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Abstract

The holographic duality renders a way to encode certain quantum information in a semi-classical
gravity theory. In this thesis, we start with the quantum complexity, considering the universality
of its two holographic conjectures, “Complexity=Volume” (CV) and “Complexity=Action” (CA),
in terms of the thin brane model in AdS3. Our result shows that the divergence structures for
the two are not identical as CV has an extra brane tension dependent logarithmic divergence.
Though preliminary considerations on the field theory side of complexity favor CA, the univer-
sality question is still kept open. Next we move to a study on the gate dependence of circuit
complexity by explicit calculation in the two-dimensional bosonized model where we show that
the influence of the gate set choice is different for different subsets of states under consideration,
not significant for “bosonic coherent-fermionic Gaussian” case, while dramatically different in the
bi-Gaussian case. Then, we reconsider the thin-brane model in the canonical holographic manner,
finding that the brane tension is related to the energy transport coefficients defined in the dCFT,
in addition to the relation to the boundary entropy of the interface which has been commonly
advertised in the literature. In the last part, we propose a new bulk geometric quantity dual
to the Berry curvature in the space of boundary modular Hamiltonians, which is the Riemann
curvature in the vicinity of the Hubeny-Rangamani-Takayanagi surface. A sanity test has been
done in pure AdS3 which shows a nice agreement due to the simplicity and nice symmetries of
this system. The studies in this thesis have opened many interesting directions, which hopefully
will be explored in the future.
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Chapter 1

Introduction

Geometry has fascinated us as human beings ever since the start of the history of human’s
civilization, due to our curiosity about nature, who hides a large amount of information in a
certain geometric manner. If one ever thinks of the discovery of the first irrational number “

√
2”,

which appears to be the length of the hypotenuse of a right triangle with legs of length 1, or
Archimedes’ constant “π”, which acts as the ratio of a circle’s circumference to its diameter,
one would be amazed at how nature could encode such important information with beauty and
simplicity. It is safe to say that, the deeper we understand about our nature, the more information
we are able to extract from its associated geometries, and vice versa.

The 20th century has witnessed a breakthrough in the understanding of gravity, a fundamen-
tal piece of our nature, initiated by the unconventional work of Einstein and Großman on the
generalized theory of relativity in 1915 [1]. This revolutionary theory refines Newton’s outlook
on the split of space and time by treating them as a whole and on equal footing, which leads to
a novel understanding of the gravitation as the geometric property of spacetime. As have been
put by Misner, Thorne and Wheeler, “space tells matter how to move, matter tells space how to
curve” [2], General Relativity beautifully illustrated how the dynamics of the spacetime geometry
conveys the message from nature in terms of gravitation.

Another pillar that can not be circumvented in the last century is the microscopic understand-
ing of many macroscopic phenomena, for instance, the photonic explanation of photoelectric effect
in 1905 by Einstein [3], the orbital model for the spectral of emission lines of atomic hydrogen
in 1913 by Bohr [4] and so on so forth, which updated the classical mechanics to the quantum
level through further developments, forming a modern subject named Quantum Mechanics. A
natural question one might quest on the lessons from General Relativity is that, does this new
type of theory share some common features such that it have some geometric interpretation as
well? To answer this question would require a particular theory which incorporates both General
Relativity and Quantum Mechanics in the same framework. In the sixties, it might still be a pie
in the sky though both theories have been mathematically formulated.

Nevertheless, this among other questions stimulated the search for a new theory which can
depict the quantum behaviours of gravity as well as a complete unified theory for everything.
A prominent candidate theory then emerged starting from the late sixties, by generalizing the
point-like particle to one-dimensional fundamental vibrating strings living in tiny scales, which

1
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can give rise to the desired properties of standard particles, such as charge, mass, spin etc., at
the observational level and automatically contains the graviton, the quantum of gravity as one of
its oscillating modes by construction. These fascinating features of the so called String Theory
have attracted vast investigations, including the extension to supersymmetric case which relates
the bosonic system to the fermionic one via a symmetry transformation, thus laid a fairly good
foundation for building a rather concrete connection between General Relativity and Quantum
Mechanics.

It was not until 1997, when Maldacena proposed a correspondence between the type IIB
supergravity theory in the five-dimensional anti-de Sitter (AdS) space with a negative cosmolog-
ical constant compactified on a five-sphere, and the four-dimensional superconformal Yang-Mills
theory with four supersymmetries [5], that things become more tractable. The novel feature of
this conjecture is that it offers a new perspective to understand the relation between the grav-
ity theory and quantum field theory which are related by the so called holographic duality1 or
gauge/gravity duality. In this setup, a (d + 1)-dimensional conformal field theory (CFT) which
roughly speaking is a quantum field theory with additional scale invariance, is regarded to live
on the asymptotic boundary of the (d+ 2)-dimensional AdS spacetime. Therefore, the boundary
CFT can be taken on as the projection of the gravity theory in one higher dimension, hence
the name holographic duality or AdS/CFT correspondence. A very successful application of
this duality was the calculation on the transport coefficient, more precisely the shear viscosity
of the strongly correlated quark-gluon plasma system at finite temperature by Policastro, Son
and Starinets [9], whose result is remarkably in the same order of magnitude as the experimental
measurement in RHIC [10], while the other perturbative analysis leads to infinity. With a huge
amount of further tests being made to show the validity of the holographic duality, it has become
commonly accepted as a principle among considerably many theoretical physicists, which lays the
foundation for the present dissertation.

Due to this established duality, it becomes rather natural to endow some information about
the quantum systems with the geometric interpretations, through the corresponding suitable
quantities in the spacetime manifold. In 2006, after almost ten years of the birth of the holographic
duality, Ryu and Takayanagi made the first trial towards this direction in their seminal work [11]
by relating the entanglement entropy, a measure of the degrees of quantum entanglement between
a many-body subsystem with its complement, to a certain bulk2 codimensional-two extremal
surface anchored to the boundary subregion where the entanglement entropy is evaluated. Their
intuition comes from the counting of Black Hole entropy via the Bekenstein-Hawking formula,
where gravitational entropy is proportional to the area of the Black Hole horizon. In the context of
AdS3/CFT2 correspondence, the bulk geometric quantity to encode the boundary entanglement
pattern is simply the length of a spatial geodesic anchored to the interval considered, with the
proportionality factor being a quarter of the inverse Newton’s constant.

The success of understanding the quantum entanglement in the holographic manner then

1Some preliminary considerations on viewing the universe as a hologram have been articulated by Thorn [6], ’t
Hooft [7] and Susskind [8] in the early nineties.

2In the context of holographic duality, “bulk” means the spacetime where the gravity theory is living as opposed
to the asymptotic AdS boundary where the CFT is living. Usually the asymptotic boundary is reached by following
a spatial coordinate to one of its limits in the bulk frame.
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initiated many researches along the line to decode the quantum information via the holographic
principle in the semi-classical gravitational system, such as the holographic derivation of the
entropic inequalities [12,13], butterfly effect in Black hole system [14], gravitational dual of Rényi
Entropy [15] and so on so forth. Thus in a way it reinforces the geometric essence of certain
quantum theories and to some degree tightens the connections between the gravity theory and
the quantum theory. The current dissertation aims to continue to explore these connections, either
to analyse some existing conjectured correspondences or to propose new geometric quantities that
encode the quantum information in the gravitational language.

The first part of the thesis focuses on a quantity arising from the quantum computing theory,
called the quantum complexity, defined as the minimal number of gates required to conduct
a quantum computation task which starts from a reference state and ends approximately in a
target state. In 2014, Susskind et al proposed a connection to the gravity theory, arguing that
this quantity could be related to a bulk codimension-one volume in AdS spacetime [16], or the
action in a certain bulk codimension-zero region called Wheeler-DeWitt patch [17] which was
conjectured in the following year. The “volume” conjecture is named as “Complexity=Volume”
(CV) while the “action” conjecture is named as “Complexity=Action” (CA), whether they are
universally equivalent remains an unknown issue. Therefore, in Chapter 3 based on [18], the
universality of the two proposals was studied by introducing a thin tensile AdS2 brane in the
middle of AdS3, where the brane acts as a defect and leads to an extra volume in its transverse
direction. The results show that an extra tension dependent log divergence is present for CV
while no tension-dependent divergence appears for CA. Through a preliminary consideration of
the complexity of a free scalar model on the boundary, it seems that CA rather than CV is more
favoured. However, a definite claim of the universality of the current holographic conjectures
requires further investigation, which is left to the future studies.

As an episode, in Chapter 4 based on [19], we reconsider the thin AdS2 brane model in the
canonical holographic manner, assuming it is indeed the bulk dual of a generic defect CFT2. On
the dCFT side, an interesting property arises in terms of the two-point functions of the stress
energy tensor which are universally fixed with only one new parameter other than the central
charges of the CFTs on the two sides of the defect if they are generally different from each other.
Furthermore, a scattering process could be set up with this parameter encoding the information
for the energy transport coefficients. Through our analysis on the scattering of the boundary
gravitons, we give the first calculation to relate the brane tension to the reflection/transmission
coefficients. The limits of the brane setup introduces both an upper bound and a lower bound to
the those coefficients where the lower bound for the reflection coefficient coincides with the one
from the average null energy condition (ANEC) while the upper bound tightens the result from
ANEC.

In Chapter 5 based on [20], the attention is drawn to the field theory consideration of the
quantum complexity, since to understand the holographic conjectures to a better level requires
a clearer understanding of the boundary theory, like the process for understanding holographic
entanglement entropy. A known fact in the consideration of quantum complexity is that, it is
highly influenced by the choices of gates, states and penalty factor. In the previous literature,
there is no work that has considered the dependence of the gates choice explicitly, hence giving
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the spirit for this chapter where the work was performed in the “1 + 1” free-fermion, equivalently
free-boson model by calculating the relative complexity between the same reference state and
target state, using two different sets of operators (gates) which are related non-linearly through
the bosonisation formula. As limited by the computability, the states under consideration are
either of coherent type or Gaussian type, where two methods are available for the computation,
the Nielsen method and the Fubini-Study (FS) method. Both methods are based on the idea
of geometrizing the problem and finding the shortest path, in which FS geometrizes the states
on a manifold while Nielsen geometrizes the unitary transformations on the states. The analysis
shows that the quantum complexity is highly sensitive to the gate choice for the “bosonic coherent-
fermionic Gaussian” states while non-significantly impacted by the “bosonic Gaussian-fermionic
Gaussian” states.

Though many bulk geometric quantities have been endowed with some meaning from quan-
tum information, there is on another different geometric object, which is very simple yet poorly
understood in holography, is the curvature of the bulk spacetime. In Chapter 6 based on [21],
special attention is payed to understand this quantity. The inspirations come from the following:
in a gravitational system, when a vector, representing a frame orientation, is parallel transported
along a loop, it differs from its initial orientation by an amount governed by the curvature of
the spacetime manifold; similarly, when a quantum state is transported along a loop in Hilbert
space, it will incur an extra phase called Berry phase, which is an integral of Berry curvature.
Based on those, a pioneering proposal was made by claiming the duality between those two cur-
vatures, through careful analysis on the definition of the corresponding connections for the two
kinds of parallel transports. In addition, the consistency of the conjecture was tested in a pure
AdS3/CFT2 setup, taking advantage of the equivalence between the local isometry of the AdS3

and global conformal symmetry of the CFT2. Potentially, this part will provide a new test for
the emergence of bulk geometry at a semi-classical level.

In the last part of the dissertation, Chapter 7, a summary of the results obtained during the
doctorate is presented, thus putting a beautiful end to the doctoral study of the author.



Chapter 2

Fundamentals of Holography and its
Applications

Holography, as its name suggests, is the study of making holograms where a one-dimension
higher system could be reconstructed by a lower system, specifically in the current context, it
is regarded as a synonym of the AdS/CFT correspondence. As an attractive subject which has
been developed for more than twenty years, it has become a large field of study, which roughly
can be divided into two categories based on the approaches to study the subject. The first
one is the top-down approach, where clear descriptions on both sides are available from the UV
complete theory perspective (superstring theory or supergravity theory), as well as the existence
of precise matching of the symmetries, spectra, coupling constants, amplitudes etc. The first
prominent example is given by Maldacena [5], and later by Witten [22] and Gubser, Klebanov
and Polyackov [23] stating that

4D N = 4, SU(N) Yang-Mills theory ≡ Type IIB string theory on AdS5 × S5 , (2.1)

which is realized through N−stack of coincident D3 branes in the ten-dimensional spacetime
whose near horizon geometry is AdS5 × S5, while the low energy dynamics of the brane volumes
is governed by the N = 4 U(N) gauge theory1. A quick look at the symmetries on both sides
reveals the consistency of the duality, since on the left side, we have the SO(4, 2) global conformal
symmetry as well as the global SU(4) R-symmetry, while on the right side, these symmetries
correspond to the isometries of the full spacetime, SO(4, 2)×SO(6), which are equivalent to each
other, since SO(6) ∼= SU(4). Notably, the duality relates the parameters on both sides in the
following manner,

(`/ls)4 ≡ `4/α′2 = 4πgsN = g2
YMN = λ, (2.2)

where λ is the ’t Hooft coupling and gYM is the coupling for the term − 1
2g2

YM
TrFµνFµν in the

YM theory, ls is the string length related to the string tension (2πα′)−1 as α′ = l2s and gs is
the string coupling. To have a classical gravity description requires that N → ∞ and λ → ∞,
physically this means that we consider the planar limit of a strongly coupled gauge theory. For

1The missing U(1) part represents the overall collective motion of the stack of branes, which moves away in the
near horizon limit, thus can be omitted [24].

5
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more interesting aspects and details on this duality or some other top-down models, one can refer
to the thorough AGMOO review [25].

The second approach is the opposite, called bottom-up approach, where we consider an effective
AdS gravity theory that is dual to a one dimension lower quantum field theory, with the belief
that there exists a UV completed theory in higher dimensions that can make precise the duality,
usually a ten-dimensional superstring theory or eleven-dimensional M-theory if can be consistently
constructed. This gives an advantage of this approach, since one only needs to consider the
necessary relavant bulk ingredients without complicating the system by finding a consistent theory
including the compactified directions. Considering its nice features, the bottom-up approach will
be the main melody of the current thesis.

In the following sections, I will start with some basic ingredients about the holographic duality,
with emphasis on the geometric features of the AdS space and the most useful extrapolating
method to obtain the CFT correlation functions. After that, I will introduce the application of
the holographic duality on the subjects that have been studied in this thesis.

2.1 Basic Ingredients of Holographic Duality

In this part, I only include the most necessary ingredients that will be used in the current thesis.
For more details, one can refer to the thorough review [25] by Aharony, Gubser, Maldacena,
Ooguri and Oz, or lecture notes by, for example, Skenderis [26] and Polchinski [24].

2.1.1 A Glimpse of the Anti-de Sitter Space

As is known, the AdSd+1 space is a maximally symmetric spacetime, which means that its Rie-
mann tensor is fixed by the metric tensor gab up to a total factor related to the AdS scale `

Rabcd = − 1
`2

(gacgbd − gadgbc) , (2.3)

where a runs from 0 to d. It has the right scale dimension and is antisymmetric under the change
of a ↔ c and b ↔ d and symmetric under the exchange of {ab} ↔ {cd} as expected. Tracing
twice of the indices, we have the Ricci scale R = −d(d+1)

`2 , which simply tells us that AdS space
has a constant negative curvature, resulting in a negative cosmological constant Λ = d(1−d)

2`2 when
applying the Einstein equation.

The isometry group for the AdS space as aforementioned is SO(d, 2), which can also be looked
as the Lorentz group for (d+ 2)-Minkowski space with two negative signatures. In fact, one can
embed AdSd+1 space as a hyperboloid surface in the (d+ 2)-Minkowski space with the following
surface equation

−X2
0 +

d∑
i=1

X2
i −X2

d+1 = −`2, (2.4)

where XM (M = 0, . . . , d + 1) are the Minkowski coordinates. Through different coordinate
choices2, one would get different patches of the AdS space. Notably, there is the global embedding,

2There are at least three common coordinate choices, global, Poincaré and Rindler. In the main text, the first
two are introduced due to the relevance for the later chapters, if one is interested in the Rindler coordinates, one
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which is a result of the following relation between the global AdS coordinates with the Minkowski
coordinates,

X0 = ` cosh ρ cos τ , Xd+1 = ` cosh ρ sin τ ,

Xi = ` sinh ρ sin θ1 sin θ2 . . . sin θi−1 cos θi (i = 1, . . . , d− 1) , (2.5)

Xd = ` sinh ρ sin θ1 sin θ2 . . . sin θd−2 sin θd−1

where θi ∈ [0, π] for i = 1, . . . , d − 1 and θd−1 ∈ [0, 2π). To cover the hyperboloid once, one can
take ρ ≥ 0 and τ ∈ [0, 2π), hence the name global coordinates, which leads to the metric

ds2 = `2(− cosh2 ρdτ2 + dρ2 + sinh2 ρdΩ2) (2.6)

with Ω being all the spherical coordinates and the asymptotic boundary locates at ρ → ∞.
Another embedding worth mentioning is given by the Poincaré coordinate, which is often used
with the embedding relation

X0 = z

2

(
1 + 1

z2 (`2 + ~x2 − t2)
)
, Xd+1 = `t

z
,

Xi = `xi

z
(i = 1, . . . , d− 1) , Xd = z

2

(
1− 1

z2 (`2 − ~x2 + t2)
)
, (2.7)

which covers a patch of the AdS space, with the asymptotic boundary located at z → 0. The
Poincaré metric is given by

ds2 = `2

z2 (dz2 + ηµνdx
µdxν) , (2.8)

where one see clearly that the asymptotic boundary is conformally flat. By a coordinate change
tan θ = sinh ρ (θ ∈ [0, π/2) for the global coordinate (2.6), it is easy to see the conformal flatness
when approaching the asymptotic boundary θ → π/2. The consistency of the duality proposal is
self-revealed in this manner where on the boundary lives a conformal field theory.

⇢ = 0
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Figure 2.1: Massive particles moving in AdS are attracted towards the center, as
illustrated by two timelike geodesics in AdS2, one begins at λ = 0 while the other is
the shifted one with δ displacement.

As AdS space has a negative cosmological constant, it is an attractor, which can be seen

could refer to, for example the appendix of [27].
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from the trajectory of a massive particle in the global coordinates. To obtain that trajectory,
in principle, one has to solve the timelike geodesic equation or the equivalent Euler-Lagrangian
equation, however, thanks to the embedding picture, we could use a simpler manner to obtain a
glimpse of the trajectory without solving the second-order differential equation. The observation
is that in (2.6), a known timelike geodesic is

ρ = 0, τ = λ , (2.9)

where λ is the affine parameter. Then one can use the isometries to obtain all the timelike
geodesics. We can see the simplest example explicitly in the AdS2 space, if we perform a boost
η in (01) direction in the embedding space, which means

`


cosλ

0
sinλ

→ `


cosλ cosh η
cosλ sinh η

sinλ

 = `


cosh ρ cos τ

sinh ρ
cosh ρ sin τ

 , (2.10)

expressing ρ, τ in terms of λ, η within half a period τ ∈ [0, π] where τ(λ = 0) = 0 gives,

ρ = sinh−1(cosλ sinh η), (2.11)

τ = tan−1
( tanλ

cosh η

)
. (2.12)

The above solution gives a set of new timelike geodesics in AdS2. In a full period τ ∈ [0, 2π], one
see that the geodesic will emanate from the center ρ = 0, then at some point turn back, go pass
the centeral axis to the other side, later turn back again and end on the central axis, as Fig 2.1
shows. We can also get another geodesic from this one by performing a shift δ in τ direction,
which amounts to a rotation in (02) directions in the embedding space. Taking advantages of all
the isometries, one is able to obtain all the timelike geodesics for an AdS space with arbitrary
dimensions, where anyone of those can reveal the attracting property of the AdS space due to its
negative cosmological constant.

2.1.2 CFT Correlation functions via the Duality

Holography realizes a deep connection between the low energy supergravity in AdS space and
a CFT theory living on its boundary. From a CFT perspective, one might wonder how the
correlation functions are encoded in the gravity theory, since those correlators carry the whole
CFT data. This piece of hidden information has been dug out by two independent works, Witten
[22] and Gubser, Klebanov and Polyakov [23], giving rise to the name GKPW relation. The idea
is to identify the generating functional of the CFT on the boundary side to the bulk gravity action
at evaluated at the saddle point3, subject to the asymptotical Dirichlet boundary condition for
the bulk fields which act as sources for the gauge invariant CFT operators. In practice, the saddle
point is approximated by the solution to the equation of motion of the field respecting the chosen

3A subtlety might arise when there is more than one saddle points to extremize the gravity action, then one
solution is to consider the most important one. However, in the following parts of the thesis, this issue will not be
encountered.



2.1. BASIC INGREDIENTS OF HOLOGRAPHIC DUALITY 9

boundary condition. In the Euclidean signature4, the relation can be formulated as

WCFT[φ0] = − ln
〈
exp

(∫
∂
φ0O

)〉
CFT

= −Iextremal
grav [Φ∂ = φ0] , (2.13)

where φ0 is the asymptotic boundary condition for the bulk field Φ, which carries spin index
implicitly. Holographic dictionary shows that the bulk scalar field is dual to the boundary scalar
field, the bulk gauge field is dual to the boundary conserved current, the bulk graviton is dual
to the boundary stress energy tensor, etc. In this manner, the connected CFT correlation func-
tions are given by the functional derivatives of the extremized gravity action with respect to its
boundary value,

〈O(x1)O(x2) · · · O(xn)〉c = −
δnIextremal

grav [Φ∂ = φ0]
δφ0(x1)δφ0(x2) · · · δφ0(xn)

∣∣∣
φ0=0

. (2.14)

For higher (than two) correlation functions, the issue becomes more complicated. In the following
part of this section, we will consider an example with free massive scalar in the bulk, and get an
idea how to obtain its two-point correlator holographically.

An example: two-point function for a massive scalar field in the bulk

Now as an illustration to obtain the two point function holographically, we will consider the
canonical example with a free scalar field in the bulk,

I = 1
2

∫
ddxdz

√
gφ(x)(−� +m2)φ(x) + 1

2

∫
∂AdS

ddx
√
γ∂⊥φ(x) + Ict (2.15)

where the second integral is the boundary action and the third one is the counter term needed to
make the action finite. Varying the Lagrangian with respect to φ gives the equation of motion,

1
√
g
∂a(gab

√
g∂b)φ = m2φ . (2.16)

A similar equation of the above also appears when considering spin fields like a vector field or
graviton in the AdS [28], that’s the reason we will focus on this as an illustration. The back
reaction of the scalar field to the geometry can be neglected since it is of order O(G−1

N ) with GN
being the Newton’s constant in (d + 1) dimension. Therefore, we are safe to use the metric for
pure AdS. In the following, we will use the Euclidean version of the Poincaré coordinate (2.8) to
give the explicit result, substituting into the equation of motion (2.16) gives

(
z

`

)d+1
∂z

((
`

z

)d−1
∂z

)
φ+ z2

`2
∂µ∂

µφ−m2φ = 0 , (2.17)

4The advantage of working in the Euclidean signature is that one can avoid the subtlety of between the advanced
and retarded Green functions.
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whose solution contains two branches, depending on the leading power of z → 0. The full ansatz
can be written as a power series of the radial coordinate z

φ(z, x) = z∆−(φ0(x) + z2φ2(x) + . . . )︸ ︷︷ ︸
φ−

+ z∆+(φ2ν(x) + z2φν+2(x) + . . . )︸ ︷︷ ︸
φ+

(2.18)

where ∆± = d
2 ± ν with ν =

√
d2

4 +m2`2 and φ2(x) stands for two-derivative term which can
actually be obtained explicitly as well as the other higher derivative terms. Let’s assume that
ν 6∈ Z in the following analysis. One can see that φ− is the dominant branch and contains the
non-normalisable mode when approaching the asymptotic boundary if ∆− < 0 < ∆+

5, thus
most of the time φ0 is identified as the source for the dual CFT operator, as well as the boundary
condition for the bulk scalar. It is not hard to see that when substituting the ansatz (2.18) back to
the action (2.15) assuming some conterterms like a quadratic term in φ on the boundary [26], one
could obtain the expectation value of the boundary dual operator O(x) by using the description
(2.14),

〈O(x)〉 = −δIon-shell
δφ0(x) = (2∆+ − d) `d−1φ2ν(x) , (2.19)

which shows that, the asymptotically leading power the other branch φ+ works as the response to
the source φ0 and provides one-point function in presence of the source.6 Once we have identified
the source, in principle, one could write the bulk solution as an integral of the source

φ(z, x) =
∫
ddyK(x, z; y)φ0(y) (2.20)

where K(x, z; y) is the alleged bulk-to-boundary propagator, encoding the way how the boundary
source φ0 propagates into the bulk. The explicit form for K(x, z; y) can be obtained by solving
the scalar e.o.m7 assuming a localized boundary source φ0(x) = δ(d)(x− x′), given by

K(x, z; y) = π−d/2
Γ(∆+)
Γ(ν)

z∆+

(z2 + (x− y)2)∆+
, (2.21)

one sees that when z → 0, K(x, z; y)→ 0 as expected. Finally, one arrives the two-point function

〈O(x)O(y)〉 = δ〈O(x)〉
δφ0(y) = (2∆+ − d) `d−1 δφ2ν(x)

δφ0(y) = (2∆+ − d)π−d/2 Γ(∆+)
Γ(ν)

1
(x− y)2∆+

. (2.22)

One can read the conformal dimension of the scalar operator from the power of the proper distance
between the two operators, which is ∆+, the unitarity bound requires that ∆+ is bounded from
below, i.e., ∆ ≥ d/2− 1, as in [29,30].

5This relation is obtained assuming m2 ≥ 0, in general, one only has to work on the condition m2 ≥ −d/4,
known as the Breitenlohner-Freedman stability bound, though the leading asymptotic mode in φ− is no longer
necessarily non-normalizable.

6In fact, φ2ν(x) can be expressed as an integral of the source φ0(x) where φ2ν(x) =
∫
ddyF (x, y)φ0(x), with

F (x, y) = limz→0 z
−∆+K(x, z; y).

7An interesting way to get this Green function using symmetry argument by Witten can be found in his
paper [22].
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2.2 Holography and Two-Dimensional Defect CFT

In the study of AdS/CFT correspondence, a special case arises when the bulk dimension is
“2+1” whose dual boundary theory is the “1+1” conformal field theory. The speciality in this
dimension is that there are infinitely many conserved charges due to an enhancement of global
SL(2,R) × SL(2,R) symmetry to two sets of local Virasoro symmtries whose generators satisfy
the Virasoro algebra, the unique central extension of Witt algebra [31]. In the bulk side, if one
choose the asymptotic boundary conditions for the metric as Brown and Henneaux did in [32],
the asymptotic symmetries will be enlarged as well to the complete two dimensional conformal
symmetries. In this manner, the central charge is identified as the ratio of the AdS radius over
Newton’s constant for Einstein gravity, c = 3`

2G . For a general higher derivative theory of AdS3

gravity taking into account the quantum corrections, the central charge has a more covariant form
c = `

2Ggab
∂L
∂Rab

[33, 34], one sees it coincides with Brown-Henneaux formula for Einstein gravity.
While the above should be regarded as a bottom-up consideration of the correspondence,

the AdS3 geometry could also be constructed from a top-down approach, i.e., have an origin
of an underlined string theory. The most well known realization comes from the near horizon
geometry of D1-D5 brane system. Supposing we have a type IIB string theory on the background
R1,4 × S1 ×M4 with N5 D5-branes wrapped on S1 ×M4 while N1 D1-branes wrapped on the
S1, taking the near horizon limit yields the ten dimensional geometry AdS3 × S3 × M4 with
M4 being T 4 or K3 [25, 35, 36]. The central charge can be obtained through an analysis of the
anomaly on the field theory living on D1-D5 branes whose IR fixed point is the dual conformal
field theory. In [25], the central charge is c = 6(ka + 1) = 6(N1N5 + 1), which is the same as
six times the dimension of the instanton (D1 brane) moduli space for a large number of branes.
Substituting the values for AdS3 radius ` = (g6N1N5)1/4ls and the three dimensional Newton’s
constant G(3) = g2

6l
4
s/(4`3), one recovers the Brown-Henneaux central charge. Some recent process

on understanding the duality for M4 = S3×S could be found, for example [37,38] and references
therein. However, this is outside the scope of the current thesis and we will not use too much
space to talk about that.

In the following part of this section, we will consider only from the bottom-up perspective
without questioning if there is a microscopic string theory. To start with, we will make some brief
introductions on the holographic Weyl Anomaly and then reach the 2D defect CFT and its energy
transport coefficients. A careful holographic consideration on how to obtain those coefficients and
the bounds associated will be discussed in Chapter 4.

2.2.1 Holographic Weyl Anomaly

It is known that in conformal field theories, there exists Weyl anomalies in even spacetime dimen-
sions (d = 2n) which can be described purely in terms of geometric quantities [39], falling into
two types of classes, type A anomaly and type B anomaly.8 Type A is proportional to the Euler
density of the dimension E(d) which is a topological term, in the sense that its integral over the
spacetime manifold is the Euler characteristic, hence scale invariant. Type B constitutes of all

8When the spacetime has a boundary, there will be some corrections on from the boundary and there can also
be integral Weyl anomaly in odd dimensions, one can see, for example [40,41].
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the conformal scalar polynomials constructed by the Weyl tensor9 and its derivatives, denoted as
I(d). There is also a third class consisting of total derivatives, however, it is trivial since it can be
removed by adding finite local counterterms to the action [39, 42, 43]. Hence the universal form
for the expectation value of the trace of the stress tensor can be written as

〈Tµµ 〉 = c1E(d) + c2I(d) + total derivatives . (2.24)

In d = 4, this universal form can be written as [44]

〈Tµµ 〉 = −2aE(4) − bI(4) −
b

24π2∇
2R , (2.25)

E(4) = 1
32π2

[
R2 − 4RabRab +RabcdR

abcd
]
, (2.26)

I(4) = − 1
16π2CabcdC

abcd , (2.27)

where a and b are called charges as an analog of 2d CFT and in [45] it has been proved that
aUV > aIR for all unitary RG flows from a critical point to another one, which is called a−theorem.
In d = 2, the Weyl tensor vanishes identically and the Euler density is proportional to the Ricci
scalar, the trace anomaly gives

〈Tµµ 〉 = − c

24πR , (2.28)

where c is the central charge and was proven by Zamolodchikov [46] to decrease monotonically
as RG flows to the IR fixed point, i.e., the c−theorem.

To see how the conformal anomaly can appear from the holographic setup, we have to rely on
the GKPW relation (2.13) and consider the metric field or the graviton since it is the gravitational
partner of the stress energy tensor according to the holographic dictionary. Following [42, 47], if
one adopts the Fefferman-Graham Gauge for the metric as following

ds2 = `2

4ρ2dρ
2 + 1

ρ
gµνdx

µdxν (2.29)

where ρ is the radial direction and the conformal boundary is located as ρ → 0. Since our
consideration is the conformal anomaly, we can turn off the other fields, then the vacuum Einstein
equation is solved order by order in ρ such that

g = g(0) + ρg(2) + ρ2g(4) + . . . , for d odd , (2.30)

g = g(0) + ρg(2) + · · ·+ ρd/2g(d) + ρd/2 ln ρ h(d) +O(ρd/2+1) , for d even (2.31)

where Tr(g−1
(0)g(d)) is covariant while Tr(g−1

(0)h(d)) vanishes identically [42]. One thing worth noting
is that in d = 2 case, the metric expansion doesn’t contain the logarithmic term as h(2) vanishes
which is shown in the appendix A of [47]. In [48], it has been shown that the metric expansion

9The Weyl tensor is defined as

Cabcd = Rabcd + (Pbc gad + Pad gbc − Pac gbd − Pbd gac) (2.23)

with Pab ≡ 1
d−2

(
Rab − R

2(d−1)gab

)
. One sees that the Weyl tensor has the same symmetries as Riemann tensor

under the exchange of indices.
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terminates at g(4) due to that the Weyl tensor vanishes identically at this very dimension. Since
the bulk volume is infinite, one needs to introduce a regularization scale ρ = ε and evaluate
the gravitational action10 till this cutoff surface. If we pause the integration over the boundary
coordinates xµ for the moment, and only do the integral in terms of the radial direction, we can
obtain the boundary Lagrangian containing both divergent terms in ε and finite terms,

L = 1
16πG(d+1)

√
g(0)(ε

−d/2a(0) + ε−d/2+1a(2) + · · ·+ ε−1/2a(d−1)) + Lfinite, d odd , (2.33)

L = 1
16πG(d+1)

√
g(0)(ε

−d/2a(0) + · · ·+ ε−1a(d−2) − ln ε a(d)) + Lfinite, d even , (2.34)

where Lfinite collects all the finite terms as ε → 0 and the log divergence comes only from the
bulk integral. Since the whole Lagrangian and the divergent terms proportional to the negative
powers of ε are invariant under the combined transformations δg(0) = 2δσg(0) and δε = 2δσε
with constant rescaling, the variation of the finite Lagrangian gains a finite piece from the log
divergent term in even dimensions (see eq. (2.34)), which will be identified with the conformal
anomaly

〈Tµµ 〉 = 1
16πG(d+1) (−2a(d)) . (2.35)

In d = 2, one recovers (2.28) by using the Brown-Henneaux formula with a(2) = `Tr(g−1
(0)g(2)).

One will see in [49] that the Weyl anomaly contains all the information one needs to obtain the
correct two point functions of the stress energy tensor, both with and without defects, as in two
dimension every metric is conformally equivalent.

2.2.2 2D Defect CFT and Energy Transport Coefficients

Two dimensional conformal field theory, widely studied, is an appealing subject due to its infinite-
dimensional symmetries [31]. A natural way to break its symmetries can be adopted by introduc-
ing a defect in the spacetime. A certain class of defect preserving half of the symmetries is the
main interest in this dissertation, which is called conformal defect or conformal interfaces. On
the two sides of the interface, two generically different CFTs, possibly with two different central
charges can live„ as shown in Figure 2.2, subject to certain boundary conditions. In physical
language, this boundary condition amounts to have the conservation of the energy across the in-
terface, which means the off-diagonal component of the stress energy tensor Txt in the Euclidean11

flat metric ds2 = dx2 + dτ2 is continuous across the interface. In holomorphic coordinates, the
above continuity can be expressed as

lim
x→0−

TL(x+ iτ)− T̄L(x− iτ) = lim
x→0+

TR(x+ iτ)− T̄R(x− iτ) , (2.36)

10If we follow [42], the gravitational action is the following,

S = 1
16πG(d+1)

(∫
AdS

√
g(R+ 2Λ)−

∫
∂AdS

(K + α)
)
, (2.32)

which contains the bulk Einstein-Hilbert term and some boundary terms including the Gibbons-Hawking-York
term.

11The same works in Lorentzian signature upon the Wick rotation τ → −it.
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where the unbarred and barred notation are the usual notations for the left and right movers,
which are holomorphic and antiholomorphic functions in terms of z = x + iτ and z̄ = x −
iτ . Two extremal cases are worth noting, one corresponds to the totally transmissive interface
(topological interface) where each component of the stress energy tensor is continuous by itself,
i.e., TL(iτ) = TR(iτ) and T̄L(iτ) = T̄R(iτ), the other marks the totally reflective interface where
the two theories decouple from each other, in terms of the stress energy tensor, the relation is
TL/R(iτ) = T̄L/R(−iτ).

CFTR

<latexit sha1_base64="4QzaqFRDP0c1l7xkpe2qP0Ibq8M=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9kVQb0VC+KxSrcttEvJptk2NJssSVYoS3+DFw+KePUHefPfmLZ70NYHA4/3ZpiZFyacaeO6305hbX1jc6u4XdrZ3ds/KB8etbRMFaE+kVyqTog15UxQ3zDDaSdRFMchp+1wXJ/57SeqNJOiaSYJDWI8FCxiBBsr+fW7Zv+xX664VXcOtEq8nFQgR6Nf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNjp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdB1kTCSpoYIsFkUpR0ai2edowBQlhk8swUQxeysiI6wwMTafkg3BW355lbQuqt5l9ebhslK7zeMowgmcwjl4cAU1uIcG+ECAwTO8wpsjnBfn3flYtBacfOYY/sD5/AEmH45G</latexit>

CFTL

<latexit sha1_base64="1HcvGl3qI9/yS010wvgsh2a0234=">AAAB7HicbVBNSwMxEJ3Ur1q/qh69BIvgqeyKoN6KBfHgoUK3LbRLyabZNjSbXZKsUJb+Bi8eFPHqD/LmvzFt96CtDwYe780wMy9IBNfGcb5RYW19Y3OruF3a2d3bPygfHrV0nCrKPBqLWHUCopngknmGG8E6iWIkCgRrB+P6zG8/MaV5LJtmkjA/IkPJQ06JsZJXv2v2H/rlilN15sCrxM1JBXI0+uWv3iCmacSkoYJo3XWdxPgZUYZTwaalXqpZQuiYDFnXUkkipv1sfuwUn1llgMNY2ZIGz9XfExmJtJ5Ege2MiBnpZW8m/ud1UxNe+xmXSWqYpItFYSqwifHsczzgilEjJpYQqri9FdMRUYQam0/JhuAuv7xKWhdV97J683hZqd3mcRThBE7hHFy4ghrcQwM8oMDhGV7hDUn0gt7Rx6K1gPKZY/gD9PkDHQeOQA==</latexit>

Figure 2.2: Two generically different CFTs, CFTL and CFTR in the geographic
sense, are glued together along the interface, the black line, which acts as a defect in
the whole theory.

If one perform a folding trick, the interface then becomes the boundary of the system, rep-
resented by a boundary state |B〉 in the bulk Hilbert space which is the tensor product of the
Hilbert spaces of the two CFTs [50]. Continuity relation (2.36) then becomes

((L1
n + L2

n)− (L̄1
−n + L̄2

−n)) |B〉 = 0 , (2.37)

which allows for an infinite-dimensional conformal symmetry in the defect system. With such a
class of boundary states, one can define a scattering matrix12

Mij = 〈0|L
i
2L

j
2 |B〉

〈0|B〉 , (2.38)

where the indices are either “L” or “R” and it is normalized by the g−factor, g = 〈0|B〉, which
gives the degeneracy of the boundary state on the vacuum state. The above matrix elements can
be further used to define two transport coefficients of the energy in the following manner,

R = 2
cL + cR

(MLL +MRR) = c2
L + 2cLcRωb + c2

R

(cL + cR)2 , (2.39)

T = 2
cL + cR

(MLR +MRL) = 2cLcR (1− ωb)
(cL + cR)2 , (2.40)

where an extra parameter ωb appears and the reflection and transmission coefficients add up
to one,i.e., R + T = 1. The defect characterizing parameter ωb is related to the only new
parameter appearing in the two-point function of the left and right (anti-)holomorphic stress
tensors, 〈TLTR〉 ∼ 〈T̄LT̄R〉 ∼ cLR/2 as cLR = cLcR(1 − ωb) [51]. In terms of the transport

12One can also use level-n generator to define the scattering matrix, however, 〈0|LinLjn |B〉 = n(n2−1)
6 〈0|Li2Lj2 |B〉

which can be easily checked by acting 〈0|LinL̄jn+1 on equation (2.37) as indicated in [50].
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coefficients, the totally transmissive(reflective) case has T = 1(R = 1) respectively. In Chapter 4,
one will see how these transport coefficients arise holographically through analyzing the scattering
process on the boundary. More discussions on obtaining the two-point functions holographically
will be presented in [49].

