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Abstract

The holographic duality renders a way to encode certain quantum information in a semi-classical
gravity theory. In this thesis, we start with the quantum complexity, considering the universality
of its two holographic conjectures, “Complexity=Volume” (CV) and “Complexity=Action” (CA),
in terms of the thin brane model in AdSs. Our result shows that the divergence structures for
the two are not identical as CV has an extra brane tension dependent logarithmic divergence.
Though preliminary considerations on the field theory side of complexity favor CA, the univer-
sality question is still kept open. Next we move to a study on the gate dependence of circuit
complexity by explicit calculation in the two-dimensional bosonized model where we show that
the influence of the gate set choice is different for different subsets of states under consideration,
not significant for “bosonic coherent-fermionic Gaussian” case, while dramatically different in the
bi-Gaussian case. Then, we reconsider the thin-brane model in the canonical holographic manner,
finding that the brane tension is related to the energy transport coefficients defined in the dCFT,
in addition to the relation to the boundary entropy of the interface which has been commonly
advertised in the literature. In the last part, we propose a new bulk geometric quantity dual
to the Berry curvature in the space of boundary modular Hamiltonians, which is the Riemann
curvature in the vicinity of the Hubeny-Rangamani-Takayanagi surface. A sanity test has been
done in pure AdSs which shows a nice agreement due to the simplicity and nice symmetries of
this system. The studies in this thesis have opened many interesting directions, which hopefully

will be explored in the future.
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Chapter 1

Introduction

Geometry has fascinated us as human beings ever since the start of the history of human’s
civilization, due to our curiosity about nature, who hides a large amount of information in a
certain geometric manner. If one ever thinks of the discovery of the first irrational number “/27,
which appears to be the length of the hypotenuse of a right triangle with legs of length 1, or
Archimedes’ constant “7”, which acts as the ratio of a circle’s circumference to its diameter,
one would be amazed at how nature could encode such important information with beauty and
simplicity. It is safe to say that, the deeper we understand about our nature, the more information

we are able to extract from its associated geometries, and vice versa.

The 20th century has witnessed a breakthrough in the understanding of gravity, a fundamen-
tal piece of our nature, initiated by the unconventional work of Einstein and Grofiman on the
generalized theory of relativity in 1915 [1]. This revolutionary theory refines Newton’s outlook
on the split of space and time by treating them as a whole and on equal footing, which leads to
a novel understanding of the gravitation as the geometric property of spacetime. As have been
put by Misner, Thorne and Wheeler, “space tells matter how to move, matter tells space how to
curve” [2], General Relativity beautifully illustrated how the dynamics of the spacetime geometry

conveys the message from nature in terms of gravitation.

Another pillar that can not be circumvented in the last century is the microscopic understand-
ing of many macroscopic phenomena, for instance, the photonic explanation of photoelectric effect
in 1905 by Einstein [3], the orbital model for the spectral of emission lines of atomic hydrogen
in 1913 by Bohr [4] and so on so forth, which updated the classical mechanics to the quantum
level through further developments, forming a modern subject named Quantum Mechanics. A
natural question one might quest on the lessons from General Relativity is that, does this new
type of theory share some common features such that it have some geometric interpretation as
well? To answer this question would require a particular theory which incorporates both General
Relativity and Quantum Mechanics in the same framework. In the sixties, it might still be a pie

in the sky though both theories have been mathematically formulated.

Nevertheless, this among other questions stimulated the search for a new theory which can
depict the quantum behaviours of gravity as well as a complete unified theory for everything.
A prominent candidate theory then emerged starting from the late sixties, by generalizing the

point-like particle to one-dimensional fundamental vibrating strings living in tiny scales, which



2 CHAPTER 1. INTRODUCTION

can give rise to the desired properties of standard particles, such as charge, mass, spin etc., at
the observational level and automatically contains the graviton, the quantum of gravity as one of
its oscillating modes by construction. These fascinating features of the so called String Theory
have attracted vast investigations, including the extension to supersymmetric case which relates
the bosonic system to the fermionic one via a symmetry transformation, thus laid a fairly good
foundation for building a rather concrete connection between General Relativity and Quantum

Mechanics.

It was not until 1997, when Maldacena proposed a correspondence between the type IIB
supergravity theory in the five-dimensional anti-de Sitter (AdS) space with a negative cosmolog-
ical constant compactified on a five-sphere, and the four-dimensional superconformal Yang-Mills
theory with four supersymmetries [5], that things become more tractable. The novel feature of
this conjecture is that it offers a new perspective to understand the relation between the grav-
ity theory and quantum field theory which are related by the so called holographic duality' or
gauge/gravity duality. In this setup, a (d + 1)-dimensional conformal field theory (CFT) which
roughly speaking is a quantum field theory with additional scale invariance, is regarded to live
on the asymptotic boundary of the (d + 2)-dimensional AdS spacetime. Therefore, the boundary
CFT can be taken on as the projection of the gravity theory in one higher dimension, hence
the name holographic duality or AdS/CFT correspondence. A very successful application of
this duality was the calculation on the transport coefficient, more precisely the shear viscosity
of the strongly correlated quark-gluon plasma system at finite temperature by Policastro, Son
and Starinets [9], whose result is remarkably in the same order of magnitude as the experimental
measurement in RHIC [10], while the other perturbative analysis leads to infinity. With a huge
amount of further tests being made to show the validity of the holographic duality, it has become
commonly accepted as a principle among considerably many theoretical physicists, which lays the
foundation for the present dissertation.

Due to this established duality, it becomes rather natural to endow some information about
the quantum systems with the geometric interpretations, through the corresponding suitable
quantities in the spacetime manifold. In 2006, after almost ten years of the birth of the holographic
duality, Ryu and Takayanagi made the first trial towards this direction in their seminal work [11]
by relating the entanglement entropy, a measure of the degrees of quantum entanglement between
a many-body subsystem with its complement, to a certain bulk? codimensional-two extremal
surface anchored to the boundary subregion where the entanglement entropy is evaluated. Their
intuition comes from the counting of Black Hole entropy via the Bekenstein-Hawking formula,
where gravitational entropy is proportional to the area of the Black Hole horizon. In the context of
AdS3/CFTy correspondence, the bulk geometric quantity to encode the boundary entanglement
pattern is simply the length of a spatial geodesic anchored to the interval considered, with the

proportionality factor being a quarter of the inverse Newton’s constant.

The success of understanding the quantum entanglement in the holographic manner then

1Some preliminary considerations on viewing the universe as a hologram have been articulated by Thorn [6], 't
Hooft [7] and Susskind [8] in the early nineties.

2In the context of holographic duality, “bulk” means the spacetime where the gravity theory is living as opposed
to the asymptotic AdS boundary where the CFT is living. Usually the asymptotic boundary is reached by following
a spatial coordinate to one of its limits in the bulk frame.



initiated many researches along the line to decode the quantum information via the holographic
principle in the semi-classical gravitational system, such as the holographic derivation of the
entropic inequalities [12,13], butterfly effect in Black hole system [14], gravitational dual of Rényi
Entropy [15] and so on so forth. Thus in a way it reinforces the geometric essence of certain
quantum theories and to some degree tightens the connections between the gravity theory and
the quantum theory. The current dissertation aims to continue to explore these connections, either
to analyse some existing conjectured correspondences or to propose new geometric quantities that

encode the quantum information in the gravitational language.

The first part of the thesis focuses on a quantity arising from the quantum computing theory,
called the quantum complexity, defined as the minimal number of gates required to conduct
a quantum computation task which starts from a reference state and ends approximately in a
target state. In 2014, Susskind et al proposed a connection to the gravity theory, arguing that
this quantity could be related to a bulk codimension-one volume in AdS spacetime [16], or the
action in a certain bulk codimension-zero region called Wheeler-DeWitt patch [17] which was
conjectured in the following year. The “volume” conjecture is named as “Complexity=Volume”
(CV) while the “action” conjecture is named as “Complexity=Action” (CA), whether they are
universally equivalent remains an unknown issue. Therefore, in Chapter 3 based on [18], the
universality of the two proposals was studied by introducing a thin tensile AdSy brane in the
middle of AdSs, where the brane acts as a defect and leads to an extra volume in its transverse
direction. The results show that an extra tension dependent log divergence is present for CV
while no tension-dependent divergence appears for CA. Through a preliminary consideration of
the complexity of a free scalar model on the boundary, it seems that CA rather than CV is more
favoured. However, a definite claim of the universality of the current holographic conjectures

requires further investigation, which is left to the future studies.

As an episode, in Chapter 4 based on [19], we reconsider the thin AdS; brane model in the
canonical holographic manner, assuming it is indeed the bulk dual of a generic defect CFT5. On
the dCFT side, an interesting property arises in terms of the two-point functions of the stress
energy tensor which are universally fixed with only one new parameter other than the central
charges of the CFTs on the two sides of the defect if they are generally different from each other.
Furthermore, a scattering process could be set up with this parameter encoding the information
for the energy transport coefficients. Through our analysis on the scattering of the boundary
gravitons, we give the first calculation to relate the brane tension to the reflection/transmission
coefficients. The limits of the brane setup introduces both an upper bound and a lower bound to
the those coefficients where the lower bound for the reflection coefficient coincides with the one
from the average null energy condition (ANEC) while the upper bound tightens the result from
ANEC.

In Chapter 5 based on [20], the attention is drawn to the field theory consideration of the
quantum complexity, since to understand the holographic conjectures to a better level requires
a clearer understanding of the boundary theory, like the process for understanding holographic
entanglement entropy. A known fact in the consideration of quantum complexity is that, it is
highly influenced by the choices of gates, states and penalty factor. In the previous literature,

there is no work that has considered the dependence of the gates choice explicitly, hence giving
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the spirit for this chapter where the work was performed in the “1 4 1” free-fermion, equivalently
free-boson model by calculating the relative complexity between the same reference state and
target state, using two different sets of operators (gates) which are related non-linearly through
the bosonisation formula. As limited by the computability, the states under consideration are
either of coherent type or Gaussian type, where two methods are available for the computation,
the Nielsen method and the Fubini-Study (FS) method. Both methods are based on the idea
of geometrizing the problem and finding the shortest path, in which FS geometrizes the states
on a manifold while Nielsen geometrizes the unitary transformations on the states. The analysis
shows that the quantum complexity is highly sensitive to the gate choice for the “bosonic coherent-
fermionic Gaussian” states while non-significantly impacted by the “bosonic Gaussian-fermionic
Gaussian” states.

Though many bulk geometric quantities have been endowed with some meaning from quan-
tum information, there is on another different geometric object, which is very simple yet poorly
understood in holography, is the curvature of the bulk spacetime. In Chapter 6 based on [21],
special attention is payed to understand this quantity. The inspirations come from the following:
in a gravitational system, when a vector, representing a frame orientation, is parallel transported
along a loop, it differs from its initial orientation by an amount governed by the curvature of
the spacetime manifold; similarly, when a quantum state is transported along a loop in Hilbert
space, it will incur an extra phase called Berry phase, which is an integral of Berry curvature.
Based on those, a pioneering proposal was made by claiming the duality between those two cur-
vatures, through careful analysis on the definition of the corresponding connections for the two
kinds of parallel transports. In addition, the consistency of the conjecture was tested in a pure
AdS3/CFTy setup, taking advantage of the equivalence between the local isometry of the AdSs
and global conformal symmetry of the CFTs. Potentially, this part will provide a new test for
the emergence of bulk geometry at a semi-classical level.

In the last part of the dissertation, Chapter 7, a summary of the results obtained during the

doctorate is presented, thus putting a beautiful end to the doctoral study of the author.



Chapter 2

Fundamentals of Holography and its
Applications

Holography, as its name suggests, is the study of making holograms where a one-dimension
higher system could be reconstructed by a lower system, specifically in the current context, it
is regarded as a synonym of the AdS/CFT correspondence. As an attractive subject which has
been developed for more than twenty years, it has become a large field of study, which roughly
can be divided into two categories based on the approaches to study the subject. The first
one is the top-down approach, where clear descriptions on both sides are available from the UV
complete theory perspective (superstring theory or supergravity theory), as well as the existence
of precise matching of the symmetries, spectra, coupling constants, amplitudes etc. The first
prominent example is given by Maldacena [5], and later by Witten [22] and Gubser, Klebanov
and Polyackov [23] stating that

4D N =4, SU(N) Yang-Mills theory = Type IIB string theory on AdSs x S°, (2.1)

which is realized through N —stack of coincident D3 branes in the ten-dimensional spacetime
whose near horizon geometry is AdSs x S°, while the low energy dynamics of the brane volumes
is governed by the N/ = 4 U(N) gauge theory!. A quick look at the symmetries on both sides
reveals the consistency of the duality, since on the left side, we have the SO(4, 2) global conformal
symmetry as well as the global SU(4) R-symmetry, while on the right side, these symmetries
correspond to the isometries of the full spacetime, SO(4,2) x SO(6), which are equivalent to each
other, since SO(6) = SU(4). Notably, the duality relates the parameters on both sides in the
following manner,

(L)1) = 01 )a/? = dmg,N = g3 N = )\, (2.2)

where A is the 't Hooft coupling and gy is the coupling for the term —%%TrFWF ¥ in the
YM

YM theory, Is is the string length related to the string tension (27a/)~! as o = 12 and g is
the string coupling. To have a classical gravity description requires that N — oo and A — o0,

physically this means that we consider the planar limit of a strongly coupled gauge theory. For

!The missing U(1) part represents the overall collective motion of the stack of branes, which moves away in the
near horizon limit, thus can be omitted [24].
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more interesting aspects and details on this duality or some other top-down models, one can refer
to the thorough AGMOO review [25].

The second approach is the opposite, called bottom-up approach, where we consider an effective
AdS gravity theory that is dual to a one dimension lower quantum field theory, with the belief
that there exists a UV completed theory in higher dimensions that can make precise the duality,
usually a ten-dimensional superstring theory or eleven-dimensional M-theory if can be consistently
constructed. This gives an advantage of this approach, since one only needs to consider the
necessary relavant bulk ingredients without complicating the system by finding a consistent theory
including the compactified directions. Considering its nice features, the bottom-up approach will
be the main melody of the current thesis.

In the following sections, I will start with some basic ingredients about the holographic duality,
with emphasis on the geometric features of the AdS space and the most useful extrapolating
method to obtain the CFT correlation functions. After that, I will introduce the application of

the holographic duality on the subjects that have been studied in this thesis.

2.1 Basic Ingredients of Holographic Duality

In this part, I only include the most necessary ingredients that will be used in the current thesis.
For more details, one can refer to the thorough review [25] by Aharony, Gubser, Maldacena,

Ooguri and Oz, or lecture notes by, for example, Skenderis [26] and Polchinski [24].

2.1.1 A Glimpse of the Anti-de Sitter Space

As is known, the AdS;11 space is a maximally symmetric spacetime, which means that its Rie-

mann tensor is fixed by the metric tensor g, up to a total factor related to the AdS scale ¢

1
Roped = —[g(gacgbd - gadgbc) ) (2-3)

where a runs from 0 to d. It has the right scale dimension and is antisymmetric under the change

of a <» c and b <+ d and symmetric under the exchange of {ab} <> {cd} as expected. Tracing
d(d+1)

twice of the indices, we have the Ricci scale R = —=77~, which simply tells us that AdS space
has a constant negative curvature, resulting in a negative cosmological constant A = d%;;” when

applying the Einstein equation.

The isometry group for the AdS space as aforementioned is SO(d, 2), which can also be looked
as the Lorentz group for (d 4+ 2)-Minkowski space with two negative signatures. In fact, one can
embed AdSgy1 space as a hyperboloid surface in the (d + 2)-Minkowski space with the following
surface equation .

—Xo+ Y XP-XG, =1, (2.4)
i=1
where XM (M = 0,...,d + 1) are the Minkowski coordinates. Through different coordinate

2

choices®, one would get different patches of the AdS space. Notably, there is the global embedding,

2There are at least three common coordinate choices, global, Poincaré and Rindler. In the main text, the first
two are introduced due to the relevance for the later chapters, if one is interested in the Rindler coordinates, one
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which is a result of the following relation between the global AdS coordinates with the Minkowski

coordinates,
Xog=~VcoshpcosT, Xgzi1=~coshpsinT,
X; ={sinhpsinf;sinby...sinf;_ycosb; (i=1,...,d—1), (2.5)
X4 =/{sinh psinfysinfy...sin0; 5sinf,; 1

where 6; € [0,7] for i =1,...,d — 1 and 041 € [0,27). To cover the hyperboloid once, one can

take p > 0 and 7 € [0, 27), hence the name global coordinates, which leads to the metric
ds? = £?(— cosh? pdr? + dp® + sinh? pdQ?) (2.6)

with € being all the spherical coordinates and the asymptotic boundary locates at p — oo.
Another embedding worth mentioning is given by the Poincaré coordinate, which is often used

with the embedding relation

Xo=2<1+22(€ + —t)>7 Xar1=—,
i bt d_ * Lo o 2

which covers a patch of the AdS space, with the asymptotic boundary located at z — 0. The

Poincaré metric is given by
2

L
ds® = ?(dz2 + Nudatdx”), (2.8)
where one see clearly that the asymptotic boundary is conformally flat. By a coordinate change
tan# = sinh p (6 € [0, 7/2) for the global coordinate (2.6), it is easy to see the conformal flatness
when approaching the asymptotic boundary # — 7 /2. The consistency of the duality proposal is

self-revealed in this manner where on the boundary lives a conformal field theory.

Figure 2.1: Massive particles moving in AdS are attracted towards the center, as
illustrated by two timelike geodesics in AdSs, one begins at A = 0 while the other is
the shifted one with ¢ displacement.

