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Resumo

O Problema da Árvore Geradora com Rotulação Mínima (MLSTP, do inglês minimum labeling
spanning tree problem) é um problema de otimização combinatória que consiste em encontrar
uma árvore de cobertura em um grafo com arestas rotuladas, isto é, um grafo no qual cada aresta
possui um rótulo associado, utilizando o menor número de rótulos. Este problema é NP-difícil
e tem atraído bastante atenção em pesquisas nos últimos anos. Por sua vez, o Problema Gener-
alizado da Árvore Geradora com Rotulação Mínima (GMLSTP, do inglês generalized minimum
labeling spanning tree problem) é uma generalização do MLSTP na qual se permite que múlti-
plos rótulos sejam associados a uma aresta. Ambos os problemas tem aplicações práticas em
áreas importantes, como Projeto de Redes de Computadores, Projeto de Redes de Transporte
Multimodais e Compactação de Dados. Esta tese aborda vários problemas de conectividade
definidos em grafos com arestas rotuladas, em especial o Problema da Árvore Geradora com
Rotulação Mínima e sua versão generalizada. As contribuições neste trabalho podem ser classi-
ficadas entre teóricas e práticas. Dentre as contribuições teóricas, introduzimos novos conceitos,
definições, propriedades e teoremas úteis em relação a grafos com arestas rotuladas, bem como
um estudo poliédrico sobre o GMLSTP. Dentre as contribuições práticas, propusemos novas
heurísticas — como o algoritmo baseado na metaheurística MSLB e a heurística construtiva
pMVCA — e métodos exatos — como novas formulações matemáticas e algoritmos branch-
and-cut — para resolver o GMLSTP. Os experimentos computacionais realizados utilizando
conjuntos de instâncias bem estabelecidos para o MLSTP são relatados, mostrando que as no-
vas abordagens introduzidas neste trabalho alcançaram os melhores resultados para métodos
heurísticos e exatos em comparação com estado da arte da literatura.

Palavras-chave: Grafo com arestas rotuladas, Árvore de cobertura, Meta-heurística, Combi-
natória poliédrica, Branch-and-bound.



Abstract

The minimum labeling spanning tree problem (MLSTP) is a combinatorial optimization prob-
lem that consists in finding a spanning tree in a simple edge-labeled graph, i.e., a graph in
which each edge has one label associated, by using a minimum number of labels. It is an
NP-hard problem that has attracted substantial research attention in recent years. In its turn,
the generalized minimum labeling spanning tree problem (GMLSTP) is a generalization of the
MLSTP that allows the situation in which multiple labels can be assigned to an edge. Both
problems have several practical applications in important areas such as computer network de-
sign, multimodal transportation network design, and data compression. This thesis addresses
several connectivity problems defined over edge-labeled graphs, in special the minimum label-
ing spanning tree problem and its generalized version. The contributions in this work can be
classified between theoretical and practical. On the theoretical side, we have introduced new
useful concepts, definitions, properties and theorems regarding edge-labeled graphs, as well as
a polyhedral study on the GMLSTP. On the practical side, we have proposed new heuristics
— such as the metaheuristic-based algorithm MSLB, and the constructive heuristic pMVCA —
and exact methods — such as new mathematical formulations and branch-and-cut algorithms —
for solving the GMLSTP. Computational experiments over well established benchmarks for the
MLSTP are reported, showing that the new approaches introduced in this work have achieved
the best results for both heuristic and exact methods in comparison with the state-of-the-art
methods in the literature.

Keywords: Edge-labeled graph, Spanning tree, Metaheuristic, Polyhedral Combinatorics,
Branch-and-bound.



Résumé

Soit L un ensemble fini d’élements appelés étiquettes. On appelle graphe étiqueté simple, un
graphe simple dans lequel à chaque arête est associée une étiquette prise dans L. Le problème
de l’arbre couvrant de nombre d’étiquettes minimal (en anglais: the minimum labeling spanning
tree problem, MLSTP) est un problème d’optimisation combinatoire consistant à trouver un ar-
bre couvrant dans un graphe étiqueté simple en utilisant un nombre minimum d’étiquettes. Le
problème est NP-dur. Il a fait l’objet d’un nombre important de recherche au cours des dernières
années. L’une de ces directions de recherche a par ailleurs conduit à l’étude d’une généralisa-
tion du problème dite problème generalisée de l’arbre couvrant de nombre d’étiquettes minimal
(en anglais: the generalized minimum labeling spanning tree problem, GMLSTP). Le problème
GMLSTP modélise les situations dans lesquelles plusieurs étiquettes peuvent être assignées à
un arête. Les deux problèmes ont plusieurs applications pratiques dans des domaines impor-
tants tels que la conception de réseaux informatiques, la conception de réseaux de transport
multimodaux et la compression de données. Nous proposons dans cette thèse plusieurs résul-
tats théoriques contribuant à l’implantation de nouveaux schémas de résolution pratique de ces
problèmes. En particulier, sur le plan théorique, nous avons introduit de nouveaux concepts,
définitions, propriétés et théorèmes utiles, ainsi qu’une étude polyédrale du domaine des points
réalisables d’une nouvelle formulation de GMLSTP. Cette formulation et son analyse ont permi
le développement d’algorithmes de branchement et de coupe (branch-and-cut) pour la résolution
exacte des problèmes. De nouvelles heuristiques ont été également développées — telles que
l’algorithme basé sur la métaheuristique MSLB, et l’heuristique constructive pMVCA. Des ré-
sultats d’expériences numériques sur des benchmarks du problème MLSTP sont données. Elles
démontrent la qualité des approches proposées dans cette thèse puisque, aussi bien pour les ap-
proches exactes qu’approchées, nous obtenons, comparativement à l’état de l’art du domaine,
les meilleurs résultats de la littérature.

Mots-clés: Graphes à arêtes étiquetées, Arbre couvrant, Métaheuristiques, Polyédres, Branch-
and-bound.
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Part I

Object, Scope, and Motivation

The first part of this thesis presents the object of this research, delimits the scope of the1

work, and justifies the choice of this theme by emphasizing its relevance. Initially, it introduces2

the minimum labeling spanning tree problem along with some basic concepts and definitions3

and discuss the motivations to study it. In the sequel, an extensive literature review describes4

the state-of-the-art exact, heuristic and meta-heuristic methods for the problem.5



Chapter 1

Introduction

Trees are one of the most fundamental concepts in Graph Theory. A tree is an undirected1

connected graph that has no cycles, or, alternatively, it is an undirected graph in which any two2

vertices are connected by a unique simple path. In its turn, a spanning tree of a graph G is a3

subgraph which is a tree and spans all the vertices of G. Spanning trees are closely related to4

connected graphs in the sense that a graph has a spanning tree if and only if it is connected.5

Also, a spanning tree is a connected graph with the minimum number of edges.6

Given a connected undirected weighted graph G, the minimum spanning tree problem7

(MSTP) is a classical optimization problem that aims to find a spanning tree of G such that8

the sum of the weights of the selected edges is minimum. On the one hand, there are some9

algorithms that solve the MSTP in polynomial time, e.g. the Prim’s algorithm and the Kruskal’s10

algorithm (Cormen et al., 2009). On the other hand, several problems derived from the MSTP11

are NP-Hard, such as the Steiner tree problem (Karp, 1972), the generalized minimum spanning12

tree problem (Myung et al., 1995), the capacited minimum spanning tree problem (Jothi and13

Raghavachari, 2005), and the degree constrained minimum spanning tree problem (Bui and14

Zrncic, 2006), among others.15

The main subject of this Thesis is the minimum labeling spanning tree problem (ML-16

STP), another variant of the MSTP. The MLSTP is a NP-hard combinatorial optimization prob-17

lem, introduced by Chang and Leu (1997), that consists in finding a spanning tree in an edge-18

labeled graph (ELG), a graph in which each edge has one label associated, by using a minimum19

number of labels. The MLSTP has applications in areas such as computer networks (Con-20

soli et al., 2009), multimodal transportation networks (Van-Nes, 2002), and data compression21

(Chwatal et al., 2009), as discussed later in Section 1.2.22

ELGs are commonly used to model situations where it is desirable to represent the same23
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characteristic among different regions of the graph. One can say ELGs can represent quali-1

tative properties instead of quantitative ones. Several problems defined over ELGs have been2

addressed in the last few years, such as the MLSTP (Chang and Leu, 1997), the minimum la-3

beling s-t-path problem (Carr et al., 2000), the minimum labeling s-t cut problem (Coudert et4

al., 2007), the minimum labeling Steiner problem (Cerulli et al., 2006a), the labeled maximum5

matching problem (Carrabs et al., 2009), and the maximum flow with the minimum number of6

labels (Granata et al., 2013), among others. All these variants illustrate the importance of the7

problem in the scientific literature.8

This work presents new useful concepts and definitions regarding to ELGs; heuristic,9

exact and hybrid approaches to solve the MLSTP; a polyhedral study of this problem; and a10

brief discussion about problems related to the MLSTP. In the remaining of this Chapter we11

introduce some basic concepts and definitions which are necessary to fully understand our con-12

tribution. We also discuss the motivations for studying the MLSTP, present the general and13

specific objectives of this work, and make a brief overview of the next chapters of this Thesis.14

1.1 Basic concepts and de�nitions

In this Section we introduce some basic concepts and definitions necessary for understanding15

this work, as well as conventions that will be used throughout this Thesis. First, we state the16

concept of ELG and give the formal definition of the MLSTP:17

Definition 1.1. An edge-labeled graph is an undirected simple graph G = (V,E,L), in which V18

is the set of vertices, E is the set of edges, L is the set of labels, and l(e) ∈ L represents the label19

associated with the edge e, ∀e ∈ E.20

Definition 1.2. Given a connected ELG G = (V,E,L), the MLSTP aims to find a spanning tree21

T = (V,E ′,L′), such that E ′ ⊆ E, L′ ⊆ L, and |L′| is minimized.22

An equivalent definition for the MLSTP is given by Brüggemann et al. (2003), based on23

the concept of subgraph induced by a set of labels.24

Definition 1.3. Given an ELG G = (V,E,L), and a subset of labels L′⊆ L, G[L′] is the spanning25

subgraph of G induced by the set of edges E(L′) = {e ∈ E | l(e) ∈ L′}.26

Definition 1.4. Let G = (V,E,L) be a connected ELG, the MLSTP aims to find a smallest27

cardinality subset L′ ∈ L such that G[L′] is connected.28
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Proving the equivalence between Definitions 1.2 and 1.4 is straightforward. Indeed, as1

observed by Xiong et al. (2005a), if G[L′] is connected, then any spanning tree of G[L′] has2

at most |L′| labels; if L∗ is the smallest set of labels such that G[L∗] is connected, then any3

spanning tree of G[L∗] is a minimum labeling spanning tree of G. Throughout this Thesis we4

use this Definition 1.4 of the MLSTP.5

Let G = (V,E,L) be an ELG as given in Definition 1.1. In order to standardize its6

representation:7

• The elements of the set of vertices V will be represented by positive integer numbers, for8

instance: V = {1,2,3, . . .};9

• The elements of the set of labels L will be represented by uppercase letters, for instance:10

L = {A,B,C, . . .};11

• Each element of the set of edges E will be represented in the form e = (p,q), where12

p,q∈V are the endpoints of e, for instance: E = {e1 = (1,2),e2 = (1,3),e3 = (2,3), . . .}.13

In order to provide a better visualization of the ELGs, as observed in the Figure 1.1, the14

graphs will have a color associated with each label l ∈ L, as indicated by a subtitle near each15

graph. For this reason, the terms label and color will be used interchangeably throughout this16

work. Additionally, there is a letter close to each edge (arc) indicating its label.17

Figure 1.1 illustrates the MLSTP. Fig. 1.1a shows an ELG G = (V,E,L) in which V =18

{1,2,3,4,5,6,7,8}, L = {A,B,C,D,E,F}, and the label l(e) associated with the edge e ∈ E19

is indicated by the letter close to it. Fig. 1.1b presents an optimal solution G[L∗], for L∗ =20

{A,D,F}, with cost |L∗|= 3.21

Figure 1.1: Small example for the MLSTP. (a) A small ELG G = (V,E,L) with 8 vertices, 6
labels and 13 edges. (b) G[{A,D,F}], an optimal solution for G

The generalized minimum labeling spanning tree problem (GMLSTP) is an extension22

of the MLSTP proposed by Chen et al. (2008) that allows multi-labeling. In this case, multiple23
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labels can be assigned to an edge, which could be mathematically represented by the function1

lm : E→ 2L. Note that, if an edge e ∈ E has m = |lm(e)| ≥ 2, it may be replaced with m parallel2

edges (leading to a multigraph), where each edge is associated with a different label of lm(e).3

Remark that any method proposed for the GMLSTP can be directly used on the MLSTP, since4

the latter is a special case of the former. Follows a simple definition of the GMLSTP based on5

the multigraph representation of multi-labeling.6

Definition 1.5. Let G = (V,E,L) be a connected multi ELG, i.e. an ELG which could have7

parallel edges and loops, the GMLSTP aims to find a smallest cardinality subset L′ ∈ L such8

that G[L′] is connected.9

The example in Fig. 1.2 shows a small instance for the GMLSTP in which V =10

{1,2,3,4,5,6,7,8}, L = {A,B,C,D,E,F}. Figure 1.2a illustrates how multi-labeling is ad-11

dressed by the function lm : E → 2L; Fig. 1.2b shows the multigraph approach; Fig. 1.2c12

presents the graph G[L∗], which is an optimal solution with the set L∗ = {B,C,D,F}; and Fig.13

1.2d shows an optimal labeled spanning tree obtained from G[L∗].14
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Figure 1.2: A small GMLSTP instance (a) with the lm : E → 2L representation; (b) with the
multigraph representation. (c) A minimum cardinality subset L∗ ⊆ L such that G[L∗] is con-
nected. (d) A labeled spanning tree obtained from G[L∗], thence an optimal solution for this
instance
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Finally, in some occasions is also convenient to define the concept of arc-labeled di-1

graphs (ALD):2

Definition 1.6. An arc-labeled digraph is a directed (multi) graph D = (V,A,L), in which V is3

the set of vertices, A is the set of arcs, L is the set of labels, and the function la : A→ L returns4

the label associated with the input arc.5

Analogously to the definition of E on ELGs, each arc a ∈ A is represented as a = (p,q),6

for p,q ∈ V , such that p is the tail of a and q is its head. For instance: A = {a1 = (1,2),a2 =7

(1,3),a3 = (2,3), . . .}.8

1.2 Motivation

Much attention has been spent with problems defined on ELGs in the last few years, specially9

with the MLSTP, one of the most (if not the most) widely studied problem regarding the ones10

defined on this kind of graph. The MLSTP has been addressed by many heuristic, exact and11

approximation methods. The main motivation of this work is to develop new exact, heuristic12

an hybrid techniques for the MLSTP in order to obtain better results both in terms of solution13

quality and computational time. Moreover, to highlight the relevance of the theme, it is possible14

to identify important applications for the MLSTP in several areas, such as:15

Design of homogeneous computer networks: As described by Consoli et al. (2009), the ML-16

STP (GMLSTP) can be applied in the design of homogeneous computer networks to provide17

connectivity between all the nodes by using the minimum number of physical (or logical) me-18

dia types. This kind of network presents some desirable characteristics, such as low cost to19

implement and lower complexity, which reduces the maintenance costs. Examples of different20

possible communication media types are (mono or multimode) fiber optic cables, twisted pair21

Ethernet cables, coaxial cables, or different technologies/frequencies of wireless links (Tanen-22

baum, 2003).23

The Figure 1.3 illustrates the GMLSTP applied to the design of a homogeneous com-24

puter network. Fig. 1.3(a) shows the logical project of a network with six routers. The lines25

represent the possible links while the letters represent the media that is compatible with each26

router. Fig 1.3(b) demonstrates the ELG generated from the logical project: for each router27

there is a vertex, for each protocol there is a label, and for each link there is a set of edges28

corresponding to the common protocols between two routers. Fig. 1.3(c) presents the solution29

of the GMLSTP associated with the logical project.30
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Figure 1.3: Example of a homogeneous computer network design modeled as an instance of the
GMLSTP. (a) The logical network and (b) the ELG associated with it. (c) The solution for this
instance of the GMLSTP

Design of multimodal transport networks : According to Van-Nes (2002), the multimodal1

transport happens when two or more transport modes are used for a trip, and a transfer is nec-2

essary between them. Real examples of multimodal transportation systems are the Park & Ride3

Systems (Lam et al., 2001), offered to attract car users to public transport; and the TrainTaxi4

system from Netherlands, which uses a dedicated taxi fleet to collect and distribute train pas-5

sengers.6

The fundamental component of the multimodal transport system is the design of the7

multimodal transport network. It consists in planning the interconnection between the different8

types of transport modes and their transfer points. Multimodal transport networks are an inter-9

esting approach to deal with the current (public) transport problems, such as deterioration of10

access to city centers, recurrent congestion and environmental impacts.11

Figure 1.4 presents the design of the multimodal transport network of a hypothetical12

metropolis that aims to reduce the use of private cars. Fig. 1.4(a) presents the set of regions13

considered. Fig. 1.4(b) shows the new transport modes proposed. Fig. 1.4(c) describes the14

possible interconnections the project foresees.15

The Figure 1.5 shows the GMLSTP instance created from the project of Figure 1.4.16

In this case, minimizing the number of labels means to use alternative transport methods to17
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interconnect all desired regions with minimal cost. Fig 1.5(a) represents the input ELG and Fig.1

1.5(b) presents a solution that connects all the proposed regions using only bicycle lanes, trains2

and ferry boats.3

Figure 1.4: Example of a multimodal transport network design. (a) The set of locations, (b)
transport modes, and (c) paths planned

Figure 1.5: The GMLSTP applied to the design of a multimodal transport network. (a) The
instance generated from the design of Fig. 1.4 and (b) the solution for this instance

Design of transportation networks : The Supply Chain (SC) covers all activities related to the4

flow and transformation of goods from the extraction of the raw material to delivery to the final5
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user. The SC is composed of all entities involved directly or indirectly in this process, such as1

manufacturers, suppliers, warehouses, carriers and consumers (Ballou, 2006).2

The transportation network is the set of transport modes, locations and routes by which3

a product can be delivered. The mode of transportation is the manner in which a product is4

moved from one location to another in the supply chain network. Commonly, the companies5

can choose between air, truck, rail, sea, and package carriers as modes of transport for products.6

According to Chopra and Meindl (2007), the transportation network is a relevant component of7

the costs of the SCs, accounting for more than ten percent of the United States Gross Domestic8

Product (GDP) in 2002.9

Figure 1.6: Example of a transportation network design. (a) The design modeled as an instance
of the GMLSTP and (b) its solution

Figure 1.6 exemplifies the design of the transportation network of a hypothetical com-10

pany that wants to deliver goods from Brazil to all the other countries of South America. Fig.11

1.6(a) shows the ELG generated: the vertices represent the countries and each label is associ-12

ated with a carrier that can be hired to move the products between the countries indicated by the13

edges. Fig. 1.6(b) presents a solution for this instance of the GMLSTP where all countries are14

served by hiring only the carriers A, C and D.15

1.3 Objectives

The main objectives of this work are as follows.16

• Review the MLSTP, describing practical applications and some of the most successful17
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solution methods proposed in the literature.1

