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Résumé

Ces travaux ont pour fil conducteur une application industrielle en fiabilité des maté-
riaux : on s’intéresse a la gestion des risques extrémes associés a un endommagement en
fatigue. Cette problématique industrielle souléve une série de questions qui s’articulent
autour de deux axes. Le premier porte sur 'estimation d’'un quantile de défaillance ex-
tréme a partir de données dichotomiques de dépassements de seuils. Un plan d’expé-
riences séquentiel est développé afin de cibler progressivement la queue de distribution
et d’échantillonner sous des distributions tronquées, sur le modele du Splitting. Des mo-
deles de type GEV et Weibull sont considérés et estimés séquentiellement a travers une
procédure de maximum de vraisemblance adaptée aux données binaires.

Le deuxiéme axe de recherche concerne le développement d’outils méthodologiques per-
mettant de déterminer la modélisation de la durée de vie la plus adaptée aux données de
fatigue. Dans ce cadre, une premiere méthode de test d’hypothéses composites sur des
données affectées par un bruit additif est proposée. La statistique de test est construite a
partir d’indicateurs de divergence et généralise le test du rapport de vraisemblance. La
perte de puissance liée a la présence de données bruitées est mesurée par simulations a
travers des comparaisons avec le test de Neyman Pearson sur les hypotheses les moins
favorables.

Une deuxiéme procédure vise a tester le nombre de composantes d’'un mélange dans un
cadre paramétrique. La statistique du test est basée sur des estimateurs de divergences
exprimées sous leur forme duale dans le cadre de modéles paramétriques. La distribution
limite obtenue pour la statistique de test sous ’hypotheése nulle s’applique également aux

mélanges d'un nombre quelconque de composantes k = 2.

Mots-clé : Quantiles extrémes; Plans d’expériences sur information binaire ; Procédures
de tests; Nombre de composantes d'un mélange ; Test d’hypothéses composites; Estima-

tion de divergences; Application industrielle.






Abstract

This work is motivated by a series of questions raised by an industrial issue in material
reliability; more specifically, it focuses on extreme risks associated with fatigue damage.
This study is divided into two parts. The first one consists in estimating an extreme
failure quantile from trials whose outcomes are reduced to indicators of whether the
specimen have failed at the tested stress levels. Making use of a splitting approach, we
propose a sequential design method which decomposes the target probability level into
a product of probabilities of conditional events of higher order. The method consists in
gradually targeting the tail of the distribution and sampling under truncated distribu-
tions. The model is GEV or Weibull, and sequential estimation of its parameters involves
an improved maximum likelihood procedure for binary data.

The second axis aims at developing methodological tools to model fatigue life. To this
end, we propose a first test method on composite hypotheses for data affected by ad-
ditive noise. We handle the problem of maximal decrease of the power for tests on this
kind of corrupted data. Comparisons of such tests are considered based on their perfor-
mances with respect to the Neyman Pearson test between least favourable hypotheses.
It is shown that statistics based on divergence type indicators may perform better than
natural generalizations of the Likelihood Ratio Test.

The second test procedure aims at testing for the number of components of a mixture
distribution in a parametric setting. The test statistic is based on divergence estimators
derived through the dual form of the divergence in parametric models. We provide a
standard limit distribution for the test statistic under the null hypothesis, that holds for

mixtures of any number of components k = 2.

Keywords : Extreme quantiles; Design of experiments on binary information; Test pro-
cedure; Number of components of a mixture model; Composite hypothesis testing; Di-

vergence based estimation; Industrial application.
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Chapitre 1
Introduction générale

Les travaux présentés dans ce mémoire sont issus d'une collaboration entre I'université

Paris VI et 'entreprise Safran Aircraft Engines, filiale du groupe industriel Safran.

Safran Aircraft Engines concoit, développe, produit et commercialise, seul ou en coopé-
ration, des moteurs pour avions civils et militaires et pour satellites. La société propose
également une gamme de services pour 'entretien de leurs moteurs, la gestion de leurs

flottes et I'optimisation de leurs opérations.

Dans un contexte extrémement compétitif, 'entreprise cherche a se démarquer en propo-
sant des moteurs innovants et d’'une fiabilité irréprochable. La maitrise des risques tech-
niques auxquels un moteur peut étre confronté est donc un enjeu majeur. Le constructeur
est soumis a une réglementation stricte : la commercialisation des piéces produites est
conditionnée au respect d’'un cahier des charges exigeant concernant la caractérisation
des propriétés de durée de vie et de résistance. Afin de garantir la stireté des matériels, il
est crucial de caractériser le comportement du moteur et son usure selon les différentes
conditions d’utilisation et les différents environnements auxquels il peut étre confronté.
Ces études permettent de développer des stratégies de maintenance optimales et assurent
que P'entretien et le remplacement des piéces du moteur répondent a des contraintes de
sécurité, de performances, mais également a des contraintes budgétaires.

La robustesse d’une piéce est affectée par de nombreux parameétres liés aux méthodes et
procédés de fabrication ainsi qu’a ses conditions d’utilisation. La conception et la spéci-
fication d’un moteur doit donc étre établie en fonction de ces contraintes opérationnelles
et de facon a les optimiser. Au sein de Safran Aircraft Engines, la division Matériaux et
Procédés intervient en amont de la construction des moteurs et est chargée de définir des
stratégies de caractérisation, de développer des expertises établissant leurs conditions
d’utilisation, d’élaborer des programmes d’industrialisation, de réduction des cofts et

d’assurer la qualité des pieces fabriquées.

Les travaux présentés dans le manuscrit s’inscrivent dans ces problématiques. Ils se

17



18 CHAPITRE 1. INTRODUCTION GENERALE

concentrent sur les questions de fiabilité concernant, en amont de la construction des
piéces de moteurs, la caractérisation des matériaux métalliques ou composites qui sont
utilisés dans la production. En particulier, une question majeure en fiabilité est la ré-
sistance des piéces a différents types de sollicitations et d’endommagement. Dans cette
étude, on s’intéresse a un processus d’endommagement spécifique subi en cours de vol :

I’endommagement en fatigue.

1.1 Cadre industriel : endommagement en fatigue

Le phénomeéne de fatigue correspond a la modification des propriétés d’'un matériau sous
leffet de 'application répétée d’une charge, pouvant mener a la rupture. Les charge-
ments sont appliqués de maniere cyclique, comme représenté sur la figure 1.1, et carac-
térisés par :

e les niveaux de contraintes maximale et minimale, o pin et Omax;

le niveau moyen appliqué o, ;

la contrainte alternée, définie comme la demi amplitude de la variation du charge-

g —Omi
ment 0, = =5

U i .
le rapport de charge T

la température T.

ma

Ga

Acycle

min

FIGURE 1.1 — Application d’un cycle d’effort sur un matériau

Dans le cas des piéces de turboréacteur, les vibrations subies durant le vol sont a 'origine

de ce type d’endommagement.

Afin d’étudier la résistance d’'un matériau, des études expérimentales sont menées en
controlant les variables définies ci-dessus pour reproduire les conditions de vol. Les es-

sais réalisés consistent a appliquer sur une éprouvette ! des cycles de contraintes jusqu’a

1. Une éprouvette est un échantillon standardisé de la matiére ou de la piéce avant usinage.
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rupture ou date de fin d’essai. On mesure le nombre de cycles a rupture N (généralement

censuré a droite) pour chaque niveau de sollicitation o.

700 ._o T "
[ - High-cycle
a00 F e .
i [[] rem Fatigue
= Epi A -
=™ s e
: _"lf]'.] r L .
- P ———a L KX ] Mreon |
- T - = )
2 400 - - g W N
= [ o s =
=3 L "o :
8 300 F ploglp® 0
u - LB ] N
& L " em . o
[ [ Low-cycle el 1
200 . . - /‘!
r Fatigue 1 3
r - -—r . se-r—p 1|
100 © *
Endurance Limit
rl [ i (RRIN i i i [N 1 i Ll i (RN (.} Ll
2 3 5 3 7]
10! 10° 107 10* 167 10° 10 108

Number of cycles

FIGURE 1.2 — Schéma d’une courbe de Wohler

Les résultats de ces plans d’essai permettent de caractériser le comportement en fatigue
d’un matériau et sont généralement représentés sous la forme d’'une courbe de Woh-
ler, aussi appelée courbe S-N (cf. Figure 1.2). Celle-ci met en évidence trois régimes de

fatigue :

 Lafatigue oligocyclique ou Low Cycle Fatigue (LCF) est caractérisée par des durées
de vie courtes, associées a des niveaux de contrainte élevés. A des niveaux voisins
de la limite d’élasticité 2, la rupture est quasi-immédiate. Pour ces hauts niveaux
de sollicitation, la rupture est généralement engendrée par la propagation d’une

fissure amorcée en surface du matériau.

 Lafatigue a grands nombres de cycles ou domaine d’endurance limitée correspond
a des durées de vie inférieures a 10% - 107 cycles, liées a I'application de niveaux
de contraintes environ deux fois inférieurs a la limite d’élasticité. Dans ce régime,
la durée de vie augmente log-linéairement a mesure que ces derniers diminuent,
jusqu’a tendre vers une asymptote horizontale. La rupture peut étre engendrée
par la propagation d’une fissure ayant amorcé en surface ou au coeur de I’éprou-
vette pour un méme niveau de chargement. La co-existence des deux modalités de

rupture engendre une dispersion des essais plus importante.

2. Lalimite d’élasticité est la contrainte a laquelle le matériau se déforme de maniére irréversible et va
donc rompre rapidement.
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 La fatigue a trés grands nombres de cycles ou High Cycle Fatigue (HCF), aussi ap-
pelée domaine d’endurance illimitée, intervient lorsque la durée de vie devient tres
grande, voire illimitée, soit parce qu’aucun défaut ne s’est amorcé, soit parce que
les fissures cessent de se propager. La courbe atteint alors une asymptote horizon-
tale et les résultats observés sont alors tres dispersés. Cette asymptote est plus ou
moins marquée selon les matériaux et on définit également une limite de fatigue
conventionnelle qui correspond a la résistance du matériau en fatigue a 107 cycles.
En dessous de la limite d’endurance ou de la limite de fatigue conventionnelle, la
durée de vie du matériau est supposée étre infinie. Ces limites servent donc pour

dimensionner en fatigue les pieces mécaniques.

La tenue en fatigue d’'un matériau s’étudie sous des angles différents selon le type de
régime considéré. En effet, afin de caractériser la tenue en fatigue oligocyclique, I’étude
se porte généralement sur la distribution de la durée de vie pour un niveau de chargement
donné. En revanche, I’approche est différente concernant le régime d’endurance. Il s’agit
plutdt d’estimer la distribution de la contrainte a un nombre de cycles fixés. Dans les
deux cas, on peut s’intéresser essentiellement a certains indicateurs des distributions
des variables d’intérét. Cela peut étre leurs moyennes ou bien leurs quantiles. Dans les
travaux présentés dans la suite, I’accent est mis sur la caractérisation des comportements
extrémes des matériaux en fatigue. C’est pourquoi il s’agira d’étudier d'une part la durée
de vie dite minimale, c’est-a-dire le quantile d’ordre 0.1% de la durée de vie en fatigue
et, de 'autre, pour le régime a treés grands nombres de cycles, la contrainte admissible
minimale correspondant a un quantile de défaillance a 0.1% a un nombre de l'ordre de

107 cycles.

La caractérisation de ces deux quantités (durée de vie minimale et contrainte admissible)
est utilisée pour dimensionner la piece, en fixer le prix, en fournir une durée d’utilisation

ainsi que pour en contréler la qualité.

1.2 Contributions

Les travaux présentés dans ce manuscrit s’articulent autour des deux axes exposés ci-

dessus, a savoir :

 la modélisation et 'estimation des risques minimaux en fatigue HCF, correspon-
dant a lestimation d’un quantile de défaillance extréme a une durée de vie ng

grande fixée;

e la recherche d’outils méthodologiques permettant de modéliser la durée de vie a

un niveau de contrainte fixé en fatigue oligocyclique, ce qui constitue un prérequis
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nécessaire a I’estimation de la durée de vie minimale.

La partie I se concentre sur la caractérisation de la résistance de matériaux métalliques
ou composites en fatigue a trés grands nombres de cycles. L’enjeu industriel consiste a
proposer un plan d’essai couplé a une méthode d’estimation afin d’estimer la contrainte
admissible minimale a un nombre de cycles ng fixé. En effet, la méthodologie existante ne
permet pas d’estimer un quantile extréme et est plutot concue pour cibler la contrainte
admissible moyenne. La contrainte minimale est dont pour I'instant obtenue en imposant
un abattement forfaitaire sur la contrainte admissible moyenne.

D’un point de vue théorique, la problématique consiste a proposer un plan d’expériences
en vue d’estimer un quantile extréme a partir d’'un échantillon d’observations ne don-
nant qu’une information binaire (de type dépassement de seuil) sur la variable d’intérét.
L’absence de méthodologie adaptée a cette question dans le cadre de données dichoto-
miques a conduit au développement d’une procédure originale mettant en relation les
méthodes d’échantillonnage préférentiel (ici, le splitting) avec les résultats en valeurs
extrémes sur les lois limites des probabilités de dépassements de seuils.

La méthodologie étudiée a été publiée dans les actes du congres dans la base CNRS I-
revues (2018 [43]) et notamment présentée au Congrés Lambda Mu 21 et a la conférence
internationale EVA 2019.

La partie I porte sur la modélisation des courbes S-N en fatigue oligocyclique. Elle s’ins-
crit dans la continuité des travaux de R. Fouchereau (2014 [35]) et vise a proposer une
nouvelle modélisation de la distribution de la durée de vie & un niveau de contrainte
donné. L’objectif est de mettre en place un modele générique s’appuyant sur les résultats
théoriques en mécanique de la rupture et applicable a tous types de matériaux (métal-
liques et composites). Ce changement d’approche doit également permettre de modéliser
et estimer plus efficacement les durées de vie minimales. Les travaux réalisés dans cette
partie visent a fournir les outils méthodologiques afin de sélectionner la modélisation la

plus adaptée aux données de fatigue, a travers deux procédures de tests statistiques.

La premiere, présentée dans le chapitre 4, permet de tester la loi d’une variable affec-
tée d’un bruit additif. Il s’agit d’un test d’hypothéses composites correspondant a une
généralisation du test du rapport de vraisemblance a partir de statistiques de type diver-
gence. Présentée dans un cadre plus général de métrologie, elle est facilement adaptable
au cas des données en fatigue et fournit un outil puissant d’aide a la décision. Ces tra-
vaux sont le fruit d’un travail joint avec M. Broniatowski, J. Jureckova et A. Kumar et

ont été publiés dans la revue entropy (Broniatowski et al. 2019 [10]).

La seconde procédure est présentée dans le chapitre 5 et porte sur le test du nombre de

composantes d’'un mélange. Les composantes sont supposées appartenir a des familles
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paramétriques pouvant étre ou non identiques et de parametres inconnus. Ces travaux
sont une extension de Broniatowski et Keziou (2006 [12]). La statistique de test proposée
est fondée sur des estimateurs de divergences sous leur forme duale. Un article a été pu-
blié en collaboration avec M. Broniatowski et W. Stummer dans les actes de la conférence

Geometric Science of Information (Broniatowski et al. 2019 [14]).



Premiere partie

A sequential design for the
estimation of minimal allowable

stress in material fatigue
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Chapitre 2

A sequential design for extreme
quantiles estimation under binary

sampling

2.1 Objectives

2.1.1 Theoretical challenge

Consider a non negative random variable X with distribution function G. Let Xj, .., X, be
n independent copies of X. The aim of this paper is to estimate q;_4, the (1 — a)-quantile
of G when a is much smaller than 1/n. We therefore aim at the estimation of extreme
quantiles. This question has been handled by various authors, and we will review their
results later. The approach which we develop is quite different since we do not assume

that the X;’s can be observed. For any threshold x, we define the r.v.

1lif X<x
Y =
0if X>x

which therefore has a Bernoulli distribution with parameter G(x). We do choose the
threshold x, however we do not observe X, but merely Y. Therefore any inference on
G suffers from a severe loss of information. This kind of setting is common in indus-
trial statistics: When exploring the strength of a material, or of a bundle, we may set a
constraint x, and observe whether the bundle breaks or not when subjected at this level
of constraint.

In the following, we will denote R the resistance of this material, we observe Y. Inference
on G can be performed for large n making use of many thresholds x. Unfortunately such

a procedure will not be of any help for extreme quantiles. To address this issue, we will

25
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consider a design of experiment enabling to progressively characterize the tail of the
distribution by sampling at each step in a more extreme region of the density. It will
thus be assumed in the following that we are able to observe Y not only when R follows
G but also when R follows the conditional distribution of R given {R > x}. In such a
case we will be able to estimate q;_, even when a < 1/n where n designates the total
number of trials. In material sciences, this amounts to consider trials based on artificially
modified materials. When aiming at estimation of extreme upper quantiles, this amounts
to strengthen the material. We would consider a family of increasing thresholds x;, .., X,
and for each of them realize K3, .., K,;, trials. Each block of iid realizations Y’s is therefore
a function of the corresponding unobserved R’s with distribution G conditioned upon
{R> x1}, 1 =1 < m. design which allows for the estimation of extreme quantiles.

The present setting is therefore quite different from that usually considered for similar
problems under complete information. As sketched above it is specifically suited for
industrial statistics and reliability studies in materials science.

From a strictly statistical standpoint, the question described above can be solved by
considering that the distribution G is of some special form, namely that the conditional
distribution of R given {R > x} has a functional form which differs from that of G only
through some changes of the parameters. In this case, simulation under these conditio-
nal distributions can be performed for adaptive choice of the thresholds x;’s, substituting
the above sequence of trials. This sequential procedure allows to estimate iteratively the
initial parameters of G and to obtain g;_, combining corresponding quantiles of the
conditional distributions above thresholds, a method named splitting. In this method,
we will choose sequentially the x;’s in a way that g;_, will be obtained easily from the
last distribution of x conditioned upon {R > x,,}.

In safety issues or in pharmaceutical control, the focus is usually set on the control of
minimal risks and therefore on the behavior of a variable of interest (strength, maximum
tolerated dose) for small or even very small levels. In these settings the above conside-
rations turn to be equivalently stated through a clear change of variable, considering
the inverse of the variable of interest. In the following and to make this approach more
intuitive, we choose as the main thread of this study an example in material fatigue. We
look at a safety property, namely thresholds x which specify very rare events, typically
failures under very small solicitations.

As stated above, the problem at hand in this study is the estimation of very small quan-
tiles. Since classical techniques in risk theory, for example the modelling of extreme risks
and exceedances over thresholds by the Generalized Pareto Distribution, pertain to large
quantiles estimation, we will reduce this question to the more common setting. Denoting

R the variable of interest and R:= 1/R, then obviously, for x >0, {R < x} is equivalent to
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{R > u} with u = 1/x. In this paper we will therefore make use of this simple duality, sta-
ting formulas for R, starting with classical results pertaining to R when necessary. Note
that when g, designates the a—quantile of R and respectively ;4 the (1 — @) —quantile
of R, itholds g, = 1/G,_4.Those notations may be a bit cumbersome; however they result
in a more familiar framework.

In this framework, we are focusing on extreme minimal risk. The critical quantities that
are used to characterize minimal risk linked to fatigue damage are failure quantiles, cal-
led in this framework allowable stresses at a given number of cycles and for a fixed level
of probability. Those quantiles are of great importance since they intervene in decisions
to dimension engine pieces, in pricing decisions as well as in maintenance policies.
This chapter is organized as follows. Paragraph 2.1.2 formalizes the problem in the fra-
mework of the industrial application of Safran Aircraft Engines. In Section 2.2, a short
survey of extreme quantiles estimation and of existing designs of experiment are studied
as well as their applicability to extreme quantiles estimation. Then, a new procedure is
proposed in Section 2.3 and elaborated for a Generalized Pareto model. An estimation
procedure is detailed and evaluated in Section 2.4. An alternative Weibull model for the
design proposed is also presented in Section 2.5. Lastly, Sections 2.6 and 2.7 provide a
few ideas discussing model selection and behavior under misspecification as well as hints

about extensions of the models studied beforehand.

2.1.2 Formalization of the industrial problem

The aim of this study is to propose a new design method for the characterization of
allowable stress in very high cycle fatigue (HCF), for a very low risk a of order 1073, We
are willing to obtain a precise estimation method of the a—failure quantile based on a
minimal number of trials.

Denote N the lifetime of a material in terms of number of cycles to failure and S the stress
amplitude of the loading, in MPa. Let n be the targeted time span of order 10® —107.
The allowable stress s, at 19 cycles and level of probability a = 1073 is the level of stress

that guarantee that the risk of failure before 1y does not exceed a and is defined by:

Sq =sup{s:Ps(N < ny) < a} (2.1)

where Pi(N < ng) = P(N < nylS = ).

We will now introduce a positive r.v. R = R, modelling the resistance of the material at

np cycles and homogeneous to the stress. R is the variable of interest in this study and
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its distribution is defined with respect to the conditional lifetime distribution by:
P(R<s)=P,(N < ny) (2.2)

Thus, the allowable stress can be rewritten as the a—quantile of the distribution of R.