To get an intuition of the energy transport coefficients, one could refer to [52] for a free boson
consideration, where the transport coefficients are determined by the boundary condition of the
boson across the interface. For free fermions, one can refer to [50, 51]. Some other interesting
consideration on defining the transmission-reflection algebra can be found, for example in [53].

2.3 Quantum Complexity and the Holographic Conjectures

In the last few years a lot of effort has been devoted to understanding the relation between certain
properties of complex quantum systems (such as thermalization, scrambling, and chaos) and their
counterparts on the holographically dual gravitational side. The quest for such relations dates
back to the discovery of the holographic duality in 1997 [5], but a more recent facet of this story
is the incorporation of quantum information-theoretic aspects on top of more traditional physics
considerations.

Thinking of black holes as quantum computers, along the lines first advocated by [54], Susskind
and collaborators have argued that some of the puzzles associated to the region behind the horizon
of black holes could be clarified if one considers a quantity associated to the quantum state, that
they named quantum complexity, which is the main topic of this section. I will start with some
general discussion about this quantity, then in Section 2.3.1, the geometric interpretations in the
holographic setup will be introduced, later in Section 2.3.2 we will see some recent developments
on the field theory definition of quantum complexity.

As is known, this quantity is a concept borrowed from quantum computation theory as a means
of characterizing the difficulty (in the sense of the amount of resources needed) of performing a
task on a quantum computer; more precisely, if the task can be described as producing a certain
quantum state |ψT 〉 from a given initial state |ψR〉 using a circuit made of elementary unitary
operations (gates), the quantum complexity can be defined as the minimum number of gates
required for such a circuit

C(|ψR〉 → |ψT 〉) = min # of gates required for the circuit . (2.41)

Therefore, it if of no surprise that quantum complexity will be dependent on the choices of the
states, the gate set, as well as the penalty factor, a weight of the cost assigned to gates. In
Chapter 5, we will see explicitly how the gate sets will influence this quantity in a bosonized
model. As of now, let me use a simple example of two qubits to get the readers a feeling of the
gates dependence.
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A simple example of two qubits

Let’s consider the following elementary gates

A : |n〉 → 1√
2

(|0〉+ (−1)n |1〉), B : |0 ·〉 → |0 ·〉 or |1 ·〉 → |1×〉 , C : |· 〉 → eiφ |· 〉 (2.42)

where A is a gate that will map a qubit to a superposition of the spin up and down depending
on the type of the qubit acted on, with n = 0, 1, B is a gate that will map the second qubit to
itself or its opposite depending on the spin of the first qubit, and C is a gate that will assign a
phase to the qubit acted on. For the reference and target states, we consider the following

|ψR〉 = |00〉 , |ψT 〉 = 1√
2

(|00〉 − |11〉) , (2.43)

by two simple set of gates, the corresponding complexity is

gate set = {A,B} : C =∞; gate set = {A,B,C} : C = 3 . (2.44)

Applying the full set of gates, we obtained a finite value of complexity by using each of the gate
once: first acting A on the first qubit, followed by B, finally acting C on the second qubit with
the phase to be φ = π. If the gate set does not contain C, no matter how one tries, the target
state cannot be reached since neither A or B can change the sign of a qubit without changing
the spin, resulting in a value of infinity. Such a simple example concludes that gate sets have a
strong influence on the complexity, though at a discrete level. In Chapter 5, we will see more in
the free field theory setup about the influence of the gate set choice.

2.3.1 The Two Holographic Conjectures

Having got a glimpse of the definition of quantum complexity, it is time to introduce how this
quantity is linked to the gravitational interpretations. The story started from the work by Stan-
ford and Susskind [16], where they proposed quantum computational complexity to be a boundary
dual quantity that captures the long time behaviour of the growth of the Einstein-Rosen bridge, a
wormhole structure connecting two black holes. Therefore in a way, quantum complexity can be
used as a probe to study the scrambling of the black hole interior. Although a similar considera-
tion has been made by Hartman and Maldacena [55] in the eternal AdS black hole case (see [56]
for early discussions) in terms of entanglement entropy between the left and right asymptotic
boundary subregions, the growth of entanglement entropy continues only for a short time till the
system is thermalized.

This proposal utilises a codimensional-one Cauchy surface, which by construction extends
into the black hole in the eternal AdS BH geometry, claiming that its maximal volume can
encapsulate the evolution of the scrambling of the BH interior when the Cauchy slice advances
in time. Furthermore, it states that the same behaviour is encoded in the time evolution the
quantum complexity of corresponding thermal field double states on each Cauchy slice. Thus this
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conjecture is called “Complexity = Volume” (CV), the precise formulation is given as

CV = max VCauchy
4GN`

, (2.45)

where GN is the Newton’s constant in AdSd+1 which is introduced by hand to relate to the
gravitational theory. The dimensional analysis shows that the denominator should have length
dimension [L]d while the length dimension of the Newton’s content has length dimension [GN] =
[L]d−1, thus the necessity for the introduction of another length scale `, which constitutes one
of the drawbacks for the CV conjecture. In order to cure this problem, a second conjecture, the
Complexity=Action (CA) was proposed by Brown, Susskind et al. [17, 57] in the following year,
which states

CA = IWDW

π
, (2.46)

where IWDW is the on-shell gravitational action evaluated on the Wheeler-DeWitt (WDW) patch13

which is a solid double cone as shown in Figure 2.3. Technically speaking, the action approach is
more subtle than the volume one, since codimension-1 boundary surface terms and codimension-2
joint terms have to be included in the action, see [58–63] (a summarized prescription is outlined
in appendix A of [64]).

Figure 2.3: WDW patch in AdS3
represented by the yellow double
cone asymptotic to a certain bound-
ary time slice.

M
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Figure 2.4: Geometrizing the space
of unitary operations, the curve con-
necting the initial states and the final
states is a geodesic which represents
a sequence of operators to reach the
target states.

2.3.2 Field Theory Approach for Complexity: Nielsen Method

In order to have a better understanding about quantum complexity in the holographic manner, it
is essential to have a proper definition of quantum complexity in the continuum limit through field
theory approach. Although such a formulation for a general consideration is not yet available,
there have been some developments along this line [65–73]. In this section, we will focus on the
Nielsen’s approach on the Gaussian states complexity for free fields based on [65,66]. The Nielsen

13The WDW patch is the bulk causal development of the slice from the CV conjecture, and is bounded by light
sheets sent from the boundary time slice where the state is defined. For the case of the two-sided AdS black hole
the WDW patch is anchored at both boundaries at the relevant times where the thermofield double state is studied.
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method can be understood as a way to geometrize the notion of complexity. As an analog to the
minimum number of gates, this geometrization relates the geodesic length, which has a minimal
sense on the metric space, to the definition of circuit complexity, as illustrated in Figure 2.4. In
contrast to the Fubini-Study method which geometrizes the space of states, the Nielsen approach
considers instead the space of unitary operations (gates). Since there is a one-to-one map between
the states and operations, those two approaches in principle are identical to each other, however,
the concepts behind differs.

From now on we will focus the Nielsen method. In this approach, the circuit is replaced by a
continuous path of unitary operators

U(s) = Pexp
(
−i
∫ s

0
ds′ Y I(s′)OI

)
, (2.47)

such that U(s = 1) gives the desired unitary operator (i.e., implements the circuit we want), and
OI is a basis of operators that can be used to build the circuit (we can think of them as the
generators of the infinitesimal gates eiεOI ). One can think that the final state is being prepared
by means of an evolution in a fictitious time s with a time-dependent Hamiltonian H = Y I(s)OI .
The complexity is then determined by the choice of a suitable cost functional

C[U(s)] =
∫ 1

0
F (U(s), Y (s)) . (2.48)

The minimization of this functional will determine the form of the functions Y I(s) and thus the
optimal circuit. With an appropriate choice, the cost functional determines a distance on the
space of unitary operators, and the problem of minimizing the complexity of a circuit is mapped
to the problem of finding a geodesic path on a Riemannian manifold. The cost functional can for
instance have the form

F2 (U(s), Y (s)) =
√
GIJ(U(s))Y I(s)Y J(s) . (2.49)

Often the metric GIJ(U) is choosen to be a right-invariant metric, but not necessarily the canon-
ical biinvariant metric defined by 〈A,B〉 = tr(AB) for A,B self-adjoint. In fact, the possibility
of choosing different metrics can be thought of as introducing penalty factors for moving along
certain directions, corresponding to gates that may be more difficult to implement (for instance,
in a system of qubits, one wants to penalize gates that act on many qubits simultaneously). A
more general choice of the cost functional would lead to a Finsler geometry, where there is notion
of a distance but not induced by a metric on the tangent space [65]. For instance one can consider
the family of cost functionals dependent on a parameter κ:

Fκ (U(s), Y (s)) =
∑
I

|Y I |κ . (2.50)

Sometimes the ambiguity is reduced: the functional (2.50) with κ = 1 is parametrization-
independent. Another cost functional, which we will use in Chapter 5, is basis-independent
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and makes use of the Schatten p-norm:14

Fp (U(s), Y (s)) = ||Y I(s)OI ||p , (2.51)

||A||p ≡
(
tr(A†A)

p
2
) 1
p . (2.52)

Application on Gaussian States for Free Fermion

In Nielsen’s approach, the metric is defined not on the space of states, but on the manifold of a
group of operators that act on the states. For fermions, the relevant group turns out to be the
orthogonal group [66]. To see this, it is convenient to use the Majorana basis

ξa = {q+∞, . . . , q1, q0, q−1, . . . , q−∞, p+∞, . . . , p1, p0, p−1 . . . p−∞} (2.53)

which is related to the annihilation and creation modes in the following way

c†l = 1√
2

(ql − ipl), cl = 1√
2

(ql + ipl). (2.54)

In the Majorana basis the anticommutation relations read {ξa, ξb} = δab.
A general Gaussian state |ψ〉 is completely characterized by the two-point function, or covari-

ance matrix,
〈ψ| ξaξb |ψ〉 = 1

2(Gab + iΩab
ψ ) (2.55)

which can be decomposed in the symmetric and antisymmetric part, respectively Gab and Ωab
ψ .

The symmetric part is determined by the anticommutation relation, therefore it is state-independent,
while the antisymmetric part encodes the state. In terms of the covariance matrix, the fermionic
vacuum state |0〉 defined in (5.17) would be expressed as,

Gab = δab, Ωab
0 =

(
0 C

−C 0

)
with C =

(
1 0
0 −1

)
. (2.56)

As will be discussed in Section 5.1.3 the Gaussian states are obtained by Bogoliubov transforma-
tions; in the Majorana basis, these are linear transformations ξ̃ = Mξ that leave the anticommu-
tation relation invariant, therefore they are orthogonal transformations. If we put a UV cutoff
so that there are 2N modes, M ∈ SO(2N).15 However there is a subgroup that acts trivially on
the state, which only change the state by a phase. The covariance matrix transforms as

Ω̃ = MΩMT . (2.57)

The covariance matrix of the vacuum can be considered as a symplectic form, from this we see
that the orthogonal matrices that leave Ω invariant should be symplectic as well, i.e., , they
should be unitary. The manifold of Gaussian states is then SO(2N)/U(N). A convenient way to

14Despite a certain resemblance, the Schatten p-norm is not directly related to the κ cost function (2.50), although
one might speculate that the two give the same result for a particular choice of basis.

15We consider for simplicity only the component connected with the identity. It turns out that this is the
subgroup that does not change the parity (−1)F of the fermion number of the state.
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parametrize this coset is by using the relative covariance matrix

∆(M) = Ω̃ Ω−1
0 = MΩ0M

TΩ−1
0 . (2.58)

Conversely, if we are given the reference and target states Ω0 and Ω̃, we can recover the transfor-
mation matrix up to a unitary transformation. The polar decomposition of orthogonal matrices
allows us to write M = uM̂ with u ∈ U(N) and M̂ antisymmetric. In this manner, u and M̂ are
uniquely defined by the polar decomposition.

At the level of Lie algebra, the splitting so(2N) = u(N)⊕asym(N) is an orthogonal decompo-
sition with respect to the Killing metric of so(2N). We expect then that the shortest path in the
coset space will be obtained by moving only along the second subspace. Indeed it is shown in [66]
that the geodesic connecting Ω0 and Ω̃ is given by a straight curve γ(s) = esA with s ∈ [0, 1]
which has a constant direction A ∈ asym(N). Finally the geodesic length is given by the norm
of A = 1

2 ln ∆, which is the inner product with itself ||A|| =
√
〈A,A〉 using the embedded metric

on the Lie manifold SO(2N). This definition of norm is basis independent and will coincide with
the Schatten p = 2 norm. The Schatten p−norm for a general matrix T is defined as

||T ||p =

∑
n≥1

spn(T )

1/p

(2.59)

with sn(T ) being the singular values of the n× n matrix T , i.e., , the eigenvalues of the matrix√
T †T . Due to the decreasing monotonicity of the Schatten p−norm, an interesting case is the

p = 1 norm, defined as
||T ||p = Tr(

√
T †T ) =

∑
n≥1

sn(T ) (2.60)

which will impose an upper bound to the p = 2 norm. The p = 1 norm has been considered
before for quantum information purposes, for example it has been found that it is the only one
among the p-norms to provide a consistent measure for quantum correlations, called quantum
discord [74].

To summarize, the complexity of fermionic Gaussian states, defined as the geodesic length
with respect to the Killing metric on the orthogonal group:

Cf (|0〉 , |ψ〉) ≡ ||A|| = ||A||p=2 = 1
2

√
Tr|(i ln ∆)2| = 1

2

√∑
r

(i lnλr)2 (2.61)

≤ ||A||p=1 = 1
2Tr|i ln ∆| = 1

2
∑
r

|i lnλr|. (2.62)

In the above formula λi are the eigenvalues of ∆ which come in pairs e±iθ since ∆ ∈ SO(2N).
Although the p = 1 norm loses its geometric meaning in the current case, it is interesting because
in some cases discussed in the later sections, it poses an analytical bound on the Gaussian state
complexity.
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Application on Gaussian States for Free Boson

In the case of free bosonic theory with N degrees of freedom, the gates group corresponding to
Gaussian states is Sp(2N). Contrary to the fermionic case, the role of covariance matrices G
and Ω defined in (2.55) is exchanged, in the way that G represents the state and Ω encodes the
algebraic relation. The main objective is still to find the relative covariance matrix relating the
reference state and the target state, given as

∆ = G̃G0 = MG0M
TG−1

0 (2.63)

where M ∈ Sp(2N) encodes the basis transformation. Similar to the fermionic case, ∆ is an
element in the coset space Sp(2N)/U(N) and the geodesic connecting G̃ and G0 will be again
γ(s) = esA with however A ∈ sym(N) being an element in the symmetric algebra. In the same
manner, the geodesic length is given by the norm of A = 1

2 ln ∆, hence the complexity

Cb(|0〉 , |ψ〉) ≡ ||A|| = ||A||p=2 = 1
2

√
Tr|(ln ∆)2| = 1

2

√∑
r

(lnλr)2 (2.64)

≤ ||A||p=1 = 1
2Tr| ln ∆| = 1

2
∑
r

| lnλr|. (2.65)

Compared to the eq. (2.61), there is an “i” difference, which is due to the fact that the eigenvalues
of a real symmetric symplectic matrix are in pairs of e±r with r ∈ R. If the covariance matrix G
for the reference state is the identity matrix, the covariance matrix will simply be ∆ = MMT ,
which we shall use in Section 5.4. Detailed studies of the free bosonic complexity can be found
in [66,75].

2.4 Modular Flow and Bulk Reconstruction

2.4.1 Entanglement Entropy and Modular Hamiltonian

Quantum entanglement is a special feature in the quantum many-body systems, dating back to
the Einstein-Podolsky-Rosen paradox in 1935, a thought expriment that indicates that the speed
of the interaction transmitter is faster than light between two entangled particles if the interaction
is local. Later in the sixties, it has been argued that this kind of interaction should actually be
regarded as nonlocal thus assigning quantum entanglement a special property which cannot be
integrated into action formulation.

Though the entanglement is nonlocal, the degrees of freedom get involved in the entanglement
between subsystems can still be quantified via the entropy of entanglement or simply entanglement
entropy. Supposing we have a quantum system which is bipartite into two subsystems A and its
complement Ā, the full Hilbert space will be factorized as

H = HA ⊗HĀ . (2.66)

For an entangled state |ψ〉 ∈ H between the two subsystems, ρ = |ψ〉 〈ψ|, the entanglement
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entropy is defined via the the reduced density matrix by tracing out one of the subsystems

ρ
A/Ā

= Tr
Ā/A

ρ . (2.67)

Then the von Neumann entropy is defined as

−Tr
Ā

(ρ
Ā

ln ρ
Ā

) = S
Ā

= SA = −TrA(ρA ln ρA) (2.68)

where we see that the entanglement entropy is independent on which system we are conducting
the calculation since it should be regarded as common property. Another definition that appears
often is called Rényi entropy16, defined as

S
(n)
A = 1

1− n lnTrA(ρnA) , (2.69)

where n ∈ Z+ in the canonical definition. However it is often possible to analytically continue
the range of n to R+, as a result, in the limit of n→ 1, the Rényi entropy coincides with the von
Neumann entropy

SA = lim
n→1

S
(n)
A . (2.70)

It is worth noting that the entanglement entropies are defined using the trace of the reduced
density matrices, therefore, any unitary transformation on one of the subsystem will not affect
the entanglement degrees of freedom. Another quantity related to the reduced density matrix
that plays a vital role in the proposed duality in Chapter 6 is named as Modular Hamiltonian,
which goes back the Tomita-Takesaki’s study on the modular automorphism of von Neumann
algebra [77], defined as minus of the logarithm of the reduced density matrix

HA = − ln ρA . (2.71)

The modular Hamiltonian in general is a non-local operator and hard to compute, however, for
the reduced matrix of the Rindler wedge of a flat Minkowski space, it simply acts as a Minkowski
boost generator or the Rindler time translation (see Figure 2.5) as the Bisognano-Wichmann
theorem [78] suggests, thus will be a local operator in this case [79]. An identical case has been
studied by Unruh [80] is that the Minkowski vacuum acquires a non-zero temperature when
observed by a uniformly accelerated observer. The Rindler modular Hamiltonian for the Rindler
vacuum state in Rd−1,1 can always be written as an integration of the stress energy tensor with
the following covariant form

HRindler
A = 2π

∫
Σ
dd−1x

√
γ ηµTµνn

ν , (2.72)

where Σ is an Cauchy slice with nµ the future pointing normal and ηµ a Lorentz boost vector.
One can see from the expression that indeed the Rindler modular Hamiltonian generates the
translation along the direction of ηµ as can be shown using Peierls Bracket [81].17 For a CFT,

16In practice, the Rényi entropy is more calculable than the von Neumann entropy via the replica trick, one can
read for example the review of Takayanagi and Rangamani [76] for more technical details.

17Peierls Bracket is the covariant form of Poisson Bracket, defined as [X,Y ] = D−XY − D
+
XY , where D±X are
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Figure 2.5: Rindler wedge for the
region x1 > 0, where the Rindler
modular Hamiltonian generates the
Rindler time translation from the red
time slice to the blue one.
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Figure 2.6: Causal wedge for a
CFT, where the modular Hamil-
tonian generates the modular time
translation from the red time slice to
the blue one.

one can always map the Rindler wedge to the causal development region of a ball, as a result
the modular Hamiltonian for the ball region is the same as eq. (2.72) up to some constant to
normalise the reduced density matrix [79], which generates the modular flow in that causal wedge,
as shown in Figure 2.6.

2.4.2 Modular Hamiltonians in Holography: JLMS Relation

For a quantum field theory that has a gravity dual, it has been stated in [82] by Jafferis,
Lewkowycz, Maldacena and Suh (JLMS), that there is a simple relation between the modu-
lar Hamiltonian corresponding to a boundary subregion A and its bulk dual partner, given as

Hboundry
A = Areaext

4GN
+Hbulk

A + ŜWald-like +O(GN) . (2.73)

The first term on the right hand side originates from the proposal of Ryu and Takayanagi on the
holographic dual of the entanglement entropy for the subregion A on the asymptotic boundary
[11], as shown in Figure 2.7. They argued that this dual is given by the area of an extremal
bulk codimensional-two surface Σ, i.e., the Ryu-Takayangi (RT) surface homologous to A. The
area term can also be regarded as an operator in the bulk effective theory, containing both the
classical area and changes in the area that result from the backreaction of quantum effects. The
bulk modular Hamiltonian Hbulk

A is the modular hamiltonian for the bulk region a enclosed by
the RT surface and the asymptotic boundary, which behaves as a boost in the vicinity of the RT
surface. The Wald-like contributions come from the expectation values of local operators on the
RT surface Σ. It is worth nothing that the JLMS relation (2.73) implies the subregion-subregion
duality in the entanglement wedge18, since causal domain of the region a. While the boundary
modular Hamiltonian Hboundry

A generates a modular flow on the boundary causal wedge, the bulk

corresponding advanced and retarded derivative along X.
18The entanglement wedge corresponds to A is defined as the whole set of bulk points that are spacelike separated

from the RT surface on the side of A.



24 CHAPTER 2. FUNDAMENTALS OF HOLOGRAPHY AND ITS APPLICATIONS

A

<latexit sha1_base64="TsNeSDNsPNsCEOqcaOqIY2Xj1jU=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKQL1FvXhMwDwgWcLspDcZMzu7zMwKIeQLvHhQxKuf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGdzO/9YRK81g+mHGCfkQHkoecUWOl+k2vWHLL7hxklXgZKUGGWq/41e3HLI1QGiao1h3PTYw/ocpwJnBa6KYaE8pGdIAdSyWNUPuT+aFTcmaVPgljZUsaMld/T0xopPU4CmxnRM1QL3sz8T+vk5rwyp9wmaQGJVssClNBTExmX5M+V8iMGFtCmeL2VsKGVFFmbDYFG4K3/PIqaV6UvUr5ul4pVW+zOPJwAqdwDh5cQhXuoQYNYIDwDK/w5jw6L86787FozTnZzDH8gfP5A5a9jNE=</latexit>

Ā
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Figure 2.7: Illustration of the Ryu-Takayanagi surface Σ (orange curve) in a given
time slice for the boundary entangling region A (red curve) with Ā being its com-
plement. The green shaded region a is enclosed by the RT surface and boundary
subregion, with its complement bulk region being ā.

modular Hamitonian Hbulk
A generates a bulk modular flow in the interior of the entanglement

wedge.
The JLMS relation also leads to the equivalence of the bulk and boundary relative entropy,

which is defined via a reference state σ which can be taken to be the vacuum state, as following

S(ρ||σ) ≡ Tr ρ ln ρ− Tr ρ ln σ = Tr ρ ln ρ− Trσ ln σ︸ ︷︷ ︸
Sσ−Sρ=−∆S

+Trσ ln σ − Tr ρ ln σ︸ ︷︷ ︸
〈Hρ〉−〈Hσ〉=∆〈Hσ〉

= ∆〈Hσ〉 −∆S (2.74)

which is positive definite and monotonic [83]. When the state ρ is a small perturbation around
σ, i.e., ρ = σ+ δρ, due to the positivity of the relative entropy, it has a global minimal at ρ = σ,
therefore, to the linear order in the perturbation, the relative entropy remains zero as Trδρ = 0,
which gives rise to the first law of entanglement19

δS = δ〈Hσ〉 . (2.76)

2.4.3 Code Subspace and Entanglement Wedge Reconstruction

As mentioned in the last section, the JLMS relation implies bulk reconstruction within the en-
tanglement wedge EA, which is the spacelike causal domain of the HRT (Hubeny, Rangamani and
Takayanagi) surface Σ [84] (a covariant generalisation of the RT surface) on the side of A. This
consideration of entanglement wedge reconstruction is made more clear if we consider the duality
problem in the code subspace [85], which is a sub Hilbert space in the whole Hilbert space for
the quantum gravity, Hcode ∈ H. As shown in Figure 2.7, when there the boundary CFT Hilbert

19As a comparison, the first law of black hole thermodynamics is

dE = κ

8πGN
dA+ ΩdJ + ΦdQ , (2.75)

where for non-rotating, non-charged black, by using Bekenstein-Hawking formula, one obtain the usual first law of
thermodynamics.
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space factorizes as in equation (2.66), the code subspace factorises in a similar way in the bulk
entanglement wedge

Hcode = Ha ⊗Hā , (2.77)

whereHa denotes excitations in the entanglement wedge EA whileHā for Eā. Through a projection
onto the code subspace, the JLMS relation is reproduced,

ΠcH
boundary
σ Πc = Areaext

4GN
+Hbulk

A (2.78)

where Πc is a projection onto the code subspace and on the right hand side, the operators are
defined to annihilate the orthogonal subspace to the code subspace H⊥code.

In the work of [85], the bulk reconstruction theorem suggests that for an operator in the
entanglement wedge EA, the reconstruction will only receive support from the boundary subregion
A within the code subspace. Besides that, a local bulk field will have vanishing commutators with
operators that are spatially separated. A simple model of three qutrits code could be found for
example in [86,87].

In the spirit of the entanglement wedge reconstruction, we could in principle link many geo-
metric quantities in the bulk to some dual quantities on the boundary. In Chapter 6, we will see
how the JLMS relation help build a bridge to study the between the new duality we would like
to propose, i.e., the modular Berry connection with the bulk Riemann connection.
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Chapter 3

Holographic complexity: “CA” or
“CV” ?

This Chapter is based on the work [18].

Various aspects of the two holographic proposals have been explored in recent years, including
their structure of divergences [64, 88], their time dependence [17, 57, 63, 89, 90], their reaction
to shockwaves [16, 91–93] and studies of complexity in JT gravity and nearly extremal black
holes [94–97]. In general, it appears that the predictions of the action and volume proposals tend
to coincide up to overall numerical factors. For instance, the complexity grows linearly for a
long period of time at a rate which is proportional to the energy of the system.1 In shockwave
geometries the complexity exhibits characteristic delays in its growth related to the scrambling
time of the system both for the CV and CA proposals. It is therefore of interest to extend the
study of complexity to systems where a clear-cut distinction can be made between the predictions
of the action and the volume proposals.

In order to explore this question, we consider the modification of the complexity associated to
the introduction of a conformal defect in the boundary field theory. Defect CFTs (DCFTs) have
been studied extensively in the literature (see, e.g., [100] and references therein), both on the
field theory side and holographically, so we can draw on existing constructions. For simplicity, we
focus on the case of a 2d DCFT, and consider its ground state complexity. On the gravitational
side, we consider a bottom-up Randall-Sundrum type model [101] of a thin AdS2 brane embedded
in AdS3 spacetime [102]. The brane, which acts as a defect in this geometry, has two anchoring
points on the boundary, which introduce defects in the boundary theory on opposite sides of the
circular domain (analogous to a quark-antiquark pair). The brane backreacts and modifies the
geometry, therefore entailing a modification of the complexity depending on a parameter, namely
the tension of the brane. It is worth noting that after our study, there exist some works which
consider the holographic complexity with one end-of-world brane in a general dimension [103] or
in AdS3 [104], which confirm our conclusion in three dimensions.

The main results of the study in this chapter can be found in eqs. (3.23) and (3.52), for the
CV and CA proposals, respectively. In particular we observe that while for the CV proposal the

1For the volume this statement holds in the high temperature limit, and for hyperscaling violating geometries [98,
99] the late time growth rate from the CV proposal includes an additional temperature dependent proportionality
coefficient required from dimensional analysis considerations.

27
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complexity contains a logarithmically divergent term due to the presence of the defect, which
is related to the central charge and to the Affleck-Ludwig boundary entropy [105],2 in the CA
proposal no such term appears; the (absence of a) logarithmically divergent contribution to the
CA complexity does not depend on the tension of the brane. In fact even the finite part of (3.52)
is independent of the tension, so the CA appears completely unaffected by the presence of the
defect; however it is only the logarithmically divergent part that has a universal meaning, as the
finite part is dependent on the regularization scheme. It is worth noting that this is the first
case in which the results of the holographic CV and CA proposals disagree so dramatically. This
offers an opportunity to discriminate between the two prescriptions. It may seem surprising to
find a vanishing contribution to the complexity, especially if we compare the results with the
change in the entanglement entropy, and this could be seen as an argument in favor of the CV
proposal. However we prefer to suggest a more cautious interpretation, namely that the CV and
CA proposals correspond to different measures of complexity.3

In the original proposals, the complexity is associated to the state of the whole system. In-
spired by the Ryu-Takayanagi prescription for the holographic entanglement entropy [11, 108],
and motivated by the suggestion that the reduced density matrix of a boundary subregion is
encoded in its “entanglement wedge” [109,110],4 proposals have been made [64,111] for an exten-
sion of the complexity conjectures for states (reduced density matrices) associated to subregions.
For static geometries, the CV prescription is generalized to the volume enclosed between the RT
surface and the AdS boundary, while for the CA prescription, one considers the gravitational
action of the region enclosed between the WDW patch and the entanglement wedge. We consider
the subregion complexity for the defect geometry for subregions which include a single defect; For
the CA proposal we are able to perform the computation only in the case of a symmetric region,
i.e., when the defect is at its midpoint. The results are in eq. (3.69) for the CV proposal and
in eqs. (3.89), (3.90) for CA proposal. Again we find no change in the logarithmically divergent
contribution to the CA complexity (nor do we find a change in the finite contribution, with our
choice of cutoff) due to the presence of the defect. Interestingly, we find that the structure of
divergences of the subregion CA complexity is not the same as the one of the total CA complexity.
In particular, we observe a ln Λ divergence where Λ is the UV momentum cutoff.

The evidence for the validity of the CV and CA proposals is far from being conclusive since
the notion of complexity in QFT is still not well understood. Some progress has been made [65–
69,72,73,75,112–123], but a precise definition in strongly interacting CFTs, from first principles,
is still absent. In particular, one can put together an operative definition for the case of free
fields [65, 67], and arrive at a result that matches with holography in terms of the divergence
structure. However, it is not clear at the moment what is the universal content which can
be extracted from the coefficients of the complexity as a series expansion in the cutoff scale,
similarly to the case of entanglement entropy, where the coefficient of the logarithmic divergence

2The system with the defect is related to a similar system with a boundary via a folding trick.
3Previous studies of the CV complexity in the presence of boundaries can be found in [106] where a holographic

Kondo model was explored and it was pointed out that for constant tension branes the complexity increases with
the tension of the brane. We reach a similar conclusion in our model using the CV proposal. For an alternative
proposal of world sheet complexity, see Section 4 of [107].

4The entanglement wedge is defined as the set of bulk points that are spacelike separated from the RT surface
and causally connected to the causal wedge on the boundary of AdS.
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is associated to the central charge in the CFT. An operative definition for subregion complexity
is also absent, although some proposals have been made in [124].

The definition of complexity in QFT is subject to many ambiguities. In particular, one is
free to choose a reference state as well as a set of gates that can act on the state. It was
initially suggested [65, 67] that the ambiguity associated with the reference state is mirrored
by a similar ambiguity on the gravitational side of the correspondence, related to the choice of
normalization of the null normals at the boundaries of the WDW patch. More recently it has been
understood that in evaluating the complexity one has to include a certain counter term needed
to restore reparametrization invariance on the null boundaries [91,92]. This counter term comes
accompanied with a length scale which could be the one reproducing the effect of the various
ambiguities on the complexity. For a more elaborate discussion, see Section 5 of [92].

We make a naive attempt to match our holographic results with the dual field theory. As
mentioned before, the definition of complexity for a generic field theory is unknown, and further-
more, the precise CFT dual of our holographic setup is not known. However, we can look at free
field models of CFTs with defects, analogous to our holographic setup and study their complexi-
ties. We consider first a model with permeable domain walls [52] on opposite sides of a periodic
domain. We observe in this case that a logarithmic contribution proportional to the parameters
of the defect is absent, similarly to what happens for the CA proposal. We then briefly discuss a
solvable model with a boundary interaction [125]. It seems that in this case a logarithmic contri-
bution which depends on the strength of the boundary interaction is present in the result for the
complexity (in the case of a single boundary, but not if there are two boundaries), though we have
to make an assumption that the formula derived for free fields, which computes the complexity
in terms of the (single particle) spectrum, can be extended to these cases. An extension of the
current holographic calculation to a case where the dual field theory is known would be required
in order to identify which one of the field theory models (if any) is relevant for the analogy with
holography. Since we are focusing on models of compact bosons, we point out that the effects of
zero modes could have an influence on the complexity and might need to be incorporated into
the existing definitions.

The following parts of this chapter is organized as follows: In Section 3.1, we descibe the defect
AdS3 geometry, employing different coordinate systems. We also discuss the choice of cutoff and
the shape of the WDW patch in this geometry. In Section 3.2, we present the calculations of
the holographic complexity of the full boundary state using both the CV and CA proposals. In
Section 3.3, we consider the subregion complexity proposals for subregions including one defect.
In Section 3.4, we describe a free bosonic field theory model with defects as well as an exactly
solvable model with a boundary interaction and compute their complexities. We conclude with
a summary of the main results and a discussion in Section 3.5. A number of technical details of
the calculation are discussed in Appendixes A.1 and A.2, and the subregion CV proposal in the
Poincaré patch with two distinct cosmological constants on the two sides of the defect is discussed
in Appendix A.3.
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3.1 Warm up with the Defect Toy Model

In the following section we provide various ingredients of the defect toy model which we use to
study the complexity of defects in this chapter. As mentioned in the last section, we focus our
attention on a Randall-Sundrum solution for a 2d brane of tension λ embedded in a 3d geometry
which is a solution of Einstein equations with negative cosmological constant. Various aspects of
this simple solution were already studied in [102]. We start by reviewing the solution in a number
of convenient coordinate choices. We then address the choice of cutoff surface and describe how
to obtain null geodesics emanating from a point on the boundary in order to construct the WDW
patch for the CA proposal.

3.1.1 Two-Dimensional Branes in AdS3

We begin by considering the solution for a symmetric defect in AdS3 which solves Einstein equa-
tions for the action

S = 1
16πGN

∫
d3x
√
−g

(
R+ 2

L2

)
− λ

∫
d2x
√
−h, (3.1)

where R is the Ricci scalar, L is the AdS curvature scale, λ is the tension of the brane and h is the
determinant of the induced metric on the defect. For brane tension in the range 0 < λ < 1

4πGNL
,

the gravitational equations of motion admit stable solutions which include a thin AdS2 brane.
These solutions preserve the symmetries expected from a dual CFT with a conformal defect. The
full solution reads

ds2 = L2
(
dȳ2 + cosh2(|ȳ| − y∗)(− cosh2 rdt2 + dr2)

)
, (3.2)

with
tanh y∗ = 4πGNLλ , (3.3)

and the brane is situated at ȳ = 0, where one finds a discontinuity of the extrinsic curvature.
These coordinates correspond to a foliation in terms of AdS2 slices with coordinates (r, t) on each
slice.

The solution (3.2) can also be seen as two (slightly larger than half) patches of vacuum AdS3,
glued together at the location of the defect.5 This is most simply seen by redefining y = ȳ − y∗

for ȳ > 0 (−y∗ < y < ∞) and y = ȳ + y∗ for ȳ < 0 (−∞ < y < y∗). Of course this coordinate
system has a discontinuity at the position of the brane. The metric is then given on each patch
by,

ds2 = L2
(
dy2 + cosh2 y(− cosh2 rdt2 + dr2)

)
, (3.4)

where −y∗ < y <∞ on one side of the defect and −∞ < y < y∗ on the other. The ranges of the
coordinates indicate that we have two patches of AdS3 bounded by curves of constant y = ∓y∗.
A cross section of the two patches, as well as their constant y and r slices are depicted in figure

5To be more precise, the coordinate system (3.2), with r > 0 only covers half of each patch. We will later
translate our expressions to global coordinates where the full patches are covered.
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Figure 3.1: Constant time slices of the two AdS patches on the two sides of the
defect, corresponding to the metric (3.4), glued together at the location of the defect
along y = ±y∗ curves. Lines of constant r are indicated in red and lines of constant
y are indicated in green.

3.1. In this coordinate system, the boundary of AdS3 is located at y = ∞ or r = ∞, constant
r lines are geodesics, constant y curves are perpendicular to r = 0 and constant r curves are
perpendicular to the boundary.

The (t, y, r) coordinates can be related to the usual global AdS3 coordinates (t, ρ, θ) in the
following way,

cosh y cosh r = cosh ρ; sinh y = sinh ρ sin θ, (3.5)

and the metric becomes

ds2 = L2
(
− cosh ρ2dt2 + dρ2 + sinh2 ρdθ2

)
. (3.6)

Another useful set of coordinates maps the global AdS3 coordinates to a circle of finite radius,
it reads

tanφ = sinh ρ, (3.7)

which leads to the following metric,

ds2 = L2

cos2 φ

(
−dt2 + dφ2 + sin2 φdθ2

)
. (3.8)

In this way, we obtain a third coordinate system (t, φ, θ) where the constant time slices are
Poincaré disks with φ ∈ [0, π/2] playing the role of a radial coordinate and θ an angular coordinate
on the disk. Note that constant θ curves are geodesics. The (t, y, r) coordinates are related to
the (t, φ, θ) coordinates according to

tanh r = sinφ cos θ; sinh y = tanφ sin θ, (3.9)

and these coordinates cover half the space.

Our previous coordinate systems (3.4), (3.6) and (3.8) were dimensionless and so the curvature
of the boundary will naturally be set by the AdS scale L. In order to separate the radius of
curvature of the boundary from the AdS curvature scale (see, e.g., [90]) we rescale the time
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coordinate by a new length scale LB [64]

τ = LB t, (3.10)

which will set the curvature of the spatial geometry of the boundary. This leads to the metric

ds2 = L2

cos2 φ

(
−dτ

2

L2
B

+ dφ2 + sin2 φdθ2
)

(3.11)

where the boundary time is now given by τ .

