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Théorèmes limites pour les marches aléatoires avec
branchement et produits de matrices aléatoires

Résumé.
L’objectif principal de ma thèse est d’établir des théorèmes limites pour une marche

aléatoire avec branchement gouvernée par des produits de matrices aléatoires. La thèse
est composée de quatre chapitres.

Le chapitre 2 est consacré au modèle classique d’une marche aléatoire avec branche-
ment, dans lequel chaque particule donne naissance à un nombre aléatoire de particules
de la génération suivante, qui se déplacent sur la ligne réelle ; le nombre d’enfants et les
déplacements des enfants suivent une loi fixe. Nous établissons une borne Berry-Esseen
et une expansion modérée de type Cramér pour la mesure de comptage qui compte le
nombre de particules de n-ème génération située dans une région donnée.

Le chapitre 3 est consacré à l’étude des produits de matrices aléatoires qui sera utilisé
dans les chapitres suivants pour l’étude la marche aléatoire avec branchement gouver-
née par des produits de matrices aléatoires. Soit (An)n≥1 une suite de matrices aléatoires
réelles de type d× d, indépendantes et identiquement distribuées. Considérons le produit
Gn = An . . . A1 et la marche aléatoire (Gnx), où x est un point de départ avec la norme
unitaire |x| = 1. Le vecteur Gnx est uniquement déterminé par sa direction Xx

n = Gnx

|Gnx|
et sa norme Sxn = log |Gnx|. Nous nous sommes intéressés par les propriétés asymptotiques
de la chaîne de Markov (Xx

n , S
x
n). Pour matrices inversibles, Le Page [63] a établi un théo-

rème central limite et un théorème limite local pour (Xx
n , S

x
n). Avec une motivation pour

des applications aux marches aléatoires avec branchement gouvernées par des produits
de matrices aléatoires, ses résultats sont améliorés et étendus dans deux aspects : 1) le
théorème central limite est établi uniformément en x et un développement asymptotique
est donné dans le théorème local limite avec une fonction continue f agissant sur Xx

n et
une fonction h directement Riemann intégrable agissant sur Sxn ; 2) les résultats sont aussi
établis au cas des matrices non-négatives.

Au chapitre 4, nous considéronson un modèle de marches aléatoires avec branchement,
où les movements des individus sont gouvernés par des produits de matrices aléatoires,
où les particules donnent naissance à un nombre aléatoire d’enfants selon un processus
de Galton-Watson, qui se déplacent dans Rd dont les positions sont déterminées par
l’action de matrices aléatoires indépendantes et identiquement distribuées sur la position
du parent. Nous nous intéressons aux propriétés asymptotiques de la mesure de comptage
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Zx
n sur Rd qui compte le nombre de particules de génération n située dans une région

donnée, lorsque le processus démarre avec une particule initiale située à x ∈ Rd \ {0}.
A l’aide des résultats établis au chapitre 3 pour les produits de matrices aléatoires, nous
établissons un théorème central limite et une expansion asymptotique à grande déviation
de type Bahadur-Rao pour Zx

n avec une normalisation appropriée. En tant que sous-
produit, nous obtenons une condition nécessaire et suffisante pour la non-dégénérescence
de la limite de la martingale fondamentale, qui étend le théorème de type Kesten-Stigum
de Biggins.

Dans le chapitre 5, nous considérons toujours la marche aléatoire avec branchement
gouvernée par des produits de matrices aléatoires. Dans ce chapitre nous établissons une
borne Berry-Esseen et une expansion modérée de type Cramér pour la mesure de comptage
Zx
n définie comme ci-dessus. Dans la preuve, nous construisons une nouvelle martingale,

et établissons son uniforme convergence ainsi que celle de la martingale fondamentale.

4
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Limit theorems for branching random walks
and products of random matrices

Abstract.
The main objective of my thesis is to establish limit theorems for a branching random

walk with products of random matrices. The thesis is composed of four chapters.
Chapter 2 is devoted to the classical branching random walk, in which each particle

gives birth to a random number of particles of the next generation, which move on the real
line; the number of children and the displacements of the children are governed by a fixed
law. We establish a Berry-Esseen bound and a Cramér type moderate deviation expansion
for the counting measure which counts the number of particles of nth generation situated
in a given region.

Chapter 3 is devoted to establishing limit theorems for products of random matrices
which will be used in the following chapters for the study of a branching random walk with
products of random matrices. Let (An)n≥1 be a sequence of independent and identically
distributed random d × d real matrices. Consider the product Gn = An . . . A1 and the
random walk (Gnx), where x is a starting point with unit norm |x| = 1. The vector Gnx

is uniquely determined by its direction Xx
n = Gnx

|Gnx|
and its log norm Sxn = log |Gnx|.

We consider asymptotic properties of the Markov chain (Xx
n , S

x
n). For invertible matrices,

Le Page [63] established a central limit theorem and a local limit theorem on (Xx
n , S

x
n).

Motivated by some applications in branching random walks, we improve and extend his
theorems in the sense that: 1) we prove that the central limit theorem holds uniformly in
x, and give an asymptotic expansion in the local limit theorem with a continuous function
f acting on Xx

n and a directly Riemann integrable function h acting on Sxn; 2) we extend
the results to the case of nonnegative matrices.

In Chapter 4, we consider a branching random walk with products of random matrices,
where particles give birth to a random number of children as a Galton-Watson process,
which move in Rd whose positions are determined by the action of independent and
identically distributed random matrices on the position of the parent. We are interested
in asymptotic properties of the counting measure Zx

n on Rd which counts the number
of particles of generation n situated in a given region, when the process starts with one
initial particle located at x ∈ Rd \ {0}. With the help of the results established in
Chapter 3 for products of random matrices, we establish a central limit theorem and a
large deviation asymptotic expansion of Bahadur-Rao type for Zx

n with suitable norming.
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As a by-product, we obtain a sufficient and necessary condition for the non-degeneracy of
the limit of the fundamental martingale, which extends the Kesten-Stigum type theorem
of Biggins.

In Chapter 5 we still consider a branching random walk with products of random
matrices. In this chapter we establish a Berry-Esseen bound and a Cramér type moderate
deviation expansion for the counting measure Zx

n defined as above. In the proof, we
construct a new martingale, and establish its uniform convergence as well as that of the
fundamental martingale.

6
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Chapitre 1
Introduction

1.1 Context

My thesis focuses on limit theorems for a supercritical branching random walk. As the
name suggests, a branching random walk is a system of particles performing random walks
while branching. An introduction to branching random walks and an overview of classical
results can e.g. be found in the books [77, 84, 81]. A striking feature of the model is the
large number of interactions that it possesses, not only with other fields in probability
and mathematics, but also in other sciences such as statistical mechanics [79, 74] and
biology [37, 61, 58, 42]. In recent years, this topic has attracted the attention of many
authors, see for example, [1, 52, 35, 5, 30, 55, 65]. The model is closely related to various
applied probability settings, such as Mandelbrot’s cascades (cf. e.g. [56, 67, 6, 25, 72]),
perpetuities (see e.g. [77, 26, 54]) and branching Brownian motion (cf. e.g. [59, 29, 12,
71]). For extensions to random environments in space and time, see e.g. [44, 33] and [19,
62, 69, 39, 40]. For other related works and many references, see e.g. the recent books [77,
26, 54].

In the classical branching random walk, the moving is a simple random translation,
that is, a particle, whose parent is at position y, moves to position y+ l, with independent
and identically distributed (i.i.d.) displacements l. Although this model can be applied
to many fields, it does not cover the interesting cases occurring in many situations where
the movements are determined by linear transformations such as rotations, dilations,
shears, reflections, projections etc. Motived by this observation, we consider a branching
random walk with products of random matrices, in which the position of a particle in
Rd (d ≥ 1) is obtained by the action of a matrix on the position of its parent. In other
words, the positions of particles are obtained by the action of products of random matrices
on the position of one initial particle. This permits us to extend significantly the domains
of applications of the theory of branching random walks, but the study of the model
becomes much more involved. For such a model, we consider the counting measure Zx

n ,
which counts the number of particles of generation n situated in a given region, when the

11
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Introduction 12

process begins with one initial particle situated at x. The main goal of this thesis is to
give precise asymptotics of the counting measure Zx

n as n → ∞, by establishing central
limit theorems, large and moderate deviation results. The study is interesting because it
gives a good description of the configuration of the process at time n. In fact, finding the
asymptotic properties of the counting measure is one of the fundamental problems in the
theory of branching random walks.

In recent years, important progress has been made in the study of products of random
matrices, see for example Guivarc’h and Le Page [46], and Benoist and Quint [7, 8, 9, 10,
11]. In our approach, we benefit much from the results and methods recently developed
on this subject (e.g. [46, 28, 82, 83]).

1.2 Background and main objectives

1.2.1 The classical branching random walk

The classical branching random walk on the real line can be defined as follows. At time
0, there is one initial particle ∅ generation 0, located at S∅ = 0. At time 1, it is replaced
by N = N∅ new particles ∅i (1 ≤ i ≤ N) of generation 1, located at Li = L∅i, 1 ≤ i ≤ N ,
where N is of distribution p = {pk : k ∈ N}, each random variable Li is of distribution
G. Both N and Li are defined on a probability space (Ω,F ,P). In general, each particle
u = u1 . . . un of generation n is replaced at time n + 1 by Nu new particles of generation
n+ 1, with displacements Lu1, Lu2, . . . , LuNu , so that the i-th child is located at

Sui = Su + Lui,

where Nu is of distribution p and each Lui is of distribution G. All the random variables Nu

and Lu, indexed by all finite sequences u ∈ U := ∪∞n=0(N∗)n (by convention (N∗)0 = {∅}),
are independent of each other.

Denote by T the genealogical tree associated to the elements {Nu : u ∈ U}. It is
defined by the following properties : 1) ∅ ∈ T ; 2) when u ∈ T, then for i ∈ N, ui ∈ T if
and only if 1 ≤ i ≤ Nu ; 3) ui ∈ T implies u ∈ T. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and
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represents the number of generation to which u belongs ; by convention |∅| = 0. Consider
the counting measure

Zn(A) =
∑
u∈Tn

1{Su∈A}, A ⊂ R, (1.1)

which counts the number of particles of n-th generation situated in A, where for a set D,
1D denotes its indicator function.

We assume that m := EN = E[Z1(R)] ∈ (1,∞) and that N > 0 a.s., so that the
Galton-Watson process formed by the generation sizes survives with positive probability.
Denote

m0 =
∫
xG(dx) and σ2

0 =
∫

(x−m0)2G(dx).

Harris [48, Chapter III. §16] conjectured a central limit theorem for Zn, which states that
if 0 < σ0 <∞, then for any x ∈ R,

1
mn

Zn
(
(−∞, xσ0

√
n+ nm0]

)
n→∞−→ WΦ(x) (1.2)

in probability, where Φ(x) = 1√
2π
∫ x
−∞ e

−t2/2dt is the normal distribution function and
W is the a.s. limit of the fundamental martingale

(
Zn(R)
mn

)
of the Galton-Watson process

(Zn(R)). This conjecture has first been solved by Stam [78], then improved by Asmussen
and Kaplan [2] to L2-convergence and almost sure (a.s.) convergence. A more general
process where the two families (Nu)u∈U and (Lu)u∈U are not necessarily independent, and
the family (Lu)u∈U is not necessarily i.i.d., was introduced by Biggins [13] : instead, he just
assumed that the random vectors (Nu, Lu1, Lu2, · · · ) indexed by all the finite sequences u
are i.i.d. This model is called the general branching random walk. For this model, results
like (1.2) were established by Klebaner [60] and Biggins [16].

The rate of convergence in (1.2) has been studied in several papers. Révész [76] consi-
dered the special case where the displacements follow the same Gaussian law and conjec-
tured the exact convergence rate ; his conjecture was solved by Chen [29]. Gao and Liu
[39] improved and extended Chen’s result to the general non-lattice case, while the lattice
case has been considered by Grübel and Kabluchko [45]. All the above mentioned results
are about the point-wise convergence without uniformity in x.

Objective 1 : establish a uniform bound for the rate of convergence in (1.2) of type
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Berry-Esseen. We will prove that, under suitable conditions, a.s. for n ≥ 1,

sup
x∈R

∣∣∣∣ 1
mn

Zn
(
(−∞, xσ0

√
n+ nm0]

)
−WΦ(x)

∣∣∣∣ ≤ M√
n
, (1.3)

whereM is a positive and finite random variable. In fact, a similar result will be established
for the general branching random walk.

The problem of large deviations for the counting measure Zn(·) has been considered
by Biggins : he established in [14] a large deviation principle, which was subsequently
improved in [15] to a Bahadur-Rao large deviation asymptotic. Here we consider the
moderate deviations :

Objective 2 : establish a Cramér type moderate deviation expansion for Zn. We will
prove that, under suitable conditions, for x ∈ [0, o(

√
n)], as n→∞, a.s.,

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

(x+ 1√
n

)]
, (1.4)

where t 7→ L (t) is the Cramér series (see (1.13) for details). Actually, as in the case of
Berry-Esseen bound, a similar result will be established for the general branching random
walk.

An important role in the study of large deviations for Zn is played by the martingale
of Biggins with complex parameter :

Wn(λ) = 1(
E
[∑N

i=1 e
λLi
])n ∫

R
eλtZn(dt)

= 1(
E
[∑N

i=1 e
λLi
])n ∑

u∈Tn
eλSu , n ≥ 0, λ ∈ C.

Set m(λ) = E
[∑N

i=1 e
λLi
]
, λ ∈ C and D = int{θ ∈ R : m(θ) < ∞} 6= ∅, where

int(A) denotes the interior of the set A. When λ = 0, Wn := Wn(0) = Zn(R)
mn

is the
fundamental martingale of the Galton -Watson process (Zn(R)), whose limit is denoted
by W . The famous Kesten-Stigum theorem states that W is non degenerate if and only
if EN log+N < ∞ (see [4]), where log+ x = max{0, log x} denotes the positive part of
log x. By the martingale convergence theorem for non-negative martingales, we have for
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all θ ∈ D,

Wn(θ) n→∞→ W (θ), a.s.

Biggins [13, Theorem A] gave a necessary and sufficient condition for the non-degeneracy
of W (θ) : EW (θ) > 0 if and only if

E[W1(θ) log+W1(θ)] <∞ and θ ∈ (θ−, θ+), (1.5)

where (θ−, θ+) ⊂ D denotes by the open interval on which θm′(θ)
m(θ) < logm(θ), i.e.

θ− = inf
{
θ ∈ D : θm

′(θ)
m(θ) < logm(θ)

}
,

θ+ = sup
{
θ ∈ D : θm

′(θ)
m(θ) < logm(θ)

}
.

Moreover, when N > 0 a.s. and (1.5) hold,

W (θ) > 0 a.s. and EW (θ) = 1.

It has been shown in [18, Theorem 2] that if

E[W γ
1 (θ)] <∞, for some γ > 1 and for all θ ∈ (θ−, θ+), (1.6)

then for every compact subset C in the trip V := {λ = θ + iη : θ ∈ (θ−, θ+), η ∈ R}, a.s.

sup
λ∈C
|Wn(λ)−W (λ)| n→∞−→ 0 and W (λ) is analytic in V.

Our next objectives are to establish analogous results for a branching random walk
with products of random matrices.

1.2.2 Branching random walks with products of random ma-
trices

To introduce the model we need some notation. Assume that on a probability space
(Ω,F ,P) we are given a set of independent identically distributed random variables
(Nu)u∈U of the same law p = {pk : k ∈ N}, and a set of independent identically dis-
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tributed d × d random matrices (Au)u∈U of the same law µ on the set of d × d matrices
M(d,R), where d ≥ 1. The two families (Nu)u∈U and (Au)u∈U are also assumed to be
independent.

A branching random walk with products of random matrices is defined as follows. At
time 0, there is one initial particle ∅ of generation 0, with initial position Y∅ := x ∈ Rd\{0}.
At time 1, the initial particle ∅ is replaced by N = N∅ new particles i = ∅i of generation
1, located at Yi = AiY∅, 1 ≤ i ≤ N . In general, at time n+ 1, each particle u = u1 . . . un of
generation n, located at Yu ∈ Rd, is replaced by Nu new particles ui of generation n+ 1,
located at Yui = AuiYu, 1 ≤ i ≤ Nu. Namely, the position of the particle ui is obtained
from the position Yu of u by the action of the matrix Aui, so that the position Yu of a
particle u in generation n ≥ 1 is given by the action of products of random matrices on
the initial position x :

Yu = Gux, where Gu = Au1...un . . . Au1 .

The space Rd is equipped with the Euclidean norm | · |. The position Gux of the particle
u is completely described by two components : its norm |Gux| and its projection on the
unit sphere Sd−1 := {y ∈ Rd, |y| = 1} denoted by

Xx
u := Gux

|Gux|
.

Accordingly, we consider the following counting measure of particles of generation n which
describes the configuration of the branching random walk at time n : for measurable sets
B1 ⊂ Sd−1 and B2 ⊂ R,

Zx
n(B1, B2) =

∑
u∈Tn

1{Xx
u∈B1, log |Gux|∈B2}. (1.7)

In particular when B = Sd−1 the measure (1.7) reduces to

Zx
n(Sd−1, B2) =

∑
u∈Tn

1{log |Gux|∈B2}. (1.8)

When d = 1, x = 1 and Au 6= 0 for all u ∈ T, the measure defined by (1.8) is exactly
the counting measure considered in the classical branching random walk on R starting
from the origin 0 ∈ R, where the position Su of a particle u = u1 · · ·un is given by
Su = Lu1 + · · · + Lu1...un , with Lu = log |Au|. So our model in the one dimensional case
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d = 1 reduces essentially to the classical (additive) branching random walk. For this
reason, in the following we will focus on the case d ≥ 2.

We will prove limit theorems for the counting measure Zx
n both in the case when the

matrices Au are nonnegative, and in the case when the matrices Au are invertible.

Objective 3 : establish a central limit theorem for the counting measure Zx
n with

suitable norming. In particular, we will prove that, under suitable conditions, for any
x ∈ Sd−1 and y ∈ R, as n→∞, a.s.,

1
mn

Zx
n

(
Sd−1, (−∞, nγ + yσ

√
n]
)
−WΦ(y)→ 0, (1.9)

where the constants γ and σ are explicitly defined (see (C6) and (1.15) in the following
section). In fact, the result is established in a more general setting : a result similar to
(1.9) is proved when Sd−1 is replaced by a measurable set B1 ⊆ Sd−1.

Objective 4 : strengthen the central limit theorem (1.9) and its integral version (with
a target function on Xx

u) to a Berry-Esseen bound for the counting measure Zx
n . We prove

that, under suitable conditions, for any x ∈ Sd−1 and n ≥ 1, a.s.,

sup
y∈R

∣∣∣∣∣ 1
mn

Zx
n

(
Sd−1, nγ + σ

√
n(−∞, y]

)
−WΦ(y)

∣∣∣∣∣ ≤ M√
n
, (1.10)

where M is a finite and positive random variable. In fact, an integral version of (1.10) is
established with a target function ϕ on Xx

u , which reduces to (1.10) when ϕ = 1. .

Objective 5 : establish the Cramér type moderate deviation expansion for Zx
n . We

prove that, under suitable conditions, for any x ∈ Sd−1 and 0 ≤ y = o(
√
n), as n → ∞,

a.s.,

Zx
n

(
Sd−1, nγ + σ

√
n(y,+∞)

)
mnW [1− Φ(y)] = e

y3
√
n
ζ( y√

n
)
[
1 +O

(
y + 1√
n

)]
,

where t 7→ ζ(t) is the Cramér series (see (1.34)). In fact, a similar result will be established
with a target function ϕ on Xx

u .

Objective 6 : establish a large deviation asymptotic expansion of Bahadur-Rao type
for Zx

n . We prove that, under suitable conditions, for any x ∈ Sd−1, with qs > γ, we have
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a.s.,

1
mn

Zx
n

(
Sd−1, [nqs,+∞)

)
= W x

s rs(x)e−nΛ∗(qs)

sσs
√

2πn

(
1 + o(1)

)
, (1.11)

where rs is a function bounded from below and from above by two positive constants,
s, σs,Λ∗(qs) are positive constants and W x

s is the limit of a martingale associated to
branching random walks with products of random matrices. As in the case of central
limit theorem, a result similar to (1.11) is proved when Sd−1 is replaced by a measurable
subset B1 of Sd−1. Moreover, an integral version for the large deviation expansion with
target functions on the two components Xx

u and log |Gux| is also established.

To achieve our objectives, as important ingredients in the approach, we mention in
particular the following :

• asymptotic expansions in central and local limit theorems for products of random
matrices ;

• the non-degeneracy of the limit of the fundamental martingale associated to bran-
ching random walk with products of random matrices ;

• the uniform convergence of the fundamental martingale and the construction of a
new martingale.

1.3 Main results

The main results of the thesis, together with some key ideas of the proofs, are presented
below in four subsections. For the detailed proofs, we refer to Chapters 1-4. Each of the
four subsections corresponds to the content of one of the four chapters.

1.3.1 Berry-Esseen bound and Cramér moderate deviation ex-
pansion for a supercritical branching random walk

In this subsection we present our main results on the Berry-Esseen bound and Cramér
moderate deviation expansion for the counting measure Zn defined in (1.1), for a gene-
ral branching random walk on the real line, generated by (Nu, Lu1, Lu2, · · · ), which are
independent copies of (N,L1, L2, · · · ).
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Conditions and statement of main results

We will use the following standard assumptions.

C1. N > 0 a.s. with m = EN ∈ (1,∞), and E
[∑N

i=1 L
2
i

]
<∞.

The first condition in C1 implies that the underlying Galton -Watson process is super-
critical and

F (A) = E[Z1(A)], A ⊂ R,

is a finite measure on R with mass m. Let F be the probability mesure on R defined by

F (A) = F (A)
m

, A ⊂ R.

Denote its mean and variance by

m0 =
∫
xF (dx) and σ2

0 =
∫

(x−m0)2F (dx). (1.12)

We will assume that

C2. F is non-degenerate, i.e. it is not concentrated on a single point.

The last condition in C1, together with condition C2, implies that the mean m0 and the
variance σ2

0 defined by (1.12) are finite with σ0 > 0.

C3. D is non-empty.

We will need the following moment condition which is weaker than (1.6).

C4. There are γ > 1 and K0 > 0 with (−K0, K0) ⊂ (θ−, θ+) such that

EW γ
1 (θ) <∞ ∀θ ∈ (−K0, K0).

By the argument of the proof of [18, Theorem 2], we know that under hypothesis C4, for
every compact subset C of V := {λ = θ + iη : θ ∈ (−K0, K0), η ∈ R}, a.s.

sup
λ∈C
|Wn(λ)−W (λ)| n→∞−→ 0 and W (λ) is analytic in C.

Our first result gives the Berry-Esseen bound for Zn :
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Theorem 1.3.1. Assume conditions C1 -C4. Then, a.s. for all n ≥ 1,

sup
x∈R

∣∣∣∣Zn
(
(−∞, xσ0

√
n+ nm0]

)
mn

−WΦ(x)
∣∣∣∣ ≤ M√

n
,

where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion
for Zn, we need more notation. Consider the measure

Fθ(dx) = eθx

m(θ)F (dx), θ ∈ D.

We see that Fθ is a distribution function with finite mean mθ and variance σ2
θ , given by

mθ = m′(θ)
m(θ) , σ2

θ = m′′(θ)
m(θ) −

(m′(θ)
m(θ)

)2
;

moreover, σθ > 0 when F is non-degenerate. Consider the change of measure of type
Cramér for Zn : for θ ∈ D,

Zθ
n(dx) = eθxZn(dx),

namely,

Zθ
n(A) =

∑
u∈Tn

eθSu1{Su∈A}, A ⊂ R .

Let X be a random variable with distribution F := F
m
, and

Λ(θ) := logEeθX = logm(θ)− logm

be its cumulant generating function. Then Λ(θ) is analytic on D, with Λ′(θ) = mθ and
Λ′′(θ) = σ2

θ . Denote by γk := Λ(k)(0) the cumulant of order k of the random variable X.
We shall use the Cramér series (see [75, Theorem VIII.2.2]) :

L (t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + . . . (1.13)

which converges for |t| small enough.

Theorem 1.3.2. Assume conditions C1 -C4. Then we have, for 0 ≤ x = o(
√
n), as

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



21

n→∞, a.s.

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

(x+ 1√
n

)]
,

and

Zn
(

(−∞,−xσ0
√
n+ nm0)

)
mnWΦ(−x) = e

− x3
√
n

L (− x√
n

)
[
1 +O

(x+ 1√
n

)]
.

As a by-product in the proof of Theorem 1.3.2, we obtain a Berry - Esseen bound for
the changed measure Zθ

n with uniformity in θ.

Theorem 1.3.3. Assume conditions C1 -C4. Then, there exists a constant 0 < K < K0

such that a.s. for all n ≥ 1,

sup
θ∈[−K,K]

sup
x∈R

∣∣∣∣Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n −W (θ)Φ(x)

∣∣∣∣ ≤ M√
n
,

where M is a positive and finite random variable.

Key ideas of the proofs

Let us explain briefly the key ideas in the proofs. To prove the Berry-Esseen bound
(1.3), we use Esseen’s smoothing inequality ([75, Theorem V.2.2.]). The key point in this
proof is the formula of the characteristic function of 1

mn
Zn
(
(−∞, xσ0

√
n+ nm0]

)
, which

can be interpreted as Wn( it
σ0
√
n
)fn(t), t ∈ R, where (Wn(λ)) is Biggins’ martingale with

complexed valued parameter λ for the branching random walk (see [17, 18]), and fn(t) is
the characteristic function of the n-fold convolution of F . Using the results of Biggins [17,
18], Grübel and Kabluchko [45] about the uniform convergence ofWn(λ), together with the
approach of Petrov [75] for the proof of the Berry-Esseen bound for sums of i.i.d. random
variables, we are able to establish (1.3). The Berry-Esseen bound (1.3) is then extended
to the changed measure of type Cramér, Zθ

n(A) =
∫
A e

θtZn(dt), A ⊂ R, θ ∈ R. This is an
important step in establishing the moderate deviation expansion (1.4). Our approach in
proving (1.4) is very different to the method of Biggins [15] on the Bahadur-Rao large
deviation asymptotic, but is inspired by the ideas in the proof of Cramér’s moderate
deviation expansion on sums of i.i.d. random variables (see [75]), and the arguments in
[18] that Biggins used to prove the local limit theorem with large deviations for Zn.
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1.3.2 Asymptotic expansions in central and local limit theorems
for products of random matrices

This subsection is devoted to the presentation of our main results about a central limit
theorem and a local limit theorem for products of random matrices, which will be used to
establish limit theorems for the branching random walk with products of random matrices.

Conditions and statement of main results

Let M(d,R) be equipped with the operator norm : for any a ∈ M(d,R) we set ‖a‖ =
supx∈Sd−1 |ax|, where | · | is a given vectorial norm on Rd, and Sd−1 = {x ∈ Rd : |x| = 1}
is the unit sphere in Rd. Denote by Γµ := [supp µ] the smallest closed semigroup of
M(d,R) generated by the support of µ. Let us recall some definitions in matrix theory.
A matrix a ∈ M(d,R) is said to be proximal if it has an algebraic simple dominant
eigenvalue. Denote by M+ the set of matrices with nonnegative entries. A nonnegative
matrix a ∈M+ is said to be allowable if every row and every column has a positive entry.

We say that the measure µ is arithmetic if there is t > 0 together with θ ∈ [0, 2π) and
a function ϑ : Sd−1

+ → R such that

∀a ∈ Γ, ∀x ∈ V (Γ) : exp[it log |ax| − iθ + i(ϑ(a · x)− ϑ(x))] = 1,

where Sd−1
+ = {x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive

quadrant. Notice when d = 1, we have Sd−1
+ = {1}, and the above arithmetic condition

reduces to the following more usual form : log a is almost surely concentrated on an
arithmetic progression a0 + a1N for some a0, a1 > 0.

We will need the following assumptions on the law µ.

C5.

1. For invertible matrices :

(a) (Strong irreducibility)There is no finite unionW = ⋃n
i=1Wi of proper subspaces

0 6= Wi ( Rd which is Γµ-invariant (in the sense that aW =W for each a ∈ Γµ)

(b) (Proximality) Γµ contains at least one proximal matrix.

2. For nonnegative matrices :

(a) (Allowability) Every a ∈ Γµ is allowable.
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(b) (Positivity) Γµ contains at least one matrix belonging to int(M+).

(c) (Non-arithmeticity) The measure µ is non-arithmetic.

Notice that when d = 1, the strong irreducibility and proximality conditions are always
satisfied. It is known that when d ≥ 2, condition C5.1 implies C5.2.c (see [47, Proposition
4.6]).

For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a · x := ax

|ax|
when ax 6= 0,

where a · x is called the projective action of the matrix a on the vector x ∈ Sd−1. Then
ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an
invertible or nonnegative matrix a,

N(a) = max{‖a‖, ι(a)−1}.

For invertible matrices we have ι(a) = ‖a−1‖−1 and N(a) = max{‖a‖, ‖a−1‖}.

C6. (Moment condition) There exists η0 ∈ (0, 1) such that

E[N(A1)η0 ] <∞.

We will consider the action of invertible matrices on the projective space Pd−1 which
is obtained from Sd−1 by identifying x and −x, and the action of nonnegative matrices
on Sd−1

+ . For convenience, we identify x ∈ Pd−1 with one of its representants in Sd−1. To
unify the exposition, we use the symbol S to denote Pd−1 for invertible matrices, and Sd−1

+

for nonnegative matrices. The space S will be equipped with the metric d, which is the
angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric (see
[49]) for nonnegative matrices. Moreover, S is a separable metric space equipped with
Borel σ-field.

Let Gn = An . . . A2A1 be the product of i.i.d. d× d real random matrices Ai, defined
on the probability space (Ω,F ,P), with common law µ. Let x ∈ S be a starting point. As
mentioned in the introduction, the random walk Gnx is completely determined by its log
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norm and its projection on S, denoted respectively by

Sxn := log |Gnx|, Xx
n := Gn · x = Gnx

|Gnx|
, n ≥ 0,

with the convention that G0x = x. Since Sxn = log |AnXx
n−1|+ Sxn−1 and Xx

n = An ·Xx
n−1,

the sequence (Sxn, Xx
n)n≥0 is a Markov chain.

Denote by E the expectation corresponding to P. By the law of large numbers of
Furstenberg [38], under conditions C5 and C6, we have

lim
n→∞

1
n
Sxn = lim

n→∞

1
n
E[Sxn] = γ P-a.s., (1.14)

where γ = infn∈N 1
n
E log ‖Gn‖ is the upper Lyapunov exponent associated with the pro-

duct sequence (Gn). Le Page [63] and Henion [49] showed that

σ2 = lim
n→∞

1
n
E (Sxn − nγ)2 (1.15)

exists and is independent of x for invertible matrices and nonnegative matrices, respec-
tively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [46,
25]) ; the µ-stationarity of ν means that µ ∗ ν = ν, that is, for any continuous function ϕ
on S,

(µ ∗ ν)(ϕ) :=
∫
S

∫
Γµ
ϕ(a · x)µ(da)ν(dx) = ν(ϕ).

where ν(ϕ) =
∫
S ϕ(x)ν(dx). This notation for the integral will be used for any function

and any measure.
We state first a central limit theorem for the couple (Xx

n , S
x
n) with uniform convergence

in x ∈ S.

Theorem 1.3.4. For invertible matrices, assume C5.1 if d > 1, and C5.2.c if d = 1.
For nonnegative matrices, assume C5.2. For both cases, assume additionally C6.

1. For any continuous function f on S, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣∣E[f(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(f)Φ (t)

∣∣∣∣ = 0. (1.16)
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2. For any measurable set B ⊂ S with ν(∂B) = 0, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣∣P(Xx
n ∈ B,

Sxn − nγ
σ
√
n
≤ t

)
− ν(B)Φ (t)

∣∣∣∣ = 0. (1.17)

For invertible matrices, a point-wise version (by considering a fixed x ∈ S instead of
supx∈S) has been established by Le Page in [63, Theorem 4]. For nonnegative matrices,
the asymptotic for the Markov chain (Xx

n , S
x
n) is new even for a fixed x. The uniformity

in x ∈ S is new for both invertible matrices and nonnegative matrices. Theorem 1.3.4 will
be deduced form a result on the convergence rate in (1.16) which has been established in
[83] for the case when f is Hölder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for
products of random matrices.

Theorem 1.3.5. Assume the conditions of Theorem 1.3.4.

1. For any continuous function f on S and any directly Riemann integrable function
h on R, we have as n→∞,

sup
(x,y)∈S×R

|σ
√
nE [f(Xx

n)h(y + Sxn − nγ)]−

ν(f)
∫
R
h(z)φ

(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz| → 0, (1.18)

where
Hx(u) = 1− b(x)

σ2√n
u+ m3

6σ6√n
(3σ2u− u3),

with m3 and b(x) defined in Proposition 3.3.3.

2. For any measurable set B ⊂ S with ν(∂B) = 0 and any directly Riemann integrable
function h on R, we have as n→∞

sup
(x,y)∈S×R

|σ
√
nE [1B(Xx

n)h(y + Sxn − nγ)]−

ν(B)
∫
R
h(z)φ

(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz| → 0. (1.19)

When y = 0, f = 1 and h = 1[a,b], the integral E [f(Xx
n)h(y + Sxn − nγ)] reduces to

the local probability P(Sxn ∈ nγ + [a, b]), which is the usual object studied in local limit
theorems.
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The expansions (1.18) and (1.19) are new for both invertible matrices and nonnegative
matrices. The first expansion implies the local limit theorem established in [63, Theorem
6] for invertible matrices, which states that (1.18) holds when the polynomial Hx(·) is
replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 1.3.4 follows from
Theorem VII.2.7 of Petrov [75], while expansion (1.18) in Theorem 1.3.5 was proved by
Feller (see [36, Theorem XVI.4.1]) under the same non-arithmetic condition on µ and
when h = 1[a,b] is the indicator function of an interval. Breuillard (see [21, Theorem 3.2])
proved an expansion like (1.18) but for any finite order, when µ is strongly non-arithmetic
(in the sense that its characteristic function µ̂(t) =

∫
eitxµ(dx) satisfies Cramér’s condition

lim sup|t|→∞ |µ̂(t)| < 1) with finite moments of order high enough and when h is integrable
and regular enough (he assumed in particular that h has continuous and integrable de-
rivatives h(k) for 0 ≤ k ≤ K with K ≥ 2 large enough). Compared with the result of
Breuillard, the novelity in Theorem 1.3.5 is that we assume the non-arithmetic condition
instead of the strongly arithmetic condition, and we use the direct Riemann integrability
of h instead of the smoothness condition on h.

Key ideas of the proofs

Our approach is mainly based on the spectral gap theory recently developed for the norm
cocycle by Guivarc’h and Le Page [46] for invertible matrices, and by Buraczewski, Damek,
Guivarc’h and Mentemeier (see [25, 28]) for nonnegative matrices. Smoothing techniques
are also used for the approximation of functions : in the proof of Theorem 1.3.4, we use
a smooth approximation of the indicator function of a Borel set (see Lemma 3.4.1), while
in the proof of Theorem 1.3.5, we use a suitable approximation of a directly Riemann
integrable function with the techniques develepped in [82].

1.3.3 Central limit theorem and precise large deviations for
branching random walks with products of random ma-
trices

The goal of this section is to present our main results about a central limit theorem and a
large deviation asymptotic expansion of Bahadur-Rao type on Zx

n for a branching random
walk with products of random matrices defined in (1.7). Note that in our model, along
each branch we encounter a product of random matrices. We introduce some notation
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and the necessary assumptions on products of random matrices in order to formulate our
main results. We shall consider two cases, the case when the matrices are nonnegative
and the case when the matrices are invertible.

Notation on products of random matrices

In addition to the notation introduced in the precedent, we need some others. Let C(S)
be the space of continuous complex-valued functions on S. Set

Iµ = {s ≥ 0 : E‖A1‖s <∞}.

Note that Iµ is an interval of R+. Let s∞ = sup Iµ. Define the transfer operator on the
set C(S) of continuous functions on S as follows : for any s ∈ (−η0, s∞), and f ∈ C(S),

Psf(x) = E[|A1x|sf(A1 · x)], for all x ∈ S. (1.20)

It is known that under conditions C5, and C6, there exists a small constant 0 < η1 < η0

such that for any s ∈ (−η1, s∞), there are a unique probability measure νs and a unique
Hölder continuous normalized function rs (under the normalizing condition νs(rs) = 1)
on S satisfying

νsPs = κ(s)νs and Psrs = κ(s)rs, (1.21)

where κ(s) is the unique dominant eigenvalue of Ps, νsPs is the measure on S such that
(νsPs)(f) = νs(Psf) for all f ∈ C(S). For s ∈ [0, s∞), the property (1.21) is proved in
[25, Proposition 3.1] and [28, Corollary 7.3] for positive matrices, and in [46, Theorem
2.6 and Corollary 3.20] for invertible matrices. For both positive matrices and invertible
matrices, the existence of η1 > 0 and the property (1.21) for s ∈ (−η1, η1) are proved in
[83, Proposition 3.1], where the following properties are also established : the functions
s 7→ κ(s) and s 7→ rs(x) are strictly positive and analytic in (−η1, s∞), for x ∈ S. Below
we shall make use of normalized function rs, i.e. rs(x) ≤ 1 for all x ∈ S, s ∈ (−η1, s∞).
Moreover, it is proved (see [46, Lemma 3.5], [25, Lemma 6.2], [83, Propositions 3.12 and
3.14]) that, under conditions C5 and C6, the function

Λ(s) = log κ(s)
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is finite and analytic on (−η1, s∞), and satisfies

Λ(0) = 0, Λ′(0) = γ, Λ′′(0) = σ2 > 0, and Λ′′(s) > 0 ∀s ∈ (−η1, s∞).

Statement of main results

Note that the population size at time n is Zn = Zx
n(S,R), which does not depend on the

starting point x and forms a Galton-Watson process with Z0 = 1 and Z1 = N . Recall
that m = EN which is supposed that 1 < m <∞. We will need the following condition.

C7. There exists a constant η > 1 such that

EN logη+1
+ N <∞.

We start with a central limit theorem for the normalized counting measure (1.7). For
t ∈ R, let

Zx
n(B, t) = Zx

n

(
B, (−∞, nγ + tσ

√
n]
)

=
∑
u∈Tn

1{Xx
u∈B,

log |Gux|−nγ
σ
√
n

≤t}.

Theorem 1.3.6. Assume that the law µ of the radom matrices satisfies conditions C5
and C6. Assume also that the offspring distribution satisfies condition C7. Then, for any
x ∈ S, any measurable set B ⊆ S with ν(∂B) = 0 and any t ∈ R, we have, as n→∞,

Zx
n(B, t)
mn

→ ν(B)Φ(t)W P-a.s. (1.22)

For the one dimensional case (where d = 1), the result is due to Asmussen and Kaplan
[3, Theorem 1]. Theorem 1.22 open ways for extending some results on central limit
theorem in [2, 29, 41, 39, 40] to the multi-dimensional case where the moving of particles
is determined by products of random matrices.

