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Abstract

Distributed tracking in self-organized silly camera network

by Lobna BEN KHELIFA

The Ant-Cams network is a new model of camera networks that can be used for envi-
ronment monitoring and understanding. Usually, such networks are composed of smart
cameras, which benefit from high resolutions, powerful processing capabilities and strate-
gic viewpoints on the environment. Here, the network uses silly cameras, defined by much
lower specifications forming the Ant-Cam model. This latter is inspired from the world
of ants, where ants are able to solve complex problems by communicating despite their
limited capabilities.

This model can reach efficient high-level understanding in spite of the limited informa-
tion provided by each silly camera. We rather focus on the interactions between those
cameras to increase the performance of the system where data exchanged between the
cameras, such as timing or features characterizing the events, is as important as the visual
information extracted locally.

Unlike many existing visual sensor network which require some prior knowledge of the
network such as position and neighbors, the Ant-Cams do not require any knowledge
about the network configuration (e.g. camera location). Once starting working and the
system reaches a steady state, all the necessary information can be found through inter-
acting with neighbors. Thus, we can find the topology of the network where links are
reinforced based on observed transitions, the paths adopted by the targets and if space
covering is sufficient.

Keywords: Smart Camera Network, Predictive modeling, Distributed problem solving


HTTP://WWW.UCA.FR
http://spi.ed.uca.fr/
http://www.institutpascal.uca.fr




To my family...






Contents

Contents

List of Figures

List of Tables

I Introduction
1 Iotand IoSmartT . . . ... ... ... ... ....
2 Ant world and [oSillyT . . . . .. ... ... ....
3 Research question and contribution . . . . . . . . ..
4 Thesisoutline . . . ... ... ............

II Self-organized network
1 Introduction . . . .. .. ... ... ... ...
2 Overview . . . . . . . .. . e
3 Self-organization . . . ... ... ..........
4 Network construction . . . . . .. ... ... ....
5 Network description. . . . . . .. .. ... .....
6 Conclusion . . ... . ... ... ..........

III Distributed tracking in smart camera network
1 Overview . . . . . .. .. . o
2 Pre-event Connectivity . . . . .. .. ... .....
3 Event Connectivity . . . .. ... .. ... .....
4 Post-event connectivity . . . . . . ... ... ...,
5 Conclusion . . ... .. ... .. ..........

IV Evaluation
1 Smart Camera Simulation Tool . . . . ... ... ..
2 Network Evaluation . . . . . ... ... .......
3 Conclusion . . .. ... .. .............

V Real Environment evaluation

13

17

........... 18
........... 19
........... 20
........... 21

23

........... 24
........... 24
........... 30
........... 30
........... 37
........... 44

45

........... 46
........... 52
........... 53
........... 58
........... 60

61

........... 62
........... 65
........... 72

75



V1

B W N =

C
1
2

LobNetplatform . . . . ... .. .. ... .. ... ... . ... ...
Implementations . . . . . . . . . .. ...
Evaluation . . . . . . . . . ... .
Conclusion . . . . . . . . . . e

onclusions and Perspectives
Conclusions . . . . . . . . . L
Perspectives: Dynamic Ant-Cam network: Towards real ants world . . . .

A Existing platforms

B panoramic view of IoT applications

101
102
102

119

121



List of Figures

II.1

1.2
I1.3
1.4
IL5
II.6
IL.7

II.1
1.2
1.3
1.4
1.5

I11.6

I11.7
I11.8

V.1

Iv.2
Iv.3
Iv4
IV.5
IV.6
V.7

Iv.8

(A) Star topology, (B) Cellular topology (C) Tree topology and (D) Mesh

topology . ... 31
Internal and external eventin the Ant-Cam . . . . . . . ... ... .... 34
[lustration of the local network topology. . . . . .. ... ... ..... 35
Example of links created between cameras. . . . . . ... ... ..... 40
Example of a camera network scenario . . . . . ... ... ... ..... 41
Relationship between target vector x and cameras. . . . . .. ... ... 43
Relationship between target vector x and cameras. . . . . . . .. ... .. 43
Top-down and bottom-up . . . . . . . ... ... ... ... ... 52
Network eventevolution . . . . . . . .. .. .. ... ... 54
Example of a target scenario with different camera views . . . . . . . .. 55
Example of unpredictable sequence under Markov assumption . . . . . . 56
Instance of network: Connectivity graph based on events (L2,L.3) and

communication graph allowed by technology used for it (Wifi, LoRa..) . . 57
Network representing the relation between the re-identification estimation

and the prediction received. . . . . . .. ... oL Lo 58
Camera update after each externalevent . . . . . ... ... ... .... 59

Network architecture: each column represent a camera participating in
the tracking task. Black node correspond to the processing available in
thecamera. . . . . . . . . . . 60

Ilustration of tested scenarios. Each camera is represented by a red circle

with its FOV indicated by red lines. . . . . . . ... ... ... ..... 62
Example of cameras declaration with the simulator. . . . . . ... .. .. 63
Example of a camera definition function with the simulator. . . . . . . . . 63
Example of targets declaration with the simulator. . . . . . . ... .. .. 63
Example of a target definition function with the simulator. . . . . . . .. 64

Example of the network environment at different instants with the simulator. 64
Examples of the visual information detected by the 7 cameras at different
INStANS. . . . . .. e e e e 66
Example of the network construction, markov assumption is consider
here(n=0), Oiteration. . . . . . . . . . . . . . . . e 67



10

IV.9 Example of the network construction, markov assumption is consider

here(n=0), 1 iteration. . . . . . . . . . . . . ... e 67
IV.10Example of the network construction, markov assumption is consider

here(n=0), 20 iterations . . . . . . . . . . . . . .. e 68
IV.11 probabilities of the link between camera landj. . . . . . . ... ... .. 69
IV.12Simulationof 39nodes . . . . . . . ... ... Lo 69
IV.13Evolution of the estimated time . . . . . . . . .. ... ... ....... 70
IVI4 Dy for the same pathQC=1) .. ... ... ... o000 71
IV.15Probabilityinnode Cp1 . . . . . . . . . oL o 73
IV.16 Example of evaluation scenario . . . . . . . ... ... ... ....... 74
IV.17recurrence of differentpaths. . . . . . . .. ... ... ... ... ..., 74
Vil The Ant-Cam . . . . . . . .. . . e 76
V.2 The Ant-Cam architecture . . . . . .. ... ... ... ... ...... 77

V.3 Example of images taken using Ant-Cam, the resolution is 30*30 pixels . 78
V.4 Different images captured with camera 1 for a target coming respectively

fromcameras 2,3 and 4. . . . . . . . ... 84
V.5 Projection of the targetinthe 2D plan. . . . . . . . ... ... ... ... 85
V.6 Illustration of the different transformations. Spatial transformations be-

tween camera A and B. Temporal transformations between a current tar-

get detection and the reference target. . . . . .. ... ... ... .... 88
V.7 A series of steps is followed in each of the two cameras in order to find

the transformation between each other. Starting with the Principal Com-

ponents Analysis (PCA), a projection is applied to reduce the dimensions

of the target space before estimating the transformation. . . . . . . . . .. 89
V.8 Network architecture: Each column represents a camera participating in

the tracking task. Grey nodes correspond to the processing available in

thecamera. . . . . . . . . . .. 91
V.9 Variation in the re-identification rate according to the number of eigenvec-

tors considered. S.T refers to Spatial Transformation, T.T refers to Tem-

poral Transformation. S.T.T points to Spatial and one Temporal Transfor-

mation. Total.T refers to the 3 transformations. . . . . . ... ... ... 92
V.10 (a) corresponds to the initial features reference for camera 1, and (b) for

camera 2. (c) correspond to the input features after each detection for

camera 1 for 5 target detected, and (d) for camera 2. (e) correspond to the

features generated via spatial transformation using (c). (f) correspond to

the features generated via spatial and temporal transformation of (c). (g)

correspond to the features generated via temporal transformation of (c).

(h) correspond to the generated features using the whole transformation

of (¢) and (d). (e), (f), (g) and (h) are then used for comparison with the

put (d) . . .. 93
V.11 VHDL code for the Background-Foreground Segmentation (BFS) . . .. 95
V.12 Different network states. . . . . . . . . .. ..o 96
V.13 Different events in the network. . . . . . . . .. .. ... 0oL 97
V.14 The vision graph building during the network’s run time. . . . . . . . .. 98
V.15 Evolution of the probability in the node 1 in the network. . . . . . . . .. 99

VI.1 Factors of calibration . . . . . . . . . . . . . . . . .. 103



VI.2 Blue refers to data stored in memory for further processing. Green corre-
sponds to the initialization of the transformations. Oranges represent the
transformation performed in each camera following each detection. The
pink corresponds to the matching between the generated data through the
transformations, and the extracteddata. . . . . . . .. ... ... ....

B.1 panoramic view of [oT applications . . . . . ... .. ... .. .....

11






13

List of Tables

II.1 Comparison of conceivable network configurations. . . . . . . ... ...
II.2 Benchmark with current state of theart . . . . . . . .. ... ... ....
II.3 Summary of used notation for the network model . . . . . ... ... ..
II.4 Summary of used notation for the cameramodel . . . . . . ... ... ..
ILS CRO/CRI . .. . . e

III.1 Summarize of the reconfiguration methods used for tracking, C refers to
centralized processing and D to distributed processing . . . . . . .. . ..

III.2 Summarize of the reconfiguration methods used for coverage, C refers to
centralized processing and D to distributed processing . . . . . ... ..

III.3 Different parameters used for re-identification estimation. . . . . . . . . .

IV.1 Overview of the used parameters. . . . . . . . . . ... ... .......
IV.2 Ranksofthe Ant-Cams . . . . .. ... ... ... ... .........

V.1 Specifications and Electrical characteristics . . . . . . . ... ... ...
V.2 the parametric values used forthe BFS . . . . . .. ... ... ... ...
V.3 Notations for used parameters . . . . . . . .. .. ... ... ...
V.4 Pairwise identification for two datasets. SS refers to the detection of the
same side detection, whereas DS is for the detection of different sides. . .
V.5 Tracking performance in the network in dataset2. . . . . . ... ... ..
V.6 the parametric valuesused forthe BFS . . . . .. ... ... ... ....
V.7 Resource Utilization of the bfs on the Ant-Cam Platform. . . . . . . . ..

VI.1 self calibration . . . . . . . . . . . . .

A.1 Existing platforms for SCN . . . . . . . ... ... L oL






15

Glossary

AoA Angle of Arrivals. 33
AODV Ad hoc On Demand Distance Vector. 33, 81, 95
AOP Ant Optimization Path. 19

BFS Background-Foreground Segmentation. 10, 13, 82-84, 95
DSP Digital Signal Processor. 78

FOV Field Of View. 19
FPGA Field Programmable Gate Array. 21, 79, 94, 95

GSM Global System for Mobile Communications. 32
IoT Internet of Things. 18, 33, 81

LQI Link quality indicator. 33
LTE Long Term Evolution. 32

NCF Near-Field Communication. 32

PCA Principal Components Analysis. 10, 86, 89, 92, 95
PIR Passive InfraRed. 18, 78, 82, 94, 95

RSS Received Signal Strength. 33

SCN Smart Camera Network. 24, 56, 77, 102
SSN Smart Sensor Network. 18, 33



16 Glossary

TDoA Time Difference of Arrivals. 33
ToA Time of Arrivals. 33

UMTS Universal Mobile Telecommunications System. 32

Wi-Fi Wireless Fidelity. 31, 32
WSN Wireless Sensor Network. 31



17

CHAPTER |

Introduction




18 Chapter 1. Introduction

1 Iot and IoSmartT

Thanks to the technological improvements, the concept of Internet of Things (I0T) is
emerging progressively to include various electronic devices and new application fields.
Medical care, agriculture, traffic control, crime prevention and shoplifters’ identification
are just few instances of the IoT wide use-areas. Over the past few decades, the IoT-
based communication has been ensured through the following main architectural units:
(1) a sensing unit representing the interface with the environment and providing measure-
ment, and (ii) a communication unit playing as a network infrastructure to broadcast data
between a set of different devices and a central control module. Nevertheless, this central
architectural layout of the IoT concept is considered as limited at present time mainly
because it handles only the data broadcast. As a result, the [oT basic structure has en-
tailed numerous drawbacks and vulnerabilities. Mainly, these vulnerabilities are linked to
the security level, the communication reliability requirements and the huge data storage
capacities. Indeed, a great focus is now given to the IoT security concerns. Malicious
hacking and spoofing attacks may happen through the connected devices broadcasting
private and valuable data. Consequences of such attacks and forbidden accessess to data
are more hazardous in case of critical safety systems such as control insulin pumps, im-
plantable cardioverter defibrillators or several control functions of automobiles. More-
over, the early described architecture of the IoT systems cannot really support the huge
exchanged data amounts between the early stated units. Handling a large amount of infor-
mation provided by sensors requires a reliable communication technology that guarantees
a suitable broadcasting range/bandwidth and an optimal energy consumption. Notably, a
crucial trade-off between all these requirements is not evident. For instance, a consider-
able researcher work has attempted to provide self-powered cameras which are simulta-
neously able to ensure streaming tasks. Otherwise, the collected sensorial data need to
be sent periodically to the central unit to be proceeded and then saved. The amount of
data involved in the loT-based application depends on features of the employed sensors.
Several simple applications require just the use of scaler sensor such as Passive InfraRed
(PIR) sensors which induce in general a small amount of data easily safeguarded. In
other cases, the use of matricial sensors is mandatory. Last ones imply high data acquisi-
tion and storage requirements. Regarding to challenges and new requirements of the IoT
applications, overcoming limitations presented by the classical centralized [oT layout is
extremely recommended. Consequently, the actual trend is to move towards the use of
smarter embedded IoT devices. In fact, several researchers have proposed to integrate a
data processing level into the [oT boards. In such a way, the local processing units join
sensing and communication layers to change the architectural layout to a distributed one.
Thus, only semantic information is exchanged over the IoT network. Then, only most
significant and critical results will be reported. It is worth mentioning that moving from a
centralized architecture towards a distributed one offers a great autonomy degree to over-
all network nodes. This fact has turned the IoT network into a Smart Sensor Network
(SSN). More particularly, in the context of the visual sensors, a new generation of smart
cameras is currently attracting more and more of attention due to its efficiency in track-
ing targets, monitoring public areas, supervising manufacturers, and identifying risks and
accidents in highways. Herein, a local level proceeding of the measured data is taking
place. The communication between the different parts of the network of smart cameras
is triggered only to respond to the environmental changes such as movements. The set
of events, captured by each local camera, are then analyzed in a higher level to provide
a global perception report of the monitored scene. This could be effectively feasible as
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long as the network scale remains small. However, with a huge number of cameras, the
network of connected cameras will contribute to provide a collection of useless redundant
information. In such a manner, the tracking efficiency depends not only on each camera
capabilities, but it is tightly linked to the whole network abilities to make an abstraction
of the different events and notify the central control only by the results. Correspondingly,
the interactions occurring between the used cameras must be appropriately modeled to
enhance the overall network global performances.

2 Ant world and IoSillyT

Nature includes many instances of phenomena that can describe and explain different
concepts such as communicating systems and self-organized processes. Numerous be-
haviors noticed in the animal’s world have inspired research efforts to solve technological
problems in different fields. Such inspiring systems from nature are usually referred as
reactive systems where the communication is a key component to understand and analyze
facts. What may interest us here, are animals that can interact together and then accom-
plish cooperatively a given task. The well-organized and synchronous flying of birds is
a spectacular example for self-organization processes, modeled by the theory of coupled
oscillators. Thanks to this example, several distributed mechanisms were easily modeled
and exploited in different areas such as neuroscience and physics for coordination and
synchronization. The fact that fishes swim in well-structured shoals with the optimal mo-
tions, has also opened a vast discussion on how they can coordinate their motion to move
without disturbing other’s motion by the wave. Ants model, which are the most used,
are attractive for their capacity to find the shortest path to a desired destination. Hence,
different algorithms such as Ant Optimization Path (AOP) have been developed following
the ants’ behavior.

The main reason of such a success in achieving a given task by animals is their collabora-
tive behavior. It is obvious that starting from very limited individual perception capacities,
animals can reach a higher level of performances by working together. However, their or-
ganizational arrangement does not require any central coordination, but allows only a
"point to point" communication. This kind of interaction offers large opportunities to
optimize the communication and to acquire a great awareness about the environmental
changes. At this stage, an important question arises about this level of animals’ perfect
self-organization. How may the networked devices take an advantage of these examples
to reach such level of self-organization?

In camera network word, conventional cameras benefit from high resolutions, powerful
processing capabilities and strategic viewpoints on the environment. Thus, we classically
try to optimize the hardware parameters, including position, orientation, Field Of View
(FOV), zoom, focus and resolution at the camera level. But this is also true for software
components (e.g., detection algorithm) as well as topological components (e.g., number
of necessary cameras to cover the task space). In this work, we rather choose to work with
silly cameras, defined by much lower specifications, called Ant-Cams. We put forward a
novel model following the principle of smart dust, where the Ant-Cams are scattered in
the environment without a priori knowledge of their positions and their FOVs. Despite
theirs limited sensing and processing capabilities, the Ant-Cams can reach efficient high-
level understanding thanks to their communication abilities. Fully exploiting the cameras
interactions, the system is able to learn regularities and then infer from distributed se-
quences of events, passed between Ant-Cams.
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3 Research question and contribution

The objective of this thesis is to demonstrate the capabilities of distributed networks of in-
telligent cameras defined by very low specifications to perform various tasks such as self-
organization and tracking. Without any prior knowledge about the environment, cameras
are able to to organize themselves and adapt to the changing conditions of their environ-
ment. Monitoring and re-identification tasks at the camera level is therefore determined
by the camera’s own perception of the environment as well as the information transmitted
and retrieved by other cameras. This information exchange is essential to improve their
local performance as well as that of the entire network. The main contribution to the
current state-of-the-art are as follows:

Network Construction and self-organization: Starting with wholly unknown environ-
ment, each camera learns about its neighborhood during the run-time. Indeed, and fol-
lowing the ant analogy, each camera spreads "pheromones" on the network, thanks to the
communication technologies, to establish knowledge. These artificial pheromones, gen-
erated after each target detection, contain all its characteristics (visual, temporal and spa-
tial information). Links are then established according to the behavior of the monitored
objects. Then cameras can organize themselves throughout the network and form the
so-called vision graph without central coordination. At the camera level, this knowledge
reduces the communication effort with other cameras in the network, while maintaining
the overall tracking performance of the entire system at a high level.