Sq =sup{s:P(R<s)<a} (2.3)

However, R is not directly observed. Indeed, the usable data collected at the end of a
test campaign consists in couples of censored fatigue life - stress levels (min(N, ng), s)
where s is part of the design of the experiment. The relevant information that can be
drawn from those observations to characterize R is restricted to indicators of whether
or not the tested specimen has failed at s before ny. Therefore, the relevant observations
obtained through a campaign of n trials are formed by a sample of variables Yi,..., Y},
withfor1<i<n,
v, - { 1if R;<s;
0if R; > s;

where s; is the stress applied on specimen i.

Note that the number of observations is constrained by industrial and financial consi-
derations; thus a is way lower than 1/7n and we are considering a quantile lying outside

the sample range.

While we motivate this paper with the above industrial application, note that this kind
of problem is of interest in other domains, such as broader reliability issues or medical

trials through the estimation of the maximal dose of tolerated toxicity for a given drug,.

2.2 Extreme quantile estimation, a short survey

As seen above estimating the minimal admissible constraint raises two issues: on one
hand the estimation of an extreme quantile, and on the other hand the need to proceed
to inference based on exceedances under thresholds. We present a short exposition of
these two areas, keeping in mind that the literature on extreme quantile estimation deals

with complete data or data under right censoring.

2.2.1 Extreme quantiles estimation methods

Extreme quantile estimation in the univariate setting is widely covered in the literature

when the variable of interest X is either completely or partially observed.
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The usual framework is to study the (1 — a)—quantile of a r.v X, denoted x;_,, with very
small a.

The most classical case corresponds to the setting where x;_, is drawn from a n sample
of observations Xj, ... X;. We can distinguish estimation of high quantiles, where x;_4
lies inside the sample range, see Weissman 1978 [56] and Dekkers and al. 1989 [25],
and the estimation of extreme quantiles outside the boundary of the sample, see for
instance De Haan and Rootzén 1993 [24]. It is assumed that X belongs to the domain of
attraction of an extreme value distribution. The tail index of the latter is then estimated
through maximum likelihood (Weissman 1978 [56]) or through an extension of Hill’s
estimator (see the moment estimator by Dekkers and al. 1989 [25]). Lastly, the estimator
of the quantile is deduced from the inverse function of the distribution of the k largest
observations. Note that all the above references assume that the distribution has a Pareto
tail. An alternative modelling has been proposed by De Valk 2016 [26] and De Valk and
Cai 2018 [27] and consists in assuming a Weibull type tail, which enables to release some
second order hypotheses on the tail. This last work deals with the estimation of extreme
quantiles lying way outside the sample range and will be used as a benchmark method
in the following sections.

Recent studies have also tackled the issue of censoring. For instance, Beirlant and al. 2007
[9] and Einmahl and al. 2008 [33] proposed a generalization of the peak-over-threshold
method when the data are subjected to random right censoring and an estimator for
extreme quantiles. The idea is to consider a consistent estimator of the tail index on the
censored data and divide it by the proportion of censored observations in the tail. Worms
and Worms 2014 [57] studied estimators of the extremal index based on Kaplan Meier
integration and censored regression.

However the literature does not cover the case of complete truncation, i.e when only
exceedances over given thresholds are observed. Indeed, all of the above are based on
estimations of the tail index over weighed sums of the higher order statistics of the
sample, which are not available in the problem of interest in this study. Classical estima-
tion methods of extreme quantiles are thus not suited to the present issue.

In the following, we study designs of experiment at use in industrial contexts and their

possible application to extreme quantiles estimation.

2.2.2 Sequential design based on dichotomous data

In this section we review two standard methods in the industry and in biostatistics,
which are the closest to our purpose. Up to our knowledge, no technique specifically
addresses inference for extreme quantiles in this setting.

We address the estimation of small quantiles, hence the events of interest are of the form
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{R < s} and the quantile is g, for small a.
The first method is the staircase, which is the present tool used to characterize material

fatigue strength.
The second one is the Continual Reassessment Method (CRM) which is adapted for asses-

sing the admissible toxicity level of a drug in Phase 1 clinical trials.
Both methods rely on a parametric model for the distribution of the strength variable R.
We have considered two specifications, which allow for simple comparisons of perfor-

mance, and do not aim at an accurate modelling in safety.

The Staircase method

Assume that R belongs to a parametric family with parameter . Devised by Dixon and
Mood (1948 [29]), this technique aims at the estimation of the parameter 6, through
sequential search based on data of exceedances under thresholds. The procedure is as
follows.
Procedure
Fix

e The initial value for the constraint, S;,;,

e The step 6 >0,

e The number of cycles ny to perform before concluding a trial,

e The total number of items to be tested, K.

The first item is tested at level sy = S;,;. The second item is then tested at level s =
Sini — 0 in case of failure and sy = S;; + 6 otherwise. The levels at which the K -2
remaining specimen are to be sequentially tested are determined by the results of the
previous trials: they are increased by a step 0 in case of survival and decreased by 6 in
case of failure. The procedure is illustrated in Figure 2.1.

Note that the proper conduct of the Staircase method relies on strong assumptions on the
choice of the design parameters. Firstly, S;,; has to be sufficiently close to the expectation
of R and secondly, 6 has to lay between 0.50 and 20, where o designates the standard
deviation of the distribution of R.

Denote P(R < s) = ¢(s,00) and Y the variable associated to the issue of the trial: Y;,
1 =i =<K, takes value 1 under failure and 0 otherwise. Thus Y; = 1 n,<n, ~ 2(¢(si,00)).
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Relative error
On the parameter On s,
Mean Std Mean Std
-0.252 0.178 0.4064874 | 0.304

TaBLE 2.1 — Results obtained using the Staircase method through simulations under the
exponential model.

Stress

I 2 3 4 5 i} 7 Coupon number

FIGURE 2.1 — Staircase procedure

Estimation

After the K trials, the parameter 0 is estimated through maximization of the likelihood,

namely

K
0 = argmax [ ¢(s;,0)7 (1 — p(s;:,0) 7. (2.4)
0 i=1

Numerical results

The accuracy of the procedure has been evaluated on the two models presented below
on a batch of 1000 replications, each with K = 100.

Exponential case

Let R ~ &) with A = 0.2. The input parameters are Sipj = 5 and § = 15 €
0.5% 45,2 x 35 |-

As shown in Table 2.1, the relative error pertaining to the parameter A is roughly 25%,

although the input parameters are somehow optimal for the method. The resulting rela-

tive error on the 1073 quantile is 40%. Indeed the parameter A is underestimated, which

results in an overestimation of the variance 1/12 , which induces an overestimation of

the 1073 quantile.

Gaussian case
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Relative error
On u ‘ Ono On s,
Mean | Std | Mean | Std | Mean | Std
-0.059 | 0.034 | 1.544 | 0.903 | -1.753 | 0.983

TaBLE 2.2 — Results obtained using the Staircase method through simulations under the
Gaussian model.

We now choose R ~ A (u,0) with g =60 and o = 10. The value of Sj,; is set to the
expectation and § = 7 belongs to the interval [£,20]. The same procedure as above is
performed and yields the results in Table 2.2.

The expectation of R is recovered rather accurately, whereas the estimation of the stan-
dard deviation suffers a loss in accuracy, which in turn yields a relative error of 180 %

on the 1073 quantile.

Drawback of the Staircase method

A major advantage of the Staircase lies in the fact that the number of trials to be per-
formed in order to get a reasonable estimator of the mean is small. However, as shown
by the simulations, this method is not adequate for the estimation of extreme quantiles.
Indeed, the latter follows from an extrapolation based on estimated parameters, which
furthermore may suffer of bias. Also, reparametrization of the distribution making use
of the theoretical extreme quantile would not help, since the estimator would inherit of

a large lack of accuracy.

The Continuous Reassesment Method (CRM)

General principle
The CRM (O’Quigley, Pepe and Fisher, 1990[45]) has been designed for clinical trials and
aims at the estimation of g, among J stress levels sy, ..., 57, when «a is of order 20%.

Denote P(R < s) = y(s, Bo). The estimator of g, is

s*:= arginf |y(s, Bo) — al.
SE{S1,...,S7}
This optimization is performed iteratively and K trials are performed at each iteration.
Start with an initial estimator ,B\l of By, for example through a Bayesian choice as pro-
posed in [45]. Define
sy:= arginf Iw(s,fi\l) —al.

SE{S1,...,S]}

Every iteration follows a two-step procedure:
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Step 1. Perform K trials under (., Bo), say Rj1,.., R1 x and observe only their value
under threshold, say Y; ;:= 1R <str 1= k<K.

Step i. Iteration i < 2 consists in two steps :

— Firstly an estimate B: of By is produced on the basis of the information beared by
the trials performed in all the preceding iterations through maximum likelihood

under ¥ (., Bo) (or by maximizing the posterior distribution of the parameter).

This stress level s;.k is the one under which the next K trials Y; 1,..., Y; x will be

performed in the Bernoulli scheme 2 (/(s¥, Bo)).

The stopping rule depends on the context: it happens either when a maximum number
of trials is reached or when the results are stabilized.

Note that the bayesian inference is useful in the cases where there is no diversity in the
observations at some iterations of the procedure, i.e when, at a given level of test s;.",

only failures or survivals are observed.

Application to fatigue data

The application to the estimation of the minimal allowable stress is treated in a bayesian
setting. We do not directly put a prior on the parameter ffy, but rather on the probability
of failure. We consider a prior information of the form: at a given stress level s', we can
expect | failures out of n trials. Denote g the prior indexed on the stress level s'. my

models the failure probability at level s’ and has a Beta distribution given by
wg ~PBL,n—-1+1). (2.5)

Let R follow an exponential distribution: Vs =0, (s, Bo) = ps = 1 —exp(—fos).

It follows Vs, By = —%log(l — Ps).

Define the random variable A = —% log(1 — ;). By definition of my, Ay is distributed as
an l-order statistic of a uniform distribution Uy ;.

The estimation procedure of the CRM is obtained as follows:

Step 1. Compute an initial estimator of the parameter

A 1% L log1 -7l
= — - -7,
$ Ni:l Y g s

with 7%, ~ B(I,n—1+1),1 < i < N. Define

sy:= arginf |(1-exp(—AySs)) —al.

SE{S1,..., ST}
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Relative error
On the 0.1-quantile ‘ On the 1073~quantile
Mean Std Mean Std
0.129 0.48 -0.799 0.606

TaBLE 2.3 — Results obtained through CRM on simulations for the exponential model

and perform K trials at level s}. Denote the observations Y; x:=1 Ry<sir 1< k=K.

Step i. At iteration i, compute the posterior distribution of the parameter:

i K i K
my, ~ B l+ZZY,~,k,n+(Kxi)—(l+ZZYj,k)+1) (2.6)
j=1k=1 j=lk=1

The above distribution also corresponds an order statistic of the uniform distribution
UZ+Z§~-1211§: Yie ) ne(Kxi)s Ve then obtain an estimate As:.

The next stress level s7, | to be tested in the procedure is then given by

sk

Numerical simulation for the CRM

Under the exponential model with parameter A = 0.2 and through N = 10 iterations of
the procedure, and J = 10, with equally distributed thresholds s;,..,s; , and performing
K =50 trials at each iteration, the results in Table 2.3 are obtained.

The 10~3—quantile is poorly estimated on a fairly simple model. Indeed for thresholds
close to the expected quantile, nearly no failure is observed. So, for acceptable K, the
method is not valid; Figure 2.2 shows the increase of accuracy with respect to K.

Both the Staircase and the CRM have the same drawback in the context of extreme quan-
tile estimation, since the former targets the central tendency of the variable of interest
and the latter aims at the estimation of quantiles of order 0.2 or so, far from the target
a = 1073. Therefore, we propose an original procedure designed for the estimation of

extreme quantiles under binary information.
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FIGURE 2.2 — Relative error on the 10~3-quantile with respect to the number of trials for
each stress level

2.3 A new design for the estimation of extreme quan-

tiles

2.3.1 Splitting

The design we propose is directly inspired by the general principle of Splitting methods
used in the domain of rare events simulation and introduced by Kahn and Harris (1951
[40]).

The idea is to overcome the difficulty of targeting an extreme event by decomposing
the initial problems into a sequence of less complex estimation problem. This is enabled
by the splitting methodology which decompose a small probability into the product of
higher order probabilities.

Denote P the distribution of the r.v. R. The event {R < s,} can be expressed as the inter-

section of inclusive events for Sq = S;;41 < S < Spm—1 < ... < 87 it holds:
{R<sgt={R<spyilc---c{R<s}

It follows that
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P(R<s))=P(R<s) [[P(R<sjs1|R<s)) (2.7)
j=1

The thresholds (s;) j=1,...,m+1 should be chosen such that all P(R < sj41 | R < §j)j=1,..m
be of order p = 0.2 or 0.3, in such a way that {R < s;,1} is observed in experiments
performed under the conditional distribution of R given {R < s;}, and in a way which
makes a recoverable by a rather small number of such probabilities P(R < sj11 | R < ;)
making use of (2.7).

From the formal decomposition in (2.7), a practical experimental scheme can be deduced.

Its form is given in algorithm 1.

Procedure 1 Splitting procedure

Initialization
Fix
¢ the number m of'iterations to be performed (and
of levels to be tested);
o the level of conditional probabilities p (laying
between 20 and 30 %);

such that p"*! = a

o the first tested level s, (ideally the p—quantile of the distribution of R);

e the number K of trials to be performed at each iteration.

First step

e K trials are performed at level s;. The observations are the indicators of failure
Y11,.... Y1k, where Y1, =1(Ry,; < $1) of distribution 2 (P(R < s1)).

e Determination of s,, p—quantile of the truncated distribution R | R < s;.

Iteration j=2to m

e K trials are performed at level s; under the truncated distribution of R| R < 5;_;
resulting to observations Yj1,..., Yj ~ % (PR < sjIR< sj_l)).

 Determination of s;,1, the p—quantile of R| R < s;.

The last estimated quantile s;,+; provides the estimate of s,.

2.3.2 Sampling under the conditional probability

In practice batches of specimen are put under trial, each of them with a decreasing

strength; this allows to target the tail of the distribution P iteratively.
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FIGURE 2.3 — Sampling under the strengh density at ny cycles

In other words, in the first step, points are sampled in zone (I). Then in the following step,
only specimen with strength in zone II are considered, and so on. In the final step, the
specimen are sampled in zone IV. At level s, they have a very small probability to fail
before ng cycles under P, however under their own law of failure, which is P(. | R < s;,,—1),

they have a probability of failure of order 0.2.

In practice, sampling in the tail of the distribution is achieved by introducing flaws in
the batches of specimens. The idea is that the strength of the material varies inversely
with respect to the size of the incorporated flaws. The flaws are spherical and located
inside the specimen (not on its surface). Thus, as the procedure moves on, the trials
are performed on samples of materials incorporating flaws of greater diameter. This
procedure is based on the hypothesis that there is a correspondence between the strength
of the material with flaw of diameter 6 and the truncated strength of this same material
without flaw under level of stress s*, i.e. we assume that noting Ry the strength of the

specimen with flaw of size 0, it holds that there exists s* such that
L(Rg) = L(R|R=<5s").

Before launching a validation campaign for this procedure, a batch of 27 specimen has
been machined including spherical defects whose sizes vary between 0 and 1.8mm (see

Figure 2.4). These first trials aim at estimating the decreasing relation between mean
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allowable stress and defects diameter 6. This preliminary study enabled to draw the

abatement fatigue curve as a function of 6, as shown in Figure 2.5.

| 0 . 08 . . 1 |

FIGURE 2.4 — Coupons incorporating spherical defects of size varying from 0 mm (on the
left) to 1.8 mm (on the right)

Evolution of the endurance limit ( at 10"6 cycles) with respect to
the defect size

Alternated stress (MPa)
®

0,1 1 10
Defect diameter (mm)

FIGURE 2.5 — Mean allowable stress with respect to the defect size

Results in Figure 2.5 will be used during the splitting procedure to select the diameter 0
to be incorporated in the batch of specimens tested at the current iteration as reflecting
the sub-population of material of smaller resistance.

Practically, this amounts to add at each step j of the procedure the determination of
the mean or median 5;711 of the distribution of the estimated conditional distribution
R | R < sj on top of its p—quantile. The flaw size 0,1 that will be introduced in the
batch of specimen tested at step j + 1 is such that

N
|E(R9j+1) ~Sit
or

sup{s :P(Rg;,, =) = 0.5} = Sﬁr

Defect
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2.3.3 Modelling the distribution of the strength, Pareto model

The events under consideration have small probability under P. By (2.7) we are led to
consider the limit behavior of conditional distributions under smaller and smaller thre-
sholds, for which we make use of classical approximations due to Balkema and de Haan
(1974[4]) which stands as follows, firstly in the commonly known setting of exceedances
over increasing thresholds.

Denote R:=1/R.

Theorem 1. For R of distribution F belonging to the maximum domain of attraction
of an extreme value distribution with tail index c, i.e. F € MDA(c), it holds that : There

exists a = a(s) > 0, such that:

1-F(x+5s)
1-F(s)

lim sup —(1-Geax)|=0

$70p<x<o0

where G,g) is defined through

X

Geax)=1- exp{—fﬁ [(A+cD, ]! dt}
0

with a>0and ceR.

The distribution G is the Generalized Pareto distribution GPD(c,a) which is defined
explicitly through
(1+<x)""¢ when c#0

exp(—2) when c=0

l—G(x):{

where x>0 for c20and 0<sx< -2 if ¢ <0.
Generalized Pareto distributions enjoy invariance through threshold conditioning, an

important property for our sake. Indeed it holds, for R ~ GDP(c, a) and x > s,

c(x_ S))—]./C

P(ﬁ>x|§>s):(1+
a+cs

(2.8)

We therefore state:

Proposition 2. When R ~ GPD(c,a) then, given (R>s), the rv. R — s follows a
GPD(c,a+cs).

The GPD’s are on the one hand stable under thresholding and on the other appear as the
limit distribution for thresholding operations. This chain of arguments is quite usual in

statistics, motivating the recourse to the normal or stable laws for additive models. This
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plays in favor of GPD’s as modelling the distribution of R for excess probability infe-
rence. Due to the lack of memory property, the exponential distribution which appears
as a possible limit distribution for excess probabilities in Theorem 1 do not qualify for
modelling. Moreover since we handle variables R which can approach 0 arbitrarily (i.e.
unbounded R) the parameter c is assumed positive.

Turning to the context of the minimal admissible constraint, we make use of the r.v.
R =1/R and proceed to the corresponding change of variable.

When ¢ > 0, the distribution function of the r.v. R writes for nonnegative x:

C )—1/()

Fealx) = (1 s (2.9)

For 0 < x < u, the conditional distribution of R given {R < u} is

C(%—%))_”C

IP(R<x|R<u):(1— X
d+;

which proves that the distribution of R is stable under threshold conditioning with pa-
rameter (ay, c) with
c
ag,=a+—. (2.10)
u

In practice at each step j in the procedure the stress level s; equals the corresponding
threshold 1/5; , a right quantile of the conditional distribution of R given {R > Sj1}
, 1= L...,Kj.

A convenient feature of model (2.9) lies in the fact that the conditional distributions are

Therefore the observations take the form Y; = 1g,<5; , =1 Ri>5i
completely determined by the initial distribution of R, therefore by a and c. The para-
meters a; of the conditional distributions are determined from these initial parameters

and by the corresponding stress level s;; see (2.10).

2.3.4 Notations

The distribution function of the r.v. R is a GPD(cr, ar) of distribution function Ger,ar)-
NOte E(CTyaT) = 1 - G(CTvaT)'
Our proposal relies on iterations. We make use of a set of thresholds (51, ..., $;;;) and define

for any je{l,..., m}

E(Cj,uj)(x— Sj) =P( R> x| R> )

with ¢j = cr and a; = ar + crS; where we used Proposition 2.
At iteration j, denote (C,a); the estimators of (cj, a;). Therefore 1 - G g j(x— Sj) es-

timates P( R > x| R > §j). Clearly, estimators of (cr,ar) can be recovered from (C,a);
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through ¢r =Cand dr=a-Cs5;.

2.3.5 Sequential design for the extreme quantile estimation

Fix m and p , where m denotes the number of stress levels under which the trials will
be performed, and p is such that p™” = a.
Set a first level of stress, say s; large enough (i.e. 5 = 1/5; small enough) so that p; =
P(R < s1) is large enough and perform trials at this level. The optimal value of s; should
satisfy p; = p, which cannot be secured. This choice is based on expert advice.
Turn to R:= 1/R. Estimate ¢ and ar, for the GPD (cr, ar) model describing R, say
(C,a)1, based on the observations above §; (note that under s; the outcomes of R are
easy to obtain, since the specimen is tested under medium stress).
Define

$p:= sup{szﬁ(gﬁ)l (s—31) <p} (2.11)

the (1 — p)—quantile of Gz 3),. $2 is the level of stress to be tested at the following itera-
tion.

Iterating from step j =2 to m, perform K trials under G, 4,) say R Ly e R j,k and consi-
der the observable variables Y; ;:=1 B> Therefore the K iid replications Yj,.., Y} x
follow a Bernoulli @(é(cj_l,a 1) (§j - '§j_1)), where §; has been determined at the pre-
vious step of the procedure. Estimate (cj,a;) in the resulting Bernoulli scheme, say

(C,a) . Then define

Sjy1i= sup{sza(aa)j (s—-5j) < p}

-1 3.
= (aﬁ)j(l - p)+5s;,

(2.12)

which is the (1—-p)—quantile of the estimated conditional distribution of R given (R> Sit
ie. Gea i It is also the next level to be tested, except at iteration m, where s,,1; is the
last estimated quantile and, by its very definition, a proxy of qj_.

