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Introduction

Technological framework

The last decade has seen a renewed and steadily growing interest in space exploration. Whether
it is to accommodate the increasing demand in satellites, to carry space probes for future sci-
entific programs, to transport cargo and crews to the International Space Station and, in a
foreseeable future, open space travel to tourism activities, the need in efficient and reliable
space launchers has never been so high. It has fostered intense academic research, industrial
activities and the creation of multiple companies.

A space launcher uses the thrust generated by its engines to accelerate its payload until it
reaches the desired orbit at the right velocity.
At its core, the principle behind the functioning of a rocket engine is rather straightforward and
can be summed up by Fig. 1: an oxidant (usually oxygen) and a fuel are combined together in a
combustion chamber to achieve a strongly exothermic chemical reaction; the energy generated
is used to heat up and accelerate the reaction products that are then exhausted through a
convergent-divergent nozzle.
The thrust T generated by this process can be estimated with Eq. (1) where ṁ is the mass
flow rate of the propellant, ue is the velocity of the exhaust gases, Pa is the ambient pressure
outside the engine and Pe and Ae are respectively the exit pressure and exit area of the nozzle.

T = ṁue + (Pe − Pa)Ae (1)

In typical operating conditions, the thrust can be expressed as depending solely on the pressure
in the combustion chamber Pc and the cross section at the nozzle throat Ac as shown in Eq.
(2)

T ≈ AcPc (2)

Building more efficient and, above all, more powerful engines requires the master of several
processes such as the choice of the propellant, the design of the injection system and the nozzle
and the fine tuning of combustion conditions. However a rule of thumb hinted by Eq. (2)
is that to increase the power of the engine, the combustion pressure should get higher. This
trend has been consistently followed in the past half century.
As a side note, it should be noticed that this increase can also be observed for aircraft engines
(see Koff (2004)). Indeed, they similarly require to reach a higher pressure in the combustion
chamber to accommodate the cleaner combustion regimes imposed by safety and environmen-
tal regulations.
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Figure 1: Schematic representation of a rocket engine

There exist a plethora of available rocket engine designs but for the most part, they can be
classified into two categories depending on the fuel they use.
Solid rocket engines, commonly called boosters, rely on the combustion of a solid grain that
produces accelerated exhaust gases to generate thrust. Once ignited, solid rockets cannot
be extinguished because the solid grain contains both the fuel and the oxidant necessary to
sustain the combustion. Of a lesser efficiency and maneuverability, solid rockets generate a
formidable amount of thrust and for these reasons they are usually used as small launchers for
very light payloads or as boosters for heavier launchers. For instance, in the space launcher
Ariane 5, shown in Fig. 2, operated by ArianeSpace, the two lateral boosters each generate a
thrust of about 7070 kN during their two minutes of combustion when compared to the merely
(but still impressive) 1390 kN thrust of the main engine.
Liquid rocket engines (LRE) use fuel and oxidant that are both in a liquid form. Thanks to
their fairly high density in this form, the propellants can be stored using reasonably small
tanks. By adding a pressurization system (using a pressured inert gas or a turbo-pump, as
shown in Fig. 4) to inject the propellants into the combustion chamber at the required high
mass flux rate, they can be stored at relatively low pressures thus not requiring reinforced
tanks which would drastically reduce the propellant-to-structure mass ratio of the rocket due
to the added matter.

A special type of LRE known as cryogenic rocket engine uses oxidizer and/or fuel that are gases
which have been liquefied at very low temperatures. Semi-cryogenic engines use only liquefied
oxygen (LOx) for the oxidizer whereas the fuel, such as methane, kerosene or hydrazine,
naturally remains liquid at ambient temperature. Fully cryogenic engines use LOx as an
oxidizer but also liquefied hydrogen (LH2) as a fuel.
These types of propellants require dedicated tanks to preserve them at the right tempera-
ture along with dedicated feeding lines and insulation usually making them more difficult to
maintain and more complex to operate. However, cryogenic engines make up for the added
complexity by offering a very seductive efficiency when compared to other configurations.

The efficiency of a rocket engine is evaluated using the specific impulse Isp which is defined as
the thrust generated per mass unit of propellant consumed per time unit, expressed in second.
A higher Isp implies that the propellant is better used to generate thrust relatively to how
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Figure 2: Schematic representation of the main components of the Ariane 5 launcher (type ECA)

fast it is consumed, which is favored by a high exhaust gas temperature (i.e. a high heat of
combustion) and by the generation of exhaust gases with a very low molecular weight.
Fig. 3 presents the ideal specific impulses in vacuum for several oxidizer/fuel combinations and
showcases the superiority of the LOx/LH2 pair which ideally meets the conditions previously
mentioned. Additionally, the product of combustion of the pair is simply clean water that can
be ejected through the nozzle in a vapor state, a significantly much cleaner exhaust then those
typically encountered for other rocket engines.

In practice, cryogenic engines are preferred on heavy launchers capable of delivering massive
payloads. Among the main heavy launchers currently under exploitation/development, the
vast majority resort to fully cryogenic engines. For instance Ariane 6 first stage Vulcain 2 and
second stage Vinci engines both operate with LOx/LH2. Likewise both YF-77 and YF-75D
mounted on the first and second stages of the Chinese heavy launcher Long March 5 operate
with LOx/LH2, which is also the case for the Japanese launcher H3 which will be equipped
with the fully cryogenic engines LE-9 and LE-5 on its first and second stages respectively. The
Space Launch System developed by NASA will reinvest the RS-25 engine created for the late
Space Shuttle, which is also fully cryogenic. The only noticeable variations are the BE-4 and
Merlin engines, installed respectively on the second stage of Blue Origin’s New Glenn heavy
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Figure 3: Ideal specific impulse of various propellant combinations 

A possibility to combine the advantages of high propellant density at low altitude operation with high 
specific impulse at high altitudes is a combination of three propellants. So-called tri-propellant 
combinations of LOX, kerosene, LH2 or LOX, CH4, LH2 burn in the same engine LOX / kerosene at low 
altitudes and switch to LOX / LH2 operation at high altitudes have been investigated in the past but have 
never reached the level of flight hardware. The RD – 701 engine (LOX / kerosene which has been 
designed for the air-launch MAKS concept reached at least development level [1].  

 

1.3 Engine feed systems 
The easiest way to distinguish different engine types is to classify them according to their method of 

propellant pressurization and transport. While only small and low pressure engines apply pressurized tanks 
for propellant delivery, the majority uses turbo pumps in order to bring the propellants to the desired 
pressure level.  

 

1.3.1 Pressure-fed engines 

Principally there are two types of pressure-fed systems, self-pressurization and pressurization by 
foreign high pressure gas. Self-pressurization is typically applied by mono-propellant engines and is 
achieved either by vaporization of the liquid propellant or thermal decomposition caused external heat 
addition or catalytic decomposition. Pressure-fed bi-propellant engines typically apply high pressure (up to 
30 MPa) helium bottles. In any case, the thrust level of pressure-fed engines is limited by the available 
tank technology. An example of such a system is the AESTUS engine of ARIANE 5G. A flow schematic 
of a pressure-fed engine is shown on the right hand side of figure 4 together with a gas generator cycle and 
a staged combustion cycle.  

Figure 3: Ideal specific impulse of various oxidizer/fuel combinations, from Haidn (2008)

launcher and on all the launchers developed by Space-X, in particular the Falcon Heavy, which
both operate with a LOx/RP1 pair, RP1 being a variant of kerosene. Tab. 1 summarizes
the specifications of several engines used or planed to be used, on current and future heavy
launchers.

To sustain the high mass flow rate of propellant required by such engines, the liquid fuel
and oxidizer must be accelerated by increasing their pressure. Small engines that operate at
low combustion chamber pressures are compatible with pressurized tanks which rely on an
inert pressurizing gas (helium in general) that is expanded through a heat exchanger with the
combustion chamber and/or the nozzle as presented in Fig. 4.
For more powerful engines, turbo-pumps become indispensable to deliver the necessary quan-
tity of propellant. These turbo-pumps are integrated into different operating cycles for LRE.
The main cycles are recalled in Fig. 4.

The most simple cycle, called the Expander (or sometimes Closed Expander) cycle, uses in a
first time the cold fuel to cool down the nozzle and/or the combustion chamber (most of the
time, the materials used for its conception, to limit the mass of the engine, cannot sustain on
their own the high temperatures of the exhaust gases) causing it to expand and to experience
a phase change. The heated and accelerated gaseous fuel is then used in the turbine that
powers the fuel and oxidizer pumps before being injected into the combustion chamber to be
burned as well.
The Expander Bleed is another cycle that deviates from the classic Expander by using only a
small part of the heated fuel to power the turbine. This fuel is then vented outside without
going through the combustion chamber.
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Name Launcher Stage Cycle
Thrust in vac. Prop. Ispin vac. Press.

(on gr.) (on gr.) chamber

BE-4 New Glenn 1st
Staged - LOx/ -

134 bar
combustion (2 450 kN) CH4 (-)

BE-3U
New Glenn,

2nd
Expander

710 kN
LOx/

- -
Vulcan bleed LH2

LE-9 H3 1st
Expander 1470 kN LOx/ 426 s

100 bar
bleed (-) LH2 (-)

LE-5B H3 2nd
Expander

137 kN
LOx/

447 s 35.8 bar
bleed LH2

Merlin 1D
Falcon Heavy, Booster Gas- 981 kN LOx/ 311 s

97 bar
Falcon 9 1st , 2nd generator (854 kN) RP − 1 (282 s)

RS-68A Delta IV Heavy 1st
Gas- 3560 kN LOx/ 414 s

109 bar
generator (3137 kN) LH2 (366 s)

RL-10B Delta IV Heavy 2nd Expander 110 kN
LOx/

464 s 44 bar
LH2

RS-25 Space Shuttle, Main Staged 2279 kN LOx/ 452 s
206 bar

(SSME) SLS stage combustion (1860 kN) LH2 (366 s)

Vulcain 2
Ariane 5

1st
Gas- 1 350 kN LOx/ 434 s

115 bar
Ariane 6 generator (939 kN) LH2 (318 s)

Vinci Ariane 6 2nd Expander 180 kN
LOx/

467 s 61 bar
LH2

YF-77 Long March 5 1st
Gas- 700 kN LOx/ 430 s

102 bar
generator (510 kN) LH2 (310 s)

YF-75 Long March 5 2nd Expander 88 kN
LOx/

442 s 41 bar
LH2

Table 1: Specifications for the engines found on notable modern heavy launchers

For even more powerful engines, the Expander cycle cannot provide enough power to the
pumps as the volume of fuel to be injected increases much faster than the volume that can be
heated up by contact with the nozzle.
In those cases, part of both the fuel and the oxidizer are injected into a smaller combustion
chamber which operates with a high mixture ratio and a high enough pressure to ensure that
its exhaust gases reach a sufficiently high enough temperature. These highly energetic gases
are then used to power the turbine. Depending on the final destination of the exhaust gases,
one can distinguish between two cycles in a fashion somewhat similar to the Expander and
Expander Bleed cycles:
- the Gas-Generator cycle simply vents these gases outside using a separate exhaust system;
this calls for a simple installation and leads to lighter engines but lacks in efficiency due to the
lost propellant.
- the Staged Combustion cycle injects the turbine exhaust gases together with the exhaust
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gases from the main combustion chamber; of a higher complexity and requiring the turbine to
work with higher pressure, it however offers the highest efficiency for a LRE.
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Table 1: Table of figures

1

Figure 4: Main cycles used for liquid rocket engines

Scientific framework

The design of a cryogenic rocket engine or any LRE or more broadly any type of combustion
chamber conceived to operate with a liquid propellant at very high pressures requires the mas-
ter over several and very complex physical phenomena.

In the combustion chamber, the propellant must evaporate prior to burning and the rate of
evaporation directly correlates with the surface of liquid propellant available to be heated. A
manner to maximize this surface is by atomizing the liquid into a spray to create small droplets
that vaporize much faster: the better the atomization, the more efficient the combustion. One
peculiar effect of working at very high pressures is that the manner in which the liquid jet
behaves and possibly atomizes radically changes throughout the ignition process as the pressure
increases and the thermodynamic regime goes from subcritical to supercritical, as exposed in
the phase diagram of Fig. 5.

This evolution of the thermodynamic regime and its impact on the jet behavior during the
injection has been the focal point of several studies for the past years.
The progresses made over the last decades have been fostered by numerous experimental
studies enhanced by the design of more advanced optical diagnostics such as OH∗ chemilu-
minescence, Planar Laser Induced Fluorescence (PLIF) and many other methods extensively
described in Section VI.1.1 of Gaillard (2015).
However, the pivotal role of numerical simulation, supported by theoretical modeling, must also
be emphasized on as it has permitted to gain precious insight into these complex phenomena,
often complicated and expensive to study experimentally. A brief overview of the major results
with both experimental and numerical strategies, complementary by nature, is proposed in the
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Figure 5: Evolution of the thermodynamic regime during the early stages of an LRE ignition

next paragraphs.

Experimental studies

Generic results on liquid jets

In subcritical conditions, the liquid injected is characterized by the presence of surface tension
that makes the fluid resists the extension of its surface. The external forces, through shear
stress, must overcome surface tension to atomize the liquid.
The first experimental and theoretical studies regarding liquid jets can be traced back to the
1800’s through the work of Bidone (1829); Plateau (1873) or Rayleigh (1878); Rayleigh (1879).
A systematic review of the most notable experiments performed in the 1900’s and the addition
of several experiments of their own allowed the authors in Faeth (1991); Hsiang and Faeth
(1992); Hsiang and Faeth (1993); Wu and Faeth (1993); Faeth (1996) to identify the main
regimes of atomization occurring for a round jet of liquid injected into a quiescent gas.
Following the early experiments performed by Hoyt and Taylor (1977a); Hoyt and Taylor
(1977b) of liquid jets with a gaseous co-flow, the authors in Hopfinger and Lasheras (1994);
Hopfinger (1998); Lasheras et al. (1998); Lasheras and Hopfinger (2000) have extended the
results previously established for quiescent gases.

Overall, the process of atomization of a liquid jet can be separated into two main mechanisms.
The first one, known as primary breakup is initiated by the shear strain caused by the differ-
ential velocity between the liquid and the gas. A tangential force is created at the interface
and disturbs it through a phenomenon called Rayleigh instabilities (see Rayleigh (1878)). This
disturbance, when strong enough, gives birth to complex structures such as membranes and
ligaments which are then ejected from the jet through a peeling-like action.
The biggest chunks of liquid that have been ejected are further shattered by the cross wind
from the gaseous flow to form small droplets ready to evaporate for combustion, a mechanism
known as secondary breakup.
In Faeth (1991) and later in Lasheras et al. (1998); Lasheras and Hopfinger (2000); Mar-
mottant and Villermaux (2003); Marmottant and Villermaux (2004), the main regimes of
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Figure 6: Atomization regimes of a slow dense liquid jet by a fast light coaxial stream, taken from
Marmottant and Villermaux (2004). From top left to bottom right the gas velocity is increased, the
peeling of the liquid jet intensifies and surface instabilities further dominate the liquid disintegration.

atomization, some of which are displayed in Fig. 6, have been identified. These regimes
are mostly controlled by the dimensionless Reynolds Re and Weber We numbers defined as
follows:

Rel =
ρlDUl
µg

=
aerodynamic forces

gaseous viscosity forces
(3)

We =
ρgD (Ug − Ul)2

σ
=

aerodynamic forces

surface tension forces
(4)

and also to a lesser extend by the Ohnsorge Oh and Froude Fr numbers, (Fr only when
gravity is taken into account) defined with:

Ohl =
µl√
ρlDσ

=
liquid viscosity forces√

aerodynamic forces× surface tension forces
(5)

Frl =
u2
l

gD
=

liquid inertial forces

gravitational forces
(6)

In Lasheras and Hopfinger (2000), the authors present a detailed cartography, shown in Fig. 7,
of the different regimes for co-axial round jets depending on bothRel andWe. In particular, for
the typically very high Re and We values encountered in LRE, the observations are consistent
with the fiber-type atomization described by the authors.
Two other key parameters have been identified in Hopfinger and Lasheras (1994); Lasheras
et al. (1998); Favre-Marinet and Schettini (2001) as having a strong impact on the liquid jet
behavior and the mixing between the liquid and the gas. They are namely the density ratio
Rρ and the momentum flux ratio J defined respectively by Eq. (7) and Eq. (8).
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Figure 7: Breakup regimes in the parameter space Rel−We extracted for a water-air co-flow mixture,
taken from Lasheras and Hopfinger (2000)

Rρ =
ρl
ρg

(7)

J =
ρgu

2
g

ρlu
2
l

(8)

In particular, the length L of the liquid core during the atomization has been shown in Lasheras
et al. (1998) to behave like L ∝ J−

1
2u
− 3

2
l D and the spray angle θ has been shown to follow the

trend θ ≈ π
4 − tan−1

(√
J/12

)
.

The main results from these different studies can be broadly summarized by saying that a
good atomization of the liquid jet requires a great velocity from either the liquid or the gas
to create an important velocity differential and promote shear stresses. However, a great gas
velocity has the benefit to allow a much easier atomization for larger liquid jets.

Results for non-reactive cryogenic jets

Experiments on spray atomization specifically dedicated to LRE in supercritical conditions
were initiated in Newman and Brzustowski (1971) where the authors studied pure CO2 and
CO2/N2 mixtures injected into a chamber of pure gaseous N2 operating at both subcritical
and supercritical temperatures and pressures.
Since then, substantial advances have been permitted by the creation of test benches on several
facilities capable of injection and combustion of cryogenic material at high temperature and
pressure under subcritical or supercritical conditions.
Most of the results have been produced at the German Aerospace Center (DLR) equipped
with the M3 (see Mayer et al. (1996)) and P8 (see Sternfeld et al. (1995); Koschel and Haidn
(1998); Haberzettl et al. (2000)) benches, at the French Aerospace Laboratory (ONERA)
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equipped with the bench Mascotte (see Habiballah et al. (1996); Vingert et al. (1999); Gic-
quel et al. (2001)) and at the Air Force Research Laboratory (AFLR) in the United States
also equipped with such a bench EC-4 (see Chehroudi et al. (1999); Chehroudi et al. (2000)).

Owing to the proximity of its molecular mass and critical values (temperature and pressure) to
that of O2, nitrogen N2 is generally used as a substitute in experiments to study non-reactive
cases.
In Chehroudi et al. (2002), the authors studied the effect of the pressure on a liquid jet of N2

injected into a quiescent gaseous N2 chamber, as exposed in Fig. 8.
In subcritical conditions P < Pc, a typical spray behavior is observed where big droplets and
ligaments formed by the primary breakup are further broken into small droplets through the
secondary breakup mechanism.
In reasonably supercritical conditions P > Pc, this behavior disappears as droplets are no
longer observed. They are instead replaced by comb-like structures appearing at the surface,
caused by the local existence of a mixing layer. These structures are rapidly diffused into the
gas. Additionally, the separation between the liquid and vapor phases is no longer clear-cut
and the interface seems to be smeared out. These observations hint at the disappearance of
surface tension effects.
Under strongly supercritical conditions P � Pc, liquid atomization altogether ceases to be
observed and the jet behaves like a dense gas. Strong density gradients are still present at the
extremely smeared out transition between the core jet and the outside gas but observations
confirm that capillary effects either vanish or can be neglected.
Similar results have been obtained in Mayer et al. (1996); Mayer et al. (2003), also for pure
liquid N2 injection into pure gaseous N2.

Multi-species experiments have also been performed in Mayer et al. (1996); Mayer et al.
(2000) where liquid N2 was injected into a gaseous He chamber for which pictures are given
in Fig. 9.
The results were similar to that of the single species cases: at subcritical pressure (relatively to
the critical pressure of nitrogen) a typical spray behavior is retrieved whereas no droplets and
only a rapid diffusion of the dense core are observed once the pressure becomes supercritical.
This further confirms that the behavior of the liquid jet at supercritical pressures can be
treated as that of a dense gas with no significant capillary effects.

Additional experiments have been carried out with an external acoustic forcing imposed on
the liquid jet in Chehroudi and Talley (2002); Davis and Chehroudi (2007). Yet again, a
noticeable difference as been noted depending on the injection regime.
Below the critical pressure, the liquid jet displays a strong response that grows stronger as
the pressure approaches its critical value. This response mostly vanishes once the pressure
becomes supercritical relatively to the liquid critical pressure.
Finally, in Mayer et al. (1998); Mayer et al. (2001) the authors investigated the impact of
the pressure on the critical temperature of the mixture and on the surface tension. Other
than noting the sensitivity of fluid behavior near the pseudo-boiling point (see Banuti and
Hannemann (2014)), the authors found that the critical temperature decreases with an in-
creasing pressure. More importantly, they also observed that surface tension could still exist
in a LOx/H2 injection for pressures above the critical pressure of pure O2.
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Figure 1: Back-illuminated images of a single nitrogen jet injected into nitrogen at a fixed supercritical temperature of 300 K but varying
sub- to supercritical pressures (For N2: Pcritical = 3.39 MPa; Tc = 126.2 K). From lower right to upper left: Pch/Pcritical (frame no.) = 0.23
(1), 0.43 (2), 0.62 (3), 0.83 (4), 1.03 (5), 1.22 (6), 1.62 (7), 2.44 (8), 2.74 (9). Reynolds’ number (Re) was from 25,000 to 75,000. Injection’
velocity: 10–15 m/s. Froude’ number: 40,000 to 110,000. Injectant temperature: 99 to 120 K. Chehroudi et al. [5].
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Figure 2: Software magnified images of the jets in Figure 1 at their outer boundaries showing transition to the gas-jet-like appearance
starting at just below the critical pressure of the injectant. Images are at fixed supercritical chamber temperature of 300 K. Chehroudi et al.
[5].

circular in shape. At a higher injection temperature (132 K),
the asymmetry between the radial and axial length scales is
not as pronounced as that seen under the lower temperature
condition (123 K).

2.3. Jet Spreading Angle or Growth Rate. Measurements
and estimations of the growth rate of a jet have been a
subject of intense research for years because it provides
a primary measure of mixing and development of the jet
itself. Chehroudi’s group was the first to extract quantitative

measurements of this physical parameter using the images
taken from a cryogenic N2 jet injected into GN2 under
both subcritical and supercritical pressures; see Chehroudi
et al. [5]. These measurements led to important conclusions
regarding the character of the growth rate and the behavior
of the jet near the injector and under such conditions,
specifically at supercritical chamber pressures.

The spreading angle or growth rate was measured from
a field of view within 5.5 mm of the injector exit plane
(distance-to-diameter ratio of up to 21.6) and was inertially

1

Figure 8: Shadowgraphy imaging of liquid N2 injected into room temperature nitrogen N2 at different
pressures, taken from Chehroudi et al. (2002). The bottom row contains magnified images of the top
row in order to examine the shear layer.

Numerical studies

Generic two-phase flows simulations

A wide variety of numerical techniques have been designed to address simulations involving
two-phase flows and interfaces. Most of them consider, and rightfully so in most cases, that
the interface can be treated as a surface separating two constituents. The ways in which each
technique decides to track the interface movements in time allow to separate them into three
classes as suggested in Sethian (2001).
To do so, it is assumed that the interface is a two dimensional curve Γ (t) (the considerations
developed in the following carry over to three dimensions without loss of generality) that is
transported by a velocity field v = (u, v).



12 Introduction

Figure 9: Shadowgraphy imaging of a liquid N2 / gaseous He co-flow injection into quiescent gaseous
He from Mayer et al. (1998), A:10 bar (subcritical pressure) and B:60 bar (supercritical pressure)

The geometric view consists in describing the interface using a specific set of points Γ (t) =
(xΓ (t) , yΓ (t)) = x (t). The interface is tracked by solving the ordinary differential equation:

dxΓ

dt
= vΓ (9)

This characterization of the interface, where the underlying fixed Eulerian coordinate system
has been discarded, has produced methods based on a Lagrangian representation such as
Marker-and-Cell (Harlow et al. (1965); Welch et al. (1965); Amsden and Harlow (1970))
or Front-Tracking methods (Glimm et al. (1981); Unverdi and Tryggvason (1992); Bo et al.
(2011)). Fig. 10 provides an example where Front-Tracking is applied to simulate a complex
liquid injection.

The set theoretic view considers the characteristic function χ (x , t) defined in all the domain
and which equals one in a reference phase and zero in the other. This function is advected
with the flow following the partial differential equation:

∂χ

∂t
= −v ·∇χ (10)

This second approach has produced Volume-of-Fluid methods (Hirt and Nichols (1981); Youngs
(1982); Owkes and Desjardins (2014)) where the computational cells are filled with values
representative of the characteristic function χ which actually accounts for the volume fraction
of either of the phase. Cells with volume fractions different from zero or one are then assumed
to contain portions of the interface, that must later be geometrically reconstructed. Fig. 11
provides an example where Volume-of-Fluid has been combined to a mesh refinement technique
to simulate a three-dimensional Diesel injection.
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Figure 10: Simulation of a three-dimensional liquid injection using the Front-Tracking method, taken
from Bo et al. (2011)

The analysis view defines the interface as a level-set, often the zero-level, of a continuous
function ϕ defined over the whole domain. This function is also advected with the flow following
the partial differential equation:

∂ϕ

∂t
+ v ·∇ϕ = 0 (11)

At any given moment, the position of the interface can be evaluated by retrieving the zero-level
set of ϕ. This third approach has brought forth techniques such as Level-Set methods (Osher
and Sethian (1988); Sussman et al. (1994); Desjardins et al. (2008)) and, to a lesser degree,
Phase-Field methods. In either case, the particularity is that the interface is always slightly
numerically spread on the mesh to facilitate the calculations of high order derivatives.
Fig. 11 provides an example where an advanced version of the Level-Set technique has been
used to simulate the turbulent atomization of a three-dimensional Diesel injection.

All three points of view have their pros and cons, further explored in Chap. 2 and Chap. 3.
Lately, different points of view have been combined to take advantage of their respective virtues
and reduce the impact of their individual drawbacks. This is especially true for Volume-of-
Fluid and Level-Set methods, particularly suited to work in unison. Fig. 13 provides an
example where both techniques have been combined to produce a very complex Diesel injection
simulation in three dimensions.
The visual examples provided hereinbefore fall under Direct Numerical Simulation. It seems
worth noticing that Large-Eddy simulations of such configurations are starting to be produced,
such as in Xiao et al. (2013); Xiao et al. (2014) where water jets have been simulated in vari-
ous configurations, coupling Volume-of-Fluid and Level-Set techniques.

Some physical phenomena, especially the ones that will be addressed in the present work,
are not compatible with a sharp interface approach. Indeed, in near critical conditions, the
interface between the different phases starts to be smeared out and eventually finally disappears



14 Introduction

Figure 11: Simulation of a Diesel injection using a Volume-of-Fluid method with mesh refinement,
from Fuster et al. (2009). Interface representation (top) and liquid fraction in a median plane (bottom).

when supercritical conditions are reached.
The matter of describing the fluid in supercritical conditions is an whole new task in itself,
briefly reviewed in the next paragraph. However, even in subcritical conditions, the fact that
the interface physically thickens calls for different techniques known as Diffuse Interface meth-
ods (in contrast with the Sharp Interface methods mentioned before).

Among these techniques, two main classes can be identified: the Phase-Field approach and
its variants and the Multi-Fluid methods. Both are further reviewed in Chap. 4 but in a few
words, they can be differentiated as follows:
- Phase-Field methods have been historically derived in a physically driven fashion. Indeed,
the natural thickening of the interface is interpreted as a modification of the thermodynamics
of the fluid, of which description is modified accordingly to model this new behavior. The free
energy of the fluid is added new terms, depending on the gradient of key variables such as
density or concentration. These terms cause the equations to asymptotically transform into
their sharp interface counterparts but to drastically depart from them near critical conditions.
- Multi-Fluid methods, on the other hand, are rather numerically driven in their construction
as they were initially introduced to simulate all sort of discontinuities inside the flow (shocks,
contact discontinuities, etc...). The two phases are described using different sets of equations,
better suited to their individual behavior (particularly the equation of state) and the interface
is modeled as a zone where these two fluids encounter and mix together.

Both these approaches have been recently used in the context of cryogenic injection. In
Gaillard (2015), the author used a variant of the Phase-Field approach to study the subcritical
to supercritical transition of LOx during injection in a LOx/H2 and used the Multi-fluid
approach the perform Large Eddy Simulations (LES) of supercritical LOx/H2 flames. A
multi-fluid method has also been used in Chiapolino et al. (2017a) to simulate the evaporation
of oxygen in a LOx/H2 2D injection.
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Figure 12: Simulation of the turbulent atomization of a liquid Diesel jet with the Accurate Conser-
vative Level-Set method, from Desjardins et al. (2008)

Figure 13: Simulation of a Diesel injection using a coupled Volume-of-Fluid/Level-Set approach, from
Shinjo and Umemura (2010). The color indicates the axial velocity in m.m−1

Cryogenics jets

The work in Oefelein and Yang (1998); Bellan (2000); Yang (2000); Okong’o and Bellan (2002)
has pioneered the modeling and simulation of supercritical injection for LRE configurations.
One key aspect of the work presented in this document was the use of an appropriated thermo-
dynamic description of the fluid via specially designed equations of state (EoS) known as real
gas EoS. The comprehensive review of Direct Numerical Simulations of unsteady non-reacting
mixing layers done in Bellan (2006) allowed to asses the effect real gas EoS on the turbulent
mixing in supercritical conditions:
• the transport and diffusion coefficients strongly differ from those obtained using an ideal

gas modeling; this modification strongly impacts the mixing,
• the density gradient stabilizes the jet and causes large velocity fluctuations leading to a

better redistribution of the turbulent kinetic energy in the mixing layer,
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• the non linearity of the real gas EoS requires modified and additional terms associ-
ated with the filtering process of Reynolds Averaged Navier-Stokes (RANS) and LES
approaches.

Using a RANS approach, the authors in Mayer et al. (2003); Cheng and Farmer (2006); Kim
and Moin (2011) were able to retrieve the mean density profiles observed in the experiments
with pure N2 injection.

The teachings from Bellan (2006) have been successfully applied to numerous LES simulations
of cryogenic injection. In Zong et al. (2004); Schmitt et al. (2010) the authors simulated
round jets of N2 injected into quiescent gaseous N2, in Schmitt et al. (2012) the acoustic
perturbation of a pure N2 coaxial jet was numerically investigated, a co-flow injection with
liquid O2 and gaseous CH4 was studied in Zong and Yang (2005); Zong and Yang (2006), in
Ruiz (2012) a thorough numerical analysis of a O2/H2 mixing layer from a co-flow injection
was performed.
All these simulations showed acceptable to very great agreement with previous experimental
studies.

Phenomenon References for experiments Benches

Flame structure

Candel et al. (1998)

Mascotte (ONERA)
Cessou et al. (1998)

Herding et al. (1995); Herding et al. (1998)
Juniper et al. (2000)
Snyder et al. (1997)

Mayer and Tamura (1996) (DLR)

Injection parameters
Snyder et al. (1997) Mascotte (ONERA)

Mayer and Tamura (1996) (DLR)

Impact of pressure

Juniper et al. (2000); Juniper et al. (2001b)
Mascotte (ONERA)

Singla et al. (2005); Singla et al. (2006)
Mayer et al. (1998) (DLR)

Smith (2007); Smith (2007) P8 (DLR)

Flame stabilization
Herding et al. (1996)

Mascotte (ONERA)
Juniper et al. (2000)
Mayer et al. (1998) (DLR)

Impact of recess
Juniper et al. (2001a)

Mascotte (ONERA)Kendrick et al. (1998); Kendrick et al. (1999)
Tripathi et al. (1999)

Ignition

De Rosa et al. (2006)
M3 (DLR)Schmidt et al. (2003); Schmidt et al. (2004)

Gurliat et al. (2003)
Mayer and Tamura (1996); Mayer et al. (2001) M3 & P8 (DLR)

Table 2: Overview of experimental studies performed for cryogenic combustion, taken from Candel
et al. (2006) and Rocchi (2014)
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Words on reactive cases

The vast majority of the literature referenced so far only involves non-reactive cases as they
are the main concern of the work presented in this document. However, no LRE can function
without burning its propellant and combustion experiments to that effect are plenty.
A non-exhaustive but thorough review of experimental studies regarding cryogenic rocket
engines has been done in Candel et al. (2006) and is summarized in Tab. 2.
Likewise, substantial reviews of numerical simulations in reactive cases can be found in Section
1.3 of Schmitt (2009), in Section 1.2.3 of Ruiz (2012), in Section 2.5 of Rocchi (2014) and in
the introduction of Gaillard et al. (2016).

Structure of the document

The objective of this document is to assess the capability of the Second Gradient theory to
permit simulations representative of the early stages of a cryogenic rocket engine ignition, more
specifically the injection process. So far, although the simulation of cryogenic engines has been
met with success, it has been essentially limited to supercritical conditions, as apparent from
the reference provided in the previous paragraphs. Studies dedicated to subcritical simulations
of such configurations are not numerous and include, for instance Dahms and Oefelein (2013);
Dahms (2015); Gaillard et al. (2016); Chiapolino et al. (2017b); Pelletier (2019). This scarcity
is due to the fact that modeling the thermodynamic behavior of a cryogenic fluid, over a wide
range of temperatures and pressures while accounting for capillary phenomena and evaporation
is no mean feat and represents a hurdle quite intricate to combine with the more established
methods designed to handle flows with both liquid and vapor phases. Moreover, most of the
thermodynamic models that have been developed to deal with fluids in conditions typical
of LRE fails to propose a unified description of said fluids when multiple phases coexist in
subcritical conditions. This thesis has been motivated by the promising features of a different
model, which despite its relative old age when compared to other more well know methods,
has only recently resurfaced in the context of numerical simulation involving multiphase real
gas flows. The Second Gradient (SG) is a model built on the work of van der Waals (1893)
and Korteweg (1901) which has been later completed by Cahn and Hilliard (1958) and various
new authors. It is a Diffuse Interface model which, at its core, considers the interface to be a
transitional region with a finite thickness. It offers a complete mechanical and thermodynamic
description of the interfacial region which allows to evaluate key macroscopic variables such
as the interface width and the associated surface tension.
The established work on the theoretical and numerical behavior of the method has been
systematically studied, reformulated and expanded upon. Although a dense literature has
already been produced to lay the theoretical foundations of the method, very few documents
have been dedicated to assessing the applicability of said method to practical simulations. The
present work is a straight continuation of these pioneering studies and as such, it has required
a series of understandable simplifying hypotheses, mostly, the limitation to single species and
non-reactive configurations.
The model has been implemented into the academic solver AVBP used in the industry to
perform simulations on academic and semi-industrial configurations. The presentation of our
work articulates around three main parts. They are preceded, in Chap. 1 by a theoretical and
numerical presentation of real-gas thermodynamics as it is central to most of the other notions



explored in the rest of the document.

The first part, rather independent of the two others, is dedicated to an in-depth review of the
main numerical methods used to deal with two-phase flows. The main sharp interface methods,
i.e Volume-of-Fluid, Front-Tracking and Level-Set methods are described in Chapters 2 and 3,
along with more historical but nonetheless insightful methods such as the Boundary Integral
and Marker-and-Cell methods. Diffuse Interface methods, i.e. Phase-Field and Multi-Fluid
are also explored in Chap. 4 as they appear more suitable four our matter at hands given the
real gas thermodynamics to be used in our simulations. For each method that is presented,
efforts have been made to outline its historical development, its current capabilities and usages
but also its limitations and disparities with other methods.
The theoretical foundations of the Second Gradient theory are then thoroughly presented in
Chap. 5.

The second part focuses on systematically laying down the elements necessary to perform
simulations with the native Second Gradient model. The emphasis is put on justifying as
mush as possible the theoretical developments that have been done and the numerical choices
that have been made to produce our results.
To do so, the AVBP solver used for the calculations is described in Chap. 6 with an em-
phasis on the available numerical methods. Chap. 7 describes how the SG model has been
implemented into the solver. The limitation of theoretical arguments to justify some of the
implementation choices has fostered a systematic practical investigation of said choices on sim-
plified cases to ensure the correct numerical behavior of the model. The final implementation
is then tested in Chap. 8 to validate both its success and consistency in the AVBP solver and
the correct thermodynamic behavior of the model on canonical cases specifically designed to
trigger capillary phenomena.

The third part is dedicated to the presentation of a new method used to thicken the interface
in the framework of the SG theory, a process, as it will be shown in the document, that is
necessary to simulate realistic configurations at a reasonable computational cost. The theo-
retical derivation of the new thickening method is presented in Chap. 9. The strategy is then
validated on simplified cases in Chap. 10 and tested on three dimensional colliding droplets
and two-dimensional periodic jets in Chap. 11, a configuration mildly representative of an
LRE injection.



Chapter 1

Real gas thermodynamics

The following chapter is dedicated to the presentation of the models used to describe the be-
havior of the fluids considered in this document within the different thermodynamic regimes
they experience. The results are limited to the simplified case of a single species since all
the theoretical and numerical investigations of this present work are limited to single species
configurations. Thorough descriptions of multi-species thermodynamics, with its added com-
plexity, can be found in Gaillard (2015); Pelletier (2019)

Indeed, as it is explained in Sec. 1.1, the assumptions made to derive the ideal gas law, usually
used for fluid simulations, are no longer valid in the near critical and supercritical regimes that
are investigated to qualify cryogenic LRE.

The generic strategies used to overcome these shortcomings are briefly detailed in Sec. 1.2,
in particular the emphasis is put on the cubic equations of state (EoS), staple equations to
model fluids in real gas conditions.

The results provided by the cubic EoS are particularized to the Soave-Redlich-Kwong (SRK)
equation (Redlich and Kwong (1949); Soave (1972)) for which the expressions of the principal
thermodynamic variables are provided together with illustrative graphics.

Eventually, the question of thermodynamic stability, pivotal when addressing phase change
and therefore of a major importance for this work, is discussed in Sec. 1.4.

The results presented in this chapter, either formulas, graphics or general thoughts and con-
clusions, are abundantly employed in the rest of the document. Consequently, the reader
not accustomed to the notions generically used when dealing with real gas flows is strongly
encouraged to precociously read this chapter beforehand.
Additional mathematical and physical results are also available in App. A and App. B with
a more in depth presentation of the different derivations used to obtain the main formulas.
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1.1 Description and modeling of real gas thermodynamics

1.1.1 The Virial expansion

The starting assumption to derive the ideal gas law is to consider that every molecules consti-
tuting the fluid are somehow isolated and only interact through collisions to exchange momen-
tum, kinetic and internal energy. For these assumptions to be valid, the density of the fluid
must remain low enough to keep a large enough mean distance between particles. For higher
densities, the remote interactions between the constituents are non longer negligible and must
be accounted for by modifying accordingly the EoS.

The first major step towards the derivation of more realistic EoSs was the introduction of the
virial theorem by Clausius (1870). This theorem states that, independently of the form of
the considered intermolecular interactions, the time-average kinetic energy K̄i of a molecule i
submitted to a force Fi is equal to the time-average virial of the force V̄i = −ri ·Fi/2 applied on
that molecule. This statement, once extended to a set of molecules, results in the fundamental
relation in Eq. (1.1).

V̄ =
∑
i

V̄i =
∑
i

−1

2
ri · Fi/2 =

∑
i

K̄i = K̄ (1.1)

Using this theorem, in van der Waals (1873), the author derived a new EoS expressed by Eq.
(1.3) and named after himself.
He assumed that for a mole of fluid in a closed volume V at a pressure of P , the time-average
kinetic energy K̄ was equal to 3RT/2 and the time-average virial of the external forces V̄(e)

was equal to 3PVm, with Vm the molar volume.
To fully apply the virial theorem, he also needed to express the time-average virial of the
internal forces V̄(i). He showed that, at the first order, it could be expressed by:

V̄(i) =
∑
i

∑
j

rijφij (1.2)

with rij the distance between molecules i and j, and φij the magnitude of the attraction
forces between the two molecules. Van der Waals then showed that V̄(i) was proportional to
the squared density of the fluid. With additional considerations, he eventually derived the
complete equation:

P =
RT

Vm −B
− A

Vm
2 (1.3)

Classically, the terms of (1.3) are interpreted as follow s:
• The term containing A, the molar internal pressure constant, accounts for the attractive

forces experienced by the molecules when located at large distances from one another.
It is responsible for the cohesion of the fluid.
• The denominator with B, the molar covolume, accounts for the short range repulsive

forces in the fluid. Experimentally, it is observed that once the molecules are close enough
to one another, they start to repel. B also numerically embodies the fact that there is a
certain density that the fluid cannot exceed because of molecular inter-penetration.
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No specific assumptions were made by van der Waals regarding the actual form of the inter-
actions between the molecules. In his derivation, he mostly included their observable impact
on the fluid thermodynamics.
Heike Kamerlingh Onnes built upon the van der Waals EoS, initially using a polynomial series
development to better fit experimental data. He later modified this first attempt and derived
what is now know as the virial EoS given by Eq. (1.4).
This equation is expressed as an infinite polynomial series of the inverse molar volume 1/Vm.

P

RT
=

1

Vm
+
B (T )

V 2
m

+
C (T )

V 3
m

+
D (T )

V 4
m

+ · · · (1.4)

where B (T ), C (T ), D (T ), etc... are called the second, third, fourth, etc... virial coefficients
and depend only on the fluid temperature. Using the kinetic theory of gas, see Dymond and
Smith (1980), it can be shown that B (T ) corresponds to pair molecular interactions, C (T )
corresponds to trio molecular interactions and so forth. When the molar volume Vm is high
enough, the additional terms of the expansion can be neglected and the expression reduces to
the ideal gas law.

1.1.2 Molecular interactions and interatomic potentials

Multiple analytical results have been proposed to account for the short/mid range molecular
interactions. They are generally expressed in terms of the intermolecular potential U (r) be-
tween two molecules separated by a distance r. The most often used are arguably the Morse,
the Exponential and especially the Lennard-Jones potentials which all allow a fairly good rep-
resentation of the repulsive interactions at closed range and attractive interactions at longer
range. Their expressions are given hereunder and the corresponding curves are shown in Fig.
1.1.

The Morse potential is expressed by Eq. (1.5) where rm is the equilibrium bound length
(where the potential is minimal), De is the dissociation energy (energy required to completely
separate the two molecules) and w characterizes the width of the potential well.

UM (r) = De

(
e−2w(r−rm) − 2e2w(r−rm)

)
(1.5)

The Exponential potential is expressed through Eq. (1.6) where rm is the equilibrium bound
length, ε characterizes the depth of the potential well (the minimal interaction potential or
the maximal attraction energy) and η is a scaling parameter (usually taken equal to 13.772 to
give the same curvature as the Lennard-Jones potential at r = rm).

UE (r) =
ε

η − 6

(
6e
η

(
1−
rm
r

)
− η

(rm
r

)6
)

(1.6)

The Lennard-Jones potential is expressed with Eq. (1.7) where σ is the collision diameter (the
distance at which the potential is equal to zero). An expression of the first virial coefficients
(along with the physical assumptions to derive them) can be found in Wu and Aaron (2015)
using this particular form of potential.

ULJ (r) = 4ε

((σ
r

)12
−
(σ
r

)6
)

(1.7)
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Figure 1.1: Representation of the Morse, Exponential and Lennard-Jones potential curves with in-
termolecular distance in nondimensionalized coordinates

The existence of such intermolecular potentials also implies that in a mixture composed of
different species, each one has to be treated in interaction with the other and not independently
as it is done for ideal gases (since molecules do not interact through potentials). Different
species may interact differently and thus impact the overall behavior of the mixture.
For instance, the interaction potential Uij between two different species i and j can be described
by adapting the Lennard-Jones potential to get:

ULJ ij (r) = 4εij

((σij
r

)12
−
(σij
r

)6
)

(1.8)

where the collision diameter σij Eq. (1.9) and the energy εij Eq. (1.10) are expressed using
the values σk and εk associated to the species k:

εij =
√
εiεj (1.9)

σij =
1

2
(σi + σj) (1.10)

This interdependency of the intermolecular potentials will in turn impact the parameters of
the EoS used to describe the fluid. For instance, in the Virial EoS, the second virial coefficient
will be expressed as:

B (T ) =

N∑
i,j

XiXjBij (T ) (1.11)

with Xi, Xj being the molar fractions of the species i and j, and Bij (T ) being the crossed
virial coefficient between these two species (calculated using Eq. (1.8)). Other EoSs will have
to implement mixing rules as well to describe correctly heterogeneous mixtures. One major
impact of these results is that the values of partial thermodynamic variables for a given species
in the mixture depend on the other species too, which is not the cases for a mixture of ideal
gases.
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1.1.3 The critical point

Intermolecular potentials allow to intuitively interpret the different states in which classic
matter can be encountered, as presented in the phase diagram Fig. 1.2. From a molecular
point of view, the overall energy of the fluid will result from a balance between the potential
energy of interaction and the kinetic energy due to thermal agitation.
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Figure 1.2: Phase diagram schematics of a pure compound for temperature/pressure conditions.
Inspired by Jessop and Leitner (2008) and Dahms and Oefelein (2013)

Classically at very high pressures for low to moderate temperatures, the material is in a solid
state, which will not be addressed here. When focusing on the fluid phases, one can notice the
existence of five cases: the pure liquid and pure gaseous phases, the two-phase regime where
liquid and vapor coexist along the saturation line, the ideal gas and the supercritical phase.

In the vapor phase, the inter-molecular distance is high, leading to low attractive forces
combined with an important thermal agitation, thus a high kinetic energy.
When the temperature is even higher, thermal agitation completely undermines the potential
interactions and the fluid behaves like an ideal gas.
Conversely, in the liquid, the attraction forces become much higher and overcome the kinetic
energy.
By increasing the pressure even more, it is possible to obtain a liquid with an extremely high
density, so much so that it actually behaves like a solid to some extent. Such a fluid is called
a supercooled liquid.
Starting from a vapor phase, when the inter-molecular distance decreases, due to a pressure
(thus, a density) increase, if the temperature is low enough, the kinetic energy gets lower than
the interaction potential energy. This causes the molecules to stabilize at a distance req which,
when applied to a portion of the fluid, results in a condensation and the appearance of a liquid
form.
However, there exists a certain temperature above which the condensation will not occur no
matter what the pressure applied to the system. Indeed, if the temperature is high enough,
the kinetic energy will be higher than the maximal interaction potential ε impeding any con-
densation. This temperature is called the critical temperature Tc of the fluid and the critical
pressure Pc is the minimal pressure to apply to the fluid at its critical temperature to trigger
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condensation for a molar volume Vc. Together, Tc, Pc and Vc define the critical point of the
fluid.
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Figure 1.3: Clapeyron’s diagram for pure oxygen O2 with Andrew’s isotherm curves for differ-
ent regimes temperatures. Values taken from NIST thermodynamic database (Linstrom and Mallard
(2001)).

The critical point is also present in the Clapeyron’s diagram Fig. 1.3 where the variations
of the pressure P with the specific volume v are given for different isothermal curves. In the
liquid, the volume does not vary much with the pressure, as liquids usually have a very low
compressibility whereas it is the opposite in the vapor phase. Between the two bulk phases
there is a transition zone were liquid and vapor phases coexist as the fluid transit from one
phase to the other. This transition admittedly occurs at a constant pressure, the saturation
pressure Psat (T ).
When the two phases coexist, the molecules in the vapor near the interface will perceive a
much stronger attraction coming from the liquid phase than its surrounding vapor phase and
will be attracted in that direction. The interaction potentials are no longer balanced in that
region, leading to a residual energy locally condensed at the interface and usually referred to
as surface tension. This unbalance is the source of capillary phenomena.

The saturation pressure increases with the temperature. As the latter gets closer to its
critical value Tc, the vapor phase starts to display a behavior closer to that of the liquid. In
particular, the fluid density in both phases becomes extremely sensitive to pressure and/or
temperature variations, so do other characteristic values of the fluid.
During this temperature increase, the unbalance between the energies of the liquid and vapor
phases reduces. This causes the surface tension to diminish and eventually vanish at the
critical point when the phases becomes indistinguishable. In Fig. 1.3, one can even see that
the critical point is characterized by an inflection point in the isothermal curve for T = Tc
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which translates mathematically into:(
∂P

∂v

)
T

∣∣∣∣
Tc,Pc

=

(
∂2P

∂v2

)
T

∣∣∣∣
Tc,Pc

= 0 (1.12)

Finally, when the temperature is far over Tc, the isothermal curves display a tendency in 1/v
typical of an ideal gas.

1.2 Main thermodynamic results and cubic equations of state

1.2.1 The corresponding states principle

Following the derivation of its EoS, van der Waals also noticed that constants A and B, that
were apparently a cause for loosing the universality of the EoS, could actually be linked to the
critical parameters of the fluid by:

Tc =
8A

27RB
(1.13a)

Pc =
1

27B2
(1.13b)

Vc = 3B (1.13c)

From that observation, he decided to express the EoS using the reduced quantities Tr = T/Tc,
Pr = P/Pc and Vr = V/Vc thus moving from a formulation P (T, V ) to the formulation
Pr (Tr, Vr):

Pr =
8Tr

3Vr − 1
− 3

Vr
(1.14)

The formulation in Eq. (1.14) allows the EoS to retrieve some sense of universality.
Van der Waals went further and enunciated a thermodynamic principle that has become a
foundation in modern thermodynamic derivations, especially when oriented towards simula-
tion. In the author’s own words from van der Waals (1873), the original Corresponding States
Principle (CSP) is written as:

If we express the pressure in terms of the critical pressure, the volume in terms of the critical
volume and the absolute temperature in terms of the critical temperature, the isothermal curves
for all bodies become the same[...] This result no longer contains any reference to the specific
properties of various bodies, the specifics have disappeared.

It is worth mentioning that this principle makes the expression of a (well-enunciated) EoS
universal but does not nor qualify neither improve the intrinsic quality of the EoS regarding
its propensity to fit on experimental data.
For instance, as explained in Poling et al. (2001), using only two parameters (Tc and Pc
following van der Waals framework) for the CSP implies that all the species have the same
critical compressibility Zc = PcVc/(RTc). For the van der Waals EoS, this value is for instance
0.375. Unfortunately, the critical compressibility Zc varies for all fluids and takes values
between 0.15 and 0.3 for most organic compounds.
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To gain accuracy, EoSs based on the CSP must use additional parameters to describe the
fluids. The acentric factor ω is such a parameter and is the most commonly used. Introduced
in Pitzer et al. (1955) and Pitzer and Curl Jr (1957) and defined by Eq. (1.15), it allows to
take into account the fact that the fluid particles are not spherical and/or the fact that they
may be polar.

ω = − ln (Prsat (Tr = 0.7))− 1 (1.15)

Here, Prsat (Tr = 0.7) is the reduced saturation pressure for a reduced temperature of 0.7.

Indeed, the CSP as expressed by van der Waals is valid only under other strong assumptions
besides an universal value of critical compressibility Zc. The particles have to be spherical,
non-polar and have an interaction potential curve that complies to an universal shape, what
most materials do not verify.
An updated version of the principle including ω is necessary. In its new form, it asserts that
all materials can be described by an EoS written in terms of:

Pr = Pr (Tr, Vr, ω) (1.16)

And more generally, other thermodynamic variables, written in a nondimensionalized form,
also tend to be expressed as functions of the inputs Pr, Tr, Vr and ω. Some examples are given
for the heat conduction in Roy and Thodos (1968), the viscosity in Chung et al. (1988) or the
surface tension in Pitzer (1995).

To further increase the accuracy of the EoSs, multiple strategies have been implemented and
are described in Poling et al. (2001). One of them is for instance adding a new parameter to
the corresponding state principle or using two (or more) reference fluids with different values
ω1, ω2,..., ωn of acentric factors. However, no correlations have given satisfactory results with
this strategy so far.
Another strategy is to use non-analytical EoSs like the Benedict-Webb-Rubin EoS from Bene-
dict et al. (1940). One issue with such EoSs is that the gain in accuracy is unfavorably
balanced by a much greater complexity. In particular, the determination of the density from
the temperature and the pressure requires to solve a non-linear, usually high order polyno-
mial equation that cannot be solved analytically, thus calling for a numerical resolution, often
costly.

1.2.2 Cubic equations of state

From a theoretical point of view, the Virial EoS allows to demonstrate the impact and the
influence of molecular interactions but it lacks in accuracy relatively to its complexity, in
particular when compared to more simple yet more accurate analytical EoSs used in practice.
This is mostly because the expansion is often truncated to the second or third coefficient
limiting its use for high density values.
As already mentioned, one practical restriction on the EoS is the nature of the equation
ρ = f (P, T ) to solve in order to retrieve the density from the pressure and the temperature.
Strongly non-linear equations are prohibited and an analytical resolution is only possible up
to the 4th order for polynomial equations, thus limiting the complexity of analytical EoS that
are affordable in practice.
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However, for the Andrew’s isothermal curves to display the correct behavior in the different
regimes of Fig. 1.3, in particular have an inflection point for (Tc, Pc), the equation must at
least be 3rd order polynomial in the density. These observations provide the most simple ex-
pression possible for a polynomial-analytical EoS.

EoSs that have a third order polynomial development with respect to the density are called
cubic EoS. A wide variety of cubic EoS have been developed in the past decades and a non
exhaustive list can be found in Poling et al. (2001). It is worth mentioning that the van
der Waals EoS Eq. (1.3) also falls under that classification. In the following, we will only
focus on the cubic EoS of which general expression can be written as in Eq. (1.17) since this
form encompasses the most often used ones, namely the van der Waals EoS from van der
Waals (1873), the Peng-Robinson EoS from Peng and Robinson (1976) and the Soave-Redlich-
Kwong EoS Redlich and Kwong (1949); Soave (1972). In particular, the Peng-Robinson and
the Soave-Redlich-Kwong EoSs are the ones used in AVBP-RG, a specific version of the solver
AVBP dedicated to real gas simulations.

P =
ρrT

1− bρ
− a (T ) ρ2

1 + e1bρ+ e2b2ρ2
(1.17)

Here e1 and e2 are the coefficients characterizing the cubic EoS, a is a function of the temper-
ature depending on the fluid, r is the constant of the fluid given by r = R/M and b is also a
constant depending on the fluid. More precisely, for a single species, a and b are given by:

a (T ) = ΦcΨ (T )2 (1.18)

Ψ (T ) = 1 + c
(

1−
√
T/Tc

)
(1.19)

Φc = φ
(rTc)

2

Pc
(1.20)

b = ϕ
rTc
Pc

(1.21)

c = γ0 + γ1ω + γ2ω
2 (1.22)

In multi-species configurations, a and b are obtained using mixing rules involving the species
mass fractions and intrinsic values of critical variables. In some occurrences, Ψ (T ) is set to 0 for
temperatures T above the critical temperature Tc, although it is not a requisite. Additionally,
γ0, γ1, γ2, φ and ϕ are constants depending on the EoS. The values all of these coefficients are
given Tab. 1.1 for the van der Waals, Peng-Robinson and Soave-Redlich-Kwong EoSs. It can
be shown, see Michelsen et al. (2008), that coefficients φ and ϕ are actually dependent of the
choices for e1 and e2 and are obtained by solving a 3rd order polynomial equation.
The calculation of the density ρ from the temperature T and the pressure P is done by solving
the 3rd order polynomial equation:

a0 + a1ρ+ a2ρ
2 + a3ρ

3 = 0 (1.23)
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Constants van der Waals Peng-Robinson Soave-Redlich-Kwong
e1 0 2 1
e2 0 -1 0
φ 27/64 0.457236 0.077796
ϕ 1/8 0.427480 0.086640
γ0 0 0.37464 0.48508
γ1 0 1.54226 1.5517
γ2 0 - 0.26992 - 0.15613

Table 1.1: Values of the constants used in the principal cubic equations of state.

of which coefficients a0, a1, a2 and a3 are given by:

a0 = −P (1.24a)
a1 = (1− e1)Pb+ rT (1.24b)

a2 = (e2 − e1)Pb2 + e1rTb− a (1.24c)

a3 = e2Pb
3 + e2rTb

2 + ab (1.24d)

The calculation of the temperature T from the density ρ and the pressure P is done by solving
the 2nd order polynomial equation:

b0 + b1
√
T + b2T = 0 (1.25)

where coefficients b0, b1 and b2 are given by:

b0 = − (1 + c)2 ρ2φc − P
(
1 + e1bρ+ e2b

2ρ2
)

(1.26a)

b1 = 2c (1 + c) ρ2Φc (1.26b)

b2 =
ρr
(
1 + e1bρ+ e2b

2ρ2
)

1− bρ
− c2ρ2Φc (1.26c)

Eqs. (1.23) and (1.25) can happen to have multiple real solutions. To discriminate between
them, it is necessary to find the admissible solutions leading to stable thermodynamic states
and possibly choose the more stable one. Doing so requires the calculation of the fugacity f
described in more details in the next paragraph, in particular in Eqs. (1.34) and (1.35). The
stable solution is the one leading to the minimal fugacity.
For Eq. (1.25) with the temperature, it can be shown that the stable solution is always given
by the smallest real positive value of

√
T found during the resolution.

For Eq. (1.23) with the density, the admissible solutions (real positive solutions smaller than
1/b) have first to be extracted. If there is more than one admissible solution, the one among
them leading to the smallest fugacity is the stable one. If two admissible solutions share the
same smallest fugacity, even though this case is unlikely to occur during a computation, there
is a coexistence of two phases characterized by the two different values of density.

1.2.3 Departure values

To express the other thermodynamic variables, in particular the thermodynamic potentials,
the standard approach is to separate the contributions from the low density state where only



Chapter 1 - Real gas thermodynamics 29

the individual molecular energies matter (translation, rotation, vibration) given by the ideal
gas modeling and from the high density (or high pressure) state taking into account the non-
kinetic molecular interactions. For a state variable χ, the separation is written as:

χEoS = χ0 + ∆χ (1.27)

where χ0 is the ideal gas reference and ∆χ, called the departure value of the variable χ, is
the gap between the low and high density/pressure states. For the three basic thermodynamic
variables T , P and ρ are not independent, there are two ways to define the departure value
∆χ, as explained in Vidal (1997). Indeed, the ideal gas and the real fluid can be considered
to share the same temperature and density (in which case their pressures will differ, i.e.
PEoS (T, ρ) 6= P 0 (T, ρ)), the departure value is given in that case by Eq. (1.28). Conversely,
they can be considered to share the same pressure and temperature (in which case their
densities will differ, i.e. ρEoS (T, P ) 6= ρ0 (T, P )), the departure is given this time by Eq.
(1.29).

∆ρχ (T, ρ) = χEoS (T, ρ)− χ0 (T, ρ) =

ρ∫
0

[(
∂χEoS

∂%

)
T

−
(
∂χ0

∂%

)
T

]
d% (1.28)

∆Pχ (T, P ) = χEoS (T, P )− χ0 (T, P ) =

P∫
0

[(
∂χEoS

∂P

)
T

−
(
∂χ0

∂P

)
T

]
dP (1.29)

In most cases, these two definitions are not equivalent. Since in practice, temperature and
pressure are the more reliably measured variables, they usually are chosen as reference. Fol-
lowing this clarification, if not mentioned otherwise, we will retain the definition of departure
value from reference pressure and temperature as defined in Eq. (1.29). From the form of
Eq. (1.29), the explicit formulation of the departure values strongly relies on the differential
relationships between the state variables, known as the Maxwell relationships, which are com-
piled in App. B. A difficulty is caused by the formulation of most EoS that gives explicitly the
pressure from the temperature and the density. To overcome this impediment, it is suitable to
turn the integral in the pressure variable P of (1.29) into an integral in the density variable %.
Additionally, partial derivatives of the pressure must be explicitly introduced in the integrand
preferably to that of the temperature or the density. All the corresponding mathematical
manipulations are detailed in App. B. The expressions of the departure values are given for
the specific state variables: the internal energy es,the free energy f , the entropy s and the
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isochoric heat capacity Cv :

∆P es =

ρ∫
0

[
P

%2
− T

%2

(
∂P

∂T

)
%

]
d% (1.30)

∆P f =

ρ∫
0

[
P

%2
− rT

%

]
d%− rT ln

(
P

ρrT

)
(1.31)

∆P s =

ρ∫
0

[
r

%
− 1

%2

(
∂P

∂T

)
%

]
d%+ r ln

(
P

ρrT

)
(1.32)

∆PCv =

ρ∫
0

− T
%2

(
∂2P

∂T 2

)
%

d% (1.33)

The fugacity f is defined by the differential relationship Eq. (1.34) where g = µ is the specific
free enthalpy (or equivalently the chemical potential) of the fluid. It is another variable that
quantifies the deviation of the fluid thermodynamics from the ideal gas model.

dg = rT d (ln f) (1.34)

Of a moderate interest for a single fluid, for a mixture it extends the notion of partial pressure
to real gases. In a mixture of ideal gases, each fugacity fi would be equal to the partial pressure
Pi. That is not the case for a mixture of real gases due to the inter-species interactions. For
two phases ϕ1 and ϕ2 to coexist, their fugacities fϕ1 and fϕ2 must be equal.
Most of the time, the fugacity is tedious to manipulate and one rather defines the fugacity
coefficient φ = f/P . However in practice, F = rT lnφ is the value employed for calculations
because the straightforward definition given Eq. (1.35) renders it particularly easy to use.

F = rT lnφ = ∆P g = ∆P f +
P

ρ
− rT (1.35)

Granted that the pressure and the temperature of the systems under comparison are the same,
the equality of the fugacities f amounts to the equality of the values F. Remarkably, this is
particularly the case when discriminating between the solutions of the cubic equation to find
the density or to calculate saturation values at a given temperature.

Finally, the internal energy es, the free energy f and the isochoric heat capacity Cv are
linked to the enthalpy h, the free enthalpy g, the chemical potential µ and the isobaric heat
capacity Cp through Eqs. (1.36), (1.37) and (B.67).

h = es +
P

ρ
(1.36)

g = µ = f +
P

ρ
(1.37)

Cp = Cv +
Tα2

ρβ
(1.38)
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where α is the thermal expansion coefficient defined in Eq. (1.39) and β is the isothermal
compressibility coefficient defined in Eq. (1.40).

α =̂ − 1

ρ

(
∂ρ

∂T

)
P

=
1

ρ

((
∂P

∂ρ

)
T

)−1(∂P
∂T

)
ρ

(1.39)

β =̂ −1

ρ

(
∂ρ

∂P

)
T

=
1

ρ

((
∂P

∂ρ

)
T

)−1

(1.40)

The thermodynamic sound speed c can also be calculated thanks to:

c2 =̂

(
∂P

∂ρ

)
s

=
1

ρβ

Cp
Cv

(1.41)

1.2.4 Transport properties for real gases

1.2.4.1 Transport properties for ideal gases

The dynamic viscosity µ and the thermal conduction coefficient kth are also impacted by
the non-idealistic nature of the real gas. This translates physically by a dependency of these
variables on the fluid density. The model most often used for the dynamic viscosity of an ideal
gas is an exponential law expressed in Eq. (1.42) where µ only varies with the temperature.

µ (T ) = µ0

(
T

T0

)a
(1.42)

Here, µ0 is reference value for the dynamic viscosity, usually acquired experimentally, at a
reference temperature T0 and a is the exponential constant depending on the fluid. The
thermal conduction coefficient kth is then obtained with the hypothesis of a constant Prandtl
number Pr (i.e. independent of the temperature and of the composition for a mixture) to
give:

kth =
µCp
Pr

(1.43)

where Cp is the specific isobaric heat capacity of the fluid.

1.2.4.2 Transport properties for simple diluted gases

For real gases, the first noticeable difference is that the dynamic viscosity µ no longer varies
monotonously with the temperature, in particular in the vicinity of and above the critical
point. As shown in Fig. 1.4, the viscosity of the dense liquid-like phase diminishes with the
temperature whereas the opposite occurs for the light gas-like fluid.

Multiple methods have been proposed to evaluate the viscosity of a real gas but in essence, all of
them rely either on the Corresponding States Principle or the Chapman-Enskog developments
from Chapman (1954) and Chapman and Cowling (1970) or occasionally on both principles
simultaneously. From the Chapman-Enskog theory, the viscosity of the fluid can be written
as:

µCH (T ) =
2.669 · 10−8

√
M

Θ (T )σ2

√
T (1.44)
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Figure 1.4: Evolution of the viscosity µ and the thermal conductivity kth for nitrogen N2 at subcritical
and supercritical pressure (Pc = 33.958 Pa), from NIST online database Linstrom and Mallard (2001)

where M is the molar mass of the fluid in g.mol−1, T its temperature in K, σ is the collision
diameter introduced in Eq. (1.7) in nm and Θ (T ) is the collision integral of which expres-
sion depends on the form chosen for the intermolecular potential to describe the non-kinetic
interactions within the fluid.
The Lennard-Jones potential given by Eq. (1.7), the most often used, leads to the following
expression for the collision integral (from Neufeld et al. (1972)):

Θ (T∗) = 1.16145 T−0.14874
∗ + 0.52487 e−0.77320 T∗ + 2.16178 e−2.43787 T∗

−6.435 T 0.14874
∗ sin

(
18.0323 T−0.76830

∗ − 7.27371
) (1.45)

where T∗ = TkB/ε with kB = 1.38064852 · 10−23m2.kg.s−2.K−1 the Boltzmann constant and
ε the minimal interaction potential introduced Eq. (1.7). The last component of Eq. (1.45)
with the sine function is often discarded for numerical applications.
The expression has been further simplified by Chapman & Enskog noticing the quasi-linear
dependency of Θ in 1/

√
T∗ to eventually lend the commonly used formulas:

Θ =
1.604√
T∗

(1.46)

µCH (T ) =
526.191

√
M

σ2

√
ε

kB

T (1.47)

This approach only holds for simple, non-polar and usually monoatomic molecules. For more
complex gases, the authors in Chung et al. (1988) describe a new method based on the CSP.
It consists in evaluating the reference viscosity µCH from the Chapman-Enskog theory and
then apply a corrective factor Fc as follows:

µCh,lowP = µCHFc (T, ρ, Tc, Vc, ω) (1.48)

where Tc, Vc, ω are the critical temperature, critical molar volume and acentric factor of the
fluid, Fc the corrective factor. For a mixture, the different critical values used when applying
the CSP to obtain Eq. (1.48) have to be formally replaced by "mixture" critical values Tc,mix,
Vc,mix, ωmix, etc.. of which expressions are given in Poling et al. (2001).
The corrective factor is given by:

Fc = 1− 0.2756ω + 0.059035ϑ4
r + k (1.49)
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where k is a corrective factor for molecules with strong hydrogen bounding effects, ω is the
acentric factor and ϑr is the dimensionless dipole moment expressed from the dipole moment
ϑ in Debye with:

ϑr = 0.1313
ϑ√
VcTc

(1.50)

For complex fluids, the relation between the viscosity µCh
lowP and the thermal conductivity

coefficient kCh,lowP
th can no longer be described with Eq. (1.43). The new correlation is:

kCh,lowP
th = 31.179 ∗ MµCh,lowP

Ψ (Tr, ω, C0
v )

(1.51)

where kCh,lowP
th is calculated in W.m−1.K−1, the molar mass M expressed in g.mol−1 and Ψ is

a coefficient depending on the reduced temperature Tr = T/Tc, the acentric factor ω and the
corresponding ideal gas molar isochoric heat capacity C0

v .
The value of Ψ can be calculated using the following formulas:

Ψ
(
Tr, ω, C

0
v

)
= 1 + κ

0.215 + 0.28288κ− 1.061η + 0.26665Z

0.6366 + ηZ + 1.061κη
(1.52a)

κ =
C0
v

R
− 3

2
(1.52b)

η =
µ

0.77320ρ
(1.52c)

Z = 2.0 + 10.5T 2
r (1.52d)

In practice, coefficient η is rather expressed through correlation as a function of ω.

1.2.4.3 Transport properties for dense gases

When the temperature and the pressure increase, their effects on the viscosity and thermal
conduction coefficient must be accounted for. To do so, additional corrective correlation are
proposed in Chung et al. (1988) and can be summarized by Eqs. (1.53a)-(1.53b).µ

Ch = µCh,lowPCµ + µcorr,highPDµ

kCh
th = kCh,lowP

th Ckth + kcorr,highP
th Dkth

(1.53a)

(1.53b)

where µcorr,highP and kcorr,highP
th are high-pressure corrective viscosity and thermal conductivity

coefficient expressed by Eqs. (1.54a) and (1.54b), Cµ, Dµ, Ckth and Dkth are intricate corrective
coefficients depending on the quantity y = ρVc/6, the acentric factor ω, the reduced dipole
moment ϑr and coefficient k introduced in Eq. (1.49).

µcorr,highP = 3.6334 · 10−10M
1
2T

1
2
c

V
2
3
c

(1.54a)

kcorr,highP
th = 1271 · 10−3 T

1
2

M
1
2V

2
3
c

(1.54b)
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To the best of our knowledge, the validity of this method (or any other relying on the combina-
tion Chapman-Enskog/Corresponding States Principle) has never been discussed for unstable
thermodynamic regimes as we encounter in the Second Gradient theory. For this reason, in
this study, no modification has been applied when calculating µ and kth inside the saturation
curve, particularly in the spinodal region.
A special attention has been given to the values taken by the thermal conduction coefficient
and the viscosity in this region as the correlation from Chung et al. (1988) is known to possibly
lead to unphysical values. No such situation was encountered in our applications.

1.3 Application to the Soave-Redlich-Kwong equation of state

1.3.1 Departure values for cubic equations of state

When applied to the cubic equations of state described by Eq. (1.17), the departure values
expressions in Eqs. (1.30)-(1.33) can be simplified. The derivatives of the quantity a (T )
come into play as well as the quantity I (e1, e2, ρ) defined in Eq. (1.55). The calculation of
I (e1, e2, ρ) is done App. B.3 and its final expression, more easily written in terms of specific
volume v = 1/ρ, is given by Eq. (B.78).

I (e1, e2, ρ) =

ρ∫
0

d%

1 + e1b%+ e2b2%2
(1.55)

I (e1, e2, ρ) =
1

v+ − v−
ln

(
v − v−
v − v+

)
(1.56)

v+/− =
b

2

(
−e1 + /−

√
e1

2 − 4e2

)
(1.57)

The resulting departure values are given by:

∆P es =

(
T
da

dT
(T )− a (T )

)
I (e1, e2, ρ) (1.58)

∆P f = −a (T ) I (e1, e2, ρ)− rT ln

(
P (1− bρ)

ρrT

)
(1.59)

∆P s =
da

dT
(T ) I (e1, e2, ρ) + r ln

(
P (1− bρ)

ρrT

)
(1.60)

∆PCv = T
d2a

dT 2 (T ) I (e1, e2, ρ) (1.61)

1.3.2 Application to the Soave-Redlich-Kwong equation of state

In this paragraph, as an application example, the expression of thermodynamic variables are
detailed using the SRK EoS of which formula is recalled in Eq. (1.62) and is obtained with
the values e1 = 1 and e2 = 0.

P (T, ρ) =
ρrT

1− bρ
− ρ2a (T )

1 + bρ
(1.62)
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This EoS has been preferably chosen to perform all the calculations presented in this document
because relatively to its simplicity, it offers a pretty good agreement with experimental data
over a wide range of temperatures and pressures. When compared to the Peng-Robinson EoS,
it tends to be less accurate near the critical point, which is usually a challenge for all EoS
especially the cubic ones. However, it is overall more precise, in particular in the dense phase
which was of a primary interest for our simulations.
The cubic equation to retrieve the density from P and T becomes:

ρ3 [ab] + ρ2
[
Pb2 + rTb− a

]
+ ρ [rT ]− P = 0 (1.63)

With v+ = 0 and v− = −b, the value of I (e1, e2, ρ) is given by:

I (e1, e2, ρ) =
1

b
ln (1 + bρ) (1.64)

From that, the specific internal energy, free energy, entropy, isochoric heat capacity and also
the fugacity coefficient can be obtained:

es (T, ρ) = e0
s (T ) +

1

b

(
T
da

dT
− a
)

ln (1 + bρ) (1.65)

f (T, ρ) = f0 (T ) +−a
b

ln (1 + bρ)− rT ln

(
P (1− bρ)

ρrT

)
(1.66)

s (T, ρ) = s0 (T ) + r ln

(
P (1 + bρ)

ρrT

)
+
da

dT

1

b
ln (1 + bρ) (1.67)

Cv (T, ρ) = C0
v (T ) +

T

b

d2a

dT 2 ln (1 + bρ) (1.68)

rT lnφ =
P

ρ
− rT − a

b
ln (1 + bρ)− rT ln

(
P (1− bρ)

ρrT

)
(1.69)

as well as the thermal expansion coefficient α and the isothermal compressibility coefficient β.

α =

(
1− b2ρ2

)(
r (1 + bρ)− ∂a

∂T
ρ (1− bρ)

)
rT (1 + bρ)2 − a (T ) ρ (2 + bρ) (1− bρ)2 (1.70)

β =

(
1− b2ρ2

)2
ρrT (1 + bρ)2 − a (T ) ρ (2 + bρ) (1− bρ)2 (1.71)

Figs. 1.5 to 1.16 compare isobaric profiles of thermodynamic variables obtained for differ-
ent values of pressure using the Ideal Gas (IG) law and the three main cubic EoSs, namely
the van der Waals (vdW) EoS, the Peng-Robinson (PR) EoS and the Soave-Redlich-Kwong
(SRK) EoSs. The variables are evaluated for oxygen O2 (Tc = 154.58 K, Pc = 50.43 bar,
Figs. 1.5-1.8), methane CH4 (Tc = 190.564 K, Pc = 45.992 bar, Figs. 1.9-1.12) and hydrogen
H2 (Tc = 33.145 K, Pc = 12.964 bar, Figs. 1.5-1.8), They are compared to reference values
extracted from the NIST database for fluid properties (see Linstrom and Mallard (2001)). The
perfect gas reference values (e0

s (T ), s0 (T ), C0
v (T ), etc.) have been computed using the NASA

9-coefficient non-linear polynomial correlations from McBride et al. (2002).
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Figure 1.5: Isobaric curves of O2 density ρ with respect to the temperature for the IG, vdW, PR and
SRK EoSs. Reference values from NIST online database (Linstrom and Mallard (2001)) plotted for
comparison
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Figure 1.6: Isobaric curves of O2 specific internal energy es with respect to the temperature for the
IG, vdW, PR and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard
(2001)) plotted for comparison
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Figure 1.7: Isobaric curves of O2 specific isobaric heat capacity Cp with respect to the temperature for
the IG, vdW, PR and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard
(2001)) plotted for comparison
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Figure 1.8: Isobaric curves of O2 sound speed c with respect to the temperature for the IG, vdW, PR
and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard (2001)) plotted
for comparison
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Figure 1.9: Isobaric curves of CH4 density ρ with respect to the temperature for the IG, vdW, PR
and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard (2001)) plotted
for comparison
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Figure 1.10: Isobaric curves of CH4 specific internal energy es with respect to the temperature for
the IG, vdW, PR and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard
(2001)) plotted for comparison
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Figure 1.11: Isobaric curves of CH4 specific isobaric heat capacity Cp with respect to the temperature
for the IG, vdW, PR and SRK EoSs. Reference values from NIST online database (Linstrom and
Mallard (2001)) plotted for comparison
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Figure 1.12: Isobaric curves of CH4 sound speed c with respect to the temperature for the IG, vdW,
PR and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard (2001)) plotted
for comparison
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Figure 1.13: Isobaric curves of H2 density ρ with respect to the temperature for the IG, vdW, PR
and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard (2001)) plotted
for comparison

10 20 30 40 50 60 70 80 90 100

Temperature T [K]

200

0

200

400

600

800

1000

e s
 [

k
J
.k

g
−

1
]

P = 3. 8 bar

Ref. NIST

IG EoS

vdW EoS

PR EoS

SRK EoS

10 20 30 40 50 60 70 80 90 100

Temperature T [K]

200

0

200

400

600

800

1000

e s
 [

k
J
.k

g
−

1
]

P = 12. 3 bar

Ref. NIST

IG EoS

vdW EoS

PR EoS

SRK EoS

10 20 30 40 50 60 70 80 90 100

Temperature T [K]

200

0

200

400

600

800

1000

e s
 [

k
J
.k

g
−

1
]

P = 13. 6 bar

Ref. NIST

IG EoS

vdW EoS

PR EoS

SRK EoS

10 20 30 40 50 60 70 80 90 100

Temperature T [K]

200

0

200

400

600

800

1000

e s
 [

k
J
.k

g
−

1
]

P = 50. 0 bar

Ref. NIST

IG EoS

vdW EoS

PR EoS

SRK EoS

Figure 1.14: Isobaric curves of H2 specific internal energy es with respect to the temperature for the
IG, vdW, PR and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard
(2001)) plotted for comparison
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Figure 1.15: Isobaric curves of H2 specific isobaric heat capacity Cp with respect to the temperature
for the IG, vdW, PR and SRK EoSs. Reference values from NIST online database (Linstrom and
Mallard (2001)) plotted for comparison
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Figure 1.16: Isobaric curves of H2 sound speed c with respect to the temperature for the IG, vdW, PR
and SRK EoSs. Reference values from NIST online database (Linstrom and Mallard (2001)) plotted
for comparison
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All curves display the same behavior traits:
– The cubic EoSs allow to get the correct trends for the high density/high pressure regions
– In particular, the transition between the discontinuous thermodynamics at subcritical

pressures and the continuous one at supercritical pressures is observed
– All the different curves converge for high temperatures as the ideal gas law hypotheses

start to be justified
– The van der Waals EoS, despite showing an appropriate behavior, lacks in precision

when compared to the two other cubic EoSs
– The Peng-Robinson EoS is more precise near the critical point whereas the Soave-

Redlich-Kwong allows for an accurate mean description over a wider range of temperature
values

– For very low temperatures, all numerically calculated curves suffer the discrepancies
coming from the ideal gas reference correlations from NASA

The results given by the PR and SRK EoSs are particularly satisfactory for oxygen and lead
to a fairly good agreement for methane. Noticeably, the quality of the fit is strongly reduced
for hydrogen, which is notoriously hard to model, as visible in Figs. 1.5-1.8. This contrast
is caused by the peculiar behavior of hydrogen due, in part, to its extremely low molecular
weight when compared to much heavier fluids and also its propensity to be the subject of
strong molecular and quantum effects.

1.4 Thermodynamic stability

One aspect of real gas flows particularly relevant for the study presented in this document is
the notion of thermodynamic stability. Practically, as shown in Fig. 1.2, a fluid can exist in
different states. Sometimes two of these states can coexist (solid-liquid or liquid-vapor) and
at the triple point, solid, liquid and vapor phases exist at the same time.
Studying the thermodynamic stability of a fluid consists in two tasks. The first is determining
the different states the fluid can access depending on the conditions enforced upon him. Such
states are known as equilibrium states. The second is, given a specific equilibrium state, evalu-
ating the ability of the fluid to persist in that state when perturbations are applied to said fluid.

Numerous experiments have been carried out in order to tackle these two tasks. They have
permitted the creation of extensive databases (such as the NIST online database, see Linstrom
and Mallard (2001)) compiling, for a handful list of fluids, their most stable state for a wide
range of temperatures and pressures.
Such experiments naturally led researchers to investigate the equilibrium between different
phases, in particular the liquid-vapor coexistence at the heart of the present work. Likewise,
extensive quantitative data is available regarding the saturation values of a wide variety of
fluids.

By construction, an EoS provides a list of potential equilibrium states for a fluid in a given set
of conditions (temperature, and/or pressure and/or density). The selection of the most stable,
and therefore physical, state is done using the minimal fugacity criterion. In this section, a
slightly more detailed discussion is proposed regarding the derivation of stability conditions
for real-gas/cubic EoSs. In particular, due to their analytic formulation, cubic EoSs allow
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to theoretically investigate thermodynamic regimes not accessible in experiments due to their
instability.

1.4.1 Stability criteria for isolated systems

The thermodynamic stability of a fluid is ruled by the first and the second principles of
thermodynamic which state that the entropy of a closed system must increase with time while
its energy is conserved. These principles translate into a stability criterion for the entropy :
the latter must be concave relatively to the pertinent variables used to describe the system.
For a closed system, these variables are classically the density ρ and the specific internal energy
es.

1.4.1.1 Local stability

Locally, the concavity constraint on the entropy can be reformulated as follows: the Hessian
matrix Hρ,es (s) of the specific entropy s relatively to ρ and es must be negative semi-definite.
The symmetric Hessian matrix of s relatively to ρ and es is defined by:

Hρ,es (s) =


∂2s

∂ρ2

∂2s

∂es∂ρ
∂2s

∂ρ∂es

∂2s

∂es
2

 (1.72)

In Giovangigli and Matuszewski (2012), the authors prove that for a single fluid this condition
can be expressed in the equivalent and more convenient form given by Eqs. (1.73a)-(1.73b).

(
∂es
∂T

)
ρ

> 0(
∂P

∂ρ

)
T

> 0

(1.73a)

(1.73b)

Eq. (1.73a) represents a thermal stability condition: increasing the temperature of the fluid
while maintaining its volume should lead to an increase in its energy. Eq. (1.73b) is a
mechanical stability condition: to reduce the volume (or increase the density) of the fluid
while maintaining its temperature, the pressure must be increased.
For a system with multiple species, chemical conditions must be added to account for the
interactions between the different constituents. In the case of a single species, these additional
conditions reduce and become equivalent to the mechanical stability condition.

1.4.1.2 Global stability

It must be emphasized that satisfying Eqs. (1.73a)-(1.73b) only grants a local stability for
the fluid. By definition, the global stability require to analyze at once all the states ac-
cessible to the system to extract the globally stable regions, i.e. regions where the en-
tropy is globally concave. Practically, the global stability is lost when the hypersurface
Γs = {s (ρ, es) |(ρ, es) ∈ admissible states} diverges from its concave envelope.
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For general cases with multiple species, the global stability criterion is virtually impossible
to derive. The actual description of the hypersurface Γs cannot be done without additional
hypotheses. For such cases, even the local stability criterion can prove tedious to specify ana-
lytically.

For a single species, as the system can be described with only two variables, the analytical
derivation strongly simplifies but for a generic EoS, only the local stability criterion is easily
accessible.
Broadly speaking, global stability always implies local stability. However the opposite is not
true. Thermodynamic states that are locally stable but outside the global stability region are
referred to as metastable and can sometimes be accessed in practice. A common occurrence is
that of supercooled water which (in subcritical conditions) can be cooled down several degrees
below its fusion point without solidifying. The precariousness of this local stability causes the
water to freeze instantly when submitted to an outside perturbation such as a light shock.

1.4.1.3 Case of cubic EoS

By definition of the specific isochoric heat capacity Cv, the condition from Eq. (1.73a) is
actually strictly equivalent to Cv > 0. Applying the generic definition of Eq. (1.27) to Cv by
injecting its departure value calculated for a cubic EoS in Eq. (1.61), it comes the expression:

Cv
EoS (ρ, T ) = Cv

0 (ρ, T ) + T
d2a

dT 2 (T ) I (e1, e2, ρ) (1.74)

The reference values of Cv0, taken constant or extracted from a database, must be always pos-
itive if well defined for an ideal gas. The positivity of CvEoS is therefore tied to the positivity
of its rightmost term.

Given the expression from Eq. (1.19) used in Eq. (1.18) to define coefficient a, its second
derivative can be expressed:

d2a

dT 2 (T ) =
1

T

Φcc (1 + c)√
TTc

(1.75)

This term is trivially positive knowing c > 0.

Regarding I (e1, e2, ρ) of which expression is given by Eq. (B.78), it can also be shown to be
positive. Indeed, from their respective definitions in Eq. (1.57) it comes that 0 > v+ > v−.
Therefore, 0 > v+ > v− and for a positive specific volume v one has v − v− > v − v+, in
particular ln [(v − v−) /(v − v+)] > 0. Combining these two inequalities into Eq. (B.78) shows
the positivity of I.

Ultimately, the positivity of the isochoric heat capacity is always satisfied for a cubic EoS
and the local stability criterion reduces to Eq. (1.24) i.e. for a single species, the local
thermodynamic stability is equivalent to the local mechanical stability.

1.4.2 Liquid-vapor equilibrium

As already mentioned, metastable states can be experimentally produced but are difficult
to maintain. Unstable states, by definition, cannot be observed. In practice, an unstable



Chapter 1 - Real gas thermodynamics 45

state spontaneously gives birth to an equilibrium between two new states. A metastable state
leads to the same outcome after a perturbation. These two new stable states, called phases,
lay in the thermodynamically stable regions and the mix of these two phases leads to same
amount of mass and energy in the system albeit with a higher total entropy. It should be
noticed however that unstable states can be stabilized by adding new contributions to the
thermodynamic description of the fluid, for instance density gradient, as it is done in the
Second Gradient theory presented in Chap. 5.

1.4.2.1 Equilibrium conditions between two phases

It is interesting to investigate the conditions these two phases must satisfy in order to coexist.
To that affect, the global entropy of both phase 1 and phase 2 can be expressed by S1 =
S1 (E1,M1) and S2 = S2 (E2,M2) where Ei and Mi are the global energy and the mass of
phase i. The total entropy of the system S = S1 +S2 can be differentiated using Gibbs identity
Eq. (B.1) to get:

dS = dS1 + dS1 =
1

T1
dE1 +

P1

T1
dV1 −

µ1

T1
dM1 +

1

T2
dE2 +

P2

T2
dV2 −

µ2

T2
dM2 (1.76)

where Pi, Ti, µi and Vi are the pressure, temperature, free enthalpy and volume of phase i. For
a (locally) closed system, the energy, mass and volume are conserved providing the relations:


dE = dE1 + dE2 = 0 → dE2 = − dE1

dM = dM1 + dM2 = 0 → dM2 = − dM1

dV = dV1 + dV2 = 0 → dV2 = − dV1

(1.77a)
(1.77b)
(1.77c)

which, once injected into Eq. (1.76) lead to the new expression of dS:

dS =

(
1

T1
− 1

T2

)
dE1 +

(
P1

T1
− P2

T2

)
dV1 −

(
µ1

T1
− µ2

T2

)
dM1 (1.78)

For a stable state, the differential of the entropy dS must be null, which is achieved if each of
its components is also null, i.e.:

1

T1
=

1

T2

P1

T1
=
P2

T2

µ1

T1
=
µ2

T2
(1.79)

The condition can be simplified to retrieve the classic equilibrium conditions between two
stable phases: 

T1 = T2

P1 = P2

µ1 = µ2

(1.80a)
(1.80b)
(1.80c)

For a given set (E ,V,M) or equivalently (ρ, es), the total entropy of the mix is maximized if
each phase lays at the boundary of its own stability region.
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1.4.2.2 Saturation curves

The equalities in Eqs. (1.80a)-(1.80c) allow to define the notions of saturation temperature
T sat and pressure P sat that are the temperature and pressure shared by the two phases in a
liquid-vapor equilibrium. The process of describing this equilibrium consists in, for a couple
(T, P ), to determine whether two states, defined by two densities ρ1 / ρ2, exist and lead to
the same chemical potential µ1 = µ2.
As explained in Eq. (1.2.2), cubic EoSs are built such as beyond critical conditions (T > Tc
and/or P > Pc) one single density is admissible. In strictly subcritical conditions, one, two
or three densities can be found admissible while solving Eq. (1.23). Only when three such
densities are found, two of them, the maximal and minimal, are susceptible to share the same
chemical potential. In that case, the system, depending on its energy, may be constituted by
a mix of liquid and vapor phases at equilibrium.

Practically, one is rather interested in determining, for a given subcritical temperature T (or
subcritical pressure P ) the possible values of pressure P (T ) (or temperature T (P )) that lead
to the existence of ρ1 and ρ2 such as µ (ρ1, T ) = µ (ρ2, T ).
It can be shown that for cubic EoSs, such a pressure P (T ) (or temperature (T )) always exists
and the task reduces to only finding its value. This can be achieved by classic means using
a root-finding algorithm. It provides access to the complete set of saturation variables T sat,
P sat, ρl and ρv. The process is coarsely represented in Fig. 1.17.
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Figure 1.17: Schematic representation of the evaluation of the saturation pressure and densities for
a given temperature with the SRK EoS

For a reference subcritical isothermal curve, when the trial pressure is either too high or too
low, one single density possesses the smallest chemical potential, be it a high liquid density or
a small vapor density depending on the pressure. For the exact saturation pressure P sat, the
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vapor and liquid density are matched in chemical potential.
For the supercritical isothermal curve, only one density solution exists, even for subcritical
pressure, meaning that only a single phase is defined. Likewise, no matter the temperature, if
a supercritical trial pressure in used, a single density solution exists with the same implications.
By calculating the saturation values for several temperatures, the saturation curve from Fig.
1.3 can be constructed.

In the special case of a single fluid, further numerical investigations can show that the satura-
tion curve actually demarcates the global stability region.
This region is indeed more restrictive than the local stability region of which limits lay below
the saturation curve. The region between the saturation and local stability curve, i.e. the zone
for metastable states and represented in light gray in Fig. 1.17, is called the binodal region.
The strictly unstable region, represented in dark gray in Fig. 1.17, is called the spinodal region.

Fig. 1.18 compile comparative plots of the correlation curves P sat
(
T sat

)
for different fluids

where the results from several cubic EoS are compared to reference values from NIST database
(Linstrom and Mallard (2001)).
Such as it was the case for classic variables, results from PR and SRK EoSs show a very good
agreement with experimental measurements. The vdW EoS, while still capturing the right
trend, induces results that diverge noticeably from the reference.
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Figure 1.18: Evolution of the saturation pressure P sat with the saturation temperature T sat for
different fluids. Comparison of vdW, PR and SRK equations of state. Reference values from NIST
database plotted for comparison
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Chapter 2

Sharp interface methods: Interface
tracking

The following chapter focuses on sharp interface methods commonly labeled as interface track-
ing methods that share the feature of having a specific numerical structure dedicated to the
localization of the interface. This structure usually consists in a set of markers with specific
attributes (vortices, massless particles, fluid particles, Lagrangian mesh nodes, etc...) of which
positions directly relate to the interface position, the latter being obtained merely through
geometrical reconstruction by "linking" adequately the markers together.

A variety of methods fall under the previous description.
The Boundary Integral (BI) and Marker-in-Cell (MAC) methods bear a major historical im-
portance as they, together with the Volume-of-Fluid methods, can arguably be considered as
the first methods designed to deal with multi-fluid and/or multiphase flows. Almost all mod-
ern sharp interface methods directly stem or substantially borrow from these three. As such,
it seemed relevant to us to provide some insight into the BI and MAC methods.
Although not initially designed to address multiphase simulations, Front-Tracking methods
have steadily evolved to become a standard for such configurations. As they are now the
most often used sharp interface tracking methods, this study would feel incomplete without
addressing them as well.
Other methodologies worth mentioning are the Vortex-in-Cell methods which are modified and
particularized versions of the BI methods detailed in Meng and Thomson (1978); Couet et al.
(1981); Anderson (1985); Cottet and Poncet (2004) and the Particle-in-Cell methods explored
in Harlow (1964); Amsden (1966); Brackbill and Ruppel (1986); Kelly et al. (2015), variant
versions of the early MAC method which, as it so happens, has underwent a wide variety of
modifications and developments.

This presentation aim at providing two types of information: the historic of their creation with
the underlying motivations and difficulties, the physical and numerical framework within which
the methods operate and when relevant, with the main steps to implement them. Throughout
and whenever possible the major and/or recent results permitted by these methods along with
discussion regarding their current limitations are also provided.
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2.1 Boundary Integral methods and Marker-and-Cell methods

The Boundary Integral methods and Marker-and-Cell methods present an important historical
value as they have laid the grounds for the more modern interface modeling methods which
have borrowed, to a various degree, different ideas from these early methods.
As their use in contemporary work is very limited, due their restricted range of application, a
lesser emphasis is put on their description in the main core of this document. Only a historical
overview and a rapid description of their mechanics is provided, which can help to get a better
insight into the functioning of the more modern methods.

2.1.1 Boundary Integral methods

2.1.1.1 Potential flows

The Boundary Integral (BI) methods have been introduced in the work of Rosenhead (1931),
later expanded upon in Birkhoff (1955); Birkhoff and Fisher (1959); Birkhoff (1962). These
methods are deeply related to potential flows, defined as two-dimensional incompressible flows
with no diffusion nor viscosity that are additionally supposed to be irrotational. The theory of
potential flows has been formalized in Kellogg (1929) and many of its applications to canonical
cases can be found in Lamb (1975).

The complete behavior of a potential flow can be described using two specific functions: the
stream function ψ and the potential function ϕ, linked to the flow velocity and defined by
means of differential equations.
These two functions satisfy a simple Poisson equation, i.e. ∆ψ = 0 and ∆ϕ = 0, which is
quiet conventional in fluid dynamics and for which plethora of numerically efficient methods
have been designed.

The link between potential flows and interfaces lays in the fact the isolines of the stream
function ψ define virtual frontiers that cannot be crossed by the particles in the flow. This
property, in absence of diffusion (mechanical by viscosity, thermal by conduction and chemical
by species diffusion), is an adequate representation for an interface.
All the stakes behind BI methods are therefore to find the proper stream and potential func-
tions ψ and ϕ that represent correctly the initial state of the flow and the initial position of
the interface. Afterwards, during the computation, the time evolution of the corresponding
isolines of φ allows to track the position of the interfaces.

2.1.1.2 Interface representation

The task of finding the proper functions ψ and ϕ to represent a flow with arbitrary shaped
interfaces is actually intricate. Practically, it is done by combining several canonical flows
corresponding to more simple configurations.
Kellogg’s theory allows to define multiple elementary potential flows such as uniform flows,
mass sources and sinks, vortices, etc... that can be combined, thanks to the linearity of the
equations, in order to generate more complex configurations.

One such configuration is formed by a collection of elementary vortices, which is particularly
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suitable to model flow with a discontinuity in the tangential velocity. A vortex sheet is defined
as a surface separating two regions where the fluid is essentially irrotational and across which
a discontinuity of the fluid velocity occurs: the tangential velocity is discontinuous whereas
the normal component remains continuous. This tangential velocity discontinuity implies that
the flow has an infinite vorticity on a vortex sheet.
This last observation provides a strong foundation for the theory to evolve towards interfaces
simulation. Indeed, an interface is, among other things, characterized by a tangential velocity
discontinuity. This description is suited when studying the interface between two incompress-
ible and non-miscible liquids, between incompressible gas and liquid (like air and water) or
between two phases of the same incompressible element with the absence of evaporation/liq-
uefaction.

This modeling has been used early on, in particular in Rosenhead (1931) to study Helmholtz
instabilities and vortex-sheet roll-up which is the formation of a spiral in the shape of an
evolving vortex sheet. Helmholtz instabilities appear in configurations where two flows with
the same properties, initially separated by a planar boundary, are put into movement with
opposite parallel velocities. A numerical simulation of such a configuration and the ensuing
vortex-sheet roll-up, from Rosenhead (1931), is shown in Fig. 2.1.
It is worth mentioning that the study of this phenomenon remains a substantial analytical and
numerical challenge almost a century later.
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Figure 2.1: Description of the time evolution of a vortex-sheet roll-up using a periodic distribution
of vortices, taken from Rosenhead (1931)
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Later, through multiple studies proposed by Birkhoff in Birkhoff (1955); Birkhoff and Fisher
(1959); Birkhoff (1962) and supplemented by the additional work in Hama and Burke (1960);
Fink and Soh (1976); Zalosh (1976), it was shown that the discrete approach used by Rosenhead
was not suitable. One of its major flaw is the fact that it introduces an artificial surface tension
that stabilizes the vortex sheet. Using more points with an irregular distribution of the vortices
and adding both viscosity and surface tension provides more physical results.
However, these investigations eventually served to cement the use of a continuous approach
to deal with vortex sheets. Although this approach was already used, for instance to study
fluid-rigid body interactions, Birkhoff initiated the systematic use of the Boundary Integral
method to deal with fluid-fluid interfaces.

2.1.2 Marker-and-Cell methods

2.1.2.1 Historical perspective

The original Maker-and-Cell method was introduced at Los Alamos Laboratories in the early
1960’s by Harlow et al. (1965) and Welch et al. (1965), its main purpose was to study free
surface for viscous incompressible flows in 2D planar or 2D axisymmetric configurations. A
distinctive feature of this method is the use of a staggered grid and a finite-difference spatial
scheme, so much so that nowadays the MAC acronym is often employed as a mean to refer to
the use of this type of mesh, often but not necessarily in conjunction with a finite-difference
spatial scheme, even for calculations not involving any free surface or interface. The use of
this staggered had been initially motivated by the work of Lebedev (1964).

Over more than half a century, the initial MAC method underwent several modifications lead-
ing to various methods being named after it. Although they are too numerous to all be
discussed in details, the arguably more relevant are briefly presented in Sec. 2.1.2.4.

Its creation aside, four principal milestones can be identified for the familly of MAC methods.
In 1970, in Amsden and Harlow (1970) was proposed a new strategy to simplify the Poisson
equation associated with the determination of the pressure, the method being known as the
Simplified Marker-and-Cell (SMAC). In the rest of the 1970’s, a specific attention was given
to the treatment of the free surface/interface, mostly the proper evaluation of the pressure
imposed on it to ensure consistent stress contributions on either sides. This problematic had
been shown to lead to poor results for free-surface/interface undergoing strong deformations
and the effort in Chan et al. (1971) and Easton (1972) , Nichols and Hirt (1971), among
others, allowed qualitative and quantitative improvements. It is worth noticing that based
on Gawain and Pritchett (1970) an ambitious attempt at addressing turbulent flows with the
MAC was made in Pritchett (1970) and lead to encouraging results though efforts in that
direction seems to have faded since then, other methods being privileged. The third big step
occurred in the late 1980’s/early 1990’s where attempts were made to expand the methods to
more complex geometries where so far they were limited to boundaries following the cartesian
mesh or, at the very best, parallel to the mesh directions.
Although the mesh remained cartesian in essence, the method in Viecelli (1969), based on
the original MAC method (refereed to as the ABMAC for Arbitrary external Boundaries
MAC), and the one in Tomé and McKee (1994), based on the SMAC method (referred to as
GENSMAC for General domain SMAC), allow simulations for any geometry of the boundaries.
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Noticeably, the GENSMAC has even been extended to non-Newtonian fluids in Tomé et al.
(1996).
For the same purpose, but using an opposite strategy, in Kashiwa (1986) was described an
adaptation of the MAC philosophy to a Finite Volume paradigm in order to use arbitrarily
shaped cells and thus arbitrarily shaped boundaries. It appears as though methods derived
from the original MAC method rather than the SMAC have been discarded in the latest
works. Indeed, since the 2000’s, most numerical results have been obtained by increasingly
improving the GENSMAC method of Tomé and McKee (1994) to extend it to axisymmetric
flows Tomé et al. (2000), to try implicit time-stepping Oishi et al. (2004), to add surface
tension Mangiavacchi et al. (2005) and to extend it to three dimensions De Sousa et al.
(2004), McKee et al. (2008).

In the following, the Maker-and-Cell methods will be presented in a two dimensional planar
configuration on a structured Eulerian grid if not mentioned otherwise.

2.1.2.2 The MAC paradigm

2.1.2.2.1 The staggered grid
To discretize the Navier-Stokes equations, the MAC method relies on a staggered grid, the

scalars and vectors are defined at different locations of the computational grid. This allows to
minimize errors when calculating the fluxes in the momentum equation. As shown in Fig. 2.2
, the scalars (pressure Pi,j , kinematic viscosity νi,j , etc...) are defined at the center of the cells
, the x-components of the vectors (horizontal velocity ui+ 1

2
,j , etc...) are defined in the middle

of the horizontal faces of the cells and the y-components of the vectors (vertical velocity vi,j+ 1
2
,

etc...) are defined in the middle of the vertical faces of the cells. Sometimes, these quantities
need to be calculated at locations different from where they are attributed to. To that effect,
averaging procedures are to be used.
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Figure 2.2: Staggered grid used in MAC methods, here in two dimensions

2.1.2.2.2 The flagged domain
To track the fluid, massless markers are used Fig. 2.3. Their initial position must be

prescribed by the user. During the calculation, they are transported by the fluid motion.
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In the original method, these markers served only to differentiate the fluid from the void to
track free surfaces. In the latest methods, the definition of these markers has been modified to
accommodate multi-fluid or liquid-vapor calculations with eventual interfaces and free surfaces.

interface fluid markers boundaries

Figure 2.3: Dissemination of markers in the fluid part of the domain

The ability to locate said interfaces is primordial since they require a specific treatment in
terms of flux determination. This matter is even more important when surface tension, mass
fluxes or heat fluxes are authorized at the discontinuities. In general, the enforcement of these
conditions requires the specification of a precise pressure at the discontinuities and possibly
the determination of a surface normal vector and a surfce curvature. To do so, every cell in
the domain is attributed a flag characterizing its composition, as depicted in Fig. 2.4 below.
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Figure 2.4: Flagging of the cells used in MAC methods for single fluid simulations
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Single fluid flagging
For a single fluid calculation, as shown in Fig. 2.4, the different flags used are:
• BOUNDARY (B): a cell with more than half of its volume outside the calculation domain

is considered as a boundary cell, this flag is reserved to solid walls
• INFLOW (I), OUTFLOW (O): these flags extend the boundary flag to eventual inflows

and outflows using the same discrimination method
• EMPTY (E): a cell is considered EMPTY if it does not contain any marker and is not

part of any type of boundary
• SURFACE (S): a cell is considered to contain a surface if it is not a boundary cell, if it

contains marker and if it has at least one neighboring cell flagged as empty
• FLUID (F ): a cell is considered to be full of fluid if it is not a boundary cell, if it contains

markers and all its neighboring cells also contain markers

This flagging procedure must be performed after each time iteration but since the time step
is restricted by a CFL type condition, markers cannot move farther than one cell away. This
means that the free surfaces and interfaces move at most one cell at each time step. Therefore,
the update in the cells flagging it only necessary in the vicinity of the interface and surface
cells.

2.1.2.3 The original MAC method

2.1.2.3.1 The equation discretization
As mentioned, the original MAC method in Welch et al. (1965) was designed to numeri-

cally solve the Navier-Stokes equations for viscous and incompressible flows in a single fluid
framework. For such a flow, the mass and momentum equations are:

∂u

∂x
+
∂v

∂y
= 0 (2.1)

∂u

∂t
+
∂u2

∂x
+
∂uv

∂y
= −∂P

∂x
+ ν

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gx (2.2)

∂v

∂t
+
∂uv

∂x
+
∂v2

∂y
= −∂P

∂y
+ ν

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gy (2.3)

where u,v are the horizontal and vertical components of the velocity, P = P/ρ is the reduced
pressure, ν the kinematic viscosity and g = (gx, gy) accounts for the body forces acceleration.

With the conventions 2.1.2.2.1, the Eqs. (2.1) to (2.3) are discretized using a central finite-
difference scheme. The mass equation, in its discretized form, becomes:

Di,j =
ui+ 1

2
,j − ui− 1

2
,j

∆x
+
vi,j+ 1

2
− vi,j− 1

2

∆x
= 0 (2.4)

while the momentum equation can be split in two along the x and y directions to get:

∂ui+ 1
2
,j

∂t
= Fx (u, v,P, ν) (2.5)

∂vi,j+ 1
2

∂t
= Fy (u, v,P, ν) (2.6)
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where Fx and Fy are the numerical functions to calculate the momentum fluxes divergence
in both directions. The time integration strategy can be adapted to gain more precision, for
instance using high order Runge-Kutta methods. Most of the time, an explicit time stepping
is used meaning that the right hand sides of Eq. (2.5) and Eq. (2.6) are calculated with the
known values at iteration n (Fx (un, vn,Pn, νn) and Fy (un, vn,Pn, νn)) to evaluate the new
velocity at iteration n+ 1.

To achieve accurate results, the numerical velocity divergence Di,j must be equal to zero to
agree with the continuity equation Eq. (2.1) (or Eq. (2.4) when discretized). However, due
to numerical errors and computational imprecisions, this condition may not be satisfied in
practice. Since the quality of the calculations relies on this condition, the strategy of the
MAC method is to enforce it using the pressure as a pivot value. It can be viewed as a self-
correction procedure which avoids the propagation of errors from one iteration to the other
and thus their accumulation. This idea has even been expanded beyond the scope of the MAC
method in Hirt and Harlow (1967) to deal with initial-value problems. Using the definition of
Di,j and discretizing Eqs. (2.5) and (2.6), one can write:

Dn+1
i,j −Dn

i,j

∆t
= Qni,j −

Pni+1,j − 2Pni,j + Pni−1,j

∆x2
−

Pni,j+1 − 2Pni,j + Pni,j−1

∆y2
+Wn

i,j (2.7)

where Qni,j and W
n
i,j are functions of the discrete velocity components and the viscosity known

at iteration n. With the constraint that Dn+1
i,j = 0 in Eq. (2.7) one can then write:

Pni+1,j − 2Pni,j + Pni−1,j

∆x2
−

Pni,j+1 − 2Pni,j + Pni,j−1

∆y2
=
Dn
i,j

∆t
Qni,j +Wn

i,j (2.8)

which is a Poisson equation that can be solved by means of classic Poisson solvers. However,
this equation is not to be solved in all the domain indifferently : a specific pressure is to be
enforce at the surface/interface cells (S flag) and at the boundaries (B, O and I flags) as well.

The solving procedure
The original MAC method solving procedure articulates around the following steps:

1. At the end of iteration n, the velocity components and the viscosity are known in all the
domain and the cells have been properly flagged. Wherever it is needed (mostly around
the boundaries and at the free surfaces), the velocity values are modified to ensure
physical consistency. This allows to calculate the values Dn

i,j , Q
n
i,j , W

n
i,j and determine

the right hand side of Eq. (2.8)
2. With the current flagging, the areas where Eq. (2.8) is to be solved and the areas where

the pressure is to be enforced are identified. The procedure then follows trough with
the corresponding calculations to get the discrete values of P, taking into account the
specific boundary conditions, in particular at the free surfaces.

3. With the discrete values of P known everywhere, the right-hand side of Eq. (2.5) and
Eq. (2.6) can be evaluated and the velocity components for the iteration n + 1 can be
determined.

4. With the updated velocities, the markers can be advanced. To do so, a Euler forward
method is used so that xn+1

k = xnk +∆tun+1
k , yn+1

k = ynk +∆tvn+1
k where (xk, yk) denotes

the position of the k-th marker. The marker velocity components un+1
k , vn+1

k are obtained
from the fluid velocity after its update, through linear interpolation.
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5. After the markers position is updated, the cell flagging can be updated as well as other
output values if needed and the procedure cycles back.

Two types of boundary conditions have to be included into the MAC method: the solid bound-
ary condition where the fluid is un contact with solid wall and the free surface condition where
surface cells S and empty cells E interact. They mostly rely on the use of ghost cells with
carefully chosen velocity and pressure values to numerically match the prescribed conditions.
An extensive description can be found in Welch et al. (1965). Over the years, numerous so-
phisticated methods have been devised, using markers and adequate interpolation strategies,
in order to tackle the issue of boundary conditions.