3.1.2 Fefferman-Graham Expansion and the Cutoff Surface

The gravitational observables that come into play in the two holographic complexity conjectures
(2.45)-(2.46) yield divergent results and need to be regularized. The standard procedure, used
also in previous studies of the holographic complexity, is to introduce a cutoff of constant z = δ

in a Fefferman-Graham (FG) expansion of the relevant metric (see, e.g., [64,126]). In the case of
vacuum AdS3, ignoring the defect, one needs to bring the metric (3.11) to the form

ds2 = L2

z2

(
dz2 + gij(x, z)dxidxj

)
, (3.12)

where the boundary is situated at z = 0 and gij(x, z) can be expanded in a power series in z

where gij(x, z = 0) is the boundary metric. This can be achieved by the following coordinate
transformation

z = 2LB
cos(φ/2)− sin(φ/2)
cos(φ/2) + sin(φ/2) , (3.13)

and of course, scaling the metric in the asymptotic region by z2/L2 then yields the boundary
metric

ds2
bdy = −dτ2 + L2

Bdθ
2. (3.14)

The FG cutoff z = δ is then expressed using eq. (3.13) as

φ = π/2− δ̂ +O(δ̂3), or cosh y cosh r = 1
sin δ̂

+O(δ̂), δ̂ ≡ δ

LB
. (3.15)

In the presence of the defect, however, it was shown in [127] that the Fefferman-Graham
expansion breaks down near the defect and fails to cover a bulk wedge-shaped region originating
from the defect. Different solutions to this problem have been proposed in the literature, see the
discussion in [128] and references therein. In particular, one suggestion is to use two different
cutoffs, one for the region near the defect and another one away from the defect; in the defect
region, the cutoff is expressed in term of the FG coordinates of an AdS2 slicing of the geometry (in
our coordinates (3.4) these are the slices of constant y). We adopt this suggestion for regularizing
the complexity in the defect region, but continue to use the standard FG cutoff away from the
defect. Moreover, we choose the two cutoffs in such a way that the cutoff surface is smooth.6

6Although we do not have a strong justification, it seems natural to require smoothness of the cutoff surface;
moreover this avoids some problems that would arise in the CA computation where a lack of smoothness would
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Figure 3.2: Extension of the cutoff surface in the region of the defect following lines
of constant r. This generates a cutoff surface which is perpendicular to the defect and
connects smoothly the two sides. We have indicated in light blue the region inside
the cutoff surface.

Note that naively extending the cutoff surface of constant radius φ in eq. (3.15) up to the
defect would give a surface that does not match smoothly across the defect. One way to see this
is to check that the FG cutoff surface is not perpendicular to the line of constant y = y∗, where it
crosses the defect. The proposed extension of the cutoff surface in the region of the defect (y < 0)
is given by constant r curves on each side, see figure 3.2. Explicitly the constant r extension of
the cutoff surface can be expressed using eq. (3.9) and it reads7

tanh r = sinφ cos θ = cos δ̂ . (3.16)

The two parts of the cutoff surface (3.15) and (3.16) are smoothly connected at y = 0.

3.1.3 Wheeler-DeWitt Patch in Defect AdS3

The Wheeler-DeWitt (WDW) patch is defined as the union of all spacelike surfaces anchored at
the boundary time slice where the state is defined. A practical way to obtain its shape is to
identify the parts of space which are not contained within the lightcones generated from any of
the points on the given boundary time slice. Without loss of generality we choose this time slice
to be t = 0. In the case of pure AdS3 (without the defect), the WDW patch takes the form
of a cone generated from the relevant time slice on the boundary, bounded by light sheets (see,
e.g., the left panel of figure 2 in [126]). In the defect geometry however, the WDW patch will
be bounded by additional surfaces in the defect region, see figure 3.3. Those surfaces correspond
to the lightcones generated from the points at the intersection of the boundary and the defect
on the t = 0 time slice, namely θ = 0 and φ = π/2 or θ = ±π and φ = π/2. To understand

introduce additional joints, see footnote 17. We would like to thank Rob Myers for suggesting this choice of cutoff.
7A more general choice for a smooth cutoff surface is given by tanh r = cos(δ̂f(y)), where f(y) is a general

function satisfying f(0) = f(−y∗) = 1 and f ′(0) = f ′(−y∗) = 0. Such a choice does not affect the divergent
contributions to the complexity using either the CV or the CA conjectures, and in particular it does not change
the coefficient of the logarithmic divergence. Changing the cutoff will however change the finite contributions to
the complexity in a way which depends on the tension of the brane and we comment on this issue further in the
discussion.
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Figure 3.3: Illustration of the (future half of the) WDW patch in defect AdS3. SL3
and SR3 are the two half cones, already present for the case of vacuum AdS3. SL2
and SR2 are the additional boundaries of the WDW patch in the defect region, fixed
by parts of the lightcones generated from the points θ = 0, ± π on the boundary
(φ = π/2). Those null surfaces are smoothly connected across the defect and they
terminate along a ridge at the top of the WDW patch. The yellow surfaces correspond
to the defect brane, where the left and right patches are glued together.

the shape of these extra boundaries of the WDW patch, we need to obtain the relevant surfaces
in the defect region by explicitly analyzing the lightcone generated from a given point on the
boundary, e.g., θ = 0.8 As we demonstrate below, the lightcone takes a very simple form in the
(t, y, r) coordinate system.

We will study the null geodesics starting from the boundary point t = 0, r =∞ in the metric
(3.4). Since the (y, r) coordinate system is singular at r = ∞, one of the initial conditions is
replaced by a regularity condition at this point, which as we show below amounts to having the
geodesic follow an initial angular orientation along some y = y0, with ẏ = 0, where the derivative
is taken with respect to some parameter σ along the null geodesics. In Appendix A.1 we derive
the same geodesics directly in global coordinates as a consistency check. With the change of
variables tanh(r(σ)) = R(σ) and tanh(y(σ)) = Y (σ) and a choice of parametrization σ = t we
obtain the following equations of motion by minimizing the line element

R̈(t) = −R(t), Ÿ = Y

[
Ṙ2

(R2 − 1)2 + 1
R2 − 1

]
− 2RṘẎ
R2 − 1 , (3.17)

and the requirement that the geodesics are null, namely the vanishing line element, reads

Ẏ 2 = (Y 2 − 1)
[

Ṙ2

(R2 − 1)2 + 1
R2 − 1

]
. (3.18)

Eq. (3.17) is solved by
R(t) = c1 cos t+ c2 sin t. (3.19)

The boundary condition R(t = 0) = 1 fixes c1 = 1 and substituting eq. (3.19) into eq. (3.18) we

8The result for θ = ±π is easily obtained using symmetry arguments.
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Figure 3.4: Cross section of the boundary of the WDW patch for different times t
denoted by the green and blue lines inside and outside the defect region respectively.
In the defect region the boundary of the WDW patch is fixed by the light cone
emanating from the boundary at θ = 0, indicated by solid green curves, and it meets
the lightcone surface coming from θ = π along a ridge at θ = −π/2 (and t = π/2).
The rest of the boundary of the WDW patch is the conical region fixed by straight
infalling light rays coming from different boundary points along lines of constant θ
and its cross section for different times t is indicated by the blue circular arcs. The
plot corresponds to a defect parameter of y∗ = 0.6, see eq. (3.3), and is presented
using the x and y coordinates defined in eq. (A.11).

find that ẏ diverges at t = 0 unless c2 = 0. This constraint is analogous to setting to zero the
angular momentum of a geodesic passing through the radial origin of a polar coordinate system.
The null equation is then solved by Y (t) = Y0 where Y0 is a constant, and this also solves the
second equation of (3.17). Reverting the change of variables we finally obtain

tanh r = cos t, y = y0. (3.20)

This means that the null geodesics are following lines of constant y while r and t are changing.
Because of this fact it is very natural to work with y, r coordinates in the defect region, while
we will keep working with the φ, θ coordinates outside the defect region. A cross section of this
surface for different values of t is depicted by the green slices in figure 3.4. We see that the
constant time slices on our null cone straighten up as we go deeper into the bulk and they finally
follow the constant angular surface of θ = −π/2. We conclude that the two new boundaries of the
WDW patch, see the green surfaces in figure 3.3, meet along a ridge at θ = −π/2 and t = π/2.
For y > 0 the WDW patch is fixed by the light rays which come from other boundary points,
and its constant t profile is represented in figure 3.4 as blue curves which correspond to the blue
conical surface in figure 3.3. This surface is the same as the boundary of the WDW patch in the
absence of the defect.
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3.2 Holographic Complexity with a Defect

With the geometric understanding developed in the previous section, we are now ready to inves-
tigate the predictions of the two holographic proposals (CA and CV) for the complexity of the
DCFT ground state in our holographic defect toy model.

3.2.1 CV Conjecture

We start with the CV conjecture (2.45). In this case we have to evaluate the volume of a constant
time slice in the presence of the defect. Since the two sides of the defect are identical, we focus
on the region −y∗ < y <∞ below. We will eventually multiply the final result by two in order to
account for the two sides of the defect. The defect is located at constant y = −y∗ which according
to eqs. (3.5) and (3.7) corresponds to

tanφ sin θ = − sinh y∗. (3.21)

Since the volume is divergent we will use the cutoff surface in eqs. (3.15) and (3.16), see figure
3.2. We divide our volume to two parts V1 and V2 as indicated in figure 3.5. Integrating the
volume element, given by the square root of the induced metric, in each of these regions yields

V1 = 2L2
∫ 0

−y∗
dy cosh y

∫ tanh−1(cos δ̂)

0
dr = 2L2 sinh y∗ ln

(2
δ̂

)
,

V2 =L2
∫ π

0
dθ

∫ π/2−δ̂

0
dφ

sinφ
cos2 φ

= L2
(
π

δ̂
− π

)
,

(3.22)

up to terms of order δ̂. Summing everything up and using eq. (2.45) we obtain the following
result for the complexity using the CV proposal

CV = 2
GNL

(V1 + V2) = 4cT
3

(
π

δ̂
+ 2 sinh y∗ ln

(2
δ̂

)
− π

)
(3.23)

where we have included an overall factor of 2 to account for the two sides of the defect and
expressed the result in terms of the central charge cT = 3L/(2GN). The leading contribution is
the same as in the case without the defect and it follows a volume law (recall from eq. (3.15) that
δ̂ = δ/LB). We see that the contribution introduced by the defect includes a logarithmic UV
divergence with a coefficient which is proportional to sinh y∗ where y∗ is related to the tension
of the brane according to eq. (3.3). For a brane with small tension for instance we will have a
linear relation sinh y∗ ∼ y∗ ∼ λ. On the CFT side we expect the relevant parameter to encode
properties of the defect CFT. Of course, this result is larger than in the absence of the defect since
due to the defect, the space was extended and so the volume has increased. We also note that the
result is proportional to the central charge (equivalently, the number of degrees of freedom in the
system). We will compare these results to those of simple CFT models with defects in Section
3.4.
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Figure 3.5: Division of the constant time slice inside the cutoff surface to two differ-
ent portions which we use in evaluating the volume integrals for the CV conjecture.
V1 is the volume in the defect region and V2 is the volume outside the defect region.

3.2.2 CA Conjecture

Next we evaluate the complexity using the CA conjecture (2.46), which states that, up to an overall
numerical coefficient, the complexity is given by the gravitational action of the WDW patch. The
gravitational action consists of a number of different contributions including bulk (codimension-0),
boundary (codimension-1) and joint (codimension-2) terms.9 The relevant contributions involving
null joints have recently been analyzed in [63], which we will follow in our calculation below, and
other relevant boundary and joint contributions were previously explored in [58–62]. For the
current setup the relevant contributions in the gravitational action read

I = 1
16πGN

∫
M
d3x
√
−g (R− 2Λ) + εK

8πGN

∫
Bt/s

d2x
√
|h|K

+ εκ
8πGN

∫
Bn
dλ dθ

√
γ κ− 1

8πGN

∫
Bn
dλ dθ

√
γΘ ln(`ct|Θ|)

+ εa
8πGN

∫
Σ
dx
√
γ a− λ

∫
D∩WDW

d2x
√
−h .

(3.24)

The various contributions are: the bulk Einstein-Hilbert action with negative cosmological con-
stant; the Gibbons-Hawking-York (GHY) extrinsic curvature term for timelike/spacelike bound-
aries;10 the null boundary contribution given in terms of κ which measures how far is the pa-
rameter λ from providing an affine parametrization of the null generators of the null surface11

and a counterterm added in order to ensure parametrization invariance given in terms of the null

9We also encounter caustics, e.g., at the tip of the blue cone in figure 3.3. The contribution of the tip can
effectively be calculated by regulating it using a cutoff surface at constant t = π/2 − ε. In this way we are able
to demonstrate that this caustic does not make an additional contribution to the gravitational action by smoothly
taking the limit ε→ 0. We are not aware of an explicit prescription for such contributions in the literature, but we
would like to point out that it is hard to come up with an action for such point-like elements which is consistent
with dimensional analysis since (before dividing by GN) it should have mass dimension −1.

10We will only need to evaluate the GHY contribution for timelike surfaces. In this case εK = 1 and the normal
vector sµ should be oriented away from the volume of interest. We evaluate the extrinsic curvature according to
Kab = eµae

ν
b∇µsν and its trace is given by K = habKab where the vielbeins are defined as eµa = ∂ax

µ, the induced
metric is given by hab = gµνe

µ
ae
ν
b and the indexes a, b label coordinates inside the surface.

11κ is defined according to kµ∇µkν = κkν , where kµ = dxµ/dλ is the future oriented null normal vector and λ
is a parameter along the null generators increasing toward the future. As noted in reference [91], the κ term in
references [63] and [64] had a sign mistake which we corrected for in eq. (3.24). εκ = ±1 if the volume of interest
lies to the future (past) of the boundary segment.
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(a) Bulk contributions
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(b) Surface contributions
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(c) Joint contributions

Figure 3.6: Different contributions for the CA conjecture projected onto a constant
time slice. The bulk contributions consist of those above and below the indicated
regions (B1 and B2). The surface contributions include S1 and S4 which are due to
the cutoff surface and S2 and S3 which are due to the null boundaries of the WDW
patch. Sd stands for the defect contribution. The joint contributions consist of J1
and J2 which stand for the joints at the intersection of the cutoff surface and the null
boundaries of the WDW patch and of J3 which stands for the joint at the ridge at
the top of the WDW patch, see also figure 3.3.

expansion Θ;12 contributions from spacelike joints involving null surfaces given in terms of a;13

and the new contribution due to the gravitational action for the defect itself in the region enclosed
inside the WDW patch. We excluded from the action (3.24) other joint contributions which did
not enter our calculations, see appendix C of [63]. In the following subsections we evaluate all
these contributions and finally sum them up to produce a result for the complexity at the end of
the section. The shape of the WDW patch has already been described in Section 3.1.3, see figure
3.3, and the various contributions are depicted and enumerated in figures 3.6 and 3.7.

Bulk Contributions

We start by evaluating the bulk Einstein-Hilbert and cosmological constant contributions. The
Ricci scalar is the same as for the case of vacuum AdS3 everywhere except at the position of the
brane where it has an extra delta function. The effect of this additional delta function integrated
over the infinitesimal thickness of the brane will be dealt with later on, together with the brane
action contribution in subsection 3.2.2. For the case of vacuum AdS3 we have R = −6/L2 and
Λ = −1/L2 and therefore

Ibulk ≡
1

16πGN

∫
M
d3x
√
−g (R− 2Λ) = − 1

4πGN

∫
M
d3x

√
−g
L2 . (3.25)

This will allow us to evaluate the Einstein-Hilbert contribution everywhere except for an in-
finitesimally thin shell surrounding the brane. The relevant contributions can be divided into two
regions B1 and B2 whose projections on a constant time slice are depicted in figure 3.6a. Due to

12The expansion parameter is defined according to Θ = ∂λ ln√γ where γ is the (one dimensional) metric on the
null surface. The addition of this counterterm was recently pointed out to be an essential ingredient of the CA
conjecture in refs. [91,92].

13a is given by a = ln |s · k| for the case of the intersection between a timelike and a null boundary with normal
vectors s and k respectively, and by a = ln |k1 · k2/2| for the intersection between two null boundaries with normal
vectors k1 and k2. The sign εa = −1 if the volume of interest lies to the future (past) of the null segment and the
joint lies to the future (past) of the segment and εa = 1 otherwise. For more details see Appendix C of [63].
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the symmetries of the problem, we focus on the future part of the WDW patch on one side of the
defect and eventually multiply our result by a factor of four. We start from the contribution of
the region B1:

B1 = − L

2πGN

∫ 0

−y∗
dy cosh2 y

∫ tanh−1(cos δ̂)

0
dr cosh r

∫ cos−1(tanh r)

0
dt

= L

4πGN

[
y∗ + 1

2 sinh(2y∗)
] (

ln δ̂ − 1
)
.

(3.26)

Next, we evaluate the contribution from the region B2:

B2 = − L

4πGN

∫ π

0
dθ

∫ π/2−δ̂

0
dφ

∫ π/2−φ

0
dt

sinφ
cos3 φ

= − L

4πGN

[
π

δ̂
− π2

4

]
. (3.27)

Summing together eqs. (3.26) and (3.27) and multiplying by a factor of four for the two sides of
the defect as well as the future and past parts of the WDW patch we obtain

Ibulk = L

πGN

(
−π
δ̂

+ γ(ln δ̂ − 1) + π2

4

)
, γ ≡ y∗ + 1

2 sinh(2y∗) , (3.28)

where the parameter γ encodes the influence of the defect. For a brane with small tension we
have a linear relation between γ and the tension of the brane, namely γ ∼ λ.

Boundary and Joint Contributions

In this section we evaluate the various boundary and joint contributions to the gravitational action
of the WDW patch. The different surfaces and joints which come into play in this calculation are
illustrated and labeled in figure 3.7 and their projections on a constant time slice are presented
in figures 3.6b-3.6c. They consist of the half cylindrical cutoff surface outside the defect region
which is labeled as S1, the two additional null boundaries consisting of lightcones generated from
antipodal points on the boundary of the WDW patch in the defect region, both labeled as S2, the
half cone outside the defect region labeled as S3, and the two additional constant r extensions of
the cutoff surface in the defect region labeled as S4. The joint between S1 and S3 is labeled as J1

and the one between S2 and S4 is labeled as J2. Finally, the joint at the ridge at the top of the
WDW patch between the two S2 surfaces is labeled as J3. Note that S2 and S3 are connected
smoothly, as well as the various surfaces on two different sides of the defect and we therefore do
not include additional joint contributions there.

Contributions outside the defect region We start by evaluating the various contributions
outside the defect region. The half cylindrical cutoff surface S1 corresponds to φ = π/2− δ̂ and
its normal one-form and induced metric read

s(1) ≡ s(1)
µ dxµ = L

sin δ̂
dφ, dh2

(1) = L2

sin2 δ̂

(
−dt2 + cos2 δ̂ dθ2

)
. (3.29)

The extrinsic curvature reads
K(1) = 1

L

(
cos δ̂ + 1

cos δ̂

)
, (3.30)
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Figure 3.7: Various joint and surface contributions to the action of the WDW patch.
We have focused on the future half of the patch on one side of the defect.

which yields the following GHY contribution to the gravitational action

S1 = L

8πGN

∫ δ̂

0
dt

∫ π

0
dθ

cos δ̂
sin2 δ̂

(
cos δ̂ + 1

cos δ̂

)
= L

4GNδ̂
. (3.31)

The half cone S3 can be parameterized by the coordinates λ = t/N3 and θ as follows14

xµ(λ, θ) ≡ (t, φ, θ) = (N3λ, π/2−N3λ, θ), (3.32)

and the normal vector to the surface reads

kµ(3) = dxµ

dλ
= N3(1,−1, 0) . (3.33)

The (one dimensional) induced metric, expansion and κ on the surface S3 are given by

γθθ = L2 cot2 t, Θ = − 2N3
sin(2t) , κ(3) = −2N3 cot t . (3.34)

We can now use these results to evaluate the surface contribution S3, including both the κ term
and the counterterm contribution Θ ln(`ct|Θ|) from eq. (3.24). This leads to

S3 = L

8πGN

∫ π/2

δ̂
dt

∫ π

0
dθ

ln
(

2`ctN3
sin(2t)

)
+ 2 cos2 t

sin2 t
= L

8GNδ̂

(
ln
(
`ctN3

δ̂

)
+ 1

)
. (3.35)

The joint J1, where the half-cone intersects with the cylindrical cutoff surface, is given as

J1 = − L

8πGN

∫ π

0
dθ cot(δ̂) ln

(N3L

sin δ̂

)
= − L

8GNδ̂
ln
(N3L

δ̂

)
. (3.36)

14In [63] it was suggested that as a part of the prescription to evaluate the complexity we should choose a
parametrization of the null generators such that κ = 0 and such a parametrization is given by the choice λ ∝ cot(t).
However, since we are adding the counterterm the choice of parametrization will not modify the final result and
we may proceed with λ ∝ t.
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Combining all these contributions for the surfaces and joints outside the defect region together
and multiplying by a factor of four for the future and past parts of the WDW patch as well as
the two sides of the defect we obtain

Isj,out = 4(S1 + S3 + J1) = L

2GNδ̂
(ln(`ct/L) + 3) . (3.37)

We see that the parametrization choice N3 canceled out as expected due to the addition of the
counterterm.

Contributions inside the defect region Here we focus on the various surfaces and joints
inside the defect region, namely S2, S4, J2 and J3, see figures 3.6-3.7. The constant r cutoff
extension in the defect region corresponds to the constraint tanh r = cos δ̂, see eq. (3.16), and its
normal one-form and induced metric read

s(4) ≡ s(4)
µ dxµ = L cosh y dr,

dh2
(4) = L2

(
dy2 − cosh2 y

sin2 δ̂
dt2
)
.

(3.38)

The extrinsic curvature reads
K(4) = cos δ̂

L cosh y . (3.39)

We can use these results to evaluate the S4 surface contribution given by

S4 = L

8πGN

∫ 0

−y∗
dy

∫ δ̂

0
dt cot δ̂ = L

8πGN
y∗. (3.40)

The additional lightcone surface S2 generated from the boundary point at θ = 0 can be
parameterized in terms of t and y as follows

xµ(t, y) = (t, y, tanh−1(cos t)), (3.41)

where t ∈ [δ̂, π/2] and y ∈ [−y∗, 0] and where y = −y∗ corresponds to a light ray which parallels
the defect. It is possible to verify, as we do below that this surface has zero null-expansion
(Θ = 0) and as a result it is reparametrization invariant without the addition of the counterterm
in eq. (3.24) (in [63] this was referred to as a stationary hypersurface).15 If we parameterize the
surface with λ such that λ = L

N2
cosh(y) ln

(
tan

(
t
2
))
, we obtain for the normal vector16

kµ(2) = dxµ

dλ
= N2
L cosh y (sin t, 0,−1) , (3.42)

15One way to understand this statement is that the surface S2 is in fact a part of an entanglement wedge
[109, 110]. For the case of vacuum AdS and a spherical entangling surface, it is well known that the boundary of
the entanglement wedge is a Killing horizon and the corresponding normals are null killing vectors [79,129]. Hence
this surface is known to have vanishing expansion and constant cross-sectional area when moving along its null
generators.

16A guiding principle for this choice of parametrization is that it simplifies greatly the factor inside the logarithm,
and as a consequence, the integration in the corner contributions J2 and J3.
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as well as the other properties of the surface S2

γyy = gαβe
α
y e
β
y = L2, Θ = 0, κ(2) = −N2

L

cos t
cosh y . (3.43)

We can use these results to evaluate the surface contribution S2 which reads

S2 = L

8πGN

∫ 0

−y∗
dy

∫ π/2

δ̂
dt cot t = − L

8πGN
y∗ ln δ̂ , (3.44)

where in evaluating this expression we have changed the variable of integration from λ to t using
the chain rule. We proceed to evaluate the contribution of the joint J2, associated with the surface
of constant t = δ̂ and y ∈ [−y∗, 0]

J2 = −L lnN2
8πGN

∫ 0

−y∗
dy = −L lnN2

8πGN
y∗ . (3.45)

The joint J3, formed by the intersection of the two lightcone surfaces generated from the two
antipodal points on the boundary, is characterized by t = π/2, r = 0 and y ∈ [−y∗, 0]. At this
intersection the normal vectors to the two null surfaces take the form

kµ(2) = N2
L cosh y (1, 0,−1) , k̄µ(2) = N2

L cosh y (1, 0, 1) , (3.46)

which yields the following joint contribution

J3 = L lnN2
4πGN

∫ 0

−y∗
dy = L lnN2

4πGN
y∗ . (3.47)

Summing together all the contributions for the surfaces and joints inside the defect region we
finally obtain

Isj,in = 8(S2 + S4 + J2) + 4J3 = − L

πGN
y∗
(
ln δ̂ − 1

)
, (3.48)

and of course, the parametrization freedom N2 canceled from this result.

Defect Contribution

We now proceed to consider the defect contribution. We will include here both the brane action
as well as the integration of the Einstein-Hilbert term over the infinitesimal thickness of the
defect. The relation between these two contributions has been explored in [130] using the Israel
junction conditions [131], where it was demonstrated that the Einstein-Hilbert contribution can
be expressed in terms of the discontinuity of the extrinsic curvature across the defect, and this
yields a contribution that is (−2) times the brane action. Summing the two together results in a
flipped sign for defect contribution

Id = Iλ + IEH = −Iλ = λ

∫
defect

√
−h = tanh y∗

4πGNL

∫
defect

√
−h (3.49)

where h is the induced metric on the defect and we have used the relation (3.3) to relate λ and
y∗. Of course, in the context of the CA conjecture we will be integrating over the part of the
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defect enclosed in the WDW patch. Since the defect lies inside the patch we do not need to add
additional boundary contributions and joints at the location of the defect.17 The defect brane
corresponds to the constraint y = −y∗, see eq. (3.21). We parameterize it by the coordinates t
and r, and its normal vector and induced metric are given by

s(d) ≡ s(d)
µ dxµ = Ldy,

dh2
(d) = ds2 = L2 cosh2 y(− cosh2 rdt2 + dr2) .

(3.50)

This yields the following defect contribution

Id = L sinh(2y∗)
2πGN

∫ tanh−1(cos δ̂)

0
dr cosh r

∫ cos−1(tanh r)

0
dt = −L sinh(2y∗)

2πGN

(
ln δ̂ − 1

)
, (3.51)

where we have included an overall factor of two to account for the future and past portions of
the defect brane.

Total CA Contribution

We can now collect all the terms to obtain the total result for CA complexity using eq. (2.46)18

CA = IWDW

π
= 1
π

(Id + Isj,in + Isj,out + Ibulk) = cT
3π

(1
δ̂

[
ln
(
`ct
L

)
+ 1

]
+ π

2

)
, (3.52)

where we have expressed the result in terms of the central charge cT = 3L/(2GN) of the boundary
theory. We see that the presence of the defect does not change the result! This is in contrast to
the logarithmic contribution introduced into the CV complexity due to the presence of the defect,
cf. eq. (3.23). There is an ambiguity related to the new scale `ct introduced by the counterterm
which has been suggested to be related to certain choices that can be made in defining the
complexity in the QFT side [65,67], see section 5 of [92].

3.3 Holographic Complexity for Subregions

Next, we investigate extensions of the CV and CA conjectures for mixed states produced by
tracing out the degrees of freedom outside a subregion A of the full boundary time slice, see
[64, 111]. Both proposals are motivated by the suggestion that the natural bulk region encoding
the reduced density matrix is the entanglement wedge [109, 110]. In the presence of the defect,
the non-trivial case is when the subregion A includes the defect and we focus on this case below.

3.3.1 Subregion CV Conjecture

The extension of the CV conjecture for the complexity of mixed states [64,111] suggests that the
complexity is proportional to the maximal volume of a codimension-one surface enclosed between
the boundary region A and its corresponding Ryu-Takayanagi (RT) surface [11,108] with the same

17As an aside, we note that a naive extension of the prescription for joint terms between the defect surface and
the additional S2 boundary would fail, since in this case the null normal is included in the timelike defect surface
which would result in a vanishing product of the normals to these two hypersurfaces.

18We have set ~ = 1.
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Figure 3.8: Defect AdS geometry consisting of two AdS patches glued together
along lines of constant y = ±y∗ at the location of the defect. The spacelike geodesic
connecting θL and θR (alternatively rL and rR) will pass through θ = ±θ∗ (alter-
natively r = r∗) on the left/right patches respectively. On the right patch we have
−y∗ ≤ y <∞ while on the left patch we have −∞ < y ≤ y∗. We have extended the
definition of r in both patches such that all the patch is covered and −∞ ≤ r ≤ ∞.
Angles are measured with respect to the vertical upward direction.

proportionality coefficient as in equation (2.45). We will use this prescription in the defect-AdS
geometry for the case in which the subregion A contains the defect. For this purpose, we need
to find the RT surface (the spacelike geodesic, in our case) connecting two points on opposite
sides of the defect as illustrated in figure 3.8. This is done by matching two geodesics connecting
the two boundary points on each side of the defect to the same point on the defect surface and
minimizing the total length.

Finding the Geodesics

Let us start with the metric on a constant time slice in global coordinates on the right patch, see
eq. (3.8)

ds2 = L2

cos2 φ

(
dφ2 + sin2 φdθ2

)
. (3.53)

The geodesics for this metric can be found by minimizing the line element. This leads to the
following geodesic equation parameterized by θ, where we have used the change of variables
Φ(θ) = sin(φ(θ))

−Φ(θ)Φ′′(θ) + 2Φ′(θ)2 + Φ(θ)2 = 0 , (3.54)

which admits the general solution

sinφ cos(θ − α) = c . (3.55)

α and c are two constants of integration which will be fixed by the boundary conditions θL and θR
where the geodesic meets the boundary of AdS. This demonstrates that these are simply curves
of constant r, rotated by an angle α cf. eq. (3.9).

Alternatively, we can work with the y and r coordinates by extending the definition of r to
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negative values, in order to cover the full space. This is done by formally extending the coordinate
transformation in eq. (3.9) to angles θ > π/2 or θ < −π/2. This choice of coordinates turns out
to be the most convenient when evaluating the relation between the integration constants and the
boundary conditions of the geodesics. The geodesic in the y and r coordinates can be obtained
by considering the restriction of the metric (3.4) onto a constant time slice

ds2 = L2
((

dy

dr

)2
+ cosh2 y

)
dr2. (3.56)

This leads to the following geodesic equation where we have used the change of variables Y (r) =
tanh(y(r))

d2Y

dr2 − Y = 0. (3.57)

This equation admits the general solution

tanh(y(r)) = c1e
r + c2e

−r (3.58)

where c1 and c2 will be fixed by the boundary conditions. In general these constants will be
different for the left and right sections of the geodesic and we will have to match them at the
position where the geodesic meets the defect. Fixing the boundary conditions y = ∞, r = rR

for the right section of the geodesic and y = −∞, r = rL for the left section we can express the
geodesic solutions as follows

sinh(r − rR + tanh−1(aR)) = aR√
1− a2

R

tanh y,

sinh(r − rL − tanh−1(aL)) = aL√
1− a2

L

tanh y,
(3.59)

where the constants of integration aL and aR will be fixed by matching the two geodesics on the
two sides of the defect.

Since the metric is continuous at the location of the defect (only its derivative with respect
to the y coordinate is discontinuous), one can show by integrating the equations of motion in a
small pillbox around the defect that dy/dr is continuous at the point where the geodesics cross
the defect. This is a local matching condition which is equivalent to minimizing the total length
of the geodesics. Explicitly, the matching condition reads√

1− a2
R

aR
cosh(r∗ − rR + tanh−1(aR)) =

√
1− a2

L

aL
cosh(r∗ − rL − tanh−1(aL)) (3.60)

where r = r∗ is the value of r at the point where the geodesics cross the defect. In addition, the
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fact that the geodesics in eq. (3.59) cross the defect at r = r∗ yields the following conditions

sinh(r∗ − rR + tanh−1(aR)) = − aR√
1− a2

R

tanh y∗, (3.61)

sinh(r∗ − rL − tanh−1(aL)) = aL√
1− a2

L

tanh y∗. (3.62)

Solving these three equations leads to

a ≡ aL = aR =
sinh( rR−rL2 )

cosh( rR−rL2 ) + tanh y∗
, r∗ = rL + rR

2 . (3.63)

We note that the point r∗ is simply the arithmetic mean of the two asymptotic values of r on the
two sides of the defect. We also note that |a| < 1, and the sign depends on whether rR > rL or
rL > rR.

Evaluating the Volume

We are now in the position to evaluate the volume enclosed inside the geodesic studied in the
previous subsection as suggested by the CV proposal. We have divided the volume to the part
inside the defect region and the part outside the defect region. Throughout the calculation we
have assumed that rL, rR � ln(2/δ̂), namely that the size of the boundary interval as well as the
distance between its end points and the defect are kept finite and far below the cutoff value. The
volume of the part inside the defect region on the right patch can be evaluated as

V R
1 = L2

∫ 0

−y∗
dy cosh y

∫ tanh−1(cos δ̂)

rR−tanh−1(a)+sinh−1
(

a√
1−a2 tanh y

) dr (3.64)

and for the left patch we have

V L
1 = L2

∫ y∗

0
dy cosh y

∫ tanh−1(cos δ̂)

rL+tanh−1(a)+sinh−1
(

a√
1−a2 tanh y

) dr. (3.65)

Using the change of variables y → −y in the first integral, we can combine the two integrals.
Some of the contributions cancel out and we are left with

V1 =V L
1 + V R

1 = L2
∫ y∗

0
dy cosh y

(
2 tanh−1(cos δ̂)− rL − rR

)
= sinh y∗

(
2 ln

(2
δ̂

)
− rL − rR

)
.

(3.66)
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The volume outside the defect region for the right patch is given by

V R
2 = L2

∫ tanh−1(cos δ̂)

rR+O(δ̂2)
dr

∫ cosh−1
(

1
cosh r sin δ̂

)
0

cosh y dy

+ L2
∫ rR+O(δ̂2)

r0
dr

∫ tanh−1
(√

1−a2
a

sinh(r−rR+tanh−1(a))
)

0
cosh y dy

= L2
(1
δ̂

cos−1(tanh rR)− π/2
)

+ L2 arcsin(a), (3.67)

where we have decomposed the volume integration into two parts along the black dashed line
in figure 3.9, and the first integral was carried out using the change of variables t = sinh r. We
have also defined r0 = rR − tanh−1(a) which is the point on the spatial geodesic (3.59) where
y = 0. Note that in some cases the limits of integration in the second integral may be flipped
which accounts for a subtraction rather than an addition. The volume in the left patch can be
effectively obtained by replacing a→ −a and rR → rL in the above expression which yields

V2 = V R
2 + V L

2 = L2

δ̂

(
cos−1(tanh rR) + cos−1(tanh rL)

)
− L2π. (3.68)

Finally summing the different contributions yields the following result for the subregion com-
plexity using the CV conjecture

CsubV (rR, rL) = 2cT
3

(
θR − θL

δ̂
+ sinh y∗

(
2 ln

(2
δ̂

)
− rL − rR

)
− π

)
, (3.69)

where we have expressed the result in terms of the central charge cT = 3L/(2GN) and the opening
angle θR − θL where

θR = cos−1(tanh rR), θL = − cos−1(tanh rL), (3.70)

cf. (3.9) with φ = π/2. One consistency check on our result is to check that when rL = rR = 0 we
recover half the volume of the full time slice, which is indeed the case, cf. eq. (3.23). The leading
divergence in eq. (3.69) is proportional to the size the interval A measured in terms of its opening
angle θR−θL, which is the same result as obtained without the defect, see [64]. The last term −π
is a topological term, already mentioned in reference [132]. There, the authors concluded that the
holographic subregion complexity of q intervals living on the boundary of AdS3 is proportional
to x

δ + πq− 2πχ, where x is the total length of the entangling intervals on the boundary and χ is
the Euler characteristic of the codimension-one volume entering in the CV proposal. In our case,
we obtain exactly the same result for the theory without a defect by setting y∗ = 0, with χ = 1
and q = 1 (or alternatively q = 0 for the full boundary, cf. eq. (3.23)). Compared to the full
CV calculation in eq. (3.23), the subregion complexity has half of the log divergent contribution
which is due to the fact that the subregion encloses only one boundary defect and the finite piece
has an additional negative contribution proportional to rL + rR.

Finally, with the tools we have developed here we can also generalize the result of [102] for
the entanglement entropy in the presence of the defect to the case of an entangling region which
is not symmetric around the defect. The entanglement entropy is determined by the minimal
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r0

Figure 3.9: A corner of the right defect patch illustrating the relevant volumes in
the evaluation of the subregion CV proposal. The red dashed curve indicates the
cutoff surface and the volumes V R

1 in eq. (3.64) and V R
2 in eq. (3.67) are colored

in dark and light yellow respectively. The dashed black line indicates the division
between the two integration regions in eq. (3.67).

area surface anchored at the boundary of the entangling region according to the Ryu-Takayanagi
(RT) formula SEE = A/(4GN) [11, 108], where for AdS3, A is simply the length of the geodesic
(3.59) according to the length element in eq. (3.56). In total we have

SEE = SEE,empty + ∆SEE,defect (3.71)

where the entropy in the absence of the defect is given by [133]

SEE,empty = cT
3 ln

2 sin
(
θR−θL

2

)
δ̂

 (3.72)

and the entropy associated with the defect is given by

∆SEE,defect = cT
3 ln

cosh y∗ + sinh y∗

cosh
(
rR−rL

2

)
 . (3.73)

For the case rR = rL = 0 where the geodesic passes through the center of the AdS3 this matches
eq. (3.9) of [102]. In fact, the authors there note that as long as the entangling surface is symmetric
around the defect, the result does not depend on the size of the subsystem, and is related by means
of a folding trick to the boundary entropy ln g. Indeed we observe that when setting rL = rR

the dependence on the boundary points rL, rR disappears from the above equation. If the defect
is not located at the midpoint of the interval, the entanglement entropy is no longer determined
solely by the two universal numbers cT and g but rather depends also on the location of the end
points of the entangling region.
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Rθ

tP

Figure 3.10: Illustration of the entanglement wedge for a subregion centered around
the defect in the right patch of the defect AdS3 geometry. Pt is the point on the
boundary at the edge of the causal diamond associated with the relevant boundary
region, whose past bulk lightcone will pass through the spatial geodesic connecting
θL and θR.

3.3.2 Subregion CA Conjecture

In [64], a proposal was made for extending the CA conjecture to subregions (corresponding to
mixed states); the proposal is that the complexity of the mixed state is proportional to the
action of a codimension-zero bulk region, defined as the intersection of the WDW patch and the
entanglement wedge associated to the relevant subregion with the proportionality coefficient as
in eq. (2.46). The WDW patch does not depend on the subregion and is therefore identical to the
one described in Section 3.1.3. The entanglement wedge associated to a boundary subregion A
is the set of bulk points which are spacelike separated from the RT surface and connected to the
boundary domain of dependence of the subregion A, see [109, 110]. Its boundary is then formed
by the light-front of the past and future light cones emanating from the various points on the
RT surface. For the case of vacuum AdS3 the null geodesics which form the boundaries of the
entanglement wedge meet on the boundary at the two ends of the causal diamond associated with
the subregion A.

To simplify the calculation we will be focusing on the case where the entangling region is
symmetric about the defect, i.e., rR = rL or θL+θR = 0, see eq. (3.70). In this case, the RT surface
is simply a curve of constant r = rL = rR, see eqs. (3.59) and (3.63). The entanglement wedge
then naturally coincides with the one of empty AdS3 and consists of the light rays emanating
from the boundary point Pt = (t, φ, θ) = (θR, π/2, 0), see figure 3.10. In fact, recall that we have
already considered a similar lightcone, when we were looking at the extension of the boundary
of the WDW patch in the defect region in Section 3.1.3, where it was described by the relation
(3.20). Adapting this expression to our case by the substitution t→ θR−t results in the following
parametrization for the boundary of the entanglement wedge

tanh r = cos(θR − t) . (3.74)

For the case of vacuum AdS and spherical entangling regions, it is well known that the boundary of
the entanglement wedge is a Killing horizon which has vanishing expansion [79,129] and therefore
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the counterterm in eq. (3.24) will vanish for this surface.
In the following, we will divide the contributions to the CA proposal for the subregion to two

parts — inside, and outside the defect region

CA,sub = CvacA,sub + CdA,sub. (3.75)

Since we are mainly interested in studying the special properties that the defect induces in our
system, we will focus here on evaluating the contributions to the complexity from the defect
region. Those will be the ones important for the conclusions of this chapter. For completeness
we also extract the divergent contributions outside the defect region in Appendix A.2. We will
demonstrate below that CdA,sub vanishes for all symmetric subregions around the defect.

