(T/VX“f 1y,

s,n—kn
uETkn
Lo =02 Y. H(kn, Gu2)E(WEE, Ve,
’lLGTkn

For the first term I,;, by using the facts that E(W. %, ) < 2C and U C {sS% >

sn—kn

kn(log[m k(s)] — b)}, and the definition of Q7, we have

E]n,l < 052OV 27THE|: Z H(km Gux)]l{sS$>kn(log[mm(s)}—b)}:|

ue’]l‘kn
= 0,2CV2mnQ7 (ska > kn(loglm k(s)] — b)) (4.89)
(recall that 1, = (1,---,1) is the sequence of length k, whose components are all equal

to 1). If s = 0, then E[I,1] = 0 by the choice of b. Hence we only need to consider

the case where s # 0, which we assume below. As in the proof of Lemma 4.5.4, setting
__ log[mr(s)]—b

4.5.2, there are constants 0 < ¢ < 1 and C; > 0 such that

w , we have w > A/(s) if and only if s> 0 by the choice of b. From Proposition

0z(s55,, > kulogtme) - 1)) < 0z( P B i)

< C’lck".
Hence, by (4.89), we get
S E[l] <C ) nt < . (4.90)
n=1 n=1

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



123 4.5. Proof of Theorem 4.2./

For the second term 1, 2, we see that

sn—kn sn—kn

EWNEL,) Toe < CLuBy, | Wy, + DLy izt ]

Ekn[(Wn o+ D) logd (WX, +1)}

where C5 = SupxesE{(Ws‘f* + 1) logE(Ws‘f* + 1)] < oo by Proposition 4.5.3. Therefore,
since kS ~ j*° ~ nf® and 35 > 3/2, we have

> >, CCs04V/2mn
< e x
2 Flal < 2, = B

<y Zjl T\l/g < o0. (4.91)

Putting together (4.88), (4.90) and (4.91), we get

o0

Z |An1 < Q.

Thus 0% |An1| < 00 a.s., which implies that A,, 4 X0 a.s.

Step 2. We prove that 4, "3 0 a.s. By the definition of Y, and inequality (4.86), for
any € > 0,

Pr, (JAnal > €) < Pkn< S Hkn, Guz) (Y — V) # o)

u€Ty,,
~ 1
< ; Py, (Yu # Yu) = § Pk, (lYu| = W)

C
————Un1 + 1n2),
p /_27771( 1+ 1)
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where I, and I, » are defined in Step 1. Therefore, from (4.90) and (4.91), we get

o0

> P(JAnz| > ¢) SZ Ini+ 1) < oo.

So by the lemma of Borel-Cantelli, we conclude that A, » — 0 P-a.s.

Step 3. We prove that A, 3 "% 0 a.s. By Markov’s inequality and von Bahr-Esseen’s
inequality [80, Theorem 2] or Marcinkiewicz-Zygmund’s inequality [32, Theorem 1.5],

we have for any ¢ >0 and 1 < 0 < 2

V2 - _ 0
(sl > ) < TV2TE, | S Bk, Gur) (T, — B Vo)
uETk
2(0s\/2 . N
< (77m Z H(k,, G x)Ey,, [ W — nYuﬂ
6 uETkn
4(osV/2
< MoV S 0k, G B IVl
5 uETkn
< Ky + Ko, (4.92)
where
4(osv/2mn)
Kp1= (7 > H(kn, Gur)ly By, [|Yal’],
6 uETkn
4(osv/2mn) 0
Kn,2 - (6 Z He k'mGux)]lUC Ekn [|Y| }
uE’]Tkn

For the first term K, ;, by the definition of Y,, it is easy to see that

4(os\/27n)?
Kn,l = 759 Z H9<kn7 Gux>]lUEkn |:|Yu|0]l{|Y“|<H(kanz)}:|
UeTkn T
4(os\/2mn)?
< MO H Gut) 0 [Wl et
u€Ty,,

where the last inequality holds because |Y,,| < and hence we have [H (k,, G,z)|Y,|]?"! <

H(kn ul )’
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1. Using the facts that Ey [|Y,|] <2 and U C {sS? > k,(log[m k(s)] — b)}, we get that

8(os\/21mn)’

Q (ssgckn > kn(loglm x(s)] — b)).

Similar to (4.90), with the same reason we get, for some constants 0 < ¢ < 1 and C' > 0,

S EK,.] <CY ¢'n? < o (4.93)
n=1

n=1

For the second term K, o, using the definition of Y,, Fubini’s theorem and inequality
(4.86), we have

By [Tl = [ 00 Be (Tl > y)dy

H(kn,Guz)
1
H(kn,Gyz) —
— 0K, { / Y011
0

dy]
m'“uyu|<7,,(,m{gm}>y}

1
<o [Ty, (WL, 41> D)y,
0 ’ n

6—1
By the change of variables z = (%) , we obtain

~ [CH(k"7G’U«‘r)]179 1 Xz
By, [[V2)7] < 0c” | zf?—lPkn((Ws SR\ Un z)dz
O ) n

< 909 /[CH(kn,Gux)]l—"

0 WXu

s,m

Ekn[(Wﬁ_an)n { : I_kn+1)91>z}]dz. (4.94)

We split the above integral according to z € [0, ¢e] and z € (e, [CH (k,, G,x)]'~?]. For the

integral over z € [0, €], we use

Ey, (Wi, + 1)11{<WX5 +l)e,1> }] <Ky, (Wi, +1)=2.
s;n—kn z
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For the integral over z € (e, [C'H (k,, G,2)]*~%], we use

Ey, [(Wﬁ_k +1)]1{( e ]
7 " WS;L‘_,MJrl) >z}
6-1 X Xt C3(0 — 1
< ——E, {(VVS oo+ 1) log‘s(Ws AT 1)} < ¥
log” 2 S o log’ z

where C5 = supmeS]E[(Ws‘f* + 1)log5(W;* + 1)] < o0 by Proposition 4.5.3. Hence, by
(4.94),

By, [|[Yal’] < 20C%0¢

0 [CH(kn,Guz)]'™? 1

+ 9(9 - 1)0 03]1{[CH(kn,Gux)]1—9>e} /e log5 ZdZ (495)
By the definition of K, » and inequality (4.95), we get
Kn’g S C4ng Z He(k;n,Gux)]lUc
ue’]I‘kn
1+1 S 4.96
1+ opese [ z). .

( {[CHkn Gu)'=0>e} | g’ - (4.96)

Now consider the integral in the last expression. Take a constant 1 < dy < €’, we see that

on U¢, we have m > %rs(@ebk" > Csdb. Let ng € N* be large enough such that
[C5d’§"0]9*1 > e. Using logz > 1 for z € [e, [C5d5"]?""], and logz > (0 — 1) log <C’5d’§”>

for z > [Csdh"]?~", we see that when [CH (k,, G,2)]'~? > e and n > ng, we have

[CH (kn,Gux)]'™0 1
/ = dz
e log? z
[Csdimo-1 1 [CH (kpn,Gux)]'=% 1
= / 5 / . s—dz
e log® z [Csdkn]o—1 log® 2z

[CH (ky,, Gu)]*~?

(0 — 1) log(Csdln))”
[CH (ky, Gux)]l‘e)
ke '

< [Csdsn]Pt 4

< G (dge‘”k" + (4.97)

When [CH (k,,G,z)]'? > e and n < ng, the above inequality (4.97) remains valid by
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choosing Cg large enough such that Cy > kfm /C?71, since for all 1 < n < ny,

[CH (kn,Guo)' =0 1 Co|H (kp, Gyz)]?
/ 0z < [CH(h, Goa)] -0 < ColI( A 2]
e log® = ko

From (4.96) and (4.97) we obtain

S ElK,a) < Co > nfE| 3 HY(ln, Gur) Lo
n=1 n=1 u€Ty,,
-1k, | [H(kn, Guz)]' ™
0 (0—1)ky, 0
nb(1 4 df ) .t
9 . ZE e +06211E Wi o (498)
where the last inequality holds because on U¢ (see Eq. (4.87)), H(k,,Gux) < W,
so that H?(k,,G,x) = H(k,,Gux)H' (k,,G,z) < % (for the second term we
just use the identity H?(k,,, Gu2)[H (kp, Gu2)]*~% = H(k,, G,z)). We choose  sufficiently
close to 1. Since E[W7, | = 1, k, ~ j& ~ nf,1 < dy < e’ and BJ > %7 the two series
iy Tﬂ(ﬁf# nd >0, l’frké converge. Therefore from (4.98), we get
Y EK,» < cc. (4.99)

n=1

Combining (4.92), (4.93) and (4.99), we conclude that for any € > 0

ZIP’(|AH,3| >¢g) < 00

n=1

n—oo

By the Lemma of Borel-Cantelli, it follows that A, 3 — 0 a.s.

B) We then prove that B, — 0 P-a.s. By the definition of W.'* , (dy,dz), the

s,n—kn
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branching property, and the definition of Q¥ (cf.(4.43)), we obtain successively,

/ $ .
/SX]R TS((Z)) h(z+ 5y — nqs)Ekn[ o (dy, dz)]

X3 T Xy T z
Ekn [Zve']l‘n_kn(u) esSU TS(Xi(")%h(Si(“ + Su - nqs):l

[m s(s)]m=Fors (XF)

557U b f(Xjﬁf ) % x
By, |5 (X5, ) L0l (85, + 57— nay)|
s n—kn

[R(8)]nHnrs(XE)

Xt :
= Egz {]“;Zf"))h@fi‘kn — (n—kn)gs + Sy — knqs) |ﬁkn] (4.100)

Hence, by the definition of B,

Us\/%RHS(moo) — Ts (i) /

re/ JR

B,= > H(k,,G.z)

h(z)dz]

UGTkn
2mn
= > H(ky, Gux) — JSMRHS(MOO)
ue'ﬂ‘kn n

n—ky f
_ 5 ws(r—s) /Rh(z)dz] .
By Proposition 4.5.1,

o/ — k,RHS(4.100) — 7'('8(7{:) /R h(z)gb(ZM)dZ‘
(

osv/n — ky,

< sup

(z,y)eSXR

n—oo O

Since Yyer, H(kn, Gur) 2 WE 2T — WE2 as., it follows that B, =3 0

n—kn
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a.s. if and only if

/Rh(z) 3 H(k;n,Gug;){ 2mn gb(’z_S%ZQS)—@dz

Ty, n—ky, os\V/N —

n—~oo

— 0 a.s.