In practice a conservative choice for the number of sequences of trials m is given by
_|loga
~ | logp

probability a is less than or equal to a.

-| — 1, where [.] denotes the ceiling function. This implies that the attained

The m+1 stress levels §) <+ <5, < Sip+1 = G1-q satisty

m

a=GGE)|[] a(a?z)j('SVjH -5j)

j=1
=p1p"

Although quite simple in its definition, this method bears a number of drawbacks, mainly
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in the definition of (C, @) ;. The next section addresses this question.

2.4 Sequential enhanced design and estimation me-

thod in the Pareto model

In this section we focus on the estimation of the parameters (cr, ar) in the GPD(cr, ar)
distribution of R. One of the main difficulties lies in the fact that the available information
does not consist of replications of the r.v. R under the current conditional distribution
G(c;,a;) of R given (R > §}) but merely on very downgraded functions of those.

Atstep j, we are given G(,a);_, and define §j asits (1- p) —quantile. Simulating K r.v. R; ;
with distribution G, ,,q; ,), the observable outcomes are the Bernoulli (p) r.v's Y} ;:=
1
for the coefficients (¢, @); quite complex; indeed (C,@); is obtained through the Y;;’s,
1<i<K.

R >3 This loss of information with respect to the R i s makes the estimation step

2.4.1 Estimation procedure based on classical optimization crite-
ria

The first approach consists in analyzing the results obtained through standard Maximum

Likelihood Estimation of the parameters (C, @) at each step j of the procedure. In this

case, the estimation at each step j =1 is made only on the basis of current data, i.e the

current observations Yj 1,..., Yj x obtained under the Bernoulli scheme.

At the first iteration, the estimates are given by:

K
(€, @)1 =argmax ) Y1 ;10g8(G,a)(31)) + (1 - Y1,)108(Gc,q) (51))
(ca) i=1
Given the estimates of the parameters of the distribution G;;,4;), it follows the parame-

ters of the conditional law of R given R > 57 :
(¢,a)1 = (Cr,ar+7<rs1)

and the following level to be tested is obtained through (2.11). Similarly, for steps j > 1,
the parameters of the current conditional distribution of R given R > 5;_, are estimated
through Maximum Likelihood based on the observations Yj1,..., Y} x resulting from

trials at level §;:

K
(©a)j-1 =argmax )_ Vj;log(G,a )+ 1Y} )log (G ()

(c,a) =1
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Minimum | Q25 Q50 | Mean | Q75 | Maximum
67.07 226.50 | 327.40 | 441.60 | 498.90 | 10 320.00

TABLE 2.4 — Estimation of the (1 — a)—quantile, 5, = 469.103, through procedure 2.3.5
with K =50

Sm for K =30 Sy for K =50
Sa Mean Std Mean Std
469.103 | 1 276.00 | 12 576.98 || 441.643 | 562.757

TaBLE 2.5 — Estimation of the (1 —a)—quantile, 5, = 469.103, through procedure 2.3.5 for
different values of K

Estimates for the next conditional distribution and next level of stress are obtained as

stated above.

The quantile q;_4 obtained with this Maximum Likelihood Estimation based procedure
is loosely estimated for small a: As measured on 1000 simulation runs, large standard
deviation of El_a is due to poor estimation of the iterative parameters (C,a);.;. We
have simulated n = 200 realizations of r.v.s Y; with common Bernoulli distribution with
parameter Gc,,q;)(51). Figure 2.6 shows the log likelihood function of this sample as
the parameter of the Bernoulli G4 (Sp) varies according to (c’,a’). As expected this
function is nearly flat in a very large range of (¢, ).

This explains the poor results in Table 2.5 obtained through the Splitting procedure when
the parameters at each step are estimated by maximum likelihood, especially in terms of
dispersion of the estimations. Moreover, the accuracy of the estimator of §;_, quickly
decreases with the number K of replications Y;;, 1 <i<K.

Changing the estimation criterion by some alternative method does not improve signi-
ficantly; Figure 2.7 shows the distribution of the resulting estimators of g;_, for various
estimation methods (minimum Kullback Leibler, minimum Hellinger and minimum L1
distances - see their definitions in Appendix 2.9.1) of (cr, ar).

This motivates the need for an enhanced estimation procedure.

2.4.2 An enhanced sequential criterion for estimation

We consider an additional criterion which makes use of the iterative nature of the pro-
cedure. We will impose some control on the stability of the estimators of the conditional
quantiles through the sequential procedure. At iteration 1, the estimation is performed
using only Maximum Likelihood and remains as described in 2.4.1. Note that in prac-

tice, some additional information may also be available, related to the mean or median
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loglik

-100

FIGURE 2.6 — Log-likelihood of the Pareto model with binary data

of the distribution if the studied material has already been the subject of some testing
campaign.
At iteration j —1, the sample Yj_;; , 1 =i < K has been generated under G, ,,q; , and

provides an estimate of p through
pj-1:= I Z Yi_1,i. (2.13)

The above pj_; estimates P (ﬁ > S| R> §j_2) conditionally on §j_; and §;_». We write
this latter expression P (ﬁ >Si| R> §j_2) as a function of the parameters obtained at
iteration j, namely (€, @) ;. The above r.v’s Y;j_;; stem from variables R j-1,i greater than

Sj-2. At step j, estimate then P (E >Sj-1 R> §j_2) making use of G(g@j. Denote G(8 2 ,
’ j_

the updated estimation of G, ,,a; ,), defined by E§—2 =¢j and ﬁ;_z =4, +Cj(Sj-2—5).
This backward estimator writes

Secal,Si-V)
——=1-G__j (§i-1—Sj-2).
@ay_, ! Y

9]

i (§j=2)
@a, !
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FIGURE 2.7 — Estimations of the @—quantile based on the Kullback-Leibler, L1 distance
and Hellinger distance criterion

The distance

'(5(5@1 (Sj-1— §j—2)) - Pj-1 (2.14)
j-2
should be small, since both 6(6 . (§j-1—Sj-2) and pj_; should approximate p.
el )
Consider the distance between quantiles
(Sj—l_Sj—z)_G(Eﬁ);iz(l_pj—l) . (2.15)

An estimate (C,a); can be proposed as the minimizer of the above expression for
(§j-1—Sj-2) for all j. This backward estimation provides coherence with respect to the
unknown initial distribution G(¢,,4,). Would we have started with a good guess (¢, @) =
(cr, ar) then the successive (¢, d) j, $j-1, etc...would make (2.15) small, since §;_ (resp.
Sj—2) would estimate the p—conditional quantile of P (.| R> Sj—2) (resp. P (.| R> 5j-3)).
It remains to argue on the set of plausible values where the quantity in (2.15) should be
minimized.

We suggest to consider a confidence region for the parameter (c7, ar). With p; defined

in (2.13) and y € (0, 1) define the y—confidence region for p by

pil-pj) pi(l-pj)

Iy=|pj—z1-y12 ?;ﬁj"'zl—y/z
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Parameters Relative error on s,
Mean Std
c=0.8, ap=1.5 and 5, =469.103 -0.222 0.554
c=1.5,ay=1.5and s, =31621.777 || -0.504 0.720
c=1.5, ay =3 and 5, = 63243.550 0.310 0.590

TABLE 2.6 — Mean and std of relative errors on the (1 — @)—quantile of GPD calculated
through 400 replicas of procedure 2.4.2.

where z; is the T—quantile of the standard normal distribution. Define
Fi={(c,a): (1~ Ge,w8j = 3j-1) € L}
Therefore .#; is a plausible set for (¢r, @r).

The above discussion is summarized as follows:
At iteration j, the estimator of (cr, ar) is a solution of the minimization problem
; T T o] — 5.
(C%IEI}Z, (S]—1 S]—Z) G(c,a+c’§j_2) (1 ]9]—1) .
The optimization method used is the Safip algorithm (Biret and Broniatowski, 2016 [8],

see Appendix 2.9.2).

As seen hereunder, this heuristics provides good performance.

2.4.3 Simulation based numerical results

This procedure has been applied in three cases. A case considered as reference is
(cr,ar) = (1.5,1.5); secondly the case when (cr, ar) = (0.8,1.5) describes a light tail with
respect to the reference. Thirdly, a case (ct, ar) = (1.5,3) defines a distribution with same
tail index as the reference, but with a larger dispersion index.

Table 2.6 shows that the estimation of g, deteriorates as the tail of the distribution
gets heavier; also the procedure tends to underestimate g;_g.

Despite these drawbacks, we observe an improvement with respect to the simple Maxi-
mum Likelihood estimation; this is even more clear, when the tail of the distribution is
heavy. Also, in contrast with the ML estimation, the sensitivity with respect to the num-
ber K of replications at each of the iterations plays in favor of this new method: As K
decreases, the gain with respect to Maximum Likelihood estimation increases notably,

see Figure 2.9.
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FIGURE 2.8 — Estimations of the (1 — @)—quantile of two GPD obtained by Maximum

Likelihood and by the improved Maximum Likelihood method

K=50 K=30

2500

2000
|
3000
|

1500
2000
|

1000
|
«}-mwooo o0 oo
—————%moo o
|
%:mmooooo wo 00
|m@o w@® © 0

500 1000

T o ' 1 —
\ | —
T e
o o 4 :
T T T T
ML ImpML ML ImpML
K=15

1000 2000 3000 4000 5000 6000

0
1

ML ImpML

The red line stands stands for the real value of s,

FIGURE 2.9 — Estimations of the (1-a)—quantile of a GPD(0.8, 1.5) obtained by Maximum
Likelihood and by the improved Maximum Likelihood method for different values of K.
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2.4.4 Performance of the sequential estimation

As stated in chapter 2.2, there is to our knowledge no method dealing with similar ques-
tion available in the literature. Therefore we compare the results of our method, based
on observed exceedances over thresholds, with the results that could be obtained by
classical extreme quantiles estimation methods assuming we have complete data at our
disposal; those may be seen as benchmarks for an upper bound of the performance of

our method.

Estimation of an extreme quantile based on complete data, de Valk’s estimator

In order to provide an upper bound for the performance of the estimator, we make use
of the estimator proposed by De Valk and Cai (2016). This work aims at the estimation
of a quantile of order p, € [n™"'; n™ 2], with 75 > 71 > 1, where n is the sample size. This
question is in accordance with the industrial context which motivated the present paper.
De Valk’s proposal is a modified Hill estimator adapted to log-Weibull tailed models. De
Valk’s estimator is consistent, asymptotically normally distributed, but is biased for finite
sample size.We briefly recall some of the hypotheses which set the context of de Valk’s
approach.

Let X3,..., X, be niid r.v’s with distribution F, and denote X}.,, the k— order statistics.
A tail regularity assumption is needed in order to estimate a quantile with order greater
than 1- 1/n.

Denote U(t) = F~1 (1 =1/1), and let the function q be defined by

qy)=UE)=F'(1-¢7)

for y>0.

Assume that

lim 084(yA) ~logq(y)

=hg(A) 1>0 (2.16)
y—oo g(y)
where g is a regularly varying function and
A1 .
fo#£0
hohy={ 0 ' ?
logAif0=0

de Valk writes condition 2.16 as logg € ERVp(g).

Remark : Despite its naming of log-Generalized tails, this condition also holds for Pareto
tailed distributions, as can be checked, providing 8 = 1.

We now introduce de Valk’s extreme quantile estimator.
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Let
o]
ﬁk,n:: Z -.
j=kJ

z

Let q(z) be the quantile of order e™* = p, of the distribution F. The estimator makes
use of X,_; ., an intermediate order statistics of Xj, .., X;;, where [,, tends to infinity as
n—ooandl, /n—0.

de Valk’s estimator writes

~ Z
q(2) = Xp-1,:n€xp {g(ﬁln,n)he ( )} (2.17)
8ln+1vn

When the support of F overlaps R™ then the sample size n should be large; see de Valk
([27]) for detalils.
Note that, in the case of a GPD(c, a), parameter 6 is known and equal to 1 and the

normalizing function g is defined by g(x) = cx for x> 0.

Loss in accurracy due to binary sampling

In Table 2.7 we compare the performance of de Valk’s method with ours on the model,
making use of complete data in de Valk’s estimation, and of dichotomous ones in our
approach. Clearly de Valk’s results cannot be attained by the present sequential method,
due to the loss of information induced by thresholding and dichotomy. Despite this,
the results can be compared, since even if the bias of the estimator clearly exceeds the
corresponding bias of de Valk’s, its dispersion is of the same order of magnitude, when
handling heavy tailed GPD models. Note also that given the binary nature of the data
considered, the average relative error is quite honorable. We can assess that a large part
of the volatility of the estimator produced by our sequential methodology is due to the

nature of the GPD model as well as to the sample size.

2.5 Sequential design for the Weibull model

The main property which led to the GPD model is the stability through threshold condi-
tioning. However the conditional distribution of R given {R > s} also takes a rather

simple form which allows for some variation of the sequential design method under
the Weibull hypothesis.

2.5.1 The Weibull model

Denote R ~ W (a, B), with a, f > 0 a Weibull r.v. with scale parameter a and shape para-

meter B. Let G denote the distribution function of R, g its density function and G~! its
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Relative error on the (1 — @)—quantile

Parameters On complete data || On binary data
Mean Std Mean Std

c=0.8, ap=1.5 and s, =469.103 0.052 0.257 -0.222 0.554
c=1.5,a9=1.5and s, =31621.777 0.086 0.530 -0.504 0.720
c=1.5, ap =3 and s, = 63243.550 0.116 0.625 0.310 0.590

TABLE 2.7 — Mean and std of the relative errors on the (1 — a)—quantile of GPD on com-
plete and binary data for samples of size n = 250 computed through 400 replicas of both
estimation procedures.

Estimations on complete data are obtained with de Valk’s method; estimations on binary
data are provided by the sequential design.

quantile function. We thus write for non negative x
B
G(x)=1-exp (— (f) )
a
for0<u<1, G Y(w=a(-logd-u)'P
The conditional distribution of R is a truncated Weibull distribution

P(R>3)
P(R>75)

e[V ()}

Denote Gs, the distribution function of R given {R > 5,}.

for$; >3, PR>5|R>3) =

The following result helps. For s, > 5,

logP(R > 3) (2.18)

- - 5\°
logP(R>'§2|R>§1) = (S_) -1
1

Assuming P(R > §) = p, and given 3] we may find 3, the conditional quantile of order

1-p of the distribution of R given {ﬁ > 31 }. This solves the first iteration of the sequential

3\ P
&) -
S1

where the parameter 8 has to be estimated on the first run of trials.

estimation procedure through

logp = logp
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The same type of transitions holds for the iterative procedure; indeed for 5,1 >5; > §;_4

'IOgP(E>§j+1 |E>§j_1) 1

logP(R>3j41 | R>3)) = logP(R>3; | R>5j-1)

| logP(R>3;|R>3j-1)

SV (2.19)
Sic17 554 PR
j-1%j

At iteration j the thresholds §; and §;_; are known; the threshold §;4; is the (1 - p)-
quantile of the conditional distribution, PR > Sjs1l R> S$j) = p, hence solving

B _P

Sj-17Sjm
logp = L | logp
:‘f—l_gf

where the estimate of f is updated from the data collected at iteration j.

2.5.2 Numerical results

Similarly as in Sections 2.4.3 and 2.4.4 we explore the performance of the sequential
design estimation on the Weibull model. We estimate the (1 —a)— quantile of the Weibull
distribution in three cases. In the first one, the scale parameter a and the shape parameter
b satisfy (a, b) = (3,0.9). This corresponds to a strictly decreasing density function, with
heavy tail. In the second case, the distribution is skewed since (a,b) = (3,1.5) and the
third case is (a, b) = (2,1.5) and describes a less dispersed distribution with lighter tail.
Table 2.8 shows that the performance of our procedure here again largely depends on
the shape of the distribution. The estimators are less accurate in case 1, corresponding
to a heavier tail. Those results are compared to the estimation errors on complete data
through de Valk’s methodology. As expected, the loss of accuracy linked to data dete-
rioration is similar to what was observed under the Pareto model, although a little more
important. This can be explained by the fact that the Weibull distribution is less adapted
to the splitting structure than the GPD.

2.6 Model selection and misspecification

In the above sections, we considered two models whose presentation was mainly mo-
tivated by theoretical properties. As it has already been stated in paragraph 2.3.3, the
modelling of R by a GPD with ¢ strictly positive is justified by the assumption that the
support of the original variable R may be bounded by 0. However, note that the GPD
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Relative error on the (1 — @)—quantile
Parameters On binary data || On complete data
Mean ‘ Std Mean Std
ap=3, byp=0.9 et s, =25.69 0.282 0.520 0.127 0.197
ap=3,by=1.5et s, =10.88 || -0.260 0.490 0.084 0.122
apy=2,by=15et s, =725 | -0.241 | 0450 | 0.088 0.140

TaBLE 2.8 — Mean and std of relative errors on the (1 — @)—quantile of Weibull distribu-
tions on complete and binary data for samples of size n = 250 computed through 400
replicas.

Estimations on complete data are obtained with de Valk’s method; estimations on binary
data are provided by the sequential design.

model can be easily extended to the case where ¢ = 0. It then becomes the trivial case of

the estimation of an exponential distribution.

Though we did exclude the exponential case while modelling the excess probabilities of R
by a GPD, we still considered the Weibull model in section 2.5, which belongs to the max
domain of attraction for ¢ = 0. On top of being exploitable in the splitting structure, the
Weibull distribution is a classical tool when modelling reliability issues, it thus seemed

natural to propose an adaptation of the sequential method for it.

In this section, we discuss the modelling decisions and give some hints on how to deal

with misspecification.

2.6.1 Model selection

The decision between the Pareto model with tail index strictly positive and the Weibull
model has been covered in the literature. There exists a variety of tests on the domain
of attraction of a distribution.
Dietrich and al. (2002 [28]) and Drees and al. (2006 [31]) both propose a test for extreme
value conditions related to Cramer-von Mises tests. Let X be a r.v of distribution function
G. The null hypothesis is

Hy:Ge MDA(c).

In our case, the theoretical value for the tail index is ¢y = 0. The former test provides
a testing procedure based on the tail empirical quantile function, while the latter uses
a weighted approximation of the tail empirical distribution. Choulakian and Stephens
(2001 [20]) proposes a goodness of fit test in the fashion of Cramer-von Mises tests in
which the unknown parameters are replaced by maximum likelihood estimators. The

test consists in two steps: firstly the estimation of the unknown parameters, and secondly
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the computation of the Cramer-von Mises W? or Anderson-Darling A? statistics. Let

Xj,..., X, be a random sample of distribution G. The hypothesis to be tested is:
Hy : The sample is coming from a GPD(cy, @).

The associated test statistics are given by:

wi=%" (G(x(,-)) -

i=1

21‘—1)2 1
2n

)

+
12n

A*=—pn-— % Y (i - 1) {log(G(x()) +1log(l — G(xn+1-i)},
i=1

where x(;) denotes the i—th order statistic of the sample. The authors provide the cor-
responding tables of critical points.
Jureckova and Picek (2001 [39]) designed a non-parametric test for determining whether

a distribution G is light or heavy tailed. The null hypothesis is defined by :

H, :x"%(1-G(x) <1 Vx> xq for some x> 0

0

with fixed hypothetical ¢y. The test procedure consists in splitting the data set in N

samples and computing the empirical distribution of the extrema of each sample.

The evaluation of the suitability of each model for fatigue data is precarious. The main
difficulty here is that it is not possible to perform goodness-of-fit type tests, since firstly,
we collect the data sequentially during the procedure and do not have a sample of avai-
lable observations beforehand, and secondly, we do not observe the variable of interest R
but only peaks over chosen thresholds. The existing tests procedures are not compatible
with the reliability problem we are dealing with. On the first hand, they assume that the
variable of interest is fully observed and are mainly semi-parametric or non-parametric
tests based on order statistics. On the other hand, their performances rely on the avai-
lability of a large volume of data. This is not possible in the design we consider since

fatigue trial are both time consuming and extremely expensive.

Another option consists of validating the model a posteriori, once the procedure is com-
pleted using expert advices to confirm or not the results. For that matter, a procedure
following the design presented in 2.3.2 is currently being carried out. Its results should

be available in a few months and will give hints on the most relevant model.

2.6.2 Handling misspecification under the Pareto model

In paragraph 2.3.3, we assumed that R initially follows a GPD. In practice, the distribution

may have its excess probabilities converge towards it as the thresholds increase but differ
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from a GPD. In the following, let us assume that R does not follow a GPD (of distribution

function F) but another distribution G whose tail gets closer and closer to a GPD.

In this case, the issue is to control the distance between G and the theoretical GPD and
to determine from which thresholding level it becomes negligible. One way to deal with
this problem is to restrict the model to a class of distributions that are not so distant
from F: Assume that the distribution function G of the variable of interest R belongs to
a neighborhood of the GPD(c, a) of distribution function F, defined by:

V.(F) = {G:suplﬁ(x)—G_(x)lw(x) se}, (2.20)
X

where € = 0 and w an increasing weight function such that limy_.., w(x) = co.
Ve (F) defines a neighborhood which does not tolerate large departures from F in the
right tail of the distribution.

