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Résumé

Un réseau d’automates (RA) est un réseau d’entités (les automates) en interaction.
Ces automates ont un nombre fini d’états possibles et sont reliés les uns aux autres par
une structure de graphe appelée graphe d’interaction. Chaque automate évolue au
cours du temps discret en fonction des états de ses voisins dans le graphe d’interaction,
ce qui définit un système dynamique. Ce travail de thèse explore deux questions
principales : a) quel est le lien entre les propriétés dynamiques et calculatoires d’un
RA? et b) quel est l’impact de la topologie du graphe d’interaction sur la dynamique
globale d’un RA?.

Pour aborder la première question, une notion de complexité calculatoire est définie
au regard de problèmes de décision liés à la dynamique des RA. De même, une notion
de complexité dynamique est définie en termes de l’existence d’attracteurs de période
exponentielle. Un lien fort entre ces deux définitions est présenté qui met en exergue
le concept de simulation entre familles de RA. Dans ce contexte, la complexité se
caractérise d’un point de vue localisé en étudiant l’existence de structures appelées
gadgets qui satisfont deux propriétés : i) ils peuvent interagir localement de manière
cohérente comme des systèmes dynamiques et ii) ils sont capables de simuler un
ensemble fini de fonctions définies sur un ensemble fini.

La deuxième question est quant à elle abordée dans le contexte des RA “freezing”. Un
RA est “freezing” s’il y a un ordre sur les états de telle sorte que l’évolution de l’état de
n’importe quel automate ne diminue pas quelle que soit l’orbite. Un problème général
de model-checking capturant de nombreux problèmes de décision classiques est
présenté. De plus, lorsque trois paramètres de graphe, le degré maximum, la largeur
arborescente et la taille de l’alphabet sont bornés, un algorithme parallèle efficace
résolvant le problème mentionné est donné. De plus, il est montré que ce problème
est peu susceptible d’être FPT (fixed-parameter tractable) lorsque le paramètre de
largeur arborescente ou celui de taille de l’alphabet sont considérés comme unique
paramètre.



Abstract

An automata network (AN) is a network of entities, each holding a state from a finite
set and related by a graph structure called an interaction graph. Each node evolves
according to the states of its neighbors in the interaction graph, defining a discrete
dynamical system. This thesis work explores two main questions : a) what is the link
between dynamical and computational properties of an AN ? and b) what is the impact
of the interaction graph topology on the global dynamics of an AN ?.

In order to tackle the first question a notion of computational complexity of an
AN family is defined in terms of the computational complexity of decision problems
related to the dynamics of the network. On the other hand, dynamical complexity of a
particular AN family is defined in terms of the existence of attractors of exponential
period. A strong link between these two last definitions is presented in terms of the
notion of simulation between AN families. In this context, complexity is characterized
from a localized standpoint by studying the existence of structures called coherent
gadgets which satisfy two properties : i) they can locally interact in a coherent way
as dynamical systems and ii) they are capable of simulating a finite set of functions
defined over a fixed finite set.

Finally, the second question is addressed in the context of a well-known family
called freezing automata networks. An AN is freezing if there is an order on states
such that the state evolution of any node is non-decreasing in any orbit. A general
model checking problem capturing many classical decision problems is presented.
In addition, when three graph parameters, the maximum degree, the treewidth and
the alphabet size are bounded, a fast-parallel algorithm that solves general model
checking problem is presented. Moreover, it is shown that the latter problem is unlikely
to be fixed-parameter tractable on the treewidth parameter as well as on the alphabet
size when considered as single parameters.



Publications

The present work is based in the following articles:

• Journals

– 2021. On the Complexity of Asynchronous Freezing Cellular Automata, Eric
Goles, Diego Maldonado, Pedro Montealegre, Martín Ríos Wilson, Information
and Computation,104764, ISSN 0890-5401.

– 2021. Generating Boolean functions on totalistic automata networks, Andrew
Adamatzky, Eric Goles, Pedro Montealegre, Martín Ríos Wilson, International
Journal of Unconventional Computing, (to appear).

– 2020. On the effects of firing memory in the dynamics of conjunctive networks,
Eric Goles, Pedro Montealegre, Martín Ríos Wilson, Discrete and Continuous
Dynamical Systems - A, 40(10): 5765-5793.

• Preprints

– 2021. On Symmetry versus Asynchronism: at the Edge of Universality in Au-
tomata Networks, Martín Ríos Wilson, Guillaume Theyssier, arXiv:2105.08356.
https://arxiv.org/abs/2105.08356

– 2020. On the impact of treewidth in the computational complexity of freezing dy-
namics, Eric Goles, Pedro Montealegre, Martín Ríos Wilson, Guillaume Theyssier,
arXiv:2005.11758. https://arxiv.org/abs/2005.11758

• Conferences

– 2021. On the impact of treewidth in the computational complexity of freezing dy-
namics, Eric Goles, Pedro Montealegre, Martín Ríos Wilson, Guillaume Theyssier,
Computability in Europe 2021: Connecting with Computability. Accepted.

– 2019. On the effects of firing memory in the dynamics of conjunctive networks,
Eric Goles, Pedro Montealegre, Martín Ríos Wilson, International Workshop on
Cellular Automata and Discrete Complex Systems (pp. 1-19). Springer, Cham.

• Book chapters

– 2021. Computing the Probability of Getting Infected: On the Counting Com-
plexity of Bootstrap Percolation, Pedro Montealegre and Martín Ríos Wilson. In
“Automata and Complexity: Essays presented to Eric Goles on the occasion of his
70th birthday” (to appear).

ix



Contents

Introduction 1

1 Preliminaries 6

1.1 Automata networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.1 Elements of Graph Theory . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1.2 Automata networks as discrete dynamical systems . . . . . . . . . . . 8
1.1.3 Some important automata network families . . . . . . . . . . . . . . . 9
1.1.4 Bounded degree automata networks . . . . . . . . . . . . . . . . . . . 11
1.1.5 Algebraic automata networks . . . . . . . . . . . . . . . . . . . . . . 11
1.1.6 Freezing automata networks . . . . . . . . . . . . . . . . . . . . . . . 11
1.1.7 Non-deterministic automata networks . . . . . . . . . . . . . . . . . . 12

1.2 Elements of computational complexity . . . . . . . . . . . . . . . . . . . . . 13
1.2.1 Counting complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 Parametric complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Parellel computing and NC . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3.1 Automata networks dynamics . . . . . . . . . . . . . . . . . . . . . . 20
1.3.2 Treewidth and tree decompositions . . . . . . . . . . . . . . . . . . . 21
1.3.3 Fast parallel subroutines . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.4 Arithmetic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Measuring dynamical behavior 23

2.1 Automata network representations . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.1 Representation of some particular families . . . . . . . . . . . . . . . 24
2.1.2 Computing interaction graphs from representations. . . . . . . . . . . 26
2.1.3 Standard representation . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Simulation and universality . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Simulation between automata networks . . . . . . . . . . . . . . . . . 28
2.2.2 Simulation between families of automata networks . . . . . . . . . . . 30

2.3 Decision problems and automata network dynamics . . . . . . . . . . . . . . 31
2.4 Universal automata network families . . . . . . . . . . . . . . . . . . . . . . 34

3 Gadget complexity: from local to global behavior 39

3.1 Putting pieces together: glueing automata networks . . . . . . . . . . . . . . 39
3.2 Computing on automata networks . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 G-networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

x



3.2.2 G-gadgets and simulation of G-networks . . . . . . . . . . . . . . . . . 45
3.2.3 Gadget glueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Some useful families of G-networks: Gm-networks and Gm,2-networks . . . . . 50
3.3.1 Closure and synchronous closure . . . . . . . . . . . . . . . . . . . . . 58
3.3.2 Super-polynomial periods without universality . . . . . . . . . . . . . 59
3.3.3 Conjunctive networks and Gconj-networks . . . . . . . . . . . . . . . . 60
3.3.4 Super-polynomial transients without universality . . . . . . . . . . . 62

4 Describing asynchronous dynamics: a deterministic approach 65

4.1 Update schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.1 Periodic update schemes . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.2 Projection systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Concrete symmetric automata networks: a case study 74

5.1 Symmetric conjunctive networks . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.1 Local clocks update scheme . . . . . . . . . . . . . . . . . . . . . . . 75
5.1.2 Periodic update schemes . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.1.3 Firing memory schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Locally positive symmetric signed conjunctive networks . . . . . . . . . . . . 89
5.2.1 Block sequential update schemes . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Local clocks update schemes . . . . . . . . . . . . . . . . . . . . . . . 89

5.3 Symmetric signed conjunctive networks . . . . . . . . . . . . . . . . . . . . . 90
5.3.1 Block sequential update schemes . . . . . . . . . . . . . . . . . . . . 91

5.4 Symmetric min-max networks . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.1 Block sequential update schemes . . . . . . . . . . . . . . . . . . . . 103

6 Freezing dynamics 106

6.1 Specification checking problem: a canonical model checking problem to cap-
ture many classical dynamical problems. . . . . . . . . . . . . . . . . . . . . 107
6.1.1 Localized Trace Properties . . . . . . . . . . . . . . . . . . . . . . . . 108
6.1.2 A fast parallel algorithm for Specification Checking . . . . . . . . . . 113
6.1.3 W[2]-hardness results . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.1.4 Hardness results for polynomial treewidth networks . . . . . . . . . . 124

6.2 Counting complexity on freezing automata networks: a case study. . . . . . . 132
6.2.1 Contagion-Probability is #P -Complete . . . . . . . . . . . . . . 135
6.2.2 Polynomial time algorithm for maximum degree 4 . . . . . . . . . . . 142

Discussion 147

Bibliography 151

xi



List of Tables

5.1 Summary of the main results on complexity of the dynamics of the network
families studied in the current chapter, depending on different update schemes.
BPA = Bounded period attractors. SPA = Superpolynomial attractors. SU =
Strong universality. Black fonts indicate the emergence of complex behavior
such as long period attractors or universality. . . . . . . . . . . . . . . . . . 75

5.2 Dynamics of the central gadgets in an AND gadget implemented over a sym-
metric signed conjunctive network. Notation is the same of the one used in
Figure 5.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Dynamics for central gadgets in OR gadget implemented over a symmetric
signed conjunctive network. Notation is the same of the one shown in Figure
5.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.4 Dynamics for context in AND/OR gadgets implemented on symmetric signed
conjunctive networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

xii



List of Figures

2.1 Scheme of one-to-one block simulation. In this case, network F is simulated
by H. Each node in F is assigned to a block in H and state coding is injective.
Observe that blocks are connected (one edge in the original graph may be rep-
resented by a path in the communication graph of H) according to connections
between nodes in the original network F . This connections are represented by
blue lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 General scheme of a glueing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Symmetry breaking in interaction graph after a glueing operation. Arrows

indicate influence of a node (source) on another (target), edges without arrow
indicates bi-directional influence. Here C consists in two nodes only. . . . . . 41

3.3 Example of a glueing of two compatibles CSAN. The labeling in nodes of G1,
G2 and G0 shows equalities between local � maps of these three CSAN. . . . 43

3.4 (Left panel) A set of maps G over alphabet Q. (Central panel) An intuitive rep-
resentation of input/output connections to make a G-network. (Right panel)
The corresponding formal G-network � : Q3 ! Q3 together with the global
map associated to it. The bijections ↵ and � from Definition 3.4 are repre-
sented in blue and red (respectively). . . . . . . . . . . . . . . . . . . . . . . 44

3.5 Gadget glueing as in Definition 3.6. (Left panel) Two gadgets with interface
C = Ci [ Co where Ci part in each copy of the interface dowel is in red and
Co part in blue. The gadget glueing is done with input �F (A) on output
�G(A) (here A is a singleton) and output ⌧F (B) on input ⌧G(B) (B is also a
singleton). (Top right panel) A representation of the global glueing process
where nodes in green are those in the copy of CF in F or in the copy CG in G;
dotted links show the bijection between the embeddings of C = CF [ CG into
VF and VG via maps �F and �G. (Bottom right panel) The resulting gadget
with the same interface C = Ci [ Co as the two initial gadgets. . . . . . . . . 47

3.6 AND and OR gadgets for simulating AND/OR gates with fanin and fanout
2. For other values of fanin and fanout gadgets are the same but considering
different number of inputs/outputs. . . . . . . . . . . . . . . . . . . . . . . . 52

3.7 NOT gadget wiring for circuit simulation using gates from Gm. In this case a
NOT gate is connected to an OR gate in the original circuit. Copies of the
NOT gate in the circuit performing simulation are connected to the copies of
the OR gate switched: positive part is connected to negative part of the OR
gate and viceversa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

xiii



3.8 Block gadgets for simulating fanin 2 fanout 1 AND/OR gates using only gates
in Gm,2. Squared zeros represent the amount of zeros that can be used as
inputs for the same block. Circled zeros correspond to extra zeros that need
to be received from a Fanin 1 Fanout 2 gate. . . . . . . . . . . . . . . . . . . 55

3.9 Block gadgets for simulating fanin 1 fanout 2 and fanin 1 fanout 1 AND/OR
gates using only gates in Gm,2. Squared zeros represent the amount of zeros
that can be used as inputs for the same block. Circled zeros correspond to
extra zeros that need to be received from a fanin 2 fanout 1 gate. . . . . . . 56

3.10 Block gadgets for simulating fanin 2 fanout 2 AND/OR gates using only gates
in Gm,2. Squared zeros represent the amount of zeros that can be used as
inputs for the same block. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.11 (Left panel) Non-synchronous composition and (Right panel) synchronous
composition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.12 Fanin gadget of degree 3. For any configuration x, F 3
(x)vo = xv1 ^ xv2 ^ xv3 . 61

3.13 Freezing the result of a test in a Gt-network. The module T (x) is made of
the nodes marked ⌥, AND2, ⇤ and Id. Observe that each node represent
some output of its corresponding label(for more details on G-networks see
Definition 3.4). Each gate has one output with the exception of the gate ⌥

which is represented by two nodes. The module T (x) reads the value of node
x belonging to an arbitrary Gt-network (represented in light gray inside dotted
lines). The output ⇤ is fed back to its control input via the Id node (self-loops
are forbidden in Gt-networks). Note that x as well as the rest of the network
is not influenced by the behavior of the gates of the module T (x). . . . . . . 63

4.1 Synchronous update scheme and sequential update scheme for the same con-
junctive automata network. (Left panel) communication graph of the network.
Local function is given by the minimum (AND function) over the set of states
of neighbors for each node. (Central panel) Synchronous or parallel update
scheme and the associated dynamics of configuration (0, 1, 1, 0). In this case µ
has period 1 and all nodes are updates simultaneously. Observe that dynamics
exhibits an attractor of period 2 (Right panel) Sequential update scheme and
the associated dynamics of configuration (0, 1, 1, 0). In this case function µ
has period n = 4 and only one node is updated at each time step. Dynamics
reach a fixed point given by ~0. . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 A block sequential and a local clocks update schemes over a simple conjunctive
network. (Left panel) communication graph of the network. Local functions
are given by the minimum (AND) over the states of the neighbors of each node.
(Central panel) block sequential update scheme and the associated dynamics of
configuration (0, 1, 1, 0). In this case function µ is defined by two blocks: {1, 3}
and {2, 4}. Dynamics reach a fixed point after 3 time steps. (Right panel) local
clocks update scheme and the associated dynamics of configuration (0, 1, 1, 0).
In this case each node has an internal clock with different local periods. Nodes
1 and 3 are updated every two steps (p1 = p3 = 2) and nodes 2 and 4 are
updated every 4 time steps (i.e. p2 = p4 = 4). The shift parameters is 0 for
all nodes ⌧1 = ⌧2 = ⌧3 = ⌧4 = 0. The dynamics reaches a fixed point after 5

time steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

xiv



4.3 A general periodic update scheme over a conjunctive network. In this case
µ has period 4 and the underlying dynamics reaches a fixed point after 4

time steps. Observe that there is no restriction on how many times a node
is updated. For example, 1 is updated 3 times every 4 time steps but 4 is
updated only twice every 4 time steps. . . . . . . . . . . . . . . . . . . . . . 68

4.4 A block parallel update scheme defined over a conjunctive network. Updating
list is given by L = {(1), (2, 3), (4)}. Observe that a constant amount of nodes
(equal to the length of L, i.e., 3) is updated at each time step. Dynamics
reaches a fixed point after 3 time-steps. . . . . . . . . . . . . . . . . . . . . . 69

4.5 A firing memory update scheme over a conjunctive network. Each local func-
tion is given by the minimum over the states of neighbors. The delay compo-
nent (second component in Definition 4.8) only is shown. Maximum delay of
the network is ⌧ = 4. Dynamics describes an attractor of period 4 in which
0 circulates over the different nodes of the network. Note that at any time,
there is exactly one node in state 0, the other being in state 1 with different
delay values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Scheme of the dynamics of nodes i, k and ` defined in the proof of Lemma
5.1. The checkmarks indicate where it is feasible for ` to be updated and the
crosses mark the intervals on which ` can change its state. . . . . . . . . . . 77

5.2 Clock gadget implemented in a conjunctive network with firing memory. (Left
panel) The interaction graph of the clock gadget. (Right panel) The dynamics
of an attractor of period 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 The glueing interface considered for AND/OR gadgets implemented over a
conjunctive network with firing memory. The labels given by marking func-
tions ' are assigned in each gadget accordingly. . . . . . . . . . . . . . . . . 83

5.4 The initial condition and structure for AND/OR gadgets implemented over
conjunctive networks with firing memory. (Upper panel) the AND gadget.
(Bottom panel) the OR gadget. The variables (x, y) 2 {0, 1}2 represent the
bits that the gadget is considering as inputs and z 2 {0, 1} is a bit that is
going to serve as an input for other gadget. Total computation takes T = 9

time steps. The triangles represent clock gadgets. The dashed boxes mark the
embedded copies of the glueing interface which plays the role of output/input. 83

5.5 The first three steps of the dynamics of the AND gadget implemented in
a conjunctive network with firing memory. The variables (x, y) 2 {0, 1}2
represent the bits that the gadget is considering as inputs and z 2 {0, 1} is
a bit that is going to serve as an input for other gadget. Total computation
takes T = 9 time steps. The triangles represent clock gadgets. The dashed
boxes mark the embedded copies of the glueing interface which plays the role
of output/input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 The fourth to sixth steps of the dynamics of the AND gadget implemented
in a conjunctive network with firing memory. The variables (x, y) 2 {0, 1}2
represent the bits that the gadget is considering as inputs. Total computation
takes T = 9 time steps. The triangles represent clock gadgets. The dashed
boxes mark the embedded copies of the glueing interface which plays the role
of output/input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xv



5.7 The final four steps of the dynamics of the AND gadget implemented in a con-
junctive network with firing memory. The variables (x, y) 2 {0, 1}2 represent
the bits that the gadget is considering as inputs. The variables (x0, y0) 2 {0, 1}2
represent the new information that the gadget is receiving as inputs. Total
computation takes T = 9 time steps. The triangles represent clock gadgets.
The dashed boxes mark the embedded copies of the glueing interface which
plays the role of output/input. . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.8 The first five steps of the OR gadget implemented in a conjunctive network
with firing memory. The variables (x, y) represent the bits that the gadget is
considering as inputs and z 2 {0, 1} correspond to some bit that is going to
be send as input of other gadget. The function k(x, y) is defined by k(0, 0) =
0, k(1, 0) = k(1, 1) = 2 and k(0, 1) = 1. Total computation takes T = 9 time
steps. Triangles represent clock gadgets and different states are part of the
context configurations. The dashed boxes mark the embedded copies of the
glueing interface C which plays the role of outputs/inputs. . . . . . . . . . . 87

5.9 The last four steps of the OR gadget implemented in a conjunctive network
with firing memory. The variables (x, y) represent the bits that the gadget
is considering as inputs and (x0, y0) 2 {0, 1}2 correspond to new information
that the gadget is interpreting as inputs. Total computation takes T = 9 time
steps. Triangles represent clock gadgets and different states are part of the
context configurations. The dashed boxes mark the embedded copies of the
glueing interface C which plays the role of outputs/inputs. . . . . . . . . . . 88

5.10 One step of the dynamics of the NOT part of AND/OR gadget implemented by
a symmetric signed conjunctive network. Dashed ellipses and parallelograms
represent blocks. Each block is labeled by its corresponding number (1, 2 and
3) in a gray colored circle. Thick dashed rectangle highlights nodes in the
central part. All edges are negative. Each time step t is taken after three time
steps (one for each block). Total simulation time is T = 9. . . . . . . . . . . 92

5.11 Two last steps of the dynamics described by the NOT part of AND/OR gadgets
implemented by a symmetric signed conjunctive network. Dashed ellipses and
parallelograms represent blocks. Each block is labeled by its corresponding
number (1, 2 and 3) in a gray colored circle. Thick dashed rectangle highlights
nodes in the central part. All edges are negative. Each time step t is taken
after three time steps (one for each block). Total simulation time is T = 9. . 93

5.12 Wire gadget implemented on a signed symmetric conjuntive network. 2 copies
of NOT gadget are combined in order to form a wire. Simulation time is
T = 6⇥ 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.13 Scheme of labeling for 4-cycles in AND/OR gadgets. Notation is given by the
following guidelines: s represent the associated group of three nodes, second
two coordinates indicate its position relative the group of three nodes and its
position in the 4-cycle graph (considering counter clock-wise order), and u, l
stands for upper or lower according to its position in the gadget. . . . . . . . 97

xvi



5.14 One step of the dynamics of the computation gadget inside AND/OR gadget
implemented by a symmetric signed conjunctive network. Dashed ellipses and
parallelograms represent blocks. Each block is labeled by its corresponding
number (1, 2 and 3) in a gray colored circle. Thick dashed rectangle highlights
nodes in the central part. All edges are negative. Each time step t is taken
after three time steps (one for each block). Total simulation time is T = 9. . 98

5.15 Last two steps of the dynamics of the computation gadget inside AND/OR
gadget implemented by a symmetric signed conjunctive network. Dashed el-
lipses and parallelograms represent blocks. Each block is labeled by its corre-
sponding number (1, 2 and 3) in a gray colored circle. Thick dashed rectangle
highlights nodes in the central part. All edges are negative. Each time step t
is taken after three time steps (one for each block). Total simulation time is
T = 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.16 OR gadget structure. In order to produce a OR gadget, wire gadget and NOT
gadget are combined with the computation part depicted in Figures 5.14 and
5.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.17 AND gadget structure. In order to implement an AND gadget, wire gadget
and NOT gadget are combined with the computation part depicted in Figures
5.14 and 5.15. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.18 Gadget used for simulation of a symmetric signed conjunctive network with
arbitrary periodic update scheme implemented over an AND-OR network with
periodic update scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.1 Checking that the same node is marked in each bloc in a selection row: on
the left, a valid test in bloc p, on the right an invalid test in bloc p generating
an error state. Dotted lines indicate the marked position in each bloc. The
shades of gray indicates the state changes involved in the implementation of
freezing signals: at each position the sequence of states in non-decreasing with
time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Gadgets used to construct graph G[F , k]. (Left upper panel) variable gad-
get. (Right upper panel) clause gadget. (Left bottom panel) threshold gad-
get.(Right bottom panel) output gadget. Gray nodes are active and white
nodes are inactive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 Scheme representing graph G[F , k]. Each type of gadget is detailed in Figure
6.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

xvii



xviii



Introduction

An automata network is a collection of n entities, called automata (and sometimes also re-
ferred as nodes or vertices), which are somehow related. These relations between the different
entities are represented by a graph structure and are defined in this document by local func-
tions which take values in a finite set, usually denoted by Q and called the alphabet. From a
global standpoint, these local functions can be seen as a global function acting on set Qn and
defining a dynamical system (which can be deterministic or not deterministic). The most
common and natural way to define the dynamics of an automata network is just considering
deterministic local rules for each node in the network. However, it is also interesting to con-
sider the non-deterministic case, which also includes probabilistic and asynchronous models.
In particular, a way to introduce asynchronism consists in updating only some of the nodes
in the network at a time step and leave the state of the others unchanged. Then, for each
time step, there exists an assignation of nodes that will update their states at this step. Such
assignations define an update scheme.

Observe that, the automata network model can be considered as a topological non-uniform
generalization of (finite) cellular automata. Automata networks have been used as modelling
tools in many areas [36] and they can also be considered as a distributed computational
model with various specialized definitions like in [79, 80].

Generally speaking, two main research lines can be identified in the context of the study
of this model. The first one is related to the dynamics that an automata network can have
according to the updating modes. It focuses particularly on analyzing their richness in terms
of, for instance, the period of attractors compared to the size of the network and, in this sense,
the role that graph topology plays in restricting or allowing complex dynamical behavior. The
second one is more focused on the computation abilities of the network. In this approach,
decision problems related to the dynamics of the network are proposed. A very interesting
one, that we study in this thesis, is called the prediction problem. Roughly speaking, one
would want to see if it is possible to predict the dynamical behavior of the network. More
precisely, a particular node in the network is fixed and an initial configuration is given for
the rest of the nodes in the network. We would like to know if at some given time step t (or
maybe if eventually) the state of this node will change or if it will remain as in the initial
configuration. Of course, there is always a trivial solution to this problem, which consists in
simply simulating the network for t time steps (or if there is no given time limit, we simulate
until reaching an attractor) and see if our objective node has changed. Thus, a natural
question in this context is if we can beat simulation in someway by finding an algorithm that
is more efficient than simply simulating. Generally speaking, if the dynamics is extremely
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difficult to predict (there is no way of beating simulation) the system is complex. Contrarily,
if there exists some particular algebraic or graph topology property which we can exploit to
design an algorithm to decide prediction problem in an efficient way (compared to the trivial
solution) then, the system is not complex. Within this framework, an interesting observation
concerning local dynamical behavior arises. Observe that there are some similarities between
prediction problem and, in the context of Boolean circuit families, the well-known circuit
value problem. This problem consists in, given a Boolean circuit and an assignation of its
inputs, evaluating the circuit and read some fixed output value. In this sense, in many study
cases we would like to show that there exists a suitable reduction from this problem to the
prediction problem. In fact, given some class of automata networks (which can be defined by
a particular type of rule) this task is somehow translated to the task of simulating in some
coherent way the gates of the circuit. This is achieved by using some particular collection
of subnetworks in the class that implements (understanding this as some sort of simulation
implemented using its dynamics) each different type of gate in the circuit and which can be
glued together in a coherent way so that the resulting glued module simulates the circuit
evaluation process.

The main aim of this thesis is twofold: on the one hand to provide a general theoreti-
cal framework which would allow to unify both research lines by exhibiting a link between
computational capabilities of an automata network and its dynamical behavior; on the other
hand to study how the graph structure of a network can impact the dynamics of the latter.
In particular, we face this task through two main research questions:

1. What is the link between dynamical and computational properties of an automata
network?

2. What is the impact of the interaction graph topology in the global dynamics of an
automata network?

In order to answer these questions, we start by establishing a general framework for
automata networks, including what is precisely a family of automata networks and how to
represent it in a concrete way. We explore a general way to combine different automata
networks in order to construct a new network preserving dynamical properties from the
networks used in this combination. This framework allows us to provide sufficient conditions
to deduce global dynamical and computational properties for a particular family by focusing
in studying local structures called gadgets. In addition, inspired by the intrinsic simulation
framework for cellular automata, we compare the capabilities of different automata network
families by developing a definition for simulation between families. More precisely, we develop
a simulation scheme based on an injective assignment of states in the simulated network to
a subgraph in the simulator. We call these subgraphs blocks and we represent each node
the simulated network by one of this subgraphs in the simulator. Then, the dynamics of the
simulated network is simulated (possibly several time steps represent a single time transition
on the simulated network dynamics) by this latter injective coding in each block. This latter
definition of simulation, does not only allow us to transfer dynamical properties from the
simulated network to the simulator but also help us to deduce computational complexity
results regarding the prediction problem in the simulator by studying the simulated network.
This is possible because our definition of simulation is compatible with standard polynomial
and logspace reductions. We go further in this context by stating the concept of universality
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for automata networks, expressed as the capability to efficiently simulate families of automata
networks. These families can be described by a family of circuits, each one representing an
automata network in this family. We ask these circuit families to satisfy that the maximum
number of gates in a circuit grows bounded by a polynomial function on the size of the
represented network. In particular, we study the case of automata networks in which its graph
has a maximum degree bounded by a constant (not depending on the size of the network)
and we propose a stronger definition of universality related to the capability of simulating
this latter family. We then, apply our framework to a concrete case of study, composed by
different families of automata networks and different update schemes. Roughly, we consider
a pool of automata network families sharing a common set of properties and we establish a
partial hierarchy in the set of families given by different constraints. In parallel, we have also
a hierarchy in update schemes. We observe an interesting trade-off between the constraints
we can apply in a particular family and the constraints we can apply related to the update
scheme we are considering. Particularly, we observe that families with more constraints
equipped with general update schemes are universal, but they can lose this property if we
apply constraints in the type of update scheme we are considering and complementarily, if we
start with more general families, we can observe universality when family is equipped with
more restricted update schemes.

Then, we tackle the second question by considering a particular family of automata net-
work, called freezing automata networks. An automata network is freezing if there is an order
on states such that the state evolution of any node is non-decreasing in any orbit. In this part
of the thesis, we go beyond the deterministic definition of automata networks and we study
the non-deterministic case in the context of freezing networks. We define in this context a
generalization of the prediction problem called the specification problem which also includes
some other decision problems related to the dynamics of an automata network. Then, we ex-
plore the impact of the graph topology on the dynamics by identifying key graph parameters
which allow us to design efficient algorithms for solving the latter problem. We address this
latter challenge from a parametric complexity approach. Finally, we study the particular
version of bootstrap percolation model, consisting in a freezing version of the well-known
majority automata. In this latter network, each node takes the state of the majority of its
neighbors in the graph. We see this model as a disease spreading model and we study the
complexity of the functional problem consisting in computing the probability of some node to
get infected. We then establish that in general the problem is hard since a polynomial time
algorithm to compute probability is unlikely to exist. Then, we give sufficient conditions on
the graph in order to assure that probability can be computed in polynomial time.

Related work

There is a wide amount of literature for the prediction problem at sake in this thesis work
[46, 61, 37, 34, 39, 38] in which the computational complexity of the latter problem have been
studied for cellular automata and different automata network families such as: the freezing
version of the well-known game of life called, Life without death, and threshold networks
among which are majority networks and conjunctive networks.

Moreover, the notion of intrinsic universality in cellular automata have been addressed
in several papers [49, 8, 60, 64, 65] and it is based on the concept of sub-automaton which

3



consists in a restriction on the set of states and the concept of rescaling which consists in
packing cells. Roughly speaking, a cellular automaton simulates another one if some rescaling
of the first one contains a rescaling of the second one as a sub-automaton. In this sense, a
cellular automaton is intrinsically universal if for any arbitrary other automaton there exists
some rescaling of the first which contains it as a sub-automaton.

Regarding freezing automata networks, several models that received a lot of attention
in the literature are actually freezing automata networks, for instance: bootstrap percola-
tion which has been studied on various graphs [1, 6, 5, 48], epidemic [25] or forest fire [4]
propagation models 1, cristal growth models [75, 43] and more recently self-assembly tilings
[78]. Moreover, their complexity as computational models has been studied from various
standpoints: as language recognizers where they correspond to bounded change or bounded
communication models [77, 56, 13], for their computational universality [66, 31, 9], as well
as for various associated decision problems [33, 35, 41, 34].

A major topic of interest in automata networks theory is to determine how the network
graph affects dynamical or computational properties [26, 41]. In the freezing case, it was
for instance established that one-dimensional freezing cellular automata, while being Turing
universal via Minsky machine simulation, have striking computational limitations when com-
pared to bi-dimensional ones: they are NL-predictable (instead of P-complete) [66, 46, 77],
can only produce computable limit fixed points starting from computable initial configura-
tions (instead of non-computable ones starting from finite configurations) [66], and have a
polynomial time decidable nilpotency problem (instead of uncomputable) [66].

Regarding specifically the complexity of the dynamics of bootstrap percolation, we present
the following related work: in [41] it is studied the Stability problem which is the decision
problem consisting in deciding, given a graph and an initial condition, whether an objective
node reaches state 1 in some time-step, when the states evolve according to the synchronous
bootstrap percolation dynamics. This problem is solvable in polynomial time, since the
dynamics reaches a fixed point in a linear number of synchronous time-steps. Interestingly,
in [41] is shown that in graphs of degree at most 4 the problem is in class NC, which is the
subclass of P containing all problems that can be efficiently solved by a parallel machine.
Moreover, in graphs of maximum degree at least 5 the Stability problem is P-Complete,
meaning that there is no algorithm solving the problem better than simply simulating the
dynamics until a fixed point is reached.

Later, as we mentioned before, in [38] the authors study the complexity of bootstrap
percolation on asynchronous updating schemes. To do so, two decision problems are defined.
The first one is Good-Sequence (which is called asynchronous prediction in [38]).
The second one is called Asyncronous Stability, and is an asynchronous version of the
stability problem. The difference between the two problems is that Good-Sequence asks
for the existence of a good-sequence for a given time-span, while Asynchronous Stability
asks for the state of the node once the attractor is reached. In that article, it is shown that
given an initial condition, the dynamics of bootstrap percolation reaches the same fixed point
for every updating scheme. That makes Asyncronous Stability equivalent to Stability.

1They are discrete counterparts of the family of spatial SIR/SEIR models [53] (or other variants) which
are sadly famous amid the actual COVID-19 pandemic.
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Contrarily, problem Good-Sequence is solvable in polynomial time when restricted to
graphs maximum degree 4, but NP-Complete restricted to graphs of maximum degree 5.

Chapter structure
This thesis work is divided in six chapters. The first chapter contains basic definitions and
results that are used to derive main results of this work. This includes some elements of
computational complexity and graph theory and some related results in the dynamics of
automata networks as well as the definition of some particular families of automata networks
that we will study.

The second chapter develops the main framework on computational complexity and de-
cision problems related to automata networks. It starts with a precise definition on the
representation of different automata network families. Then, it continues with the devel-
opment of a general simulation background. This chapter goes beyond this latter point by
exploring the notion of universality in the context of the latter definition.

The third chapter presents the framework about gadgets and how the existence of local
structures has an impact on the global dynamics of automata networks. In first place, a family
of bounded degree automata networks, G-networks, is presented. Then, the notion of gadget
is introduced and a scheme for glueing automata networks is developed. Finally, some useful
G-networks are introduced and studied in order to illustrate the relation between universality
and the richness of the dynamics of some families in terms of periods and transients.

The fourth chapter gives a framework about update schemes. First, basic definitions on
update schemes are provided. Then, the notion of projection system and asynchronous exten-
sion is introduced as a way to obtain a general formalism to study asynchronous dynamics.

The fifth chapter is a case of study in which the dynamics of different families of automata
networks is studied under different update schemes. First, some of the main results are stated
and then chapter is divided in sections, each one devoted to the study of one particular family.
Each section is divided in subsections, one of each devoted to the study of the dynamics under
one particular update scheme. Then, in each of these sections, the question of whether that
family equipped with that specific update scheme is universal is addressed.

Finally, the sixth chapter is devoted to the study of freezing automata networks and it is
divided in two main sections: the first one consists in analyzing the effect of graph topology
on the dynamics of freezing automata networks by studying a generalization of the prediction
problem; the second one is focused on studying a concrete model consisting in the study of
the complexity of the dynamics of a non-deterministic variant of the bootstrap percolation
model.
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Chapter 1

Preliminaries

1.1 Automata networks

In this section, we give the elementary definitions related to automata network theory. We
start by considering some elemental results in graph theory and then, we define the concept
of automata networks and related technical definitions.

1.1.1 Elements of Graph Theory

A graph is a pair G = (V,E) where V and E are finite sets satisfying E ✓ V ⇥ V. We
will call V the set of nodes and the set E of edges. We call |V | the order of G and we
usually identify this quantity by the letter n. Usually, as E and V are finite sets we will
implicitly assume that there exists an ordering of the vertices in V from 1 to n (or from 0

to n� 1). Sometimes we will denote the latter set as [n]. If G = (V,E) and V 0 ✓ V,E 0 ✓ E
we say that G0 is a subgraph of G. We call a graph P = (V,E) of the form V = {v1, . . . , vn},
E = {(v1v2), . . . , (vn�1, vn)} a path graph, or simply a path. We often refer to a path by
simply denoting its sequence of vertices {v1, . . . , vn}. We denote the length of a path by
its number of edges and if P = (V,E) with V = {v1, . . . , vn}, we call any vk such that
1 < k < n an internal node of P . In addition, if A,B ✓ V are node sets, we say that P
is a A-B path if P = (V,E) is a path such that V = {v1, . . . , vn} and v1 2 A, vn 2 B and
no internal node lies in A nor in B. If A = {v} and B = {w} then, we call P a v-w path.
Whenever P = (V = {v1, . . . , vn}, E = {(v1v2), . . . , (vn�1, vn)} is a path we call the graph in
which we add the edge {vn, v1} a cycle graph or simply a cycle and we denote it C where
C = P + {vn, v1}. Analogously, a cycle is denoted usually by a sequence of nodes and its
length is also given by the amount of edges (or vertices) in the cycle. Depending of the length
of C we call it a k-cycle when k is its length. A non-empty graph is called connected if any
pair of two vertices u, v are linked by some path. Given any non-empty graph, a maximal
connected subgraph is called a connected component.

We call directed graph a pair G = (V,E) together with two functions init : E ! V and
ter : E ! V where each edge e 2 E is said to be directed from init(e) to ter(e) and we
write e = (u, v) whenever init(e) = u and ter(e) = v. There is also a natural extension
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of the definition of paths, cycles and connectivity for directed graphs in the obvious way.
We say a directed graph is strongly connected if there is a directed path between any two
nodes. A strongly connected component of a directed graph G = (V,E) is a maximal strongly
connected subgraph.

Given a (non-directed) graph G = (V,E) and two vertices u, v we say that u and v are
neighbors if (u, v) 2 E. Remark that abusing notations, an edge (u, v) is also denoted by
uv. Let v 2 V, we call NG(v) = {u 2 V : uv 2 E} (or simply N(v) when the context is
clear) the set of neighbors (or neighborhood) of v and �(G)v = |NG(v)| to the degree of v.
Observe that if G0

= (V 0, E 0
) is a subgraph of G and v 2 V 0, we can also denote by NG0(v)

the set of its neighbors in G0 and the degree of v in G0 as �(G0
)v = |NG0(v)|. In addition, we

define the closed neighborhood of v as the set N [v] = N(v) [ {v} and we use the following
notation �(G) = max

v2V
�v for the maximum degree of G. Additionally, given v 2 V , we will

denote by Ev its set of incident edges, i.e., Ev = {e 2 E : e = uv}. We will use the letter n
to denote the order of G, i.e. n = |V |. Also, if G is a graph whose sets of nodes and edges
are not specified, we use the notation V (G) and E(G) for the set of vertices and the set of
edges of G respectively. In the case of a directed graph G = (V,E) we define for a node
v 2 V the set of its in-neighbors by N�

(v) = {u 2 V : (u, v) 2 E} and its out-neighbors
as N+

(v) = {u 2 V : (v, u) 2 E}. We have also in this context the indegree of v given by
�� = |N�

(v)| and its outdegree given by �+ = |N+
(v)|

During the most part of of the this manuscript, and unless explicitly stated otherwise,
every graph G will be assumed to be connected and undirected. We define a class or a family
of graphs as a set G = {Gn}n�1 such that Gn = (Vn, En) is a graph of order n.

We say that G is a tree-graph or simply a tree if it does not have cycles as subgraphs.
Usually, we distinguish certain node in r 2 V (G) that we call the root of G. Whenever G
is a tree and there is a fixed vertex r 2 V (G) we call G a rooted tree. In addition, we will
say that v 2 V (G) is a leaf if �v = 1. Straightforwardly the choice of r induces a partial
order in the vertices of G given by the distance (length of the unique path) between a node
v 2 V (G) and the root r. We define the height of G (and we write it as h(G)) as the longest
path between a leaf and r. We say that a node v is in the (h(G)� k)-th level of a tree G if
the distance between v and r is k and we write v 2 Lh(G)�k. We call the children of a node
v 2 Lk all w 2 N(v) such that w is in level k � 1.

Tree decomposition, treewidth and brambles

We now introduce the graph parameter known as treewidth. This parameter indicates how
“close” is a graph to a tree graph. In order to introduce this concept, we need first the
following definition:

Definition 1.1 Given a graph G = (V,E), a tree decomposition is pair D = (T,⇤) such
that T is a tree and ⇤ is a family of subsets of nodes ⇤ = {Xt ✓ V | t 2 V (T )} called bags
such that:

• Every node in G is in some Xt, i.e:
S

t2V (T )

Xt = V.
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• For every e = uv 2 E there exists t 2 V (T ) such that u, v 2 Xt.

• For every u, v 2 V (T ) if w 2 V (T ) is in the v-y path in T , then Xu \Xv ✓ Xw.

We define the width of a tree decomposition D as the amount width(D) = max
t2V (T )

|Xt|� 1.

Given a graph G = (V,E), we define its treewidth as the parameter tw(G) = min
D

width(D).
In other words, the treewidth is the minimum width of a tree decomposition of G. Note that,
if G is a connected graph such that |E(G)| � 2 then, G is a tree if and only if tw(G) = 1.

We now introduce a dual concept related to treewidth, which is called bramble. Let
G = (V,E) be a graph and B1, B2 be two subgraphs of G. We say that B1 and B2 touch if
they share at least a common vertex or if there is some edge e 2 E joining them, i.e. if there
exists e 2 E such that e = (u, v) with u 2 B1 and v 2 B2.

Definition 1.2 Let G = (V,E) a graph. A bramble in G is a set B of connected subgraphs
of G such that any B1, B2 2 B touch.

Let G = (V,E) a graph and B a bramble in G. We say that a set of nodes S ✓ V (G) is a
hitting set for B if it intersects every subgraph in B. The size of a minimum hitting set for
B is known as its order.

Definition 1.3 Let G = (V,E) a graph and let B be a bramble on G. We call B a perfect
bramble if:

1. Any two B1, B2 2 B have non-empty intersection.
2. For every v 2 V there are at most two subgraphs in B that contains v.

3. Every vertex has degree at most 4 in
S

B2B
B.

There is a very interesting link between treewidth and perfect brambles which will be used
in this work, specifically in the chapter about freezing dynamics. This latter link consists
in the fact that, informally speaking, graphs having larger treewidth admit perfect brambles
with sufficiently great enough order and moreover, there exist a polynomial time algorithm
that finds them (see Theorem 5.3 of [55])

1.1.2 Automata networks as discrete dynamical systems

We start by stating the following basic definitions, notations and properties regarding au-
tomata networks (for more details see [62]). We use Q and V to denote finite sets representing
the alphabet and the set of nodes respectively. We define ⌃(Q) as the set of all possible per-
mutations over alphabet Q.

We call an abstract automata network or simply an automata network any function F :

QV ! QV . Note that F induces a dynamics on QV and thus we can see (QV , F ) as dynamical
system. In this regard, we recall some classical definitions:
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Given an initial configuration x 2 QV , we define the orbit of x as the sequence O(x) =
(F t

(x))t�0. We define the set of limit configurations or recurrent configurations of F as
L(F ) =

T
t�0

F t
(QV

). Observe that since Q is finite and F is deterministic, each configuration
is eventually periodic, i.e. for each x 2 QV there exist some ⌧, p 2 N such that F ⌧+p

(x) =
F ⌧

(x) for all x 2 QV . Note that if x is a limit configuration then, its orbit is periodic. In
addition, any configuration x 2 QV eventually reaches a limit configuration in finite time.
We denote the set of orbits corresponding to periodic configurations as Att(F ) = {O(x) :

x 2 L(F )} and we call it the set of attractors of F. We define the global period or simply the
period of x 2 Att(F ) by p(x) = min{p 2 N : x(p) = x(0)}. If p(x) = 1 we say that x is a
fixed point and otherwise, we say that x is a limit cycle.

Given any configuration x 2 QV , we define its transient length as ⌧F (x) = max{t 2 N :

F t
(x) 62 L(F )}. In addition, given x 2 Qn we define the restriction of x to some subset U ✓ V

as the partial configuration x|U 2 Q|U | such that (x|U)u = xu for all u 2 U.

Given a node v, its behavior x 7! F (x)v might depend or not on another node u. This
dependencies can be captured by a graph structure which plays an important role in the
theory of automata networks (see [26] for a review of known results on this aspect). This
latter structure motivates the following definitions:

Definition 1.4 Let F : QV ! QV be an automata network and G = (V,E) a directed graph.
We say G is a communication graph of F if for all v 2 V there exist D ✓ N�

v and some
function fv : QD ! Q such that F (x)v = fv(x|D). The interaction graph of F is its minimal
communication graph.

Note that by minimality, for any node v and any in-neighbor u of v in the interaction
graph of some F , then the next state at node v effectively depends on the actual state at
node u. More precisely, there is some configuration c 2 QV and some q 2 Q with q 6= cu
such that F (c)v 6= F (c0)v where c0 is the configuration c where the state of node u is changed
to q. This notion of effective dependency is sometimes taken as a definition of edges of the
interaction graph (see for example [69, 63]).

From now on, for an automata network F and some communication graph G of F we
use the notation A = (G,F ). In addition, by abuse of notation, we also call A an abstract
automata network.

1.1.3 Some important automata network families

Now we introduce the notion of automata network family. This notion is quite general and
it will be specified when we address different representations for families. Let Q be a fixed
alphabet. A family of automata networks is a collection of functions {Fs}s2N such that for
each s 2 N, Fs : Qn(s) ! Qn(s) is an automata network on alphabet Q. Now we are going to
provide concrete examples of families that we study during this thesis work.

Observe that, as we are going to be working also with a computational complexity frame-
work, it is necessary to be more precise in how we represent automata networks. In this
regard, one possible slant is to start defining an automata network from a communication
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graph.

Concrete symmetric automata networks

One of the main definition used all along this thesis work is that of concrete symmetric
automata network. Roughly, they are non-directed labeled graph G (both on nodes and
edges) that represent an automata network. They are concrete because the labeled graph
is a natural concrete representation upon which we can formalize decision problems and
develop a computational complexity analysis. They are symmetric in two ways: first their
communication graph is non-directed, meaning that an influence of node u on node v implies
an influence of node v on node u; second, the behavior of a given node is blind to the ordering
of its neighbors in the communication graph, and it can only differentiate its dependence on
neighbors when the labels of corresponding edges differ.