In what follows it will be useful to have an explicit expression for the intersection of the WDW
patch and the entanglement wedge in the defect region. Combining (3.74) and (3.20) for this joint
yields

t = θR/2 . (3.76)

Evaluating the Action

In this subsection we focus on contributions from the defect region. We quote the result for the
structure of divergences outside the defect region at the end of the subsection and the details
can be found in Appendix A.2. The projections of the various relevant contributions onto the
t = 0 time slice are illustrated in figure 3.11. They consist of bulk, boundary, joint and defect
contributions. In the defect region, those are the two bulk contributions B1 (region under the
WDW patch) and B3 (region under the entanglement wedge), the three surface contributions S4

(cutoff surface), S2 (null boundary of the WDW patch) and S8 (null boundary of the entanglement
wedge), the three joint contributions J2 (between the cutoff surface and the boundary of the WDW
patch), J5 (between the boundary of the WDW patch and the boundary of the entanglement
wedge) and J6 (between the past and future boundaries of the entanglement wedge), and the
two defect contributions S(a)

d (enclosed under the WDW patch) and S
(b)
d (enclosed under the

entanglement wedge). We evaluate them below.

Bulk contributions We start from the bulk contribution B1, bounded by the WDW patch
(3.20), which reads

B1 = − L

4πGN

∫ 0

−y∗
cosh2 y dy

∫ tanh−1(cos δ̂)

tanh−1(cos θR2 )
cosh r dr

∫ cos−1(tanh r)

0
dt

= L

8πGN

(
y∗ + 1

2 sinh(2y∗)
)(

ln δ̂ + θR
2 cot

(
θR
2

)
− ln

(
sin
(
θR
2

))
− 1

)
. (3.77)

Next, we evaluate the bulk contribution B3, under the entanglement wedge (3.74), which reads

B3 = − L

4πGN

∫ 0

−y∗
cosh2 y dy

∫ tanh−1(cos θR2 )

tanh−1(cos θR)
cosh r dr

∫ θR−cos−1(tanh r)

0
dt

= − L

8πGN

(
y∗ + 1

2 sinh(2y∗)
)(

θR
2 cot

(
θR
2

)
+ ln

(
sin
(
θR
2

)
csc θR

))
. (3.78)
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Figure 3.11: Illustrations of the various contributions in the evaluation of the sub-
region CA proposal for an interval which is symmetric around the defect. The il-
lustrations focus on the right patch, but of course, equivalent contributions exist for
the left patch. The red dashed line represents the cutoff and the middle dotted blue
curve represents the projection of the joint formed at the intersection between the
boundary of the WDW patch and the entanglement wedge. We have also included
certain internal divisions between B4 and B5 and between S6 and S7 outside the
defect region which we use in evaluating the relevant integrals in Appendix A.2.

Multiplying by four to account for the equivalent contributions from both sides of the defect, as
well as above and below the t = 0 time slice, we find that the total bulk contribution inside the
defect region is given by

Ibulk,in = L

2πGN

(
y∗ + 1

2 sinh(2y∗)
)(

ln δ̂ − ln
(1

2 tan
(
θR
2

))
− 1

)
. (3.79)

Surface and joint contributions The contribution from the cutoff surface S4 has already
been evaluated in Section 3.2.2, see eq. (3.40), and is given by

S4 = L

8πGN
y∗. (3.80)

The contribution of the null surface S2 is very closely related to the one evaluated in eq. (3.44).
All one has to do is modify the limits of integration according to eq. (3.76) which yields

S2 = L

8πGN

∫ 0

−y∗
dy

∫ θR/2

δ̂
dt cot t = L

8πGN
y∗
(
− ln δ̂ + ln

(
sin
(
θR
2

)))
. (3.81)

The details of the null boundary of the entanglement wedge S8 can be easily obtained from those
of the null boundary of the WDW patch in eq. (3.41)-(3.43) by substituting t → θR − t in the
relevant places. However, we have to make sure that the parametrization λ increases from past
to future, hence we choose λ = − L

NEW
cosh y ln

(
tan

(
θR−t

2

))
, where we have included a constant

NEW to account for the choice of parametrization at the boundaries of the entanglement wedge.
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The surface data is given by

xµ(t, y) = (t, y, tanh−1(cos(θR − t))), kµ(2) = NEW

L cosh y (sin(θR − t), 0, 1) ,

γyy = L2, Θ = 0, κ(2) = NEW

L

cos(θR − t)
cosh y ,

(3.82)

which leads to the following surface contribution

S8 = − L

8πGN

∫ 0

−y∗
dy

∫ θR/2

0
dt cot(θR − t) = − L

8πGN
y∗ ln

(
2 cos

(
θR
2

))
. (3.83)

Next, we evaluate the relevant joints. The joint J2 at the intersection of the WDW patch and
the cutoff surface is identical to the one evaluated in eq. (3.45) and reads

J2 = −L lnN2
8πGN

y∗ . (3.84)

The joint J5 at the intersection of the WDW patch and the entangling wedge can be obtained
using the normal vectors in eqs. (3.82) and (3.42) evaluated at t = θR/2 which yields

J5 = L ln (NEWN2)
8πGN

y∗ . (3.85)

The joint J6 is obtained by contracting the normal vector in eq. (3.82) for t = 0 with the normal
vector of the past null boundary of the entanglement wedge obtained from the former by flipping
the sign of its t component. This yields

J6 = −L lnNEW

4πGN
y∗ . (3.86)

Summing all these contributions together yields the following result for the action of the surfaces
and joints inside the defect region

Isj,in = 4(S2 + S4 + S8 + J2 + J5) + 2J6

= L

2πGN
y∗
(
− ln δ̂ + ln

(1
2 tan

(
θR
2

))
+ 1

) (3.87)

and of course, we note that the parametrization choices N2 and NEW canceled out.

Defect contribution The defect contribution is given according to eq. (3.49). One has to
subdivide the integration into two parts. First, we consider the defect brane portion S(a)

d under
the WDW patch

S
(a)
d = L sinh 2y∗

8πGN

∫ tanh−1(cos δ̂)

tanh−1(cos θR2 )
cosh rdr

∫ cos−1(tanh r)

0
dt

= L sinh 2y∗

8πGN

(
− ln δ̂ − θR

2 cot
(
θR
2

)
+ ln

(
sin
(
θR
2

))
+ 1

)
.
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Next we evaluate the defect brane contribution under the entanglement wedge

S
(b)
d = L sinh 2y∗

8πGN

∫ tanh−1(cos θR2 )

tanh−1(cos θR)
cosh rdr

∫ θR−cos−1(tanh r)

0
dt

= L sinh 2y∗

8πGN

(
θR
2 cot

(
θR
2

)
+ ln

(
sin
(
θR
2

)
csc θR

))
.

Those contributions are counted twice to account for the parts of the defect brane to the future
and past of the t = 0 time slice. Finally, we obtain

Id = 2
(
S

(a)
d + S

(b)
d

)
= L sinh(2y∗)

4πGN

(
− ln δ̂ + ln

(1
2 tan

(
θR
2

))
+ 1

)
. (3.88)

Total contributions from defect region Adding up the contributions (3.79), (3.87) and
(3.88), we find that the defect region contribution to the subregion complexity vanishes

CdA,sub = 1
π

(Ibulk,in + Isj,in + Id) = 0 (3.89)

as was the case for the complexity of the state on the entire time slice. This means that the
subregion complexity for an interval centered around the defect will be identical to the result for
a subregion of the same size in empty AdS. This is again in stark contrast to the results of the
subregion CV complexity in eq. (3.69), where the defect introduced a logarithmic contribution
which also depended on the location of the end points of the subregion.

Contributions outside the defect region In Appendix A.2 we consider the contribution
to the complexity from outside the defect region. This is the same as evaluating the subregion
complexity for empty AdS.19 We are able to extract the structure of divergences analytically and
obtain

CvacA,sub = cT
3π2

(
θR

δ̂

[
ln
(
`ct
L

)
+ 1

]
+ ln δ̂ ln

(2`ct
L

))
+ finite. (3.90)

We note that upon setting θR = π we recover the leading divergence of the full boundary com-
plexity (3.52). However, note that in expanding this result we have everywhere assumed that θR
was not too close to the cutoff, and therefore we cannot expect to recover the subleading diver-
gences in the full boundary complexity in this way. We see that the result here has an additional
logarithmic contribution compared to that in eq. (3.52) which depends on the scale `ct associated
with the counter term.

3.4 Complexity in QFT

In this section we consider the problem of calculating the defect contribution to the complexity
of the ground state from the dual field theory point of view.

At the moment it is not known, even in principle, how one should compute the complexity for
a generic interacting field theory, although some progress has been made for weakly interacting

19For the case of a flat boundary, the divergence structure of the subregion complexity in vacuum AdS was
studied in [64].



54 CHAPTER 3. HOLOGRAPHIC COMPLEXITY: “CA” OR “CV” ?

QFTs, see [72]. For the case of a free field theory one can follow the methods developed in [65]
which allows to compute the complexity in the case where the reference state and the target
states are Gaussian (as is the case for the vacuum of a free field theory). A Gaussian state can
be characterized in normal coordinates by a set of characteristic frequencies ωk; if the reference
state is taken to have all frequencies equal to a constant ω0, the complexity is given by

C = 1
2
∑
k

∣∣∣∣ln(ωkω0

)∣∣∣∣ . (3.91)

This formula is obtained as a geodesic distance, calculated in a certain metric defined on the
space of unitary operators that are used to move within the set of Gaussian states. An essentially
equivalent result was obtained in [67] via a different method, where the metric was computed
from the Fubini-Study metric on the set of quantum states.20

In order to make a connection between eq. (3.91) and the holographic model studied in the
previous sections, we look at a free 1+1-dimensional CFT with a conformal defect, i.e., a defect
which preserves at least one copy of the Virasoro algebra. A single defect on the real line can
be mapped to a boundary using the “folding trick”, and the problem of constructing conformally
invariant boundary conditions has been considered by Cardy [135] who derived a set of consistency
conditions that boundary states have to satisfy. However these conditions cannot be solved in
full generality. In the simplest case of a single free boson, which we denote as φ+ and φ− on the
right and left sides of the defect respectively, it is possible to show [52] that the most general
current-preserving conformal boundary condition relating the derivatives of the fields is(

∂xφ−

∂tφ−

)
= M(λ)

(
∂xφ+

∂tφ+

)
, M(λ) =

(
λ 0
0 λ−1

)
, or (3.92)

(
∂xφ−

∂tφ−

)
= M ′(λ)

(
∂xφ+

∂tφ+

)
, M ′(λ) =

(
0 λ−1

λ 0

)
. (3.93)

If the boson is compact, the first condition amounts to a change of the compactification radius,
with λ = R+/R−. The second type of defect is related to the first type by a T-duality on one
side of the defect, i.e, ∂µφ+ = εµν∂

ν φ̃+. These boundary conditions can be obtained by requiring
that energy is conserved (i.e., the stress tensor component Txt is continuous) at the location of
the defect.

In order to mimic the setup of our holographic model we will consider a scalar field, living
on a periodic boundary of length 2LB, namely x ∈ [−LB, LB], with defects at the diametrically
opposed points x = 0 and x = LB, as indicated in figure 3.12.

If the boson is compact, then its compactification radius must be unchanged after going once
around the circle; this implies that the matrix associated to one defect must be the inverse of the
other; if at x = 0 we have a defect M(λ), at the opposite side the defect has to be M(λ−1). This
amounts to choosing λ′ = λ−1 in figure 3.12. It is a simple exercise to show that imposing these
boundary conditions on the boson leads to a spectrum that is the same as in the theory without

20It has been shown in [134] that the two methods will not be equivalent in general, and an explicit counterexample
can be found using coherent states.
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Figure 3.12: Illustration of two CFT domain walls at the opposite sides of a periodic
domain.

defects, namely
ωn = πn

LB
. (3.94)

Applying the formula (3.91) then obviously leads to the result that the complexity does not
depend on the presence of the defect. This is in agreement with the result for the CA conjecture
that we obtained in (3.52), but not with the result for the CV conjecture (3.23), which may be
seen as an argument in favor of the CA conjecture. However, we should be cautious in drawing
such a conclusion, as the model we consider is a very simple one and we do not know if the result
is generic. Moreover, the fact that the normal frequencies are the same does not imply that there
is no effect of the defect. The zero modes play an important role in determining the entanglement
entropy, more precisely its finite part, which can be identified with the Affleck-Ludwig boundary
entropy [102,136,137]. This potentially hints that one has to incorporate the effect of zero modes,
or winding modes, into the free field theory definitions of complexity [65,67].

We can make a few further observations. First, notice that if the two defects are not placed
at antipodal points, then the spectrum will change (the defects are not topological, so the theory
depends on the distance between them). In the field theory we can put the defects wherever
we want, but in the gravitational dual it seems difficult to find a corresponding solution where
the brane would have to bend, so something would have to pull on it to stabilize the solution.
Second, if the boson is not compact, then there is no reason a priori why the two defects should
be related to each other. We can allow for a more general pair of defects M(λ),M(λ′). The
boundary conditions lead to a set of allowed momenta and corresponding frequencies

ωn± = |kn±| , kn± = nπ

LB
± 1
LB

tan−1
(
λλ′ − 1
λ+ λ′

)
≡ π

LB
(n±∆) . (3.95)

Alternatively, if one considers a pair of defects with transfer matrices M(λ) and M ′(λ′) the fre-
quencies are again identical to those in the vacuum state, while for transfer matricesM ′(λ),M ′(λ′)
we obtain the same result as in eq. (3.95).

Even though we have no reason to think that this model has anything to do with our holo-
graphic model, we may hope that the corresponding complexity will have a sufficiently generic
form. Then using the prescription (3.91), and assuming for simplicity that we use a reference
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frequency larger than the cutoff, we find

C =
N∑
n=1

ln L2
Bω

2
0

π2 |n2 −∆2|
∼ 2N ln

(
LBω0
πN

)
+ 2N − lnN − ln

(2 sin(π∆)
∆

)

= 2
(
LBΛ
π

)[
ln
(
ω0
Λ

)
+ 1

]
− ln

(
LBΛ
π

)
− ln

(2 sin(π∆)
∆

)
,

(3.96)

where we have used N = LBΛ/π with Λ the momentum UV cutoff. In the above expression
we have not included the contribution of the mode n = 0 since this mode would have to be IR
regularized when considering the theory without the defect ∆ = 0. Note that since we have
assumed that ω0 > Λ the leading term in the complexity will be positive, as expected.

We can compare this result to the one of the holographic CV (3.23) and CA (3.52) proposals.
The field theory result has a Λ ln Λ divergence, which is expected in field theory [67] but is
absent both in CV and in CA when `ct is taken to be a constant. If we consider `ct ∼ 1/Λ
in the CA proposal, the leading divergence is reproduced, but not the subleading ln Λ. The
fact that the subleading divergences do not agree is not surprising given the simplicity of our
model and was already observed in the complexity of the vacuum state in [65, 67]. This choice
of `ct would also lead to a ln2 Λ divergence in the subregion complexity (3.90), which despite
being an unusual divergence to encounter in field theory quantities that need to be renormalized,
does appear in quantum information measures, e.g., the entanglement and Rényi entropies for
entangling surfaces which contains a conical singularity [138]. Another option would be to choose
the reference frequency ω0 ∼ Λ. In this case the divergences are only Λ and ln Λ and the structure
is the same as for CV (3.23), except for the fact that the coefficient of the log depends on the
parameter of the defect in CV, whereas in the field theory the defect affects only the finite part.
Comparing eq. (3.96) to the results of the CA proposal (3.52) we see that in both cases a defect
dependent log contribution is absent.

It appears that the absence of a defect-dependent log is due to a cancelation that occurs
between modes of momentum k and −k; they are degenerate in the free model, and the defect
lifts the degeneracy symmetrically, i.e., ω → ω ± δω. This suggests that the result can change if
parity invariance is broken, for instance in a chiral theory, or if the defect has degrees of freedom
living on it; in this case there is a channel of inelastic scattering of the modes, so that k is not
coupled only to −k.21 This idea can be checked explicitly in a solvable model [125] of a free boson
with a boundary interaction of the form

L = 1
8π

∫
dx (∂µφ∂µφ)− g cos

(
φ(0)√

2

)
. (3.97)

The interaction term is of dimension one and is exactly marginal. By taking the boson at the
self-dual radius, one can see that the interaction term can be reabsorbed into a redefinition of
the SU(2) currents J3 = i√

2∂φ, J
± = e±i

√
2φ:

J1(x)→ J 1(x) = J1(x)− g

2δ(x) . (3.98)

21Note, however, that the notion of degrees of freedom localized on the defect is not well-defined outside of the
perturbative regime, see, e.g., [139].
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The effect of this shift is to change the allowed U(1) charges (i.e., momenta) of the modes. On a
segment [0, LB] with Dirichlet boundary conditions at x = LB, one finds that kn = π

LB
(n+ g/2);

the complexity in this case gives a result similar to (3.96), but with a term g ln Λ. However, if the
interaction term is added at both endpoints, the spectrum is different [140]: it forms continuous
bands centered around each integer, of width 1 − 2α for g ∈ α + Z. In this case the asymmetry
disappears again.

3.5 Discussion

In this chapter we have studied how the results of the holographic complexity proposals change
when the boundary theory includes a conformal defect. We have focused on a simple gravity model
which includes an AdS2 brane embedded inside an AdS3 geometry for which the full solution is
known including backreaction [102]. The solution consists of two, slightly more than half, patches
of empty AdS3.

In Section 3.2, we evaluated the complexity of the full boundary state according to the com-
plexity=volume proposal and found that it has an additional logarithmic divergence, compared
to the case of vacuum AdS3, see eq. (3.23). We define the difference as the defect formation
complexity

∆C form
defect ≡ CV − CV,vac = 8cT sinh y∗

3 ln
(2LB

δ

)
, (3.99)

where we have used eq. (3.15) to express δ̂ as a function of the UV-cutoff δ and the boundary radius
LB, and where y∗ is related to the tension of the brane as in eq. (3.3), i.e., tanh y∗ = 4πGNLλ.
Since the coefficient of the logarithmic divergence does not depend on the regularization scheme,
we expect that it is related to the physical data of our system. Indeed, we demonstrate below
that in addition to the explicit dependence on the central charge, the coefficient of the logarithm
in the above equation is related to the Affleck-Ludwig boundary entropy [105], which manifests
itself as the finite part of the entanglement entropy [133] in the presence of a boundary. In the
case of the conformal defect studied in this chapter, when the entanglement region is symmetric
around the defect, it is possible to use a folding trick to relate the system with the defect to a
finite system with boundaries and in this case the finite part of the entanglement entropy is also
related to the boundary entropy. In the holographic setup when evaluating the entanglement
(3.73) for an entangling region which is symmetric around the defect one obtains

SEE = cT
3 ln

(2LB
δ

sin
(

`

2LB

))
+ ln g; ln g = cT y

∗

3 , (3.100)

where ` ≡ LB∆θ is the length of the interval on the boundary and ln g is the boundary entropy.
This result was already obtained in [102] and eq. (3.73) generalizes it to the case of asymmetric
regions around the defect; we find that in the latter case the finite part of the entanglement is no
longer a constant but depends on the location of the endpoints. As far as we know, this result has
not appeared in the literature before, and it would be interesting to have a field theory derivation
of it.

Next, we evaluated the complexity according to the complexity=action proposal and found
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that the result was identical to the one obtained for empty AdS3

∆C form
defect = CA − CA,vac = 0. (3.101)

We stress once more that the exact vanishing, and in particular the independence on the tension
of the brane, is obtained with a particular choice of regularization. As discussed in footnote 7, a
change of cutoff can induce finite contributions that are in general dependent on the tension. The
robust part of this result is the vanishing of the defect contribution to the logarithmic divergence
which contains universal information. Previous studies of the two holographic proposals have
found that the two results generally coincide up to an overall numerical factor. This includes the
late time growth rate of complexity in black hole backgrounds which is proportional to the mass
of the black hole (for the CV proposal this is valid in the high temperature limit) [17, 57, 89],22

characteristic delays in the complexity growth due to the introduction of shockwaves in the
system [16,91–93], as well as the structure of divergences in holographic complexity (this is true
when including a counter term in the action proposal), see [64, 88]. It is therefore interesting
that for the case of the defect the results of the two holographic proposals dramatically differ.
However, we have to be careful about the generality of this result. Holographic complexity
is known to have special features for the case of d = 2, e.g., the complexity of formation is not
proportional to the entropy for this particular boundary dimension [126]. It is therefore important
to carry this analysis in higher dimensional cases before a definite conclusion can be drawn. One
possibility would be to use the setup of AdS/BCFT to study the complexity in the presence of a
boundary [141,142] or in various holographic models proposed for systems with defects [143–146].
It would also be interesting to try and explore the effect of defects of codimension different than
one on the complexity. Another possible extension of our results would be to explore the effect
of the defect at finite temperature when a black hole is present in the bulk.

It is important to point out that, at least naively, in order to study the complexity using the
volume conjecture we have to include the backreaction of the brane. It would be interesting to
see if this could somehow be avoided as was done for the entanglement entropy in [147] by using
the Casini-Huerta-Myers trick [79], or in an expansion for small tension of the brane, see [148].
Note that the analysis of the action cannot be performed in the probe approximation by simply
considering the action of the brane itself since the gravitational action for the region surrounding
the brane contributes at the same order in an expansion in the tension of the brane, as explicitly
seen in our calculation.

In Section 3.3 we evaluated the holographic complexity for subregions using the generalizations
of the CA and CV proposals [64,111] motivated by the suggestion that the natural bulk region to
encode the information about the reduced density matrix is the entanglement wedge [109, 110].
Using the complexity=volume we found in eq. (3.69) that the leading divergence in the complexity
was proportional to the size of the boundary region. This was already noted in [64, 111]. The
defect introduced a subleading logarithmic divergence, which was exactly half of the one given in
eq. (3.99) for the full boundary state. The reason is that the subregion covers only one defect in
the boundary theory. It is also interesting to compare this result to the entanglement entropy in

22See also [90] for the full time dependence.
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equation (3.73) where the contribution due to the defect was finite rather than logarithmic.

For the complexity=action for a symmetric region around the defect, we found again that
the complexity with the defect was identical to the result for vacuum AdS3 in the cutoff choice
presented in Section 3.1.2, see eq. (3.89). We derived the result for empty AdS3 in global co-
ordinates in Appendix A.2 and the final result can be found in eq. (3.90) (previous results for
subregions in vacuum AdS with a flat boundary can be found in [64]). We observed that the
leading divergence is proportional to the size of the interval and that a certain ambiguity was
introduced by the parameter `ct, with dimension of a length, due to the gravitational counterterm
needed to restore reparametrization invariance of the gravitational action. This counterterm was
recently shown to be an essential ingredient in the CA proposal in order to reproduce certain
desired properties of the complexity in the presence of shockwaves [91, 92]. We also observed a
subleading logarithmic divergence which depends on the same ambiguity due to the counterterm.
If the characteristic length `ct is chosen to be of the order of the cutoff, this introduces a ln2 δ̂

divergence in the holographic complexity. It would be interesting to generalize this result to the
case of a region which is not symmetric around the defect which cannot be related to a system
with boundary using the folding trick.

In Section 3.4 we studied the complexity of the ground state for two simple models of bosonic
QFTs including two defects at the two opposite sides of a periodic domain. We evaluated the
complexity according to the methods introduced in [65, 67] for Gaussian states in free quantum
field theories, starting from an unentangled product state with characteristic frequency ω0. The
first model consists of a free boson with permeable domain wall defects. In this model, we found
that the logarithmic contribution to the complexity does not depend on the permeability param-
eter λ characterizing the defect, see eq. (3.96). This is similar to what happened in holography
using the complexity=action proposal. Later, we considered an exactly solvable model with a
boundary interaction given in eq. (3.97). In this model a logarithmic divergence which depends
on the defect parameters appeared in the complexity, analogously to our result for the complex-
ity=volume conjecture, although the logarithmic term is absent even in this case if the system
has two boundaries.

No embedding of the precise holographic model studied in this chapter into string theory is
known. It would therefore be very interesting to reproduce our holographic calculation for a
model that comes from a solution of string theory, for instance, one could consider the exact
string background of AdS3 with NS-NS fluxes, in which AdS2 D-brane probes can be embedded,
see [149]. Presumably the fluxes would contribute to CA but not to CV, so there is a possibility
that the discrepancy found in this chapter would not be present in a full top-down model. Another
interesting possibility is to study the complexity in a smooth defect geometry, e.g., the Janus
solution [150], and check whether a defect-dependent logarithmic contribution is obtained using
the CA/CV proposals.

It is possible to gain further intuition into the influence of the defect on the complexity by
considering MERA circuits, for a review see [151]. MERA tensor networks constitute an efficient
way of approximating the ground state of critical systems. It has been suggested that they have
a natural interpretation in holography where the MERA constitutes a lattice representation of a
constant time slice in AdS and where the additional direction in the MERA circuit corresponds
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to the holographic RG scale [152]. More precisely, the number of layers in the tensor network
is proportional to log z where z is the holographic FG coordinate. The lattice points in this
description represent the MERA gates and so counting them (equivalently evaluating the volume
of the time slice) would naturally result in a measure of the complexity of the state.

It was pointed out in [153, 154] that in order to find the ground state of a system whose
Hamiltonian has been modified in a certain region due to an impurity or a defect it is sufficient
to minimally update the tensor network, namely to replace the tensors in the causal cone of
the defect, defined as the part of MERA which traces the evolution of the defect under coarse-
graining transformations. Furthermore, if the defect is conformal, it is enough to replace the
pair of tensors representing disentanglers and isometries with another (single) pair in the causal
cone of the defect. For impurities spread over a small spatial region, the causal cone consists of
approximately a fixed number of tensors at each layer.

We have seen in our CA calculations that the defect itself makes a large positive contribution
logarithmic in the cutoff, see eq. (3.51), while the geometry around the defect introduces a negative
contribution, which exactly cancels the one of the defect. This can be naturally interpreted in
terms of the minimally updated MERA. Introducing a cost for the tensors in the causal cone
would give a log contribution, since it would be proportional to the length of the cone in the
bulk; at the same time, we would have to subtract the contribution of the tensors that have
been replaced. The exact cancellation that we observe seems to indicate that the CA proposal
corresponds to microscopic rules where the defect gates and the ordinary gates are equally costly
while in the CV, the defect gates are more costly.

An alternative interpretation was suggested in [155] according to which the additional volume
in the extension of the AdS space created by a thin defect could be interpreted as additional
portions added to the tensor network, and this would resemble a discretized version of the time
slice in our CV calculation. Another interesting possibility would be to incorporate a defect into
the path integral complexity proposal based on Liouville action studied in [68,69,118,119].

We should point out that for entanglement entropy calculations in the free setup with a
compact boson and two permeable domain walls, the zero modes play an important role; the
finite boundary entanglement can be understood as arising essentially from the log of the volume
of the zero modes [102]. This raises the question of whether the prescription for computing
complexity using Gaussian states needs to be extended to account for a contribution of the zero
modes. We leave this interesting issue for future study.



Chapter 4

A Careful Consideration of
Holographic 2D dCFT

This Chapter is based on the work [19].

Conformal interfaces are ubiquitous both in condensed-matter systems and in studies of the
holographic duality. Such interfaces describe the local, scale-invariant gluing of two conformal
field theories, CFTL on the left and CFTR on the right. Examples include junctions of quan-
tum wires [156], line or surface defects in the critical 2D or 3D Ising models [157], or the gluing
of superconformal gauge theories with different couplings and/or gauge groups. In bottom-up
AdS/CFT, interfaces are often modeled by codimension-one branes anchored at the AdS bound-
ary. Smooth (super)gravity solutions describing top-down embeddings in string theory are also
known. Some early papers on the subject are [52, 143, 145, 146, 158, 159]. Additional references
will be given as we proceed.

Folding spacetime along an interface converts the latter to a conformal boundary of the
product theory CFTL ⊗CFTR, where the bar indicates space reflection.1 The folded theory has
two energy-momentum tensors, TL and T̄R, that are separately conserved in the bulk while only
their sum, Ttot ≡ TL + T̄R, needs to be conserved at the boundary. What distinguishes interfaces
from boundaries (and ICFTs from BCFTs) is the existence of another, relative spin-2 current
Trel = cRTL − cLT̄R ,2 which measures the exchange of energy between left and right. Here cL
and cR are the central charges of the two CFTs. As usual, things simplify considerably in two
dimensions. In this case, it was noted in [50] and further analyzed in [51,160,161] that the transfer
of energy across the interface is controlled by a single transmission or reflection coefficient, T or
R, with T +R = 1. The purpose of the present note is to derive a formula for these coefficients
in the simplest holographic-interface model.

The model consists of two AdS3 slices separated by a string of tension σ. The AdS3 slices
have radii `L and `R,3 related to the CFT central charges by the Brown-Henneaux formula
cL,R = 3`L,R/2G [32], where G is the three-dimensional Newton’s constant. With no loss of
generality we take `L ≥ `R, so that the ‘false’ higher-energy AdS vacuum is on the left, while the

1We will actually restrict our discussion to non-chiral theories, for which CFTR =CFTR.
2This combination of the energy-momentum tensors is a conformal primary of the folded theory.
3We will work in the semiclassical limit, so the radii must be much larger than G.

61



62 CHAPTER 4. A CAREFUL CONSIDERATION OF HOLOGRAPHIC 2D DCFT

‘true’ AdS vacuum is on the right. For tensions inside the interval

0 ≤ 1
`R
− 1
`L
≤ 8πGσ ≤ 1

`R
+ 1
`L

(4.1)

the string-worldsheet geometry is AdS2 corresponding to the ground state of the ICFT [130,145].
At the extremal values of the interval the worldsheet flattens out, i.e., the AdS2 radius diverges.
The lower σ limit in (4.1) actually corresponds to the Coleman-De Lucia bound [162] below
which the false AdS3 vacuum is unstable to nucleation of bubbles. This is also the BPS bound
for supergravity domain walls [163]. The upper limit, on the other hand, corresponds to the
Randall-Sundrum fine-tuned tension, beyond which the string worldsheet becomes de Sitter and
gets anchored on a spacelike curve of the conformal boundary [145].

This model has been used as a toy model of holographic defects, in particular for calculations
of holographic entanglement entropy, see e.g., [102]. In this letter we provide the first calculation
of its transport properties. Our main result is the following formula for the energy-transmission
coefficient defined in [50],

T = 4
`L + `R

[ 1
`L

+ 1
`R

+ 8πGσ
]−1

. (4.2)

Together with the central charges, T was shown [50] to parametrize the most general two-point
functions of energy-momentum tensors allowed by the symmetries of the problem.

As explained in [51,160], what was actually defined in [50] is the weighted-average transmission
coefficient

T = cLTL + cRTR
cL + cR

, where TL,R = (cL + cR)T
2cL,R

(4.3)

are the transmission coefficients for excitations incident on the interface from the left and right,
respectively. Our formula for these directional transmission coefficients reads

TL,R = 2
`L,R

[ 1
`L

+ 1
`R

+ 8πGσ
]−1

. (4.4)

The calculation of (4.2) and (4.4) is performed by scattering surface-gravity waves in a semi-
classical geometry dual to the ground state of the ICFT. It relies on the usual condition of no
outgoing waves at the Poincaré horizon, whose subtle implementation we explain below.

Before describing the calculation in detail, let us comment on some salient features of our
result. First, both TL and TR are monotonically-decreasing functions of the tension σ. Their
maximal and minimal values (in terms of the central charges) read

T max
L,R = cR

cL,R
, T min

L,R = cR,L
cL + cR

, (4.5)

or equivalently for the average coefficients

2cLcR
(cL + cR)2 ≤ T ≤

2cR
cL + cR

⇐⇒ c2
L + c2

R

(cL + cR)2 ≥ R ≥
cL − cR
cL + cR

. (4.6)

The above lower bound on R is the same as the one following from the achronal average-null-
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energy condition (AANEC) in the ICFT [51]. As stressed in that reference, this lower bound
is stronger than the bound imposed by reflection positivity of the Euclidean theory [161], R ≥
( cL−cRcL+cR )2. This shows that reflection positivity does not necessarily imply the ANEC in ICFTs.4

If the inequality cL > cR is strict, both TL and T are less than 1. Total transmission to signals
incident from both sides is therefore only possible between degenerate AdS3 vacua separated by
a tensionless string. This is the gravitational counterpart of a topological interface.

The opposite limit of total reflection, R → 1, can only be reached by taking cR/cL → 0, i.e.,
by depleting CFTR of degrees of freedom, relative to CFTL. This should be contrasted with the
fact that in more general ICFTs, factorizable interfaces can impose reflecting boundary conditions
on each side for any values of cL, cR. In our minimal holographic model, on the other hand, the
transmission of energy incident from the left can be shut down only if there are no degrees of
freedom in the right side. Note however that in this limit TR = 1, so that the (scarce) signals
incident from the right are fully transmitted to the other side.5

We should here stress that the transport coefficient T (orR) and the ground-state entropy (the
logarithm of the g-factor) [105] are independent properties of an interface. This is illustrated by
topological interfaces in free-field models which can have arbitrarily large entropy [165,166] even
though their transmission coefficient is always T = 1. The holographic duals of such interfaces are
tensionless branes [167,168], so tension is not necessarily tied to entropy. Entanglement entropy,
which contains the ground-state entropy as a finite correction to the leading logarithmically
divergent term, has been computed in a variety of holographic ICFT models, e.g., [102,147,169–
171]. It would be interesting to calculate transport coefficients in these models to see how, if at
all, they are correlated with entropy.

4.1 Holographic Scattering States and Matching

We describe now the main steps in the calculation of the reflection and transmission coefficients.
As mentioned above, we use a minimal holographic model for the ICFT, consisting of two man-
ifolds ML,R that are locally AdS3 and are joined on the worldsheet of a tensile string. The
asymptotic boundaries of these manifolds are the left, respectively right half-planes glued along
the CFT interface P . The latter extends in the bulk to surfaces QL ⊂ ML and QR ⊂ MR that
are identified with each other and with the worldsheet of the string, see figure 4.1. The gluing of
ML to MR must obey the matching conditions [131]

γL,αβ =γR,αβ , (4.7a)

[Kαβ]− [trK]γαβ =8πGσ γαβ , (4.7b)

where we have denoted by γL,R and KL,R the induced metric and extrinsic curvature on QL,R,
respectively, and we use [X] ≡ XL − XR to indicate discontinuities on the two sides of the
interface.

4Contrary to what happens for quantum states built by the action of local operators on the Poincaré-invariant
vacuum of a pure CFT [164].

5From the perspective of the false AdS vacuum, the string looks in this limit like the end-of-the-world brane of
holographic BCFT [141,142]. As we will see from eq. (4.10) below, this requires G`Lσ to diverge. What is referred
to as tension in [141,142] is a finite leftover piece of σ.
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Figure 4.1: Illustration of the holographic-interface geometry. The two spacetimes
are glued together at the location of the worldsheet QL ≡ QR. The interface P is
the intersection of the worldsheet with the conformal boundary. The incident wave
is denoted by I, and the reflected and transmitted waves are denoted by R and T .

The ICFT vacuum is described in Fefferman-Graham coordinates by the solution [130,145]

ds2
L = `2L

y2
L

[dy2
L + du2

L − dt2L] for uL ≤ yL tan θL, (4.8)

ds2
R = `2R

y2
R

[dy2
R + du2

R − dt2R] for uR ≥ −yR tan θR, (4.9)

where 0 ≤ yL,R < ∞. The worldsheet uL = yL tan θL or uR = −yR tan θR subtends an angle
π
2 + θL, respectively π

2 + θR, to the left/right halves of the conformal boundary. The worldsheet
metric is AdS2 with radius `W obeying

`W = `L
cos θL

= `R
cos θR

= tan θL + tan θR
8πGσ . (4.10)

The first two equalities follow from (4.7a) and the last one from (4.7b). It will be later convenient
to employ the rotated coordinates(

uL

yL

)
=
(

cos θL sin θL
− sin θL cos θL

)(
xL

zL

)
,

(
uR

yR

)
=
(

cos θR − sin θR
sin θR cos θR

)(
xR

zR

)
,

(4.11)

in which the unperturbed string sits at xL = xR = 0, and its worldsheet can be parametrized by
tL = tR ≡ t and zL = zR ≡ z.

In principle one would like to solve the matching problem (4.7) for a generic metric and a
fluctuating interface on the conformal boundary. It is however sufficient for our purposes here
to set all ICFT sources to zero, and only consider normalizable excitations of the fields. These
are particularly simple in pure AdS3 where the most general solution of the Einstein equations
in Fefferman-Graham coordinates can be written as [48] (see also [172–175])

ds2 = `2dy2

y2 +
[`2g(0)

αβ

y2 + g
(2)
αβ + y2

4 `2 g
(4)
αβ

]
dwαdwβ (4.12)

with g(4) = g(2)(g(0))−1g(2) and, for flat boundary metric, g(2)
αβ = 4G`〈Tαβ〉. Here 〈Tαβ〉 is the
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vev of the canonically-normalized, traceless conserved energy-momentum tensor in some state
of the dual CFT. Linearizing in the perturbation allows us to drop g(4), so that the correction
to the standard AdS3 Poincaré metric has arbitrary left- and right-moving waves, g(2)

++(w+) and
g

(2)
−−(w−).

In order to reproduce the setup of ref. [51] we consider a configuration with an incoming wave
from the left, giving rise to a reflected wave on the left and a transmitted wave on the right.
Explicitly, identifying the w± of (4.12) with u± t, and using monochromatic waves,6 we have

[
ds2](2)

L
= 4G`Lε

[
eiω(tL−uL) d(tL − uL)2 +RL eiω(tL+uL) d(tL + uL)2

]
+ c.c. , (4.13)[

ds2](2)
R

= 4G`Rε TLeiω(tR−uR) d(tR − uR)2 + c.c. , (4.14)

where RL and TL are the (a priori complex) relative amplitudes of the reflected and transmitted
waves, and the subscript L indicates that the incident wave came from the left. Anticipating the
final result, we give the same names to these amplitudes as to the (real) reflection and transmission
coefficients. In what follows, we will linearize our equations in the incoming flux |〈T−−〉| = ε.