With the above described method, the authors in Welch et al. (1965) were successfully able to
simulate several configurations such as a dam breaking, a wave evolving above a reef or water
in a reservoir behind a sluice gate, shown in Fig. 2.5, pioneering results at that time.

Figure 2.5: Time evolution of a water reservoir behind a sluice from Welch et al. (1965). The shape
of the domain allows the water to break backwards toward the gate

2.1.2.4 Improvements on the original method

Since the work in Welch et al. (1965), the original method has undergone several improvements
but only the major modifications due to these improvements are recalled here.

The SMAC method

The simplified MAC method (SMAC), introduced in Amsden and Harlow (1970), gets rid of
the Poisson equation to access the pressure by using a predicted reduced pressure field P̃ which
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natively satisfies the correct boundary conditions, in particular at the interface, to find the
velocity. This new velocity is then used to correct the pressure field and obtain P.
With these modifications, the authors in Amsden and Harlow (1970) presented, among others,
the simulation of an impacting drop of which images are given in Fig. 2.6.

Figure 2.6: Time evolution of a water droplet splashing into an initially quiescent water plane Amsden
and Harlow (1970)

The GENSMAC method

The General domain SMAC, introduced by Tomé and McKee (1994), represents a major shift
if the way MAC methods are designed. Indeed, the classic markers disseminated all other the
fluid are traded for less numerous markers only used to delimit the interfaces and free surfaces.
To some extent, this method is analogous to the familly of Front-Tracking methods presented
in Sec. 2.2.
In particular, the markers at the interface can be used to evaluate its curvature and therefore
introduce surface tension in a more consistent and precise manner.

Work on the GENSMAC has spanned over a decade with the sequential improvements provided
in Tomé et al. (2000); Oishi et al. (2004); Mangiavacchi et al. (2005); De Sousa et al. (2004);
McKee et al. (2008).
Thanks to these efforts, very promising results have been produced such as the non-symmetrical
rising of two different bubbles in a third fluid, shown in Fig. 2.7 or the splashing of a droplet
onto a denser more viscous fluid, shown in Fig. 2.8.
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Figure 2.7: Transient solution for two bubbles of different density rising in a third continuous phase,
at different times, from De Sousa et al. (2004)

Figure 2.8: Transient solution of a splashing drop falling into the free surface of a heavier and more
viscous fluid, from De Sousa et al. (2004)

The Micro-Cell methods

With the same idea of using interface/surface makers rather than fluid markers, another cate-
gory of MAC methods has been introduced by trying to evaluate more precisely the fluxes at
the interface.
The Surface-Marker and Micro-Cell method (SMMC) from Chen et al. (1997) and the
Eulerian-Lagrangian Marker and Micro-Cell (ELMMC) from Raad and Bidoae (2005) both
rely on a local mesh refinement to deal with cases involving more than one interface in one
cell. Eponymous micro-cells are created by dividing a local cell following a process similar to
automatic mesh refinement techniques. These new micro-cells are then flagged and treated
using the classic MAC paradigm. This approach offers a better handling of interface separation
and merging and a better evaluation of interfacial fluxes.
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Using these modifications, the authors in Raad and Bidoae (2005) have provided results for,
among others, the filling of a rectangular cuboid using two initially impacting jets, as shown
in Fig. 2.9.

Figure 2.9: Simulation of the cavity filling problem with two impacting water jets, from Raad and
Bidoae (2005)

2.2 Front-Tracking methods

2.2.1 Historical overview

The Front-Tracking (FT) methods are some of the oldest and most popular approaches to per-
form computations involving boundaries between different materials. Although in the prospect
of this document, only the liquid-vapor configurations are of interest, it should be noted that
FT methods are inherently designed to track any kind of discontinuity in a flow.
This includes shocks as well as contact discontinuities such as interfaceS between non-miscible
fluids or bi-variate density fluids. More recently, they also have been extended to compressible
and/or miscible fluids with the added capability to address phase change. The first occurrences
of such methods trace back to the late 1960’s.

The idea was originally proposed in Richtmyer and Morton (1967) to study the movement of
a shock in an initially undisturbed material. The authors exposed the principle of using a
specific grid (a linear grid in two dimensions) composed of points and curves linking them to
accurately locate the shock front.
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The name Front-Tracking originates from this original study, although no practical implemen-
tation of the method was presented there. The first reference to a practical use of a dedicated
mesh to track an interface between two fluidS is found in Daly and Pracht (1968) and Daly
(1969) where the authors used specific markers additionally to the initial makers from the
MAC method.
From that, they performed very early calculations of density-current cases, see Daly and Pracht
(1968), and studied the evolution of Rayleigh-Taylor instabilities, see Daly (1969), involving
two incompressible viscous fluids. The front markers were introduced in the MAC calculations
as a mean to accurately evaluate the interface curvature and normals.

The growth of Front-Tracking as a self-sustained method, through practical implementation,
is largely due to the work of the American mathematician James Glimm, spanning over three
decades, in particular by way of the code FronTier, see Du et al. (2006). This work was
initiated in Glimm et al. (1981) to improve upon the Random Choice Method (see Chorin
(1976); Glimm et al. (1980); Glimm et al. (1980); Glimm et al. (1981)) used at that time as
a predominant tool to track discontinuities (i.e. shocks or interfaces) in hyperbolic equations.
In Glimm et al. (1981), the authors established the foundations of the method, namely, the
use of a specific mesh of one lesser dimension to track a discontinuity in the flow as shown
in Fig. 2.10. This mesh is used to reconstruct the front via appropriate interpolationS, to
calculate relevant physics such as surface tension and fluxes and is advected in a Lagrangian
fashion once the specific velocity of the front has been determined.

Since then, the method has been extensively studied and improved through successive studies,
most notably: in Glimm et al. (1985) an in depth study of the 2D Riemman problem used to
evaluated the front speed is performed, in Glimm and Mcbryan (1985) a data structure and
a computational model is devised specifically for FT simulations, in Glimm et al. (1988) an
algorithm is proposed to solve front intersection by creating topology bifurcations, in Glimm
et al. (1998) the method is successfully extended in three dimensions, in Glimm et al. (2003)
a method is presented to achieve better local conservation in the front vicinity and in Bo et al.
(2011) a hybrid method combining FT and Ghost-Fluid methods is described and applied to
the study of primary breakup in liquid jetS.

In spite of being historically the first to be introduced and still being used until recently, the
method developed by Glimm and his coworkers is often overshadowed by the one introduced
in Unverdi and Tryggvason (1992). Although it essentially deriveS from Glimm’s, this method
is solely dedicated to the simulation of multiphase flows with interfaceS (and not any other
type of front). Moreover, in its first formulation, it gleaned substantially from Peskin’s Im-
mersed Boundary Method (IBM) (see Peskin (1977)). Besides, like Glimm’s, it has sustained
regular and relevant improvements, most notably: in Juric and Tryggvason (1998) the authors
allow for a non-isothermal formulation with phase change and mass transfer at the front, in
Tryggvason et al. (2001) a more robust manipulation of the interface grid and a more precise
manner to account for surface tension are presented and in Terashima and Tryggvason (2009)
yet another hybrid method combining FT and Ghost-Fluid Method (GFM) was proposed al-
lowing for simulations involving compressible flows. Noticeably, the method has even been
extended to reactive cases such as reactive bubbles in Koynov et al. (2005) and premixed
flames in Qian et al. (1998).
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Lastly, several other FT methods have been developed in the literature, the most notice-
able (excluding the two already mentioned) for multiphase flow studies being the ELAFLINT
method of Udaykumar and coworkers, see Udaykumar et al. (1996); Udaykumar et al. (1997);
Udaykumar et al. (1999). For the use of FT methods in aeronautics, the reader can refer
to the early review in Moretti (1987) or the studies in Witteveen et al. (2007); Paciorri and
Bonfiglioli (2009); Witteveen (2010). FT methods have even been adapted to non-Newtonian
fluids as presented in Izbassarov and Muradoglu (2015).

The rest of the section will essentially expands upon Tryggvason’s approach, which is the
preferred one in most contemporary simulations performed with FT methods. Moreover,
in their modern formulations, some of the differences between Glimm’s and Tryggvason’s
approaches tend to smear out as they start sharing specific numerical tools to answer similar
needs. In this presentation, the numerical schemes employed to solve the Navier-Stokes/Euler
equation are not treated in order to focus on the interface treatment. A similar approach
is taken in Chap. 3 to address Level-Set and Volume-of-Fluid methods who share, with
FT methods, a need for classic numerical tools. These tools are referenced throughout the
description of the different methods and only expanded upon when needed to ensure the clarity
of the presentation.

2.2.2 The computational setting

In the FT methods, two grids are used. The primary grid is an Eulerian mesh, not necessarily
but most often orthogonal, upon which the Euler or Navier-Stokes equations are solved in a
undifferentiated manner for the two phases (or fluids). The interface is tracked using a second
grid, Lagrangian in nature as it is composed by markers which are to be convected in the flow
with the velocity of the interface. This setting is presented in Fig. 2.10.

Fluid 2

Fluid 2

Eulerian nodes

Lagragian nodes

Figure 2.10: Dual-mesh configuration used for calculations in FT methods

In the FT methods, the front usually refers to the set of markers representing the interface but
also includes additional information regarding the physics at the interface and its geometrical
properties.
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2.2.2.1 The data representation

The choices made to represent the front, from a computational point of view, has a direct
impact on the efficiency of the calculations. This is especially true in 3D cases which rep-
resent a significant increase in the level of complexity regarding the handling of the front.
The implementation used will impact the calculation of the interface values needed for the
computation (normals, surface tension, pressure jumps, interface velocity, etc...) as well as
the maintenance of the front when time comes to add or remove markers, as explained in the
next paragraphs. Any data structure can be made efficient with relative ease for 2D cases. It
is however not the case for 3D cases where the overall efficiency of the method will strongly
rely on said structure. In both cases, it possible to represent the interface using structured
and unstructured arrays. Structured arrays benefit from their simplicity and straightforward-
ness of implementation. They are particularly suited for two-dimensional cases. Unstructured
arrays come as overreaching for 2D cases, but are sometimes used due to their specific perks.
They are however a must go for three-dimensional cases, and despite being noticeably more
complex to implement, they make up for it by their relative ease to maintain and modify.

2.2.2.2 The interface maintenance

Low quality interface tracking
To ensure sufficient precision during the computation, the structure of the interface must
undergo a maintenance process. Indeed, following the advection of the interface, the different
markers can settle in peculiar positions ill-fitted to perform correct calculations. Two main
phenomena occur that are to be avoided and are represented in Fig. 2.11.

Fluid 1

Fluid 2

(a)

Fluid 1

Fluid 2

(b)

Figure 2.11: Representation of two case of ill-fitted Lagrangian mesh for the interface: (a) points to
far apart, (b) two high point concentration

The first and most obvious case, showed in Fig. 2.11. (a), occurs when markers drift away
from one another. This leads locally to a poor resolution of the interface and the inability to
resolve topologically complex deformations. This issue is solved by adding new points in the
interface.
The second case, displayed in Fig. 2.11. (b) is more treacherous and corresponds to an
overabundance of points in a given region. It should not be intrinsically an issue since more
points usually implies more precision. But two drawbacks rise from this situation. Firstly, it
leads to an unnecessary overload in the calculation time since the local precision granted by
the extra points is not consistent with the order of precision of the interface reconstruction at
other locations of the interface. Secondly, for inviscid calculations, or for moderate and high
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Reynolds numbers, it can lead to the appearance of undulations smaller than a cell size much
like those observed in MAC simulations. This case can be addressed in two different ways.
The most straightforward is by removing "unnecessary" points, what reduces the number of
points where to perform calculation and the propensity to generate unphysical oscillations.
The second is to smooth the interface (which only mitigates the oscillations but does not
reduce the number of computational points) in a similar fashion as done with the TSUR in
Sousa et al. (2007) for the MAC method. The standard method, know as Front-Tracking
Interface Smoothing (FTIS), has been described in Toutant et al. (2012).

Node addition and removal
To control the activation of the addition/removal procedure, a node per length/surface density
is usually prescribed with upper and lower thresholds. Whenever, locally, the distance between
two nodes goes bellow the upper threshold, a new node is created in-between them. Conversely,
if two nodes become closer than the lower threshold, they are fused into one node. These two
processes are displayed in Fig. 2.12.

(a) (b)

Figure 2.12: Schematic representation of the interface maintenance procedures: (a) addition of a
new node, (b) removal of excess nodes by fusion.

Both node addition and node removal call for the creation of a new point. The precision of
these processes strongly depends on how the position of this new point is chosen. The two
principal strategies consist in using the barycenter of the two reference node as the position for
the new point or relying on the interpolation used to geometrically reconstruct the interface
in the first place.
The front maintenance involves changing the neighborhood of multiple points in the simulation.
It proves more efficient to locate all the problematic points in the interface beforehand and
then apply the maintenance procedures on all of them at once. Sometimes, it can even be
necessary to perform multiple rounds of maintenance on the front, especially when the number
of problematic regions is very important.

2.2.3 The tracking of the interface

2.2.3.1 Different philosophies for interface tracking

In FT methods, the interface is advected using the velocity field known on the fixed Eulerian
grid. Conversely, near the interface, the numerical fluxes expressed on the Eulerian grid re-
quires physical terms (surface tension, pressure jumps, mass fluxes, etc...) known on the front
Lagrangian grid. From that, it ensues that FT methods require an exchange of information
between the Lagrangian and Eulerian grids. This transfer has been performed in numerous
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ways throughout the development of FT methods and the manner in which the two grids inter-
act is essentially what distinguishes the various FT methods. With no regard for the specifics,
all the methods can somehow be assembled under two main philosophies. Independently of
the chosen approach, the final purpose is being able to define, on the one hand the interface
velocity so it can be advected and on the other hand to update the physical state in all the
domain solving the Euler/Navier-Stokes equations. These operations are however performed
in different ways depending on the chosen philosophy.

The first methodology is inherited from Glimm’s work: the interface is treated as sharply as
possible using dedicated formulations so as to keep an actual discontinuity between two well
defined domains. It strongly relies on the Ghost-Fluid Method from Fedkiw et al. (1999) and
the resolution of Riemann problems which stand as a classic mathematical description of sharp
discontinuities.
Conversely, in the second one, partly due to the work of Tryggvason, the front is smoothed
as the interface is considered to be a narrow transitional region between the two domains.
The approach relies on interpolation rules from the Immersed Boundary Method in Peskin
(1977) to approximate the unknown values such as the velocity. The approach also introduces
a marker function I, reminiscent of a Heavyside function, in order to delimit the two regions
bordering the interface.

Both approaches where initially designed for isothermal incompressible cases (non-miscible
liquid-liquid / liquid-solid / liquid-vapor) for which densities (and possible viscosities) values
are constant and uniform on either side of the interface. In particular, the continuity equation
reduces to ∇ · u = 0 where u is the fluid velocity. For all intents and purposes, the solved
equations are similar to that of the MAC methods presented in Sec. 2.1.2.3. For such cases,
the study "essentially" simplifies since it only "suffices" to advect the interface at each steps.
Once the new interface location is known, the densities (and eventual viscosities) can be up-
dated, followed by the velocity and pressure fields, usually involving a projection method and a
Poisson equation. However, as FT methods progressed and cases of interest got more complex,
the need to simulate compressible, miscible and/or conductive systems arose, motivating the
search for new strategies to solve such cases. The solution came from the introduction of the
Ghost-Fluid method, first presented in Fedkiw et al. (1999) and later detailed in Fedkiw et al.
(1999) and Fedkiw (2002). This method, somewhat inspired by the the early work in Glimm
et al. (1981), renders possible to simulate discontinuities in compressible flows. The method
was used in Hu and Khoo (2004); Bo et al. (2011) with Glimm’s approach and, in its more
popular installment, in Terashima and Tryggvason (2009) with Tryggvason’s approach.

Both the Immersed Boundary Method (IBM) and the Ghost-Fluid Method (GFM) are further
detailed in Peskin (1977); Peskin and McQueen (1989); Peskin (2002) and Glimm et al. (1981)
respectively. In the next paragraph, the emphasis is put on the manner in which these two
support techniques are incorporated into the FT methods framework. In particular, their
precise historical derivation will be omitted here so as to focus on their modern versions.
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2.2.3.2 The marker function

The GFM (and to a lesser extent the IBM) requires not only the ability to locate the interface
but also to discriminate which type of fluid is located on either sides of the interface. Yet,
this information is not readily available in the core formulation of FT methods. Noticeably,
the Level-Set or Volume-of-Fluid methods, also used jointly with the GFM, do not suffer this
drawback since the signed distance function for the former and the volume fraction for the
latter, allows at the same time to locate the interface and identify the different fluids.
Arguably, reconstructing a Level-Set signed function or a Volume-of-Fluid volume fraction (a
discussion about the construction of a volume fraction function to locate the interface can be
found in section 6.5.2 of Tryggvason et al. (2011) ) would allow to benefit their respective
perks but would also mean composing with their drawbacks. Besides, this would negate the
founding principle of the FT-GFM methodology for which only the location of the phase should
be required. The solution comes in the form of a so called marker function I, reminiscent of a
Heaviside function, taking the value 0 in one phase and 1 in the other (if multiple fluids/phase
are present, multiple marker functions should be used).
Contrary to the Level-Set signed distance function or the Volume-of-Fluid function, the marker
function is never used to attribute any value to a fluid property at some location but only to
locate the position of the different phases. As such, it does not require to be reinitialized at
every time steps or to satisfy any physical constraint as it is merely a numerical tool. Its only
constraint is to be properly advected with the flow. To create this marker function, one could
devise an algorithm which, for a given point close to the interface, compares its previous state
and the movement of the interface between two time steps to determine whether the point
remained on the same side or not.
This approach is simple and straightforward but suffers a major drawback as if the interface
passes more than one time in a cell, knowing on which side of the interface one point actually
is becomes near impossible to do accurately. This goes to show that relying on a point to
point approach in not sufficient. A global approach is achieved using a contour function in the
form of an integral.

For a closed contour C and a point (x, y) in the computational domain, the contour integral
is:

I (x, y) =

∮
C

rx,y (s) · n (s)

r2
x,y (s)

w (rx,y (s)) ds (2.9)

where s in the curvilinear abscissa on the curve C , rx,y = x C (s)−x (x, y) is the vector between
the point at x and the point on the curve C at abscissa s, rx,y being its norm and w a weighting
function who takes values in [0, 1]. Classically, w (r) is taken constant equal to 1 what results
in I being the contour number equal to 1 if the point x inside C and 0 otherwise. Numerically,
it is preferable to smooth the transition between the inside and outside of the contour using a
smoother weighting function w. Practically, this approach is not suited since the evaluation of
the integral is numerically onerous. However, its is possible to take advantage of the numerical
properties of I, especially its gradient, to design an alternative way to evaluate it. Indeed, in
the ideal case w (r) = 1, the gradient of the marker function I (x, y) becomes:

∇I (x, y) =

∮
C

[I]n (s) δ (rx,y (s)) ds (2.10)
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where δ is a Dirac function centered on the contour and [I] is the jump of the maker function
across the contour, normally equal to 1. The discrete version of Eq. (2.10) implies approximat-
ing the Dirac function, which requires a smooth enough approximation for numerical stability
but a sharp enough approximation to preserve accuracy. The actual formula is given by:

(∇I)i,j =
1

∆x∆y

Ninterface∑
k=1

[I]i,j w
k
i,jnk d(s)k (2.11)

where ∆x and ∆y are the constant mesh sizes in the directions x and y, index k identifies the
markers on the interface, nk is the normal vector to the interface at the marker k, d(s)k the
discretized interface partial length and wki,j is a weighting factor for the node (i, j) respectively
to the marker k. Figuratively, the weights wki,j represent the way the interface is "distributed"
on the Eulerian grid. A more in-depth discussion regarding their actual meaning and values
can be found in Peskin (2002).
Trough Eq. (2.11), one can notice that (∇I) is not actually an unknown value of the system,
therefore it can be used to reconstruct the values of the marker function I. One possible way
to do so would be to integrate the values of (∇I) starting from points where the values of
I are known. As shown in Tryggvason et al. (2011) Sec. 6.5.1, this is strictly equivalent to
solving the equation Eq. (2.12) which can actually be derived by taking the divergence of Eq.
(2.11) to get:

∆I =∇ · (∇I) (2.12)

Granted that (∇I) is known, Eq. (2.12) is merely a Poisson equation which, once solved,
provides a marker function I approximatively constant in each phases with a transition of
finite thickness from one side to the other of the interface.
This later aspect, of a critical importance in the early implementation of Tryggvason’s method-
ology, as I was used to reconstruct the values of the density (and viscosity) in the whole domain,
is now dismissed as the values of I are only used to locate the ghost fluid regions in order to
apply the GFM steps. Eq. (2.12) can be solved using a classic Poisson solver, it is however
not necessary in most cases since only a narrow band, centered on the interface, has to be
accurately located to create the ghost fluid regions and calculate the ghost values. Therefore,
only iterating for a fews steps starting near the interface is sufficient enough to grant a good
convergence in its vicinity. This can be done by flagging all the cells crossed by the interface
(potentially, adjacent cells may need also to be flagged depending on the width of the band
where I is to be calculated) in a one-directional linked list. Eq. (2.12) is then solved cascading
through the list.
All modern implementations of FT-GFM solvers use this principle to locate the interface and
the ghost regions, regardless of whether Glimm’s or Tryggvason’s methodology is used. This
means that the two approaches are not actually differentiated by this localization step of the
GFM but rather by the advection and the ghost mapping steps, as discussed hereinafter.

2.2.3.3 Mechanical equations

Such as in Volume-of-Fluid and Level-Set method,s the interface tracking serves as a support
to then solve the actual mechanical equations. Classically, FT simulations involve two incom-
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pressible non-miscible fluids. In either of this fluid, the Navier-Stokes equations is written:

∇ · v = 0 (2.13)

ρ
dv
dt

= −∇P +∇ ·
(
µ
(
∇v +∇vT

))
+ ρg (2.14)

where classically ρ, µ, P and v are the fluid density, viscosity, pressure and velocity and g
represents the potential body forces. Using the marker function I, it is possible to introduce
extended variables, defined in the whole domain, resulting into a description similar to that
of a single fluid :

ρ (x , t) = I (x , t) ρ1 + (1− I (x , t)) ρ2 (2.15a)
µ (x , t) = I (x , t)µ1 + (1− I (x , t))µ2 (2.15b)
cp (x , t) = I (x , t) cp1 + (1− I (x , t)) cp2 (2.15c)

· · ·

When I is updated, the newly calculated physical variables allow to solve Eqs. (2.13)-(2.14),
usually by means of a projection method for incompressible flows. With the early Tryggvason’s
methodology, the solving is done at once in all the computational domain. If one rather use
the Ghost-Fluid method, the equations have to be solved twofold, once in each fluid.

2.2.4 Words on Glimm’s methodology

2.2.4.1 Riemman problem in one dimension

In Glimm’s methodology, designed from its inception with compressible applications in mind,
the advection and ghost mapping steps are performed at once by means of Riemann problems.
The left Wl and right Wr states of the flows, defined by the two fluids/phases, serve as inputs
for the Riemann problem while the interface is being treated as a contact discontinuity. This
principle is shown in Fig. 2.13.

t

t+ ∆t

Wl, i− 2 Wl, i− 1 Wl, i Wr, i+ 1 Wr, i+ 2 Wr, i+ 3

WR
l, i− 2 =W g

r, i− 2 WR
l, i− 1 =W g

r, i− 1 WR
l, i =W g

r, i WR
r, i+ 1 =W g

l, i+ 1 WR
r, i+ 2 =W g

l, i+ 2 WR
r, i+ 3 =W g

l, i+ 3

Figure 2.13: Riemann problem used in Glimm’s methodology (see Glimm et al. (2001)) to create the
ghost fluid values for the GFM.

After solving the Riemann problem, two new states WRl (left) and WRr (right) are found on
either side of the interface. Although the interface may experience a displacement ensuing the
solving of the Riemann problem, the time step ∆t is chosen to ensure that the interface do
not move for more than one computational cell, meaning that at most one point may have
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changed side after the Riemann problem is solved.

The results states WRl and WRr are then used as ghost values to solve the Navier-Stokes
equations. When the real fluid/phase on the left is considered, i.e. the state Wl, the ghost
values used in the right region are those provided by WRr . This notion is represented in Fig.
2.13 with the equalities WRr,i+1 = W g

l,i+1, W
R
r,i+1 = W g

l,i+1, etc ... where the superscript g
is used to mark the ghost values. Conversely, when the real fluid/phase on the right side is
considered with Wr, the ghost values are given by the solution of the Riemann problem on the
left side as represented by the equalities WRr,i−1 = W g

l,i−1, W
R
r,i = W g

l,i, etc ... It is the solving
of the Riemann problem that ensures the proper handling of the interface even in presence of
compressible fluids. In order to remain consistent with the sharp modeling of the interface,
the authors in Bo and Grove (2014) propose to introduce surface tension by incorporating a
pressure jump constraint directly in the Riemann problem.

To advect the interface, the Lagrangian equation (2.16) needs to be solved where x k, vk are
the position and velocity of the marker k on the interface.

dx k
dt

= vk (2.16)

The velocity vk of the marker is obtained by solving a new Riemann problem. The left and
right values for this new problem are those provided after the application of the GFM and
the solving of Navier-Stokes equations. This means that the density and velocity are known
everywhere in the fluid. Still considering the interface as a contact discontinuity, its velocity is
obtained by solving the Riemann problem. The velocity of the corresponding marker is thus
assimilated to that of the contact discontinuity. The GFM has since been improved by the
likes of Fedkiw et al. (1999), Liu et al. (2005) or Bo et al. (2011).

2.2.4.2 Extension to multidimensional cases

Practically, the previous method needs to be transposed to 2D (and 3D) cases, what reveals
to be a tedious task depending on the level of accuracy the user desires.
A straightforward way to address the matter is to solve the Riemann problem directly in two
dimensions. This however is easier said than done since this topic is still raising fundamental
questioning and is still a major problematic in applied mathematics. Example of applications
can be found in Lax and Liu (1998); Kurganov and Tadmor (2002); Zheng (2012) that are
however completely dedicated to the resolution of the Riemann problem without regard for an
implementation into a bigger solving framework. Given its inherent complexity and difficulties
of implementation, already discussed during the genesis of FT methods, as evidenced by the
work in Glimm et al. (1985), this strategy is essentially never used for FT applications.
A second manner to tackle the issue is by analytically expressing the solution of the 1D Rie-
mann problem and make the formal dependency to the geometry disappear. This is done in
Hu and Khoo (2004), where the ghost fluid variables are expressed only using the interface
state (ρI , νI , PI) where νI now represent the normal velocity at the interface. In their paper
Hu and Khoo (2004), the authors relied on a specific implementation of their algorithm and
had a signed distance function to the interface φ, similar to that of the Level-Set methods,
easily allowing to define a generalized normal with n =∇φ/|∇φ|. It is possible, although not
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practical, to recalculate a signed function to apply this formula. Another solution, adopted
in Terashima and Tryggvason (2009), is to use an algebraic fast-marching method to incre-
mentally populate the nodes of the narrow band with a normal vector created from the nodes
where the normal vector is already known.
The problem can be solved in a third fashion, by recreating the 1D Riemann problem for each
point on the interface, as done in Glimm et al. (2001) for instance.

Application of Glimm’s methodology
The methodology introduced by Glimm and further developed through its collaborations has
been successfully applied to incompressible flows, viscid or not, especially Rayleigh-Taylor
instabilities, an example of which is given in Fig. 2.14.

Figure 2.14: Interface representation between two fluids in early and late time steps in a simulation
of Rayleigh-Taylor instabilities, taken from Glimm et al. (2001)

Impressive numerical results, shown in Fig. 2.15, have been achieved in Bo et al. (2011) where
the authors have simulated the primary breakup of a liquid jet into a light gaseous atmosphere.
The appearance of initial Kelvin-Helmholtz instabilities due to inflow turbulence and the
breakup of large films into filaments further breaking into droplets is faithfully captured.
Based on the information provided by the literature, especially in Hu and Khoo (2004), it
seems that this strategy only applies in the absence of heat transfer or mass exchange through
the interface. However, since later studies (see Houim and Kuo (2013) for instance) have
suggested methods to introduce mass and heat fluxes at the interface by means of jump
conditions in the Riemann problem, it can be argued that these methods could be applied to
Glimm’s methodology, even more so since they are specifically designed to work within the
GFM paradigm.
Regarding their conservative properties, FT methods, because of the way they typically advect
the interface, are not conservative by construction as noted in Glimm et al. (2001); Glimm
et al. (2002); Glimm et al. (2003). The modifications proposed in Glimm et al. (2003),
although providing substantial improvements in that prospect, seem not to have been reprized
in the following studies.
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Figure 2.15: Snapshots of density isosurface of 3D liquid jet injection at different times from Bo
et al. (2011). Density ratio used ≈ 10, Re ≈ 2000, We ≈ 2000, Jet velocity ≈ 200m · s−1

This may, in part, explain why Tryggvason methodology, described in te next subsection, is
favored in modern implementations of FT methods, at least for liquid-vapor simulations.

2.2.5 Tryggvason’s methodology

2.2.5.1 Interface advection

For the advection and ghost mapping steps, Tryggvason’s methodology takes full advantage
of the Immersed Boundary Method (IBM), presented in Peskin (1977); Peskin and McQueen
(1989); Peskin (2002), that allows the Eulerian flow mesh and the Lagrangian interface grid
to communicate. Using an interpolation formula, the velocity can be calculated at the all
the interface markers from the known velocity in the fluid, following Eq. (2.17). The same
method can be applied to evaluate any other variable that needs to be defined at the interface
(markers) while not readily being so.

vk =
∑
i,j

wki,jv i,j (2.17)

The markers velocity vk can be injected into the Lagrangian equation Eq. (2.16) which is solved
using the same time integration scheme as the one used to integrate the Eulerian equations,
usually high-order Runge-Kutta schemes as explained in Terashima and Tryggvason (2009),
completing the advection step of the GFM.
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2.2.5.2 Ghost mapping and extension of the normal vector

In Tryggvason’s methodology, the advection step is the first of the three GFM steps to be
executed. Once the interface position has been updated (to be understood as once the Runge-
Kutta sub-iteration has been applied to Eq. (2.16)), the ghost regions can be generated using
Eq. (2.12) of the localization step. Eventually, the ghost mapping step, described hereinafter,
brings the process to a close.
In its revised version of the GFM, Fedkiw (2002), the author reinvested the method introduced
in Adalsteinsson and Sethian (1999) to extend the real fluid values to the ghost fluid regions,
namely solving the advection equation:

∂ψ

∂τ
= n ·∇ψ (2.18)

where ψ in the variable to extend in the ghost fluid regions and n is the interface normal
vector. ψ is supposed to be known in the real fluid region (density, velocity, entropy, pressure,
etc...) and Eq. (2.18) allows to progressively extend it to the ghost fluid regions.
This method patently requires to define the normal vector n outside the interface, particularly
within a narrow band centered on said interface. Since the GFM was initially introduced in a
Level-Set setting, the authors used a signed distance function that readily provided means to
evaluate the normal n anywhere in the calculation domain.

For reasons already mentioned, resorting to reconstructing a signed distance function in the
framework of FT-GFM methods is a discarded option. One needs a different strategy to
propagate the interface normal vector from the maker points to the Eulerian grid nodes in the
ghost regions. To do so, the Fast-Marching method of Sethian (1996) can be used. Formally,
starting from nodes where the normal vector has been evaluated beforehand (with a zero initial
value everywhere else), one solves the pseudo-time partial differential equation Eq. (2.19)

∂ni
∂τ

= |∇ni| (2.19)

where i = x or i = y to denote the x or y component of the normal vector. Practically,
as applied in Terashima and Tryggvason (2009), rather than solving Eq. (2.19), the Fast-
Marching procedure can be applied algebraically.
Another solution, adopted in Terashima and Tryggvason (2009), is to use an algebraic fast-
marching method to incrementally populate the nodes of the narrow band with a normal vector
created from the nodes where the normal is already known. First the nodes of cells containing
the interface are attributed the same normal values as that of the closest interface nodes.
Alternatively, at those nodes, a more sophisticated averaging procedure can be used. This
precisely amounts to spreading an interfacial value to the Eulerian node. For consistency, the
same weighting rules must be applied, particularly the same weights must be used. Overall,
to define a value over the Eulerian mesh, the formula is:

ψi,j =
∑
k

wki,jψ
k dsk

∆x∆y
(2.20)

where ∆x and ∆y are the constant mesh sizes in the directions x and y, k identifies the
markers on the interface, ψk the known value at the marker k, dsk the discretized interface
partial length and wki,j is a weighting factor for the node (i, j) respectively to the marker k.



Part I - Review of interface simulation methods 75

Then, using all the nodes where the normal vector has already been calculated, labeled as
"known points", the cells can be classified according to the number of know points they are
formed with. For cells with exactly three known points, the normal value at the fourth point
is expressed as the average of the values on the tree known points. For cells with two known
points, the same value of normal vector is affected to the two far points and is expressed as
the average of the values at the two known points.
This process is performed by iterations, as shown in Fig. 2.16, until the narrow band is
fully populated of known points, preferring whenever possible configurations with three know
points and limiting two known points configurations to unavoidable cases. The simplicity of
this averaging procedure facilitates the implementation of this strategy. Besides, it capitalizes
as much as possible on the values known at the interface and limits the number of hypothesis
made to extend the definition of the normal vector beyond the interface.

Initial projection First trial projection First confirmation Second Projection

Interface marker Far field point Known point Trial point

Figure 2.16: Schematic representation of the algebraic Fast-Marching method to determine interface
normal vector in the fluid region from Terashima and Tryggvason (2009)

Either formally or algebraically, Eq. (2.19) is solved until the narrow interfacial band has been
filled. The authors in Terashima and Tryggvason (2009) precise that the algebraic resolution
offers more robustness than its formal counterpart using the advection equation, especially
when faced with complex deformations. The authors justify this result by the explicit tracking
induced by the algebraic approach, although this statement would benefit from further and in
depth analysis.

Application of Tryggvason’s methodology
Similarly to Glimm’s methodology, Tryggvason’s has permitted and still is permitting to
achieve impressive calculations. For incompressible flows, a substantial number of studies
focused on droplet dynamics such as in Nobari, Jan, and Tryggvason (1996); Tryggvason, Bun-
ner, Esmaeeli, Juric, Al-Rawahi, Tauber, Han, Nas, and Jan (2001); Tryggvason, Esmaeeli, Lu,
and Biswas (2006); Hua, Stene, and Lin (2008); Muradoglu and Tryggvason (2008); Bayareh
and Mortazavi (2011); Razizadeh, Mortazavi, and Shahin (2018). Examples of very early and
very recent results are depicted respectively in Fig. 2.17 and in Fig. 2.17.

Most compressible cases where Tryggvason’s methodology is used almost systematically in-
volve thermal conduction. Non-conductive cases are mostly focused on bubble/drop - shock
interactions such as in Terashima and Tryggvason (2009); Terashima and Tryggvason (2010);
Lu, Zhao, and Wang (2016).
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Figure 2.17: Snapshots of colliding and coalescing 3D droplets in two different impacting conditions
from Nobari, Jan, and Tryggvason (1996)

Figure 2.18: Snapshots of colliding 3D droplets in two extremes impacting conditions from Razizadeh,
Mortazavi, and Shahin (2018)

In Fig. 2.19 (a), a plane shock wave, propagating in water from right to left with a Mach
numberM = 1.72 has collided with an upstream air bubble, inducing a motion of the interface
especially through the late water jet penetration coinciding with the collapse of the bubble. In
Fig. 2.19 (b), still a planar shock, traveling from left to right with a Mach number M = 1.47
in quiescent air disrupts a water droplet.
To address conductive cases, the methodology presented in Esmaeeli and Tryggvason (2004)
is generally favored. It has been extensively used to study film boiling problems, droplet
evaporation as in Irfan and Muradoglu (2017) and more recently has even been applied to the
study combustion of a n-heptane droplet in Irfan and Muradoglu (2018).
In Fig. 2.21 are presented cases of water film boiling on a horizontal cylinder. A fairly similar
case is presented in Fig. 2.21 where a horizontal hot wall, placed at the bottom of the domain,
is used to repeatedly generate bubbles in a quiescent water pool.



Figure 2.19: Snapshot of an air bubble in water (b) and a water cylinder in air (b) interacting with
a shockwave Razizadeh, Mortazavi, and Shahin (2018). Upper:experiments, lower:simulation

Figure 2.20: Evolution of a liquid/vapor interface during film boiling on a horizontal cylinder from
Esmaeeli and Tryggvason (2004).



Figure 2.21: Evolution of a saturated nucleate boiling from Sato and Ničeno (2013), the flow tem-
perature is shown, the interface and the flow velocity field are depicted respectively on the right and left
sides



Chapter 3

Sharp interface methods: Interface
capturing

The following chapter focuses on sharp interface methods commonly labeled as interface cap-
turing methods. These methods share the feature of embedding the structure of the interface
within a carefully selected continuous function.
By doing so, they do not require a specific numerical structure to track the interface, this task
is performed by solving an additional transport equation. Additionally, they are automatically
and implicitly treated unlike in FT methods.
In return, they must settle for an implicit description of the interface geometry which is merely
"captured" rather than actually "tracked". In practice, this means that these methods require
an additional treatment to reconstruct the interface from the embedding function.

The two main classes of sharp interface capturing methods are the Volume-of-Fluid (VOF)
and the Level Set (LS).

In VOF methods, the information regarding the interface is carried by the eponymous volume
function that track the volume of one of the two fluid in each cell of the domain.
These methods are conservative by nature, contrary to FT or LS but require often complex
procedures to properly reconstruct the interface and/or intricate numerical scheme to evaluate
the fluxes. This makes this kind of methods hard to extend to more complicated mesh design,
particularly in 3D.
In particular, they are deemed to offer as less precise description of the interface topology.

LS method, on the contrary, offer a precise but most importantly easy treatment of the interface
geometry by defining it as the zero level set of a continuous function. Thanks to this modeling,
the level set methods can be transposed to any number of dimensions and any type of mesh
structure with virtually little to no change.
This however comes at the cost of mass conservation. Besides, the level set must be carefully
maintained throughout the simulation to achieve precise results.

It should be noticed that these two classes of methods are rather frameworks designed to follow
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the movement of a discontinuity rather than actual schemes to solve mechanical equations such
as Navier-Stokes or Euler, just as it is the case. This claim is supported by the fact that these
methods have been used way beyond the scope of fluid mechanics.
In particular, when navigating the vast literature available on FT, LS and VOF methods, the
numerical strategies used to solve the fluid equations fall under two categories: they either
are extremely specific to one case or extremely classic. The strategies in the first category
are too numerous to all be listed and those in the second category are already extremely well
documented.
For these reasons, the numerical schemes used to solve the Navier-Stokes/Euler equations are
purposely omitted in this chapter, as done for the FT methods in Sec. 2.2, in order to focus
on the treatment of the interface.

Finally, given the complementary qualities and drawbacks of VOF and LS method, it was
inevitable that combinations of the two would be attempted. This lead to the apparition of
promising hybrid methods, not explored here, such as the coupled level set and volume-of-fluid
(CLSVOF) in Sussman and Puckett (2000), the mass-conserving level-set (MCLS) in Van der
Pijl et al. (2005) or more recently the coupled volume-of-fluid and level set (VOSET) method
in Sun and Tao (2010).

3.1 Volume-of-Fluid methods

3.1.1 Historical overview

With the Level-Set methods, the Volume-of-Fluid (VOF) methods are arguably the most of-
ten used to perform numerical simulation with free surfaces and interfaces. It is an Eulerian
method introduced in Nichols and Hirt (1975) and more explicitly in Hirt and Nichols (1981)
drawing from the previous work of Ramshaw and Trapp (1976) and Noh andWoodward (1976).

A first motivation for creating these methods stems from the important computational cost
of Lagragian interface tracking methods when compared to their relative accuracy, especially
when strong topological changes occur. In practical terms, unless a very high amount of
markers is used, interface tracking methods tend to offer a coarse description of the interface
position while still requiring the tracking of all these markers throughout time. If one is to
settle for a coarse description of the interface position, it can be taken advantage of to design
a computationally efficient method.
A second motivation being the growth of VOF methods is the ability to conserve mass by
design, a feature missing in Front-Tracking and Level-Set methods. Understandably, some ap-
plications (reactive cases, combustion, phase change) may require a precise mass conservation
rather than an accurate interface localization. The early VOF method aimed at modeling free
surface but rapidly evolved to achieve multi-species simulations accounting for surface tension.

However, this strength of VOF methods to preserve mass acts also as a potential threat.
Indeed, the volume in order to preserve a bounded volume fraction throughout the simulation,
the typical numerical schemes that one would use to solve the interface advection equation
are know to be highly diffusive and would lead to a smearing of the interface, what is in total
contradiction with the sharp nature of VOF methods.
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To solve this issue, several techniques have been designed and they are the main subject of
the discussions to come. From the founding articles referenced at the beginning, two main
philosophies emerged regarding the advection of the interface and all modern installations of
VOF method can be put in either of these two categories.

The first category rely on a geometrical reconstruction of the interface as initially done with
the SLIC method in Noh and Woodward (1976). Starting from a simple reconstruction using
vertical and horizontal lines, they evolved and became more complicated as the order of the
reconstruction increase to gain accuracy. The PLIC, the first piecewise linear construction
method introduced in Youngs (1982) spawned a series of other linear reconstruction strategies
as found in Ashgriz and Poo (1991); Puckett (1991); Pilliod (1992); Puckett and Saltzman
(1992); Parker and Youngs (1992); Scardovelli and Zaleski (2003). First instances of piecewise
quadratic reconstruction in Poo and Ashgriz (1989) lead to several other approaches in Kim
and No (1998); Price et al. (1998); Price (1998); Renardy and Renardy (2002); López et al.
(2004) and even C1 continuous reconstruction in Diwakar et al. (2009).

The second category of methods, that grew in parallel, builds on the approach introduced in
Hirt and Nichols (1981) where the focus the volume of fluid fluxes rather than the geometry
itself. Specific numerical schemes are designed and combined to ensure that the interface is
not smeared while the volume of fluid remains properly bounded. Likewise the PLIC for the
interface reconstruction method, the Acceptor-Donor scheme of Hirt spawned plethora of other
schemes such as in Lafaurie et al. (1994); Ubbink and Issa (1999); Darwish and Moukalled
(2006); Tsui et al. (2009); Patel and Natarajan (2015)

The research for new interface or flux reconstruction method is still ongoing to this date.
Meanwhile, effort have been made to extend VOF method to arbitrary mesh such as in Jasak
(1996); Ubbink and Issa (1999); Owkes and Desjardins (2014); Ivey and Moin (2017)
One specific weakness of VOF method seems the difficulty to extend them to compressible
flows, even though we found no specific argument arguing for or against. This conclusion is
drawn from the scarcity of results in that sense in the literature as only a very few examples
are available, such as in de Niem et al. (2007) or Wemmenhove et al. (2015).

The rest of the section is dedicated to the description of the most relevant aspects regarding
the Volume-of-Fluid methods. The key points of the modeling, such as the characterization of
the interface and the equations to be solved, are first detailed.
As done for the Front-Tracking in 2.2 and the Level-Set methods in 3.2, the actual solving of
the Navier-Stokes/Euler equations are omitted, for reasons detailed in the introduction of this
chapter, so as to focus on the interface advection.
The two strategies to advect the interface are then further detailed: the main interface recon-
struction paradigms are illustrated with some graphical examples and the philosophy behind
flux reconstruction methods is explored, here again with some examples used clarify their
mechanics.
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3.1.2 Modeling and equations

In the following, it is supposed that studied system is composed of two non miscible fluids
or a single fluid in its liquid and vapor form. The first and second components (the liquid
and vapor phase if so) are referred to with the subscripts 1 ans 2 respectively. Initially, the
Navier-Stokes equations solved for an incompressible, inviscid fluid are:

∇ · v = 0 (3.1)

ρ
dv
dt

= −∇P +∇ ·
(
µ
(
∇v +∇vT

))
+ ρg (3.2)

where classically ρ, µ, P and v are the fluid density, viscosity, pressure and velocity and g
represents the potential body forces.
The set of Eqs. (3.1)-(3.2) have been solved using a wide variety of discretization and numerical
methods which will not be expanded upon here since, for the most part, they do not directly
relate with the specificity of the VOF method. The curious reader can referrer to the different
sources cited in this section for concrete cases.
The novelty of the VOF methods is to trade the marker function I of FT methods for a color
function φ, usually a volume fraction of one on the specie or one of the phase, to follow the
interface. The color/phase function φ is convected with the flow following the equation:

∂φ

∂t
+ v ·∇φ = 0 (3.3)

with the additional hypothesis that the flow is incompressible, Eq. (3.3) can be written in the
conservative form:

∂φ

∂t
+∇ · (vφ) = 0 (3.4)

The function φ allows to locate the two phases in the flow as well as the interface. For instance,
for a liquid-gas simulation, φ is often defined as the liquid volume fraction and the discrete
values φi,j represent the mean values of φ over a mesh cell. In the liquid phase φ = 1, in the
vapor phase φ = 0 and the cells with 0 6 φ 6 1 contain an interface.
In that case the fluid density ρ, mechanical viscosity µ, specific heat capacity cp and specific
thermodynamic potential (e, h, s, etc...), are defined as a φ-averaged of the same quantities
over all the phases:

ρ (x , t) = φ (x , t) ρl + (1− φ (x , t)) ρv (3.5a)
µ (x , t) = φ (x , t)µl + (1− φ (x , t))µv (3.5b)
cp (x , t) = φ (x , t) cpl + (1− φ (x , t)) cpv (3.5c)

· · ·

The quality of VOF methods simulations strongly depends on how well Eq. (3.4) is solved
since φ bears almost alone the information about the phases location and the interface posi-
tion. It is even more so if interfacial boundary conditions have to be applied such as mass or
energy fluxes between the two phase phases or surface tension that additionally requires an
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estimation of the interface curvature and normal vector. Since their initial introduction, VOF
methods underwent numerous improvements regarding the solving of the advection equation
Eq. (3.4) which will be the essential focus of the section.

These methods can be separated into two categories. The first category, referred to as Interface
Reconstruction methods here, aim at creating a geometrical reconstruction of the interface
in the mesh cell using available information from the discretized version of φ. The second
category, referred to as Flux Reconstruction methods, aim at calculating directly the numerical
fluxes in the discretized version Eq. (3.4). Both philosophies have their advantages and
drawbacks and both, still to this day, foster substantial theoretical and numerical studies in
the community.

3.1.3 VOF with Interface Reconstruction methods

The principle of Interface Reconstruction is arguably a building block of the VOF methods in
itself. The principle, introduced by DeBar (1974), Ramshaw and Trapp (1976) and Noh and
Woodward (1976), served as a premise for the so called original VOF method from Hirt and
Nichols (1981). Since then, multiple variants have been proposed and although too many to
be all explored in detail, the principal ones will be briefly presented here to allow a grasp of
both the advantages of this philosophy and its inherent numerical difficulties.
To present these methods, a two-dimensional structured cartesian mesh is considered as shown
in Fig. 3.1. The horizontal and vertical step sizes ∆x and ∆y, though different, are constant
for all the mesh.
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Figure 3.1: Typical cartesian mesh used in Volume-of-Fluid simulations using Interface Reconstruc-
tion methods
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3.1.3.1 Interface reconstruction

The different reconstruction methods can be first and foremost separated according the order
of the curve used to represent the interface in each cell. Although there exist no theoretical
limit to the order that can be used, the increase in the method complexity associated with
this order augmentation acts as practical deterrent. For most application, only zeroth, first
and second order reconstruction are contemplated. The different results that can be obtained
from these orders of reconstruction are exemplified in Fig. 3.2 where constant, linear and
quadratic paradigms are represented. Intuitively, the higher the order is, the more accurate
the representation of the interface becomes.

φ= 0. 37 φ= 0. 12 φ= 0. 00

φ= 1. 00 φ= 0. 96 φ= 0. 29

φ= 1. 00 φ= 1. 00 φ= 0. 83

(a)

reference

(b. 1)

SLIC horizontal

(b. 2)

SLIC vertical

(c)

piecewise linear

(d)

piecewise quadratic

Figure 3.2: Interface reconstruction using contant (SLIC) (b.1), (b2) and the piecewise linear PLIC
(c) and quadratic (PROST) (d) methods from a reference volume fraction repartition (a)

Constant reconstruction
The Simple Line Interface Calculation (SLIC), introduced in Noh and Woodward (1976), is
the oldest and most simple reconstruction method but is still used today nonetheless.
The SLIC reconstructs the interface using only horizontal or vertical line. The reconstruction
is done in both directions separately and the fluxes are evaluated accordingly. After the cells
that containing both fluids/phase are localized, the SLIC choses between a list of pre-identified
configuration to determine how the interface should be laid down. These configurations depend
on the surrounding values of the volume fraction function and allow to decide which fluid is
on which side of the interface. Once the disposition of the fluid is know in an interface cell,
the exact position of the interface is adjusted so as to get the correct volume fraction.
Fig. 3.2 shows an example of reconstruction using the SLIC method, both horizontal (b.1)
and vertical (b.2) reconstructions are provided. One can notice that the formulation of the
SLIC seems to retrain it to cartesian meshes but actually attempts have been made to extend
the method to unstructured grids. However the SLIC seems limited to two dimensional trian-
gular grids Huang et al. (2010), it already provides encouraging results for an adaptation to
arbitrary grids.

Piecewise linear reconstruction
The precision with which the interface geometry is described can be substantially increased
by using a linear reconstruction in each cell as noted by the authors in Youngs (1982) when
designing the Piecewise Linear Interface Calculation (PLIC) method as shown in Fig. 3.2 (c).
The original PLIC method spawned a wide variety of methods which in spite of their name
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still consist in a piecewise linear reconstruction of the interface. A certain ambiguity has grow
around the acronym PLIC as, depending on the material, it can be used either to reference
to the original method in Youngs (1982) or any other linear reconstruction method regardless
of its actual implementation. Here, the acronym is exclusively used to refer to the original
method, any other method will be referenced by its own specific name.
Piecewise linear are generally the go-to reconstruction methods as they are substantially more
precise than the SLIC for a limited computational cost overhead. They also has been success-
fully applied to arbitrary structured and unstructured meshes as demonstrated in Ivey and
Moin (2015); Ivey and Moin (2017).

A criterion used to compare these methods is evaluating their order of convergence. No exten-
sive survey has been done in that sense to the best of our knowledge but partial comparisons
can be found in Pilliod and Puckett (2004) or Tryggvason et al. (2011). A simple test, that
can usually be performed analytically, is to assess the ability of a given method to reconstitute
a straight line in a cell, a native feature for a methods with second order convergence but
not ensured for those with only a first order of convergence Another test, however harder to
perform, consists in evaluating the ability of the method to reconstitute a continuous interface
as continuous, feature that also ensure a higher degree of precision.

Noticeable piecewise linear methods include, apart from the original PLIC, the KRAKEN, an
heuristic method introduced in DeBar (1974), the FLAIR of Ashgriz and Poo (1991) that can
be perceived to some extend as an improvement of both the PLIC and the KRAKEN where
the segments are not defined within the cells but rather at the boundaries, the LVIRA method
proposed by Puckett (1991) which a upgraded version of the PLIC were a specific norm is
minimized, the ELVIRA from Pilliod (1992) which reinvest and simplifies the minimization
process of the LVIRA method by creating a preselection of possible normal vectors and the
The Least-square fit method devised in Scardovelli and Zaleski (2003) that actually showcase
a second order convergence on canonical cases.
Some methods, such as the Center of Mass from Puckett and Saltzman (1992) or the Parker-
Youngs method Parker and Youngs (1992), although of a historical interest, are usually dis-
missed for they are unable to properly reproduce a straight line interface.
In spite of a better geometrical representation of the interface, piecewise linear methods suffer
the inability to inherently offer a continuous description of the interface unless global opti-
mization process are used. This, in part, motivates the use of higher order of reconstruction.

Quadratic reconstruction method
To further increase the precision of the reconstruction, second order polynomials can be used
in each cells.
The first instance of using a quadratic reconstruction in conjunction with a volume fraction
function appears in Poo and Ashgriz (1989) where a philosophy similar to that of the SLIC
or the LVIRA method is used: possible configurations of the interface are exhaustively listed
and the volume fraction repartition over a certain zone (a 3x3 macro-cell) is used to chose
the most suitable among them. Different adjustments adjustments are made to respect the
volume fraction in each cells. In Poo and Ashgriz (1989), the quadratic representation is not
so much used to reconstruct the interface rather than to estimate the interface curvature.
In Price et al. (1998); Price (1998) and Kim and No (1998), a piecewise quadratic reconstruc-
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tion of the interface is actually used were different strategies, always based on the local volume
fraction repartition, are employed to select the correct shape of the interface and evaluate the
associated fluxes.
Later methods such as the spline reconstruction in López et al. (2004) and the Parabolic
Reconstruction of Surface Tension (PROST) in Renardy and Renardy (2002) can be viewed
as improved version of those in Poo and Ashgriz (1989) and Price et al. (1998) respectively.
For all these methods, the principle is always to perform a first linear reconstruction using an
arbitrary piecewise linear method and then use the obtained segment to generate the quadratic
interpolation.

The Quadratic Spline based Interface (QUASI), an ever mode advanced method has been de-
veloped in Diwakar et al. (2009) and allows to perform a quadratic interpolation but constrary
to the previously cited methods, an order C0 or even C1 continuity can be enforced upon the
reconstructed interface.
The differences between piecewise linear, piecewise quadratic, C0 QUASI and C1 QUASI re-
construction is exposed

(a)

reference

(b)

piecewise  linear

(c)

piecewise  quadratic

(d)

C0-continuous  quadratic

(e)

C1-continuous  quadratic

Figure 3.3: Result of different reconstruction methods depending on the order and regularity de-
sired: (a) reference, (b) piecewise linear, (c) piecewise quadratic, (d) C0 continuous quadratic, (e) C1
continuous quadratic

A case for the piecewise linear reconstruction methods
Piecewise linear method remain to this date the most commonly used reconstruction methods
despite their apparent oldness, for three mains reasons beyond the intuitive interpretation
they permit. The first is the substantial ease with which they can be implemented when
compared to more modern and precise methods. The second reasons stem from the first, as
numerical power increases, the ability to diminish mesh sizes grows and these methods, on
fine enough meshes, offer sufficient enough precision relatively to its low computational cost.
Moreover, in modern application where several physical phenomenon are usually coupled and
studied at once, refining meshes becomes more often a requirement while the ability to same
computational time remain a key issue. Piecewise linear methods are particularly suited to
accommodate with these constraints. Finally the third reason is their propensity to be easily
declined over to different advection scheme, explicit or implicit, Eulerian and Lagrangian,
split or unsplit, which is not the case of other reconstruction methods. In particular, when
one wishes to update an already existing code in order to perform two-phase flow calculation
with a VOF interface reconstruction method, these two method are the most likely to interfere
with the numerical methods already implemented.
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However, the limitations af these two methods, in particular their precision, must be kept in
mind when they are used and specific configurations or simulation need may call for the use
of more sophisticated methods which, all things being equal, are usually more precise.

3.1.3.2 Interface advection

Once the interface has been reconstructed in the concerned cells, the advection equation Eq.
(3.4) must be solved to update the values of φ in the computational domain. The problem can
be enunciated in those terms: knowing the values of the phase function φn and the velocity
vn in all the domain at a time iteration n, how one can estimate the the values of the phase
function φn+1 at the next time iteration n + 1. The method to perform this advection are
usually fall under of the two following classes: the split methods and the unsplit (or multidi-
mensional) methods

The split methods perform the advection iteratively in each direction of the mesh. For each
direction, a specific volume of fluid to advect is determined in each cell and then distribute it:
they are simple and straightforward but usually of low order and pron to errors.
The unsplit methods determine the volumes of fluid to advect and perform the distribution
in all the directions at once: they tend to be more complicated to implement but offer more
precision and accuracy.

Independently of the split or unsplit nature of the advection, the algorithms can also be
separated in two different categories: Eulerian and Lagrangian methods. The specificities of
these two categories will be expanded upon in the following paragraphs.

Split methods
In a two-dimensional case as represented in Fig. 3.4, the split methods will update the phase
function φ performing an advection first in x direction and then in the y direction, or the other
way around. The advection in one direction in called a sweep. By alternating the order of the
sweep direction, it is possible to increase the order of the advection algorithm. For regular
grids, the principal issues faced by the split methods are: the possibility to advect more fluid
than physically available in one cell, advect a volume of fluid multiple times, creating non-
physical values of φ after advection such as φ > 1 or φ < 0. For unstructured/non-conformant
grids, additional issues arise such as the possibility to miss the advection of a certain volume
of fluid or to advect a volume of fluid in the wrong cell. These issues are well documented in
Ivey and Moin (2017). In that respect, split methods require additional treatment to overcome
these shortcomings.

Lagrangian split algorithms
The first Lagragian split advection algorithm is arguably the one used by DeBar (1974) for
the KRAKEN code. The same methodology is used by Li (1995) and has been extended to
three-dimensional cases in Gueyffier et al. (1999). Simulations performed in Ashgriz and Poo
(1991) and Scardovelli and Zaleski (2003) rely on this type of algorithm. The essential features
of the method are depicted Fig. 3.4.
For a sweep in the x direction, the horizontal velocity on the two vertical boundaries of the
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Figure 3.4: Principle of the Lagrangian split advection algorithm for Volume-of-Fluid methods, (a)
and (b) are respectively the velocity determination and the volume advection respectively for the x-sweep,
(c) and (d) represents the same steps for the y-sweep

cell i, j (the velocities can be accessed directly if a staggered MAC grid is used or calculated
through averaging/interpolation procedures) is assumed to be constant. It is worth noticing
that the incompressibility condition (3.1) does not negate the presence of a velocity gradient
∂u/∂x which may cause an expansion. The left and right boundaries are than convected at
once causing a compression/expansion of the ’dark’ volume of fluid. In particular, this volume
of fluid may overflow on the left and right neighboring cells. Using geometrical argument the
left φLi,j , right φ

R
i,j and central φCxi,j volumes of fluid can be easily accessed. The phase function

in the cell i, j can than be updated as follow:

φ∗i,j = φCxi,j + φRi−1,j + φLi+1,j (3.6)

The notation φ∗i,j is used to denote that this update is only partial. The same procedure is to
be applied in the vertical direction to determine up φUi,j , down φ

D
i,j and central φCyi,j volumes of

fluid for the sweep. The update can be completed with:

φn+1
i,j = φ

Cy
i,j + φUi,j−1 + φDi,j+1 (3.7)

It is important to remember that the triplet of volumes for the x sweep and for the y sweep
must be calculated one after another and not simultaneously to avoid convecting some parts
of the fluid two times. In practice, Lagrangian split methods suffer more important mass
conservation issues, in particular the condition 0 6 φ 6 1 may be violated.These issues are
mostly due to the fact that the discrete velocity field is not exactly divergence free. Additional
local and global algorithm are usually required to redistribute excessive mass among the cells.

Eulerian split algorithms
Eulerian advection methods integrate the equation Eq. (3.3) directly evaluating the bound-
ary fluxes. Classically horizontal fluxes are denoted F and vertical fluxes G. The discrete
integration of Eq. (3.3) writes:

φ∗i,j = φni,j +
∆t

∆x

(
Fn
i− 1

2
,j
− Fn

i+ 1
2
,j

)
(3.8a)

φn+1
i,j = φ∗i,j +

∆t

∆y

(
Gn
i,j− 1

2

−Gn
i,j+ 1

2

)
(3.8b)
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The superscript ∗ refers to a partial update after first direction sweep. As it was the case for
Lagrangian methods, the update for the second direction sweep must be carried out carefully
in order to limit volume conservation errors. On a cartesian mesh, the fluxes are evaluated by
calculating the volume of fluid present in sub-rectangles adjacent to the considered boundary.
For instance in Fig. 3.5, the left and right flux are given by Fn

i− 1
2
,j

= ui− 1
2
,j∆tφi−γ,j where

γ = 1 if ui− 1
2
,j > 0 and γ = 0 if ui− 1

2
,j < 0 and Fn

i+ 1
2
,j

= ui+ 1
2
,j∆tφi+γ,j with γ = 0 if

ui+ 1
2
,j > 0 and γ = 1 if ui+ 1

2
,j < 0. The same consideration are used to determine the vertical

fluxes for the y sweep. The order of the sweep are switched at every time iteration for better
accuracy.
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Figure 3.5: Principle of the Eulerian split advection algorithm for Volume-of-Fluid methods

Unsplit methods
For many problem, the split methods, handled properly, offer convenient second order accu-
racy. However, for some cases, a "stair-ification" of the interface occurs due to the multistep
sweeps, known as "push-pull" phenomenon. For such problematic cases, unsplit advection
methods are to be used. Whether Eulerian or Lagrangian methods are considered, the main
idea is to evaluate at once the modifications needed to update the phase function. Though
more complicated in essence, unsplit algorithms, once carefully expressed, translate more natu-
rally to unstructured non-cartesian grids explaining their preferential use in modern literature.
On summarized survey of the existing unsplit methods and the associated difficulties can be
found in Comminal et al. (2015) and Ivey and Moin (2017).

Lagrangian unsplit algorithms
In Lagrangian unsplit algorithms, all remarkable points of a given cell are convected at once by
solving the equation. By noting x the position of such a point, the advection done along the
characteristic lines solving the motion equation ∂x i/∂t = v i (x i, t). The local velocity v i of
the point is obtained through interpolation of the fluid velocity defined on the calculation grid.
As shown in Fig. 3.6 for a regular grid, the advected points are the four corners of the cell and
the point limiting the position of the two fluid in the cell. The position of the newly created
polygon allows to evaluate the volumes of fluid distributed in the eight possible neighboring
cells φL

i,j , φ
R
i,j , φ

U
i,j , φ

D
i,j , φ

LU
i,j , φ

LD
i,j , φ

RU
i,j , φ

RD
i,j (with L,R,U,D standing for Left, Right, Up and

Down) as well as the volume of fluid remaining in the considered cell φC
i,j . The evaluation

of these volumes is merely a geometrical problem. Once evaluated, the volumes are used to
update the phase function for the next iteration is the same fashion as in Eqs. (3.6)-(3.7) but
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at once following:

φn+1
i,j = φC

i,j + φL
i+1,j + φR

i−1,j + φU
i,j−1 + φD

i,j+1,

φLU
i+1,j−1 + φLD

i+1,j+1 + φRU
i−1,j−1 + φRD

i−1,j+1

(3.9)
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Figure 3.6: Principle of the Lagrangian unsplit advection algorithms for Volume-of-Fluid methods

As in the Lagrangian split method, the advection of the whole cell suffer errors in the mass
conservation due to numerical errors in the velocity interpolation, motion equation integra-
tion, deformation of straight lines by high order integration methods and the fact that the
divergence of the numerical velocity field does not exactly nullify. Local and global mass re-
distribution may be necessary to satisfy 0 6 φ 6 1 in all cells.

Eulerian unsplit algorithms
The design of an Eulerian unsplit algorithm is particularly complicated because it requires,
for each faces of the computational cell, to determine at once the correct quantity of fluid that
is advected while paying attention not to convect the same volume multiple times and not to
forget to convect a volume that should have been.
An early method has been proposed in Rider and Kothe (1998) but it lacked the conservation
properties previously mentioned. The method has been improved in López et al. (2004) which
gave birth to the Edge-Matched Flux Polyhedron Advection (EMFPA). The principle behind
this algorithm is presented in Fig. 3.7
In this example, the face delimited by points A and B is considered and the objective is to
determine the flux that is injected into cell Ci,j from the surrounding cells. To that effect,
much like in Fig. 3.5, a fictive cell is created which contains the volume to consider in order
to evaluate the flux FA−B entering (or leaving) through segment A−B.
This volume is a polygon formed by points A and B and two additional points A′ and B′. A
series of conditions allow to determined the positions of A′ and B′. These conditions, listed
hereunder in Eqs. (3.10a)-(3.10d), render the matter of finding A′ and C ′, and therefore FA−B
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Figure 3.7: Principle of the Eulerian unsplit advection algorithm EMFPA for Volume-of-Fluid meth-
ods from López et al. (2004)

a purely geometrical problem.
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n+1/2
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(3.10a)
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B

u
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(3.10b)

pA′−B′ =
xA − xB −

(
u
n+1/2
A − un+1/2

B

)
∆t

yA − yB −
(
v
n+1/2
A − vn+1/2

B

)
∆t

(3.10c)

VA−B−B′−A′ =
1
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(
u
n+1/2
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)
∆y∆t (3.10d)

where pP1−P2 is the slope of the segment between arbitrary points P1 and P2, u
n+1/2
P =(

unP + un+1
P

)
/2 is the interpolated horizontal velocity at instant t+ ∆t/2 at arbitrary point P

of the mesh and VA−B−B′−A′ is the volume of the polygon delimited by points A, B, B′ and
A′.
Of course, Eqs. (3.10a)-(3.10d) must be adapted if an horizontal edge is considered or negative
velocities are involved. Special cases leading to infinite slopes (i.e. vertical lines) must also
be dealt with specific care, but for the most part, the difficulty is more computational than
conceptual.

Once the exact positions of A′ and B′ are known, the volume of fluid that is intercepted by the
polygon ABB′A′ is exactly the amount of fluid that is to be advected toward cell Ci+1/2,j+1/2.
This volume is signified by φA−B in Fig. 3.7 (b).
By repeating this process on all the edges of Ci,j , the volume of fluid can be updated as follows:

φn+1
i,j = φA−B + φB−C + φC−D + φD−A (3.11)

The authors in Ivey and Moin (2017) have further improved the EMFPA, in particular its
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application to unstructured mesh, which, even theoretically possible, was never expanded
upon in López et al. (2004).

3.1.3.3 Numerical results

Here are provided two examples of impressive numerical results obtained using VOF method
with interface reconstruction techniques. Both are based on PLIC reconstruction, results
applied to industrial configurations with higher orders of reconstruction still lacking in the
literature.

Fig. 3.8 shows the disintegration of a liquid jet injected with an outward swirl opening. The
injection at 100 bar into a 1 bar domain, with Re = 104 andWe = 103, is performed with fluid
properties so as to be representative of automotive injection. The downstream propagation of
jet instabilities, fostered by the initial rotational velocity, can clearly be seen up to the breakup
process which creates fuel droplets.

Figure 3.8: Snapshot of hollow-cone atomizer representative of automotive injection of iso-octane
from Fuster et al. (2009). Velocity norm used as color

Fig. 3.9 depicts the injection of a water jet into a quiescent air with a density ratio of 800.
The regime obtained with Re = 5000 and We = 60, 000 allows to get a strong destabilization
of the jet leading to primary a secondary breakup phenomena. The liquid sheets, ligaments
and droplet are faithfully retrieved.

3.1.4 VOF with Flux Reconstruction methods

As numerical methods progressed and computational power increased, the will to address
more complex configurations emerged. Such configurations usually involve intricate geome-
tries, tree-dimensional aspects and often reveals hard to tackle using homogeneous regular
cartesian meshes. A vast majority of the Interface Reconstruction methods are limited to such
type of meshes. Beside, for some of these methods, usually the most accurate, the level of
complexity of the rules used to reconstruct the interface is already important even for two-
dimensional configurations. Effort have thus been made to develop methods to overcome this
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Figure 3.9: Snapshot of the atomization of a round water jet in a quiescent air from Le Chenadec
and Pitsch (2013)

previous shortcomings.

The derivation of these methods relies on the previously made observations but also on the
hereunder considerations. At their core, VOF methods try to preserve a sharp description of
the interface as the simulations are carried out while preventing the smoothing effect of the
usual advection schemes. Besides, the geometry of the interface is usually not a final unknown
of the system to be determine but rather a intermediary to access to evaluate the volume-
of-fluid fluxes. Therefore, its precise reconstruction does not appear that compulsory outside
of display purposes granted that other values of interest are correctly calculated. Moreover,
the discrimination between split/unsplit methods and Euler/Lagrangian approaches in volume
reconstruction to better suit a simulation often lack proper motivations despite having a pos-
sibly strong impact on the simulation results.

For all these reasons, Flux Reconstruction methods provide a direct discretization of the
volume-of-fluid fluxes without reconstructing the interface. For these methods, the volume
fraction fluxes at faces of the volumes of control are directly expressed with restrained geomet-
rical information. This discretization is carried out so as to get bounded values of the volume
fraction while limiting the diffusion or the smearing of the interface.
The bounding constraint is most often enforced through the hypothesis that a value of φ
in a given cell should lay between the extremal values of its surrounding cells after a time
step iteration. As for the interface diffusion, it should be limited to at most the width of a
computational cell.

3.1.4.1 Construction of a Flux Reconstruction method

The normalized variable diagram
Modern Flux Reconstruction technique use the normalized variable diagram (NVD). Indeed,
at first order, the boundedness of φ can be insured using a upwind scheme. By using the
upstream values of φ, the upwind scheme is unconditionally stable and bounded, it however
is strongly diffusive. On the other hand, the downwind scheme uses the downstream values
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of φ and by doing so insures the preservation of a sharp interface. However, by doing so, it
introduces a negative numerical diffusion that makes this scheme unconditionally unstable.

The NVD allows to devise and analyze schemes that blend the qualities of these two simple
schemes to moderate their respective flaws.
To construct the NVD, a one dimensional setting is used, comprised of three cells (upstream
(U), central (C) and downstream U) as shown in Fig. 3.10 where v is the velocity vector.

U C D

~v

~n

θ

Figure 3.10: Canonical 1D configuration used to construct the normalized variable diagram

The normalized volume fraction φ̃ for the central cell is then introduced by:

φ̃ (x , t) =
φ (x , t)− φU
φD − φU

(3.12)

where x is the position vector, t the time, φU and φD the value of φ respectively in the
upstream and downstream cells.
The NVD compares the reduced value predicted by the scheme at the central cell upwind face,
noted φ̃f with the current value at the center of the central face φ̃C , as shown in Fig. 3.11.

φ̃f

φ̃C1

1

0

Upwind (1st order)

Downwind (1st order)

Central Difference

2nd order Upwind

General CBC

Figure 3.11: Example of a normalized variable diagram

If for any value of φ̃C one has φ̃f = 1, one is using the first order downwind scheme. Conversely,
if φ̃f = φ̃C for any value of φ̃C , the first order upwind scheme is being used. These two
configurations are displayed in Fig. 3.11 (a).
It can be shown (see Gaskell and Lau (1988)) that in order to be bounded, a one-dimensional
implicit differencing scheme must remain within the gray area in Fig. 3.11 of which bounds
are given by Eq. (3.13). This region is said to satisfy the convection boundedness criteria
(CBC).
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{
φ̃C 6 φ̃f 6 1 for 0 6 φ̃C 6 1

φ̃f = φ̃C for φ̃C < 1 or φ̃C > 1
(3.13)

For a one-dimensional explicit scheme, the Courant number CFL intervenes. The correspond-
ing region is colored in gray in Fig. 3.12 and its boundaries are given by:

 φ̃C 6 φ̃f 6 min

(
1,

φ̃C
CFL

)
for 0 6 φ̃C 6 1

φ̃f = φ̃C for φ̃C < 1 or φ̃C > 1

(3.14)

Another effect that must be integrated in dimensions higher than one is the fact that the
downwind scheme tends to artificially align the interface perpendicularly to the velocity of the
flow. This occurs even for configurations where the interface is initially tangent to the flow
velocity.
To manage this unphysical behavior of the scheme, the angle θ between the interface and the
velocity, as shown Fig. 3.10, must be accounted for. For nearly right angle θ ≈ π/2, the
downwind scheme allows to maintain a sharp interface.
Conversely, going back to an upwind scheme for low angles will prevent the wrinkling of the
interface without diffusion, the latter being essentially tangent to the velocity. This angle is
calculated by evaluating the volume fraction gradient and is defined by θ = ̂(v,∇φ). The im-
pact of this treatment has been early noticed in Hirt and Nichols (1981), initially investigated
in Lafaurie et al. (1994) and proven to be of a major importance in Ubbink (1997).

φ̃f

φ̃C
1

1

0 CFL

CBC

(a)

φ̃f

φ̃C
1

1

0
(b)

CLF< 0. 3 & θ= 0◦

CLF< 0. 3 & θ= 30◦

CLF = 0. 5

CLF 0. 7 or CLF< 0. 3 & θ= 90◦

Figure 3.12: Impact of the Courrant number on the CBC (a) and example of the behavior the HRIC
scheme from Muzaferija and Peric (1997) using the NVD for different values of CFL (b)

Additional treatment must be performed to ensure the correct bounding of the volume fraction
values. Essentially, once the volume fraction are determined in the volumes of control faces,
one must ensure that a cell does not transfer more volume of any phase than it contains.
Using all these criteria, especially Eq. (3.14) for explicit schemes, the main Flux Reconstruc-
tion methods can described using three main steps: First a compressive (upwind like) and a
high order/anti-diffusive scheme must be chosen, using the NVD in Fig. 3.11, thus generating
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temporary values φ̃Comp and φ̃HR. The two predicted values are then mixed using a blending
factor ω (θ) depending on the angle θ for create a new prediction φ̃θ. Eventually, the impact of
the Courant number is injected in the last step and it usually involves the use of an intricate
function f using as arguments CFL, φ̃θ and possibly other values such as φ̃C , φ̃D or φ̃U . The
overall process is summarized with Eqs. (3.15a)-(3.15b)

φ̃θ = ω (θ) φ̃Comp + (1− ω (θ)) φ̃HR (3.15a)

φ̃f = f
(

CFL, φ̃θ, · · · ,
)

(3.15b)

The last step allows to evaluate the final value φ̃f which in turn can be used to evaluate the
actual volume fraction flux crossing the face between cells C and U of Fig. 3.10 by mean of
Eq. (3.16).

φf = φ̃f (φD − φU ) + φD (3.16)

Examples of Flux Reconstruction method
The Acceptor-Donor algorithm, introduced by Johnson (1970) can be used as an example for
its simplicity. Beside, it is the flux reconstruction method used in the original VOF method
introductory paper Hirt and Nichols (1981). Its characteristics are given in Eqs. (3.17a)-
(3.17d) The chosen compressive scheme is the first order upwind and the anti-diffusive scheme
is the first order downwind. A simple cut-off value of 45◦ is chosen for the angle θ to switch
between the two scheme. Finally, the Courant number is not taken into account.

φ̃Comp = φ̃C (3.17a)

φ̃HR = 1 (3.17b)

ω (θ) =

{
1 if θ 6 45◦

0 if θ > 45◦
(3.17c)

φ̃f = φ̃θ =

{
φ̃C if θ 6 45◦

1 if θ > 45◦
(3.17d)

This original method presents several shortcomings. Firstly, despite this simple formulation,
it lacks flexibility as it is restrained to Cartesian grids. Secondly, the choice of the cut-off
angle is purely empirical and lacks justification. It can be shown, see Ubbink (1997), that
a constant value 45◦ is not suitable for most cases. Thirdly, the switch between the upwind
and downwind formulation is not done smoothly and results in a deformation of the interface.
It can be shown that this deformation originates from the non compliance of the switching
method with the local boundedness criteria for the volume fraction. In particular, the authors
in Lafaurie et al. (1994) realized that the important question was not so much how than when
to switch. Beside, they also demonstrated that the first upwind scheme is the worst possible
scheme to switch because of it excessive diffusivity, in particular when the interface is parallel
to the flow direction
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The High Resolution Interface Capturing (HRIC) presented in Muzaferija and Peric (1997)
is used as more consequent example of which characteristics are given (3.18a)-(3.18d). The
chosen compressive scheme is still the first order upwind, but the high-order scheme is not
more intricate and additionally the Courant number actually impact the final flux evaluation.

φ̃Comp = φ̃C (3.18a)

φ̃HR =


φ̃C if φ̃C < 0

2φ̃C if 0 6 φ̃C < 0.5

2φ̃C if 0 6 φ̃C < 0.5

φ̃C if 1 < φ̃C

(3.18b)

ω (θ) =
√
|cos θ| (3.18c)

φ̃f =


φ̃θ if CFL < 0.3

φ̃C +
(
φ̃θ − φ̃C

) 0.7− CFL

0.7− 0.3
if 0.3 6 CFL 6 0.7

φ̃C if 0.7 < CFL

(3.18d)

A non exhaustive list of such methods include SURFER Lafaurie et al. (1994), CICSAM
Ubbink and Issa (1999), STACS Darwish and Moukalled (2006), FBICS Tsui et al. (2009),
CUIBS Patel and Natarajan (2015) for which furter details can be found in their respective
article.

3.1.4.2 Interface advection

It should be noticed that all the characteristics embedded in the combination of compressive
and high-order anti-diffusive schemes, in particular the boundedness, are exclusively estab-
lished in 1D configuration and the transition to higher dimension is not guaranteed to pre-
serve them. For this reason, a double sweeping mechanism similar to the one used in Eqs.
(3.8b)-(3.8b) is usually employed to carry out the interface advection.
Interestingly, using the projection method in Jasak (1996), the methods can be adapted to
arbitrary meshes it however requires the ability to move pass the splitting technique. Several
results have been produced since then using reconstruction methods on non-cartesian meshes
but unfortunately, no mentions to the exact strategy used to perform the actual advection are
proposed. The predictor-corrector algorithm presented in Ubbink and Issa (1999) is, to the
best of our knowledge, the only strategy proposed so far that clarifies in detail a manner to
tackle this issue.

3.1.4.3 Numerical results

Even if, per say, flux reconstruction methods as numerical techniques are as old as interface
reconstruction methods, their comprehensive integration into fully coupled VOF solver present
a lesser maturity. This explains in part the scarcity of numerical results involving industrial
configuration. Plethora of comparative simulations have been performed to assess the perfor-
mance of these methods two and one dimensional settings, mostly on canonical configuration
such as Zalesak’s disc, shear advection test or Rayleigh-Taylor instabilities.
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Nonetheless, the two recent results are exposed here prove the viability of reconstruction tech-
niques for VOF methods as numerical tool to address complex two phase flows

Fig. 3.13 presents a breaking dam simulation, perfomed with the CICSAM flux reconstruction
method. The broken dam is represented by a wall with a partial hole and secondary obstacle is
placed downstream of the dam. The simulation manages to capture the collision between the
backward flow created after the water impacts the downstream wall and the water retained
by the trapezoidal obstacle and the obstacle itself.

Figure 3.13: Time evolution a three-dimensional water flow during the breaking of a damn with a
secondary downstream obstacle from Issakhov and Imanberdiyeva (2019)

Fig. 3.14 displays the time evolution of a water-air interface when the lower liquid is impacted
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by a solid hemisphere in three dimensions. In particular, the velocity and penetration depth
of the solid present a particularly good agreement with experiments, more so than theoretical
results. A modified version if the HRIC method, developed in Heyns et al. (2013) is used as
to perform the flux reconstruction.

Figure 3.14: Snapshot of a three-dimensional hemisphere impacting an initially quiescent water plane
with air above from Nguyen and Park (2017)

3.2 Level-Set methods

3.2.1 Historical overview

The foundations of the Level-Set methods have been laid down in the late 1980’s and early
1990’s upon the preliminary work of mathematician James Albert Sethian developed in the
early 1980’s, see Sethian (1982); Sethian (1984); Sethian (1985).
Similarly to Front-Tracking methods, the Level-Set methods are not inherently designed to
tackle problem involving multiphase flows but find usage in areas spanning from boiling flows
Son and Dhir (1998); Sussman (2003); Tanguy et al. (2007), three-phase flows Yap et al.
(2017), crystal growth and dendrite solidification Sethian and Straint (1992); Chen et al.
(1997); Ohtsuka et al. (2015), flames and shocks propagation Stewart et al. (1995); Aslam
et al. (1996); Osher and Fedkiw (2006) to image analysis and computer vision Malladi et al.
(1995); Zhang et al. (2010); Wu and He (2015). In the rest of the current section the focus is
however placed onto multiphase flows application and more specifically two-phase flows cases
with an emphasis regarding liquid-gas configurations.

The viability of Level-Set is deeply rooted in both the notion of viscosity solution, thoroughly
investigated in Crandall and Lions (1983); Crandall et al. (1984); Crandall and Lions (1984a);
Crandall and Lions (1984b) and its links to curve and surface evolution theory (see Sethian
(1985)) front propagation (see Sethian (1982); Sethian (1987)) and hyperbolic laws conserva-
tion (see Sethian (1984)). All these previous aspects have been merged to achieve the basis
for the Level-Set methods in Osher and Sethian (1988) where first was introduced the idea to
track a discontinuity as a specific level-set of a smooth enough (Lipschitz continuous) func-
tion, referred to as ϕ in this section. As it is further explored in Sec. 3.2.2.4 and Sec. 3.2.3.1,
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Level-Set methods essentially formulate the interface propagation problem in terms of a time-
dependent initial value problem for the level-set function ϕ.

From Osher and Sethian (1988), the ensuing works during the 1900’s focused on improving the
methods to solve this problem. A preliminary improvement was introduced in Chopp (1991),
at that time for image processing, to limit the calculations involving ϕ to a restrained region
of interest in order to reduce computational cost. The first major adding came in Sethian
and Straint (1992) where the authors noticed the necessity to extend interfacial variable (most
of the time the velocity), to the rest of the domain. A second major modification came in
Sussman et al. (1994) where the authors introduced a new method to reinitialize ϕ as signed
distance throughout the calculations. These three main ideas were then first combined in
Malladi et al. (1994) and clarified in Adalsteinsson and Sethian (1995) where the Narrow
Band approach was introduced. The overall method has been successfully applied to two-
phase flows Sussman et al. (1994); Chang et al. (1996), flame propagation Rhee et al. (1995)
and crystal growth Chen et al. (1997). It should be noticed that different strategies are used
to extend the interfacial velocity depending on the physics to be simulates
The introduction of the Fast Marching method in Sethian (1996) provided a powerfull tool
to solve stationary boundary-dependent that is used jointly with the Narrow Band to greatly
simplify and diminish the cost the velocity update. In Adalsteinsson and Sethian (1999), a
new strategy was proposed to extend the velocity so as to ensure that ϕ doest not require
reinitialization. This new strategy can be applied, in principle, arbitrarily to any type of
physics.

In parallel of these improvements, the extensive work in Evans et al. (1991); Evans and Spruck
(1992a); Evans and Spruck (1992b); Evans et al. (1991); Evans et al. (1991); Evans and Spruck
(1995) allowed to further ground the theoretical legitimacy of the Level-Set approach. One
interesting result is that the motion obtaind with LS methods is the asymptotic motion that
would be obtained using a Phase-Field modeling that no superfluous stiffness is required with
LS. In particular, Phase-Field models have better odds to ill-behave on poorly resolved meshes,
contrary to their LS counterparts.
The design of the Ghost-Fluid method in Fedkiw et al. (1999) has allowed the LS method
to drastically increase the precision of the simulations as it prevents the smearing of the in-
terface caused by conventional bounded numerical scheme. It has been consistently employed
for incompressible simulation ever since and has even permitted to contemplate compressible
simulation as the study of droplet motion induced by Stefan flow in Tanguy et al. (2007)
or the droplet-shock interaction in Houim and Kuo (2013), greatly improving upon the early
attempts at compressible flow simulation with LS method such as in Mulder et al. (1992)

Starting the 2000’s, Level-Set methods have been extensively used, in particular for two phase
flow simulations. As LS methods are known to face issues regarding mass conservation, a
crucial point for fluid simulations, efforts have been made in order to alleviate this drawback.
Several approaches rely primarily on the choice of specific advection schemes. For instance a
custom finite volume scheme is employed in Shepel and Smith (2006) where as mixing and
exchange rules are used to evaluate the fluxes in Hu et al. (2006).
In Enright et al. (2002), the authors combine a LS approach with particle markers that allow
to correct error convection a posteriori by locally modifying the values of ϕ
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The most preeminent strategy has been introduced in Olsson and Kreiss (2005); Olsson et al.
(2007) where a smeared Heaviside function is favored over the classic signed distance to act as
the level set function. This strategy was reinvested in and adapted by the authors in Desjardins
et al. (2008) using a finite difference framework and later a Discontinuous Galerkin approach
in Owkes and Desjardins (2013). A new reinitialization procedure, adapted to the new level
set function, has been proposed in Mccaslin and Desjardins (2014).
In Zhao et al. (2014), the authors decided to combine the smeared Heaviside function of Olsson
for its conservative properties with the classic signed distance function for its geometrical
precision.
Lately, a new procedure based on the local curvature of the interface appeared in Luo et al.
(2015) which, in principle, should ensure an absolute mass conservation of the liquid phase.
Contrary to the VOF methods, no formulation of the LS method inherently ensure mass con-
servation and even if most studies settle with the smeared Heaviside function of Olsson, this
problem remains a modeling challenge to this date.

In the rest of this section, building blocks of the Level-Set methods are explored. First, the
representation of the interface is detailed along with its advection equation, as well as the
complete modeling of the fluid.
As done for the Front-Tracking and the Volume-of-Fluid methods, the actual resolution of
the Navier-Stokes/Euler equations are omitted, for reasons detailed in the introduction of this
chapter, so as to focus on the interface advection.
The strategies used for the reinitialization and extension problem are then presented as these
steps are primordial to achieves correct simulation.
Lastly, some of the methods to improve mass conservation are discussed.

3.2.2 Modeling and equations

3.2.2.1 The Level-Set function

The Level-set methods track the movement of an hypersurface (a line in two dimensions, a
surface in three dimensions) Γ by embedding the later in the level set of a function ϕ, usually
the zero contour, such as the time evolution of Γ is described by:

Γ (t) = {x ∈ Ω | ϕ (x , t) = 0} (3.19)

Eq. (3.19) implies that ϕ is a space and time dependent function over the whole spatial domain
Ω. The corresponding situation is illustrated Fig. 3.15.
As the zero contour of ϕ represent the interface, in a two-phase flow configuration with fluid
1 and fluid 2, the different constituent of the flows are characterized through the properties:

ϕ (x , t) > 0 for x ∈ fluid 1

ϕ (x , t) = 0 for x ∈ Γ

ϕ (x , t) > 0 for x ∈ fluid 2

(3.20a)
(3.20b)
(3.20c)

As such, following Γ through time merely mounts to tracking the zero contour of ϕ. Conve-
niently, ϕ can also be used to evaluated interfacial geometric quantities such as the normal
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Fluid 2
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Figure 3.15: Schematic representation of the Level-Set mechanics with function ϕ in a 2D setting:
(a) the full surface defined with it zero level set, (b) the corresponding interface Γ

vector n and the mean curvature κ using Eqs. (3.21a)-(3.21b).

n =
∇ϕ
|∇ϕ|

(3.21a)

κ =∇ · n =∇ ·
(
∇ϕ
|∇ϕ|

)
(3.21b)

3.2.2.2 Mechanical equations

We consider here, in a first approach, a system composed of two non miscible fluids or a single
fluid in its liquid and vapor form. The first and second components (the liquid and vapor
phase if so) are referred to with the subscripts 1 ans 2 respectively. Initially, the Navier-Stokes
equations solved for an incompressible, inviscid fluid are given Eqs. (3.22)-(3.23) where ρ, µ,
P and v are the fluid density, viscosity, pressure and velocity and g represents the potential
body forces.

∇ · v = 0 (3.22)

ρ
dv
dt

= −∇P +∇ ·
(
µ
(
∇v +∇vT

))
+ ρg (3.23)

The properties of the fluid are accessed on either sides on the interface using the marker
function I in FT methods or the volume of fluid φ in VOF methods. This can be emulated
in LS method by introducing a indicator function Φ that should intuitively be defined as a
Heaviside function H such as:

Φ (x , t) = H (ϕ (x , t)) =


0 if ϕ (x , t) < 0
1

2
if ϕ (x , t) = 0

1 if ϕ (x , t) > 0

(3.24)
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and the physical variable then read:

ρ (x , t) = Φ (x , t) ρl + (1− Φ (x , t)) ρv (3.25a)
µ (x , t) = Φ (x , t)µl + (1− Φ (x , t))µv (3.25b)
cp (x , t) = Φ (x , t) cpl + (1− Φ (x , t)) cpv (3.25c)

· · ·

However, this sharp representation can cause numerical difficulties and is prone to produce
numerical oscillation in the simulation unless very specific numerical schemes are used.
For this reason, a smoothed Heaviside function Hε is preferred, as developed in Eq. (3.26)
where coefficient ε permits to control the width of the interface (similarly to PF method) and
thus allows to ensure that the interface is always resolved on the mesh. Indeed, with this
definition of Hε, the interface has approximatively a width given by Eq. (3.27).

Hε (ϕ) =


0 if ϕ < −ε
1

2

[
1 +

ϕ

ε
+ sin

(πϕ
ε

)]
if |ϕ| 6 ε

1 if ϕ > ε

(3.26)

w =
2ε

|∇ϕ| (3.27)

The physical values in Eqs. (3.25a),... are remplaced in the Navier-Stokes equations (3.22)-
(3.23) by their smoothed counterparts ρε, µε, etc... with ρε = Φε (x , t) ρl + (1− Φε (x , t)) ρv
and Φε = Hε (ϕ).
For possible quantities concentrated at the interface such as the surface tension or the interfa-
cial heat flux when considered, the formulation also allows to define a smoothed delta function
δε as follows:

δε (ϕ) =
dHε

dϕ
(3.28)

As already evoked, the wide variety of discretization and numerical methods which used to
solve these equation are not expanded upon here and curious reader can refer to the different
sources cited in this section for concrete cases.
The emphasis is thus put on the different steps that allow to properly update the level-set
function with provide all the information needed to solve the mechanical equations.

Compressible simulations
In the framework of LS methods, the treatment of compressible fluids entirely rely on the
Ghost-Fluid method (GFM) introduced in Fedkiw et al. (1999); Fedkiw (2002) which was
designed from the beginning as a support strategy for LS methods to evolves towards com-
pressible simulations.
Nowadays, the GFM is used in combination within a much wider variety of numerical frame-
work.
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3.2.2.3 The interface advection

The motion of Γ is induced by an interfacial velocity field v I that usually depends on the time
and position at which the observation is done. It however can be defined in a more complex
fashion, depending on the geometry of the interface such its curvature, normal and/or tangent
vectors) as well as external physical parameters (pressure jump, density jump, etc...). As
shown in Osher and Sethian (1988), the time evolution of ϕ can be tracked using the partial
differential equation Eq. (3.29a) along with an initial condition Eq. (3.29b).

∂ϕ

∂t
+ vI ·∇ϕ = 0 (3.29a)

ϕ (x , 0) = ϕ0 (x ) (3.29b)

By defining the normal velocity at the interface vn = n · vI , Eq. (3.29a) can be reformulated
in a more convenient form:

∂ϕ

∂t
+ vn |∇ϕ| = 0 (3.30)

In the specific cases where vn = vn (n), Eq. (3.30) becomes a first order Hamilton-Jacob
equation for which plenty of theoretical justification (see Evans et al. (1991); Evans and
Spruck (1992a); Evans and Spruck (1992b); Evans and Spruck (1995)) as well as numerical
result (see Evans and Spruck (1992b)) have since been produced.

3.2.2.4 Requirement for an efficient LS method

Whereas Front-Tracking, Volume-of-Fluid and Phase-Field methods have foster approaches
with fundamental differences, Level-Set methods share a very consistent basis which make
them substantially easier, both to describe but also to actually implement them numerically.
Early on in the development of the Level-Set methods, several key points have been identified
as critical and they transpire through the description made in the previous paragraphs.

Firstly, an appropriate numerical scheme, with theoretical background, must be chosen to
solve Eq. (3.30). In particular, when the smoothness of the solution is lost, the correct weak
solution, of which existence in ensured by hyperbolic conservation laws and studied in Sethian
(1982); Sethian (1984); Sethian (1985), must effectively be selected.

Secondly, since the level set approach above requires an additional space dimension to carry
the embedding of the interface Γ, it can be computationally inefficient for many problems.
This is can be by limiting the region over which level set interface calculation are performed,
such as in Adalsteinsson and Sethian (1995)

Thirdly, whereas the level set function ϕ is intrinsically defined over the whole physical domain,
this is not often the case for the interface velocity v I depended on the physical phenomenon
that is studied. If need be, one must be able to expand the definition of the interfacial velocity
(and potentially other relevant interfacial variables) to the whole domain as well, or at least,
to the whole region over which Eq. (3.29a) is solved.
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Finally, as the interface width directly depends on the gradient of the level set function by
virtue of Eq. (3.27), it can be advantageous, if not necessary, to maintain this gradient con-
stant (by convenience, equal to 1). Doing so amounts to ensuring that the level set function
remains a signed distance throughout the simulation, which unfortunately can not be ensured
intrinsically by the advection scheme. Therefore a method has to be designed to rectify the
drift of φ from a proper signed distance function.

The first point is put to rest for this description for reasons already mentioned, the second and
fourth points are briefly evoked hereinunder, the third point is however treated in separate
paragraph it is a crucial element that further detailing be adequately explained.

The Narrow Band approach
Regarding the limitation of the interfacial calculations to the vicinity of Γ, a similar issue is
also encountered, to a smaller scaler, for the FT and VOF methods. By design, these two
classes of methods already have a limited area over which interfacial calculations are done:
FT methods already have markers on the interface and VOF methods, either by interface of
by flux reconstruction, literally need to perform calculation only at the interface. The matter
of limiting the calculation area, when it does, only occurs for the solving of the mechanical
equation but not for the interface advection.
However, this is not the case for LS method since Eq. (3.30) is solved as it is. Obviously, having
ϕ defined provides non negligible advantages such as the faculty to evaluate the interface
normal and curvature everywhere in the domain and not solely at the interface (where FT
methods must deploy strategies such as Fast Marching methods to extend these two quantities
from the interface). The price to pay however is to have to solve Eq. (3.30) well.
Of course, this leads to unnecessary additional computational time and this issue was spotted
early on and addressed in Chopp (1991). The method was improved in Malladi et al. (1994)
and to some extent finalized in Adalsteinsson and Sethian (1995) as most modern installments
of LS method rely on the approach this later work introduced known as the narrow band
approach.

The method is pretty straightforward and consists in defining a "narrow band" around the
interface of a fixed width as depicted in Fig. 3.16 and to perform level set advection, distance
reinitialization and velocity extension only in this band.
The width of the band is predicated on the cases to be treated and on the numerical schemes
that are used because it has at least to accommodate the stencil of the schemes plus a safety
length. The wider the band, the greater the point where calculation must be done, the more
precise the reinitialization and extension processes are and thus the less often they need to
be performed as the quality of the approximated ϕ and v I deteriorates slowly. Conversely,
narrowing the band will reduce the calculations to be done at one iteration but will augment
the frequency at which they have to be done. A balance must be found by the user.
Of course, this requires the ability to locate the interface. Granted that its initial position
is none, the calculations are usually done such as the interface cannot move for more than a
computational mesh cell, therefore from one time iteration to the other, only a limited number
of position have to verified the interface.
It must be emphasized that the Narrow band is not a fancy addition to the method but
constitute a real source of saving in terms of computational power. Some simulations, in
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Fluid 2

Fluid 1

Figure 3.16: Schematic representation of the Narrow Band approach; the extension, reinitialization
and advection are only performed in the hatched area

particular in 3D configuration, are only conceivable thanks to this approach.

Variable extension from the interface
In most problem addressed with LS methods, the interface velocity vI is only defined at the
interface and little to no direct link with the components surrounding it. For such cases, it is
necessary to extend the velocity to the rest of the domain to solve the advection equation for
ϕ.
In fluid simulation it is not the cases as the interface velocity directly relates to the flow
velocity and vI can and must be readily used in Eq. (3.29a).
However, a brief overview of the different methods available to perform this task seemed ben-
eficial to the present description. Moreover, depending on the physics treated, other variables
than the velocity may be needed in the rest of the computational domain, even for fluid sim-
ulations.

Classically, three approaches exist to extend a variable f from the interface.
The first one, used in Malladi, consists in finding the point of the interface the closest of the
point where f must be evaluated and use a simple extrapolation. Noticeably, this method
requires to locate the interface and thus can be onerous despite a limited accuracy.
A more precise method, introduced in Chen et al. (1997) consists in solving the partial
differential equation up to a steady state. This generate a extended variable f ext that evolves
normally to the interface and the smears out rapidly as the distance to the interface grows.

∂f

∂τ
+ S (ϕ)

∇ϕ
|∇ϕ| ·∇f

ext = 0 (3.31)

The last method is exclusively dedicated to the velocity extension and is closely related to
the distance reinitialization problem. It is presented in the paragraph Extension velocity
correction.
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3.2.3 Reinitialization and extension

3.2.3.1 Distance initialization and reinitialization

When it comes to the initial conditions in Eq. (3.29b), any sufficiently smooth function ϕ
satisfying the conditions Eqs. (3.20a)-(3.20c) can be used. A common and sound choice is
usually to define ϕ0 as signed distance function to the interface, i.e., given a norm ‖·‖ defined
for RN (N being the number of dimensions of the problem), a distance function dΓ

‖·‖ to Γ is
defined as:

∀x ∈ Ω, dΓ
‖·‖ (x) = min {‖x − xΓ‖ ‖xΓ ∈ Γ} (3.32)

Classically the euclidian norm is used with the associated euclidian distance dΓ. The signed
distance ϕ0 can consequently be defined by:


ϕ0 (x ) = +dΓ (x) for x ∈ fluid 1

ϕ0 (x ) = 0 for x ∈ Γ

ϕ0 (x ) = −dΓ (x) for x ∈ fluid 2

(3.33)

Although it may seem arbitrary, the choice of initializing ϕ0 as a signed distance proves
particularly efficient from a theoretical as well as a practical point of view. Ideally, one would
like ϕ to preserve the qualities of signed distance function, which means that at any time the
Eikonal equation Eq. (3.34) must be satisfied.

|∇ϕ (x , t)| = 1 (3.34)

As it so happen, the authors in Barles et al. (1993) formally proved that Eq. (3.30) and Eq.
(3.34), that is to say a level set function, even perfectly advected using Eq. (3.30) has no
reason whatsoever to remain a signed distance function. Ever since, substantial efforts have
been made to overcome this issue. Those are motivated by several reasons.
Firstly, a signed distance function is usually very regular and smooth, in particular in the
vicinity of the interface. This reduces the numerical difficulties associated to the advection of
said function. It also ensures that the normal vector in Eq. (3.21a) and the interface curvature
in Eq. (3.21b) can be calculated accurately
Secondly, the use of the Narrow Band approach can cause a lost in accuracy if a proper signed
distance function is not used. Indeed, since the calculations are concentrated near the inter-
face, one has to ensure that this reduced amount of calculations are conducted as precisely as
possible. Thirdly, if ϕ remains a signed signed distance function then by definition |∇ϕ| = 1
which should ensure that the interface keeps a designated width.

The necessity to reinitialize the level set function was first introduced in Chopp (1993) for
image processing purposes. The author used a direct approach where the signed distance
function was calculated from scratch whenever the treatment was needed using Eq. (3.32),
this lead to very precise calculations. The major difficulty associated with this approach is
that the actual zero level set of ϕ must be retrieve in order to compute the distances. It goes
without saying that this approach was very time consuming, even more so if the reinitialization
was performed at every time step. In practice, the author greatly reduced the computational
overload by using a narrow band approach for his simulations.
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Pseudo-time correction
Reinvesting some results from Rouy and Tourin (1992), the authors in Sussman et al. (1994)
proposed a new method that does not require to formally locate the interface. By solving the
partial differential equation Eq. (3.35) for a function f (x , t) and a time invariant function g
up to a steady state (τ →∞), the solution respects |∇f0| = g (x )

∂f

∂τ
+ |∇f | = g (x ) (3.35)

Applied to the signed distance function, of which sign must be preserved and using g (x ) = 1,
the equation becomes:

∂η

∂τ
+ S (ϕ0) (|∇η| − 1) = 0 (3.36a)

η (τ = 0) = ϕ0 = ϕ̃ (x , t) (3.36b)

where S is the sign function and ϕ̃ is the "incorrect" level set function, after advection.
Solving Eq. (3.36a) leads to a solution ϕ that satisfies |∇ϕ| and such as {x |ϕ (x , t) = 0} =
{x |ϕ̃ (x , t) = 0}, in other word, it creates a level-set function which is a signed distance and
which preserves the sign and the zero level of ϕ̃ as predicted by the advection.
This approach is very effective as long as the prediction ϕ̃ is smooth enough which is sadly
not always the case. In Sussman et al. (1994), it is proposed to use a smoothed sign function
Sα as presented Eq. (3.37) to smear out the defaults of ϕ̃.

Sα (ϕ0) =
ϕ0√
ϕ2

0 + α2
(3.37)

where α is a small smoothing coefficient, usually taken equal to the mesh size ∆x. Eq. (3.36a)
becomes:

∂η

∂τ
+ Sα (ϕ0) (|∇η| − 1) = 0 (3.38)

The idea was even improved on in Peng et al. (1999) who proposed Eq. (3.40) where the
smeared sign function Sα in Eq. (3.39) is actually applied directly to η. The authors show
that this formulation offers much better results when ϕ̃ is very far of a sign function.

S̄α (η) =
η√

η2 + |∇η|2 α2

(3.39)

∂η

∂τ
+ S̄α (η) (|∇η| − 1) = 0 (3.40)

In most studies, Eq. (3.38) is preferred despite is lesser precision for computational reasons.
Indeed, when solving Eq. (3.38) in pseudo-time τ , Sα (ϕ0) has to be evaluated only one time
at the beginning whereas in (3.38), S̄α (η) bust be calculated at eat sub-iterations.

Although the position of the interface should not be modified by solving, Eq. (3.38) or Eq.
(3.40), the numerical errors in practice often cannot be neglected and can lead to a small
deformation of the zero level set predicted by ϕ̃.
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For fluid mechanics purposes where the conservative nature of a method is paramount it can
constitute a important source of errors.

A first attempt to improve conservation was introduce in Chang et al. (1996) where the author
traded Eq. (3.38) for Eq. (3.41) where A0 = A (ϕ0) and A (η) are the total areas associated
to the predicted ϕ̃ and the iteratively corrected η level set functions, κ the curvature defined
Eq. (3.21b) and c is a positive constant used to stabilize the calculations.

∂η

∂τ
+ (A0 −A (η)) (−c+ κ) |∇η| = 0 (3.41)

This method caused a significant increase in the mass conservation for number of iterations
slightly higher to similar when compared to more classic reinitialization methods.
Yet another strategy was designed in Sussman et al. (1999) where the authors still modified
Eq. (3.39) but this time they ensured a local conservation in each cell by writing:

∂η

∂τ
+ Sα (ϕ0) (|∇η| − 1) = Lδε (η) |∇η| (3.42)

where the balancing factor l is given in each cell Ωi,j :

Li,j =

∫
Ωi,j

Sα (ϕ0) (|∇η| − 1) δε (η) dx∫
Ωi,j
|∇η| δε (η)2 dx

(3.43)

Another method to ensure conservation was proposed in Russo and Smereka (2000), it requires
to locale the position of the interface with ϕ̃ and solve two simpilfied advection equations
instead of Eq. (3.38), the first inward, the second backward and ensure everytime that the
stencil used in the discretization does not cross the interface, canceling the interaction between
the two sides of the interface. Although appealling, this method requires more calculations
than the previous one and so far the gain in accuracy has been shown to be limiting and
strongly dependend on the scheme used to perform the inward and outward advections.

Extension velocity correction
Another method can be used to ensure that ϕ remains a distance function. The principle is to
embed this condition within the advection equation Eq. (3.29a). By using a specific extension
velocity, it is possible to ensure that the properties of ϕ are preserved. Indeed, if one is to
generate a extension velocity vIext such as at any time iteration Eq. (3.44) is respected, it can
be shown that the initial distance function ϕ will remain as such.

vIext ·∇ϕ = 0 (3.44)

This idea was firstly introduced in Zhao et al. (1996); Peng et al. (1999) as a consequence
of using a the limit case of the Narrow Band of Adalsteinsson and Sethian (1995) where the
with was of only once cell. Using the Fasting Marching method of Sethian (1996), the authors
in Adalsteinsson and Sethian (1999) a fast and efficient method to generate this extension
velocity by solving the eikonal equation Eq. (3.44).

It should be noticed that in the prospect of a fuid simulation, this method cannot be applied
since the velocity field is already defined in the whole demain Ω by default. The same ob-
servation applies for any physical simulation where the velocity cannot be chosen arbitrarily.
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Although it is not expanded upon, this approach seemed worth mentionning for is originality
and efficiency and for the fact that is it usually a go-to when it can be applied, even for more
recent applications.

Overall the matter of distance reinitialization is still a topic actively investigated as demon-
strated by the recent studies in Hartmann et al. (2008); Chopp (2009); Hartmann et al.
(2010).

3.2.3.2 Early results

Contrary to VOF methods, LS methods have not inherently been designed to simulate two-
phase flows. Rather, can virtually be to capture any type of surface (in three dimensions)
that evolves in time according to a prescribed equation. It is particularly used in image
processing and computer graphics. In that aspect, they stand closer to FT methods that
can also theoretically be used for several purposes other than two-phase flow simulation, for
instance to follow shocks.
For these reasons, early papers treating about LS methods often focus on their mathematical
description, characterization and improvements. Actual applications to two-phase flow mod-
eling became noticeable in the late 1990’s and early 2000’s, of which two results are presented
here.

Fig. 3.17 shows an early fully three-dimensional result studying the behavior of water bubbles
in water with different configurations. The fluids are considered inviscid and the density ratio
is 816:1 with We ≈ 200. Configuration (a) focuses on the rise of a single bubble whereas
configuration (b) displays the interactions between two bubbles.

Fig. 3.18 presents a comparison between the experimental results from Ashgriz and Poo (1990)
and the numerical simulation in Tanguy and Berlemont (2005) of a head-on collision between
water droplets. Both the experimental and physical settings involve a density ratio of about
800 with We = 23 with bubble radius equal to 400 µm. A very good qualitative agreement
is obtained by the simulation, in particular when it comes to predicting the full separation of
the droplets without creation of smaller satellites.

3.2.4 Conservative Level-Set methods

3.2.4.1 Strategies to reduce mass loss for Level-Set simulation

The poor mass conservation of the LS methods when compared to VOF methods that are
conservative by construction or even FT methods, especially in regard to fluid simulations, is
a well known and documented issue, see Chang et al. (1996); Sussman et al. (1998); Tornberg
and Engquist (2000); Pai et al. (2009) for some examples.

