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1. Subsurface parameters are numerous (velocity, density, anisotropy etc.) and depend on the approach used under different approximations. In the course of the manuscript this set of parameters is often reduced to velocity in the discussion since it is the principal parameter of interest.
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Abstract

Velocity model building is a key step of seismic imaging since inferring high-resolution subsurface model by migration or full waveform inversion (FWI) is highly dependent on the kinematic accuracy of the retrieved velocity model. Stereotomography, a slope tomographic method that exploits well the density of the data, was proposed as an alternative to conventional reflection traveltime tomography. The latter is based on interpretive tracking of laterally-continuous reflections in the data volume whereas stereotomography relies on automated picking of locally coherent events. The densely picked attributes, namely the traveltimes and their spatial derivatives with respect to the source and receiver positions, are tied to scatterers in depth. More recently, a slope tomography variant was proposed under a framework based on eikonal solvers as an alternative to ray tracing and the adjoint-state method instead of Fréchet-derivative matrix inversion. This revamped stereotomography provides a scalable and flexible framework for large-scale applications. On the other hand, similarly to previous works, the scatterer positions and the subsurface parameters are updated jointly.

In this thesis, I propose a new formulation of slope tomography that handles more effectively the ill-famed velocity-position coupling inherently present in reflection tomography. Through a kinematic migration, the scatterer position sub-problem is solved and projected into the main sub-problem for wavespeed estimation. Enforcing the kinematic consistency between the two kinds of variable, that is not guaranteed in the joint inversion, mitigates the ill-posedness generated by the velocity-position coupling. This variable projection leads to a reduced-parametrization inversion where the residuals of a single data class being a slope are minimized to update the subsurface parameters. I introduce this parsimonious strategy in the framework of eikonal solvers and the adjoint-state method for tilted transversely isotropic (TTI) media. I benchmark the method against the Marmousi model and present a field data case study previously tackled with the joint inversion strategy. Both case studies confirm that the parsimonious approach leads to a better-posed problem, with an improved robustness to the initial guess and convergence speed.

Slope tomography is mainly used for streamer data due to the requirement of finely-sampled sources and receivers. To exploit cutting-edge long-offset datasets, I involve in the inversion first arrivals extracted from streamer or ocean bottom seismometer data. Before showing the complementarity between reflections and first arrivals, I examine the added value of introducing slopes in first-arrival traveltime tomography (FATT). Using a FWI workflow for quality control, I show with the Overthrust benchmark and a real data case study from the Nankai trough (Japan) how the joint inversion of slopes and traveltimes mitigates the ill-posedness of FATT. I also examine with the BP Salt model the limits of FATT to build an initial model for FWI in ix complex media. The results show how tomography suffers even with proper undershooting of the imaging targets due to the poor illumination of the subsalt area. On a crustal-scale benchmark, I first show the limits of reflection slope tomography induced by the limited streamer length before highlighting the added-value of the joint inversion of first-arrival and reflection picks.

Finally, I introduce the same variable projection technique to tackle the velocity-hypocenter problem, which finds application in earthquake seismology and microseismic imaging. I propose a formulation where the hypocenter is located through the inversion of subsurface parameters and an origin time correction, both of them being used as a proxy and validate the proof of concept on two synthetic examples.

Résumé

La construction du modèle de vitesse est crucial en imagerie sismique puisqu'elle contrôle la précision avec laquelle des méthodes d'imagerie haute résolution telles que la migration ou l'inversion des formes d'ondes complètes (FWI) peuvent imager le sous-sol. La stéréotomographie, une méthode de tomographie des pentes qui tire efficacement profit de la densité des données sismiques modernes, a été proposée comme une alternative aux approches classiques de tomographie en réflexion fondées sur le pointé d'horizons continus dans le volume sismique. La stéréotomographie est en revanche fondée sur le pointé semi-automatique d'événements localement cohérents, paramétrés par le temps double et les pentes aux sources et récepteurs et liés à des diffractants dans le sous-sol. Plus récemment, une variante de la stéréotomographie a été proposée en remplaçant le tracé de rai par un solveur eikonal dans le problème direct et l'inversion de la matrice des dérivés de Fréchet par la méthode de l'état adjoint dans le problème inverse. Cette nouvelle approche est massivement parallèle et de ce fait adaptée à des applications de grande dimension. Néanmoins, et de manière comparable à l'approche initiale, la position des diffractants et les paramètres du milieu sont conjointement mis à jour.

Durant cette thèse, j'ai proposé une nouvelle formulation de la stéréotomographie qui gère plus efficacement le couplage vitesse-profondeur, inhérent aux approches en réflexion. Via une migration cinématique, je résous le problème de localisation et le projette dans le sous-problème principal de l'estimation des vitesses. Cette projection de variable garantit la consistance cinématique entre les deux classes de variables, consistance qui n'est pas garantie quand les deux classes de variables sont mis à jour conjointement. Par ailleurs, la projection de variable induit une paramétrisation compacte du problème inverse où une classe d'observables, en l'occurrence une pente, est utilisée pour mettre à jour une classe de paramètres, les vitesses. Je développe cette approche avec un solveur eikonal et la méthode de l'état adjoint pour des milieux TTI. Son évaluation sur deux cas d'étude synthétiques et réel confirme sa meilleur résilience au modèle initial et une vitesse de convergence plus rapide que l'approche conjointe.

La stéréotomographie est principalement utilisée pour des dispositifs de sismique réflexion (flûte sismique) pour lesquels les sources et les récepteurs sont finement échantillonnés. Pour exploiter des dispositifs modernes à forts déports, j'ai introduit dans l'inversion les premières arrivées issues indifféremment de dispositifs de sismique réflexion multitrace ou de sismique grand-angle (OBN, OBC, terrestre). Dans un premier temps, j'ai illustré l'apport des pentes dans la tomographie des temps des premières arrivées (FATT) pour réduire l'ambiguïté tempsprofondeur avec un cas synthétique et un cas réel sur la zone de subduction de Nankai. J'ai aussi évalué la tomographie des pentes en première arrivée pour construire un modèle initial pour la FWI avec un modèle complexe représentatif du Golfe du Mexique où la présence de sel xi génère de forts contrastes. J'ai pu illustrer la capacité de ma méthode à reconstruire les corps de sel tout en notant les difficultés héritées de l'éclairage incomplet de la zone située sous le sel. Cela m'a incité à combiner des données de sismique réflexion et des données grand-angle pour effectuer l'inversion conjointe des pentes et des temps de trajet des premières arrivées et des arrivées réfléchies pour bénéficier d'un éclairage angulaire optimal du milieu illustrée par des applications sur la zone de Nankai. Finalement, j'ai étendu l'utilisation de ma méthode par projection de variable pour localiser l'hypocentre des séismes en utilisant l'estimation des vitesses et des temps origine comme proxys. Cette approche originale a été validée avec deux exemples synthétiques.

Mots-clés: Imagerie sismique; Tomographie; Problème inverse. . P-wave velocity, S-wave velocity, density and anisotropy in solid lines, horizontal components of velocity in dashed lines. Taken from [START_REF] Dziewonski | Preliminary reference Earth model[END_REF]. . . . . . . . . . .

2

The FWI gradient seen as (a) the zero-lag correlation between between the partial derivative wavefield (derivative of the wavefield with respect to the scatterer m i ) taken at the receiver R and the data residuals or as (b) the zero-lag crosscorrelation of the virtual scattering source and the adjoint wavefield (residuals backward propagated from the observation point) at the scatterer m i . The virtual scattering source is obtained by sampling the incidence wavefield triggered by S at the position of m i weighted by the appropriate radiation pattern. (c) An example of a radiation pattern at the diffractor position (parameter presented is density). Taken from [START_REF] Operto | Frequency-domain full-waveform inversion of global offset data[END_REF]. . . . . . . . . . . . . . . . . . . . . . . .

3

Local resolution in the subsurface. a) Relationship between the scattering angle θ and the local wavenumber at a scatterer X in the subsurface. The local wavenumber vector k, pointing of the slowness vectors k s + k r at the scatterer is influenced by the local wavelength λ of the seismic wave and the scattering angle θ. b) Schematic representation of the wavenumber gap between the long wavelength component constrained mainly through wide-angle scattering and low frequencies and the short wavelength components constrained mainly by narrow angle scattering and high frequencies. Modern tomographic approaches through their high resolution velocity model seek to fill the intermediate gap (green dashed curve). On the hand, developments around broadband data and acquisition design are also permitting in closing the gap (red dashed curve). Depth-migrated volume using an inaccurate background model (velocity macro model). (c) Depth-migrated volume using the correct velocity macro model (middle panel of figure 4). The summation along the angle axis of panel (c) producing the sought reflectivity model (rightmost panel of figure 4). . . . . . . 13 Pre-stack ray+Born migration principle. Migration of a diffraction tied to a scatterer at 0.5 depth situated in distance at the mid-distance between two different source-receiver couples (pink and green). (a) Case of a true background model: Constructive summation of the migration isochrones tied to both sourcereceiver couples (pink and green) at the true scatterer location (black dot). The scatterer is illuminated through two different angles 2θ, θ denoting the halfaperture. (b) Case of a wrong background model: summation of the migration isochrones tied to both source-receiver couples (pink and green). The energy coming from the two source-receiver couples focuses at different depth (black dots and bars). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Stereotomography attributes. Left panel: Locally coherent event in stereotomography defined in the data volume. Described by a slope p r , a receiver R and a two-way time T sr determined in the common-shot gather and a slope p s determined in common-receiver gather for the same shot S and two-way time T sr two-way traveltime. Right panel: The reflection of the wave propagating from the source S occurring at the scatterer (marked the migration facet) and recorded at the receiver R. The slopes representing the horizontal component of the slowness vector at S and R. . . . . . . . . . . . . . . . . . . . . . . . . 17 Data and model parameters of stereotomography (Billette and Lambaré, 1998). The recorded data attributes inverted, delineated by the grey rectangle, are the two-way traveltime T sr , the slopes p s , p r at the source S and receiver R, respectively. The model parameters, delineated by the yellow ellipse, are the B-spline coefficient for velocity C mn , the one-way traveltimes (T s ,T r ) and the scattering angels (θ s ,θ r ). The red line represents a migrated facet. Taken from [START_REF] Prieux | Building starting model for full waveform inversion from wide-aperture data by stereotomography[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Kinematic invariance of slope tomographic attributes. Left: Picked slopes in the time-domain (blue facet), in the common offset and the common midpoint collection, associated with their traveltime for a source-receiver couple. Right: Picked δRMO (ϕ) and dip (ξ) in the depth-migrated domain (red facet), in the the common offset and the common image gather, associated with a scatterer in depth illuminated by a source-receiver couple with a given angle 2θ. . . . . . . 20 xviii 1.1 Two-point ray tracing. a) The Shooting method where the incidence angle at the source (triangle), serving as an initial value for the ray integration, is updated until a ray connects to a point in the medium (circle). (b) Its counterpart, the Bending method where the two end-points of the ray path are fixed. The geometry of the ray is perturbed until the latter satisfies Fermat's principle. Taken from [START_REF] Rawlinson | Seismic tomography: a window into deep earth[END_REF] . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Traveltime computation in the TTI BP salt. Superimposition of traveltime contours (in red) from calculated through the factored eikonal solver of [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF], on the wavefields at times 2s, 3s, 6s and 10s for the TTI BP salt model. Notice the match between the eikonal and the full-wave solution. Taken from [START_REF] Tavakolifaradonbeh | Tomographie de pente fondée sur l'état adjoint : un outil d'estimation de modèle de vitesse pour l'imagerie sismique[END_REF]. . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Off-grid eikonal source point implementation. Analytic solution of traveltime is calculated to nearby grid-points which are in turn used as a boundary. . . . . 1.4 Local quadratic approximation of a misfit function. The objective function C(m) is approximated, at each iteration i, by a locally quadratic function C(m i + ∆m) around an estimate m i . Supposing that C(m) and its local approximate C(m i + ∆m are sufficiently close in the sense that the minimizer of both functions around m i falls in the same basin of attraction. At some iteration "i * -1", the minimizer m * of the parabola C((m i * -1 ) + ∆m) is the minimizer of C(m).

1.5 Rosenbrock example. Optimization done through different schemes: steepestdescent, full Newton, scaled Full Newton, Gauss-Newton, scaled Gauss-Newton, Levenberg-Marquardt. The black lines denote the cost function level sets. The global minimum at [START_REF]) 2: Set initial B-spline velocity model c 0 3: Preliminary re-localization of scatterers in c 0 4: for i = 1 to N ms do 5: c 0,i = S c N it ,i-1 6: for k = 1 to N it do 7: call[END_REF][START_REF]) 2: Set initial B-spline velocity model c 0 3: Preliminary re-localization of scatterers in c 0 4: for i = 1 to N ms do 5: c 0,i = S c N it ,i-1 6: for k = 1 to N it do 7: call[END_REF] is marked by a green dot. The red line represents the optimization path taken by through the different schemes at every iteration (red dot) starting from an initial guess (-0.6,1.5). . . . . . . . . . . . . . . . . . . 1.6 Rosenbrock example. Optimization done through a BFGS scheme. The black lines denote the cost function level sets. The global minimum at [START_REF]) 2: Set initial B-spline velocity model c 0 3: Preliminary re-localization of scatterers in c 0 4: for i = 1 to N ms do 5: c 0,i = S c N it ,i-1 6: for k = 1 to N it do 7: call[END_REF][START_REF]) 2: Set initial B-spline velocity model c 0 3: Preliminary re-localization of scatterers in c 0 4: for i = 1 to N ms do 5: c 0,i = S c N it ,i-1 6: for k = 1 to N it do 7: call[END_REF] is marked by a green dot. The red line represents the optimization path taken at every iteration (red dot) starting from an initial guess (-0.6,1.5). . . . . . . . . . . . [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. (b) Velocity model inferred from 195 iterations of PAST with superimposed scatterers. In (a), scatterer coordinates were processed as optimization parameters in AST, while they were found by solving the focusing equations, equations 2.12, in PAST. (c-d) Final FWI models obtained with initial models shown in (a) and (b). . . . . . . 2.9 Marmousi example. Comparative velocity logs. The tomographic, FWI and true models are represented by red, blue and black lines, respectively. The dashed lines denote the results obtained by [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. Green arrows in (d) delineates the oil and gas cap low velocity anomaly. . . . . . . . . 2.17 Toy test. Demigration velocity versus migration velocity. The red and blue lines denote the optimization paths taken by the proposed approach and AST [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and respectively, while the red circles and blue squares denote the iterations . The black curves denote the cost function iso-values. Three different optimization strategies: On the left, Gradient Descent: 39 it.

(PAST) -362 it. (AST). In the center, Gauss-Newton: 4 it. (PAST) -5 it.

(AST). On the right, Quasi-Newton (BFGS): 8 it. (PAST) -11 it. (AST). . . .

2.18

Marmousi example. Velocity versus scatterer position relative root mean square error evolution during the inversion. The red and black curves denote the inversion through AST [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and the proposed approach respectively. . 

2.26

Marmousi revisit example. Velocity models obtained through PAST for the three cases presented in figure 2.21 superimposed by ray+wavefronts computed using the wavefront construction method of Lambaré et al. (1996a). . . . . . .

2.27 SEFASILS case study. (a) Seismicity map (magnitude 2+) of the Alps-Ligurian basin junction, according to ReNaSS and SiHex catalogs (1980 -2016). The yellow and red stars denote the approximate epicenter location of two major earthquakes: 23 February 1887; M W ≈ 6.7 -6.9 [START_REF] Larroque | Reappraisal of the 1887 ligurian earthquake (western mediterranean) from macroseismicity, active tectonics and tsunami modeling[END_REF], and 19 July 1963; Ml = 6.0 [START_REF] Bethoux | A closing ligurian sea?[END_REF], respectively. (b) Ship tracks followed and planned in the scope of the ongoing campaign. The profile SEFA14 (light blue line) is the one coinciding with the Ocean Bottom Seismometers (OBSs) denoted by the red dots. Taken from [START_REF] Dessa | Seismic exploration of the deep structure and seismogenic faults in the ligurian sea by joint multi channel and ocean bottom seismic acquisitions: Preliminary results of the SEFASILS cruise[END_REF]. . . . . . . . . 

3.2

Optimization measurements in FASTT. The star and the square denote the source and receiver positions, respectively. The two-way traveltime T s,r and the slopes at the source and receiver positions, p r,s and p s,r , respectively, are inverted to update the velocity model. The slowness vectors at the source and receiver positions are denoted by p r,s and p s,r , respectively. The recorded data are labeled with the superscript • * . The dash line represents the true ray. . . . . . . . . . .

3.3

Toy test for a constant vertical velocity-gradient medium. The medium is parametrized by two parameters, the top velocity v 0 and the vertical velocity gradient a. The colored lines denote the optimization paths taken by the FATT (left column panels) and FASTT (right column panels) using a steepest-descent (blue) and a BFGS (red) scheme. The black curves denote the cost function iso-values. The white diamond denotes the sought minimum. Two acquisition setups: Top panels for a full offset settings and bottom panels for a partial acquisition 3.12 FWI model of the eastern Nankai through [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF][START_REF] Górszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. 

Gulf of Mexico Basin

Opening geological interpretation by [START_REF] Avendonk | Continental rifting and sediment infill in the northwestern Gulf of Mexico[END_REF]. The different layers are denoted by: LJ for lower Jurassic, MJ for middle Jurassic, UJ-K-for upper Jurassic and Cretaceous, P for Paleogene, N for Neogene, S for Louann Salt. The green, blue, red, and purple lines delineate the base of the postrift strata, the base of salt deposition, the post-depositional extension of the salt basin and the interpreted Cenozoic salt weld, respectively. Taken from [START_REF] Avendonk | Continental rifting and sediment infill in the northwestern Gulf of Mexico[END_REF]. . . . . . . . . . . . . . . . . . . . . . . .

GO_3D_OBS -Joint inversion case.

Reference and target models for the synthetic crustal case study. (a) The exact velocity model, the GO_3D_OBS crustal benchmark [START_REF] Górszczyk | GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3d survey design (version 1.0)[END_REF]. (b) The extracted high-frequency component of the model in (a), which will be used as reflectivity for ray+Born modeling [START_REF] Thierry | 3D common diffracting angle migration/inversion for AVA analysis[END_REF]. Red arrows denote the badly constrained events, while the green arrow denote the corrected events. . . . . .

(a)

Focusing a locally coherent associated with a reflection in the depth migrated domain through the focusing equations. The two-way traveltime and the slope at the receiver are fitted by construction while the slope at the source is used as objective measure during the inversion [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. (b) Migrating the direct arrival of an event from different receivers by fitting the traveltime and the slope at receivers. Different virtual event locations are obtained due to the inaccuracy of the velocity model. (c) Same as (b) but evaluating the data misfit at every receiver for all virtual events. The solid lines are rays describing the migration of a virtual event, while dashed lines describe rays connecting the virtual event migrated from a receiver r i to a receiver r j . . . . . . . . . . . . . 

General Introduction

Unveiling Earth through seismology

Humanity has always thrived on discovery. A plethora of mysteries were unfolded in the last century, deciphering the physics that govern most phenomena around us. Here we are in the XXI st century, knowledge is accessible more than ever, humans conquest of space is not only the plot of a bad sci-fi movie, exascale computing is becoming a reality. Indeed, knowledge and technology are so advanced that we are capable; as the saying goes, to leave no stone unturned. In reality, we know so much, and yet relatively so little about our own planet's structure. Fiction novels proposed many fascinating ways to venture through the different layers of our planet making it seem as easy as walking into a gallery or a museum. In fact, direct observations of the Earth's interior are only possible by destructive measures such as drilling. The latter is of course unpractical for obvious reasons and not intuitive since it only gives access to a dozen of kilometers at most due to the high pressure and temperatures encountered at these depths.

Ancient Greek scholars struggled to prove many of their theories due to the lack of tangible proof. Interestingly, even in that era where unexplained phenomena like earthquakes were qualified as supernatural, Thales had a physical intuition that the Earth lies on some sort of fluid that is rippled by subtle movements like rock falls. Since then, researchers relied on indirect geophysical measures of gravity, magnetism, electromagnetic waves and vibrations to advance science. The first detection of an earthquake was done through a seismoscope (Yan, 2007, their Chapter 5) invented by Zhang Heng in the early first century. Studying the Earth's free oscillations or vibrations and in a general sense seismic wave propagation falls under the field of seismology.

Modern seismology consists of far more than just a science dedicated for earthquakes detection and cataloging. Indeed, among geophysical methods, it is the most resolving of the subsurface at all scales. Seismic imaging is key for resource exploration and most importantly advancement in the fields of tectonophysics and geodynamics. Back in 1906, while analyzing the recordings of the 1902 Guatemala earthquake, Oldham noticed that some phases of the shear wave (S-wave) are missing on the seismographs coming from stations far from the epicenter while the compressional wave (P-wave) phases could still be tracked in the recordings [START_REF] Oldham | The constitution of the earth[END_REF]. This discrepancy in the recordings initiated a suspicion among scientists of a possible fluid boundary in the Earth's interior that could explain the missing S-wave phases. In parallel, interesting studies were published by [START_REF] Benndorf | Über die art der fortpflanzung der erdbebenwellen im erdinneren. 1. Mitteilung[END_REF][START_REF] Benndorf | Über die art der fortpflanzung der erdbebenwellen im erdinneren. 2. Mitteilung[END_REF] on predicting the arrival times of waves based on simplistic velocity models and the complementary theories developed by [START_REF] Herglotz | Über das benndorfsche problem des fortpflanzungsgeschwindigkeit der erdbebenstrahlen[END_REF] on inferring depth velocity profiles from surface measurements. Later on, many researchers capitalized on these pioneering works on phase identification and introduced inverse problems in a broader sense to make major breakthroughs in geosciences. Notable discoveries were the Mohorovičić discontinuity which delineates the boundary between the crust and the mantle [START_REF] Mohorovicic | Das beben vom 8. x. 1909[END_REF] and the core-mantle boundary defined by [START_REF] Gutenberg | Über erdbenwellen viia. beobachtungen an registrierungen von fernbeben in göttingen und folgerungen über die konstitution des erdkörpers[END_REF]. It is fascinating to see how seismology evolved into a field that is capable of explaining and modeling the interior of our planet from surface recordings, an example being the Preliminary Reference Earth model (PREM) (Figure 1) derived by [START_REF] Dziewonski | Preliminary reference Earth model[END_REF].

Figure 1 -Preliminary reference Earth model (PREM). P-wave velocity, S-wave velocity, density and anisotropy in solid lines, horizontal components of velocity in dashed lines. Taken from [START_REF] Dziewonski | Preliminary reference Earth model[END_REF].

Where information theory and seismology collide

The works of Benndorf and Herglotz are probably the first attempts of defining a forward problem and its inverse problem in the context of optics and seismology. In plain terms, the forward problem defines the physics governing a certain phenomenon, in this context being wave propagation. From a set of parameters 1 (often denoted as m), as for example wavespeed, one can simulate the travel time or any other attribute of a propagating wave (the data vector often denoted as d) through a certain mapping operator G tying the physical medium to the simulated observations in this sense:

d = Gm. (1) 

Nonlinearity and ill-posedness

The inverse problem consists of inferring the so called parameters that are usually physical properties of the Earth from recorded observations. In the simple case where the data are linearly dependent (through the operator G) on the sought parameters, basic linear algebra techniques are enough to solve the inverse problem recast in the form of a linear system:

m est = G -1 d, (2) 
where G -1 is the inverse of the invertible square matrix G. The latter assumption implies that the number of data is equal to the number of the sought parameters. In reality in seismic that is not the case and an inverse of the operator in a more generalized sense G -g is employed [START_REF] Menke | Geophysical Data Analysis: Discrete Inverse Theory[END_REF].

The objective of the problem being finding the set of parameters that produces simulated data (through the forward problem) matching the field observations, the problem is recast in the sense where the mismatch is evaluated under a certain p-norm criterion ||.|| p often being the least-squares norm in the context of seismic imaging [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF] (3)

The retrieved estimated parameters are often optimistically called the "true" parameters. In practice, an accurate approximate inverse operator is not straightforwardly obtained and the inversion does not guarantee a perfect recovery of the sought properties. For example, in the case of the least-squares norm, it is assumed that the misfit function is quadratic and convex in m or in a Bayesian inference sense that posterior probability density is Gaussian. In fact, seismic imaging problems are often nonlinear. A linearization around a prior information is often enforced depending on the imaging technique as will be seen later on in the course of this manuscript. The second crucial point, generic to all seismic imaging methods, is the illposedness of the inverse problem.

According to [START_REF] Hadamard | Sur les problèmes aux dérivés partielles et leur signification physique[END_REF], an inverse problem is qualified as well-posed if a solution exists (the observations are matched by the simulated data for a set of specific predicted parameters), if the latter is unique and if it is perturbed when the input observations are altered. In reality and in the context of seismology, problems do not satisfy all three aforementioned conditions. Even though a solution generally exists or could be derived due to some possible mathematical simplifications through ansatzes for example, its uniqueness is not guaranteed. The fact that many solutions are able to explain the data at hand is indeed problematic and one of the main issues that will be addressed at great length later on in this manuscript. The type of information carried out by the observations on the sought parameters is a key issue when talking about ill-posedness. It seems evident that the observations must be sensitive to the sought parameters and hold enough non-redundant information to resolve the model space. In practice, two major issues are encountered in the context of seismology.

The first is the presence of noise in the whole process. Earlier, it was assumed in the system of equation 1 that the measurements are noiseless and that no numerical errors are made through the data simulation. The latter assumption is of course optimistic but too vast to be further discussed. The second issue is the impossibility to gather a flawless data set and the extent of sensitivity of the observations to the parameters which introduces the notion of resolution. Back to the example of equation 1 and supposing that G is a tall matrix (number of observations bigger than the number of parameters), a least-squares solution of this over-determined system could be obtained through

m est = (G T G) -1 G T d. (4) 
Menke (1984) discusses in detail the fact that seismic imaging problems are mixed-determined problems. We suppose in equation 4 that the operator G T G is nonsingular whereas in practice the information held by the data is often redundant (or even contradictory) for a part of the subsurface and insufficient for another. Being insensitive to part of the parameters, holding contradictory information or contaminating the inversion system with noise leads to ill-posed problems where G T G and its counter part GG T , more adequate for under-determined problems, are both degenerate.

Most problems in seismic imaging are ill-posed and nonlinear to some degree, the main issues being as evoked earlier the content of the observations and their sensitivity to the sought parameters. Indeed, even in the absence of noise, we are limited in resolution depending on the quality of the inversion operator. Inserting equation 1 in 4 yields to

m est = (G T G) -1 G T Gm. (5) 
Surprisingly, from equation 5 we infer the "true" estimate of the parameters. The optimistic case above shows that we are able to recover fully m if the generalized inverse

G -g = (G T G) -1 G T
is ideal in the sense that G -g G = I. In practice and due to the aforementioned ill-posedness, the resolution R = G -g G is imperfect. The resolution loss could be provoked by regularizing through introduced priors to the system or damping the solution in order to make the operator invertible [START_REF] Kern | Problèmes inverses[END_REF], for detailed review on solving linear and nonlinear problems and regularization). It should be noted that even if the resolution operator is perfect that does not necessarily means that the real subsurface parameters are recovered. In fact, the logic around equation 5 depends on what is defined as ground truth. The latter, in the context of a specific imaging method and just for the sake of quality control of the inversion operator, could be defined as a down-scaled or a blurry counterpart of m that is within the resolution range in the framework of that specific inversion recipe (as can be defined by the frequency bandwidth, the acquisition design,...). Before examining the resolution extent of usual seismic imaging methods depending on their underlying assumptions and linearizations, a brief review of the measurements at hand is presented.

Garbage in, garbage out

Everything revolves around the quality of the recorded data. The fact that measurements are only made at the surface, the areal extent of receiver arrays, the density of the acquisition, the type of recorded measurements and their bandwidth are all influential factors on the illposedness and nonlinearity of the seismic inversion problem. The field of acquisition design is by itself a topic of extensive research at all scales of application [START_REF] Rost | Array seismology: methods and applications[END_REF] for a review on array deployment for global seismology; [START_REF] Vermeer | 3D Seismic Survey Design[END_REF] for a review on acquisition design at exploration scale). In passive seismology, used at all scale ranging from exploration to global scale, sources are either natural subsurface deformations like earthquakes [START_REF] Udías | Source mechanism of earthquakes[END_REF] and induced fracturing [START_REF] Deflandre | Induced microseismicity: Short overview, state of the art and feedback on source rock production[END_REF] or a mixture of natural and anthropogenic ambient noise [START_REF] Nakata | Seismic Ambient Noise[END_REF]. Usually the main constraints are cost and limited areal expansions due to licensing issues or accessibility. An additional obstacle for global seismology is the lack of receivers in the oceans, which could be remedied by deploying floating receivers [START_REF] Simons | On the potential of recording earthquakes for global seismic tomography by low-cost autonomous instruments in the oceans[END_REF][START_REF] Nolet | Imaging the Galapagos mantle plume with an unconventional application of floating seismometers[END_REF]. The work presented in this manuscript falls under the category of controlled source experiments (active seismics), mostly used at exploration scale (extent of tens of kilometers with an interest of up to a dozen kilometers) and crustal scale (extent of a few hundreds of kilometers with an interest up to 40 kilometers) [START_REF] Sheriff | Exploration seismology[END_REF].

The main advantage of active seismics is the ability to design the acquisition even at the source level compared to passive seismology: position, signature, frequency spectrum and polarization. Exploding sources are usually generated by an air gun towed by a vessel in marine settings while on-land acquisition sources are usually vibroseis trucks for large surveys and hammers or weight drop for small surveys [START_REF] Evans | A Handbook for Seismic Data Acquisition in Exploration[END_REF] Chapter 3 and 4 for a review on active seismic sources). At a certain point in space, due to the perturbation caused by wave propagation in the medium, particle velocity or acceleration are recorded through geophones which are mostly used in land settings. The latter are called multicomponent receivers since their measure is directional (3 orthogonal directions, one of them being normal to the surface locally). It is worth noting that wavefield measurements also could include rotational ground motions [START_REF] Igel | Broad-band observations of earthquake-induced rotational ground motions[END_REF][START_REF] Sollberger | 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications[END_REF] and that multicomponent sources are becoming more of interest in seismic imaging [START_REF] Häusler | The galperin source: A novel efficient multicomponent seismic source[END_REF][START_REF] Irnaka | Towards 3D 9C elastic full waveform inversion of shallow seismic wavefields -case study ettlingen line[END_REF]. In marine environments, four component receivers are used which measure pressure perturbations (called hydrophone component) in addition to particle velocities. Receivers are either embedded in cables (4 km to rarely 32 km in length) and towed by a vessel or deployed at ocean bottoms. Other mainstream marine environment sensors are the ocean bottom seismometers (OBS). Two types of the latter sensors are used. The first being ocean bottom nodes (OBN), conventionally used by academia while being also emerging in the oil industry, are autonomous sensors dropped from the surface or directly positioned on the seafloor with ROVs (Remotely Operated underwater Vehicle) and are advantageous due to their flexibility for large areal deployment. The second type of OBS, mostly in oil exploration surveys, are ocean bottom cables (OBC) composed of embedded dense sensors and connected to an offshore platform.

The notion of resolution introduced through equation 5 extends beyond the quality of the inversion operator and the structure of the sensitivity matrix. In fact, active seismic surveys are adapted depending on the intended seismic workflow since as will be seen in the next section they do not make use of the data in the same manner. Indeed the acquisition design in all its aspects (extent, source-receiver density and the data bandwidth) and the subsequent data processing [START_REF] Yilmaz | Seismic data processing[END_REF][START_REF] Mari | Signal processing for geologists & geophysicists[END_REF] control the spatial resolution and depth penetration of imaging methods differently as described for example by: [START_REF] Lines | A model-based comparison of modern velocity analysis methods[END_REF] for velocity analysis and [START_REF] Ross | The velocity-depth ambiguity in seismic traveltime data[END_REF] for traveltime-based inversion, [START_REF] Miller | A new slant on seismic imaging: Migration and integral geometry[END_REF]; [START_REF] Gray | Frequency-selective design for the kirchhoff migration operator[END_REF]; [START_REF] Biondi | Kirchhoff imaging beyond aliasing[END_REF]; [START_REF] Lambaré | 3-D ray+Born migration/inversion -part 1: theory[END_REF]; [START_REF] Mulder | How to choose a subset of frequencies in frequencydomain finite-difference migration[END_REF]; [START_REF] Gray | Spatial sampling, migration aliasing, and migrated amplitudes[END_REF] for migration-based approaches and [START_REF] Gauthier | Two-dimensional nonlinear inversion of seismic waveforms: numerical results[END_REF]; [START_REF] Mora | Elastic wavefield inversion of reflection and transmission data[END_REF]; [START_REF] Pratt | Inverse theory applied to multi-source cross-hole tomography. Part I: acoustic wave-equation method[END_REF]; [START_REF] Sirgue | Efficient waveform inversion and imaging : a strategy for selecting temporal frequencies[END_REF]; [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF] for full waveform inversion.

Imaging the subsurface: many recipes and flavors

A plethora of measurements, pre-processing workflows and imaging methods were mentioned across the previous section. Seismics in all its aspects is too vast to be reviewed and explained in detail. One could wonder how come many methods and their relevant workflows emerged. In practice, designing an advanced multi-stage strategy through a series of inversions is crucial to optimize the end-result resolution and the computational burden while circumventing the issues related to nonlinearity and ill-posedness of the employed technique.

What to invert and how?

There is no panacea in seismic imaging, high-resolution brute-force generic methods exist by straightforwardly inverting the whole data volume in search for the subsurface parameters. Indeed, the instinctual idea behind full waveform inversion is incorporating all phase and amplitude measures of any type of any recorded arrival in the seismograms [START_REF] Lailly | The seismic problem as a sequence of before-stack migrations[END_REF][START_REF] Tarantola | Three-dimensional inversion without blocks[END_REF][START_REF] Gauthier | Two-dimensional nonlinear inversion of seismic waveforms: numerical results[END_REF]. Full waveform inversion (FWI) was introduced as an alternative to basic linearized traveltime tomography methods [START_REF] Aki | Determination of three-dimentional velocity anomalies under a seismic array using first p-arrival times from local earthquakes[END_REF]. The emergence of FWI and its applications was boosted by developments around seismic wave propagation modeling [START_REF] Marfurt | Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations[END_REF][START_REF] Virieux | SH-wave propagation in heterogeneous media: Velocity-stress finitedifference method[END_REF][START_REF] Virieux | P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method[END_REF][START_REF] Levander | Fourth-order finite-difference P-SV seismograms[END_REF] and the massive advances in computer engineering in the eighties. Full waveform inversion is today the imaging tool of predilection for lithospheric scale [START_REF] Roecker | A finite-difference algorithm for full waveform teleseismic tomography[END_REF][START_REF] Wang | The deep roots of the western pyrenees revealed by full waveform inversion of teleseismic p waves[END_REF][START_REF] Beller | Lithospheric architecture of the south-western alps revealed by multi-parameter teleseismic full-waveform inversion[END_REF], crustal scale [START_REF] Shipp | Two-dimensional full wavefield inversion of wideaperture marine seismic streamer data[END_REF][START_REF] Fichtner | Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods[END_REF][START_REF] Tape | Seismic tomography of the southern California crust based on spectral-element and adjoint methods[END_REF][START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF], hydrocarbon exploration scale [START_REF] Sirgue | Full waveform inversion: the next leap forward in imaging at Valhall[END_REF][START_REF] Warner | Full-waveform inversion of cycle-skipped seismic data by frequency down-shifting[END_REF][START_REF] Operto | Efficient 3-D frequency-domain mono-parameter full-waveform inversion of ocean-bottom cable data: application to Valhall in the visco-acoustic vertical transverse isotropic approximation[END_REF] and near-surface applications [START_REF] Gélis | 2D elastic waveform inversion using Born and Rytov approximations in the frequency domain[END_REF][START_REF] Pan | Estimating s-wave velocities from 3D 9-component shallow seismic data using local Rayleigh-wave dispersion curves -a field study[END_REF][START_REF] Irnaka | Towards 3D 9C elastic full waveform inversion of shallow seismic wavefields -case study ettlingen line[END_REF]. An enormous number of applications on land and marine settings under many physical approximations [START_REF] Plessix | A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium[END_REF][START_REF] Plessix | Full waveform inversion and distance separated simultaneous sweeping: a study with a land seismic data set[END_REF]Prieux et al., 2013a;[START_REF] Gholami | Which parametrization is suitable for acoustic VTI full waveform inversion? -Part 1: sensitivity and trade-off analysis[END_REF][START_REF] Vigh | Elastic full-waveform inversion application using multicomponent measurements of seismic data collection[END_REF] were presented in the last decade. Even though FWI seems as the most intuitive method, it is far from being the easiest to handle in practice. Since the early experiments of [START_REF] Mora | Nonlinear two-dimensional elastic inversion of multi-offset seismic data[END_REF] and [START_REF] Jannane | Wavelengths of Earth structures that can be resolved from seismic reflection data[END_REF], in spite of the resolution power of FWI and its future success in many case studies, three prohibitive issues were highlighted: its computational burden, nonlinearity and ill-posedness.

The number of degrees of freedom in FWI grows drastically depending on the endless combinations of approximations of the subsurface properties like anisotropy, density and attenuation [START_REF] Aki | Velocity analysis by iterative profile migration[END_REF][START_REF] Chapman | Fundamentals of seismic waves propagation[END_REF], the number of parameters which are in turn dependent on the scale of application. Another factor influencing the computational burden in terms of memory and processing is the bandwidth of the data inverted. In practice, simulations are done in either frequency or time domain [START_REF] Moczo | The finite-difference time-domain method for modeling of seismic wave propagation[END_REF], for a review on finitedifference time-domain modeling which will be mostly used in the tests of this manuscript). High-performance computing programming plays a big role in modern imaging algorithms in general but especially FWI. In our ever-evolving digital era, global optimization techniques are more and more explored [START_REF] Koren | Monte Carlo estimation and resolution analysis of seismic background velocities[END_REF][START_REF] Madariaga | Background velocity inversion with a genetic algorithm[END_REF][START_REF] Sambridge | Monte Carlo methods in geophysical inverse problems[END_REF][START_REF] Biswas | 2D full-waveform inversion and uncertainty estimation using the reversible jump hamiltonian Monte Carlo[END_REF][START_REF] Sajeva | Genetic algorithm full-waveform inversion: uncertainty estimation and validation of the results[END_REF][START_REF] Gebraad | Bayesian elastic full-waveform inversion using hamiltonian monte carlo[END_REF] but still are way less employed that the dominant gradient-based techniques.

In order to point out the ill-posedness and nonlinearity of FWI is it important to review briefly the method. In practice, many FWI algorithms exist, the dominant being still the "classical" recipe 2 [START_REF] Pratt | Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[END_REF]. The least-squares equivalent C(m) of equation ( 3) could be rewritten in this context as

arg min m C(m) = arg min m ||d obs -d(m)|| 2 , (6) 
where d(m) groups the simulated wavefield solution extracted at the receivers position. Under the generalities presented earlier and supposing that a linearization is done around an accurate initial guess m 0 , a second order Taylor expansion of C(m) around m 0 gives

C(m est ) = C(m 0 + δm) = C(m 0 ) + ∂C(m 0 ) ∂m δm + 1 2 ∂ 2 C(m 0 ) ∂m 2 δm 2 + O(m 3 ). (7) 
Taking the derivative of equation 7 with respect to m while supposing that the recovered perturbation leads to a minimum of the parabola at C(m 0 + δm) (due to the assumption of being locally quadratic in δm), hence zeroing the derivative of C(m) leads to

δm = - ∂ 2 C(m 0 ) ∂m 2 -1 ∂C(m 0 ) ∂m , (8) 
which is nothing else than the scheme employed at each iteration under Newton's method. The latter is of course generic and many modified schemes or tweaking techniques are done around the resolution of this scheme for nonlinear problems [START_REF] Nocedal | Numerical Optimization[END_REF], for a detailed review of Newton-based methods). It is important though to introduce a generic interpretation of the terms found in equation 8 and a more physical one specific to FWI. In fact, geometrically speaking, the first order term of equation 8 (the gradient) dictates the slope of the steepest ascent and the second order term (the Hessian) describes the local curvature of the parabola around m 0 . The right side of equation 8 defines then the descent direction. The practical details revolving around the step taken at each iteration and the different possible approximation of the Hessian will be discussed further in the next chapter of the manuscript. Rewriting equation 8 in matrix form while expressing the relation between the model perturbation and the residuals through 2. Without dwelling on the different formulations of FWI, the reference here is to the conventional approach where the problem is recast in an unconstrained form due to the projection of the wave equation solution in the least-squares objective function directly.

the sensitivity matrix J in frequency domain [START_REF] Pratt | Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[END_REF][START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF] gives

∆m = - J † 0 J 0 + ∂J 0 t ∂m t (∆d * ...∆d * ) -1 J † 0 ∆d , (9) 
where † denotes the adjoint operator, denotes the real part , the superscript * denotes the conjugate, ∆d = d obs -d(m) is the data residuals vector and ∆m the perturbation model. The subscript 0 for J 0 referring to the prior guess at every iteration. The Jacobian matrix containing the partial derivatives of the simulated data with respect to the model parameters is recalculated at every iteration in the context of FWI since no linearization is done around the forward problem. The Fréchet matrix J could be explicitly built as described by [START_REF] Pratt | Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[END_REF] in frequency domain. The gradient of FWI J † 0 ∆d, as seen through equation 9, is the zero-lag correlation of the partial derivative wavefield sampled at the receivers and the data residuals (Figure 2a). In common practice, especially in time-domain FWI, the gradient is usually directly calculated through the adjoint-state method that will be presented in the following chapter [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Akçelik | Multiscale Newton-Krylov methods for inverse acoustic wave propagation[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. In the latter sense, the gradient is calculated through the zero-lag cross-correlation of the incident wavefield (simulated through the forward problem resolution) and the adjoint wavefield (residuals backward propagated from the observation points) (Figure 2b) weighted by the radiation pattern associated with every parameter [START_REF] Forgues | Inversion linearisée multi-paramètres via la théorie des rais[END_REF] (Figure 2c). The latter in brief and more generic terms for any seismic imaging method means that the gradient expresses the physically-smeared imprint of the projected data residuals along the Fresnel zones (Virieux and Operto, 2009, their figure 5) in the parameter space between the source (emitting the incident wavefield), the receiver (injection point of residuals) and the scatterer in depth acting as a virtual source due to its response described by the radiation pattern. As for the Hessian, the first term, linear and independent of the data residuals groups auto-correlations (diagonal terms) and cross-correlations (off-diagonal terms) of the partial derivatives. The latter has two main roles: correcting for the effects tied to the forward problem imprint (attenuation, lack of illumination, acquisition and bandwidth truncation effects) and balancing the imprint of the different parameter classes in multi-parameter inversion cases (scaling effect). The second term, nonlinear and depending on the data accounts for scattering effect beyond the first-order, only described by the gradient and the first term of the Hessian. The data-dependent term of the Hessian is often neglected since residuals are supposed to be relatively small under the assumptions made earlier [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF], leading to a simplified yet still expensive form of the Hessian (the Gauss-Newton Hessian). The reader is referred to [START_REF] Pratt | Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[END_REF] for a more detailed interpretation of the elements described earlier and [START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF] for an overview of FWI.

By omitting the nonlinear term of the Hessian and under the linearization made around the initial guess m 0 , the resemblance between equations 4 and 9 becomes evident even though they are not at all equivalent. The quality of the non-explicit inversion operator at hand depends on the information carried out by J and how it constrains the parameter space as evoked in the earlier section. The structure of the sensitivity matrix is influenced by the acquisition and the bandwidth of the data which control how each parameter is illuminated. But what is meant by a rich illumination in the context of FWI and any other seismic imaging? The extent of illumination is quantified by the sampling extent of the wavenumber spectrum at a specific
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The FWI gradient seen as (a) the zero-lag correlation between between the partial derivative wavefield (derivative of the wavefield with respect to the scatterer m i ) taken at the receiver R and the data residuals or as (b) the zero-lag cross-correlation of the virtual scattering source and the adjoint wavefield (residuals backward propagated from the observation point) at the scatterer m i . The virtual scattering source is obtained by sampling the incidence wavefield triggered by S at the position of m i weighted by the appropriate radiation pattern. (c) An example of a radiation pattern at the diffractor position (parameter presented is density). Taken from [START_REF] Operto | Frequency-domain full-waveform inversion of global offset data[END_REF].

element of the parameter space, being a point in the subsurface. In fact, since FWI handles mainly first-order scattering as noted earlier, diffraction imaging notions (Figure 3a) are enough to understand the relation between frequency and the scattering angle controlled by the sourcereceiver-scatterer geometry (mainly considered as controlled by the acquisition since we have no control on the position of the scatterer and the local dip of the structures) [START_REF] Devaney | Geophysical diffraction tomography[END_REF][START_REF] Miller | A new slant on seismic imaging: Migration and integral geometry[END_REF]. The local wavenumber vector at each scatterer in the subsurface3 is defined through the following equation

k = 2 λ cos θ 2 (k s + k r ) (k s + k r ) . (10) 
Looking at equation 10, it becomes apparent that a redundancy is present in seismic data. A certain wavenumber could be mapped by many combinations of scattering angle θ and local wavelength λ (at the scatterer) (see figure 3a for a description). In order to ensure that lower portion of the wavenumber spectrum (Figure 3b) there is a need to either have low frequency data or wide-angle scattering. Low frequency data (below 2 -3 Hz) often exhibit a bad signal to noise ratio and the topic is extensively research especially in the oil industry [START_REF] Soubaras | Variable depth streamer -the new broadband acquisition system[END_REF][START_REF] Dellinger | Wolfspar R , an "fwi-friendly" ultralow-frequency marine seismic source[END_REF][START_REF] Brenders | The wolfspar R experience: Learnings from processing sparse, low-frequency seismic data[END_REF]. Gaining access to wider scattering angles implies recording data through more extensive acquisitions. Indeed, long-offset acquisitions were promoted [START_REF] Sirgue | Inversion de la forme d'onde dans le domaine fréquentiel de données sismiques grand offset[END_REF] and became trendy for FWI applications [START_REF] Sirgue | Efficient waveform inversion and imaging : a strategy for selecting temporal frequencies[END_REF]Dessa et al., 2004a;[START_REF] Ravaut | Multi-scale imaging of complex structures from multi-fold wide-aperture seismic data by frequency-domain full-wavefield inversions: application to a thrust belt[END_REF][START_REF] Operto | Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough[END_REF][START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]; Shen et al., 2018b) since they are needed to resolve the long wavelength components of the subsurface (Figure 3b) and decoupling the different classes of parameter due to their unique but overlapping radiation patterns [START_REF] Operto | A guided tour of multiparameter full waveform inversion for multicomponent data: from theory to practice. The Leading Edge[END_REF]. Other than the issue of ill-posedness inherently present in FWI, especially in multi-parameter cases, due to the incomplete illumination of the subsurface, there is the issue of nonlinearity previously mentioned. In fact and due to the recipe being based on a linearization of the inverse problem in a least-square sense, FWI suffers from the ill-famed cycle-skipping issue. The assumption previously noted that the misfit function is locally quadratic in small parameter perturbations around an initial guess often does not hold in FWI. Indeed, depending on the discrepancy of the kinematics described by the model and the frequency of the recorded data contained in the data residuals, the zero-lag correlation between the incident wavefield and backward propagated data residuals could occur far from the true position of the scatterer (Figure 2b). This inconsistency between the incident wavefield which is governed by the kinematics enforced through the model and the adjoint wavefield containing the information on the true kinematics leads FWI to a local minimum [START_REF] Mulder | Exploring some issues in acoustic full waveform inversion[END_REF], their figure 2 for an illustration of the many local minima for a certain frequency under a two-parameters FWI toy test). Having introduced the cycle-skipping issue, it becomes clear as to why the absence of low frequency could not be compensated by using wide-angle data, since recording the latter data requires to increase the number of propagated wavelengths.

Hierarchical inversion schemes emerged to alleviate the nonlinearity of FWI by introducing first low frequencies and then supplement them with higher frequencies during the inversion [START_REF] Bunks | Multiscale seismic waveform inversion[END_REF]. Due to the need of ensuring a proper inversion for velocities at the early stages, arrivals that are more susceptible to constrain the long wavelength components are first introduced solely [START_REF] Bleibinhaus | Applying waveform inversion to wideangle seismic surveys[END_REF]. At crustal scale for example, cycle-skipping is aggravated due to long propagation distances when using wide-angle long offset data. In practice, FWI workflows often involve massive tuning around a traveltime windowing, offsets weighting and frequencies injected progressively in the process [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF], for a crustal-scale application example). It is crucial to reiterate on the fact that the points raised on the nonlinearity of FWI in this section concern mainly the classical formulation of FWI. Numerous research was done around extending the linear regime of FWI by either using more convex misfit distances than the usual 2 norm as for example distances based on optimal transport (e.g. [START_REF] Engquist | Application of the Wasserstein metric to seismic signals[END_REF]Métivier et al., 2016;[START_REF] Yang | Application of optimal transport and the quadratic Wasserstein metric to full-waveform inversion[END_REF][START_REF] Messud | Multidimensional optimal transport for 3D FWI: Demonstration on field data[END_REF] or deconvolution-based approaches [START_REF] Luo | A deconvolution-based objective function for wave-equation inversion[END_REF][START_REF] Zhu | Building good starting models for full-waveform inversion using adaptive matching filtering misfit[END_REF][START_REF] Warner | Adaptive waveform inversion: Theory[END_REF]. Many other works reformulated the FWI problem by expanding the search-space (i.e., inject additional degrees of freedom in the problem) compared to the classical formulation in the quest of being less prone to cycle-skipping (e.g. [START_REF] Van Leeuwen | Mitigating local minima in full-waveform inversion by expanding the search space[END_REF][START_REF] Biondi | Simultaneous inversion of full data bandwidth by tomographic full-waveform inversion[END_REF][START_REF] Huang | Source-independent extended waveform inversion based on space-time source extension: Frequency-domain implementation[END_REF][START_REF] Aghamiry | Improving full-waveform inversion by wavefield reconstruction with alternating direction method of multipliers[END_REF]. The aforementioned methods and many others are indeed more robust versions of the classical FWI however that comes at a cost of either resolution or an added computational cost.

At this point, the reader may question the purpose of reviewing FWI. The reason behind this introductory review is the fact that all seismic imaging methods are derived from FWI in some sense, FWI being the all-inclusive inversion and is by far the most resolving of the subsurface. However, as discussed in this section, it is ill-posed and highly nonlinear. In the early studies around FWI, short-offset reflection data were mainly considered (Lailly, 1983a). Resolving velocity under such settings was proven to be unfeasible since short wavelength components updates dominate the inversion as explained in the previous section. It became widely known in the community that there are two distinct complementary modes in the inversion: wide-angle transmitted arrivals constrain better the long wavelength components of the subsurface model describing its kinematics while short-offset reflection constrain mostly the dynamics at their scattering origin [START_REF] Mora | Elastic wavefield inversion of reflection and transmission data[END_REF]. Furthermore, seismic data recorded through poorly adapted acquisitions are not able to resolve the intermediate wavelength components of the medium (Figure 3b) which are in fact in the null-space of the inversion [START_REF] Jannane | Wavelengths of Earth structures that can be resolved from seismic reflection data[END_REF][START_REF] Neves | Sensitivity study of seismic reflection/refraction data[END_REF].