We shall prove this convergence by the the dominated convergence theorem. Notice
that the function in the above integral is bounded by Ch(z)W7, < CW{ h(z) which is
integrable on R. So it suffices to prove that for z € R,

D, (z) = ¥ 0as.  (4.101)

2mn
S,kn

z—Su—l—knqS)_Wx
n—k

5> H(ha, Gur)o(

" u€Ty, OsV1N — kn

Using the fact that |¢p(x) — ¢(y)| < Clx — y|, we see that for all z € R

2m™n

z— 8%+ k,qs z
Daf:) < Hl, Gu)fo(* ) =0 (-2
() < n—knue%;m o Gt~ =k, )~ \ovn =
2mn z
W =) Y
+ Wekn n—kn¢ o/n— ky,

ST — ks
1S Q|+W§fkn

<C H(k,, Gur)——F—mrcs
SO 2 MG T

2mn ¢( z )_1‘
n—ky, \osvn—k, '

It is clear that the second term converges to 0 a.s. as n — oco. For the first term, we use

the same argument as the proof of (4.42), noting that

r—k Eq: |[|SE, — ans
E[ S H(b, Gur) 22 "qsq _ oI5, u,
osvn —k, o/ —ky,

UGTkn

and (see [28, Lemma 7.1] for s > 0 and [83, Proposition 3.14] for s < 0)

lim lE@g (S,if - nqs>2 = o2,

n—oo n,

Therefore, (4.101) holds. This shows that B, "= 0 a.s. The proof of Theorem 4.2.4 is

therefore completed.
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Chapter 5
Berry-Esseen bound and precise moderate de-
viations for branching random walks with prod-

ucts of random matrices

We consider a branching random walk where particles give birth to children as a Galton-
Watson process, which move in R% according to products of independent and identically
distributed random matrices. We establish a Berry-Esseen bound and a Cramér type
moderate deviation expansion for the counting measure which counts the number of par-
ticles in generation n situated in a region, as n — oo. In the proof, we construct a
new martingale, and establish its uniform convergence as well as that of the fundamental

martingale.

5.1 Introduction

A branching random walk in R? is a system of particles, where particles behave indepen-
dently, and each particle gives birth to a random number of children which move in R¢
with independent and identically distributed (i.i.d.) displacements. One of the funda-
mental problems on this model is the study of the counting measure which counts the
number of particles of generation n situated in a Borel set of R?. This problem has been
studied by many authors, see e.g. [48, 78, 2, 3, 15, 16, 29, 39, 40, 30], where central
limit theorems and large deviations have been considered. For other important topics
and closely related models, see for example the recent papers [6, 25, 52, 72, 5], the recent
books [77, 26, 54] and many references therein.

In the classical branching random walk, a particle whose parent is at position y, moves
to position y + [ with i.i.d. increments [’s for different particles, so that the moving is
a simple random translation. Recently, in [23] the authors consider a branching random
walk in R? with products of random matrices, in which the position of a particle is
obtained by the action of a matrix A on the position of its parent, where the matrices

A’s corresponding to different particles are i.i.d. In other words, the positions of particles
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are obtained by the action of products of random matrices on the position of the initial
particle. This permits us to extend significantly the domains of applications of the theory
of branching random walks, but the study of the model becomes much more involved. In
[23], a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao
type for the counting measure have been proved. In this paper, we will establish the
Berry-Esseen bound about the rate of convergence in the central limit theorem, and a
moderate deviation expansion of Cramér type.

For a precise description of the model we need some notation. Let N = {0,1,2,...}
and N* = {1,2,...}. Set U := U ,(N*)", where by convention (N*)° = {(}}. A particle of
generation n will be denoted by a sequence u = wuy - - - u, = (uy, -+ ,u,) € (N*)" of length
n; the initial particle will be denoted by the null sequence (). Assume that on a probability
space (€2, F,IP) we are given a set of independent identically distributed random variables
(Ny)ueu of the same law p = {py : k € N}, and a set of independent identically distributed
d x d random matrices (A, )ucy of the same law p on the set of d x d matrices M(d, R),
where d > 2. The two families (N, )cu and (A,)yeu are also assumed to be independent.

A branching random walk in R? with products of random matrices is defined as follows.
At time 0, there is one initial particle () of generation 0, with initial position Y := x €
R\ {0}. At time 1, the initial particle §) is replaced by N = Ny new particles i = (i of
generation 1, located at Y; = A;Yp,1 < i < N. In general, at time n + 1, each particle
u = u; ...u, of generation n, located at Y, € R?, is replaced by N, new particles ui of
generation n+ 1, located at Y,; = A,;Y,,1 < i < N,. Namely, the position of the particle
ut is obtained from the position of u by the action of the matrix A,; on the vector Y,,.
Consequently the position Y, of a particle u in generation n > 1 is given by the action of

products of random matrices on the position x of the initial particle 0:
Y, =Gz, where G, =Au . u, - Ay- (5.1)

Denote by T the genealogical tree associated to the elements {N, : u € U}, defined
by the following properties: 1) ) € T; 2) when u € T, then for i € N, ui € T if and only
if 1 <i< Ny; 3)ui €T implies u € T. Let

T,={ueT:|u=n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and

represents the number of generation to which u belongs; by convention || = 0.
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The space R is equipped with the Euclidean norm | - |. The position G,z of the
particle u is completely described by two components: its norm |G,x| and its projection
on the unit sphere S ! := {y € R? |y| = 1} denoted by

G, x
X% .= =
Y |G

Accordingly, we consider the following counting measure of particles of generation n which
describes the configuration of the branching random walk at time n: for measurable sets
B, c %! and By C R,

Z;Z(BDB2) = Z ]l{XﬁeB1710g|GuwleBz}7 (52)

ueT,

where for a set D, 1p denotes its indicator function.

In [23], a central limit theorem for the counting measure Z? (with the starting point
x € S%1) was established for both the case where the matrices A, are nonnegative, and
the case where the matrices A, are invertible. It implies that, under suitable conditions,
for some constants ~, o explicitly defined (see (5.5) and (5.6)) , the counting measure By —
Z%(S4 ny + o/nBy) on R with a suitable norming converges to the standard normal
law. In [23], a precise large deviation result of Bahadur-Rao type was also established,

which gives in particular the exact asymptotic of Z7 (Sdil, [na, +oo)) for a > 7.

In this paper, our first objective is to strengthen the central limit theorem in [23] to
a Berry-Esseen bound for the counting measure Z7 with a target function ¢ on X7: see
Theorem 5.2.1. With ¢ = 1, it implies that, under suitable conditions, for any z € S*!
and n > 1, we have, a.s.

sup (5.3)

yeR | TN

LZﬁf (Sdl, ny + ov/n(—oo, y]> - Wq)(y)‘ < y—
n n

where ®(y) = \/% JY_ e ¥/2dt is the distribution function of the standard normal law

and M is a finite and positive random variable.

Our second objective is to establish Cramér type moderate deviation expansion for Z*
with a target function ¢ on X?: see Theorem 5.2.2. From this theorem with ¢ = 1, we

know that, under suitable conditions, for any x € S¢~! and 0 < y = o(y/n), as n — o0,
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Z;(8*my +ovi(-oo,])

s T Y] = vl {1 n O<y\jﬁl>}, (5.4)

where ¢ — ((t) is the Cramér series (see (5.9)).

An important step in attaining these two objectives is to establish a Berry-Esseen
bound for the Cramér type changed measure Z7, (see (5.18)). This will be done in
Theorem 5.2.3. Theorem 5.2.1 will be obtained from Theorem 5.2.3 by taking s = 0, and
Theorem 5.2.2 will be established by using Theorem 5.2.3 and by adapting the techniques
from Petrov [75].

To facilitate the comprehension, let us present some ideas in the proof of Theorem
5.2.3. As in [24] where the one dimensional case is considered, we need to study the
asymptotic of the characteristic function of the changed measure Z7, . Inspired by the
approach in [24], we would like to express the characteristic function of Z7, in terms of
a martingale and a quantity that can be controlled by the theory of products of random
matrices. However, in contrast to the one dimensional case, we cannot obtain directly
an expression of the characteristic function in terms of a martingale. Fortunately, using
the spectral gap theory for products of random matrices established in [46, 25, 28] and
recently developed in [83], we have been able to define a new martingale which is similar
to the fundamental martingale and which can be used for a suitable approximation of
the characteristic function of Z7,. We conclude by proving the uniform convergence and
analyticity with respect to a complex parameter of the new martingale, and by using the
asymptotic properties of the eigenvalue of the pertubed transfer operator related to the

products of random matrices. See Theorem 5.4.3 and Lemma 5.5.6 for details.

The rest of the paper is organized as follows. In Section 5.2, we fix some notation,
introduce our assumptions on the branching products of random matrices, and state the
main results. In Section 5.3, we recall some spectral gap properties on products of random
matrices stated in [83]. In Section 5.4, the uniform convergence and analyticity of the
constructed martingale are established. Sections 5.5 and 5.6 are devoted to the proofs of

the main results.
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5.2 Main results

5.2.1 Notation and assumptions on products of random matri-

ces

Note that in our model, along each branch we encounter a product of random matrices.
In this section, we introduce some notation and the necessary assumptions on products of
random matrices in order to formulate our main results. We shall consider two cases, the
case when the matrices are nonnegative and the case when the matrices are invertible.