As AdS space has a negative cosmological constant, it is an attractor, which can be seen

could refer to, for example the appendix of [27].
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from the trajectory of a massive particle in the global coordinates. To obtain that trajectory,
in principle, one has to solve the timelike geodesic equation or the equivalent Euler-Lagrangian
equation, however, thanks to the embedding picture, we could use a simpler manner to obtain a
glimpse of the trajectory without solving the second-order differential equation. The observation

is that in (2.6), a known timelike geodesic is
p=0, T=1, (2.9)

where X is the affine parameter. Then one can use the isometries to obtain all the timelike
geodesics. We can see the simplest example explicitly in the AdS, space, if we perform a boost

n in (01) direction in the embedding space, which means

cos A cos A coshn cosh pcosT
1 0 | = 2] cosAsinhn | =4 sinh p , (2.10)
sin A sin A cosh psin T

expressing p, 7 in terms of A, 7 within half a period 7 € [0, 7] where 7(A = 0) = 0 gives,

p = sinh ™! (cos Asinh 7)), (2.11)
tan A

= tan"! : 2.12

T an <cosh 17> ( )

The above solution gives a set of new timelike geodesics in AdSs. In a full period 7 € [0, 27], one
see that the geodesic will emanate from the center p = 0, then at some point turn back, go pass
the centeral axis to the other side, later turn back again and end on the central axis, as Fig 2.1
shows. We can also get another geodesic from this one by performing a shift § in 7 direction,
which amounts to a rotation in (02) directions in the embedding space. Taking advantages of all
the isometries, one is able to obtain all the timelike geodesics for an AdS space with arbitrary
dimensions, where anyone of those can reveal the attracting property of the AdS space due to its

negative cosmological constant.

2.1.2 CFT Correlation functions via the Duality

Holography realizes a deep connection between the low energy supergravity in AdS space and
a CFT theory living on its boundary. From a CFT perspective, one might wonder how the
correlation functions are encoded in the gravity theory, since those correlators carry the whole
CFT data. This piece of hidden information has been dug out by two independent works, Witten
[22] and Gubser, Klebanov and Polyakov [23], giving rise to the name GKPW relation. The idea
is to identify the generating functional of the CFT on the boundary side to the bulk gravity action
at evaluated at the saddle point?, subject to the asymptotical Dirichlet boundary condition for
the bulk fields which act as sources for the gauge invariant CF'T operators. In practice, the saddle

point is approximated by the solution to the equation of motion of the field respecting the chosen

3A subtlety might arise when there is more than one saddle points to extremize the gravity action, then one
solution is to consider the most important one. However, in the following parts of the thesis, this issue will not be
encountered.
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boundary condition. In the Euclidean signature®, the relation can be formulated as

Worrloo] =~ (exp ( [ an0) >CFT — petremal(g, — ] (2.13)

where ¢q is the asymptotic boundary condition for the bulk field ®, which carries spin index
implicitly. Holographic dictionary shows that the bulk scalar field is dual to the boundary scalar
field, the bulk gauge field is dual to the boundary conserved current, the bulk graviton is dual
to the boundary stress energy tensor, etc. In this manner, the connected CFT correlation func-
tions are given by the functional derivatives of the extremized gravity action with respect to its
boundary value,

§n extremal [<I) 5= ¢0]

<O(Z‘1)O($2) e (’)(l’n))c = _5¢0(x1g)?;;0(x2) ... 5¢0(Q;n)

: 2.14
s (2.14)

For higher (than two) correlation functions, the issue becomes more complicated. In the following
part of this section, we will consider an example with free massive scalar in the bulk, and get an

idea how to obtain its two-point correlator holographically.

An example: two-point function for a massive scalar field in the bulk

Now as an illustration to obtain the two point function holographically, we will consider the

canonical example with a free scalar field in the bulk,

1 1
I= 3 /dda:dz\/ﬁqb(x)(—ﬂ +m?)p(x) + 5 /E)A < Az /70, p(x) + It (2.15)
d
where the second integral is the boundary action and the third one is the counter term needed to
make the action finite. Varying the Lagrangian with respect to ¢ gives the equation of motion,
1
V9

A similar equation of the above also appears when considering spin fields like a vector field or

0a(9™\/90p) = m*¢ (2.16)

graviton in the AdS [28], that’s the reason we will focus on this as an illustration. The back
reaction of the scalar field to the geometry can be neglected since it is of order O(Gx,l) with Gy
being the Newton’s constant in (d + 1) dimension. Therefore, we are safe to use the metric for
pure AdS. In the following, we will use the Euclidean version of the Poincaré coordinate (2.8) to

give the explicit result, substituting into the equation of motion (2.16) gives

(o ((O) 0)or Sarewomo.

4The advantage of working in the Euclidean signature is that one can avoid the subtlety of between the advanced
and retarded Green functions.
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whose solution contains two branches, depending on the leading power of z — 0. The full ansatz

can be written as a power series of the radial coordinate z

Pz, ) = 22 (¢o(x) + 22pa(x) + ... ) + 25 (dou () + 22 o) +...) (2.18)
¢ b+

where Ay = 4 £ v with v = / % + m?2¢% and ¢2(x) stands for two-derivative term which can
actually be obtained explicitly as well as the other higher derivative terms. Let’s assume that
v € Z in the following analysis. One can see that ¢_ is the dominant branch and contains the
non-normalisable mode when approaching the asymptotic boundary if A_ < 0 < A%, thus
most of the time ¢ is identified as the source for the dual CFT operator, as well as the boundary
condition for the bulk scalar. It is not hard to see that when substituting the ansatz (2.18) back to
the action (2.15) assuming some conterterms like a quadratic term in ¢ on the boundary [26], one

could obtain the expectation value of the boundary dual operator O(z) by using the description
(2.14),

0 lon-shell _
O(z)) = —=22% — AL — d) (7 2o, (2), 2.19
(O@)) = =52l = (20— d) 1 2) (219)
which shows that, the asymptotically leading power the other branch ¢, works as the response to
the source ¢ and provides one-point function in presence of the source. Once we have identified

the source, in principle, one could write the bulk solution as an integral of the source

0(z,2) = [ d'yk (@ 5y)60(y) (220

where K (z, z;y) is the alleged bulk-to-boundary propagator, encoding the way how the boundary

source ¢y propagates into the bulk. The explicit form for K(z, z;y) can be obtained by solving

7

the scalar e.o.m” assuming a localized boundary source ¢o(z) = 6(® (z — 2/), given by

—d2T (A1) 254

K2 = 06) @ @S

(2.21)

one sees that when z — 0, K(z, z;y) — 0 as expected. Finally, one arrives the two-point function

©wow) = SAD — oa, — eS8 on, gl Lo

One can read the conformal dimension of the scalar operator from the power of the proper distance

2.22)

between the two operators, which is A, the unitarity bound requires that Ay is bounded from
below, i.e., A > d/2 — 1, as in [29,30].

5This relation is obtained assuming m? > 0, in general, one only has to work on the condition m? > —d/4,
known as the Breitenlohner-Freedman stability bound, though the leading asymptotic mode in ¢_ is no longer
necessarily non-normalizable.

In fact, ¢2.(x) can be expressed as an integral of the source ¢o(z) where ¢o, () = fddyF(a:,y)qbo(x), with
F(z,y) = lim,_,0 2 2+ K (z, 2; ).

7An interesting way to get this Green function using symmetry argument by Witten can be found in his
paper [22].
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2.2 Holography and Two-Dimensional Defect CFT

In the study of AdS/CFT correspondence, a special case arises when the bulk dimension is
“2+1” whose dual boundary theory is the “14+1” conformal field theory. The speciality in this
dimension is that there are infinitely many conserved charges due to an enhancement of global
SL(2,R) x SL(2,R) symmetry to two sets of local Virasoro symmtries whose generators satisfy
the Virasoro algebra, the unique central extension of Witt algebra [31]. In the bulk side, if one
choose the asymptotic boundary conditions for the metric as Brown and Henneaux did in [32],
the asymptotic symmetries will be enlarged as well to the complete two dimensional conformal
symmetries. In this manner, the central charge is identified as the ratio of the AdS radius over
Newton’s constant for Einstein gravity, ¢ = %. For a general higher derivative theory of AdSs
gravity taking into account the quantum corrections, the central charge has a more covariant form
c= % gab% [33,34], one sees it coincides with Brown-Henneaux formula for Einstein gravity.

While the above should be regarded as a bottom-up consideration of the correspondence,
the AdS; geometry could also be constructed from a top-down approach, i.e., have an origin
of an underlined string theory. The most well known realization comes from the near horizon
geometry of D1-D5 brane system. Supposing we have a type IIB string theory on the background
RV x S' x M, with N5 D5-branes wrapped on S' x M, while N; Dl-branes wrapped on the
S1, taking the near horizon limit yields the ten dimensional geometry AdSs x S3 x My with
M, being T* or K3 [25,35,36]. The central charge can be obtained through an analysis of the
anomaly on the field theory living on D1-D5 branes whose IR fixed point is the dual conformal
field theory. In [25], the central charge is ¢ = 6(k, + 1) = 6(N1N5 + 1), which is the same as
six times the dimension of the instanton (D1 brane) moduli space for a large number of branes.
Substituting the values for AdSs radius ¢ = (96N1N5)1/ 4], and the three dimensional Newton’s
constant G®) = gl%/(443), one recovers the Brown-Henneaux central charge. Some recent process
on understanding the duality for My = S? x S could be found, for example [37,38] and references
therein. However, this is outside the scope of the current thesis and we will not use too much
space to talk about that.

In the following part of this section, we will consider only from the bottom-up perspective
without questioning if there is a microscopic string theory. To start with, we will make some brief
introductions on the holographic Weyl Anomaly and then reach the 2D defect CFT and its energy
transport coefficients. A careful holographic consideration on how to obtain those coefficients and

the bounds associated will be discussed in Chapter 4.

2.2.1 Holographic Weyl Anomaly

It is known that in conformal field theories, there exists Weyl anomalies in even spacetime dimen-
sions (d = 2n) which can be described purely in terms of geometric quantities [39], falling into
two types of classes, type A anomaly and type B anomaly.® Type A is proportional to the Euler
density of the dimension E4y which is a topological term, in the sense that its integral over the

spacetime manifold is the Euler characteristic, hence scale invariant. Type B constitutes of all

8When the spacetime has a boundary, there will be some corrections on from the boundary and there can also
be integral Weyl anomaly in odd dimensions, one can see, for example [40,41].
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the conformal scalar polynomials constructed by the Weyl tensor? and its derivatives, denoted as
I(g). There is also a third class consisting of total derivatives, however, it is trivial since it can be
removed by adding finite local counterterms to the action [39,42,43]. Hence the universal form

for the expectation value of the trace of the stress tensor can be written as
(T",) = c1E@q) + cal(q) + total derivatives. (2.24)

In d = 4, this universal form can be written as [44]

b

2
1
By = 535 |[B* — 4R R + Rapea R (2.26)
1 abcd
1(4) = - 1672 CabcdC ) (227)

where a and b are called charges as an analog of 2d CFT and in [45] it has been proved that
ayy > agg for all unitary RG flows from a critical point to another one, which is called a—theorem.
In d = 2, the Weyl tensor vanishes identically and the Euler density is proportional to the Ricci
scalar, the trace anomaly gives .

(T%,) = —%R, (2.28)
where ¢ is the central charge and was proven by Zamolodchikov [46] to decrease monotonically
as RG flows to the IR fixed point, 7.e., the c—theorem.

To see how the conformal anomaly can appear from the holographic setup, we have to rely on
the GKPW relation (2.13) and consider the metric field or the graviton since it is the gravitational
partner of the stress energy tensor according to the holographic dictionary. Following [42,47], if
one adopts the Fefferman-Graham Gauge for the metric as following

2

1 1
ds* = 4—p2dp2 + ;gw/dm‘“dm” (2.29)

where p is the radial direction and the conformal boundary is located as p — 0. Since our
consideration is the conformal anomaly, we can turn off the other fields, then the vacuum Einstein

equation is solved order by order in p such that

9= Y(0) + PY(2) + ,029(4) +..., for d odd, (2'30)
g = g(o) + pg(2) + -+ pd/2g(d) + pd/2 ll’lph(d) + O(pd/2+1) N for d even (231)
where Tr(g(_oi g(ay) is covariant while Tr(g(_oih(d)) vanishes identically [42]. One thing worth noting

is that in d = 2 case, the metric expansion doesn’t contain the logarithmic term as h(g) vanishes

which is shown in the appendix A of [47]. In [48], it has been shown that the metric expansion

9The Weyl tensor is defined as

Cabcd = Rabcd + (Pbc Gad + Pad 9Gbe — Lac Gvd — Pbd gac) (223)

with P,, = 75 (Rab — Q(Tﬁ'ngab). One sees that the Weyl tensor has the same symmetries as Riemann tensor

under the exchange of indices.
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terminates at g(4) due to that the Weyl tensor vanishes identically at this very dimension. Since
the bulk volume is infinite, one needs to introduce a regularization scale p = € and evaluate
the gravitational action'® till this cutoff surface. If we pause the integration over the boundary
coordinates z* for the moment, and only do the integral in terms of the radial direction, we can

obtain the boundary Lagrangian containing both divergent terms in € and finite terms,

1 _ _ _
L= W /g(o) (6 d/2a(0) +e€ d/2+1a(2) + -4 € 1/2a(d71)) + Lﬁnitea d Odd, (233)
1

—d/2

= W g(U) (6 a(o) + -4 € a(d_2) —Ine a(d)) + ﬁﬁnite, d even, (234)

where Lgnite collects all the finite terms as € — 0 and the log divergence comes only from the
bulk integral. Since the whole Lagrangian and the divergent terms proportional to the negative
powers of € are invariant under the combined transformations 59(0) = 250g(0) and de = 2d00¢€
with constant rescaling, the variation of the finite Lagrangian gains a finite piece from the log
divergent term in even dimensions (see eq. (2.34)), which will be identified with the conformal

anomaly )

In d = 2, one recovers (2.28) by using the Brown-Henneaux formula with a, = €Tr(g(0%g(2)).
One will see in [49] that the Weyl anomaly contains all the information one needs to obtain the
correct two point functions of the stress energy tensor, both with and without defects, as in two

dimension every metric is conformally equivalent.

2.2.2 2D Defect CFT and Energy Transport Coefficients

Two dimensional conformal field theory, widely studied, is an appealing subject due to its infinite-
dimensional symmetries [31]. A natural way to break its symmetries can be adopted by introduc-
ing a defect in the spacetime. A certain class of defect preserving half of the symmetries is the
main interest in this dissertation, which is called conformal defect or conformal interfaces. On
the two sides of the interface, two generically different CFTs, possibly with two different central
charges can live,, as shown in Figure 2.2, subject to certain boundary conditions. In physical
language, this boundary condition amounts to have the conservation of the energy across the in-
terface, which means the off-diagonal component of the stress energy tensor T} in the Euclidean!!
flat metric ds?> = da? + dr? is continuous across the interface. In holomorphic coordinates, the

above continuity can be expressed as

lim Tr(x+ i) —Tp(x —it) = lim Tr(z +it) — Tr(x —iT), (2.36)

z—0— z—0t

197f we follow [42], the gravitational action is the following,

1

which contains the bulk Einstein-Hilbert term and some boundary terms including the Gibbons-Hawking-York
term.
1 The same works in Lorentzian signature upon the Wick rotation 7 — —it.
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where the unbarred and barred notation are the usual notations for the left and right movers,
which are holomorphic and antiholomorphic functions in terms of z = z + 47 and z = x —
iT. Two extremal cases are worth noting, one corresponds to the totally transmissive interface
(topological interface) where each component of the stress energy tensor is continuous by itself,
i.e., Ty (i) = Tr(i7) and Ty (i) = Tr(i7), the other marks the totally reflective interface where

the two theories decouple from each other, in terms of the stress energy tensor, the relation is

Ty p(it) = Tp p(—iT).

CFTy, CFTx

Figure 2.2: Two generically different CFTs, CFTy and CFTpg in the geographic
sense, are glued together along the interface, the black line, which acts as a defect in
the whole theory.

If one perform a folding trick, the interface then becomes the boundary of the system, rep-
resented by a boundary state |B) in the bulk Hilbert space which is the tensor product of the
Hilbert spaces of the two CFTs [50]. Continuity relation (2.36) then becomes

(L +L%)— (L', +1%,)))|B) =0, (2.37)

which allows for an infinite-dimensional conformal symmetry in the defect system. With such a

class of boundary states, one can define a scattering matrix!'?

(0] L5 T5 |B)
M = —=—=—- 2.38
where the indices are either “L” or “R” and it is normalized by the g—factor, g = (0|B), which
gives the degeneracy of the boundary state on the vacuum state. The above matrix elements can

be further used to define two transport coefficients of the energy in the following manner,

2 ¢ + 2crcrwp +
R=—"— (Mys + Mgg) = L2 10 (2.39)
cL+cr (cr +cRr)
2 2crer (1 —wp)
T 2 (Mup+ Mpy) = 2CLCRUE — %) 2.40
crL +cr (Mr aL) (cL + cr)? (240

where an extra parameter wy, appears and the reflection and transmission coefficients add up
to one,i.e., R + T = 1. The defect characterizing parameter w;, is related to the only new
parameter appearing in the two-point function of the left and right (anti-)holomorphic stress

tensors, (TpTR) ~ (TrTRr) ~ crr/2 as cir = crer(l — wp) [51]. In terms of the transport

20ne can also use level-n generator to define the scattering matrix, however, (0| L, L |B) = w (0| LY L3 |B)
which can be easily checked by acting (0| L}, L7, ,; on equation (2.37) as indicated in [50].
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coefficients, the totally transmissive(reflective) case has 7 = 1(R = 1) respectively. In Chapter 4,
one will see how these transport coefficients arise holographically through analyzing the scattering
process on the boundary. More discussions on obtaining the two-point functions holographically

will be presented in [49].