Our second main result is on the large deviation for the counting measure Zx
n . To study

the large deviation of the measure Zx
n , a natural way would be to consider its Laplace

transform defined by, for (s1, s2) ∈ Rd × R,

Z̃x
n(s1, s2) =

∫
Rd×R

es1y1+s2y2Zx
n(dy1, dy2) =

∑
u∈Tn

es1X
x
u+s2Sxu , (1.23)

where s1y1 is the inner product of vectors s1 and y1 in Rd.
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In the one dimensional case, when x = 1 and An > 0, we have Xx
u = 1, so that

Z̃x
n(s1, s2)/EZ̃x

n(s1, s2) reduces to Biggins’ fundamental martingale of the branching ran-
dom walk : ∑

u∈Tn e
s2Sxu

E [∑u∈Tn e
s2Sxu ] , n ≥ 0, (1.24)

which has been well studied (see [13], for example), and which plays an essential role in
many problems. However, in the multidimensional case, in general the sequence (1.24) is
no longer a martingale, nor the sequence

Z̃x
n(s1, s2)

EZ̃x
n(s1, s2)

=
∑
u∈Tn e

s1Xx
u+s2Sxu

E [∑u∈Tn e
s1Xx

u+s2Sxu ] , n ≥ 0,

for (s1, s2) ∈ Rd × R. So an important difficulty arises when we mimic Cramér’s change
of measure for random walks by use of the Laplace transform of Zx

n .
However, there is still a natural martingale in the present setting. By the spectral gap

property (1.21), it is easy to verify that (see Section 4.4 for more details), for s ∈ (−η1, s∞)
and x ∈ S, the sequence

W x
s,n :=

∑
u∈Tn e

sSxurs(Xx
u)

mnκ(s)nrs(x) , n ≥ 0,

constitutes a positive martingale with respect to the natural filtration

F0 = {∅,Ω} and Fn = σ(Nu, Aui : i ≥ 1, |u| < n) for n ≥ 1,

as observed by Mentemeier [72] in the study of the multivariate smoothing transform. By
the martingale convergence theorem, the limit

W x
s := lim

n→∞
W x
s,n exists in R P-a.s.

It turns out that the martingale (W x
s,n) in the multidimensional case plays the same rule

as Biggins’ fundamental martingale for one dimensional case, for large deviations.
Just as in the case of Biggins’ martingale, it is crucial to know when the limit variable

Wx
s of the fundamental martingale W x

s,n is non-degenerate. When the matrices Au are
nonnegative and s > 0, Mentemeier [72, Proposition 4.4] gave a sufficient condition for
W x
s to be non-degenerate. In the following we complete his result by considering the
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necessary and sufficient conditions, and by treating meanwhile the case s < 0 and the
case of invertible matrices. To state the result, we need some notation. For s ∈ (−η1, s∞),
set Λ∗(qs) = sqs − Λ(s) with qs = Λ′(s). Since Λ′′(s) > 0 and ∂

∂s
Λ∗(qs) = sΛ′′(s), Λ∗(qs)

attaints its minimum at s = 0, so that Λ∗(qs) ≥ Λ∗(q0) = −Λ(0) = 0 for all s ∈ (−η1, s∞).

Theorem 1.3.7. Assume conditions C5, C6. If

Λ∗(qs)− logm < 0 (1.25)

and

E[max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1] <∞, (1.26)

then for all x ∈ S,
E[W x

s ] = 1. (1.27)

Conversely, if
E[W x

s ] > 0 (1.28)

for some x ∈ S, then (1.25) holds, and

E[min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1] <∞. (1.29)

Corollary 1.3.8. Suppose the conditions C5, C6.

1. Assume (1.25) together with

EN log+N <∞ and E‖A1‖s log+ ‖A1‖ <∞. (1.30)

Then (1.27) holds for all x ∈ S.

2. Assume that the random matrice A1 = (A1(i, j)) satisfies the Furstenberg- Kesten
condition : there exists a constant C > 1 such that

max1≤i,j≤d |A1(i, j)|
min1≤i,j≤d |A1(i, j)| ≤ C a.s.

Then the three conditions (1.26), (1.29) and (1.30) are equivalent, and (1.28) holds
for all x ∈ S if and only if (1.25) and (1.30) hold. Moreover, if (1.28) holds for
some x ∈ S, then (1.27) holds for all x ∈ S.
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Notice that by Sheffé’s theorem, for each x ∈ S, if (1.28) holds, thenW x
s,n → W x

s in L1.
So the martingale (W x

s,n) converges in L1 for some x ∈ S if and only if (1.25) and (1.30)
hold ; moreover, when the martingale converges in L1 for some x ∈ S, then it converges
in L1 for all x ∈ S.

When the matrices Au are nonnegative and s > 0, Part (1) has been established by
Mentemeier [72, Proposition 4.4]. When d = 1, Part (2) is essentially the well-known
Kesten-Stigum type theorem for the classical branching random walk on the real line, due
to Biggins [13] ; see also [56] for Mandelbrot’s cascades and [70, 66] for versions which are
slightly different to the initial result of Biggins [13].

Now we consider the precise large deviations for Zx
n with target functions f and g

on the components Xx
u = Gu · x and Sxu = log |Gux|. More precisely, we shall study the

asymptotic of the large deviations of the following integral :
∫
S×R

f(y)g(z − nqs)Zx
n(dy, dz) =

∑
u∈Tn

f(Xx
u)g(Sxu − nqs). (1.31)

Our result will be stated under the very general assumption that e−szg(z), z ∈ R is
directly Riemann integrable, see Feller [36], Chapter XI.

Theorem 1.3.9. Assume conditions C5 and C6, and let s ∈ (−η1, s∞) be fixed such that
Λ∗(qs)− logm < 0 and that

E
[
max
x∈S

W x
1 (s) logδ+1

+ max
x∈S

W x
1 (s)

]
<∞ for some δ > 3/2. (1.32)

Then for any continuous function f on S and any measurable function g on R such that
z 7→ e−szg(z) is directly Riemann integrable, we have

lim
n→∞

√
2πnσsenΛ∗(qs)

mn

∫
S×R

f(y)g(z − nqs)Zx
n(dy, dz)

= W x
s rs(x)πs

(
f

rs

) ∫
R
e−szg(z)dz, P-a.s.,

where πs
(
f
rs

)
= νs(f)

νs(rs) , and σ2
s = Λ′′(s).

When s = 0 this result reduces to the following local limit theorem for the counting
measure Zx

n :

Corollary 1.3.10. Assume conditions C5 and C6. Assume also that (1.32) holds with
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s = 0. Then

lim
n→∞

σ
√

2πn
mn

∫
S×R

f(y)g(z − nγ)Zx
n(dy, dz) = Wν(f)

∫
R
g(z)dz.

When f = 1 and g = 1[a,b] with −∞ < a < b <∞, it gives the precise asymptotic of
Zx
n(S, nγ + [a, b]) as n→∞.
The following theorem describes the asymptotic size of the number of particles in n-th

generation situated in the regions (B, [enqs ,+∞)) for s > 0, and (B, (0, enqs ])) for s < 0,
where B ⊆ S.

Theorem 1.3.11. Assume the conditions of Theorem 1.3.9. Then, for any x ∈ S, any
measurable set B ⊆ S with ν(∂B) = 0, we have, P-a.s., for s > 0,

lim
n→∞

√
2πnσs enΛ∗(qs)Z

x
n (B, [nqs,+∞))

mn
= 1
s
W x
s rs(x)

∫
B

1
rs(y)πs (dy) ,

and for s < 0,

lim
n→∞

√
2πnσs enΛ∗(qs)Z

x
n (B, (−∞, nqs])

mn
= 1
s
W x
s rs(x)

∫
B

1
rs(y)πs (dy) .

This theorem is obtained from Theorem 1.3.9 by taking g = 1[0,+∞) when s > 0, and
g = 1(−∞,0] when s < 0, and by using a smooth approximation of indicator function (see
[22, Lemma 4.1]).

In the one dimensional case (where d = 1), Theorems 1.3.9 and 1.3.11 reduce to the
Bahadur-Rao type results of Biggins [15]. The large deviation principle was established
earlier by Biggins in [14].

Key ideas of the proofs

The starting point in the proofs of our results is a decomposition formula which permits to
express the counting measure as the sum of conditionally independent random variables,
using the branching property like in the one dimensional case for which we may refer to
[3, 15]. However, there is much to do to arrive to the conclusions in the multidimensional
case, due to the appearance of products of random matrices. In particular, for the proof
of Theorem 1.3.6 about the central limit theorem and Theorem 1.3.9 about the precise
large deviation with target functions, we use respectively the central limit theorem and
the recent progress on the spectral gap theory and precise large deviations for products
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of random matrices. Another step forward in the proof of Theorem 1.3.9 concerns the
extension of Biggins’ martingale to the case of branching products of random matrices,
for which we prove a criterion for the non-degeneracy of the limit of the fundamental
martingale (see Theorem 1.3.7) which completes a result of Mentemeier [72] obtained in
the context of the multivariate smoothing transform, and extends the Kesten-Stigum type
theorem of Biggins [13] on the classical branching random walk.

1.3.4 Berry-Esseen bound and Cramér moderate deviation ex-
pasion for a branching random walk with products of ran-
dom matrices

This subsection is to present our main results about the Berry-Esseen bound and Cramér
moderate deviation expansion on Zx

n defined in (1.7), for a branching random walk with
products of random matrices. We will use the assumptions on products of random matrices
introduced in the subsection 1.3.3.

Statement of main results

Set

J = {s ∈ (−η1, η1) : Λ∗(qs)− logm < 0},

which is an open interval containing 0. We assume the following moment condition slightly
stronger than (1.26) :

C8. There are constants γ0 > 1 and 0 < η2 <
η1
2 with [−η2, η2] ⊂ J such that

E
[

max
x∈S

(
W x

1 (s)
)γ0]

<∞ ∀ s ∈ [−η2, η2].

It is clear that conditions C5-C8 (together with the hypothesis P(N = 0) = 0 that we
assume always), imply that for all x ∈ S, W x(s) > 0 a.s. and E[W x(s)] = 1 ; in particular
(when s = 0), W > 0 a.s. and E[W ] = 1.

For β > 0 sufficiently small, we introduce the Banach space Bβ = {f ∈ C(S) : ‖f‖β <
+∞}, where

‖f‖β := ‖f‖∞ + |f |β,
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with

‖f‖∞ := sup
x∈S
|f(x)|, |f |β := sup

x,y∈S,x6=y

|f(x)− f(y)|
dβ(x, y) .

Our first result is the Berry-Esseen bound for the counting measure Zx
n :

Theorem 1.3.12. Assume conditions C5-C8. Then, for any x ∈ S, ϕ ∈ Bβ and n ≥ 1,
we have, a.s.,

sup
y∈R

∣∣∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
≤y
} −Wν(ϕ)Φ(y)

∣∣∣∣∣ ≤ M√
n
, (1.33)

where M is a finite and positive random variable.

This is a Berry-Esseen type bound for the counting measure Zx
n with suitable norming

because the sum in (1.33) is an integral with respect to Zx
n :

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
≤y
} =

∫
S×R

ϕ(z1)1{ z2−nγ
σ
√
n
≤y
}Zn(dz1, dz2).

Denote γk = Λk(0), k ≥ 1, where Λ = log κ defined in (1.21). We write for the Cramér
series associated to Λ (see [75]) :

ζ(t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + . . . (1.34)

which converges for |t| small enough. Our second result is the Cramér’s moderate deviation
expansion for Zx

n .

Theorem 1.3.13. Assume conditions C5-C8. Then, we have for any x ∈ S, ϕ ∈ Bβ, 0 ≤
y = o(

√
n), as n→∞, a.s.,

∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≥√nσy}
mnW [1− Φ(y)] = e

y3
√
n
ζ( y√

n
)
[
ν(ϕ) +O

(
y + 1√
n

)]
,

and ∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≤−√nσy}
mnWΦ(−y) = e

− y3
√
n
ζ(− y√

n
)
[
ν(ϕ) +O

(
y + 1√
n

) ]
.

An important step in the proof of the moderate deviation expansion is to establish a
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Berry-Esseen bound for the changed measure Zx
s,n defined by for measurable sets B1 ⊂

Sd−1 and B2 ⊂ R,

Zx
s,n(B1, B2) =

∫
B1×B2

esz2rs(z1)
[mκ(s)]nrs(x)Z

x
n(dz1, dz2)

=
∑
u∈Tn

esS
x
urs(Xx

u)
[mκ(s)]nrs(x)1{X

x
u∈B1,Sxu∈B2}.

Our third result is a Berry-Esseen bound for the changed measure Zx
s,n :

Theorem 1.3.14. Assume conditions C5-C8. Then, for any x ∈ S and ϕ ∈ Bβ there
exists a constant 0 < η < η2 such that a.s., for n ≥ 1,

sup
s∈(−η,η)

sup
y∈R

∣∣∣∣∣∣
∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
≤y
} −W x(s)πs(ϕ)Φ(y)

∣∣∣∣∣∣ ≤ M√
n
, (1.35)

where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Zx
s,n because, similar to the case of Theorem

1.3.12, the sum in (1.35) is an integral with respect to Zx
s,n :

∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
≤y
}

=
∫
S×R

esz2rs(z1)ϕ(z1)
[mκ(s)]nrs(x) 1

{
z2−nΛ′(s)
σs
√
n
≤y
}Zx

s,n(dz1, dz2).

Key ideas of the proofs

An important step in the proof of Theorems 1.3.12 and 1.3.13 is to establish a Berry-
Esseen bound for the Cramér type changed measure Zx

s,n. This will be done in Theorem
1.3.14. Theorem 1.3.12 will be obtained from Theorem 1.3.14 by taking s = 0, and Theo-
rem 1.3.13 will be established by using Theorem 1.3.14 and by adapting the techniques
from Petrov [75]. We would like to give some ideas on in the proof of Theorem 1.3.14. As
in [24] where the one dimensional case is considered, we need to study the asymptotic of
the characteristic function of the changed measure Zx

s,n. Inspired by the approach in [24],
we would like to express the characteristic function of Zx

s,n in terms of a martingale and a
quantity that can be controlled by the theory of products of random matrices. However,
in contrast to the one dimensional case, we cannot obtain directly an expression of the

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Introduction 36

characteristic function in terms of a martingale. Fortunately, using the spectral gap theory
for products of random matrices established in [46, 25, 28] and recently developed in [83],
we have been able to define a new martingale which is similar to the fundamental martin-
gale and which can be used for a suitable approximation of the characteristic function of
Zx
s,n. We conclude by proving the uniform convergence and analyticity with respect to a

complex parameter of the new martingale, and by using the asymptotic properties of the
eigenvalue of the pertubed transfer operator related to the products of random matrices.
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Chapter 2
Berry - Esseen bound and Cramér moderate
deviation expansion for a supercritical branch-
ing random walk

We consider a supercritical branching random walk where each particle gives birth to a
random number of particles of the next generation, which move on the real line, according
to a fixed law. Let Zn be the counting measure which counts the number of particles of nth
generation situated in a given region. Under suitable conditions, we establish a Berry-
Esseen bound and a Cramér type moderate deviation expansion for Zn with suitable
norming.

2.1 Introduction

A branching random walk is a system of particles, in which each particle gives birth to
new particles of the next generation, whose children move on R. The particles behave
independently; the number of children and their displacements are governed by the same
probability law for all particles. Important research topics on the model include the
study of the asymptotic properties of the counting measure Zn which counts the number
of particles of generation n situated in a Borel set (see e.g. [2, 3, 14, 15, 16, 29, 39, 40,
30]), the study of the fundamental martingale, the norming problem, and the properties
of the limit variable (see e.g. [13, 19, 66, 70, 67, 1, 55, 65]), and the positions of the
extreme particles (which constitute the boundary of the support of the counting measure
Zn (see e.g. [53, 52, 5, 27]), etc. The study of this model is very interesting especially
due to a large number of applications and its close relation with other important mod-
els in applied probability settings, such as multiplicative cascades, fractals, perpetuities,
branching Brownian motion, the quick sort algorithm and infinite particle systems. For
close relations to Mandelbrot’s cascades, see e.g. [56, 67, 6, 25, 72]; for relations to other
important models, see e.g. the recent books [77, 26, 54] and many references therein. In
this paper, we consider the asymptotic properties of the counting measure Zn as n→∞,

37
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by establishing the Berry - Esseen bound and Cramér’s moderate deviation expansion for
a suitable norming of Zn. The study of asymptotic properties of Zn is interesting because
it gives a good description of the configuration of the system at time n.

The branching random walk on the real line can be defined precisely as follows. The
process begins with one initial particle denoted by the null sequence ∅, situated at the
origin S∅ = 0. It gives birth to N children denoted by ∅i = i, with displacements Li,
i = 1, · · · , N . In general, each particle of generation n, denoted by a sequence u = u1 · · ·un
of length n, situated at Su ∈ R, gives birth to Nu particles of the next generation, denoted
by ui, which move on the real line with displacements Lui so that their positions are
Sui = Su + Lui, i = 1, · · · , Nu. All the random variables (Nu, Lu1, Lu2, · · · ), indexed by
all finite sequences u ∈ U := ∪∞n=0(N∗)n (by convention (N∗)0 = {∅}), are independent
and identically distributed, defined on some probability space (Ω,F ,P), with values in
N× R× R× · · · .

For n ≥ 0, let Tn be the set of particles of n-th generation. Consider the counting
measure

Zn(A) =
∑
u∈Tn

1{Su∈A}, A ⊂ R,

which counts the number of particles of n-th generation situated in A.

Throughout this paper we assume that

m := EN = E[Z1(R)] ∈ (1,∞),

so that the Galton-Watson process formed by the generation sizes survives with positive
probability, and

F (A) = E[Z1(A)], A ⊂ R,

is a finite measure on R with mass m. Let F be the probability measure on R defined by

F (A) = F (A)
m

, A ⊂ R.

Denote its mean and variance by

m0 =
∫
xF (dx) and σ2

0 =
∫

(x−m0)2F (dx). (2.1)
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We will assume that E(∑N
i=1 L

2
i ) <∞, so that m0 and σ2

0 are finite, with

m0 = 1
m
E
[ N∑
i=1

Li
]

and σ2
0 = 1

m
E
[ N∑
i=1

L2
i

]
−m2

0.

A central limit theorem for the special case where (Nu)u∈U and (Lu)u∈U are two inde-
pendent families of independent and identically distributed (i.i.d.) random variables was
conjectured by Harris [48]. His conjecture states that under suitable conditions we have,
for any x ∈ R,

1
mn

Zn
(
(−∞, xσ0

√
n+ nm0]

)
n→∞−→ WΦ(x) (2.2)

in probability, where Φ(x) is the normal distribution function andW is the a.s. limit of the
fundamental martingale

(
Zn(R)
mn

)
of the Galton-Watson process (Zn(R)). This conjecture

has first been solved by Stam [78], then improved by Asmussen and Kaplan [2, 3] to
L2-convergence and almost sure (a.s.) convergence. The general case has been considered
by Klebaner [60] and Biggins [16].

In this paper we will study the Berry -Esseen bound about the rate of convergence in
(2.2), and the associated Cramér’s moderate deviation expansion.

The rate of convergence in (2.2) has been studied in several papers. Révész [76]
considered the special case where the displacements follow the same Gaussian law and
conjectured the exact convergence rate; his conjecture was solved by Chen [29]. Gao and
Liu [39] improved and extended Chen’s result to the general non-lattice case while the
lattice case has been considered by Grübel and Kabluchko [45]. All the above mentioned
results are about the point-wise convergence without uniformity in x. In this paper, our
first objective is to find a uniform bound for the rate of convergence in (2.2) of type
Berry-Esseen: we will prove that, under suitable conditions, a.s. for n ≥ 1,

sup
x∈R

∣∣∣∣ 1
mn

Zn
(
(−∞, xσ0

√
n+ nm0]

)
−WΦ(x)

∣∣∣∣ ≤ M√
n
, (2.3)

where M is a positive and finite random variable (see Theorem 2.2.1).
The problem of large deviations for the counting measure Zn(·) has been considered

by Biggins: he established in [14] a large deviation principle, which was subsequently
improved in [15] to a Bahadur-Rao large deviation asymptotic. Our second objective
in this paper is to establish a Cramér type moderate deviation expansion for Zn (see
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Theorem 2.2.2): we will prove that a.s. for n→∞ and x ∈ [0, o(
√
n)],

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

(x+ 1√
n

)]
, (2.4)

where t 7→ L (t) is the Cramér series (see (2.11)). Here we use the usual notation bn =
O(an) to mean that the sequence (bn/an) is bounded. (We mention that as (2.4) holds
a.s., the bound in O

(
x+1√
n

)
may be random.)

Let us explain briefly the key ideas in the proofs. To prove the Berry-Esseen bound
(2.3), we use Esseen’s smoothing inequality ([75, Theorem V.2.2.]). The key point in this
proof is the formula of the characteristic function of 1

mn
Zn
(
(−∞, xσ0

√
n+ nm0]

)
, which

can be interpreted as Wn( it
σ0
√
n
)fn(t), t ∈ R, where (Wn(λ)) is Biggins’ martingale with

complexed valued parameter λ for the branching random walk (see [17, 18]), and fn(t) is
the characteristic function of the n-fold convolution of F . Using the results of Biggins [17,
18], Grübel and Kabluchko [45] about the uniform convergence ofWn(λ), together with the
approach of Petrov [75] for the proof of the Berry-Esseen bound for sums of i.i.d. random
variables, we are able to establish (2.3). The Berry-Esseen bound (2.3) is then extended
to the changed measure of type Cramér, Zθ

n(A) =
∫
A e

θtZn(dt), A ⊂ R, θ ∈ R. This is an
important step in establishing the moderate deviation expansion (2.4). Our approach in
proving (2.4) is very different from the method of Biggins [15] on the Bahadur-Rao large
deviation asymptotic; instead, it is inspired by the ideas of the proof of Cramér’s moderate
deviation expansion on sums of i.i.d. random variables (see [75]), and the arguments in
[18] for the proof of the local limit theorem with large deviations for Zn.

The main results, Theorems 2.2.1-2.2.3, are presented in Section 2.2. Theorems 2.2.1
and 2.2.3 about the Berry-Esseen bound are proved in Section 2.3, while Theorem 2.2.2
about the moderate deviation is established in Section 2.4.

2.2 Notation and results

We will use the following standard assumptions.

H1. N > 0 a.s. with m = EN ∈ (1,∞), and E
[∑N

i=1 L
2
i

]
<∞.

H2. F is non-degenerate, i.e. it is not concentrated on a single point.

The first condition inH1 implies that the underlying Galton -Watson process is super-
critical; the second condition in H1, together with condition H2, implies that the mean
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m0 and the variance σ2
0 defined by (2.1) are finite with σ0 > 0.

The Laplace transform of F will be denoted by

m(λ) =
∫
R
eλtF (dt) = E

[ N∑
i=1

eλLi
]
, λ ∈ C. (2.5)

Denote by int(A) the interior of the set A. Set

D = int{θ ∈ R : m(θ) <∞}. (2.6)

Throughout, we assume that

H3. D is non-empty.

Denote by Re(λ) the real part of λ ∈ C. An important role in the proof of Berry-
Esseen bound and moderate deviation expansion is played by the martingale of Biggins
with complex parameter:

Wn(λ) = 1
m(λ)n

∫
R
eλtZn(dt) =

∑
u∈Tn

eλSu

m(λ)n , n ≥ 0, Re(λ) ∈ D.

When λ = 0, Wn := Wn(0) = Zn(R)
mn

is the fundamental martingale of the Galton -
Watson process (Zn(R)), whose a.s. limit is denoted by W . The famous Kesten-Stigum
theorem states that W is non degenerate if and only if EN log+N < ∞ (see [4]), where
log+ x = max{0, log x} denotes the positive part of log x. By the martingale convergence
theorem for non-negative martingales, we have for all θ ∈ D,

Wn(θ) n→∞→ W (θ), a.s.

Notice that when N > 0 a.s. we have Wn(θ) > 0 a.s. for all n ≥ 0 and θ ∈ D. Biggins
[13, Theorem A] gave a necessary and sufficient condition for the non-degeneracy ofW (θ):
EW (θ) > 0 if and only if

E[W1(θ) log+W1(θ)] <∞ and θ ∈ (θ−, θ+), (2.7)
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where (θ−, θ+) ⊂ D denotes by the open interval on which θm′(θ)
m(θ) < logm(θ), i.e.

θ− = inf
{
θ ∈ D : θm

′(θ)
m(θ) < logm(θ)

}
,

θ+ = sup
{
θ ∈ D : θm

′(θ)
m(θ) < logm(θ)

}
.

Moreover, when H1 and (2.7) hold,

W (θ) > 0 a.s. and EW (θ) = 1. (2.8)

We see that 0 ∈ (θ−, θ+), so that this interval is non-empty. The endpoints of the interval
D and the quantities θ−, θ+ are allowed to be infinite. We will need the following moment
condition which is slightly stronger than (2.7).

H4. There are γ > 1 and K0 > 0 with (−K0, K0) ⊂ (θ−, θ+) such that

EW γ
1 (θ) <∞ ∀θ ∈ (−K0, K0).

By the argument of the proof of [18, Theorem 2], we know that under hypothesis H4,
for every compact subset C of V := {λ = θ + iη : θ ∈ (−K0, K0), η ∈ R}, a.s.

sup
λ∈C
|Wn(λ)−W (λ)| n→∞−→ 0 and W (λ) is analytic in C. (2.9)

Our first result gives the Berry-Esseen bound for Zn:

Theorem 2.2.1. Assume conditions H1 -H4. Then, a.s. for all n ≥ 1,

sup
x∈R

∣∣∣∣Zn
(
(−∞, xσ0

√
n+ nm0]

)
mn

−WΦ(x)
∣∣∣∣ ≤ M√

n
,

where M is a positive and finite random variable.

To state the result corresponding to the Cramér type moderate deviation expansion
for Zn, we need more notation. Consider the measure

Fθ(dx) = eθx

m(θ)F (dx), θ ∈ D. (2.10)
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We see that Fθ is a distribution function with finite mean mθ and variance σ2
θ , given by

mθ = m′(θ)
m(θ) , σ2

θ = m′′(θ)
m(θ) −

(m′(θ)
m(θ)

)2
;

moreover, σθ > 0 when F is non-degenerate. Consider the change of measure of type
Cramér for Zn: for θ ∈ D,

Zθ
n(dx) = eθxZn(dx),

namely,

Zθ
n(A) =

∑
u∈Tn

eθSu1{Su∈A}, A ⊂ R .

Let X be a random variable with distribution F := F
m
, and

Λ(θ) := logEeθX = logm(θ)− logm

be its cumulant generating function. Then Λ(θ) is analytic on D, with Λ′(θ) = mθ and
Λ′′(θ) = σ2

θ . Denote by γk := Λ(k)(0) the cumulant of order k of the random variable X.
We shall use the Cramér series (see [75, Theorem VIII.2.2]):

L (t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + . . . (2.11)

which converges for |t| small enough.

Theorem 2.2.2. Assume conditions H1 -H4. Then we have, for 0 ≤ x = o(
√
n), as

n→∞, a.s.

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

(x+ 1√
n

)]
, (2.12)

and

Zn
(

(−∞,−xσ0
√
n+ nm0)

)
mnWΦ(−x) = e

− x3
√
n

L (− x√
n

)
[
1 +O

(x+ 1√
n

)]
. (2.13)

As a by-product in the proof of Theorem 2.2.2, we obtain a Berry - Esseen bound for
the changed measure Zθ

n with uniformity in θ.
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Theorem 2.2.3. Assume conditions H1 -H4. Then, there exists a constant 0 < K < K0

such that a.s. for all n ≥ 1,

sup
θ∈[−K,K]

sup
x∈R

∣∣∣∣Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n −W (θ)Φ(x)

∣∣∣∣ ≤ M√
n
,

where M is a positive and finite random variable.

2.3 Proof of Theorems 2.2.1 and 2.2.3

We first recall some known results in the form of two lemmas which will be used for the
proof of Theorems 2.2.1 and 2.2.3.

The first lemma concerns the Cramér change of measure (2.10), see [75, Theorem
VIII.2.2, inequalities (2.31) and (2.32)]).

Lemma 2.3.1. Let X be a real random variable with distribution G. Suppose that
V ar(X) > 0 and that there exist strictly positive constants H, c such that

| logEeθX | ≤ c for all θ ∈ (−H,H).

Let Xθ be a real random variable with distribution Gθ defined by

Gθ(dx) = eθxG(dx)
EeθX

, θ ∈ (−H,H).

Then there exist strictly positive constants H1, c1, c2 with H1 < H, such that for all θ ∈
(−H1, H1),

V ar(Xθ) ≥ c1 and E|Xθ − EXθ|3 ≤ c2.

We see that under H2 and H3, the distribution G = F satisfies the conditions of
this lemma. Indeed, if X is a random variable with distribution F , then by condition H2
about the non-degeneracy of F, we have V ar(X) > 0. By condition H3, the set D defined
by (2.6) is an open interval containing 0. Notice that logEeθX = log m(θ)

m
< ∞ for all

θ ∈ D. Hence there exist constants H, c > 0 such that | logEeθX | ≤ c for all θ ∈ (−H,H).
The second lemma is about the exponential convergence rate ofWn(θ), see [45, Lemma

3.3]. In fact in [45, Lemma 3.3] the result is only given for the lattice case, but the proof
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therein remains valid for the non-lattice case.

Lemma 2.3.2. Assume conditions H1-H4. There exist two constants 0 < K < K0 and
c ∈ (0, 1) such that a.s. for all n ≥ 0,

sup
θ∈[−K,K]

|Wn(θ)−W (θ)| ≤M1c
n,

where M1 is a positive and finite random variable.

Notice that Theorem 2.2.1 follows from Theorem 2.2.3 with θ = 0, by the fact that
m(0) = m and W (0) = W . So we only proceed to prove Theorem 2.2.3.

Proof of Theorem 2.2.3. From Lemma 2.3.2, to prove Theorem 2.2.3, it is enough to show
that there is a constant 0 < K < K0 such that

sup
θ∈[−K,K]

sup
x∈R

∣∣∣∣Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n −Wn(θ)Φ(x)

∣∣∣∣ ≤ M√
n
,

where M is a positive and finite random variable. Consider the random measure

νθn(A) =
Zθ
n

(
σθ
√
nA+ nmθ

)
m(θ)n , A ⊂ R,

with the usual notation aA+ b = {ax+ b : x ∈ A}. Its distribution function is

νθn(x) =
Zθ
n

(
(−∞, xσθ

√
n+ nmθ]

)
m(θ)n , x ∈ R.

The characteristic function of the random measure νθn is

ψθn(t) =
∫
R
eitxνθn(dx) = 1

m(θ)n
∑
u∈Tn

exp
{(
θ + it

σθ
√
n

)
Su −

it nmθ

σθ
√
n

}

= Wn

(
θ + it

σθ
√
n

)
f θn(t), t ∈ R, (2.14)

where f θn(t) = 1
m(θ)nm

(
θ+ it

σθ
√
n

)n
e
− it nmθ
σθ
√
n . Denote by F ∗nθ the n-fold convolution of Fθ. It

is not difficult to see that

f θn(t) =
∫
R
e
it(x−nmθ)
σθ
√
n F ∗nθ (dx),
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which is the characteristic function of Sn−nmθ
σθ
√
n

, where Sn is the sum of independent random
variables {X i}ni=1 with the same law Fθ.

By Esseen’s smoothing inequality (see [75, Theorem V.2.2]), we get for all T > 0, a.s.

sup
x∈R

∣∣∣νθn(x)−Wn(θ)Φ(x)
∣∣∣

≤ 1
π

∫ T

−T

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)−Wn(θ)e−t2/2

t

∣∣∣∣dt+Wn(θ) c
T
, (2.15)

where c is a deterministic positive constant. From Lemma 2.3.1, there exist strictly
positive constants K, c1, c2 with K < min{H1, K0} such that for all |θ| ≤ K

σ2
θ ≥ c1 and E|X −mθ|3 ≤ c2. (2.16)

Take T = aσθ
√
n with a = infθ∈[−K,K]

σ2
θ

4E|X−mθ|3
≥ c1

c2
> 0. For 0 < ε < a, we split the

integral on the right-hand side of (2.15) into two parts |t| < εσθ
√
n and εσθ

√
n ≤ |t| ≤

aσθ
√
n to get

sup
θ∈[−K,K]

sup
x∈R

∣∣∣νθn(x)−Wn(θ)Φ(x)
∣∣∣ ≤ 1

π
(I1 + I2) + c

a
√
n

sup
θ∈[−K,K]

Wn(θ)
σθ

,

where

I1 = sup
θ∈[−K,K]

∫
|t|<εσθ

√
n

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)−Wn(θ)e−t2/2

t

∣∣∣∣dt,
I2 = sup

θ∈[−K,K]

∫
εσθ
√
n≤|t|≤aσθ

√
n

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)−Wn(θ)e−t2/2

t

∣∣∣∣dt.
In the following, Mi denotes a positive and finite random variable. By Lemma 2.3.2 and
the lower bound (2.16) of σθ, supθ∈[−K,K]

Wn(θ)
σθ
≤M2 a.s. Hence, it remains to show that

a.s., I1 ≤ M3√
n
and I2 ≤ M4√

n
.
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For I1, we see that

I1 ≤ sup
θ∈[−K,K]

sup
|t|

σθ
√
n
≤ε

∣∣∣Wn

(
θ + it

σθ
√
n

)∣∣∣ ∫
|t|<εσθ

√
n

|f θn(t)− e−t2/2|
|t|

dt

+ sup
θ∈[−K,K]

∫
|t|<εσθ

√
n

∣∣∣Wn

(
θ + it

σθ
√
n

)
−Wn(θ)

∣∣∣
|t|

e−t
2/2dt. (2.17)

By the uniform convergence (2.9) of Wn(·), we have

sup
θ∈[−K,K]

sup
|t|

σθ
√
n
≤ε

∣∣∣∣Wn

(
θ + it

σθ
√
n

)∣∣∣∣ ≤M5. (2.18)

Recall that t 7→ f θn(t) is the characteristic function of Sn−nmθ
σθ
√
n

. Then by [75, Lemma V.2.1],

for |t| ≤ σ3
θ

√
n

4E|X −mθ|3
, we have

|f θn(t)− e−t2/2|
|t|

≤ E|X −mθ|3

σ3
θ

√
n

t2e−t
2/3 ≤ c2

c1
√
n
t2e−t

2/3. (2.19)

Therefore (2.19) holds for |t| ≤ εσθ
√
n since εσθ

√
n ≤ σ3

θ

√
n

4E|X −mθ|3
. From (2.18), (2.19)

and the fact that
∫
R |t|2e−t

2/3dt < ∞, we see that the first term in (2.17) is bounded by
M6√
n
.

Now we consider the second term in (2.17). Since
∫
R e
−t2/2dt =

√
2π, we need only to

show that

sup
θ∈[−K,K]

sup
|t|

σθ
√
n
≤ε

1
|t|

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
−Wn(θ)

∣∣∣∣ ≤ M7√
n
. (2.20)

Notice that Wn(λ) is a.s. analytic in the strip Re(λ) ∈ (−K0, K0). Let 0 < K1 < K0. By
the mean value theorem, when θ ∈ [−K1, K1] and |t|

σθ
√
n
≤ ε, we have

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
−Wn(θ)

∣∣∣∣ ≤ |t|
σθ
√
n

max
η∈[−ε,ε]

|W ′
n(θ + iη)| (2.21)
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By Cauchy’s formula, when |λ| < K1,

W ′
n(λ) = 1

2πi

∫
|z|=K1

Wn(z)
(z − λ)2dz.

By (2.9), a.s. for all n ≥ 1 and all z ∈ C with |z| ≤ K1, |Wn(z)| ≤M8. When |λ| ≤ K1/2
and |z| = K1, |z − λ| ≥ K1 − K1/2 = K1/2, so that | Wn(z)

(z−λ)2 | ≤ 4M8
K2

1
. Therefore for all

n ≥ 1, a.s.
max
|λ|≤K1/2

|W ′
n(λ)| ≤ 4M8

K1
.

Therefore from (2.21) and (2.16), we see that (2.20) holds when K < K1/4 and ε < K1/4.
This concludes that the second term in (2.17) is bounded by M9√

n
. Therefore from (2.17)

we get I1 ≤ M10√
n
.

For I2, using the constraint in the integral of I2, we have 1
|t| ≤

1
εσθ
√
n
, so that

I2 ≤ sup
θ∈[−K,K]

1
εσθ
√
n

∫
ε≤ |t|

σθ
√
n
≤a

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)

∣∣∣∣dt
+ sup

θ∈[−K,K]

Wn(θ)
εσθ
√
n

∫
ε≤ |t|

σθ
√
n
≤a

e−t
2/2dt.

It is shown in the proof of [18, Lemma 5] that as n→∞,

sup
θ∈[−K,K]

√
n

∫
ε≤η≤a

∣∣∣∣Wn

(
θ + iη

)
f θn(σθ

√
nη)

∣∣∣∣dη → 0 a.s.,

which can be rewritten as

sup
θ∈[−K,K]

1
σθ

∫
ε≤ |t|

σθ
√
n
≤a

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)

∣∣∣∣dt→ 0 a.s.

Therefore,

sup
θ∈[−K,K]

1
εσθ
√
n

∫
ε≤ |t|

σθ
√
n
≤a

∣∣∣∣Wn

(
θ + it

σθ
√
n

)
f θn(t)

∣∣∣∣dt ≤ M11√
n

a.s.

This, together with supθ∈[−K,K]
Wn(θ)
σθ
≤ M12, implies that I2 ≤

M13√
n
. Thus the proof of
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Theorem 2.2.3 is completed.

2.4 Proof of Theorem 2.2.2

In this section we prove Theorem 2.2.2, the Cramér type moderate deviation expansion
for Zn.

Proof of Theorem 2.2.2. We will only prove (2.12), as the proof of (2.13) is similar.
For x ∈ [0, 1], Theorem 2.12 is a direct consequence of Theorem 2.2.1, as we will see

in the following. For n ≥ 1,

∣∣∣∣Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)]e

x3
√
n

L ( x√
n

)
− 1

∣∣∣∣
= 1

W [1− Φ(x)]e
x3
√
n

L ( x√
n

)

∣∣∣∣Zn(R)
mn

−
Zn
(

(−∞, xσ0
√
n+ nm0)

)
mn

−W (1− Φ(x))e
x3
√
n

L ( x√
n

)
∣∣∣∣. (2.22)

Since supx∈[0,1] | x
3
√
n
L ( x√

n
)| → 0, there exists n0 large enough such that for all x ∈ [0, 1]

and n ≥ n0, e
x3
√
n

L ( x√
n

) ≥ 1/2. Using this and the fact that 1 − Φ(x) ≥ c := 1 − Φ(1) for
all x ∈ [0, 1], from (2.22) we get for all n ≥ n0,

∣∣∣∣Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)]e

x3
√
n

L ( x√
n

)
− 1

∣∣∣∣
≤ 2
cW

∣∣∣∣Zn(R)
mn

−W
∣∣∣∣+ 2

cW

∣∣∣∣− Zn
(

(−∞, xσ0
√
n+ nm0)

)
mn

+WΦ(x)
∣∣∣∣

+ 2
cW

∣∣∣∣W (1− Φ(x))
(

1− e
x3
√
n

L ( x√
n

)
)∣∣∣∣. (2.23)

In the last display, by Theorem 2.2.1, when n → ∞, the two first terms are O
(

1√
n

)
.

We will show below that the third term is also O
(

1√
n

)
. In fact, using the inequality

|1 − et| ≤ |t|et for t ∈ R and the fact that supx∈[0,1] |L ( x√
n
)| is bounded for n ≥ n0, we
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obtain for x ∈ [0, 1], as n→∞,

∣∣∣∣1− e x3
√
n

L ( x√
n

)
∣∣∣∣ ≤ ∣∣∣∣ x3
√
n

L ( x√
n

)
∣∣∣∣e x3
√
n

L ( x√
n

) = O
( 1√

n

)
.