The set M (d,R) of d x d real matrices is equipped with the operator norm: |a| =
sup,cqa—1 |az| for a € M(d,R), where | - | is a given vectorial norm on R? and S =
{x € R%: |z| = 1} is the unit sphere in R%. A matrix a € M(d,R) is said to be prozimal
if it has an algebraic simple dominant eigenvalue. Denote by M, the set of matrices with
nonnegative entries. A nonnegative matrix a € M is said to be allowable if every row
and every column of a has a strictly positive entry.

Let p be a probability measure on M (d,R). Denote by I', := [supp | the smallest
closed semigroup of M(d,R) generated by the support of . We say that the measure p
is arithmetic if there are t > 0, § € [0,27) and a function ¥ : S2°' — R such that

Va € T',Vx € V(T) : explitlog|az| —i0 +i(d(a-x) — d(x))] = 1,

where S4°' = {# > 0 : |z| = 1} is the intersection of the unit sphere with the positive
quadrant. Notice that when d = 1, we have ST' = {1}, and the above arithmetic condi-
tion reduces to the following more usual form: loga is almost surely (a.s.) concentrated
on an arithmetic progression ag + a1N for some ag, a; > 0.

We will need the following assumptions on the law pu.
L1.

1. For invertible matrices:

(a) (Strong irreducibility) There is no finite union W = U, W; of proper subspaces
0 # W, € R* which is T',-invariant (in the sense that aWW = W for each
acl,).

(b) (Proximality) I, contains at least one proximal matriz.

2. For nonnegative matrices:
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(a) (Allowability) Every a € '), is allowable.
(b) (Positivity) ', contains at least one matriz belonging to int(My ).

(c) (Non-arithmeticity) The measure p is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a € M(d,R), set

ar
t(a) :=inf |az|, and a-z:=_— whenaz #0,
z€S laz|
where a -  is called the projective action of the matrix a on the vector € S¥~'. Then
t(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an

invertible or nonnegative matrix a,
N(a) = max{]al|, «(a)"'}.

For invertible matrices we have (a) = [[a™!||~! and N(a) = max{]|a||, [[a™"||}.

L2. (Moment condition) There exists ng € (0,1) such that

E[N(A,)™] < cc.

We will consider the action of invertible matrices on the projective space P! which
is obtained from S%! by identifying # and —x, and the action of nonnegative matrices
on Sflfl. For convenience we identify z € P! with one of its representants in S¢~!. To
unify the exposition, we use the symbol S to denote P4~! for invertible matrices, and Sflfl
for nonnegative matrices. The space § will be equipped with the metric d, which is the
angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric (see
[49]) for nonnegative matrices. Moreover, S is a separable metric space equipped with
Borel o-field.

Let C(S) be the space of continuous complex-valued functions on §. For 5 > 0

sufficiently small, we introduce the Banach space

Bs = {f €C(S) : |Iflls < +oo},
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equipped with the norm

1£lls = I flleo + | fl8;
where
. ._ |f(z) = f(y)]
| flloo == sup 1f(@)], |fls = Iyyiggiyw-

Let G,, = A, ... Ay A; be the product of i.i.d. d x d real random matrices A;, defined
on the probability space (€2, F,P), with common law pu. Let x € S be a starting point.
As mentioned in the introduction, the random walk G,z is completely determined by its

log norm and its projection on S, denoted respectively by

G,z
|Gzl ’

Syi=log|Guzx|, X7:=G,-x= n >0,

with the convention that Gox = x. Since S¥,; =log|A, 1 XZ|+SF and X7, = Apy1- X7,

the sequence (SF, X7¥),>0 is a Markov chain.

Denote by E the expectation with respect to P. By the law of large numbers of
Furstenberg [38], under conditions L1 and L2, we have

1 1
lim —SY = lim —E[SF] =~ P-as., (5.5)

n—oo n, n—oo n,

where v = inf, ey 1 Elog |G, is the upper Lyapunov exponent associated with the prod-
uct sequence (G,,). Le Page [63] and Henion [49] showed that

1
0% = lim ~E(S% — ny)? (5.6)

n—oo n,

exists and is independent of x for invertible matrices and nonnegative matrices, respec-
tively. Moreover, there exists a unique p-stationary probability measure v on S (see [46,
25]): p* v = v, that is, for any ¢ € C(S),

(e v)(e)i= [ [ ola-)u(da)v(de) = vie),

where v(p) = [ p(x)v(dr), and this notation for the integral will be used for any function

and any measure. Define the transfer operator on C(S) as follows: for any s € (—ng, o),
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and f € C(S),
P,f(z) = E[|A1z|°f(A;-x)], forallz e S. (5.7)

It is known that under conditions L1 and L2, there exists a small constant 0 < n; < 1
such that for any s € (—n, ), there are a unique probability measure vy and a unique

Hoélder continuous function 74 on S satisfying v(rs) = 1 and
vsPs = Kk(s)vs and  Pyrg = k(s)rs, (5.8)

where k(s) is the unique dominant eigenvalue of Pj, vsP; is the mesure on S such that
(vsPy)(f) = vs(Psf) for all f € C(S). In particular, ro = 1 and x(0) = 1. For s € [0,n),
the property (5.8) is proved in [25, Proposition 3.1] and [28, Corollary 7.3| for positive
matrices, and in [46, Theorem 2.6 and Corollary 3.20] for invertible matrices. For both
positive matrices and invertible matrices, the existence of n; > 0 and the property (5.8)
for s € (—my,m) are proved in [83, Proposition 3.1], where the following properties are
also established: the functions s — x(s) and s — r4(z) are strictly positive and analytic
in (—my,m), for x € S. Moreover, it is proved (see [46, Lemma 3.5], [25, Lemma 6.2],
[83, Propositions 3.12 and 3.14]) that, under conditions L1 and L2, the function A(s) =

log k(s) is finite and analytic on (—n,7;), and satisfies
AN@O)=7v, A'(0)=0*>0, and A’(s)>0 Vse& (—n,m).

Denote v, = A¥(0),k > 1. Throughout the paper, we write ¢ for the Cramér series
associated to A (see [75, Theorem VIII.2.2] for details):

— 373 210 153
C(t) = 3 YaY2 =05, V5T Yay3Ye + 1073 2

= . (5.9)
675/ 2473 12073

which converges for |t| small enough.

5.2.2 Main results

Let Z,, = ZZ(S,R) be the population size at time n, which does not depend on the starting
point z, and which forms a Galton-Watson process with Z; = 1 and Z; = N. Denote

by m = EN the expected value of the offspring distribution. Throughout the paper, we
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assume that
m € (1l,00) and P(N =0)=0.

Therefore the branching process (Z,) is supercritical, and Z,, — 0o a.s. as n — oo. It is
well known that EZ,, = m™. Let

Zn
W = nlgIolo W,, where W,=—n>0,

mn
is the fundamental martingale for the Galton-Watson process (Z,,), and the limit exists
a.s. by the martingale convergence theorem. An important ingredient in studying Berry-
Esseen bound and moderate deviation expansion is the fundamental martingale associated
to branching random walks with products of random matrices, defined for s € (—ny, ;)
and z € S

ZueTn 6885 Ts (Xz:f)
[mr(s)]"rs(x)

We(s) = , n>0. (5.10)

This is a positive martingale with respect to the natural filtration
Fo=1{0,Q} and F,, = (N, Ay; : i > 1,|ul < n) forn > 1.
By the martingale convergence theorem, the limit
We(s) := Jim W>(s) existsin R P-as.

Set A*(gs) = sqs — A(s) with gs = A’(s). It is proved in [23] that under conditions L1 and

L2, if
A*(gs) —logm < 0 (5.11)
and
E[rggg W, log, max Wil < oo, (5.12)
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where log, © = max{0,logz} denotes the positive part of logz, then for all z € S, W*(s)

is non-degenerate with
E[W=(s)] = 1.
Set
J={s € (—=m,m): N (qs) — logm < 0}, (5.13)

which is an open interval containing 0. We assume the following moment condition slightly
stronger than (5.12):

L3. There are constants vo > 1 and 0 < ny < B with [=nz,m] C J such that
Y0
E[meagc <Wf(s)> } <oo Vse€[—n,nl

It is clear that conditions L1-L3 (together with the hypothesis P(N = 0) = 0 that we
assume always), imply that for all z € S, W?(s) > 0 a.s. and E[W?*(s)] = 1; in particular
(when s =0), W > 0 a.s. and E[W] = 1.

Our first result is the Berry-Esseen bound for the counting measure Z;:

Theorem 5.2.1. Assume conditions L1-L3. Then, for any x € S, ¢ € Bg and n > 1,

we have, a.s.,

sup (5.14)

yeR

Wlln ) XD g ) = WH)20)

< M
UETn B \/ﬁ’

ovn =

where ®(y) = \/#2—” Y e~t/2dt is the distribution function of the standard normal law and

M is a finite and positive random variable.

