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Résumé

Ces travaux ont pour �l conducteur une application industrielle en �abilité des maté-

riaux : on s’intéresse à la gestion des risques extrêmes associés à un endommagement en

fatigue. Cette problématique industrielle soulève une série de questions qui s’articulent

autour de deux axes. Le premier porte sur l’estimation d’un quantile de défaillance ex-

trême à partir de données dichotomiques de dépassements de seuils. Un plan d’expé-

riences séquentiel est développé a�n de cibler progressivement la queue de distribution

et d’échantillonner sous des distributions tronquées, sur le modèle du Splitting. Des mo-

dèles de type GEV et Weibull sont considérés et estimés séquentiellement à travers une

procédure de maximum de vraisemblance adaptée aux données binaires.

Le deuxième axe de recherche concerne le développement d’outils méthodologiques per-

mettant de déterminer la modélisation de la durée de vie la plus adaptée aux données de

fatigue. Dans ce cadre, une première méthode de test d’hypothèses composites sur des

données a�ectées par un bruit additif est proposée. La statistique de test est construite à

partir d’indicateurs de divergence et généralise le test du rapport de vraisemblance. La

perte de puissance liée à la présence de données bruitées est mesurée par simulations à

travers des comparaisons avec le test de Neyman Pearson sur les hypothèses les moins

favorables.

Une deuxième procédure vise à tester le nombre de composantes d’un mélange dans un

cadre paramétrique. La statistique du test est basée sur des estimateurs de divergences

exprimées sous leur forme duale dans le cadre de modèles paramétriques. La distribution

limite obtenue pour la statistique de test sous l’hypothèse nulle s’applique également aux

mélanges d’un nombre quelconque de composantes k ≥ 2.

Mots-clé : Quantiles extrêmes ; Plans d’expériences sur information binaire ; Procédures

de tests ; Nombre de composantes d’un mélange ; Test d’hypothèses composites ; Estima-

tion de divergences ; Application industrielle.
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Abstract

This work is motivated by a series of questions raised by an industrial issue in material

reliability; more speci�cally, it focuses on extreme risks associated with fatigue damage.

This study is divided into two parts. The �rst one consists in estimating an extreme

failure quantile from trials whose outcomes are reduced to indicators of whether the

specimen have failed at the tested stress levels. Making use of a splitting approach, we

propose a sequential design method which decomposes the target probability level into

a product of probabilities of conditional events of higher order. The method consists in

gradually targeting the tail of the distribution and sampling under truncated distribu-

tions. The model is GEV or Weibull, and sequential estimation of its parameters involves

an improved maximum likelihood procedure for binary data.

The second axis aims at developing methodological tools to model fatigue life. To this

end, we propose a �rst test method on composite hypotheses for data a�ected by ad-

ditive noise. We handle the problem of maximal decrease of the power for tests on this

kind of corrupted data. Comparisons of such tests are considered based on their perfor-

mances with respect to the Neyman Pearson test between least favourable hypotheses.

It is shown that statistics based on divergence type indicators may perform better than

natural generalizations of the Likelihood Ratio Test.

The second test procedure aims at testing for the number of components of a mixture

distribution in a parametric setting. The test statistic is based on divergence estimators

derived through the dual form of the divergence in parametric models. We provide a

standard limit distribution for the test statistic under the null hypothesis, that holds for

mixtures of any number of components k ≥ 2.

Keywords : Extreme quantiles; Design of experiments on binary information; Test pro-

cedure; Number of components of a mixture model; Composite hypothesis testing; Di-

vergence based estimation; Industrial application.
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Chapitre 1

Introduction générale

Les travaux présentés dans ce mémoire sont issus d’une collaboration entre l’université

Paris VI et l’entreprise Safran Aircraft Engines, �liale du groupe industriel Safran.

Safran Aircraft Engines conçoit, développe, produit et commercialise, seul ou en coopé-

ration, des moteurs pour avions civils et militaires et pour satellites. La société propose

également une gamme de services pour l’entretien de leurs moteurs, la gestion de leurs

�ottes et l’optimisation de leurs opérations.

Dans un contexte extrêmement compétitif, l’entreprise cherche à se démarquer en propo-

sant des moteurs innovants et d’une �abilité irréprochable. La maîtrise des risques tech-

niques auxquels un moteur peut être confronté est donc un enjeu majeur. Le constructeur

est soumis à une règlementation stricte : la commercialisation des pièces produites est

conditionnée au respect d’un cahier des charges exigeant concernant la caractérisation

des propriétés de durée de vie et de résistance. A�n de garantir la sûreté des matériels, il

est crucial de caractériser le comportement du moteur et son usure selon les di�érentes

conditions d’utilisation et les di�érents environnements auxquels il peut être confronté.

Ces études permettent de développer des stratégies de maintenance optimales et assurent

que l’entretien et le remplacement des pièces du moteur répondent à des contraintes de

sécurité, de performances, mais également à des contraintes budgétaires.

La robustesse d’une pièce est a�ectée par de nombreux paramètres liés aux méthodes et

procédés de fabrication ainsi qu’à ses conditions d’utilisation. La conception et la spéci-

�cation d’un moteur doit donc être établie en fonction de ces contraintes opérationnelles

et de façon à les optimiser. Au sein de Safran Aircraft Engines, la division Matériaux et

Procédés intervient en amont de la construction des moteurs et est chargée de dé�nir des

stratégies de caractérisation, de développer des expertises établissant leurs conditions

d’utilisation, d’élaborer des programmes d’industrialisation, de réduction des coûts et

d’assurer la qualité des pièces fabriquées.

Les travaux présentés dans le manuscrit s’inscrivent dans ces problématiques. Ils se

17
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concentrent sur les questions de �abilité concernant, en amont de la construction des

pièces de moteurs, la caractérisation des matériaux métalliques ou composites qui sont

utilisés dans la production. En particulier, une question majeure en �abilité est la ré-

sistance des pièces à di�érents types de sollicitations et d’endommagement. Dans cette

étude, on s’intéresse à un processus d’endommagement spéci�que subi en cours de vol :

l’endommagement en fatigue.

1.1 Cadre industriel : endommagement en fatigue

Le phénomène de fatigue correspond à la modi�cation des propriétés d’un matériau sous

l’e�et de l’application répétée d’une charge, pouvant mener à la rupture. Les charge-

ments sont appliqués de manière cyclique, comme représenté sur la �gure 1.1, et carac-

térisés par :

• les niveaux de contraintes maximale et minimale, σmin et σmax ;

• le niveau moyen appliqué σm ;

• la contrainte alternée, dé�nie comme la demi amplitude de la variation du charge-

ment σa = σmax−σmin
2 ;

• le rapport de charge
σmin
σmax

;

• la température T .

Figure 1.1 – Application d’un cycle d’e�ort sur un matériau

Dans le cas des pièces de turboréacteur, les vibrations subies durant le vol sont à l’origine

de ce type d’endommagement.

A�n d’étudier la résistance d’un matériau, des études expérimentales sont menées en

contrôlant les variables dé�nies ci-dessus pour reproduire les conditions de vol. Les es-

sais réalisés consistent à appliquer sur une éprouvette
1

des cycles de contraintes jusqu’à

1. Une éprouvette est un échantillon standardisé de la matière ou de la pièce avant usinage.
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rupture ou date de �n d’essai. On mesure le nombre de cycles à rupture N (généralement

censuré à droite) pour chaque niveau de sollicitation σ.

Figure 1.2 – Schéma d’une courbe de Wöhler

Les résultats de ces plans d’essai permettent de caractériser le comportement en fatigue

d’un matériau et sont généralement représentés sous la forme d’une courbe de Wöh-

ler, aussi appelée courbe S-N (cf. Figure 1.2). Celle-ci met en évidence trois régimes de

fatigue :

• La fatigue oligocyclique ou Low Cycle Fatigue (LCF) est caractérisée par des durées

de vie courtes, associées à des niveaux de contrainte élevés. A des niveaux voisins

de la limite d’élasticité
2
, la rupture est quasi-immédiate. Pour ces hauts niveaux

de sollicitation, la rupture est généralement engendrée par la propagation d’une

�ssure amorcée en surface du matériau.

• La fatigue à grands nombres de cycles ou domaine d’endurance limitée correspond

à des durées de vie inférieures à 106
- 107

cycles, liées à l’application de niveaux

de contraintes environ deux fois inférieurs à la limite d’élasticité. Dans ce régime,

la durée de vie augmente log-linéairement à mesure que ces derniers diminuent,

jusqu’à tendre vers une asymptote horizontale. La rupture peut être engendrée

par la propagation d’une �ssure ayant amorcé en surface ou au cœur de l’éprou-

vette pour un même niveau de chargement. La co-existence des deux modalités de

rupture engendre une dispersion des essais plus importante.

2. La limite d’élasticité est la contrainte à laquelle le matériau se déforme de manière irréversible et va

donc rompre rapidement.
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• La fatigue à très grands nombres de cycles ou High Cycle Fatigue (HCF), aussi ap-

pelée domaine d’endurance illimitée, intervient lorsque la durée de vie devient très

grande, voire illimitée, soit parce qu’aucun défaut ne s’est amorcé, soit parce que

les �ssures cessent de se propager. La courbe atteint alors une asymptote horizon-

tale et les résultats observés sont alors très dispersés. Cette asymptote est plus ou

moins marquée selon les matériaux et on dé�nit également une limite de fatigue

conventionnelle qui correspond à la résistance du matériau en fatigue à 107
cycles.

En dessous de la limite d’endurance ou de la limite de fatigue conventionnelle, la

durée de vie du matériau est supposée être in�nie. Ces limites servent donc pour

dimensionner en fatigue les pièces mécaniques.

La tenue en fatigue d’un matériau s’étudie sous des angles di�érents selon le type de

régime considéré. En e�et, a�n de caractériser la tenue en fatigue oligocyclique, l’étude

se porte généralement sur la distribution de la durée de vie pour un niveau de chargement

donné. En revanche, l’approche est di�érente concernant le régime d’endurance. Il s’agit

plutôt d’estimer la distribution de la contrainte à un nombre de cycles �xés. Dans les

deux cas, on peut s’intéresser essentiellement à certains indicateurs des distributions

des variables d’intérêt. Cela peut être leurs moyennes ou bien leurs quantiles. Dans les

travaux présentés dans la suite, l’accent est mis sur la caractérisation des comportements

extrêmes des matériaux en fatigue. C’est pourquoi il s’agira d’étudier d’une part la durée

de vie dite minimale, c’est-à-dire le quantile d’ordre 0.1% de la durée de vie en fatigue

et, de l’autre, pour le régime à très grands nombres de cycles, la contrainte admissible

minimale correspondant à un quantile de défaillance à 0.1% à un nombre de l’ordre de

107
cycles.

La caractérisation de ces deux quantités (durée de vie minimale et contrainte admissible)

est utilisée pour dimensionner la pièce, en �xer le prix, en fournir une durée d’utilisation

ainsi que pour en contrôler la qualité.

1.2 Contributions

Les travaux présentés dans ce manuscrit s’articulent autour des deux axes exposés ci-

dessus, à savoir :

• la modélisation et l’estimation des risques minimaux en fatigue HCF, correspon-

dant à l’estimation d’un quantile de défaillance extrême à une durée de vie n0

grande �xée ;

• la recherche d’outils méthodologiques permettant de modéliser la durée de vie à

un niveau de contrainte �xé en fatigue oligocyclique, ce qui constitue un prérequis
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nécessaire à l’estimation de la durée de vie minimale.

La partie I se concentre sur la caractérisation de la résistance de matériaux métalliques

ou composites en fatigue à très grands nombres de cycles. L’enjeu industriel consiste à

proposer un plan d’essai couplé à une méthode d’estimation a�n d’estimer la contrainte

admissible minimale à un nombre de cycles n0 �xé. En e�et, la méthodologie existante ne

permet pas d’estimer un quantile extrême et est plutôt conçue pour cibler la contrainte

admissible moyenne. La contrainte minimale est dont pour l’instant obtenue en imposant

un abattement forfaitaire sur la contrainte admissible moyenne.

D’un point de vue théorique, la problématique consiste à proposer un plan d’expériences

en vue d’estimer un quantile extrême à partir d’un échantillon d’observations ne don-

nant qu’une information binaire (de type dépassement de seuil) sur la variable d’intérêt.

L’absence de méthodologie adaptée à cette question dans le cadre de données dichoto-

miques a conduit au développement d’une procédure originale mettant en relation les

méthodes d’échantillonnage préférentiel (ici, le splitting) avec les résultats en valeurs

extrêmes sur les lois limites des probabilités de dépassements de seuils.

La méthodologie étudiée a été publiée dans les actes du congrès dans la base CNRS I-

revues (2018 [43]) et notamment présentée au Congrès Lambda Mu 21 et à la conférence

internationale EVA 2019.

La partie II porte sur la modélisation des courbes S-N en fatigue oligocyclique. Elle s’ins-

crit dans la continuité des travaux de R. Fouchereau (2014 [35]) et vise à proposer une

nouvelle modélisation de la distribution de la durée de vie à un niveau de contrainte

donné. L’objectif est de mettre en place un modèle générique s’appuyant sur les résultats

théoriques en mécanique de la rupture et applicable à tous types de matériaux (métal-

liques et composites). Ce changement d’approche doit également permettre de modéliser

et estimer plus e�cacement les durées de vie minimales. Les travaux réalisés dans cette

partie visent à fournir les outils méthodologiques a�n de sélectionner la modélisation la

plus adaptée aux données de fatigue, à travers deux procédures de tests statistiques.

La première, présentée dans le chapitre 4, permet de tester la loi d’une variable a�ectée

d’un bruit additif. Il s’agit d’un test d’hypothèses composites correspondant à une géné-

ralisation du test du rapport de vraisemblance à partir de statistiques de type divergence.

Présentée dans un cadre plus général de métrologie, elle est facilement adaptable au cas

des données en fatigue et fournit un outil puissant d’aide à la décision. Ces travaux ont

été publiés dans la revue entropy (Broniatowski et al. 2019 [10]).

La seconde procédure est présentée dans le chapitre 5 et porte sur le test du nombre de

composantes d’un mélange. Les composantes sont supposées appartenir à des familles

paramétriques pouvant être ou non identiques et de paramètres inconnus. Ces travaux
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sont une extension de Broniatowski et Keziou (2006 [12]). La statistique de test proposée

est fondée sur des estimateurs de divergences sous leur forme duale. Un article a été

publié dans les actes de la conférence Geometric Science of Information (Broniatowski

et al. 2019 [14]).
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Chapitre 2

A sequential design for extreme
quantiles estimation under binary
sampling

2.1 Objectives

2.1.1 Theoretical challenge

Consider a non negative random variable X with distribution function G . Let X1, .., Xn be

n independent copies of X . The aim of this paper is to estimate q1−α, the (1−α)-quantile

of G when α is much smaller than 1/n. We therefore aim at the estimation of extreme

quantiles. This question has been handled by various authors, and we will review their

results later. The approach which we develop is quite di�erent since we do not assume

that the Xi ’s can be observed. For any threshold x, we de�ne the r.v.

Y =
{

1 if X ≤ x

0 if X > x

which therefore has a Bernoulli distribution with parameter G(x). We do choose the

threshold x, however we do not observe X , but merely Y . Therefore any inference on

G su�ers from a severe loss of information. This kind of setting is common in indus-

trial statistics : When exploring the strength of a material, or of a bundle, we may set a

constraint x, and observe whether the bundle breaks or not when subjected at this level

of constraint.

In the following, we will denote R the resistance of this material, we observe Y . Inference

on G can be performed for large n making use of many thresholds x. Unfortunately such

a procedure will not be of any help for extreme quantiles. To address this issue, we will

25
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consider a design of experiment enabling to progressively characterize the tail of the

distribution by sampling at each step in a more extreme region of the density. It will

thus be assumed in the following that we are able to observe Y not only when R follows

G but also when R follows the conditional distribution of R given {R > x}. In such a

case we will be able to estimate q1−α even when α < 1/n where n designates the total

number of trials. In material sciences, this amounts to consider trials based on arti�cially

modi�ed materials. When aiming at estimation of extreme upper quantiles, this amounts

to strengthen the material. We would consider a family of increasing thresholds x1, .., xm

and for each of them realize K1, ..,Km trials. Each block of iid realizations Y ’s is therefore

a function of the corresponding unobserved R’s with distribution G conditioned upon

{R > xl }, 1 ≤ l ≤ m. design which allows for the estimation of extreme quantiles.

The present setting is therefore quite di�erent from that usually considered for similar

problems under complete information. As sketched above it is speci�cally suited for

industrial statistics and reliability studies in materials science.

From a strictly statistical standpoint, the question described above can be solved by

considering that the distribution G is of some special form, namely that the conditional

distribution of R given {R > x} has a functional form which di�ers from that of G only

through some changes of the parameters. In this case, simulation under these conditio-

nal distributions can be performed for adaptive choice of the thresholds xl ’s, substituting

the above sequence of trials. This sequential procedure allows to estimate iteratively the

initial parameters of G and to obtain q1−α combining corresponding quantiles of the

conditional distributions above thresholds, a method named splitting. In this method,

we will choose sequentially the xl ’s in a way that q1−α will be obtained easily from the

last distribution of x conditioned upon {R > xm}.

In safety issues or in pharmaceutical control, the focus is usually set on the control of

minimal risks and therefore on the behavior of a variable of interest (strength, maximum

tolerated dose) for small or even very small levels. In these settings the above conside-

rations turn to be equivalently stated through a clear change of variable, considering

the inverse of the variable of interest. In the following and to make this approach more

intuitive, we choose as the main thread of this study an example in material fatigue. We

look at a safety property, namely thresholds x which specify very rare events, typically

failures under very small solicitations.

As stated above, the problem at hand in this study is the estimation of very small quan-

tiles. Since classical techniques in risk theory, for example the modelling of extreme risks

and exceedances over thresholds by the Generalized Pareto Distribution, pertain to large

quantiles estimation, we will reduce this question to the more common setting. Denoting

R the variable of interest and R̃ := 1/R, then obviously, for x > 0, {R < x} is equivalent to
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{
R̃ > u

}
with u = 1/x. In this paper we will therefore make use of this simple duality, sta-

ting formulas for R, starting with classical results pertaining to R̃ when necessary. Note

that when qα designates the α−quantile of R and respectively q̃1−α the (1−α)−quantile

of R̃ , it holds qα = 1/q̃1−α.Those notations may be a bit cumbersome; however they result

in a more familiar framework.

In this framework, we are focusing on extreme minimal risk. The critical quantities that

are used to characterize minimal risk linked to fatigue damage are failure quantiles, cal-

led in this framework allowable stresses at a given number of cycles and for a �xed level

of probability. Those quantiles are of great importance since they intervene in decisions

to dimension engine pieces, in pricing decisions as well as in maintenance policies.

This chapter is organized as follows. Paragraph 2.1.2 formalizes the problem in the fra-

mework of the industrial application of Safran Aircraft Engines. In Section 2.2, a short

survey of extreme quantiles estimation and of existing designs of experiment are studied

as well as their applicability to extreme quantiles estimation. Then, a new procedure is

proposed in Section 2.3 and elaborated for a Generalized Pareto model. An estimation

procedure is detailed and evaluated in Section 2.4. An alternative Weibull model for the

design proposed is also presented in Section 2.5. Lastly, Sections 2.6 and 2.7 provide a

few ideas discussing model selection and behavior under misspeci�cation as well as hints

about extensions of the models studied beforehand.

2.1.2 Formalization of the industrial problem

The aim of this study is to propose a new design method for the characterization of

allowable stress in very high cycle fatigue (HCF), for a very low risk α of order 10−3
. We

are willing to obtain a precise estimation method of the α−failure quantile based on a

minimal number of trials.

Denote N the lifetime of a material in terms of number of cycles to failure and S the stress

amplitude of the loading, in MPa. Let n0 be the targeted time span of order 106 −107
.

The allowable stress sα at n0 cycles and level of probability α = 10−3
is the level of stress

that guarantee that the risk of failure before n0 does not exceed α and is de�ned by:

sα = sup{s :Ps(N ≤ n0) ≤α} (2.1)

where Ps(N ≤ n0) =P(N ≤ n0|S = s).

We will now introduce a positive r.v. R = Rn0 modelling the resistance of the material at

n0 cycles and homogeneous to the stress. R is the variable of interest in this study and
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its distribution is de�ned with respect to the conditional lifetime distribution by:

P(R ≤ s) =Ps(N ≤ n0) (2.2)

Thus, the allowable stress can be rewritten as the α−quantile of the distribution of R .

sα = sup{s :P(R ≤ s) ≤α} (2.3)

However, R is not directly observed. Indeed, the usable data collected at the end of a

test campaign consists in couples of censored fatigue life - stress levels (min(N ,n0), s)

where s is part of the design of the experiment. The relevant information that can be

drawn from those observations to characterize R is restricted to indicators of whether

or not the tested specimen has failed at s before n0. Therefore, the relevant observations

obtained through a campaign of n trials are formed by a sample of variables Y1, ...,Yn

with for 1 ≤ i ≤ n,

Yi =
{

1 if Ri ≤ si

0 if Ri > si

where si is the stress applied on specimen i .

Note that the number of observations is constrained by industrial and �nancial consi-

derations; thus α is way lower than 1/n and we are considering a quantile lying outside

the sample range.

While we motivate this paper with the above industrial application, note that this kind

of problem is of interest in other domains, such as broader reliability issues or medical

trials through the estimation of the maximal dose of tolerated toxicity for a given drug.

2.2 Extreme quantile estimation, a short survey

As seen above estimating the minimal admissible constraint raises two issues : on one

hand the estimation of an extreme quantile, and on the other hand the need to proceed

to inference based on exceedances under thresholds. We present a short exposition of

these two areas, keeping in mind that the literature on extreme quantile estimation deals

with complete data or data under right censoring.

2.2.1 Extreme quantiles estimation methods

Extreme quantile estimation in the univariate setting is widely covered in the literature

when the variable of interest X is either completely or partially observed.
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The usual framework is to study the (1−α)−quantile of a r.v X , denoted x1−α, with very

small α.

The most classical case corresponds to the setting where x1−α is drawn from a n sample

of observations X1, . . . Xn . We can distinguish estimation of high quantiles, where x1−α
lies inside the sample range, see Weissman 1978 [56] and Dekkers and al. 1989 [25],

and the estimation of extreme quantiles outside the boundary of the sample, see for

instance De Haan and Rootzén 1993 [24]. It is assumed that X belongs to the domain of

attraction of an extreme value distribution. The tail index of the latter is then estimated

through maximum likelihood (Weissman 1978 [56]) or through an extension of Hill’s

estimator (see the moment estimator by Dekkers and al. 1989 [25]). Lastly, the estimator

of the quantile is deduced from the inverse function of the distribution of the k largest

observations. Note that all the above references assume that the distribution has a Pareto

tail. An alternative modelling has been proposed by De Valk 2016 [26] and De Valk and

Cai 2018 [27] and consists in assuming a Weibull type tail, which enables to release some

second order hypotheses on the tail. This last work deals with the estimation of extreme

quantiles lying way outside the sample range and will be used as a benchmark method

in the following sections.