This implies that the third term in (2.23) is O
(

1√
n

)
. From (2.23) and the above estima-

tions, we see that for x ∈ [0, 1], as n→∞,

∣∣∣∣Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)]e

x3
√
n

L ( x√
n

)
− 1

∣∣∣∣ = O
( 1√

n

)
,

which implies

Zn
(

(xσ0
√
n+ nm0,+∞)

)
mnW [1− Φ(x)] = e

x3
√
n

L ( x√
n

)
[
1 +O

( 1√
n

)]
.

This ends the proof of (2.12) in the case where x ∈ [0, 1].

We now deal with the case 1 < x = o(
√
n). For u ∈ (N∗)n, set

Vu = Su − nmθ

σθ
√
n

.

Recalling that Λ(θ) = logEeθX = log m(θ)
m

and Λ′(θ) = mθ, we have

I : = 1
mn

Zn
(
(xσ0
√
n+ nm0,+∞)

)
= 1
mn

∑
u∈Tn

1{
Su>xσ0

√
n+nm0

}
= e−n[θΛ′(θ)−Λ(θ)] ∑

u∈Tn
e−θσθ

√
nVu · e

θSu

m(θ)n1
{
Vu>

σ0x
σθ

+ (m0−mθ)
√
n

σθ

}. (2.24)

Because Λ(θ) is analytic on D with Λ(0) = 0, it has the Taylor expansion

Λ(θ) =
∞∑
k=1

γk
k! θ

k, where γk = Λ(k)(0), θ ∈ D, (2.25)

which implies that

Λ′(θ)− Λ′(0) =
∞∑
k=2

γk
(k − 1)!θ

k−1. (2.26)
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Consider the equation

√
n(mθ −m0) = σ0x, namely Λ′(θ)− Λ′(0) = σ0x√

n
. (2.27)

Set t = x√
n
, from (2.26) and (2.27), we get

σ0t =
∞∑
k=2

γk
(k − 1)!θ

k−1. (2.28)

Since γ2 = σ2
0 > 0, the equation (2.28) has the unique solution given by

θ = t

γ21/2 −
γ3

2γ2
2
t2 − γ4γ2 − 3γ2

3

6γ7/2
2

t3 + . . . . (2.29)

Observe that from (2.25) and (2.26), for any θ ∈ D,

θΛ′(θ)− Λ(θ) =
∞∑
k=1

γk
(k − 1)!θ

k −
∞∑
k=1

γk
k! θ

k =
∞∑
k=2

k − 1
k! γkθ

k.

Choosing θ to be the unique real root of the equation (2.28), which is given by (2.29), we
obtain (see [75, Theorem VIII.2.2] for details)

θΛ′(θ)− Λ(θ) = t2

2 − t
3L (t) = x2

2n −
x3

n3/2 L
( x√

n

)
, (2.30)

where L (t) is the Cramér series defined in (2.11), which converges for |t| small enough.
Substituting (2.27) into (2.24) and using (2.30), we get

I = e
−x

2
2 + x3

√
n

L

(
x√
n

) ∑
u∈Tn

e−θσθ
√
nVu

eθSu

m(θ)n1{Vu>0}

= e
−x

2
2 + x3

√
n

L

(
x√
n

) ∫ ∞
0

e−θσθ
√
nyZ

θ
n(dy), (2.31)

where Zθ

n is the finite measure on R defined by

Z
θ
n(A) =

∑
u∈Tn

eθSu

m(θ)n1{Vu∈A}, A ⊂ R,

whose mass satisfies EZθ

n(R) = 1. From t = x√
n
and x = o(

√
n), it follows that t → 0
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as n → ∞. By the inverse function theorem for analytic functions, the series on the
right-hand side of (2.29) is absolutely convergent for |t| small enough. Moreover, from
(2.29), we have θ → 0+ as n → ∞. Hence, for sufficiently large n0 and all n ≥ n0, we
have |θ| ≤ K, where K is defined as in Theorem 2.2.3. Therefore, denoting

ln,θ(y) = Z
θ

n((−∞, y])−W (θ)Φ(y), y ∈ R,

from Theorem 2.2.3 we get for all n ≥ n0,

sup
y∈R
|ln,θ(y)| ≤ M√

n
, (2.32)

where M is a positive and finite random variable independent of n and θ. Notice that

∫ ∞
0

e−θσθ
√
nyZ

θ
n(dy) =

∫ ∞
0

e−θσθ
√
nydln,θ(y) + W (θ)√

2π

∫ ∞
0

e−θσθ
√
ny− y

2
2 dy

=: I1 +W (θ)I2. (2.33)

Estimate of I1. Using the integration by parts and the bound (2.32), we get that for
n ≥ n0,

|I1| ≤ |ln,θ(0)|+ θσθ
√
n
∫ ∞

0
e−θσθ

√
ny|ln,θ(y)|dy ≤ 2M√

n
. (2.34)

Estimate of I2. The integral I2 appears in the proof of Cramér’s moderate deviation
expansion theorem for sums of i.i.d. random variables (see [75, Theorem VIII.2.2]), where
the following results have been proved:

(i) there exist some positive constants C1, C2 such that for all θ ∈ [−K,K] and all n
large enough,

C1 ≤ θσθ
√
nI2 ≤ C2;

(ii) the integral I2 admits the following asymptotic expansion :

I2 = e
x2
2 [1− Φ(x)]

[
1 +O

( x√
n

)]
. (2.35)

By the definition of σθ, the mapping θ 7→ σθ is strictly positive and continuous on [−K,K].
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Hence, there exist positive constants C3, C4 such that for all θ ∈ [−K,K],

C3 ≤ θ
√
nI2 ≤ C4. (2.36)

Notice that by (2.8), for all θ ∈ [−K,K],W (θ) > 0 a.s. Moreover,W (θ) is a.s. continuous
in θ by the continuity and uniform convergence of Wn(θ) on [−K,K]. Combining this
with (2.36), we get

M3 ≤ θ
√
nW (θ)I2 ≤M4. (2.37)

We now come back to (2.33), and let θ be defined by (2.29). Recall that for n ≥ n0,
|θ| ≤ K. From (2.33), (2.37) and (2.34), we have, as n→∞,

∫ ∞
0

e−θσθ
√
nyZ

θ
n(dy) = W (θ)I2

(
1 +

√
nI1√

nW (θ)I2

)
= W (θ)I2

(
1 +O(θ)

)
. (2.38)

According to the analyticity of W (θ) on [−K,K] and using the mean value theorem one
see that |W (θ) −W | = |W (θ) −W (0)| ≤ M5θ. Since θ = O

(
x√
n

)
by (2.29), it follows

from (2.38) and (2.35) that
∫ ∞

0
e−θσθ

√
nyZ

θ

n(dy) = (W +O(θ))I2(1 +O(θ))

= We
x2
2 [1− Φ(x)]

[
1 +O

( x√
n

)]
. (2.39)

Combining this with (2.31) yields

I = We
x3
√
n

L

(
x√
n

)
[1− Φ(x)]

[
1 +O( x√

n
)
]
,

which concludes the proof of (2.12).
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Chapter 3
Asymptotic Expansions in central and local
limit theorems for products of random ma-
trices

Let (An)n≥1 be a sequence of independent and identically distributed random d × d real
matrices. Set Gn = An . . . A1, Xx

n = Gnx

|Gnx|
and Sxn := log |Gnx|. We consider asymptotic

properties of the Markov chain (Xx
n , S

x
n). For invertible matrices, Le Page [63] established

a central limit theorem and a local limit theorem on (Xx
n , S

x
n) with x a starting point on

the unit sphere in Rd. In this paper, motivated by some applications in branching random
walks, we improve and extend his theorems in the sense that: 1) we prove that the central
limit theorem holds uniformly in x, and give an asymptotic expansion in the local limit
theorem with a continuous function f acting on Xx

n and a directly Riemann integrable
function h acting on Sxn; 2) we extend the results to the case of nonnegative matrices.
Our approach is mainly based on the spectral gap theory recently developed for products
of random matrices, and smoothing techniques for the approximation of functions.

3.1 Introduction

Let µ be a probability measure on the set of d × d matrices M(d,R) (d ≥ 1), and let
(An)n≥1 be a sequence of independent and identically distributed random matrices with
law µ, defined on some probability space (Ω,F ,P). We are interested in the asymptotic
behavior of the random walk Gnx, where

Gn = An . . . A1

is the product of the random matrices Ai, x is a starting point on the unit sphere Sd−1 =
{x ∈ Rd : |x| = 1}, with | · | an arbitrary norm on Rd. Notice that Gnx is completely

54
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determined by its log norm and its projection on the unit sphere, denoted respectively by

Sxn := log |Gnx| and Xx
n = Gn · x := Gnx

|Gnx|
.

We will use the convention that G0x = x, and introduce conditions such that Gnx 6= 0.
Many authors have contributed to the study of asymptotic properties of Sxn. For example,
central limit theorems have been established by Benoist and Quint [10] for invertible
matrices, and by Hennion [49] for nonnegative matrices.

While studying branching random walks in Rd governed by products of random ma-
trices, we need some asymptotic properties as those given in a central limit theorem and
a local limit theorem on the couple (Xx

n , S
x
n), but we find that the known results on this

topic are not sharp enough for our purposes. We thus focus our study on the Markov
chain (Xx

n , S
x
n) for establishing finer results. The applications in branching random walks

will be considered in a forth coming paper [22].

For invertible matrices, Le Page [63] established a central limit theorem for (Xx
n , S

x
n)

with x a given point in Sd−1, and a local limit theorem for (Xx
n , S

x
n) with target functions

f and h acting on Xx
n and Sxn respectively, which are supposed to be continuous and of

compact support. Such kind of limit theorems have also been established by Hennion and
Hervé [50] in a more general setting by considering (Xn, Sn) instead of (Xx

n , S
x
n), where

(Xn) is a general Markov chain, Sn = ∑n
i=1 ξ(Xi) with ξ a measurable and real valued

function. Very recently, in parallel to the present work, a Berry- Essen type theorem on
the rate of convergence in the central limit theorem has been established for (Xx

n , S
x
n) in

[83] for both invertible and nonnegative matrices.

In this paper, our first objective is to improve the central limit theorem of Le Page [63]
for invertible matrices with a uniform convergence in x (see Theorem 3.2.1), and deepen
his local limit theorem by giving an asymptotic expansion under the weaker condition that
the target functions f and h are respectively continuous and directly Riemann integrable
(see Theorem 3.2.2). Our second objective is to prove that the results also hold for
nonnegative matrices.

Our approach is mainly based on the spectral gap theory recently developed for the
norm cocycle by Guivarc’h and Le Page [46] for invertible matrices, and by Buraczewski,
Damek, Guivarc’h and Mentemeier (see [25, 28]) for nonnegative matrices. Smoothing
techniques are also used for the approximation of functions: in the proof of Theorem
3.2.1, we use a smooth approximation of the indicator function of a Borel set (see Lemma
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3.4.1), while in the proof of Theorem 3.2.2, we use a suitable approximation of a directly
Riemann integrable function with the techniques developed in [82].

The paper is organized as follows. In Section 3.2, we fix some notation, introduce our
assumptions on the branching products of random matrices and state the main results.
In Section 3.3, we recall some results on spectral theory for products of random matrices
which will be used in proofs of main results. These proofs are given in Sections 3.4 and
3.5.

3.2 Main results

3.2.1 Notation and preliminaries

We first fix some notation. We denote by c or C a constant whose value may change
from line to line. For a set B, we use the symbols 1B, B,Bo and ∂B = B \ Bo to
denote respectively its indicator function, its closure, interior and boundary. For t ∈ R,
we write φ(t) = 1√

2πe
−y2/2, Φ(t) =

∫ t
−∞ φ(u)du, and φσ (t) = 1

σ
√

2πe
−t2/(2σ2). For a measure

ν and a measurable function f we denote ν(f) =
∫
fdν. For two functions f and g, we

write f(t) = o(g(t)) or f(t) = O(g(t)) (t → 0) when limt→0 f(t)/g(t) = 0 or f(t)/g(t) is
bounded for |t| small enough, respectively. Denote by L1 the class of complexed valued
measurable and Lebesgue integrable functions on R; for f ∈ L1, denote its L1 norm by
‖f‖L1 =

∫
R |f(x)|dx.

LetM(d,R) be equipped with the operator norm ‖a‖ = supx∈Sd−1 |ax| for a ∈M(d,R).
Denote by Γµ := [supp µ] the smallest closed semigroup of M(d,R) generated by the
support of µ. Let us recall some definitions in matrix theory. A matrix a is said to be
proximal if it has an algebraic simple dominant eigenvalue. Denote by M+ the set of
matrices with nonnegative entries. A matrix a ∈M+ is said to be allowable if every row
and every column has a positive entry.

For invertible matrices, we will use the strong irreducibility and proximality conditions.

M1. (i) (Strong irreducibility) There is no finite union W = ⋃n
i=1 Wi of subspaces 0 6=

Wi ( Rd which is Γµ-invariant (in the sense that ΓµW =W).
(ii) (Proximality) Γµ contains at least one proximal matrix.

Notice that when d = 1, the strong irreducibility and proximality conditions are always
satisfied.
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For nonnegative matrices, we will need the allowability, positivity and non-arithmeticity
conditions.

M2. (i) (Allowability) Every a ∈ Γµ is allowable.
(ii) (Positivity) Γµ contains at least one matrix belonging toMo

+.

We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function
ϑ : Sd−1

+ → R such that for all a ∈ Γµ and all x ∈ V (Γµ),

exp{it log |ax| − iθ + i(ϑ(a · x)− ϑ(x))} = 1,

where Sd−1
+ = {x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive

quadrant. Notice when d = 1, we have Sd−1
+ = {1}, and the above arithmetic condition

reduces to the following more usual form: log a is almost surely concentrated on an
arithmetic progression a0 + a2N for some a0, a2 ≥ 0.

M3. (Non-arithmeticity) The measure µ is non-arithmetic.

It is known that when d ≥ 2, condition M1 implies M3 (see [47, Proposition 4.6]).
For both invertible matrices and nonnegative matrices, we will need a moment condi-

tion. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a.x := ax

|ax|

for the projective action of a matrix a on x ∈ Sd−1 when ax 6= 0. Then ι(a) > 0 for both
invertible matrices and allowable nonnegative matrices.

M4. There is α ∈ (0, 1) such that

EN(A1)α <∞.

For invertible matrices, this condition is equivalent to the following two-sided expo-
nential moment condition which is usually used in the literature: there is α1 > 0 such
that EN(A1)α1 <∞, where N(A1) = max{‖A1‖, ‖A−1

1 ‖}.
We will consider the action of invertible matrices on the projective space Pd−1 which

is obtained from Sd−1 by identifying x and −x, and the action of nonnegative matrices
on Sd−1

+ . When convenient we identify x ∈ Pd−1 with one of its representants in Sd−1.
To unify the exposition, we use the symbol S to denote Pd−1 for invertible matrices, and
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Sd−1
+ for nonnegative matrices. The space S will be equipped with the metric d, which is

the angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric
(see [49]) for nonnegative matrices. Moreover, S is a separable metric space with Borel-σ
algebra. For any starting point x ∈ S, as mentioned in the introduction, Gnx is completely
described by (Xx

n , S
x
n). With the above conditions, Xx

n is well defined and the sequence
(Xx

n , S
x
n) is a Markov chain because Xx

n = An ·Xx
n−1and Sxn = log |AnXx

n−1|+ Sxn−1.

For invertible matrices, it was proved in [46, Theorem 2.6] that if condition M1 holds,
then the Markov chain Xx

n has a unique µ-stationary measure, which is supported on

V (Γµ) := {va ∈ Pd−1 : a ∈ Γµ, a is proximal},

where va denotes the eigenvector with norm |va| = 1 associated to the dominant eigenvalue
of the proximal matrix a.

For nonnegative matrices, it was shown in [25, Lemma 4.3] that condition M2 en-
sures the existence and uniqueness of the invariant measure for the Markov chain (Xx

n)
supported on

V (Γµ) := {va ∈ Sd−1
+ : a ∈ Γµ, a ∈Mo

+}.

In both cases, we write ν for the unique invariant measure of (Xx
n).

Central limit theorems have been established in the literature. For invertible matrices,
under conditionM1 and the two-sided exponential moment condition, Le Page [63] proved
that

1√
n

(Sxn − nγ)→ N(0, σ2) in law, (3.1)

where γ = infn≥1
1
n
E log ‖An · · ·A1‖ is the Lyapunov exponent, and σ2 = limn→∞

1
n
E(Sxn−

nγ)2 is the asymptotic variance which is positive and independent of x. For nonnegative
matrices, under condition M2 and a second moment condition, Hennion [49] proved that
(3.1) holds for some σ ≥ 0; he also gave a condition of tightness of the sequence (Gn)n≥0

to ensure that σ > 0. As a by-product of our approch, we will show that σ > 0 under the
non-arithmeticity condition M3 (see Proposition 3.3.3).
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3.2.2 Main results

We state first a central limit theorem for the couple (Xx
n , S

x
n) with uniform convergence

in x ∈ S.

Theorem 3.2.1. For invertible matrices, assume M1 if d > 1, and M3 if d = 1. For
nonnegative matrices, assume M2 and M3. For both cases, assume additionally M4.

1. For any continuous function f on S, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣∣E[f(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(f)Φ (t)

∣∣∣∣ = 0. (3.2)

2. For any measurable set B ⊂ S with ν(∂B) = 0, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣∣P(Xx
n ∈ B,

Sxn − nγ
σ
√
n
≤ t

)
− ν(B)Φ (t)

∣∣∣∣ = 0. (3.3)

For invertible matrices, a point-wise version (by considering a fixed x ∈ S instead of
supx∈S) has been established by Le Page in [63, Theorem 4]. For nonnegative matrices,
the asymptotic for the Markov chain (Xx

n , S
x
n) is new even for a fixed x. The uniformity

in x ∈ S is new for both invertible matrices and nonnegative matrices. Theorem 3.2.1
will be deduced form a result on the convergence rate in (3.2) which has been established
in [83] for the case when f is Hölder continuous.

The following theorem gives the asymptotic expansion in the local limit theorem for
products of random matrices.

Theorem 3.2.2. Assume the conditions of Theorem 3.2.1.

1. For any continuous function f on S and any directly Riemann integrable function
h on R, we have as n→∞,

sup
(x,y)∈S×R

|σ
√
nE [f(Xx

n)h(y + Sxn − nγ)]−

ν(f)
∫
R
h(z)φ

(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz| → 0, (3.4)

where
Hx(u) = 1− b(x)

σ2√n
u+ m3

6σ6√n
(3σ2u− u3),

with m3 and b(x) defined in Proposition 3.3.3.
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2. For any measurable set B ⊂ S with ν(∂B) = 0 and any directly Riemann integrable
function h on R, we have as n→∞

sup
(x,y)∈S×R

|σ
√
nE [1B(Xx

n)h(y + Sxn − nγ)]−

ν(B)
∫
R
h(z)φ

(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz| → 0. (3.5)

When y = 0, f = 1 and h = 1[a,b], the integral E [f(Xx
n)h(y + Sxn − nγ)] reduces to

the local probability P(Sxn ∈ nγ + [a, b]), which is the usual object studied in local limit
theorems.

The expansions (3.4) and (3.5) are new for both invertible matrices and nonnegative
matrices. The first expansion implies the local limit theorem established in [63, Theorem
6] for invertible matrices, which states that (3.4) holds when the polynomial Hx(·) is
replaced by 1 and when f, h are continuous functions with compact supports.

The case d = 1 is worth some comments. In this case, Theorem 3.2.1 follows from
Theorem VII.2.7 of Petrov [75], while expansion (3.4) in Theorem 3.2.2 was proved by
Feller (see [36, Theorem XVI.4.1]) under the same non-arithmetic condition on µ and
when h = 1[a,b] is the indicator function of an interval. Breuillard (see [21, Theorem 3.2])
proved an expansion like (3.4) but for any finite order, when µ is strongly non-arithmetic
(in the sense that its characteristic function µ̂(t) =

∫
eitxµ(dx) satisfies Cramér’s con-

dition lim sup|t|→∞ |µ̂(t)| < 1) with finite moments of order high enough and when h is
integrable and regular enough (he assumed in particular that h has continuous and in-
tegrable derivatives h(k) for 0 ≤ k ≤ K with K ≥ 2 large enough). Compared with the
result of Breuillard, the novelity in Theorem 3.2.2 is that we assume the non-arithmetic
condition instead of the strongly arithmetic condition, and we use the direct Riemann
integrability of h instead of the smoothness condition on h.

3.3 Spectral gap property

In this section we recall some spectral gap properties studied in [63, 28, 83] which will be
used for the proofs of main results.

For z ∈ C, define the operator Pz on the set C(S) of continuous functions on S by

Pzf(x) =
∫
M
|ax|zf(a · x)µ(da), for all x ∈ S.
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For f ∈ C(S) and β > 0, we introduce the norms

‖f‖∞ := sup
x∈S
|f(x)|; |f |β := sup

x,y∈S

|f(x)− f(y)|
dβ(x, y) ; ‖f‖β := ‖f‖∞ + |f |β.

Consider the Banach space Bβ := {f ∈ C(S) : ‖f‖β < +∞}. Denote by L(Bβ,Bβ) the set
of all bounded linear operators from Bβ to Bβ equipped with the operator norm

‖P‖Bβ→Bβ := sup
f 6=0

‖Pf‖β
‖f‖β

, ∀P ∈ L(Bβ,Bβ).

The following result describes the quasi-compactness of P0. It can be found in [63,
Proposition 4] for invertible matrices and in [28, Proposition 4.2] for nonnegative matrices.
For P ∈ L(Bβ,Bβ) and n ∈ N, denote by P n the n-fold iteration of P ; by convention P 0

is the identity operator.

Proposition 3.3.1. Assume the conditions of Theorem 3.2.1. Let β > 0 be small enough.
Then P0 ∈ L(Bβ,Bβ), and there is an operator L ∈ L(Bβ,Bβ) whose spectral radius is
strictly less than 1, such that for all n ∈ N,

P n
0 = Π0 + Ln,

where Π0 is a rank-one projection satisfying Π0Bβ = {f ∈ Bβ : P0f = f} and Π0f(x) =
ν(f) for all f ∈ Bβ and x ∈ S.

For simplicity, in our proofs we will use a slightly different family of operators (Rt)t∈R
defined by

Rtf(x) := e−itγPitf(x) = E[eit(Sx1−γ)f(Xx
1 )], for f ∈ C(S), x ∈ S.

By the cocycle property log |a2a1x| = log |a2(a1 ·x)|+ log |a1x| and an induction, we have

Rn
t f(x) = E[eit(Sxn−nγ)f(Xx

n)], n ≥ 1.

We collect in the following two propositions some results from [83] that we will use.
Although these results are stated in [83] only for d ≥ 2, they remain valid for d = 1. The
first proposition concerns the perturbation theory.

Proposition 3.3.2. Assume the conditions of Theorem 3.2.1.
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1. There exists a real number δ > 0 such that for t ∈ [−δ, δ] we have:

(a) For all f ∈ Bβ and n ≥ 1

Rn
t f = λn(t)Πtf +Nn

t f,

with ΠtNt = NtΠt = 0.

(b) The mappings

λ : [−δ, δ]→ R, Π : [−δ, δ]→ L(Bβ,Bβ), N : [−δ, δ]→ L(Bβ,Bβ)

are C∞.

(c) For k0 ∈ N, there exist ρ = ρ(k0) ∈ (0, 1) and c = c(k0) > 0 such that for all
n ≥ 1,

max
0≤k≤k0

sup
|t|<δ

∥∥∥∥ dkdtkNn
t

∥∥∥∥
Bβ→Bβ

≤ cρn.

2. Let K ⊂ R \ {0} be compact. Then for each f ∈ Bβ, there is ρ1 ∈ (0, 1) such that
for all n ≥ 1,

sup
t∈K
‖Rn

t f‖∞ ≤ ρn1‖f‖∞.

The second proposition concerns the Taylor expansion of λ and the positivity of the
asymptotic variance.

Proposition 3.3.3. Assume the conditions of Theorem 3.2.1.

1. The Taylor expansion of λ at 0 of order 3 is given by

λ(t) = 1− σ2

2 t
2 − im3

6 t3 + o(t3),

where m3 = limn→∞
1
n

∫
V (Γµ) E(Sxn − nγ)3dν(x).

2. For each x ∈ S, the limit b(x) = limn→∞ E(Sxn − nγ) exists in R, the function
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x 7→ b(x) is in Bβ, and the derivative Π′0 of Πt at 0, satisfies

Π′0f(x) = i ν(f)b(x), for f ∈ Bβ, x ∈ S.

3. If µ is non-arithmetic, then σ > 0.

3.4 Proof of Theorem 3.2.1

Proof of Theorem 3.2.1, part (1). From [83, Theorem 2.1], for f ∈ Bβ, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣∣E[f(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(f)Φ (t)

∣∣∣∣ = 0. (3.6)

Combining this with the fact that the Banach space Bβ is dense in C(S) with respect to
the norm ‖.‖∞ gives the conclusion of part (1).

To prove part (2), we first introduce a smooth approximation of an indicator function:

Lemma 3.4.1. (Smooth approximation of an indicator function)

1. Let A,B ⊂ S be non-empty closed sets with A ∩B = ∅. Then there is a continuous
function ϕ : S → [0, 1] such that ϕ(x) = 1 for all x ∈ A and ϕ(x) = 0 for all x ∈ B.

2. Let A ⊂ S be a non-empty measurable set with ν(∂A) = 0, and let ε > 0. Then
there exist two continuous functions ϕ−, ϕ+ : S → [0, 1] such that

ϕ− ≤ 1A ≤ ϕ+ and ν{x ∈ S : ϕ+ 6= ϕ−} < ε.

Proof. For a non-empty set D ⊂ S and x ∈ S, define

dist(x,D) = inf{d(x, z) : z ∈ D}.

(1) Since A,B are closed and disjoint we have dist(x,B)+dist(x,A) 6= 0 for all x ∈ S.
The function defined below satisfies the desired properties:

ϕ(x) := dist(x,B)
dist(x,B) + dist(x,A) , x ∈ S.
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(2) Since ν is a Borel measure on S, we have

ν(A) = inf{ν(U) : A ⊆ U,Uopen},
ν(Ao) = sup{ν(K) : K ⊆ Ao, Kcompact}.

Hence for each ε > 0, there exists a compact K ⊂ Ao such that ν(K) > ν(Ao) − ε
2 .

Since K and (Ao)c are disjoint closed sets, by part (1), there exists a continuous function
ϕ− : S → [0, 1] such that ϕ−(x) = 1 for x ∈ K and ϕ−(x) = 0 for x ∈ (Ao)c.

Similarly, there exists an open set U ⊃ A such that ν(U) < ν(A) + ε
2 . Again by part

(1) applied to the disjoint closed sets A and U c, we see that there is a continuous function
ϕ+ : S → [0, 1] such that ϕ+(x) = 1 for x ∈ A and ϕ+(x) = 0 for x ∈ U c. Therefore,

K ∪ U c ⊂ {x ∈ S : ϕ+(x) = ϕ−(x)}.

Consequently,
{x ∈ S : ϕ+(x) 6= ϕ−(x)} ⊂ Kc ∩ U = U \K.

Since U \K = (U \ A) ∪ (A \ Ao) ∪ (Ao \K), it follows that

ν{x ∈ S : ϕ+(x) 6= ϕ−(x)} ≤ ν(U \ A) + ν(A \ Ao) + ν(Ao \K) < ε,

where we have used the hypothesis that ν(A \ Ao) = ν(∂A) = 0. From the construction
of ϕ− and ϕ+, it is obvious that ϕ− ≤ 1B ≤ ϕ+.

Proof of Theorem 3.2.1, part (2). Let ε > 0 be given. By Lemma 3.4.1, there exists two
continuous functions ϕ+ and ϕ−: S → [0, 1] such that

ϕ− ≤ 1B ≤ ϕ+ and ν{x ∈ S : ϕ+ 6= ϕ−} < ε. (3.7)
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By the triangular inequality in R, we have

sup
(x,t)∈S×R

∣∣∣∣E[1B(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(B)Φ (t)

∣∣∣∣
≤ sup

(x,t)∈S×R

∣∣∣∣E[(1B − ϕ+)(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]∣∣∣∣

+ sup
(x,t)∈S×R

∣∣∣∣E[ϕ+(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(ϕ+)Φ (t)

∣∣∣∣
+ sup

(x,t)∈S×R

∣∣∣ν(ϕ+ − 1B)Φ (t)
∣∣∣ . (3.8)

By part (1), the second term in (3.8) is less than ε for n enough large. The third term is
also less than ε by the property (3.7) since

ν(ϕ+ − 1B) ≤ ν(ϕ+ − ϕ−) ≤ ν{x ∈ S : ϕ+ 6= ϕ−} < ε. (3.9)

The first term can be estimated as follows:

sup
(x,t)∈S×R

∣∣∣∣E[(1B − ϕ+)(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]∣∣∣∣

≤ sup
(x,t)∈S×R

∣∣∣∣E[(ϕ+ − ϕ−)(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]∣∣∣∣

≤ sup
(x,t)∈S×R

∣∣∣∣E[ϕ+(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(ϕ+)Φ (t)

∣∣∣∣
+ sup

(x,t)∈S×R

∣∣∣∣E[ϕ−(Xx
n)1{Sxn−nγ

σ
√
n
≤t
}]− ν(ϕ−)Φ (t)

∣∣∣∣
+ sup

(x,t)∈S×R

∣∣∣∣ν(ϕ+ − ϕ−)Φ (t)
∣∣∣∣.

In the last display, the first two terms are less than ε for n large enough, again by part
(1); the third one is also less then ε by (3.9).

3.5 Proof of Theorem 3.2.2

Proof of Theorem 3.2.2, part (1). We assume that both f and h are nonnegative; we can
do this by considering the positive and negative parts. We will proceed the proof in 4
steps.
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Step 1. We first establish (3.4) for f ∈ Bβ and h ∈ L1 whose Fourier transform

ĥ(u) =
∫
R
e−ituh(t)dt, ∀u ∈ R,

has a compact support supp(ĥ) ⊂ [−k, k]. By the inversion formula of Fourier transform
and Fubini’s theorem, for any x ∈ S and y ∈ R,

E [f(Xx
n)h(y + Sxn − nγ)] = E

[
f(Xx

n)
2π

∫
R
eiu(y+Sxn−nγ)ĥ(u)du

]

= 1
2π

∫
R
eiuyĥ(u)E

[
eiu(Sxn−nγ)f(Xx

n)
]
du

= 1
2π

∫
R
eiuyĥ(u)Rn

uf(x)du.

By the change of variables u = t√
n
and using Proposition 3.3.2, we have:

I :=
√
nE [f(Xx

n)h(y + Sxn − nγ)]

= 1
2π

∫
R
e
ity√
n ĥ

(
t√
n

)
Rn

t√
n
f(x)dt

= I1 + I2 + I3,

where

I1 = 1
2π

∫
|t|≤δ1

√
n
e
ity√
n ĥ

(
t√
n

)
λn
(
t√
n

)
Π t√

n
f(x)dt,

I2 = 1
2π

∫
|t|≤δ1

√
n
e
ity√
n ĥ

(
t√
n

)
Nn

t√
n
f(x)dt,

I3 = 1
2π

∫
|t|>δ1

√
n
e
ity√
n ĥ

(
t√
n

)
Rn

t√
n
f(x)dt,

with δ1 ∈ (0, δ] a parameter which will be fixed later. We will prove that I1 gives the
main term of the desired expansion, while I2 and I3 tend to 0.

Estimation of I1. By Proposition 3.3.3 and an elementary calculation, we obtain, as
t√
n
→ 0,

λn
(
t√
n

)
= e−

σ2t2
2 exp

(
− im3t

3

6
√
n

+ o
(
t3√
n

))
. (3.10)
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By Taylor’s expansion of the operator Πt on a neighborhood of 0, we have

Π t√
n
f(x) = Π0f(x) + t√

n
Π′0f(x) +O

(
t2

n

)
, (3.11)

where Π0 and Π′0 are bounded operators on Bβ defined in Propositions 3.3.1 and 3.3.3(2).
Notice that Π0f(x) = ν(f) and Π′0f(x) = iν(f)b(x). With (3.10) and (3.11) in mind, we
do the composition

λn
(
t√
n

)
Π t√

n
f(x) =λn

(
t√
n

) [
Π t√

n
f(x)− ν(f)− itν(f)b(x)√

n

]

+
[
λn
(
t√
n

)
− e−

σ2t2
2

(
1− im3t

3

6
√
n

)]
ν(f)

+
[
λn
(
t√
n

)
− e−

σ2t2
2

]
itν(f)b(x)√

n

+ ν(f)e−σ
2t2
2

(
1 + itb(x)√

n
− im3t

3

6
√
n

)
. (3.12)

Choosing δ1 ≤ δ small enough such that when |t|/
√
n ≤ δ1, we have

∣∣∣∣− im3t
3

6σ3√n
+ o

(
t3√
n

)∣∣∣∣ ≤ σ2t2

4 and λn( t√
n

) ≤ e−
σ2t2

4 . (3.13)

In the definition of I1, we substitute λn( t√
n
)Π t√

n
f(x) by the decomposition (3.12); this

leads to a decomposition of I1 which we write accordingly as

I1 = J1 + J2 + J3 + J4.

We first estimate the integral J1. Using (3.11), (3.13) and the fact that ĥ is bounded, we
obtain

|J1| ≤
1

2π sup
t∈R
|ĥ(t)|

∫
|t|≤δ1

√
n
e−

σ2t2
4 O

(
t2

n

)
dt

≤
∫
R
e−

σ2t2
4 |t|dt ·O

( 1√
n

)
≤ C√

n
.

To estimate J2, we use the following inequality (see inequality XVI(2.8) in [36]): for all
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u, v ∈ C,

|eu − 1− v| ≤
(
|u− v|+ 1

2 |v|
2
)
emax(|u|,|v|). (3.14)

Using (3.14) with u = −im3t
3

6
√
n

+ o
(
t3√
n

)
and v = −im3t

3

6
√
n
, we have

|J2| ≤
ν(f)
2π sup

t∈R
|ĥ(t)|

∫
|t|≤δ1

√
n
e−

σ2t2
2

[
|t|3o

( 1√
n

)
+ t6O

( 1
n

)]
e
σ2t2

4 dt

≤
∫
R
(|t|3 + |t5|)e−σ

2t2
4 dt ·O

( 1√
n

)
≤ C√

n
.

For J3, we use again inequality (3.14) and the fact that the mapping b belongs to Bβ, to
conclude that

|J3| ≤
∫
|t|≤δ1

√
n

|tν(f)b(x)|√
n

e−
σ2t2

2

∣∣∣∣1− λnit√
n

∣∣∣∣
≤ ν(f)‖b‖∞δ1

∫
R
e−

σ2t2
4

∣∣∣∣− im3t
3

6
√
n

+ o
(
t3√
n

)∣∣∣∣dt
≤
∫
R
e−

σ2t2
4 |t|3dt ·O

( 1√
n

)
≤ C√

n
.

Hence, we obtain the following estimate of I1:

|I1 − J4| ≤
C√
n
. (3.15)

Estimation of I2. From Proposition 3.3.2, we know that for |t| ≤ δ1
√
n there exists a

constant c > 0 and ρ ∈ (0, 1) such that
∥∥∥∥Nn

it√
n

f

∥∥∥∥
β
≤ cρn. Hence,

|I2| ≤ Cρn
∫
R
|ĥ(t)|dt. (3.16)

Estimation of I3. From Proposition 3.3.2(2), we have

sup
δ1
√
n≤|t|≤c

√
n

‖Rn
it√
n
f‖∞ < ρn1‖f‖∞.
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Using this together with the condition that supp(ĥ) ⊂ [−k, k], we get

|I3| ≤ Cρn
∫
R
|ĥ(t)|dt. (3.17)

Collecting the bounds (3.15), (3.16) and (3.17), we have

|I − J4| ≤ C
( 1√

n
+ ρn1 + ρn

)
. (3.18)

Set

Q(t) = 1 + it√
n
b(x)− im3t

3

6
√
n
.

It is not difficult to see that∣∣∣∣ν(f)
2π

∫
|t|>δ1

√
n
e
ity√
n ĥ
(
t√
n

)
e
−σ2t2

2 Q(t)dt
∣∣∣∣

≤ C
(
e−

σ2δ21n
2

∫
R
|ĥ(t)|dt+ 1√

n
sup
t∈R
|ĥ(t)|

)
.

Hence we replace the integral on |t| ≤ δ1
√
n of J4 in (3.18) by an integral on R. We get

sup
(x,y)∈S×R

∣∣∣∣I − ν(f)
2π

∫
R
e
ity√
n ĥ
(
t√
n

)
e
−σ2t2

2 Q(t)dt
∣∣∣∣ n→∞→ 0.

Note that φ̂(σt) = e−
σ2t2

2 is the Fourier transform of φσ(t) = 1√
2πσ2

e
−t2
2σ2 . Then

lim
n→∞

sup
(x,y)∈S×R

∣∣∣∣I − ν(f)
2π

∫
R
e
ity√
n ĥ
(
t√
n

)
φ̂ (tσ)Q(t)dt

∣∣∣∣ = 0.

But one has for all p ≥ 0, (σt)pφ̂(σt) = (−i)pφ̂(p)
σ (t) where the notation f (p) is the

derivative of order p of f , it implies

1
2π

∫
R
e
ity√
n ĥ
(
t√
n

)
φ̂ (tσ)Q(t)dt =

√
n
∫
R
h
(
y + u

√
n
)
φσ(u)Hx(u)du,

where Hx(u) is a polynomial such that Q
(
−i d

dx

)
φσ(u) = Hx(u)φσ(u). With an elemen-
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tary calculation, we get

Hx(u) = 1− b(x)
σ2√n

u+ m3

6σ6√n
(3σ2u− u3).

Using the change of variables z = y + u
√
n, we get

lim
n→∞

sup
(x,y)∈S×R

∣∣∣∣I − ν(f)
∫
R
h(z)φσ

(
y − z√
n

)
Hx

(
y − z√
n

)
dz

∣∣∣∣ = 0,

or, equivalently,

lim
n→∞

sup
(x,y)∈S×R

∣∣∣∣σI − ν(f)
∫
R
h(z)φ

(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz

∣∣∣∣ = 0.

So we have established (3.4) for f ∈ Bβ and Lebesgue integrable function h whose Fourier
transform ĥ has a compact support.

Step 2. We establish (3.4) for f ∈ Bβ and h ∈ L1 satisfying h ∈Hε for all ε ∈ (0, 1
4)

and

lim
ε→0

∫
R
hε(u)du = lim

ε→0

∫
R
hε(u)du =

∫
R
h(u)du, (3.19)

where Hε, hε and hε are defined below. For any nonnegative Lebesgue integrable function
h defined on R, and for any ε > 0 and u ∈ R, set Bε(u) = {u′ ∈ R : |u′ − u| ≤ ε},

hε(u) = sup
v∈Bε(u)

h(v) and hε(u) = inf
v∈Bε(u)

h(v).

For any ε > 0, denote by Hε the set of nonnegative Lebesgue integrable functions h such
that hε and hε are measurable and Lebesgue integrable:

Hε = {h ∈ L1 : h ≥ 0, hε and hε are measurable and integrable}.

We shall use the following result proved in [43, Lemma 5.2].

Lemma 3.5.1. Let h ∈ L1 be such that h ∈ Hε for all ε ∈ (0, 1/4). Then we have, for
all ε ∈ (0, 1/4) and u ∈ R,

hε ∗ κε2(u)−
∫
|v|≥ε

hε(u− v)κε2(v)dv ≤ h(u) ≤ (1 + 4ε)hε ∗ κε2(u),
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where κ is defined on R by

κ(u) = 1
2π

(sin
(
u
2

)
u
2

)2
for u ∈ R∗, and κ(0) = 1

2π .