Let x = s, it follows from (2.20) a bound for the conditional probability of x given R > s:

F(x)—e/w(x) _ G(x) - F(x+)+e/w(x)
E(s)+elw(s) ~ G(s)  F(s)—elw(s)

(2.21)

When € = 0, the bounds of (2.21) match the conditional probabilities of the theoretical
Pareto distribution.
In order to control the distance between F and G, the bound above may be rewritten in
terms of relative error with respect to the Pareto distribution. Using a Taylor expansion
of the right and left bounds when € is close to 0, it becomes:

Gx)

G(s)

1-u(s,x).e<—=<1+ul(x,s).e, (2.22)

Ex)
E(s)

where

1/ 1
+9)" (+9)™

u(s, x) =
w(s) w(x)

For a given € close to 0, the relative error on the conditional probabilities can be control-

led upon s. Indeed, then the relative error is bounded by a fixed level 6 > 0 whenever:

(1+%)1/C 3 6(1+%)1/C

w(s) e w(x)
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2.7 Perspectives, generalization of the two models

In this work, we have considered two models for R that exploits the thresholding opera-
tions used in the splitting method. This is a limit of this procedure as the lack of relevant
information provided by the trials do not enable a flexible modelling of the distribution
of the resistance. In the following, we present ideas of extensions and generalizations of

those models, based on common properties of the GPD and Weibull models.

2.7.1 Variations around mixture forms

When the tail index is positive, the GPD is completely monotone, and thus can be
written as the Laplace transform of a probability distribution. Thyrion (1964[52]) and
Thorin (1977[51]) established that a GPD(ar,cr), with ¢y > 0, can be written as the
Laplace transform of a Gamma r.v V whose parameters are functions of ar and cr:
V ~T (L, ﬂ). Denote v the density of V,

cr’ Ccr

Vx =0, G(x):f exp(—xy)v(y)dy
0 (2.23)

/ 1/c
where v(y) = —(aT cr) 1/CT_lexp (—m).

I/ CT) cr
It follows that the conditional survival function of R, G_s]., is given by:

P(R > Sj+1l ﬁj >3$) = GEj (Sj+1—35))
:fo exp{—Gj+1—-3)y}vj(»dy,
aj

1
where Vj is a r.v of distribution I’ (—, —) .
Cj €j

with cj=cCr and aj=aj-1+ CT(FSVJ' —:S‘vj_l).

Expression (2.23) gives room to an extension of the Pareto model. Indeed, we could consi-
der distributions of R that share the same mixture form with a mixing variable W that

possesses some common characteristics with the Gamma distributed r.v. V.

Similarly, the Weibull distribution W («, B) can also be written as the Laplace transform
of a stable law of density g whenever 8 < 1. Indeed, it holds from Feller 1971[34]) (p.
450, Theorem 1) that:

Vx=0, exp{—xﬁ} :.[0 exp(—xy)g(y)dy (2.24)
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where g is the density of an infinitely divisible probability distribution.

It follows, for s; < sj41

exp{-Ejs1/ )P}

exp{—@§;/a)P}

L exp{-Gin/aytgmdy 5T exp{-Gj/a)y}gndy
C exp{-Gjloytgndy K(sj)

1 00 _
K(Sj)j(; exp{-Sj1u} ga(W))du

P(§>§j+1 |§] >:S‘vj) =

with u = y/a and g, () = aglauw)
(2.25)

Thus an alternative modelling of R could consist in any distribution that can be written
as a Laplace transform of a stable law of density wg g defined on R, and parametrized by
(a, B), that complies to the following condition: For any s > 0, the distribution function
of the conditional distribution of R given R > s can be written as the Laplace transform

of w;‘fbs) (.) where

awy glax)
x> 5, w*(x) = L,
ap K(s)

where K (.) is defined in (2.25).

2.7.2 Variation around the GPD

Another approach, inspired by Naveau et al. (2016[44]), consists in modifying the model
so that the distribution of R tends to a GPD as x tends to infinity and it takes a more
flexible form near 0.

(_CIT apy () with U ~ %[0, 1]. Let us consider now a deformation
of the uniform variable V = L™1(U) defined on [0, 1], and the transform W of the GPD:

W) =Gyl LN

(c

R is generated through G

The survival function of the GPD being completely monotone, we can choose W so that

the distribution of R keeps this property.

Proposition 3. If ¢: [0,00[— R is completely monotone and let 1 be a positive function,

such that its derivative is completely monotone, then ¢ () est completely monotone.

The transformation of the GPD has cumulative distribution function W = L(G(cr, ar))
and survival function W = L(G(cr, ar)). G(cT, ar) is a Berstein function, thus W is com-

pletely monotone if L is also.
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Examples of admissible functions:

(1) Exponential form :
L(0)=0
_ _ a
Lo = 12PN ecosas1et 150
1—exp(—A)
L) =1

The obtained transformation is: Vx > 0,

exp (—/1 [1 -1+ %)_I/CT] a) —exp(-1)
1-exp(—=A)

V_V(A,CT,LIT) (x) = L(G(X)) =
with W(3,¢;,az) (%) completely monotone.
(2) Logarithmic form:

L0)=0
_log(x+1)
~ log2

log(ax+1)

L(x) ( or more generally ,a> 0)

log2
L) =1

and Vx> 0,
1og(2—(1 +;—§)—1/CT)

I/i/(CTy(lT) (x) =1- 10g2

(3) Root form:

L(0)=0

L(1)=1

and

cTX -1/
\/2‘(“#) er 1
V2

V_‘/(CTraT)x) = ]‘ -

(4) Fraction form:
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L
Al | o GPD
o GPD.exp (lambda=2, alpha=1)
@ _| o GPD.log
® = 2 GPD.root
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FIGURE 2.10 — Survival functions associated with transformations of the GPD(0.8,1.5)

L(0)=0
(x+1)x
L(x)= , a>0
x+a
L) =

and
crX\—1/

1-(1+ ) Ver+a

I/V(oc,cT,aT) x)=1-

The shapes of the above transformations of the GPD are shown in Figure 2.10.

However those transformations do not conserve the stability through thresholding of
the Pareto distribution. Thus, their implementation does not give stable results. Still
they give some insight on a simple generalization of the proposed models usable under

additional information on the variable of interest.
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2.8 Conclusion

The splitting induced procedure presented in this chapter proposes an innovative experi-
mental plan to estimate an extreme quantile failure. Its development has been motivated
by on the one hand major industrial stakes, and on the other hand the lack of relevance
of the used methodology. The main difficulty in this setting is the nature of the informa-
tion at hand, since the variable of interest is latent, therefore only peaks over thresholds
may be observed. Indeed, this study is directly driven from an application in material fa-
tigue strength: when performing a fatigue trial, the strength of the specimen obviously
can not be observed; only the indicator of whether or not the strength was greater than
the tested level is available.

Among the methodologies dealing with such a framework, none is adapted to the esti-
mation of extreme quantiles. We therefore proposed a plan based on splitting methods
in order to decompose the initial problem into less complex ones. The splitting formula
introduces a formal decomposition which has been adapted into a practical sampling
strategy targeting progressively the tail of the distribution of interest.

The structure of the splitting equation has motivated the parametric hypothesis on the
distribution of the resistance. Two models exploiting a stability property have been pre-
sented: one assuming a Generalized Pareto Distribution and the other a Weibull distri-
bution.

The associated estimation procedure has been designed to use the iterative and stable
structure of the model by combining a classical maximum likelihood criterion with a
consistency criterion on the sequentially estimated quantiles. The quality of the es-
timates obtained through this procedure have been evaluated numerically. Though
constrained by the quantity and quality of information, those results can still be compa-
red to what would be obtained ideally if the variable of interest was observed.

On a practical note, while the GPD is the most adapted to the splitting structure, the
Weibull distribution has the benefit of being particularly suitable for reliability issues.
The experimental campaign launched to validate the method will contribute to select a

model.

2.9 Appendix

2.9.1 Alternative estimation criterion, divergence minimization

Denote P; the Bernoulli distribution of the observations Yj1,...,Y; , obtained at itera-

tion j of the procedure and P, their empirical distribution. Let p; be the probability
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of failure under the Pareto model defined by p; = Pea, (ﬁ> Sj—Sj-1 |R > sj_l) and
denote p; = 1—pj. Let n; and ng be the number of observed failures and survivals:
n =%,;Y;; and nyp = n— ny. Alternative estimation methods of the maximum likeli-
hood procedure consist in minimizing the following distances over the parameters of
the model:

o &) distance:
n no
dy=|—- -‘+‘—— ‘ 2.26
1 " Pj " Pj ( )

¢ Kullback-Leibler distance:

Pj ) (2.27)

noln

pj _
Dk (PjIP,) = leog(rljn) +I9j108(

 Helliger distance:

ee= (oo - m) e

e khi-square distance :

mo_ N2 (Mo _ )2
D2 (n PJ) N ( n _p]) (2.29)
pPj pPj

The khi-square distance is not represented in the results in Figure 2.7 because it gives

extremely scattered results.

2.9.2 Algorithm for global optimization

The optimizations at each estimation step of the splitting procedure are performed using
a global optimization method, called the SAFIP algorithm and introduced by Biret and
Broniatowski (2016 [8]).

The algorithm aims at solving equations of the form f(x) = 0, where f is a real valued

function defined on &'. Without regularity assumptions on f, it returns a set of solutions
S ={xeX: f(x)=0}.

The procedure consists in generating sequences ((z;);en), 2; € Z . Converging sequences
are conserved while the others are discarded, until a fixed number of solutions N of the
optimization problem is found.

The sequences are defined iteratively such that

Zi-1—ZXj
Zin1 =zt ———— % kf(z;).
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Denoting R; = |z; — zj_1l, it follows that
R.
Rii1 < ?l + kI f(z)l.

Practically, each sequence (z;); is initiated by zp and z; uniformly drawn from &' Let
R) = |z1 — zo|. The following rule determines whether the sequence is continued or dis-
carded:

For i <1,if |f(z;) < C|f(z;-1l, then define

Zi+1'=Zi + U,

where u; is drawn from the ball 98 (0, R;/2 + k| f (zi-1)I).

Otherwise, the sequence is stopped. The stopping rule depends on a fixed tolerance pa-
rameter.

Biret and Broniatowski proved that sequences generated this way converge almost sur-
ely to a limit in .&.

Note that k and C are tuning parameters.
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Deuxieme partie

Modelling tools for S-N curves
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Chapitre 3

Modelling mean and quantile S-N

curves

3.1 Objectives

The second part of the thesis focuses on pursuing works from R. Fouchereau (2014 [35]),

on modelling the S-N curve as a whole.

The methodology used for characterizing the lifetime of a material remains the same
than for studying the minimal allowable stress. Experimental campaigns are conducted
over a batch of n specimens loaded at J different levels of constraint (04,1,...,04)) or of
deformation (€4,1,...,€4,7), With J < n. Here 0, and €, stand respectively for alternated
constraint and alternated deformation, i.e the half amplitude of the applied stress or of
the observed deformation.

Results consists in couples stress-lifetime: ((Nk,Ua,k)OSkSn) or ((Nk’ea,k)osksn)

Usually the controlled variable for low-cycle fatigue is the degree of deformation, while
for high-cycle fatigue, it is the level of stress. Thus, o, and €, can be both used to refer

to this variable.

A major challenge in aircraft industry is the characterization of medium and extreme

behavior of a material under fatigue damage at any level of solicitation, by estimating:
— Mean S-N curves;

— Quantile S-N curves, especially the minimal curve at failure probability 0.1%.

Those objectives have to take into account operational constraints related to the costs

of a campaign, namely:

— The amount of information varies according to the fatigue regime studied;

65
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— The amount of information varies according to the different trial conditions;

— The amount of information is related to the critical role of the engine part of in-

terest.

The models considered must be compatible with restricted sample sizes, namely between

30 and 50 observations at a given level o.

Thus the work has a two-fold objective. Firstly, it consists in proposing a modelling
of fatigue life relevant with mecanical and physical knowledged pertaining to failure.
Secondly, it aims at proposing statistical tools to specify the model and address shortco-
mings in the methodologies currently implemented by Safran Aircraft Engines for the
estimation of 0.1%—quantile fatigue curves. Indeed, since the quantity of interest is lo-
cated far in the left tail of the distribution, its estimation is highly dependent on the

parametric hypothesis made on the fatigue life distribution at a given level of stress.

In the following, we will present in Section 3.2 how are presently constructed the mean
and minimal S-N curves and the limits of this methodology. An alternative modelling
based on the mechanics of failure is then proposed. The following chapters are devoted
to the presentation of two test methodologies that will enable to define the most relevant
model for fatigue life in any fatigue regime. Indeed, Chapter 4 provides a test procedure
to determine whether the observations are drawn from a unique random variable or
from a sum of random variables. Lastly Chapter 5 introduces a test for the number of

components of a mixture distribution.

3.2 State of the art on the estimation of S-N curves

3.2.1 Physical models

There are a few mathematical models aiming at characterizing the different fatigue re-
gimes.
Those models are usually expressed either as functions of the strain or of the lifetime,

taking either the form :
N=fyploa)+u (3.1)

or
Oa=fo(N)+u (3.2)

where u is the error term that is usually assumed to follow a Gaussian distribution.

The most commonly used models are given in table 3.1.
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Model  Fatigue regime Equation
Basquin  High cycle fatigue log(N) = a+ b xlog(o,)
Stromeyer High cycle fatigue and endurance Oa=0.+ (%)b
limit
Bastenaire Low and high cycle fatigue and Aexp{_(ﬂa;e)c }
endurance limit N=—-—(—F—"

Note: o, refers to the endurance limit of the material.

TABLE 3.1 — Main fatigue models

Among those, Basquin equation is the most widely used. One of the main reason for
the popularity of this model lies in its simplicity. Yet it allows for some extension: The
parameters a and b of the equation may depend on some other controlled variable, such
as the type of trial or of material or the temperature. For some materials, it has been
shown that the slope in the Basquin equation is independent to the temperature. This
result allows to estimate a model on all trials as a whole rather than segmenting the data
base according to the temperature. More generally, the integration of a qualitative or

discrete variable X amounts to estimate:

log(N)=a+bxlog(o,) +u (3.3)

where the parameters a and b are function of X: a = a(X), b = b(X), where X stands for

the temperature and/or the stress-ratio.

Though its log-linear form is a powerful argument in its favour, the model only fits par-
tially the data. Indeed, as illustrated in Figure 3.1, lifetime fatigue data display a bimodal

distribution.
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FIGURE 3.1 — Quantile-quantile Gaussian plot of the logarithm of the numbers of cycles
to failure for different levels of strain, nickel based material, T = 550°C

This bimodal feature finds its origin in the different mechanisms leading to failure. The
inclusion of defects and their position in the material play a major part in the failure of
a specimen.
The present methodology used by Safran Aircraft Engines emphasizes on the following
dichotomy:

* Crack initiations at grain boundaries, due to inclusions at the surface of the mate-

rial. They occur quickly and the mean fatigue life and its dispersion are small.
e Internal crack initiations lead to more high and scattered fatigue lives.

Thus, as shown in Figure 3.2, low number of cycles to failure are predominantly due
to fatigue crack initiations at surface while high number of cycles corresponds mostly
to internal initiations. However in the central part of the curve, both types coexists in
variable proportions as the fatigue life increases and the distribution of the latter is bi-
modal. This observations pleads in favor of the modelling of the fatigue life at a given

deformation level as a mixture distribution.
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FIGURE 3.2 - [llustration of the mixture distribution

3.2.2 Representation of the mean S-N curve as a two-component

mixture

The current modelling relies on the above dichotomy: The tested specimen is either sub-
jected to the first failure mechanism with probability 7 or the second, with probability
1-n, where m = 7(€). The fatigue life N is equal to the number of cycles to the first mode

of failure or to the second failure mode. The density of N therefore writes:

F(Nlea) =m(ea) A(N€a) + (1 —7(€a)) fa(IN | €4). (3.4)

Each of the failure modes is associated with a Basquin model. Thus the mean curve

equation is the following:

log(N) = 7(e,) (a1 + b1log(es)) + (1 — m(eq)) (a2 + b2 log(eq)) (3.5)

where 7(e,) is usually modeled by a logistic distribution with parameters m and s :

n(eq) = (3.6)

1+exp (=)

N

Parameters estimation

The model estimation follows a two-step procedure:
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1. The first step consists in attributing each observation to a failure mode. It is per-
formed through an Expectation-Maximization algorithm. The problem can be for-

malized as follows: Denote

e (Nj,€4,i)i=1..n, the set of n observations.

e (Nj,Zi,€4,i)i=1..n, the unobserved complete data. Here Z is the latent va-
riable, namely the indicator of initiation at surface. Note that Z can be ob-

served in specific trials. In those cases, it is used to check the results.
o The parameter vector: 8 = (ay, by, az, b2, m, ).

The complete likelihood of the above model is given by:

n
logL(N, Z,e410) =) zilog(m(eq,; | s, m) fi(Ng,€q,i | a1, b1))
i=1

+ (1 —2z)log((1 —m(eq,; | s,m) fo(Ng, €q,i | az, b2).

The estimation of the parameter vector 0 is obtained iterating the following steps:

At iteration £k,

(a) E step: Compute the expectation of the log-likelihood associated with the

current estimate of 6.
Q(de(k)) =Eyw (logL(N, Z) | N).

(b) M step: Update the estimate by maximizing the expectation of the log-
likelihood.

gk+1) — argmax Q (H,B(k)).
0e®

Once the estimations obtained, each observation is then allocated to a class based
on the estimated probability of belonging to each of them: denote C; and C; the

two classes of observations, for j = 1,2, observation i is assigned to C; if
P(N;eC)) = r axP(N; € C)),
=1,2

where R
ﬁ(ea,i)Fl (N;)

P(N;eCj) = —— —
TT(€q,i) F1(N;i) + 7 (€q,i) F2(IN;)

2. Two Basquin model are then fitted on the two classes of observations determined

through the EM algorithm.
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3.2.3 Construction of the minimal S-N curves

The minimal curves can be obtained through two different procedures. Firstly by making
use of the unimodal models. The quantile curve is obtained by translating the mean
curve up to a flat-rate abatement factor k. Then the quantile curve is equal to the mean
curve minus k times the standard deviation of the Basquin model, where k is fixed to 3
when the number of observations is sufficient. The second estimation method consists in
exploiting the mixture feature, but is not used in practice because the obtained results are
extremely sensitive to the estimations of the proportion of each failure mode, especially

in zones where 7 is close to 0 or 1.

This is why the minimal curves are presently constructed on the basis of the estima-
tions of the Basquin models on each sub-population. They are obtained by applying the

following rules:

e For e > ¢ : take the 0.1%—quantile of the population subjected to crack initiation

at surface by applying an abatement factor to the associated Basquin model.

o For N >10° : similarly, take the 0.1%—quantile of the population of internal crack
initiation.

o For € <¢j and N < 10°: the quantile curve is the result of a simple linear inter-
polation in a log —log diagram between the two unimodal models as illustrated by

Figure 3.3.

» Mean curve of
Log{ '} each population
== Minimal curve of

each population

. Global minimum for
the whole population

Population 2

FIGURE 3.3 — Estimation method of the minimal S-N curves used by Safran Aircraft En-
gines

This estimation method is unsatisfactory in several respects. Firstly, the estimation of the
mean curve is not direct and is derived from a two step estimation procedure performed

on the same data set. Secondly the quantile curves are only obtained through a simple
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translation of the mean curve. Furthermore, the mixture feature of the fatigue life is only
used to classify the observations. Those methodological drawbacks motivates the seek
of an alternative modelling and construction method for the fatigue curves that directly
exploit the mixture structure. In the following section, we consider a new model for

fatigue life more fitted to the data structure.

3.3 An alternative modelling to fatigue life, initiation-

propagation model

3.3.1 Fracture mechanics

In order to propose an alternative to the mixture of Basquin models, we consider another
form for the mixture distribution whose component are more directly linked to fracture
mechanics results. The application of a level of stress during a sufficiently long time
will cause the deformation of the material, followed by the formation of a crack, whose

propagation will lead to rupture. Thus failure occurs after:
e the crack initiation period N;,
o the crack propagation period N,,.

The duration of each component is highly dependent to the level of stress considered.
Indeed, the more stress is applied, the more quickly the crack will initiate and the mate-
rial will break. On the other hand, for low levels of strength, the initiation period is very
long (millions of cycles) and the propagation is quite negligible in comparison.

The fatigue life is the sum of those two times, i.e.:

—~ N~~~ ~—
measured  unknown partially measured or calculated

where N is observed and might be subject to right censoring, N, can be measured
through specific propagation trials and N, is completely unknown. This dichotomy has
also been used by Fouchereau (2014 [35]).

The proposed modelling replaces the distinction between surface and internal initiation
by the one between fast and slow initiation. The latter has several perks with respect
to the previous one. It exploits mechanical properties of fracture and contrary to the
present model, do not necessitate costly fractographic data. Moreover, the distinction
fast vs. slow initiations is valid for any metallic material, while the previous was not.
The two dichotomies are not completely equivalent in that initiation at surface does not

recover all fast crack initiations and reciprocally.
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As stated above, it is usually considered that when the applied stress is sufficiently high,
a crack will immediately initiate in the material, that is to say from the first cycle of
application. In this case, the life to failure N could be reduced to the propagation time.