Distributed tracking model: We propose an approach for target tracking in a very low
resolution (30%30) visual sensors network. This last is fully distributed and aims to ac-
complish the tracking task without any supervision. Each camera uses the stimulation-
response combination to perform specific requirements: external stimuli that are detection
following environmental measures and internal stimuli that are notifications from other
cameras after external stimuli to predict. External and internal stimuli can help the cam-
era to develop a deep understanding of its environment and build its own vision domain.
These online learning of associations can lead to high-performance tracking from a global
system point of view, making it possible to create a spatial-visual-temporal correlation
between cameras and targets. The correlation enhances the accuracy of its prediction in
terms of on-site processing or communication. In addition, by analogy to PageRank used
by google to rank the Web pages, we introduce the concept of CamRank: CamRank-In
and CamRank-Out. Both aim to rank cameras according to their relevance in the network.

New technique for low resolution images processing: In our modeling, we focus on low
computational efforts and time-saving processing without the need for high-end hardware
processors. The low specifications of Ant-Cams make the implementation of computa-
tionally intensive methods of tracking impossible. In a smart camera network, particularly
when dealing with fully decentralized processing, we focus on the amount of output data
and the manner of deploying it in a second camera. A critical challenge in tracking tasks
is to decrease the volume of transmitted data. This typically involves the elaboration of an
appearance model and a position identifier. A target generating an observation measure-
ment in the network is portrayed by a set of features that must be relevant not only by the
camera itself, but by the entire network. For this, we create the associations between the
observations of different cameras that we define as magic matrix at two levels. The first
is a spatial mapping. It is a camera-to-camera translation between the two observations
of the same target by two cameras successively detecting it. The second is a temporal
one. It is a translation between observations of two different targets by the same camera
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after each detection. The re-identification is then based on the matching between different
observations.

Simulations and Real World Deployments: A simulation tool was developed for the
purpose of testing the network model. It offers the possibility to simulate several cam-
eras, along with theirs positions, orientation and field of view, as well as targets with
different characteristics such as shape, size, velocity and path followed in the network.
The simulator has been used in evaluating the model proposed in this work with different
scenarios. Following this simulation, we deployed our methods in a platform of intelligent
cameras. The choice of very low-resolution sensors decreases privacy issues, costs, com-
puting requirements and energy consumption. A functional set of custom Ant-Cams was
designed according to the project specifications: very low-resolution images limited to
900 pixels, light processing capabilities with a Field Programmable Gate Array (FPGA)
and advanced communication ability thanks to SmartMesh IP protocol.

4 Thesis outline

The remaining chapters of this thesis are organized as follows:

» Chapter 2 details the network model. This Chapter introduces the merging of the
ant world and smart cameras to enable fully distributed tracking. It highlights how
the camera can be fully autonomous and acts as a autonomous agent, which leads
to a self-organized network without any centralized host.

* Chapter 3 describes how our model performs distributed tracking tasks. Further-
more, it outlines various uncertainties and their impact on the overall performance
of the network. ,

* Chapter 4 The proposed approach is first evaluated with a simulation environment.
This chapter gives an overview of the used simulator and its features. First, we
assess the self-organization of the network based on each camera strategies learnt
during run-time. Thus, we evaluate the network robustness while accomplishing a
distributed tracking. Finally, the CamRank-In and CamRank-Out are evaluated and
their importance is highlighted.

* Chapter 5 introduces the hardware platform developed during this thesis called Lob-
Net. This platform is distinguished by its low specifications: 900 pixels for the
image resolution, plain processing with MAX10 FPGA but talkative thanks to the
Smart Mesh IP protocol used. It depicts how Ant-Cams have been deployed. We
delineate the environment setup and different scenarios scheduled. Thus, the net-
work model presented previously is evaluated. Furthermore, this chapter discusses
the different real environment problems and their impact on the overall performance
of the cameras and the whole network.

* Finally, chapter 6 draws the conclusion of the work presented in this thesis and
outlines the possible perspectives.
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1 Introduction

While establishing a wireless Smart Camera Network (SCN), a priori knowledge of net-
work topology, environmental characteristics or neighborhood relations between cameras
can significantly improve network surveillance performance. However, such task requires
the intervention of a central host, such as a server, or a human administrator to establish
a well-designed implementation plan. This plan must take into consideration the exact
number of cameras, the installation cost, the cameras’ calibration(zoom, field of view,
direction) and configuration, and the flexibility of the arrangement according to environ-
mental concerns. However, under certain conditions, this information is unavailable. This
risk increases particularly when the network is intended for an uncontrolled environment
such as control at the bottom of an ocean, spying on the battlefield, or landing in a large
warehouse, or at home. In this case, the sensors are usually deployed by dropping from
aircraft or missile, catapulting, but can also be placed one by one with the assistance of a
human operator or by a robot.

These uncontrolled parameters are not appearing only in pre-deployment phase, but even
afterwards. Indeed, devices can cause change in the network topology, either by disap-
pearing, due to malfunctioning or lack of power or problem of reachability due to noise
jamming or interference. This is also can be due to task details which can lead the camera
to change the hardware parameters to better perform this task. Topology is also one of
the relevant metrics to be taken into account in the assessment. Indeed, it corresponds to
the logical architecture of a network, defining the links between the motes of the network
and a possible hierarchy between them.

While establishing a SCN, the desired applications influence the choices of hardware
and software parameters. New generation of SCN refuse to comply with the unique im-
plementation and a prior fixed infrastructure support. The main challenge in this case
is the self-organization: a set of independent motes must independently build a fully au-
tonomous network without the need of human interaction or any specific knowledge about
the network. Two main reasons for such a choice: (i) it is challenging to identify an op-
timal structure to effectively cover the environment. (ii) the latter can evolve over time
(eg; light condition). For this, new devices can be either re-configurable or/and recali-
brable. The former refers to all the software parameters of the device such as its topology
and processing capabilities. The latter allows to change the hardware parameters like its
direction, zoom and position. The SCN should also become self-healing. Indeed, Self-
organization over long operating cycles must consider the failure of links, the emergence
of new nodes and the shutdown of nodes due to battery depletion or malfunction.

2 Overview

In parallel to the plausible alterations in the camera architecture, another paradigm shift is
occurring in the management and coordination of systems. Commencing with centralized
systems control, we migrate to a distributed management system and further to widely
distributed and self-organized systems. The paradigm is obviously determined by the
system and its purpose.
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TABLE II.1: Comparison of conceivable network configurations.

Centralized Decentralized Distributed
\3 A 4
Points of Failure Maintenance eoe oo °
Fault Tolerance Stability ° oo eee
Scalability ° oo XX
Ease of development Creation oo X °
Evolution Diversity ° X oo

2.1 Centralized Network

When we refer to a one-computer system, its peripherals and, eventually, a remote sys-
tem, we use the term monolithic. The term "centralized" designates a unique centralized
control port for a set of systems. Nevertheless, the two terms have often been used in the
same context when dealing with embedded systems and control methodologies, albeit in
a much more "centralized" way. Although alternative control paradigms have been de-
signed, centralized control may remain the most desirable approach in certain application
environments. The key strengths are its simplicity and efficiency. Indeed, the imple-
mentation is straightforward. In fact, a well-defined control process responsible for the
upkeep of all subsystems should be defined. All information concerning the latter such as
addresses, links, tasks is part of the setup and implementation of this process. The latter
entails a reconfiguration, probably manual, each time a network parameter such as topol-
ogy is modified. However, this update remains fast since there is only one machine to
update. Another advantage is the easy detachment of a node from the system. All that is
necessary is to remove the connection between the both. This is important especially when
a node stops working for any reason. This has no direct impact on the network. On the
other hand, there are disadvantages to this system: transparency, scalability and degrada-
tion. Transparency refers to more flexible resources and increased scalability based on the
number of systems under control, with the possibility of dynamic configuration changes
at runtime. Degradation is more worrisome, wherein in the eventuality of a fault at the
central node, the overall system undergoes a sudden failure.

2.2 Decentralized Network

Multi-level architectures are a straightforward extension of the subdivision of processes
into processing units and a data level. The various tiers are directly related to the applica-
tion’s logical structure. Indeed, the operations are logically and physically segregated on
several devices, each device being adjusted to a specific set of operations.

2.3 Distributed Network

According to Tanenbaum, a suitable definition of distributed system that outlines all the
relevant attributes of distributed systems would be: A distributed system is a collection of
independent computers that appear to its users as a single coherent system.
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From a high-level point of view, the nodes that make up a peer-to-peer system are all
equal. These nodes represent the functions to be performed at the network level to ac-
complish the requested task. As a result, much of the interaction between the nodes is
symmetrical: each node with its process will act both as an actuator and a servitor. Given
this symmetrical behavior, a problem arises regarding the organization of these nodes in
the network with this peer-to-peer architecture. In these networks, the process represents
the nodes and the links symbolize the communication between these nodes. In such a
situation, a process may not communicate directly with another random process, but is
expected to provide prompts as requested by the tasks.

Ressources: All available resources must be conveniently accessed from each node.
These include processes to localize and assess resources such as data or processing units.
Meanwhile, interoperability challenges should be tackled through abstraction layers and
open interfaces. Linking nodes and resources also facilitates collaboration and the ex-
change of useful information. In a generic situation, almost everything can be swapped
between nodes. In this context, we refer to distributed entry as distributed perception in
the case of Multiview systems, for example, or distributed delivery as the result of local
processing transferred over the network. Sharing resources is done in a cooperative way
based on well-fixed algorithm.

Transparency: Hiding the fact that its processes and resources are physically distributed
over several nodes is a major purpose of a distributed system. A system is considered
transparent if it can represent itself as if it were one computing system. The transparency
concept encompasses various dimensions of a distributed system, like location. System
transparency masks differences in both the representation of data and how resources can
be gained by nodes. This degree of transparency reflects the quality of a distributed sys-
tem. In addition, transparency mechanisms permit the integration of new nodes and assets
that may not have been previously identified at the developing time. Transparency of the
distribution is typically deemed desirable to facilitate implementation. Nevertheless, this
is obviously not always a good idea. A trade-off between the degree of transparency and
the performance of the system must be carefully considered.

Scalability: The scalability of the system concerns its size and manageability. Size can
be the number of nodes and the ability to easily scale and add nodes and resources without
degrading performance, or the geographic size that affects not only communication but
also responses to needs that require collaboration. Control of the system, its links and
resources are essential to achieve this scalability. Indeed, nodes do not have complete
information on the global system and do not necessarily have a global clock, they make
decisions based only on local information. For that, the failure of a machine does not ruin
the algorithm.

Distributed systems provide a control paradigm that focuses on systems with distributed
activities. They enable efficient use of resources with a high degree of fault tolerance by
using tools such as asynchronous communication, distribution, replication and caching.
These mechanisms tackle the issues of centralized control, i.e. transparency and scalabil-
ity, but can in fact drive other concerns such as coherence issues. Indeed, a high number of
nodes or insufficient resources can cause synchronization and scalability problems. Other
paradigms must be used to control the system.
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Distributed computing systems are commonly adopted for high-performance solutions,
typically from the parallel computing domain. Nevertheless, just because distributed sys-
tems can be built does not make it a good strategy. Indeed, it is difficult to design and
debug algorithms for each node considering its neighborhood and its calibration, for ex-
ample. The complexity increases with the growing number of nodes. For this purpose,
we distinguish two categories of networks: first, those that are self-organized and second,
those that are not.

2.3.1 Pooling

In multi-camera tracking, a fundamental challenge is how to coordinate the camera’s
tasks. This coordination involves vast amounts of resources, such as memory and process-
ing power of individual cameras. To do this, the primary tasks of detecting and tracking
objects by a single camera must be enhanced by a coordination mechanism. These strate-
gies vary according to the required assumptions for the camera network, data distribution
and processing, and the resources required. We discuss the related work by considering
the following aspects:

Time Synchronization: The information content of an image can beunudable without
appropriate reference to when the image was acquired. Since many processing tasks that
involve more than one camera depend on snapshots of highly synchronized cameras, this
permits to derive an accurate relationship between the cameras according to the occur-
rence of objects.

Calibration: In camera networks, the majority of image processing algorithms request
information on the location of camera nodes as well as camera orientation. This can be
achieved through a camera calibration procedure, which recovers details of the camera’s
intrinsic and extrinsic properties. The assessment of calibration settings generally entails
knowledge of a series of characteristic point matches between camera images.

Architectures: Often, cameras are associated with other kinds of sensors in a hetero-
geneous network, so that cameras are only activated when an event is detected by other
sensors used in the network. A further possibility is the use of cameras with different
hardware architectures.

FOV: The issue of overlapping and non-overlapping fields of view is not a mere cali-
bration problem, but rather a processing concern. Indeed, the proposed techniques do not
automatically work with cameras with overlapping FOVs as well as with cameras with
non-overlapping FOVs.

Processing: The nature of the target application influences the way cameras process data,
which has a direct impact on the expected end-to-end quality and complexity in terms
of energy consumption, processing time and IT resources required. For this purpose, the
processing can be completely distributed, partially distributed or centralized. Regardless
of the choice, cameras must take into consideration the results of others in order to avoid
sending the same data in the case of central processing or to benefit from the results of
the other cameras to continue its task in the distributed system.
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Prior knowledge: An a priori knowledge of the position of each camera or of neighbor-
hood relations may be required to distribute activity in the network. It can be preset for all
cameras both manually or in a previous learning phase. This knowledge can be bypassed
as it can be difficult to set it up in particular contexts, such as the presence of a large
number of cameras. nevertheless, [ELYR14] have shown that the network can remain
effective by implementing new approaches of network construction.

Category: All the parameters presented above can either be set in pre-arranged config-
uration without adjustment: static network; or can fluctuate over time according to the
external or internal aspects: dynamic network. Indeed, we are referring to the dynamism
of the network in terms of both the linkages between the cameras or in the dynamism of
the camera itself. The irst one evokes the policies of communication and data interchange
among cameras that can vary: reconfiguration (related to the software part). The latter is
about the straightforward adjustment of the calibration level: recalibration. This concerns
factors such as positions, zooms and direction, which can be adapted either in response to
the environment (as is the case with cameras positioned on mobile robots), or to provide
better visibility to satisfy the needs of the processing.
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Table I1.2 covers the above-mentioned properties of several platforms within the dis-
tributed camera network. These platforms operate with several levels of specifications.
The further details of these selections will be discussed in the subsequent section, as well
as cameras behavior.

3 Self-organization

Nature is always used as an example for processes in different fields such as technol-
ogy and economics. It features many phenomena that can describe and explain different
concepts such as connecting, communicating and self-organizing. This latter is revealed
particularly in the animals’ kingdom where behavior attracts interest of scientists who try
to model the animals’ behaviors and apply it in different fields. In such systems, commu-
nication has become a key point to understand and analyze behavior. What may interest
us here are animals which can interact together and then accomplishing tasks together.
Birds are one of the examples; their synchronous flashing is a spectacular example for
self-organization, gathering in trees and then flashing in unison using some distributed
mechanisms which were sources of study for a long time before being modeled by ap-
plying the coupled-oscillators theory. This latter is then utilized in different areas such
as neuroscience and physics for coordination and synchronization. Fish swim in well-
structured shoals with optimal motions, opening a discussion on how they can coordinate
their motion to move without disturbing others motion. Ants are attractive for their ca-
pacity to find the shortest route to their destination. Hence, various algorithms such as
ant colony optimization algorithm have been developed following the ants’ behavior. It
is a class of optimization algorithms inspired from ant colony behavior, and representing
multi-agent systems as artificial ants for various systems such as internet or vehicle rout-
ing.

The major key of such a success is the collaboration between them. However, their or-
ganizational structure does not require any central coordination, allowing only "point to
point" interaction, giving them the opportunity to withstanding environmental changes
and influences. This high level of self-organization, showing its robustness and efficiency,
addresses the question of how networked devices can be designed to reach such a level of
self-organization. From a high-level point of view, the nodes that make up a peer-to-peer
system are all identical. These nodes represent a set of functions to be performed at the
network level to accomplish the requested task. As a result, much of the interaction be-
tween the nodes is symmetrical: each node with its process will act both as an actuator and
a servitor. Given this symmetrical behavior, a problem arises regarding the organization
of these nodes in the network with this peer-to-peer architecture. In these networks, the
process represents the nodes and the links symbolize the communication between these
nodes. In such a situation, a process may not communicate directly with another random
process but is expected to provide prompts as required by the tasks.

4 Network construction

Starting from completely unknown environment, logical topology can be find out by
tracking [JavO8, WL 13, CMCPO08] or association between pairs of camera [KHN10]. This
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can be done in case of non overlapping cameras [LLP15, JavO8] or completely over-
lapping views [BJKD12a, SR11]. During runtime, event-based approaches [MEB04a]
are used for topology inference. Indeed, spatio-temporal correlation between cameras
[NRCCO7,LLP15], as well as statistical dependence [DGO5] can figure out useful links.
This can require calibration to be performed in advance [RBSF] or not [MPCO06]. The
construction is not only about the pre-deployment phase, but should be kept updated dur-
ing runtime, prediction-feedback relations improve data association in a unsupervised
way [MBKQ™ 16] based on positively-correlated observations [MBKQ ™ 16]. Links can
be created locally with neighbors [MBKQ™ 16] or extracted to further ones [KDIM17].

These links can be established according to several datatypes. First, it is the basic informa-
tion retrieved thanks to the wireless communication technology employed. Alternatively,
this can be performed according to visual information, using a background construction
or images. This does not concern us since it is impossible to do it with the qualities of the
images involved. Finally, this can be achieved with the processing output of each camera
as a result of the events.

4.1 Technological based method

In Wireless Sensor Network (WSN), a range of technologies are available to establish
the spatial configuration of a network. On the hardware side, (GPS) is the most widely
adopted solution. However, in addition to high material costs and high energy consump-
tion, it fails to perform efficiently in indoor environments. For this purpose, researchers
have been oriented towards Location Based Services (LBS); It is the process of determin-
ing the location of unknown sensors. This process retrieves the relative positions of the
sensors with regard to the others. The term connecting a mote' usually evokes wireless
communications and technologies such as Wireless Fidelity (Wi-Fi), Bluetooth or cellu-
lar. These protocols have different characteristics (rate, range, energy consumption, cost,
etc.) allowing them to meet different needs. Before building the network, it is important to
define several parameters that will allow a fully understand how the protocols work and to
provide some answers: In what environment will the mote evolve (Urban, underground,
rural, indoor or outdoor space)? How much information, data to be communicated per
day? How often will this data be delivered? Is it a moving or fixed mote? The mote must
be traced in real time? What type of power source supplies the mote (mains, battery or
battery)? The mote needs to be geolocated? If so, what is the tolerated accuracy?

