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Abstract

Two principles at the forefront of modern machine learning and statistics are sparse
modeling and robustness. Sparse modeling enables the construction of simpler statistical
models. At the same time, statistical models need to be robust they should perform well
when data is noisy in order to make reliable decisions.

While sparsity and robustness are often closely related, the exact relationship and
subsequent trade-offs are not always transparent. For example, convex penalties like the
Lasso are often motivated by sparsity considerations, yet the success of these methods is
also driven by their robustness. In this thesis, we work at improving the quality of the es-
timators in supervised machine learning in terms of robustness and sparsity. We propose
methods that, jointly, perform variable selection and outlier detection, and formulate the
obtained optimization problems using mixed integer programming (MIP) benefiting from
the significant improvement of MIP solvers.

First we focus on proposing a robust and sparse method for linear regression. To solve
the problem exactly, we recast it as a mixed integer programming problem. In addition,
and in order to decrease the computational time, we propose a discrete first algorithm
providing a near-optimal solution in a very short time. The obtained solution is used as a
warm start for the MIP solver. However, the proposed problem suffered from overfitting
for low signal-to-noise ratio values.

Then, to fix the overfitting behavior of the proposed method, we use penalized regu-
larization to improve its performance when the noise is high. We also propose a discrete
first order algorithm to solve the regularized approach.

Finally, we propose a robust and sparse classification method based on the classical
hinge-loss classifier. The obtained problem is formulated using mixed integer program-
ming and shown to be efficient on both real and synthetic data sets.

Keywords : Variable selection, outlier detection, mixed integer programming, robust re-
gression, sparse regression, robust support vector machines, sparse support vector ma-
chines.
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Résumé

Deux points clés de l’apprentissage machine et des statistiques modernes sont la mo-
délisation parcimonieuse et la robustesse. La modélisation parcimonieuse permet la cons-
truction de modèles statistiques plus performant et économes en ressources. Dans un
même temps, les modèles statistiques doivent être robustes ; ils doivent être performants
lorsque les données sont bruitées afin de permettre de prendre des décisions fiables.

Si la parcimonie et la robustesse sont souvent étroitement liées, la relation qui les
unit et les compromis qui en découlent ne sont pas toujours explicitement formulés.
Par exemple, des pénalités convexes comme celle du Lasso sont souvent motivés par des
considérations de sélection de variable, mais le succès de ces méthodes est aussi dû à
leur robustesse. Dans cette thèse, nous travaillons à l’amélioration de la qualité des esti-
mateurs dans le cadre de l’apprentissage supervisé simultanément en termes de robus-
tesse et de parcimonie. Nous proposons des méthodes qui réalisent simultanément les
deux tâches de sélection de variables et de détection de points aberrants. Ce problème est
formulé dans différents contextes sous la forme de problèmes d’optimisation utilisant la
programmation mixte en nombres entiers (MIP), dont la résolution bénéficie de l’amélio-
ration significative des solveurs MIP.

Nous nous concentrons d’abord sur la proposition d’une méthode robuste et peu ré-
pandue pour la régression linéaire. Pour résoudre le problème exactement, nous le re-
formulons en un problème de programmation mixte en nombres entiers. Ensuite, afin
de réduire le temps de calcul, nous proposons un premier algorithme discret fournis-
sant une solution quasi optimale en un temps très court. La solution obtenue est utili-
sée comme un démarrage à chaud pour le solveur MIP. Cependant, la solution proposée
souffre de surapprentissage pour de faibles valeurs du rapport signal/bruit. Afin de cor-
riger ce surapprentissage, nous utilisons une régularisation pénalisée pour améliorer ses
performances lorsque le bruit est élevé. Nous proposons également un algorithme discret
du premier ordre pour résoudre l’approche régularisée.

Enfin, nous proposons une méthode de classification robuste parcimonieuse basée
sur le classificateur classique séparateur à vaste marge (SVM) associé à la fonction de
perte «charnière ». Le problème obtenu est là aussi formulé comme un programme mixte
en nombres entiers et s’avère efficace sur des ensembles de données réelles et synthé-
tiques.

Mots-clés : Sélection de variables, points aberrants, programmation mixte en nombres
entiers, régression robuste, régression parcimonieuse, séparatuer à vaste marge robustes,
séparatuer à vaste marge parcimonieux.
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Chapitre 1

Introduction

1.1 General Framework

Artificial Intelligence (AI) has been a subject of great interest for many decades, ai-
ming at making machines reproduce more or less specific human behaviors, ranging from
playing chess to producing medical diagnostics. Specifically, in the past decade, this do-
main has seen a rapid and almost exponential growth, being invested by numerous re-
search labs and companies (like Google, Facebook, Microsoft, Amazon, etc.). Nowadays,
applications of AI are varied and show very impressive results. Those include informa-
tion and image retrieval (web and image search engines), automatic translation, image
recognition and classification (e.g. Google Photos), face recognition, tracking of objects
in videos, speech recognition, making autonomous vehicles drive, interpreting medical
imagery, etc.

Machine Learning (ML) is a sub-field of artificial intelligence, that addresses the follo-
wing question: ‘How can we program systems to automatically learn and to improve with
experience ?’ Learning in this context is not learning by heart but recognizing complex
patterns and making intelligent decisions based on data. Machine Learning uses algo-
rithms to assist computer systems in progressively improving their performance. These
algorithms automatically build a mathematical model using sample data to make deci-
sions without being specifically programmed to make those decisions. Initially, ML was
based on a model of brain cell interaction. The model was created in 1949 by [Heb49].
Recently, Machine Learning was defined by Stanford University as “the science of getting
computers to act without being explicitly programmed.” Machine Learning is now res-
ponsible for some of the most significant advancements in technology, such as the new
industry of self-driving vehicles. Machine Learning can be mainly divided into two sub-
categories: supervised and unsupervised learning. Supervised learning is simply a process
of learning algorithm from the training data set.

It is where you have input variables and an output variable and you use an algorithm
to learn the mapping function from the input to the output. The aim is to approximate
the mapping function so that when we have new input data we can predict the output
variables for that data. As we can see in Figure 1.1, supervised learning consists of regres-
sion and classification. Regression algorithms attempt to estimate the mapping function
f from the input variables X to numerical or continuous output variables y . In this case,
y is a real value, which can be an integer or a floating point value. Therefore, regression
prediction problems are usually quantities or sizes. For example, when provided with a
data set about houses, and you are asked to predict their prices, that is a regression task
because price will be a continuous output. On the other hand, classification algorithms

7



Chapitre 1. Introduction

FIGURE 1.1 – Types of Learning.

attempt to estimate the mapping function f from the input variables X to discrete or cate-
gorical output variables y . In this case, y is a category that the mapping function predicts.
If provided with a single or several input variables, a classification model will attempt to
predict the value of a single or several conclusions.

For example, when provided with a data set about houses, a classification algorithm
can try to predict whether the prices for the houses “sell more or less than the recom-
mended retail price.” Here, the houses will be classified whether their prices fall into two
discrete categories: above or below the said price.

Unsupervised learning is modeling the underlying or hidden structure or distribution
in the data in order to learn more about the data. In Unsupervised learning you only have
input data and no corresponding output variables, it is done in the context of clustering.
Figure 1.2 sheds the light on the difference between supervised and unsupervised lear-
ning.

FIGURE 1.2 – Supervised vs Unsupervised Learning [MLG+18].

Today, people live in a world surrounded by diverse data. Improving technologies re-
sulted an exponential growth of the data dimensionality and large volume data of high

8



1.2. Motivations

dimension is produced every day. Large data sets will cause a difficult interpretation of
the machine learning model. In addition, it can also cause bad performance of the mo-
del. However, it is noticed that in many machine learning applications, the number of
information that makes sense is very small comparing to the whole data, that is to say,
the underlying model is sparse. Also, outliers can have a considerable bad influence on
estimators where outliers are understood to be observations that have been corrupted,
incorrectly measured, mis-recorded, drawn under different conditions than those inten-
ded, or so atypical as to require separate modeling, see for instance [Wei05].

The natural way to deal with spurious features is to enumerate all possible combina-
tions and choose the most significant features. Similarly, the detection of outliers can be
made by enumerating all possible point configurations and neglect useless observations.
Hence the common point is the counting function which is defined by:

c : Rp −→ R

w 7−→ c(w) = the number of nonzero components wi of w.

It is often called, by an abuse of language, the `0 norm and denoted by c(w) = ||w ||0. In
linear regression, feature selection using the `0 dates back to at least [BKM67, HL67], this
problem is called "best subset selection problem". Since the `0 norm is not convex neither
differentiable, this problem was considered NP-hard and intractable. Hence to overcome
its computational difficulty, the `0 norm was replaced by convex surrogates such as the
`2 norm known as ridge regression [HK70] or by the `1 norm known as Lasso regression
[Tib96].

Outlier detection can be divided into two categories: (a) the so-called "robust statis-
tics", that is robust-to-outlier loss functions and (b) outlier detection per se which ex-
cludes outliers from the training set. One can add a variable modeling outliers and can use
the `0 norm to control its sparsity level. Hence, selecting variables and detecting outliers
can be done by adding two cardinality constraints representing the number of variables
to be selected and the number of outliers to be detected.

Similarly, support vector machine (SVM) classification suffers from irrelevant features
and outliers. To this end, many approaches were proposed. However, to the best of our
knowledge, this is the first time that the `0 norm is used for both operations.

1.2 Motivations

In the last three decades (1990-2020), algorithmic advances in integer optimization
combined with hardware improvements have resulted in an astonishing 800 billion factor
speedup in solving Mixed Integer Optimization (MIO) problems. Indeed, between 1991
and 2015 the software total speedup is about 1.4 million times and the hardware total
speedup is about 570000 times. Hence a mixed integer optimization problem that would
have taken 26000 years to solve 25 years ago can now be solved in a modern computer in
less than one second: mixed integer linear techniques are nowadays mature, that is fast,
robust, and are able to solve problems with up to millions of variables [LL11].

As it is known, originally, the sparsity is explicitly expressed by using the `0 norm.
This function can exactly control the sparsity level, however, with a shortcoming of non-
convexity and non-differentiability, which makes it the obstacle to overcome. The existing
methods for solving this problem can be roughly grouped in two major classes: Greedy al-
gorithms attains the solution by iteratively providing suboptimal solutions, such as mat-
ching pursuit (MP) and its variants [iG04, BRF11], or gradient descent based algorithms

9



Chapitre 1. Introduction

such as Iterative Hard Thresholding (IHT) algorithm [GK09] or proximal method [BJQS14].
The second class corresponds to methods that relax the `0 norm by replacing it with the `1

norm, which is still nonsmooth but convex and continuous. This leads to a classical pro-
blem, often called the problem of LASSO. However, the `1 norm cannot always guarantee
the required sparsity level and even the sparse representation is produced but with shrin-
kage.

When referring to the problem of feature selection and outlier detection for linear re-
gression, it corresponds to adding two `0 norm constraints, which makes it even more
complex than the best subset selection problem consisting only on one cardinality cons-
traint. To reach tho optimal solution, we reformulate the original problem as mixed in-
teger quadratic programming (MIQP) problem and solve it using an efficient solver "Gu-
robi". To accelerate the MIQP solution, we introduce a warm start solution obtained by an
algorithm based on a discrete extension of first order continuous optimization methods.

This framework is scalable and provides a local solution often close to the global one.
Results on both real and synthetic datasets showed the high quality of the provided solu-
tions. Furthermore, since the `0 norm suffers from overfitting behavior when the signal
to noise ratio is low (high noise level in data), we also propose an `1 regularized robust
and sparse regression model. We solve this problem exactly using mixed integer program-
ming, and we propose a first order discrete algorithm which can be used as a warm start
for the MIO solver. The first order algorithm can also be used for high dimensional data
sets since it provides solutions with good predictive performance as it is shown by empi-
rical results.

Regarding the support vector machine (SVM), to deal with outliers, a new variable is
added to the classical hinge-loss support vector machine formulation. Furthermore, to
ensure sparsity and to control the percentage of outliers to be detected, two cardinality
constraints were added. The obtained problem is reformulated as a mixed integer opti-
mization problem to obtain the global solution. Unlike all other methods, the MIO ap-
proach always provides a guarantee on its sub-optimality even if the algorithm is termi-
nated early. Empirical results on both synthetic and real datasets revealed the significant
improvement in comparison with the 0-1 loss and hinge-loss classical classification pro-
blems.

1.3 Outline and Contributions

This monograph concentrates on the study of two issues encountered in supervised
learning: the presence of irrelevant features and the presence of outliers. More precisely,
dimension reduction or feature selection is an effective strategy to handle contaminated
data and to deal with high dimensionality while providing better prediction. Also, outliers,
which are understood to be observations that have been corrupted or incorrectly measu-
red or drawn under different conditions than those intended, can have a considerable bad
influence on estimators.

To deal with outlier proneness and spurious variables, a new variable representing the
outliers was added to the objective function, and two `0 norm constraints were added to
control the number of variables to be selected and the number of outliers to be detected.
The obtained optimization problems are N P -hard. To obtain the global solution exactly,
we recasted these problems as mixed integer programming problems benefitting from the
significant improvement in the speed of solving such problems by using efficient solvers
such as "Gurobi".

This impressive speedup factor is due to incorporating both theoretical and practical
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advances into mixed integer programming (MIP) solvers. Cutting plane theory, disjunc-
tive programming for branching rules, improved heuristic methods, techniques for pre-
processing MIPs, using linear optimization as a black box to be called by MIP solvers, and
improved linear optimization methods have all contributed greatly to the speed improve-
ments in MIP solvers. MIP solvers in general, and Gurobi in particular, provide both fea-
sible solutions as well as lower bounds to the optimal value. As the MIP solver progresses
towards the optimal solution, the lower bounds improve and provide an increasingly bet-
ter guarantee of suboptimality, which is especially useful if the MIP solver is stopped be-
fore reaching the global optimum. Incontrast, heuristic methods do not provide such a
certificate of suboptimality. Furthermore, we developed a discrete extension of modern
first order continuous optimization methods to find high quality feasible solutions that
we use as warm starts to the MIP solver that finds provably optimal solutions.

The rest of the monograph is organized as follows.

Chapter 2 introduces a mathematical background on optimization. All needed defi-
nitions and optimizations methods were briefly described and presented.

Chapter 3 presents our robust and sparse linear regression problem. We use MIP to
find a provably optimal solution for the obtained problem. Our approach has the ap-
pealing characteristic that if we terminate the algorithm early, we obtain a solution with
a guarantee on its suboptimality. Furthermore, our framework can accommodate side
constraints on the variables. We introduce a general algorithmic framework based on a
discrete extension of modern first order continuous optimization methods that provide
near-optimal solutions for the best subset problem. The MIP algorithm significantly be-
nefits from solutions obtained by the first order methods. Computational results on both
real and synthetic data sets were reported. These results show that the proposed frame-
work provides high quality solutions.

Chapter 4 aims to deal with a problem encountered in Chapter 3: the robust and
sparse linear regression model underperforms for low signal-to-noise ratio values be-
cause of the overfitting behavior of the `0 norm. To reduce this overfitting behavior, a
regularization `1 term was added to the objective function. The obtained optimization
problem was recasted as a mixed integer program and a discrete first order algorithm was
proposed to find near optimal solutions for a low computational cost. Results on synthetic
data sets show that the regularized problems overperformed the `0 methods for low SNR
values and as the SNR increases, these methods become almost similar. Furthermore, re-
sults on real data sets show that the proposed method produces high quality solutions.

In Chapter 5 the problem of both feature selection and outlier detection using the
`0 norm in classification is addressed. The proposed approach performs, jointly, the se-
lection of relevant variables and the detection of outliers. The problem is formulated as
a mixed integer program which allows the use of the efficient solver "Gurobi" to solve
it. The proposed approach is compared with the classical 0-1 loss and hinge loss clas-
sification problems. The results show that the proposed approach provides high quality
solutions.

In Chapter 6 we conclude this thesis and discuss several interesting directions for fu-
ture work.
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1.4 Publications

The work contained in this thesis will be published or submitted for publication in the
following papers:

— Mahdi Jammal, Stephane Canu and Maher Abdallah. "Robust and Sparse Support
Vector Machines via Mixed Integer Programming". In Proceedings of The Sixth In-
ternational Conference on Machine Learning, Optimization, and Data Science – July
19-23, 2020 – Certosa di Pontignano, Siena – Tuscany, Italy. To be published in Lec-
ture Notes in Computer Science Volume 12514 - Springer.

— Mahdi Jammal, Stephane Canu and Maher Abdallah. "`1 Regularized Robust and
Sparse Linear Modeling Using Discrete Optimization". In Proceedings of The Sixth
International Conference on Machine Learning, Optimization, and Data Science –
July 19-23, 2020 – Certosa di Pontignano, Siena – Tuscany, Italy. To be published in
Lecture Notes in Computer Science Volume 12514 - Springer.

— Mahdi Jammal, Stephane Canu and Maher Abdallah. "Joint Outlier Detection and
Variable Selection Using Discrete Optimization". Submitted to the Journal of Global
Optimization.
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Optimization Tools for Machine Learning
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2.1 Introduction

Since its earliest days as a discipline, machine learning has made use of optimiza-
tion formulations and algorithms. Likewise, machine learning has contributed to opti-
mization, driving the development of new optimization approaches that address the si-
gnificant challenges presented by machine learning applications. This cross-fertilization
continues to deepen, producing a growing literature at the intersection of the two fields
while attracting leading researchers to the effort.

Optimization approaches have enjoyed prominence in machine learning because of
their wide applicability and attractive theoretical properties. While techniques proposed
twenty years and more ago continue to be refined, the increased complexity, size, and
variety of today’s machine learning models demand a principled reassessment of existing
assumptions and techniques.

This Chapter makes a start toward such a reassessment. Besides describing the resur-
gence in novel contexts of established frameworks such as first order methods, proximal

13
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methods the section devotes significant attention linear programming and mixed integer
programming needed in the rest of the thesis.

Of course many other useful optimization tools have been used in machine learning
such as heuristic and metaheuristic algorithms for combinatorial optimization. Because
this work initially focuses on the exact solutions to optimization problems, these ap-
proaches were not considered in this thesis.

For further mathematical details, we recommend the following references [SNW12,
NW06, BV04, WN99] from which the writing of this chapter is largely inspired.

2.2 Mathematical background

In machine learning in general and in this thesis in particular, we are usually dealing
with real variables of high dimension n. To this end, we will focus on optimization pro-
blems over the set Rn in the rest of the Chapter.

Consider a mathematical optimization problem of the form:{
min
x∈Rn

f0(x)

subject to fi (x) ≤ 0 i = 1, . . . ,m,
(2.1)

where x = (x1, . . . , xn)> is the vector of optimization variable of the problem. The func-
tion f0 : Rn −→ R is the given objective function and functions fi : Rn −→ R are the gi-
ven inequality constraint functions. A vector x? is called an optimal solution or global
minimizer to (2.1) if it has the smallest objective value among all vectors satisfying the
constraints, that is, for any z with fi (z) ≤ 0 i = 1, . . . ,m we have f0(z) ≥ f0(x?).

Suppose x1 6= x2 are two points in Rn . Points of the form y = θx1 + (1− θ)x2 where
θ ∈ R, form the line passing through x1 and x2. The parameter value θ= 0 corresponds to
y = x2, and the value θ= 1 corresponds to y = x1. Values of parameter θ between 0 and 1
corresponds to the closed line segment between x1 and x2.

Definition 2.2.1 (Convex set) A set C is convex , if the line segment between any two points
in C lies in C i.e if for any x1, x2 ∈ C and any θ ∈Rwith 0 ≤ θ≤ 1, we have:

θx1 + (1−θ)x2 ∈ C.

The notion of convex set is illustrated Figure 2.1. The domain or set of departure of a
function is the set into which all of the input of the function is constrained to fall. It is the
set X in the notation f : X 7→ Y, and is alternatively denoted as dom( f ).

Definition 2.2.2 (Convex function) A function f :Rn −→R is convex if dom( f ) is a convex
set and if for all x, y ∈ dom( f ), and θ ∈Rwith 0 ≤ θ≤ 1, we have

f (θx + (1−θ)y) ≤ θ f (x)+ (1−θ) f (y).

This inequality means that the line segment between (x, f (x)) and (y, f (y)) lies above the
graph of f .

This definition of convex function is illustrated Figure 2.2.

Definition 2.2.3 (Local minimizer) A vector x? ∈Rn is called a local minimizer of the op-
timization problem min

x∈C
f (x), if there exists a neighbourhood B of x? such that x? is a global

minimizer of the problem min
x∈C∩B

f (x).

In another way, x? is a local minimizer if there exists ε> 0 such that:

f (x?) < f (x) for all x ∈ B(x?,ε) := {x ∈Rn : ||x −x?|| ≤ ε}.
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2.2. Mathematical background

FIGURE 2.1 – The kidney shaped set (Right) is non-convex since the line segment between the two
points x and y in the set (taken from [BV04]).

In what follows, x, y ∈Rn and f :Rn 7→R.

Theorem 2.2.1 (First order optimality condition) Suppose f is differentiable (i.e its gra-
dient ∇ f exists at each point in dom( f )). Then f is convex if and only if dom( f ) is convex
and

f (y) ≥ f (x)+∇ f (x)T(y −x). (2.2)

holds for all x, y ∈ dom( f ).

The inequality above shows that from a local information about a convex function (its
value and its derivative at a point), we can derive a global information. This is perhaps the
most important property of convex functions.

Theorem 2.2.2 If x̂ is a local minimizer of a convex optimization problem, then it is a
global minimizer.

Theorem 2.2.3 (Second order optimality condition) Assume that f is twice differentiable,
that is its hessian or second derivative ∇2 f exists at each point in dom( f ). Then f is convex
if and only if dom( f ) is convex and its hessian is positive semi-definite, that is, for all
x ∈ dom( f ):

∇2 f (x)< 0.

Definition 2.2.4 (Subgradient) g is a subgradient of a convex function f : Rn −→ R at x ∈
dom( f ), if

f (z) ≥ f (x)+ g T(z −x) ∀z ∈ dom( f ).

FIGURE 2.2 – Example of a Convex Function.
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FIGURE 2.3 – The absolute value function (left), and its subdifferential ∂ f (x) as a function of x
(right) [BDV11].

This definition of subgradient is illustrated Figure 2.4.
If f is convex and differentiable, then its gradient at x is a subgradient. However, a

subgradient can exist even when f is not differentiable at x, as illustrated in figure 2.4. For
more details about subgradient, see [BDV11].

Definition 2.2.5 (Subdifferential) The set of all subgradients of f at x is called the subdif-
ferential. It is denoted by ∂ f (x).

We note that if f is convex and differentiable at x, then ∂ f (x) = {∇ f (x)}, i.e., its gra-
dient is its only subgradient. Conversely, if f is convex and ∂ f (x) = {g }, then f is differen-
tiable at x and g =∇ f (x).