A possible model could therefore be the following: let
e F; be the distribution function of N;;
* Gp be the distribution function of N, ;
* Hy;+n, be the distribution function the sum of N; and N ;
e Z, the indicator of short initiation, distributed according to %(m(e,)).

The number of cycles to failure writes

[, if Z=1
Ni+ N, else.

and its distribution is the following:
F(x) =n(ea)Gp(x) + (1 —7(€q)) HN;+ N, (X).

Usually, the initiation and propagation periods are modeled by a Lognormal distribu-
tion. While the propagation life remains largely unknown, the propagation time can
be measured through fractographic studies. These data enable to obtain a more precise

information on Nj,.

3.3.2 Modelling the propagation period

Crack propagation is studied through fractography, i.e. the analysis of fracture surfaces.
The trials performed in this framework, a specimen is given an initial crack of determi-
ned size. It is then loaded at a given stress and the evolution of the crack size is measured
regularly until it reaches a maximum length or until failure. Thus since the specimen is
already cut at the beginning of the experiment, the measured time corresponds only to
the propagation period Np,.

Those trials can be exploited in order to represent precisely the propagation N,. This
is done by making use of a classical model of fatigue crack propagation rate: Paris law,
given by:

da

—— =C.AK™ 3.8
an, (3:8)

where
¢ a denotes the crack size;

e daldN)y is the fatigue crack growth;
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e AK = A0 4v/7aF is the stress intensity range;

e C et m are experimentally determined material constants which also depend on

environmental effects, stress ratio.

An explicit form of propagation life can be obtained through integration of (3.8),

1-m/2 _ j1-m/2
N, = ! !
P™ (1=mi2)Cami2 (g, F)™’

a
(3.9)

where a; and ay denotes respectively the initial and final crack size.
The random elements are the model parameters m and C which are derived from the

following linear regression:

d
log(d—;];) =logC+ mlogAK +e, (3.10)

m and logC are thus assumed to be Gaussian, which has been verified through trials.

They also are linearly dependent: there exists @ and f such that
logC=a+ pm+ey, (3.11)

with
e (1),
€2 ~ N (0,0%),
logC ~ A (u, b*s* + a?).

The resulting distribution of N, is also Lognormal. Figure 3.4 shows that simulated law of

N, based on the estimated parameters on fractographic data fits perfectly a Lognormal.



3.3. ANALTERNATIVE MODELLING TO FATIGUE LIFE, INITIATION-PROPAGATION MODEL75

1.0

06

Frifx)

04

02
I

2 Simulated df
i o (Gaussian df

T T T T T T T
36 38 40 42 4.4 46 48

0.0

X

FIGURE 3.4 — Empirical cumulative distribution function of log N), and Gaussian distri-
bution function

This model also highlights connections between the parameters and the test conditions.
For instance, Figure 3.5 illustrates how N), depends on to the loading level in expectation

and in variance as well.
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FIGURE 3.5 - Evolution of the mean and minimum propagation time N, with respect to
the maximum loading o max

3.3.3 Number of components

As stated in the above sections, data representation highlights the existence of at least
two components in the distribution of the number of cycles to failure (see Figure 3.1).
However, no further study has investigated the exact number of components, as well as

the nature of those components. A number of questions arises:

1. Under a high cyclic loading, a crack initiate extremely quickly and the resulting
fatigue life is low. It is therefore considered that N = N,,, which essentially means
that the life of the material mainly consists in the propagation period. However,
this assumption isn’t supported by studies results and is mostly a simplicity argu-
ment. But it should be investigated whether or not the distribution of short ini-
tiation failure mode may be reduced to the distribution of the propagation period
Np.

2. Analogously under very low stress, failure occurs at very high number of cycles.
The life to failure then consists mainly in the initiation period and the propagation
period is way shorter, i.e. N, < N; . However then again, assuming that the propa-
gation time is negligible when studying very low stresses should be investigated

in order to provide an adequate modelling.
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3. Another issue pertains to the mixture zone. It is difficult to evaluate from which
level of stress or deformation the population becomes heterogeneous, i.e. we go
from a single component to a mixture distribution. Moreover, we do observe that
there are at least two components in this region, but there also might be more frac-
ture modes at stake. We need to be able to determine the number of components

of the distribution of N at any stress or deformation level.

Log(s) %

Fast initiation

Late initiation

LO;(N)

FIGURE 3.6 — Initiation and propagation mechanisms according to the failure mode

It follows that several modelling are possible, depending on how the above questions are

addressed:

F(x) = (€4) Gp(x) + (1 = 7(€4)) Hn;+ N, (X), (3.12)

F(x) =n(ea) Hy+n, (%) + (1 - (ea)) Fi (%), (3.13)
F(x)=mlea)Hy , yw(X) + (1 -mlea)) Hy , yo (%), (3.14)

F(x) =m1(ea)Gp(x) + m2(€a) HN;+N, (X) + (1 =71 (€4) — 2(€0)) Fi (%). (3.15)

The first challenge to construct adequate S-N curves is to provide an adequate model
which evolves as the stress decreases. Therefore the next chapters focus on proposing
modelling tools to discriminate between models (3.12) to (3.15). Two major issues are
tackled: the determination of the distribution of the components in the regions of the
curve where the population is homogeneous and the number of components in the mix-

ture zone.
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Chapitre 4

Composite Tests Under Corrupted
Data

4.1 Introduction

A situation which is commonly met in quality control is the following: some characte-
ristic Z of an item is supposed to be random, and a decision about its distribution has to
be done based on a sample of such items. However this variable is affected by a measure-
ment error, a random noise Vg, such that the observations do not consist in realizations
of Z but of a variable X := Z + V5.

Denote Fy and Gy the competing distribution functions (of respective densities fy and
8o) for Z, and Hj the distribution function of the error Vs with density hs. V5 is assumed
to be a transformation of a random variable V of distribution H, typically Vz:= V3 V. Its
realizations are assumed to be mutually independent and independent on the item.
Therefore the density of the measurement X is either fs5:= fo* hs or g5:= go * hs where
* denotes the convolution operation. We denote Fjs (resp. Gs) the distribution function
with density f5 (resp. g5).

The problem of interest studied in Broniatowski and al. (2018 [11]) is how the measure-

ment errors can affect the conclusion of the likelihood ratio test with statistics

= —Zl g—(Xz

For small 6, the result of Guo (2009 [37]) enables to estimate the true log-likelihood ratio
(true Kullback-Leibler divergence) even when we only dispose of locally perturbed data
by additive measurement error. The distribution function H of measurement errors is
considered unknown, up to zero expectation and unit variance. When we use the likeli-

hood ratio test while ignoring the possible measurement errors, we can incur a loss in

79
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both errors of the first and second kind. However, it is shown in [11] that for small &
the original likelihood ratio test (LRT) is still most powerful, only on a slightly changed
significance level. The test problem leads to a composite null and alternative classes Hy
or H; of distributions of random variables Z + V5 with Vs:= V8 V. If those families are
bounded by alternating Choquet capacities of order 2, then the minimax test is based on
the likelihood ratio of the pair of the least favorable distributions of Hy and H, respecti-
vely (see Huber and Strassen, 1973 [38]). Moreover, Eguchi and Copas (2005 [32]) showed
that the overall loss of power caused by a misspecified alternative equals to the Kullback-
Leibler divergence between the original and the corrupted alternatives. Surprisingly, the
value of the overall loss is independent of the choice of null hypothesis. The arguments
of Guo [37] and of Narayanan and Srinivasa (2007 [50]) enable to approximate the loss
of power locally for a broad set of alternatives. The asymptotic behavior of the loss of
power of the test based on sampled data is considered in [11], and supplemented with

numerical illustration.

4.2 Statement of the test problem

The aim is to propose a class of statistics for testing the composite hypotheses Hy and
H;, extending the optimal Neyman-Pearson LRT between f; and gy. Unlike in [11], the
scaling parameter 0 is not supposed to be small, but merely to belong to some interval
bounded away from 0.

We assume that the distribution H of the random variable (r.v.) V is known. In a metro-
logy setting, this is not such a strong assumption, since in the tuning of the offset of a
measurement device, it is customary to perform a large number of observations on the
noise under controlled environment.

Therefore this first step produces a good basis for the modelling of the distribution of
the density h. Although the distribution of V' is known, under operational conditions the
distribution of the noise is modified: for given 6 in [0 min, Omax] With 6 min > 0, denote Vy
a r.v. whose distribution is obtained through some transformation from the distribution
of V which quantifies the level of the random noise. Some classical example is when
Vs = V8V, but at times we can have some weaker assumption which amounts to some
decomposability property with respect to §: for instance, in the Gaussian case we assume
that for all ,7, there exists some r.v. Wy, such that V5., =4 V5 + W5, where V5 and
W, are independent.

The test problem can be stated as follows: a batch of 7 iid measurements X;:= Z; + V5 ;
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is performed, where § > 0 is unknown, and we consider the family of tests of

H0(6) .

{X has density fs}
Vs
H;(6):= {X has density g5}

with 6 € A = [0 min, Omax]- A class of combined test of Hy vs H; is proposed, in the spirit
of Bahadur (1960 [2]), Bahadur (1971 [3], Tusnady (1987 [55]) and Birgé (1981 [7]).

Under every fixed n, we assume that 6 is allowed to run over a finite p,, components of
the vector Ay;:= [6min = 60,15 -0 p,,,n = Omax]. The present construction is essentially non
asymptotic, neither on 7 nor on 4, in contrast with [11] where § was supposed to lie in
a small neighborhood of 0. However, with increasing n it would be useful to consider

that the array (6;,,) ?21 is getting dense in A = [6min, Omax] and that

1
lim 08Pn
n—-oo n

= 0. (4.1)

For the sake of notational brevity, we denote A by the above grid A, and all suprema or
infima over A are supposed to be over A,,. For any event B and any 6 in A, F5(B) (resp.
G5 (B)) designates the probability of B under distribution Fj (resp. Gs). Given a sequence
of levels a,, we consider a sequence of test criteria T},:= T, (X3, .., X;;) of Hy(0), and the
pertaining critical regions

Ty (X1, Xp) > An (4.2)

such that
Fs(Ty (X1,.,.Xn)>Ap)<a, VOeA,

leading to rejection of Hy(6) for at least some 6 € A.

In an asymptotic context, it is natural to assume that a, converges to 0 as n increases,
since an increase in the sample size allows for a smaller first kind risk. For example in
[7], @, takes the form a,:= exp{—na,} for some sequence a, — oco.

In the sequel the Kullback-Leibler discrepancy between probability measures Q and P

with respective densities p and g with respect to the Lebesgue measure on R is denoted
K(Q,P):= flog@q(x)dx
o p(x)

whenever defined, and takes value +oo otherwise.
This chapter handles some issues with respect to this context. In Section 4.3 we consider
some test procedure based on the supremum of Likelihood Ratios (LR) for various values

of §, and define T),. The threshold for such a test is obtained for any level a, and some
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lower bound for its power is provided. In Section 4.4 we develop an asymptotic approach
to the least favorable hypotheses (LFH) for these tests and prove that asymptotically
least favorable hypotheses are obtained through minimization of the Kullback-Leibler
divergence between the two composite classes HO and H1 independently upon the level
of the test.

Section 4.4.3 considers the performances of the test numerically; indeed the numerical
power of the test under the least favorable couple of hypotheses is compared with the
theoretical lower bound as obtained in Section 4.3. We show on several examples that
the minimal power measured under the LFH is indeed larger than the theoretical lower
bound; this result shows that simulation results overperform theoretical bounds.

Since no argument plays in favor of any type of optimality for the test based on the su-
premum of Likelihood Ratios for composite testing, we consider to substitute those ratios
by some other kinds of scores, in the family of divergence based concepts, extending the
Likelihood Ratio in a natural way. Such an approach has already been extensively trea-
ted, starting with Liese and Vajda (1987 [42]). Extensions of the Kullback-Leibler based
criterions (such as the Likelihood Ratio) to power type criterions have been proposed for
many applications in Physics and in Statistics; see e.g. Tsallis (1987 [54]). We explore the
properties of those new tests under the couple of hypotheses minimizing the Kullback-
Leibler divergence between the two composite classes HO and H1. We show that in some
cases we can build a test procedure whose properties overperform the above supremum
of the LRTs, and we provide some explanation for this fact. This is the scope of Section
4.5.

Lastly, in Section 4.6, the test procedure is adapted to testing a simple hypothesis against

a composite one. It corresponds to an industrial application to fatigue life data.

4.3 An extension of the Likelihood Ratio test

For any 6 in A, let
1 g5
Tps:=—)_ log==(Xy), (4.3)
nisz fs

and define

Ty:=supTys.
0eA

Consider for fixed 6 the Likelihood Ratio Test with statistics T}, 5 which is uniformly
most powerful (UMP) within all tests of HO():= pr = fs vs H1(0):= pr = g5 where pr
designates the distribution of the generic r.v. X . The test procedure to be discussed aims

at solving the question: does there exist some ¢ for which HO(d) would be rejected vs
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H1(0), for some prescribed value of the first kind risk ?

Whenever HO(0) is rejected in favor of H1(0) for some 6 we reject HO:= fy = gy in favor
of H1:=fj # go. A critical region for this test with level a, is defined through {7, > A,}
with

Pyo(H1) = supFs (T, > Ap)
deA
= supF;s LJ]hﬁ’>14n < ay.
deA S5’
Since for any sequence of events By, ..., Bp,,

Pn
Fs LJ-Bk

k=1

< pn max Fg(By),
l<k=py

it holds

Pro(H1) < ppymaxmaxFs (Tps > Ap). (4.4)
0eN H'eA

An upper bound for Pyo(H1) can be obtained making use of the Chernoff inequality for
the right side of (4.4), providing an upper bound for the risk of first kind for a given
Ay. The correspondence between A, and this risk allows to define the threshold A,
accordingly.

Turning to the power of this test we define the risk of second kind through the crude
bound

Py, (HO):=sup Gy (T, < Ayp) (4.5)
neA

=sup Gy (sup Ths < An)
neA 6eA

neA SeA

<sup Gy (Tny < An).
neA
The last term in (4.5) can be bounded from above through the Chernoff inequality, which
yields a lower bound for the minimal power of the test under any hypothesis g; in H1.

Let a, denote a sequence of levels such that

lim sup a, <1.
n—oo



84 CHAPITRE 4. COMPOSITE TESTS UNDER CORRUPTED DATA

We make use of the following hypothesis:

e for
finf | log— 0. 4.6
é{ZIAg'IEIAf 08 8s' f6 > ( )

Remark 4. Since P
f log g%fa = K (F5,Gg) — K (F, Fy),

hypothesis (4.6) means that the classes of distributions (Fj)s and (Gs) 5 are well separated
in the sense of Kullback-Leibler discrepancy. Making use of the Chernoff-Stein Lemma
(see Theorem 8 in the Appendix), hypothesis (4.6) entails that any LRT with HO: pr = f5
vs H1: pr = gs is asymptotically more powerful than any LRT with HO: pr = f5 vs H1:

pr = fs-

Both hypotheses (4.7) and (4.8) hereunder are used to provide the critical region and the
power of the test.
For all §,6’ define

Zori= log%(X)

and let

85'(x)
for(x)

With A5 s, the set of all ¢ such that ¢ 5 (f) is finite, we assume

t
(p5’5/(t):: lOgEF6 (exp(tZ(sr)) = logf( ) fé‘(x)dx-

N5.s is a non void open neighborhood of 0. (4.7)

Define further
Js.5(x):=sup (£x — s 5(1)
t

and let

J(x):= min Jss(x).
(5,6")€AxA

For any 7, let

8n
Wy := -log—(x)
n fT}

and let
vy (t):=log Eg, (exp (tW)).

Let ./, be the set of all ¢ such that v (1) is finite. Assume

My is a non void neighborhood of 0. (4.8)
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Let
I(x):=sup tx—log Eg, (exp (tWy)) (4.9)
t

and
I(x):= i%fl,, (x).

We also assume some accessory condition on the support of Zs and W, respectively
under Fs and under Gj; see (4.17) and (4.20) in the proof of Theorem 8. Suppose the
regularity assumptions (4.7) and (4.8) fulfilled for all §,6’ and 7. Assume further that p,,
fulfills (4.1).

The following result holds.

Proposition 5. Whenever (4.6) holds, for any sequence of levels a;,, bounded away from
1, defining
Api=J! (—l logﬂ) :
n " pn
it holds, for large n,

Pyo H1) =supFs5 (T, > Apn) = ay,
0eA

and

Py (H1) =supGs (T, > Ap) =1 —exp (—nl(Ay)).
0eA

4.4 Minimax tests under noisy data, least favorable

hypotheses

4.4.1 An asymptotic definition for the least favorable hypotheses

We prove that the above procedure is asymptotically minimax for testing the composite
hypothesis Hy against the composite alternative Hj; indeed we identify the least favo-
rable hypotheses, say Fs, € Hy and Gs, € Hy, which lead to minimal power and maximal
first kind risk for these tests. This requires a discussion on the definition and existence
of such least favourable couple of hypotheses in an asymptotic context; indeed for fixed
sample size the usual definition only leads to an explicit definition in very specific cases.
Unlike in [11], the minimax tests will not be in the sense of Huber and Strassen. Indeed,
on one hand, hypotheses Hy and H; are not defined in topological neighbourhoods of
Fy and Gy, but rather through a convolution under a parametric setting; on the other
hand, the specific test of {H(5), 6 € A} against {H; (), § € A} does not require capacities

dominating the corresponding probability measures.
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Throughout the subsequent text we shall assume that there exists §. such that

rgliglK(F(s, Gs) = K (Fs,,Gs,)- (4.10)
€

We shall call the pair of distributions (Fj, G5) a least favorable for the sequence of tests

of critical region 1{T},, > A,} if it satisfies

for all § € A. The condition of unbiasedness of the test is captured with the central in-
equality in (4.11).

Because under a finite n such a pair can be constructed only in few cases, we should
take a recourse of (4.11) to the asymptotics n — co. We shall show that any pair of
distributions (Fs, Gs,) achieving (4.10) be named least favorable. Indeed, it satisfies the
inequality (4.11) asymptotically on the logarithmic scale.

Specifically, we say that (Fs, Gs) is a least favorable pair of distributions when for any
0eA

1 1
lim ninf —logFs5 (T, < Ap) = nlim —logGs (T, < Ap) (4.12)
—oon = —oon =

1
> lim sup—logGs (T, < Ay).
n—oo n

Define the total variation distance
drv (Fs, Gs):= sup |Fs(B) — Gs(B)|
where the supremum is over all Borel sets B of R. We will assume that for all n
a, <1-supdry (Fs,Gs). (4.13)

0€eA

We state our main result, whose proof is deferred to the Appendix.

Theorem 6. For any level a,, satisfying (4.13) the couple (Fs,,Gs,) is a least favorable
couple of hypotheses for the family of tests 1{T}, = A,} in the sense of (4.12).
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4.4.2 Identifying the least favorable hypotheses

We now concentrate on (4.10).

The following results state that the Kullback-Leibler discrepancy K (Fs, Gs) reaches its
minimal value when the noise Vj is "maximal”, under some additivity property with
respect to 9. This result is not surprising: adding noise deteriorates the ability to dis-
criminate between the two distributions Fy and Gy; this effect is captured in K (Fs, Gp),

which takes its minimal value for the maximal §.

Proposition 7. Assume that for all §,7, there exists some r.v Wy, such that Vs, =4
Vs + Ws,, where Vs and W, are independent. Then

6* = 6max.

This result holds as a consequence of Lemma 12 in the Appendix.
In the Gaussian case, when #h is the standard normal density, Proposition 7 holds since
51y = hs * hy_s with he(x):= (1/y/€) h(x/+/€). In order to model a symmetric noise we

may consider a symmetrized Gamma density as follows: set
hs(x):=(1/2)17(1,6)(x) + (1/2)17(1,8)(x)

where 17 (1, 8) designates the Gamma density with scale parameter 1 and shape parame-
ter 6 and 17 (1,0), the Gamma density on R~ with same parameter. Hence a r.v. with den-
sity hs is symmetrically distributed and has variance 26. In this case hgs . (x) = hg * hy(x)
and thus 7 also holds. Note that for values of § less than or equal to 1, the density h; is
bimodal, which does not play in favour of such densities for modelling the uncertainty
due to the noise; in contrast with the Gaussian case, hs cannot be obtained from h; by
any scaling. The centered Cauchy distribution may help as a description of heavy tailed
symmetric noise and keeps uni-modality through convolution; it satisfies the require-
ments of Proposition 7 since fs * f;(X) = f5.n(x) where f;(x):= &/m (x* + €2). In this case
0 acts as a scaling since f5s is the density of 6 X where X has density fj.

In practice the interesting case is when 6 is the variance of the noise and corresponds to
a scaling of a generic density, as occurs for the Gaussian case or for the Cauchy case. In
the examples which will be used hereunder we also consider symmetric exponentially
distributed densities (Laplace densities) or symmetric Weibull densities with given shape
parameter. The Weibull distribution also fulfills the condition in Proposition 7, being

infinitely divisible (see [36]).
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4.4.3 Numerical performance of the minimax test

As frequently observed numerical results deduced from theoretical bounds are of poor
interest, which is due to the sub-optimality of the involved inequalities, they may be
sharpened on specific cases. This motivates the need for simulations. We consider two

cases which can be considered as benchmarks.