• Perform a theoretical study on the ELGs, leading to new useful concepts and definitions2

that can be used by the heuristic and exact methods proposed.3

• Develop exact approaches based on mixed-integer programming (MIP) for the MLSTP,4

as well as conduct a polyhedral study for the problem.5

• Develop a general hybrid (MIP-heuristic) algorithm capable of solving large instances of6

the MLSTP in reasonable time.7

• Address some variants and problems related to the MLSTP that arose during this study.8

1.4 Thesis outline

The remainder of this work is organized as follows.9

• Chapter 2 performs a literature review of both MLSTP and GMLSTP. The most successful10

heuristic, metaheuristic and exact methods for these problems are described.11

• Chapter 3 presents new concepts and definitions related to the ELGs as well as theoretical12

results, such as reduction rules, lower bounds, and ELG transformation techniques.13

• Chapter 4 describes a new MIP-based formulation composed only by the edge variables14

for the GMLSTP, namely CCut, a branch-and-cut algorithm, a new branch-and-bound15

strategy, new sets of valid inequalities and the computational experiments.16

• Chapter 5 defines the polytope of CCut, proves that three new families of inequalities and17

the bounding constraints are facet defining under certain conditions, and compares the18

polytope defined by the formulations described in this work.19

• Chapter 6 describes improvements for the exact methods introduced previously: a new20

mathematical formulation that extends CCut; two new branching strategies for solving the21

CCut model; and a new branch-and-cut algorithm. Further, computational experiments22

are performed to evaluate the proposed methods.23

• Chapter 7 presents new constructive and local search heuristics and a hybrid metaheuris-24

tic for the GMLSTP, describing how an exact procedure is integrated into the heuristic25

framework. Computational experiments are reported comparing the proposed methods26

with the state-of-the-art ones.27
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• Chapter 8 addresses other connectivity problems defined on ELGs, such as the minimum1

labeling path problem and the maximum flow minimal labeling problem. Moreover, we2

propose extensions and/or adaptations of the colorful cuts formulation for solving these3

problems.4

• Chapter 9 addresses the minimum labeling global cut problem, which aims to find the5

minimum number of labels whose removal disconnects the input ELG. We propose three6

new mathematical formulations for this problem and branch-and-cut algorithms to solve7

them.8

• Chapter 10 introduces a new connectivity problem defined on ELGs, the minimum rep-9

resentation spanning tree problem. In contrast to the MLSTP, this new problem aims the10

homogeneity of each vertex in the solution graph. We propose a mathematical formula-11

tion for the problem, as well as two new constructive heuristics.12

• Chapter 11 discuss the concluding remarks and the possible paths for the continuity of13

this research.14



Chapter 2

Literature Review

This Chapter presents a literature review on the MLSTP, introducing some of the more important1

results regarding both this problem and the GMLSTP. First, a brief overview on works about2

the MLSTP and the GMLSTP is presented. In the sequel, we recall an NP-completeness proof3

for the problem and discuss more in deep the heuristic, metaheuristic, and exact methods with4

the best results in the literature. The reader should refer to Granata et al. (2013) for more5

information on problems formulated over ELGs, they have conducted an extensive survey on6

this kind of problem.7

The MLSTP was proposed by Chang and Leu (1997), which have proved it is NP-hard8

by reduction from the set covering problem. Independently, Broersma and Li (1997) have9

proved that the MLSTP is NP-hard by reduction from the minimum dominating set problem.10

Given f , the maximum number of edges with the same label, Brüggemann et al. (2003) have11

applied the local search technique k-switching and have proved that the MLSTP is polynomial12

time solvable if f ≤ 2, but it is NP-hard and APX-complete for f ≥ 3. Moreover, they have13

showed that the problem can be approximated with a factor equal to f/2 through k-switching.14

Since the late 1990s, many heuristic and exact methods have been developed for the15

MLSTP. The most successful greedy heuristic algorithm is the maximum vertex covering algo-16

rithm (MVCA) (Chang and Leu, 1997). Given its capacity to achieve relatively good results in17

a short amount of time, the MVCA is commonly found in construction or rebuilding phases of18

metaheuristics. Section 2.2 address the MVCA in more detail. Recently, Cerrone et al. (2017)19

have proposed a new general greedy heuristic, namely the carousel greedy algorithm (CGA),20

and used the MLSTP for validate the concept. They have adapted the iterated greedy algorithm21

(IGA) (Ruiz and Stützle, 2007) and the pilot method (Duin, Voß, et al., 1999) to the MLSTP22

and compared them with the CGA, which achieved the best results. The CGA is presented in23

Section 2.3.24
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Several metaheuristics-based algorithms have been proposed for the MLSTP. The first1

one was the genetic algorithm of Xiong et al. (2005a), obtaining better results in comparison2

with the MVCA. Cerulli et al. (2005) have analyzed the performance of the metaheuristics3

reactive tabu search, simulated annealing (SA) and VNS, while Xiong et al. (2006) developed4

the modified genetic algorithm (MGA), achieving the best results so far. Nummela and Julstrom5

(2006) have proposed tree new genetic algorithms for the MLSTP, but, unfortunately, they have6

not compared them with the other metaheuristics in the literature.7

Consoli et al. (2007) have proposed an hybrid VNS-SA method and Consoli et al. (2009)8

have implemented methods based on the metaheuristics GRASP and VNS, outperforming both9

MGA and VNS-SA. Moreover, Chwatal and Raidl (2010) have implemented an ant colony10

optimization method for the problem. Recently, Consoli et al. (2015) developed two new11

metaheuristics-based methods, COMPL and INTELL, that use the concepts of complemen-12

tary space and auto-adjusting parameters over a VNS framework, achieving the best heuristic13

results for the problem so far. These methods are detailed in Section 2.4. Cerrone et al. (2016)14

have proposed a multi ethnic genetic algorithm for the MLSTP, but only presented preliminary15

experiments on small ELGs.16

The first exact method for the MLSTP was proposed by Chang and Leu (1997): it con-17

sists of an implicit enumeration method based on an A∗-search algorithm. Chen et al. (2008)18

proposed the first mixed integer linear program (MIP) formulation for the problem based on19

the Miller−Tucker−Zemlin (MTZ) inequalities for cycle elimination, whereas Captivo et al.20

(2009) proposed an MIP formulation based on the root-oriented single commodity flow model21

(SCF).22

In their extensive study on mathematical programming techniques for solving the GML-23

STP, Chwatal and Raidl (2011) adapted previous formulations—SCF and MTZ—to the GML-24

STP and proposed four new MIP models:25

• The multicommodity flow formulation (MCF) extends the SCF with the introduction of26

multiple commodities.27

• The cycle-elimination formulation (CE) ensures the feasibility of the integer solutions by28

enforcing the minimum number of edges and prohibiting cycles.29

• The directed cut formulation (DCut) is a directed cut-based formulation with an exponen-30

tial number of constraints.31

• The epsilon connectivity formulation (EC) is a cut-based formulation with an exponential32
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number of constraints but without arc variables.1

Chwatal and Raidl (2011) further proposed cuts to strengthen the models and introduced2

a polyhedral comparison to evaluate the relative quality of its linear relaxations (LR). They also3

implemented branch-and-cut (BC) and branch-and-cut-and-price (BCP) algorithms based on4

the formulations CE, DCut, and EC. The present investigation is focused on the DCut and EC5

models, which provided the best numerical results along with some strengthening cuts. Sections6

2.5, 2.6 and 2.7 detail these formulations.7

The next sections recall The NP-completeness proof provided by Chang and Leu (1997)8

for the MLSTP and discuss more deeply the most successful heuristic, metaheuristic, and exact9

methods proposed for the MLSTP.10

2.1 NP-completeness proof

Chang and Leu (1997) have proved the MLSTP is NP-complete by transforming the decision11

version of the set covering problem to the decision version of the MLSTP. Given an ELG G =12

(V,E,L) and a constant k ∈ Z+, the bounded minimum labeling spanning tree problem (B-13

MLSTP) aims to decide if there is a spanning tree T = (V,E ′,L′) of G such that |L′| ≤ k. It14

is easy to see that B-MLSTP is NP since a non-deterministic algorithm needs only to guess15

a subset of edges E ′ ∈ E and check in polynomial time if T = (V,E ′,L′) is connected and if16

|L′| ≤ k.17

Given U the universe set, S a set of subsets of U , and a constant k ∈ Z+, the question18

associated with the decision version of the set covering problem, which is NP-complete (Karp,19

1972), is if there exists a set C ⊆ S such that |C| ≤ k and
⋃

S∈C(S) = U . First, let G(U,S) =20

(V,E,L) be an ELG built as follows: let V ′ = {vu | u ∈U}, V ′′ = {vs | s ∈ S}, and V = V ′ ∪21

V ′′∪{v∗}, where v∗ is a special vertex; let L′ = {ks | s ∈ S} and L = L′∪{k∗}, where k∗ is a22

special label; finally, let E ′ = {e = (v∗,vs) | s ∈ S}, such that l(e) = k∗,∀e ∈ E ′, let E ′′ = {e =23

(vs,vu) | s ∈ S such that u ∈ s}, such that l(e) = ks,∀e ∈ E ′′, and let E = E ′∪E ′′.24

It is straightforward to verify that this construction can be accomplished in polynomial25

time and that G(U,S) = (V,E,L) has a spanning tree with k labels if and only if a minimum set26

covering with k−1 sets does exist. Figure 2.1 illustrates the construction of the graph G(U,S).27

Fig. 2.1(a) presents the sets U and S of an example instance for the set covering problem. Fig.28

2.1(b) shows the ELG G(U,S) = (V,E,L). Fig. 2.1(c) presents a solution: a minimum labeling29

spanning tree for the graph G(U,S).30
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Figure 2.1: Transformation from the set covering problem to the MLSTP. (a) An input instance
(U,S) for the set covering problem. (b) the instance of the MLSTP originated from (U,S). (c)
A solution of the MLSTP for this input graph

2.2 MVCA

It is possible to state that MVCA is the most important constructive heuristic for the MLSTP. As1

introduced previously, it has been used to provide initial solutions or to complete partial ones2

by many metaheuristic-based methods, such as the VNS and GRASP procedures proposed by3

Consoli et al. (2009) and COMPL and INTELL ones proposed by Consoli et al. (2015). Even4

other constructive heuristics, such as the Pilot Method (Cerulli et al., 2005) and the Carousel5

Greedy (Cerrone et al., 2017), rely on MVCA to build or to rebuild solutions.6

As proposed by Chang and Leu (1997), the MVCA consists in: starting with an empty7

ELG G = (V,E ′ = /0,L′ = /0), iteratively add to L′ the label l that covers as many uncovered8

vertices as possible, until G is connected. Chang and Leu (1997) have demonstrated that the9

time complexity of MVCA is O(|V | · |E| · |L|).10

Arguing that the MVCA could lead to unconnected solutions, Krumke and Wirth (1998)11

have proposed a modified version the MVCA in order to guarantee the correctness of the so-12

lutions generated. The modified MVCA starts with the solution L′ = /0 and, while G[L′] is13

not connected, at each iteration, adds to L′ the label l ∈ L\L′ that minimizes the number of14

connected components of G[L′]. They have showed that the time complexity of the modified15

MVCA is O(|E|+ |L| ·α(|E|, |V |) ·min{|L| · |V |, |E|}), where α is the inverse of the Ackerman’s16

function. The Algorithm 2.1 presents the modified version of the MVCA.17

In addition, Krumke and Wirth (1998) also have proved that MVCA can yield a solution18

no greater than 1+ 2ln|V | times optimal. Afterwards, Wan et al. (2002) have improved this19

bound to 1+ ln(|V |−1). Given E(L′), L′ ⊆ L, the set of edges with label l(e) ∈ L′, Xiong et al.20
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Algorithm 2.1: The Modified MVCA
1 procedure MVCA(G = (V,E,L))
2 Let C← /0 be the set of labels of the solution;
3 while G[C] is not connected do
4 let l ∈ L\C be the label that minimizes the number of components of G[C∪{l}];
5 C←C∪{l} ;

6 return C;

(2005b) have demonstrated that if |E({l})| ≤ f , ∀l ∈ L, then the MVCA has an approximation1

factor of H f , where H f is the fth harmonic number (equation 2.1). Later, they constructed2

a worst-case family of graphs such that the MVCA solution is exactly H f times the optimal3

solution.4

H f =
f

∑
i=1

i−1 = 1+
1
2
+

1
3
+ · · ·+ 1

f
. (2.1)

Consoli et al. (2006) have studied several variants of the MVCA, such as the Frequency5

MVCA, the Random MVCA, and the Pilot-First MVCA. Recently, (Cerrone et al., 2017) have6

conducted an experiment on the quality of the selections performed by the MVCA. They have7

generated 10.000 ELGs randomly in such a way that the optimal solution is known in advance,8

and executed the MVCA for each graph. They have shown that the first selections of the MVCA9

are not good, once the average percentage of the selected labels that are in the optimal solution10

was less than 55%. On the other hand, for the last selections, the average percentage of the11

selected labels that are in the optimal solution was between 55 and 77%. Furthermore, in a12

second experiment, the authors have demonstrated that the MVCA performs very poorly when13

L has a small cardinality.14

2.3 The Carousel Greedy Algorithm

The carousel greedy algorithm (CGA) is a generalized greedy heuristic proposed by (Cerrone15

et al., 2017) which seeks to overcome some of the known problems of the traditional greedy16

approaches, such as the poor quality of the first greedy choices. The authors have applied the17

CGA to the MLSTP and compared it with others constructive heuristics, namely the IGA, the18

Pilot Method and the MVCA. The CGA achieved the best performance.19

The CGA adapted to the MLSTP is presented in the Algorithm 2.2. The method takes20
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two parameters: α ∈ N controls the number of iterations in the carousel phase, while β ∈ (0,1]1

controls the size of the carousel. The first step (line 2) is to take an initial solution using the2

MVCA. The destruction phase (line 3) removes some labels from the initial solution, leaving a3

partial one. The carousel phase (lines 4 to 7) consists in removing the label that was first added4

to the current solution and to add a new one using the greedy criteria of MVCA. The final phase5

(lines 8 to 10) applies the MVCA until a feasible solution is obtained. Figure 2.2 illustrates an6

execution of CGA adapted for the MLSTP.7

Algorithm 2.2: The Carousel Greedy Algorithm
1 procedure CGA(G = (V,E,L),α,β)
2 Let C←MVCA(G) be the initial solution, and let s = |C|;
3 Remove from C the sβ labels that was added first;

4 for i = 1 to sα do
5 Remove from C the label that was first added to this set;
6 let l ∈ L\C be the label that minimizes the number of components of G[C∪{l}];
7 C←C∪{l} ;

8 while G[C] is not connected do
9 let l ∈ L\C be the label that minimizes the number of components of G[C∪{l}];

10 C←C∪{l} ;

11 return C;

Figure 2.2: Illustration of an execution of the carousel greedy algorithm adapted for the MLSTP.
The parameters for this execution are s = 5, α = 1, and β = 0.4
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2.4 VNS-Based Algorithms

This Section presents three algorithms based on the metaheuristic VNS, proposed by Consoli1

et al. (2009) and Consoli et al. (2015) for the MLSTP. These methods, specially the INTELL,2

have achieved the best results in comparison with the other metaheuristic-based methods in the3

literature.4

The VNS-based algorithm proposed by Consoli et al. (2009), subsequently denominated5

VNS for short, starts from a randomly generated solution and, until a stop condition is reached,6

it iteratively alternates between the Shaking-Phase and the Local-Search procedures, as detailed7

later. Algorithm 2.3 describes the VNS procedure. The randomSolution procedure (line 2) con-8

sists in adding labels randomly to the solution until it is connected. The parameters k,kmax ∈N,9

which control the cardinality of the visited neighborhoods, are set on line 4. The value of kmax is10

an important parameter to tune in order to obtain an optimal balance between intensification and11

diversification. The Shaking-Phase procedure (line 6) takes a solution C as input and performs12

k random modifications on it. Each modification consists in choosing (equiprobably) between13

adding/removing a random label to/from C. Finally, the Local-Search procedure (line 7) first14

completes infeasible solutions given by the Shaking-Phase by using the MVCA procedure and15

then it tries to delete labels, one by one, whilst maintaining feasibility.16

Algorithm 2.3: VNS para o MLSTP.
1 procedure VNS(G = (V,E,L))

2 C← randomSolution();
3 repeat
4 k← 1, kmax← 4

3 |C|;
5 while k < kmax do
6 C′← Shaking-Phase(C,k);
7 C′← Local-Search(C′);
8 if |C′|< |C| then
9 C←C′;

10 k← 1, kmax← 4
3 |C|;

11 else
12 k← k+1;

13 until stop condition;

14 return C;

Consoli et al. (2015) have proposed two enhancements to the previous VNS algorithm:17

the complementary space search, which builds a new solution by only using labels that are not18

in the current solution; and a probabilistic auto-adjustable local search procedure inspired by19
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the simulated annealing metaheuristic. These two enhancements have improved the efficiency1

and robustness of the previous version of the VNS.2

The first extension applied to VNS, the complementary space search, is an additional3

local search mechanism that aims to increase the diversification of the method, allowing it to4

visit different regions of the solution space. Given C, a solution for the MLSTP, the comple-5

mentary space C = L\C is the set of labels of L that are not in C. Once the main loop of the6

VNS (line 5) is not able to improve the current solution, the MVCA is used to produce a new7

solution by using only the set of labels C. The VNS method enhanced with the complementary8

space search mechanism is denominated COMPL.9

Figure 2.3 illustrates an execution of the method COMPL: if begins from the solution C0,10

generated randomly, and applies on it the procedures Shaking-Phase and Local-Search from the11

previous version of VNS. Once these procedures was not able to enhance C0, the complementary12

space search is carried out on C0, yielding the solution C1. Then, the local search finds the13

solution C2, that is better than C1, but cannot enhance it. The complementary space search14

generates the solution C3, by using C2, and, since the method did not found any better solution,15

it returns C2.16

Figure 2.3: Example of execution of the algorithm COMPL. The circles represent the Shaking-
Phase and the Local-Search procedures, while the arrow illustrates the complementary space
search mechanism

The second improvement proposed by Consoli et al. (2015) is to replace the determinis-17

tic procedure Local-Search by a probabilistic local search heuristic inspired by the metaheuristic18

Simulated Annealing (SA). The proposed new local search uses a self-tuning parameter T that19
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allows the method to adapt itself to the instance and react to the behavior of the algorithm. The1

acceptance probability of a worse label into a partial solution is evaluated according to the usual2

SA criterion, by the Boltzmann function. The resulting procedure, described in the flowchart of3

Figure 2.4, represents the INTELL algorithm, which has the best known metaheuristic results4

for the MLSTP in the literature.5

Figure 2.4: Flowchart of the algorithm INTELL for the MLSTP. The highlighted components
are the ones that differentiate the method INTELL from VNS and COMPL