To get an intuition of the energy transport coefficients, one could refer to [52] for a free boson
consideration, where the transport coefficients are determined by the boundary condition of the
boson across the interface. For free fermions, one can refer to [50,51]. Some other interesting

consideration on defining the transmission-reflection algebra can be found, for example in [53].

2.3 Quantum Complexity and the Holographic Conjectures

In the last few years a lot of effort has been devoted to understanding the relation between certain
properties of complex quantum systems (such as thermalization, scrambling, and chaos) and their
counterparts on the holographically dual gravitational side. The quest for such relations dates
back to the discovery of the holographic duality in 1997 [5], but a more recent facet of this story
is the incorporation of quantum information-theoretic aspects on top of more traditional physics

considerations.

Thinking of black holes as quantum computers, along the lines first advocated by [54], Susskind
and collaborators have argued that some of the puzzles associated to the region behind the horizon
of black holes could be clarified if one considers a quantity associated to the quantum state, that
they named quantum complexity, which is the main topic of this section. I will start with some
general discussion about this quantity, then in Section 2.3.1, the geometric interpretations in the
holographic setup will be introduced, later in Section 2.3.2 we will see some recent developments

on the field theory definition of quantum complexity.

As is known, this quantity is a concept borrowed from quantum computation theory as a means
of characterizing the difficulty (in the sense of the amount of resources needed) of performing a
task on a quantum computer; more precisely, if the task can be described as producing a certain
quantum state [¢pp) from a given initial state |1)g) using a circuit made of elementary unitary
operations (gates), the quantum complexity can be defined as the minimum number of gates

required for such a circuit
C(|Yr) — |1r)) = min # of gates required for the circuit . (2.41)

Therefore, it if of no surprise that quantum complexity will be dependent on the choices of the
states, the gate set, as well as the penalty factor, a weight of the cost assigned to gates. In
Chapter 5, we will see explicitly how the gate sets will influence this quantity in a bosonized
model. As of now, let me use a simple example of two qubits to get the readers a feeling of the

gates dependence.
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A simple example of two qubits

Let’s consider the following elementary gates
1
V2

where A is a gate that will map a qubit to a superposition of the spin up and down depending

A:ln) — (J0) + (=)™ (1)), B:]0) =0 or |1y = [1x), C:|)—=e?]) (242

on the type of the qubit acted on, with n = 0,1, B is a gate that will map the second qubit to
itself or its opposite depending on the spin of the first qubit, and C' is a gate that will assign a
phase to the qubit acted on. For the reference and target states, we consider the following

1

V2

by two simple set of gates, the corresponding complexity is

[Yr) =100),  [¢r) = —=(]00) —[11)), (2.43)

gate set = {A,B}: C=o00; gateset={A,B,C}: C=3. (2.44)

Applying the full set of gates, we obtained a finite value of complexity by using each of the gate
once: first acting A on the first qubit, followed by B, finally acting C' on the second qubit with
the phase to be ¢ = 7. If the gate set does not contain C, no matter how one tries, the target
state cannot be reached since neither A or B can change the sign of a qubit without changing
the spin, resulting in a value of infinity. Such a simple example concludes that gate sets have a
strong influence on the complexity, though at a discrete level. In Chapter 5, we will see more in

the free field theory setup about the influence of the gate set choice.

2.3.1 The Two Holographic Conjectures

Having got a glimpse of the definition of quantum complexity, it is time to introduce how this
quantity is linked to the gravitational interpretations. The story started from the work by Stan-
ford and Susskind [16], where they proposed quantum computational complexity to be a boundary
dual quantity that captures the long time behaviour of the growth of the Einstein-Rosen bridge, a
wormhole structure connecting two black holes. Therefore in a way, quantum complexity can be
used as a probe to study the scrambling of the black hole interior. Although a similar considera-
tion has been made by Hartman and Maldacena [55] in the eternal AdS black hole case (see [56]
for early discussions) in terms of entanglement entropy between the left and right asymptotic
boundary subregions, the growth of entanglement entropy continues only for a short time till the

system is thermalized.

This proposal utilises a codimensional-one Cauchy surface, which by construction extends
into the black hole in the eternal AdS BH geometry, claiming that its maximal volume can
encapsulate the evolution of the scrambling of the BH interior when the Cauchy slice advances
in time. Furthermore, it states that the same behaviour is encoded in the time evolution the

quantum complexity of corresponding thermal field double states on each Cauchy slice. Thus this
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conjecture is called “Complexity = Volume” (CV), the precise formulation is given as

max VCauchy

Cv = 4Gl

(2.45)
where Gy is the Newton’s constant in AdSgy; which is introduced by hand to relate to the
gravitational theory. The dimensional analysis shows that the denominator should have length
dimension [L]? while the length dimension of the Newton’s content has length dimension [Gy] =
[L]9~1, thus the necessity for the introduction of another length scale ¢, which constitutes one
of the drawbacks for the CV conjecture. In order to cure this problem, a second conjecture, the
Complexity=Action (CA) was proposed by Brown, Susskind et al. [17,57] in the following year,

which states

I
Cp= 2% (2.46)
T

where Iypw is the on-shell gravitational action evaluated on the Wheeler-DeWitt (WDW) patch13
which is a solid double cone as shown in Figure 2.3. Technically speaking, the action approach is
more subtle than the volume one, since codimension-1 boundary surface terms and codimension-2
joint terms have to be included in the action, see [58—63] (a summarized prescription is outlined
in appendix A of [64]).

Figure 2.4: Geometrizing the space
of unitary operations, the curve con-

Figure 2.3: WDW patch in AdS3 necting the initial states and the final
represented by the yellow double states is a geodesic which represents
cone asymptotic to a certain bound- a sequence of operators to reach the
ary time slice. target states.

2.3.2 Field Theory Approach for Complexity: Nielsen Method

In order to have a better understanding about quantum complexity in the holographic manner, it
is essential to have a proper definition of quantum complexity in the continuum limit through field
theory approach. Although such a formulation for a general consideration is not yet available,
there have been some developments along this line [65-73]. In this section, we will focus on the

Nielsen’s approach on the Gaussian states complexity for free fields based on [65,66]. The Nielsen

13The WDW patch is the bulk causal development of the slice from the CV conjecture, and is bounded by light
sheets sent from the boundary time slice where the state is defined. For the case of the two-sided AdS black hole
the WDW patch is anchored at both boundaries at the relevant times where the thermofield double state is studied.
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method can be understood as a way to geometrize the notion of complexity. As an analog to the
minimum number of gates, this geometrization relates the geodesic length, which has a minimal
sense on the metric space, to the definition of circuit complexity, as illustrated in Figure 2.4. In
contrast to the Fubini-Study method which geometrizes the space of states, the Nielsen approach
considers instead the space of unitary operations (gates). Since there is a one-to-one map between
the states and operations, those two approaches in principle are identical to each other, however,

the concepts behind differs.

From now on we will focus the Nielsen method. In this approach, the circuit is replaced by a

continuous path of unitary operators
S
U(s) = Pexp (z / ds' YI(s’)OI) , (2.47)
0

such that U(s = 1) gives the desired unitary operator (i.e., implements the circuit we want), and
Oy is a basis of operators that can be used to build the circuit (we can think of them as the
generators of the infinitesimal gates e*“©7). One can think that the final state is being prepared
by means of an evolution in a fictitious time s with a time-dependent Hamiltonian H = Y/ (s)O;.

The complexity is then determined by the choice of a suitable cost functional

1
ClU(s)] = /0 FU(s),Y(s)) . (2.48)

The minimization of this functional will determine the form of the functions Y/(s) and thus the
optimal circuit. With an appropriate choice, the cost functional determines a distance on the
space of unitary operators, and the problem of minimizing the complexity of a circuit is mapped
to the problem of finding a geodesic path on a Riemannian manifold. The cost functional can for

instance have the form

By (U(3),Y (5) = \[GLi(U()Y ()Y (s). (2.49)

Often the metric Gr;(U) is choosen to be a right-invariant metric, but not necessarily the canon-
ical biinvariant metric defined by (A, B) = tr(AB) for A, B self-adjoint. In fact, the possibility
of choosing different metrics can be thought of as introducing penalty factors for moving along
certain directions, corresponding to gates that may be more difficult to implement (for instance,
in a system of qubits, one wants to penalize gates that act on many qubits simultaneously). A
more general choice of the cost functional would lead to a Finsler geometry, where there is notion
of a distance but not induced by a metric on the tangent space [65]. For instance one can consider

the family of cost functionals dependent on a parameter k:
Fo(U(s),Y(s)) =>_[YT|". (2.50)
I

Sometimes the ambiguity is reduced: the functional (2.50) with x = 1 is parametrization-

independent. Another cost functional, which we will use in Chapter 5, is basis-independent
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and makes use of the Schatten p-norm:'*

Fy (U(s),Y () = [[Y(5)O1ll (2.51)

HAHp;z(m(AiA)%)%. (2.52)

Application on Gaussian States for Free Fermion

In Nielsen’s approach, the metric is defined not on the space of states, but on the manifold of a
group of operators that act on the states. For fermions, the relevant group turns out to be the

orthogonal group [66]. To see this, it is convenient to use the Majorana basis

ga = {q—i-ooa --+5»q1,490,49-15- - - y4—00y P00y - - - 5 P1, PO, P—1 - - p—OO} (253)

which is related to the annihilation and creation modes in the following way

1 ) 1 .
o = \ﬁ(‘ﬂ —ip), a= ﬁ(% + ipy). (2.54)

In the Majorana basis the anticommutation relations read {£%, &0} = 59,

A general Gaussian state |1) is completely characterized by the two-point function, or covari-

ance matrix,

WIEE ) = 3G +i0) (2.55)

which can be decomposed in the symmetric and antisymmetric part, respectively G and szb.
The symmetric part is determined by the anticommutation relation, therefore it is state-independent,
while the antisymmetric part encodes the state. In terms of the covariance matrix, the fermionic

vacuum state |0) defined in (5.17) would be expressed as,

1
G® =5 Qab = 0 O witho = 0. (2.56)
C 0 0 -1

As will be discussed in Section 5.1.3 the Gaussian states are obtained by Bogoliubov transforma-
tions; in the Majorana basis, these are linear transformations £ = M¢ that leave the anticommu-
tation relation invariant, therefore they are orthogonal transformations. If we put a UV cutoff
so that there are 2N modes, M € SO(2N).!> However there is a subgroup that acts trivially on

the state, which only change the state by a phase. The covariance matrix transforms as
Q=maM?. (2.57)

The covariance matrix of the vacuum can be considered as a symplectic form, from this we see
that the orthogonal matrices that leave () invariant should be symplectic as well, i.e., , they
should be unitary. The manifold of Gaussian states is then SO(2N)/U(N). A convenient way to

MDespite a certain resemblance, the Schatten p-norm is not directly related to the & cost function (2.50), although
one might speculate that the two give the same result for a particular choice of basis.

5We consider for simplicity only the component connected with the identity. It turns out that this is the
subgroup that does not change the parity (—1)% of the fermion number of the state.
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parametrize this coset is by using the relative covariance matrix
AM) =Q0Q;t = MQuMTQy . (2.58)

Conversely, if we are given the reference and target states g and €, we can recover the transfor-
mation matrix up to a unitary transformation. The polar decomposition of orthogonal matrices
allows us to write M = uM with u € U(N) and M antisymmetric. In this manner, v and M are

uniquely defined by the polar decomposition.

At the level of Lie algebra, the splitting so(2N) = u(N) @asym(N) is an orthogonal decompo-
sition with respect to the Killing metric of so(2IV). We expect then that the shortest path in the
coset space will be obtained by moving only along the second subspace. Indeed it is shown in [66]
that the geodesic connecting Qy and € is given by a straight curve ~(s) = e*4 with s € [0,1]
which has a constant direction A € asym(N). Finally the geodesic length is given by the norm
of A= 1InA, which is the inner product with itself [|A|| = /{A, A) using the embedded metric
on the Lie manifold SO(2N). This definition of norm is basis independent and will coincide with

the Schatten p = 2 norm. The Schatten p—norm for a general matrix 7' is defined as

1/p
|Tlp = (Z Sﬁ(T)) (2.59)

n>1

with s,(T") being the singular values of the n x n matrix T, i.e., , the eigenvalues of the matrix
VTTT. Due to the decreasing monotonicity of the Schatten p—norm, an interesting case is the

p =1 norm, defined as
IT)ly = Te(VTTT) = 3 su(T) (2.60)
n>1
which will impose an upper bound to the p = 2 norm. The p = 1 norm has been considered
before for quantum information purposes, for example it has been found that it is the only one

among the p-norms to provide a consistent measure for quantum correlations, called quantum
discord [74].

To summarize, the complexity of fermionic Gaussian states, defined as the geodesic length

with respect to the Killing metric on the orthogonal group:

1 , 1 .
Cr(10), 1¥)) =114l = [|A]lp=2 = 5/ Tl (i 1n A)?| = BY [> (il A)? (2.61)
1 1
< Allp=1 = 5 Trliln Al = 5 > liln Al (2.62)

T

In the above formula ); are the eigenvalues of A which come in pairs e since A € SO(2N).
Although the p = 1 norm loses its geometric meaning in the current case, it is interesting because
in some cases discussed in the later sections, it poses an analytical bound on the Gaussian state

complexity.
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Application on Gaussian States for Free Boson

In the case of free bosonic theory with N degrees of freedom, the gates group corresponding to
Gaussian states is Sp(2/V). Contrary to the fermionic case, the role of covariance matrices G
and Q defined in (2.55) is exchanged, in the way that G represents the state and € encodes the
algebraic relation. The main objective is still to find the relative covariance matrix relating the

reference state and the target state, given as
A =GGy=MGM'G,? (2.63)

where M € Sp(2N) encodes the basis transformation. Similar to the fermionic case, A is an
element in the coset space Sp(2N)/U(N) and the geodesic connecting G and Gy will be again
v(s) = 4 with however A € sym(N) being an element in the symmetric algebra. In the same

manner, the geodesic length is given by the norm of A = %ln A, hence the complexity

1 1
Co(10),14)) = l[AI| = l|Allp=2 = 5/ Trl(n A)2] = /5" (n A2 (2.64)
1 1
<14l = 3 TA = 5 37 A (2.65)

“¢” difference, which is due to the fact that the eigenvalues

Compared to the eq. (2.61), there is an
of a real symmetric symplectic matrix are in pairs of e*” with r € R. If the covariance matrix G
for the reference state is the identity matrix, the covariance matrix will simply be A = MM,
which we shall use in Section 5.4. Detailed studies of the free bosonic complexity can be found

in [66,75].

2.4 Modular Flow and Bulk Reconstruction

2.4.1 Entanglement Entropy and Modular Hamiltonian

Quantum entanglement is a special feature in the quantum many-body systems, dating back to
the Einstein-Podolsky-Rosen paradox in 1935, a thought expriment that indicates that the speed
of the interaction transmitter is faster than light between two entangled particles if the interaction
is local. Later in the sixties, it has been argued that this kind of interaction should actually be
regarded as nonlocal thus assigning quantum entanglement a special property which cannot be

integrated into action formulation.

Though the entanglement is nonlocal, the degrees of freedom get involved in the entanglement
between subsystems can still be quantified via the entropy of entanglement or simply entanglement
entropy. Supposing we have a quantum system which is bipartite into two subsystems A and its

complement A, the full Hilbert space will be factorized as
H=H,0H,. (2.66)

For an entangled state [)) € H between the two subsystems, p = [¢) (¢|, the entanglement
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entropy is defined via the the reduced density matrix by tracing out one of the subsystems
Then the von Neumann entropy is defined as
—Trz(pilnps) =S5 =S4 =-Tra(pslnpy) (2.68)

where we see that the entanglement entropy is independent on which system we are conducting
the calculation since it should be regarded as common property. Another definition that appears

often is called Rényi entropy'®, defined as

n 1 i
s = I Tra(ph), (2.69)

where n € Z4 in the canonical definition. However it is often possible to analytically continue
the range of n to Ry, as a result, in the limit of n — 1, the Rényi entropy coincides with the von
Neumann entropy

— lim 5. 2,

It is worth noting that the entanglement entropies are defined using the trace of the reduced
density matrices, therefore, any unitary transformation on one of the subsystem will not affect
the entanglement degrees of freedom. Another quantity related to the reduced density matrix
that plays a vital role in the proposed duality in Chapter 6 is named as Modular Hamiltonian,
which goes back the Tomita-Takesaki’s study on the modular automorphism of von Neumann

algebra [77], defined as minus of the logarithm of the reduced density matrix
Hy=—Inpy,. (2.71)

The modular Hamiltonian in general is a non-local operator and hard to compute, however, for
the reduced matrix of the Rindler wedge of a flat Minkowski space, it simply acts as a Minkowski
boost generator or the Rindler time translation (see Figure 2.5) as the Bisognano- Wichmann
theorem [78] suggests, thus will be a local operator in this case [79]. An identical case has been
studied by Unruh [80] is that the Minkowski vacuum acquires a non-zero temperature when
observed by a uniformly accelerated observer. The Rindler modular Hamiltonian for the Rindler

Rd—l,l

vacuum state in can always be written as an integration of the stress energy tensor with

the following covariant form

H Rindler _ 27?/2 RN Lt (2.72)

where Y is an Cauchy slice with n* the future pointing normal and n* a Lorentz boost vector.
One can see from the expression that indeed the Rindler modular Hamiltonian generates the

translation along the direction of n* as can be shown using Peierls Bracket [81].'7 For a CFT,

16Tn practice, the Rényi entropy is more calculable than the von Neumann entropy via the replica trick, one can
read for example the review of Takayanagi and Rangamani [76] for more technical details.
7 Peierls Bracket is the covariant form of Poisson Bracket, defined as [X,Y] = DyY — DLY, where DI are
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x
[ Rindler / HSFT O
L2 i

Figure 2.5: Rindler wedge for the Figure 2.6: Causal wedge for a
region z' > 0, where the Rindler CFT, where the modular Hamil-
modular Hamiltonian generates the tonian generates the modular time
Rindler time translation from the red translation from the red time slice to
time slice to the blue one. the blue one.

one can always map the Rindler wedge to the causal development region of a ball, as a result
the modular Hamiltonian for the ball region is the same as eq. (2.72) up to some constant to
normalise the reduced density matrix [79], which generates the modular flow in that causal wedge,

as shown in Figure 2.6.