A. In the first case fj is a normal density with expectation 0 and variance 1, whereas

8o is a normal density with expectation 0.3 and variance 1.

B. The second case handles a situation where f; and go belong to different models: fj
is a lognormal density with location parameter 1 and scale parameter 0.2, whereas
go is a Weibull density on R with shape parameter 5 and scale parameter 3. Those
two densities differ strongly in terms of asymptotic decay. They are however very
close one to the other in terms of their symmetrized Kullback-Leibler divergence
(so-called Jeffrey distance). Indeed centering on the log normal distribution fy, the
closest among all Weibull densities is at distance 0.10; the density gy is at distance
0.12 from fy.

Both cases are treated considering four types of distribution for the noise:

a. the noise h; is a centered normal density with variance §2.
b. the noise h; is a centered Laplace density with parameter A1(5)

c. the noise hs is a symmetrized Weibull density with shape parameter 1.5 and va-

riable scale parameter $(6)
d. the noise hs is Cauchy with density hs(x) = 1(6)/m (1(6)? + x?).

In order to compare the performance of the test under those four distributions, we have
adopted the following rule: the parameter of the distribution of the noise is tuned such
that for each value §, it holds P (|V;| > §) = ®(1) - ®(—1) ~ 0.65 , where ® stands for
the standard Gaussian cumulative function. Thus, distributions b to d are scaled with

respect to the Gaussian noise with variance §2.

In both cases A and B the range of § is A = (Omin =0.1,0max) and we have selected a
number of possibilities for  max, ranging from 0.2 to 0.7.

In case A we selected 62, = 0.5 which is a signal-to-noise ratio equal to 0.7, a commonly
chosen bound in quality control tests.

In case B the variance of fj is roughly 0.6 and the variance of gy is roughly 0.4. The
maximal value of 62, is roughly 0.5. This is thus a maximal upper bound for a practical
modelling.

We present some power functions making use of the theoretical bounds together with

the corresponding ones based on simulation runs. As seen, the performance of the theo-
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retical approach is weak; we have focused on simulation, after some comparison with

the theoretical bounds.

Case A: the shift problem

In this subsection we evaluate the quality of the theoretical power bound defined in
the previous sections. Thus we compare the theoretical formula to the empirical lower

performance obtained through simulations under the least favorable hypotheses.

Theoretical power bound

While supposedly valid at finite n, the theoretical power bound given by (4.23) still
assumes some sort of asymptotics, since a good approximation of the bound entails a
fine discretization of A to compute I(Ay) = infyea, Iy(Ay). Thus, by condition (4.1), n
has to be large. Therefore, in the following, we will compute this lower bound for 7 suf-
ficiently large, that is, at least 100 observations, which is also consistent with industrial

applications.

Numerical power bound
In order to obtain a minimal bound of power for the composite test, we compute the
power of the test Hy(6 ) against H; (6 ) where §* defines the couple of LFH’s (Fj,, Gs, ).

Following Proposition 7, the LF hypotheses for the test defined by T, when the noise
follows a Gaussian, a Cauchy or a symmetrized Weibull distribution is achieved for
(Fs,00 G1mas)-
When the noise follows a Laplace distribution, the couple of LF hypotheses is the one
that satisfies:

Fs5. ,Gs. ) =ar min K(Fs,G 414
(Fs.,Gs.) I (Fs, Gg) (4.14)

In both cases A and B, this condition is also satisfied for 6* = dmax
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Comparison of the two power curves
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FIGURE 4.1 — Theoretical and numerical power bound of the test of case A under Gaussian
noise with respect to n for a first kind risk @ = 0.05
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FIGURE 4.2 — Theoretical and numerical power bound of the test of case A under sym-
metrized Weibull noise with respect to n for a first kind risk @ = 0.05



FPower

0 07 08 08 10

0.5

4.5. SOME ALTERNATIVE STATISTICS FOR TESTING 91

Laplace noise - delta_max= 0.3 Laplace noise - delta_max= 0.5
o ]
_/ @
5 _//
[1a] f—'—'—'_'_'_'__—'_\_ﬁ\_‘_‘_‘—‘———_._\_\_\_\_\___
g © 7
\/ =
[=]
oo~
o
w
* theoretical lower power bound * theoretical lower power bound
* numerical lower power bound w | * numerical lower power bound
[w]
\ T T T T \ T T T \ T
100 110 120 130 140 150 100 110 120 130 140
n n

FIGURE 4.3 — Theoretical and numerical power bound of the test of case A under a sym-
metrized Laplacian noise with respect to 7 for a first kind risk a = 0.05

As expected, Figures 4.1 to 4.3 show that the theoretical lower bound is always under
the empirical lower bound when 7 is high enough to provide a good approximation of
I(Ay). This is also true when the noise follows a Cauchy distribution, but for a bigger
sample size than in the figures above (n > 250).

In most cases, the theoretical bound tends to largely underestimate the power of the test,
when compared to its minimal performance given by simulations under the least favo-
rable hypotheses. The gap between the two also tends to increase as n grows. This result
may be explained by the large bound provided by (4.5), while the numerical performance
are obtained with respect to the least favorable hypotheses.

On a computational perspective, the computational cost of the theoretical bound is way

higher than its numeric counterpart.

Case B: the tail thickness problem

The calculation of the moment generating function appearing in the formula of I;(x) in
(4.9) is numerically unstable, which renders the computation of the theoretical bound
impossible. Thus, in the following sections, the performance of the test will be evaluated

numerically through Monte Carlo replications.

4.5 Some alternative statistics for testing

4.5.1 A family of composite tests based on divergence distances

This Section provides a similar treatment as above, dealing now with some extension of

the LRT test to the same composite setting. The class of tests is related to the divergence
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based approach to testing, and it includes the cases considered so far. For reasons develo-
ped in Section 4.4.3 we argue through simulation and do not develop the corresponding
Large Deviation approach.

The statistics T}, can be generalized in a natural way, defining a family of tests depending

on some parameter y. For y #0,1, let

XV —yx+y-1

Py (x):= "

a function defined on (0,00) with values in (0,00), setting
¢o(x):=—logx+x—-1

and

¢1(x):=xlogx—x+1.

For y < 2 this class of functions is instrumental in order to define the so-called power
divergences between probability measures, a class of pseudo-distances widely used in
statistical inference; see for example [6].

Associated to this class consider the function

(X)'——i (x)
PyX)= dx(/’y

1—x7!
= fory#0,1
and we also consider
@1(x):=—-logx
(x) L 1
X)i=——
Po P

from which the statistics -
Y .
T 5= P Z Py (Xi)
i=1

and

TZ:: sup TZ&
6 y

are well defined for all y < 2. Figure 4.4 illustrates the functions ¢, according to y.
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FIGURE 4.4 - ¢, for y =0.5,1 and 2

Fix a risk of first kind & and the corresponding power of the LRT pertaining to H0(J«)
vs H1(6+) through

1-p:=Gg, (T;,a* > Sa)
with
sa::inf{s: Fs, (T}m* > s) < a}.

Define accordingly the power of the test based on T}, under the same hypotheses,
sy:=inf{s: Fs, (T} >s) < a}
and

1-B:=Gs, (T} >sh).

Firstly &, defines the couple of hypotheses (Fs,, Gs,) such that the LRT with statistics
T;’ 5. has maximal power among all tests HO(6+) vs H1(6+). Furthermore, by Theorem
8 it has minimal power on the logarithmic scale among all tests HO(6) vs H1(9).

On the other hand (Fs,,Gs,) is the LF couple for the test with statistics T} among all
couples (Fg, Gs).

These two facts allow for the definition of the loss of power making use of T, instead of
Tl}t, 5, for testing HO(6+) vs H1(6+). This amounts to consider the price of aggregating

the local tests T}i s> @ necessity since the true value of § is unknown. A natural indicator
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for this loss consists in the difference
Al:=Gs. (T}i'g* > sa) —Gs, (T >sL) =0.

Consider now an aggregated test statistics T,. We do not have at hand a similar result as

in Proposition 5. We thus consider the behavior of the test HO(6.) vs H1(6) although

(Fs.,Gs,) may not be a LFH for the test statistics T). The heuristics which we propose

makes use of the corresponding loss of power with respect to the LRT through
Al:=Gj, (Tzi,(s* > sa) ~Gs, (T) > s}).

We will see that it may happen that A}, improves over AL. We define the optimal value

of vy, say y*, such that
AY <A

for all y.

In the various figures hereunder, NP corresponds to the LRT defined between the LFH’s
(Fs.,Gs,), KL to the test with statistics T! (hence as presented Section 4.3), HELL cor-
responds to T2 which is associated to the Hellinger power divergence, and G=2 cor-

responds to y = 2.

4.5.2 A practical choice for composite tests based on simulation

We consider the same cases A and B as described in Section 4.4.3.

As stated in the previous section, the performances of the different test statistics are
compared considering the test of Hy(0+) against H; (0.) where 6 is defined as explai-
ned in section 4.4.3 as the LF hypotheses for the test T.. In both cases A and B, this

corresponds to 6* = 6 max.

Case A: the shift problem

Overall, the aggregated tests perform well when the problem consists in identifying a
shift in a distribution. Indeed, for the three values of y (0.5, 1 and 2), the power remains
above 0.7 for any kind of noise and any value of §.. Moreover, the power curves asso-

ciated to T} mainly overlap with the optimal test Té, 5.

a. Under Gaussian noise, the power remains mostly stable over the values of 0., as
shown by Figure 4.5. The tests with statistics T and T2 are equivalently powerful

for large values of ., while the first one achieves higher power when 6, is small.
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FIGURE 4.5 — Power of the test of case A under Gaussian noise with respect to 6 max
for a first kind risk @ = 0.05 and a sample size n =100

b. When the noise follows a Laplace distribution, the three power curves overlap the
NP power curve, and the different test statistics can be indifferently used. Under
such a noise, the alternate hypotheses are extremely well distinguished by the class

of tests considered, and this remains true as §, increases (cf. Figure 4.6).
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FIGURE 4.6 — Power of the test of case A under Laplacian noise with respect to d max
for a first kind risk @ = 0.05 and a sample size n =100

c. Under the Weibull hypothesis, T} and T2 perform similarly well and almost always
as well as T’i 5.» While the power curve associated to T} remains below. Figure

4.7 illustrates that, as 6 max increases, the power does not decrease much.
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FIGURE 4.7 — Power of the test of case A under symmetrized Weibull noise with
respect to O max for a first kind risk a = 0.05 and a sample size n =100

d. Under a Cauchy assumption, the alternate hypotheses are less distinguishable than
under any other parametric hypothesis on the noise, since the maximal power is
about 0.84, while it exceeds 0.9 in cases a, b and c (cf. Figures 4.5 to 4.8). The
capacity of the tests to discriminate between HO(0max) and H1(6max) is almost

independent of the value of § 5« and the power curves are mainly flat.
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FIGURE 4.8 — Power of the test of case A under a noise following a Cauchy distri-
bution with respect to dmax for a first kind risk @ = 0.05 and a sample size n =100
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Case B: the tail thickness problem

a. With the noise defined by case A (Gaussian noise), for KL (y = 1), 0« = Omax due
to Proposition 7 and statistics T, provides the best power uniformly upon &pmax.
Figure 4.9 shows a net decrease of the power as 0max increases (recall that the

power is evaluated under the least favorable alternative Gs_ ).
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FIGURE 4.9 — Power of the test of case B under Gaussian noise with respect to 6 max
for a first kind risk a = 0.05 and a sample size n = 100. The NP curve corresponds
to the optimal Neyman Pearson test under dmax. The KL, Hellinger and G = 2
curves stand respectively for y =1,y = 0.5 and y = 2 cases.

b. When the noise follows a Laplace distribution the situation is quite peculiar.
For any value of § in A , the modes Mg and Mp5maxof the distributions of
(f5/8s) (X) under Gs,, and under Fs_, are quite separated, both larger than 1.
Also for § all the values of |, (M(;gmax) — ¢y (M Fﬁmax)| are quite large for large va-
lues of y. We may infer that the distributions of ¢y ((f5/8s) (X)) under Gs,, and
under Fs__ are quite distinct for all 6, which in turn imply that the same fact holds
for the distributions of T}, for large y. Indeed simulations presented in Figure 4.10

show that the maximal power of the test tends to be achieved when y = 2.
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FIGURE 4.10 — Power of the test of case B under Laplacian noise with respect to
Omax for a first kind risk @ = 0.05 and a sample size n = 100

c. When the noise follows a symmetric Weibull distribution the power function when
Y = 1 is very close to the power of the LRT between F5__ and Gs,__ (cf. Figure
4.11). Indeed uniformly on § and on x the ratio (f5/gs) (x) is close to 1. Therefore
the distribution of T}, is close to that of T}, 5 . which plays in favor of the KL

composite test.
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FIGURE 4.11 — Power of the test of case B under symmetrized Weibull noise with
respect to O max for a first kind risk a = 0.05 and a sample size n = 100

d. Under a Cauchy distribution, similarly to case A, Figure 4.12 shows that T,};

achieves the maximal power for y =1 and 2, closely followed by y = 0.5.
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FIGURE 4.12 — Power of the test of case B under a noise following a Cauchy distri-
bution with respect to dmax for a first kind risk @ = 0.05 and a sample size n = 100

4.6 Application to fatigue life data

The above procedure can be easily adapted to the industrial case that we are interested

in.

4.6.1 Testing the existence of a convolution

As stated in Section 3.3, we denote N; the crack initiation period and N, the crack pro-
pagation period.

Depending on the level of stress applied, the duration of NN; relative to that of N, lar-
gely differs. Indeed as the level of solicitation increases, the crack tend to initiate earlier
and earlier. At extreme cases, N; may even be negligible with respect to the propaga-
tion period. Similarly, when the stress levels are extremely low, the initiation period may
be so long (of the order of millions of cycles) that the propagation time is quite negli-
gible in comparison. However, there is no physical evidence that for o high, N; =0 and
reciprocally, that for o low, N, = 0.

We propose an adaptation of the composite test to identify at a given loading o very
high or very low, i.e. for values of o or € for which the life to failure population is ho-
mogeneous, whether the lifetime of the material should be modeled by only one period
or by the sum of both.

In the following, we will focus on the case where stress o is high. Thus the crack initia-

tion time is treated as a potential noise on the data and the test consists in determining
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whether this noise is negligible or not.
Note

* fo the known density of N, and Fy its distribution function;

* g5 the density of N, + N; with distribution G5 where 6 > 0 is an unknown scaling

parameter of some known distribution H . Therefore

8s:= fo* hs.

As above 6 € A, = (01 = Ominy -+ +»Omax)-

We consider here the testing for high o of the following hypotheses:
Hy : X has distribution Fp,ie. X=N, vs H;: X hasdistribution G5 for some § € A

ie. X = N;+ N, for some §
The test statistics writes

1 h
T$,5=—Z<p1(f°* 50@-)),

niz1 fo
and
n /)
T, X{) = sup Tp,5 = sup Z @ (fo 0 (Xi)),
0eA, 0N, i=1 fO
with 1 < 2.

In this setting, the least favorable hypotheses is the couple (Fy, Gs,) which minimizes
K(Gs, Fy) over 6.
For a given level a € (0,1) the threshold A,, that defines the critical region of the test is

obtained through simulations such that
Py, (Hy):= Fy(T, > Ap) < ay.

The power of the test is also computed numerically. But note that in the case of Kullback-
Leibler based test statistic, the same kind of power bound than (4.23) can be obtained (see
Appendix 4.8.4)

4.6.2 Simulation results

The crack propagation period is usually modelled by a lognormal distribution, thus we
will assume that [ is a lognormal density of location parameter u, and scale parameter
0 p completely defined.

Two types of parametric hypotheses on the noise N; are treated, corresponding to very

localized densities since the order of magnitude of NN; is smaller than N),:



4.6. APPLICATION TO FATIGUE LIFE DATA 101

1. Uniformly distributed noise: N; ~ %10, ]

2. Gamma distributed noise: N; ~%9%amma(5,1)

The following tests have been performed under simulations for a fixed first kind risk a =
0.05. The minimal power of the test is evaluated numerically under the least favorable
hypotheses (Hy, H; (6 +)) which satisfy:

K(EF*Gs,) :rgliglK(F,G(s). (4.15)
€

They are the least distinguishable couple of hypotheses in terms of Kullback-
Leibler divergence. In the following examples, they correspond to the case 6 = dmin,
(Ho, Hy (6 min))-

Case 1: Uniformly distributed noise

In this case, the noise is a uniform variable, whose amplitude is controlled by 6. Note that,
in this application, the least favorable hypotheses correspond to the minimal Signal-to-
noise ratio, while they are achieved for the maximal SNR in the previous sections. Indeed,
we want to be able to detect the presence of a small signal that should then be taken into
account to adapt the lifetime modelling. Thus the least favorable case is achieved for
0 =Omin.

As shown in Figure 4.13, the distance between Hy and H; (6) grows as 6 increases. Thus,
the alternate hypotheses are all the more dictinct when 6 gets bigger. The least favorable
hypotheses are therefore the pair Hy vs H; (O min).

The power of the test is evaluated under the least favorable hypotheses. The power in-
creases quickly as dpin increases, as shown in Figure 4.14. How fast the power reaches
100% depends on the sample size 7. In industrial applications, a reasonable sample size
would be around 50 (red curve on 4.14). Thus, the convolution would be detected cor-
rectly with probability 0.9 for 6 = 0.4.
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FIGURE 4.13 - Density of the lognormal distributed variable N, and of the convolutions
of N, and uniformly distributed N; for a range of values of §
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FIGURE 4.14 — Power of the test of case 1 with respect to ¢ for a first kind risk a = 0.05
and different sample sizes

Case 2: Gamma distribution

In the second example, we consider the following case:
¢ N, follows a Lognormal distribution of parameters (1,1);
e N; follows a Gamma distribution Yamma(6,1) where A = [6nin, 2.5]

Figure 4.15 shows how f is distorted by the convolution as § increases. In this case, the

power of the test increases more slowly as 6 grows (see Figure 4.16). Small values of
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Omin make the alternate hypotheses too close to be distinguishable from a small sample
of observations. Thus when n = 50, the power reaches 90% only when d i, = 0.8. This
situation corresponds to a SNR of 0.23, while the same power level could be reached un-
der the Uniform hypothesis for a SNR of 0.003. The performances of the test are highly
dependent on the type and intensity of distortion of the distribution under the null hy-

pothesis.
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FIGURE 4.15 - Density of the lognormal distributed variable N, and of the convolutions
of N, and Gamma distributed N; for a range of values of §
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FIGURE 4.16 — Power of the test of case 2 with respect to ¢ for a first kind risk a = 0.05
and different sample sizes

The above simulations were performed in order to give the order of magnitude of the
power of the test applied on real data according to the number of observations available
and the type of distribution to be tested. The hypotheses on N; distribution were oriented

toward laws defined on small ranges of values.
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4.7 Conclusion

We have considered a composite testing problem where simple hypotheses in either HO
and H1 are paired, due to corruption in the data. The test statistics are defined through
aggregation of simple Likelihood Ratio Tests. The critical region for this test and a lo-
wer bound of its power is produced. We have shown that this test is minimax, evidencing
the least favorable hypotheses. We have considered the minimal power of the test under
such a least favorable hypothesis, both theoretically and by simulation, for a number of
cases, including corruption by Gaussian, Laplacian, Weibull and Cauchy noise. Whate-
ver the chosen distribution of the noise, the actual minimal power as measured through
simulation is quite higher than obtained through analytic developments. Least favorable
hypotheses are defined in an asymptotic sense, and are proved to be the couple of simple
hypotheses in HO and H1 which are the closest in terms of the Kullback-Leibler diver-
gence, as a consequence of the Chernoff-Stein Lemma. We next consider aggregation
of tests where the Likelihood Ratio is substituted by a divergence-based statistics. This
choice extends the former one, and may produce aggregate tests with higher power than
obtained through aggregation of the LRTs, as examplified and analysed. Open questions
are related to possible extensions of the Chernoff-Stein Lemma for divergence-based

statistics.

This test procedure can be easily adapted to testing between a simple and a composite
hypothesis. This other formulation is suited for the fatigue life application that we are
interested in. It can thus be applied to fatigue life data in order to determinate whether
for high level of solicitation, the life to failure can be reduced to propagation or not, and
reciprocally for very small levels of stress, whether the number of cycles to failure can

be reduced to crack initiation time or not.

4.8 Appendix

4.8.1 Proof of Proposition 5

The critical region of the test

Define

Zsii= log%(X)
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which satisfies
_ 8o’
Er; (Zs) _flogﬁ(x)f(g(x)dx

= flogﬁ(x)f(g(x)dx+flogﬁ(x)f5(x)dx
fs for
= K (Fs,Fs) — K (F5,Gg1) .
Note that for all §,
K (Fs,Fs)) — K (Fg,Ggr) = flog %f(j

is negative for ¢’ close to §, assuming that
fb, f

is a continuous mapping. Assume therefore that (4.6) holds which means that the classes
of distributions (Gs) and (Fs) are somehow well separated. This implies that Ex; (Zs/) <0
for all 6 and &'.

In order to obtain an upper bound for Fs (Tn,y X, > An) for all 6,6’ in A through the

Chernoff Inequality, consider

gs' ()
for(x)

t
@s,6'(1):=1og Er; (exp (t Zs)) :logf( ) fs(x)dx.