In order to circumvent the shortcomings of FWI using conventional short-spread recordings, the seismic imaging workflow was split into methods that are mostly dedicated for resolving the long wavelength component of the subsurface from one side and others developed to recover the high frequency contrasts in the subsurface (i.e., the reflectivity), hence enforcing an explicit scale separation in the parameter space. In these approaches, the reflectivity is used as secondary sources to update the long wavelengths of the medium along the wide-angle (transmission) paths connecting the reflectivity to the sources and receivers at the surface. Then, the inferred longwavelength velocity macromodel is used as a background model to refine the reflectivity by a migration step, these two steps being iterated (often in alternating mode) until convergence. This FWI adaptation to deficient reflection acquisition was referred to Reflection Waveform Inversion (RWI) [START_REF] Xu | Inversion on reflected seismic wave[END_REF][START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Wu | Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion[END_REF][START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF][START_REF] Zhou | Velocity model building by waveform inversion of early arrivals and reflections: a 2D ocean-bottom-cable study with gas cloud effects[END_REF]. The work presented in this manuscript focuses on velocity model building in the framework of a workflow based on the above-mentioned scale separation where a so-called macro model is retrieved through a tomographic 4 approach then as an initial guess for FWI or as a background reference model for prestack depth migration (Figure 4). It is important to highlight the fact that even though scale separation is the basis of velocity model building tools that does not mean that the long wavelengths components are retrieved blindly without a care for their consistency with respect to short wavelengths. More on the latter statement in the following section.

Velocity model building and migration

Resolving the subsurface through high fidelity seismic imaging is essential for precise geological interpretation, the end-goal being a high-resolution model through either or both migration and FWI. Having settled that the high frequency components of the subsurface are mainly resolved by narrow-angle arrivals, we focus for most of this section on reflection data 5 . In order to extrapolate the previously explained notions in the context of FWI, I present in figure 5a a dataset simulated by mimicking a 2D towed-streamer acquisition. The data presented is simulated in the model of figure 4 and is presented as a 3D data volume, where the third dimension is associated with the acquisition parameter controlling the redundancy in the data. Indeed, since each point in the subsurface is illuminated through scattering with different apertures associated to the various source-receiver couples, the aperture of various reflections are defined at the acquisition level through offsets. One question to answer for the rest of the section: how could we obtain accurate subsurface images through this data by exploiting its redundancy? 4. as a common abuse of jargon in the community, the term "tomography" here refers to a specific category of model building tools where in reality all seismic imaging methods are tomographic methods in the literal sense.

5. or any other narrow-angle single scattering recorded event as for example diffractions. 4). The summation along the angle axis of panel (c) producing the sought reflectivity model (rightmost panel of figure 4).
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Exploiting the data redundancy in processing and migration

In the previous section, it was mentioned that inverting seismic data is nothing else than back-projecting the data to their scattering origin in the subsurface. Indeed the so-called migration process is nothing else than a single FWI gradient 6 (refer to the discussion around figure 2b). The focus in this section being reflection data, indeed through a migration we are able to retrieve the reflectors at a position in depth depending on the kinematics described by the velocity macro model. A variety of migration algorithms exist, some based on stacking the data before migration, along the redundancy dimension introduced earlier, in order to enhance the signal-to-noise ratio [START_REF] Yilmaz | Seismic data analysis[END_REF], for a review on stacking). However, others opt for pre-stack methods in the purpose of exploiting the redundancy either for quality control or as a constraint in the velocity model building process as will be evoked later on in this section [START_REF] Biondi | 3D seismic imaging[END_REF][START_REF] Etgen | An overview of depth imaging in exploration geophysics[END_REF], for reviews on the different formulations) 7 . I focus in the following on the approach that was mainly used during my thesis. Looking back at equation 9, the Jacobian matrix J 0 represents the discrete Born operator B 0 . Supposing that a linearization is made around the forward problem since the velocity macro model is not updated and since we are only interested in single scattered events 8 , equation 9 could be rewritten in this form

δm = [B T 0 W T WB 0 ] -1 B T 0 W T δd (11) 
where B 0 relates the missing model perturbations (being the reflectivity in the case of the example) and the data residuals in a linear fashion [START_REF] Jin | Two-dimensional asymptotic iterative elastic inversion[END_REF]. A weighting matrix W introduced by [START_REF] Lambaré | Iterative asymptotic inversion in the acoustic approximation[END_REF] renders the Hessian diagonal and straightforwardly invertible. In fact, equation 11 is the basis of ray+Born migration/inversion originally formulated based on the works of [START_REF] Bleistein | On the imaging of reflectors in the Earth[END_REF] and [START_REF] Beylkin | Linearized inverse scattering problems in acoustics and elasticity[END_REF]. Asymptotic Green's functions are conventionally calculated through dynamic ray tracing [START_REF] Lambaré | Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of ray field[END_REF][START_REF] Lucio | 3D multivalued travel time and amplitude maps[END_REF] 9 . The data residuals being actually the observed reflection data at the first iteration since no prior is assumed on reflectivity. I remind the reader that the velocity model is not updated during some iterations of the reflection waveform inversion problem, equation 11. These iterations only serve as a refinement process of the reflectivity amplitudes that correct for unaccounted effects by the damped Hessian. In practice, the iterative process is often dropped and a single inversion is done [START_REF] Forgues | Parameterization study for acoustic and elastic ray+born inversion[END_REF]Thierry et al., 1999c;[START_REF] Ribodetti | Asymptotic viscoacoustic diffraction tomography of ultrasonic laboratory data : a tool for rock properties analysis[END_REF][START_REF] Ribodetti | Joint ray+born least-squares migration and simulated annealing optimization for high-resolution targetoriented quantitative seismic imaging[END_REF], for more details on theoretical and practical aspects).

Proceeding with the example of figure 5, I illustrate the impact of the velocity macro model accuracy on the migrated volume. The third dimension of the depth-migrated cube is chosen in this case to be the common-angle [START_REF] Xu | Common-angle migration: a strategy for imaging complex media[END_REF], for a review on common-angle migrations). The common-angle image (along the x-z plane in figure 5b) is obtained by stacking (summing) the seismic responses of each scatterer, being their diffraction hyperbolas under the 6. also basis of reverse time migration (RTM) techniques where the recorded data are back propagated instead of the residuals [START_REF] Baysal | Reverse time migration[END_REF].

7. the reviews do not cover all approaches, as for example one-way based methods [START_REF] Berkhout | One-way versions of the kirchhoff integral[END_REF].

8. hence the elimination of the nonlinear terms present in the equation. 9. Many methods exist but I cite two references that could generate multivalued maps, I note that eikonal solvers could also be used [START_REF] Buske | Three-dimensional pre-stack Kirchhoff migration of deep seismic reflection data[END_REF][START_REF] Noble | Accurate 3-D finite difference computation of travel time in strongly hetrogeneous media[END_REF]. Huygens-Fresnel principle, for a certain angle (Figure 6). A single point in the depth-migrated plane is referred to as a common image point (CIP). The final recovered response at each CIP in the migrated image is obtained by stacking along the angle axis. In the case where the background model is accurate, diffractions with different apertures illuminate their CIP at the correct position leading to a constructive stacking (which is the case of figure 5c leading to the reflectivity model seen in figure 4). In the opposite case, reflectors along the common-angle gather (y-z plane in figure 5b), referred to generally as a common image gather (CIG), would not be flat (figure 5b). The stack in the latter case leads to artifacts often referred to as smiling and frowning effects in the final image (Figure 6).

Building accurate velocity macro models

At this stage of the discussion, it becomes clear that accurate velocity macro models are crucial in the seismic imaging process whether they serve as initial guess for FWI or as a background model for migration. Conventionally, velocity model building techniques are classified into two main groups: velocity analysis methods and tomographic methods. The earlier formulations of velocity analysis techniques [START_REF] Yilmaz | Seismic data processing[END_REF], based on simplistic assumptions that the subsurface is nearly tabular and laterally homogeneous, exploit the redundancy in the data by seeking to flatten the reflection hyperbolas along the offset dimension in the data domain (Figure 5) 10 . The process of normal move-out correction maximizes the stacking power of the produced common midpoint (CMP) trace through summation along the offset dimension. The velocity models in conventional velocity analysis is parametrized through interval velocities [START_REF] Dix | Seismic velocities from surface measurements[END_REF] and the CIP is reduced to a common-depth point (CDP) due to its uni-dimensional degree of freedom in the CMP. These methods do not constrain a coherent focusing of the data in depth but rather in time and under the aforementioned assumptions, the macro model obtained these methods are therefore inaccurate in complex media.

On the same line of thought, migration-based velocity analysis (MVA) emerged (Al-Yahya, 1989;[START_REF] Deregowski | Common-offset migrations and velocity analysis[END_REF][START_REF] Lafond | Migration moveout analysis and depth focusing[END_REF], a method in which velocity analysis is performed directly on the migrated volume (Figure 5b-c) in the goal of flattening the common image gathers. The flatness of the events being evaluated with respect to the horizontal plane in the CIG and quantified as the residual move-out (RMO). The optimization problem revolving around the minimization of the RMO in these methods requires tedious picking of the horizons. [START_REF] Liu | Migration velocity analysis: Theory and an iterative algorithm[END_REF] described the relationship between the velocity perturbations and the reflector depth. The latter fundamental notion and the introduction of automatic dense local picking in common image gathers with the ability to associate them to their source-receiver couple [START_REF] Woodward | Automated 3D tomographic velocity analysis of residual moveout in prestack migrated common image point gathers[END_REF] were a major breakthrough for future developments around MVA. Differential Semblance Optimization (DSO) [START_REF] Symes | Velocity inversion by differential semblance optimization[END_REF][START_REF] Chauris | 2D velocity macro model estimation from seismic reflection data by local Differential Semblance Optimization: applications on synthetic and real data[END_REF][START_REF] Mulder | Automatic velocity analysis by differential semblance optimization[END_REF] was introduced as a more robust MVA where the local slope in the CIG is parametrized through local semblances in the CIG. Migration-based velocity analysis variants continued to emerge (e.g. [START_REF] Shen | Differential semblance velocity analysis by waveequation migration[END_REF][START_REF] Sava | Wave-equation migration velocity analysis. i. theory[END_REF] and the automation of the workflow permitted the use of gradient-based local optimization algorithm [START_REF] Chauris | From migration to inversion velocity analysis[END_REF][START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF]. The only other methods capable of updating the velocity model in a similar migration-based framework are the migration-based traveltime inversion (MBTT) [START_REF] Chavent | Automatic determination of velocities via migration-based traveltime waveform inversion: A synthetic data example[END_REF][START_REF] Plessix | Waveform inversion of reflection seismic data for kinematic parameters by local inversion[END_REF][START_REF] Clément | Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example[END_REF] and reflection waveform inversion (RWI) [START_REF] Xu | Inversion on reflected seismic wave[END_REF][START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Wu | Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion[END_REF]. The RWI kernel being a modified version of the FWI kernel where updates of the velocity macro-model occur along the transmitted (or forward-scattered) wavepaths connecting the reflectivity inferred from depth migration to the sources and receivers at the surface. Most aforementioned methods are computationally expensive due to the migration step needed in the inversion.

Building velocity models through tomography is done by inverting specific phases of the data, commonly first-arrivals, either under a finite-frequency approximation [START_REF] Luo | Wave-equation traveltime inversion[END_REF][START_REF] Woodward | Wave-equation tomography[END_REF][START_REF] Marquering | Three-dimensional sensitivity kernels for finite-frequency traveltimes: the banana-doughnut paradox[END_REF] 11 or using asymptotic methods [START_REF] Aki | Determination of three-dimentional velocity anomalies under a seismic array using first p-arrival times from local earthquakes[END_REF][START_REF] Zelt | Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe basin[END_REF]. Without dwelling in a comparison between the latter two classes and the pitfalls of ray-based tomography, especially from a resolution standpoint, I refer]the reader to [START_REF] Williamson | A guide to the limits of resolution imposed by scattering in ray tomography[END_REF]; [START_REF] Williamson | Resolution limits in ray tomography due to wave behavior: Numerical experiments[END_REF]; [START_REF] Snieder | Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes[END_REF] for theoretical insight and [START_REF] Montelli | P and PP global travel time tomography[END_REF] for a comparative case study. The ill-posedness and weak resolution power of first-arrival traveltime tomography promoted the inversion of other attributes like the slowness vectors instead of the absolute traveltime [START_REF] Hu | Polarization tomography for P wave velocity structure in southern california[END_REF][START_REF] Farra | Sensitivity of qP-wave traveltimes and polarization vectors to heterogeneity, anisotropy and interfaces[END_REF], the wavefront [START_REF] Gelchinsky | Multifocusing homeomorphic imaging Part 1. Basic concepts and formulas[END_REF][START_REF] Duveneck | Velocity model estimation with data-derived wavefront attributes[END_REF] or other arrivals as for example reflections [START_REF] Bishop | Tomographic determination of velocity and depth in laterally varying media[END_REF][START_REF] Farra | Non-linear reflection tomography[END_REF] or diffractions [START_REF] Dummong | Comparison of prestack stereotomography and NIP wave tomography for velocity model building: Instances from the Messinian evaporites[END_REF][START_REF] Bauer | Utilizing diffractions in wavefront tomography[END_REF].

In the last couple of decades, most of the case studies where velocity macro model were built using reflection data, velocity analysis was employed. Conventional reflection tomography did not emerge as the go-to method due to the exhaustive and interpretive picking of its inverted (Billette and Lambaré, 1998). The recorded data attributes inverted, delineated by the grey rectangle, are the two-way traveltime T sr , the slopes p s , p r at the source S and receiver R, respectively. The model parameters, delineated by the yellow ellipse, are the B-spline coefficient for velocity C mn , the one-way traveltimes (T s ,T r ) and the scattering angels (θ s ,θ r ). The red line represents a migrated facet. Taken from [START_REF] Prieux | Building starting model for full waveform inversion from wide-aperture data by stereotomography[END_REF].

attribute, the traveltime reflection curve. Picking a laterally continuous event in the data associated with a parametrized reflector in depth is indeed tedious and challenging due to noise and the complexity of the recordings. Billette et al. (1998), inspired by the work of [START_REF] Riabinkin | Fundamentals of resolving power of Controlled Directional Reception (CDR) of seismic waves[END_REF] and [START_REF] Sword | Tomographic determination of interval velocities from reflection seismic data: The method of controlled directional reception[END_REF] on controlled directional reception (CDR), proposed as an alternative method based on locally coherent events. The introduction of locally coherent events in reflection tomography is advantageous compared to conventional methods due to dense picking in the data and the parametrization of the reflections as independent scattering points rather than continuous reflectors. Each event picked in the data, associated with a scattering in the subsurface with its own local dip referred to as migration facet, is defined by its two-way traveltime and slopes (horizontal component of the slowness vector) at the source and receiver positions (Figure 7). The model space includes the velocity field and scatterer coordinates used as initiation point for ray tracing which in turn introduces the take-off angles and one way traveltimes as necessary parameters (Figure 8). The scatterers and its associated parameters are initialized through simplistic geometrical considerations (refer to the Appendix A of [START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF]) then updated through a monoparameter inversion using the initial velocity model followed with a joint update of the whole parameter space (Figure 8). Velocity macro models obtained through stereotomography are accurate and well resolved due mainly to the density of data. The method gained popularity in the velocity model building community and reformulated in many aspects (refer to [START_REF] Lambaré | Stereotomography[END_REF] or section 2.1 for a comprehensive review). [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] proposed recently an alternative formulation of slope tomography based on eikonal solvers (Vidale, 1988a;[START_REF] Podvin | Finite difference computation of traveltimes in very contrasted velocity model : a massively parallel approach and its associated tools[END_REF][START_REF] Hole | 3-D finite difference reflection traveltimes[END_REF][START_REF] Noble | Accurate 3-D finite difference computation of travel time in strongly hetrogeneous media[END_REF] (as opposed to ray tracing as a forward problem solver) and the adjoint-state method [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF], where the adjoint-based recipe for stereotomography is presented) for the gradient computation. Apart from the adaptation for tilted transversely isotropic (TTI) media [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] and the differences in the manner of solving the forward problem and computing the gradient, the formulation is based on the same inversion principles (see appendix II for presented algorithms). Indeed, in both formulations, the velocity and the scatterer coordinates are updated jointly whilst fitting the two-way traveltime and both picked slopes.

On the relationship between slope tomography and MVA

In slope tomography, a locally coherent event picked in the data volume is associated to a scattering event in the subsurface whereas in MVA a locally coherent event in the image domain (on the CIG) is associated with a migrated scatterer. Indeed a scatterer could be defined by either its kinematic attributes picked in the data volume or its migration-based attributes (position, slope in the CIG and dip). Through the latter notion, Chauris et al. (2002a) established a relationship between slope tomography and MVA or in a more general fashion, the data domain and the image domain. The relationship inferred from the focusing conditions of migration show that the position of a scattering point in a 2D subsurface medium can be constrained through slope tomographic attributes. First condition for focusing requires that the observed two-way traveltime is fitted at the scatterer position. This traveltime condition is a usual imaging condition in migration and it was presented in figure 6 where the energy was smeared along the migration isochrone [START_REF] Bleistein | Two and one-half dimensional Born inversion with an arbitrary reference[END_REF]. Since many positions satisfy the first condition along the two-way traveltime isochrone, a specularity condition is necessary. In a common shot migration sense, the second condition implicates a fit of the slopes at the receiver position, in other words the ray emerging from the scattering point to the surface satisfies the slope by construction. Both conditions could be rewritten for the common shot configuration 12 as

t s,sct + t r,sct = T * s,r,sct , (12) 
and p r,sct = p * r,sct ,

where t s,sct and t r,sct denote the one-way traveltime taken between the scatterer sct and the source s and receiver r , p r,sct denote the slope at the receiver and the symbol * denotes the observed attributes. Equations 12 and 13 are referred to as the focusing equations (Chauris et al., 2002a, their equation 10 and 11). It is then settled that attributes of slopes tomography are enough to perform a kinematic migration for a given scatterer, hence constraining its position and its dip. It should be noted that the latter imaging condition holds only in the absence of triplication (Xu et al., 2001, their figure 4). I now elaborate on the relationship between locally coherent events picked in the CIG for MVA purpose and the one picked in the data. The misfit function of MVA revolves around fitting the slopes in the CIG as explained earlier. The focusing equations invoke the slope at the receiver and the two-way traveltime, under this setting it is considered that the focusing equations are resolved for a single shot. Migrating a single shot implies that the scatterer is illuminated by a single source-receiver couple and in turn means that the CIG redundancy dimension does not actually exist under this logic. Under the same reasoning, the reader should remember that the CIG is extracted at fixed position in x and the migration is done using a fixed velocity. The only degree of freedom left is then the depth of the scatterer in the CIG while in the data space only the slope at the source is allowed to be perturbed. In order to quantify how the unconstrained slope ϕ evolves under the latter setting, Chauris et al. (2002a) differentiated the focusing 12 and 13 which led to the following equation

tan ϕ = p * s -p s 2u cos θ cos ξ , ( 14 
)
where θ is the half-aperture angle, ξ the dip at the scatterer location and u the slowness. Interestingly, equation 14, valid only for specular reflection and non-vertical dips, implies that fitting the slopes at the sources or flattening the CIG is equivalent.

The property depicted by equation 14 is exploited in MVA to automate the velocity update process more efficiently by alleviating the computational burden related to migration. In slope tomography the relationship between the data domain and the depth migrated domain fostered developments at the picking and inversion level. A very important aspect of the relationship between both domains could be inferred from equations 12, 13 and 14 and is very beneficial for extracting slope tomographic attributes. I explain in the following the notion of kinematic invariance in a sequential manner supported by figure 9. Looking at a depth-migrated volume obtained through migrated data with a given velocity model. A scatterer located in the common offset image has its position and dip constrained through the focusing equations (see Chauris et al. (2002a) for the equations in the common-offset case and Montel and Lambaré (2019a) and [START_REF] Montel | Kinematics of common-image gathers -part 2: Tomographic ray tracing and applications[END_REF] for a review on the different focusing conditions). Look at a single common offset image and since the traveltime condition is enforced, only one sourcereceiver couple in the data satisfies the picked dip at the scatterer position (the slowness vector being normal to the dip locally). In practice the dip in the image could be picked through for example plane-wave destruction filters [START_REF] Fomel | Applications of plane-wave destruction filters[END_REF] or any other coherency measure [START_REF] Taner | Complex seismic trace analysis[END_REF]. Having found the source-receiver couple and the two-way traveltime, the slope at the receiver is straightforwardly computed. I remind the reader that the two-way traveltime and the slope at the receiver match the recorded ones due to the focusing condition. The only slope tomography attribute left to be extracted is the slope at the source. Through the relation presented in equation 14, having the half-aperture (since the source-receiver and the slowness vectors are already at hand), the picked dip on the common offset image and knowing the velocity (since a model was used during migration) it seems trivial that, if the slope in the CIG is picked, we obtained the observed slope. I remind the reader that the simulated slope in equation 14 which does not fit the observed one is extracted in the same manner as the slope at the receiver in the first stage. In this process, the velocity model used during the migration has no influence on extracted attributes called in this sense the kinematic invariants: The same velocity was used in the migration and demigration process. Picking in the depth migrated domain is advantageous since usually images exhibit a higher signal to noise ratio than in the unmigrated data domain gathers [START_REF] Nguyen | Stereotomography assisted by migration of attributes[END_REF]. The velocity model however has an impact on the quality of images, which prompts [START_REF] Guillaume | Kinematic invariants: an efficient and flexible approach for velocity model building[END_REF] and [START_REF] Montel | Non-linear slope tomographyextension to maz and waz[END_REF] to propose repeating the picking process at the end of every slope tomographic inversion. The latter refer to as nonlinear slope tomography13 . In most case studies presented in this manuscript, the kinematic invariants were picked in the unmigrated data domain as what was conventionally done by [START_REF] Podvin | Automatics picking of locally coherent events for stereotomography[END_REF] and [START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF].

Tackling the velocity-position coupling

Having presented the impact of the relationship between the data domain and the depth migrated domain on picking, I now present its possible role in the velocity model building, being the main motivation of my work on slope tomography. In reflection tomography, an illposedness is inherently present due to the velocity-position coupling. Many strategies exist to manage the trade-off between these parameters especially when an area in the subsurface is poorly illuminated. The latter statement is supported by the discussion around the continuum of the wavenumber spectrum made earlier. In a more relevant manner and in the context of the workflow discussed in the previous sections, having short-offset acquisition implies having less information along the CIG making it ambiguous to quantify the residual move-out.

The first strategy, the most sub-optimal, is inverting for the parameters by alternating between velocity updates and depth migration [START_REF] Stork | Iterative tomographic and migration reconstruction of seismic images[END_REF]. [START_REF] Stork | Analysis of the resolution between ambiguous velocity and reflector position for traveltime tomography[END_REF] asses the latter strategy and illustrated that breaking down the original nonlinear problem into two sub problems could lead the inversion towards a local minimum. Inverting jointly for velocity and the reflector geometries emerged as the reasonable strategy [START_REF] Bishop | Tomographic determination of velocity and depth in laterally varying media[END_REF][START_REF] Farra | Non-linear reflection tomography[END_REF]. The same choice was made in the conventional formulation of slope tomography, where Billette (1998) (pages 95-99) illustrated the strong coupling between both parameters and the need to account for the Hessian in the inversion.

A third strategy based upon a variable projection approach [START_REF] Golub | Separable nonlinear least squares: the variable projection method and its applications[END_REF] projects the sub-problem related to the positioning into the velocity estimation through physical constraints. The constraints in this case are none other than the focusing conditions introduced earlier (Chauris et al., 2002a,b). This variable projection handles the velocity-position coupling by ensuring the consistency between the scatterer position and the velocity model at each iteration, which is not always verified by the joint inversion strategy as will be presented later on in this manuscript. A similar strategy was employed in the RWI framework by [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF] where a reflectivity/background consistent formulation was presented and impacted drastically the convergence of the method.

In the context of slope tomography I formulate the consistent velocity-position formulation [START_REF] Guillaume | Kinematic invariants: an efficient and flexible approach for velocity model building[END_REF] under the framework based on eikonal solvers and the adjoint-state method [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF][START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF]. The method is also referred to as the parsimonious formulation of slope tomography due to the reduced parametrization in the data space and the optimization parameter space as a consequence of the kinematic migration and the variable projection, respectively.

Thesis objectives and manuscript content

Building accurate velocity macro models is crucial in the seismic workflow, the latter being used as initial guess for full waveform inversion or as a background model for migration. Many methods already exist as has been reviewed earlier, some based on exhaustive laterally continuous tracking of events or simplistic considerations, while others, more robust, are computationally expensive or unproven on real data case studies. In the quest of developing a fully integrated tomography code accessible to the academic community, three key points should be addressed. First and foremost is having a tomography method that is able to build reliable subsurface parameter models. The second point is having the best possible integrated framework that is able to invert both reflection and first-arrival data. Inverting both type of arrivals offers a superior constraint on the subsurface parameters, especially in multi-parameter cases. Another motivation would be the ongoing interest in long-streamer and ultra long-offset OBN datasets in the context of full waveform inversion workflows. Last but not least, the framework should be extensible to 3D, scalable and flexible for future developments.

The main objective of this thesis is recasting the slope tomography based on eikonal solvers and the adjoint-state method under a velocity-position consistent optimization strategy. My work was a continuation of the work done by B. Tavakoli in Geoazur. The variant of slope tomography that I propose in this thesis offers a more robust strategy for inversion. Dropping the scatterer position from the parameter offers a suitable framework for integrating first-arrivals under a joint inversion scheme. The work presented in this manuscript goes beyond theory and development. Indeed, my research focused also on case studies, in both exploration and academic settings. The results obtained through the different presented applications will illustrate the success of slope tomography. All inverted models are validated as initial models for full waveform inversion or serve as background models for migration. The velocity-consistent strategy is applicable to seismic event location applications, which are of interest in earthquake seismology and microseismic imaging. I extended the use of the variable projection implemented in slope tomography to hypocenter-velocity problems.

In this manuscript, I start by introducing the framework around the forward and inverse problem developed previously by Tavakolifaradonbeh (2017) before following on with the developments and applications done through my research. I present in Appendix I, a comprehensive list of the papers and abstracts written in collaboration with my supervisors and other colleagues.

In Chapter 1, I recap on the main notions around the forward problem. The eikonal solver used during my thesis is based on finite-differences and is valid for tilted-transversely isotropic media. The recipe of [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF] is supplemented by a fixed-point iterations algorithm in order to handle the right-hand side of the anisotropic eikonal equation, the fastsweeping methods as a global solver and the factorization technique as a remedy for source singularity encountered using upwind finite-differences schemes. I conclude this section with a brief discussion on some practical aspect more related to slope tomography. After introducing the forward problem, I follow with a review on fundamentals of least-squares inversion. The main aspects around the gradient and Hessian computation are discussed, followed by a review on the adjoint-state method, in particular its reduced approach variant that is employed under the used framework. The chapter is concluded with a toy test, where traveltime tomography is performed with a special look on the performance of the different optimization schemes.

The principal aim of my research is the parsimonious formulation of slope tomography, where the sub-problem related to the localization of the scatterer is projected into the main subsurface parameters problem. Chapter 2 starts with theoretical and practical aspects revolving around the variable projection employed under the adjoint-state method, backed up with two case studies. In a form of a published paper, a review on kinematic invariance is made first, followed with the development of parsimonious formulation. The parametrization is compared with respect to previous variants and through a synthetic example on the Marmousi benchmark, the approach is directly assessed against the more usual joint inversion strategy as an initial model building tool for full waveform inversion. For the sake of further validation of the method, a real data anisotropic case study is presented. The results obtained by both approaches are compared and validated through pre-stack depth-migrated images. The paper-based section ends with a discussion on the differences and advantages of the velocity-consistent strategy versus the joint one. The Marmousi case is then revisited through a ray+Born generated dataset. The aim of the application is assessing the choice of source or receiver slopes as focusing attributes. The results show the discrepancy between the obtained models through the different strategy. A solution is proposed and backed up through migration. As a fourth application presented in this chapter, preliminary results from the SEFASILS project illustrate the usability of slope tomography in complex salt environments. Migrated images obtained using early results of slope tomography and velocity analysis are assessed against each other. I conclude the chapter with remarks on the different ongoing research related to the method and mention some important aspects that were never explored during my thesis.

In Chapter 3, I start by addressing the ill-posedness of first-arrival traveltime tomography. In our paper draft, I propose inverting slopes as a supplement to traveltime. The data-driven remedy presented is backed up first by two synthetic case studies. A toy test, using analytic expressions, illustrates the shape of the attraction basins in the case where traveltimes are inverted solely or along with slopes. Another comparison is made using the SEG/EAGE overthrust model where inverted models are used as initial guess for full waveform inversion. The results are assessed before following with a deep crustal real data application using data recorded along the eastern-Nankai margin (Japan). In the latter study, tomographic models are validated through full waveform inversion and pre-stack depth migration. As a continuation of the Nankai case study, I explain how slopes, through kinematic migration, could serve as an objective quality-control and interpretation tool. A glossary of the different recorded arrivals could be done by picking specific arrivals and migrating them kinematically in the inverted models. The chapter is balanced by an exploration scale synthetic application on the BP Salt 2004 model. The first-arrival + slopes tomography is evaluated as a model building tool in complex salt environments. The results are assessed through full waveform inversion. In the last part of the chapter, first-arrivals are embedded in the main framework. The joint inversion of first-arrivals and reflections using slope tomography is assessed using a crustal scale benchmark. The two datasets are inverted separately followed with a joint inversion in order to assess the results against each other through pre-stack depth migration.

The velocity-position strategy, extended to the hypocenter-velocity problem, is presented in Chapter 4. As a proof of concept, two distinct formulations are presented through our previously published paper. A thorough analysis highlights the ill-famed coupling between the location, velocity and the origin time. The proposed method is validated through two synthetic case studies, one of them being the Marmousi model. The chapter ends with a discussion around needed developments for real data application and perspectives.

I conclude this manuscript with a review of the general conclusions obtained through the different chapters. I discuss the ongoing and possible perspectives in the objective of having a fully integrated velocity model building tool.

Chapter 1

The framework: theory and practice 

1.2.2

The reduced approach strategy of the adjoint-state method . . . . . . In this chapter, I present the framework under which the velocity-consistent slope tomography method, introduced earlier, will be formulated. I start first by deriving the equations involved in the computation of seismic traveltimes under the high-frequency approximation of the wave equation. I then present the derived 2D eikonal equation in a medium with tilted transverse isotropy (TTI) [START_REF] Waheed | An iterative fast sweeping based eikonal solver for tilted orthorhombic media[END_REF][START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF]. The traveltime maps are computed through an upwind finite-difference scheme used as a local solver while the global solution of the non-linear partial differential equation is resolved through the fast sweeping method (FSM) [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF][START_REF] Luo | Fast sweeping method for factored anisotropic eikonal equations: multipicative and additive factors[END_REF]. [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF] proposed handling the anelliptic term of the anisotropic eikonal equation through fixed-point iterations [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF] and the singularity around the source through the factorization method [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF]. I then discuss some practical aspects that I encountered while developing the parsimonious formulation of slope tomography based on this framework. In the second part of the chapter, I come back to the inverse problem notions presented earlier in the manuscript, where the gradient was calculated by building explicitly the partial derivative matrix. I introduce the adjoint-state method, in particular the reduced approach strategy, used in the framework of our code for the gradient computation without the need to build the Fréchet derivative matrix. I discuss aspects around the optimization using a toy test. My thesis objectives did not include any theoretical contribution to the framework, hence the brief recap. I refer the reader to [START_REF] Tavakolifaradonbeh | Tomographie de pente fondée sur l'état adjoint : un outil d'estimation de modèle de vitesse pour l'imagerie sismique[END_REF] for a comprehensive review. In all the following chapters, the framework will be adapted to the algorithm being employed, hence the reason why generic notions are only presented in this chapter.

What do we need?

In the introduction of this manuscript, the notions of forward and inverse problems were presented in the context of seismic inversion. Simulating the seismic wave propagation is crucial in all seismic imaging methods. In each method and context of application, seismic wave modelling is done under adapted approximation of the physics [START_REF] Aki | Velocity analysis by iterative profile migration[END_REF][START_REF] Chapman | Fundamentals of seismic waves propagation[END_REF]). In the context of slope tomography, the needed attribute is the traveltime. In the following, I derive the partial differential equation (PDE) needed for traveltime computation under the framework developed by Tavakoli F. et al. (2017a) for slope tomography.

From wave propagation to slope tomography attributes

Without any loss of generality, seismic wave propagation in the subsurface could described through continuum mechanics. Through Newton's second law of motion, enforcing the conservation of motion, and Hooke's law, tying in a linear fashion stress and strain, wave propagation is described through the linear elastodynamic equation

[c ijkl u k,l (x, t)] ,j + ρ(x) üi (x, t) = -f i (x, t), (1.1) 
where c ijkl denotes the stiffness tensor comprising the physical variables defining the elasticity of the medium, ρ(x) denotes the density at position (x), u i (x, t) the time dependent displace-ment field with ". ¨" representing the second-order derivative in time, f i (x, t) the source field. In the following, the Einstein convention is used and the subscripts i, j, k, l take values {1, 2, 3}.

The structure of the stiffness tensor depends on the assumption made on the medium. Behavior of solid elastic media is described through 2 to 21 independent parameters. The latter vary depending on the symmetry of elastic properties in the medium at a particular point. Even at maximum symmetry, where elastic properties are unchanged across any dimension, two independent parameters are needed, the Lamé constants λ and µ. In practice, the medium is often considered as fluid. The shear modulus µ is dropped, leading to the so-called acoustic approximation where the system of equation 1.1 exhibits a single eigenmode related to primary wave propagation.

In the context of slope tomography valid for tilted transverse isotropy (TTI), we are then particularly interested in seismic anisotropy [START_REF] Thomsen | Weak elastic anisotropy[END_REF], the dependence of wave speeds on the direction of propagation. The main kinematic attribute of slope tomography being the traveltime, I focus in the following part on the high frequency approximation of the wave equation. Under the latter approximation, the source frequency is assumed to be high with the respect to the characteristic wavelength of the medium [START_REF] Virieux | Seismic ray tracing[END_REF][START_REF] Červený | Seismic Ray Theory[END_REF][START_REF] Virieux | Theory and observations: Body waves, ray methods, and finite-frequency effects[END_REF]. Having said that, I introduce the time-domain ray ansatz

u(x, t) = U(x)F (t -τ (x)) (1.2)
as a trial solution for the displacement field u i (x, t) (equation 1.1) where U i (x) is the vectorial amplitude coefficients, F is a high frequency analytical signal and τ a real valued function referred to as the eikonal. Under zero-order ray approximation ( Červený, 2001), U(x) is frequency independent and is in fact the ray amplitude. The eikonal reduces to the traveltime with its isochrone τ = const represents the wavefront of the propagating elementary wave. In order to solve for U (x) and τ , I substitute u(x, t) in equation 1.1 by its trial solution1 , which gives

F N i (U, τ ) -Ḟ M i (U, τ ) + F L i (U) = 0, (1.3) 
where

N i (U, τ ) = c ijkl τ ,l τ ,j U k -ρU i , M i (U, τ ) = c ijkl τ ,j U k,l + (c ijkl τ ,l U k ) ,j , L i (U) = (c ijkl U k,l ) ,j .
(1.4) Equation 1.3 represents the equation 1.1 under the assumption of the proposed trial solution (equation 1.2). Three conditions, to be satisfied by equation 1.1, emerge from equation 1.4. Since F represents a high frequency signal, the terms with high order derivatives terms dominate, and the third condition vanishes ( Červený, 2001). The zero-order ray solution is therefore obtained by satisfying the first two conditions. The first condition gives the eikonal equation

N i (U, τ ) = c ijkl τ ,l τ ,j U k -ρU i = 0 , (1.5) 
The framework: theory and practice while the second gives the transport equation

M i (U, τ ) = c ijkl τ ,j U k,l + (c ijkl τ ,l U k ) ,j = 0 . (1.6)
Both equations 1.5 and 1.6 could be rewritten in a compact form as

(Γ ik -δ ik )U k = 0, (1.7) 
where δ ik denote the Kronecker delta function and Γ ik the Christoffel matrix

Γ ik = c ijkl ρ τ ,j τ ,l = c ijkl ρ p j p l , (1.8) 
and p denotes the slowness vector. The Christoffel matrix is symmetric positive definite (SPD), meaning that all its eigenvalues are positive and real. In general anisotropic cases, three distinct eigenvalues exist and satisfy

(Γ ik -Gδ ik )g j = 0, (1.9) 
where G is a general eigenvalue. I note that U k in equation 1.8 has been replaced by a scalar amplitude factor projected along g, the unit polarization vector. The equivalence between equation 1.7 and 1.9 is seen through G = 1. The eigenvalues of the Christoffel matrix are then determined through det(Γ ik -Gδ ik ) = 0.

(1.10)

Once eigenvalues are retrieved, the three eigenvectors are orthogonal and represent the polarization of the three distinct linearly polarized waves. The traveltimes of the latter, by setting their eigenvalues to unity, satisfy the eikonal 2, 3, (1.11) rewritten under the following Hamiltonian representation

G m (τ (m) ,1 , τ (m) ,2 , τ (m) ,3 , x 1 , x 2 , x 3 ) = G m (p (m) 1 , p (m) 2 , p (m) 3 , x 1 , x 2 , x 3 ) = 1 m = 1,
H(x, p) = (G m (x, p) -1) = 0 m = 1, 2, 3.
(1.12) Equation 1.11 implies that for a fixed point in the six-dimensional phase space (x,p), there are three propagation modes controlled by three different phase speeds along mutually orthogonal directions, where g defines their polarization. Each eigenvalue is in fact associated to the different body wave propagation modes quasi-S1, quasi-S2 and quasi-P waves. Solving the eikonal equation is done through many methods, among them the method of characteristic curves [START_REF] Bleistein | Mathematical methods for wave phenomena[END_REF], which is the basis of ray tracing methods. The so-called canonical equations of the characteristic curve are defined as follows

dx i du = dH dp i , dp i du = - dH dx i , dτ du = p i dH dp i i = 1, 2, 3, (1.13)
where u is a real-valued parameter along the curve, referred to as the flow parameter. Solving this system allows a projection of the 6D curve, defined by equations 1.13, into a threedimensional space (only in x) where the geometrical trajectory of the characteristic is defined. The latter is nothing else than the seismic ray. Rays are defined as the characteristics of eikonal equation and this system of ordinary differential equations establishes the ray tracing system ( Červený, 2001). Two main categories of conventional ray tracing techniques exist (Figure 1.1). The Shooting method [START_REF] Langan | Tracing of rays through heterogeneous media -an accurate and efficient procedure (errata in GEO-51-1-0210)[END_REF][START_REF] Bulant | Two-point ray tracing in 3-D heterogeneous block structures[END_REF][START_REF] Virieux | Ray tracing in 3D complex isotropic media: an analysis of the problem[END_REF], where the problem is treated as an initially value problem. A ray is initiated from the source with a certain take-off angle and integrated in the medium under Snell's law. The take-off angle is perturbed until the ray is able to reach the sought point. Bending methods [START_REF] Julian | Three-dimensional seismic ray tracing[END_REF] consists of fixing the end-points of the ray and then perturb the ray geometry until the Fermat's principle is satisfied by the ray path. Other methods exist, like graph theory [START_REF] Moser | Shortest path calculation of seismic rays[END_REF], which is close to the bending method in spirit. I refer the reader to [START_REF] Virieux | Seismic ray tracing[END_REF], [START_REF] Rawlinson | Seismic ray tracing and wavefront tracking in laterally heterogeneous media[END_REF] and [START_REF] Virieux | Theory and observations: Body waves, ray methods, and finite-frequency effects[END_REF] for comprehensive reviews on ray tracing. Ray tracing gives traveltime at a specific points in the subsurface (on its path), however other methods are able to generate traveltime maps, giving traveltime solution at each point in the discretized medium. Wavefront reconstruction [START_REF] Vinje | Estimation of multivalued arrivals in 3D models using wavefront construction-part I[END_REF][START_REF] Lucio | 3D multivalued travel time and amplitude maps[END_REF][START_REF] Lambaré | Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of ray field[END_REF]) is a method based on ray shooting. In the latter traveltime maps among other wavefront attributes are resolved. I note that wavefront reconstruction [START_REF] Lambaré | Two-dimensional multivalued traveltime and amplitude maps by uniform sampling of ray field[END_REF] is able to account for multi-arrivals (case where two points are connected by two different ray paths) whereas the forward solver used in this manuscript handles first arrivals only. The other big group of methods for solving traveltime maps are eikonal solvers (e.g. [START_REF] Vidale | Finite-difference calculation of travel time[END_REF][START_REF] Podvin | Finite difference computation of traveltimes in very contrasted velocity model : a massively parallel approach and its associated tools[END_REF][START_REF] Hole | 3-D finite difference reflection traveltimes[END_REF], as pioneering works), many formulations exist in different approximations and employing a variety of numerical schemes. In the following, I introduce th eikonal solver, proposed by [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF][START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]) using finite-difference and under a TTI approximation of the medium, used during the course of my thesis.

Computing traveltime maps in complex anisotropic media

The Hamiltonian for TTI media will be derived from equation 1.9. Starting from a supposed VTI anisotropy assumption of the media [START_REF] Alkhalifah | An acoustic wave equation for anisotropic media[END_REF][START_REF] Alkhalifah | An acoustic wave equation for orthorhombic anisotropy[END_REF], the stiffness tensor c ijkl structure is tensor, the Christoffel matrix elements (equation 1.8) are rewritten in this manner

C αβ =         C 11 C 11 -2C 66 C 13 0 0 0 C 11 -2C 66 C 11 C 13 0 0 0 C 13 C 13 C 33 0 0 0 0 0 0 C 44 0 0 0 0 0 0 C 44 0 0 0 0 0 C 66         . ( 1 
Γ 11 =(C 11 p 2 1 + C 66 p 2 2 + C 55 p 2 3 )/ρ, Γ 22 =(C 66 p 2 1 + C 11 p 2 2 + C 55 p 2 3 )/ρ, Γ 33 =(C 55 (p 2 1 + p 2 2 ) + C 33 p 2 3 )/ρ, Γ 12 =(C 11 + C 66 )p 1 p 2 /ρ, Γ 13 =(C 13 + C 55 )p 1 p 3 /ρ, Γ 23 =(C 13 + C 55 )p 2 p 3 /ρ. (1.15)
Under a 2D acoustic approximation the Christoffel matrix is further reduced to .16) In the same manner introduced earlier, equation 1.10 is satisfied far from the source2 , leading to the following derived eikonal equation

Γ ik =      C 11 ρ p 2 1 0 C 13 ρ p 1 p 3 0 0 0 C 13 ρ p 1 p 3 0 C 33 ρ p 2 3      . ( 1 
A(∂ x T ) 2 + C(∂ z T ) 2 + E(∂ x T ) 2 (∂ z T ) 2 = 1, (1.17) 
where

p 1 = ∂ z T , p 3 = ∂ x T A =v 2 v (1 + 2 ) = v 2 h , C =v 2 v = v nmo 1 + 2δ , E = -2v 4 v ( -δ) = -2v 2 v v 2 nmo η.
(1.18)

In equation 1.18, the velocity P-wave velocity v v and two anisotropy parameters and δ were introduced through the following relations

v v = C 33 /ρ, (1.19) = C 11 -C 33 2C 33 , (1.20) and δ = C 2 13 -C 2 33 2C 2 33 . (1.21)
Such parametrization, introduced by [START_REF] Thomsen | Weak elastic anisotropy[END_REF], could be modified depending on the insight needed on anisotropy for either physical interpretation or suitableness for processing and inversion (see [START_REF] Alkhalifah | Velocity analysis for transversely isotropic media[END_REF] for an alternative parametrization). For the remainder, I stick with the introduced parametrization since it is the one used in case studies presented in this manuscript. Knowing that C 11 and C 33 govern anisotropy in the horizontal and vertical propagations respectively, it becomes apparent that mostly influences horizontal propagation whereas the vertical propagation are controlled by δ.

Expanding equation 1.17 under a TTI approximation, as prescribed by [START_REF] Waheed | An iterative fast sweeping based eikonal solver for tilted orthorhombic media[END_REF][START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF], gives

A(∂ x T ) 2 + C(∂ z T ) 2 + E(∂ x T ) 2 (∂ z T ) 2 = 1, (1.22)
where coefficient A, C and E are defined locally with eq. ( 1.18), and the symbol " • " represents the locally rotated coordinate system such that

∂ x T = ∂ x T cos θ -∂ z T sin θ, ∂ z T = ∂ x T sin θ + ∂ z T cos θ, (1.23) 
where θ denotes the tilt angle of the symmetry axis. At this stage, it is important to address the issue of the quartic term present in equation 1.22 which could be written in this form

ã(∂ x T ) 2 -2c(∂ x T )(∂ z T )+ b(∂ z T ) 2 = 1-E (∂ x T cos θ -∂ z T sin θ) 2 (∂ x T sin θ + ∂ z T cos θ) 2 , (1.24) with ã = A cos 2 θ + C sin 2 θ, b = A sin 2 θ + C cos 2 θ, c = (A -C) cos θ sin θ.
(1.25) [START_REF] Waheed | An iterative fast sweeping based eikonal solver for tilted orthorhombic media[END_REF] proposed resolving equation 1.24 through an iterative process implemented with the fixed-point iteration technique [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF] in which it is assumed that nonlinear equations in the form of f (x) = x converge towards a unique solution, cos(x) = x being one example. Rewriting (1.24) under a fixed-point iteration logic gives 1.26) where D(T ) groups the right-hand side of equation 1.24 and n denotes the fixed-point iteration number. Considering this iterative method, the following quantities are introduced .27) leading to the final form of the eikonal equation

ã(∂ x T n ) 2 -2c(∂ x T n )(∂ z T n ) + b(∂ z T n ) 2 = D(T n-1 ), ( 
a n → ã D(T n ) , b n → b D(T n ) , c n → c D(T n ) , ( 1 
a n-1 (∂ x T n ) 2 + b n-1 (∂ z T n ) 2 -2c n-1 (∂ x T n )(∂ z T n ) = 1.
(1.28)

Through equation 1.28, first-arrival traveltime maps are computed through an iterative process.

At each iteration, the updated quantities a n , b n and c n are injected back in the process. The iterative process is stopped once a steady-state solution is reached. Under the recipe proposed by [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF], traveltime derivatives of equation 1.28 are approximated in a finitedifference sense using an upwind scheme. A factorization is also used in order to manage the singularity around the source [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF]. I refer the reader to Tavakolifaradonbeh (2017, his chapter 2) for a comprehensive description of the numerical scheme and analysis around its accuracy. The fast-sweeping method [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF], is used as a global solver in order to cover all possible direction of propagation. The traveltime maps obtained through equation 1.28 are precise and valid for complex anisotropic cases (Figure 1.2).

Practical aspects in the context of slope tomography

In the context of slope tomography, simulations of traveltime and its derivative with respect to the source and receiver positions are needed. From an implementation point of view, two strategies are possible for the traveltime computation. The first strategy would be to use the scatterer as injection point for the eikonal equation3 , traveltime solutions are then evaluated at the source and receiver positions. The latter means that the number of PDEs to solve grows in O(N sct ) where N sct is the number of scatterers. Slope tomography relies on dense volumetric picking of scattered events, which means that, in most cases, it would be more sensed to invoke the reciprocity principle and solve traveltime maps from the source and receiver positions. The slopes are then extracted through finite differences between the maps obtained. We note that more precise strategies for the computation of the slopes exist but would involve solving an additional eikonal-based partial differential equation [START_REF] Qian | An adaptive finite-difference method for traveltimes and amplitudes[END_REF].

Source positions in acquisition are arbitrary and often do not coincide with the finitedifference grid points. In these cases, [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF] proposed calculating through analytic expressions the traveltime for the four nearest grid point. In turn, the extrapolated values are used as the boundary condition of the eikonal resolution. The analytic phase velocity for homogeneous TTI media is defined by [START_REF] Tsvankin | Anisotropic parameters and P-wave velocity for orthorhombic media[END_REF] as follows

V 2 (β, θ) v 2 0 = 1 2 + sin 2 (β -θ) + 1 2 (1 + 2 sin 2 (β -θ) -2( -δ) sin 2 (2(β -θ))), (1.29)
where β denote the take-off angle of rays toward the neighbouring grid points (Figure 1.3) and V (β, θ) is the phase velocity.

From a parallel computing stand point, the eikonal solver embedded in the framework of slope tomography is embarrassingly parallel. Every traveltime map could be calculated on different processors simultaneously. In the context of parsimonious slope tomography that will be presented in the chapter, two layers of MPI task are dispatched: One tied to the calculation of traveltime which is controlled by the number of non-redundant (in terms of spatial position) sources and receivers, while the other related to the number of kinematic migrations. In general, communications between the different MPI processes is restricted in the forward problem to sharing traveltime maps at redundant source and receiver positions whereas during the gradient computation, which will be presented in the next section, the residuals and the gradient are sent to the main processor for optimization purposes.

Recently bin [START_REF] Bin Waheed | A fast-sweeping algorithm for high-order accurate solution of the anisotropic eikonal equation[END_REF] promoted parallelising the four Gauss-Seidel orderings (2D case) of the fast-sweeping method (FSM), the latter previously proposed by [START_REF] Zhao | Parallel implementations of the fast sweeping method[END_REF]. The Gauss-Seidel is nothing else than applying the upwind finite-difference scheme starting from the four corners of the computational domain, and keeping the arrival with the minimal time at every grid point. The four Gauss-Seidel orderings are usually done in sequence. In order to account for directions of propagated waves (the characteristics), the process is repeated until convergence. The need to repeat the process is that some characteristics depend on the capture of others, especially in complex cases. For the latter reason, it is always preferred to align the first Gauss-Seidel in the direction of the dominant characteristics (for example starting from corners at the surface since propagation is started at the source level and complexities are encountered in the subsurface). When the Gauss-Seidel orderings are done in parallel [START_REF] Zhao | Parallel implementations of the fast sweeping method[END_REF][START_REF] Bin Waheed | A fast-sweeping algorithm for high-order accurate solution of the anisotropic eikonal equation[END_REF], under an MPI architecture, the minimum traveltime at every grid point is communicated and updated among processes. It seems counter-intuitive, from a characteristic standpoint, since sometimes some characteristics would not be resolved until the fastest arrival is updated. However, in tables 1.2 and 1.3, a comparative study 4 is presented using a homogeneous and other benchmarks that will be presented in the course of the manuscript. In all cases, the parallel orderings delivered the solutions faster (in terms of runtime). I should note that the runtime is the actual time between launching the code (start of parallel computation) and getting the traveltime map (all processes finishing their computation). The results show that indeed, in complex cases, the number of fast sweeping iterations per fixed-point iteration grows when parallel orderings are used. Another issue of parallel FSM is scalability. In 2D cases, the scalability is non-existent when using more than 4 processes (since there are 4 orderings). Another parallel solution relies on multiple threads in the sense that each Gauss-Seidel ordering is tackled by a single thread. Under such a multi-shared memory approach, minimum traveltimes 4. the same anisotropic code for all cases, hence why there are 2 FPI iterations. Convergence of the anisotropic equations is checked even for isotropic cases.

Model

Grid are updated on the fly, and the computational burden in terms of memory does not grow. Two issues however need to be highlighted, the first being the restricted scalability for the same reasons evoked before and the fact that racing conditions should be well managed 5 . [START_REF] Detrixhe | A parallel fast sweeping method for the eikonal equation[END_REF] pointed out both discussed issues and proposed the Cuthill-Mckee orderings, which are much more scalable than the solutions I tested during my thesis, but are more complex from an implementation point of view.

Having introduced the forward problem based on the works of [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF], I present in the following notions around the inverse problem.

Back to the inverse problem

In the introduction, I reviewed fundamental notions of inverse problems. In this section, I come back to the discussion around least-squares inversion in the context of nonlinear problems. I introduce then the adjoint-state method, and in more particular its reduced space formulation which is used in our framework of slope tomography. I follow with a discussion around optimization through a toy test.