Example: consider f (x) = |x|. For x < 0, the subgradient is unique: ∂ f (x) = {−1}. Similarly,
for x > 0, the subgradient is unique: ∂ f (x) = {+1}. At x = 0, the subdifferential is defined
by the inequality |z| ≥ g z for all z ∈R, which is satisfied if and only if g ∈ [−1,1]. Therefore,
we have ∂ f (0) = [−1,1]. This example is illustrated Figure 2.3.

Theorem 2.2.4 (Minimize of a non-differentiable convex function) A point x? is a mini-
mizer of a convex function f if and only if f is subdifferential at x? and

0 ∈ ∂ f (x?),

i.e g = 0 is a subgradient of f at x?. This condition reduces to ∇ f (x?) = 0 if f is differen-
tiable at x?.

FIGURE 2.4 – At x1, the convex function f is differentiable, and g1 (which is the derivative of f at
x1) is the unique subgradient at x1. At the point x2, f is not differentiable. At this point, f has many
subgradients: two subgradients, g2 and g3, are shown [BDV11].

For more details and proofs of the previous theorems, see for instance [SNW12, BV04].
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2.3 Convex Optimization problems

A convex optimization problem is a problem consisting of minimizing a convex func-
tion over a convex set. More explicitly, a convex problem is of the form:{

min
x∈Rn

f (x)

subject to x ∈ C,
(2.3)

where C is a convex set and f is a convex function over C.

2.3.1 Unconstrained convex and differentiable optimization problems

Consider the following convex optimization problem:

min
x

f (x), (2.4)

where f (x) is a convex function. This problem is an unconstrained optimization problem.
We recall that if x? is a local minimizer of this problem, then x? is also a global minimizer.
This means that a necessary and sufficient condition for x? to be the solution of problem
(2.4) is that, when f is differentiable and ∇ f exists , ∇ f (x?) = 0, where ∇ f (x) is the gra-
dient vector of f (x), that is

∇ f (x) =


∂ f
∂x1

...
∂ f
∂xn

 . (2.5)

Algorithms to solve unconsrtained optimization problems

We will shortly present two examples of efficient algorithms used to solve unconstrai-
ned convex optimization problems.

Gradient descent algorithm

We know that in order to minimize a convex function, we need to find a stationary
point. There are different methods and heuristics to find a stationary point. One possible
approach is to start at an arbitrary point, and move along the gradient at that point to-
wards the next point, and repeat until (hopefully) converging to a stationary point.

In general, one can consider a search for a stationary point as having two components:
the direction and the step size. The direction decides which direction we search next, and
the step size determines how far we go in that particular direction. Such methods can be
generally described as starting at some arbitrary point x(0) and then at every step k ≤ 0
iteratively moving at direction∆x(k) by step size tk to the next point x(k+1) = x(k)+tk∆x(k).
In gradient descent, the direction we search is the negative gradient at the point, i.e ∆x =
−∇ f (x). Thus, the iterative search of gradient descent can be described through the follo-
wing recursive rule:

x(k+1) = x(k) − tk∇ f (x(k)).

Since our objective is to minimize the function, one reasonable approach is to choose
the step size in manner that will minimize the value of the new point i.e find the step size
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that minimizes f (x(k+1)). The step size t?k of this approach is optimal and given by:

t?k = argmin
t≥0

f (x(k) − t∇ f (x(k))).

Algorithm 2.1 presents the pseudo code of the gradient descent algorithm with opti-
mal stepsize.

Algorithme 2.1 : Gradient descent.

Input : Guess x(0), set k = 0
Output : xk+1

while ||∇ f (x(k))|| ≥ ε do
tk = argmin

t≥0
f (x(k) − t∇ f (x(k))).

x(k+1) = x(k) − tk∇ f (x(k))
k ← k +1

The advantages of the gradient descent algorithm can be summarized as follows:

— each iteration is inexpensive ;

— does not require second derivative ;

while the drawbacks can be summarized as follows:

— often slow and sensitive to scaling;

— does not handle non differentiable functions.

Newton’s method

The gradient descent method uses only first derivatives in selecting a suitable search
direction. However, Newton’s method uses first and second derivatives and indeed pre-
forms better.

To solve an unconstrained optimization convex problem, we substitute the direction
−∇ f (x) by the direction −H(x)−1∇ f (x) where H(x) =∇2 f (x) is the hessian of f at x, that
is the square matrix of its second order partial derivatives.

2.3.2 Methods for non-differentiable functions

When the objective function f is non-differentiable many methods exists to solve the
corresponding optimization problem. The most popular ones in machine learning are the
subgradient method and the proximal gradient descent that we will now briefly introduce.

Subgradient method

To minimize a non-differentiable convex function f , substitute ∇ f (x) of the gradient
descent method, by g (x), where g (x) is any subgradient of f at x. The subgradient method
has a disadvantage in that it can be much slower than interior-point methods such as
Newton’s method, it as the advantage of the memory requirement being often times much
smaller than those of an interior-point or Newton method, which means it can be used for
extremely large problems for which interior-point or Newton methods cannot be used.
Instead of trying to improve across the board, we will focus on minimizing composite
functions of the form :

f (x) = g (x)+h(x),
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where g is convex, differentiable and dom(g ) = Rn . Also h is convex but not necessarily
differentiable.

Proximal gradient descent

The proximal gradient descent algorithm is based on the use of the proximal operator
defined as follows.

Definition 2.3.1 (The proximal operator) The proximal operator of a convex function h :
Rn → R at a point x ∈Rn is defined by:

pr oxh(u) = argmin
x∈Rn

(h(u)+ 1

2
||u −x||22).

Examples of proximal operators: [SNW12]

— h(x) = 0: pr oxh(x) = x ;

— h(x) = IC(x) (indicator function of C): pr oxh is the projection on C, that is, pr oxh(x) =
PC(x) ;

— h(x) = ||x||1: pr oxh is the following soft thresholding operator

pr oxh(x)i =


xi −1 i f xi ≥ 1
0 i f |xi | ≤ 1
xi +1 i f xi ≤−1.

Consider a composite function f that can be decomposed as the sum of two functions
g and h as follows:

f (x) = g (x)+h(x).

For a differentiable function f , the gradient update x+ = x − t ∇ f (x) is derived using qua-
dratic approximation (replace ∇2 f (x) by 1

2 I):

x+ = argmin
z

f (x)+∇ f (x)T(z −x)+ 1

2t
||z −x||22.

For a decomposable function f (x) = g (x)+h(x), if we use the quadratic approximation
for the function g , then:

x+ = argminz g (x)+∇g (x)T(z −x)+ 1
2t ||z −x||22 +h(z)

= argminz
1

2t ||z − (x − t∇g (x))||22 +h(z)
= pr oxh,t (x − t∇g (x)).

Therefore, the proximal gradient descent can be defined as follows:

— choose an initial guess x(0)

— repeat x(k) = pr oxtk (x(k−1) − tk∇g (x(k−1)), k = 1,2,3, . . .

Notes

— the proximal operator can be computed analytically for a lot of important h func-
tions,

— the proximal operator does not depend on g at all, only on h,

— g can be a complicated function, all we need to do is to compute its gradient,

— the proximal algorithm is very sensitive to the choice of the stepsize sequence tk .
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2.4 Constrained Convex Optimization Problems

In the the optimization problem 2.3, if the constraint set C is a convex set and the
objective function f is a convex function on C, then the problem is said to be a convex
optimization problem. In this case, any local minimizer is also a global minimizer.

When C is described as the intersection of a finite number of inequality and equality
constraints defined by some functions gi : Rn −→ R, i = 1, . . . ,m and h j : Rn −→ R, j =
1, . . . ,d as follows:

C = {x ∈Rn | gi (x) ≤ 0, i = 1, . . . ,m ;h j (x) = 0, j = 1, . . . ,d}.

The resulting constrained optimization problem is then written as:
min

x
f (x)

s.t gi (x) ≤ 0 i = 1, . . . ,m
h j (x) = 0 j = 1, . . . ,d .

If the objective function f and inequality constraint functions gi are all convex and
the equality constraint functions h j are all affine, then the above problem is a convex
optimization problem.

For convex constrained optimization problems, many specialized solution methods
have been developed; often, these are tailored to different classes of optimization pro-
blems (such as linear programs, quadratic programs, semi-definite programs, etc).

Projected gradient descent

Projected gradient descent (PGD) is one type of general-purpose solution method for
(convex) constrained optimization problems. The basic idea is quite simple. Consider a
convex optimization problem with convex function f and convex set C. A standard gra-
dient descent approach, which can be used to find a local minimum for an unconstrai-
ned optimization problem, is problematic here since the iterates xk may fall outside the
constraint set C. What PGD does is simply correct for this situation: on each iteration k,
it first applies a standard gradient descent step to obtain an intermediate point x̃k+1 that
might fall outside C, and then projects this point back to the constraint set C by finding a
point xk+1 in C that is closest (in terms of Euclidean distance) tox̃k+1.

For convex C, the point xk+1 after projection is always closer to the minimizer in C
than is the result of the gradient descent step x̃k+1, and for suitable choices of the step-
sizes, PGD converges to a (global) minimizer of the (convex) constrained optimization
problem. Note that in order to implement PGD in practice, one must be able to efficiently
compute projections onto the constraint set C ; this can be done easily for certain types of
constraint sets, but can be harder for others.

Algorithme 2.2 : Projected Gradient Descent.

Input : Guess x(0)

for k = 0, . . . ,T do
x̃(k+1) = x(k) − tk∇ f (x(k))
xk+1 = argmin

x∈C
||x − x̃(k+1)||22

Output : xk+1
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Lagrangian duality

Any constrained optimization problem has an associated (Lagrange) dual optimiza-
tion problem, which is always convex. Sometimes, the dual problem is easier to solve, and
can be used to obtain useful information about the original (primal) problem; in some
cases, it can even be used to obtain a solution to the primal problem.
Consider the constrained optimization problem ??. We will refer to it as the primal pro-
blem and we will denote its constraint set by C:

C = {x ∈Rn | gi (x) ≤ 0, i = 1, . . . ,m ;h j (x) = 0, j = 1, . . . ,d},

Any point x ∈ C is said to be primal feasible. Denote by p? the optimal value of the primal
problem:

p? = inf
x∈P

f (x).

Note that p? may or may not be achieved.
In Lagrangian duality, one introduces dual variables λi and ν j associated with each of
the inequality constraints gi (x) ≤ 0 and equality constraints h j (x) = 0, respectively, and
augments the objective function f by adding the constraint functions multiplied by the
corresponding dual variables to obtain the Lagrangian function. Formally, the Lagrangian
function L : Rn ×Rm ×Rd −→ R associated with the optimization problem ?? is defined
as:

L (x,λ,ν) = f (x)+
m∑

i=1
λi gi (x)+

d∑
j=1

ν j h j (x).

The dual variableλi and ν j are also referred to as the Lagrange multipliers associated with
the inequality and equality constraints, respectively.

Definition 2.4.1 (Lagrange dual problem) The Lagrange dual optimization problem is de-
fined by the following optimization problem:{

max
λ,ν

φ(λ,ν)

s.t λi ≥ 0 i = 1, . . . ,m,

where
φ(λ,ν) = inf

x∈Rn
L (x,λ,ν).

This dual problem is always a convex optimization problem, even if the primal problem
is not convex (note that the dual function is a pointwise infimum of affine functions of
(λ;ν), and therefore concave). Let CD denote the constraint set of this dual problem:

CD = {(λ,ν) ∈Rm ×Rd | λi ≥ 0, i = 1, . . . ,m}.

Any point (λ,ν) ∈ CD is said to be dual feasible. Denote by d? the optimal value of the dual
problem:

d? = sup
(λ,ν)∈CD

φ(λ,ν).

The optimal value of the dual problem always gives a lower bound on the optimal value
of the primal problem. d? ≤ p?.

Definition 2.4.2 (Duality gap) The duality gap is the non-negative number p?−d?.
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Definition 2.4.3 (Strong duality) We say that strong duality holds for problem if the dua-
lity gap is zero, that is:

p? = d?.

Definition 2.4.4 (Slater’s condition) We say that the problem satisfies Slater’s condition if
it is strictly feasible, that is:

∃x0 ∈ CD : gi (x0) < 0, i = 0, . . . ,m, h j (x0) = 0, j = 1, . . . ,d .

We can replace the above by a weak form of Slater’s condition, where strict feasibility is
not required whenever the function fi is affine.
For further informations and details, we suggest the reference [WN88].

Theorem 2.4.1 (Strong duality via Slater condition) If the primal problem is convex, and
satisfies the weak Slater’s condition, then strong duality holds, that is, p? = d?.

Note that there are many other similar results that guarantee a zero duality gap.
For example:

Theorem 2.4.2 (Quadratic convex optimization problems) If f0 is quadratic convex, and
the functions f1, . . . , fm ,h1, . . . ,hd are all affine, then the duality gap is always zero, provided
one of the primal or dual problems is feasible. In particular, strong duality holds for any
feasible linear optimization problem.

Example

Consider the following convex quadratic optimization problem over Rn with equality
constraints only:

min
x

1
2 xTx

s.t Cx = d ,

where C ∈Rd×n and d ∈Rd . Here Slater’s condition (trivially) holds, and therefore we have
strong duality. Introducing dual variables ν ∈Rd , the Lagrangian function is given by:

L (x,ν) = 1

2
xTx +νT(Cx −d).

Minimizing over x ∈Rn gives the followig dual problem:

φ(ν) =−1

2
νTCCTν−d Tν.

The dual optimization problem is then the following unconstrained convex quadratic
program over ν ∈Rd :

max −1

2
νTCCTν−d Tν.

This dual problem does not depend on the number of variables n in the primal problem.
Thus if the number of variables d in the primal problem is significantly larger than the
number of equality constraints d , then solving the dual problem can be more efficient
than solving the primal directly. On obtaining the dual solution ν?, the primal solution is
given by x? =−CTν?.
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Karush-Kuhn-Tucker (KKT) Optimality Conditions

If strong duality holds and the optimal values of the primal and dual problems are
achieved at x? and at (λ?;ν?), respectively, then the following 5 conditions, collectively
called the Karush-Kuhn-Tucker (KKT) conditions:

gi (x?) ≤ 0 i = 1, . . . ,m (primal feasibility)
h j (x?) = 0 j = 1, . . . ,d (primal feasibility)

λ?i ≥ 0 i = 1, . . . ,m (dual feasibility)
λ?i gi (x?) = 0 i = 1, . . . ,m (complementary slackness)

∇ f (x?)+
m∑

i=1
λ?i ∇gi (x?)+

d∑
j=1

ν?j ∇h j (x?) = 0 (stationarity condition)

Under strong duality, the KKT conditions are necessary for optimality of x? and (λ?,ν?).
Furthermore, if the primal problem is convex, then the KKT conditions are also sufficient
for points x? and (λ?,ν?) to be optimal ; see [BV04] for details. Thus in particular, if the
primal problem is convex and Slater’s condition holds, then the KKT conditions are both
necessary and sufficient for optimality.

2.5 Non-convex optimization

Modern applications frequently require learning algorithms to operate in extremely
high-dimensional spaces. Dealing with such high dimensionalities necessitates the im-
position of structural constraints on the learning models being estimated from data. Such
constraints are not only helpful in regularizing the learning problem, but often essential
to prevent the problem from becoming ill-posed.

2.5.1 Non-Convex Projections and Hard-Thresholding Operator

Executing the projected gradient descent algorithm with non-convex problems re-
quires projections onto non-convex sets.
A quick look at the projection problem:

PQ(z) = argmin
x∈Q

||x − z||22,

reveals that this is an optimization problem in itself. Thus, when the set Q is not convex,
the projection problem itself can be NP-hard. However, for several well-structured sets,
projections can be carried out efficiently despite the set being non-convex. We will only
introduce the projections into sparse vectors since this projection will be used later.
Before entering into the details of the alternate projected gradient algorithm, it is appro-
priate to introduce the problem of finding the projection of a vector u ∈Rn onto the set of
k ≤ n sparse vectors

min
v∈Rn

1
2‖v −u‖2

s.t. ‖v‖0 ≤ k.
(2.6)

This problem is easy and its solution v? is given by sorting on the absolute value of vec-
tor |u|, that is by a sequence of indices ( j ) such that |u(1)| ≥ |u(2)| ≥ . . . |u( j )| ≥ · · · ≥ |u(n)|.
Using these indices, the projection v? = Pk (u) of u is the vector u itself with its smallest
coefficients set to 0 that is

v? = Pk (u) =
{

u j if j ∈ {(1), . . . , (k)}
0 else.
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This operator is known as the hard-threshold operator.

2.5.2 Alternating minimization

We introduce a widely used non-convex optimization primitive namely the alterna-
ting minimization principle. The technique is extremely general and its popular use ac-
tually predates the recent advances in non-convex optimization by several decades. In-
deed, the popular Lloyd’s algorithm [Llo82] for k-mean clustering and the EM algorithm
[DLR77] for latent variable models, are problem specific variants of the general alterna-
ting minimization principle.

Consider the optimization problem:

min
x,y

Ψ(x, y) := f (x)+ g (y)+H(x, y),

where the functions f and g are extended values (i.e, allowing the inclusion of constraints)
and H is a smooth function. The standard approach to solve this problem is via the so-
called Gauss-Seidel iteration scheme, popularized in modern era under the name alter-
nating minimization. That is, starting with some given initial point (x(0), y (0)), we generate
a sequence {(x(k), y (k))}k∈N via the scheme

x(k+1) ∈ argmin
x

Ψ(x, yk )

y (k+1) ∈ argmin
y

Ψ(xk+1, y).

Convergence results for the Gauss-Seidel method can be found in several studies, see
e.g [Aus71, BT03, Nes13, Tse01]. Otherwise, as shown in [Pow73], the method may cycle
indefinitely without converging.

In the convex setting, for a continuously differentiable function Ψ, assuming strict
convexity of one argument while the other is fixed, every limit point of the sequence
{(x(k), y (k))}k∈N generated by this method minimizes Ψ, [BT03].

Removing the strong convexity assumption can be achieved by coupling the method
with a proximal regularization of the Gauss-Seidel scheme [SNW12]:

x(k+1) ∈ argmin
x

{Ψ(x, yk )+ ck

2
||x −xk ||2}

y (k+1) ∈ argmin
y

{Ψ(xk+1, y)+ dk

2
||y − yk ||2}.

The generalized alternating minimization algorithm is given as follows:

Algorithme 2.3 : Alternating minimization algorithm.

Input : Guess (x(0), y (0)), Objective function Ψ(x, y)
Output : A point (x?, y?) with near optimal value
for k = t , . . . ,T do

x(t+1) ←− argmin
x

Ψ(x, y t )

y t+1 ←− argmin
y

Ψ(x t+1, y)

We note that the choice of two blocks of variables is for the sake of simplicity of expo-
sition. Indeed, all results hold true for a finite number of block-variables.
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2.6 Linear programming

Linear programming (LP) is a method to achieve the best outcome (such as maximum
profit or lowest cost) in a mathematical model whose requirements are represented by
linear relationships [Wik20]. Linear programming is a special case of mathematical pro-
gramming (also known as mathematical optimization). More formally, linear program-
ming is a technique for the optimization of a linear objective function, subject to linear
equality and linear inequality constraints.

The general linear programming problem is zLP:

max
x∈Rn

cTx

s.t Ax ≤ b,

where A is an m ×n matrix, c is a n × 1 matrix and b is an m × 1 matrix [WN99]. We do
not consider equality constraints since it can be shown that an equality constraint can be
represented by two inequality constraints.

A linear programming (LP) is well-defined in the sense that if it is feasible and does
not have unbounded optimal value, then it has an optimal solution.

Linear programming problems can be solved using the simplex algorithms which are
part of linear programming software systems. Their performance shows that they are very
robust and efficient.

Definition 2.6.1 (Duality) Duality deals with pairs of linear programs and the relation-
ships between their solutions. One problem is called the primal and the other the dual. We
state the dual problem of zLP as wLP:

max
u∈Rm

bTu

s.t ATu ≥ c.

It does not matter which problem is called the dual because the dual of the dual is the
primal.

Proposition 2.6.1 (Weak duality) If x? is primal feasible and u? is dual feasible then:

cTx? ≤ zLP ≤ wLP ≤ bTu?.

This means that feasible solutions to the dual problem provide upper bounds on ZLP, and
feasible solutions to the primal problem yield lower bounds on wLP.

Theorem 2.6.1 (Strong duality) If zLP or wLP is finite, then both primal and dual have
finite optimal value zLP = wLP.

For more details about linear programming and proofs see for instance the Nocedal and
Wright’s reference book [NW06].

2.7 Mixed Integer Programming

A mixed integer program (MIP) can be written in the following format:

min{eTx +hT y : Fx +Gy ≤ b, x ∈Zn
+, y ∈Rp }, (2.7)
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where e and h are vectors of size n and p, respectively [WN99]. Matrices F and G have
size m ×n and m × p, respectively. Vector b is a column vector of size m. We recall that
if all variables are integer, then the problem is and integer program. If all variables are
0− 1, then then the problem is a binary integer program or a 0− 1 integer program. Let
z := (x, y), q = n +p, A = (F,G), c1 = (e,h) and S := {z ∈Zn+×Rp : Ax ≤ b}.
An optimization problem mi n{cT

2 z : z ∈ T} where c2 ∈ Rq is a relaxation of the problem
(2.7) if S ⊆ T and cT

2 z ≤ cT
1 z for all z ∈ S. One widely used relaxation is the so called linear

programming (LP) relaxation where the integrality of variables are relaxed in the MIP pro-
blem (2.7), i.e. if we replace x ∈Zn+ by x ∈ Rn+ then we obtain the LP relaxation of (2.7). Al-
though in some special cases MIP problems can be polynomially solvable, in general they
are known to be N P -complete. In other words, unless P = N P most MIP problems
cannot be solved in polynomial time. However, in practice the branch-and cut algorithm
is very successful in solving MIP problems. This algorithm combines the advantages of
the cutting plane and the branch-and-bound algorithms. The LP relaxation of a problem
is used as a starting point for all three algorithms. Furthermore, all the algorithms repea-
tedly solve LP problems while introducing new constraints. LP problems are much easier
to solve compared to solving MIP problems.

2.7.1 Branch and Bound Algorithm

The branch-and-bound method was developed by Land and Doig [LD10] in 1960. To
solve a MIP problem with this method, one initially solves the LP relaxation of the gi-
ven MIP problem. According to the solution of the LP relaxation, the method starts its
branching process. For a given solution ẑ, if ẑ ∉ Zn+ ×Rp , then the method creates two
nodes that divide the mixed-integer feasible set with constraints zi ≤ [ẑi ] and zi ≥ [ẑi ],
i = 1, . . . ,n. A node is clipped under three conditions: (i) a feasible solution is found, (ii)
problem is infeasible and (iii) the lower bound obtained from the node exceeds the best
available upper bound. If a node is not pruned then new nodes are created according to
the fractional solution at the current active node and the branching continues. The algo-
rithm ends when all the nodes are explored.