Definition 1.5 Given a non-directed graph G = (V,E), a vertex label map � : V ! (Q ⇥
2
Q ! Q) and an edge label map ⇢ : E ! ⌃(Q), we define the tuple A = (G,�, ⇢) and

we call it a concrete symmetric automata network (CSAN) associated to the graph G. A
family of concrete symmetric automata networks (CSAN family) F is given by an alphabet
Q and a set of local labeling constraints C ✓ ⇤⇥R where ⇤ = {� : Q⇥ 2

Q ! Q} is the set
of possible vertex labels and R = 2

⌃(Q) is the set of possible neighboring edge labels. We say
that a CSAN (G,�, ⇢) belongs to F if for any vertex v of G with incident edges Ev it holds
(�(v), ⇢(Ev)) 2 C.

Note that the labeling constraints defining a CSAN family are local. In particular, the
communication graph structure is a priori free. This aspect will play an important role later
when building arbitrarily complex objects by composition of simple building blocks inside a
CSAN family.

Let us now define the abstract automata network associated to a CSAN, by describing the
semantics of labels defined above. Intuitively, labels on edges are state modifiers, and labels
on nodes give a map that describes how the node changes depending on the set of states
appearing in the neighborhood, after application of state modifiers. We use the following no-
tation: given k � 1, � = (�1, . . . , �k) 2 ⌃(Q)

k and x 2 Qk we note x� = {�1(x1), . . . , �k(xk)}.

Definition 1.6 Given a CSAN (G,�, ⇢), its associated global map F : QV ! QV is defined
as follows. For all node v 2 V and for all x 2 Qn:

F (x)v = �v(xv, (x|N(v))⇢v),

where N(i) = {u1, . . . , u�v} is the neighborhood of v and ⇢v = (⇢(v, u1), . . . , ⇢(v, u�u)).

Some important CSAN families Now we present some examples of families of automata
networks that we study in this paper. They differ in the set of allowed labels and their degree
of local symmetry.
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Definition 1.7 Let Q = {0, 1}. The family of signed conjunctive automata networks is the
set of CSAN (G,�, ⇢) where for each node v we have �v(q,X) = minX =

V
X and, for each

edge e, ⇢e is either the identity map or the map x 7! 1� x.

The family of locally positive conjunctive networks is the set of signed conjunctive au-
tomata networks (G,�, ⇢) where we require, in addition, that for each node v there is at least
one edge e incident to v such that ⇢e is the identity.

Finally, the familly of symmetric conjunctive networks is the set of signed conjunctive
automata networks where, for all edge e, ⇢e is the identity.

Definition 1.8 Let Q be a totally ordered set. The family of min-max automata networks
over Q is the set of CSAN (G,�, ⇢) such that for each edge e, ⇢e is the identity map and, for
each node v, �v(q,X) = maxX or �v(q,X) = minX.

Remark 1.9 If Q = {0, 1} then, the family of min-max automata networks over Q is the
class of AND-OR networks, i.e., F (x)i =

V
j2N(i)

xj or F (x)i =
W

j2N(i)

xj

1.1.4 Bounded degree automata networks

Let us fix a natural number � > 0. It is interesrting to consider a family of automata
networks defined over a collection of communication graphs which have maximum degree
bounded by �. Formally, a bounded degree family is a family of automata networks F� such
that A = (G,F ) 2 F is such that its communication graph G satisfies �(G) < �. We will
see in the next sections that it is possible to represent A as a pair (G, (⌧v)v2V (g)) where G is
a communication graph of F of maximum degree at most � and (⌧v)v2V (G) is the list for all
nodes of G of its local transition map Fv of the form Qd ! Q for d  �. As an example, it
suffices for example to consider any CSAN defined over a bounded degree graph.

1.1.5 Algebraic automata networks

In this case, the set Q is endowed with a field structure and thus the set of all possible
configurations Qn is a vector space. In this context, we define the family of algebraic automata
networks over Q as the set of linear functions defined over Qn. As a consequence of automata
networks being actual linear maps, we can naturally represent them as matrices. A well
known example is taking Q = F2 and for n 2 N fixed, the function F : Qn 7! Qn given by
F (x)i =

nL
i=1

xi where � is the sum modulo 2, which is also known as the XOR function.

1.1.6 Freezing automata networks

Now, we present the family of automata networks called freezing automata networks. Let us
consider an alphabet Q together with a partial order . We say that an automata network
F : Qn 7! Qn has the freezing property if F is non-decreasing in  . Formally, if for each
x 2 Qn and for each v 2 {1, . . . , n} we have xv  F (x)v. We will focus mainly, during this
thesis work, in the non-deterministic version of this type of automata network which we will
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introduce in the next subsection. Observe that, any freezing automata network F : Qn 7! Qn

has an interesting property regarding its orbits. Given an arbitrary orbit O(x) starting from
some initial configuration x 2 Qn, each coordinate can change at most |Q| � 1 times, since
once a coordinate changes its state it can never go back to a previous state (related to the
order ). This property will help us in order to design efficient algorithms in order to predict
the dynamical behavior of this type of automata network in the next chapters.

1.1.7 Non-deterministic automata networks

Let Q be a finite set that we will call an alphabet. We define a non-deterministic automata
network over the alphabet Q as a tuple (G = (V,E), {Fv : QN(v) ! P(Q)|v 2 V })) where
P(Q) is the power set of Q. To every non-deterministic automata network we can associate
a non-deterministic dynamics given by the global function F : Qn ! P(Qn

) defined by
F (x) = {x 2 Qn

: xv 2 Fv(x), v 2 V }.

Definition 1.10 Given a a non-deterministic automata network (G,F) we define an orbit of
a configuration x 2 Qn at time t as a sequence (xs)0st such that x0 = x and xs 2 F (xs�1

).
In addition, we call the set of all possible orbits at time t for a configuration x as O(x, t).
Finally, we also define the set of all possible orbits at time t as O(A, t) =

S
x2Qn

O(x, t)

Observe that many properties can be extended from the deterministic case in a natural
way, for instance, the freezing property: we say that a non-deterministic automata network
(G,F ) defined in the alphabet Q satisfies the freezing property or simply that it is freezing
if there exists a partial order  in Q such that for every t 2 N and for every orbit y =

(xs
)0st 2 O(A, t) we have that xs

i
 xs+1

i
for every 0  s  t and for every 0  i  n.

Let y = (xs
)0st be an orbit for a non-deterministic automata network (G,F) and S ✓ V

we define the restriction of y to S as the sequence z 2 (Qt
)
|S| such that xs

v = zsv for every
v 2 V and we note it y|S. In the case in which S = {v} we simply write yv in order to denote
the restriction of y to the singleton {v}.

Definition 1.11 Given a non-deterministic automata network (G,F) and a set S ✓ V , we
define the set of S-restricted orbits as the set T (S, t) = {z = (xs)st 2 Q|S| | 9y 2 O(t) :

y|S = z}. When S = {v} we simply write T (v, t) for T ({v}, t).

Remark 1.12 Observe that, given a deterministic freezing automata network of global rule
F : QV ! QV , we define the associated non-deterministic global rule F ⇤ where each node
can at each step apply F or stay unchanged, formally: F ⇤

v (c) = {Fv(c), cv}. It represents the
system F under an update scheme that is called totally asynchronous update scheme.
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1.2 Elements of computational complexity

In this section, we will briefly define some basic concepts we will be using during the rest of
this work. However, we refer interested reader to [3, 23] for detailed information.

We start with the concept of decision problem. Formally, a decision problem fL : {0, 1}⇤ !
{0, 1} is a function such that fL(x) indicates whether string x belongs to a set L ✓ {0, 1}⇤.
Set L is called a language. From now on, we associate a decision problem with its language.
We say that a Turing machine decides a decision problem if, when the machine is initialized
with x written in the tape, the machine always halts, and when it does it has left written
in the tape f(x). We say that the machine accepts or rejects depending on the bit it writes
when it halts. The time-complexity of the problem, is the amount of time steps that a Turing
machine requires to solve the problem in the worst case, measured in terms of the size of the
input n. Analogously, the space-complexity of the problem is considered to be the number
of locations that are at some point non-blank, during the execution of the Turing machine,
that are required to decide a language L on some given input x, measured in terms of its size
(|x| = n).

Classical computational complexity theory defines two main classes of decision problems,
namely P is the class of problems solvable in polynomial-time (i.e. with time-complexity
nO(1)) on a deterministic Turing machine; and NP are the problems that can be solved
in polynomial-time on a non-deterministic Turing machine [3]. Equivalently, we can define
NP as the problems that can be verified in polynomial time. Formally, a polynomial-time
verifier V for a language L is a deterministic Turing machine such that, there is a polynomial
p satisfying that for every x 2 {0, 1}⇤ we have that x 2 L if and only if there exists a
u 2 {0, 1}p(|x|) such that V accepts on input (x, u) (i.e. the concatenation of x and u). When
V (x, u) accepts, we say that u is a certificate for x.

In addition, in terms of space-complexity, there are three main classes of decision problems,
namely L is the class of problems solvable in logarithmic space, i.e. solved by a deterministic
Turing machine with space-complexity O(log n) (sometimes also denoted as DLOGSPACE)
where n is the size of the input, NL which is the non-deterministic version of the latter class
i.e. problems that are solvable by a non-deterministic Turing machine with space-complexity
O(log n), and the class of problems that are solvable in polynomial space by a deterministic
Turing machine, which is denoted PSPACE

Clearly P ✓ NP and also it is wide-believed (and probably one of the most famous
conjectures in this context) that P 6= NP, i.e that the inclusion is proper. In this regard,
the problems in NP that are most likely to not be contained in P are called NP-Complete
problems. Roughly, a problem in NP is NP-complete if an efficient solution for it can be
transformed into an efficient solution for every other problem in NP. Formally, a language
L0 2 NP is NP-hard if for every L 2 NP we have that L is polynomial time reducible to L0,
meaning that there exists a function f computable in polynomial time, such that x belongs
to L if and only if f(x) belongs to L0. In addition, if L0 2 NP then we say L0 is NP-complete.

The canonical NP-complete problem is the Boolean satisfiability problem Sat. This
problem receives as an input a Boolean formula F on n variables, and the task consists in
deciding whether this formula can be satisfied, i.e. it is possible to assign truth-values to its
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inputs such that the formula evaluates true.

Observe that, as a Turing machine can visit only one cell at time, we have that P ✓
PSPACE and it is also wide-believed that P 6= PSPACE. In fact, as NP ✓ PSPACE,
P = PSPACE then, P = NP. Analogously, there is a notion of PSPACE-completeness
proposed in similar terms. Formally, a language is L0 is PSPACE-hard if all language
L 2 PSPACE is polynomial time reducible to L0 and we say is PSPACE-complete if
L0 2 PSPACE.

A canonical PSPACE-complete problem is a generalization of Sat known as quantified
Boolean formula problem or QBFP consisting in deciding, given a quantified formula of the
form Q1Q2Q3, · · · , Qn' where Qi are quantifiers i.e. Qi 2 {9, 8}. Additionally, it is well
known that the problem of deciding, given a linear bounded deterministic Turing machine
M , an input x 2 {0, 1}⇤ such that |x| = n and a padding of length Kn, whether M accepts
x in space Kn.

1.2.1 Counting complexity

A functional problem for a function f : {0, 1}⇤ ! N is the computational task consisting in
computing f(x) for a given input string x 2 {0, 1}⇤. Functional problems are a generalization
of decision problems, which are functions fL : {0, 1}⇤ ! {0, 1} such that the bit fL(x)
indicates whether x belongs to a set L ✓ {0, 1}⇤. We abuse the notation and identify a
function f with the computational task consisting in computing f(x).

We say that a Turing machine solves a functional problem if, when the machine is ini-
tialized with x written in the tape, the machine always halts, and when it does it has left
written in the tape f(x). For decision problems, one can define time and space complexity
for computing f(x).

Some complexity classes for decision problems have natural generalizations to classes of
functional problems. For instance, FP is the set of functions computable in polynomial time
by a deterministic Turing machine. In other words, FP is the generalization of P to function
problems. However, it is not easy to generalize into function classes decision problems defined
by non-deterministic machines, such as NP. A straightforward approach is to take, for a
given instance x of NP language L, the problem consisting in computing a certificate y
for x. For example, generalizing Sat to a function problem consists in computing a truth-
assignment satisfying a Boolean formula given in the input. The complication is that such
a generalization does not define a function but a binary relation, as a single instance could
have several certificates. In that context, an interesting alternative is to consider functions
that count certificates. For instance, consider #Sat as the function problem consisting in
computing the number of truth-assignments satisfying a given Boolean formula.

The class #P is the set of functions f such that there exists a polynomial-time verifier V
such that, for every x 2 {0, 1}⇤,

f(x) = #{y 2 {0, 1}p(|x|) : V (x, y) accepts},

where p is the polynomial defined for V . Informally speaking, class #P contains all functions
that count certificates of NP problems. Directly from the definition we have that #Sat 2
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#P.

Note that FP is contained in #P. Indeed, for a given function f 2 FP, we define the
polynomial verifier Vf that accepts (x, y) if and only if y  f(x), when both strings are
interpreted as positive integers. Then, f(x) is exactly the number of certificates for x on
verifier Vf .

It is conjectured that #P 6= FP, as clearly #P = FP implies NP = P. Moreover,
the equality of the two classes would have much stronger (and unlikely) consequences. For
instance, Toda’s theorem imply that if FP = #P then the whole polynomial hierarchy
collapses in P [3, Theorem 9.11].

The functions in #P that are the most likely not belong to FP are the #P-Complete
functions. A function f 2 #P is #P-complete if an efficient algorithm computing f can be
used to efficiently solve all problems in #P. For defining this notion of hardness, we need
the notion of Turing reduction.

We say a Turing machine has oracle access to a function f : {0, 1}⇤ ! {0, 1}⇤ if at
any given time step, the machine can execute a subroutine that in one time-step chooses
a section of the tape containing a string x 2 {0, 1}⇤, and writes in the section of the tape
the string f(x). For fixed function f : {0, 1}⇤ ! {0, 1}⇤, we call FP

f the class of functions
g : {0, 1}⇤ ! N that are computable in polynomial-time by a Turing machine with oracle
access to f . Intuitively, suppose that we have an algorithm computing function f . Then
FP

f is the set of functions that can be computed running the algorithm for f a polynomial
number of times. In particular, when f is computable in polynomial time FP

f
= FP.

A function g is Turing reducible in polynomial time to a function f if g 2 FP
f . Then, we

say that a function f 2 #P is #P-complete if for all function g 2 #P we have that g is Turing
reducible in polynomial time to f , i.e. g 2 FP

f . An important example of a #P-Complete
problem is #Sat [3, Theorem 9.7]. In fact, it is natural to expect that an NP-Complete
decision problem defines a #P-Complete counting version. Up to our knowledge, there are
no examples of a NP-Complete problems whose counting version is not #P-Complete [58].

Interestingly, there are #P-Complete problems for which the corresponding decision ver-
sion can be solved in polynomial time. An important example is the Monotone-2CNF-
Satisfability (Mon-2-Sat) and its counting version #Mon-2-Sat. A n-variable Boolean
formula F is a monotone-2-CNF formula if F can be written as

F(z1, . . . , zn) =
^

j2[m]

(cj
1
_ cj

2
) with c1j , c

2

j 2 {z1, . . . , zn}.

In such a case we call (cj
1
, cj

2
) a clause. Now consider Mon-2-Sat as the problem Sat

restricted to monotone-2-CNF formulas. This problem is trivial, as such a formula can be
satisfied assigning all variables true. Now consider #Mon-2-Sat as the restriction of #Sat
to monotone-2-CNF formulas. Formally, the latter problem is defined by

Problem (#Mon-2-Sat)
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Input: a monotone-2-CNF-Boolean formula F with n variables and m clauses.

Output: |{x 2 {True,False}n : F (x) = True}|

Like #Sat, problem #Mon-2-Sat belongs to #P. Moreover, in [76] it is shown that it
remains #P-Complete.

1.2.2 Parametric complexity

We now present basic concepts in parameterized complexity that we will be using during this
thesis work (see [23] for more details and context). A parameterized language is defined by
L ⇢ {0, 1}⇤ ⇥ N. Whenever we take an instance (x, k) of a parameterized problem we will
call k a parameter. The objective behind parameterized complexity is to identify which are
the key parameters in an intractable problem that make it hard.

For instance, consider the problems Vertex-Cover and Dominating-Set (i.e. finding a set of
nodes that cover all edges or all the neighborhoods, respectively) that are classical examples
of NP-Hard problems. Consider now problems k-Vertex-Cover and k-Dominating-Set as the
parameterized version of Vertex-Cover and Dominating-Set, respectively, when the solution
must be of size at most k. Then those versions can be easily solved in time nO(k) by simply
checking all possible subsets of k nodes. Hence, when k is constant, those problems can be
solved in polynomial time. Contrarily, problem Coloring, another example of an NP-Hard
problem, remains hard even when it is parameterized by the number of colors (for instance
3-Coloring is NP-Complete). We say that a parameterized language L is slice-wise polynomial
if (x, k) 2 L is decidable in polynomial time for every fixed k 2 N. More precisely, when
(x, k) 2 L can be decided in time |x|f(k) for some arbitrary function f depending only on
k. The class of slice-wise polynomial parameterized languages is called XP. In our examples,
k-Vertex-Cover and k-Dominating-Set are in XP when they are parameterized by the size of
the solution.

An important subclass of XP is the set of parameterized languages L that are fixed-
parameter tractable, denoted FPT. A parameterized language L is in FPT if there exist an
algorithm deciding if (x, k) 2 L in time f(k)|x|O(1) where f an arbitrary function depending
only in k. It is known that XP is not equal to FPT, however showing that some problem in
XP is not in FPT seems currently out of reach for many natural examples. For instance, it
is known that k-Vertex-Cover is FPT, and is widely-believed that k-Dominating-Set is not.

As in other domains of complexity a hardness theory has been developed relying on the
following notion of reduction. Given two parameterized languages L1, L2 we say that L1 is
FPT reducible to L2 (and we write this as L1 FPT L2) if there exist some functions r, s : N!
N and M : {0, 1}⇤ ⇥ N ! {0, 1}⇤ such that for each instance (x, k) of L1, M is computable
in time s(k)|x|c for some constant c and (x, k) 2 L1 if and only if (M(x), r(k)) 2 L2. A
hierarchy of parameterized languages has been defined, called W-hierarchy, that contain a
countable sequence of classes of parameterized languages, namely W[1], W[2],W[3] . . . such
that FPT ✓ W[1] ✓,W[2] ✓ . . .XP and it is conjectured that are inclusions are proper.
We don’t give the formal definition these classes and we refer to [23] for more details. For
our purposes, it is enough to know that k-Dominating-Set (i.e. finding a set of k nodes that
intersects the neighborhood of any node) is W[2]-hard and that a parameterized language is
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W[2]-hard if there is an FPT-reduction from k-Dominating-Set to it.

1.2.3 Parellel computing and NC

We now present, briefly, some elements on parallel computation and particularly on the class
NC. We will not give many details on definitions but a general framework and idea of the
definitions that are required to understand presented results. We refer interested reader to
[45]. We start by defining to different parallel computation models before introducing the
formal definition of the NC class. There is an equivalent way to define the latter class in
terms of both models as we will see in this section.

PRAM model

In the context of sequential algorithm design, one of the most well-known models of com-
putation is the random access machine or RAM. This model consists of a computation unit
provided with a fixed user defined program. Particularly, it has a read-only and a write only
input tapes together with an unbounded number of local memory cells R0, . . . , Rn, . . .. Each
of these memory cells is able to hold an integer of unbounded size. Computation unit is
defined by simple tasks such as: moving data between memory cells, comparing information
and establishing conditional branches, executing simple arithmetic operations (subtraction,
addition, multiplication, division, etc), etc. A RAM program is defined by a sequence of the
latter instructions which starts with a first given instruction and continues executing each
consecutive instruction in the sequence until a halt instruction is reached. Usually, complex-
ity in this model is measured in terms of the number of instructions executed and space in
the form of memory cells that are accessed during execution. An important remark is that,
as memory unit can handle integers of unbounded size, the model prohibits rapid generation
of very large numbers (by, for example, a careful choice of the instruction set). For example,
the model will prohibit numbers of superpolynomial size to be tested or generated in order to
avoid an effect of distortion in the context of latter notion of time complexity. More precisely,
for t � log n no number may exceed O(t) bits in t steps.

A generalization of this model to the context of parallel computing is called Parallel Ran-
dom Access Machine (PRAM). This model consists of a collection of numbered RAM pro-
cessors P0, . . . , Pn, . . . , and an unbounded collection of shared memory cells C1, . . . , Cn, . . . .
Each of these processors is equipped with its own collection of local memory cells and its
own index. In addition, each processor has instructions involving read/write access of shared
memory cells. Instead of being in tapes, inputs and ouputs are placed in shared memory cells
allowing processors to have concurrent access to this information. Additionally, instructions
are executed in unit time and are synchronized over all active processors. In the literature
regarding this model there are two technical issues that need to be specified in the definition
of the model: the first one is related to the coordination of different processors during com-
putation and the second one is how execution is handled when multiple processors require
access to the same shared memory cells. The most common way to solve the first issue is
by adding a processor P0 which stores a number representing the larger index of a processor
which is allowed to be activated. All processors having an index that is lower than this latter
amount will be activated during execution. Initially only processor P0 is active, and executes
a special instruction which computes the required number of processors and stores this value
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in a special register. All the other processors wait for P0 to finish this instruction and then
start execution accordingly. When the time in which processor P0 halts is reached all active
processors halt.

Second issue is typically handled in the following way: reading and writing are handled
in separated (independent) cycles. PRAM instruction in shared memory is executed in three
phases: first the reading phase in which all processors read information for shared memory,
then computation associated with read instructions are handled and finally there is a writing
phase. Then, access conflicts can be addressed in different ways:

1. Concurrent Read Concurrent Write (CRCW) model: simultaneous readings and writ-
ings are allowed and thus, some method of arbitrating simultaneous writings in shared
memory is required. Different variants are proposed such as: PRIORITY in which
when there is a simultaneous writing conflict only the processor with lowest index
writes, COMMON in which the write succeeds only if all involved processors are writ-
ing the same value and finally there is ARBITRARY in which some processor is chosen
in a non-deterministic way.

2. Concurrent Read Exclusive Write (CREW) model: simultaneous readings are allowed
on a same shared memory cell but only one processor can write in that cell at the same
time.

3. Exclusive Read Exclusive Write (EREW) model: no two processors can access one
memory cell simultaneously.

The standard measure of complexity is given in terms of the following definition of com-
putation:

Definition 1.13 Let M be a PRAM. An input x 2 {0, 1}⇤ such that |x| = n is considered
as a natural number n together with a sequence of bits. Each bit is stored in memory cells
C1, . . . , Cn and n is stored as an integer in C0. An output is a string y 2 {0, 1}⇤ stored in
the same way. We say that M computes in parallel time t(n) and processors p(n) if for any
input x 2 {0, 1}n, M halts within at most t(n) time steps, activates at most p(n) processors
during execution and presents an output y 2 {0, 1}⇤. We say M computes sequentially if it
takes t(n) time steps by using 1 processor.

Observe that, since the model prohibits rapid generation of large integers, functions p(n)
and t(n) are sufficiently coherent to describe time and space complexity. It is also well-known
that previous variants (CRCW,CREW and EREW models) are polynomially equivalent (one
can simulate the execution of one particular model into other one by using a polynomial
amount of resources).

We now present the definition of the class NC and then, we will return to this formalism
in order to establish a link between this latter complexity class and the PRAM model.

NC class and uniform circuit families

We first recall the definition of a uniform circuit family. A Boolean circuit ↵ is a labeled
directed acyclic graph in which each vertex v is called a gate and it is labeled by some function
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g(v) : {0, 1}k(v) ! {0, 1}k0(v) where k(v), k0
(v) � 0 are such that k(v) = �+v and k0

(v) = ��v .
Usually, in the literature ,the outdegree or fanout k0

(v) is not restricted but the indegree or
fanin is considered to be at most 2. Whenever a vertex has outdegree 0 i.e. ��v = 0 we say
v is an output and if �+v = 0 we say it is an input. A Boolean circuit having n inputs and
m outputs computes a function f : {0, 1}n 7! {0, 1}m in the following way: Let x 2 {0, 1}n
be an argument for f . Each node is assigned with some value ⌫(v) 2 {0, 1} depending on its
type. If v is an input then, it is assign by ⌫(v) = xv. For each gate which is not an output
nor an input, we assign a value ⌫(v) according to the value assigned to its incoming vertices
and function g(v). At the end, each output v satisfies ⌫(v) = f(x). Observe that the order in
which values are computed for incoming neighbors could play a role depending on each gate.

We define a layer or level of node v in a circuit as the length of the longest path from an
input to v. The size of the circuit is denoted size(↵) and is defined as the number of vertices
in the circuit. In addition, the depth of a circuit is denoted as deph(↵) and it is defined as
the longest path from an input to an output.

A Boolean circuit family {↵n} is a collection of circuits, each ↵n computing a function
fn

: {0, 1}n 7! {0, 1}m(n). The function computed by the family {↵n} is a function of the form
f↵ : {0, 1}⇤ 7! {0, 1}⇤, defined by f↵

(x) = f |x|
(x). Let f : {0, 1}⇤ 7! {0, 1}⇤ be a function.

Let {↵n} a Boolean circuit family that computes some function f↵ : {0, 1}⇤ 7! {0, 1}. We
define the language accepted by {↵n} as the set L↵ = {x 2 {0, 1}⇤ : f↵(x) = 1} and we say
that L↵ is recognized by family ↵n.

We say that a family {↵n} of circuits is logarithmic space uniform if the transforma-
tion 1

n 7! ↵n where ↵n is the standard encoding of ↵n (see [45]) can be computed in
O(log(size(↵n))) space on a deterministic Turing machine.

We are now ready to define the class NC :

Definition 1.14 Let k � 1 be an integer. We define the class NC
k as the set of all languages

L such that L is recognized by a uniform Boolean {↵n} satisfying size(↵n) = nO(1) and
depth(↵n) = O((log(n)))k) and we define NC =

S
k�1

NC
k.

Now we present a result that relates the PRAM model to the NC class. In fact, the result
establishes an equivalence between circuits and PRAMs and also establishes a hierarchy called
the NC-hierarchy.

We call a PRAM algorithm logarithmic space uniform if there exists a logarithmic space
deterministic Turing machine which takes an input x 2 {0, 1}n and generates the program ex-
ecuted by each processor for correspondent input. Let k � 1. We call CRCW

k (respectively
CREW

k, EREW
k) the class of problems that are solvable by a logarithmic space uniform

CRCW (respectively CREW
k, EREW

k) PRAM algorithm using O((log(n)))k) time and
nO(1) processors.
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Proposition 1.15 Let k � 1, the following inclusions hold:

EREW
k ✓ NC

k ✓ CREW
k ✓ CRCW

k ✓ NC
k+1.

Finally, we would like to remark that it is clear from the latter definitions that NC ✓ P

and it is well-believed that the inclusion is strict. This means that there are some problems
that are solvable in polynomial time but are believed not to be solvable by an efficient parallel
algorithm. An example of a P-complete problem under NC-reductions is the well-known
circuit value problem. Interested reader is referenced to [45] for more details.

1.3 Toolbox
In this section, we state some useful results that we use during the thesis work. We only
provide the statement of the results and we refer readers to corresponding references.

1.3.1 Automata networks dynamics

In this subsection, we present some results regarding a specific family of automata networks
called threshold networks, which includes some of the CSAN families that we analyze during
this work. In addition, we state some technical results on number theory that we use in order
to deduce lower bounds on periods.

Threshold networks

A threshold network is an automata network on alphabet Q = {0, 1} such that the next
state of each vertex is given by the amount of neighbors that are currently in state 1. If
this amount is more than some given threshold, then the node will change to state 1 and
will remain in previous state otherwise. Formally, a threshold network is a tuple N = (G,�)
where G is a non-directed graph and � : V ⇥ {0, 1}⇥N{0,1} 7! {0, 1} such that �(q,m) = 1 if
m(1) � ✓v and �(q,m) = 0 otherwise. Observe that threshold network is a type of network
that is similar to a CSAN but more general as m is a multiset. Well known examples of
threshold networks are majority networks in which ✓v = d �v

2
e and thus v will change to 1

when the majority of its neighbors in state 1. Other well known examples are disjunctive
networks (✓v = 0) and conjunctive networks (✓v = �v). We introduce a classical result on
threshold network dynamics by Goles et al. [42] which bounds the transient and the period
of attractors for this family.

Proposition 1.16 ([42]) Let ⇥ be the family of all threshold networks. Each network N =

(G,�) 2 ⇥ has only attractors for period 2 or fixed points. In addition, for each configuration
x 2 {0, 1}V (G) its transient time ⌧N (x) satisfies ⌧(x) = |V (G)|O(1).

Superpolynomial period attractors

We present in this section a classical result in number theory that we use to show the existence
of networks admitting attractors of superpolynomial period by combining different connected
components exhibiting attractors of some prime period.
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Lemma 1.17 [47] Let m � 2 and P(m) = {p  m | p prime}. If we define ⇡(m) = |P(m)|
and ✓(m) =

P
p2P(m)

log(p) then we have ⇡(m) ⇠ m
log(m)

and ✓(m) ⇠ m.

1.3.2 Treewidth and tree decompositions

It is well known that, given an arbitrary graph G, and k 2 N, the problem of deciding if
tw(G)  k is NP-complete [2]. Nevertheless, if k is fixed, that is to say, it is not part of the
input of the problem then, there exist efficient algorithms that allow us to compute a tree-
decomposition of G. More precisely, it is shown that for every constant k 2 N and a graph G
such that tw(G)  k, there exists a log-space algorithm that computes a tree-decomposition
of G [24]. In addition, in Lemma 2.2 of [10] it is shown that given any tree decomposition of
a graph G, there exists a fast parallel algorithm that computes a slightly bigger width binary
tree decomposition of G. More precisely, given a tree decomposition of width k, the latter
algorithm computes a binary tree decomposition of width at most 3k + 2. We outline these
results in the following proposition:

Proposition 1.18 Let n � 2, k � 1 and let G = (V,E) with |V | = n be a graph such that
tw(G)  k. There exists a CREW PRAM algorithm using O(log

2 n) time, nO(1) processors
and O(n) space that computes a binary treewidth decomposition of width at most 3k + 2 for
G.

1.3.3 Fast parallel subroutines

We cite the following results that we use as some kind of toolbox for the proof of our main
results in freezing dynamics (see Chapter 6):

Proposition 1.19 (Prefix-sum algorithm, [50]) The following problem can be solved by a
CREW PRAM machine with p = O(n) processors in time O(log n): Given A = {x1, . . . , xn}
be a finite set, k  n and � be a binary associative operation in A, compute �k

i=1
xi

Proposition 1.20 ([68, Theorem 5.3]) Let n 2 N. The following problem can be solved in
space O(log n): given an undirected graph G = (V,E) with |V | = n, s, t 2 V find a path from
s to t and if there exists such a path, return the path as an output.

Proposition 1.21 ([28, Theorem 3]) Let � 2 N. The following problem can be solved in time
O(� log(� + log

⇤ n)) by an EREW PRAM: given a graph G = (V,E) such that �(G)  �

finding a �+ 1 coloring of G.

1.3.4 Arithmetic results

In our proofs we will require to perform some arithmetic computations of large integers. We
finish this section by giving a proposition that compiles results regarding the complexity of
arithmetic computations.
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Proposition 1.22 (1) Given two integers x, y 2 [n]:

• There is an algorithm computing the product xy in time O(log n log log n)

• There is an algorithm computing the division x/y in time O(log n log log
2 n)

• There is an algorithm computing the factorial x! in time O(n(log n log log n)2).

Therefore, when y  x the expression
�
x
y

�
=

x!
(x�y)!y! can be computed in time O(n2

).

In addition, at some point we would like to compute the coefficients of a polynomial P (x).
This is possible when we know an evaluation of the polynomial in a large enough point:

Lemma 1.23 ( [76]) Let P (x) =
Pn

i=0
aixi be a polynomial with integer coefficients upper

bounded by a A > 2. Suppose that we know a pair (x0, y0) such that y0 = P (x0) and x0 > A2.
Then, there exists an algorithm that outputs the coefficients a0, . . . , an of P in a time that is
polynomial in n(log(x0) + log(y0) + log n).

1See https://en.wikipedia.org/wiki/Computational_complexity_of_mathematical_operations
for a nice table resuming different algorithms
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Chapter 2

Measuring dynamical behavior

In this chapter, a theoretical framework for studying automata networks is presented, based
on a computational complexity approach. In particular, decision problems regarding ques-
tions about the dynamics of specific automata networks are studied. As it has been many
times referred in the literature, one of the most tricky parts of the analysis of a decision
problem, is to observe how the input is given. This of course will have a tremendous impact
on its computational complexity as in some way it fixes the objects that we have available
in order to solve the latter problem. In fact, it determines the amount of resources that one
has to manage in order to effectively treat available information. In this regard, a natural
question is how automata networks are represented. Is there something like a standard rep-
resentation for a certain family of automata networks? If some extra information regarding
the networks is given (the topology of the network, the properties of the local rues, etc.), is it
possible to represent in a canonical way a vast group of networks?. All these issues regarding
representation of automata networks are explored.

Then, once we know what is an automata network for practical purposes, the question on
how different families can be classified in terms of their dynamical properties is discussed.
More precisely, the question of how the dynamics of a certain family may simulate the dy-
namics of another one is explored. In order to address this question, a notion of simulation
between standard representations of automata network families are adapted from dynamical
notions of simulation presented in previous sections. In this regard, we discuss how repre-
sentation plays an essential role when universality (the capacity of simulating any arbitrary
automata network) is addressed. We propose two definitions of universality that are closely
related to the concept of simulation. Roughly speaking, if a family is able to simulate any
automata network (provided that it can be represented by a circuit that has reasonable size
related to the size of the network), it is universal. In addition, if some family is able to
simulate any bounded degree network, then, it is strongly universal. We show that the latter
definition is in fact stronger, by exhibiting a family of bounded degree that is universal and
strongly universal at the same time.

Finally, we study in detail the prediction problem. As it was introduced before in this
thesis, the complexity of this problem gives some insight into how complex is the dynamics
of certain automata network by measuring how difficult is to predict its dynamical behavior
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with respect to the complexity of simply computing the global dynamics through its global
rule. If the automata network presents some topological or algebraic properties that can be
exploited in order to propose an efficient algorithm to solve prediction problem (compared
to raw computation of global rule) then, its dynamics is said to be simple. Contrarily, if we
have no other choice than simple simulating the global rule then, its dynamics is said to be
complex. In this section, we study different variants of the prediction problem. In particular,
since an observation time is needed in order to evaluate the state of the objective node, the
representation of time (unary or binary) is addressed. In addition, long-term prediction, a
version in which time is not part of the input, is explored. Then, we apply previous results
on simulation in order to establish some sorts of heritage properties. Generally speaking, if
a certain family simulates another one then, the prediction problem on the simulator family
will be as hard as on the simulated family.

2.1 Automata network representations
In this section, the notion of standard representation is introduced. A standard representation
of a certain family F of automata networks is a family F⇤ of Boolean circuits which computes,
via some coding function depending on the alphabet of the family, each automata network in
the usual way. Note that each circuit can be encoded in multiple ways as well it is possible that
the circuit is considered to be given in its standard encoding. In addition, a representation
could be virtually any kind of object which encodes in some way a circuit family simulating the
original automata network family. Then, in general, a standard representation is considered
to be a particular language in which any word encodes in an efficient way the encoding of
some circuit computing an automata network in the family. In order to motivate an analysis
on how could be a natural representation in the context of concrete examples of automata
network families, we present here different representations and we show that they are related
to the circuit representation.

2.1.1 Representation of some particular families

Observe that the communication graph is an interesting piece of information in the context of
describing an automata network, as it contains, the structure of the global rule, expressed as
the adjacency of nodes in latter network. However, as we will see in this section, constructing
the communication graph of a given automata network (provided that this automata network
is represented for example as a circuit) is not always an easy task. Conversely, if some repre-
sentation including the information of the automata network (plus for example, information
about local rules) is provided, it could be also hard to construct a circuit representation for
the global rule of the automata network. We will illustrate this fact by analyzing three exam-
ples of canonical types of families: bounded degree networks, CSAN and algebraic families.
The first one is characterized by a communication graph which has bounded degree, i.e. there
exists a constant � 2 N (not depending on the size of the network) such that maximum de-
gree is at most �. The second one was widely presented in previous sections and it roughly
corresponds to the family of all set-valued functions described by labelled communication
graphs. Finally, an algebraic family is essentially a family of linear maps in the case in which
Q is seen as a finite field and Qn as a linear space. We show in the latter examples that there
exists a natural representation that is based on the properties of the family. For instance,
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it is possible to deduce that for the bounded degree families, the bounded degree parameter
provides a way to store information in an efficient way. This is because local functions do
not depend in the size of the network. In addition, we have also an efficient representation
for the case of CSAN since local functions are set-valued (locally every node depends only
on the set of states given by the states of their neighbors) and thus they do not depend on
the size of the network. Finally, we have the case of linear maps that can be represented as
matrices.

The CSAN case.

Note that, when we think at the latter collection of automata networks as a CSAN family,
we can directly work with a structure that can be represented efficiently. This is because, a
CSAN family is a collection of labeled graphs and thus, the construction of the simulator can
be done by simply reading the adjacency information of the graph and replacing each node by
some specific gadget. More precisely, we have that a CSAN is a graph G together with some
circuit family which represents local functions (i.e. � and ⇢). Each local function will depend
only on the local configuration composed by a node and its neighbors. In addition, for a fixed
CSAN family, a collection of set-valued functions and edge-labels is provided independently
of the structure of each graph as they depend on the possible sets of elements in the alphabet
Q (note that what makes different two networks in one family is the position of labels but
local functions are chosen from the same fixed set). Thus, we can represent a CSAN family
F by a collection of labeled graphs G and a circuit family ⇤. We call this representation a
succinct representation for CSAN F . Since circuit family ⇤ depends only in the size of the
alphabet and since we are considering that the alphabet is fixed, we will usually omit ⇤ and
just write G as a succinct representation for F and we will denote a CSAN (G,�, ⇢) 2 F
by simply G (where of course G is a labeled graph in G). Note that since the alphabet size
is constant, a succinct representation is, in particular, a standard representation for CSAN
family as an automata network family. Formally, the language LG containing the encoding
of each labeled graph in G together with the standard encoding of constant circuit family ⇤

is a standard representation for CSAN family F .

Bounded degree case.

A briefly note in the definition of a bounded degree family is recalled: let k 2 N, F be an
automata network family and G be a collection of graphs such that for each F 2 F , F has
an interaction graph GF 2 G. We say F is a bounded degree family of degree k 2 N if for
each F , GF satisfies �(GF )  k. Thus, a representation for F is simply an encoding of G
as an adjacency list and a list of circuits (G, {fi : i 2 V (GF )} representing local functions.
Note that each of these circuits has constant depth as the number of variables is at most k.
Let wF 2 {0, 1}⇤ an encoding of (G, {fi : i 2 V (GF )} then, we define �(G) : {wF : F 2 F}
and we call it a graph representation.

Let us fix some positive constant �. It is natural to consider the family of automata
networks whose interaction graph has a maximum degree bounded by � (see Remark 3.5 in
page 43). We associate to this family the following representation: an automata network F
is given as pair (G, (⌧v)v2V (G)) where G is a communication graph of F of maximum degree
at most � and (⌧v)v2V (G) is the list for all nodes of G of its local transition map Fv of the
form Qd ! Q for d  � and represented as a plain transition table of size |Q|d log(|Q|).
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Remark 2.1 Given any CSAN family, there is a DLOGSPACE algorithm that transforms
a bounded degree representation of an automata network of the family into a CSAN repre-
sentation: since all local maps are bounded objects, it is just a matter of making a bounded
computation for each node.

The algebraic case.

When endowing the alphabet Q with a finite field structure, the set of configurations Qn is a
vector space and one can consider automata networks that are actually linear maps. In this
case the natural representation is a n⇥ n matrix. It is clearly a standard representation in the
above sense since circuit encodings can be easily computed from the matrix. Moreover, as in
the CSAN case, when a linear automata network is given as a bounded degree representation,
it is easy to recover its associated matrix in DLOGSPACE.

More generally, we can consider matrix representations without field structure on the
alphabet. An interesting case is that of Boolean matrices: Q = {0, 1} is endowed with the
standard Boolean algebra structure with operations _,^ and matrix multiplication is defined
by: �

AB)i,j =

_

k

Ai,k ^Bk,j.

They are a standard representation of disjunctive networks (and by switching the role of 0
and 1 conjunctive networks), i.e. networks F over alphabet {0, 1} whose local maps are of the
form Fi(x) = _k2N(i)xk (respectively Fi(x) = ^k2N(i)xk) . When their dependency graph is
symmetric, disjunctive networks (resp. conjunctive networks) are a particular case of CSAN
networks for which ⇢v maps are the identity and �v are just max (resp. min) maps. For
disjunctive networks (resp. conjunctive networks) the CSAN representation and the matrix
representation are DLOGSPACE equivalent.

2.1.2 Computing interaction graphs from representations.

One of the key differences between all the representations presented so far is in the infor-
mation they give about the interaction graph of an automata network. For instance, it is
straightforward to deduce the interaction graph of a linear network from its matrix repre-
sentation in DLOGSPACE. At the other extreme, one can see that it is NP-hard to decide
whether a given edge belongs to the interaction graph of an automata network given by a
circuit representation: indeed, one can build in DLOGSPACE from any SAT formula �
with n variables a circuit representation of an automata network F : {0, 1}n+1 ! {0, 1}n+1

with

F (x)1 =

(
xn+1 if �(x1, . . . , xn) is true,
0 else.

This F is such that node 1 depends on node n+ 1 if and only if � is satisfiable.

For automata networks with communication graphs of degree at most �, there is a poly-
nomial time algorithm to compute the interaction graph from a circuit representation: for
each node v, try all the possible subsets S of nodes of size at most � and find the largest
one such that the following map

x 2 QS 7! Fv(�(x))
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effectively depends on each node of S, where �(x)w is xw if w 2 S and some arbitrary fixed
state q 2 Q else. Note also, that we can compute a bounded degree representation in poly-
nomial time with the same idea.

In the CSAN case, the situation is ambivalent. On the one hand, the interaction graph
can be computed in polynomial time from a CSAN representation because for any given
node v the following holds: either �v is a constant map and then v has no dependence, or �v
is not constant and then the neighborhood of v in the CSAN representation is exactly the
neighborhood of v in the interaction graph. On the other hand, a polynomial time algorithm
to compute the interaction graph from a circuit representation would give a polynomial algo-
rithm solving Unambiguous-SAT (which is very unlikely, following Valiant-Vazirani theorem
[3, Theorem 9.15]). Indeed, any “dirac” map � : {0, 1}n ! {0, 1} with �(x) = 1 if and only
if x1 · · · xn = b1 · · · bn can be seen as the local map of a CSAN network because it can be
written as �({⇢i(xi) : 1  i  n}) where ⇢i(xi) = xi if bi = 1 and ¬xi else, and � is the map

S ✓ Q 7!
(
1 if S = {1}
0 else.

A constant map can also be seen as the local map of some CSAN network. Therefore, given
a Boolean formula � with the promise that is at has at most one satisfying assignment, one
can easily compute the circuit representation of some CSAN network which has some edge
in its interaction graph if and only if � is satisfiable.

2.1.3 Standard representation

Recall that given a fixed alphabet Q, a family of automata networks is a collection of functions
F = (Fs)s2N satisfying that for each s 2 N there exist some n(s) 2 N such that Fs : Qn(s) !
Qn(s) is an automata network.

We fix for any alphabet Q an injective map mQ : Q! {0, 1}kQ which we extend cell-wise
for each n to mQ : Qn ! {0, 1}kQn. Given an automata network F : Qn ! Qn, a circuit
encoding of F is a Boolean circuit C : {0, 1}kQn ! {0, 1}kQn such that mQ � F = C �mQ on
Qn. We also fix a canonical way to represent circuits as words of {0, 1}⇤ (for instance given
by a number of vertices, the list of gate types positioned at each vertex and the adjacency
matrix of the graph of the circuit).

Let F be a family of automata networks over alphabet Q. A standard representation F⇤

for F is a language LF ✓ {0, 1}⇤ together with a DLOGSPACE algorithm such that:

• the algorithm transforms any w 2 LF into the canonical representation of a circuit
encoding C(w) that codes an automata network Fw 2 F ;

• for any F 2 F there is w 2 LF with F = Fw.

The default general representations we will use are circuit representations, i.e. repre-
sentations where w 2 LF is just a canonical representation of a circuit. In this case the
DLOGSPACE algorithm is trivial (the identity map). However, we sometimes want to
work with more concrete and natural representations for some families of networks: in such
a case, the above definition allows any kind of coding as soon as it is easy to deduce the
canonical circuit representation from it.
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From now on, a family of automata networks will be given as a pair (F ,F⇤
) where F

is the set of automata networks and F⇤ a standard representation. In order to give some
intuition regarding this latter general definition, examples of standard representations for
specific families of automata networks are given in the next section. Particularly, bounded
degree case and CSAN case are explored. In addition, we discuss how and when one can
easily construct the circuit representation of an automata network from one of the latter
representations.

Remark 2.2 It follows from the latter discussion on representations in the context of CSAN
networks that a polynomial time algorithm to compute a CSAN representation of a CSAN
represented by circuit would give a polynomial time algorithm to solve Unambiguous-SAT.

The following table synthesizes the latter discussion about representation conversions. It
shall be read as follows: given a family (F ,F⇤

) listed horizontally and a family (H,H⇤
) listed

vertically, the corresponding entry in the table indicates the complexity of the problem of
transforming w 2 LF with the promise that Fw 2 F \H into w0 2 LH such that Fw = Hw0 .

output
input circuit CSAN �-bounded degree matrix

circuit trivial DLOGSPACE DLOGSPACE DLOGSPACE

CSAN USAT-hard trivial DLOGSPACE DLOGSPACE

�-bounded degree PTIME PTIME trivial DLOGSPACE

USAT-hard means that any PTIME algorithm would imply a PTIME algorithm for
Unambiguous-SAT.

2.2 Simulation and universality
In this section, we present a background in simulation of automata networks. We start by
presenting a definition that involves mainly automata networks as dynamical systems. More
precisely, we consider a simulation by blocks which is a classical approach in the context of
simulation in discrete dynamical systems. Then, we present a notion of simulation between
families of automata networks. The latter notion considers the amount of resources required
to perform the simulation such as time and space and also describes simulation in terms of
the latter defined standard representation. Finally, we discuss universality and implications
of this definition in terms of computational resources and dynamical properties.