2.5 The Directed Cut Formulation

The directed cut (DCut) formulation, proposed by Chwatal and Raidl (2011), is a root-oriented6

model that ensures the connectivity of the solution by enforcing the existence of a valid directed7

path from an arbitrary root vertex r ∈V to all other vertices of the graph. To this end, it defines8

the ALD D = (V,A,L), in which every edge e ∈ E yields two antiparallel arcs a, a to the set A.9

Let e(a) be the originating edge of a, and let the function la : A→ L denote the label of the arc10

a such that la(a) = l(e(a)).11

The DCut formulation uses the set of binary variables zl ∈ {0,1},∀l ∈ L to indicate that12

the label l is in the solution and the variables ya,∀a∈ A, equals to 0, to show that the arc a is not13

used in the final arborescence. The program (2.2) through (2.7) presents the DCut formulation14

proposed by Chwatal and Raidl (2011). For sake of unified notation the formulation given here15

is adapted for the multigraph approach.16

Minimize ∑
l∈L

zl (2.2)
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s.t. ∑
a∈δ−(S)

ya ≥ 1, ∀S⊆V\{r}, (2.3)

zla(a) ≥ ya, ∀a ∈ A, (2.4)

ya + ya ≤ 1, ∀a ∈ A, (2.5)

zl ∈ {0,1}, ∀l ∈ L, (2.6)

ya ≥ 0, ∀a ∈ A. (2.7)

The objective function (2.2) aims to minimize the number of labels; the exponential1

number of directed cut constraints (2.3) ensures the feasibility of the solution, where δ−(S)2

denotes the set of ingoing arcs of the cut set [S,V\S], for S⊂V ; constraints (2.4) bind the label3

and arc variables; constraints (2.5) reinforce the formulation by prohibiting single edge circuits,4

where a represents the antiparallel arc of a; and expressions (2.6) and (2.7) define the domain5

of the variables.6

The B&C algorithm proposed by Chwatal and Raidl (2011) for the DCut formulation7

separates inequalities (2.3) by computing the maximum flow from r to each vertex v ∈ V\{r}.8

If the minimum (r− v)-cut found is less than 1, then the corresponding constraint is added to9

the model.10

2.6 The Epsilon Connectivity Formulation

The epsilon connectivity formulation was motivated by the findings of Captivo et al. (2009),11

who showed (for flow formulations) that the correct optimal objective function value can be12

obtained even if the edge variables are continuous. Chwatal and Raidl (2011) extended this13

result for further GMLSTP formulations such as DCut and EC.14

Hence, the EC formulation defines the continuous edge variable xe,∀e ∈ E, to denote15

that e is used or not in the final tree. The EC formulation uses the same set of binary variables16

zl ∈ {0,1},∀l ∈ L, as the DCut model. The program (2.8) through (2.12) presents the EC17

formulation proposed by Chwatal and Raidl (2011). For sake of unified notation the formulation18

given here is adapted for the multigraph approach.19
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Minimize ∑
l∈L

zl (2.8)

s.t. ∑
e∈δ (S)

xe ≥ ε, ∀S⊂V,S 6= /0, (2.9)

zl(e) ≥ xe, ∀e ∈ E, (2.10)

zl ∈ {0,1}, ∀l ∈ L, (2.11)

xe ≥ 0, ∀e ∈ E. (2.12)

The objective function (2.8) minimizes the number of labels; with some arbitrary small1

real number ε , the exponential set of cut-based constraints (2.9) ensures the feasibility of the2

solution, where δ (S) denotes the edges of the cut set [S,V\S]; constraints (2.10) bind label and3

edge variables; expressions (2.11) and (2.12) define their domains. The model can be further4

strengthened by inequalities (2.13).5

∑
e∈δ (v)

xe ≥ 1, ∀v ∈V. (2.13)

In their work, Chwatal and Raidl (2011) proposed a simple separation routine for in-6

equalities (2.9): Given a solution for the linear relaxation of the model, select an arbitrary node7

and execute a depth-first search (DFS) procedure considering only edges e with xe ≥ ε . If the8

DFS is unable to reach all the vertices, then the cut is added to the model. The DFS procedure9

can be executed in O(|V |+ |E|) time, which is faster than the maximum flow algorithm used in10

the DCut formulation.11

2.7 Strengthening the formulations

Furthermore, Chwatal and Raidl (2011) proposed additional inequalities to strengthen the for-12

mulations. The tree search constraints (2.14) and (2.15) fix the number of edges (arcs) by13

reinforcing the search for a valid spanning tree (arborescence) in the DCut and EC models,14

respectively.15
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∑
a∈A

ya = |V |−1. (2.14)

∑
e∈E

xe = |V |−1. (2.15)

The strong linkage constraints, namely (2.16) and (2.17), provide a more direct link1

between the label and edge (arcs) variables by replacing their respective inequalities (2.4) and2

(2.10). Note that the tree search and strong linkage constraints cannot coexist because this3

simultaneity could discard several valid solutions, including the optimal one. Moreover, the4

strong linkage cannot be used in the multi-labeling scenario when it is addressed by the function5

lm : E→ 2L. However, this restriction does not apply to the multigraph approach.6

zla(a) = ya, ∀a ∈ A. (2.16)

zl(e) = xe, ∀e ∈ E. (2.17)

Let ls(E ′) be the set of labels represented by the set of edges E ′ ⊆ E. The node label7

inequalities (2.18) strengthen the DCut and EC models with respect to its linear relaxations8

(LR) by requiring at least one active label for every cut [S,V\S] with |S|= 1. Chwatal and Raidl9

(2011) showed that a vertex v is occasionally sufficiently connected in the LR, according to10

inequalities (2.3) and (2.13), with S = {v}, but the LR is infeasible with respect to the associated11

node label inequality.12

∑
l∈ls(δ (v))

zl ≥ 1, ∀v ∈V. (2.18)



Part II

Theoretical, Exact, and Heuristic Approaches

The second part of this thesis presents the main contributions of this work with respect1

to both the MLSTP and the GMLSTP. We present new interesting theoretical results about2

edge-labeled graphs, such as label contraction operations and polyhedral studies. Further, we3

introduce a new mathematical formulation and a new MIP-based metaheuristic for these prob-4

lems. Finally, we carry out computational experiments in order to evaluate the performance of5

the proposed methods in comparison with the best ones in the literature.6



Chapter 3

Theoretical Aspects

In this Chapter we present new useful concepts, definitions and theoretical results regarding1

ELGs, the MLSTP, and the GMLSTP. First, we recall the definition of ELG and introduce some2

new notation. Then, we formalize the concepts of edge and label contraction on ELGs, as3

well as discuss the relation between label contraction and induction by labels. In the sequel,4

we address procedures that transform ELGs while keeping the optimality with respect to the5

GMLSTP. Finally, we propose bounds on the number of edges, vertices, and on the objective6

function for the GMLSTP.7

Recall, from Definition 1.1, that an ELG G = (V,E,L) is an undirected graph in which8

V is the set of vertices, E is the set of edges, and L is the set of labels. Further, let the function9

l : E→ L represents the label associated with the edge e and the function E(L′) = {e∈ E | l(e)∈10

L′}, L′ ∈ L, be the set of edges that have the label in L′. Also, recall, from Definition 1.3, that11

G[L′] = (V,E(L′),L′) is the spanning subgraph of G induced by the set of edges E(L′).12

3.1 Label Contraction

In this Section, we introduce the label contraction operation on ELGs and discuss some impor-13

tant characteristics of the contracted graphs. For the next definitions, let G = (V,E,L) be an14

edge-labeled graph such that k ∈ E, and i, j ∈ V . Furthermore, let π(k, i, j) be a function that15

changes each endpoint of the edge k to j if it is equal to i or keep it unchanged otherwise.16

Definition 3.1. The contraction of an edge e = (v,w) ∈ E, v 6= w, results in a new graph G/17

e = (V ′,E ′,L), where V ′ = V\{v}, E ′ = {π(k,v,w) | k ∈ E\{e}}, and l(π(k,v,w)) = l(k),18

∀k ∈ E ′. If v = w, the contraction of e results simply on its removal from E.19
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Definition 3.2. By extension, the label contraction, denoted by G//L′, for L′ ⊆ L, is the opera-1

tion that performs the contraction of every edge in E(L′) on the graph G.2

Figure 3.1 illustrates the concepts of edge and label contraction. Fig. 3.1(a) presents an3

small ELG G. Fig. 3.1(b) shows the graph G/e, the resulting graph after the contraction of the4

edge e = (7,1). Fig. 3.1(c) presents the graph G//{D}, that is the graph resulting from G after5

the contraction of the label D.6

Figure 3.1: Illustration of the concepts of edge and label contraction. (a) the ELG G = (V,E,L).
(b) the graph G after the contraction of the edge e = (7,1), and (c) the graph G after the con-
traction of the label D

Once given the concept of label contraction, we draw our attention to the relation be-7

tween G = (V,E,L), G[L′] and G//L′, for any L′ ⊆ L. First let suppose that G[L′] has w maximal8

connected components (for short components), each one spanning a set of vertices S ⊆ V . Let9

W (G[L′]) = {S1,S2, · · · ,Sw} represent the components of G such that Si is the set of vertices10

spanned by the component i. It follows that:11

• H = G // L′ has exactly w vertices, one for each component of G[L′]. Let v(Si) be the12

vertex of H that was originated from the component Si of G[L′]. We can represent the set13

of vertices of H in relation to G[L′] as {v(S1),v(S2), · · · ,v(Sw)}.14

• E ′ has one edge for each edge of E that has endpoints in different connected components15

of G[L′]. Formally: Given Sa,Sb ∈W (G[L′]), if e= (v1,v2)∈E such that v1∈ Sa, v2∈ Sb,16

and Sa 6= Sb then e′ = (v(Sa),v(Sb)) ∈ E ′.17

• E ′ has one edge loop for each edge of E that has endpoints in the same connected compo-18

nent of G[L′]. Formally: Given Sa ∈W (G[L′]), if e = (v1,v2) ∈ E such that v1,v2 ∈ Sa,19

then the loop e′ = (v(Sa),v(Sa)) ∈ E ′.20
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Figure 3.2 illustrates the relation between G, G[L′] and G//L′, for L′= {B,C}. Fig. 3.2a,1

3.2b and 3.2d present, respectively, the example graph G, G[L′], and G//L′. Fig. 3.2c highlights2

the components of G[L′] on G, evidencing that each component of G[L′] is related to a vertex3

on G//L′, and each edge on G//L′ is related to an edge on G.4

Figure 3.2: Relation between G, G[L′], and G // L′, for L′ = {B,C}. (a) The ELG G. (b)
G[L′]. (c) The set of components of G[L′] highlighted on G. (d) The graph G // L′ with one
vertex for each component of G[L′] and one edge for each edge of G with endpoints in different
components of G[L′]

In the sequel, we define a small variant of the MLSTP, namely the partial minimum5

labeling spanning tree problem (pMLSTP), and use it to prove an important relation between6

the MLSTP and the label contraction operation.7

Definition 3.3. Let L′⊂ L be a subset of the labels of G such that G[L′] is not connected, namely8

a partial solution for the MLSTP on G. The partial minimum labeling spanning tree problem9

consists in finding a set L′′ ⊆ L such that G[L′∪L′′] is connected and |L′′| is minimized.10

Theorem 3.1. Solving the pMLSTP for an ELG G = (V,E,L) and a partial solution L′ ⊂ L is11

equivalent to solving the GMLSTP on H = G//L′ = (V ′,E ′,L).12

Proof. Let C ⊆ L\L′. To prove this Theorem, we show that G[L′∪C] is connected if and only if13

H[C] is connected.14

(⇒) Suppose G[L′ ∪C] is connected and H[C] is disconnected. In such case, H[C] has an15

empty cut-set [N,V ′\N], N ⊂ V ′,N 6= /0. Further, let N = {v(S1),v(S2), · · · ,v(Sn)} be the rep-16

resentation of this set in terms of W (G[L′]). Further, let W ′ = {S | v(S) ∈ N}, W ′ ⊂W (G[L′]),17
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and W ′′ = W (G[L′])\W ′. Since G[L′∪C] is connected, there is an edge e = (v1,v2) ∈ E such1

that v1 ∈ Sa, v2 ∈ Sb, Sa ∈W ′ and Sb ∈W ′′. Hence v(Sa) ∈ N, v(Sb) ∈ V ′\N, and the edge2

e′ = (v(Sa),v(Sb)) ∈ [N,V ′\N].3

(⇐) Suppose H[C] is connected and G[L′ ∪C] is disconnected. In this case, G[L′ ∪C] has4

an empty cut-set [N,N], N ⊂ V , N 6= /0, N = V\N. Since G[L′ ∪C] is G[L′] plus the edges of5

E(C), and given that W (G[L′]) = {S1,S2, · · · ,Sw}, we have, without loss of generality, that N =6

S1∪S2∪·· ·∪Sn and N = Sn+1∪Sn+2∪·· ·∪Sw, n < w. However, given that H[C] is connected,7

the cut-set [{v(S1),v(S2), · · · ,v(Sn)},{v(Sn+1),v(Sn+2), · · · ,v(Sw)}] is not empty and the edge8

e′ = (v(Sa),v(Sb)), 1 ≤ a ≤ n, n < b ≤ w belongs to it. In this case, G[L′ ∪C] has an edge9

e = (va,vb), va ∈ N, vb ∈ N, and [N,N] is not empty. �10

Lastly, the Proposition 3.1 and the Definitions 3.4 and 3.5 address the relation between11

graphs obtained by the contraction of the same ELG but using distinct sets of labels. Let G =12

(V,E,L) be an ELG, M ⊂ E, and L′,L′′ ⊆ L. Further, let Π(e,M) be the resulting edge after13

applying e← π(e,v,w), for each (v,w) ∈M.14

Definition 3.4. Let G // L′ = (V ′,E ′,L). The edge e ∈ E is an originating edge of e′ ∈ E ′ if15

Π(e,E(L′)) = e′ and l(e) = l(Π(e,E(L′))).16

Definition 3.5. Let G//L′ = (V ′,E ′,L), and G//L′′ = (V ′′,E ′′,L). The edge e′′ ∈ E ′′ is the pro-17

jection of the edge e′ ∈ E ′ in the set of edges E ′′, denoted by ξ (e′,E ′′), if e ∈ E is an originating18

edge of both e′ and e′′.19

Proposition 3.1. Let G //L′ = (V ′,E ′,L), G //L′′ = (V ′′,E ′′,L), and e′ ∈ E ′. If l(e′) /∈ L′′, the20

edge e′ has a projection in the set E ′′.21

Demonstration. Let e ∈ E be an originating edge of e′ ∈ E ′. If l(e′) ∈ L′′, by Definitions22

3.1 and 3.2, no edge with label l(e′) belongs to G // L′′. On the other hand, if l(e′) /∈ L′′,23

e′′ = Π(e,E(L′′)) ∈ E ′′, and, by definition, e is an originating edge of e′′. �24

Figure 3.3 illustrates the Definitions 3.4 and 3.5. Fig. 3.3a, 3.3b and 3.3c present,25

respectively, the ELG G = (V,E,L), G′ = (V ′,E ′,L′) = G // {D,F}, and G′′ = (V ′′,E ′′,L′′) =26

G//{B,C}. Consider the edges e = (5,6) ∈ E, e′ = (1,4) ∈ E ′, and e′′ = (1,5) ∈ E ′′. We have27

that e is the originating edge of both e′ and e′′, then ξ (e′,E ′′) = e′′ as well as ξ (e′′,E ′) = e′.28

3.2 Transformations on Edge-Labeled Graphs

In this Section we address some characteristics of the ELGs that allow us to transform it without29

losing the optimality with respect to the GMLSTP. These transformations lead to graphs with a30
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Figure 3.3: The concepts of originating edge and edge projection. (a) G, an input ELG. (b)
G′ = G//{D,F}. (c) G′′ = G//{B,C}. The edge e = (5,6) on G is the originating edge of the
edges e′ = (1,4) on G′ and e′′ = (1,5) on G′′. Thence, e′′ is a projection of e′ and vice versa

smaller set of edges, vertices and/or labels, what can improve the efficiency of both heuristic and1

exact methods for the problem. Remark that Krumke and Wirth (1998) has briefly mentioned2

the results presented in Proposition 3.2 and Corollary 3.1, but here we give a more formal3

treatment for these results, as well as extend them. First we give the formal definitions of4

monochromatic cycles and cuts, as well as discuss how to deal with it.5

Definition 3.6. Given an ELG, a monochromatic cycle is a cycle formed solely by edges with6

the same label.7

Proposition 3.2. (Krumke and Wirth, 1998): Without loss of optimality, any monochromatic8

cycle can be broken by arbitrarily choosing an edge and removing it from the graph.9

Proof. Let G(V,E,L) be an edge-labeled graph, and P= {e1 = (v1,v2), e2 = (v2,v3), · · · , en =10

(vn,v1)}, such that l(i) = k, ∀ i ∈ P, a monochromatic cycle of G. Without loss of generality, let11

e= e1 =(v1,v2) be an arbitrary edge of P, let G′=(V,E\{e},L) be the resulting graph after the12

removal of e from G, and let C be any subset of L. We prove this proposition by demonstrating13

that G[C] is connected if and only if G′[C] is connected.14

If k /∈C then this statement holds. Indeed, G[C] is exactly G′[C].15

(⇒) For any C ⊆ L, k ∈C, suppose G[C] is connected and G′[C] is disconnected. In this case16

G′[C] has exactly two disjoint connected components, each one spanning respectively the set of17

vertices S,S ⊂V , such that v1 ∈ S and v2 ∈ S. However, the path P\{e} connects v2 to v1, and18

hence S to S. Then G′[C] is connected.19

(⇐) For any C⊆ L, k ∈C, suppose G′[C] is connected and G[C] is disconnected. G[C] is exactly20

the graph G′[C] plus the edge e. The addition of an edge cannot disconnect the graph G[C]. �21

Based on Proposition 3.2, without loss of optimality for the GMLSTP, we can preprocess22
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the input graph by breaking all of its monochromatic cycles. Therefore, with regards to the1

GMLSTP, we can deal just with monochromatic-cycle-free graphs (i.e. a graph G such that2

G[{l}] does not have cycles, for any l ∈ L). Let k = |L|, n= |V |, and m= |E|. Krumke and Wirth3

(1998) has proposed a monochromatic cycles removal method that can be executed in O(k ·n+4

m). As an alternative, we propose a new monochromatic cycles removal procedure (MCR) that5

can be carried out in O(α(m,n) ·m), where α stands for the inverse of the Ackerman’s function.6

Algorithm 3.1 describes the procedure MCR, which uses disjoint sets data structures7

(Cormen et al., 2009). The initializatoins of the data structures are performed in lines 2, 3, 5,8

and 6. The main loop of line 4 iterates over each label of the input ELG, while the loop of the9

lines 7 to 10 iterates on the set of edges with the label l, removing the cycle ones. Lastly, a10

monochromatic-cycle-free graph is returned in line 13. The initialization of the structures takes11

O(n). The internal loop performs at most 3 Union-Find operations for each edge of the graph,12

while keeping the history of the changes on the Union-Find structure S allows to restore it with13

the same number of operations that have changed it. Thence, the complexity of the MCR is14

