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Résumé

Le présent travail de these porte sur I’étude de la catégorie O des algebres de Hecke double-
ment affines dégénérées (AIDAHA) au point de vue de la théorie de Springer et celle des faisceaux
pervers. Dans les premiers deux chapitres nous étudions de maniere algébrique les dDAHA et
leurs généralisations, algebres de Hecke doubles carquois (QDHA). Nous introduisons le foncteur
de Knizhnik—Zamolodchikov (KZ) pour les QDHA et démontrons qu’ils vérifient la propriété bi-
commutante dans chapitre 2. Les chapitres 3 et 4 sont consacrés a ’étude des faisceaux pervers
sur les algebres de Lie munies de graduations cycliques et la théorie de Springer pour les dDAHA
avec certaines familles de parametres. Dans le chapitre 5, nous expliquons comment le foncteur
KZ se réalise en termes de faisceaux pervers et nous montrons comment des structures plus fines
sur la catégorie O se déduisent de ’analyse faisceautique sur les algebres de Lie cycliquement
graduées.

Mots-clés : algebres de Hecke doublement affines, algebres de Cherednik, algebres de Hecke
carquois, foncteur de Knizhnik—Zamolodchikov, faisceux pervers, correspondance de Sprin-
ger



Abstract

The present thesis work focuses on the study of the category O of degenerate double affine
Hecke algebras ({ADAHA) with the point of view of Springer theory and perverse sheaves. In the
first two chapiters we study algebraically the dDAHAs and their generalisations, quiver double
Hecke algebras (QDHA). We in introduce the Knizhnik-Zamolodchikov (KZ) functor for the
QDHA and prove that it satisfies the double centraliser property in chapter 2. Chapters 3 and
4 are devoted to the study of perverse sheaves on a Lie algebra equipped with a cyclic grading
and the Springer theory for the dDAHAs with certain families of parameters. In chapter 5,
we explain how the KZ functor can be realised in terms of perverse sheaves and we show how
finer structures on the category O can be deduced from the sheaf-theoretic analysis on cyclically
graded Lie algebras.

Keywords : double affine Hecke algebras, Cherednik algebras, quiver Hecke algebras, Knizhnik—
Zamolodchikov functors, perverse sheaves, Springer correspondence
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Introduction

Le présent travail trouve son origine dans un effort pour étudier la théorie des représenta-
tion des algebres de Hecke doublement affines dégénérées (ci-dessous notée dDAHA) avec
des méthodes algébro-géométriques.

Contexte

Algebres de Hecke affines

Etant donné un systéme de Coxeter (W, S) avec la présentation W = (s € S ; (st)"st =
1) et un parametre ¢ € C*, on définit son algebre d’Iwahori-Hecke comme D’algebre
associative unitaire Hy, sur C engendrée par la famille {T,},cs modulo les relations
suivantes :

(Ts —q)(Ts+1)=0; TT;---=TTT;---, pours#tesS, ms# 00.

Ms,t Ms,t

Ces algebres sont omniprésentes dans la théorie des représentations des groupes. Lorsque
(W, S) est le groupe de Weyl affine d’un systéme de racines, on appelle Hy, une algebre de
Hecke affine (AHA). Contentons-nous de mentionner seulement que les algebres de Hecke
affines font objet central dans la théorie des représentations des groupes p-adiques.

Equations de Knizhnik—Zamolodchikov affines et dDAHA

Les dDAHA furent introduites par I. Cherednik [11] dans ses études des équations de
Knizhnik—Zamolodchikov (KZ) et leurs variants comme les affinisées des AHA. Au fil du
temps, les dDAHA et ses variants apparaissent dans de nombreux contextes différents,
comme celui des invariants des nceuds ou celui des intégrales orbitales sur les groupes
p-adiques.

L’une des versions des équations KZ est connue sous le nom des équations K7 affines
(AKZ) ou les équations KZ trigonométriques. C’est une famille de systémes d’équations
aux dérivées partielles linéaires et holomorphes sur 'espace des configurations du tore
complexe C*.

D’apres Matsuo et Cherednik, le probleme d’intégration des équations AKZ équivaut
a celui de la détermination des fonctions propres des opérateurs de Dunkl sur (C*)" :

0 1—s;, 1— s
D=z — —9h — "W L 9p —Tw
J Z]aZj ;1—ZJ/ZZ+ 21—21/2]7



ou h € C est un parametre et s; ; € &,, est la permutation qui échange les coordonnées
z; et z; et fixe les autres. La dDAHA Hi, est 'algebre d’opérateurs sur les fonctions holo-
morphes sur (C*)" engendrée par les fonctions holomorphes, les opérateurs de Dunkl et le
groupe symmétrique &,, qui opeére sur (C*)" par permutation des coordonnées. Ainsi les
systemes AKZ peuvent étre vus comme des modules a gauche de H,,. La représentation
monodromique d’un systeme AKZ, d’apres un résultat fondamental de Cherednik, est un
module sur l'algebre de Hecke affine pour GL,,. Cette opération qui associe la représen-
tation monodromique a un H-module est fonctorielle. Le foncteur ainsi construit (appelé
foncteur KZ) est fondamental dans 1’étude des représentations des dDAHA.

Toutes ces constructions se généralisent a tous les systémes de racines’.

Etude géométrique des algébres de Hecke affines

Soient R un systéme de racines fini, G un groupe algébrique complexe semisimple de
type RY, B C G un sous-groupe de Borel et T C B un tore maximal. Notons g =
LieG, b = LieB et t = LieT leurs algebres de Lie. Soit n C b l'algebre de Lie du
radical unipotent de B. La résolution de Springer 7 : 7 = G xZn — g"! est une
désingularisation du cone nilpotent g"! de g. Ginzburg et Kazhdan Lusztig dans leurs
travaux embématiques [13] [23], étudierent la théorie des représentations de TAHA étendue
K associée au systeme de racines R via la K-théorie équivariante de la variété de Steinberg
Z="T Xgu T. Etant donnés a € T et € C*, soient G, le centralisateur de a dans G et

g?;{m = {x e gl Ad(a)x = r2x} .

Ginzburg et Kazhdan—Lusztig montrérent que, lorsque r € C* n’est pas une racine
d’unité, les modules simples de K dans le bloc associé a (a, r) sont paramétrés par certains
systemes locaux irréductibles sur les G -orbites dans gl(l;{r). Ce résultat a connu un nombre
important de généralisations.

Pourtant, la condition que » € C* ne soit pas une racine d’unité est essentielle pour le
paramétrage de Ginzburg-Kazhdan-Lusztig et par conséquent le cas ou r est une racine
d’unité nécessite d’autres méthodes. L'un des objectifs du présent travail est d’étudier
le foncteur KZ qui relie la dDAHA et ’AHA étendue dans l'espoir de pouvoir mieux
comprendre ’AHA a travers la dDAHA, dans 'esprit de [17] ou les algebres de Hecke
associées aux groupes de réflexions complexes ont été étudiées a travers les algebres de
Cherednik rationnelles.

Algebres de Hecke carquois

Les algebres de Hecke carquois (QHA) furent introduites par M. Khovanov, A. Lauda [21]
et R. Rouquier [14] dans le but de catégorifier des groupes quantiques de Drinfel’d—Jimbo.
D’apres un résultat de J. Brundan, A. Kleshchev [9] et Rouquier [11], ces algebres peuvent
étre vues comme une vaste généralisation des algebres de Hecke affines pour GL,,.

'En général, il y a un parametre h, € C pour chaque racine affine a € S sous la condition que la
famille {h,}aes soit invariante sous 'action du groupe de Weyl affine étendu. Lorsque h, = h; pour tous
a,b € S, on dit que la dADAHA est de paramétres égauz. Si le systéme de racines est simplement lacé, la
dDAHA associée est toujours de parametres égaux.



Le résultat de Brundan—Kleshchev—Rouquier se généralise aux AHA de type quel-
conque, a savoir on peut définir les algebres de Hecke carquois sur les systemes de racines
finies au lieu de GL,,. Cette approche a déja été prise dans plusieurs travaux précédents
pour étudier les algébres de Hecke affines de type classique, notamment [50] et [16]. Etant
donné le fait que les dDAHA sont les affinisées des AHA, il est naturel d’emprunter cette
méthode dans I’étude des dDAHA.

Présentation des résultats

Les résultats obtenus dans cette thése pourraient mettre en lumiere une idée selon laquelle
les dADAHA avec leurs foncteurs K7 seraient le paradigme d’un phénomene qui se présente
chez une classe plus vaste d’algebres.

Le foncteur KZ des dDAHA

Dans §1, on rappelle la définition des systémes de racines affines, les dDAHA, la catégorie
O des dDAHA, les AHA et le foncteur de monodromie des équations KZ pour les dDAHA,
noté V. L’exposition insiste sur les themes en rapport avec V. On démontre dans §1.4.5
que V est un foncteur de quotient qui fait de la catégorie des modules de dimension finie
de PAHA une catégorie quotient de la catégorie O de la dDAHA.

En envisageant §2, on montre dans §1.5 que le foncteur V construit dans §2.5 et V
sont des foncteurs de quotient de méme noyau. On conjecture que les deux foncteurs sont
isomorphes.

QDHA comme dDAHA généralisées

Dans §2, on introduit les algebres de Hecke double carquois A (QDHA) associées a
un systeme de racines affine. Les QDHA peuvent étre vues comme des QHA affinisées ou
comme des dDAHA généralisées dans le sens de Brundan—Kleshchev-Rouquier. On fournit
dans §2.1-§2.3 un socle théorique pour cette classe d’algebres. Dans §2.4, on définit les
algebres de Hecke carquois BY (QHA) associée a un systéme de racines fini, homologues
des AHA dans le cas des dDAHA.

La section §2.5 est le coeur de ce chapitre. On établit dans §2.5.1 un isomorphisme
qui identifie B a une sous-algebre idempotente e,A“e, de A“, ce qui nous permet de
construire dans §2.5.6 le foncteur de Knizhnik—Zamolodchikov V : A“ -gmod — B“ -gmod
comme la troncation par I'idempotent e,. Dans §2.5.7, on démontre une caractérisation
asymptotique pour les A¥ modules annulés par V. Dans §2.5.8, on démontre la propriété
bicommutante pour V, ce qui rend (A, V) une « désingularisation crépante partielle » de
B“. Dans §2.5.9, on établit une caractérisation catégorique pour V, ce qui implique que
son noyau ker V est un invariant catégorique de la catégorie A“ -gmod.



Faisceaux pervers et dDAHA

Dans §3 et §4, en s’appuyant sur la théorie de Lusztig—Yun [38] [39] [10], on étudie les
dDAHA H a 'aide des faisceaux pervers sur le cone nilpotent des I’algebres de Lie Z/mZ-
graduées. Dans §3, on distingue deux types d’inductions géométriques, I'induction spirale
et I'induction parabolique, et on démontre dans Theorem 3.20 que celle-ci est légerement
plus faible que celle-la dans un sens a préciser dans ’énoncé du théoreme. Ce résultat
servira de base géométrique pour une certaine propriété de fidelité du foncteur V.

Dans §4, en suivant la voie classique d’algebres de convolution [13], on établit une
construction géométrique de H en termes de la cohomologie équivariante a coefficients.
Ce résultat repose sur celui de Lusztig dans le cas des AHA graduées. La construction
géométrique, comme dans le cas des AHA graduées, nous permet d’établir un paramétrage
géométrique a la Deligne-Langlands—Lusztig des modules simples de H (ce qui confirme
une conjecture de Lusztig—Yun [10]) et une formule de multiplicité de Jordan—Hélder pour
une classe de H-modules dits standards propres en termes de cohomologie de certaines
variétés de Hessenberg.

Dans §5.1, on discute la relation entre la construction géométrique de §4 et la construc-
tion algébrique du foncteur V de §2. On obtient une réalisation des AHA via la cohomologie
équivariante au lieu de la K-théorie équivariante.

Dans §5.2, on applique les résultats généraux de S. Kato [21] sur les algebres d’ex-
tensions aux dDAHA. La conséquence est que la catégorie des modules gradués de la
dDAHA H que nous avons construites avec la géométrie dans §4 admet une structure de
stratification (par les modules standards) propres dans le sens de Kleshchev [25].

Dans §5.3, on se tourne vers deux cas particulierement simples de dDAHA qui viennent
des carquois cycliques. Le theme de [158] sur I'équivalence entre les algebres g-Schur affines
et les dADAHA en type A y est repris.

Quelques précisions

Le sujet central du présent travail est les dDAHA. Pourtant, des hypotheses différentes
sont mises sur les dDAHA selons les chapitres. Toutes les dDAHA concernées sont de
niveau non-critique, ce qui implique que leurs centres sont triviaux. Dans §1, les dDAHA
concernées sont de type quelconque et de parametres quelconque. Dans §2, les algebres
A¥ sont des généralisations des dDAHA considérées dans §1 et par conséquent, tous les
résultats sur A¥ s’appliquent également a toutes les dDAHA de parametres quelconque.
Dans §4, les dDAHA qui interviennent peuvent avoir des parametres rationnels inégaux.
Les rapports de ces parametres sont ceux qui apparaissent dans la liste de Lusztig [35,
§7]. Les résultats obtenus dans §4 généralisent ceux de [53], 1& ou seules les DAHA de
parametres égaux sont prises en considération.



Chapter 1

Degenerate double affine Hecke
algebras

Introduction

The degenerate double affine Hecke algebras (dADAHA), also known as trigonometric
Cherednik algebras, were introduced by Cherednik in his study of integration of the
trigonometric form of the Knizhnik—Zamolodchikov equations (KZ) [11].

The degenerate double affine Hecke algebras, different from their non-degenerate ver-
sion and its rational degeneration, are not “symmetric”: it contains a polynomial subal-
gebra and a Laurent polynomial subalgebra. Due to this asymmetry, one can adopt two
different points of view to study the dDAHA: either viewing it as an algebra of differential
operators on a torus attached to a root system, or as an algebra of difference operators on
a root system. The former approach allows one to apply various techniques of D-modules,

symplectic geometry and is closer to the theory of rational Cherednik algebras [14]; the
latter approach allows one to apply cohomological, K-theoretic or sheaf-theoretic meth-
ods [13] [53], and is closer to the non-degenerate DAHA cf. §4, §5.

In the present work, we will adopt the point of view of difference operators most of the
time. We will see in §2 that with this point of view, the dDAHAs can be easily generalised
and are quite flexible in the choice of parameters. We will also see that some of the features
on the differential side can be recovered in this approach, namely the integration of the
KZ equations.

This chapter serves mainly as preliminary materials for later chapters. The proof
of most of the statements will not be presented since they can be found in the litera-

ture [32] [12] [42] [45] [49].

We define the affine root systems in §1.1, the dDAHAs in §1.2 and the affine Hecke
algebras (AHA) in §1.3. We introduce the idempotent form of these algebras, which
control blocks of the category O of both algebras. The definition of idempotent forms is
a straightforward generalisation of the result of Brundan—Kleshchev [9] and Rouquier [13]
on the equivalence between affine Hecke algebras for GL,, and quiver Hecke algebras for
linear and cyclic quivers.

We recall the monodromy functor in §1.4 introduced in [18] as trigonometric analogue

5



6 1. DEGENERATE DOUBLE AFFINE HECKE ALGEBRAS

of the KZ functor of [17]. We prove that it is a quotient functor in the sense of Gabriel.

In envisaging the next chapter, we discuss in §1.5 the relations between the monodromy
functor of [18] and the functor which will be defined in algebraic terms in §2.5.6.

1.1 Affine root systems

We recall the notion of affine root systems. The reference is [11].

1.1.1 Affine reflections on euclidean spaces

Let E be an affine euclidean space of dimension n > 0 and let V' be its vector space
of translations. In particular, V is equipped with a positive definite scalar product
(—,—) : V. xV — R. The dual space V* is identified with V' via the scalar product
(—,—). Let C[E]=! be the space of affine functions on E. We have a map of differential
O : C[E]S! — V whose kernel is the set of constant functions. The space C[E]|S! is
equipped with a symmetric bilinear form (f, g) = (0f, dg). For any non-constant function
f € CIE|=Y let f¥Y = 2f/|f|* and define the reflection with respect to the zero hyperplane
of f:
sp: BE— E, spx)=xz— f'(x)0f

and
sy CIE)S' — CIEIS, sp(9) =g —(f",9)f

It extends to an automorphism of the ring of regular functions s, : C[E] — C[E].

1.1.2 Affine root systems

An affine root system on F is a subset S C C[E]=! satisfying the following conditions:

(i) S spans C[E]=! and the elements of S are non-constant functions on F.
(i) s.(b) € Sforall a,be S

)
) Sa

(ili) (av,b) € Z for all a,b € S.
)

(iv) the group Wy of auto-isometries on E generated by {s, ; a € S} acts properly on
E.

The group Wy is called the affine Weyl group (or simply the Weyl group of S). An affine
root system (E, S) is irreducible if there is no partition S = S; U .Sy with (—, =) |g,x5,= 0
and S; # () and Sy # ; it is reduced if @ € S implies 2a ¢ S.

Let (E,S) be an affine root system. The set R = 9(S) C V* is a finite root system on
V. Let Pp = P(R) C V denote the weight lattice, Qr = ZR the root lattice, Py = P(R")
the coweight lattice and QY, = ZR" the coroot lattice.

Conversely, let (V) R) be an irreducible finite root system, reduced or not. Let Pg be
the weight lattice, Qg the root lattice.
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We define the affinisation of (V, R) to be the affine root system (E,S) with £ =V
and

S={(a+n;neZl,ac Ra¢2Qr)U{a+2m+1; meZ ac R, ac2Qg).

Given a base Ay C R, we form A = Ag U {ag}, where ag = 1 — 0 with § € R being the
highest root with respect to the base Ag. It follows that 6 = 1. From now on, we will
suppose that (F,S) comes from a finite root system (V, R) in this sense.

1.1.3 Affine Weyl group

Let (F,S) be an irreducible affine root system. A base of S is an R-linearly independent
subset A C S such that

(i) S c NAU—-NA.

(ii) The set (,ca {z € E'; a(z) > 0} is non-empty.

The Wg-action on S induces a simple transitive Wg-action on the set of bases of S. Upon
fixing a base A of S, let ST = SNNA and S~ = SN —NA denote the sets of positive
and negative roots.

We choose ag € A such that the image of the set Ay = A\ {ap} under the total
differential 0 : S — R forms a base for the finite root system R in the usual sense. This
choice yields a base point O € E by a(O) = 0 for a € Ag. We will identify Ag with its
image 0A¢ € R. It follows that the parabolic Coxeter subgroup (s, ; a € Ag) of Wy is
isomorphic to the finite Weyl group Wr = W (R, Ag) = (Sa ; @ € Ag) and there is an
isomorphism

Qp X Wr=Ws
(1, w) = XH'w,
where the element X* acts on S by a — a — (Ja, u). The extended affine Weyl group

is defined to be Wy = Py x Wg. It acts on S by extending the Wy action by the same
formula X*a = a — (0a, p) for u € Py.

The length function ¢ : Wy — N is by f(w) = # (ST Nw1S57). This extends the
usual length function on the Coxeter group Wy with respect to the set of generators

{Sa}aeA'

We will need the following formula for the length function.

Proposition 1.1. For u € P} and w € Wg, we have

lwXt) =tw)+ > Nam+1+ Y Kl

aERTNw— IR~ aERTNw—LIRt
(XPw)=Lw)+ > N+ > Kap) + 1.
a€ERTNw—1R— a€ERTNw—LIRT

See [32] for a proof. O
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1.1.4 Alcoves

For every affine root a € S, let H, = {\ € E; a(\) = 0} be the vanishing locus of a. The
affine hyperplanes { H, },¢s yield a simplicial cellular decomposition of E. The open cells
are called alcoves. Thus the set of connected componenents

o0 <E\ U Ha>

aesS

is the set of alcoves. The affine Weyl group Wy acts simply transitively on it. When a base
A C S is fixed, the fundamental alcove is defined to be vy = (),cA {2 € £ ; a(x) > 0}.

1.2 Degenerate double affine Hecke algebra

Let (E,S,A) be an irreducible reduced affine root system with a base. We define in
this section the degenerate double affine Hecke algebra H attached to (E,S,A) and its
idempotent form H),, which is a block algebra for the category O of H.

1.2.1 Degenerate double affine Hecke algebra H

Let h = {ha},cq be a W-invariant family of complex numbers. The degenerate double
affine Hecke algebra with parameters h attached to the affine root system S is the
associative unital C-algebra on the vector space H = CWs ® C[E] whose multiplication
satisfies following properties:

 FEach of the subspaces CWs and C[F] is given the usual ring structure, so that they
are subalgebras of H.

o« w e CWs and f € C[E] multiply by juxtaposition: (w® 1)(1® f) =w® f.
e a € A and f € C[E] satisfy the following:
(5@ (1@ f) = (1®sa(f)) (5, @1) = 1®haf+a(f).

1.2.2 Global dimension of H

Put a filtration F on H as follows:
Fce (H=0, FoH=CWs, FH=(FH)C[E]Y, F,H=(F H)" n>2.

Namely, H is filtered by its polynomial part C[E]. The filtration F' is compatible with

the multiplication and its associated graded ring is given by the skew tensor product
gr' H = CWx x (CQ}% @ C[V]). Since dim.gl H < dim.gl gr H ([18, D.2.6]) and since
dim.gl CWx x (CQ}, ® C[V]) = 2r, where r = rk S = dim E, we have the following:

Proposition 1.2. The global dimension of H is at most 2r.
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1.2.3 Category O

For each A € Eg, let my, C C[E] be the maximal ideal generated by f(\) — A for all
f € C[E]. Given any module M € H-Mod, for each A\ € E¢ consider the generalised
A-weight space in M:
M, = U {aeM;mla=0}.
N>0

For any Ay € Eg¢, we define O,, (H) to be the full subcategory of H-mod consisting of
those M € H-mod such that

In other words, the polynomial subalgebra C|E] acts locally finitely on M with eigenvalues
in the Wg-orbit of \y € E¢.

From the triangular decomposition H = CQ), ® CWx ® C[E], we deduce the following:
Proposition 1.3. For any A\ € E, every object of Oy, (H) is a coherent CQ},-module.

]

1.2.4 Block algebra Hf}

Fix once and for all \y € E¢. Define for each A € Wg)y a polynomial ring Poly, = C[V]
and let Pol = P,y , Polx. Define the completion

Poly = lim Poly /m) Poly = C[V], Pol= €} Pol,

N—o0 AEWs Ao

where my C Pol, is the maximal ideal given by 0 € V. The completion 1551,\ is equipped
with the myp-adic topology and Pol is equipped with the colimit topology of finite products.

For A € Wg)q, the translation A, : V¢ Aty E¢ yields an isomorphism
\*: C[E] = C[V] = Pol, .
We define an action of H on Pol:
= (1)), : H — End(Pol), ) : H — Hom®*(Poly, Pol).
and where for f € C[E] and a € A, set

W) =A"f
— e (5, — 1) € Hom™ (Poly, Poly) aN) =0 (14)
Ua(sa — 1) = M (ha—a) _ (sa))*(a—ha) Hom ™ (Pols. Pols X Pol N £0
o T oyra - Sa € Hom®™M (Poly, Poly x Poly,x) a(X) #
Lemma 1.5. The map ¢ define a faithful continuous action of H on Pol.
O

Let HY C Endcont(ﬁc\)l) be the closure of the image of 1. Let HY -mod™ be the
category of finitely generated Hf\\o-modules M such that for each element m € M, the
annihilator anng, (m) is an open left ideal of HY .



10 1. DEGENERATE DOUBLE AFFINE HECKE ALGEBRAS

Lemma 1.6. The restriction ¥* yields an equivalence of categories

H}, -mod & O, (H).

]

The block algebra Hf\\o is a topological algebra. It has a set of topological generators
which reflects better than H the weight-space decomposition of objects of O, (H).

Lemma 1.7. The topological algebra HYy s topologically generated by the following
elements:

(i) for each A € Wg)y, the projector e(\) : Pol — Pol,
(ii) the ring of formal power series C[V]

(iii) for each a € A an operator 7, : Pol —s Pol such that

N N (Da)spa—1) a(A)=0 A hy #0
T.€(A) = e(s,A\)7, : Poly — Pol,,»,  7.e(N) = ¢ (9a)sa, a(A) =hg A hy #0
S9a a¢{0,h,} V h
(1.8)

Proof. The idempotents e(A) belong to HY by the chinese remainder theorem. For the
operators s, € H, once we pass to the completion HY , only the pole / zero orders of the
functions a~! and a — h, appearing in the formula (1.4) at different points A\ € Wglg
matter, which are given by (1.8). N

1.2.5 Idempotent form H),

In view of Lemma 1.6 and Lemma 1.7, in order to study the block O,,(H), it is convenient
to consider the subalgebra generated by the generators given in Lemma 1.7.

For each A, define e(\) : Pol — Pol to be the idempotent linear endomorphism of
projection onto the factor Pol,.

For A € Wg)\g, we define a function ordy : St — Z>_; by

ordy(a) = ord.—q) (2 — he)z . (1.9)
For each a € A and A € Wg\g, define an operator 7,e(\) : Poly, — Pol;, 5 by
0a) (55, — 1 d =-—1
re(h) = 4 (90 (500 1) ordx(a) . (1.10)
(0a)°rdr @ 55, ordy(a) >0

Here sy, : C[V] — C[V] is the reflection with respect to the finite root da € R.

Let H), be the associative (non-unital) subalgebra of End¢(Pol) generated by fe(\)
and T,e() for f € C[V], a € A and A € Wg,.

Let Hy,-mody be the category of finitely generated H), -mody-modules M such that
M = D, cpwyr, €(A)M and such that the subspace V* C C[V] acts locally nilpotently on
M.
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Lemma 1.11. The inclusion Hy, — HY  has dense image and induces an equivalence of
categories
HY, -mod™ = H,, -mod,

]

Remark 1.12. In §2, we will attach to each family of functions {w/\}/\ews)\o an algebra
A¥. We will study them in a larger generality. The algebra Hy, is the special case where
wy = ordy for A € Wg.

1.2.6 Centre 2"

For A € Wglg, let W) denote the stabiliser of A in Wg. The stabiliser W) is a finite
parabolic subgroup of the Coxeter group Wg. The affine Weyl group Wy acts on the
vector space Vg via the finite quotient 9 : Wy — Wg/Q¥ = Wg. Let Z = C[V]"o
be the ring of W) -invariant formal power series. Since W), acts by reflections on V, the
ring Z”" a complete regular local ring. Let mz C Z” be the maximal ideal.

For each A € Wg)\g, we define a homomorphism Z" — 1551,\: choosing a w € Wy such
that whg = A, we let f +— w(f) € C[V]"«» C Pol,. This map is clearly independent of
the choice of w and it identify Z” with the invariant subspace C[V]We». *. By the invariants

theory, Pol,\ is a free Z"-module of rank #W, = #W,,. The space Pol is regarded as a
Z"-module via the diagonal action. It is easy to observe that Z” lies in the centre of HJ, .

Proposition 1.13. The algebra of invariant formal power series Z" coincides with the
centre of the block algebra HY, .

1.3 Affine Hecke algebra

We keep the notations (£,S,A), and h = {hq},.4 as above.

1.3.1 Extended affine Hecke algebras
We denote Ry = R\ 2R. We put

exp(mihgy,) a € Ry
exp(mihays) a € RN2R-

v =AVa}oers Vo= {

Recall that WSV = Pr x Wy is the dual extended Weyl group (we identify Wg with Wgrv
via the bijection s, > Sqv).

Define the extended affine braid group B for the dual root system (V*, R¥) to be the
group generated by T, for w € WS with relations for y, w € WS
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The extended affine Hecke algebra of parameters v is an unital associative C-algebra
K is the group algebra C8Bg quotient by the following relations for @ € Ag, in the case
where R is reduced:

(T, — Ui)(TSQv +1)=0, (T — /Ug)(TSO +1)=0

where sg € VNng is the reflection with repect to the affine simple root and 6§ € R™ is the
highest root. In the case where R is non-reduced, let § € Ag be the simple root such that
2p € R. Let K be the quotient of CBg by the following relations for o € Ay \ {5}:

(Tsa + UIQX)(TSQ - 1) = 0

(Ts, + viup) (T, — 1) =0

(Tyy + vivy ) (T, — 1) = 0.

1.3.2 Bernstein—Lusztig presentation

There is a subalgebra CPr C K given by 8 +— T} for f € Pr dominant with respect to
the base Ag. For 8 € Pg in general, decomposing it into § = g’ — " with ' and 5"
dominant, we let Y? = Tﬁ/TBT,l. Then there is a decomposition

K = Hp ® CPg,

where Hp is the subalgebra generated by {7}, }aca, with the following commutation
relations: for a € Ag and f € CPp:

Tof = salH)To = (2 - L =5 2 ¢ R
1—X~= £ salf] (1.14)
Ty f — s5(f)Ts, = ((UZ’UQ +1) — (Ué + Ue) X_B) ﬁ’ 28 € R,

1.3.3 Finite dimensional modules

Let T be the complex torus defined by 7' = Q}, ® C* so that we have Q}, = X,(7T') and
Pr = X*(T). For any 3 € Pg, we denote by Y? € C[T] the corresponding function on 7.

For each ¢ € T, let m; C CPgr denote the maximal ideal corresponding to ¢, which
is generated by Y? — Y?({) € CPy for all 3 € Pr. Given any module M € K-Mod, for
each ¢ € T consider the generalised A-weight space in M of the action of the subalgebra
CPr C K:

M, = U {aeM;m)a=0}
N>0
For any ¢y € T. We define Oy, (K) to be the full subcategory of K-mod consisting of
those M € K-mod such that
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1.3.4 Idempotent form K,

Fix ¢y € T. As in the case of H, we define an algebra which is more adapted to study
the block Oy, (K). Define for each ¢ € Wgly a polynomial ring Pol, = C[V] and let
Pol = @ cyy,.q, Pole. For each ¢, define e(¢) : Pol — Pol to be the idempotent linear
endomorphism of projection onto the factor Pol,. Let Ry = RT \ 2RT denote the set
of indivisible positive roots. In view of (1.14), for ¢ € Wgly, we define a function
ord, : Rf — Z:

d() ord,—ya(g)(z —v2)(z — 1)~} 20 ¢ R
ordy(a) =
‘ ord,_ya(pn(z —v2)(z —vg)(2* —1)7' 2a € R.

o

For each o € Ay and ¢ € Wgly, we define an operator 7,e(¢) : Pol, — Polg_, by

al(sy —1) ordy(a)=—1
«e(l) = .
Te e( ) {aordg(a)sa OI'dg(Oé) > 0

Here s, : C[V] — C[V] is the reflection with respect to a.

Let Ky, be the associative subalgebra of End¢(Pol) generated by fe(¢) and 7,e(¢) for
f € ClV], a € Ay and ¢ € Wgty. Let K, -mody be the category of finitely generated
K, -mody-modules M such that the subspace V* C C[V] acts locally nilpotently on M.
Same arguements as Lemma 1.6 and Lemma 1.11 shows that:

Lemma 1.15. There is an equivalence of categories

Ogo (K) = Kgo —modo

]

Remark 1.16. In §2, we will attach to each family of functions {wg}gewﬂo an algebra
BY. The algebra K), is the special case where wy, = ord, for £ € Wgty.

1.4 The monodromy functor V

In this section, we recall the construction of the monodromy functor of [18], which is
a trigonometric analogue of the Knizhnik—Zamolodchikov functor introduced in [17] for
rational Cherednik algebras. We prove that this functor is a quotient functor.

Keep the notations (E,S,A), ag € A as above. In addition, we fix A\g € F¢. Consider
the following exponential map
exp

ECgVC:QV®C—>QV®CX:T
LT ® e

Put ¢y = exp(Ag). For simplying the notations, denote Cy = O,, (H) and By = Oy, (K).



14 1. DEGENERATE DOUBLE AFFINE HECKE ALGEBRAS

1.4.1 Dunkl operators

Consider the dual torus TV = P ® C*. The ring of regular functions C[T"] is isomorphic
to the group algebra of the coroot lattice CQV:

CcQ’ S C[r
QY > ur— X*

For each £ € V*, let 0 € ' (T, TTv)TV be the translation-invariant vector field on T
such that J¢ |.= £ under the isomorphism Trv [.= V. We view O as a linear differential
operator on TV, so that J¢(X*) = (¢, u) X* for each p € Q.

The regular part of TV is defined as T} = [ ,cp+ {X“v #0} C TV. Let D(T)') denotes
the ring of differential operators on 7.

For £ € V*, the trigonometric Dunkl operator D, : C[TV] — C[T"V] is a C-linear
operator defined as follows:

Def) =o(f) ~ X nE 2D e g =1 e e v

acRt acAt

We consider Dy as an element in D(7.) x Wkg.

The homomorphism of C-algebras

C[T:]@CWR(@C[V}:H—)D(T!) X Wg
FPRuUuRl—etQu

induces an isomorphism C[T}] ®cjpv) H = D(T))) x Wh.

Let [T /W] be the quotient stack. The orbifold fundamental group m ([T /W]) is
isomorphic to the extended affine braid group Bg.

If M € O,,(H), then
Mo = Ho ®H M

is a W-equivariant D(T,)-module, which is in fact an integrable connection with regular
singularities. Therefore the flat sections of M on (the universal covering of) the orbifold
[T /W] defines a Bg-module, which is denoted by V(M). It is shown in [1&] that in fact
the Bg-action on M factorises through the surjective homomorphism C8¢ — K and
yields an exact functor

V: OAO(H) — OgD(K).

1.4.2 Central actions of Z" intertwined by V

For convenient, we will denote Cy = O,,(H) and By = Oy, (K). Recall the central algebra
ZN = C[V]" defined in §1.2.6.
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Let W), be the stabiliser of \y € E¢ in Wy and let Wy, be the stabiliser of ¢, € T" in
Wgr. Let A\g be the image of Ay in E¢/W,, and let ¢y be the image of ¢y in T'/W,,. The
exponential map (1.4) induces an analytic map

exp™ : Eg /Wy, — T /Wy,

which is locally biholomorphic near Ag. The push-forward along exp*® at ), yields an
isomorphism of complete local rings

exp : C[Ec/Wy, )5, = C[T/Wy]7 .
Note that
ZN > C[Ec/Whl5, -

For any w € Wg, the action of w on E¢ and on T induces

w, : 2" =2 C[Ec/Wur ] w, : C[T /Wy, |7 = C[T/ W,

wAo ? wlp *

We define homomorphisms 2" — Z (Cy) and Z" — Z (By) as follows: for any M € Cy,
we decompose M = @,y », Ma and for each A = who, f € Z" acts by w.f on M.
This depends only on the weight A\ but not on the choice of w. Simlarly, for any N € B,
we decompose N = @KWR 1o Me. For each £ = wly, | € ZM acts by multiplication by
Wiy expi0 f on Ny.

Lemma 1.17. The functor V : Co — By intertwines the Z"-actions on Cy and By.

Proof. Recall that the graded affine Hecke algebra is the subalgebra
H=CWg®SymVs C H.

For any weight A € Vg, let O\(H) be the category of finite dimensional H-modules
on which the action of the polynomial part Sym V¢ has weights included in the orbit
WeA C V.

There is a functor of induction
Indﬁ : H-mod — H-mod, IndﬁM =Heyg M
and for each weight A\ € E, it restricts to
Indg : Ox(H) — O, (H)
Let T C Cy denote the essential image of Indg. It is known that Z generates Cy. Therefore,

it suffices to show that the restriction V |7 intertwines the actions of Z”.