2.2.1 Simulation between automata networks

We present in this subsection a definition of simulation which is based on blocks. Generally
speaking, given two automata networks, one being the simulated network and one being the
simulator, we represent nodes in the simulated network by block of nodes in the simulator
(which induces subgraphs in the communication graph of the simulator). In addition, we
encode the state of a particular node in the simulated network by a group of states in the
alphabet of the simulator. Particularly, we choose this assignation to be injective, induc-
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F

H

Figure 2.1: Scheme of one-to-one block simulation. In this case, network F is simulated by
H. Each node in F is assigned to a block in H and state coding is injective. Observe that
blocks are connected (one edge in the original graph may be represented by a path in the
communication graph of H) according to connections between nodes in the original network
F . This connections are represented by blue lines.

ing certain injective code map. A similar approach was broadly studied in the context of
simulation between cellular automata [49, 8, 60, 64, 65]. Note that defining an injective
coding map is not arbitrary. It allows us to avoid problems that could arrive in the con-
text of transferring dynamical properties from a simulated network to the simulator such
as, for example, preserving the transient lengths and the attractor periods. In addition, it
makes the notion of simulation compatible with reductions in the context of comparing the
computational complexity of the prediction problem between the simulator network and the
simulated network.

Definition 2.3 Let F : QVF

F ! QVF

F and H : QVH

H ! QVH

H be automata networks. A block
embedding of QVF

F into QVH

H is a collection of blocks Di ✓ VH for each i 2 VF which forms
a partition of VH together with a collection of patterns pi,q 2 QDi

H for each i 2 VF and each
q 2 QF such that pi,q = pi,q0 implies q = q0. This defines an injective map � : QVF

F ! QVH

H by
�(x)Di = pi,xi for each i 2 VF . We say that H simulates F via block embedding � if there is
a time constant T such that the following holds on QVF

F :

� � F = HT � �.

See Figure 2.1 for a scheme of block simulation. In the following, when useful we represent
a block embedding as the list of blocks together with the list of patterns. The size of this
representation is linear in the number of nodes (for a fixed alphabet).

Remark 2.4 It is convenient in many concrete cases to define a block embedding through
blocks Di that are disjoint but do not cover VH and add a context block C disjoint from the
Di that completes the covering of VH . In this variant a block embedding of QVF

F into QVH

H is
given by patterns pi,q and a constant context pattern pC 2 QC

H which define an injective map
� : QVF

F ! QVH

H by �(x)Di = pi,xi for each i 2 VF and �(x)C = pC . This variant is actually
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just a particular instance of Definition 2.3 because we can include C in an arbitrary block
(Di  Di [ C) and define the block embedding as in Definition 2.3.

In our proofs of simulations (see next subsections), the variant blocks/context will be
particularly relevant because the size of blocks will be bounded while the context will grow
with the size of the considered automata. Said differently, the information about an encoded
state will be very localized.

Another natural particular case of Definition 2.3 corresponding to localized information
is when in each block Di, there is a special node vi 2 Di such that the map q 7! pi,q(vi) is
injective. It is only possible when QH is larger than QF , but it will be the case in several
examples of Boolean automata networks (see Chapter 5) . Interestingly, this local coding
phenomena is forced when some automata network H simulates some Boolean automata
network F : indeed, in any block Di of H at least one node vi must change between patterns
pi,0 and pi,1, but the map x 2 {0, 1} 7! pi,x being injective, it means that x 7! pi,x(vi) is
injective too.

Remark 2.5 The simulation relation of Definition 2.3 is a pre-order on automata networks.

We now observe that simulation can also be seen in terms of orbit graphs. In this sense,
we present the following lemma:

Lemma 2.6 If H simulates F via block embedding with time constant T then the orbit graph
GF of F is a subgraph of GT

H . In particular if F has an orbit with transient of length t and
period of length p, then H has an orbit with transient of length Tt and period Tp.

Proof. The embedding of GF inside GT
H is realized by definition by the block embedding of

the simulation. The consequence on the length of periods and transients comes from the fact
that the embedding � verifies: x is in a periodic orbit if and only if �(x) is in a periodic
orbit.

2.2.2 Simulation between families of automata networks

In this section we present a notion of simulation in terms of representations and the amount
of resources that are needed in order to simulate a certain family of automata networks by
some other arbitrary family. Roughly speaking, a family of automata network can simulate
a particular automata network if we are able to effectively construct some automata network
in this collection that is able to simulate the first automata network in the sense of the latter
definition of simulation. More precisely, we ask the automata network which performs the
simulation to do this task in reasonable time and reasonable space in a sense that we specify
in the next definition.

Definition 2.7 Let (F ,F⇤
) and (H,H⇤

) be two families with standard representations on
alphabets QF and QH respectively. Let T, S : N ! N be two functions. We say that F⇤
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simulates H⇤ in time T and space S if there exists a DLOGSPACE Turing machine M
such that for each w 2 LH representing some automata network Hw 2 H : Qn

H ! Qn
H , the

machine produces a pair M(w) which consists in:

• w0 2 LF with Fw0 : QnF

F ! QnF

F ,
• a representation of a block embedding � : QnF ! Qn,

such that nF = S(n) and Fw0 simulates Hw in time T = T (n) under block embedding �.

From now on, whenever F⇤ simulates H⇤ in time T and space S we write H⇤ 4T
S F⇤.

Remark 2.8 The simulation relation between families is transitive because the class
DLOGSPACE is closed under composition and simulation between individual automata
networks is also transitive. When composing simulations time and space maps S and T get
multiplied.

2.3 Decision problems and automata network dynamics
In this section we introduce three variants of a classical decision problem that is closely
related to the dynamical behavior of automata networks: the prediction problem. This
problem consists in predicting if one node of the network will change its state at given time.
We study first a short term version of the problem in which time is given in the input. In
addition, we explore a stronger variant of this problem in which we ask if some node has
eventually changed, provided a constant observation time rate ⌧ . In other words, we check
the system for any change on the state of a particular node every multiple of ⌧ time steps.
Finally, we conclude that these problems are coherent with our simulation definition in the
sense that if some family of automata networks (F2,F⇤

2
) simulates (F1,F⇤

1
) then, if some of

the latter problem is hard in some sense for F1 it will also be hard for F 0
2. We will precise

this result in the following lines.

Let (F ,F⇤
) be an automata network family and let L 2 {0, 1}⇤⇥{0, 1}⇤ be a parameterized

language. We say that L is parameterized by F if L has F⇤ encoded as parameter. We note
LF ✓ {0, 1}⇤ as the language resulting on fixing F⇤ as a constant.

In particular, we are interested in studying prediction problems. We start by defining two
variants of this well-known decision problem:

Problem (Unary Prediction (PREDu))

Parameters: alphabet Q, a standard representation F⇤ of an automata network family F

Input:

1. a word wF 2 F⇤ representing an automata network F : Qn ! Qn with F 2 F .
2. a node v 2 V (F ) = {1, . . . , n}
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3. an initial configuration x 2 QV .
4. a natural number t represented in unary such that t 2 1.

Question: F t
(x)v 6= xv?

Problem (Binary Prediction (PREDb))

Parameters: alphabet Q, a standard representation F⇤ of an automata network family F

Input:

1. a word wF 2 F⇤ representing an automata network F : Qn ! Qn with F 2 F .
2. a node v 2 V (F ) = [n]

3. an initial configuration x 2 QV .
4. a natural number t represented in binary t 2 {0, 1}⇤.

Question: F t
(x)v 6= xv?

Note that two problems are essentially the same, the only difference is the representation
of time t that we call the observation time. We will also call node v the objective node.
As it happens with other decision problems, such as integer factorization, the representation
of observation time will have an impact on the computation complexity of the prediction
problem. When the context is clear we will refer to both problems simply as PRED. Observe
that one can always solve the prediction problem by simply computing F t

(x) in order to
verify if F t

(x)v 6= xv. Thus, since F is deterministic, we have that PREDuF 2 P and
PREDbF 2 PSPACE.

Finally, we show that latter problem is coherent with our definition of simulation, in the
sense that we can preserve the complexity of PRED. Note that this gives us a powerful tool
in order to classify concrete automata rules according to the complexity of the latter decision
problem.

Lemma 2.9 Let (F ,F⇤
) and (H,H⇤

) be two automata network families. Let T, S : N! N
be two polynomial functions such that H⇤ 4T

S F⇤ then, PREDH⇤ T
L PREDF⇤

1

Proof. Let (wH , v, x, t) be an instance of PREDH⇤ . By definition of simulation, there exists
a DLOGSPACE algorithm which takes wH and produces a word wF 2 LF with F : QnF !
QnF and a block representation � : QnF ! Qn such that nF = S(n) and F simulates H in time
T (n) under block embedding �. Particularly, there exists a partition of blocks Dv ✓ V (F ) =

[nF ] for each v 2 V (H) = [n] and a collection of injective patterns, i.e. patterns pi,q 2 QDi
F

such that pi,q = pi,q0 =) q = q0. In addition, we have � � H = F T � �. Let us define the
configuration y 2 QnF

F as yDi = pi,xi , i.e., �(x)Di = yDi . Note that y is well-defined as the block
map is injective. In addition, let us choose an arbitrary vertex v0 2 Dv and let us consider

1Here we denote T
L as a DLOGSPACE Turing reduction. The capital letter “T” stands for Turing

reduction and it is not related to the simulation time function which is also denoted by T.
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now the instance of PREDF⇤ given by (wF , v0, y, t ⇥ T ). Note that for each v0 2 Dv the
transformation (wH , v, x, t)! (wF , v0, y, t⇥T ) can be done in DLOGSPACE(|wH |) because
we can read the representation of � for each block pi,xi and then output the configuration y.
We claim that there exists a DLOGSPACE(|wH |) algorithm that decides if (wH , v, x, t) 2
LPREDH⇤ with oracle calls to PREDF⇤ . More precisely, as a consequence of the injectivity
of block embedding, we have that (wH , v, x, t) 2 LPREDH⇤ if and only if (wF , v0, y, t ⇥ T ) 2
LPREDF⇤ for some v0 2 Dv. In fact, the latter algorithm just runs oracle calls of PREDF⇤

for (wF , v0, y, t⇥T ) for each v0 2 Dv and decides if some of these instances is a YES instance
and thus, if some node in the simulation block have changed its state. As block-embedding
is injective, this necessary means that node v have changed its state in t time steps. Finally,
all of this can be done in DLOGSPACE since nF = S(n) = nO(1) and T = nO(1) and thus,
a polynomial amount of calls to each oracle is needed.

Finally, we would like to study the case in which time is not part of the entry of PRED.
In other words, we would like to observe the long-term dynamical behavior of the objective
node. However, in order to preserve complexity properties under simulation, we still need
to have some sort of observation gap as a part of the entry of PRED. This will allow us
to avoid giving misleading answers when the simulating network is performing one step of
simulation. We recall that it could take several time steps for the simulating network in order
to represent one step of the dynamics of the simulated network. In order to manage this sort
of time dilatation phenomenon between simulating and simulated systems, we introduce the
following decision problem:

Problem (Prediction change PREDcF⇤)

Parameters: alphabet Q, a standard representation F⇤ of an automata network family F .

Input:

1. a word wF 2 F⇤ representing an automata network F : QV ! QV with F 2 F
and V = {1, . . . , n}.

2. a node v 2 V

3. an initial configuration x 2 QV .
4. a time gap k 2 1

Question: 9t 2 N : F kt
(x)v 6= xv

Observe that, again, the latter decision problem can be solved in PSPACE by direct
computation of F kt

(x) for different values of t until the orbit reaches an attractor. For each
t, it is possible to very if objective node has eventually changed or not. Now we show that the
computational complexity of the latter problem is consistent under our notion of simulation.

Lemma 2.10 Let (F ,F⇤
) and (H,H⇤

) be two automata network families and T, S : N! N
two polynomial functions such that H⇤ 4T

S F⇤ then, PREDcH⇤ T
L PREDcF⇤.
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Proof. The proof is analogous to short term prediction case. Let (wH , v, x) be an instance
of PREDH⇤ . Again, by the definition of simulation, there exists a DLOGSPACE algo-
rithm which takes wH and produces a word wF 2 LF with F : QnF ! QnF and a block
representation � : QnF ! Qn such that nF = S(n) and F simulates H in time T (n) under
block embedding �. The latter statements means, particularly, that there exists a partition
of blocks Dv ✓ V (F ) = [nF ] for each v 2 V (H) = [n] and a collection of injective patterns,
i.e. patterns pi,q 2 QDi

F such that pi,q = pi,q0 =) q = q0 and also that � �H = F T � �. Let
us define the configuration y 2 QnF

F as yDi = pi,xi , i.e., �(x)Di = yDi . Note, again, that y
is well-defined as the block map is injective. Now we proceed by using the same approach
than before: for each v0 2 Dv we can produce an instance (wF , v0, y) of PREDcF⇤ . Then,
as T and S are polynomials, there exists an oracle DLOGSPACE machine which produces
(wF , v0, y) for each v0 2 Dv and calls for an oracle PREDcF⇤(wF , v0, y). Then, algorithm
verifies whether there is a YES-instance for some v0. By definition of simulation and in-
jectivity of block embedding function we have that this algorithm outputs 1 if and only if
(wH , v, x) 2 PREDH⇤ .

2.4 Universal automata network families
In the next lines, we will give the definition of a universal family of automata networks. In
simple words, a universal family is a set of automata networks which is able to simulate every
other automata network. Of course, in this context, we precise the amount of resources that
some family will need in order to simulate an arbitrary automata network by controlling func-
tions S and T (otherwise we could take families that use an enormous amount of resources as
simulators). In addition, it is important to remark again the essential role of representations.
When we say that some family can simulate every other family, we have to be careful with
the fact that, as we are choosing mainly circuits as a representation for automata networks,
the size of a circuit which simulates certain automata network could be exponential in the
size of the network. Thus, as we are going to use the circuit as a main construction block in
the process of constructing a simulator, this latter observation will have an important role in
the moment to express the properties of the simulator in terms of the simulated network. In
order to avoid this issue, we are very specific in the notion of universal family of automata
networks by adding a constraint in the size of the circuit representing an automata network
in this family.

Building upon our definition of simulation, we can now define a precise notion of universal-
ity. In simple words, a universal family is one that is able to simulate every other automata
network under any circuit encoding. Our definition of simulation ensures that the amount of
resources needed in order to simulate is controlled so that we can deduce precise complexity
results.

Consider some alphabet Q and some polynomial map P : N! N. We denote by UQ,P the
class of all possible functions F : Qn ! Qn for any n 2 N that admits a circuit representation
of size at most P (n). We also denote U⇤

Q,P the language of all possible circuit representations
of size bounded by P of all functions from UQ,P . Finally for any � � 1, denote by BQ,� the
set of automata networks on alphabet Q with a communication graph of degree bounded by
� and by B⇤

Q,� their associated bounded degree representations made of a pair (graph, local
maps) as discussed above.
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Definition 2.11 A family of automata networks (F ,F⇤
) is :

• universal if for any alphabet Q and any polynomial map P it can simulate (UQ,P ,U⇤
Q,P )

in time T and space S where T and S are polynomial functions;
• strongly universal if for any alphabet Q and any degree � � 1 it can simulate (BQ,�,B⇤

Q,�)

in time T ans space S where T and S are linear maps.

Remark 2.12 The link between the size of automata networks and the size of their repre-
sentation is the key in the above definitions. A universal family must simulate any individual
automata network F (just take P large enough so that F 2 UQ,P ). However it is not re-
quired to simulate in polynomial space and time a family of networks whose smallest circuit
representations are super-polynomial. Actually no family admitting polynomial circuit rep-
resentation could simulate such a super-polynomial family in polynomial time and space. In
particular the family BQ,� cannot.

At this point it is clear, by transitivity of simulations, that if some BQ,� happens to be
universal then, any strongly universal family is also universal. It turns out that B{0,1},3 is
universal. We will however delay the proof until Chapter 3 where we prove a more precise
result which happens to be very useful to get universality result in concrete families.

Now, we introduce an important corollary of universality regarding complexity. Roughly
speaking, a universal family exhibits all the complexity in terms of dynamical behavior and
computational complexity of prediction problems. Concerning computational complexity, let
us introduce the following definition.

Definition 2.13 We say that an automata network family F is computationally complex if
the following conditions hold:

1. PREDuF is P-hard.
2. PREDbF is PSPACE-hard.
3. PREDcF is PSPACE-hard.

As a direct consequence of universality, we have the following result where there is no
difference between strong or standard universality.

Corollary 2.14 Let F be a (strongly) universal automata network family. Then, F compu-
tationally complex.

Proof. We show that there exists a bounded degree automata network family which is dy-
namically complex. Then, any universal family will also satisfy each of latter properties as
a direct consequence of the simulation. In fact, we cite a classical result in simulation of
Turing Machines by elementary cellular automata [57] in which it is shown that it is possible
to simulate an arbitrary Turing Machine with n states and m symbols in space O(n + m)

and in twice linear time. This is accomplished by adding two auxiliary states which decou-
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ple interactions and movements of the machine in two different time steps, thus, if machine
performs t-steps of computation, the simulator will need 2t-steps. As a direct consequence
of this, we have that it is possible to define an automata network family which simulates
in linear time and space every linear bounded space Turing Machine and thus, results on
complexity of the prediction problem and on transient length and attractor period follow as
a direct consequence.

In addition, reader interested in simulation results which does not involve cellular au-
tomata but automata networks having a more general graph structure, we provide following
references in which authors have presented alternative simulation schemes by using very
well-known Boolean network families as threshold networks:

1. The family ⇥ of threshold networks over the binary alphabet {0, 1} satisfies that
PREDu⇥ is P-hard [37].

2. The family ⇥ of threshold networks over an alphabet Q = {0, 1} (equipped with block
sequential update schemes, see Chapter 4) satisfies that PREDc⇥ is PSPACE-hard
[40]

We now turn to the dynamical consequences of universality. By definition simulations are
particular embeddings of orbit graphs into larger ones, but the parameters of the simulation
can involve some distortions.

Definition 2.15 Fix a map ⇢ : N! N, we say that the orbit graph GF of F with n nodes
is ⇢-succinct if F can be represented by circuits of size at most ⇢(n). We say that the orbit
graph GH of H with m nodes embeds GF with distortion " : N! N if m  "(n) and there is
T  "(n) such that GF is a subgraph of GHT .

Remark 2.16 The embedding of orbit graphs with distortion obviously modify the relation
between the number of nodes of the automata netwroks and the length of paths or cycles in
the orbit graph. In particular, with polynomial distortion ", if F has n nodes and a cyclic
orbit of length 2

n (hence exponential in the number of nodes) then in H it gives a cyclic orbit
of size O("(n)2n) for up to "(n) nodes, which does not guarantee an exponential length in the
number of nodes in general, but just a super-polynomial one (n 7! 2

n↵ for some 0 < ↵ < 1).

To fix ideas, we give examples of orbit graphs of bounded degree automata networks with
large components corresponding to periodic orbits or transients.

Proposition 2.17 There is an alphabet Q such that for any n � 1 there is an automata
network Fn 2 BQ,2 whose orbit graph GFn

has the following properties:

• It contains a cycle C of length at least 2n.
• There is a complete binary tree T with 2

n leaves connected to some v1 2 C, i.e. for all
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v 2 T there is a path from v to v1.
• There is a node v2 2 C with a directed path of length 2

n pointing towards v2.

Proof. First on a component of states {0, 1, 2} ✓ Q the large cycle C is obtained by the
following ”odometer” behavior of Fn: if xn 2 {0, 1, 2} then Fn(x)n = xn + 1 mod 3, and if
both xi, xi+1 2 {0, 1, 2} for 1  i < n then

Fn(x)i =

8
><

>:

0 if xi = 2,
xi + 1 else if xi+1 = 2,

xi else.

C is realized on {0, 1, 2}n as follows. For x 2 {0, 1, 2}n we denote by Si the sequence
(F t

(x)i)t�0 for any 1  i  n. Clearly Sn is periodic of period 012. Sn�1 is ultimately periodic
of period 200111 (of length 6) and by a straighforward induction we get that S1 is ultimately
periodic of period 20

3·2n�2�1
1
3·2n�2 which is of length 3 · 2n�1.

For the tree T , just add states {a, b} ✓ Q with the following behavior: if x1 2 {a, b} then
Fn(x)1 = 0 and if xi 2 {a, b} and xi�1 = 0 then Fn(x)i = 0 for 1 < i  n. In any other case,
we set F (x)i = xi for x 2 {0, 1, 2, a, b}n and 1  i  n.

Finally, using similar mechanisms as above on additional states c0, c1, c2 2 Q, Fn runs
another odometer whose behavior is isomorphic to the behavior of Fn on {0, 1, 2}n through
i 7! ci, but with the following exception: when x1 = c2 we set Fn(x)1 = 0 and then state 0

propagates from node 1 to node n as in the construction of tree T . We thus get a transient
behavior of length more than 3 · 2n�1 which yields to configuration 0

n, which itself (belongs
or) yields to cycle C.

Now we can now state that any universal family must be dynamically rich in a precise
sense.

Theorem 2.18 Let F be an automata networks family.

• If F is universal then, for any polynomial map ⇢, there is a polynomial distortion "
such that, any ⇢-succinct orbit graph can be embedded into some F 2 F with distortion
". In particular F contains networks with super-polynomial periods and transients.

• If F is strongly universal then it embeds the orbit graph of any bounded-degree automata
network with linear distortion. In particular it contains networks with exponential pe-
riods and transients.

Proof. This is a direct consequence of Lemma 2.6, Definition 2.7 and Proposition 2.17 above.

In a directed graph, we say that a node v belongs to a strongly connected component if
there is a directed path from v to v.
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Corollary 2.19 Any universal family F satisfies the following: there is a constant ↵ with
0 < ↵  1 such that for any m > 0 there is a network F 2 F with n � m nodes such that
there exists some node v belonging to a strongly connected component of the interaction graph
of F and a periodic configuration x such that the trace at v of the orbit of x is of period at
least 2n↵.

Proof. Consider a Boolean network F with n nodes numbered by {1, . . . , n} that does the
following on configuration x: it interprets x1, . . . , xn as a number k written in base 2 where x1

is the most significant bit and define F (x) so that F (x)x1,...,xn
represents number k + 1 mod 2

n

with node 1 holding the most significant bit. F is such that node 1 has trace of exponential
period in some periodic orbit and it is in a strongly connected component since it depends
on itself. Note that F has a circuit representation which is polynomial in n, and take
F 0 2 F of polynomial size in n that simulates F in polynomial time. Taking the notations
of Definition 2.3, we have that each node v 2 Di for each block Di is such that the map
q 2 {0, 1} 7! pi,q(v) is either constant or bijective (because F has a Boolean alphabet, see
Remark 2.4). In the last case, the value of the node v 2 Di completely codes the value of
the corresponding node i in F . Take any v 2 B1 that has this coding property. Since node
1 depends on itself in F , there must be a path from v to some coding node v0 2 D1. Then,
again, as node 1 depends on itself in F , there must be a path from v0 to some coding node
in D1. Iterating this reasoning we must find a cycle, and in particular we have a coding
node in D1 which belongs to some strongly connected component of the interaction graph of
F 0. Since this node is coding the values taken by node 1 of F and since the simulation is in
polynomial time and space, we deduce the super-polynomial lower bound on the period of
its trace for a well-chosen periodic configuration.
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Chapter 3

Gadget complexity: from local to global
behavior

3.1 Putting pieces together: glueing automata networks

In this section we define an operation that allows us to ”glue” two different abstract automata
networks on a common part in order to create another one which, preserve some dynamical
properties in the sense that it allows to glue pseudo-orbits of each network to obtain a pseudo-
orbit of the glued network. One might find useful to think about the common part of the
two networks as a dowel attaching two pieces of wood: each individual network is a piece of
wood with the dowel inserted in it, and the result of the glueing is the attachment of the two
pieces with a single dowel (see Figure 3.1). The idea is that, in this scheme, each node in the
glued network will dynamically behave as same as a node in the first network or as a node
in the second network.

Definition 3.1 Consider F1 : QV1 ! QV1 and F2 : QV2 ! QV2 two automata networks with
V1 disjoint from V2, C a set disjoint from V1 [ V2, '1 : C ! V1 and '2 : C ! V2 two injective
maps and C1, C2 a partition of C in two sets. We define

V 0
= C [ (V1 \ '1(C)) [ (V2 \ '2(C))

and the map ↵ : V 0 ! V1 [ V2 by

↵(v) =

(
v if v 62 C

'i(v) if v 2 Ci, for i = 1, 2.

We then define the glueing of F1 and F2 over C as the automata network F 0
: QV 0 ! QV 0

where

F 0
v =

(
(F1)↵(v) � ⇢1 if ↵(v) 2 V1,

(F2)↵(v) � ⇢2 if ↵(v) 2 V2,
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C

'1(C) '2(C)

V1

V2

'1 '2

C

V 0

Figure 3.1: General scheme of a glueing.

where ⇢i : QV 0 ! QVi is defined by

⇢i(x)v =

(
x'�1

i (v) if v 2 'i(C),

xv else.

When necessary, we will use the notation F 0
= F1

�1
C1
��2

C2
F2 to underline the dependency

of the glueing operation on its parameters.

Given an automata network F : QV ! QV and a set X ✓ V , we say that a sequence
(xt

)0tT of configurations from QV is a X-pseudo-orbit if it respects F as in a normal orbit,
except on X where it can be arbitrary, formally: xt+1

v = F (xt
)v for all v 2 V \X and all

0  t < T . The motivation for Definition 3.1 comes from the following lemma.

Lemma 3.2 (Pseudo-orbits glueing) Taking the notations of Definition 3.1, let
X ✓ V1 \ '1(C) and Y ✓ V2 \ '2(C) be two (possibly empty) sets. If (xt

)0tT is a
X [ '1(C2)-pseudo-orbit for F1 and if (yt)0tT is a Y [ '2(C1)-pseudo-orbit for F2 and
if they verify for all 0  t  T that:

8v 2 C, xt
'1(v) = yt'2(v), (3.1)

then the sequence (zt)0tT of configurations of QV 0 is a X [ Y -pseudo-orbit of F 0, where

ztv =

(
xt
↵(v) if ↵(v) 2 V1,

yt↵(v) if ↵(v) 2 V2.

Proof. Take any v 2 V 0 \ (X [ Y ). Suppose first that ↵(v) 2 V1. By definition of F 0, we
have F 0

(zt)v = (F1)↵(v) � ⇢1(zt) but ⇢1(zt) = xt (using the Equation 3.1 in the hypothesis) so
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+ =

�1(C1)

�1(C2)

�2(C1)

�2(C2)

Figure 3.2: Symmetry breaking in interaction graph after a glueing operation. Arrows in-
dicate influence of a node (source) on another (target), edges without arrow indicates bi-
directional influence. Here C consists in two nodes only.

F 0
(zt)v = F1(xt

)↵(v). Since (xt
) is a X [ '1(C2)-pseudo-orbit and since ↵(v) 62 X [ '1(C2),

we have
F1(x

t
)↵(v) = xt+1

↵(v) = zt+1

v .

We conclude that zt+1

v = F 0
(zt)v. By a similar reasoning, we obtain the same conclusion if

↵(v) 2 V2. We deduce that (zt) is a X [ Y -pseudo-orbit of F 0.

In the case of a CSAN family where the transition rules are determined by a labeled non-
directed graph, the result of a glueing operation has no reason to belong to the family because
the symmetry of the interaction graph might be broken (see Figure 3.2). The following lemma
gives a sufficient condition in graph theoretical terms for glueing within a CSAN family.
Intuitively, it consists in asking that, in each graph, all the connections of one half of the
dowel to the rest of the graph goes through the other half of the dowel. Here the wooden
dowel metaphor is particularly relevant: when considering a single piece of wood with the
dowel inserted in it, one half of the dowel is ”inside” (touches the piece of wood), the other
half is ”outside” (not touching the piece of wood); then, when the two pieces are attached,
each position in the wood assembly is locally either like in one piece of wood with the dowel
inserted in it or like in the other one with the dowel inserted in it.

Lemma 3.3 (Glueing for CSAN) Let (G1,�1, ⇢1) and (G2,�2, ⇢2) be two CSAN from the
same CSAN family F where G1 and G2 are disjoint and F1 and F2 are the associated global
maps. Taking again the notations of Definition 3.1, if the following conditions hold:

• the labeled graphs induced by '1(C) and '2(C) in G1 and G2 are the same (using the
identification '1(v) = '2(v));

• NG1('1(C2)) ✓ '1(C); and
• NG2('2(C1)) ✓ '2(C);

then the glueing F 0
= F1

�1
C1
��2

C2
F2 can be defined as the CSAN on graph G0

= (V 0, E 0
) where

V 0 is as in Definition 3.1 and each node v 2 V 0 has the same label and same labeled neigh-
borhood as either a node of (G1,�1, ⇢1) or a node of (G2,�2, ⇢2). In particular F 0 belongs to
F .
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Proof. Let us define �i : Vi ! V 0 by

�i(v) =

(
��1

i
(v) if v 2 �i(C),

v else.

Fix i = 1 or 2. According to Definition 3.1, if v 2 V 0 is such that ↵(v) 2 Vi then
F 0
v = (Fi)↵(v) � ⇢i. By definition of CSAN, this means that for any x 2 QV 0 we have

F 0
v(x) =  i,↵(v)(x|�(NGi

(↵(v)))) where  i,↵(v) is a map depending only on the labeled neigh-
borhood of ↵(v) in Gi as in Definition 1.5. So the dependencies of v in F 0 are in one-to-one
correspondence through � with the neighborhood of ↵(v) in Gi. The key observation is that
the symmetry of dependencies is preserved, formally for any v0 2 �(NGi(↵(v))):

• either ↵(v0) 2 Vi in which case the dependency of v0 on v (in map  i,↵(v0)) is the same as
the dependency of v on v0 (in map  i,↵(v)), and both are determined by the undirected
labeled edge {↵(v),↵(v0)} of Gi;

• or ↵(v0) 62 Vi and in this case necessarily v 2 Ci and v0 2 C3�i (because
NGi(Vi \ 'i(C)) \ 'i(C) ✓ 'i(Ci) from the hypothesis), so the dependency of v0 on v
is the same as the dependency of v on v0 because the labeled graphs induced by �1(C)

and �2(C) in G1 and G2 are the same.

Concretely, F 0 is a CSAN that can be defined on graph G0
= (V 0, E 0

1
[ E 0

2
[ E(C)) with

E 0
i
= E(Vi \ 'i(C)) [ {(u, vi) : u 2 V (Ci), vi 2 (Vi \ 'i(C)), ('i(u), vi) 2 Ei},

and labels as follows:

• on E(C) as in both G1 and G2 (which corresponds to the image of maps �1 and �2 on
C);

• on E(Vi \ 'i(C)) as in Gi;
• for each u 2 V (Ci), vi 2 (Vi \ 'i(C)) such that ('i(u), vi) 2 Ei, edge (u, vi) has same

label as ('i(u), vi);

Since any CSAN families (Definition 1.5) is entirely based on local constraints on labels
(vertex label plus set of labels of the incident edges), we deduce that F 0 is in F .

3.2 Computing on automata networks

3.2.1 G-networks

In this subsection, we formalize the idea of building large automata networks from small
building blocks. By building blocks, we mean any finite maps with some number of inputs
and some number of outputs that all share the same alphabet. It can be helpful to think
about Boolean automata networks built from Boolean gates. However, in our formalism, fan
in and fan out are not free (they are allowed if available as a building block). These details
are important since neither information duplication, neither synchronization are granted in
our context of embedding computations into dynamical systems.
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Figure 3.3: Example of a glueing of two compatibles CSAN. The labeling in nodes of G1, G2

and G0 shows equalities between local � maps of these three CSAN.

Let Q be a fixed alphabet and G be any set of maps of type g : Qi(g) ! Qo(g) for some
i(g), o(g) 2 N. We say that g is reducible if it can be written as a disjoint union of two
gates, and irreducible otherwise. In other terms, if G is the (bipartite) dependency graph
of g describing on which inputs effectively depends each output, then g is irreducible if G is
weakly connected.

Intuitively, a G-network is an automata network obtained by wiring outputs to inputs of
a number of gates from G. Generally speaking, each gate has some input and output wires.
Each of these wires is equipped with some internal state and each output wire computes its
next state according to the local function associated to its gate. In addition, we assume that
the total amount of output and input wires is the same, so each output wire is also the input
wire of some gate. To simplify some later results, we add the technical condition that no
output of a gate can be wired to one of its inputs (no self-loop condition).

Definition 3.4 A G-network is an automata network F : QV ! QV with set of nodes V
associated to a collection of gates g1, . . . , gn 2 G with the following properties. Let

I = {(j, k) : 1  j  n and 1  k  i(gj)} and
O = {(j, k) : 1  j  n and 1  k  o(gj)}

be respectively the sets of inputs and outputs of the collection of gates (gj)1jn. We require
|V | = |I| = |O| and the existence of two bijective maps ↵ : I ! V and � : V ! O with the
condition that there is no (j, k) 2 I such that �(↵(j, k)) = (j, k0

) for some k0 (no self-loop
condition). For v 2 V with �(v) = (j, k), let Iv = {↵(j, 1), . . . ,↵(j, i(gj))} and denote by gv
the map: x 2 QIv 7! gj(x̃)k where x̃ 2 Qi(gj) is defined by x̃k = x↵(j,k). Then F is defined as
follows:

F (x)v = gv(xIv).
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g1

(1, 1)

(1, 1) (1, 2)

�A

g2

(2, 1)

(2, 1) (2, 2)

�B �C

g1

g2

AB C

AB C

(2,1) (1,1)(1,1) (2,1) (1,2) (2,2)

8
><

>:

�(x)A = �A(xB, xC)

�(x)B = �B(xA)

�(x)C = �C(xA)

Figure 3.4: (Left panel) A set of maps G over alphabet Q. (Central panel) An intuitive
representation of input/output connections to make a G-network. (Right panel) The corre-
sponding formal G-network � : Q3 ! Q3 together with the global map associated to it. The
bijections ↵ and � from Definition 3.4 are represented in blue and red (respectively).

Remark 3.5 Once G is fixed, there is a bound on the degree of dependency graphs of all
G-networks. Thus, it is convenient to represent G-networks by the standard representation
of bounded degree automata networks (as a pair of a graph and a list of local update maps).
Another representation choice following strictly Definition 3.4 consists in giving a list of
gates g1, . . . , gk 2 G, fixing V = {1, . . . , n} and give the two bijective maps ↵ : I ! V and
� : V ! O describing the connections between gates (maps are given as a simple list of pairs
source/image). One can check that these two representations are DLOGSPACE equivalent
when the gates of G are irreducible: we can construct the interaction graph and the local
maps from the list of gates and maps ↵ and � in DLOGSPACE (the incoming neighborhood
of a node v, Iv, and its local map gv are easy to compute as detailed in Definition 3.4);
reciprocally, given the interaction graph G and the list of local maps (gv), one can recover in
DLOGSPACE the list of gates and their connections as follows:

• for v from 1 to n do:
– gather the (finite) incoming neighborhood N�

(v) of v then the (finite) outgoing
neighborhood N+

(N�
(v)) and iterate this process until it converges (in finite time)

to a set Iv of inputs and Ov of outputs with v 2 Ov;
– check that all v0 2 Ov are such that v0 � v otherwise jump to next v in the loop

(this guaranties that each gate is generated only once);
– since the considered gates are irreducible, Iv and Ov actually correspond to input

and output sets of a gate g 2 G that we can recover by finite checks from the local
maps of nodes in Ov;

– output gate g and the pairs source/image to describe ↵ and � for nodes in Iv and
Ov respectively.

For example, in Figure 3.4, right panel, the latter algorithm executes the following instruc-
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tions:

• For v = A :

– Compute: N�
({A}) = {B,C} 7! N+

({B,C}) = {A} 7! N+
({A}) = {B,C}.

– Define IA = {B,C} and OA = {A}.
– Check that for all v0 2 OA we have v0 � v.

– Define g1 with two inputs labeled as {B,C} and one output labeled by {A} where
g1 ⌘ �A.

• For v = B :

– Compute: N�
({B}) = {A} 7! N+

({A}) = {B,C} 7! N+
({B,C}) = {A}.

– Define IB = {A} and OB = {B,C}.
– Check that for all v0 2 OA we have v0 � v.

– Define g2 with one input labeled as {A} and two outputs labeled by {B,C} where
g2 ⌘ �B.

• For v = C :

– Compute: N�
({C}) = {A} 7! N+

({A}) = {B,C} 7! N+
({B,C}) = {A}.

– Define IC = {A} and OC = {B,C}.
– Check that for all v0 2 OA we have v0 � v. 7! SKIP because B was visited before.

• Return (g1, g2) and its labels.

In the sequel we denote �(G) the family of all posible G-networks associated to their
bounded degree representation.

3.2.2 G-gadgets and simulation of G-networks

Now we give a precise meaning to the intuitively simple fact that, if a family of automata
networks can coherently simulate a set of small building blocks (gates from G), it should be
able to simulate any automata network that can be built out of them (G-networks).

The key idea here is that gates from G will be represented by networks of the family
called G-gadgets, and the wiring between gates to obtain a G-network will translate into
glueing between G-gadgets. Following this idea there are two main conditions for the family
to simulate any G-network:

• The glueing of gadgets should be freely composable inside the family to allow the
building of any G-network.

• The gadgets corresponding to gates from G should correctly and coherently simulate
the functional relation between inputs and outputs given by their corresponding gate.

For clarity, we separate these conditions in two definitions. Concerning glueing, as we want
to mimic the wiring of gates which connects inputs to outputs, several copies of particular
subgraphs will be identified in each gadget, some of them corresponding to input, and the
other ones to outputs. Then, the only glueing operations we will use are those where some
output of a gadget A are glued on input dowels of a gadget B and some inputs of A are glued
on output of B.

45



In order to accomplish that, we introduce in the following section a general framework on
glueing gadgets.

3.2.3 Gadget glueing

Now we focus in developing a definition for gadget glueing. Recall first that Definition 3.1
relies on the identification of a common dowel in the two networks to be glued. Here, as
we want to mimic the wiring of gates which connects inputs to outputs, several copies of
an interface dowel will be identified in each gadget, some of them corresponding to input,
and the other ones to outputs. In this context, the only glueing operations we will use are
those where some output dowels of a gadget A are glued on input dowels of a gadget B and
some input dowels of A are glued on output dowels of B. Then, the global dowel used to
formally apply Definition 3.1 is a disjoint union of the selected input/output interface dowels
(see Figure 3.5).

Definition 3.6 (Glueing interface and gadgets) Let C = Ci [ Co be a fixed set parti-
tioned into two sets. A gadget with glueing interface C = Ci [ Co is an automata network
F : QVF ! QVF together with two collections of injective maps �i

F,k : C ! VF for k 2 I(F )

and �o
F,k : C ! VF for k 2 O(F ) whose images in VF are pairwise disjoint and where I(F )

and O(F ) are disjoint sets which might be empty.

Given two disjoint gadgets (F, (�i

F,k), (�
o
F,k)) and (G, (�i

G,k), (�
o
G,k)) with same alphabet and

interface C = Ci [ Co, a gadget glueing is a glueing of the form H = F �F

CF
��G

CG
G defined as

follows:

• a choice of a set A of inputs from F and outputs from G given by injective maps
�F : A! I(F ) and �G : A! O(G);

• a choice of a set B of outputs from F and inputs from G given by injective maps
⌧F : B ! O(F ) and ⌧G : B ! I(G) (the set B is disjoint from A);

• CF is a disjoint union of |A| copies of Ci, and |B| copies of Co: CF = A⇥ Ci [B ⇥ Co;
• CG is a disjoint union of |A| copies of Co, and |B| copies of Ci: CG = A⇥ Co [B ⇥ Ci;
• �F : CF [ CG ! VF is such that �F (a, c) = �i

F,�F (a)(c) for a 2 A and c 2 C, and
�F (b, c) = �o

F,⌧F (b)(c) for b 2 B and c 2 C; and
• �G : CF [ CG ! VG is such that �G(a, c) = �o

G,�G(a)(c) for a 2 A and c 2 C, and
�G(b, c) = �i

G,⌧G(b)(c) for b 2 B and c 2 C.

The resulting network H is a gadget with same alphabet and same interface with
I(H) = I(F ) \ �F (A) [ I(G) \ ⌧G(B) and O(H) = O(F ) \ ⌧F (B) [O(F ) \ �G(A) and �i

H,k is
�i

F,k when k 2 I(F ) and �i

G,k when k 2 I(G), and �o
H,k is �o

F,k when k 2 O(F ) and �o
G,k when

k 2 O(G).

Given a set of gadgets X with same alphabet and interface, its closure by gadget glueing
is the closure of X by the following operations:

• add a disjoint copy of some gadget from the current set;
• add the disjoint union of two gadgets from the current set; and
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Figure 3.5: Gadget glueing as in Definition 3.6. (Left panel) Two gadgets with interface
C = Ci [ Co where Ci part in each copy of the interface dowel is in red and Co part in blue.
The gadget glueing is done with input �F (A) on output �G(A) (here A is a singleton) and
output ⌧F (B) on input ⌧G(B) (B is also a singleton). (Top right panel) A representation of
the global glueing process where nodes in green are those in the copy of CF in F or in the
copy CG in G; dotted links show the bijection between the embeddings of C = CF [ CG into
VF and VG via maps �F and �G. (Bottom right panel) The resulting gadget with the same
interface C = Ci [ Co as the two initial gadgets.

• add a gadget glueing of two gadgets from the current set.

Remark 3.7 The representation of the result of a gadget glueing can be easily computed
from the two gadgets F and G and the choices of inputs/outputs given by maps �F , �G, ⌧F
and ⌧G: precisely, by definition of glueing (Definition 3.1) the local map of each node of the
result automata network is either a local map of F (when in VF \�F (CG) or in CF ) or a local
map of G (when in VG \ �G(CF ) or in CG). Note also that the closure by gadget glueing of
a finite set of gadgets X is always a set of automata networks of bounded degree.

Lemma 3.3 gives sufficient conditions on a set of gadgets to have its closure by gadget
glueing contained in a CSAN family.

Lemma 3.8 Fix some alphabet Q and some glueing interface C = Ci [ Co and some CSAN
family F . Let (Gn,�n, ⇢n) for n 2 S be a set of CSAN belonging to F with associated global
maps Fn. Let �i

Fn,k for k 2 I(Fn) and �o
Fn,k for k 2 O(Fn) be maps as in Definition 3.6 so

that (Fn, (�i

Fn,k), (�
o
Fn,k)) is a gadget with interface C = Ci [ Co. Denote by X the set of such

gadgets. If the following conditions hold:

• the labeled graphs induced by �i

Fn,k(C) and by �o
Fn,k(C) in Gn are all the same for all n
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and k with the identification of vertices given by the �⇤
⇤,⇤ maps;

• NGn
(�i

Fn,k(Co)) ✓ �i

Fn,k(C) for all n 2 S and all k 2 I(Fn); and
• NGn

(�o
Fn,k(Ci)) ✓ �o

Fn,k(C) for all n 2 S and all k 2 O(Fn);

then the closure by gadget glueing of X is included in F .

Proof. Consider first the gadget glueing H of two gadgets Fn and Fn0 from X. Following
Definition 3.6, the global dowel CFn

[ CF
n0

used in such a glueing is a disjoint union of copies
of C, and its embedding �Fn

in Gn (resp. �F
n0

in Gn0) is a disjoint union of maps �⇤
Fn,⇤ (resp.

�⇤
F
n0 ,⇤). Therefore the three conditions of Lemma 3.3 follow from the three conditions of the

hypothesis on gadgets from X and we deduce that H belongs to family F . Moreover, it is
clear that gadget H then also verifies the three conditions from the hypothesis, and adding
a copy of any gadget to the set also verifies the conditions. We deduce that the closure by
gadget glueing of X is included in F .

The second key aspect to have a coherent set X of G-gadgets is of dynamical nature:
there must exist a collection of pseudo-orbits on each gadget satisfying suitable conditions to
permit application of Lemma 3.2 for any gadget glueing in the closure of X; moreover, these
pseudo-orbits must simulate via an appropriate coding the input/output relations of each
gate g 2 G in the corresponding gadget. To obtain this, we rely on a standard set of traces
on the glueing interface that must be respected on any copy of it in any gadget. Generally
speaking, the interface dowels play a similar role that wires in the case of the construction
of G-networks.

Definition 3.9 (Coherent G-gadgets) Let G be any set of finite maps over alphabet Q and
let F be any set of abstract automata networks over alphabet QF . We say F has coherent
G-gadgets if there exist:

• a unique glueing interface C = Ci [ Co;
• a set X of gadgets (Fg, (�i

g,k)1ki(g), (�o
g,k)1ko(g)) for each g 2 G where

Fg : Q
Vg

F ! QVg

F 2 F and sets Vg and C are pairwise disjoint, and the closure of X
by gadget glueing is contained in F ,

• state configurations sq 2 QC
F for each q 2 Q such that q 7! sq is an injective map;

• context configurations cg 2 QV̂g

F for each g 2 G where V̂g = Vg \
�
[k�i

g,k(C) [k �o
g,k(C)

�
;

• a time constant T ,
• a standard trace ⌧q,q0 2 (QC

F)
{0,...,T} for each pair q, q0 2 Q such that ⌧q,q0(0) = sq and

⌧q,q0(T ) = sq0; and
• for each g 2 G and for any uples of states qi,1, . . . , qi,i(g) 2 Q and qo,1, . . . , qo,o(g) 2 Q and
q0
i,1, . . . , q

0
i,i(g) 2 Q and q0o,1, . . . , q

0
o,o(g) 2 Q such that g(qi,1, . . . , qi,i(g)) = (q0o,1, . . . , q

0
o,o(g)),

a Pg-pseudo-orbit (xt
)0tT of Fg with Pg =

S
1ki(g) �

i

g,k(Co) [
S

1ko(g) �
o
g,k(Ci) and

with:
– for each 1  k  i(g), the trace t 7! xt

�i
g,k

(C)
is exactly ⌧qi,k,q0i,k ;
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– for each 1  k  o(g), the trace t 7! xt
�o

g,k
(C)

is exactly ⌧qo,k,q0o,k ; and

– x0

V̂g

= xT
V̂g

= cg.

Lemma 3.10 Let G be a set of irreducible gates. If an abstract automata network family
F has coherent G-gadgets then it contains a subfamily of bounded degree networks with the
canonical bounded degree representation (F0,F⇤

0
) that simulates �(G) in time T and space S

where T is a constant map and S is bounded by a linear map.