Gluing ML with MR requires matching coordinates on the worldsheet. We allow for this by
writing zL,R = z + ε̃ ζL,R(z, t) and tL,R = t+ ε̃ λL,R(z, t), where z, t are the Poincaré coordinates
of the AdS2 worldsheet and we defined for convenience ε̃ = 4G

`W
ε. Since we are keeping only linear

order in ε, we can set tL = tR = t and zL = zR = z in the perturbation (4.13). The above changes
of coordinates enter only through the expansion of the leading worldsheet metric and extrinsic
curvatures in (4.7). We also let xL,R = ε̃ δL,R(z, t) be the fluctuating position of the string in the
transverse dimension.7

Thanks to time-translation invariance we are allowed to work at fixed frequency,

δL,R(z, t) = eiωtδL,R(z) + c.c. (4.15)

and similarly for ζL,R and λL,R.
We have then six equations for the six functions δL,R, ζL,R and λL,R. But common reparametriza-

tions of the two charts are pure gauge, so only the transition functions

ζ ≡ ζL − ζR and λ ≡ λL − λR (4.16)

enter in the equations (4.7). The problem may now look overconstrained, but two of the matching
conditions (4.7b) are not actually independent equations. The reason is that all foliations of AdS3

obey the momentum constraints

DαKαβ −DβK = 0 , (4.17)

where Dα is the covariant derivative with respect to the induced metric. Thus, once one of the
equations (4.7b) has been solved, the other two are automatically satisfied up to constants.8

6Since we are working at the linearized level, the plane wave solutions can be superposed to wave packets.
7We use units where the metric is dimensionless, t, x, z have dimensions of length, ε and ε̃ have dimensions of

mass squared, and hence the functions ζL,R, λL,R, δL,R have dimensions of length cubed.
8Since the time dependence is fixed, (4.17) implies that the z derivatives of two matching conditions are identi-
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The brane fluctuations are induced by the gravity waves (4.13). The equations are more
compact in terms of the combinations

D ≡ δL − δR , ∆ ≡ tan θLδL + tan θRδR − ζ . (4.18)

The four independent matching conditions read

∆ + iωzλ = z3
[cos θL

2 (I + R)− cos θR
2 T

]
, (4.19)

iωzζ − z∂zλ = z3
[
sin θR cos θRT + sin θL cos θL(I−R)

]
, (4.20)

z∂zζ + ∆ = z3
[sin2 θR cos θR

2 T− sin2 θL cos θL
2 (I + R)

]
, (4.21)

z∂zD = z3
[ 1
iωz

(I−R −T)− sin θL cos2 θL
2 (I + R)− sin θR cos2 θR

2 T
]
, (4.22)

where
I ≡ e−iω sin θLz, R = RL eiω sin θLz, T ≡ TLeiω sin θRz (4.23)

are the exponentials imprinted on the worldsheet by the graviton waves (4.13). The first three
equations are the matching conditions (4.7a) while the fourth is the (tz) component of (4.7b),
where we have used the second equation to simplify it. The three (almost) redundant matching
conditions can be actually combined into an algebraic equation for D, so the integration constant
in the last equation of (4.19) is fixed as in eq. (4.25), see below.

Consider first the homogeneous equations obtained by setting the right-hand sides in (4.19)
to zero. The general solution reads

− iωλ(z) = ∆(z)
z

= a+e
iωz + a−e

−iωz ,

− iωζ(z) = a+e
iωz − a−e−iωz , D = 0 . (4.24)

The z = 0 limit of these functions corresponds to sources in the dual ICFT. For instance
δL(0) = δR(0) is a source for the interface displacement operator.9 Linearizing in this source
gives an O(z−3) correction to the induced metric. This is consistent with the fact that the scaling
dimension of the displacement operator is D = 2 [161]. In the absence of gravity waves, setting
the sources to zero implies a+ = a− = 0. This shows that there are no normalizable states
supported entirely by the interface.

Let’s go back now to the inhomogeneous equations (4.19). Since these are linear equations,
the general solution is given by (4.24) plus some special solution. The result after straightforward
manipulations is

cally zero. Note that in D spacetime dimensions the same counting gives (D − 1)2 matching conditions for D + 1
arbitrary functions, so that for D > 3 two generic spacetimes cannot be matched.

9Similarly, λ(0) is the source for the dual operator that generates a relative reparametrization of the interface [49].
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∆(z)
z

= 1
ω2 cos θL

(I + R)− 1
ω2 cos θR

T + a+e
iωz + a−e

−iωz , (4.25)

ζ(z) =− cos θLz
ω2 (I + R)− i

ω3 (I−R)
(

tan θL + sin θL cos θL
2 ω2z2

)
(4.26)

− i

ω3 T
(

tan θR + i cos θRωz + sin θR cos θR
2 ω2z2

)
+ i

ω

(
a+e

iωz − a−e−iωz
)
, (4.27)

λ(z) = i

cos θLω3 (I + R)
(

1− cos2 θL
2 ω2z2

)
− i

cos θRω3 T
(

1− cos2 θR
2 ω2z2

)

+ i

ω

(
a+e

iωz + a−e
−iωz

)
, (4.28)

D(z) =− i

ω3 (I−R)
(

1 + cos2 θL
2 ω2z2

)
+ sin θLz

ω2 (I + R)

+ i

ω3 T
(

1− i sin θRωz + cos2 θR
2 ω2z2

)
. (4.29)

Requiring that the sources vanish now gives

D(0) = 0 =⇒ RL + TL = 1 , (4.30)

and further from ζ(0) = λ(0) = 0 we obtain:

a+ = 1
2ω2

[
TL
(1 + sin θR

cos θR
+ tan θL

)
− (1 +RL)

cos θL

]
, (4.31)

a− = 1
2ω2

[
TL
(1− sin θR

cos θR
− tan θL

)
− (1 +RL)

cos θL

]
. (4.32)

The reader can verify that with these choices all four functions are O(z3) near the conformal
boundary, and make O(1) contributions to the worldsheet metric which can be interpreted as
ICFT vevs. This agrees again with the fact that the scaling dimension of the displacement
operator is two [161].

Inserting the solution for δL,R in the expression for the induced metric shows that the lat-
ter is locally AdS2 (constant intrinsic Ricci curvature). Thus, as is the case for homogeneous
AdS3/CFT2, here too the dynamics happens at the conformal boundary in spite of the presence
of the string/interface.

Up to this point, we have obtained a solution for the equations of motion of our model, that is
valid for any value of TL. To proceed further, we have to make an assumption about the behaviour
of the solution at the Poincaré horizon, as mentioned in the introduction. It is well-known that
in the Lorentzian AdS/CFT correspondence the boundary conditions at the conformal boundary
do not determine the solution uniquely, because there are normalizable modes that vanish at the
boundary and are regular in the interior [173]; this is the dual of the property that there are
different Minkowskian QFT propagators, depending on the choice of the initial state (retarded,
advanced, Feynman etc.).10

10One could try to circumvent the problem by going to Euclidean signature, however in AdS3 there are subtleties
because one finds infrared divergences at z → ∞ that must be regulated (in [48] an IR cutoff was used) and this
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The prescription of [176,177] (generalized by [178]), frequently used in the literature, requires
the absence of modes coming out of the horizon for the computation of a retarded correlator. In
our case it is not immediately obvious how to apply this prescription, since the problem is not
formulated as the computation of a causal response.11 One difficulty is that wave packets formed
from (4.13) are localized in uL,R but not in the radial AdS coordinates yL,R. Such wavepackets
imprint superluminal waves on the functions δL,R, ζ and λ of the form eiωt × (I,R or T), see
eq. (4.23). But as illustrated by seawaves hitting an oblique seashore, these superluminal waves
carry no energy. To see why, one must look at gauge-invariant quantities left unchanged by
common reparametrizations of the two charts, δζL = δζR and δλL = δλR. One such quantity,
at the linearized order considered here, is the traceless part of the extrinsic curvature which is
continuous across the worldsheet by Israel’s matching condition (4.7b).12 A simple calculation
gives

K̂±± = a± ω
2ε

2πσ`W
eiωx

± +O(ε2) , (4.33)

where x± = t± z and K̂αβ denotes the traceless part of Kαβ. Note that the superluminal waves
disappeared from the above expression, and that the ‘no outgoing wave’ condition reduces to
a+ = 0. Note in addition that the (discontinuous) trace parts, KL,R = ± 2

`W
tan(θL,R) + O(ε2),

are not perturbed at linear order.
With the help of equations (4.30) and (4.31), the no-outgoing-wave condition implies

TL = 2 cos θR
cos θR(1 + sin θL) + cos θL(1 + sin θR) . (4.34)

Trading the angles for `L,R and σ gives our result (4.4). It is non-trivial that RL and TL, which
started out as complex amplitudes in the gravitational-scattering problem, ended up as real,
positive reflection and transmission coefficients as required for a proper ICFT interpretation.
This together with the fact that our result obeys the non-trivial ANEC bound (4.6) is a strong
a posteriori argument for the correctness of the above assumption.13

4.2 Summary and Outlook

In this letter we evaluated the reflection and transmission from thin-brane holographic interfaces
in AdS3. We found that the result (4.6) for the reflection coefficient is consistent with the lower
ANEC bound, while its maximum approaches R = 1 only in the limit of infinite ratio of the
central charges. This imperfect reflection might be a generic feature of holographic interfaces.

It would be interesting to study applications of our work in condensed matter systems, as well
as explore other holographic models, higher dimensions and quantum-gravitational corrections.
Of special interest are the 1/2-BPS holographic interfaces of N = 4 super Yang-Mills [180, 181]
and the associated top-down embedding of massive gravity [182]. Another important issue that
will be discussed in a future publication [49] is universality, in particular why RL,R and TL,R are

would introduce some ambiguities.
11Perhaps this can be done using an alternative definition of T in terms of a 3-point function [51].
12It is also covariant under Weyl transformations of the bulk geometry [179].
13For instance, one can check that the condition a− = 0 would lead to unphysical values for T .
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independent of the nature of the incident wave as has been shown in the dual CFT2 [51].
It is also interesting to explore the relation of our work to the recent discussions of the Page

curve that describe the entanglement entropy between an evaporating black hole and its Hawking
radiation through the appearance of islands behind the horizon. This has been evaluated in a
class of toy models where the black hole is coupled to a heat bath via transparent boundary
conditions [183, 184]. Holographic realizations corresponding to this scenario were put forward
for example in [185–189] in terms of doubly holographic BCFT/ICFT models. Our results on
reflection and transmission could come to use when coupling the black hole to the bath – we hope
to return to this question in the future.

In this context it has been also pointed out that the transmission of energy across an interface
differs from the transmission of information. It would be interesting to compare our results
to various information theoretic measures and their dynamics in the presence of defects, see
e.g., [18, 102,128,136,147,155,170].
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Chapter 5

Revisiting Circuit Complexity in 2d
Bosonisation

This Chapter is based on the work [20].

Recently, much attention has been devoted to the study of quantum complexity in connection
with the holographic correspondence. Quantum complexity is a concept that has its origin in
quantum computation theory as a means of characterizing the difficulty (in the sense of the
amount of resources needed) of performing a task on a quantum computer; more precisely, if the
task can be described as producing a certain quantum state |ψT 〉 from a given initial state |ψR〉
using a circuit made of elementary unitary operations (gates), the quantum complexity can be
defined as the minimum number of gates required for such a circuit. It has been suggested by
Susskind and collaborators [16, 89, 190, 191] that the notion of complexity may be an important
component in our understanding of the properties of emergent spacetime, and possibly point
to a solution of the information loss paradox, by giving additional insight, beyond what can
be obtained from entanglement entropy, into the information-theoretic properties associated to
spacetime and in particular to the region inside black hole horizons (see the recent lectures [192]).

It was further conjectured that, similarly to entanglement entropy which is described holo-
graphically by the area of a minimal surface [11], quantum complexity is also captured, in a
theory with a holographic dual, by a simple gravitational observable. However what precisely is
the observable is unclear. There are two different proposals: one takes the volume of a maximal
spatial slice of the geometry [16], the other takes the action evaluated on the Wheeler-DeWitt
patch [17, 57]. Each proposal has its merits and drawbacks, and a clear-cut way to choose one
over the other has not been found yet. In particular, both prescription lead to similar behavior
for the late-time growth of complexity during the formation of a black-hole (i.e., linear growth in
time, albeit with different coefficients [91,92]), and have similar structure of UV divergence

C ∼ a V

δd−1 (1 +O(δ)) , (5.1)

where d is the spacetime dimension of the dual field theory, δ is a short-distance cutoff, and a is
a coefficient that depends on the prescription.1

1In the case of the action, there can be a further divergence of the form 1
δd−1 ln δ [64], but it can be removed by

a boundary counterterm [63] which is also needed to make the prescription reparametrization invariant.

71
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Even in cases when the two prescriptions give different results (e.g., in the case of an AdS3

space with a defect brane, as we found in our paper with S. Chapman [18]), we do not have at
present a criterion for choosing one over the other, absent any independent calculation that can
serve as benchmark. By contrast, in the case of the entanglement entropy, one can compute it in
a 2d CFT, for an interval of length `, and obtain the famous exact result [193]

SEE = c

3 log
(
`

δ

)
, (5.2)

which depend only on the central charge c. Because the coefficient of the log does not change
under a rescaling of the cutoff, it can be considered a universal quantity with a well-defined
physical meaning. By analogy, one could try to attribute a similar universal meaning to the
coefficient of the “log” in the complexity, but the situation is less clear.

The problem is that the definition in terms of gates, which is applicable to a finite quantum
system, does not translate easily to a definition that is applicable to a continuum quantum field
theory. In other words, we do not know how to associate the notion of complexity to a well-defined
observable in QFT. This problem was considered in [65, 67], who provided a partial answer by
proposing a definition of complexity for free scalar fields. The proposal of [65] used the Nielsen’s
approach of geometrization of quantum computation [194], while [67] used a method based on the
Fubini-Study metric 2. In Nielsen’s method, described in more detail in Section 2.3.2, the circuit
is replaced by a continuous version that is a path in the space of unitary operators, of the form

U(s) = Pexp
(
−i
∫ s

0
ds′ Y I(s′)OI

)
, (5.3)

The functions Y I(s) are determined by minimization of a certain functional F [Y I(s)] that deter-
mines the cost associated to a given path. The complexity of a unitary operator V is then defined
as the minimum of the cost functional over all paths (5.3) such that U(s = 1) = V .

What is important to notice here is that this definition of complexity depends on several
choices: the choice of the allowed space of operators used to build the circuit 3, and indeed of a
specific basis OI , the choice of a cost functional, and a choice of parametrization of the path.

The space of unitary operators acting on the Hilbert space of a QFT is very large, but one
of the main points of [65] was to reduce it to a tractable setup by considering operators that act
within the subset of Gaussian states. This allows one to consider the complexity of any state
that is the ground state of any Hamiltonian quadratic in the fields. Discretizing the free scalar
field to a set of N harmonic oscillators, a Gaussian state is described by a symmetric 2N × 2N
matrix, and the group of unitary operators that preserves the Gaussian states is Sp(2N). In [65]
the behaviour of the complexity between Gaussian states was investigated for various choices of
cost functions, mostly focusing on the one corresponding to the Cartan-Killing metric on the
symplectic group.

The approach used in [67] considers a path in the space of states; the complexity is identified
with the minimal length of a path connecting two states, calculated in the standard Fubini-Study
metric on the space of normalized states. For a parametrized path of quantum states |ψ(σ)〉, the

2For other approaches and follow-ups see [68–72,75,123,195,196].
3If the space of all operators is allowed, then obviously all circuits would have the same complexity.
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line element is
ds = dσ

√
〈∂σψ(σ)|∂σψ(σ)〉 − | 〈ψ(σ)|∂σψ(σ)〉 |2 . (5.4)

This definition may seem more canonical, but if one allows the most general path in the space
of states, then the geodesic distance between normalized states is always less or equal to π/2. In
order to have a sensible measure of complexity, one must somehow restrict the possible paths.
The proposal of [67] is to use paths that can be obtained using unitary operators similar to (5.3),
with the basis operators being a subset of the bilinears the creation and annihilation operators;
thus in both approaches one does not leave the space of Gaussian states, and the results are
comparable.

Nielsen’s approach was extended to the case of free fermions in [66, 73]. In comparison to
the bosonic case, the main difference is that the relevant group of operators acting on Gaussian
states is SO(2N), which is a compact group, with the consequence that the complexity (again
measured using the Cartan-Killing metric) cannot grow very large. Considering a field theory in
d spacetime dimension with spatial volume V and a UV cutoff Λ, it turns out that the leading
divergent term in the bosonic complexity is

CbΛ ∼ V Λd−1| ln(Λ/ω0)|κ, (5.5)

where ω0 is an arbitrary reference scale and κ is a parameter related to the choice of the cost
function, whereas for a free fermion field theory is

CfΛ ∼ V Λd−1. (5.6)

The discrepancy seems at odds with the holographic interpretation, as the holographic result
is relatively blind to the fermionic or bosonic nature of the dual fields. Moreover, for the case
of a two-dimensional theory, we might think that the bosonization map between bosons and
fermions should imply the equality of the two results. These observations do not constitute
a strong objection to the results of [65–67, 73], because states with a holographic dual are not
Gaussian states, the theory is strongly coupled whereas (5.5) and (5.6) are obtained for free fields,
and complexity is not a well-defined field theory observable in the usual sense, as we stressed.
Nevertheless, they provide the motivation for the present chapter, where we look more closely at
the complexity for bosons and fermions in 1+1 dimensions, comparing states that are related by
bosonisation. From this point of view, the results (5.5) and (5.6) do not constitute a discrepancy,
rather they illustrate the effect of a different choice of operator spaces.

In the context of quantum computation, the question of the choice of gates is of obvious
importance, and there are some known results: when the gates act on arrays of qubits, it is
possible to show that there is a universal finite set of gates, such that any unitary operator can be
approximated by a circuit made of universal gates with an arbitrarily small error ε (see e.g. [197]),
and the size of the circuit is O(lnc(1/ε)), for some constant c. Moreover, if a circuit has complexity
m with some choice of basic gates, a different choice will give complexity O(m lnc(m/ε)) [198], so
the dependence on the basis choice is at most logarithmic.

It would be nice to establish similar results in the QFT context, but so far almost nothing
can be said about the gate dependence. In most of the works on the complexity, the choice of
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gates was restricted to gates quadratic in the fields, in order not to depart from the space of
Gaussian states. No fundamental reason underlies this choice except that it allows to do explicit
computations, and it is not obvious how to make an alternative choice: in general it is difficult
to find an algebraically closed set of gates that is larger than the set of quadratic operators but
not as large as the full space [72, 199]. But it turns out that such a set is provided by the magic
of bosonisation.

The reason for this is that the bosonisation map is very non-linear, so Gaussian states in one
description generically do not correspond to Gaussian states in the other, and similarly gates that
are oscillator bilinears in one description will map to more complicated gates in the other. Thus
we can have a completely solvable example where it is possible to explore the effect of different
choice of gate sets on the complexity.

We have started to undertaken this exploration in the present chapter. We are not yet in a
position to make general statements about the effect of a change of gates, since we are limited to
the states whose complexity can be computed using the available technology. We have identified
two such classes of states. In the first class, the states are bosonic-coherent and fermionic-gaussian.
For the states in this class, we can compute the complexity analytically, and we find that it has
a similar form in the two descriptions, see the results in (5.43) and (5.63), however the fermionic
complexity appears to have a cost that depends on the mode number of the bosonic oscillator
that is excited. Thus, the difference of complexity can become arbitrarily large, even with a single
mode.

In the second class, the states are both bosonic-gaussian and fermionic-gaussian 4. These
states can be understood as ground states of a system with a free but inhomogeneous hamiltonian.
They are parametrized by an arbitrary function; we considered some examples with the function
having only one or only two Fourier components. We cannot find analytic results in this case
but have to resort to numerics. The numerical results are given in Figures 5.5, 5.6 and 5.7, and
show striking differences between the bosonic and the fermionic result. The bosonic complexity
for these states is cutoff-independent, and smoothly dependent on the parameters corresponding
to the Fourier modes, whereas for fermions it grows like ln(Λ), and it is much less regular (it
appears to be quasi-periodic in the simplest case).

The plan of the chapter is the following: in Section 5.1 we recall the basic properties of the
bosonisation equivalence and the correspondence between fermionic and bosonic states. In Section
5.2 we compute the complexity of a class of bosonic coherent states in terms of bosonic gates by
using the Fubini-Study metric method. In Section 5.3 we use the Nielsen method to compute the
complexity of bosonic coherent states using fermionic gates. In Section 5.4 we describe a class
of states that are of gaussian type both in the fermionic and in the bosonic description, and we
compare the results for the complexity computed in either description. In Section 5.5 we present
our conclusions. Some additional details of the computations are presented in Appendix B.

4The existence of such states has not been remarked before, to our knowledge.
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5.1 2D Bosonisation

5.1.1 Basic Ingredients

In this section, we will review the basics of the 2D bosonisation formalisms, for free bosons and
fermions, which we will use in the rest of the chapter. We follow the presentation in [200]. In
two dimensions, the bosonisation can be proved exactly for a system on a finite size interval
[−L/2, L/2]. In such a system, the unbounded momentum k satisfies

k = 2π
L

(
nk −

δb
2

)
, nk ∈ Z, δb ∈ [0, 2) (5.7)

where δb depends on the periodicity condition of the fermionic fields, 0 for complete periodicity
and 1 for anti-periodicity. If there are M chiral fermions with periodic conditions (δb = 0)
in the system, an index η could be used to denote different types of fermions, and the mode
decomposition for each fermion type is given as

ψη(x) =
(2π
L

)1/2 ∞∑
n=−∞

e−i
2πn
L
xcnη, cnη = (2πL)−1/2

∫ L/2

−L/2
dxei

2πn
L
xψη(x) , (5.8)

where η = 1, 2, . . . ,M , can be spin, handedness, flavor etc. The bosonic chiral fields are given by
the mode decomposition

φη(x) = −
∑
n>0

1√
n

(e−i
2πn
L
xbnη + ei

2πn
L
xb†nη)e−a

πn
L , (5.9)

where the zero mode is omitted. Notice that only n > 0 modes are included, because of the
chirality. The a appearing in the last factor is a regularisation parameter that should be sent to
zero when computing physical quantities.5

By construction, there is an operator identity at the level of annihilation and creation operators
between fermions and bosons,

bnη = −i√
n

∞∑
l=−∞

c†l−n ηclη, b†nη = i√
n

∞∑
l=−∞

c†l+n ηclη (5.10)

from where we see that the bosonic operators are always an infinite sum of fermionic operators
of quadratic type containing both the creation and annihilation ones. We can take (5.10) as a
definition of the bosonic modes; the proof of bosonisation amounts to showing that, with this
definition, the bosonic commutation relations are satisfied if the fermionic ones are:

{clη, c†l̃η̃} = δηη̃δll̃ = [blη, b†l̃η̃]. (5.11)

The bosonisation formula can also be stated in terms of the local fields:

i∂xφη(x) =:ψ†η(x)ψη(x): , (5.12)

5Notice that the bosonisation is exact only when all the modes are included. In practice we often need to
introduce a UV cutoff on the mode number; we still expect that we can match quantities that are cutoff-independent.
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with the colon denoting normal ordering. The inverse formula is more complicated:

ψη(x) = Fη a
−1/2e−i

2π
L

(N̂η−
δb
2 )x :e−iφη(x):, (5.13)

where N̂η =
∑
l : c†l ηcl η : is the fermionic number operator with respect to the ηth spiecies. From

(5.10), it is easy to see that the bosonic operators commute with the fermionic number operator,
i.e.,

[bn η, N̂η] = 0, [b†n η, N̂η] = 0 , (5.14)

so only fermionic operators that don’t change the fermion number can strictly speaking be
bosonised. The so-called Klein factor Fη in (5.13) has the role of compensating the mismatch in
fermion number (this factor is often omitted in many presentations of bosonisation). However we
will not need its explicit expression.

The commutation relation between bosonic and fermionic modes is

[bl, cl̃] = i√
l
cl̃+l, [b†l , c

†
l̃
] = i√

l
c†
l̃+l, (5.15)

[bl, c†l̃ ] = −i√
l
c†
l̃−l, [b†l , cl̃] = −i√

l
cl̃−l. (5.16)

Intuitively we can think that b†l creates, and bl annihilates, a particle-hole pair of total momentum
l.

In the following, we will consider the simplest case with only two chiral fermions and one
chiral bosons, thus the species index will be omitted.

5.1.2 Fermionic Fock space

In the fermionic Fock space F , a unique vacuum |0〉 is defined in terms of the fermionic modes,

cn |0〉 = 0, n > 0; c†n |0〉 = 0, n ≤ 0. (5.17)

In the bosonised picture, the Fock space can be reorganised as a direct sum of all the Hilbert
space with fixed fermionic particle number, i.e.,

F = ⊕NHN . (5.18)

EachHN with fixed fermion number can be regarded as the bosonic Hilbert space since the bosonic
operators commute with the fermionic number operator as mentioned before. The condition for
a bosonic ground state is to be annihilated by all the bosonic annihilation operators

bn |GB〉 = 0, n > 0. (5.19)
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Figure 5.1: The base manifold GB is made of all the bosonic ground states which
are denoted as the red crosses. The vertical blue lines are modules of the fermionic
fock space where each represents a bosonic Hilbert space with fixed fermion number.
The operators of bosonic type can only move vertically while the fermionic ones span
the whole Fock space with a single fermionic operator moving horizontally.

This condition uniquely defines a state in each module HN ; then the ground state |GB〉 in the
N -particle module is denoted as

|GNB 〉 =


c†Nc

†
N−1 · · · c

†
1 |0〉 , N > 0
|0〉 , N = 0

cN+1cN · · · c0 |0〉 , N < 0
. (5.20)

Figure 5.1 gives a depiction of the Fock space as a bundle, with the base given by the ground
states and the fiber by the bosonic Hilbert space. The bosonic operators act inside a single fiber,
whereas fermionic operator can move between different fibers.

5.1.3 Correspondence between states

Our main purpose in this note is to compare the circuit complexity of states in the bosonic and
fermionic descriptions. We cannot consider the most general state, since the techniques developed
so far only allow to deal with Gaussian states or coherent states. Our first task is to determine
the correspondence between Gaussian/coherent states in both descriptions.

It is clear that, since the bosonisation relations (5.12)-(5.13) are non-linear, Gaussian states
in one description will not correspond in general to Gaussian states in the other. It is shown
in [66] that all Gaussian states can be obtained from the fermionic vacuum (5.17) by the action
of a unitary operator of the form

OF = eA
lmclcm+Blmclc†m+Dlmc†

l
c†m . (5.21)

Equivalently, each such states is a vacuum under a set of modes related to the original ones by a
Bogoliubov transformation

c̃l = Almcm + Blmc†m . (5.22)
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It is easy to see then that states of the form

c†n1c
†
n2 · · · c

†
nk
cm1cm2 · · · cmq |0〉 (5.23)

with n1 > n2 > · · · > nk > 0 ≥ m1 > m2 > · · · > mq, are Gaussian states; these include in
particular the bosonic ground states of (5.20).

Another class of fermionic Gaussian states is given by

|{αk, nk}, N〉 = e
∑

k
αkb
†
nk
−α∗kbnk |GNB 〉 , (5.24)

obtained from the ground state with the action of the displacement operator which is a fermion
bilinear (see (5.10)). These are bosonic coherent states, therefore not Gaussian but still tractable.
In the next sections we will analyze the complexity of the last class of states, first from the bosonic
and then from the fermionic perspective.

5.2 Fubini-Study Method for Bosonic Coherent States

In the FS approach, the complexity C(|ψ1〉, |ψ2〉) is computed as the geodesic distance between
two states |ψ1〉 and |ψ2〉, with respect to the Fubini-Study metric on the projective Hilbert space
H/C∗. The metric can be described as follows: given a parametrised path |ψ(σ)〉 on the manifold
of normalized states, the line element, i.e., the length of the tangent vector to the path, is

ds = dσ
√
〈∂σψ(σ)|∂σψ(σ)〉 − | 〈ψ(σ)|∂σψ(σ)〉 |2 . (5.25)

Equivalently, for a family of states ψ(λ) parametrized by coordinates λi, the FS metric is
gijdλ

idλj , with
gij = 〈∂(iψ|∂j)ψ〉 − 〈∂iψ|ψ〉 〈ψ|∂jψ〉 . (5.26)

The complexity of coherent states of a set of harmonic oscillators was considered in [134]
using both the Nielsen approach and the Fubini-Study approach. In order to use the Nielsen’s
approach with bosonic gates, we would need to to embed the coherent states in a larger space
acted on by GL(n), therefore in this section we will use the FS method for simplicity. The results
of [134] show that the FS complexity is very closely related to the Nielsen complexity with the
cost function given by the invariant metric on the group. See also [112] for a different approach
based on Finsler geometry.

Let us consider the coherent states as described in the previous section. For simplicity we
start with the case of a displacement operator acting only on one mode of the bosons. We consider
the one-complex-parameter family of states

|ψ(α)〉 = |α, n,N〉 = Un(α) |GNB 〉 , (5.27)
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where the displacement operators

Un(α) = eαb
†
n−α∗bn = eαb

†
ne−α

∗bne−
1
2αα

∗
, (5.28)

U †n(α) = e−αb
†
n+α∗bn = e−αb

†
neα

∗bne−
1
2αα

∗ (5.29)

satisfy

∂αUn(α) = b†n Un(α)− 1
2α
∗ Un(α), ∂α∗Un(α) = −Un(α)bn −

1
2αUn(α), (5.30)

∂αU
†
n(α) = −b†nU †n(α)− 1

2α
∗ U †n(α), ∂α∗U

†
n(α) = U †n(α)bn −

1
2αU

†
n(α) . (5.31)

It is useful to notice the commutation relations

[bn, Ul(α)] = δln αUn(α), [U †l (α), b†n] = δln α
∗ U †n(α) , (5.32)

from which it follows that

〈U †n(α)bnUn(α)〉 = α , 〈U †n(α)b†nUn(α)〉 = α∗ , (5.33)

where 〈. . .〉 denotes the vev in the state |GNB 〉. The FS metric components can be computed:

gαα =〈∂αU †n(α) ∂αUn(α)〉 − 〈∂αU †n(α)Un(α)〉〈U †n(α)∂αUn(α)〉 = 0 , (5.34)

gα∗α =〈∂α∗U †n(α) ∂αUn(α)〉 − 〈∂α∗U †n(α)Un(α)〉〈U †n(α)∂αUn(α)〉 = 1 . (5.35)

We obtain then that the FS metric is a flat Kähler metric

ds2 = dα dα∗, (5.36)

as expected, since it is known that in quantum mechanics coherent states form a two-dimensional
Kähler manifold which can be parametrized by classical phase space variables [201].

For our purposes it is important to notice that the result does not depend on either the fermion
number N , or the bosonic oscillator number n. We can easily understand the N -independence
since all the bosonic Hilbert spaces HN are equivalent to each other. The independence on the
mode number indicates that the FS metric corresponds to a cost function that assigns the same
cost to all displacement operators Un. This is also natural since the FS metric is derived from
the scalar product in the Hilbert space, which has no information about the energy levels apart
from the fact that they are orthogonal to each other. It is trivial to compute the geodesic length
in the flat metric:

CFS(|GNB 〉 , |ψ(α)〉) = |α| . (5.37)

This agrees with the result of [112]; the result of [134] is CFS(α) = arccosh(1 + |α|
2

2 ), which agrees
with (5.37) for small α, while for larger α it is smaller, which means that one can find shorter
geodesics if the coherent states are embedded in the larger space mentioned at the beginning of
this section.

The general case of coherent states contains displacement operators acting on several modes:
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|ψ(α)〉 =
k∏
i=1

Uni(αi) |GNB 〉 , (5.38)

with ni 6= nk for i 6= k. In order to compute the metric it is enough to consider the case of two
modes:

|ψ(α, β)〉 = |α, β;m,n;N〉 = U(α, β) |GNB 〉 , U(α, β) = Um(α)Un(β) . (5.39)

The off-diagonal metric components are

gαβ = 1
2〈∂αU

†∂βU〉+ 1
2〈∂βU

†∂αU〉 − 〈∂αU †U〉〈U †∂βU〉 = 0 , (5.40)

gα∗β = 〈∂∗αU †∂βU〉 − 〈∂∗αU †U〉〈U †∂βU〉 = 0 . (5.41)

It is easy to see that since the displacement operators of different modes commute, this applies
for any number of excited modes. Therefore the metric is a direct product of the metrics for the
individual modes:

ds2 =
∑
i

dαidα
∗
i (5.42)

and the complexity of a general coherent state is

CFS(|GNB 〉 ,
k∏
i

Uni(αi) |GNB 〉) =

√√√√ k∑
i=1
|αi|2 . (5.43)

5.3 Application of Nielsen Method on Bosonic Coherent States

In this section, we apply the method introduced in Section 2.3.2 on the bosonic coherent states
with instead fermionic gates.

5.3.1 Complexity between Bosonic Ground States

As a first simple application of the formalism, we can compute the complexity of the bosonic
ground states GNB defined in (5.20), which constitute a subset of the fermionic gaussian states, as
already noticed. These states are labeled by the fermion number N . The Bogoliubov transfor-
mation that takes from |G0

B〉 to |GmB 〉 is (for m positive)

c̃l = c†l , c̃†l = cl , 1 ≤ l ≤ m. (5.44)

The corresponding matrix M changes the sign of pl, 1 ≤ l ≤ m and it is in SO(2N) only if m
is even. As noticed before, we can only find geodesic paths between states that have the same
parity of fermion number.

The covariance matrix ∆ in this case is the identity, except for 2n diagonal entries that are
equal to −1. Applying (2.61) we find

C(|GmB 〉 , |Gm+2k
B 〉) = 2π|k| . (5.45)
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As observed before, the bosonic operators act vertically in the fibers, so there is no corresponding
bosonic complexity in this class of states.

5.3.2 Bosonic Coherent States with One Excited Mode

We consider next the coherent states analysed in Section 5.2, but now in the fermionic description.
We start again from the coherent states involving excitations of only one bosonic mode, namely
the states Un(α) |GNB 〉 and consider within the states module of zero fermion number N = 0, the
analysis can be applied in the same manner to the other states module having a different fermion
number with only a shift in the fermionic modes.

As discussed in Section 5.1.3, the unitary operator Un(α) = eαb
†
n−α∗bn is the exponential of a

fermion bilinear, therefore the states are fermionic gaussian and the formalism developed in the
first part of this section can be applied. Using the Baker-Campbell-Hausdorff formula

eXY e−X = Y + [X,Y ] + 1
2! [X, [X,Y ]] + 1

3! [X, [X, [X,Y ]]] + · · · , (5.46)

we can find the transformation of the oscillators in closed form, writing α = |α|eiθ we have

c̃q(n) = Un(α)cqU †n(α) =
∑
l,m≥0

(α∗)lαm

m!l!

( −i√
n

)l+m
cq+(l−m)n

=
∑
r≥0

(−i)re−irθJr
(2|α|√

n

)
cq+nr +

∑
r<0

ire−irθJ−r

(2|α|√
n

)
cq+nr, (5.47)

c̃†q(n) = Un(α)c†qU †n(α) =
∑
l,m≥0

(α∗)lαm

m!l!

(
i√
n

)l+m
c†q−(l−m)n

=
∑
r≥0

ireirθJr

(2|α|√
n

)
c†q+nr +

∑
r<0

(−i)reirθJ−r
(2|α|√

n

)
c†q+nr, (5.48)

where Jr
(

2|α|√
n

)
is the Bessel function of the first kind and n is the excitation mode of boson.

Notice that the mixing occurs only within fermionic modes that differ by a multiple of n. In the
Majorana basis the transformation reads

q̃l =
∑
r

J|r|

(2|α|√
n

)
cos

(
π

2 |r|+ rθ

)
ql+nr +

∑
r

J|r|

(2|α|√
n

)
sin
(
π

2 |r|+ rθ

)
pl+nr, (5.49)

p̃l =
∑
r

J|r|

(2|α|√
n

)
cos

(
π

2 |r|+ rθ

)
pl+nr −

∑
r

J|r|

(2|α|√
n

)
sin
(
π

2 |r|+ rθ

)
ql+nr , (5.50)

and the corresponding orthogonal matrix has the form

M(n) =
(

A(n) B(n)
−B(n) A(n)

)
(5.51)

which is indeed orthogonal as we show in appendix B for the case that θ = 0. Recall that the
fermionic Gaussian state |ψ〉 is given in terms of the transformed oscillators by

c̃q(n) |ψ〉 = 0, q > 0; c̃†q(n) |ψ〉 = 0, q ≤ 0. (5.52)
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We observe that the θ-dependence in (5.47),(5.48) can be eliminated by the following field redef-
inition

cq → eiqθ/ncq , c̃q(n)→ eiqθ/nc̃q(n) , (5.53)

which does not affect the state (5.52). It is a unitary transformation, so it does not affect the
complexity, as discussed in Section 2.3.2. This is also in agreement with the result for the bosonic
complexity (5.37) which is independent of the phase of α. We find that the most convenient
choice for the present calculation is to set θ = π/2.

In this case the off-diagonal blockB(n) of the transformation matrixM(n) vanishes identically,
and the non-vanishing entries of A(n) are given by

A(n)i(i+nj) =

 J|j|
(

2|α|√
n

)
(j ≤ 0)

(−1)jJ|j|
(

2|α|√
n

)
(j > 0)

, (5.54)

The relative covariance matrix ∆(n) is made of two identical blocks

∆(n) =
(
A(n)CAT (n)C 0

0 A(n)CAT (n)C

)
, (5.55)

with C given in (2.56). We can observe that AT (n) and A(n) are related by an orthogonal
transformation

AT (n) = OTA(n)O (5.56)

with Oij = (−1)iδij , which is symmetric and also commutes with C. The diagonal block can be
rewritten as (A(n)OC)2, so the problem is reduced to the diagonalization of A(n)OC.

We have not been able to obtain the eigenvalues analytically. Instead, we notice that the
matrix elements A(n)ij (and those of A(n)OC as well, they just differ by some minus signs) are
of the form of Bessel functions Jν(z) with index ν = |i− j| and argument z = 2α√

n
. Recalling the

power series expansion

Jν(z) =
(
z

2

)ν ∞∑
k=0

(
− z2

4

)k
k!Γ(ν + k + 1) , (5.57)

we see that for small z the matrix is dominated by the diagonal elements, while off-diagonal ones
are suppressed exponentially with the distance from the diagonal. This has the consequence that
the eigenvalues can be computed numerically with good accuracy, and they are weakly dependent
on the cutoff that we put on the length of the matrix considered. One has to keep in mind that
each entry in eq. (5.55) contains the full contributions of all the modes.

Result with p = 1 norm In Figure 5.2 we plot the complexity with p = 1 norm, as a function
of α, for different values of the number n, the excited bosonic mode. The cutoff is chosen to be
10n, although the result does not depend on it. We observe that the ratio between the complexity
Cp=1 and |α|√

n
which is the argument of the Bessel function, is constant in α.
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Figure 5.2: Complexity Cp=1 over α√
n
is constant in |α|, for n ∈ [20, 100] with an

interval of 20, where n labels the bosonic excitation b†n in (5.27). The cutoff on the
size of the matrices A(n) and B(n) is set equal to 10n.

Therefore, we claim that the complexity between the bosonic ground state |GNB 〉 and the
coherent state |α, n〉 generated from it by using the Schatten p = 1 norm is

Cp=1(|GNB 〉 , Un(α) |GNB 〉) = 4
√
n|α| (5.58)

where we have taken into account the two diagonal blocks and an overall factor 1/2 in (2.62).
Comparing to the result (5.37) obtained in terms of bosonic gates, we see that the fermionic
complexity has an extra dependence on the excitation mode n.