We shall apply the deformation argument to check this statement. The arguments
are similar to [18, 5.1]. Let O = C[w] and let £ = C(w)). Let ¢ € V& be any regular
coweight and put Ao = A +we € V5. Put Hp =H® O and Kp =K ® O.

For each A\p € WgAo 0 and for n € Z>4, let
My, = (Bo — (Bo, Ao) ; B € Vo) C Symp Ve, my, =my,[@ ]
Sy, = Syme Vi /miy,, Sy = Sy [ ]
P(A\o)n = Hp ®symevg San,  P(Ac)n = Hi[w ™).
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Note that all these objects are flat over O. Let P(Ap)Y be the space of flat sections of
the affine Knizhnik-Zamolodchikov equation (AKZ) on the constant vector bundle on 7./
of fibre P(Ap),. The monodromy representation yields a Ko = K® O action on P(A\p)Y .

Since the stabiliser of A\p in Wy is trivial, there is an eigenspace decomposition

P()\;c)n = @ (P<)\K)n)w)\,cv (P()"C)n)w)\;c = waA%

where each wa,\% is a free SA%—module of rank 1. This means that there is a fundamental
solution { bZ}weWR of the AKZ equation on T, which satisfies

b (exp(u)) = == (oreid =) (b, 4 G(y)
for u € V¢ such that Jm ({o, ) — +oo, Vo € A™,

where

1
=7 Z hoo € Ve,
aEAT
w]-v € V¢'s are the fundamental coweights, a; € V{’s are the simple roots so that
(i,w]) = 0;5 and G(p) is a P(Ax)n-valued analytic function in x4 with such that

G(p) — 0,  when Jm {a, u) — +o00,Va € AT,

The fundamental solution induces an Syp-linear isomorphism
P(Ac)n — P(Ac)y, bw > by.

Under this isomorphism, the monodromy operator on the right-hand side corresponding
to 3 € X is identified with €™ on the left-hand side. Put

A
2R =25l = (SymVR)s,

Ao,0

Z5 = ((Sym Vé)w“’)

0,0
We define the action of Z5 and Z¢ on Hy,-modules and Hy in a similar way.

Since the action of Zp on P(A\¢), coincides with the action of the polynomial part
Sym Vi C H up to twists by elements of Wk, the induced action of Z¢ on Ki-module
P(\g)Y is identified with the exponentiation of the action of Z¢ on the P(A\g), un-
der (1.4.2).

Since P(Ao)n C P(Ac)n and P(Ao)y C P(Mc)y are stable under the action of
Z) C Z, the functor M +— MY also intertwines the two Zj-actions. Put P ()), =
P()\o), ®0 C. Then P()\), — P(\)Y = V(Indg P(\)Y) also intertwines the two Z”-

actions. Finally, since the family of modules P(\),, for A € Wg)o and n > 1 generates the
category O,, (H), the functor V restricted to Z intertwine the Z”-actions as asserted. [

1.4.3 Completion of categories

Since the affine Hecke algebra K is finite dimensional over its centre, By = Oy, (K) is
equivalent to the category of modules of finite length of some semi-perfect algebra. It
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is also the case for Cp = O,,(H). In particular, they are both noetherian and artinian.
Consider the category of pro-objects' Pro(Cy) and Pro(By). We have two central actions
introduced in §1.4.2

Z" — End(idc,) = End(idpro(cy))

ZN — End (idBo) = End(idpro(tgo)).

By Lemma 1.17, the functor V : Co — By intertwines the Z”-actions. The extension
V : Pro(Cy) — Pro(By) still intertwine the Z”-actions.

Define C C Pro(Cy) to be the subcategory consisting of objects M € Pro(Cy) such that
M/mbM € Cy for all k > 0. Similarly we define B C Pro(By) to be the subcategory
consisting of objects N € Pro(By) such that M /m% M € Cy for all k > 0.

Lemma 1.18. For any simple object L € Cy (resp. L € By), its projective cover
P(L) € Pro(Cy) (resp. P(L) € Pro(By)) lies in C (resp. B).

Proof. Notice that by a general result Lemma A.4, the objects of Cy (resp. Bp) admit
projective covers in Pro(Cy) (resp. Pro(By)). The statement is obvious for By because
K is of finite rank over its centre. For Cy, by Lemma 1.6 and Lemma 1.11, there is an
equivalence Cy = H), and the algebra H), is Morita-equivalent to an algebra of finite rank
over its centre, cf. §2.2.4. O

Lemma 1.19. The functor V : Pro(Cy) — Pro(By) restricts to V: C — B.

Proof. If M € C, then M /m%M € Cyand by Lemma 1.17, V(M) /mE V(M) = V(M /mEM) €
By. It follows that V(M) € B. O

1.4.4 Right adjoint of V

Recall that By = Oy, (K) and Cy = O,,(H).

Lemma 1.20. The functor V : Co — By admits a right adjoint functor V' : By — C,.

Proof. We first define a functor V' : By — Ind(Cp) with natural isomorphisms
Homg, (V(M), N) = Hompq(c,) (M, V' (N)) (1.21)
for M € Cy and N € By. For any N € By, let
Fy :Cy®* — C-Mod, Fy: M — Homg, (V(M), N)
and let

Fx(M)™ = Fy(M)\ ) Fn(M/M).
0£AM'CM
Here, we regard Fy(M/M’) as a subspace of Fy(M) by the right exactness of Fy. Let

Zx be the category whose objects are pairs (M, a), where M € Cy and a € Fy(M)™", and
whose morphisms are defined by

Homgz, ((M,a),(M',ad")) = {f € Home,(M,M') ; Fx(f)(a") =a}.

!The generality of categories of pro-objects is recalled in §A.1.
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We set
VI(N) = “lim” M € Ind(Co).

(M,G)EIN

According to [15, 3.5, Lemma 6], V' (N) represents the functor Fy, so V' satisfies the
desired adjoint property (1.21).

Now we show that in fact the object VT (N) in Ind(Cy) lies in the subcategory Cy. Let
Pe € C be the sum of all projective indecomposable objects (up to isomorphism) of C so
that for any M € Cy, the dimension of Home (P, M) is equal to the length of M. Since
V(Pc) € B is finitely generated K-modules, the vector space Homp (V(P¢), N) is finite
dimensional. Then there are isomorphisms

lig HOIIlC (Pc, M) = 11&1 hg HOIIlcO (Pc/Q, M)

MCVT(N) MCVT(N) QCPc
MeCy MeCy  Pc/QeCo
o~ hﬂ Homlnd(co) (Pc/Q,VT(N))
QCPec
Pe/Q€eCo
= lim  Homg, (V(Pc/Q),N)
QCPec
PC/QGCO

& Hompro(BO) I&H V(PC/Q), N) = HOH]B (V(PC)a N) .

QCPc
Pc/QeCo

(1.22)

The first and the fourth isomorphisms are due to (A.1) of §A.1; the second one is

exchanging the order of the two colimits and the definition of morphisms between ind-
objects; the third one is due to (1.21); the last one is by Lemma 1.19.

Since N € By, there is some integer n such that m4N = 0. Since V(P;) € B, the
quotient V(FPe)/m%LV(Fp) lies in By. Thus

HOIIIB(V(Pc), N) = HOIIIBO (V(Pc>/m%V(Pc), N)

is finite-dimensional. The above isomorphisms (1.22) imply that the length of the
subobjects M C V' (N) such that M € Cy is bounded. It follows that VT (N) is in fact in
Co by Lemma A.2 (iii). Thus V' : By — Cy is a right adjoint to V.

]

1.4.5 Quotient functor V

Proposition 1.23. The monodromy functor V : Co — By is a quotient functor.

Proof. Recall that D(T)') is the ring of algebraic linear differential operators on the regular
part T of the dual torus TV = P ® C*. By construction, the functor V factorises into
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the following

H-Mod —2 D (T)Y) x Wx-Mod

J J

RH ini
Co ——— comnff, (T%) — 21— CBg-mod™

| |

v
)Bo

Here, connyj,  (T7') is the subcategory of D (T}) x Wr-mod consisting of Wx-equivariant

connections on 7. which have regular singularities along the boundary. The arrow in the
first line is the localisation functor loc = (D (T)Y) x Wg) ®u —, whose right adjoint loc"
is the pull-back via H C D (7)) x Wg. The restriction of loc to Cy factorises through the
subcategory

connyy (T,)) € D(T)') x Wg-Mod

and gives the first arrow of the second line. The functor RH is the Riemann—Hilbert cor-

respondence (the Knizhnik—Zamolodchikov equations have regular singularities [12]), due
to Deligne, between algebraic connections with regular singularities and finite dimensional
representations of the fundamental group m ([T, /Wg|) = Bg.

We show that V admits a section functor in the sense of Gabriel. Indeed, we have
already seen that V admits a right adjoint functor V'. The functor V' can be described
as follows:

By < CB5-mod™ = conn®y, (TV) — Co,

where the last arrow is the functor which sends an object N € connyj, (TV) to the biggest
H-submodule of N which lies in Cy. We show that the adjunction coumt VoVT — idpg,
is an isomorphism. We first show that it is a monomorphism. For any M € D(T)) x
Wr-Mod, we have C[T|®crvi M = M. By the flatness of C[T'] over C[T"], the inclusion
M |¢,— M gives rise to a monomorphism C[T.'] @crv) (M |¢,) — C[TY] ®@crvi M = M.
Composing it with the Riemann-Hilbert correspondence, we see that Vo VI — idg, is
a monomorphism.

Let N € By. By the exactness of V, to show that the adjunction counit VVTN « N
is an isomorphism, it remains to find an H-submodule of RH™'(/N') whose localisation to
TY is equal to RH™(N). There exists a surjection

D rw)

€T

where Z is an index set and P (¢;), = K/K- mZ By [18, 5.1 (i)], for each i € T
there is an induced module P ();), = H/H - m}’ € Cy such that exp(\;) = {; and

V(P (N),,) = P(l:), . Hence the image of P(X\;),, in RH™'(N) is an H-submodule
which satisfied the requirement. We conclude that Vo V' 2 idg,.

By the well known result of Gabriel [16, 3.2, Prop 5|, the functor V : Co — By is a
quotient functor. O
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1.5 Comparison of V and V

1.5.1 The functors V and V

In §2, we will study the idempotent forms H,, and K,, in a broader context, cf.
Remark 1.12 and Remark 1.16. Specifically, in §2.5.6, we will introduce a quotient
functor for graded modules V : H), -gmod — K, -gmod. It has an ungraded ver-
sion V : Hy,-mody — K,,-mody. On the other hand, by Lemma 1.6, Lemma 1.11

and Lemma 1.15, we have equivalence of categories O, (H) = H,,-mod, and O, (K) =
K, -mody. The situation can be depicted in a diagram:

O/\o (H) L) Ofo(K)
1= 1=

v
H)\o —IIlOdO E— Kgo —modo

Conjecture 1.24. There is an isomorphism of functors V=V,

In the rest of this chapter, we prove a weaker version of this statement.

1.5.2 Comparison of the kernels

By Proposition 1.23 and §2.5.6, the functors V and V are already known to be quotient
functors. We prove that V and V are quotient functors with the same kernel.

Proposition 1.25. The kernelsker V and ker V are identified via the equivalence Oy, (H) =
H)\O —HlOd[) .

Proof. Let F : O,,(H) — H,,-mod, denote the equivalence obtained from Lemma 1.6
and Lemma 1.11. We show that for every object M € O,,(H), the condition Theo-
rem 2.58 (iii) for FM implies VM = 0. Let M = >, ., M) be the decomposition by
generalised weight spaces of C[V] and let

Mﬁt = Z M)\? te RZO

AeWs Ao
A<t

Note that under the equivalence F', the generalised weight space M) is identified with
e(\)F(M,). Following the same arguements as in the proof (iii)=-(iv) of Theorem 2.58,
we have s,M; < M, for every t € R and a € A. Let U = C[E|=! + Y wea C-s5, CHso
that U generates H as C-algebra. Then, by the assumption (iii), we have that any finite
dimensional subspace L C M,

lim dim (U"L) /n" "¢ =0, r=rkR.
n—aoo

Hence we obtain dimgg g M < r—1, and in particular dimggk cirv) M < r—1 for the sub-
algebra C[TV] = CQV C H. As the algebra C[T"] is commutative and by Proposition 1.3,

M is coherent over C[T"V], the Gelfand—Kirillov dimension of M coincides with the Krull
dimension of the subvariety Supp M C TV. As the localisation of M on the regular part
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T must be locally free, we see that it must be zero since dim7TV = r > dim Supp M.
Hence VM = 0 by the definition of V. We see that ker V C F(ker V).

Since V and V are both quotient functors of categories of finite length, by comparison
of the rank of the Grothendieck groups

rk Ko (ker V) = rk K¢ (O, (H)) — rk Ky (O, (K))
= rk K, (H,, -mody) — rk Ky (K, -mody) = rk K (ker V),

we see that ker V.= F(ker V). O
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Chapter 2

Quiver double Hecke algebras

Introduction

The objective of this chapter is to introduce and study a class of algebras, called quiver
double Hecke algebras (QDHA). They can be viewed as generalisation of degenerate double
affine Hecke algebras (dDAHA) or as a double affine version of quiver Hecke algebras

(QHA).

The quiver Hecke algebras, also known as Khovanov-Lauda—Rouquier algebras, were
introduced in [21] and [13]. They were introduced in the purpose of categorifying the
Drinfel’d-Jimbo quantum groups for Kac-Moody algebras as well as their integrable
representations.

It was proven by Brundan—Kleshchev—McNamara [10] and Kato [20] that quiver Hecke
algebras for Dynkin quivers of finite ADE types have pretty nice homological properties.
Anachronically speaking, they proved that the categories of graded modules over these
algebras carry an affine highest weight structure in the sense of [25]. As a consequence, they
have finite global dimension. However, once one goes beyond the family of finite type, the
quiver Hecke algebras often have infinite global dimension. The simpliest example would
be the cyclic quivers of length > 2. According to the result of Brundan—Kleshchev [9]
and Rouquier [13], the quiver Hecke algebras of cyclic quivers are equivalent to affine
Hecke algebras for GL, with parameter at roots of unity. The representation theory
of affine Hecke algebras at roots of unity are known to share several features of the
modular representation theory finite groups. Notably, there are fewer simple modules
in the modular case than there are in the ordinary case.

One approach to the modular representation theory is to resolve this lack of simple
objects by finding a larger, but better behaved category, of which the modular category
is a quotient. In the case of modular representation theory of symmetric groups, one
uses the Schur algebras as resolution via the Schur-Weyl duality. In the same spirit,
for Hecke algebras of complex reflection groups, the rational Cherednik algebras provides
resolutions, as it was first established in [17]. For affine Hecke algebras, the resolution
would be the degenerate double affine Hecke algebras. This perspective appeared in [18],
where degenerate DAHASs are viewed as replacement for affine g-Schur algebras in relation
with affine Hecke algebras cf. §1.2.2 and §1.4. In this chapter, we introduce quiver double
Hecke algebras, which we believe to play the role of “resolution” for quiver Hecke algebras.

23
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In §2.1, we introduce the quiver double Hecke algebras A attached to an affine root
system (E,S) with spectrum being a Wg-orbit in E and with parameter w. We define
the filtration by length on A“ in §2.1.4 and prove the basis theorem in §2.1.5 with this
filtration. We study the associated graded gr’” A of the filtration by length in §2.1.6.

In §2.2, we study the categories of graded and ungraded A“-modules. We introduce
in §2.2.6 a functor of induction from the quiver Hecke algebras attached to the finite root
system (V, R) underlying (E, S).

In §2.3, we study good filtrations on A“-modules and the relation between induction
and filtration.

In §2.4, we introduce the quiver Hecke algebra B“ attached to a finite root system
(V,R) and with parameter w. We prove a basis theorem for B and we introduce a
Frobenius form on B“.

In §2.5, we prove that the algebra B“ is isomorphic to an idempotent subalgebra of
A“. We use this isomorphism to define the Knizhnik—Zamolodchikov functor V, which is
a quotient functor. We give characterisations for the kernel of V in §2.5.7 and §2.5.9. The
double centraliser property for V is proven in §2.5.8.

2.1 Quiver double Hecke algebra

Fix an irreducible based finite root system (V, R, Ag) and let (E, S, A) be its affinisation.
In this section we will abbreviate P = Pg, @ = Qr, P¥ = Py and Q¥ = Q},.

2.1.1 The polynomial matrix algebra A°

Fix once and for all \y € E. Define for each A € Wg\ a polynomial ring Pol, = C[V]
and let Poly,y, = @/\eWsAo Poly. For each A, define e()) : Poly,,, — Poly to be the
idempotent linear endomorphism of projection onto the factor Pol,.

For each a € A and A € W), define an operator 72e(\) : Poly — Polg, \ by
“spg, — 1 A) =
Tge(/\) _ (aa) (53 ) CL( ) 0 .
S9a a(A) #0
Here Oa € R is the differential of a € S, ¢f. §1.1.

Let A° be the associative (non-unital) subalgebra of gEndq(Poly,,,) generated by
fe(\) and 72e(\) for f € C[V],a € A and A € W) .

2.1.2 Centre Z

For A € Wg)g, let W, be the stabiliser of A in Wg. The stabiliser W, is a finite parabolic
subgroup of the Coxeter group Wg. The affine Weyl group W acts on the vector space V'
via the finite quotient 9 : Wg — Ws/Q% = Wg. Let Z = C[V]"% be the ring of W),-
invariant polynomials, graded by the degree of monomials. Since W), acts by reflections
on V, the ring Z is a graded polynomial ring. Let mz C Z be the unique homogeneous
maximal ideal.
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For each A € W\, we define a homomorphism Z — Poly: choosing a w € Wy such
that w\g = A, we let f — w(f) € C[V]"«» C Poly. This map is clearly independent of
the choice of w and it identify Z with the invariant subspace C[V]"«*. The infinite sum
Poly», is regarded as a Z-module via the diagonal action.

The following are standard results from the invariant theory for reflection groups:

Proposition 2.1. The following statements hold:

(i) For each A\ € Wg)g, the Z-module Poly is free of rank #Wy = #W,.

(i) For any w € Wg, choose a reduced expression w = S -+ Sq, and put 75e(N) =
70 7o €(N) for each X € Wg)g. Then the element t5e(X) is independent of the

aj
choice of the reduced expression for w and moreover, there is a decomposition

Homz (Poly, Poly,y,) = @ ToC[V]e(\).

weWg
(1ii) The A°-action on Poly,,, commutes with Z and moreover, the map

A% — @ Hom z (Poly, Polygy,)-

AEWs Ao

it is an isomorphism.

2.1.3 Subalgebras A¥ of A’

Let w = {wr}ycp,n, be a family of functions wy : ST — Z>_; satisfying the properties:

(i) wa(a) = —1 implies a(\) = 0.

(i) For w € Wg and b € ST Nw ST we have wy(b) = wy(wb).

One may extend w) to a function @y : S — Z>_; by choosing w € Wy such that wa € S
and setting wy(a) = wyr(wa). We will also require w to satisfy the following property:

(iii) For any (thus every) A € Wgg, the extended function @y : S — Z>_; has finite
support.

We call the family {wy}ycpyp.y, @ family of order functions.

Define an operator 7¢e(\) : Poly — Polg,\ by

(0a)“* sy, wy(a) >0

e {0

so that 7¥e(\) € A°.
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Definition 2.2. The quiver double Hecke algebra'? A“ is defined to be the subalgebra of
A° generated by C[V]e(\) and t9e(\) for A € Wy and a € A.

We also introduce the homogeneous rational function rings and its matrix algebra:

Rat,\:mglPol)\, Rat = EB Rat)

A~ = EB Homm;z(Rat,\, Rat) = m;'A°, 7, = s,.

a
AeWs Ao

Example 2.3.

(i) Let o = {a — _5‘1()‘):0}/\61%/\0 denote the smallest of such families. We recover the

matriz algebra A°.

(i) Let 6 = {0}y, be the zero constant function. Then A? = Polyy,y, xWs is the

skew tensor product. If Wy, = 1, then A% = C[V]1 Wy is the wreath product.

(11i) Let E = R, let € be the coordinate function on R and let S = {£2e}+1Z, so that (E, S)

is the affine root system of type Agl). Choose the base A = {a; = 2¢,a9 = 1 — 2¢}.
The affine Weyl group Wg is generated by so and sy, where sy (resp. o) is the
orthogonal reflection with respect to 0 € E (resp. 1/2 € E). Set \g = 1/4 € E,
so that Wshg = 1/4 + (1/2)Z and Wy, = 1. It follows that Poly = Cle| for all
A € Wsho and A° is the matriz algebra over Cle] of rank WgA.

Set
35 (0) 1 ae A
w a) =
Yo 0 aeS\A

and define the family of order functions w = {wWx}ycper, OY Wury (@) = Gy (w™'a).

It follows that A* is equal to the idempotent form of the dDAHA H,, introduced
in §1.2.5 with parameter h, = 1/2 for all a € S. We can depict the algebra A“ with
the following diagram:

P01,3/4 T1 P013/4 To P011/4 T1 P01,1/4 70 P015/4
~_ — ' _~— ~_ — ~__—
s —€s s s

where s : Cle] — Cle] is given by the substitution € — —e.

!The parameter w is an analogue of the polynomials Q;, ;j(u,v) in Rouquier’s definition of quiver Hecke

algebras.

2 In this definition, the requirement that Ay € E plays no essential role. We could have asked \g to

belong to some set on which Wg acts transitively with finite parabolic stabliser subgroups. However, the
euclidean geometry of F will facilitate some arguements.
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2.1.4 Filtration by length

Definition 2.4. We define a filtration

FaAe = Y > > ClVIrg--7oe(N).

AEWsAo k=0 (aq,...,ar) €Ak

In general, it is hard to express the operators 7, --- 7.7 . However, the leading term is
easy to describe.

Proposition 2.5. Let w = s,, - - -S4, be a reduced expression and let A\ € Wghg. Then

(i) For any f € C[V], and any family w there is a commutation relation:

fro-1reA) =770 w(f)e(A) mod Fey_1A”.

1) For an pair of families w and W' such that w < W' poz’nth’se 5 there is a congruence
Y g
relation:

TZ; s ’7':1 e(/\) = T(: ce 7':1 ( H (—8b)wl)\(b)—w>\(b)> e()\) mod Fgl—lAw

beStnw—15—

Proof. We prove the statement (i) by induction on the length [ = ¢(w). It is trivial for
l=0. Forl=1:

(F72 72 s F))e(N) = { e = L )
It belongs to F<yA“e(\) = C[V]e()) in both cases.
Let [ > 1, by the induction hypothesis, we get
(fTar - Tay = Tay - Tay w(f))e(A)
= (fTar = Tay 80, (f))Tar_, -+ Tar€(N)
+ T (S0, ()T - T = Tar - Ta w(f))e(A) € Fg_1A”,
whence (i).
Using this we prove (ii) by induction on [ = ¢(w). Denote w' = s, _, -5, and
N =w'A. Then
7 re(N) = () men @) o pl” L e ())

((8611) @) —wy(ar) o ( day)” Lo(an)— w/\,(al)> W e(\)

aj aj—1 al

/

7 (—Bag) @) e ()

ar—1 ai

Using (2.6), the first term belongs to F<;_1A¥. The second term, by the statement (i)
for w’ = a;,_, ---a;,, satisfies

7';‘;(—Gal)“;'(“”_w%’(“l)ﬁ/ el e(N) =TETe co (( day )~ (@ _“*’(‘”)> e(N)

ap—1 ai

Wi (w'"tay)—wy(w'"ta
— T“;Tw_ “_Tw (_a(w/—lal)) /\( 1)—wx( ! 1) e()\)
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Here we have used the hypothesis that wy(w''a;) = wy(a;). Using the induction
hypothesis,

/ /

relrleN) = 7 e (saw) ((~9a) ) e(3)

ETs;---T$<(<—a<w'1az>>w&/-w<<w'>1az>) 11 <—ab>w’x<">“*<b>) e(\) mod Fa iA*
beStNw/'—15—

= ( I1 <—ab>w’x<">w<b>> e(\).

beStNw—15~—

The last equation is due to the relation ST Nw 'S~ = STNw 15~ U {w''aq;}. This
proves (ii). O

2.1.5 Basis theorem

We aim to prove an analogue of Proposition 2.1 for the subalgebra A“ C A°.

Lemma 2.7. For any family {wx}ycy,\, a5 above, the images of the operators T, 'e(A) in
gr’A¥ satisfies the braid relations: for a,b € A with a # b, let m,y be the order of susp
in Ws. If mgp # 00, then

w_ W __Ww J— w__WwW__Ww w
TETETe - ce(N) = 0TI - e(N) mod Flep,, ,—1A%.
—_——— —_————

Ma,b Ma,b

Proof. The statement is empty for m,;, = 00, so we assume m,; # oo. Let W, C Wg be
the parabolic subgroup generated by s, and s, let wy € W,; be the longest element and
let Sqp C S be the sub-root system spanned by a and b. Let Ay, be the subalgebra of A
generated by fe()), 7’e(\) and 7'e(\) for A € Wsg and let F,, A%, be the filtration by
length defined as in Definition 2.4. It suffices to show the following

ToTeTe - ce(N) = TTE T - e()) mod Fepp, 1A%
——— ——_———

Ma,b Ma,b

because there is an inclusion F<p,, , 1Ay, C Fep, ,—1A”. An analogue of Proposition 2.5
is valid for this subalgebra with the filtration Fi<, Ay ;.

We first prove the braid relation for the family w' = {w)}rewsnr,, Where wi(c) =
max{w(c),0}. Since w)(c) > 0 for all ¢ € S, the braid relation follows from the formula
(with similar proof as Proposition 2.5 (ii))

To Ty Ta - €(A) = SoaSovson - - H (—dc)“xe(N).

+
Ma,b Ma,b CeSa,b

Let 9 =] cesr, (Oc). By Proposition 2.5 (ii), we have
we(\)=—1

w' W _w! W, W, w w
Ta Ty Ta - €(\) =777, ---0e(\) mod Fep,, 1Ay,

—_———— N

Mme.b Mg, b
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Write X = (r07°78 -+ — 777 )e(A), so that X -0 € e(wo) (Fem, ,—1A%,) e(N).

J/ J/

V Vo
Mg, b Ma, b

Moreover, by Proposition 2.5 (ii), we have

X = (rorpr - —mprer ) [ (—0e) 972 e(N)  mod Fey,,—1AY,
m‘a’,b m‘c:b cES{ib

However, the elements 77e(\) satisfy the braid relations in A¢ , by Proposition 2.1 (ii). It

follows that X € Fep,, , 1A, (notice that A C A?). We claim that for 0 < j <m,,—1,
the quotient FSjAgvbe()\) /F<;A%e()) is right d-torsion-free. This will imply that X €
Fem, 1Ay, and complete the proof.

We prove the claim by induction on j. For j = 0, this is obvious since FeoAg, =
FooAY,. Assume j € [1,mqy — 1]. The quotient gri’A%,e()) is spanned over C[V] by

ety - -e(N) and 7,727 - - - e(\) since any non-reduced word in a, b of length < j con-
j j
tains consecutive aa or bb and since (75)% (7°)? € F<1AY,. Similarly, gri’A2 e()) is

spanned over C[V] by 77775 - --e(\) and 757077 - - - €(\). Moreover, by Proposition 2.1,
—— ——

J J
grng »e(A) is free of rank 2 over C[V]. Denote w = $,555, - - -. Since w > o, by Proposi-
7 .
j
tion 2.5 (ii), we have

TETETE =TT H (—=c)reox() mod Fej 1A7,.
b M ceSt,nw=1S,,
The prime factors of d are dc for ¢ € S, such that wy(c) = —1. Therefore 0 and the

product

H (_ac)wA(C)—OA (c)

ceSt,nw=1s,,
are relatively prime. The same arguement applies to the other product 7/77° - - -.

It follows that gri’ A%, e(\) and grf’Ag,e()) are both free over C[V] of rank 2, and
the matrix representing the injective C[V]-linear map ¢ : gri’ A% e(\) — gri’ A% e()) is
diagonal with entries prime to 9. Hence coker ¢ is d-torsion free. The snake lemma yields
a short exact sequence

Fj—lAZ,beO\) FjAZ,be(A)

0— —
ﬂ—lAg,be<A) FjAZJ,be(A)

— coker p — 0,
in which the first term is also 0-torsion-free by induction hypothesis, and so is the middle
term 0-torsion-free, whence the claim is proven. Il

Theorem 2.8. For any w € Wg, choose a reduced expression w = Sq, -+ -S4, and put
T = Ta =+ Toy- Then there is a decomposition

A= P P clvirgen).

AeWgAo weWg
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Proof. By dévissage, it suffices to show that for each n € N,

g A= P P ClVirse().

AeWgAg weWyg
L(w)=n

It follows from the braid relations for 7¢ in gr’ A“ and the fact that (7¢)%e(\) €
F<1 A% that these elements 7% span grZ’A¥. By the invariant theory of reflection groups,
the family (72e(A)), is free over C[V] and forms a basis for Endz (Poly). In view of
Proposition 2.5 (ii), the matrix of transition between between the families (72e(\)), and

(t9¢(\)), is diagonal with non-zero entries, the latter is also free over C[V]. O

Define the filtration Fc,A=>®° =m;'F.,A~°.
Corollary 2.9. For each n, we have

Fo,AY = Fo, A= N A®.

Proof. Let FL AY = F., A~ N A*. We have F_,A¥ C FL A“. Fix \, ' € Wg)\,. Put
N = #{w € Wy ; wA = X}, then we have F<yA* = A by Theorem 2.8. We prove by
induction on k € [0, N] that Fy_tA = Fy_,A. It is already clear for k = 0. Suppose
k > 1. Then we have the obvious diagram:

0 —— FN_kAw E— FN_k+1Aw E— gr%_kHAw — 0

I lw b

0 —— Fj 1 AY —— Fy, AY —— gl AY —— 0.

The morphism ¢ is an isomorphism by the induction hypothesis and ¢ is injective. By
the snake lemma, we have kern 2 coker . Theorem 2.8 implies that gry_, . ;A“ is C[V]-
torsion-free while coker ¢ is a C[V]-torsion module. Therefore coker p = 0 and ¢ is an
isomorphism. Il

2.1.6 The associated graded gr”A¥

We describe in greater details the structure of the associated graded grA¥. 1In this
subsection, we will omit the notation of congruence = and view the generators 7=e(\) as
in gri’ A«

Let Cy C V* denote the fundamental Weyl chamber and Cy its closure in V*. Let
PY = PN Cy (resp. QY = QYN Cp) be the submonoid of PV consisting of dominant
coweights (resp. dominant coroots). For any p € PV, we denote by X* € CPY the
corresponding element. Let CP) (resp. CQY) denote the monoid algebra of P} (resp.
PY). Recall the length formula in the extended affine Weyl group Proposition 1.1.

Endow the group algebras CPY and CQV with a filtration:

Fo,CPY= P C-X" F,CQ'=F,CP'NnCQ".

pePY
H(XH)<n
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We define a map
CP/ x gr"CPY — gr" CPY

2.10
(X/.I,7XI/) — XwOwu#+V7 ( )

where w, € Wg is the unique shortest element such that w; v is anti-dominant and w
is the longest element of Wpy.

Lemma 2.11. The following statements hold:

(i) The ring CP) is regular. Moreover, the map (2.10) defines a CPY-module structure
on grf’CPV, which makes gr’’ CPV a free module of rank #W , and a basis of which

is given by {bw} ey, with
by = J[ Xvoves

aEAg
Sqw<w

(ii) The ring CQY is Cohen-Macaulay and Q-Gorenstein. Moreover, the CPY-module
structure on grf’ CPY restricts to a CQY -module structure on gr¥ CQ", which makes
grf’CQY a Cohen—-Maucaulay module of mazimal dimension and of rank #W .

Proof. We observe that Spec CQY and Spec CP are toric varieties. The cone CyCV*
is simplicial and are generated by the fundamental coweights wy, € P}, whence CP) a
polynomial ring, hence regular, and CQY is a Q-Gorenstein normal toric variety. Every
normal toric variety is Cohen—Macaulay.

Consider the following injective C-linear map

(:CP}/ —CPY, X'— > XV

WEeEWRH

It maps CPY onto the subring of Wg-invariants (CPY)We. If ¢(X*) = k, then {(X*) €
Fop (CWY)WR since £(X*) = £(X™") for any p € Py and w € Wx. The map ¢ induces
an injective linear map ¢ : CPY — gr P¥. For any monomials X* € CP) and
X" € grf CPY, we have

(XM XY = > XY,
W EWRN
X H)=0(X ) Ho(XV)

By Proposition 1.1, the condition /(X*+") = ¢(X*) 4+ ¢(X") is equivalent to that g’ and
v lie in the closure of a same Weyl chamber. The map ( is a ring homomorphism. Indeed,
it follows from the fact that ( is injective and that for every pair p, /' € PY, the only
dominant monomial which appears in ¢(X*)((X*') is equal to X#*#'. This is not yet the
desired CPY-module structure.

We can filter the CPY-module ¢ by

(gr"CPY)™" = >~ (CPY)b,,
yeEWR
w<Ly
where <y, is the left order on the Weyl group: w <p, y < {(w) + £(yw™') = £(y). For any
w € Wg, we have
C(X"M)b, = X, mod (grf CPY)>", (2.12)
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so that the quotient (ngCPV)Zw/(ngCPV)>w is, endowed with the CP}-module
structure induced from (, is a free of rank 1 generated by the image of b,, denoted
by b,. Clearly, w € Wx is the shortest element among those y € Wx with the property

Z y_lwowwcvy € —60.

aE€Ng
Sqw<w

If we identify the monomials X” € gr’'CPY with their images in these quotient, then (2.12)
implies that formula (2.10) defines a CP-module and the family (b,,) forms a basis,
whence (i).

weWpr

Since CQY is integrally closed and CP} is an integral ring extension of it, by [7,
X.2.6,coro 2], CPY is a Cohen-Macaulay CQY-module and so is gr’ Py Cohen—-Macaulay
of maximal dimension over CQY and of rank (#Wpg)(#Q).

Let 2 = P/@. There is an action of € on group ring CPy described by

Q x CP]{ — CP%
(ﬁ,X“) s 2T B xH

Since the formula (2.10) is Q-equivariant, the CQY = (CPX)Q action on gr’CPV com-
mutes with the Q-action on the latter. As grf’QY = (gr PV)® is a direct factor of the

Cohen-Macaulay module gr” PY, so is itself a Cohen-Macaulay CQY-module of maximal
dimension, which is of rank #Whg. 0

Let W2 C Wy be the set of shortest representatives of the elements of Ws/Wg. The
following maps
QY — Wy — Wg/Wg + WH

yield a bijection 0 : Q¥ = WFE. The map 05 induces a C-linear map
Or : grf'CQY — et Wy, Or(X") = 0r(1).

where gr’ CWy is, as before, the associated graded of the filtration by length on the group
algebra CWjs.

By the braid relation Lemma 2.7, for each A € Wg, there is well-defined C-linear
map gr’’ CWs < grf’ A¥e()\) sending any simple expression w = s, - - 84, to T T e(A),
which is injective by the basis theorem Theorem 2.8. We denote by @“j{\ carfCQY —
gri’A¥e()\) the composite of O with this injective map.

Define a C-linear map

0Ql — ] e'A%e(n). x* H( S T;Mew) , (2.13)
A

AEWs Ao wWeWru

. /
where 77€(\) = 7,2 - - - 7.2 e(A) for any reduced expression X* = s, -+ 54, € Wp.