2.4.2 Modular Hamiltonians in Holography: JLMS Relation

For a quantum field theory that has a gravity dual, it has been stated in [82] by Jafferis,
Lewkowycz, Maldacena and Suh (JLMS), that there is a simple relation between the modu-

lar Hamiltonian corresponding to a boundary subregion A and its bulk dual partner, given as

Areaext
4Gy

The first term on the right hand side originates from the proposal of Ryu and Takayanagi on the

by — + H3™ + Sward-ike + O(Gy) - (2.73)

holographic dual of the entanglement entropy for the subregion A on the asymptotic boundary
[11], as shown in Figure 2.7. They argued that this dual is given by the area of an extremal
bulk codimensional-two surface ¥, i.e., the Ryu-Takayangi (RT) surface homologous to A. The
area term can also be regarded as an operator in the bulk effective theory, containing both the
classical area and changes in the area that result from the backreaction of quantum effects. The
bulk modular Hamiltonian nglk is the modular hamiltonian for the bulk region a enclosed by
the RT surface and the asymptotic boundary, which behaves as a boost in the vicinity of the RT
surface. The Wald-like contributions come from the expectation values of local operators on the
RT surface . It is worth nothing that the JLMS relation (2.73) implies the subregion-subregion
duality in the entanglement wedge'®, since causal domain of the region a. While the boundary

modular Hamiltonian Hzoundry generates a modular flow on the boundary causal wedge, the bulk

corresponding advanced and retarded derivative along X.
8The entanglement wedge corresponds to A is defined as the whole set of bulk points that are spacelike separated
from the RT surface on the side of A.
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N

Figure 2.7: Illustration of the Ryu-Takayanagi surface ¥ (orange curve) in a given
time slice for the boundary entangling region A (red curve) with A being its com-
plement. The green shaded region a is enclosed by the RT surface and boundary
subregion, with its complement bulk region being a.

modular Hamitonian H5"¥ generates a bulk modular flow in the interior of the entanglement
wedge.
The JLMS relation also leads to the equivalence of the bulk and boundary relative entropy,

which is defined via a reference state o which can be taken to be the vacuum state, as following

S(plle) =Trplnp—Trplno =Trplnp —Trolno+Trolno — Trplno

Ss—5p=—AS (Hp)—(Ho)=A(Ho)
— A(H,) — AS (2.74)

which is positive definite and monotonic [83]. When the state p is a small perturbation around
o, i.e., p =04 dp, due to the positivity of the relative entropy, it has a global minimal at p = o,
therefore, to the linear order in the perturbation, the relative entropy remains zero as Trép = 0,

which gives rise to the first law of entanglement!'?

§S = §(H,) . (2.76)

2.4.3 Code Subspace and Entanglement Wedge Reconstruction

As mentioned in the last section, the JLMS relation implies bulk reconstruction within the en-
tanglement wedge €4, which is the spacelike causal domain of the HRT (Hubeny, Rangamani and
Takayanagi) surface 3 [84] (a covariant generalisation of the RT surface) on the side of A. This
consideration of entanglement wedge reconstruction is made more clear if we consider the duality
problem in the code subspace [85], which is a sub Hilbert space in the whole Hilbert space for

the quantum gravity, Heoqe € H. As shown in Figure 2.7, when there the boundary CFT Hilbert

19 As a comparison, the first law of black hole thermodynamics is

K

dE =
8rGN

dA + QdJ + ®dQ (2.75)

where for non-rotating, non-charged black, by using Bekenstein-Hawking formula, one obtain the usual first law of
thermodynamics.
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space factorizes as in equation (2.66), the code subspace factorises in a similar way in the bulk
entanglement wedge
Heode = Ha @ Ha s (277)

where H,, denotes excitations in the entanglement wedge £4 while Hz for £. Through a projection
onto the code subspace, the JLMS relation is reproduced,
_ Areacy

Hc Hgoundary Hc _ e + qulk (278)
N

where II. is a projection onto the code subspace and on the right hand side, the operators are

1

defined to annihilate the orthogonal subspace to the code subspace H__ .-

In the work of [85], the bulk reconstruction theorem suggests that for an operator in the
entanglement wedge €4, the reconstruction will only receive support from the boundary subregion
A within the code subspace. Besides that, a local bulk field will have vanishing commutators with
operators that are spatially separated. A simple model of three qutrits code could be found for
example in [86,87].

In the spirit of the entanglement wedge reconstruction, we could in principle link many geo-
metric quantities in the bulk to some dual quantities on the boundary. In Chapter 6, we will see
how the JLMS relation help build a bridge to study the between the new duality we would like

to propose, i.e., the modular Berry connection with the bulk Riemann connection.
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Chapter 3

Holographic complexity: “CA” or
“CV” ?

This Chapter is based on the work [18].

Various aspects of the two holographic proposals have been explored in recent years, including
their structure of divergences [64, 88], their time dependence [17,57,63,89,90], their reaction
to shockwaves [16,91-93] and studies of complexity in JT gravity and nearly extremal black
holes [94-97]. In general, it appears that the predictions of the action and volume proposals tend
to coincide up to overall numerical factors. For instance, the complexity grows linearly for a
long period of time at a rate which is proportional to the energy of the system.! In shockwave
geometries the complexity exhibits characteristic delays in its growth related to the scrambling
time of the system both for the CV and CA proposals. It is therefore of interest to extend the
study of complexity to systems where a clear-cut distinction can be made between the predictions
of the action and the volume proposals.

In order to explore this question, we consider the modification of the complexity associated to
the introduction of a conformal defect in the boundary field theory. Defect CFTs (DCFTs) have
been studied extensively in the literature (see, e.g., [L00] and references therein), both on the
field theory side and holographically, so we can draw on existing constructions. For simplicity, we
focus on the case of a 2d DCFT, and consider its ground state complexity. On the gravitational
side, we consider a bottom-up Randall-Sundrum type model [101] of a thin AdSs brane embedded
in AdSs3 spacetime [102]. The brane, which acts as a defect in this geometry, has two anchoring
points on the boundary, which introduce defects in the boundary theory on opposite sides of the
circular domain (analogous to a quark-antiquark pair). The brane backreacts and modifies the
geometry, therefore entailing a modification of the complexity depending on a parameter, namely
the tension of the brane. It is worth noting that after our study, there exist some works which
consider the holographic complexity with one end-of-world brane in a general dimension [103] or
in AdS3 [104], which confirm our conclusion in three dimensions.

The main results of the study in this chapter can be found in egs. (3.23) and (3.52), for the
CV and CA proposals, respectively. In particular we observe that while for the CV proposal the

!For the volume this statement holds in the high temperature limit, and for hyperscaling violating geometries [98,
99] the late time growth rate from the CV proposal includes an additional temperature dependent proportionality
coefficient required from dimensional analysis considerations.

27



28 CHAPTER 3. HOLOGRAPHIC COMPLEXITY: “CA” OR “CV” ?

complexity contains a logarithmically divergent term due to the presence of the defect, which
is related to the central charge and to the Affleck-Ludwig boundary entropy [105],% in the CA
proposal no such term appears; the (absence of a) logarithmically divergent contribution to the
CA complexity does not depend on the tension of the brane. In fact even the finite part of (3.52)
is independent of the tension, so the CA appears completely unaffected by the presence of the
defect; however it is only the logarithmically divergent part that has a universal meaning, as the
finite part is dependent on the regularization scheme. It is worth noting that this is the first
case in which the results of the holographic CV and CA proposals disagree so dramatically. This
offers an opportunity to discriminate between the two prescriptions. It may seem surprising to
find a vanishing contribution to the complexity, especially if we compare the results with the
change in the entanglement entropy, and this could be seen as an argument in favor of the CV
proposal. However we prefer to suggest a more cautious interpretation, namely that the CV and
CA proposals correspond to different measures of complexity.?

In the original proposals, the complexity is associated to the state of the whole system. In-
spired by the Ryu-Takayanagi prescription for the holographic entanglement entropy [11, 108],
and motivated by the suggestion that the reduced density matrix of a boundary subregion is
encoded in its “entanglement wedge” [109,110],* proposals have been made [64,111] for an exten-
sion of the complexity conjectures for states (reduced density matrices) associated to subregions.
For static geometries, the CV prescription is generalized to the volume enclosed between the RT
surface and the AdS boundary, while for the CA prescription, one considers the gravitational
action of the region enclosed between the WDW patch and the entanglement wedge. We consider
the subregion complexity for the defect geometry for subregions which include a single defect; For
the CA proposal we are able to perform the computation only in the case of a symmetric region,
i.e., when the defect is at its midpoint. The results are in eq. (3.69) for the CV proposal and
in egs. (3.89), (3.90) for CA proposal. Again we find no change in the logarithmically divergent
contribution to the CA complexity (nor do we find a change in the finite contribution, with our
choice of cutoff) due to the presence of the defect. Interestingly, we find that the structure of
divergences of the subregion CA complexity is not the same as the one of the total CA complexity.
In particular, we observe a In A divergence where A is the UV momentum cutoff.

The evidence for the validity of the CV and CA proposals is far from being conclusive since
the notion of complexity in QFT is still not well understood. Some progress has been made [65—
69,72,73,75,112-123], but a precise definition in strongly interacting CFTs, from first principles,
is still absent. In particular, one can put together an operative definition for the case of free
fields [65,67], and arrive at a result that matches with holography in terms of the divergence
structure. However, it is not clear at the moment what is the universal content which can
be extracted from the coefficients of the complexity as a series expansion in the cutoff scale,

similarly to the case of entanglement entropy, where the coefficient of the logarithmic divergence

2The system with the defect is related to a similar system with a boundary via a folding trick.

3Previous studies of the CV complexity in the presence of boundaries can be found in [106] where a holographic
Kondo model was explored and it was pointed out that for constant tension branes the complexity increases with
the tension of the brane. We reach a similar conclusion in our model using the CV proposal. For an alternative
proposal of world sheet complexity, see Section 4 of [107].

4The entanglement wedge is defined as the set of bulk points that are spacelike separated from the RT surface
and causally connected to the causal wedge on the boundary of AdS.
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is associated to the central charge in the CF'T. An operative definition for subregion complexity

is also absent, although some proposals have been made in [124].

The definition of complexity in QFT is subject to many ambiguities. In particular, one is
free to choose a reference state as well as a set of gates that can act on the state. It was
initially suggested [65,67] that the ambiguity associated with the reference state is mirrored
by a similar ambiguity on the gravitational side of the correspondence, related to the choice of
normalization of the null normals at the boundaries of the WDW patch. More recently it has been
understood that in evaluating the complexity one has to include a certain counter term needed
to restore reparametrization invariance on the null boundaries [91,92]. This counter term comes
accompanied with a length scale which could be the one reproducing the effect of the various

ambiguities on the complexity. For a more elaborate discussion, see Section 5 of [92].

We make a naive attempt to match our holographic results with the dual field theory. As
mentioned before, the definition of complexity for a generic field theory is unknown, and further-
more, the precise CF'T dual of our holographic setup is not known. However, we can look at free
field models of CFTs with defects, analogous to our holographic setup and study their complexi-
ties. We consider first a model with permeable domain walls [52] on opposite sides of a periodic
domain. We observe in this case that a logarithmic contribution proportional to the parameters
of the defect is absent, similarly to what happens for the CA proposal. We then briefly discuss a
solvable model with a boundary interaction [125]. It seems that in this case a logarithmic contri-
bution which depends on the strength of the boundary interaction is present in the result for the
complexity (in the case of a single boundary, but not if there are two boundaries), though we have
to make an assumption that the formula derived for free fields, which computes the complexity
in terms of the (single particle) spectrum, can be extended to these cases. An extension of the
current holographic calculation to a case where the dual field theory is known would be required
in order to identify which one of the field theory models (if any) is relevant for the analogy with
holography. Since we are focusing on models of compact bosons, we point out that the effects of
zero modes could have an influence on the complexity and might need to be incorporated into

the existing definitions.

The following parts of this chapter is organized as follows: In Section 3.1, we descibe the defect
AdS3 geometry, employing different coordinate systems. We also discuss the choice of cutoff and
the shape of the WDW patch in this geometry. In Section 3.2, we present the calculations of
the holographic complexity of the full boundary state using both the CV and CA proposals. In
Section 3.3, we consider the subregion complexity proposals for subregions including one defect.
In Section 3.4, we describe a free bosonic field theory model with defects as well as an exactly
solvable model with a boundary interaction and compute their complexities. We conclude with
a summary of the main results and a discussion in Section 3.5. A number of technical details of
the calculation are discussed in Appendixes A.1 and A.2, and the subregion CV proposal in the
Poincaré patch with two distinct cosmological constants on the two sides of the defect is discussed

in Appendix A.3.
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3.1 Warm up with the Defect Toy Model

In the following section we provide various ingredients of the defect toy model which we use to
study the complexity of defects in this chapter. As mentioned in the last section, we focus our
attention on a Randall-Sundrum solution for a 2d brane of tension A embedded in a 3d geometry
which is a solution of Einstein equations with negative cosmological constant. Various aspects of
this simple solution were already studied in [102]. We start by reviewing the solution in a number
of convenient coordinate choices. We then address the choice of cutoff surface and describe how
to obtain null geodesics emanating from a point on the boundary in order to construct the WDW

patch for the CA proposal.

3.1.1 Two-Dimensional Branes in AdS;

We begin by considering the solution for a symmetric defect in AdS3 which solves Einstein equa-

tions for the action

_ 1 3. /= 2N\ 20/
S—IGWGN/LZ;U\/ g<R+L2> )\/dw h, (3.1)

where R is the Ricci scalar, L is the AdS curvature scale, A is the tension of the brane and h is the
determinant of the induced metric on the defect. For brane tension in the range 0 < A < m,
the gravitational equations of motion admit stable solutions which include a thin AdSy brane.
These solutions preserve the symmetries expected from a dual CFT with a conformal defect. The

full solution reads
ds* = L* (dgj2 + cosh?(|y| — y*)(— cosh? rdt* + dr2)) , (3.2)

with
tanh y* = 4rG LA, (3.3)

and the brane is situated at ¥ = 0, where one finds a discontinuity of the extrinsic curvature.
These coordinates correspond to a foliation in terms of AdSs slices with coordinates (r,t) on each
slice.

The solution (3.2) can also be seen as two (slightly larger than half) patches of vacuum AdSs,
glued together at the location of the defect.” This is most simply seen by redefining y = 7 — y*
fory>0(—y*<y<oo)andy=y+y* for y <0 (—oo <y < y*). Of course this coordinate
system has a discontinuity at the position of the brane. The metric is then given on each patch

by,
ds* = L* (dy2 + cosh? y(— cosh? rdt? + dr2)) , (3.4)

where —y* < y < 0o on one side of the defect and —oo < y < y* on the other. The ranges of the
coordinates indicate that we have two patches of AdSs bounded by curves of constant y = Fy*.

A cross section of the two patches, as well as their constant y and r slices are depicted in figure

5To be more precise, the coordinate system (3.2), with » > 0 only covers half of each patch. We will later
translate our expressions to global coordinates where the full patches are covered.
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Figure 3.1: Constant time slices of the two AdS patches on the two sides of the
defect, corresponding to the metric (3.4), glued together at the location of the defect
along y = +y* curves. Lines of constant r are indicated in red and lines of constant
y are indicated in green.

3.1. In this coordinate system, the boundary of AdSs is located at y = oo or r = 0o, constant
r lines are geodesics, constant y curves are perpendicular to » = 0 and constant r curves are

perpendicular to the boundary.

The (t,y,r) coordinates can be related to the usual global AdSs coordinates (¢, p,6) in the
following way,

cosh y cosh r = cosh p; sinh y = sinh psin @, (3.5)

and the metric becomes

ds? = L? (— cosh p?dt? + dp* + sinh? pd92) . (3.6)

Another useful set of coordinates maps the global AdSs coordinates to a circle of finite radius,
it reads
tan ¢ = sinh p, (3.7)

which leads to the following metric,

2

ds? =
cos? ¢

(—dt2 + d¢p? + sin? ¢d02) . (3.8)

In this way, we obtain a third coordinate system (t,¢,6) where the constant time slices are
Poincaré disks with ¢ € [0, /2] playing the role of a radial coordinate and 6 an angular coordinate
on the disk. Note that constant € curves are geodesics. The (t,y,r) coordinates are related to

the (¢, ¢, 0) coordinates according to
tanh r = sin ¢ cos 6; sinh y = tan ¢ sin @, (3.9)

and these coordinates cover half the space.