This is a Berry-Esseen type bound for the counting measure Z; with suitable norming

because the sum in (5.14) is an integral with respect to Z2:

u;;n@(X“)ﬂ{sﬁ;%y} — /SXRgp(zl)]l{?_ﬁ@}Zn(dzl,dzz). (5.15)

Our second result is the Cramér’s moderate deviation expansion for Z7.
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Theorem 5.2.2. Assume conditions L1-L3. Then, we have for any x € S, ¢ € Bs,0 <
y=o(y/n), asn — oo, a.s.,

> uet, PX) L (52 —ny> oy} fc(?’){ y+1
z L= =eve Vil lu(p —i—O( )], 5.16
mrW([l — ®(y)] () NG (5.16)
and
ZuGT 90(X3)1{51—7w<—\/7wy} —ﬁg(—i) |: Y+ 1 :|
n e — ¢ VAt va : 1
MW (—y) ¢ @)+ 0“5 (5.17)

An important step in the proof of the moderate deviation expansion is to establish a
Berry-Esseen bound for the changed measure 77, defined by for measurable sets By C
S4! and By C R,

Zy.(B1, By) = /leBQ ng(dzl,d@)
>

esdir, (X3)
uet, [mk(s)]"rs(z)

Lixzen, siebs)- (5.18)

Our third result is a Berry-Esseen bound for the changed measure Z7,

Theorem 5.2.3. Assume conditions L1-L3. Then, for any x € S and ¢ € Bg there
exists a constant 0 < n < 19 such that a.s., forn > 1,

eSur (X %) (X7 . M
sup sup| Y EoreEudo(X) soawis )~ W) S L (19

1
selcnm vek | S5 [ma(s)]rry(z) {E0

where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Z7, because, similar to the case of Theorem

5.2.1, the sum in (5.19) is an integral with respect to Z7:

5 (XX,
ST —nA(s
Z, I {2

= . gp(zl)ﬂ{22;:\//\%(3)§y}287n(d21,ng). (520)
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5.3 Preliminary results on products of random ma-

trices

In this section we recall some spectral gap properties stated in [83] which will be used for
the proofs of main results.
Define the operator P, on C(S) by

P.f(x) = E[|A1z|*f(A;-2)], forallze S, zeC. (5.21)

Denote by £(Bg, Bg) the set of all bounded linear operators from B to Bz equipped with

the operator norm

1P flls
Sup s
20 | fllg

||P||Bﬁ_>BB =

VP € L(Bs, By).

We write B} for the topological dual of Bg endowed with the norm HVHBQ; = Sup|y| =1 [V ()]
for any linear functional v € Bj. For any n > 0, set B,(0) = {z € C: |2| < n} for the ball

with center 0 and radius 7 in the complex plane C.

Lemma 5.3.1. Assume conditions L1 and L2. There ezists a small i, € (0,1m0) such
that for any z € B, (0) and n > 1, we have the decomposition

P! =k"(2)M, + L., (5.22)
where the operator M, is a rank one projection on Bg, the mappings on By, (0),

2 k(2) €C, zwr,eBs, 2z v, €By 2z L€ L(Bg,Bg)

are well-defined under the normalizing conditions v,(1) = v(r,) = 1. All these mappings

are analytic in B, (0), and possess the following properties:
1. for any z € B,,(0), it holds that M,L, = L,M, = 0;
2. for any z € B, (0), P.r, = k(2)r, and v, P, = k(2)v,;

3. k(s) and rs are real-valued and satisfy k(s) > 0 and rs(x) > 0 for any s € (—m,n)
and x € S;
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4. there exist two constants 0 < a1 < ay < 1 such that for all z € B, (0) and all
n € N*, [5(z)] >1—ay and ||L}||,—5, < c(1 —a2)" .

For fixed s € (—ny,m) and x € S, the spectral gap property (5.8) allows to define
a probability measure Q? on (€, F) such that for any n € N and any bounded and

measurable function h on (S x R)" !,

>y (Xy)
k" (s)rs(z)

= Egz [(X7, 55, -, X5, 5], (5.23)

h(Xy, Sy, X0, Sy)

where Eg. denotes the expectation with respect to QF. See [25, 28, 46] for s > 0, and [83]
for s < 0.
Under the changed measure QF, the process (X7Z),en is a Markov chain with the

transition operator @5 defined by, for any s € (—n,m;) and ¢ € Bg,

Qsp(x) = P,(pry)(z), z€S.

_
K(s)rs(z)

It has been proved in [83, Proposition 3.4] that @ has a unique stationary probability
measure defined by () := %, ¢ € Bg, and there exist two constants 0 < a < 1,
c1 > 0 such that

sup sup|Ege[p(X2)] - my(9)] < cra™ (524
Se(*nl,nl) TES

Moreover, the perturbed operator R, ; defined by
Rsivp(x) = Ege eit[s%_A/(s)}cp(Xf) , SE€(—m,m,)and t € R, (5.25)
satisfies for any compact K C R\{0},n > 1 and ¢ € B,

sup  supsup | R yo@)] < pllsalk, 0 < ax <1 (5.26)
se(—m,m) tekK €S

The operator R, has eigenvalue A, satisfying for s € (—n,m) and t € (—9,6) C
(_771’771)7

)\s,it — eA(s+it)fA(s)fA’(s)it. (527)
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5.4 Associated martingales

In this section, for the fundamental martingale (W?(s)) we first reveal a relationship
between the moments of W (s) and W7 (s) := sup,>o W;i(s). We next prove the uniform
convergence of W¥(z) for z € B,,(0). We finally introduce a new martingale and establish

its similar properties; this martingale will play a key role in the proof of the main results.

Theorem 5.4.1. Assume conditions L1-L3. Then there is a constant n € (0,12) such
that

sup sup E[WZ(s)] < oc. (5.28)

se(—n,n) €S

Proof. In [23, Lemma 5.6], it is proved that if E[W®(s)] = 1, then W7 (s) and W?*(s) have
similar tail behaviour for s € (—ns,,72) and for all z € S, i.e. for s € (=2, ,72) and for
any a € (0,1), for s € (—ns2,,n2), there is a constant b > 0 such that for all ¢ > 0, for all
reS

A slight modification in the proof of [23, Lemmas 5.5 and 5.6] shows that we can choose
b independent of s € (—72,,7m2). (To see this, we just need to check the proof therein,
and replace WY by sup,e(_,, .y W¢ in the formula supyEsE[Wsyl{Wg>T}] T250° 0 of the
proof of Lemma 5.5, at the last line of page 34.) Recall that E[W?(s)] = 1 under the
hypothesis of Theorem 5.4.1. Thus, in order to prove (5.28), it suffices to show that there

is a constant 1 € (0,7,) such that

sup sup E[WW*(s)]" < oc. (5.29)

s€(—n,n) €S
Set h(z) = x° where § = v — 1 € (0,1]. Observe that

esdir, (X))

W2, (s)= Y. HE Wi*(s), where H?, = (5.30)

ueTn o ma(s)]tra(x)
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Using (5.30) and the subadditivity of h, we have

B[ W) n(Wea )] < 5[ 3 #2705 (#0050

u€eTy,

B ¥ HL W) h( X H,9)].
UETn vETn
v#U

Using Jensen’s inequality for the conditional expectation and the facts that E,, {WlX “ (s)] =
1 and h is an increasing function, the second term in the inequality above is less than
WZ(s) h(W7r(s)). Then taking expectations in the two sides of the inequality above, we
get

E[W7f+1(s) h(er-s-l ﬂ [ Z

u€eTy,

+ E[W;(s) h(Wﬁf(s))].

h(H“” Wfqu(s))}

So by recurrence on n and Fatou’s lemma, we obtain
E{Wm(s) h(Wﬂ”(s)ﬂ < lim infE{ij(s) h(W;(s)ﬂ
gE{Wf(s) h( )} +Z]E[ S H h(Hl‘ Wf‘f(s))].

ueTy,

To prove (5.29), it suffices to show that there is a constant 1 € (0,72) such that

sup supE{Wf(s) h(Wf”(s))} < sup E[sup W{(s)]" < oo, (5.31)

s€(—n,n) z€S s€(=m2,m2)  zES

and

sup supZE{ Z

s€(=n,m) €S p=0 u€Ty,

h(Hm W; 5(3)” < 0. (5.32)
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For (5.31), we see that for all s € (—n1,m),

=2

Wz - slog|A; x| z' . I‘)
z—l
max$65|rs(x)|< N log | Asz| al log | A; |>
< e~ M2rog ATl e/ ogladiTl ) (5.33)
mek(s) ; 12::1

Since the functions s — rs and s — k(s) are strictly positive and analytic on (—n,7)

and ro = 1,k(0) = 1, there are two constants dy, dy > 0 such that

w <d; forall s€ (—n,m) (5.34)
minges ()

and

su - KRS
. Pse(—nim) F(5) < do. (5.35)
infoe (- m) K(8)

Hence, from (5.33), (5.34) and (5.35), for all s € (—ny,m),
Wi(s) < duds (W (=2) + W7 (1))
Therefore, by the inequality
(a+0b)° <207 Ha® +b°), a,b€eR, (5.36)
and condition L3,
sup E[sup Wy (s)]

s€[—m2,m2] zES

< (dydy) 20! (IE sup[WF (=) + Esup[Wf(m)]%) < %. (5.37)

zeS zeS$S

For (5.32), we consider the general term in its series. Since h(x) = 2°, we have, by (5.34),
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for all s € (—n2,72)

B[ Sy, W) (12,07 (s))|

ueTn

—5[ Y (mwe) ]

u€eT,

<E[ 3 (H7) " |Esupwis)

u€eT, €S

270 ((5(570) \" x £( \T0
<t () EWE o Esup Wi ()™ (5.3%)

Set f(s) = [22527]%2)’ s € (—mz,m2). We see that f(0) = m!™ < 1 and f is continous on
(—n2,m2) by the continuity of x. Hence there is a small constant n > 0 with (—n,n) C
(—n2,m2) such that

mk(syo)

e (e (5.39)

We can choose n > 0 sufficiently small so that sy € (—n1,m1). Then WZ(sv) is well-
defined and a martingale, so E[W?*(svy)] = 1. Therefore, from (5.38), (5.39) and (5.37),

we obtain

sup sup Y-E| 30 17, W () h( Hz, W (s) )

s€(=n,m) €S =1 LyeT,

oo
<dy sup EsupWi(s) Y ¢} < oo.
s€[-m2m2] z€S n=1

This completes the proof of (5.32). Thus (5.29) is proved.