Moreover, we need some properties of the kernel κ that we state in the following. The
function κ is integrable and its Fourier transform is given by

κ̂(t) = 1− |t| for all t ∈ [−1, 1], and κ̂(t) = 0 otherwise.

Note that
∫
R
κ(u)du = κ̂(0) = 1 =

∫
R
κ̂(t)dt.

For any ε > 0, we define the function κε on R by

κε(u) = 1
ε
κ
(
u

ε

)
, u ∈ R. (3.20)

Its Fourier transform is given by κ̂ε(t) = κ̂(εt). Note also that, for any ε > 0, we have
∫
|u|≥ 1

ε

κ(u)du ≤ 1
π

∫ +∞

1
ε

4
u2du = 4ε

π
. (3.21)

For simplicity, we denote, for any f ∈ C(S) and h ∈ L1,

I(n, f, h) = σ
√
nE [f(Xx

n)h(y + Sxn − nγ)] , (3.22)

K(n, f, h) = ν(f)
∫
R
h(z)φ

(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
dz. (3.23)

Notice that supx∈S,u∈R |φ(u
σ
)Hx(u)| < ∞. This implies the following uniform bound in

x ∈ S, y, z ∈ R, n ≥ 1:

φ
(
y − z
σ
√
n

)
Hx

(
y − z√
n

)
≤ C. (3.24)

From this we see that for f ∈ C(S) and h ∈ L1,

K(n, f, h) ≤ Cν(f)‖h‖L1 . (3.25)
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Remark that, for f and h fixed as in the beginning of Step 2, with the notation (3.22)
and (3.23), to prove the desired conclusion (3.4), it suffices to establish the following
result: for all ε > 0 small enough, when n is large enough,

sup
(x,y)∈(S,R)

|I(n, f, h)−K(n, f, h)| ≤ ν(f)δh(ε) + ε, (3.26)

where

δh(ε) = C
(
‖h− h2ε‖L1 + ‖h2ε − h‖L1

)
+ C‖h2ε‖L1(ε+ ε2)

→ 0 as ε→ 0 (due to (3.19)).

Below we will prove (3.26) by giving upper and lower bounds of I(n, f, h)−K(n, f, h).

Upper bound of I(n, f, h)−K(n, f, h). By Lemma 3.5.1, we have, for any x ∈ S, n ≥
1, y ∈ R and ε ∈ (0, 1/4),

I(n, f, h) ≤ (1 + 4ε)I(n, f, hε ∗ κε2).

Since hε and κε2 are integrable, the function hε∗κε2 is also integrable; its Fourier transform
ĥεκ̂ε2 has a compact support included in [−1/ε2, 1/ε2]. Consequently, we can use the result
proved in Step 1, applied to f and hε ∗ κε2 , to conclude that for n large enough,

I(n, f, h) ≤ (1 + 4ε)K(n, f, hε ∗ κε2) + ε. (3.27)

Notice that for |v| ≤ ε and u ∈ R, we have [u − v − ε, u − v + ε] ⊂ [u − 2ε, u + 2ε].
Therefore, by definition,

hε(u− v) ≥ h2ε(u) and hε(u− v) ≤ h2ε(u). (3.28)

Consequently, for any u ∈ R,

hε ∗ κε2(u) ≤ h2ε(u)
∫
|v|≤ε

κε2(v)dv +
∫
|v|≥ε

hε(u− v)κε2(v)dv

≤ h2ε(u) +
∫
|v|≥ε

hε(u− v)κε2(v)dv.

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



73 3.5. Proof of Theorem 3.2.2

From this together with the bound (3.24), inequality (3.27) implies

I(n, f, h) ≤ (1 + 4ε)K(n, f, h2ε)

+ (1 + 4ε)Cν(f)
∫
R

∫
|v|≥ε

hε(z − v)κε2(v)dvdz + ε.

For a bound of the first term in the right hand side, we use the decompositionK(n, f, h2ε) =
K(n, f, h)+K(n, f, h2ε−h) and the inequality (3.25) forK(n, f, h2ε−h) to getK(n, f, h2ε) ≤
K(n, f, h) + Cν(f)

∥∥∥h2ε − h
∥∥∥
L1
. Therefore

I(n, f, h) ≤ (1 + 4ε)
[
K(n, f, h) + Cν(f)

∥∥∥h2ε − h
∥∥∥
L1

]
+ (1 + 4ε)Cν(f)

∫
R

∫
|v|≥ε

hε(z − v)κε2(v)dvdz + ε.

For a bound of the last integral, we use (3.20) and (3.21), to obtain
∫
R

∫
|v|≥ε

hε(z − v)κε2(v)dvdz ≤
∥∥∥hε∥∥∥

L1

4ε
π
.

Using this and the bound of K(n, f, h) in (3.25), from the preceding bound of I(n, f, h)
we get for f ∈ Bβ and h ∈Hε,

I(n, f, h)−K(n, f, h) ≤ 4ν(f)ε‖h‖L1 + Cν(f)(1 + 4ε)‖h2ε − h‖L1

+ 4Cν(f)(1 + 4ε)ε
π

‖hε‖L1 + ε

≤ Cν(f)‖h2ε − h‖L1 + Cν(f)(ε+ ε2)‖h2ε‖L1 + ε. (3.29)

Lower bound of I(n, f, h)−K(n, f, h). With the notation gv,ε(u) = hε(u− v) and by
Lemma 3.5.1, we have:

I(n, f, h) ≥ I(n, f, hε ∗ κε2)−
∫
|v|≥ε

I(n, f, gv,ε)κε2(v)dv. (3.30)

Bound of I(n, f, hε ∗ κε2). The Fourier transform of hε ∗ κε2 has a compact support
included in [−1/ε2, 1/ε2]. So by the the result proved in Step 1, for n large enough,

I(n, f, hε ∗ κε2) ≥ K(n, f, hε ∗ κε2)− ε. (3.31)
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By (3.28) and (3.21),

hε ∗ κε2(z) ≥ h2ε(z)
∫
|v|≤ε

κε2(v)dv ≥
(

1− 4ε
π

)
h2ε(z).

From this and the bound (3.25) for K(n, f, h2ε), the inequality (3.31) implies

I(n, f, hε ∗ κε2) ≥ K(n, f, h2ε)−
4ε
π
Cν(f)‖h2ε‖L1 − ε.

UsingK(n, f, h2ε) = K(n, f, h)+K(n, f, h2ε−h) and the bound (3.25) forK(n, f, h2ε−h),
we have

I(n, f, hε ∗ κε2)−K(n, f, h) ≥ −Cν(f)‖h− h2ε‖L1 − 4Cν(f)ε
π

‖h2ε‖L1 − ε. (3.32)

Bound of
∫
|v|≥ε I(n, f, gv,ε)κε2(v)dv in (3.30). Using (3.29) with h replaced by gv,ε

(which lies in Hε) and (3.25) for K(n, f, gv,ε), we get

I(n, f, gv,ε) ≤ Cν(f)‖gv,ε‖L1 + Cν(f)‖(gv,ε)2ε − gv,ε‖L1

+ Cν(f)(ε+ ε2)‖(gv,ε)2ε‖L1 + ε.

This implies that

I(n, f, gv,ε) ≤ Cν(f)(1 + ε+ ε2)‖(gv,ε)2ε‖L1 + ε. (3.33)

Note that, for any v ∈ R,

(gε,v)2ε(u) = sup
w∈[u−2ε,u+2ε]

hε(w − v) ≤ sup
w∈[u−2ε,u+2ε]

h(w − v) = h2ε(u− v).

So,
∥∥∥∥(gε,v)2ε

∥∥∥∥
L1
≤
∥∥∥∥h2ε

∥∥∥∥
L1
. This together with (3.33) and(3.21) implies that

∫
|v|≥ε

I(n, f, gv,ε)κε2(v)dv ≤
(
Cν(f)(1 + ε+ ε2)

∥∥∥∥h2ε

∥∥∥∥
L1

+ ε
) ∫
|v|≥ε

κε2(v)dv

≤
(
Cν(f)(1 + ε+ ε2)

∥∥∥∥h2ε

∥∥∥∥
L1

+ ε
)4ε
π
. (3.34)
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Putting together (3.30), (3.32) and (3.34), we obtain

I(n, f, h)−K(n, f, h) ≥ −Cν(f) ‖h− h2ε‖L1 + Cν(f)
∥∥∥h2ε

∥∥∥
L1

(ε+ ε2)− ε. (3.35)

Combining the upper bound (3.29), the lower bound (3.35) and the condition (3.19),
the desired result (3.26) or (3.4) follows for f ∈ Bβ and h ∈ Hε for all ε ∈ (0, 1

4) and h
satisfies (3.19).

Step 3. We prove (3.4) for f ∈ Bβ and h which is nonnegative and directly Riemann
integrable. Since h is directly Riemann integrable, M := supy∈R h(y) < +∞. Let η ∈
(0, 1) and ε ∈ (0,Mη).

By a result of approximation in the proof of Theorem 2.2 in [82], there exist two
functions h−η,ε and h+

η,ε which belong to Hε1 for all ε1 ∈ (0,min{1/4,Mη, η/3}) small
enough, and which satisfy (3.19), together with

h−η,ε ≤ h ≤ h+
η,ε and

∫
R

[
h+
η,ε(t)− h−η,ε(t)

]
dt < 3ε. (3.36)

The first inequality in (3.36) gives K(n, f, h+
η,ε − h) ≤ K(n, f, h+

η,ε − h−η,ε), so that

|I(n, f, h)−K(n, f, h)| ≤ |I(n, f, h)− I(n, f, h+
η,ε)|

+ |I(n, f, h+
η,ε)−K(n, f, h+

η,ε)|+ |K(n, f, h+
η,ε − h−η,ε)|. (3.37)

In the right hand side, as n → ∞, the second term tends to 0 uniformly in x ∈ S and
y ∈ R by the result proved in Step 2. The third one is bounded by Cν(f)3ε from the
bound (3.25) for K(n, f, h+

η,ε − h−η,ε) and the property (3.36). Therefore, using (3.37) and
passing to the limit as n→∞, we obtain

lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)|

≤ lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)− I(n, f, h+
η,ε)|+ Cν(f)3ε. (3.38)

Now

I(n, f, h)− I(n, f, h+
η,ε) ≤ I(n, f, h+

η,ε)− I(n, f, h−η,ε)
=
[
I(n, f, h+

η,ε)−K(n, f, h+
η,ε)

]
+K(n, f, h+

η,ε − h−η,ε)

+
[
K(n, f, h−η,ε)− I(n, f, h−η,ε)

]
. (3.39)
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As in the preceding, in the last display, as n → ∞, the first and third terms tend to 0
uniformly in x ∈ S and y ∈ R by the result proved in Step 2; the second one is bounded
by Cν(f)3ε (by (3.25) and (3.36)). Therefore,

lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)− I(n, f, h+
η,ε)| ≤ Cν(f)3ε. (3.40)

Combining (3.38) and (3.40), we obtain

lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)| ≤ Cν(f)6ε. (3.41)

Since ε > 0 est arbitrary, this gives (3.4).

Step 4. We establish (3.4) for f ∈ C(S) and h which is directly Riemann integrable.
Let ε > 0. From the fact that Bβ is dense in C(S) with respect to the norm ‖.‖∞, there
is a function f̃ ∈ Bβ such that ‖f̃ − f‖∞ < ε. Hence we have

I(n, f, h)−K(n, f, h) = I(n, f − f̃ , h) + [I(n, f̃ , h)−K(n, f̃ , h)]
−K(n, f − f̃ , h). (3.42)

It follows from the result proved in Step 3 that

lim
n→∞

sup
(x,y)∈S×R

|I(n, f̃ , h)−K(n, f̃ , h)| = 0.

Consequently, by (3.42)

lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)|

≤ lim sup
n→∞

sup
(x,y)∈S×R

∣∣∣I(n, f − f̃ , h)−K(n, f − f̃ , h)
∣∣∣

≤ ‖f − f̃‖∞ sup
(x,y)∈S×R

[
I(n, 1, h) +K(n, 1, h)

]
, (3.43)

where the last inequality follows directly from the definition of I and K. By the result
proved in Step 3 (applied to f = 1) and the bound (3.25) applied for K(n, 1, h), we see
that I(n, 1, h)−K(n, 1, h) and I(n, 1, h) are bounded uniformly in x, y and n ≥ 1. Hence

sup
(x,y)∈S×R

[
I(n, 1, h) +K(n, 1, h)

]
<∞.
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Since ‖f̃ − f‖∞ < ε and ε > 0 is arbitrary, this together with (3.43) implies

lim sup
n→∞

sup
(x,y)∈S×R

|I(n, f, h)−K(n, f, h)| = 0,

which completes the proof of part (1) of Theorem 3.2.2.

Proof of Theorem 3.2.2, part (2). For the proof of part (2), we use the conclusion of part
(1) and the approximation of the indicator function by a continuous function (see Lemma
3.4.1). Because the argument is quite similar to the proof of part (2) of Theorem 3.2.1,
we omit the details.
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Chapter 4
Central limit theorem and precise large devi-
ations for branching random walks with prod-
ucts of random matrices

We consider a branching random walk where particles give birth to children as a Galton-
Watson process, which move in Rd with positions determined by the action of independent
and identically distributed random matrices on the position of the parent. We are inter-
ested in asymptotic properties of the counting measure Zx

n which counts the number of
particles of generation n situated in a given region, when the process starts with one
initial particle located at x. We establish a central limit theorem and a large deviation
asymptotic expansion of Bahadur-Rao type for Zx

n with suitable norming. An integral
version of the large deviation result is also established. One of the key points in the
proofs is the study of the fundamental martingale related to the spectral gap theory for
products of random matrices. As a by-product, we obtain a sufficient and necessary con-
dition for the non-degeneracy of the limit of the fundamental martingale, which extends
the Kesten-Stigum type theorem of Biggins.

4.1 Introduction

A branching random walk is a system of particles, in which each particle gives birth
to new particles of the next generation, whose children move on R or Rd, according to
some probability law. For early fundamental results on this model, see for example [2,
3, 13, 15, 16]. In recent years, this topic has attracted the attention of many authors,
see for example, [1, 52, 35, 5, 34, 30, 55, 65]. The model is closely related to various
applied probability settings, such as Mandelbrot’s cascades (cf. e.g. [56, 67, 6, 25, 72]),
perpetuities (see e.g. [77, 26, 54]) and branching Brownian motion (cf. e.g. [59, 29, 12,
71]). For extensions to random environments in space and time, see e.g. [44, 33] and [19,
62, 69, 39, 40]. For other related works and many references, see e.g. the recent books
[77, 26, 54]. In the classical branching random walk, a particle whose parent is at position

78

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



79 4.1. Introduction

y, moves to position y+ l with independent and identically distributed (i.i.d.) increments
l for different particles, so that the moving is a simple random translation. The classical
model does not cover the interesting cases occurring in many applications where the
movements are determined by linear transformations such as rotations, dilations, shears,
reflections, projections etc. In this paper, we deal with the case where the position of a
particle is obtained by the action of a matrix A on the position of its parent, where the
matrices A’s corresponding to different particles are i.i.d. In other words, the positions of
particles are obtained by the action of products of random matrices on the position of one
initial particle. This permits us to extend significantly the domains of applications of the
theory of branching random walks. However, the study of this model becomes much more
involved. One of the fundamental problems in the theory of branching random walks is to
give a precise description of the configuration of the process at time n. We will consider
this problem by giving precise asymptotics of the counting measure Zx

n which counts the
number of particles of generation n situated in a given region, when the process begins
with one initial particle situated at x. More precisely, for the model that we introduce
here, we will establish a central limit theorem and a large deviation asymptotic expansion
of Bahadur-Rao type for Zx

n with suitable norming.

To introduce the model we need some notation. Let N = {0, 1, 2, . . .} and N∗ =
{1, 2, . . .}. Set U := ∪∞n=0(N∗)n, where by convention (N∗)0 = {∅}. A particle of generation
n will be denoted by a sequence u = u1 · · ·un = (u1, · · · , un) ∈ (N∗)n of length n; the
initial particle will be denoted by the null sequence ∅. Assume that on a probability
space (Ω,F ,P) we are given a set of independent identically distributed random variables
(Nu)u∈U of the same law p = {pk : k ∈ N}, and a set of independent identically distributed
d × d random matrices (Au)u∈U of the same law µ on the set of d × d matrices M(d,R),
where d ≥ 1. The two families (Nu)u∈U and (Au)u∈U are also assumed to be independent.

A branching random walk with products of random matrices is defined as follows. At
time 0, there is one initial particle ∅ of generation 0, with initial position Y∅ := x ∈ Rd\{0}.
At time 1, the initial particle ∅ is replaced by N = N∅ new particles i = ∅i of generation
1, located at Yi = AiY∅, 1 ≤ i ≤ N . In general, at time n+1, each particle u = u1 . . . un of
generation n, located at Yu ∈ Rd, is replaced by Nu new particles ui of generation n+ 1,
located at Yui = AuiYu, 1 ≤ i ≤ Nu. Namely, the position of the particle ui is obtained
from the position Yu of u by the action of the matrix Aui, so that the position Yu of a
particle u in generation n ≥ 1 is given by the action of products of random matrices on
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the initial position x:

Yu = Gux, where Gu = Au1...un . . . Au1 . (4.1)

Denote by T the genealogical tree associated to the elements {Nu : u ∈ U}. It is
defined by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for i ∈ N, ui ∈ T if
and only if 1 ≤ i ≤ Nu; 3) ui ∈ T implies u ∈ T. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and
represents the number of generation to which u belongs; by convention |∅| = 0.

The space Rd is equipped with the Euclidean norm | · |. The position Gux of the
particle u is completely described by two components: its norm |Gux| and its projection
on the unit sphere Sd−1 := {y ∈ Rd, |y| = 1} denoted by

Xx
u := Gux

|Gux|
.

Accordingly, we consider the following counting measure of particles of generation n which
describes the configuration of the branching random walk at time n: for measurable sets
B ⊂ Sd−1 and C ⊂ R,

Zx
n(B,C) =

∑
u∈Tn

1{Xx
u∈B, log |Gux|∈C}, (4.2)

where for a set D, 1D denotes its indicator function. In particular when B = Sd−1 the
measure (4.2) reduces to

Zx
n(Sd−1, C) =

∑
u∈Tn

1{log |Gux|∈C}. (4.3)

The measure C 7→ Zx
n(Sd−1, C) counts the number of particles of generation n with a given

distance to the origin; the distributional function Zx
n(Sd−1, (−∞, y]) counts the number of

particles of generation n situated in the ball centered at 0 with radius ey. This information
may be important for example when we consider a model describing the infection by a
certain transmittable disease (an infected individual at time n leads to a random number
of infected individuals at time n+1 who move according to random linear transformations
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in R2 or R3), where we would like to know at time n how many infected individuals there
are in a region with a given distance from the origin. The measure (B,C) 7→ Zx

n(B,C)
gives more information. For example, when d = 2 and B = {eiθ : θ ∈ [θ1, θ2]} is an
arc, Zx

n(B, (−∞, y]) counts the number of particles of generation n situated in the region
{reiθ : θ ∈ [θ1, θ2], r ∈ [0, ey]}.

When d = 1, x = 1 and Au 6= 0 for all u ∈ T, the measure defined by (4.3) is exactly
the counting measure considered in the classical model of branching random walk on R
starting from the origin 0 ∈ R, where the position Su of a particle u = u1 · · ·un is given
by Su = Lu1 + · · · + Lu1...un , with Lu = log |Au|. So our model in the one dimensional
case d = 1 reduces essentially to the classical (additive) branching random walk. For this
reason, in the following we will focus on the case d ≥ 2.

The present work aims to establish asymptotic properties of the counting measure Zx
n

when it is suitably normalized, with |x| = 1 and d ≥ 2. We will consider two cases: when
the matrices Au are nonnegative, and when the matrices Au are invertible. Our first result
is a central limit theorem for the counting measure Zx

n (see Theorem 4.2.1). It states that
for any fixed B ⊂ Sd−1 and some constants γ, σ defined explicitly, the counting measure
C 7→ Zx

n(B, nγ + σ
√
nC) on R with a suitable norming converges to the standard normal

law. This result extends the corresponding one of Asmussen and Kaplan [3, Theorem 1]
on the one dimensional case, which was first conjectured by Harris [48]. Our second result
is a precise large deviation result of Kesten-Stigum type (see Theorem 4.2.6), namely we
give an exact asymptotic for Zx

n (B, [na,+∞)) for fixed B ⊂ Sd−1 and a in a natural
range of R. An extension to an integral version of the large deviation result with target
functions on the two components Xx

u and log |Gux| is also established (see Theorem 4.2.4).
These results extend the corresponding ones of Biggins [15] on the one dimensional case
to the multi-dimensional case.

The starting point in the proofs of our results is a decomposition formula which permits
to express the counting measure as the sum of conditionally independent random variables,
using the branching property like in the one dimensional case for which we may refer to
[3, 15]. However, there is much to do to arrive to the conclusions in the multidimensional
case, due to the appearance of products of random matrices. In particular, for the proof
of Theorem 4.2.1 about the central limit theorem and Theorem 4.2.4 about the precise
large deviation with target functions, we use respectively the central limit theorem and
the recent progress on the spectral gap theory and precise large deviations for products
of random matrices. Another step forward in the proof of Theorem 4.2.4 concerns the
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extension of Biggins’ martingale to the case of branching products of random matrices,
for which we prove a criterion for the non-degeneracy of the limit of the fundamental
martingale (see Theorem 4.2.2) which completes a result of Mentemeier [72] obtained in
the context of the multivariate smoothing transform, and extends the Kesten-Stigum type
theorem of Biggins [13] on the classical branching random walk.

The outline of the paper is as follows. The main results will be stated in Section 4.2.
Theorem 4.2.1 on the asymptotic normality of the counting measure is proved in Section
4.3. The necessary and sufficient condition for the non-degeneracy of the limit of the
fundamental martingale is given in Theorem 4.2.2 and Corollary 4.2.3, which are proved
in Section 4.4. Theorem 4.2.4 on the precise asymptotic of large deviations, which implies
Theorem 4.2.6, is established in Section 4.5.

4.2 Main results

In this section, we introduce necessary notation and assumptions, and present the main
results.

4.2.1 Notation and assumptions on products of random matri-
ces

Note that in our model, along each branch we encounter a product of random matrices.
In this section, we introduce some notation and the necessary assumptions on products of
random matrices in order to formulate our main results. We shall consider two cases, the
case when the matrices are nonnegative and the case when the matrices are invertible.

Let M(d,R) be equipped with the operator norm: for any a ∈M(d,R) we set ‖a‖ =
supx∈Sd−1 |ax|, where | · | is a given vectorial norm on Rd, and Sd−1 = {x ∈ Rd : |x| = 1}
is the unit sphere in Rd. Denote by Γµ := [supp µ] the smallest closed semigroup of
M(d,R) generated by the support of µ. A matrix a ∈ M(d,R) is said to be proximal if
it has an algebraic simple dominant eigenvalue. Denote byM+ the set of matrices with
nonnegative entries. A nonnegative matrix a ∈ M+ is said to be allowable if every row
and every column has a strictly positive entry.

We say that the measure µ is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function
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ϑ : Sd−1
+ → R such that

∀a ∈ Γµ,∀x ∈ supp ν : exp[it log |ax| − iθ + i(ϑ(a · x)− ϑ(x))] = 1,

where Sd−1
+ = {x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive

quadrant, and ν is the µ-invariant measure (cf. (4.5)). Notice when d = 1, we have
Sd−1

+ = {1}, and the above arithmetic condition reduces to the following more usual form:
log a is a.s. concentrated on an arithmetic progression a0 + a1N for some a0, a1 > 0.

We will need the following assumptions on the law µ.

B1.

1. For invertible matrices:

(a) (Strong irreducibility)There is no finite unionW = ⋃n
i=1Wi of proper subspaces

0 6= Wi ( Rd which is Γµ-invariant (in the sense that aW =W for each a ∈ Γµ)

(b) (Proximality) Γµ contains at least one proximal matrix.

2. For nonnegative matrices:

(a) (Allowability) Every a ∈ Γµ is allowable.

(b) (Positivity) Γµ contains at least one matrix belonging to int(M+).

(c) (Non-arithmeticity) The measure µ is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a · x := ax

|ax|
when ax 6= 0,

where a · x is called the projective action of the matrix a on the vector x ∈ Sd−1. Then
ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an
invertible or nonnegative matrix a,

N(a) = max{‖a‖, ι(a)−1}.

For invertible matrices we have ι(a) = ‖a−1‖−1 and N(a) = max{‖a‖, ‖a−1‖}.

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapter 4 – Central limit theorem and precise large deviations for branching random walks
with products of random matrices 84

B2. (Moment condition) There exists η0 ∈ (0, 1) such that

E[N(A1)η0 ] <∞.

We will consider the action of invertible matrices on the projective space Pd−1 which
is obtained from Sd−1 by identifying x and −x, and the action of nonnegative matrices
on Sd−1

+ . For convenience, we identify x ∈ Pd−1 with one of its representants in Sd−1. To
unify the exposition, we use the symbol S to denote Pd−1 for invertible matrices, and Sd−1

+

for nonnegative matrices. The space S will be equipped with the metric d, which is the
angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric (see
[49]) for nonnegative matrices. Moreover, S is a separable metric space equipped with
Borel σ-field.

Let Gn = An . . . A2A1 be the product of i.i.d. d× d real random matrices Ai, defined
on the probability space (Ω,F ,P), with common law µ. Let x ∈ S be a starting point.
As mentioned in the introduction, the random walk Gnx is completely determined by its
log norm and its projection on S, denoted respectively by

Sxn := log |Gnx|, Xx
n := Gn · x = Gnx

|Gnx|
, n ≥ 0,

with the convention that G0x = x. Since Sxn = log |AnXx
n−1|+ Sxn−1 and Xx

n = An ·Xx
n−1,

the sequence (Sxn, Xx
n)n≥0 is a Markov chain.

Denote by E the expectation corresponding to P. By the law of large numbers of
Furstenberg [38], under conditions B1 and B2, we have

lim
n→∞

1
n
Sxn = lim

n→∞

1
n
E[Sxn] = γ P-a.s.,

where γ = infn∈N 1
n
E log ‖Gn‖ is the upper Lyapunov exponent associated with the prod-

uct sequence (Gn). Le Page [63] and Henion [49] showed that

σ2 = lim
n→∞

1
n
E (Sxn − nγ)2 (4.4)

exists and is independent of x for invertible matrices and nonnegative matrices, respec-
tively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [46,
25]); the µ-stationarity of ν means that µ ∗ ν = ν, that is, for any continuous function ϕ
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on S,

(µ ∗ ν)(ϕ) :=
∫
S

∫
Γµ
ϕ(a · x)µ(da)ν(dx) = ν(ϕ). (4.5)

where ν(ϕ) =
∫
S ϕ(x)ν(dx). This notation for the integral will be used for any function

and any measure. Set

Iµ = {s ≥ 0 : E‖A1‖s <∞}.

Note that Iµ is an interval of R+. Let s∞ = sup Iµ. Define the transfer operator on the
set C(S) of continuous functions on S as follows: for any s ∈ (−η0, s∞), and f ∈ C(S),

Psf(x) = E[|A1x|sf(A1 · x)], for all x ∈ S. (4.6)

It is known that under conditions B1, and B2, there exists a small constant 0 < η1 < η0

such that for any s ∈ (−η1, s∞), there are a unique probability measure νs and a unique
Hölder continuous normalized function rs (under the normalizing condition ν(rs) = 1) on
S satisfying

νsPs = κ(s)νs and Psrs = κ(s)rs, (4.7)

where κ(s) is the unique dominant eigenvalue of Ps, νsPs is the measure on S such that
(νsPs)(f) = νs(Psf) for all f ∈ C(S). For s ∈ [0, s∞), the property (4.7) is proved in
[25, Proposition 3.1] and [28, Corollary 7.3] for positive matrices, and in [46, Theorem
2.6 and Corollary 3.20] for invertible matrices. For both positive matrices and invertible
matrices, the existence of η1 > 0 and the property (4.7) for s ∈ (−η1, η1) are proved in
[83, Proposition 3.1], where the following properties are also established: the functions
s 7→ κ(s) and s 7→ rs(x) are strictly positive and analytic in (−η1, s∞), for x ∈ S.
Moreover, it is proved (see [46, Lemma 3.5], [25, Lemma 6.2], [83, Propositions 3.12 and
3.14]) that, under conditions B1 and B2, the function

Λ(s) = log κ(s)

is finite and analytic on (−η1, s∞), and satisfies

Λ(0) = 0, Λ′(0) = γ, Λ′′(0) = σ2 > 0, and Λ′′(s) > 0 ∀s ∈ (−η1, s∞).
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4.2.2 Main results

Note that the population size at time n is Zn = Zx
n(S,R), which does not depend on the

starting point x and forms a Galton-Watson process with Z0 = 1 and Z1 = N . Denote by
m = EN the expected value of the offspring distribution. Throughout the paper, we shall
assume that 1 < m <∞, which ensures that the branching process (Zn) is supercritical,
so that Zn → ∞ as n → ∞ with positive probability. It is well known that EZn = mn.
Let

Wn = Zn
mn

for n ≥ 0, and W = lim
n→∞

Wn.

The sequence {Wn} is the fundamental martingale for the Galton-Watson process (Zn);
the limit above exists almost surely (a.s.) by the martingale convergence theorem. The fa-
mous Kesten-Stigum theorem states thatW is non-degenerate if and only if EN log+N <

∞ (see [4]), where and through this paper log+ x = max{0, log x} denotes the positive
part of log x. We will need the following slightly stronger condition.

B3. There exists a constant η > 1 such that

EN logη+1
+ N <∞. (4.8)

We start with a central limit theorem for the normalized counting measure (4.2). For
t ∈ R, let

Zx
n(B, t) = Zx

n

(
B, (−∞, nγ + tσ

√
n]
)

=
∑
u∈Tn

1{Xx
u∈B,

log |Gux|−nγ
σ
√
n

≤t}.

Theorem 4.2.1. Assume that the law µ of the random matrices satisfies conditions B1
and B2. Assume also that the offspring distribution satisfies condition B3. Then, for any
x ∈ S, any measurable set B ⊆ S with ν(∂B) = 0 and any t ∈ R, we have, as n→∞,

Zx
n(B, t)
mn

→ ν(B)Φ(t)W P-a.s., (4.9)

where Φ(t) = 1√
2π
∫ t
−∞ e

−x2/2dx is the distribution function of the standard normal law.

For the one dimensional case (where d = 1), the result is due to Asmussen and Kaplan
[3, Theorem 1], which was first conjectured by Harris [48, p.75] but with convergence in
probability instead of the a.s. convergence in (4.9). Harris’ conjecture was first solved

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



87 4.2. Main results

by Stam [78], then improved by Asmussen and Kaplan [2, 3] to L2-convergence and a.s.
convergence. More general cases have been considered by Klebaner [60] and Biggins [16],
who studied respectively the varying environment case and the general branching random
walk where the displacements of particles with the same parent may have different laws.
The random environment case has been considered by Gao, Liu and Wang [41]. The
exact convergence rate in (4.9) has been considered by Chen [29] and Gao and Liu [39].
Asymptotic expansions have been obtained in [40]. Theorem 4.9 open ways for extending
some results in [2, 29, 41, 39, 40] to the multi-dimensional case where the moving of
particles is determined by products of random matrices.

Our second main result is on the large deviation for the counting measure Zx
n . To study

the large deviation of the measure Zx
n , a natural way would be to consider its Laplace

transform defined by, for (s1, s2) ∈ Rd × R,

Z̃x
n(s1, s2) =

∫
Rd×R

es1y1+s2y2Zx
n(dy1, dy2) =

∑
u∈Tn

es1X
x
u+s2Sxu , (4.10)

where s1y1 is the inner product of vectors s1 and y1 in Rd.

In the one dimensional case, when x = 1 and An > 0, we have Xx
u = 1, so that

Z̃x
n(s1, s2)/EZ̃x

n(s1, s2) reduces to Biggins’ fundamental martingale of the branching ran-
dom walk: ∑

u∈Tn e
s2Sxu

E [∑u∈Tn e
s2Sxu ] , n ≥ 0, (4.11)

which has been well studied (see [13], for example), and which plays an essential role in
many problems. However, in the multidimensional case, in general the sequence (4.11) is
no longer a martingale, nor the sequence

Z̃x
n(s1, s2)

EZ̃x
n(s1, s2)

=
∑
u∈Tn e

s1Xx
u+s2Sxu

E [∑u∈Tn e
s1Xx

u+s2Sxu ] , n ≥ 0, (4.12)

for (s1, s2) ∈ Rd × R. So an important difficulty arises when we mimic Cramér’s change
of measure for random walks by use of the Laplace transform of Zx

n .

However, there is still a natural martingale in the present setting. By the spectral gap
property (4.7), it is easy to verify that (see Section 4.4 for more details), for s ∈ (−η1, s∞)
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and x ∈ S, the sequence

W x
s,n :=

∑
u∈Tn e

sSxurs(Xx
u)

mnκ(s)nrs(x) , n ≥ 0, (4.13)

constitutes a positive martingale with respect to the natural filtration

F0 = {∅,Ω} and Fn = σ(Nu, Aui : i ≥ 1, |u| < n) for n ≥ 1,

as observed by Mentemeier [72] in the study of the multivariate smoothing transform. By
the martingale convergence theorem, the limit

W x
s := lim

n→∞
W x
s,n exists in R P-a.s.

It turns out that the martingale (W x
s,n) in the multidimensional case plays the same rule

as Biggins’ fundamental martingale for one dimensional case, for large deviations.
Just as in the case of Biggins’ martingale, it is crucial to know when the limit variable

Wx
s of the fundamental martingale W x

s,n is non-degenerate. When the matrices Au are
nonnegative and s > 0, Mentemeier [72, Proposition 4.4] gave a sufficient condition for
W x
s to be non-degenerate. In the following we complete his result by considering the

necessary and sufficient conditions, and by treating meanwhile the case s < 0 and the
case of invertible matrices.

We first establish the following theorem, whose proof is deferred to Section 4.4. To
state the result, we need some notation. For s ∈ (−η1, s∞), set Λ∗(qs) = sqs − Λ(s) with
qs = Λ′(s). Since Λ′′(s) > 0 and ∂

∂s
Λ∗(qs) = sΛ′′(s), Λ∗(qs) attaints its minimum at s = 0,

so that Λ∗(qs) ≥ Λ∗(q0) = −Λ(0) = 0 for all s ∈ (−η1, s∞).

Theorem 4.2.2. Assume conditions B1, B2. If

Λ∗(qs)− logm < 0 (4.14)

and

E[max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1] <∞, (4.15)

then for all x ∈ S,
E[W x

s ] = 1. (4.16)
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Conversely, if
E[W x

s ] > 0 (4.17)

for some x ∈ S, then (4.14) holds, and

E[min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1] <∞. (4.18)

Corollary 4.2.3. Suppose the conditions B1, B2.

1. Assume (4.14) together with

EN log+N <∞ and E‖A1‖s log+ ‖A1‖ <∞. (4.19)

Then (4.16) holds for all x ∈ S.

2. Assume that the random matrice A1 = (A1(i, j)) satisfies the Furstenberg- Kesten
condition: there exists a constant C > 1 such that

max1≤i,j≤d |A1(i, j)|
min1≤i,j≤d |A1(i, j)| ≤ C a.s. (4.20)

Then the three conditions (4.15), (4.18) and (4.19) are equivalent, and (4.17) holds
for all x ∈ S if and only if (4.14) and (4.19) hold. Moreover, if (4.17) holds for
some x ∈ S, then (4.16) holds for all x ∈ S.

Notice that by Sheffé’s theorem, for each x ∈ S, if (4.17) holds, then W x
s,n → W x

s

in L1. So the martingale (W x
s,n) converges in L1 for some x ∈ S if and only if (4.14)

and (4.19) hold; moreover, when the martingale converges in L1 for some x ∈ S, then it
converges in L1 for all x ∈ S.

When the matrices Au are nonnegative and s > 0, Part (1) has been established by
Mentemeier [72, Proposition 4.4]. When d = 1, Part (2) is essentially the well-known
Kesten-Stigum type theorem for the classical branching random walk on the real line, due
to Biggins [13]; see also [56] for Mandelbrot’s cascades and [70, 66] for versions which are
slightly different to the initial result of Biggins [13].

Now we consider the precise large deviations for Zx
n with target functions f and g

on the components Xx
u = Gu · x and Sxu = log |Gux|. More precisely, we shall study the
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asymptotic of the large deviations of the following integral:
∫
S×R

f(y)g(z − nqs)Zx
n(dy, dz) =

∑
u∈Tn

f(Xx
u)g(Sxu − nqs). (4.21)

Our result will be stated under the very general assumption that e−szg(z), z ∈ R is
directly Riemann integrable, see Feller [36], Chapter XI.

Theorem 4.2.4. Assume conditions B1 and B2, and let s ∈ (−η1, s∞) be fixed such that
Λ∗(qs)− logm < 0 and that

E
[
max
x∈S

W x
1 (s) logδ+1

+ max
x∈S

W x
1 (s)

]
<∞ for some δ > 3/2. (4.22)

Then for any continuous function f on S and any measurable function g on R such that
z 7→ e−szg(z) is directly Riemann integrable, we have

lim
n→∞

√
2πnσsenΛ∗(qs)

mn

∫
S×R

f(y)g(z − nqs)Zx
n(dy, dz)

= W x
s rs(x)πs

(
f

rs

) ∫
R
e−szg(z)dz, P-a.s., (4.23)

where πs
(
f
rs

)
= νs(f)

νs(rs) , and σ2
s = Λ′′(s).

When s = 0 this result reduces to the following local limit theorem for the counting
measure Zx

n :

Corollary 4.2.5. Assume conditions B1 and B2. Assume also that (4.22) holds with
s = 0. Then

lim
n→∞

σ
√

2πn
mn

∫
S×R

f(y)g(z − nγ)Zx
n(dy, dz) = Wν(f)

∫
R
g(z)dz.

When f = 1 and g = 1[a,b] with −∞ < a < b <∞, it gives the precise asymptotic of
Zx
n(S, nγ + [a, b]) as n→∞.

The following theorem describes the asymptotic size of the number of particles in n-th
generation situated in the regions (B, [enqs ,+∞)) for s > 0, and (B, (0, enqs ])) for s < 0,
where B ⊆ S.

Theorem 4.2.6. Assume the conditions of Theorem 4.2.4. Then, for any x ∈ S, any
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measurable set B ⊆ S with ν(∂B) = 0, we have, P-a.s., for s > 0,

lim
n→∞

√
2πnσs enΛ∗(qs)Z

x
n (B, [nqs,+∞))

mn
= 1
s
W x
s rs(x)

∫
B

1
rs(y)πs (dy) ,

and for s < 0,

lim
n→∞

√
2πnσs enΛ∗(qs)Z

x
n (B, (−∞, nqs])

mn
= 1
s
W x
s rs(x)

∫
B

1
rs(y)πs (dy) .

This theorem is obtained from Theorem 4.2.4 by taking g = 1[0,+∞) when s > 0, and
g = 1(−∞,0] when s < 0, and by using a smooth approximation of indicator function (see
[22, Lemma 4.1]).

In the one dimensional case (where d = 1), Theorems 4.2.4 and 4.2.6 reduce to the
Bahadur-Rao type results of Biggins [15]. The large deviation principle was established
earlier by Biggins in [14].