2.7.2 Cutting Plane Algorithm

A cutting plane algorithm is similar to the branch-and-bound algorithm in that it
starts with solving the LP relaxation of the given MIP problem and repeatedly solves LP
problems until it finds the optimal solution. However, instead of branching and creating
nodes at each step the algorithm adds valid inequalities to cut off infeasible solutions. A
valid inequality for a given MIP problem (2.7) is an inequality in the form of πz ≤ π0 and
is satisfied by all z ∈ S. Before using this algorithm, one needs to find valid inequalities
to add to the LP relaxation. Finding a good class of valid inequalities that take into consi-
deration the structure of the specific problem at hand is more of an art than a scientific
procedure that has defined steps. Once a class of valid inequalities is available the next
step is to find the most violated inequality (if any exists). This is called the separation pro-
blem. If a class of valid inequalities is adequate to find the optimal solution of set S for
any objective function vector c ∈Rq , then this class is enough to describe the convex hull
of S (i.e., conv(S)). The valid inequalities that make up the convex hull are called facet-
defining inequalities of conv(S). However, for most MIP problems, it is not possible to
find the valid inequalities that define the convex hull.
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FIGURE 2.5 – A sketch of the working principle of the branch-and-bound method for a twovariable
integer program. Every LP having a non-integer solution is branched into two LPs by adding an
extra constraint on the variable. [DP04].

FIGURE 2.6 – One Simple Example of a Cutting Plane (from gurobi.com/resource/mip-

basics/).
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2.7.3 Branch and Cut Algorithm

The branch-and-cut algorithm is a hybrid of the branch-and-bound and the cutting
plane algorithms. This hybrid method is widely used in the literature to solve MIP pro-
blems. Both the branch-and-bound and the cutting plane algorithms have drawbacks.
For example, the branch-and-bound algorithm might create a large branchand-bound
tree and the solution time can suffer due to solving too many LP problems. Similarly, the
cutting plane algorithm will most likely add exponentially many valid inequalities and
hence slow down the algorithm. In the branch-and-cut algorithm the cutting plane algo-
rithm is called throughout the branch-and-bound tree. One can decide to call the cutting
plane algorithm at every node or for example for the first c many nodes.

2.7.4 Mixed Integer Quadratic Program

Throughout more than 50 years of existence, mixed integer linear programming (MILP)
theory and practice have been significantly developed, and it is now an indispensable tool
in business and engineering. Two reasons for the success of MIP are the actual efficiency
of linear programming (LP) based solvers and the modeling flexibility of MIP. We now
have several extremely effective state-of-the-art solvers that incorporate many advanced
techniques and, since its early stages, MIP has been used to model a wide range of appli-
cations. While all state of the art MIP solvers are based on the branch-and-bound algo-
rithm, they also include a large number of advanced techniques that make it hard to pre-
dict the specific impact of an alternative formulation. However, there are two aspects of
an MIP formulation that usually have a strong impact on both simple branch-and-bound
algorithms and state of the art solvers: the size and strength of the LP relaxation, and the
effect of branching on the formulation.
We are interested in mixed integer quadratic optimization problem (MIQP) that is a pro-
belm of the form: 

min 1
2α

TQα+αTa
s.t. Aα≤ b

αi ∈ {0,1}, ∀i ∈ I
α j ∈R, ∀ j ∉ I,

(2.8)

where a ∈Rm , A ∈Rk×m ,b ∈Rk and Q ∈Rm×m are the given parameters of the problem, ≤
denotes element-wise inequalities and we optimize over α ∈Rm containing both discrete
(αi , i ∈ I) and continuous (αi , i ∉ I) variables, with I ⊆ {1, . . . ,m}. For background on MIP
see [BW05]. Modern integer optimization solvers such as Gurobi and Cplex are able to
tackle MIQO problems.

In the last twenty-five years (1991-2014) the computational power of MIP solvers has
increased at an astonishing rate. In [Bix12], to measure the speedup of MIP solvers, the
same set of MIP problems were tested on the same computers using twelve consecutive
versions of Cplex and version-on-version speedups were reported. The versions tested
ranged from Cplex 1.2, released in 1991 to Cplex 11, released in 2007, see Figure (2.7).
Each version released in these years produced a speed improvement on the previous ver-
sion, leading to a total speedup factor of more than 29,000 between the first and last ver-
sion tested. Gurobi 1.0, a MIO solver which was first released in 2009, was measured to
have similar performance to Cplex 11. Version-on-version speed comparisons of succes-
sive Gurobi releases have shown a speedup factor of more than 20 between Gurobi 5.5, re-
leased in 2013, and Gurobi. The combined machine-independent speedup factor in MIO
solvers between 1991 and 2013 is 580,000. This impressive speedup factor is due to incor-
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porating both theoretical and practical advances into MIO solvers. Cutting plane theory,
disjunctive programming for branching rules, improved heuristic methods, techniques
for preprocessing MIPs, using linear optimization as a black box to be called by MIP sol-
vers, and improved linear optimization methods have all contributed greatly to the speed
improvements in MIP solvers [Bix12]. For more details about the improvement of the MIP
solvers, see [Lin17].

In addition, the past twenty years have also brought dramatic improvements in hard-
ware. The hardware speedup from 1993 to 2013 is approximately 105.5 320000. When both
hardware and software improvements are considered, the overall speedup is approxima-
tely 200 billion! Note that the speedup factors cited here refer to mixed integer linear op-
timization problems, not MIQP problems. The speedup factors for MIQP problems are
similar. MIP solvers provide both feasible solutions as well as lower bounds to the optimal
value. As the MIP solver progresses towards the optimal solution, the lower bounds im-
prove and provide an increasingly better guarantee of suboptimality, which is especially
useful if the MIP solver is stopped before reaching the global optimum. In contrast, heu-
ristic methods do not provide such a certificate of suboptimality.

The belief that MIP approaches to problems in statistics are not practically relevant
was formed in the 1970s and 1980s and it was at the time justified. Given the astonishing
speedup of MIP solvers and computer hardware in the last twenty-five years, the mind-
set of MIP as theoretically elegant but practically irrelevant is no longer justified. In this
paper, we provide empirical evidence of this fact in the context of the problem of feature
selection and outlier detection in linear regression and support vector machines.

FIGURE 2.7 – Mixed Integer Programming Evolution in Cplex [Lin17].

2.8 Conclusion

This chapter introduced a mathematical background on optimization tools used in
this work. We presented different convex constrained and unconstrained optimization
problems together with some methods and algorithms to solve these problems. In ad-
dition, non-convex optimization algorithms were introduced, and alternating minimiza-
tion algorithm which is used to solve problems with two or more blocks of variables was
also presented. Linear Programming and Integer Programming were briefly introduced,
while a fast survey on solving Mixed Integer Programming problems was presented. In
general, all mathematical tools needed in the rest of the thesis were introduced.
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3.1 Introduction

Linear regression is a linear approach to modeling the relationship between a sca-
lar response (or dependent variable) and one or more explanatory variables (or inde-
pendent variables). The case of one explanatory variable is called simple linear regression.
For more than one explanatory variable, the process is called multiple linear regression
[Fre09]. Linear regression was the first type of regression analysis to be studied rigorously,
and to be used extensively in practical applications [YS09]. This is because models which
depend linearly on their unknown parameters are easier to fit than models which are non-
linearly related to their parameters and because the statistical properties of the resulting
estimators are easier to determine.

Linear regression has many practical uses. Most applications fall into one of the follo-
wing two broad categories:
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— If the goal is prediction, forecasting, or error reduction, linear regression can be used
to fit a predictive model to an observed data set of values of the response and expla-
natory variables. After developing such a model, if additional values of the expla-
natory variables are collected without an accompanying response value, the fitted
model can be used to make a prediction of the response,

— If the goal is to explain variation in the response variable that can be attributed to
variation in the explanatory variables, linear regression analysis can be applied to
quantify the strength of the relationship between the response and the explanatory
variables, and in particular to determine whether some explanatory variables may
have no linear relationship with the response at all, or to identify which subsets of
explanatory variables may contain redundant information about the response.

3.2 Least squares

Linear regression models are often fitted using the least squares approach. We consi-
der the linear regression model with response vector yn×1, model matrix X = [x1, . . . , xp ] ∈
Rn×p , regression coefficients β ∈Rp×1 and errors ε ∈Rn×1:

y = Xβ+ε.

Here β is the vector of unknown coefficients, and the variables x j can come from different
sources:

— quantitative inputs ;

— transformations of quantitative inputs, such as log, square-root or square ;

No matter the source of the x j , the model is linear in parameter [FHT01]. To estimate β,
the most popular estimation method is the least squares in which we pick the coefficients
β to minimize the residual sum of squares:

RSS(β) = ||y −Xβ||22
=

n∑
i=1

(
yi −

p∑
j=1

Xi jβ j
)2. (3.1)

The objective is to minimize (3.1) which is a quadratic function in β. Differentiating with
respect to β we obtain:

∂RSS

∂β
= −2XT(y −Xβ)

∂2RSS

∂β∂βT
= 2XTX.

(3.2)

Assuming (for the moment) that X has full column rank, and hence XTX is positive defi-
nite, we deduce that (3.1) is convex. Therefore, to minimize it, it is sufficient to set its first
derivative to zero, that is:

XT(y −Xβ) = 0,

we can easily deduce that if XTX is invertible i.e r ank(X) ≤ n, we have:

β̂= (XTX)−1XT y,

hence the predicted values at x are given by:

ŷ = xTβ̂= xT(XTX)−1XT y.

For more details see for instance [Fre09].
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Overfitting

Overfitting refers to a model that models the training data too well. It happens when
a model learns the detail and noise in the training data to the extent that it negatively
impacts the performance of the model on new data. This means that the noise or random
fluctuations in the training data is picked up and learned as concepts by the model. The
problem is that these concepts do not apply to new data and negatively impact the models
ability to generalize.

Bias-Variance trade-off

Bias is the difference between the average prediction of our model and the correct
value which we are trying to predict. Model with high bias pays very little attention to the
training data and oversimplifies the model. It always leads to high error on training and
test data.
While variance is the variability of model prediction for a given data point or a value which
tells us spread of our data. Model with high variance pays a lot of attention to training data
and does not generalize on the data which it has not seen before. As a result, such models
perform very well on training data but has high error rates on test data.

Mathematically, let the variable we are trying to predict as y and other covariates as X.
We assume there is a relationship between the two such that:

y = f (X)+ε,

where ε is the noise term of variance σ2
ε and it is normally distributed with a mean of zero.

Let f̂ (X) be the model estimator using linear regression. Then the expected squared error
at a point x is:

Er r (x) = E
[

(y − f̂ (x))2
]

=
(
E[ f̂ (x)]− f (x)

)2︸ ︷︷ ︸
Bias2

+E
[(

f̂ (x)−E[ f̂ (x)]
)2

]
︸ ︷︷ ︸

variance

+ σ2
ε︸︷︷︸

Irreducible error

.

where the irreducible error is the error that can’t be reduced by creating good models. It
is a measure of the amount of noise in our data. It is also important to understand that
no matter how good we make our model, our data will have certain amount of noise or
irreducible error that can not be removed.
Underfitting happens when a model is unable to capture the underlying pattern of the
data. These models usually have high bias and low variance. While overfitting happens
when our model captures the noise along with the underlying pattern in data. These mo-
dels usually have high variance and low bias. To this end, we need to find the right/good
balance without overfitting and underfitting the data. This is called bias-variance trade-
off.Thus to build a good model, we need to find a good balance between bias and variance
such that it minimizes the total error.

Ridge regression

In the high dimensional case, when p > n, the ordinary least squares estimator is not
unique and will heavily overfit the data. Thus, a form of complexity regularization will be
necessary [BVDG11]. Moreover, in high dimensional case, with a large number of predic-
tors, it can be helpful to identify a smaller subset of important variables to ensure a good
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interpretation performance. To overcome the problem of overfitting, the ridge regression
estimator was proposed by [HK70]. In ridge regression, the cost function is altered by a
penalty equivalent to square of the magnitude of the coefficients, that is:

min
β∈R

||Xβ− y ||22 +λ||β||22. (3.3)

The problem (3.3) can be shown equivalent to the following optimization problem:{
min
β∈R

||Xβ− y ||22
||β||22 ≤ c,

(3.4)

that is, a one-to-one correspondence exits between λ in (3.3) and c in (3.4). In (3.3) λ≥ 0
is a complexity parameter that controls the amount of shrinkage: the larger the value of λ,
the greater the amount of shrinkage [Fre09], we note that:

— when λ= 0, we get the linear regression estimate ;

— when λ=+∞, we get βridge = 0 ;

— For λ in between, we are balancing two ideas: fitting a linear model of y on X, and
shrinking the coefficients ;

The bias and variance are not quite as simple to write down for ridge regression as they
were for linear regression but closed-form expressions are still possible. The general trend
is :

— The bias increases as λ (amount of shrinkage) increases ;

— The variance decreases as λ (amount of shrinkage) increases ;

We recall that the solution of the ordinary least squares problem (3.1) is given by:

β̂= (XTX)−1XT y.

In the high dimensional case, p À n, the matrix XTX is not of full rank, and thus it is not
invertible and the solutions β̂ is no more unique. While it is easy to verify that the solution
of (3.3) is given by:

β̂= (XTX+λI)−1XT y,

where I is the p × p identity matrix, we can conclude that the ridge regression methods
adds a positive constant to the diagonal of XTX before inversion, which makes the pro-
blem non-singular even if XTX is not of full rank. This was the main motivation for ridge
regression when it was first introduced in statistics [HK70]. To see why this is true, first
remark that XTX is a p ×p symmetric matrix, hence its eigen decomposition is given by:
XTX = VDVT where

D =


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
. . .

0 0 0 · · · dp


with di ≥ 0. Now since matrix inversion corresponds to the inversion of of the eigenvalues,
then (XTX)−1 = VD−1VT (note that VT = V−1), this works if all eigenvalues are strictly grea-
ter than zero, that is di > 0 i = 1, . . . , p. However, for p À n this is impossible, moreover a
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TABLE 3.1 – Examples of convex penalty functions [AGN11].

Convex
Smooth at zero Singular at zero

P(β) = |β|α,α> 1 P(β) = |β| P
′
(0+) = 1

P(β) =√
α+β2 P(β) = α2 − (|β|−α)2I{|β| < α} P

′
(0+) = 2α

P(β) = log (cosh(αβ))
P(β) = β2 − (|β|−α)2I{|β| > α}
P(β) = 1+|β|/α− log (1+|β|/α)

small change or perturbation in any di will lead to a huge variation
1

di
if di is very small.

So what ridge regression does, is moving all eigenvalues further away from zero as:

XTX+λIp = VDVT +λIp

= VDVT +λVVT

= V(D+λIp )VT,

which now has eigenvalues di +λ≥ λ> 0. This is why choosing positive penalty parameter
makes the matrix invertible even in the high dimensional case p >> n. [Fre09] present
important references about the ridge regression.
Finally we will mention two drawbacks of the ridge regression:

— we should solve a p ×p linear system, which implies O(p3) computation, which is
hard when p is large;

— the solution β̂r i d g e is dense, that is the majority of its components is not equal to
zero, so the interpretation of the results will be difficult.

To this end, when p is large the notion of sparsity is always needed, where a sparse vector
refers to a vector with few non-zero element.

Penalized Regression

Penalized regression methods keep all the predictor variables in the model but cons-
train (regularize) the regression coefficients by shrinking them toward zero. If the amount
of shrinkage is large enough, these methods can also perform variable selection by shrin-
king some coefficients to zero.

The following equation shows the general form of the shrinkage and regularization
methods for linear models:

β̃= ar g min
β

||y −Xβ||22 s.t P(β) ≤ t ,

where P(β) is a penalty on the regression coefficients t is a positive tuning parameter.
The shrinkage (tuning) parameter t determines the amount of shrinkage on the re-

gression coefficients. Note that if you choose t to be very large, you do not place a penalty
on the size of the regression coefficients and thus the optimum β̃ is the OLS solution. As t
decreases, regression coefficients shrink from the OLS solution toward zero.

In the last decade, many different penalized regression methods have been proposed.
The LASSO [Tib96], adaptive lasso [Zou06] and elastic net [ZH05] are the most popular.
Other penalties are also proposed and for each method, the penalty P(β) ≤ t imposed on
the regression coefficients takes a different form as shown in Tables (3.1) and (3.2):
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TABLE 3.2 – Examples of non-convex penalty functions [AGN11].

Non-Convex
Smooth at zero Singular at zero

P(β) = αβ2/(1+αβ2) P(β) = |β|α, α ∈]0,1[ P
′
(0+) =∞

P(β) = mi n{αβ2,1} P(β) = log (α|β|+1) P
′
(0+) = α

P(β) = 1−exp−αβ2

P(β) =−log (exp−αβ2 +1)

3.3 Feature selection

Feature selection reduces the dimensionality of data by selecting only a subset of mea-
sured features to create a model. Subset of features is evaluated using a criteria that usually
involves minimization of a specific measure of predictive error. Feature Selection algo-
rithms search for a subset of predictors that optimally model the response variable, sub-
ject to constraints such as required or excluded features and the size of the subset. Feature
selection is preferable to feature transformation when the original units and meaning of
features are important and the modeling goal is to identify an influential subset. When ca-
tegorical features are present, and numerical transformations are inappropriate, feature
selection becomes the primary means of dimensionality reduction.

It might seem that adding more variables to the predictive model can make the model
utilizing more information; thus, making it more reliable. However, the more variables we
include into the model, the more flexible it becomes, and so we increase the overall pro-
bability for the model to overfit [Bis06]. So the final goal of Feature Selection is to keep the
number of parameters used in the model as low as possible while keeping its predictive
performance on an acceptable level. This way we reduce the probability of overfitting the
model. There is a number of other potential benefits from Feature Selection: simplifica-
tion of data visualization, decrease in storage requirements, reduction of training time,
defying the curse of dimensionality to improve the overall prediction performance.

Ridge regression will never sets coefficients to zero exactly, and therefore cannot per-
form variable selection in the linear model. While this did not seem to hurt its prediction
ability, it is not desirable for the purposes of interpretation (especially if the number of
variables p is large). In order to conduct statistically meaningful inference, it is desirable
to assume that the true regression coefficient β is sparse or may be well approximated by
a sparse vector. A natural way to compute sparse regression coefficients is to solve the,
well known, best subset selection problem:{

min
β∈Rp

1
2‖Xβ− y‖2

2

s.t. ‖β‖0 ≤ kv ,
(3.5)

where the `0 norm of a vector β counts the number of nonzeros in β. This classical pro-
blem dates back to at least [BKM67, HL67]. It has been considered as intractable since it
is an NP-hard problem [Nat95, Mil02]. Indeed, state-of-the-art algorithms to solve Pro-
blem (3.5), as implemented in popular statistical packages, like leaps in R, do not scale
to problem sizes larger than p = 30. Due to this reason, it is not surprising that the best
subset problem has been widely dismissed as being intractable by the greater statistical
community. Feature Selection is solved by a number of different approaches [GE03] that
can be divided into the following three categories:

— Ranking the features. A number of ranking statistical criteria has been developed
that measures the relative usefulness of every feature for making predictions. After
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ranking, we can select the best k features and build a model using only the selected
attributes.
Formally speaking, we have a data set of n observations (xi , yi )n

i=1 each consisting
of p independent variables xi ∈ Rp and one output dependent variable yi . Let xi k

be the kth component of the vector xi . We would like to select at most λ≤ p highly
relevant features. We use a scoring function S(k) ∈ R for k = 1. . . p computed from
the kth feature xi k and yi for every i = 1, . . . ,n. We will assume that a high score in-
dicates high relevancy of the variable in the sense of the used scoring function. So
after calculating S(k) for every k = 1. . .d we sort all features in the decreasing order
of S(k) and select the top λ independent variables. There are other techniques for
selecting an optimal subset of features [BBE+03, SDDO03]. The main idea of these
techniques is to introduce a random probe in the data by adding artificial inde-
pendent variables to the original data set that consist purely of gaussian noise. After
sorting the features, we disregard independent variables that have lower relevancy
than the newly constructed random variables since they potentially would provide
less information for a predictive model than regular random noise. The most well-
known and widely used scoring functions are Bayesian Information Criterion (BIC),
Akaike information criterion (AIC), Correlation (R) and Coefficient of Determina-
tion (R2) [Bis06]. However, the major drawback of ranking the features is that each
criterion can suggest a different list of the best attributes.

— Wrappers. Methods of this type use a predictive machine learning algorithm as a
perfect black box to evaluate the quality of a subset of attributes. To assess relevancy
of a subset of the features, we need to select a predictive tool first, like a regression
model or a classification algorithm, then we compute predictive performance of
the selected model that uses only the subset of selected features. Next, if we are not
satisfied with the quality of prediction, we modify the subset by following a prede-
fined search strategy. We repeat this procedure until we get acceptable predictive
performance or until we reach some stop criterion, like a maximum number of ite-
rations or inability to modify the subset of features in two consecutive iterations.
A wide range of search strategies can be used for selecting the best subset of fea-
tures, among them are: sequential search, simulated annealing, genetic algorithms,
etc. Actually, any general purpose heuristic can be used as a search strategy. Using
a learning machine algorithm as a black box, wrappers are universal and simple
to implement. Moreover, wrappers not only result in a good subset of relevant fea-
tures but they also produce a trained predictive model. These methods are belie-
ved to be the most accurate ; however, some criticize them as simple "brute force"
methods since they require a massive amount of computation [RPD01]. One of the
most common search strategies that is used in conjunction with linear regression
is sequential search. This type of regression called Stepwise linear regression. There
are 3 variations of sequential search:

1. Forward selection. The regression is initialized with only one feature added
into the model that is the most correlated with the response variable. Then it
searches for a feature that reduces a mean squared or absolute error the most.
If this decrease of the mean error is greater than some threshold, we conti-
nue adding new features until new independent variable does not decrease
the mean error for more than the threshold value.

2. Backward elimination. This variation of regression starts with all the inde-
pendent variables added into the model. Then it disregards one feature at a
time that does not increase mean error for more than the threshold. We stop
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Chapitre 3. Robust and Sparse Linear Regression

when we can not remove any additional feature from the subset of chosen fea-
tures without increasing the predictive error for too much. This process is op-
posite to Forward selection. Unfortunately, we can not use this method alone,
if the number of observations we have is less than the number of features.

3. Bidirectional search. This method is a combination of the above two. We start
with only one feature correlated with the response variable, then we apply For-
ward selection until no more additional features can be added into the model.
After that the Backward elimination procedure starts, until no more features
can be removed from the model without increasing the mean error too much.
We continue repeating these 2 search heuristics, until we reach a subset of in-
dependent variables that can not be alternated by any of the two procedures.

— Embedded Methods. Embedded methods are machine learning and statistical al-
gorithms that have a built-in Feature Selection. Usually they include a regulariza-
tion term that penalizes the objective function of the method if it adds too many fea-
tures into the model (like in LASSO [Tib96], Multivariate adaptive regression splines
(MARS) [Fri91] or Random multinomial logistic methods [FHT10]) or any method
that uses pruning as an intermediate step in the model building process for making
the model less complex, like in Decision Trees [GE03].