AL A
A i A i A
A
(A) (B) (©) (D)
FIGURE II.1: (A) Star topology, (B) Cellular topology (C) Tree topology and (D) Mesh topol-

ogy

Even in a wholly unknown environment, the technology utilized provides a preliminary
overview of the network topology.

Isensor node
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Star model: The simplest model for connecting the motes together is the star model as
illustrated in Fig.Il.1a. Each part is connected to a central mote while remaining indepen-
dent of the other mote to keep a rather low complexity and allow a fast inference during
the learning process. This topology makes it easy to insert or remove nodes without im-
pacting the rest of the network. In the meantime, all network intelligence is clustered on
a single node, making it easier to manage the network. However, if the concentrator has a
technical problem, then the whole network is down. This type of topology is used exten-
sively in indoor environments (especially with Wi-Fi) or in mobile technologies (clothing,
bracelets, etc. connected) where the smartphone acts as a gateway. This topology is pro-
posed by various technologies such as Bluetooth, Near-Field Communication (NCF) and
Wi-Fi.

Mesh model: The mesh models require all motes to be connected to all others. This grants
denser description and therefore permit more extensive interactions between motes. The
main disadvantages are that, as a result, the complexity of learning links and inference is
exponential depending on the number of motes, as well as high energy consumption and
the risk of collision of the exchanged packets. Figure II.1d shows a mesh topology fully
connected. This topology is offered by various technologies such as Zigbee, Z-Wave,
CPL and SmartMesh IP.

Broadcast model: In this type of topology, a mote transmits a message without specifying
a particular receiver. This means that the message is analyzed by all the objects that have
received the message correctly. This operation is suitable when several devices are to be
reached without distinction, as is the case with the LoRaWAN and Sigfox protocols, for
example. One of major problem of this model is the high-power consumption.

Cellular model: A cellular topology is based on the division of a territory into areas
called cells. The radius of a cell can vary from a few hundred meters (urban environment)
to several kilometers (rural environment). At the center of the cell, an antenna ensures
the radio link between the objects and the Internet. The principle is summarized in the
following figure II.1b where each cell has a different color to indicate that the antenna
uses a different radio frequency band than the neighboring cells. This type of topology
is the basis of mobile networks (e. g. 2G/Global System for Mobile Communications
(GSM), 3G/Universal Mobile Telecommunications System (UMTS) and 4G/Long Term
Evolution (LTE)).

The topologies presented above refer to the physical topology of a network which is de-
termined by the capabilities of the network access devices, the required level of control
or fault tolerance and the cost associated with the wiring or telecommunications circuits.
These are the layout of the wiring, node locations and links between the nodes. The
physical locations are then determined by means of the so-called anchor? or beacon refer-
ence sensors. The latter is generally deposited manually or equipped with a GPS module.
For these relative positions, communication technologies employed by these sensors are
generally used. The localization of each mote is a two-step process: a physical distance
measurement between motes followed by an estimation of the location based on the mea-
sured distances.

These technological based Method can be summarized in four main categories:

2 Anchor nodes are nodes whose location is known
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* Statistical Approximation methods: consist in implementing standard approxima-
tion methods such as Semidefinite Programming, Least Square, Maximum Likeli-
hood, Multi-Dimensional Scaling... to estimate location.

* Geometric methods: consist on estimating location by exploiting geometric param-
eters such as triangular information literation or angulation.

 Path planning: consist on using an anchor node moving in a specified path in the
network to find out the whole network localization.

* Mobility model: consists on relying on mobility pattern of some motes like random
walk or random direction...

These technological based algorithms estimate location information based on the range-
based measurement parameters such as Received Signal Strength (RSS), Link quality
indicator (LQI), Time of Arrivals (ToA), Time Difference of Arrivals (TDoA) or Angle
of Arrivals (AoA).

On the other hand, another concept of topology has been identified: logical topology. It
is defined as the way in which signals act on the network, or the way in which data passes
from one device to another across the network without regard to the physical interconnec-
tion of the devices. Logical topology is used associated to the routing protocols, allowing
the network to not get stuck in its physical topology, and remains important to define the
network performance. For instance, starting from the Mesh model, a logical topology
can make it possible to prioritize a Mesh topology to define levels in order to manage the
network more efficiently. In this case, we obtain the "cluster tree", Fig.Il.1c. Tree models
define a hierarchy of motes where each has only one parent and therefore no connection
is allowed between the different branches. This structure also allows for an effective in-
ference. However, trees require a study of the environment to be covered. This topology
is widely used in home automation, where some objects cannot connect to the gateway
because of distance or noise and surrounding obstacles.

Protocols such as flooding and Ad hoc On Demand Distance Vector (AODV) are usually
used to optimize the network performance and define its logical topology. In the network
context, communications depend on various parameters related the application.

4.2 Event-based network

SSN systems can be generally classified into two categories according to how they gather
data: event driven or time driven. The former one refers to the category of periodic reports
on environmental or habitat phenomena observed. The other is intended to capture as
much data as feasible. after an relevant event has triggered sensor nodes. Obviously, the
baseline scenario has a major impact on all the significant choices for the SSN protocols
used.

Event-driven models give a valuable framework for the analysis of IoT systems. This
section presents the event-driven analysis procedures to determine the main design criteria
for IoT systems. Event analysis permits us to extract the properties of the network event
population over time.



34 Chapter 1I. Self-organized network

4.2.1 Whatis an event?

At the level of a camera, an event is a change of state resulting from an external stimulus.
As shown in Figure 1.2, two sorts are distinguished. External events that are detection
following environmental measures and internal events that are notifications from other
cameras. These notifications are generated by the cameras following external events.
Either to prevent other cameras from a possible future detection, or to acknowledge the
reception of an expected target.

Environment
perception

External events

Sensing

)

Processing

!

Prediction
& feedback

== Communication

Internal events

FIGURE II.2: Internal and external event in the Ant-Cam

Our model is an event-based one, each Ant-Cam starts a task depending on the event gen-
erated. Hence, we suppose that a camera can autonomously detect targets appearing in
its FOV and extract a suitable description. Furthermore, in the absence of any neighbour-
hood information in the beginning, the camera starts by broadcasting the information in
the network thanks to the communication technology. However, even if our model does
not require to know the topology a priori, the broadcasting method to exchange infor-
mation is inefficient in terms of communication cost. Thus, this method is used initially
until building up the vision graph. This latter will be based on shared activities between
two cameras detecting respectively the same target. Over time, the camera will be able
to identify relevant neighbours who may share theirs internal events. The communica-
tion overhead will be significantly scaled down. The events are classified in two parts:
internal events and external event. Internal event are the notifications of the others cam-
eras, however the external events correspond to the detections of a target appearing in its
FOV. From the perspective of an individual camera, it has 3 main tasks: The first consists
of detecting each target appearing in its FOV by selecting the most suitable software re-
sources. This task gives it the ability to perform the second task, which is re-identification
based on the information shared by the other cameras. The third task concerns the ex-
change of information between the cameras. This can either be as a prediction: sending
corresponding and appropriate information to the other cameras; or feedback to confirm
re-identification.
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FIGURE I1.3: Illustration of the local network topology.

The Fig.Il.3 describes the inputs and outputs of each Ant-Cam in the network. Each
camera may receive three different inputs generated either from its own activity or others’
one.

4.2.1.a Inputs

A External Event

Observation: It is the only external event (I3 on Fig. I1.3) generated when a target is
detected by the Ant-Cam. In case when it is predated by a prediction, this observation is
used to confirm or not the prediction. At this stage, the camera is required to select its
own activity based on the local observations, the available resources and the prediction
received. Furthermore, it should estimate the certainty of this activity to better control the
impact of its activity on the overall performance of the network.
An event is is composed by :

Event = {Feature, time_gen, time_release } (IL.1)

The features give the semantics of the event, it will be described in the next section. The
source corresponds to the camera releasing the prediction in the network. The temporal
properties of an event is estimated important to understand the event. The event is created
at time_gen while released at time_release. These two parameters are used to estimate
the life time of each event occurring in the network and defined by:

event_life_time = time_release — time_gen (I1.2)

Important for event analysis, the event_life_time can be a classifier for event and also
gives information such as the velocity of the target detected.
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B Internal Event

Prediction: It is an internal event (I1 on Fig. I1.3) in the network resulting from activity
in previous nodes (in terms of object trajectories), it is sent to advertise the camera and
predict a future event to be observed. The camera then is ready to observe the target,
after the delay estimated by the previous cameras. The previous nodes should label the
target coherently to make the re-identification possible. This prediction contains different
information about the target such as its visual features and previous trajectory. This will
be detailed in the next section.
An event is is composed by :

Event = {Feature, life_time, time_sent, time_received, source} (I1.3)

Acknowledgment: Internal event (I2 on Fig. I1.3) from the following nodes which con-
firms a predicted event was received. When the prediction sent to the others cameras is
confirmed by an observation, a feedback is sent to the camera to confirm. This acknowl-
edgment contains a reward metric, highlighting the certitude of the re-identification. De-
pending on this parameter, the link strength between the 2 cameras will be reduced or on
contrary will rise up. This link depict the amount of shared target detected respectively
by these 2 cameras.

An event is is composed by :

Event = {path, source,event_con fidence} (IL.4)

For the acknowledgment, the event_con fidence corresponds to the reidentification accu-
racy. The source represents the camera generating the event, while the path corresponds
to the target’s path.

4.2.1.b  Outputs

A Internal Event The outputs are generated by the camera itself after every event,
and sent to the others cameras to inform about the fulfillment.

Prediction: Internal event (O1 on Fig. I1.3) sent to neighbors predicting that a specific
event should be received at a given time. It can be sent to more than 1 camera and wait
for their answers. This prediction is generated after detecting a target and extracting a
complete set of characteristics. From the perspective of the receiving camera, it is the
input (I1 on Fig. 11.3).

Event_prediction = {path_time, source, event_con fidence} (IL.5)

Acknowledgment: Internal event (O2 on Fig. I1.3) sent back to previous node which
confirms a predicted event was indeed observed. When a prediction is received followed
by an observation, the camera may decide whether it is the same or not. In the former
case, a feedback is sent to the previous camera conveying information to help improve the
prediction of future similar events.
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Event_ack = {event_con fidence} (I1L.6)

B External Event In our case, and contrary to animals kingdom here, we do not
consider any external output. We suppose that the camera does not have any action in the
environment

5 Network description

5.1 Network model

Let’s consider a set of cameras C. The network encompassing these cameras is defined
as:

NM = {C,G!, G0, GP}! (IL7)

where G” represents the place graph, and GL© and G! represent the output and input
link graphs. The input graph of a camera gathers the links it has with the cameras from
which it receives the predictions, and thus the targets. The output graph is for the cameras
to which it provides the predictions. Both GL! and GO represent the vision graph and
are defined as :

Gt ={C L}, L= {py} (IL8)

where C is a set of cameras with links L. p;; € L represents a weighted connection
between C; and C;. This connection expresses the likelihood and rates of the object’s
re-appearance in C; after C;. Thus, each camera C; creates its neighboring camera set
Nb(C;). Thus, for each camera C;, the graphs are created independently and defined by:

Nb(Cl) - CjGN,|pi]‘>0 (119)

GF = {Nb(C)),L;} (IL.10)

where L; is the link set of the camera 7, and Gl-L correspond to the graph link of the camera
i

At each instant t, the network is defined by state s!, which is itself defined by states s; of
each camera C;, so the state vector representing the network is defined as:

st ={s1,...,sn5} (IL.11)

where N is the number of the cameras in the network. Each camera may observe the
targets moving in the network, either all of them or a part of them. The vector of this
observation is then defined as:
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200 = (2K, 2K (11.12)
At each instant t, the network predicts its future state:

§H = Fl(,G!(s',s' 7, ., 8)) (IL13)

where G'(-) represents the non-markovian chain and F!(-) represents the state transition
function. The state vector 57! at the sample time ¢ + 1 then reverts to a dependency of
the preceding states vector §t,..,§0, and the measurements conducted gkt.

TABLE II.3: Summary of used notation for the network model

Index corresponding
NM Network Model
zt Network observation at instant t
st Network state at instant t
g(k't) observation of camera Kk at instant t
z’]‘\/I observation of target M from camera k
SN state of camera N
Gt Link graph
GLo Output Link graph
Gl Input graph
GP Place Link graph

5.2 Camera model

Dealing with fully distributed sensors require defining well the camera as an agent inde-
pendent of the whole network model. Thus, the camera reacts autonomously in response
to the environment solicitation. The camera is able to develop its perceptual understand-
ing and performance [Dep09]. The primary concern is improve its predictability for the
next states by including all the information received (either prediction, positive or negative
feedback) in its determinism mechanisms. These latter underlay the camera knowledge
to improve the self-learning and self-regulation capability:

CM = {K,, G*,GP CR!,CR°}! (1.14)

where Ky, corresponds to the processing resource available in the camera, defining its ex-
pertise. CR! is the CamRank-In and CR? is the CamRank-Out. G’ is the Link graph of
camera, while G}: corresponds to the place graph of camera. The G* is then defined as:

Gt = {GrO, GH}! (IL.15)
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where GO is the Output Link graph of the camera. It corresponds to the camera’s link to

the neighbors detecting the targets just before. The G]%I is the input graph of the camera,
it corresponds to the camera’s link with the neighbors detecting the targets immediately
after, all at an instant .

5.2.1 Expertise

It characterizes the cameras knowledge and capacities of evaluating the current situation.
The declarative knowledge of each camera, which is identical for all the cameras, leads
the camera to guilelessly respond to any external stimulus. It is provided here with the
available treatments. The internal event is then primordial for the regulation and control
of learning. The prediction-acknowledges messages allow the camera to create its own
procedures and strategies to automatically perform the reidentification tasks better. The
camera is then able to know how to monitor any event occurring in the network. This
strategic knowledge achieves a better level of robustness. Typically, the strategies can
be created based on the environment perception. Targets can be classified based on the
type. This is possible when considering pedestrians, cars, dogs and so on, or even when
considering all pedestrians but in different perspectives: side, back or front appearances.
The path can also be a critical key while choosing the processing. This will be detailed in
the next section. The history of the network helps to be aware of distracting stimulus and
take decision more efficiently.

5.2.2 Links

Starting from a disordered system, the camera should be able to learn about its envi-
ronment only from local interactions with its neighborhood. Here, we can consider two
notions of neighborhood. First, it is the neighborhood discovered by the technology used.
In other words, the cameras may receive notification using the communication capacity
for the broadcasting mode. The second one is more related to the cameras which share
activities with this camera. For instance, a target moving from camera C; to camera C;
creates a link between these two cameras. Here, we focus more on the second type, and
to be more precise, we distinguish input and output links. For the target moving from C;

to C;, this link will be considered as G for camera C; and GL© for camera C;.

Furthermore, we choose not to work with the Markovian model. Thus, links will not be
presented by matrix N*N relating each two cameras, where N is the number of cameras
in the network. The links will depend on the path followed by the target before arriving.
Therefore, these links will be presented by tensor N*N*...*N, considering the number of
cameras which constructs the chosen path.

The resulting network is wholly decentralized, where each camera C; manages its own
connections. The links are important for each camera to understand and construct the
environment. Meanwhile, the links differ from one camera to another depending on
the event shared between the two cameras. These links are not equally important. The
strength of each link depends on the activities shared between both cameras.

In figure 11.4, (a) represents the initial state where no connection is established, (b) rep-
resents the first connection established via the broadcast communication mode allowing
to discover the neighbors, (c) represents the links created during the run time based on
the occurence of the events in the network. In both I1.4(a) and I1.4(b), red links represent
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TABLE II.4: Summary of used notation for the camera model

Index corresponding
CM Camera Model
G,f Link graph of camera K
GLO  Output Link graph of camera K
Gy I Input graph of camera K

G,f Place Link graph of camera K
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FIGURE I1.4: Example of links created between cameras.

Red links represent the output links and constitute the output link graph while the black
one represent the input links and constitute the input link graph. (a) represents the
network at instant t=0 where no connection is defined. (b) represents the network at
instant t=1 where the camera establish connections thanks to the communication
allowed, links here equally important. (c) represents the network during runtime where
links strength change depending on the events occurring.

the output links of camera C and build the output vision graph Géo, while the black links
represent the input links and build the input link graph Gél .

5.2.3 The CamRank

Links created between cameras can be an indication about the importance of the camera
in the network. Building graphs contributes to a holistic overview of the network and the
inter relatedness of the cameras. Unfortunately, this might not be satisfactory for network
analysis. Indeed, if the investigation of the required number of cameras, their arrange-
ment and linkages is not carried out beforehand, this is worthwhile to be considered after
a period of work. In fact, it is necessary to evaluate the dispersion of cameras in the
environment, and refine it if appropriate.

By analogy to PageRank proposed by google to evaluate the importance of the webpages,
we introduce two CamRank: CamRank-In and CamRank-Out : the first related to the
target moving in to the FOV of the camera and coming from other cameras, while the latter
is related to the targets leaving the FOVs and going to others one. The CamRank value
of a camera corresponds to the relative frequency the target pass through that camera,
assuming that the target goes on infinitely.

The rank of the camera depends on its activities in the network. The more targets a camera
receives, the higher its rank-in is, following the concept of the pagerank [Frall] used by
research engine to evaluate a page. An Ant-Cam’s rank will be high if the neighbors
relating to it have a high rank. This ranking provides information about the importance of
that camera in the network.
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FIGURE II.5: Example of a camera network scenario

5.2.3.a CamRank-In The CamRank-In expresses the importance of the camera in
term of incoming event. It is represented by the target moving from the other cameras
to the one concerned. Each camera has then a notion of its own self-importance. It is
evaluated following:

! B ,
CRY(C) =(1—a)+ax ZLI— (I.16)
» CR!(Cy) is the CR! for the Ant-Cam Cy

» CR!(C;) is the CR! of Ant-Cams Ci which send internal event I1 to the Ant-Cam
Ck.

L'(G;) is the number of C;’s neighbors which link to Cy or outgoing links.

* w« is a learning factor that can be set at 0.75.