Now we consider the martingale with complex parameter:

>_ueT, e*Sur, (X))
[mk(2)]"r(z)

We(z) = ., n>0, z€ B,(0). (5.40)

For each fixed z € B,,(0), it can be easily checked that (W?(z)) remains a martingale

with respect to (%,). Throughout, the real par of z € C will be denoted by s, so that
z=s+ilm(z).
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The next theorem gives the uniform convergence of W7¥(z). Let

mk(as)

Q! = int {z € B,,(0) < 1} and Q,= |J Q. (5.41)

- |mr(z)| 1<a<

Since the derivative at 1 of the function o — [Z:Ejﬁl is equal to A*(s) — logm which is
negative for s € (—n9, 1), we have, for these values of s, [Zzgj)s])a < 1 when « > 1 is close

to 1. This shows that the open set ), contains the segment (—n2,75), so that (—n2, n2)

is the intersection of (2, with the real axis.

Theorem 5.4.2. Assume conditions L1-L3. Then the sequence (W7 (z))n>0 converges
a.s. to some complex valued random variable W*(z), uniformly in z on any compact

subset K C €),,. Moreover, we have a.s., for alln >0,
sup |W2(z) — We(z)| < Md™, (5.42)
zeK

where M is a positive and finite random variable and § € (0,1), and W*(2) is analytic on
Q-

Proof. The basic ideas here are the same as those used in the proof of Theorem 2 in
Biggins [18]. To prove the uniform convergence on a compact subset K C ., it suffices
to show that for each 2z € 2, the uniform convergence holds in a disc centred at z.
Given any zg € ., we can find 1 < @ < min{2, 7o} and a small 5 such that By, (z0) C Q}

and

1= sup %as)a <1 (5.43)
ZEBZn(ZO) |ml€(2>|

For any N > n, W¥,,(2) — WZ(z2) is analytic in z on Bsy,(29), so by [18, Lemme 3], we
deduce that for all n > 0,

sup sup Wi, (2) = Wi(2)] <Y sup [Wi,(2) — Wi(2)]
N2>n zeBy(z0) k=n 2€Bn(20)

<[ 3 W (+0)) - WE:t0) ar, (5.4)

where z(t) = 29 + 2ne”, 0 <t < 2w. (This can be easily proved by Cauchy’s formula.)
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Note that, by Fubini’s theorem, for n > 0,

o0

27 s
B[S WEaG0) ~ WEGE)ld < 2n_sup  SSEWE () = Wi, (5.4)
2€0B2y(20) k=n
where 0By, (z9) = {z € C: |z — 2| = 2n}. Therefore, if the right hand side of (5.45) is
finite for all n > 0, then the right-hand side of (5.44) goes to 0 a.s. as n — 0o, so that

a.s. the sequence (W7(z)) converges uniformly on B, (2o).

Now we prove that the right hand side of (5.45) is finite. Notice that

Wi (2) = Wi(z) = >

u€Ty

ezSﬁrZ(X{f) Xz 2) —
) (Wl (2) 1). (5.46)

Taking the a-th absolute moment at both sides of (5.46) conditional on .%; and applying
Lemma 1 of Biggins [18], we obtain

&7

eszer Xz .
(X,) By | W (2) — 1)°. (5.47)

Exl Wik () - WEGI" <20 X ooy

u€Ty

Since the function z — r, is analytic on B, (0) and ro = 1, there is a constant ds > 0
such that

maxges |7 ()|

minxGS ’7’2 ([L’) ‘

<dz forall ze€ B, (0). (5.48)

Recall that s is the real part of z. Because B, (z0) C QL C B,,(0) C By (0), we have
2,% € B%(O) for z € 0Ba,(20). It follows from (5.48) that for all z € 0By, (20),

e*ur, (X2) | k(as) \" e Surggxay | (XE)|*ras(2)
|[mf<ﬂ(2)]k7”z($) : <’m/f (2) ) [m(as)[Fros(z) [ra(2)]|*ras (XF)
e ™ %ir gs(x)
< ds <|m/<; (2) > [me(as)]Fras(z) (5.49)

On the other hand, from (5.36) and (5.48), we obtain the following estimation, for all

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



149 5.4. Associated martingales

z € 83277(20),
EpWi (2) — 1°

< 9o (Ek|wf<5(z>ya 4 1) — 9071,

vell

=
=
=

a1 [ K(s) (G5 ry (X2) 55 (X
=2 <|K“(Z)|> Le%; (X I)ITS(XU ) (S)TS(X{;C)] e

< 290 1( i ) E sup (W (s))® + 227",

|k(2) 2€8

Combining this with (5.47) and (5.49) gives, for all z € 0By,(20),

B Wi (2) = Wik (2)*
< C(TTLKL(OLS)) Wﬁf(as)

[mk(z)[*

( (s) )QE sup (W (s))* + 1].

K(2)]/ " aes

Taking expectation at both sides of this inequality and using Jensen’s inequality, we obtain
for all z € 0By, (20),

EIWE, () — WE(2)] < ot (m(o‘)) )

[mk(z)[*

Q=

< (s) )a]E sup (W (s))" + 1}

()] aes

From (5.43), (5.37), the analyticity of k(z) on 0Bs,(20) C By, (0) and the fact that
|k(2)| > 0 for all z € B,,(0), we obtain

k
sup  E|WE,,(2) - WE(2)] < Cef, (5.50)

2€0Bay(20)

This concludes that (5.45) is finite for all n > 0. We have therefore proved that it is a.s.
that the sequence (W;?(2)) converges uniformly on B, (%) for each z, € €2, which implies

the uniform convergence on each compact subset K C €2, .

We now come to the speed of convergence (5.42). Clearly, it is enough to prove that
there is a 0 € (0, 1) such that on each compact subset K C ,,

6" sup [WE o (2) = WE(2)] "=°0  as. (5.51)
z€K

From (5.44), (5.45) and (5.50), we have for each zy € ,,, there is > 0 small enough
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such that for all n > 0,

s k
E sup [Wi(z) - Wi()] <2 Cef,
ZEBn(ZO) k=n
where C' and ¢; are constants which may depend on zy. Since K is compact, by Borel’s
theorem, K can be covered by a finite number of open balls B,,(2;), i =1,...,nq, so that
there exist two constants C; > 0 and ¢y € (0,1) which may depend on K, such that for
n >0,

Esup W, 1(2) — W7 (2)] <2 Z C’lcg < Cocy. (5.52)
zeK k=n

Taking 6 € (¢2,1) and using Fubini’s theorem we see that

EY 6 sup Wi ()~ Wi < &) (2)" < o,
n=0 z€K n=0

so that
[e.e]
> 6 Msup [WE(2) = WE(z)| < o as.
n=0 zeK

Therefore, (5.51) is proved. This ends the proof of (5.42).

Finally, since a.s. each W?(2) is analytic on 2, and the sequence (W?(z)) converges
uniformly on each compact set of €, , a standard result of complex analysis (see e.g.
Corollary 2.2.4 in Hormander [51]) gives the analyticity of W?(z) on €,,. O

In the following we introduce a new martingale and prove its uniform convergence
and the analyticity of its limit. This is an important ingredient in the proof of Theorem
5.2.3 about the Berry-Esseen bound for the changed measure Z,, which is crucial in

establishing the main results of this paper. For z € B,,(0), x € S and ¢ € Bg, set

e*% M. (rsp)(Xy)

(@ "2

) Y

Wil)= 3

u€eTy,

where M, is defined in (5.22) and (rsp)(X?) == rs(XZ)p(XF).

Theorem 5.4.3. Assume conditions L1-L3. Then the sequence (WX(2))n>0 is a martin-

gale with respect to the filtration (.%,) and converges a.s. to some complex valued random
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variable Wz(z), uniformly in z on any compact subset K C Q. , and the limit W“”(z) is

analytic on (.

Proof. The fact that (W7(z), %, )ns0 is a martingale can be easily shown: it suffices to

notice that

51 M, (ryi0) (X) =52 Mz<rsso><X§”]

BTEl) = 3 (e o 2, M (a0

ueTy,

where Ty(u) represents the descendants of u € T, at time n + 1. Moreover, by the

branching property, the definition of P, (5.21) and Lemma 5.3.1(1), we have for u € T,,

A )X B 1A XM ) X))

(2 M. (o) (X2) R () (XD)
P () (X2)

K(2) M (rsp) (X§)

En{ 3

v€ET (u)

The proof of the uniform convergence and the analyticity of the limit is the same as in

the proof of Theorem 5.4.2, whose details are omitted. O

5.5 Proof of Theorems 5.2.1 and 5.2.3

Theorem 5.2.1 is a particular case of Theorem 5.2.3 with s = 0. Thus we only prove
Theorem 5.2.3. Our proof is based on Petrov’s method [75] for the proof of the Cramér’s
moderate deviation asymptotic on sums of i.i.d. real random variables. We split the proof
of Theorem 5.2.3 into two theorems: Theorems 5.5.1 and 5.5.2, whose combination gives
Theorem 5.2.3.

Theorem 5.5.1. Under the conditions of Theorem 5.2.3. Then, for any v € S and
¢ € Bg there exists a constant n € (0,n2) such that a.s., forn > 1,
e*Siry (X))o (Xy

u) T n
)y e)msle)| S M

2

uGTn

sup
56(777777)

where M is a positive and finite random variable and § € (0,1).

Theorem 5.5.2. Under the conditions of Theorem 5.2.5. Then, for any v € § and
@ € Bg there exists a constant n € (0,12) such that uniformly in s € (—n,n) and y € R,
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a.s., forn>1,
SEn (Xp)g(X)

% el {Eea) T

ueT, osvn u€eTy,

oS, (X3)p(X7)
()] (@)

M

where M is a positive and finite random variable (independent of s).