To address this problem, multiple strategies have been devised throughout the years as LS
methods developed. We found that these strategies, for the most part, can be classified into
six categories. These six categories are further detailed hereafter but we wanted to draw the
attention of the reader on the often possible misleading meaning of the term conservative
attached to some of the LS methods that can be found in the literature.
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Figure 3.17: Simulations of inviscid air bubbles in water from Sussman et al. (1999). (a) Single
bubble rising. (b) Interaction between two bubbles.

Figure 3.18: Comparison between experiment and simulation of the head on collision of water droplets
from Tanguy and Berlemont (2005). (a) Experimental results from Ashgriz and Poo (1990) (b) Sim-
ulation from Tanguy and Berlemont (2005).

Although substantial improvements have been achieved in the direction of mass loss limita-
tion, no LS method produced to this day is conservative by nature in the sense that VOF
methods are. The term conservative associated to some LS methods is used in reference to
the numerical scheme chosen to advance the level set function in time.

The first method to diminish the mass loss is to increase the mesh resolution. Of course, the
narrow band method is still used to limit the area over which the resolution must be increased
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to greatly reduce the cost of this approach.
Some approaches are original to the LS community such as the the Adaptive Level Set (ALS)
approach from Sussman et al. (1999), the Refined Level Set Grid (RLSG) method in Herrmann
(2008), the Accurate Adaptive Level Set (AALS) method found in Kim and Liou (2011) or
the Spectrally Refined Interface approach presented in Desjardins and Pitsch (2009)
Some others reinvest in already existing strategies such as the structured adaptive mesh re-
finement technology used in Nourgaliev et al. (2005) or the adaptation of the octree structure
used in Losasso et al. (2006).
For all the improvement they permits, these methods still fall short on mass reduction in
region where the interface is not properly resolved and when compared to the others, remain
relatively costly in computation power.

A second strategy to reduce mass loss is the use of better numerical schemes for the transport
of the level set function. The different schemes that have been used for the discretization
of Eq. (3.30) are to numerous to be listed. Some of the most advanced includes high-order
weighted essentially nonoscillatory (WENO) schemes used in Nourgaliev et al. (2005); Salih
and Moulic (2009), the accurate semi-Lagrangian advection schemes used in Strain (1999);
Enright et al. (2005) and the Discontinuous Galerkin schemes employed in Chopp (2009);
Owkes and Desjardins (2013).
Still, even high order schemes struggle to offer proper conservation for LS methods.

Some attempts have been made, understandably so, to capitalize of other two-phase flow sim-
ulation methods that display better conservation properties the LS methods. They constitute
the third category.
The coupled level set and volume-of-fluid (CLSVOF) in Sussman and Puckett (2000) and the
coupled volume-of-fluid and level set (VOSET) method in Sun and Tao (2010) are two suc-
cessful instances where LS and VOF approached have been combined together. The volume
of fluid is used to transport the interface in a conservative way and a level set function is
then reconstructed to accurately locate the interface and evaluate the normals and curvature.
A common critic against these two methods is their complexity especially regarding the re-
construction the level set function from the already geometrically reconstructed interface, a
process that lacks accuracy.
The mass-conserving level-set (MCLS) in Van der Pijl et al. (2005) offers another combination
of VOF and LS that does not require a geometrical reconstruction of the interface. More
recently, the LS approach has also been couple to the Moment-of-Fluid (MOF) method (see
Dyadechko and Shashkov (2005)) to design the coupled level set-moment of fluid method
(CLSMOF) in Jemison et al. (2013).
Another approach have been used in Enright et al. (2002); Enright et al. (2005); Hieber
and Koumoutsakos (2005) where massless particles are used in conjunction with the level set
function. By detecting the particles that have crossed the zero level set after a time iteration,
it is possible to locate regions where the interface is wrongly reconstructed by the advection
and to correct its shape in a theoretically conservative fashion.
All the mentioned methods drastically diverge from the simplicity of the original LS method
and generally requires a substantial amount of supplementary calculations since two methods
are actually used at once, even if efforts have been made to alleviate this computational cost.
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All the previously mentioned categories where focused into applying an "exterior" modification
to the LS methods in order to improve their mass conservation capability. Other studies
have focused on modifying the internal process of the LS method to achieve the same goal.
Presumably, these types of approach should preserve the relative simplicity of implementation
and interface topology management associated with the LS method in the first place.
To that effect, a fourth method, already discussed, stem from the improvement of the reini-
tialization step in LS method. Indeed, theoretically, if a conservative scheme were to be used
to solve Eq. (3.30), the fluid volume should be correctly preserved. The actually mass loss
occurs during the reinitialization which, if not done carefully, displaces the zero level set of
ϕ and destroys conservation. The reader can refer to Sec. 3.2.3.1 to see the improvements
achieved for this approach.
Methods in the fifth category rely on a better expression of the extension velocity and are
closely related to that of the fourth category for reasons already mentioned in Sec. 3.2.3.1.
An interesting novelty proposed in Ovsyannikov et al. (2012); Sabelnikov et al. (2014) is
the addition of a source term to the transport equation of ϕ that depends on the extension
velocity. This new equation embeds the condition of the eikonal equation Eq. (3.44) and since
the new source term vanishes at the interface, the zero level set is not affected by its addition.
For fluid applications, as previously explained, methods that rely on manipulating the exten-
sion velocity can not be used since the advection speed of the level function is already given
everywhere by the fluid velocity.
The sixth category builds on a shift in the paradigm used to define the level set function
which is no longer a signed distance but rather an smeared Heaviside function, as introduced
by Olsson and Kreiss (2005). This approach has a strong impact on the way the other steps
of the LS method are applied, it is further explained in the next paragraph. This approach
has several appeals: it builds strongly on the already existing LS approach, it comes at a
moderate additional computational price and most importantly, it can easily be applied to
fluid simulations even in compressible settings.

3.2.4.2 The Accurate Conservative Level-Set method

A new level set function
In a limit case where ϕ was to be an Heaviside function, if one was able to accurately transport
it using Eq. (3.30) with a conservative numerical scheme the area bounded by ϕ would be
exactly preserved and the mass would be conserved. This cannot be achieved for hyperbolic
equation such as Eq. (3.30), however, as hinted in Olsson and Kreiss (2005), using a smeared
version of an Heaviside function such as Hε and by defining the interface as the isoline (or
isosurface) or value 0.5, a conservative numerical scheme should allow to preserve the shape
of the interface and thus to avoid mass conservation errors.

Building from this idea, the authors in Olsson and Kreiss (2005) have designed a new approach
for their LS method. In this approach, the level set function ψ is defined as follows:

ψ (x , t)


0 if dΓ

+/− (x ) < −ε
1

2

[
1 +

dΓ
+/− (x )

ε
+ sin

(
πdΓ (x )

ε

)]
if |ϕ| 6 ε

1 if dΓ
+/− (x ) > ε

(3.45)
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where ε is still a factor used to define the interface width and dΓ
+/− the signed distance function

to the interface. In Desjardins et al. (2008), the authors used a similar function given by:

ψ (x , t) =
1

2

[
tanh

(
dΓ

+/− (x )

2ε

)
+ 1

]
(3.46)

In either case, the level set function can be used directly to reconstruct the physical variables:

ρ (x , t) = ψ (x , t) ρl + (1− ψ (x , t)) ρv (3.47a)
µ (x , t) = ψ (x , t)µl + (1− ψ (x , t))µv (3.47b)
cp (x , t) = ψ (x , t) cpl + (1− ψ (x , t)) cpv (3.47c)

· · ·

and it will follow the transport equation Eq. (3.30) which, granted that the velocity field used
to advance it respects ∇ · vI = 0 (which is automatically satisfied in a incompressible fluid
simulation), can be written in the conservative form:

∂ψ

∂t
+∇ · (vIψ) = 0 (3.48)

A new reinitialization strategy
Just as ϕ could not be maintained as a signed distance function solving Eq. (3.30) a has to
be reinitialized, ψ has to be reinitialized in a corrective step after being advected with Eq.
(3.48) so as to maintain its width. In the original presentation of Olsson and Kreiss (2005),
the reinitialization of ψ is done by solving the system (3.49a)-(3.49b) in pseudo time until a
steady state is achieved.

∂η

∂τ
+∇ · (η (1− η)n) = ε∆η (3.49a)

η (τ = 0) = ψ0 = ψ̃ (x , t) (3.49b)

where ψ̃ is the level set function incorrectly transported with Eq. (3.48). This equation is
comprise of a compressive flux η (1− η)n on the left hand side that counteracts the numerical
smearing of ψ and a diffusive term on the right hand side which prevents the apparition
of discontinuities that naturally develop in compressive hyperbolic equations. The balance
between the two terms permits to maintain the new level set function ψ to a width close to is
initial one of approximatively 2ε.
On the one hand, ε has to be small enough to limit the smearing of the physical values and
reduce conservation errors while on the other hand, it has be large enough to ensure that the
interface is still properly resolved on the mesh. Usually the choice ε = ∆x leads to the most
satisfactory results.

In their follow up study Olsson et al. (2007), the authors noticed the discrepancy in Eq.
(3.49a) between the compressive term that acts only in the direction normal to the interface
and the isotropic diffusion term acting in all direction leading to unbalanced contributions in
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the direction tangent to the interface. From that observation, they corrected the reinitialization
equation into:

∂η

∂τ
+∇ · (η (1− η)n) = ε∇ · ((∇η · n)n) (3.50)

Where the smeared Heaviside function used for ψ offers better conservation properties, it
lacks the regularity of a signed distance function, in particular when in come to reconstructing
the geometric properties of the interface. In Eqs. (3.49a) and (3.50), the normal vector is
calculated using Eq. (3.51a). Likewise, when needed, the curvature is calculated with Eq.
(3.51b).

n =
∇ψ
|∇ψ|

(3.51a)

κ =∇ ·
(
∇ψ
‖∇ψ‖

)
(3.51b)

However, as shown in Desjardins et al. (2008), spurious oscillation in the ψ-field can lead
to poorly calculated normals that can jeopardize the quality of the reinitialization step from
Eq. (3.50). In comparison, given the inherent smoothness of a signed distance function, even
poorly reconstructed, it leads to better normals calculations. This comparison is even more
important in the first sub-iterations of the reinitialization when ψ is still lacking a proper
reconstruction. From the observation that a not so precise signed distance function is a better
choice than an average quality Heaviside function, the authors Desjardins et al. (2008) suggest
to calculate the normals and curvature using Eqs. Eq. (3.52a)-Eq. (3.52b) where φ is a signed
distance function reconstructed from ψ using a Fast Marching Method algorithm, as again,
the quality of φ does not need to be optimal.

n =
∇φ
|∇φ| (3.52a)

κ =∇ ·
(
∇φ
‖∇φ‖

)
(3.52b)

The authors noticed a drastic improvement in quality of the ψ reconstruction. In theory, φ
should be reconstructed at each sub-iteration of Eq. (3.50) for every new and best reinitialized
ψk (x ). This would lead to substantial increase in the computational time despite the FMM
and as observed on practical case, using only the first value of the ψ reconstruction, namely
ψ0 = ψ̃ (x , t) actually leads to very satisfactory results.

The method designed by Olsson & Kreiss is known as the Conservative Level Set (CLS) and
the method instigated in Desjardins et al. (2008) is referred to as the Accurate Conservative
Level-Set (ACLS).
With the latter, the author where able to perform the impressive simulation of a turbulent
injection representative of Diesel engines, with a density ratio of 40, Re = 3000 and We =
10, 000. This configuration foster the apparition of complex break-up phenomena, droplets
and filaments creation and disintegration that the model is able to capture.
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It should be noted that, even with the ACLS method, a 3% mass loss is observed in the
simulation, which, despite representing a great improvement, remain far from the capacity of
natively conservative methods such as VOF or PF.

Figure 3.19: Simulation of the turbulent atomization of a liquid Diesel with the Accurate Conservative
Level-Set method, from Desjardins et al. (2008)

Recent updates
In the past few years, some attempts at improving the reinitialization step in the context have
been proposed. While pointing out that they do no enjoy the same amount of practical test
than the CLS or ACLS methods, these methods can prove particularly efficient as they gain
maturity.

In Mccaslin and Desjardins (2014), the authors introduced a factor that controls locally the
degree up to which the distance function needs to be reinitialized. They used this approach to
study the gravitational effects in a horizontal annular liquid-gas flow for several condition as
presented in Fig. 3.20. The impact of gravity is notable, especially when comparing cases (a)
and (c), in the latter droplet and filaments cannot persist in time are forced back downwards
into the main flow.

Figure 3.20: Simulation of a liquid-vapor flow in an annular cavity with gravitational effects from
Mccaslin and Desjardins (2014). (a) Re = 3370, We = 906, Fr = ∞. (b) Re = 3480, We = 967,
Fr = 4.56. (c) Re = 3650, We = 1070, Fr = 1.20.
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In Shukla (2014), the author modified the ACLS method by adopting a gradient formulation
and introducing a non-linear mapping allowing to work on the signed distance function, easier
to discretized than the smeared Heaviside function. This strategy was used to simulate the
impact of liquid droplet on a initially quiescent pool of the same liquid while the upper domain
is filled with gas for a density ratio of 1000 and Wb = 2000. The strong deformation of the
droplet and the pool, shown in Fig. 3.21, in particular the creation of the aftershock ring, are
well captured by the method.
Unfortunately the conservation error of the method is not evaluated by the authors for this
configuration. For one-dimensional test of shock tubes, the order of convergence in terms of
mass conservation is shown to increase by 50% when compared to more classic formulations.

Figure 3.21: Simulation of a liquid droplet impacting a liquid pool of same nature from Shukla (2014).

In Wacławczyk (2015), the authors returned to a conservative formulation of the reinitialization
equation and determined through extensive numerical investigation the optimal mapping to
used between ψ and φ to facilitate the calculations.
In Chiodi and Desjardins (2017), the author introduced in compressive term in the non-linear
mapping between ψ and φ to alleviate the impact of transport errors of φ when calculating ψ,
preferred to evaluate the interface normal.





Chapter 4

Diffuse interface methods

Chapters 2 and 3 are devoted to the description of several Sharp Interface methods for which
an interface is interpreted as a line/surface of discontinuity within the flow where key variables
experience a jump in their values. This description is well fitted for a wide variety of applica-
tions where the characteristic size of the system is orders of magnitude greater than the scale
at which interfacial phenomena occur. In such cases, the interface is assumed to have a zero
thickness and is endowed with physical properties such as surface tension, intrinsic interfacial
viscosity and thermal conduction that are incorporated within the models by enforcing spe-
cific boundary conditions at the interface, for instance a pressure jump for the surface tension
following the Young-Laplace equality.
However, in some cases that have been the subject of a growing interest in the last century, the
discontinuous point of view introduced by Monge (1787); Young (1805); De Laplace (1806);
De Laplace (1807); Gauss (1877) cannot be used to model the interface. Three main reasons
can explain a necessary shift in the way the interface is modeled. The first and somewhat
less prominent reason is the complex modification of the interface shape that is associated
with local phenomena such as capillary and thermal effects. This difficulty is handled to some
extent in Sharp Interface methods but the tools introduced to circumvent it can be perceived
as ad hoc. A second reason comes with the study of intrinsically local phenomena such as the
interactions between interfaces and solid walls to determine contact angles. The third reason,
of a great interest for this study, is the existence of situations where the interface is actually
physically thick, namely for near-critical fluids. All three reasons involve situations where the
characteristic length of the physical phenomenon that is studied is comparable to the interface
scale, a setting where the sharp approach breaks down.

To address such cases, a new family of methods, the Phase-Field methods (PFM) has emerged
in the last decades. The fundamental hypothesis of these methods is to consider that the
interface is rather a region of non-zero but finite thickness over which the flow variables evolve
rapidly but continuously. The interface is thus said to have been "diffused" in the domain.
In PFM, this diffusion of the interface is justified by physical means and is embedded in
their formulation. Another family as also been used building on the principle of diffusing
the interface, the Multi-Fluid methods (MFM). The latter tends to treat the interface as a
heterogeneous region where the different phases mix together. However, it is important to
mention that in MFM, the interface is diffused numerically, i.e. the variable used to describe
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the interface in the equation are diffused, but physically, the interface is still considered to be
sharp. PFM and MFM share similarities with the LS and VOF methods respectively and can
be viewed, to some extent, as more physically driven versions of these two sharp approaches.
For these reasons, PFM and MFM are often associated together into the class commonly
referred to as Diffuse Interface methods (DIM) and are the main focus of this fourth chapter.
In opposition to the very localized modeling of Sharp Interface methods, in the eponymous
DIM approach, the interface is "diffused" in space. This new perception of the interface has
been instigated over a century ago by the likes of Poisson (1831); Gibbs (1878); Rayleigh
(1879); van der Waals (1891). If both MFM and PFM are Eulerian by nature, the manner in
which the interface is "diffused" allows to separate these two types of methods. In the PFM,
an order parameter φ, analogous to the level-set function used in LS methods, is introduced to
localize the different phases. This parameter varies smoothly in the interface. The difference
between LS and PFM comes from the way in which the order parameter φ is introduced.
Indeed, this introduction is physically motivated for PFM rather than being a mathematical
tool to localize the interface while spreading it on a few computational cells as in LS methods.
Conversely, MFM use an approach more comparable to the VOF methods where a volume frac-
tion of one of the phase is used to write the different transport equations (mass, momentum,
energy) of both phase in the whole domain. A specific transport equation is solved to evolve
the volume fraction in time. Yet again, this volume fraction is used in a physically motivated
fashion as the set of transport equations that are used take into account the disparities than
can exist between the values of the thermodynamic variables for the two phases. The latter
can possibly have different velocities, pressures, temperatures and chemical potentials.

As their descriptions show, in Sec. 4.1 and 4.2 respectively, PFM and MFM only share the
"diffuse" point of view on the interface and have more aspects in common with their respective
Sharp Interface Capturing methods counterparts, LS and VOF methods respectively, than
between themselves.
As such, this chapter tries to establish insightful comparisons and connections between the
Diffuse and Sharp Interface approaches in general and between their respective representative
methods in particular.

4.1 Phase-Field methods

4.1.1 Historical overview

Modern Phase-Field methods are the results of reflections started in the late 1800’s and early
1900’s regarding the physical nature and the mathematical modeling of phase transition.

Following his work on the thermodynamic description of real fluids, van der Waals proposed an
updated theory of capillarity in van der Waals (1891) with an energetic approach building upon
the work in Gibbs (1878) where the notion of interfacial excess values was first introduced. In
Gibbs and van der Waals theory, surface tension is but the macroscopic manifestation of an
energy accumulated at the interface. Additionally, van der Waals reckoned in van der Waals
(1893) that the presence of the interface manifested also by the necessity to adopt a higher
order of modeling by using an additional independent variable, the density gradient in his
work, to describe the thermodynamic variables of the flow. Using his newly found EoS and
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the previous considerations, van der Waals proposed a proper formulation for the free energy
of a fluid in presence of an interface and evaluated the corresponding excess energy from which
the surface tension steamed. In particular, he observed that the excess energy was equally
contributed to by the out-of-equilibrium free energy, departing from the free energy of the bulk
phases, and the additional energy contribution due to the introduction of the density gradient
as an independent thermodynamic variable.
These early thermodynamic considerations have then been consolidated using molecular the-
ory in Rocard (1952) and have been extended by introducing mechanical considerations in
Korteweg (1901); Germain (1972); Casal and Gouin (1985) to give birth to the so called Gra-
dient Theory of fluid or the Second Gradient theory.

All the work in the vein of van der Waals early results seem to be essentially devoted to the
modeling of liquid-gas interface as they remain closely related to the notion of phase change
and often focus on the description of a single fluid flow with a variable density.
However in parallel, another series of Phase-Field methods have emerged in the footsteps of
the foundation work in Cahn and Hilliard (1958); Cahn (1959); Cahn and Hilliard (1959)
where the authors presented a method initially devoted to the description of phase separation
in binary alloys which straightforwardly evolved as a method to study any type of unstable
binary mixture forced out of equilibrium.
The method reinvests the key argument presented by van der Waals but uses one component
concentration rather than the fluid density as the new independent thermodynamic variable.
Therefore, in the Cahn-Hilliard model, the surface tension also results from an accumulation
of free energy over a volumetric transition zone where the composition evolves rapidly but con-
tinuously and this free energy is composed by both the classic free energy of the components
and an additional contribution due to the gradient of the composition. Moreover, the authors
also proposed an equation to track the time evolution of the composition.

The theoretical arguments for this equation can be found in the work of Landau (1937);
Ginzburg and Landau (1950) who were the first to properly describe the notion of an additional
order parameter φ and how it could be used to expand the description of the free energy of
a given substance to account for complex molecular interactions. In particular, the ensuing
equation for the order parameter is based on the assumption that the system will evolve to
minimize its total free energy as already established in Gibbs (1878).
This early model has been enriched to study spinodal decomposition in Cahn (1961); Cahn
and Hilliard (1971) and crystal growth in Cahn (1961); Kikuchi and Cahn (1962); Cahn and
Kikuchi (1966). It has then been adapted in Langer and Sekerka (1975) to study solidification.
A few years later, a complementary model has been introduced in Allen and Cahn (1979),
building upon Smoluchowski (1951); Turnbull (1952), to describe the motion of grain bound-
aries, i.e. defect interfaces that create between small crystallites in a polycrystalline material.
The order parameter used is the concentration of one the metallic alloy composing the material.
The Allen-Cahn (AC) model offers a simpler alternative to the Cahn-Hilliard (CH) equation,
trading a fourth-order space derivative for only a second order but at the expanse of con-
servative properties. The well-posedness of AC has been first established in Rubinstein and
Sternberg (1992) and is linked to the general theory of semilinear parabolic equations detailed
in Henry (2006). The inability of the AC model, contrary to the CH model, to conserve the
order parameter has been addressed in several work, see Rubinstein and Sternberg (1992);
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Bronsard and Stoth (1997); Brassel and Bretin (2011), through the introduction of different
Lagrange multipliers to enforce mass conservation, leading to somewhat more complicated
models.

The physical properties of AC and CH models have been explored for instance in Carr and
Pego (1989); Rubinstein et al. (1989); Heida et al. (2012a) and Novick-Cohen and Segel
(1984); Penrose and Fife (1990); Alikakos et al. (1991); Bates and Fife (1993); Ward (1996);
Heida et al. (2012b) respectively. The corresponding mathematical properties have also been
extensively studied in de Mottoni and Schatzman (1990); Owen and Sternberg (1992); Feng
and Prohl (2003); Garcke et al. (2008); Brassel and Bretin (2011) for the AC model and
Elliott (1989); Blowey and Elliott (1991); Du and Nicolaides (1991); Debussche and Dettori
(1995); Novick-Cohen (1998) for the CH model respectively. A special care has been given
in comparing the behavior of said models to more conventional discontinuous descriptions in
the limit of very small interface thickness for instance in Modica (1987); Sternberg (1988),
more particularly in Fife (1988); Chen (1992); Kohn et al. (2006); Kohn et al. (2007); Zhang
and Du (2009) for the AC model and in Pego (1989); Alikakos et al. (1994); Anderson and
McFadden (1997); Lowengrub and Truskinovsky (1998) for the CH model. These papers show
that both approaches consistently converge towards well studied discontinuous models for the
interface such as mean curvature flows or Hele-Shaw flows. Some papers, mainly focusing on
binary alloys, have merged the AC and CH equations to produce a more complete model that
can been found in Cahn and Novick-Cohen (1994); Dal Passo et al. (1999); Novick-Cohen
(2000); Gokieli and Marcinkowski (2003).
Both models have been used to study disparate physical phenomena: dendidric growth in
Wheeler et al. (1993), solidification in Elder et al. (1994), flow coarsening in Diepers et al.
(1999), grain growth in Krill Iii and Chen (2002), spinodal decomposition in Chen and Shen
(2016), crack propagation in Karma et al. (2001), dual-permeability porous medium in Amiri
and Hamouda (2013) or even image processing in Beneš et al. (2004). Comprehensive lists of
such applications can be found in the review studies Anderson and McFadden (1997); Boet-
tinger et al. (2002); Chen (2002); Kim (2012); Mehrabian (2014)

The combination of AC and CH models with hydrodynamic effects has been addressed early
on by the likes of Siggia et al. (1976); Hohenberg and Halperin (1977) in the context of critical
dynamics of binary fluid, giving birth to the so-called model H. The model has been extended
to shear flow in critical fluids in Onuki and Kawasaki (1979), to polymer solutions in Helfand
and Fredrickson (1989) and to spinodal decomposition in Koga and Kawasaki (1991).
Specifically for fluid applications, the native models needed to be combined with Euler or
Navier-Stokes equations in a consistent fashion. This has been dove by several authors, essen-
tially for the CH model in Antanovskii (1995); Jacqmin (1995); Gurtin et al. (1996); Anderson
and McFadden (1997); Lowengrub and Truskinovsky (1998); Blesgen (1999); Jacqmin (1999);
Yue et al. (2004) and more recently for the AC model in Yang et al. (2006); Heida et al.
(2012b); Ding et al. (2013); Chen and Guo (2017); Ma et al. (2017).

In the past decades, a new approach to PFM has been proposed in Beckermann et al. (1999);
Folch et al. (1999) and studied in Boettinger et al. (2002); Sun and Beckermann (2007);
Takada et al. (2013); Chai et al. (2018). These new models depart from the purely thermo-
dynamic approach of model H and focus on creating sets of equations that naturally derive
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from and remain as close as possible to the Sharp Interface equations. The new approach,
referred to is this document as geometric, is to be compared in the following section with the
thermodynamic approach introduced early on.

Finally, for the past two decades, PFM have seen a strong renewed interest in the two-phase
flow community with the multiplication of both theoretical (see Abels et al. (2012); Lee et al.
(2012); Abels et al. (2013a); Kou and Sun (2014); Kou et al. (2015); Kou and Sun (2016);
Lee and Kim (2016)) and numerical (see Ding et al. (2007); Mehrabian (2014); Guo and Lin
(2015); Lee and Kim (2015); Li et al. (2016); Strait et al. (2017); Yang and Ju (2017)) studies
casting PFM back onto the main stage of two-phase flow modeling.
This section focuses on the description of the Cahn-Hilliard and the Allen-Cahn methods, the
main considerations used during their inception, the different evolutions that have undergone,
their integration within fluid dynamics frameworks, the late bifurcations that occurred in their
regard and the noticeable numerical results they have permitted.
PFM dedicated to the simulation of pure fluid of variable density, i.e. the Second Gradient
theory, is the central focus of this P.h.D. thesis and as such benefits from a completely dedicated
in description in chapter Chap. 5. A number of subtleties separate AC and CH models from
the SG theory despite their undeniable proximity. The information provided in this section
aims at offering a better insight into the whole range of fluid dynamics related PFMs.

4.1.2 Fundamental notions for the Phase-Field methods

4.1.2.1 Free energy of a non homogeneous system

The starting point of all Phase-Field methods is the definition of an extended free energy that
takes into account the local anisotropy of the fluid caused by the presence of the interface.
This idea, introduced early on by van der Waals to study liquid-vapor equilibrium, has been
extended by Landau (1937); Ginzburg and Landau (1950) to study other sources of anisotropy
(solidification, magnetic field, atomic interactions, etc...) and more notoriously in Cahn and
Hilliard (1958) to study the equilibrium and the spinodal decomposition of density matched
non-miscible fluids.
In all these papers, the idea is to use a specific variable ϕ, that can be defined physically or not,
referred to as a phase field or order parameter, dedicated to the monitoring of the interface.
Much like the level-set function in LS methods, the phase field variable takes definite values in
the bulk phases, usually [0, 1] or [−1,+1] and varies continuously from one phase to the other.
However, the variable is used to enrich the thermodynamic description of the fluid and through
this it allows to derive the proper thermo-mechanical equations to account for the presence of
the interface. This is in opposition with the level-set function which is essentially a mathe-
matical tool used to facilitate the tracking of the interface but that does not bear an intrinsic
physical meaning. In particular, as it is shown in the following paragraphs, the equation to
describe the time evolution of the phase field is physically motivated and derived based on
thermodynamic consistency whereas the one for the level-set function is just a classic advection
equation (aside from the modifications generated by the reinitialization problematic, see Sec.
3.2.3.1).

In PFM, the expression of the total free energy of a non-homogeneous system in the domain



124 Chapter 4 - Diffuse interface methods

Ω writes:

F =

∫
Ω

[
F0 (ξ, ϕ) +

α

2
|∇ϕ|2

]
dV (4.1)

where F0 is the free energy density of the homogeneous system which depends on the order
parameter ϕ and eventually on another set of variables ξ, most of the time the temperature.
The term (∇ϕ)2 vanishes in the bulk phases but has a strong impact in the vicinity of the in-
terface where ϕ varies rapidly. Its impact is controlled by the gradient coefficient α, also called
capillary coefficient for its relation to the surface tension which is explored in later paragraphs.

The choice of the order parameter ϕ is dictated by the physics that is studied: the fluid den-
sity for hydrodynamics, the concentration of one component in density matched non-miscible
mixtures, the total magnetization in transitioning ferromagnetic systems, etc... In some in-
stances, no physical interpretation can be given to the order parameter. It is nonetheless used
primarily for the thermodynamic description of the system rather than as a tracking device
for the interface.

Consequently to Eq. (4.1), a total volumetric free energy FPF can be introduced as follows:

FPF (ξ, ϕ) = F0 (ξ, ϕ) +
α

2
|∇ϕ|2 (4.2)

A justification for the form of the local gradient contribution (α/2) |∇ϕ|2 is given in Cahn
and Hilliard (1958) using one component concentration as the order parameter. It rests upon
adopting a higher order of modeling to account for the molecules short range interactions and
the resulting macroscopic anisotropy of the flow characteristics in the vicinity of the interface.
The methodology of the associated derivation is recalled and applied to the case ϕ = ρ in Sec.
5.1.3.
From Gibbs (1878), in the homogeneous case where the free energy density is given by F0 (ξ, ϕ),
the necessary condition for the existence of two stable phases in regards to ϕ is that F0, as
a function of ϕ, presents two local minima sharing the same tangent line. This situation is
schematized in Fig. 4.1. When the interface is represented as a discontinuity, ϕ jump from
the value ϕmin to ϕmax and vice versa.

4.1.2.2 Diffuse interface in the Phase-Field methods

In Cahn and Hilliard (1958); Modica (1987); Elliott (1989), the authors show that when the
complete form in Eq. (4.2) is used, the phase field spatially varies smoothly between its
extreme values ϕmin and ϕmax as exemplified in Fig. 4.2.
To obtain such a result, the previously mentioned authors rely on the condition established
by Gibbs which states that for the system to be at equilibrium, its total free energy must be
minimized, i.e. the equilibrium phase field ϕeq needs to satisfy:

F (ϕeq) = min
ϕ
F (ϕ) (4.3)

Using the notion of functional derivative δF/δϕ described in App. A.3.1.1 and in particular
the vectorial version of the result in Eq. (A.45), it comes that finding ϕeq that satisfies Eq.
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Figure 4.1: Free energy density F for an homogeneous system authorizing the existence of two stable
phases
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Figure 4.2: Generic form of an interface in the PFM paradigm.

(4.3) equates to solving the differential equation:(
∂FPF

∂ϕ

)
ξ,∇ϕ

−∇ ·
((

∂FPF

∂∇ϕ

)
ξ,ϕ

)
= 0 (4.4)

which, using the form F in Eq. (4.1) and the notations in Eq. (4.2), can be written in the
form: (

∂F0

∂ϕ

)
ξ

−∇ · (α∇ϕ)︸ ︷︷ ︸
µPF

= 0 (4.5)

The left-hand side of Eq. (4.5) is usually defined as the chemical potential µPF of the non-
homogeneous system while µ0 = (∂F0/∂ϕ)ξ is its homogeneous counterpart.
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In Jamet (2010), using the density as the phase variable, the author used another method
based on the maximum entropy principle. He enforced a mass and a total energy upon the
system with Lagrange multipliers and arrived to the same condition as in Eq. (4.5); Addition-
ally, he proved that such an interface was necessarily isothermal.

With the notion of interfacial excess energy introduced by Gibbs (1878) (see Edwards et al.
(1991) for an updated description) and thanks to the equilibrium relation in Eq. (4.5), the
surface tension σ of a one dimensional interface can be introduced. It is defined as the excess
free energy of the system and can be expressed (the complete derivation for the case ϕ = ρ is
given in Sec. 5.4.2.2) with the relation:

σ =

ϕr∫
ϕl

α
∂ϕeq

∂x
dϕ (4.6)

where ϕl and ϕr are the left and right values of the phase field, as presented in Fig. 4.2.

One remarkable result obtained with PFM, visible through Eq. (4.5) which also writes
(∂F0/∂ϕ)ξ = ∇ · (α∇ϕ), is that the inherent spatial variations of the phase field (through
the variations of ∇ϕ) and the free energy from the bulk phases (through the variations of F0)
participate equally to the surface tension. This shared contribution is absent from the purely
geometric interpretation of the surface tension through interface curvature introduced by the
Continuum Surface Force of Brackbill et al. (1992) and the Distributed Convected Force of
Unverdi and Tryggvason (1992).

4.1.2.3 Expression for the homogeneous free energy density F0

The exact shape of the equilibrium interface in Fig. 4.2 depends on the value of α, considered
in the following to be constant, but more importantly on the expression of F0. Many such
expressions exist in the literature, for which a non-exhaustive list is given is Eqs. (4.7a) -
(4.7d). Most of these formulas are not physically justified but are rather chosen the satisfy
the conditions in Fig. 4.1 with the most simple form that allows to obtain physically relevant
results.

F0 (ϕ) = ∆Fϕ2 (1− ϕ)2 (ϕ in [0, 1]) (4.7a)

F0 (ϕ) = ∆F
(
1− ϕ2

)2
(ϕ in [−1, 1]) (4.7b)

F0 (ϕ) = ∆F sin2 (πϕ) (ϕ in R) (4.7c)

F0 (ϕ) = ∆F
(
1− ϕ2

)
+ I (ϕ) (ϕ in R) ,

with I (ϕ) = 0 if |ϕ| 6 1, I (ϕ) = +∞ if |ϕ| > 1
(4.7d)

Eqs. (4.7a) and (4.7b) represent the classic double-well potential used in the majority of the
studies involving PFM. ∆F is a reference value for the energy differential "to be paid" when
transitioning from one phase to the other. Eq. (4.7c) has been introduced in Wang et al.
(2001) as a crystalline energy to study dislocation dynamics and Eq. (4.7d) in Oono and Puri
(1988) to simulate the phase separation of a quenched system. With the classic choices of
(4.7a) or (4.7b), it can be shown that the equilibrium profile of a planar interface is given by:

ϕ (x) =
1

2

[
1 + tanh

( x
2δ

)]
(4.8)
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where x is the space coordinate and δ is the characteristic interfacial thickness expressed in
Eq. (4.9). Its expression also illustrates the fact the equilibrium profile for the interface results
from a specific balance between the bulk phase contributions (represented by ∆F in Eq. (4.9))
and its intrinsic geometry thanks to the added gradient term in the free energy (represented
by α in Eq. (4.9)).

δ =

√
α

2∆F
(4.9)

The previous expressions of F0 are dedicated to isothermal systems and as such, they cannot
be used to address thermocapillary effects such as liquid solidification or vaporization. To
that effect, the authors in Cahn and Hilliard (1958) have introduced in their ground work an
expression for the free energy that incorporate a contribution from the temperature, given in
Eq. (4.10) where kB in the Boltzmann constant. In particular, the existence and the impact
of a critical temperature Tc on the fluid behavior is accounted for.

F0 (T, ϕ) = kBT [ϕ ln (ϕ) + (1− ϕ) ln ((1− ϕ)]− 2kBTcϕ (1− ϕ) (ϕ in ]0, 1[) (4.10)

The authors in Caginalp (1989) have also introduced an expression for F0 that recognizes
the change in the fluid behavior passed the characteristic temperature Tm of the studied
phenomenon, namely the melting temperature for solidification and the saturation temperature
for vaporization. A more comprehensive method to derive an expression for F0 (T, ϕ) in the
perspective of similar thermocapillary applications can be found in Boettinger et al. (2002).
The original formulation from Caginalp (1989) is given in Eq. (4.11a) and a more recent result
following Boettinger et al. (2002) is shown in Eq. (4.11b) (γ is an energy constant)

F0 (T, ϕ) = ∆F
(
1− ϕ2

)2
+ γ (T − Tm)ϕ (ϕ in [−1, 1]) (4.11a)

F0 (T, ϕ) = ∆Fϕ2 (1− ϕ)2 + γϕ3
(
10− 15ϕ+ 6ϕ2

)
(T − Tm) (ϕ in [0, 1]) (4.11b)

A different class of more intricate formulas with thermal components has also been introduced
by the likes of Penrose and Fife (1990); Kobayashi (1991); Wang et al. (1993). These formula
are derived consistently from the entropy to ensure the satisfaction of the second thermody-
namic principle. In the case of real gas flows, the free energy expression is readily available
from, and for that matter is even imposed by the equation of state chosen to model the fluid
behavior. As shown in Chap. 5, the additions from the PFM allow to unify the description
of the fluid in the whole subcritical domain where the sole real gas EoSs normally lead to
unstable states in the binodal region.

It should be emphasized that for all the previously presented expressions of F0, a significant
amount of literature has been devoted to proving the existence and unicity of an equilibrium
solution to the problem in Eq. (4.5). The reader is referred to the affiliated work mentioned
in the introduction of this section 4.1.1 for further details.

4.1.3 Cahn-Hilliard and Allen-Cahn equations

4.1.3.1 The Cahn-Hilliard equation

The previous study of the equilibrium profile of planar interface had already been performed,
for the most part, by van der Waals in the late 1800’s using its newly introduced EoS. The
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revolutionary contribution from Cahn (1961); Cahn and Hilliard (1971) is the extension of
the description to unstationary/transitionning configurations. To that effect, the authors have
derived an equation to describe the time evolution of the order parameter ϕ, much like the
advection equation used in the FT (Eq. (2.18)), VOF (Eq. (3.3)) and LS (Eq. (3.29a))
methods.
This equation, known as the Cahn-Hilliard equation, together with the free energy description
Eq. (4.2), form the two building blocks of most PFM.

The order parameter considered by Cahn and Hilliard in their derivation is the concentra-
tion of one fluid for a binary mixture of non-miscible fluids. Their eponymous equation is
obtained by following the general guidelines for non-equilibrium thermodynamics prescribed
in de Groot and Mazur (1984) (chap. IV, sect. 1) that assumes the concentration flux JCH
to be proportional to the gradient of chemical potential, i.e. that the phenomenological Fick’s
law applies. Using the generalized chemical potential from Eq. (4.5) the flux writes:

JCH = MCH∇µPF (4.12)

In Eq. (4.12), MCH is a coefficient known as the generalized Onsager coefficient or the gen-
eralized mobility of the fluid and is analogous to the Fick’s coefficient for species diffusion
(see Christian (2002), chap. 4, sect. 14). The evolution equation for ϕ is then obtained by
enforcing its local conservation. Thus, the Cahn-Hilliard equation is given by:

∂ϕ

∂t
=∇ · JCH =∇ · (MCH∇µPF) (4.13)

∂ϕ

∂t
=∇ ·

[
MCH∇

((
∂F0

∂ϕ

)
ξ

−∇ · (α∇ϕ)

)]
(4.14)

As one can see, the Cahn-Hilliard equation (4.13)/(4.14) is a partial differential equation
(p.d.e.) with a fourth order space derivative for ϕ which is the source of multiple numerical
difficulties regarding its solving. Several methods have been tested to perform simulation
with this equation: a fully implicit finite difference scheme in Chella and Viñals (1996), an
unconditionally gradient stable time marching in Eyre (1998), a fully explicit central difference
scheme on a staggered grid in Jacqmin (1999), a fully implicit finite element approach in
Barrett et al. (1999), a semi-implicit Fourier spectral method in Liu et al. (2003), a Lattice
Boltzmann method in Inamuro et al. (2004), an implicit discontinuous Galerkin method in
Kay et al. (2009), a semi-implicit adaptive mesh refinement in Ceniceros et al. (2010) or a
semi-implicit finite difference scheme in Lee and Kim (2016).
Explicit methods often lead to very restrictive time steps while implicit methods trade the time
step condition for an increased complexity in implementation, in particular when reaching for
high order schemes. This explains the recurring resort to semi-implicit schemes.

Numerical results

Fig. 4.3 provides results obtained using the Cahn-Hilliard model with a logarithmic potential
comparable to Eq. (4.10). An implicit Euler time stepping combined to a finite element spatial
discretization with continuous functions over a triangular mesh have been used in Brassel and
Bretin (2011) to simulate the closing of a inside void within a droplet (Fig. 4.3a) and the
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Fig. 4 Closing of a void: snapshots of the solution from a simulation with θ = 0.2 and γ = 1/32 at time
t = 0, t = 0.005 and t = 0.009
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Fig. 5 Numerically computed eigenvalue �CH (t) for θ = 0.2 in the closing of a void: a peak of �CH (t)
indicates a topological change in the solution when the inner surface vanishes (left). At the singularities,
�CH grows comparable to γ−3 (right)

d j (x) := |x | − r j for x ∈ � and j = 1, 2. For given γ > 0 and x ∈ � let
u0(x) := max

{−uθbi,min{ũ0, uθbi}
}

with

ũ0(x) := − tanh

(
d(x)√

2γ

)
, d(x) := max{−d1(x), d2(x)}. (15)

In Fig. 5, the time evolution of �CH(t) is plotted for θ = 0.2 and γ =
1/16, 1/24, 1/32, 1/48. Because the initial data do not match the correct profile across
the interfaces, �CH is large in the beginning but relaxes rapidly to moderate order.
When the inner surface vanishes, uniform bounds for the principal eigenvalue break
down due to a peak in �CH(t) of height comparable to γ−3.

On the other hand, in Fig. 6, the time integrated eigenvalue, i. e. the function L with

L(t) :=
t∫

0

�+
CH(s) ds (16)

shows only a much weaker dependence on γ−1. At t = 0.012, we observe that the inte-
grated eigenvalue only grows at a constant rate each time γ is halved. This indicates
a logarithmic bound for the time integrated eigenvalue that in turn ensures that for
γ → 0 the quantity Ẽ according to (14) grows only weaker than some polynomial, in
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Fig. 10 Merging of particles: snapshots of the solution from a simulation with θ = 0.2 and γ = 1/32 at
time t = 0, t = 0.012 and t = 0.016
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Fig. 11 Numerically computed eigenvalue �CH (t) for θ = 0.2 in the merging of two particles (left).
Robust error control past topological changes is possible since Ẽ grows polynomially with respect to γ−1

(right)

6.2.3 Merging of particles

We prescribe initial values representing two ellipsoidal particles such that the
longer axes are parallel to each other, see Fig. 10. Similar to the mean curva-
ture motion of interfaces, the particles develop more and more circular shapes and
thereby they come closer to each other until eventually they merge. After this topo-
logical change the merged particle evolves smoothly to a stable circular shape.
Let � := (−1, 1)2,m1/2 := ±(1/4 + 2γ, 0), R := 1/6 and define d j (x) :=∣∣diag ((1, 1/3) (x − m j )

∣∣ − R for x ∈ � and j = 1, 2. For given γ > 0 and x ∈ �

let u0(x) := max
{−uθbi,min{ũ0, uθbi}

}
with

ũ0(x) := − tanh

(√
2 d(x)

γ

)
, d(x) := max{d1(x), d2(x)}. (18)

In Fig. 11, the time evolution of �CH(t) is plotted for θ = 0.2 and γ = 1/16, 1/24,
1/32, 1/48. We observe a peak at the time where the particles merge but for γ → 0
the quantity Ẽ according to (14) grows only like γ−2, see Fig. 11. Simulations with
different values of θ and with the smooth quartic potential lead to the same qualitative
results. Therefore, we conclude that robust error control past topological changes is
possible.
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(b) Merging of deformed droplets

Figure 4.3: Simulation of interface dynamics related configurations using the Cahn-Hilliard equation,
taken from Brassel and Bretin (2011)

coalescence of two initially deformed droplets in (Fig. 4.3b). In Fig. 4.3a, both interior and
exterior interfaces are seen to shrink until the inside one closes up the initial void. In Fig. 4.3b,
the two droplets start by recovering a near circular shape which causes the outer interfaces to
come closer and eventually results in the merging of the two droplets. For both configurations,
the intuitive behavior of the interface is properly recovered.
In Kim et al. (2016) a classic case of spinodal decomposition is simulated using the Cahn-
Hilliard equation for two different initial conditions. The results are shown in Fig. 4.4 where
the Cahn-Hilliard equation with the symmetric potential in Eq. (4.7b) has been solved using
a non-linearly stabilized splitting scheme (see Yang et al. (2010)).
A more complex case of binodal decomposition for the Cahn-Hilliard equation is exposed in
Fig. 4.5 where an additional convection is forced upon the system. Formally, a velocity field
u, satisfying ∇ · u = 0 is introduced in Eq. (4.13) which becomes:

∂ϕ

∂t
+∇ · (uϕ)−∇ · (MCH∇µPF) = 0 (4.15)

To obtain the results in Fig. 4.5, the authors from Kay et al. (2009) have used a stationary
circular velocity field. The equation is solved via a discontinuous Galerkin finite element
method with an implicit time stepping. Due to the velocity field, the coarsening liquid nuclei
quickly organize in concentric rings during the early stage of the spinodal decomposition.
Eventually, the rings start to merge, similarly to Fig. 4.3a, to presumably reach a stationary
state with a single rotating droplet in the end.

4.1.3.2 The Allen-Cahn equation

Using the notion of gradient flow, further explained in Sec. 4.1.3.5 , the authors in Allen and
Cahn (1979) have proposed a new equation, known as the Allen-Cahn equation, to describe
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t = 32h2 t = 80h2 t = 2400h2 t = 8000h2

(a)

t = 8h2 t = 45h2 t = 180h2 t = 360h2

(b)

Figure 2:Morphological patterns during spinodal decomposition and subsequent coarsening.The upper and lower rows represent the results
with (a) 𝜙 = −0.4 and (b) 𝜙 = 0, respectively. Times are shown below each figure.

t = 1 t = 5 t = 30 t = 1000

(a)

t = 1 t = 5 t = 30 t = 1000

(b)

Figure 3: (a) Hexagonal pattern when 𝜙 = −0.3 and (b) lamella pattern when 𝜙 = 0with ℎ = 0.03, Δ𝑡 = 0.1, 𝛼 = 100, 𝜖 = 0.035, and 128×128
mesh grid. Times are shown below each column.

4. Image Inpainting

Image inpainting is the filling in of damaged or missing
regions of an image with the use of information from sur-
rounding areas [7]. In [7], authors modified the CH equation
to achieve fast inpainting of a binary image. Let 𝑓(x), where
x = (𝑥, 𝑦), be a given binary image in a domain Ω and𝐷 ⊂ Ω be the inpainting domain. The image is scaled so that

0 ≤ 𝑓 ≤ 1. Let 𝑐(x, 𝑡) be a phase-field which is governed by
the following modified CH equation:𝑐𝑡 (x, 𝑡) = Δ𝜇 (x, 𝑡) + 𝜆 (x) (𝑓 (x) − 𝑐 (x, 𝑡)) ,

x ∈ Ω, 𝑡 > 0,𝜇 (x, 𝑡) = 𝐹 (𝑐 (x, 𝑡)) − 𝜖2Δ𝑐 (x, 𝑡) , (6)

Figure 4.4: Time evolution of the phase field during a spinodal decomposition and a coarsening
simulated with the Cahn-Hilliard equation, taken from Kim et al. (2016)

the motion of antiphase boundaries while studying the phase change of crystalline solids.

∂ϕ

∂t
= −MACµPF = −MAC

[(
∂F0

∂ϕ

)
ξ

−∇ · (α∇ϕ)

]
(4.16)

Since then, its utilization has been extended to more various problems similar to that addressed
with the Cahn-Hilliard equation (see Lee and Kim (2016)), in particular for hydrodynamics
studies as in Jeong and Kim (2017).
Just as it was the case for the Cahn-Hilliard equation, different numerical strategies have
been tested to solve Eq. (4.16): an unconditionally gradient stable time marching in Choi
et al. (2009), a semi-implicit time stepping with moving mesh spectral method in Shen and
Yang (2009), a fully explicit local discontinuous Garlerkin in Xia et al. (2009), a semi-implicit
residual-based finite element scheme in Vasconcelos et al. (2014) or a semi-implicit finite dif-
ference scheme in Lee and Kim (2016).

A well know and potentially detrimental specificity of the Allen-Cahn equation is that it
does not inherently conserve the integral of ϕ. This calls for an additional care when using
this equation and it has led to two different strategies regarding the use of the Allen-Cahn
model. The first is to limit it to situations where the phase field is effectively not conserved
either because it bears no physical meaning or because the associated physical quantity is not
conserved (for instance the solid phase concentration in binary alloys). The second is to modify
the native phase-field equation, using Lagrange multipliers, to enforce the conservation of ϕ.
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Figure 4.5: Spinodal decomposition solving Cahn-Hilliard equation with a forced circular convection,
taken from Kay et al. (2009)

This last strategy has first been introduced in Rubinstein and Sternberg (1992) producing the
non-local conservative Allen-Cahn equation given by:

∂ϕ

∂t
= −MAC

[(
∂F0

∂ϕ

)
ξ

−∇ · (α∇ϕ)− ς (t)

]
(4.17)

where ς is the Lagrange multiplier used to enforce conservation, defined by:

ς (t) =

∫
Ω

(
∂F0

∂ϕ

)
ξ

dV

/∫
Ω

dV (4.18)

and in Brassel and Bretin (2011) with a semi-local conservative approach which writes:

∂ϕ

∂t
= −MAC

[(
∂F0

∂ϕ

)
ξ

−∇ · (α∇ϕ)− γ (t)
√
F0 (ξ, ϕ)

]
(4.19)

where γ is also a Lagrangian multiplier defined by:

γ (t) =

∫
Ω

(
∂F0

∂ϕ

)
ξ

dV

/∫
Ω

√
F0 (ξ, ϕ) dV (4.20)
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Numerical results

Fig. 4.6 shows a comparison between the native equation Eq. (4.16) and the conservative one
from Eq. (4.19) with the potential given by Eq. (4.7a). The simulation is performed in Brassel
and Bretin (2011) using an implicit Fourier spectral method. For the return to a spherical
shape experienced by a torus, the authors observe a 30% mass loss for the native equation.
This value descends to 5% when the "conservative" equation is used.

test case: because of the high values taken by the mean curvature, standard
approaches may fail to reproduce the motion correctly. One also need to handle
the topological change when we move from a toric shape to a spherical one.

We clearly observe on figure 8 that the classical model (34) leads to significant
volume losses compared to our modified model (35). We plot on figure 9 the
volume against time for both approaches. The volume error goes up to 30% for
the classical model, whereas it is always strictly below 5% for ours. We notice
that, in both cases, the error decreases in the second part of the evolution. Indeed,
it is clear that the numerical error is maximal when the average mean curvature
is maximal; when the topological change occurs, the average mean curvature
instantly jumps to a smaller value, as the points where the mean curvature is the
highest just disappear from the surface.

Figure 8: Evolution of a torus by mean curvature flow with conservation of the
volume. First line: classical model (29). Second line: modified model (30).
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Figure 9: Torus example: volume against time for both models (29) and (30).

32

Figure 4.6: Return to a spherical shape of a liquid torus solving the non-conservative and conservative
Allen-Cahn equations, taken from Brassel and Bretin (2011)

The other conservative Allen-Cahn equation (4.17) is used in Kim and Lee (2017) also with
the potential from Eq. (4.7a). More precisely, a multi-species method is presented, for N
species, using a phase-field vector ϕ composed of N phase-field functions ϕ = (ϕ1, . . . , ϕN )
such as ϕ1 + · · · + ϕN = 1 with the combined potential F (ϕ) = F (ϕ1, . . . , ϕN ) = F0 (ϕ1) +
· · · + F0 (ϕN ). Formally, ϕ is substituted to ϕ in (4.17) which is then solved by the authors
on a regular cartesian grid using a semi-implicit scheme with flux splitting. The results for
spinodal decomposition are show in Fig. 4.7 for different numbers of species. With this
numerical method, the authors observe a mass conservation up to computer precision for all
species, even for high values of N .

4.1.3.3 Comparison between the Cahn-Hilliard and Allen-Cahn equations

Numerical solving

The first and straightforwardly visible difference between the two equations is that from a
mathematical point of view, the Allen-Cahn equation is a only a second order p.d.e. compared
to the fourth order Cahn-Hilliard one, which renders the former significantly easier to solve
numerically.

Phase field conservation

The conservative formulation in Eq. (4.14) for the Cahn-Hilliard equation ensures the con-
servation of ϕ in the domain with the appropriate boundary conditions (non-permeable or
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Fig. 1. Evolution of the phase-field c with 5, 10, 15, and 20 order parameters. The top and bottom rows correspond to t = 0 and t = 0.0352, respectively.

+

∑Nx
i=1
∑Ny

j=1

(
ck,nij − ck,

n+1,2
ij

)
∑Nx

i=1
∑Ny

j=1 G(c
n+1,2
ij )

Nx∑
i=1

Ny∑
j=1

G(cn+1,2
ij )

=

Nx∑
i=1

Ny∑
j=1

ck,nij.

Before closing this section, we remark that α(c) in Eq. (10) and
G(c) in Eq. (12) are treated explicitly, and thus there is no relation
between the solutions ck at an implicit time level in Eqs. (10) and
(12). Therefore, Eqs. (7)–(9) are solved in a decoupling way, i.e.,

Step 1. calculate α(cn) from a given cn.
Step 2. for k = 1, . . . ,N − 1

update cn+1,1
k by using Eq. (10) and α(cn)

update cn+1,2
k by using Eq. (11)

end; then we have cn+1,2.
Step 3. calculate G(cn+1,2) from cn+1,2 obtained in Step 2.
Step 4. for k = 1, . . . ,N − 1

update cn+1
k by using Eq. (12) and G(cn+1,2)

end; then we have cn+1.

4. Numerical experiments

4.1. Mass conservation for a large system

To verify that the proposed method can be applied to a large
system, we perform simulations with 5, 10, 15, and 20 order
parameters (N = 5, 10, 15, and 20). For each simulation, the initial
conditions are randomly chosen patches onΩ = [0, 1]×[0, 1], and
ϵ = 0.0019, h = 1/256, and∆t = ϵ2 are used. Simulations are run
for 10,000 time steps and performed on Intel Core i5-3470 CPU @
3.20 GHz processor and 4GB RAM. Fig. 1 shows the evolution of the
phase-field c. The evolution of

∑N
k=1

(∫
Ω
(ck(x, t) − ck(x, 0))dx

)2
with N = 5, 10, 15, and 20 is shown in Fig. 2. It is observed that
the total masses of all ck are conserved for a large system. Table 1
lists the average CPU time (in seconds) over the 10,000 time steps
for N = 5, 10, 15, and 20. The results in Table 1 suggest that the
average CPU time is nearly linear with respect to the number of
components.

4.2. Effect of the space–time dependent Lagrange multiplier
G(c(x, t))β(t)

To conserve total mass and keep the bulk phase values close
to zero or one, we introduce the space–time dependent La-
grange multiplier G(c(x, t))β(t) in Eq. (6). To examine the effect of

Fig. 2. Evolution of
∑N

k=1

(∫
Ω
(ck(x, t) − ck(x, 0))dx

)2 with N = 5, 10, 15, and 20 for
0 ≤ t ≤ 0.0352.

G(c(x, t))β(t), we compare Eq. (6) to
∂c(x, t)

∂t
= −

f(c(x, t))
ϵ2 + ∆c(x, t) +

α(c(x, t))c(x, t)
ϵ2 + β̄(t), (13)

where β̄(t) = (β̄1(t), . . . , β̄N (t)) and β̄k(t) =
∫

Ω
(f (ck) −

α(c)ck)dx/(ϵ2
∫

Ω
dx). For N = 3, the initial conditions are

c1(x, y, 0) =

{
1 if 0.32 ≤ x, y ≤ 0.68
0 otherwise ,

c2(x, y, 0) =

{
1 if 1.38 ≤ x ≤ 1.62, 0.38 ≤ y ≤ 0.62
0 otherwise

on Ω = [0, 2] × [0, 1] (see Fig. 3(a)). Here, we use ϵ = 0.0056,
h = 1/128, and ∆t = h2, and define the steady state as the
state when the discrete l2-norm of the difference between cn+1

and cn becomes less than 10−6. Fig. 3(b) and (c) show the evolution
of the numerical solutions of Eqs. (13) and (6), respectively. Note
that the initial square shape converges to a circle while conserving
the mass. When the initial feature is sufficiently large (in the case
of c1), both models (6) and (13) give a circular steady state. It
should be noted that the order parameter c1 in the bulk phases
is −0.0060 or 0.9907 for Eq. (13) but is 0 or 1 for Eq. (6). In the
case of model (13), the mass loss is globally corrected by using

Figure 4.7: Spinodal decomposition simulated using the conservative Allen-Cahn equations with dif-
ferent numbers of species, taken from Kim and Lee (2017)

periodic). As discussed in Sec. 4.1.3.2, the Allen-Cahn equation is not conservative by nature
and although several strategies have been designed to overcome this difficulty, it should be
emphasized that this conservation is only numerically enforced and not physically ensured.
In that context, the "conservative" denomination should be understood with this nuance in
mind. As such, the denomination can be compared to that of the strategies introduced for the
LS methods (see Sec. 3.2.4), also only numerically "conservative".

Energy conservation

The interpretation of PFM equations in the vein of the Cahn-Hilliard equation (4.14) is directly
inherited from the work presented by Landau (1937); Ginzburg and Landau (1950) which takes
place in a more general setting. As describing gradient flows of the total free energy F , both
equations lead to a decreasing energy over time. Indeed, with the hypothesis that α is constant,
one has:

dF
dt

=
d

dt

∫
Ω

[
F0 (ξ, ϕ) +

α

2
(∇ϕ)2

]
dV

=

∫
Ω

[
∂F0

∂ϕ

∂ϕ

∂t
−∇ · (α∇ϕ)

∂ϕ

∂t

]
dV

dF
dt

=

∫
Ω

[
∂F0

∂ϕ
−∇ · (α∇ϕ)

]
∂ϕ

∂t
dV

(4.21)
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For the Cahn-Hilliard equation, the term ∂ϕ/∂t can be substituted using Eq. (4.14) to get:(
dF
dt

)
CH

=

∫
Ω

[
∂F0

∂ϕ
−∇ · (α∇ϕ)

]
∇ ·

[
MCH∇

(
∂F0

∂ϕ
−∇ · (α∇ϕ)

)]
dV

(
dF
dt

)
CH

= −
∫
Ω

MCH

∣∣∣∣∇(∂F0

∂ϕ
−∇ · (α∇ϕ)

)∣∣∣∣2 dV 6 0

(4.22)

Likewise, ∂ϕ/∂t can substituted in Eq. (4.21) using the Allen-Cahn equation (4.16) which
leads to: (

dF
dt

)
AC

= −
∫
Ω

MAC

[
∂F0

∂ϕ
−∇ · (α∇ϕ)

]2

dV 6 0 (4.23)

Interface dynamics

A comparative study between the conservative approaches for the Allen-Cahn equation in Eqs.
(4.17) and (4.19) and the native conservative Cahn-Hilliard in Eq. (4.13) has been performed
in Lee and Kim (2016).
The authors noticed that the early evolution of a spinodal decomposition (that is, the creation
of new interfaces), for the Allen-Cahn equation, was strongly dependent on the profile of
∂F0/∂ϕ and therefore on the form chosen for F0. Conversely, for the Cahn-Hilliard, this early
dynamics was essentially controlled by diffusion. Indeed, a linear analysis of Eq. (4.14) around
an equilibrium state (the initial non-perturbed unstable system) shows the equation to reduce
to a diffusion equation ∂F0/∂ϕ = D (ϕ) ∆ϕ where the coefficient diffusion D depends on ϕ.
In the thermodynamic stable region, D > 0 which leads to classic diffusion; in the spinodal
region D < 0 which results in a backward diffusion; the interface arises from the unbalance
between these adverse diffusion processes.
Other significant differences between the models noted by the authors includes:
• their reaction to local hydrodynamics unbalances: for two near droplets of different sizes,

the smallest shrinks while the biggest widens using the Allen-Cahn equations where the
opposite occurs for the Cahn-Hilliard equation until both droplets reach the same size.
• their behavior for long time simulations: solving the Cahn-Hilliard equation, the values of
ϕ in the bulk phases tend to drift, which is not observed for the conservative Allen-Cahn
equations
• the inability of the Cahn-Hilliard equation to preserve the convexity of an initial solution.

In either cases, the relaxation of the order parameter (conserved locally and globally with the
Cahn-Hilliard equation (4.14), not conserved in the native Allen-Cahn equation (4.16) and
conserved globally/semi-locally with its modified counterparts Eqs. (4.17)-(4.19)) is driven by
the local minimization of the free energy subject to phase field conservation (in Lowengrub
and Truskinovsky (1998), the authors associate this process to an entropy production) and as
a result, the diffusive layers that constitute the interface do not deteriorate dynamically and
are preserved in time.

Sharp interface limit

This different behavior can also be observed in the departing sharp interface limits toward
which each model converges.
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The limit for the Allen-Cahn model is the classic mean curvature flow for which the velocity
vΓ of a point on the interface Γ is directly proportional to the local interface mean curvature
κΓ as given by Eq. (4.24) and shown in Modica (1987) (nΓ the outer normal to the interface
relatively to the values of ϕ and M is a positive constant).

vΓ = MκΓnΓ (4.24)

For the Cahn-Hilliard model, the sharp interface limit is the Mullins-Sekerka flow (see Mullins
and Sekerka (1964)) which has been demonstrated by Pego (1989). The Mullins-Sekerka flow
is a particular case of Hele-Shaw flow where the interface velocity is proportional to a state
variable gradient jump across said interface. With the superscripts ·in and ·out used in a
reference to a quantity taken at the interface just inside or outside of the phase bounded by
ϕ, the complete set of equations writes:

∆µ = 0 (4.25a)

vΓ = −M
[
∂µ

∂n

]
Γ

= −M
[
∂µ

∂n

out
− ∂µ

∂n

in]
nΓ (4.25b)

Both systems Eq. (4.24) and Eqs. (4.25a)-(4.25b) can be shown to preserve the volume and
decrease the surface of an interface delimiting a single fluid region, as it is recalled in Lee and
Kim (2016).

Conclusions

To the author’s best knowledge and in light of the bibliographic study that has been carried
out regarding the Allen-Cahn and Cahn-Hilliard approaches and their variants, there are no
clear and definitive argument on whether one model is superior to or more correct than the
other. Several questions are to be asked to chose the adequate equation depending on the
physical case to be modeled, the numerical methods that are accessible, the nature of the
phase-field that is considered and its need for conservation. Besides, this choice may not be
unique for a given configuration.

4.1.3.4 On the mobility coefficient

The mobility can be determined experimentally by considering a single component and by
correlating the velocity v of an interface in response to a free energy variation δF thanks to
the empiric relation (see Christian (2002); Qin and Bhadeshia (2010)):

v = MδF (4.26)

For simulation purposes however, the mobility is rather treated as a numerical lever to be
tuned by a trial and error approach. If chosen too small, it leads to very constraining time
steps when used with explicit schemes. On the contrary, when M is to large, it often causes
numerical instabilities to appear. Moreover, this coefficient is almost systematically chosen to
be constant, often unitary, examples of variable mobility studies include Cahn et al. (1996);
Elliott and Garcke (1996); Novick-Cohen (2000); Lee and Kim (2016). If the only goal is
to depict the topology, thermodynamic and morphological transformations that occurs in the
system, the approach with a constant value forM proves to be useful and sufficient. It however
falls short for producing predictive results where a more precise evaluation of M is necessary.
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4.1.3.5 Complement on gradient flows

Since its inception, the Cahn-Hilliard equation (4.14) has been noticed to represent a gradient
flow of the energy functional in Eq. (4.1).
In a general context, a gradient flow is a scalar dependent vectorial variable η (t) which takes
entries in R+ and has values in the metric space Π (with it associated norm | · |Π) such as
there exists a function Ψ : Π −→ R+ satisfying:

∂η

∂t
(t) = −∇ΠΨ (η (t)) (4.27)

Π can for instance be an Euclidian or a Hilbert space with its canonical norm. The term
∇Π means that the gradient of the function Ψ is calculated with respect to the metric space
(Π, | · |Π).
Practically, a gradient flow η (t) that satisfies Eq. (4.27) is a flow evolving in the direction of
the steepest descent of Ψ. Consequently, the successive values of η (t) progressively minimize
the value of Ψ (η). As such, gradient flows are of the utmost interest from theoretical and
practical points of view, particularly for minimization problems. They are also prominent in
physics as several classic physical equations can be interpreted as describing a gradient flow.
For instance, considering the Hilbert space L2 (Rn) for n = 1, 2 or 3 with its canonical norm,
and the functional Ψ defined by:

Ψ : L2 (Rn) 7 −→ R

η −→ 1

2

∫
|∇η|2

(4.28)

this combination produces a gradient flow problem known as the heat equation which writes:

∂η

∂t
= ∆η (4.29)

Likewise, several conservative p.d.e. found in hydrodynamics such as the continuity and dif-
fusion equations can be seen as gradient flows related to specific functions Ψ defined with
the Wasserstein metric on the distribution space P (Rn) (see Dobrushin (1970); Rüschendorf
(1985) for the description of the Wasserstein metric and Ambrosio et al. (2004); Santambrogio
(2017) for its application to gradient flows)
For the previously mentioned reasons, gradient flows have been the subject of numerous stud-
ies, a comprehensive overview of the related results can be found in Ambrosio et al. (2008).

A complete derivation of the Cahn-Hilliard Eq. (4.14) as a gradient flow can be found in
Cowan (2005). One of the key idea in this derivation is the choice of the correct metric space
(Π; | · |Π), which in this case is to be chosen as H−1 (R) which is the dual space of the space
H1

0 (R) which is the closure in C∞ (R) of the Sobolev space H1 (R) (see Cowan (2005) for more
mathematical details).
To derive the Allen-Cahn equation, the function Ψ used to obtain the corresponding gradient
flow is also the free energy Eq. (4.1) as for the Cahn-Hilliard equation. However, the metric
space considered is the classic Hilbert space L2 (R) equipped with its canonical norm.
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4.1.4 Geometric approach to Phase-Field methods

4.1.4.1 Principles of the geometric approach

In the last two decades, a variant of the PFM has emerged under the impulsion of Karma and
Rappel (1998); Beckermann et al. (1999); Folch et al. (1999). This variant departs from the
classic and purely variational approaches that drive the derivation of the Allen-Cahn and Cahn-
Hilliard equations. At the basis of this new approach is a reflection regarding the pertinence
and practicality of Allen-Cahn and Cahn-Hilliard models to deal with specific situations where
the interface is undoubtedly thin, in particular when compared to the characteristic length of
the system or the physical phenomenon that is considered, however not so thin that the sharp
interface limit cannot be applied with absolute certainty. Another interrogation concerns
the form taken for the free energy F0, which in most PFM application is chosen among the
canonical forms in Eqs. (4.7a)-(4.7d) but of which physical meaning and validity relatively to
the studied cases can reasonably be questioned. In front of these uncertainties, the strategy
offered by the authors in Beckermann et al. (1999) is to derive a new system of equations with
a specific sharp interface limit used as a target.
This new formulation, much closer in form to the sharp interface capturing (specifically the
Level-Set) methods, is usually referred to as the geometric PFM approach.

The starting point to derive the geometric PFM is to consider the classic sharp interface
equation Eq. (4.30) where κ is the interface curvature and M a positive constant coefficient.

∂ϕ

∂t
= Mκ |∇ϕ| (4.30)

In the same spirit, to remain consistent with the sharp approach, the definition of the interface
normal n and curvature κ are take the same as in the LS method (from Eqs. (3.21a) and
(3.21b)):

n =
∇ϕ
|∇ϕ| (4.31a)

κ =∇ · n =∇ ·
(
∇ϕ
|∇ϕ|

)
(4.31b)

By further expanding Eq. (4.31b) one gets:

κ =
1

|∇ϕ|

[
∆ϕ− ∇ϕ ·∇ (|∇ϕ|)

|∇ϕ|

]
(4.32)

In the normal direction to an equilibrium planar interface calculated with either the Allen-
Cahn or Cahn-Hilliard approach, the profile ϕ0 is given by Eq. (4.8). Using the space variable
ξ to refer to this normal direction, one can notice that:

dϕ0

dξ
=

d

dξ

[
1

2
+

1

2
tanh

(
ξ

2δ

)]
=

1

4δ

(
1− tanh

(
ξ

2δ

)2
)

=
1

δ
ϕ0 (ξ) (1− ϕ0 (ξ)) (4.33)

The modeling assumption made in the geometric approach is to substitute partially the norm
of the actual phase-field ϕ gradient with that of the equilibrium phase-field ϕ0 using the
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following relations:

|∇ϕ| → |∇ϕ0| =
dϕ0

dξ
(4.34)

∇ (|∇ϕ|)→∇ (|∇ϕ0|) (4.35)
n → n0 (4.36)

For the equilibrium profile ϕ0 in the normal direction it can be noticed that:

d2ϕ0

dx2 = n0 ·∇ (|∇ϕ0|) (4.37)

Combining both the substitution relations from Eqs. (4.34)-(4.36) and the results of Eqs.
(4.33) and (4.37), a new form can be derived for the second term in the right-hand side of Eq.
(4.32) with:

∇ϕ ·∇ |∇ϕ|
|∇ϕ| = n ·∇ (|∇ϕ|)→ n0 ·∇ (|∇ϕ0|) =

d2ϕ0

dξ2 (4.38)

The previous relation can be developed into:

d2ϕ0

dξ2 = −1

δ

dϕ0

dx
(1− 2ϕ0 (x)) =

1

δ2
ϕ0 (x) (1− ϕ0 (x)) (1− 2ϕ0 (x)) (4.39)

Eventually, the native equation in the context of the geometric approach can be obtained and
writes:

∂ϕ

∂t
= M

[
∆ϕ− ϕ (1− ϕ) (1− 2ϕ)

δ2

]
(4.40)

In Eq. (4.40), one can recognize the Allen-Cahn equation Eq. (4.16) with the non-mixing free
energy F0 given by Eq. (4.7a) with the additional assumptions that M = MAC, α = 1 and
∆F = 1/2.
The interface behavior as described by Eq. (4.40) is a combination of normal interface move-
ment (to balance the equilibrium profile) and curvature driven motion. In the studies concerned
with the use of geometric PFM (see Folch et al. (1999); Sun and Beckermann (2007); Takada
et al. (2013)), the curvature driven motion is systematically canceled following a mathematical
procedure proposed in Folch et al. (1999). The resulting equation, which is mostly associated
to the geometric approach is finally given by:

∂ϕ

∂t
= M

[
∆ϕ− ϕ (1− ϕ) (1− 2ϕ)

δ2
− |∇ϕ|∇ ·

(
∇ϕ
|∇ϕ|

)]
(4.41)

4.1.4.2 Regarding the geometric approach

In the introduction of Kassner et al. (2001), the authors present an in depth and quiet com-
prehensive, although concise, discussion regarding the whys and wherefores as well as the pros
and cons of the energetic (or variational) and the geometric approaches to the PFM. In this
paragraph, a very short and limited summary of said discussion is offered. The main ideas
brought up by the authors can be separated into three categories.
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Arguments for the energetic approach

Firstly, there are the arguments that make a case for the energetic approach. If the contri-
butions to the free energy are well known and physically justified for a given problem, Gibbs
theory predicts that the corresponding model stemming from the variational approach is bound
to be right. In such cases, if the sharp interface limit of the model departs from the classic
sharp interface models, one can interpret this as a sign that the sharp models lack some pro-
found physics to properly describe the system. The starting argument of this section that this
approach can be used to deal with situation where the interface is physically wide of course
also applies.

Arguments for the geometric approach

Secondly, one can find arguments that support the geometric approach. As already mentioned,
in the case where the interface is small in regards of the system but not physically that small,
a situation referred to as the thin interface limit, the energetic approach can become unprac-
tical. It is even shown in Karma and Rappel (1998) that in the thin interface limit, when
variational and geometric approaches can both be used to solve the system, the second is
usually considerably more practical from a numerical point of view. If a sharp interface model
is already well established to describe a system, the only requirement for a PFM to be used
as well is to asymptotically converge towards said sharp interface model in the sharp interface
limit. Moreover, one strong argument for the energetic approach would be its ability to offer
a description of the inner layers of the interface, which is an irrelevant information in the thin
interface limit where only the proper macroscopic interface dynamics is targeted. As such, a
geometric approach where the free energy is not longer a focal point could be a sounder choice.

Arguments for the PFM

Thirdly, to balance the previous arguments, as one would think that the geometric approach
is but a sharp interface method in disguise, the authors recall some arguments championing
the PFM altogether. Owing the similarities with the LS methods, geometric PFM shares its
main advantages, in particular the simplicity of capturing the interface rather than tracking
it without the extra need to reconstruct it as in VOF methods. Besides, the geometric PFM
still inherently contains the anti-diffusive properties of the variational PFM which ensure that
the interface does not overly diffuse and that its width is maintained without the additional
need to solve the LS reinitialization equation. Moreover, depending on the physical system
that is treated, sharp interface methods can develop finite-time singularities that render them
numerically challenging to solve. These singularities do not appear when PFM, either varia-
tional or geometric, are used.

The geometric approach has been successfully be applied in Beckermann et al. (1999) to grain
growth and in Boettinger et al. (2002) to dendidric growth. The method has been investigated
in more depth from a physical, mathematical and numerical point of view in Folch et al. (1999);
Sun and Beckermann (2007); Takada et al. (2013); Chai et al. (2018).
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4.1.5 Phase-Field methods with Navier-Stokes equations

Almost from their inception, PFM have been combined with Euler or Navier-Stokes equations
to address hydrodynamics problems. The earliest instance of such a combination is referenced
in Hohenberg and Halperin (1977) as model H. Since then, variants of model H have been
derived, depending on the founding PFM method used (Cahn-Hilliard or Allen-Cahn) and
the assumption concerning the flow, particularly regarding its compressibility. It appears that
all these derivations essentially follow the same steps and as such, they can be assembled
to be described using one unified fashion of which key elements are provided in the following
paragraphs. Contrary to the Cahn-Hilliard or Allen-Cahn models which described a motionless
evolution of the phase-field ϕ, these more complete models focus on transformations where
the phase-field evolution is accompanied by an inertial fluid motion of which it is the primary
cause.

4.1.5.1 Phase-Field methods for compressible flows

If historically, PFM have been first combined with hydrodynamics equation considering in-
compressible flows through model H, the derivation of such a model can be achieved in a
more natural and consistent manner by considering the general case of a compressible flow.
A complete derivation of the corresponding model can be found in Truskinovsky (1993). For
the resulting model to be applicable to a wide variety of cases, the volumetric free energy FPF

is supposed to depend on the fluid temperature T , density ρ, phase-field ϕ and phase-field
gradient ∇ϕ in the form of Eq. (4.42). (In his paper, Truskinovsky assumes an additional
dependency of FPF in the density gradient. This dependency does not modify the nature of the
equation and the principle of its derivation. Moreover, in the vast majority of the concerned
literature, this dependency seems not to be considered. For these reasons, it is discarded here
but the reader can refer to Truskinovsky (1993) for a more complete description.)

FPF (T, ρ, ϕ,∇ϕ) = F0 (T, ρ, ϕ) +
α

2
(∇ϕ)2 (4.42)

Then, using a variational approach (also known as the Least Action Principle or Virtual Work
Principle) and by compelling the system to satisfy the second law of thermodynamics with
increasing entropy, the momentum and, if need be, the energy equations can be derived. A
very similar type of derivation is described with more details in Sec. 5.2 (more particularly in
C.1 and 5.2.3) for a Korteweg type fluid in the context of the Second Gradient theory. The
reader can refer to these sections or to the reference paper Truskinovsky (1993) for further
details, only the results are provided in the following.

The first noticeable result is the expression of the pressure P , defined (see Eq. (B.28)) from
the specific free energy FPF = FPF/ρ by P =̂ (∂fPF/∂ρ)T,ϕ,∇ϕ, which is modified compared
to the native pressure P0 =̂ (∂f0/∂ρ)T,φ without capillary terms to get Eq. (4.43), α being
assumed to be independent of the density ρ

P = P0 −
α

2
|∇ρ|2 (4.43)

The second modification is the apparition in the momentum equation (and consequently in
the energy equation) of a new non-dissipative tensor τϕ,∗ given by:

τϕ,∗ = α∇ϕ⊗∇ϕ (4.44)
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The third modification is the apparition, in the energy equation, of a peculiar term j ρe which
expression depends on whether the Cahn-Hilliard or the Allen-Cahn equation is chosen as a
starting base, the corresponding fluxes are given by Eqs. (4.45) and (4.46) respectively (see
Heida et al. (2012b); Heida et al. (2012a)). This term is dubbed peculiar because it does not
have its counterpart in the momentum equation, creating a formal asymmetry between the
two equations.

j ρeCH = MCH µPF∇µPF (4.45)
j ρeAC = MAC µPF∇ (αϕ) (4.46)

The final system of equation, written in a partially-conservative form, is given below where
τ d, q and g are the dissipative flux tensor, the thermal flux and the specific body forces and
τϕ is called the capillary stress tensor.

∂(ρv)

∂t
= −∇ · [ρv]

∂ϕ

∂t
+ v ·∇ϕ =


∇ · [MCH∇ (µ0 −∇ · (α∇ϕ))]

or
−MAC [µ0 −∇ · (α∇ϕ)]

∂(ρv)

∂t
= −∇ ·

[
P0I + ρv⊗ v + τϕ − τ d

]
+ ρg

∂(ρe)

∂t
= −∇ ·

[
(ρe+ P0)v + τϕ · v + j ρe − τ d · v + q

]
+ ρg · v

(4.47a)

(4.47b)

(4.47c)

(4.47d)


j ρe =


MCH µPF∇µPF

or
MAC µPF∇ (αϕ)

τϕ = α

(
∇ϕ⊗∇ϕ− 1

2
|∇ϕ|2 I

)
(4.47e)

(4.47f)

Theoretical results

Several papers have been devoted to the study of the aforementioned system, although it
should be noticed that the energy equation is usually not considered in such studies. Another
important detail is that these papers are focused on the study of the physical and mathematical
properties of the equations and to the better of our knowledge, no relevant numerical results
have been produced so far involving the full compressible Navier-Stokes (or Euler) equations
combined with a PFM approach. Nonetheless, these papers provide an important insight into
these new type of complex models and deserve to be mentioned. Only isothermal configurations
are considered which means that the energy equation (4.47d) is not taken into account.
In Heida et al. (2012b); Heida et al. (2012a), the authors propose a new fully consistent
thermodynamic derivation and generalize to multi-fluid mixtures the Navier-Stokes / PFM
model, for the Cahn-Hilliard and Allen-Cahn approaches respectively, based on the founding
work of Truskinovsky (1993); Lowengrub and Truskinovsky (1998) and Blesgen (1999).
Regarding the Cahn-Hilliard equation, in Abels and Feireisl (2008) the authors proved the
existence of local weak solutions, a result later improved in Kotschote and Zacher (2015)
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where the existence and uniqueness of local strong solutions is demonstrated based on the
strongly coupled hyperbolic-parabolic nature of the system of equations. More recently, the
existence and long time stability of strong solutions have been exposed for one-dimensional
configurations in Chen et al. (2018).
For the Allen-Cahn equation, the existence of weak solutions for spherical symmetry has been
shown in Witterstein (2008) and that of global in time weak solutions for one dimensional
configurations has been proven in Feireisl et al. (2010). In Ding et al. (2013); Chen and
Guo (2017), for one dimensional configurations, the authors have demonstrated at once the
existence and uniqueness of global classic solutions, the existence of weak solutions and the
existence of unique strong solutions.

4.1.5.2 Phase-Field methods for incompressible flows

To obtain the governing equations of the combined Navier-Stokes PFM model for incompress-
ible flows, known as model H (see Hohenberg and Halperin (1977)), one can apply the same
methodology as presented in Sec. 4.1.5.1 with the difference that the continuity equation
classically reduces to ∇ · v = 0 and that the energy equation is no longer considered. This
has been done for instance in Gurtin et al. (1996); Liu et al. (2003); Yue et al. (2004) where
the subsequent model has been used to study nucleation and flow coarsening, surface tension
related effects and droplet coalescence respectively. Practically, the equations can also be for-
mally obtained from the system Eqs. (4.47a) - (4.47f) by discarding the energy equation (with
the assumption of an isothermal flow) and by adapting the mass equation to get:



∇ · v = 0

∂ϕ

∂t
+ v ·∇ϕ =


∇ · [MCH∇ (µ0 −∇ · (α∇ϕ))]

or
−MAC [µ0 −∇ · (α∇ϕ)]

∂(ρv)

∂t
= −∇ ·

[
P I + v⊗ v− τ d

]
−∇ · τϕ + ρg

(4.48a)

(4.48b)

(4.48c)

It should be noticed that the system in Eqs. (4.48a)-(4.48c) brings about an additional subtlety
relatively to its compressible counterpart. Indeed, in the momentum equation, the classic
pressure P0 has been traded for a general pressure P and the expression of the capillary tensor
τϕ as not been specified. The reasons for these modifications are twofold and related. Firstly,
for an isothermal incompressible flow, it is well established that the independent Laplace-
like mass equation Eq. (4.48a) decouples the calculation of the velocity field vΓ from that
of the pressure P . Secondly and consequently, the actual value of the P is directly given
by the velocity field and the actual analytical expression of P is never used in practice to
evaluate it. It results that several expressions have been used in the literature to describe
the divergence of the capillary tensor ∇ · τϕ while the exact expression of the corresponding
pressure P is never provided explicitly. In Tab. 4.1 are listed the couples

(
P,∇ · τϕ

)
that are

commonly encountered with the relevant references. In particular an effort is given to provide
the exact expression of the corresponding pressure P relatively to the reference pressure P0

when possible. Only the last expression of ∇ · τϕ proposed in Kim (2005) cannot be related
to an expression of P arising consistently from P0.
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P ∇ · τϕ References

P0 ∇ ·
(
α∇ϕ⊗∇ϕ− α

2
|∇ϕ|2 I

) Starovoitov (1994)
Antanovskii (1995)
Ding et al. (2013)

P0 −
1

2
|∇ϕ|2 ∇ · (α∇ϕ⊗∇ϕ)

Lowengrub and Truskinovsky (1998)
Liu et al. (2003); Yue et al. (2004)
Yang et al. (2006)
Guillén-González and Tierra (2014)
Shen and Yang (2014)
Vasconcelos et al. (2014)

P0 +
1

2
|∇ϕ|2 α∆ϕ∇ϕ Gurtin et al. (1996)

P0 +
1

2
|∇ϕ|2 + F0 −µ∇ϕ

Chella and Viñals (1996)
Boyer (2002); Badalassi et al. (2003)
Ceniceros et al. (2010)
He et al. (2011); Liang et al. (2014)
Zhao et al. (2016); Ma et al. (2017)

P0 +
1

2
|∇ϕ|2 + F0 + ϕµ ϕ∇µ

Jasnow and Vinals (1995)
Jacqmin (1999); Jacqmin (2000)
Kim et al. (2004)
He and Kasagi (2008)

− ∇ ·
(
∇ϕ
|∇ϕ|

)
|∇ϕ|∇ϕ

Kim (2005); He and Kasagi (2008)
Jeong and Kim (2017)
Kim and Lee (2017)

Table 4.1: Pressure and capillary tensor divergence used in the literature for the incompressible
Navier-Stokes PFM model.

A discussion regarding the different expressions for the capillary tensor divergence is proposed
in Kim (2005) where the authors justify their new expression as being the sole allowing the di-
rect calculation of the pressure field. However, this argument seems to lack substantial proofs
and has not prevented other more classic expressions to still be employed in more recent studies.

Theoretical results

Just as for their compressible counterparts, efforts have been made to characterize the in-
compressible Navier-Stokes PFM models although studies dedicated to this topic remain very
scarce.
For the Cahn-Hilliard equation, Starovoitov (1997) has proven that non-homogeneous station-
ary solutions are not asymptotically stable in time. In Boyer (1999), the author has proven the
existence of global weak solutions in two and three dimensional settings for density matched
fluids. Additionally, he has also shown that over a sufficiently long period of time, the solu-
tions are unique and become strong. Still for density matched fluids, the well-posedness of
the Navier-Stokes Cahn-Hilliard system has been addressed in Abels (2009b). The authors
have proven the existence of weak solutions for the non-stationary system. They also have
shown that said solutions continuously converge, for infinite time, towards regular solutions
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of the stationary system. The existence of weak solutions has been extended to fluids with
different densities in Abels (2009a); Abels et al. (2013a); Abels et al. (2017), to fluids with a
degenerate mobility in Abels et al. (2013b) or to problems with solid boundaries and moving
contact lines in Gal et al. (2016); Gal et al. (2019).
Regarding the Allen-Cahn equations, the existence and uniqueness of global weak solutions
has been established in Du et al. (2007). In Xu et al. (2010), the existence of axisymmetric
one-dimensional and three-dimensional solutions has been proved and the authors in Zhao
et al. (2011) have shown that in the limit when the viscosity vanishes, the equations consis-
tently degenerate into the combined Euler Allen-Cahn incompressible system. The previously
mentioned results have been obtained solely for density matched fluids but more recently, in
Li and Huang (2018), the authors have demonstrated the existence and uniqueness of local
strong solutions for fluid of different densities in two and three dimensional configurations.
Combined studies have also been performed for the Cahn-Hilliard and Allen-Cahn equations.
The well-posedness of the Navier-Stokes Cahn-Hilliard and the volume preserving Navier-
Stokes Allen-Cahn system is addressed in Liu et al. (2012). The authors have also studied
breakup conditions for both models and in particular, have noticed stricter breakup conditions
for the Allen-Cahn equation. For the latter, a local perturbation is usually required in con-
trast with the Cahn-Hilliard equation for which enough speed and/or shear suffices to initiate
the breakup. In Freistühler and Kotschote (2017), the authors have proposed a solution the-
ory for the Korteweg, Cahn-Hilliard and Allen-Cahn models combined with the Navier-Stokes
equations. They have again derived systematically all the affiliated equations for non miscible
incompressible fluids. Moreover, for fluids with temperature-independent density, the authors
have shown that both the Navier-Stokes Cahn-Hilliard and Navier-Stokes Allen-Cahn models
reduce to the Navier-Stokes Korteweg model.

Numerical results

Contrary to the compressible system, a substantial list of simulations, using a wide variety of
numerical methods, have been performed using either the Cahn-Hilliard or Allen-Cahn equa-
tions combined with the incompressible Navier-Stokes system; the few results presented here
do not represent a comprehensive description.

Using the Cahn-Hilliard equation, the authors in Jasnow and Vinals (1995) have simulated
grain-coarsening under thermocapillary motions, the energy equation is not solved, rather, a
temperature dependency is introduced in the capillary coefficient to study the motion under
temperature. With the same equation, using a backward fully implicit scheme, authors in
Gurtin et al. (1996) have also simulated the grain-coarsening of a binary fluid in two dimen-
sions. Jacqmin (1999) has addressed one and two-dimensional convection and has simulated
capillary waves and Rayleigh-Taylor instabilities using second and compact fourth order finite
difference schemes. With the same method in, Jacqmin (2000) has also simulated moving
contact lines dynamics. Drops falling on a liquid reservoir and Rayleigh-Taylor instabilities
for non miscible fluids have been computed in Boyer (2002) using an explicit finite difference
scheme with second order anti-diffusion correction. A semi-implicit time-splitting scheme with
high order space derivatives (spectral decomposition and finite difference) has been used in
Badalassi et al. (2003) to study two and three-dimensional phase separation and pattern for-
mation under shear stress for incompressible binary fluids. The authors in Liu et al. (2003)
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have used a Fourier-spectral method with a semi-implicit time discretization in two dimensions
to study surface tension effects, bubble relaxation and coalescence.

Figure 4.8: Water penetrating the air-filled gap between parallel plates with hydrophilic properties,
taken from Takada et al. (2013)

A dynamic contact-line problem has been examined in Takada et al. (2013) taking the form
of a capillary driven penetration of a liquid phase between two hydrophilic plates with a
specified contact angle θW . The gap is initially filled with air offering a high density ratio
of about 800 (the simulation is also performed with an ethanol-air mixture with a smaller
density ratio of 636). Using both a classic central difference scheme and a third-order upwind
finite difference scheme on a staggered grid with a second order Runge-Kutta explicit time
integration, the authors have obtained the results presented in Fig. 4.8. In particular, they
have observed a particularly good agreement of these results with the theory regarding the time
evolution of the liquid velocity and length of penetration for both water-air and ethanol-air
mixtures. Using multiple-relaxation-time lattice-Boltzman method, the authors in Liang et al.
(2014) have simulated Raleigh-Taylor instabilities for different values of Reynolds number.
The results, presented in Fig. 4.9, show perfectly the different behavior that occurs for high
Reynolds numbers. In particular, the presence of vortices created by the shear layers between
the two fluids is strongly visible. The stabilization effect of the higher relative viscosity for low
Reynolds numbers prevents these vortices to form and roll-up, the lighter fluid simply rises in
the form of macroscopic bubbles.

With the volume preserving Allen-Cahn equation as a basis, solved using a stabilized semi-
implicit scheme, the authors in Yang et al. (2006) have simulated jet pinch-off and droplet
formation for non miscible fluids, a semi-implicit second-order rotational pressure-correction
scheme is used for the Navier-Stokes equation. In Tan et al. (2007), interface dynamics and
droplets coalescence of density matched fluids has been studied solving the Navier-Stokes Allen-
Cahn system using a semi-implicit finite volume scheme with an adaptive mesh redistribution
method. In Vasconcelos et al. (2014), the authors have chosen a residual based finite element
scheme with adaptative mesh refinement to study diffusive relaxation, chemical convection,
interface dynamics and coalescence by solving the conservative Allen-Cahn equation combined
to the incompressible Navier-Stokes equations.
An energy stable and totally decoupled scheme is introduced in Shen and Yang (2014) to
simulate the deformation of a liquid crystal immersed into a viscous fluid, as shown in Fig.
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FIG. 11. (Color online) Evolution of the density contours in immiscible RTI at various values of Re: (a) Re = 30, (b) Re = 150,
(c) Re = 3000, and (d) Re = 30 000. The time is normalized by the characteristic time
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for ε0, ε1, and ε2, respectively, in which D1i = ∂t1 + ci · ∇1,
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. Applying Eq. (A3b) to
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on both sides of Eqs. (A3a)–(A3c), we can obtain the following
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for ε0, ε1, and ε2, respectively, where Sh′ = Sh/δt , D̂1 =
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Figure 4.9: Time evolution of the concentration in a two-dimensional Rayleigh-Taylor instability for
different Reynolds numbers ((a) Re = 30, (b) Re = 150, (c) Re = 3000, (d) Re = 30000), taken from
Liang et al. (2014)
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DECOUPLED SCHEMES OF TWO-PHASE COMPLEX FLUIDS B143

Fig. 10. Qualitative comparison between the experimental benchmark [45] of viscoelastic fluid
(left, 0.1 wt. %1× 106 g/mol PEO in solvent of 36% glyercol) and our simulations (right) in Figure
9 of t = 10.2, 10.4, 10.6.

Fig. 11. The dynamics of the deformation of a liquid crystal drop immersed in a viscous fluid
at t = 0, 1, 2, 3, 3.4, 4, 4.4, 5 with K = 1, A = 0.

Let φ0(r, z) = tanh(
R2

0−r2−(z−H−0.45)2

ε ), and all other parameters are the same as in
Example 5. Figure 11 represents the deformation and pinch-off process for this larger
falling drop. The dynamics are similar to Example 5 but it forms more satellite drops
and a longer thread.

5. Summary. We studied in this paper energetic, Allen–CahnandCahn–Hilliard,
phase-field models for two-phase, one liquid crystal phase, and one viscous fluid phase
complex fluids. We first reformulated the models to a form which is suitable for
numerical approximation and derived the associated energy dissipation laws. We then
constructed two classes of numerical schemes, one based on a stabilized technique and
the other based on a convex-splitting approach. These schemes enjoy the following
properties: (i) they lead to completely decoupled elliptic equations to solve at each
time step; (ii) they are unconditionally stable and obey a discrete energy law; and (iii)
in the case of stabilized approach, all elliptic equations are linear, while in the case of
convex-splitting approach, the solutions of the nonlinear elliptic equations for d and
φ are unique minimizers of convex functionals. Hence, these numerical schemes are
extremely efficient.

While we have considered only time discretizations here, the results can carry
over to any consistent finite-dimensional Galerkin approximations (finite elements
or spectral) since the proofs are all based on variational formulations with all test
functions in the same space as the trial function.

To the authors’ knowledge, these are the first schemes, for phase-field models
of two-phase complex fluids, which decouple the computation of the director field
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Figure 4.10: Dynamic deformation of a liquid crystal drop immersed in a viscous fluid, taken from
Shen and Yang (2014)

4.10. A stabilization procedure is used for the classic Allen-Cahn equation while a pressure
correction strategy is applied to address the Navier-Stokes equations for fluids with very similar
densities (the Boussinesq approximation can be used). The viscosity of the liquid crystal causes
a long thread to be created between the leading droplet and the inlet. The elongated thread,
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following its narrowing, eventually breaks up into smaller satellite droplets of various sizes.
The main droplet also deforms upon impact with the bottom of the reservoir. The authors have
concluded with a satisfactory behavior of the system and a good agreement with experimental
results. A three-phase model has been developed for the Navier-Stokes Allen-Cahn in Zhao
et al. (2017) where two phase fields ϕ and ψ are used. Likewise, a semi-implicit stabilizing
energy stable scheme is used for the phase-field equations while a pressure-correction scheme,
reminiscent of the projection method, is used to decouple the computation of the pressure and
the velocity. The results in Fig. 4.11 show the gravity-driven rising of a bubble into a layered
reservoir with a second and third fluid. The Boussinesq approximation is used to account for
the slight differences in the three fluid densities. While crossing the interface between the two
layered fluids, the bubble traps a long filament of the lower fluid that eventually breaks and
collapses due to gravity. However, due to capillary effects, a small amount of the lower fluid
remains glued at the bottom of the bubble which pursues its rising, a behavior consistent with
simulations performed using Sharp Interface methods.

Figure 4.11: Dynamic time evolution of a bubble rising into two layered non-miscible fluids of different
characteristics, taken from Zhao et al. (2017)

In Chiu and Lin (2011), a semi-implicit dispersion-relation-preserving scheme and a projec-
tion method are used to solve the Navier-Stokes equation while a dispersion-relation-preserving
dual-compact upwind scheme (see Chiu and Sheu (2009)) is used for the pseudo-conservative
geometric phase-field equation. With these methods, the authors have treated the case of a
water droplet falling trough air to impact an initially quiescent liquid film. These schemes
are paired with a mass-redistribution algorithm to ensure the boundedness of the solution and
the perfect mass conservation. The results are presented in Fig. 4.12 where the evolution
of the free surface is given: the typical splashing phenomena are qualitatively recovered and
permit quantitative comparisons with previous simulations for the same case showing a good
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agreement.

Figure 4.12: Simulation of a water droplet impacting a quiescent water film using a pseudo-
conservative geometric approach for the phase-field equation, take from Chiu and Lin (2011)

Conclusion and additional remarks

One conclusion of the present bibliographic work is that no results seems to have been pro-
duced using either of the Allen-Cahn or Cahn-Hilliard equation combined with hydrodynamics
(Euler or Navier-Stokes equation) while actually solving the energy equation. An underlying
consequence is that all the numerical results that are presented have been obtained by con-
sidering isothermal fluids. It should be emphasized that most of the previously mentioned
theoretical work related to this methods actually include the energy equation in their studies,
the shortage of results only concerns the numerical simulations.
Two noteworthy exceptions can be found in Antanovskii (1995) and Jasnow and Vinals (1996)
where a temperature dependency is introduced, although indirectly and not by solving the
energy equation. A temperature gradient is imposed in a single designated direction of the two
dimensional computational domain. It then impacts the equations by allowing the coefficient
α, i.e. the surface tension in virtue of Eq. (4.6), to vary with the temperature in the form
α (T ) = α0 + ∆α (T − T0) where T0 and α0 are reference values. In Antanovskii (1995), the
author has studied the structure of the interfacial layers separating two non-isothermal fluids
while said interface is endowed with a constant temperature gradient. Using the same method,
the authors in Jasnow and Vinals (1996) have studied the migration of a fluid droplet into an
different phase with an imposed temperature gradient.
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4.2 Multi-Fluid methods

4.2.1 Historical overview

The foundations of the Multi-Fluid methods have been laid down in the late 1970’s and early
1980’s by the likes of Drew and Segel (1971); Kuo and Summerfield (1975); Krier and Gokhale
(1978); Gough and Zwarts (1979); Butler et al. (1982); Akhatov and Vainshtein (1984). It
was initially motivated by the will to simulate highly reactive heterogeneous mixtures such as
explosives, solid granulated propellants or heterogeneous reactive gases. The work in Kuo and
Summerfield (1975); Gough and Zwarts (1979) proposed some of the first applications of the
two-phase flow modeling to highly reactive gases and the studies in Krier and Gokhale (1978);
Butler et al. (1982); Akhatov and Vainshtein (1984) have influenced a vast amount of work
regarding the deflagration-to-detonation transition in granular two-phase flow materials. Such
materials, as well as many others of industrial interest, are characterized by the existence of
an interface between their different constituents of which modeling has a strong impact on
the other physical phenomena at play such as mass exchange, chemical reactions and shock
propagation. As such, it must be handled with a special care.
The thermodynamic basis behind the models used by these various authors had been estab-
lished in Truesdell and Toupin (1960) where a continuum approach is used to model both
fluids. The approach is then completed by expressing the constrained mass, momentum and
flux exchanges between the two components. In Drew and Segel (1971); Drew (1983), a differ-
ent approach is used based on mass,volume or area averaging procedures that encompass the
interfacial region. It also leads to a continuous description of the flow with transport equations
for the averaged variables.

In Baer and Nunziato (1986), the authors have derived a model, involving seven transport
equations, which has established itself as the reference model for the Multi-Fluid methods
and has, since then, spawned a wide variety of sub-models. The model of Baer and Nunziato
(1986) however, was still strongly oriented towards the modeling of deflagration-to-detonation
transition and its formulation was not readily usable in the context of liquid-vapor two-phase
flow simulations. An adaptation of the 7-equation model to such configurations has been
proposed in Saurel and Abgrall (1999a) after a comparative study of the different available
two-phase flow models performed by the same authors in Saurel and Abgrall (1999b). In the
latter, the authors emphasized on the practical benefits of having a unified description of the
whole flow with an intrinsic handling of the interface when compared to Front-Tracking or
Volume-of-Fluid methods. This model has been successfully applied in Saurel et al. (2009) to
model air-water shocks and cavitation in one and two dimensions or in Saurel et al. (2003) to
study shock-bubble interactions.
The model assumes that the two phases possess their own velocity, pressure, temperature and
chemical potential and these variables yearn to balance through local relaxation processes.
To better answer different classes of problem, this 7-equation model has then been regularly
reworked in ensuing studies by comparing the characteristic times of the different thermo-
dynamic phenomena at play and reducing the number of equations to only account for the
slowest one. In Kapila et al. (2001); Allaire et al. (2002) the authors have used two differ-
ent 5-equation models assuming mechanical and kinematic equilibrium, i.e. equality of the
pressure and velocity of both phases. In Saurel et al. (2009), the authors used a 6-equation
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model with velocity equality but assumed a stiff relaxation of the pressure, which essentially
equated to a 5-equation model. Assuming a stiff relaxation of the temperature, a 4-equation
model has been derived in Le Métayer et al. (2005); Saurel et al. (2008) to address cavitation
and flashing and in Le Martelot et al. (2014) to incorporate heat transfer and simulate boiling
flows. An equivalent 4-equation model has also been used in Gaillard et al. (2016) to perform
LES simulations of LOx/GH2 flames and in Pelletier (2019) to perform LES simulations of a
non-reactive LOx/GH2 subcritical jet. By relaxing the chemical potential, a 3-equation model
as been obtained in Saurel et al. (2008) and more recently in Morin and Flåtten (2016) and
Chiapolino et al. (2017b). It has also been studied in Pelletier (2019). This model ensues
from the 4-equation model for which an instantaneous balancing of the chemical potential is
assumed, and has provided several successful simulations of evaporating or reactive coaxial
jets in subcritical injection conditions, among which Chiapolino et al. (2017b); Matheis and
Hickel (2018); Pelletier (2019).

This section focuses on presenting the main models that exist in the literature regarding Multi-
Fluid methods and the hypotheses that permit their derivation. A brief overview of important
results obtained with these models is proposed.
The Multi-Fluid methods, by construction, offer an Eulerian description of flows involving
two phases and possibly multiple components in the sense that the same set of equations
is solved in the whole domain without the necessity of special treatment for the regions of
interaction between the phases. This feature, shared by the Diffuse Interface Methods, is a
strong argument in their favor when compared to Sharp Interface approaches. In the following,
the description is limited to the case of a liquid-vapor mixture of the same fluid in a one-
dimensional setting.

4.2.2 Out-of-equilibrium model

The founding model set in Saurel and Abgrall (1999a) revolves around seven equations that
describe the evolution of the flow. These equations are derived assuming that both the liquid
and vapor phases have their own pressure (Pl, Pv), velocity (ul, uv), temperature (Tl, Tv) and
chemical potential (µl, µv). The phases can be described by their volume fraction φl and φv
respectively with the constraint φl + φv = 1. Without phase change, the equations are:

∂φvρv
∂t

+
∂

∂x
(φvρvuv) = 0

∂φlρl
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∂
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−KuuI (uv − ul)−KPPI (Pl − Pv)

∂φlρlel
∂t

+
∂

∂x
[φl (ρlel + Pl)ul] = PIuI

∂φl
∂t

+KuuI (uv − ul) +KPPI (Pl − Pv)

∂φl
∂t

+ uI
∂φl
∂x

= Kp (Pl − Pv)

(4.49a)

(4.49b)

(4.49c)

(4.49d)

(4.49e)

(4.49f)

(4.49g)



Part I - Review of interface simulation methods 151

where Kp and Ku are relaxation coefficients that entice the tendency of the phases to balance
their pressure and velocity. This system, apart from the conservative transport terms on the
left-hand side, also presents numerous non-conservative source terms on the right-hand side
that must be dealt with cautiously.
In the source terms appear the quantities PI and uI that represent the interface pressure and
velocity, a priori different from the pressures and velocities of the phases. The manner in which
these interfacial terms are defined has a strong impact on the mathematical properties of the
system and should also be carefully done. With the right choices, the system can be proven
to be hyperbolic and thus can be treated with standard and powerful dedicated numerical
methods. These aspects are discussed in more details in Saurel and Abgrall (1999a); Abgrall
and Saurel (2003). This system of equations has the added advantage that the thermodynamic
description of each phase, e.i. the relation ei = f (ρi, Ti) for phases i = l, v can be chosen
independently, which prove to be convenient for some cases. Moreover, besides the six first
equations, which are for the most part the classic Euler equations particularized to each phase,
a last equation (4.49g), called the compaction equation, with its peculiar formulation, serves to
account for the evolution of the phase volume, in particular when compression or evaporation
effects occur.

4.2.3 Mechanical and kinematic equilibrium models

By assuming an infinitely fast relaxation in pressure and velocity, i.e. Kp →∞ and Ku →∞,
the authors in Kapila et al. (2001) have reduced the degrees of freedom and thus the number of
equations. This leads in particular to the relations Pv = Pl = PI = P and uv = ul = uI = u.
This simplification is physically motivated by the practical observations which shows these
processes to have much lower characteristic times than that of thermal or chemical relaxation.
This new model is obtained as an asymptotic limit of the 7-equation model, which has been
proven and thoroughly analyzed in Murrone and Guillard (2005). The corresponding equations
are:

∂φvρv
∂t

+
∂φvρvu

∂x
= 0

∂φlρl
∂t

+
∂φlρlu

∂x
= 0

∂ρu

∂t
+

∂

∂x

[(
ρu2 + P

)]
= 0

∂ρe

∂t
+

∂

∂x
[(ρe+ P )u] = 0

∂φl
∂t

+ u
∂φl
∂x

= φl (1− φl)
ρvc

2
v − ρlc2

l∑
i=l,v (1− φi) ρi

∂u

∂x

(4.50a)

(4.50b)

(4.50c)

(4.50d)

(4.50e)

where the flow density is defined by ρ = φlρl + φvρv, the flow volumetric sensible energy is
defined by ρes = φlρles,l + φvρves,v and ci is the sound speed of the phase i = l, v. When
the EoSs chosen to describe each phases are convex, the system is shown to remain hyperbolic.

The authors in Allaire et al. (2002) and Saurel et al. (2009) have proposed other methods
to achieve a 5-equation model. In the former, the non conservative term in the compaction
equation (4.50e) has been removed altogether, which has as a consequence the modification of
the characteristic waves of the flow. In the latter, the authors have returned to a 6-equation



152 Chapter 4 - Diffuse interface methods

model with different pressures, less numerically challenging to solve, but have applied a stiff
relaxation on the pressure to regain mechanical equilibrium. Using this approach, they have
simulated a shock-bubble interaction and compared it with the experiments, as shown in Fig.
4.13.

Figure 4.13: Comparison between experimental results form Layes and Le Métayer (2007) (left im-
ages) and simulations using the quick relaxing 6-equation model for a shock-bubble interaction config-
uration (right images), taken from Saurel et al. (2009)

4.2.3.1 Thermal and chemical equilibrium models

4.2.3.1.1 Temperature relaxation
Temperature imbalance can be accounted for the in 5-equation model of Kapila et al. (2001)

by introducing a relaxation term in the compaction equation in the form KT (Tv − Tl), anal-
ogous to the pressure or velocity relaxation terms of the 7-equation model in Eqs. (4.49e) -
(4.49g). Following the authors in Saurel et al. (2008), the new compaction equation is written:

∂φl
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∂φl
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2
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i=l,v (1− φi) ρi

∂u

∂x
+

1
φvξv

+ 1
φlξl

φvρvc2
v + φlρlc

2
l

KT (Tv − Tl) (4.51)

With the assumption of an infinitely fast relaxation in temperature, i.e. KT → ∞ in Eq.
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(4.51), the system further reduces into a 4-equation model as follows:
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(4.52a)

(4.52b)
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Using this type of model, the authors in Hejazialhosseini et al. (2013) have performed an
impressive simulation of a three-dimensional shock-bubble interaction in order to study the
subsequent vortices. Some of their results are displayed in Fig. 4.14.