Here, we take the example of node Cy, following the graph presented in Fig I1.5, Cy is the
only camera which send internal stimulus to Cy. This latter has 2 neighbors with outgoing
links, amongst them, it spreads targets out. Here C; and Cs, which gives:

CR'(Cy)

CRI(C))=(1—a)+ax (I1.17)

5.23.b CamRank-Out The CamRank-Out expresses the importance of the camera
in term of outcoming event. It is represented by the target moving from the concerned
camera to other cameras. It evaluated following:

RO(C))

CRO(C)=(1—a) +ax f CL (I1.18)
i=0

= LO(C)
i£k
» CRO(Cy) is the CRO for the Ant-Cam Cy,

» CRO(C;) is the CRO of the Ant-Cams C; which send the event O1 to the Ant-Cam
Cr

LO(C;) is the number of Ant-Cams which send the event O2 to C;

* « is a learning factor that can be set at 0.75
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Here, we take the example of node Cy, following the graph presented in Fig 2, C4 receives
internal stimulis from 2 cameras Cg and Cs and has only one outgoing link to Cq, which

give:
CRO(C4) = (1 — &) + a * (CRO(Cs) + CRO(Cy)). (IL19)
TABLE 1I.5: CRO/CRI

Ant-Cam HIGH CRI LOW CRI

HIGH CRO mean that the camera has re- mean that the camera has re-
ceived a lot of targets and re- leased a lot of targets. Here,
leased most of them, hence those targets was not nec-
becoming an important inter- essary spreading from other
mediate Ant-Cam cameras, this camera is a start

point of the network.
LOW CRO point out that the camera has indicate that the the camera

received a lot of targets with-
out releasing them to other
cameras, so it has located the

does not receive or release a
lot of targets, and it is an in-
termediate Ant-Cam

destination of the target

5.3 Target model

While re-identification is based on the prediction received, the observation and the history
of the network, the camera may not be able to make the decision about re-identification.
Thus, the camera can handover the re-identification responsibility with the neighbors who
are most likely going to observe the target later. The camera, depending on the situation,
will deal with two different approaches: top-down and bottom-up approach. The later
does not take any interest on the final objectives. Once a target is detected, the camera will
harvest all the available characteristics, merge and process them to extract all information
may it be or not useful for achieving its goal. It is the case when no prediction anticipate
the arrival of that target. Conversely, top-down approaches start with objectives, mainly
received from previous camera as a prediction, and select useful information and the best
strategies that fit the situation, to finally go down to the processing level and look for
sensor data adapted to the goal to be achieved. This approach and their directions for use
will be detailed in the next section.

In fact, an object description is in reality a parameterization process which aim to depict
the best the situation with a data structure made up of a set of primitives and of relations
among them. Indeed, a simple listing of visual primitives can not afford a sufficient
description that can be used later to re-identify. Thus, to decide about the current situation,
we choose not to limit the re-identification to an evaluation of the correspondences of the
visual appearances of the targets. Thus, the decision depends on 2 main factors: (i) the
target itself and its characteristics based on its observations by the previous cameras, (ii)
the network behaviour and its history.
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FIGURE II.6: Relationship between target vector x and cameras.
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FIGURE I1.7: Relationship between target vector x and cameras.

Targets could be defined by the observations of all the cameras N at each instant f as in
figure I1.6. We choose to limit the observation to one camera at an instant ¢ I1.7.

5.3.1 Target appearances

Appearance is definitely the most revealing factor when it comes to monitoring targets
through time, both within and across the cameras. Unfortunately, two confusing issues
complicate appearance matching for tracking and re-identifying targets in the network.
First, the observations are ambiguous to the extent that different targets can be wrongly
confused with each other. Inversely, a variation in lighting, position, angle or other el-
ements may result in differences in appearance for a given target, and thus may not be
re-identified as the same in two different cameras.

Thus, in re-identification tasks in camera network, human appearance can be modeled
by visual appearances such as color [KHN10, JavO8, WL13] or texture [DN12]. Track-
ing in multi-camera has been reformulated as matching features such as color and texture
between two observations in two cameras. When target is appearing in more than one
camera [DN12], learning data association could be on unsupervised way, usually based
on the colors also [ZPIE17, MWFF17]. More adapted metrics have been introduced such
as time occurency or spatial correlation [ARGO07a].

To accomplish this, we implement a set of parameters ¥ € X delineating each target:
1. Visual features: e.g., target color, velocity, category
2. Temporal information: detection time, path time, event life time

3. Spatial information: path through the network

5.3.1.a Visual information They are all what may characterize the appearance of a
target such as color, velocity, distance category and so on. As we are dealing with low
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quality images, we develop a new model for tracking and This parame data ters X, is
detailed in chapter V.

5.3.1.b Temporal information Each Ant-Cam can be seen as a neuron of a spiking
neural network, where spikes are event-like signals travelling between neurons at specific
times. The relative timing of the spikes in different neurons can be used for learning, as
in the spike-timing-dependent-plasticity model [GKVHW96]. Moreover, the number of
spikes from the same type, called firing rate, can give information about how the network
is dynamic. By analogy, we introduce the temporal parameter x;, containing the informa-
tion about the detection time. It corresponds to the time needed to go from one camera to
another.

5.3.1.c Spatial information The path followed by the target before arriving to the
concerned camera may be a key to identify it and predict its destination. For instance,
considering smart road traffic surveillance, targets follow specific rules, and thus taking
into account their path will increase the performance of the network, which can be used
later either to improve the roads or traffic light configuration.

Most of the existing SCNs opt for the Markov assumption for prediction. Fig.IL.5 illus-
trates the limits of assuming that the future state of the system only depends on the present
one. If the most frequent paths through the network are for instance C5 > Cy > C; > Cp
and C4 > Cy > Cq > Ca, the predicted camera after C; (Cp or C3) cannot simply be de-
duced from the current camera or even when considering the previous camera (Cy in both
cases). Considering the sequences of previous cameras will however disambiguate the
trajectories. Furthermore, the system may form different graphs depending on the events
characteristics, for example if qualifying pedestrians or cars. In addition, using the path
can be interesting to keep the system working even in case of the dysfunction of a cam-
era. These information received in each prediction and extracted after each observation
are used to make sure that two observed targets correspond to the same genuine target or
event.

6 Conclusion

The main objective is to introduce a networking model capable of giving the camera full
autonomy and acting as a self-interested agent in the network. This is especially signif-
icant when dealing with a large scale network in which it is impractical to individually
configure the cameras. Thus, the camera reacts autonomously in response to the environ-
ment solicitation with different levels of granularities. The camera is able to develop its
perceptual aliasing and performance according to the targets detected in the network. The
target, constrained to have very limited visual information, is defined by its transit time
between cameras, and its path followed in the network. The aim is therefore to render
this information complementary in order to better meet the network’s needs in terms of
re-identification.
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1 Overview

Most of the cameras used in SCN context has a sufficiently high resolution, and require
the input images to be noisy-free. Thus, they propose algorithms dedicated to the use
case proposed. However, their performance degrades drastically when we decrease the
resolution specially when we have tiny images contaminated by noise. The main goal of
this work is to learn and exploit the regularities in the correlated activity of cameras. The
system should be able to build precise predictions based on two components: a model
(of the spatio-temporal behavior of expected/previous targets) and observations (related
to the current target). To identify and track a target through a network, the observations
inform about the path followed by the target. The system should pick out as much infor-
mation as possible to better predict the next state (hence not being limited to the Markov
assumption). The model in turn depends on the network structure and the assumptions
about the trajectories or targets. Thereby, it should be built from observations, indicating
which cameras should observe the target at future times, allowing to provide a multi-
camera behavior analysis [MMM " 14]. The survey [VBC13] tackles different issues and
aspects of re-identification challenges.

Our model includes two principal parts: The first one is the cognitive knowledge which
permits prediction decision using the the detected information and that received from
other cameras. The second one is the regulation of that cognition using the feedback re-
ceived from the other cameras after each event. This cognition control allows the network
to be self-monitoring and then to have its own self-regulation process.

Accordingly, the camera is not just a member of the network learning the parameters that
may influence its performance, but it extends its capacity to perform things based on the
interaction with the other cameras. Consequently, this model enables the cameras to do
some tasks more automatically and then to go further with the control of knowledge. This
knowledge can be consolidated by the other cameras presented in the network. [DCRc]
proposes a Network Consistent Re-identification framework which improve the camera
pairwise re-identification performance between camera pairs, this performance has been
evaluated in [MMF"16]. Keeping exchanging signatures with the neighborhood until
finding the valid matches and then improve next reidentifications is proposed in [RiMP].
Moreover, targets can hardly be viewed in a similar pose by two cameras, simple compar-
ison between the two views can not lead to accurate results. [MM14] proposes to find the
optimal correspondence between images patches using a local matching technique.

Before taking the decision, the camera should analyze all the data of the environment in
order to provide the best depiction of the current situation. However, the interpretation of
an event and the derived information depends on the camera and its resources, the level
of detail received by previous camera and the history of the network.

Cameras are interacting among themselves, in pairs or in groups, to accomplish specific
tasks such as monitoring, enhancing environmental coverage or optimizing resources.
The purpose of networks is to empower the camera to be autonomous and act as a self-
interested agent in the network. Furthermore, the cameras are not restricted to being
identical with the common algorithm, configuration and calibration. Availability of het-
erogeneous specifications can greatly increase performance. Hence, the camera opts for
the most appropriate configuration at runtime to better tailor itself to any given situation,
all without requiring any central coordination.
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A rich set of mathematical tools for decision making can be applied to model the in-
teractions between cameras [MBKQ " 16]. The associated approaches can be labeled as
socio-economic [ELYR14], game-theoretic [SSRCFO08], stochastic [ YSNO9] or optimiza-
tion oriented (e.g., particle swarm in [MADR12]). Added to that, they can rely on other
forms of meta-heuristics such as the genetic algorithms [Dep09]. The survey in [PEK " 16]
offered a deeper understanding of the existing models used for the SCNs. Some mod-
els would increase flexibility even more by exploiting self-reconfigurable [JCCK ™ 14]
and self-calibrating cameras to maximize their performances. The resulting network
might adjust camera parameters such as position [RCHI11], orientation, pan-tilt-zoom
[MADRI12], or select where processing should occur. Indeed, a reduced (dynamical) set
of cameras with dedicated processing might be sufficient and could better achieve track-
ing [ELYR14], coverage [MADRI12], path planning [RCH11] or target detection under
various visibility conditions and satisfy given quality requirements [RGM ™ 16]. Yet, it
would offer heterogeneity in the network and more efficiency while the cameras could
learn how to be different [LEC " 13], [LEC"]. Most of SCns deal with a known envi-
ronment [EDPA], [MKLK10] and [LXGO09]. Thus, all the necessary information such
as topology, position and orientation are known. In such a case, a learning phase pre-
ceded the real time test presenting miscellaneous cases. However, as it complicated to
have all the necessary information upstream, some works deal with unknown environ-
ment requires taking other point into account, such as communication and network mod-
eling [BKMQB16] and [MBKQ ™ 16]. In addition, it is considered impossible to cover up
all the possible case upstream. Following this idea, it is estimated useless to have a pre-
vious learning before the SCN starts performing. The re-identification tasks are learned
in real time. The survey [VBC13] tackles different issues and aspects of re-identification
challenges. The survey in [PEK " 16] offered a deeper understanding of the existing mod-
els used for the SCNs. In case of unknown environment, the communication is performed
due to a spatio-temporel correlation [NRCCO7]. The events scheduling is not only useful
to re-identification but also to reconstruct the network.

Three scenarios can be distinguished according to the degree of cooperation among the
cameras:

* Data collection: The role of a smart camera may be restricted to only local pro-
cessing of the environmental measurement performed. Indeed, the target detection
or tracking can be carried out at the camera level, which merely forwards its results
to neighboring cameras or to a centralized data processing and collection unit. In
this scenario, cameras can be deemed to be collaborative but independent, in the
meaning that they can rely on the processing performance of other cameras to pur-
sue a target for example, but such results do not influence the camera’s software or
hardware configuration.

* Re-Configuration: Self-reconfiguration behavior, in its turn, is more about learn-
ing its software parameters, and handle the calibration. The camera are modelled,
figuratively, by ants [BKMQB 16], auctioneer [ELYR14], gene [[BMC09] and even
gamer [MZA " 13]. While all of the representation aims to mitigate the problem of
dependency, each one is challenging with different aspect.

* Re-Calibration: The camera calibration operation is the modelization of the pro-
cess of forming the images. It aims to find the relationship between the spatial
coordinates of each point of the space with the associated point in the image taken
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by the camera. The calibration uses two kind of parameters. The extrinsic parame-
ters represent a rigid transformation from 3-D world coordinate system to the 3-D
camera’s coordinate system and fixed by the position, orientation and zoom. The
intrinsic parameters represent a projective transformation from the 3-D camera’s
coordinates into the 2-D image coordinates and fixed by the iris and focus. In order
to better perform tasks, cameras may change those parameters depending on dif-
ferent factors: (i)Variable environmental conditions prod the camera to change to
self-calibrate? such as illumination condition, or the obstacles which can be static
or dynamic, (ii) the others cameras presented in the networks, whether because
it receives a sub-task from another while a task decomposition from another due
to its limited performance or to continue a task started in another camera such as
tracking in the best condition. (iii) the performance which should be evaluated by
the camera before starting a task, such as the accuracy, the timeliness and the en-
ergy needed to perform that, in case of overcharging, task can be split up in many
sub-task and associated to other cameras in the network. This concept that helps
complex systems to adapt themselves autonomically to their environment. The idea
is to let the system itself find the appropriate parameters. The goal of such complex
task is to improve the environment coverage [MADR12], to move up by the image
quality [PMF10] and to optimize the resources consumption [KGZH10].

In this Section, a brief overview of the models used is presented. This overview is not
meant to be exhaustive, but to highlight the main ideas applied in SCNs and how the agent
of a network can be modeled. Each camera acts as an independent agent in the network. its
purpose may be a simple information report, collaboration with other cameras to perform
monitoring tasks or a more in-depth analysis for ontology.

1.1 Tracking

Having a network of cameras in an uncontrolled environment in order to track multiple
people is a very challenging task due to the non-rigid nature of the human body, where the
appearance of the person changes with body movements, with a wide degree of variation
in their pose and orientation and with quickly changing lighting conditions in uncon-
trolled environments. Tracking a single individual is not difficult as tracking multiple
people moving around in the scene, which usually contains static occludes (for example:
furniture for an indoor environment, and lamp posts, trees, etc. for an outdoor environ-
ment). A person may sometimes be occluded by another person(s) or object(s) in the
scene in a camera view. When tracking a target person from a particular view is not good
enough due to either type of occlusions, the camera will collect more information about
them by inquiring whether other candidate cameras have a better observation. The other
cameras in the network respond with their local information in the form of no or lesser
occlusion. The camera analyzes the local information from the other cameras in order to
have a global view of target people. Finally, the camera chooses the cameras with the best
views about the target person, and it asks these cameras for assistance in tracking of target
until the occlusion in its view is less severe or over.

Tracking people in low-resolution constraints was studied in [END " 14, NDE " 14]. The
users’ locations and mobility statistics were obtained from a robust people tracker based
on recursive maximum likelihood principles in a lab setup of 5 low-resolution visual cam-
eras. The multi-camera tracking system of [BFTF11] first utilized the concept of proba-
bilistic occupancy mapping to find the persons’ positions. Then the known positions of
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each person would be linked using the k-shortest path algorithm. In [YGA12] the authors
first tracked people in each camera separately and then integrated these results using a
Bayesian approach and relying on the principles of epipolar geometry. [BJKD12b] first
detected people utilizing the detector of [DTO5] and [FGMRI10] in each camera view
and would afterwards track the detection with a particle filter within each view. The
same people in different views were associated by triangulation, using a greedy match-
ing approach. Their technique relied on color features. The technique in [GINC ' 14]
could work in grayscale sequences as it was based on optimizing the likelihood of fore-
ground/background segmentation images given a hypothesized position in a 3D space.
The actual data fusion involved a Kalman filter. The method was able to track multiple
persons in real-time, but because of the Kalman filter, it would lose people when they
suddenly change direction.

TABLE III.1: Summarize of the reconfiguration methods used for tracking, C refers to central-
ized processing and D to distributed processing

Algorithm used P calibration Processing
Game-theoretic [LB11] Camera selection C
Failure containment [KGZH10] Camera selection C
POMDP [NHW T 14] PTZ C
Greedy best-first search [QT11] Camera selection & PTZ C
Production rules [SQ11] Camera selection & PTZ C
Task assignment [HFK09] Position D
Negotiation [MCC™10] Position D
Socio-economic approach [ELYR14] Camera Selection D
Optimization [SJARI11] Position & direction D
Game-theoretic [SSRCF08,DSM"12] Camera selection & PTZ D

A real time visual surveillance system for detecting and tracking multiple people and
monitoring their activities in an outdoor environment has been proposed in [HHDOO].
The authors employed a combination of shape analysis and tracking to locate persons
and their body parts such as the head, the hands, the feet and the torso, in order to build
models of persons’ appearance, so that they could be tracked through interactions such
as occlusion. In another camera system [SM], the authors fused the output of a number
of detection and tracking algorithms to achieve robust tracking of people in an indoor en-
vironment. Depth information was utilized as well for person tracking. In [LSAT11], the
authors presented a novel framework which integrated an a-priori person detector with an
on-line learnt person detector and a Multi-Hypothesis Tracker (MHT), so as to estimate
the motion state of multiple people in 3D using three vertically mounted Kinect sensors.
The framework integrated two detectors and a tracker that involved a track interpretation
feedback to control learning. Their approach did not rely on learning a background model
or a ground plane assumption. Santos and Morimoto [SM11] put forward a framework
to track a group of people using sparse uncalibrated cameras. They integrated all avail-
able information of all cameras before any detection decision based on the homography
constraint that did not rely on the single view segmentation of the subjects or previous
tracking information. [LLZ " 15] suggested a three-stage cascade structure framework us-
ing RGB-D videos. The first stage transformed the RGB-D data to point an ensemble of
image from plan-view perspective. Next, an unsupervised detector was used in the sec-
ond stage to retrieve positions, where these positions were further refined by a classifier
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utilizing two new features: a histogram of height difference and joint histogram of color
and height. The 3D trajectories were generated in the last stage.

Deep learning is one of the promising techniques for accurate people tracking in outdoor
environments. In [FXWG10], the authors trained a Convolutional Neural Network (CNN)
to estimate the location and scale of a person given their previous location. Their CNN
learnt spatial and temporal features, where multiple pathways were introduced to better
fuse local and global information. The authors in [XLCH16] applied a deep-learning-
based pedestrian classifier which outperformed handcrafted features and traditional clas-
sifiers like the SVM. They also introduced a probabilistic tracking method combining
the deep learning classifier with a probabilistic motion model, which tracked people by
greedily maximizing the posterior probability. [YLXGO09] employed a CNN for multiple
human tracking. Their CNN incorporated and combined multiple cues based on color
models, shape matching, and bags of local features. In [LLLP15], the authors used a three-
layer CNN model to distinguish the target object from its surrounding background. Their
CNN relied on a tracking-by-detection strategy where the CNN was updated in an online
manner. A family of deep neural network classifiers using on-line AdaBoost for person
tracking was proposed in [ZXZZ14].