Our previous coordinate systems (3.4), (3.6) and (3.8) were dimensionless and so the curvature
of the boundary will naturally be set by the AdS scale L. In order to separate the radius of

curvature of the boundary from the AdS curvature scale (see, e.g., [90]) we rescale the time
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coordinate by a new length scale L [64]
T=Lgt, (3.10)

which will set the curvature of the spatial geometry of the boundary. This leads to the metric

L? dr?
ds® = —— ( + d¢? + sin® ¢d92> (3.11)
cos? ¢ L%

where the boundary time is now given by 7.

3.1.2 Fefferman-Graham Expansion and the Cutoff Surface

The gravitational observables that come into play in the two holographic complexity conjectures
(2.45)-(2.46) yield divergent results and need to be regularized. The standard procedure, used
also in previous studies of the holographic complexity, is to introduce a cutoff of constant z = §
in a Fefferman-Graham (FG) expansion of the relevant metric (see, e.g., [64,126]). In the case of
vacuum AdSs, ignoring the defect, one needs to bring the metric (3.11) to the form

ds2—L2(dz2+ (2, 2)da' da? 3.12
= gij(x, z)dz'da? ) (3.12)

where the boundary is situated at z = 0 and g;;(z, z) can be expanded in a power series in z
where g;j(x,z = 0) is the boundary metric. This can be achieved by the following coordinate

transformation
cos(¢/2) —sin(¢/2)
5 cos(6/2) + sin(¢/2)’

and of course, scaling the metric in the asymptotic region by 22/L? then yields the boundary

(3.13)

metric
dspg, = —dr* + Ld6>. (3.14)

The FG cutoff z = ¢ is then expressed using eq. (3.13) as

b=m/2—56+ 0%, or coshy coshr = '1A+0(3), 6=

3.15
sin d Lp ( )

In the presence of the defect, however, it was shown in [127] that the Fefferman-Graham
expansion breaks down near the defect and fails to cover a bulk wedge-shaped region originating
from the defect. Different solutions to this problem have been proposed in the literature, see the
discussion in [128] and references therein. In particular, one suggestion is to use two different
cutoffs, one for the region near the defect and another one away from the defect; in the defect
region, the cutoff is expressed in term of the FG coordinates of an AdSs slicing of the geometry (in
our coordinates (3.4) these are the slices of constant y). We adopt this suggestion for regularizing
the complexity in the defect region, but continue to use the standard FG cutoff away from the

defect. Moreover, we choose the two cutoffs in such a way that the cutoff surface is smooth.%

5 Although we do not have a strong justification, it seems natural to require smoothness of the cutoff surface;
moreover this avoids some problems that would arise in the CA computation where a lack of smoothness would
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Figure 3.2: Extension of the cutoff surface in the region of the defect following lines
of constant r. This generates a cutoff surface which is perpendicular to the defect and
connects smoothly the two sides. We have indicated in light blue the region inside
the cutoff surface.

Note that naively extending the cutoff surface of constant radius ¢ in eq. (3.15) up to the
defect would give a surface that does not match smoothly across the defect. One way to see this
is to check that the FG cutoff surface is not perpendicular to the line of constant y = y*, where it
crosses the defect. The proposed extension of the cutoff surface in the region of the defect (y < 0)
is given by constant r curves on each side, see figure 3.2. Explicitly the constant r extension of

the cutoff surface can be expressed using eq. (3.9) and it reads’
tanh r = sin ¢ cos f = cosd . (3.16)

The two parts of the cutoff surface (3.15) and (3.16) are smoothly connected at y = 0.

3.1.3 Wheeler-DeWitt Patch in Defect AdS;

The Wheeler-DeWitt (WDW) patch is defined as the union of all spacelike surfaces anchored at
the boundary time slice where the state is defined. A practical way to obtain its shape is to
identify the parts of space which are not contained within the lightcones generated from any of
the points on the given boundary time slice. Without loss of generality we choose this time slice
to be t = 0. In the case of pure AdS3 (without the defect), the WDW patch takes the form
of a cone generated from the relevant time slice on the boundary, bounded by light sheets (see,
e.g., the left panel of figure 2 in [126]). In the defect geometry however, the WDW patch will
be bounded by additional surfaces in the defect region, see figure 3.3. Those surfaces correspond
to the lightcones generated from the points at the intersection of the boundary and the defect
on the t = 0 time slice, namely § = 0 and ¢ = 7/2 or § = +7 and ¢ = 7/2. To understand

introduce additional joints, see footnote 17. We would like to thank Rob Myers for suggesting this choice of cutoff.

TA more general choice for a smooth cutoff surface is given by tanhr = cos(3f(y)), where f(y) is a general
function satisfying f(0) = f(—y*) = 1 and f'(0) = f'(—y*) = 0. Such a choice does not affect the divergent
contributions to the complexity using either the CV or the CA conjectures, and in particular it does not change
the coefficient of the logarithmic divergence. Changing the cutoff will however change the finite contributions to
the complexity in a way which depends on the tension of the brane and we comment on this issue further in the
discussion.
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0=m

Figure 3.3: Illustration of the (future half of the) WDW patch in defect AdS3. S¥
and S§ are the two half cones, already present for the case of vacuum AdSz. S¥
and S{ are the additional boundaries of the WDW patch in the defect region, fixed
by parts of the lightcones generated from the points § = 0, + 7 on the boundary
(¢ = 7/2). Those null surfaces are smoothly connected across the defect and they
terminate along a ridge at the top of the WDW patch. The yellow surfaces correspond
to the defect brane, where the left and right patches are glued together.

the shape of these extra boundaries of the WDW patch, we need to obtain the relevant surfaces
in the defect region by explicitly analyzing the lightcone generated from a given point on the
boundary, e.g., # = 0.® As we demonstrate below, the lightcone takes a very simple form in the
(t,y,r) coordinate system.

We will study the null geodesics starting from the boundary point ¢ = 0, r = oo in the metric
(3.4). Since the (y,r) coordinate system is singular at » = oo, one of the initial conditions is
replaced by a regularity condition at this point, which as we show below amounts to having the
geodesic follow an initial angular orientation along some y = yg, with ¢ = 0, where the derivative
is taken with respect to some parameter o along the null geodesics. In Appendix A.1 we derive
the same geodesics directly in global coordinates as a consistency check. With the change of
variables tanh(r(c)) = R(o) and tanh(y(o)) = Y (o) and a choice of parametrization o = t we

obtain the following equations of motion by minimizing the line element

) . R? 1 2RRY
= — Y=Y — 1
R(t) = ~R(1), [<R2_1)2 +R2_1] e (3.17)
and the requirement that the geodesics are null, namely the vanishing line element, reads
Y2i=(v?-1) U - (3.18)
= e 1)2 =1l .
Eq. (3.17) is solved by
R(t) = c1cost + casint. (3.19)

The boundary condition R(t = 0) = 1 fixes ¢; = 1 and substituting eq. (3.19) into eq. (3.18) we

8The result for # = +7 is easily obtained using symmetry arguments.
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Defect surface
Light cone profile originating from
the point = 0 in the defect region

Light cone profile originating from
the point # = 0 outside the defect region

Profile of the boundary of the WDW
patch outside the defect region

Figure 3.4: Cross section of the boundary of the WDW patch for different times ¢
denoted by the green and blue lines inside and outside the defect region respectively.
In the defect region the boundary of the WDW patch is fixed by the light cone
emanating from the boundary at § = 0, indicated by solid green curves, and it meets
the lightcone surface coming from 6 = 7 along a ridge at § = —7/2 (and t = 7/2).
The rest of the boundary of the WDW patch is the conical region fixed by straight
infalling light rays coming from different boundary points along lines of constant 6
and its cross section for different times ¢ is indicated by the blue circular arcs. The
plot corresponds to a defect parameter of y* = 0.6, see eq. (3.3), and is presented
using the z and y coordinates defined in eq. (A.11).

find that y diverges at ¢ = 0 unless c; = 0. This constraint is analogous to setting to zero the
angular momentum of a geodesic passing through the radial origin of a polar coordinate system.
The null equation is then solved by Y (¢) = Yy where Yy is a constant, and this also solves the

second equation of (3.17). Reverting the change of variables we finally obtain
tanhr = cost, Y = Yo- (3.20)

This means that the null geodesics are following lines of constant y while r» and ¢ are changing.
Because of this fact it is very natural to work with y,r coordinates in the defect region, while
we will keep working with the ¢, 6 coordinates outside the defect region. A cross section of this
surface for different values of ¢ is depicted by the green slices in figure 3.4. We see that the
constant time slices on our null cone straighten up as we go deeper into the bulk and they finally
follow the constant angular surface of § = —7/2. We conclude that the two new boundaries of the
WDW patch, see the green surfaces in figure 3.3, meet along a ridge at § = —7/2 and t = /2.
For y > 0 the WDW patch is fixed by the light rays which come from other boundary points,
and its constant t profile is represented in figure 3.4 as blue curves which correspond to the blue
conical surface in figure 3.3. This surface is the same as the boundary of the WDW patch in the

absence of the defect.
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3.2 Holographic Complexity with a Defect

With the geometric understanding developed in the previous section, we are now ready to inves-
tigate the predictions of the two holographic proposals (CA and CV) for the complexity of the
DCFT ground state in our holographic defect toy model.

3.2.1 CV Conjecture

We start with the CV conjecture (2.45). In this case we have to evaluate the volume of a constant
time slice in the presence of the defect. Since the two sides of the defect are identical, we focus
on the region —y* < y < oo below. We will eventually multiply the final result by two in order to
account for the two sides of the defect. The defect is located at constant y = —y* which according

to egs. (3.5) and (3.7) corresponds to
tan ¢ sin @ = — sinh y*. (3.21)

Since the volume is divergent we will use the cutoff surface in egs. (3.15) and (3.16), see figure
3.2. We divide our volume to two parts V; and Vs as indicated in figure 3.5. Integrating the

volume element, given by the square root of the induced metric, in each of these regions yields

0 tanh ™ (cos §) 2
Vi = 2L2/ dy coshy/ dr = 2L%sinh y* In <5> ,
—y* 0

m T/2-8  gin¢ ™
_ 72 —72(Z _
Vo=L /0 dQ/O d¢c082¢—L <(§ 7T> ,

up to terms of order 5. Summing everything up and using eq. (2.45) we obtain the following

(3.22)

result for the complexity using the CV proposal

4e,,

2
Cv Vi+Vy)=—- <g + 2sinh y* In (3) — 7r> (3.23)

:GNL( 3

where we have included an overall factor of 2 to account for the two sides of the defect and
expressed the result in terms of the central charge ¢, = 3L/(2Gx). The leading contribution is
the same as in the case without the defect and it follows a volume law (recall from eq. (3.15) that
b=246 /Lp). We see that the contribution introduced by the defect includes a logarithmic UV
divergence with a coefficient which is proportional to sinh y* where y* is related to the tension
of the brane according to eq. (3.3). For a brane with small tension for instance we will have a
linear relation sinh y* ~ y* ~ A. On the CFT side we expect the relevant parameter to encode
properties of the defect CF'T. Of course, this result is larger than in the absence of the defect since
due to the defect, the space was extended and so the volume has increased. We also note that the
result is proportional to the central charge (equivalently, the number of degrees of freedom in the
system). We will compare these results to those of simple CFT models with defects in Section
3.4.
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Figure 3.5: Division of the constant time slice inside the cutoff surface to two differ-
ent portions which we use in evaluating the volume integrals for the CV conjecture.
V1 is the volume in the defect region and V5 is the volume outside the defect region.

3.2.2 CA Conjecture

Next we evaluate the complexity using the CA conjecture (2.46), which states that, up to an overall
numerical coefficient, the complexity is given by the gravitational action of the WDW patch. The
gravitational action consists of a number of different contributions including bulk (codimension-0),
boundary (codimension-1) and joint (codimension-2) terms.? The relevant contributions involving
null joints have recently been analyzed in [63], which we will follow in our calculation below, and
other relevant boundary and joint contributions were previously explored in [58-62]. For the

current setup the relevant contributions in the gravitational action read

1 €
[=—— d3x/—g (R — 2A 7K/ d*zy/|h|K
167Gy /M =g )+87rGN By/. A

€x 1

N 3.24
S o OV g [ AT OO (3.24)

€a

dr/ya— \ d>xv/—h.
8mGy /2 4 DNWDW

+

_l’_

The various contributions are: the bulk Einstein-Hilbert action with negative cosmological con-
stant; the Gibbons-Hawking-York (GHY) extrinsic curvature term for timelike/spacelike bound-
aries;'? the null boundary contribution given in terms of x which measures how far is the pa-
rameter \ from providing an affine parametrization of the null generators of the null surface!!

and a counterterm added in order to ensure parametrization invariance given in terms of the null

9We also encounter caustics, e.g., at the tip of the blue cone in figure 3.3. The contribution of the tip can
effectively be calculated by regulating it using a cutoff surface at constant ¢ = w/2 — e. In this way we are able
to demonstrate that this caustic does not make an additional contribution to the gravitational action by smoothly
taking the limit ¢ — 0. We are not aware of an explicit prescription for such contributions in the literature, but we
would like to point out that it is hard to come up with an action for such point-like elements which is consistent
with dimensional analysis since (before dividing by Gx) it should have mass dimension —1.

1We will only need to evaluate the GHY contribution for timelike surfaces. In this case ¢,. = 1 and the normal
vector s should be oriented away from the volume of interest. We evaluate the extrinsic curvature according to
Koy = ehey Vs, and its trace is given by K = h%® K4, where the vielbeins are defined as e = 9,2*, the induced
metric is given by hay = guvehey and the indexes a, b label coordinates inside the surface.

"y is defined according to k*V k., = kk,, where k* = dz" /d) is the future oriented null normal vector and X
is a parameter along the null generators increasing toward the future. As noted in reference [91], the £ term in
references [63] and [64] had a sign mistake which we corrected for in eq. (3.24). €, = %1 if the volume of interest
lies to the future (past) of the boundary segment.
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(a) Bulk contributions (b) Surface contributions (c) Joint contributions

Figure 3.6: Different contributions for the CA conjecture projected onto a constant
time slice. The bulk contributions consist of those above and below the indicated
regions (By and Bs). The surface contributions include S; and Sy which are due to
the cutoff surface and S5 and S35 which are due to the null boundaries of the WDW
patch. Sy stands for the defect contribution. The joint contributions consist of Jy
and Jy which stand for the joints at the intersection of the cutoff surface and the null
boundaries of the WDW patch and of J3 which stands for the joint at the ridge at
the top of the WDW patch, see also figure 3.3.

expansion 0;'? contributions from spacelike joints involving null surfaces given in terms of a;'3
and the new contribution due to the gravitational action for the defect itself in the region enclosed
inside the WDW patch. We excluded from the action (3.24) other joint contributions which did
not enter our calculations, see appendix C of [63]. In the following subsections we evaluate all
these contributions and finally sum them up to produce a result for the complexity at the end of
the section. The shape of the WDW patch has already been described in Section 3.1.3, see figure

3.3, and the various contributions are depicted and enumerated in figures 3.6 and 3.7.

Bulk Contributions

We start by evaluating the bulk Einstein-Hilbert and cosmological constant contributions. The
Ricci scalar is the same as for the case of vacuum AdSs everywhere except at the position of the
brane where it has an extra delta function. The effect of this additional delta function integrated
over the infinitesimal thickness of the brane will be dealt with later on, together with the brane
action contribution in subsection 3.2.2. For the case of vacuum AdS3 we have R = —6/L? and
A = —1/L? and therefore

1
167TGN

Ihuk =

/M d®z\/—g (R —2A) = —4771GN /M 3 g. (3.25)

This will allow us to evaluate the Einstein-Hilbert contribution everywhere except for an in-
finitesimally thin shell surrounding the brane. The relevant contributions can be divided into two

regions By and By whose projections on a constant time slice are depicted in figure 3.6a. Due to

12The expansion parameter is defined according to © = 9y In /7 where v is the (one dimensional) metric on the
null surface. The addition of this counterterm was recently pointed out to be an essential ingredient of the CA
conjecture in refs. [91,92].

134 is given by a = In|s - k| for the case of the intersection between a timelike and a null boundary with normal
vectors s and k respectively, and by a = In|k; - k2/2| for the intersection between two null boundaries with normal
vectors k1 and k2. The sign ¢ = —1 if the volume of interest lies to the future (past) of the null segment and the
joint lies to the future (past) of the segment and e, = 1 otherwise. For more details see Appendix C of [63].
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the symmetries of the problem, we focus on the future part of the WDW patch on one side of the
defect and eventually multiply our result by a factor of four. We start from the contribution of

the region Bj:

L 0 tanh ™~ (cos §) cos~!(tanhr)
By = — / dy cosh? y / dr coshr / dt
2rGy J—y 0 0

B L
 4nGy

(3.26)

{y* + ;sinh(2y*)} (lng — 1) .

Next, we evaluate the contribution from the region Bs:

L ™ /2= T/2=¢  sin ¢ L |n =2
By = — do d dt = — =——. 2
2 4Gy /0 /0 ¢/0 cos3 ¢ A7 Gy [5 4 (3.27)

Summing together egs. (3.26) and (3.27) and multiplying by a factor of four for the two sides of
the defect as well as the future and past parts of the WDW patch we obtain

L T A 2 1
Ly = —— | —= Iné—1)+ — |, = y* + — sinh(2y*), 2
bulk wGN< 5+'7(n )+4> y y+28m(y) (3.28)

where the parameter v encodes the influence of the defect. For a brane with small tension we

have a linear relation between v and the tension of the brane, namely v ~ A.