Focusing on nonlinear inverse problems, I can write the relationship between the observed data d obs and the model parameters m as

d obs = G(m), (1.30) 
where G is a forward modeling operator. I introduce now the objective function C(m) evaluating the observed data and simulated data through

G arg min m C(m) = arg min m 1 2 ||d obs -G(m)|| 2 , (1.31) 
A second order Taylor expansion of C(m) around an initial estimate of the parameters m 0 gives

C(m 0 +∆m) = C(m 0 )+ ∂C(m 0 ) ∂m T (m-m 0 )+(m-m 0 ) T ∂ 2 C(m 0 ) ∂m 2 (m-m 0 )+O(m 3 ), (1.32) 
5. which is easily done and not problematic but could cause problems that I have not encountered yet where ∆m is perturbation of m 0 and C(m 0 + ∆m) is a locally quadratic approximate of C(m) around m 0 (Figure 1.4). Differentiating 1.32 with respect to m while supposing that the recovered perturbation leads to the minimum of the parabola defined by C(m 0 + ∆m) leads to

∂ 2 C(m 0 ) ∂m 2 ∆m = - ∂C(m 0 ) ∂m .
(1.33)

1.2.1 Optimization: a story of recipes and convergence Equation 1.33 represents the well-known Newton system. The second-order term in the left hand-side is the Hessian, which geometrically speaking describes the local curvature of the parabola. The opposite of the gradient vector in the right-hand side defines the steepest descent direction. The Newton system converges in a single iteration if we suppose that O(m 3 ) = 0 in equation 1.32, or in other words supposing that C(m) is itself quadratic and the problem is linear. In the context of nonlinear problems discussed in this section, the problem is solved iteratively through the Newton system.

Steepest-descent algorithm and line search

The simplest algorithm obtained from equation 1.33 is the steepest-descent algorithm written as

∆m k = -α k ∂C(m k ) ∂m k . (1.34)
where α is a positive scalar. The difference between equations 1.33 and 1.34 is evident, the inverse of the Hessian matrix was replaced by a scalar. Geometrically speaking, as a first interpretation, the steepest-descent scheme lacks information about the local curvature of C(m) around the estimate m k . In practice, the Hessian is not always straightforwardly built and inverted due to its possible large size and not strictly being symmetric non-singular. Indeed, the steepest-descent algorithm is often used and its possible convergence is controlled by α. The latter is in fact the step length. In plain terms, the scheme consists of moving downhill on the paraboloid (the assumed shape of C(m) locally) taking the search direction p defined by the opposite of the gradient and with a step defined by α. The optimal step length α is determined by solving the following minimization problem arg min 1.35) which illustrates the fact that the optimal step length is the one that reduces the objective function the most along the predefined search direction. Solving problem 1.35, the exact line search procedure, introduces additional computational overhead and is therefore solved approximately through inexact line search or trust-region techniques [START_REF] Nocedal | Numerical Optimization[END_REF].

α k C(m k + α k p k ), ( 
The step length is chosen carefully; an under estimated step would lead to a very slow convergence of the scheme, while a large one could cause overshooting of the estimate. The main condition around inexact line search is ensuring that the cost function actually reduces across iterations

C(m k + α k p k ) ≤ C(m k ) + γ 1 α k p T k ∇C(m k ), (1.36)
where γ 1 ∈ [0 1], is kept constant in practice with a value around 10 -4 . Through equation 1.36, known as the Armijo condition, a significant reduction of the misfit function is ensured. This inequality is easily satisfied through different step lengths. In order to restrict the choice of the step length within a limited interval, a second condition is introduced as follows .37) where γ 2 ∈ [γ 1 1], commonly set around 0.9. The reduction in slope enforced through condition 1.37 ensures that the step length chosen was not underestimated. Both conditions 1.36 and 1.37, referred to as the soft Wolfe's conditions [START_REF] Wolfe | Convergence conditions for ascent methods[END_REF], make the line search process bounded within acceptable and optimal value of α.

p T k ∇C(m k + α k p k ) ≥ γ 2 p T k ∇C(m k ). ( 1 
In order to illustrate numerically the behavior of the steepest-descent scheme coupled with an inexact line-search, I use the Rosenbrock function. The latter is a non-convex bi-variate function, often used as a toy test in optimization. In figure 1.5, the steepest-descent convergence path starting from an initial guess (-0.6,1.5) is presented. The direction of steepest-descent, orthogonal to the cost function is taken by the algorithm. Upon reaching the base of the attraction basin (white), many steps are taken in order to converge. This pathology, illustrated by a stair pattern, is typically seen in gradient-descent methods when the problem is not scaled enough (flat basin of attraction). The lack of curvature information supplied by the missing Hessian, which implicitly scales the parameters, makes the convergence extremely slow.

Full Newton and its variants

From equation 1.33, the most complete scheme could be derived as

∆m = - ∂ 2 C(m k ) ∂m 2 -1 ∂C(m k ) ∂m .
(1.38)

The full Newton scheme exhibits theoretically a quadratic convergence versus an expected linear one in the previous case under strong convexity assumption. As a comparison, the result on the Rosenbrock function (Figure 1.5), illustrates the path taken by the algorithm. Holding the local curvature information, the algorithm convergences in few iterations by exploring the cost function paraboloid outside the flat basin of attraction. In practice, the full Newton scheme of equation 1.38 could also be supplemented by a line search and rewritten as .39) At this point the reader may question the purpose of introducing the step length in the scheme. First of all, the pure Newton scheme of equation 1.38 does not guarantee convergence. In nonlinear problems, where local convexity assumptions do not hold, the Hessian could often lose its positive-definiteness and converge towards a saddle point rather than the minima in the vicinity of the initial starting point. In the Rosenbrock example, the Hessian actually loses its positive-definiteness but is able to converge back to the basin, since there are no saddle points. The step length in equation 1.39 acts as a scaling term on the Hessian leading to a so-called damped Newton scheme. In figure 1.5, the optimization path taken through a scaled Newton scheme ensure that values within the basin of attraction are explored, preserving the the positive-definiteness of the Hessian and in turn guaranteeing convergence.

∆m = -α k ∂ 2 C(m k ) ∂m 2 -1 ∂C(m k ) ∂m . ( 1 
As explained in the introduction, expressing the relation between the model perturbation and the least-squares residuals, equation 1.38 could be rewritten, in matrix form, as the following

∆m = -J T k J k + ∂J k t ∂m t (∆d...∆d) -1 J T k ∆d, (1.40)
where J is the Jacobian matrix and J T k ∆d the gradient. Dropping the nonlinear terms of the Hessian as explained earlier leads to the Gauss-Newton approximate of the Hessian J T k J k . The latter is symmetric positive definite by construction, meaning that a descent direction is guaranteed. That does not mean that convergence is guaranteed, since J T k J k is a suitable Hessian approximate as long as the initial guess falls in the attraction basin. In the case of the Rosenbrock function, used as toy test in this discussion, the Gauss-Newton scheme converges in only 2 iterations (Figure 1.5). The first step taken is too large and in this case, fortunately, the search space explored still belongs to the same attraction basin. In highly nonlinear problems, such paths could lead the inversion towards a local minimum. As what was presented for the full Newton scheme, a line search is introduced to ensure a monotonic convergence (Figure 1.5). An alternative to the damped Gauss-Newton scheme is the Levenberg-Marquardt method (Levenberg, 1944). I introduce a damped Gauss-Newton scheme in the form of

J T k J k + λI ∆m = -J T k ∆d, (1.41)
where λ is a positive scalar and I the identity matrix. From equation 1.41, it becomes evident that when the damping parameter approaches zero we fall back to a Gauss-Newton scheme. The opposite case where λ approaches infinity, the scheme is equivalent to a steepest-descent scheme with a small step length. The scheme actually falls between the steepest-descent and the Gauss-Newton schemes, depending on the tuning of λ. The advantage of the Levenberg-Marquardt method is that the advantages of both aforementioned schemes are exploited. The value of λ evolves during the optimization; λ is divided by a constant when the cost function is reduced and multiplied when the cost function increases; in the case of the test in figure 1.5 λ was multiplied by 1.5 when an increase in the residuals occurred and divided by 5 for the opposite scenario. Choosing a higher constant for reductions, means more damping is applied, hence enforcing the future descent direction to explore in a restrained manner the basin (shifting more towards a steepest-descent behavior). At the same time, once in the flat basin where the cost function is reduced progressively, the value of λ is reduced automatically to benefit from the curvature information held by the Gauss-Newton Hessian. In figure 1.5, the Levenberg-Marquardt method converges faster than the damped Gauss-Newton scheme. The identity matrix I in equation 1.41 could be replaced by the diagonal of J T J leading to a more robust scale invariant scheme.

Quasi-Newton methods

The full Newton scheme and its variants, presented in the previous section 1.2.1, required either the explicitly computation of the Jacobian or Hessian matrix. In practice, in large nonlinear problems, the calculation of either is prohibitive. The use of steepest-descent schemes is also costly due to its inefficiency in terms of converges. It is then interesting to have approaches that are both cheap and account for the information held by the Hessian, like the local curvature and the scaling. The quasi-Newton methods tackle the latter issue. Rewriting the Newton scheme 1.39 as

∆m = -α k H k ∇C(m k ). (1.42)
where H k is an inverse Hessian approximate at iteration k. An approximate of the inverse Hessian could be calculated through

H k+1 = I - s k y T k y T k s k H k I - s k y T k y T k s k + s k s T k y T k s k (1.43) with s k = m k+1 -m k and y k =∇C(m k+1 ) -∇C(m k ), satisfying the secant equation B k+1 s k = y k , (1.44) 
where B k is the Hessian approximate6 at iteration k. The inverse Hessian approximate given in equation 1.43 is derived through the the Boyden-Fletcher-Goldfarb-Shannon (BFGS) method [START_REF] Nocedal | Numerical Optimization[END_REF], their chapter 6 for a detailed development and presentation of other families of quasi-Newton methods ). The gradient and perturbation serve as a feeder in the approximation done at the next iteration. At every iteration, the approximate inverse Hessian is built through an updated version of its previous iteration counterpart. An initial guess H 0 k could be the identity matrix, leading to a steepest-descent direction at the first iteration. The optimization scheme is tested on the Rosenbrock function, the obtained result is presented in figure 1.6. The result shows that convergence is achieved through a limited number of iterations, which was not the case in the steepest-descent case (Figure 1.5), meaning that indeed through this inverse Hessian approximation we could expect a superior convergence.

Even though the approximate operator calculated through equation1.43 does not involve inverting the Hessian matrix, it still requires storing it. In large scale problems this could be prohibitive, promoting the development of the limited-memory BFGS (L-BFGS). In the latter, the inverse Hessian approximate is calculated through a sequence of vector operations

H k =(V T k-1 • • • V T k-i )H 0 k (V k-i • • • V k-1 ) + ρ k-i (V T k-1 • • • V T k-i+1 )s k-i s T k-i (V k-i • • • V k-1 ) + ρ k-i+1 (V T k-1 • • • V T k-i+2 )s k-i+1 s T k-i+1 (V k-i+1 • • • V k-1 ) • • • + ρ k-1 s k-1 s T k-1 , (1.45) 
where .46) and i denotes the number of stored vectors pairs {s i , y i } throughout the iterations. Through equation 1.45, a recursive procedure is used to infer the Hessian-vector product H k ∇C(m k ) (Nocedal and Wright, 2006, their algorithm 7.5). During the course of manuscript, all presented numerical examples were done using the L-BFGS methods implemented through the SEISCOPE optimization toolbox (Métivier and Brossier, 2016a).

ρ k = 1 y T k s k , V k = I -ρ k y k s T k . ( 1 
I note that both the gradient and the Hessian could be calculated through finite-differences (Nocedal and Wright, 2006, their chapter 8). Such computations are expensive and mainly used only for the sake of validating more accessible numerical methods.

The reduced approach strategy of the adjoint-state method

The gradient, as seen through equation 1.40, could be built through J T ∆d. The Fréchet derivative matrix englobing the partial derivative of the calculated data with respect to the model parameters.

In the context of slope tomography, the Fréchet derivative matrix included the derivatives of the source position, the receiver position, the traveltimes and the slopes with respect to the ray attributes, the scatterer position and the background velocity [START_REF] Lambaré | Stereotomography[END_REF]. However, the framework used during my thesis, involves calculating the gradient through a "matrix-free" formulation [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. The latter is based on the adjoint-state method, emerged initially in research around optimal control theory [START_REF] Lions | Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles[END_REF]. The approach has been since then popular for gradient computation in inverse problems [START_REF] Chavent | Identification of parameter distributed systems[END_REF] and more particularly in geophysics [START_REF] Sei | Gradient calculation of the traveltime cost function without ray tracing[END_REF][START_REF] Chavent | Determination of background velocities by multiple migration fitting[END_REF][START_REF] Plessix | Waveform inversion of reflection seismic data for kinematic parameters by local inversion[END_REF].

I start by defining a non-linear inverse problem, which I will suppose for the sake of illustration as being in the context of traveltime tomography, d = R(T) where d is the data vector, R is a restriction operator, limiting the solution of traveltimes in a traveltime map T at the position of the receivers. I will refer to the calculated data as the state variables and h(m, T) = 0 as the state equation that led to the computation of T in a given model m, which could represent the eikonal equation 1.28. Differentiating the state equation with respect to the model parameters gives

∂h ∂m i (m, T) + ∂h ∂T (m, T) ∂T ∂m i = 0 i = 1 • • • M. (1.47)
It is possible at this point to derive ∂T ∂m i = 0, where m i is an element of the model space, giving access to a column of Fréchet derivative matrix J and falling back to J T ∆d. I note that the latter could also be also inferred by linearizing around the forward problem and spiking the vector ∆d. Obtaining J, even though computationally expensive could be used for the sake of gradient validation, analysis of the Gauss-Newton Hessian and in turn building preconditioners.

In practice, for the gradient computation, the adjoint state method [START_REF] Chavent | Identification of parameter distributed systems[END_REF][START_REF] Akçelik | Parallel multiscale Gauss-Newton-Krylov methods for inverse wave propagation[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF] offers a framework free of any explicit sensitivity matrix building. I start by the following minimization problem introduced above with C(m) = J(T * ) where T * stands for a realization of the constraint through h(m, T) = 0. I solve the constrained problem, (eq. 1.49 under a Lagrangian formalism following the adjointstate method recipe [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The augmented functional L gives

min m C(m) = d obs -R(T) 2 2 , ( 1 
L(m, T, λ) = J(T) + λ T h(m, T), (1.50)
where λ is the Lagrangian multiplier, referred to in this context as the adjoint state variable.

According to the first-order optimality conditions, namely the so-called Karush-Kuhn Tucker (KKT) conditions, a minimizer of a constrained optimization problem is reached at the saddle point of the Lagrangian function [START_REF] Nocedal | Numerical Optimization[END_REF])

   ∇ m L ∇ T L ∇ λ L    (m, T, λ) = 0. (1.51)
Injecting the Lagrangian (1.50) into the KKT system of equations gives

   ∇ m L ∇ T L ∇ λ L    (m, T, λ) =    ∇ m h(m, T) T λ -R T (d obs -R(T)) + ∇ u h(m, T) T λ h(m, T)    = 0, (1.52)
where R T is the prolongation operator. The joint update of the entire system spanned by m, T and λ, referred to as the full space approach, is prohibitive due to computational overhead and complexity [START_REF] Akçelik | Multiscale Newton-Krylov methods for inverse acoustic wave propagation[END_REF]. In practice, the reduced-space approach of the adjoint-state method [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF]; [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF] is employed. The latter is based on a sequence of variable projections. This sequential procedure is as follows -Firstly, solve the state equation which boils to

∇ λ L(m, T, λ) = h(T, m) = 0, (1.53) 
which amounts to solving the forward problem and results in deducing the state variables.

-Secondly, solve the adjoint-state equation

∇ T L(m, T, λ) = -R T (d obs -R(T)) + ∇ T h(m, T) T λ = 0, (1.54)
which infers the adjoint-state variable λ associated to the state variable T.

-Finally, deriving the reduced-space approach gradient which invokes the previously computed adjoint-state variable

∇ m L = -∇ m h(m, T) T λ, (1.55) 
The gradient calculation implicates the resolution of the forward problem and a simulation related to the adjoint-state equation. The Hessian-vector product could be inferred by redifferentiating through the second-order adjoint-state method [START_REF] Fichtner | Hessian kernels of seismic data functionals based upon adjoint techniques[END_REF][START_REF] Métivier | Full waveform inversion and the truncated Newton method[END_REF], once the latter is obtained, the Newton system of equation 1.33 could be solved using the truncated Newton method [START_REF] Nash | A survey of truncated Newton methods[END_REF]. I develop the second-order adjointstate method in the context of first-arrival traveltime tomography in chapter 3.

The presented formulation is adapted in each following chapter to the context in which it is employed. I present in appendix III, a comparative study of the different possible optimization schemes on a simple toy test using all of the notions introduced in this chapter.

In this core chapter, I present first our paper published in Geophysical Journal International [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF]) that introduces the parsimonious formulation of slope tomography (PAST) based on the framework previously developed by [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] using eikonal solvers and the adjoint-state method. The paper contains a recap on the method followed by a synthetic and real data application with a comprehensive comparison between the joint inversion strategy and the parsimonious approach. I follow with an extended version of two more case studies done during the master's internship of Mohamed Bachir Miguil: a revisit of the Marmousi benchmark using picked data on ray+Born modeled data. In this study a double-pass inversion strategy is investigated, where both slopes are used as focusing attributes and objective parameters. This more realistic experimental setup of the revisited benchmark shows the previously argued robustness of PAST and an interesting conclusion on the superiority of double-pass inversion in complex media. I follow with a presentation of preliminary results obtained using data acquired during the SEFASILS campaign. The real data case study was part of a bigger extensive research on the Ligurian Basin that is out of the primary scope of my thesis. The velocity model building step through PAST was extremely straightforward compared to more exhaustive and subjective velocity analysis techniques. The migrated images show a superior focusing in depth of the salt layer in the early stages of the project. Preliminary results from the campaign were published in Geosciences [START_REF] Dessa | Seismic exploration of the deep structure and seismogenic faults in the ligurian sea by joint multi channel and ocean bottom seismic acquisitions: Preliminary results of the SEFASILS cruise[END_REF]. Since most applications through PAST were done for the sake of comparing it to the original formulation, the ingredients around the inversion were exactly identical. At the end of this chapter, I discuss perspectives around regularization, preconditioning and the usability of slopes in sparse areal acquisitions like OBS surveys since all applications in this chapter implicate dense streamer acquisitions.

The consistent velocity-position framework of slope tomography

Parsimonious slope tomography based on eikonal solvers and the adjoint-state method S. Sambolian, S. Operto, A. Ribodetti, B. Tavakoli F., and J. Virieux Published in Geophysical Journal International (2019) 218, 456-478

Summary

Velocity macro-model building is an essential step of the seismic imaging workflow. Indeed, obtaining acceptable results through migration or full waveform inversion is highly dependent on the kinematic accuracy of the background/initial velocity model. Two decades ago, stereotomography was proposed as an alternative to reflection traveltime tomography, the first relying on semi-automatic picking of locally coherent events associated with small reflection or diffraction segments tied to scatterers in depth by a pair of rays, while the latter on interpretive picking of laterally-continuous reflections. The flexibility of stereotomography paved the way for many developments that have shown the efficiency of the method whilst emphasizing on the complementary information carried out by traveltimes and slopes of locally-coherent events. A recent formulation recast stereotomography under a matrix-free formulation based on eikonal solvers and the adjoint-state method. In the latter, like in the previous works, the scatterer positions and the velocity field are updated jointly to tackle the ill-famed velocity-position coupling in reflection tomography. Following on from this adjoint-state formulation, we propose a new parsimonious formulation of slope tomography that offers the chance to restrain the problem to minimizing the residuals of a single data class being a slope, in search of a sole parameter class being the subsurface velocity field. This parsimonious formulation results from a variable projection, which is implemented by enforcing a consistency between the scatterer coordinates and the velocity macro-model through migration of kinematic attributes. We explain why the resulting reduced-parametrization inversion is more suitable for tomographic problems than the most common joint inversion strategy. We benchmark our method against the complex Marmousi model along with a validation through time domain full waveform inversion and then present the results of a field data case study.

Introduction

The key purpose of seismic imaging methods is the retrieval of the subsurface properties like for instance wave speeds, density, attenuation or anisotropy. One of the most crucial yet challenging task in seismic imaging is velocity macro-model building. Indeed, building a kinematically-accurate smooth velocity model of the subsurface from acquired seismic data is essential for obtaining reliable depth migrated images [START_REF] Etgen | An overview of depth imaging in exploration geophysics[END_REF] or adequate starting models for full-waveform inversion (FWI) (Tarantola, 1984;[START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF].

Several authors addressed this ill-posed inverse problem; most adopted the asymptotic highfrequency approximation ( Červený, 2001) whilst utilizing different types of data and methods. Initially, kinematic attributes like first-arrival traveltimes were extracted from the data and exploited [START_REF] Aki | Determination of three-dimentional velocity anomalies under a seismic array using first p-arrival times from local earthquakes[END_REF]. The non-uniqueness of the solution in first-arrival traveltime tomography motivated the use of additional kinematic attributes as in reflection tomography [START_REF] Bishop | Tomographic determination of velocity and depth in laterally varying media[END_REF][START_REF] Farra | Non-linear reflection tomography[END_REF] or even higher order attributes relying on directional reception as in polarization tomography [START_REF] Hu | Polarization tomography for P wave velocity structure in southern california[END_REF][START_REF] Farra | Sensitivity of qP-wave traveltimes and polarization vectors to heterogeneity, anisotropy and interfaces[END_REF] where the wholeness of the slowness vector is exploited in a transmission regime. In reflection settings, Controlled Directional Reception (CDR) [START_REF] Rieber | A new reflection system with controlled directional sensitivity[END_REF][START_REF] Riabinkin | Fundamentals of resolving power of Controlled Directional Reception (CDR) of seismic waves[END_REF][START_REF] Sword | Tomographic determination of interval velocities from reflection seismic data: The method of controlled directional reception[END_REF], relying on locally coherent events defined by traveltime and its first order derivative, proposed an interesting approach in the sense that locally-coherent events are amenable to dense picking and hence high resolution tomography. Indeed, the notion of locally coherent events opposes the conventional reflection tomography relying on exhaustive and subjective picking of laterally coherent reflection events. On the same line of thought, Billette et al. (1998) proposed stereotomography, a ray-based slope tomographic method relying on the semi-automatic picking of locally coherent events tied to scattering points in depth by a pair of ray segments (see [START_REF] Lambaré | Stereotomography[END_REF] for a review). Each event is parametrized by its picked two-way traveltime and slopes (horizontal component of the slowness vector) at the source and receiver positions (Figure 2.1), while the model space involves the scatterer coordinates (the starting points of the rays), several ray attributes (take-off angles and one-way traveltimes) and the velocity field. The inverse problem is implemented by building explicitly the sensitivity matrix and the resulting sparse tomographic system is solved with a linear conjugate-gradient method during each iteration of the velocity model update, this update being either performed in a linear or nonlinear way. Since the original formulation [START_REF] Billette | Estimation de macro-modèles de vitesse en sismique réflexion par stéréotomographie[END_REF], different variants emerged; e.g. 3D extension [START_REF] Chalard | Principles of 3-D stereotomography[END_REF], post-stack formulation [START_REF] Lavaud | Post-stack stereotomography: A robust strategy[END_REF], application in borehole settings [START_REF] Gosselet | Joint slope tomography of borehole transmitted and surface seismic data[END_REF], adaptation for anisotropic media [START_REF] Nag | 2-D stereotomography for anisotropic media[END_REF][START_REF] Barbosa | Resolution analysis for stereotomography in media with elliptic and anelliptic anisotropy[END_REF], accounting for converted primary waves [START_REF] Alerini | Two-dimensional PP/PS-stereotomography: P-and S-waves velocities estimation from OBC data[END_REF] or wideaperture data [START_REF] Prieux | Building starting model for full waveform inversion from wide-aperture data by stereotomography[END_REF], triangulated model parameterization (Yang et al., 2018a), handling complex topography [START_REF] Zhang | Stereotomography of seismic data acquired on undulant topography[END_REF]. All of the aforementioned variants follow the same framework of the classical formulation, using ray tracing as a forward solver and explicitly building the sensitivity matrix for the inversion.

Recently, [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] developed an alternative formulation of slope tomography, referred to as adjoint slope tomography (AST), based on eikonal solvers [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF] and the adjoint-state method [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The dissimilarity between AST and the original ray-based approach of Billette et al. (1998) goes beyond the manner of solving the forward problem (ray tracing versus finite-difference eikonal solver) in the sense that a more frugal parametrization of the data and model spaces was used in AST. However, a common feature of the two approaches is the joint update of the velocity model and the scatterer coordinates, which is amenable to the well-known ill-famed velocity-position coupling.

Other closely-related methods such as the so-called Normal-Incidence point (NIP) wave tomography based upon kinematic attributes picked in common-reflection surface (CRS) stack even put to use the second-order derivatives of traveltimes [START_REF] Gelchinsky | Multifocusing homeomorphic imaging Part 1. Basic concepts and formulas[END_REF][START_REF] Duveneck | Velocity model estimation with data-derived wavefront attributes[END_REF]. [START_REF] Dummong | Comparison of prestack stereotomography and NIP wave tomography for velocity model building: Instances from the Messinian evaporites[END_REF] conducted a direct comparison between stereotomography and normal-incidence-point (NIP) wave tomography and concluded that stereotomography provides velocity models of higher lateral resolution. This results from the different approximation of the traveltime curves used by the two methods: a local first-order local approximation in stereotomography amenable to the description of complex traveltime curves versus a hyperbolic approximation in NIP wave tomography that reduces the applicability of the method to moderate laterally inhomogeneous media. [START_REF] Bauer | Utilizing diffractions in wavefront tomography[END_REF] revisited the now so-called wavefront tomography by exploiting the diffractions in order to tackle the aforementioned disadvantages.

Velocity model building was also recast in the framework of wave-equation tomography (WET), a method that was proven superior to ray-based tomography in complex media but as might be expected is more computationally demanding [START_REF] Luo | Wave-equation traveltime inversion[END_REF]. [START_REF] Clément | Migration-based traveltime waveform inversion of 2-D simple structures: A synthetic example[END_REF] revamped migration-based traveltime inversion (MBTT) [START_REF] Plessix | Waveform inversion of reflection seismic data for kinematic parameters by local inversion[END_REF] using a waveform-based modeling engine. Furthermore, MBTT has been an inspiration for the development of the so-called reflection waveform inversion (RWI) [START_REF] Xu | Inversion on reflected seismic wave[END_REF][START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Wu | Simultaneous inversion of the background velocity and the perturbation in full-waveform inversion[END_REF] or even its extensions, as for instance the incorporation of diving waves [START_REF] Zhou | Full waveform inversion of diving & reflected waves for velocity model building with impedance inversion based on scale separation[END_REF]. In a similar manner to reflection traveltime tomography, RWI updates the velocity macro-model along the transmitted (or forward-scattered) wavepaths (by opposition to ray paths) connecting the reflectivity inferred from least-squares depth migration to the sources and receivers at the surface. The velocity macro-model and the reflectivity can be updated jointly or in an alternating mode [START_REF] Xu | Inversion on reflected seismic wave[END_REF]. Whatever the chosen strategy, the issues of these waveform-based approaches are related to the computational burden of fullwaveform modeling as well as their potential sensitivity to amplitude errors and cycle skipping [START_REF] Brossier | Velocity model building from seismic reflection data by full waveform inversion[END_REF][START_REF] Zhou | Velocity model building by waveform inversion of early arrivals and reflections: a 2D ocean-bottom-cable study with gas cloud effects[END_REF].

As an alternative to tomography, the other widespread family of velocity macro-model building methods would group the different variants of migration-based velocity analysis (MVA) (Al-Yahya, 1989). Unlike tomography methods which minimize residuals of seismic attributes in the data domain, MVA methods minimize residual moveout of reflection events in the migrated domain. Many adaptations and misfit criteria have been proposed for MVA, e.g. Differential Semblance Optimization (DSO) [START_REF] Symes | Velocity inversion by differential semblance optimization[END_REF][START_REF] Chauris | 2D velocity macro model estimation from seismic reflection data by local Differential Semblance Optimization: applications on synthetic and real data[END_REF], wave-equation MVA [START_REF] Shen | Differential semblance velocity analysis by waveequation migration[END_REF][START_REF] Sava | Wave-equation migration velocity analysis. i. theory[END_REF] or more recently Inversion Velocity Analysis [START_REF] Chauris | From migration to inversion velocity analysis[END_REF][START_REF] Li | Coupling direct inversion to common-shot image-domain velocity analysis[END_REF].

Interestingly, Chauris et al. (2002a) established the relationship between data-domain stereotomography as developed by [START_REF] Billette | Estimation de macro-modèles de vitesse en sismique réflexion par stéréotomographie[END_REF] and image-domain MVA based on locally-coherent events as DSO [START_REF] Symes | Velocity inversion by differential semblance optimization[END_REF], hence reconciling these two popular families of velocity model building methods in an unified framework. This relationship was established by recognizing that the position of a scattering point in a 2D subsurface medium can be found by migration of two kinematic attributes defined in the acquisition domain (for example, two-way traveltime and one slope). This kinematic migration amounts in fact to solve the two simple focusing equations provided in Chauris et al. (2002a, Their equations 10 and 11). The flexibility highlighted by this relationship is exploited in MVA to reduce the number of depth migration. In stereotomography, the needed kinematic attributes in the acquisition domain (traveltime and slope) became accessible by demigration of kinematic invariants (structural dip, residual moveout and subsurface position) picked in the depth migrated domain, the latter being advantageous for picking due to the higher signal to noise ratio [START_REF] Nguyen | Stereotomography assisted by migration of attributes[END_REF]. The notion of kinematic invariance in stereotomography [START_REF] Guillaume | Kinematic invariants: an efficient and flexible approach for velocity model building[END_REF][START_REF] Montel | Non-linear slope tomographyextension to maz and waz[END_REF] emphasizes on the invariance of the picked attributes after a kinematic migration/demigration process in any given background velocity model.

To introduce the main motivation of this study, we come back to the velocity-position coupling problem in reflection traveltime tomography which has been evoked at the beginning of this section. In practice, even though the goal of tomography is the recovery of wave speeds, reflection tomography intrinsically introduces the reflector positions as an additional parameter class. Updating the velocity field and the reflector coordinates simultaneously is obviously rational, yet not straightforward since the underlying inverse problem may be ill-posed due to the explicit coupling between the velocity distribution and the reflector positions. Many works addressed this issue: [START_REF] Stork | Iterative tomographic and migration reconstruction of seismic images[END_REF] opted for an iterative strategy by alternating tomography for velocity estimation and depth migration for reflector positioning, hence mishandling the coupling effect. [START_REF] Stork | Analysis of the resolution between ambiguous velocity and reflector position for traveltime tomography[END_REF] showed that such an alternating-direction strategy that breaks down a nonlinear problem into two sub problems, does not manage efficiently the trade-off issue. The joint inversion of both the velocity structure and the reflector geometries seemed therefore inevitable in reflection tomography [START_REF] Bishop | Tomographic determination of velocity and depth in laterally varying media[END_REF][START_REF] Farra | Non-linear reflection tomography[END_REF]. Unsurprisingly, the same conclusions were drawn in stereotomography, the coupling between velocity and the ray attributes associated with a scattering point was proven to be significant (Billette, 1998, pages 95-99). On the same line of thought, [START_REF] Pavlis | The mixed discrete-continuous inverse problem: application to the simultaneous determination of earthquake hypocenter and velocity structure[END_REF] and [START_REF] Spencer | Travel time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media[END_REF] discussed the detrimental impact of similar relaxation strategies in the context of earthquake hypocenters relocation and velocity estimation. More recently, [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF] revisited this coupling problem in the context of RWI and showed the impact of different possible optimization strategies. In the latter, a third strategy was proposed called the reflectivity/background consistent approach which was shown to be superior. The consistent strategy relies on a variable projection approach [START_REF] Golub | Separable nonlinear least squares: the variable projection method and its applications[END_REF] which explicitly tie together the velocity field and the reflectivity through physical constraints.

Similarly to the variable projection strategy promoted by [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF], the objective of this paper is to revisit the AST parametrization by making use of the focusing equations of Chauris et al. (2002a) as constraints to position the scatterers in depth and reduce once more the model parametrization of slope tomography. In practice, the scattering points are first positioned in the current velocity model through a kinematic migration of a part of the data attributes (in our case, the two-way traveltime and one of the two slopes). Then, the retrieved scattering positions are projected into the constrained objective function before updating the velocity field by inversion of the residuals of the remaining slope. This variable projection (or elimination) mitigates the velocity-position coupling by ensuring the consistency between the scatterer positions and the velocity model in the migration sense. By doing so, we end up with a mono-variate optimization problem involving one data class. In consequence, no scaling in the data and model spaces is needed. Following [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF], we implement this new formulation of AST with the reduced-spaced method of Lagrange multipliers reviewed by [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF].

In the first section, we review the parametrization of the classical stereotomography and the slope tomography based on eikonal solvers and the adjoint-state method (AST). Then, we develop our proposed formulation under the same framework as AST. An application to the synthetic Marmousi case validated by FWI and another on real data validated through a TTI Kirchhoff migration will be presented. The different applications show the improved convergence speed of our approach relatively to AST, a more stable behavior of the inversion and a more straightforward implementation due to the lack of scaling in the data and model spaces. In the final section, we discuss the impact of such a reduction in the model space and its implication on the coupling between velocity and scattering positions in comparison with other inversion strategies.

On the parametrization of slope tomography

Classical stereotomography

In classical stereotomography [START_REF] Billette | Estimation de macro-modèles de vitesse en sismique réflexion par stéréotomographie[END_REF][START_REF] Lambaré | Stereotomography[END_REF], a locally coherent event n in the pre-stack data volume is defined by the source and receiver positions (x s , x r ), two-way traveltime T and horizontal component of the slowness vector at source and receiver positions (p s , p r ) (Figure 2.1). An all-inclusive parametrization was chosen in this ray-based approach, where the source and receiver positions were introduced as objective measures in order to absorb experimental errors and relax a boundary condition for the ray tracing problem. The corresponding optimization parameters can be subdivided into two categories. The first is related to the ray segments connecting the diffraction point to source and receiver positions: this includes scatterer coordinates (x), take-off angles (φ s , φ r ) and one-way traveltimes (T s , T r ). The other involves wave speeds, parametrized by B-spline coefficients c. This leads to the following definition of the data space d cs and model space m cs of classical stereotomography (cs)

d cs = [(x s , x r , T s,r , p s , p r ) ns,r ] Ns s=1 | N s r r=1 | Nn s,r ns,r=1
(2.1a)

m cs = [(x, φ s , φ r , T s , T r ) ns,r ] Ns s=1 | N s r r=1 | Nn s,r ns,r=1 , [c m ] M m=1 . (2.1b)
Following the notation of [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] in the above equations, M is the number of cubic B-spline nodes, N s the number of shots, N s r the number of receivers for the shot s, N ns,r the number of events for a source/receiver pair (s, r), x ns,r the coordinates of the n th scatterer tied to the source-receiver pair (s, r). Note that, with this parametrization, a common-reflection point in the subsurface sampled by n source-receiver offsets will be processed as n independent optimization parameters during slope tomography.

A Fréchet derivative matrix is explicitly constructed through paraxial ray tracing [START_REF] Farra | Seismic waveform modeling in heterogeneous media by ray perturbation theory[END_REF] in order to solve the Newton-based local optimization scheme [START_REF] Nocedal | Numerical Optimization[END_REF]. The optimization workflow includes three distinct steps: firstly the scattering positions x ns,r are initialized independently of the initial background velocity model using simplistic geometrical assumptions (refer to the Appendix A of [START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF] for analytical expressions), followed by a so-called localization step where the ray attributes are solely updated, while keeping the starting velocity model fixed. In the final step, the totality of the parameters are updated jointly through an iterative nonlinear inversion. During each nonlinear iteration, the tomographic system is solved iteratively with a linear conjugate-gradient LSQR algorithm [START_REF] Paige | ALGORITHM 583 LSQR : Sparse linear equations and least squares problems[END_REF].

Adjoint slope tomography (AST)

In adjoint slope tomography (AST) [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF][START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF], the forward problem computes traveltime maps with eikonal solvers using x s and x r as injection points, hence discarding (x s , x r ) and (φ s , φ r , T s , T r ) from the data and parameter spaces (equations 2.1a and 2.1b), leading to the more compact data and model spaces respectively

d ast = [(T s,r , p s , p r ) ns,r ] Ns s=1 | N s r r=1 | Nn s,r ns,r=1
(2.2a)

m ast = [x ns,r ] Ns s=1 | N s r r=1 | Nn s,r ns,r=1 , [c m ] M m=1 . (2.2b)
Due to the use of eikonal solvers and the reciprocity principle, the problem complexity becomes proportional to the number of non-redundant source and receiver positions whereas it scales to the number of scattering points in the ray-based approaches. The inverse problem relies on the same steps as the classical approach but the gradient of the objective function is calculated with the matrix-free adjoint-state method [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF].

Parsimonious adjoint slope tomography (PAST)

The data and model spaces of AST can be further reduced via the connection between stereotomographic attributes in the acquisition (data) domain and the prestack depth-migrated domain (Chauris et al., 2002a). The migration of kinematic invariants during the iterations of the slope tomography is implemented by solving the two following common-shot focusing equations (Chauris et al., 2002a)

T * ns,r = t s (x ns,r ) + t r (x ns,r ) p * r,ns,r = p r,ns,r , (2.3) 
which we use as constraints in PAST. In equation 2.3, T * ns,r and p * r,ns,r denote the picked twoway traveltime and receiver slope associated with the event n s,r , while t s (x ns,r ) and t r (x ns,r ) denote the modeled one-way traveltimes along the paths connecting the source s and the receiver r to the scattering point position x ns,r , respectively. The traveltimes are extracted from the traveltime maps t s (x) and t r (x) computed in the current velocity model with the eikonal solver using shot s and receiver r as injection points (Figure 2.2). Employing the presented parametrization, the optimization boils down to invert for only one data class, here the source slope p s,ns,r (equation 2.4a) and reconstruct a sole parameter class in isotropic cases, namely wave speeds (equation 2.4b)

d past = [p s,ns,r ] Ns s=1 | Nn s,r ns,r=1 (2.4a 
)

m past = [c m ] M m=1 .
(2.4b)

In the following section, we review in details the implementation of this data-space and modelspace reduction in the framework of AST.

We would like to note that the idea of a kinematic migration by means of the focusing equations is well elaborated in the migration context. Indeed, the two-way traveltime and one slope are sufficient to define a locally coherent event in non-complex media (absence of triplications). The notion has been established in a migration context [START_REF] Xu | Common-angle migration: a strategy for imaging complex media[END_REF] based on the traveltime injectivity condition (TIC) (ten [START_REF] Ten Kroode | Linearized inverse scattering in the presence of caustics[END_REF].

Method

According to the proposed definition of the parsimonious data and model spaces (equation 2.4a), we aim to solve the following minimization problem

min m J(m) = min m 1 2σ ps 2 Ns s=1 N s r r=1 Nn s,r ns,r=1 (p s,ns,r (m) -p * s,ns,r ) 2 , (2.5) 
where p s,ns,r (m) denotes the predicted slope at the source and σ 2 ps are elements of a diagonal covariance matrix [START_REF] Tarantola | Inverse problem theory: methods for data fitting and model parameter estimation[END_REF]. In practice, the inverse of this matrix will be used as a weighting operator.

Minimizing the objective function J(m) with respect to m is a typical nonlinear tomographic problem that will be solved iteratively using a Newton-based local optimization scheme [START_REF] Nocedal | Numerical Optimization[END_REF]. The predicted slopes p s,ns,r depend on the model parameters m through a nonlinear forward problem operator F, which gathers a series of physical (state) equations revolving around the calculation of traveltimes, the horizontal component of the source and receiver slowness vectors and the coordinates of the scatterers x ns,r . Since p s,ns,r has not a simple closed form expression with respect to m, we enforce these physical constraints through a Lagrangian function and solve the constrained optimization problem with a reduced-space variable projection method generally referred to as the adjoint-state method [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The Lagrangian function is written in compact form as

L(m, u, ū) = h(u) -ū | F(u, m) , (2.6) 
where .|. denotes the inner product, u gathers the state variables, ū the adjoint-state variables (or Lagrange multipliers) and h(u * ) = J(m) where u * stands for a realization of the physical constraints.

State equations

We now review the different state equations gathered in F. We recall first the focusing equations presented by Chauris et al. (2002a) for the common-shot case T s,r,ns,r = T * s,r,ns,r p r,nsr = p * r,nsr .

(2.7)

We infer the predicted T s,r,ns,r and p r,nsr from traveltime maps (t s (x),t r (x)) computed with the fast sweeping method and a finite-difference factored eikonal solver using the source and receiver positions as injection points [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF][START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF].

H(x, ∇t s (x)) = 0 with t s (x s ) = 0, (2.8) 
H(x, ∇t r (x)) = 0 with t r (x r ) = 0.

(2.9)

In the above equations, we impose a Dirichlet boundary condition by zeroing the traveltimes at the source and receiver positions. The operator H stands for the Hamiltonian representation of the Eikonal equation in tilted transversely isotropic (TTI) media [START_REF] Alkhalifah | Acoustic approximations for processing in transversely isotropic media[END_REF][START_REF] Waheed | An iterative fast sweeping based eikonal solver for tilted orthorhombic media[END_REF]. Its coefficients embed the model parameters we seek to update. We also introduce a sampling operator Q ns,r implemented with a Kaiser-windowed sinc function [START_REF] Hicks | Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions[END_REF] for the sake of traveltime extraction at any position in the traveltime maps t s (x) and t r (x).

From this, the two-way traveltimes T s,r,ns,r are obtained straightforwardly by summing the traveltimes of t s and t r at the scatterer position x ns,r T s,r,ns,r = t s (x ns,r ) + t r (x ns,r ) = Q ns,r t s (x) + Q ns,r t r (x).

(2.10)

We estimate the receiver slopes in a finite-difference sense following the approach of [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. Spatial reciprocity allows us to infer p r,ns,r from the values of the traveltime maps t r-1 and t r+1 initiated at neighboring receivers r -1 and r + 1 and sampled at x ns,r , i.e. far away from the injection points: .11) Even though the finite difference approximation is efficient, [START_REF] Qian | An adaptive finite-difference method for traveltimes and amplitudes[END_REF] pointed the inaccuracy of such approaches. A more precise strategy would involve solving an additional eikonal-based partial differential equation tying the traveltime perturbation with respect to the source position [START_REF] Alkhalifah | An eikonal based formulation for traveltime perturbation with respect to the source location[END_REF].

p r,ns,r = ∂T s,r,ns,r ∂x r = ∂t r (x ns,r ) ∂x r ≈ Q ns,r t r+1 (x) -Q ns,r t r-1 (x) 2∆r . ( 2 
Substituting the expressions of T s,r,ns,r and p r,ns,r , equations 2.10 and 2.11, in the focusing equations 2.3, allows us to eliminate the state variables T s,r,ns,r and p r,ns,r from our optimization problem. This gives

T * s,r,ns,r = Q ns,r t s (x) + Q ns,r t r (x) , p * r,nsr = Q ns,r t r+1 (x) -Q ns,r t r-1 (x) 2∆r .
(2.12)

The two above focusing equations are used to estimate the scatterer coordinates x ns,r , which are embedded in the sampling operator Q ns,r .

Finally, the state equations satisfied by the source slopes rely on the same finite-difference approximation as that use for the receiver slopes (equation 2.11)

p s,ns,r = ∂T s,r,ns,r ∂x s = ∂t s (x ns,r ) ∂x s ≈ Q ns,r t s+1 (x) -Q ns,r t s-1 (x) 2∆s . (2.13) 
Injecting the state equations, equations 2.8, 2.9, 2.12 and 2.13, in the Lagrangian function, equation 2.6, gives

L(m, u, ū) = h(u) - Ns s=1 N s r r=1 Nn s,r
ns,r=1 ξ s,ns,r p s,ns,r -Q ns,r (t s+1 (x) -t s-1 (x)) 2∆s

+ ξ r,ns,r p * r,ns,r -

Q ns,r (t r+1 (x) -t r-1 (x)) 2∆r + µ s,r,ns,r T * s,r,ns,r -Q ns,r (t s (x) + t r (x)) - 1 2 Ns s=1 λ s (x) | H(x, ∇t s (x)) Ω - 1 2 Nr r=1 λ r (x) | H(x, ∇t r (x)) Ω ,
(2.14) where Ω denotes the subsurface domain Ω, u = t s (x), t r (x), x ns,r , p s,ns,r and ū = λ s , λ r , ξ r,ns,r , µ s,r,ns,r , ξ s,ns,r . We remind the reader that the functional 2.14 is dependent to the model parameters in m through the Eikonal equation present in the last two terms. The first-order optimality conditions, i.e. the so-called Karush-Kuhn-Tucker (KKT) conditions, state that a local minimizer of the constrained optimization problem is reached at the saddle point of the Lagrangian function [START_REF] Nocedal | Numerical Optimization[END_REF], that is when the three following equations are satisfied:

∂L/∂u = 0, ∂L/∂ ū = 0 and ∂L/∂m = 0.

(2.15) Instead of updating jointly u, ū and m during iterations, we resort to the reduced-space adjointstate method [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF] where the first two optimality conditions are strictly satisfied at each iteration through two successive variable projections. That is, we first estimate the state variables by solving the state equations ∂L/∂ ū = 0. From the estimated state variables, we estimate the Lagrange multipliers by solving the adjoint-state equations ∂L/∂u = 0. Then, we infer the gradient of J with respect to m from the realizations of the state and adjoint-state equations by noting that ∇ m J(m) = ∇ m L(u * , ū, m). Finally, from ∇ m J(m), we update m with a l-BFGS quasi-Newton iteration. This process is iterated until the convergence point where the three optimality conditions, equation 2.15, are jointly satisfied. At this stage, it is worth reminding the key difference between AST and PAST formulations.

In AST, T * s,r,ns,r and p * r,nsr are processed as objective measures (i.e., experimental quantities whose residuals are minimized by the objective function) and x ns,r as optimization parameters (quantities updated by the optimization). In contrast, in PAST, T * s,r,ns,r and p * r,nsr are the right-hand sides of the two state equations satisfied by x ns,r , which are now processed as state variables. In the framework of the reduced-space adjoint-state method, this indeed means that PAST strictly satisfies the focusing equations at each iteration, while AST introduces a relaxation of these equations by allowing two-way traveltimes and receiver slope residuals. To prevent any confusion, we emphasize on the fact that AST also relies on the reduced-space adjoint-state method, the difference with PAST being instead related to the parametrization of the data and model spaces. The relaxation of the focusing equations breaks down the kinematic consistency between the current velocity model and the position of the scatterers. In other words, the relaxation in AST is equivalent to solving the focusing equations (migration of the kinematic attributes) with velocities that differ from those of the current velocity model, while the demigration velocities used to compute the source slopes are the same in AST and PAST and correspond to the current velocity model. In this sense, AST enlarges the search space by relaxing two constraints, which might be beneficial to manage nonlinearities and absorb experimental errors related to inaccurate picking. However, the higher number of degrees of freedom this relaxation generates potentially increases the ill-posedness of the inversion by being more permissive in terms of velocity-position coupling.

Adjoint-state equations

We develop now the adjoint-state equations. The adjoint-state equation ∂L/∂p s,ns,r = 0 gives immediately that ξ s,ns,r gather the scaled slope residuals

ξ s,ns,r = 1 σ 2 ps (p s,ns,r -p * s,ns,r ) = ∆p s,ns,r σ 2 ps .
(2.16)

For each event, ∂L/∂x ns,r = 0 gives the following 2 × 2 system of linear equations relating µ s,r,ns,r , ξ r,ns,r and ξ s,ns,r :

µ s,r,ns,r ∂Q ns,r ∂x ns,r (t s + t r ) + ξ s,ns,r 2∆s 
∂Q ns,r ∂x ns,r (t s+1 -t s-1 ) + ξ r,ns,r 2∆r 
∂Q ns,r ∂x ns,r (t r+1 -t r-1 ) = 0.

(2.17) Unsurprisingly, the left-hand-side term of the system 2.17 has the same form as the gradient of the objective function with respect to x ns,r in AST [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF], their equation 20) and gives clear insights on the relative role of two-way traveltimes and slopes in slope tomography. The weighted sum of the two slowness vectors at x ns,r (Figure 2.3, black arrows) associated with the rays connecting x s and x r to x ns,r , namely ∂Q ns,r /∂x ns,r (t s + t r ), is normal to the isochrone (Figure 2.3, green arrow), while the gradient vectors ∂Q ns,r /∂x ns,r (t s+1 -t s-1 ) and ∂Q ns,r /∂x ns,r (t r+1 -t r-1 ) are normal to the rays connecting x s and x r to x ns,r (Figure 2.3, red and blue arrows). Therefore, the first term (related to two-way traveltimes) controls the shifting of the scattering point n s,r perpendicularly to the isochrone, while the sum of the last two vectors (related to slopes) controls the drifting along the isochrone (Figure 2.3, magenta arrow). However, the Lagrange multipliers µ s,r,ns,r and ξ r,ns,r differ in AST and PAST since they are tied to different state variables. Moving the terms depending on ξ s,ns,r in the right-hand sides of the 2 × 2 system, equation 2.17, and solving this system with Cramer's rule gives the closed form expression of µ s,r,ns,r and ξ r,ns,r as function of ξ s,r,ns,r , i.e., the source slope residuals (equation .

(2.21) Indeed, equation 4.18 is nothing else than the chain rule of derivatives. Remembering that the right-hand sides of the adjoint-state equations contains the partial derivative of h(p s,ns,r ) with respect to the states u [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF], the chain rule of derivatives highlights mathematically how the information carried out by p r and T s,r on the subsurface velocities (left-hand side of equation 4.18) are passed onto the optimization measure p s (right-hand side of equation 4.18) via the state variables x ns,r , i.e., the unknowns of the focusing equations whose right-hand sides are p * r and T * s,r measurements. While ξ r,ns,r and µ s,r,ns,r are the receiver slope and the two-way traveltime residuals in AST, they are now weighted versions of the source slope residuals, where the weights are the partial derivative of the source slope with respect to the two-way traveltime and the receiver slope. Interestingly, equations 2.18 and 2.19 also impose a reflection condition, namely det ∂(Ts,r,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r ) = 0, which is similar to the imaging condition defined by Chauris et al. (2002a, Their equation 42). The term det ∂(Ts,r,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r )

represents the one-to-one mapping performed by means of the focusing equations between one locally-coherent event in the common-shot gather parametrized by T s,r,ns,r and p r,ns,r and the position of a scatterer. The reflection condition is only violated when the normal vector to the isochrone and the orthogonal vector to the ray are parallel, that would corresponds to the grazing incidence, i.e. a scattering angle of 180 • . In the latter case, an ambiguity about the position of the scattering point along the isochrone would arise, hence validating our formulation in a reflection setting only. The reader is referred to [START_REF] Tavakoli | Anisotropic first-arrival slope and traveltime tomography (FASTT)[END_REF] for the adaptation of adjoint slope-tomography to first arrivals where scatterers are naturally removed from the formalism. Following [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF], we obtain the adjoint-state equations satisfied by λ s (x) and λ r (x) by taking the derivative of the augmented functional 2.14 with respect to t s and t r . This gives

∇ • (λ s (x) U s ) Ω = 1 2∆s N s+1 r r=1 Nn s+1,r n s+1,r =1 Q t n s+1,r ∆p s+1,n s+1,r - 1 2∆s N s-1 r r=1 Nn s-1,r n s-1,r =1 Q t n s-1,r ∆p s-1,n s-1,r + N s r r=1 Nn s,r ns,r=1 Q t ns,r F T ∆p s,ns,r , (2.22) ∇ • (λ r (x) U r ) Ω = - 1 2∆r N r+1 s s=1 Nn s,r+1 n s,r+1 =1 Q t n s,r+1 F r+1 ∆p s,n s,r+1 + 1 2∆r N r-1 s s=1 Nn s,r-1 n s,r-1 =1 Q t n s,r-1 F r-1 ∆p s,n s,r-1 + N r s s=1
Nn s,r ns,r=1

Q t ns,r F T ∆p s,ns,r .