1.2 Ontology

Cameras tasks are used to have high level information to understand the environment. An
indoor or outdoor environment equipped with a network of camera devices and actuators
is referred to an “Intelligent environment”. Understanding activity patterns of people in
an intelligent ecosystem can be used to optimize the monitoring and control tasks, as well
as productivity and the comfort of supervisor.The sensory signal outputs from a moni-
toring system can be used to recognize several activity patterns such as “arriving to work
late”, “leaving the office early”, “working non-stop”, and so on. By learning and detecting
long-term activity patterns, the environment becomes aware of each person’s preferences
in order to increase work productivity and decrease stress. For example, a person who
works continuously for longer hours than usual without a break, the environment can
recommend him to have a coffee break. In another situation, when the environment no-
tices a change in a person’s behavior by arriving and leaving the environment late, the
environment can notify them how such a change in their habit can make them less so-
cially interactive. Based on observations and learned models, the environment compares
how the observations deviate from previous activity patterns, in order to suggest healthier
habits.

Humans perform activities based on habits, so inferring patterns that describe the past and
present activities is important in order to define future activities as well. Accordingly, an
environment can proactively activate and deactive some devices based on learnt patterns
(e.g. switching off the computer automatically when a person leaves their office, or the
light when a person leaves their home). Apart from automating actions or devices, pat-
terns can also be used to understand a person’s activity behavior and act in accordance
with it (e.g. issuing meeting reminders). Besides, making the environment more efficient
in terms of saving energy (e.g. switching off the lights when a person has gone to lunch
or a meeting) or increasing safety (e.g. locking door when a person is not present) helps
to improve work productivity and encourages people to manage stress.

Chen et al. [CA11, CABAA11, CUWAI1I] studied the problem of discovering the so-
cial interactions in indoor environments using a network of high-resolution cameras and
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RFID. The head poses and the locations of people were tracked using Chamfer matching.
Afterwards, a classifier was used to estimate the head orientation based on the location,
relative distance and head orientation of people. Added to that, a probabilistic model
was used to infer the use of space by individuals and their interactive behavioral patterns.
Moreover, probabilistic graphical models, such as the HMM, the dynamic Bayesian net-
work, and the Conditional Random Fields (CRFs), have been used to model the activity
transition sequence for activity recognition purposes. In [OGH04, OHO5, OHGO2], the
authors compared the Layered HMMs (LHMMs) and the dynamic Bayesian networks for
identifying indoor ot outdoor activities from multi-modal sensors such as video, audio
and user’s interaction with the computer. Hence, the dynamic Bayesian networks are only
included at higher levels of LHMMs. [WNS06] proposed a multi-level HMM framework
for multi-person activity recognition (meeting, paperwork, discussion, etc) with simulta-
neous tracking of users in the room using audio and video cues. In [EDPA16], the authors
presented an approach to detect the habitual absence patterns of users in the indoor envi-
ronment, so as to offer a better use of the indoor space with others.

On the other hand, many unsupervised approaches have been proposed to handle the
problem where activity labels are not available. In [CAAT11], a system consisting of a
visual processing and a learning module were proposed to discover accurate patterns that
represented the user’s frequent behaviors in an indoor or outdoor environment by asso-
ciating the semantic locations of the user to activities. [HMJ"09] put froward the idea
that global structural information of human activities could be encoded using a subset of
their local event sequences. They regarded discovering structure patterns of activities as
a feature selection process. [SPYZ11] studied the daily activities of people from videos,
by automatically learning event grammar under the information projection and minimum
description length principles in a coherent probabilistic framework, without manual su-
pervision about what events would happen and when they would happen.

1.3 Aggregation

Data aggregation methods rely on optimizing the overall coverage of the scene being mon-
itored, e. g. by maximizing the deployment of sensors that monitor relevant areas or by
minimizing non-observed areas of the environment. The problem was initially conceived
in the field of computational geometry as the "art gallery problem" [Fra]. However, the
latter can not be directly implemented in real distributed camera networks, since it ignores
several issues such as camera directivity or range. Since then, several studies evoking dif-
ferent geometric and topological models have been analysed. Those models are analyzed
in the survey [MC].

1.4 application use-case

Defining various architectures and specifications were always endorsed by the steering
wheel to integrate connectivity into everything that can affect human life. This can di-
rectly influence human life by providing a smarter home, an intelligent transportation
system or health care services. But also indirectly, by affecting the environment more in-
telligently through the energy security and control system, and more wisely industries by
managing manufacturing and buildings. The figure B.1 illustrates a panoramic overview
of the IoT application fields.
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TABLE III.2: Summarize of the reconfiguration methods used for coverage, C refers to central-
ized processing and D to distributed processing

Algorithm used P Recalibration Processing
Particle swarm opti- [KC13,MADRI2] PTZ C
mization

Expectation- [PMF10] PTZ C
maximization

Simulated annealing [MDO04,MDO08] Position & PTZ C
Genetic algorithm [IBMCO09] Position & PTZ C
Greedy min-set cover [ARGO7b] Position & orientation C
Coverage path planning [QKWS™10] Position C
Integer linear program- [AA06] Position & orientation C&D
ming and greedy

Greedy search algo- [SWIT10,Wahl0] Position D
rithm

Max-sum task assign- [DRX " 12] Position D
ment

Lawn mower search [KYR14] Position D
pattern

Before taking the decision, the camera should analyze all the data of the environment in
order to provide the best depiction of the current situation. However, the interpretation of
an event and the derived information depends on the camera and its resources, the level of
detail received by previous camera and the history of the network. Contrariwise, cameras
are not depend from each other. For example, If no prediction is received, camera can
proceed wholly its tasks considering that it is the starting point of the object, or may leave
the decision to the next cameras.

2 Pre-event Connectivity

Before receiving the target, the camera may receive its prediction in case if it has already
detected by some other cameras and not just entering in the network. Thus, the camera has
an idea about what it is waiting for. The prediction received contains different information
describing the object, and describing its state. At this level, two approaches are adopted
depending on the situation.

Bott@§m-up Top-qown

FIGURE III.1: Top-down and bottom-up



3. Event Connectivity 53

2.1 Bottum-up approach

It is used in case no prediction precede the appearance of a target. In this case, the camera
will extract all the information corresponding to that target. Here, the camera will con-
sider itself as the starting point of the target, and advertise the network about that.

2.2 Top-down approach

The top-down approach is used when a prediction is received before the target. In this
case, the camera has an idea about what it is waiting for, and will apply the corresponding
algorithm to estimate the similarity between them. Therefore, the camera takes its own
previous detection in consideration in order to alleviate any bias effect due to the predic-
tion received.

Alternating the two approaches gives the Ant-Cam more flexibility and independence be-
tween cameras accomplishing specific tasks. This flexibility is insured using a predefined
set of rules. The latter are therefore the same for all the Ant-Cams. These rules are focused
on the images interpretation. Indeed, image quality makes it difficult to have a robust al-
gorithm which can face all cases, and it can easily disrupt the re-identification. Thus, we
choose to classify the most important cases to allow the camera using its resources in the
best way and then maximizing its chances to get the good answer. Depending on the case,
the task will be chosen by the camera after analyzing the situation.

3 Event Connectivity

This step can be seen as the governor step and divided in two parts: concluding the pre-
event phase,if it exists, by determining if the target is the same or not, and trigger the
post-event phase by predicting the next state of the object and spreading it in the network.
Two information categories are considered here. The first is the prediction characteristics
broadcast ed in the network after each detection. However, the second one, is the deeper
information extracted from the target such as visual metrics. These latter are stored in the
camera until the others need them.

However, in most of case, decision can be difficult to take for different reasons such as
noise or low quality features extracted. In this case, cameras may find that it is more
rational to not take the decision and ask the next ones to do it. Machine who does know
what it doesn’t know is the new concept of learning, pairwise decision can then help to
get better performance in the network.

In this step, the target is detected by the camera. Two main situations can be present: For
the first one, there is no prediction preceding this step. In this case, we do not consider the
re-identification steps. The camera is considered the starting point of the target and all the
necessary information will be extracted and sent to the next cameras. The second case is
when the detection joins a prediction. Here, two tasks are presented: (i) The camera has
to find out whether the received prediction matches with the detection, and (ii) the camera
has to predict the future position of the target.

The figure II1.2 illustrates the presence of internal and external events in a network of
four cameras. A detection at instant t can be preceded by a prediction at instant t-1. The
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Cl1

FEEDBACKS St+1

FIGURE III.2: Network event evolution

processing of this detection then generates a feedback to the source camera at time t+1,
and receives in turn a feedback at time t+2.

At each detection, the camera extracts all the information related to the target(visual, tem-
poral and spatial). If there is a prediction that preceded this detection, the re-identification
is performed according to the correspondence between each computed parameter and the
one received, which is called confidence.

3.1 Target confidences

3.1.1 visual confidence

When considering perception systems, visual stimuli trigger the sensory organs continu-
ously. hus, perceptual and analytic phase starts. It is an abstractions of important subset
of the scene and order them in a certain way. The last step, is the interpretation of these
primitives. The latters depend not only on the scene’s observation, but also on the whole
environment. While humans are naturally equipped with such a system, the goal of the
research is to replicate this in the artificial systems. Indeed, for smart cameras, most of
time we steer the re-identification to a simple comparison to the primitives extracted by
2 cameras. Here, we want to go one step further and learn the cameras how to match
completely different primitives.

Thus, visual feature vectors extracted after each observation z;, characterize the object in
a certain way which can be exploited by the cameras . They prototype the current object
and contain the visual mark of the target such as the color, the velocity and the category.
As the target may be seen from different side we take into account those parameters
separately. The main goal here is to find a matching between visual features even when
they are different. In other words, cameras have to learn the difference between theirs
observations. Figure I11.3 presents examples of situations when a target is seen differently
in each camera. While C1 observes the target as a circle, C2 gets a rectangle and C3 a
piece of both.

The visual confidence ¢y, is estimated. It represents the similarity between the observation

zt': x0(0); and the prediction received from the other camera j representing Z]t-*dt : Xo(0) ;

This confidence is defined by:
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FIGURE II1.3: Example of a target scenario with different camera views

Po = fo(Xo(0)j, Xo0(0):) (IL.1)

With values of the similarity function f, ranging from 0 to 1 (perfect match). The function
is here kept abstract as one such function may be introduced for each target type. The
exact computations may also depend on the processing used in each camera.

3.1.2 Temporal confidence

Temporal confidence X:(0) is estimated by the Ant-Cam to predict how long the target
needs to catch the next Ant-Cam and sent via the prediction, whereas x:(0) is the time
really needed for the target to move from one Ant-Cam to another extracted from the
detection. Here, the external and internal inputs events (I1 and I3 on Fig I1.3) is similarly
valuable, as it measures the precision of the temporal prediction. Hence, we introduce
function f; and the associated result ¢;:

¢r = fr(Xt(0), xt(0)) (IIL.2)

where f; is a decreasing function of the difference between the estimated time (xt(0))
and observation time (x¢(0)’). If the difference is too high, the observed event should be
considered as something unrelated to the prediction. The value produced (in [0, 1]) allows
estimating the temporal validity of the prediction in a graded fashion.

This factor is evaluated using a Gaussian probability distribution Nj;(x+(0)j, 01-2]-) cen-

tred at the delay time expectation x¢(0);; between cameras C; and C;. For instance, if
a target x1 is detected from node C; and then from node C;j, the delay time Xt(o)gj can
be measured. If this target is periodically detected between the nodes, an expected delay
time )(t(o)i]- can be also estimated. Accordingly, in order to evaluate whether nodes are

temporally correlated or not, the measured x; (o)gj is compared to the x;(0);; through the
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time delay distribution. The closer )(t(o)ij to the model average, the higher correlation
probability results. By iteratively updating the )(t(o)ij mean and giving the likelihood
probability of correlation, the nodes strengthen their coordination in case of a correlated
event. Since the probability distributions ./\fz-]' are computed on-line, the rewards are con-
tinuously updated to meet environmental variations and to detect abnormal events that
might occur.

3.1.3 Spatial confidence

Most of the existing SCNs commit to the Markov assumption for prediction. Figure I11.4
illustrates the limits of assuming that the future state of the system only depends on the
present one. If the most frequent paths through the network are for instance path; =
C5,C0,C1,C2 and path; = C4,C0,C1,C3, the predicted camera after C; (Cp or C3)
cannot simply be deduced from the current camera or even when considering the previous
camera (Cy in both cases). Considering the sequences of previous cameras will on the
contrary disambiguate the trajectories. In addition, the system may form different graphs
depending on the events characteristics, for example if qualifying pedestrians or cars. In
addition, using the path can be interesting to keep the system working even in case of
dysfunction of a camera.

FIGURE II1.4: Example of unpredictable sequence under Markov assumption

We put forward a function f; and associated value ¢s depending on the previous cameras
that detected the target:

¢s = fs(xs(0), xs(0)) (IIL.3)

3.2 SVT parameters

The spatial, visual and temporal (SVT) parameters presented above contribute to the con-
struction of each target model and then the decision of re-identification. Here, two ob-
jectives are set: precision and reliability. The first is about the detection, it depends only
on the camera’s capacity of processing. The latter is more about the certainty about this
re-identification and estimate with the confidence parameters explained above. This reli-
ability characterizes the interaction between the cameras. The links between them cannot
be defined just with the number of shared tasks, but with the certainty of those tasks.

¢ = g(¢s, Pt, Po) (IIL.4)

The ¢ parameter represent the probability that the observed target correspond to the pre-
diction received from previous cameras.
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FIGURE I1I1.5: Instance of network: Connectivity graph based on events (L2,.3) and commu-
nication graph allowed by technology used for it (Wifi, LoRa..)

As it is illustrated in figure II1.2, the re-identification task depends on the previous state.
Hence, state s; depends on the external stimulus generated by a detection d and on the
previous states s;_1 and s;_». The involvement of these factors contributes to estimate
how much the detected object corresponds to the received prediction. The re-identification
of target 0 by camera C; is estimated by p(of |Z!) and depends on different parameters in
the network, as presented in figure II1.6. Table IIL.3 lists the different parameters to be
taken into account in this estimation.

This estimation is evaluated by:

p(=!lof, ') p(of 2'~*)
p(oltlzt) = lp(zt|Zt—dt3 (IIIS)

where:

« p(z!|o!, Z!=) is the observation likelihood. It is the probability of getting the
camera input if we know that the object is present in front of it at instant {. We
assume that the current and past observations are independent of each other and
conditioned on the location. In other words, the appearance of the object of the
perspective of the camera should be independent from the path followed by the
object. Consequently, it becomes equivalent to p(zt|of) and evaluated relying on
the similarity defined in the feature domain ¢, defined by Eq. IV.1.

* p(0f|Z!~) is the prior belief about the location of the object in the network, con-
ditioned by all previous observations on all cameras. This term can be evaluated
from p(olt._dt|Z f=dt) where dt is the time of the previous event in the camera net-
work. For this, we need to consider the set of observed/memorized paths in the
camera network, with associated delays. We evaluate this term using the transition
matrix [BKMQB16] with the adjusted probabilities having the temporal similarity
¢ and the spatial information ¢; .
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« In addition, p(zf|Z*~%) is a normalizing term. The latter is independent of the
camera at all times. Subsequently, we obtain:

p(0}|Z") o p(2*|o}) p(of] 2!~ (I1L.6)

FIGURE III.6: Network representing the relation between the re-identification estimation and
the prediction received.

As will be explained in chapter 5, the estimated visual prediction is computed on the
basis of the current and previous observations. This estimation is considered not only for
re-identification, but also for adjusting the link between two cameras.

4 Post-event connectivity

In this step, we reevaluate the transitions between the cameras depending on the feedback
received, or the absence of that feedback. Thus, these would help the camera to learn
more about the network and thus identify the cameras with whom it should broadcast the
information in the future. Thus, we reduce the communication cost for the next event.
In fact, this may lead to a second representation of the network. While the first is about
the connection allowed by the communication technology for the camera situated in its
range( layer L1 in figure IIL.5), the second is more specific about the network behavior.
It, the second, highlights only the transition due to common interest to a specific events.
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TABLE III.3: Different parameters used for re-identification estimation.

Index corresponding
ot~1 | Zt—dt prediction received for t-dt from previous camera detection the target

ot| 7t re-identification estimation

otlt—dt The target exists
zt Observation at t
d detection

New The information are new

zt|o! observation likelihood

o!| Zt—dt prior belief about the location of the target in the network

The second one is in reality a representation of the real world behavior (L2 and L3 in
figure 111.5). However, if we want to keep our system open to the environment changes,
we should keep the 2 representations. A change of habits, such as open a new issue may
change the behaviors and thus the system should be ready to take this change into account.
Thus, the connection weight p;; between two cameras 7 and j is updated following:

pii = h(pij, ¢) (IL.7)

4.1 Graph update

The validation of a target re-identification in a camera 7 triggers an update of connection
weights defining the vision graph GiL. This adjustment process depend on the internal
events (feedback and prediction) and external event (observation).

Feedback
lienypys
Observation/ update Graph
External Event update
lienout put
Prediction

FIGURE II1.7: Camera update after each external event

The input link graph is updated based on the previous camera observation/prediction,
while output link graph is updated based on the next camera observation/feedback.

4.2 Database association

The network is represented in the Fig.II1.8, the black nodes represent the processing avail-
able in the camera. The different layers represent the cameras which detect the target in
the environment. Thus the input is each target moving in the network, and the output of
each layer is its own representation of the target in the network. Depending on the results
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Camera-to-camera Camera-to-camera  Camera-to-camera
sociation association association

Detection
External input

! Detection
+External input

' Detection
«External input|

Prediction

' . \npul/Oquut
Camera1 Camera 2 . Camera 3 Camera 4

FIGURE III.8: Network architecture: each column represent a camera participating in the track-
ing task. Black node correspond to the processing available in the camera.

offered by the previous camera, the camera will analyze the situation and choose which
processing to apply to better fit the situation. As mentioned before, the result of a same
processing may differ depending on the situation. Following the same idea, a target mov-
ing around the cameras may have different appearances. The goal here is to learn these
transformations between the cameras to optimize re-identification results.