Boundary and Joint Contributions

In this section we evaluate the various boundary and joint contributions to the gravitational action
of the WDW patch. The different surfaces and joints which come into play in this calculation are
illustrated and labeled in figure 3.7 and their projections on a constant time slice are presented
in figures 3.6b-3.6c. They consist of the half cylindrical cutoff surface outside the defect region
which is labeled as S1, the two additional null boundaries consisting of lightcones generated from
antipodal points on the boundary of the WDW patch in the defect region, both labeled as Sz, the
half cone outside the defect region labeled as S3, and the two additional constant r extensions of
the cutoff surface in the defect region labeled as S4. The joint between S7 and Sj3 is labeled as J;
and the one between So and Sy is labeled as Js. Finally, the joint at the ridge at the top of the
WDW patch between the two So surfaces is labeled as J3. Note that So and S3 are connected
smoothly, as well as the various surfaces on two different sides of the defect and we therefore do

not include additional joint contributions there.

Contributions outside the defect region We start by evaluating the various contributions
outside the defect region. The half cylindrical cutoff surface S; corresponds to ¢ = 7/2 — $ and

its normal one-form and induced metric read

L2

sin? ¢

L

sin &

sV = sVdat =~ dp,  dhy = (—d#? + cos?§ do?) (3.29)

The extrinsic curvature reads . )
Ky ==~ (COSS + ) , 3.30
W=7 cos 9 ( )
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J3

Figure 3.7: Various joint and surface contributions to the action of the WDW patch.
We have focused on the future half of the patch on one side of the defect.

which yields the following GHY contribution to the gravitational action

L s & cos o A 1 L
Sy = / dt/ 6 L2500 <cos5+ ) - 3.31
' 8Gy Jo 0 sin2 ¢ cosd 4G 6 (3:31)

The half cone S3 can be parameterized by the coordinates A = ¢/N3 and 6 as follows'

2" (N, 0) = (L, 6,0) = (N3\, 7/2 — N3\, ), (3.32)

and the normal vector to the surface reads

o= 10 3.33
3= gx 3(1,-1,0). (3.33)

The (one dimensional) induced metric, expansion and  on the surface S3 are given by

2N
v99 = L? cot? t, 0= _sin(;t)’ K(3) = —2N3cot t. (3.34)

We can now use these results to evaluate the surface contribution S3, including both the x term
and the counterterm contribution © In(¢.|0]) from eq. (3.24). This leads to

N: 2
L /2 = In (ifﬁbt?) + 2cos“t )’ LN
= dt do = = (1 = 1. .
53 87Gx /5 /0 sin?t 8Gn0 <n< ) > * > (3.35)

The joint Jy, where the half-cone intersects with the cylindrical cutoff surface, is given as

g-_ L /d@cot(S)ln(NgI:)z— LAln(NfL). (3.36)
871Gy Jo sin 8Gx0 )

41n [63] it was suggested that as a part of the prescription to evaluate the complexity we should choose a
parametrization of the null generators such that £ = 0 and such a parametrization is given by the choice A & cot(t).
However, since we are adding the counterterm the choice of parametrization will not modify the final result and
we may proceed with A\ o ¢.
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Combining all these contributions for the surfaces and joints outside the defect region together
and multiplying by a factor of four for the future and past parts of the WDW patch as well as

the two sides of the defect we obtain

L
Isj,out = 4(51 + 53 + Jl) = = (ln(ﬁct/L) + 3) . (337)
2G N0
We see that the parametrization choice N3 canceled out as expected due to the addition of the

counterterm.

Contributions inside the defect region Here we focus on the various surfaces and joints
inside the defect region, namely S5, S4, Jo and Js, see figures 3.6-3.7. The constant r cutoff
extension in the defect region corresponds to the constraint tanhr = cos 5, see eq. (3.16), and its

normal one-form and induced metric read

s = s#)dx“ = Lcoshydr,
2 3.38)
9 19 5 cosh 9 (
The extrinsic curvature reads .
cosd
Kgy=—. 3.39
@) ™ T cosh Y ( )

We can use these results to evaluate the Sy surface contribution given by

L ’ 5 L (3.40)
Sy = d dtcotd = *. .

4 8mGn /y* y/o 0 87TGNy
The additional lightcone surface S5 generated from the boundary point at 8§ = 0 can be

parameterized in terms of ¢t and y as follows
2" (t,y) = (t,y, tanh ! (cost)), (3.41)

where t € [5, /2] and y € [—y*, 0] and where y = —y* corresponds to a light ray which parallels
the defect. It is possible to verify, as we do below that this surface has zero null-expansion
(© =0) and as a result it is reparametrization invariant without the addition of the counterterm
in eq. (3.24) (in [63] this was referred to as a stationary hypersurface).!® If we parameterize the

surface with A such that A = #2 cosh(y) In (tan (§)), we obtain for the normal vector!®

dxt No

k"LL = = —
@) dA Lcoshy

(sint,0,—1), (3.42)

50One way to understand this statement is that the surface S is in fact a part of an entanglement wedge
[109,110]. For the case of vacuum AdS and a spherical entangling surface, it is well known that the boundary of
the entanglement wedge is a Killing horizon and the corresponding normals are null killing vectors [79,129]. Hence
this surface is known to have vanishing expansion and constant cross-sectional area when moving along its null
generators.

16 A guiding principle for this choice of parametrization is that it simplifies greatly the factor inside the logarithm,
and as a consequence, the integration in the corner contributions J2 and Js.
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as well as the other properties of the surface S

Ny cost

Yoy = GapeSel = L2 ©=0, kg = T coshy’ (3.43)
We can use these results to evaluate the surface contribution Ss which reads
L 0 /2 .
52 = 871Gy /—y* dy/S dt cott = _87TGN y'Ino, (344)

where in evaluating this expression we have changed the variable of integration from A to ¢ using
the chain rule. We proceed to evaluate the contribution of the joint Jz, associated with the surface

of constant t = § and y € [—y*, 0]

Jo = = ,
2 87TGN —y* y STFGN y

L1 0 L1
- DNQ/ dy = Nz (3.45)
The joint J3, formed by the intersection of the two lightcone surfaces generated from the two
antipodal points on the boundary, is characterized by t = 7/2, r = 0 and y € [—y*,0]. At this

intersection the normal vectors to the two null surfaces take the form

Nz 7 NQ
ko = ———(1,0,—1 kb = ————(1,0,1 A
(2) LCOShy ( ’0’ ) ’ (2) LCOShy ( 707 ) ’ (3 6)
which yields the following joint contribution
Lln NQ 0 Lln NQ
Jz = dy = . 3.47

Summing together all the contributions for the surfaces and joints inside the defect region we

finally obtain

L .
Liin = 8(S2 + 84+ Jo) +4J3 = —— " (1n5 - 1) , (3.48)

URSSN

and of course, the parametrization freedom N5 canceled from this result.

Defect Contribution

We now proceed to consider the defect contribution. We will include here both the brane action
as well as the integration of the Einstein-Hilbert term over the infinitesimal thickness of the
defect. The relation between these two contributions has been explored in [130] using the Israel
junction conditions [131], where it was demonstrated that the Einstein-Hilbert contribution can
be expressed in terms of the discontinuity of the extrinsic curvature across the defect, and this
yields a contribution that is (—2) times the brane action. Summing the two together results in a

flipped sign for defect contribution

tanh y*

Ij=1\+Igy=—-I,= A V—h =
d A EH A defect 47rCTYNL defect

V—h (3.49)
where h is the induced metric on the defect and we have used the relation (3.3) to relate A and

y*. Of course, in the context of the CA conjecture we will be integrating over the part of the
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defect enclosed in the WDW patch. Since the defect lies inside the patch we do not need to add
additional boundary contributions and joints at the location of the defect.!” The defect brane
corresponds to the constraint y = —y*, see eq. (3.21). We parameterize it by the coordinates t

and 7, and its normal vector and induced metric are given by

§(@

sftd)dx“ = Ldy,

(3.50)
dh%d) = d52 — L2 COSh2 y(_ COSh2 rdt2 + dT’2) .

This yields the following defect contribution

L sinh(2y*) tanh ™ (cos 4) cos™!(tanhr) L sinh(2y*) R
I L _ _Lsmh{Ey) s g 3.51
d 7Gx /0 dr cos 7“/0 dt 7Gx ( nd ) , ( )

where we have included an overall factor of two to account for the future and past portions of
the defect brane.

Total CA Contribution

We can now collect all the terms to obtain the total result for CA complexity using eq. (2.46)'®

. o (50 (5) +1]+3)
— = S (Ig 4 Liim 4 Lot & Do) = 2 (= [ (22} w1l + 2, 52
Ca - — U+ Igin + Igout + Toune) = 5 sz ) T g (3.52)

where we have expressed the result in terms of the central charge ¢y = 3L/(2Gy) of the boundary
theory. We see that the presence of the defect does not change the result! This is in contrast to
the logarithmic contribution introduced into the CV complexity due to the presence of the defect,
cf. eq. (3.23). There is an ambiguity related to the new scale ¢, introduced by the counterterm
which has been suggested to be related to certain choices that can be made in defining the
complexity in the QFT side [65,67], see section 5 of [92].

3.3 Holographic Complexity for Subregions

Next, we investigate extensions of the CV and CA conjectures for mixed states produced by
tracing out the degrees of freedom outside a subregion A of the full boundary time slice, see
[64,111]. Both proposals are motivated by the suggestion that the natural bulk region encoding
the reduced density matrix is the entanglement wedge [109,110]. In the presence of the defect,

the non-trivial case is when the subregion A includes the defect and we focus on this case below.

3.3.1 Subregion CV Conjecture

The extension of the CV conjecture for the complexity of mixed states [64,111] suggests that the
complexity is proportional to the maximal volume of a codimension-one surface enclosed between

the boundary region A and its corresponding Ryu-Takayanagi (RT) surface [11,108] with the same

17 As an aside, we note that a naive extension of the prescription for joint terms between the defect surface and
the additional Sz boundary would fail, since in this case the null normal is included in the timelike defect surface
which would result in a vanishing product of the normals to these two hypersurfaces.

18We have set h = 1.
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or/r1 Or/TR

Figure 3.8: Defect AdS geometry consisting of two AdS patches glued together
along lines of constant y = £y* at the location of the defect. The spacelike geodesic
connecting 07, and 0p (alternatively r7 and rg) will pass through 6 = +£6* (alter-
natively » = r,) on the left/right patches respectively. On the right patch we have
—y* <y < oo while on the left patch we have —oo < y < y*. We have extended the
definition of r in both patches such that all the patch is covered and —oo < r < oco.
Angles are measured with respect to the vertical upward direction.

proportionality coefficient as in equation (2.45). We will use this prescription in the defect-AdS
geometry for the case in which the subregion A contains the defect. For this purpose, we need
to find the RT surface (the spacelike geodesic, in our case) connecting two points on opposite
sides of the defect as illustrated in figure 3.8. This is done by matching two geodesics connecting
the two boundary points on each side of the defect to the same point on the defect surface and

minimizing the total length.

Finding the Geodesics

Let us start with the metric on a constant time slice in global coordinates on the right patch, see

eq. (3.8) ,

ds? = Coi% (dg? + sin? ¢ d6?) . (3.53)
The geodesics for this metric can be found by minimizing the line element. This leads to the
following geodesic equation parameterized by 6, where we have used the change of variables
®(0) = sin(¢(0))

—3(0)D" () + 29 (0)> + (0)> =0, (3.54)

which admits the general solution
sin ¢ cos(f — o) = c. (3.55)

« and ¢ are two constants of integration which will be fixed by the boundary conditions 67, and 0
where the geodesic meets the boundary of AdS. This demonstrates that these are simply curves
of constant r, rotated by an angle « cf. eq. (3.9).

Alternatively, we can work with the y and r coordinates by extending the definition of r to
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negative values, in order to cover the full space. This is done by formally extending the coordinate
transformation in eq. (3.9) to angles 6 > 7/2 or § < —n/2. This choice of coordinates turns out
to be the most convenient when evaluating the relation between the integration constants and the
boundary conditions of the geodesics. The geodesic in the y and r coordinates can be obtained

by considering the restriction of the metric (3.4) onto a constant time slice
2 2 dy\? 2 2
ds“ =1L . + cosh®y | dr=. (3.56)
r

This leads to the following geodesic equation where we have used the change of variables Y (r) =
tanh(y(r))

d*Y
——-Y =0 .
12 0 (3.57)
This equation admits the general solution
tanh(y(r)) = c1e” + cae™" (3.58)

where ¢; and ¢y will be fixed by the boundary conditions. In general these constants will be
different for the left and right sections of the geodesic and we will have to match them at the
position where the geodesic meets the defect. Fixing the boundary conditions y = oo, 7 = rg
for the right section of the geodesic and y = —oo, r = 1, for the left section we can express the

geodesic solutions as follows

sinh(r — rg + tanh ™! (ag)) =

v/1— a%
(3.59)
. -1 ar,
sinh(r —rp —tanh™ (ar)) =
A/ 1 - CLL
where the constants of integration a;, and agr will be fixed by matching the two geodesics on the
two sides of the defect.

Since the metric is continuous at the location of the defect (only its derivative with respect
to the y coordinate is discontinuous), one can show by integrating the equations of motion in a
small pillbox around the defect that dy/dr is continuous at the point where the geodesics cross
the defect. This is a local matching condition which is equivalent to minimizing the total length

of the geodesics. Explicitly, the matching condition reads

2

2

1—-a
cosh(r, — rg + tanh~!(ag)) = yo ot cosh(r, — ry, — tanh™(az)) (3.60)
aR ar,

where r = r, is the value of r at the point where the geodesics cross the defect. In addition, the
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fact that the geodesics in eq. (3.59) cross the defect at r = r, yields the following conditions
: -1 aRr *
sinh(r, — rg + tanh™ " (ag)) = ———=——— tanh y™, (3.61)

sinh(r, — 7, — tanh™(az)) = tanh y*. (3.62)

Solving these three equations leads to

] h TR—=TL
s S I i 3 (3.63)
cosh(*257L) 4 tanh y*

a=ap=ar =

We note that the point 7, is simply the arithmetic mean of the two asymptotic values of r on the
two sides of the defect. We also note that |a| < 1, and the sign depends on whether rgp > rp or

rr, > TrR.

Evaluating the Volume

We are now in the position to evaluate the volume enclosed inside the geodesic studied in the
previous subsection as suggested by the CV proposal. We have divided the volume to the part
inside the defect region and the part outside the defect region. Throughout the calculation we
have assumed that rp,rp < In(2/ 3), namely that the size of the boundary interval as well as the
distance between its end points and the defect are kept finite and far below the cutoff value. The

volume of the part inside the defect region on the right patch can be evaluated as

tanh~1(cos §)
=17 / dy cosh y / dr (3.64)
rr—tanh™!(a)+sinh~! (\/1“_72 tanh y)

and for the left patch we have

tanh~1(cos §)
=I? / dy coshy / dr. (3.65)
rp+tanh~!(a)+sinh~! ( a_a2 tanh y)

Using the change of variables y — —y in the first integral, we can combine the two integrals.

Some of the contributions cancel out and we are left with

y* A
Vi=Vi+ vt = L2/ dy coshy (2 tanh~!(cos d) — rp, — ’I“R>
0

= sinh y* (2 In (;) —r; — rR> .

(3.66)
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The volume outside the defect region for the right patch is given by

V*QR:LQ

tanh ™~ (cos &) cosh™! (é)
d?" / cosh rsin ¢ COSh y dy
0

rr+0(82)
rr+0(8?) tanh71< v 1;a2 sinh(’r—?"R-Hanh*l(a)))
+ L? / dr / cosh y dy
o 0
1
=17 <5 cos ! (tanhrg) — 7T/2> + L% arcsin(a), (3.67)

where we have decomposed the volume integration into two parts along the black dashed line
in figure 3.9, and the first integral was carried out using the change of variables ¢ = sinhr. We
have also defined rg = 7 — tanh™!(a) which is the point on the spatial geodesic (3.59) where
y = 0. Note that in some cases the limits of integration in the second integral may be flipped
which accounts for a subtraction rather than an addition. The volume in the left patch can be
effectively obtained by replacing a — —a and rg — rp, in the above expression which yields

L2
Vo=Vt + vk = 5 (cos_l(tanh rR) + cos™!(tanh TL)> — L?n. (3.68)

Finally summing the different contributions yields the following result for the subregion com-

plexity using the CV conjecture

S 2 — 2
CyP(rg,r) = % <9R ; br + sinh y* (2ln (5) —rL = TR) - 7T> ; (3.69)

where we have expressed the result in terms of the central charge ¢ = 3L/(2Gy) and the opening

angle g — 07, where
O = cos™ !(tanhrg), 0, = —cos '(tanhrr), (3.70)

cf. (3.9) with ¢ = 7/2. One consistency check on our result is to check that when r, = rgp = 0 we
recover half the volume of the full time slice, which is indeed the case, cf. eq. (3.23). The leading
divergence in eq. (3.69) is proportional to the size the interval A measured in terms of its opening
angle Or — 01, which is the same result as obtained without the defect, see [64]. The last term —
is a topological term, already mentioned in reference [132]. There, the authors concluded that the
holographic subregion complexity of ¢ intervals living on the boundary of AdSs is proportional
to § +mq — 2wy, where x is the total length of the entangling intervals on the boundary and y is
the Euler characteristic of the codimension-one volume entering in the CV proposal. In our case,
we obtain exactly the same result for the theory without a defect by setting y* = 0, with y =1
and ¢ = 1 (or alternatively ¢ = 0 for the full boundary, cf. eq. (3.23)). Compared to the full
CV calculation in eq. (3.23), the subregion complexity has half of the log divergent contribution
which is due to the fact that the subregion encloses only one boundary defect and the finite piece

has an additional negative contribution proportional to ry + rpg.