4.3 Proof of Theorem 4.2.1

This section is devoted to prove Theorem 4.2.1, the central limit theorem on the counting
measure Zx

n .

4.3.1 Basic decomposition

For all u ∈ U, let T(u) be the shifted tree of T at u associated to the elements {Nuv}. It is
defined by the following properties: 1) ∅ ∈ T(u), 2) vi ∈ T (u) implies v ∈ T(u) and 3) if
v ∈ T (u), then vi ∈ T(u) if and only if 1 ≤ i ≤ Nuv. Define Tn(u) = {v ∈ T(u) : |v| = n}.
Then T = T(∅) and Tn = Tn(∅).

It follows from the additive property of the branching process that, for k ≤ n, any
measurable set B ⊆ S and any Borel set C in R,

Zx
n(B,C) =

∑
u∈Tk

∑
v∈Tn−k(u)

1{Xx
uv∈B,Sxuv∈C}

=
∑
u∈Tk

Z
Xx
u

n−k(B,C − Sxu), (4.24)
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where

Z
Xx
u

n−k(B,C − Sxu) =
∑

v∈Tn−k(u)
1{XXxu

v ∈B,SX
x
u

v ∈C−Sxu}

represents the number of descendants of u at time n in the region characterized by (B,C−
Sxu), and C−Sxu = {y−Sxu : y ∈ C}. In this section, we consider C = (−∞, nγ+tσ

√
n], t ∈

R. For simplicity, we will use the following notation:

Zx
n(B, t) =

∑
u∈Tn

1{Xx
u∈B,

log |Gux|−nγ
σ
√
n

≤t},

Z
Xx
u

n−k(B, t) =
∑

v∈Tn−k(u)
1
{XXxu

v ∈B,S
Xxu
v −(n−k)γ
σ
√
n−k ≤t}

,

Z
Xx
u

n−k(B,R) =
∑

v∈Tn−k(u)
1{XXxu

v ∈B},

W
Xx
u

n−k(B, t) = Z
Xx
u

n−k(B, t)
mn−k ,

W
Xx
u

n−k = W
Xx
u

n−k(S,R) = Z
Xx
u

n−k(S,R)
mn−k .

Notice that ZXx
u

n−k(S,R) is the population size of generation n − k of the Galton-Watson
process beginning from the particle u (whose genealogical tree is the shifted tree of T at
u). So ZXx

u
n−k(S,R) and WXx

u
n−k do not depend on the position of u.

For conditional probabilities and expectations, we write

Pn(·) = P(·|Fn), En(·) = E(·|Fn).

We obtain the following decomposition from (4.24), which will play a key role in our
approach:

1
mn

Zx
n(B, t)− ν(B)Φ (t)W

= 1
mn

∑
u∈Tkn

Z
Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)
− ν(B)Φ (t)W

= An +Bn + Cn, (4.25)
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where

An = 1
mkn

∑
u∈Tkn

{
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)

− Ekn
[
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)]}
,

Bn = 1
mkn

∑
u∈Tkn

{
Ekn

[
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)]
− ν(B)Φ (t)

}
,

Cn = (Wkn −W ) ν(B)Φ (t) .

The idea is now to choose suitable kn with kn →∞ such that An, Bn, Cn → 0 a.s.

4.3.2 Proof of Theorem 4.2.1

We choose β with 1
η
< β < 1 and α > 2

β−1−1 . For each n, let j = j(n) ∈ N be such that
jα/β ≤ n < (j + 1)α/β; set kn = aj = bjαc, the integer part of jα. We will prove that with
this choice of (kn), we have An, Bn, Cn → 0 a.s. By the decomposition (4.25), this will
imply Theorem 4.2.1.

By the convergence of the martingale Wn to W , we have clearly Cn → 0, P-a.s. It
remains to show the following two lemmas.

Lemma 4.3.1. Under the hypothesis of Theorem 4.2.1, we have

An
n→∞−→ 0 P-a.s. . (4.26)

Lemma 4.3.2. Under the hypothesis of Theorem 4.2.1, then

Bn
n→∞−→ 0 P-a.s. . (4.27)

For the proof of Lemma 4.3.1, We shall use the following result on the weighted
moments of W ∗ := supn{Wn}, which is proved in Liang and Liu [64, Theorem 1.2].

Lemma 4.3.3. Under the hypothesis of Theorem 4.2.1, then

E(W ∗ + 1) logη(W ∗ + 1) <∞. (4.28)

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapter 4 – Central limit theorem and precise large deviations for branching random walks
with products of random matrices 94

Proof of Lemma 4.3.1. By definition, An = 1
mkn

∑
u∈Tkn Yn,u, where

Yn,u = W
Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)
− Ekn

[
W

Xx
u

n−kn

(
B,

tσ
√
n− Sxu + kγ

σ
√
n− k

)]
.

We see that for any u ∈ Tkn ,

|Yn,u| ≤ W
Xx
u

n−kn(S,R) + EknW
Xx
u

n−kn(S,R)
= W

Xx
u

n−kn + 1, (4.29)

where the last equality holds because WXx
u

n−kn = W
Xx
u

n−kn(S,R) represents the fundamental
martingale of the Galton-Watson process beginning with the particle u ∈ Tkn . Let

Y n,u = Yn,u1{|Yn,u|<mkn} and An = 1
mkn

∑
u∈Tkn

Y n,u.

We will use the decomposition

An = (An − An) + (An − Ekn
[
An
]
) + Ekn

[
An
]
,

and prove that each of the three terms on the right side of this identity tends to zero as
n→∞. We divide the proof into 3 steps.

Step 1. We first prove that An − An a.s−→
n→∞

0, as a consequence of

∞∑
n=1

P(An 6= An) <∞. (4.30)

In fact, by the Lemma of Borel-Cantelli, (4.30) implies that a.s. An − An = 0 when n is
large enough. By the definition of Y n,u and the inequality (4.29), we have:

Pkn(An 6= An) ≤
∑
u∈Tkn

Pkn(Yn,u 6= Y n,u) =
∑
u∈Tkn

Pkn(|Yn,u| ≥ mkn)

≤
∑
u∈Tkn

Pkn(WXx
u

n−kn + 1 ≥ mkn).
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Since the law of WXx
u

n−kn conditioned upon Fkn is that of Wn−kn , it follows that

Pkn(An 6= An) ≤ ZknP(Wn−kn + 1 ≥ mkn) ≤ Wknm
knP(W ∗ + 1 ≥ mkn)

≤ WknE
[
(W ∗ + 1)1{W ∗+1≥mkn}

]
≤ Wkn

(logmkn)ηE [(W ∗ + 1) logη(W ∗ + 1)] .

Taking expectation and denoting C = E [(W ∗ + 1) logη(W ∗ + 1)] (which is finite by
Lemma 4.3.3), we get P(An 6= An) ≤ C

(logm)ηkηn
. Since kηn ∼ jαη ∼ nβη and βη > 1,

(4.30) is proved.

Step 2. We next prove that An − Ekn [An] a.s−→
n→∞

0, as a consequence of

∞∑
n=1

P
(
|An − Ekn [An]| > ε

)
<∞ ∀ε > 0 (4.31)

(by the Lemma of Borel-Cantelli). By Chebyshev’s inequality we have

Pkn(|An − Ekn [An]| > ε) ≤ 1
ε2Ekn(An − Ekn [An])2. (4.32)

By the definition of An and Fkn , and the fact that
(
Y n,u

)
u∈Tkn

is a sequence of indepen-

dent random variables under Ekn , we have

Ekn(An − Ekn [An])2 = 1
m2kn

Ekn
[ ∑
u∈Tkn

(Y n,u − Ekn [Y n,u])
]2

= 1
m2kn

∑
u∈Tkn

(
Ekn

[
Y

2
n,u

]
−
[
EknY n,u

]2)
. (4.33)

By the definition of Y n,u and Fubini’s theorem,

Ekn
[
Y

2
n,u

]
=

∫ ∞
0

2xPkn(|Y n,u| > x)dx

= 2
∫ ∞

0
xPkn(|Yn,u|1{|Yn,u|<mkn} > x)dx

= 2Ekn
∫ ∞

0
x1{|Yn,u|1{|Yn,u|<mkn}>x}dx

≤ 2Ekn
∫ mkn

0
x1{|Yn,u|>x}dx =

∫ mkn

0
xPkn(|Yn,u| > x)dx.

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



Chapter 4 – Central limit theorem and precise large deviations for branching random walks
with products of random matrices 96

Using (4.29), we obtain

Pkn(|Yn,u| > x) ≤ Pkn(WXx
u

n−kn + 1 > x) = P(Wn−kn + 1 > x)
≤ P(W ∗ + 1 > x).

Therefore,

Ekn
[
Y

2
n,u

]
≤ 2

∫ mkn

0
xP(W ∗ + 1 > x)dx. (4.34)

Using (4.32), (4.33) and (4.34) and then taking expectation, we obtain

P(|An − Ekn [An]| > ε) ≤ 2
ε2mkn

∫ mkn

0
xP(W ∗ + 1 > x)dx. (4.35)

We split the above integral according to x ∈ [0, e] and x ∈ (e,mkn ]. Using P(W ∗ + 1 >
x) ≤ 1, we see that

∫ e

0
xP(W ∗ + 1 > x)dx ≤ e2

2 . (4.36)

For the integral over (e,mkn ], using x1{W ∗+1>x} ≤ (W ∗ + 1)logη(W ∗ + 1)
logη x , we have

∫ mkn

e
xP(W ∗ + 1 > x)dx ≤ E

[
(W ∗ + 1) logη(W ∗ + 1)

] ∫ mkn

e

1
logη xdx. (4.37)

Taking a constant b ∈]1,m[, we get

∫ mkn

e

1
logη xdx =

∫ bkn

e

1
logη xdx+

∫ mkn

bkn

1
logη xdx

≤ bkn + (mkn − bkn)
(kn log b)η .

From (4.35), (4.36) and (4.37), we obtain

P(|An − Ekn [An]| > ε) ≤ 1
ε2mkn

(
e2 + 2C

(
bkn + mkn − bkn

(kn log b)η
))

,
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where C = E
[
(W ∗ + 1) logη(W ∗ + 1)

]
<∞ by Lemma 4.3.3. Therefore,

∞∑
n=1

P(|An − Ekn [An]| > ε)

≤ e2

ε2

∞∑
n=1

1
mkn

+ 2C
ε2

( ∞∑
n=1

bkn

mkn
+
∞∑
n=1

mkn − bkn
mkn(kn log b)η

)
. (4.38)

Since kn ∼ jα ∼ nβ, 1 < b < m and βη > 1, the three series ∑∞n=1
1

mkn
, ∑∞n=1( b

m
)kn and∑∞

n=1
1

(kn log b)η converge. Therefore from (4.38), we get (4.31).

Step 3. We finally prove that Ekn [An] a.s−→
n→∞

0, as a consequence of

∞∑
n=1

P
(
|Ekn [An]| > ε

)
<∞, ∀ε > 0 (4.39)

(again by the Lemma of Borel-Cantelli). By Markov’s inequality, the fact that 0 =
Ekn [An] = Ekn [An] + 1

mkn
Ekn

[∑
u∈Tkn Yn,u1{|Yn,u|≥mkn}

]
, and the inequality (4.29), we ob-

tain:

P(|Ekn [An]| > ε) ≤ 1
ε
E
[
|Ekn [An]|

]
= 1
εmkn

E
{∣∣∣∣Ekn[ ∑

u∈Tkn

(−Yn,u)1{|Yn,u|≥mkn}
]∣∣∣∣}

≤ 1
εmkn

E
{
Ekn

[ ∑
u∈Tkn

(WXx
u

n−kn + 1)1{WXxu
n−kn+1≥mkn}

]}

= 1
ε
E
[
(Wn−kn + 1)1{Wn−kn+1≥mkn}

]
.

It follows that

P
(
|Ekn [An]| > ε

)
≤ 1
ε (logmkn)ηE [(W ∗ + 1) logη(W ∗ + 1)] .

Therefore, with C = E [(W ∗ + 1) logη(W ∗ + 1)] <∞ (by Lemma 4.3.3),

∞∑
n=1

P
(
|Ekn [An]| > ε

)
≤ C

ε logηm

∞∑
n=1

1
kηn

<∞

since kηn ∼ jαη ∼ nβη and βη > 1. So (4.39) is proved.
So the proof of Lemma 4.3.1 is finished.
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The proof of Lemma 4.3.2 will be based on the following central limit theorem on the
couple (Xx

n , S
x
n) (see Theorem 2.1, part (2) in [22]).

Lemma 4.3.4. Under the hypothesis of Theorem 4.2.1, for any measurable set B ⊆ S
with ν(∂B) = 0, we have

lim
n→∞

sup
(x,t)∈S×R

∣∣∣∣P(Xx
n ∈ B,

Sxn − nγ
σ
√
n
≤ t

)
− ν(B)Φ (t)

∣∣∣∣ = 0.

Proof of Lemma 4.3.2. We first calculate the conditional expectation in the definition of
Bn. Denoting tn := tσ

√
n− Sxu + knγ

σ
√
n− kn

and using the branching property, we have

Ekn
[
W

Xx
u

n−kn(B, tn)
]

= 1
mkn

Ekn
[ ∑
v∈Tn−kn (u)

1{
X
Xxu
v ∈B,S

Xxu
v −(n−kn)γ
σ
√
n−kn

≤tn

}]

= Pkn
(
X
Xx
u

n−kn ∈ B,
S
Xx
u

n−kn − (n− kn)γ
σ
√
n− kn

≤ tn

)
.

Therefore, by the definition of Bn,

Bn = 1
mkn

∑
u∈Tkn

{
Pkn

(
X
Xx
u

n−kn ∈ B,
S
Xx
u

n−kn − (n− kn)γ
σ
√
n− kn

≤ tn

)
− ν(B)Φ(t)

}

= 1
mkn

∑
u∈Tkn

{
Pkn

(
X
Xx
u

n−kn ∈ B,
S
Xx
u

n−kn − (n− kn)γ
σ
√
n− kn

≤ tn

)
− ν(B)Φ(tn)

}

+ ν(B)
mkn

∑
u∈Tkn

[Φ (tn)− Φ(t)] .

Hence

|Bn| ≤ WknDn + ν(B)
mkn

∑
u∈Tkn

|Φ (tn)− Φ(t)| (4.40)

where

Dn = sup
(x,t)∈S×R

∣∣∣∣P(Xx
n−kn ∈ B,

Sxn−kn − (n− kn)γ
σ
√
n− kn

≤ t
)
− ν(B)Φ (t)

∣∣∣∣.
The first term in the right hand side of (4.40) tends to 0 a.s. because, by Lemma 4.3.4,
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we have

Dn
n→∞−→ 0 P-a.s.

We now prove that the second term in the right hand side of (4.40) also tends to 0 a.s.
Remarking that

|Φ(tn)− Φ(t)| ≤
∣∣∣∣Φ( tσ

√
n

σ
√
n− kn

)
− Φ(t)

∣∣∣∣+ ∣∣∣∣Φ( tσ
√
n

σ
√
n− kn

)
− Φ(tn)

∣∣∣∣
≤

∣∣∣∣Φ( tσ
√
n

σ
√
n− kn

)
− Φ(t)

∣∣∣∣+ ∣∣∣∣ tσ
√
n

σ
√
n− kn

− tn
∣∣∣∣

(since |Φ(x+ h)− Φ(x)| ≤ |h| for any x, h ∈ R), we obtain

1
mkn

∑
u∈Tkn

|Φ (tn)− Φ(t)|

≤ Wkn

∣∣∣∣Φ( tσ
√
n

σ
√
n− kn

)
− Φ(t)

∣∣∣∣+ 1
mkn

∑
u∈Tkn

|Sxu − knγ|
σ
√
n− kn

. (4.41)

It is clear that the first term in the above display tends to 0 a.s. as n→∞. So we need
only to prove that the second term also tends to 0 a.s. Recall that aj = kn and notice
that n− kn ∼ n ∼ k1/β

n = jα/β. So it suffices to show that

Mj := 1
maj

∑
u∈Taj

j−
α
2β |Sxu − ajγ| → 0 P-a.s. as j → +∞. (4.42)

Notice that
∞∑
j=1

E[Mj] =
∞∑
j=1

j−
α
2βE[|Sxaj − ajγ|]

≤
∞∑
j=1

j−
α
2β
√
E[(Sxaj − ajγ)2]

=
∞∑
j=1

j−
α
2β a

1/2
j

√√√√E[(Sxaj − ajγ)2]
aj

<∞,

where the last series converges by the expression of σ2 (cf. (4.4)) and the fact that

j−
α
2β a

1
2
j ∼ j

−α2

(
1
β
−1
)
with α

2 ( 1
β
− 1) > 1. Thus ∑∞j=1Mj < ∞ a.s., which implies (4.42).

So, by (4.41), the second term in the right hand side of (4.40) tends to 0 a.s. This ends
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the proof of Lemma 4.3.2.

4.4 Proof of Theorem 4.2.2 and Corollary 4.2.3

In this section we establish Theorem 4.2.2 and Corollary 4.2.3 about the non-degeneracy
of the limit variable W x

s of the fundamental martingale (W x
s,n). Let s ∈ (−η1, s∞) and

x ∈ S be fixed. Consider the positive function

H(n, y) =
es log |y|rs( y

|y|)
[mκ(s)]nrs(x) , n ≥ 0, y ∈ R∗.

Since rs is the eigenfunction of the operator Ps with respect to the eigenvalue κ(s) (see
(4.7)), we see that H is a mean-harmonic function (see [19]) in the sense that for each
n ≥ 0 and u ∈ Tn,

E
[ Nu∑
i=1

H(n+ 1, AuiGux)|Fn

]
= H(n,Gux).

Indeed, we have:

E
[ Nu∑
i=1

H(n+ 1, AuiGux)|Fn

]
= E

[ Nu∑
i=1

es log |AuiGux|rs(Aui ·Xx
u)

[mκ(s)]n+1rs(x) |Fn

]

= es log |Gux|

[mκ(s)]n+1rs(x)E
[ Nu∑
i=1

es log(|AuiXx
u |)rs(Aui ·Xx

u)|Fn

]

= es log |Gux|mPsrs(Xx
u)

[mκ(s)]n+1rs(x)

= es log |Gux|rs(Xx
u)

[mκ(s)]nrs(x) .

Therefore

W x
s,n =

∑
u∈Tn

H(n,Gux) =
∑
u∈Tn

es log |Gux|rs(Xx
u)

[mκ(s)]nrs(x) , n ≥ 0

is a positive martingale, so that the limit

W x
s = lim

n→∞
W x
s,n
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exists a.s. with values in R+. For u ∈ U, denote

W
Xx
u

s,1 =
Nu∑
i=1

es log |AuiXx
u |rs(Aui ·Xx

u)
mκ(s)rs(Xx

u) ,

which represents the first term of the fundamental martingale corresponding to the branch-
ing process starting from the particle u; in particular for u = ∅, WXx

∅
s,1 (∅) = W x

s,1 with the
usual convention that Xx

∅ = x.
For fixed s ∈ (−η1, s∞) and x ∈ S, the spectral gap property (4.7) allows to define

a probability measure Qx
s on (Ω,F) such that for any n ∈ N and any bounded and

measurable function h on (S × R)n+1,

E
[
esS

x
nrs(Xx

n)
κn(s)rs(x) h(Xx

0 , S
x
0 , . . . , X

x
n , S

x
n)
]

= EQxs [h(Xx
0 , S

x
0 , . . . , X

x
n , S

x
n)] , (4.43)

where EQxs denotes the expectation with respect to Qx
s . See [25, 28, 46] for s ≥ 0, and [83]

for s < 0.

With the mean-harmonic functionH specified above and the probability measureQx
s intro-

duced here, from [19, Theorem 2.1] we obtain the following result for the non-degeneracy
of the limit W x

s . We use the usual notation that x ∧ y = min{x, y}, and we denote by
1n = (1, · · · , 1) ∈ N∗n the sequence of length n whose components are all equal to 1.

Lemma 4.4.1. For s ∈ (−η1, s∞) and x ∈ S, we have:

(i) E[W x
s ] = 1 if

∞∑
n=1

E
[
W

Xx
1n

s,1

(
H(n,G1nx)WXx

1n
s,1 ∧ 1

)
|Fn

]
<∞ Qx

s -a.s. (4.44)

(ii) E[W x
s ] = 0 if either

lim sup
n→∞

H(n,G1nx) =∞ Qx
s -a.s. (4.45)

or for all y > 0,

∞∑
n=1

E
[
W

Xx
1n

s,1 1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
=∞ Qx

s -a.s. (4.46)
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4.4.1 Proof of Theorem 4.2.2

Sufficient condition

We assume conditions (4.14) and (4.15), together with B1 and B2, and we will prove
(4.44) which, by Lemma 4.4.1, will imply that E[W x

s ] = 1. By the definition of Qx
s (cf.

(4.43)), we have

E
[
W

Xx
1n

s,1

(
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1

)
|Fn

]

= E
[N1n∑
i=1

es log |A1niX
x
1n |rs(A1ni ·Xx

1n)
mκ(s)rs(Xx

1n)

(
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1

)
|Fn

]
= EQxs

[
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1|Fn

]
.

By the extended Borel-Cantelli Lemma (see [73, p. 151]), we have

{ ∞∑
n=1

EQxs

[
(H(n,G1nx)WXx

1n
s,1 ) ∧ 1|Fn

]
<∞

}
Qxs -a.s.=

{ ∞∑
n=1

(
H(n,G1nx)WXx

1n
s,1 ∧ 1

)
<∞

}
. (4.47)

We shall prove that Qx
s -a.s, the term H(n,G1nx) → 0 exponentially and W

Xx
1n

s,1 → ∞
subexponentially. This will imply that the two series in (4.47) converge Qx

s -a.s., and thus
conclude the proof of (4.44).

We first prove that H(n,G1nx) → 0 Qx
s -a.s. with an exponential rate. We start by

rewriting H(n,G1nx) in form

H(n,G1nx) = rs(Xx
1n)

rs(x) exp
{
n
[
s
(
Sx1n
n
− qs

)
+
(
sqs − log[mκ(s)]

)]}
. (4.48)

Recall that the function rs(.) is strictly positive and Hölder continuous on the compact
set S. It is therefore bounded from above and from below by two positive constants. By
the strong law of large numbers for Sx1n under Qx

s (see [83, Proposition 3.12], [25, Theorem
6.1], [46, Theorem 3.10]),

lim
n→∞

Sx1n
n

= qs Qx
s -a.s. (4.49)
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Therefore

lim sup
n→∞

1
n

logH(n,G1nx) = sqs − log[mκ(s)] Qx
s -a.s. (4.50)

By hypothesis sqs − log[mκ(s)] < 0, so H(n,G1nx)→ 0 exponentially Qx
s -a.s.

We next prove that WXx
1n

s,1 grows to infinity subexponentially Qx
s -a.s., in the sense that

lim sup
n→∞

1
n

log+W
Xx

1n
s,1 = 0 Qx

s -a.s.

By the lemma of Borel-Caltelli, it is enough to prove that

∞∑
n=0

Qx
s

(
log+W

Xx
1n

s,1 > εn
)
<∞ ∀ε > 0. (4.51)

By the definition of Qx
s and Fubini’s Theorem, we have

∞∑
n=0

Qx
s

(
log+W

Xx
1n

s,1 > εn
)

=
∞∑
n=0

E
[
W

Xx
1n

s,1 1
{log+W

Xx1n
s,1 >εn}

]

≤ E
[ ∞∑
n=0

max
x∈S

W x
s,11{log+ maxx∈SWx

s,1>εn}

]

≤ 1
ε
E
[

max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1 + 1

]
,

which is finite by hypothesis (4.15). Therefore, the property (4.51) is proved.

Necessary condition

It suffices to prove that if either Λ∗(qs)− logm ≥ 0 or E
[
minx∈SW x

s,1 log+ minx∈SW x
s,1

]
=

∞, then EW x
s = 0 for all x ∈ S. In the following we consider three cases.

Case 1. Suppose that Λ∗(qs)− logm > 0. Then by (4.48) and (4.49) we see that

lim
n→∞

H(n,G1nx) =∞, Qx
s -a.s. (4.52)

This implies E[W x
s ] = 0 by Lemma 4.4.1.

Case 2. Suppose that Λ∗(qs)− logm = 0. Then by (4.48),

H(n,G1nx) = rs(Xx
1n)

rs(x) es(S
x
1n−nqs).
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Since rs is bounded from below and from above by two positive constants, using Lemma
4.4.2 below, we see that (4.52) still holds, which implies E[W x

s ] = 0 by Lemma 4.4.1, just
as in the first case.

Here we have used the following law of iterated logarithm for products of random
matrices. For s = 0, it was established in [63, Theorem 5].

Lemma 4.4.2. Let s ∈ (−η1, s∞) and x ∈ S. Under conditions B1 and B2,

lim sup
n→∞

Sxn − nqs
σs
√

2n log log n = 1 Qx
s -a.s.

This lemma can be proved in the same way as in the proof of Theorem 5 of [63], using
Berry-Esseen’s bound for Sxn under the changed measure Qx

s established in [83, Theorem
2.1] for s ∈ (−η1, 0] and in [28, Theorem 8.1] for s ∈ (0, s∞). Since the proof is very
similar, we omit the details.

Case 3. Assume that E
[
minx∈SW x

s,1 log+ minx∈SW x
s,1

]
= ∞ and Λ∗(qs) − logm < 0.

We shall prove that (4.46) holds for all y > 0. By the definition of Qx
s , we have

E
[
W

Xx
1n

s,1 1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
= EQxs

[
1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
.

By the extended Borel- Cantelli lemma, we get, for y > 0,
{ ∞∑
n=0

EQxs

[
1
{H(n,G1nx)W

Xx1n
s,1 >y}

|Fn

]
=∞

}
Qxs -a.s.= lim sup

n→∞

{
H(n,G1nx)WXx

1n
s,1 > y

}
.

Therefore, for y > 0, (4.46) holds if

Qx
s

(
lim sup
n→∞

{
H(n,G1nx)WXx

1n
s,1 > y

})
= 1. (4.53)

By (4.50), we see that (4.53) achieves if

lim sup
n→+∞

1
n

log+W
Xx
vn

s,1 = +∞, Qx
s -a.s.,
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which is equivalent to

Qx
s

(
lim sup
n→∞

{
log+W

Xx
1n

s,1 > Mn
}

︸ ︷︷ ︸
=:Bn+1

)
= 1 ∀M > 0. (4.54)

We see that (4.54) follows from

Qx
s

( ∞∑
n=0

1Bn+1 =∞
)

= 1. (4.55)

To prove (4.55), notice that by the extended Borel-Cantelli lemma we have

{ ∞∑
n=0

1Bn+1 <∞
}

Qxs -a.s=
{ ∞∑
n=0

EQxs [1Bn+1|Fn] <∞
}
. (4.56)

By the definition of Qx
s and Fubini’s theorem, we have, Qx

s -a.s.,

∞∑
n=0

EQxs [1Bn+1|Fn] =
∞∑
n=0

E
[
W

Xx
1n

s,1 1
{log+W

Xx1n
s,1 >Mn}

|Fn

]

≥
∞∑
n=0

E
[

min
x∈S

W x
s,11{log+ minx∈SWx

s,1>Mn}|Fn

]

= E
[ ∞∑
n=0

min
x∈S

W x
s,11{log+ minx∈SWx

s,1>Mn}

]

≥ 1
M

E[min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1 − 1

]
= +∞,

where the second equality holds since minx∈SW x
s,1 is independent of Fn, and the last

equality holds by hypothesis. Hence (4.55) follows from (4.56).

4.4.2 Proof of Corollary 4.2.3

We will need the following result which was established in [68] in a slightly weaker form.
We use the convention that the empty sum is taken to be 0.

Lemma 4.4.3. Let N,X1, X2, · · · be independent random variables with N ∈ N, Xi ∈ R+,
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P(N = 0) < 1 and P(X = 0) < 1. Assume that all the Xi have the same law. Then

E
[( N∑

i=1
Xi

)
log+

( N∑
i=1

Xi

)]
<∞

if and only if

E(X1 log+X1) <∞ and E(N log+N) <∞.

Proof. The "if" part has been proved in [68]. The "only if" part is slightly stronger than
that in [68]. Let us give a short proof which is different to that used in [68]. Since the
function f(x) = x log+ x (with f(0) = 0) is increasing, we have

E
[
f
( N∑
i=1

Xi

)]
≥ E

(
X1 log+X11{N≥1}

)
= E(X1 log+X1)P(N ≥ 1).

Therefore E(X1 log+X1) < ∞. Together with P(X1 = 0) < 1, this implies that c :=
EX1 ∈ (0,∞). Since f is convexe on R+, by Jensen’s inequality, we have

E
[
f
( N∑
i=1

Xi

)∣∣∣∣N] ≥ f
(
E
[ N∑
i=1

Xi

∣∣∣∣N]) = f (cN) = (cN) log+ (cN) .

Taking expectation, we get E
[∑N

i=1Xi log+

(∑N
i=1Xi

)]
≥ E[(cN) log+(cN)]. Hence we

obtain E[(cN) log+(cN)] <∞, which is equivalent to EN log+N <∞.

Then the three conditions (4.15), (4.18) and (4.19) are equivalent, and (4.16) holds for
all x ∈ S if and only if (4.14) and (4.19) hold. Moreover, if (4.16) holds for some x ∈ S,
then it holds for all x ∈ S.

Proof of Corollary 4.2.3. (1) Note that for s ∈ (−η1, s∞), the function rs(.) is strictly
positive and continuous on the compact set S. It is therefore bounded from above and
from below by two positive constants. From the definition of W x

s,1 and ‖.‖, we observe
that

E
[

max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1

]
≤ E

[ N∑
i=1

c‖Ai‖s log+

( N∑
i=1

c‖Ai‖s
)]
.

Therefore by Lemma 4.4.3, (4.19) implies (4.15). This ends the proof of the fist part of
Corollary 4.2.3.
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(2) By Theorem 4.2.2, to prove the second part of Corollary 4.2.3, it is enough to show
that (4.15), (4.18) and (4.19) are all equivalent.

Now we prove the equivalence according to the scheme: (4.15) ⇒ (4.18) ⇒ (4.19) ⇒
(4.15). The implication (4.15)⇒ (4.18) is obvious; the implication (4.19)⇒ (4.15) is just
proved above in part (1). So we only need to show that (4.18) ⇒ (4.19). Set for k ≥ 1,

Ak = max
1≤i,j≤d

|Ak(i, j)| and Ak = min
1≤i,j≤d

|Ak(i, j)|.

Since all norms on Rd are equivalent, we can take the norm |x| = |x1|+ |x2|+ . . .+ |xd|.
Then for k ≥ 1 and x ∈ S,

dAk ≤ |Akx| =
∑

1≤i,j≤d
|Ak(i, j)xj| ≤ dAk.

Since the function rs on S is bounded from above and from below by two positive con-
stants, this implies that for some constant c1 > 0,

E
[

min
x∈S

W x
s,1 log+ min

x∈S
W x
s,1

]
≥ E

[ N∑
k=1

c1A
s
k log+

(
N∑
k=1

c1A
s
k

) ]
.

Remark that under the Furstenberg-Kesten condition (4.20), E
[
As1 log+A

s
1

]
< ∞ if and

only if E
[
‖A1‖s log+ ‖A1‖s

]
< ∞. Therefore, by Lemma 4.4.3 and the above inequality,

(4.18) implies (4.19).

4.5 Proof of Theorem 4.2.4

In this section we will prove Theorem 4.2.4 , the precise large deviation asymptotic of
Bahadur-Rao type on the counting measure Zx

n , using a uniform local limit theorem for
products of random matrices that we recently established in [22].

4.5.1 Auxiliary results

In the proof of Theorem 4.2.4 we make use of the following three assertions. The first
one is a local limit theorem for products of random matrices under the changed measure
Qx
s (see Proposition 4.5.1). The second is an exponential bound of the large deviation

probability of the products of random matrices under Qx
s (see Proposition 4.5.2). The
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third gives a relationship between moment conditions on W x
s,1 and on W x

s,∗ := supnW x
s,n

(see Proposition 4.5.3).
We start with a uniform local limit theorem for products of random matrices under

the changed measure Qx
s . Under the initial measure (when s = 0), it has been established

in [22].

Proposition 4.5.1. Under the conditions of Theorem 4.2.4, we have, for any continuous
function f on S and any directly Riemann integrable function h on R,

lim
n→∞

sup
(x,y)∈S×R

∣∣∣∣σs√nEQxs [f(Xx
n)h(y + Sxn − nΛ′(s))]

− πs(f)
∫
R
h(z)φ

(
z − y
σs
√
n

)
dz
∣∣∣∣ = 0, (4.57)

where φ(x) = 1√
2πe
−x2/2 is the density function of the standard normal law.

Proof. For λ > 0 sufficiently small, we introduce the Banach space Bλ = {f ∈ C(S) :
‖f‖λ < +∞}, where

‖f‖λ := ‖f‖∞ + |f |λ,

with

‖f‖∞ := sup
x∈S
|f(x)|, |f |λ := sup

x,y∈S,x6=y

|f(x)− f(y)|
dλ(x, y) .

For s ∈ (−η1, s∞) and t ∈ R, define the perturbed operator Rs,it on Bλ as follows: for any
ϕ ∈ Bλ,

Rs,itϕ(x) = EQxs

[
eit[S

x
1−Λ′(s)]ϕ(Xx

1 )
]
, x ∈ S.

By induction, it follows that for any n ≥ 1,

Rn
s,itϕ(x) = EQxs

[
eit[S

x
n−nΛ′(s)]ϕ(Xx

n)
]
, x ∈ S.

For properties of this operator, we refer the reader to [82] for s ∈ (0, s∞) and [83] for
s ∈ (−η1, 0]. Since the proof of Theorem 4.2.4 is quite similar to that of Theorem 2.2(1)
in [22], we will not give the details here. The only difference is that, instead of the
properties of the operator R0,it used in the proof in [22], here we use the properties of the
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operator Rs,it proved in [82, 83].

We next present an exponential bound of the large deviation probability of the prod-
ucts of random matrices under Qx

s . For s = 0, it has been established in [82].

Proposition 4.5.2. Assume the conditions of Theorem 4.2.4. Let ε > 0. There are
C > 0 and 0 < c < 1 such that for all n ≥ 1,

sup
x∈S

Qx
s

( |Sxn − nΛ′(s)|
n

> ε
)
≤ Ccn. (4.58)

Proof. By the monotonicity in ε of the large deviation probability, it is clear that it suffices
to prove the inequality for ε > 0 small enough. By the formula of the changed measure
(4.43), for any nonnegative and Borel function ϕ and any point t ∈ (−η1, s∞), we have

EQxsϕ(Sxn) = κ(t)nrt(x)
κ(s)nrs(x)EQxt

[
e−(t−s)Sxn(r−1

t rs)(Xx
n)ϕ(Sxn)

]
.

Take ϕ(x) = 1(nΛ′(s)+nε,+∞)(x). Because Λ′′(s) > 0 for all s ∈ (−η1, s∞) and Λ′(s) is
continuous in s, for ε > 0 small enough, there is t ∈ (−η1, s∞) with t > s such that
Λ′(t) = Λ′(s) + ε. Hence

Qx
s

(
Sxn − nΛ′(s) > nε

)
= κ(t)nrt(x)
κ(s)nrs(x)EQxt

[
e−(t−s)Sxnrs(Xx

n)
rt(Xx

n) 1{Sxn−nΛ′(s)>nε}

]

= e
n

[
−(t−s)Λ′(t)+Λ(t)−Λ(s)

]
rt(x)
rs(x)EQxt

[
f(Xx

n)h
(
Sxn − nΛ′(t)

)]
, (4.59)

where f(x) = rs(x)
rt(x) and h(x) = e−(t−s)x1{x>0}. Notice that h(x) ≤ 1 and that f(x) is

bounded from below and above by two positive constants because rt and rs are continuous
and strictly positive on the compact set S. Therefore from (4.59), we see that there exists
a constant C1 > 0 such that for all n ≥ 1,

Qx
s

(
Sxn − nΛ′(s) > nε

)
≤ C1e

n

[
−(t−s)Λ′(t)+Λ(t)−Λ(s)

]
. (4.60)
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We now prove that

−(t− s)Λ′(t) + Λ(t)− Λ(s) < 0. (4.61)

To do this, we consider the function

ψ(y) = −yΛ′(s+ y) + Λ(s+ y)− Λ(s), y ∈ [0, s∞ − s),

which is continuous on the interval [0, s∞−s). For y ∈ (0, s∞−s), ψ′(y) = −yΛ′′(s+y) < 0,
so that ψ(y) < ψ(0) = 0. With y = t− s, this implies (4.61). From (4.60) and (4.61), we
see that for all n ≥ 1,

sup
x∈S

Qx
s

(
Sxn − nΛ′(s) > nε

)
≤ C1c

n
1 , (4.62)

where c1 = exp
{
− (t− s)Λ′(t) + Λ(t)− Λ(s)

}
< 1. In the same way, if we take ϕ(x) =

1(−∞,nΛ′(s)−nε)(x) and t ∈ (−η1, s) such that Λ′(t) = Λ′(s) − ε, then there are constants
C2 > 0 and 0 < c2 < 1 such that

sup
x∈S

Qx
s

(
Sxn − nΛ′(s) < −nε

)
≤ C2c

n
2 . (4.63)

The conclusion of the proposition follows from (4.62) and (4.63).

We finally establish a relationship between moment conditions on W x
s,1 and on W x

s,∗.

Proposition 4.5.3. Assume the conditions of Theorem 4.2.4. Then

sup
x∈S

E
[
(W x

s,∗ + 1) logδ(W x
s,∗ + 1)

]
<∞.

For the proof, we will adapt the approach of Biggins [15] on the classical branching
random walk. The following recursive relations on W x

s,n and W x
s will be used. First, it

can be easily seen that for 1 ≤ k ≤ n,

W x
s,n =

∑
u∈Tk

H(k,Gux)WXx
u

s,n−k, where H(k,Gux) = esS
x
urs(Xx

u)
[mκ(s)]krs(x) . (4.64)

From this recursive relation on W x
s,n, taking n → ∞ we obtain the following recursive
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relation on W x
s : for k ≥ 1,

W x
s =

∑
u∈Tk

H(k,Gux)WXx
u

s , (4.65)

by our notation. The proof of Proposition 4.5.3 will be done with the help of three lemmas.