Theorem 2.14. The map (2.13) is a ring homomorphism and defines a structure of
CQY -module on grf’AY which commutes with the right multiplication of C[V], such that
the maps @‘E’)‘ become CQY -linear for all X\ € Wg.
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Moreover, there is a decomposition of (CQY, C[V])-bimodule

gAY = P 65 (er"CQY) @¢ (@ C[V]T;;> e(\),
AeWs Ao weWpr

where T2e(\) = 7 -+ - T

w7 e(A) for any reduced expression w = s, - S, -

Proof. The map (2.13) is independent of the choice of the reduced expression X* =
Sa, -+ Say € Wg by the braid relation Lemma 2.7. The assertion that (2.13) is a ring
homomorphism follows with the same arguments as in the proof of Lemma 2.11. It is
injective by Theorem 2.8. It yields a CQY-module structure by left multiplication on each
idempotent component gr’” A“e(\), which clearly commutes with the right multiplication
of grf Av.

We show that the maps @“é’)‘ are CQY-linear with respect to the CQY-actions (2.10)
and (2.13). Let v € Q" and let w, be the shortest element such that w,! is antidominant.
By the length formula Proposition 1.1, we have 0x(X") = X"w with w € Wy such that
w™ v is antidominant and w shortest among the elements of wW, € Wx/W,,-1,, where
W,,-1, is the stabiliser of w~'v, which is a standard parabolic subgroup of Wg. Thus for
each A and p € QY, the action (2.13) is given by

X“@%A(X”):( > T;;H,e(X)) TN = D TeuTvw,e(N).
N=XYw, \

wWeWru wWeWru

For yf € Wrp with y € Wkg, the product 7%,7%.,, €(A) must be 0 in the associated
graded gr’” A“ unless £(X* ) 4+£(X"w,) = £(X**w,), which, according to Proposition 1.1,
happens if and only if w1, = w, and (a,p) > 0 for « € R* Nw, 'R~ and («, u) < 0 for
a € RTNw,'R*. In this case, w, 'y is antidominant. Such y’ is unique among in the
orbit Wrp and i/ = w,wou, where wy is the longest element of W5x. Hence

A A y
XPORMXY) = TXwvwontvigy, o, €A) = O (X0HFY),

which proves the CQY-linearity of @}"2’)‘. The assertion about the decomposition follows
immediately from Theorem 2.8. 0

2.2 Module categories of A“

We keep the notations of §2.1. We put a Z-grading on A“ as follows: the generators are
homogeneous: degae(\) =2 for a € V* and deg 7¥e(A\) = wa(a)+ws,\(a). f M =D, M,
is a graded vector space, denote by M (m) the grading shift given by M(m), = M, 1,.
For two graded vector spaces M and N, we denote by Hom(M, N) the space of C-linear
maps of degree 0 and gHom(M, N) = @, ., Hom(M, N(k)).

Below, by “modules” we mean left modules. All statements can be turned into those for
right modules by means of the anti-involution A* = (A¥)°® defined by 7¥e(\) — 7¥e(s,\).
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2.2.1 Graded A“-modules

An A“-module M is called a weight module if there is a decomposition
M= @ eNM.
AeWs Ao

Let A“-gMod denote the category of graded weight modules of A¥. Let A¥-gmod C
A*¥ -gMod be the subcategory of compact objects and let A“-gmod, C A“-gmod be the
subcategory of mz-nilpotent objects. It is clear that A“-gmod coincides with the category
of graded finitely generated weight modules of A“. The following proposition is obvious.

Proposition 2.15. A graded A¥-module M is in A“-gmod if and only if there exists a
finite sequences (A1, -, \.) € Wso)", (a1, ,a,) € Z" and a surjective homomorphism

of graded A¥-modules
P Ave(V)(a;) — M.
j=1

We define a homomorphism of graded rings
Z — gEnd (idav _gmod) (2.16)

as follows: For every f € C[V]"% and w € Wy, let f acts on e(wAg)M by multiplication
with (w)(f) € C[V]Ww.

2.2.2 Intertwiners

For each A € WsAg and a € A, introduce the following element in A“:

pae(\) = {((&L)T(f +1)e(\) wx(a) =—1 |

TVe(\) wy(a) >0

a

It satisfies the following relations:

wy(a) =—1
8@ "ag(N) wy(a) >0
Pafe(A HNeae(N)  feCV],

where n) , = max(wy(a) + ws, ( a) O) They satisfy the usual braid relations. Thus, we
may write ¢, e(\) = @q, - - - Yo, €(A) by choosing any reduced expression w = s, - - - Sq, -

Lemma 2.17. Let w € Wg and a € A. Then the right multiplication by the intertwiner
Yo nduces an isomorphism of A¥-modules

A“e(N) = A%e(s,)).
if and only if wy(a) + ws,A(—a) < 0.
Proof. The right multiplication by the element p,e(s,A) = e(A)p.e(s,A) yields AYe(\) —

A¥p.e(s,\) — A%e(s ). Hence if p2e(N\) = fe(N\) € C[V]e(\) for f € C[V] invertible,
then ¢? is an isomorphism. The condition that x be invertible is exactly as stated. [
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2.2.3 Clan decomposition

As in §2.1.5, we extend w,, to a Wg-invariant function @, : S — Z>_; and we
suppose that the extension w,, has finite support. Consider the following sub-family
of hyperplanes?

D ={H,CE;acs, dlad>1}
The connected components of the following space

E=E\ |J H

Hedw

are called clans. Since w,, is supposed to be finitely supported, the family ©¢ is finite,
the set of connected components my (E¥) is finite and there are only a finite number of
clans.

Let € C E¥ be a clan. Since EY¥ is the complement of a finite hyperplane arrangement,
¢ is a convex polytope. The salient cone of € is defined to be the convex polyhedral
cone Kk C V whose dual cone k" is the cone of linear functions which are bounded from
below on €:

KV:{UEV*; in£<v,az>>—oo}, k=r" ={zeV; (v,z) >0, Yver'}.
TE

In fact, k¥ is a convex polyhedral cone, and « is strictly convex polyhedral generated by
a finite subset of PV.

We say that clan € C EY¥ is generic if its salient cone is of maximal dimension.
Denote by 1y € E the fundamental alcove.

Lemma 2.18. Let w € Wy and a € A. Then w™ vy and w™ts,vy are in the same clan if
and only if the intertwiner ¢, induces an isomorphism of A¥-modules

A%e(wAg) = A%e(s,wg).

Proof.
pre(why) = e(WAg) € Wi (@) + Wswre(—a) <0
S @y (wa) + @y (—wla) <0 Hyy ¢ D

The last condition is equivalent to that w1y and w™!s,1 belong to the same clan. [

The following proposition follows immediately from the lemma and the definition of
clans.

Proposition 2.19. If w,w’ € Ws are such that w™ vy and w' 'y, lie in the same

clan, then right multiplication by the intertwiner p,,-1e(wA) yields an isomorphism
A¥e(w'\) — A¥e(w)).

Sugw for “divar”
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Corollary 2.20. Let M € A®-gmod. If w,w' € Wy are such that wyy* and w'vy* lie in
the same clan, then multiplication by the intertwiner @ .,~1e(w) yields an isomorphism
of graded Z-modules e(whg) M = e(w'\g) M. In particular, in this case there is an equality
of graded dimensions

gdime(whg)M = gdim e(w' o) M.

Proof. Indeed, we have

*

e(who)M = Homye (A¥e(wo), M)~ Hompw (A%e(w'Ng), M) = e(wo) M.
O

Example 2.21. Consider the example Example 2.3 (iii). The alcoves in E are of the
form Jn,n+1/2[ for n € (1/2)Z and the fundamental alcove is vy = |0,1/2[. We have
DY = {H,, Hy, }, with {ag =1 —2¢,a1 = 2¢} = A. The clan decomposition is depicted
as follows:

H,, H,,
C 0 & 1/2 ¢,
The clans €_ =]—00,0[ and €, = ]1/2,+0o0] are generic while the clan €, =10,1/2[ = vy

is not generic. To each alcove v = w™lyy with w € Wy, we attach the element \, = why €

E
5/4 —1/4 1/4 —3/4 5/4 A,
—1/2 1/2 3/2 €

e

In particular, the alcoves v =11/2,3/2[ and v/ =13/2,5/2] lie in the same clan €, with
A, = =3/4 and N\, = so\, = 5/4. In this case Proposition 2.19 amount to the fact that
the intertwiners g, e(\,) : Ae(N,) — A%e(\,) and p..e(N,) 1 A¥e(N,) — A%e()\,)
are isomorphisms and inverse to each other.

The projective A“-modules A“e(),) are indecomposible and they are non-isomorphic for
alcoves v in the three different clans €_, €y and €. Choose any alcoves v, C €, v_ C €_
and denote Ay = A\, A\ = \,_, P = A¥e()\;), Py = A¥e()\g) and P = A¥e(\_). Their
simple quotients, denoted by L, Ly and L_, form a complete collection of simple objects
of A¥ -gmod up to grading shifts. The graded dimension is given by

1 vC¢e,

. xe{+,0,—}
0 v, *€d }

gdime(\,)L, = {

In particular, Ly and L_ are infinite dimensional and Lo is finite dimensional. The
cosocle filtrations of Py, Py and P_ are described as follows:

Ly Lo L
Ly (—2) Lol=1) 2) L+<_1>L< 2 Y Li( 2>L L (—2)
+(— —{= o{— +{— —{=
P, = Lo(-3) , Py = |L+(-3 (=3, P.= -3
Ly(—4) —{—4) Ly(-4) L_(-4)
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2.2.4 Basic properties of graded modules of A“

We choose a finite subset ¥ C Wy such that for every clan € C E¥, there exists w € X
with w™lyy C C. Set Pr = @, v A¥e(w)y).

weX

Lemma 2.22. The module Ps, is a graded projective generator of the graded category
A% -gmod.

1 1

Proof. For any y € Wy, we can find w € ¥ such that y~'1p and w™ 14 are in the same

clan. By Proposition 2.19, there exists an isomorphism
A¥e(wAg) = A%e(yNg)

Since the former is a direct factor of Py, the above isomorphism yields a surjection
Ps, — A¥e(y)\). Combining this projection with Proposition 2.15, we see that P is a
compact graded generator, which is clearly projective. [

Denote As = (gEndyw gpoafx)P. It follows Lemma 2.22 that there is a graded
equivalence

o

Proposition 2.24. Then the following properties are satisfied:

(i) The category A“-gmod is noetherian and the subcategory A“-gmod, consists of
objects of finite length.

(i1) For each M € A¥-gmod and each A € Wgg, the graded dimension gdime(A\)M is
in N((v)). Moreover, M € A¥-gmod, if and only if gdime(\)M € Nlv,vF!| for all
A€ Wgg.

(iii) Every object of A¥-gmod admits a projective cover in the same category.
(iv) We have Irr(A* -gmod,) = Irr(A% -gmod).

(v) The map (2.16) is an isomorphism Z = gEnd (idaw _gmod)-

Proof. By the graded Morita equivalence (2.23), it suffices to show the corresponding
statements for Ay -gmod.

Since Ay, is of finite rank over the graded polynomial ring C[V]"0 it is laurentian (i.e.
its graded dimension is in N((v))) and thus graded semi-perfect. The statements (i)—(iv)
result from the laurentian property.

We prove (v). Consider the A“-module Poly,,, € A¥-gmod. Since each factor
Poly, = C[V] is a free Z-module of finite rank, the sum Poly,,, is a free Z-module of
infinite rank. Inverting the maximal ideal mz C Z, we get a homomorphism

p: AT — @ gHom, -1 7 (Raty, Raty/),
AN EWSs Ao

We claim that p is an isomorphism. It is injective since Polyy,), is a faithful A*-module
by definition and it remains faithful after mz is inverted. It is easy to see from the
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definition of A“ that for A € Wg\g and a € A, the operator s,e(\) : Raty — Ratg,, is
in the image of p. For any A\, X' € Wgg, let W)y = {w € Ws; wA = N'}. The family
{e(N)we(A) }uwew, ,, is in the image of p. The graded ring Rat, is a graded Galois extension
of m,' Z with Galois group Wy. It follows from the Galois theory that

gEndm;Z(Rat)\) = Rat)\ NCW)\.

We have already seen that {we(A)}, oy, is in imp the and m;'C[V]e(\) = Raty is
also in the image of p. It follows that gknd, =(Raty) C imp. Let A, N € Wg)y and
choose w € Wy y. Then we(\) € im p is an isomorphism we(\) : Raty, = Raty and the
pre-composition yields

— owe(}) : gEnd, -1 z(Raty) = gHom, -1 ; (Raty, Raty) .
Thus gHomm; = (mg1 Raty, m;' Rat X) C im p. We see that p is surjective and the claim
is proven.

Put Raty = P

wes, Ratyy,. Now we have

mz' Ay = gBnd,_1,. (Raty) = gEnd, 1 (Poly).
Hence
gEl’ld (idAw —gmod) = gEnd (iClAE —gmod) = Z (Ag) = Z (m;lAz) N AZ
=17 <gEndm§1Z (PO]E)> N AE = mng N AZ =Z.

2.2.5 Basic properties of ungraded A“-modules

Let U : A¥-gmod, — A“-mod, be the grading-forgetting functor. We extends it to
U : AY-gmod — Pro(A¥-mody) by requiring U to preserve filtered inverse limits. The
extended functor is exact. Define the subcategory A“-mod” C Pro(A“-modg) to be the
essential image of this functor. Let 2" = fm Z /mi.

Proposition 2.25. Then the following properties are satisfied:

(i) The functor forgetting the grading U : A -gmod — A% -mod is ezact and it induces
Irr(A¥ -gmod) /(Z) = Irr(A* -mod"). Moreover, for all M, N € A“ -gmod andn € N
we have

[ Ext"(M, N(k)) = Ext" (UM, UN).
keZ

(ii) The category A“ -mod” is noetherian and the subcategory A* -mod, consists of objects
of finite length.

(iii) Every object of A“-mod”" admits a projective cover in the same category.
(iv) We have Trr(A* -mody) = Irr(A% -mod™).

(v) The map (2.16) induces an isomorphism Z" = End (idpw meq” ) -

These statements follow from Proposition 2.24. O
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2.2.6 Induction and restriction

Let A%, C A be the subalgebra generated by fe(\) and 7¥e(\) for A € Wgh, f €
C[V] and a € Ay. For \; € Wg)y, denote ey, = ZAewR)\l e(A) and define A}, =
er . A%er, to be the idempotent subalgebra. In other words, A‘é A, is the subalgebra of
A¥ generated by fe(\) and 7¥e(\) for A € WgrAy, f € C[V] and a € A,.

For each A\; € Wg)g, we define the induction, restriction and co-induction functors

indfm1 : A%\, -emod — A¥-gmod, N +— A¥eg ), IV N
ms%Al 1 A¥-gmod — A%, -gmod, M > egy, M = gHom,. (A%er,, M)
coind}g“1 A%y, -gmod — A¥-gmod, N — @ gHom,w (ery AYe(A),N).
AEWs Ao o
They form a triplet of adjoint functors (ind}g%y A res;g’ Aro Coind%’ A1)

Proposition 2.26. The functors ind%Al,res%Al and Coindf{,/\1 are ezxact.

Proof. The functor res% A, 18 clearly exact. By Theorem 2.8, we have a decomposition of

right A% , -module

Aters, = (D miAG, (2.27)

weWhR

where W C Wy is the set of shortest representatives of the elements in Wg/Wpg and
T = Drcwar, Tar T @ (A) for any reduced expression w = s, « - - sq,. Therefore A“er y,
is a free right A% , -module, so ind% A, 18 exact. Similarly, coind% A, 18 also exact. [

2.3 Filtered AY-modules

We consider A“-modules equipped with filtrations which are compatible with the filtration
by length F' on A¥. Most results in this section are non-unital version of the classical
theory of filtered rings and filtered modules which one can find in [15].

2.3.1 Good filtrations on A“-modules

Let M € A“-gmod.

Definition 2.28. A good filtration F' on M is a sequence {F<,M },cz of graded C[V]-
submodules of M satisfying the following properties:

(Z) an—l Q an for alln €Z

(ii) For each n € Z, there exists a finite subset 3, C Wgs)g such that*

FeuM = @B e(\)F<u M

AEX,

4We require this condition because we work with a non-unital associative algebra.
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(iii) F,M =0 forn <0
() Upez FnM = M

(v)
(anAw) (FSmM) - F§n+mM7 Vn,m eN

(vi) There ezists mo > 0 satisfying
(FSnAw) (FgmM) = an—l—mMy Vn Z O,Vm Z my.

The following result is standard.

Proposition 2.29. Good filtrations exist for the objects of A“-gmod. If F and F' are
two good filtrations on M € A“-gmod, then there exists ig > 0 such that
F/

<n—ig

M<Fo,M<F.,, M Vnecl

2.3.2 Associated graded of good filtrations

Recall the monoid algebra CQY from §2.1.6. Given a good filtration F' on a weight
module M, the associated graded grM = @, ; F<M/F<x_1M is a grfA“-module.
By Theorem 2.14, grf’ M acquires a CQY-module structure. The following lemma is a
direct consequence of Proposition 2.29.

Lemma 2.30. If F' and I’ are good filtrations on M, then there exist

(i) a finite filtration of gr’” A¥-submodules F' on gr™ M,
(ii) a finite filtration of gr™ A¥-submodules F on gr™ M and

(iii) an isomorphism of gr¥ A¥-modules gr* gr¥ M = gr¥ g™ M.

Proof. By Proposition 2.29, there exists ig > 0 such that Fe, ;;M < FL, M < Fep oM
for all n € Z. For m € [—ig, io], define FL, ., M = (FL,M N FepymM) + FL,_ M. Then
the quotient grf” M acquires a filtration

Fepgr! M = F!

<n,m

M/FL, .M CF.,M/F., M =g’ M,

which satisfies (gr/ A¥) (F<, arl” M) C F, grl” M. Hence for each m € [—ig, io),
the quotient grfer® M = Fo, gt M /F<,,_1gt™ M is itself a grA“-module. Similarly, we
put Fep <M = (Fgm]\/[ N F’SernM) + Fepm_ 1M so that gr” M acquires a filtration by
grf” A“-modules.
However, since

(Fén,gmM + Fén—lM) /Fén—lM ~ Fén,SmM + F/Sn—lM

F ___F'
v gr, M = o~
Bhm B (Fén,gm—lM + Fén—lM) /Fén—lM Flgn,gmflM + FénflM

(FL,M N FepymM) + FL, (M FL,M N FepymM

(FénM N F§n+m_1M) + FL, M (FénM N F§n+m_1M) + (Fén—lM N F§n+mM)
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and similarly

FeuMNFL, M
(FemnMNFL, 0 M)+ (FaptM N FL

grgl grl M = M) )

m4n

We have gr?  or®" M = gr” o M. Therefore,

éoa grfjlngM% é(; grfnng/M.

n=-—1ig m=—1ig

]

Proposition 2.31. Let M € A“-gmod and F' a good filtration on M. Then the CQY -
module gr*" M is a coherent CQY. @ C[V]-module. Moreover, if M € A*-gmod,, then
grf M is a coherent CQY.-module.

Proof. We observe that the coherence for grf” M is independent of the choice of the good
filtration F. Indeed, if F” is another good filtration on M, then by Lemma 2.30,

i0 0
gr’ M coherent < @ grfl grl” M = @ grt orf "M coherent < grl’ " M coherent.

n=-—ig m=—ig
We prove the first assertion. By Proposition 2.15, there is a surjection of the form
P Ave(N){a;) - M.
j=1

By pulling back the good filtration F' on M along this surjection, we may suppose that
M is of the form M = A“e();). By the independence of the coherence of with respect
to the good filtrations, it suffices to prove the coherence for the length filtration F' on
A¥e(};). It follows from Theorem 2.14 that

g’ Ave();) = O3 (@ CQY) ® ( ) C[V]Tqﬁ) e(A).

weWpr

Since gr’” CQ" is coherent over CQY by Lemma 2.11 (ii) and @,y C[V]7y is free of
finite rank over Z, it follows that gr”A~e()\;) is coherent over CQY ® Z.

Suppose now M € A“-gmod, so that Z acts via the quotient Z/m’% for some n € N.
Since Z/m’ is finite-dimensional, M must be coherent over CQY. O]

2.3.3 Support of AY-modules of finite length

Let M € A“-gmod,. In view of Proposition 2.31, we can make the following definition:

Definition 2.32. The support of M, denoted by Supp M, is defined to be the support of
grf M as coherent CQY.-module, for any choice of good filtration F on M.
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By Lemma 2.30, the definition of Supp M is independent of the choice of a good
filtration.

We define the Gelfand—Kirillov dimension of a weight module M of A“ to be the
following number: upon choosing a good filtration F' on M,
logdim F<,, M
dimgg M = lim sup u.
n—00 logn

By Proposition 2.29, this number does not depend on the choice of F.

Proposition 2.33. Let M € A“-gmod,,. Then the Gelfand-Kirillov dimension dimgk M
coincides with the Krull dimension of Supp M.

Proof. Taking the associated graded, we have

dim Fe,, M = dim €9 gry M
k=0

Notice that CQY is finitely generated graded ring where deg X* = ¢(X*) and gr” M is
a finitely generated graded module over it. Hence dimgk M is nothing but the degree of
the Hilbert polynomial of grf M, which is equal to the Krull dimension of Supp M. [

2.3.4 Induction of filtered modules

Recall the subalgebra A%, C A“ of §2.2.6. Good filtrations on objects of A%, -gmod
are defined in a similar manner.

Suppose N € A% | -gmod is equipped with a good filtration F' which satisfies F¢x N =
(FSkA%,Al) (FSON) for k 2 0 and F§,1N =0.

Let M = ind% », V. The adjunction unit yields an inclusion of Z-modules N — M.
Define a filtration F<,M = (F<,A%) (F<oN).

Lemma 2.34. The filtration F' on M is good and satisfies
gt M = (gr"A%p,) @grag (g1 N).

Proof. By the hypothesis on Fe,, N, we have grf' N = (grf'A%,, ) (erf N) and grfM =
(grf’A%) (gri'N). By the decomposition (2.27), we deduce

k

F Aw o w F w
gry, A¥ep )y, = @ @ T8 k— AR A

=0 wew™r
L(w)=j

from which

((ngAweR,,\l) Ogrrag (er" N) ) @ @ KA% ) (g V)

k=0 wewkr
L(w)=j

= (grFAY) (grf N) = grf M
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Proposition 2.35. For any N € A¥-gmod,, and 0 # M’ C ind}%/\1 N, we have Supp M’ =
Spec CQY..

Proof. Let F' be a good filtration on N as above and denote M = indi’)\1 N, so that
by Lemma 2.34 gr/’ M = grf’ (A%eg,) @ (ngN). By Theorem 2.14, we have

grf M = @ 05 (er"CQY) @c e(N)gr" N
AeWgrA

and by Lemma 2.11 (ii), grf’M is a Cohen-Macaulay module of maximal dimension over
CQY, so it is torsion-free. For any 0 # M’ C M, the restriction to M’ of F' is a good
filtration and grf M’ C gr” M. Hence Supp M’ = CQY. O

2.4 Quiver Hecke algebras

We keep the notations of root systems (E,S,A) and (V, R, Ag).

2.4.1 The algebra B¥

Define the complex torus T = QY ® C* so that the ring of regular functions C[T] is
isomorphic to the group algebra CP. For any o € P, we denote by Y* € C[T] the
corresponding element.

Fix ¢o € T. Define for each ¢ € Wgly a polynomial ring Pol, = C[V] and let
Polyw,e, = EB%WRZO Pol,. For each ¢, define e(?) : Poly,s, — Pol, to be the idempotent
linear endomorphism of projection onto the factor Pol,. Let Ry = R™ \ 2R denote the set
of indivisible roots and Rj = Ry N R™ denote the set of indivisible positive roots.

Choose any \g € exp '({y). Then the algebra Z from §2.1.2 acts on Poly: for any
w € Wp, the element f € Z = C[V]"» acts on Pol,y, by multiplication by w(f).

Let w = {W}KGWRKO be a family of functions w, : Ry — Z>_; satisfying the properties:

(i) If 2a ¢ R, then wi(a) = —1 implies Y*(¢) = 1.
(i) If 2a € R, then wy(a) = —1 implies Y*(¢) € {1, —1}.

(iii) For w € Wg and o € Rf Nw™ 'R} we have wy(a) = wye(wa).

For each a € Ay and ¢ € Wr{y, we define an operator 7¢e(¢) : Pol, — Polg_, by

avrl@)s, we(a) >0

v

re(l) = {O‘_l(sa — 1) wia) =~1 ‘

Here s, : C[V] — C[V] is the reflection with respect to a. We define B“ to be the
subalgebra of Endz (Poly,s) generated by C[V]e(¢) and 7¥e(¢). All the statements
of Proposition 2.24 hold for B¥. In particular, the centre of B“ is equal to Z.

Example 2.36.
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(i) Ifbo=1€T andw = {—1},_,, is the —1 constant function, then B* is the nil-Hecke
algebra of type Wg.

(i) If by =1€ T and w = {0},_, is the zero constant function, then B* = C[V] x Wg
is the skew tensor product.

2.4.2 Basis theorem

Theorem 2.37. For any w € Wg, choose a reduced expression w = s,, -+ -5, and put
T =71% .. 7% Then there is a decomposition

B P cvirsew

LeEW R weWR
L(w)=n

Proof. To prove it, we apply the results Theorem 2.55 and Theorem 2.43 which are proven
independently of this one. In order to apply them, we choose a point Ay € exp~({y) C V.
For all o € R* we construct a family {w)},cyp,,, satisfying the conditions of §2.1.3 such
that 0w’ = w, where 0w’ is as defined in §2.5.2. We first define a function @, : R — Z>_;
as follows:

(i) For any a € R such that 2a ¢ R, we set @y (a) = wy,(a) and &g (—a) =
Oty (—Wo).

(ii) For any a € Ry such that 2a € R, If Y*({) = —1, we set @y, (20) = wy, (),
WDpo (—20) = Qe (—wpr) and @y, () = Wy, (—a) = 0. Otherw1se we set U)go( ) =
Wi, (), Wy (— ) = Dy, (—wor) and @y, (2ar) = Wy, (—2c0) = 0.

The function wy, is clearly W, invariant and has image in Z>_;. We choose a section
of the projection W) \S — W, \R, denoted f : W,,\R — W,,\S in such a way that
f(a)(Ao) = 0 if a(fy) = 0 for each o € Ry. We set @\ = f.@y, so that @\ : S — Z>_4
is a W) -invariant function of finite support. The family {w)},cyy,,, is then defined by
Wiy, (@) = @& (w™'a) for all w € Wy and a € S*.

wAg

Theorem 2.43 implies that upon choosing a good v € @Y, there is an isomorphism
Bv eAYA‘*’/eV identifying 7%e(¢) with o,e("¢) and by Theorem 2.55, the idempotent
subalgebra e,A“'e, has a decomposition in terms of o,e(’¢). Hence B also has a
decomposition as in the statement. Il

2.4.3 Frobenius form on B¥

As observed in [¢], the basis theorem Theorem 2.37 implies that the algebra B is Frobenius
over its centre Z.

Lemma 2.38. B is a Frobenius algebra over Z.

Proof. Consider the filtration by length

Fe,B = ) Z Z CV]re - - 7% e(l).

LeWRlo k=0 (ay,..., k)EAE
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We set N = #R" = l(wp) and let wy = Sa, - Sa, be any reduced expression for the
longest element wy € Wg and set 7 e(f) = 7& -+ 7% e(f). By Theorem 2.37, we have
FonyB® = B% and

griBY = GB ClV]r; e(l).
LeW Rl

Let Ry, = {a € R; a(X\y) =0} be the sub-root system associated with Ay and let
R}, C R), be any positive system. Let 0 = HaeR;’ a € C[V]. It is well known that C[V]
0

is a symmetric algebra over Z with the trace map f — 19w0(W>\0)( f), where 19w0(W>\0) is a
composition of Demazure operators for the longest element wy(W,,) of W), with respect
to Ry . It is known that ¥y, w, )(?) is a non-zero constant. Let tr be the composition

BY — grliB* = ) C[V]mue(t) 2225 Py
4 y4
Vg (W) @C[V]WZ ~ @Z ZZGWRZO z
y4 l

Then tr is a Frobenius form. OJ

2.5 Knizhnik—Zamolodchikov functor V

We resume to the assumptions of §2.1.

In this section, we introduce a functor V : A“-gmod — B“-gmod, which is a
quotient functor satisfying the double centraliser property. We construct it by choosing
an idempotent element e, € A“ and establish an isomorphism B* = e, A%e,.

2.5.1 The idempotent construction

We consider the following exponential map

exp

EF2V=Q"9R —Q"®C*=T

LT @ e
Choose an element v € Q¥ such that
(v,0) <0 foralla € R". (2.39)
We define a section of the projection 9 : Wy — Ws/QY = Wr by
Te: Wr — Wy
wi XTwX T =wXY
and a section of the exponential map Wglg — Wglo by

To: Wgrly — WsAo
U)g() — X7 w)\o.
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It is clear that Yw ¢ =" (w/).

Given a family of order functions {wyx: S* — Z>_1}, ., satisfying the axioms
of §2.1.3, we can associate a family of order functions w = {Ow, : R — Z2*1}zeWReo
by setting for each ¢ € Wgrly

awg(Oé) = Z wvg(a).

acSt
dac{a,2a}

(2.40)

The definition of dw is independent of the choice of . This family of order functions gives
rise to an algebra B% as defined in §2.4.1. We will abbreviate B® = B% and 7 = 7%,

For any ¢ and a € Ay, we define an operator o,e("() : Polv; — Polv(,_ ¢ by

a (sq—1) Ouwi(a) =—1
o . 2.41
oae("l) {aaw(“)sa Ouwi(r) 2 0 o

Define the idempotent®

e, = Z e(\) € A”. (2.42)

XY (Wrip)

The main result is the following, which will be proven in §2.5.5:

Theorem 2.43. Upon choosing v € Q" satisfying (2.39), there is an isomorphism of
graded Z-algebras
iy BY = e A%,
fe(l) — fe("0)
Te(l) — a,("0)e(70).
Moreover, for any other choice ', the intertwiner ¢y e, : A%e, — A%e, yields a
factorisation i, = @y O iy

Example 2.44. Resume to the setting of Example 2.3 (iii) and Ezample 2.21. The
coroot lattice is given by Q¥ = Z C R = E. Recall that \y = 1/4 € E. We may
take v = s1s9 = —1 so that "(Wgly) = {Ai,A\_}, where Ay = s150\0 = —3/4 and
A_ = 81505100 = —bH/4. It follows that A\_ = s150515051 A+ and

e(A_)A%(N\y) = Cle| 7, T T TanTare(A1),  e(Ay)AYe(A_) = Cle|r, 7 Toi Tan T €(A).

ai ap a1 ag ai

Denote by s : Cle] — Cle] the automorphism € — —e. Calculate the products:

T T TaTaTae(Ay) = 7o e(5/4), e(—=1/4)1. e(1/4)7, e(3/4)7, e(—3/4),
=s5-5-(€s)-s-s=¢€s
T T TaTa Ta @A) = 7o e(3/4) T e(1/4)7, e(—1/4)7, e(5/4)7, e(—5/4)
=s-(—€s)-s-5-8=¢€s.
Let o = 0ay € Ay be the simple root for (V,R) = A;. Denote £, = exp(2miAy) =i and
(_ = exp(2miA_) = —i. The derivative Ow is given by

Owy, (o) = Zw,\+(a—|—k) =1, Ow (o) = Zw,\f(a%—k‘) =1

keN keN

As we will see in Lemma 2.50, it amounts to choosing one alcove in every generic clan.
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It follows that

0ae(Ay) = e (@g — T Ton Ty T Toe(Ay) oee(A) = e (@) g — T Ton Tas Tan o Toe(A)

and there is an isomorphism
B 5 e,A%e,
e(ly) — e(Ay)

e(l-) —~e(A)
Ta ™ TayTay Tar Tag Tar ©1-

2.5.2 A formula for order functions

Let v € QY be an element satisfying (2.39). We prove a relation between the family
{wWrtrewan, and its derivative {Owe} ey g, (2.40).

Lemma 2.45. For any { € Wgly and w € Wg, following formula holds in C(V'):

H (_(%)wx(b) — H (_ﬁ)awe(ﬂ)_

beS+tMw—18- BERT Nw—1Ry

Proof. Denote A = 7¢. By definition, we have 7w = wX® 7. We calculate for 8 € Ry

(wB)("(we)) = B(C) — B,y —w ™).
We first prove that

I o»®0=1

beSTMw15-
Obg RTNw— 1R~

Suppose that 8+ ké € St N (w) 'S~ then 0 < k < —(B,7 — w'y). Hence
B,y —w™ly) < 0. In the case 8 € R and w3 € R{. Since our choice of v makes
that (wf)("(wl)) < 0, we deduce

(B +k6)(70) = (wB)("(wh)) + (8,7 —w™') + k < (wB)("(wl)) < 0.
This implies that

(2.46)

B4+EkS€STN(w)1ST = wy(B+ kS) = 0.

if we choose 7 carefully. Similar arguements can be used for § € R\ Ry. Thus (2.46)
holds.

Now we show that

_ apywa(d) _ — 3)9we(B)
[T o= I o™ o7

beStnrw=15- BERT Nw—1Ry
ObeRTNw 1R~

Let 3 € Rf Nw ™' R,. In this case M = —(f,7 —w™ly) = —(
hypothesis on . Therefore 8 + ké € S+ NYw S~ for all 0 < k

We have y
> )= wa(B+kd)
k=0

beS+tnTw—19-
b=

B — wﬁ v) >>Obythe
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By the hypothesis of finite support for wy, we have

D wa(B+kd) = wa(B+ ko)

keN

In the case where 23 ¢ R, we obtain

> wa(b) = dwi(B).

beSTNTw=15~ (2.48)
ab=p
For 3 € R such that 28 € R, we have similarly
M—1
> w) =D w28+ 2k +1)6) =D wi(28 + (2k +1)0)
beSTNw=18— k=0 keN
=2
Hence
> ) =D wa(B+ k) + > w28+ (2k + 1)8) = dwi(B).
beStMIw=18- kEN kEN (2.49)
9be{pB,28}

The summation formulae (2.48) and (2.49) yield (2.47). The two product formulae (2.46)
and (2.47) together yield Lemma 2.45. O

2.5.3 Preparatory lemmas

Let v € @Y be an element satisfying (2.39). Recall the notion of clans and generic
clans §2.2.3 and the fundamental alcove 1y C E.

Lemma 2.50. For w € Wg, the alcoves w™'X vy is in a generic clan and every generic

clan contains at least one such alcove. Moreover, for a different choice v € @V, the
’ .

alcoves w X vy and wr XV vy are in the same clan.