LASSO

To overcome the computational difficulties of the best subset selection problem, com-
putationally tractable convex optimization based methods like Lasso [Tib96] have been
proposed as a convex surrogate for Problem (3.5). For the linear regression problem, the
lasso problem is given by: {

min
β∈Rp

1
2‖Xβ− y‖2

2

s.t. ‖β‖1 ≤ t ,
(3.6)

where ||β||1 =
p∑

i=1
|βi |. Problem (3.6) is the constrained form of the lasso regression model.

There has been a lot of impressive work on lasso [EHJ+04, CP+09, BRT+09, ZH+08, ZY06,
Tib11] in terms of algorithms and understanding of its theoretical properties. Lasso enjoys
several attractive statistical properties and has drawn a significant amount of attention
from the statistics community.
The lasso can be written in the equivalent Lagrangian form [FHT01]:

min
β∈Rp

1

2
||Xβ− y ||22 +λ||β||1. (3.7)

It can be shown that Problems (3.6) and (3.7) are equivalent. We also note that Problem
(3.7) is a convex quadratic optimization problem and can be solved efficiently.

How to find lasso solutions?

We will show how problem (3.7) can be solved using two methods: coordinate descent
and proximal gradient descent.
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Coordinate descent:

1

2
||y −Xβ||22 +λ||β||1 = 1

2
||y −Xβ||22︸ ︷︷ ︸

g

+λ
p∑

i=1
|β|︸ ︷︷ ︸

h

.

We remark that g = 1

2

n∑
i=1

[
y (i ) −

p∑
j=1

β j X(i )
j

]2
, then differentiating g with respect to β j leads

to:
∂g

∂β j
= −

n∑
i=1

X(i )
j

[
y (i ) −

p∑
j=1

β j X(i )
j

]
= −

n∑
i=1

X(i )
j

[
y (i ) −

p∑
k=1,k 6= j

βk X(i )
k −β j X(i )

j

]
= −

n∑
i=1

X(i )
j

[
y (i ) −

p∑
k=1,k 6= j

βk X(i )
k

]
+β j

n∑
i=1

(
X(i )

j

)2

= −ρ j +β j z j ,

with ρ j =
n∑

i=1
X(i )

j

[
y (i ) −

p∑
k=1,k 6= j

βk X(i )
k

]
and z j =

n∑
i=1

(
X(i )

j

)2
.

h is not differentiable at 0, we can compute its subgradient, that is:

∂h

∂β j
=



−λ if β j < 0[−λ,λ
]

if β j = 0

λ if β j > 0.

To find the minimum, we have to solve 0 ∈ ∂g

∂β j
+ ∂h

∂β j
, that is:

0 =



−ρ j +β j z j −λ if β j < 0[−ρ j −λ,−ρ j +λ
]

if β j = 0

−ρ j +β j z jλ if β j > 0.

Then 0 ∈ [−ρ j −λ,−ρ j +λ] =⇒ −λ ≤ ρ j ≤ λ. Finally, we can deduce that the solution is
given by:

β j =



ρ j +λ
z j

if ρ j <−λ
0 if −λ≤ ρ j ≤ λ
ρ j −λ

z j
if ρ j > λ,

so that β j = 1

z j
S(ρ j ,λ) where S(ρ j ,λ) is the soft thresholding operator. We note that z j = 1

is the data is normalized.
The pseudo-code of the coordinate descent method for lasso is given by:
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Chapitre 3. Robust and Sparse Linear Regression

Algorithme 3.1 : Coordinate descent for lasso.

Input : data x and y
Output : β
for j = 1. . . p
compute: ρ j

Set: β j = S(ρ j ,λ)

Proximal gradient method

For any given y ∈Rn and X ∈Rn×p , the lasso criterion for linear regression is given by:

f (β) = 1

2
||y −Xβ||22︸ ︷︷ ︸

g (β)

+λ||β||1︸ ︷︷ ︸
h(β)

.

The proximal operator for the lasso objective is computed as follows:

pr oxt (β) = ar g minz
1

2t ||β− z||22 +λ||z||1
= ar g minz

1
2 ||β− z||22 +λt ||z||1

= Sλt (β).

where Sλ(β) is the soft threshold operator given, for i = 1, . . . , p, by:

Sλ(β)i =


βi −λ i f βi ≥ λ
0 i f |βi | ≤ λ
βi +λ i f βi ≤−λ.

Therefore, the proximal map for lasso objective is calculated by soft-thresholding β by
amount λt . Next, we use the gradient of g , ∇g (β) which is same as the gradient of least
squares function, i.e. ∇g (β) = −XT(y −Xβ). From this, we obtain the following proximal
gradient update:

β+ = Sλt (β+ tXT(y −Xβ)). (3.8)

This simple algorithm calculates the lasso solution and is known as Iterative soft-thre-
sholding algorithm (ISTA). It converges if t ≤ ||XTX||. We note that the proximal gradient
method is faster than the coordinate descent method.

Lasso vs Ridge and Feature selection

Ridge regression is a regularized linear regression model. It enforces the β coefficients
to be lower but it does not enforce them to be zero. That is, it will not get rid of irrelevant
features but rather minimize their impact on the trained model.
Lasso is another extension built on regularized linear regression. The only difference from
ridge regression is that the regularization term is in absolute value. This small difference
has a huge impact. Indeed, lasso method overcomes the disadvantage of ridge regression
by not only punishing high values of the coefficients β but actually setting them to zero
if they are not relevant. Therefore, we might end up with fewer features included in the
model than you started with, which is a huge advantage.

We also note that there exist many other variants of Lp penalties ||β||pp , elastic net and
Dantzig selector, see for instance [AADFG20].

40



3.3. Feature selection

Tuning parameter λ

The tuning parameter λ , sometimes called a penalty parameter, controls the strength
of the penalty term in ridge regression and lasso regression. It is basically the amount of
shrinkage, where data values are shrunk towards a central point, like the mean. We recall
that when λ = 0, the estimate is equal to the one found with ordinary least squares. As λ
increases more and more coefficients are set to zero and eliminated. As mentioned be-
fore, there is a trade-off between bias and variance in resulting estimators. As λ increases,
bias increases and as λ decreases, variance increases. For example, setting your tuning
parameter to a low value results in a more manageable number of model parameters and
lower bias, but at the expense of a much larger variance.
Choosing the tuning parameter is a challenging task. Optimal tuning parameters are diffi-
cult to calibrate in practice [LM15]. However the tuning parameter λ is usually chosen via
some cross-validation scheme aiming for prediction optimality [BVDG11].

Cross validation

Almost every machine learning algorithm comes with a large number of settings that
we need to specify. These tuning knobs, the so-called hyperparameters, help us control
the behavior of machine learning algorithms when optimizing for performance, finding
the right balance between bias and variance. Hyperparameter tuning for performance
optimization is an art in itself, and there are no hard-and-fast rules that guarantee best
performance on a given dataset. In the machine learning community, the cross validation
is the widely used method to tune these parameters.
Cross-validation is a model validation technique for assessing how the results of a statisti-
cal analysis will generalize to an independent data set. It is mainly used in settings where
the goal is prediction, and one wants to estimate how accurately a predictive model will
perform in practice. There are many cross validation strategies, however we are interested
only in:

— hold-out Validation;

— k-fold cross validation;

Hold-out validation: To avoid over-fitting, an independent test set is preferred. A natural
approach is to split the available data into two non-overlapped parts: one for training and
the other for testing. The test data is held out and not looked at during training. Hold-out
validation avoids the overlap between training data and test data, yielding a more accu-
rate estimate for the generalization performance of the algorithm. The downside is that
this procedure does not use all the available data and the results are highly dependent on
the choice for the training/test split. The instances chosen for inclusion in the test set may
be too easy or too difficult to classify and this can skew the results. Furthermore, the data
in the test set may be valuable for training and if it is held-out prediction performance
may suffer, again leading to skewed results. These problems can be partially addressed
by repeating hold-out validation multiple times and averaging the results, but unless this
repetition is performed in a systematic manner, some data may be included in the test set
multiple times while others are not included at all, or conversely some data may always
fall in the test set and never get a chance to contribute to the learning phase. To deal with
these challenges and utilize the available data to the max, k-fold cross-validation is used.

k-fold cross validation: In k-fold cross-validation the data is first partitioned into k equally
(or nearly equally) sized segments or folds. Subsequently k iterations of training and vali-
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dation are performed such that within each iteration a different fold of the data is held-out
for validation while the remaining k−1 folds are used for learning. Data is commonly stra-
tified prior to being split into k folds. Stratification is the process of rearranging the data as
to ensure each fold is a good representative of the whole. 5− and 10− fold cross validation
are mostly used.

3.4 Outlier detection

Outliers are understood to be observations that have been corrupted, incorrectly mea-
sured, mis-recorded, drawn under different conditions than those intended, or so atypical
as to require separate modeling [YXW+10]. Dealing with the presence of outliers can be
divided into two categories: (a) the so-called "robust statistics", that is robust-to-outlier
loss functions and (b) outlier detection per se which excludes outliers from the training
set.

Outliers may appear for many reasons, but the most common ones are experimental
errors and a priori unknown variability in the measured properties, which we are trying to
explain and predict. Usually outliers are excluded before applying statistical analysis ; ho-
wever, abnormal observations should be investigated separately from good observations
since some of them may carry additional knowledge useful for our analysis and provide
us with a key for deeper understanding of the studied phenomena [Coo77]. Many tech-
niques exist that allow us to find potential outliers [HA04]. In general, they can be divided
into two categories: statistical and machine learning techniques. Statistical approaches
were the first methods of outlier detection. The basic idea behind the statistical methods
is that all the observations are sampled from some, possibly unknown, distribution and
so, outliers are the values that are very unlikely to occur from that distribution. One of the
earliest approaches was Grubb’s method (Extreme Studentized Deviate) [Gru69], which
calculates a so called Z value of each observation. Z value is the difference between the
mean of the response variable and the query value is divided by the standard deviation of
the response variable, where the mean and standard deviation are calculated from all the
observations including the query value. After computing the Z value is compared with
1% or 5% significance level. This method do not use any input parameters. However, it
is sensitive to the number of observations and it assumes that the response variable is
normally distributed, which is not always true. Another simple and well-known statisti-
cal tool used for potential outlier detection is a method called boxplot [LJK+00] that uses
graphical plots for revealing the outliers in a given sample. The boxplot is a diagram that
visually represents the distribution of the sample we study, highlighting where the majo-
rity of values lie as well as shows abnormal observations that lie too far from the majority
of points.

As for the outlier detection techniques that are based on machine learning algorithms,
they rely on the idea that good observations are grouped into some clusters, while abnor-
mal observations lie far from the clusters. These methods rely on proximity information
from the data, like different clustering techniques and especially methods that are ba-
sed on k-Nearest Neighbours. Proximity based techniques make no prior assumptions
about the data distribution and usually are very easy to implement. However, there are
two drawbacks in such approaches. First, there must be a clear justification which dis-
tance metric we should use to calculate the proximity between any two observations. And
second, machine learning algorithms are very susceptible to the curse of dimensionality.
While the most effective statistical techniques automatically focus on the suspicious ob-
servations, the machine learning methods need to compute the distance between any two
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points and so increase in the data dimensionality will lead to at least quadratic increase in
time complexity. This is a common issue for the methods based on clustering or k-Nearest
Neighbour algorithms. To overcome these problems, the data need to be preprocessed
first to select the most relevant features and/or to reduce the number of observations lea-
ving only the most representative [AB94, Ska94].

All these techniques are general-purpose and can be applied before any data analysis
routines. However, if we need to perform regression specifically, we have another option.
We can use regression techniques that are less sensitive to the presence of outliers. These
regression techniques are called robust. The most widely used Least Sum of Squares es-
timator is a well-known non-robust lack-of-fit function. Even the presence of only one
abnormal observation may change the behaviour of the ordinary least squares (OLS) re-
gression [HRRS11]. On the other hand, another popular estimator, Least Sum of Absolute
Deviations (LAD), is a known robust estimator since even the presence of several outliers
does not change much its results comparing to results obtained on a data set without
outliers. Many more robust estimators have been developed and are still being develo-
ped, like the general M-estimator [Mal75], Least Trimmed Squares [Rou84], S-estimator
[RY84], MM-estimator [Yoh87] and their variations [ZA05] to account different assump-
tions, conditions and models. Nevertheless, despite of having many tools for detecting
potential outliers, they still pose a problem for regression modelling. The reason is that
no formal definition of an outlier exists, and so different techniques most likely will label
different observations as outliers

3.5 Feature Selection and Outliers Detection Literature

The first attempt to solve the sparse robust regression issue was the LAD-Lasso, pro-
posed by [WLJ07]. The idea was to use the least absolute deviation (LAD) loss to outliers
together with the `1 Lasso penalty that is for a given regularization parameter λ≥ 0,

min
β

‖Xβ− y‖1 +λ‖β‖1.

To solve this problem, the idea was to boil it down to an augmented unpenalized LAD
and use standard tools. Later, [LZ08] showed that this problem was a particular case of a
more general class of parametric LP problems and exhibited its solution path according
to λ. [WWL12] showed that this was a particular case of a general problem by conside-
ring generalization to check loss (associated with quantile regression) and non convex
penalties such as SCAD and MCP. Almost the same idea was introduced by [WYG+08] in a
totally different context motivated by the face recognition problem, in which sparse error
appears due to a fraction of the query image being occluded by glasses , hats, etc. The
novelty was the explicit introduction of a sparse variable τ modeling the corrupted pixels
(aka the outliers) (a fraction of its entries are nonzero)

min
β,τ

‖β‖1 +‖τ‖1

s.t . y = Xβ+τ.

In subsequent work, [WMM+10] acknowledged that this was the convex relaxation of the
following problem

min
β,τ

‖β‖0 +‖τ‖0

s.t . y = Xβ+τ.
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It has also been pointed out as further work in [WM10] to demonstrate the stability of this
model with respect to noise. It implies that y = Xβ+τ+ε where ε, can be seen as a dense
bounded Gaussian noise. To achieve exact recovery from measurements corrupted with
sparse noise [LDB09] proposed an algorithm under the name of justice pursuit denoising:

min
β,τ

‖β‖1 +‖τ‖1

s.t . ‖Xβ+τ− y‖2 ≤σ2,

[NT12] generalizes by introducing a controlled parameter λ≥ 0 that balances the two `1-
norm terms

min
β,τ

‖β‖1 +λ‖τ‖1

s.t . ‖Xβ+τ− y‖2 ≤σ2.

equivalent to (since its a convex problem)

min
β,τ

‖Xβ+τ− y‖2 +µ‖β‖1 +λ‖τ‖1.

this can be seen as a convexification of the brute force algorithm [CCM13]:

min
β,τ

‖Xβ+τ− y‖2

s.t . ‖β‖0 ≤ kv and ‖τ‖0 ≤ ko .

With the argument that `0 brings the ideal solution but the associated optimization pro-
blem is NP Hard, [CCM13] replaced the inner product used by the thresholding regres-
sion, the lasso and the Dantzig selector, with a trimmed inner product. They obtained
three robust algorithms: the robust thresholding regression, the robust lasso and the ro-
bust Dantzig selector.
[ACG+13] introduced the sparse least trimmed squares estimator. The idea was to use the
least trimmed squares estimator as a robust estimator, and the lasso to ensure sparsity.
[BJK15] proposed an algorithm called "Torrent: Thresholding Operator-based Robust Re-
gression Method". Torrent is based on estimating an active set of points which have the
least residual error on the current regressor, and then updating the regressor to provide
a better fit on this active set. [ÖAC16] introduced the shooting S-estimator combining
the ideas of the coordinate descent algorithm with simple S-regression. The introduced
estimator is especially designed for situations where a large number of observations suf-
fers from contamination in a small number of predictor variables. The thresholded jus-
tice pursuit [Des19] is also an interesting estimator in this area. Other robust versions of
the lasso have been considered in the literature [DBJ+20], most of them are penalized M-
estimators as in ([VdG+08]), ([LPZ11]) and ([DT19]).

In this chapter, we propose the use of the `0 norm as introduced by ([BKM16]), to
perform both variable selection and outliers detection.

Brief Context and Background

Let X = (x1, . . . , xn)t be a n×p design matrix and y ∈Rn a response vector. We consider
the following linear model to accommodate outliers:

∀i ∈ {1, . . . ,n}, yi =
{

x t
i β+εi if observation i is regular
γi if observation i is an outlier to be trimmed,

(3.9)
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where β ∈ Rp is the unknown parameter vector to be estimated, ε ∈ Rn is the noise vector
and γ ∈Rn an intervention vector. A way to model doubtful observations to be trimmed is
to introduce a vector τ ∈Rn modeling outliers:

∀i ∈ {1, . . . ,n}, τi =
{

0 if observation i has to be taken into account
yi −x t

i β−εi if observation i is an outlier to be trimmed,

The model (3.9) can be rewritten as the following linear model [SO11]:

y = Xβ+ε+τ. (3.10)

We are interested in minimizing the norm of the noise vector while selecting kv variables
and removing ko outliers, that is, solving the following optimization problem [CCM13],
for some q ∈ {1,2}, 

min
β∈Rp ,τ∈Rn

1
q ‖Xβ+τ− y‖q

q

s.t. ‖β‖0 ≤ kv

‖τ‖0 ≤ ko .

(3.11)

This formulation allows the selection of relevant variables and the avoidance of outliers.
When ko = 0, no outlier detection is performed and this problem boils down to the best
subset selection problem [Mil02, BKM16, MT15]. When kv = p, no variable selection is
performed, the resulting problem is known as the least trimmed squares regression pro-
blem [RL05, GP02]. Due to the nature of the cardinality constraints, Problem (4.4) is a non
convex optimization problem and has been shown to be NP-hard and considered as an in-
tractable problem. Mainstream research focused on solving a relaxed version of Problem
(4.4), by using the `1 norm instead of the `0 norm:

min
β∈Rp ,τ∈Rn

1
2‖Xβ+τ− y‖2

2

s.t. ‖β‖1 ≤ λ
‖τ‖1 ≤ γ,

(3.12)

where λ and γ are two nonnegative regularization parameters. However, this approach
is not globally optimal in the sense of (4.4). To retrieve the global minimum of Problem
(4.4), we propose the use of mixed integer optimization (MIO). The MIO approach has
a computational cost, but two decades of progress enabled its effective practical use for
moderately sized problems. Furthermore, in a near future the use of high performance
computing should allow some scalability [?, see for instance]for a more detailed motiva-
tion]bertsimas2016best.
We recall that the lagrangian relaxation of Problem (3.12) is given by:

min
β∈Rp ,τ∈Rn

1
2‖Xβ+τ− y‖2

2 +λ||β||1 +γ||τ||1. (3.13)

Statistical properties of Problem (3.13) have been explored in ([DT19, NT12]).

3.6 Variable Selection and Outlier Detection as a MIO

We propose to reformulate Problem (4.4) as a mixed integer (binary) optimization pro-
blem (MIO) by introducing binary variables representing whether or not variables and
observations are useful.
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3.6.1 Introducing Binary Variables

Variable selection involves the `0 norm function to count the number of useful va-
riables. This counting function can be represented by introducing p binary variables z j ∈
{0,1} such that

‖β‖0 =
p∑

j=1
z j and z j = 0 ⇔ β j = 0.

Different approaches can be used to force z j = 0 ⇔ β j = 0 into an optimization problem,
such as:

1. Replace β j by z jβ j for j = 1, . . . , p.

2. Set |β j |(1− z j ) = 0 for j = 1, . . . , p or
p∑

j=1
|β j |(1− z j ) = 0.

3. Use a big-M constraint, |β j | ≤ Mv z j for j = 1, . . . , p and for some fixed constant Mv

large enough (such as Mv ≥ max j |β?j |, β?j being the solution of the optimization
problem).

4. Treat z j = 0 ⇔ β j = 0 as logical implications (also called indicator constraints or spe-
cial ordered set SOS-1). Note that this kind of logical implication can be efficiently
handled in a branch-and-bound procedure for MIO problems.

We now discuss and give a short overview of the advantages and drawbacks of each ap-
proach. The two first approaches involve nonlinear interaction terms between binary and
continuous variables. Their interest lies in the possibility of obtaining interesting conti-
nuous relaxations. The main advantage of the big M method (approach 3) is that it brings
only linear inequality constraints, but the value of the M term needs to be chosen care-
fully since it shows a great deal of practical influence on the solver performance. Logical
implications (approach 4) have the advantage of avoiding these types of problems, as they
do not rely on a separate constant value. However, they tend to have weaker relaxations,
a condition which may lead to longer solve times in a model. In this paper we will use
the third approach for our implementation. Note that to be efficient, it is preferable to
reformulate Problem (4.4) as a quadratic mixed binary program.

Outlier detection also involves the `0 norm function to count the number of outliers.
This counting function can be represented by introducing n binary variables ti ∈ {0,1}
such as

‖τ‖0 =
n∑

i=1
ti and ti = 0 ⇔ τi = 0, (xi , yi ) is not an outlier.

3.6.2 A MIO Formulation

Introducing binary variables for both variables and outliers with two big M constraints,
given appropriate parameters kv ,ko ,Mv and Mo , Problem (4.4) becomes for some q ∈
{1,2}:

min
β∈Rp ,τ∈Rn ,z∈{0,1}p ,t∈{0,1}n

1
q ‖Xβ+τ− y‖q

q

s.t.
p∑

j=1
z j ≤ kv and |β j | ≤ z j Mv , j = 1, . . . , p

n∑
i=1

ti ≤ ko and |τi | ≤ ti Mo i = 1, . . . ,n.

(3.14)
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This problem turns out to be a mixed binary quadratic program when q = 2. When q = 1, it
can be written as a mixed binary linear program at the price of introducing 2n continuous
positive variables as follows:

min
β∈Rp ,τ,ε+,ε−∈Rn ,z∈{0,1}p ,t∈{0,1}n

n∑
i=1

ε+i +ε−i
s.t. ε+i −ε−i = x t

i β+τi − yi i = 1, . . . ,n
p∑

j=1
z j ≤ kv

|β j | ≤ z j Mv j = 1, . . . , p
n∑

i=1
ti ≤ ko

|τi | ≤ ti Mo i = 1, . . . ,n
0 ≤ ε+i , 0 ≤ ε−i i = 1, . . . ,n.

(3.15)

Note that the big M constraints can be replaced by special ordered set (SOS) constraints
of type 1 leading to the following equivalent formulation with no more big M:

min
β∈Rp ,τ∈Rn ,z∈{0,1}p ,t∈{0,1}n

1
q ‖Xβ+τ− y‖q

q

s.t.
p∑

j=1
z j ≤ kv

(β j ,1− z j ) : SOS j = 1, . . . , p
n∑

i=1
ti ≤ ko

(τi ,1− ti ) : SOS i = 1, . . . ,n.