Let

rr (JV(s,g/) :=sup {t ENs 5 @55 (1) < OO}
The function (6,6’ , x) — J5,5'(x) is continuous on its domain, and since ¢ — @5 ¢/ (f) is a
strictly convex function which tends to infinity as ¢ tends to ¢* (A5 s) it holds that

lim ]5y5/ (x) =400
X—00

for all 6,6’ in A,,.
We now consider an upper bound for the risk of first kind on a logarithmic scale.

We consider
Ay > Eg; (Zs1) (4.16)

for all §,6" . Then by Chernoff inequality

1
—log F5 (Ty5 ) > An) < ~Jo. (An)
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Since A, should satisfy
exp (—nJss (An)) < an

with @, bounded away from 1, A, surely satisfies (4.16) for large n.
The mapping my s/ (t):= (d/dt) 95,5 () is a homeomorphism from A} 5 onto the closure
of the convex hull of the support of the distribution of Zs under Fs (see e.g. [5]). Denote

esssup Zs:=sup{x:forall e >0, F5(Zs € (x —€,x) > 0)}
5
We assume that
esssup Zs = +00 (4.17)
5

which is convenient for our task and quite common in practical industrial modelling.

This assumption may be weakened, at notational cost mostly. It follows that

lim  mg s (f) = +oo.
t—1* (N 1)

It holds
Js.s' (EFy (Z5)) =0

and, as seen previously

lim ]5y5r (x) = +o0.
X—00

On the other hand
ms,s5'(0) = Eg; (Zs') = K (Fs, Fg') — K (Fs, Gs1) <O0.

Let

& .= [sup Eg; (Zs') ,00
0,0’

= (sup K (Fs, Fs) — K (Fs, Gst) ,00)
5,0'

By (4.17) the interval .# is not void.
We now define A, such that (4.4) holds, namely

Pyo(H1) = pj, maaxn}szlle(; (Tn,5’ > An) <ay



4.8. APPENDIX 107
holds for any a, in (0,1). Note that

Ay zmaxEr; (Zy) = max K (Fg, Fs) — K (Fs,Ggr 4.18
nzmaxEp, (Zg) = max K(Fs,Fy)—K(Fs Gs) (4.18)
for all n large enough since a, is bounded away from 1.

The function

J(x):= min J5s5(x)
(6,6)eAXA

is continuous and increasing as is the infimum of a finite collection of continuous in-
creasing functions, all defined on .#.
Since

Pro(H1) =< ppexp (=nJ(An),

given a,, define

1
A= 1 (—;log%). (4.19)

This is well defined for a, € (0,1) since sups sneaxa Er; (Zs) < 0 and
—(1/n)log(an!pn) > 0.

The power function

We now evaluate a lower bound for the power of this test, making use of the Chernoff
inequality to get an upper bound for the second risk.
Starting from (4.5)

Py, (HO) < sup Gy (Tnpn < An),

neA
define
8n
Wy := —log —(x).
n f77
It holds £
X
Ec (W) = [ log === dx =—K(G,, Fy).
Gy (Wn) foggn(x)gn(x) x=—K(Gy, Fy)
and

my(1):= (d/ dt)logEg, (exp t W)
which is an increasing homeomorphism from .4, onto the closure of the convex hull of
the support of W, under G;,. For any 7, the mapping
x— I(x)

is a strictly increasing function of %} := (EGn (WTI) ,oo) onto (0, +o00), where the same
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notation as above holds for ess sup, Wy, here under Gy, and where we assumed

esssup W, = oo (4.20)
n

for all n.
Assume that A,, satisfies

Ape X =) A (4.21)

neA
namely
neA nea

Making use of Chernoff inequality we get
Py, (HO) < exp (—n inf I,,(An)) .
neA
Each function x — I;)(x) is increasing on (Eg, (W;),00). Therefore the function
x— I(x):= inf I;)(x)
neA

is continuous and increasing, as is the infimum of a finite number of continuous increa-
sing functions on the same interval &, which is not void, due to (4.20).

We have proved that whenever (4.22) holds a lower bound tor the test of HO vs H1 is
given by

Py, (H1) =1 —exp(—ni(Ay)) (4.23)

s-enf )

We now collect the above discussion in order to complete the proof.

A synthetic result

The function J is one to one from I onto K := (J(supgsneaxaEs (Zs)),00).
Since under Fs,Js s (Es(Zs)) = 0, it follows that ](sup((gy(g,)eAxA Es (Zg/)) > 0. Since
Er; (Zs)) = K (Fs, Fs') — K (Fs,Gg') < 0, whatever @, in (0, 1) there exists a unique A, €
(—inf(s s1yeaxa (K (Fs, Gs') — K (Fs, Fs1)) ,00) which defines the critical region with level
a.

For the lower bound on the power of the test, we have assumed A, € £ =
(Supyen By (Wy) ,00) = (=infyea K(Gy, Fy),0) .

In order to collect our results in a unified setting it is useful to state some connection
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between inf(5 5neaxa K (Fs, Gs') — K(Fs, Fs)] and infyea K(Gy, Fy). See (4.18) and (4.22).
Since K(Gs, F5) is positive it results from (4.6) that

sup log &fg < sup K(Gs, Fy) (4.24)
(6,6NeAXA 8o SeA

which implies the following fact:
Let a, be bounded away from 1. Then (4.18) is fulfilled for large n, and therefore there
exists A,, such that

sup Fs (T, > Ap) < ay.
0eA

Furthermore by (4.24) , condition (4.22) holds, which yields the lower bound for the
power of this test, as stated in (4.23).

4.8.2 Proof of Theorem 4.4.1

We will repeatedly make use of the following result (Theorem 3 in [41]), which is an

extension of the Chernoff-Stein Lemma (see [19])
Theorem 8. [Krafft and Plachky] Let x, be such that

Fs (Tn,5 > xn) <ay,
with limsup,—ooa, < 1. Then

1
lim ;logG(s (Tn,6 < xn) =—-K (Fs,Gs).

n—oo

Remark 9. The above result indicates that the power of the Neyman Pearson test only

depends on its level on the second order on the logarithmic scale.

Define A, s, such that
F5,(Tn<Ap) =Fs,(Tns. < Ang.,)-

This exists and is uniquely defined due to the regularity of the distribution of T}, 5, under
Fs,.Since 1T, 5, > Ap] is the likelihood ratio test of Hy(8 ) against H; (6+) of the size
ay, it follows by unbiasedness of the LRT that

Fc‘f* (Th=Ap) = F(S* (Tn,(?* = An,5*) = Gc‘f* (Tnﬁ* = An,ﬁ*) .
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We shall later verify the validity of the conditions of Theorem 8, namely that

lim sup Fs, (Tns, < Ans,) <1. (4.25)

n—oo

Assuming (4.25) we get by Theorem 8

. 1 o1
lim sup —logF;s, (T, < Ap) = %L{&ElogGg* (Tns, < Ans,) = —K(Fs,,Gs,).

n—oo

We shall now prove that

1 1
lim —logGs, (Tys, < Ans,) = lim —logGs, (Tp < Ap).

n—oo n

Let B, 5, be such that
Gs, (T, <Bns.)=Gs, (Tn<Ap).

By regularity of the distribution of T, 5, under Gs, such a B, 5, is defined in a unique

way. We will prove that the condition in Theorem 8 holds, namely

lim sup Fs, (Tps, < Bns.) <1 (4.26)

n—oo

.1 o1
lim —logGs, (Tys. < Ans.) = lim —logGs, (T, < A,) =—K (Fs,,Gs,).
n—oo n n—oo n

Incidentally, we have obtained that lim,,_ % log Gs, (T, < Ap) exists. Therefore we have
proven that

1 1
lim sup ;logF(s* (Th,<Ap = nggozlog Gs, (T, < Ap)

n—oo

which is a form of unbiasedness. For 6 # 0+, let B, 5 be defined by
Gs (Tns < Bns) = Gs (Tn < Ay).
As above, By, 5 is well-defined. Assuming
lim SLJIO:)OF(; (Tps <Bns) <1, (4.27)

it follows from Theorem 8 that

1 1
lim —logGs (T, < A,) = lim —1ogGs (Ty,5 < Bns) = —K (Fs, Gs).
n—oon n—oon
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Since K (Fs,,Gs,) < K (Fs, Gs), we have proven

1 1 1
lim sup ElogF(s* (T, < A,)= ’}i_l)lgoﬁlogG(s* (T, <A,y = ’111_1}(}O;logG5 (T, <A,).

n—oo

It remains to verify the conditions (4.25), (4.26) and (4.27). We will only verify (4.27) since

the two other conditions differ only by notation. We have

Gs (Tns > Bus) = Gs (T > Ap) < F5 (T, > Ap) + dry (Fs, Gs)

<ap+drv(Fs5Gs) <1
by hypothesis (4.13). By the law of large numbers, under Gs
lim T, s = K(Ggs, Fs) Gs—a.s
n—oo
Therefore, for large n,
lim inf B, s = K(Gg, Fp) Gs—a.s
n—oo

Since under Fjs
I}I_I}C}o Ty =—K(Fs,Gs) Fs—a.s
this implies that
lim Fs(Ty5> Bns) <1.

n—oo

4.8.3 Proof of Proposition 7

We now prove the three lemmas that we used.

Lemma 10. Let P, Q and R denote three distributions with respective continuous and

bounded densities p, g and r. Then
K(P*R,Q*R) <K(PQ). (4.28)

Démonstration. Let &2 := (Ay,.., Ak) be a partition of R and p:= (p1,.., px) denote the
probabilities of Aj,.., Ax under P. Set the same definition for ¢, .., gk and for ry,.., rx.

Recall that the log-sum inequality writes

b; b;

(> a;)log é o Y ailog

Ci

for positive vectors (a;); , (b;); and (c;); . By the above inequality for any i € {1,...,K},
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denoting (p * r) the convolution of p and r,

(p* ) K PjTri-
xr).lo i ilog 2L ].
(p ) g(q ; - gq]rl—j

Summing upon j € {1,...,K} yields

i(p*r) log(p* )

j=1 (q* )

]

which is
Kz(P+R,Q*R)<Kp(PQ)

where Kz designates the Kullback-Leibler divergence defined on £2. Refine the partition
and go to the limit (Riemann Integrals), getting (4.28). O]

We now set a classical general result which states that when Rs denotes a family of
distributions with some decomposability property, then the Kullback-Leibler divergence

between P * Rs and Q * R; is a decreasing function of 4.

Lemma 11. Let P and Q satisfy the hypotheses of Lemma 10 and let (Rs)s-o denote a
family of p.m’s on R and denote accordingly Vj a r.v. with distribution Rs. Assume that
for all 6 and 7 there exists a r.v. W;; independent upon V; such that

Vg.,.n =d V5 + W(j’n.

Then the function § — K (P * R, Q * Rs) is non increasing.

Démonstration. It holds, using Lemma 10, for positive n

K (P * R4, Q% Rs1y) = K((P * Rs) * W5 5, (Q * Rs) % W p)
< K (P * Rs,Q * Ry)

which proves the claim. [

Lemma 12. Let P, Q and R be three probability distributions with respective continuous

and bounded densities p, g and r. Assume that
K(PQ)=K(Q,P)
where all involved quantities are assumed to be finite. Then

K(P*R,QxR)<K(Q=*R,P*R).
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Démonstration. We proceed as in Lemma 10 using partitions, denoting py, .., px the in-
duced probability of P on 2. Then

Z.p.r._-
i Xjdjri-j

p-
=YY (pjri-j+4ajri-;)log =~
7 qj

p-
=Y (pj+a;)log=~
j qj

=Kz (PLQ) -K»(Q,P)<0

where we used the log-sum inequality and the fact that K(P, Q) < K(Q,P) implies
Kz (P, Q) < K» (Q, P) by the data processing inequality. [

4.8.4 Critical region and power of the test adapted to the indus-

trial application

The critical region is defined by {T,ll (N) > A, (a,)} where A,, = A, (a,,) is such that:

Py, (H)):= Fy(T, > A < ay

_F 36/ . 1 L 1 g(s
=Fo|36' €An: =) @' |2 (X) | > Ay
nizy fo

=Fo( U {li(pl(%(xi))>An}

0'eN, i=1

< pn sup Fy (T,l,y(;/ > An).
0'eA,

The theoretical power bound is obtained similarly to (4.23):

Pr,5)(Ho) = Pry (T (N) < Ay)

= P, |sup log%(x)dx < An)
6!

= P, Q{flog%(x)dxs An}

*
< Pg; flogffgn(x)deAn) withneA,
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Py, (Hp) = sup P, 5)(Ho)
5

*
< sup Pp; ([logffgn (x)dstn) with n e A,.
0

It follows
f*8s

Py, (Hp) < sup Pr; (/ log (x)dx < An)
0
and by Chernoff inequality

P, (Hp) < supexp {—nls(Ap)} (4.29)
5

where I5(x):=sup, tx —log Eg, (exp tWs).



Chapitre 5

Testing the number and the nature of
the components in a mixture

distribution

5.1 Introduction

The test problem for the number of components of a finite mixture has been extensively
treated when the total number of components k is equal to 2, leading to a satisfactory
solution; the limit distribution of the generalized likelihood ratio statistic is non standard,
since it is 0.58¢ +0.5y%(1), a mixture of a Dirac mass at 0 and a y?(1) with weights equal
to 1/2; see e.g. Titterington (1985 [53]) and Self an Liang (1987 [49]).

When k > 2, the problem is much more complicated. Self and Liang [49] obtained the
limit distribution of the generalized likelihood ratio statistic, which is non standard and
complex. This result yields significant numerical difficulties for the calculation of the
critical value of the test. Those drawbacks motivate the search for an alternative testing
procedure for a population homogeneity. In section 5.3, we propose a unified treatment
for all these cases, with simple and standard limit distribution, that also holds for mix-
tures of k > 2 components, both when the parameter 67 is an interior or a boundary
point of the parameter space ®. Moreover, confidence regions for the mixture parame-
ter 07 even when k = 2 are intractable through the generalized likelihood ratio statistic.
Indeed, the limit law of the generalized likelihood ratio statistic depends heavily on the
fact that 0 is a boundary or an interior point of the parameter space. For example, when
k = 2, the limit distribution of the generalized likelihood ratio statistic is 0.56 +0.5y>(1)
when 0 = 0 and y?(1) when 0 < 0 < 1. Therefore, the confidence level is not defined uni-
quely. At the opposite, we will prove in section 5.3 that the proposed dual y?-statistic

yields quite standard confidence regions even when k > 2. Section 5.4 proposes a few

115
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simulations on two-component mixtures coming either from the same or from different

parametric families.

5.1.1 Number of components of a parametric mixture model
Consider a k-component parametric mixture model Py (k = 2) defined as follows:

k .
Py:=)_ wiP;’i) (5.1)
i=1

where {Pc(lll);al € Al},...,{Pé’g;ak € Ak} are k parametric models and Ay, ..., A; are k
sets in R% ... R% with d,...,dr € N* and 0 < w; <1, Y w; = 1. Note that we consider
an nonstandard framework in which the weights w; are allowed to be equal to 0. Note

© the parameter space:

k
6€®::{(wl,...,wk,al,...,ak)Te [0,1]’“><A1 x .-+ x Ay such that Z wi = 1}, (5.2)
i=1

and assume that the model is identifiable. Let kg € {1,..., k—1}.

We are willing to test if (k — kp) components in (5.1) have null coefficients. We assume
that their labels are ky +1,..., k. Denote © the subset of © defined by

©¢:= {0 € © such that wy,+1 =--- = wy = 0}.

On the basis of an ii.d sample Xj,..., X, with distribution Py, 07 € ©, we intend to
perform tests of the hypothesis

H0: 01 € Oy against the alternative #:01 € 0\ 0. (5.3)

5.1.2 Motivations

When considering the test (5.3), it is known that the generalized likelihood ratio test,
based on the statistic LR defined by

supgee [1}, Po(Xi)
SUPgeo, [11-; Po(Xi)’

LR(X):=2log (5.4)
is not valid, since the asymptotic approximation by y? distribution does not hold in this
case; the problem is due to the fact that the null value of 87 is not in the interior of the

parameter space ©. We clarify now this problem.
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For simplicity, consider a mixture of two known densities py and p; with py # p1:
po = (1 —-0)po+60p; where 6 € ©:=1[0,1]. (5.5)

Given data Xj, ..., X, with distribution Py, and density pg,, 01 € [0,1], consider the test
problem

H6: 01 =0 against the alternative #:071 > 0. (5.6)

The generalized likelihood ratio statistic for this test problem is

Wy,(0):= Zlog%, (5.7)
where 0 is the maximum likelihood estimator of Or.
Under suitable regularity conditions we can prove that the limit distribution of the sta-
tistic Wy, in (5.7) is 0.56¢ +0.57, a mixture of the y*-distribution and the Dirac measure
at zero; see e.g Titterington and al. [53], Self and Liang [49] and Ciuperca [21].
Moreover, in the case of more than two components and k — ky = 2, the limit distribution
of the GLR statistic (5.4) under . is complicate and not standard (not a y? distribu-
tion) which poses some difficulty in determining the critical value that will give correct
asymptotic size; see Self and Liang [49]. Azais and al. [1] proposes for instance a like-
lihood ratio approach for mixtures and give the asymptotic properties of the test, but
its numerical application is extremely complicated, especially under non-Gaussian mix-
tures. On the other hand, the likelihood ratio statistic

L®)

can not be used to construct an asymptotic confidence region for the parameter 01 since
its limit law is not the same when 87 =0 and 87 > 0.

The case where some parameter of the model belongs to the frontier of the domain is a
special case of power models, see for instance Castillo and al. [17] for related statistical

issues.

In the sequel, we propose a simple solution for testing the number of components of a
parametric mixture model. This method consists in constructing a test statistic based on
¢—divergences and their asymptotic properties. In the following section, we provide the
general framework that will be used to construct the test procedure, i.e. the definitions,

representation and properties of ¢p—divergences.
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5.2 Some definition and notation in relation with mi-

nimum divergence inference

Let 22:={Py,0 € O} be an identifiable parametric model on R*® where © is a subset of R4,
All measures in &2 will be assumed to be measure equivalent sharing therefore the same
support. The parameter space ® does not need to be open in the present setting. It may
even happen that the model includes measures which would not be probability distribu-
tions; cases of interest cover the present setting, namely models including unnormalized
mixtures of probability distributions; see Broniatowski and Keziou [13].

The f-divergences were introduced by Csiszar [23] as convex non-negative dissimilari-
ties between two probability distributions. Let f be a convex function on R, that pos-
sibly takes infinite values at 0 and such that f(1) = 0. Denote by F the f-divergence
between two probability distributions P and Q:

dP,
F(a,0):= fu;qsf(dpg (x)) dPy(x).

Extensions to cases where Q is a finite signed measure and P a probability measure are
called ¢p—divergences.

Let ¢ be a proper closed convex function from ] — oo, +00[ to [0, +oo] with ¢(1) =0 and
such that its domain dom¢:= {x € R such that ¢(x) < oo} is an interval with endpoints
ap <1 < by (Which may be finite or infinite). For two measures P, and Py in 22 the

¢p-divergence between the two is defined by

- APa
¢(a,0):= fRS @ ( P, (x)) dPy(x).

The basic property of ¢— divergences states that when ¢ is strictly convex on a neigh-
borhood of x =1, then
¢(a,0) =0 if and only if a=80.

We refer to Liese and Vajda [42] chapter 1 for a complete study of those properties. See
also Pardo [46]. Let us simply quote that in general ¢(a,0) and ¢(0,a) are not equal.
Hence, ¢-divergences usually are not distances, but they merely measure some diffe-
rence between two measures. A main feature of divergences between distributions of
random variables X and Y is the invariance property with respect to common smooth

change of variables.
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5.2.1 Examples of ¢-divergences

The Kullback-Leibler (K L), modified Kullback-Leibler (KL,,), ¥*, modified y* (y2,), Hel-

linger (H), and L, divergences are respectively associated to the convex functions

e 9(x)=xlogx—x+1,

p(x)=-logx+x—-1,

Px) = 3(x—-1),

P(x) =1(x-1)?/x,
@(x) =2(y/x—1)° and
px)=]x—1|.

All these divergences except the L; one, belong to the class of the so called “power
divergences” introduced in Cressie and Read [22] (see also Liese and Vajda [42] chapter
2), a class which takes its origin from Rényi [48]. They are defined through the class of

convex functions
XV —yx+y-1

Y(y—-1)
@o(x):=-logx+x-1,

X €]0, +oo[— @y (x) := ifyeR\{0,1}

(5.9)

@1(x) :=xlogx—x+1.

So, the KL-divergence is associated to ¢1, the KL, to ¢g, the ¥ to ¢y, the y3, to ¢_;
and the Hellinger distance to ¢y/».

Consider any ¢-divergence except the likelihood divergence, with ¢ being a differen-
tiable function. When 67 in intO is defined as the true parameter of the distribution of

the i.i.d. sample (X, .., X},), it is convenient to assume that

There exists a neighborhood % of 61 for which (A)
¢(0,0') is finite whatever 6 and 0’ in %.