(2.23) Adjoint fields λ s (x) and λ r (x) back-project the weighted sum of the source slope residuals along two ray tubes following the group velocity vectors U s and U r connecting x ns,r to x s and x r respectively (Figure 2.4) [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF]. The right-hand-side terms scale the amplitudes along the ray tubes based on the information carried out by traveltimes and slopes through the focusing weights F T and F r deduced from equations 2.18 and 2.19. As the eikonal equations, the adjoint-state equations 2.22 and 2.23 are solved with the fast sweeping method [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF][START_REF] Taillandier | First-arrival travel time tomography based on the adjoint state method[END_REF] using a conservative finite difference scheme as described by [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF].

Gradient of the PAST objective function

From the adjoint-state variables, the gradient of the objective function J(m) (equation 2.14) with respect to the subsurface parameters is straightforwardly obtained by the weighted sum-mation of the adjoint fields λ s and λ r

∇ m(x) J = - 1 2 Ns s=1 ∂H(x, ∇t s (x)) ∂m(x) λ s (x) + Nr r=1 ∂H(x, ∇t r (x)) ∂m(x) λ r (x) . (2.24)
The weighting factors of the adjoint fields are simply the derivative of the forward operator H(x, ∇t(x)) with respect to the model parameters and control how the gradients of J with respect to different parameter classes differ. Following the chain rule of derivatives, we then project the gradient on the cubic B-spline basis for the optimization [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF].

We refer the reader to Tavakoli F. et al. (2019, Appendix B) for a first analysis of these multiparameter gradients in the case of TTI acoustic media.

To highlight the computational-efficiency of the adjoint-state method relative to Fréchet derivative approaches and draw closer connections with the formulation of Chauris et al. (2002a), we review in the appendix how the Fréchet derivatives of eikonal-based slope tomography could be implemented.

Numerical Examples

In the following section, we analyze the performance of the reduced parametrization implemented in PAST in comparison to the joint inversion strategy employed in AST [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. We benchmark the method on the well-known Marmousi model [START_REF] Bourgeois | Marmousi, model and data[END_REF] with further validation through time-domain FWI. We follow by a real application using high-end industrial BroadSeis data acquired in the Carnarvon Basin, north-west of Australia. The validation in the latter will be done through a TTI Kirchhoff migration.

Marmousi model

Recovering the long-wavelength component of the realistic Marmousi velocity model through tomographic approaches has been a challenge due to the strong lateral and vertical velocity changes [START_REF] Chauris | Migration velocity analysis from locally coherent events in 2-D laterally heterogeneous media, Part II: Applications on synthetic and real data[END_REF][START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF]. On top of that, the complexity of the structures hinders the reconstruction of the macro-model due to the ray theory shortcomings [START_REF] Audebert | Imaging complex geologic structure with single-arrival Kirchhoff prestack depth migration[END_REF]. As in [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF], we generate the dataset by picking the positions and dips along the main reflectors of the true blocky model (Figure 2.5a). In order to assess the inversion scheme, we calculate the data space using the same forward engine that will be used during the inversion. The demigration of the invariants is done in a smooth version of the Marmousi model, which is used as the target of the slope tomography (Figure 2.5b). We generate this smooth model by applying a Gaussian isotropic filter of 100 m correlation length on the true model. The chosen 100 m correlation length ensures the validity of the single-arrival assumption in most part of the smooth model, while it preserves the kinematic properties of the true model (Operto et al., 2000a). We however underline that in the targeted complex reservoir zone, some multipathing still occurs. The experimental setup mimics a towed-streamer acquisition consisting of 91 shots spaced 100 m apart and 134 receivers with an inter-distance of 25 m. A total of 6708 picks were generated, as elaborated by [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF], the events are associated to realistic specular reflection points.

We proceed with an inversion using the parsimonious PAST parametrization presented in the previous section. We remind the reader that there is no need for scaling in the data and model spaces since we solve a mono-variate/mono-parameter problem, contrarily to AST. We note that the inversion can run using either the source or the receiver slopes as objective measures. In the Marmousi case, we opt for fitting the receiver slopes due to a more favorable setup linked to the acquisition and the dip of the reflectors. The inversion is regularized by smoothing the gradient with a 200 m correlation length and by designing a multi-scale reconstruction by successive Bspline refinements, in the same manner as [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] for the sake of an unbiased comparison.

During the inversion, we use the limited-memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) algorithm [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF] implemented through the SEISCOPE optimization toolbox (Métivier and Brossier, 2016a) which also in turn manages the line search. Due to the use of a quasi-Newton optimization scheme, any scatterer that cannot be focused in the bounds of the computational domain is flagged as noise and kept out of the inversion until the memory dump occurs at the end of each scale.

As initial velocity model for PAST, we use the same homogeneous velocity model (2 km/s) as that used by [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] to perform AST. This velocity model induces a quite incomplete subsurface illumination by the scatterers during the first iterations of PAST because the scatterers are positioned by the focusing equations (Figure 2.6a). This trend is not seen during the early iterations of AST, where the initial scatterers are positioned by the initialization and localization steps described in [START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF]. In other words, while PAST initializes the scattering positions by migration to foster their kinematic consistency with the velocity model, the initialization of AST rather seeks to find the scattering positions that minimize the slope and traveltime residuals keeping the initial model fixed. Therefore, the initial incomplete subsurface coverage should not be seen as a disadvantage but rather as a consequence of the physical consistency between the background velocities and the scattering positions enforced by PAST. Of course, a different initial velocity model that spreads the scatterers in the totality of the computational domain would be more suitable for PAST.

During the early iterations of the inversion (Figure 2.6b), the long-wavelength velocity distribution is retrieved, leading to a better scatterer coverage. The skeleton formed by the scatterers following the first three scales is analogous to the true structures especially up to 6 km distance and 2 km depth (Figure 2.6b-d). In Figure 2.6e, the inverted tomographic model is presented along with a superimposition of the implicitly updated scattering point positions. We can clearly see that the aligned scatterers depict the overall structure of the reflectors found in the true model (Figure 2.5a). In the later stages of the inversion, the updates are more concentrated on the complex part of the model around the reservoir (Figure 2.6f-g). The final model (Figure 2.6h) retrieved after a total of 195 iterations is quite satisfying, the reconstructed velocity is coherent with respect to the true model. Knowing that the superimposed scatterers in Figure 2.6h are found by satisfying the focusing equations, we can draw a first conclusion that the background model is very suitable for migration (kinematics wise).

The misfit function evolution during the iterations exhibits a good behavior (Figure 2.7); the cost function value decreased by more than two orders of magnitude. The convergence is quite dramatic at the beginning of each scale due to the spline-grid refinement enforced when a linesearch failure occurs. The increase in the cost function value seen at the start of some scales is due to the reintroduction of previously expelled events as explained earlier. We don't engage in a direct comparison with the misfit function behavior seen in AST because of the various dissimilarities in its definition, the starting point of the inversion and the impact of scaling in the case of AST. In the following we focus on a comparison of the models and assess their validity as initial models for FWI.

In comparison with the result obtained by [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] after 374 iterations, the scattering points exhibit generally the same pattern (Figure 2.8a) apart from the central reservoir region. The velocity logs shown in Figure 2.9 prove that we were able to construct a smooth version of the Marmousi model and that our inverted model follows a firmer trend than AST's (Figure 2.9c). This trend shows that the inversion is more stable in some areas of the model, but we should state impartially that this could also be hindering the recovery of short wavelength structures.

We further assess the obtained velocity model as initial model for time-domain FWI. We consider a long-offset fixed-spread acquisition with sources and receivers covering the full surface to increase the sensitivity of FWI to cycle skipping. We invert successively seven datasets with increasing dominant frequencies [4, 6, 8, 10, 12, 14 and 16 Hz], a fixed lower bound of 2.5 Hz and a higher bound of 38 Hz. The FWI velocity model is in agreement with the true model down to a depth of 2 km (Figure 2.8d). We can distinguish the better resolution around the reservoir in Figure 2.8d especially the fact that the gas and oil cap is retrieved; this major discrepancy between both models is point on the log of cal velocity logs (Figure 2.9a-d) shows inaccuracies in the deep part of the model below 2.5 km, as a consequence of the lack of illumination under the salt inclusions and the high-velocity contrast that is far from being recovered by tomography. We elaborate more on the reasons behind the convergence speed and stability differences in the discussion section.

Real TTI case study

We proceed with a real data application as validity assessment of the proposed approach. The concerned region is in the vicinity of the Carnarvon Basin, north-west of Australia. The area is well known for its hydrocarbon potential, especially the gas reservoirs found at 3 to 4 km depth across the basin.

The data at hand is part of a previous exploration campaign. The 2D profile is 57 km long. A total of 2479 shots were recorded by 648 receivers forming a 8250 m streamer. During the acquisition the streamer was submerged in a curvy manner at a depth up to 57.5 m; such settings induces a notch diversity that is well exploited for acquiring state-of-the-art data [START_REF] Soubaras | Variable depth streamer -the new broadband acquisition system[END_REF]. The BroadSeis technology alleviates the low signal to noise ratio at low frequencies and higher frequencies accessibility. The advancement in acquisition design and equipment has been significant in the last decade; such developments unlocks the potential of most seismic methods. Indeed, the broadband nature of the new high-end seismic data is a step forward towards closing the ill-famed frequency gap [START_REF] Claerbout | Imaging the Earth's interior[END_REF].

The processed data, local well measurements and the picked attributes for slope tomography were made available to us along with the estimated TTI parameters and most importantly a legacy velocity model built by 2D nonlinear slope tomography (Figure 2.10) which will only be used during the validation of the results. In total, around two million events were picked in the depth migrated domain. During the demigration process a sort of redatuming is used to flatten the streamer line on the profile. Such processing causes inconsistencies in the retrieved source and receiver positions in the data domain. In other words, two picked scattering points associated with the same source-receiver pair will have shifted distinct source-receiver pairs in the data volume. This artificial increase in source and receiver positions is problematic from a computational point of view since the complexity of the problem under the adjoint framework is directly proportional to the number of non-redundant source/receiver positions. [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] implemented an aggregation scheme that would keep in the data space only scattering points associated with source/receivers positions shifted to a certain limited extent. This solution alleviates the computational burden. Only fifty thousand picks were selected by [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] for the AST inversion (Figure 2.11a-c), as consequence of the aggregation scheme and the elimination of suspected noisy picks. We note that this does not mean that only 2.5 percent of the data is reliable. We just expect that the pre-selected picks are sufficient for a good inversion across the totality of the model.

We start the inversion using a constant gradient model defined by v = v 0 + a × z bat , where z bat is the depth from below the bathymetry line, v 0 = 1500 m/s and a = 0.5 (Figure 2.11d). This background velocity model is not optimal for our approach (Figure 2.11d) but we prefer to use the same initial model as the one defined by [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] for the sake of consistency (Figure 2.11a). We implement a six steps spline-grid refinement with horizontal c) is the Gaussian filter correlation length (200 m instead of 500 m) and the fact that well logs data weren't introduced as constraints during our inversion. The reason behind these discrepancies is to push the inversion to its limit and keep the well logs for a preliminary quality control.

The final velocity model of PAST after 169 iterations is shown in Figure 2.11f. The velocity model was significantly updated in comparison to the starting model. At first glance, we can distinguish the laterally continuous low velocity layer at 2.5 km depth and between 5km and 32 km distance. Another obvious feature is the building of high velocity zones starting 4km depth even though very few picks correspond to offsets larger than 5 km. The ensemble of the final scattering positions depicts lateral continuously in a very coherent manner (Figure 2.11e). The cost function value dropped of around 2.5 order of magnitudes with a very stable trend (Figure 2.12).

The reconstructed velocity model is in agreement with the one obtained through AST (Figure 2.11c) and the legacy model (Figure 2.10a). Same features are found across all the models, especially between 35 km and 50 km distance at 2 km same anomalies and shapes are recovered. We compare in Figure 2.13 four vertical logs that are extracted from the legacy model, the AST model and the PAST model every 10 kilometers. The velocity logs are mostly in agreement until 4 km depth where our retrieved model seem to have lower velocities. With further assessment, we will show that there is no underestimation of wave speeds in PAST. Another discrepancy between the three models is related to the low velocity layer at 2.5 km depth and 10 km distance (Figure 2.13a); the low velocity zone reconstructed by AST is less sharp, which probably results from the more aggressive regularization used during AST. The imprint of this As a first quality control, we check the validity of the PAST velocity model with respect to the available well log data. The logs show very matching trends and also show that at 4 km depth there is no underestimation of the velocity (Figure 2.14). As a more qualitative assessment, we compare TTI Kirchhoff pre-stack depth images. The TTI parameters shown in Figure 2.10 were used for the migrations. The migrated images using the legacy model, the AST velocity model and the PAST velocity models as background models show the same structures (Figure 2.15). The stratigraphy and the structural geology features are in accordance with the findings published in that region [START_REF] Hocking | Regional geology of the northern carnarvon basin[END_REF]. The common image gathers (CIGs) confirm the similar accuracy of the three velocity models down to 4km (Figure 2.16). However, some events are flatter in the shallow part and more focused in the deep part of the CIGs computed with the PAST velocity model (Figure 2.16, arrows and ellipse).

Discussion

We have proposed a new formulation of eikonal-solver based adjoint slope tomography (PAST). This reformulation leads to a reduced (or parsimonious) parametrization of the data and model spaces, each of them involving one class of variable (one slope and wave speeds, respectively). This parsimonious parametrization is achieved by positioning the scattering po- sitions through the migration of two kinematic invariants of the data space (two-way traveltime and one slope), this migration being implemented by solving the two focusing equations of Chauris et al. (2002a). This discards these two attributes from the data space and the scatterer coordinates from the model space, hence leading to a better-posed inversion. In contrast, the recent adjoint slope tomography (AST) developed by [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] introduces a relaxation of the focusing equations by processing the scattering positions as optimization parameters and the two kinematic invariants as optimization measures. This indeed implies that the positions of the scattering positions found by AST potentially differ from those obtained by PAST. Translating this statement in terms of velocities, the virtual velocities that would allow us to migrate the kinematic invariants at the positions of the scattering positions found by AST can differ from the background velocities of the current slope tomography iteration. In the following, the velocities that would give the positions of the scattering positions estimated by AST or PAST by migration of kinematic invariants are referred to as migration velocities, while the velocities used to solve the forward problem (computation of two-way traveltime and slopes) are referred to as demigration velocities. In PAST, the migration and demigration velocities are the same, while they can differ in AST.

Before discussing further the results of the two case studies presented in the previous section, we illustrate the concept of migration versus demigration velocities in the framework of slope tomography and its effect on the convergence path followed by AST and PAST with a toy example, inspired from the analysis of RWI performed by [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF].

We use a homogeneous model in order to derive the solutions of the forward problem and the gradients analytically. The experimental setup consists of a true background velocity of 4.75 km/s and a single source-receiver couple with an offset of 6 km tied to three random scattering positions in depth. As a reminder, in the case of PAST scattering positions are focused in the initial model whereas in AST, the initial scattering positions are found by the initialization/localization step developed by [START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF]. Since the true model is homogeneous, the initialization step would position the scatterers at their true position with the equivalent medium being equal to the sought velocity, that is due to the simplistic assumption that the initialization equations rely on. However, the localization step which aims at fitting the data while optimizing the position of the scatterers with respect to the initial background velocity would redistribute them across the model. We note that following what is done in practice, only few localization iterations were made in order to avoid an over-fit of the data in the wrong velocity model and handicap the start of the joint inversion. A scaling on the data was applied in order to make the data dimensionless. In Figure 2.17, we look at the optimization paths followed by AST and PAST. In order to examine the behavior of the two approaches subject to the coupling management governed by the Hessian, we test three different optimization schemes (gradient descent, Gauss-Newton and BFGS) along with an inexact line search based on the strong Wolfe conditions [START_REF] Nocedal | Numerical Optimization[END_REF]. We start the inversion with an initial model of 2.87 km/s. In the case of PAST, the demigration and migration velocities are always consistent for all scattering points and the optimization path is following the diagonal straightly into the minimum. On the other hand in the case of AST, each scatterer is positioned by a different migration velocity. Although both AST and PAST converge towards the global minimizer using the employed optimization strategies, this test is enough to illustrate the slower convergence of AST related to PAST resulting from the relaxation of the focusing equations. As would be expected, the convergence path of AST is highly vulnerable to the accuracy of the Hessian's approximation. The Gauss-Newton scheme test reveals a competitive performance of AST with respect to PAST while on the other hand the gradient descent scheme exhibits a zigzag pattern commanded by the trade-off due to the absence of the Hessian. We remind the reader that in the previous applications presented in this paper, the Hessian was approximated through a quasi-Newton scheme which is comparable to the third scheme employed in this test (Figure 2.17). The test reveals that during the early iterations of AST and in the absence of a good approximation of the Hessian, similarly to the gradient descent test, the optimization is driven by velocity updates in order to compensate for the inconsistent positions delivered by the localization step. In subsequent iterations, due to the improved Hessian approximation the optimization path follows a consistent trajectory as the one exhibited by PAST. It is therefore reasonable to conclude that in complex cases where the inconsistency between the migration/demigration velocity is aggravated and the coupling is not well managed as in this simple case, the performance of PAST would be even more superior with respect to AST. This statement is now checked by comparing more closely the convergence histories of PAST and AST for the complex synthetic Marmousi benchmark. Figure 2.18 shows the relative root mean square error (RMSE) of the velocity distribution (VRMSE) versus that of the scattering coordinates (SCRMSE) at each iteration. We use the same initial velocity model for AST and PAST and, hence both inversions start from the same VRMSE (vertical axis in Figure 2.18). On the other hand, the initial SCRMSE is different (horizontal axis), since the localization step of AST estimates the initial scattering positions by minimizing in a least-squares sense the two slopes and two-way traveltime residuals using the initial velocity model as fixed background model, while PAST performs this positioning by solving the 2 × 2 focusing equations. This indeed implies that the localization step is an over-determined problem in AST since the scattering positions are estimated from the three data attributes, while the focusing equations show that two of these attributes are sufficient to unambiguously position the scatterers.

The path followed by AST (Figure 2.18, red line) clearly shows that AST mostly updates velocity at the expense of scattering positions during the early iterations. This descent direction along the velocity axis results from the former localization step during which we best fit the data by updating the scattering positions keeping the initial velocity model fixed. Accordingly, AST is left after the localization step with residuals in which the signature of the scattering position errors has been removed, hence driving the subsequent inversion towards velocity updates. In other words, the localization step combined with the early iterations of AST lead to an alternating-direction inversion for scattering positions and wave speeds. [START_REF] Valensi | Reflection waveform inversion method: solutions to the reflectivity-background coupling problem and consequences on the convergence[END_REF] illustrated in the framework of RWI how these alternating-direction strategies can lead to slow convergence. During this velocity update, we see that the path followed by AST tends to move away from that followed by PAST (Figure 2.18, black line). This reflects that the virtual migration velocities that would give the scattering positions estimated by AST become increasingly inconsistent with the demigration (background) velocities. Once the inversion reaches a point where the scattering positions retrieve a significant imprint in the data residuals, AST changes sharply its descent direction by updating the two parameter classes in a more balanced way during which the accuracy of the scattering positions increases at the expense of the wave speeds accuracy (Figure 2.18, red line, path 2). Once the path followed by AST becomes closed to that followed by PAST (namely, when the migration velocities become close to the demigration ve- locities), AST starts smoothly converging monotonically toward a local minimizer during which accuracy of both velocities and scattering positions improve (Figure 2.18, red line, path 3). In contrast, the accuracy of both scatterer positions and wave speeds are monotonically improving during PAST since their updates are tied together by the focusing equations (Figure 2.18, black line). In Figure 2.18, the first path followed by PAST corresponds to the first multiscale step, where the inversion performs a significant update of the long wavelengths of the velocity model starting from an initial homogeneous model (Figure 2.8a,b). During this first phase, both wave speeds and scattering positions are significantly updated. The second path corresponds to the subsequent multiscale steps during which more subtle velocity updates are performed with however a significant impact on the scattering positions (Figure 2.8,c-f). We conclude by noting that PAST not only benefits from a faster convergence compared to AST but also converges towards a more accurate minimizer.

During the Marmousi and real data case studies, we also noticed that the most significant improvements in the velocity model obtained with PAST relative to that inferred from AST are shown in the deep part of the subsurface. This failure of AST results from the combined effect of the initialization/localization step and the more limited aperture illumination of the deep subsurface. When the velocities in the starting model tend to be underestimated, the localization step of AST (which fits in a least-squares sense the two slopes and two-way traveltimes) tend to distribute the initial scatterer positions in the subsurface more evenly than PAST (which exactly fits only one slope and two-way traveltimes for scatterer positioning). The more uniform distribution of scatterers in depth performed by the localization step of AST fosters the updating of the full subsurface model in one go along the sensitivity kernels connecting the deep scatterers to the source and receivers (Figure 2.4). This all-inclusive reconstruction when combined with a limited aperture illumination of the deep subsurface makes AST more prone to the convergence [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and the proposed approach respectively. towards inaccurate deep wave speeds because of the velocity-position trade-off when the initial velocity model is not accurate enough. In contrast, when we use a slow initial velocity model in PAST, the initial scattering positions tend to be concentrated in the upper part of the targeted domain (Figure 2.8a). This favors the reconstruction of the shallow velocities during the early iterations of PAST, the scattering positions being progressively moved to their true positions in depth consistently with the velocity updates via the resolution of the focusing equations. In this sense, PAST embeds an implicit layer-stripping or depth continuation strategy, which mitigates the ill-posedness of the slope tomography when combined with the reduced parametrization.

Conclusion

We revisit the parametrization of slope tomography with the objective of tackling the velocityposition coupling encountered in reflection tomographic methods. We present a remedial formulation that addresses the velocity-position coupling by enforcing physically well-founded constraints under the adjoint-state method. We apply our approach on a synthetic benchmark and a real data while comparing to a more conventional reflection tomography strategy where both the scattering positions and the velocity distribution are jointly updated. We show and elaborate on the superior results in terms of convergence speed and velocity reliability delivered by the presented strategy. In future works, we will investigate other acquisition-driven strategies like the common-offset case (instead of the common-shot strategy employed in this paper) and examine its possible impact on migration artifacts. We aim to constrain even further our problem on the theoretical fact that scatterers belonging to the same image point, should collapse towards the same position while constructing the correct velocity distribution. Introducing early wide-angle arrivals corresponding to diving waves would complement our slope tomography in terms of illumination and make it more adequate as an FWI starting model building tool.

Appendix A: Algorithmic aspect of solving the focusing equations

In the following, we describe the manner of solving the focusing equations 2.12. We first aim to define an isochrone by setting a threshold on traveltime difference between the observed traveltime associated with a scatterer and the computed counterpart at each grid node in the twoway traveltime map of the corresponding source-receiver couple. The threshold is proportional to the grid spacing and the average velocity in the model. After generating the logical map containing the candidate positions belonging to the isochrone, we proceed to the second step related to the slope. We slide a 3×3 window centered on the positions spanned by the isochrone, we then examine the sign of the difference between the slope value at the four corners of the sliding window and the observed slope of the concerned scattering point (same finite difference scheme as the one describe by equation 2.22). Two scenarios are possible, the first where the sign of the residuals at the four corners is the same while the second would reveal the contrary. If the first scenario occurs, the sliding window moves to the next candidate position without any further evaluation. On the other hand, in occurrence of the second, further evaluation of the slopes is done on the remaining five nodes of the sliding window in order to determine the quadrant that is pointing towards the optimal position. This process flags some parts of the isochrone as being inadequate and accordingly the sliding window moves to the most plausible part of the isochrone without exhaustively examining all of its parts. Once the sliding window locks on the most susceptible position, we interpolate very finely in and around it using the same sampling operator of equation 2.22 and then examine both the traveltime and slope residual. We proceed with a thorough grid search and finally retain the position that validates perfectly the focusing equations or the optimal one that fits both slope and traveltime to a certain order of accuracy. The chosen grid search strategy for the kinematic migration is efficient and well optimized, the cost is elementary, scales linearly with the number of processors and overall its cost is compensated throughout the totality of the inversion process. Other optimization alternatives are possible, most would involve scaling on the data or are simply less efficient.

Appendix B: Eikonal-based slope tomography gradient with Fréchet derivatives

In this appendix, we develop the expression of the Fréchet derivative matrix associated with PAST by adapting the ray-based formalism of Chauris et al. (2002a, Their appendix B) to our method.

We seek to compute the partial derivative of p s,ns,r with respect to a subsurface parameter m l . Differentiation of data-domain attributes (p s,ns,r , T s,r,ns,r ,p r,ns,r ) parametrizing a locallycoherent event with respect to the corresponding scatterer coordinates (x ns,r , z ns,r ) and the subsurface parameter m l gives the following system   dp s,ns,r dT s,r,ns,r dp r,ns,r   = ∂ p s,ns,r , T s,r,ns,r , p r,ns,r ∂ m l , x ns,r , z ns,r .

(2.27)

Repeating this for all the parameters m l of the subsurface domain builds the full sensitivity matrix. The Fréchet derivative is similar to that of Chauris et al. (2002a, equation 39) except that our eikonal-based forward problem leads to more compact data and model spaces. The denominator in equation 2.27 is indeed the same as the one involved in the expression of the adjoint-state variables ξ r,ns,r and µ s,r,ns,r , equations 2.18 and 2.19, and defines the reflection imaging condition. The numerator would require the computation of the partial derivative of p s,ns,r with respect to m l , which would reveal prohibitively expensive, while the partial derivatives of p s,ns,r , T s,r,ns,r and p r,ns,r with respect to x ns,r and z ns,r can be easily inferred from the source and receiver traveltime maps (see equation 2.17). Note also how the determinant of the 3 x 3 Jacobian in the numerator of equation 2.27 is broken down into the determinants of two 2 x 2 Jacobians in the adjoint-state approach, equations 2.18 and 2.19, since we avoid the explicit computation of the derivative of p s,ns,r with respect to m l .

Additional synthetic and real data applications 2.2.1 Revisiting the Marmousi application through a double-pass strategy

Objectives and experimental setup I present now a revisit of the Marmousi application presented in the previous section. The primary purpose of the study being the use of more realistic picks. In section 2.1.5, the dataset was generated through a subjective picking directly performed on the true Marmousi model [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. The picks were associated with specular reflections but were picked in a questionable fashion. Nearly all parts of the model were covered by the same density of picks (Figure 2.5a). Moreover, the picks around the gas cap in the reservoir could not be easily recovered in practice whether the picking was performed in the unmigrated data domain or the migrated domain. For these reasons and in order to not commit inverse crime during this case study, a dataset was generated through ray+Born modeling. The original blocky velocity model (Figure 2.19a) was separated into two components. A low frequency component representing the target velocity macro model (Figure 2.19c) and a perturbation model (Figure 2.19d), which will both serve in the modeling. The perturbation model, after a depth-to-time conversion, was The data were sorted into common shot gathers and common receiver gathers and picked in the data domain [START_REF] Podvin | Automatics picking of locally coherent events for stereotomography[END_REF], followed by a quality-control in order to eliminate aberrant picks 2.20. The noise in the data being a consequence mainly of accounting for single arrivals only during the modeling which is sub-optimal for such complex models where triplications occur massively as shown by [START_REF] Operto | Can we quantitatively image complex models with rays?[END_REF]. The quality-control is based on ad-hoc criteria as limiting slopes to realistic values and eliminating picks exhibiting low joint semblances associated with both slopes. An ultimate and efficient criterion would be to kinematically migrate the data using the targeted tomography model and then flagging all scatterers that are positioned either outside of the boundaries of the model or exhibit migration facets inconsistent with the dips of the structures as noise. The latter was only used as a validation for the modeling and picking process, meaning that the inverted data in this case are not noise free from a slope tomography point of view. In the same fashion as the numerical example presented in section 2.1.5, the inversion is regularized by smoothing the gradient with a 200 m correlation length and by using a hierarchical scheme through successive B-spline refinements. At each scale, previously flagged noisy scatterers are reintroduced and the L-BFGS inverse Hessian is reapproximated (refer to section 2.1.5 for a recap on the experimental setup). The inversion is done through PAST starting with a homogeneous velocity of 2 km/s and using the slope at the source during the kinematic migration (Figure 2.21a). The result obtained through 126 iterations is presented in figure (Figure 2.21b). I note that the stopping criterion is the line-search failure at last stage of the multi-scale refinement. The skeleton formed by the scatterers in figure 2.21b and the misfit reduction presented in figure 2.22 (pink curve) are a first hint that the inversion is successful. Before proceeding with a ray+Born migration/inversion, I take a moment to remind the reader of an important choice mentioned briefly in section 2.1.5 where slopes at the sources, instead of receivers, were used along with the two-way traveltimes for the kinematic migration.

In that study (refer to section 2.1.5 for more details), it was suspected that, in the early stages of the inversion migrations, facets obtained by using the slopes at the sources were more consistent with the sought dips of the structures. The latter statement is in fact true since starting from a low velocity initial model tends to slant the facets in that manner and could affect the rate of convergence of the inversion. Having said that it seemed counter-intuitive as to why this effect could be prohibitive to the extent of leading the inversion towards a local minimum in the framework of parsimonious formulation. For those reasons, it is interesting to analyze the sensitivity of the inversion to the choice of which slope is used as an objective parameter. The inversion presented in this section is repeated with the same setup but using this time the slope at the receivers as a focusing attribute during the kinematic migration (Figure 2.21c). Interestingly, the inversion stopped after 154 iterations with a higher misfit than the one obtained in the first case where slopes at the receiver were fitted (Figure 2.22, blue curve). I should note that latter could be meaningless since it cannot be guaranteed that both slopes were picked with the same order of precision and how their residuals evolve depending on whether the slope was used as objective parameter or as a focusing attribute. Looking at the scatterers in the final model (Figure 2.21d) we notice that structures delineated are more or less consistent with the true model (Figure 2.19a). The major differences between this result and the previous one being the overall dip of the scatterers cloud and its positioning in depth around the reservoir area.

As a validation ray+Born migration is performed using both tomographic results as background models. The obtained depth-migrated sections are assessed against the true and target images (Figure 2.23a-b). The results presented in figure 2.23 illustrate how slope tomography produced accurate velocity macro models whereas the depth-migrated image obtained through the initial model was completely misfocused and full of artifacts. The results of PAST inversion (Figure 2.23d-e), using the slope at the source or the receiver, are very comparable to the target image (Figure 2.23b). In purpose of comparing both results against each other it is evident that the reflector at 6.5 km distance and 2.5 in depth is warped in a synclinal form in the case where slope at the source was used as focusing attribute whereas for the opposite case the reflector is warped downward. The latter is consistent with the preliminary assessment done through the positioning of the scatterers (Figure 2.21). A third setup is designed since both previous settings produced different but exaggerated and erroneous structural deformation around the reservoir. In this third setup, which will be referred to as the double-pass, both slopes will be used as an anchor for the the kinematic migration and used as objective parameters. For each pick, two scatterers are resolved during the positioning sub-problem and then velocity are updated through both slopes linked to either scatterers. In practice, this means that the scatterers number is virtually doubled2 (Figure 2.21e). The slope tomography model obtained through 137 iterations with scatterers depicting a more coherent overall dipping with respect to previous results (Figure 2.21f). The evolution of the cost function is presented in figure 2.22 (black curve) and shows good convergence while it is worth reminding the reader that the data space is doubled hence the overall higher data misfit.

Again the accuracy of the velocity model compared to the previously obtained ones is assessed through migration. The depth-migrated image shows more continuous reflectors with less wiggling and slanting in general, as for the area of interest being the reservoir the reflector is more consistent with the true reference perturbation compared to the previously obtained images (Figure 2.23f). The angle-domain common image gathers extracted at 5 km from all images of figure 2.23 serve as a further proof that the third strategy where both slopes were inverted and used in the kinematic migration process yields more accurate velocity models in this case (Figure 2.24a-e, arrow in red and green pointing at the discrepancies). In order to asses more closely the uplift effect around the reservoir more closely, velocity perturbations are extracted at 6.5 km from the obtained images (Figure 2.25, blue curves) and compared to the true perturbation log (Figure 2.25, red curves). The comparative logs show once more the over-estimated and under-estimated depth of the reflector depending on which slope is fitted. On the other hands, in the third strategy the reflector matches fairly well (Figure 2.25, at 2.5 km depth).

Discussion

At this stage, it is settled that the choice of slopes as focusing attributes is important and has a significant impact on the inversion. The primary intuition around the influence of the starting model in delaying convergence due to inconsistencies of the migration facets with the structural dips could be true. Whether the latter statement is valid or not, it does not justify the pathology seen in this section. What guided the inversion to a stage where the velocity model could not be updated in a better fashion when one slope is used as focusing attribute [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] show that slope tomography produces velocity models complex enough to generate multi-value ray fields. The latter statement was made in order to put forward the resolution attained through slope tomography. A big question arise: what happens in the inversion when the velocity model starts generating caustics?

In figure 2.26, the velocity models obtained through the three strategies are superimposed by ray+wavefronts computed through the wavefront construction method of Lambaré et al. (1996a). The velocity models inferred through PAST for cases where one slope is used as objective parameter generate caustics but at different locations, the first at 4 km distance while the second at 8 km (Figure 2.26a-b). Having shown that the velocity models, discussed in this section, indeed generate caustics I put forward two major points. The first point is the fact that, in the case of caustics, the slopes calculated in a finite-difference sense are wrong around the singularity point of the first-arrival wavefronts. The second point and is more related to PAST: scatterers in these complex zones cannot be kinematically migrated, as pointed out earlier since the focusing equations are only valid in the absence of triplications. Migrating by fitting the observed two-way traveltime and one of the slopes is not enough since many positions satisfy both focusing conditions. In this case where the imaging condition fails, both slopes are needed to resolve this under-determined problem [START_REF] Xu | Common-angle migration: a strategy for imaging complex media[END_REF], their figure 4). Both highlighted issues could drive the inversion towards exploring locally contrasted velocity models. Indeed in the case where slopes at the acquisition are fitted wrongly around the caustic area, the kinematic migration fails and contaminates the evaluated misfit. In the case where the focusing condition completely fails, since many scatterers are able to fit the focusing attributes, the inversion is driven depending on which scatterer is chosen and in turn contaminating the misfit evaluated through the other slope. Interestingly, in the double-pass case (Figure 2.26c), caustics are not generated at both positions. Which does not necessarily mean that the model is less resolved than the others but rather that the inversion was stable enough to avoid the direction where caustics areas are boosted. The suspected issue being then the generation of caustics during the inversion.

The application presented in this section highlights important points on the influence of the choice of the focusing attributes and the consequences of generating caustics during the inversion. The precision of finite-difference estimated slopes using single arrival traveltime maps should be investigated further. The choice of using different slopes for the inversion as for example common offset and common midpoint slopes should be evaluated and compared to the current used strategy of common shot and common receiver slopes since scattering positions behave very differently in both cases (see Chauris et al. (2002a) for the equations in the common-offset case and Montel and Lambaré (2019a) and [START_REF] Montel | Kinematics of common-image gathers -part 2: Tomographic ray tracing and applications[END_REF] for a review on the different focusing conditions). The double-pass will be assessed further in an ongoing work. The claims made earlier will be further validated for not only the parsimonious formulation but slope tomography in general along with possible remedies.

Preliminary results from SEFASILS campaign (Southern France -Ligurian Basin)

Context and experimental setup I present in the following section preliminary results obtained using data acquired during the SEFASILS (Seismic Exploration of Faults and Structures in Ligurian sea) project. The main objectives of the project are comprehending the faulting systems present in the area of interest, located in the occidental Mediterranean sea, and assessing its seismic and tsunami hazards (see [START_REF] Dessa | Seismic exploration of the deep structure and seismogenic faults in the ligurian sea by joint multi channel and ocean bottom seismic acquisitions: Preliminary results of the SEFASILS cruise[END_REF] for a comprehensive description of the geodynamical context and a recap of the previous studies conducted in the area). Both objectives attainable by imaging the deep subsurface structure in the area. The latter was deemed challenging in previous seismic imaging experiments due to a thick evaporites series deposited during the Messinian salinity crisis (e.g. [START_REF] Contrucci | A Ligurian (Western Mediterranean Sea) geophysical transect revisited[END_REF][START_REF] Rollet | Back arc extension, tectonic inheritance and volcanism in the ligurian sea, western mediterranean[END_REF][START_REF] Dessa | The GROSMarin experiment: three dimensional crustal structure of the North Ligurian margin from refraction tomography and preliminary analysis of microseismic measurements[END_REF][START_REF] Larroque | Morphotectonic and fault-earthquake relationships along the northern ligurian margin (western mediterranean) based on high resolution multibeam bathymetry and multichannel seismic-reflection profiles[END_REF].

Designing a suitable velocity model building workflow in such settings is indeed crucial since recordings are dominated by diffracted arrivals coming from the flanks of the salt diapirs. As part of my minor contribution to the project, I assess the results that could be obtained through slope tomography against conventional velocity analysis inferred models. A common offset gather of the pre-processed profile SEFA14, used in this preliminary experiment, is presented in figure 2.28. The profile is oriented in NW-SE fashion and acquired through a 6 km towed-streamer acquisition and comprises 1930 shots equally spaced of 50 meters. (Figure 2.27, the light blue line aligned with the red dots). In the seaward section of the profile, the data are dominated by diffracted waves starting from around 4 seconds. These arrivals are expected to be associated with the salt diapirism evoked earlier. The dataset was sorted in common shot and common receiver gather for picking in the unmigrated time-domain [START_REF] Podvin | Automatics picking of locally coherent events for stereotomography[END_REF][START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF]. A total of 13 million events out of which only 480 thousands will inverted through parsimonious slope tomography. The big discrepancy between the number of picked and inverted events comes from two main issues. The first point is that a lot of picks were eliminated, through an interpretive quality-control, on the basis of being not associated with single-scattering events (internal multiples or rebounds in the salt structure arrived at inconsistent angles). An aggressive gain was applied on the data to compensate for the significant amplitude decay of sub-salt arrivals. Due to this processing, the imprint of residual free-surface multiples was boosted. The inverted picks were then restrained to events recorded up to 6 seconds.

Preliminary results

For the sake of assessing the resolution power of slope tomography against conventional velocity analysis. I perform parsimonious slope tomography (PAST) starting from a model generated through a single-pass of velocity analysis (Figure 2.30a). The inversion is regularized through a multi-scale reconstruction by successive B-spline refinements. A Gaussian filter smoothing, with a 200 m correlation length, is also applied to the gradient.

The slope tomographic model obtained through 26 iterations of PAST is presented in figure 2.30b. The evolution from the smooth velocity analysis model (Figure 2.30a) and the PAST inverted model (Figure 2.30b) is drastic. Indeed, the latter exhibits more short-wavelength structures. The high-velocity of the introduced features and their geometry would be consistent with suspected salt diapirs piercing the sedimentary beds. As a further assessment, I perform a ray+Born migration inversion (Thierry et al., 1999c) of the data using both models as background velocity. The obtained migrated images are presented in figure 2.31. The image obtained by using the slope tomography as background velocity exhibits more focusing across the profile around the suspected salt diapirs. The latter confirms the accuracy of the velocity model and its ability to resolve such complex structures. On the other hand the reflector seen in the middle of the profile at 7 km depth exhibits a wavy pattern in the migrated image which is not the case in the image obtained using the velocity analysis model as background veloc- ity. The latter is mostly due to the fact that only picks with up to 6 arrival time were involved in the inversion. We would expect that, even with a 6 km length, the reflector should be well positioned. The extracted angle-domain common image gathers associated with the images shown in figure 2.31 confirm the superiority of slope tomography (versus a single-pass velocity analysis) at this stage of the study.

The results presented in this section are promising, I should note that the purpose is not to affirm which method produces better resolved models. The important point is in fact that slope tomography, through an automated and objective inversion is able to out perform a tedious and subjective velocity analysis workflow. In a later stage of the project, very accurate velocity analysis models were produced. The slope tomography picks will be inverted again in a future study in order to draw a more comprehensive comparison.

Concluding remarks on PAST and perspectives

Through the course of this chapter, many numerical examples were presented among them two real data case studies at different scales of application. In all examples, the results were assessed through either full-waveform inversion or migration and showed that slope tomography inferred models are accurate. The proposed re-parametrization of slope tomography through a variable projection exhibited a more stable behavior in all inversions done during my thesis. However, it is imaginable that in very nonlinear cases, a joint inversion strategy would be more advantageous. Inverting jointly for scatterers and velocity while fitting all kinematic attributes implicates an extended search-space in comparison to the one in PAST. Another practical issue encountered in PAST, is the failure of the focusing condition (equations 2.18 and 2.19 in section 2.1.4) when either caustics are generated or non-specular events are introduced in the inversion. The effect of the latter, not assessed in the framework of a joint inversion strategy, will be looked at in more detail. A better understanding of the choice of focusing conditions (whether common shot or common offset, using one or two slopes etc.) and its impact would make PAST more efficient and stable.

During the inversion of slope tomography, many migration attributes are implicitly present, as for the example the dip of the facet at every scatterer. Indeed, as discussed earlier in the manuscript, the focusing equations constrain both the scatterer position and its associated migration facet. Feeding the inversion prior information on the structures is well known in tomographic methods and was proven to be beneficial [START_REF] Delprat-Jannaud | Ill posed and well posed formulation of the reflection traveltime tomography problem[END_REF][START_REF] Clapp | Incorporating geologic information into reflection tomography[END_REF]. In the context of slope tomography, the use of implicit steering of smoothing filters was promoted [START_REF] Costa | Regularization in slope tomography[END_REF], [START_REF] Guillaume | Dip constrained non-linear slope tomography[END_REF] presented a local dip-constrained framework where a regularization term is introduced in the misfit function. The added prior in the inversion, consistent with the velocity model, penalizes the inversion and guides it to dip-fitting solutionsthe scatterers associated with the same imaging point and associated to different source-receiver couple are forced to have a consistent dip with respect to each other. The prior on which scatterer are associated to the same common image point could be extracted to the demigration of the kinematic attributes.. This dip-constrained variant would be even more interesting in the double-pass strategy presented in section 2.2.1, enforcing a dip consis-tency between the two virtual scattering positions found with the same source-receiver. Another strategy, applicable in our current framework, is dip-steering the Gaussian filter applied on the gradient [START_REF] Fehmers | Fast structural interpretation with structureoriented filtering[END_REF][START_REF] Hale | Local dip filtering with directional laplacians[END_REF][START_REF] Hale | Structure-oriented bilateral filtering of seismic images[END_REF]. This strategy was implemented: first the local dips are extracted using the local information provided by the migration facets at every point of the model space and then a nonstationary anisotropic Gaussian filter is applied. Due to the nonstationarity of the kernel, the latter becomes non-separable [START_REF] Geusebroek | Fast anisotropic gauss filtering[END_REF]. The high computational burden at every iteration associated with the 2D convolution makes it impractical. Other efficient dip-steered filter should be investigated [START_REF] Guitton | Constrained full-waveform inversion by model reparameterization[END_REF][START_REF] Wellington | Efficient anisotropic dip filtering via inverse correlation functions[END_REF][START_REF] Trinh | Structuresmoothing Bessel filter for finite element mesh: Application on 3D elastic FWI[END_REF]. With a special care on how to reconcile such filters with the use of B-Splines as a model reduction reparametrization3 .

Currently the algorithm is fairly optimized through a proper parallel computing architecture (see Appendix II for a presentation of the algorithms). However, the inversion itself is not optimized due to the lack of proper preconditioning. Preconditioning in slope tomography is possible by applying the inverse of the approximated Gauss-Newton Hessian diagonal (refer to where the computation of this preconditioner under the adjoint-state method is presented). The extensive number of adjoint simulations, scaling linearly with the number of scatterer, makes it too expensive computationally. A straightforward approximation of the Hessian should be developed, scaling the contribution of data in the gradient, depending on the scatterer depth and aperture. Such relations should be derived in the same fashion as what was done in the context of ray+Born inversion [START_REF] Beylkin | Linearized inverse scattering problems in acoustics and elasticity[END_REF]; [START_REF] Jin | Two-dimensional asymptotic iterative elastic inversion[END_REF]; [START_REF] Lambaré | Iterative asymptotic inversion in the acoustic approximation[END_REF] and reflection waveform inversion [START_REF] Audebert | Accounting for the depth-velocity coupling in reflection full-waveform inversion (rfwi)[END_REF].

Introducing early wide-angle arrivals corresponding to diving wave as a complement to reflections is crucial to resolve anisotropy parameters [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] and very beneficial in the framework of initial model building tool for FWI. The introduction of first-arrivals under the parsimonious framework, where scattering position are not in the parameter space, is presented in the next chapter. Having presented in the previous chapter the parsimonious formulation of slope tomography where the scattering position is dropped from the optimization, first-arrival traveltimes are easily embedded under the latter framework without the awkward management of the parameter space. Before presenting the embedded inversion where both reflection and first-arrival are jointly inverted, it is important to analyze the ill-posedness of first-arrival traveltime tomography (FATT). In this chapter, I start by presenting our work on first-arrival slope + traveltime tomography under review in Geophysical Journal International (please refer to the final version of the paper once corrected and published). In this work, we first remind the reader of the ill-posedness encountered in FATT, especially in crustal scale applications. We review the different previously proposed remedies and show how slopes, introduced as objectives measures, could be used as a data-driven remedy. Then, we illustrate the added value of slopes through an analytical toy test. We then follow by benchmarking the method against the SEG/EAGE overthrust model before presenting a deep crustal real data case study from the eastern-Nankai subduction margin (Japan). I supplement the Nankai case study but showing how slopes could serve, through kinematic migration of specific picked phases in the data, as quality-control or an objective interpretation tool. In the third part of this chapter, the robustness of first-arrival slope + traveltime tomography (FASTT) as an initial model building tool for FWI in complex media is evaluated. A case study on the BP 2004 benchmark is presented with an ultra-long offset stationary-recording acquisition. The promises and limits of FASTT in an FWI workflow setting are highlighted, hence proving furthermore the necessity of having an embedded tomographic inversion of reflection and first-arrival data under our framework. In the last part of the chapter, I present the joint inversion of first-arrival and reflections under the parsimonious formulation. An comparative application is done using a synthetic crustal benchmark. I show the benefits of exploiting both reflection and first-arrival data in our straightforward framework where there are no parametrized reflectors or structures.

Chapter 3 Joint inversion of first-arrivals and reflections

Mitigating the ill-posedness of traveltime tomography

Mitigating the ill-posedness of first-arrival traveltime tomography using slopes: application to the eastern Nankai Trough (Japan) OBS dataset.

S. Sambolian, A. Gorszczyk, S. Operto, A. Ribodetti and B. Tavakoli F.

Under review in Geophysical Journal International (2021) *** (*): ****-****

Summary

First-arrival traveltime tomography is one of the most used velocity model building techniques especially in sparse wide-angle acquisitions for deep crustal seismic imaging cases. Relying on the inversion of a picked attribute, the absolute traveltimes, the approach is ill-posed in terms of non-uniqueness of the solution. The latter is remedied by proper regularization or the introduction of prior information. Indeed, since first-arrival traveltime kernels are vulnerable to the velocity-depth ambiguity, the inversion is stabilized by the introduction of complementary data like reflections and explicit reflectors in the velocity models. Here, we propose to supplement first-arrival traveltimes by their slopes, in other words the horizontal component of the slowness vectors at the sources and/or receivers. Slopes are a crucial attribute in state of the art scattering-based tomographic methods like slope tomography or wavefront tomography where the differential information is needed in order to locate the scattering events position or to parametrize the wavefront. The optional but valuable injection of slopes as an objective measure in first-arrival traveltime tomography stabilizes the problem by constraining the emergence angle or in turn implicitly the turning point depth of the rays. We explain why slopes have a tremendous added value in such a tomographic problem and highlight its remedial effect in cases where the medium is unevenly illuminated. We also show that the contribution of slopes become even more significant when the acquisition is sparse as it is generally the case with ocean-bottom seismometer surveys. The inferred models from such an extended time-attributes tomography will be used as initial guesses in a full-waveform inversion workflow context. The proposed strategy is benchmarked in 2D media against a dip section of the SEG/EAGE overthrust model and then followed by a revisit of ocean bottom seismometers data from the eastern-Nankai subduction margin as a real deep crustal case study.

Introduction

Seismic traveltime tomography is one of the most widely used techniques due to its applicability to different purposes in passive and controlled-source seismics. Inferring the subsurface properties from seismic recordings, mainly wave speeds, is essential to understand seismogenic processes at the lithospheric scale, evaluating a resource play for exploration purposes or even near-surface characterization for geotechnical assessments.

Since the early works of [START_REF] Aki | Determination of three-dimentional velocity anomalies under a seismic array using first p-arrival times from local earthquakes[END_REF] on traveltime tomography and its application using P-wave first-arrival traveltimes on a regional scale, inverting traveltimes in a least-squares sense under an infinite frequency approximation of wave propagation [START_REF] Tarantola | Three-dimensional inversion without blocks[END_REF] was massively developed due to its ease of implementation. In parallel, and due to the limits of ray theory tied to its insensitivity to perturbations outside its infinitesimal travel path, finite-frequency methods accounting for heterogeneity in the first Fresnel zone emerged (e.g. [START_REF] Luo | Wave-equation traveltime inversion[END_REF][START_REF] Woodward | Wave-equation tomography[END_REF][START_REF] Dahlen | Fréchet kernels for finite-frequency traveltimes -I. theory[END_REF]. In the latter, a linearized inversion around a reference model is done through for example the first-order Rytov approximation [START_REF] Snieder | Wavefield smoothing and the effect of rough velocity perturbations on arrival times and amplitudes[END_REF] or the first-order Born approximation [START_REF] Marquering | Three-dimensional waveform sensitivity kernels[END_REF]. It is also worth noting that Zelt and Chen (2016) introduced a nonlinear variant where traveltimes are frequency dependent.

The main purpose of this study is far from dwelling in a debate of rays versus waves. Regardless of the proven deficiency of ray-based inversion kernels, first-arrival traveltime tomography (FATT) was massively developed in the last decades (e.g. [START_REF] Zhu | Estimation of a two-dimensional seismic compressionalwave velocity distribution by iterative tomographic imaging[END_REF][START_REF] Zelt | Seismic traveltime inversion for 2-D crustal velocity structure[END_REF][START_REF] Zelt | Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe basin[END_REF]. The latter is mainly due to the fact that at crustal and exploration scales, subsurface parameters are built from scratch. A lot of variants emerged for the method, including the introduction of eikonal solvers as a forward problem solver (Ammon and Vidale, 1993) and the use of the adjoint-state method [START_REF] Taillandier | First-arrival travel time tomography based on the adjoint state method[END_REF] instead of conventional Fréchet matrix building.

The aforementioned methods, even though different in many aspects, are all based on the same notions. In FATT, a single attribute being the absolute traveltimes of first-arrival phases is inverted. The inversion algorithm consists, in simple terms, of simulating traveltimes along a specific path that obeys Fermat's principle and then updating subsurface parameters along this trajectory in order to match observations. It is important to remind the reader that even in the so-called nonlinear traveltime tomography, even though there is no linearization around the forward problem, it is supposed that the traveltime misfit function in a least-squares sense is locally quadratic with respect to small model perturbations. In this context, the ray-stationarity assumption [START_REF] Hole | Nonlinear high-resolution three-dimensional seismic travel time tomography[END_REF] holds in practice even though ray trajectories are implicitly redefined at each iteration through the forward problem.