(3.16)

It turns out that variable τ is not necessary and can be removed at the cost of the reintro-
duction of a big M constant as follows:

min
β∈Rp , ε∈Rn , z∈{0,1}p , t∈{0,1}n

1
q

n∑
i=1

|εi |q

s.t. |x t
i β+εi − yi | ≤ ti Mo i = 1, . . . ,n

p∑
j=1

z j ≤ kv

(β j ,1− z j ) : SOS j = 1, . . . , p
n∑

i=1
ti ≤ ko ,

(3.17)

leading to, for q = 2, a MIQP with p +n continuous variables, p +n binary ones, 2n + 2
inequality constraints and p SOS constraints.

3.6.3 Additional Constraints

One of the most important properties of a MIO formulation relies on the strength of
its continuous relaxation. It is known that the knowledge of strong valid inequalities for
the feasible sets may help the optimization process by providing tight lower bounds on
the cost [WN88]. Such inequality can be provided by considering the convex hull of the
feasible set
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S =
{
β,τ

∣∣ (z, t ) ∈ {0,1}n+p ,
p∑

j=1
z j ≤ kv , |β j | ≤ z j Mv ,

n∑
i=1

ti ≤ ko , |τi | ≤ ti Mo

}
,

that is

Conv(S) =
{
β,τ

∣∣ ||β||∞ ≤ Mv ||τ||∞ ≤ Mo ||β||1 ≤ kv Mv and ||τ||1 ≤ koMo

}
.

Adding the bounds of ||β||∞, ||τ||∞, ||β||1 and ||β||1 typically leads to improved perfor-
mance of the MIO, especially in delivering lower bound certificates [Vie15]. This remark
leads us to consider for practical reasons the following completed mixed integer program
with problem-dependent constants Mv and Mo . The choice of these constants is practi-
cally important ([BKM16]).

min
β∈Rp ,τ∈Rn ,z∈{0,1}p ,t∈{0,1}n

1
q ‖Xβ+τ− y‖q

q

s.t.
p∑

j=1
z j ≤ kv , (β j ,1− z j ) : SOS j = 1, . . . , p

n∑
i=1

ti ≤ ko , (τi ,1− ti ) : SOS i = 1, . . . ,n

‖β‖1 ≤ kv Mv , ‖β‖∞ ≤ Mv

‖τ‖1 ≤ koMo , ‖τ‖∞ ≤ Mo ,

(3.18)

Following [BKM16], we propose to specify those parameters from warm-start using
(β0,τ0) the solution provided by a first order alternate projected gradient algorithm pre-
sented next section. Given (β0,τ0), a natural setting for these parameters is Mv = θ‖β0‖
and Mo = θ‖τ0‖, for some θ ∈ [1,2].

Note that when p > n, as claimed in [BKM16], it may be advisable to also bound Xβ
by adding constraint of the type ‖Xβ‖1 ≤ M1, ‖Xβ‖∞ ≤ M∞ in the formulation of the opti-
mization problem. This brings two more constants M1 and M∞ to be initialized using the
warm start (β0,τ0).

In the rest of the paper, the Formulation (4.7) with q = 2 is used to solve Problem (4.4).
It will be denoted by `0 RR. Note that its `1 relaxation (Problem (3.12)) will be denoted by
`1 RR.

3.7 Proximal Alternating Linearized Minimization Algorithm

In this section, an efficient alternate projected gradient algorithm providing a local
solution to the optimization Problem (4.4) is introduced. Before entering into the details
of the alternate projected gradient algorithm, it is appropriate to introduce the problem
of finding the projection of a vector u ∈Rp onto the set of k ≤ p sparse vectors

min
v∈Rp

1
2‖v −u‖2

s.t. ‖v‖0 ≤ k.
(3.19)

This problem is easy and its solution v? is given by sorting on the absolute value of
vector |u|, that is by a sequence of indices ( j ) such that |u(1)| ≥ |u(2)| ≥ . . . |u( j )| ≥ · · · ≥ |u(p)|.
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3.7. Proximal Alternating Linearized Minimization Algorithm

Using these indices, the projection v? = Pk (u) of u is the vector u itself with its smallest
coefficients set to 0 that is

v? = Pk (u) =
{

u j if j ∈ {(1), . . . , (k)}
0 else.

We propose to use this projection mechanism, on both β and τ, to get a local solution to
the initial Problem (4.4) at a low computing cost.

A possible way to achieve this goal consists of using the so-called block Gauss-Seidel
iteration scheme on variables β and τ, also known as alternating minimization. To this
end, a sequence

{
(β`,τ`)

}
`∈N is generated starting from some (β0,τ0) using the following

scheme:
β`+1 = ar g min

β∈Rp
(β−β`)t Xt (Xβ`+τ`− y)

s.t. ‖β‖0 ≤ kv

‖β−β`‖2 ≤ dv


τ`+1 = ar g min

τ∈Rn
(τ−τ`)t (Xβ`+1 +τ`− y)

s.t. ‖τ‖0 ≤ ko

‖τ−τ`‖2 ≤ do .

Where dv and do are two given positive parameters that can be changed each step. The
idea of the proximal method is, at each iteration, to minimize a regularized first-order
approximation of the cost that can be interpreted as a local trust region mechanism [?,
for details see for instance]]parikh2014proximal. This surrogate loss is also a local upper
bound of the targeted loss since, for well chosen ρv and ρo , the Lagrange multipliers asso-
ciated with the trust region constraints are

1
2‖Xβ+τ`− y‖2 ≤ 1

2
‖Xβ`+τ`− y‖2 + (β−β`)t Xt (Xβ`+τ`− y)+ 1

2ρv
‖β−β`‖2

1
2‖Xβ`+1 +τ− y‖2 ≤ 1

2
‖Xβ`+1 +τ`− y‖2 + (τ−τ`)t (Xβ`+1 +τ`− y)+ 1

2ρo
‖τ−τ`‖2.

For each iteration, this method introduced by [BST14] and called the proximal alternating
linearized minimization (PALM) algorithm, consists of minimizing the upper bounds as
follows: 

β`+1 = ar g min
β∈Rp ,‖β‖0≤kv

(β−β`)t Xt (Xβ`+τ`− y)+ 1

2ρv
‖β−β`‖2

τ`+1 = ar g min
τ∈Rn ,‖τ‖0≤ko

(τ−τ`)t (Xβ`+1 +τ`− y)+ 1

2ρo
‖τ−τ`‖2.

That is, after some algebra, β`+1 = ar g min
β∈Rp ,‖β‖0≤kv

1
2‖β−β`+ρv Xt (Xβ`+τ`− y)‖2

τ`+1 = ar g min
τ∈Rn ,‖τ‖0≤ko

1
2‖τ−τ`+ρo(Xβ`+1 +τ`− y)‖2.

These two minimization problems are of the same kind as Problem (4.8) and thus the
sequence can be generated by using two `0 projected gradient, that is:{

β`+1 = Pkv

(
β`−ρv Xt (Xβ`+τ`− y)

)
τ`+1 = Pko

(
τ`−ρo(Xβ`+1 +τ`− y)

)
.

Algorithm 4.1 presents the pseudo code of the PALM algorithm.
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Chapitre 3. Robust and Sparse Linear Regression

Algorithme 3.2 : Proximal alternating linearized minimization (PALM) [BST14].

Data : X, y initialization β,τ= 0
Result : β,τ
set ρv ≤ 1

σ2
M

and ρo ≤ 1

while it has not converged (||βn+1 −βn ||2 > 10−6) do
d ← β−ρv X>(Xβ+τ− y) variable selection
β← Pkv (d)
δ← τ−ρo(Xβ+τ− y) eliminating outliers
τ← Pko (δ)

This algorithm converges towards a local minima of Problem (4.4) since it fulfills the
assumption needed for Theorem 3.1 in [BST14]. Indeed, the partial gradients Gβ(β) =
X>(Xβ+ τ− y) and Gτ(τ) = (Xβ+ τ− y) are globally Lipschitz with module respectively

1
σ2

M
and 1, σM being the largest singular value of X. Also, to prove the convergence, the

stepsizes have to be chosen such that ρv ≤ 1
σ2

M
and ρo ≤ 1.

3.8 Results for Synthetic Data Sets

In this section we show the empirical performance of the MIO approach.

3.8.1 Setup

In [HTT], a follow-up paper to ([BKM16]), the authors provide a synthetic setup consi-
dering a wide range of SNR values. We use it here to compare the best subset selection
(Formulation (4.7) with ko = 0), the lasso, PALM, the `0 robust regression - `0 RR and
the `1 robust regression - `1 RR. The same notations as [HTT] were used, namely n, p
(problem dimensions), s (sparsity level), beta-type (pattern of sparsity), ρ (predictor auto-
correlation level), and ν (SNR level).

— We define coefficients β0 ∈Rp according to s and the beta-type, as described below.

— We draw the rows of the matrix X ∈ Rn×p from Np (0,Σ), where Σ ∈ Rp×p has entry
(i , j ) equal to ρ|i− j |, and ρ= 0.35.

— We draw the vector y ∈ Rn from Nn(Xβ0,σ2I), with σ2 defined to meet the desired
SNR level, i.e., σ2 = βT

0Σβ0/ν.

— We use 5-fold cross validation and the tuning was performed by minimizing predic-
tion error on the test set.

— To assess the influence of outliers, 5% of outliers were added to the data set by fol-
lowing a normal N(50,σ) instead of N(0,σ).

— We considered two configurations: the low setting with n = 150, p = 15, and the me-
dium setting n = 500, p = 100. For each configuration, we also considered two set-
tings: the first one with outliers generated as mentioned above, and the second one
without adding outliers.

— The lasso was tuned over 100 values of λ (as it is in glmnet).

— In order to determine the values of kv , Mv , ko and Mo , we run the PALM algorithm
for kv ranging from 1 to p and for ko ranging from 0 to 10% with a step size of 2.5%.
Then, we choose the solution with the minimal error ||Xtestβpal m − ytest ||22.
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3.8. Results for Synthetic Data Sets

— Mv = (1+α)||βpal m ||∞, Mo = (1+α)||τpal m ||∞ with α = 0.1, kv and ko are set as the
number of nonzero elements in the solutions βpal m and τpal m respectively.

— The `1 robust regression (`1 RR) algorithm was tuned over five values of λ from zero
to 1.5||βl asso ||∞ where βl asso is the solution obtained by the lasso method, and over
fifty one values of γ from 0 to 5000 with a step size of 100 for the low dimensional
case, and from 0 to 10000 with a step size of 200 for the medium dimensional case.

— We run the best subset selection, the lasso, PALM, the `0 robust regression (`0 RR)
the `1 robust regression (`1 RR) using a 5-fold cross validation. The tuning was per-
formed by minimizing the error on the test set.

— We repeat 10 times for the low dimensional setting and 5 times for the medium
dimensional setting and average the results.

Coefficients: We considered three settings for the coefficients β0 ∈Rp as in [HTT]:

— beta-type 1: β0 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, . . . ,0︸ ︷︷ ︸
p−10 times

) ;

— beta-type 2: β0 has its first 5 components equal to 1, and the rest equal to 0 ;

— beta-type 5: β0 has its first 5 components equal to 1, and the rest decaying exponen-
tially to 0, specifically, β0i = 0.5i−s , for i = s +1, . . . , p, where s = 5 ;

Following [BKM16, HTT], we use, as an accuracy metric, the relative risk (RR) defined
by:

RR(β̂) = E(xT
0 β̂−xT

0 β0)2

E(xT
0 β0)2

= (β̂−β0)TΣ(β̂−β0)

βT
0Σβ0

,

The best score is 0 (when β̂= β0) and the null score is 1, obtained when β̂ = 0.
We also use the proportion of variance explained (PVE) defined by:

PVE(β̂) = 1− E(y0 −xT
0 β̂)2

Var(y0)
= 1− (β̂−β0)TΣ(β̂−β0)+σ2

βT
0Σβ0 +σ2

.

The maximum value for the PVE, also called the perfect score, is SNR/(SNR+1) (see [HTT]
for details).

3.8.2 Computational Costs

For the lasso, we used the Matlab "lasso" function with 100 values of λ as implemen-
ted in glmnet. The solution is delivered in a very short time. For the best subset selection
problem, we implemented the method using the MIO Formulation (4.7) with ko = 0, used
PALM to compute a warm start and then call Gurobi through its Matlab interface. We
used a time limit of 3 minutes for Gurobi to optimize the best subset selection problem
for both low and medium dimensional case. The same procedure is followed for the `0

robust regression problem but with a time limit increased to 10 minutes for the medium
dimensional setting.
For the `1 robust regression, we obtained 5×51 = 255 ( 5 values of λ and 51 values of γ)
solutions for each test. The time needed to obtain each solution depends on the size of
the dataset, but it varies from 0.16 second to about 1 second.
We can conclude that for low dimensional setting, we faced around 15 hours of computa-
tion , and more than 45 hours for the medium dimensional setting for each type of β.
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3.8.3 Results

Figures (3.1)-(3.6) plot the relative risk (left panel) and the proportion of variance ex-
plained (right panel) as functions of signal-to-noise ratio (SNR). The results can be divided
into two main categories:

No Outliers:

In this case, no outliers were added to the synthetic data sets generated as mentio-
ned before. Figures (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) show that for small SNR values,
the `1 methods (lasso and `1 RR) have the lead on the other methods (best subset selec-
tion, PALM and `0 RR). While for high SNR values the `0 approaches outperform the `1

approaches even though all the methods perform quite similarly for high SNR values.

Presence of Outliers

In this case, Figures (3.1), (3.2), (3.3), (3.4), (3.5) and (3.6) show that PALM, `0 RR and
`1 RR outperform the best subset selection and the lasso, which is not surprising since the
last two methods are not robust to outliers. In addition, for SNR < 0.25 the `1 RR performs,
in general, better than PALM and the `0 RR. But for higher SNR values, there is no clear
winner. An important caveat to emphasize up front is that the Gurobi MIO algorithm for
`0 RR was given only 10 minutes per problem, which may have caused the `0 RR to un-
derperform, and that the performance of the MIO algorithm depends on the parameters
tuned using PALM.

3.8.4 Detection Rate for the Reature Selection and Outlier Detection
Tasks

To determine whether the `0 robust regression approach can detect the outliers and
select the right features, we generated two low dimensional and two medium dimensio-
nal data sets using the β type-2, with SNR values 0.5 and 5. We added 5% of outliers in the
response vector (as in the setup of the synthetic data sets). kv and ko were set as the true
sparsity level of β and as the percentage of outliers (5%). In all cases, the detection rate of
both outliers and features was 100%, noting that no cross validation was performed.
In the experiments performed on both real and data sets, we used PALM to tune the para-
meters kv and ko . Thus the performance of the MIO approach depends on PALM. To this
end, each data set was split into two parts: the training set (70%) and the testing set (30%).
We added 5% of outliers in the training set’s response vector. PALM was performed for
kv ∈ [1, . . . , p] and ko

n ∈ [0,0.025,0.05,0.075,0.1]. PALM failed to estimate the true sparsity
level and the percentage of outliers, it overestimated the values of the parameters. This
leads the PALM-MIO approach to fail at detecting the percentage of outliers and selecting
the relevant features, even though all the true outliers were considered as outliers by this
approach.
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FIGURE 3.1 – Relative risk (left panel) and proportion of variance explained (right panel) functions
of SNR, for beta-type 1 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top
panel and bottom panel respectively).
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FIGURE 3.2 – Relative risk (left panel) and proportion of variance explained (right panel) functions
of SNR, for beta-type 2 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top
panel and bottom panel respectively).
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FIGURE 3.3 – Relative risk (left panel) and proportion of variance explained (right panel) functions
of SNR, for beta-type 5 in the setting with n = 150, p = 15, and s = 5 with and without outliers (top
panel and bottom panel respectively).
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FIGURE 3.4 – Relative risk (left panel) and proportion of variance explained (right panel) functions
of SNR, for beta-type 1 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top
panel and bottom panel respectively).
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FIGURE 3.5 – Relative risk (left panel) and proportion of variance explained (right panel) functions
of SNR, for beta-type 2 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top
panel and bottom panel respectively).
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FIGURE 3.6 – Relative risk (left panel) and proportion of variance explained (right panel) functions
of SNR, for beta-type 5 in the setting with n = 500, p = 100, and s = 5 with and without outliers (top
panel and bottom panel respectively).
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TABLE 3.3 – Summary of used datasets.

Name of the dataset number of instances n number of attributes p Origin
Body Fat 252 15 lib.stat.cmu.edu

Concrete Compressive Strength 1030 9 UCI
Concrete Slump Test 103 10 UCI
Real Estate Valuation 414 7 UCI
Diabetes 442 10 stat.ncsu.edu

Boston Housing 489 3 Web 1

Auto Mpg 398 8 UCI

3.9 Real Data Sets

The performances of all methods have been compared on real data sets. To this end we
have used 7 data sets presented in Table 4.1. The different methods have been compared
on all these data sets according to the following setup:

— The response vector y and the columns of the matrix X have been normalized and
standardized to have zero mean and one standard deviation;

— Two 5-fold cross validation loops have been implemented. The inner one has been
used to give a relevant choice for the hyper-parameters. The outer one has been
used to estimate the average mean squared error MSE ;

— As for synthetic data sets, we run PALM for kv ranging from 1 to p, and ko ranging
from 0 to 10% with a step seize of 2.5%, and pick the solution with smallest cross
validation error. This obtained solution is used to set the values of Mv and Mo and
as a warm start for the `0 robust regression algorithm as well ;

— The hyper-parameter λ of the lasso was tuned over 100 values as per the default in
glmnet ;

— The `1 robust regression algorithm was tuned over 5 values of λ (as for the synthetic
data sets) and over 40 values of γ varying from 0 to 2000 with a step size of 50. We
remarked that, for the normalized and standardized data set considered, it’s enough
to bound ||τ||1 by 2000 ;

— Outliers were generated by replacing 5% of the response vector values yi by yi +
2(max(y)−min(y)) that is a constant value set to the range of the response variable
in the training set ;

Each experience is repeated 3 times. Tables 3.4 and 3.5 report the average of the results
and the standard deviation in parentheses for the raw data.

An important caveat to emphasize upfront is that the `0 robust regression algorithm
was given 10 minutes time limit per problem instance per subset size. This practical res-
triction may have caused this algorithm to under perform in some cases. For the best
subset selection problem, the time limit was set to 2 minutes. We note that the optimality
was certified for almost every case in less than two minutes. In the absence of outliers,
results in Table 3.4 show that there is no clear winner. It is remarkable that all methods
performed quite similarly, with a little advantage of using the lasso. In the presence of
outliers, results in Table 3.5 show the dominance of the robust regression algorithms used
over the best subset selection and the lasso. The `0 robust regression performed better
than the other methods.
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TABLE 3.4 – Cross Validation MSE Rates (Standard Deviations) of the Best subset, Lasso, PALM, `0

Robust Regression (`0 RR) and `1 Robust Regression (`1 RR) on 7 Real Datasets.

Best subset Lasso Palm `0 RR `1 RR
Body Fat 2.2797 (7.2e−5) 4.2644 (1.5e−4) 2.5958 (5.2e−5) 2.6270 (4.77e−5) 4.5008 (6.2e−5)
Concrete Compressive Strength 0.3588 (0.018) 0.3602 (0.019) 0.3692 (4.2e−4) 0.3693 (3.5e−4) 0.3603 (0.015)
Slump Test 0.0880 (0.008) 0.0863 (0.012) 0.0864 (0.011) 0.0880 (0.008) 0.0869 (0.010)
Real Estate Valuation 0.2994 (0.024) 0.2924 (0.036) 0.3010 (0.026) 0.2992 (0.026) 0.2950 (0.033)
Diabetes 0.3917 (0.037) 0.3914 (0.038) 0.3889 (0.028) 0.3888(0.038) 0.3952 (0.039)
Boston Housing 0.2460 (0.007) 0.2460 (0.007) 0.2446 (0.008) 0.2440 (0.009) 0.2448 (0.006)
Auto Mpg 0.1469 (0.002) 0.1458 (0.005) 0.1523 (0.007) 0.1516 (0.007) 0.1478 (0.008)

TABLE 3.5 – Cross validation MSE rates (standard deviations) of the of the Best subset, Lasso, PALM,
`0 Robust Regression (`0 RR) and `1 Robust Regression (`1 RR) on 7 Real Datasets Corrupted by 5%
of Outliers in the Initial Response Vector y .

Best subset Lasso Palm `0 RR `1 RR
Body Fat 0.3923 (0.023) 0.4039 (0.034) 0.3679 (0.024) 0.3764 (0.009) 0.3882 (0.023)
Concrete compressive strength 0.5891 (0.063) 0.5877 (0.059) 0.5843 (0.070) 0.5842 (0.071) 0.5857 (0.755)
Slump test 0.2749 (0.186) 0.2463 (0.128) 0.1110 (0.022) 0.0958 (0.012) 0.1039 (0.018)
Real estate valuation 0.6581 (0.131) 0.6680 (0.146) 0.6587 (0.137) 0.6580 (0.138) 0.6688 (0.147)
Diabetes 0.5087 (0.015) 0.5002 (0.011) 0.5012 (0.009) 0.5009 (0.011) 0.4923 (0.014)
Boston housing 0.5408 (0.240) 0.5293 (0.231) 0.5425 (0.241) 0.5441 (0.241) 0.5235 (0.225)
Auto mpg 0.5498 (0.139) 0.5596 (0.128) 0.5406 (0.160) 0.5406 (0.160) 0.5370 (0.163)

3.10 Conclusion

In this chapter, we propose a method for linear regression which solves the underlying
optimization problem that handles both variable selection and outlier detection. We for-
mulate the problem as a mixed-integer optimization problem and present a fast alterna-
ting minimization algorithm to find local minima. Furthermore, we present an empirical
comparison between this method and its `1 relaxation on both synthetic and real data. We
have found that neither the `0 norm problem nor its `1 relaxation dominates the other.
Our recommendation is to use the `0 norm problem for large SNR while `1 relaxation is
preferred when SNR is small. While the `0 approach is considered to be intractable, es-
pecially, for high dimensional regimes, one can propose to use screening rules helping in
accelerating the solvers. Moreover, we have shown that if the true number of features and
percentage of outliers are well esitmated, the speed of convergence to the global mini-
mum decreases significantly. Furthermore, for high dimensional data sets, if we desire to
obtain near optimal solutions is a short time, we suggest the use of the first order discrete
optimization algorithm (PALM) which has shown high efficiency in terms of prediction
error and computational cost.
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4.1 Introduction

In regression, feature selection is an effective strategy to handle contaminated data
and to deal with high dimensionality while providing better prediction. In addition to the
presence of spurious variables, estimators suffer form corrupted, incorrectly measured or
misreported observations known as outliers. The natural way to select relevant variables
and to detect outliers is done by using the `0 norm for both aspects and recast the obtai-
ned optimization problem as a mixed integer optimization (MIO) problem. The `0 norm
estimators perform well when the signal to noise ratio (SNR) is high. However, its per-
formance decreases when the SNR is low due to the overfitting behavior of the `0 norm
when the noise is relatively high. To fix this problem, we propose to regularize the `0 norm
problem for variable selection and outlier detection by adding an `1 penalty term. We
also propose an efficient and scalable non-convex proximal alternate algorithm produ-
cing high quality solution in a short time and used as a warm start for the MIO solver.
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An empirical comparison between the `0 norm approach and its `1 regularized extension
is presented as well. Results provided that the MIO regularized approach and its discrete
first order warm start provide high quality solutions and performs better then the `0 ap-
proach especially for low SNR values. We consider the linear regression model:

y = Xβ+ε ,

where y ∈ Rn is the response vector, X ∈ Rn×p is the model matrix, β ∈ Rp is the vector of
regression coefficients and ε ∈ Rn is the error vector. We assume that the columns of X
have been standardized to have zero means and unit `2-norm.