Result with p = 2 norm The Schatten p = 2 norm, as aforementioned, endows the complexity
with the meaning of geodesic length on the gates’ manifold. In Figure 5.3, we plot the complexity
similar to the previous case with different number of excitations n. We see here that the com-
plexity is still increasing but not at all in a linear manner. The rate of the increase in each curve
decreases with |α|, consistently with the monotonicity of the p−norms.
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Figure 5.3: Complexity Cp=2 increases when |α| increases for n ∈ [2, 10] with an
interval of 2, where n labels the bosonic excitation b†n in (5.27). The length of the
matrices A(n) and B(n) is cut to be twenty times of the bosonic excitation n for the
plot.
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Finally the complexity with the p = 2 norm is bounded by p = 1 norm result

C(|GNB 〉 → Un(α) |GNB 〉) = Cp=2(|GNB 〉 → Un(α) |GNB 〉) ≤ 4
√
n|α|. (5.59)

5.3.3 Complexity for Bosonic Coherent States with Shifts in More Modes

As has been considered in Section 5.2, one can also extend the result (5.58) to shifts in more modes
in terms of fermionic gates, i.e., , the complexity between |GNB 〉 and Un1(α1) · · ·Unk(αk) |GNB 〉. Like
for the single mode shift, the complexity would be independent of which bosonic ground state we
are considering. Thus for simplicity as in the last section, one should focus on the case that |GNB 〉
is chosen to be the fermionic vacuum |0〉. The procedure is quite similar, first we have to obtain
the transformation between the old and new basis in the following way,

ĉl = U †nk(αk)U †nk−1(αk−1) · · ·U †n1(α1)clUn1(α1)Un2(α2) · · ·Unk(αk)

=
∑

j,m,...,i,q

R
(k)
lj (αk, nk)R

(k−1)
jm (αk−1, nk−1) · · ·R(1)

iq (α1, n1)cq (5.60)

where
U †nk(αk)clUnk(αk) =

∑
j

R
(k)
lj (αk, nk)cj , (5.61)

and the entries of R(k)(αk, nk) can be read out from (5.47) and (5.48). Since U †nk(αk)s are all
commuting among themselves, R(k)(αk, nk)s forming a matrix representation are totally commut-
ing as a result. In general, the arguments αk are complex numbers αk = |αk|eiθk ; one overall
phase can be reabsorbed with a redefinition of cj and c̃j as in (5.53). The numerical results we
obtained for the two-mode shifts show that the complexity is in fact independent of both phases.
We conjecture that this is true in general, although we cannot give a proof.

Result with p = 1 norm Applying the method in the last Section 5.3.2 for two-mode shifts
Un1(α1) and Un2(α2), one could obtain the complexity Cp=1 plotted as in Figure 5.4a where n1

and n2 are taken to be n1 = 10 and n2 = 17. From the plot, we can see that for the |α2| = 0
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Figure 5.4: Complexity for two-mode shifts with n1 = 10, n2 = 17. The cutoff is
chosen to be N = 200 for the two-mode shift covariance matrice, which is similar to
one of the diagonal blocks in (5.55).

curve, the complexity is a linear function of |α1| with a proportionality constant being 4√n1.
While for the other |α2| 6= 0 curves, we see that as |α1| becomes dominant they asymptotes to be
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linear in |α1| again with the same slope as for the curve |α2| = 0. Therefore, from the shape of
the curves, we could deduce that the complexity for two-mode shift is

Cp=1(|GNB 〉 , Un1(α1)Un2(α2) |GNB 〉) = 4
√
n1|α1|2 + n2|α2|2, (5.62)

which fits nicely with the results and reduces to (5.58) when |α2| = 0. It is reasonable to suppose
that the result will generalize to multi-mode shifts as follows:

Cp=1(|GNB 〉 , Un1(α1)Un2(α2) · · ·Unk(αk) |GNB 〉) = 4

√√√√ k∑
i=1

ni|αi|2 . (5.63)

Result with p = 2 norm We plot the complexity Cp=2 with the same setup in Figure 5.4b. As
in Figure 5.4a, the complexity increases as either α1 or α2 increases, and all the curves converge
to a certain curve as |α1|√

n1
becomes much larger than |α2|√

n2
, which is expected since then the effect

of the first shifting mode becomes dominant.
Finally, the upper bound for the complexity with Schatten p = 2 norm is given by

Cp=2(|GNB 〉 , Un1(α1)Un2(α2) |GNB 〉) ≤ 4
√
n1|α1|2 + n2|α2|2 , (5.64)

and similarly for the general case.

5.4 A class of Fermionic and Bosonic Bi-Gaussian States

In the previous sections, we have shown that the bosonic coherent states of the type in (5.38)
are fermionic gaussian states and we have also seen how to obtain the corresponding complexity
by using Fubini-Study method and Nielsen method in terms of bosonic gates and fermionic gates
respectively. However the bosonic coherent states are only a subset of all the fermionic gaussian
state, whereas a state that is fermionic gaussian is not generically also bosonic gaussian.

In this section we show that there is a large class of states that are simultaneously bosonic
and fermionic gaussian. This allows us to study the effect that different choices of gates have on
the complexity of a given state, since in the fermionic description we allow gates that are fermion
bilinears, whereas in the bosonic description we use gates that are bosonic bilinears. Notice that
neither set of gates is a subset of the other, so we cannot establish a priori a bound between the
two complexities.

5.4.1 A Bosonisation Identity

Starting with the fundamental bosonisation formula (5.13), it is possible to obtain the following
relation [200]:

:iψ†(x)∂xψ(x):= 2π2

L2 (N̂ + N̂2) + π

L
∂xφ(x) + 1

2 :(∂xφ(x))2: +2π
L
N̂∂xφ(x) + i

2∂
2
xφ(x) . (5.65)

Taking the integral over space of this relation, we obtain on the two sides the fermionic and bosonic
hamiltonian respectively, which is the basic property of the bosonisation formalism. Formula
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(5.65) shows that the equality holds at the level of the hamiltonian density, up to total derivative
terms which, crucially for our purposes, are linear in the boson field, hence fermion bilinears, if we
work on a subspace of fixed particle number. For definiteness we can consider the case N̂ = 0, i.e.,
, the module with fermion number zero. Therefore if we consider the inhomogeneous hamiltonian
Hf =

∫
dxf(x) :iψ†(x)∂xψ(x):, dependent on an arbitrary function f(x), the corresponding

ground state will be fermionic gaussian, and also bosonic gaussian.
It is unlikely that further identities of this type exist, therefore we conjecture that the states

obtained this way are the only ones that are gaussian in both descriptions. If we write down the
same relation in Fourier components, taking

f(x) =
∑
k

fke
i 2πkx
L (5.66)

and integrating each term of (5.65) multiplied by f(x) over the whole space [−L/2, L/2] gives

∫ L/2

−L/2

dx

2πf(x)∂xφ(x) = −i
∑
n>0

√
n(fnb†n − f−nbn), (5.67)

∫ L/2

−L/2

dx

2πf(x) :(∂xφ(x))2:= −2π
L

∑
m,n>0

√
mn(fm+nb

†
mb
†
n + f−m−nbmbn − 2fn−mb†nbm), (5.68)

∫ L/2

−L/2

dx

2πf(x)(i∂2
xφ(x)) = 2πi

L

∑
n>0

n3/2(fnb†n + f−nbn), (5.69)

∫ L/2

−L/2

dx

2πf(x) :iψ†(x)∂xψ(x):= 2π
L

∑
l,k

kfl−k :c†l ck:=
2π
L

∑
l,k

k :c†k+lck: fl, (5.70)

putting all terms together we have the following relation

∑
l

l :c†l cl: f0 +
∑
n6=0,l

(
l + n− 2N̂ − 1

2

)
c†l+nclfn

= 1
2(N̂ + N̂2)f0 −

1
2
∑

m,n>0

√
mn(fm+nb

†
mb
†
n + f−m−nbmbn − 2fn−mb†nbm) . (5.71)

Once again we see that identifying the coefficient of f0, we obtain the usual identity for fermionic
and bosonic Hamiltonians

∑
k

k :c†kck:=
∑
m>0

mb†mbm + 1
2(N̂ + N̂2). (5.72)

5.4.2 An Example with One Mode

We consider now one particular example of states in this family, corresponding to a function that
has only Fourier modes n = ±2. The operator identity for f2 which can be read from eq. (5.71)
is ∑

l

(
l + 1− 2N̂

2

)
c†l+2cl = −1

2b
†
1b
†
1 +

∑
m>0

√
(m+ 2)mb†m+2bm, (5.73)

and for f−2 we have the hermitian conjugate of the above. The two identities will help build
the following unitary operator Wf (β) = Wb(β), given in terms of fermionic modes and bosonic
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modes, respectively, as

Wf (β) = exp
(∑

l

(
l + 1− 2N̂

2

)
(βc†l+2cl − β

∗c†l cl+2)
)
, (5.74)

Wb(β) = exp
(
−β2 b

†
1b
†
1 + β∗

2 b1b1 +
∑
m>0

√
m(m+ 2) (βb†m+2bm − β

∗b†mbm+2)
)
. (5.75)

We will assume β ∈ R and focus on the sector N̂ = 0 in the following part with the reference
state being the fermionic vacuum |0〉. The adjoint action of these operators on the modes cannot
be obtained in an analytically closed form as in (5.47), (5.48). We must resort to a fully numerical
computation. We put a cutoff on the number of modes, find the matrices representing 1

β lnWf

and 1
β lnWb, respectively Rf and Rb, and compute the exponential of those two matrices, which

give the change of basis ξ̃fi = (eβRf )ijξfj and ξ̃bi = (eβRb)ijξbj . The relative covariance matrix is
then computed as in (2.58),(2.63), and the eigenvalues are found numerically. There is one case
when we can find an exact result: the bosonic covariance ∆b has the form ∆b(β) = eβRbeβR

T
b ,

and

Rb =
(
Ab Sb

Sb Ab

)
∼
(
Ab + Sb 0

0 Ab − Sb

)
(5.76)

where Ab is antisymmetric and Sb is symmetric, which is consistent with the fact that ∆b ∈
Sp(2N). Equation (5.76) means that ln ∆b can always be block diagonalized as

ln ∆b(β) =

ln
(
eβ(Ab+Sb)eβ(Sb−Ab)

)
0

0 ln
(
eβ(Ab−Sb)eβ(−Ab−Sb)

) . (5.77)

We notice that if one of the two blocks is positive definite, the other would be negative definite,
due to the fact that the eigenvalues of ∆b always come in pairs e±r (this is because ∆b is symplectic
and orthogonal). In this case one can show that the antisymmetric part does not contribute to
the complexity; then it is easy to see that, setting Ab = 0 in (5.77), the complexity Cp=1 can be
computed exactly and is linear in the trace of the symmetric part Sb. However we do not have a
criterion to determine when the blocks will be postive definite.

Result with p = 1 norm The results are shown in Figure 5.5. The behavior appears to be very
different for bosons and fermions. The bosonic complexity (see Figure 5.5a) grows linearly without
bound; this linear growth can be explained, as discussed above, by the positive-definiteness of
the blocks of the covariance matrix. On comparison, the fermionic complexity is oscillating (see
Figure 5.5b) in a way that suggests a quasi-periodic function. The maximum complexity of the
first peak seems to grow linearly w.r.t. the logarithm of the cutoff ln(N) as in Figure 5.6a, this
is consistent with the fact that the orthogonal group SO(2N) becomes non-compact as N →∞.
For bosons, on the other hand, this particular class of states has a complexity that is independent
of the cutoff, even though the transformation at finite β mixes all the modes among themselves
and not just a finite number of them.
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Figure 5.5: The complexity for bosonic and fermionic gaussian states with p = 1
and p = 2 norms. (a) and (c) represent the bosonic case while (b) and (d) represent
the fermionic case. The cutoff is chosen to be N = 40.

Result with p = 2 norm The complexities for gaussian states complexity with p = 2 norm
are plotted in Figure 5.5c for the bosonic case and in Figure 5.5d for fermionic one. The trends
appear to be similar as the p = 1 case, except that the values of the complexity are smaller.
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Figure 5.6: The maximum complexity for the fermionic case grows w.r.t. the log-
arithm of the cutoff, linearly for the p = 1 norm and quasi-linearly for the p = 2
norm.
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5.4.3 An Example with Two Modes

We consider next a function f(x) with two modes; the simplest case would be to use the operator
identities for f±2 and f±3. In this case, the unitary operator for fermions

Wf (β, γ) = exp
[∑

l

(
l + 1− 2N̂

2

)
(βc†l+2cl − β

∗c†l cl+2)

+
∑
l

(
l + 1− N̂

)
(γc†l+3cl − γ

∗c†l cl+3)
]
, (5.78)

and for bosons

Wb(β, γ) = exp
[
− β

2 b
†
1b
†
1 + β∗

2 b1b1 +
∑
m>0

√
m(m+ 2) (βb†m+2bm − β

∗b†mbm+2)

−
√

2γb†1b
†
2 +
√

2γ∗b1b2 +
∑
m>0

√
m(m+ 3) (γb†m+3bm − γ

∗b†mbm+3)
]
, (5.79)

depend on two parameters, β and γ, coupling to the n = 2 and n = 3 mode respectively. For
simplicity, we consider the case where β and γ are real and proportional to each other as γ = mβ.
In Figure 5.7, we plotted the complexity for both the bosonic state (Figure 5.7a and 5.7c) and the
fermionic state (Figure 5.7b and 5.7d) as a function of β and for various values of m. We notice
that in the bosonic case, the mixing of the modes does not have a dramatic effect (although the
curves are no longer exactly linear), while for fermions the quasi-periodic behavior is destroyed.
Again we observe that the qualitative features are the same using the p = 1 and the p = 2 norm.

5.5 Conclusion

In this chapter, we made a first step to consider the relations between fermionic and bosonic field
theory complexity. We investigate such relations in the 2D free boson/free fermion model, where a
highly nonlinear exact relation between the scalar field and the fermion field is present, encoded in
eq. (5.13) that expresses the fermion field as the vertex operator of the scalar field. In this setup,
the fermonic Fock space can be decomposed into modules according to their fermionic number
(see eq. (5.18)), and each module can be identified with the bosonic Hilbert space. Moreover,
the space of quadratic operators in one description is mapped to a space of non-quadratic ones
in the other, and this allows us to study how the choice of the set of allowed gates influences the
complexity of an operator.

In the current framework of calculable field theory complexity, not all the states can be treated
on equal footing. We identified two classes of states that can be considered from both sides. The
first type is bosonic-coherent and fermionic-gaussian, a direct consequence of eq. (5.12) where
a single bosonic operator is a sum of bilinears of fermionic ones. We applied the Fubini-Study
metric method on the bosonic side, with the analytical results given in (5.37) for a single mode
shift and in (5.43) a generalization to multi-mode shift. The general multi-mode result shows
that different modes are orthogonal in the FS metric which is a flat Euclidean metric. On the
fermionic side, we applied instead the Nielsen method developed in [66], with numerical result
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Figure 5.7: The complexity for bosonic and fermionic gaussian states with p = 1
and p = 2 norms. (a) and (c) represent the bosonic case while (b) and (d) represent
the fermionic case. The cutoff is chosen to be N = 24 and the ratio varies from 0 to
1 with an interval of 0.25.

plotted in Figure 5.2, 5.4a for Schatten p = 1 norm, and Figure 5.3, 5.4b for p = 2 norm. Based
on those numerics, an analytical result for multimode shift with p = 1 norm is obtained in eq.
(5.63), which differ from the bosonic result (5.43) by an extra dependence on the mode number.
This means that if we assign a mode-number dependent cost in the bosonic case, the two results
would be equivalent up to a total factor. This result is a bit surprising, since it is for the p = 2
norm that we can interpret the complexity in terms of Riemannian geometry, so we should expect
that the FS metric would compare more directly to that case. The p = 1 norm gives the space the
structure of a Finsler manifold. It would be interesting to understand better the structure of this
geometry; this could also shed some light on the relation between bosonic states and fermionic
states holographically, since bosonic coherent states in the bulk constitute a sector of states that
can be explcitly described both in the bulk and in the boundary (see the recent work [202]).

The second class of states is identified through the relation (5.65) which is a local (in space)
relation between bosonic bilinears and fermionic ones, thus relating the gaussian states on both
sides. These states can be understood as the ground states for an inhomogeneous Hamiltonian,
obtained integrating (5.65) with an arbitrary function f(x), that has the interpretation of a space-
dependent Fermi velocity. We obtain a one-function family of bigaussian states, out of which we
studied some of the simplest cases using Nielsen method. For the case of a function with the only
Fourier component f±2 = α, the numerical results for bosons and fermions are plotted in Figure
5.5, which show qualitatively the same behavior using the p = 1 and p = 2 norm. The most
notable features are: the bosonic complexity grows linearly with α, and is independent of the UV
cutoff, while the fermionic complexity is roughly periodic in α, reaching peaks with value scaling
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like lnN in the cutoff. This shows that the states are special in some sense, since a generic point
in the group manifold SO(2N) would be at a distance ∼

√
N from the identity (at least in the

p = 2 norm). We also considered the next simplest two-mode case, with components f2 and f3.
The results, plotted in Figure 5.7, show that the effect of the mixing of the modes is small on
the bosonic complexity, but more dramatic one on the fermionic one. It would be interesting to
understand what is the behavior for a generic function f .

Incidentally, it would be also interesting to know whether these bi-Gaussian states have ap-
plictions in situations of physical interest (e.g., in problems of electron transport in 1D [203]).

A natural extension of our work would be to consider the interacting model, namely the
massless Thirring fermion model [204] that is dual to a free compact boson. In this case one
can hope that the free theory on one side will give insight into the complexity of an interacting
theory. The massive Thirring model is dual to a sin-Gordon model, it would be interesting to see
if this case could be analyzed using integrability techniques.
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Chapter 6

Berry Curvature as A Probe of Bulk
Curvature

This Chapter is based on the work [21].

The rapid growth in the study of the interdisciplinary domain between the quantum infor-
mation and the quantum gravity has initiated vast room in exploring the gauge-gravity dual in
various manners. The fundamental spirit laid by Ryu and Takayanagi [11] is that the bulk space-
time is emerged from the quantum field theory living on the bounday. An intuition one can think
of comes from the tensor network construction, where the bulk geometry is built via a coarse
graining process from the boundary [152]. In a way, it tells us that the quantum information
can indeed be encoded through some bulk geometric quantities, such as the bulk codimensional-
two surface to encode the entanglement entropy of the subregion it anchors at, and the bulk
codimensional-one volume to encode the quantum complexity of the boundary states as has been
shown in Chapter 3. In this chapter, we are trying to argue that another quantity, which is so
natural but yet not understood holographically, called the Riemann curvature, will be able to
encode the Berry curvature of the boundary modular Hilbert spaces. This further strengthens
the subregion duality in the entanglement wedge and offers a new probe of the duality.

6.1 Entanglement as a Connection

Subregion duality has taught us that the physics in a bulk entanglement wedge, i.e. its geometry,
quantum state and dynamics of local quantum fields, can be recovered from the state ρ and
operator algebra A(O) of its dual CFT subregion [85, 86, 205, 206]. The cornerstone of this
important insight was the duality between the bulk modular flow and boundary modular flow
induced by the modular Hamiltonians on both sides [82,207,208] within the code subspace [205]

HCFT
mod = A

4GN
+Hbulk

mod , (6.1)

with the modular Hamiltonians defined as the logarithm of the reduced density matrix of the
subregion Hmod = − log ρ and A the area operator of the HRRT surface [11, 84] bounding the
entanglement wedge.

In this chapter, we utilize relation (6.1) to make precise how boundary entanglement “builds”

93
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the bulk spacetime [209, 210] by sewing together entanglement wedges to produce its global
geometry. In ordinary differential geometry, spacetime is constructed by consistently gluing small
patches of Minkowski space, which are the local tangent spaces of a base manifold. Central to
this task is the spacetime connection that relates the Lorentz frames of nearby tangent spaces and
endows spacetime with its curvature. Adopting this spirit, we explain how holographic spacetimes
are assembled by the set of entanglement wedges by means of a geometric connection, which we
propose is determined microscopically by the entanglement structure of the dual CFT state. The
curvature of this entanglement connection reflects the bulk curvature in a way we make precise
in Section 6.3.

Our central idea is to treat entanglement as a quantum notion of connection between sub-
systems [211]. All correlation functions within a CFT subregion A, endowed with the modular
Hamiltonian HA

mod are invariant under the unitary evolution generated by modular zero-modes
QAi commutes with the modular Hamiltonian[

QAi , Hmod,A
]

= 0 , (6.2)

where i marks a basis of the zero-mode subalgebra. For a physicist with access only to A, these
symmetries of her local state translate to the freedoms of choosing her overall zero-mode frame.
On the other hand, entanglement in the global CFT state renders the relative zero-mode frame
of different modular Hamiltonians physical, establishing a map between the algebras localized in
different subregions, as we explain in Section 6.2.1. Our proposal is to think of this zero mode
ambiguity of subregions as a gauge symmetry in the space of modular Hamiltonians. The relative
modular frame is then encoded in the connection between the relevant bundles —the modular
Berry connection [212] which we define for arbitrary states in Section 6.2.2.

The bulk meaning of this zero-mode ambiguity of CFT subregions follows from relation (6.1).
At leading order in GN, bulk modular zero modes consist of large diffeomorphisms that do not
vanish at the HRRT surface. These are the gravitational edge modes [213] or asymptotic symme-
tries [214, 215] of the extremal surface and, as we show in Section 6.3.1, they consist of internal
diffeomorphisms and local boost transformations on the 2D plane normal to the HRRT surface.
While the edge-mode frame for every given wedge can be chosen at will, the bulk spacetime allows
us to compare frames of different wedges. When the extrinsic curvature of the HRRT surface is
small compared to the Riemann curvature of the bulk spacetime, the bulk modular connection
becomes the relative embedding of the local coordinate systems located around the surfaces, which
is a central result in equations (6.44)−(6.46) of this chapter. The curvature of the modular Berry
connection includes the bulk Riemann tensor as one of its components, as we demonstrate in
detail in Section 6.3.2 and 6.3.3.

The gravitational connection of Section 6.3 and the CFT connection of Section 6.2 encode the
relations of modular Hamiltonians on the two sides of AdS/CFT and are constructed by identical
sets of rules. By virtue of (6.1) we, therefore, propose in Section 6.4 that the two different kinds
of connections are related by the holographic duality. This provides a direct holographic link
between the bulk curvature and the Berry curvature for the modular Hamiltonians of the CFT
state. We conclude with a discussion of some conceptual and technical applications of the tools
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developed in this work.

6.2 Modular Berry Connection

6.2.1 A toy example

The central idea underlying this work is that entanglement plays the role of a connection for
subsystems of a quantum state [211]. In close analogy to the ordinary geometric connection of
General Relativity which relates the Lorentz frames of nearby tangent spaces, the structure of
entanglement defines the relation between the Hilbert space bases of different subsystems.

The simplest illustration of this idea involves a system of two qubits A and B in a maximally
entangled state1:

|ψ〉AB =
∑
ij

Wij |i〉A|j〉B. (6.3)

The reduced density matrix of each qubit is maximally mixed. Both ρA and ρB are invariant
under unitary transformations on the respective Hilbert space, which translates to a symmetry
of expectation values for operators localized in A or B:

〈σiA〉 = 〈U †Aσ
i
AUA〉,

〈σiB〉 = 〈U †Bσ
i
BUB〉. (6.4)

Here UA, UB ∈ SU(2) and σiA,B (i = x, y, z) are the Pauli operators that generate the algebra of
observables for the corresponding qubit. Each qubit is, therefore, endowed with a ‘local’ SU(2)
symmetry; in the absence of any external system of reference, the choice of the local unitary
frame for A or B is simply a matter of convention.

Due to the entanglement of the two qubits in (6.3), however, expectation values of σiAσ
j
B are

not invariant under independent unitary rotations UA and UB. This reflects the fact that the
global state fixes the relative unitary frame of the subsystems. More precisely, |ψ〉AB defines an
anti-linear map between the two Hilbert spaces2

|i〉A → |̃i〉B = A〈i|ψ〉AB =
∑
j

Wij |j〉B , (6.5)

that can also be expressed as an anti-linear map between the operators on the two Hilbert spaces

σA|i〉A → σ̃B |̃i〉B =A〈i|σ†A|ψ〉AB , ∀|i〉A
⇒ σ̃B,ij = Wki σ

∗
A,klW

−1
jl . (6.6)

The operators σ̃B are a simple example of the mirror operators of σA as discussed in [217], with
|ψ〉AB a cyclic and separating vector for the algebra of operators acting on subsystem A.

It follows from definition (6.5) that the map between the two Hilbert spaces transforms under

1The maximal entanglement can be seen from tracing out the degrees of freedom for instance in B, then
ρA =

∑
i,j,k,l

WijW
∗
lkδjl |i〉A 〈k| =

∑
ik
|i〉A 〈k|, where we have used that the W is unitary.

2Curious readers could refer to [216] for more details on how the anti-linear mapping works.
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Figure 6.1: A holographic representation of eqs. (6.3)-(6.7): the global state Wij

of a bipartite holographic CFT is prepared by a tensor network that fills a spatial
slice of the bulk spacetime (orange). The division of the CFT is illustrated with a
red line that cuts through the bulk. The panels show two general examples of ‘gauge
transformations’ of ‘Wilson line’ W . The focus of this chapter will be on those gauge
transformations, which localize on HRRT surfaces.

the action of a local SU(2) symmetry on each qubit as:

Wij → U †A, ikWkl UB, lj . (6.7)

By virtue of (6.5), (6.6) and (6.7), the matrix Wij can be interpreted as an open Wilson line
between the Hilbert spaces of the two qubits, with a form dictated by the pattern of entanglement.
From a heuristic ER=EPR viewpoint, Wij can be thought of as the gravitational Wilson line
threading the quantum wormhole connecting the qubits [210].

Our main interest is in applying these observations to holographic duality; see Figure 6.1. If
we divide a holographic CFT into two subregions A and B, a global pure state can likewise be
represented as a matrix Wij that is analogous to (6.3). We can think of this matrix as being
prepared by a tensor network that fills a spatial slice of the bulk spacetime. Under changes of
bases in A and in B, the matrix also transforms as in (6.7), i.e. as a Wilson line. What are the
corresponding Wilson loops? Are they non-trivial and what feature of the bulk spacetime do they
probe? We will answer these questions in the following part of this chapter. One highlight is that
the holonomies of the entanglement connection probe the curvature of the dual spacetime. We
interpret this as an indication that the pattern of entanglement of subsystems and the pattern of
physical Wilson line dressing in gauge theories ought to be considered on equal footing.

The remainder of this section is devoted to formulating the quantum notion of connection
when the subsystems of interest are subregions of a CFT, in arbitrary states. As in all geometric
problems that involve a connection, the correct mathematical formalism here is that of fiber
bundles. A reminder of the relevant concepts from differential geometry, as well as a description
of the fiber bundle at hand, is given in Figure 6.2.
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Figure 6.2: The fiber bundle structure of the modular connection. The base com-
prises different modular Hamiltonians and the fibers are modular zero mode frames.

6.2.2 Gauging the modular zero modes

Every subregion A of a CFT selects an algebra of operators AA that is localized in it, and a
modular Hamiltonian Hmod which encodes the reduced state in A via Hmod = − log ρA. Strictly
speaking, density matrices are not well-defined objects in quantum field theory and become
meaningful only in the presence of a UV cutoff. In contrast, the sum of the modular Hamiltonians
of AA and its commutant AĀ is well-defined in the continuum and any rigorous construction
should directly refer these two-sided operators.

We emphasize that our discussion is inherently two-sided. In order to postpone a few minor
subtleties for conceptual clarity, however, we choose to phrase our initial presentation in terms
of single-sided Hmods and comment on its two-sided version in subsection 6.2.3.

Modular zero modes as local symmetries. Hermitian operators QAi obeying[
QAi , Hmod,A

]
= 0 , (6.8)

are called modular zero modes. The unitary flow generated by Qi defines an automorphism of
AA that is a symmetry of subregion A: The transformation

O → U †Q(si)OUQ(si) ∀O ∈ AA , (6.9)
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Figure 6.3: A closed trajectory in the space of CFT regions. To avoid clutter and to
clarify the holographic application, here we display the family of corresponding RT
surfaces in the bulk of AdS.

where UQ = e−i
∑

i
Qisi , maps the algebra into itself while preserving the expectation values of

all of its elements in the given state. As a result, physical data localized in a subregion carry no
information about its overall zero mode frame. This local ambiguity is, of course, irrelevant for
all measurements or computations restricted to A. It is a gauge freedom, which spans the vertical
(fiber) directions of our bundle.

A useful way of describing the zero-mode ambiguity is by switching to a ‘Schrödinger pic-
ture.’ The modular Hamiltonian is a Hermitian operator on the CFT Hilbert space, so it can be
decomposed as

Hmod = U †∆U, (6.10)

where a diagonal matrix ∆ encodes the spectrum and a unitary U selects the basis of eigenvectors.
Transformations generated by Qi preserve the form of Hmod and, as a result, the basis U in (6.10)
is only determined up to a gauge transformation consisting of right multiplication by UQ:3

U → U ′ = UUQ. (6.11)

Modular Berry connection as the relative zero-mode frame. Consider now a contin-
uous family of connected CFT subregions parametrized by λ and their modular Hamiltonians
Hmod(λ). (See Figure 6.3.) The relations between these modular Hamiltonians can be conve-
niently expressed in terms of two families of operators: One describing the change of spectrum

3In other words, there is an equivalence class of CFT bases defined by U ∼ UUQ, in which Hmod has identical
matrix elements.
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and another the precession of the basis as we vary λ. In particular, using decomposition (6.10),
the λ-derivative of Hmod(λ) is organized as

Ḣmod = [U̇ †U,Hmod] + U †∆̇U, (6.12)

where ˙ ≡ ∂λ and we have suppressed the λ-dependence of all operators for clarity. This shape-
derivative derivative of Hmod may cause some discomfort to the careful reader, since the density
matrices of different subregions formally live in different Hilbert spaces. For an infinitesimal
transformation of the region’s boundary, however, this computation is in fact under control, as
was shown in [218]. The trick is to think of the shape deformation as sourcing a stress-tensor
insertion at the subregion’s boundary. The calculation requires a delicate treatment of the cutoff
but it yields sensible results both in the CFT [218] and holographically [219]. In case this comment
does not alleviate the reader’s distress, we emphasize again that the discussion can be entirely
expressed in terms of the full modular operators Hmod(λ) + Hmod(λc), with λc the complement
of region λ, which are well-defined operators on the full CFT Hilbert space, and refer them to
subsection 6.2.3 for a detailed comment.

The second term on the right hand side of (6.12) encodes the change in the spectrum of Hmod

and, since [U †∆̇U,Hmod] = 0, it belongs to the local algebra of modular zero modes. We can
isolate this spectrum changing piece by introducing a projector P λ0 onto the zero-mode sector of
Hmod(λ). The latter can formally be constructed in terms of modular flow4

P λ0 [V ] ≡ lim
Λ→∞

1
2Λ

∫ Λ

−Λ
ds eiHmod(λ)s V e−iHmod(λ)s , (6.13)

or in a Hilbert space representation simply as:

P λ0 [V ] ≡
∑

E,qa,q′a

|E, qa〉〈E, qa|V |E, q′a〉〈E, q′a|, (6.14)

where |E, qa〉 are simultaneous eigenstates of Hmod(λ) and a commuting set of zero modes Qa,
with eigenvalues E and qa respectively. For systems with finite-dimensional Hilbert spaces, the
zero-mode projector takes another useful form. Hermitian operators on a Hilbert space H with
dim(H) = D form a vector space and {I, Ti}, where Ti the SU(D) generators, form a complete
basis which is orthonormal with respect to the Frobenius inner product (Ti|Tj) = 1

DTr [TiTj ] = δij .
One can, therefore, find an orthonormal basis of modular zero modes {Qi}, [Qi, Hmod] = 0 and
(Qi|Qj) = δij and define the projector:

P0[V ] =
∑
i

(Qi|V )Qi =
∑
i

1
D
Tr[QiV ]Qi. (6.15)

An application of P λ0 on both sides of eq. (6.12) then equates the spectrum changing operator

4This formula should be taken with a grain of salt since there can be Hermitian eigen-operators of the modular
Hamiltonian [Hmod, V ] = κV which necessarily have imaginary eigenvalues, leading to exponential contributions
to the integral (6.13).
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to the zero mode component of Ḣmod:

U †∆̇U = P λ0 [Ḣmod(λ)]. (6.16)

The operator U̇ †(λ)U(λ) in (6.12), in turn, encodes the change of basis accompanying an infinites-
imal shape variation of the region. Combining eq. (6.12) and (6.16) the relative basis operator is
defined as the solution to equation:

Ḣmod − P λ0 [Ḣmod] = [U̇ †U,Hmod(λ)]. (6.17)

As is apparent, (6.17) fixes U̇ †(λ)U(λ) only up to addition of zero modes. This ambiguous zero
mode component is precisely the information we seek and it leads us to introduce the modular
Berry connection:

Definition 1 Consider the space of CFT subregions K, parametrized by a set of coordinates λi.5

The modular Berry connection is a 1-form in K that encodes the relative zero mode frame
of infinitesimally separated modular Hamiltonians Hmod(λi) and Hmod(λi+ δλi) and is given by:

Γ(λi, δλi) = P λ0 [∂λiU †U ] δλi, (6.18)

where P λ0 is the projector onto the zero-mode sector of Hmod(λi) given by (6.13) or (6.14). Under
a λ-dependent gauge transformation (6.11), the connection (6.18) transforms as:

U(λ)→ U ′(λ) = U(λ)UQ(λ) ⇒ Γ→ Γ′ = U †Q ΓUQ − U †Q∂λiUQ δλ
i . (6.19)

For the readers who may find expression (6.18) for the Berry connection unfamiliar or confusing,
in Appendix C.1 we include a short illustration of how (6.18) reduces to the standard Berry
connection [220,221] when applied to a family of pure states.

Modular parallel transport and holonomies. Granted a connection on a bundle, we can
define a covariant derivative

D
(r)
λ = ∂λ + Γ(r), (6.20)

where Γ(r) is an appropriate representation of connection (6.18). This covariant derivative gen-
erates parallel transport. Any charged object, parallel transported along a closed loop C, returns
to its starting point transformed by the holonomy of C.

Consider now a continuous 1-parameter family of modular Hamiltonians of a QFT state,
Hmod(λ), λ ∈ [0, 1], which forms a closed loop Hmod(0) = Hmod(1). The operator U(λ) from
eq. (6.10), which encodes the local choice of basis in every subregion, is charged under the zero
modes with transformation rule (6.11). Therefore, we can compute the modular Berry holonomy
of our closed loop by solving the transport problem for U .

Parallel transport of U(λ0) assigns a basis Ũ(λ) to the modular Hamiltonians Hmod(λ) for all
5The index i here can be discrete or continuous. For subregions of quantum field theories in d spacetime

dimensions, which is our main focus in this chapter, λi stands for the shape and location of the subregion’s
boundary.
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λ ∈ [0, 1], with the initial conditon Ũ(λ0) = U(λ0). For an infinitesimal step δλ away from λ0, Ũ
is equal to

Ũ(λ0 + δλ) ≈ U(λ0) + δλDλU(λ0) = U(λ0 + δλ) + U(λ0)P λ0
0 [U̇ †U ]δλ. (6.21)

Multiplying both sides of (6.21) with Ũ †(λ0) from the left, we observe that the operator Vδλ =
Ũ † δδλ Ũ that generates the parallel transport of the basis obeys the conditions:

Ḣmod − P λ0 [Ḣmod] = [Vδλ(λ), Hmod],

P λ0 [Vδλ(λ)] = 0. (6.22)

Equations (6.22) define the modular Berry transport. In section 6.2.4, we solve this transport
problem in two tractable examples and compute the modular curvature.

What are the modular zero modes? An important comment is in order. In a typical CFT
state, the only symmetries of the modular Hamiltonian of a subregion are generated byHmod itself
or the zero-modes of any globally conserved charges—or they are phase rotations of individual
modular eigenstates. However, in anticipation of a connection to holography, it is important
to recall that the equivalence of the bulk and boundary modular operators (6.1) proposed by
JLMS [82] holds within a code subspace

PcodeHmodPcode = A

4GN
+Hbulk , (6.23)

as articulated in the error correction framework of [205]. In connecting our CFT discussion to
the bulk we are, therefore, not interested in exact zero-modes but only in approximate ones,
constructed by the requirement that they commute with the code subspace projection of Hmod

[Qi, PcodeHmodPcode] = 0. (6.24)

We discuss the importance of this point in more detail in Section 6.4.

6.2.3 Comment on two-sided modular Hamiltonians

Having concluded the presentation of our CFT formalism in the language of subregion modular
Hamiltonians, we wish to illustrate that the construction can be phrased directly in terms of
the full modular Hamiltonians of CFT bipartitions, Hfull(λ) ≡ Hmod(λ) +Hmod(λc), with λc the
complement of region λ. This is important because it is Hfull(λ), and not Hmod(λ), that generate
a well-defined unitary flow in continuum quantum field theories.

First note that the zero-modes of the single-sided modular Hamiltonians (6.8) are obviously
a subset of zero-modes of the full modular operator. However, Hfull has a much larger set of
zero-modes Q̃i. These generate unitary transformations on the entire Hilbert space that do
not necessarily factorize to products of unitary operators on the two complementary subregions.
Intuitively, they are transformations that are allowed to change the density matrix ρλ but preserve
ρλ ⊗ ρ−1

λc . The fiber bundle associated to the full modular Hamiltonians has, therefore, a much
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larger gauge group than the one for the single-sided Hmods.
Nevertheless, the modular Berry holonomies associated to a given global state |ψ〉 are identical

for the two problems. The reason is that the Hilbert space vector |ψ〉 “spontaneously breaks” the
symmetry group of Hfull(λ) to the subgroup that preserves the state:

UQ̃i |ψ〉 = |ψ〉. (6.25)

As a result, parallel transport will only generate holonomies valued in the much smaller subgroup
of zero-modes (6.25) which is shared between the two-sided and single-sided modular operators.
The vanishing of the Berry curvature components along the extra zero-mode directions of Hfull

implies that there is a globally consistent gauge in which the relevant projection of the connection
vanishes everywhere and the computation reduces to the one presented in the previous section.

6.2.4 Modular Berry holonomy examples

CFT2 Vacuum

We now put our definition (6.18) to work and explicitly compute the modular curvature in a
tractable, illustrative example: the vacuum of a CFT2 on a circle. This was computed previously
in [212] by exploiting the geometry of the space of CFT intervals, or kinematic space [222, 223].
This subsection establishes the consistency of the general rules proposed here with the results
of [212].