5.5.1 Proof of Theorem 5.5.1

The following decomposition which follows from the branching property will play a key

role in our approach with a delicate choice of k for 0 < k < n,

€Sy, (X2) €550 (1,0) (X X7)

XD o (D)
D e Tl Dl e o xS0 DA e o e N G

u€Th u€Ty VET,_k(u)

Recall that by our definition, for u € Ty, T, _x(u) represents the descendants of u at time
n.
For each n, we choose an integer k,, = [%], which is the least integer greater than or

equal to . For brevity, we denote for u € Ty,

X3 @
v o))

Yoik,(s) = [m(s)|n=knry (XT)

vET Y,k (u)

Then by (5.53), the following decomposition holds:

esSu(r z
Z W((;)m — W2 (s)ms(p) = An(s) + Bpu(s) + Cu(s), (5.54)
where
_ Sy (X2) [ )
W)= 2 Tn(a)orata) V() B K ()]
_ e*Sip,(X?) o
B = 3 o) P () 00

Cn(s) = Wi, (5) = W*(s)]ms()-

By virtue of the decomposition (5.54), we shall divide the proof of Theorem 5.5.1 into
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three lemmas.

Lemma 5.5.3. Under the conditions of Theorem 5.2.3, there exist two constants n €
(0,m2) and 6 € (0,1) such that

5" sup |A,(s)] "0, as.
56(—77,77)

Proof. To prove Lemma 5.5.3, we will use the Borel-Cantelli Lemma. We can obtain the
required result once we prove that there exist a small n > 0 and a constant § € (0, 1) such

that for any € > 0,

S P sup |Au(s)] > e) < oo (5.55)
n=1 s€(=n.m)
By Markov’s inequality,
oo 1 o0
SP(E™ sup |Au(s)] >e) < =D FT"E sup |Au(s)). (5.56)
n=1 s€(=nn) € n=1 s€(=n,n)

Because (., is an open set containing 0, we can find a small p > 0 such that B,(0) C Q}

for some 1 < o < min{2,7}. Let n € (0,%) whose value will be fixed later. Then

Bs,(0) C B,(0). We see that for every n € N, the function

ezSﬁT T
oA = T (Z)]k()iu()x) Vi ()~ B Y ()

uGTkn

is well-defined as an analytic function on B,,(0). Recall that s is the real part of z. By

Lemma 3 of Biggins [18], we have

swp A < sup A< = [ A0

s€(—n,n) 2€By(0) m

where z(t) = 2ne”, 0 <t < 2. Note that, by Fubini’s theorem,

E sup |A,(s)] < /02WE|An(z(t))]dt < 27 sup E|A,(2)]. (5.57)

s€(=n,n) |z]=2n

Consider now E|A,(2)| for |z|] = 2n. Taking the a-th absolute moment of A,(z)
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conditional on .%;, and applying Lemma 1 of Biggins [18], we obtain

«

ZS“'T’Z Xz
) g, v, () —Eo¥r, ()" (5.58)

]Ek ‘A ( )|a <20¢ Z ' k”’l“z(l'>

u€Ty,,

Because B, (0) C B,(0) C By, (0) € B (0), we see that if |2 = 27, then 2z, 5 € Bu
Hence, by (5.48), we get for |z| = 2n,

(0).

i
2

e (r)(Xy)
[mk(2)]Fer.(2)

imr(z)] ) fms(as)[Fras () [ (2)|7as (X5)

" mn(oﬁ))kn €5 (X;)
=4 (WW (e ran () (5:59)

¢ < ( m/@'(as) )kn eassffras(Xz) ‘TZ(X;E)PraS(x)

We now estimate the expectation in (5.58). Using |a+b|* < 2°71(|a|*+|b|*) < 2(|a]*+]b]*)
and (5.48), we have for |z| = 27,
B |Yolp, (2) = Bi, Yol (2)|% < 2By, V224 (2)]°

ST (X ()| (X2) ¢ K(s)
% o TS ) (Xm0 (o) }

< 2Ey,

VETy _,, ()
(&l ()™ [, 0]
2(Elelle () supEOVEs) (5.60)

From (5.58), (5.59) and (5.60), we have for all n > 0 small enough and |z| = 27,

oo mtas) R N e
Ee, [Au(2)]" < ( |) (| ) WE (as) s E(WE(s)*.  (5.61)

[m(z)]e r(2)| zes

Since as € (—n1,m), (WZ¥(as)) is a martingale, so E[W?(as)] = 1. Taking expectations
at both sides of (5.61), we obtain for |z| = 2n,

ElAn(2)]° < ¢ ( ”””"(“j) ) ( *”“(S)l)a(nkn) sup E(WZ(s))°. (5.62)

me(2)| zes
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From (5.57), Jensen’s inequality and (5.62), we get that

E sup |A,(s)]
s€(=nn)
kn 1
1 me(as) \ o | ok A(s)—A(2)] zroa|®
< ce sup () e(n=kn [supE(W* (s)) ] . (5.63)
Z|=2n{ Imk(z)]* 2€S

From the facts that Bs,(0) C B,(0) C Q% and the definition of Q, we obtain

(W)z (W)L 550

zj=2n \ |mK(2)] 2eB,(0) \ [mr(2)]

From (5.63), (5.64) and the choice of k,, which implies that k, > n — k,, we get

1

E sup |A.(s)| < e sup {)e(”k”)[A(s)A(z)] {supE(Wf(s))ar}. (5.65)
s€(—=nm) |2|=3n €S
By Theorem 5.4.1, for n > 0 small enough,
sup supE(WZ(s))® < 0. (5.66)

s€(—n,n) TES

Note that ¢; < 1 is independent of 1. Let ¢ € (1, é) Since A is continuous on B, (0)
and A(0) = 0, there exists a small 73 > 0 such that

< Cy. (567)

2€By4(0)

Take 7 small enough such that n < n3. Since k, = [5], we have n — k, > § — 1. So
combining (5.65), (5.66), (5.67) we obtain for all > 0 small enough,

E sup |An(s)| < cleien)" Fn < e(erer) 2L
56(777’77)

Therefore, using (5.56) and taking § € ((0102)5, 1), we get that

iﬂ”(é_” sup |Au(s)] >¢) < ‘ i((61§2)2) < 0.

n—1 se(—n,m) €€t ,
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This completes the proof of Lemma 5.5.3. n
Lemma 5.5.4. Under the conditions of Theorem 5.2.3, there exist two constants n &€

(0,12) and 6 € (0,1) such that

5" sup |Bn(s)]"=°0 a.s.
36(777777)

Proof. Using the branching property and the definition of Q% (5.23), we have for u € Ty,

) €50 (1, p) (X XE)
]Eknyn—kn (S) - Ek” Z [mﬁ(S)]n_k"Ts<X7f)

UeTn kn (u)

X xe
B[ () (5,
T RN

Hence

SS g x
O ¥ o suplEer o, )] - mle)

uGTk

< Wkn(s) sup [Eqe [0( Xy k)] — ms(0)]-

By Theorem 5.4.2 and the bound (5.24), for n € (0,732), there exist a constant ¢ € (0, 1)

and a positive finite random variable M such that for all n > 0,

sup |Bn(s)| < M F < Mea™t
s€(=nn)

Therefore the conclusion of Lemma 5.5.4 holds for each § € (cz,1). O
Lemma 5.5.5. Under the conditions of Theorem 5.2.3, there exist two constants n €

(0,m2) and 6 € (0,1) such that

6" sup |Cn(s)] "0 a.s.
s€(—=nn)

Proof. This is an immediate consequence of Theorem 5.4.2 and the fact that |75(p)| <

[l
[l
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5.5.2 Proof of Theorem 5.5.2

To prove Theorem 5.5.2, we need the following result.

Lemma 5.5.6. Under the conditions of Theorem 5.5.2, there is a constant n € (0,12)
such that

e (ry0) (X2)
sup
2B, (0) |ger, [MmA(2)]"rs(z)

—Wo(2)| "0 as. (5.68)

Moreover, > ,cr, % is a.s. bounded by a positive and finite random variable

uniformly in z € B, (0) and n > 0.

Proof. By the branching property, for £ < n,

(rep)(Xi) _ 5~ (X)) 5 (1) (X5F)
2 [mr(2)]rs(z) 2 [me(2)]Fry(z) 2 [ (2)]" (X2 (5.69)

u€Ty ueTy VET, _k(u)

As before, for each n, we take k, = [§]. For brevity, we denote for u € Ty,

o 5 (ryp) (X29)
k()= > [m(z)]kerg(X2)

vET, Ky, (u)

Then by (5.69), the following decomposition holds:

u%; Tﬂ;(é)?ﬁ)g; — W(s) = An(2) + Bu(2) + Cal(2), (5.70)
where
= Z AZE >v§5 <):c> BT ) - R

Ch(z) = W,fn(z) — W(2).