5 Conclusion

The intended network is fully distributed and aim to accomplish the tracking task with-
out any supervision. The choice of very low-resolution sensors decreases privacy is-
sues, costs, computing requirements and energy consumption. Each camera uses the
stimulation-response combination to perform specific tasks: external stimuli that are de-
tection following environmental measures and internal stimuli that are notifications from
other cameras after external stimuli to predict or feedback. External and internal stimuli
can help the camera to develop an in-depth understanding of its environment and build its
own vision graphic. These online learning of associations can lead to high-performance
tracking from a global system point of view, making it possible to create a spatial-visual-
temporal correlation between cameras and targets. The correlation enhances the accuracy
of its prediction and feedback in terms of onsite processing or communication.
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1 Smart Camera Simulation Tool

We choose simulations for replicability and controllability (e.g. between learning se-
quences, and between slightly different scenarios). A simulation tool has been developed
to implement the required network models. It allows virtual cameras instances with scal-
able topologies and flexible configurations. Such a tool illustrates how the network co-
ordinates autonomously the interactions between cameras within the network as a func-
tion of a particular event models. A network of intelligent virtual cameras is set up to
evaluate the proposed techniques with a number of facilities: simplified communication,
abstraction of computer vision processing, a variety of target movement models, ease of
generating various test scenarios.

Unlike real camera networks, debugging is simpler and problems and anomalies are
rapidly detected. Furthermore, the use of discrete time steps make it possible to extract
the targets’ position and cameras’ states.

1.1 Simulation environment

An environment is generated to simulate scenarios resembling an indoor environment,
which can be a residential building, an office or even factory corridors. The grey squares
simulate obstacles that can be walls or barriers. The cameras are placed in different loca-
tions with no direct links between them.

FIGURE IV.1: Illustration of tested scenarios. Each camera is represented by a red circle with
its FOV indicated by red lines.

1.1.1 Cameras

Cameras are represented by red circles and theirs FOVs are indicated by red lines. Lo-
cation, FOVs, viewing angles and directions are set up based on the scenario intended.
The resolution is fixed at 30*30 pixels IV.3. This image turns to target color as soon as
an object is within the FOV of the concerned camera, and the visibility of the target is
estimated at each time step.
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# List of cameras 1in environment

rw = 7

cams = list(
Antcam$new(c(2,2),c(-0.2,-0.2),fov=40),
Antcam$new(c(-9,-2),c(0,1)),
Antcaminew(c(envixr[2]/2,2),c(0,-1)),
Antcam$new(c(-16,-2),c(0.5,1)),
Antcam$new(c(16,-2),c(0,1)),
Antcam$new(c(-2,9),c(1,0)),
Antcam$new(c(-2,-18),c(0.7,0.3))

FIGURE IV.2: Example of cameras declaration with the simulator.

In this simulation, we utilized 7 cameras set up as shown in the figure IV.2. Figure IV.5
shows a screen shot of initial tested scenario with 7 cameras.

o .
#' Constructor
#' @param xy camera location
#' @param dxy camera orientation
#' @param fov field of view (in degrees)

- initialize = function(xy,dxy,fov=60,res=30) {
# Copy parameters as fields
selfixy = xy

selfidxy = dxy
self$fov = fov
selfires = res

# Generate a new ID
self$id = pasteO(Antcam$ID_PREFIX,Antcam$ID)
Antcam$ID = Antcam$ID+1 # increase ID

FIGURE IV.3: Example of a camera definition function with the simulator.

1.1.2 Objets

Targets are identified and distinguished in the network at any time by a globally unique
ID. Each target is predefined by: color, size, shape, starting point, end point, direction,
speed and path. During the run-time, each target move through predefined waypoints. It
is a straight line with a predefined speed.

# List of objects in environment
objs = Tist(

TgtBall$new(data.table(x=c(-25,0,0),y=c(0,0,25),t=c(0+66,2+66,3+66)),s, 'blue'),
TgtBallSnew(data. table( (-25,0,0),y=c(0,0,25) ,t=c(4+66,6+66,7+66)),s, 'red"),
TgtBallSnew(data. table( (-25,0,0),y=c(0,0,25) ,t=c(2+66,4+66,5+66)),s, 'black'),
TgtBallSnew(data. table( (-25,0,0),y=c(0,0,25),t=c(6+66,8+66,9+66)),s, 'green'),
TgtBallSnew(data. table( 25,0,0),y=c(0,0,25),t=c(10+66,12+66,13+66)),s, 'yellow'),
TgtBallSnew(data. tabl 25,0,0),y=c(0,0,25),t=c(15+66,17+66,18+66)),s, 'blue'),
TgtBallSnew(data. tabl 25,0,0),y=c(0,0,25),t=c(26+66,28+66,29+66)),s, 'red'),
TgtBallSnew(data. table( (-25,0,0),y=c(0,0,25),t=c(31+66,66+66,34+66)),s, 'yellow'),

TgtCubeSnew(data. table(
TgtCubeSnew(data. table(
TgtCubetnew(data. tabl
TgtCubebnew(data. tabl
TgtCubeSnew(data. table(
TgtCubebnew(data.
TatCube$new(data.

x=c(-25,0,25),y=c(
25,0,25),y=c(
25,0,25) ,y=c(

0,0,0),t=c(1,3,4)),s, 'green’'),
0,0,0),t=c
0,0,0),t=c
25,0,25),y=c(0,0,0) ,t=c
0,0,0),t=c
0,0,0),t=c
0.0.0).t=c

(1
(7,9,10)),s, red’),
(9,11,12)),s,envicolors$pink),
a

(1

3,15,16)),s, 'blue’),
25,0,25),y=c( 4,16,17)),s,envbcolorsSpurple),
(-25,0,25) ,y=c( (17,18,19)),s, 'green’),
(-25.0.25).v=c(0.0.0). (23.24.25)).s.'blue").

FIGURE IV.4: Example of targets declaration with the simulator.

1.2 Scenarios

Here, we have chosen to evaluate the model with a real-world scenario describing the
traffic rules in a building. Thus, we want to highlight how our model act in case of changes
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#' @param xyt reference points

#' @param rad ball radius

#' @param col ball color
B

initialize = function(xyt,rad=1,col="blue') {
# Copy parameters as fields
selfixyt = xyt
selfirad = rad
selffcol = col
# Generate a new ID
self$id = paste0(TgtBall$ID_PREFIX,TgtBall$ID)
TgtBall$ID = TgtBall$ID+1 # increase ID
1,

FIGURE IV.5: Example of a target definition function with the simulator.

in rules likeclosing doors or opening new ones. At the end, we set back the rules and we
evaluate the system. The system is defined by a set of cameras able to generate events
based on the visual environment change in their own visibility range and communicate
with the others.

FIGURE IV.6: Example of the network environment at different instants with the simulator.

1.3 Startup parameters

All parameters should be set up before running the scenario. An overview of all possible
parameters is presented:

In order to highlight the different situations and the influence of the variations of each
metrics used in our models, we choose to mention multiple cases. Consequently, we
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Element | Parameters
Environment height, length, x-position, y-position, color
Background height, length, x-position, y-position, color
Camera Camerarp
Camera Camera location with the simulation environment
Camera viewing angle (the width of the FOV)
Camera resolution of the camera
Camera direction of the camera
Target Targetp
Target starting position of the target.
Target end position of the target.
Target speed of the target
Target direction of the target
Target color of the target
Target shape of the target
Event time step
Vision graph graph with equiprobable links

TABLE IV.1: Overview of the used parameters.

can follow the system changes in various conditions. The created targets differ in color,
size, shape and velocity, so we take these parameters in consideration while extracting the
visual features. The time step is fixed to 0.01s for the whole system. The spatial feature is
extracted from the history of each camera shared with the others after each detection and
following the target. The initially unbiased state transition policy imposes to initialize all
the transition probabilities to 1/number of cameras. These probabilities evolve according
to the trajectories generated by our simulator. An example of events are shown in figure
Iv.7.

2 Network Evaluation

2.1 Evaluation of self organization and network construction

One of the hypothesis in the network model is the unknown environment. Thus, here we
evaluate the network construction and the self-organization of the cameras. The commu-
nication graph is also evaluated based on the information exchanged between the cameras.
In the first iteration, the cameras broadcast the information to the whole network, while
after 30 iterations, each camera share the information only with the cameras who are in
its set of neighbors.

The graph represents the links created between the cameras based on the shared events.
The graph highlights how the cameras learn about the environment when they receive
internal and external events. Although they start randomly, they can reach a stable state
reflecting the perceived regularities in the environment. Moreover, we choose to change
the environment distribution in order evaluate how our model can face any change in a
real environment such as a condemned door or an internal change. Our system converges
to the new situation slowly.
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FIGURE IV.7: Examples of the visual information detected by the 7 cameras at different in-
stants.

In figures IV.8, V.13 and IV.10, we show the approach based on pheromones to construct
the vision graph during execution time. The graph is presented in a three-state. Initiali-
sation state where no adjunctive characteristics are provided.As the first targets advance
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FIGURE IV.8: Example of the network construction, markov assumption is consider here(n=0),
0 iteration.

) _l!-,r.r

FIGURE 1V.9: Example of the network construction, markov assumption is consider here(n=0),
1 iteration.

among the cameras, links (indicated by red lines) are generated, These first ones are iden-
tical since the first interactions are also equally important. Over time, pheromones not
used between cameras evaporate the connections and decrease the strength of the link.
Others, obviously, are increasing until reaching stable state. The probability shown is in-
deed in proportion to the confidence of re-identification. A stabilized state demonstrates
that re-identification is more accurate and hence enforces a wholly stable state.

2.2 Evaluation of Distributed tracking

The system is composed of a set of nodes able to accomplish two tasks : (i) detecting
and excerpting the necessary information and (i1) dispatching the pheromones to other
cameras. This evaluation evinces how the system can coordinate the interactions of nodes
after each event pattern. This simulation exhibits the coordination and collaboration of the
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FIGURE IV.10: Example of the network construction, markov assumption is consider
here(n=0), 20 iterations

nodes to reach a stable state despite the environment difficulties or some system failures
such as losses of messages, detection and re-identification problems.

2.2.1 Evaluation of pair-wise tracking

We suppose that the target is moving with a constant speed, and also we suppose that we
have the same category of targets

* We suppose that the target is moving with a constant speed.

* If the camera notes that the prediction does not correspond to the detected target, it
will suppose that it is a new target appearing in the network.

 If a camera does not receive any feedback, it will consider that it is located in the
final destination of the target.

For each generated event, the 3 confidence visual, temporal and spatial are evaluated using
the following equations:

~1x0(0) —xo(0)]

$o = fo(X0(0)', x0(0)) = exp o (Iv.1)
, (o) —xp (o)

¢t = fir(xt(0)', xt(0)) =exp 2 av.2)
, xs(0) x5 (o)

¢s = fs(xs(0)', xs(0)) = exp 2 (Iv.3)

where ¢ is the standard deviation of ¢, ¢, and ¢s.

Once the re-identification is validated between camera i and k, the link strength pj is
reevaluated using the following equation:
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n

Pikls = pixls + ) (pijls — pijls) (IV.4)
=0
ik

n is the number of cameras in the network.
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FIGURE IV.11: probabilities of the link between camera 1 and j.

In addition to the scenario described above, a larger network was simulated to take into
account the non-Markovian model hypothesis.
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FIGURE IV.12: Simulation of 39 nodes

A large network is implemented to show how a real network used with a lot of cameras
can be implemented in the real world (Fig. IV.12). The different lines between the nodes
represent the possible transitions, and their thickness varies depending on the importance
of interactions between cameras. Nevertheless, the interaction between two cameras de-
pend on the path followed before coming there. Hence, we choose to represent just one
of them as it is not possible to present all of them. In addition, those lines do not repre-
sent the physical communication. In other words, two nodes can communicate due to the
technology used, but will not be necessarily a transitional link in case they are not a target
destination.

The number of cameras to be taken into account in the construction of the path is fixed
at three. In this case, we have a system represented by the tensor (39%39*%39*39%*39%*1).
Accordingly, we show the results on the node Cyq. Figures IV.15a, IV.15b and IV.15c



70 Chapter 1V. Evaluation

1.3 - -
BT |
m(31-33)
— — —tm(32-33)

L tm(32-34) |
12 tm(33-35)
1.1} 1

tm
1 " _
\ .
| A\ St
/ v ~ N L - o~ A
0.9r 1~ RN S
/
0.8 : :
0 50 100 150

N

FIGURE IV.13: Evolution of the estimated time

present the transition probabilities between Cp1 and Cpp; it is estimated based on the
model presented and the values randomly generated by the simulator. We clearly no-
tice that the probability depends on the followed path. Although we can not present all
possible paths, the latter figures highlight how much it is important to consider a non-
Markovian model; it yields much more precision compared to the Markovian model. In
spite of the fact that the trajectories are randomly generated, the target movements are
still deterministic. Typically, we see that the probabilities converge to a stable state after
100 events (represented by N in figure IV.15. However, it varies depending on the past
followed path. Typically, with Markovian models, the probability of moving from Cp; to
Cpp is the average of the different values presented here and is not reliable information
about a network. As expected, the network takes much more time to reach a stable state.
With a lot of path possibilities and an important choice of destinations, the probability
converges slowly.

Besides the evolution of probabilities, we estimate the variation of the temporal pheromones
Ty to be interesting (Fig. IV.13), as it represents the delay estimated to reach a camera.
Considering that we have the same type of targets moving at a constant speed, the sys-
tem is able to extract stable delay expectations. Unlike the probability, the evolution of
temporal information does not depend on the followed path and is the same between two
cameras. This temporal information can give an idea about the distance between the cam-
eras. This distance is relative and not physical. In this respect, we can deduce that the
distance between 31 and 32 is one and a half more than the distance between 32 and 33.
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2.3 Evaluation of CamRank-In/Out

The CR;/CRp are initialized to random values. Accordingly, we consider that the ve-
locity is constant. The CR;/CRp are depicted in the table 2.3. As mentioned in the
previous section, ranking adds information about how the network is dynamic. Cy has the
highest number of events, hence the highest CRI. The latter is higher than the C3’s rank.
We can deduct that not all the event entering to the FOV of C4 are coming from C3, so
our Ant-Cam do not cover well the space where they are located here. Cameras should be
added by there.

Ant-Cam CRI CRO
0 0.25 1.0293
1 0.34375 | 0.519531
[1h] 2 0.34375 | 0.519531
3 0.765625 | 0.71875
4 0.824219 0.625
5 0.559082 0.25
6 0.559082 0.25

TABLE I'V.2: Ranks of the Ant-Cams

In Fig. IV.17, we evaluate the number of times a path is used, of course, there are not all
the possible path, a target can stop in any camera.

Consequently, we find out that the path 3 is the mostly used one, which approve the
variation of the probability in Fig. ??, where the probability pp; is much greater than pop;.
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3 Conclusion

In this chapter, we conducted an initial evaluation of our network model. The simulation
offers flexibility and ease of testing that allows us to visualize the influence of different pa-
rameters on the operation of the network, which cannot be easily replicated and controlled
in a real environment. It has been able to show that the network can reach a state of sta-
bility even when starting with a completely unknown environment. Then, this shows that
the different paths presented can change the links between cameras, maximizing tracking
performance or minimizing communication overheads.
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FIGURE IV.16: Example of evaluation scenario

1: CO>C1>C3>Ca>C5
2: CO>Cl1>C3>C4>C6
3:CO>C2>C3>C4>C5

4:CO>C2>C3>C4>C6
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N3 00
200
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Paths

FIGURE IV.17: recurrence of different paths.
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1 LobNet platform

LobNet is a new model of camera networks that can be used for environment monitoring
and understanding. While conventional networks can be composed of both smart cam-
eras, which benefit from high resolutions, powerful processing capabilities and strategic
viewpoints on the environment, here we propose silly cameras called Ant-Cam, defined
by much lower specifications. We demonstrate how our approach can reach efficient high-
level understanding in spite of the limited information provided by each silly camera. We
thus introduce the Ant-Cam specifications, and the processing implemented. The main
idea is that data exchanged between the cameras is as important as the information ex-
tracted locally. Fully exploiting the cameras interactions without prior knowledge about
the network configuration, the system is able to learn regularities and then infer from
distributed sequences of events, passed between Ant-Cams.

AL
o S GOTRS ISR,

FIGURE V.1: The Ant-Cam
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FIGURE V.2: The Ant-Cam architecture

1.1 Sensing layer

The components of the detection unit are presented in this subsection. Perceiving the
environment depends essentially on the visual purview. In SCN context, this layer ac-
quires images continuously in order to perform environmental measurements according
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to the needs of the network. The relevance of detection varies according to environmental
conditions where changes in ambient noise levels can lead to significant corruption and
increase the complexity of detection. Since sporadic detection can reduce energy con-
sumption compared to constant event monitoring, other detection units can be added. The
complexity of event detection also plays a crucial role in the choice of components. Nev-
ertheless, the choice depends on the final objective of the application. In this work, and to
follow the ant metaphor, we opt for very low detection capabilities.

1.1.1 Mouse sensor

In the 1990s, the mouse was converted into a camera for different applications. This
sensor has been deployed in various fields such as forest fire detection [FBCGCG ™ 10],
care of the elderly [MFWH15] and control of absenteeism in offices [EDPA]. The main
characteristic of this sensor is its tiny images, which preserve data confidentiality during
monitoring. However, the platforms cited above circumscribe the sensor use to a detector
and none of them worked on the re-identification problematic.

ADNS-3080 is based on optical navigation technology, which optically acquires 900 pixel
grayscale images encoded on 6 bits. In addition to the image acquisition system which
acquires microscopic surface images via the lens, this sensor contains an integrated Digital
Signal Processor (DSP) to process the images and determine the direction and distance
of motion. The DSP calculates the Ax and Ay relative displacement values. This is
performed with up to 6400 frames per second. Nevertheless, the sensor is equipped by
four-wire serial port used to set and read parameters in the ADNS-3080 with a maximum
Clock Frequency = 2 MHz. Thus, the maximum frame rate for image transmission to an
external processor is limited to 30 Fps. Examples of images acquired by ADNS3080 are
presented in Fig.V.3. The main features of ADNS3080: Programmable frame rate over
6400 frames per second, Smart Speed self-adjusting frame rate for optimum performance,
Serial port burst mode for fast data transfer, Single 3.3 volt power supply, Four-wire serial
port along with Chip Select, Power Down, and Reset pins.

FIGURE V.3: Example of images taken using Ant-Cam, the resolution is 30*30 pixels

1.1.2 PIR sensor

To eke out the maximum of energy, we add a PIR sensor in order to arouse the mouse
sensor only in case of requirement. For this, we choose a digital motion detection sensor.
Thanks to its high sensitivity, the sensor is able to detect any human body with an approx-
imate size of 700*250mm, crossing the detection beam, when the temperature difference
between the environment and the target is higher than AT = 4°C. Table V.1 highlights the
sensor characteristics.
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TABLE V.1: Specifications and Electrical characteristics

Items Theoretical values
Detection distance Sm
Detection area horizontal 100°
Vertical 82°
power consomupion 170uA
Operating voltage Max 6.0V
Min 3.0V
circuit stability time 30 sec
Ambient temperature -20°C to 60°C

Although the analog device may offer more significant information regarding the detec-
tion, where the detection signal can contain information regarding the speed or the motion
direction, we choose to work with the digital device. The main and only reason for that is
the operating voltage which is 4.5V for the analog device versus 3.0V for the analog one.