110816-3 Hejazialhosseini, Rossinelli, and Koumoutsakos Phys. Fluids 25, 110816 (2013)

designed to efficiently run on multicore platforms and has proven to sustain simulations involving
over 250 × 109 of computational elements on 50 000 central processing unit (CPU) cores.13

III. RESULTS

A. Visualization and qualitative analysis

We present volume rendering of the density and vorticity magnitude of SBI at M = 3 and
η = 7.25 in Figures 1 and 2 shortly after the impact (t̃ = 0) up to t̃ = 15. Due to compression of the
shock and the corresponding flattening of the upstream interface, little vorticity is generated on the
frontal side (t̃ = 0.8) whereas vorticity covers a major part of the unperturbed spherical distal side,
vanishing to zero towards the downstream. At the same time, tiny reflections from the absorbing
boundaries reach the four sides of the deformed bubble, causing some perturbations in the vorticity

FIG. 1. Volume rendering of density (top): Red/blue denote high/low density. Volume rendering of vorticity magnitude
(bottom): Orange/gray denote high/low vorticity magnitudes. Non-dimensional time t̃ ≈ 0.8−8.9. Shock passage is from left
to right. M = 3 and η = 7.25.
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Figure 4.14: Three dimensional simulation of a shock-bubble interaction with the 4-equation model,
taken from Hejazialhosseini et al. (2013)

The 4-equation model has been extended to multi-species configurations in Gaillard et al.
(2016) with which the author has performed a simulation of the bench test Mascotte (see
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Habiballah et al. (1996); Vingert et al. (1999); Gicquel et al. (2001)) in subcritical injection
conditions with reactive components in a LES framework. Some visualizations for the coaxial
LOx/GH2 jet simulation are given in Fig. 4.15.

Figure 4.15: Large Eddy Simulation with the 4-equation model of a reactive LOx/GH2 coaxial jet
in transcritical injection conditions based in the Mascotte bench (see Habiballah et al. (1996); Vingert
et al. (1999); Gicquel et al. (2001)) taken from Gaillard et al. (2016). Instantaneous temperature field
in an axial cut plane (upper image) and temperature isosurface at T = 1500 K colored by the axial
velocity (lower image).

4.2.3.1.2 Chemical potential relaxation
Finally, the imbalance in the chemical potential of the species can also be accounted for in

the 4-equation model as done in Eqs. (4.53a) - (4.53d) whereKµ is also a relaxation coefficient.
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∂ρe
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(4.53d)

Directly assuming an infinitely fast relaxation of the chemical potential leads to a 3-equation
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model that is formally similar to the Euler equations system and is written:
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(4.54c)

This model requires the determination of the thermodynamic states of each phase that satisfy
the equilibrium conditions:
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l e
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(4.55a)

(4.55b)
(4.55c)

Solving Eqs. (4.55a)-(4.55c) is not trivial, in particular in multi-species configurations, and
several methods have been proposed in the literature: an exact multi-species resolution in
Pelletier (2019); Pelletier et al. (2020), an exact resolution in simplified conditions in Saurel
et al. (2008); Le Martelot et al. (2014), a single-step approximate solver in Chiapolino
et al. (2017b); Chiapolino et al. (2017a) or a simplified exact resolution with a single-fluid
assumption in Pelletier (2019); Pelletier et al. (2020).
This formulation with the 3-equation model has led to the most conclusive results so far as
demonstrated in Figs. 4.16 and 4.17. In 4.16 taken from Chiapolino et al. (2017a), the
authors have simulated a non-reactive coaxial LOx/GH2 jet with and without evaporation
using an approximate one step equilibrium solver and have compared the results in terms of
oxygen mass fractions. In Fig. 4.17 taken from Pelletier (2019), a simulation of the bench
test Mascotte is presented (see Habiballah et al. (1996); Vingert et al. (1999); Gicquel et al.
(2001)) in subcritical injection conditions with reactive components in a LES framework. The
different relevant fields subsequent to the LOx/GH2 combustion are provided: the dynamics
of the reactive jet is well retrieved.
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(a) Mass fraction liquid oxygen - no evaporation (b) Mass fraction liquid oxygen - evaporation

(c) Mass fraction vapor oxygen - evaporation (d) Mass fraction oxygen (liquid+vapor) - evapo-
ration

Figure 4.16: Simulation of the fragmentation of a liquid oxygen jet by a coaxial gaseous nitrogen
co-flow solving the 3-equation model, taken from Chiapolino et al. (2017a).
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oxygen and fuel streams [Kraichnan, 1970, Smirnov et al., 2001] following turbulent injection profiles
from prior pipe flow calculations and a Passot-Pouquet spectrum.

Figure 6.12: Instantaneous fields for the three-dimensional simulation using the 3-equation model with simplified equi-
librium. From top to bottom: O2 mass fraction YO2 (blue: 0, red: 1); OH mass fraction YOH (blue: 0, red: 0.05); H2O
mass fraction YH2O (blue: 0, red: 0.75); temperature (blue: 80 K, red: 3300 K); axial velocity (blue: −100 m/s, red:
400 m/s). density (blue: 1 kg/m3, red: 1200 kg/m3, log scale); stability criterion (blue: unstable, red:stable)

6.2.3.2 Results and discussion

6.2.3.2.1 Flow visualization: snapshots

Instantaneous fields of representative flow variables (temperature, O2, OH and water mass fractions,
axial velocity and density) are shown in figure 6.12. They qualitatively show the flame topology and
flow dynamics. A turbulent diffusion flame is formed at the exit of the coaxial injector and surrounds
the high density inner jet. The confinement of the flow by the walls produces a sudden opening of the
flame at 10d (d being the inner injector diameter) and the formation of a recirculation region between
the flame and the inner high density jet. Large scale motions are noticeable further downstream. Such
a flame topology is similar to the ones computed at supercritical pressure [Schmitt, 2019]. The region

Figure 4.17: Large Eddy Simulation with the 3-equation model of a reactive LOx/GH2 coaxial jet
in transcritical injection conditions based in the Mascotte bench (see Habiballah et al. (1996); Vingert
et al. (1999); Gicquel et al. (2001)) taken from Pelletier (2019). Instantaneous fields in an axial cut
plane, from top to bottom: O2 mass fraction, OH mass fraction, H2O mass fraction, temperature,
axial velocity, density, stable (red)/unstable(blue) thermodynamic state.





Chapter 5

The Second Gradient theory

The purpose of this chapter is to present the milestones in the derivation of the model known
as the Second Gradient theory (SG), also referred to as the Gradient Theory of fluid in the
literature. This model allows to faithfully describe the thermodynamics of an interfacial zone
between a liquid and a vapor phase. A specific care is given to the justification of the hypotheses
used in the derivation to ensure a physical consistency throughout.
This model falls under the Diffuse Interface Methods classification and to some extent, it
can be viewed as a more thermodynamically driven Phase-Field model. As such, it offers a
description of the internal structure of the interface using the density gradient as an addi-
tional thermodynamic independent variable. It is not however limited to a modification of the
interfacial thermodynamics. As explained in this chapter, this finer thermodynamic descrip-
tion must go in par with a finer mechanical description of the constraints in the interface to
achieve a final model with a complete thermo-mechanical coupling. The origin and necessity
of this coupling is developed in Sec. 5.1 where a phenomenological approach is used to set
out the fundamental considerations driving the theory. The purpose is therefore to cement
the hypotheses that are used to derive the equations of the SG theory. This derivation and
the ensuing expressions are presented in Sec. 5.2. This derivation is carefully carried out and
rests upon fundamental physical results such as the thermodynamic principles and the Virtual
Power Principle.
The description of the interface is then completed in Sec. 5.3 where the variables of the
modified thermodynamics are expressed. Finally, in Sec. 5.4, trough a characterization on
mono-dimensional planar interfaces, we try to determine the macroscopic values of interest
when describing the interface, their link to the microscopic parameters and their interdepen-
dency. This will prove useful for in the framework of Chap. 9 where the behavior of the
interface will be modified.

All the results presented are to be directly related the work of Germain (1972); Casal and
Gouin (1985); Seppecher (1987) and Jamet (1998) to whom the interested reader can turn to
for further details. The objective here is to propose a synthetic overview, though comprehensive
enough, for the reader to understand the SG theory from its foundations to its more general
implications.
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5.1 Phenomenological approach to the capillary effects

The objective of this section is to present the different steps that permit to ground the Second
Gradient theory both mechanically and thermodynamically. They are characterized by a
progressive widening of the point of view used to describe the system, from molecular to
macroscopic. To that effect the pressure tensor, referred to as P, is used as a key thread.
First, the molecular point of view of Rocard (1967)is used to demonstrate that the non-kinetic
interactions between the molecules of the fluid must be accounted for and how this hypothesis
impacts P. Secondly, using a greater spatial scale, the microscopic point of view of Korteweg
(1901) allows to determine how P is specifically impacted by the density gradient, with a
continuous medium approach. Thirdly, a macroscopic point a view is utilized, through the
energetic approach of Cahn and Hilliard (1958) to detail how the thermodynamics of the
interface is also impacted by the density gradient.

5.1.1 Molecular description of capillary phenomena

In Rocard (1967), the author expresses the internal forces for a fluid in a high density gradient
region using molecular theory. More precisely, he derives an expression for the non-kinetic
pressure tensor Π, that is to say the part of the internal pressure tensor not directly due the
collisions between the molecules. For an ideal gas, of which thermodynamic equation clas-
sically reads P = ρrT with P the isotropic pressure, r the gas constant, ρ its density and
T its temperature, Π is null. This is due to the founding hypothesis allowing to derive the
ideal gas law: molecules do not interact outside of collisions to exchange momentum, kinetic
and internal energy, i.e. no remote interactions exist between them. This hypothesis holds as
long as molecules are, at a large scale, far away from one another since molecular interactions
vanish rapidly with the distance. In dense fluids, this is not the case since the mean distance
between molecules strongly reduces. In the van der Waals equation of state , the non-kinetic
internal pressure appears clearly in the form of the component −aρ2 which embeds part of
the remote molecular interactions. It is worth noticing that, even though it is no longer null,
the non-kinetic internal pressure remains isotropic as Π = ΠI = −aρ2I. The presence of an
interface makes the matter worse since not only high density values occur but high density
gradients are also present, creating a non-trivial repartition of molecular interactions, that
must be treated properly. In such cases, not only Π is not null, but it is no longer isotropic
as this will be shown in the following paragraphs.

Classically, the interactions between the molecules of the fluid can be described using a force
per volume unit ψ that solely depends on the distance r between the molecules. For a molecule
located at the point O = (0, 0, 0), the components of the force f 0 applied upon it by the rest
of the fluid are given by Eqs. (5.1a)-(5.1c) where n (x, y, z) is the number of molecules in the
small volume dx dy dz centered on the point at (x, y, z).

f0,x =

∫∫∫
n (x, y, z)ψ (r)

x

r
dx dy dz (5.1a)

f0,y =

∫∫∫
n (x, y, z)ψ (r)

y

r
dx dy dz (5.1b)

f0,z =

∫∫∫
n (x, y, z)ψ (r)

z

r
dx dy dz (5.1c)
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Figure 5.1: Schematic representation of the molecular interactions between to molecules

An issue arises when trying to calculate the above integrals because the molecules distribution,
represented by n, is not known a priori, even in an homogeneous fluid, rendering its determi-
nation even harder for a non homogeneous one. Despite this difficulty, the author in Rocard
(1967) suggests to make a third order Taylor expansion of n around the point O:

n (x, y, z) = n0 + x

(
∂n

∂x

)
0

+ y

(
∂n

∂y

)
0

+ · · ·+ x2

2

(
∂2n

∂x2

)
0

+
y2

2

(
∂2n

∂y2

)
0

+ · · ·

+
x3

6

(
∂3n

∂x3

)
0

+
y3

6

(
∂3n

∂y3

)
0

+ · · ·+O
(
r3
) (5.2)

The mean force per volume unit f is approximately equivalent to n0f 0. The reciprocity of
actions principle grants that ψ is symmetrical for a pure fluid (every two molecules interact
with one another in a perfectly symmetrical way). Using this result and the previous Taylor
expansion , the components of f are expressed in Rocard (1967) by:

fx =
A

M2

∂ρ2

∂x
− aζd0

2

5M2
ρ
∂∆ρ

∂x
(5.3a)

fy =
A

M2

∂ρ2

∂y
− aζd0

2

5M2
ρ
∂∆ρ

∂y
(5.3b)

fz =
A

M2

∂ρ2

∂z
− aζd0

2

5M2
ρ
∂∆ρ

∂z
(5.3c)

where M is the the molar mass of the fluid, d0 is the penetrability diameter of the molecules
(the diameter of the hard sphere molecules or equivalently the smallest distance that can
separate two distinct molecules), A and ζ two constants expressed in Eqs. (5.5) and (5.6)
depending solely on the interaction force ψ and ρ is the density of the fluid. Using Avogadro’s
number NA, these quantities can be expressed by:
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ρ = n
M

NA
(5.4)

A = −NA
2

6

∞∫
d0

rψ (r) 4πr2 dr (5.5)

ζ = −NA
2

6ad2
0

∞∫
r0

r3ψ (r) 4πr2 dr (5.6)

The coefficient A is actually the molar internal pressure constant in van der Waals (1873)
embodying part of the remote interactions, mostly the long-range attractive terms. It should
be noted that the author in Rocard (1967) seems to hint that the previous derivation does not
allow, on its own, to account for all the short-range repulsive interactions, even though the
reasons why are not elaborated on. This notion seems to have an echo in the literature since
for instance, when deriving refined equations of state, the repulsive interactions are mostly ac-
counted for by introducing a term that mathematically impends the density to exceed a certain
value. This introduction is somewhat done empirically rather than theoretically. One possible
explanation is that at short range, it becomes difficult to separate the kinetic contribution to
the pressure from the short range remote interactions as both will result in a tendency of the
molecules to part away from one another. Anyhow, this does not limit the reach of the result
obtained in Rocard (1967).

The mean force per volume unit f is linked to the non-kinetic internal pressure tensor Π

(which is symmetrical) trough the relation f = ∇ · Π. It can then be used to express the
components of Π with:

Πxx = −Aρ
2

M2
− aζd0

2

20M2

[
λ

2
(∇ρ)2 −

(
∂ρ

∂x

)2

+ ρ∆ρ

]
(5.7a)

Πxy =
Aζd0

2

20M2

∂ρ

∂x

∂ρ

∂y
(5.7b)

Πxz =
Aζd0

2

20M2

∂ρ

∂x

∂ρ

∂z
(5.7c)

r0 = d0/2 being the penetrability radius. The other components Πyx, Πyy, Πyz, etc... can be
obtained in a similar fashion and using the symmetrical nature of the tensor Π. Eventually,
the result can be condensed into :

P = PkineticI + Π =
(
Pkinetic − aρ2

)︸ ︷︷ ︸
Ph

I + P
1

(ρ,∇ρ,∆ρ) (5.8)

where a = A/M2, Ph is the classic isotropic pressure for homogeneous fluid (without interfaces)
and P

1
is an additional tensor depending on the density ρ as well as its first and second

derivatives.
The main result from this study is that the internal pressure constraints in the fluid, with a
higher order of description, are no longer isotropic. This anisotropy is mostly driven by the
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density gradient. To account for the capillary effects due to the presence of an interface, a
higher order of modeling is therefore proved to be required.

5.1.2 Microscopic approach : Korteweg’s model of capillarity

The previous subsection introduced the impact of non-kinetic, i.e. remote interactions between
particles at a molecular level and showed how they were susceptible to impact the macroscopic
forces in the fluid. This modification can be further described following the work in Korteweg
(1901).

NOTE: The reader should note that several parts of the development presented here may seem arbi-
trary. This is mostly due to the lack of justifications in the original study of Korteweg (1901). Efforts
have been made to clarify the calculations and to omit seemingly non-necessary and non rigorous parts
so as to focus on the articulation of the reasoning. Most of the results in Korteweg (1901) have found
validation in later works such as Rocard (1967), Germain (1972) or Casal and Gouin (1985). How-
ever, it seemed important for us to present this study where the physical intuition of the phenomena
primes over complex mathematical derivations.

In this subsection, a microscopic point of view is adopted, the fluid is now treated as a con-
tinuous medium, however, complex molecular interactions are accounted for in order to derive
the equations of motion for a capillary fluid. The starting assumption is that the local and
sudden variations of thermodynamic variables, especially the density, should bring about new
contributions. The latter are otherwise negligible without the presence of an interface between
two phases of a same fluid or two different fluids. It is classic to write the momentum equation
of a fluid in the form of Eq. (5.9).

ρ
dv
dt

= −∇ ·T (5.9)

The constraints tensor T can be separated into different contributions: non-contact internal
constraints i.e. internal pressure, contact internal constraints i.e. viscous constraints, external
or remote constraints, usually body forces. For a classic viscous compressible fluid, this can
be summed up by:

T
0

= P
0

+ τ + ρg (5.10)

with P
0

= P0I the isotropic internal pressure, τ the viscous tensor and g the volume body
forces. When complex molecular interactions are accounted for, additional internal and remote
constraints arise. They are introduced in the momentum equation by modifying the pressure
tensor P in the following fashion:

T = P + τ + ρg (5.11)

P = P0I + σ (5.12)

The tensor σ embodies the assembly of all the additional constraints and since T can be
written as T = T

0
+ σ, the calculation to determine the expression of σ will rely on T

0
as a

reference.
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To derive the equations of motion for a capillary fluid, a classic strategy, exposed in Fig. 5.2,
is to evaluate the momentum variation d (ρv) for a small volume dV = ∆x∆y∆z centered
at M0 = (x0 + ∆x/2, y0 + ∆y/2, z0 + ∆z/2) over a small time interval dt. Thanks to the
impulse-momentum theorem, this momentum variation is equal to the total impulse of all the
forces exerted over the volume dV in the time interval dt, the momentum lost through the
particles leaving the volume dV and the momentum gained thanks to the particles entering
the volume dV. Accounting for molecular interactions oblige to further develop this approach.

y

x

z

y0

x0

z0 Y

X

Z

dA

dΩ

dV

∆y∆x

∆z

Figure 5.2: Schematic representation of a control volume dV and a remote volume dΩ to evaluate
the modified momentum equation for a capillary fluid

We focus on the surface dA = ∆y∆z placed at x0, the impulses received by that surface in
the directions x, y and z respectively would be T0,xx dA dt, T0,xy dA dt and T0,xz dA dt in
the non-capillary case whereas they become Txx dA dt, Txy dA dt and Txz dA dt in the general
case. The objective is to evaluate the gaps Txx −T0,xx, Txy −T0,xy and Txz −T0,xz ensuing
from the higher order of modeling used, in particular the introduction of molecular interactions.

Let now dΩ be a small volume of fluid, distinct of but close to dV and located at M =
(x, y, z). In the absence of strong thermodynamic variations (in our case an interface), these
two volumes of fluid would be oblivious to one another. In particular dΩ would have no
effect on the momentum variations in dV, which is not the case anymore with the higher
oder of modeling. Due to the non-homogeneities induced by the interface, the density and
the temperature in the volume dΩ are given by ρ (x, y, z) = ρ0 (x, y, z) + ∆ρ (x, y, z) and
T (x, y, z) = T0 (x, y, z) + ∆T (x, y, z). It should be noticed that the writing ρ0 (x, y, z) and
T0 (x, y, z) is used to signify that the homogeneous state without interfaces is not required to
be constant. However, the associated variations must be negligible when compared to those
created by the presence of interfaces. The same methodology is used to express the velocity
components, meaning u = u0 + ∆u, v = v0 + ∆v and w = w0 + ∆w in dΩ.
The first hypothesis used by the author in Korteweg (1901) is to consider that the contri-
bution d (∆Txx) of dΩ to Txx − T0,xx can formally be written as linearly dependent to the
thermodynamic variations as follows:

d (∆Txx) = (αρ∆ρ+ αT∆T + αu∆u+ αv∆v + αw∆w) dV (5.13)

This linear dependency is only formal since the terms αρ, αT , αu, αv and αw actually depend
on the density and temperature distribution.
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The second hypothesis used is to consider that the density variations dwarf that of the
other quantities (temperature and velocity) and that only they should be retained to ex-
press d (∆Txx). Of course, one could argue that this hypothesis greatly reduces the reach of
the model, which is most likely true. However, the results obtained even with this simplified
version allow significant improvement for the description of capillary phenomena. Accordingly,
Eq. (5.13) formally reduces to:

d (∆Txx) = αρ (ρ, T ) ∆ρ dV (5.14)

This formulation can be particularized by performing a Taylor expansion of the density around
the homogeneous state, it is written:

∆ρ = ρ− ρ0 =
3∑
i=1

(xi − x0,i)
∂ρ

∂xi
+

1

2

3∑
i=1

3∑
j=1

(xi − x0,i) (xj − x0,j)
∂2ρ

∂xi∂xj
(5.15)

The third hypothesis is used to account for several phenomena at once:
• First, the strong density variations around the volume dV create a molecular force field

that is likely to accelerate/decelerate the molecules going to and coming from the vol-
ume dV, modifying the momentum of said molecules. This impacts, for instance, the
momentum fluxes through dA.
• Second, the strong density variations around the volume dΩ also creates a molecular

force field that can temper or amplify the impact of dΩ on the momentum of molecules
in dV. It can, for instance, modify the propensity of molecules to agglomerate near the
point M .

These two phenomena are indirectly linked to ∆Txx. They do not directly modify its value
but rather the way it is impacted by dΩ. However, this indirect correlation has to be included
in the derivation of d (∆Txx), what is done in Korteweg (1901) through a formal dependency
of αρ on the density gradient as well.

All the previous hypotheses can be combined by expressing d (∆Txx) using a formal linear
dependency in the different density first order derivatives, (∂ρ/∂xi)i=1···3, their cross products
((∂ρ/∂xi) (∂ρ/∂xj))i,j=1···3, and the second order derivatives

(
∂2ρ/(∂y∂z)

)
i,j=1···3. Once again,

the rigorous mathematical manner in which these terms are introduced is not the focal point
in Korteweg (1901). The objective is rather to identify the major phenomena at play and to
propose a simple and effective way to introduce them in the equations. The last major step is
to integrate the elementary contribution d (∆Txx) over a region neighboring dV. In a synthetic
approach, this will result in the following expression:

Txx − T0,xx =

3∑
i=1

ai
∂ρ

∂xi
+

3∑
i=1

3∑
j=1

ai,j
∂ρ

∂xi

∂ρ

∂xj
+

3∑
i=1

3∑
j=1

aij
∂2ρ

∂xi∂xj
(5.16)

where the coefficients a∗ depend a priori on the density and the temperature. The same
expressions can be obtained for Txy − T0,xy and Txz − T0,xz:

Txy − T0,xy =

3∑
i=1

bi
∂ρ

∂xi
+

3∑
i=1

3∑
j=1

bi,j
∂ρ

∂xi

∂ρ

∂xj
+

3∑
i=1

3∑
j=1

bij
∂2ρ

∂xi∂xj
(5.17)

Txz − T0,xz =
3∑
i=1

ci
∂ρ

∂xi
+

3∑
i=1

3∑
j=1

ci,j
∂ρ

∂xi

∂ρ

∂xj
+

3∑
i=1

3∑
j=1

cij
∂2ρ

∂xi∂xj
(5.18)
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From Korteweg (1901), additional physical results can be used to simplify the previous ex-
pressions. Firstly, Newton’s third law of motion applies between subdomains of the fluid and
the formulas must not depend on the orientation (i.e. the sign) chosen for the axes. This in
turn causes, among others, the internal constraints tensor T to be symmetrical. All things
considered, it can be shown that Eqs. (5.16), (5.16) and (5.17) turn into:

Txx − T0,xx = ax (∇ρ)2 + bxx

(
∂ρ

∂x

)2

− cx∆ρ− dxx
∂2ρ

∂x2
(5.19a)

Txy − T0,xy = Tyx = bxy
∂ρ

∂x

∂ρ

∂y
− dxy

∂2ρ

∂x∂y
(5.19b)

Txz − T0,xz = Tzx = bxz
∂ρ

∂x

∂ρ

∂z
− dxz

∂2ρ

∂x∂z
(5.19c)

where ax, bxx, bxy, bxz, cx, dxx, dxy and dxz are coefficients depending a priori on the density
and the temperature. Finally, given the fact that the quantities (∇ρ)2 and ∆ρ do not depend
on the chosen frame of reference, it comes that bxx = bxy = bxz = bx and dxx = dxy = dxz = dx.
Repeating all the previous developments for the terms Tyy−T0,yy, Tzz−T0,zz and Tyz−T0,yz

eventually leads to the relations:

Tii − P = ai (∇ρ)2 + bi

(
∂ρ

∂xi

)2

− ci∆ρ− d ∂
2ρ

∂xi2
(5.20a)

Tij − T0,ij = Tji − T0,ji = bi
∂ρ

∂xi

∂ρ

∂xj
− di

∂2ρ

∂xi∂xj
(5.20b)

By geometrical invariance arguments already used, it comes that ax = ay = az = a, bx =
by = bz = a, cx = cy = cz = a and dx = dy = dz = d. Coefficients a, b, c, d, may depend
on the temperature T and density ρ of the fluid but not on their derivatives. The momentum
equation can be written in its final form:

ρ
dv
dt

= −∇P0 −∇
[
a (∇ρ)2

]
+∇ [c∆ρ]−∇ · [b∇ρ⊗∇ρ] +∇ · [d∇∇ρ]−∇ · τ (5.21)

From Eq. (5.21), one can extract the capillary tensor σ in Korteweg’s theory.

σ =
(
a (∇ρ)2 − c∆ρ

)
I + b∇ρ⊗∇ρ− d∇∇ρ (5.22)

In the case of a mixture, the previous developments should be started back from the begin-
ning accounting for the non-homogeneous interactions between materials of different nature.
Although this would be a tedious work, the results would not differ much from that of the
pure fluid and Korteweg’s work offers an intuitive way to derive the momentum equation for
a pure fluid endowed with capillarity. In Sec. 5.2, it is shown that the full development of the
Second Gradient theory provides final equations of motion in agreement with those obtained
in this short study.

5.1.3 Energetic approach to the Second Gradient model

One aspect missing from the two previous studies, that are mostly oriented on a mechanical
description of the interface, is the energetic behavior of the fluid induced by the presence of
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said interface. Since van der Walls work in the late 1800’s ( van der Waals (1893)), the surface
tension is known to result from a local accumulation of energy at the interface.
The response from the fluid is a tendency to minimize this additional energy. From the studies
presented in Secs. 5.1.1 and 5.1.2, one got that the existence of non-homogeneities due to the
presence of an interface requires new terms in the mechanical description of the fluid depend-
ing on the density variations trough is derivatives. As expressed by the authors in Cahn and
Hilliard (1958), whose considerations will be briefly developed in the following paragraphs,
this observation also applies for the energetic description of the fluid. More precisely, the
energy of the fluid at the interface should be the addition of the classic energy expected in a
homogeneous medium and a "capillary" energy depending on the density (or composition for
mixtures) gradient. To that effect, in Cahn and Hilliard (1958), an expression is derived for
the free energy F of a non-homogeneous system. In their founding paper, Cahn and Hilliard
considered the mole fraction c of a two-component system A − B and derived an expression
for the free energy depending on c and ∇c. Since here we are interested in dealing with an
interface between two phases of the same fluid, we will consider the density ρ as our segrega-
tion variable (as mentioned in Cahn and Hilliard (1958), any intensive variable other than the
pressure P and the temperature T can be considered leaving, the liberty to choose the more
suited for the studied case).

Let F the volumetric free energy of a system considered at thermal equilibrium T = cste. F
is supposed to be a continuous function of the density and its consecutive derivatives (up to
the order 3 at least). An additional hypothesis is that the non-homogeneities (namely, the
interface) physically span over a distance greater than the distance of action of the molecular
interactions. Given all these hypotheses, one can write the Taylor expansion of F around its
value F|0 in the homogeneous system:

F (ρ, ρ,i, ρ,ij , · · ·) = F|0 +
(
ρ,i − ρ,i|0

)( ∂F
∂ρ,i

)
|0

+
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ρ,ij − ρ,ij |0

)( ∂F

∂ρ,ij

)
|0

+
1

2

(
ρ,i − ρ,i|0

)(
ρ,j − ρ,j |0

)( ∂2F

∂ρ,i∂ρ,j

)
|0

+
1

2

(
ρ,i − ρ,i|0

) (
ρ,jk − ρ,jk0

)( ∂2F

∂ρ,i∂ρ,jk

)
|0

(5.23)

+
1

2

(
ρ,ij − ρ,ij |0

)(
ρ,kl − ρ,kl|0

)( ∂2F

∂ρ,ij∂ρ,kl

)
|0

+ · · ·+O
(
ρ,i

2, ρ,ij
2
)

For i, j ∈ [1, 2, 3] the following notations are used:

ρ,i =
∂ρ

∂xi
ρ,ij =

∂2ρ

∂xi∂xj
etc...

The subscript |0 refers to a value taken in the homogeneous system (for a function f it gives
f|0 = f (ρ, 0, · · ·)), thus for an homogeneous system ρ,i|0 = 0 and ρ,ij |0 = 0 which allows to
simplify the expression. Moreover, the terms

(
∂2F/(∂ρ,i∂ρ,jk)

)
|0 and

(
∂2F/(∂ρ,ij∂ρ,kl)

)
|0 are

considered to be of an order 3 and will ne neglected in regards to the other 1st and 2nd order
terms. The previous expression Eq. (5.23) can be further simplified using similar geometrical
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arguments as done in Sec. 5.1.2 to simplify Eqs. (5.16)-(5.18). F must also be unchanged by
a rotation of the reference frame or by inverting the direction of the axis, resulting in:(

∂F

∂ρ,i

)
|0

= 0 (5.24a)(
∂F

∂ρ,ij

)
|0

= λ1 for i = j,

(
∂F

∂ρ,ij

)
|0

= 0 for i 6= j (5.24b)(
∂2F

∂ρ,i∂ρ,j

)
|0

= λ2 for i = j,

(
∂2F

∂ρ,i∂ρ,j

)
|0

= 0 for i 6= j (5.24c)

The simplified expression becomes:

F (ρ, ρi, ρ,ij) ≈ F|0 + λ1ρ,ii +
1

2
λ2ρ,i

2 = F|0 + λ1∆ρ+
1

2
λ2 (∇ρ)2 (5.25)

From that expression it comes that:

λ1 =

(
∂F

∂(∆ρ)

)
|0

λ2 = 2

(
∂2F

∂(‖∇ρ‖)2

)
|0

(5.26)

To get the free energy over an elementary volume ∂V of boundary ∂A, one can integrate the
previous formula:

∂F =

∫
∂V

F (ρ, ρ,i, ρ,ij) dV =

∫
∂V

[
F|0 + λ1∆ρ+ λ2 (∇ρ)2

]
dV (5.27)

Using Green’s theorem, one can write:∫
∂V

λ1∆ρ dV =

∫
∂V

λ1∇ · (∇ρ) dV =

∫
∂V

[∇ · (λ1∇ρ)−∇λ1 ·∇ρ] dV (5.28)

=

∫
∂V

∇ · (λ1∇ρ) dV −
∫
∂V

∂λ1

∂ρ
∇ρ ·∇ρ dV (5.29)

=

∫
∂A

λ1∇ρ · n dA−
∫
∂V

∂λ1

∂ρ
(∇ρ)2 dV (5.30)

where n is the outer normal vector to the surface ∂A. In this particular framework, we are
not interested in the effect of the non-homogeneities at the surface boundary and ∂V can be
chosen so as to get ∇ρ · n = 0 over ∂A, leaving only the volume integral over ∂V. This can
be injected in the integral Eq. (5.27). Using the notation:

λ = 2

[
λ2 −

∂λ1

∂ρ

]
= 2

[
2

(
∂2F

∂(‖∇ρ‖)2

)
|0
−
(

∂2F

∂(∆ρ)∂ρ

)
|0

]
(5.31)

it comes:

∂F =

∫
∂V

[
F|0 (ρ) +

λ

2
(∇ρ)2

]
dV (5.32)
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With this recall on the developments by Cahn and Hilliard, later used in Cahn (1959) and
Cahn and Hilliard (1959) to treat three dimensional nucleation, we showed that the free energy
of a non-homogeneous system can indeed be expressed as the contribution given by the classic
free energy of an homogeneous system and the addition of a contribution given by the density
gradient. Most of the time, Eq. (5.32) is reinterpreted in a more practical form by giving the
expression for the volumetric free energy F :

F (ρ,∇ρ) = F0 (ρ) +
λ

2
(∇ρ)2 (5.33)

5.2 Conservation equations in the Second Gradient theory

The purpose of this section is to derive the momentum and energy equations for a fluid endowed
with capillarity in the SG theory. In a first step, the virtual power principle is used with a
double objective: firstly as a mean to retrieve the generic form of Cauchy’s law for a capillary
fluid, secondly as a tools to express the power of the internal forces in a capillary fluid. These
results pave the way for the determination of the internal constraints tensor τ achieved by
the introduction of the first and second principle in a second and a third step. The different
results are eventually used to express the system of equations satisfied by the fluid. All along,
it is implicitly assumed that the fluid satisfies the continuum mechanics hypotheses and that
the local thermodynamic equilibrium is always satisfied, allowing to define the mechanical
and state variables for the system and write their differentials. For the sake of clarity, most
of the mathematical developments have been omitted when they bore no essential physical
meaning. However, the reader can find most of the corresponding calculations in App. C
(and if not, in Jamet (1998)), that heavily rely on mathematical and thermodynamic results
recalled respectively in App. A.4 and App. B.1. Lastly, when not mentioned otherwise, the
fluid is considered to contain a single species.

5.2.1 Virtual power principle

To derive the equations of motion for a fluid in the Second Gradient theory, three main
methods can be used. The first one relies on a Hamiltonian approach and has been developed
by Casal and Gouin in Casal (1972), Casal and Gouin (1985), Casal and Gouin (1989). The
second one, which will be described in the following paragraphs, is based on the virtual power
principle (v.p.p.) as demonstrated in Germain (1972), Frémond (2013), Yu (2014) and has
been expanded on in Germain (1972), Seppecher (1987) and Jamet (1998). The virtual power
principle is used to derive the equations of smooth motions for systems where no shocks occur.
It can be shown (Antman (1995)) that describing indirectly the internal forces using their
virtual power is equivalent to describing them directly through a momentum equation. This
last statement will be further demonstrated in the following. The third method rests on the
thermodynamics of irreversible processes introduced around the 1950’s by the likes of Haase
(1951); Glansdorff and Prigogine (1954); de Groot and Mazur (1954); Meixner et al. (1962)
and later refined in Glansdorff and Prigogine (1971); de Groot and Mazur (1984), which has
been used by the authors in Jamet (2010) and Gaillard (2015) to derive the equations of
motion for a Korteweg-type capillary fluid.
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5.2.1.1 The virtual power principle

A domain Ω is considered wherein the fluid is described by the usual thermodynamic variables,
i.e. the pressure P , the density ρ, the temperature T , etc. and the variables describing its
motion and deformation v, ∇v, etc. From App. C.1, the v.p.p. states that for a virtual
motion characterized by the virtual velocity v∗ in the subdomain V of Ω, the sum of the
virtual powers of the internal forces P(i) and the virtual power of the external forces P(e) in V

equals the virtual power of the acceleration forces P(a) in V, i.e.:
v∗ in V ∈ Ω P(a) = P(i) + P(e) (5.34)

The v.p.p. relies on the axiom of the virtual power principle for internal forces which states
that for a virtual motion characterized by the virtual velocity v∗ that causes a rigid body
motion of the fluid in the subdomain V of Ω, the virtual power of the internal forces P(i) in
V equals to zero.
The v.p.p is presented in a raw formulation in Eq. (5.34). In the framework of the SG theory,
it can be refined by considering a specific subset of virtual motions with corresponding virtual
velocity fields v∗ at least two times differentiable. With this additional hypothesis, Germain
(1972) and Jamet (1998) derived a more specific set of equations for the fluid. In the next
paragraph, such virtual motions are used, the notations remaining unchanged. Additionally,
when they exists, A refers to the surface boundary of V and J refers to line boundary of the
surface A.

5.2.1.2 Expression of the virtual powers

Let V a domain of Ω and let V∗ refer to the set of virtual velocities defined over Ω that are
at least two times differentiable. The virtual power of the internal forces P(i) is a continuous
linear form over V∗. It comes without difficulty that V∗ is a vector space and that Φ in Eq.
(5.35) defines an inner product over V∗.

∀ (v∗,u∗) ∈ V∗, Φ (v∗,u∗) =

∫
V

[
v∗ · u∗ +∇v∗ :∇Tu∗ +∇∇v∗

...∇̃∇u∗
]
dV (5.35)

where
(
∇̃∇u∗

)
i,j,k

= ∂2uk/(∂xj∂xi).

The Riesz representation theorem allows then to write that it exists w∗ ∈ V∗ such as:

∀v∗ ∈ V∗, P(i) (v∗) = Φ (v∗,w∗) (5.36)

By defining a = −w∗, ς = −∇Tw∗ and C = −∇̃∇w∗, it comes:

∀v∗ ∈ V∗, P(i) (v∗) = −
∫
V

[
v∗ · a +∇v∗ : ς +∇∇v∗

...C
]
dV (5.37)

As explained in Seppecher (1987) and Jamet (1998), this expression can be simplified by ap-
plying the axiom of the virtual power principle for internal forces. By considering successively
arbitrary rigid motions of uniform translation and uniform rotation, it can be shown that
a = 0 and ς is symmetrical. By enforcing C to be symmetrical in its two first indexes, the
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couple
(
ς,C

)
is shown to be unique. Eventually, the virtual power of the internal forces can

be written:

∀v∗ ∈ V∗, P(i) (v∗) = −
∫
V

[
∇v∗ : ς +∇∇v∗

...C
]
dV (5.38)

The previous expression Eq. (5.38) is of the utmost importance and is used extensively in
Sec. 5.2.3 and App. C.1 to complete the derivation of the fluxes in the SG framework. In this
subsection however, another form is used. Still from Jamet (1998), the previous expression
can be further modified using two consecutive integrations by parts allowing to write:

P(i) =

∫
V

v∗ · f dV +

∫
A

[v∗ · s + (∇v∗ · n) ·m ] dA+

∫
J

v∗ · r dl (5.39)

where n is the outer normal to the surface A, f , s, m , r are different vectors introduced during
the consecutive integrations by parts to separate the virtual power of the internal forces into
volume, surface and line contributions. The virtual power of the external forces P(e) is then
separated in two contributions, P(d) being from the forces acting remotely on V and P(c) being
from the contact forces on A and J. Both these virtual powers can be written in the same
fashion as P(i) in Eq. (5.37). Regarding P(d), it is supposed that the virtual power of the remote
forces related to the simple and double velocity gradients of are negligible. Simultaneously,
the same double integration by parts used to get Eq. (5.39) can be applied to P(c) (noticing
that the virtual power of contact forces can not, by definition, stem from body forces, thus
the absence of a volume integral in its modified formulation) to get the expressions:

P(d) =

∫
V

v∗ · g dV (5.40)

P(c) =

∫
A

[v∗ · t + (∇v∗ · n) · µ] dA+

∫
J

v∗ · κ dl (5.41)

where the vectors t , µ and κ play the same roles as s, m , r in Eq. (5.39), of which specific
expressions can be found in Jamet (1998).

5.2.1.3 Application of the virtual power principle

Now that the expressions of all the different virtual powers have been obtained, one can write
the virtual power principle as enunciated in Eq. (5.34) to get:∫

V

ρv∗ · dv
dt
dV =

∫
V

v∗ · f dV +

∫
A

[v∗ · s + (∇v∗ · n) ·m ] dA+

∫
J

v∗ · r dl+

∫
V

v∗ · g dV +

∫
A

[v∗ · t + (∇v∗ · n) · µ] dA+

∫
J

v∗ · κ dl
(5.42)

The terms can be rearranged so as to get:
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∫
J

v∗ · [r + κ] dl +

∫
A

[v∗ · (s + t) + (∇v∗ · n) · (m + µ)] dA

−
∫
V

v∗ ·
[
ρ
dv
dt
− f − g

]
dV = 0

(5.43)

Given that this equality must hold for any two time differentiable virtual velocity v∗, it is
classically possible to chose in succession virtual velocities that are null on A and J leading
to the momentum equation in Eq. (5.44), then virtual velocities that are null on J leading
the surface boundary conditions in Eqs. (5.45a) - (5.45b) and finally conclude to get the line
boundary conditions in Eq. (5.46).

ρ
dv
dt

= f + g (5.44)

s = −t (5.45a)
m = −µ (5.45b)

r = −κ (5.46)

Eq. (5.44) is the Cauchy’s law used to describe continuous medium. Its expression still applies
in the SG framework as enunciated from Antman (1995) at the beginning of the section. The
implications of the boundary conditions Eqs. (5.45a), (5.45b) and (5.46) are further discussed
in Seppecher (1987) and Jamet (1998). Mostly, the surface constraint t will no longer solely
equals to the normal action of the constraint tensor τ but will be modified by an additional
contribution arising from the capillary terms, which is not the case when the Second Gradient
theory’s higher order of modeling is not applied. Overall, the v.p.p. has allowed to derive the
momentum equations with the associated boundary conditions in a straightforward and elegant
way. In the next subsections, the v.p.p. will be used jointly with the two thermodynamic
principles so as to obtain an explicit expression for the internal stress tensor τ .

5.2.2 First principle of thermodynamics

5.2.2.1 Gibbs relation for a capillary fluid

In the Second Gradient framework, the extensive thermodynamic variables depend on two
intensive variables, for instance the temperature T and the density ρ but also on the density
gradient ∇ρ. As shown in 5.1.3, a generic yet physically grounded method to introduce this
new dependency is to modify the expression of the volumetric free energy F of the fluid like
in Eq. (5.33). However in the following, to gain even more generality in the incoming results,
the adopted form for F is:

F (T, ρ,∇ρ) = F0 (T, ρ) + F1 (T, ρ,∇ρ) (5.47)

where F0 (T, ρ) is the classic volumetric free energy without the Second Gradient considera-
tions and F1 (T, ρ,∇ρ) is an additive capillary energy, depending on the density gradient ∇ρ.
Additionally, F1 satisfies:

∀T > 0, ρ > 0, F1 (T, ρ,0) = 0 (5.48)
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meaning that this additional energy is null when no non-homogeneities (strong density gradi-
ents) are encountered.
In these conditions one can write the differential of the specific internal energy es, using the
specific entropy s, with:

des =

(
∂es
∂s

)
ρ,∇ρ

ds+

(
∂es
∂ρ

)
s,∇ρ

dρ+

(
∂es
∂∇ρ

)
s,ρ

· d∇ρ (5.49)

The previous equation is a raw writing of the Gibbs relation for a capillary fluid. When
d∇ρ = 0, the description of the capillary fluid must match with that of the classic fluid. This
allows to define the thermodynamic temperature T and pressure P for a capillary fluid as:

T =̂

(
∂es
∂s

)
ρ,∇ρ

(5.50)

P =̂ ρ2

(
∂es
∂ρ

)
s,∇ρ

(5.51)

As done in App. C.2, it can be shown that the final form of the Gibbs relation if therefore:

des = T ds+
P

ρ2
dρ+

1

ρ
F · d∇ρ (5.52)

where:

F =̂

(
∂F

∂∇ρ

)
s,ρ

(5.53)

P = ρ

(
∂F

∂ρ

)
T,∇ρ

− F (5.54)

5.2.2.2 Local formulation of the first principle of thermodynamics

The first principle of thermodynamics states that the time variations of the total energy over
a domain V of fluid is equal to the power of the external forces and the energy fluxes through
the boundary A as given by Eq. (5.55). Actually, the energy flux can be interpreted as a
surface work associated with microscopic motions ν∗ as introduced in Eq. (C.3).

d

dt

∫
V

ρe dV = P(e) −
∫
A

q · n dA (5.55)

Here e = es+v2/2 is the specific total energy, q is the surface energy flux, n the outer normal
vector to the surface A and P(e) is the actual power of the external forces calculated with the
real velocity field v over V. P(e) is not to be mistaken for the virtual power of the external
forces P(e) used so far and calculated for a virtual velocity field v∗. The same goes for P(i) and
P(a) that denote the actual powers, respectively of the internal forces and of the acceleration
forces, not to be confused with their virtual counterparts P(i) and P(a). Applying the v.p.p.
to the real velocity field v, one gets:

P(a) = P(i) + P(e) (5.56)
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Noticing that:

P(a) =

∫
V

ρv · dv
dt
dV =

∫
V

ρ
d

dt

(
v2

2

)
dV (5.57)

and using Reynolds theorem (see eq:reynolds_formula_integral):

d

dt

∫
V

ρe dV =

∫
V

ρ
de

dt
dV =

∫
V

ρ
des
dt

dV +

∫
V

ρ
d

dt

(
v2

2

)
dV =

∫
V

ρ
des
dt

dV + P(a) (5.58)

and finally by applying the Green’s theorem (see eq:green_s_theorem) to the energy flux q :∫
A

q · n dA =

∫
V

∇ · q dV (5.59)

one can write: ∫
V

ρ
des
dt

dV + P(i) + P(e) = P(e) −
∫
V

∇ · q dV (5.60)

what, given the expression for P(i) found in Eq. (5.38) applied to the real velocity field v to
get P(i), simplifies in: ∫

V

[
ρ
des
dt
−∇v : ς −∇∇v

...C +∇ · q
]
dV = 0 (5.61)

This equation must hold for any fluid subdomain V of Ω which implies the local internal energy
equation:

ρ
des
dt

=∇v : ς +∇∇v
...C−∇ · q (5.62)

and at the same time, from Eq. (5.52) one can derive another expression for the local internal
energy equation:

des
dt

= T
ds

dt
+
P

ρ2

dρ

dt
+

1

ρ
F · d∇ρ

dt
(5.63)

5.2.3 Second principle of thermodynamics

5.2.3.1 Local formulation of the second principle of thermodynamics

The second principle of thermodynamics states that the time variations of the entropy over a
domain V of fluid is equal to the creation of entropy, always positive, due to a volume source of
entropy φS and the entropy fluxes due to the energy fluxes through the boundary A. Calling
s the specific entropy of the fluid, the principle can be written:

d

dt

∫
V

ρs dV =

∫
V

φS dV −
∫
A

q
T
· n dA (5.64)

As done in Eqs. (5.58) and (5.59), one can use both Reynolds and Green’s theorems to end
up with the relation: ∫

V

[
ρ
ds

dt
− φS +∇ ·

(q
T

)]
= 0 dV (5.65)
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Once again, this equation must hold for any fluid subdomain V of Ω which allows to give the
local entropy equation:

ρ
ds

dt
= φS −∇ ·

(q
T

)
(5.66)

5.2.3.2 Determination of the stress tensor

In order to express the stress tensor τ , the hypotheses listed below are made. The validity and
implications of said hypotheses are further discussed in Seppecher (1987) and Jamet (1998).

1. the stress tensor τ can be separated into dissipative τ d and non-dissipative τn contri-
butions

2. the dissipative stress tensor τ d, due to the viscous constraints, remains the same as in a
non-capillary fluid

3. consequently, the second gradient of the velocity does not contribute to the entropy
creation

Combining Eqs. (5.62), (5.63) and (5.66), the volume entropy production φS can be expressed
by:

TφS =∇v : ς +∇∇v
...C− P

ρ

dρ

dt
−F · d∇ρ

dt
− 1

T
∇T · q (5.67)

Thanks to the mass equation ∂ρ/∂t = −∇ · (ρv), one can write the transport equations for
the density and the density gradient :

dρ

dt
= −ρ∇ · v (5.68)

d∇ρ
dt

=∇∇ρ · v−∇ (∇ · ρv) (5.69)

Carring out all the calculations in App. C.3, one eventually gets:

TφS =
∂vi
∂xj

[
ςji +

∂ρ

∂xi
Fj +

(
P +

∂ρ

∂xk
Fk

)
δij

]
+

∂2vi
∂xj∂xk

[Ckji + ρFkδik]−
1

T

∂T

∂xi
qi (5.70)

From hypothesis (3) one has Ckji + ρFkδik = 0 and remembering that C must be symmetrical
in its two first indexes, it implies that its components are given by:

Cijk =
1

2
ρ (δikFk + δjkFi) (5.71)

Besides, in virtue of the relation ς = τ +∇·C with Cijk = Ckji (from Jamet (1998)), the fact
that ς is symmetrical and hypothesis (1), the volume entropy production is given by:

TφS =
∂vi
∂xj

[
τdij + τnij −

1

2

∂(ρFj)

∂xi
+
∂ρ

∂xi
Fj +

(
P +

∂ρ

∂xk
Fk −

1

2

∂(ρFk)

∂xk

)
δij

]
− 1

T

∂T

∂xi
qi (5.72)

The mechanical pressure p, of which denomination will be justified in the next paragraphs, is
introduced as:

p = P − ρ∇ ·F (5.73)
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This implies:

P +
∂ρ

∂xk
Fk = p+ ρ

∂Fk
∂xk

+
∂ρ

∂xk
= p+

∂(ρFk)

∂xk
(5.74)

Finally, given hypothesis (2), one can isolate the components of the non-dissipative tensor τn

through:

τnji −
1

2

∂(ρFj)

∂xj
+
∂ρ

∂xi
Fj +

(
p+

1

2

∂(ρFk)

∂xk

)
δij = 0 (5.75)

Eventually, the expression of the non dissipative tensor is:

τn = −
(
p+

1

2
∇ · (ρF)

)
I−∇ρ⊗F +

1

2
∇ (ρF)T (5.76)

Regarding the viscous stress tensor τ d and the energy flux q , their expressions for a capillary
fluid are proposed and discussed in Seppecher (1987), Jamet (1998) and Gaillard (2015). No-
ticeably, the interface normal direction will be a remarkable direction for these two quantities,
leading to a special shear stress in the tangential plan and to an anisotropic heat conduction.
For a finer level of modeling, this would allow to challenge the tangential velocity and tem-
perature continuity at the interface. However in this work, the precision granted by a more
classic description of these quantities will be satisfactory enough.
Therefore, when considered, the energy flux will correspond to a thermal conductive flux
described by the Fourier’s law q = −kth∇T and the viscous stress tensor will be that of a
classic Newtonian fluid, of which expression is given by τ d = 2µ

(
∇v +∇vT

)
+2µ/3 (∇ · v) I.

kth and µ are respectively the thermal diffusion coefficient and the dynamic viscosity of the
fluid.

5.2.4 Equations in the Second Gradient theory

5.2.4.1 Equations for a pure fluid motion in the Second Gradient

With the tensors and fluxes expressed, it is possible to derive the different equations that
determine the behavior of a capillary fluid.

Mass equation

Of course, capillarity is not a mass inducive/reducive phenomenon, therefore the mass conser-
vation equation is not modified and is written as usual:

∂ρ

∂t
= −∇ · [ρv] (5.77)

Momentum equations

The momentum equation, in its base form, is given by ρ dv /dt = −∇ · τ − ρg and the stress
tensor τ is given by τ d + τn where τn is expressed in Eq. (5.76). This allows to express:

∇ · τn = −∇p−∇ · (∇ρ⊗F) (5.78)

In Jamet (1998), the author discuses the form of the non dissipative tensor τn obtained
Eq. (5.76) which differs from the tensors obtained by Seppecher (1987) and Gouin (1988).
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However, he notices that eventually, this difference has no impact nor on the momentum
equation neither on the boundary conditions since the divergence of this tensor is the same
for all the formulations. This finally allows to write the momentum equation for the fluid:

ρ
dv
dt

= −∇p−∇ · (∇ρ⊗F) +∇ · τ d + ρg (5.79)

The equation can be written in a conservative form, more suited for numerical simulations:

∂(ρv)

∂t
= −∇ ·

[
pI + (∇ρ⊗F)− τ d

]
+ ρg (5.80)

The mechanical pressure introduced by the relation in Eq. (5.73) has been named this was
because it is the actual isotropic part of the effective non-dissipative stress tensor. For a
non-capillary fluid, the actual isotropic non-dissipative mechanical forces are embodied by the
thermodynamical pressure tensor P0I. For a capillary fluid, this role is fulfilled by p, hence
the denomination of mechanical pressure.

Energy equations

To get the equation for the internal energy, one must go back to the relation ς = τ +∇ ·C
(see Eqs. (C.27) and (C.28)) which allows to write:

ς = − [p+∇ · (ρF)] I−∇ρ+ τ d (5.81)

This new relation can than be injected in Eq. (5.62) and use jointly with Eq. (5.63) to get:

ρ
des
dt

= − [p+∇ · (ρF)] (∇ · v)− (F⊗∇ρ) :∇v− ρF ·∇ (∇ · v) + τ d :∇v−∇ · q (5.82)

The equation can be further simplified noticing that:

∇ · (ρF∇ · v) = (∇ · v)∇ · (ρF) + ρF ·∇ (∇ · v) (5.83)

to finally arrive to:

ρ
des
dt

= −p∇ · v− (F⊗∇ρ) :∇v−∇ · (ρF∇ · v) + τ d :∇v−∇ · q (5.84)

Once again, this equation can be written in a conservative form using the total specific energy
e = es + v2/2 by combining Eq. (5.84) and v· Eq. (5.79) to eventually get:

∂(ρe)

∂t
= −∇ ·

[
(ρe+ p)v + (F⊗∇ρ) · v + ρF∇ · v− τ d · v + q

]
+ ρg · v (5.85)

Final system of equations

The results obtained at that point can be summarized together with the main hypotheses
made along their derivation. We assumed that:
• the virtual power of the remote forces related to the first and second velocity gradients

are negligible;
• the viscous constraints ( τ d) remain the same as in a non-capillary fluid;
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• the capillary effects do not impact the mass equation and have no dissipative effect;
• the entropy creation is not contributed to by the second gradient of the velocity;
• the viscous stress and energy flux can be written in classic way (Newton/Fourier).

And given all these hypotheses, one obtained the hereunder sets of equations.
These equations can be written in a native, non-conservative way:

∂ρ

∂t
= −∇ · (ρv)

ρ
dv
dt

= −∇p−∇ · (∇ρ⊗F) +∇ · τ d + ρg

ρ
des
dt

= −p∇ · v− (F⊗∇ρ) :∇v−∇ · (ρF∇ · v) + τ d :∇v−∇ · q

(5.86a)

(5.86b)

(5.86c)

or in a numerical-friendly conservative way:

∂ρ

∂t
= −∇ · (ρv)

∂(ρv)

∂t
= −∇ ·

[
pI + ρv⊗ v + (∇ρ⊗F)− τ d

]
+ ρg

∂(ρe)

∂t
= −∇ ·

[
(ρe+ p)v + (F⊗∇ρ) · v + ρF∇ · v− τ d · v + q

]
+ ρg · v

(5.87a)

(5.87b)

(5.87c)

Finally, to these equations must be added the entropy equation that is ultimately written as:

ρT
ds

dt
= τ d :∇v−∇ · q (5.88)

5.3 Thermodynamic closure of the Second Gradient model

5.3.1 Thermodynamic variables in the Second Gradient theory

As it has been done for the mechanical equations, one can also derive the different thermody-
namic potentials as well as other thermodynamic variables possibly impacted by the Second
Gradient modifications. These derivations rely on Eqs. (B.11)-(B.18) and Eqs. (B.22)-(B.29)
given in App. B.1.

5.3.1.1 Intensive variables

Throughout the development of the Second Gradient theory, the temperature T and the density
ρ have been implicitly supposed to be undifferentiated whether the capillary forces apply or
not. The Second Gradient theory changes how the other thermodynamic variables may be
calculated from T and ρ but does not, in essence, modify their definitions. However, the
pressure as defined by Eq. (B.28) is modified and its expression has already been given by Eq.
(5.54) since the two definitions actually match, as shown by:

P = ρ2

(
∂f

∂ρ

)
T,∇ρ

= ρ2 ∂

∂ρ

(
F

ρ

)
T,∇ρ

= ρ2

(
1

ρ

(
∂F

∂ρ

)
T,∇ρ

− F

ρ2

)
= ρ

(
∂F

∂ρ

)
T,∇ρ

− F (5.89)

This allows to get the new expression of the thermodynamic pressure, in particular in regards
to the reference pressure P0 obtained when no capillary forces are considered. As a reminder
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of the convention introduced in 5.2.2.1, the subscript 0 is used to refer to the expression of a
thermodynamic variable when no capillary forces are considered, i.e. as given directly by the
equation of state. The new thermodynamic pressure P is thus expressed by:

P = ρ

(
∂F0

∂ρ

)
T,∇ρ

− F0 + ρ

(
∂F1

∂ρ

)
T,∇ρ

− F1

P = P0 − F1 + ρ

(
∂F1

∂ρ

)
T,∇ρ

(5.90)

5.3.1.2 Specific variables

The specific free energy f is obtained directly by dividing Eq. (5.47) by the density ρ:

f =
F

ρ
=
F0

ρ
+
F1

ρ

f = f0 +
F1

ρ
(5.91)

The chemical potential µ (or equivalently the specific free enthalpy g) is calculated with Eq.
(B.17):

µ =

(
∂F

∂ρ

)
T,∇ρ

=

(
∂F0

∂ρ

)
T,∇ρ

+

(
∂F1

∂ρ

)
T,∇ρ

µ = µ0 +

(
∂F1

∂ρ

)
T,∇ρ

(5.92)

The specific entropy s is obtained from Eq. (B.28):

s = −
(
∂f

∂T

)
ρ,∇ρ

= −
(
∂f0

∂T

)
ρ,∇ρ

− 1

ρ

(
∂F1

∂T

)
ρ,∇ρ

s = s0 −
1

ρ

(
∂F1

∂T

)
ρ,∇ρ

(5.93)

The specific enthalpy h is then expressed using Eq. (B.23):

h = Ts+ µ = Ts0 −
T

ρ

(
∂F1

∂T

)
ρ,∇ρ

+ µ0 +

(
∂F1

∂ρ

)
T,∇ρ

h = h0 +

(
∂F1

∂ρ

)
T,∇ρ

− T

ρ

(
∂F1

∂T

)
ρ,∇ρ

(5.94)

And finally the specific sensible energy es is derived thanks to Eq. (B.22):

es = h− P

ρ
= h0 +

(
∂F1

∂ρ

)
T,∇ρ

− T

ρ

(
∂F1

∂T

)
ρ,∇ρ

− P0

ρ
+
F1

ρ
−
(
∂F1

∂ρ

)
T,∇ρ

es = es0 +
F1

ρ
− T

ρ

(
∂F1

∂T

)
ρ,∇ρ

(5.95)

Essentially, the new expressions of the thermodynamic variables require the expressions of the
partial derivatives of the additional volumetric free energy F1 with respect to T and ρ.
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5.3.2 Application to the case F1 = λ (∇ρ)2 /2

So far, the expression of the volumetric free energy has not been specified apart from the
formula Eq. (5.47) for the sake of generality. In practice, the common choice made for this
expression is the one given by Eq. (5.33) inherited from the work of Cahn and Hilliard (1958)
and generalized in Eq. (5.96). To that effect, the capillary coefficient λ is introduced. It
depends, a priori, on the temperature of the fluid and as it is shown in later paragraphs, it
controls the behavior of the interface by impacting both its width w and its associated surface
tension σ.

F (T, ρ,∇ρ) = F0 (T, ρ) +
λ (T )

2
(∇ρ)2 (5.96)

With this definition, the new form of the mechanical equations and the thermodynamic vari-
ables can be particularized. From Eqs. (5.53), (5.54) and (5.73), one gets:

F =

(
∂F

∂∇ρ

)
s,ρ

=

(
∂F

∂∇ρ

)
T,ρ

= λ∇ρ (5.97)

P = ρ

(
∂F

∂ρ

)
T,∇ρ

− F = ρ

(
∂F0

∂ρ

)
T,ρ

− F0 −
λ

2
(∇ρ)2 = P0 −

λ

2
(∇ρ)2 (5.98)

p = P0 −
λ

2
(∇ρ)2 − ρ∇ · (λ∇ρ) (5.99)

and with Eqs. (5.76) and (5.78) one also gets:

τn = −
(
p+

1

2
∇ · (λρ∇ρ)

)
I− λ∇ρ⊗∇ρ+

1

2
∇ (λρ∇ρ)T (5.100)

∇ · τn = −∇p−∇ · (λ∇ρ⊗∇ρ) (5.101)

The momentum and energy equations can than be written in their two forms:
ρ
dv
dt

= −∇ ·
[
pI + v⊗ v + λ∇ρ⊗∇ρ− τ d

]
+ ρg

ρ
des
dt

= −p∇ · v− λ (∇ρ⊗∇ρ) :∇v−∇ · (λρ∇ρ∇ · v) + τ d :∇v−∇ · q

(5.102a)

(5.102b)


∂(ρv)

∂t
= −∇p−∇ · λ (∇ρ⊗∇ρ) +∇ · τ d + ρg

∂(ρe)

∂t
= −∇ ·

[
(ρe+ p)v + λ (∇ρ⊗∇ρ) · v + λρ∇ρ∇ · v− τ d · v + q

]
+ ρg · v

(5.103a)

(5.103b)

These equations are in a perfect agreement with those obtained by the authors in Korteweg
(1901) and Casal and Gouin (1985). Besides, given Eq. (5.99), one can introduce the capillary
tensor σ defined by:

σ = −
[
λ

2
(∇ρ)2 + ρ∇ · (λ∇ρ)

]
I + λ∇ρ⊗∇ρ (5.104)
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And the thermodynamic variables can also be expressed:

P = P0 −
λ

2
(∇ρ)2 (5.105)

es = es0 +
1

2ρ

(
λ− T dλ

dT

)
(∇ρ)2 (5.106)

hs = hs0 −
T

2ρ

dλ

dT
(∇ρ)2 (5.107)

f = f0 +
λ

2ρ
(∇ρ)2 (5.108)

µ = µ0 (5.109)

s = s0 −
1

2ρ

dλ

dT
(∇ρ)2 (5.110)

In particular with the additional hypothesis
dλ

dT
= 0, one eventually gets:

P = P0 −
λ

2
(∇ρ)2 (5.111)

es = es0 +
λ

2ρ
(∇ρ)2 (5.112)

hs = hs0 (5.113)

f = f0 +
λ

2ρ
(∇ρ)2 (5.114)

µ = µ0 (5.115)
s = s0 (5.116)

5.3.3 Words on multi-species cases

5.3.3.1 General formulas

The previous considerations can somewhat be extended to mixtures, what becomes a neces-
sary update when dealing with reactive flows. The starting assumptions are the same, the
volumetric free energy F will depend on the temperature T and the densities of the different
components ρ1, ..., ρN but also on the densities gradients ∇ρ1, ...,∇ρN as described by:

F = F0 (T, ρ1, ..., ρN ) + F1 (T, ρ1, ..., ρN ,∇ρ1, ...,∇ρN ) (5.117)

From this formula, the same developments can be made and both the fluxes in the equations
of motion and the thermodynamic variables will be modified. From Gaillard (2015) and Jofre
and Urzay (2016) the new Gibbs relation is given by:

des = T ds+
P

ρ2
dρ+

1

ρ

N∑
i=1

µi dYi +
1

ρ

N∑
i=1

Fi · d∇ρi (5.118)

where Yi is the mass fractions of the ith mixture component, Fi = (∂F1/∂∇ρi)T,ρj ,∇ρk 6=i
and

the mixture density is given by ρ =
∑
ρiYi. Likewise, the mechanical pressure is written:

p = P −
N∑
i=1

ρi∇ ·Fi (5.119)
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And the new mechanical equations (j i being the diffusive flux for the species i) written in
their conservative form are:

∂ρYi
∂t

= −∇ · j i (5.120a)

∂(ρv)

∂t
= −∇ ·

[
pI + ρv⊗ v +

N∑
i=1

(∇ρi ⊗Fi)− τ d
]

+ ρg (5.120b)

∂(ρe)

∂t
= −∇ ·

[
(ρe+ p)v +

(
N∑
i=1

Fi ⊗∇ρi

)
· v

+

(
N∑
i=1

ρiFi

)
∇ · v− τ d · v + q

]
+ ρg · v

(5.120c)

5.3.3.2 Cahn-Hilliard type volumetric free energy

A classic and general formula for the additional volumetric free energy F1 is the natural
extension of the formula Eq. (5.96) to mixtures, written:

F1 =
1

2

N∑
i,j=1

λij (T )∇ρi∇ρj (5.121)

where λij is the crossed capillary coefficient between the species i and j. The evaluation of
such crossed-coefficients is still under investigation. Like the capillary coefficient of a pure
fluid λ, they can be obtained using kinetic theory applied in region submitted to species
density gradients, see Pismen (2001) and Rowlinson and Widom (1982). However, in spite
of its accuracy, this procedure can not be contemplated in the prospect of macroscopic flows
simulations.
Given the lack of a proper expression for these coefficients, most studies rely on van der Waals
mixing rules which state that λij = (1− kij)

√
λiλj where λi, λj are the capillary coeffi-

cients of the pure species i and j (calculated by the methods given in Sec. 5.4.3) and kij is an
influence parameter, usually set to 0 for the lack of a legitimate method to evaluate it correctly.

Eq. (5.121) can be further simplified by assuming that all the capillary coefficients of the pure
species are equal, i.e. λ1 = ... = λN = λ. Alternatively, the assumption more commonly made
is that only one species will have an overall impact on the interface behavior, usually a species
which is the only one that can be found in a liquid phase. For such case, the other species
densities and density gradients are not accounted for, meaning λ1 = λ, λi 6=1 = 0 and in the
liquid phase ρ ≈ ρ1. Either way, it leads to a simplified set of equations, in particular with
the second alternative for which the capillary tensor, the thermodynamic variables and the
momentum/energy equations fall back to their expressions given in Eqs. (5.96) to (5.110).
This overall set of equations has been for instance used in Gaillard (2015) to study stretched
laminar O2/H2 flamelets in subcritical and supercritical conditions, in a low Mach configu-
ration. It also has been used to study the equilibrium and stability limits of pure oxygen
interfaces and a liquid oxygen / gaseous oxygen-water binary mixture interface. All these re-
sults have then been used to calculate stretched non-premixed LOx/GH2 flames in subcritical
and supercritical injection conditions.
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5.4 Macroscopic characterization of a planar interface

In this last section, the emphasis is put on characterizing the interface, from a macroscopic
point of view, both mechanically and thermodynamically. The objective is to grasp the key
elements that drive the behavior of the interface which can or should be considered when
going toward numerical simulations. A first step is to understand how the different systems
of equations and the thermodynamic variables derived in the previous sections of the chapter
allow the existence or not of a interface. In that prospect, in the subsection 5.4.1, the different
solutions of said systems are investigated. Once the origin of an interface has be established,
the macroscopic values of numerical interest, namely the width and the surface tension, are
defined in subsection 5.4.2. Eventually, the impact of several parameters of the model on these
two values are studied is subsection 5.4.3 so as to provide tools to manipulate them, as it will
be required in Chap. 9.

5.4.1 Existence and type of solutions

5.4.1.1 Stable solutions of the equation system

In this subsection, we propose a recall of the developments of Rowlinson and Widom (1982)
and Jamet (1998) that allows, in a simple way, to give a physical insight on the different type
of profiles predicted by the Second Gradient theory, in particular their conditions of existence
and their thermodynamic stability. To that effect, the system considered is that of a closed
isothermal one-dimensional fluid domain between −h

2 and h
2 (the extensive values like the mass

m or the volumetric free energy F are implicitly considered to be given by unit of surface to
remain consistent). In the framework of the Second Gradient, the stable density profile is the
one who minimizes the total free energy F , given i Eq. (5.122), in the domain.

F =

h
2∫

−h
2

F (ρ) dx =

h
2∫

−h
2

[
F0 (ρ) +

λ

2

(
dρ

dx

)2
]
dx (5.122)

A density profile in the domain implicitly defines a function ρ′ (ρ) with:

dρ

dx
(x) = ρ′ (x) =̂ ρ′ (ρ) = Ψ (ρ) (5.123)

It has to be noted that Eq. (5.123) does not define a unique profile but a spectrum of different
profiles each with defined specificities. For such profiles, a stable phase ϕ ∈ (l, v) will be
characterized by a stable density ρϕ in the bulk phases, meaning that:

dρ

dx
(ρϕ) = 0 (5.124a)

d2ρ

dx2 (ρϕ) = 0 (5.124b)

As done by in Jamet (1998), we introduce the the function Wρi which, for a fixed density ρi,
is defined as the distance between the curve of F0 (ρ) and its tangent to the point ρi. Noticing
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that (∂F0/∂ρ)T = µ0, its expression is given by Eq. (5.125) and an example of such a function
is shown in Fig. 5.3 for ρi = ρv.

Wρi (ρ) =̂ F0 (ρ)− [F0 (ρi) + µ0 (ρi) (ρ− ρi)] (5.125)

It also implies that:

dWρi

dρ
(ρ) =

dF

dρ
(ρ)− µ0 (ρi) = µ0 (ρ)− µ0 (ρi) (5.126)

With that, the free energy in the domain can be written:

F =

h
2∫

−h
2

[
Wρi + F0 (ρi) + µ0 (ρi) (ρ− ρi) +

λ

2

(
dρ

dx

)2
]
dx (5.127)

The system is assumed to be characterized by at least one stable phase ϕ1 at x = x1. This
phase is associated to an uniform density ρ1, therefore the profile satisfies:

∂ρ

∂x
(x1) = 0 (5.128a)

∂2ρ

∂x2
(x1) = 0 (5.128b)

The system is also characterized by a mean density ρm so that the fixed mass m satisfies:

m = hρm =

h
2∫

−h
2

ρ dx (5.129)

Eq. (5.127) can therefore be rewritten by formally choosing ρi = ρ1, which lends:

F = h [F0 (ρ1) + µ0 (ρ1) (ρm − ρ1)]︸ ︷︷ ︸
Fm(ρ1)

+

h
2∫

−h
2

[
Wρ1 (ρ) +

λ

2

(
dρ

dx

)2
]
dx (5.130)

where Fm (ρ1) = h [F0 (ρ1) + µ0 (ρ1) (ρm − ρ1)] is a mean free energy accounting for the hy-
pothesis that the phase ϕ1 exists in the domain. It ensues that minimizing the integral in
Eq. (5.122) under this assumption amounts to minimizing the integral in Eq. (5.130). This
minimization problem can be turned into a differential equation problem thanks to App. A.3,
in particular applying the formula of Eq. (A.48) (since the integrand in Eq. (5.122) does not
formally depends on the space variable x), the differential problem becomes:

Wρ1 (ρ)− λ

2

(
dρ

dx

)2

= cste (5.131)

With the conditions satisfied by the stable phase ϕ1, in particular Eqs. (5.128a) and (5.128b),
one can deduce that the constant in Eq. (5.131) is equal to zero. The problem simplifies in:

Wρ1 (ρ) =
λ

2

(
dρ

dx

)2

(5.132)
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Besides, by differentiating Eq. (5.132) with respect to x one, also gets the second equation:

dWρ1

dx
=

d

dx

(
λ

2

(
dρ

dx

)2
)

dρ

dx

dWρ1

dρ
= λ

dρ

dx

d2ρ

dx2

µ0 (ρ)− µ0 (ρ1) = λ
d2ρ

dx2 (5.133)

Since for a stable phase ϕ, both the first and second spatial derivatives of ρ must be null, the
stability conditions from Eqs. (5.124a) and (5.124b) can now be expressed as follows:

Wρ1 (ρϕ) = 0 (5.134)
µ0 (ρϕ)− µ0 (ρ1) = 0 (5.135)

In a first approach, the condition in Eq. (5.135) is rather classic and states that all the stable
phases must have the same chemical potential. This rule is not affected by the capillary
contributions. However, when linked to Eq. (5.126), it also implies that the slope of the
tangent to Wρ1 is null at ρϕ. The condition Eq. (5.134) is more abstract but together with
Eq. (5.135), they mean that bothWρ1 and its derivative are null at ρϕ. Using these conditions
along with their geometrical interpretations, it is possible to determine the type of density
profiles that are admissible in the domain. The nature of the eventual solutions is controlled
by the choice of the reference stable phase ϕ1.

ρv
ρsv

ρm
ρsl

ρl

ρ

Wρv
bulk phase metastable phase unstable phase

Figure 5.3: Example of a profileW for ρ1 = ρv. The figure shows remarkable densities: the saturation
densities ρv and ρl; the metastable limit densities ρsv and ρsl

A way to investigate these solutions is to consider the surface S of equation Eq. (5.136) as
done in Jamet (1998):

S
(
ρ, ρ′

)
= Wρ1 (ρ)− λ

2

(
ρ′
)2 (5.136)

From Eq. (5.132), the eventual intersections between S and the plane of equation P (ρ, ρ′) = 0
will give the density profiles obtainable in the domain. All the density profiles found in that
fashion are not necessarily admissible as they must comply with the following rules:
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– A profile must be physically admissible, meaning that a profile can not have simultane-
ously an increasing density with a negative density gradient and vice-versa.

– A profile must start and end at stable thermodynamic points (one of which is supposed
to be ϕ1) characterized by the conditions in Eqs. (5.134) and (5.135). Noticeably, such
paths remain physically admissible. However, they cannot be spontaneously followed by
the system without the action of an external perturbation.

The objective is, starting from different initial phases ϕ1 placed differently in Fig. 5.3 to
observe whether a second stable phase ϕ2 is also be present in the domain. By symmetry of
the thermodynamic considerations, only half of the profile Wρ1 (ρ 6 ρm) shown in Fig. 5.3 is
investigated explicitly.

5.4.1.2 First type: flat profile

Stable flat profile

If the starting phase ϕ1 is in the stable vapor region (ρ1 < ρv) or the stable liquid region
(ρ1 > ρl), Fig. 5.4 shows that the only admissible profile is an isolated point in the phase
diagram (ρ, ρ′). Practically, this translates into a constant spatial profile as depicted in Fig.
5.5 at the density ρ = ρ1, a pure bulk phase.

ρ1
ρ

ρ ′
correct path physical path non−physical path

ρ ′

ρ

Figure 5.4: Intersection in 3D (left) and 2D (right) between the surface S (ρ, ρ′) in grey and the plane
P (ρ, ρ′) = 0 in blue for ρ1 < ρv

ρl

ρv

ρ

x

ρ1

Figure 5.5: Example of a flat profile in the liquid phase
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Unstable flat profile

Likewise, if the starting phase ϕ1 is in the absolute unstable (or spinodal) region (ρsv 6 ρ1 6
ρsl ), Fig. 5.6 shows that the only admissible profile is also an isolated point in the phase
diagram (ρ, ρ′). Practically, this also translates into a constant spatial profile at the density
ρ1, this time a pure unstable phase, as shown in Fig. 5.7. However, oppositely to the previous
case where the point ϕ1 was on a physically admissible path in Fig. 5.4, here ϕ1 is an isolated
point not located on any physically admissible path.
This means, for the first case, that a small perturbation will not eventually modify the state
of the system because the physically admissible path will lead it back to the stable phase ϕ1.
The system will return to a pure bulk phase with ρ = ρ1. On the contrary, for this second
case, a small perturbation will cause the system to jump to the closest stable phase (the vapor
or the liquid depending on how ρ1 compares to ρm and depending on the energetic cost) that
is effectively located on physically admissible path and which is therefore much more stable.
This allows to explain geometrically and quite simple why this state can indeed be qualified
to be unstable.

ρ1
ρ

ρ ′
correct path physical path non−physical path

ρ ′

ρ

Figure 5.6: Intersection in 3D (left) and 2D (right) between the surface S (ρ, ρ′) in grey and the plane
P (ρ, ρ′) = 0 in blue for ρsv < ρ1 < rhosl

ρl

ρv

ρ

x

ρ1

Figure 5.7: Example of an unstable flat profile in the unstable densities region
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5.4.1.3 Second type: interface

If the starting phase ϕ1 is precisely the vapor phase ϕv (or the liquid phase ϕl), meaning that
ρ1 = ρv (or ρl), then in Fig. 5.8 appears a physically admissible path going from ϕ1 to a second
stable phase ϕ2 with ρ1 6= ρ2. By following this path that joins two stable points, one can
extract the spatial density profile shown in Fig. 5.9 which corresponds the classic interface.
Noticeably, from Fig. 5.3, the only phase ϕ2 that can satisfy these conditions, knowing that
ϕ1 = ϕv, is the liquid phase ϕl at ρ = ρl (and vice-versa).

ρ1 ρ2
ρ

ρ ′
correct path physical path non−physical path

ρ ′

ρ

Figure 5.8: Intersection in 3D (left) and 2D (right) between the surface S (ρ, ρ′) in grey and the plane
P (ρ, ρ′) = 0 in blue for ρ1 = ρv

ρl

ρv

ρ

x

Figure 5.9: Example of an interface profile between the vapor and liquid densities

5.4.1.4 Third type: soliton

Lastly, if the starting phase ϕ1 is in the metastable vapor region ρv < ρ1 < ρsv ( or ρsl <
ρ1 < ρl), then Fig. 5.10 lets appear a physically admissible path circling back to ϕ1 but going
through a second phase ϕ2 with ρ′ (ρ2) = 0. The associated spatial profile is shown in Fig.
5.11 and is referred to as a soliton. One should notice that the phase ϕ2 does not satisfies the
chemical potentials equality condition Eq. (5.135). It justifies why the path has to circle back
to ϕ1, impending the formation of an interface.



Part I - Review of interface simulation methods 189

ρ1 ρ2
ρ

ρ ′
correct path physical path non−physical path

ρ ′

ρ

Figure 5.10: Intersection in 3D (left) and 2D (right) between the surface S (ρ, ρ′) in grey and the
plane P (ρ, ρ′) = 0 in blue for ρv < ρ1 < ρsv
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Figure 5.11: Example of a soliton profile in the metastable densities region

5.4.1.5 Conclusions on the different types of solution

In his PhD Thesis Jamet (1998), the author showed that in general, the total free energy of an
unstable constant profile is more important than that of a vapor-liquid interface but lower than
that of a soliton. This explains in part the tendency of subcritical systems to form interfaces
and these results will be expended upon in Sec. 5.4.2. Regarding the solitons, although their
thermodynamic admissibility has been proven, the conditions for their appearance remains
unclear and very peculiar. Moreover, their visible precarious stability probably shortens their
time of subsistence, further complicating their study. According to Jamet, solitons should
essentially be observed in situations of strong mechanical unbalance, which is the framework
within which they are usually studied.

5.4.2 Quantification of interface macroscopic values of interest

One important aspect of the Second Gradient theory is that the surface tension and the
interface width are embedded in the model as it will be shown in the following section. These
notions are only defined when considering an isothermal interface since they both directly
depend on the temperature. To that effect, let us consider a one dimensional-interface at
equilibrium shown in Fig. 5.12, at a reference temperature T r < Tc with a reference capillary
coefficient λr. For such an interface, the system of equations to solve merely reduces to the
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momentum equation which simplifies in:

∂P0

∂x
= λrρ

∂3ρ

∂x3
(5.137)

ρl

ρv

ρ

xxi = 0

w

Figure 5.12: Isothermal interface at equilibrium with the definition of its width w

The density profile of this reference interface will be referred to by ρr. Even though this value
still has to be defined, let xi be the position of the interface, for convenience xi = 0. xv < xi
is the limit position of the vapor phase and xl > xv is the limit of the liquid phase, meaning
that for x 6 xv one has ρr (x) = ρv and for x > xl one has ρr (x) = ρl). This interface
representation will be used as a reference in the ensuing developments.

5.4.2.1 Geometrical properties of the interface

Auto-similarity of the plane interface profiles

The pressure profile of the reference interface is given by the equation of state through P0
r =

P0 (ρr) (the temperature dependency is not mentioned explicitly here fore clarity, since this
quantity has been fixed from the beginning). Let φ a strictly positive constant, the change of
variable X = x/φ is introduced. Since ρr satisfies Eq. (5.137) one has:

∀X, ∂P0
r

∂x
(X) = λrρr (X)

∂3ρr

∂x3
(X) (5.138)

Let ρφ be the density profile defined by:

∀x, ρφ (x) = ρr (X = x/φ) (5.139)

The change of variable with X corresponds to a geometrical dilation if φ > 1, to a compression
otherwise. The corresponding pressure profile is given by P φ0 = P0

(
ρφ (x)

)
= P0

r (X). From
these definitions one gets the relations:

∂P φ0
∂x

(x) =
1

φ

∂P0
r

∂x
(X) (5.140)

∂3ρφ

∂x3
(x) =

1

φ3

∂3ρr

∂x3
(X) (5.141)



Part I - Review of interface simulation methods 191

When injected into Eq. (5.138), the previous relations lead to:

∂P φ

∂x
(x) = φ2λr∂

3ρφ

∂x3
(x) (5.142)

The density profile ρφ appears as a solution of the non-linear differential equation Eq. (5.137)
where the capillary coefficient has been formally multiplied by a factor φ2. Granted the unique-
ness of such a solution (see Benzoni-Gavage et al. (2005), Benzoni-Gavage et al. (2006),
Benzoni-Gavage et al. (2007), Haspot (2008) ), ρφ is the sole profile to satisfy these condi-
tions. From that, the equivalence between geometrically compressing/dilating an interface and
modifying the capillary coefficient is made apparent and is also quantified.

Interface width

The definition of the interface width is not unique. In this study we retain the following
formula:

w =
(ρl − ρv)
max |∇ρ| (5.143)

The visual representation of this width definition is given in Fig. 5.12. This choice bears a
practical justification since it relates directly to the resolution of the interface on the compu-
tational mesh. With this definition, increasing or decreasing the width directly amounts to
changing how well resolved are the stiff gradients on a given mesh. Using this definition and
the results from the previous paragraph, one gets:

max
∣∣∣∇ρφ∣∣∣ =

1

φ
max |∇ρr| (5.144)

If wr is the width of the reference interface and wφ the width of the interface represented by
ρφ, Eq. (5.144) gives the result:

wφ = φwr (5.145)

Equivalently, Eq. (5.142) and Eq. (5.145) tell that solving Eq. (5.137) while multiplying the
capillary coefficient by φ2 corresponds to thickening (or stiffening) the interface with a factor
φ. Overall, the dependency of the interface width on the capillary coefficient is:

w ∝
√
λ (5.146)

5.4.2.2 Thermodynamic properties of the interface

Definition of the surface tension

From Carey (2007), one gets the well know result that if no capillary forces are taken into
account, a density profile as depicted in Fig. 5.12 is actually unstable. Any point of the
profile will instantaneously evolves towards the closest stable thermodynamic state, it being
the liquid or vapor phase. The resulting profile is a step with a discontinuity at xi = 0 between
the vapor and liquid densities ρv and ρl. This is the representation of the interface used in the
sharp interface methods. This sharp density profile, referred to by ρ̄ in the rest of the section,
is defined by ρ̄ (x) = ρv if x 6 xi and ρ̄ (x) = ρl if x > xi.
The existence of the reference profile Fig. 5.12 is permitted by the energetic unbalance brought
by the capillary efforts. In Cahn and Hilliard (1958), the authors expressed a definition of the
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surface tension σ based on the notion of excess values (see Edwards et al. (1991) for more
details) with a visual example given in Fig. 5.13. This approach is merely a more elegant
version of the definition introduced early on in van der Waals (1893) which leads to the same
exact results. For any given density profile ρ (x), the excess value Ex (χ) of a thermodynamic
variable χ is defined by:

Ex (χ) (ρ) =

xi∫
xv

[χ (ρ)− χ0 (ρv)] dx+

xl∫
xv

[χ (ρ)− χ0 (ρl)] dx

=

xl∫
xv

[χ (ρ)− χ0 (ρ̄)] dx

(5.147)

where χ (ρ) is the profile of χ for the chosen density profile with capillary forces accounted
for and χ0 (ρ̄) is the profile of χ for the canonical sharp interface, i.e. as directly given by the
native equation of state. In that respect, the position of the interface xi is chosen so as to get
no excess mass, i.e. Ex (ρ) = 0.

xl xi xv
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F0(ρ̄) (sharp interface)

F(ρr)   (reference interface)

Figure 5.13: Schematic representation of the excess volumetric free energy for the reference interface
profile ρr.

The equilibrium density profile is the one that minimizes the total free energy F in the domain.
Since the total free energy F̄ associated to the sharp interface in the domain is a constant, the
minimization of F is equivalent to that of F − F̄ . Using the notation where F̄ = F0 (ρ̄), one
can notice that for a profile ρ (x):

F (ρ)− F̄ =

xl∫
xv

[
F (ρ)− F̄

]
dx = Ex (F ) (ρ) (5.148)

From Eq. (5.148), σ is defined as the extra free energy acquired by the interface with the
capillary forces compared to the free energy of the discontinuous interface, as shown in Fig.
5.13. The reference density profile ρr is the one which minimizes Ex (F ) and as such, allows
to express the surface tension σ with Eq. (5.149). This definition ensures the uniqueness of
the value for σ.

σ = min
ρ

Ex (F ) = Ex (F ) (ρr) =

xl∫
xv

[
F r − F̄

]
dx (5.149)
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Calculation of the surface tension for F1 = λ (∇ρ)2 /2

The integrand I of Eq. (5.148) can be expanded using the expression of F derived from Eq.
(5.114):

I = F0 (ρ) +
λr

2

(
∂ρ

∂x

)2

− F̄ (5.150)

The evaluation of σ is an integral minimization problem that can be transformed into a dif-
ferential equation resolution as discussed in App. A.3.1.1 (where the correspondence between
the notations is f = ρ and f ′ = ∂ρ/∂x). Since I has no explicit dependency on x, Eq. (A.48)
can be used to get the partial derivative equation:

I −
(
∂ρ

∂x

) ∂I

∂

(
∂ρ

∂x

)

ρ

= a (5.151)

were a is a constant to be determined. Moreover, λr/2 (∂ρ/∂x)2 is the only term in I with a
formal dependency on the density gradient ∂ρ/∂x. It further simplifies the problem to give
the relation in Eq. (5.152) that is satisfied by the equilibrium profile ρr.

F0 (ρr)− F̄ − λr

2

(
∂ρr

∂x

)2

= a (5.152)

In any of the bulk phases, the density gradient is equal to zero and both the canonical sharp
profile and the reference equilibrium profile have the same values for the saturation densities.
They result in the same values for the volumetric free energy in the bulk phases for both
density profiles, ensuring that a = 0. This allows to write:

F0 (ρr)− F̄ =
λr

2

∂ρr

∂x

2

(5.153)

This new relation can then be injected in Eq. (5.149) to finally give the expression of the
surface tension:

σ =

xl∫
xv

λr

(
∂ρr

∂x

)2

dx (5.154)

Eq. (5.154) brings about an insightful physical interpretation regarding the capillary forces
contribution in the interface. The minimization of the integral of I from Eq. (5.148) results
from a balance between two terms to achieve equilibrium. The first term is the integral of
∆F0 = F0 (ρ)− F0 (ρ̄). It represents the actual energetic cost required to diffuse the interface
from a sharp profile where no capillary forces apply. The second term is the integral of
∆F capi = λ/2 (∂ρ/∂x)2. It stands as the energetic cost associated to the capillary forces
themselves. To lower ∆F capi, the interface will tend to diffuse itself to reduce its gradient
but this will, in turn, increase the energy gap with the sharp profile ∆F0 and vice versa. The
equilibrium is achieved when the two terms are equal.
Additionally, by a variable substitution, Eq. (5.155) can be written in a geometry-independent
fashion, which proves to be useful for some developments. The expression hence becomes:

σ =

ρl∫
ρv

λr∂ρ
r

∂x
dρ (5.155)
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5.4.2.3 Mechanical, thermodynamic and geometrical points of view

Mechanical and thermodynamic approaches

Following Jamet et al. (1995), the expression in Eq. (5.154) can also be obtained using the
momentum equation for a monodimensional planar interface. Indeed, the differential relation
dµ0 = −s0 dT + dP0 /ρ which simplifies in dµ0 = dP0 /ρ for the isothermal case, allows to
transform Eq. (5.137) into: (

µ0 − µsat
)

(x) = λr ∂
2ρ

∂x2
(x) (5.156)

where µsat is the value of the non-capillary chemical potential at saturation, this value being
the same for the liquid and the vapor phases at equilibrium. Then, using the second differential
relation dF0 = µ0 dρ which simplifies in dF0 = µ0 dρ for the isothermal case, one gets:

F0 (ρ)− F̄ =

ρl∫
ρv

(
µ0 − µsat

)
(x) d% =

ρl∫
ρv

(
µ0 − µsat

)
d% =

ρl∫
ρv

λr ∂
2%

∂x2
d% (5.157)

The equivalence between Eq. (5.156) and Eq. (5.153) appears as the previous development
finally results in Eq. (5.158), which is essentially equivalent to Eq. (5.153).

F0 (ρ)− F̄ =

ρ∫
ρv

λr ∂
2%

∂x2

∂%

∂x
dx =

λr

2

(
∂ρ

∂x

)2

(5.158)

As is has just been demonstrated, the isothermal hypothesis allows to retrieve this result in
two different ways, intimately related. From Eq. (5.156) and Eq. (5.153), it results that a
unique interface profile achieves thermo-mechanical equilibrium for a chosen temperature and
a chosen capillary coefficient. The density profile induced by these two choices, in turn, defines
a unique value for the surface tension σ and for the interface width w. These two values are
therefore functions uniquely of the temperature at equilibrium (and the capillary coefficient).

Thermodynamics-based definition of σ

This link between Eq. (5.156) and Eq. (5.153) is further developed by the following derivations,
first by introducing the variable Υ defined by:

Υ (ρ) = 2

ρ∫
ρv

(
µ0 − µsat

)
(%) d% (5.159)

where % is the density variable used for the integration. Secondly, the development continues
by multiplying Eq. (5.156) by ∂ρ/∂x and integrating it one time to get:

2
(
µ0 − µsat

) ∂ρ
∂x

= λr ∂

∂x

((
∂ρ

∂x

)2
)

(5.160)

Using κ as the spatial variable for the integration, one can then write:
x∫

xv

∂

∂κ

(
λr

(
∂%

∂κ

)2
)

(κ) dκ = 2

x∫
xv

(
µ0 − µsat

)
(κ)

∂%

∂κ
dκ (5.161)
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and by substituting the spatial variable κ with the density variable %, it comes:
x∫

xv

(
µEoS − µsat

)
(κ)

∂%

∂κ
dκ =

ρ∫
ρv

(
µEoS − µsat

)
(%) d% (5.162)

to eventually get:

λr

(
∂%

∂κ

)2

(x) = Υ (ρ (x)) (5.163)

The surface tension can therefore be linked to the chemical potential gap with:

σ =

xl∫
xv

Υ (ρ) dx (5.164)

The important thing to notice here is that Υ has been expressed as an integral that has for-
mally no dependency on the geometry of the interface. Indeed, the saturation densities ρv and
ρl depend only on the temperature. Formally, Υ depends only on the intrinsic thermodynamic
representation of the fluid through the expression of the (thermodynamic) profile µ0 (ρ). In
particular, a purely geometrical modification of the interface that does no modify its ther-
modynamic description will not impact Υ. However, to access σ, a second integral has to be
calculated. The integration variable being x, the results will be impacted by a geometrical
deformation of the interface.
From Eq. (5.164), it appears that the value of σ results from two main contributions. The
first is the energetic behavior of the interface through its ability to store capillary energy. This
contribution is driven purely by the thermodynamics through µEoS − µsat. The second is the
inherent geometry of the interface which is controlled by the interfacial constraints through,
for instance, the value of λ. The impact of these two components will have to carefully be
accounted for when trying to modify key aspects of the interface, as it will be done in Part III
of this manuscript.

5.4.2.4 Impact of λ on the surface tension and the interface width

The impact of the capillary coefficient on the interface width has already been explored Eq.
(5.146). The same analysis can be carried out for the surface tension using the same methodol-
ogy (multiplying the capillary coefficient λr by a coefficient φ2). To express the surface tension
σφ associated with the new density profile ρφ, one can start by transforming Eq. (5.154) (for
an arbitrary λ), substituting the variables x and ρ. Similarly to Eq. (5.159), the resulting
integral has limits that do not depend on the geometry of the interface.

σ =

xl∫
xv

λ

(
∂ρ

∂x

)2

dx =

xl∫
xv

λ
∂ρ

∂x

∂ρ

∂x
dx =

ρl∫
ρv

λ
∂ρ

∂x
dρ (5.165)

With this new expression, the new surface tension σφ can be compared to the surface tension
σr of the reference profile, it comes that:

σφ =

ρl∫
ρv

λφ
∂ρφ

∂x
dρ =

ρl∫
ρv

φ2λr 1

φ

∂ρr

∂x
dρ = φ

ρl∫
ρv

λr∂ρ
r

∂x
= φσr (5.166)
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Finally, the dependency of σ on λ is similar to that of w and is given by:

σ ∝
√
λ (5.167)

The correlations (5.146) and (5.167) have been retrieved analytically near the critical point
by Jamet (1998), numerically observed by Gaillard (2015) and by ourselves as shown in Fig.
5.14.
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Figure 5.14: Evolution of the interface thickness w and surface tension σ with the capillary coefficient
λ for oxygen O2 at different reduced temperature T/Tc. Results in logarithmic scale

5.4.3 Evaluation of the capillary coefficient λ

The impact of the capillary coefficient λ on both the interface width and surface tension has
been demonstrated. From a more general point of view, the contribution of λ to the interface
behavior is clearly apparent. The ability to properly determine its value is primordial to
achieve correct simulations. Granted that σ and w are functions of the temperature (result
that is widely confirmed experimentally), λ should, at least at the first order, depend solely
on the temperature as well.

5.4.3.1 Evaluation from molecular theory

By relying on the molecular theory, one can obtain a precise expression of the capillary coef-
ficient. For instance, thanks to the developments from Rocard (1967) recalled in Sec. 5.1.1,
the expression of λ can be read directly using Eq. (5.7a), it is written:

λ =
aζr2

0

20M2
(5.168)

The molar mass M and the penetrability radius r0 solely depend on the fluid nature. Coef-
ficients a and ζ given by Eqs. (5.5) and (5.6) depend on the microscopic distribution of the
molecular central forces of interaction which, at the first order, depends on the fluid temper-
ature.
Another formula based on molecular theory has been derived in Yang et al. (1976), based on
the work from Lovett et al. (1973). It involves the direct correlation function C introduced in
Ornstein and Zernike (1914) and is written:

λ = kBT
N 2
A

6M

∫
C (x)x2 dx (5.169)
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where kB is the Boltzmann constant. For very refined chemical computations, formulas as
precise as Eqs. (5.168) or (5.169) are required. However, in the context of CFD simulations
they are of a limited practical use. Firstly, their different constituents are difficult to access
or of a great computational cost. Secondly, the surface tension values predicted by the Sec-
ond Gradient theory using these formulas tend to significantly differ from experimental data
unless extremely precise equations of state are used. Likewise, the computational cost of such
equations render their use on great scale simulations hardly conceivable. Despite their theoret-
ical interest, Eqs. (5.168) and (5.169) have not been retained in our study for the previously
mentioned reasons.

5.4.3.2 Evaluation from the surface tension

Simpler analytical correlations can be found for λ by exploiting experimental measurements
or analytical developments. Indeed, using, Eq. (5.154) backwards at a given temperature, the
value of the capillary coefficient can be iterated upon until the surface tension predicted by
the Second Gradient theory matches a reference value. This provides the great advantage to
dilute the inaccuracies of the equation of state directly into the value of λ.
A dense literature exists around the derivation of such correlations and a non-exhaustive
list can be found in Lin et al. (2007). In the same study, the authors propose a more
generic correlation which, in particular, achieve better results for strongly polar fluids. They
formulated correlations for the Volume Translated Peng-Robinson and the Volume Translated
Soave-Redlich-Kwong equations of state. They combined the later equations with precise
experimental surface tension data as a reference. For the Volume Translated Soave-Redlich-
Kwong equation, the capillary coefficient is given by:

λ (T ) = a (T )

(
bM

NA

)2/3

exp
[
k0 + k1 ln (1− Tr)− k2 (ln (1− Tr))2

]
(5.170)

where a and b are the specific cohesion pressure and the specific excluded volume from the
equation of state and Tr = T/Tc is the reduced temperature. Coefficients k0, k1 and k2 are
given by:

k0 = −3.471 + 4.927Zc + 13.085Z2
c − 2.067ω + 1.891ω2 − 4.600 · 10−6ϑ2

r (5.171a)

k1 = −1.690 + 2.311Zc + 5.644Z2
c − 1.027ω + 1.424ω2 − 1.403 · 10−6ϑ2

r (5.171b)

k2 = −0.318 + 0.299Zc + 1.710Z2
c − 0.174ω + 0.157ω2 + 0.077 · 10−6ϑ2

r (5.171c)

where the critical compressibility factor is given by Zc = Pc/(ρcrTc), ω is the acentric factor
and the reduced dipole moment is given by ϑr = ϑ/

(
1.01325T 2

c

)
where the dipole moment ϑ is

expressed in Debye. This formula has been successfully applied in Dahms (2015) and Gaillard
(2015) among others.

In order to simplify even more the formula, we derived a correlation of our own using the
analytical formula from Curl and Pitzer (1958) given by Eq. (5.172) to evaluate the surface
tension.

σ (T ) = σ0 (1− Tr)11/9 (5.172)

with:

σ0 = T 1/3
c P 2/3

c

10−19/3 (1.86 + 1.18ω)

19.05

(
3.75 + 0.91ω

0.291− 0.08ω

)2/3

(5.173)
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We were able to extract a simple correlation also based on the corresponding state principle,
producing the formula:

λ (T ) = c1 (1− Tr)0.55 + c2 (1− Tr)−0.55 (5.174)

where c1 and c2 are two constants depending on the considered fluid. It has been validated for
a wide range of simple fluids, some values of constants c1 and c2 are given in Tab. 5.1. Both
Lin’s and our correlation are compared Fig. 5.15.

Fluid c1

(
×109

)
c2

(
×109

)
H2 30.434 7.4985
N2 0.75759 0.69235
O2 0.52449 0.45867
F2 0.29025 0.27136
He 1.5538 -0.26531
Ne 0.14707 0.10511
Ar 0.34344 0.27835
Kr 0.15165 0.12305
Xe 0.13297 0.10946
CH4 4.3025 3.6256
C2H6 3.5776 3.8584
C3H8 3.3339 4.0523
C4H10 3.2404 4.3524

Table 5.1: Coefficients c1 and c2 used for the calculation of the capillary coefficient using Eq. (5.174).
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Figure 5.15: Comparison of Lin’s and our simplified correlations for the calculation of the capillary
coefficient λ of nitrogen N2 with the temperature T

From Fig. 5.15, it appears that both Lin’s correlation and our own correlations give the
same trend, notwithstanding the difference of equation of state and reference surface tension
used to extract them. Over a wide range of temperature, the hypothesis of a constant λ is
numerically acceptable. For both correlations, the capillary coefficient diverges in the vicinity
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of the critical temperature (126.192 K for nitrogen). For these temperatures, the constant λ
hypothesis does not hold anymore. This divergence is a direct consequence of evaluating λ by
fitting the surface tension with cubic EoSs.
Indeed, as the temperature increases, the interface widens and thus the density gradient di-
minished at rate that is more important than the rate at which the surface tension decreases.
By virtue of Eq. (5.155), λ has to compensate for this unbalance and thus soars near the
critical temperature where it can no longer be considered to be constant. Ans given that
the interface eventually becomes infinitely wide once the regime turns to supercritical, the
capillary coefficient is "compelled" to diverge.
By reverting to the fundamental definition Eq. (5.168), the use of kinetic theory of gases
allows to show that the actual value of λ converges towards a constant as the temperature
increases, as shown in McCoy et al. (1981) for the Lennard-Jones potential. Moreover, the
energetic considerations made by the authors in Cahn and Hilliard (1958) have no reasons to
be discarded above critical conditions meaning that the contributions from λ should still be
considered in said conditions despite no actual interface being present. However, as already
mentioned in Sec. 5.4.3.1 and as explained in Lin et al. (2007), the surface tension values
obtained evaluating λ with expressions from the kinetic theory systematically lead to strong
disparities with experimental data.
However, since our primary concern is to ensure that the interface is wide enough to be
captured on the simulation mesh, the simplified correlation shown in Fig. 5.15 can still be
a useful simplification. The issue caused by the choice of simplified correlation such as Lin’s
or our own is rather physical than a numerical and as such, of a lesser degree of importance.
In particular, when the temperature rises, the interface widens, even for a constant capillary
coefficient. In that regards, the hypothesis of a constant capillary coefficient is an acceptable
and useful simplification. Moreover, it allows a smooth transition between the subcritical
and supercritical regimes without loss of generality. Therefore, if not explicitly mentioned
otherwise, λ will be considered as independent of the temperature in the rest of the study.

Conclusions

In this chapter, we have thoroughly described the founding principles behind the Second Gra-
dient theory. Using the Virtual Power Principle, we derived the equations of motion for a
capillary fluid. These equations have been particularized using the first and second principles
of thermodynamics to express the different new fluxes involved. The mechanical description
of the interface has been completed with the derivation of the new thermodynamics associated
with the capillary terms.

These sets of equations have been derived under well defined and physically sound hypotheses
without loosing the essence behind the impact of capillary phenomena on a fluid behavior in
order to achieve a fully consistent model. Additionally, key macroscopic values of the interface,
namely the width and the surface tension, have been defined with the same precaution. The
impact of the parameters of the model on these two values has been explored and quantified
to some extent.

Moreover, apart from dedicated numerical schemes, the system of equations should not require
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any special additional treatment and by solving them it is, in principle, possible to perform
simulations where multiple phases and interfaces can coexist without the need to treat each of
these elements separately. In terms of numerical simulation, the interfaces do not need to be
tracked or reconstructed and any interaction between the different phases, in particular mass
exchange and phase change, will be intrinsically treated by the physical model.

Chap. 7, the mechanical and thermodynamic equations of the theory are implemented in the
real gas solver AVBP presented Chap. 6, to numerically validate the model. As it will be
shown in Part III, an additional effort will be required to contemplate real scale simulations
as the interface widths predicted by the native model fall way bellow the computational mesh
resolutions affordable in practice. To that effect, the behavior of the interface will have to be
modified and the design of these alterations will strongly rely on the theoretical developments
detailed in this chapter.



Part II

Implementation of the Second
Gradient model in the solver AVBP





Chapter 6

Presentation of the AVBP-RG solver

The main purpose of this chapter is to provide an insight on the numerical tools that have
been used to produce the numerical results presented in this work. The simulations have been
carried out using the compressible AVBP solver developed jointly by CERFACS and IFPEN,
in particular the version dedicated to the simulation of real gas flows, AVBP-RG, developed
in collaboration with EM2C, CNRS. Taking advantage and building around this already well
tested and qualified solver was a key point for this PhD work.
This chapter should allow the reader to better grasp the modifications induced in the code by
the Second Gradient and the inherent difficulties associated to said modifications, as detailed
in Chap. 7 and Chap. 8 but more importantly by the interface thickening method presented
in Chap. 9.

The first section 6.1 provides a broad description of the solver and its main components as well
as an insight into the driving philosophies behind its development. In particular, the specifics
of the Cell-Vertex framework, which is the approach favored in AVBP, and its application to
Navier-Stokes equations are specifically explored.

In the second section 6.2, the principal advection and diffusion schemes implemented in AVBP
are described. A particular attention is given to the latter diffusion schemes as they present a
strategic aspect for the implementation of the Second Gradient model as it is expanded upon
in Sec. 7.1.

Eventually, the third section is dedicated to the boundary conditions in AVBP. Their im-
plementation through the characteristics approach is briefly described to better grasp the
difficulty of its adaptation to the Second Gradient model as explained in Secs. 7.2.1 and 7.2.2.
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6.1 Main features of the AVBP solver

6.1.1 Overwiew of the solver

6.1.1.1 Brief history of AVBP

AVBP is a code created in 1993 and now jointly owned by CERFACS and IFPEN who ensure
its development and maintenance. Its main purpose is to solve compressible Navier-Stokes
equations and it has been built from the start so as to support unstructured and hybrid
meshes ensuring its flexibility and usability for simulations on complex geometries and indus-
trial configurations. Its numerical core has been implemented by Schönfeld and Rudgyard,
see Schönfeld and Rudgyard (1999), with a special care taken from the beginning to ensure
its ability to run massively parallels simulations on supercomputers, see Gourdain, Gicquel,
Montagnac, Vermorel, Gazaix, Staffelbach, Garcia, Boussuge, and Poinsot (2009), Gourdain,
Gicquel, Staffelbach, Vermorel, Duchaine, Boussuge, and Poinsot (2009). It also benefits from
multiple inputs coming from an ever-growing community in both academic and industrial
spheres. Though capable of Direct Numerical Simulations, efforts have been made to increase
its Large Eddy Simulation capabilities, see Lamarque (2007). Its thermodynamics have been
extended to support simulations with real gas, see Schmitt (2009), and models to deal with
two-phase flows have incorporated, see Boileau (2007).

6.1.1.2 Numerical aspects

AVBP functioning relies on multiple key numerical methods of which roles are listed bellow:
1. A numerical scheme to treat the convective part of the Navier-Stoke equations.The dif-

ferent type of numerical methods available in AVBP for the convection will be explored
in the following and their interaction with the Second Gradient model will be explored
in Chap. 7

2. A numerical scheme to treat the diffusive terms (viscous and thermal fluxes) of the
Navier-Stokes equations. This aspect of the code has not been significantly modified
during our work and it will not be explored in this document but details can be found
in Lamarque (2007)

3. A numerical scheme to treat with source terms, most of the time chemical ones (except,
for instance, in two-phase flows) and independent of the thermodynamics. Likewise, this
aspect is not treated in this manuscript but is detailed in Lamarque (2007)

4. A proper treatment of the boundary conditions to adequately impose values at the in-
lets, outlet and walls of the computational domain. Multiple paradigms are available in
AVBP but the formulation used is generally based on the Euler/Navier-Stokes charac-
teristic decomposition from Poinsot and Lele (1992). Interactions between the boundary
conditions and the Second Gradient will be explored in Chap. 7

5. A proper management of the parallelization to ensure scalability up to thousands of com-
putational cores, not addressed here but explicated in Gourdain, Gicquel, Montagnac,
Vermorel, Gazaix, Staffelbach, Garcia, Boussuge, and Poinsot (2009), Gourdain, Gicquel,
Staffelbach, Vermorel, Duchaine, Boussuge, and Poinsot (2009)
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6.1.1.3 Convective schemes in AVBP

At its core, the spatial discretization of the equations in AVBP is based on a Finite Volume
approach which allows to solve the Euler/Navier-Stokes equations through an integration over
the cells of the domain. A specific formulation of this integration allows to recover a framework
that can be assimilated to Finite Element methods. The accessible types of cells are triangles
and quadrilaterals in two dimensions, tetrahedrons, hexahedrons, pyramids and prisms in three
dimensions. Different formulations of the Finite Volume approach exits, the main three are
listed below and illustrated in Fig. 6.1

1. The Cell-Centre approach is the most classic where the nodes of the mesh are used to
create the volumes of control trough which the fluxes are calculated using an averaging
procedure over the edges of the cells. The variables are stored at the center of the cells
and are updated at the same location. The precision of this method strongly depends
on the quality of the mesh.