Recent studies have also tackled the issue of censoring. For instance, Beirlant and al. 2007

[9] and Einmahl and al. 2008 [33] proposed a generalization of the peak-over-threshold

method when the data are subjected to random right censoring and an estimator for

extreme quantiles. The idea is to consider a consistent estimator of the tail index on the

censored data and divide it by the proportion of censored observations in the tail. Worms

and Worms 2014 [57] studied estimators of the extremal index based on Kaplan Meier

integration and censored regression.

However the literature does not cover the case of complete truncation, i.e when only

exceedances over given thresholds are observed. Indeed, all of the above are based on

estimations of the tail index over weighed sums of the higher order statistics of the

sample, which are not available in the problem of interest in this study. Classical estima-

tion methods of extreme quantiles are thus not suited to the present issue.

In the following, we study designs of experiment at use in industrial contexts and their

possible application to extreme quantiles estimation.

2.2.2 Sequential design based on dichotomous data

In this section we review two standard methods in the industry and in biostatistics,

which are the closest to our purpose. Up to our knowledge, no technique speci�cally

addresses inference for extreme quantiles in this setting.

We address the estimation of small quantiles, hence the events of interest are of the form
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{R < s} and the quantile is qα for small α.

The �rst method is the staircase, which is the present tool used to characterize material

fatigue strength.

The second one is the Continual Reassessment Method (CRM) which is adapted for asses-

sing the admissible toxicity level of a drug in Phase 1 clinical trials.

Both methods rely on a parametric model for the distribution of the strength variable R.

We have considered two speci�cations, which allow for simple comparisons of perfor-

mance, and do not aim at an accurate modelling in safety.

The Staircase method

Assume that R belongs to a parametric family with parameter θ0. Devised by Dixon and

Mood (1948 [29]), this technique aims at the estimation of the parameter θ0 through

sequential search based on data of exceedances under thresholds. The procedure is as

follows.

Procedure
Fix

• The initial value for the constraint, Si ni ,

• The step δ> 0,

• The number of cycles n0 to perform before concluding a trial,

• The total number of items to be tested, K .

The �rst item is tested at level s(1) = Si ni .The second item is then tested at level s(2) =
Si ni −δ in case of failure and s(2) = Si ni +δ otherwise. The levels at which the K − 2

remaining specimen are to be sequentially tested are determined by the results of the

previous trials : they are increased by a step δ in case of survival and decreased by δ in

case of failure. The procedure is illustrated in Figure 2.1.

Note that the proper conduct of the Staircase method relies on strong assumptions on the

choice of the design parameters. Firstly, Si ni has to be su�ciently close to the expectation

of R and secondly, δ has to lay between 0.5σ and 2σ, where σ designates the standard

deviation of the distribution of R .

Denote P(R ≤ s) = φ(s,θ0) and Y the variable associated to the issue of the trial : Yi ,

1 ≤ i ≤ K , takes value 1 under failure and 0 otherwise. Thus Yi =1Na≤n0 ∼B(φ(si ,θ0)).
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Relative error
On the parameter On sα

Mean Std Mean Std

-0.252 0.178 0.4064874 0.304

Table 2.1 – Results obtained using the Staircase method through simulations under the

exponential model.

Figure 2.1 – Staircase procedure

Estimation
After the K trials, the parameter θ0 is estimated through maximization of the likelihood,

namely

θ̂ = argmax

θ

K∏
i=1

φ(si ,θ)yi (1−φ(si ,θ))(1−yi ). (2.4)

Numerical results
The accuracy of the procedure has been evaluated on the two models presented below

on a batch of 1000 replications, each with K = 100.

Exponential case
Let R ∼ E (λ) with λ = 0.2. The input parameters are Sini = 5 and δ = 15 ∈[

0.5× 1
λ2 ,2× 1

λ2

]
.

As shown in Table 2.1, the relative error pertaining to the parameter λ is roughly 25%,

although the input parameters are somehow optimal for the method. The resulting rela-

tive error on the 10−3
quantile is 40%. Indeed the parameter λ is underestimated, which

results in an overestimation of the variance 1/λ2
, which induces an overestimation of

the 10−3
quantile.

Gaussian case
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Relative error
On µ On σ On sα

Mean Std Mean Std Mean Std

-0.059 0.034 1.544 0.903 -1.753 0.983

Table 2.2 – Results obtained using the Staircase method through simulations under the

Gaussian model.

We now choose R ∼ N (µ,σ) with µ = 60 and σ = 10. The value of Sini is set to the

expectation and δ = 7 belongs to the interval

[
σ
2 ,2σ

]
. The same procedure as above is

performed and yields the results in Table 2.2.

The expectation of R is recovered rather accurately, whereas the estimation of the stan-

dard deviation su�ers a loss in accuracy, which in turn yields a relative error of 180 %

on the 10−3
quantile.

Drawback of the Staircase method
A major advantage of the Staircase lies in the fact that the number of trials to be per-

formed in order to get a reasonable estimator of the mean is small. However, as shown

by the simulations, this method is not adequate for the estimation of extreme quantiles.

Indeed, the latter follows from an extrapolation based on estimated parameters, which

furthermore may su�er of bias. Also, reparametrization of the distribution making use

of the theoretical extreme quantile would not help, since the estimator would inherit of

a large lack of accuracy.

The Continuous Reassesment Method (CRM)

General principle
The CRM (O’Quigley, Pepe and Fisher, 1990[45]) has been designed for clinical trials and

aims at the estimation of qα among J stress levels s1, ..., s J , when α is of order 20%.

Denote P(R ≤ s) =ψ(s,β0). The estimator of qα is

s∗ := arginf

s∈{s1,...,s J }
|ψ(s,β0)−α|.

This optimization is performed iteratively and K trials are performed at each iteration.

Start with an initial estimator β̂1 of β0, for example through a Bayesian choice as pro-

posed in [45]. De�ne

s∗1 := arginf

s∈{s1,...,s J }
|ψ(s, β̂1)−α|.

Every iteration follows a two-step procedure:
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Step 1. Perform K trials under ψ(.,β0), say R1,1, ..,R1,K and observe only their value

under threshold, say Y1,k := 1R1,k<s∗1 ,1 ≤ k ≤ K .

Step i. Iteration i ≤ 2 consists in two steps :

– Firstly an estimate β̂i of β0 is produced on the basis of the information beared by

the trials performed in all the preceding iterations through maximum likelihood

under ψ(.,β0) (or by maximizing the posterior distribution of the parameter).

–

s∗i := arginf

s∈{s1,...,s J }
|ψ(s,β̂i )−α|;

This stress level s∗i is the one under which the next K trials Yi ,1, . . . ,Yi ,K will be

performed in the Bernoulli scheme B
(
ψ(s∗i ,β0)

)
.

The stopping rule depends on the context: it happens either when a maximum number

of trials is reached or when the results are stabilized.

Note that the bayesian inference is useful in the cases where there is no diversity in the

observations at some iterations of the procedure, i.e when, at a given level of test s∗i ,

only failures or survivals are observed.

Application to fatigue data
The application to the estimation of the minimal allowable stress is treated in a bayesian

setting. We do not directly put a prior on the parameter β0, but rather on the probability

of failure. We consider a prior information of the form: at a given stress level s′, we can
expect l failures out of n trials. Denote πs′ the prior indexed on the stress level s′. πs′

models the failure probability at level s′ and has a Beta distribution given by

πs′ ∼β(l ,n − l +1). (2.5)

Let R follow an exponential distribution: ∀s ≥ 0,ψ(s,β0) = ps = 1−exp(−β0s).

It follows ∀s, β0 =−1
s log(1−ps).

De�ne the random variable Λs =−1
s log(1−πs). By de�nition of πs′ , Λs′ is distributed as

an l-order statistic of a uniform distribution Ul ,n .

The estimation procedure of the CRM is obtained as follows:

Step 1. Compute an initial estimator of the parameter

Λs′ =
1

N

N∑
i=1

− 1

s′
log(1−πi

s′)

with πi
s′ ∼β(l ,n − l +1),1 ≤ i ≤ N . De�ne

s∗1 := arginf

s∈{s1,...,s J }
|(1−exp(−Λs′s))−α|.
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Relative error
On the 0.1−quantile On the 10−3−quantile
Mean Std Mean Std

0.129 0.48 -0.799 0.606

Table 2.3 – Results obtained through CRM on simulations for the exponential model

and perform K trials at level s∗1 . Denote the observations Y1,k := 1R1,k<s∗1 ,1 ≤ k ≤ K .

Step i. At iteration i , compute the posterior distribution of the parameter:

π∗
si
∼β

(
l +

i∑
j=1

K∑
k=1

Y j ,k , n + (K × i )−
(

l +
i∑

j=1

K∑
k=1

Y j ,k

)
+1

)
(2.6)

The above distribution also corresponds an order statistic of the uniform distribution

Ul+∑i
j=1

∑K
k=1 Y j ,k , n+(K×i ). We then obtain an estimate Λs∗1 .

The next stress level s∗i+1 to be tested in the procedure is then given by

s∗i+1 := arginf

s∈{s1,...,s J }
|(1−exp(−Λs∗1 s))−α|.

Numerical simulation for the CRM
Under the exponential model with parameter λ = 0.2 and through N = 10 iterations of

the procedure, and J = 10, with equally distributed thresholds s1, .., s J , and performing

K = 50 trials at each iteration, the results in Table 2.3 are obtained.

The 10−3−quantile is poorly estimated on a fairly simple model. Indeed for thresholds

close to the expected quantile, nearly no failure is observed. So, for acceptable K , the

method is not valid; Figure 2.2 shows the increase of accuracy with respect to K .

Both the Staircase and the CRM have the same drawback in the context of extreme quan-

tile estimation, since the former targets the central tendency of the variable of interest

and the latter aims at the estimation of quantiles of order 0.2 or so, far from the target

α = 10−3
. Therefore, we propose an original procedure designed for the estimation of

extreme quantiles under binary information.
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Figure 2.2 – Relative error on the 10−3
-quantile with respect to the number of trials for

each stress level

2.3 A new design for the estimation of extreme quan-

tiles

2.3.1 Splitting

The design we propose is directly inspired by the general principle of Splitting methods

used in the domain of rare events simulation and introduced by Kahn and Harris (1951

[40]).

The idea is to overcome the di�culty of targeting an extreme event by decomposing

the initial problems into a sequence of less complex estimation problem. This is enabled

by the splitting methodology which decompose a small probability into the product of

higher order probabilities.

Denote P the distribution of the r.v. R . The event {R ≤ sα} can be expressed as the inter-

section of inclusive events for sα = sm+1 < sm < sm−1 < ... < s1 it holds:

{R ≤ sα} = {R ≤ sm+1} ⊂ ·· · ⊂ {R ≤ s1}.

It follows that
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P(R ≤ sα) =P(R ≤ s1)
m∏

j=1
P(R ≤ s j+1 | R ≤ s j ) (2.7)

The thresholds (s j ) j=1,...,m+1 should be chosen such that all P(R ≤ s j+1 | R ≤ s j ) j=1,...,m

be of order p = 0.2 or 0.3, in such a way that

{
R ≤ s j+1

}
is observed in experiments

performed under the conditional distribution of R given

{
R ≤ s j

}
, and in a way which

makes α recoverable by a rather small number of such probabilities P(R ≤ s j+1 | R ≤ s j )

making use of (2.7).

From the formal decomposition in (2.7), a practical experimental scheme can be deduced.

Its form is given in algorithm 1.

Procedure 1 Splitting procedure

Initialization
Fix

• the number m of iterations to be performed (and

of levels to be tested);

• the level of conditional probabilities p (laying

between 20 and 30 %);

 such that pm+1 ≈α

• the �rst tested level s1 (ideally the p−quantile of the distribution of R);

• the number K of trials to be performed at each iteration.

First step
• K trials are performed at level s1. The observations are the indicators of failure

Y1,1, . . . ,Y1,K , where Y1,i =1(R1,i < s1) of distribution B (P(R ≤ s1)).

• Determination of s2, p−quantile of the truncated distribution R | R ≤ s1.

Iteration j = 2 to m

• K trials are performed at level s j under the truncated distribution of R | R ≤ s j−1

resulting to observations Y j ,1, . . . ,Y j ,k ∼B
(
P(R ≤ s j | R ≤ s j−1)

)
.

• Determination of s j+1, the p−quantile of R | R ≤ s j .

The last estimated quantile sm+1 provides the estimate of sα.

2.3.2 Sampling under the conditional probability

In practice batches of specimen are put under trial, each of them with a decreasing

strength; this allows to target the tail of the distribution P iteratively.
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Figure 2.3 – Sampling under the strengh density at n0 cycles

In other words, in the �rst step, points are sampled in zone (I). Then in the following step,

only specimen with strength in zone II are considered, and so on. In the �nal step, the

specimen are sampled in zone IV. At level sm , they have a very small probability to fail

before n0 cycles underP, however under their own law of failure, which isP(. | R ≤ sm−1),

they have a probability of failure of order 0.2.

In practice, sampling in the tail of the distribution is achieved by introducing �aws in

the batches of specimens. The idea is that the strength of the material varies inversely

with respect to the size of the incorporated �aws. The �aws are spherical and located

inside the specimen (not on its surface). Thus, as the procedure moves on, the trials

are performed on samples of materials incorporating �aws of greater diameter. This

procedure is based on the hypothesis that there is a correspondence between the strength

of the material with �aw of diameter θ and the truncated strength of this same material

without �aw under level of stress s∗, i.e. we assume that noting Rθ the strength of the

specimen with �aw of size θ, it holds that there exists s∗ such that

L (Rθ) ≈L (R | R ≤ s∗).

Before launching a validation campaign for this procedure, a batch of 27 specimen has

been machined including spherical defects whose sizes vary between 0 and 1.8mm (see

Figure 2.4). These �rst trials aim at estimating the decreasing relation between mean
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allowable stress and defects diameter θ. This preliminary study enabled to draw the

abatement fatigue curve as a function of θ, as shown in Figure 2.5.

Figure 2.4 – Coupons incorporating spherical defects of size varying from 0 mm (on the

left) to 1.8 mm (on the right)

Figure 2.5 – Mean allowable stress with respect to the defect size

Results in Figure 2.5 will be used during the splitting procedure to select the diameter θ

to be incorporated in the batch of specimens tested at the current iteration as re�ecting

the sub-population of material of smaller resistance.

Practically, this amounts to add at each step j of the procedure the determination of

the mean or median sm
j+1 of the distribution of the estimated conditional distribution

R | R ≤ s j on top of its p−quantile. The �aw size θ j+1 that will be introduced in the

batch of specimen tested at step j +1 is such that

E(Rθ j+1) ≈ sm
j+1

or

sup
{

s :P(Rθ j+1 ≤ s) ≤ 0.5
}
≈ sm

j+1.
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2.3.3 Modelling the distribution of the strength, Pareto model

The events under consideration have small probability under P. By (2.7) we are led to

consider the limit behavior of conditional distributions under smaller and smaller thre-

sholds, for which we make use of classical approximations due to Balkema and de Haan

(1974[4]) which stands as follows, �rstly in the commonly known setting of exceedances

over increasing thresholds.

Denote R̃ := 1/R .

Theorem 1. For R̃ of distribution F belonging to the maximum domain of attraction

of an extreme value distribution with tail index c , i.e. F ∈ MD A(c), it holds that : There

exists a = a(s) > 0, such that:

lim
s→∞ sup

0≤x<∞

∣∣∣∣1−F (x + s)

1−F (s)
− (

1−G(c,a)(x)
)∣∣∣∣= 0

where G(c,a) is de�ned through

G(c,a)(x) = 1−exp

{
−

∫ x
a

0
[(1+ ct )+]−1 d t

}
with a > 0 and c ∈R.

The distribution G is the Generalized Pareto distribution GPD(c, a) which is de�ned

explicitly through

1−G(x) =
{

(1+ c
a x)−1/c

when c 6= 0

exp(− x
a ) when c = 0

where x ≥ 0 for c ≥ 0 and 0 ≤ x ≤−a
c if c < 0.

Generalized Pareto distributions enjoy invariance through threshold conditioning, an

important property for our sake. Indeed it holds, for R̃ ∼GDP (c, a) and x > s,

P
(
R̃ > x | R̃ > s

)= (
1+ c(x − s)

a + cs

)−1/c

(2.8)

We therefore state:

Proposition 2. When R̃ ∼ GPD(c, a) then, given

(
R̃ > s

)
, the r.v. R̃ − s follows a

GPD(c, a + cs).

The GPD’s are on the one hand stable under thresholding and on the other appear as the

limit distribution for thresholding operations. This chain of arguments is quite usual in

statistics, motivating the recourse to the normal or stable laws for additive models. This
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plays in favor of GPD’s as modelling the distribution of R̃ for excess probability infe-

rence. Due to the lack of memory property, the exponential distribution which appears

as a possible limit distribution for excess probabilities in Theorem 1 do not qualify for

modelling. Moreover since we handle variables R which can approach 0 arbitrarily (i.e.

unbounded R̃) the parameter c is assumed positive.

Turning to the context of the minimal admissible constraint, we make use of the r.v.

R = 1/R̃ and proceed to the corresponding change of variable.

When c > 0, the distribution function of the r.v. R writes for nonnegative x :

Fc,a(x) =
(
1+ c

ax

)−1/c
. (2.9)

For 0 < x < u, the conditional distribution of R given {R < u} is

P(R < x | R < u) =
(

1− c( 1
x − 1

u )

a + c
u

)−1/c

which proves that the distribution of R is stable under threshold conditioning with pa-

rameter (au ,c) with

au = a + c

u
. (2.10)

In practice at each step j in the procedure the stress level s j equals the corresponding

threshold 1/s̃ j , a right quantile of the conditional distribution of R̃ given

{
R̃ > s̃ j−1

}
.

Therefore the observations take the form Yi =1Ri<s j−1 =1R̃i>s̃ j−1
, i = 1, . . . ,K j .

A convenient feature of model (2.9) lies in the fact that the conditional distributions are

completely determined by the initial distribution of R , therefore by a and c. The para-

meters a j of the conditional distributions are determined from these initial parameters

and by the corresponding stress level s j ; see (2.10).

2.3.4 Notations

The distribution function of the r.v. R̃ is a GPD(cT , aT ) of distribution function G(cT ,aT ).

Note G (cT ,aT ) = 1−G(cT ,aT ).

Our proposal relies on iterations. We make use of a set of thresholds (s̃1, ..., s̃m) and de�ne

for any j ∈ {1, ...,m}

G (c j ,a j )(x − s̃ j ) =P( R̃ > x
∣∣ R̃ > s̃ j )

with c j = cT and a j = aT + cT s̃ j where we used Proposition 2.

At iteration j , denote (ĉ, â) j the estimators of (c j , a j ).Therefore 1−G(ĉ,â) j (x − s̃ j ) es-

timates P( R̃ > x
∣∣ R̃ > s̃ j ). Clearly, estimators of (cT , aT ) can be recovered from (ĉ, â) j
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through ĉT = ĉ and âT = â − ĉ s̃ j .

2.3.5 Sequential design for the extreme quantile estimation

Fix m and p , where m denotes the number of stress levels under which the trials will

be performed, and p is such that pm =α.

Set a �rst level of stress, say s1 large enough (i.e. s̃1 = 1/s1 small enough) so that p1 =
P(R < s1) is large enough and perform trials at this level. The optimal value of s1 should

satisfy p1 = p , which cannot be secured. This choice is based on expert advice.

Turn to R̃ := 1/R . Estimate cT and aT , for the GPD (cT , aT ) model describing R̃ , say

(ĉ, â)1, based on the observations above s̃1 (note that under s1 the outcomes of R are

easy to obtain, since the specimen is tested under medium stress).

De�ne

s̃2 := sup
{

s : G (ĉ,â)1 (s − s̃1) < p
}

(2.11)

the (1−p)−quantile of G(ĉ,â)1 . s̃2 is the level of stress to be tested at the following itera-

tion.

Iterating from step j = 2 to m, perform K trials under G(c1,a1) say R̃ j ,1, .., R̃ j ,K and consi-

der the observable variables Y j ,i := 1R̃ j ,i>s̃ j
. Therefore the K iid replications Y j ,1, ..,Y j ,K

follow a Bernoulli B(G (c j−1,a j−1)
(
s̃ j − s̃ j−1

)
), where s̃ j has been determined at the pre-

vious step of the procedure. Estimate (c j , a j ) in the resulting Bernoulli scheme, say

(ĉ, â) j . Then de�ne

s̃ j+1 := sup
{

s : G (ĉ,â) j

(
s − s̃ j

)< p
}

=G−1
(ĉ,â) j

(1−p)+ s̃ j ,
(2.12)

which is the (1−p)−quantile of the estimated conditional distribution of R̃ given {R̃ > s̃ j },

i.e. G(ĉ,â) j . It is also the next level to be tested, except at iteration m, where sm+1 is the

last estimated quantile and, by its very de�nition, a proxy of q̃1−α.

In practice a conservative choice for the number of sequences of trials m is given by

m =
⌈

logα
log p

⌉
− 1, where d.e denotes the ceiling function. This implies that the attained

probability α̃ is less than or equal to α.

The m +1 stress levels s̃1 < ·· · < s̃m < s̃m+1 = q̃1−α satisfy

α̃=G(s̃1)
m∏

j=1
G (ĉ,â) j (s̃ j+1 − s̃ j )

= p1pm

Although quite simple in its de�nition, this method bears a number of drawbacks, mainly
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in the de�nition of (ĉ, â) j . The next section addresses this question.

2.4 Sequential enhanced design and estimation me-

thod in the Pareto model

In this section we focus on the estimation of the parameters (cT , aT ) in the GPD(cT , aT )

distribution of R̃. One of the main di�culties lies in the fact that the available information

does not consist of replications of the r.v. R̃ under the current conditional distribution

G(c j ,a j ) of R̃ given

(
R̃ > s̃ j

)
but merely on very downgraded functions of those.

At step j , we are given G(ĉ,â) j−1 and de�ne s̃ j as its

(
1−p

)−quantile. Simulating K r.v. R̃ j ,i

with distribution G(c j−1,a j−1), the observable outcomes are the Bernoulli (p) r.v.’s Y j ,i :=
1R̃ j ,i>s̃ j

. This loss of information with respect to the R̃ j ,i ’s makes the estimation step

for the coe�cients (ĉ, â) j quite complex; indeed (ĉ, â) j is obtained through the Y j ,i ’s,

1 ≤ i ≤ K .

2.4.1 Estimation procedure based on classical optimization crite-
ria

The �rst approach consists in analyzing the results obtained through standard Maximum

Likelihood Estimation of the parameters (ĉ, â) j at each step j of the procedure. In this

case, the estimation at each step j ≥ 1 is made only on the basis of current data, i.e the

current observations Y j ,1, . . . ,Y j ,K obtained under the Bernoulli scheme.