Lemma 4.5.4. Assume the conditions of Theorem 4.2.4. Then

sup
x∈S

E
[
(W x

s + 1) logδ(W x
s + 1)

]
<∞. (4.66)

Proof of Lemma 4.5.4. Let 3
2 < δ < 2 and

h(u) :=
 c0u for 0 < u ≤ x0,

c1 + c2 logδ u for u ≥ x0 > 1,

where x0, c0, c1 and c2 are constants with x0 > 1, c0, c2 > 0, which make h concave (and
hence subadditive) and increasing. Then

h(uv) ≤ C(1 + logδ+ u+ logδ+ v), ∀u, v > 0, (4.67)

when C > 0 is a large enough constant. Notice that to prove (4.66) we only need show
that

sup
x∈S

E[W x
s h(W x

s )] <∞. (4.68)

Using (4.64) and the subadditivity of h, we have

E[W x
s,n+1h(W x

s,n+1)
∣∣∣∣Fn]

= E
[( ∑

u∈Tn
H(n,Gux)WXx

u
s,1

)
h
( ∑
u∈Tn

H(n,Gux)WXx
u

s,1

)∣∣∣∣Fn

]

≤ E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
( ∑
t∈Tn,t6=u

H(n,Gtx)WXx
t

s,1

)∣∣∣∣Fn

]

+ E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)∣∣∣∣Fn

]
. (4.69)

For the first term, we see thatH(n,Gtx) is Fn-measurable,WXx
u

s,1 and∑t∈Tn,t6=uH(n,Gtx)WXx
t

s,1
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are conditionally independent given Fn. Hence

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
( ∑
t∈Tn,t6=u

H(n,Gtx)WXx
t

s,1

)∣∣∣∣Fn

]

=
∑
u∈Tn

H(n,Gux) E
[
W

Xx
u

s,1

∣∣∣∣Fn

]
E
[
h
( ∑
t∈Tn,t6=u

H(n,Gtx)WXx
t

s,1

)∣∣∣∣Fn

]

≤
∑
u∈Tn

H(n,Gux) h
( ∑
t∈Tn,t6=u

H(n,Gtx)E
[
W

Xx
t

s,1

∣∣∣∣Fn

])
≤ W x

s,n h(W x
s,n),

where the last two inequalities hold by Jensen’s inequality and the fact that E
[
W

Xx
u

s,1

∣∣∣∣Fn

]
=

1 and h is a concave and increasing function. Therefore, from (4.69),

E[W x
s,n+1 h

(
W x
s,n+1

)
] ≤ E[W x

s,n h
(
W x
s,n

)
]

+ E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

) ]
.

So by recurrence on n and Fatou’s lemma, we obtain

E[W x
s h(W x

s )] ≤ lim inf
n→∞

E[W x
n (s) h(W x

n (s))]

≤ E[W x
s,1 h(W x

s,1)] +
∞∑
n=0

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)]
.

Hence to prove (4.68), it is enough to prove that

sup
x∈S

∞∑
n=1

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)]
<∞. (4.70)

Note that the hypothesis Λ∗(qs)− logm < 0 implies that there exists b > 0 such that

Λ∗(qs)− logm < −b < 0. (4.71)

Since rs is strictly positive and continuous on S,

d1 := maxx∈S rs(x)
minx∈S rs(x) <∞. (4.72)
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We write

E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

) ]
= In,1(x) + In,2(x),

where

In,1(x) = E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)
1{H(n,Gux)≤d1e−bn}

]
,

In,2(x) = E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
H(n,Gux)WXx

u
s,1

)
1{H(n,Gux)>d1e−bn}

]
.

Control of In,1(x). Using the facts that h is an increase function and E
[∑

u∈Tn H(n,Gux)
]

=
E[W x

s,n] = 1, we have

In,1(x) ≤ E
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 h
(
d1e
−bnW

Xx
u

s,1

)]

≤ E
[ ∑
u∈Tn

H(n,Gux) E
[
W

Xx
u

s,1 h
(
d1e
−bnW

Xx
u

s,1

)∣∣∣∣Fn

]]

≤ E
[
W̌s,1 h

(
d1e
−bnW̌s,1

)]
,

where W̌s,1 = maxx∈SW x
s,1. Set U =

{
d1e
−bnW̌s,1 ≥ x0

}
and its complement U c ={

d1e
−bnW̌s,1 < x0

}
. From the definition and the property (4.67) of h, we have

In,1(x) ≤ C E
[
W̌s,1

(
1 + logδ+

(
d1e
−bn

)
+ logδ+ W̌s,1

)
1U

]
+ c0E

[
W̌s,1

(
d1e
−bnW̌s,1

)
1Uc

]
≤ C E

[
W̌s,1

(
1 + logδ+ W̌s,1

)
1U

]
+ d1c0e

−bnE
[(
W̌s,1

)2
1Uc

]
= In,1,1(x) + In,1,2(x). (4.73)

We observe that d1e
−bnW̌s,1 ≥ x0 leads to n ≤ 1

b
log d1W̌s,1

x0
. Let J =

⌊
1
b

log+
d1W̌s,1
x0

⌋
. By
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Fubini’s theorem and hypothesis (4.22), we have

sup
x∈S

∞∑
n=1

In,1,1(x) ≤ CE
[ ∞∑
n=1

W̌s,1

(
1 + logδ+ W̌s,1

)
1{n≤J}

]
≤ C1E

[
W̌s,1

(
1 + logδ+ W̌s,1

)
log+ W̌s,1

]
<∞,

and

sup
x∈S

∞∑
n=1

In,1,2(x) ≤ d1c0E
[(
W̌s,1

)2 ∞∑
n=1

e−bn1{n≥J+1}

]
≤ C2E

[(
W̌s,1

)2
e−b(J+1)

]
≤ C3E

[
W̌s,1

]
<∞.

Hence we conclude that

sup
x∈S

∞∑
n=1

In,1(x) <∞. (4.74)

Control of In,2(x). Using the property (4.67) of the function h, we obtain

In,2(x) ≤ CE
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1

(
1 + logδ+W

Xx
u

s,1

)
1{H(n,Gux)>d1e−bn}

]

+CE
[ ∑
u∈Tn

H(n,Gux)WXx
u

s,1 logδ+
(
H(n,Gux)

)
1{H(n,Gux)>d1e−bn}

]
.

From hypothesis (4.22), we get for each u ∈ Tn,

E
[
W

Xx
u

s,1

(
1 + logδ+W

Xx
u

s,1

) ∣∣∣∣Fn

]
<∞.

Taking C1 > 0 sufficiently large, we have

In,2(x) ≤ C1E
[ ∑
u∈Tn

H(n,Gux)
{

1 + logδ+
(
H(n,Gux)

)}
1{H(n,Gux)>d1e−bn}

]

≤ C1E
[ ∑
u∈Tn

H(n,Gux)
{

1 + logδ+
(
H(n,Gux)

)}
1{sSxu>n(log[mκ(s)]−b)}

]
.
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By the definition of Qx
s , we have

In,2(x) ≤ C1EQxs

[{
1 + logδ+

(
H(n,G1nx)

)}
1{sSx1n>n(log[mκ(s)]−b)}

]
, (4.75)

where 1n = (1, · · · , 1) ∈ N∗n denotes the sequence of length n whose components are all

equal to 1, and H(n,G1nx) = e
sSx1n rs(Xx

1n )
[mκ(s)]nrs(x) by our notation. It is easy to see that if s = 0

then In,2(x) = 0 by the choice of b. Hence we only consider the case where s 6= 0. We will
prove that

sup
x∈S

∞∑
n=1

EQxs

[(
1 + logδ+H(n,G1nx)

)
1{sSx1n>n(log[mκ(s)]−b)}

]
<∞. (4.76)

Set w = log[mκ(s)]−b
s

, which is equal to logm+Λ(s)−b
s

. By (4.71), we see that w > Λ′(s) if and
only if s > 0 . From Proposition 4.5.2, we have for some constants 0 < c < 1, C > 0, and
all k ≥ 1,

sup
x∈S

Qx
s

(
sSx1n > nsw

)
≤ sup

x∈S
Qx
s

( |Sx1n − nΛ′(s)|
n

> |w− Λ′(s)|
)
≤ Ccn. (4.77)

Hence, to prove (4.76), it suffices to show that

sup
x∈S

∞∑
n=1

EQxs

[
logδ+H(n,G1nx)1{ |Sx1n−nΛ′(s)|

n
>|w−Λ′(s)|

}] <∞. (4.78)

Using Hölder’s inequality and (4.77), for 1 < p < 2
δ
and q > 1 with 1

p
+ 1

q
= 1, we obtain

EQxs

[
logδ+H(n,G1nx)1{ |Sx1n−nΛ′(s)|

n
>|w−Λ′(s)|

}]

≤
(
EQxs logδp+ H(n,G1nx)

) 1
p
[
Qx
s

( |Sx1n − nΛ′(s)|
n

> |w− Λ′(s)|
)] 1

q

≤
(
EQxs logδp+ H(n,G1nx)

) 1
p

(Ccn)
1
q . (4.79)

By (4.48) and (4.72), we have

EQxs logδp+ H(n,G1nx) ≤ C1(nδp + EQxs |S
x
1n − nqs|

δp),
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where C1 is independent of x. Since

lim
n→∞

1
n
EQxs

(
Sx1n − nqs

)2
= σ2

s ,

(see [28, Lemma 7.1] for s > 0 and [83, Proposition 3.14] for s ≤ 0), we get

EQxs logδp+ H(n,G1nx) ≤ C1n
2.

Combining this with (4.79) gives

sup
x∈S

∞∑
n=1

EQxs

[
logδ+H(n,G1nx)1{ |Sx1n−nΛ′(s)|

n
>|w−Λ′(s)|

}] < C
1
qC

1
p

1

∞∑
n=1

n
2
p c

n
q .

This gives (4.78), which implies (4.76).
By (4.75) and (4.76),

sup
x∈S

∞∑
n=1

In,2(x) <∞.

Hence Lemma 4.5.4 is proved.

Lemma 4.5.5. Assume the conditions of Theorem 4.2.4. For any ε > 0, there exists a
constant B > 0 such that for any x ∈ S and any n ≥ 0,

P
(
W x
s

W x
s,n

− 1 > −ε
∣∣∣∣Fn

)
≥ B.

Proof of Lemma 4.5.5. Let ε > 0, x ∈ S and n ≥ 0. Let T > 0. For u ∈ Tn, set
Yu = WXx

u
s − 1 and

Y T
u :=

 Yu if Yu < T

T if Yu ≥ T.

Then Y T
u ≤ Yu, and

P
(
W x
s

W x
s,n

− 1 > −ε
∣∣∣∣Fn

)
= P

( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Yu > −ε
∣∣∣∣Fn

)

≥ P
( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u > −ε

∣∣∣∣Fn

)
. (4.80)
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Using the facts that Y T
u ≤ T and 1

Wx
s,n

∑
u∈Tn H(n,Gux) = 1, we have

E
[ 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

∣∣∣∣Fn

]

= E
[( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

)
1{ 1

Wx
s,n

∑
u∈Tn

H(n,Gux)Y Tu ≤−ε}

∣∣∣∣Fn

]

+ E
[( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

)
1{ 1

Wx
s,n

∑
u∈Tn

H(n,Gux)Y Tu >−ε}

∣∣∣∣Fn

]

≤ (−ε) + T P
( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u > −ε

∣∣∣∣Fn

)
. (4.81)

We now prove that the expectation in the above display is uniformly bounded from below
by −ε/2 when T is large enough. By Theorem 4.2.2, for each u ∈ Tn, Yu satisfies

E(Yu|Fn) = E
[
WXx

u
s |Fn

]
− 1 = 0.

Using this and the definition of Y T
u , we have

E
[
Y T
u

∣∣∣∣Fn

]
= E

[
Yu1{Yu<T}

∣∣∣∣Fn

]
+ E

[
T1{Yu≥T}

∣∣∣∣Fn

]
= E

[
Yu(1− 1{Yu≥T})

∣∣∣∣Fn

]
+ E

[
(T1{Yu≥T}

∣∣∣∣Fn

]
= −E

[
(Yu − T )+

∣∣∣∣Fn

]
,

where (Yu − T )+ = max(Yu − T, 0). Therefore

E
[ 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

∣∣∣∣Fn

]
= − 1

W x
s,n

∑
u∈Tn

H(n,Gux)E
[
(Yu − T )+

∣∣∣∣Fn

]
.

Now

E
[
(Yu − T )+

∣∣∣∣Fn

]
≤ sup

y∈S
E
[
(W y

s − 1− T )+

∣∣∣∣Fn

]
= sup

y∈S
E
[
(W y

s − 1− T )+

]
≤ sup

y∈S
E
[
W y
s 1{W y

s >T}

]
T→+∞−→ 0,

where the last step holds because by Lemma 4.66, the family of random variablesW y
s , y ∈
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S is uniformly integrable. Let T > 0 be sufficiently large such that

sup
y∈S

E
[
W y
s 1{W y

s >T}

]
< ε/2.

Then for all x ∈ S and n ≥ 0,

E
[ 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u

∣∣∣∣Fn

]
> −1

2ε. (4.82)

Therefore, from (4.81), we obtain

P
( 1
W x
s,n

∑
u∈Tn

H(n,Gux)Y T
u > −ε

∣∣∣∣Fn

)
≥ ε

2T .

Hence, it follows from (4.80) that the inequality in the lemma holds with B = ε
2T .

Lemma 4.5.6. Assume the conditions of Theorem 4.2.4. For any 0 < a < 1, there exists
a constant B > 0 such that for any x ∈ S and any t > 0,

P(W x
s ≥ at) ≥ BP(W x

s,∗ ≥ t) ≥ BP(W x
s ≥ t).

Proof of Lemma 4.5.6. The second inequality is evident. We now prove the first one. For
t > 0, let

En = {W x
s,n ≥ t,W x

s,k < t for 0 ≤ k < n}, n ≥ 1.

As En are pairwise disjoint sets, for each a ∈ (0, 1) and each t > 0,

P(W x
s > at) ≥

∞∑
n=1

P(W x
s > at | En)P(En). (4.83)

By (4.65), we have for each a ∈ (0, 1) and each t > 0,

P(W x
s > at | En) = P

(
W x
s

W x
s,n

− 1 > at

W x
s,n

− 1
∣∣∣∣ En)

≥ P
(
W x
s

W x
s,n

− 1 > a− 1
∣∣∣∣ En),

where the last step holds because W x
s,n ≥ t on En. By using the fact that En ∈ Fn and
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applying Lemma 4.5.5, we have

P
(
W x
s

W x
s,n

− 1 > a− 1
∣∣∣∣ En) = E

[
P
(
W x
s

W x
s,n

− 1 > a− 1
∣∣∣∣ Fn

) ∣∣∣∣ En] ≥ B > 0,

where B is a constant independent of n. It follows from (4.83) that

P(W x
s > at) ≥ B

∞∑
n=1

P(En) = BP(W x
s,∗ ≥ t),

which proves the first inequality of the lemma.

4.5.2 Proof of Theorem 4.2.4

By the definition of Λ∗(qs) and Zx
n(dy, dz), we have

I := enΛ∗(qs)

mnrs(x)

∫
S×R

f(y)g(z − nqs)Zx
n(dy, dz)

= esnqs

[mκ(s)]nrs(x)
∑
u∈Tn

f(Xx
u)g(Sxu − nqs).

Set h(z) = e−szg(z), z ∈ R. For n ≥ 1 and 0 ≤ k ≤ n, we have the decomposition

I = 1
[mκ(s)]nrs(x)

∑
u∈Tn

f(Xx
u)h(Sxu − nqs)esS

x
u

= 1
[mκ(s)]nrs(x)

∑
u∈Tkn

esS
x
u

∑
v∈Tn−kn (u)

esS
Xxu
v f(XXx

u
v )h(SXx

u
v + Sxu − nqs)

= 1
[mκ(s)]krs(x)

∑
u∈Tkn

esS
x
urs(Xx

u)
∫
S×R

f(y)h(z + Sxu − nqs)
rs(y) W

Xx
u

s,n−kn(dy, dz),

where WXx
u

s,n−kn(dy, dz) is the probability measure defined as follows: for measurable sets
B ⊂ S and C ⊂ R,

W
Xx
u

s,n−k(B,C) =
∑

v∈Tn−k(u)

esS
Xxu
v rs(XXx

u
v )

[mκ(s)]n−krs(Xx
u)1{XXxu

v ∈B,SX
x
u

v ∈C}.
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Recall that for u ∈ Tkn , 0 ≤ kn ≤ n,H(kn, Gux) = esS
x
urs(Xx

u)
[mκ(s)]knrs(x) . From the preceding

decomposition of I, we obtain

σs
√

2πnI −W x
s πs

(
f

rs

) ∫
R
h(z)dz = An +Bn + Cn, (4.84)

where

An = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)
∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)(

W
Xx
u

s,n−kn(dy, dz)− Ekn
[
W

Xx
u

s,n−kn(dy, dz)
])
,

Bn =
∑
u∈Tkn

H(kn, Gux)
{
σs
√

2πn
∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)

Ekn
[
W

Xx
u

s,n−kn(dy, dz)
]
− πs

(
f

rs

) ∫
R
h(z)dz

}
,

Cn =
(
W x
s,kn −W

x
s

)
πs

(
f

rs

) ∫
R
h(z)dz.

We choose kn as follows. Let β be such that 3
2δ < β < 1 and α > 2

β−1−1 . For each n, let
j = j(n) ∈ N be such that jα/β ≤ n < (j + 1)α/β; set kn = aj = bjαc. Then kn ∼ nβ.

We will prove that with the above choice of (kn), An, Bn, Cn → 0 a.s. By the decom-
position (4.84), this will imply Theorem 4.2.4. By the convergence of the martingale W x

s,n

to W x
s , we have clearly Cn → 0, P-a.s. It remains to show that An → 0 and Bn → 0

P-a.s.

A) We first prove that An → 0 P-a.s. For u ∈ Tkn , write

Yu =
∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)

(
W

Xx
u

s,n−kn(dy, dz)− Ekn
[
W

Xx
u

s,n−kn(dy, dz)
])
,

Ỹu = Yu1{|Yu|< 1
H(kn,Gux)}
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Then

An = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)Yu

= σs
√

2πn
∑
u∈Tkn

H(kn, Gux)Ekn [Ỹu] + σs
√

2πn
∑
u∈Tkn

H(kn, Gux)
(
Yu − Ỹu

)

+ σs
√

2πn
∑
u∈Tkn

H(kn, Gux)
(
Ỹu − Ekn [Ỹu]

)

= An,1 + An,2 + An,3,

with An,i denoting the corresponding sum. We will show that each of these three terms
tends to zero a.s. as n→∞. We divide the proof into 3 steps.

Step 1. We prove that An,1 n→∞−→ 0 a.s. From the fact that 0 = Ekn [Yu] = Ekn [Ỹu] +
Ekn

[
Yu1{|Yu|> 1

H(kn,Gux)}

]
, we have

|An,1| ≤ σs
√

2πn
∑
u∈Tkn

H(kn, Gux)Ekn
[
|Yu|1{|Yu|> 1

H(kn,Gux)}

]
. (4.85)

Notice that for C > 0 large enough, sup(y,z)∈S×R |
f(y)h(z)
rs(y) | ≤ C. Using this and the fact

that Ekn
[
W

Xx
u

s,n−kn(S,R)
]

= Ekn
[
W

Xx
u

s,n−kn

]
= 1, we obtain

|Yu| ≤ C
(
W

Xx
u

s,n−kn + 1
)
. (4.86)

This implies that

Ekn
[
|Yu|1{|Yu|> 1

H(kn,Gux)}

]
≤ CEkn

[(
W

Xx
u

s,n−kn + 1
)
1{WXxu

s,n−kn+1> 1
CH(kn,Gux)}

]
=: E(WXx

u
s,n−kn).

Let

U = {H(kn, Gux) > d1e
−bn}, (4.87)

where b is chosen as in the proof of Lemma 4.5.4. Denote its complement by U c =
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{H(kn, Gux) ≤ d1e
−bn}. We have

|An,1| ≤ In,1 + In,2, (4.88)

where

In,1 = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)E(WXx
u

s,n−kn)1U ,

In,2 = σs
√

2πn
∑
u∈Tkn

H(kn, Gux)E(WXx
u

s,n−kn)1Uc .

For the first term In,1, by using the facts that E(WXx
u

s,n−kn) ≤ 2C and U ⊆ {sSxu >

kn(log[mκ(s)]− b)}, and the definition of Qx
s , we have

EIn,1 ≤ σs2C
√

2πnE
[ ∑
u∈Tkn

H(kn, Gux)1{sSxu>kn(log[mκ(s)]−b)}

]

= σs2C
√

2πnQx
s

(
sSx1kn > kn(log[mκ(s)]− b)

)
(4.89)

(recall that 1kn = (1, · · · , 1) is the sequence of length kn whose components are all equal
to 1). If s = 0, then E[In,1] = 0 by the choice of b. Hence we only need to consider
the case where s 6= 0, which we assume below. As in the proof of Lemma 4.5.4, setting
w = log[mκ(s)]−b

s
, we have w > Λ′(s) if and only if s> 0 by the choice of b. From Proposition

4.5.2, there are constants 0 < c < 1 and C1 > 0 such that

Qx
s

(
sSx1kn > kn(log[mκ(s)]− b)

)
≤ Qx

s

( |Sx1kn − knΛ′(s)|
kn

> |w− Λ′(s)|
)

≤ C1c
kn .

Hence, by (4.89), we get

∞∑
n=1

E[In,1] ≤ C2

∞∑
n=1

cn
β

n
1
2 <∞. (4.90)
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For the second term In,2, we see that

E(WXx
u

s,n−kn) 1Uc ≤ C1UcEkn
[
(WXx

u
s,n−kn + 1)1{WXxu

s,n−kn+1≥ ebkn
Cd1
}

]
≤ C1Uc

logδ+
(
ebkn

Cd1

)Ekn[(WXx
u

s,n−kn + 1) logδ(WXx
u

s,n−kn + 1)
]

≤ CC31Uc

(bkn)δ ,

where C3 = supx∈S E
[
(W x

s,∗ + 1) logδ(W x
s,∗ + 1)

]
< ∞ by Proposition 4.5.3. Therefore,

since kδn ∼ jαδ ∼ nβδ and βδ > 3/2, we have

∞∑
n=1

E[In,2] ≤
∞∑
n=1

CC3σs
√

2πn
(bkn)δ E[W x

s,kn ]

≤ C4

∞∑
n=1

√
n

nβδ
<∞. (4.91)

Putting together (4.88), (4.90) and (4.91), we get

∞∑
n=1

E[|An,1|] <∞.

Thus ∑∞n=0 |An,1| <∞ a.s., which implies that An,1 n→∞−→ 0 a.s.

Step 2. We prove that An,2 n→∞−→ 0 a.s. By the definition of Ỹu and inequality (4.86), for
any ε > 0,

Pkn
(
|An,2| > ε

)
≤ Pkn

( ∑
u∈Tkn

H(kn, Gux)(Yu − Ỹu) 6= 0
)

≤
∑
u∈Tkn

Pkn
(
Yu 6= Ỹu

)
=

∑
u∈Tkn

Pkn
(
|Yu| ≥

1
H(kn, Gux)

)

≤
∑
u∈Tkn

Ekn
[
1
{W

Xx
kn

s,n−kn+1> 1
CH(kn,Gux)}

]

≤
∑
u∈Tkn

Ekn
[
CH(kn, Gux)(WXx

kn
s,n−kn + 1)1

{W
Xx
kn

s,n−kn+1> 1
CH(kn,Gux)}

]

= C

σs
√

2πn
(In,1 + In,2),
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where In,1 and In,2 are defined in Step 1. Therefore, from (4.90) and (4.91), we get

∞∑
n=1

P(|An,2| > ε) ≤
∞∑
n=1

C

σs
√

2πn
E (In,1 + In,2) <∞.

So by the lemma of Borel-Cantelli, we conclude that An,2 → 0 P-a.s.

Step 3. We prove that An,3 n→∞−→ 0 a.s. By Markov’s inequality and von Bahr-Esseen’s
inequality [80, Theorem 2] or Marcinkiewicz-Zygmund’s inequality [32, Theorem 1.5],

we have for any ε > 0 and 1 < θ < 2

Pkn(|An,3| > ε) ≤ (σs
√

2πn)θ
εθ

Ekn
[∣∣∣∣ ∑
u∈Tkn

H(kn, Gux)(Ỹu − EknỸu)
∣∣∣∣θ]

≤ 2(σs
√

2πn)θ
εθ

∑
u∈Tkn

Hθ(kn, Gux)Ekn
[
|Ỹu − EknỸu|θ

]

≤ 4(σs
√

2πn)θ
εθ

∑
u∈Tkn

Hθ(kn, Gux)Ekn
[
|Ỹu|θ

]
≤ Kn,1 +Kn,2, (4.92)

where

Kn,1 = 4(σs
√

2πn)θ
εθ

∑
u∈Tkn

Hθ(kn, Gux)1U Ekn
[
|Ỹu|θ

]
,

Kn,2 = 4(σs
√

2πn)θ
εθ

∑
u∈Tkn

Hθ(kn, Gux)1Uc Ekn
[
|Ỹu|θ

]
.

For the first term Kn,1, by the definition of Ỹu, it is easy to see that

Kn,1 = 4(σs
√

2πn)θ
εθ

∑
u∈Tkn

Hθ(kn, Gux)1UEkn
[
|Yu|θ1{|Yu|< 1

H(kn,Gux)}

]

≤ 4(σs
√

2πn)θ
εθ

∑
u∈Tkn

H(kn, Gux)1UEkn
[
|Yu|1{|Yu|< 1

H(kn,Gux)}

]
,

where the last inequality holds because |Yu| < 1
H(kn,Gux) , and hence we have [H(kn, Gux)|Yu|]θ−1 <
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1. Using the facts that Ekn [|Yu|] ≤ 2 and U ⊂ {sSxu > kn(log[mκ(s)]− b)}, we get that

E[Kn,1] ≤ 8(σs
√

2πn)θ
εθ

Qx
s

(
sSx1kn > kn(log[mκ(s)]− b)

)
.

Similar to (4.90), with the same reason we get, for some constants 0 < c < 1 and C > 0,

∞∑
n=1

E[Kn,1] < C
∞∑
n=1

cn
β

n
θ
2 <∞. (4.93)

For the second term Kn,2, using the definition of Ỹu, Fubini’s theorem and inequality
(4.86), we have

Ekn [|Ỹu|θ] =
∫ ∞

0
θyθ−1Pkn(|Ỹu| > y)dy

= θ
∫ ∞

0
yθ−1Pkn(|Yu|1{|Yu|< 1

H(kn,Gux)}
> y)dy

= θEkn
[ ∫ 1

H(kn,Gux)

0
yθ−11{

|Yu|1{|Yu|< 1
H(kn,Gux) }

>y

}dy]

≤ θ
∫ 1

H(kn,Gux)

0
yθ−1Pkn(WXx

u
s,n−kn + 1 > y

C
)dy.

By the change of variables z =
(
y
C

)θ−1
, we obtain

Ekn [|Ỹu|θ] ≤ θCθ
∫ [CH(kn,Gux)]1−θ

0
z

1
θ−1Pkn

(
(WXx

u
s,n−kn + 1)θ−1 > z

)
dz

≤ θCθ
∫ [CH(kn,Gux)]1−θ

0
Ekn

[
(WXx

u
s,n−kn + 1)1{(

W
Xxu
s,n−kn+1

)θ−1
>z

}]dz. (4.94)

We split the above integral according to z ∈ [0, e] and z ∈ (e, [CH(kn, Gux)]1−θ]. For the
integral over z ∈ [0, e], we use

Ekn
[
(WXx

u
s,n−kn + 1)1{(

W
Xxu
s,n−kn+1

)θ−1
>z

}] ≤ Ekn(WXx
u

s,n−kn + 1) = 2.
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For the integral over z ∈ (e, [CH(kn, Gux)]1−θ], we use

Ekn
[
(WXx

u
s,n−kn + 1)1{(

W
Xxu
s,n−kn+1

)θ−1
>z

}]

≤ θ − 1
logδ z

Ekn
[
(WXx

kn
s,n−kn + 1) logδ(WXx

kn
s,n−kn + 1)

]
≤ C3(θ − 1)

logδ z
,

where C3 = supx∈S E
[
(W x

s,∗ + 1) logδ(W x
s,∗ + 1)

]
< ∞ by Proposition 4.5.3. Hence, by

(4.94),

Ekn [|Ỹu|θ] ≤ 2θC2θe

+ θ(θ − 1)CθC31{[CH(kn,Gux)]1−θ>e}

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz. (4.95)

By the definition of Kn,2 and inequality (4.95), we get

Kn,2 ≤ C4n
θ
2
∑
u∈Tkn

Hθ(kn, Gux)1Uc

·
(

1 + 1{[CH(kn,Gux)]1−θ>e}

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz
)
. (4.96)

Now consider the integral in the last expression. Take a constant 1 < d2 < eb, we see that
on U c, we have 1

CH(kn,Gux) ≥
1
C
rs(x)ebkn ≥ C5d

kn
2 . Let n0 ∈ N∗ be large enough such that

[C5d
kn0
2 ]θ−1 > e. Using log z ≥ 1 for z ∈ [e, [C5d

kn
2 ]θ−1], and log z ≥ (θ − 1) log

(
C5d

kn
2

)
for z > [C5d

kn
2 ]θ−1, we see that when [CH(kn, Gux)]1−θ > e and n > n0, we have

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz

=
∫ [C5d

kn
2 ]θ−1

e

1
logδ z

dz +
∫ [CH(kn,Gux)]1−θ

[C5d
kn
2 ]θ−1

1
logδ z

dz

≤ [C5d
kn
2 ]θ−1 + [CH(kn, Gux)]1−θ(

(θ − 1) log(C5d
kn
2 )
)δ

≤ C6

(
d

(θ−1)kn
2 + [CH(kn, Gux)]1−θ

kδn

)
. (4.97)

When [CH(kn, Gux)]1−θ > e and n ≤ n0, the above inequality (4.97) remains valid by
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choosing C6 large enough such that C6 > kδn0/C
θ−1, since for all 1 ≤ n ≤ n0,

∫ [CH(kn,Gux)]1−θ

e

1
logδ z

dz ≤ [CH(kn, Gux)]1−θ ≤ C6[H(kn, Gux)]1−θ
kδn

.

From (4.96) and (4.97) we obtain

∞∑
n=1

E[Kn,2] ≤ C6

∞∑
n=1

n
θ
2E
[ ∑
u∈Tkn

Hθ(kn, Gux)1Uc

·
(

1 + d
(θ−1)kn
2 + [H(kn, Gux)]1−θ

kδn

)]

≤ C6

rs(x)θ−1

∞∑
n=1

E[W x
s,kn ]n

θ
2 (1 + d

(θ−1)kn
2 )

eb(θ−1)kn
+ C6

∞∑
n=1

E[W x
s,kn ]n

θ
2

kδn
, (4.98)

where the last inequality holds because on U c (see Eq. (4.87)), H(kn, Gux) ≤ 1
rs(x)ebkn ,

so that Hθ(kn, Gux) = H(kn, Gux)Hθ−1(kn, Gux) ≤ H(kn,Gux)
[rs(x)ebkn ]θ−1 (for the second term we

just use the identity Hθ(kn, Gux)[H(kn, Gux)]1−θ = H(kn, Gux)). We choose θ sufficiently
close to 1. Since E[W x

s,kn ] = 1, kn ∼ jα ∼ nβ, 1 < d2 < eb and βδ > 3
2 , the two series∑∞

n=1
n
θ
2 (1+d(θ−1)kn )
eb(θ−1)kn and ∑∞n=1

n
θ
2

1+kδn
converge. Therefore from (4.98), we get

∞∑
n=1

EKn,2 <∞. (4.99)

Combining (4.92), (4.93) and (4.99), we conclude that for any ε > 0

∞∑
n=1

P(|An,3| > ε) <∞.

By the Lemma of Borel-Cantelli, it follows that An,3 n→∞−→ 0 a.s.

B) We then prove that Bn → 0 P-a.s. By the definition of WXx
u

s,n−kn(dy, dz), the
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branching property, and the definition of Qx
s (cf.(4.43)), we obtain successively,

∫
S×R

f(y)
rs(y)h(z + Sxu − nqs)Ekn

[
W

Xx
u

s,n−kn(dy, dz)
]

=
Ekn

[∑
v∈Tn−kn (u) e

sS
Xxu
v rs(XXx

u
v ) f(XXxu

v )
rs(X

Xxu
v )

h(SXx
u

v + Sxu − nqs)
]

[mκ(s)]n−knrs(Xx
u)

=
Ekn

[
esS

Xxu
n−knrs(XXx

u
n−kn) f(XXxu

n−kn )

rs(X
Xxu
n−kn )

h(SX
x
u

n−kn + Sxu − nqs)
]

[κ(s)]n−knrs(Xx
u)

= EQxs

[
f(XXx

u
n−kn)

rs(XXx
u

n−kn)
h
(
S
Xx
u

n−kn − (n− kn)qs + Sxu − knqs
)
|Fkn

]
(4.100)

=: RHS(4.100).

Hence, by the definition of Bn,

Bn =
∑
u∈Tkn

H(kn, Gux)
[
σs
√

2πnRHS(4.100) − πs
( f
rs

) ∫
R
h(z)dz

]

=
∑
u∈Tkn

H(kn, Gux)
√

2πn
n− kn

σs√(n− kn)RHS(4.100)

−
√
n− kn

2πn πs
( f
rs

) ∫
R
h(z)dz

.
By Proposition 4.5.1,

∣∣∣∣σs√n− knRHS(4.100) − πs(
f

rs
)
∫
R
h(z)φ

(
z − Sxu + knqs
σs
√
n− kn

)
dz

∣∣∣∣
≤ sup

(x,y)∈S×R

∣∣∣∣σs√n− knEQxs

[
f(Xx

n−kn)
rs(Xx

n−kn)h(y + Sxn−kn − (n− kn)qs)
]

− πs(
f

rs
)
∫
R
h(z)φ

(
z − y

σs
√
n− kn

)
dz

∣∣∣∣
n→∞−→ 0.

Since ∑u∈Tkn H(kn, Gux)
√

2πn
n−kn ∼ W x

s,kn

√
2π → W x

s

√
2π a.s., it follows that Bn

n→∞−→ 0
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a.s. if and only if

∣∣∣∣ ∫
R
h(z)

∑
u∈Tkn

H(kn, Gux)
[√ 2πn

n− kn
φ
(
z − Sxu + knqs
σs
√
n− kn

)
− 1

]
dz
∣∣∣∣ n→∞−→ 0 a.s.

We shall prove this convergence by the the dominated convergence theorem. Notice
that the function in the above integral is bounded by Ch(z)W x

s,kn ≤ CW x
s,∗h(z) which is

integrable on R. So it suffices to prove that for z ∈ R,

Dn(z) :=
∣∣∣∣
√

2πn
n− kn

∑
u∈Tkn

H(kn, Gux)φ
(
z − Sxu + knqs
σs
√
n− kn

)
−W x

s,kn

∣∣∣∣ n→∞−→ 0 a.s. (4.101)

Using the fact that |φ(x)− φ(y)| ≤ C|x− y|, we see that for all z ∈ R

Dn(z) ≤
√

2πn
n− kn

∑
u∈Tkn

H(kn, Gux)
∣∣∣∣φ(z − Sxu + knqs

σs
√
n− kn

)
− φ

(
z

σs
√
n− kn

)∣∣∣∣
+W x

s,kn

∣∣∣∣
√

2πn
n− kn

φ
(

z

σs
√
n− kn

)
− 1

∣∣∣∣
≤ C

∑
u∈Tkn

H(kn, Gux) |S
x
u − knqs|

σs
√
n− kn

+W x
s,kn

∣∣∣∣
√

2πn
n− kn

φ
(

z

σs
√
n− kn

)
− 1

∣∣∣∣.
It is clear that the second term converges to 0 a.s. as n→∞. For the first term, we use
the same argument as the proof of (4.42), noting that

E
[ ∑
u∈Tkn

H(kn, Gux) |S
x
u − knqs|

σs
√
n− kn

]
=

EQxs

[
|Sxkn − knqs|

]
σs
√
n− kn

,

and (see [28, Lemma 7.1] for s > 0 and [83, Proposition 3.14] for s ≤ 0)

lim
n→∞

1
n
EQxs

(
Sxn − nqs

)2
= σ2

s .

Therefore, (4.101) holds. This shows that Bn
n→∞−→ 0 a.s. The proof of Theorem 4.2.4 is

therefore completed.
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Chapter 5
Berry-Esseen bound and precise moderate de-
viations for branching random walks with prod-
ucts of random matrices

We consider a branching random walk where particles give birth to children as a Galton-
Watson process, which move in Rd according to products of independent and identically
distributed random matrices. We establish a Berry-Esseen bound and a Cramér type
moderate deviation expansion for the counting measure which counts the number of par-
ticles in generation n situated in a region, as n → ∞. In the proof, we construct a
new martingale, and establish its uniform convergence as well as that of the fundamental
martingale.

5.1 Introduction

A branching random walk in Rd is a system of particles, where particles behave indepen-
dently, and each particle gives birth to a random number of children which move in Rd

with independent and identically distributed (i.i.d.) displacements. One of the funda-
mental problems on this model is the study of the counting measure which counts the
number of particles of generation n situated in a Borel set of Rd. This problem has been
studied by many authors, see e.g. [48, 78, 2, 3, 15, 16, 29, 39, 40, 30], where central
limit theorems and large deviations have been considered. For other important topics
and closely related models, see for example the recent papers [6, 25, 52, 72, 5], the recent
books [77, 26, 54] and many references therein.

In the classical branching random walk, a particle whose parent is at position y, moves
to position y + l with i.i.d. increments l’s for different particles, so that the moving is
a simple random translation. Recently, in [23] the authors consider a branching random
walk in Rd with products of random matrices, in which the position of a particle is
obtained by the action of a matrix A on the position of its parent, where the matrices
A’s corresponding to different particles are i.i.d. In other words, the positions of particles
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are obtained by the action of products of random matrices on the position of the initial
particle. This permits us to extend significantly the domains of applications of the theory
of branching random walks, but the study of the model becomes much more involved. In
[23], a central limit theorem and a large deviation asymptotic expansion of Bahadur-Rao
type for the counting measure have been proved. In this paper, we will establish the
Berry-Esseen bound about the rate of convergence in the central limit theorem, and a
moderate deviation expansion of Cramér type.

For a precise description of the model we need some notation. Let N = {0, 1, 2, . . .}
and N∗ = {1, 2, . . .}. Set U := ∪∞n=0(N∗)n, where by convention (N∗)0 = {∅}. A particle of
generation n will be denoted by a sequence u = u1 · · ·un = (u1, · · · , un) ∈ (N∗)n of length
n; the initial particle will be denoted by the null sequence ∅. Assume that on a probability
space (Ω,F ,P) we are given a set of independent identically distributed random variables
(Nu)u∈U of the same law p = {pk : k ∈ N}, and a set of independent identically distributed
d × d random matrices (Au)u∈U of the same law µ on the set of d × d matrices M(d,R),
where d ≥ 2. The two families (Nu)u∈U and (Au)u∈U are also assumed to be independent.

A branching random walk in Rd with products of random matrices is defined as follows.
At time 0, there is one initial particle ∅ of generation 0, with initial position Y∅ := x ∈
Rd \ {0}. At time 1, the initial particle ∅ is replaced by N = N∅ new particles i = ∅i of
generation 1, located at Yi = AiY∅, 1 ≤ i ≤ N . In general, at time n + 1, each particle
u = u1 . . . un of generation n, located at Yu ∈ Rd, is replaced by Nu new particles ui of
generation n+ 1, located at Yui = AuiYu, 1 ≤ i ≤ Nu. Namely, the position of the particle
ui is obtained from the position of u by the action of the matrix Aui on the vector Yu.
Consequently the position Yu of a particle u in generation n ≥ 1 is given by the action of
products of random matrices on the position x of the initial particle ∅:

Yu = Gux, where Gu = Au1...un . . . Au1 . (5.1)

Denote by T the genealogical tree associated to the elements {Nu : u ∈ U}, defined
by the following properties: 1) ∅ ∈ T; 2) when u ∈ T, then for i ∈ N, ui ∈ T if and only
if 1 ≤ i ≤ Nu; 3) ui ∈ T implies u ∈ T. Let

Tn = {u ∈ T : |u| = n}

be the set of particles of generation n, where |u| denotes the length of the sequence u and
represents the number of generation to which u belongs; by convention |∅| = 0.
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The space Rd is equipped with the Euclidean norm | · |. The position Gux of the
particle u is completely described by two components: its norm |Gux| and its projection
on the unit sphere Sd−1 := {y ∈ Rd, |y| = 1} denoted by

Xx
u := Gux

|Gux|
.