2. The Vertex-Centre approach resembles the Cell-Centre since the variables are still stored
at the center of the cells. However, the volumes of control are created using the center
of the cells and the dual mesh, where the variables are updated, instead of the nodes of
the mesh. The variables are thus stored and updated at different locations. The fluxes
are calculated in the same way as for the Cell-Centre approach and this method tends
to suffer the same drawbacks.

3. The Cell-Vertex approach is in-between the two first formulations. The variables are
stored at the mesh nodes but are updated at the center of the cells. The volumes of
control are given by the nodal mesh as in the Cell-Centre formulation and fluxes are
also obtained trough averaging over the cells egdes. This approach is independent of
the type of cells used and is robust even for ill-conditioned cells, making it suitable for
unstructured and hybrid meshes. This formulation has been selected for AVBP.

Cell−Centre

Nodal mesh Dual mesh

Vertex−Centre

Variable storage Variable update

Cell− Vertex

Volume of control

Figure 6.1: Schematic representation of the meshes used for the three man formulations of Finite
Volume methods

6.1.2 Residual distribution in the Cell-Vertex formulation

In the following, the framework of the Cell-Vertex is further detailed. As a starting point, the
non-reactive Euler/Navier-Stokes equations are considered (without capillary terms) and can
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be written in the conservative form:

∂U

∂t
+∇ · F = 0 (6.1)

where U is the vector of conservatives variables U = (ρ, ρu, ρv, ρw, ρe)T with ρ, u, v, w and
e respectively the density, the x, y, z velocity component and the specific total energy . F is
the associated stress tensor which can be split in two parts as shown in Eq. (6.2). The first
part Fc is a pure convective tensor depending only on the components of U and the second
Fd is a diffusive stress tensor depending on U but also on its spatial derivative ∇U.

F = Fc (U) + Fd (U,∇U) (6.2)

The convective schemes of AVBP only treat the convective part of the fluxes, i.e. Fc. As
such, only this aspect of the numerical method will be expanded upon here. For more details
regarding the treatment of the diffusive part, the reader can refer to the discussion in Sec.
6.2.3 or the more comprehensive description in Lamarque (2007).

Notations
In the rest of the subsection, the following notations will be used.
• The subscript ∗C will always refer to a count over a number of cells, in particular NC is

the total number of cells in the computational domain Ω
• The subscript ∗N will assume the same role for the nodes and NN will be the total

number of nodes in the domain
• The indexes e and k will be used exclusively to identify cells (or volumes of control) in

the domain Ω. For e ∈ {1, ..., NC}, N e
N is the total number of nodes delimiting the cell

Ωe (idem fo k)
• The indexes i and j will be used exclusively to identify nodes in the domain Ω and for
i ∈ {1, ..., NN}, N i

C is the total number of cells to which the node i belongs to (idem for
j)
• The index e will be used preferentially to count cells over the whole domain whereas k

will used preferentially to count cells affiliated to a given node
• Likewise, the index i will be used preferentially to count nodes over the whole domain

whereas j will be used preferentially to counts node affiliated to a given cell
A simplified description of the Cell-Vertex procedure is given in Fig. 6.2. The nodes (where
variables are stored) are used to evaluate the fluxes residuals in the volumes of control which
are the cells of the primal mesh. Once the residuals have been evaluated for all the cells, they
are redistributed to all the nodes to update the values of the variables.
More precisely, let Ωe be a volume of control, represented in Fig. 6.3 as a triangle to simplify
the explanations without loss of generality. The averaged residual RΩe of the convective flux
over Ωe is obtained through an integration of its divergence over the domain which can be
turned into a surface integral thanks to Green’s theorem:

RΩe =
1

VΩe

∫
Ωe

∇ · Fc dV =
1

VΩe

∫
∂Ωe

Fc · ne dA (6.3)

where VΩe is the surface(2D)/volume(3D) of the volume Ωe, ∂Ωe its boundary and ne the
associated normal vector.
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Residual calculation : Vertex − > Cell Residual distribution : Cell − > Vertex

Figure 6.2: Schematic representation of the Cell-Vertex procedure : the residuals are calculated "at
the cells" and are then redistributed to the cells vertices

~ne1, 3

~ne1, 2

~ne2, 3

~Se1

~Se2

~Se3

Ωe

Figure 6.3: Schematic representation of triangular volume of control (2D) with the faces (edges)
normal ne

i,j and the nodes normals Se
j

To calculate the surface integral Eq. (6.3), the flux is assumed to vary linearly over the edges
which gives the numerical residual:

RΩe =
1

dVΩe

Ne
N∑

j=1

Fj
c · S e

j (6.4)

d is the number of dimensions that are considered, Fc
j
is a numerical approximation of the

convective flux tensor at the node j and S e
j the "normal" to the node j. Numerically, S e

j

is defined as the average of the normals to the element faces of Ωe containing the node j,
weighted by their length(2D)/surface(3D). It allows to condense the geometrical information
initially contained by the edges of Ωe to the nodes me

jj∈{1,...,Ne
N}
. The procedure of taking the

information from the nodes to the cells, as done for the flux residuals, is recurrent in AVBP
and referred to as gather. The consistency of the method and the linearity of the divergence



208 Chapter 6 - Presentation of the AVBP-RG solver

are ensured by Eqs. (6.5) and (6.6) respectively:

Ne
N∑

j=1

S e
j = 0 (6.5)

1

d2

Ne
N∑

j=1

x j · S e
j = VΩe (6.6)

where x j = xj1e1 + xj2e2 (in 2D) is the vectorial position of the node j of Ωe.
In 3D cases, if the surface is a quadrilateral, it is first cut along a diagonal and the integration
is made over the two subsequently created triangles. The final flux residual is the average of
the residuals over the four triangles obtained by cutting successively along the two diagonals.
Again, this is done to ensure the linearity of the calculated flux integral and consequently a
satisfying precision even for meshes presenting strong irregularities.

Once the flux residuals have been calculated over all cells, they are distributed to the nodes
in order to update the conservative variables vector U. For a node i of the mesh, the spatially
discretized scheme is written:

dUi

dt
= − 1

Vi

N i
C∑

k=1

VΩkD
i
Ωk
·RΩk (6.7)

This sum is done over all the elements Ωk containing the node i, Di
Ωk

is the distribution matrix
of the element Ωk to the node i and Vi is the volume associated to the node i defined by:

Vi =

N i
C∑

k=1

VΩk

Nk
N

(6.8)

The scheme is proven conservative if for all the elements Ωe:

Ne
N∑

j=1

Dj
Ωe

= I (6.9)

The procedure in Eq. (6.7) of distributing the values calculated over the cells to the nodes
is also recurrent in AVBP and referred to as scatter. The procedures gather and scatter are
central to the calculation paradigm of AVBP and are inherently expensive. As such, a special
care has been given to the implementation of these procedures.

6.2 Numerical schemes in AVBP

6.2.1 Advection schemes

The choice of the matrices Dj
Ωe

will define the different schemes.
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6.2.1.1 Central differences

The simplest choice for the distribution matrix is ∀e ∈ {1, ..., NC} and ∀j ∈ {1, ..., N e
N}:

DCV,j
Ωe

=
1

N e
N

I (6.10)

It corresponds to an equal repartition of the cell residual to the surrounding nodes, it matches
the second order central finite difference scheme on a 1D regular mesh. As such, this scheme
has no dissipation but suffers an important dispersion what makes it highly unstable. It
requires an adapted time marching scheme like high order Runge-Kutta time integration and
is often used with an additional artificial viscosity.

6.2.1.2 Lax-Wendroff

Multiple schemes in AVBP rely on a Taylor expansion in time of the solution U and then the
replacement of the time derivatives by spatial derivatives, as inspired by the work in Donea
(1984). For instance, to derive the Lax-Wendroff scheme (see Ni (1981), Hall (1984)), a second
order Taylor expansion in time of U is performed (the superscripts ∗n, ∗n+1 denotes at which
temporal iteration a value is calculated):

Un+1 = Un + ∆t

(
∂U

∂t

)n
+

1

2
(∆t)2

(
∂2U

∂t2

)n
+O

(
(∆t)3

)
(6.11)

Time derivatives are then traded for spatial derivatives by reinvesting Eq. (6.1) as follows:(
∂U

∂t

)n
= −

(
∇ · Fc

)n (6.12)

(
∂2U

∂t2

)n
= −

(
∂
(
∇ · Fc

)
∂t

)n
≈ −∇ ·

(
∂Fc

∂t

)n
(6.13)

≈ −∇ ·
((

∂Fc

∂U

)n
·
(
∂U

∂t

)n)
(6.14)

=∇ ·
(
FU ·

(
∇ · Fc

))n
(6.15)

Injecting the spatial derivatives in Eq. (6.11), the scheme can be written as:

Un+1 −Un

∆t
= −

(
∇ · Fc

)n
+

∆t

2
∇ ·

(
FU ·

(
∇ · Fc

))n
+O

(
(∆t)2

)
(6.16)

Here, the third order tensor FU is the jacobian of the convective flux tensor Fc as described in
Schmitt (2009) for Euler fluxes when real gas EoS are considered. This tensor is a key element
to the Lax-Wendroff scheme as well as the other Taylor-Galerkin schemes that are most often
used in AVBP. The difficulty to access this tensor in the framework of the Second Gradient
theory will be discussed in Sec. 7.2.1. Using Eq. (6.16), one can express the distribution
matrix with ∀e ∈ {1, ..., NC} and ∀j{1, ..., N e

N}:

DLW,j
Ωe

=
1

N e
N

I−
(N e

N)2

2d

∆tΩe
VΩe

FΩe
U · S e

j (6.17)
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where ∆tΩe is the time-step calculated for the element Ωe, S e
j is the normal vector of the node

j in regard to the element Ωe and FU

Ωe
is the jacobian tensor calculated a the center of the

element Ωe.
From Eq. (6.17), one gets that this scheme is essentially equivalent to the Central Difference
scheme with the addition of a dissipative term. This makes the finite volume Lax-Wendroff a
precise, stable and affordable second order scheme however strongly dissipative.

6.2.1.3 Galerkin finite element discretization

Practically in AVBP, the Taylor time expansion explained for the finite volume Lax-Wendroff
scheme is often associated with a Galerkin spatial decomposition to generate the so-called
Taylor-Galerkin schemes introduced in Donea (1984) and Donea et al. (1987). It has been
proven that for centered schemes, the Cell-Vertex approach and the Galerkin finite element
approach are equivalent.
In this approach, one defines a functional space Φ = {φi, i ∈ {1, ..., NN} where φi is defined
such as ∀ (i, j) ∈ {1, ..., Nnode}, φi (x j) = δij . Classically, φi is supposed to be a first-degree
multivariate polynomial (element P1). The discretized solution u and convective fluxes f are
then given by :

u (t, x ) =

NN∑
i=1

Ui (t)φi (x ) (6.18)

f (t, x ) =

NN∑
i=1

Fi
c (t)φi (x ) (6.19)

And therefore solving Eq. (6.1) amounts to finding u such as ∀i ∈ {1, ..., NN}:

〈
∂u

∂t
+∇ · f | φi

〉
=

∫
Ω

(
∂u

∂t
+∇ · f

)
φi dV = 0 (6.20)

Using Eqs. (6.18) and (6.19), one can express Eq. (6.20) as :

∀i ∈ {1, ..., NN},
NC∑
e=1

∑
j|j∈Ωe

dUj

dt

∫
Ωe

φiφj dV +

NC∑
e=1

∑
j|j∈Ωe

Fi
c ·
∫
Ωe

φi∇φj dV = 0 (6.21)
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In particular, the nodal distribution of the cells residuals from Eq. (6.7) can be introduced:

NC∑
e=1

∑
j|j∈Ωe

Fi
c ·
∫
Ωe

φi∇φj dV =
∑
i∈Ωk

∑
j|j∈Ωk

Fi
c ·
∫
Ωk

φi∇φj dV (6.22a)

=
∑
i∈Ωk

∑
j|j∈Ωk

Fi
c ·∇φj

∫
Ωk

φi dV (6.22b)

=
∑
i∈Ωk

∑
j|j∈Ωk

Fi
c ·∇φj

VΩk

Nk
N

(6.22c)

=
∑
i∈Ωk

VΩk

Nk
N

∑
j|j∈Ωk

Fi
c ·∇φj (6.22d)

=
∑
i∈Ωk

VΩk

Nk
N

∑
j|j∈Ωk

Fi
c · −1

dVΩk

S i (6.22e)

NC∑
e=1

∑
j|j∈Ωe

Fi
c ·
∫
Ωe

φi∇φj dV =
∑
i∈Ωk

VΩk

Nk
N

RΩk (6.22f)

Remark:
Eq. (6.21) is often written in a matrix form :

Md [U ]

dt
+K :

[
Fc
]

= 0 (6.23)

WhereM is the mass matrix of size NC×NC and K is a third order tensor of size NC×d×NC

(granted that [U ] is of size NC × Ncons and
[
Fc
]
is of size NC × d × Ncons, Ncons being the

number of scalar conservative variables) defined by:

Mij =

∫
Ω

φiφj dV (6.24)

Kijk =

∫
Ω

φi∇φk dV · ej =

∫
Ω

∂φi
∂xj

φk dV (6.25)

The fact that the mass matrix is not a priori diagonal makes the time integration of such
schemes implicit asM has to be inverted. The subsequent problems and strategies to overcome
them are discussed in Sengupta (2004), Hirsch (2007) and Lamarque (2007). Noticeably, a
finite element version of the Lax-Wendroff scheme exists in AVBP.

6.2.1.4 Galerkin Runge-Kutta scheme

The finite element Galerkin Runge-Kutta scheme of AVBP is also based on a Taylor expansion
in time of the equation and a finite element discretization of the equations. It is however
allied with a second order Runge-Kutta method for the time integration. By not replacing the
time derivatives with spatial derivatives, it avoids the requirement of evaluating the Jacobian
tensor of the fluxes. This scheme has a third order in space and has no dissipation, making



212 Chapter 6 - Presentation of the AVBP-RG solver

it very precise but at the same time very unstable. Although it is slightly more expensive,
the overhead cost varying from case to case usually around +20%, the gain in precision and
robustness relatively the mesh organization often makes it worth it. For these reasons, and
others explored in Chap. 7, this scheme has been preferentially used to carry out simulations
with the Second Gradient.

6.2.1.5 Two-step Taylor-Galerkin (TTG) schemes

AVBP also contains a set of Taylor expansion based schemes, of which expressions resemble
that of the Lax-Wendroff with the exception that the expansion is performed in two steps
instead of one. That two-step time expansion is associated with a Galerkin time-space substi-
tution of the derivatives to achieve the final discretization. These schemes have a third order
in both time and space for a reasonably affordable cost. More importantly, they are much
less dispersive and dissipative than second order schemes which make then suitable for Large
Eddy Simulations.

6.2.2 Temporal integration

For the time marching, AVBP uses three explicit methods, that are automatically selected
so as to be consistent with the chosen convective scheme (pure finite volume, Lax-Wendroff
coupled discretization, Taylor-Galerkin finite element full discretization). Though different in
essence, for the sake of modularity they have been expressed and implemented in the code so
as to follow the same paradigm, exposed in the following paragraph.
All the time integration methods of AVBP can be written as am-step low storage Runge-Kutta
scheme of which form is given by:

U
n,(0)
i = Un

i (6.26a)

U
n,(1)
i = Un

i − α1∆tR
n,(1)
i = Un

i − α1∆tRi

(
Un,(0)

)
(6.26b)

...

U
n,(m−1)
i = Un

i − αm−1∆tR
n,(m−1)
i = Un

i − αm−1∆tRi

(
Un,(m−2)

)
(6.26c)

Un+1
i = Un

i −∆tR
n,(m)
i = Un

i −∆tRi

(
Un,(m−1)

)
(6.26d)

The coefficients of the method α1, ...αm−1 define its order, precision and stability domain.
The low storage appellation refers to the fact that at every substep of the time integration,
the only information stored are the reference time solution Un and the last substep solution
Un,(j) thus allowing to minimize the memory space required. This is done at the expanse of
the method efficiency since most of the time, more substeps are needed to reach the same time
accuracy when compared to a classic Runge-Kutta method. For instance, when used with a
non Taylor-based scheme, at least three steps are required to achieve 2nd order, four to achieve
3rd order and at least ten for the 4th order. This partially justifies why TTG schemes are
much often preferred to perform precise simulations at a reasonable cost.
For our simulations, the time integration methods require both three steps with the following
coefficients: (α1 = 1/2;α2 = 1/2) for the Central difference scheme and (α1 = 1/3;α2 = 1/2)
for the Galerkin Runge-Kutta scheme.
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To ensure the overall stability of the schemes, the time step must be chosen with precaution
since most of them are submitted to a CFL number (Courant-Friedrichs-Lewy) restriction.
An additional care must be taken when diffusion is incorporated to the equations which often
leads to an even more restrictive time step. The corresponding expressions can be found in
Lamarque (2007).

6.2.3 Diffusive terms

AVBP also possesses numerical schemes specifically dedicated to handle diffusive terms in the
NS equations. These terms, modeled by the tensor Fd, are usually associated with viscosity
or thermal diffusion and share the feature of involving spatial derivatives of the state vector
∇U in their calculation. Two strategies have been designed in AVBP to handle diffusive terms
from the NS equations. Hereunder, the two methods are described and applied to the diffusion
of a scalar in order to better grasp their specific behavior.

6.2.3.1 Description of the methods

The 4∆ method
The first one, referred to as 4∆ for reasons that appear clearer once the method is described,
methodically follows the Cell-Vertex approach defined for the convective fluxes. The initial
step consists in evaluating the gradients∇U, necessary to calculate the diffusive terms, at the
primal mesh nodes where the conservative variables U are also known. To do so, a gather -like
procedure is done, as defined in Eq. (6.27) for a cell Ωe, to evaluate the gradient at the dual
mesh nodes:

(∇U)Ωe
= − 1

dVΩe

Ne
N∑

j=1

UjS e
j (6.27)

It is then followed by a scatter procedure to obtain the gradients values at the primal mesh
nodes, which, for a node i, is written as:

(∇U)i =
1

Vi

N i
C∑

k=1

VΩk

Nk
N

(∇U)Ωk
(6.28)

The numerical diffusive fluxes are then evaluated at the primal mesh nodes using the gradients
from Eq. (6.28):

Fi
d = Fd (Ui, (∇U)i) (6.29)

Eventually, the divergence of the diffusive fluxes is obtain similarly to that of the convective
fluxes only that the distribution matrix is chosen from the Central Differences scheme as given
by Eq. (6.10). The gather -scatter sequence for a cell Ωe and a node i becomes:

(
∇ · Fd

)
Ωe

=
1

dVΩe

Ne
N∑

j=1

Fj
d · S e

j (6.30)

(
∇ · Fd

)4∆

i
=

1

Vi

N i
C∑

k=1

VΩk

Nk
N

(
∇ · Fd

)
Ωk

(6.31)
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This approach, despite abiding by the Cell-Vertex approach, presents multiple shortcomings:
it requires two gather -scatter sequences which makes it computationally expensive, it is partic-
ularly non-dissipative (which in some configurations is arguably a desirable feature but usually
not in very sensitive cases), it has a wide stencil since two layers of nodes are necessary to
evaluate the divergence which incidentally makes it unable to dissipate perturbations with
small characteristic length which are common in our type of simulations.
For those reasons and several other more specific, this approach is often discarded in AVBP
(especially for LES simulation, although not a concern for our current study).

The 2∆ method
To alleviate the drawbacks of the 4∆ method, a second approach, dubbed 2∆, has been
designed in AVBP. It departs from the Cell-Vertex philosophy to rely on a Galerkin-like
approach. Essentially, the main modification consists in evaluating the diffusive fluxes directly
at the cell vertices on the dual mesh.
The procedure can be laid down as such: the gradients are still initially calculated in the cell
Ωe as in Eq. (6.27), the diffusive fluxes are then evaluated in situ following Eq. (6.32) (it
should be noticed that this procedure requires the conservative variable to be gathered to the
cell to obtain UΩe)

FΩe
d = Fd

(
UΩe , (∇U)Ωe

)
(6.32)

The divergence of the vertex-centered diffusive terms can then be evaluated at the node i with
Eq. (6.33): (

∇ · Fd
)2∆

i
=

1

Vi

N i
C∑

k=1

FΩk
dSk

i (6.33)

With this approach, only one gather -scatter sequence is necessary greatly reducing the com-
putational cost, only one layer of nodes is required, a smaller stencil that allows the scheme
to dissipate the smallest scales oscillations down to twice the mesh step size.

6.2.3.2 Application to scalar diffusion

To better grasp the differences between the two approaches, a regular one-dimensional setting
with a constant mesh size ∆x is used to simplify the developments.

Let Fd be a diffusive flux associated to the scalar field a such as Fd = ∂a/∂x for which the
numerical divergence∇·Fd has to be evaluated. For the node i the procedure associated with
the 4∆ method reads:(

∂a

∂x

)
i

=
ai+1 − ai−1

2∆x
(6.34)

Fi
d = Fd

(
ai,

(
∂a

∂x

)
i

)
=

(
∂a

∂x

)
i

(6.35)(
∇ · Fd

)4∆

i
=

1

2∆x

((
∂a

∂x

)
i+1

−
(
∂a

∂x

)
i−1

)
=
ai+2 − 2ai + ui−2

(2∆x)2 (6.36)
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whereas for the 2∆ method it reads:(
∂a

∂x

)
i+ 1

2

=
ai+1 − ai

∆x
(6.37)

Fi± 1
2

d = Fd

(
ai± 1

2
,

(
∂a

∂x

)
i± 1

2

)
=

(
∂a

∂x

)
i± 1

2

(6.38)

(
∇ · Fd

)2∆

i
=

1

∆x

((
∂a

∂x

)
i+ 1

2

−
(
∂a

∂x

)
i− 1

2

)
=
ai+1 − 2ai + ai−1

(∆x)2 (6.39)

For the constant linear diffusion of a scalar variable, the behavior of both methods appears
clearly. In both cases, the divergence of the diffusive flux amounts to the Laplacian of the
variable a and both methods actually result in a 2nd order finite difference approximation
of said Laplacian. However, where the 2∆ approach leads to a classic approximation with a
three-point stencil using all three points i−1, i and i+ 1, the 4∆ one lends a five point stencil
using only one in two points thus demonstrating its inability to dissipate perturbations with
a spatial period smaller than 4∆x, especially point to point 2∆x oscillations.

6.2.4 Numerical stabilization

There exist two main phenomena that create numerical errors during the simulation and that
can possibly lead to a crash: numerical oscillations and local under-resolution. Both phenom-
ena can be encountered separately or simultaneously, so can they be tackled. In the case of
real gas simulations, these phenomena are particularly fostered by the non-linearities of the
thermodynamics and the strong coupling in the equations.

In the following paragraphs, the main strategies used for our simulations in AVBP are pre-
sented. These strategies initially designed for LES settings where the conserved variables,
represented by vector U, are supposed to have been filtered by a low-pass spatial filter G so
as to obtain a new filtered vector Ū calculated with Ū = G ∗U. The operation in G ∗U is to
be understood as a convolution, i.e.:

Ū (x ) =

∫
G
(
x − x ′

)
U
(
x ′
)
dx ′ (6.40)

From the definition of the filtering process in Eq. (6.40), the Favre average ξ̃ of a variable ξ
(other then the density) can be defined as:

ξ̃ =
ρξ

ρ̄
(6.41)

For LES applications, the filtering in Eq. (6.40) and the averaging in Eq. (6.41) are never
performed in practice. Only, the Euler or Navier-Stokes equations are modified so as to be
applied directly to the filtered/averaged variables, with in particular the appearance of new
source terms.
For the purpose of the present work however, only DNS applications are targeted. In that
prospect, both the filtering in Eq. (6.40) and the averaging in Eq. (6.41) are taken advantage
of as they prove particularly efficient to limit the unwanted numerical phenomena previously
mentioned. In particular, the filtered and averaged values are explicitly computed to then be
used in a fashion further detailed in the next two subsections.
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6.2.4.1 Filtering

To limit point-wise oscillations, an explicit spatial filter is used, inspired by the strategy in
Mathew et al. (2003) initially designed for LES application as a mean to model sub-grid-scale
variables in the filtered equations. To that effect, a low-pass filter G is introduced to be used
to perform a convolution of the conservative variable U. An approximate deconvolution Q of
G is constructed recursively following the work in Stolz and Adams (1999); Adams and Stolz
(2002). Indeed, the exact inverse of G (under additional technical assumptions not expanded
upon here) can be expressed as an infinite power series of 1−G as follows:

Qexact =
∞∑
k=0

(1−G)k (6.42)

A N -term approximation QN of Qexact can be obtained by truncating the infinite series as done
in Eq. (6.43). This truncation provides a very satisfactory approximation even for relatively
low values of N (N 6 1).

QN =
N∑
k=0

(1−G)k (6.43)

The range of wavelengths covered by QN grows with an increasing value of N . A filtered
version Ū of U can then be obtained by combining G with its approximate deconvolution QN
to get Eq. (6.44) where FN = QN ∗G.

Û = QN ∗G ∗U = FN ∗U (6.44)

The chosen low-pass filter G selected in AVBP is a classic fourth-order bi-Laplacian filter (see
Schönfeld and Rudgyard (1999)) Due to the approximate evaluation QN of G−1, the ensuing
filter FN acts as a very selective and conservative filter which removes high wavelengths. The
filter response function as a function of the wavenumber is given Fig. 6.4 for different values
N of G-filter iterations.

Flow, Turbulence and Combustion

Fig. 3 Filter response function as
a function of the wavenumber for
different values of the number of
recursion N . The value N = 1 is
a good candidate for TTG
schemes [80] used in the AVBP
solver and is chosen in the
sensor. N = 0 actually
corresponds to the reference
filter G, an approximate fourth
order derivative

the deconvolution method of Stolz et al. [79]. The explicit selective filter F is built from a
reference filter G and its approximate deconvolution Q:

̂ρ = F ∗ ρ = Q ∗ G ∗ ρ =
N

∑

n=0

(I − G)n ∗ G ∗ ρ (15)

where I is the identity operator and G is an approximate fourth order derivative [75], its
expression at node i is given by:

(G ∗ ρ)i = ρi + 1

Vi

∑

j |i∈Ωj

VΩj

n
Ωj
v

⎡

⎣

⎛

⎝

1

n
Ωj
v

∑

k∈Ωj

∇ρk

⎞

⎠

(

xΩj
− xi

) −
(

ρΩj
− ρi

)

⎤

⎦ (16)

where φi are the variables taken at the node i and φΩj
= 1/n

Ωj
v

∑

k∈Ωj
φk are the cell

averaged variables taken at cell j , Vi is the volume at node i, VΩj
is the volume of cell j

and n
Ωj
v is the number of vertices of cell j . The filter response function for F is plotted

in Fig. 3 as a function of the number of recursion. Following the dispersion properties the
TTGC scheme (see for example Figs. 6 and 7 of [76]), where dispersion errors are shown
to be negligible for normalized wavenumbers lower than 0.3, only one recursion (N=1) is
used in the sensor. The free parameter ξ acts roughtly as a threshold value and is typically
set between ξ = 0.0 and ξ = 10.0 in practical simulations.

Finally, limiters for species SYk
, mixture fraction SZ and its variance SZ′′ are computed

to locate regions with values lower than zero or greater than 1:

Sφ =
{

min(
|φ|
ε

, 1), if φ < 0.
min(

|φ−1|
ε

, 1), if φ > 1.
(17)

Slim = max(SYk
, SZ, SZ′′) (18)

with φ being Yk , Z or Z′′ and ε = 0.1. The final limiter Slim is taken as the maximum of
the three limiters (Eq. 18)

Conservative artificial viscosity At the end of the temporal iteration (i.e. after the two sub-
steps of the TTGC scheme) and before the application of the boundary conditions, second-
order derivatives are used to add artificial diffusion and filter the conservative variables

Figure 6.4: Response of the filter FN as a function of the normalized wavenumber for different
numbers N of G-filter iterations, taken from Schmitt (2020)

The magnitude of filter G can be controlled with a coefficient which constitutes, together with
the number of filter iterations N (usually 1 for Galerkin schemes), parameters that are used
to configure the simulation beforehand.
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6.2.4.2 Numerical viscosity

For real gas flow, a specific artificial diffusion tool, referred to as LAD viscosity, has been
designed and is detailed in Schmitt (2020). A specific sensor S0

ρ is used to detect cells with
numerical oscillations of under-resolved wavelengths and is written as follows:

S0
ρ =
‖ũ · n∇ρ‖∆t

∆x

‖ρ̄− ρ̂‖
0.01ρ̄

(6.45)

In practice, a threshold Sthr can be applied to the sensor to delay its activation, which proves
useful quiet frequently. The final expression of the sensor becomes:

Sρ = max
(
0; S0

ρ − Sthr
)

(6.46)

where ∆t is the time step, ∆x the characteristic mesh cell size, n∇ρ is the normal to the
density gradient, ρ̄ the supposedly low-pass filtered density, ũ is the Favre-averaged velocity
and ρ̂ is the deconvoluted density calculated following the method in Sec. 6.2.4.1. It means
that ρ̂ = QM ∗ρ̄ where QM isM -term approximation G−1 with in particularN 6= M in general.

Using this sensor, a laplacian filter is applied to smooth the conservative variables gradient by
enforcing an artificial diffusion. The newly artificially diffused (∗AD supercript) conservative
variables can be written at a node i as follows (see Sec. 6.1.2 for the notations):

ρ̄AD
i = ρ̄i +

CAD

Vi

N i
C∑

k=1

VΩk

Nk
N

[ρ̄i − ρ̄Ωk ] Sρ,Ωk (6.47a)

(ρ̄ũ)AD
i = (ρ̄ũ)i +

CAD

Vi

N i
C∑

k=1

VΩk

Nk
N

ũΩk [ρ̄i − ρ̄Ωk ] Sρ,Ωk (6.47b)

(ρ̄ẽ)AD
i = (ρ̄ẽ)i +

CAD

Vi

N i
C∑

k=1

VΩk

Nk
N

[
(ρ̄ẽs)i − (ρ̄ẽs)Ωk

+ ẽc,Ωk (ρ̄i − ρ̄Ωk)
]

Sρ,Ωk (6.47c)

where ρ̄Ωk , ũΩk , (ρ̄ẽs)Ωk
and ẽc,Ωk are the mean surface weighted values (see Eq. (6.3)) of ρ̄,

ũ , ρ̄ẽs and ẽc over the vertices of element Ωk and CAD is the coefficient chosen for the artificial
diffusion. The mean sensor value Sρ,Ωk in the element Ωk is calculated with:

Sρ,Ωk =
1

Nk
N

Nk
N∑

j=1

Sρ,j (6.48)

The summations in Eqs. (6.47a)-(6.47c) and Eq. (6.48) are done over the mesh elements
Ωkk=1···N i

C
such as the node i belongs to said elements (see Sec. 6.1.2).

The cell velocity is assumed to be at equilibrium during the diffusion of conservative variables
in Eqs. (6.47b) and (6.47c).

The value of the threshold Sthr, along with coefficient CAD and the iteration number M of the
sensor filter are also global parameters of the simulation that can be controlled by the user.
In practice, the value of M is usually set to 1, that of CAD is set to 1 also and Sthr is taken to
be 0.
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6.3 Boundary conditions in AVBP

AVBP provides two methods to enforce Dirichlet boundary conditions (the Neumann condi-
tions are applied by modifying directly the value of the flux at the specified boundary, for
instance no mass flux at walls or imposed thermal flux, etc...). The two methods share the
principle to modify a posteriori the predicted values of the residuals at the boundaries and
correct them so that the updated conservative variables match the values prescribed by the
boundary condition.

The different examples will be treated considering the mono-dimensional Euler equations
for a single species:

∂ρ

∂t
= −∂(ρu)

∂x
(6.49a)

∂(ρu)

∂t
= − ∂

∂x

[
ρu2 + P

]
(6.49b)

∂(ρe)

∂t
= − ∂

∂x
[(ρe+ P )u] (6.49c)

where ρ, P and u are the density, pressure and velocity of the fluid, e = es + u2/2 is the total
specific energy of the fluid. The set of conservatives variables is U = (ρ, ρu, ρe)T, the associated
set of primitive variables is V = (ρ, u, P )T, the associated set of characteristic variable is
W = (W+,W−,Ws)

T and the associated flux vector is F (U) =
(
ρu, ρu2 + P, (ρe+ P )u

)T
The example considered is that of an output with a prescribed target pressure Pt. At the

time iteration n+ 1, the numerical scheme predicted a vector of characteristic values residuals
δUn

p so that the predicted conservative variables are Un+1
p = U + Un

p which might lead to
a predicted pressure Pp different from the target; what must be corrected by the boundary
condition.

6.3.1 Hard boundary conditions

The first method, label as a HARD boundary condition in the code, is a straightforward
modification of the predicted conservatives variables at the boundaries to match the prescribed
values. With the given example, the procedure goes in the following order:
• The predicted conservatives variables Un+1

p and the associated thermodynamic values
(Pp, Tp, etc...) are evaluated
• The predicted temperature is considered to be correct, leading to a corrected value of

the density ρc = ρ (Tp, Pt) using the target pressure Pt (the velocity is not impacted by
the boundary condition)
• With the set of corrected values Pc = Pt, Tc = Tp, ρc = ρ (Tp, Pt) , uc = up, the corrected

conservatives values are computed: (ρu)c = ρcuc, (ρe)c = ρc ·
(
es (ρc, Tc) + u2

c

)
• Given the corrected conservative variables Un+1

c the conservative variable residuals are
corrected δUc

c = Un+1
c −Un

Though this method eventually lends the correct targeted pressure and thermodynamically
consistent values for the conservative variables, it is acoustically completely reflective and the
impossibility to evacuate the acoustics out of the domain can be a limitation when carrying
out realistic simulations.
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6.3.2 Characteristic boundary conditions

The second method is based on the work in Poinsot and Lele (1992) where the idea is to
separate the different pieces of information, acoustic and entropic, available at the boundary
and treat each of them accordingly to the desired behavior for the boundary condition. This
methodology allows to control accurately the acoustic content entering and leaving the domain.
The first step to derive the method is to linearize the equation, meaning writing the system
Eq. (7.47) as:

∂U

∂t
= A (U)

∂U

∂x
(6.50)

where A (U) is the Jacobian matrix of the flux relatively to the conservative variables, i.e.
A = ∂F (U)/∂U, of which expression is given by:

A (U) =

 0 1 0

ΛΓ− u2 u (2− Λ) Λ

u (ΛΓ− ht) ht − u2Λ u (1 + Λ)

 with

ht = e+
P

ρ
= h+

u2

2

Λ =
α

ρβCv

Γ =
Cp
α
− ht + u2

(6.51)

The possibility to linearize a system in the form in Eq. (6.50) is not readily guaranteed in
general cases. In particular, an equation involving the time derivative of each variable of the
vector U must be encountered. It will be shown in Sec. 7.2.1 that this cannot be done for the
system of equations used in the SG model.
The matrix has then to be diagonalized into a matrix D so as to write the equation in the
form:

∂W

∂t
= D (U)

∂W

∂x
(6.52)

defining therefore the characteristic variables W as the set of variables decomposed over a
basis of eigenvectors of the matrix A (U).

One should notice that the dependency of F in the components of U and not its derivatives
is primordial in order to perform the differentiation A (U) = ∂F/∂U. This key element will
also be discussed in the framework of the Second Gradient in Chap. 6. It is well established
that the matrix D (U) writes:

D (U) =

u+ cW 0 0

0 u− cW 0

0 0 u

 (6.53)

where cW is the characteristic sound speed of the system. Again, the possibility to diagonal-
ize matrix A into D with only real eigenvalues is not guaranteed in general. This property
actually serves as the characterization for a hyperbolic system of equation such as the native
Euler’s equations system for an hypersonic flow with a convex EoS.

The lasts required elements are the matrices representing the change of basis from the conser-
vative to the characteristic variables, noted L and the other way around, noted R. They are
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expressed by:

L =


−nx
ρ

+
ΛΓ

ρc

nx
ρ
− Λu

ρc

Λ

ρc
nx
ρ

+
ΛΓ

ρc
−nx
ρ
− Λu

ρc

Λ

ρc

1− ΛΓ

c2

uΛ

c2
−Λ

c2

 (6.54)

R =


ρ

2c

ρ

2c
1

ρ

2

(u
c

+ nx

) ρ

2

(u
c
− nx

)
u

ρ

2

(
c

Λ
− Γ− u2

c
+ nxu

)
ρ

2

(
c

Λ
− Γ− u2

c
− nxu

)
−ht −

Cp
α

 (6.55)

where nx is the direction of the inner normal to the considered boundary. With that, one
can express the variations on the conservative/primitive variables relatively to the variations
of the characteristic values as done in Eqs. (6.56a) to (6.56e). By convention, W+ refers to
the forward (or entering) acoustic wave propagating at u+nxc, W− the backward (or exiting)
acoustic wave propagating at u− nxc and Ws is the entropic wave convected at u.

∂ρ =
ρ

2c
(∂W+ + ∂W−) + ∂Ws (6.56a)

∂(ρu) =
ρ

2c
(u+ nxc) ∂W+ +

ρ

2c
(u− nxc) ∂W− + u∂Ws (6.56b)

∂u =
nx
2

(∂W+ − ∂W−) (6.56c)

∂P =
ρc

2
(∂W+ + ∂W−) (6.56d)

dT =
ρβc2 − 1

2cα
(∂W+ + ∂W−)− 1

ρα
∂Ws (6.56e)

For the considered outlet, the Characteristic Boundary Conditions procedure goes as follows:
• The predicted conservatives variables Un+1

p and the associated thermodynamic values
(Pp, Tp, L, R etc...) are evaluated
• The predicted characteristic variables variations δWn

p = LδUn
p are computed

• For an outlet, the entropic wave and the exiting acoustic wave must be left unchanged
thus ∂Wsc = ∂Wsp and ∂W+c = ∂W+p

• Only the entering wave can be modified to enforce the pressure. Thanks to Eq. (6.56d)
the modification to apply is ∂W−c = −∂W+p + 2 (Pt − Pn) /(ρc)
• The conservative variables residuals are corrected thanks to the corrected characteristic

variables residuals with δUn
c = RδWn

c

This method allows to control accurately the entering and exiting waves in the domain, in
particular it allows to properly derive boundary conditions with time relaxation or completely
non-reflective boundary conditions which is impossible with the "hard" approach.



Chapter 7

Numerical implementation of the
Second Gradient model

Following the theoretical presentations of the Second Gradient theory in Chap. 5 and the
AVBP solver in Chap. 6, this chapter is dedicated to expanding upon the practical implemen-
tation of the model into the solver in order to produce preliminary simulations. Indeed, apart
from the modifications of the thermodynamics described in Sec. 5.3 that must be integrated
into AVBP, the equations derived for the SG model display new terms not typically found in
fluid simulations and of which treatment must be addressed.

The first section 7.1 compiles the investigations regarding the discretization of the unconven-
tional high order derivatives that appear in the SG equations. The AVBP solver is not readily
designed to handle such terms. As such, a specific treatment has been required to consistently
implement them. The different terms that are concerned are systematically listed in Sec. 7.1.1,
the different strategies for their discretization are exposed in Sec. 7.1.2 and are then compared
numerically in Sec. 7.1.3. It is shown in particular that the choice made for this discretization
strongly impacts the stability of the calculations.

The new set of equations also calls for additional precautions that must be taken to ensure
a successful simulation, these are discussed in Sec. 7.2. An attempt at characterizing the
nature of the equations is made Sec. 7.2.1. It is found to be different from that of the more
classic equation systems studied in hydrodynamics. Despite this hurdle, a strategy to treat the
boundary conditions for this system, no longer hyperbolic, is proposed in Sec. 7.2.2. Finally,
a numerical investigation is also performed in order to extract a time step condition. It is
found to be comparable to conditions typical of diffusive equations, a result consistent with
the diffusive nature of capillary phenomena.
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7.1 Discretization of the Second Gradient equations

7.1.1 Governing equations

As a reminder, the conservative form of the Navier-Stokes equations for the SG model iq:



∂ρ

∂t
= −∇ · (ρv)

∂(ρv)

∂t
= −∇p−∇ · λ (∇ρ⊗∇ρ) +∇ · τ d + ρg

∂(ρe)

∂t
= −∇ ·

[
(ρe+ p)v + λ (∇ρ⊗∇ρ) · v + λρ∇ρ∇ · v− τ d + q

]
− ρg · v

(7.1a)

(7.1b)

(7.1c)

where the mechanical pressure p is given from the EoS pressure P0 by:

p = P0 −
λ

2
(∇ρ)2 − ρ∇ · (λ∇ρ) (7.2)

Apart from the classic diffusion term (viscous stress, thermal conduction), these equations,
in the right hand side fluxes, also contain specific terms which, even without being diffusive
per definition, also involve spatial derivatives of the density. These "non-advective" terms,
compiled in Tab. 7.1, also require a specific treatment that strongly relies on the two meth-
ods already implemented in AVBP and described in Sec. 6.2.3. The interaction between the
2∆/4∆ methods and the high order derivative terms in the capillary fluxes is investigated in
the following paragraphs.

To simplify the developments, the SG system is considered in one dimension, with neither
body forces nor diffusion, together with the mass equation, as follows:

∂ρ

∂t
= −∂(ρu)

∂x

∂(ρu)

∂t
= − ∂

∂x

[
ρu2 + P0 +

λ

2

(
∂ρ

∂x

)2

− λρ∂
2ρ

∂x2

]
∂(ρe)

∂t
= − ∂

∂x

[
(ρe+ P0)u+

λ

2

(
∂ρ

∂x

)2

u+ λρ
∂ρ

∂x

∂u

∂x
− λρ∂

2ρ

∂x2
u

]
(7.3a)

(7.3b)

(7.3c)

Tab. 7.1 compiles the terms concerned by the following investigation. The derivative term
involved in the flux is isolated to recall the symmetry of terms that appear in both the mo-
mentum and the energy equations, of which respective flux divergence is provided. The one
dimensional versions of said divergence terms are also precised and are used in the analytical
developments.
By modifying the formulation of the energy equation as suggested in (7.4), another configura-
tion can be obtained which leads to the appearance of the new terms referred to as C.2/c.2 in
Tab. 7.1.

(∇ρ⊗∇ρ) · v + ρ∇ρ∇ · v =∇ρ∇ · ρv (7.4)

This modification introduces a formal asymmetry between the momentum and energy equation
and the corresponding configuration has also been investigated. However it has shown no effect
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whatsoever on the stability of the calculations in itself as the results have been observed to
be exactly the same, configuration per configuration, for the two formulations of the energy
equation. As such, only the numerical results for the configuration using Eq. (7.4) in the
energy Eq. (7.1c), which is the one selected for the application simulations, are presented.

Root term Flux divergence 1D equivalent Equation

(∇ρ)2 (A)

∇ ·
[
(∇ρ)2 I

]
(A.1)

∂

∂x

[(
∂ρ

∂x

)2
]

(a.1) Momentum

∇ ·
[
(∇ρ)2 v

]
(A.2)

∂

∂x

[(
∂ρ

∂x

)2

u

]
(a.2) Energy

∇ρ⊗∇ρ (B)

∇ · [∇ρ⊗∇ρ] (B.1)
∂

∂x

[(
∂ρ

∂x

)2
]

(b.1) Momentum

∇ · [(∇ρ⊗∇ρ) · v] (B.2)
∂

∂x

[(
∂ρ

∂x

)2

u

]
(b.2) Energy

∇ρ∇ · (ρv) (C)

∇ · [ρ∇ρ∇ · v] (C.1)
∂

∂x

[
ρ
∂ρ

∂x

∂u

∂x

]
(c.1) Energy

∇ · [∇ρ∇ · (ρv)] (C.2)
∂

∂x

[
∂ρ

∂x

∂ρu

∂x

]
(c.2) Energy

∆ρ (D)

∇ ·
[
ρ∆ρI

]
(D.1)

∂

∂x

[
ρ
∂2ρ

∂x2

]
(d.1) Momentum

∇ · [(ρv∆ρ)] (D.2)
∂

∂x

[
ρu
∂2ρ

∂x2

]
(d.2) Energy

Table 7.1: List of high order derivatives terms in the SG equations

The next paragraphs show how the methodologies applied in 6.2.3.2 for scalar diffusion can
be applied to the previous SG equations. An important detail to notice is that for the first
three root terms A, B and C, only first order derivatives are involved which leads to, at most,
second order derivatives when their corresponding flux divergence is calculated. This situation
is readily analogous to more classic diffusive terms. For the last density Laplacian term D,
second order derivatives are already present in the fluxes which leads to third order deriva-
tives once the divergence is calculated. Since AVBP possesses tools to handle second order
derivatives and no method readily available to handle third order derivatives, the treatment
of the Laplacian related fluxes calls for a different discussion. For that reason, the treatment
of A, B and C, gradient related terms and that of D, are addressed separately.
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IMPORTANT: In the following paragraphs, when 2∆ and 4∆ are mentioned, they strictly refer
to the corresponding discretization method in Sec. 6.2.3 that is used to evaluate a second
order derivative involved in the discretization of given terms, independently from the actual
stencil that is reached when the complete term is discretized. The actual stencil of the final
term will be explicitly designated with its corresponding size. Since the schemes that are used
are centered, a 3-point stencil discretization is to be understood as using one point on both
sides of the central point where the term is discretized. Likewise, 5-point and 7-point stencils
use respectively two and three points on both sides of the central point of discretization.

7.1.2 Numerical discretization

7.1.2.1 Classic terms

For the sake of completeness, the discretization of the classic terms of the Euler equations
are recalled. These terms involve the direct derivation of a conserved variable (ρ, ρu, ρe) or
a variable directly calculated from the conserved one without involving any derivation such
as ρu2, P0 or (ρe+ P0)u. Let ξ be any of the previous variable, the objective is to express,
at node i the space derivative ∂ξ/∂x. The first step involves expressing ξ at the nodes.
The conservative variables are natively stored at the nodes; only the compound variables are
concerned by this step which essentially means that these compound variables are expressed
at the nodes (and not at the cell centers as done in the 2∆ approach). For instance, one would
write:

ui =
(ρu)i
ρi

(7.5a)(
ρu2
)
i

= (ρu)i ui (7.5b)

P0i = P0 (ρi, (ρe)i) (7.5c)
((ρe+ P0)u)i = ((ρe)i + P0i)ui (7.5d)

Once the variable ξ has been expressed at the nodes, its "divergence" is given by the classic
second order accuracy central difference method which has a 3-point stencil:[

∂ξ

∂x

]
i

=
ξi+1 − ξi−1

2∆x
(7.6)

7.1.2.2 Gradient related terms

As already mentioned regarding the capillary terms, a first class can be discriminated from
the root terms A, B and C as they directly involve gradients of conservative variables. The di-
vergence of this terms causes the apparition of second order derivatives for which the methods
in Sec. 6.2.3.2 can be directly applied. In the one dimensional formulation, four terms are to
be considered: a.1 (which is equivalent to b.1), a.2 (which is equivalent to b.2), c.1 and c.2.

In higher dimensions, the terms A.1 and B.1 (or A.2 and B.2) do not lead to the same formula-
tion and must be discretized in a different way, which as been done in the actual implementation
of the SG equations in AVBP. This aspect is not treated here to simplify the message, which
is not modified in its core by this subtlety.
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2∆ approach

The discretization of the terms a.1 and c.2 follows the same procedure since these terms include
a product of two gradients. The focus is put on c.2 for which the discretization is given by:

[
∂

∂x

(
∂ρ

∂x

∂ρu

∂x

)]2∆

i

=
1

∆x

([
∂ρ

∂x

]2∆

i+ 1
2

[
∂ρu

∂x

]2∆

i+ 1
2

−
[
∂ρ

∂x

]2∆

i− 1
2

[
∂ρu

∂x

]2∆

i− 1
2

)
(7.7a)

=
1

∆x

(
ρi+1 − ρi

∆x

(ρu)i+1 − (ρu)i
∆x

− ρi − ρi−1

∆x

(ρu)i − (ρu)i−1

∆x

)
(7.7b)

The expression for a.1 simplifies greatly and is obtained by formally replacing ρu by ρ which
provides: [

∂

∂x

((
∂ρ

∂x

)2
)]2∆

i

=
1

∆x

((
ρi+1 − ρi

∆x

)2

−
(
ρi − ρi−1

∆x

)2
)

(7.8)

Terms a.2 and c.1 involve an additional product with a non-gradient variable. Term a.2 is
easier to handle since it involves only gradient of a conservative variable. Its discretization is:

[
∂

∂x

((
∂ρ

∂x

)2

u

)]2∆

i

=
1

∆x

([∂ρ
∂x

]2∆

i+ 1
2

)2

ui+ 1
2
−

([
∂ρ

∂x

]2∆

i− 1
2

)2

ui− 1
2

 (7.9a)

=
1

∆x

((
ρi+1 − ρi

∆x

)2 (ρu)i+ 1
2

ρi+ 1
2

−
(
ρi − ρi−1

2∆x

)2 (ρu)i+ 1
2

ρi− 1
2

)
(7.9b)

Given that for a conservative variable a, the value at a cell vertex i+ 1/2 is given by:

ai+ 1
2

=
ai+1 + ai

2
(7.10)

the final expression for term a.2 is:

[
∂

∂x

((
∂ρ

∂x

)2

u

)]2∆

i

=
1

∆x

((
ρi+1 − ρi

∆x

)2 (ρu)i+1 + (ρu)i
ρi+1 + ρi

−
(
ρi − ρi−1

2∆x

)2 (ρu)i + (ρu)i−1

ρi + ρi−1

) (7.11)

Starting with the same approach, the discretization of term c.1 becomes:

[
∂

∂x

(
ρ
∂ρ

∂x

∂u

∂x

)]2∆

i

=
1

∆x

(
ρi+ 1

2

[
∂ρ

∂x

]2∆

i+ 1
2

[
∂u

∂x

]2∆

i+ 1
2

− ρi− 1
2

[
∂ρ

∂x

]2∆

i− 1
2

[
∂u

∂x

]2∆

i− 1
2

)
(7.12)



226 Chapter 7 - Numerical implementation of the Second Gradient model

However, since u is not a conservative variable, the calculation of its gradient at the cell vertices
i∓ 1/2 is not straightforward but actually given by:[

∂u

∂x

]2∆

i+ 1
2

=
1

ρi+ 1
2

([
∂ρu

∂x

]2∆

i+ 1
2

− ui+ 1
2

[
∂ρ

∂x

]2∆

i+ 1
2

)
(7.13a)

=
2

ρi+1 + ρi

(
(ρu)i+1 − (ρu)i

∆x
−

(ρu)i+1 + (ρu)i
ρi+1 + ρi

ρi+1 − ρi
∆x

)
(7.13b)

Eventually, the full discretized expression of c.1 can be obtained:

[
∂

∂x

(
ρ
∂ρ

∂x

∂u

∂x

)]2∆

i

=
1

∆x

(
(ρu)i+1 − (ρu)i

∆x

ρi+1 − ρi
∆x

−
(ρu)i+1 + (ρu)i

ρi+1 + ρi

(
ρi+1 − ρi

∆x

)2

−
(ρu)i − (ρu)i−1

∆x

ρi − ρi−1

∆x
+

(ρu)i + (ρu)i−1

ρi + ρi−1

(
ρi − ρi−1

∆x

)2
) (7.14)

It clearly shows that the divergence of the gradient related terms with the 2∆ approach finally
leads to a 3-point stencil.

4∆ approach

For term c.2, the 4∆ discretization is given by:

[
∂

∂x

(
∂ρ

∂x

∂ρu

∂x

)]4∆

i

=
1

2∆x

([
∂ρ

∂x

]4∆

i+1

[
∂ρu

∂x

]4∆

i+1

−
[
∂ρ

∂x

]4∆

i−1

[
∂ρu

∂x

]4∆

i−1

)
(7.15a)

=
1

2∆x

(
ρi+2 − ρi

2∆x

(ρu)i+2 − (ρu)i
2∆x

− ρi − ρi−2

2∆x

(ρu)i − (ρu)i−2

2∆x

)
(7.15b)

and similarly to the 2∆ approach, the discretization of term a.1 can be inferred from Eq.
(7.15b) to get: [

∂

∂x

((
∂ρ

∂x

)2
)]4∆

i

=
1

2∆x

((
ρi+2 − ρi

2∆x

)2

−
(
ρi − ρi−2

2∆x

)2
)

(7.16)

The term a.2 is easier to obtain for the 4∆ approach because the non-conservative variable u
is expressed directly at the nodes. Its discretization becomes:

[
∂

∂x

((
∂ρ

∂x

)2

u

)]4∆

i

=
1

2∆x

[(∂ρ
∂x

)2
]4∆

i+1

ui+1 −

[(
∂ρ

∂x

)2
]4∆

i−1

ui−1

 (7.17a)

=
1

2∆x

((
ρi+2 − ρi

2∆x

)2 (ρu)i+1

ρi+1
−
(
ρi − ρi−2

2∆x

)2 (ρu)i−1

ρi−1

)
(7.17b)
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The discretization of term c.1 requires to evaluate the derivative of u even for the 4∆ approach.
The formulation is similar to that of the 2∆ approach given in Eqs. (7.13a)-(7.13b) but is
somewhat simpler since the values are evaluated at the nodes rather than the cells center,
according to Eqs. (7.18a)-(7.18b).

[
∂u

∂x

]4∆

i

=
1

ρi

([
∂ρu

∂x

]4∆

i

− ui+ 1
2

[
∂ρ

∂x

]4∆

i

)
(7.18a)

=
1

ρi

(
(ρu)i+1 − (ρu)i−1

2∆x
−

(ρu)i
ρi

ρi+1 − ρi−1

2∆x

)
(7.18b)

The discretized expression of term c.1 can thus be written:

[
∂

∂x

(
ρ
∂ρ

∂x

∂u

∂x

)]4∆

i

=
1

2∆x

(
(ρu)i+2 − (ρu)i

2∆x

ρi+2 − ρi
2∆x

−
(ρu)i+1

ρi+1

(
ρi+1 − ρi

2∆x

)2

−
(ρu)i − (ρu)i−2

2∆x

ρi − ρi−2

2∆x
+

(ρu)i−1

ρi−1

(
ρi − ρi−2

2∆x

)2
) (7.19)

Conversely, with the 4∆ approach, the divergence of the gradient related terms eventually
leads to a 5-point stencil.

7.1.2.3 Laplacian related terms

The Laplacian related terms already involve a second order derivative term in the correspond-
ing fluxes prior to the evaluation of its divergence. This difficulty is a magnified version of what
occurs for the gradients in the fluxes : evaluating numerically the spatial derivatives requires
a larger stencil on more points associated with potentially more gather -scatter sequences and
therefore a bigger computational cost. Besides, an ill-handled stencil, such it is the case with
the 4∆ approach can lead to the wrong treatment of short length perturbations.
Given that the Laplacian is a second order derivative, it can only be calculated at the nodes
(in opposition to the cell centers) and requires at least a 3-point stencil. This means that
evaluating the corresponding divergence afterwards leads to at least a 5-point stencil, the
"compressive" strategy of the 2∆ approach in Sec. 6.2.3 cannot be adapted to evaluate at
once the divergence of the Laplacian related terms. The calculation of the density Laplacian
and the calculation of the divergence in terms d.1 (D.1 in general) and d.2 (D.2 in general)
must be treated sequentially.

Evaluation of the density Laplacian

Mathematically, the Laplacian of a variable a is nothing but the divergence of its gradient, i.e
∆a = ∇ · (∇a). As such, to evaluate the density Laplacian at the mesh nodes, the 2∆ and
4∆ approaches can be used as demonstrated in Sec. 6.2.3.2. The corresponding expressions
are:
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[
∂2ρ

∂x2

]2∆

i

=
ρi+1 − 2ρi + ρi−1

(∆x)2 (7.20)[
∂2ρ

∂x2

]4∆

i

=
ρi+2 − 2ρi + ρi−2

(2∆x)2 (7.21)

Evaluation of the flux divergence

Knowing the Laplacian at the nodes, the discretization of terms d.1 and d.2 is written following
the conventional Cell-Vertex methodology, applied for the classic terms, as described in Eq.
(7.6).
If the density Laplacian is calculated with the 2∆ approach, the discretization of term d.1
becomes:[

∂

∂x

(
ρ
∂2ρ

∂x2

)]2∆

i

=
1

2∆x

(
ρi+1

[
∂2ρ

∂x2

]2∆

i+1

− ρi−1

[
∂2ρ

∂x2

]2∆

i−1

)
(7.22a)

=
1

2∆x

(
ρi+1

ρi+2 − 2ρi+1 + ρi

(∆x)2 − ρi−1
ρi − 2ρi−1 + ρi−2

(∆x)2

)
(7.22b)

and the discretized expression of term d.2 is obtained by replacing the factors ρi+1 and ρi−1

by (ρu)i+1 and (ρu)i−1 to get:

[
∂

∂x

(
ρu
∂2ρ

∂x2

)]2∆

i

=
1

2∆x

(
(ρu)i+1

ρi+2 − 2ρi+1 + ρi

(∆x)2 − (ρu)i−1

ρi − 2ρi−1 + ρi−2

(∆x)2

)
(7.23)

The final discretization of terms d.1 and d.2 when a 2∆ approach is used to calculate the
density Laplacian clearly leads to a 5-point stencil.

If the density Laplacian is calculated with the 4∆ approach, the discretization of term d.1 now
becomes:

[
∂

∂x

(
ρ
∂2ρ

∂x2

)]4∆

i

=
1

2∆x

(
ρi+1

[
∂2ρ

∂x2

]2∆

i+1

− ρi−1

[
∂2ρ

∂x2

]2∆

i−1

)
(7.24a)

=
1

2∆x

(
ρi+1

ρi+3 − 2ρi+1 + ρi−1

(2∆x)2 − ρi−1
ρi+1 − 2ρi−1 + ρi−3

(2∆x)2

)
(7.24b)

and the discretized expression for term d.2 is:

[
∂

∂x

(
ρu
∂2ρ

∂x2

)]4∆

i

=
1

2∆x

(
(ρu)i+1

ρi+3 − 2ρi+1 + ρi−1

(2∆x)2

−(ρu)i−1

ρi+1 − 2ρi−1 + ρi−3

(2∆x)2

) (7.25)
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7.1.3 Comparisons between the 2∆ and 4∆ discretizations

The multiple strategies for the discretization of the high order capillary terms are compared on
one-dimensional and two-dimensional cases where a liquid droplet is convected at a constant
speed into its own vapor in isothermal and non-isothermal settings.
Depending on whether the 2∆ or the 4∆ approach is used to calculate the divergence of the
non-conventional capillary terms, eight different configurations, summarized in Tab. 7.2, are
created. For the sake of consistency, terms appearing in both the momentum and energy
equations are discretized using the same approach. The distinction between the two possible
ways to write the energy equation, already addressed with Eq. (7.4) and in Tab. 7.1 (term
C) has been made in the simulations. To that effect, all configurations in Tab. 7.2 have been
tested twofold, a first time using the discretization of∇·[ρ∇ρ∇ · v] (term c.1 in Tab. 7.1) and
a second time using the discretization of ∇ · [∇ρ∇ · (ρv)] (term c.2 in Tab. 7.1), as recalled
by the use of "OR" in the leftmost cell in the last row of Tab. 7.2.
Depending on the formulation used (c.1 or c.2), the eight configurations (a) to (h) have been
added the index ’.1’ or ’.2’ accordingly. It led to a total of sixteen configurations. One should
notice that the previous distinction does not apply for isothermal settings where the energy
equation is not solved. It is also important to mention that these two possible choices for the
energy equation have not led to any substantial difference in the one dimensional simulations,
all other settings remaining equal.

Configuration
(a.1) (b.1) (c.1) (d.1) (e.1) (f.1) (g.1) (h.1)
or or or or or or or or

(a.2) (b.2) (c.2) (d.2) (e.2) (f.2) (g.2) (h.2)

∇ ·
[
(∇ρ)2 I

]
4∆ 2∆ 4∆ 4∆ 2∆ 2∆ 4∆ 2∆and

∇ ·
[
v (∇ρ)2

]
∇ · [∇ρ⊗∇ρ]

4∆ 4∆ 2∆ 4∆ 2∆ 4∆ 2∆ 2∆and
∇ · [(∇ρ⊗∇ρ) · v]

∇ · [ρ∇ρ∇ · v]

4∆ 4∆ 4∆ 2∆ 4∆ 2∆ 2∆ 2∆OR
∇ · [∇ρ∇ · (ρv)]

Table 7.2: List of tested configurations depending on the discretization of the capillary terms

The relevant parameters for the different simulations can be found in Tab. 7.3. The initially
isothermal nitrogen droplet, in diameter, is about ten times wider than the interface and the
domain is three times the size of the droplet. A purposely high number of points has been used
for the mesh so as to mitigate possible numerical errors due to the precision of the numerical
scheme and focus the discussion only on the discretization strategy. For the same reason, no
filtering nor artificial viscosity has been used. When possible, the simulation is performed so
as to allow the droplet to perform one complete crossing of the domain. When the crossing
has been completed by the droplet, the progression is by convention set to 100%.
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T 113.57 K λ 1.0 · 10−10 m7 · kg−1 · s−2 σ 3.26 N ·m

P sat 18.15 bar points in int. ≈ 30 w 4.42 µm

ρl 542.1 kg ·m−3 equations mass + mom. + ener. u 10 m · s−1

ρv 80.3 kg ·m−3 diffusion Chung CFL 0.95

Table 7.3: Simulation parameters used with N2 for one and two dimensional comparisons for the
implementation of the SG model in the solver AVBP

7.1.3.1 One-dimensional cases

Isothermal case
Fig. 7.1 shows the resulting density, pressure, temperature and velocity profiles after one
attempted crossing of the domain with a fixed temperature. All configurations have led to
a successful simulation with very limited numerical errors merely noticeable on the velocity
profiles. In particular, configurations (a.1) and (d.1) display very clean profiles with an error
on the velocity three order of magnitude lower compared to the other configurations. This
case isothermal does not permit to discriminate between the different discretization strategies.
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Figure 7.1: Final density, pressure, temperature and velocity profiles of one dimensional isother-
mal nitrogen droplets after one crossing of the periodic domain to compare different discretizations of
capillary fluxes terms



Part II - Implementation of the Second Gradient model in the solver
AVBP

231

Non-isothermal case
Equivalent results are presented in Fig. 7.2 but in a non-isothermal setting for which the
different configurations have led to a wide variety of outcomes.
Firstly, configurations (c.1), (e.1) and (f.1) (it is too be understood that configurations (c.2),
(e.2) and (f.2) have led to the same outcome) have crashed in the early instants of the sim-
ulation with very large undershoots and overshoots visible in the pressure, temperature and
velocity profiles. Secondly, configurations (b.1), (g.1) and (h.1) (likewise configurations (b.2),
(g.2) and (h.2)) have led to successful simulations with small errors on the velocity profile com-
parable to that in the isothermal setting, accompanied however with slight undershoots and
overshoots in the temperature. Finally, configurations (a.1) and (d.1) (likewise configurations
(a.2) and (d.2)) have also led to successful simulations. Very minor undershoots and overshoots
can be noticed in the temperature profiles but the velocity profiles are mostly as precise as
they were in the isothermal setting. At that point, configurations (c.1)/(c.2), (e.1)/(e.1) and
(f.1)/(f.2) can be discarded as they already fail for one dimensional simulations.
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Figure 7.2: Final density, pressure, temperature and velocity profiles of one dimensional non-
isothermal nitrogen droplets after one crossing of the periodic domain to compare different discretiza-
tions of capillary fluxes terms

7.1.3.2 Two-dimensional cases

To further the analysis, two dimensional cases are also presented using the same configura-
tions and methodology. Only the configurations that have already come out successful in one
dimension are considered. It is also important to notice that for two dimensional cases, dif-
ferences in the results appear among paired configurations. For instance, configurations (a.1)
and (a.2) no longer lend the same results, and likewise for the other pairs. In that respect,
the more relevant results from the other configurations in the pairs are also presented.
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Isothermal case
Figs. 7.3 and 7.4 show the density and pressure profiles respectively when an isothermal
setting is used. These results allow to discard more configurations, namely (b.1), (g.1), (g.2)
and (h.1) (configurations (b.2) and (h.2), not shown here, have led to results similar to that of
configurations (b.1) and (h.1) respectively).
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Figure 7.3: Density profiles of two dimensional isothermal nitrogen droplets after one crossing of the
periodic domain to compare different discretizations of capillary fluxes terms
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Figure 7.4: Pressure profiles of two dimensional isothermal nitrogen droplets after one crossing of
the periodic domain to compare different discretizations of capillary fluxes terms
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Non-isothermal case
Confronting the four remaining configurations in a non-isothermal setting allows to confirm
this hint. The results given in Fig. 7.5 show the success of configurations (a.1) and (a.2) and
the crash of configurations (d.1) and (d.2) in the very early moments of the simulation. From
Tab. 7.2, the pairs (a) and (d) differs in their discretization of the last capillary term C in Tab.
7.1: a 4∆ approach for pair (a) and a 2∆ for pair (d). This means that this study advocates
for a full consistency in the discretization of the three capillary terms since configurations (a.1)
and (a.2) use a 4∆ approach for all three terms.
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Figure 7.5: Density, pressure and temperature profiles of two dimensional non-isothermal nitrogen
droplets after one crossing of the periodic domain to compare different discretizations of capillary fluxes
terms

Although the result could lead to favor configuration (a.2) over configuration (a.1), the quality
of the result actually depends on the physical case to be simulated and is never substantial
enough to discriminate one configuration as the best. Thus, to retain the partial symmetry
in the momentum and energy equations, configuration (a.1) has been used by default even if
this choice is, to a large extent, arbitrary.

7.1.3.3 Impact of the Laplacian discretization

Finally, the impact of the method used to discretize the density Laplacian has also been tested.
To better capture this impact, a lesser resolution of 10 points in the interface has been used.
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Moreover, the impact on the numerical stability is such that it can be observed in a static
setting. As such, the results in Fig. 7.6 are given for a droplet set still with no initial velocity.
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Figure 7.6: Time evolution of density and velocity profiles for a one dimensional isothermal oxygen
droplet using 2∆ and 4∆ configurations for the calculation of the Laplacian terms

After simulation, the droplet is expected to remain immobile, what indeed happens during
the early instants of the simulation. However, as time progresses, the perturbations created
at the beginning start to amplify in the 4∆ configuration what eventually leads to the crash
of the simulation. The same perturbations in the 2∆ configuration are simply stabilized and
longer simulations (up to ten times the duration reached with the 4∆ configuration) showed
no further amplification of the perturbations.
It should be noted that the results in Fig. 7.6 have been obtained using the (a.1) configuration
that has been previously determined to be the best. However, the 2∆/4∆ discretization of
the Laplacian term has also been tested with other configurations and has only confirmed
the initial observations. In particular, no configuration has led to better results when the 4∆
discretization has been used for the Laplacian term. This is the reason why all the results
shown in Figs. 7.1, 7.2, 7.3, 7.4, 7.5 have been obtained using the 2∆ discretization for the
Laplacian term.

7.1.3.4 Conclusion on the discretization strategies

One clear outcome of the previous comparisons is the necessity to discretized the Laplacian
using the 2∆-like approach prior to calculating the divergence of the different fluxes which
eventually leads to a 5-point stencil. This applies independently of the strategies used to dis-
cretize the divergence for the rest of the capillary fluxes.

The one and two-dimensional comparisons seem to point out that terms A.1 and A.2 involving
the squared density gradient and terms B.1 and B.2 involving the self-tensor product of the
density gradient must be discretized using the same strategy, which is a sound result given the
formal proximity between these two terms. More precisely, the configurations that performed
the poorest are specifically those using a 2∆/4∆ mix for terms A.1-A.2 and B.1-B.2, i.e. (b),
(c), (f ) and (g), especially (c) and (g) for which the 2∆ approach is used to discretize the
squared density gradient. Between the four remaining, only configurations (a) and (d) pro-
vided stable calculations, despite configurations (e) and (h) having somewhat better results
than the totally falling configurations previously described. This is concordant with the fact
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that using a 2∆ approach leads to the poorest results, even among the already poor ones. This
carried over to the better cases as configurations (e) and (h) uses a 2∆ approach for terms
A.1-A.2 and B.1-B.2. Only the configurations (a) and (d) where a 4∆ approach is used, for all
terms A.1, A.2, B.1 and B.2, have proven to be stable in two-dimensional isothermal settings.
Removing the isothermal hypothesis has allowed to observe the impact of the discretization
of the third class of terms C.1, C.2 as configuration (d), which uses a 2∆ approach, has led
to unsuccessful simulations. Finally, only the configurations where a 4∆ approach is used to
discretize all three first order capillary terms.

These results, at first glance, can seem contradictory with the theoretical motivations behind
the introduction of the 2∆ approach. However, when considering the divergence of the fluxes
involving the density Laplacian (terms D.1, D.2), of which discretization is necessarily done
on a 5-point stencil, the fact that the 4∆ approach has to be used for the divergence of the
gradient related fluxes (terms A.1, A.2, B.1 and B.2), which also leads to a 5-point stencil,
eventually appears as a matter of numerical consistency.
As already mentioned, it should be noted that the discretization strategy used for the flux
divergence relative to the root term C does not seem to have an impact on the stability of
the calculation. This is the case whatever form of this term is used between C.1 and C.2.
This observation, for which no satisfactory explanation has been found, further cements the
peculiar nature of this term beyond the fact that it only appears, in an asymmetric fashion,
in the energy equation. With no additional information, the formulation with term C.2, easier
to implement, has been selected and the choice has been made, preserving consistency, to
discretize it using a 4∆ approach.

For the remainder of the document, the strategy used to discretize the divergence
of the capillary terms is the following. The density Laplacian is calculated at
the mesh nodes using the 2∆-like method presented previously. Its divergence is
obtained following the conventional transport method of Central Difference. The
divergence of the terms with density gradient, including the peculiar term unique
to the energy equation, is obtained with a 4∆ approach. Moreover, when not
mentioned otherwise, the 3rd order Galerkin-Runge-Kutta (GRK) AVBP scheme
is used for the convective fluxes.

7.2 Characterization of the Second Gradient equations

Besides providing insight on the proper way to discretized them, a systematic analysis of the
equations can also permit to unveil elements indispensable to a successful simulation such as
their well-posedness, the actual existence of solutions, the best suited numerical schemes to
solve them, the proper method to enforce boundary conditions if needed and the presence of
eventual stability criteria.

A substantial amount of studies regarding the well posedness of the Korteweg model and the
existence of affiliated solutions have been proposed in the last twenty years. In Gavrilyuk
and Gouin (1998), the existence of a symmetric form of the equation has been proven in
the one-dimensional inviscid barotropic case. For the isothermal inviscid case, the authors in
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Benzoni-Gavage et al. (2006) have shown that the system becomes Hamiltonian and admits
traveling solutions. Moreover, starting from equilibrium profiles, the well-posedness has been
proven for small enough perturbations in one dimension. The result has been extended to mul-
tidimentional cases, still for isothermal flows, in Benzoni-Gavage et al. (2007). The stability
of steady states, steady waves and traveling waves has also been studied in Benzoni-Gavage
et al. (2007). The existence of global weak solutions in one and two dimensional cases for
isothermal has been proven in Haspot (2008). In Charve and Haspot (2013), the authors
have proven the existence of global strong solutions to the Navier-Stokes Kortewegg system
for isothermal flows in one dimension. More importantly, for the specific expression of the
pressure P = aργ where ρ is the density, a and γ are strictly positive constant with γ > 1, in
the limit of a vanishing viscosity and capillarity, they have proven that the system consistently
degenerates into the classic compressible Euler system. For one and two dimensional settings,
the existence and uniqueness of global and stable solutions near equilibrium has been proven
in Kotschote (2014) even for non-isothermal flows. Other associated results can be found in
Bresch et al. (2008); Audiard (2010); Benzoni-Gavage (2010); Höwing (2011); Freistühler and
Kotschote (2017); Paddick (2017)
Despite their fundamental importance in the understanding of the capillary model of Ko-
rteweg, these studies which are usually addressing the isothermal and thus limited system, do
not provide practical tools that can be used to when trying to numerically solve the associated
equations.

The question of the numerical scheme has not been addressed beyond the study presented in
Sec. 7.1. In that prospect, the starting choice for this doctoral study to take advantage of the
highly qualified solver AVBP also came with the drawback of limiting the options regarding
the numerical schemes. The Central Difference and the Galerkin Runge-Kutta schemes have
been used preferentially.

In Sec. 7.2.1, the system is studied to determine its nature and eventually extract its character-
istics. Classically, this information proves useful to answer interrogations regarding boundary
conditions and stability criteria, in particular for hyperbolic systems where these information
can readily be inferred from the system characteristics. The limited success of this attempt
has led to the development of a more practical strategy to treat the boundary conditions in a
characteristic fashion which is presented in Sec. 7.2.2. A time step condition is also extracted
in Sec. 7.2.3 using a series of numerical experiments in front of the lack of theoretical results.

7.2.1 Nature of the equations

7.2.1.1 Methodology for the studies of PDEs

In Hirsch (2007), the author lays down a methodology to determine the nature of a system of
partial differential equations. The purpose of the next paragraphs is to apply this methodology
to the equation system described by the SG model. To that effect, the key steps of the
methodology are firstly recalled. A few examples are then provided for simple classic equations
to better demonstrate the application of said methodology.
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General methodology

If one considers a system of K equations with L variables (v1, · · · , vL) that depends on M
independent variables (x1, · · · , xM ), the corresponding system of partial differential equations,
of order at most n, can be written:

fk

(
x1, · · · , xM , v1, · · · vn,

∂v1

∂x1
, · · · , ∂vi

∂xj
, · · · , ∂vL

∂xM
, · · · , ∂

2v1

∂x1x2
, · · · , ∂tvj

∂xn1
1 xnMM

)
= 0 (7.26)

where n1 + · · · + nM = t with t = 1, · · · , n and where (fk)k=1,···,K are arbitrary functions. If
all (fk)k=1,···,K are linear, the system of PDEs is said to be linear as well, but this condition
is not systematically satisfied in practice.

The first step of Hirsch’s methodology consists in transforming the very generic formulation of
the system in Eq. (7.26) into a system of quasi-linear differential equations. To that effect, a
vector set of N variables U = (u1, · · · , uN )T must be selected to arrive to the new formulation:

M∑
i=1

Ai (U)
∂U

∂xi
= Q (U) (7.27)

where (Ai)i=1,···,M are N ×N matrices and Q is a N -sized vector. the important features of
the system in Eq. (7.27) are that only first order derivatives of the vector variables U are in-
volved and that matrices (Ai)i=1,···,M and vector Q only depend on U and not its derivatives.
As shown in the later examples, the obtaining of Eq. (7.27) often calls for a regularization
procedure when higher than first order derivatives of variables in (v1, · · · , vL) are involved. The
regularization implies to use partial derivatives of (vl)l=1,···,L as elements of U, for instance
∂v1/∂x1 or ∂2v2/(∂x2∂x4).

The second step of Hirsch’s methodology consists in determining the eigenvalues of the homo-
geneous system where the right-hand side member Q (U) is discarded. The objective is thus
to find the vectors L = (l1, · · · , lM )T such as:

det

(
M∑
i=1

liAi

)
= 0 (7.28)

The solutions L must be linearly independent to be considered as distinct.

A solution vector L of which components are all real is associated to an hyperbolic character-
istic, i.e. a system of advection equations can be extracted from the system. A solution vector
L of which components are complex with a non-zero imaginary part is associated to an elliptic
characteristic, i.e. a system of diffusion equations can be extracted from the system.
Depending on the outcome of the second step, the conclusions on the system are different. If
N characteristics are found and all of them are associated to hyperbolic characteristics, the
system is said to be hyperbolic.
If N characteristics are found and all of them are associated to elliptic characteristics, the
system is said to be elliptic.
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If N characteristic are found and are related to both hyperbolic and elliptic characteristic, the
system is said to be hybrid and must be treated on a case to case basis.
In some cases, less than N characteristics are found, the system in thus said to be parabolic.
This case often occurs when one of the solving variables vi lacks a partial derivative relatively
to one describing variable xj , in which case the regularization usually leads to a loss of one or
more characteristics.

Preliminary examples

To offer a better insight into the mechanics of the methodology, the latter is applied to classic
PDEs.

Wave equation

The one dimensional wave equation is given by Eq. (7.29) where c is a constant. It is a second
order PDE in both time t and space x.

∂2v

∂t2
= c2 ∂

2v

∂x2
(7.29)

Firstly, the equation must be transformed into a first order system of PDEs. A regularization
is needed since derivatives higher than the first order are involved. To that effect, the variable
vector U is introduced as follows:

U =

(
∂v

∂t
,
∂v

∂x

)T

(7.30)

Using these new notations, Eq. (7.29) can be written in the new form:

∂U1

∂t
− c2∂U2

∂x
= 0 (7.31)

Schwarz’s theorem, which states that ∂2v/(∂t∂x) = ∂2v/(∂x∂t), allows to write:

∂U1

∂x
− ∂U2

∂t
= 0 (7.32)

Eventually the system becomes:(
1 0

0 1

)
∂

∂t

(
U1

U2

)
+

(
0 −c2

−1 0

)
∂

∂x

(
U1

U2

)
= 0 (7.33)

The problem to solve is then to find the couples (l1, l2) such as:

det

(
l1

(
1 0

0 1

)
+ l2

(
0 −c2

−1 0

))
=

∣∣∣∣∣ l1 −l2c2

−l2 l1

∣∣∣∣∣ = l21 − l22c2 = 0 (7.34)

The solutions are given by l1 = ±cl2, i.e. the solutions vectors (c, 1) and (−c, 1). Both solu-
tions are real, the system is hyperbolic and displays two characteristic waves traveling upwards
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and backwards at velocity c.

Laplace’s equation

The two dimensional Laplace equation is given by:

∂2v

∂x2
+
∂2v

∂y2
= 0 (7.35)

It is also a second order PDE, which means a regularization is also needed to transform it into
a first order system. The variable vector used to that effect is:

U =

(
∂v

∂x
,
∂v

∂y

)T

(7.36)

The new notations and Schwarz’s theorem allow to write the system:

∂U1

∂x
+
∂U2

∂y
= 0 (7.37)

∂U1

∂y
− ∂U2

∂x
= 0 (7.38)

The problem to solve is then to find the couples (l1, l2) such as:

det

(
l1

(
1 0

0 1

)
+ l2

(
0 1

−1 0

))
=

∣∣∣∣∣ l1 l2
−l2 l1

∣∣∣∣∣ = l21 + l22 = 0 (7.39)

The solutions are given by l1 = ±il2 with i2 = −1, i.e. the solutions vectors (1, i) and (1,−i).
Both solutions have non-real component, the system is elliptic. The absence of intrinsic prop-
agating waves makes the elliptic equations better suited to describe static or steady-state
systems.

Heat equation

The one dimensional heat equation is given by Eq. (7.40) where k is a strictly positive constant.

∂v

∂t
= k

∂2v

∂x2
(7.40)

It is a PDE of the first order in time t but of the second order in space x. This asymmetry
between the variables t and x is most often the cause for the loss of one or more characteristics.
Indeed, a regularization is required to handle the second order space derivative, the variable
vector U thus must be:

U =

(
v,
∂v

∂x

)T

(7.41)

which leads Eq. (7.40) to be written:

∂U1

∂t
− k∂U2

∂x
= 0 (7.42)
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Another equation is required to complete the system. The differential relation between U1 and
U2 is trivially given by:

∂U1

∂x
= U2 (7.43)

This equation does not involve the time derivative of U2 leading to a formal asymmetry. If
one wishes to introduce the time derivative of U2, the following relation can be used:

∂U2

∂t
=

∂

∂t

(
∂v

∂x

)
=
∂2u

∂tx
=

∂

∂x

(
∂v

∂t

)
= k

∂

∂x

(
k
∂2v

∂tx

)
= k

∂3v

∂x3
(7.44)

However, this new relation leads to the appearance of a third order spatial derivative of v
which would require a new regularization with the introduction a new variable U3 = ∂2v/∂x2

that would also require a new equation for its time derivative, and so on. A vicious circle thus
appears if one tries to overcome the initial asymmetry in that fashion. The only solution is to
settle with the initial Eq. (7.43) to get to the system:(

1 0

0 0

)
∂

∂t

(
U1

U2

)
+

(
0 −k
1 0

)
∂

∂x

(
U1

U2

)
=

(
0

U2

)
(7.45)

The problem from the homogeneous system is then:

det

(
l1

(
1 0

0 0

)
+ l2

(
0 −k
1 0

))
=

∣∣∣∣∣ l1 −l2k
−l2 0

∣∣∣∣∣ = −kl22 = 0 (7.46)

The system, of size 2, is of rank 1 since (0, 0) is a valid solution. The system is parabolic. Ad-
ditionally, the other solution is of the form (a, 0) with a a non-zero real. In general, parabolic
equations are harder to handle when compared to the hyperbolic and elliptic ones. In partic-
ular, they often tend to be not well-posed and the existence and unicity of their solution is
difficult to assess.

Euler equations

To complete the example, the case of the one-dimensional Euler equations, given in Eqs.
(7.47a)-(7.47c), is also investigated.

∂ρ

∂t
= −∂(ρu)

∂x
(7.47a)

∂(ρu)

∂t
= − ∂

∂x

[
ρu2 + P

]
(7.47b)

∂(ρe)

∂t
= − ∂

∂x
[(ρe+ P )u] (7.47c)

It is shown in Sec. 6.3.2 that the previous system can be written in the pseudo-linear form of
Eq. (7.48) with the variable vector U = (ρ, ρu, ρe)T and matrix A expressed in Eq. (6.51).

∂U

∂t
= A (U)

∂U

∂x
(7.48)
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Eq. (7.48) is particular form of Eq. (7.27), that simplifies here into

At (U)
∂U

∂t
+Ax (U)

∂U

∂x
= 0 (7.49)

where At = I3 is the identity matrix and Ax = −A.
The problem in Eq. (7.28) becomes.

det (l1I3 − l2A) = 0 (7.50)

Provided that l2 6= 0, the variable α = l1/l2 can be introduced and the problem finally writes:

det (A− αI3) = 0 (7.51)

From Eq. (7.51), it appears clearly that for the Euler equations in one dimension, applying
Hirsh’s methodology is equivalent to finding the eigenvalues of matrix A and its eigenvectors,
which is done in details in Sec. 6.3.2 to derive the characteristic boundary conditions.

7.2.1.2 Application to the Second Gradient equations

To simplify the developments, a one-dimensional setting is used and the diffusion effects (vis-
cosity, conduction) are omitted. The equations to solve are given by Eqs. (7.52a)-(7.52c) and
form a third order non-linear PDE system.



∂ρ

∂t
= − ∂

∂x
[ρu]

∂ρu

∂t
= − ∂

∂x

[
ρu2 + P0 +

λ

2

(
∂ρ

∂x

)2

− λρ∂
2ρ

∂x2

]
∂ρe

∂t
= − ∂

∂x

[
(ρe+ P0)u+ λ

∂ρ

∂x

∂ρu

∂x
− λ

2

(
∂ρ

∂x

)2

u− λ∂
2ρ

∂x2
ρu

]
(7.52a)

(7.52b)

(7.52c)

To pseudo-linearize the system, a regularization must be performed beforehand since first and
second order derivatives already appear in the fluxes. The chosen variables vector U is given
by:

U =

(
ρ, ρu, ρe,

∂ρ

∂x
,
∂ρu

∂x
,
∂2ρ

∂x2

)T

(7.53)

Using these new variables, the new system becomes Eqs. (7.54a)-(7.54f). A classic consequence
of the regularization is that the new system no longer represents a set of conservative laws,
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meaning that the system is not guaranteed to be hyperbolic.

∂U1

∂t
+
∂U2

∂x
= 0

∂U2

∂t
+

∂

∂x

(
U2

2

U1
+ P0 +

λ

2
U2

4 − λU1U6

)
= 0

∂U3

∂t
+

∂

∂x

(
U2 (U3 + P0)

U1
+ λU4U5 −

λ

2

U2

U1
U2

4 − λU2U6

)
= 0

∂U4

∂t
+
∂U5

∂x
= 0

∂U2

∂x
= U5

∂U4

∂x
= U6

(7.54a)

(7.54b)

(7.54c)

(7.54d)

(7.54e)

(7.54f)

The second step for the pseudo-linearization is to make matrices At, Ax and vector Q emerge
such as the system can be written in the form:

At (U)
∂U

∂t
+ Ax (U)

∂U

∂x
= Q (U) (7.55)

To do so, it is necessary to express the differential of the classic pressure P0 relatively to the
other variables in U, just as done in Sec. 6.3.2. Using the definition in Sec. 6.3.2 for Λ and Γ
and using the subscript ∗0 to refer to a variable as given directly by the equation of state, the
differential is given by:

dP0 =
α0

ρβ0Cv0

[
d (ρe)− u d (ρu) +

(
Cp0

α0
− hs0 +

1

2
u2

)
dρ− λdρ

dx
d

(
dρ

dx

)]
(7.56)

= Γ

[
d (ρe)− u d (ρu) + Λ dρ− λdρ

dx
d

(
dρ

dx

)]
(7.57)

The pseudo-linearization of the system lends the following expressions for At, Ax and Q:

At =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Ax =



0 1 0 0 0 0

a21 a22 a23 a24 0 a26

a31 a32 a33 a34 a35 a36

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 1 0 0


Q =



0

0

0

0

U5

U6


(7.58)

where:

a21 = ΓΛ− u2 − λ∂
2ρ

∂x2
, a22 = u (2− Γ) , a23 = 2λ

∂ρ

∂x
(2− Γ) , a24 = Γ, a26 = −λρ

a31 = u

(
ΓΛ− hs0 −

1

2
u2

)
, a32 = hs0 + u2

(
1

2
− Γ

)
− λ∂

2ρ

∂x2
, a33 = u (1 + Γ)

a34 = λ

(
∂(ρu)

∂x
− u (1 + Γ)

∂ρ

∂x

)
, a35 =

λ

2

∂ρ

∂x
, a36 = −λρu
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The third step is to find the couples (lt, lx) such as det (ltAt + lxAx) = 0, which leads to the
equation:

det (ltAt + lxAx) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

lt 1 0 0 0 0

lxa21 lt + lxa22 lxa23 lxa24 0 lxa26

lxa31 lxa32 lt + lxa33 lxa34 lxa35 lxa36

0 0 0 lt lx 0

0 lx 0 0 0 0

0 0 0 lx 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (7.59)

After multiple simplifications, essentially due to the regularization of the equation with U that
makes lines of zeros appear in At, the equation simplifies in:

ltl
4
x [lx (a23a36 − a26a33)− a26lt] = 0 (7.60)

Which, after substitution, becomes:

det (ltAt + lxAx) = λρltl
4
x (ulx + lt) = 0 (7.61)

Given the previous results, the conditions to find characteristics becomes:

det (ltAt + lxAx) = 0 ⇐⇒ lt = −ulx, lt = 0, lx = 0 (7.62)

The system only has 3 solutions (all real) for a six-component state vector :
• couples of the form (−um,m) are solutions of multiplicity one
• couples of the form (0,m) are solution of multiplicity one
• couples of the form (m, 0) are solution of multiplicity four

where m is a non-zero real number. The system is simultaneously weakly hyperbolic and
parabolic, in particular, only the characteristic with the wave velocity u has been unveiled.
As such, this investigation does not permit to further qualify the equations, neither derive
adequate boundary conditions nor to infer some stability condition.

7.2.2 Boundary conditions

Although it could have been anticipated that the characteristic boundary conditions of AVBP
described in Sec. 6.3.2 could not be used with the equations, the lack of properly defined
characteristics for the capillary system even prevents a priori to derive new adequate ones.
To avoid possible detrimental interactions at the boundaries, the consensus used for our appli-
cations has been to settle with no interfaces entering or exiting the domain. Nonetheless, the
presence of strong acoustic noise in several cases has led to the design of a practical strategy,
hereunder presented, in order handle the interaction between said noise and the boundaries.

The ad-hoc method that has been implemented relies on the two following observations.
Firstly, for the SG model, the conservatives variables remain (ρ, ρv, ρe) which are formally
the same as for the classic Euler equations except that the specific sensible energy es included
within the total specific energy e is formed by the addition of the classic sensible energy es0

and the capillary energy λ (∇ρ) /ρ. Secondly, when no interface is present, i.e. when no
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macroscopic density gradient in the binodal region is present, the contribution of the capillary
energy to the total volumetric energy, λ (∇ρ)2, is negligible.
These two observations have led to the following strategy, applied at each temporal step (or
substep for multi-step time integration schemes):

1. The density gradient at the boundaries (∇ρn)bound is stored before the time step begins.
2. The SG conservative variables are updated in the whole domain using the full set of cap-

illary equations to get the predicted values
(
ρn+1,∗, ρun+1,∗, ρen+1,∗)bound

SG at the bound-
aries.

3. At the boundaries, the predicted SG conservative variables
(
ρn+1,∗, ρvn+1,∗, ρen+1,∗)bound

SG

are transformed into the Euler conservative variables
(
ρn+1,∗, ρvn+1,∗, ρen+1,∗)bound

Euler . This
is done by removing the capillary energy from the full energy using the previously stored
density gradient:

ρen+1,∗
Euler = ρen+1,∗

SG − λ

2
(∇ρn)2 (7.63)

4. Using the Euler conservative variables, the native characteristic boundary conditions in
Sec. 6.3.2 are applied to get the final Euler variables

(
ρn+1, ρvn+1, ρen+1

)bound
Euler

5. The updated SG conservative variables
(
ρn+1, ρvn+1, ρen+1

)bound
SG are recovered from the

updated Euler conservative variables by injecting back the previously removed capillary
energy into the total energy:

ρen+1
SG = ρen+1

Euler +
λ

2
(∇ρn)2 (7.64)

There exist a priori two configurations in which this approach should hold. The first and
most straightforward one is when the density gradient is negligible at the boundaries and can
be discarded from the equations altogether. The second one is more peculiar and may occur
when the local variation, at the boundaries, in total energy is not actually due to a change
in the density gradient, should the latter be nonetheless not negligible. This configuration
most likely applies when acoustic waves propagates in the bulk phases and interact with the
boundaries. The viability of this strategy has been assessed on several canonical cases, some
of which are presented hereunder.

Tinit 110.0 K equations mass + mom + ener.

Pinit 134 bar scheme GRK

ρinit 700 kg ·m−3 diffusion Chung

Table 7.4: Simulation parameters used for the one dimensional N2 uniform system to test the char-
acteristic boundary conditions.

Fig. 7.7 presents the case of a forward acoustic wave placed in static and uniform liquid N2.
The capillary Navier-Stokes equations are solved and the main parameters for the simulation
are compiled in Tab. 7.4.
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Figure 7.7: Evacuation of an acoustic wave in the SG system, non reflecting boundary conditions are
used on both the left and right sides

.

Non reflecting boundary conditions have been placed on both the left and right sides. It
should be noticed that the absence of characteristics for the capillary system also prevents the
creation of proper characteristic waves, either acoustic or entropic. For this case and the case
presented in Fig. 7.8, said waves have been generated using the non capillary system and the
total energy has then been corrected with the density gradient to account for the capillary
energy. This practical creation of characteristic waves must be accounted for when analyzing
the outcome of the simulations. In Fig. 7.7, the wave is damped by the physical diffusion
of the Navier-Stokes equations. It is nonetheless properly advected and adequately evacuated
of the domain with an extremely negligible noise being reflected back into the computational
domain. The amplitude of the residual noise is comparable to that of classic non-capillary real
gas simulations caused by the non-linearity of the EoS.

In Fig. 7.8, an entropic wave is placed into the same N2 system described with the parameters
in Tab. 7.4, endowed with a constant velocity of 50 m · s−1. The wave is also damped by
the diffusion and the tail of the wave experiences a dispersion phenomenon, characteristic of
non-isothermal advection for capillary system, which is further discussed in Sec. 8.1.3. The
phenomenon essentially impacts the pressure and causes a minor acoustic noise to be created
and/or reflected at the boundary, with an amplitude however still mostly negligible.
Finally, the practical strategy that has been implemented effectively allows to evacuate charac-
teristic waves granted that the conditions of applicability previously enunciated are respected.
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Figure 7.8: Evacuation of an entropic wave in the SG system, non reflecting boundary conditions are
used on both the left and right sides

.

A question that naturally arises concerns the reaction of the boundary if one tries to evacuate
an interface. Such a case is presented in Fig. 7.9, for a N2 interface, using the parameters
compiled in Tab. 7.5.

T 113.57 K λ 1.0 · 10−10 m7 · kg−1 · s−2 σ 3.26 N ·m

P sat 18.15 bar points in int. ≈ 6 w 4.42 µm

ρl 542.1 kg ·m−3 equations mass + mom. + ener. u 50 m · s−1

ρv 80.3 kg ·m−3 diffusion Chung CFL 0.95

Table 7.5: Simulation parameters used for the one dimensional N2 uniform system to test the char-
acteristic boundary conditions in presence of an interface.

One can observe that strong temperature, velocity and particularly pressure oscillations appear
at the boundary when the interface starts to cross it. These oscillations peak in amplitude
when the "liquid side" of the interface is evacuated (the tail of the interface in that case). The
interface is nonetheless completely evacuated. However, a slight drift is then observed in the
uniform velocity and an important noise propagates downwards and is associated to strong
pressure oscillations. Eventually, this noise is evacuated by the left-side non-reflecting bound-
ary and the system eventually reaches an uniform equilibrium state, however with a slightly
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decreased velocity (48.5 m · s−1 instead of 50.0 m · s−1), a slightly increased temperature
(114.11 K instead of 113.57 K) and a noticeably increased pressure (21.82 bar instead of 18.15
bar). This discrepancy between the expected and computed final values entails that, in spite
of the interface being ultimately evacuated trough the boundary, doing so can nonetheless lead
to a propagation of numerical errors in the domain which could in turn jeopardize the integrity
of the simulations.
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Figure 7.9: Evacuation of an interface in the SG system, non reflecting boundary conditions are used
on both the left and right sides

.

In light of the previous results, for the remaining numerical applications presented in this
document, a special care is taken to ensure that no interface is ever evacuated through a
characteristic boundary.

7.2.3 Determination of a time step condition

As already mentioned, the absence of proper characteristics for the system of equations also
renders more complicated the extraction of possible time step conditions.
More precisely, for the case at hands, the difficulty is twofold: the classic CFL condition re-
quires the evaluation of the sound speed which is not properly defined in the capillary regions
where the classic definition can lead to negative values, and the capillary terms, with the cor-
responding high order derivatives, are most likely to call for additional time step conditions,
just as it is the case with the Fourier number when physical diffusion is introduced in the
Navier-Stokes equations.



248 Chapter 7 - Numerical implementation of the Second Gradient model

To partially overcome this hurdle, a practical approach as been used in order to infer the
time condition associated with the SG equation system. To that effect, a one dimensional
setting similar to the one presented in 7.1.3.1 has been used: an isothermal liquid droplet
is inserted into a periodic domain of twice its diameter and is convected at constant speed.
During each simulation, a specific time step is enforced and, expectedly, too high values lead
to a crash whereas smaller values ensure a stable calculation. By fine tuning the value of this
time step, it is possible to find the limit around which the stability of the simulation switches.
To automatize the process, an arbitrary choice has been made to consider the simulation stable
once the droplet is able to perform ten sweeps of the domain.
By associating value 1 to a successful simulation and value -1 to a failed one and by using a
root-finding algorithm, it is possible to extract the value of the limit time step.

All the procedures described herein after have been performed using different fluids O2, N2

and H2 to maximize the generality of the findings. The presentation is however focused on
the results obtained for N2. They can be adapted to the other fluids without loss of generality
nor accuracy.

7.2.3.1 Impact of the mesh size and capillary coefficient

The first series of tests consists in evaluating both the impact of the mesh size ∆x and the
capillary coefficient λ on the time step ∆t. To do so, a reduced temperature Tr = 0.90 is fixed
(which correspond to an effective temperature of T = 139.12 K for N2).

As shown in Fig. 7.10, two correlations are extracted. For different fixed values of capillary
coefficient λ, the mesh size is used as a parameter to get the results on the left graph. Con-
versely, with fixed values of mesh size ∆x, the capillary coefficient is in turn used as the entry
parameter to get the results on the right graph.
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Figure 7.10: Evolution, in log scale, of the limit time step: with respect to the mesh size for different
capillary coefficients (left), with respect to the capillary coefficient for different mesh sizes (right).

The logarithmic scale used in Fig. 7.10 allows to unequivocally evaluate the impact of both
∆x and λ. The slopes of the obtained straight lines can be interpolated, the results are given
in Tabs. 7.6 and 7.7.
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λ [S.I] 1.00 · 10−6 2.15 · 10−7 4.65 · 10−8 1.00 · 10−8 1.15 · 10−9

slope of ∆t 1.9377 1.958 1.974 1.973 1.97

Table 7.6: Slope of ∆t with respect to ∆x in logarithmic scale for different values of λ

∆x [m] 1.00 · 10−5 4.64 · 10−6 2.15 · 10−6 1.00 · 10−6

slope of ∆t -0.486 -0.485 -0.486 -0.489

Table 7.7: Slope of ∆t with respect to λ in logarithmic scale for different values of ∆x

From Tab. 7.7 it comes that ∆t ∝ 1/
√
λ which can come across as partially counterintuitive

since the interface width w follows the trend w ∝
√
λ and a thinner interface can be assumed

to cause a bigger strain on the numerical methods due to greater values of gradients. However,
a smaller value of λ actually causes the interface to have a stiffer behavior and be less sensitive
to external perturbations. This can be observed on 2D simulations involving droplets/bubbles.
When too high of a value is used for the capillary coefficient, the interfaces start to deform
more easily, capillary waves form with greatest amplitude and overall, interfaces showcase a
more "malleable" aspect.

From Tab. 7.6 it the comes that ∆t ∝ (∆x)2 which is reminiscent of the condition involving the
Fourier number and is characteristic to diffusion fluxes, a result consistent with the microscopic
phenomena occurring near and inside the interfacial region which are essentially diffusive.
This result could be somewhat expected given the abundance of capillary terms in the fluxes
involving first order spatial derivatives.
An empirical rule commonly observed in fluid dynamics states that nth derivative in the fluxes
calls for at least a nth order dependency on the mesh size for the time step. For instance a first
order convection equation leads to first order dependency of the limit time step on the mesh
size via the CFL number. Likewise, a second order diffusive equation is met with a second
order dependency of the limit time step on the mesh size via the Fourier number. Following
this empirical rule, the presence of the density Laplacian in the flux that leads to third order
spatial derivative of the density should cause a (∆x)3 dependency to appear, which is not
observed. The importance of this non-occurrence must be mitigated and can be explained by
the empirical nature of this rule. Another possible explanation could be that the third order
dependency is actually true but that it requires smaller mesh sizes to be unveiled numerically
just as for big mesh size, the CFL condition can easily supplant that of the Fourier number.

In the later case, the 3rd order dependency can be dismissed since our simulations will most
likely rarely involve mesh sizes smaller than those that have been used during these numerical
experiments. However, if this should be the case, an extra care should be given when choosing
the time step condition since the current correlations could prove to be insufficient.

7.2.3.2 Impact of the temperature

Although the previous results have been replicated for different fluids and at different reduced
temperatures (Tr = 0.85, 0.90 and 0.95) with consistency. These results are however not
enough in the prospect of non-isothermal simulations since they fail to provide the actual
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impact of the temperature on the time step. To that effect, the same solving process has been
used to determine the limit time step with fixed mesh size and capillary coefficient, taking the
reduced temperature as a parameter.
The main difficulty of this approach comes from the fact that along with the reduced temper-
ature, numerous variables that were otherwise fixed, such as the saturation densities, are now
also changing and variables that had know variations with respect to λ, such as the interface
width w, the density gradient∇ρ or the surface tension σ, are varying in an uncontrolled fash-
ion. Therefore, it seemed necessary to assess not only the impact of the reduced temperature
but also the impact of other main variables that vary with it. For N2, the results of such an
inquiry can be found in Tab. 7.8 for a mesh size of ∆x = 4.64 · 10−5 m.

Tr ∆t T ρv ρl w max |∇ρ| σ

[-] [ns] K [kg ·m−3] [kg ·m−3] [mm] [kg ·mm−3/mm] [N.m]
0.90 31.47 113.5 80.3 542.1 0.442 202.1 1.69
0.91 31.93 114.8 87.4 527.5 0.467 177.8 1.48
0.92 32.42 116.1 95.3 512.0 0.497 153.9 1.28
0.93 32.96 117.4 104.1 495.5 0.533 130.6 1.09
0.94 33.57 118.6 113.9 477.9 0.578 107.9 0.90
0.95 34.26 119.9 125.2 458.9 0.635 86.0 0.72
0.96 35.06 121.1 138.2 438.0 0.711 65.1 0.55
0.97 36.03 122.4 153.8 414.5 0.824 45.3 0.38
0.98 36.64 123.7 179.3 384.4 1.011 27.1 0.23

Table 7.8: Impact of the reduced temperature Tr on the time step ∆t and several other main variables,
with ∆x = 4.64 · 10−5 m

Additional variables such as ρ̄ = (ρv + ρl) /2, ∆ρ = ρl−ρv, σ and max |∇ρ| /w have also been
considered as possible candidates to extract a correlation. Examples of graphs are provided
for N2 in Fig. 7.11.

Among all the studied variables, the liquid and vapor densities ρl and ρv and the density gap
∆ρ have provided a notable correlation. This result could have been partially hinted by di-
mensional analysis since, from the previously known correlation ∆t = A (∆x)2 /

√
(λ) it comes

that the dimension of A is analogous to 1/
√

(kg ·m−3). Although the results in Fig. 7.11 has
allowed to discard ρ̄ beforehand, the dimensional analysis on its own has not discarded ρl, ρv
or ∆ρ for which further comparisons between fluids have been necessary.

Figs. 7.12 to 7.14 show, for nitrogen, oxygen and hydrogen, the impact on the limit time step
of the density gap ∆ρ, the vapor density ρv and the liquid density ρl respectively. The mesh
sizes are ∆xN2 = 33.3 µm, ∆xO2 = 33.3 µm and ∆xH2 = 92.8 nm for nitrogen, oxygen and
hydrogen respectively. In particular, these figures clearly demonstrate that only the liquid
density ρl has a log-linear and repeatable relation with the limit time step, further confirmed
by the red-dotted lines in 7.14 that show the corresponding correlation of which slopes are
given in 7.9 with the associated mesh size used for the simulations.
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Figure 7.11: Evolution of the limit time step with respect to different
variables impacted by the varying reduced temperature.
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Figure 7.12: Evolution, in log scale, of the limit time step with respect to the density gap ∆ρ: for N2

(left), O2 (center) and H2 (right)

We mention here that to double proof these results, a second series of simulation has been
done for all fluids in the same conditions, only varying the mesh size, taken three times greater.
However, for these cases, the analysis of the result has later showed that the time step was
actually controlled by the CFL condition. For this reason, the corresponding results have been
omitted here.
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Figure 7.13: Evolution, in log scale, of the limit time step with respect to the vapor density ρv: for
N2 (left), O2 (center) and H2 (right)
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Figure 7.14: Evolution, in log scale, of the limit time step with respect to the liquid density ρl: for
N2 (left), O2 (center) and H2 (right). Red dotted lines for the log-linear regression.

Element N2 O2 H2

Slope -0.491 -0.528 -0.532

Table 7.9: Slope of ∆t with respect to ρl in logarithmic scale for different elements

Using the values in Tab. 7.9, it is possible to infer the partial expression for the limit time
step which given in Eq. (7.65).

∆tmax = C
(∆x)2

√
λρl

(7.65)

To achieve the formula, constant C must be determined, which can be done by evaluating
∆tmax/

(
(∆x)2√
λρl

)
for the different configurations, which is done for N2, O2 and H2 in Fig. 7.15.

Again, a trend clearly appears as the results concentrate around the value 2/3 with a very small
overall deviation. The final expression is obtained by noticing that during a non isothermal
simulation, the local density may probably exceed its liquid saturation value, therefore the
ρl must be treaded for ρmax. Eventually the limit time step is given by Eq. (7.66) and this
expression has been used for the rest of our simulations.

∆tmax =
2

3
min
Mesh

(
(∆x)2

√
λρ

)
(7.66)
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Figure 7.15: Evolution of the limit time step constant coefficient with respect to the reduced temper-
ature.

Comparison with the literature

In Brackbill et al. (1992) the authors derive a different time step condition, based on the
velocity of capillary waves (see Sect. 6.3 in Elmore and Heald (1985)), which is written:

∆tBr
max = min

Mesh

(√
ρl + ρv

4πσ
(∆x)1.5

)
(7.67)

The question arises about the reasons why this condition has not been recovered by the present
investigation. Firstly, the exponent 1.5 on the mesh size ∆x in Eq. (7.67) compared to the
exponent 2.0 in Eq. (7.66) makes the former condition a priori less restrictive, which is
confirmed by the comparative curves in Fig. 7.16.
This observation does not however explain the existence of the condition Eq. (7.66) in the first
place. For this, one needs to remember that the capillarity model proposed by Brackbill is
essentially geometrical as the capillary flux is given by σκn where κ is the interface curvature
and n is the interface normal vector. This formulation is intrinsically multi-dimensional, as
well as the notion of capillary waves which propagate on the interface and not through it.
The time step condition in Eq. (7.66) has been obtained studying one dimensional cases since
the notion of capillarity, in the SG model, still makes sense in one dimension. Indeed, the
capillary terms from the SG model possess intrinsic diffusive characteristics which ensure the
stability of the interface in one dimension and that, consequently, ensures that the interface
has an intrinsic width. The time step condition Eq. (7.66), analogous to diffusive time step
conditions in virtue of the exponent 2.0, is presumably associated to stabilization processes
of the interface. As such, it becomes clear why such a condition has no relevance for models
such as Brackbill’s. Conversely, the condition in Eq. (7.67) still needs to be compelled in
multi-dimensional SG simulations where the notion of capillary waves also applies.

As it is usual during a numerical simulation, a margin is taken relatively to the limit time
step. To that effect we introduce a "Second Gradient" Fourier number FoSG and practically
∆t = FoSG∆tmax with the constraint that 0 < FoSG < 1 (the value FoSG = 0.75 has been
used by default).

It also should be noticed that the limit diffusion time step imposed by the diffusion fluxes
changes by a factor 1/2 when going from one-dimensional to two-dimensional configurations.
Given the diffusion-like expression found for the SG limit time step, the same precaution has
been taken during our two-dimensional simulations.