At the �rst iteration, the estimates are given by:

(ĉ, â)T = argmax
(c,a)

K∑
i=1

Y1,i log
(
Ḡ(c,a)(s̃1)

)+ (1−Y1,i ) log
(
G(c,a)(s̃1)

)
Given the estimates of the parameters of the distribution G(cT ,aT ), it follows the parame-

ters of the conditional law of R̃ given R̃ > s̃1 :

(ĉ, â)1 = (ĉT , âT + ĉT s̃1)

and the following level to be tested is obtained through (2.11). Similarly, for steps j > 1,

the parameters of the current conditional distribution of R̃ given R̃ > s̃ j−1 are estimated

through Maximum Likelihood based on the observations Y j ,1, . . . ,Y j ,K resulting from

trials at level s̃ j :

(ĉ, â) j−1 = argmax
(c,a)

K∑
i=1

Y j ,i log
(
Ḡ(c,a)(s̃ j )

)+ (1−Y j ,i ) log
(
G(c,a)(s̃ j )

)
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Minimum Q25 Q50 Mean Q75 Maximum

67.07 226.50 327.40 441.60 498.90 10 320.00

Table 2.4 – Estimation of the (1−α)−quantile, s̃α = 469.103, through procedure 2.3.5

with K = 50

s̃m for K = 30 s̃m for K = 50
s̃α Mean Std Mean Std

469.103 1 276.00 12 576.98 441.643 562.757

Table 2.5 – Estimation of the (1−α)−quantile, s̃α = 469.103, through procedure 2.3.5 for

di�erent values of K

Estimates for the next conditional distribution and next level of stress are obtained as

stated above.

The quantile q̃1−α obtained with this Maximum Likelihood Estimation based procedure

is loosely estimated for small α : As measured on 1000 simulation runs, large standard

deviation of
̂̃q1−α is due to poor estimation of the iterative parameters (ĉ, â) j+1. We

have simulated n = 200 realizations of r.v.’s Yi with common Bernoulli distribution with

parameter G (cT ,aT )(s̃1). Figure 2.6 shows the log likelihood function of this sample as

the parameter of the Bernoulli G (c ′,a′)(s̃0) varies according to

(
c ′, a′) . As expected this

function is nearly �at in a very large range of

(
c ′, a′) .

This explains the poor results in Table 2.5 obtained through the Splitting procedure when

the parameters at each step are estimated by maximum likelihood, especially in terms of

dispersion of the estimations. Moreover, the accuracy of the estimator of q̃1−α quickly

decreases with the number K of replications Y j ,i , 1 ≤ i ≤ K .

Changing the estimation criterion by some alternative method does not improve signi-

�cantly; Figure 2.7 shows the distribution of the resulting estimators of q̃1−α for various

estimation methods (minimum Kullback Leibler, minimum Hellinger and minimum L1

distances - see their de�nitions in Appendix 2.9.1) of (cT , aT ) .

This motivates the need for an enhanced estimation procedure.

2.4.2 An enhanced sequential criterion for estimation

We consider an additional criterion which makes use of the iterative nature of the pro-

cedure. We will impose some control on the stability of the estimators of the conditional

quantiles through the sequential procedure. At iteration 1, the estimation is performed

using only Maximum Likelihood and remains as described in 2.4.1. Note that in prac-

tice, some additional information may also be available, related to the mean or median
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Figure 2.6 – Log-likelihood of the Pareto model with binary data

of the distribution if the studied material has already been the subject of some testing

campaign.

At iteration j −1, the sample Y j−1,i , 1 ≤ i ≤ K has been generated under G(c j−2,a j−2) and

provides an estimate of p through

p̂ j−1 := 1

K

K∑
i=1

Y j−1,i . (2.13)

The above p̂ j−1 estimates P
(
R̃ > s̃ j−1 | R̃ > s̃ j−2

)
conditionally on s̃ j−1 and s̃ j−2. We write

this latter expression P
(
R̃ > s̃ j−1 | R̃ > s̃ j−2

)
as a function of the parameters obtained at

iteration j , namely (ĉ, â) j .The above r.v’s Y j−1,i stem from variables R̃ j−1,i greater than

s̃ j−2. At step j , estimate thenP
(
R̃ > s̃ j−1 | R̃ > s̃ j−2

)
making use of G(ĉ,â) j . Denote G

(ĉ,â)
j
j−2

the updated estimation of G(c j−2,a j−2), de�ned by ĉ j
j−2 = ĉ j and â j

j−2 = â j + ĉ j
(
s̃ j−2 − s̃ j

)
.

This backward estimator writes

G
(ĉ,â)

j
j−2

(s̃ j−1)

G
(ĉ,â)

j
j−2

(s̃ j−2)
= 1−G

(ĉ,â)
j
j−2

(s̃ j−1 − s̃ j−2).
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Figure 2.7 – Estimations of the α−quantile based on the Kullback-Leibler, L1 distance

and Hellinger distance criterion

The distance ∣∣∣∣(G
(ĉ,â)

j
j−2

(s̃ j−1 − s̃ j−2)

)
− p̂ j−1

∣∣∣∣ (2.14)

should be small, since both G
(ĉ,â)

j
j−2

(s̃ j−1 − s̃ j−2) and p̂ j−1 should approximate p.

Consider the distance between quantiles∣∣∣∣(s̃ j−1 − s̃ j−2)−G−1

(ĉ,â)
j
j−2

(1− p̂ j−1)

∣∣∣∣ . (2.15)

An estimate (ĉ, â) j can be proposed as the minimizer of the above expression for

(s̃ j−1 − s̃ j−2) for all j . This backward estimation provides coherence with respect to the

unknown initial distribution G(cT ,aT ). Would we have started with a good guess (ĉ, â) =
(cT , aT ) then the successive (ĉ, â) j , s̃ j−1, etc. . .would make (2.15) small, since s̃ j−1 (resp.

s̃ j−2) would estimate the p−conditional quantile of P
(

.| R̃ > s̃ j−2
)

(resp. P
(

.| R̃ > s̃ j−3
)
).

It remains to argue on the set of plausible values where the quantity in (2.15) should be

minimized.

We suggest to consider a con�dence region for the parameter (cT , aT ) . With p̂ j de�ned

in (2.13) and γ ∈ (0,1) de�ne the γ−con�dence region for p by

Iγ =
p̂ j − z1−γ/2

√
p̂ j (1− p̂ j )

K −1
; p̂ j + z1−γ/2

√
p̂ j (1− p̂ j )

K −1
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Parameters Relative error on s̃α
Mean Std

c = 0.8, a0 = 1.5 and s̃α = 469.103 -0.222 0.554

c = 1.5, a0 = 1.5 and s̃α = 31621.777 -0.504 0.720

c = 1.5, a0 = 3 and s̃α = 63243.550 0.310 0.590

Table 2.6 – Mean and std of relative errors on the (1−α)−quantile of GPD calculated

through 400 replicas of procedure 2.4.2.

where zτ is the τ−quantile of the standard normal distribution. De�ne

S j =
{
(c, a):

(
1−G(c,a)(s̃ j − s̃ j−1)

) ∈ Iγ
}

.

Therefore S j is a plausible set for (ĉT , âT ).

The above discussion is summarized as follows:

At iteration j , the estimator of (cT , aT ) is a solution of the minimization problem

min
(c,a)∈S j

∣∣∣(s̃ j−1 − s̃ j−2)−G−1
(c,a+c s̃ j−2)(1− p̂ j−1)

∣∣∣ .

The optimization method used is the Sa�p algorithm (Biret and Broniatowski, 2016 [8],

see Appendix 2.9.2).

As seen hereunder, this heuristics provides good performance.

2.4.3 Simulation based numerical results

This procedure has been applied in three cases. A case considered as reference is

(cT , aT ) = (1.5,1.5); secondly the case when (cT , aT ) = (0.8,1.5) describes a light tail with

respect to the reference. Thirdly, a case (cT , aT ) = (1.5,3) de�nes a distribution with same

tail index as the reference, but with a larger dispersion index.

Table 2.6 shows that the estimation of q̃1−α deteriorates as the tail of the distribution

gets heavier; also the procedure tends to underestimate q̃1−α.

Despite these drawbacks, we observe an improvement with respect to the simple Maxi-

mum Likelihood estimation; this is even more clear, when the tail of the distribution is

heavy. Also, in contrast with the ML estimation, the sensitivity with respect to the num-

ber K of replications at each of the iterations plays in favor of this new method : As K

decreases, the gain with respect to Maximum Likelihood estimation increases notably,

see Figure 2.9.
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The red line stands stands for the real value of sα

Figure 2.8 – Estimations of the (1−α)−quantile of two GPD obtained by Maximum

Likelihood and by the improved Maximum Likelihood method

The red line stands stands for the real value of sα

Figure 2.9 – Estimations of the (1−α)−quantile of a GPD(0.8,1.5) obtained by Maximum

Likelihood and by the improved Maximum Likelihood method for di�erent values of K .
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2.4.4 Performance of the sequential estimation

As stated in chapter 2.2, there is to our knowledge no method dealing with similar ques-

tion available in the literature. Therefore we compare the results of our method, based

on observed exceedances over thresholds, with the results that could be obtained by

classical extreme quantiles estimation methods assuming we have complete data at our

disposal; those may be seen as benchmarks for an upper bound of the performance of

our method.

Estimation of an extreme quantile based on complete data, de Valk’s estimator

In order to provide an upper bound for the performance of the estimator, we make use

of the estimator proposed by De Valk and Cai (2016). This work aims at the estimation

of a quantile of order pn ∈ [n−τ1 ;n−τ2 ], with τ2 > τ1 > 1 , where n is the sample size. This

question is in accordance with the industrial context which motivated the present paper.

De Valk’s proposal is a modi�ed Hill estimator adapted to log-Weibull tailed models. De

Valk’s estimator is consistent, asymptotically normally distributed, but is biased for �nite

sample size.We brie�y recall some of the hypotheses which set the context of de Valk’s

approach.

Let X1, . . . , Xn be n iid r.v’s with distribution F , and denote Xk:n the k− order statistics.

A tail regularity assumption is needed in order to estimate a quantile with order greater

than 1− 1/n.

Denote U (t ) = F−1 (1−1/t ), and let the function q be de�ned by

q(y) =U (e y ) = F−1 (
1−e−y)

for y > 0.

Assume that

lim
y→∞

log q(yλ)− log q(y)

g (y)
= hθ(λ) λ> 0 (2.16)

where g is a regularly varying function and

hθ(λ) =
{

λθ−1
θ

if θ 6= 0

logλ if θ = 0

de Valk writes condition 2.16 as log q ∈ ERVθ(g ).

Remark : Despite its naming of log-Generalized tails, this condition also holds for Pareto

tailed distributions, as can be checked, providing θ = 1.

We now introduce de Valk’s extreme quantile estimator.
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Let

ϑk,n :=
n∑

j=k

1

j
.

Let q(z) be the quantile of order e−z = pn of the distribution F . The estimator makes

use of Xn−ln:n , an intermediate order statistics of X1, .., Xn , where ln tends to in�nity as

n →∞ and ln /n → 0.

de Valk’s estimator writes

q̂(z) = Xn−ln:n exp

{
g (ϑln ,n)hθ

(
z

ϑln+1,n

)}
. (2.17)

When the support of F overlaps R−
then the sample size n should be large; see de Valk

([27]) for details.

Note that, in the case of a GPD(c, a), parameter θ is known and equal to 1 and the

normalizing function g is de�ned by g (x) = cx for x > 0.

Loss in accurracy due to binary sampling

In Table 2.7 we compare the performance of de Valk’s method with ours on the model,

making use of complete data in de Valk’s estimation, and of dichotomous ones in our

approach. Clearly de Valk’s results cannot be attained by the present sequential method,

due to the loss of information induced by thresholding and dichotomy. Despite this,

the results can be compared, since even if the bias of the estimator clearly exceeds the

corresponding bias of de Valk’s, its dispersion is of the same order of magnitude, when

handling heavy tailed GPD models. Note also that given the binary nature of the data

considered, the average relative error is quite honorable. We can assess that a large part

of the volatility of the estimator produced by our sequential methodology is due to the

nature of the GPD model as well as to the sample size.

2.5 Sequential design for the Weibull model

The main property which led to the GPD model is the stability through threshold condi-

tioning. However the conditional distribution of R̃ given

{
R̃ > s

}
also takes a rather

simple form which allows for some variation of the sequential design method under

the Weibull hypothesis.

2.5.1 The Weibull model

Denote R̃ ∼W (α,β), with α,β> 0 a Weibull r.v. with scale parameter α and shape para-

meter β. Let G denote the distribution function of R̃ , g its density function and G−1
its
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Relative error on the (1−α)−quantile
Parameters On complete data On binary data

Mean Std Mean Std

c = 0.8, a0 = 1.5 and sα = 469.103 0.052 0.257 -0.222 0.554

c = 1.5, a0 = 1.5 and sα = 31621.777 0.086 0.530 -0.504 0.720

c = 1.5, a0 = 3 and sα = 63243.550 0.116 0.625 0.310 0.590

Table 2.7 – Mean and std of the relative errors on the (1−α)−quantile of GPD on com-

plete and binary data for samples of size n = 250 computed through 400 replicas of both

estimation procedures.

Estimations on complete data are obtained with de Valk’s method; estimations on binary

data are provided by the sequential design.

quantile function. We thus write for non negative x

G(x) = 1−exp

(
−

( x

α

)β)
for 0 < u < 1, G−1(u) =α(− log(1−u))1/β

The conditional distribution of R̃ is a truncated Weibull distribution

for s̃2 > s̃1, P(R̃ > s̃2 | R̃ > s̃1) = P(R̃ > s̃2)

P(R̃ > s̃1)

= exp

{(
−

( s2

α

)β
+

( s1

α

)β)}
Denote Gs2 the distribution function of R̃ given

{
R̃ > s̃2

}
.

The following result helps. For s̃2 > s̃1,

logP(R̃ > s̃2 | R̃ > s̃1) =
[(

s̃2

s̃1

)β
−1

]
logP(R̃ > s̃1) (2.18)

Assuming P(R̃ > s̃1) = p , and given s̃1 we may �nd s̃2 the conditional quantile of order

1−p of the distribution of R̃ given

{
R̃ > s̃1

}
. This solves the �rst iteration of the sequential

estimation procedure through

log p =
[(

s̃2

s̃1

)β
−1

]
log p

where the parameter β has to be estimated on the �rst run of trials.
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The same type of transitions holds for the iterative procedure; indeed for s̃ j+1 > s̃ j > s̃ j−1

logP(R̃ > s̃ j+1 | R̃ > s̃ j ) =
[

logP(R̃ > s̃ j+1 | R̃ > s̃ j−1)

logP(R̃ > s̃ j | R̃ > s̃ j−1)
−1

]
logP(R̃ > s̃ j | R̃ > s̃ j−1)

=
 s̃βj−1 − s̃βj+1

s̃βj−1 − s̃βj

−1

 logP(R̃ > s̃ j | R̃ > s̃ j−1)

(2.19)

At iteration j the thresholds s̃ j and s̃ j−1 are known; the threshold s̃ j+1 is the (1−p)−
quantile of the conditional distribution, P(R̃ > s̃ j+1 | R̃ > s̃ j ) = p , hence solving

log p =
 s̃βj−1 − s̃βj+1

s̃βj−1 − s̃βj

−1

 log p

where the estimate of β is updated from the data collected at iteration j .

2.5.2 Numerical results

Similarly as in Sections 2.4.3 and 2.4.4 we explore the performance of the sequential

design estimation on the Weibull model. We estimate the (1−α)− quantile of the Weibull

distribution in three cases. In the �rst one, the scale parameter a and the shape parameter

b satisfy (a,b) = (3,0.9). This corresponds to a strictly decreasing density function, with

heavy tail. In the second case, the distribution is skewed since (a,b) = (3,1.5) and the

third case is (a,b) = (2,1.5) and describes a less dispersed distribution with lighter tail.

Table 2.8 shows that the performance of our procedure here again largely depends on

the shape of the distribution. The estimators are less accurate in case 1, corresponding

to a heavier tail. Those results are compared to the estimation errors on complete data

through de Valk’s methodology. As expected, the loss of accuracy linked to data dete-

rioration is similar to what was observed under the Pareto model, although a little more

important. This can be explained by the fact that the Weibull distribution is less adapted

to the splitting structure than the GPD.

2.6 Model selection and misspeci�cation

In the above sections, we considered two models whose presentation was mainly mo-

tivated by theoretical properties. As it has already been stated in paragraph 2.3.3, the

modelling of R̃ by a GPD with c strictly positive is justi�ed by the assumption that the

support of the original variable R may be bounded by 0. However, note that the GPD
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Relative error on the (1−α)−quantile
Parameters On binary data On complete data

Mean Std Mean Std

a0 = 3, b0 = 0.9 et sα = 25.69 0.282 0.520 0.127 0.197

a0 = 3, b0 = 1.5 et sα = 10.88 -0.260 0.490 0.084 0.122

a0 = 2, b0 = 1.5 et sα = 7.25 -0.241 0.450 0.088 0.140

Table 2.8 – Mean and std of relative errors on the (1−α)−quantile of Weibull distribu-

tions on complete and binary data for samples of size n = 250 computed through 400
replicas.

Estimations on complete data are obtained with de Valk’s method; estimations on binary

data are provided by the sequential design.

model can be easily extended to the case where c = 0. It then becomes the trivial case of

the estimation of an exponential distribution.

Though we did exclude the exponential case while modelling the excess probabilities of R̃

by a GPD, we still considered the Weibull model in section 2.5, which belongs to the max

domain of attraction for c = 0. On top of being exploitable in the splitting structure, the

Weibull distribution is a classical tool when modelling reliability issues, it thus seemed

natural to propose an adaptation of the sequential method for it.

In this section, we discuss the modelling decisions and give some hints on how to deal

with misspeci�cation.

2.6.1 Model selection

The decision between the Pareto model with tail index strictly positive and the Weibull

model has been covered in the literature. There exists a variety of tests on the domain

of attraction of a distribution.

Dietrich and al. (2002 [28]) and Drees and al. (2006 [31]) both propose a test for extreme

value conditions related to Cramer-von Mises tests. Let X be a r.v of distribution function

G . The null hypothesis is

H0 : G ∈ MD A(c0).

In our case, the theoretical value for the tail index is c0 = 0. The former test provides

a testing procedure based on the tail empirical quantile function, while the latter uses

a weighted approximation of the tail empirical distribution. Choulakian and Stephens

(2001 [20]) proposes a goodness of �t test in the fashion of Cramer-von Mises tests in

which the unknown parameters are replaced by maximum likelihood estimators. The

test consists in two steps: �rstly the estimation of the unknown parameters, and secondly
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the computation of the Cramer-von Mises W 2
or Anderson-Darling A2

statistics. Let

X1, . . . , Xn be a random sample of distribution G . The hypothesis to be tested is:

H0 : The sample is coming from a GPD(c0, â).

The associated test statistics are given by:

W 2 =
n∑

i=1

(
Ĝ(x(i ))− 2i −1

2n

)2

+ 1

12n
;

A2 =−n − 1

n

n∑
i=1

(2i −1)
{
log(Ĝ(x(i )))+ log(1−Ĝ(x(n +1− i ))

}
,

where x(i ) denotes the i−th order statistic of the sample. The authors provide the cor-

responding tables of critical points.

Jurečková and Picek (2001 [39]) designed a non-parametric test for determining whether

a distribution G is light or heavy tailed. The null hypothesis is de�ned by :

Hc0 : x1/c0 (1−G(x)) ≤ 1 ∀x > x0 for some x0 > 0

with �xed hypothetical c0. The test procedure consists in splitting the data set in N

samples and computing the empirical distribution of the extrema of each sample.

The evaluation of the suitability of each model for fatigue data is precarious. The main

di�culty here is that it is not possible to perform goodness-of-�t type tests, since �rstly,

we collect the data sequentially during the procedure and do not have a sample of avai-

lable observations beforehand, and secondly, we do not observe the variable of interest R

but only peaks over chosen thresholds. The existing tests procedures are not compatible

with the reliability problem we are dealing with. On the �rst hand, they assume that the

variable of interest is fully observed and are mainly semi-parametric or non-parametric

tests based on order statistics. On the other hand, their performances rely on the avai-

lability of a large volume of data. This is not possible in the design we consider since

fatigue trial are both time consuming and extremely expensive.

Another option consists of validating the model a posteriori, once the procedure is com-

pleted using expert advices to con�rm or not the results. For that matter, a procedure

following the design presented in 2.3.2 is currently being carried out. Its results should

be available in a few months and will give hints on the most relevant model.

2.6.2 Handling misspeci�cation under the Pareto model

In paragraph 2.3.3, we assumed that R̃ initially follows a GPD. In practice, the distribution

may have its excess probabilities converge towards it as the thresholds increase but di�er
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from a GPD. In the following, let us assume that R̃ does not follow a GPD (of distribution

function F ) but another distribution G whose tail gets closer and closer to a GPD.

In this case, the issue is to control the distance between G and the theoretical GPD and

to determine from which thresholding level it becomes negligible. One way to deal with

this problem is to restrict the model to a class of distributions that are not so distant

from F : Assume that the distribution function G of the variable of interest R̃ belongs to

a neighborhood of the GPD(c, a) of distribution function F , de�ned by:

Vε(F ) =
{

G : sup
x

|F̄ (x)−Ḡ(x)|w(x) ≤ ε
}

, (2.20)

where ε≥ 0 and w an increasing weight function such that limx→∞ w(x) =∞.

Vε(F ) de�nes a neighborhood which does not tolerate large departures from F in the

right tail of the distribution.

Let x ≥ s, it follows from (2.20) a bound for the conditional probability of x given R > s :

F̄ (x)−ε/w(x)

F̄ (s)+ε/w(s)
≤ Ḡ(x)

Ḡ(s)
≤ F̄ (x+)+ε/w(x)

F̄ (s)−ε/w(s)
. (2.21)

When ε = 0, the bounds of (2.21) match the conditional probabilities of the theoretical

Pareto distribution.

In order to control the distance between F and G , the bound above may be rewritten in

terms of relative error with respect to the Pareto distribution. Using a Taylor expansion

of the right and left bounds when ε is close to 0, it becomes:

1−u(s, x).ε≤
Ḡ(x)
Ḡ(s)

F̄ (x)
F̄ (s)

≤ 1+u(x, s).ε, (2.22)

where

u(s, x) =
(
1+ cs

a

)1/c

w(s)
+

(
1+ cx

a

)1/c

w(x)
.

For a given ε close to 0, the relative error on the conditional probabilities can be control-

led upon s. Indeed, then the relative error is bounded by a �xed level δ> 0 whenever:

(
1+ cs

a

)1/c

w(s)
≤ δ

ε

(
1+ cx

a

)1/c

w(x)
.
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2.7 Perspectives, generalization of the two models

In this work, we have considered two models for R̃ that exploits the thresholding opera-

tions used in the splitting method. This is a limit of this procedure as the lack of relevant

information provided by the trials do not enable a �exible modelling of the distribution

of the resistance. In the following, we present ideas of extensions and generalizations of

those models, based on common properties of the GPD and Weibull models.

2.7.1 Variations around mixture forms

When the tail index is positive, the GPD is completely monotone, and thus can be

written as the Laplace transform of a probability distribution. Thyrion (1964[52]) and

Thorin (1977[51]) established that a GPD(aT ,cT ), with cT > 0, can be written as the

Laplace transform of a Gamma r.v V whose parameters are functions of aT and cT :

V ∼ Γ
(

1
cT

, aT
cT

)
. Denote v the density of V ,

∀x ≥ 0, Ḡ(x) =
∫ ∞

0
exp(−x y)v(y)d y

where v(y) = (aT /cT )1/c

Γ(1/cT )
y1/cT −1 exp

(
−aT y

cT

)
.