Finally, with the tools we have developed here we can also generalize the result of [102] for
the entanglement entropy in the presence of the defect to the case of an entangling region which

is not symmetric around the defect. The entanglement entropy is determined by the minimal
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Figure 3.9: A corner of the right defect patch illustrating the relevant volumes in
the evaluation of the subregion CV proposal. The red dashed curve indicates the
cutoff surface and the volumes Vi in eq. (3.64) and Vi¥ in eq. (3.67) are colored
in dark and light yellow respectively. The dashed black line indicates the division
between the two integration regions in eq. (3.67).

area surface anchored at the boundary of the entangling region according to the Ryu-Takayanagi
(RT) formula Sgg = A/(4Gyx) [11,108], where for AdSs3, A is simply the length of the geodesic
(3.59) according to the length element in eq. (3.56). In total we have

SEE = SEE,empty + ASE'E,defect (371)

where the entropy in the absence of the defect is given by [133]

2sin (220
c 2
SEE,empty = ?T In (U) (372)
0
and the entropy associated with the defect is given by
h ot
ASEE defect = “T 1 | cosh y*+ % . (3.73)
3 cosh <7TR2TL)

For the case rg = r;, = 0 where the geodesic passes through the center of the AdSs this matches
eq. (3.9) of [102]. In fact, the authors there note that as long as the entangling surface is symmetric
around the defect, the result does not depend on the size of the subsystem, and is related by means
of a folding trick to the boundary entropy Ing. Indeed we observe that when setting r;, = rg
the dependence on the boundary points 77, 7r disappears from the above equation. If the defect
is not located at the midpoint of the interval, the entanglement entropy is no longer determined
solely by the two universal numbers ¢y and g but rather depends also on the location of the end

points of the entangling region.
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Or

Figure 3.10: Illustration of the entanglement wedge for a subregion centered around
the defect in the right patch of the defect AdSs geometry. P; is the point on the
boundary at the edge of the causal diamond associated with the relevant boundary
region, whose past bulk lightcone will pass through the spatial geodesic connecting
0 L and 0 R-

3.3.2 Subregion CA Conjecture

In [64], a proposal was made for extending the CA conjecture to subregions (corresponding to
mixed states); the proposal is that the complexity of the mixed state is proportional to the
action of a codimension-zero bulk region, defined as the intersection of the WDW patch and the
entanglement wedge associated to the relevant subregion with the proportionality coefficient as
in eq. (2.46). The WDW patch does not depend on the subregion and is therefore identical to the
one described in Section 3.1.3. The entanglement wedge associated to a boundary subregion A
is the set of bulk points which are spacelike separated from the RT surface and connected to the
boundary domain of dependence of the subregion A, see [109,110]. Its boundary is then formed
by the light-front of the past and future light cones emanating from the various points on the
RT surface. For the case of vacuum AdSs the null geodesics which form the boundaries of the
entanglement wedge meet on the boundary at the two ends of the causal diamond associated with
the subregion A.

To simplify the calculation we will be focusing on the case where the entangling region is
symmetric about the defect, i.e., rr = 1 or 1,+0r = 0, see eq. (3.70). In this case, the RT surface
is simply a curve of constant r = r; = rg, see eqs. (3.59) and (3.63). The entanglement wedge
then naturally coincides with the one of empty AdSs and consists of the light rays emanating
from the boundary point P, = (¢, ¢,0) = (6r,7/2,0), see figure 3.10. In fact, recall that we have
already considered a similar lightcone, when we were looking at the extension of the boundary
of the WDW patch in the defect region in Section 3.1.3, where it was described by the relation
(3.20). Adapting this expression to our case by the substitution ¢ — 6z —t results in the following

parametrization for the boundary of the entanglement wedge
tanhr = cos(6g — t) . (3.74)

For the case of vacuum AdS and spherical entangling regions, it is well known that the boundary of

the entanglement wedge is a Killing horizon which has vanishing expansion [79,129] and therefore
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the counterterm in eq. (3.24) will vanish for this surface.
In the following, we will divide the contributions to the CA proposal for the subregion to two

parts — inside, and outside the defect region
CA@Ub = Cj:la:gub + Ci,sub' (375)

Since we are mainly interested in studying the special properties that the defect induces in our
system, we will focus here on evaluating the contributions to the complexity from the defect
region. Those will be the ones important for the conclusions of this chapter. For completeness
we also extract the divergent contributions outside the defect region in Appendix A.2. We will
demonstrate below that thsub vanishes for all symmetric subregions around the defect.

In what follows it will be useful to have an explicit expression for the intersection of the WDW
patch and the entanglement wedge in the defect region. Combining (3.74) and (3.20) for this joint
yields

t=0gr/2. (3.76)

Evaluating the Action

In this subsection we focus on contributions from the defect region. We quote the result for the
structure of divergences outside the defect region at the end of the subsection and the details
can be found in Appendix A.2. The projections of the various relevant contributions onto the
t = 0 time slice are illustrated in figure 3.11. They consist of bulk, boundary, joint and defect
contributions. In the defect region, those are the two bulk contributions B; (region under the
WDW patch) and Bs (region under the entanglement wedge), the three surface contributions Sy
(cutoff surface), So (null boundary of the WDW patch) and Sg (null boundary of the entanglement
wedge), the three joint contributions Jy (between the cutoff surface and the boundary of the WDW
patch), J5 (between the boundary of the WDW patch and the boundary of the entanglement
wedge) and Jg (between the past and future boundaries of the entanglement wedge), and the
two defect contributions Séa) (enclosed under the WDW patch) and Sc(lb) (enclosed under the

entanglement wedge). We evaluate them below.

Bulk contributions We start from the bulk contribution B;, bounded by the WDW patch
(3.20), which reads

L 0 tanh ™1 (cos §) cos~!(tanhr)
B = / cosh? y dy / .. coshrdr / dt
—y* t 0

- ArGy anh ™! (cos =)
Ll N (s O (O (L (O
= 3l (y + 5 sinh(2y )> <1n5+ 5 cot ( 5 ) In (sm( 5 )> 1> . (3.77)

Next, we evaluate the bulk contribution Bs, under the entanglement wedge (3.74), which reads

L 0 tanh ™1 (cos 9712) 6r—cos~!(tanhr)
By =— / cosh? y dy / cosh r dr / dt
47TGN —y* tanh71 (COS eR) 0

B e (28 ot (27 w (07
BTN (y +251nh(2y )) ( 5 cot( 2>+ln (sm< 5 >csc93>>. (3.78)
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(a) Bulk contributions (b) Surface contributions (c) Joint contributions

Figure 3.11: Illustrations of the various contributions in the evaluation of the sub-
region CA proposal for an interval which is symmetric around the defect. The il-
lustrations focus on the right patch, but of course, equivalent contributions exist for
the left patch. The red dashed line represents the cutoff and the middle dotted blue
curve represents the projection of the joint formed at the intersection between the
boundary of the WDW patch and the entanglement wedge. We have also included
certain internal divisions between B; and Bs and between Sg and S; outside the
defect region which we use in evaluating the relevant integrals in Appendix A.2.

Multiplying by four to account for the equivalent contributions from both sides of the defect, as
well as above and below the ¢ = 0 time slice, we find that the total bulk contribution inside the

defect region is given by

L L, 1 . N 1 Or
Toulkin = nCin (y + ismh(Qy )) <1n5 —In (2 tan( 5 )) - 1) . (3.79)

Surface and joint contributions The contribution from the cutoff surface Sy has already

been evaluated in Section 3.2.2, see eq. (3.40), and is given by

L *
Si= gV (3.80)

The contribution of the null surface Sy is very closely related to the one evaluated in eq. (3.44).

All one has to do is modify the limits of integration according to eq. (3.76) which yields

L 0 Or/2 L N QR
= = =1 1 in | — . .81
g L) et (mien (e (5))) e

The details of the null boundary of the entanglement wedge Sg can be easily obtained from those
of the null boundary of the WDW patch in eq. (3.41)-(3.43) by substituting ¢ — 0 — t in the
relevant places. However, we have to make sure that the parametrization A increases from past

to future, hence we choose A = _N§W coshy In (tan (%)), where we have included a constant

New to account for the choice of parametrization at the boundaries of the entanglement wedge.
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The surface data is given by

_ N, :
z(t,y) = (t,y,tanh ! (cos(fr —1))), ké) = Tm (sin(0r —1),0,1),
3.82
- 2 - - NEW COS(QR - t) ( )
Yy = L7 ©=0, ") T coshy

which leads to the following surface contribution

L 0 Or/2 L Or
- _ —t)=— *In (2 — . 3.83
Sg —ey /_y* dy/o dt cot(fr —t) 87TGNy n ( cos ( 5 )) (3.83)

Next, we evaluate the relevant joints. The joint Js at the intersection of the WDW patch and

the cutoff surface is identical to the one evaluated in eq. (3.45) and reads

_Lln/\/g «
8tGy g

Jo = (3.84)
The joint J5 at the intersection of the WDW patch and the entangling wedge can be obtained
using the normal vectors in egs. (3.82) and (3.42) evaluated at t = /2 which yields

="t (3.85)

The joint Jg is obtained by contracting the normal vector in eq. (3.82) for ¢ = 0 with the normal
vector of the past null boundary of the entanglement wedge obtained from the former by flipping

the sign of its ¢t component. This yields

LlnNEW %

KR e

(3.86)

Summing all these contributions together yields the following result for the action of the surfaces

and joints inside the defect region

L in =4(S2 4+ Sa + Sg + Jo + J5) + 2Js
Lo . 1 (b (3.87)
_27TGNy (ln5+ln<2tan(2)>+1>

and of course, we note that the parametrization choices Ny and Ngyw canceled out.

Defect contribution The defect contribution is given according to eq. (3.49). One has to
subdivide the integration into two parts. First, we consider the defect brane portion Séa) under
the WDW patch

Lsinh 2y* tanh™(cosd) cos~!(tanh )
sy =22 / hrd / dt
d STFGN \ 0 coshrar 0

anh™1(cos -£)

L sinh 2y* ~ 0 0 0
:SM(—lné—;cot (;)+ln(sin(;)>+1>.
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Next we evaluate the defect brane contribution under the entanglement wedge

L sinh 2u* tanh_l(cose—R) Or—cos™!(tanhr)
S(gb) ==Y / * " coshrdr / dt
87Gx tanh ™! (cos OR) 0

_LSinth>|< Or Or . (Or
= T 8nG (2 cot<2>+ln(s1n<2)csc:93>).

Those contributions are counted twice to account for the parts of the defect brane to the future

and past of the ¢ = 0 time slice. Finally, we obtain

. Lsinh(2y" o
1o =2 (55 + 57 = SM <—ln6+1n <2tan (9;)) + 1) . (3.88)

Total contributions from defect region Adding up the contributions (3.79), (3.87) and
(3.88), we find that the defect region contribution to the subregion complexity vanishes

d 1

CA,sub = ; (Ibulk,in + Isj7in + Id) =0 (389)

as was the case for the complexity of the state on the entire time slice. This means that the
subregion complexity for an interval centered around the defect will be identical to the result for
a subregion of the same size in empty AdS. This is again in stark contrast to the results of the
subregion CV complexity in eq. (3.69), where the defect introduced a logarithmic contribution

which also depended on the location of the end points of the subregion.

Contributions outside the defect region In Appendix A.2 we consider the contribution
to the complexity from outside the defect region. This is the same as evaluating the subregion

complexity for empty AdS.'” We are able to extract the structure of divergences analytically and

Chemp = % (9; {ln (%) —+ 1} +1Iné In (2%t>) -+ finite. (3.90)
’ ™

We note that upon setting fgr = 7™ we recover the leading divergence of the full boundary com-

obtain

plexity (3.52). However, note that in expanding this result we have everywhere assumed that 0r
was not too close to the cutoff, and therefore we cannot expect to recover the subleading diver-
gences in the full boundary complexity in this way. We see that the result here has an additional
logarithmic contribution compared to that in eq. (3.52) which depends on the scale ¢.; associated

with the counter term.

3.4 Complexity in QFT

In this section we consider the problem of calculating the defect contribution to the complexity
of the ground state from the dual field theory point of view.
At the moment it is not known, even in principle, how one should compute the complexity for

a generic interacting field theory, although some progress has been made for weakly interacting

YFor the case of a flat boundary, the divergence structure of the subregion complexity in vacuum AdS was
studied in [64].
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QFTs, see [72]. For the case of a free field theory one can follow the methods developed in [65]
which allows to compute the complexity in the case where the reference state and the target
states are Gaussian (as is the case for the vacuum of a free field theory). A Gaussian state can
be characterized in normal coordinates by a set of characteristic frequencies wy; if the reference

state is taken to have all frequencies equal to a constant wg, the complexity is given by

In (:’;)’ . (3.91)

This formula is obtained as a geodesic distance, calculated in a certain metric defined on the

1

k

space of unitary operators that are used to move within the set of Gaussian states. An essentially
equivalent result was obtained in [67] via a different method, where the metric was computed

from the Fubini-Study metric on the set of quantum states.?’

In order to make a connection between eq. (3.91) and the holographic model studied in the
previous sections, we look at a free 1+1-dimensional CFT with a conformal defect, i.e., a defect
which preserves at least one copy of the Virasoro algebra. A single defect on the real line can
be mapped to a boundary using the “folding trick”, and the problem of constructing conformally
invariant boundary conditions has been considered by Cardy [135] who derived a set of consistency
conditions that boundary states have to satisfy. However these conditions cannot be solved in
full generality. In the simplest case of a single free boson, which we denote as ¢4 and ¢_ on the
right and left sides of the defect respectively, it is possible to show [52] that the most general

current-preserving conformal boundary condition relating the derivatives of the fields is
Opp— Oy A0
=) _ M(X) O+ . M\ = ], or (3.92)
0o 04 0 A\

amﬁbf o / 8x¢+ ! _ 0 >\_1
(315(1)—) = M'(N) <8t¢+> , M'(\) = (}\ 0 > . (3.93)

If the boson is compact, the first condition amounts to a change of the compactification radius,
with A = R, /R_. The second type of defect is related to the first type by a T-duality on one
side of the defect, i.e, 0,04 = e,wa”qh. These boundary conditions can be obtained by requiring
that energy is conserved (i.e., the stress tensor component Ty, is continuous) at the location of
the defect.

In order to mimic the setup of our holographic model we will consider a scalar field, living
on a periodic boundary of length 2Lg, namely = € [—Lg, Lp], with defects at the diametrically
opposed points x = 0 and x = Lg, as indicated in figure 3.12.

If the boson is compact, then its compactification radius must be unchanged after going once
around the circle; this implies that the matrix associated to one defect must be the inverse of the
other; if at & = 0 we have a defect M ()), at the opposite side the defect has to be M(A~!). This
amounts to choosing X' = A~! in figure 3.12. It is a simple exercise to show that imposing these

boundary conditions on the boson leads to a spectrum that is the same as in the theory without

20Tt has been shown in [134] that the two methods will not be equivalent in general, and an explicit counterexample
can be found using coherent states.
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M(N)

~_

M(XN)

Figure 3.12: Illustration of two CFT domain walls at the opposite sides of a periodic
domain.

defects, namely
™

Wy, = Is’ (3.94)
Applying the formula (3.91) then obviously leads to the result that the complexity does not
depend on the presence of the defect. This is in agreement with the result for the CA conjecture
that we obtained in (3.52), but not with the result for the CV conjecture (3.23), which may be
seen as an argument in favor of the CA conjecture. However, we should be cautious in drawing
such a conclusion, as the model we consider is a very simple one and we do not know if the result
is generic. Moreover, the fact that the normal frequencies are the same does not imply that there
is no effect of the defect. The zero modes play an important role in determining the entanglement
entropy, more precisely its finite part, which can be identified with the Affleck-Ludwig boundary
entropy [102,136,137]. This potentially hints that one has to incorporate the effect of zero modes,

or winding modes, into the free field theory definitions of complexity [65,67].

We can make a few further observations. First, notice that if the two defects are not placed
at antipodal points, then the spectrum will change (the defects are not topological, so the theory
depends on the distance between them). In the field theory we can put the defects wherever
we want, but in the gravitational dual it seems difficult to find a corresponding solution where
the brane would have to bend, so something would have to pull on it to stabilize the solution.
Second, if the boson is not compact, then there is no reason a priori why the two defects should
be related to each other. We can allow for a more general pair of defects M (\), M()\'). The

boundary conditions lead to a set of allowed momenta and corresponding frequencies

nt 1 (AN =1 s
wnt = |knt|, kpnt=-—+—tan 1<>\+>\/)ELB(niA). (3.95)
Alternatively, if one considers a pair of defects with transfer matrices M (\) and M’()\') the fre-
quencies are again identical to those in the vacuum state, while for transfer matrices M’ (\), M'()\)

we obtain the same result as in eq. (3.95).

Even though we have no reason to think that this model has anything to do with our holo-
graphic model, we may hope that the corresponding complexity will have a sufficiently generic

form. Then using the prescription (3.91), and assuming for simplicity that we use a reference
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frequency larger than the cutoff, we find

N 2 92 .
Liw Lpwy 2sin(mA)
C:E:lnm~2N1n< )+2N—1nN—ln<>
a1 T n? = A TN A (3.96)

2 (120) () 1] () - (22)

where we have used N = LgA/m with A the momentum UV cutoff. In the above expression
we have not included the contribution of the mode n = 0 since this mode would have to be IR
regularized when considering the theory without the defect A = 0. Note that since we have
assumed that wy > A the leading term in the complexity will be positive, as expected.