254 Chapter 7 - Numerical implementation of the Second Gradient model

114 116 118 120 122 124
T [K]

0. 10

0. 04

0. 06
0. 08

0. 20

∆
t 

[µ
s]

Evolution of ∆t with T for N2

Condition for Second Gradient model Condition for Brackbill model

140 145 150
T [K]

0. 10

0. 04

0. 06
0. 08

0. 20

∆
t 

[µ
s]

Evolution of ∆t with T for O2

30 31 32
T [K]

0. 10
0. 08

0. 20

0. 40

0. 60

∆
t 

[n
s]

Evolution of ∆t with T for H2

Figure 7.16: Comparative evolution, in semi-log scale, of the limit time steps for the Second Gradient
(full line) and Brackbill (dashed line) models with respect to the temperature T : for N2 (left), O2

(center) and H2 (right)

Conclusion on the implementation of the SG model into the
AVBP solver

In this chapter, key aspects regarding the implementation of the SG model into the AVBP
solver have been discussed.

The high order spatial derivatives introduced by the capillary terms require a special treatment
that did not appear clear at first sight in the context of the AVBP numerical framework, a
matter that has been thoroughly investigated.
Attempts have been made to analytically qualify the nature of the SG equations system but
have been meet with limited success due to their peculiar and complex form.
The lack of theoretical information regarding the treatment of boundary conditions, the choice
of the numerical scheme and the associated time step has been circumvented by the analysis
of practical simulations that provided insightful information and practical correlations. With
the proposed strategy to handle boundary conditions and the time step condition numerically
derived, qualitative and quantitative simulations can now be performed.



Chapter 8

Numerical validation of the Second
Gradient model

This chapter provides the numerical validation of the implementation of the Second Gradient
model on canonical cases.
Firstly, one-dimensional simulations are performed in Sec. 8.1. A stationary solver is used as a
springboard towards dynamic cases. Solving the SG equations in a stationary setting as done
in Sec. 8.1.1 serves a dual purpose: firstly, it allows to verify the thermodynamic behavior
of the model and its ability to properly retrieve the saturation variables, secondly it permits
to generate the adequate initial solutions that can be used in other one or two-dimensional
configurations. The ensuing one-dimensional simulations in Sec. 8.1.2 performed using AVBP
are mostly conducted under isothermal conditions, preferential to qualify the implementation.
Non-isothermal cases are also discussed in Sec. 8.1.3.
In Sec. 8.2, all the gathered information is used to perform two-dimensional simulations. Two
cases are investigated: in Sec. 8.2.1 the oscillations of a planar interfaces initially perturbed
are simulated and the oscillations of an initially squeezed droplet are studied in Sec. 8.2.2. For
both cases, different sets of equations are solved, Euler or Navier-Stokes, in isothermal and
non-isothermal formulations, to allow for an in depth investigation of the model behavior.
These cases allow comparisons with theoretical results regarding the periods and damping of
the oscillations observed and therefore also serve as an additional validation of the implemen-
tation.

The purposes of this chapter are twofold and intimately linked.
Firstly, it serves as a validation of the implementation of the model in the AVBP solver and
the pertinence of the discretization strategies presented in Chap. 7. Following that line of
thoughts, the main objective is to determine the operating conditions, from a numerical point
of view, that permit to achieve successful simulations with exploitable results. This task is
mostly addressed through mesh convergence investigations and studies involving the resolution
of different sets of equations, Euler or Navier-Stokes, in different settings, isothermal or non-
isothermal. Some simulations have required the use of the stabilization strategies presented in
Sec. 6.2.4, mostly the selective high order filter and more occasionally the artificial viscosity,
in order to address more sensitive cases.
Secondly, provided that the numerical operating conditions have been established and cali-
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brated, the other main objective is to qualify the intrinsic thermodynamic behavior of the
model in and out of equilibrium, which is done by performing qualitative and, when possible,
quantitative comparisons with theoretical results on canonical cases. For these cases, the use
of a sufficient mesh resolution has been favored to the use of excessive stabilization strategies,
in particular the artificial viscosity, in order to limit its impact on the results and thus focus
on the thermodynamic behavior of the SG model. It is recalled that the artifical viscosity
used in this work has not been initially designed to interact with capillary-like terms in the
equations and as such, it may have an unexpected interaction with the SG model.
Although these two objectives cannot be addressed separately in virtue of their direct de-
pendency, an effort has however been made to emphasize on one or the other by varying the
conditions of the simulations and adapting the ensuing analysis.

8.1 Validation cases in one dimension

8.1.1 Stationary cases

8.1.1.1 On the need for a stationary solver

When considering the path towards simulating complex configurations involving interfaces
while using the Second Gradient model, the ability to generate accurate 1D canonical isother-
mal interfaces proves extremely useful, if not necessary, as it serves multiple roles.
Firstly, it can be used to assess the correct thermodynamic behavior of the model, i.e. its
ability for a given temperature to retrieve the saturation values of the fluid such as the liquid
and vapor densities or the saturation pressure.
Secondly, it provides the means to properly determine or confirm the different correlations
mentioned when characterizing the behavior of the model, such as the evolution of the capillary
coefficient λ with the temperature given in Eq. (5.174), Tab. 5.1 and Fig. 5.15 or the impact
of λ on the interface width and surface tension theoretically assessed in Eqs. (5.146) and
(5.167).
Thirdly, it allows to generate initial configurations for one or two-dimensional simulations in
a mostly consistent fashion rather than by guessing the value of the different variables and
letting the system relax on its own during a non-stationary simulation.
This last consideration is partially crucial when dealing with out-of-equilibrium situations such
as oscillating droplets or planar interfaces where non-idealities in the initial solution can create
numerical noise that can possibility temper with the physical effect one would want to study.
For all these reasons, efforts have been made to implement a robust strategy for solving the
equilibrium equation for a one-dimensional isothermal planar interface, given by Eq. (8.1)
where P0 is the pressure from the EoS, lending solutions such as displayed in Fig. 5.12.

∂P0

∂x
= λρ

∂3ρ

∂x3
(8.1)

It should be emphasized that these stationary calculations have been performed on a in house
solver and not AVBP.
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8.1.1.2 Root-finding algorithm

In the prospect of solving Eq. (5.137), the only real unknown of the system is the density
profile ρ (x) since no velocity is considered and the fixed temperature allows to evaluate all
the other thermodynamic variables. The density profile is considered here as a vector P =
[ρ1, ρ2, · · · , ρn−1, ρn]T where n is the number of points. With these notations, Eq. (5.137) can
be written in the vectorial form of Eq. (8.2) where G is a non linear function of vector P.

G (P) = 0 (8.2)

A wide variety of methods exist to solve Eq. (8.2). Given the strongly non linear behavior of
function G and the sensitivity of the system, we opted for the global affine invariant Newton’s
scheme devised in Deuflhard (1991). This method builds upon the classic Netwon’s scheme
which updates the value of the guessed solution at each step by following the direction of the
gradient as enunciated by Eq. (8.3) where Pk, Pk+1 are the guessed values for the solution at
iterations k and k + 1 and JkG is the Jacobian matrix of function G evaluated at Pk.

Pk+1 = Pk − JkG
−1 · Pk+1 (8.3)

Newton’s scheme is notorious for providing a quadratic convergence once close enough to the
solution. This is however not the case when far from the solution where strictly following the
full update imposed by the gradient can lead to steps too large that fail to decrease the values
of G

(
Pk
)
at each iterations. The idea behind Deuflhard’s approach is to temper a posteriori

the size of the step by a factor µ if the initial Newton’s step has failed to reduced the value of
function G. In that case, a new guessed solution P̃k+1 is calculated as expressed by:

P̃k+1 = Pk − µJkG
−1 · Pk+1 (8.4)

More precisely, the introduction of the tempering factor µ, a process known as backtracking,
is not due to Deuflhard. Rather, he proposed a method to optimize the choice for the value
of µ involving only the know value of G

(
Pk−1

)
and those of G

(
Pk
)
and JkG known when the

classic Newton’s step has been tested. Thus, applying this method optimizes the update step
when far from the solution (which is often the case during the first iterations in our problem)
and achieves the quadratic convergence of the classic Newton’s scheme when backtracking is
no longer needed. A practical implementation of the scheme can be found in Sect. 9.7 of
Teukolsky et al. (1992) and has been used in this work.

8.1.1.3 Application to interface equilibrium calculations

For our practical implementation, the variable X = ln (P) is used to ensure that no negative
density values are encountered during the calculation. This tweak proves absolutely necessary
when solving for low temperatures when the vapor densities reach low values.
As an initial guess, an arctan-like shape is used with arbitrary but purposefully exaggerated
values of liquid and vapor densities. Regarding the initial width, only a trial-and-error ap-
proach can be used to start the process, usually starting at high temperatures for which the
system is less sensitive. However, once a good initial guess for the width has been found, a
step-by-step continuation approach can be used to progressively reduce the temperature, using
the result from the last higher temperature as an initial guess for the next lower one.
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The results presented in the following paragraph focus on the assessment of the purely thermo-
dynamic behavior of the SG model. Fig. 8.1 shows graphs comparing the saturation densities
as calculated using the argument of thermodynamic equilibrium (equality of the chemical po-
tential of the two phases) and the values obtained using the SG model solving Eq. (8.2).
The comparison is done for several values of temperature and the relative errors between the
equilibrium and SG approach are also provided.
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Figure 8.1: Comparison between the saturation densities calculated with the equilibrium criterion and
predicted by the Second Gradient model for several single species. The relative errors for ρl and ρv are
magnified.

The results show a very good agreement, even for low reduced temperatures leading to very
low vapor densities, what further validates the behavior of the SG model from a purely ther-
modynamic point of view.

8.1.2 Isothermal 1D simulations

Using solutions from the stationary solver, unsteady one-dimensional simulations involving
moving and deformed interfaces have been performed using AVBP. The initial setting for the
four cases presented hereafter is mostly the same, a single isothermal interface of N2 is placed
in an open domain. The general parameters used for these simulations are recalled in Tab.
8.1 and the set of equations solved is given by Eqs. (8.5a) - (8.5b)

∂ρ

∂t
= −∂(ρu)

∂x

∂(ρu)

∂t
= − ∂

∂x

[
ρu2 + P0 +

λ

2

(
∂ρ

∂x

)2

− λρ∂
2ρ

∂x2

] (8.5a)

(8.5b)

Since only the thermodynamic behavior of the interface is being studied, to avoid possible nu-
merical difficulties that might perturb the calculations, a relatively high number of geometric
points (361 point) is used for these simulations. For static cases (no initial velocity for the
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interface), pressure outlets are used on both boundaries of the domain, whereas for convected
cases, a velocity-temperature inlet is used on the left boundary and a pressure outlet is used
on the right boundary. In either cases, the boundaries are non-reflective. These conditions are
enforced following the strategy described in Sec. 7.2.2.

T 113.57 K λ 1.0 · 10−10 m7 · kg−1 · s−2 σ 3.26 N ·m

P sat 18.15 bar points in int. ≈ 30 w 4.42 µm

ρl 542.1 kg ·m−3 equations mass + mom. scheme GRK

ρv 80.3 kg ·m−3 time step automatic (CFL+SG) CFL 0.95

Table 8.1: Simulation parameters used for the one dimensional N2 planar interface in isothermal
configurations solving Euler SG equations

The first case demonstrates the ability to convect the interface and allows to partially assess
the behavior of the boundary conditions. As shown in Fig. 8.2 where an initial constant speed
u = 10m · s−1 is applied, the interface shape is perfectly preserved during the convection and
no perturbation coming from the boundaries are observed as long as the interface is not in
contact with one of them.
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Figure 8.2: Density and pressure profiles of an isothermal N2 interface convected at constant speed
u = 10m·s−1. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting velocity-temperature inlet (left) and pressure outlet (right) used.

The second and third cases, shown respectively in Figs. 8.3 and 8.4, demonstrate the ability
of the model to handle mechanical perturbations applied to the interface. To that effect, the
interface has been artificially either stretched (Fig. 8.3) or compressed (Fig. 8.4).
In each case, the interface is able to return to its equilibrium shape. The important acoustic
waves created by the reshaping of the interface, particularly in the case of Fig. 8.4, are properly
evacuated at the boundaries, further validating their ability to handle interface-free flows.
The fourth case combines advection and mechanical deformation as the interface, again con-
vected at an initial constant speed u = 10m · s−1, has also been stretched. The simulation goes
as expected, the interface properly returns to its equilibrium profile while being convected.
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Figure 8.3: Density and pressure profiles of a static isothermal N2 interface initially stretched by a
factor 2. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting pressure outlets (left and right) used.
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Figure 8.4: Density and pressure profiles of a static isothermal N2 interface initially compressed by
a factor 3. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting pressure outlets (left and right) used.

Overall, the model responds properly to the various configurations imposed upon the interface
and behaves as expected for these canonical one-dimensional cases.

8.1.3 Non isothermal 1D simulations

In this section, non-isothermal simulations are performed although starting from the same
isothermal initial solution. The configuration used in Sect. 8.1.3.1-8.1.3.2 is similar to that
described in Tab. 8.1 with the major difference that all three Euler SG equations (mass,
momentum and energy), as recalled in Eqs. (8.6a) - (8.6c), are solved instead of only the first
two for the previous isothermal cases.
Moreover, to achieve reasonable time steps when the Navier-Stokes equations are solved with
diffusive terms, pertaining to the Fourier condition, the mesh resolution as been reduced to
about 8 points in the interface, without loss of generality in the results. The details of the
configuration are recalled in Tab. 8.2. To study the case of a vanishing interface, a similar
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Figure 8.5: Density and pressure profiles of an isothermal N2 interface initially stretched by a factor
2 and convected at constant speed u = 10m · s−1. The plain lines show the calculation results and the
dashed lines show the theoretical/ideal position of the interface. Non-reflecting velocity-temperature
inlet (left) and pressure outlet (right) used.

but slightly more realistic configuration is considered in 8.1.3.3 where oxygen O2 is used.
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u+ λρ
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∂u
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− λρ∂

2ρ

∂x2
u

]
(8.6a)

(8.6b)

(8.6c)

T 113.57 K λ 1.0 · 10−10 m7 · kg−1 · s−2 σ 3.26 N ·m

P sat 18.15 bar points in int. ≈ 8 w 4.42 µm

ρl 542.1 kg ·m−3 equations mass + mom. + ener. scheme GRK

ρv 80.3 kg ·m−3 time step automatic (CFL+SG) CFL 0.95

Table 8.2: Simulation parameters used for the one dimensional N2 planar interface in non-isothermal
configurations solving Euler/Navier-Stokes SG equations

8.1.3.1 Deformed static interfaces

To compute the case of a stretched interface, the initial solution must be generated consistently.
All three conservative variables (density ρ, momentum ρu, total volumetric energy ρe) must
be stretched in a similar fashion and the position of the interface must be adjusted to ensure
that the initial total energy in the domain is equal to that of the theoretical final solution.
The initial pressure and temperature are then calculated from the density and energy profiles.
This leads to the peculiar and non isothermal initial solution visible in Fig. 8.6.
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Figure 8.6: Density, temperature, pressure and velocity profiles of a non isothermal N2 interface
interface initially stretched by a factor 2. The plain lines show the calculation results and the dashed
lines show the theoretical/ideal position of the interface. Non-isothermal Euler SG equations (mass,
momentum, energy) are solved. Non-reflecting pressure outlets (left and right) used.

Although this case can be computed without additional difficulties, it appears in the profiles of
Fig. 8.6, that the interface does not return to its equilibrium profile. Instead, a different non
constant temperature profile is created and the pressure profile also retains a peculiar aspect.
This case has been prolonged up to a hundred times the return-to-equilibrium time of the
isothermal case in Fig. 8.3 with the interface not showing any sign of returning to its original
isothermal profile. A mesh convergence study up to extremely resolved cases has shown this
result not to be directly caused by an insufficient mesh resolution.

The same case, for which results are given in Fig. 8.7, has been computed solving the Navier-
Stokes equations. The diffusion coefficients (dynamic viscosity and thermal conduction coeffi-
cient) have been calculated according to Chung et al. (1988) method presented in Sec. 1.2.4.
It clearly appears that due to the thermal conduction coercing the interface into having a
constant temperature profile, the interface returns to its equilibrium profile in terms of density
and energy with a zero final velocity. The interface simulated solving only the non-isothermal
Euler equations, in contrast, remains in the peculiar state reached after 20 µs in Fig. 8.6 even
after the long time simulation of 7.5 ms, which represents a factor of 375.

No definitive explanation has been found for the behavior observed in Fig. 8.6. The evolution
of the total entropy of the system, expected to be constant, has also been analyzed for different



Part II - Implementation of the Second Gradient model in the solver
AVBP

263

100

200

300

400

500

D
en

si
ty

 ρ
 [

k
g
.m

−
3
]  t= 0. 0 ms

100

200

300

400

500

 t= 0. 2 ms

100

200

300

400

500

 t= 0. 8 ms

100

200

300

400

500

 t= 1. 2 ms

100

200

300

400

500

 t= 7. 5 ms

110

112

114

116

T
em

p
er

a
tu

re
 T

 [
K

]

110

112

114

116

110

112

114

116

110

112

114

116

110

112

114

116

5

10

15

20

P
re

ss
u
re

 P
 [

b
ar

]

5

10

15

20

5

10

15

20

5

10

15

20

5

10

15

20

15 10 5 0 5 10 15

x [µm]

1. 5

1. 0

0. 5

0

0. 5

1. 0

1. 5

V
el

o
ci

ty
 u

 [
m
.s

1
]

Theoretical solution Euler eqs. Navier−Stokes eqs.

15 10 5 0 5 10 15

x [µm]

1. 5

1. 0

0. 5

0

0. 5

1. 0

1. 5

15 10 5 0 5 10 15

x [µm]

1. 5

1. 0

0. 5

0

0. 5

1. 0

1. 5

15 10 5 0 5 10 15

x [µm]

1. 5

1. 0

0. 5

0

0. 5

1. 0

1. 5

15 10 5 0 5 10 15

x [µm]

1. 5

1. 0

0. 5

0

0. 5

1. 0

1. 5

Figure 8.7: Density, temperature, pressure and velocity profiles of a non isothermal N2 interface
interface initially stretched by a factor 2. Euler and Navier-Stokes SG equations (mass, momentum,
energy) are solved. Non-reflecting pressure outlets (left and right) used.

mesh resolutions. It must be emphasized that the numerical scheme used in our simulations
does not satisfy the second thermodynamic principle by nature at the discretized level. How-
ever, the curves have shown to converge towards a constant entropy evolution as the mesh
resolution was increased, further enticing that this peculiar behavior is actually valid from a
thermodynamic point of view, and thus remains unexplained.
However, the reach of this result must be moderated since the initial configuration used for
the simulation can hardly be compared to a realistic physical case. In two or three dimen-
sions, situations leading to the deformation of the interface would be accompanied with a non
null velocity and therefore a convection, of sort, of the interface. Moreover, for the interface
to be compressed and/or stretched in the first place, it requires an upset in the thermody-
namic balance that cannot be achieved, to the best of our knowledge, at an initially constant
temperature for a single species fluid, especially for a constant, let alone null, velocity field.

8.1.3.2 Convected interfaces

To study interface convection without interference from the boundary conditions, a one di-
mensional periodic setting is used as done in Sec. 7.1.3.1 retaining the same parameters as
given in Tab. 8.2 and the convection speed is 10 m.s−1.
The results in Fig. 8.8 have been obtained with a mesh resolution resulting in 8 points in the
interface. Whereas the density and velocity profiles have been mostly well convected, strong
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Figure 8.8: Density, temperature, pressure and velocity profiles of a N2 droplet convected at constant
speed u = 10 m · s−1. The plain lines show the calculation results and the dashed lines show the
theoretical/ideal position of the interface. Periodic boundary conditions (left and right) used. Non
isothermal SG Euler equations are solved, 8 points in the interface

undershoots and overshoots that can be observed on the temperature profiles and have also
lead to strong discrepancies in the convected pressure profiles. These errors grow steadily and
quite rapidly with time.
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Figure 8.9: Temperature profiles of a N2 droplet convected at constant speed u = 10m · s−1. The
plain lines show the calculation results and the dashed lines show the theoretical/ideal position of the
interface. Periodic boundary conditions (left and right) used. Non isothermal SG Euler equations are
solved for multiple higher mesh resolutions.

One can observe in Fig. 8.10 that the amplitude of the discrepancies in the temperature and
pressure profiles are strongly dependent on the mesh resolution while the density and velocity
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Figure 8.10: Density, temperature, pressure and velocity profiles of a N2 droplet convected at constant
speed u = 10m · s−1. Periodic boundary conditions (left and right) used. Non isothermal SG Euler
equations are solved for multiple lower mesh resolutions

profiles tend to maintain a reasonable accuracy even for lower resolutions. However, even with
twelve points in the interface, the errors in the temperature remain important, more than 0.5
K after only one crossing of the domain.
The problem is still visible for very high resolutions as exposed in Fig. 8.9 where only the
evolution of the temperature profiles is provided. Since the GRK scheme, that has been used
to carry out these simulations, is centered and completely non-dissipative, such characteristic
oscillating numerical errors could have been expected. However, the still relatively important
amplitude of these oscillations, even for very high mesh resolutions, remains puzzling and
probably cannot be only justified by this shortcoming of the GRK scheme.

This aspect is evoked again in the next paragraph where the impact of artificial viscosity is
discussed. This discussion is all the more motivated by the fact that the addition of physical
diffusion, presented in Fig. 8.11, seems to have only a limited impact on the results (which
however could be explained by the design used for this specific case). Indeed, while the
point-to-point errors are slightly damped, the curves show a significant improvement only at
sufficient mesh resolutions, typically with at least eight points in the interface.
Nonetheless, the dissipation provided by viscosity and thermal diffusion, that could be deemed
more physical than the eponymous artificial viscosity of AVBP, still provides the ideal approach
to foster the stability of the calculations when possible. This important aspect is further
elaborated upon in Sec. 8.2 where two-dimensional cases are addressed.
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Figure 8.11: Density, temperature, pressure and velocity profiles of a N2 droplet convected at constant
speed u = 10m · s−1. Periodic boundary conditions (left and right) used. Non isothermal SG Navier-
Stokes equations are solved with Chung’s diffusion model, for multiple lower mesh resolutions

Impact the artificial viscosity:

An additional set of simulations, fostered by the minimal impact of the physical diffusion,
has been performed trading Chung’s diffusion model for the artificial viscosity implemented
in the AVBP solver and presented in Sec. 6.2.4.2. As evidenced by the curves in Fig. 8.12,
the impact of this approach on the lower mesh resolutions is much more significative, as the
3-point and 4-points cases are solved to completion. The poor accuracy of these meshes, in
particular their inability to properly capture the density gradient and more importantly the
characteristic pressure variation when crossing the saturation curve, prevents the correspond-
ing results to be accurate and leads to important numerical errors. Nonetheless, the fact that
the native artificial viscosity has permitted these cases to be simulated led us to believe that
the numerical difficulties observed for the non-isothermal cases and particularly visible in the
temperature fields, are typical numerical issues associated with centered schemes such the as
GRK scheme used in these simulations. High-order centered schemes are notorious for being
strongly oscillatory, even more so when their formulation is totally non-dissipative as it is the
case for the GRK scheme.

These numerical difficulties are recurrent in compressible real gas simulations where the strong
coupling of the momentum and energy equations leads to strong numerical oscillations when
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simulations are performed with this class of schemes. The artificial viscosity in AVBP has
first and foremost been developed in order to address these difficulties and offer a tool to
temper these oscillations. The strong positive effect of said artificial viscosity on the lower
mesh resolutions configurations could be interpreted as an indication that the same issue is
being encountered in our case of interest. These difficulties can moreover be amplified by the
inherent stiff nature of the equations when enriched with the high-order derivatives of the
capillary terms. A last hint in that direction is the observation that the errors in the tem-
perature field are indeed oscillations over several mesh step sizes rather than point-to-point
oscillations, what can be noticed by comparing the temperature and velocity fields in Fig. 8.11.
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Figure 8.12: Density, temperature, pressure and velocity profiles of a N2 droplet convected at constant
speed u = 10m · s−1. Periodic boundary conditions (left and right) used. Non isothermal SG Navier-
Stokes equations are solved with native AVBP artificial viscosity.

Beyond this potential direction, this issue had not been with met satisfactory explanations but
we firmly believe that it is the manifestation of a deep-rooted issue that should be a priority
point of investigation for future work regarding the SG model.
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8.1.3.3 Interfaces with thermal conduction

In this last section, the interaction between the SG model and thermal conduction is addressed
more intimately. To that effect, a different configuration has been used, with oxygen, and of
which relevant parameters are compiled in Tab. 8.3. Navier-Stokes equations (8.7a)-(8.7c)
are solved where the diffusion coefficients (viscosity and thermal conduction coefficients) have
been calculated according to Chung et al. (1988) method presented in Sec. 1.2.4. A constant
temperature is imposed on the left and right walls and a temperature temporal relaxation
condition is used on both boundaries.
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Tinit 110 K λ 1.173 · 10−17 m7 · kg−1 · s−2

P sat 5.45 bar points in int. ≈ 8

ρl 1017.7 kg ·m−3 σ 8.37 mN ·m−1

ρv 21.4 kg ·m−3 w 0.97 nm

scheme GRK equations mass + mom. + ener.

CFL 0.95 time step (CFL+SG+Fourier)

Table 8.3: Simulation parameters used for the one dimensional O2 planar interface in non-isothermal
configurations solving SG Navier-Stokes equations

Evaporation in a closed domain
The first case addresses the evaporation of an interface caused by the elevation of its tempera-
ture from a subcritical (110 K) to a transcritical (170 K) temperature (the critical temperature
of oxygen being TcO2

= 154.6 K). This evaporation is performed in two steps to validate both
subcritical-subcritical and subcritical-supercritical transitions: in the first step, the tempera-
ture is elevated from 110 K to 140 K, it is then further elevated to reach 170 K.
The results in Fig. 8.13 show that as the temperature stabilizes at 140 K and the velocity
returns to 0, the density and the pressure profiles properly adopt their equilibrium shapes
at that temperature. The same satisfactory results are obtained in Fig. 8.14 where the
density gradient, and thus the interface, slowly smooths out and eventually vanished once the
critical temperature is passed. This observation also applies to the pressure profile which no
longer displays the subcritical shape typical of the binodal region. All the mechanical and
thermodynamic variables become uniform at the right values by the end of the simulation.
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Figure 8.13: Density, temperature, pressure and profiles of a heated O2 droplet with viscosity and
thermal conduction. The dashed lines show the theoretical isothermal profiles at 110K and 140K, the
plain lines show the calculation results. Isothermal boundary conditions at 140K are used on both sides.
SG Navier-Stokes equations are solved, Chung model is used for the diffusive fluxes.
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Figure 8.14: Density, temperature, pressure and profiles of a vanishing heated O2 droplet with viscosity
and thermal conduction (continuation of Fig. 8.13). The dashed lines show the theoretical isothermal
profiles at 140K and 170K, the plain lines show the calculation results. Isothermal boundary conditions
at 170K are used on both sides. SG Navier-Stokes equations are solved, Chung model is used for the
diffusive fluxes.
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Condensation in a closed domain
The inverse process has been applied to simulate the condensation of said interface. The initial
profile are taken from the final form in Fig. 8.14, all variables are uniform with no velocity
at 170 K. The value of the uniform density profile ensures that the simulation is performed
with the same mass of nitrogen. Similarly to the evaporating case, a two step approach has
been used to validate both subcritical-supercritical and subcritical-subcritical transitions: in
the first step, the temperature is lowered from 170 K to 140 K, it is then further lowered to
reach 110 K.
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Figure 8.15: Density, temperature, pressure and profiles of the creation of O2 droplet with viscosity
and thermal conduction. The dashed lines show the theoretical isothermal profiles at 170K and 140K,
the plain lines show the calculation results. Isothermal boundary conditions at 140K are used on both
sides. SG Navier-Stokes equations are solved, Chung model is used for the diffusive fluxes.

One noticeable difference is that instead of the single interface profile used as the initial
solution for the evaporating case, a double interface profile is adopted by the system when the
critical temperature level is crossed, as shown in Fig. 8.15. Notwithstanding this difference,
the correct profiles are reached at 140 K with no velocity and the typical subcritical pressure
evolution in the binodal region. When the temperature is further lowered in Fig. 8.16, the
correct final states are also reached with no additional difficulties.
Although no definitive argument has been found to justify whether the single ou double in-
terface should be preferred by the system, an a posteriori analysis on has shown that the
double interface (droplet) configuration at 110 K presents the highest final entropy and re-
quires the least energy exchange, which is consistent with a more stable thermodynamic final
state starting from the flat supercritical configuration at 170 K.
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Figure 8.16: Density, temperature, pressure and profiles of a cooled O2 droplet with viscosity and
thermal conduction (continuation of Fig. 8.15). The dashed lines show the theoretical isothermal
profiles at 140K and 110K, the plain lines show the calculation results. Isothermal boundary conditions
at 140K are used on both sides. SG Navier-Stokes equations are solved, Chung model is used for the
diffusive fluxes.

Configuration E
[
nJ ·m−2

]
S
[
nJ · .K−1 ·m−2

]
∆E

170 K→110 K

[
nJ ·m−2

]
Single interface 110 K −8.65 0.308 10.60

Double interface 110 K −8.21 0.311 10.16

"Flat" interface 170 K 1.95 0.385 -

Table 8.4: Integrated energy E and entropy S balance for different interface configurations
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Evaporation in a semi-infinite domain
Finally, a last case of evaporation has also been addressed. The oxygen interface is simulated
with the same parameters as in Tab. 8.3, in a larger domain with different boundary conditions.
The interface is initially at equilibrium at 110 K the left boundary is set to be an isothermal
wall at 140 K where a temperature relaxation occurs. Oppositely, the right boundary is a
classic non-reflecting pressure outlet. As shown in Fig. 8.17 and as expected, the interface
moves towards the right boundary as the liquid progressively evaporate into gas.
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Figure 8.17: Density, temperature, pressure and profiles of an evaporating O2 interface with viscosity
and thermal conduction. An isothermal wall at 140K is used on the left side with a temperature
relaxation condition while an non-reflecting outlet is used on the right boundary. SG Navier-Stokes
equations are solved, Chung model is used for the diffusive fluxes.
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8.1.4 Convergence orders

An additional key point that can be evaluated to asses de validity of our implementation is the
convergence order of the numerical method. The GRK spatial scheme used for our simulation
has a theoretical 4th order super-convergence for linear advection and a 3rd order convergence
for Euler equations. To estimate said convergence order, the simulation case used is that of
the one-dimensional convected nitrogen droplet from Fig. 8.8.
A varying the number of points has been used to discretize the interfacial zone thus defining
the different mesh resolutions used for the study. This number has been taken among the fol-
lowing values [4, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60]. Three sets of equations have been considered
in relation with the SG model: the isothermal Euler equations, the non-isothermal Euler equa-
tions and the (non-isothermal) Navier-Stokes equations with the diffusion model described by
Chung et al. (1988).

Since only the spatial order of the scheme has been studied, a common time step (imposed by
the most restrictive simulation mesh resolution of 60 points "in the interface"), has been used
for the simulations with all the other mesh resolutions. The classic L2 norm has been used as
a metric to evaluate the convection errors for the conserved variables (ρ, ρu, ρe) as well as the
thermodynamic variables (T, P ) directly involved in the simulations. For the isothermal case,
the errors for ρe and T have been discarded as being non-relevant. The results observed after
a half-crossing of the domain are compiled in Fig. 8.18 and after a complete crossing of the
domain in Fig. 8.19.
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Figure 8.18: Convergence orders of AVBP’s GRK numerical scheme with the SG model implementa-
tion in 1D solving Euler isothermal, Euler non isothermal and Navier-Stokes (Chung model) equation.
Results after after half a crossing of the domain. Logarithmic scale used for both axis. Interpolation
slopes in legend.
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Figure 8.19: Convergence orders of AVBP’s GRK numerical scheme with the SG model implementa-
tion in 1D solving Euler isothermal, Euler non isothermal and Navier-Stokes (Chung model) equation.
Results after after one crossing of the domain. Logarithmic scale used for both axis. Interpolation
slopes in legend.

The results after a half-crossing and after a complete crossing of the domain are essentially the
same. Only an earlier plateau effect can be observed for the 100 % progression with the highest
resolution at higher values for the errors. This is consistent with the fact that errors tend to
accumulate with time and become harder to mitigate despite using high mesh resolutions.
The set of equations that is solved has a strong impact on the results. More precisely, the
system of isothermal Euler equations seems to represent an outlier as it leads to errors on the
density, momentum and pressure that drop steeply for the very first resolutions to then remain
at values substantially lower than that of the other (and non-isothermal) sets of equations. As
such, no order can be established for this set of equations, which is consequently discarded for
the rest of the discussion.

For all the variables, the orders of convergence are observed to be above 4 which represents a
surprising value on multiple accounts.
Firstly, these orders are above the theoretical 4th order linear super-convergence (see Sengupta
(2004)) and the 3rd order Euler convergence (see Lamarque (2007)) of the GRK scheme.
Secondly, it has been established in Sec. 7.1.2 that the discretization of the high-order deriva-
tive capillary terms, in particular the Laplacian, leads theoretically to a 2nd order convergence
in space.
Thirdly, this last remark is doubly valid when the Navier-Stokes equations are solved and the
2nd order diffusive scheme of AVBP is used to discretize the viscous and conductive terms.
However, the solving of this set of equations has not led to degraded orders but rather to
slightly lower values for the errors.
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Although all corresponding figures are not presented here for the sake of conciseness, these
simulations have been replicated by modifying multiple variables: other values of the capillary
coefficient λ (for the same fluid and temperature), other values of temperature (for the same
fluid), other metrics (L1 and L∞) to evaluate the errors. This full study has also been carried
out using oxygen, acting on the same different variables in a similar fashion. For each scenario,
the above fourth orders have been observed with regularity for the non-isothermal Euler and
Navier-Stokes equations and the extremely fast convergence for the isothermal Euler equations
has also been noticed.
The relative contributions of the capillary terms to the momentum and energy balance have
also been estimated and confirmed to be homogeneous and of the same magnitude as that of
the pressure, momentum transport and energy transport terms. This observation increases
the perplexing aspect of the convergence orders that have been extracted. It implies that the
discretization of the capillary terms, of order two at most and which should have a significant
impact on the overall orders of convergence, does not act so in practice.

No satisfactory answer has been found for this above linear super-convergence for the GRK
scheme. It is further proof that the investigation of the mathematical behavior of the SG model
from a theoretical and numerical point of view is of the utmost relevance for further studies
on that matter. Be that as it may, these unexpectedly good results, although unexplained,
cast a rather positive light on our implementation of the SG model in the AVBP solver.

8.2 Validation cases in two dimensions

8.2.1 Oscillating planar interfaces

8.2.1.1 Configuration

To validate the method in two dimensional configurations, the first case chosen is an oscillat-
ing isothermal planar interface initially deformed by a harmonic longitudinal perturbation as
illustrated in Fig. 8.20. The wavelength of the perturbation is reduced to one period in the
domain so that the local curvature radius of the interface remains substantially higher than
the interface thickness. Moreover, the amplitude A of the perturbation has been kept low
in order to remain in the linear deformation regime. With this setting, the interface is ex-
pected to oscillate almost indefinitely since no dissipation, apart from the numerical diffusion,
is integrated in the equations.
The relevant parameters used for this calculation are compiled in Tab. 10.2, the fluid used
is nitrogen. The GRK scheme of AVBP is used and a selective filter (see Sec. 6.2.4.1) has
also been applied to the mass, momentum and energy equations during the simulation with
a factor 1.0 · 10−2 in order to limit point-to-point oscillations typical of high order centered
schemes. No slippery walls boundary conditions are used a the top and bottom of the domain
which is horizontally periodic.
From a macroscopic point of view, the expected oscillations of the interface are well retrieved
as demonstrated by monitoring the time evolution of the density at the center of the domain
in Fig. 8.21 and by the series of time snapshots in Fig. 8.22.
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l

hu = 1. 5l

hd = 1. 5l

2A w

Figure 8.20: Schematic representation of the computational setting for the oscillating planar interface

T 119.88 K λ 1.0 · 10−16 m7 · kg−1 · s−2 Lx = l 150 nm

P sat 25.20 bar w 6.34 nm Ly = 3l 450 nm

ρl 458.94 kg ·m−3 σ 1.18 mN ·m−1 Nx 250

ρv 125.22 kg ·m−3 points in int. ≈ 10 Ny 750

Table 8.5: Simulation parameters used for the first test case of an oscillating two dimensional N2

planar interface
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Figure 8.21: Time evolution of the density at the center of the domain for the oscillation of an
initially harmonically perturbed plane nitrogen N2 interface

8.2.1.2 Period calculation

From Fyfe et al. (1988) one gets that the expected pulsation of the oscillations ω obeys Eq.
(8.8) where ρu (resp. ρd) and hu (resp. hd) are the density and width of the upper (res. lower)
fluid, σ the surface tension of the interface, g the gravity acceleration and k the wavenumber
of the deformation. Noticeably, it does not depend on the amplitude of the initial deformation
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(a) t = 0 (b) t = τ/8 (c) t = 2τ/8 (d) t = 3τ/8

(e) t = 4τ/8 (f) t = 5τ/8 (g) t = 6τ/8 (h) t = 7τ/8

Figure 8.22: Zoom on the normalized density gradient profiles at different instants for the oscillation
of an initially harmonically perturbed plane N2 interface

(in linear regime).

ω2 =
(ρd − ρu) gk + σk3

ρd coth khd + ρu coth khu
(8.8)

In our configuration, no gravity is considered, the upper and lower densities are the saturation
densities ρv and ρl, only one period of a sine is used for the deformation therefore k = 2π/l
where l is the domain width i.e. the length of the interface when no perturbation is applied
and the upper and lower widths hu, hd have been chosen so that hu = hd = 1.5l. It comes that
coth khd = coth khu = coth (3π) ≈ 1.0+1.3 ·10−8 ≈ 1.0. The simplified and classic expression
of the pulsation in then given by:

ω2 =
σk3

ρl + ρv
(8.9)

The ensuing simplified expression for the period τ (with τ = 2π/ω) is now given by Eq. (8.10).

τ =
l3/2

σ1/2

√
(ρl + ρv)

2π
(8.10)

Applying Eq. (8.10), the expected period is τth = 17.14 ns while the period given by the
simulation is τsim = 17.89 ns which represents a very satisfactory error below 5%.

Mesh convergence studies

The very encouraging results from Sec. 8.2.1.1 have fostered a more in depth study to further
qualify the behavior of the model for this canonical two-dimensional configuration. To that
effect, a slight modification has been applied to the parameters used for the simulation, in
particular the temperature that has been significantly reduced from about 120 K (Tr ≈ 0.95)
to 100 K (Tr ≈ 0.80) to be more challenging. The absolute dimensions of the domain have
been modified to accommodate for this new temperature, the length-to-height ratio of 3.0 has
however been conserved as presented in Fig. 8.20. The amplitude of the initial deformation
is A = 0.015l. The new relevant parameters for the nitrogen based calculations are compiled
in Tab. 8.6. The GRK scheme is still used with the contribution of AVBP selective filter (see
Sec. 6.2.4.1) using a factor 1.0 · 10−2. Different mesh resolutions, detailed in Tab. 8.7, have
been used to perform a rudimentary convergence study.
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T 100 K λ 1.0 · 10−16 m7 · kg−1 · s−2

P sat 7.85 bar w 2.97 nm

ρl 667.14 kg ·m−3 σ 9.32 mN ·m−1

ρv 31.6 kg ·m−3 Lx = Ly/3 = l 80 nm

Table 8.6: Simulation parameters used for the additional tests of an oscillating two dimensional N2

planar interface

Points in interface (≈) 4 6 8 10
Nx(= Ny/3) 110 165 218 245

Table 8.7: Interface and mesh resolutions used for the convergence study of an oscillating nitrogen
interface initially at 100 K

Isothermal simulations with no viscosity

The first series of simulations have been performed in an isothermal setting solving Euler
equations (mass and momentum only) and the results for the central density time evolution
are given in Fig. 8.23. Although the sustained oscillations can mostly be observed as in Fig.
8.21, the mesh resolution is seen to have a strong impact. The uppermost resolutions of eight
and ten points in the interface provide clean results that display a relative convergence. The
quality of the oscillations is reduced for the lower 6-points resolution in the interface. Finally,
when only four points are used in the interface, the oscillations are progressively perturbed to
eventually become completely disrupted.
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Figure 8.23: Comparison of the central density time evolution of a two-dimensional planar oscillat-
ing interface for different mesh resolutions. Isothermal Euler equations are solved using a selective
numerical filter (coeff 1.0 · 10−2).

A closer look at the time snapshots of the interface, provided in the comparative images of
Fig. 8.24, shows that for the lowest 4-point interface resolution, the interface is completely
perturbed. A possible explanation is that the numerical errors, of a too high magnitude at
this resolution, eventually excite other modes of oscillation of the interface that superimpose
on each other to completely and unevenly deform the interface. The 6-point resolution case
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seems to be at the limit: the oscillations are not severely impacted but showcase a starting
tendency to amplification that could lead to a similar disrupted behavior given enough time.

(a) t = 3.5τ (b) t = 4.75τ

(c) t = 6.0τ (d) t = 7.25τ

(e) t = 9.5τ (f) t = 10.75τ

Figure 8.24: Zoom on the normalized density gradient profiles at different instants for the oscillation
of an isothermal N2 interface. Comparison between a 4-point (leftmost) and a 8-point (rightmost)
interface resolutions.

For the sufficiently resolved cases, the mean oscillating period that can be extracted is τsim =
2.25 ns which represents a reasonable 7.5% error when compared to the theoretical value
τth = 2.42 ns.
A very slight damping of the oscillations can be observed but has not been met with a satis-
factory explanation, in particular given the fact that wall and periodic boundary conditions
are used and that the GRK numerical advection scheme is strictly non-dissipative. This effect
was invisible in the results from Fig. 8.21 performed at a higher temperature (120 K instead
of 100 K), which represents an easier physical configuration to compute. A possible source for
the dissipation can be the implementation of the high order derivatives capillary terms into
the AVBP solver which is not guaranteed to be dissipation free, contrary to the GRK scheme
used for the purely advective terms.

Isothermal simulations with viscosity

The second series of simulations have been performed trading Euler equations for Navier-Stokes
equations: the isothermal constraint is still imposed and physical viscosity is introduced (no
thermal diffusion is considered so far). For all simulations, the dynamic viscosity coefficient
µ has been taken constant in the whole domain, several values of said viscosity have however
been used in the following set:

[
10−8, 10−7, 10−6, 10−5, 10−4

]
(in kg · m−1 · s−1). Given the

proximity of the 8-point and 10-point resolution results in Fig. 8.23, only the 4-point, 6-point
and 8-point resolution cases have been simulated. For the sake of clarity, only noticeable re-
sults for µ = 10−4, 10−6, 10−8 kg · m−1 · s−1 are presented in Fig. 8.25 where the central
density time evolution is plotted. The corresponding Laplace La numbers are also provided.
This number compares the surface tension constraints to the diffusive inertial process and is
evaluated with Eq. (8.11) where σ is the surface tension, µ the viscosity of interest, ρ the
density of interest and Lc the characteristic length of the problem.

La =
σLcρ

µ2
(8.11)
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For this case, the liquid density ρl has been chosen for ρ and the domain width l has been
chosen for Lc.
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Figure 8.25: Comparison of the central density time evolution of a two-dimensional planar oscillating
nitrogen interface for different mesh resolutions. Isothermal Navier-Stokes equations are solved with
constant dynamic viscosity and no thermal conduction. A selective numerical filter (coeff 1.0 · 10−2) is
used.

As expected, the oscillations present a damping depending on the viscosity magnitude: the
stronger the viscosity, the more important the damping. Another impact of the viscosity is
the modification of the oscillation periods. These two observations are actually predicted by
the theory, in particular in Prosperetti (1976); Prosperetti (1981) where the author predicts
an decreasing pulsation, i.e. an increasing period with respect to an increasing viscosity, which
can be observed in Fig. 8.25. The damping of the oscillations is addressed more thoroughly
in a Sec. 8.2.1.3, the oscillating periods and characteristic damping times extracted from the
simulations are however provided in Tab. 8.8 for the most precise 8-point interface resolution.
The characteristic damping time could no be evaluated with enough precision for the cases
with µ = 1.0 · 10−8 and µ = 1.0 · 10−4: the damping was to weak for the former and occurred
two rapidly for the second with merely any oscillations visible. For that same reason, no
oscillating period has been extracted when µ = 1.0 · 10−4.

Non-isothermal simulations with viscosity

The previous investigation has been performed with the same mesh resolutions and dynamic
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µ
[
kg ·m−1 · s−1

]
0 1.0 · 10−8 1.0 · 10−7 1.0 · 10−6 1.0 · 10−5

τµ,sim [ns] 2.25 2.25 2.25 2.26 2.46
δµ,sim [ns] - * 119 11.0 3.62

Table 8.8: Oscillating periods and characteristic damping times extracted from the simulations, for
an oscillating nitrogen interface at 100 K (eight points in the interface) for different values of dynamic
viscosity solving isothermal Navier-Stokes equations

viscosity values and the same initial deformation relative amplitude A = 0.015l, however in
a non-isothermal setting. The initial solution remains unchanged, i.e. isothermal, however,
the non-isothermal Navier-Stokes equations are solved, still with no thermal conduction. The
results are provided for a handful of dynamic viscosity values in Fig. 8.26 and present a trend
somewhat similar to that of the isothermal cases: the higher the viscosity, the greater the
damping on the oscillations. A noticeable difference however is that an important damping
remains even for the smallest value of the viscosity µ = 1.0 · 10−8 kg · m−1 · s−1, and for all
the mesh resolutions.
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Figure 8.26: Comparison of the central density time evolution of a two-dimensional planar oscillating
nitrogen interface for different mesh resolutions. Non-isothermal Navier-Stokes equations are solved
with constant dynamic viscosity and no thermal conduction. A selective numerical filter (coeff 1.0·10−2)
is used.

A second observation is that the values of the oscillating periods and characteristic damping
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times are substantially different when switching between the isothermal and non-isothermal
settings, all other things remaining equal. The values for the isothermal and non-isothermal
settings (with the 8-point interface resolution) are given in Tab. 8.9 where the results for the
non-isothermal non-viscous Euler equations case are also provided (column µ = 0). In order
to simulate this case solving non-isothermal equations, even with the 8-point resolution, the
selective filter coefficient had to be increased from 1.0 · 10−2 to 1.0 · 10−1 to achieve stability
in the computations.

µ
[
kg ·m−1 · s−1

]
0 1.0 · 10−8 1.0 · 10−7 1.0 · 10−6 1.0 · 10−5

τµ,no isot [ns] 2.70 2.55 2.55 2.60 2.70
τµ,isot [ns] 2.25 2.25 2.25 2.26 2.46
δµ,no isot [ns] 14.8 13.9 11.7 7.91 3.03
δµ,isot [ns] - * 119 11.0 3.62

Table 8.9: Oscillating periods and characteristic damping times from the simulation of an oscil-
lating nitrogen interface initially at 100 K (eight points in the interface) solving non-isothermal and
isothermal Navier-Stokes equations for different values of dynamic viscosity

Even in with no viscosity, a damping of the oscillations is observed. The value of the charac-
teristic damping time actually seems to converge as the viscosity diminishes. Both mass and
total energy conservation has been verified in the domain for all mesh resolutions.

An attempt has been made to perform an entropy analysis but it has faced the limitation that
the numerical scheme currently used does not verify, at the discretized level, the second law of
thermodynamics. However, the curves describing the time evolution of the entropy has been
observed to converge with the increase of the mesh resolution toward a quasi constant entropy
evolution, consistent with the boundaries used (periodic on the left and right sides, adiabatic
wall on the upper and lower sides).
Another analysis has consisted in monitoring the evolution of the acoustic energy in the do-
main: since the total energy is conserved and the oscillations, i.e. the kinetic energy dissipates,
this energy must be transferred through an isentropic process. Only acoustics seemed to sat-
isfy the previous conditions. Nonetheless, the evolution of said acoustic energy has shown no
correlation whatsoever with the damping of the oscillations.
Beyond these investigations, no satisfactory explanation has been found for this phenomenon.

Comparison between isothermal and non-isothermal simulations

The figure in Fig. 8.27 allows to compare the behavior of the interface depending on the
viscosity but mostly on the isothermal or non-isothermal setting used for the simulations. The
increase of the oscillating periods caused by the non-isothermal setting clearly appears as well
as the fact that the oscillations are still damped for the lowest viscosity value.
The impact of the dynamic viscosity on the interface oscillations seems to be fairly similar,
this can be visualized on the graph in Fig. 8.28. Since no theoretical ground have been found
to explain the persistent damping effect of the non-isothermal setting (keeping in mind that
the domain is initially at a constant temperature) and compare to the values in Tab. 8.9, this
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Figure 8.27: Comparison of the central density time evolution of a two-dimensional planar oscil-
lating nitrogen interface for different mesh resolutions. Isothermal and non-isothermal Navier-Stokes
equations are solved with constant viscosity and no thermal conduction, for different mesh resolutions.
A selective numerical filter (coeff 1.0 · 10−2) is used.

observation cannot be confirmed numerically.
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Figure 8.28: Comparison of the central density time evolution of a two-dimensional planar oscillating
interface for different values of dynamic viscosity. Navier-Stokes equations are solved with constant
viscosity and no thermal conduction in isothermal and non-isothermal settings. A selective numerical
filter (coeff 1.0 · 10−2) is used on the 8-point resolution mesh.
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Overall impact of the equation system

A last series of simulations has been carried out to evaluate and summarize the impact of
the system of equations solved while simulating the oscillating interface case. Aside from
the non-viscous Euler equations solved in isothermal and non-isothermal settings, the non-
isothermal Navier-Stokes equations have been solved using Chung et al. (1988) model for the
diffusion. More precisely, three settings have been considered with Chung’s model: a first one
where only the thermal conduction is activated, a second one where only the viscosity is acti-
vated and a third complete one where both diffusive processes are activated. All simulations
have been performed with the 8-point interface resolution, the selective filter with coefficient
1.0 · 10−2 has been used for all cases except for the non-isothermal Euler equations where the
coefficient has been increased to 1.0 · 10−1 and the full Navier-Stokes equations with viscosity
and thermal conduction where no filter has been used.
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Figure 8.29: Comparison of the central density time evolution of a two-dimensional planar oscillating
nitrogen interface for different sets of equations. Euler and Navier-Stokes equations are solved in
isothermal and non-isothermal settings on the 8-point interface resolution mesh with different diffusive
processes.

The results in Fig. 8.29 are consistent. Asides from the curves for the non-isothermal and
the isothermal Euler equations, already covered, the Navier-Stokes equations impact the os-
cillations is as expected. When only the thermal conduction is introduced, the curve presents
the exact same characteristic damping time as that obtained for the non-isothermal Euler
equations. A verification of the density-pressure scatter plots confirms that throughout the
simulation, the initial temperature is perfectly maintained for the conductive-only Navier-
Stokes equations and sensibly maintained for the non-isothermal Euler equations (which is
not automatically guaranteed, see Sec. 8.1.3.2, in particular Fig. 8.9). These observations
discard the hypothesis that the damping associated with solving non-viscous non-isothermal
equations could be caused by the loss of the isothermal nature of the interface. The fact
that the interface remains isothermal in this case causes however the oscillating period to sit
between those extracted for the isothermal and non-isothermal Euler equations.
When only the viscosity is activated, the oscillations are rapidly damped which, given that
the kinematic viscosity of the liquid in this case is about µ = 6.0 · 10−5 kg ·m−1 · s−1, almost
halfway between 1.0 · 10−5 kg ·m−1 · s−1 and 1.0 · 10−4 kg ·m−1 · s−1 is to be expected when
comparing to the two corresponding curves in Tab. 8.28.
Finally, the addition of the thermal conduction to the viscosity has negligible effects apart from
preventing a light density drift slightly noticeable with the case introducing solely viscosity.
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8.2.1.3 Quantitative impact of the viscosity

Theory

The evolution of capillary waves in presence of viscosity has been studied in the literature, in
particular in Prosperetti (1976); Prosperetti (1981) where the case of interface between two
different viscous fluids is addressed. In most cases, no analytical solution exists to describe the
time evolution of the interface displacement in such configurations unless additional hypothe-
ses are met to simplify the developments. The first hypothesis is met if one of the two fluid
has a negligible inertial contribution, which in the case of the a liquid-vapor interface would
mean ρl > ρv and µl > µv. The second hypothesis is verified if the two fluids have the same
kinematic viscosity, i.e νl = νv where ν = µ/ρ. Each hypothesis leads to a different expression
of the time evolution of the interface displacement.
It clearly appears that neither of these two hypotheses is respected in the cases that have been
presented, independently of the type of equations that have been solved, since both phases
have been set with the same dynamic viscosity µ instead of the kinematic viscosity and the
ratio between the liquid and vapor densities is not important enough to discard the vapor
phase altogether. For the values in Tabs. 8.8-8.9, a comparison with theoretical results is thus
compromised.

Whatever the hypothesis that is retained, a global kinematic viscosity ν can be defined (that
of the single phase retained or the value common to both phases) and in Prosperetti (1981) the
author provides means to approximate the new oscillating period τµ and characteristic damping
time δµ assuming a damping in the form e−t/δ for the interface displacement amplitude. These
two approximations are given by Eqs. (8.12)-(8.13) where k = 2π/l is the spatial period of
the initial deformation and ω0, the non-viscous pulsation, is given by Eq. (8.9).

ω2
ν = ω2

0 − 4ν2k4 (8.12)

δν =
1

2νk2
(8.13)

Constant kinematic viscosity

To comply with the previously mentioned conditions, a new series of simulations has been
performed solving the isothermal Navier-Stokes equations with only viscosity, still consider-
ing the nitrogen interface, however with constant values of kinematic viscosity rather than
dynamic viscosity, in order to accommodate for the theoretical hypothesis needed to ensure
quantitative comparisons. For the three values of ν that have been considered (1.5 · 10−9,
5.0 · 10−9, 1.5 · 10−8 m2.s−1), the central density time evolution is given in Fig. 8.30. The
comparison between the values of oscillating periods and characteristic damping times, from
the simulations and the theory using Eqs. (8.12)-(8.13), are given in Tab. 8.10.
As it has already been observed in the previous cases, in particular with a constant dynamic
viscosity, the periods are well retrieved with a very satisfactory error of roughly 8%. Regarding
the characteristic damping times, the errors have been strongly reduced with factors between
the theory and the simulation lower than two but still representing about a 40% error. Sev-
eral factors could explained these differences, however two of them seem more likely: firstly
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Figure 8.30: Comparison of the central density time evolution of a two-dimensional planar oscillat-
ing nitrogen interface at 100 K for different values of kinematic viscosity. Isothermal Navier-Stokes
equations are solved with no thermal conduction. A selective numerical filter (coeff 1.0 · 10−2) is used.

ν
[
m2.s−1

]
1.5 · 10−9 5.0 · 10−9 1.5 · 10−8

τν,th [ns] 2.42 2.44 2.46
τν,sim [ns] 2.24 2.24 2.28
errorτ [%] 8.2 8.3 7.0
δν,th [ns] 56.5 17.6 6.26
δν,sim [ns] 41.1 12.2 4.24
errorδ [%] 37.3 44.1 47.6

Table 8.10: Oscillating periods and characteristic damping times, from theory and simulations, for
an oscillating isothermal nitrogen interface at 100 K (eight points in the interface) for different values
of kinematic viscosity

the ratio between the interface width and the domain width, which is not negligible, when
considering that Eqs. (8.12)-(8.13) have been derived under the assumption of an infinitely
thin interface; secondly the relative magnitude between the liquid and vapor densities which,
despite the constant kinematic viscosity constraint, needs to be as high as possible in order
for the approximations of Eqs. (8.12)-(8.13) to become more precise.

This last assumption has been tested by trading the previous case for a new one with more
realistic features in terms of thermodynamics. To that effect, an isothermal oxygen interface
at 110 K (Tr ≈ 0.7) has been considered with the theoretical value of the capillary coefficient
predicted at that temperature (ensuring that the interface width is at its correct theoretical
value). The geometrical setting remains similar the one described in Fig. 8.20, however the
exact dimensions have been proportionally modified to ensure the same domain-to-interface
width ratio. The exact parameters are compiled in Tab. 8.11, and one can notice that the ratio
between the liquid and vapor densities has increased from five to fifty. The central density time
evolution for the three values of ν that have been considered (1.0 ·10−9, 3.3 ·10−9, 1.0 ·10−8 in
m2.s−1) is given in Fig. 8.31 and the comparisons between the values of oscillating periods and
characteristic damping times, from the simulations and the theory using Eqs. (8.12)-(8.13)
are given in 8.12.
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T 110 K λ 1.173 · 10−17 m7 · kg−1 · s−2

P sat 5.45 bar w 0.97 nm

ρl 1017.7 kg ·m−3 σ 8.37 mN ·m−1

ρv 21.4 kg ·m−3 Lx = Ly/3 = l 26 nm

points in int. ≈ 8 Nx 218

Table 8.11: Simulation parameters used for the additional tests of an oscillating two dimensional O2

planar interface with viscosity
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Figure 8.31: Comparison of the central density time evolution of a two-dimensional planar oscil-
lating oxygen interface at 110 K for different values of kinematic viscosity. Isothermal Navier-Stokes
equations are solved with no thermal conduction. A selective numerical filter (coeff 1.0 · 10−2) is used.

The comparisons in Tab. 8.12 show a great improvement from the results obtained with the
nitrogen interfaces. The relative error on the periods has been reduced to around 4% and below
but more importantly, values for the characteristic damping time have become significantly
better with a error around 12% and as low as 3% for the case ν = 1.0 · 10−9 m2; s−1. These
last results seem to confirm that the approximation Eq. (8.13) is representative and predictive
enough only when the liquid-to-vapor density ratio is very important.
To go a step further, the author in Prosperetti (1981) derives the actual analytical expression
of the time evolution of the normalized interface displacement when the constant kinematic
viscosity hypothesis is respected. Fig. 8.32 presents the time evolution of said normalized
interface displacement, comparing the theory and the simulations. As expected from the errors
in Tab. 8.12, the results are very satisfying and represent a strong argument in favor of the
Second Gradient theory regarding its ability to describe the behavior of dynamic isothermal
interfaces.
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ν
[
m2; s−1

]
1.0 · 10−9 3.3 · 10−9 1.0 · 10−8

τν,th [ns] 0.589 0.591 0.599
τν,sim [ns] 0.566 0.568 0.586
errorτ [%] 4.1 4.0 2.6
δν,th [ns] 9.04 2.87 1.03
δν,sim [ns] 8.73 2.54 0.916
errorδ [%] 3.5 13.0 12.7

Table 8.12: Oscillating periods and characteristic damping times, from theory and simulations, for
an oscillating isothermal oxygen interface at 110 K (eight points in the interface) for different values
of kinematic viscosity
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Figure 8.32: Comparison between the theory and simulation results for the normalized displacement
of a two-dimensional isothermal planar oscillating oxygen interface at 110 K for different values of
kinematic viscosity. Isothermal Navier-Stokes equations are solved with no thermal conduction. A
selective numerical filter (coeff 1.0 · 10−2) is used.
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8.2.2 Oscillating droplets

8.2.2.1 Configuration

The second test case consists in a classic oscillating droplet as schematically described in Fig.
8.33. The circular droplet, of radius R, is squeezed so as to create an elliptic shape of radii r1

and r2. To remain in a linear regime, the relation r1 = 1.5r2 is chosen, leading to r1 = R
√

1.5
and r2 = R/

√
1.5. A tilt angle of 22.5◦ is also applied so as to mitigate possible numerical

effects from the Cartesian mesh used for the simulations.

l

l

r1

r2

R

A

Figure 8.33: Schematic representation of the computational setting for the oscillating droplet. Not
to scale

To further investigate the capabilities of the SG model, a more physically representative de-
scription of the droplet has been chosen, based on the oxygen configuration in Tab. 8.11 used
for the last validation cases on the oscillating interfaces. In particular, a smaller reduced tem-
perature has been used and the exact value of the capillary coefficient λ at that temperature,
leading to the correct value of surface tension σ, has been selected.
The value of the radius R has been selected to ensure a reasonable radius-to-interface width
ratio of about 10. The relevant parameters used for this calculation are compiled in Tab. 8.13.
The GRK scheme of AVBP is used and a selective filter (see Sec. 6.2.4.1) is still applied to
the mass, momentum and energy equation with a coefficient 1.0 · 10−2 to ensure numerical
stability. Periodic boundary conditions have been used. The droplet is expected to oscillate
between two extreme elliptic shapes while progressively returning to its circular form.

Tinit 110.0 K λ 1.17 · 10−17 m7 · kg−1 · s−2 l 90 nm

P sat 5.45 bar w 0.97 nm N 748

ρl 1017.7 kg ·m−3 σ 8.37 mN ·m−1 R 10 nm

ρv 21.4 kg ·m−3 points in int. ≈ 8 µ 1.0 · 10−5 Pa.s

Table 8.13: Simulation parameters used for the two dimensional 02 oscillating droplet



Part II - Implementation of the Second Gradient model in the solver
AVBP

291

8.2.2.2 Non-viscous simulations

To first validate the configuration and the model, a series of non-viscous simulations, with-
out artificial stabilization, has been carried out but has been face with important numerical
difficulties that have led to mixed results.

Non-viscous isothermal simulations
When the isothermal Euler equations are solved, the oscillatory behavior expected from the
droplet is properly retrieved as exposed in Fig. 8.34 where the time evolution of the density
field is provided (the figure zoom on the droplet, only the center part of the domain is depicted).
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Figure 8.34: Snapshots of the temporal evolution of the density for a non-viscous initially deformed
O2 droplet in an isothermal setting.

The theoretical period of these oscillations can be evaluated using Eq. (8.14) from Art. 273 in
Lamb (1975) that expresses the pulsation ω from which the period is extracted with τ = 2π/ω.

ω =

√
6σ

(ρl + ρv)R3
(8.14)

To extract the period from the simulation results, the time evolution of the total kinetic energy
can be tracked as shown in Fig. 8.35. A very important observation from this curve is that this
total energy, although oscillating in time, keeps on increasing with a quasi linear slope after an
initial violent increase. The constant increase of kinetic energy that is observed is attributed
to a continuous generation of parasitic noise and acoustic waves that cannot exit the periodic
computational domain. A spectral analysis of the curve in Fig. 8.35 allows nonetheless to
extract the oscillatingg period. The final value is τsim = 0.874 ns while using the simulation
parameters in Tab. 8.13, the expected period is τth = 0.905 ns, which represents merely a
3.5% error. This comparison entices that the intrinsic oscillatory behavior of the interface is
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Figure 8.35: Temporal evolution of the total kinetic energy of a non-viscous oscillating O2 droplet in
an isothermal setting

marginally affected by the velocity perturbations which participate to the continuous kinetic
energy increase.

Non-viscous non-isothermal simulations
Attempts have been made to replicate this previous simulation in a non-isothermal setting but
they all turned unsuccessful with crashes early on in the computation, no matter the mesh
resolution (up to 15 points in the interface) and the value of the selective filter coefficient in
a range from 1.0 · 10−5 to 1.0 · 10−1. Without dissipation, point-to-point numerical errors
appear rapidly in the simulation leading to crashes, as depicted in Fig. 8.36. These results
were to be expected given the difficulties already encountered in Sec. 8.1.3 when trying to
simulate unsteady one-dimensional interfaces solving non-isothermal Euler equations without
the inclusion of diffusive processes.

Density ρ [kg.m−3] Pressure P [bar] Temperature T [K] Velo.magnitude |~v| [m · s−1]

21 250 500 750 1017 −273 160 80 0 102 24 50 100 150 200 227 0 50 100 150 211

Figure 8.36: Snapshots of the density, pressure, temperature and velocity magnitude field for an
non-viscous initially deformed O2 droplet in a non-isothermal setting before crash iteration.

These difficulties are not without explanations: the non-dissipative nature of the GRK scheme
and its tendency to generate oscillatory errors, the propensity of the oscillating droplet con-
figuration to be faced with the issue of spurious currents, the design of the initial solution
leading to a very a strong initial acoustic dynamics and the periodic domain that prevents the
evacuation of this acoustic energy could be some of the causes behind the very noisy results
encountered when solving isothermal equations or the unsuccessful simulations when solving
non-isothermal equation. These difficulties can be compared to those already observed in a
one-dimensional setting, in particular regarding the non-viscous non-isothermal simulations.
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8.2.2.3 Viscous simulations

The puzzling time evolution of the total kinetic energy in the non-viscous isothermal setting
and the apparent impossibility to achieve a successful non-viscous non-isothermal simulation
has motivated the exploration of cases where viscous dissipation is taken into account. To that
effect, Euler equations have been traded for the Navier-Stokes equations, however considering
only viscosity and discarding thermal conduction. A constant dynamic viscosity of µ = 1.0 ·
10−5 Pa.s has been used. All the other parameters of the case have been left unchanged, in
particular the selective filter still being applied with a coefficient 1.0 · 10−2.

Viscous isothermal simulations
When the isothermal condition is enforced, very satisfactory results are obtained, as it can
been seen with the time evolution of the density, pressure and velocity magnitude fields pre-
sented in Figs. 8.37 - 8.38. The oscillatory nature of the movement is still present and the
damping of the oscillations can be guessed from the evolution of the droplet deformation of
which magnitude visibly decreases with time in the different snapshots. Moreover, the velocity
field no longer displays overshoots and is more characteristic of typical droplet oscillations.
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Figure 8.37: Snapshots of the temporal evolution of the density for a viscous and initially deformed
O2 droplet. Isothermal Navier-Stokes equations are solved with a constant dynamic viscosity µ =
1.0 · 10−5 Pa.s and no thermal conduction.

This improvement of the result also manifests itself in the time evolution of the total kinetic
energy provided in Fig. 8.40. The damping, expected of the viscous dissipation, is retrieved
while the oscillations are perfectly maintained. The same spectral analysis allows to extract
the period of said oscillations and find a value of τsim = 0.926 ns which still represents a very
satisfactory 2.3% error compared to the theoretical value τth = 0.905 ns.
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Figure 8.38: Snapshots of the temporal evolution of the pressure for a viscous and initially deformed
O2 droplet. Isothermal Navier-Stokes equations are solved with a constant dynamic viscosity µ =
1.0 · 10−5 Pa.s and no thermal conduction.
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Figure 8.39: Snapshots of the temporal evolution of the velocity field for a viscous and initially
deformed O2 droplet. Isothermal Navier-Stokes equations are solved with a constant dynamic viscosity
µ = 1.0 · 10−5 Pa.s and no thermal conduction. Velocity vectors (arrows) are superimposed over the
normalized velocity amplitude in gray scale.
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Figure 8.40: Comparison of the temporal evolution of the total kinetic energy of a viscous (µ =
1.0 · 10−5 Pa.s) oscillating O2 droplet in isothermal and non-isothermal setting

Viscous non-isothermal simulations
As done in the non-viscous case, the same simulation has been performed, only removing the
isothermal setting so as to include the viscous energy equation in the computation, all other
parameters remaining equal. As demonstrated by Fig. 8.40, the results for the kinetic energy
decay is virtually the same and lead to very close values of oscillating period (τisot = 0.926 ns
/ τnisot = 0.917 ns) and characteristic damping time (δisot = 0.580 ns / δnisot = 0.652 ns).

Impact of the viscosity
Although several authors such as Lamb (1916); Chandrasekhar (1959); Prosperetti (1980)
have derived an expression to evaluate the characteristic damping time δ of an oscillating
viscous droplet, this expression is limited to three dimensional droplets oscillations around an
equilibrium globe shape. To the best of our knowledge, no such analytical results have been
produced regarding the damping of viscous droplets in two-dimensional configurations. The
expressions derived in Prosperetti (1980) for δ rely on three main hypotheses: the behavior of
the fluid is mostly dominated by one fluid, the initial deformation of the droplet is moderate
(typically r1/r2 6 1.5r) and the viscosity is small enough. The first hypothesis is essentially
verified here since ρl ≈ 50ρv and by imposing a constant kinematic viscosity it also comes
that µl ≈ 50µv where µ is the dynamic viscosity. The second and third hypotheses are more
intricate to be confirmed beforehand as they may vary from case to case depending on the
geometry dimensions and fluid thermodynamic description.
Nonetheless, the final expression of δ, the damping coefficient of the interface normal velocity,
builds upon the introduction of a capillary Reynolds number Reα which is given here by Eq.
(8.15) where ρl, µl are the liquid density and dynamic viscosity, ν is the kinematic viscosity,
R is the equilibrium droplet diameter and σ is the capillary coefficient.

Reα =

√
ρlRσ

µl
=

√
Rσ

ρlν
(8.15)

The damping is then defined with Eq. (8.16) where ω0 is the oscillating pulsation with no
viscous perturbations given by Eq. (8.14).

δ =
Reα

5
√
ω2

0/6
(8.16)

To assess this formula, a series of simulations has been performed solving isothermal Navier-
Stokes equations with no thermal conduction and a selective filter with a coefficient of 1.0 ·
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ν
[
m2.s−1

]
1.8 · 10−9 3.3 · 10−9 5.8 · 10−9 1.0 · 10−8 1.8 · 10−8 3.3 · 10−8

τν,sim [ns] 0.843 0.844 0.848 0.859 0.879 0.908
δν,sim [ns] 8.27 4.31 2.71 1.76 1.16 0.78
δν,th [ns] 11.1 6.06 3.45 2.00 1.11 0.61

errorth
τ [%] 34.4 40.4 27.5 14.0 4.0 28.9

Table 8.14: Oscillation periods and characteristic damping times, from the simulation, the three-
dimensional theory and the simplified two-dimensional correlation, for an oscillating isothermal oxygen
droplet at 110 K (eight points in the interface) for different values of kinematic viscosity

10−2. For each simulation, a constant value of kinematic viscosity ν has been used in the
list

[
1.8 · 10−9, 3.3 · 10−9, 5.8 · 10−9, 1.0 · 10−8, 1.8 · 10−8, 3.3 · 10−8

]
(in m2.s−1). In each

instance, the normal velocity of the droplet at point A (see Fig. 8.33) has been tracked,
following the displacement of said point with the droplet oscillations and the resulting curves
are compiled in Fig. 8.41.
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ν= 1. 0 · 10−9 m2 · s−1
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Figure 8.41: Comparison of the normal velocity at the maximal deformation point A in Fig. 8.33
following its movement in an oscillating isothermal oxygen droplet configuration for different values of
kinematic viscosity. Isothermal Navier-Stokes equations are solved with no thermal conduction and a
selective numerical filter (coeff 1.0 · 10−2) is used.

The characteristic damping time extracted from the curves in Fig. 8.41 can be compared with
the three-dimensional theoretical values predicted by Eq. (8.16). It should be mentioned that
the initial instants of the simulations have been discarded when extracting the characteristic
damping times given the strong perturbations observed in the curves during this period. The
comparison values, compiled in Tab. 8.14, show an overall correct agreement between the
theory and the simulations with a mean error of 25%, which can be put into perspective but
remains nonetheless encouraging given the already mentioned limitations of this approach.
The inviscid oscillating periods can still be compared and the value τsim = 0.84 ns from
the simulation with the lowest kinematic viscosity only presents a 7% error with the value
τth = 0.90 ns from the theory which is another comparison furthering the pertinence of the
SG model to simulate such configurations.
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8.2.2.4 Mesh convergence studies

To conclude the section dedicated the oscillating droplet, a brief mesh study convergence has
been carried out in three different physical settings to evaluate the impact of the mesh resolu-
tion on the quality of the results. The different resolutions that have been used are referred to
according the number of mesh points in the interface they permit. The corresponding numbers
of mesh points in the domain are compiled in Tab. 8.15.

Points in interface (≈) 4 5 6 7 8
Points in diameter (≈) 41 52 62 72 83

Nx = Ny 373 466 559 652 748

Table 8.15: Interface, droplet and mesh resolutions used for the convergence study of an oscillating
O2 droplet

The impact of the spatial resolution on the total kinetic energy decay, considering viscous
droplets, is given in Fig. 8.42 for simulations performed solving isothermal Navier-Stokes
equations. Two different values of dynamic viscosity have been used and the results display
consistency in regard of the mesh resolution. For the two values of dynamic viscosity that
have been considered, µ = 1.0 · 10−5 Pa.s and µ = 1.0 · 10−6 Pa.s, the simulations have been
carried out successfully for all interface resolutions. For the higher value µ = 1.0 · 10−5 Pa.s,
which is approximately the physical value of the dynamic viscosity in the oxygen vapor at
110K, the curves, for all mesh resolutions, almost perfectly superimpose. Reducing the value
of the dynamic viscosity by a factor 10 to reach µ = 1.0 · 10−6 Pa.s leads to slightly more
perturbed simulations. The 4-point, and to a lesser extent the 5-point, interface resolutions
curves display a minor deviation from the higher resolutions for which the curves once again
perfectly superimpose.
These results seem to confirm that the behavior observed in Fig. 8.35 is a conjunction of
numerical error and lack of dissipation. Adding only viscosity is a first path to address this
issue but, as shown by the 3-point resolution for µ = 1.0 ·10−6 Pa.s, it is not enough, numerical
errors are still present and a decent mesh resolution is required for precise results. When the
viscosity is further increased, cases with low mesh resolution start the behave more properly
but it should not mask the fact that strong numerical errors exist in the first place when the
mesh resolution is insufficient.

For the isothermal setting, the simulations have successfully advanced for most resolutions
and asides from the 3-point interface resolution, have led to quasi indistinguishable time evo-
lution of the total kinetic energy, a mesh convergence far superior to that observed for the
oscillating interface. For the non-isothermal setting, the 3-point resolution case has crashed
in the early instants of the simulation and the 4-point resolution case has merely passed the
first oscillation before crashing. Asides from these two cases, the resulting curves for the total
kinetic energy decay perfectly superimpose on each other. Even up to the crash, the curve for
the 4-point resolution coincide with those of the other resolutions. Added with the result in
Fig. 8.40, it appears that for the oscillating droplet case, once the minimal mesh resolution
is reached to ensure correct simulation in the viscous case, neither further mesh refinement
nor switch between the isothermal and non-isothermal settings, has a substantial impact on
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Figure 8.42: Impact of the spatial resolution on the temporal decay of the total kinetic energy of an
oscillating O2 droplet. Isothermal Navier-Stokes equations are solved with a constant dynamic viscosity
and no thermal conduction. A selective numerical filter (coeff 1.0 · 10−2) is used.

the droplet oscillating behavior. This observation is in radical contrast with the one made for
the oscillating planar interface for which switching from the isothermal to the non-isothermal
equations has had a radical impact on both the oscillating period and characteristic damping
time.
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Figure 8.43: Impact of the spatial resolution on the temporal decay of the total kinetic energy of an
oscillating O2 droplet. Non-isothermal Navier-Stokes equations are solved with a constant dynamic
viscosity (µ = 1.0 · 10−5 Pa.s, La ≈ 850 ) and no thermal conduction. A selective numerical filter
(coeff 1.0 · 10−2) is used.

Finally, an attempt has been made to carry out the simulations solving Navier-Stokes equa-
tions with the full Chung et al. (1988) model to account for physical dissipation. Since the
straightforward application of Chung’s model leads to instantly damped oscillations, the values
of the diffusion coefficients, namely the dynamic viscosity µ and thermal conduction coefficient
kth, have been multiplied simultaneously by different reducing factors.
The results in Fig. 8.44 present a behavior similar to the previous configuration with only
viscosity. Actually, the results could have been inferred, to some extent, directly from Figs.
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8.35 and 8.43. As already mentioned, when a factor 1 is applied, the outcome is uneventful
and limits the analysis to be drawn. It should be mentioned that the 3-point resolution case
has crashed in the early instants of the simulation, meaning that even with canonical ther-
mal conduction, the behavior when solving strictly isothermal equations cannot be completely
replicated. When a factor 1/10 is applied, the preservation of the initial isothermal behavior
becomes more tedious but all the curves still display a very reasonable behavior. This situ-
ation is mostly similar the one in Fig. 8.43 except that the thermal conduction has allowed
to simulate the 4-point resolution case to its completion. For both factors 1 and 1/10, all
curves superimpose with no visible impact of the mesh resolution. When the factor is further
reduced to 1/100, both the thermal conduction and the viscosity start to become inefficient
at tempering the numerical errors for the lower mesh resolutions (4-point and 5-point) which
either become unstable or feature a drift in the time evolution of the total kinetic energy as
observed in Fig. 8.35. However, despite the low physical dissipation applied in the case of
a factor 1/100 and reminding the fact that no additional viscosity has been used for any of
the droplet cases presented in this section, the period and characteristic damping time are
qualitatively well retrieved, even for the lower 5-point interface resolution.
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Figure 8.44: Impact of the spatial resolution on the temporal decay of the total kinetic energy of
an oscillating O2 droplet. Non-isothermal simulations with the SG model solving Navier-Stokes equa-
tions, viscosity and thermal conduction coefficient calculated with Chung’s method with a reduced factor
applied to the diffusion coefficients µ and kth
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Conclusions on the validation

A wide variety of steady and unsteady canonical cases in one and two dimensions have been
addressed using the Second Gradient model with the main objective of validating its implemen-
tation in the AVBP solver and confirm the ability of the model to allow unsteady compressible
simulations. Both one-dimensional cases (stationary interfaces, advected and/or deformed in-
terfaces, conductive interfaces with evaporation and liquefaction) and two-dimensional cases
(oscillating planar interfaces, oscillating deformed droplets) have led to draw the same overall
conclusions regarding the behavior of said model in its current formulation and implementa-
tion.

In isothermal conditions, solving either Euler equations or Navier-Stokes equations, the model
responds as expected and this satisfactory behavior has been confirmed with comparisons to
the theory for the two-dimensional cases. The clearly defined value of the surface tension under
isothermal conditions was in ideal setting to validate the intrinsic capillary behavior of the
interface in unsteady cases. The corresponding one-dimensional simulations have been very
stable and in perfect agreement with the expected behavior of the interface when submitted to
deformation or advection. The two-dimensional cases have also led to very satisfactory results,
noticeably without the necessity to add artificial viscosity to stabilize the calculations. The
comparisons with the theory have shown very good results for both the oscillating interfaces
and droplets, in terms of periods and damping times.
When non-isothermal equations are solved, great difficulties appear if no dissipation is intro-
duced. The temperature often showcased a pathological behavior that was correlated or led to
oscillatory numerical errors which propagated to the over variables through a coupling mech-
anism. For the most part, we believe this issue to be a manifestation of the typical oscillatory
behavior of non-dissipative centered numerical schemes although this intuition does not suffice
to explain the magnitude of these errors. Adding physical dissipation, mostly viscosity and to
a lesser extent thermal conduction, permits to carry out the simulations and has led to good
results regarding oscillating interfaces and droplets.

Throughout the cases, we have resolved to use actual physical dissipation when needed rather
than artificial viscosity as the manner in which the latter has been developed in AVBP does
not ensure a consistent interaction with the added capillary terms from the SG model and their
peculiar nature. Accessing this interaction in further details could be the focus of a different
study that was beyond the scope of this work. Multiple tests have however shown that adding
artificial viscosity, which leads to a limitation of the numerical oscillations, allows to carry
out the simulations. The accuracy of the results from said simulations needs nonetheless to
be cautiously assessed. The more classic point-to-point errors have been suppressed for most
cases using the native high order selective filter of AVBP without any noticeable difficulties.

We are convinced that the difficulty faced with the temperature may rather be caused by
numerical issues and the practical implementation in the solver, which is strongly dependent
on the numerical schemes available in AVBP that are not inherently suited to handle the SG
equations, as already mentioned. The focus point of this chapter should however remain that
the different tests that it has been submitted to, and the qualitative and quantitative results
that have been obtained, have shown the ability of the Second Gradient model to properly
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recover unsteady dynamics typical of two-phase flows. Even if the addition of dissipation is
generally needed to ensure stability, the implementation of the model seems to be properly
done in AVBP and allows to now contemplate more complicated configurations as the ones
presented in the last part of this document.
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The Thickened Interface Method for
the Second Gradient theory





Chapter 9

Thickening strategies for the Second
Gradient theory

The purpose of this chapter is to present a new method, called Thickened Interface Method
(TIM), devised to thicken an interface up to widths numerically acceptable for our targeted
applications i.e. adapted to typical Direct Numerical Simulation meshes.
The motivations behind the design of the TIM are explained in Sec. 9.1 where the limitations
of the native SG model in terms of computational cost are exposed. In particular in Sec. 9.1.1,
a prompt investigation of pertinent experimental and numerical results regarding transcritical
flows allows to compare the relevant physical length scales to the widths predicted by the SG
model and to point-out their incompatibility. This issue has already been observed in Jamet
(1998) where the author proposed two different methods to addressed it. These methods are
recaled in Sec. 9.1.2 and Sec. 9.1.3 respectively along with the justification behind their
dismissal for our simulations.
Legitimate questions can be raised regarding the other class of PFMs described in Sec. 4.1,
in particular when considering Eq. (4.8) that provides an actual expression for the interface
equilibrium profile and even more so considering Eq. (4.9) which expresses analytically the
interface width. Such methods can, theoretically, allow to accommodate any physical case
by selecting an interface width δ that is relevant for the simulated configuration. However,
Eqs. (4.8) and (4.9) are only permitted by the use of specific forms of the volumetric free
energy F such as given by Eqs. (4.7a) or (4.7d). This aspect prevents the use of these specific
PFMs because these latter expressions for F cannot be related to any EoS whatsoever, much
less so to an actual real gas EoS that is required for our targeted applications. Even the
temperature dependent expressions for F in Eqs. (4.10), (4.11a) and (4.11b) cannot be linked
to a proper EoS that would permit their use in the context of this study. To some extent, the
different strategies presented in this chapter try to replicate or to adapt, as much as possible,
the convenient properties of these phase driven PFMs to the density driven SG model.
In that prospect, Sec. 9.2 is then dedicated to the presentation of the TIM, in particular
its derivation. Just as it has been done in 5 for the SG model, both a thermodynamic and a
mechanical descriptions have to be introduced by the method to preserve the complete thermo-
mechanical coupling already granted by the SG model. A specific care is given to the clarity
and rigor of the calculations, in particular the physical hypotheses used to derive the expres-
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sions. The complete modified thermodynamics associated to the TIM is thus laid down along
with the modified Navier-Stokes equations to be solved. The results are linked and compared
to that of the previous methods created by Jamet, in particular the impact of the TIM on the
macroscopic variables of interest is analyzed. The main objective of these methods is being
able to modify (usually increase) the interface width while maintaining the value of the surface
tension which drives most of the relevant macroscopic phenomena we are interested in.

In 9.1.2 and 9.1.3 and 9.2, the different methods are always devised starting by considering the
case of an isothermal planar interface as done in Sec. 5.4, depicted in Fig. 5.9 and described
in Sec. 5.4.2. The eventual extension of the method to non-isothermal cases is specifically
mentioned when addressed.

9.1 The need for thickening strategies

9.1.1 Adaptation of the Second Gradient theory to DNS meshes

The test cases of Chap. 8 and in particular Sec. 8.2 showcased the ability of the native Second
Gradient model to adequately represent interfaces in canonical configurations. In particular,
together with the theoretical developments in Chap. 5, they prove that the SG model can
properly describe the thermodynamic and mechanical behavior of a simple interface. The
model clearly defines an equilibrium profile with a correct value of surface tension and a fixed
value for the interface width. Noticeably, any deformation applied to the interface will trigger
a tempering response: the interface will try to return to its equilibrium profile and reach back
its initial width. As such, it is our personal conviction that the SG model is particularly
suited for in depth studies of canonical interfaces while additional efforts are needed to make
it applicable to more ambitious configurations.

The major point holding the model back is the unreasonable computational price required to
simulate industrial cases. This price is induced by the mesh sizes one would need to use to
properly resolve the interface. Even if the authors in Moin and Mahesh (1998) showed that
precise enough numerical schemes (such as the ones available in the AVBP solver) alleviate the
mesh size from the requirement to match the Kolmogorov length scales, the difference between
the smallest eddies in typical rocket engines and the interface widths predicted is of such a
magnitude that it cannot be overlooked. To better illustrate these discrepancies, examples of
the evolution of the interface width with the temperature are provided in Fig. 9.1 for species
commonly used in cryogenic rocket engines. The values range from fewer than a nanometer
to a few micrometers at best, depending on the species.
In parallel, a brief review of experimental studies and numerical simulations performed on
rocket engines can provide some notions of the typical length scales to be expected.
In Branam and Mayer (2002), an injection of liquid nitrogen into gaseous nitrogen was con-
ducted at supercritical pressures using an axi-symmetrical cylindrical injector. The observed
Kolmogorov scales ranged between 1 µm and 10 µm, depending on the injection velocity and
the distance to the injector, for an injection diameter of 2.2 mm.
A fairly similar experiment was proposed in Ivancic and Mayer (2002) involving liquid oxygen
injected into gaseous hydrogen. The same methodology yielded Kolmogorov scales between 2
µm and 60 µm for an injection diameter of 6.5 mm. In both these studies, the experimental
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Figure 9.1: Evolution of the interface width w with respect to the temperature T as predicted by the
Second Gradient theory for pure oxygen, nitrogen, hydrogen and methane

measurements were satisfactorily confronted to numerical simulations.
In Ruiz (2012), the author considered the configuration already studied in Oefelein (2005) to
perform a DNS calculation. He evaluated the mean Kolmogorov scale around 160 µm.
More recently, a benchmark configuration has been established in Ruiz et al. (2015), still
an axi-symmetrical injection of dense oxygen into gaseous hydrogen, to compare CFD codes
with different numerical setups and strategies. A mesh convergence study showed that a mesh
resolution of 1 µm (for an injection diameter of 0.5 mm) was enough to properly reach mesh
insensitivity in the results and a quick calculation with a purposely overestimated Reynolds
number landed a smallest Kolmogorov scale of 0.2 µm.
In Wang and Yang (2016), the authors considered a liquid-oxygen/kerosene bi-swirl injector to
investigate mixing and combustion. A mesh convergence study provided a conservative value
of 1 µm for the Kolmogorov scale.

When comparing the values for the interface width and the estimated Kolmogorov scales, the
difference in magnitude is glaring. The scaling factor between the smallest turbulent scales
and the interface widths is at least of 100 but can easily reach values greater than 1000. It is
flagrant that the interface need to be thickened somehow if one is to perform the calculations
presented in the previously mentioned studies, even for DNS purposes.
Of course, this thickening process must be carried out cautiously so as to preserve the macro-
scopic behavior of the interface which is already faithfully transcribed by the native SG model.
For instance, the intuitive idea to increase the capillary coefficient λ in virtue of the relation
w ∝

√
λ in Eq. (5.146) is immediately dismissed by the relation σ ∝

√
λ in Eq. (5.167) which

shows that the effective augmentation of the interface width goes hand in hand with an aug-
mentation of the surface tension which is the primary value driving the macroscopic behavior
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of the interface. To avoid this major drawback along with other possible inconveniences, we
present in Sec. 9.2 a new method in order to properly thicken an interface up to typical DNS
mesh sizes.

9.1.2 Thickening near the critical point

In his PhD thesis Jamet (1998), Jamet notices that the problem of characterizing an isother-
mal planar interface at equilibrium is significantly simplified when the temperature is selected
in the vicinity of the critical temperature since, to some extent, the problem becomes analyt-
ically solvable. Indeed, such an interface satisfies the differential equation Eq. (9.1) which,
using thermodynamic arguments, can be modified into Eq. (9.2) where P0 and µ0 are the
thermodynamic pressure and chemical potential given directly by the EoS.

∂P0

∂x
= λρ

∂3ρ

∂x3
(9.1)(

µ0 − µsat
)

(x) = λ
∂2ρ

∂x2
(x) (9.2)

ρl

ρv

ρ

x

Figure 9.2: Example of an interface profile between the vapor and liquid densities

From Fig. 9.2, it is clear that in the liquid and vapor phases, i.e. when ρ = ρl or ρ = ρv, the
first and second spatial derivatives of ρ (x) are null :

∂ρ

∂x
(xρ=ρl) =

∂ρ

∂x
(xρ=ρv) = 0 (9.3a)

∂2ρ

∂x2
(xρ=ρl) =

∂2ρ

∂x2
(xρ=ρv) = 0 (9.3b)

Given Eq. (9.2), it comes trivially that µ (ρl) = µ (ρv) = 0 but moreover, by multiplying both

sides of Eq. (9.2) by
∂ρ

∂x
and performing an integration between xρ=ρl (limit of the pure liquid

phase) and xρ=ρv (limit of the pure vapor phase) it comes:
xρ=ρl∫

xρ=ρv

(
µ0 − µsat

)
(x)

∂%

∂x
dx =

xρ=ρl∫
xρ=ρv

λ
∂2%

∂x2
(x)

∂%

∂x
(x) dx (9.4a)

ρl∫
ρv

(
µ0 − µsat

)
(%) d% =

[
λ

2

(
∂ρ

∂x

)2

(x)

]xρ=ρl
xρ=ρv

= 0 (9.4b)
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Thus, as a function of the density, for such an interface, µ0− µsat must satisfy the conditions:
(
µ0 − µsat

)
(ρl) =

(
µ0 − µsat

)
(ρv) = 0

ρl∫
ρv

(
µ0 − µsat

)
(%) d% = 0

(9.5a)

(9.5b)

In the vicinity of the critical temperature, the simplest non-trivial function to satisfy Eqs.
(9.5a)-(9.5b) is a third order polynomial zeroing at ρ = ρv, ρ = ρl and at a third value
ρm in-between. The additional symmetry of the equations of state near the critical point
in subcritical regions allows to identify ρm = (ρl + ρv). The ensuing profile is given in Fig.
9.3 which also corresponds to the profile of P0 − P sat since this function respects conditions
formally identical to that of Eqs. (9.5a)-(9.5b).

ρv ρl
ρ

µ
0
−
µ

sa
t

Figure 9.3: Profile of the function µ0 − µsat relatively to the density in the vicinity of the critical
point.

It comes that Eq. (9.2) can thus be transformed into:

λ
∂2ρ

∂x2
(x) = 2A (ρ (x)− ρv) (ρ (x)− ρv)

(
ρ (x)− ρv + ρl

2

)
(9.6)

where A is a constant whose physical meaning is detailed later. Eq. (9.6) can be integrated
two times to get the solution:

ρ (x) =
(ρl + ρv)

2
+

(ρl − ρv)
2

tanh

(
ρl − ρv

2

√
λ

A
x

)
(9.7)

With the definitions of the interface width and the surface tension introduced in Eqs. (5.143)
and (5.155), these two variables can be fully expressed:

w =
4

ρl − ρv

√
λ

A
(9.8)

σ =
(ρl − ρv)3

6

√
λA (9.9)
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These two relations provide two major and insightful results.
Firstly, the dependencies of w and σ on λ found in Eq. (5.146) and Eq. (5.167) respectively
are formally retrieved in this special case.
Secondly, the dependencies of w and σ on λ are the same (∝ λ) whereas they are inverted for
A (w ∝ 1/

√
A and σ ∝

√
A), which means that by adjusting both the values of A and λ, it is

theoretically possible to specify designated values for w and σ (for a fixed temperature where
ρl and ρv are fixed).
In particular, the objective to widen the interface while maintaining its surface tension is
achievable. This solution presents several advantages: it is analytical, relatively simple and
easy to implement and it allows not only to increase w but to actually choose a specific value
(and even if of a smaller interest, the value of σ can also be specified). To a degree, a parallel
can be drawn between the thickening mechanism of this method and the ability to chose the
interface width through the adjustment of factor ε in some PF methods.

Despite the previous encouraging points, the first method introduced by Jamet falls short on
multiple points with different degrees of criticality, further developed hereunder.
A prerequisite to apply the method is to access the values of the saturation densities ρv and ρl.
Although this does not represent an insurmountable task, it nonetheless requires an additional
treatment that needs to be efficiently implemented not to impede the calculations.
A second hurdle appears when trying to modify the value of constant A. From Eqs. (5.156)
and (9.6), A directly impacts the slope of µ(as a function of ρ) near the saturation densities
as given by Eq. (9.10).

∂(µ0 − µsat)

∂ρ
(ρl) =

∂(µ0 − µsat)

∂ρ
(ρv) = A (ρl − ρv)2 (9.10)

Using the differential relation dµ0 = −s0 dT + dP0 /ρ which simplifies in dµ0 = dP0 /ρ for
the isothermal case, A can directly be linked to the isothermal compressibility coefficient β at
saturation with:

A =
1

ρl (ρl − ρv)2

∂P0

∂ρ
(ρl)

(
=

1

ρv (ρl − ρv)2

∂P0

∂ρ
(ρv)

)
(9.11)

A =
1

ρ2
l (ρl − ρv)2 βl

(
=

1

ρ2
v (ρl − ρv)2 βv

)
(9.12)

The relations in Eqs. (9.11)-(9.12) show that a modification of A produces a modification
of the isothermal compressibility coefficients at saturation what can have unexpected and
detrimental repercussions. In particular, such a modification may impact the sound speed and
the heat capacities. In Jamet (1998), the author also details the impact of said modification
on curved interfaces: the Laplace relation in itself is not modified (meaning that the relative
difference between the inner and outer pressures is unchanged) but the lack of second order
continuity for P0 (ρ) introduces an error in the absolute values of the inner and outer pressures.
Jamet however also shows that this error decreases rapidly with the inclusion radius (the error
is inversely proportional to the third power of the radius) thus still making this method usable,
in principle, for a wide variety of configurations. It has for instance been successfully applied
to study nucleate boiling in Fouillet (2003).
The third and most significant obstacle to this method is its apparent range of application
which is extremely narrow around the critical conditions. Indeed, strong hypotheses have been
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made regarding the behavior of classic EoS near the critical point to extract the expression
in Eq. (9.6) (which is essentially a physically driven Taylor expansion). During our practical
tests, the method seemed to fail for reduced temperatures below Tr = 0.99 thus dramatically
reducing it range of application and therefore making it irremediable not suitable for our
targeted industrial applications in its current formulation.

9.1.3 Thermodynamically consistent thickening

Subsequent to the shortcomings of the first approach, Jamet proposed a second thickening
strategy, both more thorough and intricate.

The key point that limits the reach of the first method is the simplified profile introduced for(
µ0 − µsat

)
(ρ) which satisfies only part of the conditions one would like to apply.

In this new strategy, Jamet makes use of the function Ψ introduced in Eq. (5.123) as
Ψ (ρ) =̂ ρ′ (x) which establishes an implicit link between the density profile ρ and its first
spatial derivative dρ /dx (x) = ρ′. The solution density profile must compel with the con-
ditions enunciated in Eqs. (9.3a), (9.3b) and (9.5b). In order to maintain the isothermal
compressibility coefficients at saturation, the differential relation dµ0 = dP0 /ρ also adds the
conditions in Eqs. (9.13a) and (9.13b). Finally, if one is to prescribe specific values for the
interface width w and surface tension σ, the density profile must also satisfy the relations Eqs.
(5.143) and (5.155). 

∂(µ0 − µsat)

∂ρ
(ρv) =

∂P0

∂ρ
(ρv)

∂(µ0 − µsat)

∂ρ
(ρl) =

∂P0

∂ρ
(ρl)

(9.13a)

(9.13b)

All these conditions can be reformulated in terms of Ψ to get the system, assuming ρv, ρl,
dP0 /dρ (ρv), dP0 /dρ (ρl), w and σ are known:

Ψ (ρv) = 0 (9.14a)
Ψ (ρl) = 0 (9.14b)(

dΨ

dρ
(ρv)

)2

=
1

λ

1

ρv

∂P0

∂ρ
(ρv) (9.14c)(

dΨ

dρ
(ρl)

)2

=
1

λ

1

ρl

∂P0

∂ρ
(ρl) (9.14d)

max Ψ =
ρl − ρv
w

(9.14e)

λ

ρl∫
ρv

Ψ (ρ) dρ = σ (9.14f)

The system can be further simplified by nondimensionalizing it, introducing the reduced quan-
tities r and ψ as follows: 

r =
ρ− ρv
ρl − ρv

ψ (r) =
w

ρl − ρv
Ψ (ρ)

(9.15a)

(9.15b)
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Besides, λ is not an input of the system but rather an unknown to be evaluated to achieved the
desired thickening, therefore Eqs. (9.14c) and Eqs. (9.14c) must be rearranged accordingly.
All things considered, the new system is given by:

ψ (0) = 0 (9.16a)
ψ (1) = 0 (9.16b)(

dψ /dr (0)

dψ /dr (1)

)2

=
ρl ∂P0/∂ρ (ρv)

ρv ∂P0/∂ρ (ρl)
(9.16c)

maxψ = 1 (9.16d)

1

(dψ /dr (0))2

1∫
0

ψ (r) dr =
ρv

(ρl − ρv)2 ∂P0/∂ρ (ρv)

σ

w
(9.16e)

λ =
w2

ρv (dψ /dr (0))2

∂P0

∂ρ
(ρv) (9.16f)

Further investigations allowed Jamet to identify the form in Eq. (9.17) as a suitable candidate
for a solution. Coefficient α is chosen a priori whereas coefficients a, b and c have to be
determined using a Newton-like solver to satisfy the complete system (9.16).

φ (r) =
[
4 (1 + a) r (1− r) + (br + c)2

]α
− [br + c]2α (9.17)

The author shows that this method ensures the thermodynamic consistency of the system, in
particular a second order continuity of the proper thermodynamic variables at saturation. The
determination of ψ and therefore Ψ is done a priori for a fixed temperature, meaning that it
implicitly defines a function Ψ (ρ, T ). This function of both the density ρ and the temperature
T can be used to define the complete modified thermodynamics, of which the expression of
the modified variables (with the subscrip mod) are given hereunder.

Pmod (ρ, T ) = P sat (T ) + λΨ (ρ, T )

[
ρ

(
∂Ψ

∂ρ

)
T

(ρ, T )− 1

2
Ψ (ρ, T )

]
(9.18a)

es
mod (ρ, T ) =

λ

ρ
Ψ (ρ, T )

[
1

2
Ψ (ρ, T )− T

(
∂Ψ

∂T

)
ρ

(ρ, T )

]
+ Π (es) (ρ, T ) (9.18b)

hs
mod (ρ, T ) = λΨ (ρ, T )

[(
∂Ψ

∂ρ

)
T

(ρ, T )− T

ρ

(
∂Ψ

∂T

)
ρ

(ρ, T )

]
+ Π (hs) (ρ, T ) (9.18c)

smod (ρ, T ) = −λ
ρ

Ψ (ρ, T )

(
∂Ψ

∂T

)
ρ

(ρ, T ) + Π (s) (ρ, T ) (9.18d)

µmod (ρ, T ) = µsat (T ) + λΨ (ρ, T )

(
∂Ψ

∂ρ

)
T

(ρ, T ) (9.18e)

where for a variable χ, the quantity Π (χ) is defined as :

Π (χ) (ρ, T ) =
ρv (ρl − ρ)

ρ (ρl − ρv)
χv (T ) +

ρl (ρ− ρv)
ρ (ρl − ρv)

χl (T ) (9.19)
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The modified specific heat capacities are obtained using respectively Cv = (∂es/∂T )ρ and

Cp = Cv +
(
T/ρ2

) (
(∂P/∂T )2

ρ/(∂P/∂ρ)T

)
. It is possible to show that Eqs. (9.18a)-(9.18e)

with the relations for Cv and Cp ensure the desired level of regularity for the thermodynamics
when crossing the binodal curve : the volumetric free energy F is of class C2, P , es, hs, µ and
s are of class C1, Cv and Cp are continuous at saturation.

This second thickening method is both powerful and consistent and the authors in Jamet,
Lebaigue, Coutris, and Delhaye (2001) successfully applied it to several typical capillary phe-
nomena such as the disappearance or the coalescence of bubbles and the dynamical hysteresis
in the contact angle of a bubble with a wall.

Notwithstanding all its benefits, we identified three crucial impediments when contemplating
the application of this method to our targeted simulations.
The first one stems from the necessity to geometrically locate the interface as the method
consists in not only a thermodynamic modification but also an actual geometrical deformation
of the interface as testified by the definition of Ψ linking the density profile to its spatial
derivative. In contrast, Jamet’s first method only requires to evaluate the saturation densities
relatively to the local temperature.
A possible second hurdle manifests itself by the Newton-like solving procedure that is required
multiple times to evaluate the coefficients in Eq. (9.17) and of which numerical implementation
has come with substantial difficulties and has not been met with success so far. Although not
a definitive issue by itself, since other Newton-like solving procedures are already used in real
gas simulations, the fact that this additional one, with its relative sensitivity, would have to
be replicated multiple times for one single time step could render it numerically costly and
unpractical.
Finally, the last obstacle is apparent when looking at Eqs. (9.18a) to (9.18e). Indeed, multiple
variables that are actually to be used to conduct simulations require the differentiation of Ψ
relatively to the temperature when this dependency is only know implicitly.
This means additional instances of solving Eq. (9.17) are required solely to evaluate these
thermodynamic variables, further increasing the complexity and consequently the numerical
cost of this method. Arguably, computational time could be saved by pre-tabulating parts of
the useful results but such a tabulation would be mixture-dependent for multi-species cases
and would certainly constitute a definitive drawback regarding the extension of the method
to such more complex simulations.

9.2 The Thickened Interface Method

In light of the thickening required for our targeted applications and the several shortcomings
of the two previous Jamet’s thickening strategies rendering them inadequate for our usage, we
present here the method devised during the course this PhD to better suit our requirements.
Referred to as the Thickened Interface Method (TIM), this approach substantially borrows
from and builds upon Jamet’s methods and essentially aim for stricking a balance between
their respective advantages and drawbacks.
Ideally, the approach should limit the additional computations required (for instance by hav-
ing a fully analytical description), grant a complete thermo-mechanical consistency, allow the
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choice of a specific value for the interface width and possibly the surface tension, restrain the
modifications to the binodal region (keep the bulk phases unchanged) and be easily imple-
mented into a solver already capable of native SG model simulations. Certainly, achieving all
these perks at once seems ambitious but selecting the more important and relevant attributes
makes the task, if not doable, a lot easier.

9.2.1 Modification of the thermodynamics

9.2.1.1 Fundamental modification

For all its relative simplicity, Jamet’s first method shows that despite the fact, known from
Eqs. (5.146) and (5.167), that changing the value of λ to thicken the interface cannot be
done without augmenting the surface tension, the addition of a second parameter is a sound
strategy in order to control simultaneously w and σ and should be capitalized on.
Conversely, behind the complex mechanics of Jamet’s second method transpires the necessity
to damp the variation of key thermodynamic variables around their saturation values, more
specifically µ0 and/or P0.
Finally, any modification done in the limited case of an isothermal interface should be designed
so as to easily carry over to a non-isothermal paradigm.

Using these observations, the purpose is therefore to derive a method by introducing two
coefficients φλ and φσ, reminiscent of Jamet’s first strategy. Coefficient φλ is to be directly
applied to the capillary coefficient λ thus modifying w and σ in the same fashion. On the
opposite, φσ should impact the thermodynamics so as to get σ ∝

√
φσ whereas w ∝ 1/

√
φσ

thus allowing to mitigate the effect of modifying λ.

Combining all mentioned considerations, the starting point of the TIM derivation is studying
the impact of some constant η onto the thermodynamics granted that this study is, in a first
time, limited to the non-capillary thermodynamics (i.e. the variables are extracted directly
from the equation of state) and that η is used to damp the specific free enthalpy µEoS as
described in Eq. (9.20) which will act as the founding relation of our method. The actual link
between η and φσ is clarified after the impact of the former is properly established.

µη (ρ, T ) = µsat (T ) +
µEoS (ρ, T )− µsat (T )

η
(9.20)

NOTE: In the next paragraphs, we use notation conventions presented in App. B.4 so as to
distinguish the different instances of similar thermodynamic variables. Mainly, the superscripts
∗EoS, ∗sat and ∗η are use respectively to designate a non-capillary variable as directly given
by the equation of state, as defined at saturation and as defined by the η-modification. The
superscript ∗TIM is later used to refer to a fully capillary variable as modified by the complete
TIM modeling. We also emphasize here that the notation χ̄ (T ), which designates the saturation
value of a thermodynamic variable χEoS calculated indifferently in the liquid or the vapor phase
for the temperature T , does not implies that the two corresponding values are equal (like it is
the case for the pressure or the specific free enthalpy). It however means that for the calculation
of a quantity where this notation appears, any of the two saturation values can be chosen as
long as this choice remains the same to calculate all the "bar-variables" required to evaluate
said quantity.
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9.2.1.2 Extension to other thermodynamic variables

The modification introduced in Eq. (9.20) has to be consistently expanded to the other ther-
modynamic variables. This requires in particular the ability to evaluate the temperature
derivatives of the saturation values of several thermodynamic variables. For the sake of clar-
ity, the associated development for these calculations are left in App. B.4.1, here we focus
on the derivation of the actual "η-modified" variables and even so, only the major steps are
presented, a comprehensive derivation can also be found in App. B.4.1.

Firstly, the "η-modified" volumetric free energy F η can be determined using the differential
relation Eq. (B.17) which becomes µ = (∂F/∂ρ)T in an isothermal setting. By reformulating
Eq. (9.20) into µη (ρ, T ) = µEoS (ρ, T )/η + (1− 1/η)µsat (T ), the integration leads to:

F η (ρ, T ) =
1

η
FEoS (ρ, T ) +

(
1− 1

η

)
µsat (T )ρ+ C (T ) (9.21)

where C (T ) is function of solely the temperature. To compel to the condition of leaving the
bulk phases unchanged, we can impose the condition F η (ρv (T ) , T ) = FEoS (ρv (T ) , T ) which
leads to C (T ) = − (1− 1/η)P sat (T ) and eventually:

F η (ρ, T ) = F sat
∗ (ρ, T ) +

FEoS (ρ, T )− F sat
∗ (ρ, T )

η
(9.22)

where F sat
∗ (ρ, T ) = ρµsat (T )− P sat (T ).

Noticeably, due to the fact that µEoS (ρv (T ) , T ) = µEoS (ρl (T ) , T ) and PEoS (ρv (T ) , T ) =
PEoS (ρl (T ) , T ), the same expression is obtained enforcing F η (ρv (T ) , T ) = FEoS (ρv (T ) , T )
instead, further cementing its consistency.