The (two-sided) vacuum modular Hamiltonian of an interval is an element of the conformal
algebra. The global SO(2, 2) symmetry algebra of a CFT2 decomposes to a pair of commuting
SO(2, 1) subalgebras, which act on left-moving and right-moving null coordinates x+ and x−,
respectively. The commutation relations are

[L0, L1] = −L1 , [L0, L−1] = L−1 , [L1, L−1] = 2L0 , (6.26)

and similarly for L̄i.
The modular Hamiltonian of the interval with endpoints at xµL = (a+, a−) and xµR = (b+, b−)

is the generator of the boost transformation that preserves xL and xR and has the form

Hmod = K+ +K−,

where K+ and K− are linear combinations of L−1,0,1 and L̄−1,0,1. Their coefficients are functions
of the endpoint coordinates of the interval; we derive them in Appendix C.2.

In order to compute modular Berry holonomies, we need to solve the parallel transport prob-
lem for the basis of the modular Hamiltonian. For example, given two nearby modular Hamil-
tonians K+(a+, b+) and K+(a+ + da+, b+), we need to find an operator Vδa+ that solves equa-
tions (6.22). Using the explicit form of the modular Hamiltonian (C.7) and the conformal algebra,
we find that

∂a+K+ = 1
2πi [∂a+K+, K+] , (6.27)

so in this case parallel transport is generated by (1/2πi) ∂a+K+. More details of the calculation,
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as well as parallel transport along more general trajectories in the space of CFT intervals, are
given in Appendix C.2.

The modular Berry curvature can now be computed straightforwardly:

R[δa+, δb+] = − 1
2πi

K+
sin2 (b+ − a+) /2

,

R[δa−, δb−] = − 1
2πi

K−
sin2 (b− − a−)/2

. (6.28)

This exercise can also be applied to the computation of holonomies for modular Hamiltonians of
ball-shaped regions in the vacuum of higher dimensional CFTs.

Null deformations and modular inclusions

The solution to the modular Berry transport becomes tractable in another interesting example:
Families of modular Hamiltonians for subregions with null separated boundaries, in a CFTd
vacuum. The origin of the simplification in this case is not conformal symmetry but, more
interestingly, an algebraic QFT theorem for half-sided modular inclusions [224].

Two operator subalgebras A1 and A2 ⊂ A1 are said to form a modular inclusion if modular
evolution by Hmod,1 maps A2 into itself for all positive modular times:

U †mod,1(s)A2Umod,1(s) ⊂ A2, ∀s > 0. (6.29)

The half-sided modular inclusion theorem then states that the modular Hamiltonians of included
algebras satisfy the commutator:

[H2, H1] = 2πi(H2 −H1). (6.30)

In the CFTd vacuum, when two subregions are related by an infinitesimal null deformation
xµe.s. → xµe.s. + uµ(xe.s) their algebras are indeed included and (6.30) directly implies:[

δHmod
δu(x) , H

]
= 2πi δHmod

δu(x) . (6.31)

The null functional derivative of the modular Hamiltonian δHmod
δu(x) is, therefore, an eigen-operator

of H with non-zero eigenvalue 2πi that satisfies (6.22). The parallel transport operator for null
deformations is then:

Vδu = 1
2πi

δHmod
δu(x) . (6.32)
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6.3 Entanglement Wedge Connection

6.3.1 Modular zero modes in the bulk

The link between our CFT discussion and the bulk gravity theory is the JLMS relation [82, 207,
208]. The modular Hamiltonian of a boundary subregion is holographically mapped to

Hmod = A

4GN
+Hbulk

mod (6.33)

where A is the HRRT surface area operator and Hbulk
mod the modular Hamiltonian of the bulk

QFT state in the associated entanglement wedge. This operator equivalence holds within the
subspace of the CFT Hilbert space that corresponds to effective field theory excitations about a
given spacetime background, called the code subspace [205].

An important consequence of (6.33) is that, for all holographic states of interest, Hmod admits
a geometric description in a small neighborhood of the HRRT surface [206,225]. The area operator
in Einstein gravity is identified with the Noether charge for diffeomorphisms ζMmod that asymptote
to a homogenous boost near the RT surface. Moreover, for finite energy bulk states, Hbulk

mod reduces
to its vacuum expression in the same neighborhood, implementing the above boost transformation
on the matter fields. This renders the, generally non-local, Hmod a geometric boost generator at
the edge of the entanglement wedge.

To make our discussion concrete, we partially fix the gauge to be orthonormal to the HRRT
surface

g =
(
ηαβ + wαβ|γ(y)xγ +O(x2)

)
dxα ⊗ dxβ +

(
2σiα|β(y)xβ +O(x2)

)
dxα ⊗ dyi +

+
(
γij(y) +Kij|α(y)xα +O(x2)

)
dyi ⊗ dyj , (6.34)

where yi, i = 2, . . . , d is some choice of coordinates along the minimal surface directions and
xα, α = 0, 1 parametrize distances along two orthogonal transverse directions, with the extremal
surface at xα = 0. The boost generated by the CFT modular Hamiltonian in the gauge (6.34)
reads:

ζαmod
xα∼0→ 2πεαβxβ,

ζimod
xα∼0→ 0. (6.35)

This approximation for the modular flow is valid within a neighborhood with size set by the
normal extrinsic curvature of the HRRT surface x+Kij|+, x

−Kij|− � 1 where x± normal light-
like coordinates [206]. Beyond this regime, modular flow gets modified by generically non-local
contributions. Our entire discussion in this section assumes the validity of approximation (6.35).
We will discuss how the corrections restrict the regime of validity of our results in Section 6.3.3.

Bulk modular zero modes. As is the case for the modular Hamiltonian itself, the zero modes
will generally be non-local operators in the bulk wedge, defined by

[
Qi, H

bulk
mod

]
= 0. Near the

extremal surface, however, due to the geometric action of Hmod a class of zero modes will reduce
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to generators of spacetime transformations:

Q = ζM (yi)∂M +O(x+Kij|+, x
−Kij|−). (6.36)

These need to preserve the location and area of the HRRT surface and commute with the modular
boost (6.35), which translates to the condition

[ζ, ζmod]M = ζN∂Nζ
M
mod − ζNmod∂Nζ

M = 0, (6.37)

where the indice M = 0, 1, . . . , d covers both the transverse directions and tangential directions
to the RT surface. Moreover, we demand that the diffeomorphisms generated by (6.36) are
non-trivial. In a spacetime with no boundary, all spacetime transformations have vanishing
generators, as a result of the constraint equations of gravity. When boundaries exist, however,
diffeomorphisms that act non-trivially on them are endowed with non-vanishing Noether charges.

An entanglement wedge has two boundaries: The standard asymptotic boundary used to
define CFT correlators and the boundary selected by the HRRT surface. Large diffeomorphisms
that do not vanish asymptotically give rise to the boundary conformal group and they are not
relevant for us here. On the other hand, diffeomorphisms that act non-trivially on the HRRT
surface have Noether charge6 [227]

Qζ = − 1
4πGN

∫
RT

d2x
√
γ εαβ∇αζβ , (6.38)

and constitute bulk zero-modes when Qζ 6= 0 and (6.37) is satisfied. The modular boost is, of
course, one of them, with a Noether charge equal to the area of the extremal surface in Planck
units.

The symmetry group selected by the above requirements consists of diffeomorphisms along
the minimal surface directions and location-dependent boosts in its normal plane. In gauge (6.34)
the zero-modes read

ζα
xα∼0−→ ω(y) εαβxβ,

ζi
xα∼0−→ ζi0(y) + 0 · x (6.39)

where in the second line we chose to explicitly emphasize the vanishing transverse derivative of
the i−th component, ∂αζi

∣∣
xα=0 = 0, as demanded by (6.37). It follows that the class of zero

modes ζi∂i map the HRRT surface to itself while preserving its normal frame, a fact that will
play a crucial role in section 6.3.2.

Transformations (6.39) are the gravitational edge modes discussed in [213] and the analogue of
the horizon symmetries of [215] where our RT surface replaces their black hole horizon. As in our
CFT discussion, the vector fields (6.39) generate symmetries of the physics near xα = 0 in a given
wedge and will be treated as local gauge transformations on the space of entanglement wedges.
We should note that, in general, there exist other zero-modes as well, e.g. edge-modes of bulk

6A more clear and thorough analysis on the conserved currents and Noether charges using the Wald-Iyer for-
malism could be found in [226].
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gauge fields, that generate extra components of the modular Berry connection. The gravitational
edge-modes discussed here, however, are universally present in holographic theories and for this
reason we choose to focus our discussion on them.

6.3.2 Relative edge-mode frame as a connection

Consider now two entanglement wedges, λ and λ+ δλ, whose HRRT surfaces are infinitesimally
separated from each other. Each wedge is equipped with a vector field ζMmod(x;λ) generating the
corresponding modular flow near its HRRT surface. Moreover, each wedge comes with its own
arbitrary choice of zero-mode frame, which given (6.39) is simply an internal coordinate system
on the extremal surface and a hyperbolic angle coordinate on its transverse 2D plane. Figure 6.4
below zooms in on a small fragment of four extremal surfaces and displays their zero-mode frames.

The key idea now is that the geometry of the global spacetime enables us to compare the
two zero mode frames. What makes this possible is the existence of diffeomorphisms xM →
xM + ξM (x), which map one extremal surface to the other, allowing us to relate the coordinate
systems in their neighborhoods. Bulk diffeomorphisms, therefore, play the role of the relative
basis operator U̇ †U (6.17) in our CFT discussion.

Mapping the modular boost generators. It is instructive to proceed in parallel with our
CFT construction of Section 6.2.2. The λ-variation of the modular Hamiltonian in the bulk
becomes the difference of the vector fields ζMmod(x;λ) and ζMmod(x;λ + δλ). As in CFT, this can
generally be organized into two contributions as follows

δλζ
M
mod(x;λ) = [ξ(x;λ, δλ), ζmod(x;λ)]M + P λ0 [δλζMmod(x;λ)] , (6.40)

where δλζMmod is the difference between the two modular generators and P0 is the bulk projector
onto zero modes discussed in more detail below (see eq. (6.46)). The vector field ξ(x;λ, δλ) is a
diffeomorphism rotating the basis of the modular Hamiltonian, which in the geometric regime is
simply the local coordinate system. On the other hand, the zero-mode projection describes the
change in the spectrum. Condition (6.40) is the direct bulk analogue of CFT equation (6.17).

Equation (6.40) determines the diffeomorphism ξ up to additive contributions by zero-mode
transformations (6.39). A formal but explicit solution to the general problem can be obtained
as follows. First, we introduce the transverse location δxα = δxα(yi;λ, δλ) of the HRRT surface
λ+δλ relative to λ. Crucially, δxα is determined simply by the deformation δxµ∂B of the boundary
subregion the surface is anchored at. This follows from equation

δδxKα = −ηαβγij∇i∇jδxβ + γijRi(αβ)jδx
β −Kα;ijKβ

ijδxβ = 0 , (6.41)

where Kα;ij = Lαgij is the normal extrinsic curvature and Kα = γijKα;ij , which ensures the new
surface at δxα is also extremal, as discussed in detail in [219]. Eq. (6.41) fixes the form of δxα in
terms of its boundary condition δxµ∂B.

Second, we recall that the vector field ζmod generates boosts on the normal 2-D plane of the
HRRT surface. ζmod(λ+ δλ) therefore needs to also have the form (6.35) in normal coordinates
about λ + δλ. To express this requirement, we introduce a pair of normal vectors on the new
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surface nα M (y;λ+ δλ) = δMα + δnα
M (y) +O(δn2), where α = 0, 1 with nα ·nβ = ηαβ.

7 Imposing
both conditions on ξ(x;λ, δλ) then leads to the following solution of eq. (6.40):

ξM (xM ;λ, δλ) =− δMα δxα −
(
δnα

M + ΓMαβ δxβ
)
xα

+ ω(y)δMα εα βx
β + δMi ζi0(y), (6.42)

where ΓMNK are the Christoffel symbols in gauge (6.34). A detailed derivation of ξ(x;λ, δλ) is
given given in Appendix C.3. The expression for the diffeomorphism ξ in an arbitrary gauge can,
of course, be obtained simply by a change of coordinates in (6.42).

The quantities ω(y) and ζi0(y) are arbitrary functions of the minimal surface coordinates
representing the edge-mode ambiguity in ξM . The arbitrariness in ω(y) is precisely our freedom
in selecting a pair of orthonormal vectors nα M among the family of Lorentz equivalent pairs, as
can be seen by the transformation of δna M under a local Lorentz boost on the surface’s transverse
plane

δnβ
α → δnβ

α + ω(y)εβ α. (6.43)

The zero-mode ω can, therefore, be absorbed into the redefinition of δnα M . The undetermined
function ζi0(y), in turn, expresses our freedom to pick the coordinate system on the surface λ+δλ

at will.

Bulk modular connection. The ambiguous edge-mode part in the solution of (6.40) encodes
the relative zero-mode frame of the two entanglement wedges. In order to define the bulk modular
connection we, therefore, need to perform a zero-mode projection of the diffeomorphism ξM ,
mapping between the two coordinate systems at λ and λ+ δλ. In covariant form, the zero-mode
component of the vector field ξ that defines modular connection in the bulk reads8

Γ(λ, δλ) = Ω[ξ]LΩ + Zi[ξ]LZi (6.44)

where LΩ and LZi are the Lie derivatives generating the corresponding asymptotic symmetries
of the HRRT surface (6.39), and

Ω
[
ξ(λ, δλ)

]
= 1

2ε
αβnα

M ∂M
(
nβNξ

N
) ∣∣

RT

= 1
2ε

αβ
(
nαM ∆δλnβ

M + nαM ΓMγKδxγ nβ K
)
, (6.45)

Zi
[
ξ(λ, δλ)

]
= −tiNξN

∣∣
RT

. (6.46)

Here nα M (λ) (α = 0, 1) are two unit normal vectors on the extremal surface λ with nα · nβ = ηαβ

and tiN (i = 2, . . . , d) are the corresponding tangents. We also introduced ∆δλ for the ‘internal’

7There is of course no unique choice. There is a continuous family of normal vectors related by local Lorentz
transformations, which will be important later on.

8It is straightforward to confirm that the definition of the zero-mode projector P [ξ] = −Ω[ξ]εα βxβ∂α − Zi[ξ]∂i
satisfies P ◦ P = P , is itself a zero-mode and it annihilates the vector Lie bracket [ξ, ζmod], as any consistent
projector should.
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covariant derivative associated to the d− 2-dimensional diffeomorphism subgroup

∆δλ = δλ
∂

∂λ
+ Zi[ξ]LZi . (6.47)

It is very important here that the zero-mode LZi preserves the normal frame, as explained around
eq. (6.39), and, therefore, provides a canonical map between normal vectors at different locations
on the same HRRT surface, allowing the construction of the internal covariant derivative (6.47).

Expression (6.45) for the boost component of Γ(λ, δλ) is, by definition, the spin connection
for the normal frame of the HRRT surface. The role of the covariant derivative ∆δλ is to align
the internal coordinates of the nearby minimal surfaces before comparing the normal frames at
the ‘same location’. Thus, the curvature of our modular Berry connection computes the bulk
Riemann curvature when the approximation (6.35) of the modular flow is justified. We explain
this proviso in more detail in the next subsection.

6.3.3 Bulk modular curvature and parallel transport

Equipped with connection (6.44), the bulk modular curvature follows from the standard definition.
It reads:

Rδλ1δλ2 = δδλ1Γ(δλ2)− δδλ2Γ(δλ1) + [Γ(δλ1),Γ(δλ2)]

=
(
∆δλ1Ω(δλ2)−∆δλ2Ω(δλ1)

)
LΩ

+
(
∆δλ1Z

i(δλ2)−∆δλ2Z
i(δλ1)

)
LZi , (6.48)

where ∆δλ is given by expression (6.47). We illustrate the modular curvature in Figure 6.4.
The curvature (6.48) can be decomposed into two contributions: the curvature of the non-

abelian group of surface diffeomorphisms

R
(Z)
δλ1δλ2

= ∆δλ1Z
i(δλ2)−∆δλ2Z

i(δλ1) (6.49)

and the curvature of the abelian subgroup of local transverse boosts generated by LΩ:

R
(Ω)
δλ1δλ2

= ∆δλ1Ω(δλ2)−∆δλ2Ω(δλ1). (6.50)

The appearance of the internal covariant derivative ∆δλ in (6.50) is required by covariance because
the orthogonal boosts are non-trivially fibered over the surface diffeomorphisms.

Relation to the bulk curvature. Expression (6.45) for the modular Berry connection is the
spin connection for the normal frame of the extremal surfaces. This immediately implies that the
LΩ component of the curvature (6.50) directly probes the bulk Riemann curvature.

At this point it is important, however, to recall that in approximation (6.35) of the modular
flow as a boost generator we neglected terms of order O(x+Kij|+, x

−Kij|−) where Kij|α is the
normal extrinsic curvature of the HRRT surface. These, generally non-local, contributions to the
bulk modular Hamiltonian can generate corrections of order O(Kij|αδx

α) to (6.45), which affect
its curvature at orders O(K2, ∂K). Since the modular curvature computed by naïvely employing
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Figure 6.4: Modular Berry curvature in the bulk. The modular zero mode frames
are marked with pairs of arrows that stand for the normal vectors nMα (λ, y) (which
transform under orthogonal boosts); the distances between neighboring pairs reflect
the extremal surface diffeomorphism frame. We parallel transport a zero mode frame
from the bottom surface to the top surface along two different paths (red and blue);
the mismatch between the resulting frames is the modular curvature. The mismatch
between the locations of the red and blue arrows on the top is the surface diffeomor-
phism component of the curvature (6.49) while the mismatch between their directions
is the boost component of the curvature (6.50).

approximation (6.35) at every step is the bulk Riemann curvature, our computation of (6.42) is
under control only when there is a hierarchy between the bulk Riemann curvature and the normal
extrinsic curvature of the HRRT surface

R� K2, ∂K. (6.51)

The curvature of the geometric connection (6.45, 6.46) is an approximation to the modular Berry
connection at leading order in a K2/R, ∂K/R expansion.

Condition (6.51) can be intuitively understood as follows: The geometric approximation to
the bulk modular flow confines us within a distance of order O(1/K) from the extremal surface.
If this distance is also small compared to the Riemann curvature, spacetime looks effectively flat,
and the boost of the normal frame resulting from parallel transporting the surface is comparable to
the corrections neglected in the approximation (6.35). The modular Berry curvature, therefore,
reliably measures the bulk curvature in the neighborhood of an RT surface when the surfaces
considered obey (6.51).

Modular parallel transport. Assuming (6.51), we can illustrate the modular parallel trans-
port geometrically. Consider a family of minimal surfaces γ(λ) with λ ∈ [0, 1] that form a closed
loop γ(0) = γ(1). In a neighborhood of every minimal surface γ(λ) we can define a coordinate
system xMλ = (xαλ , yiλ), where xαλ (α = 0, 1) measures distances from γ(λ) along two orthogonal
directions. These are simply local choices for the edge-mode frames of the corresponding entan-
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glement wedges. As we explained in the previous section, these different localized coordinate
patches are related to each other by the diffeomorphisms (6.42):

xMλ+δλ = xMλ + ξM (x;λ, dλ). (6.52)

The ‘gluing’ diffeomorphism ξ is of course subject to the zero mode ambiguity, which is the focus
of this chapter.

Given the connection (6.44), we can define a covariant derivative

∇λ = δ

δλ
+ Γ(λ, δλ) (6.53)

which generates the parallel transport. Applied to the coordinate frames xMλ , parallel transport
assigns a canonical frame x̃Mλ to every surface γ(λ), given an initial condition x̃Mλ0

= xMλ0
. For an

infinitesimal step δλ, the parallel transported frame becomes:

x̃Mλ+δλ = x̃Mλ + δλ∇λx̃Mλ

= xMλ+δλ +
(
Ω(λ, δλ)εαβx̃λβ

∂

∂x̃αλ
+ Zi(λ, δλ) ∂

∂ỹiλ

)
x̃Mλ

= x̃Mλ + ξM (x̃;λ, δλ) +
(1

2ε
γ
δ∂γξ

δ
) ∣∣

x̃α=0δ
M
α ε

αβx̃λβ − δMi ξi
∣∣
x̃α=0 (6.54)

In the second step we used the explicit form of the zero-mode generators in the local orthonormal
gauge (6.39) and in the third step we used the formulas (6.45, 6.46) for the components of the
connection Ω, Zi. An application of the projector (6.46) to (6.54) reveals that the diffeomorphism
ξ̃M (λ, δλ) generating parallel transport of the edge-mode frame

x̃Mλ+δλ = x̃Mλ + ξ̃M (x̃;λ, δλ) (6.55)

indeed has vanishing zero mode components.

The modular parallel transport in the bulk can be summarized as a geometric flow, which at
every step:

1. maps between the two modular boost generators (up to zero modes),
2. is always orthogonal to the extremal surface,
3. preserves the hyperbolic angles between adjacent points on the normal 2-D plane.

We can covariantly express these conditions as follows:

δλζ
M
mod(x;λ)− P λ0 [δλζMmod(x;λ)] =

[
ξ̃(x;λ, δλ), ζmod(x;λ)

]M
, (6.56)

1
2ε

αβnα · ∂
(
nβ · ξ̃

) ∣∣
RT

= 0, (6.57)

ti · ξ̃
∣∣∣
RT

= 0 (6.58)

which are direct bulk analogues of the CFT conditions (6.22).

Following these rules we can transport the surface around a closed loop in the space of extremal
surfaces, returning to its original location in the end. A comparison of the original and transported
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coordinate frames in its vicinity will reveal a location-dependent boost transformation on its
normal plane and a diffeomorphism of the internal coordinates. This is the bulk modular Berry
holonomy. We saw an example of it in Figure 6.4, which shows the computation of the modular
curvature—that is, the holonomy of an infinitesimal loop. But the picture is the same for larger
loops, for example the loop shown in Figure 6.3.

6.3.4 Example: Pure AdS3

This subsection mirrors the discussion of the boundary modular Berry connection in the vacuum
of a two-dimensional CFT. In Appendix C.2 we identify the operator that generates modular
parallel transport from boundary interval λ to interval λ + δλ. In doing so, we only exploit the
global conformal algebra SO(2, 1)× SO(2, 1).

But this SO(2, 1) × SO(2, 1) is also the algebra of the Killing vector fields of AdS3. In par-
ticular, equations (C.11-C.12), (C.15) and (C.16) hold for the corresponding Killing vector fields.
As a consequence, the Killing vector field that represents (C.15) is a solution of equation (6.40).
We also know it has no zero mode component to be projected out

P λ0 [δλζMmod(x;λ)] = 0 (6.59)

because—as was the case for operator Vδλ in the boundary discussion—it too lives in eigenspaces
of the adjoint action of ζmod that are orthogonal to the 0-eigenspace. In summary, the Killing
vector field that corresponds to Vδλ generates the bulk modular parallel transport in pure AdS3.

To understand bulk modular parallel transport geometrically, consider an initial HRRT surface
that is a diagonal of a static slice of AdS3:

λ = (a+, b+, a−, b−) ≡ (θL + tL, θR + tR, θL − tL, θR − tR) = (−π/2, π/2,−π/2, π/2) . (6.60)

The analysis for other initial geodesics is identical up to an overall AdS3 isometry. The task is to
interpret

equation (C.15) = 1
2πi (−∂a+K+ + ∂b+K+ + ∂a−K− − ∂b−K−) ,

the SO(2, 1) × SO(2, 1) algebra element that generates modular parallel transport, as an AdS3

Killing vector field. In the representation (C.6), the action of (C.15) on the boundary is:

1
2
da+

dλ

(
sin x+ + 1

)
∂+−

1
2
db+

dλ

(
sin x+ − 1

)
∂+ + 1

2
da−

dλ

(
sin x− + 1

)
∂−−

1
2
db−

dλ

(
sin x− − 1

)
∂− (6.61)

Going to θ and t-coordinates on the boundary, this becomes:

1
2

(
−d(b+ − a+)

dλ
sin(θ + t)− d(b− − a−)

dλ
sin(θ − t) + d(a+ + b+ + a− + b−)

dλ

)
∂θ

+ 1
2

(
−d(b+ − a+)

dλ
sin(θ + t) + d(b− − a−)

dλ
sin(θ − t) + d(a+ + b+ − a− − b−)

dλ

)
∂t (6.62)

Let us survey what this solution means in the bulk of AdS3.
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One option is to move from λ to:

λ+ δλ = (−π/2 + dλ, π/2 + dλ,−π/2 + dλ, π/2 + dλ) (6.63)

In this case, parallel transport is carried out by this global conformal symmetry:

Vδλ = 2∂θ . (6.64)

It is easy to see that the corresponding symmetry of AdS3 is a global rotation about its center,
which maps the geodesic λ to λ + δλ. Mapping the special interval (6.60) to a general initial λ,
we recognize the following rule of parallel transport:

Case 1: If two geodesics live on a common H2 subspace of pure AdS3 and intersect, bulk
modular parallel transport is a rigid rotation about their intersection point which preserves their
common H2. This rule for bulk modular parallel transport, dubbed ‘rotation without slipping,’
was first explained in [212].

Another case is to move from λ to:

λ+ δλ = (−π/2 + dλ, π/2 + dλ,−π/2− dλ, π/2− dλ) . (6.65)

In this case, parallel transport is carried out by this global conformal symmetry:

Vδλ = 2∂t . (6.66)

This is a rigid time translation in AdS3. Once again, mapping the special interval (6.60) to a
general initial λ, we recognize the following rule of parallel transport:

Case 2: If two geodesics λ and λ + δλ live on a common AdS2 subspace of pure AdS3 and
do not intersect, bulk modular parallel transport is a global time translation that preserves their
common AdS2. This time translation also preserves that timelike geodesic in AdS, which connects
the points of closest approach between λ and λ+ δλ.

There are two other basic cases, which depend on the relative signs of da+/dλ, db+/dλ,
da−/dλ and db−/dλ. Altogether, these four basic cases span the four dimensions of kinematic
space [212,222]. The most general case is of course a linear combination of the four. Its detailed
geometric meaning will be discussed in [228].

Along any trajectory in the space of geodesics, parallel transport is generated by an AdS3

isometry, which at each step maps geodesic λ to geodesic λ + δλ. When we close a loop, we
generate a finite AdS3 isometry that maps the initial geodesic back to itself. Such isometries are
spanned by the orthogonal boost and rigid translation along the said geodesic. Of course, we
have reached the same conclusion in eqs. (6.28): in the language of Sec. 6.2.4, the orthogonal
boost is generated by K+ +K− and the longitudinal translation by K+ −K−.
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6.4 The Proposal and Implications

In this chapter, we proposed a link between the curvature of spacetime and the relations between
modular Hamiltonians of the dual CFT state. Our key observation on the boundary is that the
set of subregion modular Hamiltonians is endowed with a gauge symmetry, consisting of rotating
the basis of each Hmod by a zero-mode transformation. The relative zero-mode frame is then
promoted to a gauge connection with a non-vanishing curvature. This is a notion of curvature,
which—as first recognized in [211]—is directly associated to the entanglement pattern of the
state. It can be studied by applying the ideas of Berry, Wilczek and Zee [220, 221] to the set of
modular Hamiltonians.

Modular Berry holonomies as an entanglement measure The characterization of multi-
partite entanglement is a famously unsolved problem. Unlike two-partite entanglement, which
is entirely characterized by the spectrum of the modular Hamiltonians, it is not known what
quantities are sufficient to classify different forms of multi-partite entanglement.9 Modular Berry
holonomies are a promising quantity in this regard. One way in which one might probe multi-
system entanglement is to group the systems into two sets and study how the resulting bipartite
entanglement varies as the grouping evolves. This is a description of the modular Berry-Wilson
loop. Because the focus of this chapter is on holographic applications of the modular Berry
connection, we leave an exploration of its uses for classifying entanglement to the future.

Modular Berry holonomies in holography In the bulk, modular flow admits a simple
geometric description sufficiently close to the corresponding HRRT surface. This allowed us
to translate the CFT rules of modular parallel transport to entanglement wedges and derive a
bulk avatar of the modular Berry connection. Our main result is that for HRRT surfaces that
satisfy condition (6.51) the modular Berry connection reduces to a geometric connection encoding
the spin connection for the normal surface frame and the relative embedding of the internal
coordinates. Its curvature is, therefore, a holographic probe of the bulk Riemann curvature.
A somewhat different CFT Berry connection recently appeared in the discussion of holographic
complexity [123,232], while the algebra of modular Hamiltonians was used for bulk reconstruction
in [225, 233]. Our feeling is that there is an overarching framework connecting these results to
the ideas we presented here.

Error correction and bulk locality. Our proposed holographic relation between modular
Berry curvature and bulk spacetime curvature hinges on the validity of the JLMS relation (6.1).
The latter is the only bridge between our CFT and bulk discussions. The error correction frame-
work for the AdS/CFT dictionary [205] clarified that the equivalence of bulk and boundary
modular Hamiltonians (6.1) holds within the code subspace, namely the subspace of the CFT
Hilbert space describing bulk low energy excitations about a specific background. It is therefore
implicit in our construction that in the holographic context the Hmod appearing in equations
(6.8) and (6.17) is actually the restriction of the exact CFT modular Hamiltonian to the code
subspace Hmod = PcodeH

exact
mod Pcode.

9Although there exist classification schemes that are customized to specific systems like qubits [229–231].
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The code subspace projection is more than just a technicality; it is directly responsible for
endowing the boundary modular Hamiltonian with the right zero-mode algebra. In a typical
CFT state, the symmetries of the modular Hamiltonian are either generated by Hmod itself and
the conserved global charges of the CFT, if any, or they are simple phase rotations of individual
modular eigenstates. On the other hand, the existence of a local, semiclassical bulk requires a set
of zero-modes that generate the asymptotic symmetry group of the HRRT surface (6.39). The
essential task of the projector Pcode is to introduce the correct group of approximate zero-modes.
In the absence of any currently known, bulk-independent way for identifying the appropriate
code subspaces in the boundary theory, the modular zero-mode algebra and the corresponding
modular Berry holonomies can serve as a useful guiding principle.

On the role of soft modes. There is an aspect of our story that played a supporting role in
our main presentation but we believe deserves more attention. This is the new, to our knowl-
edge, use of gravitational edge modes of subregions to probe the curvature of their embedding
spacetime. Edge modes have been subject to a lot of recent studies due to their relation to soft
theorems and the memory effect [214], the construction of the physical phase space of subsys-
tems in gauge theories [213,227,234,235], the definition of entanglement entropy [236,237], and,
more speculatively, to the black hole information problem [215, 238]. In our work, the relative
edge mode frame of infinitesimally separated regions acquired a new physical interpretation as a
gravitational connection with curvature that depends on the background spacetime.

One moral of our treatment is that soft modes are unphysical, gauge degrees of freedom from
the perspective of a given subregion but their holonomies contain physical geometric information.
This informs the recent discussion regarding the physical significance of soft modes [227,239,240].
It will be illuminating to formulate our ideas more rigorously in the canonical formalism along
the lines of [213], where we believe they may offer a useful framework for describing surface
translations. It is also worthwhile to apply them in backgrounds that are not asymptotically
AdS.

We also learned that we can ‘implant’ soft hair on the boundary of a subregion by transporting
it around a closed loop. It is interesting to compare the latter with the more operational way
of exciting soft modes by sending shockwaves that cross the boundary of the subregion [214].
Intuitively, the shockwaves of [214] can be thought of as the ‘experimental’ protocol for shifting the
location of the horizon—an idealized version of which is the transport problem we have formulated.
To construct a closed loop of surfaces we could apply two shockwaves along different directions,
in two different orderings. The edge-mode holonomy in this setup measures the soft graviton
component of the commutator of the two shockwaves. It would be interesting to understand this
heuristic picture in detail. The appearance of shockwave commutators also suggests an intriguing
possible relation to the physics of chaos [14,241].10

Bulk gauge field holonomies. An interesting playground for our ideas is the case of holo-
graphic CFTs with global symmetries. The conserved charges give rise to a new set of modular
zero-modes, which are holographically mapped to the edge modes of the dual bulk gauge field.

10We thank Beni Yoshida for this comment.
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The relevant component of the modular Berry curvature should then be reflected in the local field
strength of the gauge field along an HRRT surface. This setup is, in a sense, simpler than the
gravitational case we discussed in this work and could allow for more computations. For example,
it would be an interesting exercise to repeat the computations we did for pure AdS3 with a bulk
gauge field turned on.

Gravitation and gauge field dynamics? A particularly exciting question we leave for fu-
ture study is whether our proposed perspective on the bulk gravitational and gauge connections
can shed light on the emergence of their dynamics [242]. An excitation of the CFT state gets
imprinted on the modular Hamiltonians in its future causal cone and thus affects the modular
Berry connection. As a result, the latter is ultimately promoted to a dynamical object. Whether
the laws governing this evolution take a useful form, however, remains to be seen. It is worth
noting that an appealing feature of our approach is that it treats all gauge fields, including grav-
ity, on equal footing. All bulk holonomies have the same microscopic origin in the CFT: the
entanglement pattern of the state as encoded in the relative bases of modular Hamiltonians. A
dynamical law of the sort we speculate here would constitute a unified holographic description of
gravitational and gauge interactions.
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Chapter 7

Conclusions

Throughout the whole thesis, we have been fascinated by and have made efforts to understand
how quantities in quantum information theory can be encoded geometrically in the semi-classical
gravity theory. It is along the line towards a better understanding of the quantum gravity, which
have attracted theorists for the past sixty years.

Based on this spirit, we started with a quantity that is proposed to depict the scrambling be-
havior inside the black hole, called quantum complexity, which is essentially a difficulty measure
from one state to another in the modern quantum circuit language. Our aim is to understand
the universality of the two bulk proposals, i.e., “Complexity=Volume” (CV) and “Complex-
ity=Action” (CA), by using a rather simple thin brane model in AdS3, albeit without a black
hole in the spacetime. The two proposals have been tested in many gravitational systems which
show agreement with each other at least in terms of the divergence structure. However, our
analysis tend to discriminate the two in this simple setup, in the sense that the CV result has a
tension dependent logarithmic divergence while this behavior is not present in CA result. This is
the first case to show such an evident contrast between the two conjectures, leading us to think
what the universality really means in terms of complexity, since in comparison with the entan-
glement entropy where the logarithmic divergence preserves the universal information, the same
consideration might not hold in understanding holographic complexity. Nevertheless, this should
still be an open question and should be more clear as we get a kind of holographic measure of
circuit complexity, which will be among the future research programs of the author.

In the QFT consideration of the circuit complexity, which should be regarded as the boundary
exploration in the AdS/CFT context, we would like to understand explicitly how the gate choices
can influence the circuit complexity. With resort to free bosonized model in two dimension, we
realized that changing the gate set, from bosonic type to ferminonic one, is NOT guaranteed to
change the result completely. As we have shown, in the “bosonic coherent-fermionic Gaussian”
case, the two result are comparable with an inhomogeneous choice of the penalty factor for the
fermionic gates, while in the bi-Gaussian case, the two gate choices respond dramatically different
as we augment the UV cutoff and can not be tuned to eliminate the discrepancy by playing with
the penalty factor. In the latter case, the necessity for reconsidering the universal information
shows up again, as only the fermionic result shows a numerical log(cutoff) dependence. This
means that by a proper selection of the allowable gates to form a set, it could possibly lead to
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some more preferred result, albeit not yet in a systematic manner. This manipulation might
look too subjective, however, it renders a way to consider the holographic measure of circuit
complexity, which might favor a certain set of gates, the holographic gate set. This is merely a
speculation at the moment, which might give rise to some interesting work in the future.

As an episode, we re-looked at the thin brane model in details, with the hope to understand
better how the universal information of the two-point functions for stress tensor in dCFT2 can be
stored in the canonical holographic manner. In the literature, it has been shown that only one new
parameter other than the central charges arises for those two-point functions, which determines
the energy transport coefficients across the interface. Instead of the commonly acknowledged
duality which states that the partner for the brane tension is the boundary entropy in the dCFT,
our analysis points out that the brane tension actually encodes the transport property of the dCFT
in terms of the transmission or reflection coefficients. Our statement looks more reasonable as the
topological interface corresponds to zero brane tension but can have arbitrary boundary entropy.
An interesting direction for further application of our result is to relate to the “island” proposal
in evaporating black holes, which is worthy of investigation.

In the last part, we would like to understand if there could some other bulk geometric quanti-
ties that can encode certain information on the boundary, which is other than quantities defined
in hypersurfaces or actions in a certain region. Our study shows that there is in fact a pair that
can be dual to each other which has not yet received enough attention, it is the bulk Riemann
curvature and the Berry curvature in the space of modular Hamiltonians. We have been able to
establish the duality in a general asymptotic AdS background, and have tested the conjecture
in a simple example of AdS3/CFT2 which shows a nice agreement due to the simplicity of this
system and the nice symmetry decomposition SO(2, 2) = SL(2,R) × SL(2,R). This study in
principle opens up a new direction along the entanglement wedge reconstruction, and it would
be interesting to investigate if the technique used here would help define a complexity measure
since the Berry connection is an affine connection between different states.

The studies in the thesis have initiated some interesting directions in the understanding of
how certain quantum information is encoded in a geometric manner in gravity, as mentioned
above. Hopefully, those considerations will be further investigates and lead to some contributions
to the community towards a better understanding of quantum gravity and quantum information.