Proof. Since the clans are connected components of the complement E¥ of the hyperplanes
in®“ ={H,CE;acs, a(\) = hy}, any two points z,y € E¥ are in the same clan
if a(z)a(y) > 0 for all a« € S with H, € ©¥. Let €, C EY be the clan such that
w ' X Yy C €,. Take any point © € vy. Set x,,(t) = w ' X7 (z —tv) for t € R>g so that
2,(0) € €,. Then for any a € S such that H, € ©“ and for all ¢ € R, the following
inequality holds:

a(r,(t)) <0 wa €S- (2.51)

{a(xw(t)) >0 waeS*
Therefore, z,,(t) € €,. Let t — 0o, we see that for any o € w™'R*,
a(w Xz —ty)) = (wa)(z) — (wa, (1 +1)y) — +oo.

similarly, for any a € w™'RT, a(w™ !X (x — tv)) — —oo. Hence every affine root is
unbounded on the €, from which the genericity of &,,. Clearly, the inequalities (2.51) do
not depend on the choice of ~.
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Let € be a generic clan, consider the salient cone x defined in §2.2.3. The genericity of
¢ means that « is of full dimension dim V. Let Cy C V' be the fundamental Weyl chamber
and let w™'Cy C V be a Weyl chamber with w € Wpx such that Int(x) Nw™'Cy # (. Tt is
obvious that w='X "y, C €. O

Recall the element o, of (2.41).
Lemma 2.52. We have o,e(7() € A“.
Proof. Denote A = "¢. Let Vs, = S4 - Sq, be any reduced decompsition and denote
ole(N) =7, -+ - To,e(A). We shall prove that o e(\) — o,e()\) € AY.

Applying Proposition 2.5(ii), we see that

ole(\) = sq, - - 5a, II (0@ |e(d) mod Fg A (2.53)

cESTNYsqS™
and Lemma 2.45 yields

H (ac)wx(c)-l—&c(x):o — (—a)wé(a)+5YQ(Z)=1_

cESTNYs4, S~

Thus the right hand side of (2.53) is congruent to o, modulo F<;_1A~*. Hence by the
compatibility of the filtrations by length Corollary 2.9,

ohe(N) — oae(N) € e(Tsa\) (F<m1A™° NA%) e()) = e("sa) (Fim1A%) e(N).

We show that in fact o/,e(\) — o,e(\) € A¥. For any different choice +/, by Lemma 2.50
and Proposition 2.19, the intertwiner ¢, : A%e(\) — A%e("¢) is an isomorphism, so
statement does not depend on the choice of v. We claim that if we choose 7 in such a
way that 0 < (a,7) < (8,7) for all 5 € Ay \ {a}, then there is an inequality of lengthes

0(7sy) <L(w), Ywe Wg\ {1} (2.54)

We complete the proof provided (2.54). Note that the stabilisers satisfy "W, = W,.
There are two cases to be discussed:

(i) If sof # £, then by (2.54) we have ¢(w) > [ for all w € Wy such that wA = Vs, A.
It follows from Theorem 2.8 that e("s,A) (F<;—1A°)e(A) = 0. Hence o,e(\) =
ale(\) € A,

(ii) If so¢ = ¢, then by (2.54) we have f(w) > [ for all 1 # w € W, and thus
by Theorem 2.8, we see that e(\) (F<;—1A°%) e(\) = C[V]e(A) = e(N) (F<;—1A%) e(N).
Thus o,e (A\) —ole(N\) € AY and o,e(\) € A¥. Hence the proof is completed.

We prove (2.54). Indeed by Proposition 1.1,

L=00s0) =Lsa)+| Y. —(,a)Nan+1+| Y, —(Ba) a7 +1

o’'e{a,2a} BeRT\{a,2a}

<HR+1+ (2p,a")a,y) <l(w), Yw#1€ Wp.
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while for any w € Wr \ {1, 5.}, there exists 8 € Ry \ w™ 'Ry with 8 # «, so

(Cwy=| Y Bauly=n=| D wh =By =Bl

B eRtNw—1R- B'eRtNw— 1R~

2.5.4 Basis theorem for generic clans

Let v € QY be an element satisfying (2.39). Recall the idempotent of generic clans e,
from (2.42).

Theorem 2.55. The idempotent subalgebra e,A%e, is generated by C[V]e(\) and o.e()\)
for a € Ay and X\ € "(Wgly). Moreover, if for any w € Wg we set 0, = 04, 0oy bY
choosing any reduced expression w = s, --- Sy, then there is a decomposition

e A%\ = @ P ClViowe(N).

Ae” (WRE()) weWr

Proof. Let £ € Wgrly and w € Wx. Denote A = 7/. Choose any reduced expressions
W = Sq, " Say ad YW = 54, -+ Sq, for o, -+, € Ag and aq,- -+ ,a; € A and set

o,e(N) =7g, - To,e(N) € A
owe(N) = 04, -+ 0 €(N) € A

We claim that
o,e(\) =o,e(\) mod Fg 1A, (2.56)

Recall the rational function matrix algebra A= = m;'A°.

and Lemma 2.45, we have

By Proposition 2.5 (ii)

o'e(\) = Soa, ** * Soa H (—81))”(1’) e(\) mod Fg AT

beStNYS—

=oy,e(A) mod Fe, AT

As n < [, the above congruences yield o/ e(\) — o,e(\) € AY N Fg,_1A~>°. By Corol-
lary 2.9, we have A“ N Fq_ 1A~ = F;_ 1A%, so the claim (2.56) is proven.

According to Theorem 2.8, the family (o7 e(\))wew, form a basis for e,A“e(\). The
decomposition of e,A%e(\) follows from the triangularity (2.56) of the transition matrix
between the basis (0],e(\))wew, and the family (o,e(N))wews- O

2.5.5 Proof of Theorem 2.43

Proof. We define an isomorphism of Z-modules Poly ¢, = Polw,,, straightforwardly by
the identification:
POl@ = C[V] = POlwg .
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It is a Z-module isomorphism since Z = W, = W,. This isomorphism of Z-modules
yields a faithful representation of B“ on e, Poly,,,, and by the definition of B*, this
representation is described by the formula

fe(l)-g=fe("l)g, T.e(l)-g=0cae("l)g.

By Theorem 2.8, the image of B in Endz (e, Poly,,) coincides with e,A%e,. Notice
that deg7¥e(() = we(a) = dego,e("). Hence the map i, is an isomorphism of graded
Z-algebras.

For any other choice +/, since by Lemma 2.50, w~'X” and w~'X" lie in the same
generic clan, by Proposition 2.19, the intertwiner ¢,._, yields isomorphisms of A“-
modules A%e,, = A“e, and hence isomorphisms of algebras

e, A%, = Endae (A¥e,) = Endaw (A%,) = e,A%e,,.

The factorisation i, = ¢y, —, 04 follows from the observation that (X 7/_7) =1¢e Wkg.

]

2.5.6 The functor V

Choose a v € @V such that (R",7) < 0 as in §2.5.2. With Theorem 2.43, we can make
the following definition:

Definition 2.57. The Knizhnik—Zamolodchikov (KZ) functor V is defined by

~ 3k

1
g
V:A¥-gmod — e,A%e, -gmod ——>B* -gmod

M — e, M.
By the second assertion of Theorem 2.43, the definition of V is independent of the
choice of v up to canonical isomorphism.
Since V is defined as an idempotent truncation, it admits left and right adjoint functors
Vi:N— P eHomp. (e,A%()\),N) and "V:N > A%, ®ps N
AeWs Ao

and V is a quotient functor in the sense that the adjoint counit Vo V' — idg. is an
isomorphism.

2.5.7 Support characterisation of V

For M € A“-gmod, define the following subset of E:

Specy M = {\ € WgAo; e(A\)M #0}.

For any alcove v C E, there is a unique w € Wy such that v = w™'yy. We will denote

A, = w)g. Recall the Gelfand-Kirillov dimension dimgx M and the support Supp M
from §2.3.3.
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Theorem 2.58. Let M € A¥-gmod,,. The following conditions are equivalent:

(i) VM =0

(ii) for every alcove v lying in a generic clan, we have e(\,)M =0
(iii) the set Specy M is contained in a finite union of affine hyperplanes of E
(iv) dimgg M <tk R —1

(v) Supp M # Spec CQY

Proof. Since every object of the category A¥ -gmod is of finite length and all the conditions
(i)—(v) are stable under extensions, we may suppose that M is simple.

(i) « (ii) follows from the definition VA = e,M and the invariance of dimension of
e(A)M for N’s in a same clan Corollary 2.20.

We prove (ii) = (iii). By the finiteness of the clan decomposition, it suffices to show
that for each non-generic clan €, the set {)\,; v C €} lies in a finite union of affine
hyperplanes of E. By the non-genericity of €, there exists @ € R which is bounded on €.
Let A = keraN@QV. Notice that Q" is a free Z-module of rank rk R — 1. Let ¢ be the set
of alcoves contained in €. For v,/ € Ay, we write v ~, v/ if there exists u € A such that
v+ p=v'" Forany v € g, since X*\, = A, + p, the set {\,, ; / ~, v} is contained in
the hyperplane w (Ao + Ag) for any w € Wy such that v = w™'y. Since « is bounded on
¢, the quotient A¢/ ~, is a finite set and thus the set

niveete | vl

vede /A

is contained in a finite union of hyperplanes, whence (iii).

We prove (iii) = (iv). Suppose that Specy M is contained in a finite number of
hyperplanes. Choose any A\; € Specy M. Let r = dim E. Via the identification £ = V
induced by Ay C A, we view F as an euclidean vector space. Since

Specy M C U (wA; +QY)

weWpr
is contained in a finite union of the intersection of lattices and hyperplanes, we have

i A€ Specp My Al <n}

——00 nr—1+€

0, Ve>DO0.

Let a € A be an affine simple root and let m € e(A\)M with e(A\)M # 0. Then we have
7¢m € e(s,A) M. Moreover, we have [|s,A|| < ||A]| + ¢ for some constant § which depends
only on the affine root system (F, S). It follows that if we define for ¢ € R>( the subspace

Mgt = Z e()\)Ma
AeSpecy M
All<t

then 7°M<; C M<yys, so F<iA“M<y C M<;ys. By induction on n € N, we see that
(F<,A¥) Moy C Mciips. Since there is only a finite number of clans and since the
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dimension of e(w\g)M, for w™'yy in a fixed clan is constant by Corollary 2.20. In
particular, the dimension of the components e(A\)M is bounded. Hence for any finite
dimensional subspaces L C M, we have

—00 nr—1+£

=0, Ve>0. (2.59)

Indeed, let to € R be such that L C My, then dim (F<,AY L) < dim L<yins =
o(n""'*¢).  The majoration (2.59) implies (iv). The equivalence (iv) < (v) results
from Proposition 2.33.

We prove —(ii) = —(iv). Suppose there exists a generic clan € and an alcove v C €
such that e(A\,) M # 0. Let k C V be the salient cone of € (¢f. §2.2.3). For any
p € kNQEY, we have X #v € € and by Proposition 2.19, e(X*\,)M = e(\,)M # 0. Tt
follows that

dim (F<, A®) (e(\,)M) > dim > e(X"\,)M

nerNQY
LX) <n

_#{pernQ’ (X1 <)
- #FW,
By the genericity of €, the salient cone x contains an open subset of V', so its intersection
with a full-ranked lattice Q¥ satisfies

- #pern@; ((XF) <n}

ime(\,) M

li =:¢> 0.
n—>o0 nr
Hence
dimex M > lim log dim(F<1A¥)"e(\, ) M > lim log (en” /#W,,) 0
n—>00 logn n—>o00 logn
whence (iv) is not satisfied. O

2.5.8 Double centraliser property

Recall the parabolic subalgebra A%, from §2.2.6.

Lemma 2.60. Let A\ € WsAo, N € A%, -gmod and L € A¥-gmod. Suppose that
VL =0, then gHom (L, ind%/\l N) = 0.

Proof. 1t follows from Theorem 2.58 (i)=(v) and Proposition 2.35. O

Let (A¥/mz)-gmod be the full subcategory of A¥-gmod consisting of objects M such
that mzM = 0. The inclusion (A“/mz)-gmod — A“-gmod has a left adjoint functor
— ®zC, which is right exact. We denote by — ®%C its derived functor. The next lemma
is the method of lifting faithfulness borrowed from |11, 4.42].

Lemma 2.61. Let M € A“-gmod be an object satisfying the following properties:

(i) M is free over the centre Z,

(ii) there exists \y € WsAo and N € A%, -gmod,, such that M /mzM = ind3, ,, N.



54 2. QUIVER DOUBLE HECKE ALGEBRAS

Then for any L € A¥-gmod such that VL = 0, we have gHom(L,M) = 0 and
gExt! (L, M) = 0.

Proof. We suppose that M # 0. Let K = RgHom(L,M) be in the derived category
D*(Z-gMod). We suppose that K is a minimal projective resolution. Since

K ®z C = RgHom (L ®% C, M ®% C) = RgHom (L ®% C, M /mzM)

by the flatness of M over Z, so K ® C € D=°(C). By the second assumption
and Lemma 2.60, we have

H(K ®z C) = Hom (L ®z C, M /mzM) = 0.

Consequently HS?(K) = 0 by Nakayama’s lemma.

Suppose that H'(K) # 0. Since the localisation m;' M is a weight module over A=,
which is semisimple, H'(K) must be a torsion module over Z so K° # 0. However, the
minimality of K would imply H(K ®z C) # 0, contradiction. Hence HS'(K) = 0 and so
gHom(L, M) = 0 and gBExt'(L, M) = 0 as asserted.

]

Proposition 2.62. Let M € A“-gmod be as in Lemma 2.61. Then the adjoint unit yields
an isomorphism M = (VT o V)M.

Proof. Set X = Cone (M — (RVT o V)M) € D*(A¥-gmod), so that there is a distin-
guished triangle
M — (RV o V)M — X — M]1]. (2.63)

By the adjunction and the exactness of V, we have VX = Cone(VM — (VoRV' o
V)M) = 0 and hence
VH¥(X) 2 HYVX) =0, kcZ

Applying Lemma 2.61 with L = H°(X) and L = H'(X), we deduce

gHom (H(X),M) =0, gHom (H(X)[-1],M) = gExt' (H*(X),M) =0
gHom (H™(X), M) =0,

whence

gHom(7<o X, M) =0, gHom(7<oX,M[1]) = gHom(7<(X[-1], M) = 0. (2.64)

Applying RgHom (7<¢ X, —) to the distinguished triangle (2.63), we obtain the long
exact sequence

gHom (<X, M) — gHom (7<0X, (RV' o V)M) — gHom (7<oX, X) — gHom (7<o.X, M[1]).
By (2.64), the first and the last term of the sequence vanish. Hence,
gHom (7<0X, X) = gHom (7<o X, (RV' o V)M) = gHom (7<VX, VM) = 0,

which implies that 7<oX = 0. Applying H° to the distinguished triangle (2.63), we deduce
that the adjunction unit M — (V' o V)M is an isomorphism. O
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Theorem 2.65 (Double centraliser property® ). The canonical map

AY— P gHomg. (VA (\),VA“e(\))
AN EWs Ao

s an isomorphism.

Proof. Observe that for each A € W), the module A“e(\) € A¥-gmod satisfies the
conditions of Lemma 2.61. Indeed, A¥e(\) is flat over Z by Theorem 2.8. For the second
condition, we have A“e(\) = indf{,)\1 A% e()), so A¥()\)/mz = ind}qml (A5 e(N)/mz).
Applying Proposition 2.62, we obtain

~

A~ B gHom,. (A% ()),A% (X)) = P gHom,. (VA¥e()), VA®e(X)).
AN EWs Ao M EWs Ao

]

Corollary 2.66. There are isomorphisms
(i) of (A¥,B¥)-bimodules ey, eHomp. (e,A%e()), B¥) = A¥e, and
(i) of (B¥, A®)-bimodules @y, HOMpuyor (€(A)A%e,, BY) = e, A~
In particular, the BY-module e, A is reflexive.

Proof. Statement (i) is deduced from Theorem 2.65 by right-multiplication with e,. Under
the anti-involution A* = (A“)°® (resp. B¥ = (B¥)?) given by 7¥e()\) — 7¥%(s,\) (resp.
TYe(l) — TY€(s4L)), the isomorphism of (ii) is identified with that of (i). The validity
of (ii) follows from (i). O

2.5.9 Categorical characterisation of V

Proposition 2.67. Let L € A -gmod,, be a simple object. Then the following conditions
are equivalent:

(i) VL =0
(ii) there exists a projective object P of the subcategory (A¥/mz)-gmod such that

gHom (L, P) #0

(iii) the projective cover of L in the subcategory (A“/mz)-gmod is injective.

SLet A and B be unital associative rings. Usually, one says that an (A, B)-bimodule P satisfies
the double centraliser property if the structural maps A — Endpgor(P) and B — End4(P)°P are
isomorphisms. The above theorem provides a graded, non-unital version of this property for the (A“, B¥)-
bimodule A¥e,.
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Proof. Since B is a Frobenius algebra over Z by Lemma 2.38, its quotient B =Bv /mzBY
is a Frobenius algebra over C and in particular, B” is self-injective.

We prove (i) < (ii) and (i) = (iii). Let L € A“-gmod, be any simple object. If
VL = 0, then by Lemma 2.61, we have gHom (L,A%¢(\)) = 0 for all A\ € Ws. If
VL # 0, since e, is a quotient functor, VL € B-gmod, must be simple. We have
mzVL = 0, so we may view L as a B -module. By the self-injectivity, there exists a
non-zero map ¢ : VL < B” and the adjunction yields an injective map L —s VTB”.
Proposition 2.62 yields A¥e, = VTVA¥e, = V' B“| so VB" =~ A¥e,/mz, which implies
that L < A%e,/mz, whence (ii). Since V' preserves injective objects, we see that
A¥e,/mz is injective-projective in (A¥/mz)-gmod, whence (iii).

We prove (iii) = (i). Suppose that the projective cover of L in (A“/mz)-gmod,
denoted by P, is injective, the socle socP satisfies VsocP # 0 by Lemma 2.60. Let
T € (B¥/mz)-gmod be the injective hull of VsocP. Then V'Z is the injective hull of
soc P, hence isomorphic to P. It follows that P is a direct factor of VT B” 2 A%, /mz,
so VL # 0. ]

Example 2.68. Resume to the setting of examples Example 2.3 (iii), Example 2.21
and Example 2.44. We havee,A* = P,®P_ so VL, =0, while VL # 0 and VL_ # 0 are
simple objects in B¥ -gmod. In regard of Theorem 2.58, we have dimgk Ly = dimgk L_ =
1 while dimgk Lo = 0. The cosocle filtration of VP,, VP and VP_ are described by the
following:

VL, VIL_
VL (—2) VL_(~2 V) V- :}3% VL (—2) VL_(-2)
+ = | VLi{(-6) VL_{-6) | » 0= + - ) — = | VL4(—6) VL_{-6) | -

From this description it is obvious that the functor V is fully faithful on the projective
objects, so V satisfies the double centraliser property Theorem 2.65.

Consider the quotients

L, L L
Prfmz = ff%:lzé  Po/mz = [L+<—1> L<—1>}’ P-fmz = £2<<:12>>

It follows that P, /mz (resp. P_/mz) is the injective hull of L_(—2) (resp. Li(—2)) in
the category (A¥/mz)-gmod while Py/mz is not injective. Hence Ly and L_ satisfy the
equivalent conditions of Proposition 2.67.

Remark 2.69. In view of the double centraliser property Theorem 2.65, we may view
(A¥-gmod, V) as a partial resolution of the category B% -gmod. The map w + Ow is far
from being unique. Indeed, for any given w, translating the multiplicity of any affine root
by nd for any n € Z does not change the derivative Ow. Therefore, a possible measure for
the singularity of A“ -gmod would be the singularity of the hyperplane arrangement given
by w — o, counted with multiplicities. There are a finite number of equivalent classes of
pairs (A¥-gmod, V), determined by the configuration of this hyperplane arrangement.

We expect that if the divisor associated to w — o is of normal crossing (a fortiori
multiplicity-free) on the quotient space E/W),, then the global dimension of A“-gmod
should be finite (A“ -gmod is generally not affine quasi-hereditary, however.) Moreover, for
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any two such families w and W' such that dw = OW', there should be a derived equivalence
D’ (A% -gmod) = D° (A“’/ —gmod) compatible with the KZ functors V. This would be a
quiver-Hecke-algebraic analogue of Losev’s derived equivalences [28] for rational Cherednik
algebras.

A heuristic explanation of the derived equivalence: Corollary 2.66 shows that the B“-
module e, A% is reflexive and Theorem 2.65 shows that A = gEnd(e,A%). If A¥ happens
to be of finite global dimension, then the pair (A, V) will be a non-commutative crepant
resolution for B“ in the sense of Van den Bergh up to the Cohen—Macaulay condition,
which needs a non-commutative analogue. According to one of the main conjectures in
the (non-commutative) minimal model programme [5] [22], (non-commutative) crepant
resolutions should be related by derived equivalences.
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Chapter 3

Perverse sheaves on graded Lie
algebras

Introduction

Let G be a reductive complex algebraic group and let g be its Lie algebra. Let m € Z~
and let 0 : p,, — Ad(G) be a group homomorphism. Then 6 gives rise to a Z/m-
grading on g, written g = @ﬂez/m g, With g, = {X € g; u(Q)X =("X} and let Gy = GY
be the #-fixed points. Let d € Z and let d = d mod m € Z/m. One is interested in
the G-equivariant bounded derived category of constructible sheaves on gn’l denoted by

D, (g4")-

In [35], Lusztig and Yun studied the Gg-orbits in the nilpotent cone gj' C g4 and found
a way to produce uniformly all the simple Gy-equivariant perverse sheaves on gml. They
remarked that the naive adaptation of parabolic induction from the Z-graded case, which
was studied in [37], can not produce all the simple perverse sheaves on gml as direct factor
of induced sheaves. Instead, they introduced the notions of spiral induction and spiral
restriction, which turn out to be the right notions of induction and restriction of sheaves
on Z/m-graded Lie algebras as they produce all simple perverse sheaves and share a large
part of the features of parabolic induction and restriction on Z-graded Lie algebras. In a
way, the naive parabolic induction can also be realised as the induction through certain
spirals, so the spiral induction is a generalisation of it.

According to [38], there is a decomposition of triangulated category
]:)G0 n11 @ DG() ml
¢€Z(gd)

Let T(gq4) be the collection of systems (L, [, O, €), called admissible systems, where L is
a pseudo-Levi subgroup of G !, [, is a Z-grading on the Lie algebra | = Lie L such that
[, C g, for all n € N, and (O, %) is a cuspidal pair on [ in the sense of [37]. The set
above T (gq) is the set of Gy-conjugacy classes in T (gq). Each subcategory Dg, (ggll)
called a block. The block corresponding to the system (o = (7, t.,{0},dy), where T is a
maximal torus of Gy and ¢y is the punctual sheaf supported on 0 with fibre Q,, is called
the principal series.

'Recall that a pseudo-Levi subgroup of G is the centraliser of a semisimple element s € G.

29
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Let C; be a one-dimensional torus acting linearly on g by weight 2. The action of
Cy commutes with the adjoint action of G' so that there is a Gy x C) action on gj'. By
the Jacobson-Morosov theorem, the Gy-orbits in ggﬂ are stable by the action of C;. The

nil

functor of forgetting the C;-action D¢, ¢ (g5") — Dg, (g5") induces

il ~ il
Irr Perve, (gg ) = Irr Perveg o (94
on the isomorphism classes of equivariant simple perverse sheaves. Similarly, each
admissible system ¢ € % (gq) acquires automatically a Gy x Cy-equivariant structure.
The spiral induction, spiral restriction and the decomposition of equivariant category into
blocks also has a Go X C;-equivariant version.

From an algebraic point of view, the Springer correspondence of [53] and [10] tells
that the simple perverse sheaves on g3l correspond to simple modules of certain block
of a dDAHA H. Let ¢ € T(gg) be an admissible system on gg. The sum of the spiral
inductions of the perverse sheaf IC(%) is an (ind-)complex L, in the equivariant category
Dngc; (ggﬂ) and its extension algebra H = Homz;QX o (Lagr, Lagr) realises a localised version
of H (which means that H is Morita-equivalent to a block of the category O of H). The
classical techniques of extension algebras as described in Chriss—Ginzburg [13] allow one
to analyse the structure of the block of H via the geometry of g and the complex L. In
particular, the simple H-modules in the block correspond to simple direct factors of Ly
and the dimension of a simple module is equal to the multiplicity of the corresponding
simple director factor in L. Moreover, for each simple module of H there is a standard

module, defined in terms of the !-fibre of I at a nilpotent Gy-orbit in ggﬂ.

On the other hand, several decades before, Kazhdan and Lusztig [23] have already
given a realisation of the affine Hecke algebras K via the equivariant K-theory on the
Steinberg variety over g and by localisation, a certain block of K can be realised with
a certain class of perverse sheaves on gil. However, the perverse sheaves which show
up in this construction are still not well understood. This block of K has some features
of modular representation theory. Below we introduce a semisimple complex I, whose

extension algebra K = Homz;OX o (Ttin, I, ) which realises a localised version of K.
U q

In §3.1, we recall the notion of a Z/m-grading on Lie algebras and the spiral inductions—
restrictions introduced in [38]. We put accent on a number of immediate consequences of
the main theorem thereof.

In §3.3, we introduce the notion of the parabolic inductions—restrictions in the Z/m-
graded setting. The definitions are similar to the parabolic inductions—restrictions in the
Z-graded setting considered in [37]. We also discuss some of their relations with the spiral
inductions-restrictions.

In §3.4, we introduce the supercuspidal pairs, in terms of parabolic inductions—
restrictions. Briefly, a supercuspidal pair is an equivariant local system which is anni-
hilated by every strict parabolic restriction. We deduce some properties of supercuspidal
pairs which are in complete analogy with the “cuspidal pairs” of [37]. Their relation with
the cuspidal pairs considered in [38] is also discussed.

In §3.5, we prove Theorem 3.20, which, very roughly, states that the local systems
that one can obtain from Z/m-graded parabolic inductions from supercuspidal pairs are
the same as those that one can obtain from the spiral inductions.

The apparition of the dDAHA H and the AHA K indicates the properties of the
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Knizhnik—Zamolodchikov monodromy functor V considered in §1.4 should be intimately
related to the geometry of g4. In particular, the complex If, should be a direct factor of
L. up to degree shifting and the deficit measures how singular the corresponding block of
K is. Making analogy with the case of RDAHAS, one expects that the KZ functor does
not annihilate the proper standard modules of H. This non-vanishing property can be
translated into a sheaf theoretic statement Theorem 3.20.

Conventions and notations

All algebraic varieties and schemes will be separated of finite type over C.

Fix a prime number £. For any scheme X, we denote D’ (X) the bounded derived
category of constructible Q,-sheaves on X.

For any algebraic group G acting on X (on the left), we denote D% (X) = D° (|G\ X])
the G-equivariant bounded derived category of Q,-sheaves on X, or equivalently bounded
derived category of Q,-sheaves on the quotient stack [G\X], as defined in Laszlo-
Olsson [26]. When the symbol b is absent from D’ it means the unbounded derived
category. We denote Pervg(X) C DE (X) the subcategory of complexes whose image in
D?(X) is perverse ; those are perverse sheaves on the stack [G\X] up to a shift.

On these derived categories, the six operations ®, Hom, f., f*, fi, f* will be understood
as derived functors. We suppress the symbols R and L from Rf,, ®, etc. The bi-duality
functor will be denoted D, the perverse cohomology functors will be denoted PH* for
k € Z and for any local system L supported on some locally closed subset, its intersection
complex will be denoted IC(L) € Pervg(X). For any complexes .#,%4 € D%(X) and k € Z,
denote Hom},(.%,9) = Hompy (x)(#,¥[k]) and Homg, (F,9) = P4 Homf (F,4).

For any algebraic group G, the set of one-parameter subgroups (or co-character) is
denoted X, (G) . We will adopt the notion of co-characters up to isogeny. The set of
co-characters up to isogeny is defined to be the quotient set

X.(G)q = Xu(G) x N*/ (A, p) ~ (11, q9) & g\ = pu)

and the elements are denoted by A/p = (A, p). We will also consider weight spaces of

elements of X, (G)q. If p: G — Aut(V) is a rational representation and if A € X, (G)q,
then for each r € Q the weight space of A of weight r in V' is denoted i‘V. Namely, let
k € Z\ {0} such that kX € X,(G), then

iV = {U eV ; Ad(k,\)(t)(v) = t’”v,Vt € Gm} .

For any pair of adjoint functors (F,G), we denote by id — GF the adjunction unit
and by F'G — id the adjunction co-unit.

3.1 Z/m-grading, spirals and splittings

We recall in this section the notion of spirals and splittings as defined in [38].
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3.1.1 Z/m-grading on G

Let G be a connected simply connected semisimple algebraic group over C. The Lie
algebra is denoted g = Lie G.

We fix a positive integer m € N*. For any integer k € Z, we will denote £ = k
mod m € Z/m. Let
g= @ 9i

i€Z/m

be a Z/m-grading on g such that [g;,9;] € g;+; for all 4,7 € Z/m. We define a
homomorphism 0 : p,, — Aut(g) by setting

9<C) |91: ij Vj € Z

The semisimplicity of G implies that Aut(G) = Aut(g), so we can write 0 : u, —
Aut(G).

We will assume throughout that 6 is inner, meaning that the image of 8 lands on the
subgroup Ad(G) C Aut(G).

We fix once and for all a non-zero integer d € Zy. The adjoint action of G on g
restricts to an action of the fix-point subgroup Gy = GY C G on the graded piece gy. Let
gzﬂ = gg N g"! be the closed subvariety of nilpotent elements. The geometric objects of
nil

interest are the G orbits in g;" and the Gp-equivariant derived category D¢, (ggﬂ).

Let IT(gq) denote the set of pairs (O,.Z) where O C gj' is a nilpotent Gg-orbit and
£ € Locg,(0) is an (isomorphism class of) irreducible Gy-equivariant local system on O.

3.1.2 Jacobson—Morosov theorem

Recall the theorem of Jacobson—Morosov in the Z/m-graded setting. Let e € gil. Accord-
ing to [38, 2.3], we can complete e into an sly-triple ¢ = (e, h, f) with h € go and f € g_g.
Consequently, there is a cocharacter A € X,(Gp), the exponentiation of h, which we will
denote by \ : t +— t". Moreover, the set of such triple ¢ with a given e forms a principal
homogeneous space under the action of the unipotent part of the stabiliser of e in GY.

Using the Jacobson-Morosov theorem, one can show that the number of Gy-orbits in
g4l is finite and moreover, each orbit is invariant by dilatation. We will also consier the
action of the one-dimensional torus C; = C* on gg, given by (¢,z) — ¢ *z.

3.1.3 Spirals, nilpotent radical and splittings

Let A € X, (Go)q be a co-character and let € € {1, —1}. We associate to it a Z-graded Lie
algebra p} = @, 5 ‘P where

A A
epn = rgﬂ'
reQ

r>en

We also define a Z-graded Lie subalgebra of g

TP 0= o

nez
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Note that they depend on the sign € € {#1}. Such a graded sub-space p} is called an
e-spiral of g and such an [ is called a splitting of the spiral p?. We let “I* be the same
Lie algebra as [} with grading forgotten.

We define the Z-graded Lie algebra “u} with
€ )\:@eu)\’ eu)\: Agn
n€l r>en -
to be the nilpotent radical of the spiral “p?.

Then “u} forms a homogeneous ideal of the graded Lie algebra ¢p? and that for each
n € Z the subspace [} C “p? is mapped isomorphically onto the quotient “p/ <u via the
obvious projection. The Lie algebra [ is the Lie algebra of a pseudo-Levi subgroup of G,
[10, 2.2.5.

We will write p, I} and u instead of €p2, [} and “u? in a context where the signature
€ is clear.

3.2 Spiral induction and restriction

3.2.1 Spiral induction and restriction
With the datum (p,, L, u,) = (Epi, L, Eu;\) of a spiral together with a splitting, we can
define the functor of induction. Let Py = exp(po) and Ly = exp(lp).

Fix an integer d € Z \ {0} and € € {1, —1}. We consider the following diagram

gd(ingpopdﬁGQXpdl)[d,
where
a(g,z) = Ad(g)z;  B(g,x) = (9,2); ~(g,%) = mod ug.
Then, the morphism « is proper whereas v is a smooth fibration and 3 is a FPy-torsor.

We have the following sequences

o & Gy xP pg B Gy xP py 2 g, g0 & pa S 1y
The spiral induction and restriction are defined as

Indlgjcpd = '7*(6!)_104! : DLo ([d) — DGQ (9d>
Resgi = 61(5* : DGQ (gi) — DLO ([d) .

laCpa

In fact, for the sign e = d/|d| the functors induce
Indi, D, (') — Dg, (85"), Resi’c,, : Da, (g") — Dy, (13") .

laCpq
Since every variety in the sequence (3.2.1) can be equipped with a C‘-action (by weight
-2 on the Lie-algebraic part), there is also a G x C; -equivariant version of the induction
and restriction
Indfyy, : Dygxex (la) — Dgyuey (8a)

Res[gdicpd : DGQXC; (gi) — DLQXC;< ([d> :
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3.2.2 Adjunction

We can rephrase the definition of spiral induction and restriction as follows: there is a
diagram of algebraic stacks

[g < - Pa Go X g

L I

[la/ Po] +—5— [pa/Po] +—5— Go x" py
qT l‘r lw
[la/ Lo} 94/ Gol 5 ga
Then Ind[gdqg = 7,8'q, and Res?jcpd = ¢*&*.
It is clear that (Resfdcpd, Indile ) is a pair of adjoint functors.

3.2.3 Admissible systems and block decomposition

From now on, we suppose that ¢ = d/|d| unless it is stated otherwise.

Recall that an admissible system on g4, as defined in [38], is a datum (M, m,, 0, %),
where M C G is a subgroup whose Lie algebra is equipped with a Z-grading m, = €,,., m,
arising as [} as splitting of a spiral, O C m3! is a My-orbit and € € Locyy, (O) is a cuspidal
local system in the sense of [37, 4.2(c) 4. 4( )].

An isomorphism of admissible systems (M, m,, O, %) = (M’ m, O, ¢’) is a pair (g,7)
of element g € Gy such that gMg~' = M’, Ad, m, = m,, Ad, O = O’ and an isomorphism
n:g*¢ = €. Let T(gq) denote the groupoid of admissible systems on g4 and let T (g4)
denote the set of isomorphism classes its objects.

Let ( = (M, m,,0,%) € T(gq) be an admissible system on g4. We define Pervg, (ggll)
to be the Serre subcategory of Pervg, (ggﬂ) generated by the constituents of Ind3* Jcpg 1C (%)
for various spiral p, which has m, as splitting. We define D¢, (ggll) to be the full sub-
category of Dg, (ggﬂ) of objects ¢ such that P 7% ¢ € Pervg, (ggll) for all k € Z. We
also let IT(gg). C II(ga) be the subsets of pairs (O, Z) such that IC (iﬂ) € Perv (ggﬂ) :

We will call these subcategories and subsets the blocks of (.

According to [38, 0.6], there are decompositions into subcategories
PerVGo ml @ PerVGo ml ) DGO (ggﬂ) - @ DGO (ggll) : (31)
¢ex(oa) ¢e%(ga)
3.2.4

The following is an immediate consequence of the decompositions (3.1), the adjunction of
restriction of induction functors and the transitivity of them.
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Lemma 3.2. Let p, = p2 and [, = [} be spiral and splitting as above. Let ( = (M, m,, %)
be an admissible system on ly;. Then the spiral induction and restriction preserve series:
gd . nil nil
Ind’, : Dy, (15" . — Day (a5") :
84 . nil nil
ReS[;de : DGQ (gd )g — DLO ([d )g'

On the other hand, if ' = (M',m,€") is an admissible sysmtem on g4 such that no
Go-conjugate of (M',w.) is a Z-graded Levi of (L,1.), then Res?jcpd D¢, (ggﬂ)c =0.