(2.23)

It follows that the conditional survival function of R̃ , Ḡs j , is given by:

P(R̃ > s̃ j+1 | R̃ j > s̃ j ) = Ḡ s̃ j (s̃ j+1 − s̃ j )

=
∫ ∞

0
exp

{−(s̃ j+1 − s̃ j )y
}

v j (y)d y,

where V j is a r.v of distribution Γ

(
1

c j
,

a j

c j

)
.

with c j = cT and a j = a j−1 + cT (s̃ j − s̃ j−1).

Expression (2.23) gives room to an extension of the Pareto model. Indeed, we could consi-

der distributions of R̃ that share the same mixture form with a mixing variable W that

possesses some common characteristics with the Gamma distributed r.v. V.

Similarly, the Weibull distribution W (α,β) can also be written as the Laplace transform

of a stable law of density g whenever β ≤ 1. Indeed, it holds from Feller 1971[34]) (p.

450, Theorem 1) that:

∀x ≥ 0, exp
{
−xβ

}
=

∫ ∞

0
exp(−x y)g (y)d y (2.24)
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where g is the density of an in�nitely divisible probability distribution.

It follows, for s j < s j+1

P(R̃ > s̃ j+1 | R̃ j > s̃ j ) = exp
{−(s̃ j+1/α)β

}
exp

{−(s̃ j /α)β
}

=
∫ ∞

0 exp
{
(−(s̃ j+1/α)y

}
g (y)d y∫ ∞

0 exp
{−(s̃ j /α)y

}
g (y)d y

=
∫ ∞

0 exp
{−(s̃ j+1/α)y

}
g (y)d y

K (s j )

= 1

K (s j )

∫ ∞

0
exp

{−s̃ j+1u
}

gα(u))du

with u = y/α and gα(u) =αg (αu)

(2.25)

Thus an alternative modelling of R̃ could consist in any distribution that can be written

as a Laplace transform of a stable law of density wα,β de�ned on R+ and parametrized by

(α,β), that complies to the following condition: For any s > 0, the distribution function

of the conditional distribution of R̃ given R̃ > s can be written as the Laplace transform

of w (α,s)
α,β (.) where

x > s, w (α,s)
α,β (x) = αwα,β(αx)

K (s)
,

where K (.) is de�ned in (2.25).

2.7.2 Variation around the GPD

Another approach, inspired by Naveau et al. (2016[44]), consists in modifying the model

so that the distribution of R̃ tends to a GPD as x tends to in�nity and it takes a more

�exible form near 0.

R̃ is generated through G−1
(cT ,aT )(U ) with U ∼U [0,1]. Let us consider now a deformation

of the uniform variable V = L−1(U ) de�ned on [0,1], and the transform W of the GPD:

W −1(U ) =G−1
(cT ,aT )(L−1(U )).

The survival function of the GPD being completely monotone, we can choose W so that

the distribution of R̃ keeps this property.

Proposition 3. If φ: [0,∞[→R is completely monotone and letψ be a positive function,

such that its derivative is completely monotone, then φ(ψ) est completely monotone.

The transformation of the GPD has cumulative distribution function W = L(G(cT , aT ))

and survival function W̄ = L̄(G(cT , aT )). G(cT , aT ) is a Berstein function, thus W̄ is com-

pletely monotone if L̄ is also.
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Examples of admissible functions:

(1) Exponential form :

L(0) = 0

L(x) = 1−exp(−λxα)

1−exp(−λ)
avec 0 ≤α≤ 1 et λ> 0

L(1) = 1

The obtained transformation is: ∀x > 0,

W̄(λ,cT ,aT )(x) = L̄(G(x)) =
exp

(
−λ

[
1− (1+ cT

aT
)−1/cT

]α)
−exp(−λ)

1−exp(−λ)

with W̄(λ,cT ,aT )(x) completely monotone.

(2) Logarithmic form:

L(0) = 0

L(x) = log(x +1)

log2

(
or more generally

log(αx +1)

log2
, α> 0

)
L(1) = 1

and ∀x > 0,

W̄(cT ,aT )(x) = 1−
log

(
2− (1+ cT

aT
)−1/cT

)
log2

(3) Root form:

L(0) = 0

L(x) =
p

x +1−1p
2−1

L(1) = 1

and

W̄(cT ,aT )x) = 1−
√

2− (1+ cT x
aT

)−1/cT −1
p

2

(4) Fraction form:
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Figure 2.10 – Survival functions associated with transformations of the GPD(0.8,1.5)

L(0) = 0

L(x) = (α+1)x

x +α , α> 0

L(1) = 1

and

W̄(α,cT ,aT )(x) = 1−
(α+1)

(
1− (1+ cT x

aT
)−1/c

)
1− (1+ cT x

aT
)−1/cT +α

The shapes of the above transformations of the GPD are shown in Figure 2.10.

However those transformations do not conserve the stability through thresholding of

the Pareto distribution. Thus, their implementation does not give stable results. Still

they give some insight on a simple generalization of the proposed models usable under

additional information on the variable of interest.
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2.8 Conclusion

The splitting induced procedure presented in this chapter proposes an innovative experi-

mental plan to estimate an extreme quantile failure. Its development has been motivated

by on the one hand major industrial stakes, and on the other hand the lack of relevance

of the used methodology. The main di�culty in this setting is the nature of the informa-

tion at hand, since the variable of interest is latent, therefore only peaks over thresholds

may be observed. Indeed, this study is directly driven from an application in material fa-

tigue strength: when performing a fatigue trial, the strength of the specimen obviously

can not be observed; only the indicator of whether or not the strength was greater than

the tested level is available.

Among the methodologies dealing with such a framework, none is adapted to the esti-

mation of extreme quantiles. We therefore proposed a plan based on splitting methods

in order to decompose the initial problem into less complex ones. The splitting formula

introduces a formal decomposition which has been adapted into a practical sampling

strategy targeting progressively the tail of the distribution of interest.

The structure of the splitting equation has motivated the parametric hypothesis on the

distribution of the resistance. Two models exploiting a stability property have been pre-

sented: one assuming a Generalized Pareto Distribution and the other a Weibull distri-

bution.

The associated estimation procedure has been designed to use the iterative and stable

structure of the model by combining a classical maximum likelihood criterion with a

consistency criterion on the sequentially estimated quantiles. The quality of the es-

timates obtained through this procedure have been evaluated numerically. Though

constrained by the quantity and quality of information, those results can still be compa-

red to what would be obtained ideally if the variable of interest was observed.

On a practical note, while the GPD is the most adapted to the splitting structure, the

Weibull distribution has the bene�t of being particularly suitable for reliability issues.

The experimental campaign launched to validate the method will contribute to select a

model.

2.9 Appendix

2.9.1 Alternative estimation criterion, divergence minimization

Denote P j the Bernoulli distribution of the observations Y j ,1, . . . ,Y j ,n obtained at itera-

tion j of the procedure and Pn their empirical distribution. Let p j be the probability
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of failure under the Pareto model de�ned by p j = P(ĉ,â) j

(
R̃ > s j − s j−1 | R̃ > s j−1

)
and

denote p̄ j = 1− p j . Let n1 and n0 be the number of observed failures and survivals :

n1 = ∑
i Y j ,i and n0 = n −n1. Alternative estimation methods of the maximum likeli-

hood procedure consist in minimizing the following distances over the parameters of

the model:

• L1 distance:

d1 =
∣∣∣n1

n
−p j

∣∣∣+ ∣∣∣n0

n
−p j

∣∣∣ (2.26)

• Kullback-Leibler distance:

DK L
(
P j‖Pn

)= p j log

(
p j

n1/n

)
+ p̄ j log

(
p̄ j

n0/n

)
(2.27)

• Helliger distance:

H
(
P j ,Pn

)= 1p
2

√(√
n1

n
−√

p j

)2

+
(√

n0

n
−

√
p̄ j

)2

(2.28)

• khi-square distance :

D2 =
(n1

n −p j
)2

p j
+

(n0
n −p j

)2

p̄ j
(2.29)

The khi-square distance is not represented in the results in Figure 2.7 because it gives

extremely scattered results.

2.9.2 Algorithm for global optimization

The optimizations at each estimation step of the splitting procedure are performed using

a global optimization method, called the SAFIP algorithm and introduced by Biret and

Broniatowski (2016 [8]).

The algorithm aims at solving equations of the form f (x) = 0, where f is a real valued

function de�ned on X . Without regularity assumptions on f , it returns a set of solutions

S = {
x ∈X : f (x) = 0

}
.

The procedure consists in generating sequences ((zi )i∈N) , zi ∈X . Converging sequences

are conserved while the others are discarded, until a �xed number of solutions N of the

optimization problem is found.

The sequences are de�ned iteratively such that

zi+1 = zi + zi−1 − zi

2
+k f (zi ).
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Denoting Ri = |zi − zi−1|, it follows that

Ri+1 ≤ Ri

2
+k| f (zi )|.

Practically, each sequence (zi )i is initiated by z0 and z1 uniformly drawn from X . Let

R1 = |z1 − z0|. The following rule determines whether the sequence is continued or dis-

carded:

For i ≤ 1, if | f (zi ) ≤C | f (zi−1|, then de�ne

zi+1 := zi +ui ,

where ui is drawn from the ball B
(
0,Ri /2+k| f (zi−1)|).

Otherwise, the sequence is stopped. The stopping rule depends on a �xed tolerance pa-

rameter.

Biret and Broniatowski proved that sequences generated this way converge almost sur-

ely to a limit in S .

Note that k and C are tuning parameters.
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Deuxième partie

Modelling tools for S-N curves
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Chapitre 3

Modelling mean and quantile S-N
curves

3.1 Objectives

The second part of the thesis focuses on pursuing works from R. Fouchereau (2014 [35]),

on modelling the S-N curve as a whole.

The methodology used for characterizing the lifetime of a material remains the same

than for studying the minimal allowable stress. Experimental campaigns are conducted

over a batch of n specimens loaded at J di�erent levels of constraint (σa,1, . . . ,σa,J ) or of

deformation (εa,1, . . . ,εa,J ), with J ≤ n. Here σa and εa stand respectively for alternated

constraint and alternated deformation, i.e the half amplitude of the applied stress or of

the observed deformation.

Results consists in couples stress-lifetime:

(
(Nk ,σa,k )0≤k≤n

)
or

(
(Nk ,εa,k )0≤k≤n

)
Usually the controlled variable for low-cycle fatigue is the degree of deformation, while

for high-cycle fatigue, it is the level of stress. Thus, σa and εa can be both used to refer

to this variable.

A major challenge in aircraft industry is the characterization of medium and extreme

behavior of a material under fatigue damage at any level of solicitation, by estimating:

— Mean S-N curves ;

— Quantile S-N curves, especially the minimal curve at failure probability 0.1%.

Those objectives have to take into account operational constraints related to the costs

of a campaign, namely:

— The amount of information varies according to the fatigue regime studied ;
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— The amount of information varies according to the di�erent trial conditions ;

— The amount of information is related to the critical role of the engine part of in-

terest.

The models considered must be compatible with restricted sample sizes, namely between

30 and 50 observations at a given level σ.

Thus the work has a two-fold objective. Firstly, it consists in proposing a modelling

of fatigue life relevant with mecanical and physical knowledged pertaining to failure.

Secondly, it aims at proposing statistical tools to specify the model and address shortco-

mings in the methodologies currently implemented by Safran Aircraft Engines for the

estimation of 0.1%−quantile fatigue curves. Indeed, since the quantity of interest is lo-

cated far in the left tail of the distribution, its estimation is highly dependent on the

parametric hypothesis made on the fatigue life distribution at a given level of stress.

In the following, we will present in Section 3.2 how are presently constructed the mean

and minimal S-N curves and the limits of this methodology. An alternative modelling

based on the mechanics of failure is then proposed. The following chapters are devoted

to the presentation of two test methodologies that will enable to de�ne the most relevant

model for fatigue life in any fatigue regime. Indeed, Chapter 4 provides a test procedure

to determine whether the observations are drawn from a unique random variable or

from a sum of random variables. Lastly Chapter 5 introduces a test for the number of

components of a mixture distribution.

3.2 State of the art on the estimation of S-N curves

3.2.1 Physical models

There are a few mathematical models aiming at characterizing the di�erent fatigue re-

gimes.

Those models are usually expressed either as functions of the strain or of the lifetime,

taking either the form :

N = fθ(σa)+u (3.1)

or

σa = fθ(N )+u (3.2)

where u is the error term that is usually assumed to follow a Gaussian distribution.

The most commonly used models are given in table 3.1.
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Model Fatigue regime Equation

Basquin High cycle fatigue log(N ) = a +b × log(σa)

Stromeyer High cycle fatigue and endurance

limit

σa =σe +
( a

N

)b

Bastenaire Low and high cycle fatige and

endurance limit
N = A exp

{
−(σa−σe

B

)C
}

σa−σe

Note: σe refers to the endurance limit of the material.

Table 3.1 – Main fatigue models

Among those, Basquin equation is the most widely used. One of the main reason for

the popularity of this model lies in its simplicity. Yet it allows for some extension : The

parameters a and b of the equation may depend on some other controlled variable, such

as the type of trial or of material or the temperature. For some materials, it has been

shown that the slope in the Basquin equation is independent to the temperature. This

result allows to estimate a model on all trials as a whole rather than segmenting the data

base according to the temperature. More generally, the integration of a qualitative or

discrete variable X amounts to estimate:

log(N ) = a +b × log(σa)+u (3.3)

where the parameters a and b are function of X : a = a(X ),b = b(X ), where X stands for

the temperature and/or the stress-ratio.

Though its log-linear form is a powerful argument in its favour, the model only �ts par-

tially the data. Indeed, as illustrated in Figure 3.1, lifetime fatigue data display a bimodal

distribution.
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Figure 3.1 – Quantile-quantile Gaussian plot of the logarithm of the numbers of cycles

to failure for di�erent levels of strain, nickel based material, T = 550
◦
C

This bimodal feature �nds its origin in the di�erent mechanisms leading to failure. The

inclusion of defects and their position in the material play a major part in the failure of

a specimen.

The present methodology used by Safran Aircraft Engines emphasizes on the following

dichotomy:

• Crack initiations at grain boundaries, due to inclusions at the surface of the mate-

rial. They occur quickly and the mean fatigue life and its dispersion are small.

• Internal crack initiations lead to more high and scattered fatigue lives.

Thus, as shown in Figure 3.2, low number of cycles to failure are predominantly due

to fatigue crack initiations at surface while high number of cycles corresponds mostly

to internal initiations. However in the central part of the curve, both types coexists in

variable proportions as the fatigue life increases and the distribution of the latter is bi-

modal. This observations pleads in favor of the modelling of the fatigue life at a given

deformation level as a mixture distribution.
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Figure 3.2 – Illustration of the mixture distribution

3.2.2 Representation of the mean S-N curve as a two-component
mixture

The current modelling relies on the above dichotomy: The tested specimen is either sub-

jected to the �rst failure mechanism with probability π or the second, with probability

1−π, where π=π(ε). The fatigue life N is equal to the number of cycles to the �rst mode

of failure or to the second failure mode. The density of N therefore writes:

f (N | εa) =π(εa) f1(N | εa)+ (1−π(εa)) f2(N | εa). (3.4)

Each of the failure modes is associated with a Basquin model. Thus the mean curve

equation is the following:

log(N ) =π(εa)
(
a1 +b1 log(εa)

)+ (1−π(εa))
(
a2 +b2 log(εa)

)
(3.5)

where π(εa) is usually modeled by a logistic distribution with parameters m and s :

π(εa) = 1

1+exp
(−εa−m

s

) . (3.6)

Parameters estimation

The model estimation follows a two-step procedure:
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1. The �rst step consists in attributing each observation to a failure mode. It is per-

formed through an Expectation-Maximization algorithm. The problem can be for-

malized as follows: Denote

• (Ni ,εa,i )i=1...n , the set of n observations.

• (Ni , Zi ,εa,i )i=1...n , the unobserved complete data. Here Z is the latent va-

riable, namely the indicator of initiation at surface. Note that Z can be ob-

served in speci�c trials. In those cases, it is used to check the results.

• The parameter vector: θ = (a1,b1, a2,b2,m, s).

The complete likelihood of the above model is given by:

logL(N , Z ,εa | θ) =
n∑

i=1
zi log(π(εa,i | s,m) f1(Na ,εa,i | a1,b1))

+ (1− zi ) log((1−π(εa,i | s,m)) f2(Na ,εa,i | a2,b2).

The estimation of the parameter vector θ is obtained iterating the following steps:

At iteration k ,

(a) E step : Compute the expectation of the log-likelihood associated with the

current estimate of θ.

Q
(
θ,θ(k)

)
= Eθ(k)

(
logL(N , Z ) | N

)
.

(b) M step : Update the estimate by maximizing the expectation of the log-

likelihood.

θ(k+1) = argmax
θ∈Θ

Q
(
θ,θ(k)

)
.

Once the estimations obtained, each observation is then allocated to a class based

on the estimated probability of belonging to each of them: denote C1 and C2 the

two classes of observations, for j = 1,2, observation i is assigned to C j if

P̂(Ni ∈C j ) = max
l=1,2

P̂(Ni ∈Cl ),

where

P̂(Ni ∈C j ) = π̂(εa,i )F̂1(Ni )

π̂(εa,i )F̂1(Ni )+ π̂(εa,i )F̂2(Ni )
.

2. Two Basquin model are then �tted on the two classes of observations determined

through the EM algorithm.
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3.2.3 Construction of the minimal S-N curves

The minimal curves can be obtained through two di�erent procedures. Firstly by making

use of the unimodal models. The quantile curve is obtained by translating the mean

curve up to a �at-rate abatement factor k . Then the quantile curve is equal to the mean

curve minus k times the standard deviation of the Basquin model, where k is �xed to 3

when the number of observations is su�cient. The second estimation method consists in

exploiting the mixture feature, but is not used in practice because the obtained results are

extremely sensitive to the estimations of the proportion of each failure mode, especially

in zones where π is close to 0 or 1.

This is why the minimal curves are presently constructed on the basis of the estima-

tions of the Basquin models on each sub-population. They are obtained by applying the

following rules:

• For ε> ε0 : take the 0.1%−quantile of the population subjected to crack initiation

at surface by applying an abatement factor to the associated Basquin model.

• For N > 106 : similarly, take the 0.1%−quantile of the population of internal crack

initiation.

• For ε ≤ ε0 and N ≤ 106 : the quantile curve is the result of a simple linear inter-

polation in a log− log diagram between the two unimodal models as illustrated by

Figure 3.3.

Figure 3.3 – Estimation method of the minimal S-N curves used by Safran Aircraft En-

gines

This estimation method is unsatisfactory in several respects. Firstly, the estimation of the

mean curve is not direct and is derived from a two step estimation procedure performed

on the same data set. Secondly the quantile curves are only obtained through a simple
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translation of the mean curve. Furthermore, the mixture feature of the fatigue life is only

used to classify the observations. Those methodological drawbacks motivates the seek

of an alternative modelling and construction method for the fatigue curves that directly

exploit the mixture structure. In the following section, we consider a new model for

fatigue life more �tted to the data structure.

3.3 An alternativemodelling to fatigue life, initiation-

propagation model

3.3.1 Fracture mechanics

In order to propose an alternative to the mixture of Basquin models, we consider another

form for the mixture distribution whose component are more directly linked to fracture

mechanics results. The application of a level of stress during a su�ciently long time

will cause the deformation of the material, followed by the formation of a crack, whose

propagation will lead to rupture. Thus failure occurs after:

• the crack initiation period Ni ,

• the crack propagation period Np .

The duration of each component is highly dependent to the level of stress considered.

Indeed, the more stress is applied, the more quickly the crack will initiate and the mate-

rial will break. On the other hand, for low levels of strength, the initiation period is very

long (millions of cycles) and the propagation is quite negligible in comparison.

The fatigue life is the sum of those two times, i.e. :

N︸︷︷︸
measured

= Ni︸︷︷︸
unknown

+ Np︸︷︷︸
partially measured or calculated

(3.7)

where N is observed and might be subject to right censoring, Np can be measured

through speci�c propagation trials and Na is completely unknown. This dichotomy has

also been used by Fouchereau (2014 [35]).

The proposed modelling replaces the distinction between surface and internal initiation

by the one between fast and slow initiation. The latter has several perks with respect

to the previous one. It exploits mechanical properties of fracture and contrary to the

present model, do not necessitate costly fractographic data. Moreover, the distinction

fast vs. slow initiations is valid for any metallic material, while the previous was not.

The two dichotomies are not completely equivalent in that initiation at surface does not

recover all fast crack initiations and reciprocally.
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As stated above, it is usually considered that when the applied stress is su�ciently high,

a crack will immediately initiate in the material, that is to say from the �rst cycle of

application. In this case, the life to failure N could be reduced to the propagation time.

A possible model could therefore be the following: let

• Fi be the distribution function of Ni ;

• Gp be the distribution function of Np ;

• HNi+Np be the distribution function the sum of Ni and Np ;

• Z , the indicator of short initiation, distributed according to B(π(εa)).

The number of cycles to failure writes

N =
{

Np if Z = 1

Ni +Np else.

and its distribution is the following:

F (x) =π(εa)Gp (x)+ (1−π(εa))HNi+Np (x).

Usually, the initiation and propagation periods are modeled by a Lognormal distribu-

tion. While the propagation life remains largely unknown, the propagation time can

be measured through fractographic studies. These data enable to obtain a more precise

information on Np .

3.3.2 Modelling the propagation period

Crack propagation is studied through fractography, i.e. the analysis of fracture surfaces.

The trials performed in this framework, a specimen is given an initial crack of determi-

ned size. It is then loaded at a given stress and the evolution of the crack size is measured

regularly until it reaches a maximum length or until failure. Thus since the specimen is

already cut at the beginning of the experiment, the measured time corresponds only to

the propagation period Np .

Those trials can be exploited in order to represent precisely the propagation Np . This

is done by making use of a classical model of fatigue crack propagation rate: Paris law,

given by:

d a

d Np
=C .∆K m

(3.8)

where

• a denotes the crack size ;

• d a/d Np is the fatigue crack growth ;
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• ∆K =∆σa
p
πaF is the stress intensity range ;

• C et m are experimentally determined material constants which also depend on

environmental e�ects, stress ratio.

An explicit form of propagation life can be obtained through integration of (3.8),

Np =
a1−m/2

f −a1−m/2
i

(1−m/2)Cπm/2 (σaF )m , (3.9)

where ai and a f denotes respectively the initial and �nal crack size.

The random elements are the model parameters m and C which are derived from the

following linear regression:

log

(
d a

d Np

)
= logC +m log∆K +ε, (3.10)

m and logC are thus assumed to be Gaussian, which has been veri�ed through trials.

They also are linearly dependent: there exists α and β such that

logC =α+βm +ε2, (3.11)

with

m ∼N
(
µ, s2) ,

ε2 ∼N
(
0,σ2) ,

logC ∼N
(
µ,b2s2 +σ2) .