O(n+α(m,n) ·m), and since the input ELG is connected, m≥ n−1, and the complexity of the15

MCR is O(α(m,n) ·m).16

Algorithm 3.1: The monochromatic cycles removal procedure (MCR).
1 procedure MCR(G = (V,E,L))
2 Let E ′′← /0 be the resulting set of edges;
3 Let S← Initialize(S) represent the Union-Find data structures;
4 foreach l ∈ L do
5 Let E l ← /0 be an auxiliary set of edges;
6 Let H← /0 carry the history of changes on S;
7 foreach e = (v1,v2) ∈ E({l}) do
8 if Find(v1) 6= Find(v2) then
9 E l ← E l ∪{e};

10 H← Union(v1,v2);

11 S← Restore-Union-Find-DS(S,H);
12 E ′′← E ′′∪E l;

13 return G(V,E ′′,L);

Figure 3.4 illustrates the concept of monochromatic cycles. Fig 3.4(a) presents an ex-17

ample ELG G, which have two monochromatic cycles: the cycle 1 ·6 ·8 ·1 with label F and the18

cycle 2 · 3 · 4 · 5 · 2 with label C. Fig. 3.4(b) shows the graph G after breaking the cycle with19

label F , while Fig. 3.4(c) shows G after breaking the cycle with label C. Note that the graph of20

Fig. 3.4(c) is a monochromatic-cycles-free graph.21

Definition 3.7. Given an ELG G = (V,E,L), and a set of vertices S ⊂V , the cut-set [S,V\S] is22

a monochromatic cut if l(e) = k, ∀e ∈ [S,V\S] .23
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Figure 3.4: Illustration of the concept of monochromatic cycles. (a) en ELG G with two
monochromatic cycles. (b) the graph G after the removal of the cycle with the label F . (c)
a monochromatic-cycles-free graph

Proposition 3.3. For solving the GMLSTP it is possible to deal only with monochromatic-cuts-1

free graphs.2

Demonstration. From Definition 3.7, if G has a monochromatic cut with the label k, this label3

belongs to every feasible solution for the problem. In this case, from Theorem 3.1, we have that4

solving the GMLSTP for G // {k} is equivalent to solving the problem for G and we can deal5

only with monochromatic-cuts-free graphs. �6

Figure 3.5 illustrates the concept of monochromatic cuts. Fig 3.5(a) presents an ELG G7

with a monochromatic cut [S,V\S], for S = {3,4,5}, that has only edges with the label A. Fig8

3.5(b) highlights the fact that the removal of all the edges with the label A from G leads to a9

disconnected graph. Fig 3.5(c) shows the graph G after the contraction of the label A.10

Figure 3.5: Illustration of the concept of monochromatic cuts. (a) The ELG G with the
monochromatic cut [S,V\S], for S = {3,4,5}. (b) the disconnected graph G[{B,C,D,E,F}].
(c) the graph G//{A}

In the sequel we give two new useful definitions on ELGs: the transitive closure and the11
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chromatic closure. Then, these concepts are used to extend the Proposition 3.2, giving a new1

way to represent ELGs. And finally, we prove a dominance rule on instances for the GMLSTP.2

Definition 3.8. The transitive closure of a label l ∈ L, denoted by Fc(l), stands for the expansion3

of the set of edges E({l}) such that if there is a path between the vertices u and v in the graph4

G[{l}], then the edge e = (u,v) ∈ Fc(l).5

Definition 3.9. By extension, the chromatic transitive closure, for short chromatic closure, of6

an ELG G = (V,E,L), denoted by F(G), is the graph H = (V,E ′,L), which have the same sets7

of vertices and labels of G, and the set of edges defined by the union of the transitive closures8

of each label of G. Formally, E ′ =
⋃

l∈LF
c(l).9

Figure 3.6 illustrates the concepts of transitive and chromatic closures. Figure 3.6(a)10

presents a small ELG G = (V,E,L). Fig. 3.6(b) highlights Fc(F), the transitive closure of the11

label F ∈ L, and the Fig. 3.6(c) shows F(G), the chromatic closure of the graph G.12

Figure 3.6: Example of transitive and chromatic closures. (a) The edge-labeled graph G =
(V,E,L). (b) The transitive closure of the label F . (c) the chromatic closure of the graph G.

Proposition 3.4. Solving the GMLSTP for an ELG G is equivalent to solving the problem for13

the graph H = F(G).14

Proof. Let C be any subset of L. We prove this proposition by demonstrating that H[C] =15

(V,E ′,L) is connected if and only if G[C] = (V,E,L) is connected.16

(⇒) Suppose H[C] is connected and G[C] is disconnected. In this case G[C] has two disjoint set17

of vertices S,S ⊂V , such that u ∈ S, v ∈ S, e′ = (u,v) ∈ E ′, but there is no path between u and18

vin G[C]. However, from Definition 3.9, if e′ = (u,v) ∈ E ′, then there is a path between u and v19

in G[C], a contradiction20

(⇐) Suppose G[C] is connected and H[C] is disconnected. Since the transitive closure is an21

extension of the set of edges of G, H[C] is the graph G[C] with additional edges. The addition22

of edges cannot disconnect the graph G[C]. �23
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Based on Proposition 3.4 and on the concept of transitive closure, we can state a domi-1

nance rule on the labels of an ELG with respect to the GMLSTP.2

Definition 3.10. Let G = (V,E,L) be an ELG such that l,k ∈ L. The label k is dominated by the3

label l if Fc(k)⊆ Fc(l).4

Proposition 3.5. Let G be an ELG such that the label k is dominated by the label l. The label k5

can be removed from the set G without loss of optimality for the GMLSTP.6

Demonstration. This demonstration uses the Proposition 3.4 and the graph H = F(G) =7

(V,E,L). Let L∗ be an optimal solution for the GMLSTP on H. If k /∈ L∗, then the proposi-8

tion holds. If k ∈ L∗ and l /∈ L∗, then the solution L′ = (L∗\{k})∪{l} is also optimal. Indeed,9

|L∗| = |L′| and H[L′] is connected since E({k}) ⊆ E({l}). Finally, if k, l ∈ L∗, then L∗ is not10

optimal because the graph H[L∗\{k}] is connected. In fact, for every edge removed from H[L∗],11

there is an parallel edge in E({l}). �12

Figure 3.7 illustrates the concept of dominance of labels. Fig. 3.7(a) presents the ELG13

G = (V,E,L). Fig. 3.7(b) shows the graph F(G), highlighting the dominance of the labels F14

and B over the labels E and D, respectively; Fig. 3.7(c) shows the graph G after the removal of15

the dominated labels;16

Figure 3.7: The concept of dominance of a label. (a) An input ELG G = (V,E,L). (b) The
graph F(G). (c) The graph G after the removal of the dominated labels, D and E

Lastly, combining Propositions 3.4 and 3.2 we can modify further the input graph. Let G17

be the input ELG. From Proposition 3.4, we have that we can solve the GMLSTP on H = F(G)18

without loss of optimality. Moreover, from Proposition 3.2, we can arbitrarily break the cycles19

of H. In such case, since G[{l}] keeps the same connected components, we are allowed to make20

any changes on the set of edges of E[{l}], ∀l ∈ L. This transformation allows us to represent21

the input ELG in the way that best suits the resolution of the problem. Another possibility is to22



3.3 Bounds for the GMLSTP 34

store just information on the connected components of G[{l}], ∀l ∈ L, instead of edges, in order1

to save storage/memory space.2

Figure 3.8 Illustrates two convenient modifications on the edges of an input ELG. Figure3

3.8(a) shows the input ELG G = (V,E,L). In the Fig. 3.8(b), all the connected components of4

G[{l}], ∀l ∈ L, are paths, while in Fig. 3.8(c), all the connected components of G[{l}], ∀l ∈ L,5

are stars.6

Figure 3.8: Illustration of transformations on the set of edges of ELGs. (a) The ELG G. (b)
Each monochromatic connected component of G represented as a path, and (c) as a star

3.3 Bounds for the GMLSTP

In this Section we introduce some useful bounds for the GMLSTP. First, we present two upper7

bounds on the number of edges that are necessary to consider. In the sequel, we discuss the8

minimum number of vertices for an instance to be non-trivial, and, finally, we discuss some9

lower bounds on the objective function of the GMLSTP. From Proposition 3.2 we can derive10

directly the following corollary:11

Corollary 3.1. (Krumke and Wirth, 1998): With respect to the GMLSTP, the maximum number12

of edges with the same label that is necessary to consider is |V | − 1. Formally, |E({l})| ≤13

|V |−1, ∀l ∈ L.14

Furthermore, based on Corollary 3.1 and on the definition of graph induced by a set of15

labels, we can state the following results:16

Remark. Let G = (V,E,L) be a monochromatic cycles free graph. The number of connected17

components of G[{l}] is |V | − |E({l})|. Indeed, since G is monochromatic cycles free, each18

edge of E({l}) reduces the number of connected components of G[{l}] by 1. �19
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In the sequel, we discuss that the bound given by Corollary 3.1 can be further improved1

if considering only non-trivial instances of the GMLSTP, as defined bellow.2

Proposition 3.6. Let l ∈ L be the label with the greater |E({l})| in a monochromatic cycles free3

graph. |E({l})| ≤ |V |−3 for non-trivial instances.4

Demonstration. From Corollary 3.1, |E({l})| ≤ |V |−1. Follow two trivial cases:5

|E({l})|= |V|−1: the optimal solution is {l} and it is found trivially by the MCR6

(Corollary 3.2).7

|E({l})|= |V|−2: G[{l}] has two connected components spanning the set of vertices8

S and S = V\S, respectively. Since the input graph is connected, the cut-set [S,S] is not empty9

and the solution is {l, l(e)}, e ∈ [S,S]. �10

Next, we show that is easy to solve the GMLSTP if the number of vertices of the input11

graph is small.12

Proposition 3.7. Let G = (V,E,L) be a connected monochromatic-cycles-free ELG. The GML-13

STP is trivially solvable if |V |< 5.14

Demonstration. The cases are the following:15

|V|= 1: the solution is /0.16

|V|= 2: the solution is {l}, for any l ∈ L.17

|V|= 3: if some label l has two or more edges, the solution is {l}. Otherwise, take18

arbitrarily a spanning tree of G and the solution is its set of labels, which have cardinality 2.19

|V|= 4: if some label l has three or more edges, the solution is {l}. If some label l has20

two or more edges, add l to the solution and complete the spanning tree of G arbitrarily with21

the edge e, the solution is {l, l(e)}. Otherwise, take arbitrarily a spanning tree of G and the22

solution is its set of labels, which have cardinality 3. �23

Note that both Propositions 3.6 and 3.7 can be used to terminate earlier any heuristic24

method, such as the MVCA. In the sequel of this section, we discuss some lower bounds on the25

objective function of the GMLSTP.26

Proposition 3.8. Let G = (V,E,L) be a monochromatic cycles free graph, and let L =27

{l1, l2, · · · , l|L|} be the set of labels of G such that |E({li})| ≥ |E({li+1})|, ∀ 1 ≤ i ≤ |L| − 1.28

Let b∗ be the minimum b ∈ N such that ∑
b
i=1 |E({lb})| ≥ |V |− 1. b∗ is a lower bound for the29

MLSTP on G.30
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Demonstration. Suppose L′ is a solution for the MLSTP and |L′| < b∗. In such case,1

G[L′] = (V,E ′,L′) has |E| < |V | − 1 edges. But the minimum number of edges for a graph2

to be connected is |V |−1. �3

In other words, the minimum number of labels necessary to connect a monochromatic4

cycles free graph G = (V,E,L) is at least the cardinality of the minimum subset of L′ ⊆ L such5

that G[L′] has |V |− 1 or more edges. The following corollaries are useful for speeding up the6

computational experiments performed both in Chapters 4 and 7.7

Corollary 3.2. If b∗ = 1, it is the optimal solution for the problem, and this solution is found8

trivially by the MCR procedure (Algorithm 3.1).9

Corollary 3.3. After the MCR procedure, if any method find a solution with value 2, this solution10

is optimal.11

Another lower bound for the GMLSTP can be obtained if we relax the connectivity12

constraint of the problem. The resulting problem, namely the label covering problem (LCP),13

can be defined as follows:14

Definition 3.11. Let G= (V,E,L) be an ELG, and let d(v) denote the degree of the vertex v∈V .15

The label covering problem aims to find a set L′ ⊆ L such that d(v) ≥ 1, for all the vertices of16

G[L′].17

Finally, let G = (V,E,L) be an ELG such that u,v ∈ V . If the path from u to v with18

the minimum number of labels uses |L′|, L′ ⊆ L labels, the solution for the GMLSTP on G is19

not lesser than |L′|. This lower bound can be extended by testing all possible pairs u,v. The20

problem of finding the minimum number of labels to connect two vertices on a ELG is better21

discussed in the Chapter 8.22



Chapter 4

MIP-Based Exact Methods

In this chapter, we describe a new mathematical formulation for the GMLSTP, namely CCut.1

The proposed model is based on the concept of colorful cuts; The absence of edges, arcs, and2

flow variables is the main difference between CCut and previous mathematical formulations3

for the problem. In remaining of this chapter we introduce the CCut formulation and describe4

branch-and-cut strategies for solving the model. Finally, we compare the proposed methods5

with the best ones in the literature.6

4.1 The colorful cuts formulation

This Section presents the colorful cuts formulation (CCut), a new cut-based mathematical model7

for solving both the MLSTP and the GMLSTP. One can say the CCut formulation is compact8

because it defines only |L| binary variables. Notwithstanding, it has an exponential number of9

constraints. Before introducing the formulation, it is necessary to formalize the concepts of10

disconnecting set of labels and colorful cuts, as well as to state an important property of these11

cuts.12

Definition 4.1. The set K ⊆ L is a disconnecting set of labels if the number of connected com-13

ponents of the graph G[L\K] is greater than the number of connected components of G.14

Property 4.1. Let δ (S) be the set of edges of the cut set [S,V\S], and let ls(δ (S)) = {l(e) | e ∈15

δ (S)} be the set of labels represented by the edges of δ (S). It is apparent that ls(δ (S)) is a16

disconnecting set of labels for every S⊂V , S 6= /0.17

Definition 4.2. The disconnecting set K(S) ⊆ L is a colorful cut if it is derived from a cut set18

δ (S) such that K(S) = ls(δ (S)) for some S⊂V , S 6= /0.19
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Figure 4.1 illustrates the concept of colorful cuts. Fig. 4.1a presents a small edge-labeled1

graph G. In Fig. 4.1b the subset of vertices S = {1,7,8} is highlighted. Derived from S we2

have the cut set δ (S) = {(1,2),(1,5),(6,7)}, and the colorful cut K(S) = {C,E}, that is the3

set of labels represented in δ (S). Fig. 4.1c reinforces that removing K(S) from G leads to a4

disconnected graph.5
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Figure 4.1: Example of colorful cut. (a) An edge-labeled graph G. (b) The set S = {1,7,8},
the cut set δ (S) = {(1,2),(1,5),(6,7)}, and the colorful cut K(S) = {C,E}. (c) The graph
G[L\K(S)], that is disconnected

Proposition 4.1. A graph G = (V,E,L) is connected if and only if any colorful cut K(S) of G is6

not empty.7

Proof. (⇒) By way of contradiction, suppose that G is connected and there exists a colorful cut8

K(S) = /0. In this case, δ (S) = /0, and there is no path between the vertices of S and V\S.9

(⇐) Suppose not. Suppose that any colorful cut K(S) of G is not empty and G is not connected.10

If G is not connected, it has one maximal connected component S ⊂ V , S 6= /0. However, if11

K(S) 6= /0, then δ (S) 6= /0, and there is an edge from S to a vertex v ∈ V\S. Hence, S∪{v} is a12

connected component, and S is not maximal. �13

The CCut formulation is derived directly from Proposition 4.1; it is presented in the14

program (4.1) through (4.3). The model defines only the group of binary variables zl ∈ {0,1},15

for which zl = 1 means that every edge with the label l is in the solution.16

Minimize ∑
l∈L

zl (4.1)
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s.t. ∑
l∈K(S)

zl ≥ 1, ∀S⊂V,S 6= /0, (4.2)

zl ∈ {0,1}, ∀l ∈ L. (4.3)

The objective function (4.1) minimizes the number of labels; the exponential set of con-1

straints (4.2) ensures the connectivity of the solution graph by requiring at least one active label2

for every colorful cut of the graph. Notice that such constraints can be separated heuristicly3

either by the maximum flow algorithm proposed for the DCut formulation, or by the DFS pro-4

cedure proposed for the EC formulation. Finally, the set of constraints (4.3) defines the domain5

of the variables.6

The CCut formulation can be further strengthened by inequality (4.4), which is derived7

from Proposition 3.8. It mimics the tree search constraints (2.14) and (2.15), described respec-8

tively for the DCut and EC formulations. Recall that E({l}) = {e ∈ E | l(e) = l}; the constraint9

requires a minimum number of edges (corresponding to a tree) to connect the graph.10

∑
l∈L
|E({l})| · zl ≥ |V |−1. (4.4)

Remark that solving the CCut model for medium to large size input graphs is not prac-11

tical due to the exponential set of inequalities (4.2). For this reason, the constraints (4.2) are12

replaced initially by the set (4.5), which grants every vertex of the graph has an incident edge.13

Then, the remaining constraints can be added on demand to the model, as discussed better in14

Section 4.2.15

∑
l∈K({v})

zl ≥ 1, ∀v ∈V. (4.5)

In the following sections we propose branch-and-cut algorithms for solving the CCut16

formulation and present computational experiments comparing these methods with the best17

ones in the literature.18

4.2 Branch-and-cut algorithms

As introduced previously, solving the CCut formulation for medium to large size input ELGs19

is not practical due to the size of the exponential set of inequalities (4.2). In such case, it is20
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interesting to use only a subset of these constraints at beginning, namely the constraints (4.5),1

and add the remaining ones to the model on demand. In this sense, we present in this section2

three branch-and-cut algorithms we propose for solving the CCut formulation. Refer to Wolsey3

(1998) or Wolsey and Nemhauser (2014) for more information on branch-and-cut algorithms.4

First, let z∗l be the value of the variable zl in a given a solution for the linear relaxation5

of the CCut model. We separate the colorful cuts inequalities (4.2) by using a simple DFS6

procedure, as proposed by Chwatal and Raidl (2011) for the EC formulation (refer to Section7

2.6): starting from an arbitrary root node, execute a depth-first search considering only the8

edges e with z∗l(e) > 0; let S be the set of vertices reached by the DFS procedure; if S 6=V , then9

the colorful cut inequality derived from S is added to the model. Observe that this procedure10

can be used for integer solutions as well.11

Alternatively, it is also possible to separate the colorful cuts inequalities (4.2) by using12

the maximum flow algorithm, as proposed by Chwatal and Raidl (2011) for the DCut formula-13

tion (refer to Section 2.5). However, recall the DFS procedure can be executed in O(|V |+ |E|)14

time, which is faster than the maximum flow algorithm. Besides, observe that both separation15

routines discussed are only heuristics. To separate exactly the colorful cuts inequalities, it is16

necessary to solve a weighted version of the minimum labeling global cut problem, which is17

discussed in Chapter 9.18

In the sequel, we describe the branch-and-cut algorithms BCA, BCI , and BCR. The only19

difference between the proposed algorithms is the moment they call the separation procedure.20