By virtue of the decomposition (5.70), in order to prove (5.68), it suffices to show that
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there is a constant 7 € (0, 7,) such that

sup |An(2)]"=°0, as., (5.71)
z€By(0)
sup |B,(2)] "=70, as., (5.72)
z€B,(0)
sup |Cp(2)] "0, as.. (5.73)
z€By(0)

The proof of (5.71) is similar to that of Lemma 5.5.3, and is omitted here. It is clear that
(5.73) is an immediate consequence of Theorem 5.4.3. It remains to prove (5.72). By the

branching property and the definition of the operator P, (see (5.21)), we have

X e
e " (rs) (X))

]Eknffnu—kn (2) = Eg, Z [mk(z)|nFnry(X2)

vETnfkn (’LL)

Xff -
B, |5 (rp) (X5,
T R (2)r(XE)
PR () (X3)
ki (2)ry(X2)

Hence, by the decomposition (5.22) and Lemma 5.3.1(4), for any z € B,,(0), we have

Z eSiry(X2) [ Promrg)(X2)  M.(rp)(X2)
Bnl2)l = Em[ R ) D ”
r(X2) L (rg)(X2)

Py <>]fw @ Pl
12 5y D) () Vs
L ) )

hnlA(s)—A

< (1 — a2) o
- 1— ay
where 0 < a1 < ay < 1 is defined in Lemma 5.3.1(4). In the last step we use the fact

that [|rs¢llg < 3||7s||sllells < ¢ and that the map s — 7, is analytic with o = 1. Since
1— n—kn 1— %—1 1— kn—2
k,=[%], we haven—k, > 5 —1 >k, —2, so (ﬂ) S(i) S(ﬂ> . Let

1—aq 1—aq 1—a;

" (s), (5.74)

€ (1, }:Z;) Using the facts that the function A is continuous on B,, (0) and A(0) = 0,
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there exist a small € (0,7;) such that

sup _[ele)-AG)
2€B;(0)

S Ct. (575)

By Theorem 5.4.2, for € (0,7,) small enough, sup e, ,» Wi (s) < M, where M is a
positive and finite random variable. This together with (5.74) and (5.75) implies that for
n € (0,79) small enough,

- Fn n—00
sup |B,(z)| < CQMl:Cl(a2):| =0 as.
2€B,/(0) —

This completes the proof of (5.72). So the proof of (5.68) is finished.

The uniform bound of Y ,cr, % is an immediate consequence of (5.68) and

the fact that TW¥(z) is analytic in z (by Theorem 5.4.3). O

Proof of Theorem 5.5.2. For simplicity, we suppose that ¢ > 0; otherwise we can consider
the positive and negative parts of ¢ to conclude. Consider the distribution functions of

finite measures:

%% (r,0) (XT)
an 21 T_nA/(s > S R,
"= 2 o) {emeg) Y
e (ryp) (X
H,,(y) = (o) )<I>(y), y € R,

and their characteristic functions at —t:

Fonll) = / eMAF, (y),  hon(l) = / e MAH, (y), tER.
R R

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapter 5 — Berry-Esseen bound and precise moderate deviations for branching random walks
with products of random matrices 160

By straightforward calculations we have

e )
hon(t) = ul -5 (5.76)
u%’lzn m’%(s ]"rs(x)
6855 rs Xur, i Sfjfnj\’(s)
e R
wer, [me(s)]rrs(z)
e (1 0)(Xz) (K~ Fm) | e
= Z it n e o5V
wery, [mi(s — )]s () k(s)

(s— Jsﬁ)Su x®
=X r e, (5.77)
T [mk(s — o~ f)]”rs(x) v

where the last equality holds by the definition of A ; (see (5.27)).
Notice that Fj,(—00) = Hy,(—0) =0, F, ,,(+0) = Hyn(+00) =3 e (rs0) (X5)

u€Tn Tmr(s)]"rs(z) *
F,, and H, are non-decreasing on R, and Hj, is differentiable on R. So by Esseen’s

smoothing inequality (see [75, Theorem V.2.2.]), for all "> 0 and s € (—m,m1),

fs TL( ) B (t) ‘ dt
t
3 e*%i(ry) (X7)

T 2 Ton(s)Pra(a)

sup [Fsn(y) — Hsn(y)| < = T /_T

y€R

)

T

where c¢q is a positive constant. Therefore, to prove Theorem 5.5.2, it suffices to show

that there exists a small n € (0,72) such that as n — oo, a.s.,

T fs,n<t) — hs,n@) _ L
t ‘dt_0<v%>, (5.78)

sup
56(*’]#7) -

and

o eTHrsp)(XY) _ 1
S T 2 T(s)rs(a) o(7) (5:79)

In the following, we denote by M; a positive and finite random variable. Let T':= no+/n
with 7 > 0 small enough such that the conclusion in Lemma 5.5.6 holds, where ¢ :=

infse(—yy 0s > 0. By Lemma 5.5.6, we have

sS¥ s Xz
sup M S Ml'
s€(=n,m) ueT, [mk(s)]"rs(w)
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Hence (5.79) is proved since

Sz T
o esu (rep)(XT) coM,
SUp 7 D = nayn

se(=nm) L yer, [mk(s)]"rs(x)

It remains to prove (5.78). We will prove this by showing that there exists a small

n € (0,77) such that as n — oo, a.s.,

L(n) + D(n) = o(\/lﬁ), (5.80)
where
_ fs,n(t) - hs,n(t)
hin) = ses(l—ls,n) /|t|<61m/ﬁ t ‘dt’

I(n) = su

o
se(—n,n) Jor1av/n<[t|<nay/n

t

fsnm(t) = hsn(t) ‘

with d; € (0,n) whose value will be fixed later.

Control of I(n). Denote for z = s + it with s € (—n,n) and t € R,

e*% (rs0)(X3)
[me(2)]rrs(x)

Un(z) = Z

u€eTy,

With this notation and using (5.76) and (5.77), we have
Il(’l’L) S [11(7’L) + [12(7’1,),

where

Ii1(n) = sup /
( se(—n) Jt<travn | 1

Iis(n) = su /
12( ) 56(75,77) [t|<drav/n t
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For I11(n), by Taylor’s formula and the fact that A”(s) = o2, we have

I, G U ORI O
5, —
Tosvn

oo A(k) s —3
= " Luk=2 k!( )(as\l}ﬁ)k

t2 o0 A(k)(5>( —it )*

=e ze “h=3 H losvm (5.81)
By choosing §; small enough, we have for all s € (—n,n) and |t| < d10/n,
Z |<S)( : > < (582)
= k! \os/n 4n
and so, from (5.81),
N | <et 5.83
sorem| =€ (5.83)
Therefore, for n and ¢; small enough,
Tu(n) < / e_th< i ) U (s)|dt (5.84)
n) < sup — U, s — — Uy, (s)|dt. :
H se(—n,n) /|t|<érav/n ’t| Us\/ﬁ
By Lemma 5.5.6, there is a constant 7, small enough such that for all n > 0,
sup |Uy,(2)] < Ma. (5.85)

Notice that U, is a.s. analytic on B,,(0). Let 7,6; > 0 be small enough such that

N+ 10, € B%(O). By the mean value theorem, for s € (—n,n) and —t~ € (—=4;,4,), we

osv/n
have
it |t] it
U,(s — —U,(s)| < su Ul'(s —
( 0s\/ﬁ> ) o/ tesns) ( Us\/ﬁ)
|t ,
< su U (z)]. 5.86
< U (5.56)
3
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By the Cauchy’s formula, when z € B (0),

/ 1 Un(w)
Une) = 5 fypoos T 2

Hence, by (5.85) and the fact that |w — z| > & for z € B (0) and |w| = %, we have

18 M-
sup |U}(2)] < ——.
ZGB%; (0) T4

Combining this with (5.84), (5.86) and the fact that o5 > o for all s € (—n,7n), we obtain

18 M- £2 M.
Li(n) < sup 2 / “Tdr< 2 (5.87)
s€(=n,m) Us\/_774 t|<510\f Vv

For I15(n), using (5.81), the inequality |e* — 1| < |z|el*! for all z € C and (5.82), we

obtain

[eS) A(k>(s) —i
en k=3 k! (o's\/tﬁ)k — 1’

”i A®) (s )( —it >k

os\/n

(5.88)

By choosing §; small enough, we have for all s € (—n,n) and |t| < d10v/n,
£l
< C( ) (5.89)

”,i A(:!(S) (Jf/%) NG

From (5.88) and (5.89), we have for all s € (—n,n) and [¢t| < d10/n,

C 2
< — e T, 5.90
< =t (5.90)

By Lemma 5.5.6, U,(s) is a.s. bounded uniformly in s € (—n,n). This together with
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(5.90) and the fact that [;° 26T dt < oo implies that

C'supge(_ U,(s 00 2 M
Lp(n) < —20Psel ) [Un >|/ e Tdt < =2, (5.91)
NG 0 NG
Putting together (5.87) and (5.91), we get [;(n) = O(ﬁ)
Control of I5(n). Using the constraint |t| > d,04/n, we have
hn) < — / Fonlt) = Bun(D)d
n)< sup s,n - llsn
? 510/ 10 s () Jor0v/<iti<na /a
1
< sup / fsn(t)| 4 [hsn(t)])dt 5.92
sam s [ O ) (5.92)

By (5.76) and Lemma 5.5.6, for n > 0 small enough and d,0v/n < [t| < na/n,

2 2
sup |hsn(t)] < e~ sup |Up(s)| < M56_%.
s€(=n,m) s€(=nm)

This implies that

1

J 7
sup .
51Q\/ﬁ s€(—n,n) J0av/n<|t|<nav/n

hsn(t)|dt < —
el < 20

Hence, from (5.92), to prove that I(n) = O(\/Iﬁ), it remains to show that there exist a
small € (0,7,) such that as n — oo, a.s.,

fan0lde = O =), (5.93)

—F— sup /
1O/ se(—nm) Jorava<iti<nayn Vn

By the branching property, we have the following decomposition: for n > 0 and k, = [%],

fS,n(t) = AS,n(t) + Bs,n(t>a (5.94)

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



165 5.5. Proof of Theorems 5.2.1 and 5.2.3

where
(S_ Usf f," (X:E) itknA’(s) ~ N
AS,n(t) = . S € gsVn }/sun— (t) - ]Ekny;un— (t) ’
ugr:k [me(s)]fnrs(z) ke et
(S_ Ugf T’ (Xm) itkn A’ (s)
Bs,n(t): e osvn Eknysn n( )a
uezqu [m(s)]Fnrs(z) F
with
O esSfﬁ (TsSO)(XX“f) —it [SX’gj—(n—k: YA/ (s)]
sl,tn—kn(t) = - eosvn? " .