The resulting distribution of Np is also Lognormal. Figure 3.4 shows that simulated law of

Np based on the estimated parameters on fractographic data �ts perfectly a Lognormal.
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Figure 3.4 – Empirical cumulative distribution function of log Np and Gaussian distri-

bution function

This model also highlights connections between the parameters and the test conditions.

For instance, Figure 3.5 illustrates how Np depends on to the loading level in expectation

and in variance as well.
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Figure 3.5 – Evolution of the mean and minimum propagation time Np with respect to

the maximum loading σmax

3.3.3 Number of components

As stated in the above sections, data representation highlights the existence of at least

two components in the distribution of the number of cycles to failure (see Figure 3.1).

However, no further study has investigated the exact number of components, as well as

the nature of those components. A number of questions arises:

1. Under a high cyclic loading, a crack initiate extremely quickly and the resulting

fatigue life is low. It is therefore considered that N ≈ Np , which essentially means

that the life of the material mainly consists in the propagation period. However,

this assumption isn’t supported by studies results and is mostly a simplicity argu-

ment. But it should be investigated whether or not the distribution of short ini-

tiation failure mode may be reduced to the distribution of the propagation period

Np .

2. Analogously under very low stress, failure occurs at very high number of cycles.

The life to failure then consists mainly in the initiation period and the propagation

period is way shorter, i.e. Np ¿ Ni . However then again, assuming that the propa-

gation time is negligible when studying very low stresses should be investigated

in order to provide an adequate modelling.
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3. Another issue pertains to the mixture zone. It is di�cult to evaluate from which

level of stress or deformation the population becomes heterogeneous, i.e. we go

from a single component to a mixture distribution. Moreover, we do observe that

there are at least two components in this region, but there also might be more frac-

ture modes at stake. We need to be able to determine the number of components

of the distribution of N at any stress or deformation level.

Figure 3.6 – Initiation and propagation mechanisms according to the failure mode

It follows that several modelling are possible, depending on how the above questions are

addressed:

F (x) =π(εa)Gp (x)+ (1−π(εa))HNi+Np (x), (3.12)

F (x) =π(εa)HNi+Np (x)+ (1−π(εa))Fi (x), (3.13)

F (x) =π(εa)HNi+N (1)
p

(x)+ (1−π(εa))HNi+N (2)
p

(x), (3.14)

F (x) =π1(εa)Gp (x)+π2(εa)HNi+Np (x)+ (1−π1(εa)−π2(εa))Fi (x). (3.15)

The �rst challenge to construct adequate S-N curves is to provide an adequate model

which evolves as the stress decreases. Therefore the next chapters focus on proposing

modelling tools to discriminate between models (3.12) to (3.15). Two major issues are

tackled : the determination of the distribution of the components in the regions of the

curve where the population is homogeneous and the number of components in the mix-

ture zone.
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Chapitre 4

Composite Tests Under Corrupted
Data

4.1 Introduction

A situation which is commonly met in quality control is the following: some characte-

ristic Z of an item is supposed to be random, and a decision about its distribution has to

be done based on a sample of such items. However this variable is a�ected by a measure-

ment error, a random noise Vδ, such that the observations do not consist in realizations

of Z but of a variable X := Z +Vδ.

Denote F0 and G0 the competing distribution functions (of respective densities f0 and

g0) for Z , and Hδ the distribution function of the error Vδ with density hδ. Vδ is assumed

to be a transformation of a random variable V of distribution H , typically Vδ :=p
δV . Its

realizations are assumed to be mutually independent and independent on the item.

Therefore the density of the measurement X is either fδ := f0∗hδ or gδ := g0 ∗ hδ where

∗ denotes the convolution operation. We denote Fδ (resp. Gδ) the distribution function

with density fδ (resp. gδ).

The problem of interest studied in Broniatowski and al. (2018 [11]) is how the measure-

ment errors can a�ect the conclusion of the likelihood ratio test with statistics

Ln := 1

n

∑
log

g0

f0
(Xi ).

For small δ, the result of Guo (2009 [37]) enables to estimate the true log-likelihood ratio

(true Kullback-Leibler divergence) even when we only dispose of locally perturbed data

by additive measurement error. The distribution function H of measurement errors is

considered unknown, up to zero expectation and unit variance. When we use the likeli-

hood ratio test while ignoring the possible measurement errors, we can incur a loss in

79
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both errors of the �rst and second kind. However, it is shown in [11] that for small δ

the original likelihood ratio test (LRT) is still most powerful, only on a slightly changed

signi�cance level. The test problem leads to a composite null and alternative classes H0

or H1 of distributions of random variables Z +Vδ with Vδ :=p
δV . If those families are

bounded by alternating Choquet capacities of order 2, then the minimax test is based on

the likelihood ratio of the pair of the least favorable distributions of H0 and H1, respecti-

vely (see Huber and Strassen, 1973 [38]). Moreover, Eguchi and Copas (2005 [32]) showed

that the overall loss of power caused by a misspeci�ed alternative equals to the Kullback-

Leibler divergence between the original and the corrupted alternatives. Surprisingly, the

value of the overall loss is independent of the choice of null hypothesis. The arguments

of Guo [37] and of Narayanan and Srinivasa (2007 [50]) enable to approximate the loss

of power locally for a broad set of alternatives. The asymptotic behavior of the loss of

power of the test based on sampled data is considered in [11], and supplemented with

numerical illustration.

4.2 Statement of the test problem

The aim is to propose a class of statistics for testing the composite hypotheses H0 and

H1, extending the optimal Neyman-Pearson LRT between f0 and g0. Unlike in [11], the

scaling parameter δ is not supposed to be small, but merely to belong to some interval

bounded away from 0.

We assume that the distribution H of the random variable (r.v.) V is known. In a metro-

logy setting, this is not such a strong assumption, since in the tuning of the o�set of a

measurement device, it is customary to perform a large number of observations on the

noise under controlled environment.

Therefore this �rst step produces a good basis for the modelling of the distribution of

the density h. Although the distribution of V is known, under operational conditions the

distribution of the noise is modi�ed: for given δ in [δmin,δmax] with δmin > 0, denote Vδ

a r.v. whose distribution is obtained through some transformation from the distribution

of V which quanti�es the level of the random noise. Some classical example is when

Vδ =
p
δV , but at times we can have some weaker assumption which amounts to some

decomposability property with respect to δ: for instance, in the Gaussian case we assume

that for all δ,η, there exists some r.v. Wδ,η such that Vδ+η =d Vδ+Wδ,η, where Vδ and

Wδ,η are independent.

The test problem can be stated as follows: a batch of n iid measurements Xi := Zi +Vδ,i
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is performed, where δ> 0 is unknown, and we consider the family of tests of

H0(δ) := {X has density fδ}

vs

H1(δ) := {X has density gδ}

with δ ∈∆= [δmin,δmax]. A class of combined test of H0 vs H1 is proposed, in the spirit

of Bahadur (1960 [2]), Bahadur (1971 [3], Tusnády (1987 [55]) and Birgé (1981 [7]).

Under every �xed n, we assume that δ is allowed to run over a �nite pn components of

the vector ∆n := [δmin = δ0,n , ..,δpn ,n = δmax]. The present construction is essentially non

asymptotic, neither on n nor on δ, in contrast with [11] where δ was supposed to lie in

a small neighborhood of 0. However, with increasing n it would be useful to consider

that the array

(
δ j ,n

)pn

j=1 is getting dense in ∆= [δmin,δmax] and that

lim
n→∞

log pn

n
= 0. (4.1)

For the sake of notational brevity, we denote ∆ by the above grid ∆n and all suprema or

in�ma over ∆ are supposed to be over ∆n . For any event B and any δ in ∆ , Fδ(B) (resp.

Gδ(B)) designates the probability of B under distribution Fδ (resp. Gδ). Given a sequence

of levels αn , we consider a sequence of test criteria Tn := Tn (X1, .., Xn) of H0(δ), and the

pertaining critical regions

Tn (X1, .., Xn) > An (4.2)

such that

Fδ (Tn (X1, .., Xn) > An) ≤αn ∀δ ∈∆,

leading to rejection of H0(δ) for at least some δ ∈∆.

In an asymptotic context, it is natural to assume that αn converges to 0 as n increases,

since an increase in the sample size allows for a smaller �rst kind risk. For example in

[7], αn takes the form αn := exp{−nan} for some sequence an →∞.

In the sequel the Kullback-Leibler discrepancy between probability measures Q and P

with respective densities p and q with respect to the Lebesgue measure on R is denoted

K (Q,P ):=
∫

log
q(x)

p(x)
q(x)d x

whenever de�ned, and takes value +∞ otherwise.

This chapter handles some issues with respect to this context. In Section 4.3 we consider

some test procedure based on the supremum of Likelihood Ratios (LR) for various values

of δ, and de�ne Tn . The threshold for such a test is obtained for any level αn and some
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lower bound for its power is provided. In Section 4.4 we develop an asymptotic approach

to the least favorable hypotheses (LFH) for these tests and prove that asymptotically

least favorable hypotheses are obtained through minimization of the Kullback-Leibler

divergence between the two composite classes H0 and H1 independently upon the level

of the test.

Section 4.4.3 considers the performances of the test numerically; indeed the numerical

power of the test under the least favorable couple of hypotheses is compared with the

theoretical lower bound as obtained in Section 4.3. We show on several examples that

the minimal power measured under the LFH is indeed larger than the theoretical lower

bound; this result shows that simulation results overperform theoretical bounds.

Since no argument plays in favor of any type of optimality for the test based on the su-

premum of Likelihood Ratios for composite testing, we consider to substitute those ratios

by some other kinds of scores, in the family of divergence based concepts, extending the

Likelihood Ratio in a natural way. Such an approach has already been extensively trea-

ted, starting with Liese and Vajda (1987 [42]). Extensions of the Kullback-Leibler based

criterions (such as the Likelihood Ratio) to power type criterions have been proposed for

many applications in Physics and in Statistics; see e.g. Tsallis (1987 [54]). We explore the

properties of those new tests under the couple of hypotheses minimizing the Kullback-

Leibler divergence between the two composite classes H0 and H1. We show that in some

cases we can build a test procedure whose properties overperform the above supremum

of the LRTs, and we provide some explanation for this fact. This is the scope of Section

4.5.

Lastly, in Section 4.6, the test procedure is adapted to testing a simple hypothesis against

a composite one. It corresponds to an industrial application to fatigue life data.

4.3 An extension of the Likelihood Ratio test

For any δ in ∆, let

Tn,δ := 1

n

n∑
i=1

log
gδ
fδ

(Xi ), (4.3)

and de�ne

Tn := sup
δ∈∆

Tn,δ.

Consider for �xed δ the Likelihood Ratio Test with statistics Tn,δ which is uniformly

most powerful (UMP) within all tests of H0(δ) := pT = fδ vs H1(δ) := pT = gδ where pT

designates the distribution of the generic r.v. X . The test procedure to be discussed aims

at solving the question : does there exist some δ for which H0(δ) would be rejected vs
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H1(δ), for some prescribed value of the �rst kind risk?

Whenever H0(δ) is rejected in favor of H1(δ) for some δ we reject H0 := f0 = g0 in favor

of H1 := f0 6= g0. A critical region for this test with level αn is de�ned through {Tn > An}

with

PH0(H1) = sup
δ∈∆

Fδ (Tn > An)

= sup
δ∈∆

Fδ

(⋃
δ′

Tn,δ′ > An

)
≤αn .

Since for any sequence of events B1, . . . ,Bpn ,

Fδ

(
pn⋃

k=1
Bk

)
≤ pn max

1≤k≤pn

Fδ (Bk ) ,

it holds

PH0(H1) ≤ pn max
δ∈∆

max
δ′∈∆

Fδ
(
Tn,δ′ > An

)
. (4.4)

An upper bound for PH0(H1) can be obtained making use of the Cherno� inequality for

the right side of (4.4), providing an upper bound for the risk of �rst kind for a given

An . The correspondence between An and this risk allows to de�ne the threshold An

accordingly.

Turning to the power of this test we de�ne the risk of second kind through the crude

bound

PH1 (H0):= sup
η∈∆

Gη (Tn ≤ An) (4.5)

= sup
η∈∆

Gη

(
sup
δ∈∆

Tn,δ ≤ An

)

= sup
η∈∆

Gη

( ⋂
δ∈∆

Tn,δ ≤ An

)
≤ sup

η∈∆
Gη

(
Tn,η ≤ An

)
.

The last term in (4.5) can be bounded from above through the Cherno� inequality, which

yields a lower bound for the minimal power of the test under any hypothesis gη in H1.

Let αn denote a sequence of levels such that

lim sup
n→∞

αn < 1.
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We make use of the following hypothesis:

inf
δ∈∆

inf
δ′∈∆

∫
log

fδ′

gδ′
fδ > 0. (4.6)

Remark 4. Since ∫
log

fδ′

gδ′
fδ = K (Fδ,Gδ′)−K (Fδ,Fδ′) ,

hypothesis (4.6) means that the classes of distributions (Fδ)δ and (Gδ)δ are well separated

in the sense of Kullback-Leibler discrepancy. Making use of the Cherno�-Stein Lemma

(see Theorem 8 in the Appendix), hypothesis (4.6) entails that any LRT with H0: pT = fδ

vs H1: pT = gδ′ is asymptotically more powerful than any LRT with H0: pT = fδ vs H1:

pT = fδ′ .

Both hypotheses (4.7) and (4.8) hereunder are used to provide the critical region and the

power of the test.

For all δ,δ′ de�ne

Zδ′ := log
gδ′

fδ′
(X )

and let

ϕδ,δ′(t ):= logEFδ

(
exp(t Zδ′)

)= log
∫ (

gδ′(x)

fδ′(x)

)t

fδ(x)d x.

With Nδ,δ′ , the set of all t such that ϕδ,δ′(t ) is �nite, we assume

Nδ,δ′ is a non void open neighborhood of 0. (4.7)

De�ne further

Jδ,δ′(x):= sup
t

(
t x −ϕδ,δ′(t )

)
and let

J (x):= min
(δ,δ′)∈∆×∆

Jδ,δ′(x).

For any η, let

Wη :=− log
gη
fη

(x)

and let

ψη(t ):= logEGη

(
exp

(
tWη

))
.

Let Mη be the set of all t such that ψη(t ) is �nite. Assume

Mη is a non void neighborhood of 0. (4.8)
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Let

Iη(x):= sup
t

t x − logEGη

(
exp

(
tWη

))
(4.9)

and

I (x):= inf
η

Iη(x).

We also assume some accessory condition on the support of Zδ′ and Wη respectively

under Fδ and under Gη; see (4.17) and (4.20) in the proof of Theorem 8. Suppose the

regularity assumptions (4.7) and (4.8) ful�lled for all δ,δ′ and η. Assume further that pn

ful�lls (4.1).

The following result holds.

Proposition 5. Whenever (4.6) holds, for any sequence of levels αn bounded away from

1, de�ning

An := J−1
(
− 1

n
log

αn

pn

)
,

it holds, for large n,

PH0 (H1) = sup
δ∈∆

Fδ (Tn > An) ≤αn

and

PH1 (H1) = sup
δ∈∆

Gδ (Tn > An) ≥ 1−exp(−nI (An)) .

4.4 Minimax tests under noisy data, least favorable

hypotheses

4.4.1 An asymptotic de�nition for the least favorable hypotheses

We prove that the above procedure is asymptotically minimax for testing the composite

hypothesis H0 against the composite alternative H1; indeed we identify the least favo-

rable hypotheses, say Fδ∗ ∈ H0 and Gδ∗ ∈ H1, which lead to minimal power and maximal

�rst kind risk for these tests. This requires a discussion on the de�nition and existence

of such least favourable couple of hypotheses in an asymptotic context; indeed for �xed

sample size the usual de�nition only leads to an explicit de�nition in very speci�c cases.

Unlike in [11], the minimax tests will not be in the sense of Huber and Strassen. Indeed,

on one hand, hypotheses H0 and H1 are not de�ned in topological neighbourhoods of

F0 and G0, but rather through a convolution under a parametric setting; on the other

hand, the speci�c test of {H0(δ), δ ∈∆} against {H1(δ), δ ∈∆} does not require capacities

dominating the corresponding probability measures.
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Throughout the subsequent text we shall assume that there exists δ∗ such that

min
δ∈∆

K (Fδ,Gδ) = K
(
Fδ∗ ,Gδ∗

)
. (4.10)

We shall call the pair of distributions

(
Fδ, Gδ

)
a least favorable for the sequence of tests

of critical region 1 {Tn > An} if it satis�es

Fδ (Tn ≤ An) ≥ Fδ (Tn ≤ An) (4.11)

≥Gδ (Tn ≤ An) ≥Gδ (Tn ≤ An)

for all δ ∈ ∆. The condition of unbiasedness of the test is captured with the central in-

equality in (4.11).

Because under a �nite n such a pair can be constructed only in few cases, we should

take a recourse of (4.11) to the asymptotics n → ∞. We shall show that any pair of

distributions

(
Fδ∗Gδ∗

)
achieving (4.10) be named least favorable. Indeed, it satis�es the

inequality (4.11) asymptotically on the logarithmic scale.

Speci�cally, we say that

(
Fδ,Gδ

)
is a least favorable pair of distributions when for any

δ ∈∆

lim inf
n→∞

1

n
logFδ (Tn ≤ An) ≥ lim

n→∞
1

n
logGδ (Tn ≤ An) (4.12)

≥ lim
n→∞sup

1

n
logGδ (Tn ≤ An) .

De�ne the total variation distance

dT V (Fδ,Gδ):= sup
B

|Fδ(B)−Gδ(B)|

where the supremum is over all Borel sets B of R. We will assume that for all n

αn < 1− sup
δ∈∆

dT V (Fδ,Gδ) . (4.13)

We state our main result, whose proof is deferred to the Appendix.

Theorem 6. For any level αn satisfying (4.13) the couple

(
Fδ∗ ,Gδ∗

)
is a least favorable

couple of hypotheses for the family of tests 1{Tn ≥ An} in the sense of (4.12).
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4.4.2 Identifying the least favorable hypotheses

We now concentrate on (4.10).

The following results state that the Kullback-Leibler discrepancy K (Fδ,Gδ) reaches its

minimal value when the noise Vδ is "maximal", under some additivity property with

respect to δ. This result is not surprising : adding noise deteriorates the ability to dis-

criminate between the two distributions F0 and G0; this e�ect is captured in K (Fδ,Gδ),

which takes its minimal value for the maximal δ.

Proposition 7. Assume that for all δ,η, there exists some r.v Wδ,η such that Vδ+η =d

Vδ+Wδ,η where Vδ and Wδ,η are independent. Then

δ∗ = δmax.

This result holds as a consequence of Lemma 12 in the Appendix.

In the Gaussian case, when h is the standard normal density, Proposition 7 holds since

hδ+η = hδ∗hη−δ with hε(x):= (
1/
p
ε
)

h
(
x/

p
ε
)

. In order to model a symmetric noise we

may consider a symmetrized Gamma density as follows: set

hδ(x):= (1/2)1+(1,δ)(x)+ (1/2)1−(1,δ)(x)

where 1+(1,δ) designates the Gamma density with scale parameter 1 and shape parame-

ter δ and 1−(1,δ), the Gamma density on R−
with same parameter. Hence a r.v. with den-

sity hδ is symmetrically distributed and has variance 2δ. In this case hδ+η(x) = hδ∗hη(x)

and thus 7 also holds. Note that for values of δ less than or equal to 1, the density hδ is

bimodal, which does not play in favour of such densities for modelling the uncertainty

due to the noise; in contrast with the Gaussian case, hδ cannot be obtained from h1 by

any scaling. The centered Cauchy distribution may help as a description of heavy tailed

symmetric noise and keeps uni-modality through convolution ; it satis�es the require-

ments of Proposition 7 since fδ∗ fη(x) = fδ+η(x) where fε(x):= ε/π
(
x2 +ε2

)
. In this case

δ acts as a scaling since fδ is the density of δX where X has density f1.

In practice the interesting case is when δ is the variance of the noise and corresponds to

a scaling of a generic density, as occurs for the Gaussian case or for the Cauchy case. In

the examples which will be used hereunder we also consider symmetric exponentially

distributed densities (Laplace densities) or symmetric Weibull densities with given shape

parameter. The Weibull distribution also ful�lls the condition in Proposition 7, being

in�nitely divisible (see [36]).
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4.4.3 Numerical performance of the minimax test

As frequently observed numerical results deduced from theoretical bounds are of poor

interest, which is due to the sub-optimality of the involved inequalities, they may be

sharpened on speci�c cases. This motivates the need for simulations. We consider two

cases which can be considered as benchmarks.

A. In the �rst case f0 is a normal density with expectation 0 and variance 1, whereas

g0 is a normal density with expectation 0.3 and variance 1.

B. The second case handles a situation where f0 and g0 belong to di�erent models: f0

is a lognormal density with location parameter 1 and scale parameter 0.2, whereas

g0 is a Weibull density on R+
with shape parameter 5 and scale parameter 3. Those

two densities di�er strongly in terms of asymptotic decay. They are however very

close one to the other in terms of their symmetrized Kullback-Leibler divergence

(so-called Je�rey distance). Indeed centering on the log normal distribution f0, the

closest among all Weibull densities is at distance 0.10; the density g0 is at distance

0.12 from f0.

Both cases are treated considering four types of distribution for the noise:

a. the noise hδ is a centered normal density with variance δ2
.

b. the noise hδ is a centered Laplace density with parameter λ(δ)

c. the noise hδ is a symmetrized Weibull density with shape parameter 1.5 and va-

riable scale parameter β(δ)

d. the noise hδ is Cauchy with density hδ(x) = 1(δ)/π
(
1(δ)2 +x2

)
.

In order to compare the performance of the test under those four distributions, we have

adopted the following rule: the parameter of the distribution of the noise is tuned such

that for each value δ, it holds P
(∣∣Vδ∣∣> δ) = Φ(1)−Φ(−1) ∼ 0.65 , where Φ stands for

the standard Gaussian cumulative function. Thus, distributions b to d are scaled with

respect to the Gaussian noise with variance δ2
.

In both cases A and B the range of δ is ∆ = (δmin = 0.1,δmax) and we have selected a

number of possibilities for δmax, ranging from 0.2 to 0.7.

In case A we selected δ2
max = 0.5 which is a signal-to-noise ratio equal to 0.7, a commonly

chosen bound in quality control tests.

In case B the variance of f0 is roughly 0.6 and the variance of g0 is roughly 0.4. The

maximal value of δ2
max is roughly 0.5. This is thus a maximal upper bound for a practical

modelling.

We present some power functions making use of the theoretical bounds together with

the corresponding ones based on simulation runs. As seen, the performance of the theo-
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retical approach is weak; we have focused on simulation, after some comparison with

the theoretical bounds.

Case A: the shift problem

In this subsection we evaluate the quality of the theoretical power bound de�ned in

the previous sections. Thus we compare the theoretical formula to the empirical lower

performance obtained through simulations under the least favorable hypotheses.

Theoretical power bound
While supposedly valid at �nite n, the theoretical power bound given by (4.23) still

assumes some sort of asymptotics, since a good approximation of the bound entails a

�ne discretization of ∆ to compute I (An) = infη∈∆n Iη(An). Thus, by condition (4.1), n

has to be large. Therefore, in the following, we will compute this lower bound for n suf-

�ciently large, that is, at least 100 observations, which is also consistent with industrial

applications.