In BCA, the separation procedure is called whenever a solution is found. In BCI , the separation21

procedure is called whenever an integer solution is found. Further, in BCR, the separation22

routine is carried out on the root node of the branch-and-bound tree until it is not possible to23

add more cuts, and for the rest of the branch-and-bound tree, the separation procedure only24

is called when an integer solution is found. Lastly, let BCX(F,P) denote when the algorithm25

BCX is being used to solve the model F using the separation procedure P, and, analogously, let26

LR(F,P) denote the linear relaxation of the model F using the separation procedure P.27

4.3 Computational experiments

This section reports the computational experiments performed in order to evaluate the qual-28

ity of the CCut formulation along with the proposed branch-and-cut algorithms. First, we29

study briefly the linear relaxation of CCut and evaluate the algorithms BCA(CCut,DFS),30

BCR(CCut,DFS), and BCI(CCut,DFS). Then, we compare the one with the best results with31



4.3 Computational experiments 41

the best methods in the literature, namely EC and DCut.1

All experiments reported in this chapter were implemented in C++ language and com-2

piled by using g++ 4.6.3 with the optimization flag -O3. The CCut formulation and all of its de-3

rived procedures were implemented using the Concert library and Cplex 12.51 as the solver. The4

experiments were performed on a computer with Intel(R) Core(TM) i7-4790K CPU, 3.4GHz,5

16 GB of RAM, and Ubuntu 14.04 as the operating system. Although the processor of this6

device has more than one core, the algorithms were executed using a single core and a single7

thread. Further, we turned off all presolve features and all automatic cutting-plane generation8

procedures while all other parameters of the Cplex were set to their respective default values.9

We treated the colorful cuts inequalities (4.2) with dynamically generated cutting-planes added10

as User Cut Callbacks, and implemented a Lazy Constraint Callback to reject disconnected11

graphs eventually found as feasible integer solutions of the incomplete model.12

We have considered the group 2 of ELGs generated by Cerulli et al. (2005), a bench-13

mark already consolidated in the literature. The group of input graphs used in these ex-14

periments has instances with number of vertices n = |V | ∈ {100,200}, number of labels15

l = |L| ∈ {n/4, n/2, n, 5n/4}, and edge densities d ∈ {ld = 0.2,md = 0.5,hd = 0.8}. Also,16

each dataset consists in 10 different graphs for each n-d-l configuration, totalizing 240 ELGs.17

The first experiment performed aimed to evaluate the impact, on the linear relaxation of18

CCut, of changing the colorful cuts inequalities (4.2) by the set of inequalities (4.5). To do so,19

we have executed the procedures LR(CCut, /0) and LR(CCut,PART2) for the 240 ELGs of the20

benchmark, where PART2 represents the formulation with the same name (presented in Section21

9.1) being used to solve the weighted version of the minimum labeling global cut problem and,22

thus, separate exactly the colorful cuts inequalities (4.2).23

The results of the first experiment are presented in Table 4.1. Each line of the table24

reports the results for one input ELG identified in the form n-d-l-i, where n = |V |, l = |L|, d is25

the density of the graph, and i ∈ {0 · · ·9} is the number of the instance on its dataset. The first26

column identifies the input instance. The next two columns report the results obtained by each27

procedure, while the column ∆ reports the difference between them. The column % presents the28

relative difference between the methods. The column Cuts shows the number of colorful cuts29

added to the model. Lastly, the column t(s) reports the time taken to solve LR(CCut,PART2).30

Observe that the separation procedure did not find cuts for 231 out of 240 input instances, and,31

for this reason, these results are omitted from the table.32

From the results reported in Table 4.1, we can see that changing the colorful cuts in-33

equalities (4.2) by the set of inequalities (4.5) does not cause much impact on the linear relax-34
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ation of CCut. Indeed, the exact separation procedure did not find cuts for the majority of the1

input graphs. Besides, even when the separation is able to add cuts into the model, its impact2

is not much relevant. In this sense, we have opted to use the DFS routine described previously3

as separation procedure for the colorful cuts inequalities due to its simplicity and fast running4

times.5

Table 4.1: Effectiveness of separing exactly the colorful cuts inequalities

Instance LR(CCut, /0) LR(CCut,PART2) Cuts ∆ % t(s)
100-ld-100-4 8.45870 8.47738 1 0.01868 0.22% 0.613
100-ld-100-9 5.53541 5.53549 1 0.00008 0.00% 3.432

100-ld-125-5 6.45614 6.45620 1 0.00006 0.00% 0.891
100-ld-125-6 7.72405 7.73515 4 0.01110 0.14% 1.533

100-md-25-0 1.30000 1.30508 1 0.00508 0.39% 0.234

200-hd-50-1 1.07843 1.07849 1 0.00006 0.01% 3.253
200-hd-50-2 1.07059 1.07066 1 0.00007 0.01% 6.151
200-hd-50-4 1.07110 1.07234 1 0.00124 0.12% 3.153
200-hd-50-6 1.08063 1.08071 1 0.00008 0.01% 5.292

The second experiment aims to evaluate the branch-and-cut algorithms BCA =6

BCA(CCut,DFS), BCR = BCR(CCut,DFS), and BCI = BCI(CCut,DFS). To do so, we have7

carried out each procedure for the first instance of each dataset with n = 200. The results are8

reported in Table 4.2. Each line of the table reports the execution of one algorithm for one input9

ELG. The first column identifies the method while the second one identifies the input instance,10

using the same format from Table 4.1. The next three columns, UB, LR, and LB, report, respec-11

tively, the values of the upper bound, linear relaxation, and lower bound found by the methods.12

The columns t(s) and lrt(s) report, respectively, the cpu-time1 spent by each method to solve13

the instance and its linear relaxation. The column Nodes presents the number of nodes solved14

in the branch-and-bound tree, and the column Cuts shows the number of colorful cuts added15

to the model. Lastly, the column Gapr reports the relative difference between the LR and the16

UB: Gapr = (UB−LR)/UB. Further, bold results evidence when one method outperformed all17

competitors.18

From the results reported in Table 4.2 it is possible to observe that all methods were able19

to solve all input instances to optimality in less than one hour. Despite of that, the method BCA
20

performed too slow in relation to the other two. Comparing the methods BCR and BCI we have21

that the latter outperformed the first in 8 input instances, against 2 in the opposite direction. As22

expected, the number of cuts added to the model is very small, and there is no impact on the23

linear relaxations. Surprisingly, the number of nodes visited by BCI is smaller in comparison24

1All reported times are in seconds.
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with BCA. It happened because BCI is able to find good upper bounds faster than BCA. We1

have also performed similar experiments comparing the algorithms BCA, BCR, and BCI for the2

formulations EC, DCut, and its variations (adding the strengthening inequalities described in3

Section 2.7). BCI achieved the best performance in all experiments.4

According to the experiments performed by Chwatal and Raidl (2011), the best exact5

methods for the MLSTP in the literature are the branch-and-cut procedures based on the for-6

mulations ECsn (the program 2.8 to 2.12 with the strengthening inequalities 2.17 and 2.18) and7

DCutsn (the program 2.2 to 2.7 with the strengthening inequalities 2.16 and 2.18). The third ex-8

periment we performed compares these methods with the branch-and-cut algorithms proposed9

for solving the formulations CCut (the program 4.1 to 4.3) and CCutt (the program 4.1 to 4.310

with the strengthening inequality 4.4). The results are reported in Tables 4.3 and 4.4. Each line11

of these tables reports the execution of one algorithm for one dataset, i.e. a set of 10 ELGs with12

the same n-d-l dimension. The first three columns identify the algorithm2 and the dataset. The13

next columns have the same meaning as in Table 4.2, except for the columns Opt, indicating14

the number of instances the method was able to solve to optimality, and Gap, that reports the15

relative difference between the LB and the UB: Gap = (UB−LB)/UB. The Gap is zero if the16

optimality is proved. The columns UB, LR, LB, Gap, and Gapr report average values consider-17

ing the ten instances in the dataset, while the columns t(s), lrt(s), Nodes3, and Cuts report the18

total sum of these values. Bold results evidence when one method outperformed all competitors.19

From Table 4.3 it is possible to observe that the four methods were able to solve all20

instances with n = 100 to optimality within a time limit of two hours. Notwithstanding, the21

running times of the methods BCI(ECsn,DFS) and BCI(DCutsn,MaxFlow) were worse than22

the ones of the methods BCI(CCut,DFS) and BCI(CCutt ,DFS). The best overall performance23

was obtained by the algorithm BCI(CCutt ,DFS). Indeed, it has achieved the best execution24

time for 10 out of 12 datasets and the best linear relaxations.25

From the results presented in Table 4.4 it is possible to observe that the methods were not26

able to solve all instances with n = 200 to optimality within a time limit of two hours for each27

input graph. In this aspect, the best performing method was the algorithm BCI(CCut,DFS), that28

was able to solve 113 instances out of 120, followed by the algorithm BCI(CCutt ,DFS), which29

solved 112 instances. In special, these methods have solved all 10 instances in the dataset 200-30

md-250, while the other two methods have solved only 1 and 2 instances, respectively. Again,31

the execution times of the CCut based methods are much smaller, as well as the algorithm32

2CCut stands for BCI(CCut,DFS), CCutt stands for BCI(CCutt ,DFS), ECsn stands for BCI(ECsn,DFS), and
DCutsn stands for BCI(DCutsn,MaxFlow).

3For space reasons, k stands for 103 times and m stands for 106 times.
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BCI(CCutt ,DFS) has achieved the best linear relaxations. For this set of instances, the method1

BCI(CCut,DFS) performed slightly better that the BCI(CCutt ,DFS). In fact, the first has solved2

one instance more than the latter, and executed faster in 9 out of 12 datasets.3

4.4 Concluding remarks

In this chapter we have introduced CCut, a new mathematical formulation based on the concept4

of colorful cuts for solving both the MLSTP and the GMLSTP. In addition, we have proposed5

three branch-and-cut algorithms, separation procedures, and performed computational experi-6

ments to assess the new proposed methods.7

The results have showed that the methods based on the CCut formulation outperformed8

the best exact methods described in the literature. Considering the benchmark used, the algo-9

rithm BCI(CCut,DFS) has solved to optimality 233 out of 240 input graphs. One reason for10

this good performance is the absence of edges, arcs, and flow variables, as well as the linking11

constraints that bound these variables to the label ones. For instance, considering a graph with12

n = 200 and d = hd, the EC formulation has 15920 edge variables and the same number of the13

linking constraints (2.10).14

Further, the experiments suggest that it is not worth separating exactly the colorful cuts15

inequalities (4.2). Despite of that, we believe that the proposed methods can be further improved16

by adding new families of cuts to it. For instance, the addition of the tree search inequality (4.4)17

to the model was able to improve significantly its linear relaxation.18



4.4 Concluding remarks 45

Table 4.2: Comparison between the proposed branch-and-cut strategies

Instance UB LR LB t(s) lrt(s) Nodes Cuts Gapr
BCA 200-hd-50-0 2 1.070 1.070 0.011 0.004 0 0 46.5%
BCR 2 1.070 1.070 0.011 0.004 0 0 46.5%
BCI 2 1.070 1.070 0.011 0.004 0 0 46.5%

BCA 200-hd-100-0 2 1.288 1.587 1.777 0.015 2204 0 35.6%
BCR 2 1.288 1.587 1.254 0.015 2204 0 35.6%
BCI 2 1.288 1.591 0.949 0.011 2250 0 35.6%

BCA 200-hd-200-0 4 1.776 3.000 287.672 0.022 409657 1 55.6%
BCR 4 1.776 3.000 201.715 0.019 409719 0 55.6%
BCI 4 1.776 3.000 105.400 0.018 350081 0 55.6%

BCA 200-hd-250-0 4 2.024 3.000 67.946 0.032 69528 2 49.4%
BCR 4 2.024 3.000 52.117 0.031 69528 2 49.4%
BCI 4 2.024 3.000 51.736 0.031 69528 2 49.4%

BCA 200-md-50-0 2 1.273 1.273 0.014 0.006 0 1 36.3%
BCR 2 1.273 1.273 0.012 0.005 0 1 36.3%
BCI 2 1.273 1.273 0.012 0.004 0 1 36.3%

BCA 200-md-100-0 4 1.763 3.001 23.178 0.012 52835 7 55.9%
BCR 4 1.763 3.001 15.305 0.012 52863 3 55.9%
BCI 4 1.763 3.000 8.603 0.012 48694 3 55.9%

BCA 200-md-200-0 5 2.649 4.000 140.025 0.015 190131 0 47.0%
BCR 5 2.649 4.000 109.262 0.012 190131 0 47.0%
BCI 5 2.649 4.000 62.533 0.012 166906 0 47.0%

BCA 200-md-250-0 6 3.010 5.000 1917.250 0.015 2626788 5 49.8%
BCR 6 3.010 5.000 1478.250 0.014 2545574 4 49.8%
BCI 6 3.010 5.000 844.391 0.014 2329440 6 49.8%

BCA 200-ld-50-0 5 3.020 4.248 0.813 0.003 1793 0 39.6%
BCR 5 3.020 4.248 0.607 0.003 1793 0 39.6%
BCI 5 3.020 4.783 1.097 0.003 5003 0 39.6%

BCA 200-ld-100-0 8 5.010 7.263 27.750 0.009 53171 2 37.4%
BCR 8 5.010 7.263 21.756 0.009 53171 2 37.4%
BCI 8 5.010 7.000 5.970 0.006 14769 1 37.4%

BCA 200-ld-200-0 13 8.451 12.000 2676.640 0.009 3522303 12 35.0%
BCR 13 8.451 12.000 2255.690 0.009 3534963 2 35.0%
BCI 13 8.451 12.000 1509.730 0.009 3319290 2 35.0%

BCA 200-ld-250-0 14 10.006 13.264 3164.200 0.012 3507374 21 28.5%
BCR 14 10.006 13.000 655.298 0.012 792135 2 28.5%
BCI 14 10.006 13.000 796.199 0.012 1439630 1 28.5%
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Table 4.3: Computational results for ELGs with |V|=100

d l Opt UB LR LB t(s) lrt(s) Nodes Cuts Gap Gapr
CCut hd 25 10 1.8 1.074 1.074 0.035 0.008 0 0 0% 36%
CCutt 10 1.8 1.074 1.074 0.033 0.007 0 0 0% 36%
DCutsn 10 1.8 1.074 1.074 0.421 0.079 0 0 0% 36%
ECsn 10 1.8 1.074 1.074 0.249 0.045 0 0 0% 36%
CCut hd 50 10 2 1.293 1.293 0.087 0.032 0 1 0% 35%
CCutt 10 2 1.293 1.293 0.089 0.029 0 1 0% 35%
DCutsn 10 2 1.293 1.293 1.187 0.322 0 0 0% 35%
ECsn 10 2 1.293 1.293 0.786 0.333 0 0 0% 35%
CCut hd 100 10 3 1.766 2.266 4.021 0.057 18435 24 0% 41%
CCutt 10 3 2.010 2.240 1.997 0.011 12191 24 0% 33%
DCutsn 10 3 1.766 2.229 51.466 0.371 20562 28 0% 41%
ECsn 10 3 1.766 2.192 25.449 0.286 12305 23 0% 41%
CCut hd 125 10 4 1.991 3.000 37.688 0.051 167k 4 0% 50%
CCutt 10 4 1.991 3.000 37.376 0.048 167k 4 0% 50%
DCutsn 10 4 1.991 3.000 277.572 0.395 136k 9 0% 50%
ECsn 10 4 1.991 3.000 166.031 0.211 135k 8 0% 50%
CCut md 25 10 2 1.305 1.321 0.062 0.013 10 1 0% 35%
CCutt 10 2 1.305 1.321 0.059 0.012 10 1 0% 35%
DCutsn 10 2 1.305 1.321 0.639 0.183 10 2 0% 35%
ECsn 10 2 1.305 1.321 0.380 0.127 10 0 0% 35%
CCut md 50 10 3 1.775 2.233 0.660 0.025 1345 3 0% 41%
CCutt 10 3 1.825 2.183 0.556 0.011 1437 5 0% 39%
DCutsn 10 3 1.775 2.169 6.089 0.164 1008 2 0% 41%
ECsn 10 3 1.775 2.188 3.685 0.137 1020 3 0% 41%
CCut md 100 10 4.7 2.647 3.843 20.394 0.032 152k 51 0% 43%
CCutt 10 4.7 3.092 3.811 18.230 0.009 148k 47 0% 34%
DCutsn 10 4.7 2.647 3.777 187.047 0.175 135k 44 0% 43%
ECsn 10 4.7 2.647 3.825 131.048 0.132 153k 44 0% 43%
CCut md 125 10 5.2 3.040 4.232 23.863 0.036 137k 112 0% 42%
CCutt 10 5.2 3.671 4.203 9.079 0.012 61k 49 0% 29%
DCutsn 10 5.2 3.040 4.295 324.641 0.193 212k 121 0% 42%
ECsn 10 5.2 3.040 4.267 195.871 0.117 202k 150 0% 42%
CCut ld 25 10 4.5 2.859 3.545 0.175 0.011 380 5 0% 36%
CCutt 10 4.5 2.869 3.561 0.173 0.009 391 5 0% 36%
DCutsn 10 4.5 2.859 3.579 0.942 0.055 478 4 0% 36%
ECsn 10 4.5 2.859 3.580 0.598 0.033 430 3 0% 36%
CCut ld 50 10 6.7 4.550 5.794 1.171 0.018 7572 29 0% 32%
CCutt 10 6.7 4.694 5.842 1.274 0.012 9037 12 0% 30%
DCutsn 10 6.7 4.550 5.733 6.937 0.083 6940 26 0% 32%
ECsn 10 6.7 4.550 5.784 5.096 0.048 8154 20 0% 32%
CCut ld 100 10 9.7 7.183 8.951 26.957 0.031 153k 265 0% 26%
CCutt 10 9.7 7.593 8.841 16.576 0.015 109k 214 0% 22%
DCutsn 10 9.7 7.183 8.913 161.964 0.103 160k 196 0% 26%
ECsn 10 9.7 7.183 8.875 104.659 0.064 146k 276 0% 26%
CCut ld 125 10 11 8.141 10.164 507.745 0.026 428k 2267 0% 26%
CCutt 10 11 8.767 10.146 21.259 0.016 109k 566 0% 20%
DCutsn 10 11 8.141 10.213 1919.135 0.112 501k 1914 0% 26%
ECsn 10 11 8.141 10.139 564.177 0.074 398k 1617 0% 26%
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Table 4.4: Computational results for ELGs with |V|=200