*

]

3.2.5 Spiral attached to a nilpotent element

Let ¢ = (e, h, f) be an slo-triplet with e € g4, h € go and f € g_,;. We can attach to ¢ a
spiral p¢ and a splitting [ as follows: ¢ can be integrated to a homomorphism of algebraic
groups ¢ : SLy — G. The cocharacter A € X,(Gy) defined by A(t) = ¢ (t 0 ) gives

0 ¢!
rise to a spiral p'%??*, denoted by p?, and a splitting [(¥/?*, denoted by 9. The algebraic

subgroups P(‘)b = exp (pg’ ) ,L? = exp ([ﬁf) and Lg = exp ([3) of G are well-defined. They
are called spiral, and respectively splitting, attached to ¢.

It is clear that e € Iﬁ, h € [8) and f € [d_’d. We will need the following results, proven
in [38, 2.9]:
Lemma 3.3. (i) Theimage of v is C, the Zariski closure of C. Moreover, the morphism

[

7 restricts to an isomorphism v~ (C) = C.

(it) There is an isomorphism mo (Zy,(e)) = o (Zgy(€))-

3.2.6 Parity of cohomology

Proposition 3.4. Let (O,%) be a cuspidal pair on ly, let p, be a spiral on g which admits
[, as splitting and let jor : O' < gq be a Go-orbit. Then the complezes j¢, Ind[gfcpd IC (%)

and jb, Indi™ 1C (%) have no cohomology in odd degrees.

laCpa

Proof. By Verdier duality and the fact that the dual €V is again cuspidal, it suffices to
prove the statement for j§, only. The statement for j&, follows from [39, 14.10]. O

3.2.7 Preservation of series under extension of sheaves

Lemma 3.5. Let (0,.%) € I (ga), for ¢ € T(ga). Then jorZ, jo.Z € Da, (g4").-

Proof. The decomposition of equivariant derived category yields a decomposition of com-
plex

jO*g = @ (jO*g)C/ .
¢'€3(sa)
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Let (' = (M',m,0',%") be any admissible system on g, which is not isomorphic to
¢, we show that (jo.%"), = 0. Suppose that (jo.Z), # 0. Let § € Z be the smallest
integer such that P3¢ (jo..Z) . # 0. Let IC (33) € Pervg, (ggll) , be a simple subobject of

P A0 (JoxZ)e # 0 so that Hom (IC (ZF),P (jo*.f) [0 ]) # 0. Using the distinguished

triangle coming from the perverse t-structure
. . ‘ 1
=0 (]O*g)g/ — (]O*g)cl — p7_>5 (]O*o%)g/ Q,
we see that the obvious map
Hom (Ic (F) P75 (jou?) o [5]) s Hom <IC (F) . (jouZ) [5]) — Hom (i, IC (F) , Z[0))

is injective, so the last space is non-zero, which contradicts the fact that ¢ 2 ¢’ by [39,
13.8(a)]. Thus jo.Z = (jo«ZL); € Dg, (ggﬂ) .
If IC(Z) € Pervg, (g ml) then IC (£Y) € Pervg, (ggll) for ¢V dual to ¢. Thus

joZL" € Dg (ggll) SO jo!.,% Djo.Z"[2dim O] € D¢, (ggﬂ) since the Verdier duality
D exchanges the blocks ¢ and (V. N

3.2.8

Proposition 3.6. Let O C ggil be a Gy orbit and let j : O — ggﬂ be the inclusion. Then
the functors j.5*, j15*, j«j* and jij' preserve the subcategory D¢, ( ml) foreach ¢ € T (ga).

Proof. It is enough to show that for every & = IC (£) € Pervg, (ggﬂ) we have
Jed " H G H Gef H 517 H € Dy (93), -

Let £ C % j* 2 Dbe a simple constituent. Then we have IC(.Z) € Pervg, (ggll) by [39,

nil

13.8(a)]. By the previous lemma, we have j,.Z € D¢, (g3 ) . By devissage, we see that
JxJ*H € Dgy (ggﬂ) . The verification of the other three is snnilar. [

3.3 Parabolic induction and restriction

3.3.1 Parabolic induction and restriction

Let M C G be a pseudo-Levi subgroup. We say that M is #-isotropic if M contains
a f-fixed maximal torus. Since 6 is supposed to be inner, GG is a #-isotropic pseudo-Levi
subgroup of itself. Conversely, for any 6-isotropic pseudo-Levi M, the action 6 on G
restricts to an inner action 6 : pu,, — M?* on M. If M is a f-isotropic Levi subgroup,
then every parabolic of G which admits M as Levi subgroup is stable under 0. If Q C G
is a #-stable parabolic subgroup, then since () is its own normaliser in G, the image of
must lie in @/ Zg. Consequently, ) has a -isotropic Levi factor.
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Let M C G be a #-isotropic Levi subgroup and let () C G be a parabolic subgroup
having M as Levi factor. The Lie subalgebras m = Lie M and q = Lie @ of g are Z/m-
graded. We have the following sequences

o U, B ¥ 1) €
mdeGngqd%ngngiégd, g4 < qq — Mg.

The parabolic induction and restriction are defined as

Indﬂicqi == (6!)_10‘! : DMg (mgﬂ) — DGQ (Gﬁﬂ)

Res&i@ng = 10" : Dg, (gzﬂ) — Dy (mzﬂ) )

As in §3.2.2, there is a pair of adjoint functors (Resﬂicqi, Indﬂicqi).

3.3.2 Transitivity of parabolic inductions

We state two transitivity properties of the parabolic induction functor. In addition to q
and m as above, let ¢’ C m be a @-stable parabolic subalgebra and let m’ C ¢’ be a #-stable
Levi factor. Let g be the inverse image of q' under the quotient map q — m.

Proposition 3.7. There is an isomorphism of functors

94~ 7,10 mg
Indm,ica,l = Indyycq, © Indm/iC a -

Proof. By adjunction, it suffices to show the corresponding statement for restrictions. The
diagram

~

g < q < q
5 6” -

le le”

/

m<——q
|

m/

induces
myg d d
Resmgcqél oResg;iqu — 6{5,*6!5* o 6!6;/5//*5* — 6?5/*&5* ~ (66”)[(55”)* _ Res‘g{/ic%‘

]

If now instead of parabolic algebra, let € € {1}, let p, = p, be a spiral of m, let [, C p.
be a splitting and let p,, be the inverse image of p,, under the quotient q,, — m,, for each
n € Z, then p, is a spiral of g. The following is proven in the same way as Proposition 3.7.

Proposition 3.8. There is an isomorphism of functors

9d ~ 9d mg
Ind| = Indp,cq, 0Indg o
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3.3.3 Preservation of series under parabolic inductions

We assume that € = d/|d|. The following is an immediate consequence of the transitiv-
ity Proposition 3.8 and the adjunction of parabolic restriction and induction functors.

Lemma 3.9. Let q, = q) and m, = m) be parabolic and Levi subalgebras as above. Let
¢ € T(my) be an admissible system on my, which can also be viewed as on gq. Then the
parabolic induction and restriction preserve the block of (:

nil nil

Indycq, : Do (m3") ¢ — Day (92"),

Rest ey, Dey (62), — Do (m3),.

3.3.4 Parabolic subalgebra given by a cocharacter

Let A € X, (Gp)g be a fractional cocharacter. We associate to it the following Z/m-graded
Lie subalgebras of g.: q2 = Dicz/m qr,m) = Dicz/m m) and v} = Dicz/m v} by setting

A A A A A A
q; = @rgia m; =49, v; = @rgi-

reQ reQ
r>0 r>0

Clearly, q) is a Z/m-graded Levi subalgebra of g, and q} = m} @ v} is a Levi decom-
position. It is clear that M = exp(m?}) is a #-isotropic Levi subgroup. Conversely, given
any 0-isotropic Levi subgroup M C G and any parabolic () C G which admits M as Levi
factor, there exists A € X, (Gp) such that q. = qi and m, = m}

%

3.3.5 Distinguished nilpotent elements

A nilpotent element e € g5l is said to be #-distinguished? if (Zg,(e)/Z¢)" is unipotent
i nil iy

and a nilpotent Go-orbit in gg" is called f-distinguished if it consists of f-distinguished
elements.

Lemma 3.10. Lete € ggﬂ be 0-distinguished. Then any 0-isotropic pseudo-Levi subgroup
H C G such that e € by is of same semisimple rank as G.

Proof. Let T' C H be a 0-fixed maximal torus. Suppose that the semisimple rank of
H is strictly smaller than G. Then there is a strict Levi subgroup K C G such that
H C K exists A € X,(T) such that K = Zg(p). In particular, imp C Zg,(e) is a
torus not contained in Z¢, contradiction to the assumption on e. Therefore H is of same
semisimple rank as G. O

2Recall that in the ungraded setting, a nilpotent element e € g™ is called distinguished if (Zg(e)/Za)°
is unipotent and a nilpotent orbit G-orbit in g™! is called distinguished if it consists of distinguished
elements.



3.4. SUPERCUSPIDAL PAIRS 69

3.4 Supercuspidal pairs

3.4.1 Supercuspidal pairs

Let d € Z\ {0} and let (O,%) € II(gq). In the rest of this chapter, we assume that
e=d/|d|.

Definition 3.11. We say that (O, %) is a supercuspidal pair on g, if for every 0-stable
proper parabolic subalgebra q C g with O-isotropic Levi factor m and unipotent radical v
and any z € m3' we have RT, (O N (2 +vy),%) = 0.

3.4.2 Supercuspidal orbits are #-distinguished

We prove a Z/m-graded version of a result of Lusztig [30, 2.8]3.

Lemma 3.12. Let 0 # # € Dg, (ggﬂ) be such that Resﬂicqi% = 0 for every 6-stable
proper parabolic subalgebra q C g with 0-isotropic Levi factor m C q. Then every Gy-orbit
O C Supp #£ open in Supp K& is 0-distinguished.

Proof. Let e € O and let S C Zg,/z, (€) be a maximal torus. Let M = Zg(S5), which is
f-isotropic, let () be a parabolic subgroup of G which has M as Levi subgroup and let
V' C @ be the unipotent radical. Since 6 fix S pointwise, the image of 6 lies in M /Zq. It
follows that () is f-stable.

We claim that the Vjp-orbit Ady,(e) is a connected component of O N (e + vy). By [30,
2.9(a)], Ady(e) is a connected component of Adg(e) N (e + v). Since
Adv<€) N (O N (6 + Ud)) = Adv(e) N g4,
the latter is open and closed in O N (e + vy), so it is enough to show that the map
no: Vo — Ady(e) Mgy, ur— Ady(e)
is surjective. Let
n:V — Adv(e), uwr— Ady(e).

Suppose that z € Ady(e) Ngg. Then n~'(2) C V is f-stable. Since () is a left coset
of Zy(e), it is an affine space, acted on by a finite group u,, through 6. It follows that
there exist f-fixed points in n7!(z), or in other words, ny(z) # 0. Hence 1, is surjective
and therefore Ady,(e) is a connected component of O N (e 4 vy).

Since g (ZVg (e)) = 1, the restriction £ |aqy, (), being Vp-equivariant, must be con-
stant on the connected component Ady,(e). It follows that RI', <AdvQ (e), A | Advo(e)) #0

and hence RI'. <O N(e+vy), % ’Oﬁ(e-‘rbd)) # 0 since the former is a direct factor of the
latter. .

Let qq LN my be the projection onto Levi factor. Then, since e € ONmy and since O C
Supp ¥ is open, we have Supp # N 37 (e) = O N ({e} + vy). Therefore the fiber in e of

nil

31t states that if G is a reductive group and O C g
system, then O is distinguished.

is a nilpotent G-orbit supporting a cuspidal local
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the complex Resgmicqi% = f (A |q,) is isomorphic to R, (O N(e+vy), % ’oa(e+nd)>v
which is non-vanishing.

By the assumption on %", we must have G = M = Zg(S). Thus S = 1 and Zg,, 7, (e)
is unipotent. It follows that e is #-distinguished. [

Proposition 3.13. Let (O, %) be a supercuspidal pair on gq. Then the Gy-orbit O C gq
is O-distinguished.

Proof. Apply Lemma 3.12 to 2" = jo¢, where jo : O — ggﬂ is the inclusion. ]

3.4.3 Primitive pairs

Let ¢ = (L,1,,01,%1) € T(gq) be an admissible system on gg. Let O = Adg, Oy, C g
be the extension of Oy to Gg-orbit. Let z € Op. By [38, 3.8(a)], it is known that the
inclusion Zr,(x) C Zg,(x) induces an isomorphism on groups of connected components.
Therefore, there is a unique extension of €, into a Go-local system on O, denoted by 2.
The pair (O, %) is called the primitive pair attached to (, according to loc. cit.. Below
is a characterisation of the primitive pair.

Lemma 3.14. Let (O, %) denote the primitive pair on g4 attached to . Let (C,Z£) €
I1(g4)¢ @ pair in the block of . Suppose that C C O. Then (C,.Z) = (0,%).

Proof. Suppose first that C # O. Let jo : C < g4 denotes the inclusion of orbit. Let
p. be any spiral in g which admits [, as splitting. The support of the spiral restriction
complex Resffcpd jci? is contained in Op \ Oz. Thus the cleaness [34] of the cuspidal
local system %7, implies that

HOI’H&g (jcy.ﬁ/ﬂ, Indgi IC(CKL)) = HOI’HEO (Resffcpd jc;g, IC (CKLD =0.

laCpa

It follows that jc-Z = 0 since the simple constituents of Ind[gjcpd IC(%}) for all p, together

generate the block D¢, (gzﬂ) - The full-faithfullness of j¢ yields . = 0, contradiction.

We have seen that C = O. Let p, be as above. It follows that the complex
Res[gfcpd jaiZ is isomorphic to jni (£ |o, ), where j; : O — [ is the inclusion of orbit.
If & % %, then £ |0,% %L. Again, Homj (Resffcpd i, 61) = 0 and the adjuction
yields

Homyg,, (i;f,lndgi %L) =0,

l4Cpq

contradiction. It follows that .Z = ¥ and thus IC(.¥) = IC(%). O

3.4.4 Characterisation of supercuspidal pairs

Theorem 3.15. Let (O,%) € ll(gy). The following conditions are equivalent

(i) The pair (O, %) is supercuspidal

(i) There exists an admissible system ¢ = (L,l.,Or,61) € %(ga) such that L is of the
same semisimple rank as G and (O, %) is the primitive pair attached to (.
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Proof. Suppose first that (ii) holds. Let M C G be any 6-isotropic strict Levi subgroup
and let () C G be a parabolic subgroup which admits M as Levi factor. Let jo : O — ggﬂ
be the inclusion of orbit. It follows that jo,4” € Dg, (ggﬂ) C and thus

Resﬂécqijogcg =0e€ DMQ (mgﬂ)c

as there is no conjugate of L contained in M (the semisimple rank of L being greater
than that of M). It follows that (O, %) is supercuspidal.

Suppose then that (i) holds. Let ¢ = (L,[., 05, %) € %(gq) such that (0,%) €
II(gq)c. By Lemma 3.16 below, (O, %) is isomorphic to the primitive pair attached to .
By Lemma 3.12, O is #-distinguished, so by Lemma 3.10, H is of the same semisimple
rank as G. O

Lemma 3.16. Let ( = (L, 1,0, %) € T(ga) and let 0 # # € Dg, (gzﬂ)C be such that

9d
Resy, 4Cda

factor.

K =0 for every 0-isotropic Levi M C G and any parabolic Q) having M as Levi

(i) There is an isomorphism

# = @ICE) -,

neZ
where d,, € N for each n € Z and (O,%€) is the primitive pair attached to (.

(i) The semisimple rank of L is equal to that of G.

Proof. We first prove that % is supported on the closure of the primitive orbit Adg, Oy.
Let O C Supp £ be an open orbit. Let (e, h, f) be an sly-triplet with e € O, h € gy and
f € g_q and define ¢ € X,(Gp) by ¢ : t — th. For n € Z, define

— de-p _ dep
pn - @ mgﬂ7 [TL - 2negﬁ

for n € Z so that e € 3. Then [ = €, ., [ is a Z-graded pseudo-Levi subalgebra of g.
Let Lo = exp(lp) and let O, = Ady,(e) and let €, C £ |o, be a simple constituent.
The result [38, 2.9(c)] says that Z;,(e) is a maximal reductive subgroup of Zg, (e), so that
the inclusion Ly C Gy induces an isomorphism o (Zp,(€)) = 7o (Zg,(€)). Therefore the
Lg-equivariant local system %7, is irreducible.

We show that (Op, %7) is cuspidal. Suppose that q; C [ be a Z-graded strict parabolic
subalgebra given by
ar = @ nl
n>0

for some ¢ € X, (Hp). Let m; = %[ be the Levi factor and let vy, C q; be the unipotent
radical. Similarly, let q, m, v be the f-stable subalgebras of g is given by

1=EPle, m="\av=EPls

n>0 n>0

We must have q C g since q, =qN[C L
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Put ¢ : C3 Ll)> Go x Cr. Then [; = (gd) and Oy, = O¥ are the fixed points by ¢.

Fix any z € [d and let
X=0nN(z+0y) Cgg sothat X?=0,N(z+bp4).

By the assumption on ", we have H? (X, %" |x) = 0, which implies H? (X*Z’, H |X¢) =0
by [31, lemma 2]. Since 4, is a direct factor of X |o,, we deduce H? (X?, % |x¢) = 0,
whence the cuspidality of (Or, %.).

Let jo : O — g4 be the inclusion of orbit. It is shown in [38, 7.1(c)] that
7o Ind?jcpd IC(%7%) is the unique extension of €7, to O, so

Homg, (Indjs, TC(%L),jo.jo ) # 0

and thus the admissible system (L, [,,Op,%}) is conjugate to ¢ and in particular, O =
Adg, Oy, is the primitive orbit attached to ¢. It follows that " is supported on the closure
of O.

Now Lemma 3.14 implies that for any k € Z we have P2 % = IC (€)™ for some
d, € N. Since by the odd vanishing of [39, 14.8], there is no self-extension of IC(%) in
the equivariant derived category, we conclude that

H = PIC(E)[—n]*".

nez

3.4.5 Cleaness of primitive pairs

Finally, we prove the cleaness for primitive pairs on g4. Let ¢ = (M, m,, Oy, Gur) € T (ga)
be a admissible system and let (O, %) € II(gy"); be the primitive pair attached to ¢. Let
j : O < g4 denote the inclusion of orbit and let i : O\ O < g4 denote the complement of
O in its closure.

Theorem 3.17. We have i'5€ = i*j,€ = 0. Consequently, the natural morphisms
H€'[dim O] — IC(¥) — j.€'[dim O] are isomorphisms.

Proof. Let # =1i,i'j€ € D¢, ( ml) Applying Lemma 3.14 to simple factors of the the
perverse cohomologies of £, we see that # =0 and thus i'j% = 0. Similarly, we have
1*7.¢ = 0.

Now it is clear from above that 5%’ [dim O] and j,%[dim O] are perverse and they are
isomorphic via the natural morphism ;%' [dim O] — 7.€[dim O]. The isomorphism of
IC (€) with the two complexes results from the definition of IC (%). O

According to Theorem 3.15, supercuspidal pairs are primitive pairs. Thus this theorem
applies to supercuspidal pairs.

3.5 Swupercuspidal systems and blocks

nil

In this section, we give an alternative description of blocks of Pervg, (gd ) in terms of
supercuspidal local systems on 6-isotropic Levi subalgebras.
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3.5.1 Supercuspidal systems

Definition 3.18. A supercuspidal system on g, is a triplet (M,0,% ), where M C G
is a O-isotropic Levi subgroup and (O, %) is a supercuspidal pair on my.

An isomorphism of supercuspidal systems (M, 0,%) = (M',0',€”) is a pair (g,n) of
element g € Gy such that Adg M = M’, Ad;O = O’ and an isomorphism 7 : g*¢" = €.
Let & (g4) denote the groupoid of supercuspidal systems on gq and let & (g4) denote the
set of isomorphism classes of its objects.

Let 0 = (M,0,%¢) € & (ga) be a supercuspidal system on gz We define II(g,4), C
II(gy) to be the subset of pairs (C,.Z) for which there exists a parabolic Q C G which
has M as Levi and that

Homg, (2, e Indﬂicqi IC (%)) # 0.

3.5.2 Partition into supercuspidal series

Proposition 3.19. For any pair (C,.£) € 1l(gq). There exists a supercuspidal system
o= (M,0,%) such that (C,.£) € 11(g4)o-

Proof. Let (Q, M) be a pair of #-stable parabolic subgroup subgroup @ of G and a 6-
isotropic Levi factor M of ) which satisfies the following two conditions:

(i) if V' C @ denotes the unipotent radical and v = Lie V| then for any z € C, we have

RI'. <C N(z+vy),2 |Cﬂ(z+ni)> #0

(ii) among those having the first property, the pair (Q, M) is minimal with respect to
the partial order:

QM) < (M) & QcQ AN McM.

We have a diagram

2 g

Put " = (7qj¢ )iy <, which is isomorphic to Resmycq, jo, -2 by the base change theorem
for proper morphisms. For any z € CN g4, we have

(ijé)il (mq(2)) =CN (2 +0g).

Thus by the assumption (i) on the pair (Q, M) and by the base change theorem for proper
morphisms, the complex . is non-zero.
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Let ¢ = (M',m/,0',¢") € T(gq) be an admissible system such that (C,.Z) € II(gy)c.
Since 0 # £ € Dy, (mgﬂ)c, we may suppose that m’, is a Z-graded pseudo-Levi subalgebra
of m. Let O C Supp % be an Mjy-orbit which is open in Supp % .

Let (Opr, %) be the primitive pair on m, attached to ¢. Lemma 3.16(i) implies that
for any k € Z we have *2% # = IC (€y;)*™ for some m;, € N so that

Homg,, (jorZ, Indg,cq, IC(%r)) = Homy, (A, 1C(6n)) # 0.

Lemma 3.16(ii) implies that M is of the same semisimple rank as G. Therefore (O, )
supercuspidal by Theorem 3.15. We find that (C,.Z) € I1(gq), for 0 = (M, Op, €nr). O

Theorem 3.20. The following assertions hold:

(i) There is an equivalence of groupoids T (gq) = & (gq), denoted by ¢ — o¢.

(ii) For each admissible system ( € T (gq) with corresponding supercuspidal system

oc € 6 (ga), we have 11(ga). = 11(ga),,, -



Chapter 4

Generalised Springer correspondence
for cyclicly graded Lie algebras

Introduction

In the present chapter, we establish a generalised Springer correspondence in the case
where the Lie algebra is Z/m-graded, which was conjectured by Lusztig—Yun [10]. The
main result is Theorem 4.40, which confirms the multiplicity-one conjecture proposed
in [10] and can be viewed as a generalised Springer correspondence in the sense of
Lusztig [30][31], for certain degenerate double affine Hecke algebras (ADAHAs) with pos-
sibly unequal parameters.

In [10], the authors have attached for each admissible system ¢ an affine root system
and a dADAHA H,. The main result of [10] is the construction of an action of H¢ on an
infinite sum of the spiral induction from various spirals

1=PpPrrmds, ¢
Pk

which is an ind-object in the category of Gg-equivariant perverse sheaves on giil. They

have conjectured that for each simple constituent S of I, the H¢-module Hom (S, 1) is
irreducible. Theorem 4.40 confirms this conjecture. The case where M is a maximal torus
and % is trivial has earlier been studied by Vasserot in [53].

Our strategy is very close to that of [53]. We use the technique of convolution algebras
developed in Chriss-Ginzburg [13], Lusztig [31],[36] and Evens-Mirkovié [15].

Firstly, we can attach to the datum (G, Gy, g, g«) a loop group LG and a loop algebra
Lg. There is an one-dimension torus C* acting on LG and Lg, compatible with the adjoint
action of LG on Lg, such that the fixed points are given by G, and g4. The quadruple
(M, My, m,m,) defines a Levi subgroup M of the loop group LG. The subgroup M and
the Z-graded Lie algebra m is stable under the C*-action and the fixed points are given
by My and my. Similarly, any spiral p, define a C*-stable parahoric subgroup P C LG.

One would then like to imitate the proof of Lusztig [31] in the case of graded affine
Hecke algebras, with G replaced by LG, parabolics replaced by parahorics and graded
affine Hecke algebra’s replaced by dDAHAs. One immediate obstacle is the infinite
dimensionality of the geometric objects such as LG, which prevents us from making free

75
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use of six operations for (-adic sheaves and perverse sheaves on related geometric objects,
such as Lg, the affine Springer resolution L§ = LG x” p — g and the affine Steinberg
variety Lg = Lg x4 Lg.

As shown in [53], the upshot is to consider directly the C*-fixed points of those
varieties. A suitable assumption on the C*-actions makes the fixed points some infinite
disjoint union of algebraic varieties of finite type. Moreover, the fixed point components
can be described in terms of flag varieties, Springer resolutions and Steinberg varieties of
some Levi subgroups. The fixed point components can be parametrised with combinatorial
data, such as Coxeter complexes. The H-action is then constructed by reduction to its
parabolic subalgebras. Each proper parabolic subalgebra of H is a graded affine Hecke
algebra, which is treated by Lusztig in [31] [30]. It turns out that it suffices to define the
action on proper parabolic subalgebras of H, since the defining relations of H involve at
most two simple reflections in the Weyl group. We will construct a specialised convolution
algebra H, which governs the infinite sum of perverse sheaves I, and a homomorphism
¢ : H, — H. We will also show that the image of ® is dense in a suitable product
topology of H. The conjecture of multiplicity-one then results from the density of the
image of .

In §4.1, we recall the relative affine Weyl group and Coxeter complexes introduced in
[40].

In §4.2, we describe our principal geometric objects: varieties X", 7% and Z**', which
play the role of fixed point components of (LG/P) x (LG/P), Lg and Lg, respectively.

In §4.3, we define and study the specialised convolution algebra ’;Q, which is equipped
with a product topology. It can be viewed as the full convolution algebra specialised at
an infinitesimal character a.

In §4.4, we define a degenerate double affine Hecke algebra (IDAHA) H = H, and we
construct a homomorphism ® : HH — H. We prove that the image of ® is dense in §4.4.6.

In §4.5, we compare our construction with that of Lusztig—Yun [10] and prove the
multiplicity-one conjecture of loc. cit. We classify irreducible H-modules with prescribed

eigenvalues in Theorem 4.40. We also relate irreducible modules with torus fixed points
of affine Springer fibres in Theorem 4.42.

4.1 Affine root system attached to g

This section is a recall of the definition of the affine alcove complex defined in [10], which
is isomorphic to the (geometric realisation of the) Coxeter complex for the affine Weyl

group.

4.1.1 Z/m-graded Lie algebras

We retain the setting of §3. Moreover, we suppose G is simple and simply connected. Its
Lie algebra g is Z/m-graded.

We assume the Z/m-grading is induced by some co-character cX, (Gad) in the sense
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We say that 0 is a lifting of the Z/m-grading on g or that  lifts the Z/m-grading 6 on
g. Let Gy = exp(go) C G, which is a reductive subgroup of the same rank as G. This
assumption makes the affine root system, defined in §4.1.2, untwisted. We fix once and
for all a lifting 6.

The torus C; = C* acts linearly on the Lie algebra g by weight —2. Let u € X* (qu)
denote the defining character.

We will use a subscript ¢ to indicate a direct product with C, such as Gy, = Gox C;.

Besides, we fix a maximal torus 7 C G centralised by 6 so that 6 € X, (T/Zg). In
particular, 7" is in Gy.

4.1.2 Affine root hyperplane arrangement

Let A denote the vector space X, (T) ® Q. Since T and the adjoint torus T2 = T'/Z are
isogenous, we may regard 0 /m as a point of A. We will denote x = g /m. The root system
of G is a subset R C X*(T') C A*, viewed as linear functions on A. We define S = R x Z
to be the affine root system of G. Each affine root a = (a,n) € S is a non-constant
affine function on A. For a € S, the zero of this linear function is affine hyperplane of A,
denoted by H,. The affine hyperplanes yield a stratification of A into facets (i.e. subsets
of A determined by a fintie number of equations a = 0 or a > 0 with a € S). Let § denote
the collection of facets. The facets of maximal dimension are called alcoves. The set of
alcoves is denoted by 2.

The affine Weyl group (with respect to T") is given by Wg = W(G,T) x X.(T'), which
acts on A by reflections and translations. This action preserves the set {H,}, ¢ of affine
root hyperplanes, inducing thus an action on §. The restriction of the action to 21 C § is
simply transitive. We will abbreviate W = Wg.

Let Wy = Staby (x) be the stabiliser of x € A. The rational co-character x gives rise
to an identification Wy = W (G, T') by identifying x as origin.

4.1.3 Simple reflections and subsets

Given a alcove k € A, let A" C S be the corresponding set of affine simple roots. If we
consider the injective map A* — W, a + s,, then, the pair (W, A*) forms a Coxeter
system.

Simple W acts simply transitively on the set of alcoves 2, given any two alcoves
K,k € 2, there is a unique w € W such that " = wk. Then, w yields isomorphisms of
Coxeter systems

(W, %) = (w,a%)

Y — wyw_l, Sq > WS, W e Swa-

Thus we can define the canonical Weyl group (W,A) to be the inverse limit of
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the pairs (W, A") for k € 2, so that for any x € 2, there is a canonical isomorphism
(W, A) = (W, A%).

For any subset J C A, we will denote (W, J) the Coxeter sub-system of (W,A)
generated by J. For any alcove k € A, we denote (Wyx, J*) C (W, A") the Coxeter
sub-system which is the image of (W, J) in (W, A*) under the canonical isomorphism
(W, A) = (W, A").

Given any k € 2, there is a natural identification of (§, <) with the Coxeter complex
of (W, A%). The cell yW;« in the Coxeter complex is identified with the facet y (0;k) C A,

where
a(y) =0, VaEJN}

Jsk = eA;
I {y aly) >0, Vs, € A*\ J*

Here s, means the reflection with respect to the hyperplane H = {y € A ; a(y) = 0}.

Given two alcoves k, k" € 2. Let w € W be such that wk = ’. Then for any J C A
we have y (0;k") = yw (0;k). Therefore, to each facet y (0;k) € §, there is a proper
subset J C A attached, independent of the alcove k € 2. The subset J C A is called the
type of the facet y (0;x") € §. Let §; C § denote the set of facets of type J.

For any pair of proper subsets J C K C A, there is a boundary map 0k : §7 — §k
which sends any facet v of type J to its sub-facet of type K. Then W« is equal to the
stabiliser of 0;x in W.

4.1.4 Correspondence between spirals and facets

We fix the sign € = d/|d| which is required in the definition of spirals. Let Bz be the set

of spirals p, such that p, = “p} for some \ € X, (T)q; cf. §3.1.3. There is a bijection

§ = Pr.

Given a facet v € §, we choose a point y € v and set A\, = me(x —y) =€ (5 — my) €

X, (T)Q. It gives rise to the spiral Ep;\y, which does not depend on the choice of y € v, see
[10, 3.4.4].

We will denote p¥ = epi‘y as well as u? = ul? and v = ‘LY for any y € v. We will
also denote P} = exp (py), L = exp (), Ly = exp (Iy) and U¥ = exp (uf). Those are
subgroups of G.

4.1.5 Graded pseudo-Levi attached to relevant affine subspaces

Let & be the collection of affine subspaces of A which are non-empty intersection of a
finite subset of {H,},.s. Elements of € are called relevant subspaces.

Let fmi‘gr be the set of quadruplets (M, My, m,m,) with M a pseudo-Levi subgroup
of G containing the maximal torus 7" and m, a Z-grading on m = Lie M which makes m
a graded Lie algebra such that T' C My, where My = exp (mg). There is an injection

¢ — ML
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defined as follows: Given any relevant subspace E € €, choosing any facet v € § which
spans [E as affine subspace, if we set

(M, M, mE) = (19, L5, . ),

then the splitting (ME, ME, mE,mI*E) does not depends on the choice of v, [10, 3.4.7].

4.1.6 Cuspidal local system and relative Weyl group

Let (M, My, m,m,) € M %, Assume that there is an M-equivariant cuspidal local system
% on a nilpotent orbit O C m such that Oy = O Nmy # (. Suppose that the sextuple
(= (M, My,m,m,, O,%) € T(gq) be an admissible system cf. §3.2.3. In particular, € |u,
is an irreducible My-equivariant local system on O4. Let (e, h, f) be an sly-triple with
e € Og, h € mpand f € m_4 and let p € X, (Gp) be given by the Jacobson-Morosov
theorem so that ¢ acts on e with weight 2. Let M, = M x Cy. Consider the obvious
inclusion Zy(e) < Zu,(e), which induces m (Zy(€)) — mo (Zar,(€)). The last map is
an isomorphism, since
Zn(e) x C° = Zy, cx ()

(9,9) = (9¢(q),q)

and since 7y (Zyr(e) x C*) = my (Zar(e)). It follows that the M-equivariant local system
% is naturally equipped with an M -equivariant structure. Likewise, € |, is equipped
with an Mg-equivariant structure. We fix such a system for the rest of the article.

According to [33, 3.1(d)], there exists v € § such that m, = . Let EM € € be the
relevant affine subspace spanned by v and let Wran C W be the subgroup which fixes EM
pointwise.

The affine root hyperplanes {H,} ¢ induce, by intersection with EM a collection of
relative affine root hyperplanes

{HOEM;H € 9, HNEM is a hyperplane in EM} C €.
One defines similarly the collection of EM-facets F(EM) C F, as well as EM-alcoves
2 (EM) C § and relevant E¥-subspaces ¢ (EM) C €.

Let I C A be the type of v so that v € §;. Let k € A be a alcove such that v = 0;k.

Let J € A be a proper subset containing I. We denote 0 = d;k € § (EM ), which
is a sub-facet of v. Consider the datum of graded pseudo-Levi (L7, LZ,1?,17) such that
W (L?,T) = W = Staby (c). Moreover, since (M, My, m,m,) = (L*, L§, ", X)), M is a
Levi subgroup of L and there is a nilpotent M-orbit O C m which supports a cuspidal

local system ¢ and an isomorphism. Let wy" € Wy« be the longest element. A theorem
of Lusztig [30, 9.2], [31, 2.5] asserts that wy " stabilises the Levi subgroup M, the nilpotent

orbit O C m as well as the cuspidal local system on €. In particular, wyj € Ny (Wgn).

Under the canonical isomorphism (W, A%) = (W, A), wy" is sent to wy. We see that
wy € Nyy (Wy). Therefore, the results of §B.1 is applicable to (W, A) and I. In particular,
Theorem B.9 yields the following results.

Theorem 4.1. The following assertions hold:
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(i) In the Coxeter system (W, A), the shortest coset representatives for the elements of
the quotient Ny, (Wr) /Wy form a subgroup W of Ny, (Wr), which maps isomor-
phically onto Ny, (Wr) /W under the quotient map. Moreover, if we set

L[ FHAND =1
B {wéU{S}w{)er;seA\I} if #(A\T) > 1,

then <W,A> forms a Coxeter system.

(ii) Let {: W — N denote the length function on (W,A) Then for any elements
w,y € W, we have

C(w) +L(y) = L(wy) if and only if (w) + U(y) = {(wy).
O
The canonical relative affine Weyl group is defined to be the Coxeter system
(W, A) of the above theorem.