Having recapped briefly on some fundamental notions, two main issues should be highlighted. The first one being the fact that the inversion is done in a least-squares framework, mostly suitable for overdetermined problems whereas seismic tomographic problems are generally mixed-determined [START_REF] Menke | Geophysical Data Analysis: Discrete Inverse Theory[END_REF]. The latter is even more problematic in the context of FATT, depending on the acquisition and subsurface structures, since the medium is only partially illuminated by first-arrivals especially in the case of sparse fixed-spread acquisitions. The second problematic point is that the data misfit is supposedly only caused by the inaccuracy of the sought parameters along the ray trajectory, mainly velocity. In practice, the ray trajectory is altered depending on the updates in the whole medium and not only along it due to the implicit constraint imposed by Fermat's principle. The insensitivity of the data to model perturbations in poorly covered parts of the subsurface, the possibility to converge through numerous fitting solutions due to the first aforementioned point along with the unconstrained nonlinearity of the ray trajectory erects an ill-posedness encountered in FATT. In reality, it is actually common to tackle cases with such pathological scenarios especially in crustal scale applications. In Figure 3.1, a simplistic model containing two velocity gradients, followed by a sudden high contrast, respectively mimicking the upper crust, the lower crust and the upper mantle is presented. The partial coverage often encountered in crustal cases is illustrated, the incomplete illumination of the subsurface and a local gap in ray coverage at intermediate depths between 50 and 165 kilometers in distance provoked by the weak change in velocity gradients in the crust and the deep high velocity contrast around the Moho discontinuity (Figure 3.1, upper panel). The base of the upper and lower crust are only covered by secondary arrivals, like diving waves beyond the crossover distances (Sheriff and Geldart, 1995, page 96) (around 125 km and 175 km) and wide-angle reflections in this case (Figure 3.1, lower panel). We note that even if the sketch in Figure 3.1 represents only what could be recorded as first-arrivals by a single receiver, the redundancy in the data volume related to these low-velocity zones is often insufficient due to a poor angular illumination.

The ill-posedness of FATT has been remedied by introducing additional arrivals like reflections or explicitly parametrized structural priors [START_REF] Zelt | Modelling strategies and model assessment for wide-angle seismic traveltime data[END_REF][START_REF] Korenaga | Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography[END_REF] or statistical knowledge on the sought solution during the inversion as a form of regularization [START_REF] Tikhonov | Resolution of ill-posed problems and the regularization method (in russian, french translation, mir, moscow, 1976)[END_REF][START_REF] Delprat-Jannaud | What information on the earth model do reflection travel times provide?[END_REF][START_REF] Korenaga | Natural gas hydrates on the southeast U.S. margin: Constraints from full waveform and traveltime inversions of wide-angle seismic data[END_REF][START_REF] Ajo-Franklin | Applying compactness constraints to differential traveltime tomography[END_REF]. In the scope of this study, we do not discuss the different possible regularization recipes or modeldriven constraints but we propose a straightforward data-driven remedy. In fact, most state of the art scattering-based tomographic methods rely on a differential information as a needed complement to traveltimes. Stereotomography (Billette and Lambaré, 1998;[START_REF] Lambaré | Stereotomography[END_REF][START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF][START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF][START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF], a slope tomography method based on locally coherent events utilizes slopes in order to constrain and define the scattering position associated with reflections or diffractions. The latter notion was introduced in automatic migration velocity analysis (Chauris et al., 2002a) and even was used in the context of hypocentre-velocity problems [START_REF] Sambolian | Consistent seismic event location and subsurface parameters inversion through slope tomography: a variable-projection approach[END_REF]. In other wavefront-based tomographic methods [START_REF] Gelchinsky | Multifocusing homeomorphic imaging Part 1. Basic concepts and formulas[END_REF][START_REF] Duveneck | Velocity model estimation with data-derived wavefront attributes[END_REF][START_REF] Bauer | Utilizing diffractions in wavefront tomography[END_REF], the second- Zelt (1999, their Figure 11). order derivatives of traveltime are even needed to parametrize the wavefront. On the other hand some methods, like polarization tomography [START_REF] Hu | Polarization tomography for P wave velocity structure in southern california[END_REF] or double-difference tomography [START_REF] Monteiller | An efficient algorithm for doubledifference tomography and location in heterogeneous media, with an application to the Kilauea volcano[END_REF][START_REF] Yuan | Double-difference adjoint tomography[END_REF] or seismic gradiometry [START_REF] Langston | Spatial gradient analysis for linear seismic arrays[END_REF][START_REF] Curtis | Volumetric wavefield recording and wave equation inversion for near-surface material properties[END_REF][START_REF] De Ridder | Near-surface scholte wave velocities at ekofisk from short noise recordings by seismic noise gradiometry[END_REF], rather utilize the differential information as a supplement for a higher resolution stabilized inversion. [START_REF] Zhang | Nonlinear refraction traveltime tomography[END_REF] inverted traveltime curves instead of absolute traveltimes whereas [START_REF] Trinks | High-resolution traveltime and slowness tomography[END_REF] supplemented the inversion by introducing them in the data covariance matrix. [START_REF] Prieux | Building starting model for full waveform inversion from wide-aperture data by stereotomography[END_REF] used slopes (horizontal component of the slowness vector at the sources and receivers) along with traveltimes in order to invert for refracted arrivals. Along the same line of thought, we will show how to use the slopes as an objective measure and how it affects the course of the inversion, by constraining implicitly the geometry of the ray path and subsequently mitigate the generation of misleading structural artifacts in the models.

In the first section, we introduce slopes as an objective measure in the framework of FATT based on eikonal solver and the adjoint-state method [START_REF] Tavakoli | Anisotropic first-arrival slope and traveltime tomography (FASTT)[END_REF]. As a supplement we develop in our Appendix A the Hessian-vector computation through the second-order adjoint-state method [START_REF] Fichtner | Hessian kernels of seismic data functionals based upon adjoint techniques[END_REF][START_REF] Métivier | Full waveform inversion and the truncated Newton method[END_REF]. We show first the added value of slopes through a numerical experiment using analytic expressions. We follow with an application on the SEG/EAGE overthrust model [START_REF] Aminzadeh | 3-D Salt and Overthrust models[END_REF] where we use first-arrival traveltime/slope tomography (FASTT) as an initial model building tool in a full-waveform inversion (FWI) (Tarantola, 1984;[START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF] workflow. We then asses the method in the framework of crust-scale applications by inverting first-arrival traveltimes and slopes at shot positions extracted from a 2D ocean bottom seismometer (OBS) data collected during the SFJ experiment in the eastern Nankai Trough (Tokai area, Japan) [START_REF] Dessa | High-resolution crustal imaging of the eastern-nankai subduction zone from multifold OBS data by multiscale traveltime and wavefield tomography[END_REF][START_REF] Operto | Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough[END_REF][START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]. Through our results, we illustrate the resolution power and robustness of FASTT relative to FATT and the inverted models impact on FWI while showing how both methods behave in different acquisition settings.

The method is developed for 2D media. In the final conclusion & perspective section, we discuss the extension to 3D media and to land acquisitions with topography.

First-arrival traveltime + slope tomography (FASTT) Theory

We define the following nonlinear constrained minimization problem with the aim of retrieving the minimizer m representing the subsurface parameters,

min m C(m) = min m 1 2 Ns s=1 Nr r=1 (W d (d(m) -d * )) 2 , (3.1)
where d(m) and d * denote the predicted and observed measurement respectively. In turn, d groups the different attributes associated with a source-receiver pair (s, r): first-arrival traveltime T s,r and the slopes at the source and receiver positions p r,s and p s,r , respectively. In the expression of the slopes, the first and the second subscripts refers to the starting point of the ray and the position where the slope is estimated, respectively (Figure 3.2). Moreover, we define the data space D as the space defined by the source-receiver pairs (s, r) and the model space M as the space spanned by the subsurface domain to be imaged. The operator W d denotes the inverse of the diagonal covariance matrix associated with each observable class [START_REF] Tarantola | Inverse problem theory: methods for data fitting and model parameter estimation[END_REF]. The latter will serve as a mean to render the data dimensionless. For the rest of the paper we develop the formulation as if both the slopes at the source and the receiver are accessible even though the formulation is still valid and advantageous for cases like sparse ocean bottom acquisitions where one of them is only accessible (the slope at the source); as we will show later in this study.

We recast the minimization problem 3. where the operator F gathers the forward problem equations related to the calculation of the data d, u gathers the state variables and C(m) = J(u * ) where u * stands for a realization of the physical constraints. We solve the constrained problem, (eq. 3.2) under a Lagrangian formalism following the adjoint-state method recipe [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The augmented functional L in compact form is rewritten as

L(m, u, ū) = J(u) -ū | F(u, m) , (3.3) 
where .|. denotes the inner product and ū are the adjoint-state variables (or Lagrange multipliers) . We proceed with the description of the physical (state) equations gathered by the nonlinear forward problem operator F. We infer the predicted traveltime and slopes from traveltime maps (t s (x),t r (x)) computed with a finite-difference factored eikonal solver using the source and receiver positions as injection points [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF][START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF].

H(x, ∇t s (x)) = 0 with t s (s) = 0, (3.4)

H(x, ∇t r (x)) = 0 with t r (r) = 0, (3.5)
where x ∈ M and s = (x s , z s ) and r = (x r , z r ) denote the source and receiver positions. In the above equations, we impose a Dirichlet boundary condition by zeroing the traveltimes at the source and receiver positions. The operator H stands for the Hamiltonian representation of the Eikonal equation in tilted transversely isotropic (TTI) media [START_REF] Alkhalifah | Acoustic approximations for processing in transversely isotropic media[END_REF][START_REF] Waheed | An iterative fast sweeping based eikonal solver for tilted orthorhombic media[END_REF] given by u = (p s,r , p r,s , T s,r , t s , t r ), gives

H(x,∇t(x)) = A(x)((R(x)∇t(x)) x ) 2 + C(x)((R(x)∇t(x)) z ) 2 + E(x)((R(x)∇t(x)) x (R(x)∇t(x)) z ) 2 -1,
L(m, u, ū) = J(u) - 1 2 Ns s=1 λ s (x) | H(x, ∇t s (x)) M - 1 2 Nr r=1 λ r (x) | H(x, ∇t r (x)) M - Ns s=1 Nr r=1 ξ r,s p r,s - 1 2h (Q(x -s + ) -Q(x -s -))t r (x) - Nr r=1 Ns s=1 ξ s,r p s,r - 1 2h (Q(x -r + ) -Q(x -r -))t s (x) - Ns s=1 Nr r=1 µ s,r (T s,r -Q(x -r)t s (x)) , (3.11)
with the Lagrangian functional L, valid in the subsurface domain M, dependent on the subsurface parameter m through the eikonal equation.

According to the first-order optimality conditions, namely the so-called Karush-Kuhn-Tucker (KKT) conditions, a minimizer of a constrained optimization problem is reached at the saddle point of the Lagrangian function [START_REF] Nocedal | Numerical Optimization[END_REF] when the three following equations are satisfied:

   ∂L/∂u = 0, ∂L/∂ ū = 0, ∂L/∂m = 0.
(3.12)

The joint update of the entire system spanned by u, ū and m is avoided due to computational complexity [START_REF] Akçelik | Multiscale Newton-Krylov methods for inverse acoustic wave propagation[END_REF]. We thus resort to the reduced-space approach of the adjoint-state method [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF] based on a sequence of variable projections. In other words, the first two KKT conditions of equation 3.12 are satisfied by solving the state equations ∂L/∂ ū = 0 in a given model m k at each iteration k and we then subsequently deduce the Lagrange multipliers by enforcing ∂L/∂u = 0 in this manner

∂L ∂T s,r = 0 → µ s,r = W Ts,r (T s,r -T * s,r ) = W Ts,r ∆T s,r , (3.13) ∂L ∂p r,s = 0 → ξ r,s = W pr,s (p r,s -p * r,s ) = W pr,s ∆p r,s , (3.14) ∂L ∂p s,r = 0 → ξ s,r = W ps,r (p s,r -p * s,r ) = W ps,r ∆p s,r . (3.15)
The first three adjoint-state variables are the weighted data residuals serving as source terms in the following transport-like equations obtained through the derivation of ∂L/∂t s = 0 and ∂L/∂t r = 0 in the same manner as Tavakoli F. et al. ( 2017a) (3.16) where Q t stands for the adjoint of Q, namely the prolongation operator from D in M.

(∇ • (λ s (x) U s )) M = 1 2 Nr r=1 Q(x -r) t µ s,r + (Q(x -r + ) t -Q(x -r -) t ) ξ s,r h , (∇ • (λ r (x) U r )) M = 1 2 Ns s=1 Q(x -s) t µ s,r + (Q(x -s + ) t -Q(x -s -) t ) ξ r,s h ,
The above adjoint-state equations satisfied by λ s (x) and λ r (x) are solved with the fast sweeping method similarly to [START_REF] Leung | An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals[END_REF]. The adjoint kernels are formed through the backprojection of the slope and traveltime residuals along two ray tubes following the group vectors U s and U r connecting the source-receiver pair.

Finally, the gradient of the objective function C(m), equation 3.2), with respect to any TTI parameter can be inferred by the weighted summation of λ s (x) and λ r (x)

∇ m(x) C = - Ns s=1 λ s (x) 2 ∂H(x, ∇t s (x)) ∂m(x) - Nr r=1 λ r (x) 2 ∂H(x, ∇t r (x)) ∂m(x) .
(3.17)

We refer the reader to Tavakoli F. et al. (2019, Appendix A) for a detailed development of the gradient with respect to all TTI parameters. Once the gradient is computed and projected through the chain rule of derivatives on a cubic B-spline basis for multi-scaling purposes we proceed with a Newton-based local optimization scheme [START_REF] Nocedal | Numerical Optimization[END_REF])

m k+1 = m k + α k ∂ 2 C(m k ) ∂m 2 -1 ∂C(m k ) ∂m , (3.18)
where the step length α k ∈ IR + satisfies the Armijo rule and the curvature condition of the Wolfe conditions. In practice, for all numerical experiments presented in this study, the inexact line search is managed by the SEISCOPE optimization toolbox [START_REF] Métivier | The SEISCOPE optimization toolbox: A large-scale nonlinear optimization library based on reverse communication[END_REF] as well as the inverse Hessian operator approximation through the limited-memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) algorithm [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF]. We present in Appendix A, the second-order adjoint-state formulation [START_REF] Fichtner | Hessian kernels of seismic data functionals based upon adjoint techniques[END_REF][START_REF] Métivier | Full waveform inversion and the truncated Newton method[END_REF] of FASTT where the Hessian-vector product, embedding a better approximation of the Hessian, can be used in a truncated Newton scheme [START_REF] Nash | A survey of truncated Newton methods[END_REF].

Sensitivity analysis

Before we proceed with the presentation of two full scale applications, we illustrate the advantages of FASTT with respect to FATT in a toy test setup. We consider a two parameter estimation problem of constant gradient medium (v = v 0 + a.z), with the true top layer velocity v 0 = 2.73 km/s and the gradient a = 0.75 s -1 (white cross in Fig. 3.3) . We use analytical expressions for solving the forward problem and the Fréchet derivatives computation [START_REF] Udías | Principles of Seismology[END_REF][START_REF] Stovas | Analytical approximations of diving-wave imaging in constant-gradient medium[END_REF]. In figure 3.3, we show the inversion results using two dif- ferent acquisition setups and starting with the same initial guess of v 0 = 3 km/s and a = 0.45 s -1 . The first test (top panels of Fig. 3.3) is done with for one shot and mimicking a surface fixed-spread 100 km long acquisition with 100 m spacing between each receiver; the length of the acquisition ensures a fair illumination at various depth. The results of the first setup show a convergence of both FATT (top-left panel of Fig. 3.3) and FASTT (top-right panel of Fig. 3.3) towards the sought solution. On the other hand, the optimization path taken by each is clearly different due to the different shape of the attraction basin. In the case of FATT, the basin is flat and lacks curvature therefore the minimum is harder to reach. As a counterpart, the minimum in the case of FASTT is more distinct, hence the convergence in fewer iterations even for this simple case. The introduction of slope observations balances the sensitivity with respect to both parameters while in the case of FATT the elongated ellipse delineating the basin depicts a superior sensitivity to the top velocity parameter. At this point of the discussion, it is rather evident that, in the case of dense long-offset acquisitions where the medium is sufficiently well sampled by multi-incidence crossing rays, fitting traveltimes perfectly ensures a convergence towards a global minimum. Having said that, we now remind the reader that, in practice, flawless data fit is never achieved, long offsets are never long enough and the often contrasted subsurface is not illuminated at all depths by diving waves. The latter case is encountered frequently in sub-salt (Shen et al., 2018a) or deep crustal [START_REF] Zelt | Modelling strategies and model assessment for wide-angle seismic traveltime data[END_REF][START_REF] Korenaga | Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography[END_REF] imaging cases, short to intermediate offset first-arrival recordings are trapped by shallow velocity contrast while only very long-offset recordings are actually coming from wave propagation in the deep parts (Figure 3.1). The poorly constrained areas at intermediate depth aggravate the non-uniqueness of the completely blind tomography to the velocity-position coupling. The second part (bottom panels of Fig. 3.3) of the toy test looks closely at that kind of phenomena, where we invert for offsets between 5 to 310 km and 60 to 100 km as if part of the medium is poorly constrained by the data. The results of the inversion illustrates how FATT struggles in a very flat attraction basin composed of a multitude of parameter combinations, while FASTT is still able to converge in a fewer number of iterations. The toy test depicted that the introduction of slopes in FATT mitigates its ill-posedness. The effect is logical since the emergence angle or in turn the turning point of the rays are better constrained. In order to avoid any confusion we remind the reader that we are looking at the slope at the source and receiver and not along the ray, even though in the presented toy test the model is laterally homogeneous, slopes still have a contribution in guiding the rays through the initial condition defined by the emergence angle. In the subsequent sections, we strengthen our claims on full-scale applications.

Application to the SEG/EAGE overthrust model

In the following section, we benchmark the performance of FATT and FASTT against a 2D section of the SEG/EAGE overthrust model [START_REF] Aminzadeh | 3-D Salt and Overthrust models[END_REF] in a full-waveform inversion (FWI) workflow context. The 20 km long overthrust model (Figure 3.4d) contains some challenging features for tomography and in particular ray-based approaches. The main target is a dipping thrust structure surrounded by alternating positive and negative velocity contrasts layers, other features include small scale fractures and channels but are retrievable only at the FWI step. The thrust structure and the non-deformed high velocity basement are the major cause of ray trapping and shadow zones; making the problem challenging for ray-based methods.

For the sake of avoiding incomplete coverage of the main target situated at the edge we extended the model laterally 25 km from each side using the boundary values. This extension, only done at the tomography stage of the workflow, will also ensure a proper undershooting of the target through long-offset arrivals that are refracted on top of the basement. We note that the observed data are simulated in a slightly smoothed version, using the eikonal solver described earlier, guaranteeing the validity of ray theory while preserving the kinematics of the model. In the first test, we consider a dense 70 km fixed-spread acquisition (100 m source-receiver spacing) and an initial constant gradient model defined with v 0 = 2000 m/s and a = 0.8 (Figure 3.4a). We note that only one slope is used in the presented numerical experiment in order to draw a clear comparison with a subsequent sparse acquisition setting test. Same strategy is used during both FATT and FASTT, the inversion is regularized through gradient smoothing and we use a multi-scale reconstruction approach through progressive B-spline refinement. We use line-search failure as a stopping criterion, in other words when a step length satisfying the Wolfe conditions cannot be found anymore. The results for FATT and FASTT (Fig. 3.4b-c) exhibit different features. In the FATT model (Fig. 3.4b), the main velocity trend is coherent with what would exist in a smooth version of the true target (Fig. 3.4d). However, some artifacts appear along the main dipping structure of the thrust (2.5 -7.5 km). On other hand, the FASTT model (Fig. 3.4c) contains well delineated features even in the main target. Before we elaborate on the causes behind the discrepancies between the two inverted models, we used them as initial guesses for FWI and asses their impact on the final result.

We proceed with a frequency-domain FWI in the frequency band of 3 to 20 Hz through a hierarchical frequency continuation scheme [START_REF] Pratt | Seismic waveform inversion in the frequency domain, part I: theory and verification in a physical scale model[END_REF] subdivided in eight groups. We use the same acquisition setup as the one used during tomography. No regularization of any kind was used at this stage but we note that a diagonal pseudo-Hessian preconditioning was applied [START_REF] Shin | Improved amplitude preservation for prestack depth migration by inverse scattering theory[END_REF]. We remind the reader that only the original 20 km profile is considered for FWI. The latter taking advantage of the improved subsurface illumination provided both by finite-frequency wavepath kernels and late arrivals (by opposition to ray path kernels and first-arrivals). The FWI result (Fig. 3.4e) using the FATT model as initial guess shows artifacts in the main target but a good recovery of the layered structures, clearly incriminating the poor result at the tomography stage. On the contrary, FWI (Fig. 3.4f) was able to retrieve perfectly all the structures using FASTT result as an initial model.

We investigate the source of artifacts in the FATT model, starting by taking a look at some rays traced in the smooth version of the model used for the data simulation and the inverted tomographic models (Fig. 3.5). For the rest of the paper, we refer to the smooth version of the true model as the target model since it represents the best case scenario outcome of our tomography if perfect resolution was attainable. By first examining the rays traced in the target model (Fig. 3.5a), we notice a predictable channeling effect occurring along the thrust but more interestingly the channeling is also along the velocity contrast interfaces at 1.5 km and 3 km depth. The rays distribution in the case of FATT model (Fig. 3.5b) shows a lack of ray path along the aforementioned interfaces and a significantly less rich angular coverage, whereas in the case of FASTT (Fig. 3.5c), the rays follow the same paths as the ones seen in the target model. This observation implies that FATT was not as sensitive as FASTT to the small contrasted layer and took a different direction during the inversion. Indeed, since FATT was insensitive to some velocity variations, the rays went deeper and in turn the inversion went in a direction that forced the fitting of the traveltime by generating some compensating artifacts. The latter is a typical result of the ill-posedness of FATT, a remedy for this deficiency is of course a proper regularization at the cost of resolution, that is not however the purpose of our discussion. We reiterate that FASTT is more robust to this effect since the emergence angle and in turn the ray path is better constrained, hence leading to a more stable inversion. As an additional support to our claim, we show the gradient computed on the Cartesian grid (not the one used in the optimization scheme since we project it on a cubic B-spline basis) at the first iteration. We can clearly notice in figure 3.6a how the amplitude of the gradient are dominated by the long-offset rays density in the deep part while the variations in the shallow part are somewhat monotonic and laterally homogeneous. On the other hand, in the case of FASTT (Fig. 3.6b) the gradient is very contrasted and in particular along the thrusts where the channeling occurs since slopes are more sensitive to velocity variations surrounding the ray path.

In order to check for the effect of a more realistic ocean bottom seismometers (OBS) spacing and push the tomography to its limits, we repeat the same test but with a 2 km receiver spacing while using the same workflow across all stages even the gradient smoothing. The inverted models (Fig. 3.7) using the sparse acquisition illustrates a bigger discrepancy between FATT and FASTT results in this unfavorable setup. The velocity model inferred from FATT (Fig. 3.7a) is contaminated by kernel imprints clearly revealing that a more aggressive regularization at the cost of resolution is needed to compensate for the sparsity of the acquisition. Using the same regularization, FASTT was able to retrieve a solution that is fairly comparable to the one of the dense acquisition setup. Both methods fitted their corresponding data (Fig. 3.8, red and blue dashes), however FATT reaching a local minimum, it was not able to implicitly fit the slopes. This test proves that in the case of unfavorable acquisition setups and a lack of proper regularization during the inversion, fitting traveltimes is not enough since it is a deficient attribute.

In the same manner as the first test, we proceed with FWI using both FATT and FASTT inferred models. The unsurprising results show that FWI could recover a major part of the FATT model (Fig. 3.7c) since the first-arrival is fitted but is still contaminated by some unavoidable artifacts while in the case of FASTT the FWI result is very satisfying (Fig. 3.7d). We proceed with an examination of the seismograms match post-FWI in both cases to check for cycleskipping (Fig. 3.9). We clarify to the reader that in instance of good match, the waveforms should be represented by a blue/black color scale opposed to the red/black for mismatched waveforms. The FATT+FWI seismograms (Fig. 3.9a) do not exhibit a flagrant cycle-skipping pattern, however we can see a series of mismatches in late arrivals at short to intermediate offsets and early arrivals at long-offset due to the artifacts present in the model. The kinematics is as expected very well recovered in the FASTT+FWI case (Fig. 3.9b).

Application to the eastern Nankai Trough (Japan)

We revisit a 2D real data crustal case study in the eastern Nankai Trough, offshore Japan (Dessa et al., 2004a,c;[START_REF] Operto | Crustal imaging from multifold ocean bottom seismometers data by frequency-domain full-waveform tomography: application to the eastern Nankai trough[END_REF][START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF][START_REF] Górszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. This offshore subduction zone (Fig. 3.10) is of interest due to its seismicity induced by the N-S convergence of the Philippine Sea plate and the Eurasia plate at the Nankai Trough [START_REF] Le Pichon | Structure and evolution of the backstop in the eastern nankai trough area (Japan): immplicationsn for the soon-to-come tokai earthquake[END_REF]. The easternmost segment referred to as the Tokai area, delineated by the colliding Izu-Bonin-Mariana arc, entices a lot of research studies since it remains unruptured and accumulating stress for over one and half centuries [START_REF] Ando | Possibility of a major earthquake in the Tokai district, Japan and its preestimated seismotectonic effects[END_REF]. During this study, we use multi-channel seismic (MCS) and OBS data acquired in the frame of the Seize France Japan (SFJ) project [START_REF] Dessa | High-resolution crustal imaging of the eastern-nankai subduction zone from multifold OBS data by multiscale traveltime and wavefield tomography[END_REF]. We first perform FATT and FASTT using first-breaks picked on OBS data followed with the FWI workflow designed by [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]. We redo the experiment using a decimated dataset keeping one instrument out of ten in order to assess the impact of the acquisition sampling on our results. We finally evaluate the kinematic sounds of the inverted tomographic models through a preserved-amplitude ray+Born depth migration/inversion (Thierry et al., 1999a) of an aligned multi-channel seismic (MCS) profile carried out with a 4.5-km long streamer [START_REF] Górszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. The OBS survey was carried out with 100 instruments spaced 1 km apart, 93 of them are usable (Fig. 3.10, red line) and an aligned 140 km shot profile with a 100 m shot interval (Fig. 3.10, black line). For tomography, we use 124248 first-breaks previously inverted by [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]. We approximate the slope at the source in a finite-difference sense after a fine interpolation of the traveltime curves (Fig. 3. [START_REF]Inversion for velocity with passive true origin time correction using a limited offset coverage ([END_REF].

We note that we do not endorse this sub-optimal strategy but we opted for it in order to have a comparable result with respect to previous publications using the same picks.

To introduce the main structural units of the survey area, we show in Figure 3.12 the FWI model and its detrended version developed by [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF]. From south-east to north-west, the main structural domains involve the trench axis between 105 km and 88 km distance with weakly-deformed sedimentary fill (WDU), the active accretionary wedge (MDU) bounded on the west by the Tokai thrust, the Miocene wedge (HDU) bounded on the west by the Kodaiba thrust and the backstop (BST) which undergoes an important compressive tectonic regime highlighted by several presently inactivated major thrusts and underplated crustal sheets [START_REF] Le Pichon | Structure and evolution of the backstop in the eastern nankai trough area (Japan): immplicationsn for the soon-to-come tokai earthquake[END_REF][START_REF] Henry | Deformation processes and earthquakes in Nankai[END_REF][START_REF] Dessa | High-resolution crustal imaging of the eastern-nankai subduction zone from multifold OBS data by multiscale traveltime and wavefield tomography[END_REF]. A still ambiguous area on top of the subducting oceanic crust (SOC) is located between 55 km and 60 km distance at the position of the presumed subducting paleo-Zenisu ridge [START_REF] Le Pichon | Structure and evolution of the backstop in the eastern nankai trough area (Japan): immplicationsn for the soon-to-come tokai earthquake[END_REF] (Figure 3.12, question mark). The decollement on top of the subducting oceanic crust is identified by a continuous reflector between 60 km and 90 km distance and 7.5 km depth. A striking feature is a Deep Strong Reflector (DSR) correlated with a low-velocity zone on top of the subducting oceanic crust where it pinches out the backstop at 40 km distance and 11.6 km depth.

Complete acquisition results

We run FATT and FASTT starting with an initial constant gradient velocity model (v 0 = 4000 m/s and a = 0.2 s -1 ) following the bathymetry level (Fig. 3.13a). Unlike the starting velocity model used for FATT by Dessa et al. (2004a) and [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF], our choice of the initial guess is not based on any prior such as the dip of the subducting slab. The workflow is similar to the one presented in the previous section: We use a multi-scale reconstruction approach through progressive B-spline refinement and gradient smoothing (500 × 800 m correlation length) as a regularization. Following a line-search failure after 50 and 85 iterations for FATT and FASTT respectively, the data misfit is significantly reduced (Fig. 3.14). Both inversions reached a very close traveltime misfit with approximately 98% of the traveltime residuals falling below the FWI cycle-skipping threshold for a starting frequency of 1.5 Hz ( [START_REF] Pratt | Waveform tomography -successes, cautionary tales, and future directions[END_REF], their equation 1). In figure 3.14, we notice that the slope residuals in the case of FASTT are significantly reduced opposed to the less implicitly fitted slopes in the case of FATT. The inferred tomographic models (Fig. 3.13b-c) exhibit a traveltime root-mean-square (RMS) of 28 ms noting that the poor illuminated areas at the end of the shot profile contribute to most of it, particularly in the case of FASTT. Even though the traveltime data fit and the RMS error are similar, the structures seen in the models are different. The FATT model (Fig. 3.13b) contains some artifacts inherited from the traveltime sensitivity kernel. Indeed, an unlikely wavy pattern affects the top of the oceanic crust at around 10 km depth and dips ocean-ward in the opposite direction to the main tectonic trend highlighted by the landward-dipping faults affecting the backstop and the accretionary wedges (Figure 3.12). We remind the reader that using a more proper regularization at the cost of resolution is a suitable remedy as shown by the FATT results of [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] (Their Figure 5d). In contrast, the velocity trend in the FASTT model (Fig. 3.13c) looks more consistent with the structural dips interpreted in Figure 3.12.

Without concluding on the validity of these models based upon prior geological knowledge and previous studies, we proceed with a frequency-domain acoustic Laplace-Fourier FWI [START_REF] Shin | Waveform inversion in the Laplace-Fourier domain[END_REF][START_REF] Brossier | Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion[END_REF] in the frequency band 1.5 -8 Hz. We use the same workflow as the one employed by [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF], except that we use a constant density model for all inversions in order to associate the discrepancies in the results to wave speeds solely. We refer the reader to [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] for a detailed description on the triple-nested hierarchical management of frequencies, offsets and the Laplace constant. The FATT+FWI and FASTT+FWI inferred models are very similar (Figure 3. 13(d-e)). Interestingly, the structures evoked previously exhibit a dip similar to the one seen in FASTT, hence validating the claim of the dip inconsistency in the FATT models. In fact, the layer-stripping approach along with the artificial low frequencies generated by aggressive time damping in the Laplace-Fourier domain render the FWI workflow more robust to initial guesses, hence recovering the sought structures even in the case of the initial FATT model. This experiment alludes that at the tomography stage, the use of the FATT model for migration or direct geological interpretation of the accretionary prism would be misleading. The early arrivals waveform match Figure 3.12 -FWI model of the eastern Nankai through [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF][START_REF] Górszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. (a) FWI velocity model. (b) Detrended FWI velocity model. A depth migrated section inferred from the MCS data and a gross structural line drawing delineating the main structural units and tectonic features such as the Tokai and Kodaiba thrusts is superimposed on the models. The inset delineates the main structural domains as interpreted by [START_REF] Henry | Deformation processes and earthquakes in Nankai[END_REF]. SOC: subducting oceanic crust. OMT: oceanic mantle. WDU: weakly deformed unit (trench fill); MDU: moderately deformed unit (active wedge); HDU: heavily deformed unit (Miocene wedge); BST: backstop. DSR: deep strong reflector. The question mark in (b) points the possible location of the Paleo-Zenisu ridge [START_REF] Le Pichon | Structure and evolution of the backstop in the eastern nankai trough area (Japan): immplicationsn for the soon-to-come tokai earthquake[END_REF]. Adapted from [START_REF] Górszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. between the real and the modeled seismograms at the end of the FWI process proves that the retrieved velocity model is reliable (Fig. 3.15).

Coarse acquisition results

We repeat the whole workflow presented above while using part of the data (11 OBS, approximately 10 km spacing) since in most crustal case studies the acquisition is coarser than the one used in this study. The tomographic problem becomes more challenging due to the insufficient redundancy in the data and in turn the illumination of the subsurface. We restart FATT and FASTT with a larger correlation length of the Gaussian filter on the gradient (1000 × 1600 m), ensuring the validity of our asymptotic kernel. The tomography inferred models (Fig. 3.16a-b) exhibit an aggravated version of the pathology seen in the full data case. The FATT model is polluted by strong kernel imprints below the backstop area between 20 to 60 km (Fig. 3.16a), while its counterpart, the FASTT model, is less affected (Fig. 3.16b). The trench fill seems not that affected in both cases since it is shallow, hence well illuminated (Figure 3.1). The FWI results in this case are more affected by the artifacts introduced through the initial models (Fig. 3.16c-d). We can notice below 7 km depth in the FATT+FWI model some patchy velocity updates inconsistent with the full data results (Fig. 3.16c). The discrepancy between both FWI models along the decollement and deeper at the Moho discontinuity is more pronounced.

Seismogram modeling

We calculate time-domain seismograms in the four models of figure 3.16. The seismograms simulated in the tomography models (Fig. 3.17a-b) embed a different level of complexity, hence highlighting different resolution of these models. Indeed, the first-arrival in the FASTT model at 60 km is more complex than in the FATT model. In particular, it shows what is interpreted as a low-amplitude wave guided by the dipping structure in the accretionary prism (Fig. 3.17a-b, black arrow). In fact, this wave may mimic a head wave trapped along the Tokai thrust. Other than the latter, a later reflection, possibly from the top of the subducting oceanic crust, missing in the case of FATT, is also detected in the seismograms computed in the FASTT model (Fig. 3.17a-b, gray arrow). This low-amplitude first-arrival followed by an energetic post-critical reflections are observed in the real OBS gather of Figure 3.11 in the offset range 50 km-60 km. The reader is also referred to Figure S3d of [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] where ray tracing performed in the FWI velocity model highlights the trapping of the first-arrival rays along several thrusts slicing the backstop and the accretionary wedges. Looking at the post-FWI seismograms (Fig. 3.17c-d), we notice that the suspected head wave is recorded in both cases, meaning that the inversion was going in the right direction and the FWI tried to rectify the shortcomings of the FATT model. Even though both FWI waveform look somehow similar from a kinematic point a view that is not the case from a dynamic view point. The amplitudes in the seismograms computed in the FASTT+FWI velocity model are mildly sharper than those of the FATT+FWI counterpart for some part of the early arrivals and more significantly for late reflections arrivals. This phenomenon attests that the FWI starting from the FATT initial model was converging in the right direction but was however late in comparison to its counterpart starting from the FASTT model (Figure 3.17, white arrow). The white arrow points contrasted amplitudes and focusing of a post-critical reflection in the seismograms computed in the FATT+FWI and FASTT+FWI models.

Depth migration

As a further quality control of the tomographic model, we perform a pre-stack depth ray+Born inversion/migration (Thierry et al., 1999a) of an aligned MCS profile using the FATT and FASTT models of Figure 3.16(a-b) as background models (Figure 3.18). Comparing the migrated sections superimposed on the FATT and FASTT velocity models show unambiguously the improved reflectivity imaging obtained with the FASTT model. For example, the decollement highlighted by the arrows in Figure 3.18 is more continuous and can be followed over a larger range of distances in the migrated image inferred from the FASTT model. Moreover, this almost flat reflector complies more accurately with the smooth velocity variations of the FASTT model below the decollement, while this reflector crosses the unlikely wavy velocity variations of the FATT model. Also, the almost seismically-transparent high-velocity patch above the decollement of the FASTT model and the migrated reflectors delineating this velocity patch better match the interpreted duplex in Figure 3.12 than the FATT counterpart. Finally, the reflectors are generally more focused and better comply with the velocity variations in the sedimentary fill of the trench axis. This is further supported by having a look at the angle-domain common image gathers (CIG) extracted at the trench fill position since that part is the most layered and is sufficiently illuminated using a vintage 4.5 km streamer. The direct comparison of the CIGs (Figure 3.19) flatness proves that the FASTT result was indeed the more reliable in terms of kinematics but as seen also there is a discrepancy between the depth of the events in the two cases. The totality of our presented points would back the positioning present in the FASTT case.

Finally, as a closure, we migrate the MCS data using the best FWI model presented in this study (Figure 3.13e). We note that the use of a FWI derived model is the best option since the latter benefit from reflections and late arrivals. The final integrated imaging results are shown in Figure 3.20 with three complementary styles of representation that highlight the different scales contained in the FWI model and the migrated image. Figure 3.20a shows the FWI model together with the migrated section superimposed in transparency. Figure 3.20b adds in transparency the velocity gradient of the FWI model (namely, the sum of the horizontal and vertical derivatives) to highlight the short-scale (migrated) components reconstructed by FWI. This style of representation delineates for example fairly well the top of the subducting oceanic crust and the Moho and hence ideally supplements at crustal depths the migrated image inferred from the MCS data. Compared to Figure 3.20a, Figure 3.20c replaces the FWI model by its detrended version to highlight the structural units at intermediate scale reconstructed by FWI. This detrended representation style highlights the crustal sheets in the backstop as well as the sedimentary units in the accretionary wedges. These structural units comply fairly well with the short-scale reflectivity imaged by the migration of the MCS data (Figure 3. 20b-c). Among the main features that can be easily interpreted: In the shallow part, the geometry of the forarc basin to the east (30 km-50 km distance) and the slope basin to the west (65 km-75 km distances) are fairly well delineated in both the migrated section and the FWI velocity model (Figure 3.20a). In the backstop, albeit the penetration limitations induced by the vintage 4.5km long streamer, several migrated reflectors delineate the underplated crustal sheets down to 10 km depth (Figure 3.20c). The ramps and flats characterizing the complex geometry of the Tokai thrust (Figure 3.12) can be interpreted in both the MCS migrated section and the FWI Overall, the match between the reflectivity and the FWI velocities in the active wedge and the sedimentary trench fill is spectacular as highlighted by the imaging of a seamount-like structure draped by some layers at 95 km distance and overhung by a graben (Figure 3.20).

It should be also noted that the top of the slab in the western-most part of the model (40 km-50 km in distance -10 km-15 km in depth) is probably not positioned in depth as accurately as in the results of [START_REF] Górszczyk | Toward a robust workflow for deep crustal imaging by FWI of OBS data: The eastern nankai trough revisited[END_REF] with pull-up effects (For example, note the different depths (11 km and 11.6 km) of the low velocity zone at 42 km distance in Figures 3.12 and 3.20a). This mispositioning is inherited from the starting velocity model that we used for tomography (Figure 3.13a), which does not contain any prior about the dip of the slab. In this deep poorly-illuminated area close to the ends of the acquisition layout, FASTT was not able to fully solve the velocity-depth ambiguity in the spite of the added-value provided by slopes.

Discussion

We propose a simple approach to mitigate the ill-posedness of first-arrival traveltime tomography by adding slopes at sources and/or receivers to traveltimes as optimization measurements. Improved results are obtained by better implicitly constraining the starting and ending incidence angles of the rays connecting a source to a receiver, and hence the turning points of the diving rays. This is useful to mitigate the non-uniqueness of the solution of FATT when the first-arrival rays are blind to the lower part of crustal layers as illustrated in Figure 3.1. We also show that using slopes leads to velocity models which have a higher resolution than the counterpart built by FATT. This improved resolution results from the fact that differential traveltimes are more sensitive to the velocity gradients. We also show that the added-value provided by slopes in first-arrival tomography increases as the acquisition is coarser without the need of aggressive regularization.

Slopes measurements can be easily inferred by finite differences once the first breaks have been picked. Alternatively, automatic picking tools classically used in reflection slope tomography to pick locally-coherent events can be used. These tools rely on local slant stacks to automatically track locally coherent events in common-shot or common-receiver gathers [START_REF] Taner | Complex seismic trace analysis[END_REF][START_REF] Billette | Practical aspects and applications of 2D stereotomography[END_REF][START_REF] Lambaré | Stereotomography[END_REF]. While slopes at sources and receivers are necessary to implement reflection slope tomography, 2D first-arrival slope tomography can be performed with only one slope since a first-arrival ray is unambiguously defined in a given velocity model by the source and receiver positions. This allows one to readily apply FASTT to sparse stationary-recording surveys such as OBS surveys. When considering sparse 3D OBS surveys, the source dimensions may be downsampled in the cross direction preventing the picking of the azimuth angle. However, it is likely that using only one slope at shot positions will still be beneficial to perform 3D FASTT. An open issue is the measurement of slopes at OBS positions when the acquisition is sparse. This is beneficial to involve the receiver slope in FASTT or to combine FASTT with reflection slope tomography. One possible solution is to estimate the incidence and azimuth angles at OBS positions from the three components of the OBS by polarization analysis, with the open question of the measurement accuracy [START_REF] Hu | Formal inversion of laterally heterogeneous velocity structure from P-wave polarization data[END_REF][START_REF] Hu | Polarization tomography for P wave velocity structure in southern california[END_REF]. Alternatively, the reciprocity principle can be used to estimate the slope at a given OBS position using the records of the other OBSs triggered by the shots located at the vertex of the targeted instrument [START_REF] Alerini | Stereotomography for nodes data[END_REF][START_REF] Alerini | Prestack depth imaging of oceanbottom node data[END_REF]. It should also be noted that in the case of rugged topographies often encountered in onshore case studies, slopes are corrected according to the undulant surface locally by performing an analysis using the horizontal and vertical component of the slowness vectors [START_REF] Zhang | Stereotomography of seismic data acquired on undulant topography[END_REF].

The slopes of late arrivals (namely, any single-scattered arrival and surface multiples) at shot positions can be used also to perform a kinematic migration using the FASTT or FWI models as background model. The aim of kinematic migration is to locate a scatterer in the subsurface at the intersection between the isochrone defined by the two-way traveltime and the ray leaving the shot (or receiver) position with the measured slope (Chauris et al., 2002a;[START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. This kinematic migration builds a skeleton of the structure that may be useful to guide a line drawing for structural interpretation or as a quality control of the background velocity model. This can provide also a useful tool to clarify the origin of ambiguous arrivals recorded in complex geological environment and better understand all the arrivals that are involved in FWI. To illustrate how this might work, Figure 3.21 shows a set of migration facets located in the final FWI model. It should be noted that the picking was performed in synthetic seismograms computed in the FWI velocity model rather than in the real data. One can see that the dip of the migrated facets comply with the dip of several thrusts in the backstop and the accretionary wedges, a splay fault branching upward from the plate boundary, and several horizons in the A small set of secondary arrivals were picked and migrated kinematically by looking at the intersection between the isochrone defined by the two-way traveltime and the ray leaving the shot position with the picked slope. The located scatterer is plotted as a migration facet the dip of which is tangent to the isochrone at the scatterer location. sedimentary slope basin. Finally, several facets with antithetic dips are shown in the enigmatic area at the position of the presumed paleo-Zenisu ridge (60 km distance) supporting the presence of a major tectonic feature at this position. It is also worth noting a fault in the subducting slab located seaward to this feature, which might be similar to those observed seaward to the Zenisu ridge [START_REF] Mazzotti | Intraplate shortening and underthrusting of a large basement ridge in the eastern nankai subduction zone[END_REF].

Conclusions

We propose the use of slopes as an additional objective measure in the context of firstarrival traveltime tomography as a remedy for the ill-posedness of the problem. We present the formulation of the problem under the framework based on eikonal solvers and the adjointstate method. We bring forward the added value of slopes and explain how they constrain better the ray path and thus lead to a more stable inversion. In addition to a toy test based on analytical expressions, we defend our claims on two full-scale applications. We elaborate on the deficiency of the traveltimes and illustrate its impact on the resulting structurally misleading models opposed to the reliable ones inferred through our proposed strategy. In future works, the proposed scheme is easily embedded in our reflection slope tomography method [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. We will investigate cases where both reflection and firstarrival are available especially in a challenging OBS context where reflection slopes are not straightforwardly accessible on the receiver side. Evidently, our joint approach is perfectly applicable in cases where OBS and streamer data are coupled and will be presented in upcoming studies.

viding us with the SFJ-OBS data.

Appendix A: Second-order adjoint-state formulation

In the following, we develop the formulation of FASTT using the second-order recipe of the adjoint-state method [START_REF] Fichtner | Hessian kernels of seismic data functionals based upon adjoint techniques[END_REF][START_REF] Métivier | Full waveform inversion and the truncated Newton method[END_REF]. In a truncated newton scheme [START_REF] Nash | A survey of truncated Newton methods[END_REF], we seek the solution of the Hessian-vector product, in order to solve the Newton system with the linear conjugate gradient method. We define the functional h w (m) with w being an arbitrary vector as follows

h w (m) = ∇C(m) | w M . (3.19)
By definition the gradient of the functional expressed above is

∇h w (m) = H(m)w. (3.20)
Accordingly, computing the Hessian-vector product amounts to compute the gradient of the functional h w (m). We proceed with the computation of the Hessian-vector product H(m)w under a Lagrangian formalism. The Lagrangian operator L w is associated with eleven state variables (the five state variables and their associated adjoint-state variables of the first-order adjoint and the gradient g) and their respective adjoint-state variables denoted by α. We express the gradient for velocity explicitly in the formulation since it's the sole parameter (isotropic cases). The augmented functional is expressed as L w (v, g, p sr , p rs , T s,r , t s , t r , ξ sr , ξ rs , µ s,r , λ s , λ r , α 1 , α 2s r , α 3r s , α 4s,r , α 5s , α 6r , α 7s r , α 8r s , α 9s,r , α 10s , α 11r ) = 

g | w M - Ns s=1 Nr r=1 α 1 (x) g + λ s (x) v(x) 3 + λ r (x) v(x) 3 M - Ns s=1 Nr r=1 α 2s r p sr - 1 2h (Q(x -s + ) -Q(x -s -))t r (x) - Nr r=1 Ns s=1 α 3r s p rs - 1 2h (Q(x -r + ) -Q(x -r -))t s (x) - Ns s=1 Nr r=1 α 4s,r T s,r - 1 2 (Q(x -r)t s (x) + Q(x -s)t r (x)) - 1 2 Ns s=1 α 5s (x) | H(x, ∇t s (x)) M - 1 
α 10s (x) ∇ • (λ s (x)∇t s (x)) M - 1 2 Nr r=1 Q(x -r) t µ s,r + (Q(x -r + ) t -(Q(x -r -) t ) ξ rs h - Nr r=1 α 11r (x) ∇ • (λ r (x)∇t r (x)) M - 1 2 Ns s=1 Q(x -s) t µ s,r + (Q(x -s + ) t -(Q(x -s -) t ) ξ sr h .
(3.21) In the same manner as the first-order formulation with the exception of the traveltimes being written in function of both traveltime maps for the sake of symmetry/clarity in the terms, the partial derivative of the new augmented functional with respect to every new state variable are zeroed. Starting by the gradient g:

∂L w ∂g = 0 → α 1 = w . (3.22)
Followed by the objective parameters:

∂L w ∂p sr = 0 → α 2s r = α 7s r σ 2 ps , (3.23) ∂L w ∂p rs = 0 → α 3r s = α 8r s σ 2 pr , (3.24) ∂L w ∂T s,r = 0 → α 4s,r = α 9s,r σ 2 
Ts,r , (3.25)

then with respect to the first-order adjoint-state variables:

∂L w ∂ξ sr = 0 → α 7s r = - 1 2h (Q(x -s + ) -Q(x -s -))α 11r (x) , (3.26) ∂L w ∂ξ rs = 0 → α 8r s = - 1 2h (Q(x -r + ) -Q(x -r -))α 10s (x) , (3.27) ∂L w ∂µ s,r = 0 → α 9s,r = - 1 2 Q(x -r)α 10s (x) - 1 2 Q(x -s)α 11r (x) . (3.28)
For the rest of the development we will recall the same Dirichlet boundary conditions as the first-order adjoint. Before proceeding with the expression of the adjoint-state variable α 10s , for the sake of clarity, we express the solution of the following term that undergoes three integration by parts:

∂ ∂λ s α 10s (x)∇ • (λ s (x)∇t s (x)) M = - ∂ ∂λ s (λ s (x)∇t s (x)) • ∇α 10s (x) M + ∂ ∂λ s α 10s (x)λ s (x)∇t s (x) • n Γ = -∇α 10s (x) • ∇t s (x) M + α 10s (x)∇t s (x) • n Γ = α 10s (x)∆t s (x) M -α 10s (x)∇t s (x) • n Γ + α 10s (x)∇t s (x) • n Γ . (3.29)
We proceed in the same manner for the receiver's equivalent contribution. The following expressions of α 10s and α 11r will invoke the Laplacian of their corresponding traveltime maps

∂L w ∂λ s = - α 1 v(x) 3 -α 10s (x)∆t s (x) → ∂L w ∂λ s = 0 → α 10s (x) = -w ∆t s (x)v(x) 3 , (3.30) ∂L w ∂λ r = - α 1 v(x) 3 -α 11r (x)∆t r (x) → ∂L w ∂λ r = 0 → α 11r (x) = -w ∆t r (x)v(x) 3 .
(3.31)

Before proceeding with the expression of the next adjoint-state variable α 5s , we develop the following term through a series of integration by parts

∂ ∂t s α 10s (x)∇ • (λ s (x)∇t s (x)) M = - ∂ ∂t s (λ s (x)∇t s (x)) • ∇α 10s (x) M + ∂ ∂t s α 10s (x)λ s (x)∇t s (x) • n Γ = ∂ ∂t s λ s (x)t s (x) • ∆α 10s (x)) M -λ s (x)t s (x)∇α 10s (x) • n Γ = λ s (x)∆α 10s (x) M -∇α 10s (x) • n Γ = -∇α 10s (x)∇λ s (x) M .
(3.32) Making use of the previous expression, we can derive the following equations satisfied by α 5s and α 6r

∂L w ∂t s = 0 → ∇ • (α 5s (x)∇t s (x)) M = 1 2 Nr r=1 Q(x -r) t α 4s,r + (Q(x -r + ) t -Q(x -r -) t ) α 3r s h + ∇α 10s (x)∇λ s (x) ,
(3.33)

∂L w ∂t r = 0 → ∇ • (α 6r (x)∇t r (x)) M = 1 2 Nr r=1 Q(x -s) t α 4s,r + (Q(x -s + ) t -Q(x -s -) t ) α 2s r h + ∇α 11r (x)∇λ r (x) .
(3.34) We can see that the resultant second order adjoint kernel satisfied by α 5s and α 6s is solved in the same manner as the first order adjoint kernel. The first two terms of the right hand side have similar structures to the ones defining the first order adjoint-field however in this case they are not directly linked to the residuals of the data class. Another difference is the additional term representing the contribution of the second order term of the Hessian, eliminating this term reduces the formulation to a Gauss-Newton equivalent contribution. The computational overhead associated with the presented second-order formulation revolves around solving for α 5s and α 6s using the fast sweeping method and their entailed derivatives terms solved straightforwardly by finite-difference. Finally, the Hessian-vector product would take this shape

H(v)w = Ns s=1 3w λ s (x) v(x) 4 - α 5s (x) v(x) 3 + Nr r=1 3w λ r (x) v(x) 4 - α 6r (x) v(x) 3 . (3.35)
We also note that the Hessian-vector product can be solved in a finite-difference sense [START_REF] Brown | A local convergence theory for combined inexact-newton/finite-difference projection methods[END_REF] in the following manner

Hw = g(m + εw) -g(m) ε , (3.36)
where ε is a parameter perturbation. As with any finite-difference based methods the choice of the step, in this case the perturbation, is critical since the error is proportional to the chosen perturbation which is in turn not straightforward to tune. The choice of ε depends on the tackled problem, however some generalized strategies [START_REF] Brown | A local convergence theory for combined inexact-newton/finite-difference projection methods[END_REF][START_REF] Knoll | Jacobian-free Newton-Krylov methods: a survey of approaches and applications[END_REF][START_REF] Nocedal | Numerical Optimization[END_REF] have been already proposed. Once a suitable strategy for the order of magnitude of the perturbation is chosen the scheme is pretty straightforward and does not exhibit any extra cost compared to the second-order adjoint-state implementation.