Numerical power bound
In order to obtain a minimal bound of power for the composite test, we compute the

power of the test H0(δ∗) against H1(δ∗) where δ∗ de�nes the couple of LFH’s

(
Fδ∗ ,Gδ∗

)
.

Following Proposition 7, the LF hypotheses for the test de�ned by T 1
n when the noise

follows a Gaussian, a Cauchy or a symmetrized Weibull distribution is achieved for(
Fδmax ,Gδmax

)
.

When the noise follows a Laplace distribution, the couple of LF hypotheses is the one

that satis�es: (
Fδ∗ ,Gδ∗

)= arg min
(Fδ,Gδ),δ∈∆n

K (Fδ,Gδ) (4.14)

In both cases A and B, this condition is also satis�ed for δ∗ = δmax



90 CHAPITRE 4. COMPOSITE TESTS UNDER CORRUPTED DATA

Comparison of the two power curves

Figure 4.1 – Theoretical and numerical power bound of the test of case A under Gaussian

noise with respect to n for a �rst kind risk α= 0.05

Figure 4.2 – Theoretical and numerical power bound of the test of case A under sym-

metrized Weibull noise with respect to n for a �rst kind risk α= 0.05
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Figure 4.3 – Theoretical and numerical power bound of the test of case A under a sym-

metrized Laplacian noise with respect to n for a �rst kind risk α= 0.05

As expected, Figures 4.1 to 4.3 show that the theoretical lower bound is always under

the empirical lower bound when n is high enough to provide a good approximation of

I (An). This is also true when the noise follows a Cauchy distribution, but for a bigger

sample size than in the �gures above (n > 250).

In most cases, the theoretical bound tends to largely underestimate the power of the test,

when compared to its minimal performance given by simulations under the least favo-

rable hypotheses. The gap between the two also tends to increase as n grows. This result

may be explained by the large bound provided by (4.5), while the numerical performance

are obtained with respect to the least favorable hypotheses.

On a computational perspective, the computational cost of the theoretical bound is way

higher than its numeric counterpart.

Case B: the tail thickness problem

The calculation of the moment generating function appearing in the formula of Iη(x) in

(4.9) is numerically unstable, which renders the computation of the theoretical bound

impossible. Thus, in the following sections, the performance of the test will be evaluated

numerically through Monte Carlo replications.

4.5 Some alternative statistics for testing

4.5.1 A family of composite tests based on divergence distances

This Section provides a similar treatment as above, dealing now with some extension of

the LRT test to the same composite setting. The class of tests is related to the divergence
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based approach to testing, and it includes the cases considered so far. For reasons develo-

ped in Section 4.4.3 we argue through simulation and do not develop the corresponding

Large Deviation approach.

The statistics Tn can be generalized in a natural way, de�ning a family of tests depending

on some parameter γ. For γ 6= 0,1, let

φγ(x):= xγ−γx +γ−1

γ(γ−1)

a function de�ned on (0,∞) with values in (0,∞), setting

φ0(x):=− log x +x −1

and

φ1(x):= x log x −x +1.

For γ ≤ 2 this class of functions is instrumental in order to de�ne the so-called power

divergences between probability measures, a class of pseudo-distances widely used in

statistical inference; see for example [6].

Associated to this class consider the function

ϕγ(x):=− d

d x
φγ(x)

= 1−xγ−1

γ−1
for γ 6= 0,1

and we also consider

ϕ1(x):=− log x

ϕ0(x):= 1

x
−1

from which the statistics

T γ

n,δ := 1

n

n∑
i=1

ϕγ(Xi )

and

T γ
n := sup

δ

T γ

n,δ

are well de�ned for all γ≤ 2. Figure 4.4 illustrates the functions ϕγ according to γ.
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Figure 4.4 – ϕγ for γ= 0.5,1 and 2

Fix a risk of �rst kind α and the corresponding power of the LRT pertaining to H0(δ∗)

vs H1(δ∗) through

1−β :=Gδ∗

(
T 1

n,δ∗ > sα
)

with

sα := inf
{

s : Fδ∗

(
T 1

n,δ∗ > s
)
≤α

}
.

De�ne accordingly the power of the test based on T γ
n under the same hypotheses,

sγα := inf
{

s : Fδ∗
(
T γ

n > s
)≤α}

and

1−β′ :=Gδ∗
(
T γ

n > sγα
)

.

Firstly δ∗ de�nes the couple of hypotheses

(
Fδ∗ ,Gδ∗

)
such that the LRT with statistics

T 1
n,δ∗ has maximal power among all tests H0(δ∗) vs H1(δ∗). Furthermore, by Theorem

8 it has minimal power on the logarithmic scale among all tests H0(δ) vs H1(δ).

On the other hand

(
Fδ∗ ,Gδ∗

)
is the LF couple for the test with statistics T 1

n among all

couples (Fδ,Gδ) .

These two facts allow for the de�nition of the loss of power making use of T 1
n instead of

T 1
n,δ∗ for testing H0(δ∗) vs H1(δ∗). This amounts to consider the price of aggregating

the local tests T 1
n,δ, a necessity since the true value of δ is unknown. A natural indicator
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for this loss consists in the di�erence

∆1
n :=Gδ∗

(
T 1

n,δ∗ > sα
)
−Gδ∗

(
T 1

n > s1
α

)≥ 0.

Consider now an aggregated test statistics T γ
n . We do not have at hand a similar result as

in Proposition 5. We thus consider the behavior of the test H0(δ∗) vs H1(δ∗) although(
Fδ∗ ,Gδ∗

)
may not be a LFH for the test statistics T γ

n . The heuristics which we propose

makes use of the corresponding loss of power with respect to the LRT through

∆
γ
n :=Gδ∗

(
T 1

n,δ∗ > sα
)
−Gδ∗

(
T γ

n > sγα
)

.

We will see that it may happen that ∆
γ
n improves over ∆1

n . We de�ne the optimal value

of γ , say γ∗, such that

∆
γ∗
n ≤∆γn

for all γ.

In the various �gures hereunder, NP corresponds to the LRT de�ned between the LFH’s(
Fδ∗ ,Gδ∗

)
, KL to the test with statistics T 1

n (hence as presented Section 4.3), HELL cor-

responds to T 1/2
n which is associated to the Hellinger power divergence, and G=2 cor-

responds to γ= 2.

4.5.2 A practical choice for composite tests based on simulation

We consider the same cases A and B as described in Section 4.4.3.

As stated in the previous section, the performances of the di�erent test statistics are

compared considering the test of H0(δ∗) against H1(δ∗) where δ∗ is de�ned as explai-

ned in section 4.4.3 as the LF hypotheses for the test T 1
n . In both cases A and B, this

corresponds to δ∗ = δmax.

Case A: the shift problem

Overall, the aggregated tests perform well when the problem consists in identifying a

shift in a distribution. Indeed, for the three values of γ (0.5, 1 and 2), the power remains

above 0.7 for any kind of noise and any value of δ∗. Moreover, the power curves asso-

ciated to T γ
n mainly overlap with the optimal test T 1

n,δ∗ .

a. Under Gaussian noise, the power remains mostly stable over the values of δ∗, as

shown by Figure 4.5. The tests with statistics T 1
n and T 2

n are equivalently powerful

for large values of δ∗, while the �rst one achieves higher power when δ∗ is small.
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Figure 4.5 – Power of the test of case A under Gaussian noise with respect to δmax

for a �rst kind risk α= 0.05 and a sample size n = 100

b. When the noise follows a Laplace distribution, the three power curves overlap the

NP power curve, and the di�erent test statistics can be indi�erently used. Under

such a noise, the alternate hypotheses are extremely well distinguished by the class

of tests considered, and this remains true as δ∗ increases (cf. Figure 4.6).

Figure 4.6 – Power of the test of case A under Laplacian noise with respect to δmax

for a �rst kind risk α= 0.05 and a sample size n = 100

c. Under the Weibull hypothesis, T 1
n and T 2

n perform similarly well and almost always

as well as T 1
n,δ∗ , while the power curve associated to T 1/2

n remains below. Figure

4.7 illustrates that, as δmax increases, the power does not decrease much.
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Figure 4.7 – Power of the test of case A under symmetrized Weibull noise with

respect to δmax for a �rst kind risk α= 0.05 and a sample size n = 100

d. Under a Cauchy assumption, the alternate hypotheses are less distinguishable than

under any other parametric hypothesis on the noise, since the maximal power is

about 0.84, while it exceeds 0.9 in cases a, b and c (cf. Figures 4.5 to 4.8). The

capacity of the tests to discriminate between H0(δmax) and H1(δmax) is almost

independent of the value of δmax and the power curves are mainly �at.

Figure 4.8 – Power of the test of case A under a noise following a Cauchy distri-

bution with respect to δmax for a �rst kind risk α= 0.05 and a sample size n = 100
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Case B: the tail thickness problem

a. With the noise de�ned by case A (Gaussian noise), for KL (γ = 1), δ∗ = δmax due

to Proposition 7 and statistics T 1
n provides the best power uniformly upon δmax.

Figure 4.9 shows a net decrease of the power as δmax increases (recall that the

power is evaluated under the least favorable alternative Gδmax).

Figure 4.9 – Power of the test of case B under Gaussian noise with respect to δmax

for a �rst kind risk α= 0.05 and a sample size n = 100. The NP curve corresponds

to the optimal Neyman Pearson test under δmax. The KL, Hellinger and G = 2
curves stand respectively for γ= 1,γ= 0.5 and γ= 2 cases.

b. When the noise follows a Laplace distribution the situation is quite peculiar.

For any value of δ in ∆ , the modes MGδmax
and MFδmax

of the distributions of(
fδ/gδ

)
(X ) under Gδmax and under Fδmax are quite separated, both larger than 1.

Also for δ all the values of

∣∣φγ (
MGδmax

)−φγ (
MFδmax

)∣∣
are quite large for large va-

lues of γ. We may infer that the distributions of φγ
((

fδ/gδ
)

(X )
)

under Gδmax and

under Fδmax are quite distinct for all δ, which in turn imply that the same fact holds

for the distributions of T γ
n for large γ. Indeed simulations presented in Figure 4.10

show that the maximal power of the test tends to be achieved when γ= 2.
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Figure 4.10 – Power of the test of case B under Laplacian noise with respect to

δmax for a �rst kind risk α= 0.05 and a sample size n = 100

c. When the noise follows a symmetric Weibull distribution the power function when

γ = 1 is very close to the power of the LRT between Fδmax and Gδmax (cf. Figure

4.11). Indeed uniformly on δ and on x the ratio

(
fδ/gδ

)
(x) is close to 1. Therefore

the distribution of Tn is close to that of Tn,δmax which plays in favor of the KL

composite test.

Figure 4.11 – Power of the test of case B under symmetrized Weibull noise with

respect to δmax for a �rst kind risk α= 0.05 and a sample size n = 100

d. Under a Cauchy distribution, similarly to case A, Figure 4.12 shows that T γ
n

achieves the maximal power for γ= 1 and 2, closely followed by γ= 0.5.
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Figure 4.12 – Power of the test of case B under a noise following a Cauchy distri-

bution with respect to δmax for a �rst kind risk α= 0.05 and a sample size n = 100

4.6 Application to fatigue life data

The above procedure can be easily adapted to the industrial case that we are interested

in.

4.6.1 Testing the existence of a convolution

As stated in Section 3.3, we denote Ni the crack initiation period and Np the crack pro-

pagation period.

Depending on the level of stress applied, the duration of Ni relative to that of Np lar-

gely di�ers. Indeed as the level of solicitation increases, the crack tend to initiate earlier

and earlier. At extreme cases, Ni may even be negligible with respect to the propaga-

tion period. Similarly, when the stress levels are extremely low, the initiation period may

be so long (of the order of millions of cycles) that the propagation time is quite negli-

gible in comparison. However, there is no physical evidence that for σ high, Ni = 0 and

reciprocally, that for σ low, Np = 0.

We propose an adaptation of the composite test to identify at a given loading σ very

high or very low, i.e. for values of σ or ε for which the life to failure population is ho-

mogeneous, whether the lifetime of the material should be modeled by only one period

or by the sum of both.

In the following, we will focus on the case where stress σ is high. Thus the crack initia-

tion time is treated as a potential noise on the data and the test consists in determining



100 CHAPITRE 4. COMPOSITE TESTS UNDER CORRUPTED DATA

whether this noise is negligible or not.

Note

• f0 the known density of Np and F0 its distribution function;

• gδ the density of Np +Ni with distribution Gδ where δ> 0 is an unknown scaling

parameter of some known distribution H . Therefore

gδ := f0 ∗hδ.

As above δ ∈∆n = (δ1 = δmin, . . . ,δmax).

We consider here the testing for high σ of the following hypotheses:

H0 : X has distribution F0, i.e. X = Np vs H1 : X has distribution Gδ for some δ ∈∆
i.e. X = Ni +Np for some δ

The test statistics writes

T 1
n,δ =

1

n

n∑
i=1

ϕ1
(

f0 ∗hδ
f0

(Xi )

)
,

and

T 1
n (Xn

1 ) = sup
δ∈∆n

Tn,δ = sup
δ∈∆n

n∑
i=1

ϕ1
(

f0 ∗hδ
f0

(Xi )

)
,

with 1 ≤ 2.

In this setting, the least favorable hypotheses is the couple (F0,Gδ∗) which minimizes

K (Gδ,F0) over δ.

For a given level α ∈ (0,1) the threshold An that de�nes the critical region of the test is

obtained through simulations such that

PH0 (H1):= F0(T 1
n > An) ≤αn .

The power of the test is also computed numerically. But note that in the case of Kullback-

Leibler based test statistic, the same kind of power bound than (4.23) can be obtained (see

Appendix 4.8.4)

4.6.2 Simulation results

The crack propagation period is usually modelled by a lognormal distribution, thus we

will assume that f is a lognormal density of location parameter µp and scale parameter

σp completely de�ned.

Two types of parametric hypotheses on the noise Ni are treated, corresponding to very

localized densities since the order of magnitude of Ni is smaller than Np :
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1. Uniformly distributed noise: Ni ∼U [0,δ]

2. Gamma distributed noise: Ni ∼G amma(δ,1)

The following tests have been performed under simulations for a �xed �rst kind risk α=
0.05. The minimal power of the test is evaluated numerically under the least favorable

hypotheses (H0, H1(δ∗)) which satisfy:

K
(
F,F ∗Gδ∗

)= min
δ∈∆

K (F,Gδ) . (4.15)

They are the least distinguishable couple of hypotheses in terms of Kullback-

Leibler divergence. In the following examples, they correspond to the case δ = δmin,

(H0, H1(δmin)).

Case 1: Uniformly distributed noise

In this case, the noise is a uniform variable, whose amplitude is controlled by δ. Note that,

in this application, the least favorable hypotheses correspond to the minimal Signal-to-

noise ratio, while they are achieved for the maximal SNR in the previous sections. Indeed,

we want to be able to detect the presence of a small signal that should then be taken into

account to adapt the lifetime modelling. Thus the least favorable case is achieved for

δ= δmin.

As shown in Figure 4.13, the distance between H0 and H1(δ) grows as δ increases. Thus,

the alternate hypotheses are all the more dictinct when δ gets bigger. The least favorable

hypotheses are therefore the pair H0 vs H1(δmin).

The power of the test is evaluated under the least favorable hypotheses. The power in-

creases quickly as δmin increases, as shown in Figure 4.14. How fast the power reaches

100% depends on the sample size n. In industrial applications, a reasonable sample size

would be around 50 (red curve on 4.14). Thus, the convolution would be detected cor-

rectly with probability 0.9 for δ≥ 0.4.
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Figure 4.13 – Density of the lognormal distributed variable Np and of the convolutions

of Np and uniformly distributed Ni for a range of values of δ

Figure 4.14 – Power of the test of case 1 with respect to δ for a �rst kind risk α= 0.05
and di�erent sample sizes

Case 2: Gamma distribution

In the second example, we consider the following case:

• Np follows a Lognormal distribution of parameters (1,1) ;

• Ni follows a Gamma distribution G amma(δ,1) where ∆= [δmin,2.5]

Figure 4.15 shows how f is distorted by the convolution as δ increases. In this case, the

power of the test increases more slowly as δ grows (see Figure 4.16). Small values of
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δmin make the alternate hypotheses too close to be distinguishable from a small sample

of observations. Thus when n = 50, the power reaches 90% only when δmin = 0.8. This

situation corresponds to a SNR of 0.23, while the same power level could be reached un-

der the Uniform hypothesis for a SNR of 0.003. The performances of the test are highly

dependent on the type and intensity of distortion of the distribution under the null hy-

pothesis.

Figure 4.15 – Density of the lognormal distributed variable Np and of the convolutions

of Np and Gamma distributed Ni for a range of values of δ

Figure 4.16 – Power of the test of case 2 with respect to δ for a �rst kind risk α= 0.05
and di�erent sample sizes

The above simulations were performed in order to give the order of magnitude of the

power of the test applied on real data according to the number of observations available

and the type of distribution to be tested. The hypotheses on Ni distribution were oriented

toward laws de�ned on small ranges of values.
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4.7 Conclusion

We have considered a composite testing problem where simple hypotheses in either H0

and H1 are paired, due to corruption in the data. The test statistics are de�ned through

aggregation of simple Likelihood Ratio Tests. The critical region for this test and a lo-

wer bound of its power is produced. We have shown that this test is minimax, evidencing

the least favorable hypotheses. We have considered the minimal power of the test under

such a least favorable hypothesis, both theoretically and by simulation, for a number of

cases, including corruption by Gaussian, Laplacian, Weibull and Cauchy noise. Whate-

ver the chosen distribution of the noise, the actual minimal power as measured through

simulation is quite higher than obtained through analytic developments. Least favorable

hypotheses are de�ned in an asymptotic sense, and are proved to be the couple of simple

hypotheses in H0 and H1 which are the closest in terms of the Kullback-Leibler diver-

gence, as a consequence of the Cherno�-Stein Lemma. We next consider aggregation

of tests where the Likelihood Ratio is substituted by a divergence-based statistics. This

choice extends the former one, and may produce aggregate tests with higher power than

obtained through aggregation of the LRTs, as exampli�ed and analysed. Open questions

are related to possible extensions of the Cherno�-Stein Lemma for divergence-based

statistics.

This test procedure can be easily adapted to testing between a simple and a composite

hypothesis. This other formulation is suited for the fatigue life application that we are

interested in. It can thus be applied to fatigue life data in order to determinate whether

for high level of solicitation, the life to failure can be reduced to propagation or not, and

reciprocally for very small levels of stress, whether the number of cycles to failure can

be reduced to crack initiation time or not.

4.8 Appendix

4.8.1 Proof of Proposition 5

The critical region of the test

De�ne

Zδ′ := log
gδ′

fδ′
(X )
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which satis�es

EFδ (Zδ′) =
∫

log
gδ′

fδ′
(x) fδ(x)d x

=
∫

log
gδ′

fδ
(x) fδ(x)d x +

∫
log

fδ
fδ′

(x) fδ(x)d x

= K (Fδ,Fδ′)−K (Fδ,Gδ′) .

Note that for all δ,

K (Fδ,Fδ′)−K (Fδ,Gδ′) =
∫

log
gδ′

fδ′
fδ

is negative for δ′ close to δ, assuming that

δ′ 7→
∫

log
gδ′

fδ′
fδ

is a continuous mapping. Assume therefore that (4.6) holds which means that the classes

of distributions (Gδ) and (Fδ) are somehow well separated. This implies that EFδ (Zδ′) < 0

for all δ and δ′.
In order to obtain an upper bound for Fδ

(
Tn,δ′ (Xn) > An

)
for all δ,δ′ in ∆ through the

Cherno� Inequality, consider

ϕδ,δ′(t ):= logEFδ

(
exp(t Zδ′)

)= log
∫ (

gδ′(x)

fδ′(x)

)t

fδ(x)d x.

Let

t+
(
Nδ,δ′

)
:= sup

{
t ∈Nδ,δ′ :ϕδ,δ′(t ) <∞}

The function

(
δ,δ′, x

) 7→ Jδ,δ′(x) is continuous on its domain, and since t 7→ϕδ,δ′(t ) is a

strictly convex function which tends to in�nity as t tends to t+
(
Nδ,δ′

)
it holds that

lim
x→∞ Jδ,δ′(x) =+∞

for all δ,δ′ in ∆n .

We now consider an upper bound for the risk of �rst kind on a logarithmic scale.

We consider

An > EFδ (Zδ′) (4.16)

for all δ,δ′ . Then by Cherno� inequality

1

n
logFδ

(
Tn,δ′ (Xn) > An

)≤−Jδ,δ′ (An) .
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Since An should satisfy

exp
(−n Jδ,δ′ (An)

)≤αn

with αn bounded away from 1, An surely satis�es (4.16) for large n.

The mapping mδ,δ′(t ):= (d/d t )ϕδ,δ′(t ) is a homeomorphism from Nδ,δ′ onto the closure

of the convex hull of the support of the distribution of Zδ′ under Fδ (see e.g. [5]). Denote

esssup
δ

Zδ′ := sup{x : for all ε> 0, Fδ (Zδ′ ∈ (x −ε, x) > 0)}

We assume that

esssup
δ

Zδ′ =+∞ (4.17)

which is convenient for our task and quite common in practical industrial modelling.

This assumption may be weakened, at notational cost mostly. It follows that

lim
t→t+

(
Nδ,δ′

)mδ,δ′(t ) =+∞.

It holds

Jδ,δ′
(
EFδ (Zδ′)

)= 0

and, as seen previously

lim
x→∞ Jδ,δ′ (x) =+∞.

On the other hand

mδ,δ′(0) = EFδ (Zδ′) = K (Fδ,Fδ′)−K (Fδ,Gδ′) < 0.

Let

I :=
(

sup
δ,δ′

EFδ (Zδ′) ,∞
)

=
(

sup
δ,δ′

K (Fδ,Fδ′)−K (Fδ,Gδ′) ,∞
)

By (4.17) the interval I is not void.

We now de�ne An such that (4.4) holds, namely

PH0(H1) ≤ pn max
δ

max
δ′

Fδ
(
Tn,δ′ > An

)≤αn
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holds for any αn in (0,1) . Note that

An ≥ max
δ,δ′

EFδ (Zδ′) = max
(δ,δ′)∈∆×∆

K (Fδ,Fδ′)−K (Fδ,Gδ′) (4.18)

for all n large enough since αn is bounded away from 1.

The function

J (x):= min
(δ,δ′)∈∆×∆

Jδ,δ′(x)

is continuous and increasing as is the in�mum of a �nite collection of continuous in-

creasing functions, all de�ned on I .

Since

PH0(H1) ≤ pn exp(−n J (An)) ,

given αn , de�ne

An := J−1
(
− 1

n
log

αn

pn

)
. (4.19)

This is well de�ned for αn ∈ (0,1) since sup(δ,δ′)∈∆×∆EFδ (Zδ′) < 0 and

− (1/n) log
(
αn/pn

)> 0.

The power function

We now evaluate a lower bound for the power of this test, making use of the Cherno�

inequality to get an upper bound for the second risk.