We will only consider divergences defined through differentiable functions ¢, which we

assume to satisfy
There exists a positive 6 such that for all ¢ in [1-6,1+ 4],

(RC) we can find numbers cj, ¢2, ¢35 such that

p(cx) < c1(x) + co | x| + c3, for all real x.
Condition (RC) holds for all power divergences including KL and KL,, divergences.
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For all divergences considered in this paper it will be assumed that for any a and 0 in %
o ( dPy )

dPy
We state the following Lemma covering nearly all classical divergences (see Liese and
Vajda (1987) [42] and Broniatowski and Kéziou (2006) [12], Lemma 3.2).

d Py < oco. (5.10)

Lemma 13. Assume that RC holds and ¢ (8, a) is finite. Then (5.10) holds.

5.2.2 Dual form of the divergence and dual estimators in parame-

tric models

The following representation is the cornerstone of parametric inference through diver-

gence based methods.

Theorem 14. Let 0 belong to ® and let ¢(8, 07) be finite. Assume that RC holds together
with Condition (A) . Then

®(0,07) = sup (dP )dPg f(p (Zi")dpgT
aeU a a (5.11)

= supfh(@,a,x)dPgT
aeWU

Furthermore the sup is reached at 87 and uniqueness holds.

For the Cressie-Read family of divergences with y # 0,1 this representation writes

1 dPg\"! 1 [(dPy)" 1
(99)—su{ f( ) dP——f( ) dPy. — }
(py g ae@lz Y- 1 dPa o Y dpa or Y(Y_ 1)

=sup | h(0,a,x)dPy,
aEeU

Under the above notation and hypotheses define

Ty (Py,):=argsup | h(0,a,x)dPy,. (5.12)
ae

It then holds, for any 8 such that ¢ (0,07) is finite
To (PgT) =07 forall 07 €0O.

Also let
S(Po,): —arglnfsupfh(ﬂ a,x)dPy,. (5.13)

0€0 geqy
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which also satisfies
S (PgT) =07

for all 07 in ©. We thus state: under the hypotheses of Theorem 14, both statistical

functionals Ty and S are Fisher consistent.

From (5.11), simple estimators for ¢(0,07) and 67 can be defined, plugging any
convergent empirical measure in place of Py, and taking the infimum in 6 in the re-
sulting estimator of ¢(0,07).

In the context of simple ii.d. sampling, introducing the empirical measure P, :=
%er'lzl 0 x,where the X;’s are i.i.d. r.v's with common unknown distribution Py, in £,

the natural estimator of ¢(6,07) is

¢n0,07):=sup {fh(@,a,x) dPn(x)}

aeU

dpg) 1 #(dPQ )
=su ! dPg— — (X;)| when (A) holds.
aend (dPa L'\ ap, X )

As stated in theorem 3.2 in Broniatowski and Keziou [13]:

Theorem 15. Under some derivability assumptions on ¢ (Z—g) (conditions A.0 to A.2

in Broniatowski and Keziou [13]),

2n

Ifo= GT, then m

$n(6,67) % y%, ford=dim(®). (5.14)

This last result of convergence of the estimated ¢—divergence is of great interest in the

problem we are taking on and serves as the basis for the test procedure that we propose.

5.3 A simple solution for testing finite mixture mo-
dels

5.3.1 Testing between mixtures of fully characterized compo-

nents

Let us consider a set of signed measures defined by
po=010-0)po+60p1, O€R, (5.15)

where pg and p; are two known densities (belonging or not to the same parametric

family).
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The mixture (5.5) is clearly contained in (5.15) and the case 87 = 0 is in this framework
an interior point of the parameter space R. In relation with (5.5), the case 67 = 0 is now

an interior point of the parameter space.

We observe a random sample Xj, ..., X, of distribution p7. We are willing to test:

Hy:pr=po vs Hi:pr=po# po (5.16)

which can be reduced to
H()ZQ:O Vs H119¢0 (5.17)

whenever py # p1 is met. The latter condition ensures the identifiability of the model
and enables to consider different parametric families for py and p;. Conversely, Chen
and al. [18], for instance, assumes that 0 < § < 1, and tests the equality of the parameters
of pp and p; inside a unique family %.

In the following, we thus assume that pg # p;.

5.3.2 Test statistics

The choice of the test statistic is driven by the result given in Theorem 15. Accordingly,
let ¢ be any divergence associated with convex finite functions and such that 0 is an

interior point of the space parameter defined by:

@:z{aeR:f|¢'(j£Z)ldPo<oo} (5.18)

Then the statistic 2n¢,(0,07) can be used as a test statistic for (5.17) and

2n¢,(0,07) — x5, when Hp holds. (5.19)

Also, (5.19) holds when testing whether the true distribution is a ky component mix-
ture or a k component mixture as in (5.3). In this case, the test statistic 2n¢, (0, 01)
converges to a X%k— ko) distribution when Hy holds.

While many divergences meet the former properties, we restrict in the sequel ourselves

to two generators.

Chi-square divergence

The first divergence that we consider is the y2-divergence. The corresponding ¢ function
@2(x):= %(x —1)? is defined and convex on whole R; an example when &2 may contain

signed finite measures and not be restricted to probability measures is considered in
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Broniatowski and Keziou [12] in relation with a two components mixture model defined
in (5.15) and where 0 is allowed to assume values in an open neighborhood © of 0, in

order to provide a test for (5.17), with 8 an interior point of ©.

Extended Kullback-Leibler divergence

The second divergence that we retain is generated by a function described below, namely

Qcx):=(x+e—1)-loglx+e“—D+1-(x+e‘—1D)+(1—-¢c):(e°—1)—c-x = 0 (5.20)
x€]l—e o[, ceR, '

which has been derived within the recent general framework of Broniatowski and Stum-
mer [16]. It is straightforward to see that ¢, is strictly convex and satisfies (1) =0 =
¢’.(1). For the special choice ¢ = 0, (5.20) reduces to the omnipresent Kullback-Leibler

divergence generator
@o(x):=xlogx—x+1 = 0, x €]0,00[.

According to (5.20), in case of ¢ > 0 the domain ]1—e®, 00 of ¢, covers also negative num-
bers (see Broniatowski and Stummer [15] for insights on divergence-generators with ge-
neral real-valued domain); thus, the same facts hold for the new generator than for the
¥? and this opens the gate to considerable comfort in testing mixture-type hypotheses
against corresponding marginal-type alternatives, as we derive in the following. We de-
note KL, the corresponding divergence functional for which KL.(Q, P) is well defined
whenever P is a probability measure and Q is a signed measure.

It can be noted that, depending on the type of model considered, the validity of the test
can be subject to constraints over the parameters of the densities. Indeed, the conver-
gence of I = [ | ¢’ (%) | dPy is not always guaranteed. This kind of considerations may
guide the choice of the test statistic. For instance, in some cases, including scaling models,
conditions that are required for the y?—divergence, do not apply to the K L.—divergence.

For instance, consider a Gaussian mixture model with different variances:
po~N(,05),  p1~N(o?).

The convergence of I with the y? requires either 65 > 3 or 03 > 0% > 103. On the other
hand, the convergence is always ensured with the KL.—divergence.

The same observations can be made for lognormal, exponential and Weibull densities.
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5.3.3 Generalization to parametric distributions with unknown

parameters

In the previous section, the densities of each component were supposed to be known.
We now generalize to the case where the components belong to parametric families with
unknown parameter. We therefore deal with a way more complicate issue and consider
a generalized test procedure which aggregates tests of simple hypotheses over the com-
ponents densities parameter spaces.

We present the generalization for a two component mixture, but it is valid as well for
k component mixtures with k = 2. Let us assume pgy € Fy = { pol. 1 Ag): A € AO} and
pPLEF = {pl(. [A): A € Al}, with Ap and A; being compact subsets of R%, d=1.

We consider aggregated tests of composite hypotheses.

For Ay fixed, Hy(Ay) is accepted if VA, € Ay, Hy(Ap) is accepted against H;(Ag, A1). The
aggregated hypothesis Hy(Ay) is accepted if VAy € Ag, A1 € Ay, Hyp(Ap) is accepted against
H; (Ao, 11).

Thus the null hypothesis of homogeneity of the population is rejected when there exists
at least one couple of parameters (1], A7) € Ag x Ay with A7 # Aj for which the simple
hypothesis Hy(Ay) is rejected in favor of Hj(Ag,A}). In other words, the possibility that
the underlying distribution is a mixture is enough for us to reject that there is a unique

component.

Another perspective would be to consider that the null hypothesis Hy(Ay) is rejected
when there is no Ay € Ag such that VA; € Ay, Hyp(Ap) is accepted against H; (A, 11).

Note the condition {A] # A4} is only required when pg and p; belong to the same para-
metric family.

Let 2n¢, (0,01 | A9, A1) be the test statistic of the test (5.16) of the simple hypotheses
Hy(Ag) vs Hy(Ap,A1) when Ag and A, are fixed. Recall that ¢, (0,07 | Ao, A1) is the es-
timated divergence between py(. | Ag) and pg, (. | A9, A1). The test statistic for (5.17) is

derived from:

®,(0,07) = sup sup ¢u0,A7 | Ay, A1) (5.21)
ﬂ()EA(]A]EA]\/l()

where the parameter spaces Ag and A; can be discretized in Ay, and A , for the sake
of computational complexity.

In order to facilitate the computation of the test statistic, the successive optimizations
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have been rearranged as follows:

dPy 1 & dPy )
©,(0,07) =supq sup sup (P’(—O) dPop,— =) ¢" (—O(Xi))
acB® | AgeAgA1EAI\ A dPle(A(),A,]) n i=1 dPay(/lOyll)
(5.22)

The critical region Ry, A, associated with the aggregated test can be defined as follows:

{@,(0,07) € Rag Ay} = Ungeny Unien, {010,607 1 A9, A1) € Ry 1, (@)} (5.23)

where Ry, 2, (@) is the critical region of risk « for the test of the simple hypotheses Hy(Ao)
vs Hy(Ap, A1). a can then be tuned to ensure that the probability of (5.23) is of the wanted
first kind level of risk a* for the global test.

Note that in this case, we do not have an equivalence to Theorem 15. Indeed, we do not
directly estimate the true parameters of the densities py and p;, but rather aggregate the
test over the parameter spaces Ag and A;. Thus, there is still no convergence result on
the test statistic ®@,. In the following, we evaluate the performance of the proposed test

procedure through numerical simulations.

5.4 Numerical simulations

5.4.1 Mixture of fully characterized components

We here consider the simple case of a mixture between a lognormal and a Weibull distri-
bution whose parameters are supposed to be known. Results in Table 5.1 show that the
test procedure of simple hypotheses performs well when the two components are fully

characterized.

Lognormal and Weibull Mixture /N(1¢,0.2) vs 0.8/N(1¢,0.2) +0.2%# (14,2)

n=250 observations

¥? test statistic

KL, test statistic

First kind risk

0.05

0.10

0.05

0.10

Power

0.98

1

0.99

1

TABLE 5.1 — Power of the test for a lognormal and Weibull mixture with fully characte-
rized components
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5.4.2 Mixture of unknown components within a parametric fa-
mily

The performances of the test procedure are evaluated numerically on three two-
component mixtures. In the first two examples, both components belong to the same
parametric family, while in the third, pg and p; are from different models. In each case,
the distributions of the components are such that the resulting mixture is not bimodal.
The following results are used on an illustrative basis. The critical regions are determi-

ned as to guarantee the value of the first kind risk a* at 0.05 and 0.10.

Lognormal mixture

We first consider a Lognormal mixture. The two components belonging to the same
parametric family, we can compare the performance of the divergence based test with
the modified likelihood ratio test proposed by Chen and al.[18].

The alternate hypotheses are the following:

Ho:pr=po~INAo,1) vs Hy:pr=pg~1-0)IN(A,1)+6IN(A4,1),

where g€ Ag=[0.4,1.6] and 11 € A; =[1.4,2.6].

The critical region is computed numerically through Monte Carlo simulations under Hy.
The power of the test is also computed numerically when the realizations are drawn from
the mixture model with 8 = 0.2, 19 = 1 and A; = 2 for the ¥? and KL, test statistics and
Chen’s modified likelihood ratio.

The results in table 5.2 show that both y? and KL, outperform the modified likelihood
ratio test and the test based on the KL divergence achieves in this case the greatest

power.

Lognormal Mixture /N(1,1) vs 0.8/N(1,1) + 0.2IN(2,1)

n=250 observations

x? test statistic KL, test statistic Chen’s modified lik ratio
First kind risk 0.05 0.10 0.05 0.10 0.05 0.10
Power 0.22 0.41 0.50 0.65 0.12 0.18

TABLE 5.2 — Power of the tests for three types of mixtures whose components are Lo-

gnormal
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Gamma mixture

We test the following hypothesis
Ho:pr=po~%4(Ao,1) vs Hi:pr=pg~{1-0)9A,1)+0%(A1,2),

where Ay € Ag = [1.4,2.6] and A € Ay = [4.4,5.6]. The realizations are drawn from the
mixture model with 6 =0.2, 13 =2 and 1; =5.

Here again, both divergence based statistics achieves higher power than the modified
likelihood ratio test (cf. table 5.3).

Gamma Mixture ¢4(2,1) vs 0.84(2,1) +0.2% (5, 2)

n=250 observations

¥? test statistic KL, test statistic Chen’s modified lik ratio
First kind risk 0.05 0.10 0.05 0.10 0.05 0.10
Power 0.31 0.46 0.35 0.45 0.13 0.22

TaBLE 5.3 — Power of the tests for three types of mixtures whose components are Gamma
distributed

Weibull and Lognormal mixture

We here consider the case where the two components are from different parametric

families. We want to test
H()Z Pr = Po~ lN(/lo,O.Z) [Z8) H1 pPr=po~ (1 —9)”\7(10,0.2) +97f/(/11,2),

where Ag € Ag =[0.4,1.6] and A1 € A; = [2.4,3.6]. The realizations are drawn from the
mixture model with 8 =1,15=1 and A; = 3.

The results in table 5.4 show that the test based on the KL, divergence performs better
than the y? statistic.

n=250 observations

¥? test statistic KL, test statistic
First kind risk 0.05 0.10 0.05 0.10
Power 0.28 0.47 0.34 0.57

TABLE 5.4 — Power of the tests for three types of mixtures whose components belong to
a different parametric family

Lognormal and Weibull Mixture [N (1,0.2) vs 0.8/N(1¢,0.2) + 0.2%# (11,2)
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Concerning the choice of the test statistic, we might note that the KL, performs better
when the two alternate distributions differ mainly in their central tendency, while the

x? might be prefered when the difference lays in the tails.

5.5 Concluding remarks

The test procedure proposed in this chapter enables to discriminate between a k-
component and a (k + p)-component mixture, k, p > 0. Based on previous work from
Broniatowski and Keziou [13], this chapter extends it to the case of components from
parametric families with unknown parameters. The test statistic is an aggregation of
divergence based statistics in their dual form.

Though theoretically applicable to any k—component mixture, the performances of the
test have been studied on several two-component models, whose components either
belong from the same parametric family or not. It has yet to be run on models of k > 2

components.



Chapitre 6
Conclusion générale et perspectives

Les travaux présentés dans cette these apportent des outils méthodologiques et de mo-
délisation; le fil conducteur étant la caractérisation des risques extrémes en fatigue des

matériaux.

Méthode séquentielle de planification d’essai

Apports

La premiére partie porte sur I'étude de la fatigue a trés grands nombres de cycles. L’ab-
sence de méthodologie visant spécifiquement a estimer un quantile extréme sur des don-
nées binaires de dépassements de seuils a motivé le développement d’'une nouvelle mé-
thode de planification d’essais séquentielle inspirée du Splitting. Celle-ci se fonde sur
un échantillonnage dans les régions de plus en plus extrémes de la distribution de la
résistance du matériau. La modélisation proposée exploite la structure du splitting en
supposant la stabilité par seuillage des lois considérées a travers un modéle de Pareto
généralisé et une adaptation d'un modele de Weibull. A cette procédure est associée une
méthode d’estimation tirant partie de la modélisation et de la dimension itérative pour

pallier la nature dégradée de I'information disponible.

Perspectives

Les contraintes en termes de nature et de quantité de données rendent difficile d’envi-
sager une modélisation plus flexible de la résistance du matériau. En effet, I'inflation de
parametres et la perte de la propriété de stabilité par seuillage compliquent largement la
procédure d’estimation. Quelques pistes de généralisation exploitant la complete mono-

tonie des modeles étudiés ont été ébauchées mais nécessiteraient une étude plus poussée.
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Modélisation des courbes S-N

Apports

La seconde partie se concentre sur I’étude de la tenue en fatigue olygocyclique a travers
la construction des courbes S-N. Les travaux réalisés dans le cadre de cette étude ont
porté sur des questionnements autour de la modélisation de la durée de vie a niveaux de

sollicitations fixés.

L’idée développée dans le chapitre 3.2 consiste a faire reposer la modélisation de la du-
rée de vie sur des résultats en mécanique des matériaux. Ainsi I’hétérogénéité des don-
nées s’explique par la coexistence d’amorcages courts et d’amorcages lents, survenant
en proportions inversement proportionnelles selon le niveau de sollicitation. Cependant
la construction d’'un modele adapté aux données suppose de répondre au préalable a un
certain nombre de questions : Quelle est la loi des durées de vie en amorcages courts et
lents? A partir de quel niveau de chargement y a-t-il hétérogénéité de la population de

durées de vie? etc...

Les chapitres suivants ont consisté a apporter des outils statistiques permettant d’affiner
le choix de la modélisation. Le chapitre 4 a introduit une procédure de tests d’ hypotheses
composites visant a discriminer entre deux hypothéses portant sur la loi d’'une variable
bruitée. Elle repose sur 'agrégation de tests du rapport de vraisemblance. Cette pro-
cédure est directement adaptable a la question de I’étude de la loi de la durée de vie.
Dans le cas des faibles niveaux de contrainte pris en exemple dans le chapitre, 'essentiel
de la durée de vie correspond a la propagation d’une fissure amorcée tres tot. Dans ce
cadre, il s’agit de tester si la durée de vie en propagation est affectée d’un bruit additif

correspondant au temps d’amorcage.

Le chapitre 5 introduit une autre procédure de test visant a déterminer le nombre de
composantes d'un mélange. La statistique de test est construite a partir d’estimateurs
de divergence obtenus en exploitant la forme duale de la divergence dans un cadre pa-
ramétrique. Cette méthodologie fournit un outil permettant de déterminer les seuils de
sollicitation au dela et en deca desquels la population n’est plus homogene. Elle peut
également étre utilisée pour valider ’hypothése selon laquelle seuls deux modes de rup-
ture coexistent. Elle apporte des réponses complémentaires a la procédure portant sur la
nature de chaque sous-population, laquelle vise a spécifier les hypotheéses paramétriques
les plus adaptées aux différentes composantes dans les plages de contraintes pour les-

quelles la population est homogeéne.
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Perspectives

Les travaux présentés portent sur le développement d’aide a la modélisation. Les procé-
dures de test ont pour I'instant été évaluées par simulations afin d’en étudier la puissance.
Concernant le test sur le nombre de composantes d’'un mélange, les essais numériques
portent seulement sur des modeles a deux composantes. Il serait donc intéressant de
mener des simulations supplémentaires sur des mélanges a k > 2 composantes. Il reste

maintenant a appliquer ces outils sur les données de fatigue.

Ces outils fournissent une base permettant d’envisager un autre axe de recherche : I'es-
timation de la distribution de la durée de vie sur le modele de mélange sélectionné. Une
piste envisageable consiste a adapter un algorithme de type EM a I'estimation de quan-
tile. En effet, si ce type d’algorithme permet d’estimer convenablement la durée de vie
moyenne, il en va différemment en ce qui concerne la durée de vie minimale.

Considérons le modéle de mélange suivant:

Jo) =A1A(y101)+A2f2(y02)

ou Y est la variable observée de densité fy, X la variable cachée de classe et

0 = (01,02, 11, 1) le vecteur de paramétres.

La vraisemblance compléte du modele est donnée par :

n
logL(X,Y 10) =) _ xilog(A1 fi(yi |61) + (1 — x;)log(A2 fo(yi | 02).

i=1

Les deux étapes de I’algorithme classique sont données par :

Etape E : Calcul de I'espérance de la log-vraisemblance compléte :

Q[6,6%) = Egw (10g LIX, Y 10) | X).

Etape M : Estimation de 6 en maximisant Q :

6%*+V = argmax Q (H,B(k)) )
0e®

Le terme a maximiser Q peut se décomposer sous la forme de la somme de deux termes :
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n
argmaxEgw (logL(X, Y |0) | X) = argmax )_ | log(f(y;, x|0) h(x|0%)dx

0e® 0e® i
f()’i,x I 9)
avec h(x| H(k)) =
f(yIQ(k))
n
=argmaxy_ [ log(h(x10)f(y160)) h(x|0W)dx

0e® i

n
= argmax ) _log(f(y: 16))
0e® i

h(x]0) )
+Zf1 (h( Ie(k)))h(xle )

= argmin D, (fy, fr) + —Dw(G )
0o
Classiquement, Dy, (fy, fr) correspond a la log-vraisemblance du modeéle. Cependant la
décomposition ainsi obtenue fait apparaitre une généralisation possible de I’algorithme
a toute divergence prise entre la vraie densité fr et le modéle fpy.

En particulier, s’agissant d’estimer un quantile, un choix possible est la divergence du y?

X(fH’fT):f—(;—e(x) )ZfT(x)dx,

dont la forme pénalise plus fortement les petits écarts, et qui pourrait permettre de ga-

gner en précision sur I'estimation des queues de distribution.
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