Appendix A

Several Derivations for the Defect
Toy Model

A.1 Derivation of the Light Cone using Global Coordinates

In this appendix we derive the light cone surface of subsection 3.1.3 using the (φ, θ) coordinate
system. Since the form of the null surface is identical in conformally equivalent spacetimes, we
will study null geodesics in the metric

ds2 = −dt2 + dφ2 + sin2 φ dθ2 (A.1)

which is a conformal rescaling of the metric (3.8). The geodesic equations read,1

ẗ = 0, φ̈ = 1
2 sin(2φ) θ̇2, θ̈ = −2 cotφ θ̇ φ̇ , (A.2)

where the derivatives are taken with respect to some parameter σ along the null geodesics and
the requirement that the geodesics are null reads

−1 + φ̇2 + sin2 φ θ̇2 = 0. (A.3)

The first equation in (A.2) is consistent with having the geodesics parameterized by t, namely
σ = t. Integrating the last equation in (A.2) yields

θ̇ = a

sin2 φ
, (A.4)

where a is an integration constant. Next, we substitute the result from eq. (A.4) into the null
constraint (A.3) which yields

φ̇ = ±
√

1− a2

sin2 φ
. (A.5)

Solutions to eqs. (A.4)-(A.5) automatically satisfy the second equation in (A.2). Before we proceed
in finding the explicit solution for the null geodesics, let us pause and briefly comment on the

1Of course, since we are working with the equations of motion of the squared line element, under the conformal
rescaling the parametrization of the null geodesics could change.
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properties of eqs. (A.4)-(A.5). If we start from the boundary and look at inwards and future
oriented null rays we will choose the minus branch of eq. (A.5) since φ is decreasing as we move
into the bulk. The constant of integration a determines the angular orientation (θ) of the null
geodesic as it falls into the bulk according to eq. (A.4). For instance for a = 0 we will have a
geodesic which follows a line of constant θ and this is the geodesic which determines the boundary
of the WDW patch in vacuum AdS3 without the defect. For other values of a there is a particular
value of the radial coordinate φ = sin−1 |a| for which φ̇ = 0 and the geodesic turns back toward
the boundary. Let us focus on the upper half of the WDW patch and study future oriented
geodesics starting from the boundary. Integrating the minus branch of the differential equation
(A.5) we obtain the solution

t = c2 − cos−1
( cosφ√

1− a2

)
where sin−1 |a| ≤ φ ≤ π/2. (A.6)

The initial condition φ(t = 0) = π/2 fixes c2 = π/2. Finally we can solve the equation for θ̇,
which gives

θ = c3 + tan−1(a tan t) where 0 ≤ t ≤ π/2, (A.7)

and the initial condition θ(t = 0) = 0 for the null rays originating from (t, φ, θ) = (0, π/2, 0) fixes
c3 = 0.2

We also present in the following an equation which describes the shape of the lightcone
constructed from these null rays. We will focus on the part of the surface for negative angles
θ < 0 which fixes the new component of the boundary of the WDW patch in the defect region,
see figure 3.3. First, from eq. (A.6) with c2 = π/2 we extract a

a = −

√
1− cos2 φ

sin2 t
for θ < 0. (A.8)

Substituting this value into eq. (A.7) together with c3 = 0 for the null lightcone originating from
the boundary at θ = 0 we obtain

tan θ +

√
tan2 t− cos2 φ

cos2 t
= 0 or cos θ = cos t

sinφ . (A.9)

One can also relate this analysis to the (y, r) coordinate one by verifying that lines of constant a
(or t) correspond to a constant value of the coordinate y (or r) respectively, see eq. (3.9). More
explicitly we have

a = tanh y, tanh r = cos t. (A.10)

A cross section of the light cone surface for different values of t is depicted by the green slices in
figure 3.4 where we have used the following coordinates for the plot

x = φ

π/2 cos θ, y = φ

π/2 sin θ. (A.11)

2For the null rays originating from θ(t = 0) = π we have c3 = π but since the picture is symmetric we will focus
on the null rays originating from θ(t = 0) = 0.
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A.2 Contributions to the Subregion CA Outside the Defect Re-
gion

In this appendix we evaluate the contributions to the subregion CA proposal outside the defect
region for a subregion which is symmetric around the defect. This also gives the result for the
subregion complexity from the CA proposal in empty AdS3 in global coordinates for a subregion
of the same size. The projections of the various regions used in this calculation onto the t = 0
time slice are illustrated in figure 3.11. In what follows we will work in the (t, φ, θ) coordinates
of eq. (3.8). The relevant conversions can be found in eqs. (3.5), (3.7) and (3.9).

Preliminaries It will be useful to have expressions for the various surfaces in the relevant
coordinates; these are: the boundary of the WDW patch (S3 in figure 3.11)

φ = π/2− t, (A.12)

the boundary of the entanglement wedge, see eq. (A.9) (S6 ∪ S7 in figure 3.11)

sinφ cos θ = cos(θR − t), (A.13)

the cutoff surface (S1 ∪ S5 in figure 3.11)

φ = π

2 − δ̂, (A.14)

the joint at the intersection of the WDW patch and the entanglement wedge (J4 in figure 3.11)

cos θ = sin(θR + φ)
sinφ and t = π/2− φ = tan−1

(cos θ − cos θR
sin θR

)
, (A.15)

the point at the intersection of the joint J4 and the θ = 0 surface

φ = π

2 −
θR
2 , t = θR

2 and θ = 0, (A.16)

while the point at the intersection of the joint J4 and the cutoff surface is given by

t = δ̂, φ = π/2− δ̂ and θ = cos−1
(

cos(θR − δ̂)
cos δ̂

)
= θR − δ̂ +O(δ̂2). (A.17)

The RT surface J7 is given by

t = 0 and sinφ cos θ = cos θR, (A.18)

the point at the intersection of the RT surface and the surface θ = 0

φ = π

2 − θR, t = 0 and θ = 0, (A.19)
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the joint J1 where the cutoff surface intersects the entanglement wedge

φ = π

2 − δ̂, cos θ = cos(θR − t)
cos δ̂

, (A.20)

and finally, the point at the intersection of the RT surface and the cutoff

θ = cos−1
(cos θR

cos δ̂

)
= θR +O(δ̂2) and t = 0. (A.21)

It will also be useful to have the surface data for the entanglement wedge in terms of the
(t, φ, θ) coordinates. The null boundary of the entanglement wedge is given in eq. (A.13) and can
be parameterized similarly to eqs. (A.6)-(A.7) with the substitution t → θR − t in the relevant
places

xµ = (t, φ, θ) =
(
t, cos−1

(√
1− a2 sin(θR − t)

)
, tan−1 (a tan(θR − t))

)
, (A.22)

where a is constant along a given null geodesic parameterized by t. The surface information in
this coordinate system with the parametrization λ = t/NEW is

kµEW = NEW

1,
√

1− a2√
1 + a2 tan2(θR − t)

,− a sec2(θR − t)
1 + a2 tan2(θR − t)

 ,
κEW = 2NEW cot(θR − t), γEW

aa = L2

(1− a2)2 .

(A.23)

We may also determine the values of a and t at the point where the entanglement wedge intersects
RT surface and the cutoff surface

t = 0, and amax =

√
1− sin2 δ̂

sin2 θR
= 1− δ̂2

2 sin2 θR
+O(δ̂4) (A.24)

as well as the point where it intersects the cutoff surface and the WDW patch

t = 0, and amin =

√√√√1− sin2 δ̂

sin2(θR − δ̂)
= 1− δ̂2

2 sin2 θR
− cot θR

sin2 θR
δ̂3 +O(δ̂4). (A.25)

Below, we will only be able to extract the divergent pieces of the subregion CA proposal
outside the defect region analytically and will leave some of the finite pieces as implicit integral
expressions.

Bulk Contributions The bulk contribution B2 under the WDW patch reads

B2 = − L

4πGN

∫ π
2−δ̂

π
2−

θR
2

dφ
sinφ
cos3 φ

∫ cos−1
(

sin(θR+φ)
sinφ

)
0

dθ

∫ π
2−φ

0
dt

= − L

4πGN

(
θR

δ̂
+ ln δ̂

)
+ finite.

(A.26)
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Next, we evaluate the bulk contribution of the region under the entanglement wedge. We subdi-
vide it into two parts, B4 and B5, as indicated in figure 3.11, along a line of constant φ = π

2 −
θR
2 .

The part B4 is finite and reads

B4 = − L

4πGN

∫ π
2−

θR
2

π
2−θR

dφ
sinφ
cos3 φ

∫ cos−1
(

cos θR
sinφ

)
0

dθ

∫ θR−cos−1(cos θ sinφ)

0
dt = finite. (A.27)

The part B5 extends all the way to the cutoff and reads

B5 = − L

4πGN

∫ π
2−δ̂

π
2−

θR
2

dφ
sinφ
cos3 φ

∫ cos−1
(

cos θR
sinφ

)
cos−1

(
sin(θR+φ)

sinφ

) dθ ∫ θR−cos−1(cos θ sinφ)

0
dt

= L

8πGN
ln δ̂ + finite.

(A.28)

Therefore, the total bulk contribution reads

Ibulk,out = − L

πGN

(
θR

δ̂
+ 1

2 ln δ̂
)

+ finite, (A.29)

where we have included a factor of four to account for the two sides of the defect as well as the
contributions above and below the t = 0 time slice.

Surface Contributions We proceed by evaluating the various surface contributions. We start
with the cutoff surface. In the region under the WDW patch (S1), this is a simple modification
of our previous calculation in eq. (3.31). All we have to do is modify the limits of integration as
follows

S1 = L

8πGN

∫ δ̂

0
dt

∫ θR−δ̂+O(δ̂2)

0
dθ

cos δ̂
sin2 δ̂

(
cos δ̂ + 1

cos δ̂

)
= LθR

4πGNδ̂
+ finite. (A.30)

The part of the cutoff surface under the entanglement wedge is similarly given by

S5 = L

8πGN

∫ θR+O(δ̂2)

θR−δ̂+O(δ̂2)
dθ

∫ θR−θ+O(δ̂2)

0
dt

cos δ̂
sin2 δ̂

(
cos δ̂ + 1

cos δ̂

)
= finite. (A.31)

Next, we evaluate the contributions of the various null surfaces. We start with the null boundary
of the WDW patch which requires a simple modification to the integration limits in eq. (3.35)

S3 = L

8πGN

∫ θR−δ̂+O(δ̂2)

0
dθ

∫ tan−1
(

cos θ−cos θR
sin θR

)
δ̂

 ln
(

2`ctN3
sin(2t)

)
+ 2 cos2 t

sin2 t

 dt

= L

8πGN

(
θR

δ̂

[
ln
(
`ctN3

δ̂

)
+ 1

]
+ ln δ̂ [2 + ln(`ctN3)]− 1

2 ln2 δ̂

)
+ finite.

(A.32)

For the null boundary of the entanglement wedge, we will divide the integration region along a
line of constant a = amin, see eq. (A.25), as indicated in figure 3.11. This yields

S6 = −LNEW

4πGN

∫ amax

amin
da

∫ θR−sin−1
(

sin δ̂√
1−a2

)
0

cot(θR − t)
(1− a2) dt = O(δ̂2), (A.33)
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and
S7 = −LNEW

4πGN

∫ amin

0
da

∫ tmax

0

cot(θR − t)
(1− a2) dt = finite, (A.34)

where tmax solves the equation

sin tmax =
√

1− a2 sin(θR − tmax). (A.35)

Joint contributions The joint at the intersection between the WDW patch and the cylindrical
cutoff surface is similar to the expression (3.36) and reads

J3 = − L

8πGN

∫ θR−δ̂+O(δ̂2)

0
cot δ̂ ln

(N3L

sin δ̂

)
dθ = − L

8πGN

(
θR

δ̂
− 1

)
ln
(N3L

δ̂

)
. (A.36)

For the joint at the intersection of the entanglement wedge and the cutoff surface we obtain

J1 = − 1
8πGN

∫ √
γEW ln |kµEWs

(1)
µ |da

= − L

8πGN

∫ amax

amin

1
1− a2 ln

2LNEW

√
cos2 δ̂ − a2

sin(2δ̂)

 da = O(δ̂), (A.37)

where we used eqs. (3.29) and (A.23) for the relevant normal vectors. Next, we evaluate the joint
at the intersection of the entanglement wedge and the WDW patch. We use the normal vectors
in eq. (A.23) and (3.33) and substitute the value of t at the joint using eq. (A.35)

J4 = L

8πGN

∫ amin

0

1
1− a2

(
ln L

2N3NEW csc2 θR
2(1− a2) + ln (2− a2 + 2

√
1− a2 cos θR)2

1 +
√

1− a2 cos θR

)
da

= L

8πGN

(
ln2 δ̂ − ln δ̂ ln

(
L2N3NEW

2

))
+ finite. (A.38)

Finally, the joint between the past and future boundaries of the entanglement wedge reads

J7 = − L

8πGN

∫ amax

0

da

1− a2 ln
(
L2N 2

EW csc2 θR
1− a2

)

= − L

8πGN

(
ln2 δ̂ − ln δ̂ ln

(
L2N 2

EW

))
+ finite.

(A.39)

Adding together the various joint and surface contributions yields

Isj,out = L

2πGN

(
θR

δ̂

[
ln
(
`ct
L

)
+ 3

]
+ ln δ̂

[
1 + ln

(2`ct
L

)])
+ finite, (A.40)

and of course we see that the various constant related to the choice of parametrization canceled
out.

Total divergence Combining eqs. (A.29) and (A.40), we obtain the total divergence for the
vacuum AdS3 portion of the CA proposal for an entangling region which is symmetric around
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the defect

CvacA,sub = 1
π

(Isj,out + Ibulk,out) = L

2π2GN

(
θR

δ̂

[
ln
(
`ct
L

)
+ 1

]
+ ln δ̂ ln

(2`ct
L

))
+ finite. (A.41)

This concludes the derivation of eq. (3.90).

A.3 Subregion CV in the Poincaré patch

In the global coordinates, we are constrained to consider the case where the two patches glued
together share the same cosmological constant. However, if we consider the Poincaré patch, we
can glue together two AdS3 patches with different AdS radii along the location of the defect. The
backreacted metric reads [130,155,170]

ds2 = L2

z′2
(−dt2 + dz′2 + dx′2) Θ(z′ + x′ tan β) + R2

z2 (−dt2 + dz2 + dx2) Θ(z − x tanα), (A.42)

where Θ(z) is the Heaviside theta function and the two patches have different AdS radii R and
L. The matching condition is given by

R

sinα = L

sin β = −cotα+ cotβ
8πGNλ

, (A.43)

where λ > 0 is the tension of the brane, see eq. (3.1). Stability of the gravitational solution
requires that π ≥ α, β ≥ π/2, see [155]. In the case with no defect (λ = 0) the matching
condition (A.43) implies that the two AdS radii are equal L = R and that α = β = π/2. However
note that in general L = R does not imply that there is no defect. We will think of the two
patches as being drawn alongside each other, see figure A.1. In this case the two coordinates
systems (t, x, z), and (t, x′, z′) are related through a rotation in the x− z plane as follows

(
z′

x′

)
=
(
− cos(α+ β) sin(α+ β)
− sin(α+ β) − cos(α+ β)

)(
z

x

)
. (A.44)

Figure A.1 illustrates a constant time slice of our setup. The regions DL and DR are extensions
of the AdS space due to the existence of the defect. We will consider the subregion complexity
for a subregion which is anchored at the boundary at x = a (right) and x′ = −b (left). Without
loss of generality, we will everywhere assume that a > b > 0.

It is natural to continue to choose the cutoff in the regions CL and CR, to match the usual
Fefferman-Graham expansion, with z′ = δ and z = δ, respectively. In the defect region we
suggest to extend the cutoff surface smoothly using a circular arc, similarly to what was done
in subsection 3.1.2.3 Focusing on the defect extensions DR and DL, it will be useful to define a

3One could in principle consider choosing two different cutoffs for the FG expansions on each side of the defect,
connected by an interpolating curve in the defect region. For example one such choice was presented in [130] where
the author considers cutoffs of constant z everywhere (including the defect region). The relation between the two
cutoffs is determined by holding the scale factor of the metric fixed. The resulting cutoff is continuous but not
smooth across the interface. In our case, these choices would not influence the logarithmic (defect-dependent)
contribution to the complexity which is expected to be universal, see section 3.5.



126 APPENDIX A. SEVERAL DERIVATIONS FOR THE DEFECT TOY MODEL

a

b

y

αβ
δ

δ

RD
LD

LC

RC

φ

Figure A.1: Constant time slice of the two AdS3 patches, glued together along
the straight blue line representing the defect. α (right) and β (left) are the opening
angles of the patches on each side of the defect. The defect extends the space and its
contribution is encoded in the regions DL,DR, while CL, CR are the parts of the AdS3
spaces outside the defect extension. The cutoff is represented by a dotted orange
curve and is extended as a circular arc in the region of the defect. The red curve
represents the RT surface corresponding to the region anchored at the AdS boundary
at points a and b. It consists of two circular arcs of different radii which are connected
smoothly at the location of the defect. The centers of the relevant nested circles are
depicted as black dots.

radial coordinates in the x− z plane as

x = ρ cos θ, z = ρ sin θ. (A.45)

In terms of these coordinates the metric reads

ds2 = R2

ρ2 sin2 θ

(
−dt2 + dρ2 + ρ2dθ2

)
, (A.46)

and the cutoff extension is given by
ρ = δ. (A.47)

The RT surfaces on each side of the defect are parts of circular arcs in the x− z coordinates
which are perpendicular to the boundary. They can be described by the following equations

(x−OA)2 + z2 = R2
A, (x′ −OB)2 + z′2 = R2

B, (A.48)

where OA and OB indicate the positions of the centers of the circular arcs and RA and RB

indicate their Radii in the right/left patches respectively. The matching condition across the
defect indicates that the circles are tangent at the location of the defect (see, e.g., [155]). One is
then led to the conclusion that the two centers as well as the location where the arcs intersect
the defect lie along a single line. We define the angle between this line and the defect as φ, see
figure A.1.

The geometry is completely fixed by the angles α and β as well as the sizes of the relevant



A.3. SUBREGION CV IN THE POINCARÉ PATCH 127

boundary regions a (right) and b (left), see figure A.1. The angle φ is given by the solution to
the equation

a

b
=
(

tan α
2 tan φ

2 + 1
tan α

2 tan φ
2 − 1

)(
tan β

2 tan φ
2 + 1

tan β
2 tan φ

2 − 1

)
(A.49)

which satisfies sinα > sinφ and sin β > sinφ, or explicitly

tan φ2 =
(a+ b) sin α+β

2 −
√

(a+ b)2 sin2
(
α−β

2

)
+ 4ab sinα sin β

2(a− b) sin α
2 sin β

2
. (A.50)

The various “lengths”4 indicated in figure A.1 are given by

RA = a
sinα

sinα+ sinφ, RB = b
sin β

sin β − sinφ,

OA = a
sinφ

sinα+ sinφ, OB = b
sinφ

sin β − sinφ,
(A.51)

and the “length” along the defect up to the meeting point is given by

y = a
sin(α+ φ)

sinα+ sinφ = b
sin(β − φ)

sin β − sinφ, (A.52)

or explicitly

y =
(a− b) sin

(
β−α

2

)
+
√

(a+ b)2 sin2
(
β−α

2

)
+ 4ab sinα sin β

2 sin
(
α+β

2

) , (A.53)

cf. eq. (B.3) of [155].

We will focus on the subregion complexity, since the boundary is infinite and hence the
complexity of the full space is (IR) divergent. We have divided the integration region into four
regions – CR and CL outside the defect region and DR and DL inside the defect region. The
various volumes read

CR =R2
∫ √R2

A−O
2
A

δ

dz

z2

∫ OA+
√
R2
A−z2

0
dx+R2

∫ RA

√
R2
A−O

2
A

dz

z2

∫ OA+
√
R2
A−z2

OA−
√
R2
A−z2

dx

=R2
(
a

δ
− π

2 − sin−1
( sinφ

sin β

))
,

(A.54)

and

CL = L2
∫ √R2

B−O
2
B

δ

dz′

z′2

∫ 0

OB−
√
R2
B−z′2

dx′ = L2
(
b

δ
− π

2 + sin−1
( sinφ

sin β

))
, (A.55)

4Here we indicate the length without the overall conformal factor namely,
√
x2 + z2 or

√
x′2 + z′2.
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outside the defect region and

DR = R2
∫ α

π/2

dθ

sin2 θ

∫ OA cos θ+
√
R2
A−O

2
A sin2 θ

δ

dρ

ρ
= R2

(
cotα ln

(
δ

y

)
− φ+ sin−1

( sinφ
sinα

))
,

(A.56)

and

DL = L2
∫ π/2

π−β

dθ

sin2 θ

∫ OB cos θ+
√
R2
B−O

2
B sin2 θ

δ

dρ

ρ
= L2

(
cotβ ln

(
δ

y

)
+ φ− sin−1

( sinφ
sin β

))
,

(A.57)

inside the defect region. Of course we notice that the left and right patch results are related by
the exchange φ→ −φ, α→ β, a→ b and R→ L.

Summing all the contributions together, multiplying by the relevant factors of proportionality
1/(GNR) and 1/(GNL) for the right and left patches respectively, see eq. (2.45), and expressing
the result in terms of the central charges, cR ≡ 3R

2GN
and cL ≡ 3L

2GN
, yields

CpoincareV = 2(cR a+ cL b)
3δ + 2

3 (cR cotα+ cL cotβ) ln
(
δ

y

)
− 2cR

3

(
π

2 + φ

)
− 2cL

3

(
π

2 − φ
)
.

(A.58)

where φ is defined in eq. (A.50), y is defined in eq. (A.53) and α and β are determined from the
matching conditions (A.43) in terms of the two cosmological constants and the data of the defect.

Finally, let us study the limit of equal cosmological constant which yields α = β, cR = cL ≡ cT
and as a consequence y =

√
ab. This yields the following complexity

CpoincareV = 2cT
3

(
a+ b

δ
− 2 sinh y∗ ln

(
δ√
ab

)
− π

)
(A.59)

where we have used eq. (A.43) and eq. (3.3) to relate cotα = − sinh y∗. This can be seen as the
large boundary size a, b � LB limit of the global coordinate result of eq. (3.69) where we have
used θR = a/LB and θL = −b/LB in order to perform the expansion in eqs. (3.70) and (3.69).

A similar analysis to the one we have performed in subsection 3.3.2 for the subregion CA
conjecture can be performed here as well. We leave this extension for future work.



Appendix B

Orthogonality of the rotational
matrix M(n) for α ∈ R

The orthogonality is independent of the bosonic mode n, for simplicity, in this section we will
take n = 1, thus neglect the explicit dependence of n for the matrices. Since A and B are both
symmetric, which means

MMT =
(
A2 +B2 BA−AB
AB −BA A2 +B2

)
. (B.1)

To prove the orthogonality of M is to show that (A2 + B2)ik = δik and (AB − BA)ik = 0, this
will be given explicitly in the following part.

B.1 (A2 +B2)ik = δik

To start with, k is required to be k = i+ 2m(m ∈ Z) since it is easy to see that if k and i differ
by an odd number the corresponding entry would give zero. The diagonal entries correspond to
the case m = 0, which are given as

(A2 +B2)ii =
∑
r

Ai(i+2r)A(i+2r)i +Bi(i+2r+1)B(i+2r+1)i

=
∑
r

J2
|2r| +

∑
r

J2
|2r+1|

= J2
0 + 2

∑
r=1

J2
r = 1 (B.2)
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which is known as Neumann’s theorem of Bessel functions. Without loss of generality, we will
assume that m > 0 in the following case for the off-diagonal entries. The calculation shows

(A2 +B2)ik =
∑
r>m

(−1)mJ2rJ2(r−m) +
∑
r≥m

(−1)mJ(2r+1)J2(r−m)+1

+
∑

0≤r≤m
(−1)mJ2rJ2(m−r) +

∑
0≤r<m

(−1)m+1J2r+1J−1−2(r−m)

+
∑
r<0

(−1)m(J−2rJ2(m−r) + J−2r−1J−1−2(r−m))

= (−1)m
∑
r≥1

JrJ2m+r + (−1)m
2m∑
r=0

(−1)rJrJ2m−r + (−1)m
∑
r≥1

JrJ2m+r

= (−1)m
 2m∑
r=0

(−1)rJrJ2m−r + 2
∑
r≥1

JrJ2m+r

 = 0 (B.3)

where in the second step we used the property of Bessel function J−l = (−1)lJl and the last step
is another theorem of Neumann. Therefore, we have proved that

A2 +B2 = 1 (B.4)

is an identity matrix.

B.2 (AB −BA)ik = 0

In this case, the non-zero entries would require k = 2m+ 1(m ∈ Z). The calculation follows,

(AB)i(i+2m+1) =
∑
r

Ai(2r+i)B(2r+i)(i+2m+1)

=
∑
r

(−1)ri|(2(m−r)+1|−1J2|r|J|2(m−r)+1| (B.5)

and

(BA)i(i+2m+1) =
∑
r

Bi(2r+1+i)A(2r+i)(i+2m+1)

=
∑
r

(−1)m−ri|2r+1|−1J2|m−r|J|2r+1|

=
∑
r

(−1)ri|(2(m−r)+1|−1J2|r|J|2(m−r)+1| (B.6)

therefore,
(AB −BA)ik = 0. (B.7)

Combining (B.4) and (B.7), one shows that M is an orthogonal matrix as expected.



Appendix C

Modular Berry Connection

C.1 Berry connection

Consider a family of normalized pure states ρ(λ) = |ψ(λ)〉〈ψ(λ)|. Each state is invariant under
the transformation U(λ) = exp

(
iθ(λ)|ψ(λ)〉〈ψ(λ)|

)
, which simply rotates the vector |ψ(λ)〉 by a

phase θ(λ). The operators U(λ) are therefore the modular zero modes in this simple example.
The variation of the state under an infinitesimal change of λ is

∂λρ = (∂λ|ψ〉) 〈ψ|+ |ψ〉 (∂λ〈ψ|) = [V, ρ] , (C.1)

where we defined the anti-Hermitian operator

V = (∂λ|ψ〉) 〈ψ| − |ψ〉 (∂λ〈ψ|) . (C.2)

This is clearly not unique since any addition of zero-modes to V respects equation (C.1). This
reflects our freedom to independently rotate the phases of |ψ(λ)〉 and |ψ(λ+ δλ)〉.

According to (6.18), the modular Berry connection is the projection of V (λ) onto the zero
modes of ρ(λ) which, using the projector (6.14), reads:

Γ = P λ0 [V (λ)] =
(
〈ψ|∂λψ〉 − 〈∂λψ|ψ〉

)
|ψ〉〈ψ| . (C.3)

This is the familiar Berry connection [220,221].

C.2 Modular connection for CFT vacuum

The two-sided modular Hamiltonian for an interval in the CFT vacuum can be written in terms
of the conformal generators as Hmod = K+ +K−, with:

K+ = s1L1 + s0L0 + s−1L−1 , (C.4)

K− = t1L̄1 + t0L̄0 + t−1L̄−1. (C.5)

The coefficients si, ti are determined, up to an overall multiplicative constant, by the requirement
that the generators K+ and K− preserve the left-moving and right-moving null coordinates of
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the interval endpoints (a+, b+) and (a−, b−), respectively. Working in the representation

L−1 = ie−ix
+
∂+ and L0 = i∂+ and L1 = ieix

+
∂+, (C.6)

with an identical action of the L̄is on the x− null coordinate, we find:

s1 = 2π cot(b+−a+)/2
eia++eib+

, t1 = −2π cot(b−−a−)/2
eia−+eib−

,
s0 = −2π cot(b+ − a+)/2, t0 = 2π cot(b− − a−)/2,
s−1 = 2π cot(b+−a+)/2

e−ia++e−ib+
, t−1 = −2π cot(b−−a−)/2

e−ia−+e−ib−
.

(C.7)

We found the overall magnitude of Hmod by demanding that exp(−Hmod/2)—a finite SO(2, 1)×
SO(2, 1) transformation—map an interval to its complement.

The generator of modular parallel transport is defined by the conditions:

∂a+K+ = [Vδa+ ,K+] , (C.8)

P0[Vδa+ ] = 0 . (C.9)

In the vacuum of a two-dimensional CFT, any single-interval modular Hamiltonian can be mapped
to any other using conformal transformations. This is the reason for the absence of the spectrum
changing operator appearing on the left hand side of the general equation (6.22). The same fact
guarantees that Vδa+ is an element of the conformal algebra, so it is a linear combination of the
generators (C.6).

To find Vδa+ explicitly, it is convenient to decompose the conformal algebra into eigenoperators
of the adjoint action of the modular Hamiltonian:

[K+, Eκ] = κEκ . (C.10)

The three solutions of equation (C.10) are:

[K+,K+] = 0 ,

[K+, ∂a+K+] = −2πi ∂a+K+ , (C.11)

[K+, ∂b+K+] = +2πi ∂b+K+ . (C.12)

This immediately implies eq. (6.27), i.e.:

Vδa+ = 1
2πi ∂a+K+ . (C.13)

Eq. (C.9) is automatically satisfied because ∂a+K+ and K+ live in orthogonal eigenspaces of the
eigenvalue equation (C.10).

It is easy to consider a more general direction in kinematic space (space of CFT intervals.)
Say we go from Hmod(λ) (here λ = (a+, b+, a−, b−)) to λ + δλ. The change in the modular
Hamiltonian is:

∂λHmod ≡
(
∂a+/∂λ) ∂a+K+ +

(
∂b+/∂λ) ∂b+K+ +

(
∂a−/∂λ) ∂a−K− +

(
∂b−/∂λ) ∂b−K− . (C.14)
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The operator

Vδλ = 1
2πi

(
∂a+

∂λ
∂a+K+ −

∂b+

∂λ
∂b+K+ −

∂a−

∂λ
∂a−K− + ∂b−

∂λ
∂b−K−

)
(C.15)

solves
[Vδλ, Hmod] = ∂λHmod. (C.16)

It also satisfies (C.9) because it lives outside the zero-eigenspace of [Hmod, Eκ] = κEκ, the latter
being generated by K+ and K−. Therefore, (C.15) is the generator of modular parallel transport.

C.3 Solution to the equation governing Hbulk
mod

In this part, we consider the solution to eq. (6.40). Consider an entanglement wedge λ and a
coordinate system xM = (xα, yi) in the neighborhood of its RT surface. xα denotes distances
along two directions orthogonal to the RT surface and yi is a choice of internal surface coordinates.

Since we are ultimately interested in comparing the frames of two nearby extremal surfaces,
the form of the metric in the vicinity of the RT surface is important. It is convenient to introduce
normal geodesic coordinates σM = (σa(x), yi), where σa(x)ηabσb(x) measures the geodesic dis-
tance of a nearby point x from the minimal surface and σa

σ is the unit tangent vector to the same
geodesic at its starting point on the surface. In an expansion around the surface, this coordinate
system is:

xM (σα, yi) = σM − 1
2ΓMαβ(y)σασβ +O(σ3) . (C.17)

The advantage of the σ-coordinates is that they set the components ΓMαβ of the Christofel con-
nection to zero, so they constitute the analog of the local inertial frame for a surface.

For as long as we focus on a small neighborhood of the RT surface (σ+Kij|+, σ
−Kij|− � 1) the

action of the modular Hamiltonian is expected to be local and, therefore, it can be described by
a vector field ζM(λ)(σ) generating a geometric flow. About the surface, the modular flow generator
has the form

ζa(λ) = 2πεa bσb ,

ζi(λ) = 0 . (C.18)

The λ-derivative of the modular boost. Consider now a nearby entanglement wedge λ+δλ

whose RT surface is separated from that of λ by δσα(yi) in the orthogonal directions. Its modular
boost generator ζ̃M(λ+δλ) will have the same form (C.18) in the normal frame of the new wedge.
Let na M (ỹ;λ+ δλ) (a = 0, 1) be two orthonormal vectors at every point ỹi on the HRRT surface
of λ + δλ and denote by sa distances along na M . Then the map

(
σa(sa, ỹi), yi(sa, ỹi)

)
, at first

non-trivial order in the separation of the two surfaces, is:

σa = δσa(ỹ) + sa + δnb
asb +O(s2, δσ2, δn2) ,

yi = ỹi + δnb
isb +O(s2, δσ2, δn2) . (C.19)
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Here δna M ≡ na M (λ+ δλ)− na M (λ) and we have used the fact that, in the orthonormal gauge
we are using, the normal vectors on the λ surface are na M (λ) = δMa .

It is important to note that the choice of normal coordinates sa is not unique, since any local
Lorentz boost on the orthogonal plane

δnb
a → δnb

a + ω(ỹ)εb a (C.20)

will yield an equally acceptable pair of normal directions. There is, therefore, an ambiguity in
the map between the normal frames of two nearby minimal surfaces. This ambiguity will be
important in what follows.

Since the vector field ζ̃M(λ+δλ) has the form (C.18) in the sa-coordinates, we can use transfor-
mation (C.19) to map it back to the σ-coordinates and compute the difference of the two modular
boost generators:

δλζ
M = −δMa εa bδσb − δMa εa bδnc bσc + δna

M εa bσ
b

+O(s2, δσ2, δn2) . (C.21)

Zero-mode component of (C.21). The next step is to compute the zero mode component
of δλζM and subtract it to obtain an equation for the Lie bracket of ξ with ζλ. Applying the
projector (6.46) to the right hand side of (C.21), we find:

Ω (δλζ) = −1
2ε

ab∂a (ηbcδλζc)
∣∣∣
σa=0

= 0 , (C.22)

Zi (δλζ) = δλζ
i
∣∣∣
σa=0

= 0 . (C.23)

Equation (C.21) contains no zero mode components, so no extra subtraction is necessary.

The bulk modular connection. By plugging the result (C.21) into equation (6.40) we obtain
an equation for the diffeomorphism ξ that can be straightforwardly solved to get

ξM = −δMa δσa − δna M σa . (C.24)

The solution (C.24) is not unique, because the vector Lie bracket [ξ, ζ] has a kernel. The family
of solutions to (6.40) are related to (C.24) (and each other) by:

ξM → ξM + ω(ỹi)δMa εa b σ
b + δMi ζi0(ỹi) . (C.25)

As discussed in the main text, this is simply an addition of modular zero modes. The first term,
corresponding to a spatially varying boost along the orthogonal RT surface directions, can be
absorbed in the ambiguity (C.20) in the local choice of normal vectors on the RT surface of
λ+ δλ. The second term, in turn, allows the internal coordinate systems on λ and λ+ δλ to be
related by an infinitesimal element of the (d− 2)-dimensional surface diffeomorphim subgroup.

It instructive to transform the result (C.24) back to the general normal gauge xM using (C.17).
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Some direct computation yields the following general solution (up to zero modes):

ξM = −δMa δσa −
(
δna

M + ΓMab δσb
)
xa . (C.26)
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MOTS CLÉS

THÉORIE DES CORDES, DUALITÉ HOLOGRAPHIQUE, GRAVITÉ QUANTIQUE, ET INFORMATION QUANTIQUE.

RÉSUMÉ

LA DUALITÉ HOLOGRAPHIQUE DONNE UN MOYEN D’ENCODER CERTAINES INFORMATIONS QUANTIQUES DANS UNE

THÉORIE GRAVITATIONNELLE SEMI-CLASSIQUE. DANS CETTE THÈSE, NOUS COMMENÇONS PAR UNE ÉTUDE DE LA COM-

PLEXITÉ QUANTIQUE, EN CONSIDÉRANT L’UNIVERSALITÉ DE DEUX CONJECTURES HOLOGRAPHIQUES, “COMPLEXITÉ =

VOLUME” (CV) ET “COMPLEXITÉ = ACTION” (CA), EN TERMES D’UN MODÈLE AVEC UNE BRANE MINCE DANS ADS3.

NOTRE RÉSULTAT MONTRE QUE LA STRUCTURE DE DIVERGENCES POUR LES DEUX CAS N’EST PAS IDENTIQUE CAR LE

CV A UNE DIVERGENCE LOGARITHMIQUE SUPPLÉMENTAIRE DÉPENDANTE DE LA TENSION DE LA BRANE. BIEN QUE DES

CONSIDÉRATIONS PRÉLIMINAIRES SUR LA COMPLEXITÉ EN THÉORIE DES CHAMPS FAVORISENT LE CA, LA QUESTION DE

L’UNIVERSALITÉ RESTE OUVERTE. ENSUITE, NOUS PASSONS À UNE ÉTUDE SUR LA DÉPENDANCE DE LA COMPLEXITÉ

D’UN CIRCUIT QUANTIQUE DU CHOIX DES PORTES. UN CALCUL EXPLICITE DANS LE MODÈLE DE FERMIONS BOSON-

ISÉES EN DEUX DIMENSIONS MONTRE QUE L’INFLUENCE DU CHOIX DE L’ENSEMBLE DE PORTES EST DIFFÉRENTE POUR

DIFFÉRENTS SOUS-ENSEMBLES D’ÉTATS CONSIDÉRÉS: ELLE EST NON SIGNIFICATIVE POUR LES ÉTATS “COHÉRENTE

BOSONIQUE-GAUSSIEN FERMIONIQUE”, BIEN QUE RADICALEMENT DIFFÉRENT DANS LES ÉTATS BI-GAUSSIEN. PUIS,

NOUS RECONSIDÉRONS LE MODÈLE À BRANE MINCE DE MANIÈRE HOLOGRAPHIQUE CANONIQUE, CONSTATANT QUE LA

TENSION DE LA BRANE EST LIÉE AUX COEFFICIENTS DE TRANSPORT D’ÉNERGIE DÉFINIS DANS LE DCFT AINSI QU’À

L’ENTROPIE DE BORD SUR L’INTERFACE, CE QUI ÉTAIT CONNU DANS LA LITTÉRATURE. DANS LA DERNIÈRE PARTIE,

NOUS PROPOSONS UNE NOUVELLE QUANTITÉ GÉOMÉTRIQUE DANS LE BULK, DUELLE À LA COURBURE DE BERRY DANS

L’ESPACE DES HAMILTONIENS MODULAIRES DE BORD, QUI EST LA COURBURE DE RIEMANN AU VOISINAGE DE LA SUR-

FACE DE HUBENY-RANGAMANI-TAKAYANAGI. UNE VÉRIFICATION DE CETTE CONJECTURE A ÉTÉ FAITE EN ADS3 PUR QUI

MONTRE UN BON ACCORD EN RAISON DE LA SIMPLICITÉ ET DES SYMÉTRIES DU SYSTÈME.

ABSTRACT

THE HOLOGRAPHIC DUALITY RENDERS A WAY TO ENCODE CERTAIN QUANTUM INFORMATION IN A SEMI-CLASSICAL GRAV-

ITY THEORY. IN THIS THESIS, WE START WITH THE QUANTUM COMPLEXITY, CONSIDERING THE UNIVERSALITY OF ITS TWO

HOLOGRAPHIC CONJECTURES, “COMPLEXITY=VOLUME” (CV) AND “COMPLEXITY=ACTION” (CA), IN TERMS OF THE THIN

BRANE MODEL IN ADS3. OUR RESULT SHOWS THAT THE DIVERGENCE STRUCTURES FOR THE TWO ARE NOT IDENTICAL

AS CV HAS AN EXTRA BRANE TENSION DEPENDENT LOGARITHMIC DIVERGENCE. THOUGH PRELIMINARY CONSIDER-

ATIONS ON THE FIELD THEORY SIDE OF COMPLEXITY FAVOR CA, THE UNIVERSALITY QUESTION IS STILL KEPT OPEN.

NEXT WE MOVE TO A STUDY ON THE GATE DEPENDENCE OF CIRCUIT COMPLEXITY BY EXPLICIT CALCULATION IN THE

TWO-DIMENSIONAL BOSONIZED MODEL WHERE WE SHOW THAT THE INFLUENCE OF THE GATE SET CHOICE IS DIFFERENT

FOR DIFFERENT SUBSETS OF STATES UNDER CONSIDERATION, NOT SIGNIFICANT FOR “BOSONIC COHERENT-FERMIONIC

GAUSSIAN” CASE, WHILE DRAMATICALLY DIFFERENT IN THE BI-GAUSSIAN CASE. THEN, WE RECONSIDER THE THIN-

BRANE MODEL IN THE CANONICAL HOLOGRAPHIC MANNER, FINDING THAT THE BRANE TENSION IS RELATED TO THE EN-

ERGY TRANSPORT COEFFICIENTS DEFINED IN THE DCFT, IN ADDITION TO THE RELATION TO THE BOUNDARY ENTROPY OF

THE INTERFACE WHICH HAS BEEN COMMONLY ADVERTISED IN THE LITERATURE. IN THE LAST PART, WE PROPOSE A NEW

BULK GEOMETRIC QUANTITY DUAL TO THE BERRY CURVATURE IN THE SPACE OF BOUNDARY MODULAR HAMILTONIANS,

WHICH IS THE RIEMANN CURVATURE IN THE VICINITY OF THE HUBENY-RANGAMANI-TAKAYANAGI SURFACE. A SANITY

TEST HAS BEEN DONE IN PURE ADS3 WHICH SHOWS A NICE AGREEMENT DUE TO THE SIMPLICITY AND NICE SYMMETRIES

OF THIS SYSTEM.

KEYWORDS

STRING THEORY, HOLOGRAPHIC DUALITY, QUANTUM GRAVITY, AND QUANTUM INFORMATION.
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