d l Opt UB LR LB t(s) lrt(s) Nodes Cuts Gap Gapr
CCut hd 50 10 2 1.080 1.080 0.113 0.045 0 0 0% 46%
CCutt 10 2 1.080 1.080 0.122 0.051 0 0 0% 46%
DCutsn 10 2 1.080 1.080 5.931 1.593 0 0 0% 46%
ECsn 10 2 1.080 1.080 3.270 0.893 0 0 0% 46%
CCut hd 100 10 2.6 1.301 1.850 10.789 0.133 28k 7 0% 48%
CCutt 10 2.6 1.301 1.844 10.713 0.113 28k 7 0% 48%
DCutsn 10 2.6 1.301 1.794 313.865 2.429 27k 7 0% 48%
ECsn 10 2.6 1.301 1.789 166.352 1.156 27k 7 0% 48%
CCut hd 200 10 4 1.815 3.000 961.758 0.202 3174k 3 0% 55%
CCutt 10 4 2.096 3.000 975.084 0.025 3333k 3 0% 48%
DCutsn 10 4 1.815 3.000 31958.389 4.657 3222k 16 0% 55%
ECsn 10 4 1.815 3.000 14964.415 2.260 3150k 9 0% 55%
CCut hd 250 10 4 2.068 3.024 434.196 0.236 601k 22 0% 48%
CCutt 10 4 2.068 3.024 434.990 0.247 601k 22 0% 48%
DCutsn 10 4 2.068 3.088 10246.673 5.020 1201k 36 0% 48%
ECsn 10 4 2.068 3.087 5670.172 2.460 1175k 35 0% 48%
CCut md 50 10 2.2 1.316 1.492 0.516 0.066 481 3 0% 39%
CCutt 10 2.2 1.316 1.492 0.529 0.072 470 3 0% 39%
DCutsn 10 2.2 1.316 1.495 18.209 0.956 872 5 0% 39%
ECsn 10 2.2 1.316 1.488 8.431 0.556 772 4 0% 39%
CCut md 100 10 3.4 1.835 2.480 17.083 0.126 66k 12 0% 46%
CCutt 10 3.4 1.902 2.555 17.892 0.055 72k 8 0% 44%
DCutsn 10 3.4 1.835 2.614 453.806 1.314 83k 9 0% 46%
ECsn 10 3.4 1.835 2.563 214.743 0.655 71k 8 0% 46%
CCut md 200 10 5.4 2.832 4.400 2352.854 0.139 6803k 36 0% 48%
CCutt 10 5.4 3.274 4.420 2377.483 0.033 7077k 63 0% 39%
DCutsn 9 5.4 2.832 4.349 21063.010 2.271 2921k 57 2% 48%
ECsn 9 5.4 2.832 4.386 14097.577 1.161 3806k 68 2% 48%
CCut md 250 10 6.3 3.285 5.300 10557.906 0.153 27m 57 0% 48%
CCutt 10 6.3 3.938 5.335 12280.528 0.034 34m 22 0% 37%
DCutsn 1 6.3 3.285 4.984 59653.040 2.556 7446k 39 20% 48%
ECsn 2 6.3 3.285 5.156 54075.540 1.337 13m 34 15% 48%
CCut ld 50 10 5.2 2.862 4.293 7.815 0.048 34k 3 0% 45%
CCutt 10 5.2 2.878 4.294 7.711 0.045 35k 5 0% 44%
DCutsn 10 5.2 2.862 4.249 96.178 0.377 34k 1 0% 45%
ECsn 10 5.2 2.862 4.314 62.130 0.165 39k 2 0% 45%
CCut ld 100 10 7.9 4.635 7.060 466.704 0.075 1786k 27 0% 41%
CCutt 10 7.9 4.772 7.121 529.135 0.047 2032k 18 0% 39%
DCutsn 10 7.9 4.635 7.033 5689.845 0.474 1475k 24 0% 41%
ECsn 10 7.9 4.635 6.992 3002.548 0.245 1478k 18 0% 41%
CCut ld 200 8 12 7.683 11.053 32303.712 0.096 66m 274 3% 36%
CCutt 7 12.1 8.117 10.999 29671.498 0.062 62m 238 4% 33%
DCutsn 1 12.3 7.683 10.567 67219.190 0.828 12m 105 13% 38%
ECsn 5 12.1 7.683 10.716 54320.280 0.400 17m 179 7% 37%
CCut ld 250 5 13.8 9.007 12.388 48378.577 0.113 88m 322 7% 35%
CCutt 5 13.8 9.606 12.456 49853.001 0.055 92m 298 6% 30%
DCutsn 1 13.8 9.007 11.822 68644.820 0.932 11m 375 14% 35%
ECsn 3 13.8 9.007 11.971 65669.390 0.417 18m 560 11% 35%



Chapter 5

A Polyhedral Study on CCut Formulation

Studying the polyhedron derived from a MIP formulation is a powerful tool for solving NP-1

hard problems. This approach can lead to a deeper understanding of the problem and to the2

discovering of new families of strong valid inequalities, which stands for non-dominated and3

non-redundant ones. In its turn, this kind of cuts are very useful for the design of effective4

branch-and-cut algorithms. In the sequel, we formalize the concepts of dominated and redun-5

dant inequalities, following the definitions given by Wolsey (1998).6

Given a set P = {x ∈ Rn
+ | Ax ≤ b}, where A is an m by n matrix, b an m-dimensional7

column vector, and x an n-dimensional column vector of variables.8

Definition 5.1. (Wolsey, 1998): An inequality µx≤ µ0 is a valid inequality for P if µx≤ µ0 for9

all x ∈ P.10

Definition 5.2. (Wolsey, 1998): If µx≤ µ0 and µ ′x≤ µ ′0 are two valid inequalities for P, the first11

dominates the second if there exists u> 0 such that µ ≥ uµ ′, µ0≤ uµ ′0, and (µ,µ0) 6=(uµ ′,uµ ′0).12

Definition 5.3. (Wolsey, 1998): A valid inequality µx≤ µ0 is redundant in the description of P13

if there exists k > 2 valid inequalities µ ix ≤ µ i
0. and weights ui > 0, for i = 1, · · · ,k, such that14

(∑k
i=1 uiµ i)x≤ (∑k

i=1 uiµ i
0) dominates µx≤ µ0.15

Figure 5.1 illustrates the concepts of dominated and redundant inequalities. In Fig.16

5.1(a), the inequality 2x1+4x2 ≤ 9 is dominated by the inequality x1+3x2 ≤ 4 (take u = 1
2 ). In17

Fig. 5.1(b), the inequality 5x1−2x2 ≤ 6 is redundant because of the inequalities 9x1−5x2 ≤ 618

and 6x1− x2 ≤ 9 (consider u = (1
3 ,

1
3)).19

Given the Definitions 5.1, 5.2, and 5.3, we have that it is desirable to know which in-20

equalities are non-redundant in the description of P, i.e., the necessary inequalities. In practice,21

it is important to avoid using an inequality when it is possible to find quickly one (or some) that22
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Figure 5.1: Adapted from Wolsey (1998): Example of dominance of inequalities. (a) A domi-
nated inequality. (b) A redundant inequality

dominates it. The following proposition gives a way to search for strong valid inequalities in1

the description of polyhedrons.2

Proposition 5.1. (Wolsey, 1998): Given a polyhedron P⊆Rn, a valid inequality µx≤ µ0 of P,3

and the face F = {x ∈ P | µx = µ0}. If P is full-dimensional, i.e. its dimension is n, µx≤ µ0 is4

necessary in the description of P if and only if F is a facet of P, which means the dimension of5

F is n−1.6

In the remaining of this chapter we define the polytope of the CCut formulation, prove7

that three new families of inequalities and the bounding constraints are facet defining under cer-8

tain conditions, compare the polytope defined by the formulations described in this work, and9

present an example ELG that emphasizes the convex hull of the GMLSTP is not completely de-10

scribed. The polyhedral comparison results for the studied polytope show that the new model is11

theoretically superior to current state-of-the-art formulations. The following section investigate12

the polyhedron defined by the CCut formulation, proving it is full dimensional for non-trivial13

instances of the GMLSTP.14

5.1 De�nition of the CCut polytope

This section formally presents the polyhedron defined by the CCut formulation with the aim of15

proving it is full dimensional. We are not interested in trivial instances of the GMLSTP and16

therefore assume that the input ELG is connected and has at least tree vertices, refer to Proposi-17

tions 3.6 and 3.7. We are neither interested in the case of an input ELG G with monochromatic18

cuts, as given by Definition 4.2. We have already discussed how to deal with monochromatic19

cuts in the Chapter 3. Refer to Proposition 3.3.20

Let m = |L|, Z = (zl)l∈L, and let21
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PCCut(G) := conv{Z ∈ {0,1}m | Z satisfies (4.2)} (5.1)

be the polytope defined by the CCut formulation. We can now state the central result of this1

section:2

Proposition 5.2. If G is a monochromatic-cut-free graph, the polytope PCCut(G) is full dimen-3

sional, i.e.,4

dim(PCCut(G)) = |L|= m. (5.2)

Proof. We prove the proposition by showing that the problem has m+ 1 affinely independent5

feasible solutions. In fact, since the input graph G is connected, there exists one vector Z0,6

representing the feasible solution with all the labels of G. Furthermore, for each label l ∈ L,7

there exists a vector Zl , representing the solution L\{l}; this solution is feasible because there8

are no monochromatic cuts in the input graph.9

It is easy to verify that these solution vectors are affinely independent by choosing Z0 as10

source and subtracting it from all other solutions. This operation leads to m vectors that are11

clearly linearly independent:12

z1 z2 z3 · · · zm z1 z2 z3 · · · zm

Z0 = [ 1 1 1 1··· 1 ]

Z1 = [ 0 1 1 1··· 1 ] Z1−Z0 = [ −1 0 0 0··· 0 ]

Z2 = [ 1 0 1 1··· 1 ] Z2−Z0 = [ 0 −1 0 0··· 0 ]
...

...
Zm = [ 1 1 1 1··· 0 ] Zm−Z0 = [ 0 0 0 0··· −1 ].

�13

In the following sections, we discuss cases in which the variable bounding inequalities14

are facet defining and examine in detail the colorful cut inequalities (4.2) with respect to the15

polytope PCCut(G). We also introduce new concepts to support the propositions.16
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5.2 Variable bounding inequalities

Given that every polytope PCCut(G) is contained in a unitary m-dimensional hypercube, the vari-1

able bounding inequalities (5.3) and (5.4) are clearly valid for the GMLSTP. In this section, we2

argue that the bounding inequalities (5.3) are always facet defining and that the non-negativity3

inequalities (5.4) also define facets under certain conditions.4

zl ≤ 1, ∀l ∈ L. (5.3)

zl ≥ 0, ∀l ∈ L. (5.4)

Theorem 5.1. For any l ∈ L, the associated variable bounding inequality zl ≤ 1 defines a facet5

of the polytope PCCut(G).6

Proof. For every label l ∈ L, we can use all the solution vectors described in Proposition 5.2,7

except Zl . Since these solutions are a subset of an affinely independent set of points, they are8

also affinely independent. �9

Theorem 5.2. The inequality zl ≥ 0, for l ∈ L, defines a facet of the polytope PCCut(G) if and10

only if l is not part of any colorful cut K(S) of G with |K(S)|= 2.11

Proof. (⇐) For any l ∈ L, let Z0 be the solution vector corresponding to the set of labels L\{l},12

and let Zk, k ∈ {1,2, · · · ,m− 1}, be the solution vector corresponding to L\{k, l}. Since l13

is not part of any colorful cut with |K(S)| = 2, these solution vectors are feasible and affinely14

independent. In fact, choosing Z0 as the source and subtracting it from all other solutions yields15

m−1 linearly independent vectors:16

z1 z2 · · · zm−1 zm z1 z2 · · · zm−1 zm

Z0 = [ 1 1 1··· 1 0 ]

Z1 = [ 0 1 1··· 1 0 ] Z1−Z0 = [ −1 0 0··· 0 0 ]

Z2 = [ 1 0 1··· 1 0 ] Z2−Z0 = [ 0 −1 0··· 0 0 ]
...

...
Zm−1 = [ 1 1 1··· 0 0 ] Zm−1−Z0 = [ 0 0 0··· −1 0 ].

(⇒) If K(S) = {k, l} is a colorful cut of G, and the associated inequality (4.2) zk + zl ≥ 1 is17

valid, then (zl + zk ≥ 1)− (zk ≤ 1) is exactly zl ≥ 0, which is redundant. �18
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5.3 The colorful cut inequalities

The main objective of this section is to prove that the colorful cut inequalities (4.2) are facet1

defining in many cases. However, to do so we must first define the concepts of minimal colorful2

cuts and T-labels as well as some of their properties.3

Definition 5.4. A colorful cut K(S) is minimal if there does not exist a disconnecting set of4

labels K′ such that K′ ⊂ K(S).5

Property 5.1. Let K(S) be a minimal colorful cut of the graph G; thus G[L\L′] is connected for6

every subset L′ ⊂ K(S).7

Proof. If G[L\L′] is disconnected for some subset L′ ⊂ K(S), then L′ is a disconnecting set of8

labels, and K(S) is not a minimal colorful cut. �9

Note that Property 5.1 can be used to easily verify whether a given colorful cut K(S) is10

minimal. Indeed, if G[L\L′] is connected for every L′ ⊂ K(S) such that |L′| = |K(S)|−1, then11

K(S) is minimal.12

Definition 5.5. Given a minimal colorful cut K(S) and a label X ∈ L\K(S), we say that X is a13

T-label induced by K(S) if X is part of a monochromatic cut in every graph G[L\L′] such that14

L′ ⊂ K(S) and |L′|= |K(S)|−1.15

In other words, if a minimal colorful cut K(S) induces a T-label X , then every solution16

that has just one label of K(S) must also have X because it becomes a monochromatic cut. The17

implicit interaction between the colorful cut K(S) and its induced T-label X leads to the valid18

inequality19

( ∑
l∈K(S)

zl)+ zX ≥ 2, X ∈ T(S), (5.5)

where T(S) denotes the set of T-labels induced by K(S).20

Property 5.2. Let K(S) be a colorful cut of G for S ⊂ V , and let K(S) = L\K(S). If X ∈ K(S)21

is not a T-label induced by K(S), then there exists a label k ∈ K(S), denoted by U(S,X), such22

that the solution L′ =U(S,X)∪K(S,X) is feasible, where K(S,X) = K(S)\{X}.23

Proof. Let us assume the contrary. Suppose that X /∈ T(S) and @k ∈K(S) such that the solution24

{k} ∪K(S,X) is feasible. In this case, X is part of a monochromatic cut in G[{k} ∪K(S)],25

∀k ∈ K(S). According to Definition 5.5, X ∈ T(S). This is a contradiction. �26
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Figure 5.2 illustrates the concept of a T-label induced by a colorful cut. The example1

in Fig. 5.2a presents the graph G, in which F ∈ T({1}); Fig. 5.2b shows that for G[L\{A,B}],2

K({1,4}) = {F} is a monochromatic cut; in Fig. 5.2c K({7,8}) = {F} is a monochromatic cut3

for G[L\{A,C}]; and Fig. 5.2d shows that, for G[L\{B,C}], K({4}) = {F} is a monochromatic4

cut. Observe that D /∈ T({1}). In fact, D is not a monochromatic cut in the graph G[L\{A,C}];5

thus U({1},D) = B.6
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Figure 5.2: The T-label concept. (a) Example graph G, in which T({1}) = {F}. (b) F is a
monochromatic cut if we remove A and B from G. (c) F is a monochromatic cut if we remove
A and C. (d) F is a monochromatic cut if we remove B and C

Let K(S) be a minimal colorful cut of the graph G, Z = (zl)l∈L, and let7

FCCut(S) := {Z ∈ PCCut(G) | ∑
l∈K(S)

zl = 1} (5.6)

be the face induced by the respective colorful cut inequality (4.2). To prove that FCCut(S) is a8

facet of the polytope PCCut(G), we use the following steps (known as indirect proof, see Wolsey9

and Nemhauser (2014)).10

First, we introduce m = |L| solutions that are in FCCut(S). Then, we suppose that these11

solutions lie on a generic hyperplane µz = µ0. Finally, we prove that this hyperplane is exactly12

a multiple of the associated colorful cut inequality (4.2).13
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For any S ⊂V , let s = |K(S)|. Without loss of generality, let the indices of the labels in1

K(S) be 1,2, · · · ,s. Furthermore, let Zl , for l ∈ {1,2, · · · ,s,s+1, · · · ,m}, be the solution vectors2

built as follows.3

For any l ∈ {1,2, · · · ,s}, Zl is the solution vector corresponding to the set of labels4

{l}∪K(S); and, for any l ∈ {s+1, · · · ,m}, Zl is the solution vector corresponding to the set of5

labels U(S, l)∪K(S, l), where U(S, l) is underlined:6

K(S) K(S)

z1 z2 · · · zs zs+1 zs+2 · · · zm

Z1 = [ 1 0 0··· 0 1 1 1··· 1 ]

Z2 = [ 0 1 0··· 0 1 1 1··· 1 ]

...

Zs = [ 0 0 0··· 1 1 1 1··· 1 ]

Zs+1 = [ 0 0 0··· 1 0 1 1··· 1 ]

Zs+2 = [ 1 0 0··· 0 1 0 1··· 1 ]

...

Zm = [ 0 1 0··· 0 1 1 1··· 0 ].

According to Property 5.1, any solution in the form {l}∪K(S) is feasible for l ∈ K(S);7

according to Property, 5.2 any solution in the form U(S, l)∪K(S, l) is feasible for l ∈ K(S). In8

addition, it is evident that by construction9

Zl ∈ FCCut(S), ∀l ∈ {1,2, · · · ,m}. (5.7)

Moreover, we have the following lemma:10

Lemma 5.1. Let es ∈ Rm be a vector representing the left-hand-side coefficients of the corre-11

sponding inequality (4.2), defined as follows:12

es
l =

{
1 for 1≤ l ≤ s,

0 for s+1≤ l ≤ m.

With respect to the already defined set of solution vectors Z, consider the following linear sys-13

tem:14
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µ •Zl = µ0, ∀l ∈ {1,2, · · · ,m}, (5.8)

where µ ∈Rm, µ0 ∈R, and ‘•’ stands for the usual scalar product. The unique solution of (5.8)1

verifies2

(µ,µ0) = α(es,1). (5.9)

Proof. For any l ∈ {1,2, · · · ,s−1},3

µ •Zl = µ0 = µ •Zl+1⇒ µ •Zl = µ •Zl+1⇒ µl = µl+1.

Consequently,4

µ1 = µ2 = · · ·= µs = α .

In addition, for any l ∈ {s+1,s+2, · · · ,m},5

µ •ZU(S,l) = µ0 = µ •Zl ⇒ µ •ZU(S,l) = µ •Zl ⇒ µl = 0.

Therefore, we also have6

α = µ0,

and finally,7

(µ,µ0) = α(es,1).