Proof. We take the notations of Definition 3.9. To any G-network F with set of nodes V
given as in Definition 3.4 by a list of gates g1, . . . , gk 2 G and maps ↵ and � (see Remark 3.5)
we associate an automata network from F as follows. First, let (Fgi)1ik be the gadgets
corresponding to gates gi and suppose they are all disjoint (by taking disjoint copies when
necessary). Then, start from the gadget F1 = Fg1 . For any 1  i < k we define Fi+1 as the
gadget glueing of Fi and Fgi+1 on the input/outputs as prescribed by maps ↵ and �. More
precisely, the gadget glueing selects the set of inputs (j, k) with 1  j  i and 1  k  i(gj)
such that �(↵(j, k)) = (i + 1, k0

) for some 1  k0  o(gi+1) and glue them on their correspond-
ing output (i + 1, k0

) of gi+1 (precisely, through maps �Fi and �Fgi+1
of domain Ai+1 playing

the role of maps �F and �G of Definition 3.6). Symmetrically, selects the inputs (i + 1, k)
with 1  k  i(gi+1) such that �(↵(i + 1, k)) = (j, k0

) for some 1  j  i and 1  k0  o(gj)
and glue their corresponding output (j, k0

) (precisely, through maps ⌧Fgi+1
and ⌧Fi of do-

main Bi+1 playing the role of maps ⌧G and ⌧F from Definition 3.6). If both of these sets of
inputs/outputs are empty, the gadget glueing is replaced by a simple disjoint union.

The final gadget Fk has no input and no output, and a representation of it as a pair graph
and local maps can be constructed in DLOGSPACE. Indeed, the local map of each of its
nodes is independent of the glueing sequence above and completely determined by the gadget
Fgj it belongs to and whether the node is inside some input or some output dowel or not (see
Reamrk 3.7).

It now remains to show that the automata network Fk simulates F . To fix notations, let
Vk be the set of nodes of Fk. For each v 2 V , define Dv ✓ Vk as the copy of the dowel that
corresponds to node v of F , i.e. that was produced in the gadget glueing of Fi with Fgi+1

for i such that �(v) = (i + 1, k0
) for some 1  k0  o(gi+1) (or symmetrically ↵(i + 1, k) = v

for some 1  k  i(gj)). More precisely, if a 2 Ai+1 is such that �Fgi+1
(a) = (i + 1, k0

) then
Dv = {a}⇥C (symmetrically if b 2 Bi+1 is such that ⌧Fgi+1

(b) = (i + 1, k) then Dv = {b}⇥C).
Also denote by ⇢v : Dv ! C the map such that ⇢v(a, c) = c for all c 2 C (symmetrically,
⇢v(b, c) = c). With these notations, we have

Vk =

[

v2V

Dv [
[

1ik

V̂gi .

Let us define the block embedding � : QV ! QVk

F as follows:

�(x)(v0) =

(
sxv

(⇢v(v0)) if v0 2 Dv,

cgi(v
0
) if v0 2 V̂gi ,
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for any x 2 QV and any v0 2 Vk, where sq for q 2 Q are the state configurations and cg
for g 2 G are the context configurations granted by Definition 3.9. Note that � is injective
because the map q 7! sq is injective. By inductive applications of Lemma 3.2, the Pgi-pseudo-
orbits of each Fgi from Definition 3.9 can be glued together to form valid orbits of Fk that
start from any configuration �(x) with x 2 QV and end after T steps in a configuration �(y)
for some y 2 QV which verifies y = F (x). In other words, we have the following equality on
QV :

� � F = F T
k � �.

Note that T is a constant and that the size of Vk is at most linear in the size of V .

Remark 3.11 Note that in Lemma 3.10 above, the block embedding that is constructed
can be viewed as a collection of blocks of bounded size that encode all the information plus
a context (see Remark 2.4).

In the case of CSAN families and using Remark 2.1 we have a simpler formulation of the
Lemma.

Corollary 3.12 If G in a set of irreducible gates and F a CSAN family which has coherent
G-gadgets then F simulates �(G) in time T and space S where T is a constant map and S is
bounded by a linear map.

3.3 Some useful families of G-networks: Gm-networks and
Gm,2-networks

It is folklore knowledge that monotonic Boolean networks (with AND/OR local maps) can
simulate any other network. Let i, o 2 {1, 2} be two numbers. We define the functions
OR

i,o,ANDi,o
: {0, 1}i ! {0, 1}o where OR

i,o
(x)k = max(x) and AND

i,o
(x)k = min(x) for

1  k  o and x 2 {0, 1}i. Observe that in the case in which i = o = 1 we have AND(x) =
OR(x) = Id(x) = x and also in the case i = 1 and o = 2 we have that AND(x) = OR(x) =
(x, x). We call that latter gate a copy gate an we denote it as COPY. We define the set Gm =

{ANDi,o,OR
i,o}i,o2{1,2}. From now on, and when the context is clear, we will note AND2,1 and

OR
2,1 as AND and OR. In addition, we define the set Gm,2 in which we fix i = o = 2. Here

we make the latter statement regarding the simulation capabilities of monotonic Boolean
networks precise, within our formalism: Gm-networks are universal. Note that there is more
work than the classical circuit transformations involving monotonic gates [29] because we
need to obtain a simulation of any automata network via block embedding. In particular
we need to build monotonic circuitry that is synchronized and reusable (i.e. that can be
reinitialized to a standard state before starting a computation on a new input). Moreover,
our definitions require a production of Gm-networks in DLOGSPACE. The main ingredient
of the proof of the following theorem is an efficient circuit transformation due to Greenlaw,
Hoover and Ruzzo in [45, Theorems 6.2.3 to 6.2.5]
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Theorem 3.13 The family �(Gm) of all Gm-networks is strongly universal.

Proof. Let Q an arbitrary alphabet and F : Qn ! Qn an arbitrary automata network
on alphabet Q such that the communication graph of F has maximum degree �. Let C :

{0, 1}n ! {0, 1}n be a constant depth circuit representing F . Let us assume that C has only
OR, AND and NOT gates. We can also assume that C is synchronous because, as its depth
does not depend on the size of the circuit, one can always add fanin one and fanout one OR
gates in order to modify layer structure. We are going to use a very similar transformation
to the one proposed in [45, Theorems 6.2.3] in order to efficiently construct an automata
network in �(Gm). In fact, we are going to duplicate the original circuit by considering the
coding x 2 {0, 1} ! (x, 1 � x) 2 {0, 1}2. Roughly speaking, each gate will have a positive
part (which is essentially a copy) and a negative part which produces the negation of the
original output by using De Morgan’s laws. More precisely, we are going to replace each gate
in the network by the gadgets shown in Figure 3.6. The main idea is that one can represent
the function x ^ y by the coding: (x ^ y, x _ y) and x _ y by the coding: (x _ y, x ^ y).
In addition, each time there is a NOT gate, we replace it by a fanin 1 fanout 1 OR gadget
and we connect positive outputs to negative inputs in the next layer and negative outputs
to positive inputs as it is shown in Figure 3.7. We call C⇤ the circuit built by the latter
transformations. Observe that C⇤ is such that it holds on {0, 1}i:

� � C = C⇤ � �

where � : {0, 1}n ! {0, 1}2n is defined for any n by �(x)2j = xj and �(x)2j+1 = ¬xj.

Now consider the coding map mQ : Q! {0, 1}k and let n = k|V |. Build from C⇤ the
Gm-network F ⇤

: {0, 1}V + ! {0, 1}V + that corresponds to it (gate by gate) and where the
output j is wired to input j for all 1  j  2n. Define a block embedding of QV into {0, 1}V +

as follows (see Remark 2.4):

• for each v 2 V let Dv be the set of input nodes in F ⇤ that code v (via mQ and then
double railed logic);

• let C = V + \
S

v Dv be the remaining context block;
• let pv,q 2 {0, 1}Dv be the pattern coding node v in state q;
• let pC = 0

C be the context pattern; and
• let � : QV ! {0, 1}V + be the associated block embedding map.

We claim that F ⇤ simulates F via block embedding � with time constant equal to the depth
of C⇤ plus 1. Indeed, F ⇤ can be seen as a directed cycle of N layers where layer Li+1 mod N

only depends on layer i. The block embedding is such that for any configuration x 2 QV ,
�(x) is 0 on each layer except the layer containing the inputs. On configurations where a
single layer Li is non-zero, F ⇤ will produce a configuration where the only non-zero layer is
Li+1 mod N . From there, it follows by construction of F ⇤ that � � F (x) = (F ⇤

)
N � �(x) for all

x 2 QV .

The fact that the construction can be obtained in DLOGSPACE follows from the same
reasoning used to show in [45, Theorem 6.2.3]. In fact, the authors show that the reduction
is actually better since they show it is NC

1.
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Figure 3.6: AND and OR gadgets for simulating AND/OR gates with fanin and fanout 2.
For other values of fanin and fanout gadgets are the same but considering different number
of inputs/outputs.
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Figure 3.7: NOT gadget wiring for circuit simulation using gates from Gm. In this case a
NOT gate is connected to an OR gate in the original circuit. Copies of the NOT gate in the
circuit performing simulation are connected to the copies of the OR gate switched: positive
part is connected to negative part of the OR gate and viceversa.
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Theorem 3.14 The family �(Gm,2) simulates in constant time and linear space the family
�(Gm), i.e. there exist a constant function T : N! N and a linear function S : N! N such
that �(Gm) 4T

S �(Gm,2)

Proof. Let F : QV ! QV be an arbitrary Gm-network coded by its standard representation
defined by a list of gates g1, . . . , gn and two functions ↵ an � mapping inputs to nodes in
F and nodes in F to outputs respectively. We are going to construct in DLOGSPACE a
Gm,2-network F ⇤ that simulates F in time T = O(1) and space S = O(|V |). To this end,
we are going to replace each gate gk by a small gadget. More precisely, we are going to
introduce the following coding function: x 2 {0, 1} ! (x, x, 0) 2 {0, 1}3. We are going
to define gadgets for each gate. Let us take k 2 {1, . . . , n} and call g⇤k the corresponding
gadget associated to gk. Let us that suppose gk is an OR gate and that it has fanin 2 and
fanout 1 then, we define g⇤ : {0, 1}6 ! {0, 1}6 as a function that for each input of the form
(x, x, y, y, 0, 0) produces the output g⇤((x, x, y, y, 0, 0)) = (x _ y, x _ y, 0, 0, 0, 0). The case
fanin 1 and fanout 1 is given by g⇤((x, x, 0, 0, 0, 0)) = (x, x, 0, 0, 0, 0), the case fanin 2 and
fanout 2 is given by g⇤((x, x, y, y, 0, 0)) = (x _ y, x _ y, x _ y, x _ y, 0, 0) and finally case
fanin 1 and fanout 2 is given by the same latter function but on input (x, x, 0, 0, 0, 0). The
AND case is completely analogous. We are going to implement the previous functions as
small (constant depth) synchronized circuits that we call block gadgets. More precisely, we
are going to identify functions g⇤ with its correspondent block gadget. The detail on the
construction of these circuits that define latter functions are provided in Figures 3.8, 3.9 and
3.10.

Once we have defined the structure of block gadgets, we have to manage connections
between them and also manage the fixed 0 inputs that we have added in addition to the
zeros that are produced by the blocks as outputs. In order to do that, let us assume that
gates gi and gj are connected. Note from the discussion on coding above that AND/OR
gadgets have between 2 and 4 inputs and outputs fixed to 0. In particular, as it is shown in
Figures 3.8, 3.9 and 3.10, all the block gadgets have the same amount of zeros in the input
and in the output with the exception of the fanin 1 fanout 2 gates and the fanin 2 fanout
1 gates. However, since G-networks are closed systems (the amount of inputs must be the
same that the amount of outputs) we have that, for each fanin 1 fanout 2 gate, there must
be a fanin 2 fanout 1 gate and vice versa (otherwise there would be more input than outputs
or more outputs than inputs). In other words, there is a bijection between the set of fanin 1

fanout 2 gates and the set of fanin 2 fanout 1. Observe that fanin 2 fanout 1 gates consume 2

zeros in input but produce 4 zeros in output while fanin 1 fanout 2 gates consume 4 in input
and produce 2 zeros in output (see Figures 3.8 and 3.9). So, between g⇤

i
and g⇤j we have to

distinct two cases: a) if both gates have the same number of inputs and outputs, connections
are managed in the obvious way i.e., outputs corresponding to the computation performed
by original gates are assigned between g⇤

i
and g⇤j and each gate uses the same zeros that they

produce to feed its inputs. b) if g⇤
i

or g⇤j have more inputs than outputs or vice versa, we
have to manage the extra zeros (needed or produced). Without loss of generality, we assume
that g⇤

i
is fanin 2 fanout 1. Then, by the latter observation, g⇤

i
is in bijection with another

gate gk and thus, a gadget block g⇤k with fanin 1 and fanout 2. We simply connect extra zeros
produced by g⇤

i
to block g⇤k and we do the same that we did in the previous case in order to

manage connections.

53



Note that F ⇤ can be built in DLOGSPACE since it suffices to read the standard repre-
sentation of F and produce associated block gadgets which have constant size. In addition
we have that previous encoding g ! g⇤ induces a block map � : {0, 1}V ! {0, 1}V + where
|V +| = O(|V |) and that � � F = F ⇤T � � where T = 6 is the size of each gadget block in F ⇤.
We conclude that F ⇤ 2 �(Gm,2) simulates F in space |V +| = O(|V |) and time T = 6 and
thus, �(Gm) 4T

S �(Gm,2) where T is constant and S is a linear function.

Corollary 3.15 The family �(Gm,2) is strongly universal.

Proof. The result comes directly from Theorem 3.13 (�(Gm) is strongly universal) and The-
orem 3.14 (�(Gm) 4T

S �(Gm,2) where T is constant and S is a linear function).

Now we show a result on universality of �(Gm) which is essentially a consequence of [45,
Theorem 6.2.5]. The latter result starts with alternated monotonic circuit which has only
fanin 2 and fanout 2 gates (previous results in the same reference show that one can always
reduce to this case starting from an arbitrary circuit) and gives an NC

1 construction of a
synchronous alternating circuit preserving the previous property on the fanin and fanout of
each gate. The main remark in this context is that the construction uses quadratic space in
the number of gates of the circuit given in input, so we cannot show strong universality but
only universality with this approach.

Theorem 3.16 The family �(Gm) of all Gm-networks is universal.

Proof. Let F : Qk ! Qk be some arbitrary network with a circuit representation C :

{0, 1}n ! {0, 1}n such that n = kO(1). By [45, Theorem 6.2.5] we can assume that there
exists a circuit C 0

: {0, 1}n0 ! {0, 1}n0 where n0
= O(n2

) such that C 0 is synchronous
alternated and monotonic. In addition, every gate in C 0 has fanin and fanout 2. We remark
that the latter reference does not only provide the standard encoding of C 0 but also gives us
a DLOGSPACE algorithm (it is actually NC

1) which takes the standard representation of
C : {0, 1}n ! {0, 1}n and produces C 0. We are going to slightly modify the latter algorithm
in order to construct not only a circuit but a Gm-network. In fact, the only critical point is to
manage the identification between outputs and inputs. This is not direct from the result by
Ruzzo et al. as their algorithm involves duplication of inputs and also adding constant inputs.
In order to manage this, it suffices to modify their construction in order to mark original,
copies and constant inputs. Then, as Gm includes COPY gates and also AND/OR gates
with fanout 1, one can always produce copies of certain input if we need more, or erase extra
copies of outputs or constants produced at output by adding a small circuit of O(log(n)) depth
consisting in a several fanin 2 fanout 1 gates forming a tree. Same idea applies for constant
inputs. Formally, at the end of the algorithm, the DLOGSPACE algorithm can read extra
information regarding copies and constant inputs, and then can construct a O(log(n)) depth
circuit that produces a coherent encoding for inputs and outputs. This latter construction
defines a Gm-network G : {0, 1}n00 ! {0, 1}n00 and an encoding � : Qn ! {0, 1}n00 where
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Figure 3.8: Block gadgets for simulating fanin 2 fanout 1 AND/OR gates using only gates in
Gm,2. Squared zeros represent the amount of zeros that can be used as inputs for the same
block. Circled zeros correspond to extra zeros that need to be received from a Fanin 1 Fanout
2 gate.
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Figure 3.9: Block gadgets for simulating fanin 1 fanout 2 and fanin 1 fanout 1 AND/OR
gates using only gates in Gm,2. Squared zeros represent the amount of zeros that can be used
as inputs for the same block. Circled zeros correspond to extra zeros that need to be received
from a fanin 2 fanout 1 gate.
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in Gm,2. Squared zeros represent the amount of zeros that can be used as inputs for the same
block.

57



n00
= O(n2

) such that � � F = GT � � where T = O(depth(C’) + log(n)). Thus, Gm is
universal.

We present now the following direct corollary.

Corollary 3.17 Let F be a strongly universal automata network family. Then, F is univer-
sal.

Proof. It suffices to exhibit a G-network family (G-networks are bounded degree networks)
which is strongly universal and universal at the same time. By Theorem 3.16 we take G = Gm

and thus, the corollary holds.

Corollary 3.18 Let G be either Gm or Gm,2. Any family F that has coherent G-gadgets
contains a subfamily of bounded degree networks with bounded degree representation which is
(strongly) universal. Any CSAN family with coherent G-gadgets is (strongly) universal.

3.3.1 Closure and synchronous closure

Although monotonic gates are sometimes easier to realize in concrete dynamical systems,
which make the above results useful, there is nothing special about them to achieve uni-
versality: any set of gates that are expressive enough for Boolean functions yields the same
universality result. Given a set of maps G over alphabet Q, we define its closure G as the
set of maps that are computed by circuits that can be built using only gates from G. More
precisely, G is the closure of G by composition, i.e. forming from maps g1 : QI1 ! QO1 and
g2 : QI2 ! QO2 (with I1, I2, O1, O2 disjoint) a composition g by plugging a subset of outputs
O ✓ O2 of g1 into a subset of inputs I ✓ I2 of g2, thus obtaining g : QI1[I2\I ! QO1\O[O2

with

g(x)o =

(
g1(xI1)o if o 2 O1 \O,

g2(y)o if o 2 O2,

where yj = xj for j 2 I2 \ I and yj = g1(xI1)⇡(j), where ⇡ : I ! O is the chosen bijection
between I and O (the wiring of outputs of g1 to inputs of g2). A composition is synchronous
if either I = ; or I = I2. We then define the synchronous closure G2 as the closure by
synchronous composition. The synchronous composition correspond to synchronous circuits
with gates in G. A G-circuit is a sequence of compositions starting from elements of G. It is
synchronous if the compositions are synchronous. The depth of a G-circuit is the maximal
length of a path from an input to an output. In the case of a synchronous circuits, all such
paths are of equal length.

Proposition 3.19 Fix some alphabet Q and consider two finite sets of maps G and G 0 over
alphabet Q such that:

• either G contains the identity map Q! Q and is such that G contains G 0;
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Figure 3.11: (Left panel) Non-synchronous composition and (Right panel) synchronous com-
position.

• or there is an integer k such that G2

k, the set of elements of G2 that can be realized by
a circuit of depth k contains G 0.

Then, any family F that has coherent G-gadgets has coherent G 0-gadgets.

Proof. Suppose first that the first item holds. Since G contains G 0 there must exist a circuit
made of gates from G that produces any given element g 2 G 0. Then one wants to apply
gadget glueing on gadgets from G to mimic the composition and thus obtain a gadget corre-
sponding to g. However this does not work as simply because propagation delay is a priori
not respected at each gate in the circuit composition yielding g since layers in the circuit
could be connected in a way such that the information arrives at different times to each
layer. However, since G contains the identity map, there is a corresponding gadget in the
family that actually implements a delay line, allowing us to synchronize the evaluation of
the circuit. This additional gadget solves the problem: it is straightforward to transform by
padding with identity gates all circuits with gates in G into synchronous ones. Moreover, by
padding again, we can assume that the finite set of such circuits computing elements of Gm

are all of same depth.Then, this set of circuits can be trasformed into coherent Gm-gadgets
by iterating gadget glueing and using Lemma 3.2.

If the second item holds the situation is actually simpler because the synchronous closure
contains only synchronous circuits of gates from Gm,2. So we can directly translate the circuits
producing the maps of Gm,2 into gadgets via gadget glueing by Lemma 3.2 as in the previous
case. Moreover, as a consequence of the hypothesis, we have that each circuit in the set of
circuits having gates in G 0 can be considered to have the same depth. Thus, we get gadgets
that share the same time constant.

3.3.2 Super-polynomial periods without universality

A universal family must exhibit super-polynomial periods, however universality is far from
necessary to have this dynamical feature. In this subsection we define the family of wire
networks to illustrate this.

To this end, we need the following classical result about the growth of Chebyshev function
and prime number theorem.
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Lemma 3.20 [47] Let m � 2 and P(m) = {p  m | p prime}. If we define ⇡(m) = |P(m)|
and ✓(m) =

P
p2P(m)

log(p) then we have ⇡(m) ⇠ m
log(m)

and ✓(m) ⇠ m.

By using the Lemma 3.20 we can construct automata networks with non-polynomial limit
cycles simply by making disjoint union of rotations (i.e. network whose interaction graph is a
cycle graph that just rotate the configuration at each step). Indeed, it is sufficient to consider
rotations on cycle graphs whose length are successive prime numbers. It turns out that these
automata networks are exactly Gw-networks where Gw is a single ’wire gate’: Gw = {idB}
where idB is the identity map over {0, 1}.

Formally, according to Definition 3.4 (see Figure 3.4), for any Gw-network F : QV ! QV

there exist a partition V = C1 [ C2 . . . [ Ck where Ci = {ui

1
. . . , ui

li
} with li � 2 for each

i = 1, . . . , k and F (x)ui
s+1 mod li

= xui
s

for any x 2 QV and 0  s  li.

Theorem 3.21 Any family F that has coherent Gw-gadgets has superpolynomial limit cycles,
more precisely: there is some ↵ > 0 such that for infinitely many n 2 N, there exists a network
Fn 2 F with O(n) nodes and a periodic orbit of size ⌦(exp(n↵

)).

Proof. Taking the notations of Lemma 3.20, define for any n the Gw-network Gn made of
disjoint union of cycle graphs of each prime length less than n. Gn has size at most n⇡(n)
and if we consider a configuration x which is in state 1 at exactly one node in each of the ⇡(n)
disjoint cycle graphs, it is clear that the orbit of x is periodic of period exp ✓(n). Therefore,
from Lemma 3.20, for any n, Gn is a cycle graph of size m  n⇡(n) with a periodic orbit of
size ✓(n) 2 ⌦(exp(

p
m logm)). By hypothesis there are linear maps T and S such that for any

n, there is Fn that simulates Gn (by Lemma 3.10), therefore Fn also has a super-polynomial
limit cycle cycle by Lemma 2.6.

3.3.3 Conjunctive networks and Gconj-networks

Let G = (V,E) be any directed graph. The conjunctive network associated to G is the au-
tomata network FG : {0, 1}V ! {0, 1}V given by F (x)i = ^j2N�(i)xj where N�

(i) denotes
the incoming neighborhood of i. Conjunctive networks are thus completely determined
by the interaction graph and a circuit representation can be deduced from this graph in
DLOGSPACE. We define the family Fconj as the set of conjunctive networks together with
the standard representation F⇤

conj which are just directed graphs encoded as finite words in
a canonical way.

Remark 3.22 We can of course do the same with disjunctive networks. Any conjunctive
network FG on graph G is conjugated to the disjunctive network F 0

G on the same graph by
the negation map ⇢ : {0, 1}V ! {0, 1}V defined by ⇢(x)i = 1� xi, formally ⇢ � FG = F 0

G � ⇢.
In particular, this means that the families of conjunctive and disjunctive networks simulate
each other. In the sequel we will only state results for conjunctive networks while they hold
for disjunctive networks as well.
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v1 v2 v3

vo

Figure 3.12: Fanin gadget of degree 3. For any configuration x, F 3
(x)vo = xv1 ^ xv2 ^ xv3 .

We define now the set Gconj = {AND,COPY}. Observe that Gconj-networks are nothing
else but conjunctive networks with the following degree constraints: each node has either
in-degree 1 and out-degree 2, or in-degree 2 and out-degree 1. The following theorem shows
that, up to simulation, these constraints are harmless.

Theorem 3.23 The family of Gconj-networks simulates the family (Fconj,F⇤
conj) of conjunc-

tive networks in linear time and polynomial space.

Proof. Let F be an arbitrary conjunctive network on graph G = (V,E) with n nodes. Its
maximal in/out degree is at most n. For each node of indegree i  n we can make a tree-like
Gconj-gadget with i inputs and 1 output that computes the conjunction of its i inputs in
exactly n steps: more precisely, we can build a sub-network of size O(n) with i identified
’input’ nodes of fanin 1 and one identified output node of fanout 1 such that for any t 2 N
the state of the output node at time t + n is the conjunction of the states of the input
nodes at time t (the only sensible aspect is to maintain synchronization in the gadget, see
Figure 3.12). We do the same for copying the output of a gate i times and dealing with
arbitrary fanout. Then we replace each node of F by a meta node made of the two gadgets
to deal with fanin/fanout and connect everything together according to graph G (note that
fanin/fanout is granted to be 1 in the gadgets so connections respect the degree constraints).
We obtain in DLOGSPACE a Gconj-network of size polynomial in n that simulates F in
linear time.

Remark 3.24 The family of conjunctive networks can produce super-polynomial periods
but it is not universal. There are several ways to show this. It is for instance impossible to
produce super-polynomial transients within the family [19, Theorem 3.20] so Corollary 2.14
conclude. One could also use Corollary 2.19 since a node in a strongly connected component
of a conjunctive network must have a trace period of at most the size of the component
(actually much more is known about periods in conjunctive networks through the concept of
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loop number or cyclicity, see [19]).

3.3.4 Super-polynomial transients without universality

Let us consider in this section the alphabet Q = {0, 1, 2}. We are going to define a set Gt

such that Gt-networks exhibit super-polynomial transients but are not universal. To help
intuition, Gt-networks can be though as standard conjunctive networks on {0, 1} that can in
some circumstances produce state 2 which is a spreading state (a node switches to state 2

if one of its incoming neighbors is in state 2). The extra state 2 will serve to mark super-
polynomial transients, but it cannot escape a strongly connected component once it appears
in it. As we will see, Gt-networks are therefore too limited in their ability to produce large
periodic behavior inside strongly connected components.

Gt is made of the following maps:

AND{0,1} : (x, y) 7!
(
2 if 2 2 {x, y}
x ^ y else.

AND2 : (x, y) 7!
(
2 if 2 2 {x, y} or x = y = 1

0 else.

⇤ : (x, y) 7!
(
2 if 2 2 {x, y}
x else.

Id : x 7! x.

⌥ : x 7! (x, x).

Gt-networks can produce non-polynomial cycles by disjoint union of rotations of prime
lengths as in Theorem 3.21, but they can also wait for a global synchronization of all rotations
and freeze the result of the test for this synchronization condition inside a small feedback
loop attached to a “controlled AND map”.

More precisely, as shown in Figure 3.13 we can use in the context of any Gt-network a small
module T (x) made of five nodes with the following property: if the ⇤ node of the module is
in state 0 in some initial configuration, then it stays in state 0 as long as node x is not in
state 1, and when x = 1 at some time step t then, from step t + 2, the ⇤ node is in state 2

at least one step every two steps. This module is the key to control transient behavior.

Moreover, map AND{0,1} behaves like standard Boolean AND map when its inputs are in
{0, 1}. More generally, by combining such maps in a tree-like fashion, one can build modules
A(x1, . . . , xk) for any number k of inputs with a special output node which has the following
property for some time delay � 2 O(log(k)): the output node at time t+� is in state 1 if
and only if all nodes xi (with 1  i  k) are in state 1 at time t.

Combining these two ingredients, we can build upon the construction of Theorem 3.21 to
obtain non-polynomial transients in any family having coherent Gt-gadgets.

Theorem 3.25 Any family F that has coherent Gt-gadgets has superpolynomial transients,
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AND2⌥1

⌥2

⇤

x Id

Figure 3.13: Freezing the result of a test in a Gt-network. The module T (x) is made of the
nodes marked ⌥, AND2, ⇤ and Id. Observe that each node represent some output of its
corresponding label(for more details on G-networks see Definition 3.4). Each gate has one
output with the exception of the gate ⌥ which is represented by two nodes. The module
T (x) reads the value of node x belonging to an arbitrary Gt-network (represented in light gray
inside dotted lines). The output ⇤ is fed back to its control input via the Id node (self-loops
are forbidden in Gt-networks). Note that x as well as the rest of the network is not influenced
by the behavior of the gates of the module T (x).

more precisely: there is some ↵ > 0 such that for any n 2 N, there exists a network Fn 2 F
with O(n) nodes and a configuration x such that F t

n(x) is not in an attractor of Fn with
t 2 ⌦(exp(n↵

)).

Proof. Like in Theorem 3.21, they key of the proof is to show that there is a Gt-network
with transient length as in the theorem statement, then the property immediately holds for
networks of the family F by Lemma 3.10 and Lemma 2.6.

For any n > 0 we construct a Gt-network Gn made of two parts:

• The “bottom” part of Gn uses a polynomial set of nodes Bn and consists in a disjoint
union of circuits for each prime length less than n as in Theorem 3.21, but where for
each prime p, the circuit of length p has a node vp which implements a copy gate COPY,
thus not only sending its value to the next node in the circuit, but also outputting it
to the “top” part of Gn.

• The “top” part of Gn is made of a module A(x1, . . . , xk) connected to all nodes vp as
inputs and whose output is connected to a test module T (x) as in Figure 3.13.

Note that the size of Gn is polynomial in n. With this construction we have the following
property as soon as the modules A(x1, . . . , xk) and T (x) are initialized to state 0 everywhere:
as long as nodes vp are not simultaneously in state 1 then the output of the test module
T (x) stays in state 0; moreover, if at some time t nodes vp are simultaneously in state t, then
after time t + O(log(t)), the node ⇤ of module T (x) is in state 2 one step every two steps.
This means that t + O(log(t)) is a lower bound on the transient of the considered orbit. To
conclude the proof it is sufficient to consider the initial configuration where all nodes are in
state 0 except the successor of node vp in each circuit of prime length p, which are in state 1.
In this case it is clear that the first time t at which all nodes vp are in state 1 is the product
of prime numbers less than n. As in Theorem 3.21, we conclude thanks to Lemma 3.20.

As said above, Gt-networks are limited in their ability to produce large periods. More
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precisely, as shown by the following lemma, their behavior is close enough to conjunctive
networks so that it can be analyzed as the superposition of the propagation/creation of state
2 above the behavior of a classical Boolean conjunctive network. To any Gt-network F we
associate the Boolean conjunctive network F ⇤ with alphabet {0, 1} as follows: nodes with
local map AND{0,1} or AND2 are simply transformed into nodes with Boolean conjunctive
local maps on the same neighbors, nodes with local maps ⌥ or Id are left unchanged (only
their alphabet changes), and nodes with map ⇤(x, y) are transformed into a node with only
x as incoming neighborhood.

Lemma 3.26 Let F be a Gt-network with node set V and F ⇤ its associated Boolean con-
junctive network. Consider any x 2 {0, 1, 2}V and any x⇤ 2 {0, 1}V such that the following
holds:

8v 2 V : xv 2 {0, 1}) x⇤
v = xv,

then the same holds after one step of each network:

8v 2 V : F (x)v 2 {0, 1}) F ⇤
(x⇤

)v = F (x)v.

Proof. It is sufficient to check that if F (x)v 6= 2, it means that all its incoming neighbors
are in {0, 1} so x and x⇤ are equal on these incoming neighbors, and that it only depends on
neighbor a in the case of a local map ⇤(a, b). In any case, we deduce F ⇤

(x⇤
)v = F (x)v by

definition of F ⇤.

Theorem 3.27 The family of Gt-networks is not universal.

Proof. Consider a Boolean conjunctive automata network F , a configuration x with periodic
orbit under F and some node v such that there is a walk of length L from v to v. We claim
that xv = FL

(x)v so the trace at node v in x is periodic of period less than L. Indeed,
in a conjunctive network state 0 is spreading so clearly if xv = 0 then FL

(x)v = 0 and,
more generally, F kL

(x)v = 0 for any k � 1. On the contrary, if xv = 1 then we cannot have
FL

(x)v = 0 because then F Pk
(x)v = 0 with P the period of x which would imply xv = 0.

With the same reasoning, if we consider any Gt-network F , any configuration x with
periodic orbit and some node v such that there is a walk of length L from v to v, then it
holds:

xv = 2, FL
(x)v = 2.

We deduce thanks to Lemma 3.26 that for any configuration x with periodic orbit of some Gt-
network F with n nodes, and for any node v belonging to some strongly connected component,
the period of the trace at v starting from x is less than n2: it is a periodic pattern of presence
of state 2 of length less than n superposed on a periodic trace on {0, 1} of length less than n.
We conclude that the family of Gt-networks cannot be universal thanks to Theorem 2.19.
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Chapter 4

Describing asynchronous dynamics: a
deterministic approach

In this chapter, we study the dynamics of automata networks under different update schemes.
Recall that, generally speaking, automata networks dynamics is defined in terms of a global
rule F : Qn ! Qn. If we see now F as a network, i.e. a collection of entities that are somehow
related, we can interpret the evolution of this dynamics as defined by a scheme in which
each of these entities is updated at the same time. This dynamics is usually called parallel
or synchronous. As we have pointed out previously, this approach is considered usually
unrealistic for some applications. Probably the most iconic case (to consider) in this context
is that of applications in gene regulatory networks. Within this domain, the synchronous
dynamics seems to be inaccurate since it can be interpreted as a type of dynamics in which
the expression of all genes takes place simultaneously. Considering the latter observation,
there are some classical types of breaking the synchronous update scheme or introducing
asynchronicity to the dynamics of a fixed automata network. As we work mainly with
CSAN families for all the applications considered in Chapter 5, we define update schemes
exclusively for this type of automata networks. However, all our definitions can be extended
to the general case. Particularly, we explore in the first section of this chapter three classes of
update schemes which are widely referenced in the literature and also studied from the point
of view of how they impact the original synchronous dynamics. These classes are: periodic
update schemes, local clocks update schemes and block sequential update schemes. We start
by establishing a strict hierarchy between these three classes and studying some examples.
We discuss also the limits of periodic dynamics compared to other types of update schemes.
Then, we present a general framework which allows us to see the dynamics defined by means
of update schemes as a projection of the dynamics of another automata network which is
deterministic and operates over a bigger alphabet, which contains the original alphabet as a
component. This approach does not only include periodic update schemes, and thus, local
clocks and block sequential update schemes, but also considers some of more general update
schemes that we will define in this section.
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4.1 Update schemes
We recall that given an automata network F : QV ! QV , we can define a dynamical system
over the alphabet Q by the subsequent iterations of F . This is the most natural way to
define a dynamics from an automata network and it is usually said that in this case that the
dynamics follows a paralell update scheme. This name is because, if we see any coordinate i of
F as a node in G and its associated local function Fi given by � and ⇢, then, it updates its state
at each time step. In other words, all the nodes execute their local function synchronously.
Nevertheless one can also induce a dynamical system over Q by considering other ways of
updating each node in the network in which not all the nodes are updated at the same time.
Observe that, generally speaking, this latter notion demands some sort of temporal order in
the nodes that will indicate which nodes have to be updated at a particular time step. In
this sense, we present a more general definition that uses the concept of an update scheme.

Definition 4.1 Let F : QV ! QV an automata network. An update scheme is a sequence µ :

N! 2
V . Given an update scheme µ and a natural number k 2 N we call an intermediate step

of the dynamics given by µ the function F µ(k) defined by F µ(k)
(x)i =

(
F (x)i if i 2 µ(k),

xi otherwise.
.

We define an orbit given by µ starting from some x 2 QV as the sequence Oµ,F (x) =

(x, F µ(0)
(x), F µ(1)

(F µ(0)
(x)), F µ(2)

(F µ(1)
(F µ(0)

(x))), . . .)

In this thesis work, we focus in a particular subclass of update schemes named periodic
update schemes, i.e. the function µ is periodic, as the finite related sequence of sets that
defines which set of nodes is updated at each intermediate time step. In the next sections,
we are interested in studying two different subclasses of periodic update schemes: the ”block
sequential” ones and the ”local clocks” ones. We define properly these subclasses in the next
subsection.

4.1.1 Periodic update schemes

One of the most studied types of update schemes are the periodic update schemes. This class
contains the parallel update scheme, in which all the nodes of the networks are updated at the
same time, the sequential update schemes in which only one node its updated in each time
step following a given order (see Figure 4.1) and also the block sequential update schemes
in which, given an ordered partition of the node set V , the nodes are updated sequentially
following the order of the sets in the partition but in parallel with respect to the other nodes
that belong to the same set. In addition, we explore a new class of update schemes which
contains the block sequential ones that it is called local clocks. In this class each node contains
an internal clock that periodically controls when this node is going to update. More precisely,
each node v is updated once every pv steps but the frequency of update pv might depend on
the node.

Definition 4.2 We say that an update scheme µ is a periodic update scheme if there exists
p 2 N such that 8t 2 N, µ(t+ p) = µ(t). Moreover, we say that µ is:
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t = 0 �! (0, 1, 1, 0)
t = 1 �! (1, 0, 0, 1)

t = 2 �! (0, 1, 1, 0)

t = 3 �! (1, 0, 0, 1)
t = 4 �! (0, 1, 1, 0)

µ = ({1, 2, 3, 4})
1 2

43

t = 5 �! (0, 0, 0, 0)

µ = ({1}, {2}, {3}, {4})

t = 4 �! (1, 0, 0, 0)
t = 3 �! (1, 0, 0, 0)

t = 2 �! (1, 0, 1, 0)

t = 1 �! (1, 1, 1, 0)
t = 0 �! (0, 1, 1, 0)

Figure 4.1: Synchronous update scheme and sequential update scheme for the same conjunc-
tive automata network. (Left panel) communication graph of the network. Local function
is given by the minimum (AND function) over the set of states of neighbors for each node.
(Central panel) Synchronous or parallel update scheme and the associated dynamics of con-
figuration (0, 1, 1, 0). In this case µ has period 1 and all nodes are updates simultaneously.
Observe that dynamics exhibits an attractor of period 2 (Right panel) Sequential update
scheme and the associated dynamics of configuration (0, 1, 1, 0). In this case function µ has
period n = 4 and only one node is updated at each time step. Dynamics reach a fixed point
given by ~0.

• a block sequential scheme if there are subsets (called blocks) B0, . . . , Bp�1 ✓ V forming
an ordered partition of V such that 8t 2 N, µ(t) = Bt mod p,

• a local clocks scheme if for each v 2 V there is a local period pv 2 N and a local shift
⌧v 2 {0, . . . , pv � 1} such that v 2 µ(t) () t = ⌧v mod pv.

For a concrete example on how these update schemes work, see Figure 4.2 in which different
dynamics for a simple conjunctive network under block sequential and local clocks update
schemes are shown.

Observe that, block sequential and local clocks schemes are clearly periodic schemes.
Moreover, any block sequential scheme given by B0, . . . , Bp�1 ✓ V is a local clocks scheme
given by pv = p and ⌧v = i () v 2 Bi for all v 2 V . As already said, block sequential
schemes can thus be seen as local clocks schemes where all nodes share the same update
frequency. General periodic update schemes allows different time intervals between two
consecutive updates of a node, which local clocks schemes obviously cannot do (see Figure
4.3). We will see later the tremendous consequences that such subtle differences in time
intervals between updates at each node can have. For now let us just make the formal
observation that the inclusions between these families of update schedules are strict when
focusing on the sets of maps µ.

Remark 4.3 A so-called block-parallel scheme has also been considered more recently [20]
which is defined by a set of lists of nodes Li = (vi,j)0j<pi (for 1  i  k) forming a partition
(i.e. such that vi,j are all distinct over j and [i,jvi,j = V ) to which it is associated the map µ
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1 2

43

t = 0 �! (0, 1, 1, 0)
t = 1 �! (1, 1, 0, 0)

t = 2 �! (1, 0, 0, 0)

t = 3 �! (0, 0, 0, 0)

µ = ({1, 3}, {2, 4})

t = 0 �! (0, 1, 1, 0)
t = 1 �! (1, 0, 0, 1)

t = 2 �! (1, 0, 0, 1)

t = 3 �! (0, 0, 1, 0)
t = 4 �! (0, 0, 1, 0)

µ = ({1, 2, 3, 4}, {}, {1, 3}, {})

t = 5 �! (0, 0, 0, 0)

Figure 4.2: A block sequential and a local clocks update schemes over a simple conjunctive
network. (Left panel) communication graph of the network. Local functions are given by
the minimum (AND) over the states of the neighbors of each node. (Central panel) block
sequential update scheme and the associated dynamics of configuration (0, 1, 1, 0). In this
case function µ is defined by two blocks: {1, 3} and {2, 4}. Dynamics reach a fixed point
after 3 time steps. (Right panel) local clocks update scheme and the associated dynamics
of configuration (0, 1, 1, 0). In this case each node has an internal clock with different local
periods. Nodes 1 and 3 are updated every two steps (p1 = p3 = 2) and nodes 2 and 4

are updated every 4 time steps (i.e. p2 = p4 = 4). The shift parameters is 0 for all nodes
⌧1 = ⌧2 = ⌧3 = ⌧4 = 0. The dynamics reaches a fixed point after 5 time steps.

1 2

43

t = 0 �! (0, 1, 1, 0)
t = 1 �! (1, 0, 1, 1)

t = 2 �! (0, 1, 1, 1)

t = 3 �! (0, 0, 0, 1)
t = 4 �! (0, 0, 0, 0)

µ = ({1, 2, 4}, {1, 2, 3}, {2, 3}, {1, 4})

Figure 4.3: A general periodic update scheme over a conjunctive network. In this case µ has
period 4 and the underlying dynamics reaches a fixed point after 4 time steps. Observe that
there is no restriction on how many times a node is updated. For example, 1 is updated 3

times every 4 time steps but 4 is updated only twice every 4 time steps.
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1 2

43

t = 0 �! (0, 1, 1, 0)
t = 1 �! (1, 0, 1, 1)

t = 2 �! (0, 0, 1, 0)

t = 3 �! (0, 0, 0, 0)

µ = ({1, 2, 4}, {1, 3, 4})

Figure 4.4: A block parallel update scheme defined over a conjunctive network. Updating
list is given by L = {(1), (2, 3), (4)}. Observe that a constant amount of nodes (equal to the
length of L, i.e., 3) is updated at each time step. Dynamics reaches a fixed point after 3

time-steps.

such that vi,j 2 µ(n) () j = n mod pi. It is a particular case of our definition of local clocks
scheme above with the additional constraints that the size of the set µ(n) of updated nodes
is constant with n (see Figure 4.4 for an example). We note that, conversely, any local clocks
scheme on a given network can be simulated by a block-parallel scheme by artificially adding
disconnected nodes that do nothing but satisfy the constraint of µ(n) being of constant size.

4.1.2 Projection systems

We recall that Q is a finite set that we call alphabet. Now we present a dynamical formalism
that allows us to include all the update schemes presented above and possibly other ones into
one formalism. We remark that in all periodic schemes, a given node can take the decision
to update or not by simply keeping track of the current value of time modulo the period.
Thus, one could see the system as a non-deterministic system in which possibilities are given
by all the possible ways to update nodes respecting a periodic update scheme. However,
a key observation in this context is that, when we add the knowledge of time modulo the
period at each node as a new component of states, the whole system becomes deterministic.
In fact, we can recover the original dynamics of some automata network with alphabet Q
under a periodic update scheme by projecting a specific deterministic automata network with
alphabet Q0 ⇥Q onto Q.

Let F : QV ! QV be an automata network. We recall that its asynchronous version
is an automata network that at every time-step (non-deterministically) choose if a node i

should be updated or if it will be stay in the same state. More precisely, a asynchronous
version of F is a non-deterministic function F ⇤

: QV ! P(QV
) such that F ⇤

(x) = {y 2
QV

: 9U ⇢ V, yv = F (x)v if v 2 U and yv = xv otherwise.}. Equivalently, we can see F ⇤ as
a function F ⇤

: QV ! (P(Q))
V such that F ⇤

(x)i = {xi, F (x)i}. Note that, analogously to
the deterministic case one can define an orbit starting from x of F ⇤ as a sequence of states
OF ⇤(x) = x0

= x, x1, x2, . . . , xt, . . . ,2 Qn such that xs
i
2 F (xs�1

)i for i 2 V and s � 1. Note
also that, given x 2 QV and an orbit OF ⇤(x) we can see OF ⇤(x) as a particular realization of
a certain update scheme µ. More precisely, there exists an update scheme µ (which is defined
in the obvious way i.e. by updating the corresponding nodes in every time step according
to points in OF ⇤(x)) such that for every xs 2 OF ⇤(x) we have xs

= (OF,µ(x))s. In addition,
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we have that for each update scheme µ there exist an orbit of F ⇤ which coincides with its
dynamics in every time step. Thus, we want to work with F ⇤ in order to globally study a
whole class of update schemes. However, we would like to continue working in a deterministic
framework in order to keep things simple (in particular the notion of simulation that we
define later). In order to achieve this task, we introduce the following notion of asynchronous
extension which is a way to produce the dynamics of different update schemes through
projection.

Definition 4.4 Let Q be a finite alphabet and Q0
= Q⇥R where R is finite. Let F : QV ! QV

and F 0
: Q0V ! Q0V two automata networks. We say that F is a projection system of F’ and

that F’ is an asynchronous extension of F if:

8x 2 Q0V , ⇡(F 0
(x)) 2 F ⇤

(⇡(x)), (4.1)

where ⇡ is the node-wise extension of the projection ⇡ : Q0 ! Q such that ⇡(q, r) = q for all
q0 = (q, r) 2 Q0.

We show hereunder that the dynamics associated to any of the previously presented peri-
odic update schemes can be described as an asynchronous extension over a product alphabet.
To simplify notations we sometimes identify (A⇥ B ⇥ · · · )V with AV ⇥ BV ⇥ · · ·.

First we introduce the block sequential extensions. Generally speaking, given an ordered
partition {B1, . . . Bb} defining a block sequential update scheme, we define a product space
in which the second coordinate contains an internal clock which counts the evolution of time
modulo b. For each node, its corresponding block is coded in the initial configuration and it
is updated every b time steps.

Definition 4.5 (block sequential extension) Let F : QV ! QV be an automata network. Let
b  n and let Q0

= Q⇥ {0, . . . , b� 1}. We define the block sequential extension of F with b
blocks as the automata network F 0

: (Q0
)
V ! (Q0

)
V such that for all x = (xQ, xb) 2 Q0V and

all v 2 V :

F 0
(x)v =

(
(F (xQ)v, (xb)v � 1 mod b) if (xb)v = 0,

((xQ)v, (xb)v � 1 mod b) otherwise.

Now we introduce the definition of the local clocks extensions. In this case, as same as the
case of block sequential extensions, the second coordinate stores the dynamics of an internal
clock which periodically registers the evolution of time. However, in local clocks update
scheme, each node can have its own local period, so clocks are note synchronized as in block
sequential extension. As a consequence, we have to define a third coordinate which contains
the information about the local period of each node. This component is constant and each
local period is bounded by some parameter c called clock delay.