From Eq. (B.13) that defines the volumetric free energy with F = −P +µρ, it comes that the
new pressure must respect P0

η = ρµη − F η which, using Eqs. (9.20) and (9.22), leads to:

P0
η (ρ, T ) = P sat (T ) +

PEoS (ρ, T )− P sat (T )

η
(9.23)

Differentiating the new volumetric free energy following Eq. (B.17) which becomes sη =
−(1/ρ)(∂F η/∂T )ρ, the modified specific entropy can be written:

sη (ρ, T ) = s̄ (T ) +
sEoS (ρ, T )− s̄ (T )

η
+

(
1− 1

η

)(
1

ρ
− 1

ρ̄ (T )

)
dP sat

dT
(T ) (9.24)

To draw further attention to the notation χ̄ (T ) which appears two times in Eq. (9.24) with
s̄ (T ), ρ̄ (T ), it means that to evaluate sη for a couple (ρ, T ) one is required to evaluate the
entropy and the density at saturation. However, these two values differ between the liquid
and the vapor phases and therefore a choice has to be made, apparently arbitrarily, between
one of the two phase to consider. This is where the notation χ̄ (T ) comes into play and states
that any of the two phases can be used and both choices lead to the same value of sη (ρ, T )
as long as the same phase is used to evaluate s̄ (T ) and ρ̄ (T ). Formally, this means that Eq.
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(9.24) can, indifferently, be developed into:

sη (ρ, T )


= ssat

l +
sEoS (ρ, T )− ssat

l

η
+

(
1− 1

η

)(
1

ρ
− 1

ρl

)
dP sat

dT
(T )

or

= ssat
v +

sEoS (ρ, T )− ssat
v

η
+

(
1− 1

η

)(
1

ρ
− 1

ρv

)
dP sat

dT
(T )

(9.25)

The specific internal energy esη is obtained straightforwardly by applying the definition in Eq.
(B.22) stating that es = Ts− P

ρ + µ where P , µ and s are now known to get:

es
η (ρ, T ) = ēs (T ) +

es
EoS (ρ, T )− ēs (T )

η

+

(
1− 1

η

)(
1

ρ
− 1

ρ̄ (T )

)(
T
dP sat

dT
(T )− P sat (T )

) (9.26)

The specific isochoric heat capacity Cvη can be expressed by using either its definition Cvη =
(∂es

η/∂T )ρ or the relation Cvη = T (∂sη/∂T )ρ (providing a mean to verify the calculations)
which results in:

Cv
η (ρ, T ) = C̄v (T ) +

Cv
EoS (ρ, T )− C̄v (T )

η

+ T

(
1− 1

η

)[
ᾱ2

ρ̄β̄
+ Ξ (ρ, T )

∆
sat

(CP )

T
+ −2ζ

(
α

ρ

)
dP sat

dT
+ ζ

(
β

ρ

)(
dP sat

dT

)2
] (9.27)

where

Ξ (ρ, T ) =

1

ρ
− 1

ρ̄ (T )
1

ρl
− 1

ρv

(9.28)

and for a thermodynamic variable χ, the quantity ζ (χ) is defined by:

ζ (χ) (ρ, T ) = χ̄ (T ) + Ξ (ρ, T )∆
sat

(χ) (T ) (9.29)

The specific isobaric heat capacity Cpη is obtained via the classic relation Eq. (B.67), i.e. Cp =
Cv+

(
Tα2

)
/(ρβ), noticing however that the isothermal compressibility and thermal expansion

coefficients must be modified beforehand accordingly with their respective definitions in Eqs.
(1.39) - (1.40) leading to the expressions:

Cp
η = Cv

η +
Tαη2

ρβη
(9.30)

αη (ρ, T ) = αEoS (ρ, T ) + (η − 1)βEoS (ρ, T )
dP sat

dT
(T ) (9.31)

βη (ρ, T ) = ηβEoS (ρ, T ) (9.32)

The profiles of several modified thermodynamic variables are given in Figs. 9.4 and 9.5 for
different values of η. In particular, the damping effect of η in the binodal region can easily be
observed for P η and µη.
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Figure 9.4: Pressure, specific free enthalpy, specific internal energy and specific entropy of nitrogen
N2 at T = 117 K as modified by Eqs. (9.23), (9.20), (9.26) and (9.24) for different values of η

9.2.1.3 Additional remarks

One result implied by the derivation is that during a computation, the criterion used to choose
in which phase χ̄ is evaluated can differ from one point to the other in the computational
domain and can change from one iteration to the other as long as, for one evaluation of a
quantity, this choice is fixed.
Moreover, this choice can also differ between two different quantities, even when evaluated at
the same time on the same point, once again, as long as the internal consistency of the phase
choice is kept for each quantity.
Conveniently, this leads to the useful following results (where ρk = ρl or ρv) ensuring the
continuity of the thermodynamics when crossing the binodal curve, independently of η:

lim
ρ→ρk

es
η (ρ, T ) = es

EoS (ρk (T ) , T )

lim
ρ→ρk

hs
η (ρ, T ) = hs

EoS (ρk (T ) , T )

lim
ρ→ρk

sη (ρ, T ) = sEoS (ρk (T ) , T )

lim
ρ→ρk

Cv
η (ρ, T ) 6= Cv

EoS (ρk (T ) , T )

(9.33a)

(9.33b)

(9.33c)

(9.33d)

9.2.1.4 Impact on the isothermal interface

The previous developments essentially represent a modification of the equation of state since no
aspect of the capillary description of the fluid has been modified yet. However, the behavior
of the interface is actually already impacted by the introduction of the factor η into the
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Figure 9.5: Specific enthalpy, specific isobaric capacity, sound speed and isochoric heat capacity of
nitrogen N2 at T = 117 K as modified by Eqs. (9.27), (9.30), (9.31) and (9.32) for different values of
η

thermodynamics. This next paragraph is dedicated to a more in depth analysis to this new,
non-capillary related, thermodynamic behavior of the interface. Using a reference capillary
coefficient λ0, the momentum equation for an isothermal interface at equilibrium, given Eq.
(5.137), can be written:

∂P η

∂x
= λ0ρ

η ∂
3ρη

∂x3
(9.34)

The notation ρη is purposefully used to account for the fact that the solution density profile
is affected by the modified equation of state and does not, a priori, coincide with that of the
native solution of Eq. (5.137).
Discarding P sat (T ) in Eq. (9.23) which is constant for an isothermal interface, the equation
transforms into Eq. (9.35) where one can recognize the native momentum equation Eq. (5.137)
however written for a capillary coefficient ηλ0.
Thanks to the study in Sec. 5.4.2.1, we now know that the solution of Eq. (9.35) is the density
profile solution of Eq. (5.137) with a capillary coefficient λ0 only thickened by a factor √η,
i.e. wη =

√
ηw0 where wη is the new interface width and w0 is the interface width with the

native EoS.
∂PEoS (ρη)

∂x
= ηλ0ρ

η ∂
3ρη

∂x3
(9.35)

This means in particular that the variable change X = x/
√
η allows to write ρη (X) = ρ (x)

and subsequently, from Eqs. (5.159) and (9.20) it comes that Υ (ρη) = Υ
(
ρ0
)
/η. Using Eq.

(5.164), the new value of the surface tension resulting from the modified equation of state can
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thus be obtained:

ση =

Xv∫
Xl

Υ (ρη) dX =

xv∫
xl

Υ
(
ρ0 (X)

)
√
η

dx =
σ0

√
η

(9.36)

where σ0 is the surface tension obtained with the native equation of state. With this consis-
tently modified EoS, the impact of η onto w and σ is clearly established and can be compared
to the targeted effect of coefficient φσ which was σ ∝

√
φσ and w ∝ 1/

√
φσ. This easily allows

to identify φσ with 1/η and for the remainder of the document, the notation χη is dismissed in
favor of χφσ which will designate a variable χ for a modified EoS where η is formally replaced
by 1/φσ. Such a modified thermodynamics corresponds to a specific free enthalpy given by Eq.
(9.37) and with the modifications consistently expanded to the other thermodynamic variables
as done hereinabove.

µφσ (ρ, T ) = µsat (T ) + φσ
(
µEoS (ρ, T )− µsat (T )

)
(9.37)

9.2.2 Thermo-mechanical equation of the TIM

With coefficient φσ properly introduced, we know that simply modifying the EoS is not suffi-
cient to achieve the global effects we desire for the TIM, in particular the role of φλ needs to
be clarified. Conveniently, by using the latter directly as a multiplicative factor applied to the
capillary coefficient, one obtains the dependencies h ∝

√
φλ and σ ∝

√
φλ which, combined

together with the modifications induced by φσ, leads to the final dependencies Eqs. 9.38 which
were targeted from the inception of the method. In particular, this proves that a combined
action of φσ and φσ should allow to act independently on either w or σ.{

w ∝
√
φλ/φσ

σ ∝
√
φλφσ

(9.38a)

(9.38b)

9.2.2.1 Thermodynamic variables in the TIM

One of the requirements for the method was to leave the bulk phases unchanged but, as
expressed in Eqs. (9.20) - (9.32), the modifications of the EoS are applied to the whole
subcritical domain (as long as saturation density values are defined), which is unsatisfactory.
In its final form, the TIM must restrain the thermodynamic and mechanical modifications
to the binodal region only. In particular here, the EoS modifications should only take place
in that said region. Even in that cases, the continuity of the thermodynamic variables is
ensured by the results Eqs. (9.33). In that respect, their final expressions (referred to with the
exponent TIM) can be detailed, starting with the variables (represented with χλ) not impacted
by the capillary contributions of the native SG model, namely µ, P0, hs, s and Cv, which only
undergo the modifications from the EoS:

χλ
TIM =

{
χλ

φσ in the binodal region
χλ

EoS otherwise
(9.39)

As previously mentioned, coefficient φλ is applied to the capillary coefficient λ leading to the
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new expression in the TIM framework:

λTIM =

{
φλλ0 in the binodal region
λ0 otherwise

(9.40)

This allows to express the thermodynamic variables that were already impacted by the native
SG model, namely p and es (f and F should also be included but are of limited interest in the
prospect of numerical simulation and are omitted here for more clarity), which now endure
modifications from both λTIM and the transformed EoS:

pTIM =


P φσ − φλλ0

2

[
(∇ρ)2 + 2ρ∆ρ

]
in the binodal reg.

PEoS − λ0

2

[
(∇ρ)2 + 2ρ∆ρ

]
otherwise

(9.41)

es
TIM =


es
φσ +

φλλ0

2ρ
(∇ρ)2 in the binodal reg.

es
EoS +

λ0

2ρ
(∇ρ)2 otherwise

(9.42)

Essentially, all the previous formulas can be summed-up by saying that the thermodynamic
variables and the capillary coefficient are untouched in the bulk phases and switch to their
φσ-modified (eventually also φλ-modified) counterparts within the binodal region.

9.2.2.2 Navier-Stokes equations in the TIM

To preserve the consistency, the mechanical description must not be forgotten as the capillary
coefficient also appears within the Euler/Navier Stokes equations. Thanks to the preserved
consistency of the φσ-modified thermodynamics and the known impact of φλ onto the capillary
coefficient, one gets that no profound modification is applied to the system Eqs. (5.87), only
the global thermodynamic modifications of the TIM that have to be included in order to obtain
the new system. This update is achieved by substituting p, λ0 and E with pTIM, λTIM and
eTIM = es

TIM + v2/2, to get the following equations:

∂ρ

∂t
= −∇ · [ρv]

∂ρv
∂t

= −∇ ·
[
ρv⊗ v + pTIMI + λTIM∇ρ⊗∇ρ− τ d

]
∂ρeTIM

∂t
= −∇ ·

[(
ρeTIM + pTIM

)
v + λTIM (∇ρ⊗∇ρ) · v

+ λTIMρ∇ρ (∇ · v)− τ d : v + q
]

(9.43a)

(9.43b)

(9.43c)

In practice, the common objective of the TIM will be to apply a defined thickening factor F
to the interface width while maintaining the value of the surface tension. The dependencies in
Eqs. (9.38) thus become

√
φλφσ = 1 and

√
φλ/φσ = F which leads to the following expressions

for φλ and φσ.

φλ = 1/φσ =
√

F (9.44)

When not mentioned otherwise, the relations Eq. (9.44) are definitively adopted for the rest
of the discussion involving the TIM.
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9.2.2.3 Additional remarks regarding the TIM

To conclude this theoretical presentation of the Thickened Interface Method, it seemed im-
portant to us to draw a critical portrait of our method similarly to those we granted to both
Jamet’s methods.

Firstly and similarly to both Jamet’s methods, the TIM requires the calculation of saturation
values (pressure and density) jointly with the ability to discriminate the stable or unstable
nature of a given thermodynamic state so as to apply the modifications only when needed.
This is done using a thermodynamic equilibrium solver: the saturation values are retrieved
by equalizing the chemical potential of the liquid and vapor states at a given temperature.
Such a calculation is already partly performed in real gas solvers as it is required when trying
to calculate the density corresponding to a couple (T, P ), only the saturation values are new
quantities to be extracted.

As in Jamet’s first method, the entirety of the modification only involves the introduction of
two coefficients and moreover, no definitive profile is imposed to the specific free enthalpy, a
philosophy closer to the broader profile preferred in Jamet’s second method.
Besides, the form of system (9.43) implies that only the thermodynamic routines of a solver
have to be modified to transit from the native Second Gradient to the TIM-modified system,
thus greatly reducing the implementation difficulties and efforts. This tendency is further
supported by the fact that all the modified variables can be accessed analytically, contrary to
Jamet’s second and most complete method, albeit using fairly intricate formulas for some of
them.

However, for all these satisfactory points, the method is far from being free of defaults.

The first flaw that can be noticed is the inability of the method to straightforwardly attribute
a desired width to the interface. Indeed, the TIM only allows to apply a multiplicative coeffi-
cient to the latter. As such, the initial value of the interface width need to be known a priori
in order to properly choose the thickening factor F to fit a targeted width.

The lack of high order regularity for the new thermodynamic variables cannot be overlooked,
especially since it was one of the starting motivation behind the design of Jamet’s second
method. With the modification from the TIM, the new variables are mostly only continuous,
of order C1 at best for some, which is not sufficient and can lead to unwanted and unexpected
difficulties.
However, given the specific cases presented by Jamet to demonstrate these difficulties, given
the range within which such irregularities can be omitted without a dramatic loss of precision
(still according to Jamet) and furthermore given the very convincing application of Jamet’s
first method in Fouillet (2003) despite it suffering the same problem, we opted to pursue with
the current formulation of the TIM.
This choice was further motivated by the apparently elevated numerical price to be paid
(along with the implementation difficulties) to access a higher order of regularity, which, for
us, ground this approach to very academical cases as those performed in Jamet et al. (2001).
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As explained in Jamet (1998); Fouillet (2003), in some cases, modifying the behavior of the
thermodynamics inside the binodal curve is not without adverse consequences. In the prospect
of simulating bubble-driven phenomena, boiling flows or configurations where gravity plays an
active role, it can generate conflicts with the very modifications that ensue from the philosophy
of the TIM and other thickening methods. Indeed, a modified compressibility of the fluid in
the binodal region leads to a modified metastability limit for the bulk phases (by a factor equal
to that of the thickening), which is felt predominantly in the liquid. When heated, the latter
tends to first reach an overheated metastable state before starting to evaporate and creating
an interface. A reduced metastable limit results in a spontaneous creation of interfaces, a
behavior not observed in reality.
This difficulty can be overcome by formally modifying the law P sat (T ), but this, in turn,
modifies the latent heat of evaporation. This second difficultly can also so be overcome, as
done in Fouillet (2003), by modifying the definition of the temperature in the EoS, which leads
to a new description P̃

(
ρ, T̃

)
that permits to handle boiling flows with bubbles creation.

However, if gravity is included, it forces upon the system an intrinsic scale for the pressure
variations, via Pascal’s law, that is no longer respected by the new description P̃

(
ρ, T̃

)
. For

instance, Rayleigh-Taylor instabilities cannot be simulated in such a framework.
These additional information serve as reminder that the application of the TIM must be met
with caution and cannot be used straightforwardly in all circumstances. In our cases of inter-
est, i.e. liquid rocket engines, gravity and bubble production are negligible phenomena and
the use of the TIM is expected to be pertinent

Regarding the extension of the TIM to multi-species cases, the method can be applied straight-
forwardly if the full-equilibrium hypothesis is made since, in such a case, the fluid is still de-
scribed using single pressure, energy, entropy, etc... functions. It would also be necessary for
the capillary coefficient λ to be unique, a hypothesis already put forth when discussing the
extension of the SG model to multi-species cases in Sec. 5.3.3. This implementation would
thus require the use of a thermodynamic equilibrium solver, a non trivial task, discussed for
instance in Pelletier (2019).
One should however notice that such a direct implementation is only possible because the
TIM exclusively allows to widen or straighten the interface and not to choose its actual width.
Doing so would require to know beforehand the initial interface width for all the possible sim-
ulation conditions, a task already tedious for a single fluid but virtually impossible for cases
with numerous species.

Evidently, a gray area still surround the impact of the thickening process on the diffusive fluxes
(for all three methods as it so happens). To us, inferring that the thermal conductivity kth
and the dynamic viscosity µ coefficients are not modified by the new modeling seems a hasty
conclusion if drawn without additional investigation.

Regarding the thermal conductivity, the different tests we carried out seem to lean toward an
application of the multiplicative factor F. Indeed, the thickening of the density profile leads to
a smaller temperature gradient throughout the interface which, in order to maintain a specific
heat flux across the interface, must be balanced by augmenting the thermal conductivity. The
choice to maintain the heat flux is justified by the fact that the latent heat of vaporisation
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L = hs,v
sat − hs,l

sat is conserved by the TIM and therefore to ensure the same mass rate
of vaporization, the heat flux should not be modified as well. In practice, conductive cases
involving the TIM have to be simulated by applying the same thickening coefficient F to the
thermal conduction coefficient, i.e. by substituting kth by kth

TIM = Fkth in the expression
of the Fourier’s law used to express the thermal flux q in the energy equation.
Concerning the viscosity, its usage has been essentially dismissed in this work as its initial
interaction with the SG model is already an unanswered questions beyond the scope of our
study. Besides, we faced difficulties when trying to design cases balancing the contributions of
both the surface tension and the viscosity while applying a thickening so as to gather relevant
information. It is our personal belief that these questions are of the utmost importance in the
path of developing and strengthening the TIM for future and ever more complex applications.





Chapter 10

Numerical validation of the Thickened
Interface Method

This chapter is dedicated to the numerical validation of the Thickened Interface Method (TIM).
To that effect, the study performed in Chap. 8 on the native Second Gradient model has been
reinvested and articulated around similar cases, in a more concise fashion. This approach allows
to draw direct comparisons between the non-thickened and the thickened configurations while
simultaneously assessing the correct behavior of the TIM-thickened SG model and its proper
implementation in the AVBP solver.
As such, in the first section 10.1, the one dimensional cases of Sec. 8.1 are revisited and serve
as a preliminary validation of both the implementation and the behavior of the TIM. Unsteady
isothermal and non-isothermal cases are simulated to test the ability to transport interfaces in
and out of equilibrium. These simulations reveal the necessity to introduce artificial viscosity,
in particular when higher values of thickening coefficients are used.
In a second time, in Sec. 10.2, the TIM is tested on canonical two-dimensional cases. The em-
phasis is put on the oscillating planar interfaces from Sec. 8.2.1 for which the two-dimensional
theoretical results are well established and for which comparisons between the simulations and
the theory have led to very good results for non-thickened cases. The oscillating deformed
droplets from Sec. 8.2.2 have also been simulated for practical validation. However, due to
the lack of theoretical results in two-dimensions for this configuration, apart from the oscillat-
ing period, the conclusions drawn from these simulations are more marginal but nonetheless
positive. Besides, more sophisticated cases involving three-dimensional droplets are presented
in Chap. 11.

10.1 Validation of the method in 1D configurations

10.1.1 Isothermal 1D simulations with the TIM

10.1.1.1 Configuration

To validate the TIM in one-dimensional configurations, the single nitrogen interfaces of Sec.
8.1.2 are replicated using various thickening coefficients from 10 to 10000. The general pa-
rameters used for these simulations are recalled in Tab. 10.1, w0 being the native width
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of the interface when no thickening is applied. The choice is maintained to perform these
simulations with an important number of points in the interface in order to minimize the
possible interference from the numerical scheme and focus on the thermodynamic behavior
of the TIM-thickened model. For the sake of conciseness, only relevant results are presented
and if not mentioned otherwise, it is to be understood that these results have been duplicated
successfully with different values of thickening coefficient.

T 113.57 K λ 1.0 · 10−10 m7 · kg−1 · s−2 σ 3.26 N ·m

P sat 18.15 bar points in int. ≈ 30 w0 4.42 µm

ρl 542.1 kg ·m−3 equations mass + mom. scheme GRK

ρv 80.3 kg ·m−3 time step automatic (CFL+SG) CFL 0.95

Table 10.1: Simulation parameters used for the one dimensional N2 planar interface in isothermal
configurations solving Euler SG equations modified by the TIM. w0 is the interface thickness prior to
the application of the thickening method.

The results in Figs. 10.1 (F=10) and 10.2 (F=1000) show that isothermal interfaces are still
properly convected when the TIM is applied.
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Figure 10.1: Density and pressure profiles of an isothermal N2 interface convected at constant speed
u = 15m·s−1. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. The interface has been thickened by a factor F = 10 using the TIM.

Figs. 10.3 and 10.4 show the response of the interface to a mechanically forced stretching for
different TIM factors. In each case, the interface is able to return to its equilibrium shape. The
behavior is similar to that of the non TIM-thickened case in Fig. 8.3: important acoustic waves
are created by the reshaping of the interface and are appropriately evacuated at the boundaries.

Similar conclusive results are obtained with a mechanically compressed interface, as show in
Fig. 10.5.
Eventually, both convection and mechanical deformation are combined in Figs. 10.6 and
10.7 where the interface is initially artificially stretched. The simulations go as expected, the
interface properly returns to its equilibrium profile while being convected. However, instead of
more classic acoustic waves perceptible in Figs. 10.3 and 10.4, a different type of perturbations,
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Figure 10.2: Density and pressure profiles of an isothermal N2 interface convected at constant speed
u = 15m·s−1. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting velocity-temperature inlet (left) and pressure outlet (right) used.
The interface has been thickened by a factor F = 1000 using the TIM.
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Figure 10.3: Density and pressure profiles of a static isothermal N2 interface initially stretched by
a factor 2. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting velocity-temperature inlet (left) and pressure outlet (right)
used. The interface has been thickened by a factor F = 10 using the TIM.

not present in the non-thickened cases, are generated during the return to equilibrium. One
can notice that the increasing size of the domain relatively to the invariant velocity of the
perturbations causes the latter to linger on in the images for a relatively longer time as the
thickening factor F gets bigger. Another noticeable and positive fact is that these perturbations
seem to be handled without difficulties by the boundary conditions. This velocity could not be
matched with that of acoustic waves in these thermodynamic conditions. These perturbations
can be noticed for F = 100 but are clearly visible for F = 1000. They also have been observed in
two-dimensional simulations and are believed to be caused by a slowed dynamic response of the
interface when the latter is thickened using the TIM. This slowed response could authorize the
persistence of unstable thermodynamic points in the domain that lay in the binodal region,
for a much longer time than what would occur without thickening. The existence of these
unstable points could also be fostered by the isothermal conditions that prevents the interface
to adjust the temperature in order to avoid their appearance. Further analysis are however
necessary to assess the validity of these hypotheses as they should be an important point of
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Figure 10.4: Density and pressure profiles of a static isothermal N2 interface initially stretched by
a factor 2. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting pressure outlets (left and right) used. The interface has been
thickened by a factor F = 1000 using the TIM.

100

200

300

400

500

D
en

si
ty

 ρ
 [

k
g
.m

−
3
]  t= 0. 000 ms

10 5 0 5 10

x [mm]

5

10

15

20

P
re

ss
u
re

 P
 [

b
ar

]

100

200

300

400

500

 t= 5. 351 ms

10 5 0 5 10

x [mm]

5

10

15

20

100

200

300

400

500

 t= 10. 702 ms

10 5 0 5 10

x [mm]

5

10

15

20

100

200

300

400

500

 t= 16. 052 ms

10 5 0 5 10

x [mm]

5

10

15

20

100

200

300

400

500

 t= 21. 407 ms

10 5 0 5 10

x [mm]

5

10

15

20

Figure 10.5: Density and pressure profiles of a static isothermal N2 interface initially compressed by
a factor 3. The plain lines show the calculation results and the dashed lines show the theoretical/ideal
position of the interface. Non-reflecting pressure outlets (left and right) used. The interface has been
thickened by a factor F = 1000 using the TIM.

focus for future studies regarding the SG model and the TIM.

10.1.2 Non-isothermal 1D simulations with the TIM

When the non-isothermal equations are solved, the SG model with the application of the TIM
also displays a behavior similar to the one observed without thickening. As such, it suffers the
same shortcomings when the non-isothermal Euler equations are solved without any diffusion:
deformed interfaces do not return to their equilibrium isothermal shape, convected interfaces
present very important oscillatory numerical errors. Conversely, the conjunction of the SG
model and the TIM also reacts positively to the introduction of diffusion, mostly viscosity and,
to a lesser degree, thermal diffusion, of which characteristic time of action is often far greater
than that of the viscous processes in our cases. The high order selective filter, already used
in some cases for the non-thickened model, is used most of the time, even in one-dimensional
cases, once large values of thickening are used with the TIM. For these cases, the configuration
with nitrogen described in Tab. 10.1 is used with different values of thickening coefficient.
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Figure 10.6: Density and pressure profiles of an isothermal N2 interface initially stretched by a factor
2 and convected at constant speed u = 5m · s−1. The plain lines show the calculation results and the
dashed lines show the theoretical/ideal position of the interface. Non-reflecting velocity-temperature
inlet (left) and pressure outlet (right) used. The interface has been thickened by a factor F = 100 using
the TIM.
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Figure 10.7: Density and pressure profiles of an isothermal N2 interface initially stretched by a factor
2 and convected at constant speed u = 5m · s−1. The plain lines show the calculation results and the
dashed lines show the theoretical/ideal position of the interface. Non-reflecting velocity-temperature
inlet (left) and pressure outlet (right) used. The interface has been thickened by a factor F = 1000
using the TIM.

10.1.2.1 Deformed static interfaces

The case of an initially expanded interface, computed without additional difficulties while
solving non-isothermal Euler equations with application of the TIM, has led to a non constant
temperature profile and a damped pressure profile at equilibrium, as already observed in Fig.
8.6 with no thickening, despite no initial velocity being imposed to the interface. It seems
however that the discrepancy in the temperature profile (and consequently in the pressure
profile) has a lesser magnitude in the case of the thickened interface. This could be explained
by the much lower temperature gradient that exists once the TIM is applied, a hypothesis that
needs further investigation to be confirmed.
However, just like in Fig. 8.7 for the non-thickened case, with the addition of thermal conduc-
tion that constrains the temperature to return to a constant profile, the thickened interface
also returns to its equilibrium profile with no adverse impact of the TIM.
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10.1.2.2 Convected interfaces

Likewise, as shown in Fig. 10.8 for a thickening factor F = 100, trying to convect an inter-
face solving non-isothermal Euler equations without any source of diffusion leads to strong
oscillations in the temperature even for fairly decent mesh resolutions, a phenomenon already
observed in Fig. 8.10 for the non-thickened case. However, one has to mention that the am-
plitude of the errors in the temperature for this convected cases seems to have a much lower
amplitude than that of its non-thickened counterpart in Fig. 8.8 (just as the amplitude of the
temperature discrepancy for the deformed interface seems to be lower when a greater thicken-
ing coefficient is used). The same hypothesis, to be verified, of gradients damped by the TIM
can be assumed to explain this observation.
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Figure 10.8: Density, temperature, pressure and velocity profiles of a N2 droplet convected at constant
speed u = 10 m · s−1. The plain lines show the calculation results and the dashed lines show the
theoretical position of the interface. Periodic boundary conditions (left and right) used. Non-isothermal
SG+TIM Euler equations are solved with a eight-point interface resolution. The interface has been
thickened by a factor F = 100 using the TIM. The high-order selective filter is used (coeff. 1.0 · 10−4).

Similarly to the non-thickened case, the switch from the non-isothermal Euler equations to
the non-isothermal Navier-Stokes equations with diffusion provides a fair gain in the quality
of the results and a substantial gain in the stability of the calculation,s as shown for F = 100
in Fig. 10.9. It must be mentioned that these calculations have required the addition of
artificial viscosity to limit the oscillations around the density gradient when higher thickening
coefficients have been used, typically above a few hundreds (this threshold value being probably
case-dependent). An example of such calculations is given in Fig. 10.10 for F = 10000 where
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the different profiles are mostly well advected, even though numerical oscillations remain visible
on the velocity field for the coarser meshes.

100

200

300

400

500

D
en

si
ty

 ρ
 [

k
g
.m

−
3
]  t= 0. 0 ms

100

200

300

400

500

 t= 0. 1 ms

100

200

300

400

500

 t= 0. 3 ms

100

200

300

400

500

 t= 0. 4 ms

100

200

300

400

500

 t= 0. 5 ms

113

114

114

115

115

T
em

p
er

a
tu

re
 T

 [
K

]

113

114

114

115

115

113

114

114

115

115

113

114

114

115

115

113

114

114

115

115

5

10

15

20

P
re

ss
u
re

 P
 [

b
a
r]

5

10

15

20

5

10

15

20

5

10

15

20

5

10

15

20

2. 0 0 2. 0

x [mm]

1. 50
1. 00
0. 50

0
0. 50
1. 00
1. 50

V
el

o
ci

ty
 u
−

10
 [

m
.s

1
]

6 points 8 points 12 points

2. 0 0 2. 0

x [mm]

1. 50
1. 00
0. 50

0
0. 50
1. 00
1. 50

2. 0 0 2. 0

x [mm]

1. 50
1. 00
0. 50

0
0. 50
1. 00
1. 50

2. 0 0 2. 0

x [mm]

1. 50
1. 00
0. 50

0
0. 50
1. 00
1. 50

2. 0 0 2. 0

x [mm]

1. 50
1. 00
0. 50

0
0. 50
1. 00
1. 50

Figure 10.9: Density, temperature, pressure and velocity profiles of a N2 droplet convected at constant
speed u = 10m · s−1. Periodic boundary conditions (left and right) used. Non isothermal SG+TIM
Navier-Stokes equations are solved with Chung’s diffusion model, for multiple lower mesh resolutions.
The interface has been thickened by a factor F = 100 using the TIM. The high-order selective filter is
used (coeff. 1.0 · 10−4).

10.1.3 Convergence orders

Finally, the impact of the TIM on the convergence order of the method has been evaluated.
All the calculations have been performed using the methodology presented in Sec. 8.1.4 with
the initially isothermal droplet that has been thickened by factors F = 100 and F = 10000
using the TIM. The results after a half-crossing of the domain are presented in Figs. 10.11
and 10.12 respectively. The results for both thickening factors are very similar and can be
compared to those obtained with no thickening in Fig. 8.18.
The first observation is that the peculiar behavior of the isothermal Euler cases is non-longer
present, which allows to properly define a convergence order. Moreover, both the error level and
the convergence order of the isothermal Euler cases are worse than that of the non-isothermal
Euler and Navier-Stokes cases. The second observation is that for some variables, the order is
strongly degraded, from above 4 with no thickening to more expected values between 2 and
3, which is particularly true for the pressure and the momentum. For the density, energy
and temperature, the diminishing of the convergence order is still visible but to a much lower



332 Chapter 10 - Numerical validation of the Thickened Interface
Method

100

200

300

400

500

D
en

si
ty

 ρ
 [

k
g.

m
−

3
]  t= 0. 0 ms

100

200

300

400

500

 t= 13. 5 ms

100

200

300

400

500

 t= 27. 0 ms

100

200

300

400

500

 t= 40. 5 ms

100

200

300

400

500

 t= 54. 0 ms

114

115

116

T
em

p
er

a
tu

re
 T

 [
K

]

114

115

116

114

115

116

114

115

116

114

115

116

5

10

15

20

P
re

ss
u
re

 P
 [

b
ar

]

5

10

15

20

5

10

15

20

5

10

15

20

5

10

15

20

0. 2 0 0. 2

x [m]

0. 50

0

0. 50

V
el

o
ci

ty
 u
−

10
 [

m
.s

1
]

6 points 8 points 12 points

0. 2 0 0. 2

x [m]

0. 50

0

0. 50

0. 2 0 0. 2

x [m]

0. 50

0

0. 50

0. 2 0 0. 2

x [m]

0. 50

0

0. 50

0. 2 0 0. 2

x [m]

0. 50

0

0. 50

Figure 10.10: Density, temperature, pressure and velocity profiles of a N2 droplet convected at con-
stant speed u = 10m·s−1. Periodic boundary conditions (left and right) used. Non isothermal SG+TIM
Navier-Stokes equations are solved with Chung’s diffusion model, for multiple lower mesh resolutions.
The interface has been thickened by a factor F = 10000 using the TIM. AVBP’s artificial viscosity is
used. The high-order selective filter is used (coeff. 1.0 · 10−4).

extent. In particular, the final orders remain above the theoretical order of the method of at
most three.
These puzzling results, either for the super-convergence still observed for some variables or for
the drastic drop of the order for some others, have not been met with a satisfactory answer.
Together with the ones obtained in the non-thickened cases, these results demonstrate the
need to further investigate the intricacies and subtleties of the numerical behavior of the SG
model and even more so once the TIM is applied.
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Figure 10.11: Convergence orders of AVBP’s GRK numerical scheme with the SG model implemen-
tation in 1D isothermal and non-isothermal cases using the TIM with a thickening coefficient F = 100.
Logarithmic scale used for both axis. Interpolation slopes in legend.
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Figure 10.12: Convergence orders of AVBP’s GRK numerical scheme with the SG model imple-
mentation in 1D isothermal and non-isothermal cases using the TIM with a thickening coefficient
F = 10000. Artificial viscosity from AVBP used for the calculations. Logarithmic scale used for both
axis. Interpolation slopes in legend.
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10.2 Validation of the method in 2D configurations

10.2.1 Planar oscillating interface

10.2.1.1 Case design

The first two-dimensional validation case for the TIM consists in the oscillating planar interface
presented in Fig. 8.20 and studied in Sec. 8.2.1. The main parameters used for the simulation
are compiled in Tab. 10.2. Euler equations are solved and the high order selective filter is
used with a coefficient 10−4, no artificial diffusion is required to stabilize this case.

T 119.88 K λ 1.0 · 10−16 m7 · kg−1 · s−2

P sat 25.20 bar w0 6.34 nm

ρl 458.94 kg ·m−3 σ 1.18 mN ·m−1

ρv 125.22 kg ·m−3 points in int. ≈ 10

Table 10.2: Simulation parameters used for the two dimensional N2 planar interface with the TIM

Using Eq. (8.10), its is possible to asses whether the TIM preserves the surface tension while
the interface is thickened. To perform this study, multiple approaches can be used, provided
that the relative amplitude of the imposed deformation (5%) should remain unchanged.
The most intuitive approach is to use the same geometry for all cases and progressively thicken
the interface while maintaining its initial wavy shape, as exposed in Fig. 10.13. However, this
approach has two correlated shortcomings. Firstly, one needs to ensure that for the biggest
thickening coefficients, the interface width is still very small relatively to the size of the domain
and, more importantly, relatively to the radius of curvature at the strongest deformation. To
do so, either reasonable values of said biggest thickening coefficients must be used or the
initial thickness of the interface without thickening must be chosen very small. This leads to
the second shortcoming. For the simulations, one must use a mesh for which the interface is
well resolved (at least five points in the gradient region). While this can be achieved fairly
simply for the widest interface, the mesh size can rapidly shrinks for the thinnest interface
leading the very costly simulations. Finally, for this approach, one has to choose between very
costly simulations in order to test a wide range of thickening coefficients or very limited values
of thickening coefficients that can however be computed at an affordable cost.

A second strategy can be used, as exposed in Fig. 10.14 where an expansion δ = F is applied
to the whole geometry while simultaneously thickening the interface by a factor F.
With this approach, all the cases are ensured to be homothetic (in particular the ratio between
the interface width and the radius of curvature or the interface width and the domain size are
preserved). As such, all the cases are expected to mimic the reference case. Additionally, the
same expansion δ = F can be applied simultaneously to the mesh size thus ensuring that the
nominal computational cost for one temporal iteration is constant throughout all cases.
Contrary to the design in Fig. 10.13, this homothetic transformation is expected to alter the
oscillation period since the interface becomes longer. However, the expected period can be
evaluated for all cases using Eq. (8.10) where the modified length l can be accounted for.
For the aforementioned reasons, this strategy is adopted to validate the TIM on this oscillating
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Figure 10.13: Evolution of the initial density profiles for interfaces with different thickening factors,
a fixed relative interface perturbation and a fixed geometry

F= 1. 0

F= 1. 5

F= 2. 0

F= 2. 5

Figure 10.14: Evolution of the initial density profiles for interfaces with different thickening factors,
a fixed relative interface perturbation and a proportionally expanded geometry

planar interface. For the sake of clarity, the relative scales of the different configurations in
Fig. 10.14 are respected and thus represented for small factors only. However, for the results
presented hereafter, the methodology is used for factors up to F = 104.

10.2.1.2 Validation for isothermal interfaces

The simulations have been performed for different values of the thickening factor F ranging
from 1 to 104. For each value of F, the thickening has been enforced in two different ways.
The first one, referred to as inconsistent, is done by only modifying the capillary coefficient λ,
i.e. using only the factor φλ from Eq. (9.40) (with φλ = F2). The second one is by applying
the TIM with the combined actions of φσ and φλ. In either case, the oscillations of the central
density value are tracked, similarly to Fig. 8.21 and the oscillation period of the interface is
extracted. The evolution of the period relatively to the thickening coefficient is presented in
Fig. 10.15.

From Eq. (5.167) one knows that thickening the interface by a factor F using only the co-
efficient φλ should result in the same factor being applied to the surface tension. Therefore,
from Eq. (8.10) it can be concluded that the period should behaves as shown by Eq. (10.1),
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i.e proportionally to F. This expected result is symbolized by the dashed line in Fig. 10.15.

τφλ

τ0
=

(Fl0)3/2

(Fσ0)1/2

σ0
1/2

l0
3/2

= F (10.1)

The same a priori estimation of the period evolution can be done with Eq. (8.10) for the TIM,
supposed to thicken the interface by a factor F without modifying its surface tension. The
expected trend is given by Eq. (10.2) with a period increasing proportionally to F3/2. (Prac-
tically, this last result entails that actual simulation time for the cases using this thickening
strategy increases by a factor F1/2.) This expected behavior is symbolized with a solid line in
Fig. 10.15.

τTIM

τ0
=

(Fl0)3/2

σ0
1/2

σ0
1/2

l0
3/2

= F3/2 (10.2)

The two theoretical behaviors obtained with Eqs. (10.1) and (10.2) are accurately retrieved
in the simulations. The results for the "inconsistent" thickening method using only φλ further
demonstrate the predictive capabilities of the native Second Gradient model and its proper
implementation in the code AVBP. Likewise, the results obtained with the TIM offer an
additional validation for its mechanical consistency, in a two-dimensional setting. The error
between the theoretical and numerical periods, already below 5% in the non-thickened case,
remains in that range for all the thickening coefficients that have been considered.

10.2.1.3 Validation for non-isothermal interfaces

The previous results cement the ability of the TIM to treat isothermal cases but at its core, the
method has been derived to work in non-isothermal settings and should be tested accordingly.
To that effect, the previous cases have also been simulated solving the non-isothermal Euler
equations (only the TIM thickening strategy is considered). The central density oscillation
curves are given Fig. 10.16 for thickening coefficients from F = 1 to F = 1000. The time scale
has been normalized by a factor F3/2.

It has already been observed for the non-thickened cases in Sec. 8.2.1, with Figs. 8.25, 8.26 and
8.27, that the switch from the isothermal to the non-isothermal setting causes the oscillations
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Figure 10.16: Comparison of the central density time evolution of a two-dimensional, initially isother-
mal, planar oscillating nitrogen interface for different thickening factors. Non-isothermal Euler equa-
tions are solved applying the TIM. A selective numerical filter (coeff 1.0 · 10−2) is used but no artificial
viscosity.

to become damped in this configuration. This unexplained phenomenon also occurs for the
TIM-thickened cases.
However, an important result is that this damping is consistent as in the normalized time scale
t/F3/2, all the curves properly superimpose except for the case F = 1 which is perturbed by
acoustic noise in the early instants of the simulation.
Fig. 10.16 also shows that the correlation in Eq. (10.2) is also respected in a non-isothermal
setting, despite being derived with the assumption of an isothermal interface and despite the
damping of the oscillations.

To validate the model and the method further still, simulations with non-isothermal initial
solutions have been carried out. The case design is still the one presented in Fig. 8.2.1 and
shown in Fig. 8.20 while the parameters are compiled in Tab. 10.3.

Ti 110 K λ 1.0 · 10−12 m7 · kg−1 · s−2

P sat 14.84 bar w0 0.39 µm

ρl 580.1 kg ·m−3 σ 0.469 mN ·m−1

ρv 63.3 kg ·m−3 l 8.0 µm

Table 10.3: Simulation parameters used for the two dimensional N2 planar interface using the TIM
with a non-isothermal initial solution

The expansion strategy proposed in Fig. 10.14 and the TIM are still applied. The only
modifications are applied to the reference one-dimensional profiles used to create the initial
planar interface solution, which so far was isothermal even outside the interfacial region.
For these last cases, the temperature outside the interface is modified linearly, the vapor is
superheated and the liquid is supercooled, which creates formal bulk phases far from the
binodal region, as shown in Fig. 10.17. While the temperature is modified, the pressure
outside the interface remains constant, equal to the saturation pressure associated to the
interface temperature, to prevent acoustics driven movements. As a result, the density in the
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liquid and the vapor phases is also no longer constant.

20 15 10 5 0 5 10 15 20

x [µm]

0

150

300

450

600

D
en

si
ty

 ρ
 [

k
g.

m
−

3
]

20 15 10 5 0 5 10 15 20

x [µm]

106

108

110

112

114

T
em

p
er

at
u
re

 T
 [

K
]

Figure 10.17: 1D density (left) and temperature (right) profiles for an isobaric nitrogen N2 interface
at a reference temperature of 110 K

The central density oscillation curves for this configuration are given in Fig. 10.18. The same
behavior of a damped oscillatory motion is observed and remains unexplained.
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Figure 10.18: Comparison of the central density time evolution of a two-dimensional, initially non-
isothermal, planar oscillating nitrogen interface for different thickening factors. Non-isothermal Euler
equations are solved applying the TIM. A selective numerical filter (coeff 1.0 · 10−2) is used but no
artificial viscosity.

A slight acoustic noise can be noticed for the case F = 1 and the curves do not superimpose
perfectly compared to configurations with an isothermal initial solution. This difference is
suspected to be caused by the differences in density and temperature gradients on either side
of the interface which are strongly different from one thickening coefficient to the other since
the initial solutions are homothetic. The density and the temperature, outside the interface,
vary between the same extremal values but over strongly different distances. This means in
particular that as the thickening coefficient increases, the initial solution becomes relatively
more isothermal seen from the interface, explaining the proximity of the central density curves
for F = 100 and F = 1000 in Fig. 10.18.
Nonetheless, the period of oscillation is found to follow the theoretical trend τ ∝ F1.5. Ad-
ditionally, for this configuration, using Eq. (8.10) and the values in Tab. 10.3, the expected
oscillation period without thickening is 0.35 µs and the period extracted from the simulation
is 0.37 µs which represents once again a very satisfactory agreement with only a 6% error.
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The previous results are compiled in Fig. 10.19 where the nondimensionalized periods have
been extracted for different thickening factors for the three studied configurations, using either
an isothermal or an non-isothermal initial solution and solving either the isothermal or the
non-isothermal Euler equations.
For all the configurations, the theoretical trend τ ∝ F1.5 is retrieved, further validating the
correct behavior of the TIM even for non-isothermal simulations.
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Figure 10.19: Evolution of the normalized interface oscillation period, with the thickening coefficient
F (in log-log scale) for different types of initialization and equations solving

10.2.1.4 Impact of the viscosity

To anticipate the final numerical configurations that are used to perform the applicative cases
of the TIM in Chap. 11, several series of simulations have been performed trading the Euler
equations for the Navier-Stokes equations to also validate the interaction between the TIM
and the diffusion, more particularly the viscosity, which has been shown in Fig. 8.29 to have
the greater impact on the interface behavior when compared to the thermal conduction.
It has been explained in Sec. 8.2.1.3 that to perform a quantitative comparison with the
literature, the case of the oscillating interface with damping needed to be cautiously designed to
satisfy a specific set of conditions: an isothermal setting, an important liquid-to-vapor density
ratio and a constant value of kinematic viscosity ν = µ/ρ rather than dynamic viscosity µ.
To that effect, the configuration that has led to satisfactory results in Sec. 8.2.1.3, with an
oxygen interface, is reinvested with the parameters recalled in Tab. 10.4 where w0 and l0 are
the interface and domain width when no thickening is applied.

T 110 K λ 1.173 · 10−17 m7 · kg−1 · s−2

P sat 5.45 bar w0 0.97 nm

ρl 1017.7 kg ·m−3 σ 8.37 mN ·m−1

ρv 21.4 kg ·m−3 Lx,0 = Ly,0/3 = l0 26 nm

points in int. ≈ 8 Nx 218

Table 10.4: Simulation parameters used for the additional tests of an oscillating two dimensional
oxygen planar interface thickened with the TIM
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With this configuration, two series of simulations have been performed using two values of
thickening coefficient F = 100 and F = 10000, applying the TIM to thicken the interface while
simultaneously increasing the dimensions of the domain following the principle exposed in Fig.
10.14. The isothermal Navier-Stokes equations are solved with a constant kinematic viscosity.
The selective numerical filter is used with a coefficient 1.0 · 10−2 but no artificial viscosity has
been needed for these cases, even for the thickening factor F = 10000. For both thickening
factors, three values of kinematic viscosity, compiled in Tab. 10.5, have been chosen to obtain
the same Laplace numbers La than the ones used for the non-thickened simulations.

La 2.0 · 105 2.0 · 104 2.0 · 103

νF=1

[
m2 · s−1

]
1.0 · 10−9 3.3 · 10−9 1.0 · 10−8

νF=100

[
m2 · s−1

]
1.0 · 10−8 3.3 · 10−8 1.0 · 10−7

νF=10000

[
m2 · s−1

]
1.0 · 10−7 3.3 · 10−7 1.0 · 10−6

Table 10.5: Laplace numbers and corresponding values of kinematic viscosity to perform simulation-
theory comparisons for an oscillating isothermal oxygen interface at 110 K using different thickening
factors in the TIM

The time evolution of the central density for the thickening factors F = 1, F = 100 and
F = 10000 is shown in Fig. 10.20 for all three Laplace numbers. The curves for the three
thickening factors are combined on the same graph using the reduced time t/F1.5 to adjust
the abscissa. As such, a first encouraging observation is that for the three factors, the curves
are virtually indistinguishable from one another, regardless of the Laplace number, which is
particularly auspicious given the good comparative results that have been obtained without
thickening.
This suspicion is confirmed once the values of the oscillation period τ and characteristic damp-
ing time δ are extracted by following the interface during its movement, i.e. the time evolution
of the position for the central point of the interface. We recall that as a simplified approxi-
mation, these two variables can be obtained with the expressions in Eq. (10.4) (knowing that
τ = 2π/ω) and Eq. (10.5) respectively where k = 2π/l is the spatial period of the oscillations
and ω0 is the fundamental pulsation without viscosity.

ω2
0 =

σk3

ρl + ρv
(10.3)

ω2
ν = ω2

0 − 4ν2k4 (10.4)

δν =
1

2νk2
(10.5)

The simulation and theoretical values for the period τ and characteristic damping time δ are
compiled and compared in Tab. 10.6 for thickening factor F = 100 and in Tab. 10.7 for
thickening factor F = 10000. The comparisons are very satisfactory overall, in particular for
the oscillation periods, which lend a maximal error lower than 5% for all thickening factors
(F = 1 included). For the characteristic damping time, the errors place around 20% in average
which still constitutes a very satisfactory result. Moreover, as done in the non-thickened case,
the correlation from Prosperetti (1981) allows to extract the exact theoretical time evolution of
the interface displacement without resorting to the approximations in Eqs. (10.4) and (10.5).
These theoretical curves have been calculated and compared with the simulations in Figs.
10.21 and 10.22 for thickening factors F = 100 and F = 10000 respectively.
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Figure 10.20: Comparison of the central density time evolution of a two-dimensional planar oscil-
lating oxygen interface for different values of kinematic viscosity. Isothermal Navier-Stokes equations
are solved with constant kinematic viscosity and no thermal conduction. Different thickening factors
F = 1, F = 100 and F = 10000 are applied following the TIM. A selective numerical filter (coeff
1.0 · 10−2) is used.

The results for both thickening factors perfectly follows the tendency initiated by the non-
thickened case in Fig. 8.32 with a very strong agreement between the theory and the simulation
for all three Laplace numbers. This represents a strong argument in favor of the pertinence
and consistency of the TIM.
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ν
[
m2 · s−1

]
1.0 · 10−8 3.3 · 10−8 1.0 · 10−7

τν,th [µs] 0.589 0.591 0.599
τν,sim [µs] 0.566 0.568 0.585
errorτ [%] 4.1 4.0 2.5
δν,th [µs] 9.04 2.87 1.03
δν,sim [µs] 7.62 2.30 0.868
errorδ [%] 18.6 25.1 18.9

Table 10.6: Oscillation periods and characteristic damping times, from theory and simulations, for
an oscillating isothermal oxygen interface at 110 K (eight points in the interface) for different values
of kinematic viscosity. Results obtained with a thickening factor F = 100 applied following the TIM.
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Figure 10.21: Comparison between the theory and simulation results for the normalized displacement
of a two-dimensional isothermal planar oscillating oxygen interface at 110 K for different values of
kinematic viscosity. Isothermal Navier-Stokes equations are solved with no thermal conduction. A
thickening factor F = 100 is applied following the TIM. A selective numerical filter (coeff 1.0 · 10−2) is
used.
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ν
[
m2 · s−1

]
1.0 · 10−7 3.3 · 10−7 1.0 · 10−6

τν,th [s] 0.589 0.591 0.599
τν,sim [s] 0.567 0.568 0.585

errorτ [%] 4.1 4.0 2.4
δν,th [s] 9.04 2.87 1.03
δν,sim [s] 7.73 2.31 0.874

errorδ [%] 16.9 24.3 17.9

Table 10.7: Oscillation periods and characteristic damping times, from theory and simulations, for
an oscillating isothermal oxygen interface at 110 K (eight points in the interface) for different values
of kinematic viscosity. Results obtained with a thickening factor F = 10000 applied following the TIM
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Figure 10.22: Comparison between the theory and simulation results for the normalized displacement
of a two-dimensional isothermal planar oscillating oxygen interface at 110 K for different values of
kinematic viscosity. Isothermal Navier-Stokes equations are solved with no thermal conduction. A
thickening factor F = 10000 is applied following the TIM. A selective numerical filter (coeff 1.0 · 10−2)
is used.
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10.2.2 Oscillating droplets

A final validation of the TIM in two dimensions, more qualitative, has been carried out using
the scenario of an oscillating deformed droplet, already simulated with no thickening in Sec.
8.2.2, and of which configuration is recalled in Fig. 10.23. Given the limited opportunities
to perform comparisons with the theory, a fact already mentioned in Sec. 8.2.2, the purpose
of this case is essentially to validate the ability of the TIM to handle a different type of
configuration.

l

l

r1

r2

R

A

Figure 10.23: Schematic representation of the computational setting for the oscillating droplet. Not
to scale

The simulations have been performed for two thickening coefficients F = 100 and F = 10000,
the relevant parameters are compiled in Tab. 10.8 where w0, l0 and R0 are the interface
width, domain length and droplet radius respectively when no thickening is applied. When a
thickening factor has been applied to the interface, the domain length and droplet diameter
have been increased by the same factor.

Tinit 110.0 K λ 1.173 · 10−17 m7 · kg−1 · s−2

P sat 5.45 bar σ 8.37 mN ·m−1

ρl 1017.7 kg ·m−3 w0 0.97 nm

ρv 21.4 kg ·m−3 R0 10 nm

N 748 l0 90 nm

Table 10.8: Simulation parameters used for the two dimensional isothermal oscillating oxygen droplets
using the TIM

The isothermal Navier-Stokes equations are solved with a constant value of kinematic viscos-
ity. The high order selective filter is also used with a coefficient 10−2. Several values of kinetic
viscosity have been considered, they have been adjusted to each thickening factor in order
to obtain the same Laplace numbers La as the ones used in the non-thickened case of Fig.



Part III - The Thickened Interface Method for the Second Gradient
theory

345

8.41, the corresponding values are given in Tab. 10.9. For both thickening coefficients, the
simulations have been carried out to completion but have suffered from important acoustic
perturbations, regularly generated during the simulation regardless of the viscosity level, of
which origin is still under investigation.

La 82440 25500 7570 2450 825 255 76
νF=1

[
m2 · s−1

]
1.0 · 10−9 1.8 · 10−9 3.3 · 10−9 5.8 · 10−9 1.0 · 10−8 1.8 · 10−8 3.3 · 10−8

νF=100

[
m2 · s−1

]
1.0 · 10−8 1.8 · 10−8 3.3 · 10−8 5.8 · 10−8 1.0 · 10−7 1.8 · 10−7 3.3 · 10−7

νF=10000

[
m2 · s−1

]
1.0 · 10−7 1.8 · 10−7 3.3 · 10−7 5.8 · 10−7 1.0 · 10−6 1.8 · 10−6 3.3 · 10−6

Table 10.9: Values of Laplace number and kinematic viscosity used for the two dimensional isothermal
oscillating oxygen droplets using the TIM with thickening coefficients F = 100 and F = 10000

In Figs. 10.24 and 10.25 are presented snapshots of the density and velocity fields respectively
for the case with thickening factor F = 10000 and kinematic viscosity ν = 1.0 · 10−6 m2 · s−1.
Theses images show that the dynamics of the viscous droplet is satisfactorily described by the
thickened model.
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Figure 10.24: Snapshots of the temporal evolution of the density field for a viscous and initially
deformed O2 droplet. Isothermal Navier-Stokes equations are solved with a constant kinematic viscosity
ν = 1.0 · 10−6 m2 · s−1 and no thermal conduction. A thickening factor F = 10000 is applied following
the TIM. A selective numerical filter (coeff 1.0 · 10−2) is used.

The time evolution of the total kinetic energy for the different values of kinematic viscosity
are presented in Fig. 10.26 for thickening factor F = 100 and Fig. 10.27 for thickening factor
F = 100 . This energy is expected to decay while oscillating, which is respected for most
cases and the increasing impact of higher values of viscosity is also well retrieved. Acoustic
perturbations, visible in the velocity field Fig. 10.25, can also be observed and are more
important for lower values of kinetic viscosity and more prominent for the larger thickening
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Figure 10.25: Snapshots of the temporal evolution of the velocity field for a viscous and initially
deformed O2 droplet. Isothermal Navier-Stokes equations are solved with a constant kinematic viscosity
ν = 1.0·10−6 m2 ·s−1 and no thermal conduction.A thickening factor F = 10000 is applied following the
TIM. A selective numerical filter (coeff 1.0 · 10−2) is used. Velocity vectors (arrows) are superimposed
over the normalized velocity amplitude in gray scale.

factor F = 10000. Nonetheless, the oscillations period for simulations with the lowest kinematic
viscosity can be extracted for the two thickening factors thanks to a spectral analysis. The
results, τsim,F=100 = 0.85 µs and τsim,F=10000 = 0.84 ms for the thickening factors F = 100 and
F = 10000 respectively can then be compared to the theoretical values for inviscid oscillations
obtained with Eq. (10.6), τth,F=100 = 0.90 µs and τth,F=10000 = 0.90 ms respectively. The
small errors of 7% and 6% respectively are still very satisfactory and further advocate for the
pertinence of the TIM methodology to consistently thicken the interface and perform unsteady
simulations.

τ = 2π

√
(ρl + ρv)R

3

6σ
(10.6)

Conclusions on the validation

The Thickened Interface Method (TIM) has been tested on a large variety of one and two-
dimensional unsteady configurations. The objective was to confirm that the correct numerical
and thermodynamic behavior observed in Chap. 8 for the native Second Gradient model was
not impacted by the thickening methodology and that the results of the simulations remained
consistent from a physical stand point.
In one-dimensional cases, both isothermal and non-isothermal simulations have led to satis-
factory results. Additional artificial viscosity has been necessary to stabilize the calculations
which was not the case with the non-thickened model. This difficulty is believed to be related
to a reduced stiffness of the capillary terms in the equations due to smaller gradients present
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Figure 10.26: Comparison of the temporal evolution of the total kinetic energy for an oscillating
oxygen droplet with different values of kinematic viscosity. Isothermal Navier-Stokes equations are
solved with no thermal conduction and the addition of artificial viscosity. A thickening factor F = 100
is applied following the TIM. A selective numerical filter (coeff 1.0 · 10−2) is used.
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Figure 10.27: Comparison of the temporal evolution of the total kinetic energy for an oscillating
oxygen droplet with different values of kinematic viscosity. Isothermal Navier-Stokes equations are
solved with no thermal conduction and the addition of artificial viscosity. A thickening factor F = 10000
is applied following the TIM. A selective numerical filter (coeff 1.0 · 10−2) is used.

after the thickening. This loss of stiffness could have resulted in an interface with a greater
characteristic response time and thus a lowered ability to resist to exterior perturbations, for
instance acoustic noise, very present in non-isothermal simulations. This hypothesis would
require additional studies to further assess its validity.
In two dimensions, the simulations of oscillating planar interfaces have also led to good results
for which the macroscopic behavior of the interface was preserved throughout the thicken-
ing. The comparison between the simulations and the theory regarding the oscillations period
and characteristic damping time has proven to be very good, a tendency already observed
in Chap. 8 without thickening. Finally, the TIM has also permitted to simulate oscillating
deformed droplets. These last cases, more challenging from a physical point of view, have
suffered from an acoustic perturbation, properly resolved, that has been generated regularly
during the simulations. This perturbation, of which origin is still unknown at the moment,
has locally perturbed the interface. Despite these difficulties, for all cases, the droplets have
displayed the correct expected macroscopic behavior.
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The good results presented in this chapter have given confidence in the consistency of the
TIM and its ability to preserve the correct thermodynamic behavior already observed for the
native SG model. Consequently, they have motivated the use of the TIM to address more
complicated cases that are presented in Chap. 11.



Chapter 11

Application of the Thickened Interface
Method

This last chapter is dedicated to the application of the Thickened Interface method to concrete
cases. Firstly, the TIM in used to study the impact of two colliding oxygen droplets in three
dimensions. Secondly, the TIM is applied to simulate the two-dimensional breakup of liquid
nitrogen jets. All these cases are compared with theoretical and experimental results to qualify
the strengths and weaknesses of the TIM.

11.1 Colliding droplets

11.1.1 General results for colliding droplets

The fist applicative case for the TIM presented in this work is that of three-dimensional
colliding droplets of which general setting is presented in Fig. 11.1.

−~v

~v

d

R2

R1

Figure 11.1: Schematic representation of the configuration used to study the collision of two droplets

Among the important characteristics of a spray, the mechanisms controlling the droplets cre-
ation and the droplets size distribution are of a particular interest. This is more so true when it
comes to modeling a fuel injection given that the spray has a direct impact on the combustion
efficiency and thus on the power output and the fuel consumption.
After the primary breakup that creates long liquid sheets, ligaments and big droplets, smaller
droplets can be created either by shear stresses due to the velocity differential with the am-
bient gas or the collisions between the bigger liquid structures. This is one justification for
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the attention given to the configuration of Fig. 11.1 in this work as well as in many other
studies. Moreover, it also represents another partially canonical case to further validate the
numerical and thermodynamic behavior of the TIM-thickened SG model, conveniently in three
dimensions.

In Fig. 11.3 are given snapshots capturing the time evolution of droplets collisions obtained
experimentally by Jiang et al. (1992) for different flow conditions using hydrocarbons. Thanks
to these results and several other experimental studies such as Ashgriz and Poo (1990); Brenn
et al. (1997); Qian and Law (1997); Estrade et al. (1999); Rabe et al. (2010), a series of
recurring regimes, all of them illustrated in Fig. 11.3, have been identified, described and
analyzed.
When two droplets collide, they share mass, momentum and energy upon contact. In absence
of notable body forces and combustion, the energy that can be traded by the droplets has
two principal origins: the kinetic energy from their respective velocity and the surface energy
generated by the surface tension. During the impact, part of the energy will be dissipated
through viscous tress, the remaining being distributed between the whole mass of liquid (if
one assumes that the role of the ambient gas is negligible).
Intuitively, depending on the initial velocity of the droplets (i.e. their kinetic energy) and their
surface tension, the collision can result in either a coalescence or a merging sometimes followed
by a separation. Moreover, it is to be expected that the droplets absolute and relative sizes,
as well as the liquid viscosity coefficient, also play an important role in the outcome of the
collision.

The authors in multiple studies (see Adam et al. (1968); Park (1970); Podvysotsky and
Shraiber (1984); Ashgriz and Poo (1990); Jiang et al. (1992)) have shown that for a fixed size
ratio ∆ = R1/R2 between the droplets, the different regimes can be agglomerated into a We
- δ graph where We = ρlD2 (2v)2 /σ is the Weber number associated with the bigger droplet
of diameter D2 = 2R2, v is the norm of the velocity of both droplets and δ = d/(R1 +R2) is
called the impact parameter.
The typical graphs that are obtained are given in Fig. 11.2 and the regimes are to be identified
to that of the snapshots in Fig. 11.3. Four main regimes can be identified.
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Figure 11.2: Typical collision regimes observed in experiments depending on the Weber number and
the impact parameter
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Figure 11.3: Example of liquid droplet collision regimes for different configurations, taken from Brenn
(2011) adapted from Jiang et al. (1992)
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For low Weber numbers, the droplets will tend to coalesce. This coalescence can happen
smoothly where the droplets suffer minor deformations as exposed in cases (a) and (b) of Fig.
11.3 or more violently where the liquid torus, typical of droplets impact, can be observed as
in cases (e) and (f) of Fig. 11.3. These two types coalescence define two regimes referred to
as (I) Smooth Coalescence and (III) Impacting Coalescence.

If the Weber number increases too much or if the collision is sufficiently off-centered, the
droplets will merge upon impact and then separate according to two possible modes.
For near head-on collisions, after the creation of an initial liquid torus, the liquid mass takes
the form of a cylinder that elongates and eventually separates, trough impingement, on one
point or more. This mode of separation constitutes the regime (IV) Reflexive Separation.
For off-centered collisions, a thin liquid filament is created between the two droplets which
begins to stretch as the droplets continue on their separating path until the ligament shatters
into smaller droplets. This mode of separation constitutes the regime (V) Stretching Separa-
tion.

For some fluids, which have not been precisely characterized so far, a third mode can exist
where the droplets effectively collide but never actually come into contact as their kinetic
energy and their viscosity are just sufficient enough to trap a thin layer of gas between them
that prevents the merging of the two liquid masses.

11.1.2 Numerical simulations

11.1.2.1 Numerical setting

For the rest of the study, we only consider head-on collisions (δ = 0) between two liquid oxygen
droplets of the same size D1 = 2R1 = 2R2 = D2 initially at constant temperature 110 K.
The corresponding three dimensional initial solution (density isosurface at ρ = 500 kg ·m−3)
with the relevant two-dimensional fields of reference (density, pressure, normalized velocity)
are given in Fig. 11.4. The full set of non-isothermal Navier-Stokes equations, modified by the
TIM, are solved for all cases without the use of artificial viscosity except for the most extreme
case ((We = 192) described later.
For such a configuration, several experimental results are available. However, the fluid con-
sidered is often water or occasionally some type of hydrocarbon. The extent to which the
simulation results using oxygen can be compared to these results is not know a priori.
When using water or hydrocarbons, a precise We - δ regime graph has been produced, using
water droplets, by Ashgriz and Poo (1990) and is shown in Fig. 11.5. Experimentally, the
authors found the transition between regime (III) of coalescence and regime (IV) of separation
to occur atWe = 19 for head-on collisions. The authors still observed coalescence atWe = 23
for a slightly off-centered collision (see Fig. 11.8).

The generic parameters used for the simulations are compiled in Tab. 11.1, periodic boundary
conditions are used in the direction parallel to the droplets movement and partially relaxing
inlets are used on the two other sides, perpendicularly the droplets movement.
To access different collision regimes exposed in Fig. 11.2, several droplets velocities have been
used, all the other characteristics of the configuration remaining equal. These velocities have
led to different values of liquid Weber number We = ρl (2v)2D/σ and Reynolds number
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Figure 11.4: Initial solution used to study the collision of same sized initially isothermal oxygen
droplets in their own vapor. The three-dimensional ρ = 500 kg ·m−3 isosurface and the reference two
dimensional density, pressure and normalize density fields are provided.
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Figure 11.5: Collision regimes in the parameter space δ −We extracted for same size droplets of
water into air, taken from Ashgriz and Poo (1990)

Re = ρlvD/µl. The Laplace number La = ρlσD/µl, which is not impacted by the changes in
velocity, remains constant. All these characteristics values are compiled in Tab. 11.3.

For all cases except the most extreme (We = 192), for which the size of the domain has been
increased, no additional stabilization tool has been needed. For this latter case, the artificial
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Ti 110.0 K λ0 1.173 · 10−17 m7 · kg−1 · s−2 ∆x = ∆y = ∆z 0.184 µm

P sat 5.45 bar w 0.97 µm points in int. ≈ 5

ρl 1017.7 kg ·m−3 F 1000 Ly = Lx/2 55.0 µm

ρv 21.4 kg ·m−3 µl 1.05 · 10−4 Pa.s Ny = Nz = (Nx + 1) /2 300

σ 8.37 mN ·m−1 D 20 µm points in diam. ≈ 110

Table 11.1: Parameters used for the three dimensional simulations of colliding O2 droplets

v
[
m · s−1

]
1.43 2.03 2.18 2.87 4.44

We 20 40 46 80 192
Re 556 790 840 1100 1720
La 1.545 · 106 1.545 · 106 1.545 · 106 1.545 · 106 1.545 · 106

figure Fig. 11.6 Fig. 11.8 Fig. 11.7 Fig. 11.9 Fig. 11.11

Table 11.2: Values of the WeberWe, Reynolds Re and Laplace La numbers of the collisions depending
on the initial velocity of the droplets, with the corresponding figures

viscosity of AVBP has been used and modified: an sensor based on the temperature has been
introduced in supplement of the native density-based sensor. Indeed, the temperature expe-
riences a strong overshoots, not understood at this point, at the contact zone between the
droplets during the early instants of the impact. To some extent, the system acts as if the
gas between the droplets was being heated. It should be noticed however that apart from this
specific instant, the artificial viscosity is never actually triggered in the simulation.

As a reference, one simulation for this configuration requires a computational time of 24 hours
on 2240 cores i.e. about 54 000 CPU-hours for more or less 90 µs of physical time in the
simulation. This important cost can be explained by several reasons.
Firstly, it is due to the very large size of the domain that needs to be discretized compared to
the size of the interface, provided that the radius of the droplets needs to be sufficiently great
when compared to the interface thickness. Secondly, the explicit numerical scheme used for the
simulation leads to very restrictive time steps given that the system is strongly compressible,
the physical diffusion is activated and thus the stability conditions on the CFL and Fourier
numbers must be respected.
This explains the small number of simulation cases that are exposed in the present document.

11.1.2.2 Results analysis

Preliminary results

The two first simulations have been done using Weber numbers of We = 20 (v = 1.43 m.s−1)
and We = 46 (v = 2.18 m.s−1). The results, in the form of snapshots, are given in Figs. 11.6
and 11.7 respectively.



Part III - The Thickened Interface Method for the Second Gradient
theory

355

Figure 11.6: Head-on collision of liquid droplets, simulation results with oxygen droplets at We = 20
(Rel = 556) using the TIM

Figure 11.7: Head-on collision of liquid droplets, simulation results with oxygen droplets at We = 46
(Rel = 840) using the TIM

For each case, a behavior typical of one of the regimes presented in Figs. 11.3 and 11.2 can
be recognized. The impact torus, elongated cylinder and final droplet of the Impacting Co-
alescence can be observed for We = 20. The torus still appears for We = 46, however the
cylinder display a much more pronounced impingement that ultimately results in a Reflexive
Separation with the creation of an additional small droplet at the center.

In an effort to emulate the case from Ashgriz and Poo (1990) at We = 23 and δ = 0.05 where
a reflexive separation occurs without the creation of a satellite droplet, another simulation,
for which results are shown in Fig. 11.8, has been performed at Weber number We = 40
(v = 2.03 m.s−1).
Firstly, it can be observed that the scenario of the collisions is very similar for the two cases
We = 46 and We = 40. The scenario is also very comparable to that of the experiment
with We = 23 taken from Ashgriz and Poo (1990). The only noticeable differences are the
impingement of the liquid cylinder that is more accentuated when the Weber number increases
and the size of the satellite droplet which decreases in accordance with the decreasing Weber
number. An additional simulation, not presented here, has shown that this satellite droplet is
still present even for We = 36.
The question of obtaining a Reflexive Separation without satellite droplets seems not to be
directly addressed in the literature. Such outcomes have been observed experimentally for
water in air in Ashgriz and Poo (1990) and numerically, still for water, using either LS methods
in Tanguy and Berlemont (2005); Pan and Suga (2005) or VOF methods in Rieber and Frohn
(1997). Most other results involving different fluids, either experimentally or numerically,
showcase reflexive separations with creation of at least a very small droplet in the center.
In Ashgriz and Poo (1990), the authors observed the same satellite-free reflexive separation
over the range 19 6We 6 23.
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Figure 11.8: Head-on collision of liquid droplets, comparison between experiments with water droplets
at We = 23 from Ashgriz and Poo (1990) and simulation results with oxygen droplets at We = 40
(Rel = 790) using the TIM

Additional results

To obtain a clearly defined single satellite drop, reminiscent of the head-on collision atWe = 40
from Ashgriz and Poo (1990), a simulation at We = 80 (v = 2.87 m.s−1) is performed, the
comparative results are shown Fig. 11.9.
As it was the case in Fig. 11.8, a very strong agreement is obtained, in terms of behavior,
between the simulation and the experiment. The relative sizes of the two departing and the
one stagnant satellite droplets are also well predicted. However, the Weber number required
in the simulation seems to be twice the one used the experiments to obtain the same regime.

11.1.3 Critical Weber identification

11.1.3.1 Experimental results

The question of identifying the critical Weber Wec at which the transition between regimes
(III) and (IV) occurs has been addressed by the authors in Ashgriz and Poo (1990); Jiang
et al. (1992) who found this number to be linearly dependent with the ratio µ/σ in the form:

Wec = k (µ/σ) + l (11.1)

This trend can be seen in Fig. 11.10 where the line separating the regimes (III) Impacting
Coalescence and (IV) Reflexive Coalescence is apparent. Additionally, the authors in Jiang
et al. (1992) provide the limit lines between regimes (II) Bouncing and (III) Impacting Coa-
lescence and also between regimes (I) Smooth Coalescence and (II) Bouncing. In particular,
one can see that these two lines converge as their have slopes of opposite signs (the (I) Smooth
Coalescence / (II) Bouncing limit is actually decreasing with µ/σ).
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Figure 11.9: Head-on collision of liquid droplets, comparison between experiments with water droplets
at We = 40 from Ashgriz and Poo (1990) and simulation results with oxygen droplets at We = 80
(Rel = 1100) using the TIM

The principal result from this observation is that fluids with a too small ratio µ/σ will not
experience the (II) Bouncing regime. For instance, this value was too small for the water used
in Ashgriz and Poo (1990), explaining why this bouncing regime was not observed.
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Figure 11.10: Critical Weber numbers separating different collision regimes for hydrocarbons droplets
in air, taken from Jiang et al. (1992)

The result from Eq. (11.1) has been improved by the authors in Qian and Law (1997) who
showed that Wec actually varies linearly with the Ohnesorge number Oh = µl/

√
ρlσD. The
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correlation is:
Wec = 679 ·Oh+ 16 (11.2)

With the values compiled in Tab. 11.1, the constant Ohnesorge number used in our simulation
is 8.04 · 10−4 and the corresponding critical Weber number is Weth

c = 16.5. Our different
simulations have shown our critical Weber number to lay somewhere between 28 and 36,
which could, once again, lead to a factor two between the experimental and simulation Weber
numbers to access the same regimes.

11.1.3.2 Qualitative discussion

Several factors could potentially explain the difference between the Weber numbers in our
simulation and the experiments of Ashgriz and Poo (1990) that allowed to lend a similar
behavior for the droplets consequently to the collisions:
- Firstly, the liquid oxygen used for the simulations has thermo-chemical properties (except
the density) that are substantially further away from water than that of the hydrocarbons,
which have been used to obtain the trends in Fig. 11.10 and Eqs. (11.1) and (11.2), are. These
trends could be limited to a certain range of fluids.
- Secondly, the size of the droplets used for the simulations is substantially smaller than
that used in the various experiments with at least one order of magnitude between them.
Additionally, even if the radius of the droplets in the simulation has been calibrated to be
much greater than the interface width, this value may not been sufficiently larger to ensure
that wrongly induced curvature effects do not compromise the representative value of the
results.
- Thirdly, all the experiments have been performed in air or nitrogen at ambient pressure and
temperature, which offer exterior conditions substantially different to that of the cold oxygen
vapor at almost 5 bar used in our simulations. This represents more than a factor twenty in
terms of density and a factor one half in terms of viscosity. The recipient gas is suspected to
have a strong impact on the collision outcome but this idea has not been actively investigated
nor quantitatively characterized so far. For these reasons, the previous trends may not hold
with such different gaseous conditions.
Of course, these previous possible explanations do not discard the possibility of a divergence
between the theoretical, experimental and simulation results caused by a limitation in the
paradigm of the TIM.

The last simulation, presented in Fig. 11.11, is set at a substantially high Weber number
We = 192 (v = 4.44 m.s−1) to test the model and the method in more severe conditions.
A strong Reflexive Separation occurs and one can observe the creation of two main satellite
droplets. Each of these satellite is itself at the limit of breaking into two smaller droplets. Due
to the increased velocity, the two initial colliding droplets impact the inlet boundaries on their
way back after the reflexion, despite having increased the length and width of the computa-
tional domain by 25%. Given that the same mesh size, and thus the same interface resolution,
have been used, it caused the simulation computational time to double. Additionally, an
almost negligible satellite droplet is also created at the center of the domain.
The only approaching case, with which only qualitative comparisons can be made, was obtained
in Ashgriz and Poo (1990) for a Weber number We = 96 where three clear satellite droplets
have been created.
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Figure 11.11: Head-on collision of liquid droplets, simulation results with oxygen droplets at We =
192 (Rel = 1720) using the TIM

The question can be asked as to whether the initial colliding droplets have been constrained
by the boundaries of the domain during the elongation phase of the central cylinder, which
prevented the creation of four satellite droplets instead of the only two actually observed. Only
a simulation with a bigger domain but also a much more important computational cost can
help in settling this question.

11.1.3.3 Quantitative discussion

In Ko and Ryou (2005), the authors developed a model, based on the work in Ashgriz and Poo
(1990), to predict the number of satellite droplets that are created after the collision, depending
on the impact conditions. This model is briefly presented hereunder for the head-on collision
of equally-sized droplets.
For that purpose, the authors in Ashgriz and Poo (1990) introduced the total kinetic energy
KE and surface energy SE of a single droplet, defined in Eqs. (11.3) and (11.4) respectively.

KE =
1

2
ρ

(
1

6
πD3

)
v2 (11.3)

SE = σπD2 (11.4)

They also introduced the effective reflexive energy KEer, given by Eq. (11.5), which consists
of the sum of the kinetic energy of counteractive flows KEco of the droplets pulling away and
the excess surface energy SEes induced by the stretching liquid cylinder between the droplets,
defined in Eqs. (11.6) and (11.7) respectively.

KEer = KEco + SEes (11.5)

KEco = ρ

(
1

6
πD3

)
v2 = 2KE (11.6)

SEes = σπD2 (11.7)

A critical surface energy SEc for reflexive separation is obtained experimentally by observing
systematic separation when KEer > SEc. It is expressed by:

SEc =
3

4
σπ
(
2D3

) 2
3 (11.8)
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Using KEer and SEc, the authors in Ko and Ryou (2005) defined a separation volume coeffi-
cient C as follows:

C =
KEer − SEc
KEer + SEc

(11.9)

This coefficient allows to evaluate the size of the colliding droplets after separation, which is
Da = (1− C)1/3D. A ratio of kinetic energy dissipation α is also used and allows the evaluate
the velocity of the colliding droplets after impact with va = (1− α)1/2 v. In Ashgriz and Poo
(1990), alpha is experimentally evaluated at 0.55 for water but the legitimacy of this value for
other fluids has not been addressed and should be met with caution.
Eventually, the total kinetic energy KEa and the surface energy SEa of the colliding droplets
after impact can be expressed by adapting Eqs. (11.3) and (11.4) with the known definitions
of Da and va, they are given by:

KEa =
1

2
ρ

(
1

6
πD3

a

)
v2
a = KE (1− C) (1− α) (11.10)

SEa = σπD2
a = SE (1− C)

2
3 (11.11)

As the dissipated kinetic energy is, by hypothesis, proportional to the total kinetic energy
of the two colliding droplets by factor α, an energy balance can be written for the whole
process, neglecting the possible energetic contributions coming from the ambient gas. The
energy conservation is thus written:

2KE + 2SE = 2KEa + 2SEa + αKE + SEs (11.12)

where SEs is the total surface energy remaining available after the separation of the two main
droplets, of which value controls how many satellite droplets can be created and whether any
is created in the first place.

Using Eqs. (11.3), (11.4), 11.10 and 11.11, SEs can be isolated in Eq. (11.12) to get:

SEs = 2KE [1− α− (1− α) (1− C)] + 2SE
[
1− (1− C)

2
3

]
(11.13)

Finally, the number of satellite droplets Na is given by:

Na =

(
SEs
σπ

)3 1

4C2D6
(11.14)

The results for several values of coefficients alpha have been compiled in Tab. 11.3.
One can see that for values of factor α around 0.55 prescribed in Ashgriz and Poo (1990), the
model from Eq. (11.14) is strongly over predictive for our high Weber numbers. For all values
of alpha, the absence of satellite droplet for We = 20 is retrieved. Overall, the predicted
values of Na are very sensitive to α. Values around α = 0.85 seem to provide an acceptable
correlation. One must challenge this result as α is, by definition, the ratio of kinetic energy
lost by the droplets during the impact through viscous dissipation. The observed trend of a
lower value of Na for higher values of α is physically sound. A value of 0.85 seems very large
but is nonetheless consistent with the simulations where very high values of Weber number
are required to create visible satellite droplets, which could be the sign that a great amount of
energy is lost by the liquid masses during these collisions. The physical accuracy of this last
intuition needs however to be studied more thoroughly.
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α Na,We=20 Na,We=36 Na,We=40 Na,We=46 Na,We=80 Na,We=192

0.5 0.003 0.06 0.08 1.08 4 33
0.55 0.028 0.51 0.68 0.96 3.5 27
0.60 0.026 0.46 0.60 0.84 2.9 21
0.7 0.024 0.36 0.47 0.64 2.0 12
0.8 0.19 0.28 0.36 0.47 1.3 6
0.85 0.017 0.25 0.31 0.40 1.02 4.2
0.90 0.016 0.21 0.26 0.33 0.78 2.6
Simu. 0 ≈ 0 ≈ 0 � 1 1 2

Table 11.3: Number of satellite droplets created by colliding O2 droplets as predicted by the model
from Ko and Ryou (2005) in Eq. (11.14)

Conclusions on the three-dimensional colliding droplets

The TIM has allowed to perform stable and coherent simulations of colliding oxygen droplets at
multiple velocities using a reasonable interface resolution solving the full set of non-isothermal,
compressible et physically diffusive Navier-Stokes equations, mostly without requiring the
addition of artificial viscosity.
Quantitative comparisons with literature is rendered difficult by the scarcity of experiments or
numerical results directly involving cryogenic fluids, most of them being carried out with water
or hydrocarbons in air. However, the qualitative comparisons with the results in Ashgriz and
Poo (1990) have shown that the different head-on collision regimes can be retrieved. Moreover,
by applying a factor two from the experimental to the simulation Weber numbers, the exact
same outcomes can be obtained, although the origin of this factor remains unexplained.

11.2 Periodic liquid jets

11.2.1 Numerical setup

11.2.1.1 Case design

For this second applicative case, more complexity is introduced by considering a symmetrical
mixing layer that takes the aspect of a liquid jet in its own vapor.
The interface is initially set at Ti = 100 K and the initial solution is isobaric at P sat = 7.85
bar. The surrounding vapor is initially at rest whereas the liquid has a constant descending
vertical velocity vl. The simulations are performed on a regular cartesian mesh. The domain,
as depicted in Fig. 11.12, is periodic vertically. Periodic boundary conditions are also used
on the lateral sides to avoid crashes susceptible to be caused by small droplets impacting the
outlet boundaries. The useful parameters used for the simulations are recalled in Tab. 11.4
where D is the jet diameter and w is the interface width. The full capillary Navier-Stokes
equations are solved using Chung et al. (1988) model for the diffusion. In the following, the
magnitude of the viscosity is increased by a factor 5 in order to adjust the Reynolds number to
the grid resolution (see Sec. 11.2.1.2 for details). A high order selective filter with a coefficient
10−2 is used to suppress point-to-point oscillations.
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Figure 11.12: Schematic representation of the density field for the simulation configuration of a
periodic liquid jet in its vapor

Ti 100.0 K λF=1 1.96 · 10−17 m7 · kg−1 · s−2 w 1.31 µm

P sat 7.85 bar σ 4.134 mN ·m−1 D 20 µm

ρl 667.14 kg ·m−3 F0 1000 Ny0 = Nx0/2 675

ρv 31.6 kg ·m−3 Ly = Lx/2 90.0 µm ∆x0 = ∆y0 0.133 µm

Table 11.4: Simulation parameters used for the two dimensional N2 jets (reference mesh resolution
and interface thickening leading to about nine points in the interface)

While the initial density, pressure and temperature fields have remained unchanged for all
cases, four different values of liquid velocity, compiled in Tab. 11.5, have been used so as
to get four different liquid Weber numbers We = ρlv

2D/σ typical of different atomization
regimes.

v [m · s−1] 11.3 17.9 25.4 35.9
Re 460 730 1040 1470
We 412 1030 2080 4150
Oh 4.38 · 10−2 4.38 · 10−2 4.38 · 10−2 4.38 · 10−2

Table 11.5: Simulation velocities and corresponding liquid Reynolds, Weber and Ohnesorge numbers
used for the simulations of two dimensional N2 jets with a liquid viscosity µl = 3.25 ·10−4 kg ·m−1 · s−1

The results, for which numerous examples are provided in the next paragraphs, can be com-
pared to the chart in Shimasaki and Taniguchi (2011) (Fig. 11.13), inspired from Reitz (1978),
which provides insight on the jet behavior relatively to the injection conditions, in particu-
lar the liquid Reynolds Re = ρlvD/µl and Ohnesorge Oh = µl/

√
ρlσD numbers. With the

physical parameters from the simulations, the resulting (constant) Oh number is 4.38 · 10−2.
The regime for the case with the lower Re number (460) should correspond to the first wind
induced regime while the case at Re = 1470 should be laying in the second wind-induced
regime region.
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Figure 11.13: Breakup regimes for liquid round jets in the parameter space Rel −Oh extracted for a
hydrocarbons-air configuration, taken from Shimasaki and Taniguchi (2011)

11.2.1.2 Direct Numerical Simulation conditions

Given that the main objective of this study is to present a framework in which the Second
Gradient can permit Direct Numerical Simulation (DNS) involving interfaces, a specific care
has been taken to ensure that the mesh resolution was fine enough to accommodate the smallest
scales of turbulence. However, rather than choosing directly a mesh fitted to the Kolmogorov
turbulent scale, the fluid viscosity has been scaled to ensure that the Kolmogorov scale was
apportioned to the mesh resolution fixed by the interface resolution, set to eight points in the
reference case. This approach is justified by the fact that in most cases, the interface width is
much smaller than the smallest turbulent scales and thus is the limiting factor in terms of mesh
resolution prior to applying an interface thickening methodology. By artificially changing the
viscosity of the fluid, we ensure that the case remains numerically affordable and the numerical
errors from the potentially unresolved turbulent scales have a minimal impact on the interface
behavior, which is the main aspect these simulations aim at qualifying.

Three-dimensional turbulence
Classically, when considering three-dimensional turbulence, the hierarchy and the relations
between the different turbulent scales are determined using the assumption that the average
rate of dissipation of turbulent energy ε is preserved from one scale to the over. This rate is
apportioned to the ratio between the typical scale of kinetic energy [ec] and the considered
characteristic time [τ ], as exposed in Eq. (11.15) where [l] is the considered characteristic
length scale and [u] is the characteristic velocity at that scale.

ε ∼ [ec]

[τ ]
∼ [u]2

[u] /[l]
∼ [u]3

[l]
(11.15)

The largest scale of the turbulence with characteristic length l and velocity u are characterized
by a liquid Reynolds number Re∗l = ρlul/µl = ul/νl. This Reynolds number is not to be
mistaken with the Reynolds number of the jet Rel = vD/νl evaluated using the jet diameter
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and velocity. At the Kolmogorov length scale lk, the turbulent energy is dissipated only
through viscous interactions, which leads to writing:

ε ∼ νl
du

dx

2

∼ [u]2

[l]2
∼ νl

v2
k

l2k
(11.16)

Combining Eqs. (11.15) and (11.16), it comes that:

lk ∼
(
ν3
l

ε

) 1
4

(11.17)

Finally, the relation between the largest and smallest length scales l and lk can be established
using the relation Re∗l = ρlul/µl = ul/νl and Eqs. (11.15) and (11.17):

lk ∼
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Given that the greater lk, the better the scale is resolved, Eq. (11.18) leads to the condition:
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) 1
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(11.19)

To obtain quantitative values for our case, the length scale l and the corresponding velocity
u must be evaluated. Typical values for such type of jets are l = 0.3D and u = 0.3v where
D and v are the diameter and velocity of the liquid jet. The velocity that is considered here
is that of the most critical case We = 4150, i.e. v = 35.9 m · s−1. The mesh size is selected
to achieve a 9-point resolution in the interface which leads to the value ∆x = 0.133 µm. A
satisfactory DNS can be achieved if the Kolmogorov scale is comparable to the mesh size,
which leads to the choice lk = ∆x = 0.133 µm. All the corresponding values are compiled
in Tab. 11.6 where the macroscopic, large turbulent and Kolmogorov scales are described
with their associated velocities and Reynolds numbers. The resulting maximal value for the
turbulent scale Reynolds number is Re∗l max = 157 and the corresponding minimal value for
the liquid dynamic viscosity is µlmin = 2.72 · 10−5 kg · m−1 · s−1, to be compared with the
native value of µlth = 6.5 · 10−5 kg · m−1 · s−1 predicted using the model from Chung et al.
(1988).

D 20 µm l 6 µm lk 0.133 µm

v 35.9 m · s−1 u 10.77 m · s−1 uk 3.04 m · s−1

Relmax 1755 Re∗l max 157 Rekl 1

Table 11.6: Characteristic lengths, velocities and Reynolds numbers for the relevant scale to determine
the critical conditions for the DNS (3D) of a liquid nitrogen jet at 100 K in its own vapor.
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Two-dimensional turbulence
To be rigorous, one can only apply the previous discussion to three-dimensional turbulence for
which the concept of Kolmogorov’s cascade applies. A different theory must be used in two
dimensions. In such cases, the hypothesis of the conservation of the average rate of dissipation
of turbulent energy ε is not satisfied at all scales but only from the largest scales down a
cut-off scale (l′, u′). Below this cut-off scale, a new quantity is conserved, namely the average
rate of dissipation of turbulent enstrophy ξ which, similarly to the relation in Eq. (11.15), can
be apportioned to the characteristic length scale [l] and velocity [u] as done in Eq. (11.20).
Further details on the theory behind two-dimensional turbulence can be found in Kraichnan
(1967); Leith (1968); Batchelor (1969); Kraichnan (1971); Frisch and Kolmogorov (1995).

ξ ∼ [u]3

[l]3
(11.20)

When trying to apply this theory, one is faced with the major issue of determining the cut-off
scale at which the transition between energy and enstrophy occurs. In particular, for the two
dimensional jets considered in these simulations, no correlation have been extracted in the
literature, the corresponding experiments being intrinsically performed in three dimensions.
If one assumes that the transition occurs before the length scale l with velocity u, the derivation
performed in Eq. (11.18) can be adapted. Firstly, it can be shown that Eq. (11.17) expressed
with ε becomes Eq. (11.21) when expressed with ξ.

lk ∼
(
ν3
l

ξ

) 1
6

(11.21)

It then follows that:
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Finally, the condition on the viscosity can also be expressed
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(11.23)

With the same considerations used for the three-dimensional turbulence, the remarkable values
can be evaluated, they are compiled in Tab. 11.7. The new resulting maximal value for
turbulent scale Reynolds number is Re∗l max = 1985 and the corresponding minimal value for
the liquid dynamic viscosity is µlmin = 2.15 · 10−5 kg · m−1 · s−1 to be compared with the
value of µlth = 6.5 · 10−5 kg ·m−1 · s−1 predicted by Chung’s model for liquid nitrogen at that
temperature.

Final choices regarding the turbulence
As evidenced by Tabs. 11.6 and 11.7, the two-dimensional turbulence paradigm is a priori
much more permissive than its three-dimensional counterpart. Moreover, the uncertainty
regarding the choice of the cut-off scale leads to treating the results in Tab. 11.7 with caution.
It seems reasonable to assume that the actual cut-off scale lies between the typical macroscopic
scale (l, u) and the Kolmogorov scale (lk, vk) and should lead to critical values between those
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D 20 µm l 6 µm lk 0.133 µm

v 35.9 m · s−1 u 10.77 m · s−1 uk 0.24 m · s−1

Relmax 22055 Re∗l max 1985 Rekl 1

Table 11.7: Characteristic lengths, velocities and Reynolds number for the relevant scale to determine
the critical conditions for the DNS (2D) of a liquid nitrogen jet at 100 K in its own vapor.

obtained for the extreme cases in Tabs. 11.6 and 11.7. To verify this idea, an analysis has been
performed assuming the cut-off scale to be the so called Taylor micro-scale, of characteristic
length lT and velocity vT It is defined as the intermediary scale with the velocity of the largest
vortex vT = u and the viscous dissipation rate equal to ε which leads to lT = vT

√
νl/ε.

This choice of cut-off scale actually leads to the same conditions as that of the pure three-
dimensional turbulence.
Given the previous information and results, the final choice has been made to accommodate the
stricter conditions imposed by the three-dimensional turbulence approach and thus, a factor
five has been applied to the values of the dynamic viscosity predicted by Chung’s diffusion
model, which leads to a reference liquid viscosity of µl = 3.25 · 10−4 kg · m−1 · s−1 and a
Kolmogorov length scale of 0.153 µm, slightly greater than the mesh resolution ∆x = 0.133
µm. The final values for the Reynolds numbers are compiled in Tab. 11.5.

11.2.1.3 Mesh and interface resolution

For this jet configuration, apart from the Weber (and subsequently the Reynolds) number
that is varied to study its impact on the jet topology and compare it to the diagram in Fig.
11.13, the resolution of the interface is also modified to assess its impact on the quality of the
results. Two different approaches have been used to modify the resolution of the interface:
directly by modifying the mesh resolution and diminishing the number of points in the domain,
indirectly by maintaining the same mesh but reducing the thickening factor F used in the TIM
to enlarge the interface. Both processes have been applied to achieve roughly the same number
of points in the interface. As such, a one half and a one third resolutions have been considered
additionally to the reference resolution described in Tab. 11.4. The complete set of mesh and
interface resolutions used are compiled in Tab. 11.8.

Ny 675 338 224 675 675

F 1000 1000 1000 500 333

∆x 0.133 µm 0.267 µm 0.404 µm 0.133 µm 0.133 µm

points in int. ≈ 9 ≈ 5 ≈ 3 ≈ 5 ≈ 3

Table 11.8: Mesh resolutions and thickening factors used to study the impact of the interface resolution
on the simulation results for a two-dimensional nitrogen jet in its own vapor
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11.2.2 Impact of the jet velocity

The first aspect addressed with these simulations is the impact of the jet velocity on its topology
and behavior. A time evolution of the two-dimensional density fields for all Reynolds numbers
is presented in Fig. 11.15 for the reference spatial resolution. For Re = 460 (We = 412) the
jet faces a mild macroscopic deformation with no clear breakup, in accordance with the first
wind-induced regime in Fig. 11.13. For Re = 730 (We = 1030), the deformation gets stronger
and macroscopic ligaments start to form. For Re = 1040 (We = 2080), theses macroscopic
structures also form and eventually start separating and coalescing. Both results are consistent
with regimes in-between the first and second wind induced regimes in Fig. 11.13. ForRe = 730,
a small number of big droplets are generated whereas for Re = 1040, only very large filaments
are created and can be expected to quickly recombine without formation of smaller droplets.
With the case Re = 1470 (We = 4150), a great modification occurs in the jet topology. Long
macroscopic ligaments form and quickly break-up to create droplets, among which the biggest
ones also tend to experience a secondary break-up, thus giving birth to smaller droplets.
This result properly follows the behavior of a fully installed second wind-induced regime, as
predicted by Fig. 11.13.

Upon closer observation, one can notice a very subtle yet observable interface diffusion in the
density fields for the case Re = 1470 (W = 4015) in the snapshots in Fig. 11.15. This excessive
diffusion manifests itself by the creation of small dimmed whitened regions in the vapor phase.
This marginal observation is briefly addressed in Secs. 11.2.3 and 11.2.4 but it does not
impedes the advancement of the simulations and the quality of the results. Overall, the four
test cases qualitatively display the expected behavior in agreement with experimental studies.
In particular, the transition from the sinus-like macroscopic undulations to the microscopic,
droplet creating, atomization regimes that is observed in the simulations concurs adequately
with the correlations in Fig. 11.13.
The temperature and (thermodynamic) pressure fields for the same cases are also provided
in Figs. 11.16 and 11.17 respectively. The temperature experiences mild undershoots and
strong overshoots, fostered for higher initial velocities. These temperature variations however
do not jeopardize the simulations for the values that have been used. They appear to be
timely restrained to the period where the jet first faces the creation of macroscopic vertices
that pull liquid matter out the core stream. They then seem to be progressively damped as
the simulations advance. These observations are to be related with those already faced when
simulating more simple cases, for instance the one dimensional configurations presented in
Sec. 8.1.3.2. The conclusion drawn for these simple cases applies here: combined with the
high-order selective filter, the taking into account of the physical diffusive fluxes are enough
to ensure the stability of the computations, as expected for direct numerical simulations, even
on such demanding cases. The thickening of the interface tends to alleviate the gradients of
all the thermodynamic variables, temperature included.
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Re = 460, t = 0 µs Re = 730, t = 0 µs Re = 1040, t = 0 µs Re = 1470, t = 0 µs

Re = 460, t = 6 µs Re = 730, t = 6 µs Re = 1040, t = 6 µs Re = 1470, t = 6 µs

Re = 460, t = 12 µs Re = 730, t = 12 µs Re = 1040, t = 12 µs Re = 1470, t = 12 µs

Re = 460, t = 18 µs Re = 730, t = 18 µs Re = 1040, t = 18 µs Re = 1470, t = 18 µs

Re = 460, t = 24 µs Re = 730, t = 24 µs Re = 1040, t = 24 µs Re = 1470, t = 24 µs

Re = 460, t = 36 µs Re = 730, t = 36 µs Re = 1040, t = 36 µs Re = 1470, t = 36 µs

Re = 460, t = 48 µs Re = 730, t = 48 µs Re = 1040, t = 48 µs Re = 1470, t = 48 µs

20 100 200 300 400 500 600 680

Density ρ [kg.m−3]

Figure 11.15: Evolution in time of the density profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Four cases have been carried out with the reference spatial resolution and thickening
factor F = 1000 for different Reynolds numbers, from left to right: Re = 460 (412), Re = 730 (1030),
Re = 1040 (2080) and Re = 1470 (4150)
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We = 20, t = 0 µs We = 50, t = 0 µs Re = 1040, t = 0 µs Re = 1470, t = 0 µs

We = 20, t = 6 µs We = 50, t = 6 µs Re = 1040, t = 6 µs Re = 1470, t = 6 µs

We = 20, t = 12 µs We = 50, t = 12 µs Re = 1040, t = 12 µs Re = 1470, t = 12 µs

We = 20, t = 18 µs We = 50, t = 18 µs Re = 1040, t = 18 µs Re = 1470, t = 18 µs

We = 20, t = 24 µs We = 50, t = 24 µs Re = 1040, t = 24 µs Re = 1470, t = 24 µs

We = 20, t = 36 µs We = 50, t = 36 µs Re = 1040, t = 36 µs Re = 1470, t = 36 µs

We = 20, t = 48 µs We = 50, t = 48 µs Re = 1040, t = 48 µs Re = 1470, t = 48 µs

97. 1 99. 2 99. 6 100. 0 100. 4 100. 8 129. 6

Temperature T [K]

Figure 11.16: Evolution in time of the temperature profiles for two-dimensional periodic Nitrogen
liquid jets in their vapor. Four cases have been carried out with the reference spatial resolution and
thickening factor F = 1000 for different Reynolds numbers, from left to right: Re = 460 (412),
Re = 730 (1030), Re = 1040 (2080) and Re = 1470 (4150)
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Re = 460, t = 0 µs Re = 730, t = 0 µs Re = 1040, t = 0 µs Re = 1470, t = 0 µs

Re = 460, t = 6 µs Re = 730, t = 6 µs Re = 1040, t = 6 µs Re = 1470, t = 6 µs

Re = 460, t = 12 µs Re = 730, t = 12 µs Re = 1040, t = 12 µs Re = 1470, t = 12 µs

Re = 460, t = 18 µs Re = 730, t = 18 µs Re = 1040, t = 18 µs Re = 1470, t = 18 µs

Re = 460, t = 24 µs Re = 730, t = 24 µs Re = 1040, t = 24 µs Re = 1470, t = 24 µs

Re = 460, t = 36 µs Re = 730, t = 36 µs Re = 1040, t = 36 µs Re = 1470, t = 36 µs

Re = 460, t = 48 µs Re = 730, t = 48 µs Re = 1040, t = 48 µs Re = 1470, t = 48 µs

−56 50 40 30 20 10 0 10 17

Pressure P [bar]

Figure 11.17: Evolution in time of the pressure profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Four cases have been carried out with the reference spatial resolution and thickening
factor F = 1000 for different Reynolds numbers, from left to right: Re = 460 (412), Re = 730 (1030),
Re = 1040 (2080) and Re = 1470 (4150)
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11.2.3 Impact of the spatial resolution

To further test the behavior of the model, a second series of simulations has been done for
all four values of the jet velocity (i.e. Reynolds and Weber numbers) using degraded meshes,
with a lower, following the prescriptions in Tab. 11.8. The time evolution of the density fields
is provided in Figs. 11.18 and 11.19, for the three mesh resolutions and for the Reynolds
numbers Re = 1470 (We = 4150) and Re = 730 (We = 1030) respectively.

The two immediate observations are that for the case Re = 730 (We = 1030), the mesh res-
olution has little to no impact and that in the more dynamic case Re = 1470 (We = 4150),
the interface diffusion, that was merely noticeable with the reference mesh, is largely ampli-
fied by the use of a coarser mesh resolution. It goes to the point where a substantial part of
the liquid has essentially disappeared from the domain by the end of the simulation for the
coarser mesh. Even if the SG model introduces some new terms in the flow equations that
can be interpreted as diffusive, its actual expected action is to diffuse the interface when it
is submitted to mechanical thinning, but conversely, to become anti-diffusive if the interface
is mechanically stretched. From the point of view of the SG model, a diffusion as intense as
seen in Fig. 11.18 should only apply if actual thermal diffusion and/or a temperature increase
justified the interface to actually become wider. Besides, not only the interface becomes wider
but the liquid eventually vanishes while the total mass of fluid is conserved.

A closer attention is given to the temperature time evolution, an example of which is given in
Fig. 11.20 for all spatial resolutions at Re = 1470 (We = 4150). In the early instants of the
simulation and as observed previously for the finest grid, strong temperature oscillations occur
for all spatial resolutions close to the interface. A poorer resolution causes the thickness of the
region where the temperature increase occurs to be wider. Acoustic noise, a priori generated
at the interface, is also becoming apparent on the temperature field.

Temperature-density diagrams are plotted in Fig. 11.21. If for the most part, the points
remain close to the isothermal straight line at Ti = 100 K, the temperature undershoots and
overshoots, already noticed in Figs. 11.16 and 11.20, are clearly visible in the diagram and
actually occur both uniquely on the vapor side of the interface. A closer analysis has shown
that the overshoots occur in the bulk vapor phase whereas the undershoots occurs in the
binodal region near low density values. Additional observations can be made from Fig. 11.22
where the relative distribution is given in the temperature-density diagram.
Firstly, contrary to what could have hinted Fig. 11.21, most of the points tend to, not only
experience just a very limited temperature increase but even more predominantly, experience
a temperature decrease. This could actually have been expected since only the points at the
vapor limit of the interface were concerned by the temperature increase.
Secondly, the points in the liquid essentially vanish whereas an important portion of the points
migrates towards the inside of the binodal region on the vapor side, this size of said portion
increasing with a coarser mesh resolution.
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r = 1, t = 0 µs r = 1/2, t = 0 µs r = 1/3, t = 0 µs

r = 1, t = 6 µs r = 1/2, t = 6 µs r = 1/3, t = 6 µs

r = 1, t = 12 µs r = 1/2, t = 12 µs r = 1/3, t = 12 µs

r = 1, t = 18 µs r = 1/2, t = 18 µs r = 1/3, t = 18 µs

r = 1, t = 24 µs r = 1/2, t = 24 µs r = 1/3, t = 24 µs

r = 1, t = 36 µs r = 1/2, t = 36 µs r = 1/3, t = 36 µs

r = 1, t = 48 µs r = 1/2, t = 48 µs r = 1/3, t = 48 µs
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Density ρ [kg.m−3]

Figure 11.18: Evolution in time of the density profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Three cases have been carried out for Re = 1470 (We = 4150) with the reference
thickening factor F = 1000 and three different spatial resolutions (left: reference r = 1, center: coarse
r = 1/2, right: very coarse r = 1/3).
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r = 1, t = 0 µs r = 1/2, t = 0 µs r = 1/3, t = 0 µs

r = 1, t = 6 µs r = 1/2, t = 6 µs r = 1/3, t = 6 µs
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Density ρ [kg.m−3]

Figure 11.19: Evolution in time of the density profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Three cases have been carried out at Re = 730 (We = 1030) with the reference
thickening factor F = 1000 and three different spatial resolutions (left: reference r = 1, center: coarse
r = 1/2, right: very coarse r = 1/3)
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Temperature T [K]

Figure 11.20: Evolution in time of the temperature profiles for two-dimensional periodic Nitrogen
liquid jets in their vapor. Three cases have been carried out for Re = 1470 (We = 4150) with the
reference thickening factor F = 1000 and three different spatial resolutions (left: reference r = 1,
center: coarse r = 1/2, right: very coarse r = 1/3)
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Figure 11.21: Time evolution of liquid nitrogen jets thermodynamic regime in a temperature-density
diagram for different Reynolds numbers using three different spatial resolutions (left: reference r = 1,
center: coarse r = 1/2, right: very coarse r = 1/3)
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Figure 11.22: Time evolution of liquid nitrogen jets thermodynamic regime in temperature-density
diagram for Re = 1470 (We = 4150) using three different spatial resolutions (left: reference r = 1,
center: coarse r = 1/2, right: very coarse r = 1/3)
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11.2.4 Impact of the thickening coefficient

To complete the tests regarding the behavior of the model, a third series of simulations has
been performed for all four values of the jet velocity (i.e. Reynolds and Weber numbers) using
the reference mesh resolution and reduced values of thickening coefficients F, following the
prescriptions in Tab. 11.8. The time evolution of the density is provided in Fig. 11.24 for the
three thickening coefficients, for Reynolds number Re = 1470 (We = 4150).

The first observation that can be made is that, comparatively to the result with degraded a
mesh resolution shown in Fig. 11.18 for the same Reynolds number, the visual quality of the
results is essentially unchanged by the modification of the thickening factor. In particular,
the very strong interface diffusion observed for the coarser mesh r = 1/3 in Fig. 11.18 is not
present in its counterpart case with F = 333 in Fig. 11.24, despite the two approaches leading
to the same interface resolution of about three points.
This observation entices that the cause behind the loss of interface spatial resolution is im-
portant to consider when evaluating the errors that can occur during the simulation. Indeed,
when the overall mesh resolution is lowered, not only the mesh resolution is reduced, leading
to more difficulties in the discretization of the capillary terms, but the precision of the numer-
ical scheme jeopardizes altogether the handling of classic diffusion or advection : the system
becomes more prone to numerical errors. Conversely, when only the thickening factor is re-
duced on a maintained mesh resolution, all the classic terms in the Navier-Stokes equations are
handled with the same precision and only the discretization of the capillary terms is rendered
more tedious by the loss of interface resolution. As clearly showed by Figs. 11.18 and 11.24,
the latter is more less detrimental to the quality of the simulation results. The stable quality of
the results for different thickening factors can be seen in the temperature and pressure fields,
provided in Figs. 11.26 and 11.28 for Reynolds number Re = 1470 (We = 4150).

The second observation that can be made is that although the thickening factor has a limited
impact on the results visual quality, it has conversely a greater impact on the jet topology
than the overall mesh resolution had. Despite the strong interface diffusion, the results in Fig.
11.18 showcase a very visible similarity from one mesh to the other. Essentially, the results for
the lower mesh resolutions are "simply diffused" versions of the results on the reference mesh.
This similarity seems to not apply anymore for the varying thickening factor. Although the
regime of the jet is properly retrieved, as demonstrated in Fig. 11.30 where are presented the
density fields for all the Reynolds numbers using the smallest thickening factor F = 333, the
aspect of the jet, from one factor to the other, can be seen to strongly vary.
From Fig. 11.24 for Re = 1470 (We = 4150), it appears that the lower the thickening factor
is, i.e. the thinner the interface is, the smaller are the structures that are created during the
atomization. This could be explained by the fact that the sizes of said structures apportion to
the interface thickness and cannot appear spontaneously and/or cannot be sustained by the
system, thus leading to bigger droplets and thicker filaments for F = 1000. This hypothesis
would however require further analysis to be assessed.
Finally, the previous observation can be made at once thanks to Fig. 11.32 where the density
fields at Re = 1470 (We = 4150) are presented for the two strategies used to lower the
interface resolution: a mesh resolution or a thickening factor divided by a factor two to obtain
a 5-point interface resolution (results in the leftmost images) and a mesh resolution or a
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Figure 11.24: Evolution in time of the density profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Three cases have been carried out at Re = 1470 (4150) with the reference spatial
resolution and three different thickening factors (left: large F = 1000, center: medium F = 500, right:
low F = 333)
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Figure 11.26: Evolution in time of the temperature profiles for two-dimensional periodic Nitrogen
liquid jets in their vapor. Three cases have been carried out at Re = 1470 (4150) with the reference
spatial resolution and three different thickening factors (left: large F = 1000, center: medium F = 500,
right: low F = 333)



Part III - The Thickened Interface Method for the Second Gradient
theory

379

F = 1000, t = 0 µs F = 500, t = 0 µs F = 333, t = 0 µs

F = 1000, t = 6 µs F = 500, t = 6 µs F = 333, t = 6 µs
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Figure 11.28: Evolution in time of the pressure profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Three cases have been carried out at Re = 1470 (4150) with the reference spatial
resolution and three different thickening factors (left: large F = 1000, center: medium F = 500, right:
low F = 333)
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Figure 11.30: Evolution in time of the density profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor. Four cases have been carried out with the reference spatial resolution and a reduced
thickening factor F = 333, for different Reynolds numbers, from left to right: Re = 460 (We = 412),
Re = 730 (We = 1030), Re = 1040 (Re = 46080) and Re = 1470 (We = 4150)
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thickening factor divided by a factor three to obtain a 3-point interface resolution (results in
the rightmost images).