�8

Theorem 5.3. The face FCCut(S) is a facet of PCCut(G) if and only if K(S) is a minimal colorful9

cut and it does not induce any T-labels, i.e., T(S) = /0.10

Proof. (⇐) It follows from Lemma 5.1 that the unique solution of (5.8) verifies (5.9). In this11

case, the provided solution vectors Zl , for l ∈ {1,2, · · · ,m}, are affinely independent. Therefore,12

dim(FCCut(S)) = m−1, and FCCut(S) is a facet of PCCut(G).13

14

(⇒) If the colorful cut K(S) is not minimal, then there exists a disconnecting set of labels15

K′ ⊂ K(S), and the valid inequality16
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∑
l∈K′

zl ≥ 1

clearly dominates the colorful cut inequality associated with K(S).1

On the other hand, if X ∈ T(S), then the T-label inequality (5.5) associated with K(S)2

and X is valid, and3

(
( ∑

l∈K(S)
zl)+ zX ≥ 2

)
+(−zX ≥−1)

is exactly the colorful cut inequality associated with K(S), which is redundant. In this case,4

FCCut(S) is not a facet of PCCut(G). �5

5.4 The T-label inequalities

In the previous section, we have shown that inequality (5.5) is valid if a minimal colorful cut6

K(S) induces a T-label X . In this section, we present the entire family of these inequalities, and7

we prove that it defines a facet of PCCut(G) under certain conditions. To this end, we must first8

extend the T-label concept and discuss some of its new properties.9

Definition 5.6. Given a minimal colorful cut K(S) and a label X ∈ K(S), we say that X is a10

k-T-label induced by K(S) if X is part of a monochromatic cut in every graph G[L\L′] such that11

L′ ⊂ K(S) and |L′|= |K(S)|− k.12

The concept of k-T-labels extends the concept of T-labels in such a way that even if13

we keep k labels of K(S), then we must also use the induced k-T-label because it becomes a14

monochromatic cut. Likewise, for T-labels, if a colorful cut K(S) induces a k-T-label X , then15

the following inequality is valid:16

( ∑
l∈K(S)

zl)+ k · zX ≥ 1+ k, X ∈ Tk(S), (5.10)

where Tk(S) denotes the set of k-T-labels induced by K(S).17

Figure 5.3 illustrates the concept of a 2-T-label induced by a colorful cut. The exam-18

ple given in Fig. 5.3a presents the graph G, in which F ∈ T2({1}); Fig. 5.3b shows that for19
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G[L\{A}], K({5})= {F} is a monochromatic cut; in Fig. 5.3c, K({7,8})= {F} is a monochro-1

matic cut for G[L\{C}]; and Fig. 5.3d shows that, for G[L\{B}], K({1,2,3,4}) = {F} is a2

monochromatic cut.3
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Figure 5.3: The k-T-label concept. (a) Example graph G, in which T2({1}) = {F}. (b) F is a
monochromatic cut if we remove A from G. (c) F is a monochromatic cut if we remove C. (d)
F is a monochromatic cut if we remove B

In the following, we refine the characterization of the k-T-labels and their inducing col-4

orful cuts. For the following properties, let K(S) be a minimal colorful cut and let s = |K(S)|.5

Property 5.3. If k ≥ s, then Tk(S) = /0.6

Property 5.4. If a label X ∈K(S) is a (k+1)-T-label induced by K(S), then X is also a k-T-label7

induced by K(S), for k ≥ 1. It follows that8

Ts−1(S)⊆ Ts−2(S)⊆ ·· · ⊆ T2(S)⊆ T(S).

Note that, even when X ∈ K(S) is a (k+1)-T-label induced by K(S), the corresponding9

inequality (5.5) remains valid (but redundant). Starting from (5.10) and adding to it k · (−zX ≥10

−1), we arrive exactly at inequality (5.5).11

Property 5.5. If X ∈ K(S) is not a k-T-label induced by K(S) for k < |K(S)|, then there exists a12

set Uk(S,X)⊂ K(S) with exactly k labels such that the solution Uk(S,X)∪K(S,X) is feasible,13

where K(S,X) = K(S)\{X}.14
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Proof. Suppose not. Suppose that X /∈ Tk(S) and @K′ ⊂ K(S), |K′| = k such that the solution1

K′∪K(S,X) is feasible. In this case, X is part of a monochromatic cut in the graph G[K′∪K(S)],2

∀K′ ⊂ K(S), and X ∈ Tk(S) according to Definition 5.6. �3

Lemma 5.2. Let K(S) be a minimal colorful cut of a graph G such that X ,Y ∈ T(S). The4

inequality5

( ∑
l∈K(S)

zl)+ zX + zY ≥ 3, X ,Y ∈ T(S), (5.11)

is valid with respect to PCCut(G) if one of these four cases holds:6

(a) The inequality zX + zY ≥ 1 is valid.7

(b) @ {k,w} such that {k,w}=U2(S,X) =U2(S,Y ).8

(c) For any {k,w} = U2(S,X) = U2(S,Y ), there exists a set K′ ⊆ K(S)\{k,w} such that9

{X ,Y}∪K′ is a disconnecting set of labels.10

(d) X ∈ T2(S) or Y ∈ T2(S).11

Proof. Let L′⊆ L be a feasible solution of the GMLSTP for the graph G. Consider the following12

cases:13

(1) If |K(S)∩L′|= 1, then inequality (5.11) is clearly valid because X ,Y ∈ T(S).14

(2) If |K(S)∩ L′| = 2, then neither X nor Y is needed. However, if (a), then either X or15

Y is needed and (5.11) is valid. Let {k,w} = K(S) ∩ L′. The same occurs if (b). If16

{k,w} = U2(S,X), then Y ∈ L′. If {k,w} = U2(S,Y ), then X ∈ L′. If (c), even with17

{k,w} = U2(S,X) = U2(S,Y ), then either X or Y is needed. This occurs because (a) is18

valid in every graph G[{k,w}∪K(S)]. Finally, (d) reduces to (b).19

(3) If |K(S)∩L′| ≥ 3, then inequality (5.11) is also valid. �20

Property 5.6. If X ,Y ∈ T(S) and Lemma 5.2 does not hold, then there exists a valid solution of21

the form U2(S,Y )∪K(S,Y )\{X}.22

Proof. Let {k,w} =U2(S,X) =U2(S,Y ) such that @K′ ⊆ K(S)\{k,w} | {X ,Y}∪K′ is a dis-23

connecting set of labels. The solution {k,w}∪K(S,Y )\{X} is clearly valid. �24
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In the following, we address the T-label family of inequalities (5.12).1

( ∑
l∈K(S)

zl)+ zX ≥ 2,
∀S⊂V,S 6= /0,

∀X ∈ T(S).
(5.12)

Let K(S) be a minimal colorful cut of the graph G, X ∈ T(S), and let2

FT-label(S,X) := {Z ∈ PCCut(G) |( ∑
l∈K(S)

zl)+ zX = 2} (5.13)

be the face induced by the respective T-label inequality (5.12). To prove that FT-label(S,X) is3

a facet of the polytope PCCut(G), we again use the indirect proof. First, we introduce m ≥ |L|4

solutions that are in FT-label(S,X). We then suppose that these solutions lie on a generic hyper-5

plane µz = µ0. Finally, we prove that this hyperplane is exactly a multiple of the associated6

T-label inequality (5.12).7

Let K(S) be a minimal colorful cut, where s = |K(S)|, t = |T(S)|, X ∈ T(S), T2(S) =8

/0, and Lemma 5.2 does not hold for any Y ∈ T(S)\{X}. Without loss of generality, let the9

indices of the labels in K(S) be 1,2, · · · ,s; let the indices of the labels in T(S) be m− t +10

1,m− t + 2, · · · ,m; and let the index of the label X be m. Furthermore, consider the Zl , for11

l ∈ {1,2, · · · ,s,s+1, · · · ,m−1,m,m+1, · · · ,m+ t−1}, solution vectors:12
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K(S) K(S)\T(S) T(S)

z1 z2 · · · zs zs+1 zs+2 · · · zm−t zm−t+1 zm−t+2 · · · zm

Z1 = [ 1 0 0··· 0 1 1 1··· 1 1 1 1··· 1 ]

Z2 = [ 0 1 0··· 0 1 1 1··· 1 1 1 1··· 1 ]
...

...

Zs = [ 0 0 0··· 1 1 1 1··· 1 1 1 1··· 1 ]

Zs+1 = [ 0 0 0··· 1 0 1 1··· 1 1 1 1··· 1 ]

Zs+2 = [ 1 0 0··· 0 1 0 1··· 1 1 1 1··· 1 ]
...

...

Zm−t = [ 0 1 0··· 0 1 1 1··· 0 1 1 1··· 1 ]

Zm−t+1 = [ 0 1 0··· 1 1 1 1··· 1 0 1 1··· 0 ]

Zm−t+2 = [ 1 0 0··· 1 1 1 1··· 1 1 0 1··· 0 ]
...

...

Zm = [ 0 1 0··· 1 1 1 1··· 1 1 1 1··· 0 ]

Zm+1 = [ 1 0 0··· 1 1 1 1··· 1 1 1 1··· 0 ]
...

...

Zm+t−1 = [ 1 1 0··· 0 1 1 1··· 1 1 1 1··· 0 ].

For any l ∈ {1,2, · · · ,s}, Zl is the solution vector corresponding to the set of labels1

{l}∪K(S). For any l ∈ {s+1, · · · ,m− t}, Zl is the solution vector corresponding to the set of2

labels U(S, l)∪K(S, l), where U(S, l) is underlined. For l ∈ {m− t + 1,m− t + 2, · · · ,m− 1},3

Zl is the solution vector corresponding to the set of labels
(
U2(S, l) =U2(S,X)

)
∪K(S, l)\{X},4

l ∈ T(S)\{X}, and any label w ∈U2(S, l) is underlined. Finally, Zm, Zm+1, · · · , Zm−t+1, are the5

solution vectors
(
U2(S, l) =U2(S,X)

)
∪K(S,X), ∀l ∈ T(S).6

According to Property 5.1, any solution of the form {l}∪K(S) is feasible for l ∈ K(S);7

according to Property 5.2, any solution of the form U(S, l)∪K(S, l) is feasible for l ∈ K(S).8

According to Property 5.6, the solutions U2(S, l)∪K(S, l)\{X} are feasible because Lemma 5.29

does not hold. Finally, the solutions U2(S,X)∪K(S,X) are also feasible according to Property10

5.5. In addition, it is evident that from the construction11

Zl ∈ FT-label(S,X), ∀l ∈ {1,2, · · · ,m,m+1, · · · ,m− t +1}. (5.14)
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Lemma 5.3. Let es ∈ Rm be a vector representing the left-hand-side coefficients of the corre-1

sponding inequality (5.12), defined as follows:2

es
l =


1 for 1≤ l ≤ s,

0 for s+1≤ l ≤ m−1,

1 for l = m.

With respect to the already defined set of solution vectors Z, consider the following linear sys-3

tem:4

µ •Zl = µ0, ∀l ∈ {1,2, · · · ,m,m+1, · · · ,m− t +1}, (5.15)

where µ ∈Rm, µ0 ∈R, and ‘•’ stands for the usual scalar product. The unique solution of (5.15)5

verifies6

(µ,µ0) = α(es,2). (5.16)

Proof. For any l ∈ {1,2, · · · ,s−1},7

µ •Zl = µ0 = µ •Zl+1⇒ µ •Zl = µ •Zl+1⇒ µl = µl+1.

It follows that,8

µ1 = µ2 = · · ·= µs = α .

In addition, for any l ∈ {s+1,s+2, · · · ,m− t},9

µ •ZU(S,l) = µ0 = µ •Zl ⇒ µ •ZU(S,l) = µ •Zl ⇒ µl = 0.

For l ≥ m and w ∈U2(S, l),10

µ •Zw = µ0 = µ •Zl ⇒ µ •Zw = µ •Zl ⇒ µw = µl = α .

For l ∈ {m− t +1,m− t +2, · · · ,m−1},11
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µ •Zl = µ0 = µ •Zm,
(
U2(S, l) =U2(S,X)

)
⇒ µ •Zl = µ •Zm⇒ µl = 0.

Therefore, we also have1

2α = µ0.

Finally,2

(µ,µ0) = α(es,2).

�3

We can now state the central theorem of this section:4

Theorem 5.4. The face FT-label(S,X) is a facet of PCCut(G) if and only if the following three5

conditions are verified:6

(a) K(S) is a minimal colorful cut.7

(b) Inequality (5.11) is not valid for any Y ∈ T(S)\{X}.8

(c) T2(S) = /0. It follows that, X is not a 2-T-label induced by K(S).9

Proof. (⇐) It follows from Lemma 5.3 that the unique solution of (5.15) verifies (5.16). In this10

case, the provided solution vectors Zl , for l ∈ {1,2, · · · ,m,m+1, · · ·}, are affinely independent.11

Therefore, dim(FT-label(S,X)) = m−1, and FT-label(S,X) is a facet of PCCut(G).12

13

((a)⇒) If the colorful cut K(S) is not minimal, then there exists a disconnecting set K′ ⊂ K(S),14

and the valid inequality15

( ∑
l∈K′

zl)+ zX ≥ 2

clearly dominates the T-label inequality associated with K(S).16

17

((b)⇒) If inequality (5.2) is valid for any additional label Y ∈ T(S), then18

(
( ∑

l∈K(S)
zl)+ zX + zY ≥ 3

)
+(−zY ≥−1)

is exactly the T-label inequality associated with K(S), which is redundant.19

20
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((c)⇒) If X ∈ T2(S), then the 2-T-label inequality (5.10) associated with K(S) and X is valid1

and2

(
( ∑

l∈K(S)
zl)+2 · zX ≥ 3

)
+(−zX ≥−1)

is exactly the T-label inequality associated with K(S), which is redundant.3

4

For any of the cases (a), (b), or (c), FT-label(S,X) is not a facet of PCCut(G). �5

5.5 The k-T-Label inequalities

This section presents the k-T-label family of inequalities. We extend Theorem 5.4 and prove6

that these inequalities also define facets of the polytope PCCut(G) under some conditions. Let7

( ∑
l∈K(S)

zl)+ k · zX ≥ 1+ k,

∀S⊂V,S 6= /0,

∀k ∈ {1, ...,K(S)−1},

∀X ∈ Tk(S),

(5.17)

be the family of k-T-label inequalities. Moreover, let K(S) be a minimal colorful cut of the8

graph G, s = |K(S)|, X ∈ Tk(S), and let9

Fk-T-label(S,X) := {Z ∈ PCCut(G) |( ∑
l∈K(S)

zl)+ k · zX = k+1} (5.18)

be the face induced by the respective k-T-label inequality (5.17).10

We prove that Fk-T-label(S,X) is a facet of the polytope PCCut(G) by indirect proof. With-11

out loss of generality, let the indices of the labels in K(S) be 1,2, · · · ,s, and let the index of the12

label X be m. Furthermore, let Zl , for l ∈ {1,2, · · · ,s,s+1, · · · ,m−1,m}, be the solution vectors13

built as follows.14

For any l ∈ {1,2, · · · ,s}, Zl is the solution vector corresponding to the set of labels15

{l}∪K(S). For any l ∈ {s+1, · · · ,m−1}, Zl is the solution vector corresponding to the set of16

labels U(S, l)∪K(S, l). For l = m, Zl is the solution vector corresponding to the set of labels17

Uk(S,X)∪K(S,X).18
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It is evident that the proposed solution vectors represent feasible solutions according to1

Properties 5.1, 5.2, and 5.5. In addition, it is evident that2

Zl ∈ Fk-T-label(S,X), ∀l ∈ {1,2, · · · ,m}. (5.19)

Thus, we can state the following lemma:3

Lemma 5.4. Let es ∈ Rm be a vector representing the left-hand-side coefficients of the corre-4

sponding inequality (5.17), defined as follows:5

es
l =


1 for 1≤ l ≤ s,

0 for s+1≤ l ≤ m−1,

k for l = m.

With respect to the already defined set of solution vectors Z, consider the following linear sys-6

tem:7

µ •Zl = µ0, ∀l ∈ {1,2, · · · ,m}, (5.20)

where µ ∈Rm, µ0 ∈R, and ‘•’ stands for the usual scalar product. The unique solution of (5.20)8

verifies9

(µ,µ0) = α(es,k+1). (5.21)

Proof. For any l ∈ {1,2, · · · ,s−1},10

µ •Zl = µ0 = µ •Zl+1⇒ µ •Zl = µ •Zl+1⇒ µl = µl+1.

It follows that,11

µ1 = µ2 = · · ·= µs = α .

In addition, for any l ∈ {s+1,s+2, · · · ,m−1},12

µ •ZU(S,l) = µ0 = µ •Zl ⇒ µ •ZU(S,l) = µ •Zl ⇒ µl = 0.
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Finally, for l = m and w ∈Uk+1(S, l),1

µ •Zw = µ0 = µ •Zl ⇒ µ •Zw = µ •Zl ⇒ k ·µw = µl ⇒ µl = k ·α .

Therefore, we also have2

(k+1) ·α = µ0.

Finally,3

(µ,µ0) = α(es,k+1).

�4

Theorem 5.5. If5

(a) K(S) is a minimal colorful cut;6

(b) K(S) induces exactly one T-label X, i.e. T(S) = {X}; and7

(c) X is a k-T-label, but it is not a (k+1)-T-label induced by K(S), i.e. X ∈ Tk(S), X /∈ Tk+1(S);8

then the face Fk-T-label(S,X) is a facet of PCCut(G).9

Proof. It follows from Lemma 5.4 that the unique solution of (5.20) verifies (5.21). In this case,10

the provided solution vectors Zl , for l ∈ {1,2, · · · ,m}, are affinely independent and verify the11

conditions (a), (b), and (c). Therefore, dim(Fk-T-label(S,X)) = m− 1, and Fk-T-label(S,X) is a12

facet of PCCut(G). �13

5.6 Polyhedral comparisons

This section aims to achieve the following two objectives: 1) to examine the effect of adding the14

tree search (4.4), T-label (5.12), and k-T-label (5.17) inequalities to the polytope PCCut(G); and15

2) to compare PCCut(G) with the polytopes described by the formulations EC (2.8-2.12) and16

DCut (2.2-2.7), presented respectively in Sections 2.6 and 2.5. The remainder of this section17

uses superscripts to identify when a formulation is strengthened by some cut. Table 5.1 shows18

the superscripts and their associated constraints.19
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Table 5.1: Superscripts and constraints associated with each formulation

Constraint/Formulation

Superscript Constraint Name DCut EC CCut

t Tree search (2.14) (2.15) (4.4)

s Strong linkage (2.16) (2.17) -

n Node label (2.18) (2.18) -

l T-label - - (5.12)

k k-T-label - - (5.17)

Theorem 5.6.