Then Theorem B.11 in the present situation can be restated as
Theorem 4.2. The EM-alcoves in 2 (EM) C § are of the same type I. [
This theorem justifies the notation I without x involved. Hereafter, we will denote
= = A(EM).

The non-canonical relative Weyl group is defined to be W = Ny, (EM ) /Wgar, where
Ny (IEM ) is the subgroup of W which preserves EM. We choose an alcove x € 2 such
that d;x = v. The canonical isomorphism (W, A) = (W, A®) induces W = W. Tt is easy
to see that this isomorphism does not depend on the choice of k. We denote by AV CW
the image of A under this isomorphism. Similarly, for each v € =, we the affine subspace
E” C A spanned by v coincides with EM and for each pair v,1/ € Z, exists w € Ny (EM)
such that wr = v/, which induces an isomorphism E” = E*". Let E be the inverse limit of
these E”.

4.1.7 Relative position
Proposition 4.3. The following assertions hold:

(i) There is a canonical left WW-action on §p, which commutes with the left W-action
and induces a left W-action on A(EM).

(ii) There is a canonical inclusion W — Wi \W /W
(7ii) There is a canonical bijection
WA (81 x §1) EWI\W /Wy
which induces a bijection

W\ (A (EM) x A (EM)) 2 W.
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Proof. For each w € W and each k € 2, we denote by w" € W the image of w under the
canonical isomorphism (W, A) = (W, A*) ¢f. §4.1.3. We define the left action of W on
the set of A-alcoves 2 by
Wx2A—2A
(w, k) = (W) k.

This action descends in a unique way via the boundary map 0y : ) — §, giving a right
Wh-action on §;. Obviously, the subgroup Ny, (W) stabilises the subset 2 (EM ) C 3
and induces a right action of W 2 Ny, (W) /W, on 2 (EM). This proves (i).

Choosing any k € 2, we define

Wi\W/Wr — WA\ (31 x §1)

4.4
W[U)W[ —~ W (81145, w“(%ﬁ) . ( )

It is a bijection' and does not depend on the choice of k. Now, suppose that v = Jrx
is in A(EM). By definition, if w € W, then w normalises Wy, so w"® € W preserves EM.
From the fact that

AEM) = {peFr; pcEMY},
it follows that w™'v € A (EM ) Therefore the bijection (4.4) restricts to an injection

W — W\ (A (EM) x 2 (EM))

It is also surjective since (W,A) = (W,A¥) and that the W-action on A (EM) is
transitive c¢f. Theorem 4.2.
This proves (ii) and (iii).
O

Definition 4.5. For any two elements v,v' € §y, the image of (v,V') € F1 X §1 under

(44

S x 8 — W\ (Fr x§r) = — W/W

is called the relative position of v and v'. The relative position is called good if it is
in the image of the inclusion W — Wi \W /Wy, bad otherwise.

The following criterion is immediate.

Lemma 4.6. Two elements v,V € 1 are in good relative position if and only if v and V'
span the same affine subspaces of A. ]

4.2 Steinberg type varieties

We keep the assumptions of the previous sections. In particular, there is a sextuple
(M, My, m,m,,0,%) cf. §4.1.6, a co-character 6 € X, (Tad) which lifts the Z/m-grading
on gand x =60/m € A.

In addition, we fix henceforth a non-zero integer d € Z \ {0} and a sign € € {1, —1}.

Notice that there is a bijection Wy \W — F given by w + w"0;x, which depends on k.
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4.2.1 Varieties of pairs of flags

We denote = = Ny, (EM)\Z. We will denote by v the image of v in Z for each v € =.
Since the left W-action of Proposition 4.3(i) on = commutes with the left Wy-action, we
get a canonical left WW-action on =.

For v,/ € =, we set
X = (Go/Fy) % (Go/ R ).
Then, Gy acts on X vV by diagonal left translation.
Proposition 4.7. Up to canonical isomorphism, The Gy-variety XvV" depends only on

the classes v,V € Z.

Proof. Indeed, if y,3' € Wy, choosing a lifting 9,7 € Ng,(T) of y and 3, we have a
Go-equivariant isomorphism

Xl/,l// o~ Xyl/,y’z/
(gPo” 9 ) = (gy’lpo” 9T ) )

which is canonical. O]

4.2.2 Orbits and double cosets

Let v,v' € Z. The orbits of the Gg-action on X" are identified with the orbits of diagonal
left translation of Wy on (Wx / WXJE]W) X (WX / WX’EA{), where Wy gyt = Wi N Wiar. There

is a canonical inclusion
(Wi/Wygnt) x (We/Wypn) < E X E
(u,v) = (uv,vv'),
which induces a map

Go\X"" = W\ (Wy/Wign) x (We/Wygn)) = W\ (Fr x 1) ZW\W/W;

which we denote by II,,,/ : Go\X""" — W \W/W;. The map IT,,,, depends only on
the Wy-orbits v,/ € Z in the sense of proposition Proposition 4.7.

For w € W we will denote [w] = WrwW; € Wi \W /W, the double coset containing
w.

Lemma 4.8. Let [w] € W/ \W/W.

(i) The fibre 11}, [w] is finite and the union of Gy-orbits UOeH;i,[w] O s locally closed.

(i) Ifw € W, then # (H;ll,, [w]) < 1. Moreover, # (H;’i, [w]) =1 if and only if v = wv/'.

Proof. The assertion (i) is standard and follows from the Bruhat decomposition.

Suppose now that w € W and v,/ € = such that v = wr/. We may assume that
v = wr/ since X** and 11, ,» depends only on the Wy-orbits v and /. Denote w” € W"
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the image of w under the isomorphism (W, A) = (W”, A”) so that v/ = w"v cf. §4.1.7.
It suffices to show that the map
@ Wi\ (Wy/Wyepa) x (Wy/Wygar)) — W\ (F1 % 1)
Wy - (u, ") = W (uv, v'w”v)
is injective over W - (v, w"v) € W\ (E x E). Assume we have u,u’,v,v" € Wy such that
(UWXEM, u’ WX,EM) and (’UWXEM, v WXJEM) are sent to W - (v, w"v), in other words
W (uv, v'w’v) =W - (v,w"v) =W - (vv,v'w"v).
We shall prove that Wy - (uv, v'w"v) = Wy - (v, v'w"v).
Indeed, as
W (vwv)=W - (w,dwv)=W - (v,u 'vwv)
there exists ¢ € W, = W, such that qu’v = u~v'w”v, or equivalently
(W) ¢ T w” e W,
Since w” normalises W,,, we obtain ¢ 'u~'u’ € W, and hence u~'u' € W, NW,. Similarly,
we have v~1v' € W, N Wy. Therefore v'~tvu=tu' € W, N Wy. Finally, we conclude that

Wy - (ur,u'v') = Wer 0w u (v, u™ V') = Wy - (0™ 0'u " uw, v™10')

=Wy (v,o™ V) = Wy - (or,0'V).

Recall that there is a canonical bijection PY\Go/PY = Go\X""'.

Proposition 4.9. Let Q € PY\Go/PY be a double coset and let Og € Go\X"" be the
corresponding orbit. Then 11,,, (Oq) € W if and only if for any g € Q, the following
natural inclusion

(pyN NAd, ple> / (usz N Ad, uj,,\;) — Ad, pY/ Adguf
is an isomorphism for each N € Z.

Proof. Let g € . According to [3%, 5.1], there is a splitting [, of p¥ and a splitting [, of
Ad, p”’ such that L§ = exp (Ip) and L = exp (I})) contain a common maximal torus 7" of
Go.

Let ¢ € Gy be such that ¢'T"g’"' = T. Then Ad, p? and Ad,, p* are in Pr and there
are unique y, w € W such that Ady p? = p¥¥ and Ady, p”’ = py¥”. From the definition of
I1, ./, we see that II,,/ (Oq) = [w]. By Lemma 4.6, [w] € W if and only if E"Y = E"¥".
Looking at the Levi decomposition p2¥ = [V¥ @ ul¥ and p¥" = [[Y* @ ul¥", we see that
E"Y = E¥¥" if and only if

(P N PN / (uy Nuy™) — py" /uy™ (4.10)
is an isomorphism for all N € Z. Taking into account the definitions Ad, p? = p¥¥ and

Ady, p¥" = pt¥", the condition that the map (4.10) being an isomorphism is equivalent to
that the map

(Ady p N1 Adyy %) / (Ady % N Adyrg 0 ) — Adg P/ Adgy (4.11)

being an isomorphism for all N € Z. We obtain the desired equivalent condition by
applying Ad, -1 to the map (4.11). O
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Remark 4.12. In the terminologies of [75, 5.2], if a double coset Q € PY\Go/PY" satisfies
the condition of Proposition 4.9, it is called good. It is called bad if otherwise.

4.2.3 Stratification of X"

We define for each w € W and each v,/ € =

x= ) oca

OEH;}}, [w]

to be a locally closed subset of X** equipped with the reduced subscheme structure.
Obviously, X»"" = X2 if [w] = [w'], so the variety X% does not depend on the
representative w for the class [w].

Proposition 4.13. For each v, € Z and each w € W such that wv' = v, there is an
isomorphism of Gy-schemes

v wly = vow ty = v,/

g-(Prory) — (9Pr.or™)

Proof. By Lemma 4.8, X' is a Gg-orbit. The proposition results from the fact that

Stabg, (ePY,ePyY) = Py N By .

4.2.4 Induction of cuspidal local system

Recall that we have for each v € Z a Levi decomposition of spiral p¥ = m, @ u, nilpotent
M-orbit O C m and cuspidal local system % on O. By restriction, the local system € |o,
is My-equivariant.

For each v € =, we introduce a variety
Pl/
TV =Gy x'0 (Og x uy).

It is a smooth variety equipped with an action of Gy ,. By induction of groups, there is
a Gp-equivariant local system

(f = GQ XP(SI (cg ‘Od &Q[)

on T”. Let o : TV — g4 be the natural morphism given by the adjoint action of Gjy.

v,V € = are suc at v =/, then there is a Gy-equivariant canonical isomorphism
Ifvi e= h that ', then there is a Gy ivariant ical i hi
Tv = T which identifies o with o and the sheaf € on 7% andbthe sheaf € on 7.

We define the Lusztig sheaf for the relative alcove v € Z to be I" = o} IC(%¥) €
D’g;g (gq4). For the same reason as in the last paragraph, I” depends only on the Wi-orbit
v.
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Proposition 4.14. For v € =, the following statements hold

(i) If € = d/|d|, then the complex 1" is supported on the nilpotent cone, i.e. 1" =
' IC(%) € DI’Gg (g5")

(ii) We have 1" = @, ,"HI"[—k] and each factor PHFI” is a semi-simple perverse
sheaves.

Proof. The (i) follows from [38, 7.1(a)]. The (ii) follows from the Beilinson-Bernstein—

Deligne-Gabber decomposition theorem and that the purity of IC(%) [37, 1.4].
O

4.2.5 Steinberg type varieties

For v,/ € E, we set

ZUV 7-1/ ng 7-1/
and we denote ¢, : Z"¥' — T¥ and ¢, : 2% — T the canonical projections.

For the same reason as in §4.2.4, this variety is independent of the choice of v and v/
in their Wy-conjugacy classes.

We have a G -equivariant local system on Z**'
A = Hom (qscﬁ', q'ff) =% <‘€ X D%) ,
where s = (q1, q2) : 2% — T¥ x T*. We shall simply write .# = £
There is a canonical G 4-equivariant map which forgets the Lie algebra components
zv . Xu,u’7

which depends only on the Wy-orbits v and /. For w € W, we denote Zj;’”/ the pre-image
of X" under the above map.

Proposition 4.15. For v,/ € = and w € W such that wv' = v, there is an equivariant
isomorphism of Gy-schemes

(=23 o

v 1y -1 —1 /
Go x B (0 x (wy nuy ™)) —= Zpe =z

(g9,7) ¢ > ((9,7), (9,7))

4.3 Convolution algebra

We keep the assumptions of §.2. In particular, there is an admissible system (M, My, m,m,, 0, %)
and the cuspidal local system % induces a sheaf € on T" for each v € =.
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4.3.1 Convolution product

Let v,/ € 2. We have two projections ¢; : Z*¥ — T¥ and ¢qo : 2" — TV ¢f §4.2.5.
We define

H = Homyg, (qg(f, qi%) .

It is isomorphic to Hg, (Z”v”/, H ) in a natural way. For the same reason as in §4.2.4, the

definition of H*"" is independent of v and ¢/ in their Wi-conjugacy class.

By the formalism of [36] and [15], for v, v/, V" € = there is a convolution morphism
HV’VI ® HZ/’V” . HV’VN

The Hg, -module Hg, (Z”’”l, H ) is isomorphic by Verdier duality to the extension space
Horn’GQ (I”/, I”) and the convolution product is identified with the Yoneda product.

R Wq\ recall the construction of loc. c¢it. Let O C ¥ be the closure of O in I¥ and let
Og4 = ONY. Since the orbit O is distinguished, O, must be open dense in [} ¢f. [37, 4.4a].

This implies that (A)Z is either empty or equal to [}, We set T = Gy xT0 <6d X u;)
and 2 = Tv X gq TY. We denote u” : T < T” and u* : Z*/ « Z" the
open embeddings. We remark that 7% is smooth and is proper over gz, We denote
G2 — T g 2 — TV G 29— TV and @, : 27 — T the canonical
projections.

By the cleaness of %, we have u!”% = w%. We will thus identify € with its
direct image on TV without any confusion. Define # = Hom (qé‘(f, qi%) on Z**" and

o~

A = Hom <Zf2"‘€, ’qj%) on Z"'. We have

—

H = Hom (ngu}’%, Zj’{f) = Hom (u.”’”,q;“f, fof)
&~ uZ”’/ Hom <q;<5', u”’”/!ffl‘f> &~ ui”/ Hom (q;%, qiu”/*‘f> &~ u:’”/%.

Therefore

H —HY, (z%”,;{) ~ Hy, (2”;?) .

. /
The cleaness assures that we can safely work on the non-proper version 7", Z*" and

H

Now we describe the convolution product. Given v, v/, " € =, we consider the following
diagram

Zzz,l/ % ZI/,V" ¢ 5 Zl/,z/ X o Zu’,z/’ I ZV’V”

| I ;

(TI/ % TV’) % (7’1/’ % 7‘1/’) 2l TV x TV’ % 7’1/" u TV x 7‘1/”
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There is a sequence of maps

b (2 ) omg, (27, ) — Wy, (27 x 27 ¢ (¢ RDERE R DT ) )
Lt (id—7.7") Hy, (ZV’”I 5 2V (cg X <chz ® Cg> X ch>>

=y, (2 %70 270 (48 (D% 0 ¢) WDF) )

1, (2 xpw 20 (Y RDQRDE ) ) 21y, (2 X7 2 7' (¢ DY) )
~ Hy, (Z””" X 2V ,A%f) — (Z” %/) .

Yl

The convolution product is then defined to be the composite H**' @ HY' " — H"".

For any G-stable closed subschemes V C Z*' V' C 2" and V" C Z""" we define
similarly the convolution product so that the folloing diagram commutes

& (Viivo) @ Hy, (V/, it ) —— HE, (V" i)

! L

Hl/,l/ ® %V’,l/” y Hl/,z/’

where the vertical arrows are given by adjunction co-units 4yi}, — id, etc. Henceforth,
we will simply denote ¢ for i}, ¢, for any such closed immersion iy

4.3.2 Polynomial action

For each v € E, let* A = Z° (L") = Z° (M") be the neutral component of the centre of
L. We have E” = X, (A”)q. We define 8” to be the algebra of Q,-valued polynomial
functions on E”, so that 8* = H%,. If v,/ € Z, then the canonical isomorphism E = EV

induces a canonical isomorphism S” = §¥'. We define equally the canonical object S such
that S = S” for all v € E.

Lemma 4.16. For any v,V € Z, the equivariant cohomology group H*"' has a (S*,8"')-
bimodule structure, which makes the convolution product H*"' x H*V'" —s H"" o S -
bilinear map of (S¥,8"")-bimodules.

More generally, given any Gy q-invariant subvariety iy @ V. — Z, the cohomology
He, (V. i, ¢) has a structure of (8”,S"")-bimodules.

Proof. We will only prove the statement for #**'. By the induction principle of equivariant
cohomology, there are isomorphisms

H&Q,q (Tyﬂaﬁ) = ;\/[07,1 (OdJQZ) = étabL&q(o)'

2Since L = M and E¥ = EM for all v € Z, the definition of A” does not depends on v. However, we
identify E¥ and A" for different v € = via non-trivial isomorphisms.
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where o is any point in the L§-orbit O4. By the Jacobson-Morosov theorem, there exists

a cocharacter ¢ € X, (Lg) which acts on o by weight 2. Hence there is a morphism
A x Cf — Gy x Cf
D (4.17)
(g, u) = (gp(u), u).

whose image is a maximal reductive subgroup of Stabry (o), [3], 2.3]. Thus we obtain
an isomorphisms of rings

S” ® QE [U] = H;lz = Zv'gq (TV7 66)7

Since the orbit Oy is distinguished, the cocharacter ¢ acts on [} by weight 2. Hence by the
formula (4.17), the torus C* of left hand side acts trivially on [}j. Substituting u + —d/m

into the left-hand side, we obtain S¥ = H'GO(T”,GE), which acts on H" by cup product
via the pull-back: -

¢i : Hg, (T%, Q) — HE, (27, Q)
with the map ¢, as defined in §4.2.5. Similarly, we have S = H, (T”I,Qe) which acts

0

via g3. Thus, the tensor product 8" ®p,, S” acts on HZ, (Z,) via the cup product.
L]

Remark 4.18. The subtil point of this S”-action is that in the isomorphism 4.17, the
C, -part is not the identity map. In other words, the quotient map HZ;M(’T”,QZ) —

HE;O(T”,QZ) implicit in the proof is not simply forgetting the C; -part of the equivariance.

4.3.3 Cohomology of components ZZ;V/
We define for v,/ € Z and [w] € W, \W /W,
MY = He, (z;w’, Wﬁ/) ,
where i, : 2% — Z"" is the inclusion. By the construction of Lemma 4.16, H%"

comes equipped with an (S8”,8")-bimodule structure.

Proposition 4.19. Let v, € E and [w] € W, \W/W;.

(iv) If wv' # v, then HYY = 0.
(v) If the relative position [w] is bad, i.e. [w] ¢ W, then H%” = 0.
(vi) If [w] is good, i.e. [w] € W, and if w' = v, then H%" is a free of rank 1 as left
graded S”-module and as right graded S*' -module, vanishing in odd degrees.
Proof. If wv' # v, then X% = () and Z%" = () so HZY = 0.

We turn to (ii). Suppose that [w] ¢ W. Recall that there is a left Gg-action on X"
with a finite number of orbits. Let

xn = | X
Q
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be a decomposition into Gy orbits, where Q is taken over a finite subset of PY\Go/PY .
We define Z5 C 2" to be the pre-image of Xy under the projection Z** —s X'
Notice that all double cosets €2 that appear in the decomposition are bad in the sense

of [38, 5.2] since [w] is not in W.

Let
pu = (Oa X uy) xg, T"

so that Z»" = Gy x §%'. Moreover, for each 2 if we denote
Pua = (O x uy) xg, (Q x Fo <Od X uZ’)) C p

then there is a diagram of cartesian squares

/

y r q2

ik

T
pg s TV > Od

Let i : Zq < ZY" be the inclusion. Now
Go (Zg,i!%/) = Hom'Gg (q;‘(f, q'ff) = Hom&g (ql!qg%,‘f)
=~ Homp, (T*quq;‘f, r*%”) >~ Homp, (q’ur'*q;‘f, r*%) .

Taking into account the cuspidality of 4" and the fact that €2 is bad, ¢f. Proposition 4.9
and Remark 4.12, it is shown in [38, 5.3] that ¢},7"*¢;% = 0. Thus Hg, (ZQ, i!%) =0 for
each Q). By an argument of long exact sequence of cohomoloy, we conclude that

Mo = H, (zw %) ~0.

This proves (ii).

We turn to (iii). Suppose that wr' = v with w € W. Using the description Proposi-
tion 4.15, by the induction property of equivariant cohomology, we see that

HLY = H, (GQ S el (od N ug) %) =HS (od SR AITI % yodxu;m;,)
= H7y (Oa, 2 |o,)-
From the definition of J#", we see that
K |o,= Hom (€,%) {2 dim Go/PY N B — 2dimu?; N ug’]

According to a result of Lusztig [37, 4.4(a)], the subscheme O4 C [} is the unique open
My-orbit whenever it is non-empty, whence up to even shift of cohomological degree, there
are isomorphisms

H},, (Og, 2°) = Hy, (Og, Hom (¢,%)) = étabMO(o) ({o},€; ®%6,) =S".

The last isomorphism is due to the fact that the fibre %, in o is a irreducible representation
of my (Stabyy, (0)). Similarly, H%” =S¥, cf. §4.1.6. See also [31, 4.2].
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By construction, the S”-action is the same as the cup product on Hj, (O4, %)
Therefore ’HZ;’/ is free left graded SY-module of rank 1. Applying Proposition 4.15 to
v = wv/ and reasoning similarly with the transposed Z”* = Z::)’_”/l, we see that H%"' is
free right graded 8*'-module of rank 1. It clearly vanishes in odd degrees. This complete
the proof.

]

Remark 4.20. The special feature of convolution algebra with a cuspidal local system
as coefficient is that not every Bruhat cell on the partial flag variety contributes to the
cohomology, but only those corresponding to the subset W C W \W /W, do.

4.3.4 Filtration by length

Recall that for each v, € =, the cohomology 7—[;’”’ = Hg, (Z;j;”’,,/“i’ ) is equipped with
an (8”,8")-bimodule structure cf. §4.3.2.

Let 7W!T C W be the set of representatives of minimal length of the double quotient
[w] € W \W/W;. Note that W C ‘W!. We introduce a partial order <, on W;\W/W;
in the following way: for y,y’ € W/, the relation [y] <, [¢/] holds if and only if £(y) < £(3/)
or y = y'. Similarly, the relation [y] <, [¢/] means ¢(y) < £(y/).

For each v,/ € =, we filter the schemes X**, Z**" and the convolution algebras
accordingly. Note that by Bruhat decomposition, for each pair of elements w,y € W, if
the variety X% lies in the closure of X', then w <, y. For [w] € W \W/W;. We set

vy v v v, v v v, v vy v,
xuy=\J arr, zun=\J 2y, XL =xuI\AyY, 2Ly =2ii\ 20

yelwl yelwl
y<pw y<ew

Those are reduced closed subschemes of X** and Z*'.

For each w € W, corresponding to the triplet 2% C Zg;’; D Z¥¥' there is a long
exact sequence of graded $”-S*'-bimodules

Hy, (zz;’,;g/) — 1, (zg;’,%) — H, ( z0v %/) 9 gz < 0 %>

By Proposition 4.19, the cohomology group Hg, (ZZ’”/,% ) vanishes in odd degrees.
Therefore, by induction on w, we have @ = 0 in the above sequence. This yields the
following short exact sequence

0 — Wy, (22,0) — Wy, (220, 0) — Wy, (207,0) — 0
We define then
M =g, (20 0), e =g, (290).
By induction on w, we see that the natural morphism ’Hgful — 1" is injective. Hence
g;’ is an (8”,8") sub-bimodule of H**". The sub-quotient H;”Ul JH% is isomorphic to

the bimodule H%”'. We denote by HY" = @, ey HY” the associated graded (S”,8"')-
bimodule.
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4.3.5 Convolution product on graded pieces

For iy € W, recall that there are two lengths attached to y: ¢(y) and Z(y) The former is
the length of the element y in the full affine Coxeter system (W, S), whereas the latter

is the length of y in the relative Coxeter system (W, g) The Theorem 4.1 implies that
((yw) = £(y) + €(w) if and only if {(yw) = ((y) + {(w) for any y,w € W.

Lemma 4.21. The convolution product on H*"' induces a product on the associated graded
(S¥,8")-bimodules HZ' .

Proof. Let w,w’ € W. We suppose that f(ww’) = f(w) + (w'), so that {(ww') =
l(w) + £(w'). For any element y € Y, let

Fy = |_| W]y/W[ - w
Y <oy
We then have C,, - Coy € Clyur-

Let v € = and denote v/ = w™

v,V v "
B g ZU oy 2

Ly, V" = w'='/'. The image of the convolution

lies in the closed subscheme Zg’fuzu,. It follows that the restriction of the convolution
product of cohomology cf. §4.3.1

Hl;"/ ® Hlil’l//// HV’V”
<w <w

factorises through the sub-bimodule #%" , C H"*". It follows that the convolution

<ww’

product respects the filtration by length, so it induces a product on the graded pieces. [

With , the following lemma of transversality follows easily from the Bruhat decompo-
sition.

Lemma 4.22. Given v € Z, w,w' € W such that {(ww') = {(w) + {(w'), let v/ = w™ v

and V"' = w'W'.

i) The projection Z"" X, ZV'"V" —s Z"" induces an isomorphism T : Z%7 X1
T Ko 2y X
Z = 2.
i) The convolution product on graded pieces H"Y' & H — HYY agrees with the
g w w ww g
Gysin map of the closed embedding

Yyl

11 12 Yyl /
Zovle gu s B s Zh o 2l

ww’

(iii) The convolution product
Hot @H, — Ho

ww’

18 surjective.

(iv) The polynomial actions cf. §4.3.2 yields an isomorphism of algebras S = HY".

Proof. The statement (i) follows easily from the equivalence I(yw) = I(y) + l(w) <
l(yw) = l(y) + l(w) and the Bruhat decomposition. The statement (ii) and (iii) are
consequences of the “transversality” result (i), ¢f. [19, 7.6.12]. The statement (ii) follows

from (iii) and Proposition 4.19 (iii). O
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4.3.6 Completion

Let my C Hg,, denote the graded maximal ideal (positive-degree part) and let H” be the
mg-adic completion, equipped with the mg-adic topology. Define the following topological
vector spaces
A VA4 A N A % A
H =H ®HZ;Q H , ,ng = /ng (X)H'GQ H ,
- @A, A= [[ DR
V'EE vEE V/EE VEE

(Recall that H**" depends only on the orbits v,/ € Z up to canonical isomorphism, cf.
§4.3.1. In the category of topological abelian groups, the topology on the direct sum is
the weak topology of the union of the finite sums, whereas the topology on the finite sum
coincides with the product topology since the category is Z-linear.)

Since the convolution product H*' x H'*»"' —s H"" (§4.3.1) is Hg,-linear, the
completion at mg yields a continuous linear map

7:21} A ﬁyl U ﬁy v
) X ’ g ’ .

Letting vary v, v/, V" € Z, it induces on H a structure of topological ring.

(recall that I" depends only on the class v € Z) with kernel being topologically
nilpotent and closed.

Definition 4.23. A module M of H is called smooth if the action of H on M is
continuous when M is equipped with the discrete topology. Equivalently, M is smooth if
for each m € M, the annihilator

ann(m) = {h € H, ; hm =0}
18 open in H.
Let H-mod™ denote the category of smooth H-modules. Recall the isomorphism
H = Hom&g(l”', I"). The following fact is standard about extension algebras.

Lemma 4.24. There is a canonical bijection between the set of isomorphic classes of
simple objects of H-mod®™ and the set of simple constituents of 692@ Dz PHFT .

See [53, 6.1] for a proof. O

4.3.7 Spectra of the polynomial actions

Let v € =. We consider the folloing ring map
QU 8 2 8V 2 HIY oy PV,

The first map is the canonical isomorphism cf. §.3.2, followed by the isomorphism Lemma 4.22 (iv),
the obvious inclusion, the my-adic completion.

Let x* € EM be the image of the orthogonal projection (with respect to the Killing
form) of x € A onto EM and let x, be the image of x* under the canonical isomorphism
EM =FE"~E cf §4.1.6.

The following results describe the spectrum of the S-actions.
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Lemma 4.25 ([10, 4.3.4]). For any v € Z, the map ® identify ’}QZ”’/ with the completion
of S at x, € E.

4.4 Morphism from the degenerate double affine Hecke
algebra

Following the strategy of [73] and [10], we will construct a morphism H —s # from the
degenerate double affine Hecke algebra (ADAHA) to the convolution algebra.

4.4.1 Degenerate double affine Hecke algebra

In order to describe the degenerate double affine Hecke algebra, we need to define an affine
root system on the affine space E §4.1.6. The restriction of the affine root system S to the
subspace EM yield an affine root system S’ on E¥, which may not be reduced. We define
S to be an reduced affine root system on EM isogeneous to S’ such that S is isomorphic
to the affinisation of some finite root system R. The unbased affine root system (EM,S)
induces a based® affine root system (E, S, A).

For each a € A, there is a positive integer ¢, > 2 introduced in [10, 2.4.8]. This
number is described in [35, §7]. The constants ¢, need to be renormalised according to
the isogeny that we have chosen for S. In the case of principal block (ie. M =T is a
maximal torus), we have ¢, = 2 for each a € A. In the case where R is of type B/C,
we assume R to be of type BC, so that ¢, = ¢, whenever a,b € A are conjugate by the

extended Weyl group.

Define the degenerate double affine Hecke algebra attached to the admissible system
¢ as the one defined in §1.2 with the affine root system (E, S’) and with parameters

{(d/2m)ca} e 5
More explicitely, the dDAHA is defined to be H = CW ® S with the following

commutation laws:

S f () 5 = (af2m)e, .2 g A

where §, € W is the orthogonal reflection on E with respect to the relative affine
hyperplane {a = 0} on E.

Remark 4.26. The class of degenerate DAHAs which can be constructed in the present
setting is limited for non-simply laced root systems. Since the constants c, are certain
integers determined by the cuspidal pair (O,€), only certain integral proportions between
parameters can appear.

3 Any choice of v € Z corresponds to a choice of base A¥ € §’. The inverse limit E = 'mue: EM then

eliminates the non-canonicity of the choice of v and gives a base A.
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4.4.2 Graded affine Hecke algebras

Let J € A be a proper subset containing I cf. §4.1.6. We have a parabolic Coxeter subsys-
tem (WJ, j) of the canonical relative Weyl group <W, A), where J = {5,; a € A\ J}

¢f. §B.1.3. We define H to the subalgebra of H generated by S and s, for a € A. In the
case where J = I, we recover the polynomial algebra

H; =S.

Define =; = 9,2 C §;. Let 0 € Z;. The tuple (H, Hy,b,b.) = (L%, L5, 1°,17) is a
graded pseudo-Levi subgroup of G ¢f. §4.1.4. We define §7 = {v € §;;0,v = o}. Then
the stabiliser Staby (o) acts transitively on 9.

Each v € §9 gives rise to a parabolic subgroup P°=" C H whose Lie algebra p?=" is Z-
graded and that p?=" = p“Nh,,. We define also uZ<" = u“Nh,, so that U= = exp (u"g”) is
the unipotent radical of P7<”. Notice that we have a Levi decomposition p?<" = [V HuI="
which respects the gradings.

Choose any v € §7 N E so that I¥ = m. Let ho = H x™7=" (O x u”=") and let
a : ho — b be the natural morphism defined by the adjoint action. As before, we
denote H, = H x Cj. The group H, acts on h in a natural way. The M, -equivariant

o<v

cuspidal local system ¢ on O C p induces a Hg-equivariant local system %€ on

ho. Put ho = ho Xbo ho. There is a complex # = Hom <q§$f,qi§f> on ho, where
¢1.¢> : ho — Bo are the canonical projections. The cohomology Hy, (60,<%/>, being

isomorphic to Hom;{q (a*‘f, oz*‘g>, becomes a ring with the Yoneda product.

Theorem 4.27 (8.11,[36]; 4.4.5,[10]). There is a canonical isomorphism of algebras

HJ = H}]q <h07<%/> |u:d/2m .

4.4.3 Localisation of graded affine Hecke algebras

The pseudo-Levi subalgebra § arising from o € Z; is Z-graded. Let Cgeg = C* be the
torus which acts on b,, by weight 2n for each n € Z. Define a cocharacter

L:C* — C*¥

R A (t,t7).

Then ¢ acts on the variety h and all related geometric objects. Fixed points of ¢+ are given
by
()" =ha, H'=H,.

We apply a version of the equivariant localisation with respect to ¢ on the variety ho.

We will denote =, = =N FJ and Z, the image of =, in =. For each v,/ € Z,, we set

23 = (1 0457 s (155 (0045
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It is a variant of the Steinberg-type varieties Z**'. Following the same procedure as
in §4.3.1, we define a Hy x CX-equivariant complex #j on Z;” as well as a convolution

product on the cohomology Hy; (ZZ;V/, ,%/H)

Lemma 4.28. If i : 6‘0 — bo denote the inclusion of fized points, then there is a
canonical isomorphism of algebras

@ u, (ZH%H> ~ H3, <h02%>

v,V EE,

Proof. The (-fixed points of f)b can be described as follows: for each v € §7, the Levi
subgroups M C H and LY C H are H-conjugate; let O” C [¥ denote the image of O C m
via under this conjugation and O} = O” N [}}; then

bo =[] (Hox" T (0f xug=) ) i, (Ho x5 (0 xug=")).
v, €Wx\§7
It is shown in the proof of [10, 4.5.4] that O% = () if v ¢ Z. Similarly O} = if v/ ¢ Z.
By the cleaness of € (§4.3.1), the restriction of cohomlogy yields an isomorphism
D sy, (25 ) =1y, (i)

vV eE,

]

The cocharacter + : C* — Hy 4 yields a closed point ¢+ € Spec(Hg, q). The localisation
theorem (c¢f. Evens-Mirkovi¢ [15, 4.10]) states that we have an isomorphism of algebras
after the completion of equivariant cohomology groups at the maximal ideal m, 2, C Hy, %

= Hy,, (65 00) (4.29)

m,/2m

Hy, (50, «/"5/>A

m,/2m

Combining Theorem 4.27, Lemma 4.28 and (4.29), we obtain

. . N
Hy 2y, (bos #) hicaom— i, (B0, %) Jucasam

m,/2m

e @ 1, (2 5

v W'eE,

N

A (4.30)
)

mo

~Hy, (66, z%)

m,/2m

The composition is injective and the image is dense in the my-adic topology on the last
term.

4.4.4 Map from H; to H

We introduce intermediate morphisms which relate ZEV/ ¢f §4.4.3 and 2" cf. §4.3.1
and deduce a ring homomorphism on the convolution algebras.

We fix 0 € =;. For v,/ € =,, we put

25— (B %P (04 x 1)) Xg, <P5’ it (od x ug’)> .
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Lemma 4.31. For any v,V € =,, there is a diagram of canonical morphisms
I/,I// ~]/,]/’ 7 ) /
ZH «p— ZH — ZV¥
in which
(1) p is an affine fibration with fibers isomorphic to ug, whereas

(ii) i is a closed immersion, which factorises as

Sv,v! 7 v, < v,/
ZH U[’UJ]GW} \Wy /Wy Zw Z

m %T

po Sv
GQ X0 ZH

Proof. Since the adjoint action of P}y on Oy x (uj/uj) factorises through the quotient
PY — PYJUS = PY=Y cf. §4.4.2, we have the isomorphisms

P§ x5 (O x (5 /u3)) = (P JUZ) X515 (00 x (/) = Hy %70 (0 x u5™)
which fits into the following sequence
P B (Og x wy) 2O po B (0 % (uf/ug)) = Hy x50 (Gd x uf”)

in which the first morphism is a locally trivial fibration with fibers ug. Substituting these
morphisms into the definition of Z7" yields morphism p. The morphism i comes from
the inclusion P§ < Gy. This proves (i).