Definition 4.6 (local clocks extension) Let F : QV ! QV be an automata network. Let
c 2 N and let Q0

= Q ⇥ {0, . . . , c � 1} ⇥ {1, . . . , c}. We define the local clocks extension
of F with clock delay c as the automata network F 0

: (Q0
)
V ! (Q0

)
V such that for all x =
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(xQ, xc, xm) 2 Q0V and all v 2 V :

F 0
(x)v =

(
(F (xQ)v, ( (xm)v

[(xc)v]) + 1 mod (xm)v, (xm)v) if (xc)v = 0,

((xQ)v, ( (xm)v
[(xc)v]) + 1 mod (xm)v, (xm)v) else.

 m(r) : {0, . . . , c� 1}! {0, . . . , c� 1} is such that  m(r) =

(
r if r  m� 1,

m� 1 otherwise.

Observe that the function  m cleans in one step any initially condition that is not coherent
for the local clock scheme (for example if some node starts with an initial value in its second
coordinate that is greater than its local period). Finally, we present the periodic extension.
The main difference between the latter definitions is that updates can be defined arbitrarily
over a fixed time interval which is defined through a period parameter p. In addition, we
say it is periodic because what happens in this time window must be repeated every p times
steps. Thus, we consider an internal clock coordinate (as same as the previous cases) together
with a third constant coordinate which serves as a marker for the set of time steps (over each
p steps time interval) in which each node is updated.

Definition 4.7 (periodic extension) Let F : QV ! QV be an automata network. Let p 2 N
and let Q0

= Q⇥{0, . . . , p�1}⇥2
{0,...,p�1}. We define the periodic extension of F with period

length p as the automata network F 0
: (Q0

)
V ! (Q0

)
V such that for all x = (xQ, xp, xs) 2 Q0V

and all v 2 V :

F 0
(x)v =

(
(F (xQ)v, (xp)v + 1 mod p, (xs)v) if (xp)v 2 (xs)v,

((xQ)v, (xp)v + 1 mod p, (xs)v) otherwise.

This approach by asynchronous extensions can also capture non-periodic update schemes.
For instance, an update scheme for Boolean networks called firing memory has been recently
studied [32, 39, 67]. This update scheme, uses internal clocks at each node and, in addition,
it makes the delay mechanism given by these clocks depend on the state of each node in
the current configuration. Roughly speaking, each node is updated at the same time but it
has an internal clock which works in a similar way as local clocks update scheme, with the
exception that, this clock depends on the current state of each node in the following way: if
certain node is in state 0 it will update its state following the original local rule (in fact, nodes
in state 0 are forced to have their internal clocks in 0). Complementarily, if a node is in state
1 and it is intended to change its state to 0 (for example in a conjunctive network this may
happen if some other neighbor is in state 0) it will verify its internal clock. If its clock has
not reach 0 then, it continues to the next value (it decreases its value) and its current state
value is not updated (it remains in state 1). However, in any case (if node is in state 1 or in
state 0), if node is intended to change its state to 1 then, its internal clock is restored to its
maximum value independently of its current value (see Figure 4.5 for a concrete example).

Formally, given a boolean network F : {0, 1}n 7! {0, 1}n it is possible to define a new state
space by associating to each coordinate i of a configuration x 2 {0, 1}n an internal clock,
given by some integer yi 2 {0, . . . , ⌧i} for some integers ⌧ = (⌧1, . . . , ⌧n) such that ⌧i � 1. In
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this product space, we will define the following dynamics: First, for each (xi, yi), we compute,
by using the original rule, the amount x0

i
= F (x)i. Thus, the state (xi, yi) will be updated to

(x⇤
i
, y⇤

i
) according to the following rules:

x⇤
i
=

(
x

0

i
if yi < 2,

1 if yi � 2,

and,

y⇤
i
=

8
><

>:

0 if x0

i
= 0 ^ yi < 2,

yi � 1 if x0

i
= 0 ^ yi � 2,

⌧i. if x0

i
= 1.

Firing memory schemes can be captured as an asynchronous extension in such a way that
the resulting asynchronous extension is also a CSAN (see Lemma 4.9). We give hereunder
the precise definition of a firing memory extension:

Definition 4.8 (Firing memory extension) Let Q = {0, 1} and let F : QV ! QV be an
automata network. Let ⌧ 2 N and let Q0

= Q ⇥ {0, . . . , ⌧} ⇥ {0, . . . , ⌧}. We define a firing
memory extension of F with maximum delay ⌧ as the automata network F 0

: (Q0
)
V ! (Q0

)
V

such that for all x = (xQ, x⌧ , xm) 2 Q0n we have that

F 0
(x)v =

8
>>><

>>>:

(1, (xm)v, (xm)v) if (x⌧ )v > 1 ^ fv(xQ|N(v)) = 1,

(1, ( (xm)v
[(xc)v])� 1, (xm)v) if (x⌧ )v > 1 ^ fv(xQ|N(v)) = 0,

(1, (xm)v, (xm)v) if (x⌧ )v  1 ^ fv(xQ|N(i)) = 1,

(0,max{( (xm)v
[(xc)v])� 1, 0}, (xm)v) if (x⌧ )v  1 ^ fv(xQ|N(v)) = 0,

where fv : QN(v) ! Q is such that F 0
v ⌘ fv and  m(r) : {0, . . . , ⌧} ! {0, . . . , ⌧} is such that

 m[r] =

(
r r  m� 1

m� 1 otherwise

The previous definitions are formalized for every automata network. We now focus on
CSAN families where the extensions are also CSAN as show in the following lemma.

Lemma 4.9 Let F be a CSAN, then any block sequential extension (resp. local clocks exten-
sion, resp. periodic extension, resp. firing memory extension) of F is a CSAN. Moreover,
for any CSAN family F and any fixed b (resp. c, resp. p, resp ⌧), the set of block sequential
extensions (resp. local clock extensions, resp. periodic, resp. firing memory extenstions) with
b blocks (resp. with clock delay c, resp. with period p, resp. with maximum delay) of networks
of F is again a CSAN family.

Proof. Observe first that for block sequential extensions (resp. local clocks extension, resp.
periodic extension, resp. firing memory extension) the definition of F 0 considers an alphabet
Q0

= Q ⇥ R such that the action of F 0 on the R component is purely local (the new value
of the R component of a node evolves as a function of the old value of this R component)
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t = 0 �! (0, 1, 2, 3)
t = 1 �! (3, 0, 1, 2)

t = 2 �! (2, 3, 0, 1)

t = 3 �! (1, 2, 3, 0)

t = 4 �! (0, 1, 2, 3)

Figure 4.5: A firing memory update scheme over a conjunctive network. Each local function is
given by the minimum over the states of neighbors. The delay component (second component
in Definition 4.8) only is shown. Maximum delay of the network is ⌧ = 4. Dynamics describes
an attractor of period 4 in which 0 circulates over the different nodes of the network. Note
that at any time, there is exactly one node in state 0, the other being in state 1 with different
delay values.

and the value of the R component at a node determines alone if the Q component should be
updated according to F or left unchanged. Therefore clearly F 0 is a CSAN if F is.

In the context of a CSAN family F , the CSAN definition of F 0 involves only local con-
straints coming from F 2 F and the action on the R-component is the same at each node.
So the second part of the lemma is clear.

To sum up, our formalism allows to treat variations in the update scheme as a change in
the CSAN family considered. Given a CSAN family F and integers b, c, p, ⌧ , we introduce
the following notations:

• Fblock,b is the CSAN family of all block sequential extensions of networks from F with
b blocks,

• Fclock,c is the CSAN family of all local clocks sequential extensions of networks from
F with clock delay c,

• Fper,p is the CSAN family of all periodic extensions of networks from F with period p.
• Ffir,⌧ is the CSAN family of all firing memory extensions of networks from F with

maximum delay ⌧ .
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Chapter 5

Concrete symmetric automata networks:
a case study

In this chapter, we focus on studying concrete symmetric automata network (CSAN) fam-
ilies. We use previous theoretical framework on complexity of automata networks families
in order to classify different CSAN families according to their dynamical behavior under dif-
ferent update schemes. More precisely, we focus on two different families of CSAN: signed
conjunctive networks and min-max networks. We distinguish three main subfamilies inside
signed conjunctive networks:

• symmetric conjunctive networks, which are regular conjunctive networks (in which all
edge labels are the identity function);

• locally positive signed conjunctive networks, in which we allow negative edges (labeled
by the switch function: Switch(x) = 1 � x) but with a local constraint forcing the
existence of at least one positive edge in each neighborhood (one edge labeled by the
identity function); and

• general signed conjunctive networks, in which there could be negative edges without
any constraint (possibly all edges can be negative).

In addition, we consider the latter presented four update schemes: block sequential, local
clocks, general periodic update scheme and firing memory. We classify previous families
according to their dynamical behavior and simulation capabilities by using the framework
presented in Chapters 3 and 4. Before we enter into the detail, we present in Table 5.1 a
summary of the main results obtained. Observe that in each row of Table 5.1, we show how
the dynamical behavior of some CSAN families changes as we change the update scheme. In
particular, the most simple ones, such as conjunctive and locally positive networks exhibit
a relatively simple dynamical behavior (they have bounded period attractors). Contrarily,
the last two families have strong universality even for block sequential update schemes. In
addition, we would like to remark that there is not only a hierarchy for update schemes (block
sequential update schemes are a particular case of local clocks and both are a particular cases
of periodic update schemes) but that network families are also somehow related as conjunctive
networks are a sub-family of all the other ones. As a consequence of this, we have the results
in the latter column for firing memory as a consequence of the result on universality for
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Family/Update scheme Block sequential Local clocks General periodic Firing memory
Conjunctive networks BPA BPA SPA SU

Locally positive BPA SU SU SU
Signed conjunctive networks SU SU SU SU

Min-max networks SU SU SU SU

Table 5.1: Summary of the main results on complexity of the dynamics of the network
families studied in the current chapter, depending on different update schemes. BPA =
Bounded period attractors. SPA = Superpolynomial attractors. SU = Strong universality.
Black fonts indicate the emergence of complex behavior such as long period attractors or
universality.

conjunctive networks with firing memory.

Additionally, one can also observe that there is some sort of ”diagonal emergence” of strong
universality in Table 5.1 consisting in the fact that it seems to exists a trade-off between the
complexity in the definition of some network families and the complexity of the corresponding
update schemes. In other words, simple families seem to need more complex update schemes
in order to be universal and as we pass to more complex rules one can observe this property
for simpler update schemes.

5.1 Symmetric conjunctive networks
As said previously, symmetric conjunctive networks form a particular CSAN family on al-
phabet {0, 1} where all edges are labeled by the identity map and all nodes have the same
’conjunctive’ local map

�(q,X) =

(
0 if 0 2 X,

1 else.

First, observe that conjunctive networks are a particular case of symmetric threshold
networks and thus, it follows from the classical results of [42] that they always converge to
some fixed point or limit cycles of length two. Therefore they are not dynamically complex
with parallel update schedule.

5.1.1 Local clocks update scheme

In this subsection, we study local clocks extenstions. Let us call Fclock,c
sym-conj

the familly of
conjunctive networks under local clocks schemes of clock period c for some fixed c > 0. We
recall that in this case, the original alphabet Q = {0, 1} of symmetric conjunctive networks
is modified by adding a component which manages the clocks mechanism i.e. the alphabet
has the form: Qc = Q ⇥ {0, . . . , c} ⇥ {0, . . . , c} for some parameter c. We show in this
section that, interestingly, local clocks update schemes on conjunctive networks are not able
to produce superpolynomial cycles and only have attractors of bounded period.

Lemma 5.1 Let us fix any c > 0 and consider the family Fclock,c
sym-conj

of all symmetric con-
junctive networks under local clocks update scheme with clock period c. Fix n > 0 and let F :
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Qn
c ! Qn

c 2 Fclock,c
sym-conj

. For any configuration (xQ, xc, xm
) 2 Qn

c we have that the period of the
attractor reached from (xQ, xc, xm

) is at most 2 lcm{xm
v : v 2 {1, . . . , n}}. Moreover, for each

attractor (xQ, xc, xm
) 2 Att(F ), the set S(xQ, xc, xm

) = {v 2 V : ⇡(F ((xQ, xc, xm
)))v 6= xQ

v }
where ⇡ : Qn

c 7! Q is the projection on the alphabet Q, induces a bipartite subgraph.

Proof. Let (xQ, xc, xm
) 2 Qn

c be a configuration and (xQ, xc, xm
) 2 Att(F ) be an attractor

that is reachable from (xQ, xc, xm
) and that is not a fixed point, i.e. p(x) � 2. In order to

simplify the notation, we are going to denote xQ by x. Let i 2 {0, . . . , n� 1} be a coordinate
such that xi changes its state, i.e there exists some t 2 N such that x(0)i 6= x(t)i. Without
loss of generality we assume that x(0)i = 1 and xc

(0)i = 0 and x(1)i = 0. Consider t1 as
the first time step such that the coordinate i changes its state from 0 to 1, which means
that, t1 is the first time step such that x(t1) = 0 and x(t1 + 1) = 1. Observe that t1 = sxm

i

for some s � 1. Note that, for all j 2 N(i), x(t1)j = 1. Moreover, we have that for all
j 2 N(i): and that x(s)j = 1 for all s 2 [1, t1] (see Figure 5.1.1). This is because, since the
interaction graph is symmetric, j cannot be in state 0 during interval [1, t1] otherwise both
i and j would stay in state 0 forever, thus contradicting the hypothesis on i. We deduce
that xm

j � t1 = sxm
i

(otherwise j would update its state and become 0 on interval [1, t1]).
Now consider t0 to be the first time step in which the node i changes its state from 1 to 0,
i.e. x(t0) = 1 and x(t0 + 1) = 0. Observe that, t1 < t0 = t1 + s⇤xm

i
for some s⇤ � 1. In

addition, there must exist some neighbor k 2 N(i) satisfying that x(t0)k = 0, otherwise i

cannot change to 0 (it requires at least one neighbor in 0 in order to change its state from
1 to 0). Observe that node k satisfies xm

k  xm
i

because it needs to update to 0 before
node i. More precisely, by the definition of t0 we have that i is fixed in state between t1
and t0 (see Figure 5.1.1). Additionally, we have that xk(t1) = 1, xk(t0) = 0 and also we
have that x(t0 � xm

i
)k = 1 (otherwise it contradicts the minimality of t0). Finally, since i

remains in state 0 on the interval [t0, t0+xm
i
] then, k cannot be updated in the same interval.

Thus, xm
k  xm

i
. Moreover, the latter observations imply that i and k are synchronized, i.e.

(xc
(0))k = (xc

(0))i, xm
k = xm

i
, t1 = xm

i
and t0 = t1 + xm

i
. Note that also, we have that for

all t, x(t)i = 1� x(t)k. We have shown that the period of any node v is at most 2xm
v , so we

deduce p(x)  2 lcm{xm
v : v 2 {1, . . . , n}}.

At this point, we know that i must have at least one neighbor that is not constant in x
and that it is synchronized. Let us assume that there is a non constant neighbor ` of i that
satisfies xm

` > xm
i
. On the other hand, we have that ` is in state 1 on the interval [0, t1] (see

Figure 5.1.1) because otherwise i cannot switch to state 1 at the time step t1. Observe that,
by hypothesis, ` cannot change its state on intervals of the form [rxm

i
, (r + 1)xm

i
) for r 2 N

even since i is in state 0 on those intervals (otherwise i cannot switch back to 1 because it
would have a neighbor in 0). However, for r even, i is in state 1 on intervals of the form
[rxm

i
, (r+1)xm

i
). Suppose that ` changes its value for the first time on an interval of the form

[r⇤xm
i
, (r⇤+1)xm

i
) for some r⇤ 2 N odd, i.e. x(s)` = 0 for some s 2 [r⇤xm

i
, (r⇤+1)xm

i
). Observe

now that x((r⇤ + 2)xm
i
) = 1 since i must return to state 1 but ` cannot change its state in

[(r⇤+1)xm
i
, (r⇤+2)xm

i
) because i is in state 0. Then, we must have xm

`  xm
i
, which contradicts

the hypothesis. We conclude that every non constant neighbor of i is synchronized. Repeating
the same argument now for any non constant neighbor of i we have that all the nodes in the
connected component containing i have local delay xm

i
. Iterating this same technique now

for each i in the network, we deduce that x is such that p(x)  2 lcm{xm
v : v 2 {1, . . . , n}}

since locally, each connected component containing some node i is synchronized and thus,
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⇥XX ⇥

0

1

t0 + 3xm
i

t0 + 2xm
i

t0 + xm
i

111 1

0

10

1

01

0

10 1

01 0 1

0

10

11

0

`

k

i

t0t1

Figure 5.1: Scheme of the dynamics of nodes i, k and ` defined in the proof of Lemma 5.1.
The checkmarks indicate where it is feasible for ` to be updated and the crosses mark the
intervals on which ` can change its state.

each non-constant node is switching its state every 2xm
i

time steps. In addition, for each
node i every non-constant neighbor is in the state 0 whenever i is in the state 1. Thus, the
set of nodes which are not constant for (xQ, xc, xm

) i.e. S(xQ, xc, xm
), induces a two colorable

subgraph. The result holds.

As seen above, there is a qualitative jump between local clocks and periodic update sched-
ules for conjunctive networks in the size of dynamical cycles. However, for transient and pre-
diction problems, even general periodic update schedules fail to produce maximal complexity
(under standard complexity classes separations assumptions).

Theorem 5.2 Let p 2 N and consider the family Fper,p
sym-conj

of conjunctive networks under
periodic update schedules of period p. Fper,p

sym-conj
is neither dynamically nor computationally

complex: more precisely, the transients of any network in Fper,p
sym-conj

with n nodes are of length
at most O(n2

), the problem PREDuF can be solved by an NC
2 algorithm and PREDbF can

be solved in polynomial time.

Proof. Let F 2 Fper,p
sym-conj

with n nodes and consider any initial configuration x. By definition,
the orbit of x under F p is constant on the second and third component of states. Moreover,
the action of F p on the first component when starting from x is a particular non-symmetric
conjunctive network Fx that can be seen as an arbitrary Boolean matrix Mx. First, by [19,
Theorem 3.20], the transient of the orbit of x under Fx is of length at most 2n2 � 3n+ 2.
We deduce that the transient of x under F is in O(n2

). Second, it is easy to compute Mx

from F and x in NC
1. Moreover, matrix multiplication can be done in NC

1 and by fast ex-
ponentiation circuits we can compute M t

x with polynomial circuits of depth O(log(t) log(n)).
With a constant computational overhead, we can therefore efficiently compute F t

(x)v and
the complexity upper bounds on PREDuF and PREDbF follow.

5.1.2 Periodic update schemes

In this subsection, we show that symmetric conjunctive networks with a periodic update
schedule of period 3 can break the latter limitation on attractor period and produce su-
perpolynomial cycles. Observe that all the graphs over which we are defining networks in
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this family (and also in the other concrete examples we will be exploring in next sections)
are non-directed (symmetric). If we observe carefully the effect of periodic update schemes,
we note that we are actually changing the interaction graph of the network by considering
different orders for updating nodes and thus, breaking the symmetry in the different connec-
tions that nodes have in the network. Moreover, we corroborate this remark by showing that
actually, we can simulate arbitrary conjunctive networks by using a periodic update scheme.
We accomplish this by applying our formalism on simulation and gadget glueing. In fact,
we show that the family of symmetric conjunctive networks admits coherent Gconj-gadgets.
Thus it is capable of simulating the familly (Fconj,F⇤

conj
). Particularly, this implies that this

family admits attractors of superpolynomial period.

Proposition 5.3 Let p � 1 and Fper,p
sym-conj

be the family of symmetric conjunctive networks
under periodic update schedule of period p. Fper,p

sym-conj
is not universal and therefore it does

not admit coherent Gm-gadgets.

Proof. We actually show that the longest transient of any F 2 Fper,p
sym-conj

with n nodes is
O(n2

), then the conclusions follow by Corollary 2.19 and Theorem 3.16. Recall that the
alphabet is {0, 1}⇥ {0, . . . , p}⇥ 2

{0,...,p} and that, by definition, on any given configuration
x the component {0, . . . , p}⇥ 2

{0,...,p} is periodic of period p independently of the behavior
on the first {0, 1} component. Moreover, the behavior on the {0, 1} component is that of a
fixed (non-symmetric) conjunctive network F 0 in the following sense:

F t+p
(x) = F 0

(F t
(x)), 8t � 0.

By [19, Theorem 3.20], the transient of any orbit of F 0 is O(n2
). We deduce that the transient

of the orbit of x under F is also O(n2
).

Theorem 5.4 Let Fper,3
sym-conj

be the family of symmetric conjunctive networks under periodic
update schedules of period 3. Fper,3

sym-conj
has coherent Gconj-gadgets and therefore simulates

the family of conjunctive networks (Fconj,F⇤
conj). In particular, it can produce attractors of

superpolynomial period.

Proof. We start by showing that Fper,3
sym-conj

has the coherent Gconj-gadgets. We use the
notations from Definition 3.9. Let FCOPY 2 Fper,3

sym-conj
be defined on the following graph with

nodes VCOPY = {v1, v2, v3, v4, v5, v04, v05}:

v0
4

v0
5

v1 v2 v3

v4 v5

Let also FAND 2 Fper,3
sym-conj

be defined on the following graph with nodes
VAND = {v1, v2, v01, v02, v3, v4, v5}:

78



v0
1

v0
2

v1 v2
v3 v4 v5

Recall that both FCOPY and FAND have alphabet Q = {0, 1}⇥ {0, 1, 2}⇥ 2
{0,1,2}. Now let

C = Ci [ Co be the glueing interface with Ci = {i} and Co = {o}. FCOPY is seen as a gadget
with one input and two outputs for the gate COPY 2 Gconj as follows:

• �i

COPY,1(i) = v2 and �i

COPY,1(o) = v1;
• �o

COPY,1(i) = v5 and �o
COPY,1(o) = v4.

• �o
COPY,2(i) = v0

5
and �o

COPY,2(o) = v0
4
.

FAND is seen as a gadget with two inputs and one output for the gate AND 2 Gconj as follows:

• �i

AND,1(i) = v2 and �i

AND,1(o) = v1;
• �i

AND,2(i) = v0
2

and �i

AND,2(o) = v0
1
.

• �o
AND,1(i) = v5 and �o

AND,1(o) = v4.

Note in particular that the conditions of Lemma 3.8 are satisfied so the closure by gadget
glueing of these gadgets stays in our family F . Indeed FCOPY has the same induced label
graphs on all images of C under � maps, and the neighborhood of �i

COPY,1(Co) = v1 is v2
which belongs to �i

COPY,1(C), and similarly for other � maps. Corresponding properties hold
also for FAND. We now define the following elements required by Definition 3.9:

• The two state configurations sq for q 2 {0, 1} are defined by sq(i) = (q, 0, {0, 2}) and
sq(o) = (1, 0, {0, 1}).

• The context configuration is defined by c(v3) = (1, 0, {1, 2}) both for FCOPY and FAND.

• The time constant is T = 3.

• The standard trace ⌧q,q0 over the glueing interface from q 2 {0, 1} to q0 2 {0, 1} is given
by:

time i o
0 (q, 0, {0, 2}) (1, 0, {0, 1})
1 (1, 1, {0, 2}) (q, 1, {0, 1})
2 (1, 2, {0, 2}) (1, 2, {0, 1})
3 (q0, 0, {0, 2}) (1, 0, {0, 1})

.

• For any qi, qTi , qo, qo0 2 {0, 1} we have the following {v1, v5, v05}-pseudo orbit for FCOPY:

time v1 v2 v3 v4 v5 v04 v05
0 (qi, 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qo, 0, {0, 2}) (1, 0, {0, 1}) (q0o, 0, {0, 2}) (1, 0, {0, 1})
1 (1, 1, {0, 2}) (qi, 1, {0, 1}) (1, 1, {1, 2}) (1, 1, {0, 2}) (qo, 1, {0, 1}) (1, 1, {0, 2}) (q0o, 1, {0, 1})
2 (1, 2, {0, 2}) (1, 2, {0, 1}) (qi, 2, {1, 2}) (1, 2, {0, 2}) (1, 2, {0, 1}) (1, 2, {0, 2}) (1, 2, {0, 1})
3 (q0i , 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qi, 0, {0, 2}) (1, 0, {0, 1}) (qi, 0, {0, 2}) (1, 0, {0, 1})

.

• For any qi, qTi , qi0 , q
T
i0
, qo 2 {0, 1} we have the following {v1, v01, v5}-pseudo orbit for FAND:
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time v1 v2 v01 v02 v3 v4 v5
0 (qi, 0, {0, 2}) (1, 0, {0, 1}) (qi0 , 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qo, 0, {0, 2}) (1, 0, {0, 1})
1 (1, 1, {0, 2}) (qi, 1, {0, 1}) (1, 1, {0, 2}) (qi0 , 1, {0, 1}) (1, 1, {1, 2}) (1, 1, {0, 2}) (qo, 1, {0, 1})
2 (1, 2, {0, 2}) (1, 2, {0, 1}) (1, 2, {0, 2}) (1, 2, {0, 1}) (qi ^ qi0 , 2, {1, 2}) (1, 2, {0, 2}) (1, 2, {0, 1})
3 (qTi , 0, {0, 2}) (1, 0, {0, 1}) (qTi0 , 0, {0, 2}) (1, 0, {0, 1}) (1, 0, {1, 2}) (qi ^ qi0 , 0, {0, 2}) (1, 0, {0, 1})

.

The conclusion about simulations of conjunctive networks and superpolynomial cycles fol-
lows from previous results as soon as we prove that the family has coherent Gconj-gadgets:
Theorem 3.23 for simulation of conjunctive networks and Proposition 3.19 to show that the
family has coherent Gw-gadgets (because the identity map is obtained by composition of
COPY and AND) and then Theorem 3.21 for super-polynomial cycles.

5.1.3 Firing memory schemes

In this section, we study conjunctive networks under the firing memory update scheme. As
we pointed out in Chapter 4, this latter scheme was firstly introduced in [32] as a way to
implement decays in the dynamics of Boolean networks and as a form of extension of discrete
models in the context of applications in biology. Essentially, it is based on the concept of a
non-symmetric delay or memory, which consists on each node having an internal clock which
measures the time since which its state has changed from state 0 to 1 and fixes a minimum
amount of time steps in which the node will remain in state 1 independently of its local
dynamics. Observe that this internal clock keeps track of the transitions from 0 to 1 but
not viceversa. As a consequence, we call it a “non-symmetric” delay. If a node is waiting
because its state has recently changed from 0 to 1 and and if its local dynamics requests its
state to become 1 again (for example, in the case of conjunctive networks all its neighbors
may be at state 1) then, it resets its internal clock. Observe that, one can keep track only
on the states of the internal clock of each node (that we call the delay state or simply the
delay of each node) and deduce the original binary state of each node (if delay is at least
1 then, node is in state 1 and if not it must be in state 0). This way of interpreting states
in firing memory coincides with the projection related to the second coordinate when an
asynchronous extension for certain family of automata networks is considered. In addition,
we remark again that conjunctive networks with firing memory are also a CSAN family as it
was remarked in previous chapters.

The main result of this section is based on the results shown in [39] and are adapted in
this section to our simulation formalism. We start by showing a gadget that we use for the
main result consisting in a small network exhibiting attractors of period 3. In [39] it is shown
that an analog reasoning can be used to construct networks exhibiting linear periods (related
to the size of the network) and thus, symmetric conjunctive networks with firing memory
exhibit non-polynomial period attractors, as well as symmetric conjunctive networks under
general periodic update schemes. However, in this case we are able to show that we have far
more than that, and that conjunctive networks with firing memory are strongly universal.
We choose an alternative approach to the one followed in [39] and we show this latter result
by exhibiting coherent Gm,2-gadgets. More precisely, we show that conjunctive networks are
capable of simulating arbitrary Gm,2-networks which are strongly universal. This goes beyond
the results presented in [39] as this notion of universality directly implies the existence of
exponential period attractors. Finally, remember that the family of conjunctive networks
with firing memory is noted by Ffir,⌧

conj
.

We start by the following proposition that states the existence of a simple gadget that we
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Time/Node 0 1 2

0 (0, 0) (1, 1) (1, 2)
1 (1, 2) (0, 0) (1, 1)
2 (1, 1) (1, 2) (0, 0)
3 (0, 0) (1, 1) (1, 2)

1

20

Figure 5.2: Clock gadget implemented in a conjunctive network with firing memory. (Left
panel) The interaction graph of the clock gadget. (Right panel) The dynamics of an attractor
of period 3.

call a clock gadget. This network exhibits attractors of period 3 and will be essential to the
construction of the gadgets we will use to show the strong universality result.

Proposition 5.5 Let Ffir,2
sym-conj

be the family of symmetric conjunctive networks with firing
memory and delay parameter ⌧ = 2. There exists a network Fclock : ({0, 1} ⇥ {0, 1, 2})3 !
({0, 1}⇥ {0, 1, 2})3 2 Ffir,2

sym-conj
which has limit cycles of period 3 such that:

• F (((0, 0), (1, 1), (1, 2))) = (((1, 2), (0, 0), (1, 1))),

• F (((1, 2), (0, 0), (1, 1))) = ((1, 1), (1, 2), (0, 0)),

• F (((1, 1), (1, 2), (0, 0))) = ((0, 0), (1, 1), (1, 2)).

Proof. The interaction graph of Fclock : ({0, 1}⇥{0, 1, 2})3 ! ({0, 1}⇥{0, 1, 2})3 is depicted
in Figure 5.2. The desired property is shown in the same figure.

Now, we are in conditions to show the main result of this section. We are going to show
that Ffir,2

sym-conj
has coherent Gm,2-gadgets by using the clock gadget described above. From

now on, we are going to represent a clock gadget by a triangle and we are going to show
only the delay value of the node which is connected to the main structure of the gadget (see
Figure 5.4).

Lemma 5.6 The family Ffir,2
sym-conj

of symmetric conjunctive networks with firing memory
and delay parameter ⌧ = 2 has coherent Gm,2-gadgets.

Proof. We define FAND : ({0, 1} ⇥ {0, 1, 2})72 ! ({0, 1} ⇥ {0, 1, 2})72 and FOR : ({0, 1} ⇥
{0, 1, 2})60 ! ({0, 1} ⇥ {0, 1, 2})60 as conjunctive networks with firing memory and delay
parameter ⌧ = 2 over the graphs shown in Figure 5.4. We are going to detail every element
that defines a coherent Gm,2 gadget in order to finish the proof:
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1. We define the glueing surface C = Ci [ Co as Ci = {ci} [ {ci,1, ci,2, ci,3} and Co =

{c0o, co} [ {co0,1, co0,2, co0,3, } [ {co,1, co,2, co,3} as shown in Figure 5.3.
2. The corresponding embedded copies of C in each gadget are shown in dashed boxes in

Figure 5.4 and the functions �i

FAND,k, �o
FAND,k, �i

FOR,k and �o
FOR,k for k = 1, 2 are defined

respecting the same order shown in Figure 5.3.
3. For each x 2 {0, 1} we define the maps (see Figure 5.4):

• sx(ci) = 2x, (sx(ci,1), sx(ci,2), sx(ci,3) = (1, 0, 2);

• sx(c0o) = 1, (sx(c0o,1), sx(c
0
o,2), sx(c

0
o,3) = (2, 0, 1); and

• sx(co) = 2, (sx(co,1), sx(co,2), sx(co,3) = (0, 1, 2).

4. Context configurations are shown in Figure 5.3 for every node that is not inside a
dashed box.

5. Each gadget takes T = 9 time steps to compute the simulation of an AND or an OR
gate (See Figures 5.4 5.5, 5.6, 5.7, 5.8 and 5.9).

6. A standard trace and pseudo-orbit given by the dynamics shown in Figures 5.4 5.5,
5.6, 5.7, 5.8 and 5.9. We remark that the function k(x, y) in Figure 5.9 is defined by
k(0, 0) = 0, k(1, 0) = k(1, 1) = 2 and k(0, 1) = 1. Then, we have that k(x, y) is equal
to OR(x, y) = 2(x_ y) with the exception that OR(1, 0) = 1. Thus, since the local rule
interprets 2 and 1 as 1 (we recall that we are representing (1, 2) by 2 and (1, 1) by 1)
and any node that changes its state to 1 updates its internal clock to 2, the gadget
computes 2(x _ y) in the next step of computation, as it is shown in Figure 5.9.

As a consequence of Lemma 5.6, we have the following theorem.

Theorem 5.7 The family Ffir,2
sym-conj

of symmetric conjunctive networks with firing mem-
ory and delay parameter ⌧ = 2 is strongly universal. In particular, it is dynamically and
computationally complex.

Proof. Strong universality is a direct consequence of the capability of Ffir,2
sym-conj

to simulate
the family �(Gm,2). This fact comes directly from the latter lemma, as Ffir,2

sym-conj
is a CSAN

and has coherent Gm,2-gadgets. Thus, it simulates �(Gm,2) in constant time and linear space
(see Corollary 3.12). Strong universality comes from the fact that �(Gm,2) is strongly universal
(see Theorem 3.16). Finally, the complexity results (both dynamically and computationally)
are a consequence of Corollary 2.14 and Theorem 2.18.
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Figure 5.3: The glueing interface considered for AND/OR gadgets implemented over a con-
junctive network with firing memory. The labels given by marking functions ' are assigned
in each gadget accordingly.
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the OR gadget. The variables (x, y) 2 {0, 1}2 represent the bits that the gadget is considering
as inputs and z 2 {0, 1} is a bit that is going to serve as an input for other gadget. Total
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mark the embedded copies of the glueing interface which plays the role of output/input.
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5.2 Locally positive symmetric signed conjunctive net-
works

In this section, we study a generalization of conjunctive networks that we call locally positive
symmetric signed conjunctive networks. We denote this family by Flocally-pos. In this particular
case, we allow edges to have negative signs (which will switch the state of the corresponding
neighbor) but with a local constraint: no neighborhood in which all the connections are
negative is allowed. More precisely, a locally positive symmetric conjunctive network is a
CSAN (G,�, ⇢) in for any v 2 V (G) we have �v(q0, S) =

V
q2S

q and there exists w 2 N(v) :

⇢(vw) = Id.

We will show for this family that the threshold of universality when changing update
modes is between block sequential update schemes and local clocks update schemes. More
precisely, we show, on one hand, that the family remains dynamically constrained under block
sequential schedule, and, on the other hand, we show that a local clocks version of this family
is strongly universal as a consequence of its capability of simulating coherent Gm,2-gadgets.

5.2.1 Block sequential update schemes

Theorem 5.8 Fix any b � 1 and consider Fblock,b
locally-pos

the family of all locally positive sym-
metric signed conjunctive networks under a block sequential schedule with at most b blocks.
Any periodic orbit of any Fblock,b

locally-pos
has period 1 or 2b.

Proof. Take some configuration x in a periodic orbit. If no node changes its state in the
orbit then x is actually a fixed point. Otherwise take some node i that changes its state and
consider a maximal time interval I = [t1; t2] with t1 > 0 during which i is in state 0: 8t 2 I,
F t

(x)i = 0 but F t1�1
(x)i = F t2+1

(x)i = 1. Let j be any positive neighborhood (i.e. such
that ⇢(i, j) is the identity). First, we must have that 8t 2 I, F t

(x)j = 1 because supposing
F t

(x)i = F t
(x)j = 0 implies F t0

(x)i = F t0
(x)j = 0 for all t0 � t which would contradict the

hypothesis that i changes its state in the orbit. Thus t2 � t1 + 1 = b because it is by definition
a multiple of b and if it were strictly larger than b then node j would be updated in the
interval [t1; t2 � 1] and therefore would turn into state 0 in the interval I which has just
been proven impossible. The same argument actually shows that i and j must be updated
synchronously. Therefore it is updated at time t2 and we must have F t2+1

(x)j = 0. This
implies that F t2+b+1

(x)i = 0 and shows that the maximal time interval starting from t2 + 1

during which i is in state 1 is of length exactly b. We can then iterate this reasoning starting
at time t2 + b+ 1 and we deduce that the orbit of x at node i alternates b steps in state 0

and b steps in state 1 forever. The same holds for any node that changes it state and finally
we have shown that the orbit of x is of period 1 or 2b.

5.2.2 Local clocks update schemes

We now turn to the main construction of this section. We recall the definition of a local
clocks version of a certain family. We will call Fclock,c

locally-pos
the family of all locally positive

symmetric conjunctive networks under local clocks update schemes with clock period c. A
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local clock version of certain (G,�, ⇢) 2 Flocally-pos is a CSAN over the alphabet Qc =

Q⇥ {0, . . . , c� 1}⇥ {1, . . . , c} defined by:

�(v)((xQ)v, (xc)v, (xm)v), (xQ, xc, xm)|N(v))

=

(
(�(v)((xQ)v, xQ|N(i)), ( (xm)v

[(xc)v]) + 1 mod (xm)v, (xm)v) (xc)v = 0,

((xQ)v, ( (xm)v
[(xc)v]) + 1 mod (xm)v, (xm)v) otherwise

where  m(r) : {0, . . . , c� 1}! {0, . . . , c� 1} is such that  m[r] =

(
r if r  m� 1,

m� 1 otherwise.

Now, we want to show that coherent AND/OR gadgets can be implemented in Fclock,c
locally-pos

,
i.e. we want to show that this family has coherent Gm,2 gadgets where Gm,2 = {AND2,OR2}
where OR2 : {0, 1}2 ! {0, 1}2 is such that OR2(x, y) = (x _ y, x _ y) and the function
AND2 : {0, 1}2 ! {0, 1}2 is such that AND2(x, y) = (x ^ y, x ^ y). As a consequence, we
will have that Fclock,c

locally-pos
is strongly universal. However, in order to accomplish this task we

need a construction that we will be using for the next subsection. In particular, we need to
implement the gadgets that are shown in Figures 5.16 and 5.17. Then, we will adapt them
in order to make them work for locally positive symmetric conjunctive networks.

Since the results on general signed symmetric conjunctive networks are required first in
order to show the proof of the main theorem of this section, we will just state the main result
and then, we will show the proof of Theorem 5.9 below in the next section, for sake of clarity.
Doing so, we respect the hierarchical order between families and preserve coherence of results
at the same time.

Theorem 5.9 There exists c > 0 such that the family Fclock,c
locally-pos

of all locally positive
symmetric conjunctive networks under local clocks update scheme with clock parameter c has
coherent Gm,2-gadgets.

Corollary 5.10 below is a direct consequence of Theorem 5.9.

Corollary 5.10 There exists c > 0 such that the family Fclock,c
locally-pos

of all locally positive
symmetric conjunctive networks under local clocks update scheme with clock parameter c
is strongly universal. In particular, Fclock,c

locally-pos
is both dynamically and computationally

complex.

Proof. Proof is a direct consequence of Theorem 2.18, Corollary 2.14 and Corollary 3.18.

5.3 Symmetric signed conjunctive networks
In this section we study symmetric signed conjunctive networks with no label constraint
on edges. Formally the symmetric signed conjunctive networks family is a CSAN family in
{0, 1} in which �v : Q ⇥ 2

Q ! Q is given by �(q, S) = 0 if 0 2 S and �(q, S) = 1 if 0 62
S and for any e 2 E we have ⇢e 2 {Id, Switch} where Switch(x) = 1 � x. When an
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edge is labeled by Id we say that it is a positive edge and when it is labeled by Switch
we say that the edge is negative. We denote this family by Fsign-sym-conj and we consider
Fblock,b

sign-sym-conj
,Fclock,c

sign-sym-conj
and Fper,p

sign-sym-conj
for block sequential, local clocks and periodic

versions of this family respectively.

We start by remarking that for the parallel update scheme, Fsign-sym-conj family is not
universal since it is a type of threshold family and thus it has bounded period attractors
(see [42]). Then, a natural question is whether this remains true for other update schemes.
We are going to show that, Fsign-sym-conj becomes strongly universal from block sequential
update schemes. We recall that in Fblock,b

sign-sym-conj
, local functions are modified by adding an

internal clock. Each internal clock has the same period but a different initial shift. Thus, as
explained in Chapter 4, a block sequential scheme on a network can be viewed as an ordered
partition of its nodes into b blocks, such that the nodes belonging to a block are updated
in parallel while the blocks are iterated sequentially. More precisely, we have the following
definition:

�(v)(((xQ)v, (xb)v)(xQ, xb)|N(v)) =

(
(�(v)((xQ)v, xQ|N(i)), (xb)v � 1 mod b) if (xb)v = 0

((xQ)v, (xb)v � 1 mod b) otherwise.

5.3.1 Block sequential update schemes

In this section, we will show that Fblock,b
sign-sym-conj

is strongly universal as a consequence of its
capability to implement coherent Gm,2-gadgets. In addition, we conclude that, as a direct
consequence of the latter property, that previous family is both dynamically complex and
computationally complex. This means that for this family, complex behavior is exhibited
under block sequential update schemes.

We start by showing this less powerful result: Fblock,b
sign-sym-conj

is able to simulate Gw-networks.
This is only a way to motivate our main result and to show how key structures work in a
particular simple context. We do not use exactly this result in the actual proof of the main
theorem but we apply the same type of ideas since the related structures are part of the
gadgets we construct which have only negative labels, i.e. each edge is labeled by the Switch
function.

Lemma 5.11 The familly Fblock,3
sign-sym-conj

of all signed symmetric conjunctive networks under
block sequential update schemes of at most 3 blocks has coherent Gw-gadgets.

Proof. We define a gadget simulating Id by considering two copies of the NOT gadget pre-
sented in Figures 5.10 and 5.11. Observe that this gadget has 3 central nodes (marked inside
a thick dotted rectangle in Figures 5.10 and 5.11) together with 2 copies of a 4 nodes cycle
graph. Generally speaking, the dynamics on these cycle graphs works as a clock which al-
lows information to flow through the central part in only one direction (from left to right).
In addition, they allow the gadget to erase information once it has been transmitted. This
latter property allows the gadget to clean itself in order to receive new information. The wire
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Figure 5.10: One step of the dynamics of the NOT part of AND/OR gadget implemented
by a symmetric signed conjunctive network. Dashed ellipses and parallelograms represent
blocks. Each block is labeled by its corresponding number (1, 2 and 3) in a gray colored
circle. Thick dashed rectangle highlights nodes in the central part. All edges are negative.
Each time step t is taken after three time steps (one for each block). Total simulation time
is T = 9.
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NOT NOT

Figure 5.12: Wire gadget implemented on a signed symmetric conjuntive network. 2 copies
of NOT gadget are combined in order to form a wire. Simulation time is T = 6⇥ 3.

gadget is composed by two copies of the NOT gadget as is presented in Figure 5.12. Since
this gadget is composed by two copies of the NOT gadget, this gadget is defined by a path
graph with 6 central nodes together with 2 ⇥ 2 ⇥ 3 = 12 cycle graphs (two copies for each
node). We enumerate nodes in the central part from left to right by the following ordering:
{0, 1, 2, 3, 4, 5}. Additionally, since the functioning of each copy of the NOT gadget is based
in an ordered partition of 3 blocks, we take the union of the corresponding blocks on each
partition in order to define 3 larger blocks for the wire gadget. For one of this larger blocks
we use the notation {0, 1, 2}. Thus, observe that each wire takes T = 6⇥ 3 = 18 time steps
in order transport the information. This is because for each round of 3 time steps in which
we update each block, we make the signal pass through exactly one node. We define the
glueing interface as Ci = {i} and Co = {o}. We map input and output in the following way:
�i
(i) = 1, �i

(o) = 0, �o
(i) = {5} �o

(o) = {4}. Note that in each case the neighborhood of
output and input part is completely contained in Ci and Co respectively and also the image
of C by functions � is always the same (two nodes path graph). Thus, the glueing interface
satisfies conditions of Lemma 3.8. Now we enumerate the remaining elements required by
Definition 3.9:

• State configurations sq(i) = (q, 0) and sq(o) = (q, 1) for any q 2 {0, 1}.
• Context configurations are given in Figure 5.10 as well as the iteration order which

defines the blocks.
• Standard trace and pseudo orbit for nodes {0, 1, 4, 5} are defined in Figure 5.10 and

Figure 5.11.

We are now in conditions to introduce the main result of this section:

Lemma 5.12 The familly Fblock,3
sign-sym-conj

of all signed symmetric conjunctive networks under
block sequential update schemes of at most 3 blocks has coherent Gm,2-gadgets.

Proof. We will show that the gadgets in the Figures 5.16 and 5.17 are coherent Gm,2-gadgets.
Note that both these gadgets are made of several wires made of NOT gadgets (we call the
two in the left hand side of the figure input wires and the other two at the right hand side
output wires) and a computation gadget. Observe that, each of these structures (wires and
computation gadget) needs exactly 3 blocks. In addition, note that in Table 5.4 the dynamics
of the 4-cycles that are attached to each node is shown. We recall that the function of
these clocks is to allow information to flow in one direction only (all the interactions are
symmetric so this is not straightforward) and to erase information once it has been copied
or processed by the nodes in the gadget. We use the following notation in order to represent
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nodes in these structures: cs,i,j,p where s is the number of the NOT gadget (a 3-node-path
together with two 4-cycles for each node, see Figure 5.13) to which the cycle is attached, so
s 2 {1, 2, 3, 4, 5, 6, 7, 8, 9} where the order is taken from left to right (for example in Figure
5.16 the copy associated to (v1, v2, v3) comes first then, (v0

1
, v0

2
, v0

3
), then (v4, v5, v6) and so

on). Additionally, i is in the position of the cycle in the NOT block, so i 2 {1, 2, 3}, j is the
position of the node relative to the 4-cycle graph considered in counter clockwise order (see
Figure 5.13), so j 2 {1, 2, 3, 4} and p is the position of the cycle in the central structure of
the gadget. Observe that, since there are two copies for each node, we denote them by upper
and lower so p 2 {u, l}. Since input wires and output wires are needed to be updated at the
same time and are independent (we have two copies for each one) we combine their blocks
in the obvious way (we take the union of pairs of blocks that have the same update order).
More precisely, we combine 3 ⇥ 9 blocks of each particular part (there are 8 copies of NOT
and one computation gadget having 3 blocks each one) in order to define again only 3 blocks.
The precise definition, using notation shown in Figures 5.16 and 5.17, is the following:

• B0 =

12S
i=1

{vi} [ {v0
i
} [

S
s,i
{cs,i,1,l, cs,i,2,l};

• B1 =
S
s
{cs,1,3,u, cs,1,4,u, cs,2,1,u, cs,2,2,u, cs,3,1,u, cs,3,2,u}; and

• B2 =
S
s,i
{cs,i,3,l, cs,i,4,l}.