We can compare this result to the one of the holographic CV (3.23) and CA (3.52) proposals.
The field theory result has a Aln A divergence, which is expected in field theory [67] but is
absent both in CV and in CA when /. is taken to be a constant. If we consider ¢, ~ 1/A
in the CA proposal, the leading divergence is reproduced, but not the subleading InA. The
fact that the subleading divergences do not agree is not surprising given the simplicity of our
model and was already observed in the complexity of the vacuum state in [65,67]. This choice
of ¢, would also lead to a In%? A divergence in the subregion complexity (3.90), which despite
being an unusual divergence to encounter in field theory quantities that need to be renormalized,
does appear in quantum information measures, e.g., the entanglement and Rényi entropies for
entangling surfaces which contains a conical singularity [138]. Another option would be to choose
the reference frequency wg ~ A. In this case the divergences are only A and In A and the structure
is the same as for CV (3.23), except for the fact that the coefficient of the log depends on the
parameter of the defect in CV, whereas in the field theory the defect affects only the finite part.
Comparing eq. (3.96) to the results of the CA proposal (3.52) we see that in both cases a defect
dependent log contribution is absent.

It appears that the absence of a defect-dependent log is due to a cancelation that occurs
between modes of momentum k and —k; they are degenerate in the free model, and the defect
lifts the degeneracy symmetrically, i.e., w — w + dw. This suggests that the result can change if
parity invariance is broken, for instance in a chiral theory, or if the defect has degrees of freedom
living on it; in this case there is a channel of inelastic scattering of the modes, so that k is not
coupled only to —k.2! This idea can be checked explicitly in a solvable model [125] of a free boson
with a boundary interaction of the form

L= 817r/dx (0up0"¢) — g cos (gb\(f(;)) . (3.97)

The interaction term is of dimension one and is exactly marginal. By taking the boson at the
self-dual radius, one can see that the interaction term can be reabsorbed into a redefinition of
j + +iv2¢.
the SU(2) currents J? = ﬁ(%ﬁ, JE = Eiv20,

T (2) = TH2) = T\ (z) — %5(:@ . (3.98)

2INote, however, that the notion of degrees of freedom localized on the defect is not well-defined outside of the
perturbative regime, see, e.g., [139].
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The effect of this shift is to change the allowed U (1) charges (i.e., momenta) of the modes. On a
segment [0, Lg] with Dirichlet boundary conditions at 2 = Lg, one finds that k, = 7-(n + g/2);
the complexity in this case gives a result similar to (3.96), but with a term ¢ In A. However, if the
interaction term is added at both endpoints, the spectrum is different [140]: it forms continuous
bands centered around each integer, of width 1 — 2« for g € a + Z. In this case the asymmetry

disappears again.

3.5 Discussion

In this chapter we have studied how the results of the holographic complexity proposals change
when the boundary theory includes a conformal defect. We have focused on a simple gravity model
which includes an AdS, brane embedded inside an AdS3 geometry for which the full solution is
known including backreaction [102]. The solution consists of two, slightly more than half, patches
of empty AdSs.

In Section 3.2, we evaluated the complexity of the full boundary state according to the com-
plexity=volume proposal and found that it has an additional logarithmic divergence, compared
to the case of vacuum AdSjz, see eq. (3.23). We define the difference as the defect formation

complexity

ACRER = Cy — Cyyac = (3.99)

8er sinh y* <2LB>
In ,
3 o

where we have used eq. (3.15) to express § as a function of the UV-cutoff § and the boundary radius
Lp, and where y* is related to the tension of the brane as in eq. (3.3), i.e., tanh y* = 4rGy L.
Since the coefficient of the logarithmic divergence does not depend on the regularization scheme,
we expect that it is related to the physical data of our system. Indeed, we demonstrate below
that in addition to the explicit dependence on the central charge, the coefficient of the logarithm
in the above equation is related to the Affleck-Ludwig boundary entropy [105], which manifests
itself as the finite part of the entanglement entropy [133] in the presence of a boundary. In the
case of the conformal defect studied in this chapter, when the entanglement region is symmetric
around the defect, it is possible to use a folding trick to relate the system with the defect to a
finite system with boundaries and in this case the finite part of the entanglement entropy is also
related to the boundary entropy. In the holographic setup when evaluating the entanglement

(3.73) for an entangling region which is symmetric around the defect one obtains

2L 14 *
SEE = C?T In (53 sin <2LB)) +1Ing; Ing = CTgy , (3.100)

where £ = LgA# is the length of the interval on the boundary and In ¢ is the boundary entropy.
This result was already obtained in [102] and eq. (3.73) generalizes it to the case of asymmetric
regions around the defect; we find that in the latter case the finite part of the entanglement is no
longer a constant but depends on the location of the endpoints. As far as we know, this result has
not appeared in the literature before, and it would be interesting to have a field theory derivation

of it.

Next, we evaluated the complexity according to the complexity=action proposal and found
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that the result was identical to the one obtained for empty AdSs

ACKI = C 4 — Cayae = 0. (3.101)

efect —

We stress once more that the exact vanishing, and in particular the independence on the tension
of the brane, is obtained with a particular choice of regularization. As discussed in footnote 7, a
change of cutoff can induce finite contributions that are in general dependent on the tension. The
robust part of this result is the vanishing of the defect contribution to the logarithmic divergence
which contains universal information. Previous studies of the two holographic proposals have
found that the two results generally coincide up to an overall numerical factor. This includes the
late time growth rate of complexity in black hole backgrounds which is proportional to the mass
of the black hole (for the CV proposal this is valid in the high temperature limit) [17,57,89],%
characteristic delays in the complexity growth due to the introduction of shockwaves in the
system [16,91-93], as well as the structure of divergences in holographic complexity (this is true
when including a counter term in the action proposal), see [64,88]. It is therefore interesting
that for the case of the defect the results of the two holographic proposals dramatically differ.
However, we have to be careful about the generality of this result. Holographic complexity
is known to have special features for the case of d = 2, e.g., the complexity of formation is not
proportional to the entropy for this particular boundary dimension [126]. It is therefore important
to carry this analysis in higher dimensional cases before a definite conclusion can be drawn. One
possibility would be to use the setup of AdS/BCFT to study the complexity in the presence of a
boundary [141,142] or in various holographic models proposed for systems with defects [143-146].
It would also be interesting to try and explore the effect of defects of codimension different than
one on the complexity. Another possible extension of our results would be to explore the effect

of the defect at finite temperature when a black hole is present in the bulk.

It is important to point out that, at least naively, in order to study the complexity using the
volume conjecture we have to include the backreaction of the brane. It would be interesting to
see if this could somehow be avoided as was done for the entanglement entropy in [147] by using
the Casini-Huerta-Myers trick [79], or in an expansion for small tension of the brane, see [148].
Note that the analysis of the action cannot be performed in the probe approximation by simply
considering the action of the brane itself since the gravitational action for the region surrounding
the brane contributes at the same order in an expansion in the tension of the brane, as explicitly

seen in our calculation.

In Section 3.3 we evaluated the holographic complexity for subregions using the generalizations
of the CA and CV proposals [64,111] motivated by the suggestion that the natural bulk region to
encode the information about the reduced density matrix is the entanglement wedge [109, 110].
Using the complexity=volume we found in eq. (3.69) that the leading divergence in the complexity
was proportional to the size of the boundary region. This was already noted in [64,111]. The
defect introduced a subleading logarithmic divergence, which was exactly half of the one given in
eq. (3.99) for the full boundary state. The reason is that the subregion covers only one defect in

the boundary theory. It is also interesting to compare this result to the entanglement entropy in

228ee also [90] for the full time dependence.



3.5. DISCUSSION 59

equation (3.73) where the contribution due to the defect was finite rather than logarithmic.

For the complexity=action for a symmetric region around the defect, we found again that
the complexity with the defect was identical to the result for vacuum AdSs in the cutoff choice
presented in Section 3.1.2, see eq. (3.89). We derived the result for empty AdSs in global co-
ordinates in Appendix A.2 and the final result can be found in eq. (3.90) (previous results for
subregions in vacuum AdS with a flat boundary can be found in [64]). We observed that the
leading divergence is proportional to the size of the interval and that a certain ambiguity was
introduced by the parameter ., with dimension of a length, due to the gravitational counterterm
needed to restore reparametrization invariance of the gravitational action. This counterterm was
recently shown to be an essential ingredient in the CA proposal in order to reproduce certain
desired properties of the complexity in the presence of shockwaves [91,92]. We also observed a
subleading logarithmic divergence which depends on the same ambiguity due to the counterterm.
If the characteristic length /¢.; is chosen to be of the order of the cutoff, this introduces a In26
divergence in the holographic complexity. It would be interesting to generalize this result to the
case of a region which is not symmetric around the defect which cannot be related to a system

with boundary using the folding trick.

In Section 3.4 we studied the complexity of the ground state for two simple models of bosonic
QFTs including two defects at the two opposite sides of a periodic domain. We evaluated the
complexity according to the methods introduced in [65,67] for Gaussian states in free quantum
field theories, starting from an unentangled product state with characteristic frequency wg. The
first model consists of a free boson with permeable domain wall defects. In this model, we found
that the logarithmic contribution to the complexity does not depend on the permeability param-
eter A characterizing the defect, see eq. (3.96). This is similar to what happened in holography
using the complexity=action proposal. Later, we considered an exactly solvable model with a
boundary interaction given in eq. (3.97). In this model a logarithmic divergence which depends
on the defect parameters appeared in the complexity, analogously to our result for the complex-
ity=volume conjecture, although the logarithmic term is absent even in this case if the system

has two boundaries.

No embedding of the precise holographic model studied in this chapter into string theory is
known. It would therefore be very interesting to reproduce our holographic calculation for a
model that comes from a solution of string theory, for instance, one could consider the exact
string background of AdS3; with NS-NS fluxes, in which AdSs D-brane probes can be embedded,
see [149]. Presumably the fluxes would contribute to CA but not to CV, so there is a possibility
that the discrepancy found in this chapter would not be present in a full top-down model. Another
interesting possibility is to study the complexity in a smooth defect geometry, e.g., the Janus
solution [150], and check whether a defect-dependent logarithmic contribution is obtained using
the CA/CV proposals.

It is possible to gain further intuition into the influence of the defect on the complexity by
considering MERA circuits, for a review see [151]. MERA tensor networks constitute an efficient
way of approximating the ground state of critical systems. It has been suggested that they have
a natural interpretation in holography where the MERA constitutes a lattice representation of a

constant time slice in AdS and where the additional direction in the MERA circuit corresponds
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to the holographic RG scale [152]. More precisely, the number of layers in the tensor network
is proportional to logz where z is the holographic FG coordinate. The lattice points in this
description represent the MERA gates and so counting them (equivalently evaluating the volume
of the time slice) would naturally result in a measure of the complexity of the state.

It was pointed out in [153, 154] that in order to find the ground state of a system whose
Hamiltonian has been modified in a certain region due to an impurity or a defect it is sufficient
to minimally update the tensor network, namely to replace the tensors in the causal cone of
the defect, defined as the part of MERA which traces the evolution of the defect under coarse-
graining transformations. Furthermore, if the defect is conformal, it is enough to replace the
pair of tensors representing disentanglers and isometries with another (single) pair in the causal
cone of the defect. For impurities spread over a small spatial region, the causal cone consists of
approximately a fixed number of tensors at each layer.

We have seen in our CA calculations that the defect itself makes a large positive contribution
logarithmic in the cutoff, see eq. (3.51), while the geometry around the defect introduces a negative
contribution, which exactly cancels the one of the defect. This can be naturally interpreted in
terms of the minimally updated MERA. Introducing a cost for the tensors in the causal cone
would give a log contribution, since it would be proportional to the length of the cone in the
bulk; at the same time, we would have to subtract the contribution of the tensors that have
been replaced. The exact cancellation that we observe seems to indicate that the CA proposal
corresponds to microscopic rules where the defect gates and the ordinary gates are equally costly
while in the CV, the defect gates are more costly.

An alternative interpretation was suggested in [155] according to which the additional volume
in the extension of the AdS space created by a thin defect could be interpreted as additional
portions added to the tensor network, and this would resemble a discretized version of the time
slice in our CV calculation. Another interesting possibility would be to incorporate a defect into
the path integral complexity proposal based on Liouville action studied in [68,69,118,119].

We should point out that for entanglement entropy calculations in the free setup with a
compact boson and two permeable domain walls, the zero modes play an important role; the
finite boundary entanglement can be understood as arising essentially from the log of the volume
of the zero modes [102]. This raises the question of whether the prescription for computing
complexity using Gaussian states needs to be extended to account for a contribution of the zero

modes. We leave this interesting issue for future study.



Chapter 4

A Careful Consideration of
Holographic 2D dCFT

This Chapter is based on the work [19].

Conformal interfaces are ubiquitous both in condensed-matter systems and in studies of the
holographic duality. Such interfaces describe the local, scale-invariant gluing of two conformal
field theories, CFT on the left and CFTg on the right. Examples include junctions of quan-
tum wires [156], line or surface defects in the critical 2D or 3D Ising models [157], or the gluing
of superconformal gauge theories with different couplings and/or gauge groups. In bottom-up
AdS/CFT, interfaces are often modeled by codimension-one branes anchored at the AdS bound-
ary. Smooth (super)gravity solutions describing top-down embeddings in string theory are also
known. Some early papers on the subject are [52,143,145, 146, 158,159]. Additional references

will be given as we proceed.

Folding spacetime along an interface converts the latter to a conformal boundary of the
product theory CFT; ® CFTg, where the bar indicates space reflection.! The folded theory has
two energy-momentum tensors, 17, and Tg, that are separately conserved in the bulk while only
their sum, Tiot = 7, + Tk, needs to be conserved at the boundary. What distinguishes interfaces
from boundaries (and ICFTs from BCFTs) is the existence of another, relative spin-2 current
Tl = crTr, — e Tr > which measures the exchange of energy between left and right. Here cf,
and cg are the central charges of the two CFTs. As usual, things simplify considerably in two
dimensions. In this case, it was noted in [50] and further analyzed in [51,160,161] that the transfer
of energy across the interface is controlled by a single transmission or reflection coefficient, 7 or
R, with 7 + R = 1. The purpose of the present note is to derive a formula for these coefficients

in the simplest holographic-interface model.

The model consists of two AdSs slices separated by a string of tension o. The AdSs slices
have radii /7, and (g,® related to the CFT central charges by the Brown-Henneaux formula
cr,r = 301,r/2G [32], where G is the three-dimensional Newton’s constant. With no loss of
generality we take £; > {g, so that the ‘false’ higher-energy AdS vacuum is on the left, while the

"'We will actually restrict our discussion to non-chiral theories, for which CFTr =CFTg.
2This combination of the energy-momentum tensors is a conformal primary of the folded theory.
3We will work in the semiclassical limit, so the radii must be much larger than G.
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‘true’ AdS vacuum is on the right. For tensions inside the interval
1 1
0<——— < 8mGo < — + — (4.1)

the string-worldsheet geometry is AdSs corresponding to the ground state of the ICFT [130, 145].
At the extremal values of the interval the worldsheet flattens out, i.e., the AdSo radius diverges.
The lower o limit in (4.1) actually corresponds to the Coleman-De Lucia bound [162] below
which the false AdS3 vacuum is unstable to nucleation of bubbles. This is also the BPS bound
for supergravity domain walls [163]. The upper limit, on the other hand, corresponds to the
Randall-Sundrum fine-tuned tension, beyond which the string worldsheet becomes de Sitter and

gets anchored on a spacelike curve of the conformal boundary [145].

This model has been used as a toy model of holographic defects, in particular for calculations
of holographic entanglement entropy, see e.g., [102]. In this letter we provide the first calculation
of its transport properties. Our main result is the following formula for the energy-transmission
coefficient defined in [50],

4 11 -1
=—|—+ — +87Go . 4.2
b +fr [,  flr ( )
Together with the central charges, 7 was shown [50] to parametrize the most general two-point

functions of energy-momentum tensors allowed by the symmetries of the problem.

As explained in [51,160], what was actually defined in [50] is the weighted-average transmission

coefficient

_ cr.Tr + crTr where Ti p = (e, +cr)T

4.3
cr, + cr 2CL,R ( )
are the transmission coefficients for excitations incident on the interface from the left and right,
respectively. Our formula for these directional transmission coefficients reads
2 [1 1 -1

— | =+ — +8nGo . (4.4)

TLR:@L,R l, AR

The calculation of (4.2) and (4.4) is performed by scattering surface-gravity waves in a semi-
classical geometry dual to the ground state of the ICFT. It relies on the usual condition of no

outgoing waves at the Poincaré horizon, whose subtle implementation we explain below.

Before describing the calculation in detail, let us comment on some salient features of our
result. First, both 77, and T are monotonically-decreasing functions of the tension o. Their
maximal and minimal values (in terms of the central charges) read

7' ax 7' mn ) 4
’ Cz R ’ ’ Cl {‘ CR ’ ( .5)

or equivalently for the average coefficients

2, 2 B
2§T§ 2cR CL+CR22RZCL CR.
(e +cRr) crL+cr (cr + cr) crL+cr

2crcr

(4.6)

The above lower bound on R is the same as the one following from the achronal average-null-
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energy condition (AANEC) in the ICFT [51]. As stressed in that reference, this lower bound
is stronger than the bound imposed by reflection positivity of the Euclidean theory [161], R >
(ﬁ)? This shows that reflection positivity does not necessarily imply the ANEC in ICFTs.*

If the inequality ¢, > cp is strict, both 77, and T are less than 1. Total transmission to signals
incident from both sides is therefore only possible between degenerate AdSs vacua