Accordingly, we consider the following counting measure of particles of generation n which
describes the configuration of the branching random walk at time n: for measurable sets
B1 ⊂ Sd−1 and B2 ⊂ R,

Zx
n(B1, B2) =

∑
u∈Tn

1{Xx
u∈B1, log |Gux|∈B2}, (5.2)

where for a set D, 1D denotes its indicator function.

In [23], a central limit theorem for the counting measure Zx
n (with the starting point

x ∈ Sd−1) was established for both the case where the matrices Au are nonnegative, and
the case where the matrices Au are invertible. It implies that, under suitable conditions,
for some constants γ, σ explicitly defined (see (5.5) and (5.6)) , the counting measure B2 7→
Zx
n(Sd−1, nγ + σ

√
nB2) on R with a suitable norming converges to the standard normal

law. In [23], a precise large deviation result of Bahadur-Rao type was also established,
which gives in particular the exact asymptotic of Zx

n

(
Sd−1, [na,+∞)

)
for a > γ.

In this paper, our first objective is to strengthen the central limit theorem in [23] to
a Berry-Esseen bound for the counting measure Zx

n with a target function ϕ on Xx
u : see

Theorem 5.2.1. With ϕ = 1, it implies that, under suitable conditions, for any x ∈ Sd−1

and n ≥ 1, we have, a.s.

sup
y∈R

∣∣∣∣∣ 1
mn

Zx
n

(
Sd−1, nγ + σ

√
n(−∞, y]

)
−WΦ(y)

∣∣∣∣∣ ≤ M√
n
, (5.3)

where Φ(y) = 1√
2π
∫ y
−∞ e

−t2/2dt is the distribution function of the standard normal law
and M is a finite and positive random variable.

Our second objective is to establish Cramér type moderate deviation expansion for Zx
n

with a target function ϕ on Xx
u : see Theorem 5.2.2. From this theorem with ϕ = 1, we

know that, under suitable conditions, for any x ∈ Sd−1 and 0 ≤ y = o(
√
n), as n → ∞,
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a.s.,

Zx
n

(
Sd−1, nγ + σ

√
n(−∞, y]

)
mnW [1− Φ(y)] = e

y3
√
n
ζ( y√

n
)
[
1 +O

(
y + 1√
n

)]
, (5.4)

where t 7→ ζ(t) is the Cramér series (see (5.9)).

An important step in attaining these two objectives is to establish a Berry-Esseen
bound for the Cramér type changed measure Zx

s,n (see (5.18)). This will be done in
Theorem 5.2.3. Theorem 5.2.1 will be obtained from Theorem 5.2.3 by taking s = 0, and
Theorem 5.2.2 will be established by using Theorem 5.2.3 and by adapting the techniques
from Petrov [75].

To facilitate the comprehension, let us present some ideas in the proof of Theorem
5.2.3. As in [24] where the one dimensional case is considered, we need to study the
asymptotic of the characteristic function of the changed measure Zx

s,n. Inspired by the
approach in [24], we would like to express the characteristic function of Zx

s,n in terms of
a martingale and a quantity that can be controlled by the theory of products of random
matrices. However, in contrast to the one dimensional case, we cannot obtain directly
an expression of the characteristic function in terms of a martingale. Fortunately, using
the spectral gap theory for products of random matrices established in [46, 25, 28] and
recently developed in [83], we have been able to define a new martingale which is similar
to the fundamental martingale and which can be used for a suitable approximation of
the characteristic function of Zx

s,n. We conclude by proving the uniform convergence and
analyticity with respect to a complex parameter of the new martingale, and by using the
asymptotic properties of the eigenvalue of the pertubed transfer operator related to the
products of random matrices. See Theorem 5.4.3 and Lemma 5.5.6 for details.

The rest of the paper is organized as follows. In Section 5.2, we fix some notation,
introduce our assumptions on the branching products of random matrices, and state the
main results. In Section 5.3, we recall some spectral gap properties on products of random
matrices stated in [83]. In Section 5.4, the uniform convergence and analyticity of the
constructed martingale are established. Sections 5.5 and 5.6 are devoted to the proofs of
the main results.
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5.2 Main results

5.2.1 Notation and assumptions on products of random matri-
ces

Note that in our model, along each branch we encounter a product of random matrices.
In this section, we introduce some notation and the necessary assumptions on products of
random matrices in order to formulate our main results. We shall consider two cases, the
case when the matrices are nonnegative and the case when the matrices are invertible.

The set M(d,R) of d × d real matrices is equipped with the operator norm: ‖a‖ =
supx∈Sd−1 |ax| for a ∈ M(d,R), where | · | is a given vectorial norm on Rd, and Sd−1 =
{x ∈ Rd : |x| = 1} is the unit sphere in Rd. A matrix a ∈ M(d,R) is said to be proximal
if it has an algebraic simple dominant eigenvalue. Denote byM+ the set of matrices with
nonnegative entries. A nonnegative matrix a ∈ M+ is said to be allowable if every row
and every column of a has a strictly positive entry.

Let µ be a probability measure on M(d,R). Denote by Γµ := [supp µ] the smallest
closed semigroup of M(d,R) generated by the support of µ. We say that the measure µ
is arithmetic if there are t > 0, θ ∈ [0, 2π) and a function ϑ : Sd−1

+ → R such that

∀a ∈ Γ, ∀x ∈ V (Γ) : exp[it log |ax| − iθ + i(ϑ(a · x)− ϑ(x))] = 1,

where Sd−1
+ = {x ≥ 0 : |x| = 1} is the intersection of the unit sphere with the positive

quadrant. Notice that when d = 1, we have Sd−1
+ = {1}, and the above arithmetic condi-

tion reduces to the following more usual form: log a is almost surely (a.s.) concentrated
on an arithmetic progression a0 + a1N for some a0, a1 > 0.

We will need the following assumptions on the law µ.

L1.

1. For invertible matrices:

(a) (Strong irreducibility)There is no finite unionW = ⋃n
i=1Wi of proper subspaces

0 6= Wi ( Rd which is Γµ-invariant (in the sense that aW = W for each
a ∈ Γµ).

(b) (Proximality) Γµ contains at least one proximal matrix.

2. For nonnegative matrices:
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(a) (Allowability) Every a ∈ Γµ is allowable.

(b) (Positivity) Γµ contains at least one matrix belonging to int(M+).

(c) (Non-arithmeticity) The measure µ is non-arithmetic.

For both invertible matrices and nonnegative matrices, we will need a moment condi-
tion. For a ∈M(d,R), set

ι(a) := inf
x∈S
|ax|, and a · x := ax

|ax|
when ax 6= 0,

where a · x is called the projective action of the matrix a on the vector x ∈ Sd−1. Then
ι(a) > 0 for both invertible matrices and allowable nonnegative matrices. Set, for an
invertible or nonnegative matrix a,

N(a) = max{‖a‖, ι(a)−1}.

For invertible matrices we have ι(a) = ‖a−1‖−1 and N(a) = max{‖a‖, ‖a−1‖}.

L2. (Moment condition) There exists η0 ∈ (0, 1) such that

E[N(A1)η0 ] <∞.

We will consider the action of invertible matrices on the projective space Pd−1 which
is obtained from Sd−1 by identifying x and −x, and the action of nonnegative matrices
on Sd−1

+ . For convenience we identify x ∈ Pd−1 with one of its representants in Sd−1. To
unify the exposition, we use the symbol S to denote Pd−1 for invertible matrices, and Sd−1

+

for nonnegative matrices. The space S will be equipped with the metric d, which is the
angular distance (see [20]) for invertible matrices, and the Hilbert cross-ratio metric (see
[49]) for nonnegative matrices. Moreover, S is a separable metric space equipped with
Borel σ-field.

Let C(S) be the space of continuous complex-valued functions on S. For β > 0
sufficiently small, we introduce the Banach space

Bβ = {f ∈ C(S) : ‖f‖β < +∞},
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equipped with the norm

‖f‖β := ‖f‖∞ + |f |β,

where

‖f‖∞ := sup
x∈S
|f(x)|, |f |β := sup

x,y∈S,x6=y

|f(x)− f(y)|
dβ(x, y) .

Let Gn = An . . . A2A1 be the product of i.i.d. d× d real random matrices Ai, defined
on the probability space (Ω,F ,P), with common law µ. Let x ∈ S be a starting point.
As mentioned in the introduction, the random walk Gnx is completely determined by its
log norm and its projection on S, denoted respectively by

Sxn := log |Gnx|, Xx
n := Gn · x = Gnx

|Gnx|
, n ≥ 0,

with the convention that G0x = x. Since Sxn+1 = log |An+1X
x
n |+Sxn and Xx

n+1 = An+1 ·Xx
n ,

the sequence (Sxn, Xx
n)n≥0 is a Markov chain.

Denote by E the expectation with respect to P. By the law of large numbers of
Furstenberg [38], under conditions L1 and L2, we have

lim
n→∞

1
n
Sxn = lim

n→∞

1
n
E[Sxn] = γ P-a.s., (5.5)

where γ = infn∈N 1
n
E log ‖Gn‖ is the upper Lyapunov exponent associated with the prod-

uct sequence (Gn). Le Page [63] and Henion [49] showed that

σ2 = lim
n→∞

1
n
E (Sxn − nγ)2 (5.6)

exists and is independent of x for invertible matrices and nonnegative matrices, respec-
tively. Moreover, there exists a unique µ-stationary probability measure ν on S (see [46,
25]): µ ∗ ν = ν, that is, for any ϕ ∈ C(S),

(µ ∗ ν)(ϕ) :=
∫
S

∫
Γµ
ϕ(a · x)µ(da)ν(dx) = ν(ϕ),

where ν(ϕ) =
∫
S ϕ(x)ν(dx), and this notation for the integral will be used for any function

and any measure. Define the transfer operator on C(S) as follows: for any s ∈ (−η0, η0),
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and f ∈ C(S),

Psf(x) = E[|A1x|sf(A1 · x)], for all x ∈ S. (5.7)

It is known that under conditions L1 and L2, there exists a small constant 0 < η1 < η0

such that for any s ∈ (−η1, η1), there are a unique probability measure νs and a unique
Hölder continuous function rs on S satisfying ν(rs) = 1 and

νsPs = κ(s)νs and Psrs = κ(s)rs, (5.8)

where κ(s) is the unique dominant eigenvalue of Ps, νsPs is the mesure on S such that
(νsPs)(f) = νs(Psf) for all f ∈ C(S). In particular, r0 = 1 and κ(0) = 1. For s ∈ [0, η1),
the property (5.8) is proved in [25, Proposition 3.1] and [28, Corollary 7.3] for positive
matrices, and in [46, Theorem 2.6 and Corollary 3.20] for invertible matrices. For both
positive matrices and invertible matrices, the existence of η1 > 0 and the property (5.8)
for s ∈ (−η1, η1) are proved in [83, Proposition 3.1], where the following properties are
also established: the functions s 7→ κ(s) and s 7→ rs(x) are strictly positive and analytic
in (−η1, η1), for x ∈ S. Moreover, it is proved (see [46, Lemma 3.5], [25, Lemma 6.2],
[83, Propositions 3.12 and 3.14]) that, under conditions L1 and L2, the function Λ(s) =
log κ(s) is finite and analytic on (−η1, η1), and satisfies

Λ′(0) = γ, Λ′′(0) = σ2 > 0, and Λ′′(s) > 0 ∀s ∈ (−η1, η1).

Denote γk = Λk(0), k ≥ 1. Throughout the paper, we write ζ for the Cramér series
associated to Λ (see [75, Theorem VIII.2.2] for details):

ζ(t) = γ3

6γ3/2
2

+ γ4γ2 − 3γ2
3

24γ3
2

t+ γ5γ
2
2 − 10γ4γ3γ2 + 15γ3

3

120γ9/2
2

t2 + . . . (5.9)

which converges for |t| small enough.

5.2.2 Main results

Let Zn = Zx
n(S,R) be the population size at time n, which does not depend on the starting

point x, and which forms a Galton-Watson process with Z0 = 1 and Z1 = N . Denote
by m = EN the expected value of the offspring distribution. Throughout the paper, we
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assume that
m ∈ (1,∞) and P(N = 0) = 0.

Therefore the branching process (Zn) is supercritical, and Zn →∞ a.s. as n→∞. It is
well known that EZn = mn. Let

W = lim
n→∞

Wn, where Wn = Zn
mn

, n ≥ 0,

is the fundamental martingale for the Galton-Watson process (Zn), and the limit exists
a.s. by the martingale convergence theorem. An important ingredient in studying Berry-
Esseen bound and moderate deviation expansion is the fundamental martingale associated
to branching random walks with products of random matrices, defined for s ∈ (−η1, η1)
and x ∈ S

W x
n (s) :=

∑
u∈Tn e

sSxurs(Xx
u)

[mκ(s)]nrs(x) , n ≥ 0. (5.10)

This is a positive martingale with respect to the natural filtration

F0 = {∅,Ω} and Fn = σ(Nu, Aui : i ≥ 1, |u| < n) for n ≥ 1.

By the martingale convergence theorem, the limit

W x(s) := lim
n→∞

W x
n (s) exists in R P-a.s.

Set Λ∗(qs) = sqs−Λ(s) with qs = Λ′(s). It is proved in [23] that under conditions L1 and
L2, if

Λ∗(qs)− logm < 0 (5.11)

and

E[max
x∈S

W x
s,1 log+ max

x∈S
W x
s,1] <∞, (5.12)
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where log+ x = max{0, log x} denotes the positive part of log x, then for all x ∈ S, W x(s)
is non-degenerate with

E[W x(s)] = 1.

Set

J = {s ∈ (−η1, η1) : Λ∗(qs)− logm < 0}, (5.13)

which is an open interval containing 0. We assume the following moment condition slightly
stronger than (5.12):

L3. There are constants γ0 > 1 and 0 < η2 <
η1
2 with [−η2, η2] ⊂ J such that

E
[

max
x∈S

(
W x

1 (s)
)γ0]

<∞ ∀ s ∈ [−η2, η2].

It is clear that conditions L1-L3 (together with the hypothesis P(N = 0) = 0 that we
assume always), imply that for all x ∈ S, W x(s) > 0 a.s. and E[W x(s)] = 1; in particular
(when s = 0), W > 0 a.s. and E[W ] = 1.

Our first result is the Berry-Esseen bound for the counting measure Zx
n :

Theorem 5.2.1. Assume conditions L1-L3. Then, for any x ∈ S, ϕ ∈ Bβ and n ≥ 1,
we have, a.s.,

sup
y∈R

∣∣∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
≤y
} −Wν(ϕ)Φ(y)

∣∣∣∣∣ ≤ M√
n
, (5.14)

where Φ(y) = 1√
2π
∫ y
−∞ e

−t2/2dt is the distribution function of the standard normal law and
M is a finite and positive random variable.

This is a Berry-Esseen type bound for the counting measure Zx
n with suitable norming

because the sum in (5.14) is an integral with respect to Zx
n :

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
≤y
} =

∫
S×R

ϕ(z1)1{ z2−nγ
σ
√
n
≤y
}Zx

n(dz1, dz2). (5.15)

Our second result is the Cramér’s moderate deviation expansion for Zx
n .
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Theorem 5.2.2. Assume conditions L1-L3. Then, we have for any x ∈ S, ϕ ∈ Bβ, 0 ≤
y = o(

√
n), as n→∞, a.s.,

∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≥√nσy}
mnW [1− Φ(y)] = e

y3
√
n
ζ( y√

n
)
[
ν(ϕ) +O

(
y + 1√
n

)]
, (5.16)

and ∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≤−√nσy}
mnWΦ(−y) = e

− y3
√
n
ζ(− y√

n
)
[
ν(ϕ) +O

(
y + 1√
n

) ]
. (5.17)

An important step in the proof of the moderate deviation expansion is to establish a
Berry-Esseen bound for the changed measure Zx

s,n defined by for measurable sets B1 ⊂
Sd−1 and B2 ⊂ R,

Zx
s,n(B1, B2) =

∫
B1×B2

esz2rs(z1)
[mκ(s)]nrs(x)Z

x
n(dz1, dz2)

=
∑
u∈Tn

esS
x
urs(Xx

u)
[mκ(s)]nrs(x)1{X

x
u∈B1,Sxu∈B2}. (5.18)

Our third result is a Berry-Esseen bound for the changed measure Zx
s,n:

Theorem 5.2.3. Assume conditions L1-L3. Then, for any x ∈ S and ϕ ∈ Bβ there
exists a constant 0 < η < η2 such that a.s., for n ≥ 1,

sup
s∈(−η,η)

sup
y∈R

∣∣∣∣∣∣
∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
≤y
} −W x(s)πs(ϕ)Φ(y)

∣∣∣∣∣∣ ≤ M√
n
, (5.19)

where M is a positive and finite random variable.

This is a Berry-Esseen type bound for Zx
s,n because, similar to the case of Theorem

5.2.1, the sum in (5.19) is an integral with respect to Zx
s,n:

∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
≤y
}

=
∫
S×R

ϕ(z1)1{ z2−nΛ′(s)
σs
√
n
≤y
}Zx

s,n(dz1, dz2). (5.20)
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5.3 Preliminary results on products of random ma-
trices

In this section we recall some spectral gap properties stated in [83] which will be used for
the proofs of main results.

Define the operator Pz on C(S) by

Pzf(x) = E[|A1x|zf(A1 · x)], for all x ∈ S, z ∈ C. (5.21)

Denote by L(Bβ,Bβ) the set of all bounded linear operators from Bβ to Bβ equipped with
the operator norm

‖P‖Bβ→Bβ := sup
f 6=0

‖Pf‖β
‖f‖β

, ∀P ∈ L(Bβ, Bβ).

We write B′β for the topological dual of Bβ endowed with the norm ‖ν‖B′
β

= sup‖ϕ‖β=1 |ν(ϕ)|
for any linear functional ν ∈ B′β. For any η > 0, set Bη(0) = {z ∈ C : |z| < η} for the ball
with center 0 and radius η in the complex plane C.

Lemma 5.3.1. Assume conditions L1 and L2. There exists a small η1 ∈ (0, η0) such
that for any z ∈ Bη1(0) and n ≥ 1, we have the decomposition

P n
z = κn(z)Mz + Lz, (5.22)

where the operator Mz is a rank one projection on Bβ, the mappings on Bη1(0),

z 7→ κ(z) ∈ C, z 7→ rz ∈ Bβ, z 7→ νz ∈ B′β, z 7→ Lz ∈ L(Bβ,Bβ)

are well-defined under the normalizing conditions νz(1) = ν(rz) = 1. All these mappings
are analytic in Bη1(0), and possess the following properties:

1. for any z ∈ Bη1(0), it holds that MzLz = LzMz = 0;

2. for any z ∈ Bη1(0), Pzrz = κ(z)rz and νzPz = κ(z)νz;

3. κ(s) and rs are real-valued and satisfy κ(s) > 0 and rs(x) > 0 for any s ∈ (−η1, η)
and x ∈ S;
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4. there exist two constants 0 < a1 < a2 < 1 such that for all z ∈ Bη1(0) and all
n ∈ N∗, |κ(z)| > 1− a1 and ‖Lnz‖Bβ→Bβ ≤ c(1− a2)n .

For fixed s ∈ (−η1, η1) and x ∈ S, the spectral gap property (5.8) allows to define
a probability measure Qx

s on (Ω,F) such that for any n ∈ N and any bounded and
measurable function h on (S × R)n+1,

E
[
esS

x
nrs(Xx

n)
κn(s)rs(x) h(Xx

0 , S
x
0 , . . . , X

x
n , S

x
n)
]

= EQxs [h(Xx
0 , S

x
0 , . . . , X

x
n , S

x
n)] , (5.23)

where EQxs denotes the expectation with respect to Qx
s . See [25, 28, 46] for s ≥ 0, and [83]

for s < 0.
Under the changed measure Qx

s , the process (Xx
n)n∈N is a Markov chain with the

transition operator Qs defined by, for any s ∈ (−η1, η1) and ϕ ∈ Bβ,

Qsϕ(x) = 1
κ(s)rs(x)Ps(ϕrs)(x), x ∈ S.

It has been proved in [83, Proposition 3.4] that Qs has a unique stationary probability
measure defined by πs(ϕ) := νs(ϕrs)

νs(rs) , ϕ ∈ Bβ, and there exist two constants 0 < a < 1,
c1 > 0 such that

sup
s∈(−η1,η1)

sup
x∈S
|EQxs [ϕ(Xx

n)]− πs(ϕ)| ≤ c1a
n. (5.24)

Moreover, the perturbed operator Rs,it defined by

Rs,itϕ(x) = EQxs

[
eit[S

x
1−Λ′(s)]ϕ(Xx

1 )
]
, s ∈ (−η1, η1, ) and t ∈ R, (5.25)

satisfies for any compact K ⊂ R \{0}, n ≥ 1 and ϕ ∈ Bβ,

sup
s∈(−η1,η1)

sup
t∈K

sup
x∈S
|Rn

s,itϕ(x)| ≤ ‖ϕ‖βanK , 0 < aK < 1. (5.26)

The operator Rs,it has eigenvalue λs,it satisfying for s ∈ (−η1, η1) and t ∈ (−δ, δ) ⊂
(−η1, η1),

λs,it = eΛ(s+it)−Λ(s)−Λ′(s)it. (5.27)
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5.4 Associated martingales

In this section, for the fundamental martingale (W x
n (s)) we first reveal a relationship

between the moments of W x
1 (s) and W x

∗ (s) := supn≥0W
x
n (s). We next prove the uniform

convergence ofW x
n (z) for z ∈ Bη2(0). We finally introduce a new martingale and establish

its similar properties; this martingale will play a key role in the proof of the main results.

Theorem 5.4.1. Assume conditions L1-L3. Then there is a constant η ∈ (0, η2) such
that

sup
s∈(−η,η)

sup
x∈S

E[W x
∗ (s)]γ0 <∞. (5.28)

Proof. In [23, Lemma 5.6], it is proved that if E[W x(s)] = 1, then W x
∗ (s) and W x(s) have

similar tail behaviour for s ∈ (−η2, , η2) and for all x ∈ S, i.e. for s ∈ (−η2, , η2) and for
any a ∈ (0, 1), for s ∈ (−η2, , η2), there is a constant b > 0 such that for all t > 0, for all
x ∈ S

P(W x
s ≥ at) ≥ bP(W x

s,∗ ≥ t) ≥ bP(W x
s ≥ t).

A slight modification in the proof of [23, Lemmas 5.5 and 5.6] shows that we can choose
b independent of s ∈ (−η2, , η2). (To see this, we just need to check the proof therein,
and replace W y

s by sups∈(−η2,η2) W
y
s in the formula supy∈S E

[
W y
s 1{W y

s >T}

]
T→+∞−→ 0 of the

proof of Lemma 5.5, at the last line of page 34.) Recall that E[W x(s)] = 1 under the
hypothesis of Theorem 5.4.1. Thus, in order to prove (5.28), it suffices to show that there
is a constant η ∈ (0, η2) such that

sup
s∈(−η,η)

sup
x∈S

E[W x(s)]γ0 <∞. (5.29)

Set h(x) = xδ where δ = γ0 − 1 ∈ (0, 1]. Observe that

W x
n+1(s) =

∑
u∈Tn

Hx
n,uW

Xx
u

1 (s), where Hx
n,u = esS

x
urs(Xx

u)
[mκ(s)]nrs(x) . (5.30)
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Using (5.30) and the subadditivity of h, we have

En
[
W x
n+1(s) h

(
W x
n+1(s)

)]
≤ En

[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

+ En
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
( ∑
v∈Tn
v 6=u

Hx
n,vW

Xx
v

1 (s)
)]
.

Using Jensen’s inequality for the conditional expectation and the facts that En
[
W

Xx
u

1 (s)
]

=
1 and h is an increasing function, the second term in the inequality above is less than
W x
n (s) h(W x

n (s)). Then taking expectations in the two sides of the inequality above, we
get

E
[
W x
n+1(s) h

(
W x
n+1(s)

)]
≤ E

[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

+ E
[
W x
n (s) h

(
W x
n (s)

)]
.

So by recurrence on n and Fatou’s lemma, we obtain

E
[
W x(s) h

(
W x(s)

)]
≤ lim inf

n→∞
E
[
W x
n (s) h

(
W x
n (s)

)]
≤ E

[
W x

1 (s) h
(
W x

1 (s)
)]

+
∞∑
n=1

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]
.

To prove (5.29), it suffices to show that there is a constant η ∈ (0, η2) such that

sup
s∈(−η,η)

sup
x∈S

E
[
W x

1 (s) h
(
W x

1 (s)
)]
≤ sup

s∈(−η2,η2)
E[sup

x∈S
W x

1 (s)]γ0 <∞, (5.31)

and

sup
s∈(−η,η)

sup
x∈S

∞∑
n=0

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

<∞. (5.32)
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For (5.31), we see that for all s ∈ (−η1, η1),

W x
1 (s) = 1

mκ(s)

N∑
i=1

es log |Aix|rs(Ai · x)

≤ maxx∈S |rs(x)|
mκ(s)

( N∑
i=1

e−η2 log |Aix| +
N∑
i=1

eη2 log |Aix|
)
. (5.33)

Since the functions s 7→ rs and s 7→ κ(s) are strictly positive and analytic on (−η1, η1)
and r0 = 1, κ(0) = 1, there are two constants d1, d2 > 0 such that

maxx∈S rs(x)
minx∈S rs(x) ≤ d1 for all s ∈ (−η1, η1) (5.34)

and

sups∈(−η1,η1) κ(s)
infs∈(−η1,η1) κ(s) ≤ d2. (5.35)

Hence, from (5.33), (5.34) and (5.35), for all s ∈ (−η1, η1),

W x
1 (s) ≤ d1d2

(
W x

1 (−η2) +W x
1 (η2)

)
.

Therefore, by the inequality

(a+ b)γ0 ≤ 2γ0−1(aγ0 + bγ0), a, b ∈ R, (5.36)

and condition L3,

sup
s∈[−η2,η2]

E[sup
x∈S

W x
1 (s)]γ0

≤ (d1d2)γ02γ0−1
(
E sup
x∈S

[W x
1 (−η2)]γ0 + E sup

x∈S
[W x

1 (η2)]γ0

)
<∞. (5.37)

For (5.32), we consider the general term in its series. Since h(x) = xδ, we have, by (5.34),
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for all s ∈ (−η2, η2)

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

= E
[ ∑
u∈Tn

(
Hx
n,uW

Xx
u

1 (s)
)γ0]

≤ E
[ ∑
u∈Tn

(
Hx
n,u

)γ0
]
E sup
x∈S

W x
1 (s)γ0

≤ d2γ0
1

(
mκ(sγ0)
[mκ(s)]γ0

)n
E[W x

n (sγ0)]E sup
x∈S

W x
1 (s)γ0 . (5.38)

Set f(s) = mκ(sγ0)
[mκ(s)]γ0 , s ∈ (−η2, η2). We see that f(0) = m1−γ0 < 1 and f is continous on

(−η2, η2) by the continuity of κ. Hence there is a small constant η > 0 with (−η, η) ⊂
(−η2, η2) such that

c1 := sup
s∈(−η,η)

mκ(sγ0)
[mκ(s)]γ0

< 1. (5.39)

We can choose η > 0 sufficiently small so that sγ0 ∈ (−η1, η1). Then W x
n (sγ0) is well-

defined and a martingale, so E[W x
n (sγ0)] = 1. Therefore, from (5.38), (5.39) and (5.37),

we obtain

sup
s∈(−η,η)

sup
x∈S

∞∑
n=1

E
[ ∑
u∈Tn

Hx
n,uW

Xx
u

1 (s) h
(
Hx
n,uW

Xx
u

1 (s)
)]

≤ d2γ0
1 sup

s∈[−η2,η2]
E sup
x∈S

W x
1 (s)γ0

∞∑
n=1

cn1 <∞.

This completes the proof of (5.32). Thus (5.29) is proved.

Now we consider the martingale with complex parameter:

W x
n (z) :=

∑
u∈Tn e

zSxurz(Xx
u)

[mκ(z)]nrz(x) , n ≥ 0, z ∈ Bη1(0). (5.40)

For each fixed z ∈ Bη1(0), it can be easily checked that (W x
n (z)) remains a martingale

with respect to (Fn). Throughout, the real par of z ∈ C will be denoted by s, so that
z = s+ iIm(z).
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The next theorem gives the uniform convergence of W x
n (z). Let

Ω1
α = int

{
z ∈ Bη2(0) : mκ(αs)

|mκ(z)|α < 1
}

and Ωγ0 =
⋃

1<α≤γ0

Ω1
α. (5.41)

Since the derivative at 1 of the function α 7→ mκ(αs)
[mκ(s)]α is equal to Λ∗(s) − logm which is

negative for s ∈ (−η2, η2), we have, for these values of s, mκ(αs)
[mκ(s)]α < 1 when α > 1 is close

to 1. This shows that the open set Ωγ0 contains the segment (−η2, η2), so that (−η2, η2)
is the intersection of Ωγ0 with the real axis.

Theorem 5.4.2. Assume conditions L1-L3. Then the sequence (W x
n (z))n≥0 converges

a.s. to some complex valued random variable W x(z), uniformly in z on any compact
subset K ⊂ Ωγ0. Moreover, we have a.s., for all n ≥ 0,

sup
z∈K
|W x

n (z)−W x(z)| ≤Mδn, (5.42)

where M is a positive and finite random variable and δ ∈ (0, 1), and W x(z) is analytic on
Ωγ0.

Proof. The basic ideas here are the same as those used in the proof of Theorem 2 in
Biggins [18]. To prove the uniform convergence on a compact subset K ⊂ Ωγ0 , it suffices
to show that for each z0 ∈ Ωγ0 , the uniform convergence holds in a disc centred at z0.
Given any z0 ∈ Ωγ0 , we can find 1 < α ≤ min{2, γ0} and a small η such that B2η(z0) ⊂ Ω1

α

and

c1 = sup
z∈B2η(z0)

mκ(αs)
|mκ(z)|α < 1. (5.43)

For any N ≥ n, W x
N+1(z) −W x

n (z) is analytic in z on B2η(z0), so by [18, Lemme 3], we
deduce that for all n ≥ 0,

sup
N≥n

sup
z∈Bη(z0)

|W x
N+1(z)−W x

n (z)| ≤
∞∑
k=n

sup
z∈Bη(z0)

|W x
k+1(z)−W x

k (z)|

≤ 1
π

∫ 2π

0

∞∑
k=n
|W x

k+1

(
z(t)

)
−W x

k

(
z(t)

)
|dt, (5.44)

where z(t) = z0 + 2ηeit, 0 ≤ t ≤ 2π. (This can be easily proved by Cauchy’s formula.)
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Note that, by Fubini’s theorem, for n ≥ 0,

E
∫ 2π

0

∞∑
k=n
|W x

k+1(z(t))−W x
k (z(t))|dt ≤ 2π sup

z∈∂B2η(z0)

∞∑
k=n

E|W x
k+1(z)−W x

k (z)|, (5.45)

where ∂B2η(z0) = {z ∈ C : |z − z0| = 2η}. Therefore, if the right hand side of (5.45) is
finite for all n ≥ 0, then the right-hand side of (5.44) goes to 0 a.s. as n → ∞, so that
a.s. the sequence (W x

n (z)) converges uniformly on Bη(z0).

Now we prove that the right hand side of (5.45) is finite. Notice that

W x
k+1(z)−W x

k (z) =
∑
u∈Tk

ezS
x
urz(Xx

u)
[mκ(z)]krz(x)

(
W

Xx
u

1 (z)− 1
)
. (5.46)

Taking the α-th absolute moment at both sides of (5.46) conditional on Fk and applying
Lemma 1 of Biggins [18], we obtain

Ek|W x
k+1(z)−W x

k (z)|α ≤ 2α
∑
u∈Tk

∣∣∣∣∣ ezS
x
urz(Xx

u)
[mκ(z)]krz(x)

∣∣∣∣∣
α

Ek|WXx
u

1 (z)− 1|α. (5.47)

Since the function z 7→ rz is analytic on Bη1(0) and r0 = 1, there is a constant d3 > 0
such that

maxx∈S |rz(x)|
minx∈S |rz(x)| ≤ d3 for all z ∈ Bη1(0). (5.48)

Recall that s is the real part of z. Because B3η(z0) ⊂ Ω1
α ⊂ Bη2(0) ⊂ B η1

2
(0), we have

z, αs2 ∈ B η1
2

(0) for z ∈ ∂B2η(z0). It follows from (5.48) that for all z ∈ ∂B2η(z0),

∣∣∣∣∣ ezS
x
urz(Xx

u)
[mκ(z)]krz(x)

∣∣∣∣∣
α

≤
(
mκ(αs)
|mκ(z)|α

)k
eαsS

x
urαs(Xx

u)

[mκ(αs)]krαs(x)
|rz(Xx

u)|αrαs(x)
|rz(x)|αrαs(Xx

u)

≤ dα+1
3

(
mκ(αs)
|mκ(z)|α

)k
eαsS

x
urαs(Xx

u)

[mκ(αs)]krαs(x) . (5.49)

On the other hand, from (5.36) and (5.48), we obtain the following estimation, for all
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z ∈ ∂B2η(z0),

Ek|WXx
u

1 (z)− 1|α

≤ 2α−1
(
Ek|WXx

u
1 (z)|α + 1

)
= 2α−1Ek

∣∣∣∣ ∑
v∈T1(u)

ezS
Xxu
v rz(XXx

u
v )

mκ(z)rz(Xx
u)

∣∣∣∣α + 2α−1

≤ 2α−1
(
κ(s)
|κ(z)|

)α
Ek
[ ∑
v∈T1(u)

|rz(XXx
u

v )|rs(Xx
u)

|rz(Xx
u)|rs(XXx

u
v )

esS
Xxu
v rs(XXx

u
v )

mκ(s)rs(Xx
u)

]α
+ 2α−1

≤ d2α
3 2α−1

(
κ(s)
|κ(z)|

)α
E sup
x∈S

(W x
1 (s))α + 2α−1.

Combining this with (5.47) and (5.49) gives, for all z ∈ ∂B2η(z0),

Ek|W x
k+1(z)−W x

k (z)|α

≤ c
(
mκ(αs)
|mκ(z)|α

)k
W x
n (αs)

[(
κ(s)
|κ(z)|

)α
E sup
x∈S

(W x
1 (s))α + 1

]
.

Taking expectation at both sides of this inequality and using Jensen’s inequality, we obtain
for all z ∈ ∂B2η(z0),

E|W x
k+1(z)−W x

k (z)| ≤ c
1
α

(
mκ(αs)
|mκ(z)|α

) k
α [( κ(s)
|κ(z)|

)α
E sup
x∈S

(W x
1 (s))α + 1

] 1
α

.

From (5.43), (5.37), the analyticity of κ(z) on ∂B2η(z0) ⊂ Bη1(0) and the fact that
|κ(z)| > 0 for all z ∈ Bη1(0), we obtain

sup
z∈∂B2η(z0)

E|W x
k+1(z)−W x

k (z)| ≤ Cc
k
α
1 , (5.50)

This concludes that (5.45) is finite for all n ≥ 0. We have therefore proved that it is a.s.
that the sequence (W x

n (z)) converges uniformly on Bη(z0) for each z0 ∈ Ωγ0 , which implies
the uniform convergence on each compact subset K ⊂ Ωγ0 .

We now come to the speed of convergence (5.42). Clearly, it is enough to prove that
there is a δ ∈ (0, 1) such that on each compact subset K ⊂ Ωγ0 ,

δ−n sup
z∈K
|W x

n+1(z)−W x
n (z)| n→∞→ 0 a.s. (5.51)

From (5.44), (5.45) and (5.50), we have for each z0 ∈ Ωγ0 , there is η > 0 small enough
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such that for all n ≥ 0,

E sup
z∈Bη(z0)

|W x
n+1(z)−W x

n (z)| ≤ 2
∞∑
k=n

Cc
k
α
1 ,

where C and c1 are constants which may depend on z0. Since K is compact, by Borel’s
theorem, K can be covered by a finite number of open balls Bηi(zi), i = 1, . . . , n0, so that
there exist two constants C1 > 0 and c2 ∈ (0, 1) which may depend on K, such that for
n ≥ 0,

E sup
z∈K
|W x

n+1(z)−W x
n (z)| ≤ 2

∞∑
k=n

C1c
k
2 ≤ C2c

n
2 . (5.52)

Taking δ ∈ (c2, 1) and using Fubini’s theorem we see that

E
∞∑
n=0

δ−n sup
z∈K
|W x

n+1(z)−W x
n (z)| ≤ C2

∞∑
n=0

(c2

δ

)n
<∞,

so that
∞∑
n=0

δ−n sup
z∈K
|W x

n+1(z)−W x
n (z)| <∞ a.s.

Therefore, (5.51) is proved. This ends the proof of (5.42).
Finally, since a.s. each W x

n (z) is analytic on Ωγ0 and the sequence (W x
n (z)) converges

uniformly on each compact set of Ωγ0 , a standard result of complex analysis (see e.g.
Corollary 2.2.4 in Hörmander [51]) gives the analyticity of W x(z) on Ωγ0 .

In the following we introduce a new martingale and prove its uniform convergence
and the analyticity of its limit. This is an important ingredient in the proof of Theorem
5.2.3 about the Berry-Esseen bound for the changed measure Zx

s,n, which is crucial in
establishing the main results of this paper. For z ∈ Bη1(0), x ∈ S and ϕ ∈ Bβ, set

W̃ x
n (z) =

∑
u∈Tn

ezS
x
uMz(rsϕ)(Xx

u)
[mκ(z)]nrs(x) , n ≥ 0,

where Mz is defined in (5.22) and (rsϕ)(Xx
u) := rs(Xx

u)ϕ(Xx
u).

Theorem 5.4.3. Assume conditions L1-L3. Then the sequence (W̃ x
n (z))n≥0 is a martin-

gale with respect to the filtration (Fn) and converges a.s. to some complex valued random
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variable W̃ x(z), uniformly in z on any compact subset K ⊂ Ωγ0, and the limit W̃ x(z) is
analytic on Ωγ0.

Proof. The fact that (W̃ x
n (z),Fn)n≥0 is a martingale can be easily shown: it suffices to

notice that

EnW̃ x
n+1(z) =

∑
u∈Tn

ezS
x
uMz(rsϕ)(Xx

u)
[mκ(z)]nrs(x) En

[ ∑
v∈T1(u)

ezS
Xxu
v Mz(rsϕ)(XXx

u
v )

mκ(z)Mz(rsϕ)(Xx
u)

]
,

where T1(u) represents the descendants of u ∈ Tn at time n + 1. Moreover, by the
branching property, the definition of Pz (5.21) and Lemma 5.3.1(1), we have for u ∈ Tn,

En
[ ∑
v∈T1(u)

ezS
Xxu
v Mz(rsϕ)(XXx

u
v )

mκ(z)Mz(rsϕ)(Xx
u)

]
=

En
[
|Au1X

x
u |zMz(rsϕ)(XXx

u
u1 )

]
κ(z)Mz(rsϕ)(Xx

u)

= Pz(Mz(rsϕ))(Xx
u)

κ(z)Mz(rsϕ)(Xx
u) = 1.

The proof of the uniform convergence and the analyticity of the limit is the same as in
the proof of Theorem 5.4.2, whose details are omitted.

5.5 Proof of Theorems 5.2.1 and 5.2.3

Theorem 5.2.1 is a particular case of Theorem 5.2.3 with s = 0. Thus we only prove
Theorem 5.2.3. Our proof is based on Petrov’s method [75] for the proof of the Cramér’s
moderate deviation asymptotic on sums of i.i.d. real random variables. We split the proof
of Theorem 5.2.3 into two theorems: Theorems 5.5.1 and 5.5.2, whose combination gives
Theorem 5.2.3.