Now we are going to use information in Tables 5.2, 5.3 and 5.4 in order to show that these
gadgets satisfy the conditions of Definition 3.9. Observe that, on the one hand, for the OR
gadget (see Figure 5.16), input wires compute the result in 3⇥ 3 (it needs to carry the signal
through the three nodes in the wire and each of this intermediate steps takes three steps, one
for each block) time steps and computation gadget takes 3 ⇥ 3 as well. On the other hand,
for the AND gadget (see Figure 5.17) input wires compute the result in 3⇥ 6 time steps. We
define the associated network as FAND : ({0, 1}⇥ {0, 1, 2})15⇥2⇥4 ! ({0, 1}⇥ {0, 1, 2})15⇥2⇥4

and FOR : ({0, 1}⇥ {0, 1, 2})15⇥2⇥4 ! ({0, 1}⇥ {0, 1, 2})15⇥2⇥4. In fact we have that:

1. There is a unique glueing interface given by C = Ci [ Co where:
• Ci = {i} [ {a(i, 1), a(i, 2), a(i, 3), a(i, 4)} [ {a0(i, 1), a0(i, 2), a0(i, 3), a0(i, 4)}; and
• Co = {o0, o}[ {a(o0, 1), a(o0, 2), a(o0, 3), a(o0, 4)}[ {a(o, 1), a(o, 2), a(o, 3), a(o, 4)}[
{a0(o0, 1), a0(o0, 2), a0(o0, 3), a0(o0, 4)} [ {a0(o, 1), a0(o, 2), a0(o, 3), a0(o, 4)}

We define the labelling functions �i

AND,k, �o
AND,k, �i

OR,k, �o
OR,k (for the sake of simplicity

we show the definition for the AND gadget since the one for the OR gadget is completely
analogous) for k = 1, 2 as:

• �i

AND,1(i) = v1, �i

AND,1(o
0
) = v2 and �i

AND,1(o) = v3;

• �i

AND,1(a(i, r)) = c1,1,r,u, �i

AND,1(a
0
(i, r)) = c1,1,r,l for r = 1, 2, 3, 4, where 1 corre-

sponds to the NOT gadget which starts with v1 in Figure 5.17.
• �i

AND,1(a(o
0, r)) = c1,2,r,u, �i

AND,1(a
0
(o0, r)) = c1,2,r,l for r = 1, 2, 3, 4, where 1 corre-

sponds to the NOT gadget which starts with v1 in Figure 5.17;
• �i

AND,1(a(o, r)) = c1,3,r,u, �i

AND,1(a
0
(o, r)) = c1,3,r,l for r = 1, 2, 3, 4, where 1 corre-

sponds to the NOT gadget which starts with v0
1

in Figure 5.17;
• �i

AND,2(i) = v0
1
, �i

AND,2(o
0
) = v0

2
and �i

AND,2(o) = v0
3
;
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• �i

AND,2(a(i, r)) = c10,1,r,u, �i

AND,1(a
0
(i, r)) = c10,1,r,l for r = 1, 2, 3, 4, where 2 corre-

spond to the NOT gadget which starts with v0
1

in Figure 5.17;
• �i

AND,2(a(o
0, r)) = c10,2,r,u, �i

AND,1(a
0
(o0, r)) = c10,2,r,l for r = 1, 2, 3, 4, where 2

corresponds to the NOT gadget which starts with v0
1

in Figure 5.17;
• �i

AND,2(a(o, r)) = c10,3,r,u, �i

AND,1(a
0
(o, r)) = c10,3,r,l for r = 1, 2, 3, 4, where 2 corre-

sponds to the NOT gadget which starts with v0
1

in Figure 5.17.
• �o

AND,1(i) = v10, �o
AND,1(o

0
) = v11 and �o

AND,1(o) = v12;

• �o
AND,1(a(i, r)) = c5,1,r,u, �o

AND,1(a
0
(i, r)) = c5,1,r,l for r = 1, 2, 3, 4, where 8 corre-

sponds to the NOT gadget which starts with v10 in Figure 5.17.
• �o

AND,1(a(o
0, r)) = c5,2,r,u, �o

AND,1(a
0
(o0, r)) = c5,2,r,l for r = 1, 2, 3, 4, where 8 corre-

sponds to the NOT gadget which starts with v10 in Figure 5.17;
• �o

AND,1(a(o, r)) = c5,3,r,u, �o
AND,1(a

0
(o, r)) = c5,3,r,l for r = 1, 2, 3, 4, where 8 corre-

sponds to the NOT gadget which starts with v10 in Figure 5.17;
• �o

AND,2(i) = v0
10

, �o
AND,2(o

0
) = v0

11
and �o

AND,2(o) = v0
12
;

• �i

AND,2(a(i, r)) = c50,1,r,u, �i

AND,2(a
0
(i, r)) = c50,1,r,l for r = 1, 2, 3, 4, where 9 corre-

spond to the NOT gadget which starts with v0
10

in Figure 5.17;
• �o

AND,2(a(o
0, r)) = c50,2,r,u, �o

AND,2(a
0
(o0, r)) = c50,2,r,l for r = 1, 2, 3, 4, where 9

corresponds to the NOT gadget which starts with v10 in Figure 5.17;
• �o

AND,2(a(o, r)) = c50,3,r,u, �o
AND,2(a

0
(o, r)) = c50,3,r,l for r = 1, 2, 3, 4, where 9 corre-

sponds to the NOT gadget which starts with v0
10

in Figure 5.17.
2. State configurations are defined for each q 2 {0, 1} as sq(i) = (q, 1) and sq(o0) = sq(o) =

(0, 1) and the state configuration of the nodes in the clocks i.e. the ones labeled by a
are constant and shown in Table 5.4. The block number for each of these nodes can is
the same as the original NOT gadget 5.10.

3. Context configurations are described in Tables 5.2, 5.3 and 5.4 as the ones related to
the cycles of length 4 connected to central path of the gadgets and nodes in the path
which are not part of the glueing interface.

4. Standard trace is defined in Tables 5.2 and 5.3 (which contain the information related
to the dynamics of nodes v1, v01, v2, v

0
2
, v3, v03, v10, v

0
10
, v11, v011, v12, v

0
12

) and in Table 5.4
(which contains the dynamics of the nodes in the 4-cycles).

5. Simulation constant is T = 3⇥ 12 as it is shown in Tables 5.2,5.3 and
6. Pseudo-orbit is given by the dynamics shown in in Tables 5.2, 5.3, and 5.4 where

x, y, x0, y0, z are variables.

Corollary 5.13 The familly Fblock,2
sign-sym-conj

of all signed symmetric conjunctive networks un-
der block sequential update schemes with at most 3 blocks is strongly universal. In particular,
it is both dynamically and computationally complex.

Proof. Strong universality holds from the fact that family is capable of simulating Gm,2 in
linear space and constant time (see Corollary 3.18). The family is dynamically and com-
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cs,i,1,p

cs,i,2,p

cs,i,3,p

cs,i,4,p

Figure 5.13: Scheme of labeling for 4-cycles in AND/OR gadgets. Notation is given by the
following guidelines: s represent the associated group of three nodes, second two coordinates
indicate its position relative the group of three nodes and its position in the 4-cycle graph
(considering counter clock-wise order), and u, l stands for upper or lower according to its
position in the gadget.

Node/Time v1 v2 v3 v4 v5 v6 v0
1

v0
2

v0
3

v0
4

v0
5

v0
6

w1 w2 w3 v7 v8 v9 v10 v11 v12 v0
7

v0
8

v0
9

v0
10

v0
11

v0
12

0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z 0 0
3 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 0 z 0 0 1 0 0 z 0
6 0 0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 z
9 1 0 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
12 0 0 0 0 x 0 0 0 0 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 0 0 x 0 0 1 0 0 y 0 0 1 0 0 1 0 0 1 0 1 0 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 x ^ y 0 0 0 0 0 0 0 0 0 0 0 0 0 0
21 0 1 0 0 1 0 0 1 0 0 1 0 0 x ^ y 0 0 1 0 0 1 0 0 1 0 0 1 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x ^ y 0 0 0 0 0 0 0 0 0 0 0 0
27 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ^ y 0 0 1 0 0 x ^ y 0 0 1 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x ^ y 0 0 0 0 0 x ^ y 0 0 0 0
33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x ^ y 0 0 1 0 0 x ^ y 0 0 1
36 x’ 0 0 0 0 0 y’ 0 0 0 0 0 0 0 0 0 0 0 x ^ y 0 0 0 0 0 x ^ y 0 0

Table 5.2: Dynamics of the central gadgets in an AND gadget implemented over a symmetric
signed conjunctive network. Notation is the same of the one used in Figure 5.17

putationally complex as a direct consequence of strong universality (see Theorem 2.18 and
Corollary 2.14).

We are now in conditions to resume the proof of Theorem 5.9. Let us recall its statement
and provide the related proof.

There exists c > 0 such that the family Fclock,c
locally-pos

of all locally positive
symmetric conjunctive networks under local clocks update scheme with clock
parameter c has coherent Gm,2-gadgets.

Proof. We start by observing that the gadgets in Figures 5.16 and 5.17 can be implemented
in Fclock,c

locally-pos
for some c. This can be easily done by adding a positive node to each node

in the gadget. The main idea here is that each of these artificial positive nodes will play no
role in calculations and will stay in state 1 most of the time. In fact, it suffices that these
positive neighbors reach state 1 before critical steps of computation are performed inside the
gadget.

In order to illustrate this idea, let us consider two different cases and analyze why com-
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Figure 5.14: One step of the dynamics of the computation gadget inside AND/OR gadget
implemented by a symmetric signed conjunctive network. Dashed ellipses and parallelograms
represent blocks. Each block is labeled by its corresponding number (1, 2 and 3) in a gray
colored circle. Thick dashed rectangle highlights nodes in the central part. All edges are
negative. Each time step t is taken after three time steps (one for each block). Total
simulation time is T = 9.
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Figure 5.15: Last two steps of the dynamics of the computation gadget inside AND/OR
gadget implemented by a symmetric signed conjunctive network. Dashed ellipses and paral-
lelograms represent blocks. Each block is labeled by its corresponding number (1, 2 and 3) in
a gray colored circle. Thick dashed rectangle highlights nodes in the central part. All edges
are negative. Each time step t is taken after three time steps (one for each block). Total
simulation time is T = 9.
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v0
1

v0
2 v0

3

w1 w2 w3

v0
7

v0
8 v0

9
v0
4

v0
5

v0
6

NOT

NOT NOT

NOT

Computation gadget

OR

v1 v2 v3
v7 v8 v9v4 v5 v6

NOT NOT

v10 v11 v12

NOT

v0
10

v0
11 v0

12

NOT

Figure 5.16: OR gadget structure. In order to produce a OR gadget, wire gadget and NOT
gadget are combined with the computation part depicted in Figures 5.14 and 5.15.

v0
9

v0
8

v0
7

v9v8v7

w3w2w1

v0
3

v0
2

v0
1 v0

6
v0
5

v0
4

v3v2v1 v6v5v4

NOTNOTNOT

NOT

Computation gadget

NOTNOT
AND

v0
12

v0
11

v0
10

NOT

v12v11v10

NOT

Figure 5.17: AND gadget structure. In order to implement an AND gadget, wire gadget and
NOT gadget are combined with the computation part depicted in Figures 5.14 and 5.15.
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Node/Time v1 v2 v3 v0
1

v0
2

v0
3

w1 w2 w3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v0
4

v0
5

v0
6

v0
7

v0
8

v0
9

v0
10

v0
11

v0
12

0 x 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 z 0 0
3 0 x 0 0 y 0 0 1 0 0 1 0 0 1 0 0 z 0 0 1 0 0 1 0 0 z 0
6 0 0 x 0 0 y 0 0 0 0 0 0 0 0 0 0 0 z 0 0 0 0 0 0 0 0 z
9 1 0 0 1 0 0 x _ y 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0
12 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
15 0 0 1 0 0 1 0 0 x _ y 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0 1 0
18 0 0 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0 0 0
21 0 1 0 0 1 0 0 1 0 0 x _ y 0 0 1 0 0 1 0 0 x _ y 0 0 1 0 0 1 0
24 0 0 0 0 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0
27 1 0 0 1 0 0 1 0 0 1 0 0 x _ y 0 0 1 0 0 1 0 0 x _ y 0 0 1 0 0
30 0 0 0 0 0 0 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0 0 0 x _ y 0 0 0 0
33 0 0 1 0 0 1 0 0 1 0 0 1 0 0 x _ y 0 0 1 0 0 1 0 0 x _ y 0 0 1
36 x’ 0 0 y’ 0 0 0 0 0 0 0 0 0 0 0 x _ y 0 0 0 0 0 0 0 0 x _ y 0 0

Table 5.3: Dynamics for central gadgets in OR gadget implemented over a symmetric signed
conjunctive network. Notation is the same of the one shown in Figure 5.16

Node/Time cs,1,1,u cs,1,2,u cs,1,3,u cs,1,4,u cs,2,1,u cs,2,2,u cs,2,3,u cs,2,4,u cs,3,1,u cs,3,2,u cs,3,3,u cs,3,4,u
0 0 0 1 1 0 0 1 1 1 1 0 0
3 1 1 0 0 0 0 0 0 0 0 1 1
6 0 0 0 0 1 1 0 0 0 0 0 0
9 0 0 1 1 0 0 1 1 1 1 0 0
Node/Time cs,1,1,l cs,1,2,l cs,1,3,l cs,1,4,l cs,2,1,l cs,2,2,l cs,2,3,l cs,2,4,l cs,3,1,l cs,3,2,l cs,3,3,b cs,3,4,b
0 1 1 0 0 0 0 0 0 0 0 1 1
3 0 0 1 1 1 1 0 0 0 0 0 0
6 0 0 0 0 0 0 1 1 1 1 0 0
9 1 1 0 0 0 0 0 0 0 0 1 1

Table 5.4: Dynamics for context in AND/OR gadgets implemented on symmetric signed
conjunctive networks.

putation gadget still works in this case:

1. Nodes in 4-cycles: observe that these nodes have a fixed trajectory that is indepen-
dent on the input that computation part is handling. Thus, it suffices to note that
each node in the context effectively changes its state (they are in an attractor of period
3 ⇥ 3 as it is shown in Figure 5.4). As a consequence of this latter observation, we
can set the local period of each positive neighbor so it is updated when its neighbor in
the clock is in state 1. More precisely, we fix the corresponding local period value to
9 and correctly initialize them so each positive neighbor is updated exactly when their
correspondent node is in state 1.

2. Central nodes: Observe that, in this case, we have that in the pseudo-orbit given in
Table 5.2 and Table 5.3 each node eventually reaches the state 1 independently from the
value of x, y, z, x0 and y0. Thus, as same as the nodes that are in the 4-cycles, it suffices
to set up the local clock of each positive neighbor in order to be updated while its
neighbor in the gadget is in state 1. More precisely, it suffices to set up clocks following
values in Table 5.2 and Table 5.3 and set clocks to be updated every 18 time-steps.
Note that this works since nodes in the central part are in the first block so positive
neighbors are updated at the same time as its neighbors but only when nodes in the
gadget are in state 1.

Thus, gadgets in Figures 5.16 and 5.17 can be implemented as same as we did for general
symmetric signed conjunctive networks and the desired result holds.
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5.4 Symmetric min-max networks
In this section, we study min-max networks. This is also a particular CSAN family in
which local functions take the maximum or minimum value of some set of states. More
precisely, a min-max network with ordered alphabet Q is a CSAN (G,�, ⇢) characterized
by local functions �v(q, S) = minS or �v(q, S) = maxS for every v 2 V (G) and edge
labels ⇢e = {Id} for each e 2 E(G). Note that in the particular case in which Q = {0, 1}
we have �v(q, S) =

W
x2S

x or �v(q, S) =
V
x2S

s for every v 2 V (G). We call this particular

CSAN family the family of AND-OR networks and we write FAND-OR, Fblock,b
AND-OR

, Fclock,c
AND-OR

and Fper,p
AND-OR

to denote different update schemes as we did before. We use the notation
FMIN-MAX, Fblock,b

MIN-MAX
, Fclock,c

MIN-MAX
and Fper,p

MIN-MAX
for any alphabet Q.

In the Boolean case, max and min functions are threshold functions because

min(x1, . . . , xk) = 1,
X

xi = k

and
max(x1, . . . , xk) = 0,

X
xi = 0.

Therefore, their periodic orbits are of length at most 2 by [42]. In the non-Boolean case, they
are not threshold functions. However, as shown by the following lemma the general alphabet
case can be understood through multiple factorings onto the Boolean case.

Lemma 5.14 Let n � 2 and let A = (G,�, ⇢) be a min-max automata network with alphabet
Q, |Q| > 1, such that |V (G)| = n. Let F be a global rule for A. There exists an AND-
OR automata network A⇤

= (G,�, ⇢) and a global rule F ⇤
: {0, 1}n ! {0, 1}n such that

for every ↵ 2 Q the function ⇡↵
: Qn ! {0, 1}n is such that ⇡↵ � F = F ⇤ � ⇡↵ where

⇡↵
(x)i =

(
1 if xi � ↵

0 else.

Proof. Let us take F ⇤ as the global function given by the same min/max labels than F but
considering the fact that in the alphabet {0, 1} we have min(x, y) = x ^ y and max(x, y) =
x _ y. Fix ↵ 2 Q and let x 2 Qn. Additionally, let us fix i 2 V . Suppose that F (x)i =

max(xi1 , . . . , xik
) then F ⇤

(⇡↵
(x))i =

kW
s=1

⇡↵
(x)is where N(i) = {i1, . . . ik}. Note that

⇡↵
(F (x))i =

(
1 if max(xi1 , . . . , xik

) � ↵,

0 otherwise.

Then, it is clear that we have ⇡↵
(F (x))i = 1 if and only if ⇡↵

(x)is = 1 for some s 2 {1, . . . , k}

and thus if and only if
kW

s=1

⇡↵
(x)is = 1 which is equivalent to F ⇤ � ⇡(x)i = 1. The case in

which F (x)i = min(xi1 , . . . , xik
) is analogous since we have that F ⇤

(⇡↵
(x))i =

kV
s=1

⇡↵
(x)is .

We deduce that periodic orbits in MIN-MAX networks are of length at most 2 and therefore
the family cannot be universal.
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Corollary 5.15 Let F be any MIN-MAX network over alphabet Q and x any limit config-
uration (i.e. such that F t

(x) = x for some t). Then, F 2
(x) = x. Therefore the family of

MIN-MAX networks cannot be universal (considered under the parallel update scheme).

Proof. We show that F 2
(x)i = xi for any node i. Let q be the maximum state appearing

in the sequence (F t
(x)i)t2N. Using Lemma 5.14 with projection ⇡q and the fact that peri-

odic orbits of AND-OR networks have period at most 2 we deduce that if F t
(x)i = q then

F t+2
(x)i = q for some t. Suppose without loss of generality that xi = q. If F (x)i = q we are

done because then (F t
(x)i)t2N is constant equal to q. Otherwise let q0 be the minimum state

appearing in the sequence (F t
(x)i)t2N. Necessarily q0 < q, and using again Lemma 5.14 with

projection ⇡q0 we deduce that if F t
(x)i = q0 then F t+2

(x)i = q0. With our assumption that
xi = q it must be the case that F 2k+1

(x)i = q0 for some k � 0. From the previous facts and
periodicity of the orbit of x we deduce that F t

(x)i is q when t is even and q0 when t is odd.
The claim about non-universality follows from Theorem 2.18.

5.4.1 Block sequential update schemes

We have shown that MIN-MAX networks are very limited under the parallel update mode.
We now consider them under block sequential update schedules. We actually show that
AND-OR networks under such update modes can simulate AND-NOT networks and therefore
inherit the universality property. Since MIN-MAX networks on any alphabet Q with |Q| > 1

simulate Boolean AND-OR networks (by just restricting their alphabet to size 2), we only
focus on AND-OR networks.

Strong universality

As we did for Fblock,b
sign-sym-conj

we will show that Fblock,b
AND-OR

is also strongly universal as a direct
consequence of the fact that we can simulate Fblock,b

sign-sym-conj
in linear space and constant time.

We accomplish this by using again the coding trick of “double railed logic". In fact, given
the interaction graph of a signed symmetric conjunctive network having n nodes, we simply
double each node and thus, our simulator has 2n nodes. Simulation is made in real time so
T = 1. We precise these ideas in the following lemma:

Lemma 5.16 Let Fper,p
AND-OR

be the family of AND-OR networks updated according to some
arbitrary periodic update scheme of period p. Let T be the constant function equal to 1 and
S : N! N be defined as S(n) = 2n. Then, we have that Fper,p

sign-sym-conj
4S

T Fper,p
AND-OR

.

Proof. Let us a fix a periodic update scheme of period p 2 N. Let us take the graph rep-
resentation of some arbitrary network (G,�, ⇢) in Fper,p

sign-sym-conj
. We construct a network in

Fper,p
AND-OR

capable to simulate the latter network in the following way: first, we represent
each state q 2 {0, 1} by (q, q) where q = 1 � q; then, for each v 2 V (G) we consider two
nodes v0, v. By doing this, we store the original state of v in v0 and v stores its complement.
More precisely, we replace each node in the network by the gadget in Figure 5.18. As it is
shown in the same figure, we define �0(v0) ⌘ AND and �0(v) ⌘ OR. Let us define the set
V 0

= {(v0, v) : v 2 V }. We define a set of edges in V 0 denoted E 0 as follows: for each edge
(u, v) in E(G) we add the following edges depending on ⇢((u, v)):
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• if ⇢((u, v)) = Id, we add the edges (u0, v0) and (u, v).

• if ⇢((u, v)) = Switch, we add the edges (u0, v) and (u, v0).

Note that this immediately defines a local rule for the simulator network that we call f 0
w for

each w 2 V 0. We show that this local rule effectively simulates (G,�, ⇢). More precisely, let
us call fu the local rule of (G,�, ⇢) for each u 2 V (G). In addition, let us call N(u)+ to the
neighborhood of u in G such that any v 2 N(u)+ satisfies ⇢((u, v)) = Id and also let us define
N(u)� such that v 2 N(u)� if and only if ⇢((u, v)) = Switch. Finally, for each x 2 {0, 1}n let
us call x0 2 {0, 1}2n the configuration defined by x0

u0 = xu and x0
u = xu, for each u 2 V (G).

Fix u 2 V, we have for (u0, u) the following result:

• f 0
u0(x0|N(u0)) = (

V
v02N

G0 (u0):v2N(u)+

x0
v0)^(

V
v2N

G0 (u0):v2N(u)�

x0
v) = (

V
v2N(u)+

xv)^(
V

v2N(u)�

xv) =

fu(x)

• f 0
u(x

0|N(u)) = (
W

v2N
G0 (u):v2N(u)+

x0
v) _ (

W
v02N

G0 (u):v2N(u)�

x0
v) = (

W
v2N(u)+

xv) _ (
W

v2N(u)�

xv) =

(
V

v2N(u)+

xv) ^ (
V

v2N(u)�

xv) = fu(x)

And thus, we have that x0
u0 ! fu(x) and x0

u ! fu(x).

Finally, in order to be coherent with the given periodic update scheme, it suffices to
define an update scheme with period p such that the nodes (u0, u) are updated at each time
step at which u 2 V (G) is. We conclude that the network (G0,�0, ⇢0) 2 Fper,p

AND-OR
(where

⇢(u, v) = Id for each (u, v) 2 E), simulates (G,�, ⇢) in constant time T = 1 and linear space
S(n) = 2n.

Theorem 5.17 There exists some b > 0 such that the familly Fblock,b
AND-OR

of all AND-OR
networks under block sequential update scheme of block parameter b is strongly universal. In
particular, Fblock,b

AND-OR
is dynamically and computationally complex.

Proof. The result is a direct consequence of Lemma 5.16 and strong universality of Fblock,b
sign-sym-conj

given by Corollary 5.13.
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Figure 5.18: Gadget used for simulation of a symmetric signed conjunctive network with ar-
bitrary periodic update scheme implemented over an AND-OR network with periodic update
scheme.
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Chapter 6

Freezing dynamics

The main aim of this section is to study the dynamics of freezing automata networks.
Roughly, a freezing automata network is an automata network in which the alphabet is
equipped with a partial order and the global function is non-decreasing for this order. This
section is organized in two subsections:

1. in the first subsection a general framework that captures several classical dynamical
decision problems is defined. In particular, this task is accomplished by introduc-
ing a model checking problem called SPEC, which asks for the existence of an orbit
of a freezing automata network that satisfies certain local constraints in the trace of
each node. In addition, a set of three main parameters are identified, grouped in two
categories: interaction graph parameters (maximum degree and treewidth of interac-
tion graph) and the alphabet size. In this context, a fast parallel algorithm to solve
general SPEC problem is presented. Then, it is shown that latter decision problem,
when parametrized using the previous parameter set is not fixed parameter tractable
W[2] = FPT (which is considered unlikely). Finally, the effect of treewidth param-
eter is studied by considering latter problem restricted to families of sufficiently large
treewidth. More precisely, it is shown that in this context latter classical dynamical
decision problems are complete in their respective classes.

2. The second subsection goes further in the study of non-deterministic freezing automata
networks by considering a disease spread model based in the well-known Bootsrap Per-
colation model. We particularly address the problem of computing the probability of
contagion for some fixed node in the network, and evaluate how the network topol-
ogy impacts the computational complexity of the latter task (addressed as a counting
problem). In this context, the previous problem is seen as a counting version of the
prediction problem. Thus, a parallel between it and previous results on the prediction
problem in the context of this model is proposed.
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6.1 Specification checking problem: a canonical model
checking problem to capture many classical dynami-
cal problems.

The present subsection aims at understanding what are the key parameters which influence
the overall computational complexity of finite freezing automata networks. A natural first
parameter is the alphabet size, since automata networks are usually considered as simple
machines having a number of states that is independent of the size of the network. In
addition, in the case of freezing dynamics, the alphabet is also a bound for the number of
changes that some node can exhibit in an arbitrary orbit. For the same reasons, a second
parameter that we consider is the maximum degree of the network, as a simple machine
might not be able to handle the information incoming from a large number of neighbors.
The last parameter is inspired by the results which show some computational limitations
between freezing automata networks defined over bi-dimensional grids and one-dimensional
grids [66, 46, 77] (i.e. paths or rings). Since Courcelle’s theorem on MSO properties [17],
graph parameters like treewidth [71] are used to measure a sort of distance to a tree graph
and indirectly an indication of the largest grid minor structure. Indeed, it is known that
paths or rings have constant treewidth, and the treewidth of a graph is polynomially related
to the size of its largest grid minor [16]. Therefore treewidth is a natural parameter for our
study.

The present subsection is divided in several subparts organized as follows:

Localized trace properties. We define a general model checking problem, called SPEC, that
asks whether a given freezing automata network has an orbit that satisfies a given set of local
constraints on the trace at each node (Problem 6.1.1). It takes advantage of the sparse orbits
of freezing automata networks (a bounded number of changes per node in any orbit) which
allow to express properties in the temporal dimension in an efficient way. We show thanks to
a kind of pumping lemma on orbits (Lemma 6.2) that it captures many standard problems
in automata network theory, among which we consider four ones: prediction [33, 31, 46],
nilpotency [70, 27, 51], predecessor [52, 45] and asynchronous reachability [21]. Note that
since Boolean circuits are easily embedded into freezing automata networks, our framework
also includes classical problems on circuit: circuit value problem is a sub-problem of our
prediction problem (see Theorem 6.21) and SAT is a sub-problem of our nilpotency problem
(see Remark 6.4 and Theorem 6.19).

Fast parallel algorithm. We present a NC algorithm that solves our general model checking
problem SPEC on any freezing automata network with bounded number of states and graph
with bounded degree and bounded treewidth (Theorem 6.13). It solves in particular the four
canonical problems above in NC for such graphs, as well as circuit value problem and SAT
(see [73, 11] for better known results for these specific problems). Note that our algorithm
is uniform in the sense that, besides the graph, both the automata network rule and the
constraint to test are part of the input and not hidden in an expensive pre-processing step.
As suggested above, temporal traces of the evolution of a bounded set of nodes have a space
efficient representation. However, it is generally hard to distinguish real orbits projected on
a set of nodes from locally valid sequences of states that respect the transition rule for these
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nodes. Our algorithm exploits bounded treewidth and bounded degree to solve this problem
via dynamic programming for any finite set of nodes. In the deterministic case, our algorithm
can completely reconstruct the orbit from the initial configuration.

Hardness results. In light of Courcelle’s theorem, one might think that our algorithm solv-
ing SPEC could be directly obtained (or even improved) by simply expressing the problem in
MSOL (monadic second order logic) [17]. We show that it is impossible, unless W[2] = FPT

(which is unlikely). More precisely, we show that the version of our model checking problem
where treewidth is the unique parameter and alphabet and degree are fixed is W[2]-hard
(Corollary 6.16), and thus it is not believed to be fixed parameter tractable. We obtain a
similar result on a slight variation of our problem when the alphabet is the unique parameter
and treewidth and degree are fixed (Corollary 6.17). In addition, one might also interpret
SPEC as a particular instance of the Constraint Satisfaction Problem (CSP) which consists
in some sort of generalization of SAT that considers a more versatile variable constraints.
However, as we remark in the next sections, this approach does not provide any improvements
compared to our algorithm.

Finally, we show that the four problems mentioned before, (namely prediction, nilpotency,
predecessor and asynchronous reachability) are complete in their respective class (respec-
tively P-complete and coNP-complete for the first two, and NP-complete for the last one)
when we restrict the input graphs to a constructible family of sufficiently large treewidth
(Theorems 6.19, 6.20 and 6.21). To do so, we depend on an efficient algorithm to embed ar-
bitrary (but polynomially smaller) digraph into our input graph (Lemma 6.18), which relies
on polynomial perfect brambles that can be efficiently found in graphs with polynomially
large treewidth [55] (here by polynomial we mean ⌦(n↵

) for some positive real number ↵).
This embedding allows to simulate a precise dynamics on the desired digraph inside the input
graph and essentially lifts us from the graph family constraint as soon as the treewidth is large
enough. Moreover, for problems prediction (Theorem 6.21), predecessor and asynchronous
reachability (Theorem 6.20) we achieve the hardness result with a fixed uniform set-defined
rule (i.e. a rule that change the state of each node depending only on the set of states seen in
the neighborhood) which is not part of the input. This shows that there is a uniform isotropic
universally hard rule for these problems, which makes sense for applications like bootstrap
percolation, epidemic propagation or cristal growth where models are generally isotropic and
spatially uniform.

6.1.1 Localized Trace Properties

In this section we formalize the general decision problem we consider on our dynamical sys-
tems. Freezing automata networks have temporally sparse orbits, however the set of possible
configurations is still exponential. Our formalism takes this into account by considering prop-
erties that are spatially localized but without restriction in their temporal expressive power.
More precisely, we introduce the concept of a specification.

Definition 6.1 Let t be a natural number and A = (G = (V,E), F ) a non-deterministic
freezing automata network in some partially-ordered alphabet Q. A (Q, t,A)-specification (or
simply a t-specification when the context is clear) is a function Et : V ! P(Qt

) such that,
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for every v 2 V , the sequences in Et(v) are non-decreasing.

Pumping lemma on orbits. The following lemma shows that for all freezing automata
networks the set of orbits of any length restricted to a set of nodes is determined by the
set of orbits of fixed (polynomial) length restricted to these nodes. Moreover, if the set of
considered nodes is finite, then the fixed length can be chosen linear.

Lemma 6.2 Let Q be an alphabet, V a set of nodes with |V | = n and U ✓ V . Let L =

|U ||Q|(|Q|n + 1). Then if two non-deterministic freezing automata networks over QV have
the same set of orbits restricted to U of length L then they have the same set of orbits
restricted to U of any length.

Proof. Any orbit restricted to U of any length can be seen as a sequence of elements of QU

and, since the considered automata network is freezing, there are at most |U ||Q| changes in
this sequence so that it can be written pt1

1
pt2
2
· · · ptmm with m  |U ||Q|, pi 2 QU and ti 2 N. The

key observation is that pt1
1
pt2
2
· · · pti�1

i�1
p|Q|n+1

i
pti+1

i+1
· · · ptmm is a valid restricted orbit if and only

if pt1
1
pt2
2
· · · pti�1

i�1
pT
i
pti+1

i+1
· · · ptmm is a valid restricted orbit for all T � |Q|n+ 1: this is because

any sequence of |Q|n+ 1 configurations in any orbit must contain two consecutive identical
configurations since |Q|n is the maximal total number of possible state changes. From this
we deduce that it is sufficient to know all the restricted orbits of the form pt1

1
pt2
2
· · · ptmm

with ti  |Q|n+ 1 and m  |U ||Q| to know all restricted orbits of any length. The lemma
follows.

Note that as a consequence of the last lemma, for any freezing non-deterministic automata
network it suffices to consider t-specifications with t being linear in the size of the interaction
graph defining the network.

Specification checking problem.

We observe that the number of possible t-specifications can be represented in polynomial
space in the size of the network (as a Boolean vector indicating the allowed t-specifications).
Also, in the absence of explicit mention, all the considered graphs will have bounded degree
� by default, so a freezing automata network rule can be represented as the list of local
update rules for each node which are maps of the form Q� ! P(Q) whose representation as
a transition table is of size O

�
|Q|�+1

�
.

The specification checking problem we consider asks whether a given freezing automata
network verifies a given localized trace property on the set of orbits whose restriction on each
node adheres to a given t-specification. To this end, we introduce the concept of a satisfiable
t-specification.

Definition 6.3 Let A = (G,F ) be a non-deterministic automata network and let Et a t-
specification. We say that Et is satisfiable by A if there exists an orbit O 2 O(A, t) such that
Ov 2 Et(v) for every v 2 V.
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If Et is a satisfiable t-specification for some automata network A we write A |= Et. We
present now the Specification checking problem as the problem of verifying whether a given
t-specification is satisfiable by some automata network A.

Problem (Specification checking problem (SPEC))

Parameters: alphabet Q, family of graphs G of max degree �.

Input:

1. a non-deterministic freezing automata network A = (G,F ) on alphabet Q, with
set of nodes V and G 2 G;

2. a time t 2 N.
3. a t-specification Et

Question: A |= Et?

We remark that it could be also possible to present some sort of universal version of the
last problem, in which we could ask not only if the given t-specification Et is satisfiable in
the sense of checking for the existence of some orbit of the system verifying some property
coded in Et but checking if every orbit verifies the latter property.

Four canonical problems.

When studying a dynamical system, one is often interested in determining properties of the
future state of the system given its initial state. In the context of deterministic automata
networks, various decision problems have been studied where a question about the evolu-
tion of the dynamics at a given node is asked. Usually, the computational complexity of
such problems is compared to the complexity of simulating step by step the automata net-
work. Roughly speaking, one can observe that some systems are complex in some way if the
complexity of latter problems are “as hard" as simply simulating the system.

Problem (Prediction problem)

Parameters: alphabet Q, family of graphs G of max degree �

Input:

1. a deterministic freezing automata network A = (G,F ) on alphabet Q, with set of
nodes V with n = |V | and G 2 G;

2. an initial configuration c 2 Qn;
3. a node v 2 V and a time t 2 N;
4. A t-specification Et satisfying: for all y 2 Et(v), y0 = cv.

Question: A |= Et
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Note that this prediction problem is clearly a subproblem of SPEC. Also, observe that
a specification allows us to address various questions considered in the literature: what will
be the state of the node at a given time [31, 46], will the node change its state during
the evolution [33, 35, 34], or, thanks to Lemma 6.2, what will be state of the node once
a fixed point is reached [66, Section 5]. Note that the classical circuit value problem for
Boolean circuits easily reduces to the prediction problem above when we take G to be the
DAG of the Boolean circuit and choose local rules at each node that implement circuit gates.
Theorem 6.21 below gives a much stronger result using such a reduction where the graph
and the rule are independent of the circuit.

Now we turn to the classical problem (in the context of deterministic automata networks)
of finding predecessors back in time to a given configuration [52, 44].

Problem (Predecessor Problem)

Parameters: alphabet Q, family of graphs G of max degree �

Input:

1. a deterministic freezing automata network A = (G,F ) on alphabet Q, with set of
nodes V with n = |V | and G 2 G ;

2. a configuration c 2 QV

3. a time t 2 N

Question: 9y 2 QV
: F t

(y) = c?

Note that, analogously to the previous case, the final configuration in the input can be
given through a particular t-specification Et, such that for all y 2 Et(v) : yt = c for any v 2 V .
Thus, by considering Et we can see predecessor problem as a subproblem of SPEC.

Deterministic automata networks have ultimately periodic orbits. When they are freezing,
any configuration reaches a fixed point. Nilpotency asks whether their is a unique fixed point
whose basin of attraction is the set of all configurations. It is a fundamental problem in finite
automata networks theory [70, 27] as well as in cellular automata theory where the problem
is undecidable for any space dimension [51], but whose decidability depends on the space
dimension in the freezing case [66].

Problem (Nilpotency problem)

Parameters: alphabet Q, family of graphs G of max degree �

Input: a deterministic freezing automata network A = (G,F ) on alphabet Q, with set of
nodes V and G 2 G;

Question: is there t � 1 such that F t
(QV

) is a singleton?
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In this case, it is not clear that Nilpotency is actually a subproblem of SPEC. However, we
will show that we can solve Nilpotency by solving a polynomial amount of instances (linear
on the size of the interaction graph of the network |G|) of SPEC in parallel. More precisely,
we show that there exist a NC Turing reduction of NIL to SPEC. In order to do that, first,
note that we can use Lemma 6.2 to fix t = �(n), where �(n) is an appropriate polynomial.
Then, we express that F �(n)

(QV
) is a singleton as the following formula, which intuitively

says that for each node there is a state such that all orbits terminate in that state at this
node:

V
s2V

W
q02Q A |= Eq0,s

�(n), where Eq0,s
�(n) are �(n)-specifications satisfying Eq0,s

�(n)(v) = Qt, for
every v 6= s and Eq0,s

�(n)(s) is the set of orbits y such that y�(n) = q0. The reduction holds.

It is straightforward to reduce coloring problems (does the graph admit a proper coloring
with colors in Q) and more generally tilings problems to nilpotency using an error state that
spread across the network when a local condition is not satisfied (note that tiling problem
are known to be tightly related to nilpotency in cellular automata [51]). Using the same
idea one can reduce SAT to nilpotency by choosing G to be the DAG of a circuit computing
the given SAT formula (see Theorem 6.19 below for a stronger reduction that works on any
family of graphs with polynomial treewidth).

Remark 6.4 If we allow the input automata network to be associated to a graph of un-
bounded degree (the local rule is then given as a circuit), it is possible to reduce any SAT
instance to an automata network on a star graph with alphabet Q = {0, 1, "} where the cen-
tral node simply checks that the Boolean values on leafs represent a satisfying instance of
the SAT formula and produces a " state that spreads over the network if it is not the case.
The circuit representing the update rule of each node is NC in this case, and the automata
network is nilpotent if and only if the formula is not satisfiable.

Given a deterministic freezing automata network of global rule F : QV ! QV , we define
the associated non-deterministic global rule F ⇤ where each node can at each step to apply
F or to stay unchanged, formally: F ⇤

v (c) = {Fv(c), cv}. It represents the system F under
totally asynchronous update mode.

Problem (Asynchronous reachability Problem)

Parameters: alphabet Q, family of graphs G of max degree �

Input:

1. a deterministic freezing automata network A = (G,F ) on alphabet Q, with set of
nodes V with n = |V | and G 2 G;

2. an initial configuration c0 2 QV

3. a final configuration c1 2 QV

Question: can c1 be reached starting from c0 under F ⇤?

Note that no bound is given in the problem for the time needed to reach the target

112



configuration. However, Lemma 6.2 ensures that c1 can be reached from c0 if and only if it
can be reach in a polynomial number of steps (in n). Thus this problem can be reduced to
SPEC by defining a �(n)-specification E�(n) such that for any y 2 E�(n) : y0 = c0 ^ y�(n) = c1.
This bound on the maximum time needed to reach the target ensures that the problem is
NP (a witness of reachability is an orbit of polynomial length). Note that the problem is
PSPACE-complete for general automata networks: in fact it is PSPACE-complete even when
the networks considered are one-dimensional (network is a ring) cellular automata (same local
rule everywhere) [21].

6.1.2 A fast parallel algorithm for Specification Checking

In this section we present a fast-parallel algorithm for solving the Specification Checking
Problem when the input graph is restricted to the family of graphs with bounded degree and
treewidth. More precisely, we show that the problem can be solved by a CREW PRAM that
runs in time O(log

2
(n)) where n is the amount of nodes of the network. Thus, restricted to

graphs of bounded degree and bounded treewidth, Specification Checking Problem belongs to
the class NC.

To explain how our main algorithm solve the latter problem, we will divide it in a number
of sub-routines, that can be executed efficiently in parallel. Then, we will present an NC
algorithm for Specification Checking problem as a combination of these sub-routines. We
begin fixing sets Q, G, and natural numbers � and k. Let A = (G,F), t and Et be an
instance of the Specification Checking Problem, that we consider for the following definitions.

Definition 6.5 A locally-valid trace of a node v 2 V is a function ↵ : N [v]! Qt such that:

1. ↵(v)s+1 2 Fv((↵(u)s)u2N [v]) for all 0  s < t,
2. ↵(v) belongs to Et(v).

We call the set of all locally-valid traces of v as LV T (v)

Intuitively, a locally-valid trace of a vertex v is a sequence of state-transitions of all the
vertices in N [v] which are consistent with the local rule of v, but not necessarily consistent
with the local rules of the vertices in N(v). We also ask that the state-transitions of v satisfy
the specification E .

Given two finite sets A,B, and a function f : A! B. We define the restriction function
of f to a subset A0 ✓ A as the function f |0A : A0 ! B such that, for all v 2 A0 we have that
f |0A(v) = f(v).

Definition 6.6 Let U ✓ V be a subset of nodes. A partially-valid trace of a set of nodes
U ✓ V is a function � : N [U ]! Qt such that �|N [v] belongs to LV T (v) for each v 2 U .

We call the set of all partially-valid traces of U as PV T (U).

Roughly, a partially-valid trace for a set U is a sequence of state-transitions of all the

113



vertices in N [U ], which are consistent with the local rules of all vertices in U , but not
necessarily consistent with the local-rules of the vertices in N(U).

Let (W,F, {Xw : w 2 W}) be a rooted binary-tree-decomposition of the graph G with
root r, that we assume of width at most (3 tw(G) + 2). For w 2 W , we call Tw the set of all
the descendants of w, including w.

Our algorithm consists in a dynamic programming scheme over the bags of the tree.
First, we assume that PV T (Xw) is nonempty for all bags w 2 W , otherwise the answer of
the Specification Checking problem is false. For each bag w 2 T and �w 2 PV T (Xw) we call
Solw(�w

) the partial answer of the problem on the vertices contained bags in Tw, when the
locally-valid traces of the vertices in Xw are induced by �w. We say that Solw(�w

) = accept

when it is possible to extend �w into a partially-valid trace of all the vertices in bags of Tw,
and reject otherwise. More precisely, if w is a leaf of T , we define Solw(�w

) = accept for
all �w 2 PV T (Xw). For the other bags, Solw(�w

) = accept if and only if there exists a
� 2 PV T (

S
z2Tw

Xz) such that �(u) = �w
(u), for all u 2 Xw. Observe that the instance of

the Specification Checking problem is accepted when there exists a �r 2 PV T (Xr) such that
Solr(�r

) = accept where r is the root of the tree. The following lemma is the core of our
dynamic programming scheme:

Lemma 6.7 Let w be a bag of T that is not a leaf and �w 2 PV T (Xw). Then Solw(�w
) =

accept if and only if for each child v of w in Tw there exists a �v 2 PV T (Xv) such that

1. �w
(u) = �v

(u) for all u 2 N [Xw] \N [Xv],
2. Solv(�v

) = accept

Proof. First, let us assume that Solw(�w
) = True and let v be one of the children of w

in Tw. This implies that there exists a partially-valid trace � 2 PV T (
S

z2Tw
Xz) such that

�(u) = �w
(u), for all u 2 Xw. Observe that N [[z2Tv

Xz] ✓ N [(
S

z2Tw
Xz]. Since � is

defined over N [(
S

z2Tw
Xz], we can define �v and �Tv as the restrictions of � to the sets

N [Xv] and N [[z2Tv
Xz], respectively. Observe that �v satisfies the condition (1) and (2)

because, by definition, �v
(u) and �w

(u) are both equal to �(u) for all u 2 N [Xw] \ N [Xv].
Moreover, SolwL

(�v
) = accept because �Tv is a partially-valid trace of

S
z2Tv

Xz such that
�v

(u) = �(u) = �Tv(u) for each u 2 Xv.

Conversely, suppose that we have that conditions (1), (2) for each child of w. If w is a leaf
the proposition is trivially true. Suppose then that w is not a leaf. For each child v of w, let
�v be the partially-valid trace of Xv satisfying that Solv(�v

) = accept and �v
(u) = �w

(u)
for each u 2 N [Xw]\N [Xv]. Since Solv(�v

) = accept we know that �v can be extended into
a partially-valid trace of [z2Tv

Xz, that we call �Tv . Let us call v1 and v2 the children of w.
We define then the function � : N [[z2Tw

Xz]! Qt.

�(u) =

8
<

:

�w
(u) if u 2 N [Xw]

�Tv1 (u) if u 2 N [
S

z2Tv1
Xz]

�Tv2 (u) if u 2 N [
S

z2Tv2
Xz]
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We claim that there is no ambiguity in the definition of �. First, we claim that N [
S

z2Tv1
Xv]\

N [
S

z2Tv2
Xv] is contained in N [Xu]. Indeed, let u be a vertex in N [

S
z2Tv1

Xz]\N [
S

z2Tv2
Xz].

There are three possibilities:

• u belongs to a bag in Tv1 and to another bag in Tv2 . In this case necessarily u 2 Xw,
because otherwise the bags containing u would not induce a (connected) subtree of T .

• u is not contained in a bag of Tv1 . Since u belongs to N [
S

z2Tv1
Xz], there exists a

vertex ũ adjacent to u and contained in a bag of Tv1 . Note that Xw contains ũ, because
otherwise all the bags containing ũ would be in Tv1 . Then, no bag would contain both u
and ũ. That contradicts the property of a tree-decomposition that states that for each
edge of the graph G, there must exist a bag containing both endpoints. We deduce ũ
is contained in Xw and then u is contained in N [Xw].

• u is not contained in a bag of Tv2 . This case is analogous to the previous one.

Following an analogous argument, we deduce that N [
S

z2Tv1
Xz] \ N [Xw] is contained in

N [Xv1 ] and that N [
S

z2Tv2
Xz] \ N [Xw] is contained in N [Xv2 ]. We deduce that � is well

defined. Moreover, � is a partially-valid trace of
S

z2Tw
Xz which restricted to N [Xw] equals

�w. We conclude that Solw(�w
) = accept.