In high-dimensional regimes i.e p À n, it is desired to estimate β by a sparse vector,
that is a vector with few nonzero elements. To this end, feature selection has been of great
importance in the last few decades [Mil02]. A natural way to compute sparse regression
coefficients is to solve the, well known, best subset selection problem:

min
β∈Rp

1
2‖Xβ− y‖2

2

s.t. ‖β‖0 ≤ kv .
(4.1)

Where the `0 norm of a vector β counts the number of nonzeros in β. This classical pro-
blem dates back to at least [BKM67, HL67]. It has been considered as intractable since it is
an NP-hard problem [Nat95, Mil02]. To overcome the computational difficulty of the best
subset selection, [Tib96] proposed an `1 relaxation of the cardinality constraint, widely
known as the "lasso":

min
β∈Rp

1
2‖Xβ− y‖2

2

s.t. ‖β‖1 ≤ k .
(4.2)

The popularity of Lasso is due to its computational feasibility with the guarantee of
getting a sparse model with good predictive performance. There have been an impres-
sive amount of works studying statistical properties of Lasso and proposing algorithms to
solve it [EHJ+04, FHT10, FHST16, SBC+17, EHJ+04] and the books or surveys [BVDG11,
FHT01, Tib11].

Throughout the years, researchers thought that best subset selection should be used
whenever it is possible. Unfortunately, best subset selection is NP-hard and popular im-
plementations such as the R package leaps do not scale to problem sizes larger than
p = 30. To this end, Problem (4.1) was considered to be an intractable problem. In its
work, [BKM15] showed that it is possible to find near optimal solution for high dimensio-
nal regimes in minutes (even though it takes hours to prove optimality) by formulating it
as a mixed integer optimization problem (MIO). They also claimed that the best subset se-
lection performs better than its competitors (lasso for example). However, this claim was
refuted by [?], and best subset selection is no more the "holy grail" estimator for sparse
modeling in regression: it overperforms other estimators for high signal to noise ratio
(SNR) values, while lasso ensures better predictive performance for low SNR values. In
fact, best subset selection suffers from overfitting. To overcome the overfitting of the best
subset selection, [MRD17] suggested to add an `q penalty term to the objective function
of Problem (4.1), where q ∈ {1,2}, so that the obtained problem is the following:

min
β∈Rp

1
2‖Xβ− y‖2

2 +λ||β||qq
s.t. ‖β‖0 ≤ kv .

(4.3)

The proposed method mitigates, to a large extent, the poor predictive performance of best-
subsets in the low SNR regimes.
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4.1. Introduction

The quality of estimators is known to be very sensitive to the presence of corrupted ob-
servations (outliers). Dealing with the presence of outliers can be divided into two ca-
tegories: (a) the so-called "robust statistics", that is robust-to-outlier loss functions and
(b) outlier detection per se which exclude outliers from the training set. In category (a),
[RL05] is a relevant reference (see for instance chapters 3,6 and 7). However, in category
(b), [CCM13, Li13, LDB09, SO11] are worth mentioning. For both categories (a) and (b)
[RH18, HA04] offer comprehensive references.

To solve the robust sparse regression problem, [WLJ07] proposed the least absolute
deviation (LAD) loss to deal with outliers, together with the `1 Lasso penalty, that is for
λ≥ 0:

min
β

‖Xβ− y‖1 +λ‖β‖1.

Later, [LZ08, WWL12] showed that this problem was a particular case of a more general
class of problems. To model outliers a sparse variable τ was introduced in [WYG+08] for
the first time. The idea was to minimize ||β||1 +||τ||1 s.t y = Xβ+τ. This formulation is the
convex relaxation of minimizing ||β||0 +||τ||0 s.t y = Xβ+τ as claimed by [WMM+10]. The
same idea was developped in many works [LDB09, NT12] for example. Later and for the
first time, the use of the `0 norm for both variables β and τ was proposed by [CCM13].
They proposed the brute force algorithm defined, for some q ∈ {1,2}, by:

min
β∈Rp ,τ∈Rn

1
q ‖Xβ+τ− y‖q

q

s.t. ‖β‖0 ≤ kv

‖τ‖0 ≤ ko ,

(4.4)

This formulation allows the selection of relevant variables and the avoidance of outliers, it
can be solved by recasting it as a mixed integer optimization problem. Furthermore, as it
is consists of double `0 norms, this formulation performs well for high SNR values, and its
performance degrades as the SNR value decreases. To this end, we propose to regularize
Problem (4.4) by adding an `1 penalty term as done in [MRD17] to overcome the limitation
of the `0 norm when the SNR is low. The proposed problem is defined by:

min
β∈Rp , τ∈Rn

1

2
||y −Xβ−τ||22 +λ||β||1

s.t ||β||0 ≤ kv

||τ||0 ≤ ko .

(4.5)

Contributions:

We summarize the contributions of this chapter below:

1. We propose to recast Problem (4.5) as a mixed integer optimization problem and
use an efficient solver to solve it. Note that the suboptimality of the obtained solu-
tion is guaranteed even if we terminate the algorithm early,

2. We introduce an algorithm based on a discrete extension of first order continuous
optimization methods. This framework is scalable and provides a local solution of-
ten close to the global one.

3. We propose to accelerate the MIO by using the discrete first order algorithm as a
warm start.

4. We present computational results on both real and synthetic data sets. The results
show that the proposed method performs well for low and high SNR values.
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4.2 Mixed Integer Optimization Formulation

Binary variables will be introduced to reformulate Problems (4.4) and (4.5) as mixed
integer binary optimization problems. These binary variables represent whether or not
variables and observations are useful.

4.2.1 Introducing Binary Variables

Variable selection involves the `0 norm function to count the number of useful va-
riables. This counting function can be represented by introducing p binary variables z j ∈
{0,1} such that

‖β‖0 =
p∑

j=1
z j and z j = 0 ⇔ β j = 0.

Different approaches can be used to force z j = 0 ⇔ β j = 0 into an optimization problem,
such as:

1. Replace β j by z jβ j for j = 1, . . . , p.

2. Set |β j |(1− z j ) = 0 for j = 1, . . . , p or
p∑

j=1
|β j |(1− z j ) = 0.

3. Use a big-M constraint, |β j | ≤ Mv z j for j = 1, . . . , p and for some fixed constant Mv

large enough (such as Mv ≥ max j |β?j |, β?j being the solution of the optimization
problem).

4. Treat z j = 0 ⇔ β j = 0 as logical implications (also called indicator constraints or spe-
cial ordered set SOS-1). Note that this kind of logical implication can be efficiently
handled in a branch-and-bound procedure for MIO problems.

We now discuss and give a short overview of the advantages and drawbacks of each ap-
proach. The two first approaches involve nonlinear interaction terms between binary and
continuous variables. Their interest lies in the possibility of obtaining interesting conti-
nuous relaxations. The main advantage of the big M method (approach 3) is that it brings
only linear inequality constraints, but the value of the M term needs to be chosen care-
fully since it shows a great deal of practical influence on the solver performance. Logical
implications (approach 4) have the advantage of avoiding these types of problems, as they
do not rely on a separate constant value. However, they tend to have weaker relaxations,
a condition which may lead to longer solve times in a model. In this paper we will use
the third approach for our implementation. Outlier detection also involves the `0 norm
function to count the number of outliers. This counting function can be represented by
introducing n binary variables ti ∈ {0,1} such as

‖τ‖0 =
n∑

i=1
ti and ti = 0 ⇔ τi = 0, (xi , yi ) is not an outlier.

4.2.2 MIO Formulation of Problem MIO Formulation of Problem (4.4)

Introducing binary variables for both variables and outliers with two big M constraints,
given appropriate parameters kv ,ko ,Mv and Mo , Problem (4.4) becomes for some q ∈
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{1,2}:

min
β∈Rp ,τ∈Rn ,z∈{0,1}p ,t∈{0,1}n

1
2‖Xβ+τ− y‖2

2

s.t.
p∑

j=1
z j ≤ kv and |β j | ≤ z j Mv , j = 1, . . . , p

n∑
i=1

ti ≤ ko and |τi | ≤ ti Mo i = 1, . . . ,n.

(4.6)

This problem is a mixed binary quadratic program.

4.2.3 MIO Formulation of Problem (4.5)

To deal with the `1-norm term in Problem (4.5), we introduce two variables η+,η− ∈Rp

such that |β j = η+j +η−j | and β j = η+j −η−j .

min
β∈Rp ,τ∈Rn ,η+∈Rp ,η−∈Rp ,z∈{0,1}p ,t∈{0,1}n

1
2‖Xβ+τ− y‖2

2 +λ
p∑

j=1
(η++η−)

s.t.
p∑

j=1
z j ≤ kv and |β j | ≤ z j Mv , j = 1, . . . , p

n∑
i=1

ti ≤ ko and |τi | ≤ ti Mo i = 1, . . . ,n

η+j −η−j = β j j = 1, . . . , p.
(4.7)

4.3 Discrete First Order Algorithms

In this section we propose discrete first order methods to obtain near optimal solu-
tions for Problems (4.4) and (4.5). These first order methods are used as warm starts to
the MIO formulations leading to a significant decrease in computational time [BKM15].
Furthermore, as it will be shown in numerical experiments, the first order algorithms pro-
vide high quality solutions in a short time (compared to MIO problems). The proposed
algorithms borrow ideas from alternating minimization and projected gradient descent
methods.
In [BST14], a proximal alternating linearized minimization (PALM) algorithm for non-
convex and non-smooth problems was proposed to solve, under some assumptions, pro-
blems of the form:

min
x,y

Ψ(x, y) := f (x)+ g (y)+H(x, y).

To deal with cardinality constraints, it is appropriate to introduce the problem of finding
the projection of a vector u ∈Rp onto the set of k ≤ p sparse vectors

min
v∈Rp

1
2‖v −u‖2

s.t. ‖v‖0 ≤ k.
(4.8)

This problem is easy and its solution v? is given by sorting on the absolute value of vec-
tor |u|, that is by a sequence of indices ( j ) such that |u(1)| ≥ |u(2)| ≥ . . . |u( j )| ≥ · · · ≥ |u(p)|.
Using these indices, the projection v? = Pk (u) of u is the vector u itself with its smallest
coefficients set to 0 that is

v? = Pk (u) =
{

u j if j ∈ {(1), . . . , (k)}
0 else.
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We propose to use this projection mechanism, on both β and τ, to get a local solution to
the initial Problems (4.4) and (4.5) at a low computational cost.

4.3.1 Discrete First Order Algorithm for Problem (4.4)

We use f (β,τ) to denote the objective function in (4.4):

min
β,τ

F(β,τ) := f (β,τ) s.t ||β||0 ≤ kv ||τ||0 ≤ ko . (4.9)

The partial derivatives of f are given by:

∇β f (β,τ) = Xt (Xβ+τ− y) = Gβ(β),

and
∇τ f (β,τ) = (Xβ+τ− y) = Gτ(τ).

By simple calculation, it can be shown that Gβ and Gτ are Lipschitz with modules L1 =
σ2

max(X) and L2 = 1 respectively, where σmax(X) is the maximum singular value of X.

We want to obtain local solutions for Problems (4.4) and (4.5) at a low computational
cost. A possible way to achieve this goal consists of using the so-called block Gauss-Seidel
iteration scheme on variables β and τ, also known as alternating minimization. To this
end, a sequence

{
(β`,τ`)

}
` ∈N is generated starting from some (β0,τ0) using the following

scheme:
β`+1 = ar g min

β∈Rp
(β−β`)t Xt (Xβ`+τ`− y)

s.t. ‖β‖0 ≤ kv

‖β−β`‖2 ≤ dv


τ`+1 = ar g min

τ∈Rn
(τ−τ`)t (Xβ`+1 +τ`− y)

s.t. ‖τ‖0 ≤ ko

‖τ−τ`‖2 ≤ do .

Where dv and do are two given positive parameters that can be changed each step. The
idea of the proximal method is, at each iteration, to minimize a regularized first-order
approximation of the cost that can be interpreted as a local trust region mechanism [?,
for details see for instance]]parikh2014proximal. This surrogate loss is also a local upper
bound of the targeted loss since, for well chosen ρv and ρo , the Lagrange multipliers asso-
ciated with the trust region constraints are

1
2‖Xβ+τ`− y‖2 ≤ 1

2
‖Xβ`+τ`− y‖2 + (β−β`)t Xt (Xβ`+τ`− y)+ 1

2ρv
‖β−β`‖2

1
2‖Xβ`+1 +τ− y‖2 ≤ 1

2
‖Xβ`+1 +τ`− y‖2 + (τ−τ`)t (Xβ`+1 +τ`− y)+ 1

2ρo
‖τ−τ`‖2.

For each iteration, this method introduced by [BST14] and called the proximal alternating
linearized minimization (PALM) algorithm, consists of minimizing the upper bounds as
follows: 

β`+1 = ar g min
β∈Rp ,‖β‖0≤kv

(β−β`)t Xt (Xβ`+τ`− y)+ 1

2ρv
‖β−β`‖2

τ`+1 = ar g min
τ∈Rn ,‖τ‖0≤ko

(τ−τ`)t (Xβ`+1 +τ`− y)+ 1

2ρo
‖τ−τ`‖2.

That is, after some algebra, β`+1 = ar g min
β∈Rp ,‖β‖0≤kv

1
2‖β−β`+ρv Xt (Xβ`+τ`− y)‖2

τ`+1 = ar g min
τ∈Rn ,‖τ‖0≤ko

1
2‖τ−τ`+ρo(Xβ`+1 +τ`− y)‖2.
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These two minimization problems are of the same kind as Problem (4.8) and thus the
sequence can be generated by using two `0 projected gradient, that is:{

β`+1 = Pkv

(
β`−ρv Xt (Xβ`+τ`− y)

)
τ`+1 = Pko

(
τ`−ρo(Xβ`+1 +τ`− y)

)
.

Algorithm 4.1 presents the pseudo code of the PALM algorithm.

Algorithme 4.1 : Proximal alternating linearized minimization (PALM) [BST14].

Data : X, y,ε initialization β,τ= 0
Result : β,τ
set ρv ≤ 1

σ2
M

and ρo ≤ 1

while it has not converged (||βn+1 −βn ||2 > ε) do
d ← β−ρv X>(Xβ+τ− y) variable selection
β← Pkv (d)
δ← τ−ρo(Xβ+τ− y) eliminating outliers
τ← Pko (δ)

This algorithm converges towards a local minima of Problem (4.4) since it fulfills the
assumption needed for Theorem 3.1 in [BST14]. Indeed, the partial gradients Gβ(β) =
X>(Xβ+ τ− y) and Gτ(τ) = (Xβ+ τ− y) are globally Lipschitz with module respectively

1
σ2

M
and 1, σM being the largest singular value of X. Also, to prove the convergence, the

stepsizes have to be chosen such that ρv ≤ 1
σ2

M
and ρo ≤ 1.

4.3.2 Discrete First Order Algorithm for Problem (4.5)

The main difference between Problems (4.4) and (4.5) is the presence of an `1 penalty
in the objective function of (4.5). Let

F(β) = 1
2 ||Xβ+τ− y ||22 +λ||β||1 s.t ||β||0 ≤ kv

= f (β)+λ||β||1 s.t ||β||0 ≤ kv .

The gradient of f (β) is Lipschitz and continuous with parameter Lv , in fact:

||∇ f (β)−∇ f (β̃)||2 ≤ Lv ||β− β̃||2 ∀β, β̃ ∈Rp .

whith Lv =σ2
max(X), where σmax(X) is the maximum singular value of X. Consequently, for

L ≥ Lv , we have the following upper bound to f (β):

f (β) ≤ f (β̃)+〈∇ f (β̃),β− β̃〉+ L

2
||β− β̃||22 := QL(β, β̃) ∀β, β̃ ∈Rp .

Our goal is to minimize this upper bound, that is:

min
||β||0≤kv

QL(β, β̃)+λ||β||1 ⇔ min
||β||0≤kv

L

2
||β− (β̃− 1

L
∇ f (β̃))||22 +λ||β||1.

Dealing with the `1 penalty term necessitates the use of the soft-thresholding ope-
rator, while dealing with the cardinality constraint requires using the hard-thresholding
operator (the projection operator).

To solve our problem, we introduce a thresholding operator [MRD17] combining both
ideas:

S(u;kv ;λ) = ar g min
||β||0≤kv

1

2
||β−u||22 +λ||β||1 .
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This threshold operator has the form:

βi =
{

si g n(ui )max{0, |ui −λ|} i ∈ {(1), (2), . . . , (kv )}
0 otherwise,

where (1), . . . , (p) is a permutation of the indices 1, . . . , p.
Summing up all together, we obtain that the β update is given by: By introducing the

soft-thresholding operator, it can be shown that the β− update is given by:

β ← β−ρv Xt (Xβ+τ− y)
β ← si g n(β)max(0, |β|−ρvλ)
β ← Pkv (β).

Putting all that together leads to Algorithm 4.2.

Algorithme 4.2 : Proximal alternating linearized minimization (PALM) for Pro-
blem (4.5).

Data : X, y initialization β,τ= 0
Result : β,τ
set ρv ≤ 1

σ2
M

and ρo ≤ 1

while it has not converged (||βn+1 −βn ||2 > 10−6) do
d ← β−ρv X>(Xβ+τ− y)
d ← si g n(d)

(
max(0, |d |−ρvλ)

)
β← Pkv (d)
δ← τ−ρo(Xβ+τ− y)
τ← Pko (δ)

Note that this algorithm converges towards a local minima of Problem (4.5) since it
fulfills the assumption needed for Theorem 3.1 in [BST14].
In the rest of the paper, algorithm (4.1) will be denoted by PALM0, while algorithm (4.2)
will be denoted by PALM0,1

4.4 Experiments on Synthetic Data Sets

The aim of the experiments is to shed the light on the superior performance of Pro-
blem (4.5) over Problem (4.4), especially for low SNR values. We note that, Problem (5) will
be denoted by L0,1, Problem (4) will be denoted by L0, Algorithm (4.2) will be denoted by
PALM0,1 and Algorithm (4.1) will be denoted by PALM0.

4.4.1 Setup

Given n, p (problem dimensions), s (sparsity level), beta-type (pattern of sparsity), ρ
(predictor auto-correlation level), and ν (SNR level) as in [HTT], the setup can be descri-
bed as follows:

— We define coefficients β0 ∈Rp with a sparsity level s = 5 and with beta-type, as des-
cribed below.

— We draw the rows of the matrix X ∈ Rn×p from Np (0,Σ), where Σ ∈ Rp×p has entry
(i , j ) equal to ρ|i− j |. We considered two values ρ= 0.3 and ρ= 0.6

— The columns of X are standardized to have mean zero and unit `2 norm.
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— We then draw the vector y ∈Rn from Nn(Xβ0,σ2I), with σ2 defined to meet the desi-
red SNR level, i.e., σ2 = βT

0Σβ0/ν. We considered three values of SNR 0.5,1 and 3.

— The data set (X, y) is used as a training set. A validation set (Xt , yt ) is created in the
same way as (X, y) with nt = 1000.

— 5% of outliers were added to the training data set by following a normal N(50,σ)
instead of N(0,σ).

— In order to determine the values of kv , Mv , ko , Mo and λ, we run the PALM algo-
rithms for and pick the solution minimizing the error on the testing data, let βPALM

denote this solution.

— Mv = (1+α)||βpal m ||∞, Mo = (1+α)||τpal m ||∞ with α = 0.1, kv and ko are set as the
number of nonzero elements in the solutions βPALM and τPALM respectively.

— We considered three configurations: the low setting with n = 10, p = 20, the medium
setting n = 50, p = 100 and the high-dimensional setting n = 100, p = 1000.

Coefficients: We considered two settings for the coefficients β0 ∈Rp :

— beta-type 1: β0 = (1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, . . . ,0︸ ︷︷ ︸
p−10 times

) ;

— beta-type 2: β0 has its first 5 components equal to 1, and the rest equal to 0 ;

4.4.2 Selecting Tuning Parameters

In order to compare Problem (4.4) (L0), Problem (4.5) (L0,1), Algorithm (4.1) (PALM0)
and Algorithm (4.2) (PALM0,1), we considered two different experiments:

Experiment 1:

To shed the light on the influence of the `1 penalty, we run both PALM algorithms (4.1)
and (4.2) on the data set (X, y) for kv ∈ {2,5,10,15} and for ko = 5% that is the true percen-
tage of outliers added to the data. In order to determine λ, we run PALM algorithm (4.2)
for 100 values of λ starting with λ1 = ||X′y ||∞. {λi }100

i=1 is a geometrically spaced sequence
with λ100 = 10−4λ1.

We pick the solutions β̂PALM0,1 (λ,kv ) and β̂PALM0 (kv ) with smallest error ||Xtβ− yt ||22.
These two solutions are used as warm starts for MIO formulations.

We report the prediction error defined by:

PE = ||Xβ−Xβ0||2.

The results have been averaged over ten different replications of data.