3.2 Kinematic migration as quality-control and interpretation tool

In this section, I discuss further the idea of using picked slopes of single-scattered arrivals as quality-control or objective interpretation tool evoked in section 3.1.6. Indeed, any picked arrival in the seismograms could be kinematically migrated by fitting its observed slope and traveltime (Figure 2.2). It should be noted that migrating locally coherent events in the data or similarly empowering the focusing of a scatterer around its scattering position could be also done through multifocusing [START_REF] Gelchinsky | Multifocusing homeomorphic imaging Part 1. Basic concepts and formulas[END_REF], beam migration [START_REF] Gray | Gaussian beam migration of common-shot records[END_REF] or Fresnel zone migration [START_REF] Buske | Fresnel volume migration of single-component seismic data[END_REF]. The Fresnel zone migration technique is in spirit the closest to a kinematic migration, data are backprojected on their diffraction hyperbola envelope but with a weighting constraint restricting the energy to the scattering location. The kinematic migration used in parsimonious slope tomography (refer to chapter 2 where PAST was discussed in details) is of course less robust than the aforementioned since it is only accurate in absence of triplications [START_REF] Xu | Common-angle migration: a strategy for imaging complex media[END_REF].

Having said that, it is worth noting that the process is more efficient and yields implicitly the local dips of the structure (delineated by the migration facets). The migration facets are easily calculated by taking the derivative of traveltimes with respect to the scatterer (Figure 2.3) as done in PAST. It should also be noted that the process of migrating picked phases of transmitted arrivals is an underdetermined problem, where the ambiguity results because the ray path does not intersect with the supposed1 two-way traveltime isochrone at a distinct location but rather arrives at grazing incidence along it. Put simply, many picks of the same recorded phase could yield slightly different scattering locations. Calculating all the derivatives with respect to the scattering coordinates gives access also to the scattering angle and direction of the slowness vector, through these attributes picked phases associated with wide-angle scattering could be filtered post-migration. Interestingly [START_REF] Prieux | Building starting model for full waveform inversion from wide-aperture data by stereotomography[END_REF] used picked refracted arrivals under the framework of classical slope tomography and they concluded that most scattering positions fell close to the turning point of the rays2 .

Building a skeleton of the structures through drawn facets is interesting to validate specific regions of the subsurface. More importantly, recorded wavefields are often complex even in standard geological environments, and suspected exotic arrivals could be picked and migrated to their scattering origin. Moreover, retraced to their source, they should help comprehending their whole trajectory in the subsurface and hence the anatomy of the inverted dataset. Taking the example of the application presented in section 3.1.5, a variety of slopes were picked on different OBS gathers (Figure 3.22). The latter gathers are synthetic and computed in the FWI velocity model. The choice of using synthetics could seem surprising. Two points should be highlighted, first of all even if phases were picked in the real data, the scattering position through the kinematic migration is consistent with the velocity model, hence does not give insight whatsoever on the true scattering location. Having said that, it seems more fruitful to migrate phases to where the inversion is "positioning" them during the velocity updates. The latter could give more insight on the fidelity of the velocity model and the reason behind mismatches between the observed and simulated data. Another important advantage of picking on synthetic seismograms is the absence of noise in the data and the fact that free-surface multiples are eliminated by using absorbing boundary conditions, permitting an easier and more clinical picking.

The migration facets obtained through kinematic migration of slopes picked on the different seismograms of figure 3.22 are presented in figure 3.23. In the case of OBS-6 and OBS-17, suspected head waves were picked (Figure 3.22a-b, picks in red and blue, respectively), their migrated facets (Figure 3.23, facets in red and blue respectively) are positioned in the area and exhibit the same dip. The latter structures are associated with the upward branching splay faults, meaning that the migrated facets point out the fact that the recorded head waves propagated along those structures. Around the same area, the slopes extracted from OBS-20 and OBS-57 (Figure 3.22c-f, picks in yellow and purple respectively) are associated to reflections as is clear in the gathers. Their migrated facets are also primarily positioned on branches of the megasplay fault (Figure 3.23 in yellow and purple respectively), this interpretation is consistent with the findings of Górszczyk et al. (2017, their figure 13). In fact, the picks in OBS-57 are associated with two distinct reflections one of them being indeed positioning along a thrust in the backstop while the other is positioned deeper at around 12 to 15 kilometers depth (Figure 3.23, purple facets). The latter zone is associated to the top of the subducting oceanic plate, where the facets exhibit steep dipping making the interpretation questionable. The migrated facets associated with the picks extracted from OBS-57 along a suspect head wave (Figure 3.22g), exhibit antithetic dips (Figure 3.23, pink facets) are the ones discussed in section 3.1.6. As for the picks extracted from OBS-37 (Figure 3.22d), they are a mix of reflections and firstarrivals. The kinematic migration (Figure 3.23, green facets) hints that the reflections occurred at the base of the accretionary wedge and the first-arrivals being either associated to diving waves in that area or head waves propagating along the frontal thrust (refer to figure 3.12).

The last example is the case of , where a dense packet of late arrivals were picked. Their migration facets (Figure 3.23, cyan facets) forming a skeleton of shallow reflectors and a dipping patch of facet parallel to the frontal thrust. In the seismograms, it seems intuitive to notice that the slope of these arrivals could not be associated with simple specular reflections. As a proof to the latter claim, the slowness vector associated with most of these events points in the upward direction (figure 3.24). In figure 3.24, wavefield snapshots from the simulation are taken at different times (figure 3. 24b-d-f). The rays of two events depict a path taken which corresponds to a diving wave (from the source to the crust) which has then been reflected or diffracted around the frontal thrust. The snapshots as well as the final recording (figure 3.24g) show that most of the packet picked in OBS-48 (Figure 3.22e) corresponds to diffractions or exotic reflections in the frontal thrust area.

In this section, I presented an example on quality-control or interpretation assisted by kinematic migration. All of the conclusions made through the skeleton of migrated facets which are consistent with previous studies hints that the FWI model presented in section 3.1.5 is reliable. Furthermore, the process helped in understanding exotic phases that are not easily explainable in the seismograms. challenging for BP 2004 salt model due to the possible interferences of primary reflections and internal multiples.

The dataset is built using the model presented in figure 3.25. The latter is a non-scaled version of the original BP Salt 2004 but extended on the sides in order to ensure a proper undershooting of the left salt structure. The initial model used for the whole workflow is a constant gradient model parametrized by a top velocity of 1486 m/s and a gradient of 0.25 s -1 (Fig. 3.26a) . An ultra long offset acquisition with a maximum offset of around 97km and an OBN spacing of 1km is mimicked. At the tomography stage, a multi-scale approach through B-spline refinement and a fixed Gaussian smoothing is applied on the gradient (800m × 2000m correlation window) are applied as regularization. The inverted tomography model will be used as an initial guess for FWI.

Numerical results

The tomography model reconstructed by slope tomography using only first-arrival traveltimes and their slopes is presented in Figure 3.26b. Traveltimes were fitted with a final rootmean squares error of 15.5 ms (Fig. 3.27). The maximum traveltime mismatches don't exceed 0.16 s meaning that 100% percent of the traveltime residuals are below the cycle-skipping limit (0.34 s) for a starting frequency of 1.5 Hz (Pratt, 2008, their equation 1). The velocity model contains the main sought features, although the footprint of the incomplete ray-path illumination near the two bottom-ends of the tomographic model is clear. As a first test, a brute force low frequency time-domain FWI without any regularization but simply using bound constraints and a preconditioned (pseudo-Hessian [START_REF] Shin | Improved amplitude preservation for prestack depth migration by inverse scattering theory[END_REF]) quasi-Newton l-BFGS optimization scheme (Métivier and Brossier, 2016a) is performed. I note that no time-damping or offset weighting or any kind of treatment is done on the data. The inversion is started from a 1Hz dominant frequency data set using the first-arrival slope tomography model of Fig. 3.26b as initial model. Following 120 iterations, the FWI model is presented in Figure 3.26c. Comparing these results with those of [START_REF] Brenders | Waveform tomography of marine seismic data: what can limited offset offer?[END_REF] shows that a brute force FWI can build the model and recover the sharp contrast around the salt if and only if ultra long offset acquisition is used. Of course, this statement is taken with caution since the data are noiseless and very low frequencies are used in this inversion. Before I follow with a more realistic test, I continue by using the FWI model as an initial guess to invert 4Hz dominant frequency data. Following another 120 iterations, the recovered model (Fig. 3.26d) hints that the inversion converges towards an accurate solution, the structures and the salt flanks are of course better delineated at these higher frequencies as well as the sub-salt layers and the reservoir (8km depth between 20 -35km distance).

Before proceeding with the second test where more realistic frequencies are used during the FWI, I present in figure 3.28, a repeated workflow of the one presented in figure 3.26 but using this time a frequency-domain FWI3 . The inversion is done through six batches with a frequency-continuation strategy, starting from 0.5 Hz and adding an extra frequency with a 0.5 Hz sampling. I note that, at the third batch, the lowest frequency was dropped to give more weight to higher frequencies (at each stage, all frequencies have the same spectral amplitude).

The results of the frequency-domain inversion with this sub-hertz data are similar to the results obtained through time-domain FWI in the sense that the salt structures are well delineated and more importantly the sub-salt reservoir area is well resolved.

Having checked the validity of a minimally tuned FWI workflow when the kinematics are well recovered at the tomography level and ultra-long offset acquisition is used, I now proceed with a more realistic test in terms of frequency content (but still noiseless). For this second test, I perform a frequency-domain FWI starting at 1.5Hz and using the same slope tomography model as for the previous test (Fig. 3.29a). The same tuning as for the previous time-domain FWI is used but a slight smoothing on the gradient is applied in order to alleviate the imprint of the Gibbs phenomenon present due to the use of very few discrete frequencies. The reconstructed FWI model (Fig. 3.29b) at the first frequency batch (1.5Hz) has already a good resolution in shallow part, the top of the salt is well positioned, while the long wavelength structures below the salt are still not recovered. I proceed with a five-step frequency continuation strategy by adding an extra frequency at every stage going from 1.5 to 5.5Hz [START_REF] Bunks | Multiscale seismic waveform inversion[END_REF] (note that each frequency has the same spectral amplitude and hence have the same weight in the inversion when they are processed simultaneously). The obtained models through the inversion of the third and fifth frequency groups (Fig. 3.29c-d) reveal that the result is not as satisfactory as the low-frequency time-domain test. The top of the salt is well recovered as well as all the shallow structures. The flanks of the central salt diapir are delineated to a certain extent and the low velocity zone in between (in depth at 55km distance) was being recovered as higher frequencies were inverted. The main shortcomings of the inversion is depicted by the artifacts below the left salt diapir. The low velocity reservoir (8km depth at 35km distance) is not well recovered. We can clearly see throughout the different stages of the inversion the inability to correct for the high velocity present below the salt at 22km which in turn hindered the FWI from recovering the reservoir. It would be expected that some parts of the sub-salt zone is well illuminated by some arrivals. However, the latter were probably not handled by the slope tomography since only first-arrivals and their slopes were inverted. The high velocity imprint seen in that area of the erroneous tomography model was generated due to the lack of constraints through wide-angle reflections from below the salt and diving waves coming from deeper levels as the rifted continental crust and the Moho [START_REF] Avendonk | Continental rifting and sediment infill in the northwestern Gulf of Mexico[END_REF]. Indeed, the paths responsible the building of the high velocity patch correspond to diving waves turning in the bottom high velocity layer and then jumping on the salt flank or in turn grazing the salt flank and diving to the bottom layer as illustrated in figure 3.30. The deficiency of the tomography model in the aforementioned area was too considerable to be recovered by this test which was not the case in the previous low frequency experiments.

Two usual pathologies can be evoked: cycle skipping and deficit of wide-angle illumination. If the second pathology is the correct one, the low wavenumbers that would have needed some updates in the subsalt zones of the tomographic model to focus properly the reservoir at higher frequencies belong to the null space of the inversion when low frequencies are lacking and hence cannot be updated without prior as that provided by sparsifying regularization. To assess the possible footprint of cycle skipping, time-domain simulated gathers in the different models of interest are generated. I note that the simulations are performed using a 4Hz dominant frequency Ricker wavelet for the sake of comparison. The frequency bandwidth contained in the seismograms shown in Fig. 3.25 is broader than the frequency range involved in FWI. Therefore, some residuals can result from the discrepancy between these two frequency bands. The simulated gather in the true model (Fig. 3.25) for the OBN at 8km distance is presented in figure 3.31a. The interleave between the gathers simulated in the true and initial constant gradient model (Fig. 3.31b) shows how far was the initial guess at the tomography level, the first-arrival mismatch being as big as 10s in reduced time. On the other hand, the seismograms computed in the tomography model match fairly well the traveltimes of those computed in the true model over the full offset range (Fig. 3.31c). The final FWI result (Fig. 3.31d) shows a near perfect match of the first arrival along all offsets which excludes any hint of major cycle skipping for this OBN. It should be noted that a noise is present in the interleave part simulated in the FWI model due to diffractions generated by small artifacts present in the model due to the Gibbs phenomenon. Most major short offset reflections as well as the main packets following the post-critical reflection at large offsets were recovered. Overall, kinematically speaking, the result is satisfactory whereas the amplitudes even for first-arrivals do not match well. For example at 55 to 65km, a big dynamic mismatch is observed. The concerned arrivals are in fact head waves that follow the flank of the salt diapir before being recorded. The amplitude is hardly impacted by the sharpness of the reconstructed velocity contrast. Intuitively, we would expect the ability to recover the amplitude at higher frequencies.

Looking now at a more central OBN (45km). The seismograms (Fig. 3.31e) contain far more complex arrivals, at first sight the short offset diffractions coming from the flanks of both salt diapirs are captured. The tomography gather shows a near perfect match of the first-arrival and even for some late arrivals for the part between 45 and 97km. On the other hand, the arrivals between 0 and 25km depict a complete phase-shift. If the phase-shift truly exists and it is beyond an issue of amplitude effects, cycle skipping is inevitable at the FWI level or even worse since the arrivals are not of the same nature. The FWI-modeled gather shows a good kinematic recovery of the first arrivals in the zone critical part between 0 and 25km. The rays paths taken by the first arrivals confirm the latter statement (Figure3.32). On the other hand, in a similar manner to the OBN at 8 km, the amplitudes are mismatched due to the channeling of head waves on the flanks and bottom of the structures as seen in figure 3.32. Interestingly, FWI recovered perfectly the other parts of the model. Overall, the gathers match fairly well although some significant local mismatches occur. The main mismatches lie in the late arrivals around the critical reservoir zone. This part of the model could be in the null space of our data at this starting frequency or not constrained enough to recover from the artifacts injected by the tomography model. It would be suspected that FWI in the low frequency experiment was able to recover the mismatch in sub-salt area due a wider first Fresnel zone covering the area. The poor angular illumination in that area could have been alleviated at the tomography by introducing reflections in the process since most arrivals coming from that part of the model are mainly codas and diving waves are quasi-absent. Undershooting such structures may require on the one hand to extend the BP salt model down to the base of the crust until a deep high velocity reflector in encountered (top of the rifted continental crust, Moho) and possibly extend the offset range accordingly on the other hand. 

Conclusion and perspectives around this case study

We have revisited the BP Salt 2004 case study with a ultra-long offset OBN acquisition. We show that a conventional workflow employing first-arrival slope tomography followed by a brute force FWI could be enough assuming that frequencies as low as 1.5Hz can be recorded (a reasonable assumption supported by recent OBN field experiments). The tomography results could be probably enhanced dramatically by the introduction of short-spread and post-critical reflections and diffractions, which are not easily extracted in the case of sparse areal acquisition. Sparsifying Total-Variation (TV) regularization and compound TV + Tikhonov regularization (Aghamiry et al., 2019a(Aghamiry et al., , 2020a) ) are other key ingredients to improve and speedup the recovery of the sharp velocity contrasts generated by the salt in the shallow part and to manage deficient wide-angle illumination of the subsalt structures. This case study will be revisited by extending more the BP Salt model while taking into account a realistic geological setting from the Gulf of Mexico [START_REF] Christeson | Deep crustal structure in the eastern Gulf of Mexico[END_REF]Avendonk et al., 2015) (Figure 3.33). The extension will ensure the recording the post-critical reflections coming from a deep reflector. where T F A s,r ,p F A s ,p F A r represent the first-arrival traveltime and slopes, p RF s,ns,r represents the slope associated with reflections. The symbol " * " denotes the observed data. The contribution of each data attribute is controlled by their respective elements σ of the diagonal data covariance matrix. The gradient calculation implicates nothing else than solving previously presented transport equations related to the PAST and FASTT part (Sections 2.1.4 and 3.1.3). The choice of σ is case dependent and made in an ad hoc manner: the contributions of first-arrivals and reflections , in the descent direction are balanced in an ad hoc manner.

The complementary nature of first-arrival and reflection data in the context of velocity analysis or tomography has been presented in previous works (e.g. [START_REF] Pullammanappallil | A combined first-arrival travel time and reflection coherency optimization approach to velocity estimation[END_REF][START_REF] Meléndez | TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data-synthetic test[END_REF]. The shallow structures are constrained by short to intermediate offset first arrivals while very deep structure are undershot by long-offset diving waves. Reflection data, supplemented by first-arrivals, resolve the velocity-position coupling up to a few kilometers, depending on the extent of the acquisition. The recovered models through a joint inversion are more accurate due to the use of horizontally-dominant propagation along with narrow-angle reflection data. The added value of such inversions is even more important in multi-parameter cases to decouple the different parameters. [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF] illustrated the inability of reflection slope tomography to resolve anisotropic parameters, especially epsilon, without proper wide-angle coverage. The proposed variant of joint first-arrivals and reflection slope tomography differs from previous works (e.g. [START_REF] Pullammanappallil | A combined first-arrival travel time and reflection coherency optimization approach to velocity estimation[END_REF][START_REF] Meléndez | TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data-synthetic test[END_REF], the main difference being the lack of parametrized reflectors. The velocity-position coupling is handled through the parsimonious strategy presented in section 2.1. Under this framework, scattering events tied to reflection are migrated in a kinematically consistent manner with respect to the velocity model updated by both type of arrivals. Most previous works rely on alternating updates of first-arrival and reflection data or on simplistic considerations where the reflector is parametrized through zero-offset reflection data and updated in sequence between velocity updates.

Objectives and experimental setup

In the following, I present an application on the GO_3D_OBS crustal benchmark [START_REF] Górszczyk | GO_3D_OBS: the multi-parameter benchmark geomodel for seismic imaging method assessment and next-generation 3d survey design (version 1.0)[END_REF] where results obtained through PAST, FASTT and the joint inversion strategy are assessed against each other. The reference GO_3D_OBS model is presented in figure 3.34a. The reflection data set was generated through a ray+Born modeling, using the reference model and its associated theoretical reflectivity (Figure 3.34b). In figures 3.34c-d, the target velocity model and migrated image are presented. In fact, the target migrated image is different than the theoretical reflectivity due to the shortcoming of ray+Born migration around steeply dipping structures and shadow zones [START_REF] Thierry | 3D common diffracting angle migration/inversion for AVA analysis[END_REF]. The simulated data, mimicking an 8 km streamer acquisition, contain 3641 shots equally spaced by 50 m. The dataset was picked in the unmigrated data domain [START_REF] Podvin | Automatics picking of locally coherent events for stereotomography[END_REF] where around 20 million events were detected. In figure 3.35, the final 308301 validated reflection picks, migrated kinematically using the target tomographic model (Figure 3.34c), are presented. Two key aspects should be highlighted. The first is the fact that a lot of picks are associated with very deep reflectors. In practice, it is unlikely to be able to pick such events due to the amplitude decay and low signal-to-noise ratio. Indeed, the experimental setup describes a fairly optimistic setting just for the sake of drawing a clear comparison between the different inversion strategies. Secondly, I remind the reader that even if deep structures are illuminated by reflections, that does not mean that we will be able to resolve the velocity structures. The latter is due to coverage by small offsets reflections only. The first-arrival data are generated using the same solver used in the inversion. The grid step is slightly modified in order to not commit a perfect inverse crime. A total of 349536 picks associated with 96 OBS, 2 km spaced, are generated. The simulation is done using the same shot position as the ones of the reflection data set. The latter is advantageous in terms of computational burden, since for a single shot, both the eikonal equation and the transport equation solved during the adjoint simulations are resolved in one go including all adjoint source terms (both first-arrival and reflections). 

Numerical results

All tomographic inversion were done using a multi-scale approach through B-spline refinement and a fixed Gaussian smoothing on the gradient (500m × 2000m correlation window) as regularization. The stopping criterion is the line-search failure at the last stage of the inversion. A constant velocity gradient model is used as initial guess (Figure 3.36). The migration result using the initial model as background velocity shows a lot of artifacts and warping around the subducting plate zone (40 to 60 kilometers) . As a first test, reflection data are solely inverted. Two inversions are done using first 4 km maximum offset data, mimicking conventional acquisitions employing legacy 4 km streamers. The tomography model obtained through 38 iterations of PAST shows the lack of constraint on the velocity in depth (Figure 3.37a). The model reveals that structures are resolved up to a maximum of 7 to 8 km depth whereas the deep part is the imprint of the initial model. I follow with an inversion of the fulloffset data (up to 8 km), through 44 iterations. The model presented in figure 3.37b is more resolved than the previous one but depicts an expected limited resolution of velocity structures in depth. The scatterers distribution and migrated image show a good reconstruction of most parts especially the top layers in the backstop (20 to 80 km), allowing a good positioning of the deep reflectors around the subducting plate.

The lack of velocity updates highlights the necessity of introducing long-offset data in these settings. Before presenting the results obtained through the joint inversion of both reflections and first-arrivals, I perform two inversions using first-arrivals traveltime and their slopes. In the first test, first-arrival traveltime are inverted solely. After 145 iterations, the velocity model shows good reconstruction of structure (Figure 3.38a). The migrated images obtained using the latter as a background model validates the claim but also reveal local error depicted by uplifts leading to wavy reflector geometries (Figure 3.38b). I note that all migrated images presented in this section were obtained using the simulated ray+Born reflection data. The test is repeated by introducing slopes as a supplement to first-arrival picks. The result presented in figure 3.38c-d shows also a coherent reconstruction of the velocity model with slight improvement in terms of reflector continuity. It is worth noting that the result was obtained through 45 iterations versus the 145 iterations when inverting traveltimes solely.

As final test, the joint inversion strategy is employed. First-arrival and reflection data are inverted jointly, the weighted contribution of both components being tuned in order to have a balanced imprint in the descent direction. The result obtained through 47 iterations exhibits a fair reconstruction across all depths (Figure 3.39a). The scatterer distribution (Figure 3.39b) exhibits a more coherent cloud with respect to PAST results (Figure 3.37c). The final depthmigrated image shows a recovery of most structures and an improvement with respect to all previous strategies (Figure 3.39c). Further validation and assessment is done on angle-domain common image gathers extracted at 28,54,109 and 144 kilometers (Figure 3.40). The common image gathers affirm the limited constraint on narrow-angle reflections when inverting firstarrival data . The comparison between FATT and FASTT shows that FASTT obtained models and in turn migrated images that flatten better the gathers compared to FATT (red arrows in panel 28 and 58 km of the CIGs in figure 3.40b-c). The reflection tomography results show a better constrain on narrow-angle events as expected and in turn flatten better the gathers (Figure 3 

Conclusion and perspectives

This synthetic numerical experiment reaffirms trivial and known notions around the complementarity of first-arrival and reflection data inversion. The main purpose of the study was to validate the framework where both type of arrivals are inverted using eikonal solvers and the adjoint-state method without any parametrized reflectors in the optimization problem. The method, under an ongoing experiment, is being applied on an anisotropic real data case study where the benefit of such strategies will be further highlighted. In perspective, using longer streamers would permit using its first-arrivals also, constraining better the shallow surface. More importantly, picking reflections on sparse OBS data could result in a more complete data set for inversion and in turn producing more reliable results. Red arrows denote the badly constrained events, while the green arrow denote the corrected events.

In this last chapter, I present how the consistent velocity-position framework could also be applied in the framework of the hypocentre-velocity problem. Indeed, opposed to the previous chapters, the following one falls in the field of passive seismology. Relocating seismic events in the context of microseismics or larger scale seismology is by itself a very researched topic. The sensitivity of the localization process to the subsurface-parameter errors is usually managed through diverse localization methods (employing array processing or robust imaging conditions). Most of the previous works manage the aforementioned coupling by trying to correct the subsurface parameters through alternating or joint inversion strategies. Instead, our work, recently published in Geophysical Journal International and which makes up the totality of this chapter, presents a proof of concept where a variable projection approach is used. Using of acquisition or attributes. The primary physical attribute, picked arrival times, are often supplemented by other attributes like the slowness and the azimuth in order to perceive the wave arrival azimuthal plane and incidence angle. Differential attributes are often extracted from the data through array-based processing techniques [START_REF] Rost | Array seismology: methods and applications[END_REF] like beamforming [START_REF] Krüger | Double beam analysis of the anomalies in the core-mantle boundary region[END_REF][START_REF] Verdon | Using beamforming to maximise the detection capability of small, sparse seismometer arrays deployed to monitor oil field activities[END_REF], double-difference [START_REF] Waldhauser | A double-difference earthquake location algorithm: method and application to the northern Hayward fault, California[END_REF] or polarization analysis, which is also utilized in single-station location techniques [START_REF] Frohlich | Single-station location of seismic events: a review and a plea for more research[END_REF].

Using directional attributes like the slowness and the backazimuth is crucial to better constrain the location problem. Indeed, knowing the emergence angle and the plane of arrival restrain the grid-search space for optimal location candidates whatever is the technique employed. The latter notion is not only factual for traveltime-based techniques but also finitefrequency waveform-based methods. Most waveform-based techniques are based on timereversal [START_REF] Mcmechan | Determination of source parameters by wavefield extrapolation[END_REF][START_REF] Fink | Time-reversal mirrors[END_REF][START_REF] Rietbrock | Acoustic imaging of earthquake sources from the Chalfant Valley, 1986, aftershock series[END_REF], which consists of propagating backward in time the recordings of all receivers and eventually refocusing the energy at its point of origination in both space and time. Time-reversal techniques are of interest compared to traveltime-based approaches since they naturally utilize the full waveform data without the need of picking or labelling arrivals [START_REF] Gajewski | Reverse modelling for seismic event characterization[END_REF][START_REF] Larmat | Time-reversal imaging of seimic sources and appplication to the great Sumatra earthquake[END_REF]. [START_REF] Artman | Source location using time-reverse imaging[END_REF] proposed an improved imaging condition based on the crosscorrelation of P and S wavefield components, valid beyond the acoustic approximation. In order to control the focusing of the weighted back-projected recording, the location problem was also recast in a seismic migration sense, employing for example interferometry-based [START_REF] Schuster | Interferometric/daylight seismic imaging[END_REF][START_REF] Li | Weighted-elastic-wave interferometric imaging of microseismic source location[END_REF] or Kirchhoff-like imaging conditions [START_REF] Baker | Real-time earthquake location using Kirchhoff reconstruction[END_REF]. We refer the reader to [START_REF] Li | Recent advances and challenges of waveform-based seismic location methods at multiple scales[END_REF] for a comprehensive review on waveform-based source location techniques. In all aforementioned localization approaches, the energy of the back-propagated wavefield would smear around the source location depending on the acquisition spread, the robustness of the imaging condition, the inaccuracy of the subsurface parameters mainly velocity and of course the physics governing the wave equation employed during the modeling. As a remedy, in the same manner as for traveltime-based approaches, array-based processing is introduced like for example Gaussian-beam migration [START_REF] Rentsch | Fast location of seismicity: A migration-type approach with application to hydraulic-fracturing data[END_REF], time-domain local stacking [START_REF] Ishii | Teleseismic p wave imaging of the 26 December 2004 sumatra-andaman and 28 March 2005 sumatra earthquake ruptures using the hi-net array[END_REF] and slowness-backazimuth weighted migration [START_REF] Kito | Slowness-backazimuth weighted migration: A new array approach to a high-resolution image[END_REF][START_REF] Kito | Cross-correlation weighted migration: towards highresolution mapping of mantle heterogeneities[END_REF].

We now look back at the main problem addressed in this paper: the hypocentre-velocity problem. The success of all localization methods depends on the accuracy of the subsurfaceparameter models. The opposite is also true, inverting for the velocity structure using wrong source locations would lead to inaccurate velocity updates. In addition, if the subsurface parameters are wrong, the origin time needs to be constrained too since the time-reversed data do not intersect at their origin time. Even if the main objective of a study is retrieving the location of a seismic event at any scale, the subsurface parameters should be updated in order to account for the inaccuracies of the model. Indeed, the coupling between the source location, the origin time of the event and the subsurface parameters makes the hypocentre-velocity problem challenging [START_REF] Thurber | Hypocenter-velocity structure coupling in local earthquake tomography[END_REF]. We focus for the rest of our discussion solely on the velocity as subsurface parameter since it is the primary parameter of interest. A possible strategy for the hypocentre-velocity problem would be to ignore the event position and velocity structure coupling and proceed with two alternating-direction monoparameter optimizations for veloc-ity and event location [START_REF] Monteiller | An efficient algorithm for doubledifference tomography and location in heterogeneous media, with an application to the Kilauea volcano[END_REF]. Relaxing the original fully coupled problem could be inefficient in terms of optimization and is not even guaranteed to converge (Roecker et al., 2006, Their appendix A). Jointly inverting for the source parameters and the subsurface parameters is inevitable as shown by [START_REF] Pavlis | The mixed discrete-continuous inverse problem: application to the simultaneous determination of earthquake hypocenter and velocity structure[END_REF] and [START_REF] Spencer | Travel time inversion for simultaneous earthquake location and velocity structure determination in laterally varying media[END_REF]. Recently, in accordance with the developments around full-waveform inversion (Tarantola, 1984;[START_REF] Virieux | An overview of full waveform inversion in exploration geophysics[END_REF][START_REF] Fichtner | Full Seismic Waveform Modelling and Inversion[END_REF] and the increasing computational capabilities, the hypocentre-velocity problem has been recast as a full-waveform source-focusing problem [START_REF] Kamei | Passive seismic imaging and velocity inversion using full wavefield methods[END_REF][START_REF] Song | Microseismic event estimation and velocity analysis based on a source-focusing function[END_REF][START_REF] Aghamiry | Wavefield inversion for microseismic imaging[END_REF].

Before introducing our framework, we could imagine a scenario that draws an analogy between seismological arrays and dense seismic acquisitions like towed-streamer acquisition. A scenario where both source and receiver arrays are available at the Earth's surface with a suitable geometry that allows for the extraction of both the initiation and arrival directional attributes of single-scattered phases beyond locally plane wave approximated transmission arrivals. As an example, Double Beam Imaging (DBI) [START_REF] Scherbaum | Double beam imaging: Mapping lower mantle heterogeneities using combinations of source and receiver arrays[END_REF] is closely related to seismic tomography methods like Controlled Directional Reception (CDR) [START_REF] Riabinkin | Fundamentals of resolving power of Controlled Directional Reception (CDR) of seismic waves[END_REF] and stereotomography [START_REF] Lambaré | Stereotomography[END_REF]. The latter being a reflection tomography method where the slope (horizontal component of the slowness vector) is locally measured at every part of the array on the source and receiver sides in order to constrain the scattering or reflection points during the velocity model building. Of course, DBI and slope tomography have completely different purposes since DBI is used as a relocation imaging technique, while slope tomography is a velocity model building technique where the inverted scattering positions serve as a proxy to attain the sought velocity structures. The similarity lies in the fact that both utilize the local coherency of neighbouring recordings at the surface in order to constrain the scattering positions in depth. Indeed, rays honouring the slope at the source and the receiver respectively would intersect at the scattering location if the velocity model is accurate, while in DBI the energy of the beams is maximized at the intersect around the scattering locations. Finding the intersection of the traveltime isochrone and the ray honouring the slope at the receiver is in fact a kinematic migration, that is utilized for example in the context of migration-based velocity analysis (Chauris et al., 2002a) and parsimonious slope tomography (Sambolian et al., 2019c) (Fig. 4.1a). In the latter methods, the scattering location is not an optimization variable (as the subsurface parameters) but a state variable which is projected in the velocity estimation problem through a set of focusing (state) equations, this variable elimination being generally referred to as a variable projection [START_REF] Golub | Separable nonlinear least squares: the variable projection method and its applications[END_REF]. This reduction of the model space also shrinks the data space as satisfying the focusing equations amounts to match a subset of observables from the current subsurface model. Put simply, this amounts to make the scattering positions kinematically (or physically) consistent with the available subsurface model.

We show subsequently how the recipe of parsimonious slope tomography [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF], a variant of slope tomography that tackles the velocity-position coupling efficiently, could be recast as a hypocentre-velocity method. Indeed, the hypocentre-velocity coupling draws a clear parallel with the ill-famed velocity-position or velocity-depth ambiguity faced in seismic reflection tomography [START_REF] Stork | Analysis of the resolution between ambiguous velocity and reflector position for traveltime tomography[END_REF]. We refer the reader to [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF] in order to get further insights on why creating a physical consistency between scattering location and the velocity parameter is advantageous compared to a joint inversion strategy. We note that wavefront tomography [START_REF] Duveneck | Velocity model estimation with data-derived wavefront attributes[END_REF][START_REF] Bauer | Utilizing diffractions in wavefront tomography[END_REF] has been recast into a joint velocity and source location method [START_REF] Schwarz | Passive seismic source localization via common-reflection-surface attributes[END_REF][START_REF] Diekmann | Source localization and joint velocity model building using wavefront attributes[END_REF]. The difference between the latter and our proposed approach goes beyond the comparison between slope tomography and wavefront tomography [START_REF] Dummong | Comparison of prestack stereotomography and NIP wave tomography for velocity model building: Instances from the Messinian evaporites[END_REF] or the framework chosen for solving the forward problem and the gradient calculation. Indeed, since the key difference and main focus of this paper being tackling the velocity-position coupling through a variable projection method.

The method presented in this study is based on the idea that the location problem can be straightforwardly solved for each event in a given model by a one-to-one mapping of two kinematic attributes (traveltime and slope at the station) to the coordinates of the event. For each station, the position found by migration is kinematically consistent with the given model and we seek to collapse all the mapped locations at one position by improving the accuracy of the velocity model. As a result, the velocity model estimation serves only as a proxy to collapse the positions migrated from each station at the true source position. We develop our framework using eikonal solvers as a forward solver [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF][START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF] and the adjoint-state method for the gradient computation [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The presented approach handles tilted transverse isotropy and can be easily extended to three dimensions by incorporating the crossline slope or the backazimuth as an extra attribute. We note that, as any ray-based approach employing picked attributes, our approach is sensitive to the picking process. The arrival time is straightforwardly extracted from the data while keeping in mind the discrepancy between the frequency-dependent nature of the picks and their use under infinite frequency approximation. In practice, the slope estimation is more challenging in seismological contexts, depending on the density of the receiver arrays and the validity of a local plane wave approximation. Nevertheless, the slope is more and more accessible due to the deployment of array groups, sparsity-constrained attributes inversion [START_REF] Hu | Accurate determination of P-wave back azimuth and slowness parameters by sparsity constrained seismic array analysis[END_REF] and the developments around rotational seismology [START_REF] Sollberger | 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications[END_REF]. We validate our proof of concept on a simple toy test, we assess the trade-off between the subsurface parameters and the introduced origin time correction parameter. We finally benchmark our method against the complex Marmousi model.

Method

In the following, we extend the logic behind the earlier recapped notions of kinematic migration to the hypocentre-velocity problem. First point, trivial since it is the basis of all timereversal-based techniques but important to raise. Knowing the traveltime and the slope at the receiver for an event (two-dimensional case), we are able to shoot back a ray in a subsurface model using the slope as an initial condition (take-off angle) and the traveltime as its boundary condition (stoppage time) (Fig. 4.1b). If the origin time used in the traveltime estimation is precise and the velocity model accurately represents the subsurface, the ray would stop exactly at the location of the source. Contrarily, in case of an inaccurate velocity model, the ray would reach a different position shifted from the true position depending on the magnitude of the error in the velocity model (Fig. 4.1b). We emphasize on the notion that the location problem, solved using a receiver array, for a given velocity model is a strictly over-determined problem. Any attempt at finding a unique solution in a wrong velocity model would lead at best to some best-fit solution, which is of course wrong and shifted from the sought solution. Furthermore, the location found does not honour the attributes migrated in the velocity model, it is hence physically inconsistent. Solving the hypocentre-velocity problem using an approximation or an initialized version of the location aggravates the ill-posedness of the problem, creating a tradeoff pattern between both parameters that will impact the whole course of a local optimization scheme especially in the absence of a good approximate Hessian. Extending the logic of the first point by looking at the recordings of the same event by different stations/receivers, we can conclude that if the subsurface parameters are accurate, the rays shot from all receivers (with their corresponding travel time and slope) would all stop at the same point which is the exact location. The latter notion is illustrated in Figure 4.2a through a toy test case study, that will be presented later in this paper. We note that, even if the origin time is not accurate, the rays would intersect at the true location of the source without enforcing the stoppage time. On the other hand, in case of an inaccurate velocity model (Fig. 4.2b), the rays would not end at the same coordinate as they should. In fact, we have at hand as many location solutions (virtual events) as the number of stations/receivers used (Fig. 4.1b). The nature of the problem revolving around the focusing of all virtual events makes it easy to constrain through that information. Indeed, it is straightforward to develop a framework where the subsurface parameters are updated to collapse the virtual events to a unique solution. Of course, we remind the reader that the explicit optimization parameters, being the subsurface parameters and the origin time correction, serve merely as a proxy to find the true event location. We present, in appendix A, a literal implementation of the aforementioned notion of collapsing all virtual events to a unique location in a constrained time-reversal sense. Literal in the sense that the inversion will seek better parameter estimates by reducing the distance between the virtual events in space, which are solution of the localization problem but serve also as objective measure in the optimization (Fig. 4.1b). The core of the paper revolves around a more tomographic implementation where the virtual events are used as anchor points to evaluate the data misfit at all other receivers (Fig. 4.1c) compared to the earlier strategy where the subsurface parameters are only constrained along the transmission paths connecting a receiver to its associated virtual event (Fig. 4.1b). Indeed, coupling the measurements at the receivers through the different combinations of virtual events and receivers (Fig. 4.1c) exploits better the redundancy in the data, hence in turn producing an enriched inversion kernel by linking the receiver to virtual events located by other receivers.

The consistent tomographic framework for tackling the hypocentrevelocity problem

Before proceeding with the development of our formulation, we remind the reader that the traveltime and slope at a receiver are fitted by construction to locate its associated virtual event via the focusing equations but are not fitted when considering the paths connecting this receiver to the virtual events migrated by other receivers (since they are not at the same position due to the inaccuracy of the velocity model). We seek to optimize the fit of the traveltimes and slopes at all receivers for each virtual event (Fig. 4.1c). As a result, we define the following nonlinear constrained minimization problem ) but evaluating the data misfit at every receiver for all virtual events. The solid lines are rays describing the migration of a virtual event, while dashed lines describe rays connecting the virtual event migrated from a receiver r i to a receiver r j . where N e and N r denote the number of events and receivers respectively. The observed data are the traveltime T * e,r and the slope p * e,r measured at receivers r , namely receivers other than the one denoted by the subscript r. Accordingly, the simulated data, denoted by T e,r,r and p e,r,r , are the traveltime and the slope at receiver r evaluated from the virtual event located by kinematic migration of T * e,r and p * e,r of receiver r (see the dash lines in Figure 4.1c for the corresponding ray paths). Coefficients σ 2 T e,r,r and σ 2 p e,r,r serve as weighting quantities to make the data space dimensionless. The latter can serve also as the inverse of a diagonal covariance matrix in order to weight the relative contribution of every measurement [START_REF] Tarantola | Inverse problem theory: methods for data fitting and model parameter estimation[END_REF]. The nonlinear forward problem operator F gathers the forward problem equations related to the data simulation through eikonal-resolved traveltime maps and the focusing equations (Chauris et al., 2002a). We solve the constrained problem (equation 4.1) under a Lagrangian formalism following the adjoint-state method recipe [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF]. The augmented functional L in compact form is rewritten as

L(m, u, ū) = J(u) -ū | F(u, m) , (4.2) 
where .|. denotes the inner product, u gathers the state variables, ū the adjoint-state variables (or Lagrange multipliers) and C(m) = J(u * ) where u * stands for a realization of the physical constraints. We proceed with the description of the physical (state) equations gathered by the nonlinear forward problem operator F. We infer the predicted traveltimes and slopes from traveltime maps t r (x) computed with a finite-difference factored eikonal solver using the receiver positions as injection points [START_REF] Fomel | Fast sweeping method for the factored eikonal equation[END_REF][START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF]. A Dirichlet boundary condition is introduced to zero the traveltime at the receiver positions.

H(x, ∇t r (x)) = 0 with t r (x r ) = 0. (4.
3)

The operator H stands for the Hamiltonian representation of the Eikonal equation in tilted transversely isotropic (TTI) media [START_REF] Alkhalifah | Acoustic approximations for processing in transversely isotropic media[END_REF][START_REF] Waheed | An iterative fast sweeping based eikonal solver for tilted orthorhombic media[END_REF] given by

H(x, ∇t(x)) = A(x)((R∇t(x)) x ) 2 +C(x)((R∇t(x)) z ) 2 +E(x)((R∇t(x)) x (R∇t(x)) z ) 2 -1, (4.4 
) where R is a standard rotation matrix and A, C, E are coefficients that embed the model parameters we seek to update depending on the chosen anisotropic parametrization [START_REF] Alkhalifah | Velocity analysis for transversely isotropic media[END_REF][START_REF] Plessix | A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium[END_REF][START_REF] Gholami | Which parametrization is suitable for acoustic VTI full waveform inversion? -Part 1: sensitivity and trade-off analysis[END_REF]. We refer the reader to [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF] and [START_REF] Waheed | An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media[END_REF] for a detailed description on the manner of solving equation 4.4 in TTI media using the fast sweeping method [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF][START_REF] Luo | Fast sweeping method for factored anisotropic eikonal equations: multipicative and additive factors[END_REF] as a global solver and a fixed-point iteration algorithm [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF] for handling the quartic term. In order to extract the traveltime solution at the position x e,r of an event e from the traveltime map t r (x) initiated at the receiver r, we introduce a sampling operator Q e,r implemented with a Kaiser-windowed sinc function [START_REF] Hicks | Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions[END_REF].

T e,r = t r (x e,r ) = Q e,r t r (x), (4.5) while the slope at the receiver r for the event e is obtained in a finite-difference sense

p e,r = ∂T e,r ∂x r = ∂t r (x e,r ) ∂x r ≈ Q e,r (t r+1 (x) -t r-1 (x)) 2∆ r . (4.6)
The computational complexity of the problem scales with O(N r ) since reciprocity is employed in order to alleviate the computational cost opposed to solving the eikonal equation from each virtual event with a complexity proportional to O(N e × N r ). We note that more precise strategies for the computation of the slopes exist but would involve solving an additional eikonalbased partial differential equation [START_REF] Qian | An adaptive finite-difference method for traveltimes and amplitudes[END_REF][START_REF] Alkhalifah | An eikonal based formulation for traveltime perturbation with respect to the source location[END_REF].

As mentioned earlier, we solve a kinematic migration through the so-called focusing equations (Chauris et al., 2002a) as follows

T e,r = T * e,r p e,r = p * e,r , (4.7) 
the symbol * denoting the observed data. Enforcing the pair of equations (4.7) gives the position of each virtual event x e,r . An origin time correction is mandatory since the estimated origin time contains the bias of the inexact velocity model and in turn contaminate the estimated travel time.

In order to correct for the latter error, we introduce the correction term δ e for every event. We do not search for the origin time but we rather estimate a correction parameter for the error made in the origin time estimation (used as an initial estimate) due to the inaccuracy of the velocity model or some other reason. We note that we could have introduced a different correction for every measurement or in other words every event-receiver pair. The strategy of splitting δ e into a δ e,r could be used to absorb some picking and delay errors but would also create an artificial coupling between the locations of the same event since they are not all sensitive in the same manner to the origin time (depending on location and propagation time). We stick to the first strategy where a correction term is introduced solely for every event and enforced on all picks related to that event. During this study, we suppose that all picked phases recorded at different stations are associated with a unique point source event. The aforementioned splitting strategy would be beneficial for more complex cases where aftershocks are introduced in the presented framework, especially with the rising interest in unsupervised phase identification and classification algorithms [START_REF] Bauer | Unsupervised event identification and tagging for diffraction focusing[END_REF][START_REF] Ross | Phaselink: A deep learning approach to seismic phase association[END_REF]. The correction parameter δ e is introduced in the focusing equation related to travel time as follows

T e,r = t r (x e,r ) = Q e,r t r (x) + 1 N r δ e , (4.8) 
where δ e is normalized by N r to account for the fact that this term is in reality the sum of the same error over all receivers. Enforcing the focusing equations, equation (4.7), leads to the position of each virtual event x e,r . As introduced earlier in the section, we evaluate the misfit between the observed data recorded at all receivers and the simulated measurements T e,r,r and p e,r,r extracted from the traveltimes maps initiated at the receivers r . As a result, equations 4.8 and 4.6 lead to T e,r,r = Q e,r t r (

x) + 1 N r δ e , (4.9) 
and p e,r,r = ∂t r (x e,r )

∂x r r ≈ Q e,r (t r +1 (x) -t r -1 (x)) 2∆ r . (4.10)
Before proceeding, we note that there is no need to introduce explicitly the equations related to t r (x) since they are already described by the redundant solutions of t r (x).

Recasting the minimization problem (equation 4.1) under a Lagrangian formalism using the state equations ( 4.3),(4.7),(4.9),(4.10) and associating the adjoint-state variables ū = (λ r , α e,r , β e,r , ξ e,r,r , γ e,r,r ) to their respective state variables u = (t r (x), x e,r , z e,r , T e,r,r , p e,r,r ) gives where the Lagrangian functional L depends on the subsurface parameters m through the eikonal equation solved in the subsurface domain Ω.

L(m, u, ū) = J(u) -
According to the first-order optimality conditions, namely the so-called Karush-Kuhn-Tucker (KKT) conditions, a minimizer of an equality constrained optimization problem is reached at the saddle point of the Lagrangian function [START_REF] Nocedal | Numerical Optimization[END_REF] when the three following equations are satisfied:

   ∂L/∂u = 0, ∂L/∂ ū = 0, ∂L/∂m = 0.
(4.12)

The joint update of the entire system spanned by u, ū and m is avoided due to computational complexity [START_REF] Akçelik | Multiscale Newton-Krylov methods for inverse acoustic wave propagation[END_REF]. We thus resort to the reduced-space approach of the adjoint-state method [START_REF] Haber | On optimization techniques for solving nonlinear inverse problems[END_REF][START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF] based on a sequence of variable projections.

In other words, the first two KKT conditions of equation 4.12 are satisfied by solving the state equations ∂L/∂ ū = 0 in the starting model m k of iteration k and we then subsequently deduce the Lagrange multipliers by enforcing ∂L/∂u = 0 in this manner. Following the aforementioned recipe, we develop now the adjoint-state equations. We proceed by solving for the first two adjoint-state equations through ∂L/∂T e,r,r = 0 and ∂L/∂p e,r,r = 0 which shows that γ e,r,r and ξ e,r,r gather the scaled data residuals for every combination of receiver and focused event as follows Knowing that the right-hand sides of the adjoint-state equations contains the partial derivative of J(R e,r ) with respect to the states u [START_REF] Plessix | A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[END_REF], the chain rule of derivatives (equation 4.18) illustrates mathematically how, in the left-hand side of equation 4.18, the information carried out by p e,r and T e,r on the positioning of an event via the focusing equations (equation 4.7) are passed onto the optimization measure R e,r via the state variables x e,r (right-hand side of equation 4.18). In simple terms, the resultant adjoint-state variables α e,r and β e,r describe how R e,r evolves when the coordinates x e,r of an event are altered by a velocity update. The information held by α e,r and β e,r links the positioning process initiated at the receiver r done through the enforced focusing equations to the data misfit evaluated at other receivers. In other words, the latter terms contain the quantity needed to minimize the residuals held by γ e,r,r and ξ e,r,r (gathered under the variable R e,r ) by shifting the position of the event x e,r .

We note that equations 4.16 and 4.17 are only defined for det ∂(Te,r , pe,r) ∂(xe,r , ze,r) = 0. The system is always valid since in our case this condition could never be violated. Zeroing the latter term describes physically a tangent ray to its wavefront, while in fact that scenario is impossible to occur in weak anisotropy assumptions.

Proceeding with the last derivative ∂L/∂t r = 0 in the same manner as [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] in the context of slope tomography, we obtain the adjoint-state equation satisfied by λ r (x). After integrating by parts and enforcing the validity of L in the subsurface domain Ω, the derivation leads to The adjoint field λ r (x) back-projects the weighted sum of data residuals held by γ e,r ,r and ξ e,r ,r along a ray tube following the group velocity vector U r connecting x e,r to x r (Fig. 4.3a).

∇ • (λ r (x) U r ) Ω = Ne e=1 Nr r =1,r =r Q t e,
In addition, the adjoint field of the receiver r back-projects the weighted data residuals held by α e,r and β e,r along a ray tube following the group velocity vector U r connecting x e,r to x r (Fig. 4.3b). The latter information describes how the receiver r controls the migration of its associated virtual events. As the eikonal equation, the adjoint-state equation (4.20) is solved with the fast sweeping method [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF][START_REF] Taillandier | First-arrival travel time tomography based on the adjoint state method[END_REF] using a conservative finite difference scheme as described by [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF].

We caution the reader that a switch between r and r occurred in equation 4.20. The latter describes the adjoint field λ r (x) of a receiver r which is in turn of course the r with respect to the other receivers.

From the adjoint-state variables, the gradient of the augmented functional (equation 4.11) with respect to the subsurface parameters is straightforwardly obtained by the weighted summation of the adjoint fields λ r

∇ msp(x) J = - 1 2 Nr r=1 ∂H(x, ∇t r (x)) ∂m sp (x) λ r (x). ( 4 

.21)

The adjoint field is weighted by the derivative of the forward operator H(x, ∇t(x)) with respect to any subsurface model parameter, the gradient of J evolves accordingly. We refer the reader to Tavakoli F. et al. (2019, Appendix B) for a detailed derivation with respect to every parameter in TTI media. The gradient for the case presented in Once the gradient is computed, we proceed with a Newton-based local optimization scheme

m k+1 = m k + α k ∂ 2 C(m k ) ∂m 2 -1 ∂C(m k ) ∂m , (4.23) 
where the step length α k ∈ IR + satisfies the Armijo rule and the curvature condition of the Wolfe conditions [START_REF] Nocedal | Numerical Optimization[END_REF]. In practice, for all numerical experiments presented in this study, the inexact line search is managed by the SEISCOPE optimization toolbox (Métivier and Brossier, 2016b) and the inverse Hessian is approximated through a limited-memory Broyden-Fletcher-Goldfarb-Shannon (L-BFGS) algorithm [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF].