In order to solve our problem efficiently in parallel, we define a data structure that allows
us to efficiently encode locally-valid traces and partially-valid traces. More precisely, in N [v]
there are at most |Q|� possible state transitions. Therefore, when t is comparable to n, most
of the time the vertices in N [v] remain in the same state. Then, in order to efficiently encode
a trace, it is enough to keep track only of the time-steps on which some state-transition
occurs.

Let U be a set of vertices of G. A (U, t)-sequence S is a function S : U ! Qt such that the
sequence S(u) is non-decreasing, for all u 2 U . For each 0  s  t let us call Ss the sequence
(S(u)s)u2U 2 |Q||U |. Let Times(S) = (t0, t1, . . . , t`) be the strictly increasing sequence of
minimum length satisfying that Sti = Ss for each ti  s < ti+1 and each 0  i < `. Observe
that t0 = 0 and ` = `(S)  |Q||U |. For natural numbers m and `, let us call hmi` the binary
representation of m using ` bits, padded with `� dlogme zeros when ` > dlogme.

Definition 6.8 Let S be a (U, t)-sequence. A succinct representation of S, denoted "(S), is
a pair (Times(S),States(S)) such that:

• Times(S) is a list of elements of {0, 1}dlog(t+1)e of length |Q||U |, such that

Times(S)i =
⇢
htiidlog(t+1)e if i  `(S)
htidlog(t+1)e if i > `(S)

• States(S) is a matrix of elements of {0, 1}dlog |Q|e of dimensions |Q||U |⇥ |U |, such that,
if we call u1, . . . , u|U | the vertices of U sorted by their labels, then:

States(S)i,j =
⇢
hS(uj)tiidlog |Q|e if i  `(S)
hS(uj)tidlog |Q|e if i > `(S) .
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We also call #(U, t) = |Q||U |dlog(t+ 1)e+ |U ||Q||U |dlog |Q|e

Observe that "(S) can be written using exactly N = #(U, t) bits. In other words, the
succinct representations of all (U, t)-sequences can be stored in the same number of bits,
which is O(|U | log t). Therefore, there are at most 2

N
= tg(|U |) possible (U, t)-sequences, for

some function g exponential in |U |. Moreover, we identify the succinct representation of
(U, t)-sequence S with a number x 2 {0 . . . , 2N}, such that "(S) = hxiN .

The restriction of Et to the nodes in U is denoted Et(U). When U = {u} we denote Et({u})
simply Et(u).

Definition 6.9 Let U be a set of vertices an let us call N = #(U, t). A succinct represen-
tation of a Et(U) is a Boolean vector X = "(Et(U)) of length 2

N such that Xi = True when i

represents the succinct representation of a (U, t)-sequence contained in Et(U).

Next lemma states that the succinct representation of a (U, t)-specification can be com-
puted by a fast parallel algorithm.

Lemma 6.10 For each set of vertices U , there exist a function f and CREW PRAM algo-
rithms performing the following tasks in time f(|U ||Q|) log n using nf(|U ||Q|) processors:

• Given a (U, t)-sequence S as a t⇥ |U | table of states in Q, compute "(S)
• Given a Et(U) as a list of (U, t)-sequences, compute "(Et(U))

Proof.

• The algorithm first computes Times(S). Then, it constructs the list Times(S) and the
matrix States(S) copying the lines of S given in Times(S).
The algorithm starts reserving N = #(U, t) bits of memory for the list Times and the
matrix States, and t+ 1 bits of memory represented in a vector called indices. The
vector indicess stores the time-steps on which states have changed. This information
is contained in Times(S).
For each i 2 {1, . . . , t} the algorithm initializes a processor Pi and assigns the i-th bit
of indices to it. Processor Pi looks at the i-th and i � 1-th lines of S. If Si 6= Si�1

then processor writes a 1 in indicesi. Otherwise, the processor writes a 0 in indicesi.
Then Pi stops. All this process can be done in time O(|U | log |Q|+log t) per processor.
Then, the algorithm computes the vector p of length t such that pj =

P
i

j=1
indicesj,

for each j 2 {1, . . . , t}. This process can be done in time O(log t) using O(t) proces-
sors using the prefix sum algorithm given by [50] (Proposition 1.19). Observe that if
indicesi = 1 for some index i, then i = Times(S)pi . Moreover, pt = `(S).
Once every processor (Pi)0<it stops, the algorithms reinitialize them. For each 0 <
i  t, each processor Pi looks at indicesi. If pi < pt and indicesi = 0 then processor
Pi stops. If pi = pi�1 = pt the processor stops. If pi 6= pt and indicesi = 1, then the
algorithm writes hiidlog(t+1)e in Timespi , and for each u 2 {1, . . . , |U |} writes hSi,uidlog |Q|e
in Statespi,u. If pi = pt and pi�1 6= pi, then the processor Pi writes htidlog(t+1)e in
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Timesj and writes hSt,uidlog |Q|e in Statesj,u for each pi  j  |Q||U | and for each
u 2 {1, . . . , |U |}. The algorithm writes Times0 = h0idlog(t+1)e and writes hS0,uidlog |Q|e in
Statesj,u for each u 2 {1, . . . , |U |}. All this process can be done in time O(|Q||U |

log t)
per processor.
The algorithm returns "(S) = (Times,States). The whole process takes time
O(|Q||U |

log t) and O(t) processors.
• The algorithm initializes X = "(Et(U)) as 2

N bits of memory bits, all in 0. Then,
it assigns one processor PS to each (U, t)-sequence S in Et(U). For each S 2 Et(U),
processor PS uses the previous algorithm to compute y = "(S). Then processor PS
writes Xy = 1. Once every processor has finished, the algorithm returns X . The whole
process takes time O(log |X ||Q||U |

log t) and uses |X |tO(1)
= nO(|Q||U|

) processors. We
deduce that the algorithm runs in time O(|Q||U |

log t) using 2
N processors.

Observe that if � is a partially-valid trace of U , then in particular � is a (N [U ], t)-sequence.
Therefore, there exists an x  2

N with N = #(N [U ], t), such that "(�) = x. In the following
lemma we show how to characterize the values on x  2

N that are the encoding of some
partially-valid trace of U . We need the following definition. Let U be a set of vertices and
let x 2 {0, . . . , 2N}, with N = #(U, t). Then we call Times(x) and States(x) the vector
and matrix such that x = (Times(x),States(x)). More precisely:

• Times(x) are the first |Q||U | bits of x interpreted as sequence of elements of {0, 1}dlog(t+1)e

of length |Q||U |.
• States(x) are the rest of the bits of x interpreted as the matrix of elements of
{0, 1}dlog |Q|e of dimensions |Q||U | ⇥ |U |.

Lemma 6.11 Let S be a (U, t)-sequence and Z ✓ U . There is a sequential algorithm which
given "(S) computes "(S|Z) in time linear in the size of "(S).

Proof. Let  = |Q|. The computes algorithm "(S|Z) checking each pair of lines of States
and verifying if the columns of Z differ on any coordinate, keeping only the lines on which
some of the vertices in Z switches states for the first time. More precisely, let u1, . . . , u be
the set U ordered by their labels. Let J 2 {j1, . . . , j|Z|} be the set of indices of vertices of Z
(i.e., ujq 2 Z for all q 2 {1, . . . , |Z|}). The algorithm computes the set L of indices i  |Q|
such that i 2 L if and only if there exists q 2 J such that Statesi,jq 6= Statesi�1,jq . Let
{i1, . . . , i|L|} the indices in L. Observe that |L|  |Q||Z|. Then for each p  |Q||Z| and q 2 |Z|,

Times[Z]p =
⇢

Timesip if p  |L|
htidlog(t+1)e if i > |L|

States[Z]p,q =
⇢

Statesip,jq if p  |L|
Statest,jq if p > |L| .
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The algorithm returns (Times[Z],States[Z]).

Lemma 6.12 Let U be a set of vertices and let N = #(N [U ], t). There is a sequential algo-
rithm which, given x � 0 and "(Et(u)) for each u 2 V (G), decides in time f(|N [U ]||Q|) log n
whether x is a succinct representation of a partially-valid trace of U , where f is an exponential
function.

Proof. Let U be a set of vertices containing S and let x 2 {0, . . . , 2N}, with N = #(N [U ], t).
Let  = |N [U ]|. Let {u1, . . . , u} be the vertices of N [U ] ordered by label. The algo-
rithm first verifies that x  2

N and rejects otherwise. Then, the algorithm verifies that
the pair (Times,States) = (Times(x),States(x)) satisfies Times0 = 0 and that Times
and each column of States are increasing. Otherwise, the algorithm rejects because x is
not a succinct representation of a (N [U ], t)-sequence. If the algorithm passes this test we
assume that x = "(S) for some (N [U ], t)-sequence S. For a subset of vertices Z, let us call
(Times[Z],States[Z]) = "(S|Z). Consider now the following conditions:

1. Statesi,j 2 Fuj
(States[N [uj])]i) for each i 2 {0, . . . , |Q|} and j 2 {1, . . . ,} such

that uj 2 U .
2. (Times[{uj}],States[{uj}]) belongs to Et(uj) for each j 2 {1, . . . ,}.

When this conditions are satisfied, we can deduce that x = "(�) for some partially-
valid trace � of U . Indeed, as x is representation of S, the vertices in N [U ] only have
state-transitions of the time-steps given by the Times. Therefore, condition (1.) and (2.)
imply that S|N [u] is a locally-valid trace of u. To verify condition (1.) and (2.) we use
the algorithm of Lemma 6.11 to compute States[Z] for a given set of vertices Z ✓ N [U ].
Observe that the algorithm computes Times[Z] and States[Z] in time O(|Q| log n). The
algorithm checks (1.) by looking at each row of States[N [u]] and the column corresponding
to vertex u, and the table of Fu given in the input. The algorithm verifies (2.) computing
"(S(uj)) = (Times[{uj}],States[{uj}]) and then looking at the "(S(uj))-element of the
table "(Et(uj)). All these processes take time O(|U ||Q| log n). Overall the whole algorithm
takes time O(|U ||Q| log n) = f(|N [U ]||Q|) log n.

We are now ready to give our algorithm solving the Specification Checking problem.

Theorem 6.13 Specification Checking problem can be solved by a CREW PRAM algorithm
running in time O(log

2 n) and using nO(1) processors on graphs of bounded treewidth.

Proof. Our algorithm consists in an implementation of the dynamic programming scheme
explained at the beginning of this section. It starts computing a rooted binary-tree decompo-
sition (W,F, {Xw : w 2 W} of the input graph using the logarithmic-space algorithm given
by Proposition 1.18.

The algorithm also computes the succinct representations of E and Iv for each v 2 V
using Lemma 6.10.
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Then, the algorithm performs the dynamic programming scheme over T . Let r be the
root of T . Then, for a bag w 2 W , we define the level of w denoted by Level(w), as the
distance between w and the root r. There is a fast-parallel algorithm computing the level of
each vertex of a tree by a EREW PRAM running in time O(log n) and using O(n) processors
[50]. Using a prefix-sum algorithm we can compute the maximum level M of a vertex, which
corresponds to the leafs of the binary-tree T . For each i 2 {0, . . . ,M}, let Li the set of bags
w such that Level(w) = M � i.

For each w 2 W , we represent the values of the function Solw as a table Sw indexed as a
table of size 2

N , with N = O(|Q|�(3 tw(G)+2+k)
log n) greater that #(N [Xw], t) for all w 2 W .

Each x 2 {0, . . . , 2N} is interpreted as a potentially succinct encoding of a partial-valid trace
�. Initially Sw

= 0
2
N , which meaning that a priori we reject all x 2 {0, . . . , 2N}. Then,

our algorithm iterates in a reverse order over the levels of the tree, starting from L0 until
reaching the the root r 2 LM . In the i-th iteration, we compute for each bag w 2 Li the
set of all x 2 {0, . . . , 2N} that represent partially-valid traces �w 2 PV T (Xw) such that
Solw(�w

) = accept. To do so, the algorithm uses the calculations done on the bags in Li�1,
and use Lemma 6.7. The algorithm saves the answer of each partial solution in a variable
out consisting in |W | bits, such that, and the end of the algorithm out = 1

|W | if and only the
instance of the Specification Checking problem is accepted.

At the first iteration, for each w 2 L0 the algorithm sets in parallel Sw
x = 1 for all

x representing a partially-valid trace of w, because Solw(�w
) is defined to accept for all

partially-valid trace of a leaf of T . Therefore, in parallel for all bag w 2 L0, the algorithm
runs 2N parallel instances of the algorithm of Lemma 6.12, one for each x 2 {0, . . . , 2N}, and
for each one that is accepted, the algorithm writes Sw

x = 1. Once every parallel verification
finishes, the algorithm sets outw = 1. We now detail the algorithm on the i-th iteration,
assuming that we have computed Sw for all bag w 2 Li�1.

Let w be a vertex in Li and let us call wL and wR the children of w, which belong to
Li�1. Roughly, as we know the partial solutions restricted to the subtrees rooted at w1

and w2, the algorithm will try to extend it to a partial solution of w according to the gluing
procedure given by Lemma 6.7, testing all possible combinations. More precisely, we initialize
a set of |Li| processors {Pw}w2Li , one assigned each bag in Li. Each processor Pw verifies if
outwL

= outwR
= 1, or stops and writes outw = 0. Otherwise, processor Pw initializes a set

of 2N processors, that we call {Pw
z }z2{1,...,2N}, and reserves 2N bits of memory Sw 2 {0, 1}2N .

For each z 2 2
N , processor Pw

z verifies if z is a succinct representation of a partially-valid
trace of Xw using Lemma 6.12. If its not the case then Pw

z stops and writes a 0 in Sw
z .

Otherwise, processor Pw
z initializes (2

N
)
2 processors {Pw

z,zR,zL
: zR, zL 2 {1, . . . , 2N}} and

reserves 2
N ⇥ 2

N bits of memory (S̃w
z ) 2 {0, 1}N ⇥ {0, 1}N .

If SwL

zL
= 0 or SwR

zR
= 0 the processor Pw

z,zR,zL
stops and writes a 0 in S̃w

z,zR,zL
. Otherwise,

the processor Pw
z,zR,zL

interprets z, zR and zL as "(�w
z ), "(�w

zL
) and "(�w

zR
), for partially-valid

traces �z, �wL
and �wR

of Xw, XwL
and XwR

, respectively. Which means that �w
z belongs to

PV T (Xw) and SolwL
(�zL) = SolwL

(�zL) = accept. Therefore �z is a partially-valid trace of
Xw and �zL and �zR verify the condition (2) of Lemma 6.7. Up to this point, all verifications
can be done in time O(N) = O(|Q|�(3 tw(G)+2+k)

log n) because we are just looking at the
coordinates in the given tables.
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Then, the processor Pw
z,zL,zR

computes sets YL = N [Xw]\N [XwL
] and using the algorithm

of Lemma 6.11 computes "(�w|YL
) and "(�wL |YL

). If "(�w|YL
) = "(�wL |YL

) the processor
deduces that �w

(u) = �wL(u), for all u 2 N [Xw] \ N [XwL
]. Then Pw

z,zL,zR
computes sets

YR = N [Xw] \ N [XwR
] and using the algorithm of Lemma 6.11 computes "(�w|YR

) and
"(�wR |YR

). Then, if "(�w|YR
) = "(�wR |YR

) the processor deduces that �w
(u) = �wR(u), for all

u 2 N [Xw]\N [XwR
]. If both verifications are satisfied, processor Pw

z,zR,zL
stops and writes a

1 in S̃w
z,zR,zL

. Otherwise, the processor Pw
z,zR,zL

stops and writes a 0 in S̃w
z,zR,zL

. All of these
verifications can be executed by Pw

z,zL,zR
in time O(N).

Once that all processors in {Pw
z,z1,z2 : zL, zR 2 {1, . . . 2N}} finished, processor Pw

z runs a
prefix-sum algorithm in S̃w

z , simply summing the elements of the vector to verify if some
instance was accepted. If the result is different than 0, processor Pw

z writes a 1 in Sw
z , and

writes a 0 otherwise. When every processor (Pw
z )z2{1,...,2N} finishes, we obtain that Sw is the

table representing function Solw. Then processor Pw runs a prefix-sum algorithm on Sw to
verify that there exists a partial solution for bag Xw. If the result of the prefix sum equals
zero, processor Pw stops and writes a outw = 0. Otherwise, it writes outw = 1 and stops.

After all processors (Pw
)w2Li have finished, the algorithm continues with the next level.

When the last level is reached, before halting processor P r decides if outw = 1 for all w 2 W
using a prefix-sum algorithm. If the answer is affirmative the algorithm accepts the input,
and otherwise rejects. On each level, the algorithm takes time O(�|Q|2�(3 tw(G)+2)

log n)
and uses nO(|Q|�(3 tw(G)+2)

) processors. Proposition 1.18 provides a construction of a binary-
tree-decomposition T of depth O(log n). This means that M = O(log n), and implies that
the whole takes time O(�|Q|2�(3 tw(G)+2)

log
2 n) = O(log

2 n) and nO(|Q|�(3 tw(G)+2)
)
= nO(1)

processors. The correctness of the algorithm is given by Lemmas 6.7, 6.10, 6.11 and 6.12.

Remark 6.14 The algorithm given in the proof of Theorem 6.13 not only computes the
answer of Specification Checking problem but it also gives the coding of the orbits satisfying
specification Et. In the case in which the freezing automata network A = (G,F ) is deter-
ministic, we can say a lot more using those algorithms. Giving t and an initial condition
x 2 Qn, we are actually capable of testing any global dynamic property in NC provided that
this property has F t

(x) as input and it is decidable in NC. In fact, note that given an initial
condition x 2 Qn, there is only one possible orbit for each node v 2 V (G). Therefore, we are
able to calculate the global evolution of the system in time t starting from x.

The proof of the previous Theorem 6.13 shows that SPEC can be solved in time f(|Q|+
�(G) + tw(G)) log n using nf(|Q|+�(G)+tw(G)) processors in a PRAM machine, hence in time
ng(|Q|+�(G)+tw(G)) on a sequential machine, for some computable functions f and g. In other
words, when the alphabet, the maximum degree and the tree-width of the input automata
network are parameters, our result shows that SPEC is in XP. In the next section, we show
that SPEC is not in FPT, unless FPT=W[2].
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Constraint Satisfaction Problem

We remark that problem SPEC can be interpreted as a specific instance of the Constraint
Satisfaction Problem (CSP). Problem CSP is a sort of generalization of SAT into a set
of more versatile variable constraint. It is formally defined as a triple (X,D,C), where
X = {X1, . . . , Xn} is a set of variables, D = {D1, . . . , Dn} is a set of domains where are
picked each variable, and a set C = {C1, . . . , Cm} of constraints, which are k-ary relations
of some set of k variables. The question is whether there exists an assignment of values to
each variables in their corresponding domains, in order to satisfy each one of the constraints.
As we mentioned, SPEC can be seen as a particular instance of CSP, where we choose one
variable for each node of the input graph. The domain of each variable is the set of all locally
valid traces of the corresponding node. Finally, we define one constraint for each node, where
the variable involved are all the vertices in the close-neighborhood of the corresponding node,
and the relation corresponds to the consistency in the information of the locally-valid traces
involved.

Now consider an instance of SPEC with constant tree-width, maximum degree and size of
the alphabet, and construct the instance of CSP with the reduction described in the previous
paragraph. Then, the obtained instance of CSP has polynomially-bounded domains and
constant tree-width, where the tree-width of a CSP instance is defined as the tree-width of
the graph where each variable is a node, and two nodes are adjacent if the corresponding
variables appear in some restriction. Interestingly, it is already known that in these conditions
CSP can be solved in polynomial time [72, 18, 59] . This implies that, subject to the given
restrictions, SPEC is solvable in polynomial time using the given algorithm for CSP as a
blackbox.

The algorithm given in the proof of Theorem 6.13 is better than the use of the CSP
blackbox in two senses. First, we obtain explicit dependencies on the size of the alphabet,
maximum degree and tree-width. Second, the Prediction Problem is trivially solvable in
polynomial time, and then the use of the CSP blackbox gives no new information for this
problem. Moreover, as we mentioned in Remark 6.14, our algorithm does not only decides
SPEC, but can also be used to obtain a coding of the orbit satisfying the given specification,
and moreover, the possibility to test any NC property on a deterministic freezing automata
networks.

6.1.3 W[2]-hardness results

The goal of this section is to show that, even when the alphabet and the degree are fixed
and the treewidth is considered as the only parameter, the SPEC problem is W[2]-hard
(see [23] for an introduction to the W hierarchy) and thus, it is not believed to be fixed
parameter tractable. This is in contrast with classical results of Courcelle establishing that
model-checking of MSO formulas parametrized by the treewidth is fixed-parameter tractable
[17] (see [54, 23] to place the result in a wider context).

Lemma 6.15 There is a fixed alphabet Q and an algorithm which, given k 2 N and a graph
G of size n, produces in time O(k · nO(1)

):
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• a deterministic freezing automata network A = (G0,F) with alphabet Q and where G0

has treewidth O(k) and degree 4

• a O(n2
)-specification E

such that G admits a dominating set of size k if and only if A |= E .

The construction of the lemma works by producing a freezing automata network on a
O(k)⇥ n2-grid together with a specification which intuitively work as follows. A row of the
grid is forced (by the specification) to contain the adjacency matrix of the graph, k rows
serve as selection of a subset of k nodes of G, and another row is used to check domination
of the candidate subset. The key of the construction is to use the dynamics of the network
to test that the information in each row is encoded coherently as intended, and raise an error
if not. The specification serves both as a partial initialization (graph adjacency matrix and
tests launching are forced, but the choice in selection rows is free) and a check that no error
are raised by the tests.

Proof. Let G0
= (V 0, E 0

) be the (k + 2)⇥ n2-grid where

V 0
= {(i, j) : 0  i < n2, 1  j  k + 2}; and

E 0
= {{(i, j), (i± 1 mod n2, j)} : 0  i < n2, 1  j  k + 2}
[ {{(i, j), (i, j0)} : 0  i < n2, 1  j, j0  k + 2, |j � j0| = 1}.

Clearly G0 has a O(k) treewidth. The horizontal dimension (coordinate i in the grid) should
be thought as n block of size n. For each j we denote the jth row by Vj = {(i, j) : 0  i < n2}.
The alphabet of the automata network is Q = {0, 1}⇥Q0 where the {0, 1} is the marker
component and Q0 is verification component. A position is said to be marked if it has a 1 in
its marker component. Vertically, the network is organized as follows.

• Rows V1 to Vk are called selection rows and they all have the same behavior: marking
the same unique position in each block, i.e. having horizontal coordinates s, s+ n,
s+ 2n, . . ., s+ (n� 1)n marked for some s with 0  s < n. Intuitively the role of each
selection row is to select a node among the k nodes of the candidate dominating set
and ensure that the selection information is coherently spread across the n blocs.

• Row Vk+2 is the graph row and its role is to hold the adjacency matrix of graph G laid
out in a single row (bloc i contains the incidence vector of node i).

• Row Vk+1 is the domination row. Its role is to witness that there is a position i in
each bloc (possibly different from one bloc to another) where i is marked in the graph
row and also marked in at least one selection row. Said differently its role is to give a
certificate that the k selected nodes in the selection rows are indeed a dominating set
for the graph encoded in the graph row.

The description by rows above gives some conditions on the marked position in the network.
It should be clear that these conditions are satisfied if and only if the k selection rows represent
k nodes of the graph G that form a dominating set.

We now complete the description of A. In the verification component of states Q0 there is
a special error state. The behavior of the automata network is to perform two tests to ensure
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tim
e

ok

bloc p � 1 bloc p bloc p + 1

error

bloc p � 1 bloc p bloc p + 1

Figure 6.1: Checking that the same node is marked in each bloc in a selection row: on the
left, a valid test in bloc p, on the right an invalid test in bloc p generating an error state.
Dotted lines indicate the marked position in each bloc. The shades of gray indicates the state
changes involved in the implementation of freezing signals: at each position the sequence of
states in non-decreasing with time.

that each row is holding marks that satisfies the conditions above. If any test fails somewhere
the error state is raised and stays forever. The two test run in parallel (using two independent
subcomponents inside Q0) and their technical implementation as a freezing automata network
on graph G0 is straightforward using a constant number of state component within Q0. Note
that in the description below, what we call signals are freezing signals: a state change from q
to q00 possibly with intermediate state q0 with q  q0  q00 that propagates in some direction
like a flame in a wick (and not a particle in state q1 that move inside a context of q0 like
classical signals are). The tests are as follows:

• the domination test works vertically: each marked position i in the domination row
checks that the position i is also marked in the neighboring graph row and then launch
a signal that moves from (i, k + 1) downto (i, 1) until it finds a marked position in some
selection row. If the signal reaches position (i, 1) without having encountered any mark,
then it raises an error state.

• the selection test happens in each selection row horizontally: first it checks that exactly
one position is marked within each bloc (this can be done in one step by using a layer
of alphabet {>,<} and forcing the language >⇤<+ by forbidding the pattern <> to
appear in two adjacent position in a bloc); second, each marked position (in each bloc)
launches a signal going left and a signal going right both moving at the speed of one
position per time step. Each signal goes one, crosses a first signal going in the opposite
direction, continues, and when it encounters a signal of the opposite direction for the
second time it stops and checks that the position reach contains a mark. This process
ensures that the position marked is the same in each bloc by comparing the distance
between marks in bloc p� 1 and bloc p+ 1 and the distance between marks in blocs p
and p+ 1 for all p (see Figure 6.1).

Finally, the n-specification E consists in:

• forcing the initial marking of the graph row to be the actual adjacency matrix of G;
• allowing any marking in the other rows;
• forcing the Q0 component to be without error at any time step;
• initializing the Q0 component to properly launch the tests.

It should be clear that both automata network A and specification E can be constructed
in time O(k · nO(1)

) from G. The construction is such that G admits a dominating set of size

123



k if and only if A |= E : indeed, from the initialization imposed by E it would take at most n
steps for any of the two test to raise an error state, so E ensures that there exists an initial
marking that encodes a valid dominating set of size (at most) k as explained above.

From Lemma 6.15 and W [2]-hardness of the k-Dominating-Set problem [22], we immedi-
ately get the following corollary.

Corollary 6.16 The SPEC problem with fixed degree and fixed alphabet and with treewidth
as unique parameter is W[2]-hard.

A freezing automata network on a O(k)⇥ n2-grid with alphabet Q can be seen as a
freezing automata network on a line of length n2 with alphabet QO(k). One might therefore
want to adapt the above result to show W[2]-hardness in the case where treewidth and
degree are fixed while alphabet is the parameter. However, the specification which is part
of the input, has an exponential dependence on the alphabet (a t-specification is of size
O(n · t|Q|

)). Therefore FPT reductions are not possible when the alphabet is the parameter.
We can circumvent this problem by considering a new variant of the SPEC problem where
specification are given in a more succinct way through regular expressions. A regular (Q, V )-
specification is a map from V to regular expressions over alphabet Q. We therefore consider
the problem REGSPEC which is the same as SPEC except that the specification must be
a regular specification. With this modified settings, the construction of Lemma 6.15 can be
adapted to deal with the alphabet as parameter.

Corollary 6.17 The REGSPEC problem with fixed degree and fixed treewidth and with
alphabet as unique parameter is W [2]-hard.

Proof. Using the construction of Lemma 6.15 and compressing the k rows into a single one
by enlarging the alphabet, we can construct a freezing automata network A↵ of alphabet
Qk+2 on a graph G00

= (V 00, E 00
) which is a cycle of length n2 (therefore of constant treewidth

and constant degree) and that has the same behaviour with respect to k-dominating sets
of the graph G of the lemma. The local map at each node of A↵ can be described by a
transition table of size O(Q3k

) so the global description is of size O(Q3k · n2
). Noting that

the specification produced in Lemma 6.15 is actually a regular specification of the form:
v 2 V 0 7! Qi,vQ⇤

e,v where Qi,v take care of the initialization and Qe,v is the subset of states
with no error. We deduce that the corresponding regular specification for A↵ is of the form
v 2 V 00 7!

�
Qi,v1 ⇥ · · ·⇥Qi,vk+2

��
Qe,v1 ⇥ · · ·⇥Qe,vk+2

�⇤. Hence its size is O(|Q|O(k) · n2
). The

total size of the input produced for problem REGSPEC is therefore also O(|Q|O(k) · n2
) and

it can be produced in time O(|Q|O(k) · nO(1)
). This proves that the k-dominating set problem

can be FPT reduced to REGSPEC with alphabet as parameter.

6.1.4 Hardness results for polynomial treewidth networks

We say a family of graphs G has polynomial treewidth if the graphs of the family are of size at
most polynomial in their treewidth, precisely: if there is a non-constant polynomial map pG
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(with rational exponents in (0, 1)) such that for any G = (V,E) 2 G it holds tw(G) � pG(|V |).
Moreover, we say the family is constructible if there is a polynomial time algorithm that
given n produces a connex graph Gn 2 G with n nodes. The following lemma is based on
a polynomial time algorithm to find large perfect brambles in graphs [55]. This structure
allows to embed any digraph in an input graph with sufficiently large treewidth via path
routing while controlling the maximum number of intersections per node of the set of paths.

Lemma 6.18 (Subgraph routing lemma) For any family G of graphs with polynomial treewidth,
there is a polynomial map p and a deterministic polynomial time algorithm that, given any
graph G = (V,E) 2 G and any digraph D = (V 0, E 0

) of maximum (in/out) degree � and size
at most p(|V |), outputs:

• a mapping µ : V 0 ! V such that, for each v 2 V , µ�1
(v) contains at most two elements,

• a collection C = (pe0)e02E0 of paths connecting µ(v0
1
) to µ(v0

2
) for each (v0

1
, v0

2
) 2 E 0, and

such that any node in V belongs to at most 4� paths from C.

Proof. By [55, Theorem 5.3] there exists a polynomial map p1 and a polynomial time al-
gorithm that given a graph G = (V,E) 2 G finds a perfect bramble B = (B1, . . . , Bk) with
k � p1(pG(|V |)), i.e. a list of connected subgraphs Bi ✓ V such that:

1. Bi \ Bj 6= ; for all i and j,
2. for all v 2 V there are at most two elements of B that contain v.

We set the polynomial map of the lemma to be p = p1 � pG and consider any digraph
D = (V 0, E 0

) of maximum (in/out) degree � and size at most p(|V |). We suppose k = |V 0|
(by forgetting some elements of B) and reindex the element of B by V 0. The map µ : V 0 ! V
is constructed by picking some element µ(v0) 2 Bv0 for all v0 2 V 0. The fact that any vertex
v 2 V is contained in at most two elements of the bramble B ensures the first condition of the
lemma on µ. Now, for each (v0

1
, v0

2
) 2 E 0 we define a path from µ(v0

1
) to µ(v0

2
) as follows: let

v 2 Bv01
\ Bv02

(first property of perfect brambles) then choose a path from µ(v0
1
) to v inside

Bv01
(which is connected) followed by a path from v to µ(v0

2
) inside Bv02

. The collection of
paths C thus defined is such that there are at most 2� paths that start or end in µ(v0) for
any v0 2 E. Moreover, for any v 2 V , there are at most two elements of B that contain v,
let’s say Bv01

and Bv02
. Then the only paths from C that can go through v are those starting

or ending at either µ(v0
1
) or µ(v0

2
), so they are at most 4� in total.

Theorem 6.19 For any family G of constructible graphs of polynomial treewidth, the problem
nilpotency is coNP-complete.

Proof. First, by Lemma 6.2, a freezing automata networks with n nodes is nilpotent if and
only if F �(n) is constant where �(n) 2 O(n) is the concrete computable bound from the
lemma. The nilpotency problem is therefore clearly coNP.

We now describe a reduction from problem SAT. Given a formula with n variables seen
as a Boolean circuit of maximum input/output degree 2 (of size polynomial in n), we first
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construct G = (V,E) 2 G such that the DAG G0
= (V 0, E 0

) associated to the circuit is of size
at most p(|V |) where p is the polynomial map of Lemma 6.18. Then, using Lemma 6.18, we
have a map µ : V 0 ! V and a collection C of paths in G that represent an embedding of G0

inside G. The lemma gives a bound 8 on the number of paths visiting a given node v 2 V .
Then each node will hold 8 Boolean values, each one corresponding either a node v0 2 V 0 of
the Boolean circuit or an intermediate node of a path from the collection C. The alphabet
is then Q = {0, 1}8 [ {?} where ? is a special error state. In any configuration c 2 QV , a
node can be either in error state ?, or it holds 8 Boolean components. We then construct
the local rule at each node v 2 V that give a precise fixed role to each such component: it
either represent a node v0 2 V 0 such that µ(v0) = v, or an intermediate node in one of the
paths from C, or is unused (because not all vertices of V have 8 paths from C visiting them).
The local rule at v 2 V is as follows:

• if in state ? or if some neighbors is in state ?, it stays in or changes to ?;
• it then make the following checks and let the state unchanged if they all succeed or

changes to ? if at least one test fails:
1. check for any component corresponding to a node v0 2 V 0 that it holds the Boolean

value g(x, y) where g is the Boolean gate associated to v0 in the the circuit and x
and y are the Boolean values of the components corresponding to the vertex just
before v in the two paths ⇢e1 and ⇢e2 in C that arrive at µ(v0) = v. In the case
where g is a ’not’ gate, there is only one input and in the case where v0 is an input
of the circuit, there is no input and nothing is checked;

2. moreover, if the gate corresponding to v0 is the output gate of the circuit, check
that its Boolean value is 1;

3. check for any component corresponding to an intermediate node in some path
from C that the Boolean value it holds is the same as that of the component
corresponding to the predecessor in the path.

We claim that F is not nilpotent if and only if the formula represented by the Boolean circuit
is satisfiable. Indeed the configuration everywhere equal to? is always a fixed point. It should
be clear that if the formula is satisfiable then one can build a configuration corresponding
to a valid computation of the circuit on a valid input which is a fixed point not containing
state ?. In this case we have two distinct fixed points and the automata network is not
nilpotent. Conversely, suppose the the automata network is not nilpotent. Then it must
possess a fixed point c distinct from the all ? one. Indeed, all configurations of X = F t

(QV
)

are fixed points for t large enough (by the freezing condition) and if F t is not a constant
map then X must contain at least two elements. Moreover, the fixed point c do not contain
state ?, because otherwise it would contain a state from Q \ {?} at some node which has
a neighbor in state ?, which would contradict the fact that it is a fixed point according to
the local rule. Then c is a configuration where all checks made by the local rules are correct:
said differently, c contains the simulation of a valid computation of the Boolean circuit that
outputs 1. Therefore the Boolean formula is satisfiable and the reduction follows.

When giving an automata network as input, the description of the local functions depends
on the underlying graph (and in particular the degree of each node). However, some local
functions are completely isotropic and blind to the number of neighbors and therefore can be
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described once for all graphs. This is the case of local functions that only depends on the set
of states present in the neighborhood. Indeed, given a map ⇢ : Q⇥ 2

Q ! Q and any graph
G = (V,E), we define the automata network on G with local functions Fv : QN(v) ! Q such
that Fv(c) = ⇢

�
c(v), {c(v1), . . . , c(vk)}

�
where N(v) = {v1, . . . , vk} is the neighborhood of v

which includes v. We then say that the automata network is set defined by ⇢. We will prove
the next two hardness results with a fixed set defined rule, showing that there is a uniform and
universally hard rule on graphs of polynomial treewidth for predecessor and asynchronous
reachability problems. The proof below uses again Lemma 6.18 to embed arbitrary circuits
like in theorems above, but the difference here is that the circuit embedding is written in
the configuration and is not hardwired into the local rule. Moreover, the reduction also uses
L(1, 1) graph coloring [12] to deal with communication routing in a set defined rule in a
similar way as in a radio network.

Theorem 6.20 There exists a map ⇢ : Q⇥ 2
Q ! Q such that for any family G of con-

structible graphs of polynomial treewidth and bounded degree, the problems predecessor and
asynchronous reachability are both NP-complete when restricted to G and automata networks
set-defined by ⇢.

Proof. These problems are clearly NP. For clarity of exposition we will construct a distinct
map ⇢ for each of the two problems. Then, by taking the disjoint union of the alphabets and
merging the two rules with the additional condition that any node that sees both alphabets
is left unchanged, we obtain a single map ⇢ that is hard for both problems. Indeed, using
the first alphabet only for predecessor problem inputs, we have the guarantee that the only
possible pre-images must only use the first alphabet, hence the hardness follows for the
combined rule. The same is true for asynchronous reachability using the second alphabet.

Let’s now describe ⇢1 : Q1 ⇥ 2
Q1 ! Q1 that set defines automata networks which have a

NP-complete predecessor problem when restricted to G. We describe it while showing the
polynomial time reduction from SAT to the predecessor problem. Given a formula with n
variables seen as a Boolean circuit of maximum input/output degree 2 (of size polynomial
in n), we first construct G = (V,E) 2 G such that the DAG G0

= (V 0, E 0
) associated to the

circuit is of size at most p(|V |) where p is the polynomial map of Lemma 6.18. Then, using
Lemma 6.18, we have a map µ : V 0 ! V and a collection C of paths in G that represent an
embedding of G0 inside G. The lemma gives a bound 8 on the number of paths visiting a
given node v 2 V . Let’s compute a vertex coloring � : V ! {1, . . . , k} of the square of G
with k  deg(G)

2
+ 1 colors, i.e. a vertex coloring of G such that no pair of neighbors of a

given node has the same color (this can be done in polynomial time by a greedy algorithm).
To implement the routing of information along paths of C and the circuit simulation by ⇢1,
the alphabet Q1 holds 8k state components, and we will use configurations where each node
v 2 V uses only components 8�(v) to 8�(v) + 7. These components can be seen as com-
munication channels. Indeed, in such configurations, a node can distinguish the information
going through up to 8 distinct paths coming from each neighbor individually just by looking
at the set of states present in the neighborhood (because no pair of neighbors can use the
same channel). Apart from the routing of information through paths, the rule ⇢1 implements
each gate v0 2 V 0 of the Boolean circuits inside node µ(v0) of G. We think of paths from C
as being part of the circuit with nodes that implement the identity map. For that purpose
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each state component in a node is associated to a descriptor that gives the type of gate to
implement (input, identity, not, or, and, output) and the component numbers corresponding
to input(s) of the gate (gates of type ’input’ have no input). Formally, a state component
is given by S1 = {0, 1, ok, off} where 0 and 1 are Boolean values, off means that the compo-
nent is unused and ok is a special transitory state used to check correctness of computations
(see below). A descriptor component is given by D1, a finite set used to code any possible
combination of gate type and input component numbers (|D1| = 6(8k)2 is enough). Then
the state set of ⇢1 is Q1 = (S1 ⇥D1)

8k. In a given configuration, we say that a given node
v 2 V reads value x 2 {0, 1} on channel i if there is a unique state in the neighborhood with
a state component i which is not off, and if this state component contains value x. In any
other case, the value read on channel i is undefined. The rule ⇢1 does the following:

• the D1 component are never changed;
• state components in off stay unchanged;
• any state component in ok becomes off;
• any state component in state x 2 {0, 1} checks that x is the correct output value of its

gate type applied to the values read on the input channels given by its corresponding
descriptor (in particular these input values must be defined). If it is the case, it becomes
ok, otherwise off. The only exception to this rule is the case of the gate of type “output”
where we only change state to ok if x = 1 and the computation check is correct, and
change to off in any other case.

We then build configuration c 2 QV
1

for the predecessor problem as follows:

• input component numbers and gate types in D components are set according to the
Boolean circuit and the path collection C;

• all unused state components are marked as off;
• all used state components are marked ok.

We claim that c has a predecessor in one step (i.e. F⇢1(y) = c for some y 2 QV
1
) if and only if

the SAT formula represented by the Boolean circuit is satisfiable. Indeed, the only possible
predecessor configurations of c are such that all used state component hold a Boolean value
equal to the output value of the gate they code applied to their corresponding input Boolean
values, and that the output gate holds value 1.

We now describe ⇢2 : Q2 ⇥ 2
Q2 ! Q2 that set defines automata networks which have a

NP-complete asynchronous reachability problem when restricted to G. The construction is
almost identical to ⇢1 and the reduction is again from SAT problems, but with the following
modifications:

• the state component is now S2 = { ? , 0, 1, ok, off} where the new state ? represents
a pre-update standby state; in each state component, the possible state sequences are
subsequences of either ? ! {0, 1}! ok! off or ? ! {0, 1}! off ;

• to each input gate of the Boolean circuit is attached a pre-input gate that serve as
non-deterministic choice for input gates using asynchronous updates; the set D2 is a
modification of D1 taking into account this new type of gates; the alphabet is then
Q2 = (S2 ⇥D2)

8k;
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• the behavior of each state component depending on its type is as follows:
– pre-input components become ok if previously in state ? and off in any other

case;
– input components in state ? become either 0 or 1 depending on whether there

corresponding pre-input component is in state ? or not;

– any other state component in state ? become x 2 {0, 1} the output value of its
gate type applied to the values read on the input channels given by its correspond-
ing descriptor (in particular these input values must be defined). If in a state from
{0, 1}, it becomes ok, and in any other case it becomes off. The only exception
to this rule is the case of gates of type “output” where we only change state to ok
if the current value is 1, and change to off if the current value is 0.

When then define source configuration c0 and destination configuration c1 for the asyn-
chronous reachability problem as follows. They both use the same circuit embedding like in c
above but with a pre-input attached to each input. In c0 all unused components are in state
off and all used state components (including pre-inputs) are in state ? . In c1 all unused
components are in state off and all used state components are in state ok. It should be clear
that c1 can be reached from c0 if the formula associated to the Boolean circuit is satisfiable
since either 0 or 1 can be produced at each input depending on whether the associated pre-
input is update before the input update or not. Suppose now that c1 can be reached from
c0 with some asynchronous update. First, all used state components except pre-inputs must
follow either the sequence ? ! 0! ok or ? ! 1! ok. Therefore we can associate to each
such component a unique Boolean value (0 or 1 respectively) and the rule ⇢2 ensures that the
Boolean value of each such component is the output value of its corresponding circuit gate
applied on the Boolean value of its corresponding inputs. Moreover the output gate must
have Boolean value 1 so we deduce that the simulated circuit outputs 1 on the particular
choice of Boolean values of inputs. The reduction from SAT follows.

In the remaining of this section, we focus on the prediction problem for families of graphs
with polynomial treewidth. In particular, we are interested in deriving an analogous of
Theorem 6.20 for prediction problem. Nevertheless, as a log-space or a NC reduction of some
P-complete problem is required, most of the latter results that worked for Theorem 6.20
are not necessarily valid in this context as we only know that there exist polynomial time
algorithms that compute certain needed structures. In order to face this task, our approach
is based in slightly modifying the input of our prediction problem and then show that we can
efficiently compute paths in a polynomial treewidth graph G. The latter will allow us to show
that we have an analogous of subgraph routing lemma (Lemma 6.18). In particular, as it is
not clear if the perfect bramble structures used in order to obtain Lemma 6.18 are calculable
in NC or in log-space, we need to modify the problem in order to show that there exists a
log-space reduction or an NC reduction of circuit value problem (CVP) in this particular
variation of prediction, and thus that it is P-complete. More precisely, we add a perfect
bramble of polynomial size to the input of Prediction problem. We call this modified version
of prediction Routed Prediction problem.

Problem (Routed prediction problem)
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Parameters: alphabet Q, family of graphs G of max degree �

Input:

1. a deterministic freezing automata network A = (G,F ) on alphabet Q, with set of
nodes V with n = |V | and G 2 G;

2. an initial configuration c 2 QV

3. a node v 2 V and a ({v}, Q, t)-specification Sv of length t 2 N
4. A perfect bramble B = (B1, . . . , Bp) in with p = nO(1) in G

Question: does the orbit of c restricted to v satisfies specification Sv?

Now, having this latter problem in mind, we slightly modify the definition of a con-
structible familly of graphs G of polynomial treewidth introduced at the begining of this
section: we define a routed collection of graphs of polynomial treewidth to the set G =

{(Gn,Bn)}n2N such that Gn is an undirected connected graph of order n and treewidth
tw(Gn) � p(n) and Bn is a perfect bramble such that |Bn| � p0(n) where p and p0 are
polynomials. We say a that a routed collection of graphs of polynomial treewidth G is log-
constructible if there is a log-space algorithm that given n produce the tuple (Gn,Bn) 2 G.
As we will be working with a log-constructible collection of routed graphs, we would like to
say that we could have the result of Lemma 6.18 in order to show the main result of this
section. Nevertheless, in order to do that, we need to have a log-space or a NC algorithm
computing the paths that we will be using for the proof of the main result. More precisely, we
need to compute the function µ and the collection of paths C. Fortunately, in [68, Theorem
5.3] it is shown that there exist a log-space algorithm that accomplish this task. Finally, as
in the proof of Theorem 6.20, we need a proper coloring of the square graph G2 in order to
broadcast information through the paths in the collection C without encountering problems
in the nodes that are in different paths at the same time. Fortunately, we can do this in NC

as it is stated in [28, Theorem 3].

We are now in condition of showing our main result concerning routed prediction problem:

Theorem 6.21 There exists a map ⇢ : Q⇥ 2
Q ! Q such that Routed Prediction problem

is P-complete restricted to any family G of log-constructible routed collection of graphs of
polynomial treewidth.

Proof. We start by observing that prediction problem is in P. We also recall that in order
to show the P-hardness of prediction problem, it suffices to show that there exist a NC

reduction for the alternating monotone 2 fan-in 2 fan-out circuit value problem (AM2CVP),
more precisely AM2CVP NC2

m PREDG (see [45] Theorem 4.2.2 and Lemma 6.1.2). Let
n, l 2 N, C : {0, 1}n ! {0, 1}l a monotone alternating 2 fan in 2 fan out circuit, x 2 {0, 1}n
and o 2 {0, . . . , l � 1} a fixed output of C. We call C 0

= (V 0, E 0
) to the underlying DAG

defining C and we fix G 2 G where G is a log-constructible family of graphs with polynomial
treewidth. We note that, by definition we can compute G and a perfect bramble of size
p = nO(1) in log-space and thus we can do the latter computations in NC

2. Now, we use
B and Proposition 1.20 in order to compute a mapping µ : V 0 ! V and a collection of
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paths C as in Lemma 6.18. As we did in Theorem 6.20, we use Proposition 1.21 in order
to compute a k-proper coloring � : V ! {1, . . . , k} of G2 in NC

2 with k = �
2
+ 1 for

� 2 N such that �(G) = �. From here we construct ⇢ analogously as we did for ⇢1 and
⇢2 in the proof of Theorem 6.20 but observing that now we have only 5 type of gates as the
circuit is monotone. We also consider state component S = {0, 1,wait,off}. Remember that
the descriptor component assures that there won’t be overlappings of the channels during
broadcasting. We map x into a configuration y 2 Q = {S ⇥D}8k in the following way:

• The D component is assigned according to the structure of C 0.