Theorem 5.5.1. Under the conditions of Theorem 5.2.3. Then, for any x ∈ S and
ϕ ∈ Bβ there exists a constant η ∈ (0, η2) such that a.s., for n ≥ 1,

sup
s∈(−η,η)

∣∣∣∣ ∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) −W x(s)πs(ϕ)
∣∣∣∣ ≤Mδn,

where M is a positive and finite random variable and δ ∈ (0, 1).

Theorem 5.5.2. Under the conditions of Theorem 5.2.3. Then, for any x ∈ S and
ϕ ∈ Bβ there exists a constant η ∈ (0, η2) such that uniformly in s ∈ (−η, η) and y ∈ R,
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a.s., for n ≥ 1,∣∣∣∣∣∣
∑
u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) 1{Sxu−nΛ′(s)
σs
√
n
≤y
} − ∑

u∈Tn

esS
x
urs(Xx

u)ϕ(Xx
u)

[mκ(s)]nrs(x) Φ(y)
∣∣∣∣∣∣ ≤ M√

n
,

where M is a positive and finite random variable (independent of s).

5.5.1 Proof of Theorem 5.5.1

The following decomposition which follows from the branching property will play a key
role in our approach with a delicate choice of k for 0 < k ≤ n,

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) =

∑
u∈Tk

esS
x
urs(Xx

u)
[mκ(s)]krs(x)

∑
v∈Tn−k(u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−krs(Xx
u) . (5.53)

Recall that by our definition, for u ∈ Tk, Tn−k(u) represents the descendants of u at time
n.

For each n, we choose an integer kn = dn2 e, which is the least integer greater than or
equal to n

2 . For brevity, we denote for u ∈ Tkn ,

Y u
n−kn(s) =

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u) .

Then by (5.53), the following decomposition holds:

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) −W

x(s)πs(ϕ) = An(s) +Bn(s) + Cn(s), (5.54)

where

An(s) =
∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x)

[
Y u
n−kn(s)− EknY u

n−kn(s)
]
,

Bn(s) =
∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x)

[
EknY u

n−kn(s)− πs(ϕ)
]
,

Cn(s) = [W x
kn(s)−W x(s)]πs(ϕ).

By virtue of the decomposition (5.54), we shall divide the proof of Theorem 5.5.1 into
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three lemmas.

Lemma 5.5.3. Under the conditions of Theorem 5.2.3, there exist two constants η ∈
(0, η2) and δ ∈ (0, 1) such that

δ−n sup
s∈(−η,η)

|An(s)| n→∞→ 0, a.s.

Proof. To prove Lemma 5.5.3, we will use the Borel-Cantelli Lemma. We can obtain the
required result once we prove that there exist a small η > 0 and a constant δ ∈ (0, 1) such
that for any ε > 0,

∞∑
n=1

P(δ−n sup
s∈(−η,η)

|An(s)| > ε) <∞. (5.55)

By Markov’s inequality,

∞∑
n=1

P(δ−n sup
s∈(−η,η)

|An(s)| > ε) ≤ 1
ε

∞∑
n=1

δ−nE sup
s∈(−η,η)

|An(s)|. (5.56)

Because Ωγ0 is an open set containing 0, we can find a small ρ > 0 such that Bρ(0) ⊂ Ω1
α

for some 1 < α ≤ min{2, γ0}. Let η ∈ (0, ρ3) whose value will be fixed later. Then
B3η(0) ⊂ Bρ(0). We see that for every n ∈ N, the function

z 7→ An(z) =
∑
u∈Tkn

ezS
x
urz(Xx

u)
[mκ(z)]knrz(x)

[
Y u
n−kn(z)− EknY u

n−kn(z)
]

is well-defined as an analytic function on Bη1(0). Recall that s is the real part of z. By
Lemma 3 of Biggins [18], we have

sup
s∈(−η,η)

|An(s)| ≤ sup
z∈Bη(0)

|An(z)| ≤ 1
π

∫ 2π

0
|An(z(t))|dt,

where z(t) = 2ηeit, 0 ≤ t ≤ 2π. Note that, by Fubini’s theorem,

E sup
s∈(−η,η)

|An(s)| ≤
∫ 2π

0
E|An(z(t))|dt ≤ 2π sup

|z|=2η
E|An(z)|. (5.57)

Consider now E|An(z)| for |z| = 2η. Taking the α-th absolute moment of An(z)
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conditional on Fk and applying Lemma 1 of Biggins [18], we obtain

Ekn|An(z)|α ≤ 2α
∑
u∈Tkn

∣∣∣∣ ezS
x
urz(Xx

u)
[mκ(z)]knrz(x)

∣∣∣∣αEkn|Y u
n−kn(z)− EknY u

n−kn(z)|α. (5.58)

Because B3η(0) ⊂ Bρ(0) ⊂ Bη2(0) ⊂ B η1
2

(0), we see that if |z| = 2η, then z, αs2 ∈ B η1
2

(0).
Hence, by (5.48), we get for |z| = 2η,

∣∣∣∣ ezSxu(rzϕ)(Xx
u)

[mκ(z)]knrz(x)

∣∣∣∣α ≤
(
mκ(αs)
|mκ(z)|α

)kn eαsS
x
urαs(Xx

u)
[mκ(αs)]knrαs(x)

|rz(Xx
u)|αrαs(x)

|rz(x)|αrαs(Xx
u)

≤ d1+α
3

(
mκ(αs)
|mκ(z)|α

)kn eαsS
x
urαs(Xx

u)
[mκ(αs)]knrαs(x) . (5.59)

We now estimate the expectation in (5.58). Using |a+b|α ≤ 2α−1(|a|α+|b|α) ≤ 2(|a|α+|b|α)
and (5.48), we have for |z| = 2η,

Ekn|Y u
n−kn(z)− EknY u

n−kn(z)|α ≤ 2Ekn|Y u
n−kn(z)|α

≤ 2Ekn

 ∑
v∈Tn−kn (u)

esS
Xxu
v rs(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)
|rzϕ(XXx

u
v )|rs(Xx

u)
|rz(Xx

u)|rs(XXx
u

v )

(
κ(s)
|κ(z)|

)n−knα

≤ 2(d2
3‖ϕ‖β)α

(
κ(s)
|κ(z)|

)α(n−kn)
Ekn

[
W

Xx
u

n−kn(s)
]α

≤ 2(d2
3‖ϕ‖β)α

(
κ(s)
|κ(z)|

)α(n−kn)
sup
x∈S

E(W x
∗ (s))α. (5.60)

From (5.58), (5.59) and (5.60), we have for all η > 0 small enough and |z| = 2η,

Ekn|An(z)|α ≤ c

(
mκ(αs)
|mκ(z)|α

)kn ( κ(s)
|κ(z)|

)α(n−kn)

W x
kn(αs) sup

x∈S
E(W x

∗ (s))α. (5.61)

Since αs ∈ (−η1, η1), (W x
n (αs)) is a martingale, so E[W x

n (αs)] = 1. Taking expectations
at both sides of (5.61), we obtain for |z| = 2η,

E|An(z)|α ≤ c

(
mκ(αs)
|mκ(z)|α

)kn ( κ(s)
|κ(z)|

)α(n−kn)

sup
x∈S

E(W x
∗ (s))α. (5.62)
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From (5.57), Jensen’s inequality and (5.62), we get that

E sup
s∈(−η,η)

|An(s)|

≤ c
1
α sup
|z|=2η


(
mκ(αs)
|mκ(z)|α

) kn
α
∣∣∣∣e(n−kn)[Λ(s)−Λ(z)]

∣∣∣∣[ sup
x∈S

E(W x
∗ (s))α

] 1
α

. (5.63)

From the facts that B3η(0) ⊂ Bρ(0) ⊂ Ω1
α and the definition of Ω1

α, we obtain

sup
|z|=2η

(
mκ(αs)
|mκ(z)|α

) 1
α

≤ sup
z∈Bρ(0)

(
mκ(αs)
|mκ(z)|α

) 1
α

=: c1 < 1. (5.64)

From (5.63), (5.64) and the choice of kn which implies that kn ≥ n− kn, we get

E sup
s∈(−η,η)

|An(s)| ≤ ccn−kn1 sup
|z|=3η

{ ∣∣∣e(n−kn)[Λ(s)−Λ(z)]
∣∣∣ [ sup

x∈S
E(W x

∗ (s))α
] 1
α
}
. (5.65)

By Theorem 5.4.1, for η > 0 small enough,

sup
s∈(−η,η)

sup
x∈S

E(W x
∗ (s))α <∞. (5.66)

Note that c1 < 1 is independent of η. Let c2 ∈ (1, 1
c1

). Since Λ is continuous on Bη1(0)
and Λ(0) = 0, there exists a small η3 > 0 such that

sup
z∈Bη3 (0)

∣∣∣e[Λ(s)−Λ(z)]
∣∣∣ ≤ c2. (5.67)

Take η small enough such that η < η3. Since kn = dn2 e, we have n − kn ≥ n
2 − 1. So

combining (5.65), (5.66), (5.67) we obtain for all η > 0 small enough,

E sup
s∈(−η,η)

|An(s)| ≤ c(c1c2)n−kn ≤ c(c1c2)n2−1.

Therefore, using (5.56) and taking δ ∈
(

(c1c2) 1
2 , 1

)
, we get that

∞∑
n=1

P(δ−n sup
s∈(−η,η)

|An(s)| > ε) ≤ c

εc1c2

∞∑
n=1

(c1c2) 1
2

δ

n <∞.
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This completes the proof of Lemma 5.5.3.

Lemma 5.5.4. Under the conditions of Theorem 5.2.3, there exist two constants η ∈
(0, η2) and δ ∈ (0, 1) such that

δ−n sup
s∈(−η,η)

|Bn(s)| n→∞→ 0 a.s.

Proof. Using the branching property and the definition of Qx
s (5.23), we have for u ∈ Tkn ,

EknY u
n−kn(s) = Ekn

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)

=
Ekn

[
esS

Xxu
n−kn (rsϕ)(XXx

u
n−kn)

]
κn−kn(s)rs(Xx

u)
= E

QX
x
u

s
[ϕ(XXx

u
n−kn)].

Hence

|Bn(s)| ≤
∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x) sup

x∈S
|EQxs [ϕ(Xx

n−kn)]− πs(ϕ)|

≤ W x
kn(s) sup

x∈S
|EQxs [ϕ(Xx

n−kn)]− πs(ϕ)|.

By Theorem 5.4.2 and the bound (5.24), for η ∈ (0, η2), there exist a constant c ∈ (0, 1)
and a positive finite random variable M such that for all n ≥ 0,

sup
s∈(−η,η)

|Bn(s)| ≤Mcn−kn ≤Mc
n
2−1.

Therefore the conclusion of Lemma 5.5.4 holds for each δ ∈ (c 1
2 , 1).

Lemma 5.5.5. Under the conditions of Theorem 5.2.3, there exist two constants η ∈
(0, η2) and δ ∈ (0, 1) such that

δ−n sup
s∈(−η,η)

|Cn(s)| n→∞→ 0 a.s.

Proof. This is an immediate consequence of Theorem 5.4.2 and the fact that |πs(ϕ)| ≤
‖ϕ‖∞.
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5.5.2 Proof of Theorem 5.5.2

To prove Theorem 5.5.2, we need the following result.

Lemma 5.5.6. Under the conditions of Theorem 5.5.2, there is a constant η ∈ (0, η2)
such that

sup
z∈Bη(0)

∣∣∣∣∣∣
∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) − W̃

x(z)
∣∣∣∣∣∣ n→∞→ 0 a.s. (5.68)

Moreover, ∑u∈Tn
ezS

x
u (rsϕ)(Xx

u)
[mκ(z)]nrs(x) is a.s. bounded by a positive and finite random variable

uniformly in z ∈ Bη(0) and n ≥ 0.

Proof. By the branching property, for k ≤ n,

∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) =

∑
u∈Tk

ezS
x
urs(Xx

u)
[mκ(z)]krs(x)

∑
v∈Tn−k(u)

ezS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(z)]n−krs(Xx
u) . (5.69)

As before, for each n, we take kn = dn2 e. For brevity, we denote for u ∈ Tkn ,

Ỹ u
n−kn(z) =

∑
v∈Tn−kn (u)

ezS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(z)]n−knrs(Xx
u) .

Then by (5.69), the following decomposition holds:

∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) − W̃

x(s) = An(z) +Bn(z) + Cn(z), (5.70)

where

An(z) =
∑
u∈Tkn

ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

[
Ỹ u
n−kn(z)− EknỸ u

n−kn(z)
]
,

Bn(z) =
∑
u∈Tkn

ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

[
EknỸ u

n−kn(z)− Mz(rsϕ)(Xx
u)

rs(Xx
u)

]
,

Cn(z) = W̃ x
kn(z)− W̃ x(z).

By virtue of the decomposition (5.70), in order to prove (5.68), it suffices to show that
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there is a constant η ∈ (0, η2) such that

sup
z∈Bη(0)

|An(z)| n→∞→ 0, a.s., (5.71)

sup
z∈Bη(0)

|Bn(z)| n→∞→ 0, a.s., (5.72)

sup
z∈Bη(0)

|Cn(z)| n→∞→ 0, a.s.. (5.73)

The proof of (5.71) is similar to that of Lemma 5.5.3, and is omitted here. It is clear that
(5.73) is an immediate consequence of Theorem 5.4.3. It remains to prove (5.72). By the
branching property and the definition of the operator Pz (see (5.21)), we have

EknỸ u
n−kn(z) = Ekn

∑
v∈Tn−kn (u)

ezS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(z)]n−knrs(Xx
u)

=
Ekn

[
ezS

Xxu
n−kn (rsϕ)(XXx

u
n−kn)

]
κn−kn(z)rs(Xx

u)

= P n−kn
z (rsϕ)(Xx

u)
κn−kn(z)rs(Xx

u) .

Hence, by the decomposition (5.22) and Lemma 5.3.1(4), for any z ∈ Bη1(0), we have

|Bn(z)| ≤
∣∣∣∣∣∣
∑
u∈Tkn

ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

P n−kn
z (rsϕ)(Xx

u)
κn−kn(z)rs(Xx

u) −
Mz(rsϕ)(Xx

u)
rs(Xx

u)

∣∣∣∣∣∣
≤

∑
u∈Tkn

∣∣∣∣∣∣ ezS
x
urs(Xx

u)
[mκ(z)]knrs(x)

Ln−knz (rsϕ)(Xx
u)

κn−kn(z)rs(Xx
u)

∣∣∣∣∣∣
≤
‖Ln−knz ‖Bβ→Bβ
|k(z)|n−kn

∑
u∈Tkn

esS
x
urs(Xx

u)
[mκ(s)]knrs(x)

(
κ(s)
|κ(z)|

)kn ‖rsϕ‖β
miny∈S rs(y)

≤ c
(1− a2

1− a1

)n−kn ∣∣∣ekn[Λ(s)−Λ(z)]
∣∣∣W x

kn(s), (5.74)

where 0 < a1 < a2 < 1 is defined in Lemma 5.3.1(4). In the last step we use the fact
that ‖rsϕ‖β ≤ 3‖rs‖β‖ϕ‖β ≤ c and that the map s 7→ rs is analytic with r0 = 1. Since
kn = dn2 e, we have n−kn ≥

n
2 −1 ≥ kn−2, so

(
1−a2
1−a1

)n−kn ≤ (1−a2
1−a1

)n
2−1
≤
(

1−a2
1−a1

)kn−2
. Let

c1 ∈
(

1, 1−a1
1−a2

)
. Using the facts that the function Λ is continuous on Bη1(0) and Λ(0) = 0,
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there exist a small η ∈ (0, η1) such that

sup
z∈Bη(0)

∣∣∣e[Λ(s)−Λ(z)]
∣∣∣ ≤ c1. (5.75)

By Theorem 5.4.2, for η ∈ (0, η2) small enough, sups∈(−η,η) W
x
kn(s) ≤ M, where M is a

positive and finite random variable. This together with (5.74) and (5.75) implies that for
η ∈ (0, η2) small enough,

sup
z∈Bη(0)

|Bn(z)| ≤ c2M
[
c1(1− a2)

1− a1

]kn
n→∞→ 0 a.s.

This completes the proof of (5.72). So the proof of (5.68) is finished.

The uniform bound of ∑u∈Tn
ezS

x
u (rsϕ)(Xx

u)
[mκ(z)]nrs(x) is an immediate consequence of (5.68) and

the fact that W̃ x(z) is analytic in z (by Theorem 5.4.3).

Proof of Theorem 5.5.2. For simplicity, we suppose that ϕ ≥ 0; otherwise we can consider
the positive and negative parts of ϕ to conclude. Consider the distribution functions of
finite measures:

Fs,n(y) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) 1

{
Sxu−nΛ′(s)
σs
√
n
≤y
}, y ∈ R,

Hs,n(y) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) Φ(y), y ∈ R,

and their characteristic functions at −t:

fs,n(t) =
∫
R
e−itydFs,n(y), hs,n(t) =

∫
R
e−itydHs,n(y), t ∈ R.
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By straightforward calculations we have

hs,n(t) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) e

− t
2
2 (5.76)

fs,n(t) =
∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) e

−itS
x
u−nΛ′(s)
σs
√
n

=
∑
u∈Tn

e
(s− it

σs
√
n

)Sxu(rsϕ)(Xx
u)

[mκ(s− it
σs
√
n
)]nrs(x)

κ(s− it
σs
√
n
)

κ(s)

ne itnΛ′(s)
σs
√
n

=
∑
u∈Tn

e
(s− it

σs
√
n

)Sxu(rsϕ)(Xx
u)

[mκ(s− it
σs
√
n
)]nrs(x)λ

n
s, −it
σs
√
n

, (5.77)

where the last equality holds by the definition of λs,it (see (5.27)).

Notice that Fs,n(−∞) = Hs,n(−∞) = 0, Fs,n(+∞) = Hs,n(+∞) = ∑
u∈Tn

esS
x
u (rsϕ)(Xx

u)
[mκ(s)]nrs(x) ,

Fs,n and Hs,n are non-decreasing on R, and Hs,n is differentiable on R. So by Esseen’s
smoothing inequality (see [75, Theorem V.2.2.]), for all T > 0 and s ∈ (−η1, η1),

sup
y∈R
|Fs,n(y)−Hs,n(y)| ≤ 1

π

∫ T

−T

∣∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣∣ dt
+ c0

T

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) ,

where c0 is a positive constant. Therefore, to prove Theorem 5.5.2, it suffices to show
that there exists a small η ∈ (0, η2) such that as n→∞, a.s.,

sup
s∈(−η,η)

∫ T

−T

∣∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣∣ dt = O
( 1√

n

)
, (5.78)

and

sup
s∈(−η,η)

c0

T

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) = O

( 1√
n

)
. (5.79)

In the following, we denote by Mi a positive and finite random variable. Let T := ησ
√
n

with η > 0 small enough such that the conclusion in Lemma 5.5.6 holds, where σ :=
infs∈(−η,η) σs > 0. By Lemma 5.5.6, we have

sup
s∈(−η,η)

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) ≤M1.
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Hence (5.79) is proved since

sup
s∈(−η,η)

c0

T

∑
u∈Tn

esS
x
u(rsϕ)(Xx

u)
[mκ(s)]nrs(x) ≤

c0M1

ησ
√
n
.

It remains to prove (5.78). We will prove this by showing that there exists a small
η ∈ (0, η2) such that as n→∞, a.s.,

I1(n) + I2(n) = O
( 1√

n

)
, (5.80)

where

I1(n) = sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

∣∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣∣ dt,
I2(n) = sup

s∈(−η,η)

∫
δ1σ
√
n≤|t|≤ησ

√
n

∣∣∣∣∣fs,n(t)− hs,n(t)
t

∣∣∣∣∣ dt,
with δ1 ∈ (0, η) whose value will be fixed later.

Control of I1(n). Denote for z = s+ it with s ∈ (−η, η) and t ∈ R,

Un(z) =
∑
u∈Tn

ezS
x
u(rsϕ)(Xx

u)
[mκ(z)]nrs(x) .

With this notation and using (5.76) and (5.77), we have

I1(n) ≤ I11(n) + I12(n),

where

I11(n) = sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

∣∣∣∣∣∣
λn
s, −it
σs
√
n

t

(
Un
(
s− it

σs
√
n

)
− Un(s)

)∣∣∣∣∣∣dt

I12(n) = sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

∣∣∣∣∣∣
(
λn
s, −it
σs
√
n

− e− t
2
2

)
Un(s)

t

∣∣∣∣∣∣dt.
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For I11(n), by Taylor’s formula and the fact that Λ′′(s) = σ2
s , we have

λn
s, −it
σs
√
n

= e
n[Λ(s− it

σs
√
n

)−Λ(s)+Λ′(s) it
σs
√
n

]

= e
n
∑∞

k=2
Λ(k)(s)
k! ( −it

σs
√
n

)k

= e−
t2
2 e

n
∑∞

k=3
Λ(k)(s)
k! ( −it

σs
√
n

)k
. (5.81)

By choosing δ1 small enough, we have for all s ∈ (−η, η) and |t| < δ1σ
√
n,

∣∣∣∣ ∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣ ≤ t2

4n, (5.82)

and so, from (5.81),
∣∣∣∣λns, −it

σs
√
n

∣∣∣∣ ≤ e−
t2
4 . (5.83)

Therefore, for η and δ1 small enough,

I11(n) ≤ sup
s∈(−η,η)

∫
|t|<δ1σ

√
n

e−
t2
4

|t|

∣∣∣∣∣∣Un
(
s− it

σs
√
n

)
− Un(s)

∣∣∣∣∣∣dt. (5.84)

By Lemma 5.5.6, there is a constant η4 small enough such that for all n ≥ 0,

sup
|z|= η4

2

|Un(z)| ≤M2. (5.85)

Notice that Un is a.s. analytic on Bη1(0). Let η, δ1 > 0 be small enough such that
η + iδ1 ∈ B η4

3
(0). By the mean value theorem, for s ∈ (−η, η) and t

σs
√
n
∈ (−δ1, δ1), we

have ∣∣∣∣Un(s− it

σs
√
n

)− Un(s)
∣∣∣∣ ≤ |t|

σs
√
n

sup
t∈(−δ1,δ1)

∣∣∣∣U ′n(s− it

σs
√
n

)
∣∣∣∣

≤ |t|
σs
√
n

sup
z∈B η4

3
(0)
|U ′n(z)|. (5.86)
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By the Cauchy’s formula, when z ∈ B η4
2

(0),

U ′n(z) = 1
2πi

∫
|w|= η4

2

Un(w)
(w − z)2dw.

Hence, by (5.85) and the fact that |w − z| ≥ η4
6 for z ∈ B η4

3
(0) and |w| = η4

2 , we have

sup
z∈B η4

3
(0)
|U ′n(z)| ≤ 18M2

η4
.

Combining this with (5.84), (5.86) and the fact that σs > σ for all s ∈ (−η, η), we obtain

I11(n) ≤ sup
s∈(−η,η)

18M2

σs
√
nη4

∫
|t|<δ1σ

√
n
e−

t2
4 dt ≤ M3√

n
. (5.87)

For I12(n), using (5.81), the inequality |ez − 1| ≤ |z|e|z| for all z ∈ C and (5.82), we
obtain ∣∣∣∣λns, −it

σs
√
n

− e−
t2
2

∣∣∣∣ ≤ e−
t2
2

∣∣∣∣en∑∞k=3
Λ(k)(s)
k! ( −it

σs
√
n

)k − 1
∣∣∣∣

≤ e
− t

2
2 +

∣∣∣∣n∑∞k=3
Λ(k)(s)
k!

(
−it
σs
√
n

)k∣∣∣∣ ∣∣∣∣∣n
∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣∣
≤ e−

t2
4

∣∣∣∣∣n
∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣∣ . (5.88)

By choosing δ1 small enough, we have for all s ∈ (−η, η) and |t| < δ1σ
√
n,

∣∣∣∣∣n
∞∑
k=3

Λ(k)(s)
k!

( −it
σs
√
n

)k∣∣∣∣∣ ≤ C
( |t|3√

n

)
. (5.89)

From (5.88) and (5.89), we have for all s ∈ (−η, η) and |t| < δ1σ
√
n,

∣∣∣∣∣∣
λn
s, −it
σs
√
n

− e− t
2
2

t

∣∣∣∣∣∣ ≤ C√
n
t2e−

t2
4 . (5.90)

By Lemma 5.5.6, Un(s) is a.s. bounded uniformly in s ∈ (−η, η). This together with
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(5.90) and the fact that
∫∞

0 t2e−
t2
4 dt <∞ implies that

I12(n) ≤
C sups∈(−η,η) |Un(s)|

√
n

∫ ∞
0

t2e−
t2
4 dt ≤ M4√

n
. (5.91)

Putting together (5.87) and (5.91), we get I1(n) = O
(

1√
n

)
.

Control of I2(n). Using the constraint |t| ≥ δ1σ
√
n, we have

I2(n) ≤ 1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n≤|t|≤ησ

√
n
|fs,n(t)− hs,n(t)|dt

≤ 1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n≤|t|≤ησ

√
n
(|fs,n(t)|+ |hs,n(t)|)dt (5.92)

By (5.76) and Lemma 5.5.6, for η > 0 small enough and δ1σ
√
n ≤ |t| ≤ ησ

√
n,

sup
s∈(−η,η)

|hs,n(t)| ≤ e−
t2
2 sup
s∈(−η,η)

|Un(s)| ≤M5e
− t

2
2 .

This implies that

1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n≤|t|≤ησ

√
n
|hs,n(t)|dt ≤ M6√

n
.

Hence, from (5.92), to prove that I2(n) = O
(

1√
n

)
, it remains to show that there exist a

small η ∈ (0, η2) such that as n→∞, a.s.,

1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n≤|t|≤ησ

√
n
|fs,n(t)|dt = O

( 1√
n

)
. (5.93)

By the branching property, we have the following decomposition: for n ≥ 0 and kn = dn2 e,

fs,n(t) = As,n(t) +Bs,n(t), (5.94)
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where

As,n(t) =
∑
u∈Tkn

e
(s− it

σs
√
n

)Sxurs(Xx
u)

[mκ(s)]knrs(x) e
itknΛ′(s)
σs
√
n

[
Ŷ u
s,n−kn(t)− EknŶ u

s,n−kn(t)
]
,

Bs,n(t) =
∑
u∈Tkn

e
(s− it

σs
√
n

)Sxurs(Xx
u)

[mκ(s)]knrs(x) e
itknΛ′(s)
σs
√
n EknŶ u

s,n−kn(t),

with

Ŷ u
s,n−kn(t) =

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)e

−it
σs
√
n

[SX
x
u

v −(n−kn)Λ′(s)]
.

For As,n(t), using the same argument as in the proof of Lemma 5.5.3, we can prove
that for η > 0 small enough, there exists δ ∈ (0, 1) such that

sup
s∈(−η,η)

sup
δ1σ
√
n≤|t|≤ησ

√
n

δ−n|As,n(t)| n→∞→ 0 a.s.

Therefore,

sup
s∈(−η,η)

sup
δ1σ
√
n≤|t|≤ησ

√
n

|As,n(t)| ≤M11δ
n. (5.95)

For Bs,n(t), using the branching property and the definitions of Qx
s (see (5.23)) and

Rs,it (see (5.25)), we have for u ∈ Tkn ,

EknŶ u
s,n−kn(t) = Ekn

∑
v∈Tn−kn (u)

esS
Xxu
v (rsϕ)(XXx

u
v )

[mκ(s)]n−knrs(Xx
u)e

−it
σs
√
n

[SX
x
u

v −(n−kn)Λ′(s)]

=
Ekn

[
esS

Xxu
n−kn (rsϕ)(XXx

u
n−kn)e

−it
σs
√
n

[SX
x
u

n−kn−(n−kn)Λ′(s)]
]

[κ(s)]n−knrs(Xx
u)

= E
QX

x
u

s

[
ϕ(XXx

u
n−kn)e

−it
σs
√
n

[SX
x
u

n−kn−(n−kn)Λ′(s)]
]

= Rn−kn
s, −it
σs
√
n

ϕ(Xx
u).

Therefore, by (5.26) and Theorem 5.4.2, there is a constant a ∈ (0, 1) such that for
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kn = dn2 e,

sup
s∈(−η,η)

sup
δ1σ
√
n≤|t|≤ησ

√
n

|Bs,n(t)| ≤ ‖ϕ‖βan−kn sup
s∈(−η,η)

W x
kn(s) ≤M7a

n
2−1. (5.96)

From (5.94), (5.95) and (5.96), we obtain for c1 = max{δ, a 1
2},

sup
s∈(−η,η)

sup
δ1σ
√
n≤|t|≤ησ

√
n

|fs,n(t)| ≤M8c
n
1 .

Thus

1
δ1σ
√
n

sup
s∈(−η,η)

∫
δ1σ
√
n≤|t|≤ησ

√
n
|fs,n(t)|dt ≤ 2(η − δ1)M8c

n
1

δ1
,

which implies (5.93). This concludes that I2(n) = O
(

1√
n

)
, which ends the proof of (5.80)

and (5.78). So Theorem 5.5.2 is proved.

5.6 Proof of Theorem 5.2.2

For y ∈ [0, 1], Theorem 5.2.2 is a direct consequence of Theorem 5.2.1, as we will see in
the following. For n ≥ 1,

∣∣∣∣
∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≥√nσy}
mnW [1− Φ(y)]e

y3
√
n
ζ( y√

n
)
− ν(ϕ)

∣∣∣∣
= 1

W [1− Φ(y)]e
y3
√
n
ζ( y√

n
)

∣∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)− 1

mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
≤y}

−Wν(ϕ)(1− Φ(y))e
y3
√
n
ζ( y√

n
)
∣∣∣∣. (5.97)

Since supy∈[0,1] | y
3
√
n
ζ( y√

n
)| → 0, there exists n0 large enough such that for all y ∈ [0, 1] and

n ≥ n0, e
y3
√
n
ζ( y√

n
) ≥ 1/2. Using this and the fact that 1 − Φ(y) ≥ c := 1 − Φ(1) for all
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y ∈ [0, 1], from (5.97) we get for all n ≥ n0,

∣∣∣∣
∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≥√nσy}
mnW [1− Φ(y)]e

y3
√
n
ζ( y√

n
)
− ν(ϕ)

∣∣∣∣
≤ 2
cW

∣∣∣∣ 1
mn

∑
u∈Tn

ϕ(Xx
u)−Wν(ϕ)

∣∣∣∣
+ 2
cW

∣∣∣∣− 1
mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ

σ
√
n
≤y} +Wν(ϕ)Φ(y)

∣∣∣∣
+ 2
cW

∣∣∣∣Wν(ϕ)(1− Φ(y))
(

1− e
y3
√
n
ζ( y√

n
)
)∣∣∣∣. (5.98)

In the last display, by Theorem 5.2.1, when n → ∞, the two first terms are O
(

1√
n

)
.

We will show below that the third term is also O
(

1√
n

)
. In fact, using the inequality

|1 − et| ≤ |t|et for t ∈ R and the fact that supy∈[0,1] |ζ( y√
n
)| is bounded for n ≥ n0, we

obtain for y ∈ [0, 1], as n→∞,

∣∣∣∣1− e y3
√
n
ζ( y√

n
)
∣∣∣∣ ≤ ∣∣∣∣ y3
√
n
ζ( y√

n
)
∣∣∣∣e y3
√
n
ζ( y√

n
) = O

( 1√
n

)
.

Since |ν(ϕ)| ≤ ‖ϕ‖∞, this implies that the third term in (5.98) is O
(

1√
n

)
.

From (5.98) and the above estimations, we see that for y ∈ [0, 1], as n→∞,

∣∣∣∣
∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≥√nσy}
mnW [1− Φ(y)]e

y3
√
n
ζ( y√

n
)
− ν(ϕ)

∣∣∣∣ = O
( 1√

n

)
,

which implies
∑
u∈Tn ϕ(Xx

u)1{Sxu−nγ≥√nσy}
mnW [1− Φ(y)] = e

y3
√
n
ζ( y√

n
)
[
ν(ϕ) +O

( 1√
n

)]
.

We now deal with the case 1 < y = o(
√
n). We can suppose that ϕ ≥ 0 by considering

the positive and negative parts of ϕ. We will focus on the proof of (5.16), as the proof of
(5.17) is similar. For u ∈ (N∗)n, set

V x
u = Sxu − nΛ′(s)

σs
√
n

.
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Then we have

I := 1
mn

∑
u∈Tn

ϕ(Xx
u)1{Sxu−nγ>yσ√n}

= rs(x)e
−nsΛ′(s)

κ−n(s)
∑
u∈Tn

e−sσs
√
nV xu

esS
x
uϕ(Xx

u)
[mκ(s)]nrs(x)1{V xu >σy

σs
+
√
n[γ−Λ′(s)]

σs
}. (5.99)

Because Λ(s) is analytic on (−η1, η1) with Λ(0) = 0, it has the Taylor expansion

Λ(s) =
∞∑
k=1

γk
k! s

k, where γk = Λ(k)(0), s ∈ (−η1, η1), (5.100)

which implies that

Λ′(s)− γ =
∞∑
k=2

γk
(k − 1)!s

k−1. (5.101)

Consider the equation

√
n[Λ′(s)− γ] = σy. (5.102)

Set t = y√
n
. Using (5.101), we get

σt =
∞∑
k=2

γk
(k − 1)!s

k−1. (5.103)

Since γ2 = σ2 > 0, the equation (5.103) has the unique solution given by

s = t

γ
1/2
2
− γ3

2γ2
2
t2 − γ4γ2 − 3γ2

3

6γ7/2
2

t3 + . . . , (5.104)

which converges for |t| small enough (see [75, Theorem VIII.2.2] for details). From (5.100)
and (5.101), we see that

sΛ′(s)− Λ(s) =
∞∑
k=2

k − 1
k! γks

k.
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Choosing s given by (5.104), we obtain

sΛ′(s)− Λ(s) = t2

2 − t
3ζ(t) = y2

2n −
y3

n3/2 ζ

(
x√
n

)
, (5.105)

where ζ is the Cramér series defined in (5.9), which converges for |t| small enough (see
[75, Theorem VIII.2.2] for details). Coming back to the expression of I (cf. (5.99)), using
(5.105) together with (5.102) and the fact that e−nsΛ

′(s)

κ−n(s) = e−n[sΛ′(s)−Λ(s)], we have

I = rs(x)e−
y2
2 + y3

√
n
ζ( y√

n
) ∑
u∈Tn

e−sσs
√
nV xu

esS
x
uϕ(Xx

u)
[mκ(s)]nrs(x)1{V

x
u >0}

= rs(x)e−
y2
2 + y3

√
n
ζ( y√

n
)
∫ ∞

0
e−sσs

√
nyZ

x
s,n(dy), (5.106)

where Zx

s,n is the finite measure on R defined by:

Z
x

s,n(B2) =
∑
u∈Tn

esS
x
uϕ(Xx

u)
[mκ(s)]nrs(x)1{V

x
u ∈B2}, B2 ⊂ R.

Its mass satisfies E[Zx
s,n(R)] ≤

∥∥∥∥ ϕrs
∥∥∥∥
∞
.

Since t = y√
n
→ 0 as n → ∞, by (5.104) we have s → 0+ as n → ∞. Hence, for

sufficiently large n0 and all n ≥ n0, we have s ∈ (0, η) where η is defined in Theorem
5.2.3. Therefore, denoting

ln,s(y) = Z
x
s,n

(
(−∞, y]

)
−W x(s)πs

(ϕ
rs

)
Φ(y), y ∈ R,

we get from Theorem 5.2.3 that for all n ≥ n0,

sup
y∈R
|ln,s(y)| ≤ M√

n
, (5.107)

whereM is a positive and finite random variable independent of n and s. In the following,
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we write Mi for a positive and finite random variable. Notice that
∫ ∞

0
e−sσs

√
nyZ

x
s,n(dy)

=
∫ ∞

0
e−sσs

√
nydln,s(y) + W x(s)πs(ϕr−1

s )√
2π

∫ ∞
0

e−sσs
√
ny− y

2
2 dy

=: I1 +W x(s)πs(ϕr−1
s )I2. (5.108)

Estimate of I1. Using the integration by parts and (5.107), we get for n ≥ n0,

|I1| ≤ |ln,s(0)|+ sσs
√
n
∫ ∞

0
e−sσs

√
ny|ln,s(y)|dy ≤ 2M√

n
. (5.109)

Estimate of I2. The integral I2 appears in the proof of Cramér’s large deviation
expansion theorem for sums of i.i.d random variables (see [75, Theorem VIII.2.2]), where
the following results have been proved:

(i) there exist some positive constants c1, c2 such that for all s ∈ (−η, η) and n large
enough,

c1 ≤ sσs
√
nI2 ≤ c2;

(ii) the integral I2 admits the following asymptotic expansion:

I2 = e
y2
2 [1− Φ(y)]

[
1 +O

(
y√
n

) ]
. (5.110)

By the definition of σs, the mapping s 7→ σs is strictly positive and continuous on (−η, η).
Hence, there exist constants c3, c4 > 0 such that

c3 ≤ s
√
nI2 ≤ c4. (5.111)

Notice that for all s ∈ (−η, η),W x(s) > 0 a.s. Moreover, W x(s) is a.s. continuous in
(−η, η) by the continuity and uniform convergence of W x

n (s) on (−η, η). Combining this
with (5.111), we get

M3 ≤ s
√
nW x(s)I2 ≤M4. (5.112)

We now come back to (5.108), and let s be defined by (5.104). Recall that for n ≥ n0, s ∈

Limit theorems for branching random walks and products of random matrices Thi Thuy Bui 2020



171 5.6. Proof of Theorem 5.2.2

(0, η). From (5.108),(5.109) and (5.112), we have, as n→∞,
∫ ∞

0
e−sσs

√
nyZ

x
s,n(dy) = W x(s)I2

[
πs(ϕr−1

s ) + I1

W x(s)I2

]

= W x(s)I2

[
πs(ϕr−1

s ) + s
√
nI1

s
√
nW x(s)I2

]
= W x(s)I2

[
πs(ϕr−1

s ) +O(s)
]
.

Substituting this into (5.106) and using (5.110), we obtain

I = rs(x)W x(s)e
y3
√
n
ζ( y√

n
)[1− Φ(y)]

[
1 +O

(
y√
n

) ][
πs(ϕr−1

s ) +O(s)
]
. (5.113)

According to Theorem 5.4.2, W x(s) is analytic on (−η, η) and using the mean theorem
we see that |W x(s)−W x| = |W x(s)−W x(0)| ≤M5s. On the other hand, by [83, Lemma
6.1], we have ‖rs − 1‖∞ ≤ cs and |πs(ϕr−1

s ) − ν(ϕ)| = | νs(ϕ)
νs(rs) − ν(ϕ)| ≤ cs‖ϕ‖β. Since

s = O
(

y√
n

)
by (5.104), it follows from (5.113) that

I =
[
1 +O(s)

][
W x +O(s)

]
e
y3
√
n
ζ( y√

n
)[1− Φ(y)]

[
1 +O

(
y√
n

) ][
ν(ϕ) +O(s)

]

= W xe
y3
√
n
ζ( y√

n
)[1− Φ(y)]

[
ν(ϕ) +O

(
y√
n

)]
,

which concludes the proof of (5.16).
The proof of (5.17) can be carried out in a similar way as that of (5.16). The only

difference is that, instead of using (5.102), we consider the equation

√
n[Λ′(s)− Λ′(0)] = −σy,

where 1 < y = o(
√
n) and s ∈ (−η, 0). Since the rest of the argument is the same as that

in the proof of (5.16), we omit the details.
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