Validation with a toy numerical example

We validate step by step our method on a toy test of a constant gradient velocity model defined by v = v 0 + a × z, where v 0 = 1000 m/s and a = 1, with an added Gaussian ball perturbation (centered at x = 10 km,z = 2.5 km) (Fig. 4.5). The objective of the exercise being the recovery of the Gaussian ball starting with the gradient model as initial guess while finding the correct source locations for 17 events using a dense surface array of 51 stations/receivers. We remind the reader that, since the velocity model is inaccurate, the measurements from different stations/receivers would point at different locations.

The hypocentre-velocity reconstruction

We look first at the case where the exact origin correction times (δt e = 0.1 seconds for all events) are used during the inversion. We note that only for the sake of validation of our formulation we choose this unrealistic experimental setup. In Figure 4.5a, we can see the spread of the virtual locations (green cross) around the exact location (black circle) for the 17 events. We note that the pattern of the spread is solely defined by the inaccuracy of the velocity model since the exact origin corrections times are used for the kinematic migration. Following 73 iterations (Fig. 4.5b), the points collapse around the true position. We can see that some smearing and inversion artifacts occur below the retrieved ball. The latter is expected using surface acquisition since we have an asymmetric illumination of the medium. We also see that the smearing impacts slightly the focusing for the event directly below the ball. The logs presented in Figure 4.6 illustrate the magnitude of the smearing around the recovered perturbation and serve as validation in terms of perturbation amplitude recovery. The results are overall satisfactory and validate our approach for this simple case where we assume that there is no origin time correction needed. We invite the reader to check the animated graphics 1 of the supplementary material for a look on the evolution of the inverted parameters through the iterations with an insight on the misfit value. An interesting point to raise before proceeding to a more complex test case is the necessity of fitting both traveltime and slope attributes (equation 4.1). We remind the reader that both attributes are crucial to perform the kinematic migration (in two dimensions) but fitting traveltimes could be enough especially in dense arrays settings. Undoubtedly, constraining the emergence angle of the trajectory receiver-event by fitting the slopes makes the problem better posed in complex settings or sparse acquisition cases. We present in the supplementary material (Animated graphics 2 and 3) the inversion results for the same case as the one presented in Figure 4.5 but when fitting slopes and traveltimes, respectively. The results are satisfactory for both cases but more artifacts are built around the retrieved Gaussian ball through fitting traveltimes only. The inversion stopped after 78 iterations when fitting traveltimes and 86 iterations when fitting slopes. The faster convergence in the inversion presented earlier where both attributes are used illustrates the complementary nature of the attributes. Furthermore, we note the fact that the traveltime misfit at the final iteration is worse when they are solely fitted.

The origin time and location-velocity problem

We look closely in this section on the importance of the origin time correction and its induced trade-off with the subsurface parameters via the kinematic migration. The first question would revolve around the impact of ignoring the origin time correction. We examine in the following the ill-posedness of the problem in the case of a wrong estimated origin time. In order to illustrate the answer of the latter question, we repeat the previous test but we introduce an error of 100 milliseconds for all events as if an origin time correction of 100 milliseconds is needed. The error is significant since, depending on the picks, it represents a shift of 3 to 16 percent of the observed propagation time (keep in mind that we are using a slow top layer velocity and not very large event-receiver distances so the traveltimes are small). We note that we first assign the same error to all events in order to illustrate the pathology but we will then follow with a different error for each event. Contrarily to the previous section, we would expect a spread of the locations in the initial model to be defined not only by the inaccuracy of the velocity model but also the error in origin time (Fig. 4.7a). The inverted model after 118 iterations contains the sought perturbation but is also contaminated by a nearly homogeneous negative velocity perturbation, which balances the overestimation of the origin time (Fig. 4.7b). The latter trend is produced during the inversion in order to compensate the systematic error introduced on the origin time (which is the same for all events in this case) and enforce the focusing of the virtual locations at one coordinate. This pathology points out perfectly the ill-posed nature of the problem at hand. Indeed, the origin time and the velocity parameter are coupled through the positioning process. We invite the reader to check the animated graphics 4 of the supplementary material for a look on the evolution of the inverted parameters through the iterations with an insight on the misfit value. We repeat the test but we examine now the more realistic case where the origin time error is different for each event. In Figure 4.8a, we notice the more complicated patterns drawn by the virtual locations due to the different errors in origin time for each event. Following 47 iterations, the inversion stopped due to a line search failure. The reconstructed model contains more artifacts than the previous case and in a more heterogeneous manner as one would expect since different origin times are associated with each event. The interesting point compared to the previous result is the fact that the inversion process stopped at a local minimum where the focusing is far from being achieved. The different origin times errors cannot be compensated by a simple velocity perturbation as the previous test. We invite the reader to check the animated graphics 5 of the supplementary material for a look on the evolution of the inverted parameters through the iterations with an insight on the misfit value and the values related to the origin time parameter. In this section we have highlighted the repercussions of ignoring the origin time parameter and the necessity of accounting for its correction during the inversion. Before proceeding with a multi-parameter inversion test, we validate the gradient with respect to the origin time correction parameter. We proceed by doing two inversions in which the velocity is a passive parameter, while we try to invert for the origin time mismatch. In the first test, the true velocity model is used as passive model, while the background velocity gradient model will be used in the second test. We note that, for this validation, we repeat the tests where the same origin time correction is needed for all events. For the first test, we notice that the pattern of the spread is solely defined by the origin time mismatch and is systematic for all events since they have the same error in the propagation time (due to the origin time mismatch) and the exact velocity model was used for the kinematic migration (Fig. 4.9a). Following 9 iterations, the correct origin time correction is recovered for all events and the events collapse on the exact locations (Fig. 4.9b). We invite the reader to check the animated graphics 6 of the supplementary material for a look on the evolution of the inverted origin time correction parameter through the iterations with an insight on the misfit value. During the second test, we repeat the same inversion but using the gradient velocity model as a passive quantity during the inversion process. The final result of this inversion will serve as a direct comparison to the initial stage of the case where we inverted for the velocity model while using the exact origin time (Fig. 4.5a). At the starting point of the inversion (Fig. 4.10a), the pattern of the spread is as expected more significant compared to Figure 4.5a since it is generated by both inaccurate origin correction times and an inaccurate velocity model. Following 6 iterations, the correct origin time correction is recovered for all events and their spreading pattern is identical to the one seen at the initial step of the case where we tried to invert for velocity using the true origin times (Fig. 4.10b versus Fig. 4.5a). The fact that we recover the true origin times without retrieving the true positions highlights the necessity of a multi-parameter inversion due to the coupling between the origin time and the velocity. We invite the reader to check the animated graphics 7 of the supplementary material for a look on the evolution of the inverted origin time correction parameter through the iterations with an insight on the misfit value. We note that, at the reached local minimum, the positions could not be further optimized due to a leakage between the velocity and the origin time parameter. Indeed, we could have imagined a scenario where the final inverted origin times are wrong but the event coordinates collapse around the same position. We remind the reader that in a scenario presented previously where we inverted for velocity using the wrong origin time (Fig. 4.7b), we were able to collapse all positions at one coordinate. The latter was possible since the exercise is a bit simple (same origin time error), the velocity updates compensated for the erroneous origin time but as we have seen for the opposite experiment the result is different.

Multi-parameter inversion for wavespeeds and origin times

Having presented our formulation and validated the gradient with respect to each parameter, we proceed in this section with the inversion tests in a multi-parameter setup. We note that a scaling is applied on the parameters in order to make them dimensionless, hence granting equal contribution in the direction of descent. The scaling factor is kept constant since in the course of the inversion the L-BFGS approximate Hessian is expected to handle the scaling intrinsically. We first look at the simpler version of the previous test where the origin time error is the same for all events (Fig. 4.10a). In Figure 4.10c, the inversion result after 83 iterations is very satisfactory since it is very similar to the case where we inverted for velocity, while using the exact origin time (Fig. 4.5b). More smearing is present around the ball but nevertheless the perturbation is well recovered to the same extent while the origin time correction parameter has been correctly estimated leading to a near-perfect focusing of the events. We invite the reader to check the animated graphics 8 of the supplementary material for a look on the evolution of the inverted origin time correction parameter through the iterations with an insight on the misfit value. We now proceed with the final inversion where we invert all parameters but for the case where the origin time mismatch for each event is different (Fig. 4.11a). Following 76 iterations, the result is very similar to the previous case even-though very different origin time errors were introduced (both negative and positive with very different magnitudes) (Fig. 4.11b). We invite the reader to check the animated graphics 9 of the supplementary material for a look on the evolution of the inverted origin time correction parameter (and the exact value for each event) through the iterations with an insight on the misfit value. 

Further numerical validation on the Marmousi benchmark

We benchmark the method on the Marmousi model (Bourgeois et al., 1991) (Fig. 4.12a). The latter is a well-known benchmark for exploration scale tomographic methods. The complexity of the structures and the abrupt contrasts are challenging to recover even for tomography techniques [START_REF] Audebert | Imaging complex geologic structure with single-arrival Kirchhoff prestack depth migration[END_REF]. The following test is evidently more nonlinear than the toy test case presented previously in this study. We remind the reader that the purpose of the approach is the recovery of the events locations while "absorbing" the errors originating from an erroneous velocity model. In fact, it would be unrealistic to expect a tomographic recovery of the Marmousi model or to invert for the locations starting from crude initial models using few sparse events. The experimental setup mimics a dense surface acquisition consisting of 227 receivers spaced 40 m apart recording 2 distinct events at (x = 4560m, z = 1380m) and (x = 5000m, z = 1040m). We note that the acquisition design does not represent the sparsity of receivers encountered at all scales and we reiterate on the fact that only two events are used in two dimensions, hence the added challenge of resolving the subsurface parameters structures. We simulate the data set using a smoother version of the original model (Fig. 4.12b) in order to ensure the validity of the single-arrival assumption while preserving the kinematic properties. The initial model used during this numerical test is presented in Figure 4.13a. Even though the initial model is a low frequency representation of the true model, the kinematically migrated virtual events have a significant spreading pattern (Fig. 4.13a, black circles). The latter is unsurprising since the perturbations missing from the model have a magnitude up to 2000 m/s (Fig. 4.13b). The rays in Figures 4.14a 
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3.1 Can we constrain the subsurface parameters using few events ?

All-at-once inversion

As a first test, we invert for the velocity with the objective of finding the event location using the true origin times as passive parameters. The unrealistic experimental setup of this test is chosen in order to asses the difficulty in recovering the main parameters without the bias of the origin time error. The initial velocity model and the virtual events located in this model by kinematic migration are reminded in Figure 4.16a. We first invert the full data set in one go (namely, using the full array of stations). The velocity perturbations and the position of the virtual events after 20 inversion iterations are shown in Figure 4.16b. The result shows that the inversion stopped at a local minimum where a line search failure occurred. In fact, through the iterations, the virtual events tied to the near receivers were collapsing towards the true location especially for the virtual events associated with the rightmost event. On the other hand, for both events, the virtual events tied to the far receivers at 0 to 1 km and 7 to 9 km in distance cannot be moved. Looking back at the rays computed in the true velocity model (Figures 4.14a and 4.15a), we can see that all the rays connecting the far receivers to the true position of the event are channelled along the high velocity layer (leftmost part) and the dipping high velocity structures (5.5 to 8 km) at z = 1.75 km. We stress that the missing perturbations in these structures are of the order of 700 m/s, which is significant (Fig. 4.13b). The latter discrepancy leads to quite different ray trajectories in the true and the starting models , hence making the tomographic problem highly nonlinear [START_REF] Hole | Nonlinear high-resolution three-dimensional seismic travel time tomography[END_REF]. Starting from the smooth initial model, the inversion failed to reconstruct such high velocity layer due to insufficient ray-path illumination and remained stuck into a local minimum. In order to further back up the previous statement, we present the traveltime and slope residuals in Figures 4.17 4.18). We invite the reader to check the animated graphics 10 of the supplementary material for a look on the evolution of the inverted parameters through the iterations with a special look on how the virtual events migrated by the central receivers evolved much faster towards a good solution, while the inversion struggled with the virtual events tied to the distant receivers.

Multi-acquisition inversion through offset continuation

Along this line of thought, a possible recipe would be to perform the inversion with a more restrained lateral extension of the acquisition (for example, considering only stations between 2 km and 6 km in distance). The latter strategy could resolve our problem related to the nonlinearity generated by distant stations. However, restraining the angular illumination would also aggravate the velocity-position ambiguity. Therefore, an improved strategy would be to restrain the acquisition in the earlier steps of the inversion as above mentioned and then feed the inversion with more picks along the way by involving more distance stations in the inversion. We now present the results of this offset-continuation strategy. During the first stage of the multi-offset inversion, we restrain the acquisition by considering stations located between 2 km and 6 km in distance. With this setup, the inversion starts with a more compact spread of the virtual event locations due to the limited acquisition illumination (Fig. 4.19a). Following 45 iterations, the virtual events spread is fairly minimal and located near the true location but with a slight consistent shift (Fig. 4.19b). The velocity updates in the well covered zone at the center are consistent with the dip of the structures, which validates further the obtained result at this stage of the inversion. In addition, the traveltime and slope misfits in the area covered by the restricted station array nearly vanished as illustrated in Panels c and g of Figures 4.17 4.18, green squares. Following the offset-continuation strategy, we push further the inversion by injecting more data (1 km on each side) (Fig. 4.19c). We remind the reader that the spreading pattern seen in Figure 4.19c is coming from the fact that the newly introduced data were not fitted at the earlier stage. The final result shows a slightly bigger spreading pattern due to the larger number of virtual events in the process but their mean position is close to the true position (Fig. 4.19d). The velocity update reflects the impact of the new injected data since perturbations on both side of the acquisition have been introduced to the model. The final trajectories of the rays traced between the receivers and their associated events are shown in Figure 4.20. The velocity perturbations added at 1.5 km depth between 3 to 4 km (Fig. 4.19d) sharpened and extended the high velocity contrast, hence permitting the bending of the rays and in turn the focusing of the virtual events at their final location (Fig. 4.20). Similarly, the updates in the shallow part of the velocity model (4 to 6 km distances) favoured the channelling of the rays leading to a better kinematically migrated events. As a further quality control, the misfit maps in Figures 17d-h and 18d-h reveal that the newly introduced data were properly fitted. We invite the reader to check the animated graphics 11 of the supplementary material for a look on the evolution of the inverted parameters through the iterations with a special look on how the inversion reacts to the injection of the extended acquisition in terms of velocity updates and mean position (red cross).

Multi-parameter inversion for wavespeeds and origin times

The final numerical test presented in this report is the joint inversion of the subsurface parameters (namely velocity here) and the origin time correction parameters. We remind the reader again that the main objective is the recovery of the event locations. We introduce an error in the data associated with the origin time corresponding to an overestimation of 0.0712 seconds and an underestimation of 0.0527 seconds for events one and two, respectively. The order of magnitude of these mismatches is significant for some receivers since some virtual events have a traveltime as low as 0.3 seconds. We employ the same multi-acquisition strategy as that presented in the previous test with the sole difference being the need of proper parameter scaling during the different stages of the inversion. At the initial stage of the inversion, the spread of the virtual locations (Fig. 4.21a) is different compared to the previous case (Fig . 4.19a) due to the introduced origin time mismatch. The results presented in Figure 4.21 show that, at the intermediate and final stages of the inversion, the result is comparable to the mono-parameter inversion case . The result is overall satisfying with a slight final mismatch in the origin time correction parameter (the final values were -0.0798 s and 0.0498 s). The latter issue could be resolved with better scaling strategies or a more accurate Hessian, that naturally balances the weight of each parameter during the optimization. We invite the reader to check the animated graphics 12 of the supplementary material for a look on the evolution of the inverted parameters through the iterations with a special look on how the origin time parameter values evolve during the iterations. Depth (km) 

Forthcoming improvements of the method

The Marmousi case revealed however some shortcomings of the method. As any tomographic method, the approach is sensitive to the subsurface illumination, which is itself controlled by the distribution in depth of the events to be located. The optimization problem is extremely ill-posed when the number of events is limited. Moreover, the Marmousi case revealed the non linearity of the relocation/tomograp ĥic problem when sharp contrasts lack in the initial velocity model. These sharp contrasts behave as refractors, which channel the rays connecting the events to far receivers. This prevents uniform ray-path coverage of the subsurface and makes the ray trajectories in the true and initial models quite different, hence violating the ray-stationarity assumption underlying the linearization of nonlinear traveltime tomography [START_REF] Hole | Nonlinear high-resolution three-dimensional seismic travel time tomography[END_REF]. We have shown that this nonlinearity combined with nonuniform ray coverage can trap the localization problem into a local minimum. To bypass this nonlinearity issue without increasing the number of events, we have proposed a pragmatical solution in our application by using an offset (i.e., the horizontal distance between the event and the station) continuation strategy. The introduction of the restrained lateral extent dataset in early stages of the inversion guided the inversion towards reconstructing progressively the missing perturbations in the well covered area. The injection of distant receivers in the late stages of the inversion was guided, through the kinematic migration, by the already recovered solution of the subsurface parameters. By following this offset continuation, we aggravated the velocity-position coupling during the early stage of the inversion (manifested by a consistent shift in position of the virtual events) since we restrained the illumination but we mitigated the non linearity of the tomography, as supported by convergence of the inversion toward far better-focused positions. The need to mitigate the nonlinearity of the inverse problem generated by inaccurate initial subsurface model together with its ill-posedness generated by uneven illumination may prompt us to implement at the beginning of the inversion a relaxation of the focusing equations governing the kinematic migration. This relaxation will re-extend the search space of the inversion, that was restricted by making the relocation problem consistent with the subsurface parameters through the variable projection. Indeed, the migration of the kinematic attributes for event relocation gives no leeway to the inversion to explore solutions where the virtual events are forced to collapse while the focusing equations are not strictly satisfied. We stress that we don't suggest to go back to strategies where the focusing equations are relaxed without any control over their satisfaction at the sought solution. Instead, strategies that reconcile the relaxation of the focusing equations with more freedom to constrain the distance between virtual events early-on in the inversion while controlling their satisfaction at the convergence point may be implemented with augmented Lagrangian method (or method of multiplier), a versatile method to solve constrained optimization problem by combining a Lagrangian method and a penalty method (for example the spatial spread between the virtual events (equation A-2) could serve as an additional constraint or penalty function). We refer the reader to Nocedal and Wright (2006, their Chapter 17) for a review and [START_REF] Delbos | Constrained optimization in seismic reflection tomography: a gauss-newton augmented lagrangian approach[END_REF] for a tomography oriented example. Let's conclude by clarifying that the method can be straightforwardly extended to 3D by incorporating the backazimuth or an additional slope (crossline slope as used by [START_REF] Chalard | Principles of 3-D stereotomography[END_REF] for stereotomography at exploration scale) as a supplementary attribute. In this framework, the ill-posedness and nonlinearity of the localization problem reviewed above should be significantly mitigated by the richer subsurface illumination provided by areal deployment.

Conclusion

We revisit the location-velocity problem with a novel angle inspired by slope tomography. We propose our strategy under a framework based on eikonal solvers and the adjoint-state method. The approach was validated on a simple toy test and benchmarked against the Marmousi case. We present a proof of concept but the approach should be tested on a more realistic case since the method is extendible to three dimensions by accounting for the crossline slope or the backazimuth as an extra constraint for the kinematic migration. Future investigations will revolve around coupling the arrival times of P and S-waves under this framework and an extension to reflected arrivals.

Appendix A: Framework based on minimizing the spread of kinematically migrated virtual events

In this appendix, we present an alternative formulation of the event location problem inspired by time-reversal migration-based methods. Accordingly, the objective function aims to directly optimize the focusing of the migrated virtual events rather than indirectly fulfilling this task by fitting measurements at the stations. We define the following nonlinear constrained minimization problem with the aim of retrieving the minimizer m, gathering the subsurface events, in sparse acquisition settings, where through the kinematic migration process a skeletal of the arrivals is used for interpretation and quality-control. I then assess the limits of firstarrival traveltime tomography as an initial velocity model building tool for FWI in complex and contrasted salt environments. The promising results hints at the possibility of building well resolved models for FWI. The introduction of reflections in such cases could even lead to better results. I support the latter claim through a crustal case benchmark, where inverting reflections and first-arrivals under different strategies are compared. The comparative study shows the superiority of the velocity model built through the joint inversion strategy compared to inverting reflection or first arrivals solely. The conclusion is expected since the complementarity of both arrivals is trivial. However, this numerical experiment validates the joint inversion done under the parsimonious slope tomography framework. The lack of parametrized reflectors makes the inversion more advantageous in terms of well-posedness and more straightforward in terms of application, compared to previous joint inversion approaches.

Most of my work falls in the context of active seismic imaging applications. However, inspired from the research on parsimonious slope tomography, I extend its application to the hypocenter-velocity problem which is of interest in passive seismology. I recap on the basic notions around the hypocenter-velocity problem with a thorough analysis on the trade-off present between the different parameters, especially the needed origin time correction parameter. The proposed formulation was validated through two synthetic examples. This work presented in Chapter 4 was nothing more than a proof of concept, serving as a basis to a future 3D adaptation and validation through real data.

Perspectives

Through the course of the manuscript, many needed future developments were evoked. I recap in the following on the most important aspects. Some of them already part of an ongoing implementation process and publications while others are scheduled for future works.

As a first obvious priority, the method needs to be extended to three dimensions. The implications for such a development revolve around the forward problem mainly. In the recent years, accurate eikonal solvers were developed for 3D cases [START_REF] Noble | High-performance 3D firstarrival traveltime tomography[END_REF][START_REF] Bouteiller | A discontinuous Galerkin fast-sweeping Eikonal solver for fast and accurate traveltime computation in 3D tilted anisotropic media[END_REF]. Another aspect that should be addressed is the needed number of slopes for the inversion (knowing that one crossline slope is usually inaccessible due to large offsets). [START_REF] Chalard | 3-D stereotomographic inversion on a real dataset[END_REF] investigated the latter issue and concluded that three slopes are sufficient. In the context of parsimonious slope tomography, it is expected that two slopes and the two-way traveltime are needed as focusing attributes, leaving the third slope as an objective measure. This extension represents the objective of a future work.

In section 2.2.1, a first look on the choice of acquisition-driven strategies was made. The impact of the latter choice will be further assessed and published with a look also on the different focusing conditions strategies (versus the common shot setting used in all presented numerical experiments). On the same line of thought, the notion of kinematic invariance should be exploited during the picking phase. Through a ray+Born migration/inversion code, it is straightforward to extract the kinematic invariants (Montel and Lambaré, 2019a,b, for a review on the different focusing conditions and their implications in the invariants calculation, especially the common angle setting which we are particularly interested in). Once picking in the migrated domain is developed, an iterative process between picking and slope tomography inversion is repeated in order to produce more accurate picks and in turn better inverted models [START_REF] Guillaume | Kinematic invariants: an efficient and flexible approach for velocity model building[END_REF].

Currently, in the main framework, the implicit information about the dip of the migration facet at the scatterers is not exploited. Regularization in all presented numerical examples was done through B-splines and a Gaussian smoothing filter. Dip-steered filters [START_REF] Clapp | Incorporating geologic information into reflection tomography[END_REF] are more structure preserving and could offer a more suitable regularization in the context of slope tomography [START_REF] Costa | Regularization in slope tomography[END_REF]. Local dip information could be introduced in the form of constraint in the inversion, linking scatterers that should have matching facets at convergence. The latter could be done through either inferring a prior on migration facets during the picking done in the migrated domain [START_REF] Guillaume | Dip constrained non-linear slope tomography[END_REF] or employed directly under other settings like the double-pass strategy presented in section 2.2.1. A more detailed remark was done in section 2.3 on the aforementioned developments and on the ongoing investigation around efficient preconditioning of PAST.

For sparse OBN acquisitions, slopes at the receiver are inaccessible. During previous works this issue was addressed under simplistic considerations [START_REF] Alerini | Stereotomography for nodes data[END_REF]. The latter issue could be addressed through data processing techniques based on compressive sensing [START_REF] Aghamiry | On the robustness of 1-regularized ADMM-based wavefield reconstruction inversion against coarse sampling of sources and receivers[END_REF], interferometry [START_REF] Schuster | Interferometric/daylight seismic imaging[END_REF] or 6-C polarization analysis [START_REF] Sollberger | 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications[END_REF]. One slope picked in such settings is enough to perform kinematic migration as an interpretative tool (see section 3.2). As part of an ongoing work, a glossary will be built for the different recorded arrivals, offering more insight into exotic recorded arrivals.

The only approach that was not assessed through real data application is the joint inversion of first-arrival and reflection picks under the parsimonious slope tomography framework. As part of ongoing work, the method has already been used in a VTI case study. The results were validated through reverse time migration and will be presented in future communications. As an extension to this work, as done by [START_REF] Tavakoli | Matrix-free anisotropic slope tomography: theory and application[END_REF], an updated analysis of the different anisotropy parametrizations should be done in the context of joint first-arrival and reflection inversion.

As part of my work, a proof of concept of a hypocenter-velocity consistent framework was presented. In future works, the proof of concept will be tested under more realistic considerations and applied on real data. The latter is done once the framework is extended to 3D.
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 1 locally coherent event picked in the data volume. Described by a slope p r , a receiver R and a two-way time T sr determined in the common-shot gather and a slope p s determined in common-receiver gather for the same shot S and two-way time T sr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Focusing a locally coherent in the depth migrated domain through the focusing equations of Chauris et al. (2002a). . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Graphical representation depicting the relationship between the rays (black lines), wavefronts (black dashed contours), slowness vectors (black arrows), gradient of slopes (red and blue arrows), the normal (green arrow) and the tangent (magenta arrow) vectors to the isochrone (green dashed curve). See text for the interpretation of each vector. . . . . . . . . . . . . . . . . . . . . . . . . . . . xix List of figures 2.4 Sensitivity kernels λ s and λ r . The labels denote the source s, receiver r and three scattering points associated to the source/receiver per (s,r) and two virtual neighboring pairs (s -1,r -1) and (s + 1,r + 1) . . . . . . . . . . . . . . . . 2.5 Marmousi example.(a) True blocky velocity model. (b) Picks of the Marmousi model reflectors. Picking was performed in the true velocity model shown in (a). Picks are superimposed on the smoothed velocity model that was used to generate the slope tomography measurements p * s,nsr , T * s,r,ns,r and p * r,nsr by demigration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Marmousi example. Scatterers superimposed on velocity models inferred from PAST. Scatterer positions are found by solving the focusing equations. (a) Initial velocity model. (b-g) Velocity models inferred from PAST at the end of each multi-scale step. (h) Final velocity model inferred from PAST. . . . . . . 2.7 Marmousi example. Cost function value versus iteration number. The change in colors symbolizes a spline-grid refinement. . . . . . . . . . . . . . . . . . . 2.8 Marmousi example. (a) Velocity model inferred from 374 iterations of AST with superimposed scatterers
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 10 Real data application. (a) Legacy velocity model used as reference. (b-c-d) Provided TTI anisotropy model parameters, Epsilon, Delta and Theta respectively. The white dashed line denotes the bathymetry. The black dashed line in (a) denotes the available well data location). . . . . . . . . . . . . . . . . . . . . . 2.11 Real data application. (a) Constant gradient starting model with superimposed scatterers after initialization + localization in the case of AST. (b) Final velocity model obtained by AST superimposed by the final scatterer positions. (c) Final velocity model obtained. (d) Scatterer positions obtained by solving the focusing equations in the case of PAST using the same initial model. (e-f) same as (b-c) but in the case of PAST. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 Real data application. Cost function value versus iteration number. The change in colors symbolizes a spline-grid refinement. . . . . . . . . . . . . . . . . . . 2.13 Real data application. Vertical velocity logs extracted from the starting model (black lines), the legacy reference model (green lines), the AST model (blue lines) and the PAST model (red lines). The logs are extracted at distances x=10 km, 20 km, 30 km, 40 km. . . . . . . . . . . . . . . . . . . . . . . . . . . xx 2.14 Real data application. Comparative velocity logs taken at 10.8 km (a), 22.6 km (b), 33.1 km (c). Inverted PAST velocity model and well data are respectively represented by blue and red lines. . . . . . . . . . . . . . . . . . . . . . . . . . 2.15 Real data application. Image obtained through TTI prestack depth Kirchhoff migration using as background model: (a) the reference legacy velocity model, (b) the AST velocity model, and (c) the PAST velocity model. . . . . . . . . . 2.16 Real data application. Common image gathers collected at various positions corresponding to the migrated images shown in Figure 2.15. . . . . . . . . . .

  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.19 Marmousi revisit example. Reference parameters used in the ray+Born modeling. (a) The original Marmousi model. (b) The source wavelet signature obtained by applying the trapezoid filter shown on the bottom panel to a delta function [0 -10 -35 -55] Hz (Thierry et al., 1999c; Operto et al., 2000a). (c) A smooth version of (a) representing the velocity macro model. (d) Reference velocity perturbation model obtained through a subtraction of (c) from (a), a filtering of depth-to-time converted vertical profiles, then time-to-depth conversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.20 Marmousi revisit example. On the left panel, a ray+Born modeled common shot gather using the parameters in figure 2.19 (refer to the text for information on the experimental setup). On the right panel the same common shot gather of the left panel superimposed with picked slopes (green and red). The green color designate the validated picks used in the inversion while red designate eliminated aberrant picks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.21 Marmousi revisit example. Scatterers superimposed on the initial velocity model and the ones inferred from PAST in the case where: (a-b) the slope at the receiver is used as objective parameter, (c-d) the slope at the source is used as objective parameter and (e-f) where both slopes are used as focusing attribute and objective parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.22 Marmousi revisit example. Cost function value versus iteration number for the three cases presented in figure (2.21). The sudden increase in misfit value is due to a spline-grid refinement where some picks that were flagged as noise are reinserted in the inversion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 2.23 Marmousi revisit example. (a) The theoretical reflectivity. (b-f) Images obtained through ray+Born migration/inversion using as background model the reference velocity macro model, the initial velocity model and three cases presented in figure (2.21), respectively. . . . . . . . . . . . . . . . . . . . . . . . 2.24 Marmousi revisit example. (a-e) Angle domain common image gathers extracted at 5 km from the images (b-f) presented in figure 2.23. The red arrows pointing at the warped reflectors while the green arrow pointing at the flattened reflector. The red question mark marking an artifact present in the data due to accounting for single arrivals only in the modeling process (refer to the text). . 2.25 Marmousi revisit example. Comparative velocity perturbations logs extracted at 6.5 km from the images (b-f) presented in figure 2.23. The extracted logs (solid blue line) are assessed against the theoretical reflectivity log (solid red line) (Figure 2.23a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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 2 28 SEFASILS case study. Common offset gather extract from the SEFA14 dataset (NW-SE), notice the recorded diffraction hyperbolas. The margin is on the rightmost end of the profile (NW). . . . . . . . . . . . . . . . . . . . . . . . . 2.29 SEFASILS case study. Slope tomography picks, denoted by red lines, superimposed on a common shot gather (left panel) and a common receiver gather (right panel) extracted from the SEFA14 dataset. . . . . . . . . . . . . . . . . 2.30 SEFASILS case study. (a) Preliminary velocity model inferred through a singlepass of velocity analysis. (b) Velocity model obtained through 26 iterations of parsimonious slope tomography. The black curve denotes the bathymetry line. . 2.31 SEFASILS case study. Ray+Born migration inversion (Thierry et al., 1999c) results using the post-stack velocity analysis model (a) and the slope tomography inverted model (b) as background velocity. (c-d) Zoom on parts of the images (a) and (b), respectively. Notice the better focused diffractions around the tips of the salt diapirs in the case of (b). . . . . . . . . . . . . . . . . . . . . . . . . 2.32 SEFASILS case study. Common image gathers extracted at 17,34,63 and 81 from migrated images shown in figure 2.31. The red arrows highlights the misfocused events. VA stands for velocity analysis and ST for slope tomography. . xxii 3.1 Simple numerical example illustrating the encountered blind zone in crustal imaging case. A gap is visible between 50 and 165 kilometers at intermediate depths. Rays and arrivals in green and red denote the diving waves turning in the upper crust and head-waves propagating along the Moho. Adapted from Zelt (1999, their Figure 11). . . . . . . . . . . . . . . . . . . . . . . . . . . .

  (missing intermediate offsets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.4 Overthrust case study. Dense acquisition case. (a) Initial velocity model. (b-c) Velocity models inferred from FATT and FASTT, respectively. (d) True velocity model. (e-f) Final velocity model inferred from FWI using (b) and (c) as initial guesses, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Overthrust case study. Rays traced in the extended target model (a), the tomographic models (b-c) inferred from FATT and FASTT respectively. . . . . . . . 3.6 Overthrust case study. Gradient computed at the first iteration in the case of FATT (a) and FASTT (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.7 Overthrust case study. Sparse acquisition case. (a-b) Velocity models inferred from FATT and FASTT, respectively. (c-d) Final velocity model inferred from FWI using (a) and (b) as initial guesses, respectively. . . . . . . . . . . . . . . 3.8 Overthrust case study. Common-receiver gather simulated at the top of the thrust structures in the extended target model superimposed by traveltimes and slopes calculated in the initial (yellow dashes), exact model (green dashes), FATT (red curves) and FASTT models (blue dashes). . . . . . . . . . . . . . . 3.9 Overthrust case study. Common-receiver gather simulated at the start of the original exact model in blue/red superimposed by a common-receiver gather in black/transparent simulated at the same position in the FATT+FWI (a) and FASTT+FWI (b) models of Figure 3.7(c-d). . . . . . . . . . . . . . . . . . . . 3.10 Nankai case study. (a) Geodynamical context. (b) SFJ acquisition map, the white line and greens stars delineates the shot profile and OBS positions respectively. Adapted from Operto et al. (2006). . . . . . . . . . . . . . . . . . . xxiii 3.11 Nankai case study. OBS-17 seismograms overlain by their corresponding firstbreaks picks (green line). The seismograms have been processed by spectral whitening, band-pass filtering and automatic gain control. . . . . . . . . . . . .

  (a) FWI velocity model. (b) Detrended FWI velocity model. A depth migrated section inferred from the MCS data and a gross structural line drawing delineating the main structural units and tectonic features such as the Tokai and Kodaiba thrusts is superimposed on the models. The inset delineates the main structural domains as interpreted by[START_REF] Henry | Deformation processes and earthquakes in Nankai[END_REF]. SOC: subducting oceanic crust. OMT: oceanic mantle. WDU: weakly deformed unit (trench fill); MDU: moderately deformed unit (active wedge); HDU: heavily deformed unit (Miocene wedge); BST: backstop. DSR: deep strong reflector. The question mark in (b) points the possible location of the Paleo-Zenisu ridge[START_REF] Le Pichon | Structure and evolution of the backstop in the eastern nankai trough area (Japan): immplicationsn for the soon-to-come tokai earthquake[END_REF]. Adapted from[START_REF] Górszczyk | Crustal-scale depth imaging via joint FWI of OBS data and PSDM of MCS data: a case study from the eastern nankai trough[END_REF]. . . . . . . . . . . . . . . . . . . . . . . 3.13 Nankai case study. Dense acquisition results. (a) Initial velocity model. (b-c) Velocity models inferred from FATT and FASTT, respectively. The dash box delineates the area where the most striking differences between the FATT and the FASTT models are shown (d-e) Final velocity model inferred from FWI using (b) and (c) as initial guesses, respectively. The black line in all of the panels delineates the bathymetry. . . . . . . . . . . . . . . . . . . . . . . . . 3.14 Nankai case study. Traveltime (left) and slope (right) misfit at the initial stage (top), post-FATT (middle) and post-FASTT (bottom). . . . . . . . . . . . . . . 3.15 Nankai case study. OBS-17 seismogram in blue/red superimposed by a seismogram in black/transparent simulated at the same position in the FASTT+FWI model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16 Nankai case study. Partial acquisition results. (a-b) Velocity models inferred from FATT and FASTT, respectively. (c-d) Final velocity model inferred from FWI using (a) and (b) as initial guesses, respectively. The black line in all of the panels delineates the bathymetry. . . . . . . . . . . . . . . . . . . . . . . . 3.17 Nankai case study. Recoreded OBS-20 seismogram (a). Simulated OBS-20 seismograms in the FATT (b), FASTT (c), FATT+FWI (d) and FASTT+FWI (e) models. The black arrow points a wave channeled along dipping structure in the accretionary prism while the gray arrow points a post-critical reflection from below (probably the top of the oceanic crust). The white arrow points contrasted amplitudes and focusing of a post-critical reflection in the seismograms computed in the FATT+FWI and FASTT+FWI models. . . . . . . . . . . . . . 3.18 Nankai case study. Depth migrated images using the (a) FATT and (b) FASTT models of Figure 3.16(a-b) as background velocity models. The arrows point the decollement on top of the subducting oceanic crust. The almost horizontal decollement intersects unlikely macro velocity variations in the FATT model, while the velocities founded by FASTT comply more accurately with the geometry of the decollement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiv 3.19 Nankai case study. Angle-domain common image gathers inferred by a prestack ray+Born inversion/migration using the FATT and FASTT models seen in figure 3.16, extracted at different positions in the trench fill. . . . . . . . . . . . 3.20 Nankai case study. (a) FASTT+FWI model superimposed by its corresponding ray+Born migrated image. (b) Same as (a) but the velocity gradient of the FWI model (the sum of the horizontal and vertical derivative) is also superimposed in transparency. This representation style highlights the short-scale (migrated) components of the FWI model. (c) Same as (a) where the detrended version of the FWI model is shown to highlight the intermediate-scale structural units reconstructed by FWI and their conformity with the short-scale reflectivity mapped by the migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.21 An illustration of kinematic migration with the Nankai case study. A small set of secondary arrivals were picked and migrated kinematically by looking at the intersection between the isochrone defined by the two-way traveltime and the ray leaving the shot position with the picked slope. The located scatterer is plotted as a migration facet the dip of which is tangent to the isochrone at the scatterer location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.22 An illustration of kinematic migration with the Nankai case study. The different set of arrivals picked through local slant-stacks on synthetic seismograms simulated in the FWI model at the location of (a) OBS number 6, (b) OBS number 17, (c) OBS number 20, (d) OBS number 37, (e) OBS number 48, (f) OBS number 57, (g) OBS number 57. See text for an interpretation of the picked arrivals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.23 An illustration of kinematic migration with the Nankai case study superimposed on the detrended FWI model (refer to section 3.1.5). The set of picked arrivals presented in figure 3.22 are migrated kinematically in the FWI model in the Nankai case study. The located scatterer is plotted as a migration facet the dip of which is tangent to the two-way traveltime isochrone at the scatterer location. The different colors refer to the color-coded picks in figure 3.22. . . . . . . . . 3.24 Kinematic migration of picked events in OBN-48. (a) Rays traced from the two chosen scatterers to the source and receivers, rays paths in red and green. (b-c) Wavefield snapshot at 6 seconds into the simulation and the corresponding recording. The red arrow points at the perturbed wavefront after reaching the red scatterer while the yellow arrow points at the diffracted portion of the wavefield. (d-e) Wavefield snapshot at 8 seconds into the simulation and the corresponding recording, the green arrow pointing at the perturbed wavefront after reaching the green scatterer while the yellow arrow points still tracking the diffracted portion of the wavefield. (f-g) Wavefield snapshot at 15 seconds into the simulation and the corresponding recording, the red and green dots denoting the picked events while the yellow arrow points at the recorded diffractions. . . 3.25 Extended BP Salt 2004 model. . . . . . . . . . . . . . . . . . . . . . . . . . . xxv 3.26 Extended BP Salt 2004 case study. (a) Initial velocity model. (b) Velocity model built by slope tomography. (c-d) Time-domain FWI results by successive inversion of a 1Hz and 4Hz dominant frequency datasets. . . . . . . . . . . . 3.27 Extended BP Salt 2004 case study. Traveltime residuals of slope tomography versus offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.28 Extended BP Salt 2004 case study. (a-d) Frequency-domain full waveform inversion results at first (0.5Hz), third (0.5 to 2.5Hz), fifth (1.5 to 3.5Hz) and sixth (1.5 to 5.5Hz) frequency batches. . . . . . . . . . . . . . . . . . . . . . 3.29 Extended BP Salt 2004 case study. (a) Slope tomography model. (b-d) Frequencydomain full waveform inversion results at first (1.5Hz), third (1.5 to 3.5Hz) and fifth (1.5 to 5.5Hz) frequency batches. . . . . . . . . . . . . . . . . . . . . . 3.30 Extended BP Salt 2004 case study. First-arrival ray paths shot in the true model. Notice the gap around the sub-salt reservoir between 30 to 40 km distance at 8 km in depth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.31 Extended BP Salt 2004 case study. (a) Simulated OBN gather at 8km in the true model. (b-d) Interleave of simulated seismograms in the true and the initial constant gradient model, the tomography inverted model and the final FWI model, respectively. (e-h) Same as (a-d) but for the OBN at 45km. All the gathers were reduced by a velocity of 7 km/s. . . . . . . . . . . . . . . . . . . 3.32 Extended BP Salt 2004 case study. First-arrival ray paths shot in the true (red solid line), FASTT (green solid line) and FWI (blue solid line) model for the case of the central OBN (45km). Notice the similar channeling effects in the true and FWI and the trapping of first-arrivals across the salt structure even with a 45 km offset data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

  (c) A smooth version of the model (a), being the target tomographic model. (d) Ray+Born migration/inversion using the model (c), being the target migration image where steeply dipping structures and shadow zones are not retrieved. . . . . . . . . . . . . . . . . . . . . . . . 3.35 GO_3D_OBS -Joint inversion case. Kinematically migrated scatterers using the slope at the receiver and the two-way traveltime superimposed on the target tomographic model in figure 3.34c used as a background velocity model. . . . . xxvi 3.36 GO_3D_OBS -Joint inversion case. The initial velocity model used during slope tomography (a), its corresponding kinematically migrated scatterers (b) and its corresponding depth-migrated image (c). Notice the artifacts especially around the backstop (40 to 60 kilometers). . . . . . . . . . . . . . . . . . . . 3.37 GO_3D_OBS -Joint inversion case. Tomography models retrieved through parsimonious slope tomography: (a) following 38 iterations using data with up to 4 kilometers offset, (b) following 44 iterations using data with up to 8 kilometers offset and its corresponding implicitly updated scatterers position (c) and depth-migrated image (d). . . . . . . . . . . . . . . . . . . . . . . . . 3.38 GO_3D_OBS -Joint inversion case. Tomography models retrieved through: (a) first-arrival traveltime tomography following 145 iterations and (b) its migrated image obtained by using it as a background mode. Same for (c) and (d) obtained through first-arrival slope + traveltime tomography following 45 iterations. . . . 3.39 GO_3D_OBS -Joint inversion case. (a) Tomography model retrieved through joint inversion of first-arrival slopes + traveltime and reflection data following 47 iterations. (b) The implicitly updated scatterers superimposed on the model in (a). (c) The depth-migrated image obtained by the model (a) as background velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.40 GO_3D_OBS -Joint inversion case. Angle-domain common image gathers extracted at 28,54,109 and 144 kilometers obtained through the ray+Born migration/inversion using as a reference model the target model (a), the FATT inverted model (b), the FASTT inverted model (c), the PAST inverted model (d) and the joint inversion obtained model (e).
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 2 Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). Kinematically migrated picks in the case of the true velocity model(a). Notice the focusing of events migrated by all receivers to the true location (a) and the spread caused by the velocity anomaly (b). . . . . . xxvii 4.3 Triple receiver kernel λ r (x) (equation 4.20) solved for the case presented in Figure 4.1b. (a) The isolated contributions of γ e,r ,r and ξ e,r ,r back-propagated from the virtual events migrated by receivers r towards receivers r . (b) The isolated contributions of α e,r and β e,r back-propagated from the virtual events migrated by receivers r towards themselves. . . . . . . . . . . . . . . . . . . 4.4 Gradient of J(m) (equation 4.11) with respect to velocity for the case presented in figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5 Toy test case: inverting for velocity with exact origin correction time as passive parameters. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 73 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6 Toy test case: inverting for velocity with exact origin time. (a) Vertical and (b) horizontal comparative velocity perturbation logs. Black and red lines denote the exact and reconstructed perturbations, respectively. The positions of the logs are provided in the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7 Toy test case: inverting for velocity with wrong origin times (uniform) as passive parameters. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 118 iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8 Toy test case: inverting for velocity with wrong origin times (different for every event) as passive parameters. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 47 iterations (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9 Toy test case: inverting for the origin time correction parameter using the true velocity model as passive parameter. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations using (a) the initial origin time corrections and (b) the final origin time corrections updated after 9 iterations. . . . . . . . . . . . . . . . . . . . . 4.10 Toy test case: inverting for the origin time correction parameter using the initial velocity model of Figure 4.5. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations at (a) the initial stage of the inversion, (b) final stage after 6 iterations where velocity is passive parameter and (c) the joint update result after 83 iterations. The focused locations at the final stage where velocity is passive in the inversion exhibit the same spread as the initial stage of the case where the velocity was inverted using the true origin time (Fig. 4.5a) . . . . . . . . . . . . . . . . . . xxviii 4.11 Toy test case: multi-parameter inversion (different origin time mismatch for every event). Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 76 iterations (bottom). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.12 Marmousi case: (a) the true blocky velocity model and (b) the model used for generating the data. Locations of event number one (x = 5000m, z = 1040m) and event number two (x = 4560m, z = 1380m) are denoted by a black circle. 4.13 Marmousi case: (a) the initial velocity model and (b) its corresponding velocity perturbations with respect to the true tomographic model. Virtual event locations are denoted by a black circle (using true origin time). . . . . . . . . . . . 4.14 Marmousi case: (a) the true tomographic and (b) the initial models. Virtual event locations are denoted by a solid white circle and black lines are the rays connecting each virtual event related to event number one (x = 5000m, z = 1040m) to its receiver (using true origin time). . . . . . . . . . . . . . . . . . 4.15 Marmousi case: (a) the true tomographic and (b) the initial models. Virtual events locations are denoted by a solid white circle and black lines are the rays connecting each virtual event related to event number two (x = 4560m, z = 1380m) to its receiver (using true origin time). . . . . . . . . . . . . . . . . . . 4.16 Marmousi case: inverting for velocity with exact origin time. Virtual locations (black cross) of the two events (black circle) migrated from all receiver positions (black asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model. In (b), the velocity perturbations are shown after 20 iterations. The inversion remained stuck in a local minimum and failed to collapse the virtual positions at the true positions of the two events. . . 4.17 Marmousi case: (a-d) Traveltime and (e-h) slope absolute misfit of the event number one at the initial stage (a,e), the final stage of the full acquisition setup (b,f), the first stage of the offset continuation setup (c,g) and the final stage of the offset continuation setup (d,h), respectively. The green squares denote the limited number of receivers used during the offset continuation setup. . . . . . 4.18 Marmousi case: Same as Figure 4.17 for event two. . . . . . . . . . . . . . . . 4.19 Marmousi case: inverting for velocity with exact origin time. Virtual locations (black cross) of the two events (circle) migrated from all receivers (black asterisk). (a) Focused locations in the case of the initial velocity model, (b) the velocity perturbations added to the initial model after 45 iterations and its focused scatterers, (c) the velocity model at the initial stage of the last extension and its focused scatterers, (d) the velocity perturbations added to the initial model after 71 iterations using extended lateral receiver coverage. . . . . . . . . . . . . . . 4.20 Marmousi case: Virtual events and rays computed in the velocity model shown in Figure 4.19c. Virtual event locations denoted by a solid white circle and black lines are the rays connecting each virtual event to their corresponding receivers. Panels (a) and (b) correspond to events 1 and 2, respectively. . . . . . . . . . . xxix 4.21 Marmousi case: inverting for velocity and origin time corrections. Virtual locations (black cross) of the two events (circle) migrated from all receivers (black asterisk). (a) Focused locations in the case of the initial velocity model, (b) the velocity perturbations added to the initial model after 49 iterations and its focused scatterers, (c) the velocity model at the initial stage of the last extension and its focused scatterers, (d) the velocity perturbations added to the initial model after 77 iterations using extended lateral receiver coverage. . . . . . . . 198 4.22 Gradient of J(m) (equation A-3) with respect to velocity for the case presented in Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 4.23 Toy test case: multi-parameter inversion (different origin time mismatch for every event) using the time-reversal migration-based formulation. The figure shows the the updated velocity model after 100 iterations. . . . . . . . . . . . . 206 xxx List of Tables

  Chapter 3 and 4 for a detailed review on the different norms and their underlying uncertainty assumptions), arg min m ||d -Gm|| p .
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 3 Figure 3 -Local resolution in the subsurface. a) Relationship between the scattering angle θ and the local wavenumber at a scatterer X in the subsurface. The local wavenumber vector k, pointing of the slowness vectors k s + k r at the scatterer is influenced by the local wavelength λ of the seismic wave and the scattering angle θ. b) Schematic representation of the wavenumber gap between the long wavelength component constrained mainly through wide-angle scattering and low frequencies and the short wavelength components constrained mainly by narrow angle scattering and high frequencies. Modern tomographic approaches through their high resolution velocity model seek to fill the intermediate gap (green dashed curve). On the hand, developments around broadband data and acquisition design are also permitting in closing the gap (red dashed curve).Figure adapted from Claerbout (1985).

  Figure 3 -Local resolution in the subsurface. a) Relationship between the scattering angle θ and the local wavenumber at a scatterer X in the subsurface. The local wavenumber vector k, pointing of the slowness vectors k s + k r at the scatterer is influenced by the local wavelength λ of the seismic wave and the scattering angle θ. b) Schematic representation of the wavenumber gap between the long wavelength component constrained mainly through wide-angle scattering and low frequencies and the short wavelength components constrained mainly by narrow angle scattering and high frequencies. Modern tomographic approaches through their high resolution velocity model seek to fill the intermediate gap (green dashed curve). On the hand, developments around broadband data and acquisition design are also permitting in closing the gap (red dashed curve).Figure adapted from Claerbout (1985).
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 45 Figure 4 -Scale separation. The subsurface velocity model seen as a composite of (a) long wavelength structures being the velocity macro-model mainly describing the kinematics of wave propagation and (b) the short wavelength components often parametrized as reflectivity.
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 6 Figure 6 -Pre-stack ray+Born migration principle. Migration of a diffraction tied to a scatterer at 0.5 depth situated in distance at the mid-distance between two different source-receiver couples (pink and green). (a) Case of a true background model: Constructive summation of the migration isochrones tied to both source-receiver couples (pink and green) at the true scatterer location (black dot). The scatterer is illuminated through two different angles 2θ, θ denoting the half-aperture. (b) Case of a wrong background model: summation of the migration isochrones tied to both source-receiver couples (pink and green). The energy coming from the two sourcereceiver couples focuses at different depth (black dots and bars).