m(s)]r s (XE)

/UETnfkn (u) [

For A, (t), using the same argument as in the proof of Lemma 5.5.3, we can prove
that for n > 0 small enough, there exists 6 € (0,1) such that

sup sup S A, ()] "=°0  as.
s€(—=n) s10y/n<|t|<no/n

Therefore,

sup sup |Agn(t)] < Mypo™. (5.95)
s€(=nn) d1ov/n<t|<nov/n

For B;,(t), using the branching property and the definitions of Q7 (see (5.23)) and
R it (see (5.25)), we have for u € Ty, ,

59X Xz
5 e (Tsso)(X ) SN (k)N (s)]
E. Y" t)=E v TsVn "

vET ), _k,, (u u

n—

()]~ rra(X3)
=Ex; [so(XX%)ea:%[ -k = (1 )A’(SH]

n—

Xa © e '
Ex, [essn—kn (ngo)(XX“k )easf[ e — (k) A( )]]

= Rn o (X))
Usf

Therefore, by (5.26) and Theorem 5.4.2, there is a constant a € (0,1) such that for
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kn = ’7%—‘7
sup sup 1Bsn(t)] < |lpllga™* sup Wi (s) < Mza2 ™', (5.96)
s€(=nn) s10y/n<|t|<no/n s€(=n.m)

From (5.94), (5.95) and (5.96), we obtain for ¢, = max{J, a2},

sup sup | fon(t)] < Msch.
s€(—nn) s1av/n<t|<na/n

Thus

2(77 — (51)M8071L
01 ’

——= sw [ Fan(®)ldt <
61@\/6 se(—=n,m) 512\/ﬁ§‘t|f772\/ﬁ’ ()’

which implies (5.93). This concludes that I5(n) = O( 1n), which ends the proof of (5.80)
and (5.78). So Theorem 5.5.2 is proved.

B

O

5.6 Proof of Theorem 5.2.2

For y € [0, 1], Theorem 5.2.2 is a direct consequence of Theorem 5.2.1, as we will see in

the following. For n > 1,

uetn P X)) LS —ny> oy
?/3 Y
mr W[l — ®(y)]eve )
1 1
- y3 y .y
W[l — ®(y)]evasZa) 1M

0l

> (XD~ > e(XD s

ey
<y
u€Ty, u€Ty, oV = }

CWilp)(1 - B(y)e ) (5.97)

Since sup,e(o 1] |\%C(%)| — 0, there exists ng large enough such that for all y € [0, 1] and

93 Y
n > no, evitve) > 1/2. Using this and the fact that 1 — ®(y) > ¢ := 1 — ®(1) for all
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€ [0, 1], from (5.97) we get for all n > ny,

§L£ninﬁﬂu%mzwmm__ywﬂ
y3 Y
mww B(y)]e vt

nE:wa (ﬂ
CW m ueT
cw‘ o 2 XD sy + W )q)(y)‘
ue']I‘ ovn =
+ CVV’WI/(QO)(l _ (ID(y))(l _ e%“«‘%)) ’ (5.98)

In the last display, by Theorem 5.2.1, when n — oo, the two first terms are O(\/lﬁ>

We will show below that the third term is also O(\f) In fact, using the inequality
|1 —e'| < Jtle’ for t € R and the fact that sup,c( |C(\%)| is bounded for n > ng, we
obtain for y € [0,1], as n — oo,

3
b_efcf ‘%«%>:O<1),

NG

Since |v(@)| < ||¢]loo, this implies that the third term in (5.98) is O(\/Iﬁ)

From (5.98) and the above estimations, we see that for y € [0, 1], as n — oo,

2 ueT, o(Xa )]I{S”—n”/>\fffy} ‘_ ()
mr WL — @ (y)]evn &

which implies

Suet, P(X§ )]I{Sz—n7>f0y} yfg(})[ (0 )+O(

m" W[l — @(y)] Q%ﬂ'

We now deal with the case 1 < y = o(y/n). We can suppose that ¢ > 0 by considering
the positive and negative parts of . We will focus on the proof of (5.16), as the proof of
(5.17) is similar. For u € (N*)", set

Vux _ S’Lml, — nA/(S) )
s/
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Then we have

1 z
I:= W Z @(Xu)ﬂ{sgfn’y>ya\/ﬁ}

u€eT,
efnsA’(s) 55 (Xa:)
— —s0sy/nVe PlAy 1 , 5.99
PO T ) e gy (099

Because A(s) is analytic on (—ny,7;) with A(0) = 0, it has the Taylor expansion
Als)=>" %sk, where v, = A®(0), s € (=1, m), (5.100)

which implies that

.- Yk k—1
N(s)—v= Cis (5.101)
kz::z (k—1)!
Consider the equation
Vn[A(s) =] = oy. (5.102)
Set t = ~=. Using (5.101), we get
ot=3 T (5.103)
= (k—1)!

Since 7o = 02 > 0, the equation (5.103) has the unique solution given by

t Voo e — 33 3

5T a2 T 92 7/2

+ .. (5.104)
7%/2 273 672

which converges for |t| small enough (see [75, Theorem VIII.2.2] for details). From (5.100)
and (5.101), we see that
sN(s) = A(s) =>_ s

k=2
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Choosing s given by (5.104), we obtain

sN(s)— A(s) = )= L~ ¥

Yy x

— — —=(|—= 5.105
2n  nd/ 36 (ﬁ) ’ ( )
where ( is the Cramér series defined in (5.9), which converges for |¢| small enough (see
[75, Theorem VIII.2.2] for details). Coming back to the expression of I (cf. (5.99)), using
(5.105) together with (5.102) and the fact that

e —nsA’ (s)

S — efn[sA’(s)fA

) we have
\if Z —s0o \fV”” 685590()(%) 1
e VE>0
[mi(s)]rry ()~
)/0 eIV T (dy)
where 7? i

(5.106)
is the finite measure on R defined by

. esSfj Xz

]l VzeBsyl, B2 C R
&, () @)
Its mass satisfies E[Z,

s,n(R)] S o

Ts

oo

Since t = &

/n

5.2.3. Therefore, denoting

— 0 as n — o0, by (5.104) we have s — 0% as n — oo. Hence, for
sufficiently large ng and all n > ng, we have s € (0,n) where 7 is defined in Theorem

— p
[ =7 —00 - we - ) R
n,S(y) s,n(( ay]) (S>7TS(7"S) (y), ye
we get from Theorem 5.2.3 that for all n > ny,

sup |ln7s (y) | <

yER

S

(5.107)

where M is a positive and finite random variable independent of n and s. In the following,
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we write M; for a positive and finite random variable. Notice that

[~ ez (dy)
0 b

© We(s)ms(oryt) oo _ _?
_ sas\/ﬁydl s / s0sv/NY d
/0 € n,s(y) + \/ﬂ 0 e zay

= I} + W*(s)ms(r; M) L. (5.108)

FEstimate of 1. Using the integration by parts and (5.107), we get for n > ny,

o0 2M
1] < L) + s/ [ el ()l dy < = (5.109)
0 Vi

Estimate of Is. The integral I, appears in the proof of Cramér’s large deviation
expansion theorem for sums of i.i.d random variables (see [75, Theorem VIII.2.2]), where

the following results have been proved:

(i) there exist some positive constants c;, co such that for all s € (—n,n) and n large

enough,

o1 < sosy/nly < c;

(ii) the integral I admits the following asymptotic expansion:

L= e [1— d(y) [1 +0 (\%) } (5.110)

By the definition of oy, the mapping s — oy is strictly positive and continuous on (—n, 7).

Hence, there exist constants c3, cs > 0 such that
C3 S S\/ﬁ]g S Cyq. (5111)

Notice that for all s € (—n,n), W*(s) > 0 a.s. Moreover, W?(s) is a.s. continuous in
(—n,n) by the continuity and uniform convergence of W*(s) on (—n,n). Combining this
with (5.111), we get

Mg S s\/ﬁWx(s)IQ S M4. (5112)

We now come back to (5.108), and let s be defined by (5.104). Recall that for n > ng, s €
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(0,m). From (5.108),(5.109) and (5.112), we have, as n — oo,

oo _ [ I
7308\/5ny _ x I -1 1 ]
| e ) = W) mlior ) +
I I
g r ] s -1 S\/_Tll:|
W*(s) 2|7 (pry7) + S (s)h

— W () :Ws(gorsl) v 0(5)} .

Substituting this into (5.106) and using (5.110), we obtain

Y

[ = ry(2)Wo(s)e <M — b(y)] [1 10 <\%) ] [Ws(gm“sl) 4 O(S)} (5.113)

According to Theorem 5.4.2, W*(s) is analytic on (—n,7n) and using the mean theorem
we see that |[W?(s) —W?*| = |[W?*(s) — W?*(0)| < Mjss. On the other hand, by [83, Lemma
SO — u(p)| < esllplls. Since

vs(rs)

6.1], we have ||r; — 1]joc < ¢s and |m(pr;!) — v(p)| =
s = O(fﬁ) by (5.104), it follows from (5.113) that

I = [1 + O(s)} {W“J + O(s)] e%q%)[l — O(y)] {1 +0 (y) ] [1/((,0) + O(s)}

vn

= w0 [ue) + 0 5|

which concludes the proof of (5.16).
The proof of (5.17) can be carried out in a similar way as that of (5.16). The only

difference is that, instead of using (5.102), we consider the equation

V[N (s) = N(0)] = —ay,

where 1 <y = o(y/n) and s € (—n,0). Since the rest of the argument is the same as that
in the proof of (5.16), we omit the details.
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