The statement (ii) is due to the fact that the image of the inclusion of Gy-schemes
Go <" ((Pg/PY) < (B /RY)) — (Go/PY) % (Go/ B (4.32)

identified with Uy, /wy X .

Convolution products can be defined similarly on ZZ;”/ and on ZZ;'/.

Proposition 4.33. The morphisms ¢ and p considered in Lemma 4.51 induce maps
H;{() (Z}/I,V/’%H> Y H;D(j’ (2}1;1/”{%}]{) s HZ;Q <ZV7V”7(%/) ,

which commute with the convolution products.
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Proof. We have a commutative diagram

(T < T") x (T x T"") + 2= T x T x T

]
v,V v 2l v,V v H v,
ZV X 2V e ZYY Xy 2 — 2V
X1 |:| X1 Z]\
v,/ ’ Sv' v YH Sv,v/ ’ sV BH Svu o ’
b b b
D AL S SN (AL B (N
PXp pXp ] lp O l
v,/ v YH v,V v MH v,
b b b b b
Zy X Ep e E e 2y M

containing four cartesian squares as indicated by a box “[1”. The second line of it
defines the convolution product on Hg, (Z”’”,, H ), the third line defines the convolution

product on H}g (2;;”/,%;1{), whereas the fourth line defines the convolution product

on Hy, (ZEV/,%H) The diagram induces a corresponding commutative diagram of

cohomology, thanks to base change and composability of units and co-units of adjuntion
and the fact that there is a canonical isomorphism *.¢ = J#. [

Let Z; = WX\Z,, so that there are partitions of sets

We obtain a sequence of injective maps of algebras

@ () ] @ ()

o€E; vV V'EE, o€E; Vv V'EE,

- [ @, (2 7)) =14,

v'eEveE

cf. §4.4.3. We denote the composite of it by ®; : H; — H.

Proposition 4.34. For v, Ve Z and w € WJ/\ such that v = wv', the graded piece
Hew /H2w = HYY is a free of rank 1 as left HY -module and as right " -module
generated by the image of ®;(w).

Proof. By [31, 4.9], there is a decomposition of H}; (ijo,e, %) -bimodules
H}Iq <h07‘%/> @ H. <h0 w> > ’
wEWJ
By the construction of Lusztig’s isomorphism Theorem 4.27, the graded piece Hy, (l.‘joyw, H ) =

H3,, <607§w,%> /H}{q (607@,,,%/) is freely generated by the image of w € H;. The
maps (4.30) and 4.33 then sends it to a generator of ’;QZ;”’.
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O

4.4.5 Map from H to H

We prove that the maps @, are compatible one to another and thus define a morphism
from the dDAHA to H. The proof of the following lemma is straightfoward.

Lemma 4.35. Given two proper subsets J, K of S such that I C J C K C S, there is a
canonical inclusion of graded affine Hecke algebras Hj; C Hg and the maps ®; and Pk
are compatible in the sense that

CI)K ’HJ: CI)J.

Corollary 4.36. There is a ring homomorphism

CI):H—>7:[\.

Proof. From the definition of H, we clearly have H = hﬂ[@]gs H;. By Lemma 4.35, the
system {®;}; is compatible under restriction. We define ® = 11131 cics ® ;. which is a
ring homomorphism

O:H= lig Hy — H.

I1CJCS

4.4.6 Density of image

Following the line of [53, 4.8, 4.9], we prove that the image of ® is dense in the product
topology of the convolution algebra H.

Recall that H defined in §4.3.6 is equipped with a topology.

Lemma 4.37. Let w € W. For each v € E, letting V' = w™tv, the graded piece 7/{\5;”’ 18
free of rank 1 as left H*V-module and as right H' "' -module, with generator the image of
O (w) in HLY.

Proof. We prove the assertion by induction on {(w). When ¢(w) = 0, this is trivial.
When f(w) = 1, w = §, € W is a relative simple reflection and the result follows
from Proposition 4.34.

Suppose then f(w) > 2. We choose s € W such that f(s) = 1 and f(ws) =
{(w) — 1. Since the image of ®(ws) in Hue™) " and the image of ®(s) in H™ *
are free generators by inductive hypothesis, by the surjectivity Lemma 4.22 (iii), ®(w) =

®(ws)P(s) in turn generates freely H4" . O



4.5. SIMPLE AND PROPER STANDARD MODULES 99

Lemma 4.38. In the particular case where J = I, the image of the morphism
I: S = H[ — 7:2@

1s dense.

Proof. By definition ’;Qe = Hz€5 ﬁg’”. Since the composite of ®; with each projection
Hzeg ﬁg” — ﬁg“ is equal to the map ®"” of Lemma 4.25. By Lemma 4.25, ﬁg” is a
topological S-module supported on x, € E and that the image of the composition

prOJ

is dense. If v,/ € = are such that x,, = x,,, then v and v are conjugate by Wy, which
implies that v = v/ € =. As there is a canonical isomorphism Spec H; = E ®q Q,, we may
consider x,, as closed points of SpecS.

Since we have seen that x, # x,, if v # V/, for any finite subset Z' C =, the composite
@ o~ o~
LA [
VED vez!

is dense as well, by the chinese remainder theorem. Hence, by the definition of product
topology, the image of ®; is dense. [

Theorem 4.39. The image of ¢ : H — H is dense.

Proof. Taking the subset I = I C S, we have <I>1 H; —> #,. with dense image,
after Lemma 4.38, whence im (P ) N7, is dense in .. We can prove by induction on E( )
that im (®) N ﬁgw is dense in ng for each w € W. Indeed, assume that im (®) N ng
is dense in H<,y o for all w’ such that ¢(w’) < ¢(w). Then

S <im (@) N ﬁgw,> C im (@) N H .

L(w’)<Ll(w)

is dense in ”;Q<w. Consider following diagram

) ~ . -~ im(® I"W:Z<w
0 —— im(®) NHep —— im(P) N Hey ’ imgq>;mH;w >0
J/C lg lg

The image of the right vertical arrow, denoted V', is an Hj-submodule. By the density of
im(®;) C H., the closure V is a H,-submodule of H,,. By Lemma 4.37, since V contains
®(w), we have V = H,,, so the right vertical arrow has dense image. Since the left arrow
also has dense image, so is the middle arrow.

Since U,/ ﬁgw is dense in H, so is the image of . O

4.5 Simple and proper standard modules

In this section, we suppose that e = d/|d].



100 4. SPRINGER CORRESPONDENCE

4.5.1 Geometric parametrisation of simple modules

Consider the block Oy, (H) of the category O of the dADAHA H associated to the W-orbits
{x,} ez in E, as defined in §1.2.3.

Recall the Lusztig sheaf I" defined in §4.2.4. By the hypothesis ¢ = d/|d| and Proposi-
tion 4.14 (i), the complex I" is supported in the nilpotent cone gg“ for all ¥ € = and they

generate the block D*(g§")c, cf. §3.2.3. Let I = @D, 1" be the (infinite) sum. Recall the
category of smooth modules H -mod™ defined in §4.3.6.

Theorem 4.40 (Springer correspondence). The following statements hold:

(i) The pull-back via the homomorphism ® of §4.4.5, denoted by ®*, induces an
equivalence of category

®* : H-mod”™ = O, (H).
(i) For any m = (O, %) € I(ga) (¢f §5.1.1), the H-module
L, = ®" Homg, (IC(%Z;),?7°1)
is in O (H) and irreducible if = € 11(gag),; otherwise Ly = 0.
(iii) The simple objects in Oy, (H) are given by {Lx}rer(gy). -
Remark 4.41. (i) The assertion (ii) confirms the multiplicity-one conjecture in [/0)].

(ii) We have supposed that the points x,, € E are rational. However, the general case
can be easily reduced to the rational case.

(iii) With more care, one can remove the hypothesis that the grading on g is inner by
working with twisted affine root systems.

Proof of Theorem 4.40. The statement (i) is standard, as the map & : H — H is
injective with dense image, see [53, 7.6]. The assertion (ii) follows from (i) together
with Lemma 4.24 and Theorem 4.39.

Now let L € O, (H) be irreducible. Using (i), L can be equipped with a smooth H-
module structure, which is simple. By Lemma 4.24, it must be isomorphic to some simple
constituent of I, thus isomorphic to L, for some 7 € II(g,4). This completes the proof. [

4.5.2 Proper standard modules

Let z € ggﬂ be a nilpotent element. Let 7 be the fibre of 7% — g4 at z and let
i, . T — T" be the closed inclusion. Consider the vector space

A, = EQH <Tz‘€> .

By the formalism of convolution algebras, for each v, € = there is a natural map

1" — Hom (H <T M’) e (T M)) .
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Taking the sum over v € Z and the product over / € Z, we obtain a smooth ﬁ—zlction on
A,. Besides, there is a natural my (G, )-action on A,, which commutes with the H-action.
For any m = (O, %;) € II(g4), define

Zﬂ = HOIHWO(GQ’Z> (.,%,ZZ)

for any z € O,. to be the .Z,-isotypic component as Cmy(Gy ,)-module, which is a H-

submodule of A,. We view A, as a H-module via ® : H — H cf. §4.4.5. We call A,
the proper standard module of H.

Theorem 4.42. For each pair m € I1(gy) as above, the following holds.

(i) A, € Oy, (H).
(i) Ax # 0 if and only if Ly # 0 if and only if 7 € 11(ga)c-

(i) For any pair n' = (On, Z) € (ga)¢, the Jordan—Hélder multiplicity of L.\ in
A, is given by

[Zﬂ : Lﬂ/} = Zdim HomﬂO(GQQ (z*.i”ﬁ, H* (z! IC(.,ZF/))) )

for any z € O,.

Proof. The assertion (i) results from the smoothness of the H-action and Theorem 4.40 (i).

The assertion (ii) can be proven with the same arguments as [37, 8.17], using the block
decomposition of the equivariant category of ggﬂ, cf. §3.2.3. The assertion (iii) is standard,
see [13, 8.6.23]. O
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Chapter 5

Applications

In this chapter, we present some applications of the constructions from the previous
chapters, in the hope of clarifying the relations between them.

5.1 Sheaf-theoretic interpretation of V

In this section, we explain a sheaf theoretic construction of the Knizhnik—Zamolodchikov
functor V : Hy, -gmod — Ky, -gmod for degenerate double affine Hecke algebras, cf. §1.5.

Keep the notations from §4.1.1. For simplicity, in this section, we fix the principal
block admissible system (o = (7, t.,0,dp) on g4 (cf. §3.2.3) and let oy = (7, 0,00) be the
corresponding principal supercuspidal system on g4 (cf. §3.5.2). Here dy is the skyscraper
sheaf supported on 0 € t with fiber Q,. We denote Gogq = Go x C;. We also fix an
isomorphism of fields Q, = C. We also fix a sign € € {1, —1}.

5.1.1 The algebras H),, and H

We discuss here the relation between the idempotent form H), of the degenerate DAHA
defined in §1.2.5 and the convolution algebra H defined in §4.3.

The idempotent algebra H,, depends on an an affine root system (F,S), a family
of parameters (ha)ae A and a Wg-orbit WgAg C E. On the other hand, the convolution

algebra H depends on the affine root system (Ag, S), where Ag = A ®q R, and the WS-
orbit {x,},ez C A (c¢f. §4.3.7). The orbit Wx, € A coincides with the spectrum of the
action of the polynomial subalgebra S € H. We define H = @@, .= H"'* (recall that

v,V €2
HY Homg, (1", I"').) It is an non-unital associative algebra with the Yoneda product
as multiplication. There is an obvious inclusion H C H with dense image. Now we set
E = Ag, S= S and h, = c,(—d/m), \g = x,, by choosing any v, € =.

Proposition 5.1. The extension algebra H is isomorphic to the idempotent algebra Hy,
defined with the datum (E, S, (hq) WsAo) = (Ag, (d/m) Wsx,).

acA > acA >’

Proof. We construct a representation of H on the polynomial algebra Poly,,,. For each
v € Z, consider the cohomology H, (7"’,(5 ® CK*) Since the projection [T"/Go| —

103
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[0Y/Lg] is a vector bundle with fiber v, the pulling back along the projection yields an
isomorphism

H;, (05,% ©¢") = Hg, (T, ©%").
Since % is a cuspidal local system, the former equivariant cohomology group can be
calculated with any chosen point o € O}:

Hi, (05, ¢ @ €7) = Hgiap, o) ({0}, (€ ©F7),) = Hp = 8.

The algebra S is, by definition, the ring of polynomial functions on the affine space A.
Upon choosing x,, € A as the origin, we obtain isomorphism V' = A where V is the vector
space of translations on A. Combined with (5.1.1) and (5.1.1), this yields isomorphisms
of graded algebras ' .

Poly, Z C[V] =S = HZQ(T”,CK QR EC").
By the formalism of convolution algebras, there is a convolution product for v,/ € Z:
W'Y @ HE (T, € ®€") — H (T, € ® ¢,

which gives a H-representation on Polyy ., .

Passing to the my-adic completion, we obtain a continuous ﬁ-representation on lsc\)lwsxy
and hence a H-module by pulling back along the map ® of §4.4.5. By the same arguments
as in §4.4.4, this H-module comes from the graded-affine-Hecke-algebraic analogue, which
can be identified with an infinite sum of the polynomial representation H, JHj(sa—1; a €
J) suitably completed. We see that this H-representation on Polex is faithful and agrees
with the representation 1 defined in §1.2.4. Hence we obtain an isomorphism H H,\O
Restricting this isomorphism to the subalgebra

@ gHom(Poly,, Poly ,) C Endczimt(lsc\)lwsxu)

v,V €S

we obtain ‘H = H,,.

5.1.2 Spiral and parabolic inductions

We show that parabolic inductions from the principal supercuspidal system (t,0,dq) are
special cases of spiral inductions from the admissible system (t,t.,0,d9). We take the
family of order functions wy = ord, as in §1.2.5 so that H}, coincides with the algebra A“
defined in §2.1.3. Recall the notions of alcoves §1.1.4, clans and salient cones §2.2.3 and
parabolic subalgebra attached to a cocharacter §3.3.4. The following lemma explains the
geometric meaning of the clan decomposition:

Lemma 5.2. Suppose v,/ C Agr are two alcoves which lie in a same clan €. Then

py = py.

Proof. From the definition of ¢, an affine root a = o —r belongs to ®% if wx(a) > 1. For
the order function wy = ordy, the condition is given by («,x) —r = d/m. On the other
hand, by the definition of §4.1.4, with any point y € v chosen, the spiral p} is given by

Om 0—m
pd_pd W= >29d
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If we let y varies continuous in Ag, then the subspace 6(9_7;294 changes when there is

some a € R such that g, C g4 and the value (a, 6 — my) — d changes sign. However, the
condition g, C g4 is equivalent to that r := ((a, 0) — d) /m is an integer. In this case,

put a = a —r € S and we have (o, § —my) = —ma(y), so the equality (a,d —my) —d =0
happens if and only if y touch the wall H, € ®“. In other words, as long as y stay in the

(6—my)

clan €, the value (o, — my) — d never changes sign, so Py remains unchange. [J

The geometric meaning of generic clans is clarified in the following lemma:

Lemma 5.3. wv C E be an alcove lying in some generic clan € C E. Let v' be a point in
the interior of the salient cone k of €. Set v = —ev'. Then there is an inclusion py; C q3
of subspaces of g4 which induces an isomorphism of complezes

Ind®

taChy

v 50 = Il’ldgd

’tdCCId

do-

Proof. By the definition of §4.1.4, with any point y € v chosen, the spiral p} is given by

e(f-my) _ e(6—my)

P =Pq = >ed¥d
If v/ is in the interior of k, then y + tv’ remains in the same clan € for any ¢ € Rs(. This
implies that “~ m(“@gggd = pY for each t € R>¢. Let t — 400, we obtain
. O—my)+t
py = lim CINg, C bga = ap

t— 400

For the same reason, we have an equality on the respective nilpotent radicals u} = v}.
Thus there is an isomorphism of varieties

GQ XPO Ug = GQ ><Qg 02'

Note that since Fy and (g are both Borel subgroups of Gy, they are conjugate. The

direct image of the constant sheaf Q, on these two varieties give Indt P dp and Indfddcqv 0o

respectively. Hence the two complexes are isomorphic. O

5.1.3 Sheaf-theoretic interpretation of V

Let P; be the set of spirals p, which admits the maximal torus t, as splitting and let P,
be the set of #-stable Borel subalgebras having t as Levi factor, ¢f. §3.3. The Weyl group
Wo = Zg,(t)/T acts on P; and P, by adjoint action. Let P, and P, denote the respective
sets of Wy-conjugacy classes.

Let
L = @ Ind®,, %, I = @ Ind{,, 0o
p*GPC qE’P

In virtue of the spiral-facet correspondence, the complex I.g is nothing but the Lusztig
sheaf I = @Ve: I that we have introduced in §4.5. The complex Iy, is a “parabolic-
induction analogue” of the Lusztig sheaf L,y which has been studied in §3.5. Define

K := Homg;, (Ifin, Lsn ), which is equipped with the Yoneda product.
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Theorem 5.4. There are isomorphisms:

(i) Hy, = H as graded algebras

(ii) Ky, = K as graded algebras

(iit) via the above two isomorphisms, V = gHomy,, (Hom'GQ (Igin, Lar) —).

Proof. The statement (i) has been proven in Proposition 5.1. We prove (ii) and (iii).
By Lemma 5.3, the complex Iy, is subcomplex of L, which takes one factor I for each
Wy-conjugacy class of clans. The extension space Hom'G0 (Ifin, Lugr) is thus isomorphic to
He, for some idempotent element e, € H. In view of Proposition 5.1 and Lemma 5.3,
the idempotent e, can be chosen as one described in Theorem 2.55, i.e. an idempotent
corresponding to generic clans. It follows that the extension algebra K is isomorphic to

Hom&g(lﬁn, Isn) = gEnd,, (He,, He,) = e, He, = e, Hy e, =Ky,

where the last isomorphism is due to Theorem 2.43, whence (ii). The module H, e,
which represents the functor V is isomorphic to He, = Homg¢, (Ifn, L), whence (iii). [

Remark 5.5.

(i) The algebras K, and K depend only on the congruence class of d modulo m.
However, the isomorphism K, = K in (ii) depends on the sign € = +1. This
can be observed from Lemma 5.3, where the definition of q; depends on e.

(i) This theorem provides a Ginzburg-Kazhdan—Lusztig geometric realisation of the
affine Hecke algebra without equivariant K-theory, at the price of the extreme obscu-
rity of the isomorphism e Hy e, = Ky, .

(117) I could have proven this theorem for a general admissible system ¢ € %(gq). However,
the notational complexity kept me from doing so. Note that the general version of
this theorem would be a new geometric construction of the affine Hecke algebra since
so far there is no K-theoretic construction which could be applied with coefficient
sheaves.

5.2 Properly stratified categories

We explain the results of [21] on extension algebras, later axiomatised in [25]. All the
results presented here are borrowed from loc. cit.

Fix an admissible system ¢ € T (gg4).

5.2.1 Set of parameters

As in §3.1.1, let IT =TI (g4) denote the set of isomorphism classes of pairs 7 = (C,, %)
on gg. For any Gg-orbit C C g3, let IIg denote the isomorphism classes of pairs 7
for which C, = C. Let II; C II be the subset of II consisting of 7 € II such that
IC(D%W) & Perng(ggﬂ)g.
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We put the partial order of inverse inclusion of orbit closure on the set of orbits gii!/Gy:
given orbits C, C’' € g4'/Gy, we define C < C’if C’ C C. It induces a pre-order on II via the
first projection m — C, denoted by <. In this section, we denote by I, = @WEHC IC(%)
the sum of perverse sheaves in the block of ( and by A; = Homg, (I¢,I¢) the extension
algebra, graded by the cohomological degree. The algebra A, is Morita-equivalent to
(smooth modules of) the convolution algebra 7 for the sign € = d/|d|.

The isomorphism classes of simple A are parametrised, up to shift of degree, by the
set Il¢: for each m = (Cy, 2 ), the module L, = Homg, (IC(.Z;),1¢) is the simple module
indexed by 7 and P, = Homg, (IC(Z;),L) is its projective cover.

5.2.2 Standard modules

Recall the notion of affine stratified categories of [25].

For any 7 = (O, Z;) € Il;, define the standard module to be A, = Homg, (jn-Zr,I¢) €
A, -gmod. We say that a graded module M € A.-gmod is A-filtered if A, admits a finite
filtration of As-submodules M = M; D --- D My = 0 such that M;/M;_, = Ay (n;) with
some 7; € Il and n; € Z for each j € [1,1].

Lemma 5.6. If % € DbGQ (ggﬂ)c satisfies the x-parity, then Homg¢, (,1¢) admits a
A-filtration.

Proof. Let ) =Uy C --- C Uy = ggﬂ be a filtration by Gy-stable open subset such that
each Uy \ Uy_1 is a single Gy-orbit. Let j : Uy — ggﬂ and iy, : Uy, \ Ux_1 — U}, denote the
inclusions. Then we have exact sequences

0 — Homg, (jrirsipjp-t 1) — Homg, (jmji L) — Homg, (-1 L) — 0

Since 4} j;.# has no odd cohomology, it is isomorphic to some finite sum

NGRS

Tell leZ
On=Up\Ur—_1

for some m,, € N. Thus
Homg, (jk!ik*iZj}CJi/,IC) = @ A7) (1) Emes,
,l

By induction on k, it follows that Homg, (2", 1) admits a A-filtration. O]

In particular, the projectives I, are A-filtered.

Lemma 5.7. The module Ay is a projective cover of L. in A, ~gmod=".

Proof. We show that A, € A;-gmod=". Let o € H(gd)c. Then gHom (P,, A,) =
Homg,, (jrZr,1C (%)), which vanishes if 0 £ m. Since P, is a projective cover of
L,, we have gHom (P,,A,) # 0 if and only if A, admits L, as subquotient. Thus
Ay €A ~gmod=",

]
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5.2.3 Endomorphism algebra of standard modules

For C € gj'/Gy, put ZLc = D e, L and Lo =D %,. Define

WEHC,C

BC = HOIDZ;Q ($C7$C> s BC@ = HOIH.GQ (XC,Q "ngC) .

o

Then B is a direct factor of the ring Bc and B¢ is Morita-equivalent to I' x H.Zco(z)
where z € C and I' = 79(Zg,(2)). Put Ace = ®7T€HC o Ar. We have Bey
gHomAC (ch, Acﬁ).

bl

I

Lemma 5.8. For any o € ll¢, the graded Bc,¢-module gHom, (P, Acy) is projective of
finite type.

Proof. We have

gHom, (P, Ac ) = Homy, (jorZo ., 1C(%,)) = Homgy, (Lo, jc 1C (%)) -

Since the complex ji, IC (.%,) is semisimple, it lies in add (£ ¢). Hence gHom ac (P o)
belongs to add(Bc ). O

5.2.4 Proper standard modules

In §4.5.2, we have introduced the proper standard modules A, and A, for #H. For
any m € ll¢, choose any z € O;. We define the proper standard module to be
A, = Hom{"™ dlmc(xﬂ, 2'1;), where x, = (%), is a simple CI'-module. We also introduce

Ace = Gaweﬂc,c A,. Then the image of Ag, under the Morita equivalence between A,

and H is isomorphic to A,.

Proposition 5.9. The following statements hold:

(i) There is an isomorphism

Ace 2 Age/J - Ay,

where J = J(Bg,) is the graded Jacobson radical of Be.

ii) For eachm > I, there exists an separated descreasing filtration { AZ*}ren of graded
7< p g ™ g
Ac-submodules such that the successive quotients AZ*/AZFT is a finite direct sum
of Ac-modules of the form A (n) for m € llc and n € Z.

Proof. Since

r
Boc= D (Hom(xe xw) @ )

m,m €llg ¢

. r
Ac’g = @ I‘IOHIE;g (gﬂ-,jlclg) = @ (HOm.+2dlmC (XTra Z!IC) ® H.ZGQ(Z)O)

WGHC’Q WGHC,C
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we deduce

N
J’C — @ <H0m<X7r7 Xﬂ'/) ® ngg(z)[))

m,r' €llg ¢
I Ao = €D Homg, (Lol = €D (Hom.+2dimc (xr 2 L) ® Hﬁgo(ao)r
Trencyg N ﬂencyg B
AC‘“/J : AQC = @ I‘IOIH.Gg (gﬂ,]élc) = @ (Homo+2dimC (XW, Z!IC))F = ZQC‘
n€lla ¢ mello,¢

This proves (i). For (ii), we define the filtration on A, by AZ% = J¥- Ac N A,, so that

A;k/A;rlﬁ_l = Hom}”dimc <<HZGQ(Z)O> & Xy Z!Ic> .

Decomposing (H’% (Z)0> ® X into a sum of simple graded I'-modules, we see that

Go
J¥Ac ¢ /JM - Ag is a sum of proper standard modules. O]

5.2.5 Properly stratified categories

Proposition 5.10. The category A;-gmod is properly stratified *.

Proof. 1t follows from Lemma 5.6, Lemma 5.7 and Lemma 5.8 that the axioms of [25, 5.1]
are satisfied. [

In the case of principal block ¢ = (y = (T, t,0, dy), we have:

Corollary 5.11. The category Hy, -gmod is properly stratified.

Proof. By Proposition 5.1, we have H = H. Since H and A, are both extension algebas
of semisimle complexes whose set of simple constituents coincide up to shift of degree,
there is an equivalence H-gmod = A.-gmod, where H-gmod is the the category of
finitely generated graded weight H-modules, c¢f. §2.2.1. Hence H),-gmod is properly
stratified. ]

5.3 Examples from cyclic quivers

5.3.1 Cyeclic quivers

Let m € Zsy. Consider the m-cyclic quiver I' = (I, H) where I = Z/m and H =
{(i,i+1) ;i€Z/m}. Let V. =C", G = GL(V), g = gl(V) and let 0 : p,, — G
be any homomorphism. Then 6 gives rise to a Z/m-grading V' = @, Jm V; as well as
g= @iez/m g;. In particular, g; = @iez/m Hom (V;, Vi41) is the space of representations
of 'on V and Gy =[] GL(V;) acts on g, by conjugation.

1€Z/m

L Although the endomorphism ring gEnd Ac (Ac,¢) is not a graded polynomial ring, it is close to be one
as we have already seen.
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It is known that the isotropy subgroup Zg, () is connected for every = € gfl. There-
fore, there is only one admissible system on g;, namely % (g1) = {(7,t.,0,0¢)}, where T
is a maximal torus of Gy, t. =ty and J is the constant sheaf on {0} = t;. Therefore, we

have DbGo (911“1) DbGo (ngl)(Tvt*va‘SO)’ et

The nilpotent orbits of g} have been well-studied, notably in [33], [2], [27]. We will
put accent on the perspective of [15].

Let ¢ = (T,t.,0,60) € T(g1) and 0 = (T,0,0¢) € &(g;) be the only admissible system
and supercuspidal system, respectively, on g;. Recall that in §5.1.3 we have defined P
(resp. P,) to be the set of W, = W(Gy, T')-conjugacy classes of spirals of g having t, as
splitting (resp. Borel subalgebras of g containing t). As in §5.1.3, we put

g1 g1
I, = @ Indiy, 60 T = @ Ind{’-,, &
beP p*EPC

Let K = Homg, (Ltin, In) and H = Homyg,, (Lagr, Luge). Since Ly is an infinite sum, here
Hom® means endomorphisms of finite rank so that H is a graded non-unital algebra.

The set P, has a combinatorial description. Let § = gdimV € NI = Map(I,N) be
the dimension vector of V. Note that the length of 5 is |f| = dimV = n. For i € Z/m
let a;; € NI be the vector which is 1 at the i-th place and 0 elsewhere. Define

I" = {(Vl,...,l/n) el™; Zauk :n}.
k=1

The elements of I are called complete sequences of 3. The bijection P, = I” is given
by the following: if b € P, fixes an I-graded complete flag V = F° D> F' > ... D F* =0,
then to b € P, corresponds the complete sequence (v, . .., v,) where vy, € I is the support
of F*=1/F*.

In order to define the quiver Schur algebra, we introduce a combinatorial description for
all parabolic types. Let Comp(/3) be the set of sequences v = (y1,72, -+ ,v) of non-zero
elements in NJ such that ), v, = . If Q C G is the parabolic subgroup which stabilises
an I-graded flag V = F* D F' O ... D F! = 0, then to g = Lie Q one attaches the element
v = (71, ,m) € Comp(B) with v, = gdim F*~!/F*. This induces a bijection between
the Gy-conjugacy classes of all #-graded parabolic subgroups and the set Comp(3). For
any v € Comp() we choose a parabolic subgroup 7 in the corresponding Gy-conjugacy
class which contains 7. We will denote its Lie algebra by q7, its unipotent radical by v
and its Levi factor containing t by m?.

Set
g1
L.= @ hdycyd

v€Comp(B)

where dy is the punctual sheaf supported on 0 € mj with fiber Q,. We define an algebra
Sc = Homg, (L, L), called the quiver Schur algebra in [17].

By [13, 8.6.2], the isomorphism classes of simple modules of Sc are in canonical bijection
with the isomorphism classes of simple perverse sheaves which appear as direct factor of
P ¥, for some k € Z. However, it is known by [52, Theorem 4] that the simple Sc-
modules are in bijection with the Gy-orbits in g“‘1 It follows that the semisimple complex

nil

L. contains all the irreducible objects in Pervg, (gl ) in its perverse cohomologies. Since



5.3. EXAMPLES FROM CYCLIC QUIVERS 111

L. also contains all the irreducible objects in Pervg, (gfl), we can define an equivalence

Sc-gMod = H -gMod®™ via the bimodule F : Hom'Gg (Lse, Lagr)-

Let Ps, = Homz;g (Isc, Itin). Then we have a functor
¥ : Sc-gmod — K-gmod, X(M) = Ps ®s. M.

Since > = Vo F, and V satisfies the double centraliser property by Theorem 2.65, it
follows that I = Endger (Ps) and Sc” = Endy (Ps) and the functor ¥ is also a quotient
functor with the double centraliser property. In this sense, X can be viewed as a version
of the Schur-Weyl duality.

5.3.2 Algebraic description

Using the functor ¥, one can describe the quiver Schur algebra Sc in algebraic terms. Let
Qi j(z,y) be a Q[x, y]-valued matrix with 1 <4, j <n defined by

0 i=37
(x —y)avi(y — @)t i

Qij(r,y) = {

The quiver Hecke algebra R(5) of the cyclic quiver I" with dimension vector § = gdim V' €
N/ is generated by e(v), r; and x; with v € I” being a complete sequence of 3,1 <t < n—1
and 1 < k < n. It satisfies the following defining relations

e(v)e(v) = o,.e(v), Z e(v) =1, xpe(v) =e(V)xg, XpX; = XXk,
velp

re(v) =e(s,(V))r;, rrs=rer, it —s|>1, 17e(v) = Qu i (X Xit1)
() (k=)A= )
(rixp — xg,mre)e(v) = qe(v)  (k=t+1) AW =rv41),

0 otherwise
Quyy 1, (Xt41.%0) = Quy 1 vy (Xe2,Xe41)
. p— e(u) Vi = Vgy2
(rt+1ft1"t+1 - rtrt+1rt) e(u) = .
0 otherwise.

Let P(8) = @,;5S(v) where S(v) = C[Xy,---,X,]. We define the polynomial
representation of R(3) on P(B). For v € I? and for each f € C[Xy,---,X,], denote
by f(v) € S(v) the corresponding element. The polynomial representation of R(/3) on
P(3) is defined by

(W) f(v) =bu f(v), xuf(v)=Xif(v),

r, f(v) = (Xi — Xpr)? 0t (s f ) (sv) - vy # Ve
W) {@f{v) Vi = Uiyt

More generally, if v = (71,72, -+ ,7) € Comp(/3), then we have an inclusion of algebras
R(n) ®--- @ R(v) C R(f).

Define
P(v) = R(8) Qr(y1)z--zr(n) P(N1) @ - @ P(y).
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According to [51], there is an isomorphism R(f3). Under this isomorphism the K-module
Homg, (o, Ifin) is identified with the polynomial representaion P(3). More generally, for
each v € Comp(8) the module Homg, (Indﬂ%i,oﬂ 50,Iﬁn> is identified with P(v). Let

T = @D, ccomp(s) P(7)- 1t follows that T is identified with Py;. We deduce from the double
centraliser property of the functor ¥ that Sc® = Endy-(T).

5.3.3 Cyclic quivers with involution

Let m € Z>,. Consider the quiver I' = (I, H) where I = Z/2mand H = {(i,i + 1) ; i € Z/2m}.
Let (V,w) be a symplectic vector space of dimension 2n for some n € N, let G = Sp(V,w),

g = sp(V,w) and let 0 : po,, — G be any homomorphism. Then 6 gives rise to a
Z/2m-grading on V

V=P Vi, Vi={veV; 0 v=_v,YC € pom} -
i€Z/2m

and on g

@ i, @i = {x €g; Adgz = C'z,V( € ,MQm}-

1€Z/2m
In particular, g; is the space of anti-self-adjoint representations of I' on (V,w). For any
subspace U C V, we write U+ = {v € V ; w(v,U) = 0}. Then it is clear that for each
i € Z/2m, we have V1 = @H#O Vj, so that w restricts to a perfect pairing

w |\/i><v7ii VixV_, — C.

The 6-fixed points Gy = GY is connected and acts on g; by the adjoint action. We put
as before Gy = Gy x C; and we make C act linearly on g; by weight 2.

nll

The isotropy subgroup Zg, () is connected for every x € g}". Therefore, there is only
one admissible system on g;, namely T (g;) = {(T,t.,0,0)}, where T is a maximal torus
of Go, t. =ty and J is the constant sheaf on {0} = t;. We have

DbGo (grlul) = Dgo (grlnl)(T,t*,O,&)) ’

As in §5.1.3, we put
I = P Ind’., 6 L= P Indi,, &
beP, p+EP;
Put 7‘[ = HOHI.GQ (Iaff, Iaff), IC = I‘IOHIZ;g (Iﬁn, Ifin) and PV = I‘IOHIE;g (Iaff, Ifin) as before.

We shall define a symplectic analogue of the quiver Schur algebra. To this end, we
introduce a combinatorial description for a certain class of parabolic subgroups of G.

Let o: ] — I, ®: H — H be the involution of the quiver I' given by i = —i and
(t,i+1)=(—i—1,—i) for i € Z/2m = I. Let NI = Map (I,N) be the monoid of maps
from I to N and let NI* = NI \ {0}. For any § € NI, let

l
COInp(/B): {(71177’71) ) ZEN7 716N1X7 Z 72:67 ’Vlz:%}

i=1-1
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From now on, § = gdim V' € NI.

Let v = (v, ,7) € Comp (f). An isotropic flag in V' of type v is a filtration
0=VicVitc...c V=V by I-graded subspaces of V such that gdim V=1 /V¢ = ~;
and that Vi~ = V', Define X, to be the varieties of isotropic flags in V' of type v and
let XW C g1 x X, be the subvariety of pairs (fL‘, {Vi}—l<i<l> such that zV* C V1. Let
{Vi}_,c,<; € X, be any isotropic flag of type 7, let @7 C G be the parabolic subgroup
which stabilises the flag and let M7 be any #-stable Levi-factor of Q7. The pair (Q7, M?)

is well-defined up to conjugation by Gy. Then the direct image of the constant sheaf 77Q,

via the projection 77 : X, — gfl is equal to the parabolic induction Ind%cw 0o of the

punctual sheaf on 0.
We put
L= @ ndycydld,),

~v€Comp(B)

where d, = dim Xq,, and we define
Sc = Homg; (Lsc, Lic) -

The algebra Sc can be viewed as a “quiver Schur algebra of type C”. The main result
here is the following, the proof of which is postponed to the next subsection.