• For every input we assign a boolean value given by x.

• For every unused node we assign the state off.

• For every other node we assign the state wait.

The rule ⇢ is defined in the following way:

• Every node in state off, 0 or 1 is fixed and does not change its state.

• Every node in state wait reads the information of its neighbors and do the following
depending on its type of gate:

– identity will take the value of its input

– AND will read its inputs: if both inputs are in 1 it will change to 1 and it will
change to 0 if it reads one neighbor in 0. In any other case it will remain in wait

– OR will read its inputs: if both inputs are in 0 it will change to 0 and it will
change to 1 if it reads one neighbor in 1. In any other case it will remain in wait

In order to show the desired result, it will suffices to show the following simulation
property: there exists t 2 N, t = nO(1) such that for every output o 2 V 0 we have
C(x)o = (F t

(y)µ(o))|S where y 2 QV is the configuration computed from x as explained
above. In fact, if we have the latter property, for some fixed output o, we define v = µ(o) and
Sv be a ({v}, Q, t)-specification such that Sv = {z 2 {0, 1} : z 6= yv and (F⇢(y)t|v)|S = z}
and then we can answer if the orbit of y in time t given by F t

⇢(y) satisfies Sv if and only if we
can answer if C(x)o = 1 (and thus AM2CVP NC2

m PRED). We now show that the latter
simulation property holds. In order to do that, we inductively check, that eventually, the
orbit of y will evaluate every layer of the circuit. We start by the input. Note that in one time
step all the information is broadcasted through the different channels and through the paths
given by C. In a maximum of L = nO(1) time steps (given by the longest path of C 0) the last
signal will arrive to a gate in the first layer. Note that, with the gates described above, signals
arriving at different times do not change its output value as gates have a monotone behaviors
on states with order wait  0  1. Iteratively, we have maximum arriving times for signals
of L time steps for each layer and then, defining t = L ⇥ deph(C) = nO(1) and observing
that output nodes will will remain constant once they have done a computation (when they
change to a boolean value), we get the desire result. Therefore, AM2CVP NC2

m PRED
holds and then, PREDG is P-complete.
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6.2 Counting complexity on freezing automata networks:
a case study.

In this subsection, we address the problem of computing the exact probability that a node
reaches a given state, in the Bootstrap Percolation model under a random sweep updating
scheme. In the Bootstrap Percolation model, nodes in the network have two possible states,
namely 0 or 1, that evolve according to the following rule: (1) when a node in state 0

is updated, it evolves taking the state of the strict majority of its neighbors; (2) when a
node in state 1 is updated, it remain in state 1. Bootstrap Percolation models are well-
studied within the framework of modelling many physical, social and biological phenomena
such as magnetic properties of some materials [14] crystal growth [43, 75], alert spreading in
distributed networks [74], sand pile formation and disease spreading [7].

Asynchronous bootstrap percolation Given a graph G = ([n], E), we consider that
each node has one of two possible states, that we denote 0 and 1 and call healthy and
infected, respectively. A configuration of G is a vector x 2 {0, 1}n assigning a state to each
node. We define the following dynamic over a configuration x (that in the following is called
initial condition), that we call asynchronous bootstrap percolation. First, we fix a positive
integer t  n, that we call time-span. Second, we fix an injective function � : [t]! [n], that
we call updating sequence. Then, the trajectory of (x, �, t) is the sequence of configurations
x�

(0), . . . , x�
(t) such that x�

(0) = x and, for each 0  k < t and i 2 [n] we define:

x�
i
(k + 1) =

8
>><

>>:

x�
i
(k) if i 6= �(k + 1),
1 if i = �(k + 1) and x�

i
(k) = 1,

1 if i = �(k + 1) and x�
i
(k) = 0 and

P
j2N(i)

x�
j (k) > bd(i)/2c,

0 if i = �(k + 1) and x�
i
(k) = 0 and

P
j2N(i)

x�
j (k)  bd(i)/2c,

In words, in the k-th configuration, the state of all nodes except �(k) remain in the same
state than in the previous configuration. Node �(k) remains in state 1 if it was in state 1

in the previous configuration, and otherwise it takes the state of the strict majority of its
neighbors.

Let us fix a graph G = ([n], E), a vertex v 2 [n], a configuration x, and a time-span t.
We say that an updating sequence � activates v if x�

v (t) = 1. Moreover, in that case we
say that � is a good-sequence for G, x, v, and t. We denote by Good(G, x, v, t) the set of
good-sequences for G, x, v and t. When the context is clear, we omit the specifications of the
graph, configuration, node and time-span. We say that v is stable if Good = ;, and otherwise
we say that the node is unstable.

We define a computational task which, inspired by the relations with the dynamics of
Bootstrap Percolation and disease spreading, we call Contagion-Probability. The input
of problem Contagion-Probability is a simple undirected n-node graph G with vertex
set [n], an initial condition x 2 {0, 1}n which assigns a state to each node of the graph, a node
v 2 [n] that we call objective node and a time-span t  n. The task consists in computing
the probability that node v reaches state 1 in at most t time-steps under a random sweep
updating scheme.

Observe that in the definition of Contagion-Probability we restricted the time-span to
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be bounded by the number of nodes n. There are two reasons for considering this restriction.
The first reason is that in many percolation processes (such as rumor or disease spreading)
is unnatural to consider a time-spans larger than the number of nodes, as the later number
could be extremely large. Second, given an initial condition, these processes reach the same
fixed point on every updating scheme, as it was shown on [38, Theorem 1]. Moreover, it is
possible to reach the fixed point updating at most n nodes.

Contagion-Probability We formally define the problem Contagion-Probability.
As we explained at the start of this chapter, this problem asks for the probability of choosing
a good-sequence, when an update sequence is picked uniformly at random. Formally, this
problem receives as input a graph G = ([n], E), a vertex v 2 [n] of G, an initial condition
x 2 {0, 1}n and a time-span t  n. The task consists in computing |Good(G, x, v, t)| divided
by n!/(n � t)!, which is the fraction of good-sequences from the total number of possible
updating sequences with time-span t.

As we have stated before, the number n!/(n�t)! can be computed in time polynomial in n,
and also the division of two integers can be computed in a running time that is linear in the
number of bits required for their binary representation (see Proposition 1.22). Therefore, the
difficulty of Contagion-Probability rests in the computation of |Good(G, x, v, t)|. For
that reason, we abuse notation and refer as Contagion-Probability also the problem of
computing the latter number.

Problem (Contagion-Probability)

Input:

1. an n-node graph G = ([n], E).
2. a node v 2 [n]

3. an initial condition x 2 {0, 1}n.
4. a natural number t  n.

Output: |Good(G, x, v, t)|

In order to study how difficult is to solve one of latter problem, we use computational
complexity theory. Roughly, we are interested in measuring how difficult is to solve the
problem, measuring the amount of resources required to solve in a Turing machine it in the
worst case. These resources are measured with respect to to the size of the input, in this
case this corresponds to the number of bits required to encode G, vertex v, the configuration
x and the time-span t. This quantity is ⇥(n +m + log n), as the graph can be encoded in
⇥(n + m) bits, the name of v and the value of t can be encoded in dlog ne bits, and the
configuration x is encoded in n bits.

The complexity of Contagion-Probability
Observe that Contagion-Probability is not a decision problem, as in consists in com-
puting a number in [0, 1]. The natural generalization of classes of decision problems are the
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functional problems. These problems are defined by a function f : {0, 1}⇤ ! {0, 1}⇤ (or
equivalently f : {0, 1}⇤ ! N⇤), and the task is to compute f(x) for a given input x 2 {0, 1}⇤.

Then, our goal is to answer in which context Contagion-Probability is in FP. Unfor-
tunately, the brute-force algorithm that test all possible permutations of the set of vertices
in unfeasible, as this number is exponential in the size of the input. A natural question is
whether the brute-force algorithm is optimal, or there exist properties of the dynamic (per-
haps restricting the input graph to some class), that can be algorithmically exploited in order
to obtain a polynomial-time algorithm.

Observe that the counting version of an NP-Complete problem can be considered as a
good candidate for a #P-Complete problem. In fact, up to our knowledge, there are no
examples of a NP-Complete problems whose counting version is not #P-Complete [58].
Interestingly, Valiant shows in [76] that there are examples of problems that their decision
version is solvable in polynomial-time, while their counting version is #P-Complete. For
instance, the problem consisting in computing a maximum matching of a given graph is
solvable in polynomial time, while the problem of counting all matchings is #P-Complete
[76].

Let (G, x, v, t) be an instance of Contagion-Probability. Remember that an injective
function � : [t]! V is a good-sequence if the objective node v reaches state 1 in the dynamics
of Bootstrap Percolation under the updating sequence �. Now consider the following decision
problem, that we call Good-Sequence. This problem receives the same instances that
Contagion-Probability, but output yes when there exist at least one-good sequence
of the given instance. Clearly this problem is in NP, as a good sequence is a witness of
polynomial size that can be verified in polynomial time by simply simulation of the dynamics
of Bootrstap Percolation.

Observe that the output of Contagion-Probability corresponds to the number of good
sequences of the input instance, divided by n!/(n� t)!, which corresponds to the number of
possible injective functions � : [t]! V . As the latter number can be computed in a running
time that is polynomial in n (see the preliminaries section for more details), the difficulty of
Contagion-Probability is reduced to the computation of the number of good-sequences.
In the following when we refer to Contagion-Probability, we do not distinguish between
the computation of the number of good-sequences and the computation of the actual proba-
bility. Note that previous observations imply that Contagion-Probability is in #P.

We show that Contagion-Probability is #P-Complete. Roughly this result implies
that in order to compute the output, there is no better algorithm that simply simulate the
dynamics on every possible injective function � : [t] ! [n], and keep the count of the ones
that are good-sequences.

Our result is obtained constructing a polynomial-time Turing reduction from a version of
#Sat to problem Contagion-Probability. The functional problem #Sat is the counting
version of Boolean Satisfability, i.e., given a Boolean formula, the task is to count the number
of truth-assignments satisfying it. In fact, our reduction is not from #Sat directly, but
instead from a restriction of the problem called #Mon-2-Sat, where the input Boolean
formula is in a 2-CNF form and it is monotonic (it does not have any negations of variables).

134



This result turns to be quite natural, as in [38] it is shown that Good-Sequence (i.e.
simply decide if the set of good sequences is non empty) is NP-Complete. As we said above,
up to our knowledge, there are no examples of a NP-Complete problems whose counting
version is not #P-Complete. In the same reference, it is shown that Good-Sequence
remain NP-Complete even when the problem is restricted to graphs of maximum degree 5.

Interestingly, when the input graph has maximum degree 4, Good-Sequence is solvable
in polynomial time [38]. This leads us to ask for the complexity of Contagion-Probability
restricted to that family of graphs. As we mentioned before, there are problems solvable in
polynomial time with #P-Complete counting versions. We remark that the restriction to
graphs of maximum degree 4 contains important instances, as the ones where the dynamics
occur on a two-dimensional grid with periodic boundary conditions.

Our second result is that Contagion-Probability restricted to input graphs of maxi-
mum degree 4 is solvable in polynomial time, hence belongs to FP. Our algorithm is based
on a characterization of the initial conditions with at least one good-sequence, given in [38].
This characterization states that when a good-sequence exists, the objective node belong to
some tree T of the input graph, such that in every good sequence, a pruning sequence of
its nodes is induced. Generally speaking, a prunning sequence for T is a sequence in which
every node of the tree must change its state to 1 before the objective node. In this regard,
Contagion-Probability solution uses an algorithm that counts the number of pruning
sequences of a given tree as a subroutine.

This subsection is organized as follows: in Section 6.2.1 we show that
Contagion-Probability problem is #P-complete by showing #Mon-2-Sat is Turing
reducible to Contagion-Probability, i.e. #Mon-2-Sat 2 FP

Contagion-Probability how-
ever, in Section 6.2.2 we show, based on previous results in the characterization of good
sequences [38], that problem Contagion-Probability is in FP when restricted to graphs
of maximum degree 4.

6.2.1 Contagion-Probability is #P -Complete

In this section, we show that Contagion-Probability is #P-Complete. In order to do
that, we reduce #Mon-2-Sat to Contagion-Probability by a polynomial-time Turing
reduction. Roughly, we show that given an instance of #Mon-2-Sat, we can produce a
series of instances of problem Contagion-Probability that represent F , in the sense that
the number of truth-assignment satisfying F can be computed from the number of good
sequences of these instances.

Let F be a monotone 2-CNF formula with n variables and m clauses. We call Z(F) =

z1, . . . , zn and C(F) = {C1, . . . , Cm}, respectively the sets of variables and clauses of F . Also,
for each j 2 [m], we call cj

1
and cj

2
the two variables that participate in clause Cj. In other

words
F(z1, . . . , zn) =

^

j2[m]

(cj
1
_ cj

2
), with c1j , c

2

j 2 Z(F).

We call '(F) the set of truth-assignments satisfying F . The weight of a truth-assignment
corresponds to the number of variables that are assigned true. For k 2 [n] we call '(F , k)
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the set of truth-assignments of weight k satisfying F . Clearly |'(F)| =
Pn

k=1
|'(F , k)|.

For k 2 [n], we define a graph G[F , k] on N = (m + 3)n + 8m + 2k + 2 nodes, and an
initial configuration x[F , k] 2 {0, 1}N as follows.

• First, for each variable zi 2 Z(F) graph G[F , k] contains a variable gadget. This
gadget consists in a node zi, called variable node, with m + 1 pending nodes denoted
zi,1, . . . zi,m+1 and called auxiliary variable nodes. In the initial configuration we assign
the variable node to be inactive and the auxiliary variable nodes to be active.

Intuitively, the variable nodes are going to simulate the variables of F . They are
initially inactive, and are adjacent to a large enough number of auxiliary variable nodes
to become active if they are updated, with the aim of associating an updating sequence
to a choice of a truth-assignments.

• Second, for each clause Cj 2 C(F), graph G[F , k] contains a clause gadget. This gadget
consists in a node vj, called clause node, and four more nodes that are adjacent to the
clause node. Two of these nodes are denoted uj

1
, uj

2
and called clause variable nodes ;

the two remaining nodes are called clause auxiliary nodes. Node uj
1

is adjacent to the
variable node associated to cj

1
, and node uj

2
is adjacent to the variable node associated

to cj
2
. Finally, the initial configuration fixes vj, uj

1
, uj

2
as inactive, and the auxiliary

clause nodes as active.

• Third, graph G[F , k] contains one threshold gadget. This gadget consists in a node
✓, called threshold node, and n + 2m + 2k + 1 other nodes called auxiliary threshold
nodes, that are adjacent to the threshold node. The threshold node is also adjacent
to all variable nodes, and all clause variable nodes. In the initial configuration, the
threshold node and 2k of auxiliary threshold nodes are inactive, and the remaining
n + 2m + 1 auxiliary threshold nodes are initially active. Observe that the threshold
node has degree 2n+ 4m+ 2k + 1.

• Finally, graph G[F , k] contains one output gadget. This gadget consists in a node out
called output node and m � 1 other nodes called auxiliary output nodes. The output
node is also adjacent to every clause node. All nodes in this gadget are initially inactive.

See Figure 6.2 for a graphical representation of each gadget. Observe that there are n
variable gadgets, each containing (m+2) nodes; there are m clause gadgets, each containing
5 nodes; one threshold gadget containing n + 2m + 2k + 2 nodes; and one output gadget
containing m nodes. This sums up a total of (n+3)m+8m+2k+2 nodes in graph G[F , k].
See Figure 6.23 for more details on the structure of G[F , k].

Let us define the timespan t(F , k) = k+2m+2 and call v[F , k] the output node of G[F , k].
Given a sequence � of v[F , k] with timespan t[F , k], we say that � induces a truth-assignment
z of F if z is such that zi = true if and only if the corresponding variable node is activated
in �.

Let us call ⇢(F , k) the set of good-sequences for v[F , k] with timespan t[F , k],
i.e. |⇢(F , k)| is the output of problem Contagion-Probability on input
(G[F , k], x[F , k], v[F , k], t[F , k]).
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Figure 6.2: Gadgets used to construct graph G[F , k]. (Left upper panel) variable gadget.
(Right upper panel) clause gadget. (Left bottom panel) threshold gadget.(Right bottom
panel) output gadget. Gray nodes are active and white nodes are inactive.
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Lemma 6.22 Suppose that � 2 ⇢(F , k). Then, � satisfies that:

• For every i 2 {1, . . . , k}, �(i) is a variable node,
• �(k + 1) is the threshold node,
• For every i 2 {k + 2, . . . , 2m+ k + 1}, �(i) is a node in a clause gadget,
• �(2m+ k + 2) is the output node.

Proof. First, observe that the output node of G[F , k] has degree 2m�1, with every neighbor
initially inactive. Therefore, by the strict majority rule it is necessary to activate m of its
neighbors before activating it. As m� 1 of these neighbors are auxiliary output nodes, it is
necessary to activate the m clause nodes before activating the output node. Each clause node
has degree 5, where one of the neighbors is the output node, and two neighbors are auxiliary
clause nodes, which are initially active. Therefore, the clause node requires that at least one
of the corresponding clause variable nodes is activated before it. Remember that the clause
variable nodes have degree three, where one neighbor is a clause node, another neighbor is
the threshold node, and the remaining one is a variable node. Consider now the time-step
on which for the first time a clause-variable node is updated. Then, this node requires that
both the threshold node and the adjacent variable node are activated before it. Therefore,
threshold must be changed to active during sequence �, and must become active before all
the clause variable nodes. The threshold node has degree 2n+4m+2k+1, with n+2m+1

adjacent auxiliary threshold nodes initially active and the remaining n+ 2m+ 2k neighbors
initially inactive. As we explained, 2m of its inactive neighbors are still inactive when the
threshold node is activated. Moreover, the 2k inactive auxiliary threshold nodes are also
inactive when the threshold node is activated. Observe that the threshold node requires at
least k more active neighbors to become active. More precisely let p the amount of active
neighbors that are required to active threshold node. Then, we have that p must be chosen
as the minimum number such the amount of active is more than the number of inactive
neighbors. Summarizing previous calculations we have (n+2m+1+ p) active neighbors and
(n+ 2m+ 2k � p) inactive neighbors. Then, by asking p to satisfy (n+ 2m+ 1 + p)� (n+

2m+ 2k� p) > 0 we deduce p > k� 1

2
and thus, p � k. We conclude that the only option is

to choose at least k variable nodes.

Wrapping up, we deduce the following order in every sequence activating the output node
in k + 2m + 2 steps: first, k variable nodes are activated. Then, the threshold node is
activated. Then, all the m clause nodes must be activated, which requires 2m steps, one for
the clause variable node, and one for the clause node. Finally the output node is activated.
We deduce that � satisfies the statements of the lemma.

Lemma 6.23 Every � 2 ⇢(F , k) induces a truth-assignment in y 2 '(k,F). For every
y 2 '(k,F) there is a � 2 ⇢(F , k) that induces y.

Proof. Let � be a good sequence in ⇢(F , k). Lemma 6.22 implies that in a good sequence
every clause node is activated, implying that at least one variable of each clause is chosen
in the k first-steps. We deduce that � induces a truth-assignment of weight k satisfying F .
Conversely, let y be a truth assignment in '(k,F). As this truth-assignment has weight k, we
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Output gadget

Clause gadgets

Variable gadgets

Threshold gadget

Figure 6.3: Scheme representing graph G[F , k]. Each type of gadget is detailed in Figure 6.2.

can update the corresponding k variable nodes, and update the clause gadgets accordingly.
This produces a sequence in ⇢(F , k).

Observe that Lemma 6.22 implies that for each truth-assignment y 2 '(F , k), there are
several good sequences for v[F , k] with timespan t[F , k]. Indeed, we know that in the first
k time-steps the variable nodes that are true in y are updated. They can be updated in
any order, so there are k! ways of updating them. Then, the threshold node is updated.
Then, 2m nodes are updated to activate all clause nodes. Let us call � the number of ways
that the m clause nodes can be activated, once the k variable nodes and the threshold node
were activated according to y. Unfortunately, the value of � is not easy to compute, since it
depends each the truth-assignment y. We say that a truth-assignment y fully satisfies clause
C if yc1 = yc2 = true, in other words, when both variables in the clause are true in y. Indeed,
the exact value � depends on the number of clauses that are fully satisfied by a given truth
assignment. A clause that is fully satisfied has two ways to be updated (one for each clause
variable node), while a clause that is not fully satisfied has only one.

Therefore, to be able to compute |'(F , k)| we will require to count with more detail.
Let C = (c1 _ c2) be a clause of F . For d 2 [m] we call '(F , k, d) the set of truth-
assignments of weight k satisfying F , and such that exactly d clauses of F are fully satisfied.
Clearly |'(F , k)| =

Pm
d=0

|'(F , k, d)|. Similarly, we define ⇢(F , k, d) as the number of good
sequences of v[F , k] with timespan t[F , k] that induce truth-assignments in '(F , k, d). Ob-
viously |⇢(F , k)| =

Pm
d=0

|⇢(F , k, d)|.

Lemma 6.24 |⇢(F , k, d)| = |'(F , k, d)| · k! · (2m)!

2m
· 2d

Proof. Let us fix y 2 '(F , k, d). From Lemma 6.23 we know that y induces a good sequence
in ⇢(F , k), and then by definition this sequence also belongs to ⇢(F , k, d). From Lemma 6.22
we know that in the first k steps the variable nodes are updated. As they are independent,
there are k! ways of updating the variables that are true in y. Once the k variable nodes are
activated, we have to continue by activating the threshold node. After that, we know from
Lemma 6.22 that in the next 2m steps all the clause nodes must be activated.
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For each clause, exactly two nodes are updated in the corresponding clause gadget. Indeed
we need 2 time steps to activate each clause node, and if we spend more than two steps in
any clause gadget we are not going to be able to activate the output node in the timespan.
Let C be the first clause. There are

�
2m
2

�
ways of choosing steps to update one of its clause

variable nodes, and the clause node. To update the second clause, we have
�
2m�2

2

�
ways of

choosing steps to update the corresponding pair. Repeating this argument we deduce that
there are

mY

i=0

✓
2m� 2i

2

◆
=

2m!

2m

ways of choosing steps for updating a pair of nodes of each clause. Finally, for each fully-
satisfied clause there are two possible choices of a clause-variable node to update, giving a
total of 2d choices.

Previous calculations imply that there are k! · (2m)!

2m
· 2d possible good sequences that

induce y. We deduce that there are |'(F , k, d)| · k! · (2m)!

2m
· 2d good-sequences inducing

truth-assignments in '(F , k, d).

Now let us call P (s) the degree m polynomial defined by

P (s) =
mX

d=0

|'(F , k, d)|sd,

and observe that |⇢(F , k)| =
Pm

d=0
|⇢(F , k, d)| = (2m)!

2m
· k! · P (2). We would like to compute

the coefficients of P (x). This is possible when we know an evaluation of the polynomial in a
large enough point, as notices by Valiant in [76]. For sake of completeness we give the result
and the full proof.

Lemma 6.25 Let P (x) =
Pn

i=0
aixi be a polynomial with integer coefficients upper bounded

by a A > 2. Suppose that we know a pair (x0, y0) such that y0 = P (x0) and x0 > A2.
Then, there exists an algorithm that outputs the coefficients a0, . . . , an of P in a time that is
polynomial in n(log(x0) + log(y0) + log n).

Proof. First, observe that
Pj�1

i=0
aixi

0
< xj

0
. for every j 2 [n]. Indeed,

j�1X

i=0

aix
i < A

j�1X

i=0

xi
= Axj�1

j�1X

i=0

xi�j+1
= Axj�1

j�1X

i=0

1

xj�1�i

< Axj�1

j�1X

i=0

1

A2i
<

3

2
Axj�1 < xj

0

Then, since an =
y0�

P
n�1
i=0 aixi

0

xn

0
we deduce that,

y0
xn
0

� 1 < an 
y0
xn
0

implying that an =

�
y0
xn
0

⌫
.
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We sequentailly obtain the other coefficients taking (x0, y0 � anxn
0
) as a pair for P 0

(x) =Pn�1

i=0
aixi. From from Proposition 1.22 we deduce that each iteration can be done in time

log(x0) + log(y0) + log n.

Note that, unfortunately, the expression |⇢(F , k)| = (2m)!

2m
· k! · P (2) only allows us to get

the value of the latter polynomial in s = 2 which is not a large-enough value to apply the
previous lemma. However, we can use a technique that is also inspired in the same paper
of Valiant [76], used to show the #P-Completeness of a variant of SAT. Let p be a positive
integer to be fixed later. Let Fp be the 2-CNF formula with n variables and mp clauses
defined as Fp

= F ^ F ^ · · · ^ F (repeated p times).

Lemma 6.26 |⇢(Fp, k)| = k! · (2mp)!

2mp
· P (2

p
)

Proof. Observe that F and Fp have the same set of variables, and each clause of F is repeated
p times on Fp. Therefore, '(Fp, k, pd) = '(F , k, d). Moreover, if d is not a multiple of p,
then '(Fp, k, d) = ;. Then,

|⇢(Fp, k)| =
mpX

d=0

|⇢(F p, k, d)|

=

mpX

d=0

|'(Fp, k, d)| · k! · (2mp)!

2mp
· 2d

=

mX

d=0

|'(Fp, k, pd)| · k! · (2mp)!

2mp
· 2pd

=

mX

d=0

|'(F , k, d)| · k! · (2mp)!

2mp
· 2pd

= k! · (2mp)!

2mp
· P (2

p
)

Theorem 6.27 Contagion-Probability is #P-complete.

Proof. Let F be an instance of #Mon-2-Sat and consider the following algorithm comput-
ing '(F) in polynomial time on a machine with an oracle for Contagion-Probability.
For each k 2 [n], the algorithm picks p = 2n + 1 and constructs the input
(G[Fp, k], x[Fp, k], v[Fp, k], t[F p, k]) of Contagion-Probability and queries the oracle on

it, obtaining |⇢(Fp, k)|. Then, the algorithm computes k! · (2mp)!

2mp
and divides |⇢(Fp, k)| by

it in order to obtain the value P (2
p
) according to Lemma 6.26. Then, the algorithm uses as
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a subroutine the algorithm given by Lemma 6.25 to obtain all the coefficients of P , which
correspond to {|'(F , k, d)|}d2{0,...,m}. Finally, the algorithm outputs

'(F) =

nX

k=1

mX

d=0

|'(F , k, d)|

From Proposition 1.22 and Lemma 6.25, all previous calculations can be done in poly-
nomial time. We deduce that #Mon-2-Sat 2 FPContagion-Probability, implying that
Contagion-Probability is #P-Complete.

6.2.2 Polynomial time algorithm for maximum degree 4

In this section, we restrict ourselves to the of Bootstrap Percolation in graphs of maximum
degree four. We show that in this case, unlike the general case studied in previous section, we
can compute the exact probability of infecting some node in polynomial time. Roughly, this
means, that we are able to efficiently count the sequences of nodes, such that, if we update
them we change the state of objective node from 0 to 1 in some fixed time t. In other words,
we show that problem Contagion-Probability is in FP. To show this result, we use a
characterization given in [38], for the configurations where the objective node is unstable.
This characterization involves a topological structure that can be exploited to design an
efficient algorithm counting all the good sequences.

In the following, G = ([n], E) is a graph of degree at most 4, x is a configuration of {0, 1}n
and v is a node such that xv = 0. We call G[0] the subgraph of G induced by the nodes
that are healthy, i.e. G[0] = G[{u 2 V : xu = 0}]. Observe that v 2 V (G[0]) and hence
we call G[0, v] the connected component of G[0] containing v. The following proposition
characterizes the stable configurations.

Proposition 6.28 ([41]) Node v is stable in G if and only if v belongs to a path P in G[0]

such that an endpoint w of P belongs to a cycle in G[0] or dG(w)  2.

Suppose that v is a site that is not stable in G. For each neighbor w of v in G such that
xw = 0, we call Dw the connected component of G[v, 0]� v containing w. When xw = 1, we
fix Dw = ;. The following lemma, characterizes the structure of the configuration around
unstable sites.

Proposition 6.29 ([38]) Let w be a neighbor of v such that xw = 0 and w becomes active
before v for some good sequence. Then Dw induces a tree of G[0] where all nodes have degree
at least 3 in G.

A component Dw which is a tree where all the nodes are of degree at least 3 in G is called
a good tree. As convention, an empty set is a good tree. Let GoodNeighbors(v) the set of
neighbors of v that induce good trees. Observe that v admits a good sequence if the strict
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majority of its neighbors induce good trees. A tree of G[0] rooted at v is called a good tree
for v, and denoted Tv, if Tv � v has

j
dG(v)

2

k
+ 1 components, each of them being good trees.

Definition 6.30 Given a tree T of size n rooted at r, a pruning sequence of T is a bijective
mapping ⇢ : [n] ! V (T ) such that, if u is an ancestor of v, then ⇢�1

(u) > ⇢�1
(v). In

particular ⇢�1
(r) = n. The number of pruning sequences of T is denoted #Prune(T, r).

The following lemma links up the good sequences of v with the existence of pruning
subsequences of the good trees in the neighborhood of v.

Lemma 6.31 A sequence � is a good sequence for v if and only there is a succession s1 <
· · · < s|Tv | such that ⇢(i) := �(si) is a pruning sequence a good tree Tv of v.

Proof. Suppose first that � : [t] ! V is a good sequence for v and let {x(s)}s2[t] be the
succession of configurations such that x(s) = F (x, �, s). Since � is a good sequence, there
must exist a step s⇤ 2 [t] in which v becomes infected, i.e. such that x(s⇤ � 1)v = 0 and
x(s⇤)v = 1. In step s⇤ � 1 the strict majority of the neighbors of v must be infected.

From Proposition 6.29, we know that there exist a set {w1, . . . , wk} of k =

j
dG(v)

2

k
+ 1

neighbors of v such that, for all i 2 [k], node wi induces a good tree Di and x(s⇤ � 1)wi = 1.
Define Tv = {v} [

S
i2[k] Di, and observe that Tv is a good tree for v. Let us call s1 < · · · <

s` = s⇤ the sequence on which the nodes of Tv are updated, with ` = |Tv|. More precisely,
for each j 2 [`] we have that �(sj) 2 Di, x(sj)�(sj) = 1 and x(sj � 1)�(sj) = 0. Observe that
�(sj) is a leaf of Tv \ �([sj � 1]), because for each s 2 {s1 < · · · < s` = s⇤} state of node �(s)
is updated, meaning that the majority of its children are infected or in state 1 in time s� 1

and also �(s) must be an ancestor of �(s) as any node in Tv was initially set to 0. Thus, if
sj is not a leaf of Tv \ �([sj � 1]) then, it would have more than one ancestor in Tv which is
not possible. We deduce that ⇢(i) := �(si) is a pruning sequence of Tv.

Conversely, if ⇢ is a pruning sequence of Tv, then in step s|Tv | vertex v becomes infected,
implying that � is a good. sequence.

Now we introduce the main lemma of the section in which we compute
Contagion-Probability for an unstable node in a graphs of maximum degree 4. Ob-
serve that, as we are considering the strict majority rule, a node that changes its state from 0

to 1 needs at least
�
dG(v)

2

⌫
+1 neighbors in state one. Thus, we need to study two different

cases: the case in which a node changes from 0 to 1 with exactly
�
dG(v)

2

⌫
+ 1 neighbors in

state one and the case in which there are more than that.

Lemma 6.32 Let (G, x, v, t) be an instance of Contagion-Probability such that G is a
graph of maximum degree 4 and v is unstable. Then,
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• If |GoodNeighbors(v)| =
�
dG(v)

2

⌫
+ 1, then

Contagion-Probability(G, x, v, t) = ↵(T ⇤, v, t)

• If |GoodNeighbors(v)| >
�
dG(v)

2

⌫
+ 1, then

Contagion-Probability(G, x, v, t) = ↵(T ⇤, v, t) + �(T ⇤, v, t)

where

↵(T, r, t) =

( �
t
|T |
�
#Prune(T, r) (n�|T |)!

(n�|T |�t)! if |T |  t

0 otherwise
,

�(T, r, t) =
X

S⇢N(v)s.t|S|=dG(v)�1

(↵(TS, v, t)� ↵(T ⇤, v, t)),

T ⇤
= {v} [

[

w2GoodNeighbors(v)

Dw and TS = {v} [
[

w2S

Dw

Proof. First, for a given a rooted tree T , observe that ↵(T, r, t) is exactly the number of
sequences of length t that contain a pruning sequence of T . Indeed, if |T | > t then this
number is zero. Otherwise, a sequences containing a pruning of T is constructed picking |T |
steps over the t possible choices, and prune T in the chosen steps. In the remaining steps
any other node can be updated. The number of ways that |T | steps can be picked over a
total of t steps is

�
t
|T |
�
. The possible ways of pruning the T on those steps is #Prune(T, v).

Finally, the number of possible choices for updating other vertices in the remaining steps is
(n� |T |)!

(n� |T |� t)!
. We deduce that ↵(T, r, v) is the product of previous quantities.

Lemma 6.31 implies that every good sequence for v contain a subsequence that can
be mapped into a pruning sequence of a good tree for v. When |GoodNeighbors(v)| =�
dG(v)

2

⌫
+ 1, there is only one possible choice of good tree for v, which is precisely

T ⇤
= {v} [

S
w2GoodNeighbors(v) Dw. We deduce that the number of good sequences for v is

↵(T ⇤, v, t).

When |GoodNeighbors(v)| >

�
dG(v)

2

⌫
+ 1, then necessarily the degree of v is 3 or 4.

In either case |Good(v)| = d(v) and any good tree for v contains d(v) � 1 of its neighbors.
Therefore, the choices for good sequences of v is the number of sequences that update contain
a prune of T ⇤, plus all the sequences that update some good tree of v, but not all T ⇤. The
number of sequences that contain a prune of T ⇤ is ↵(T ⇤, v, t). For a given set S of three
neighbors of v, the number of sequences that contain a pruning of the good trees induced
by the nodes in S, but not a pruning of T ⇤ equals ↵(TS, v, t) � ↵(T ⇤, v, t). We deduce that
Contagion-Probability(G, x, v, t) equals

↵(T ⇤, v, t) +
X

S⇢N(v)s.t|S|=3

(↵(TS, v, t)� ↵(T ⇤, v, t)).
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Previous lemma implies that, in order to obtain a polynomial-time algorithm solving prob-
lem Contagion-Probability, it is enough to have a polynomial-time algorithm computing
the value of #Prune(T, r, t), for a given rooted tree T . The following lemma states that this
is the case.

Lemma 6.33 Given tree T rooted in vertex r with maximum degree 4, there is an algorithm
computing #Prune(T, r) in deterministic time polynomial in |T |.

Proof. For a node u in T , let us define the depth of u, denoted D(u), is the distance of u to
the root r. We also call M the maximum depth of a node in T . The function D(·) can be
computed in polynomial time simply running a BFS starting at node r. The level of a node
u, denoted L(u), equals M �D(u). In other words, vertices at depth M are at level 0. The
root is at level M .

Observe that all the nodes in level 0 are leafs, but not necessarily all leaves are at that level.
For a given u 2 T , we call Tu the subtree rooted at u containing u and all it descendants.
Observe that if u is a leaf of T , then #Prune(Tu, u) = 1. If u is not a leaf, let us call
w1, . . . , wk the descendants of u in T , with k = d(u)� 1. Then,

#Prune(Tu, u) =
(|Tw1 |+ · · ·+ |Twk

|)!
|Tw1 |! · · · |Twk

|! #Prune(Tw1 , w1) · · ·#Prune(Twk
, wk) (6.1)

Indeed, to #Prune(Tu, u) we have to prune all the descendants of u before u. Observe
that a pruning of any two decendants of u are independent. Therefore, a pruning of Tu

consist in choosing |Tw| steps and a prune of Tw for each descendant w of u. For each
j 2 [k] let sj = |Twj

| and S = s1 + · · · + sk. Then, we have
�
S
s1

��
S�s1
s2

�
· · ·

�
S�

P
k�1
j=1 sj
sk

�
=

�
S
sk

� nQ
k=2

�
S�

P
k�1
j=1 sj
sk

�
=

(|Tw1 |+···+|Tw
k
|)!

|Tw1 |!,...,|Tw
k
|! ways of choosing |Tw| steps for every descendant w of u.

For each such choice, there are

#Prune(Tw1 , w1) · · ·#Prune(Twk
, wk)

ways of choosing a pruning of each subtree Twi .

Therefore, our algorithm computing #Prune(T, r) consists in a dynamic programming
scheme over the levels of T . In level 0 all nodes u are leafs, and then #Prune(Tu, u) = 1. If
all the nodes al level i are already computed, the value of #Prune(Tu, u) for a node in level
i + 1 can is computed using Equation 6.1.

Observe that for each u 2 T , the quantity #Prune(Tu, u) is at most |T |! = O(2
|T | log |T |

).
Therefore, from Proposition 1.22 we deduce that the expression of Equation 6.1 can be
computed in time O(|T |2). We conclude that #Prune(T, r) can be computed in time
O(|T |3).
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Theorem 6.34 There is a polynomial-time algorithm solving Contagion-Probability
restricted to the graphs of maximum degree 4.

Proof. Let (G, x, v, t) be an input of Contagion-Probability, where G an n-node graph
of maximum degree 4, x is a configuration of G, v is a node such that xv = 0 and t  n.

The algorithm computes G[0, v], which is the component of G[0] that contains v. Let
C1, . . . , Ck, with k  4 the connected components of G[0, v] � v. Then, it computes
GoodNeighbors(v) verifying which components induce good trees. If |GoodNeighbors| <
bd(v)

2
c+ 1 then by Proposition 6.28 and Proposition 6.29, the algorithm outputs 0 because v

is stable. Now suppose |GoodNeighbors| � bd(v)
2
c + 1 then, for each w 2 GoodNeighbors(v),

compute #Prune(Tw, w), where Tw is the component (good tree) of G[0, v]�v that contains
w. Finally, the output is computed according to the expressions given in Lemma 6.32. From
Proposition 1.22 and Lemma 6.33, we deduce that our algorithm runs in time O(n3

).
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Discussion

During this thesis work, we have developed a theoretical background to study the dynamics
of automata networks from a computational complexity viewpoint. In order to achieve this
task, we have studied in Chapter 2 how to precisely represent an automata network family
and how to manage different representations. In addition, we have proposed different variants
for prediction problem and we have formalized the study of the computational and dynamical
properties of abstract families of automata networks. In addition, we have shown that both
computational and dynamical properties are related thanks to the concept of simulation and
particularly thanks to the study of (strongly) universal networks.

Then, in Chapter 3 we have focused on how localized behavior in automata networks
can be analyzed in order to deduce global properties for a family of automata networks.
We have identified the structure of a gadget and we have provided sufficient conditions
for gadgets to form networks capable of coherently combine, from a dynamical viewpoint, its
particular properties. Moreover, we have stated these conditions in the context of a framework
which also opens new perspectives for future work. Additionally, we have presented concrete
examples of useful families such as Gm-networks and Gm,2-networks which allow us to define
a concrete approach in order to study automata networks consisting, on the one hand, in
analyzing the period of attractors in order to find global bounds on this parameter and, on
the other hand, in searching for coherent Gm,2 (or Gm)-gadgets.

In Chapter 4, we have addressed the problem of asynchronism in the dynamics by devel-
oping a framework based on the concept of projection systems and asynchronous extensions.
We have presented a way to harmonize asynchronous dynamics by seeing it as a projection
of a synchronous dynamics defined over a large alphabet which contains the information on
how to updated different nodes at each time step.

Then, in Chapter 5, we have applied the theoretical framework developed on the latter
chapters in order to systematically study a set of concrete symmetric automata network
(CSAN) families under different update schemes. By constructing coherent gadgets and
analyzing dynamical properties, we have found some kind of marker for universality based
on an interesting trade-off between constraints in the update scheme and the simplicity of
rules. This observation combined with the description and properties of CSAN rules, suggest
that update schemes play an impactful role in changing the interaction graph by affecting its
symmetry and thus, symmetry plays an important role on the global properties of automata
networks.

Finally, on chapter 6, we turned our attention to the structure of the interaction graph in
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the context of the study of freezing dynamics.

In first place, we have established how alphabet size, treewidth and maximum degree of
the underlying graph are key parameters which have an impact on the overall computational
complexity of finite freezing automata networks. We have accomplished this by defining
the Specification Checking Problem, that captures many classical decision problems such as
prediction, nilpotency, predecessor, asynchronous reachability. We have presented a fast-
parallel algorithm that solves this latter problem when the three parameters are bounded,
hence showing that the problem is in NC. Moreover, we have shown that the problem is in
XP on the parameters tree-width and maximum degree. Finally, we have hown that these
problems are hard from two different perspectives. First, the general problem is W[2]-hard
when taking either treewidth or alphabet as single parameter and fixing the others. Second,
the classical problems are hard in their respective classes when restricted to families of graph
with sufficiently large treewidth. Moreover, for prediction, predecessor and asynchronous
reachability, we establish the hardness result with a fixed set-defined update rule that is
universally hard on any input graph of such families.

In the second part of this chapter we have studied the computational com-
plexity of the problem Contagion-Probability. In general, we have shown that
Contagion-Probability is #P-complete. Roughly speaking, this means there is no better
strategy for computing the probability of an inactive node to change to state 1 than sim-
ply simulate the system for each possible updating sequence � in order to verify how many
of them actually change the state of objective node. However, when we consider networks
with maximum degree 4, we have shown, based on previous results that characterize good
sequences in terms of underlying graph topology [38], that latter computation can be made
in polynomial time.

Perspectives

Regarding our framework for glueing of automata networks it would be relevant to understand
the properties of a glueing process defined generally and see what kinds of properties can be
deduced from it when considered as a process beyond the given conditions assuring coherence
of dynamics. Particularly, given two abstract automata networks belonging to some particular
families it would interesting to study at which point dynamical properties are preserved
when two networks are glued. In addition, it would be very interesting to explore if latter
process can be seen in the opposite way, i.e., given an automata network, determine if it is
possible to decompose the network in blocks satisfying some particular properties as gadgets
do. Additionally, Proposition 3.19 provides an interesting starting point to explore the link
between different gate sets from the viewpoint of analyzing the richness of their synchronous
closure. This latter observation could lead to establish some sort of hierarchy between sets
of gates. In this sense, it would be interesting to study, for example, reversible gate sets such
as Toffoli or Fredkin gates.

On the other hand, as we have pointed out in Chapter 4, it would be interesting to study
other types of update schemes which are not captured by general periodic update schemes
such as reaction-diffusion systems (see, for instance, [30]) or the most permissive semantics
introduced in [15]. In both cases the orbits are not given by a choice in the possible nodes
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that can be updated according to local rule. In that sense, it would be interesting to adapt
the concept of asynchronous extension in order to capture the latter update schemes.

Regarding our results on freezing automata networks, we observe that our algorithm for
the general model checking problem is not as efficient as known algorithms for specific sub-
problems [11] and it would be interesting to establish hardness results in the NC hierarchy to
make this gap more precise. In the same vein, our algorithm does not yield fixed parameter
tractability results for any of the parameters (treewidth, degree, alphabet), and we wonder
whether our hardness results in the framework of parameterized complexity [23] could be
improved. We could also consider intermediate treewidth classes (non-constant but sub-
polynomial). Concerning these complexity questions, we think that considering other (more
restrictive) parameters like pathwidth could definitely help to obtain better bounds.

Besides, one might wonder whether the set of dynamical properties that are efficiently
decidable on graphs of bounded degree and treewidth could be in fact much larger than
what gives our model checking formalism. This question remains largely open, but we can
already add ingredients in our formalism (for instance, a relational predicate representing
the input graph structure). However, we conjecture that there are NP-hard properties for
freezing automata network on trees of bounded degree that can be expressed in the following
language: first order quantification on configurations together with a reachability predicate
(configuration y can be reached from x in the system).

In addition, we think that we can push our algorithm further and partly release the con-
straint on maximum degree (for instance allowing a bounded number of nodes of unbounded
degree). This can however not work in the general model checking setting as shown in
Remark 6.4.

Concerning asynchronous bootstrap percolation, the first natural question that arises is
whether this threshold in the maximum degree of the network is tight, or in other words: is
Contagion-Probability still #P-complete even when restricted to instances of maximum
degree 5? Observe that gadgets in section 3 strongly use high connectivity in graph G[F , k] in
order to assure that good sequences will respect a fixed order while updating different nodes
in the network (first we update variable nodes, then we update threshold gadget, etc.). This
is a key aspect of the proof since it helps us to keep control in the amount different sequences
associated to one particular assignation satisfying the Boolean formula. This shows that
even when one could conjecture a way to implement constant degree gadgets (by for example
considering more copies of smaller gadgets) there should also be a way to keep track in all
possible good sequences that implement the same assignation satisfying the original Boolean
formula.

Additionally, it could be also interesting to study a different version of problem
Contagion-Probability but now considering some other model having a different family
of automta networks such as CSAN networks, particularly, conjunctive or disjuntive net-
works, algebraic networks or totalistic networks. In this regard, we recall that for some of
the latter automata networks, there exist efficient algorithms (polynomial or even fast paral-
lel algorithms) in order to compute the dynamics of the system (for example, in the case of
algebraic networks or even conjunctive networks, it suffices to compute powers of some ma-
trix). However, this does not necessarily implies that counting version of Good-Sequence
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would be efficiently solvable.

In addition, we would like to note that the previous results are also interesting in the
context of counting decision problems. Within this framework, we are no longer interested in
computing the number of all possible polynomial size certificates but to determine whether,
for some fixed input, the majority of polynomial size strings we give to the verifier along
with the input are actually certificates. This notion defines the complexity class PP. More
precisely a language L ✓ {0, 1}⇤ is in PP if and only if there exists a polynomial function
p : N! N and a polynomial-time verifier V such that x 2 L () |y 2 {0, 1}p(|x|) : V (x, y) =
1| � 1

2
·2p(|x|). By considering this formalism, a natural question arises: is the decision version

of Contagion-Probability which consists in deciding if the probability of transmission
for objective node is at least 1

2
, PP-complete? (observe that by definition it is in PP). In

this context, it is known that problem MAJ-SAT, which consist on deciding if the majority
of all assignments of some Boolean formula will satisfy it, is PP-complete and thus, it could
be very interesting to explore as future work if an application of the same techniques we have
used in Section 3 might produce a polynomial-time reduction from latter problem to decision
version of Contagion-Probability.

Finally, as we have shown that Contagion-Probability is #P-complete, it could be
interesting to study approximations. In particular, within the framework of applications one
could ask whether this problem admits a polynomial randomized approximation scheme.
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