After the power is turned on, and during Twu(30 seconds), the circuitry is stabilizing.
Hence, the sensor output is not fixed in the ON or OFF state. Any detection during this
time will be ignored.

1.2 Processing Layer

The concept of use of the tiny sensor focuses on the redundancy of these cameras. So, to
follow the same philosophy, we choose to implement a minimal processing. Two main
processes are on hand in the cameras. The irst is the environmental perception that is
performed in the FPGA to decipher the visual data. The second is related to camera
interactivity and supported in an M3 cortex thanks to SmartMesh Ip devices.

1.2.1 FPGA

Considering vision and image processing applications, different types of electronic hard-
ware platforms try to tackle the outcoming issues. First, CPU, the traditional sequential
processor for general purpose applications, is known for its versatility, multitasking and
ease of programming. GPUs in their turn are used in a wide range of computationally
intensive applications for their massive processing powers. However, both of them offer
a relatively low performance/watt ratio withal. This ratio is mended with the ASICs de-
vices, yet strayed by their comparatively high cost and low flexibility. A trade-off analysis
between flexibility, performance and power consumption enthrones the FPGAs with the
best compromise, chiefly for its energy efficiency compared to GPUs and better flexibility
compared to ASICs. FPGA accommodates massively parallel operations, which can offer
a streaming-processing model of images computing. For the Ant-Cam, we opt for a max
10 FPGA from Altera. The main characteristics of the device are:

* Low power : Sleep mode: significant standby power reduction and resumption in
less than 1 ms. Longer battery life: resumption from full power-off in less than 10
ms.

* memory: The embedded memory structure splits of 42 M9K memory blocks columns
with a total of 387Kb. Each block provides 9 Kb of on-chip memory and can be
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configurable as RAM, FIFO buffers, or ROM. In addition, Max 10 offers an user
flash memory UFM with a maximum of 1378 Kb accessible using Avalon Memory
Mapped (Avalon-MM) slave interface protocol, gainful for non-volatile information
storing.

* Logic elements: 8K logic elements
* Package : UBGA Package Type 324 : 324 pins, 15 mm x 15 mm

* GPIO : 250 General Purpose I/O are proposed for connection with external devices
such as the visual sensor, PIR sensor and SmartMesh Ip chip.

* Clocking and PLLs: The max 10 offers 2 phase-locked loops (PLLs) which pro-
vides robust clock management and synthesis for device clock management, exter-
nal system clock management, and I/O interface clocking. The global clock used
has a 16 MHz frequency.

In addition, the MAX 10 devices contain two Analog-to-Digital Converters used to mon-
itor many different signals. A single-chip Nios II soft core processor is supported too.
These highlights have not been utilized during this work.

1.2.2 Cortex M3

Although the Max 10 FPGAs support the integration of the soft core Nios II embed-
ded processors which can be used for networking analysis and probabilities computation,
these latter are performed with the Cortex M3 integrated in the communication chip. In-
deed, the cortex is an excellent gear for probabilistic calculation and wireless network
stack managing. The chip is an ARM Cortex™-M3 32-bit microprocessor running Mi-
crium’s uCOS-II real-time operating system. With up to 32Kb of flash memory and 8Kb
of RAM available, the device can be used for (i) control peripherals via its General Pur-
pose Input-Output (GPIO) pins using various protocols such as Serial Peripheral Inter-
face (SPI) Master, Inter-Integrated Circuit (I2C) Master, 1-Wire Master and Universal
Asynchronous Receiver/Transmitter (UART) which is use here to communicate with the
FPGA. (ii) Process data like statistical analysis of the computed probabilities and likewise
building the vision graph and estimating the links. Thus, the decision-making and control
are established. (iii) Manage wireless communication between the cameras based on the
vision graph created.

1.2.3 External memory

In addition to the embedded memory available, an external flash memory is integrated to
the Ant-Cam. Indeed, increasing the memory on-board allows the camera to support more
complex processing tasks. SST26VF064B memory from microchip is adopted. Using a
single Voltage Read and Write Operations (2.3-3.6V) with a High Speed Clock Frequency
(up to 104 MHz) while lowering power consumption (15 mA for Active Read current
(typical @ 104 MHz) and 15 pA for Standby Current (typical) ). It supports both Serial
Peripheral Interface (SPI) bus protocol and a 4-bit multiplexed SQI for its 64Mbit.

1.3 Communication Layer

In SCN, sensor nodes are scattered in the environment. Two main points should be con-
sidered while developing a network layer: routing protocol and communication protocol.
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Dedicated multi-point wireless routing protocols between sensor nodes are required. The
ad hoc routing techniques already proposed in the literature do not generally meet the
requirements of sensor networks for multiple reasons (large number of nodes, variable
topology, and broadcast communication paradigm). The networking layer of the SCN 1is
generally designed along several principles such as energy efficiency, end-use applica-
tion, data aggregation and location knowledge. Different routing protocols are designed
for IoT such as Flooding, Gossiping, SMECN, SPIN or AODV. In this work, and as pre-
sented in Chapterll, the routing protocol is established at run-time according to the events
generated on the network.

When choosing wireless communication technologies for IoT platforms, the trade-off
between transmission speed, power consumption, range and frequency is set according
to the application. On one side of the spectrum, technologies like ZigBee, Bluetooth
and Bluetooth Low Energy are used for their low power consumption at the price of an
average throughput of 250Kb and a limited range of 100m. The LoRa outperforms these
protocols in terms of power consumption and transmission range at the cost of a very
limited throughput. On the other side, WiFi offers a better throughput and baud rate while
requiring high energy consumption. The latter has been recently improved in the proposed
new standards such as WiFi 6'.

1.3.1 SmartMesh IP

Winners of the 2017 Annual Creativity in Electronics Awards as Internet of Things Prod-
uct of the Year, SmartMesh IP is a wireless technology developed by Linear Technology
dedicated to IoT. Derived from very low power and high reliability protocols such as
WirelessHART, SmartMesh IP combines 6LoWPAN and 802.15.4e standards to establish
a fully mesh network. Each device in the mesh network has the same routing capabilities,
often referred to as "mesh to edge", since it provides redundant routing to the edge of the
network. This results in a self-training and self-healing network that continuously adjusts
to variations in topology, while preserving very high data reliability, including in harsh
frequency environments.

* Low Power Consumption: This protocol ensures low power consumption for re-
ceiving and sending packet with SmA for receiving and 8mA for sending.

* 15.4 Standard with Ipv6 Ready: This is an important point when establishing an
IoT ecosystem. While being able to exchange data between devices is important,
collecting them in a centralized point to check the contents is so important.

* AODV ready: collecting all the data with only one centralized point may face a
big issue when we collect from deal with short range "devices". Thus, systems are
equipped with AODV protocol which aims to find a way from a mote A to mote B
which is not in its range, or simply to the centralized point. SmartMesh IP offers
the possibility to find by itself the best path to follow the send the information from
mote A to mote B.

* High reliability: 99.9 %

The SmartMesh® network consists of a mesh of self-forming multiple-jump nodes, called
"motes", collecting and relaying data, and a network manager that monitors and manages
network performance and security, and exchanges data with a host application.

Uhttps://www.wi-fi.org/news-events/newsroom/wi-fi-alliance-introduces-wi-fi-6
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1.3.2 The mote

SmartMesh IP Motes are the wireless nodes of a SmartMesh IP network, here the Ant-
Cam. They connect to sensors/actuators and transmit data from other motes, while re-
maining at low power. Each mote can send and receive messages at the same time (sup-
ports bi-directional data), and can have different data transmission rate. In this case, the
network manager automatically coordinates individual communications in pairs to effi-
ciently manage route traffic.

1.3.3 The manager

The manager has two main duties: First, it is an access point that acts as a gateway
between the mesh network motes and the monitoring or control network. Second, it runs
the network application software that constantly makes final decisions on how to build and
maintain the mesh network. The manager harvests around 15% of the total bandwidth for
network organization, advertising, neighbor discovery and communications. It manages
a mesh network with slots and chain jumps. It manages each node to know exactly when
to sleep, listen or talk, allowing a very efficient and collision-free packet exchange.

1.4 Power management

Most of the smart cameras networks use a battery-operated cameras which mean that the
lifetime of the cameras are restrained by the energy-consumption. Thus, optimizing en-
ergy consumption is a major challenge and an important topic. In the network context,
it can be reduced by well split the tasks between cameras, improve the network to get
a better performance-energy ratio. [MOO5]present a survey of energy optimization and
different points to consider while developing a battery-operated system. The camera is
powered by a battery with 2000mAh at 3.7V. This battery is rechargeable via usb inter-
faces thanks to the module BQ24075 used.

2 Implementations

In this section, we present our method of target recognition and tracking. We detail the
processing steps in the camera and network. This is essentially based on issues of target
recognition at very low resolution: Lack of effective features, Noise affection and Di-
mensional mismatch and misalignment. In distributed monitoring, tasks need to consider
the result of local processing of a camera, as well as collaborative processing with other
cameras.

2.1 Low-level processing layer: solo processing action

2.1.1 The Background-Foreground segmentation

BES is the first processing to apply when a camera detects a moving target in the scene by
the PIR sensor. Given the complexity of the processed images, the BFS approach should
analyze changes in the image structure (e. g., the edges of the scene) between two images,
instead of changing the grey value like most other approaches do[?,?]. Several methods
were implemented and compared [END " 14] highlighting that not all methods can show
performance and resistance to changes in lighting. Following this work carried out, we
opt for the correlation-based foreground/background segmentation.
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2.1.1.a The background construction and update To start with, the background
model is computed by averaging all images when the scene has no one present. However,
to eliminate the detection of false foregrounds of non-human targets and to ensure a robust
system against fast and slow lighting changes in indoor or outdoor environments, the
background model is adjusted according to the learning rate « :

Ing(p)' = (1 — &) Ing(p) + al(p) (V.1)

where I, (p)and I ( p) are respectively the background model and the new image captured
at pixel p, and « is the learning rate. This rate « is fixed at 0.01, so new background objects
incorporate slowly into a new background image after being captured in 100 images.

2.1.1.b Foreground segmentation For each pixel in a new frame, a correlation coef-
ficient o(p) is estimated. It represents the correlation between the pixel of the captured
image and the corresponding pixel of the background model within the sliding window
around the concerned pixel:

_ (Zp’ew(p) I(p,)t * Ibg(p)t)z
Ep’ew(p) I(p/)t * Zp’ew(p) Ibg(p/)t

o(p)! (V.2)

where w(p) is a sliding square window centered at p and o(p)! is the correlation coef-
ficient between captured image pixel I(p’)" and background image pixel o (p’)" over
the pixels in w(p). In this step, the pixel can be classified as background or foreground
following:

FG(p) = { I(p),s=s+1 ifo(p) < omin (V.3)

0 otherwise

where 0,,i, 1s the correlation threshold fixed between 0 and 1, and s is the number of
pixels constructing this foreground. The result is a new image FG with black pixels cor-
responding to the background, and gray scale pixels representing the foreground object.
Table V.2 summarized the parameters used for better performance.

TABLE V.2: the parametric values used for the BFS

Parameters | Values
o 0.01
size of w 3%*3
Omin 0.98

Using tiny images, full of inconveniences, can be turned on advantages. One of them, is
the position problem. With the Ant-Cam, the lower variation of the position, direction
while detecting, may completely change the images. This problem is used later by our
camera to estimate the origin of the object. Indeed, depending from where the target
is coming, the appearance would completely change, which can be a starting point for
the camera to decide about the target. In figure V.4, images V.12b, V.12c and V.12d are
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FIGURE V.4: Different images captured with camera 1 for a target coming respectively from
cameras 2, 3 and 4.

captured from camera 1 for a target coming respectively from cameras 2, 3 and 4. Due
to our BFS, we extract a set of straightforward semantic presented in V.12h, V.12i and
V.12j, corresponding to the results of segmentation, where white pixels corresponds to
the foreground detected. Each one of them express the character of the object such as the
posture or the shape and the position. These semantic empirically extracted help to assign
each object detected to one camera.

This processing is carried out on data flow for low-complexity and low-memory demand-
ing model which reduces hardware cost and energy consumption.

2.1.2 Image selection

At this level, the shape size extracted s is the reference for the image selection for the
subsequent processing. Considering the image size and limited information, it is deemed
entirely unhelpful to waste computing time and resources to process images lacking in-
formation. Furthermore, this can be a source of error in the computations and could affect
the result in a wrong way.

TABLE V.3: Notations for used parameters

Index | corresponding

S Sensor size

f focal length
dl,d2 detection distances

FOV1,FOV?2 | Fields of view within d1 and d2
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FIGURE V.5: Projection of the target in the 2D plan.

A target T in the environment defined by:

XC
T=|Y°
ZC
a 2D-projection gives:
X€ Y©
x=frocy=fx— (V.4)
X fx* }Z(—z
1 1
a projection in the pixel matrix:
U K, 0 O X
P=1lo]l=0 Ky O x|y
1 0 0 1 1

For a target at instant t, the size in pixels can be highlighted with the real target size, since
K,, K, and Z¢ are constants.

We suppose that we detect target at a distance of 1m until 3m maximum. Thus, the size
of the field of view is calculated at this distance to find the values of K, and K.

This :

X° Y©
u:Ku.f_ U:KU. .z

e (V.5)

where K, is the pixel density in the direction of the axis u# and K, the pixel density in
the direction of the axis v. For a sensor size of 1.8mm*1.8mm, K;,, =K,= 16.66. The
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focal length is 4.2mm. In this work, we focus on target detected within a distance of 1m
and 3m. Outside these values, we consider the target unidentifiable. Thus a minimum
foreground size if fixed to 200 pixels and the maximum to 700.

2.2 Medium-level processing layer: duo processing action

In this level, the two cameras detecting a target respectively should collaborate to decide
about their detection accordance.

2.2.1 Features extraction

2.2.1.a The PCA The PCA, as a statics method, raises the characteristics of the im-
ages to build a new model representing the target. Starting from our images, the PCA
picks up the most important information about it. Thus, transmitting to the next cameras,
where a PCA is applied too, camera can figure out if it is the same target or not, by mea-
suring the distance between the two new representation. Considering the fact that if the
target is not seen on the same way (front, back, side images...), the PCA would not give a
pertinent characterizations. Indeed, the PCA is efficient in case the targets are seen from
the same side in both cameras. then, a projection of two PCA’s results may give good
results. However, in case the target is seen from different perspectives, the information
extracted will be completely different. Thus, a projection will give false results.

2.2.1.b Target space The set of images detecting the target is then used to create
the target space X : M * N2, where each N2-dimensional feature vector is equal to the
number of pixel of each images and M is the number of images considered. Typically,
our 30*30 pixels image generated a target space M *x 900. Thus, PCA which seeks a
projection that best represents the data in a least-square sense is reduced for reducing the
dimensionality of such a target space, while finding the vectors with best account for the
distribution of the target with the entire target space.

2.2.1.c Eigentarget The eigenvectors corresponding to nonzero eigenvalues of the
covariance matrix produce an orthonormal basis for the subspace. A corresponding match
between the different target space is then estimated. Up to the previous step, this consti-
tutes a traditional PCA approach. However, considering the transformation before esti-
mating the distance between the different spaces can be potentially more significant. As
presented in the previous section, linear transformation is considered as:

* Transforming each 2D image selected in a 1D vector to generate a target space.
» Estimating the mean space, and obtaining a mean centered new space

* Obtaining the Covariance matrix

* Finding the eigenvectors and Eigenvalues

* Selecting the eigenvectors associated with the largest eigenvalue which reflects the
greatest variance in the image. The target space is the projected onto less dimension
space to obtain the "eigentarget".
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2.2.2 Camera-to-camera translation

Image to image translation is a category of vision and experience. Graphic problems
that aim to learn the mapping between an input and an output image through a training of
matched image pairs. Several works present approaches to learn how to translate an image
from a source domain X to a target domain Y such as [ZPIE17]. Through years of research
in computer vision, image processing, digital photography and graphic design, powerful
translation systems have been achieved in a supervised environment. The main idea is to
convert an image from an observation of a given scene to anther such as grayscale image to
color image or edge-map to photograph. In all these works focus on paired training data,
where correspondence between input and output is well defined. This requires obtaining
paired training data which can be difficult and expensive specifically when the output
is very complex. For this, researchers in [ZPIE17] present an approach that can learn
to do the same without supervision, in unpaired data: capture the distinctive features of
one image collection and determine how these features would be translated into another
image collection. They proposed an algorithm to learn how to translate between domains
without paired input-output scenarios. This supposes that there is an implicit connection
between the domains and aims to identify this connection. For example, two different
renderings of the same underlying scene. This goes beyond supervision in the form of
matched examples, but rather exploits supervision at the set level. In other word, given
two set of images in two domains A and B, the trained mapping M : A — B such as for
a € A, b = M(a) would be indistinguishable from the set b € B. Indeed, the optimal
M would translate A to domain B identical to B, but generate an infinity of mapping M
that will generated the same distribution over b. Consequently, each input a and output b
will not be perfectly matched individually. This issue has been addressed by suggesting
that the translation become "cycle consistent" by proposing an inverse translation to have
a bijection mapping. For each mapping M : A — B, a self-inverse mapping N : B — A
is estimated. M and N are therefore inverse of each other and verifying M(N(a)) = a
and N(M(b) = b. This approach was developed later [[ZZE17] to guarantee that the
mapping between two image domains is unique or one-to-one.

From this perspective, we proposed our approach to identify the mapping between the
different cameras of the network with several challenges, that have never been studied
before:

* Completely unsupervised reidentification.

* Distributed task between 2 cameras detecting a target.
* Online learning and online mapping.

* New update mapping after each detection.

* Very low resolution images.

Our goal here is to estimate mapping functions between the observation of a target qul
and Fll;2 by two cameras A and B respectively at instant {1 and t, , and also between
observations of different targets qul and Ffj by the same camera A. As illustrated in Figure
2 out model includes 3 mappings: Mg_jl : F§3 — i, Mg_to : PE — FEO and
Mg_—;‘o : FE — F;f. We then introduce FIZP as the representation of the target generated
in the network based on the previous observation. The goal is to estimate the matching
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FIGURE V.6: Illustration of the different transformations. Spatial transformations between
camera A and B. Temporal transformations between a current target detection and the reference
target.

between the prediction generated F]_? and the observation effectively measured by the
camera B.