Proposition 5.12. The following statements hold:

(i) Let O C g}"'. Then IC(O) is a direct factor of PA* Indgﬁ,cq? 0y for some v €
Comp (p).

(it) The isomorphism classes of simple Sc-modules are in canonical bijection with G-

orbits in gl

We put Pr = Hom'GQ (Is, L) and Py, = Homég (I, Isn). Since both L and I
contain all simple objects of Pervg, (gfl), there is an equivalence of category

F: Sc-gmod — H -gmod
N +— PF Xse N

and an exact functor
3 : Sc-gmod — K -gmod
N — Py ®g. N

such that ¥ =2 Vo F'. Thus V can be identified with the “Schur functor” ¥, which satisfies

the double centraliser property. The algebra K is similar to the “quiver Hecke algebra of
type B and C” of [50]. As in the previous example, the category Sc-gmod is also affine
quasi-hereditary with respect to the partial order or orbit closure.

It will be interesting to give an algebraic presentation of the algebras C and Sc as well
as the induction/restriction functors between different dimension vector f.
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5.3.4 Proof of Proposition 5.12

We begin with two lemmas for the preparation.

Lemma 5.13. There exists U C V such that U+ = U, x(U) =U and V 2 U & U" as
anti-symmetric representation.

Proof. We first prove that each indecomposable subrepresentation of (V,x) is isotropic
with respect to w. Let M C V be indecomposable. Then there is a homogeneous element
a € M; such that a,z(a),...,2'(a) form a basis of M for some | € N. Suppose that
2/(a) € My and z*(a) € My for some j,k € N and i € I. Then w(z/(a),2*(a)) =
(—D)w(a*(a), 27 (a)) = (—=1)w(2?(a), 2%(a)) so that w(x’(a),2*(a)) = 0, whence M
is isotropic as claimed.

Now we prove the lemma by induction on the number of indecomposable factors of
(V,x). If V.= 0, the statement is trivial. Suppose that V' # 0. Then we can find an
indecomposable summand U C V and write V = U@ U’. Then we see that V = U+ @ U+
and so Ut = UV. It follows that V = (U @ UY)® (U’ N U*) and that w is non-degenerate
on U' N U*L. Since U' N U* has strictly fewer indecomposable factors, the inductive
hypothesis applies and the lemma follows. Il

Let U C V be an I-graded lagrangian subspace. Let MY = GL(U), m = gl(U) and
QU ={ge G; g(U)cU}. Then QY is a f-stable parabolic subgroup of G having MY
as Levi-factor. The parabolic induction Indﬁfy cav induces a map

K (Dl (mf™)) — K (Dg, (a1")).

Taking over all such U C V' and tensorising with Q, we obtain a map
b U,nil b nil
P x (DMQU (m{ ))Q — K (DGg (a1 ))Q (5.14)
ucv
Lemma 5.15. The map (5.14) is surjective.

Proof. Let j: O — gfl be a Gy-orbit and let x € O. We prove by induction on N = dim O

that [jg@d e K (D%g (gfl)> is in the image of (5.14). We suppose that this statement
has been proven for orbits of dimension > N.

Let U C V be as in Lemma 5.13 so that x € m}". Put Oy = Mz SN m}! and

A =Indjy o jn Q.

my

Then by proper base change theorem, any orbit jo : C — gfl such that j¢.2" 22 0 must
satisfies C D O. Put

so that there is a distinguished triangle

. . (1]
jaljaﬁfﬁﬁf—}jogjof —,
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which yields [joij§ ] = [#] — [jgis-#]- The dimension of every Gg-orbit C C O
must be strictly greater than N. By induction hypothesis and the above arguments,
the class [jg5,jg.~#] lies in the image of (5.14). On the other hand, [#7] is also in the
image by definition. We see that [joij5-# ] also lies in the image. Now, since j§. 2 is an
even complex, the class [joij§#] is a strictly positive multiple of [jo@g] Consequently,
[j01Q,] lies in the image of (5.14) as claimed.

As {[joQ,] }chiﬂ forms a basis for K (D”GO (g‘f“)>Q, it follows that the map (5.14) is

surjective. ]

Proof of Proposition 5.12. The statement (ii) follows from (i) by [13, 8.6.12]. It remains
to prove (i).

Since {[IC (O)]}ogyn forms a basis for K (Dl&Q (glf“))Q, by the previous lemma, there
exists a [-graded lagrangian subspace U C V such that IC (O) appears in ? 7* Indify cav Z
for some Z € Irr Pervyy (m?““). By the result in type A, there exists some pz;ragolic

m{’

Q' € MY and Levi factor M C @ such that .Z appears in ?.7¢* Ind, cq

the transitivity of Ind that IC (O) appears in *.7* Indgmll cq1 90, Where q is the inverse image
of q' via the quotient map q¥ — mY. Since pair (q, m) must be conjugate to (q7, m?) for
some v € Comp (/3), the perverse sheaf IC(O) appears in ?5¢* Indﬁ%YCqY . ]

do. It follows from

5.4 Concluding remarks

We list some perspectives of possible directions for future works.

5.4.1 Derived equivalence for dDAHAs

We indicate how to obtain certain derived equivalences for dADAHASs via perverse sheaves,
cf. Remark 2.69. Take the setting of §4 and fix a sign € € {1,—1}. Let d,d € Z\ {0}
be integers such that d = d’, so that we have the Lusztig sheafs I and I'. If € = d/|d|,
then I is supported in the nilpotent cone gil; otherwise its image under the Fourier—Sato
transform is supported in g"L. If dd’ > 0, then the simple constituents of I and I’ up to

cohomological shifts coincide, so that the algebras H = Homg, (I,I) and H = Homg, (I',T)
are Morita-equivalent via the (H, H')-bimodule Homg, (I'.T).

Suppose dd' < 0. We may assume that e = d/|d| = —d'/|d'|. Let i : gi' — g4
be the inclusion and let T denote the Fourier-Sato transform between DZ’GOX o< (84) and

D’Z;gxcg (g_q) so that TI' € Dlé:gxc; (g™). In view of the result of Achar-Mautner [1], we

expect that i* o T o i, : Dlé;gx c (g™) — Dlé:gx o (g5") is an equivalence. This will imply

that Homg, (I, I) induces a derived equivalence between H and H'.
These equivalences are compatible with the KZ functor V by Theorem 5.4 (iii).

Via Theorem 4.40 (i), they will induce equivalences for ADAHAs with “opposite parame-
ters”.
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5.4.2 Geometric construction of quiver double Hecke algebras

In view of the geometric construction of quiver Hecke algebras of Varagnolo—Vasserot [51],
one can probably construct the quiver double Hecke algebras with Borel-Moore homology,
at least in type A. One starts with a quiver Q) = (I, H) and a function n : H — Z. Fixing
a dimension vector § € NI, we consider the set = of enhanced sequences

2 = {V:((Vladl)a"' 7(Vl>dl)) y Yy €l dj €Z, Zyjzﬁ}-

J

The Coxeter group of type Aﬁ)l acts on =7 the generators sq,- -, s,_1 acts by permuta-
tion and sy acts by

((Vlvdl) y " >(Vl7dl)) = ((Vl’dl - 1) ) (V27d2) e 7(Vl—17dl)> (Vladl + 1))

Let K = C[w*!] and O = C[w]. The rings K and O are Z-graded in such a way that
degw = 1. Set V = KP, which is I x Z-graded. Let

EIB = {(xh)hEH ; Ty € Hom?g(h)(\/h/, Vh”)} .

Clearly, there is an isomorphism E* = Rep(Q,C"). A flag of type v € Z in V is an
infinite sequence of I x Z-graded O-lattices --- D V! D> V? > V! 5 ... in V such that
Vit = @V for j € Z and gdim V;_,/V; = (v;,d;) for j € [1,1]. Let F” denote the variety
of flags of type v. We define

FY={(V*,2) € F* x E?; aV7 C Vit'}.

Denote the second projection map by p, : F¥ — E?. The affine analogue of Lusztig’s
sheaf will be the infinite sum I’ = @, s P Q,[dim F¥]. We expect that the equivariant
extension algebra of I? for various quivers Q = (I, H) and functions 7 should exhausts
the class of quiver double Hecke algebras in type A (up to the nuance of GL and SL).

5.4.3 The quiver Dfll)

Consider the quiver Q = (I, H) = Dfll) with the following orientation:

We consider the primitive imaginary root 6 = (2,1,1,1) € NI for the dimension vector.
Ringel’s results on tame quivers imply that there is a stratification on the moduli stack
Rep5(Q) of representations of ) of dimension 6. There are three “periodic” strata in
Rep’(Q), given by Vii1.100 @ Vir0011), Vito10 ® Voo and Ve @ Vo110,
where V{(11,1,0,0) is the indecomposable CQ-module of dimension (1,1, 1,0,0), etc. Denote
them by 57,55 and S3, respectively.
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Take the function n : H — Z with n(h) = —1 for each h € H. We can see that IC(.S}),
IC(Sy) and IC(S3) appears in I° as simple constituents. Indeed, for the stratum S, if we
take the enhanced sequence v = ((1,0), (2,0), (0,—-1),(3,1),(4,1),(0,0)), then the image
of m, : F¥ — Ej will be the closure of S;. Similarly, IC(S;) and IC(S,) appear in I°.
These are the only three sheaves absent from the Lusztig sheaf. The same arguments as
in §5.2 show that the extension algebra Hom®(I°,1°) is affine quasi-hereditary, so its global
dimension is finite.

This example shows that besides the cases of ADAHA’s, one can make use of affinisation
to “resolve the singularities” of quiver Hecke algebras, cf. Remark 2.69.

5.4.4 Parabolic induction for A%

The idempotent construction in §2.5.1 can probably be generalised, which will be an
analogue for A¥ of the Bezrukavnikov—Etingof parabolic induction for rational Cherednik
algebras [3]. It will be interesting to employ the techniques of categorification to study
the module category A“ -gmod and the cyclotomic quotients of A“.

5.4.5 Deformations of A“ and faithfulness of V

Deformations of A“ are easy to construct. One replaces in the definition of the operator
7¥e(\) in §2.1.3 by the following:
" (0a + hy o) D1 (0a) (s, — 1) a(X) =0
o e(A) = ’
(0a + hixa)> @ sg, a(\) #£0

where (R q)rewsro.acs+ are parameters of deformation satisfying Ay we = haq for all
w € Wgand a € STNw™1ST. We expect the functor V defined in §2.5.6 to have stronger
faithfulness for deformed algebra A“. This can be seen in the geometric situation of
degenerate DAHAs. In this case, there is an action of torus C; which provides a one-

parameter non-trivial deformation of the convolution algebra #H. The standard modules
A, are flat over the base of deformation. This allows one to apply Rouquier’s lifting of
faithfulness as in Lemma 2.61.
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Appendix A

Category of pro-objects

A.1 Category of pro-objects

A.l.1

Let A be an abelian category. We denote by Pro(A) and Ind(.A) the category of pro-
objects and ind-objects. The basic reference for these is [19, 8.6]. All the results below
are stated for Pro(.A) while they all have a dual version for Ind(.A). An object of Pro(.A)
is a filtered “projective limit” of objects of A. If

MO =<Gim" M, MY e A, ie{1,2}

are two objects of Pro(A), where Z()’s are filtrant diagram categories and M : Z(op
A’s are functors, then the Hom-space between them is given by

. . (OREYIC)
Hompro(4) (M(l),M(Q)) = l&n hﬂ Hom 4 (]\/.I'Z M > . (A1)

GeT® ez

A.1.2

Let A and B be abelian categories, B an abelian category which admits filtered projective
limits and F': A — B an additive functor. We define the extension of F":

F :Pro(A) — Pro(B), F(M)= “lim” F(M).

(M’,a)eA%i

According to [19, 8.6.8], the extended functor F': Pro(A) — Pro(B) is still exact.

A.1.3

For every M € Pro(A), let AM denotes the category whose objects are pairs (M’, a) where
M' € A and a € Homp,oay(M, M'), and whose morphisms are given by

HOmAM ((Ml,al), (Mg,ag)) = {b € HOHIA<M1,M2) , Qg = bo al} .

119



120 A. PRO-OBJECTS

Every object M € Pro(.A) can be expressed as the following filtered limit AM:

M o~ 441-&1,177 M/.
(M',a)e AM

Let AM. C AM be the full subcategory whose objects are the pairs (M’, q) with ¢ being

epi
an epimorphism.

Lemma A.2. Let A be an artinian abelian category. Then

(i) A is a Serre subcategory of Pro(A),
(ii) any object M € Pro(A) can be written as the following filtered projective limit

M g 4(@77 M/
(M’,a)e AM

epi

(7ii) A is the full subcategory of artinian objects in Pro(A).

M
epi’

(iv) if ¢ : N — M is a morphism in A such that for every (M’ q) in A
q o @ is an epimorphism, then o is an epimorphism.

the composite

Proof. We first prove that A C Pro(.A) is closed under taking sub-objects.

For every M € Pro(A), let AM denotes the category whose objects are pairs (M’, a)
where M’ € A and a € Homp,o4)(M, M'), and whose morphisms are given by

Hom g ((My,a1),(Ms,as)) = {b € Hom4(My, Ms) ; ay =boay}.

Let M € Pro(A). Suppose that there exists M € A and a monomorphism ¢ :
M — M. We can consider the full subcategory AM C AM of pairs (M’ a) with a
being monomorphism. The subcategory AM is cofinal. Indeed, if (M’ a) € AM, then

(M’ x M, (a, L)) e AM. TLet AY C A} be the full subcategory of objects which

are minimal, in the sense that if there is (M”,b) € AM with a monomorphism ¢ €
Hom4(M”, M") such that ¢ o b = a, then ¢ is an isomorphism. By the minimality
of the objects of Ay', it is easy to see that the Hom-space Hom g ((M’,a), (M",b))
consists of exactly one element for every (M’ a), (M”,b) € AM. Tt follows that any object
(M’ a) € AY yields an isomorphism a : M = M’'. As A is artinian, A}’ cannot be empty,
whence M € A.

To prove (i), in view of (A.1.3), it suffices to show that A}, is cofinal. The pre-
vious paragraph shows that for (M’,a) € AM, the image im(a) is in A. Consider the
factorisation M =% im(a) = M’. Then (im(a),7,) € AM and there is a morphism

a: (im(a), ma) —s (M’,a) in AM. Thus AM is cofinal in AM.

epi
We prove (iii). Let M € A. Since A C Pro(A) is closed under taking sub-objects,
every descending chain of sub-objects of M is in the subcategory A, which by assumption
must stabilise. Thus M is artinian in Pro(.A). Suppose that M € Pro(A) is artinian.
There must be a minimal sub-object M’ C M such that M /M’ lies in A, meaning that
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the category AY has an initial object. By (ii), M being the projective limit on A} must
lie in A, whence (iii). The assertion (i) follows immediately from (iii).

We prove (iv). Let ¢ : M — cokery = C' be the cokernel. Suppose that C' # 0.
Since C' € Pro(.A), there exists an epimorphism p : ¢ — C’ with 0 # €’ € A. Since
poc: M — (' is epimorphism, the composite p o ¢ o ¢ is also an epimorphism by
hypothesis. However, as co ¢ = 0, we see that C' = 0, contradiction. Thus C' = 0 and ¢
is an epimorphism. O

Al4

Suppose that A is noetherian and artinian. We define an endo-functor

hd : Pro(A) — Pro(A), hd(M)=“lim” hd(M’)

(M/7q) EAé\gl

where hd(M’) is the largest semisimple quotient of M’ in A. For every M € Pro(.A),
there is a canonical map 7y : M — hd(M).

Lemma A.3. Let A be a noetherian artinian abelian category. Let o : N — M be a

™

morphism in Pro(A). Suppose that the composite N % M ™% hd(M) is an epimorphism.
Then ¢ is an epimophism.

Proof. We first prove the statement in the case that M € A. In this case, since coker @ is a
quotient of M, we have an epimorphism hd(M) — hd(coker ). As the composite N —
hd(M) — hd(coker ¢) is zero and is an epimorphism, it implies that hd(coker ¢) = 0.
As A is noetherian, it follows that coker ¢ = 0, so ¢ is surjective.

In general, let M € Pro(A). Let (M’ q) be any object of AM.. Then 7y, 0goyp is an epi-

epi*
morphism. By the previous paragraph, goy is also an epimorphism. Then Lemma A.2 (iv)

implies that ¢ is an epimorphism. Il

A.1.5

Lemma A.4. Suppose that Extil(M, N) is finite dimensional for M and N simple. Let
M € A be a simple object. Then there exists a projective cover Py € Pro(.A).

Proof. We construct an object P™ € Pro(A) for any n € N by induction. Let P™ = M.
For n > 0, let

0— H Exth (P(”_1)7L)* QL —s pn . pr-1)
Lelrr(A)/~

be the short exact sequence corresponding to the diagonal class

Ae J]  Exth (P L) @Exty (P"V,L).
Leelrr(A)/~

Put P = “1&1” P™_ Then P is a projective since we have

Extpyoa) (P, L) =0
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by construction. Denote p : P — M the obvious epimorphism.

Now, let AL, be the category whose objects are triples (m, Q, ), where

e Qe A
o 7 € Homp,o(4)(P, Q) is an epimorphism and

o 7 € Homyu(Q, M)
such that

o mom=p € Hompya)(P, M) and

7' induces an isomorphism hd(Q) = M.

The morphisms are defined by
Hom 4 ((m1, Q1,m1), (2, Qa,75)) = { € Homy (Q1,Q2) ; pom =ma}.
Put

PM _ cal-gln Q
(W,Q,ﬂ/)EAI[CI

A.1.6

Let A be the full subcategory of Pro(A) consisting of objects M € Pro(.A) such that
hd(M) € A.

Let {L;},., be a complete collection of simple objects and for each i € I, let P, — L;
be a projective cover. Suppose tha Put P4 = @,.; P and B4 = Endp,o(.4)(Pa)-

Proposition A.5. There is an equivalence of categories
B4 -mod = A

which indentifies the subcategory of Ba-modules of finite length with A

A.l.7

Let Z4 = End(id4) be the categorical centre. It is obvious that the restriction map
End(idpro(4)) — Z.4 is an isomorphism. Suppose that the set of isomorphism classes of
simple objects of A is finite. Let {L;},.; be a complete collection of simple objects and
for each i € I, let P; — L; be a projective cover. Put Py = @, ., b

Proposition A.6. The canonical map
ZA — Z(Endpro(A) (PA))

is an isomorphism.



Appendix B

Relative Coxeter groups

B.1 Relative Coxeter groups

This section is independent of the rest of the article. We recollect certain results of
Lusztig [29], [35] and [31] concerning the structure of relative Weyl groups. We generalise
these results to a more general setting.

B.1.1 Set of reflections

Let (W, S) be a Coxeter system with S C W the set of simple reflections. We follow Bour-
baki [0, ch 4] and define T = {wsw™ € W ; s € S,w € W} to be the subset of elements
that are conjugate to some simple reflection. Elements of T" are called reflections. Given
any w € W, let w = wyw,...w, be a reduced decomposition with w; € § for all 7. For
each t € T, we let

-1 ift =wwse... wj_wjw;_; ... wewy for some 1 < j <gq
n(w,t) = . :
1 otherwise

It turns out that n(w,t) is independent of the choice of reduced decomposition. Let
T(w) = {t € T;n(w,t) = =1} and D(w) = T'(w) N S. The following properties about
T(w) is standard.

Proposition B.1. In the above notations,

(i) There is a characterisation T (w) = {t € T; ((tw) < l(w)} C T.
(ii) For each w € W, we have {(w) = #T'(w).
(iii) For each w,y € W, we have T(wy) C T(w) UwT (y)w™?.

B.1.2 Conjugation of parabolic subgroups

For any subset ¥ C S, let (Wx, X) be the Coxeter subsystem of (W, S) generated by .
Accordingly, let Ts, denote the set of reflections in the Coxeter system (W, X).

123
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We define subsets *W = {w e W ; T(w)NTs =0}, W¥ ={w e W; T(w H)NTy =0} =
(EW)A. Then, W* and W form a full subset of representatives for the elements of

W /Wy and Wx\W, respectively. Moreover, the elements of W> and *W are charac-
terised by the property that they are of minimal length in their own classes.

For any two subsets X, X" C S, we define a subset
N(Z,Y) = {y eWN¥W; yWey ' = Wy}
Proposition B.2. The following statements hold:

(i) For any subsets ¥, %" C S and for any element y € N (3,%'), the isomorphism
defined by conjugation
Il’lty Ws — Wy

w +— ywy‘l

induces an isomorphism of Coxeter systems (Wx,X) = (Wx, X') and in particular
a bijection on the reflections Ts = Tyy.

(ii) For any subsets 3,5 3" C S, the multiplication on W restricts to a map
N(2,5") x N (2, %) — N(2,5).

Proof. For (i), it suffices to show that Int,(X) = X', or equivalently that the isomorphism
Int, preserves the length. Indeed, we have for any w € Wy,

Uy) + U(w) = € (yw) = L (ywy~'y) = (ywy ™) + (y),
where first equality is due to the fact that y € W* and the third is due to the fact that
y € ¥'W. This proves (i).

For (ii), since y'yWxy 'y ! = y/Wsy/~! = Wyw, it remains to show that y'y € W= N
"W . By symmetry, we need only to show that 'y € * W. The assumption that y € ¥ W
—

and v € YW, implies T(y) NTgr = and y'T(y)y ' NTsr = ¥y (T(y) NTe)y'™! =0
Therefore, by Proposition B.1(iii), we deduce that
T(yy') N T € (T(y) NTen) U (yT(y)y' ' Ter) =0,
whence yy' € Z'W.
O

Now we study the decompsition of elements in N (2, ).

Proposition B.3. Let ¥, %" C S be subsets and let w € N (X,%). Suppose that Wy, and
Wy are finite. For each s € S\ ¥, the following conditions are equivalent:

(i) L(sw) = l(w) —1,
(ii) s € D (wy w)\ ¥ = D(w),

iit) Wsyigsy is finite and ¢ we VS w) = o(w) — 0 (w VB wS).
{s} 0 0 0 0
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(Z’U) TE’U{S} \ TE’ g T (w%:lw) \TE’ = T(w),

Proof. The conditions (i) and (ii) are equivalent by definition.

Suppose first the condition (i): ¢(sw) = ¢(w) — 1. We claim that for any element
r € Wxyugs), we have
wy w > zwy w (B.4)

in the Bruhat order. We prove this by induction on ¢(z). When ¢(x) = 0, the equa-
tion (B.4) holds trivially. Suppose that ¢(x) > 0, so that ) # D(z) C ¥’ U{s}. We choose
any s € D( ) so that E(s z) < {(x) and thus wj w > s'zw) w by the inductive hypothe-
sis. If s'zwy w > 2wy w, then we are done. Otherwise we have s gé D (s'zw§ w). Since
w € N(X, %), we know that wy w = ww} so that X' U {s} C D(wy ) U D(w) = D(wj w),
which implies s’ € D(wy w) \ D(s'zwy w). In this case, the lifting property of the Bruhat
order (see [, 2.2.7]) implies that wy w > xwy w, so (B.4) is verified. In particular, the
equation (B.4) immediately implies that Wy is finite and thus there exists a unique

longest element wg Yt Now applying (B.4) to elements of Txyp € Wivigsy, we deduce
that Tsigsy € T(wy w). Therefore

Tousy \ Ty €T (w§/w> \ T =T (w)

This implies (iv).
Assuming (iv), we see that Ty € T'(w) must be finite, so is Wxv(s, and that

g(woz Uist,, 2 > #T( Zu{s} 2 ) HT (w) — #TE’U{S}+#TE’:€( w) — €<w§ U{s} g

and we have thus (iii).

. »u / /
Assuming (iii), since wy s} wy € W*

s. This implies

E(sw)ﬁﬁ( OZU{S} > )—i—f( 0{s) Els)
£(w) = (wy ) + 0 (wf ) =1 = tw) -

, every reduced decomposition of it ends with

whence (i).

]

Proposition B.5. For any X,%" C S such that Wy and Wy, are finite and for any
y € N(X,Y), there exists a sequence {¥;}]_, of subsets of S and a sequence {y;}} 11 of
elements of W such that

(1) 81 =X and ¥, =¥/,
(ii) the subsets ¥; and ¥, differ by at most one element for alli=1...q—1,

(iii) y; € N(Z;,5is1) and there exists s; € S\ S such that y; = wy' Dlsdy, Si for all
1=1...q—1,

(iv) L(y) =L(y1) + ...+ (yg).

)
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Proof. We prove the statement by induction on £(y). If {(y) = 0, it is trivial. Suppose
that ¢(y) > 0. We choose an element s € D(y). Since y € YW, we see that s € S \ X
By Proposition B.3, we have

Uy)=1¢ (w[?/u{s}wg/y) +/{ (woz/u{s}wg/> )
Now, the conjugation Int s/, . sends X' to some subset X" C S. Therefore,
Wy )

wy ey e N (2,57
Applying the inductive hypothesis to w?u{s}wgly, there exists then ¥, =%, | X, =¥
and yi, - - -, y,—1 satisfying the desired properties. We define then ¥, = ¥', ¥' U {s} =
’ , -1 "yl ”
YU {s,} and y, = (w? U{S}w§> = wy " Then the sequences {2;}%] and

{y:}{_, have the desired property. O

B.1.3 Relative Coxeter groups

Let (W, S) be a Coxeter system and let ¥ C S be a subset which generates a parabolic
subgroup Wy.

We assume the following two conditions:

(i) The parabolic subgroup W is finite.

(ii) For each subset ¥’ C S containing ¥, if the parabolic subgroup Wy generated by
' is finite, then its longest element w; normalises Wi

By the first hypothesis, there is a longest element w3 € Wx. It defines an automor-
phism of group
WZ — WE

20D
W Wy wwy

As wj is longest, for any element w € Wy, we have ¢ (wwd) = ¢ (wiw) = € (w§) — ((w)
and thus ¢ (wiwwy’) = ¢(w). In particular, it induces an involution on ¥ and on T%.

Consider the quotient group Ny (W) /Wx. In each class C € Ny (Wy) /Wy, there
is exactly one element w € C' of minimal length ¢(w) = minyec ¢(y). Such an element is
characterised by the property that T'(w) N Ty = 0. Let W* = {w € W;T(w) N Tx = 0}
and W = Ny (Wy) N W

Proposition B.6. The following statements hold:

(i) The normaliser Ny (Ws) is isomorphic in the canonical way to the semi-direct

product W x Wy.
(ii) For any w € W, the conjugation
WZ — WE

Y — wyw_l

preserves the length function and thus induces a permutation of ¥ and of T.
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(iii) The element wy centralises W .

(i) For any w € W, we have T (wiw) = T(w) UTs and D (wiw) = D(w) U 2.

Proof. For (i), since W — Ny (Wy) /Wy is a_bijection, it suffices to show that W is
closed under multiplication. Indeed, if w,y € W, then Int, preserves the set 7. Now
Ty € T(w) UwT (y)w™ C Ty \ Ty, so wy € Ny (Ws) N =W = W. This proves (i).

For (ii), we notice that £(w) + £(y) = ¢(wy) = £ (wyw ' w). Since wyw™' € Wy, we
have ¢ (wyw™tw) = £ (wyw™') + £ (w). Thus ¢(y) = ¢ (wyw™'). This proves (ii).

For each element w € W, the conjugation Int,, preserves T%, the length function on
Wy, thus the longest element of (W, ¥). This proves (iii).

The statement (iv) results immediately from (ii) and (iii). O

Proposition B.3 applied to the case ¥ = ¥’ can be restated as follows.

Proposition B.7. Letw € W. For each s € S\ X, the following conditions are equivalent:

(i) U(sw) =

(’U}) - 17
(ii) s € D (wiw) \ & = D(w),

(iii) Wiy is finite and £ (w?u{s}wgw) =l(w)—{ (w?u{s}wg).
(iv) Tsugp \Ts C T (wiw) \ Ts =T (w),
We define
EB = {S S S\E;#WEU{S} < OO} .

For each s € X, we denote 5 = wozu{s}w(? € W. Clearly, 5 € W. We set S =
{§ eW;se EC}. Let T C W denote the subset of elements that are TW-conjugate to

some element of S. For each w € W, we denote

T(w) = {t e T ((tw) < E(w)} , D(w)=Tw)NS.

Proposition B.8. Let w € med let s € D(w). Suppose that we are given a decompo-
sition w = wy ... w, with w; € S for all i and that {(w) = l(wy) + ...+ L(w,). Then there
exists an 1 <1 <r such that

§w1...wi_1:w1...wi.

Proof. From Proposition B.7 we deduce that ¢(5w) + ¢(5) = {(w). Let m > 1 be the
minimal integer such that

C(Swy ... wp) < L(8) 4+ L(wy...wy)
By Proposition B.7 again, we have

C(wy ... W) + U wp,) —0(8) =L (wy ... wy) —(5) =L (5w ... wy,)
=0 5wy ... wy_1) — U wy) =0 (wy ... Wy_1) + £(5) — L(wy,).
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Therefore ¢ (3) = £ (wy,).

Now let § = uy ... u,, and w,, = vy ...v, be reduced decompositions in (W, S) so that
r=40(8) ={(wy)and u;,w; € S for all .. We also let wy ... w,,_1 =z ...z, be areduced
decomposition for wy ... w,,_1 € W. Now for each j = 1...r, we have

C(wy...wy) —(r—7+1) (wj .. upwy . W) = (U Uy o TV LUy

</

whence £ (uy ... upxqy ... 2001 ... 0p) =L (wy ... wy) — (r—j+1). Applying the exchange
condition for (W, S), there is either an 1 < i < r such that

UpZy .. . Tj—1 = T1...Tj
or there is an 1 <7 < 7’ such that
UpX1 oo . TptV1 00 Vi1 = X1 ...T007 ... V5.

The first case cannot really happen since z; ...z, is a reduced word. because otherwise
C(upzy o) =0 (21 ... 2. ..xw) <7, absurd. Thus

UpX] oo  TprV] oo Up = XY oo TpV] oo Dy o U

with 7, = i. Now Applying again the exchange condition and reasoning on the reducedness
of u,xy---x,, we have

Up—qUpTy o - TprV1 o o Up = Up1T1 .. - XtV -0 Uy o0 Up = X100 TV o0 Vg oo o Uy o Up
for some 1 <1y < m and 75 # i;. Continuing on, we arrive at
UL .o UpX] oo TtV oo Uy = L1 oo o Tt

so that
SWi ... W, =UL .. - UpX] . . TtV o Vp = X1 ... Ty =W ... W1

or equivalently 5wy ... wy,_1 = Wi ... Wy, since 52 = e. This proves the proposition.
]

For w € W, we denote /(w) € NU {00} the length of w in the Coxeter group (W, S)
(in contrary to the length ¢(w) in the Coxeter group (W, S)). This is defined to be

{(w) :inf{q eN;Jw,...w, €85, w:wl...wq} e NU{o0}.
Theorem B.9. In the above notations,

(i) the pair (W,S) forms a Coxeter system.

(ii) Then for any w,y € W, we have

U(y) + 0(w) = l(yw) if and only if 0(y) + L(w) = {(yw).
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Proof. Let us first verify that S generatesj;[/. Let w € W. We prove by induction on (w)
that w is in the subgroup generated by S. When ¢(w) = 0, it is trivially true. Suppose
that w # e. Take any s € D(w). Then s € S\ 3, and by Proposition B.7 we have

Trugsy \ Tz € T(w).
From this, we see that T'(w) = T'(ws) U (Tsuge \ T%), so
l(ws) =L (w) —L(5) < {(w)
By induction hypothesis, ws belongs to the subgroup generated by S, and so is w. In

particular, £(w) < oo for all w € W.

We prove (ii). It suffices to treat the case where y = § € S since the general case
follows by induction on {(y). Let w = w; ... w, € W be a decomposition in (W, .5) such
that w; € S, and ¢ = ¢(w) is minimal.

Suppose first that £(5w) < £(8) + ¢(w). Then Proposition B.8 implies that there is an
index 1 < j < ¢ such that sw; ... w;_; = w;...w,, and hence

SW = W1 «.. Wj—1Wj41 ... Wq

which implies £(5w) = f(w) — 1.

Similarly, if we replace w with 5w in the above argument, we will have that ((w) <
0(8) + ¢(5w) implies ¢(w) = £(Sw) — 1.

According to Proposition B.7, either ¢(5w) = ¢(w)+¢(5) or {(5w) = ¢(w) —{(5) should
hold. Therefore we have the equivalences of conditions:

~ZZ(~§w) :?(w) +1 <= €(~§w) =l(w) + €(~§) (B.10)
U(5w) = l(w) — 1 <= ((5w) = L(w) — (3).

This proves (ii).

In order to show that (W, 5') is a Coxeter system, it suffices to verify the exchange

condition [0, 4.1.6, Théoreme 1]. This follows immediately from the above equivalences
of conditions Equation B.10 and Proposition B.8.

Il
Since W =2 Ny (Wy) /W, the resulting Coxeter system (W, 5’) or the quotient

(NW (W) /W, § - WE/W2>

is called the relative Coxeter group.

B.1.4 Coxeter complex

Let § be the Coxeter complex of (W, .S), which is defined by
S={yWsCW;ECS yeW"}
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equipped with a partial order (§, <) opposite to inclusions. Let € C § be the set of
maximal elements in this partial order, consisting of the singletons. The spherical part of
the Coxeter complex to the subset

F = {yWy € F; #Ws < 00}

equipped with the induced partial order. Then clearly ¢ C FP". Elements of ¢ are called
chambers.

The group W acts on § and " by left translation. The restriction of this action on
¢ is simply transitive. Let yWy € § be a facet, then the stabiliser of it is described by

Stabw (yWE) = yWEyil.

In particular, if yWy, € PP, then it has finite stabiliser.

We remark that in the case where (W, S) is of finite or affine type, § and FP" coincide.
In the case of finite type, § has a geometric realisation as a sphere of dimension #S5 — 1,
while in the case of affine type, § can be realised as an euclidean space of dimension

45 1.

B.1.5 Fixed sub-complex

Now we fix ¥ C S such that Wy is finite. Consider the sub-complex FP!(X) = (3sph)WE
consisting of the facets fixed by the subgroup Wy. The fixed facets /Wy € FP (X)) are
characterised by the property that Wy, C Staby, (v Wyy) = y/Wsy/~L. Let €(X) C FPH(X)
be the set of maximal elements, called chambers in " (X). Then the elements ' Ws, €
FPh(X) are those such that y/'Wyy/~! = Wr.

Theorem B.11. Suppose that 3 C S satisfies the condtions of §B.1.5. Let y'Wy € €(X)
be any chamber. Then X' = X. Moreover, the relative Cozeter group W = N(X3, %) /Wy,
acts simply transitively on € (X).

Proof. Applying Proposition B.5, we obtain sequences {%;}7_; and {y; }\_; which have the
properties listed in the proposition. In particular, y; = w§ iu{s}w(?i holds. Since wg 10{s}
normalises Wy, so does y;. Hence ¥y = ;1 = 3. By induction, we can show that >, = X
and y; € N(3,%) for all &. Thus ¥’ = ¥ and that y'Wy and Wy are connected by
N (3, %). ]
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