Figure 7 -Figure 8 -

 78 Figure 7 -Stereotomography attributes. Left panel: Locally coherent event in stereotomography defined in the data volume. Described by a slope p r , a receiver R and a two-way time T sr determined in the common-shot gather and a slope p s determined in common-receiver gather for the same shot S and two-way time T sr two-way traveltime. Right panel: The reflection of the wave propagating from the source S occurring at the scatterer (marked the migration facet) and recorded at the receiver R. The slopes representing the horizontal component of the slowness vector at S and R.
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 9 Figure 9 -Kinematic invariance of slope tomographic attributes. Left: Picked slopes in the time-domain (blue facet), in the common offset and the common midpoint collection, associated with their traveltime for a source-receiver couple. Right: Picked δRMO (ϕ) and dip (ξ) in the depth-migrated domain (red facet), in the the common offset and the common image gather, associated with a scatterer in depth illuminated by a source-receiver couple with a given angle 2θ.
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 11 Figure 1.1 -Two-point ray tracing. a)The Shooting method where the incidence angle at the source (triangle), serving as an initial value for the ray integration, is updated until a ray connects to a point in the medium (circle). (b) Its counterpart, the Bending method where the two end-points of the ray path are fixed. The geometry of the ray is perturbed until the latter satisfies Fermat's principle. Taken from[START_REF] Rawlinson | Seismic tomography: a window into deep earth[END_REF] 
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 12 Figure 1.2 -Traveltime computation in the TTI BP salt. Superimposition of traveltime contours (in red) from calculated through the factored eikonal solver of Tavakoli F. et al. (2015), on the wavefields at times 2s, 3s, 6s and 10s for the TTI BP salt model. Notice the match between the eikonal and the full-wave solution. Taken from Tavakolifaradonbeh (2017).
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 13 Figure 1.3 -Off-grid eikonal source point implementation. Analytic solution of traveltime is calculated to nearby grid-points which are in turn used as a boundary.
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 14 Figure 1.4 -Local quadratic approximation of a misfit function. The objective function C(m) is approximated, at each iteration i, by a locally quadratic function C(m i + ∆m) around an estimate m i . Supposing that C(m) and its local approximate C(m i + ∆m are sufficiently close in the sense that the minimizer of both functions around m i falls in the same basin of attraction. At some iteration "i * -1", the minimizer m * of the parabola C((m i * -1 ) + ∆m) is the minimizer of C(m).
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 16 Figure 1.6 -Rosenbrock example. Optimization done through a BFGS scheme. The black lines denote the cost function level sets. The global minimum at (1,1) is marked by a green dot. The red line represents the optimization path taken at every iteration (red dot) starting from an initial guess (-0.6,1.5).

  .48) which I recast as a constrained minimization problem min T,m J(T) subject to h(m, T),(1.49) 
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 21 Figure 2.1 -A locally coherent event picked in the data volume. Described by a slope p r , a receiver R and a two-way time T sr determined in the common-shot gather and a slope p s determined in common-receiver gather for the same shot S and two-way time T sr .
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 22 Figure 2.2 -Focusing a locally coherent in the depth migrated domain through the focusing equations of Chauris et al. (2002a).
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 24 Figure 2.4 -Sensitivity kernels λ s and λ r . The labels denote the source s, receiver r and three scattering points associated to the source/receiver per (s,r) and two virtual neighboring pairs (s -1,r -1) and (s + 1,r + 1) .
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 2526 Figure 2.5 -Marmousi example.(a) True blocky velocity model. (b) Picks of the Marmousi model reflectors. Picking was performed in the true velocity model shown in (a). Picks are superimposed on the smoothed velocity model that was used to generate the slope tomography measurements p * s,nsr , T * s,r,ns,r and p * r,nsr by demigration.
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 2 9d by green arrows. The verti-
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 27 Figure 2.7 -Marmousi example. Cost function value versus iteration number. The change in colors symbolizes a spline-grid refinement.
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 28 Figure 2.8 -Marmousi example. (a) Velocity model inferred from 374 iterations of AST with superimposed scatterers (Tavakoli F. et al., 2017b). (b) Velocity model inferred from 195 iterations of PAST with superimposed scatterers. In (a), scatterer coordinates were processed as optimization parameters in AST, while they were found by solving the focusing equations, equations 2.12, in PAST. (c-d) Final FWI models obtained with initial models shown in (a) and (b).
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 29 Figure 2.9 -Marmousi example. Comparative velocity logs. The tomographic, FWI and true models are represented by red, blue and black lines, respectively. The dashed lines denote the results obtained by Tavakoli F. et al. (2017b). Green arrows in (d) delineates the oil and gas cap low velocity anomaly.

Figure 2 . 10 -

 210 Figure 2.10 -Real data application. (a) Legacy velocity model used as reference. (b-c-d) Provided TTI anisotropy model parameters, Epsilon, Delta and Theta respectively. The white dashed line denotes the bathymetry. The black dashed line in (a) denotes the available well data location).
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 211212 Figure 2.11 -Real data application. (a) Constant gradient starting model with superimposed scatterers after initialization + localization in the case of AST. (b) Final velocity model obtained by AST superimposed by the final scatterer positions. (c) Final velocity model obtained. (d) Scatterer positions obtained by solving the focusing equations in the case of PAST using the same initial model. (e-f) same as (b-c) but in the case of PAST.
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 22 Figure 2.13 -Real data application. Vertical velocity logs extracted from the starting model (black lines), the legacy reference model (green lines), the AST model (blue lines) and the PAST model (red lines). The logs are extracted at distances x=10 km, 20 km, 30 km, 40 km.
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 22 Figure 2.15 -Real data application. Image obtained through TTI prestack depth Kirchhoff migration using as background model: (a) the reference legacy velocity model, (b) the AST velocity model, and (c) the PAST velocity model.

Figure 2 .

 2 Figure 2.17 -Toy test. Demigration velocity versus migration velocity. The red and blue lines denote the optimization paths taken by the proposed approach and AST (Tavakoli F. et al., 2017b) and respectively, while the red circles and blue squares denote the iterations . The black curves denote the cost function iso-values. Three different optimization strategies: On the left, Gradient Descent: 39 it. (PAST) -362 it. (AST). In the center, Gauss-Newton: 4 it. (PAST) -5 it. (AST). On the right, Quasi-Newton (BFGS): 8 it. (PAST) -11 it. (AST).
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 2 Figure 2.18 -Marmousi example. Velocity versus scatterer position relative root mean square error evolution during the inversion. The red and black curves denote the inversion through AST[START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and the proposed approach respectively.
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 22 Figure 2.19 -Marmousi revisit example. Reference parameters used in the ray+Born modeling. (a) The original Marmousi model. (b) The source wavelet signature obtained by applying the trapezoid filter shown on the bottom panel to a delta function [0 -10 -35 -55] Hz (Thierry et al., 1999c; Operto et al., 2000a). (c) A smooth version of (a) representing the velocity macro model. (d) Reference velocity perturbation model obtained through a subtraction of (c) from (a), a filtering of depth-to-time converted vertical profiles, then time-to-depth conversion.
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 2212 Figure 2.21 -Marmousi revisit example. Scatterers superimposed on the initial velocity model and the ones inferred from PAST in the case where: (a-b) the slope at the receiver is used as objective parameter,(c-d) the slope at the source is used as objective parameter and (e-f) where both slopes are used as focusing attribute and objective parameter.
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 2 Figure 2.23 -Marmousi revisit example. (a) The theoretical reflectivity. (b-f) Images obtained through ray+Born migration/inversion using as background model the reference velocity macro model, the initial velocity model and three cases presented in figure (2.21), respectively.
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 2225 Figure 2.24 -Marmousi revisit example. (a-e) Angle domain common image gathers extracted at 5 km from the images (b-f) presented in figure 2.23. The red arrows pointing at the warped reflectors while the green arrow pointing at the flattened reflector. The red question mark marking an artifact present in the data due to accounting for single arrivals only in the modeling process (refer to the text).
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 226 Figure 2.26 -Marmousi revisit example. Velocity models obtained through PAST for the three cases presented in figure 2.21 superimposed by ray+wavefronts computed using the wavefront construction method of Lambaré et al. (1996a).
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 2 Figure 2.27 -SEFASILS case study. (a) Seismicity map (magnitude 2+) of the Alps-Ligurian basin junction, according to ReNaSS and SiHex catalogs(1980 -2016). The yellow and red stars denote the approximate epicenter location of two major earthquakes: 23 February 1887; M W ≈ 6.7 -6.9[START_REF] Larroque | Reappraisal of the 1887 ligurian earthquake (western mediterranean) from macroseismicity, active tectonics and tsunami modeling[END_REF], and 19 July 1963; Ml = 6.0[START_REF] Bethoux | A closing ligurian sea?[END_REF], respectively. (b) Ship tracks followed and planned in the scope of the ongoing campaign. The profile SEFA14 (light blue line) is the one coinciding with the Ocean Bottom Seismometers (OBSs) denoted by the red dots. Taken from[START_REF] Dessa | Seismic exploration of the deep structure and seismogenic faults in the ligurian sea by joint multi channel and ocean bottom seismic acquisitions: Preliminary results of the SEFASILS cruise[END_REF].
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 2 Figure 2.28 -SEFASILS case study. Common offset gather extract from the SEFA14 dataset (NW-SE), notice the recorded diffraction hyperbolas. The margin is on the rightmost end of the profile (NW).

Figure 2 .Figure 2 .

 22 Figure 2.29 -SEFASILS case study. Slope tomography picks, denoted by red lines, superimposed on a common shot gather (left panel) and a common receiver gather (right panel) extracted from the SEFA14 dataset.

Figure 2 .

 2 Figure 2.31 -SEFASILS case study. Ray+Born migration inversion (Thierry et al., 1999c) results using the post-stack velocity analysis model (a) and the slope tomography inverted model (b) as background velocity. (c-d) Zoom on parts of the images (a) and (b), respectively. Notice the better focused diffractions around the tips of the salt diapirs in the case of (b).

Figure 2 .

 2 Figure 2.32 -SEFASILS case study. Common image gathers extracted at 17,34,63 and 81 from migrated images shown in figure 2.31. The red arrows highlights the misfocused events. VA stands for velocity analysis and ST for slope tomography.
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 31 Figure 3.1 -Simple numerical example illustrating the encountered blind zone in crustal imaging case. A gap is visible between 50 and 165 kilometers at intermediate depths. Rays and arrivals in green and red denote the diving waves turning in the upper crust and head-waves propagating along the Moho. Adapted from Zelt (1999, their Figure 11).
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 32 Figure3.2 -Optimization measurements in FASTT. The star and the square denote the source and receiver positions, respectively. The two-way traveltime T s,r and the slopes at the source and receiver positions, p r,s and p s,r , respectively, are inverted to update the velocity model. The slowness vectors at the source and receiver positions are denoted by p r,s and p s,r , respectively. The recorded data are labeled with the superscript • * . The dash line represents the true ray.
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 33 Figure 3.3 -Toy test for a constant vertical velocity-gradient medium. The medium is parametrized by two parameters, the top velocity v 0 and the vertical velocity gradient a. The colored lines denote the optimization paths taken by the FATT (left column panels) and FASTT (right column panels) using a steepest-descent (blue) and a BFGS (red) scheme. The black curves denote the cost function iso-values. The white diamond denotes the sought minimum. Two acquisition setups: Top panels for a full offset settings and bottom panels for a partial acquisition (missing intermediate offsets).

Figure 3 . 4 -

 34 Figure 3.4 -Overthrust case study. Dense acquisition case. (a) Initial velocity model. (b-c) Velocity models inferred from FATT and FASTT, respectively. (d) True velocity model. (e-f) Final velocity model inferred from FWI using (b) and (c) as initial guesses, respectively.
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 35 Figure 3.5 -Overthrust case study. Rays traced in the extended target model (a), the tomographic models (b-c) inferred from FATT and FASTT respectively.
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 36 Figure 3.6 -Overthrust case study. Gradient computed at the first iteration in the case of FATT (a) and FASTT (b).
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 3738 Figure 3.7 -Overthrust case study. Sparse acquisition case. (a-b) Velocity models inferred from FATT and FASTT, respectively. (c-d) Final velocity model inferred from FWI using (a) and (b) as initial guesses, respectively.
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 39 Figure 3.9 -Overthrust case study. Common-receiver gather simulated at the start of the original exact model in blue/red superimposed by a common-receiver gather in black/transparent simulated at the same position in the FATT+FWI (a) and FASTT+FWI (b) models of Figure 3.7(c-d).
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 310 Figure 3.10 -Nankai case study. (a) Geodynamical context. (b) SFJ acquisition map, the white line and greens stars delineates the shot profile and OBS positions respectively. Adapted from Operto et al. (2006).
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 311 Figure 3.11 -Nankai case study. OBS-17 seismograms overlain by their corresponding firstbreaks picks (green line). The seismograms have been processed by spectral whitening, bandpass filtering and automatic gain control.
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 313 Figure 3.13 -Nankai case study. Dense acquisition results. (a) Initial velocity model. (b-c) Velocity models inferred from FATT and FASTT, respectively. The dash box delineates the area where the most striking differences between the FATT and the FASTT models are shown (d-e) Final velocity model inferred from FWI using (b) and (c) as initial guesses, respectively. The black line in all of the panels delineates the bathymetry.
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 3 Figure 3.14 -Nankai case study. Traveltime (left) and slope (right) misfit at the initial stage (top), post-FATT (middle) and post-FASTT (bottom).
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 315 Figure 3.15 -Nankai case study. OBS-17 seismogram in blue/red superimposed by a seismogram in black/transparent simulated at the same position in the FASTT+FWI model.
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 316317 Figure 3.16 -Nankai case study. Partial acquisition results. (a-b) Velocity models inferred from FATT and FASTT, respectively. (c-d) Final velocity model inferred from FWI using (a) and (b) as initial guesses, respectively. The black line in all of the panels delineates the bathymetry.

Figure 3

 3 Figure 3.18 -Nankai case study. Depth migrated images using the (a) FATT and (b) FASTT models of Figure 3.16(a-b) as background velocity models. The arrows point the decollement on top of the subducting oceanic crust. The almost horizontal decollement intersects unlikely macro velocity variations in the FATT model, while the velocities founded by FASTT comply more accurately with the geometry of the decollement.
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 3 Figure 3.19 -Nankai case study. Angle-domain common image gathers inferred by a pre-stack ray+Born inversion/migration using the FATT and FASTT models seen in figure 3.16, extracted at different positions in the trench fill.
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 320 Figure 3.20 -Nankai case study. (a) FASTT+FWI model superimposed by its corresponding ray+Born migrated image. (b) Same as (a) but the velocity gradient of the FWI model (the sum of the horizontal and vertical derivative) is also superimposed in transparency. This representation style highlights the short-scale (migrated) components of the FWI model. (c) Same as (a) where the detrended version of the FWI model is shown to highlight the intermediatescale structural units reconstructed by FWI and their conformity with the short-scale reflectivity mapped by the migration.

Figure 3

 3 Figure3.21 -An illustration of kinematic migration with the Nankai case study. A small set of secondary arrivals were picked and migrated kinematically by looking at the intersection between the isochrone defined by the two-way traveltime and the ray leaving the shot position with the picked slope. The located scatterer is plotted as a migration facet the dip of which is tangent to the isochrone at the scatterer location.
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Figure 3 . 22 -Figure 3

 3223 Figure 3.22 -An illustration of kinematic migration with the Nankai case study. The different set of arrivals picked through local slant-stacks on synthetic seismograms simulated in the FWI model at the location of (a) OBS number 6, (b) OBS number 17, (c) OBS number 20, (d) OBS number 37, (e) OBS number 48, (f) OBS number 57, (g) OBS number 57. See text for an interpretation of the picked arrivals.
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 324 Figure 3.24 -Kinematic migration of picked events in OBN-48. (a) Rays traced from the two chosen scatterers to the source and receivers, rays paths in red and green. (b-c) Wavefield snapshot at 6 seconds into the simulation and the corresponding recording. The red arrow points at the perturbed wavefront after reaching the red scatterer while the yellow arrow points at the diffracted portion of the wavefield. (d-e) Wavefield snapshot at 8 seconds into the simulation and the corresponding recording, the green arrow pointing at the perturbed wavefront after reaching the green scatterer while the yellow arrow points still tracking the diffracted portion of the wavefield. (f-g) Wavefield snapshot at 15 seconds into the simulation and the corresponding recording, the red and green dots denoting the picked events while the yellow arrow points at the recorded diffractions. 140
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 3 Figure 3.25 -Extended BP Salt 2004 model.
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 3 Figure 3.26 -Extended BP Salt 2004 case study. (a) Initial velocity model. (b) Velocity model built by slope tomography. (c-d) Time-domain FWI results by successive inversion of a 1Hz and 4Hz dominant frequency datasets.
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 3 Figure 3.27 -Extended BP Salt 2004 case study. Traveltime residuals of slope tomography versus offset.
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 33 Figure 3.28 -Extended BP Salt 2004 case study. (a-d) Frequency-domain full waveform inversion results at first (0.5Hz), third (0.5 to 2.5Hz), fifth (1.5 to 3.5Hz) and sixth (1.5 to 5.5Hz) frequency batches.

Figure 3

 3 Figure 3.30 -Extended BP Salt 2004 case study. First-arrival ray paths shot in the true model. Notice the gap around the sub-salt reservoir between 30 to 40 km distance at 8 km in depth.

Figure 3

 3 Figure 3.31 -Extended BP Salt 2004 case study. (a) Simulated OBN gather at 8km in the true model. (b-d) Interleave of simulated seismograms in the true and the initial constant gradient model, the tomography inverted model and the final FWI model, respectively. (e-h) Same as (a-d) but for the OBN at 45km. All the gathers were reduced by a velocity of 7 km/s.

  Figure 3.32 -Extended BP Salt 2004 case study. First-arrival ray paths shot in the true (red solid line), FASTT (green solid line) and FWI (blue solid line) model for the case of the central OBN (45km). Notice the similar channeling effects in the true and FWI and the trapping of first-arrivals across the salt structure even with a 45 km offset data.

Figure 3 .

 3 Figure 3.33 -Gulf of Mexico Basin Opening geological interpretation by Avendonk et al.(2015). The different layers are denoted by: LJ for lower Jurassic, MJ for middle Jurassic, UJ-K-for upper Jurassic and Cretaceous, P for Paleogene, N for Neogene, S for Louann Salt. The green, blue, red, and purple lines delineate the base of the postrift strata, the base of salt deposition, the post-depositional extension of the salt basin and the interpreted Cenozoic salt weld, respectively. Taken from[START_REF] Avendonk | Continental rifting and sediment infill in the northwestern Gulf of Mexico[END_REF].
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 4 On the role of first-arrival and reflection data in crustal scale imaging: a synthetic example The incorporation of first-arrival slopes + traveltime data is straightforward. The composite version of the objectives function seen in sections 2.1.4 and 3.1s,ns,r (m) -p RF s,ns,r * ) 2(3.37)
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 333 Figure 3.34 -GO_3D_OBS -Joint inversion case. Reference and target models for the synthetic crustal case study. (a) The exact velocity model, the GO_3D_OBS crustal benchmark (Górszczyk and Operto, 2021). (b) The extracted high-frequency component of the model in (a), which will be used as reflectivity for ray+Born modeling (Thierry et al., 1999b). (c) A smooth version of the model (a), being the target tomographic model. (d) Ray+Born migration/inversion using the model (c), being the target migration image where steeply dipping structures and shadow zones are not retrieved.
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 3 Figure 3.37 -GO_3D_OBS -Joint inversion case. Tomography models retrieved through parsimonious slope tomography: (a) following 38 iterations using data with up to 4 kilometers offset, (b) following 44 iterations using data with up to 8 kilometers offset and its corresponding implicitly updated scatterers position (c) and depth-migrated image (d).

Figure 3

 3 Figure 3.38 -GO_3D_OBS -Joint inversion case. Tomography models retrieved through: (a) first-arrival traveltime tomography following 145 iterations and (b) its migrated image obtained by using it as a background mode. Same for (c) and (d) obtained through first-arrival slope + traveltime tomography following 45 iterations.

  Figure 3.40 -GO_3D_OBS -Joint inversion case. Angle-domain common image gathers extracted at 28,54,109 and 144 kilometers obtained through the ray+Born migration/inversion using as a reference model the target model (a), the FATT inverted model (b), the FASTT inverted model (c), the PAST inverted model (d) and the joint inversion obtained model (e).Red arrows denote the badly constrained events, while the green arrow denote the corrected events. 159
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 41 Figure 4.1 -(a) Focusing a locally coherent associated with a reflection in the depth migrated domain through the focusing equations.The two-way traveltime and the slope at the receiver are fitted by construction while the slope at the source is used as objective measure during the inversion[START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. (b) Migrating the direct arrival of an event from different receivers by fitting the traveltime and the slope at receivers. Different virtual event locations are obtained due to the inaccuracy of the velocity model. (c) Same as (b) but evaluating the data misfit at every receiver for all virtual events. The solid lines are rays describing the migration of a virtual event, while dashed lines describe rays connecting the virtual event migrated from a receiver r i to a receiver r j .
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 42 Figure 4.2 -Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). Kinematically migrated picks in the case of the true velocity model (a). Notice the focusing of events migrated by all receivers to the true location (a) and the spread caused by the velocity anomaly (b).
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 4 2 is shown in Figure4.4 and illustrates the focusing of the velocity inclusion with some smearing inherited from the footprint of the sensitivity kernels connecting the events to the stations. The only equation left to develop is the gradient of the objective function (equation 4.1) with respect to the origin time correction
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 43 Figure 4.3 -Triple receiver kernel λ r (x) (equation 4.20) solved for the case presented in Figure 4.1b. (a) The isolated contributions of γ e,r ,r and ξ e,r ,r back-propagated from the virtual events migrated by receivers r towards receivers r . (b) The isolated contributions of α e,r and β e,r back-propagated from the virtual events migrated by receivers r towards themselves.
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 44 Figure 4.4 -Gradient of J(m) (equation 4.11) with respect to velocity for the case presented in figure 4.2 .
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 46 Figure 4.6 -Toy test case: inverting for velocity with exact origin time. (a) Vertical and (b) horizontal comparative velocity perturbation logs. Black and red lines denote the exact and reconstructed perturbations, respectively. The positions of the logs are provided in the figure.
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 47 Figure 4.7 -Toy test case: inverting for velocity with wrong origin times (uniform) as passive parameters. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 118 iterations.
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 48 Figure 4.8 -Toy test case: inverting for velocity with wrong origin times (different for every event) as passive parameters. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 47 iterations (bottom).
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 410 Figure 4.10 -Toy test case: inverting for the origin time correction parameter using the initial velocity model of Figure 4.5. Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations at (a) the initial stage of the inversion, (b) final stage after 6 iterations where velocity is passive parameter and (c) the joint update result after 83 iterations. The focused locations at the final stage where velocity is passive in the inversion exhibit the same spread as the initial stage of the case where the velocity was inverted using the true origin time (Fig. 4.5a)
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 411 Figure 4.11 -Toy test case: multi-parameter inversion (different origin time mismatch for every event). Virtual locations (green cross) of 17 events (black circle) corresponding to all receivers (yellow asterisk). (a-b) Focused locations in the case of (a) the initial velocity model and (b) the updated velocity model after 76 iterations (bottom).

  and 4.15a reveal the channelling of the rays occurring in the true tomography model along the high velocity layers. On the other hand, the rays shot in the initial model exhibit less channelling due to the smoothing in comparison to the true model(Figures 4.14b 

Figure 4 .

 4 Figure 4.14 -Marmousi case: (a) the true tomographic and (b) the initial models. Virtual event locations are denoted by a solid white circle and black lines are the rays connecting each virtual event related to event number one (x = 5000m, z = 1040m) to its receiver (using true origin time).

  and 4.18. The initial stage of the inversion (panels a and e ofFigures 4.17 

  and 4.18) generates the highest misfit that is partially reduced at the local minimum at the end of the inversion (panel b and f ofFigures 4.17 

  and

  and
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 4 Figure 4.17 -Marmousi case: (a-d) Traveltime and (e-h) slope absolute misfit of the event number one at the initial stage (a,e), the final stage of the full acquisition setup (b,f), the first stage of the offset continuation setup (c,g) and the final stage of the offset continuation setup (d,h), respectively. The green squares denote the limited number of receivers used during the offset continuation setup.
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 4 Figure 4.18 -Marmousi case: Same as Figure 4.17 for event two.
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 4 Figure 4.19 -Marmousi case: inverting for velocity with exact origin time. Virtual locations (black cross) of the two events (circle) migrated from all receivers (black asterisk). (a) Focused locations in the case of the initial velocity model, (b) the velocity perturbations added to the initial model after iterations and its focused scatterers, (c) the velocity model at the initial stage of the last extension and its focused scatterers, (d) the velocity perturbations added to the initial model after 71 iterations using extended lateral receiver coverage.
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 4 Figure 4.21 -Marmousi case: inverting for velocity and origin time corrections. Virtual locations (black cross) of the two events (circle) migrated from all receivers (black asterisk). (a) Focused locations in the case of the initial velocity model, (b) the velocity perturbations added to the initial model after 49 iterations and its focused scatterers, (c) the velocity model at the initial stage of the last extension and its focused scatterers, (d) the velocity perturbations added to the initial model after 77 iterations using extended lateral receiver coverage.
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 4 Figure 4.22 -Gradient of J(m) (equation A-3) with respect to velocity for the case presented in Figure 4.2 .

Figure 4 .

 4 Figure 4.23 -Toy test case: multi-parameter inversion (different origin time mismatch for every event) using the time-reversal migration-based formulation. The figure shows the the updated velocity model after 100 iterations.
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Table 1 .

 1 

	Tensor index ij kl 11 22 33 32=23 31=13 12=21
	↓					
	Voigt notation α β 1	2	3	4	5	6

.14) where C αβ are Voigt notations, used to simplify the representation of symmetric tensors. The convention used is presented in table 1.1. Having simplified the representation of the stiffness The framework: theory and practice 1 -Voigt notation for stiffness tensor indexes.

Table 1 .

 1 

		size (step)	# FPI # FSM per FPI Runtime (sec)
	HMG	101 × 201 (h = 50m)	2	2	0.1273
	Marmousi	171 × 641(h = 20m)	2	3	1.0159
	GO_3D_OBSERVER 1201 × 6801 (h = 25m)	2	5	108.009
	EXT. BP SALT 2004 239 × 1949 (h = 50m)	2	5	5.970
	BP SALT TTI 2007	126 × 626 (h = 50m)	5	3	1.655

2 -Sequential FSM -Number of fixed point iterations (FPI) and number of fast sweeping per FPI. Elapse run time in seconds. Computed using Intel Xeon CPU E5-1603 2.80 Ghz.

Table 1 .

 1 3 -Parallel FSM -Number of fixed point iterations (FPI) and number of fast sweeping per FPI. Elapse run time in seconds. Computed using Intel Xeon CPU E5-1603 2.80 Ghz.

  Graphical representation depicting the relationship between the rays (black lines), wavefronts (black dashed contours), slowness vectors (black arrows), gradient of slopes (red and blue arrows), the normal (green arrow) and the tangent (magenta arrow) vectors to the isochrone (green dashed curve). See text for the interpretation of each vector.
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	where									
			∂p r,ns,r ∂p s,ns,r	=	det						
			2.16),								
					ξ r,ns,r = -ξ s,ns,r	det det	∂(Ts,r,n s,r , ps,n s,r ) ∂(xn s,r , zn s,r ) ∂(xn s,r , zn s,r ) ∂(Ts,r,n s,r , pr,n s,r )	= -F r ξ s,ns,r ,	(2.18)

µ s,r,ns,r = -ξ s,ns,r det ∂(ps,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r ) det ∂(Ts,r,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r ) = -F T ξ s,ns,r . (2.19) These expressions show that ξ r,ns,r and µ s,r,ns,r are scaled versions of the source slope residuals. Injecting expressions of ξ r,ns,r and µ s,r,ns,r in equation 2.17 gives ∂(Ts,r,n s,r , ps,n s,r ) ∂(xn s,r , zn s,r ) det ∂(Ts,r,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r ) ∂p s,ns,r ∂T s,r,ns,r = det ∂(ps,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r ) det ∂(Ts,r,n s,r , pr,n s,r ) ∂(xn s,r , zn s,r )

  dT s,r,ns,r = 0 and dp r,ns,r = 0. Therefore, the system becomes

	 	dp s,ns,r 0 0	  =	∂ p s,ns,r , T s,r,ns,r , p r,ns,r ∂ m l , x ns,r , z ns,r	•	 	δm l δz ns,r δx ns,r	 	(2.26)
	Solving this system for δm l with Cramer's rule gives the partial derivative of p s,ns,r with respect
	to m l								
			∂p s,ns,r ∂m l	=	∂(ps,n s,r ,Ts,r,n s,r ,pr,n s,r ) ∂(m l , xn s,r , zn s,r ) ∂(Ts,r,n s,r , pr,n s,r ) det det ∂(xn s,r , zn s,r )			
									δm l	
							•		δx ns,r		(2.25)
									δz ns,r

Since T s,r,ns,r and p r,ns,r are forced to be equal to the measurements T * s,r,ns,r and p * r,ns,r in PAST,

  r γ e,r ,r -

							1 2∆r	Q t e,r +1 ξ e,r +1,r +	1 2∆r	Q t e,r -1 ξ e,r -1,r
	+	Ne e=1	Q t e,r α e,r -	1 2∆r	Q t e,r+1 β e,r+1 +	1 2∆r	Q t e,r-1 β e,r-1 .	(4.20)

The discussion here is done around a single scatterer in the subsurface, however it should be noted that in reality the diversity of orientation/dip of reflectors influences the continuum of the wavenumber spectrum[START_REF] Mora | Inversion = migration + tomography[END_REF][START_REF] Jin | Two-dimensional asymptotic iterative elastic inversion[END_REF].

referred to as the normal move-out correction.

in most wave-equation tomography techniques a linearization is employed around the forward problem.[START_REF] Zelt | Frequency-dependent traveltime tomography for near-surface seismic refraction data[END_REF] proposed a fully nonlinear alternative.

I suppose for the rest of the discussion that a common shot configuration used since it is the only configuration implemented during my thesis

even though slope tomography is a nonlinear tomographic approach.

in the absence of external forces, hence f i (x, t) = 0.

a Dirichlet boundary condition, setting traveltime to zero at the initiation point is enforced in practice.

I don't use "source for eikonal" since the source in terms of acquisition is mentioned.

which could be calculated through the Sherman-Morrison-Woodbury formula. In the context of analytic toy tests done on parsimonious slope tomography, it has been observed that, through a couple of iterations, this approximate Hessian becomes equivalent to the full Newton Hessian. I note that this is not generalized to full scale applications.

the low cut-off slope being actually steeper, the lowest frequency being around 5 Hz.

in terms of implementation it simply implies doubling the data set and swapping for the added portion the position of the source and receiver and their associated slopes.

if possible.

it is a one-way traveltime but during kinematic migration we evaluate the two-way traveltime isochrone

which could be true only for their case since the velocity model of the Valhall case study is nearly tabular

in the original abstract, the first inversion was done through time-domain FWI while the second one through a frequency-domain code. The test was repeated to have more comparable results using the exactly same inversion mechanism while having more control on the frequency band of the data
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Steepest-Descent

Full Newton Full Newton (Damped / Scaled) Gauss-Newton Gauss-Newton (Damped / Scaled) Levenberg-Marquardt is marked by a green dot. The red line represents the optimization path taken by through the different schemes at every iteration (red dot) starting from an initial guess (-0.6,1.5). [START_REF] Alkhalifah | Velocity analysis for transversely isotropic media[END_REF][START_REF] Plessix | A parametrization study for surface seismic full waveform inversion in an acoustic vertical transversely isotropic medium[END_REF][START_REF] Gholami | Which parametrization is suitable for acoustic VTI full waveform inversion? -Part 1: sensitivity and trade-off analysis[END_REF], for example A(x) =v v (x) 2 (1 + 2 (x)), C(x) =v v (x) 2 , E(x) = -2v v (x) 4 ( (x) -δ(x)).

(3.7)

We refer the reader to [START_REF] Tavakoli | An iterative factored eikonal solver for TTI media[END_REF] and [START_REF] Waheed | An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media[END_REF] for a detailed description on the manner of solving equation 3.6 in TTI media using the fast sweeping method [START_REF] Zhao | A fast sweeping method for eikonal equations[END_REF][START_REF] Luo | Fast sweeping method for factored anisotropic eikonal equations: multipicative and additive factors[END_REF] as a global solver and a fixed-point iteration algorithm [START_REF] Kelley | Iterative Methods for Linear and Nonlinear Equations[END_REF] for handling the quartic term.

In order to extract the traveltime solution at any position x i ∈ M from the traveltime maps t s (x) and t r (x), we introduce a sampling operator Q(x -x i ) implemented with a Kaiserwindowed sinc function [START_REF] Hicks | Arbitrary source and receiver positioning in finite-difference schemes using Kaiser windowed sinc functions[END_REF]. The first-arrival traveltimes T s,r ∈ D are obtained straightforwardly by pointing the operator at the receiver position r in the traveltime map t s (x) initiated at the source s or vice versa depending on the acquisition and on the computational advantages of using the reciprocity principle

while the slopes p r (s) ∈ D and p s (r) ∈ D at source and receiver positions, respectively, are computed in a finite-difference sense as p r (s) = p r,s = ∂T s,r ∂x s = ∂t r (s)

and p s (r) = p s,r = ∂T s,r ∂x r = ∂t s (r)

where s/r ± = s/r ± h, h = (h, 0) and h > 0 denotes a horizontal space shift suitable for accurate estimation of the slope, ideally the shot/receiver interval to re-use a precomputed traveltime map. Note that we assume for now that the sources and receivers are deployed on an horizontal line. The reader is referred to the final discussion section where the generalization to land acquisitions with complex topography or dense seabed acquisitions with complex bathymetry is discussed. A more precise strategy for the computation of the slopes would involve solving an additional eikonal-based partial differential equation solving for the emergence angle [START_REF] Qian | An adaptive finite-difference method for traveltimes and amplitudes[END_REF] or tying the traveltime perturbation with respect to the source position [START_REF] Alkhalifah | An eikonal based formulation for traveltime perturbation with respect to the source location[END_REF].

Expanding F in equation 3.3 using the state equations (3.4),(3.5),(3.8),(3.9),(3.10), and associating the adjoint-state variables ū = (ξ s,r , ξ r,s , µ s,r , λ s , λ r ) to their respective state variables 

Promises and limits of first-arrival tomography

The application figuring in this section was published in "From slope tomography to FWI: is the conventional workflow viable in complex settings?", 2020, S. Sambolian, S. Operto, A. Ribodetti, and L.Combe, SEG Technical Program Expanded Abstracts. This section is a modified version of the expanded abstract.

Objectives of the application

Ultra-long offset seabed acquisitions implemented with sparse array of ocean bottom nodes (OBN) are emerging as the go-to strategy for velocity model building in deep offshore subsalt imaging (Shen et al., 2018a). Multi-component ocean bottom nodes (OBN) offer the flexibility of covering large areas to the extent of recording a plethora of wave arrivals and in particular diving waves that undershoot the structures of interest [START_REF] Blanch | Designing an exploration scale OBN: Acquisition design for subsalt imaging and velocity determination[END_REF]. These seabottom acquisitions are also amenable to the recording of frequencies as low as 1.5Hz [START_REF] Li | Leading a new deep water OBN acquisition era: Two 2017-2018 GoM OBN surveys[END_REF][START_REF] Ni | Seismic modeling for a velocity survey at Atlantis[END_REF]. Full-Waveform Inversion (FWI) can be fed with this wide variety of low-frequency wave types to build broadband velocity models. Ultra-long offset surveys provide also a suitable framework to revive well proven tomography methods such as first-arrival slope+traveltime tomography to build kinematically-accurate initial velocity model for FWI.

In order to asses the test the limits of first-arrival slope + traveltime tomography (FASTT) as an initial velocity model building tool for FWI in complex media, I revisit the BP Salt 2004 model [START_REF] Billette | The 2004 BP velocity benchmark[END_REF] case study. Many works have presented the BP Salt 2004 model as a benchmark for a plethora of FWI recipes using different acquisitions, regularization techniques and formulations since the blind attempt of [START_REF] Brenders | Waveform tomography of marine seismic data: what can limited offset offer?[END_REF] where a conventional strategy was used but with a limited offset data (maximum of 15km) and starting the inversion at 0.5Hz. Evidently, the interest here is to benchmark (FASTT) and assess its viability, while mimicking an ultra-long offset sparse OBN acquisition. The original model was extended without rescaling just for the purpose of having proper undershooting on the structures of interest. At the FWI level, a brute-force FWI workflow is used. In the next section, two inversion results are presented in which data of different frequency bands are inverted. In the first one, the frequency band is relatively similar to [START_REF] Brenders | Waveform tomography of marine seismic data: what can limited offset offer?[END_REF] for the sake of verifying that the selected offset range and frequencies allow for the accurate reconstruction of the entire targeted medium. I then present a workflow using more realistic frequencies.

Experimental setup

The building of the initial velocity model for FWI is done through first-arrival slope + traveltime tomography presented in section 3.1. For this case, I did not proceed by doing a joint inversion of reflection and first-arrival data. Reflection slope tomography requires the slopes (horizontal components of the slowness vectors) at the source and receiver positions, the latter slope being challenging to measure in the case of OBN data due to the sparsity of the acquisition [START_REF] Alerini | Stereotomography for nodes data[END_REF]. Moreover, the quality control of picking at post-critical incidences is quite Chapter 4

The Hypocenter-Velocity Problem through a Seismic Imaging Inspiration Contents first breaks and slopes as objectives measures, we show how, through the kinematic migration explained in previous sections, we are able to manage the hypocentre-velocity coupling. The sub-problem is resolved then projected into the optimization around velocity. In this paper, we present two possible formulations, we analyze the coupling on a toy test, and show how we manage the origin time correction. We follow with an exploration scale application as a validation.

The supplementary material referred to in the paper are available under the following DOI: https://doi.org/10.1093/gji/ggaa555.

Consistent seismic event location and subsurface parameters inversion through slope tomography: a variable-projection approach S. Sambolian, S. Operto, A. Ribodetti, and J. Virieux Published in Geophysical Journal International (2021) 224 (1956[START_REF] Taner | Complex seismic trace analysis[END_REF] 

Summary

We revisit the hypocentre-velocity problem, which is of interest in different fields as for example microseismics and seismology. We develop a formulation based on kinematic migration of two picked kinematic attributes in the two dimensional case, the traveltime and the slope (horizontal component of the slowness vector), from which we are able to retrieve the location and subsequently the origin time correction and the subsurface parameters mainly velocity. We show how, through a variable projection, the optimization problem boils down to a physically consistent and parsimonious form where the location estimation is projected into the subsurface parameter problem. We present in this study a proof of concept validated by a toy test in two dimensions and a synthetic case study on the Marmousi model. The method presented in this study is extendible to three dimensions by incorporating the crossline slope or the backazimuth as a supplementary attribute.

Introduction

The hypocentre-velocity problem has been a challenging topic of interest in geophysics with its main purpose being the localization of seismic events. The source location problem by itself has been extensively researched for different applications and purposes. On a macro scale, locating the origin of earthquakes is crucial to investigate the geology and dynamics of active margins [START_REF] Roecker | Velocity structure of the pamir-hindu kush region: Possible evidence of subducted crust[END_REF], while at a smaller scale for reservoir monitoring and characterization purposes using arrays [START_REF] Grechka | Predicting permeability and gas production of hydraulically fractured tight sands from microseismic data[END_REF][START_REF] Deflandre | Induced microseismicity: Short overview, state of the art and feedback on source rock production[END_REF] or borehole recordings [START_REF] Jones | Locating microseismic events using borehole data[END_REF]. Since the pioneering work of [START_REF] Geiger | Probability method for the determination of earthquake epicenters from the arrival time only[END_REF], the source location is often approximated in a least-squares inversion sense and grid-search methods [START_REF] Lomax | Earthquake Location, Direct, Global-Search Methods[END_REF]. Many variants of traveltime-based localization methods emerged. Some approaches differ in terms of optimization, as an example graphical methods like the master event method [START_REF] Zhou | Rapid three-dimensional hypocentral determination using a master station method[END_REF] and the maximum intersection method [START_REF] Font | Hypocentral determination offshore eastern Taiwan using the maximum intersection method[END_REF] versus direct non-linear location algorithms [START_REF] Lomax | Probabilistic earthquake location in 3D and layered models: Introduction of a metropolis-gibbs method and comparison with linear locations[END_REF], while others differ in the manner of handling the data in terms 

Discussion

We have proposed in this study a consistent formulation of the hypocentre-velocity problem under a framework based on eikonal solvers and the adjoint-state method.

A parsimonious variable-projection approach

Our method differs from the vast majority of previous studies in the sense that the unknown positions of the events are not processed as parameters of a least-squares (overdetermined) optimization problem where velocities are either passive quantities or another class of variables. Instead, these positions are eliminated from the optimization problem by tying them to the velocities via the kinematic migration of the observables (traveltime and slope). This implies that the position of the events are computed explicitly at each iteration as part of the forward problem (i.e., as state variables) by solving a pair of focusing (state) equations whose righthand sides are the observables. In this framework, the only optimization variables to update are the wavespeeds leading to a better-posed optimization problem under this parsimonious parametrization. We also tackle the origin time issue through a correction parameter and we discussed its importance in the inversion.

Time-reversal migration versus tomographic approaches

With this time-reversal migration-based logic, the position of an event is indeed seen differently by each receiver if the velocities are inaccurate. We propose in the appendix an alternative formulation which relies on the intuitive idea of collapsing the virtual positions migrated from all the receivers to the true event location by updating velocities. In this formulation, the position of each virtual event is successively processed as an observable to be matched by the positions of the other virtual events, the latter being processed as state variables. The drawback of this formulation is related to its sensitivity kernel that provides a sub-optimal illumination of the subsurface in the sense that it connects each virtual event to the sole receiver from which it was migrated along a transmitted one-way path (similar to the sub-kernel shown in Figure 4.3b). To overcome the limit of this formulation inspired by time-reversal migration-based methods, we have developed a formulation with a more reflection-tomography oriented logic inspired by [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF] in the sense that the observables are the traveltimes and slopes at the receivers other than the one used to position the virtual event by kinematic migration. The mismatches between these observables and the attributes simulated from the virtual event position are minimized to update the wavespeeds and the origin times with as a direct consequence the collapsing of the smeared positions of the virtual events to their true position. This approach enriches the one-way path kernel of the previous formulation connecting the receiver to the virtual event with multiple paths connecting the virtual event to the other receivers, hence mimicking the two-way paths of reflected waves (Fig. 4.3a).

Supplementary material

You will find below the list of animated graphic that contain the full inversion results at each iteration for the different cases mentioned in this paper, note that the value of the origin time correction parameter are written next to each event and the exact value for the errors is noted in parenthesis for each event in the case of different errors: where N e and N r denote the number of events and receivers, respectively. The function Φ e,r (m) evaluates the spread of the virtual events migrated from each receiver r for a given event e in function of a given model m. In the context of this example, we use the Euclidian distance

which is normalized by N r -1 to keep the physical unit of distance. Note that the position of each virtual event is successively processed as an observable as indicated by the superscript * assigned to the fixed subscript r. In other words, the position of each virtual event is in turn an observable (when the subscript r is assigned to it) and a state variable (when the running subscript r is assigned to it), the associated state equation being the focusing equations used for kinematic migration. The operator F gathers the forward problem equations related to the data simulation through eikonal-resolved traveltime maps, the focusing equations (Chauris et al., 2002a), and the distance employed in Φ.

We solve the constrained problem, (equation A-1) under a Lagrangian formalism following the same adjoint-state method employed in section 4.2.1 using the state equations ( 4 

where the Lagrangian functional L depends on the subsurface parameters m through the eikonal equation solved in the subsurface domain Ω.

We develop now the adjoint-state equations. Before proceeding with the first adjoint-state equation ∂L/∂Φ e,r = 0, we remind the reader that Φ e,r is an auxiliary variable; the misfit distance could have been explicitly written in C(m). Having said that the first adjoint-state equation leads to γ e,r = 1.

(A-4)
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For each event, ∂L/∂x e,r = 0. Considering that x e,r gathers x e,r and z e,r (embedded in Q e,r ) gives the following 2 × 2 system of linear equations for α e,r and β e,r : .

(A-7)

The resultant adjoint-state variables α e,r and β e,r describe how Φ e,r evolves when the coordinates x e,r of an event are moved by a velocity update (refer to section 4.2.1 for a more detailed interpretation of the determinants). We note that equations A-6 and A-7 are only defined for det ∂(Te,r , pe,r) ∂(xe,r , ze,r) = 0. The system is always valid since in our case this condition could never be violated as already mentioned in section 4.2.1. Proceeding with the last derivative ∂L/∂t r = 0, we obtain the adjoint-state equation satisfied by λ r (x). After integrating by parts and enforcing the validity of L in the subsurface domain Ω, the derivation leads to

Q t e,r+1 β e,r+1 + 1 2∆r

Q t e,r-1 β e,r-1 .

(A-8)

The adjoint field λ r (x) back-projects the weighted sum of residual distances between a virtual event and all its counterparts held by Φ e,r along a ray tube following the group velocity vector U r connecting x e,r to x r . From the adjoint-state variables, the gradient of the objective function J(m) (equation A-3) with respect to the subsurface parameters (Fig. 4.22) is straightforwardly obtained by the weighted summation of the adjoint fields λ r

and the gradient of the objective function (equation A-1) with respect to the origin time correction parameter and is written as follows for an event

Comparing the right-hand side of the adjoint-state equation, equation A-8, with that of the tomography-inspired formulation, equation 4.20, shows that the latter formulation generates a richer kernel through the cross talk between receivers highlighted by the summation over r in the right-hand side of the adjoint-state equation solved for receiver r. These different kernels indeed result from the fact that one virtual event migrated by one receiver generates only one observable in the first formulation (Fig. 4.1b), while this virtual event is processed as an excitation term in the second formulation to match the surface measurements recorded by receivers other than the one used to migrate the virtual event, and hence generate as many observables at stations (Fig. 4.1c). The Figure 4.22 shows the gradient of the objective function, equation A-1, corresponding to the experiment of Figure 4.2. Comparing this gradient with that computed with the tomographylike formulation (Fig. 4.4) clearly shows that the enriched kernel of the latter formulation better focused the velocity inclusion.

The result of the multi-parameter inversion of the toy test obtained with the formulation presented in this appendix is shown in Figure 4.23. For this simple test, the results are similar to those obtained with the tomography-like formulation (Fig. 4.11), although 100 iterations were necessary to reach the convergence point against 76 iterations for the tomography-like formulation. Moreover, we fail to make the time-reversal migration-based formulation work on the more challenging Marmousi case study where the ill-posedness resulting from the lack of illumination induced by the limited number of events was aggravated by the limited coverage provided by the sensitivity kernels of this formulation.

Conclusion and Perspectives

The principal aim of this thesis was recasting slope tomography based on eikonal solvers and the adjoint-state method under a framework where a velocity-position consistency is insured. Through a variable projection, the sub-problem tied to the scatterer localization is resolved by kinematic migration and projected in the main optimization problem involving the subsurface parameters. The introduction of first-arrival data becomes straightforward in such settings, leading to a fully integrated 2D tomography code valid for anisotropic media (TTI). The velocity-position coupling, inherently present in various other methods, could be also tackled through similar approaches. We extend its application to the case of hypocentre-velocity problems.

General conclusions

The developments around the parsimonious slope tomography formulation, presented in Chapter 2, required both theoretical and numerical developments. The forward solver and the adjoint-state method schemes were already developed in a previous work (see Chapter 1). The algorithm was adapted for the parsimonious slope tomography and a modification of its parallel computing architecture ensured a higher scalability when the number of scatterers grows. The kinematic migration is resolved through a grid-search algorithm. A local Newton-Raphson optimization scheme is also another option for resolving this sub-problem. The method was validated through many numerical experiments both synthetic and real in exploration and academic crustal settings. I also analyze through a case study the choice of focusing attributes. The results show that indeed, the inversion is influenced by the latter. I show that inverting the data under a double-pass strategy, where a virtual redundancy is enforced, offers superior results. The results obtained through the different numerical experiments illustrate the successfulness of slope tomography even in relatively complex settings. The method, being based on automatically picked locally coherent events, offers an advantageous framework for velocity model building compared to more conventional methods used in the academic community.

First-arrival traveltimes, commonly inverted in wide-angle acquisition settings, are embedded in the developed method. In Chapter 3, I first tackle the ill-posedness of first-arrival traveltime tomography by proposing a data-driven remedy through the introduction of slopes as objective measures. This solution is backed up through synthetic and real data case studies. The results, through the various numerical experiments, show the boosted resolution and robustness of the inversion due to the introduction of slopes. I present a possible use of picked
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Appendix I: List of publications You will find in the following appendix a comprehensive list of the scientific communications done in collaboration with my supervisors and colleagues.

Peer-Reviewed Journal Articles

-Sambolian, S., Operto, S., [START_REF] Sambolian | Consistent seismic event location and subsurface parameters inversion through slope tomography: a variable-projection approach[END_REF] Other international oral communications as presenter -Sambolian, S., Operto, S., [START_REF] Sambolian | On the paramatrization of Slope Tomography: its implication on the velocity-position coupling[END_REF]. On the paramatrization of Slope Tomography: its implication on the velocity-position coupling.

In SIAM Conference on Mathematical and Computational Issues in the Geosciences, (Invited)

-Sambolian, S., Operto, S., Ribodetti, A., and Virieux, J. (2019). How to properly invert dense seismic data? What we learned from slope tomography. In AGU Fall Meeting Abstracts, volume 2019, pages U13C-10, (Invited) -Dessa, J.-X., Sambolian, S., Miguil, M., Schenini, L., Operto, S., [START_REF] Dessa | High resolution seismic imaging in shallow salt environment: preliminary results from the SEFASILS campaign[END_REF]. High resolution seismic imaging in shallow salt environment: preliminary results from the SEFASILS campaign. In AGU Fall Meeting 2019 (San Francisco)

-Sambolian, S., Operto, S., [START_REF] Sambolian | From highresolution seismic tomography to full-waveform inversion using OBS and MCS data jointly: a look on the challenges and limits of crustal imaging[END_REF]. From high-resolution seismic tomography to full-waveform inversion using OBS and MCS data jointly: a look on the challenges and limits of crustal imaging. In AGU Fall Meeting 2019 (San Francisco)

-Sambolian, S., F., B. T., Gorszczyk, A., Operto, S., Ribodetti, A., , and Virieux, J. (2018a).

Mitigating the ill-posedness of first-arrival traveltime tomography using slopes: application to crustal imaging from obs data. In AGU Fall Meeting 2018 (Washington, D.C.)

-Sambolian, S., Operto, S., [START_REF] Sambolian | How to properly invert dense seismic data? What we learned from slope tomography[END_REF]. Double-difference/slope tomography by a variational projection approach. In AGU Fall Meeting 2018 (Washington, D.C.)

Appendix II: Slope tomography algorithms

You will find in the following appendix a representation of the algorithms of slope tomography based on eikonal solvers and the adjoint-state method [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF] and its variant based on the parsimonious formulation [START_REF] Sambolian | Parsimonious slope tomography based on eikonal solvers and the adjoint-state method[END_REF].

Algorithm 1 Adjoint slope tomography workflow [START_REF] Tavakoli | Slope tomography based on eikonal solvers and the adjoint-state method[END_REF]. N ms : number of multi-scale step; S: B-spline subdivision operator. For sake of clarity, the model parameters m, the B-spline velocity coefficients c, the misfit function C and its gradient ∇C are indexed by the scale step i and the iteration number k.

Appendix III: Optimization schemes performance

In all large scale numerical experiments presented in this manuscript, the L-BFGS method was used for the optimization. In this appendix, I present a toy test done on a small model with a Gaussian ball anomaly at its center. The experiment is done using the framework presented in this manuscript. I use a perfect square acquisition and use direct arrivals traveltimes as objective measures. The first figure below shows the effect of the inverse Hessian on the gradient and shows the recovery of the ball. In the second figure, I compare the performance of many optimization schemes with preconditioning (inverse diagonal of Gauss-Newton Hessian).

Circular anomaly toy test. Comparison of the different steps of the inversion. The true perturbation (top left), the first gradient (top middle) and the Inverse Hessian-gradient product (top right), the recovered final perturbation (bottom left), the difference between the true and inverted perturbation (bottom middle) and a velocity log extracted across the center of the anomaly (bottom right). The sources and receivers are denoted by black crosses and circles, respectively.

Circular anomaly toy test. The cost function evolution through the iterations using different optimization schemes and preconditioners. STD for steepest-descent, NLCG for nonlinear conjugate gradient, LFBGS for Limited-memory BFGS, TRN for truncated Newton. The prefix "P denotes the use of preconditioning. "First preco" means that only the preconditioner was calculated once at the beginning of the inversion and kept as it is. In the case of LBFGS, the index (i) denotes the number of vector pairs kept for the inverse Hessian approximation. Optimization performed through the SEISCOPE optimization toolbox (Métivier and Brossier, 2016a)