Starting from (4.5)

PH1 (H0) ≤ sup
η∈∆

Gη

(
Tn,η ≤ An

)
,

de�ne

Wη :=− log
gη
fη

(x).

It holds

EGη

(
Wη

)= ∫
log

fη(x)

gη(x)
gη(x)d x =−K (Gη,Fη).

and

mη(t ):= (d/d t ) logEGη

(
exp tWη

)
which is an increasing homeomorphism from Mη onto the closure of the convex hull of

the support of Wη under Gη. For any η, the mapping

x 7→ Iη(x)

is a strictly increasing function of Kη :=
(
EGη

(
Wη

)
,∞

)
onto (0,+∞), where the same
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notation as above holds for esssupηWη, here under Gη, and where we assumed

esssup
η

Wη =∞ (4.20)

for all η.

Assume that An satis�es

An ∈K := ⋂
η∈∆

Kη (4.21)

namely

An ≥ sup
η∈∆

EGη

(
Wη

)=− inf
η∈∆

K
(
Gη,Fη

)
. (4.22)

Making use of Cherno� inequality we get

PH1 (H0) ≤ exp

(
−n inf

η∈∆
Iη(An)

)
.

Each function x 7→ Iη(x) is increasing on (EGη

(
Wη

)
,∞). Therefore the function

x 7→ I (x):= inf
η∈∆

Iη(x)

is continuous and increasing, as is the in�mum of a �nite number of continuous increa-

sing functions on the same interval K , which is not void, due to (4.20).

We have proved that whenever (4.22) holds a lower bound tor the test of H0 vs H1 is

given by

PH1 (H1) ≥ 1−exp(−nI (An)) (4.23)

= 1−exp

(
−nI

(
J−1

(
− 1

n
log

αn

pn

)))
.

We now collect the above discussion in order to complete the proof.

A synthetic result

The function J is one to one from I onto K := (
J
(
sup(δ,δ′)∈∆×∆Eδ (Zδ′)

)
,∞)

.

Since under Fδ, Jδ,δ′ (Eδ (Zδ′)) = 0, it follows that J
(
sup(δ,δ′)∈∆×∆Eδ (Zδ′)

) ≥ 0. Since

EFδ (Zδ′) = K (Fδ,Fδ′)−K (Fδ,Gδ′) < 0, whatever αn in (0,1) there exists a unique An ∈(− inf(δ,δ′)∈∆×∆ (K (Fδ,Gδ′)−K (Fδ,Fδ′)) ,∞)
which de�nes the critical region with level

αn .

For the lower bound on the power of the test, we have assumed An ∈ K =(
supη∈∆Eη

(
Wη

)
,∞

)
= (− infη∈∆K (Gη,Fη),∞)

.

In order to collect our results in a uni�ed setting it is useful to state some connection
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between inf(δ,δ′)∈∆×∆[K (Fδ,Gδ′)−K (Fδ,Fδ′)] and infη∈∆K (Gη,Fη). See (4.18) and (4.22).

Since K (Gδ,Fδ) is positive it results from (4.6) that

sup
(δ,δ′)∈∆×∆

∫
log

fδ′

gδ′
fδ < sup

δ∈∆
K (Gδ,Fδ) (4.24)

which implies the following fact:

Let αn be bounded away from 1. Then (4.18) is ful�lled for large n, and therefore there

exists An such that

sup
δ∈∆

Fδ (Tn > An) ≤αn .

Furthermore by (4.24) , condition (4.22) holds, which yields the lower bound for the

power of this test, as stated in (4.23).

4.8.2 Proof of Theorem 4.4.1

We will repeatedly make use of the following result (Theorem 3 in [41]), which is an

extension of the Cherno�-Stein Lemma (see [19])

Theorem 8. [Kra�t and Plachky] Let xn be such that

Fδ
(
Tn,δ > xn

)≤αn

with l i msupn→∞αn < 1. Then

lim
n→∞

1

n
logGδ

(
Tn,δ ≤ xn

)=−K (Fδ,Gδ) .

Remark 9. The above result indicates that the power of the Neyman Pearson test only

depends on its level on the second order on the logarithmic scale.

De�ne An,δ∗ such that

Fδ∗ (Tn ≤ An) = Fδ∗
(
Tn,δ∗ ≤ An,δ∗

)
.

This exists and is uniquely de�ned due to the regularity of the distribution of Tn,δ∗ under

Fδ∗ . Since 1
[
Tn,δ∗ > An

]
is the likelihood ratio test of H0(δ∗) against H1(δ∗) of the size

αn , it follows by unbiasedness of the LRT that

Fδ∗ (Tn ≤ An) = Fδ∗
(
Tn,δ∗ ≤ An,δ∗

)≥Gδ∗
(
Tn,δ∗ ≤ An,δ∗

)
.
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We shall later verify the validity of the conditions of Theorem 8, namely that

lim sup
n→∞

Fδ∗
(
Tn,δ∗ ≤ An,δ∗

)< 1. (4.25)

Assuming (4.25) we get by Theorem 8

lim sup
n→∞

1

n
logFδ∗ (Tn ≤ An) ≥ lim

n→∞
1

n
logGδ∗

(
Tn,δ∗ ≤ An,δ∗

)=−K
(
Fδ∗ ,Gδ∗

)
.

We shall now prove that

lim
n→∞

1

n
logGδ∗

(
Tn,δ∗ ≤ An,δ∗

)= lim
n→∞

1

n
logGδ∗ (Tn ≤ An) .

Let Bn,δ∗ be such that

Gδ∗
(
Tn,δ∗ ≤ Bn,δ∗

)=Gδ∗ (Tn ≤ An) .

By regularity of the distribution of Tn,δ∗ under Gδ∗ such a Bn,δ∗ is de�ned in a unique

way. We will prove that the condition in Theorem 8 holds, namely

lim sup
n→∞

Fδ∗
(
Tn,δ∗ ≤ Bn,δ∗

)< 1. (4.26)

lim
n→∞

1

n
logGδ∗

(
Tn,δ∗ ≤ An,δ∗

)= lim
n→∞

1

n
logGδ∗ (Tn ≤ An) =−K

(
Fδ∗ ,Gδ∗

)
.

Incidentally, we have obtained that limn→∞ 1
n logGδ∗ (Tn ≤ An) exists. Therefore we have

proven that

lim sup
n→∞

1

n
logFδ∗ (Tn ≤ An) ≥ lim

n→∞
1

n
logGδ∗ (Tn ≤ An)

which is a form of unbiasedness. For δ 6= δ∗, let Bn,δ be de�ned by

Gδ

(
Tn,δ ≤ Bn,δ

)=Gδ (Tn ≤ An) .

As above, Bn,δ is well-de�ned. Assuming

lim sup
n→∞

Fδ
(
Tn,δ ≤ Bn,δ

)< 1, (4.27)

it follows from Theorem 8 that

lim
n→∞

1

n
logGδ (Tn ≤ An) = lim

n→∞
1

n
logGδ

(
Tn,δ ≤ Bn,δ

)=−K (Fδ,Gδ) .
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Since K
(
Fδ∗ ,Gδ∗

)≤ K (Fδ,Gδ) , we have proven

lim sup
n→∞

1

n
logFδ∗ (Tn ≤ An) ≥ lim

n→∞
1

n
logGδ∗ (Tn ≤ An) ≥ lim

n→∞
1

n
logGδ (Tn ≤ An) .

It remains to verify the conditions (4.25), (4.26) and (4.27). We will only verify (4.27) since

the two other conditions di�er only by notation. We have

Gδ

(
Tn,δ > Bn,δ

)=Gδ (Tn > An) ≤ Fδ (Tn > An)+dT V (Fδ,Gδ)

≤αn +dT V (Fδ,Gδ) < 1

by hypothesis (4.13). By the law of large numbers, under Gδ

lim
n→∞Tn,δ = K (Gδ,Fδ) Gδ−a.s

Therefore, for large n,

lim inf
n→∞Bn,δ ≥ K (Gδ,Fδ) Gδ−a.s

Since under Fδ

lim
n→∞Tn,δ =−K (Fδ,Gδ) Fδ−a.s

this implies that

lim
n→∞Fδ

(
Tn,δ > Bn,δ

)< 1.

4.8.3 Proof of Proposition 7

We now prove the three lemmas that we used.

Lemma 10. Let P , Q and R denote three distributions with respective continuous and

bounded densities p , q and r. Then

K (P ∗R,Q ∗R) ≤ K (P,Q). (4.28)

Démonstration. Let P := (A1, .., AK ) be a partition of R and p := (
p1, .., pK

)
denote the

probabilities of A1, .., AK under P . Set the same de�nition for q1, .., qK and for r1, ..,rK .

Recall that the log-sum inequality writes

(∑
ai

)
log

∑
bi∑
ci

≤∑
ai log

bi

ci

for positive vectors (ai )i , (bi )i and (ci )i . By the above inequality for any i ∈ {1, . . . ,K },



112 CHAPITRE 4. COMPOSITE TESTS UNDER CORRUPTED DATA

denoting

(
p ∗ r

)
the convolution of p and r ,

(
p ∗ r

)
j log

(
p ∗ r

)
j(

q ∗ r
)

j

≤
K∑

i=1
p j ri− j log

p j ri− j

q j ri− j
.

Summing upon j ∈ {1, . . . ,K } yields

K∑
j=1

(
p ∗ r

)
j log

(
p ∗ r

)
j(

q ∗ r
)

j

≤
K∑

j=1
p j log

p j

q j
.

which is

KP (P ∗R,Q ∗R) ≤ KP (P,Q)

where KP designates the Kullback-Leibler divergence de�ned on P . Re�ne the partition

and go to the limit (Riemann Integrals), getting (4.28).

We now set a classical general result which states that when Rδ denotes a family of

distributions with some decomposability property, then the Kullback-Leibler divergence

between P ∗Rδ and Q ∗Rδ is a decreasing function of δ.

Lemma 11. Let P and Q satisfy the hypotheses of Lemma 10 and let (Rδ)δ>0 denote a

family of p.m’s on R and denote accordingly Vδ a r.v. with distribution Rδ. Assume that

for all δ and η there exists a r.v. Wδ,η independent upon Vδ such that

Vδ+η =d Vδ+Wδ,η.

Then the function δ 7→ K (P ∗Rδ,Q ∗Rδ) is non increasing.

Démonstration. It holds, using Lemma 10, for positive η

K
(
P ∗Rδ+η,Q ∗Rδ+η

)= K
(
(P ∗Rδ)∗Wδ,η, (Q ∗Rδ)∗Wδ,η

)
≤ K (P ∗Rδ,Q ∗Rδ)

which proves the claim.

Lemma12. Let P ,Q and R be three probability distributions with respective continuous

and bounded densities p, q and r . Assume that

K (P,Q) ≤ K (Q,P )

where all involved quantities are assumed to be �nite. Then

K (P ∗R,Q ∗R) ≤ K (Q ∗R,P ∗R).



4.8. APPENDIX 113

Démonstration. We proceed as in Lemma 10 using partitions, denoting p1, .., pK the in-

duced probability of P on P . Then

KP (P ∗R,Q ∗R)−KP (Q ∗R,P ∗R) =∑
i

∑
j

(
p j ri− j +q j ri− j

)
log

∑
j p j ri− j∑
j q j ri− j

≤∑
j

∑
i

(
p j ri− j +q j ri− j

)
log

p j

q j

=∑
j

(
p j +q j

)
log

p j

q j

= KP (P,Q)−KP (Q,P ) ≤ 0

where we used the log-sum inequality and the fact that K (P,Q) ≤ K (Q,P ) implies

KP (P,Q) ≤ KP (Q,P ) by the data processing inequality.

4.8.4 Critical region and power of the test adapted to the indus-
trial application

The critical region is de�ned by {T 1
n (N ) > An(αn)} where An = An(αn) is such that:

PH0 (H1):= F0(T 1
n > An) ≤αn

= F0

(
∃δ′ ∈∆n :

1

n

n∑
i=1

ϕ1
(

gδ
f0

(Xi )

)
> An

)

= F0

( ⋃
δ′∈∆n

{
1

n

n∑
i=1

ϕ1
(

gδ
f0

(Xi )

)
> An

})
≤ pn sup

δ′∈∆n

F0

(
T 1

n,δ′ > An

)
.

The theoretical power bound is obtained similarly to (4.23):

PH1(δ)(H0) = PFδ(T 1
n (N ) ≤ An)

= PFδ

(
sup
δ′

∫
log

f ∗ gδ′

f
(x)d x ≤ An

)
= PFδ

(⋂
δ′

{∫
log

f ∗ gδ′

f
(x)d x ≤ An

})

≤ PFδ

(∫
log

f ∗ gη
f

(x)d x ≤ An

)
with η ∈∆n
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PH1 (H0) = sup
δ

PH1(δ)(H0)

≤ sup
δ

PFδ

(∫
log

f ∗ gη
f

(x)d x ≤ An

)
with η ∈∆n .

It follows

PH1 (H0) ≤ sup
δ

PFδ

(∫
log

f ∗ gδ
f

(x)d x ≤ An

)
and by Cherno� inequality

PH1 (H0) ≤ sup
δ

exp{−nIδ(An)} (4.29)

where Iδ(x):= supt t x − logEGδ

(
exp tWδ

)
.



Chapitre 5

Testing the number and the nature of
the components in a mixture
distribution

5.1 Introduction

The test problem for the number of components of a �nite mixture has been extensively

treated when the total number of components k is equal to 2, leading to a satisfactory

solution; the limit distribution of the generalized likelihood ratio statistic is non standard,

since it is 0.5δ0+0.5χ2(1), a mixture of a Dirac mass at 0 and a χ2(1) with weights equal

to 1/2; see e.g. Titterington (1985 [53]) and Self an Liang (1987 [49]).

When k > 2, the problem is much more complicated. Self and Liang [49] obtained the

limit distribution of the generalized likelihood ratio statistic, which is non standard and

complex. This result yields signi�cant numerical di�culties for the calculation of the

critical value of the test. Those drawbacks motivate the search for an alternative testing

procedure for a population homogeneity. In section 5.3, we propose a uni�ed treatment

for all these cases, with simple and standard limit distribution, that also holds for mix-

tures of k > 2 components, both when the parameter θT is an interior or a boundary

point of the parameter space Θ. Moreover, con�dence regions for the mixture parame-

ter θT even when k = 2 are intractable through the generalized likelihood ratio statistic.

Indeed, the limit law of the generalized likelihood ratio statistic depends heavily on the

fact that θ is a boundary or an interior point of the parameter space. For example, when

k = 2, the limit distribution of the generalized likelihood ratio statistic is 0.5δ0+0.5χ2(1)

when θ = 0 and χ2(1) when 0 < θ < 1. Therefore, the con�dence level is not de�ned uni-

quely. At the opposite, we will prove in section 5.3 that the proposed dual χ2
-statistic

yields quite standard con�dence regions even when k > 2. Section 5.4 proposes a few

115
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simulations on two-component mixtures coming either from the same or from di�erent

parametric families.

5.1.1 Number of components of a parametric mixture model

Consider a k-component parametric mixture model Pθ (k ≥ 2) de�ned as follows:

Pθ :=
k∑

i=1
wi P (i )

ai
(5.1)

where

{
P (1)

a1
; a1 ∈ A1

}
, . . . ,

{
P (k)

ak
; ak ∈ Ak

}
are k parametric models and A1, . . . , Ak are k

sets in Rd1 , . . . ,Rdk with d1, . . . ,dk ∈N∗
and 0 ≤ wi ≤ 1,

∑
wi = 1. Note that we consider

an nonstandard framework in which the weights wi are allowed to be equal to 0. Note

Θ the parameter space:

θ ∈Θ:=
{

(w1, . . . , wk , a1, . . . , ak )T ∈ [0,1]k × A1 ×·· ·× Ak such that

k∑
i=1

wi = 1

}
, (5.2)

and assume that the model is identi�able. Let k0 ∈ {1, . . . ,k −1}.

We are willing to test if (k −k0) components in (5.1) have null coe�cients. We assume

that their labels are k0 +1, ...,k. Denote Θ0 the subset of Θ de�ned by

Θ0 := {
θ ∈Θ such that wk0+1 = ·· · = wk = 0

}
.

On the basis of an i.i.d sample X1, . . . , Xn with distribution PθT , θT ∈ Θ, we intend to

perform tests of the hypothesis

H0 : θT ∈Θ0 against the alternative H1 : θT ∈Θ\Θ0. (5.3)

5.1.2 Motivations

When considering the test (5.3), it is known that the generalized likelihood ratio test,

based on the statistic LR de�ned by

LR(X ):= 2log
supθ∈Θ

∏n
i=1 pθ(Xi )

supθ∈Θ0

∏n
i=1 pθ(Xi )

, (5.4)

is not valid, since the asymptotic approximation by χ2
distribution does not hold in this

case; the problem is due to the fact that the null value of θT is not in the interior of the

parameter space Θ. We clarify now this problem.
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For simplicity, consider a mixture of two known densities p0 and p1 with p0 6= p1 :

pθ = (1−θ)p0 +θp1 where θ ∈Θ:= [0,1]. (5.5)

Given data X1, . . . , Xn with distribution PθT and density pθT , θT ∈ [0,1], consider the test

problem

H0 : θT = 0 against the alternative H1 : θT > 0. (5.6)

The generalized likelihood ratio statistic for this test problem is

Wn(0):= 2log
L(θ̂)

L(0)
, (5.7)

where θ̂ is the maximum likelihood estimator of θT .

Under suitable regularity conditions we can prove that the limit distribution of the sta-

tistic Wn in (5.7) is 0.5δ0+0.5χ2
1, a mixture of the χ2

-distribution and the Dirac measure

at zero; see e.g Titterington and al. [53], Self and Liang [49] and Ciuperca [21].

Moreover, in the case of more than two components and k−k0 ≥ 2, the limit distribution

of the GLR statistic (5.4) under H0 is complicate and not standard (not a χ2
distribu-

tion) which poses some di�culty in determining the critical value that will give correct

asymptotic size; see Self and Liang [49]. Azais and al. [1] proposes for instance a like-

lihood ratio approach for mixtures and give the asymptotic properties of the test, but

its numerical application is extremely complicated, especially under non-Gaussian mix-

tures. On the other hand, the likelihood ratio statistic

Wn(θ):= 2log
L(θ̂)

L(θ)
(5.8)

can not be used to construct an asymptotic con�dence region for the parameter θT since

its limit law is not the same when θT = 0 and θT > 0.

The case where some parameter of the model belongs to the frontier of the domain is a

special case of power models, see for instance Castillo and al. [17] for related statistical

issues.

In the sequel, we propose a simple solution for testing the number of components of a

parametric mixture model. This method consists in constructing a test statistic based on

ϕ−divergences and their asymptotic properties. In the following section, we provide the

general framework that will be used to construct the test procedure, i.e. the de�nitions,

representation and properties of ϕ−divergences.
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5.2 Some de�nition and notation in relation with mi-

nimum divergence inference

Let P := {Pθ,θ ∈Θ} be an identi�able parametric model on Rs
where Θ is a subset of Rd .

All measures in P will be assumed to be measure equivalent sharing therefore the same

support. The parameter space Θ does not need to be open in the present setting. It may

even happen that the model includes measures which would not be probability distribu-

tions; cases of interest cover the present setting, namely models including unnormalized

mixtures of probability distributions; see Broniatowski and Keziou [13].

The f -divergences were introduced by Csiszar [23] as convex non-negative dissimilari-

ties between two probability distributions. Let f be a convex function on R+, that pos-

sibly takes in�nite values at 0 and such that f (1) = 0. Denote by F the f -divergence

between two probability distributions P and Q :

F (α,θ):=
∫
Rs

f

(
dPα

dPθ
(x)

)
dPθ(x).

Extensions to cases where Q is a �nite signed measure and P a probability measure are

called ϕ−divergences.

Let ϕ be a proper closed convex function from ]−∞,+∞[ to [0,+∞] with ϕ(1) = 0 and

such that its domain domϕ := {
x ∈R such that ϕ(x) <∞}

is an interval with endpoints

aϕ < 1 < bϕ (which may be �nite or in�nite). For two measures Pα and Pθ in P the

ϕ-divergence between the two is de�ned by

φ(α,θ):=
∫
Rs
ϕ

(
dPα

dPθ
(x)

)
dPθ(x).

The basic property of ϕ− divergences states that when ϕ is strictly convex on a neigh-

borhood of x = 1, then

φ(α,θ) = 0 if and only if α= θ.

We refer to Liese and Vajda [42] chapter 1 for a complete study of those properties. See

also Pardo [46]. Let us simply quote that in general φ(α,θ) and φ(θ,α) are not equal.

Hence, ϕ-divergences usually are not distances, but they merely measure some di�e-

rence between two measures. A main feature of divergences between distributions of

random variables X and Y is the invariance property with respect to common smooth

change of variables.
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5.2.1 Examples of ϕ-divergences

The Kullback-Leibler (K L), modi�ed Kullback-Leibler (K Lm), χ2
, modi�ed χ2 (χ2

m), Hel-

linger (H), and L1 divergences are respectively associated to the convex functions

• ϕ(x) = x log x −x +1,

• ϕ(x) =− log x +x −1,

• ϕ(x) = 1
2 (x −1)2

,

• ϕ(x) = 1
2 (x −1)2/x,

• ϕ(x) = 2(
p

x −1)2
and

• ϕ(x) = |x −1|.
All these divergences except the L1 one, belong to the class of the so called “power

divergences” introduced in Cressie and Read [22] (see also Liese and Vajda [42] chapter

2), a class which takes its origin from Rényi [48]. They are de�ned through the class of

convex functions

x ∈]0,+∞[ 7→ϕγ(x) := xγ−γx +γ−1

γ(γ−1)
if γ ∈R\ {0,1}

ϕ0(x) :=− log x +x −1,

ϕ1(x) := x log x −x +1.

(5.9)

So, the K L-divergence is associated to ϕ1, the K Lm to ϕ0, the χ2
to ϕ2, the χ2

m to ϕ−1

and the Hellinger distance to ϕ1/2.

Consider any ϕ-divergence except the likelihood divergence, with ϕ being a di�eren-

tiable function. When θT in i ntΘ is de�ned as the true parameter of the distribution of

the i.i.d. sample (X1, .., Xn), it is convenient to assume that

There exists a neighborhood U of θT for which (A)

φ(θ,θ′) is �nite whatever θ and θ′ in U .

We will only consider divergences de�ned through di�erentiable functions ϕ, which we

assume to satisfy

(RC)

There exists a positive δ such that for all c in [1−δ,1+δ],

we can �nd numbers c1,c2, c3 such that

ϕ(cx) ≤ c1ϕ(x)+ c2 |x|+ c3, for all real x.

Condition (RC) holds for all power divergences including K L and K Lm divergences.
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For all divergences considered in this paper it will be assumed that for any α and θ in U∫ ∣∣∣∣ϕ′
(

dPθ

dPα

)∣∣∣∣dPθ <∞. (5.10)

We state the following Lemma covering nearly all classical divergences (see Liese and

Vajda (1987) [42] and Broniatowski and Kéziou (2006) [12], Lemma 3.2).

Lemma 13. Assume that RC holds and φ(θ,α) is �nite. Then (5.10) holds.

5.2.2 Dual form of the divergence and dual estimators in parame-
tric models

The following representation is the cornerstone of parametric inference through diver-

gence based methods.