Conclusions on the two-dimensional liquid jets

The simulations performed using different Reynolds numbers have led to results which present
a satisfactory qualitative agreement with the experimental observations from Reitz (1978) com-
piled in Fig. 11.13. The expected undulating to atomization regimes are properly retrieved,
the interface separation and recombination is correctly handled and lead to the creation and
coalescence of multiple droplets for the concerned regimes.

A convergence analysis, led on two fronts, has shown that the results are very sensitive to
the interface resolution. When the interface resolution is reduced due to an overall reduc-
tion of the mesh resolution, an excessive diffusion is observed for the lower resolutions at
the higher Reynolds numbers while the liquid portion of the fluid completely vanishes. Us-
ing thermodynamic diagrams, these two peculiar and presumably erroneous phenomena have
been characterized in more details although they remain not fully understood at the time.
On the opposite, when the reduced interface resolution is due to a reduced thickening factor
used on the same native mesh resolution, the diffusion issue is far less noticeable and from
a purely visual criterion, the thickening factor has no definitive impact on the quality of the
results. However, where the density fields for different mesh resolutions (with a fixed thicken-
ing coefficient) were very similar notwithstanding the diffusion, the same fields showcase more
noticeable differences in topology when the thickening factor is changed, all being at a fixed
Reynolds number.

Following the theory behind the SG model, points in the binodal region should only exist
inside interfaces or subsist for a very short time during out of equilibrium phenomena such as
interface stretching or evaporation.
This principle is clearly not respected in these simulations as the majority of the points in the
computational domain resides in the binodal region by the end of the simulations. This can
be the sign of a limitation of the SG model, but more likely, of an unwanted effect of the TIM.
Indeed, the thickening of the interface is also accompanied by an increase of its characteristic
thermal and mechanical times of relaxation.
The apparition of points in the binodal region is, to our belief, not incorrect by nature as the
case simulated is strongly out of equilibrium. We however suspect the increased relaxation
times to allow these points to persist in time where they would normally quickly return to bulk
values in more conventional conditions, i.e. with no thickening applied. Unfortunately, testing
this hypothesis would require to perform the same simulations without interface thickening,
which would not be computationally affordable.

Moreover, it is well known that these two-dimensional simulations can be affected by com-
putational difficulties that do not exist in three dimensions. This is particularly true when
surface tension in involved, of which action, strongly related to the interface curvature, has
a strongly different effect in three dimensions for such configurations. A three-dimensional
simulation could help to provide more insight on the origins of these problematic behaviors if
they are still visible at that point. The stable behavior of the jets when the mesh resolution
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Figure 11.32: Evolution in time of the density profiles for two-dimensional periodic Nitrogen liquid
jets in their vapor at Re = 1470 (We = 4150). Two thickening factors and two mesh resolutions are
used to get the same interface resolutions of five points (F = 500 / r = 1/2, left images) and three
points (F = 333 / r = 1/3, right images)
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is maintained and the thickening factor is reduced is however as strong argument for both
the ability of the TIM to allow access to DNS scale simulations and doing so consistently
but moreover, on the ability of the Second Gradient theory to address numerically complex
capillary configurations when the spatial resolution is sufficient.





Conclusion

General conclusions

The main objective of this thesis was to assess the ability of the Second Gradient theory to
allow two-phase flow simulations with real-gas fluids. The main questioning revolved around
the pertinence of this coupled thermodynamical-mechanical model, dedicated to the study of
capillary phenomena, in the context of non-reactive single-species Direct Numerical Simulation
in an HPC unstructured solver. To achieve this goal and answer the ensuing questions, several
actions have been undertaken.

In a first time, the thermodynamics of real-gas flows has been thoroughly studied to better
model the non-linear molecular interactions that occur at high pressure and/or high temper-
ature, conditions reminiscent of cryogenic rocket engines. Using cubic equations of state, in
particular the Soave-Redlich-Kwong equation, that have been proven to provide precise results
at a reasonable complexity level and computational cost, the full thermodynamics for a single
species has been derived.

In a second time, the theoretical foundations behind the Second Gradient theory has been
fleshed out and consistently justified. An emphasis has been put on linking the multiple
results that have contributed to shape the current formulation of the model. The intrinsic
connection between the thermodynamic description of van der Waals, the mechanical ap-
proach of Korteweg and the unstationary modeling of Cahn & Hilliard has been highlighted.
Additionally, the same investigation and bibliographical work has been done for several more
classic two-phase flow modeling methods in order to provide grounds for theoretical compar-
ison with the Second Gradient model and a better insight into the mechanics of these methods.

By combining the real gas modeling from the cubic equation of state and the thermodynamical-
mechanical description of capillary phenomena offered by the Second Gradient model, the full
set of Navier-Stokes equations have been obtained. The complete model and equations have
been successfully implemented into the solver AVBP. New high order derivative terms have
appeared in the different fluxes and have proven to be challenging to handle, from theoret-
ical and numerical points of view. Classic theoretical tools for numerical analysis failed to
provide a complete characterization of the new set of equations which impended the access
to precious practical information to safely conduct the simulations such as the formulation
of the boundary conditions and the time step conditions for explicit advection schemes. In
parallel, the consistent discretization of these terms has required smart reinvestment of the
schemes in AVBP as the solver was not readily equipped to handle such high order derivatives.
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The implementation of the model has been validated thermodynamically on static configu-
rations, qualitatively on simplified mono-dimensional cases and quantitatively on canonical
two-dimensional configurations. A systematic numerical investigation has permitted to unveil
key parameters needed to ensure the stability of the simulations, such as the time step condi-
tion or the minimal spatial resolution needed for the interfaces. The model has been shown to
be very sensitive to numerical noise which was often the cause of temperature under/overshoots
and simulation crashes.
Simulations solving solely the Euler equations are notoriously tedious to stabilize and often
rely on the intrinsic dissipation embedded in the numerical schemes that are used to provide
the required stabilization. To ensure the precision of the calculations, more so given the
particularly stiff terms related to the capillary stresses, and to compel with the available
schemes in AVBP, a Galerkin Runge-Kutta discretization has been used. This high order
scheme is totally non-dissipative and centered, a combination that renders it very pron to
oscillatory numerical errors, which have been observed in our simulations. Thus, we firmly
believe that these errors, particularly visible in the temperature field, are more so a matter
of numerical implementation that thermodynamic behavior of the model. This intuition has
been reinforced by the substantial gain in stability that has been granted by the addition of
dissipation, in the form of viscosity or thermal diffusion, that has come with the switch to
Navier-Stokes equations.
Classic point-to-point errors have been dealt with using the high order filter of AVBP. The
artificial viscosity, already regularly used in AVBP, has been occasionally required but limited
to the most demanding cases with violent interface dynamics or when very high values of
thickening coefficient have been used. For these latter cases, we suspect that the thickening
might adversely impact the stiffness of the interface, due to reduced gradients, and in the same
time, reduce its propensity to resist physical or numerical noise which, in turn, could diminish
its stability. Nonetheless, the taking into account of all these possibilities and limitations has
permitted to successfully simulate two-dimensional oscillating planar interfaces and deformed
droplets solving the full set of compressible Navier-Stokes equations, which had never been
done using this model so far, to the best of our knowledge. The comparison with the available
theory, when possible, has led to remarkable results.

As expected beforehand, the SG model in its native formulation predicted interface widths of
multiple orders of magnitude lower than the typical mesh sizes used for practical applications,
even in DNS configurations. Part of the motivation behind this work was also to provide a
mean to address this hurdle that rendered the SG model unusable even for academic studies.
To that effect, the Thickened Interface Method (TIM) has been derived to thicken an interface
in a thermodynamically consistent manner while maintaining its surface tension and therefore
its macroscopic behavior.
The TIM has been submitted to the same systematic testing applied to the native SG model
and invariably responded with the expected behavior on simplified cases. Furthermore, quan-
titative comparisons have allowed to confirm that the method indeed preserves the surface
tension and the macroscopic behavior of the interface. Finally, the method has been used to
simulate more practical configurations, two dimensional periodic jets and three-dimensional
colliding droplets. The results for different Weber number showed a good agreement with
experimental results.
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The previously mentioned results have laid ground, that we trust to be solid, for further studies
involving the Second Gradient theory and have established one of the first path towards the
realization of fully compressible, non-isothermal, turbulent simulations with real gas in sub-
critical conditions accounting for capillary phenomena. With these encouraging results have
also arisen several issues that confirm the substantial amount of work that remains ahead for
this model to become a conceivable industrial tool for real gas two-phase flow simulations.

Regarding the native SG model, for some configurations, in particular the oscillating planar
interfaces, the switch from an isothermal to a non-isothermal setting caused a strong modi-
fication of the interface behavior. More specifically for the planar interfaces, the oscillations
that were sustained in the isothermal cases, were unequivocally damped in the non-isothermal
cases, all other things being equal.

The simulations using the TIM also led to some questioning.
When simulating two-dimensional nitrogen liquid jets, a strong diffusion of the interface has
been observed with an abundant number of points in the computational domain falling into
the binodal region. Although amplified by a poorer spatial resolution, this phenomenon is still
prominent for well resolved interfaces, hinting a more profound issue with the TIM.

Perspectives

Overall, the SG model and the TIM have showcased an undeniable ability to properly describe
the thermodynamic and mechanical behavior of an interface and the ability to consistently
thicken said interface. Together, they have permitted to conduct multiple qualitative and
quantitative simulations with very promising success for DNS. However, there is still plenty of
room for improvement in this regard.

The brief theoretical characterization of the native SG equations initiated in Chap. 8 could be
completed to gain better understanding on the model behavior and assess the well-posedness
of the associated mathematical problem. This will prove useful to devise adapted numerical
methods as well as properly derived boundary conditions. In particular, the sometimes un-
expected behavior showcased by the model in some simulations leads us to believe that the
unconventional high order derivative terms that appear in the expression of the new fluxes
should be discretized with specifically designed schemes to ensure a full discrete consistency.
We believe these questions to be pivotal for future work with this model.

The minimal number of points needed in the interface to properly retrieve the macroscopic
fluid behavior is theoretically four but has been observed, in our simulations, to rather be
positioned between five or six in practice. Despite being very encouraging, this number is still
vastly superior to the two to three points used in more classic methods like the Level- Set or
the Volume-of-Fluid. Efforts should be made to further reduce this number if the SG model
pretends to become competitive in the future. The most likely explanation for this required
resolution is that the steep density and pressure profiles complicate the evaluation of their
derivatives even when using high order schemes.
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We also noticed that, even for single-species configurations, the TIM still needs further de-
velopment. The excessive interface diffusion observed for the two-dimensional jets could be
permitted by a unwanted modification of the characteristic time needed by the interface to
return to its equilibrium profile, which could have been caused by the TIM. Besides, the im-
pact of the TIM on the diffusion coefficients (for that matter, the impact of the native SG
model also), i.e. the viscosity and the thermal conduction coefficient, has been discarded in
this study but is an important issue that need to be addressed.

Finally, the investigations of both the SG model and the TIM should also be broaden to
multi-species configurations so as to simulate reactive cases in the future. The work done in
Gaillard (2015) showed that the extension to such cases is possible but not trivial and requires
additional modeling efforts. The formulation of the TIM should allow a theoretical adaptation
to multi-species flows easier than with the thickening methods previously developed in Jamet
(1998) that rely on an a priori shape for the chemical potential profile in the interface. In
particular, its application can be made independent to the fluid composition. However the
consistency of this extension does not seem to be ensured straightforwardly.
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Usefull mathematical results

A.1 Results for linear and tensorial algebra

A.1.1 Definitions

Let B (e i)i=1,3 a direct orthonormal basis of R3. Here, R3 and its dual space will not be
differentiated. By definition, a tensor T of order n > 1 is a linear application which, to any
vector x of R3, associates a tensor of order n− 1 noted T (x ) or T · x :

T −→ T (x ) = T · x (A.1)

By convention, a tensor of order 0 is a scalar. A tensor of order 1 is a vector and a tensor of
order 2 is a matrix as they are classically defined. The order of the tensor gives the number
of indexes required to describe its components.

A.1.2 Operations

A.1.2.1 Addition

Tensor can be added if they are of the same order. Let A and B two tensors of order n, the
addition of A and B is a tensor C noted A + B of order n such as:

C = A + B with Ci1i2···ik···in = Ai1i2···ik···in + Bi1i2···ik···in (A.2)

A.1.2.2 Outer product ⊗

Let A and B two tensors respectively of order n > 0 and m > 0, the outer product of A and
B is a tensor C of order n+m noted A⊗B such as:

C = A⊗B with Ci1i2···inj1j2···jm = Ai1i2···inBj1j2···jm (A.3)
For instance, the outer product of two vectors a , b will be a matrix C such as

Cij = (a ⊗ b)ij = aibj

The outer product of a matrix A and a vector b will be a tensor of order 3 C such as

Cijk = (A⊗ b)ijk = Aijbk
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The outer product of a vector a and a matrix B will be a tensor of order 3 C such as

Cijk = (a ⊗B)ijk = aiBjk

The outer product of two matrices A and B will be a tensor of order 4 C such as

Cijkl = (A⊗B)ijkl = AijBkl

A.1.2.3 Inner products ·

Let A and B two tensors respectively of order n > 0 and m > 0, the inner product of A and
B is a tensor C of order n+m− 2 noted A ·B such as:

C = A ·B with Ci1i2···in−1j2···jm =
∑
k

Ai1i2···in−1kBkj2···jm (A.4)

For instance, the inner product of two vectors a , b will be a scalar c such as:

c = a · b = aibi

It is the usual scalar product between two vectors.
The inner product of a matrix A and a vector b will be a vector c such as:

ci = (A · b)i = Aijbj

It is the classic matrix-vector multiplication.
The inner product of two matrices A and B will be a matrix C such as:

Cij = (A ·B)ij = AikBkj

It is the classic inner product for two matrices.
Let A and B two tensors respectively of order n > 1 and m > 1, the double inner product of
A and B is a tensor C of order n+m− 4 noted A : B such as:

C = A : B with Ci1i2···in−2j3···jm =
∑
k

∑
l

Ai1i2···in−2klBlkj3···jm (A.5)

In a more general way, it is possible to define a inner product of certain order r between two
tensor A and B of order at least r, the result will be a tensor of order n + m − 2r (where n
and m are the order of A and B) noted A (·)rB such as:

C = A (·)rB with Ci1i2···in−rjr+1···jm =
∑
kr

· · ·
∑
k1

Ai1i2···in−kkrkr1 ···k1Bk1···kr1krj3···jm(A.6)

For instance the, double inner product between two matrices A and B is a scalar c such as:

c = A : B = AijBji

As a matter of fact, A : B = tr ((A ·B)) in that case. The triple inner product between a
third order tensor A and a fourth order tensor B is a vector c such as:

ci =

(
A
...B
)
i

=
∑
l

∑
k

∑
j

AlkjBjkli
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A.1.2.4 Cross product ×

Let a and b be two vectors of R3, the cross product (or vector product) of a and b is a vector
c such as:

c = a × b = (a2b3 − a3b2) e1 + (a3b1 − a1b3) e2 + (a1b2 − a2b1) e3 (A.7)

A.2 Result for differential calculus

A.2.1 Differential operators

In the following, the formal "nabla" differential operator will be noted using a bold font ∇
and is not to be confused with the "nabla vector" noted ~∇ and defined by:

~∇ =
∂

∂x1
e1 +

∂

∂x2
e2 +

∂

∂x3
e3 =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)T

(A.8)

A.2.1.1 Gradient

The gradient of a tensor T of order n is a tensor of order n+1 noted∇T of which coordinates
are the covariant derivatives of the coordinates of the tensor T. Practically, in the basis
B (e i)i=1,3 it is given by:

(∇T)i1·inj =
∂Ti1·in
∂xj

(A.9)

Using the vector ~∇, the gradient can be defined as ∇T = T⊗ ~∇.
For instance the gradient of a scalar a is a vector ∇a such as (∇a)i =

∂a

∂xi
.

The gradient of a vector u is a matrix ∇u such as (∇u)ij =
∂ui
∂xj

. This is the jacobian matrix

of the associated vectorial application.

The gradient of a matrix M will be a third order tensor such as (∇M)ijk =
∂Mij

∂xk
, and so

forth...

A.2.1.2 Divergence

The divergence of a tensor T of order n > 0 is a tensor of order n − 1 noted ∇ · T of
which coordinates are the covariant derivatives of the coordinates of T relatively to its last
contravariant index. Practically, in the basis B (e i)i=1,3 it is given by:

(∇ ·T)i1···in−1
=
∑
k

∂Ti1···in−1k

∂xk
(A.10)

Using the vector ~∇, the divergence can be defined as ∇ ·T = T · ~∇.
The divergence of a vector u is a scalar given by ∇ · u =

∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3
. One can notice

that ∇ · u = tr (∇u)

The divergence of a matrix M is a vector given by (∇ ·M)i =
∂Mij

∂xj



392 Appendix A - Result for differential calculus

A.2.1.3 Rotational

The rotational of a vector u is a vector noted ∇× u of which coordinates are given by:

(∇× u)1 =
∂u3

∂x2
− ∂u2

∂x3
(A.11)

(∇× u)2 =
∂u1

∂x3
− ∂u3

∂x1
(A.12)

(∇× u)3 =
∂u2

∂x1
− ∂u1

∂x2
(A.13)

Using the vector ~∇, the divergence can be defined as ∇× u = ~∇× u .

A.2.1.4 Laplacian

The laplacian of a tensor T is a tensor noted ∆T of the same order given by:

∆T =∇ · (∇T) (A.14)

The laplacian is a second order differential operator

A.2.2 Transport theorems

A.2.2.1 Transport theorem in 1D (Leibniz integral rule)

Let f be a function depending on both time and space, defined over the domain R+× I where
I is an interval of R. One wants to evaluate the time variations of the integral of f (t, x) over
the segment s (t) = [r (t) , l (t)]. By definition:

d

dt

r(t)∫
l(t)

f (t, x) dx = lim
∆t→0

1

∆t

 r(t+∆t)∫
l(t+∆t)

f (t+ ∆t, x) dx−
r(t)∫
l(t)

f (t, x) dx

 (A.15)

Under the assumption that function f is regular enough from an analytical point of view (to
use the Taylor-Lagrange inequality and to use the limit under the integral sign), one can derive
the mono-dimensional transport theorem, also known as the Leibniz integral rule, that states:

d

dt

r(t)∫
l(t)

f (t, x) dx =

r(t)∫
l(t)

∂f

∂t
(t, x) dx+

db

dt
(t) f (t, b (t))− da

dt
(t) f (t, a (t)) (A.16)

A.2.2.2 Transport theorem in higher dimensions

The Leibniz integral rule can be extended to two or three dimensions, although its proof
becomes technical and will not be given here. This rule is often reformulated when used in
three dimensions to study fluid dynamics and is referred to as the Reynolds transport theorem.
Let f (t, x ) be a scalar field depending on both time and space, defined over the V and let
VA (t) be an arbitrary region of V. This region, supposed to have a boundary surface AA (t),
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may be moving/deforming with time, wA (t) and nA (t) being respectively the velocity of and
the outer the normal to the surface AA (t). The transport theorem is:

d

dt

∫
VA(t)

f (t, x ) dV =

∫
VA(t)

∂f

∂t
(t, x ) dV +

∫
AA(t)

f (t, x )wA (t) · nA (t) dA (A.17)

Using Green’s theorem in Eq. (A.72a) it becomes:

d

dt

∫
VA(t)

f (t, x ) dV =

∫
VA(t)

[
∂f

∂t
(t, x ) +∇ · (fwA)

]
dV (A.18)

When applied to a fixed region VA (wA (t) = 0), it becomes:

d

dt

∫
VA

f (t, x ) dV =

∫
VA

∂f

∂t
(t, x ) dV (A.19)

When applied to a material region of the fluid VM (t, x ) of which boundary surface velocity
matches the velocity of the fluid v, it becomes

d

dt

∫
VM (t)

f (t, x ) dV =

∫
VM (t)

∂f

∂t
(t, x ) dV +

∫
AM (t)

f (t, x )v (t) · n (t) dA (A.20)

d

dt

∫
VM (t)

f (t, x ) dV =

∫
VM (t)

[
∂f

∂t
(t, x ) +∇ · (fv)

]
dV (A.21)

For a material region VM (t, x ) and an arbitrary region VA (t, x ) that coincide at instant t, it
becomes:

d

dt

∫
VM (t)

f (t, x ) dV =
d

dt

∫
VA(t)

f (t, x ) dV +

∫
AA(t)

f (t, x ) (v−wA) (t) · n (t) dA (A.22)

A.2.3 Differential relationships

A.2.3.1 Partial derivatives

Let three functions x, y and z (for instance P, T and ρ) such as:
x = x (y, z), y = y (x, z) and z = z (x, y)

One has: dx =

(
∂x

∂y

)
z

dy +

(
∂x

∂z

)
y

dz and dy =

(
∂y

∂x

)
z

dx+

(
∂y

∂z

)
x

dz

Thus: dx =

(
∂x

∂y

)
z

(
∂y

∂x

)
z

dx+

(
∂x

∂y

)
z

(
∂y

∂z

)
x

dz +

(
∂x

∂z

)
y

dz

dx

(
1−

(
∂x

∂y

)
z

(
∂y

∂x

)
z

)
= dz

((
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

)
(A.23)

what is verified for whatever independent variations dx and dz .
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For dx 6= 0 and dz = 0: 1−
(
∂x

∂y

)
z

(
∂y

∂x

)
z

= 0

(
∂x

∂y

)
z

(
∂y

∂x

)
z

= 1 (A.24)

For dx = 0 and dz 6= 0 :
(
∂x

∂y

)
z

(
∂y

∂z

)
x

+

(
∂x

∂z

)
y

= 0 ⇒
(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −
(
∂x

∂z

)
y

Thus:
(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (A.25)

Besides, for a function as A = A (x, y),
then A = A(x (y, z) , y (x, z)) = A (x, z) = A (y, z) and:

(
∂A

∂x

)
y

=

(
∂A

∂x

)
z

+

(
∂A

∂z

)
x

(
∂z

∂x

)
y

(A.26)

dA =

(
∂A

∂x

)
y

dx+

(
∂A

∂y

)
x

dy =

(
∂A

∂x

)
z

dx+

(
∂A

∂z

)
x

dz (A.27)

Given that dz =

(
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy it gives:

dA =

(
∂A

∂x

)
z

dx+

(
∂A

∂z

)
y

((
∂z

∂x

)
y

dx+

(
∂z

∂y

)
x

dy

)
(A.28)

=

((
∂A

∂x

)
z

+

(
∂A

∂z

)
y

(
∂z

∂x

)
y

)
dx+

(
∂A

∂z

)
y

(
∂z

∂y

)
x

dy (A.29)

Thus:
(
∂A

∂x

)
y

=

(
∂A

∂x

)
z

+

(
∂A

∂z

)
x

(
∂z

∂x

)
y

(A.30)
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A.3 Additional results

A.3.1 Minimization of parametric integrals

A.3.1.1 Single independent variable, single dependent variable

The objective is to find a function f of the variable x, supposed two times differentiable, for
which the integral Eq. (A.31) reach a stationary value, ideally an extremum:

J (f) =

x2∫
x1

I
(
x, f, f ′

)
dx (A.31)

Here, the limits x1 and x2 are fixed as well as the values taken by f at those points. The
notation f ′ formally stands for the variable df /dx and I is formally a function of the variables
x, a, b supposed independent from its point of view. For a function g satisfying the stated
hypothesis for f , one can define:

Ig : x 7 −→ I

(
x, g (x) ,

dg

dx
(x)

)
= I

(
x, g, g′

)
(A.32)

With these notations, x is called a dependent variable because in Ig, from the point of view of
I, its value does not depend on any other variable. In return, g (or f) is called a dependent
variable because in Ig, from the point of view of I, the value of this variable depends of the
value of an other variable (here x). In other words, changing the function f will not change the
values of the independent variable x whereas changing the values of x will change the values
of the dependent variable f = f (x). The differential of I is written:

dI =
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂z
dz (A.33)

Therefore the derivative of If takes the form:

dIf x =
∂I

∂x
+
∂I

∂y

df

dx
+
∂I

∂z

d2f

dx2 =
∂I

∂x
+ f ′

∂I

∂y
+ fxx

∂I

∂z
(A.34)

Let F an admissible function for the calculation of Eq. (A.31), meaning that F is two times
differentiable and that F (x1) = f (x1) and F (x2) = f (x2). For any f -dependent variable h,
we note δFh the variation between the values of h when calculating using the path given by
F and the path given by f . This gives in particular:

δF f (x) = F (x)− f (x) (A.35)
δF If (x) = I (x, F (x) , Fx (x))− I

(
x, f (x) , f ′ (x)

)
(A.36)

δFJ = J (F )− J (f) =

x2∫
x1

(
I (x, F (x) , Fx (x))− I

(
x, f (x) , f ′ (x)

))
dx

=

x2∫
x1

δF If (x) dx

(A.37)
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From this definition of δ we have δx = 0 and when applied to f ′ it lends:

δF f
′ = F ′ − f ′ = dF

dx
− df

dx
=
d (F − f)

d
=

d

dx
(δF f) (A.38)

With the extra assumption that F and f differ with a small amplitude, one can also write a
1st Taylor expansion of If to lend:

δF If (x) = I
(
x, F (x) , F ′ (x)

)
− I

(
x, f (x) , f ′ (x)

)
(A.39)

≈ (F (x)− f (x))
∂I

∂y
+
(
F ′ (x)− f ′ (x)

) ∂I
∂z

(A.40)

= δF f (x)
∂I

∂y
+ δF f

′ (x)
∂I

∂z
(A.41)

A necessary condition for J (f) to be a stationary value is that for any admissible function F
infinitely close to f , the variation δFJ should tend to zero, i.e.:

x2∫
x1

δF If (x) dx = 0 (A.42)

The relations in Eqs. (A.38) and (A.41) can then be used to write:

x2∫
x1

(
δF
∂I

∂y
+

d

dx
(δF f)

∂I

∂z

)
dx = 0 (A.43)

What can be simplified using an integration by parts:

x2∫
x1

(
δF f

∂I

∂y
+

d

dx
(δF f)

∂I

∂z

)
dx = 0 (A.44a)

x2∫
x1

δF f
∂I

∂y
dx+

��
����

[
δF f

∂I

∂z

]x2
x1

−
x2∫
x1

δF f
d

dx

(
∂I

∂z

)
dx = 0 (A.44b)

x2∫
x1

δF f

[
∂I

∂y
− d

dx

(
∂I

∂z

)]
dx = 0 (A.44c)

The bracketed quantity is equal to zero thanks to the admissibility of F which gives δF f (x1) =
δF f (x2) = 0. Given this equality or any admissible function F infinitely close to f , it leads
to the nullity of the integrand, lending:

∂I

∂y
− d

dx

(
∂I

∂z

)
= 0 or

∂I

∂f
− d

dx

(
∂I

∂f ′

)
= 0 (A.45)
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Multiplying Eq. (A.45) by f ′ and using Eq. (A.34), the previous result can be written in a
more classic form:

df

dx

[
∂I

∂y
− d

dx

(
∂I

∂z

)]
= 0 (A.46a)

yx
∂I

∂y
− df

dx

d

dx

(
∂I

∂z

)
= 0 (A.46b)[

dIf
dx
− ∂I

∂x
− fxx

∂I

∂z

]
−
[
d

dx

(
f ′
∂I

∂z

)
− d2f

dx2

∂I

∂z

]
= 0 (A.46c)

dIf
dx
− d

dx

(
f ′
∂I

∂z

)
− ∂I

∂x
−
�

�
��

fxx
∂I

∂z
+
�

�
��

fxx
∂I

∂z
(A.46d)

This form is know as the Euler equation associated with the variation minimization:

∂I

∂x
− d

dx

(
If − f ′

∂I

∂z

)
or

∂I

∂x
− d

dx

(
I − f ′ ∂I

∂f ′

)
(A.47)

Which, in the particular (but very common) case where I does not explicitly depends on x,
further simplifies in:

If − f ′
∂I

∂z
= cste or I − f ′ ∂I

∂f ′
= cste (A.48)

A.3.1.2 Single independent variable, multiple dependent variables

With the same notations, let us consider now a the case where the integral J depend on multiple
dependent variables (f1, · · · , fn) t but still on a single dependent variable x (for instance the
time t as a dependent variable and the coordinates and velocities x (t) , ẋ (t) , y (t) , ẏ (t) , ... as
dependent variables):

J (f1, · · · , fn) =

x2∫
x1

I
(
x, f1, f

′
1, · · · , fn, f ′n

)
dx (A.49)

The minimization of the variations can still be written:
x2∫
x1

δ{F}I{f} (x) dx =

x2∫
x1

δI (x) dx = 0 (A.50)

Where {f} = (f1, · · · , fn) and {F} = (F1, · · · , Fn) are sets of functions such as ∀i ∈ [[1, n]], Fi
is admissible in regard to fi. For the sake of clarity, we now omit the indexes when talking
about the variations but they remain implicitly present. Likewise, for the differentiation we
omit the usage of separate names for the variables of I (that are all independent from the
point of view of I) and use directly the notation from the variables of I{f}. The independence
of the variables (and the dependency of the variables of I{f}) also remain implicit for the
differentiation. This time the variation of I (implicitly I{f}) is:

δI =

(
∂I

∂f1

)
δ

f1 +

(
∂I

∂f ′1

)
δ

f ′1 + · · ·
(
∂I

∂fn

)
δ

fn +

(
∂I

∂f ′n

)
δ

f ′n (A.51)
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When calculating the integral Eq. (A.50) with the formula Eq. (A.51), the same integration
by parts as in Eq. (A.44) can be performed to give ∀i:

x2∫
x1

(
δfi

∂I

∂fi
+

d

dx
(δfi)

∂I

∂f ′i

)
dx =

x2∫
x1

δfi

[
∂I

∂fi
− d

dx

(
∂I

∂f ′i

)]
dx (A.52)

In turn leading to the overall relation:

x2∫
x1

[
∂I

∂f1
− d

dx

(
∂I

∂f ′1

)]
δf1 dx+ · · ·+

x2∫
x1

[
∂I

∂fn
− d

dx

(
∂I

∂f ′n

)]
δfn dx = 0 (A.53)

Given the nullity of the integral for any set of admissible functions {F} = (F1, · · · , Fn) causing
the variations (δf1, · · · , δfn), it leads to the nullity of every single "independent" integral and
the Euler condition becomes:

∀i ∈ [[1, n]],
∂I

∂fi
− d

dx

(
∂I

∂f ′i

)
= 0 (A.54)

A.3.1.3 Multiple independent variables

Single dependent variable
The case of multiple independent variables is worth mentioning for it appears in multi-
dimensional stationary problem. Given the independent variables (x1, · · · , xn) and the the
dependent variable f , with the same notations it comes:

∀i ∈ [[1, n]], fxi =

(
∂f

∂xi

)
xj 6=i

(A.55)

The integral to minimize over V =
[
xd1, x

u
1

]
× · · · ×

[
xdn, x

u
n

]
is written:

J (f) =

∫
V

I (x, f, fx1 , · · · , fxn) dx (A.56)

And the corresponding Euler equation becomes:

∂I

∂f
− ∂

∂x1

(
∂I

∂fx1

)
· · · − ∂

∂xn

(
∂I

∂fxn

)
= 0 (A.57)

Multiple dependent variables
In the case of multiple independent variables (x1, · · · , xn) and multiple dependent variables
(f1, · · · , fm) t, using the notations it comes:

∀i ∈ [[1, n]], ∀j ∈ [[1,m]], fj,xi =

(
∂fj
∂xi

)
xk 6=i

(A.58)
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The integral is written:

J (f) =

∫
V

I (x, f1, f1,x1 , · · · , f1,xm , ·, fn, fn,x1 , · · · , fn,xm) dx (A.59)

And the Euler condition becomes:

∀j ∈ [[1,m]],
∂I

∂fj
− ∂

∂x1

(
∂I

∂fj,x1

)
· · · − ∂

∂xn

(
∂I

∂fj,xn

)
= 0 (A.60)

A.3.2 Cardan’s method for 3rd order equations

He we detail the method to solve a 3rd order complex polynomial equation following the
method established by G. Cardano (a.k.a. Cardan).
The starting equation is Eq. (A.61) where a, b, c, d are complex numbers with a 6= 0

ax3 + bx2 + cx+ d = 0 (A.61)

The equation is modified into Eq. (A.62) with the introduction of the new unknown z and
the new coefficients p and q from Eq. (A.63a).

z3 + pz + q (A.62)

z = x+
z

3a
, p =

c

y
− b2

3a2
, q =

2b3

27a3
− bc

3a2
+
d

y
(A.63a)

In the following j = e
2iπ
3 = −1

2
+ i

√
3

2

If p = 0 then the solutions are given by:
x1 = 3

√
−q − z

3a
x2 = j. 3

√
−q − z

3a
x3 = j2. 3

√
−q − z

3a
(A.64)

Otherwise the discriminant of the equation is given by: ∆ = q2 +
4p3

27

If ∆ = 0

x1 =
3q

p
− z

3a
, x2 = −3q

2p
− z

3a
, x3 = x2 = −3q

2p
− z

3a
(A.65)

If ∆ > 0, one defines u =
3

√
−q +

√
∆

2
and v =

3

√
−q −

√
∆

2
and the solutions are given by:

x1 = u+ v − z

3a
, x2 = j.u+ j2v − z

3a
, x3 = j2.u+ jv − z

3a
(A.66)

If ∆ < 0, one defines u =
3

√
−q + i

√
−∆

2
and v =

3

√
−q − i

√
−∆

2
and the solutions are

given by:
x1 = u+ v − z

3a
, x2 = j.u+ j2.v − z

3a
, x3 = j2.u+ j.v − z

3a
(A.67)
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A.4 Usefull relationships

The following writing conventions are used:
• lowercase italic light letters for scalar fields (a, b, etc...)
• lowercase italic bold letters for vectorial fields (u , v , etc...)
• M is a matrix (second order tensor) field and T is tensorial field of order > 1

A.4.1 Linear/Tensorial algebra

(u ⊗ v) ·w = (v ·w)u (A.68a)
(u ⊗ v) : T = u · (v ·T) (A.68b)
T : (u ⊗ v) = (T · u) v (A.68c)
u · (v ×w) = v · (w × u) = w · (u × v) (A.68d)
(u × v) · (w × t) = (u ·w) (v · t)− (u · t) (v ·w) (A.68e)
u × (v ×w) = (u ·w) v − (u · v)w (A.68f)

A.4.2 Differential operators

∇ (ab) = a∇b+ b∇a (A.69a)
∇ (aT) = a∇T + T⊗∇a (A.69b)
∇ (u · v) = u ·∇v + v ·∇u (A.69c)
∇ (∇ · u) =∇ · (tr ((∇u))) (A.69d)

(∇u) · u =∇
(
u2/2

)
+ (∇× u)× u (A.69e)

∇ ·T = tr (∇T) (A.69f)
∇ · (∇× u) = 0 (A.69g)
∇ · (aI) =∇a (A.69h)
∇ · (aT) = a∇ ·T + T ·∇a (A.69i)
∇ · (T⊗ u) = (∇ · u)T +∇T · u (A.69j)
∇ · (u × v) = v ·∇× u − u ·∇× v (A.69k)

∇ · (M · u) = M :∇u +
(
∇ ·

(
MT

))
· u (A.69l)

∇× (∇a) = 0 (A.69m)
∇× (au) = a∇× u +∇a× u (A.69n)
∇× (u × v) = (∇ · v)u − (∇ · u) v + (∇u) · v − (∇v) · u (A.69o)
∆T =∇ · (∇T) (A.69p)
∆u =∇ (∇ · u)−∇× (∇× u) (A.69q)
∆ (ab) = a∆b+ b∆a+ 2∇a ·∇b (A.69r)
∆ (au) = a∆u + (∆a)u + 2∇u ·∇a (A.69s)
∆ (∇a) =∇ (∆a) (A.69t)
∆ (∇ · u) =∇ · (∆u) (A.69u)
∆ (∇× u) =∇× (∆u) (A.69v)
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A.4.3 Differential calculus

A.4.3.1 Partial derivatives(
∂x

∂y

)
z

(
∂y

∂x

)
z

=

(
∂x

∂z

)
y

(
∂z

∂x

)
y

=

(
∂y

∂z

)
x

(
∂z

∂y

)
x

= 1 (A.70a)(
∂x

∂y

)
z

(
∂y

∂z

)
x

(
∂z

∂x

)
y

= −1 (A.70b)(
∂A

∂x

)
y

=

(
∂A

∂x

)
z

+

(
∂A

∂z

)
x

(
∂z

∂x

)
y

(A.70c)

A.4.3.2 Differential theorems

Stokes theorem 1 2 and affiliated

∫
Ω

dω =

∫
∂Ω

ω (Original Stokes theorem) (A.71a)

∫
A

(∇× u) · n dA =

∮
J

u · t dl (Kelvin-Stokes theorem) (A.71b)

∫
A

n ×∇a dA =

∮
J

at dl (A.71c)

Green-Ostrogradsky theorem 1 and affiliated∫
V

∇ ·T dV =

∫
A

T · n dA (Green-Ostrogradsky/Gauss theorem) (A.72a)

∫
V

∇a dV =

∫
A

a dA (Gradient theorem) (A.72b)

∫
V

∇T dV =

∫
A

T · n dA (Gradient theorem (tensorial)) (A.72c)

∫
V

∇× u dV =

∫
A

n × u dA (Volumic Stokes-Kelvin formula) (A.72d)

∫
V

[T∆a− a∆T] dV =

∫
A

[T×∇a− a∇T] · n dA (Green’s formula) (A.72e)

∫
V

(u · (∇× v)− v · (∇× u)) dV =

∫
A

(u × v) · n dA (A.72f)

1 n is the outer normal vector to the considered surface and t is the tangent vector to the considered
oriented line.

2ω is a differential form over the manifold Ω, dω is its outer differential
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A.4.3.3 Fluid dynamics

Lagrangian (particular) derivative 3:

df

dt
=
∂f

∂t
+∇f · v (A.73)

Transport theorems 3 4:

d

dt

∫
VA(t)

f (t, x ) dV =

∫
VA(t)

∂f

∂t
(t, x ) dV +

∫
AA(t)

f (t, x )wA (t) · nA (t) dA (A.74a)

d

dt

∫
VA(t)

f (t, x ) dV =

∫
VA(t)

[
∂f

∂t
(t, x )∇ · (fwA)

]
dV (A.74b)

d

dt

∫
VM (t)

f (t, x ) dV =

∫
VM (t)

∂f

∂t
(t, x ) dV +

∫
AM (t)

f (t, x )v (t) · n (t) dA (A.74c)

d

dt

∫
VM (t)

f (t, x ) dV =

∫
VM (t)

[
∂f

∂t
(t, x ) +∇ · (fv)

]
dV (A.74d)

d

dt

∫
VM (t)

f (t, x ) dV =
d

dt

∫
VA(t)

f (t, x ) dV +

∫
AA(t)

f (t, x ) (v−wA) (t) · n (t) dA (A.74e)

Reynolds formula 3 4 (corollary) :

Integral formulation

d

dt

∫
VM (t)

ρ (t, x ) f (t, x ) dV =

∫
VM (t)

ρ (t, x )
df

dt
(t, x ) dV (A.75)

Local formulation:

ρ
df

dt
=
∂ρf

∂t
+∇ · (fv) scalar

ρ
df

dt
=
∂ρf

∂t
+∇ · (f ⊗ v) vectorial/tensorial

(A.76)

3 All the formulas (except Eq. (A.76) as specified) still hold if f is a vectorial, matrix, tensorial function f
as long as the order of the variables is not switched to match a particular case.

4 See Sec. A.2.2.2 for the definitions of the notations VA, AA, wA, VM , AM , etc...



Appendix B

Complementary thermodynamic
results

B.1 Brief results from general thermodynamics

B.1.1 Global functions

The Gibbs relationship allows to link the variations of the internal energy Es, the entropy S,
the volume V and the massM for a system at equilibrium with:

dEs =̂ T dS − P dV + µdM (B.1)

The internal energy Es, which is an extensive variable, has a 1-homogeneity property with
respect to S, V andM, extensive variables as well:

∀λ > 0, Es (λS, λV, λM) = λEs (S,V,M) (B.2)
Thanks to Euler’s theorem, one can write :

Es = TS − PV + µM (B.3)

and one gets at the same time :

S dT − V dP +M dµ = 0 (B.4)

From that, one can define the other extensive variables and their differentials. The enthalpy
H, the free energy F and the free enthalpy G are defined by:

H =̂ Es + PV = TS + µM (B.5)
F =̂ Es − TS = −PV + µM (B.6)
G =̂ Es − TV + µM = µM (B.7)

and their differentials are given by:

dH = T dS + µdM (B.8)
dF = −P dV + µdM (B.9)
dG = µdM (B.10)
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B.1.2 Volumetric functions

By dividing the extensive variables by the volume of the fluid V, one can define the volumetric
thermodynamic variables of which relationships are then given by :

Es =̂
Es
V

= TS − P + µρ (B.11)

H =̂
H
V

= TS − µρ (B.12)

F =̂
F
V

= −P + µρ (B.13)

G =̂
G
V

= µρ (B.14)
and dividing Eq. (B.4) by V, one gets also gets SdT − dP + ρdµ = 0, what allows to write the
derivatives :

dEs = T dS + µdρ (B.15)
dH = T dS + dP + µdρ (B.16)
dF = −S dT + µdρ (B.17)
dG = −S dT + dP + µdρ (B.18)

B.1.3 Specific functions

B.1.3.1 Links between the density ρ and the specific volume v

The density of the fluid is defined as the ratio between the total mass of the fluid M and
its total volume V. Though this definition rely intrinsically on a macroscopic point of view,
using an Eulerian description, the density can be defined locally by considering a reduced local
portion of the fluid with a volume ∂V, negligible in regard to the total volume V, but which
still contains enough particles to perform a statistical averaging. If the mass of this small
portion of the fluid is ∂M, the local density is given by the ratio ρlocal = ∂M/∂V.
In some cases, it can be easier to work with the specific volume v which is the inverse of the
density. The conversions from one variable to the other are given by:

ρ=̂
M
V

and v=̂
1

ρ
(B.19)

dρ = − 1

v2
dv and dv = − 1

ρ2
dρ (B.20)(

∂∗
∂ρ

)
X

= −v2

(
∂∗
∂v

)
X

and
(
∂∗
∂v

)
X

= −ρ2

(
∂∗
∂ρ

)
X

(B.21)

By dividing the extensive variables by the mass of the fluidM (or by dividing the volumetric
variables by the fluid density ρ), one can define the specific thermodynamic variables of which
relationships are then given by :

es = Ts− P
ρ + µ = Ts− vP + µ (B.22)

h = Ts+ µ (B.23)
f = −P

ρ + µ = −vP + µ (B.24)
g = µ (B.25)
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The specific version of Eq. (B.4) becomes s dT − 1
ρ dP + dµ = 0 which allows, once again, to

write the derivatives:

des = T ds+
P

ρ2
dρ = T ds− P dv (B.26)

dh = T ds+
1

ρ
dP = T ds+ v dP (B.27)

df = − s dT +
P

ρ2
dρ = −s dT − P dv (B.28)

dg = − s dT +
1

ρ
dP (= dµ) = −s dT + v dP (B.29)

B.1.4 Maxwell’s relations

Most of the time, all the thermodynamic potentials (Es, H, etc..., Es, H, etc... and es, h,
etc...) are supposed to be at least two times derivable at any admissible thermodynamic
point. Therefore, the Schwarz theorem can be applied to them leading to a set of equations
called Maxwell’s relations. The reader can find a non exhaustive list of such relations which
are used, among many things, to derive the thermodynamic formulas for real gas equations of
state.

from dEs (B.15)

(
∂µ

∂S

)
ρ

=

(
∂T

∂ρ

)
S

or
(
∂µ

∂S

)
v

= −v2

(
∂T

∂v

)
S

(B.30)

from dF (B.17)

(
∂µ

∂T

)
ρ

= −S −
(
∂S

∂ρ

)
T

or
(
∂µ

∂T

)
v

= −S − v2

(
∂S

∂v

)
T

(B.31)

from des (B.26)

(
∂T

∂ρ

)
s

=
1

ρ2

(
∂P

∂s

)
ρ

or
(
∂T

∂v

)
s

= −
(
∂P

∂s

)
v

(B.32)

from dh (B.27)

(
∂T

∂P

)
s

= − 1

ρ2

(
∂ρ

∂s

)
P

or
(
∂T

∂v

)
s

=

(
∂v

∂s

)
P

(B.33)

from df (B.28)

(
∂s

∂ρ

)
T

= − 1

ρ2

(
∂P

∂T

)
ρ

or
(
∂s

∂v

)
T

=

(
∂P

∂T

)
v

(B.34)

from dg (B.29)

(
∂s

∂P

)
T

=
1

ρ2

(
∂ρ

∂T

)
P

or
(
∂s

∂P

)
T

= −
(
∂v

∂T

)
P

(B.35)
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B.1.5 Partial derivatives

Tables B.1 to B.6 compile the partial derivatives for the main thermodynamic variables ρ, T ,
P , es, h and s. The support variables defined hereafter are used to condense the notations.

Tα = Tα− 1; Pβ = Pβ − 1; ζ = ρβCv; ϑ = Pα− ρCp; ξ = P (ρβCv + α)− ρCp

dρ

−ρα dT + ρβ dP

(
1

c2
+

α

Cp

)
dP +

−ρα
Cp

dh

ρζ

Tα − Pβ
dT +

ρ2β

Pβ − Tα
des

1

c2
dP +

−Tαρ
Cp

ds

ρ (ζ + α)

Tα
dT +

−ρ2β

Tα
dh

ρ2 (ζ + α)

ξ
des +

ρζ

−ξ
dh

ρρζ

Tα
dT +

−ρ2β

α
ds

ρ2

P
des +

−Tρ2

P
ds

−ρζ
ϑ

dP +
−ρ2α

ϑ
des

ρ

c2
dh +

−ρT (ζ + α)

Cp
ds

Table B.1: Partial derivatives table for the density ρ

dT

β

α
dP +

−1

ρα
dρ

Tα
ρζ + α

dρ +
ρβ

ζ + α
dh

Pβ − Tα
ϑ

dP +
−ρ
ϑ

des
Tα

ρζ
dρ +

T

Cv
ds

Tα
ρCp

dP +
1

Cp
dh

ρTα
ξ

des +
ρ (Pβ − Tα)

ξ
dh

Tα

ρCp
dP +

T

Cp
ds

Tα

PβCv
des +

T (Pβ − Tα)

PβCv
ds

Tα − Pβ
ρζ

dρ +
1

Cv
des

Tα

Cp
dh +

−TTα
Cp

ds

Table B.2: Partial derivatives table for the temperature T

dP

α

β
dT +

1

ρβ
dρ

Cp
ζ + α

dρ +
ρα

ζ + α
dh

ϑ

Pβ − Tα
dT +

ρ

Pβ − Tα
des c2 dρ +

Tα

βCv
ds

ρCp
Tα

dT +
ρ

−Tα
dh

ρ2Cp
ξ

des +
−ρϑ
ξ

dh

ρCp
tα

dT +
−ρ
α

ds
ρ2c2

P
des +

Tϑ

PβCv
ds

−ϑ
ρζ

dρ +
α

βCv
des ρ dh + −ρT ds
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Table B.3: Partial derivatives table for the pressure P

des

Cp −
Pα

ρ
dT +

Pβ − Tα
ρ

dP
1

ρ

(
P (ζ + α)

ρCp
− 1

)
dP +

(
1− Pα

ρCp

)
dh

Cv dT +
Pβ − Tα
ρ2β

dρ
P

ρ2c2
dP +

−Tϑ
ρCp

ds

ξ

ρ (Pβ − Tα)
dT +

Tα − Pβ
Tα

dh
1

ρ

(
P

ρ
− βCp
ζ + α

) dρ +
ζ

ζ + α
dh

PβCv
Tα

dT +
ϑ

ρ2α
ds

P

ρ2
dρ + T ds

βCv
α

dP +
−Tα
ρ

dρ
P

ρc2
dh + T

(
1− P

ρCp
(ζ + α)

)
ds

Table B.4: Partial derivatives table for the specific sensible energy es

dh

Cp dT +
1− Tα
ρ

dP
ξ

ρϑ
dP +

ρ− Cp
ϑ

des(
Cv +

α

ρβ

)
dT +

−Tα
ρ2β

dρ
1

ρ
dP + T ds

−ξ
ρ (Tα − Pβ)

dT +
1− Tα
Pβ − Tα

des
1

ρ

(
c2 +

P

ρ
+
Pα

ρζ

)
dρ + 1 +

α

ζ
des

Cp
T

dT +
Tα− 1

α
ds

c2

ρ
dρ + T

(
1 +

α

ζ

)
ds(

βCv
α

+
1

ρ

)
dP +

−Cp
ρα

dρ
ρc2

P
des + T

(
1 +

α

ζ
− ρc2

P

)
ds

Table B.5: Partial derivatives table for the specific enthalpy h

ds

Cp
T

dT +
−α
ρ

dP
PβCv
Tϑ

dP +
−ρCp
Tϑ

des

Cv
T

dT +
−α
ρ2β

dρ
−1

ρT
dP +

1

T
dh

PβCv
T (Pβ − Tα)

dT +
α

Tα − Pβ
des

−P
Tρ2

dρ +
1

T
des

Cp
T (−Tα)

dT +
α

Tα− 1
dh

−Cp
ρT (ζ + α)

dρ +
ζ

T (ζ + α)
dh

βCv
Tα

dP +
−Cp
ρTα

dρ
−ρCp
Tξ

des +
−ζ
Tξ

dh

Table B.6: Partial derivatives table for the specific entropy s
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B.2 Definition and derivation for real gas thermodynamics

B.2.1 Residual values

B.2.1.1 Definitions

Residual value for a given pressure P ( ρ = ρEoS (P, T ) and ρ0 =
P

rT
)

∆Pχ (T, P ) = χEoS (T, P )− χ0 (T, P ) =

P∫
0

(
∂χEoS

∂P∗

)
T

−
(
∂χ0

∂P∗

)
T

dP∗ (B.36)

Residual value for a given density ρ (P = PEoS (ρ, T ) and P 0 = ρrT )

∆ρχ (T, ρ) = χEoS (T, ρ)− χ0 (T, ρ) =

ρ∫
0

(
∂χEoS

∂ρ∗

)
T

−
(
∂χ0

∂ρ∗

)
T

dρ∗ (B.37)

B.2.1.2 Direct expressions for a given pressure P

Enthalpy

One can start with the differential dh = T ds+
1

ρ
dP

It allows to extract the partial derivative (with Eq. (A.30))
(
∂h

∂P

)
T

=

(
∂h

∂P

)
s

+

(
∂h

∂s

)
P

(
∂s

∂P

)
T

Knowing from Eq. (B.35) that
(
∂s

∂P

)
T

=
1

ρ2

(
∂ρ

∂T

)
P

It leads to
(
∂h

∂P

)
T

=
1

ρ
+
T

ρ2

(
∂ρ

∂T

)
P

For a perfect gas ρ =
P

rT
thus

(
∂ρ

∂T

)
P

=
−P
rT 2

=
−ρ
T

Therefore
(
∂h0

∂P

)
T

=
1

ρ
− �T

ρ�2
�ρ

�T
=

�
�
�1

ρ
−

�
�
�1

ρ
= 0

∆Ph (T, P ) =

P∫
0

[
1

ρ
− T

ρ2

(
∂ρ

∂T

)
P∗

]
dP∗ (B.38)

Energy

The internal energy es and the enthalpy h are linked by es = h − P

ρ
and for a perfect gas

es = h− rT

∆P es (T, P ) =

P∫
0

[
1

ρ
− T

ρ2

(
∂ρ

∂T

)
P∗

]
dP∗ −

P

ρ
+ rT (B.39)
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Free enthalpy

One can start with the differential dg = −s dT+
1

ρ
dP , it allows to extract the partial derivative(

∂g

∂P

)
T

=
1

ρ
, and for a perfect gas

(
∂g0

∂P

)
T

=
1

ρ
=
rT

P

∆P g (T, P ) =

P∫
0

[
1

ρ
− rT

P∗

]
dP∗ (B.40)

Free energy

The free enthalpy g and the free energy are linked by f = g− P
ρ
, for a perfect gas f = g− rT

∆P f (T, P ) =

P∫
0

[
1

ρ
− rT

P∗

]
dP∗ + rT − P

ρ
(B.41)

Entropy

From Eq. (B.35) one can express the partial derivative
(
∂s

∂P

)
T

=
1

ρ2

(
∂ρ

∂T

)
P

, for a perfect

gas
(
∂s0

∂P

)
T

=
1

ρ2

−P
rT 2

=
r

P

∆P s (T, P ) =

P∫
0

[
1

ρ2

(
∂ρ

∂T

)
P∗

− r

P∗

]
dP∗ (B.42)

B.2.1.3 Direct expressions for a given density ρ

Energy

One can start with the differential de = T ds+
P

ρ2
dρ

It allows to extract the partial derivative (with Eq. (A.30))
(
∂e

∂ρ

)
T

=

(
∂e

∂ρ

)
s

+

(
∂e

∂s

)
ρ

(
∂s

∂ρ

)
T

Knowing from Eq. (B.34) that
(
∂s

∂ρ

)
T

= − 1

ρ2

(
∂P

∂T

)
ρ

It leads to
(
∂e

∂ρ

)
T

=
P

ρ2
− T

ρ2

(
∂P

∂T

)
ρ

For a perfect gas
(
∂P

∂T

)
ρ

= ρr
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Therefore
(
∂e0

∂P

)
T

=
P

ρ2
− T

ρ�2
�ρr =

�
�
�rT

ρ
−

�
�
�rT

ρ
= 0

∆ρes (T, ρ) =

ρ∫
0

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ (B.43)

Enthalpy

The enthalpy h ans the internal energy es are linked by h = e +
P

ρ
and for a perfect gas

h = e+ rT

∆ρh (T, ρ) =

ρ∫
0

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ +

P

ρ
− rT (B.44)

Free energy

One can start with the differential df = −s dT+
P

ρ2
dρ, it allows to extract the partial derivative(

∂f

∂ρ

)
T

=
P

ρ2
and for a perfect gas

(
∂f0

∂ρ

)
T

=
rT

ρ

∆ρf (T, ρ) =

ρ∫
0

[
P

ρ2∗
− rT

ρ∗

]
dρ∗ (B.45)

Free enthalpy

The free enthalpy g and the free energy f are linked by g = f +
P

ρ
and for a perfect gas

g = f + rT

gρres (T, ρ) =

ρ∫
0

[
P

ρ2∗
− rT

ρ∗

]
dρ∗ +

P

ρ
− rT (B.46)

Entropy

From Eq. (B.34) one can express the partial derivative
(
∂s

∂ρ

)
T

= − 1

ρ2

(
∂P

∂T

)
ρ

, for a perfect

gas
(
∂s0

∂ρ

)
T

= − 1

ρ2
rρ = −r

ρ

∆ρs (T, ρ) =

ρ∫
0

[
r

ρ∗
− 1

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ (B.47)



Appendix B - Complementary thermodynamic results 411

B.2.1.4 Translation

Most of the time, the departure values are expressed for common temperature and pressure
as these two variables are the easier to measure and often the one imposed for the system.
However, in their primary expression, the pressure-defined departure variables require the cal-
culation of an integral where the pressure is the integration variable. However, most equations
of state (the cubic EoS in particular) are explicitly defined relatively to the temperature and
the density. For more practicality, it is convenient the find a new expression for the departure
values, maintaining their definition (pressure-defined) but making appear an integral where
density is the integration variable, what is done in the following.
For a thermodynamic variable χ, by introducing the pressure P# calculated with the ideal gas
EoS (P# = ρEoS (T, P ) rT ) from the density given by the real gas EoS, one can write:

∆Pχ (T, P ) = χEoS (T, P, ρEoS)− χ0
(
T, P, ρ0

)
(B.48)

= χEoS (T, P, ρEoS)− χ0
(
T, P#, ρEoS

)
+ χ0

(
T, P#, ρEoS

)
− χ0 (T, P, ρ∗)

(B.49)

One can notice that, by definition:

χEoS (T, P, ρEoS)− χ0
(
T, P#, ρEoS

)
= χEoS (T, P = PEoS (ρEoS, T

)
, ρEoS)

− χ0
(
T, P# = ρEoSrT, ρEoS

) (B.50a)

= χρres
(
T, ρEoS) (B.50b)

But, more importantly, that :

χ0
(
T, P#, ρEoS

)
− χ0

(
T, P, ρ0

)
= χ0

(
T, ρEoSrT, ρEoS)− χ0

(
T, ρ0rT, ρ0

)
(B.51a)

= χ0
(
T, ρEoS)− χ0

(
T, ρ0

)
(B.51b)

=

ρEoS∫
ρ0

(
∂χ0

∂ρ∗

)
T

dρ∗ (B.51c)

Finally ∆Pχ (T, P ) = ∆ρχ
(
T, ρEoS)+

ρEoS∫
ρ0

(
∂χ0

∂ρ∗

)
T

dρ∗ (B.52)

Sensible energy

For an ideal gas
(
∂es

0

∂ρ

)
T

= 0 , then:

∆P es =

ρ∫
0

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ (B.53)
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Enthalpy

With h = es +
P

ρ
( h = es + rT for an ideal gas)

∆Ph =

ρ∫
0

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ +

P

ρ
− rT (B.54)

Free energy

For an ideal gas
(
∂f0

∂ρ

)
T

=
P

ρ2
=
rT

ρ
, thus:

ρEoS∫
ρ0

(
∂f0

∂ρ∗

)
T

dρ∗ =

ρEoS∫
ρ0

rT

ρ∗
dρ∗ = rT ln

(
ρEoS

ρ0

)
= rT ln

(
rTρEoS

P

)
(B.55)

∆P f =

ρ∫
0

[
P

ρ2∗
− rT

ρ∗

]
dρ∗ − rT ln

(
P

ρrT

)
(B.56)

Free enthalpy

With g = f +
P

ρ
( g = f + rT for an ideal gas)

∆P g =

ρ∫
0

[
P

ρ2∗
− rT

ρ∗

]
dρ∗ − rT ln

(
P

ρrT

)
+
P

ρ
− rT (B.57)

Entropy

For an ideal gas
(
∂s0

∂ρ

)
T

= − 1

ρ2

(
∂P

∂T

)
T

= − 1

ρ2
rρ = −r

ρ
leading to:

ρEoS∫
ρ0

(
∂s0

∂ρ∗

)
T

dρ∗ = −
ρEoS∫
ρ0

r

ρ∗
dρ∗ = −r ln

(
ρEoS

ρ0

)
= rT ln

(
P

rρEoS

)
(B.58)

∆P s =

ρ∫
0

[
r

ρ∗
− 1

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ + r ln

(
P

ρrT

)
(B.59)
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Isochoric heat capacity

By definition Cv =

(
∂es
∂T

)
ρ

therefore ∆Cv =

(
∂∆es
∂T

)
ρ

and since ∆P es = ∆ρes one has

∆PCv = ∆ρCv.

∆ρCv =
∂

∂T

 ρ∫
0

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗


ρ

(B.60a)

=

ρ∫
0

∂

∂T

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
ρ∗

dρ∗ (B.60b)

=

ρ∫
0

∂

∂T

[
��

����1

ρ2∗

(
∂P

∂T

)
ρ∗

−
��

����1

ρ2∗

(
∂P

∂T

)
ρ∗

− 1

ρ2∗

(
∂P

∂T

)
ρ∗

]
ρ∗

dρ∗ (B.60c)

∆PCv = ∆ρCv = −
ρ∫

0

T

ρ2∗

(
∂2P

∂T 2

)
ρ∗

dρ∗ (B.61)

B.2.2 Other values

B.2.3 Heat capacities

By definition Cv =

(
∂es
∂T

)
ρ

and Cp =

(
∂h

∂T

)
P

One the one hand:(
∂h

∂T

)
P

=
∂

∂T

(
es +

P

ρ

)
P

=

(
∂es
∂T

)
P

− P

ρ2

(
∂ρ

∂T

)
P

=

(
∂es
∂T

)
P

+
Pα

ρ
(B.62)

On the other hand (with Eq. (A.30)):(
∂es
∂T

)
P

=

(
∂es
∂T

)
ρ

+

(
∂es
∂ρ

)
T

(
∂T

∂ρ

)
P

(B.63)

= Cv +

((
∂es
∂s

)
ρ

+

(
∂es
∂s

)
ρ

(
∂s

∂ρ

)
T

)
(−ρα) (B.64)

= Cv − ρα
(
P

ρ2
+ T
−α
ρ2β

)
(B.65)

= Cv −
Pα

ρ
+
Tα2

ρβ
(B.66)

When joined together, it gives:
(
∂h

∂T

)
P

= Cv −
�
�
�Pα

ρ
+
Tα2

ρβ
+
�
�
�Pα

ρ
= Cv +

Tα2

ρβ

Cp = Cv +
Tα2

ρβ
(B.67)
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B.2.3.1 Sound speed

des =

(
∂es
∂T

)
P

dT +

(
∂es
∂P

)
T

dP and dT = − 1

ρα
dρ+

β

α
dP (B.68)

From Eq. (B.62)
(
∂es
∂T

)
P

= Cp −
Pα

ρ

Besides
(
∂es
∂P

)
T

=

(
∂h

∂P

)
T︸ ︷︷ ︸−

∂

∂P

(
P

ρ

)
T

=

(
∂h

∂P

)
s

+

(
∂h

∂s

)
P

(
∂s

∂P

)
T︸ ︷︷ ︸−

(
1

ρ
− P

ρ2

(
∂ρ

∂P

)
T

)
(B.69a)

=
�
�
�1

ρ
+ T

1

ρ2

(
∂ρ

∂T

)
P

−
�
�
�1

ρ
+
P

ρ2
ρβ (B.69b)

=
Pβ

ρ
− Tα

ρ
(B.69c)

des =

[
Cp −

Pα

ρ

]
dT +

[
Pβ

ρ
− Tα

ρ

]
dP (B.70)

From (B.26) one also has des = T ds+
P

ρ2
dρ

[
Cp −

Pα

ρ

]
dT +

[
Pβ

ρ
− Tα

ρ

]
dP = T ds+

P

ρ2
dρ (B.71a)[

Cp −
Pα

ρ

](
− 1

ρα
dρ+

β

α
dP

)
+

[
Pβ

ρ
− Tα

ρ

]
dP = T ds+

P

ρ2
dρ (B.71b)[

−Cp
ρα

+
�
�
�Pα

ρ2α
−

�
�
�P

ρ2

]
dρ+

[
Cp
β

α
−
�
�
�Pα

ρ

β

α
+
�
�
�Pβ

ρ
− Tα

ρ

]
dP = T ds (B.71c)

−Cp
ρα

dρ+
β

α

[
Cp −

Tα2

βρ

]
dP = T ds (B.71d)

c2 =

(
∂P

∂ρ

)
s

=

Cp
ρ�α

β

�α

[
Cp −

Tα2

ρβ

] =
Cp

ρ�α
β

�α

[
Cp −

Tα2

ρβ

] (B.72)

c2 =
Cp

ρβ

(
Cp −

Tα2

βρ

) =
Cp
ρβCv

(B.73)
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B.3 Definition and derivation for cubic equations of state

B.3.1 Departure values

B.3.1.1 Calculation tips

Cubic equation signature integral
The integral expressed Eq. (B.74) repeats throughout the derivation of the departure values
expressions, its calculation is more easily carried out ba trading the density ρ for the specific
volume v = 1/ρ.

I (e1, e2, ρ) =

ρ∫
0

dρ∗
1 + e1bρ∗ + e2b2ρ∗2

(B.74)

Recalling that dρ = −ρ2 dv the change of variable writes

I (e1, e2, ρ) =

ρ∫
0

dρ∗
1 + e1bρ∗ + e2b2ρ∗2

=

v∫
+∞

1

��ρ
2
∗

−��ρ
2
∗ dv∗

1

ρ2∗
+
e1b

ρ∗
+ e2b2

(B.75a)

=

+∞∫
v

dv∗
v2∗ + e1bv∗ + e2b2

(B.75b)

The discriminant and the roots of the cubic polynomial v2
∗ + e1bv∗ + e2b

2 are given by:

∆ = (e1b)
2 − 4e2b

2 = b2
(
e2

1 − 4e2

)
(B.76)

v+/− =
−e1b−

√
∆

2
=
b

2

(
−e1 + /−

√
e1

2 − 4e2

)
(B.77)

I (e1, e2, ρ) =
1

v+ − v−
ln

(
v − v−
v − v+

)
(B.78)

v+/− =
b

2

(
−e1 + /−

√
e1

2 − 4e2

)
(B.79)

The algebraic fraction in the integrand of I (e1, e2, ρ) can be written formally:

1

v2 + e1bv + e2b2
=

c1

v − v+
+

c2

v − v−
(B.80)

where the constants c1 and c2 must satisfy c1 + c2 = 0 and c1v− + c2v+ = −1 leading to:

c1 = −c2 =
1

v+ − v−
(B.81)

Therefore I (e1, e2, ρ) can calculated with:

I (e1, e2, ρ) =

+∞∫
v

1

v+ − v−

(
1

v∗ − v+
− 1

v∗ − v−

)
dv∗ (B.82a)
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=
1

v+ − v−

 +∞∫
v

dv∗
v∗ − v+

−
+∞∫
v

dv∗
v∗ − v−

 (B.82b)

=
1

v+ − v−

(
[ln (v∗ − v+)]+∞v − [ln (v∗ − v−)]+∞v

)
(B.82c)

=
1

v+ − v−

[
ln

(
v∗ − v+

v∗ − v−

)]+∞

v

(B.82d)

Finally, given that lim
v→+∞

ln (v∗ − v+) /(v∗ − v−) = ln 1 = 0, one obtains the final expression:

I (e1, e2, ρ) =
1

v+ − v−
ln

(
v − v−
v − v+

)
(B.83)

Pressure derivatives
Successive partial derivatives with respect to the temperature also intervene in the departure
values derivation. From the general expression of the pressure given in Eq. (1.17) one gets:(

∂P

∂T

)
ρ

=
ρr

1− bρ
− da

dT
(T )

ρ2

1 + e1bρ+ e2b2ρ2
(B.84)(

∂2P

∂T 2

)
ρ

= − d
2a

dT 2 (T )
ρ2

1 + e1bρ+ e2b2ρ2
(B.85)

B.3.1.2 Departure values expressions

Sensible energy

∆P es =

ρ∫
0

[
P

ρ2∗
− T

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ (B.86a)

=

ρ∫
0

1

ρ2∗

[(
�
�
�
�ρ∗rT

1− bρ∗
− a (T ) ρ2

∗
1 + e1bρ∗ + e2b2ρ2∗

)

− T
ρ2∗

(
�
���ρ∗r

1− bρ∗
− da

dT
(T )

ρ2
∗

1 + e1bρ∗ + e2b2ρ2∗

)]
dρ∗

(B.86b)

=

ρ∫
0

1

��ρ
2
∗

(
−a (T ) + T

da

dT
(T )

)
��ρ

2
∗

1 + e1bρ∗ + e2b2ρ2∗
dρ∗ (B.86c)

=

(
T
da

dT
(T )− a (T )

) ρ∫
0

dρ∗
1 + e1bρ∗ + e2b2ρ2∗

(B.86d)

∆P es =

(
T
da

dT
(T )− a (T )

)
I (e1, e2, ρ) (B.87)
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Free energy

∆P f =

ρ∫
0

[
P

ρ2∗
− rT

ρ∗

]
dρ∗ − rT ln

(
P

ρrT

)
(B.88a)

=

ρ∫
0

[
rT

ρ∗ (1− bρ∗)
− a (T )

1 + e1bρ∗ + e2b2ρ2∗
− rT

ρ∗

]
dρ∗ − rT ln

(
P

ρrT

)
(B.88b)

=

ρ∫
0

rT

(
1

ρ∗ (1− bρ∗)
− 1

ρ∗

)
dρ∗ − a (T )

ρ∫
0

dρ∗
1 + e1bρ∗ + e2b2ρ2∗

− rT ln

(
P

ρrT

)
(B.88c)

=

ρ∫
0

rT

(
�
�
�1

ρ∗
+

b

1− bρ∗
−

�
�
�1

ρ∗

)
dρ∗ − a (T ) I (e1, e2, ρ)− rT ln

(
P

ρrT

)
(B.88d)

= −rT
ρ∫

0

−b
1− bρ∗

dρ∗ − a (T ) I (e1, e2, ρ)− rT ln

(
P

ρrT

)
(B.88e)

∆P f = −a (T ) I (e1, e2, ρ)− rT ln

(
P (1− bρ)

ρrT

)
(B.89)

Entropy

∆P s =

ρ∫
0

[
r

ρ∗
− 1

ρ2∗

(
∂P

∂T

)
ρ∗

]
dρ∗ + r ln

(
P

ρrT

)
(B.90a)

=

ρ∫
0

[
r

ρ∗
− r

ρ∗ (1− bρ∗)
+
da

dT
(T )

1

1 + e1bρ∗ + e2b2ρ2∗

]
dρ∗ + r ln

(
P

ρrT

)
(B.90b)

=

ρ∫
0

r

(
1

ρ∗
− 1

ρ∗ (1− bρ∗)

)
dρ∗ +

da

dT
(T )

ρ∫
0

dρ∗
1 + e1bρ∗ + e2b2ρ2∗

+ r ln

(
P

ρrT

)
(B.90c)

=

ρ∫
0

r

(
�
�
�1

ρ∗
−

�
�
�1

ρ∗
− b

1− bρ∗

)
dρ∗ +

da

dT
(T ) I (e1, e2, ρ) + r ln

(
P

ρrT

)
(B.90d)

= r

ρ∫
0

−b
1− bρ∗

dρ∗ +
da

dT
(T ) I (e1, e2, ρ) + r ln

(
P

ρrT

)
(B.90e)

∆P s =
da

dT
(T ) I (e1, e2, ρ) + r ln

(
P (1− bρ)

ρrT

)
(B.91)
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Isochoric heat capacity

∆PCv = −
ρ∫

0

T

ρ2∗

(
∂2P

∂T 2

)
ρ∗

dρ∗ (B.92a)

= −
ρ∫

0

T

��ρ
2
∗
− d2a

dT 2 (T )
−��ρ

2
∗

1 + e1bρ∗ + e2b2ρ2∗
dρ∗ (B.92b)

= T
d2a

dT 2 (T )

ρ∫
0

1

1 + e1bρ∗ + e2b2ρ2∗
dρ∗ (B.92c)

∆PCv = T
d2a

dT 2 (T ) I (e1, e2, ρ) (B.93)

This last result could also have been obtained by a straightforward differentiation of Eq. (B.87)
since I (e1, e2, ρ) is independent from the temperature.

B.4 Thermodynamic modifications for the Thickened Interface
Method

Notations

Let χ be any thermodynamic variable, the following notations are used:

• χTIM (ρ, T ) refers to the final thermodynamic variable as modified by the TIM
• χEoS (ρ, T ) refers to the thermodynamic variable as derived directly from the EoS
• χsat

l = χEoS (ρl (T ) , T ) and χsat
v = χEoS (ρv (T ) , T ) refer to the thermodynamic variable

as derived directly from the EoS, taken at saturation in the liquid "l" or vapor "v" phase
• ∆
sat

(χ) (T ) defines the saturation gap value of χ between the liquid and the vapor phases,

meaning that ∆
sat

(χ) (T ) = χsat
l (T )− χsat

v (T )

• χsat (T ) is used to compress the notation when the thermodynamic variable χ satis-
fies the remarkable relation χ (ρl (T ) , T ) = χ (ρv (T ) , T ), for instance P (ρl (T ) , T ) =
P (ρv (T ) , T ) = P sat (T ).
• χ̄ (T ), conversely, can be equal either to the liquid or vapor saturation value of χEoS

depending on the local equilibrium condition. For instance χ̄ (T ) = χ (ρl (T ) , T ) if
yl > 0.5 and χ̄ (T ) = χ (ρv (T ) , T ) if yl < 0.5. The condition to discriminate between
the liquid and vapor phases can be chosen arbitrarily bust must be conserved to calculate
at once all the thermodynamic variables at a given point (the condition may however vary
from one point to the other). One easily gets that P̄ (T ) = P sat (T ), µ̄ (T ) = µsat (T )

• χη (ρ, T ) is defined as equal to χ̄ (T ) +
χEoS (ρ, T )− χ̄ (T )

η
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B.4.1 Derivatives of saturation values

The derivation of a consistent TIM thermodynamics requires the expression of several ther-
modynamic variables. The notations in Sec. B.4 are used. Besides, the subscript k ∈ {l, v}
is used to refer to the liquid or vapor phase indifferently. Here, the saturation is defined by a
thermal, mechanical and chemical equilibrium between the two phases, meaning that:

• T sat
v = T sat

l = T sat

• PEoS (ρl (T ) , T ) = PEoS (ρv (T ) , T ) = P sat (T )
• µEoS (ρl (T ) , T ) = µEoS (ρv (T ) , T ) = µsat (T )

In particular, from these equilibrium conditions it comes that:

dµsat
l = dµsat

v = dµsat (B.94)

and
−ssat

l dT +
1

ρl
dP sat = −ssat

v dT +
1

ρv
dP sat (B.95)

In addition, for a bivariate thermodynamic variable χ other than the pressure and the
temperature, its partial derivative at saturation, relatively to the temperature, can be obtained
using the following principle:

dχsat
k

dT
=

d

dT

(
χsat
k

(
T, P sat (T )

))
=

(
∂χ

∂T

)
P

(ρk (T ) , T ) +

(
∂χ

∂P

)
T

(ρk (T ) , T )
dP sat

dT
(T ) (B.96)

B.4.1.1 Saturation pressure derivative
dP sat

dT

From the Gibbs "saturation" equation Eq. (B.95), one gets:

−
(
ssat
l − ssat

v

)
dT =

(
1

ρv
− 1

ρl

)
dP sat (B.97)

Thus

dP sat

dT
=
(
ssat
l − ssat

v

)( 1

ρl
− 1

ρv

)−1

(B.98)

or
dP sat

dT
= −

(
ssat
l − ssat

v

)
ρlρv

ρl − ρv
(B.99)

Additionally, from the relation h = µ+ Ts and the chemical equilibrium it comes:

ssat
l − ssat

v =
1

T

(
hsat
l − hsat

v

)
=
Lvap

T
(B.100)
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thus
dP sat

dT
= − L

vapρlρv
T (ρl − ρv)

(B.101)

The second order saturation pressure derivative can also be expressed. From Eq. (B.98) it
comes:

d2P sat

dT 2 =
d

dT

(
ssat
l − ssat

v

1/ρl − 1/ρv

)
=

d

dT

 ∆
sat

(s)

∆
sat

(
1

ρ

)
 (B.102)

The derivation gives:

d2P sat

dT 2 =
1(

∆
sat

(
1

ρ

))2

[
d∆
sat

(s)

dT
∆
sat

(
1

ρ

)
− ∆
sat

(s)
d

dT

(
∆
sat

(
1

ρ

))]
(B.103)

Using Eq. (B.114) one can write:

d∆
sat

(s)

dT
=

∆
sat

(CP )

T
− ∆
sat

(
α

ρ

)
dP sat

dT
(B.104)

And from Eq. (B.111) one gets:

d

dT

(
∆
sat

(
1

ρ

))
= ∆

sat

(
α

ρ

)
− ∆
sat

(
β

ρ

)
dP sat

dT
(B.105)

When injected into Eq. (B.102) it eventually leads to:

d2P sat

dT 2 =
1

∆
sat

(
1

ρ

) [∆
sat

(CP )

T
− dP sat

dT

(
2∆
sat

(
α

ρ

)
− dP sat

dT
∆
sat

(
β

ρ

))]
(B.106)

B.4.1.2 Saturation free enthalpy derivative
dµsat

dT

From the chemical equilibrium, Eq. (B.94) and Gibbs "saturation’ equation Eq. (B.95) it
comes that one can chose indifferently:

dµsat

dT
= −ssat

l +
1

ρl

dP sat

dT
= −ssat

v +
1

ρv

dP sat

dT
(B.107)

This allows to write:
dµsat

dT
= −s̄+

1

ρ̄

dP sat

dT
(B.108)
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Given that µsat = µ̄, it also ensues that:

dµ̄

dT
= −s̄+

1

ρ̄

dP sat

dT
(B.109)

B.4.1.3 Saturation density derivative
dρk
dT

Eq. (B.96) can be used noticing that
(
∂ρ

∂T

)
P

= −ρα and
(
∂ρ

∂T

)
P

= −ρα to get:

dρk
dT

= ρk

(
βsat
k

dP sat

dT
− αsat

k

)
(B.110)

and
d

dT

(
1

ρk

)
=

1

ρk

(
αsat
k − βsat

k

dP sat

dT

)
(B.111)

It also ensues that:

dρ̄

dT
=

1

ρ̄

(
β̄
dP sat

dT
− ᾱ

)
(B.112)

and
d

dT

(
1

ρ̄

)
=

1

ρ̄

(
ᾱ− β̄ dP

sat

dT

)
(B.113)

B.4.1.4 Saturation entropy derivative
dssat
k

dT

Eq. (B.96) can be used noticing that
(
∂s

∂T

)
P

=
CP
T

and
(
∂s

∂T

)
P

= −α
ρ

to get:

dssat
k

dT
=
CP

sat
k

T
−
αsat
k

ρk

dP sat

dT
(B.114)

It also ensues that:

ds̄

dT
=
C̄P
T
− ᾱ

ρ̄

dP sat

dT
(B.115)
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B.4.1.5 Main derivatives summary

dP sat

dT
=
(
ssat
l − ssat

v

)( 1

ρl
− 1

ρv

)−1

= − L
vapρlρv

T (ρl − ρv)
(B.116)

d2P sat

dT 2 =
1

∆
sat

(
1

ρ

) [∆
sat

(CP )

T
− 2∆

sat

(
α

ρ

)
dP sat

dT
+ ∆
sat

(
β

ρ

)(
dP sat

dT

)2
]

(B.117)

dρk
dT

= ρk

(
βsat
k

dP sat

dT
− αsat

k

)
(B.118)

dµsat

dT
= −s̄+

1

ρ̄

dP sat

dT
(B.119)

dssat
k

dT
=
CP

sat
k

T
−
αsat
k

ρk

dP sat

dT
(B.120)



Appendix C

Additional developments on the
Second Gradient theory

C.1 Virtual power principle for the Second Gradient theory

To derive the equations of the fluid motion in the Second Gradient theory, two main methods
can be used. The first one relies on a Hamiltonian approach and has been developed by Casal
and Gouin in Casal (1972), Casal and Gouin (1985), Casal and Gouin (1989). The second one,
which will be described in the following paragraphs, is based on the virtual power principle as
demonstrated in Germain (1972), Frémond (2013), Yu (2014) and has been expanded on in
Germain (1972), Seppecher (1987) and Jamet (1998).
The virtual power principle is used to derive the equations of smooth motions for systems where
no shocks occur. It can be shown (see Antman (1995)) that describing indirectly the internal
forces using their virtual power is equivalent to describing them directly through a momentum
equation. Starting from a general framework, the fluid motion satisfies the Cauchy’s law:

ρ
dv
dt

=∇ · τ + ρg (C.1)

where ρ is the density of the fluid, v its actual velocity, τ is the stress tensor and ρg are the
body forces. The idea behind the virtual power principle is to notice that the power produced
by the different forces (stress tensor and body forces, whether internal or external) correspond-
ing a priori to the real motion represented by the velocity field v, can still be defined for an
arbitrary motion, called a "virtual" motion, described by the "virtual" velocity field v∗. In
this section, the virtual power principle is explained in its classic form as done in Frémond
(2013). This better allows to grasp its inherent meaning and its consequences without the
additional complexity linked to the Second Gradient theory in itself.

The fluid, in the domain Ω, is described by the usual continuum mechanics quantities such
as the pressure P , the density ρ, the temperature T , etc. and the quantities describing its
motion and deformation v, ∇v, etc. but also by an other characteristic quantities c to ensure
prescribed precision and complexity in the desired description of the fluid dynamics. For
instance c can be a volume fraction of one of the component in a mixture, the volume fraction
of one of the phase in a two-phase flow or can be as sophisticated as the volume density of
active bounds between the microscopic components of the fluid. Whatever the choice of c, the
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important idea is that its evolution is a consequence of microscopic actions and movements
that do not necessarily result in a macroscopic motion of the fluid. From c, one can define a
microscopic rate of change ν = dc /dt representing the motion velocity at a microscopic scale.
Given these definitions, a localized virtual motion will be defined as a triplet (V,v∗, ν∗) where V
is a portion of the domain Ω containing the fluid and A its boundary, v∗ a virtual (macroscopic)
velocity field and ν∗ a virtual microscopic rate of change for the fluid in V. The set containing
all the localized virtual motions will be noted M∗.

C.1.1 Virtual power of the internal forces

For any localized virtual motion (V,v∗, ν∗) ∈ M∗ in Ω, the virtual power P(i) of the internal
forces acting on the fluid in V is given by:

P(i) = −
∫
V

[
∇v∗ : τ + εν∗ + f ε ·∇ν∗

]
dV (C.2)

The different contributions can be, from a physical point of view„ interpreted as follows:
∇v∗ : τ represents the power of internal forces related to macroscopic motions, ε is a volume
density of energy by unit of ν∗ and f ε is a volume density of energy flux by unit of ν∗. In fact,∫
V

[ερ+ f ε ·∇ν∗] dV accounts for the power of internal forces that do not induce a macroscopic
motion of the fluid while causing movement at a microscopic scale.

C.1.2 Virtual power of the external forces

For any localized virtual motion (V,v∗, ν∗) ∈ M∗ in Ω, the virtual power P(e) of the external
forces acting on the fluid in V is given by:

P(e) =

∫
V

[v∗ · g + Eν∗] dV +

∫
A

[v∗ · t + εν∗] dA (C.3)

This time the contributions are separated in two categories: firstly the power of the external
forces applied at distance over the volume of fluid V and secondly the power of the external
forces applied by contact over the boundary A. Regarding the first integral, the two con-
tributions are interpreted as follows: v∗ · g represents the power of external body forces, at
distance, related to macroscopic motions and E is a volume density of energy accounting for
the power of external body forces at distance only resulting on microscopic motions. The same
interpretations arise for the second integral: v∗ · t accounts for the power of contact forces
resulting in macroscopic motions and ε is a volume density of energy accounting for the power
of contact forces only resulting in microscopic motions.

C.1.3 Virtual power of the acceleration forces

From Cauchy’s law, the acceleration of the fluid can be interpreted as a force γ of which
elementary expression is:

γ = ρ
dv
dt

(C.4)
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From that, for any localized virtual motion (V,v∗, ν∗) ∈ M∗ in Ω, the virtual power P(a) of
the acceleration forces acting on the fluid in V is given by:

P(a) =

∫
V

v∗ · γ dV =

∫
V

ρv∗ · dv
dt
dV (C.5)

C.1.4 Virtual power theorems

Given all the previous definitions, one can now formulate the virtual power principle:

For any localized virtual motion (V, v∗, ν∗) ∈ M∗ in Ω, the sum of the virtual power of the
internal forces P(i) and the virtual power of the external forces P(e) in V equals the virtual
power of the acceleration forces P(a) in V.

∀ (V,v∗, ν∗) ∈M∗, P(a) = P(i) + P(e) (C.6)

A prerequisite to the virtual power principle as obtained in Eq. (C.6) is the axiom of the
virtual power principle for internal forces which states:

For any localized virtual motion (V, v∗, ν∗) ∈M∗ in Ω that causes a rigid body motion for
the fluid in V, the virtual power of the internal forces P(i) in V equals to zero.

For the interested reader, a more in-depth description is given in Yu (2014) about the
microscopic rate of change c and the different posssible sourcess for the microscopic power
term ε, E , ε.

C.1.5 Equations of motion

Since Eq. (C.6) holds for any (V,v∗, ν∗) ∈ M∗, one can choose localized virtual motions such
as v∗ = 0 leading to Eqs. (C.7a) and (C.7b), and then localized virtual motions such as ν∗ = 0
leading to Eqs. (C.8a) and (C.8b).

ρ
dv
dt

=∇ · τ + g in V (C.7a)

τ · n = t on A (C.7b)

∇ · f ε = E − ε in V (C.8a)
f ε · n = 0 on A (C.8b)

The virtual work principle has been presented in its native form, completing the description
of the fluid motion by adding a microscopic characteristic quantity c and the corresponding
microscopic motion velocity ν = dc /dt. It has allowed to retrieve a classic set of motion
equations. However, another way to refine the definition of the fluid can be to consider a
specific subset of virtual motions with corresponding virtual velocity fields v∗ at least two
times differentiable, as explained in Germain (1972). This different approach is used Sec.
5.1.1 more specifically to derive the motion equations for the Second Gradient theory. For the
sake of simplicity and since such a level of refinement is not proven to be useful and pertinent,
the microscopic motion represented by ν∗ will not be considered in this framework.
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C.2 Gibbs equation

In this section, we derive the new form of the Gibbs equation for a fluid endowed with capil-
larity. The starting assumption is that the volumetric free energy F of the fluid can be written
like in Eq. (5.47):

F (T, ρ,∇ρ) = F0 (T, ρ) + F1 (T, ρ,∇ρ) (C.9)

The thermodynamic variables have a dependency on two classic intensive variables, here we
chose T ans ρ for convenience, and on the density gradient ∇ρ. The differential of the specific
internal energy is written:

des =

(
∂es
∂s

)
ρ,∇ρ

ds+

(
∂es
∂ρ

)
s,∇ρ

dρ+

(
∂es
∂∇ρ

)
s,ρ

· d∇ρ (C.10)

The temperature definition should not be impacted by the capillary description, therefore:

T =̂

(
∂es
∂s

)
ρ,∇ρ

(C.11)

Remembering that es = f − Ts = F/ρ− Ts, one can write:(
∂es
∂ρ

)
s,∇ρ

=
∂

∂ρ

(
F

ρ
− Ts

)
s,∇ρ

(C.12a)

=
1

ρ

(
∂F

∂ρ

)
s,∇ρ

− F

ρ2
− s
(
∂T

∂ρ

)
s,∇ρ

(C.12b)

Thanks to Eq. (A.30) and Eq. (B.17), one can also write:(
∂F

∂ρ

)
s,∇ρ

=

(
∂F

∂ρ

)
T,∇ρ

+

(
∂F

∂T

)
ρ,∇ρ

(
∂T

∂ρ

)
s,∇ρ

=

(
∂F

∂ρ

)
T,∇ρ

+ S

(
∂T

∂ρ

)
s,∇ρ

(C.13)

Eventually, with the definition of the thermodynamic pressure Eq. (5.54), one gets:(
∂es
∂ρ

)
s,∇ρ

=
1

ρ

(
∂F

∂ρ

)
T,∇ρ

+

���
����S

ρ

(
∂T

∂ρ

)
s,∇ρ

− F

ρ2
−
���

���
s

(
∂T

∂ρ

)
s,∇ρ

(C.14a)

=
1

ρ2

(
ρ

(
∂F

∂ρ

)
T,∇ρ

− F

)
(C.14b)

=
P

ρ2
(C.14c)

Besides, with the definition Eq. (5.53), one also gets:(
∂es
∂∇ρ

)
s,ρ

=
∂

∂∇ρ

(
F

ρ
− Ts

)
s,ρ

=
1

ρ

(
∂F

∂∇ρ

)
s,ρ

− s
���

���
(
∂T

∂∇ρ

)
s,ρ

=
1

ρ
F (C.15)

Combining all the previous results, one can write the new Gibbs equation:

des = T ds+
P

ρ2
dρ+

1

ρ
F · d∇ρ (C.16)
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C.3 Entropy balance

In this section we derive an expression for the volumetric entropy production term using the
relations obtained trough the application of the two fundamental thermodynamic principles
and the virtual powers principle. This volumetric entropy production allows, in turn, to express
the internal fluxes and derive the fluid motion equations for the Second Gradient theory. The
starting set of equationsis:

1
∂ρ

∂t
= −∇ · (ρv)

2 ρ
des
dt

=∇v : ς +∇∇v
...C−∇ · q

3
des
dt

= T
ds

dt
+
P

ρ2

dρ

dt
+

1

ρ
F · d∇ρ

dt

4 ρ
ds

dt
= φS −∇ ·

(q
T

)
Applying the particular derivative Eq. (A.73) to ρ and injecting 1 , one gets:

dρ

dt
=
∂ρ

∂t
+∇ρ · v = −∇ · (ρv) +∇ρ · v = −ρ∇ · v (C.17)

Likewise, the particular derivative Eq. (A.73) applied to the density gradient ∇ρ can be
expressed:

d∇ρ
dt

=
∂(∇ρ)

∂t
+∇∇ρ · v (C.18a)

=∇
(
∂ρ

∂t

)
+∇∇ρ · v (C.18b)

= −∇ (∇ · (ρv)) +∇∇ρ · v (C.18c)
= −∇ (ρ∇ · v +∇ρ · v) +∇∇ρ · v (C.18d)
= −ρ∇ (∇ · v)−∇ρ∇ · v +∇ρ ·∇v− v ·∇∇ρ+∇∇ρ · v (C.18e)

= −ρ∇ (∇ · v)−∇ρ∇ · v +∇ρ ·∇v−∇∇ρT · v +∇∇ρ · v (C.18f)

The tensor ∇∇ρ being symmetrical, one gets:

d∇ρ
dt

= − (ρ∇ (∇ · v) +∇ρ∇ · v +∇ρ ·∇v) (C.19)

By noting qT = q ·∇T/T , one can express T × 4 with:

ρT
ds

dt
= TφS − T

(
1

T
q − 1

T 2
q ·∇T

)
= TφS −∇ · q + qT (C.20)

Finally, one can equalize 2 and ρ× 3 to get:

ρT
ds

dt
+
P

ρ

dρ

dt
+ F · d∇ρ

dt
=∇v : ς +∇∇v

...C−∇ · q (C.21)
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The left-hand side particular derivative can be replaced by the expressions in Eq. (C.17), Eq.
(C.19), Eq. (C.20) to obtain:

TφS−∇ · q + qT − P∇ · v−F · (ρ∇ (∇ · v) +∇ρ∇ · v +∇ρ ·∇v)

=∇v : ς +∇∇v
...C−∇ · q

(C.22)

And eventually the volumetric entropy production is written:

TφS = P∇ · v + F · (ρ∇ (∇ · v) +∇ρ∇ · v +∇ρ ·∇v) +∇v : ς +∇∇v
...C− qT (C.23)

Using the Einstein notation, Eq. (C.23) can be written with indexes:

TφS =P
∂vi
∂xi

+ Fj

(
ρ
∂2vi
∂xi∂xj

+
∂ρ

∂xj

∂vi
∂xi

+
∂ρ

∂xi

∂vi
∂xj

)
+ ςji

∂vi
∂xj

+ Ckji
∂2vi
∂xj∂xk

− qT
(C.24a)

TφS =P
∂vi
∂xi

+ ρFkδik
∂2vi
∂xk∂xj

+ Fk
∂ρ

∂xk
δij
∂vi
∂xj

+ Fj
∂ρ

∂xi

∂vi
∂xj

+ ςji
∂vi
∂xj

+ Ckji
∂2vi
∂xj∂xk

(C.24b)

To finally get the condensed relation:

TφS = −qT +

[
ςji +

∂ρ

∂xi
Fj +

(
P +

∂ρ

∂xk
Fk

)
δij

]
∂vi
∂xj

+ [Ckji + ρFkδik]
∂2vi
∂xj∂xk

(C.25)

Given the hypothesis that the second gradient of the velocity does not contribute to the entropy
intrinsic creation and the fact that C is symmetrical in its two first indexes, one gets:

Ckji + ρFkδik = 0⇒ Cijk =
1

2
ρ (δikFk + δjkFi) (C.26)

Besides, knowing that ς is symmetrical, it can be expressed using the relation ς = τ +∇ · C
with Cijk = Ckji (from App. C.1):(

∇ · C
)
ij

=
∂Cijk
∂xk

=
∂Ckji

∂xk
= −1

2

[
∂(ρδikFj)

∂xk
+
∂(ρδijFk)

∂xk

]
= −1

2

[
∂(ρFj)

∂xi
+ δij

∂(ρFk)

∂xk

] (C.27)

ς = τ − 1

2
∇ (ρF)− 1

2
∇ · (ρF) I (C.28)

With that, the volume entropy production is eventually given by:

TφS = −qT +

[
τdij + τnij −

1

2

∂(ρFj)

∂xi
+
∂ρ

∂xi
Fj +

(
P +

∂ρ

∂xk
Fk −

1

2

∂(ρFk)

∂xk

)
δij

]
∂vi
∂xj

(C.29)

or using tensorial notations:

TφS = −qT +

[
τ +∇ρ⊗F− 1

2
∇ (ρF)

]
:∇v +

[
P +∇ρ ·F− 1

2
∇ · (ρF)

]
∇ · v (C.30)
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C.4 Equilibrium conditions for an isothermal interface

The study of an isothermal interface at equilibrium is a usefull method to qualify the Second
Gradient theory behavior and try to retrieve known results of fluid mechanics regarding surface
tension by stuying planar, circular or spherical interfaces. In this section, the reader can find
a condensed equation that define said equilibrium and which solely depends on the expression
chosen for the volumetric free enthalpy F .

In the framework of the Second Gradient theory, the differential of the volumetric free energy
F is written:

dF =

(
∂F

∂T

)
ρ,∇ρ

dT +

(
∂F

∂ρ

)
T,∇ρ

dρ+ F · d∇ρ (C.31)

In particular, when looking to a spatial partial derivative, it lands:

dF

dxi
=

(
∂F

∂T

)
ρ,∇ρ

∂T

∂xi
+

(
∂F

∂ρ

)
T,∇ρ

∂ρ

∂xi
+ F · ∂∇ρ

∂xi
(C.32)

where the last term can be expressed as:

F · ∂∇ρ
∂xi

= Fj
∂(∇ρ)j
∂xi

=
∂2ρ

∂xi∂xj
Fj = (∇∇ρ)ij Fj (C.33)

Therefore one obtains:

∇F =∇T
(
∂F

∂T

)
ρ,∇ρ

+∇ρ
(
∂F

∂ρ

)
T,∇ρ

+∇∇ρ ·F (C.34)

When considering an isothermal interface at equilibrium, the velocity and the temperature
gradient are null. Therefore, only the momentum equation is to be considered among the
different motion equations given Eqs. (5.86) and the gradient of the volumetric free enrgy
given Eq. (C.34) simplifies to give the reduced set of equations:

∇p+∇ · (∇ρ⊗F) = 0 (C.35)

∇F =∇ρ
(
∂F

∂ρ

)
T,∇ρ

+∇∇ρ ·F (C.36)

where the expressions of the mechanical pressure and the thermodynamic pressure are by Eq.
(5.73) and Eq. (5.54). The momentum equation Eq. (C.35) can then be simplified:

∇p+∇ · (∇ρ⊗F) =∇
(
ρ

(
∂F

∂ρ

)
T,∇ρ

− F − ρ∇ ·F
)

+∇ · (∇ρ⊗F) (C.37a)

=∇ρ
(
∂F

∂ρ

)
T,∇ρ

+ ρ∇
[(

∂F

∂ρ

)
T,∇ρ

]
−∇F

−�����∇ρ∇ ·F− ρ∇ (∇ ·F) +�����∇ρ∇ ·F +∇∇ρ ·F
(C.37b)
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One can recognize the gradient of the volumetric free energy:

∇p+∇ · (∇ρ⊗F) =

[
∇ρ
(
∂F

∂ρ

)
T,∇ρ

+∇∇ρ ·F
]

︸ ︷︷ ︸
∇F

−∇F + ρ∇
[(

∂F

∂ρ

)
T,∇ρ

−∇ ·F
]

(C.38a)

= ρ∇
[(

∂F

∂ρ

)
T,∇ρ

−∇ ·F
]

(C.38b)

Finally the equilibrium condition is expressed as:

(
∂F

∂ρ

)
T,∇ρ

−∇ ·
((

∂F

∂∇ρ

)
T,ρ

)
= cste (C.39)



Résumé en Francais

Les systèmes d’injection liquide sont pléthores dans l’industrie, en particulier celle du trans-
port, que ce soit à travers les moteurs Diesel, les moteurs aéronautiques ou encore certains
moteurs-fusées. Au cours de leur fonctionnement, ces systèmes sont confrontés à une large
gamme de températures et en particulier de pressions, qui peuvent entrainer une modification
du régime thermodynamique lorsque les conditions critiques du fluide sont franchies.
A faible pression, il est commun de retrouver un écoulement mêlant des phases liquide et
vapeur distinctes, on parle alors de régime diphasique. Au-delà de la pression critique, la dis-
tinction entre les deux phases n’est plus possible et l’on parle alors d’écoulement transcritique,
voire supercritique. C’est un phénomène particulièrement marqué dans les moteurs-fusées
cryogéniques, notamment au moment de leur allumage. Ce changement de régime thermo-
dynamique a un impact très important sur la topologie du jet liquide au cours de l’injection,
ce qui, à son tour, aura de forts impacts sur les conditions d’atomisation dudit jet, sur les
phénomènes de mélange ainsi que sur le comportement de la flamme éventuelle. Si le traite-
ment des écoulements diphasiques d’un côté et des écoulements trans/supercritiques de l’autre,
jouissent respectivement de nombreux résultats tant expérimentaux que numériques, les cadres
de description englobant ces deux domaines restent aujourd’hui très rares.

L’objectif de cette thèse est donc d’étudier un modèle physique original, dit du Second Gra-
dient, qui semble a priori permettre la description des écoulements fluides dans les différents
régimes de fonctionnement de manière unifiée, et d’évaluer sa pertinence en tant qu’outil de
simulation numérique. Pour ce faire, ce manuscrit s’articule autour de trois axes principaux
qui ont rythmé ces travaux de thèse.

Il propose dans un premier temps une revue approfondie des méthodes classiques de modéli-
sation des écoulements diphasiques dans lesquels il y a présence, par définition, d’interfaces
liquide-vapeur. Généralement séparées en deux grandes familles, elles se distinguent les unes
des autres par le point de vue qu’elles utilisent pour représenter l’interface. Les méthodes
d’interface raide (Sharp Interface) vont traiter les interfaces comme des discontinuités à travers
lesquelles les grandeurs thermodynamiques subissent un saut. Réciproquement, les méthodes
d’interface diffuse (Diffuse Interface) vont traiter les interfaces comme des régions de l’espace,
d’épaisseur faible mais non nulle, à travers lesquelles les grandeurs thermodynamiques vont
subir des variations, certes rapides, mais néanmoins continues. Cette étude bibliographique
permet de mettre en lumière les éléments clés qui ont motivé le choix du Second Gradient,
modèle d’interface diffuse, pour nos travaux.
Cette présentation théorique des différentes méthodes de traitement d’interface, Second Gra-
dient compris, est complétée par une description des enjeux thermodynamiques de la modéli-
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sation des écoulements à haute pression, sur laquelle le modèle final qui est utilisé s’appuie
largement. On montre en particulier comment le modèle du gaz parfait n’est plus adapté
dans de telles conditions et on présente les modifications qu’il est nécessaire d’y apporter pour
prendre en compte les interactions complexes régnant dans les écoulements d’une telle nature.

La seconde partie du manuscrit se focalise sur la validation numérique de ce modèle en passant
plus particulièrement par son implémentation au sein d’un solveur numérique semi-industriel,
AVBP, conçut pour simuler des configurations complexes multidimensionnelles dans un con-
texte hautement parallèle. Les aspects essentiels d’AVBP sont exposés dans un chapitre dédié.
Les nouvelles équations décrivant le comportement d’un fluide dans le cadre du Second Gra-
dient font apparaitre des nouveaux termes impliquant des dérivées d’ordres élevés de la masse
volumique. La question délicate de la discrétisation de ces termes est largement traitée afin
de valider leur interaction avec les méthodes numériques nativement présentes dans AVBP, a
priori non prévues pour prendre en compte de telles dérivées dans les flux.
Suite à cette étude approfondie, le modèle est utilisé pour simuler, avec succès, des config-
urations canoniques en une dimension (interfaces advectées, déformées, évaporantes ou con-
densées) et en deux dimensions (interfaces planes oscillantes, gouttes déformées oscillantes)
en considérant exhaustivement des cadres isothermes et non isothermes ainsi que visqueux et
non-visqueux.

Malgré ces résultat encourageants, le modèle souffre d’une limitation majeure issue du fait
que les épaisseurs des interfaces, telles que prédites par la formulation native du Second Gra-
dient, demeurent plusieurs ordres de grandeurs en deçà des tailles de maillage actuellement
accessibles pour des couts de calcul raisonnables. Afin d’y remédier, une nouvelle méthode
d’épaississement d’interface dans le cadre du Second Gradient est introduite dans la troisième
partie de ce manuscrit.
Après un bref rappel des méthodes d’épaississement déjà proposées dans le passé, les fonde-
ments théoriques de la méthode, appelée Thickened Interface Method (TIM), sont métic-
uleusement exposés. La TIM est ensuite soumisse aux même séries de tests que celles subi
par le Second Gradient dans sa forme originelle et, au prix de certains ajustements, démontre
des comportements conformes à l’attendu. Finalement, la méthode est appliquée à des con-
figurations plus complexes et en lien direct avec le sujet des moteurs-fusées liquides. Dans
un premier temps, des collisions frontales de gouttes tridimensionnelles d’oxygène dans leur
vapeur sont simulées et les résultats mènent à des comparaisons satisfaisantes avec les résultats
expérimentaux. Ensuite, la déstabilisation d’un jet liquide d’azote dans sa vapeur est étudiée
en deux dimensions, à différentes vitesses, et permet avec succès de retrouver les différents
régimes d’atomisation obtenus par expérience.

Ainsi donc, ce travail de thèse a permis d’introduire une nouvelle méthode innovante de mod-
élisation diphasique dans un contexte de gaz réel, dont la cohérence thermodynamique a été
particulièrement travaillée, afin d’épaissir les interfaces prédites par la théorie du Second Gra-
dient jusqu’à atteindre des échelles de maillage typiques de Simulations Numériques Directes,
au sens de le turbulence. La méthode, TIM, a pu être appliquée avec succès à des configura-
tions canoniques en une et deux dimensions, démontrant un accord important avec la théorie,
mais surtout à des configurations académiques en deux et trois dimensions, menant à des
comparaisons particulièrement probantes avec les résultats expérimentaux.
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Résumé: L’objectif de cette thèse est d’évaluer
la théorie du second gradient pour la simulation
d’écoulements de fluides de gaz réels diphasiques in-
stationnaires. L’implémentation du modèle a été
validée sur des configurations canoniques. Une inves-
tigation numérique systématique a permis de dévoiler
les paramètres clés nécessaires pour assurer la stabilité
des simulations, comme la condition du pas de temps
ou la résolution minimale nécessaire pour les inter-
faces. Des interfaces planaires oscillantes bidimen-
sionnelles et des gouttes déformées ont été simulées
avec succès en résolvant l’ensemble complet des équa-
tions de Navier-Stokes compressibles, ce qui n’avait
jamais été fait avec ce modèle, au meilleur de nos con-
naissances. Le modèle SG dans sa formulation native
prédit des largeurs d’interface de plusieurs ordres de
grandeur inférieures aux tailles de maillage typiques

utilisées pour des applications pratiques, même dans
des configurations DNS. Pour surmonter cet obstacle,
la méthode d’interface épaissie (TIM) a été dérivée
pour épaissir une interface d’une manière thermody-
namiquement cohérente tout en maintenant sa ten-
sion superficielle. La méthode TIM a été soumise
aux mêmes tests systématiques que ceux appliqués
au modèle SG natif et a répondu avec le comporte-
ment attendu sur les cas simplifiés. De plus, des com-
paraisons quantitatives ont permis de confirmer que
la méthode préserve bien la tension superficielle et
le comportement macroscopique de l’interface. Enfin,
la méthode a été utilisée pour simuler des configura-
tions plus pratiques: jets périodiques bidimensionnels
et gouttes en collision tridimensionnelles. Les résul-
tats pour différents nombres de Weber ont montré un
bon accord avec les résultats expérimentaux.

Title: Unsteady simulations of liquid/gas interfaces in real gas flows using the Second Gradient
theory
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Abstract: The objective of this thesis is to assess
the ability of the Second Gradient theory to allow un-
steady two-phase flow simulations with real-gas fluids.
The implementation of the model has been validated
on canonical configurations. A systematic numerical
investigation has permitted to unveil key parameters
needed to ensure the stability of the simulations, such
as the time step condition or the minimal resolution
needed for the interfaces. Two-dimensional oscillat-
ing planar interfaces and deformed droplets have been
successfully simulated solving the full set of compress-
ible Navier-Stokes equations, which had never been
done using this model so far, to the best of our knowl-
edge. The SG model in its native formulation pre-
dicted interface widths of multiple orders of magni-
tude lower than the typical mesh sizes used for prac-

tical applications, even in DNS configurations. To
address this hurdle, the Thickened Interface Method
(TIM) has been derived to thicken an interface in
a thermodynamically consistent manner while main-
taining its surface tension. The TIM has been sub-
mitted to the same systematic testing applied to the
native SG model and invariably responded with the
expected behavior on simplified cases. Furthermore,
quantitative comparisons which have allowed to con-
firm that the method indeed preserves the surface ten-
sion and the macroscopic behavior of the interface.
Finally, the method has been used to simulate more
practical configurations: two dimensional periodic jets
and three-dimensional colliding droplets. The results
for different Weber numbers showed a good agreement
with experimental results.
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