2.2.3 Formulation and assumptions

Deploying a large number of camera without any preconfiguration and precalibration, as
complex it is, requires to assume some assumptions. Indeed, the purpose of mapping is
accomplished using two separate cameras and at two distinct instants. This is accom-
plished in two phases: Initialisation of the transformations and upgrade following each
detection:

* Geometric transformation: Starting with a completely unknown environment, it
is nevertheless essential to establish a baseline. This step require to consider the
first target moving in the network and generating internal and external events as a
reference for the remainder of the events. Considering one target moving through
the network, the geometric transformation of its appearance is consider as a spatial
transformation between the cameras, represented in figure V.6 with Mg:;o. This in
the aim of quantifying the spatial transformation of all future targets. All the while
assuming that the cameras are static.

This phase is represented in figure V.7 as phase one by interconnecting the different
cameras.

e Temporal transformation: Estimating the temporal transformation of each target
features online avoid having a prior learning phase and reduce memory storage. As
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FIGURE V.7: A series of steps is followed in each of the two cameras in order to find the
transformation between each other. Starting with the PCA, a projection is applied to reduce the
dimensions of the target space before estimating the transformation.

illustrated in the figure, the only part remaining in memory is the calibration results
of geometric transformation.

In addition, taking into account the data transfer costs in a wireless network, shared
data is minimized, and only the transformations of the eigenimages are shared.

While Mg__fqo is estimated only for the reference target, szto is estimated after

each detection in the camera A, andMi?it1 after each detection in the camera B.

2.23.a Problem linearization The objective is to model the transitions by providing
a system that can be parameterized through the initial configuration as well as the post-
detection regulation to ensure the desired performance for reidentification. Before any
modeling, it is necessary to define the system environment. The system environment is
delimited by several independent input variables: target detections that define the system
state, and output variables that report, following a detection, the results of the system’s re-
identification with respect to the detections. Additional inputs from the learning phase are
then integrated. The more the system is distributed, the more necessary it is to establish
a network of simultaneous equations to describe the system. In general, the model we in-
tend to establish is the result of a compromise between fidelity to the real behavior of the
system at various excitations and simplicity. Simplicity is achieved through working hy-
potheses and approximations that make the model mathematically viable. In our network,
when we re-identify a target, we are interested in the detection of this target by cameras
detecting this target in previous instants, following a non-Markovian model. For visual
information, we are only considering the latest camera detecting this target. This makes
it possible to linearize the subsystem defined by two cameras successively detecting the
target. Thanks to the linearization of subsystems around two cameras, and under cer-
tain assumptions (the same target), the system can be described by a linear mathematical
model. The linearization method is a valid method only locally (between two neighboring
cameras) and therefore, this method cannot be used to define a global network behavior.

Thus, the relationship between the cameras, illustrated in Figure V.6, is expressed in the
following equations:

Fj = My—0 Y (V.6)

F2 = M3 Flo (V.7)
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Fp = My ".Fp (V.8)

Thus, following the figure V.6 our prediction FE can be defined as:

Fp = My~ My~ (M0 FR (V.9)

In fully distributed context, where cameras are completely desynchronized, the equation
V.19 becomes where camera events are stamped by the internal and external camera event
only:

e VY N0V i R o (V.10)

Where M represent a set of transformation related to geometric and photometric transfor-
mation considering orientation, translation size and intensity.

2.23.b Translation verification Following V.6,V.7, V.8 and V.9, we suppose:

(M2 )Y F2 = Fl e (V.11)
Thus, V.9 becomes:
- ity e —t0 (o ty—tON+ ot
Fg = Mg "My, (M2 )T F2 (V.12)
Fp = MR~ MY (FY 4 €R) (V.13)
o = M0 (MY FY 4+ M0 eh) (V.14)
Fb = METUL(FY + el + MO0 (V.15)
Fb = METFD 4 MR (el + MU0 (V.16)

Fb = FD el + MBI, + MY 0.eh) (V.17)
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et = el MPT (el 4+ MR (V.18)

Conceptually, this model compares the feature extracted from the camera Fltf with the

features generated by the set of transformations F]?. This similarity &, between two fea-
ture vectors can be measured as a reciprocal of a distance measurement, different types of
distance measurements can be used. Here, we use an Euclidean distance for the measure-
ments:

—

®, = d(Fg, ) (V.19)

2.3 High-level processing layer

At this level, the re-identification is performed using all the local-network update. The lo-
cal network represents the set of cameras indicting the camera neighborhood and a part of
its vision graph. Thus, the association between each camera pair is established. In figure
V.8, we illustrate a sequence of cameras detecting the same target. Each column repre-
sents a camera participating in the tracking task. Grey nodes correspond to the processing
available in the camera. This can be a temporal, spatial or visual processing.

Camera-to-camera Camera-to-camera  Camera-to-camera
sogiation association association

o

Detection:
External input|

Detection: Detection:

External input

Detection:
External input!

“An AT

internal input/output

Camera1 . Camera 2 : Camera 3 . Camera 4

FIGURE V.8: Network architecture: Each column represents a camera participating in the track-
ing task. Grey nodes correspond to the processing available in the camera.

For visual parameters, the proposed method is applied. Considering the spatial parame-
ters, we choose to consider the last 2 previous cameras. Thus, the target detected by a
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camera has 9possibilities about the followed paths. For temporal parameters, we use the
network manager. Indeed, for a mote to join a network, it must get time-synchronized
to other devices by hearing an advertisement from an Access Point (AP) mote or a mote
already in the network. This message exchange is part of the security handshake that
establishes encrypted communications between the manager or application, and mote.
Once motes have joined the network, they maintain precise synchronization through time
correction messages sent between connected neighbors.

3 Evaluation

3.1 Simulation environment

In the first evaluation, the cameras are utilized only to generate video that can be process in
a fixed platform. Nine people moving around the cameras have been selected, generating
four video sequences in four asynchrnous cameras. Consequently, used in a fixed platform
(a laptop in our case), we apply varied processing described in the previous section using
a Matlab computing environment. This real-world dataset proposed by [BkBQ] is very
challenging and is good representation of situations that may occur in real office life

90
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FIGURE V.9: Variation in the re-identification rate according to the number of eigenvectors
considered. S.T refers to Spatial Transformation, T.T refers to Temporal Transformation. S.T.T
points to Spatial and one Temporal Transformation. Total. T refers to the 3 transformations.

The re-identification is validated based on the measurement of the distance between the
inputs of two cameras and the features generated. The results generated by the 5 methods
are implemented and compared:

1. No transformation generated: Here the PCA is directly applied on the images of
camera A, then transferred to the images of camera B as 151;3. This simple method
show its robustness when targets are detected on the same side(face, back..). How-
ever, it is definitely not appropriate for different side of detection.

2. Temporal transformation: Mg_to is estimated between current person and refer-

ence person (for each new person), then apply the transformation on F]tgl to obtain

1:";3. Here, we consider only the features transformation between the targets detected
by the same camera.

3. Spatial transformation: M;}__ff is computed for the reference person between the

two cameras, then apply the transformation on FZZ to obtain 1%3. The ng{) is

estimated only once in the calibration phase, and used after each detection.
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4. Spatial and Temporal Transformation: Estimate Mg__;{’ for the reference person

(done only once) between the two cameras, reinforced by Mg_to between current
person and reference person, then apply the transformation on 1:22 to obtain I:’E’.

9,

. Total transformation: It regroups the previous steps. Here, we estimate Mg:;{’ for
the reference person (done only once) between the two cameras A and B, then apply
the transformation on FZZ and consider the transformation on Fltf to obtain 151';3. The
idea of utilizing this is to consider the transformations really achieved at camera B
on those that have been analyzed by camera A.

(A) ERef.C1 (B) ERef.C2

\
' h
rars!
Hﬂ

(c) FReal.C1 (D) FReal.C2 (E) S.TF (F) S.T.TF (6) TTF (H) TT.T.F

FIGURE V.10: (a) corresponds to the initial features reference for camera 1, and (b) for camera

2. (c) correspond to the input features after each detection for camera 1 for 5 target detected,

and (d) for camera 2. (e) correspond to the features generated via spatial transformation using

(c). (f) correspond to the features generated via spatial and temporal transformation of (c). (g)

correspond to the features generated via temporal transformation of (c). (h) correspond to the

generated features using the whole transformation of (c) and (d). (e), (f), (g) and (h) are then
used for comparison with the input (d)

Figure V.10 shows the features detected by camera A and B, as well as the features gen-
erated through the different transformations. It represent the Fg‘ used as a prediction to
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estimate the matching with FE detected. Overall results are presented in figure V.9. We
assess the accuracy of re-identification in the aforementioned methods. The integration
of these transformations significantly improves reidentification performance. Indeed, a
simple spatial transformation is not sufficient (S.T in figure V.10). However, the rein-
forcement by the temporal transformation of the current target in respect of the reference
(S.T.T in figure V.10). The prediction generated aim then to construct the next target that
can be detected by camera B based on the target detected by camera A. The final step
(Total.T in figure V.10) considers not only the target detected by the camera A with the
necessary transformations, but also takes into account the transformation in the camera B
after its detection in order to approach precisely the same features.

TABLE V.4: Pairwise identification for two datasets. SS refers to the detection of the same side
detection, whereas DS is for the detection of different sides.

Dataset True re-ID False re-ID

1SS 59.7% 40.2%
2SS 65.27 % 34.72 %
1 DS 38.88 % 61.11 %
2DS 51.38 % 48.61 %

TABLE V.5: Tracking performance in the network in dataset 2.

Cameras cameral camera3 camera4

camera 1 X 4583% 6527 %
camera3 51.38% X 53%
camerad4d 56.94% 53% X

3.2 real world environment

The processing described below is implemented in 8 cameras positioned in an indoor
environment. Thanks to the manager, the cameras send notifications to a fixed platform
(a laptop in our case). Thanks to that, we are able to recover the network state despite the
fully distributed processing.

3.2.1 Implementations

No learning phase is implemented in the upstream cameras. Therefore, to create the
first transformations that will be used as a reference, a target is launched in the network
that will be considered as a validated re-identification. This objective generates the first
network events. It permits to initialize the cameras data in terms of magic matrix. In
addition, this provides the ability to generate the first communication and thus initialize
the network data for the link graphs.

3.2.1.a FPGA: The FPGA is interfaced to the PIR and visual sensors for data acqui-
sition. Indeed, as soon as the camera is turned on, the background is built directly and the
visual sensor is switched in standby mode. Thus, the visual sensor is only requested if the
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PIR sensor detects the existence of a target in the surroundings of the camera. In case of
detection, the visual sensor is turned on and the acquired images are directly processed
for the BFS. This is done in dataflow mode to save processing time. Once the image is
selected, it 1s transmitted to the cortex M3.

icomponent neighExtractor is

I generic(
PIXEL_SIZE : integer; --8
IMAGE_WIDTH : integer; --30
KERNEL_SIZE : integer |--3
port(
clk : in std_logic;
reset_n : in std_logic;
enable : in std_logic;
in_data : in  std_logic_vector ((PIXEL_SIZE-1) downto 0);
in_dv : in std_logic;
in_fv : in std_logic;
out_data : out pixel_array (0 to (KERNEL_SIZE * KERNEL_SIZE)- 1);
out_dv : out std_Tlogic;
out_fv : out std_Togic

end cémponent neighExtractor;
FIGURE V.11: VHDL code for the BFS

TABLE V.6: the parametric values used for the BFS

Parameters | Values
o 0.01
size of w 3*3
Omin 0.992

TABLE V.7: Resource Utilization of the bfs on the Ant-Cam Platform.

Total logic elements 637 8,064 (8 % )
Total memory bits 8,192 /387,072 (2 % )

3.2.1.b Cortex: The M3 cortex is utilized for image processing and data exchange.
Selected images are received from the FPGA and processed directly. The PCA is applied
and the transformations are calculated with the data acquired from the learning phase.
Once completed, the data is shared over the network with the concerned cameras. Fur-
thermore, communication is managed here as well. Thus, the confidence information is
evaluated after each event, and links are established based on the shared information.

3.3 Network discovering

The first step is the network discovery. This is achieved thanks to the communication pro-
tocol SmartMesh IP utilized. Each camera presented in the network send a notification
to the manager to be integrated in the network as shown in figure V.12. SmartMesh Ip
uses AODV as a routing protocol. Indeed, when a camera turns on, it seeks to reach the
manager regardless of how far away it is. By requesting a route, aodv provides the most
optimized route and maintains it for as long as the source needs it. With this procedure,
the cameras acquire knowledge of the network. The main advantage of this rooting is to
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dynamically adapt to changing conditions, such as disabled cameras, and to route infor-
mation around obstacles, giving the network its fault tolerance and high availability. This
routing protocol is low power consuming and does not require a lot of computing power.

The position of the cameras in the figures does not correspond at all to the physical loca-
tion of the cameras since we start from an unknown topology. Only logical topology is
intended to be found in this work.

(A) Network discovery

FIGURE V.12: Different network states.

3.4 Network events

Each external or internal event generated in a camera is shared across the network as
needed. Figure V.13 shows different events occurred in the network for a target de-
tected by camera 1 and then camera 2. The figure V.14 shows the network evolution
over the runtime. In V.14a, the cameras are discovered by the manager of the network.
The network discovery then aim to initialize the communication between the cameras in
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the network. As SmartMesh IP offers the possibility to communicate with all the cameras
presented in the network, each Ant-Cam can initialise the communication with others ac-
tivated(V.14b). V.14c shows the links strength after 50 events. Each camera manages its
input links(orange) and output links(blue).

(A) Target detected in camera 1 (B) Prediction sent from camera 1 to the network

(C) Target detected in camera 2 (D) Target re-identified in camera 2 and feedback is sent to cam-
era 1

(E) Prediction sent from camera 2 to the network

FIGURE V.13: Different events in the network.

The importance of the links between cameras is reflected in the probability of moving
from one camera to another. Each camera estimates its probability independently and
share the information with the manager. Figures V.15 proposes the probability calculated
in camera 1 based on the events occurred.
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(A) Network initialization(0 events).

(B) Network discovery(0 events)

(C) Network vision graph G after 50 events, blue graph refers to G© and
orange links to G!. links.

FIGURE V.14: The vision graph building during the network’s run time.

After few events(10 in this case), the network reach a stable state, manifested by the
stability of the values calculated for the probability of transition as shown in figure V.15.
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4 Conclusion
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In this chapter, we present the camera developed for this work, defined by very limited
specifications. Thus, we present our approach of visual data processing between each pair
of cameras exchanging predictions and feedbacks.In addition, we present our real-world
implementation. In fact, when referring precisely to hardware deployment, a number of
reflections can be appended to the above-mentioned model. The latter bypasses some
requirements in terms of calibration and temporal synchronization between cameras. The
resulting stable state minimizes communication costs by maintaining only meaningful

communications, as well as providing the ability for cameras to anticipate events and
switch to standby state and minimizes computing costs.
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1 Conclusions

This thesis has presented a new model for tracking and monitoring in indoor environment.
Starting from unknown environment, the main objective of this work is to introduce a net-
working model capable of giving the camera full autonomy and acting as an self-interested
agent in the network. The main objective of this work is to introduce a networking model
capable of giving the camera full autonomy and acting as an autonomous agent in the
network. This is especially significant when dealing with a large scale network in which
it is impractical to individually configure the cameras.

It uses the stimulation-response combination to perform specific tasks: external stimuli
that are detection following environmental measures and internal stimuli that are notifica-
tions from other cameras after external stimuli to predict or feedback. Our first contribu-
tion is to show how external and internal stimuli can help the camera develop an in-depth
understanding of its environment and build its own vision graphic. This online learning
of associations at the level of each camera can lead to high-performance monitoring from
a system point of view, making it possible to create a spatial-visual-temporal correlation
between cameras. This enhances the accuracy of its prediction and feedback in terms of
onsite processing or communication costs. This online learning makes the camera robust
in the face of environmental changes. A simulator has been designed to evaluate the main
aspects of the network model. The results highlight the performance of the prediction
of sequential events and time of occurrence their re-identification. In addition, Ant-Cam
cameras have been designed forming the LobNet platform defined by very low specifica-
tions. The perception task of the camera is performed using a mouse sensor giving 30*30
gray-scale-pixel images coded in 6 bits. This sensor contains an integrated Digital Signal
Processor to proceed the images and determine the direction and distance of motion. The
camera uses an FPGA from Altera MAX10 for processing and are talkative due to the
protocol SmartMesh Ip from Linear.

2 Perspectives: Dynamic Ant-Cam network: Towards
real ants world

There are numerous directions for future work. Here, we propose to consider adding an
additional feature to the cameras to enhance their dynamic range in order to optimize the
performance of the cameras in terms of perception. It is challenging to identify an optimal
structure to effectively cover the environment, which can change over time (e.g. light con-
dition). For this purpose, new devices can be either reconfigurable and/or recalibratable.
The first case refers to all the software parameters of the device such as its topology and
processing capabilities. The second refers to hardware parameters such as direction, zoom
and position. The SCN should also become self-repairing. Indeed, self-organization over
long operating cycles should take into account link failure, the appearance of new nodes,
and the shutdown of nodes due to battery depletion or malfunction.

The camera calibration operation is the modelization of the process of forming the im-
ages. It aims to find the relationship between the spatial coordinates of each point of the
space with the associated point in the image taken by the camera. The calibration uses
two kind of parameters. The extrinsic parameters represent a rigid transformation from
3-D world coordinate system to the 3-D camera’s coordinate system and fixed by the posi-
tion, orientation and zoom. The intrinsic parameters represent a projective transformation
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from the 3-D camera’s coordinates into the 2-D image coordinates, and fixed by the iris
and focus. In order to better perform tasks, cameras may change those parameters de-
pending on different factors VI.1: (i)Variable environmental conditions prod the camera
to change to self-calibrate? such as illumination condition, or the obstacles which can
be static or dynamic, (ii) the others cameras presented in the networks, whether because
it receives a sub-task from an other while a task decomposition from another due to its
limited performance or to continue a task started in another camera such as tracking in
the best condition. (iii) the performance which should be evaluated by the camera before
starting a task, such as the accuracy, the timeliness and the energy needed to perform that,
in case of overcharging, task can be split up in many sub-task and associated to other

cameras in the network.

Network:
others cameras
presented in the
network, the in-

formation received

< | CaMmera |=—m—m——

Environmental con-
ditions: Variable
Illumination Con-
dition, statics or
dynamic obstacles

Performance:
its own hardware
parameters
its ligetime

FIGURE VI.1: Factors of calibration
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FIGURE VI1.2: Blue refers to data stored in memory for further processing. Green corresponds

to the initialization of the transformations. Oranges represent the transformation performed

in each camera following each detection. The pink corresponds to the matching between the
generated data through the transformations, and the extracted data.
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