Experiment 2 on Synthetic Data

In this experiment, we want to mimic real word setting, kv and ko are not fixed any-
more. To this end we take a 3D grid of tuning parameters. {λi }N

1 is a geometrically spa-
ced sequence of 100 values, kv ∈ {1, . . . ,15} and ko ∈ {0,0.025n,0.05n}, λ1 = ||Xt y ||∞ and
λN = 10−4λ1. We train Algorithm (4.2) on (X, y) and find β̂(λ,kv ,ko) with minimal error on
(Xt , yt ). This solution β̂(λ,kv ,ko) is used as a warm start for the MIO formulation (4.5). The
same is done for Problem (4.4) but without λ.
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FIGURE 4.1 – Experiment 1 showing the effect of the `1 penalty.
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FIGURE 4.2 – Experiment 2 β-type 2 simulations with n = 100 and p = 20. The top two rows display
the results for ρ = 0.3 while the bottom two rows display the results for ρ = 0.6. Prediction error
refers to the best predictive models obtained after tuning on separate validation set. Sparsity refers
to the corresponding number of nonzero coefficients. Three SNR values were considered.
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FIGURE 4.3 – Experiment 2 β-type 2 simulations with n = 50 and p = 100. The top two rows display
the results for ρ = 0.3 while the bottom two rows display the results for ρ = 0.6. Prediction error
refers to the best predictive models obtained after tuning on separate validation set. Sparsity refers
to the corresponding number of nonzero coefficients. Three SNR values were considered.
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FIGURE 4.4 – Experiment 2 β-type 2 simulations with n = 100 and p = 1000. The top two rows
display the results for ρ= 0.3 while the bottom two rows display the results for ρ= 0.6. Prediction
error refers to the best predictive models obtained after tuning on separate validation set. Sparsity
refers to the corresponding number of nonzero coefficients. Three SNR values were considered.
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FIGURE 4.5 – Experiment 2 β-type 1 simulations with n = 100 and p = 20. The top two rows display
the results for ρ = 0.3 while the bottom two rows display the results for ρ = 0.6. Prediction error
refers to the best predictive models obtained after tuning on separate validation set. Sparsity refers
to the corresponding number of nonzero coefficients. Three SNR values were considered.
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FIGURE 4.6 – Experiment 2 β-type 1 simulations with n = 50 and p = 100. The top two rows display
the results for ρ = 0.3 while the bottom two rows display the results for ρ = 0.6. Prediction error
refers to the best predictive models obtained after tuning on separate validation set. Sparsity refers
to the corresponding number of nonzero coefficients. Three SNR values were considered.
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Experiment 2:β-type 1,  n=100, p=1000, ρ=0.3
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FIGURE 4.7 – Experiment 2 β-type 1 simulations with n = 100 and p = 1000. The top two rows
display the results for ρ= 0.3 while the bottom two rows display the results for ρ= 0.6. Prediction
error refers to the best predictive models obtained after tuning on separate validation set. Sparsity
refers to the corresponding number of nonzero coefficients. Three SNR values were considered.
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4.4.3 Computational Time

The PALM0,1 estimator is tuned over 100 values of λ, 15 values of kv and 3 values of ko .
We denote by βPALM0,1 (λ,kv ,ko) the 3D family of solutions obtained. For n = 100, p = 20 it
takes about 15 seconds to compute this family. For n = 50, p = 100 computing the family
takes about 1 minute. For n = 100, p = 1000 about 10 minutes were needed to find this
family. The threshold of the discrete first order algorithms is 10−6. Once the family is ob-
tained, the best solution (λ̂, k̂v , k̂o) on a separate validation set. This solution is used as a
warm start for the MIO solver with a time limit of 1000 seconds which seemed to be en-
ough to obtain a global solution for the majority of problems solved. However even if the
optimal solution is not certified, a near optimal solution with a high quality is guaranteed.
We report the two solutions obtained by the DFO algorithm and the MIO formulation and
we denote them by PALM0,1 and L0,1 respectively. The same is done to obtain the solu-
tions PALM0 and L0 representing the solutions obtained by Algorithm (4.1) and Problem
(4.4).

4.4.4 Results

We explore the properties of our estimator numerically on synthetic datasets with va-
rying values of n, p, SNR and correlations among the predictors.

The experimental results are summarized below:

— In Figure (4.1), it is shown that as kv gets greater than the true sparsity level, the pre-
diction error of L0 decreases. However, the performance of L0,1 stay stable, which
demonstrate the significant importance of using the `1 penalty term since in prac-
tice, if the PALM algorithms are used to tune the parameters by a k-fold cross vali-
dation, we remarked that they overestimate the sparsity level especially for low SNR
values. Thus using this penalty term, will ensure avoiding the decrease of the per-
formance for overestimated sparsity level s.

— For n = 100, p = 20 Figures (4.2) and (4.5) show that when SNR=0.5, PALM0,1 pro-
duces the best solution in terms of prediction error. L0,1 is close to PALM0,1 and both
outperform L0 and PALM0. As the SNR value increases, the difference between the
penalized problem and the L0 problem decreases until obtaining almost similar re-
sults for SNR=3. Furthermore, the poor performance of the L0 problem are noticed
for low SNR values because of the overfitting effect. We also note that as ρ increases,
the `1 penalty ensures obtaining better solutions.
In terms of sparsity, the L0 produced a little bit sparser solutions.

— For the medium setting n = 50 and p = 100, we can see that in Figures (4.3) and (4.6),
the penalized problems L0,1 and PALM0,1 still perform better than L0 and PALM0 but
now with a bigger difference.

— For the high dimensional setting n = 100 and p = 1000, same results are obtained
but in this case PALM algorithms have an advantage over their corresponding MIO
formulations. This may be explained by the fact the MIO formulations have a time
limit of 1000 seconds.

In general, the `1 penalty term improved the `0 formulation for low SNR values, higher
correlation ρ values and high dimensional settings. The added shrinkage fixes the overfit-
ting behavior of L0. Finally, the good performance of of both PALM algorithms is clearly
noticed.
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TABLE 4.1 – Summary of used datasets.

Name of the dataset number of instances n number of attributes p Origin
Auto Mpg 398 8 UCI

Concrete Compressive Strength 1030 9 UCI
Concrete Slump Test 103 10 UCI

Diabetes 442 10 stat.ncsu.edu

Forest Fires 517 13 UCI

TABLE 4.2 – Mean Squared Error Rates (Standard Deviations) of L0,1, PALM0,1, L0 and PALM0 on
Five Real Data Sets.

L0,1 PALM0,1 L0 PALM0

Auto MPG 0.4332 (0.0472) 0.4379 (0.0483) 0.4436 (0.0476) 0.4365 (0.0477)
Concrete Compressive Strength 0.7366 (0.0342) 0.7465 (0.0347) 0.7345 (0.0334) 0.7444 (0.0331)
Concrete Slump Test 0.6015 (0.1136) 0.5925 (0.1228) 0.6058 (0.1100) 0.6022 (0.1344)
Diabetes 5.9346 (0.3330) 5.9485 (0.3459) 5.9146 (0.2996) 5.9133 (0.2962)
Forest Fires 5.6359 (3.9369) 5.6372 (3.9370) 5.6456 (3.9360) 5.6396 (3.9385)

4.5 Experiments on Real Data Sets

We compare the performance of all mentioned methods above on five real data sets
from the UCI Machine Learning Repository presented in Table 4.1. We split each data set
into three parts: the training set (40%), the validation set (40%) and the testing set (20%).
The training set was used to train both proximal algorithms for a variety of combinations
of input parameters. For each combination of parameters, the mean squared error on
the validation set was calculated, and this was used to select the best combination of pa-
rameters for PALM0,1 and PALM0. Finally, all methods were trained by using these best
parameters on the combined training and validation sets, before reporting the out-of-
sample prediction error, defined below, on the testing set. We note that the columns of
X were standardized to have zero means and unit `2-norms and that the response vector
y was standardized to have zero mean. All methods were trained, validated, and tested
on the same random splits, and computational experiments were repeated ten times for
each data set with different splits. For each data set and regression method, we report the
average of the results and the standard deviation in parentheses for the raw data.

Prediction Error : PE = 1

nt
||Xtestβ− ytest ||2 ,

where nt represents the number of observations of Xtest . Results in Table (4.2) sheds the
light on the good performance of the proposed algorithm. In fact, over five data sets, the `1

regularized methods performs better than `0 methods on three data sets. However there is
no big difference between results on all methods. This can be explained by the fact that for
high SNR values these methods perform almost similarly and the `1 regularized problem
fixes the overfitting problem of the `0 problems for low SNR values.

4.6 Conclusion

In this chapter, an `1 regularized method performing both feature selection and out-
liers detection in linear regression. The problem is formulated as a mixed integer optimi-
zation problem and warm started by a discrete first order algorithm. We present an em-
pirical comparison between the `0 algorithms and their `1 cousins. Results on synthetic
data sets show that the regularized problems overperformed the `0 methods for low SNR
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values and as the SNR increases, these methods become almost similar. Furthermore, re-
sults on real data sets show that the proposed method produce high quality solutions.
Based on the above we propose to use the proximal algorithm (4.2) in practical use if we
are not interested in obtaining the global solution, since it performs well for both high
and low SNR values in a short time and it can be used for high dimensional problems.
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5.1 Introduction

Data classification sets the basic steps for anticipating corresponding labels of new
points on the basis of a pre-defined set of labeled training points specially in the domain
of machine learning and statistics. It is considered to be one of the supervised learning
problems and it is applied in various domains such as document classification, handwri-
ting recognition, internet search engines, etc. Instance-based learning methods, neural
networks, decision trees, support vector machines (SVM) and many other methods have
been developed to deal with data classification problems.

The Support Vector Machines often translated by the name of Large Margin Separator
(SVM) are a class of learning algorithms initially defined for discrimination, i.e. the pre-
diction of a binary qualitative variable. In the case of the discrimination of a dichotomous
variable, they are based on the search for the optimal margin hyperplane which, when it
is possible, correctly classifies or separates the data while being as far away as possible
from all observations. The principle is therefore to find a classifier, or a discrimination
function, whose generalization capability (forecasting quality) is as high as possible.

This approach stems directly from Vapnik’s work in learning theory from 1995 on-
wards [CV95]. It focused on the generalization (or prediction) properties of a model by
controlling its complexity. The principle founder of SVMs is precisely to include in the
estimation the control of the complexity, i.e. the number of parameters which is associa-
ted in this case with the number of support vectors. Vapnik’s other guiding idea in this
development is to avoid substituting the original objective of discrimination with a or
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problems that are ultimately more complex to solve, such as e.g. the non-parametric esti-
mation of the density of a multidimensional law in discriminant analysis.

The basic principle of SVMs is to reduce the problem of discrimination to the linear
problem of finding an optimal hyperplane. Two ideas or tricks to achieve this goal:

— The first one consists in defining the hyperplane as the solution of a constrained op-
timization problem whose objective function is expressed only by scalar products
between vectors and in which the number of "active" constraints or support vectors
controls the complexity of the model.

— The search for non-linear separating surfaces is obtained by introducing a kernel
function in the scalar product implicitly inducing a non-linear transformation of
the data to a larger feature space. Hence the commonly encountered name kernel
machine. On the theoretical level, the kernel function defines a Hilbertian space,
called self-replicating and isometric by the nonlinear transformation of the initial
space and in which the linear problem is solved.

This tool is becoming widely used in many types of applications and proves to be a se-
rious competitor of the most efficient algorithms. The introduction of kernels, specifically
adapted to a given problem, gives it a great flexibility to adapt to very diverse situations
(pattern recognition, genomic sequence recognition, etc.), of characters, spam detection,
diagnostics...). Note that, on the algorithmic level, these algorithms are more penalized
by the number of observations, i.e. the number of potential support vectors, than by the
number of variables. Nevertheless, high-performance versions of the algorithms enable
to take into account large databases in times of acceptable calculations.

5.2 Linear Support Vector Machines

A discrimination problem is said to be linearly separable when there is a linear deci-
sion function (also called a linear separator), of the form f (x) = si g n(h(x)) with h(x) =
w Tx +b, w ∈ Rp , b ∈ R, correctly classifying all observations in the learning set ( f (xi ) =
yi , i = 1, . . . ,n). To any decision function and thus to linear decision functions we can
associate a decision boundary:

∆(W,b) = {x ∈Rp |w Tx +b = 0}.

5.2.1 Basics: Hyperplane, Margin and Support Vectors

For two given classes, the goal of SVM is to find a classifier that will separate the data
and maximize the distance between these two classes. With SVM, this classifier is linear
and called hyperplane. The nearest points, which alone are used for determining the hy-
perplane, are called support vectors. There are many hyperplanes that separate the two
classes of examples. The principle of the SVM is to choose the one that will maximize the
minimum distance between the hyperplane and the training examples (i.e. the distance
between the hyperplane and the support vectors), this distance is called the margin. In-
tuitively, having a wider margin provides more security when classifying a new example.
Moreover, if we find the classifier that behaves best with respect to the learning data, it is
clear that it will also be the one that will best classify the new examples.
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5.2.2 SVM for Binary Classification

The generic problem of binary classification starts with an input domain E ⊆ Rp to
represent the values of the explanatory variables and a class domain Y = {−1,1} to act
as labels. Let D = {(x1, y1), (x2, y2), . . . , (xn , yn)} be a data set. Assuming linear separability,
the goal in binary classification is to use the data to estimate the p-dimensional vector
W = (w1, . . . , wp )T and the constant b, so that the hyperplane

H(w,b) = {
x : w Tx +b = 0

}
,

separates the observations xi into their class labels −1 and +1. Mathematically, the goal
is to find a function f : E −→ {−1,1} so that:

cl ass(xi ) = f (xi ) = si g n(w Txi +b) =
{ +1 w Txi +b ≥ 0

−1 w Txi +b < 0.

The natural way to quantify the performance of a classifier is using the 0-1 loss function:
If the true class of x is y and the classifier delivers f (x), the loss incurred, or the misclas-
sification error, is

`(y, f (x)) = I( f (x) 6= y), (5.1)

which is 0 if the classifier is correct and 1 otherwise, hence the name. However this loss
function is non convex and non differentiable. To this end the hinge-loss, which is a convex
surrogate for the 0-1 loss, was used.

Hard SVM

Maximizing the margin between two parallel hyperplanes that separate the two classes
of data is called the Hard-SVM. Given D = {(x1, y1), (x2, y2), . . . , (xn , yn)}, with xi ∈ Rp and
yi ∈ {−1,1}, the margin maximization principle applied to linear classifiers consists of fin-
ding the function h(x) = w Tx +b that achieves [CFZ09]:

max
w,b

(
min

i ,yi=+1

|w Txi +b|
||w || + min

i ,yi=−1

|w Txi +b|
||w ||

)
subject to yi (w Txi +b) ≥ 1, i = 1, . . . ,n .

This optimization problem does not have a unique solution: if w and b are solutions,
then for any constant k ≥ 1, kw and kb are also solutions. Indeed, when ||kw || ≥ ||w ||, the
boundaries of the classes move closer to the hyperplane H(w,b), contrary to the goal of
large margins. It would be nice to have a unique solution that makes w and b as small as
possible. To do this, one seeks the smallest k ∈ (0,1] such that kw and kb remain solutions
to the constrained optimization problem. Since small values of k pushes the boundaries
of the classes away from the separating hyperplane, the constraint yi (w Txi +b) ≥ 1 must
be enforced. So, solutions are characterized by the fact that at least one pair (xi , yi ) exists
such that yi (w Txi +b) = 1 holds for each of the two classes. This means that it is enough
for the points to be correctly classified; how far within its class a point is does not matter.
Now, since yi =±1, an optimal solution to the minimization of the distance is characteri-
zed by w Tx?i +b =+1 for some points x?i with y?i =+1 and w Tx?i +b =−1 for some other
points x?i with y?i = −1. In this context, for given w and b, the canonical hyperplane for
points of class +1 is defined by:

H+1(w,b) = {x : w Tx +b =+1, for y =+1},
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and the canonical hyperplane for points of class −1 is defined by:

H−1(w,b) = {x : w Tx +b =−1, for y =−1}.

Using the results above, it can be shown that the margin is given by: M = 2

||w || . Now the

optimization problem can be written as:

max
w,b

2

||w ||
s.t yi (w Tx +b) ≥ 1, i = 1, . . . ,n

The classical formulation of the SVM is obtained by minimizing
||w ||

2
instead of maximi-

zing
2

||w || . This is equivalent to minimizing
||w ||2

2
. Then the obtained optimization pro-

blem can be written as:

min
w,b

||w ||22
2

s.t yi (w Tx +b) ≥ 1, i = 1, . . . ,n

This problem is a constrained quadratic optimization problem of the form:

min
w,b

1

2
zTAz −d Tz

s.t Bz ≤ e ,

where z = (w,b)T ∈Rp+1, d = (0, . . . ,0)T ∈Rp+1, A =
[

I 0
0 0

]
, with I the identity matrix of Rp ,

B =−[di ag (y)X, y], e =−(1, . . . ,1)T ∈Rn , y ∈Rn and X is the observations n×p matrix. This
problem is convex since the matrix A is semidefinite positive. It therefore admits a single
solution (which exists since the problem is linearly separable by hypothesis) and the ne-
cessary conditions of first-order optimality are also sufficient. This (so-called primal) pro-
blem admits an equivalent dual formulation which is also a quadratic program. Solving
the SVM problem on linearly separable data can be done directly (from the primal for-
mulation) for example by using a Gauss-Seidel stochastic method, an active set method,
an inner point algorithm, a Newton’s algorithm with confidence region or a conjugated
gradient type. However, it is interesting to go through the dual formation of this problem:

— The dual problem is a quadratic program of size n (equal to the number of observa-
tions) which may be easier to solve than the primal problem,

— the dual formulation reveals the Gram matrix XXT which allows in the general (non-
linear) case to introduce non-linearity through cores.

In order to explain the necessary conditions of optimality of the first order it is classical
when dealing with an optimization problem under constraints to explain its Lagrangian.
In the case of SVM it is written :

L (w,b,α) = 1

2
||w ||22 +

n∑
i=1

αi (yi (w Txi +b)−1) ,

where αi ≥ 0 are the Lagrange multipliers associated with the constraints. The optimality
conditions of Karush, Kuhn and Tucker (KKT) of the quadratic program associated with
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SVM allow to characterize the solution of the primal problem (w?,b?) and the associated
Lagrange multipliers α by the following system of equations:

∂L

w
= 0

∂L

b
= 0

(yi (w Txi +b)−1) ≥ 0
αi ≥ 0

αi (yi (w Txi +b)−1) = 0,

which leads to:

w −∑
i
αi yi xi = 0∑
i
αi yi = 0

(yi (w Txi +b)−1) ≥ 0
αi ≥ 0

αi (yi (w Txi +b)−1) = 0,

5.3 Robust and Sparse Support Vector Machines

In support vector machine (SVM) classification, the natural way to quantify the per-
formance of a classifier is via the 0-1 loss. This loss is non-convex and considered to be
NP-hard. To this end, the hinge loss, which is convex, was introduced for the first time
with [CV95]. Since then, it has become one of the most popular classifiers. An important
reason behind the popularity of SVM is its significant empirical success in various appli-
cations such as data mining, engineering and bio-informatics [Lee10].
Considering training examples xi ∈Rp with their respective labels yi ∈ {−1,1}, i = 1, . . . ,n.
The main goal of SVM is to find a hyperplane (classifier) by introducing hard margins for
separable data and soft margins for linearly non-separable data, the purpose of which is
to separate data as far as possible from the hyperplane. A decision hyperplane can be de-
fined by an intercept term b and a decision hyperplane normal vector w which is perpen-
dicular to the hyperplane. This vector is commonly referred to, in the machine learning,
literature as the weight vector. To choose among all the hyperplanes that are perpendi-
cular to the normal vector, we specify the intercept term b. Because the hyperplane is
perpendicular to the normal vector, all points x on the hyperplane satisfy w Tx +b = 0.
Let the margin be defined as the distance from the hyperplane to the closest point across
both classes. It can be shown that the width of the margin is equal to 2

||w ||2 , thus maxi-

mizing this width is equivalent to minimizing the norm ||w ||22 (or 1
2 ||w ||22). To obtain the

optimal hyperplane, one should solve the following optimization problem:

min
w,ξ

1
2‖w‖2

2 +C
n∑

i=1
ξi

s.t. yi (w Tx +b) ≥ 1−ξi i = 1. . .n
ξi ≥ 0 i = 1. . .n.

(5.2)

where ξ is a slack variable and C is a parameter controlling the trade-off between a large
margin and a less constrained violation. The dual problem can be formulated through the
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use of Lagrange multipliers:

max
α

C
n∑

i=1
αi − 1

2

n∑
i=1

n∑
i=1

αiα j yi y j xT
i x j

s.t 0 ≤ αi ≤ C i = 1, . . . ,n
n∑

i=1
αi yi = 0.

Both the primal and dual are convex quadratic optimization problems. Because the dual
problem has fewer decision variables, and the majority of these variables tend to be equal
to zero, it is typically the problem solved in practice [FHT01].
While algorithmic advances in integer optimization combined with hardware improve-
ments have resulted in an astonishing 200 billion factor speedup in solving Mixed Integer
Optimization (MIO) problems [BKM16], this rapid development of MIO enabled [TLX+14]
to reformulate the 0-1 loss classification problem as a mixed integer optimization pro-
blem and use it to solve small-scale classification problems.
In addition to all benefits listed above, SVM suffers from the existence of outliers and
the existence of irrelevant features (especially for high dimensional data sets). Indeed,
in the past three decades, the dimensionality of the data involved in machine learning
and data mining tasks has increased explosively. Data with extremely high dimensiona-
lity has presented serious challenges to existing learning methods [FHT01, LM07]. With
the presence of a large number of features, a learning model tends to overfit, resulting in
their performance degenerates. Feature selection for SVM has been widely studied. For
example, [WMC+01] introduced an algorithm based upon finding the features which mi-
nimize bounds on the leave-one-out error. The search can be efficiently performed via
gradient descent. [FCS03] proposed an approach that takes existing theoretical bounds
on the generalization error for SVMs instead of performing cross-validation. This is com-
putationally faster than k-fold cross-validation. Additionally, in general, the error bounds
have a higher bias than cross-validation in practical situations they often have a lower
variance and can thus reduce the overfitting of the wrapper algorithm. A convex energy-
based framework to jointly perform feature selection and SVM parameter learning for
linear and non-linear kernels was proposed by [NDlT10] . They also showed the equiva-
lence between their approach and the `1 SVM. In a recent work, [LEP19] developed an
efficient method for sparse support vector machines with `0 norm approximation. The
proposed method approximates the `0 minimization through solving a series of `2 opti-
mization problems, which can be formulated with dual variables

Furthermore, in practical applications, training samples are often contaminated by
noise and some even have wrong labels [FV13]. These are usually known as outliers. In
order to mitigate the effects of outliers, different approaches have been proposed to im-
prove the robustness of SVM. [SHX02] suggested to use the distance between each trai-
ning sample and its class center to calculate an adaptive margin so as to reduce the in-
fluence of outliers. Weighted SVM (WSVM) or fuzzy SVM was also proposed to deal with
outliers [WL13, LW02, BP10]. In WSVM, different weights are assigned to different training
samples which can show their importance in the training data set. Several weight func-
tions have been proposed [WL13, LW02, BP10]. [DX15] presented a novel combinatorial
technique, which was called random gradient descent (RGD) tree, to identify and remove
outliers in SVM and developed a new algorithm called RGD-SVM. [XCHP17] proposed the
re-scaled hinge loss which is a monotonic, bounded and non-convex loss. Introducing
a Ramp Loss function into one-class SVM optimization to reduce outliers influence was
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suggested by [XWX17]. Then the outliers are identified and removed from the training set.
The final classification surface is obtained on the remaining training samples. [YD19] in-
troduced a new robust loss function (called Lq loss) based on the concept of quantile and
correntropy, which can be seen as an improved version of quantile loss function. To deal
with label outliers, [BDPZ18] introduced a variable ∆yi ∈ {0,1} where 1 indicates that the
label was incorrect and has in fact been flipped, and 0 indicates that the label was cor-
rect.They also introduced a variable ∆xi to deal with uncertainty of features. They pro-
posed the use of mixed integer optimization problems to solve the obtained problem.
However, the algorithm is not sparse.
To obtain a sparse and robust least squares support vector machines (SR-LSSVM), [CZ18]
proposed the SR-LSSVM algorithm to obtain a sparse solution of the robust least squares
SVM (R-LSSVM) [WZ14, YTH14] by applying a low-rank approximation of the kernel ma-
trix.