Theorem14. Let θ belong toΘ and letφ(θ,θT ) be �nite. Assume thatRC holds together

with Condition (A) . Then

φ(θ,θT ) = sup
α∈U

∫
ϕ′

(
dPθ

dPα

)
dPθ−

∫
ϕ#

(
dPθ

dPα

)
dPθT

= sup
α∈U

∫
h(θ,α, x)dPθT

(5.11)

Furthermore the sup is reached at θT and uniqueness holds.

For the Cressie-Read family of divergences with γ 6= 0,1 this representation writes

φγ(θ,θT ) = sup
α∈U

{
1

γ−1

∫ (
dPθ

dPα

)γ−1

dPθ−
1

γ

∫ (
dPθ

dPα

)γ
dPθT − 1

γ(γ−1)

}
= sup
α∈U

∫
h(θ,α, x)dPθT

Under the above notation and hypotheses de�ne

Tθ
(
PθT

)
:= arg sup

α∈U

∫
h(θ,α, x)dPθT . (5.12)

It then holds, for any θ such that φ (θ,θT ) is �nite

Tθ
(
PθT

)= θT for all θT ∈Θ.

Also let

S
(
PθT

)
:= arg inf

θ∈Θ
sup
α∈U

∫
h(θ,α, x)dPθT . (5.13)
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which also satis�es

S
(
PθT

)= θT

for all θT in Θ. We thus state : under the hypotheses of Theorem 14, both statistical

functionals Tθ and S are Fisher consistent.

From (5.11), simple estimators for φ(θ,θT ) and θT can be de�ned, plugging any

convergent empirical measure in place of PθT and taking the in�mum in θ in the re-

sulting estimator of φ(θ,θT ).

In the context of simple i.i.d. sampling, introducing the empirical measure Pn :=
1
n

∑n
i=1δXi where the Xi ’s are i.i.d. r.v’s with common unknown distribution PθT in P ,

the natural estimator of φ(θ,θT ) is

φn(θ,θT ):= sup
α∈U

{∫
h(θ,α, x) dPn(x)

}
= sup
α∈U

∫
ϕ′

(
dPθ

dPα

)
dPθ−

1

n

n∑
i=1

ϕ#
(

dPθ

dPα
(Xi )

)
when (A) holds.

As stated in theorem 3.2 in Broniatowski and Keziou [13]:

Theorem 15. Under some derivability assumptions on ϕ
(

dPθ
dPα

)
(conditions A.0 to A.2

in Broniatowski and Keziou [13]),

If θ = θT , then

2n

ϕ′′(1)
φn(θ,θT )

d−→ χ2
(d) for d = dim(Θ). (5.14)

This last result of convergence of the estimated ϕ−divergence is of great interest in the

problem we are taking on and serves as the basis for the test procedure that we propose.

5.3 A simple solution for testing �nite mixture mo-

dels

5.3.1 Testing between mixtures of fully characterized compo-
nents

Let us consider a set of signed measures de�ned by

pθ = (1−θ)p0 +θp1, θ ∈R, (5.15)

where p0 and p1 are two known densities (belonging or not to the same parametric

family).
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The mixture (5.5) is clearly contained in (5.15) and the case θT = 0 is in this framework

an interior point of the parameter space R. In relation with (5.5), the case θT = 0 is now

an interior point of the parameter space.

We observe a random sample X1, . . . , Xn of distribution pT . We are willing to test:

H0 : pT = p0 vs H1 : pT = pθ 6= p0 (5.16)

which can be reduced to

H0 : θ = 0 vs H1 : θ 6= 0 (5.17)

whenever p0 6= p1 is met. The latter condition ensures the identi�ability of the model

and enables to consider di�erent parametric families for p0 and p1. Conversely, Chen

and al. [18], for instance, assumes that 0 < θ < 1, and tests the equality of the parameters

of p0 and p1 inside a unique family F .

In the following, we thus assume that p0 6= p1.

5.3.2 Test statistics

The choice of the test statistic is driven by the result given in Theorem 15. Accordingly,

let φ be any divergence associated with convex �nite functions and such that 0 is an

interior point of the space parameter de�ned by:

Θ:=
{
α ∈R :

∫
|ϕ′

(
dP0

dPα

)
| dP0 <∞

}
(5.18)

Then the statistic 2nφn(0,θT ) can be used as a test statistic for (5.17) and

2nφn(0,θT ) −→χ2
(1) when H0 holds. (5.19)

Also, (5.19) holds when testing whether the true distribution is a k0 component mix-

ture or a k component mixture as in (5.3). In this case, the test statistic 2nφn(Θ0,θT )

converges to a χ2
(k−k0) distribution when H0 holds.

While many divergences meet the former properties, we restrict in the sequel ourselves

to two generators.

Chi-square divergence

The �rst divergence that we consider is the χ2
-divergence. The correspondingϕ function

ϕ2(x) := 1
2 (x −1)2

is de�ned and convex on whole R; an example when P may contain

signed �nite measures and not be restricted to probability measures is considered in
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Broniatowski and Keziou [12] in relation with a two components mixture model de�ned

in (5.15) and where θ is allowed to assume values in an open neighborhood Θ of 0, in

order to provide a test for (5.17), with θ an interior point of Θ.

Extended Kullback-Leibler divergence

The second divergence that we retain is generated by a function described below, namely

ϕc (x):= (x +ec −1) · log(x +ec −1)+1− (x +ec −1)+(1− c) · (ec −1)− c · x ≥ 0

x ∈]1−ec ,∞[ , c ∈R ,
(5.20)

which has been derived within the recent general framework of Broniatowski and Stum-

mer [16]. It is straightforward to see that ϕc is strictly convex and satis�es ϕc (1) = 0 =
ϕ′

c (1). For the special choice c = 0, (5.20) reduces to the omnipresent Kullback-Leibler

divergence generator

ϕ0(x):= x log x −x +1 ≥ 0, x ∈]0,∞[ .

According to (5.20), in case of c > 0 the domain ]1−ec ,∞[ ofϕc covers also negative num-

bers (see Broniatowski and Stummer [15] for insights on divergence-generators with ge-

neral real-valued domain); thus, the same facts hold for the new generator than for the

χ2
and this opens the gate to considerable comfort in testing mixture-type hypotheses

against corresponding marginal-type alternatives, as we derive in the following. We de-

note K Lc the corresponding divergence functional for which K Lc (Q,P ) is well de�ned

whenever P is a probability measure and Q is a signed measure.

It can be noted that, depending on the type of model considered, the validity of the test

can be subject to constraints over the parameters of the densities. Indeed, the conver-

gence of I = ∫ |φ′
(

p0
pθ

)
| dP0 is not always guaranteed. This kind of considerations may

guide the choice of the test statistic. For instance, in some cases, including scaling models,

conditions that are required for the χ2−divergence, do not apply to the K Lc−divergence.

For instance, consider a Gaussian mixture model with di�erent variances:

p0 ∼N (µ,σ2
0), p1 ∼N (µ,σ2

1).

The convergence of I with the χ2
requires either σ2

1 >σ2
0 or σ2

0 >σ2
1 > 1

2σ
2
0. On the other

hand, the convergence is always ensured with the K Lc−divergence.

The same observations can be made for lognormal, exponential and Weibull densities.
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5.3.3 Generalization to parametric distributions with unknown
parameters

In the previous section, the densities of each component were supposed to be known.

We now generalize to the case where the components belong to parametric families with

unknown parameter. We therefore deal with a way more complicate issue and consider

a generalized test procedure which aggregates tests of simple hypotheses over the com-

ponents densities parameter spaces.

We present the generalization for a two component mixture, but it is valid as well for

k component mixtures with k ≥ 2. Let us assume p0 ∈ F0 = {
p0(. |λ0):λ0 ∈Λ0

}
and

p1 ∈F1 =
{

p1(. |λ1):λ1 ∈Λ1
}
, with Λ0 and Λ1 being compact subsets of Rd

, d ≥ 1.

We consider aggregated tests of composite hypotheses.

For λ0 �xed, H0(λ0) is accepted if ∀λ1 ∈Λ1, H0(λ0) is accepted against H1(λ0,λ1). The

aggregated hypothesis H0(Λ0) is accepted if∀λ0 ∈Λ0,λ1 ∈Λ1, H0(λ0) is accepted against

H1(λ0,λ1).

Thus the null hypothesis of homogeneity of the population is rejected when there exists

at least one couple of parameters (λ∗
0 ,λ∗

1 ) ∈Λ0 ×Λ1 with λ∗
1 6= λ∗

0 for which the simple

hypothesis H0(λ∗
0 ) is rejected in favor of H1(λ∗

0 ,λ∗
1 ). In other words, the possibility that

the underlying distribution is a mixture is enough for us to reject that there is a unique

component.

Another perspective would be to consider that the null hypothesis H0(Λ0) is rejected

when there is no λ0 ∈Λ0 such that ∀λ1 ∈Λ1, H0(λ0) is accepted against H1(λ0,λ1).

Note the condition {λ∗
1 6=λ∗

0 } is only required when p0 and p1 belong to the same para-

metric family.

Let 2nφn(0,θT | λ0,λ1) be the test statistic of the test (5.16) of the simple hypotheses

H0(λ0) vs H1(λ0,λ1) when λ0 and λ1 are �xed. Recall that φn(0,θT | λ0,λ1) is the es-

timated divergence between p0(. | λ0) and pθT (. | λ0,λ1). The test statistic for (5.17) is

derived from:

Φn(0,θT ) = sup
λ0∈Λ0

sup
λ1∈Λ1\λ0

φn(0,λT |λ0,λ1) (5.21)

where the parameter spaces Λ0 and Λ1 can be discretized in Λ0,n and Λ1,n for the sake

of computational complexity.

In order to facilitate the computation of the test statistic, the successive optimizations
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have been rearranged as follows:

Φn(0,θT ) = sup
α∈Θ

{
sup
λ0∈Λ0

sup
λ1∈Λ1\λ0

∫
ϕ′

(
dP0,λ0

dPα,(λ0,λ1)

)
dP0,λ0 −

1

n

n∑
i=1

ϕ#
(

dP0,λ0

dPα,(λ0,λ1)
(Xi )

)}
(5.22)

The critical region RΛ0,Λ1 associated with the aggregated test can be de�ned as follows:

{
Φn(0,θT ) ∈ RΛ0,Λ1

}=∪λ0∈Λ0 ∪λ1∈Λ1

{
φn(0,θT |λ0,λ1) ∈ Rλ0,λ1 (α)

}
(5.23)

where Rλ0,λ1 (α) is the critical region of riskα for the test of the simple hypotheses H0(λ0)

vs H0(λ0,λ1).α can then be tuned to ensure that the probability of (5.23) is of the wanted

�rst kind level of risk α? for the global test.

Note that in this case, we do not have an equivalence to Theorem 15. Indeed, we do not

directly estimate the true parameters of the densities p0 and p1, but rather aggregate the

test over the parameter spaces Λ0 and Λ1. Thus, there is still no convergence result on

the test statistic Φn . In the following, we evaluate the performance of the proposed test

procedure through numerical simulations.

5.4 Numerical simulations

5.4.1 Mixture of fully characterized components

We here consider the simple case of a mixture between a lognormal and a Weibull distri-

bution whose parameters are supposed to be known. Results in Table 5.1 show that the

test procedure of simple hypotheses performs well when the two components are fully

characterized.

Lognormal and Weibull Mixture l N (λ0,0.2) vs 0.8l N (λ0,0.2)+0.2W (λ1,2)

n=250 observations

χ2 test statistic KLc test statistic
First kind risk 0.05 0.10 0.05 0.10

Power 0.98 1 0.99 1

Table 5.1 – Power of the test for a lognormal and Weibull mixture with fully characte-

rized components
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5.4.2 Mixture of unknown components within a parametric fa-
mily

The performances of the test procedure are evaluated numerically on three two-

component mixtures. In the �rst two examples, both components belong to the same

parametric family, while in the third, p0 and p1 are from di�erent models. In each case,

the distributions of the components are such that the resulting mixture is not bimodal.

The following results are used on an illustrative basis. The critical regions are determi-

ned as to guarantee the value of the �rst kind risk α? at 0.05 and 0.10.

Lognormal mixture

We �rst consider a Lognormal mixture. The two components belonging to the same

parametric family, we can compare the performance of the divergence based test with

the modi�ed likelihood ratio test proposed by Chen and al.[18].

The alternate hypotheses are the following:

H0 : pT = p0 ∼ l N (λ0,1) v s H1 : pT = pθ ∼ (1−θ)l N (λ0,1)+θl N (λ1,1),

where λ0 ∈Λ0 = [0.4,1.6] and λ1 ∈Λ1 = [1.4,2.6].

The critical region is computed numerically through Monte Carlo simulations under H0.

The power of the test is also computed numerically when the realizations are drawn from

the mixture model with θ = 0.2,λ0 = 1 and λ1 = 2 for the χ2
and K Lc test statistics and

Chen’s modi�ed likelihood ratio.

The results in table 5.2 show that both χ2
and K Lc outperform the modi�ed likelihood

ratio test and the test based on the K Lc divergence achieves in this case the greatest

power.

Lognormal Mixture l N (1,1) vs 0.8l N (1,1)+0.2l N (2,1)

n=250 observations

χ2 test statistic KLc test statistic Chen’s modi�ed lik ratio
First kind risk 0.05 0.10 0.05 0.10 0.05 0.10

Power 0.22 0.41 0.50 0.65 0.12 0.18

Table 5.2 – Power of the tests for three types of mixtures whose components are Lo-

gnormal
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Gamma mixture

We test the following hypothesis

H0 : pT = p0 ∼G (λ0,1) v s H1 : pT = pθ ∼ (1−θ)G (λ0,1)+θG (λ1,2),

where λ0 ∈ Λ0 = [1.4,2.6] and λ1 ∈ Λ1 = [4.4,5.6]. The realizations are drawn from the

mixture model with θ = 0.2,λ0 = 2 and λ1 = 5.

Here again, both divergence based statistics achieves higher power than the modi�ed

likelihood ratio test (cf. table 5.3).

Gamma Mixture G (2,1) vs 0.8G (2,1)+0.2G (5,2)

n=250 observations

χ2 test statistic KLc test statistic Chen’s modi�ed lik ratio
First kind risk 0.05 0.10 0.05 0.10 0.05 0.10

Power 0.31 0.46 0.35 0.45 0.13 0.22

Table 5.3 – Power of the tests for three types of mixtures whose components are Gamma

distributed

Weibull and Lognormal mixture

We here consider the case where the two components are from di�erent parametric

families. We want to test

H0 : pT = p0 ∼ l N (λ0,0.2) v s H1 : pT = pθ ∼ (1−θ)l N (λ0,0.2)+θW (λ1,2),

where λ0 ∈ Λ0 = [0.4,1.6] and λ1 ∈ Λ1 = [2.4,3.6]. The realizations are drawn from the

mixture model with θ = 1,λ0 = 1 and λ1 = 3.

The results in table 5.4 show that the test based on the K Lc divergence performs better

than the χ2
statistic.

Lognormal and Weibull Mixture l N (λ0,0.2) vs 0.8l N (λ0,0.2)+0.2W (λ1,2)

n=250 observations

χ2 test statistic KLc test statistic
First kind risk 0.05 0.10 0.05 0.10

Power 0.28 0.47 0.34 0.57

Table 5.4 – Power of the tests for three types of mixtures whose components belong to

a di�erent parametric family
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Concerning the choice of the test statistic, we might note that the K Lc performs better

when the two alternate distributions di�er mainly in their central tendency, while the

χ2
might be prefered when the di�erence lays in the tails.

5.5 Concluding remarks

The test procedure proposed in this chapter enables to discriminate between a k-

component and a (k + p)-component mixture, k, p > 0. Based on previous work from

Broniatowski and Keziou [13], this chapter extends it to the case of components from

parametric families with unknown parameters. The test statistic is an aggregation of

divergence based statistics in their dual form.

Though theoretically applicable to any k−component mixture, the performances of the

test have been studied on several two-component models, whose components either

belong from the same parametric family or not. It has yet to be run on models of k > 2

components.



Chapitre 6

Conclusion générale et perspectives

Les travaux présentés dans cette thèse apportent des outils méthodologiques et de mo-

délisation ; le �l conducteur étant la caractérisation des risques extrêmes en fatigue des

matériaux.

Méthode séquentielle de plani�cation d’essai

Apports

La première partie porte sur l’étude de la fatigue à très grands nombres de cycles. L’ab-

sence de méthodologie visant spéci�quement à estimer un quantile extrême sur des don-

nées binaires de dépassements de seuils a motivé le développement d’une nouvelle mé-

thode de plani�cation d’essais séquentielle inspirée du Splitting. Celle-ci se fonde sur

un échantillonnage dans les régions de plus en plus extrêmes de la distribution de la

résistance du matériau. La modélisation proposée exploite la structure du splitting en

supposant la stabilité par seuillage des lois considérées à travers un modèle de Pareto

généralisé et une adaptation d’un modèle de Weibull. A cette procédure est associée une

méthode d’estimation tirant partie de la modélisation et de la dimension itérative pour

pallier la nature dégradée de l’information disponible.

Perspectives

Les contraintes en termes de nature et de quantité de données rendent di�cile d’envi-

sager une modélisation plus �exible de la résistance du matériau. En e�et, l’in�ation de

paramètres et la perte de la propriété de stabilité par seuillage compliquent largement la

procédure d’estimation. Quelques pistes de généralisation exploitant la complète mono-

tonie des modèles étudiés ont été ébauchées mais nécessiteraient une étude plus poussée.

129



130 CHAPITRE 6. CONCLUSION GÉNÉRALE ET PERSPECTIVES

Modélisation des courbes S-N

Apports

La seconde partie se concentre sur l’étude de la tenue en fatigue olygocyclique à travers

la construction des courbes S-N. Les travaux réalisés dans le cadre de cette étude ont

porté sur des questionnements autour de la modélisation de la durée de vie à niveaux de

sollicitations �xés.

L’idée développée dans le chapitre 3.2 consiste à faire reposer la modélisation de la du-

rée de vie sur des résultats en mécanique des matériaux. Ainsi l’hétérogénéité des don-

nées s’explique par la coexistence d’amorçages courts et d’amorçages lents, survenant

en proportions inversement proportionnelles selon le niveau de sollicitation. Cependant

la construction d’un modèle adapté aux données suppose de répondre au préalable à un

certain nombre de questions : Quelle est la loi des durées de vie en amorçages courts et

lents ? A partir de quel niveau de chargement y a-t-il hétérogénéité de la population de

durées de vie? etc...

Les chapitres suivants ont consisté à apporter des outils statistiques permettant d’a�ner

le choix de la modélisation. Le chapitre 4 a introduit une procédure de tests d’hypothèses

composites visant à discriminer entre deux hypothèses portant sur la loi d’une variable

bruitée. Elle repose sur l’agrégation de tests du rapport de vraisemblance. Cette pro-

cédure est directement adaptable à la question de l’étude de la loi de la durée de vie.

Dans le cas des faibles niveaux de contrainte pris en exemple dans le chapitre, l’essentiel

de la durée de vie correspond à la propagation d’une �ssure amorcée très tôt. Dans ce

cadre, il s’agit de tester si la durée de vie en propagation est a�ectée d’un bruit additif

correspondant au temps d’amorçage.

Le chapitre 5 introduit une autre procédure de test visant à déterminer le nombre de

composantes d’un mélange. La statistique de test est construite à partir d’estimateurs

de divergence obtenus en exploitant la forme duale de la divergence dans un cadre pa-

ramétrique. Cette méthodologie fournit un outil permettant de déterminer les seuils de

sollicitation au delà et en deçà desquels la population n’est plus homogène. Elle peut

également être utilisée pour valider l’hypothèse selon laquelle seuls deux modes de rup-

ture coexistent. Elle apporte des réponses complémentaires à la procédure portant sur la

nature de chaque sous-population, laquelle vise à spéci�er les hypothèses paramétriques

les plus adaptées aux di�érentes composantes dans les plages de contraintes pour les-

quelles la population est homogène.
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Perspectives

Les travaux présentés portent sur le développement d’aide à la modélisation. Les procé-

dures de test ont pour l’instant été évaluées par simulations a�n d’en étudier la puissance.

Concernant le test sur le nombre de composantes d’un mélange, les essais numériques

portent seulement sur des modèles à deux composantes. Il serait donc intéressant de

mener des simulations supplémentaires sur des mélanges à k > 2 composantes. Il reste

maintenant à appliquer ces outils sur les données de fatigue.

Ces outils fournissent une base permettant d’envisager un autre axe de recherche : l’es-

timation de la distribution de la durée de vie sur le modèle de mélange sélectionné. Une

piste envisageable consiste à adapter un algorithme de type EM à l’estimation de quan-

tile. En e�et, si ce type d’algorithme permet d’estimer convenablement la durée de vie

moyenne, il en va di�éremment en ce qui concerne la durée de vie minimale.

Considérons le modèle de mélange suivant:

fθ(y) =λ1 f1(y | θ1)+λ2 f2(y | θ2)

où Y est la variable observée de densité fθ, X la variable cachée de classe et

θ = (θ1,θ2,λ1,λ2) le vecteur de paramètres.

La vraisemblance complète du modèle est donnée par :

logL(X ,Y | θ) =
n∑

i=1
xi log(λ1 f1(yi | θ1))+ (1−xi ) log(λ2 f2(yi | θ2).

Les deux étapes de l’algorithme classique sont données par :

Étape E : Calcul de l’espérance de la log-vraisemblance complète :

Q
(
θ,θ(k)

)
= Eθ(k)

(
logL(X ,Y | θ) | X

)
.

Étape M : Estimation de θ en maximisant Q :

θ(k+1) = argmax
θ∈Θ

Q
(
θ,θ(k)

)
.

Le terme à maximiser Q peut se décomposer sous la forme de la somme de deux termes :
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argmax
θ∈Θ

Eθ(k)

(
logL(X ,Y | θ) | X

)= argmax
θ∈Θ

n∑
i

∫
log( f (yi , x | θ))h(x | θ(k))d x

avec h(x | θ(k)) = f (yi , x | θ)

f (y | θ(k))

= argmax
θ∈Θ

n∑
i

∫
log

(
h(x | θ) f (y | θ)

)
h(x | θ(k))d x

. . .

= argmax
θ∈Θ

n∑
i

log( f (yi | θ))

+
n∑
i

∫
log

(
h(x | θ)

h(x | θ(k))

)
h(x | θ(k))

= argmin
θ∈Θ

D̂ϕ( fθ, fT )+ 1

n
Dψ(θ,θ(k)).

Classiquement, Dϕ( fθ, fT ) correspond à la log-vraisemblance du modèle. Cependant la

décomposition ainsi obtenue fait apparaître une généralisation possible de l’algorithme

à toute divergence prise entre la vraie densité fT et le modèle fθ.

En particulier, s’agissant d’estimer un quantile, un choix possible est la divergence du χ2

χ( fθ, fT ) =
∫

1

2

(
fθ
fT

(x)−1

)2

fT (x)d x,

dont la forme pénalise plus fortement les petits écarts, et qui pourrait permettre de ga-

gner en précision sur l’estimation des queues de distribution.
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