Contributions:

In this chapter, we address the problem of both feature selection and outlier detection
using the `0 norm. We summarize our contributions in this paper below:

— We present an approach jointly performing feature selection and outlier detection
for SVM classification;

— We propose to recast the presented problem as a mixed integer optimization pro-
blem which allows the use of efficient solvers (Gurobi) to solve it. Note that the sub-
optimality of the obtained solution is guaranteed even if we terminate the algorithm
early ;

— We present computational results on both real and synthetic datasets and com-
pare the proposed approach with the classical 0-1 loss and hinge loss classification
problems. The results show that the proposed approach provides high quality solu-
tions.

5.3.1 Linear Binary Classification

We have n training points, where each input xi has p attributes and is in one of two
classes yi ∈ {−1,1}. Under linear assumption, the classification function can be expressed
as f (x, w) = w Tx +b. The goal is to predict the target class ŷ ∈ {−1,1} which is defined by:

ŷi =
{

1 f (xi , w) ≥ 0
−1 f (xi , w) < 0 .

(5.3)

The natural way to quantify the performance of a classifier is using the 0-1 loss func-
tion: for a given instance x and a true binary label y ∈ {−1,1}, we incur a loss of 1i f si g n(y f ) <
0, and 0 otherwise, that is:

1{y 6=si g n( f (x,w))} =
{

1 if y 6= si g n( f (x, w))
0 other wi se ,

(5.4)

where 1A denotes the indicator function of set A.
The 0-1 loss classification problem can be written as

min
n∑

i=1
1{yi 6=si g n( f (xi ,w))} . (5.5)
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FIGURE 5.1 – Illustration of the hinge loss which is a convex surrogate to the 0- loss. The 0-1 loss is
shown in blue and the hinge loss is shown in red.

Problem (5.5) is non-convex, to this end it has been replaced by a convex surrogate
such as the hinge loss. However, advances in integer optimization resulted an impressive
speedup in solving mixed integer optimization problems (MIO). To this end, [TLX+14]
proposed to recast the problem of 0-1 loss classification (5.5) as a mixed integer optimi-
zation problem, that is:

min
n∑

i=1
li

s.t. yi (w Txi +b) ≥ 1−Mli

l ∈ {0,1}n .

(5.6)

where M is a sufficiently large constant. Since this formulation suffers from infinite num-
ber of optimal solutions and it lacks from the generalization ability, [TLX+14] proposed a
maximum margin 0-1 loss classifier defined as follows:

min
n∑

i=1
li +Cw Tw

s.t. yi (w Txi +b) ≥ 1−Mli

l ∈ {0,1}n

(5.7)

where C is a positive parameter, and showed the efficiency of this approach for small-scale
classification problems.

Introducing Binary Variables

Variable selection involves the `0 norm function to count the number of useful va-
riables. This counting function can be represented by introducing p binary variables z j ∈
{0,1} such that

‖w‖0 =
p∑

j=1
z j and z j = 0 ⇔ w j = 0.

Different approaches can be used to force z j = 0 ⇔ w j = 0 into an optimization problem,
such as:

1. Replace w j by z j w j for j = 1, . . . , p,

2. Set |w j |(1− z j ) = 0 for j = 1, . . . , p or
p∑

j=1
|w j |(1− z j ) = 0,

3. Use a big-M constraint, |w j | ≤ Mv z j for j = 1, . . . , p and for some fixed constant Mv

large enough (such as Mv ≥ max j |w?
j |, w?

j being the solution of the optimization
problem),

4. Treat z j = 0 ⇔ w j = 0 as logical implications (also called indicator constraints or
special ordered set SOS-1). Note that this kind of logical implication can be effi-
ciently handled in a branch-and-bound procedure for MIO problems.
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FIGURE 5.2 – Example of Synthetically Generated Data in Two Dimensions to Show the Effect of
an Outlier on the Hinge-Loss Classification. The True Generating Hyperplane in Green, the Hinge-
loss Hyperplane in Blue and the MIP Approach Hyperplane in Red.

We now discuss and give a short overview of the advantages and drawbacks of each ap-
proach. The two first approaches involve nonlinear interaction terms between binary and
continuous variables. Their interest lies in the possibility of obtaining interesting conti-
nuous relaxations. The main advantage of the big M method (approach 3) is that it brings
only linear inequality constraints but the value of the M term needs to be chosen carefully
since it shows a great deal of practical influence on the solver performance. Logical im-
plications (approach 4) have the advantage of avoiding these types of problems, as they
do not rely on a separate constant value. However, they tend to have weaker relaxations,
a condition which may lead to longer solve times in a model. In this paper we will use the
third approach for our implementation.

Our Approach

To deal with the problem of outlier detection, we propose to add a variable τ so that
Problem (5.2) becomes:

min
w,ξ,τ

1
2‖w‖2

2 +C
n∑

i=1
|ξi −τi |

s.t. yi (w Tx +b) ≥ 1−ξi i = 1. . .n
||w ||0 ≤ kv

||τ||0 ≤ ko

ξi ≥ 0 i = 1. . .n.

(5.8)

where the `0 norm of a vector w counts the number of nonzeros in w . We note that in
Problem (5.8), τ(i ) 6= 0 means that the observation "i " is an outlier.

A MIP Formulation

To solve (5.8) exactly, we recast it as a mixed integer optimization problem. Two binary
variables z and t are introduced to control the sparsity levels for w and τ respectively. The
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MIP formulation of (5.8) is as follows:

min
w,ξ,τ,t ,z,b

1
2‖w‖2

2 +C
n∑

i=1
|ξi −τi |

s.t.
p∑

j=1
z j ≤ kv

|w j | ≤ z j Mv j = 1. . . p
n∑

i=1
ti ≤ ko

|τi | ≤ ti Mo i = 1. . .n
yi (w ′xi +b) ≥ 1−ξi i = 1. . .n
ξi ≥ 0 i = 1. . .n.

(5.9)

where w ∈Rp , τ,ξ ∈Rn , t ∈ {0,1}n , z ∈ {0,1}p and b ∈R.
When kv = 0 and ko = 0, no feature selection nor outlier detection are performed, the

resulting problem is the classical hinge loss classification problem. In the above formula,
Mv and Mo are two big values.

Solving the Problem Using Gurobi

To overcome the absolute value in the objective function, we introduce two new va-
riables α+ and α−, such that ξi −τi = α+i −α−i , and |ξi −τi | = α+i +α−i , where α+i ,α−i ≥ 0 for
i = 1. . .n. Then the new obtained problem is as follows:

min
w,ξ,τ,t ,z,b

1
2‖w‖2

2 +C
n∑

i=1
(α+i +α−i )

s.t.
p∑

j=1
z j ≤ kv

|w j | ≤ z j Mv j = 1. . . p
n∑

i=1
ti ≤ ko

|τi | ≤ ti Mo i = 1. . .n
yi (w ′xi +b) ≥ 1−ξi i = 1, . . . ,n
ξi −τi = α+i −α−i i = 1. . .n
ξi ≥ 0 i = 1. . .n
α+i ≥ 0 i = 1. . .n
α−i ≥ 0 i = 1. . .n ,

(5.10)

where w ∈Rp , τ,ξ,α+,α− ∈Rn , t ∈ {0,1}n , z ∈ {0,1}p and b ∈R.

Computational Cost

In Figure 5.3, the left panel shows the evolution of upper and lower bounds with time
when kv = p, while the right panel shows this evolution when kv = 0.8p. By comparing
the left and the right panels, we can see that the computational time increased from 1200
seconds to 1800 seconds (top panel) and from 4 seconds to 8 seconds (bottom panel).
This means that the value of kv has an influence on the computational cost.
Similarly, the top panel shows the evolution of upper and lower bounds with time when
ko = 5%, while the bottom panel shows this evolution when ko = 2.5%. A simple com-
parison between the top and the bottom panels sheds the light on how much increasing
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FIGURE 5.3 – The evolution of the MIO for the breast cancer prognostic data set with n = 194 and
p = 33. The top panel shows the evolution of upper and lower bounds with time when ko = 5%,
while the bottom panel shows the evolution of upper and lower bounds with time when ko = 2.5%.
The left panel shows the evolution of upper and lower bounds with time when kv = p, while the
right panel shows the evolution of upper and lower bounds with time when kv = 0.8p. For all
panels, C = 1.

the value of ko (percentage of outliers to detect) will increase the time needed to certify
optimality. Indeed, decreasing ko from 5% to 2.5% resulted a significant decrease of the
computational cost, that is from 1200 seconds to only 4 seconds, and from 1800 seconds
to only 8 seconds.
We note that optimal solutions are found in a few seconds in the top panel examples, but
it takes 20-30 minutes to certify optimality via the lower bounds. We also note that the
computational time depends on the value of C and the big-M values.

5.3.2 Experiments on synthetic data sets

To report the robustness of the proposed approach, we evaluated its performance on
synthetically generated data sets. In these experiments, we run the classical hinge-loss
classifier and the MIP approach to recover the separating hyperplane classifier.

Experimental setup

The experiment uses data in R2. The data are generated synthetically as follows:

1. Twenty-five points are generated as multivariate random normal, N(3.5e, I) where e
is the vector of ones and I is the identity matrix. These points are given the label +1.

2. Twenty-five points are generated as multivariate random normal, N(−3.5e, I). These
points are given the label −1.

3. Ten outlier points are introduced as multivariate random normal N(0,3I), where 0
is the vector of zeros. The labels are randomly generated as either -1 or +1.
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FIGURE 5.4 – Example of Synthetically Generated Data in Two Dimensions Alongside the True Ge-
nerating Hyperplane.

TABLE 5.1 – Performance results for synthetic data experiments.

Accuracy Similarity
Hinge Loss 96.93 0.9428
MIP Approach 97.85 0.9813

We split the data 75% / 25% into training and validation sets, which we used to tune the
parameters for both methods. To create the test set, we generated 1000 points in the same
way as items 1 and 2 above.

An example of a data set generated according to this procedure is shown in Figure
5.4. By the symmetry of this data generation process, we can see that the true hyperplane
separating the two clusters of points is given by eTx = 0. The goal of the experiment is to
show how closely the two methods can recover the truth in the data. We are interested in
the following two measures:

— Accuracy: We measure and evaluate the out-of sample accuracy of the trained clas-
sifiers on the test set, defined by:

Accur ac y = TP+TN

TP+FP+TN+FN
,

where TP and TN represent the quantity of correct positive and correct negative
samples, respectively ; FN and FP respectively represent the number of misclassi-
fication negative and positive samples. The higher the values of the Accuracy, the
better the model is.

— Similarity: To evaluate the ability of each method to recover the truth in the data,
we measure the cosine of the angle between the separating hyperplane generated
by the methods and the true hyperplane.

We recall that the cosine of the angle α between two vectors u and v is given by:

cos(α) = u.v

||u||× ||v || .

Results

This experiment was repeated 1000 times. We present the means of the two measures
for each method in Table 5.1. The results show that the MIP approach improved the per-
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formance of classification. In fact, the accuracy increased by about 1% and that it recove-
red the truth better than the classical hinge loss classifier (cosine value closer to 1 means
smaller angle between hyperplanes and thus better recovery).

5.3.3 Experiments on real data sets

To evaluate the effectiveness of the proposed method, we carry out numerical simu-
lations on twelve real-world data sets. All experiments are implemented using MATLAB-
Gurobi interface. The experiment environment is: PC with Intel Core i7 4700MQ (2.40
GHz) with 8 GB memory. We note that for each problem instance, we used a time limit of
15 minutes for Gurobi to optimize the classification problem.
We recall that to obtain: the hinge-loss classification problem solution we solved Problem
(5.2), the 0-1 loss problem solution we solved Problem (5.7). The solution of the MIP ap-
proach was found by solving Problem (5.8).

Experimental Setup

To evaluate the performance of the proposed approach, we considered two scenarios:

1. In the first scenario, 10% of the training and validation sets labels were randomly
flipped. The aim is to study the robustness of the mixed integer programming ap-
proach.

2. In the second scenario, we wanted to mimic real-world setting, hence data sets were
not modified.

For both scenarios, each data set was normalized using the min-max scaling and was split
into three parts: the training set (60%), the validation set (20%), and the testing set (20%).
The training set was used to train each classifier for a variety of combinations of input
parameters. For each combination of parameters, the accuracy on the validation set was
calculated, and this was used to select the best combination of parameters for each clas-
sifier. Finally, the classifier was trained by using these best parameters on the combined
training and validation sets, before reporting the out-of-sample accuracy on the testing
set. All methods were trained, validated, and tested on the same random splits, and com-
putational experiments were repeated five times for each data set with different splits. For
each data set and classification method, we report the average out-of-sample accuracy
across all five splits. C was chosen from the set [10−4,10−3, . . . ,104], kv was set to kv = p
for the first scenario, and chosen from the set [p,0.8p,0.6p] for the second scenario that
is no feature selection was performed, 80% and 60% of features are selected respectively.
ko was chosen from the set [0.025n,0.05n,0.1n] that is 2.5%, 5% and 10% of outliers to be
detected respectively.

5.3.4 Results

Tables 5.2 and 5.3 present the means of the accuracy for each method. The robustness
of the proposed approach is shown in Table 5.2. In fact, it had a superior performance on
9 data sets, and a tie for one data set, when 10% of labels were flipped. An important re-
mark is that no variable selection was performed during this scenario so the comparison
between the MIP approach and the hinge-loss classification is based only on the robust-
ness of the MIP approach. This side by side comparison sheds the light on the significant
improvement obtained with the MIP approach.
The second scenario is closer to the real world setting. The data sets are taken without
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TABLE 5.2 – Out of sample accuracy averaged across five seeds for each classification method on
all data sets. (first scenario).

n p Hinge loss 0-1 loss MIP approach
Arrythmia 68 280 52.31 64.62 64.62
Breast Cancer Coimbra 116 9 65.22 60.87 72.17
Breast Cancer Prognostic 194 33 63.16 78.42 84.74
Connections Bench Sonar 208 60 65.17 72.20 75.61
Fertility 100 9 64.00 78.00 86.00
Ionosphere 351 33 63.71 84.86 85.43
Monks-1 124 6 65.83 72.50 71.67
Monks-2 169 6 65.45 63.03 60.51
Monks-3 122 6 82.50 77.21 83.33
Pima 768 8 56.60 68.37 76.73
Spect Heart 80 22 65.00 72.50 75.92
Spectf Heart 80 44 78.75 79.25 81.25

TABLE 5.3 – Out of sample accuracy averaged across five seeds for each classification method on
all data sets. (second scenario).

n p Hinge loss 0-1 loss MIP approach
Arrythmia 68 280 70.76 69.23 81.53
Breast Cancer Coimbra 116 9 73.04 70.43 70.43
Breast Cancer Prognostic 194 33 76.84 78.94 81.05
Connections Bench Sonar 208 60 72.19 76.58 76.58
Fertility 100 9 86.00 86.00 88.00
Ionosphere 351 33 84.28 82.57 85.14
Monks-1 124 6 62.50 67.51 64.98
Monks-2 169 6 61.21 59.79 61.21
Monks-3 122 6 79.16 82.50 82.78
Pima 768 8 78.30 78.21 78.82
Spect Heart 80 22 63.75 67.50 70.83
Spectf Heart 80 44 70.00 71.25 77.50
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TABLE 5.4 – Improvement Due to Robustness of MIP Approach, Comparing the Hinge-Loss Classi-
fier to the Robust MIP Approach (second scenario).

Name of the dataset Percentage of MIP Robust Improvement
Arrythmia 10.77 %
Breast Cancer Coimbra - 2.61 %
Breast Cancer Prognostic 4.21 %
Connections Bench Sonar 4.39 %
Fertility 2.00 %
Ionosphere 0.86 %
Monks-1 2.48 %
Monks-2 0.00 %
Monks-3 3.62 %
Pima 0.52 %
Spect Heart 7.08 %
Spectf Heart 7.50 %
Mean 3.40 %

any change or modification. From Table 5.3, it is clear that the prediction accuracy of our
approach is higher than those of the compared algorithms for almost all datasets. We can
remark a significant accuracy improvement for some datasets. For example, we obtained
about 11% improvement for Arrythmia dataset. In general, it can be seen that the propo-
sed approach provides high quality solutions. We also note that the pairwise comparison
of the 0-1 classification against the hinge loss classification shows that none of the two
losses dominates the other. Indeed each loss showed better results on six data sets, while
a tie was obtained for one data set. An important caveat to emphasize upfront is that the
`0 robust regression algorithm was given 15 minutes time limit per problem instance per
subset size. This practical restriction may have caused this algorithm to under perform in
some cases.

Table (5.4) shows the improvement in out-of-sample accuracy of the MIP approach
over the classical hinge-loss classification in-sample accuracy in the second scenario. We
defined the robust improvement as the difference in out-of-sample accuracy between the
methods. We note that over 11 from 12 data sets, the MIP approach over performed the
classical hinge loss classifier.

5.4 Conclusion

In this chapter, we propose a method for support vector machine which solves the un-
derlying optimization problem that handles both feature selection and outlier detection.
We formulate the problem as a mixed integer optimization problem and use an efficient
commercial solver (Gurobi) to solve it. Furthermore, we present an empirical comparison
between this method, the classical hinge-loss and the 0-1 loss classification methods. The
experimental results have verified the superior performance of the proposed method. In
terms of computational efficiency, the MIP solution can already be adopted for relatively
small data sets. For the high dimensional case, a screening procedure would be suggested
to reduce the computational cost.

93





Chapitre 6

Conclusion and Future Work

Sommaire
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Conclusion

This monograph focused on the optimization problems of robust and sparse linear
regression and support vector machines. The problems consists of using double `0 norm
constraints where the `0 norm can explicitly count the number of non-zero coefficients,
nevertheless with the characteristics of non-smoothness and non-convexity, which makes
the problems NP-hard. To obtain the optimal solution, each problem was formulated
using mixed integer programming techniques.

In Chapter 2, we make all the preliminary definitions needed in the context of the
thesis were surveyed . A mathematical background on optimization was introduced. Fur-
thermore, convex and non-convex optimization algorithms were discussed briefly toge-
ther with an introduction to linear and mixed integer programming.

In Chapter 3 we proposed a robust adaption of best subset selection that is highly re-
sistant to contamination in both the response and the predictors. Our estimator generali-
zed the notion of subset selection to both predictors and observations, thereby achieving
robustness in addition to sparsity. This procedure is defined by a combinatorial optimiza-
tion problem for which we apply modern discrete optimization methods. We formulated
the problem as a mixed integer programming to find a provably optimal solution for the
proposed problem.

Our approach has the appealing characteristic that if we terminate the algorithm early,
we obtain a solution with a guarantee on its suboptimality. Furthermore, our framework
can accommodate side constraints on β. We also introduced a general algorithmic frame-
work based on a discrete extension of first order continuous optimization methods that
provide near-optimal solutions for the best subset problem. The MIP algorithm signifi-
cantly benefits from solutions obtained by the first order methods and problem specific
information that can be computed in a data-driven fashion. An empirical comparison of
the proposed method, its `1 relaxation, the best subset selection problem, lasso and PALM
was introduced on real and synthetic data sets. Experimental results showed the high qua-
lity solutions obtained by the MIP algorithm. However, the `1 relaxation performed better
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for low SNR values due to the overfitting behavior of the `0 norm.

In Chapter 4, we study the overfitting aspect of the robust and sparse linear regression
model causing its under-perfomance for low SNR values. While the `0 norm procedure is
often perceived as the “gold standard” in sparse learning when the signal to noise ratio
(SNR) is high, its predictive performance deteriorates when the SNR is low. In particular,
it is outperformed by continuous shrinkage methods, such as the Lasso. We investigate
the behavior double `0 norm constraints in the low SNR regimes and propose an alterna-
tive approach based on a regularized version of the `0 criterion. Our proposed estimators
(a) mitigated, to a large extent, the poor predictive performance of best-subset selection
in the low-SNR regimes ; and (b) performed favorably, while generally delivering substan-
tially sparser models, relative to the best predictive models available via the Lasso. We
conducted an extensive theoretical analysis of the predictive properties of the proposed
approach and provided justification for its superior predictive performance relative to
best-subsets selection when the SNR is low. Our estimators can be expressed as solutions
to mixed integer second order conic optimization problems and, hence, are amenable to
modern computational tools from mathematical optimization. Furthermore, a discrete
first order optimization algorithm was also proposed to solve the obtained problem. Ex-
perimental results on both real and synthetic data sets showed that the added `1 penalty
term improved the performance of the `0 norm problem for low SNR values. In addition,
the discrete first order algorithm performed very well and it was suggested to use it espe-
cially for the high dimensional case.

In Chapter 5, motivated by the fact that there may be inaccuracies in the training data,
we applied robust optimization techniques to study in a principled way the uncertainty in
data in classification problems and obtained robust formulations for the one of the most
widely used classification methods: support vector machines. In addition, to control the
level of sparsity, we added a cardinality constraint on the weights vector. We demonstra-
ted the advantage of this robust and sparse formulation over two classical SVM methods:
the 0-1 loss and hinge loss classification problems. We run large-scale computational ex-
periments across a sample of 12 data sets from the University of California Irvine Machine
Learning Repository and showed that the proposed method improved the accuracy in the
majority of the data sets. We observed significant gains for the robust and sparse clas-
sification method when outliers were added to data sets and when data sets were used
without any modification.

6.2 Future Work

The study of the exact `0 norm optimization problem for variable selection and outlier
detection is a promising research topic in statistical learning. The optimal solution can be
obtained by formulating the problem as a mixed integer programming and solving it using
an efficient solver. However, these problems are N P -hard and they are not scalable to be
used for high dimensional data. A possible way to address this scalability issue would be
to adapt heuristic and metaheuristic algorithms for combinatorial optimization.

For the linear regression model, we proposed a proximal alternating minimization al-
gorithm that provides a near-optimal solutions for the proposed problems. We also sho-
wed the high quality of the solutions provided by this algorithm even though these solu-
tions are not optimal. To solve the problems exactly in a short time, we suggest to use a
dedicated branch and bound methodology as in [MBM+20]. Such approach will ensure

96



6.2. Future Work

solving the MIP problems exactly more efficiently than the optimization solvers, which
makes the NP-hard problems more scalable to be used for high dimensional regimes.

For the robust and sparse support vector machines problem we propose the transfor-
mation of the original optimization problem by using the Lagrangian multipliers. Such
transformation would decrease the computational time of providing a solution. As al-
ready pointed out, the shortcoming of the exact `0 norm method is its high computational
complexity. Fortunately, we can benefit from the fact that the optimization theory is well
developing and the computational capability of the machine is highly improving.
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