PCCuttlk(G)⊂ PCCuttl(G)⊂ PCCutt (G)⊂ PCCut(G). (5.22)

Proof. Since CCutt is exactly the CCut formulation with the addition of the tree search inequal-1

ities (4.4), we have PCCutt (G)⊆ PCCut(G). By the same reasoning, PCCuttlk(G)⊆ PCCuttl(G)⊆2

PCCutt (G). The remainder of the proof uses the three graphs shown in Fig. 5.4.3
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Figure 5.4: LR solutions that are feasible for the CCut formulation but are either (a) infeasible
for CCutt , (b) infeasible for CCuttl , or (c) infeasible for CCuttlk

The solution given in Fig. 5.4a is feasible for the CCut formulation; however, it vio-4

lates the associated tree search inequalities (4.4). Thus, PCCutt (G) ⊂ PCCut(G). The solution5

given in Fig. 5.4b is feasible for the formulation CCutt; however, the label C is a T-label in-6

duced by the colorful cut K({1}) = {A,B}, and the solution violates the associated T-label7

constraint (5.12). In this case, PCCuttl(G) ⊂ PCCutt (G). The solution given in Fig. 5.4c is fea-8

sible for the formulation CCuttl; however, the label D is a 2-T-label induced by the colorful cut9

K({1,2,7,8}) = {A,B,C}, and the solution violates the associated k-T-label constraint (5.17).10

Thus, PCCuttlk(G)⊂ PCCuttl(G), and the proof is concluded. �11

Let Pz denote the projection of some polytope P on the Z variable space. For polytopes12
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defined in the (Z,X) variable space, Pz := conv{Z ∈ R|L| | (Z,X) ∈ P}, whereas for polytopes1

defined in the (Z,Y ) variable space, Pz := conv{Z ∈R|L| | (Z,Y ) ∈ P}. In the following, the so-2

lutions presented in Fig. 5.5 are used to prove Lemmas 5.5 and 5.6. Observe that the inequality3

associated with the colorful cut K({3,4}) = {A,B} is violated in both solutions given in Fig.4

5.5. In fact, zA + zB = 1
4 +

1
4 = 1

2 < 1.5
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Figure 5.5: LR solutions that are infeasible for the CCut formulation but feasible for EC (a) and
DCut (b)

Lemma 5.5.

Ph
z (G) 6⊆ PCCut(G), ∀h ∈ {EC,ECs,ECn,ECt,ECsn,ECnt}. (5.23)

Proof. Consider the LR solution presented in Fig. 5.5a. We have shown that the solution is6

not feasible for the CCut formulation; yet it does not violate any constraints of the formulations7

EC, ECs, ECn, ECt , ECsn, or ECnt . �8

Lemma 5.6.

Ph
z (G) 6⊆ PCCut(G), ∀h ∈ {DCut,DCuts,DCutn,DCutt,DCutsn,DCutnt}. (5.24)

Proof. Consider the LR solution presented in Fig. 5.5b. We have shown that the solution is9

not feasible for the CCut formulation, yet it does not violate any constraints of the formulations10

DCut, DCuts, DCutn, DCutt , DCutsn, or DCutnt . �11

Let PCCut
zx (G) := conv{(Z,X) ∈ R|L|+|E| | Z ∈ PCCut(G) and xe = zl(e),∀e ∈ E} be the12

extension of the polytope PCCut(G) to the (Z,X) variable space.13

Theorem 5.7.

PCCut
zx (G)⊂ Ph(G), ∀H ∈ {EC,ECs,ECn,ECsn}. (5.25)

Proof. The first part of the proof is given by Lemma 5.5. Additionally, we need to prove that14

(Z,X) respects all EC constraints as well as those of the strong linkage and node labels. Con-15
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straints (2.10) and strong linkage (2.17) are respected by the definition of PCCut
zx (G). The node1

label constraints (2.18) are respected because they are a subset of the colorful cut inequalities2

(4.2). Finally, since xe = zl(e),∀e ∈ E, we have3

∑
e∈δ (S)

xe ≥ ∑
l∈K(S)

zl ≥ 1≥ ε, ∀S⊂V,S 6= /0,

and inequalities (2.9) are respected. �4

Let PCCut
zy (G) := conv{(Z,Y ) ∈ R|L|+|A| | Z ∈ PCCut(G) and ya = zla(a),∀a ∈ A} be the5

extension of the polytope PCCut(G) to the (Z,Y ) variable space.6

Theorem 5.8.

PCCut
zy (G)⊂ Ph(G), ∀h ∈ {DCuts,DCutsn}. (5.26)

Proof. The first part of this proof is given by Lemma 5.6. Additionally, we need to prove that7

(Z,Y ) respects all DCut constraints as well as those of the strong linkage and node labels. Note8

that the strong linkage constraints and inequalities (2.5) cannot coexist. Constraints (2.4) and9

strong linkage (2.16) are respected by the definition of PCCut
zy (G). The node label constraints10

(2.18) are respected because they are a subset of the colorful cut inequalities (4.2). Finally,11

since ya = zla(a),∀a ∈ A, we have12

∑
a∈δ−(S)

ya ≥ ∑
l∈K(S)

zl ≥ 1, ∀S⊆V\{r},S 6= /0,

and inequalities (2.3) are respected. �13

Before proposing the next theorem, we provide an algorithm that extends the polytope14

PCCut(G) with the aim to show that every (extended) feasible solution for the CCut formulation15

is also feasible for the DCut formulation. Furthermore, we discuss some properties of the16

procedure and introduce the notation used to prove Theorem 5.9.17

Let v0,v1, · · · ,vn−1 be any arbitrary ordering of the nodes in the set V , for n = |V |. For18

convenience, let r = v0 be the root node of the DCut formulation. Consider Algorithm 5.1,19

where Z = (zl)l∈L ∈ PCCut(G).20

21
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Algorithm 5.1: Extension of Z to (Z,Y ∗)

1 Procedure Ext(G = (V,E,L), Z)

2 D1 = (V,A,Y 1)← BuildDigraph(G,Z);

3 for i← 1,2, · · · ,n−1 do

4 F i←MaxFlow( r→ vi, Di );

5 F i← RemovePositiveFlowCircuits( F i );

6 for each a ∈ A do yi+1
a ←Min(yi

a,1− f i
a);

7 Di+1← (V,A,Y i+1);

8 for each a ∈ A do y∗a← f m(a)
a = Max( f 1

a , f 2
a , · · · , f n−1

a );

9 return (Z,Y ∗);

1

Let A be a set of arcs, and let Y = (ya)a∈A denote a vector of arc capacities. On line 2,2

D1 = (V,A,Y 1) denotes the directed graph derived from G in which each edge e ∈ E is replaced3

by two opposite arcs a,a∈ A, with respective weights of 0≤ y1
a = y1

a = zla(a) = zla(a) = zl(e)≤ 1.4

The loop of lines 3 through 7 aims to find a set of maximum flows F i = ( f i
a)a∈A, from r to vi,5

∀vi ∈V\{r}.6

On line 4, MaxFlow(r→ vi,Di) is a procedure that computes one optimal flow vector F i
7

of the maximum flow problem with the node source r and the destination vi in the digraph Di,8

considering yi
a as the capacity of the arc a. For the case in which F i contains any positive flow9

circuits, it is well known that they may be removed without changing the maximum flow value.10

Note that because of the positive flow circuit removal, for any a ∈ A, either f i
a = 0, f i

a = 0, or11

f i
a = f i

a = 0.12

For any a ∈ A, let m(a) = argmax
i=1,2,··· ,n−1

( f i
a) be the index of the greater flow that passed13

through the arc a. On line 6, all arc capacities are updated, and the digraph of the next iteration14

is created on line 7. Observe that the y series15

 y1
a = zl(e),

yi+1
a = Min(yi

a,1− f i
a), for i≥ 1,

are non-increasing since yi+1
a ≤ yi

a. Finally, the return value (Z,Y ∗) is the CCut solution vector16

Z extended with the variables Y ∗. In the following, we state Lemmas 5.7 and 5.8 and use them17

to prove Theorem 5.9.18

Lemma 5.7. For each i = 1,2, · · · ,n−1,19



5.6 Polyhedral comparisons 70

∑
a∈δ−(S)

yi
a ≥ 1, ∀S⊆V\{r},vi ∈ S ⇒ ∑

a∈δ−(S)
y∗a ≥ 1, ∀S⊆V\{r},vi ∈ S.

Proof. If the left side of the lemma is true, then F i←MaxFlow(r→ vi,Di), and from the min-1

cut max-flow theorem, it follows that the maximum flow from r to vi is greater than 1. Since2

y∗a← f m(a)
a = Max( f 1

a , f 2
a , · · · , f i

a, · · · , f n−1
a ), ∀a ∈ A, the right side of the lemma is also true. �3

Lemma 5.8. y j
a ≥ f i

a, ∀ j such that n−1 > j > i.4

Proof. If f i
a = 0, the lemma holds. The lemma also holds if j = i+1 since f i

a 6= 0⇒ f i
a = 0⇒5

yi+1
a = yi

a.6

Once f i
a 6= 0, yi+1

a ≤ 1− f i
a, and from the non-increasing property of the y series f k

a ≤7

yi+1
a ≤ 1− f i

a, for any k ≥ i+ 1. Because of the nature of the function Min(yi
a,1− f i

a), the8

minimum possible value of yi+1
a is attained when f i

a is at maximum. Because f k
a ≤ 1− f i

a,9

yk+1
a ≥ 1− 1+ f i

a ⇒ yk+1
a ≥ f i

a. Once k ≥ i+ 1, replacing k with j results in the lemma also10

holding for any j ≥ i+2. �11

Let PCCut
zy∗ (G) := conv{Ext(G,Z) | Z ∈ PCCut(G)} be the extension of the polytope12

PCCut(G) to the (Z,Y ) variable space.13

Theorem 5.9.

PCCut
zy∗ (G)⊂ PDCut(G). (5.27)

Proof. The first part of the proof is given by Lemma 5.6; the second part consists in proving that14

Ext(G,Z) = (Z,Y ∗) ∈ PDCut, ∀Z ∈ PCCut(G). To this end, we must show that (Z,Y ∗) respects15

all DCut constraints (see Section 2.5).16

• Constraints (2.4): We have f m(a)
a ≤ ym(a)

a because of the capacity constraint of the flow.17

Thus, from the non-increasing property of the y series,18

y∗a = f m(a)
a ≤ ym(a)

a ≤ ym(a)−1
a ≤ ·· · ≤ y1

a = zla(a),∀a ∈ A,

and Constraints (2.4) are respected.19

• Constraints (2.5): If m(a) = m(a), then f m(a)
a + f m(a)

a = 0 ≤ 1 because positive flow20

circuits are removed. Thus, y∗a + y∗a = 0≤ 1.21

This remains the case when m(a) < m(a) (the case m(a) > m(a) is symmetric). For22
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this case, m(a)+ 1 ≤ m(a). However, f m(a)
a ≤ ym(a)

a ≤ ym(a)+1
a due to the flow capacity1

constraint and the non-increasing property of the y series.2

From the definition of the y series, we also have ym(a)+1
a ≤ 1− f m(a)

a . Thus,3

f m(a)
a ≤ 1− f m(a)

a ⇒ f m(a)
a + f m(a)

a ≤ 1⇒ y∗a + y∗a ≤ 1,

and Constraints (2.5) are satisfied.4

• Constraints (2.3): We need to prove that5

∑
a∈δ−(S)

y∗a ≥ 1, ∀S⊆V\{r},S 6= /0. (5.28)

To this end, we use mathematical induction on Algorithm 5.1, from which we derived the6

following inequalities:7

∑
a∈δ−(S)

yi
a ≥ 1, ∀S⊆V\{r},vi ∈ S. (5.29)

Observe that, if (5.29) is true for every i = 1,2, · · · ,n−1, then it follows from Lemma 5.78

that (5.28) is also true.9

Since y1
a = zl(e), ∀a ∈ A, and Z is feasible for CCut, the result holds for i = 1. Now let10

us assume, by induction hypothesis, that (5.29) holds for every i ≤ k− 1, for k ≤ n− 1,11

and we prove that it is still true for i = k. Let Sk denote any set of vertices such that12

Sk ⊆V\{r} and vk ∈ Sk. If13

∑
a∈δ−(Sk)

yk
a = ∑

a∈δ−(Sk)

y1
a,

then the result holds for the same reason it holds for i = 1. Furthermore, if any vi ∈ Sk,14

for i < k, then the result holds by induction hypothesis. For the remaining case we have15

∑
a∈δ−(Sk)

yk
a < ∑

a∈δ−(Sk)

y1
a, and vi /∈ Sk,∀i < k.
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In this case, at least one arc capacity yk
a, a ∈ δ−(S) was changed compared with y1

a.1

Consider the largest value for w, with w< k, such that the flow Fw changes some capacity2

yw+1
a , a ∈ δ−(S). In this case, based on flow conservation, we have3

∑
a∈δ−(Sk)

f w
a = ∑

a∈δ+(Sk)

f w
a

because vw /∈ Sk. Let b ∈ δ−(Sk) be the arc whose capacity yw+1
b was changed. This4

means that f w
b
6= 0 and f w

b = 0. Then, from Lemma 5.8, it follows that5

∑
a∈δ−(Sk)

a6=b

yk
a ≥ ∑

a∈δ−(Sk)
a6=b

f w
a = ∑

a∈δ−(Sk)

f w
a = ∑

a∈δ+(Sk)

f w
a .

Moreover, yw+1
b = 1− f w

b
and f w

b
= 1− yw+1

b . Thus,6

∑
a∈δ−(Sk)

a6=b

yk
a ≥ f w

b + ∑
a∈δ+(Sk)

a6=b

f w
a ⇒ ∑

a∈δ−(Sk)
a6=b

yk
a ≥ 1− yw+1

b + ∑
a∈δ+(Sk)

a6=b

f w
a .

Because w < k is the index of the last iteration, which changed the capacity yw+1
b , yk

b =7

yw+1
b . Finally,8

∑
a∈δ−(Sk)

yk
a = ∑

a∈δ−(Sk)
a 6=b

yk
a + yw+1

b ≥ 1+ ∑
a∈δ+(Sk)

a 6=b

f w
a ≥ 1.

�9

Corollary 5.1.

PCCut
zy∗ (G)⊂ PDCutn(G). (5.30)

Proof. From Theorem 5.9, we have PCCut
zy∗ (G) ⊂ PDCut(G). Furthermore, the node label con-10

straints (2.18) are a subset of the colorful cut inequalities (4.2). �11

The section above compared the polytope PCCut(G) with the polytopes defined by the12

EC and DCut formulations as well as with their variations. Figure 5.6 summarizes the results13

described in this section.14
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PCCutPCCuttPCCuttlPCCuttlk

PCCut
zx PCCut

zy PCCut
zy∗

PECsn
PDCutsn

PECs
PECn

PDCuts PDCutn

PEC PDCut

i jmeans i⊂ j
i jmeans i⊆ j

means extension

Figure 5.6: Polytope inclusion diagram summarizing the results of Section 5.6

5.7 CCut convex hull study

Taking into account all inequalities introduced in the previous sections, it may be interesting1

to determine whether a complete description of the polytope PCCut(G) is attained. Figure 5.72

shows that it is not the case. Indeed, the basic feasible solution of this example satisfies all3

inequalities (colorful cuts, tree search, T-labels, and k-T-labels), yet still contains fractional4

variables. However, the graph in Fig. 5.7 might serve as a starting point in the search for new5

families of facet-defining inequalities.6
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Figure 5.7: Small convex hull counter-example. (a) Example graph. (b) A basic feasible solu-
tion with fractional label variables

Furthermore, expressions (5.31) through (5.39) present the inequalities generated for the7

instance given in Fig. 5.7. Inequalities (5.31) through (5.37) are facet defining for the minimal8

colorful cuts of this graph. Inequality (5.38) represents the colorful cut K({1,6}) = {A,B,D,E}9

that induces the T-label C. Inequality (5.39) is the corresponding tree search inequality.10
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colorful cut: (S = {1}) zA + zB + zC ≥ 1 (5.31)

colorful cut: (S = {2}) zA + zF + zG ≥ 1 (5.32)

colorful cut: (S = {3}) zB + zF + zG ≥ 1 (5.33)

colorful cut: (S = {1,2,3}) zC + zF + zG ≥ 1 (5.34)

colorful cut: (S = {4}) zD + zF + zG ≥ 1 (5.35)

colorful cut: (S = {5}) zE + zF + zG ≥ 1 (5.36)

colorful cut: (S = {6}) zC + zD + zE ≥ 1 (5.37)

T-label C: (S = {1,6}) zA + zB + zC + zD + zE ≥ 2 (5.38)

tree search: zA + zB + zC + zD + zE +3zF +3zG ≥ 5 (5.39)

5.8 Concluding remarks

In the present chapter, we have provided some interesting results for the CCut polytope, in par-1

ticular concerning its dimension and its facet compositions. New valid inequalities were intro-2

duced, and the conditions in which they define facets have been given. We have proposed poly-3

hedral comparisons between the polytope associated with the state-of-the-art formulations—4

DCut and EC—and their variations. Our results show that the CCut formulation theoretically5

performs better with respect to its polytope than all currently available mathematical formula-6

tions for the GMLSTP and MLSTP. On the other hand, in Section 5.7, we have shown that all7

facets introduced here were insufficient to reach the CCut polytope convex hull.8



Chapter 6

Improved Exact Methods

Chapter 4 has presented studies on MIP-based exact methods for solving the GMLSTP, such as1

CCut, a new mathematical formulation for the problem, as well as branch-and-cut algorithms2

for solving this model. In this chapter we discuss two improvements for the methods previously3

addressed in Chapter 4. First, we propose a new mathematical model that extends CCut by4

using the concept of partitioning cuts. Then, we introduce a new branching strategy for solving5

CCut. Lastly, we combine these two approaches into a new branch-and-cut algorithm. We can6

observe from the computational experiments performed that the new approaches were able to7

achieve the best results regarding exact methods for the MLSTP so far.8

6.1 The partitioning cuts formulation

This section presents the partitioning cuts formulation (PCut), a new mathematical model for9

solving both the MLSTP and the GMLSTP. As well as the CCut formulation, PCut defines only10

|L| binary variables. Moreover, as discussed later, PCut can be seen as an extension of CCut.11

Before introducing the model, it is necessary to formalize the concepts of proper partitionings,12

partitioning graphs, and partitioning cuts, as well as to discuss an important property related to13

these concepts.14

Definition 6.1. Given an ELG G = (V,E,L), P = {S1,S2, · · · ,Sp} is a proper partitioning of15

the vertices of G, for short partitioning, if (i) S ⊂ V , S 6= /0, ∀S ∈ P, (ii) ∪S∈PS = V , and (iii)16

Sa∩Sb = /0, ∀Sa,Sb ∈ P,Sa 6= Sb.17

Definition 6.2. Given an ELG G = (V,E,L) and a proper partitioning of its vertices P =18

{S1,S2, · · · ,Sp}, the partitioning graph G((P)) = (V ′,E ′,L) is the graph built as follows: for19

each partition S ∈ P there is a vertex v(S) ∈ V ′, and for each edge e = (v1,v2) ∈ E, v1 ∈ S′,20
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v2 ∈ S′′, there is an edge e′ = (v(S′),v(S′′)) ∈ E ′, such that l(e′) = l(e).1

Proposition 6.1. Let G = (V,E,L) be an edge-labeled graph, and P = {S1,S2, · · · ,Sp} a proper2

partitioning of its vertices. If G((P)) is disconnected, then G is disconnected.3

Proof. By way of contradiction, suppose that G((P)) = (V ′,E ′,L) is disconnected and G =4

(V,E,L) is connected. In this case, G((P)) has an empty cut-set [S′,V ′\S′] with S′ =5

{v(Sa),v(Sb), · · · ,v(Sw)}. Then, by the definition of partitioning graphs, the cut-set [S′′,V\S′′],6

for S′′ = Sa∪Sb∪·· ·∪Sw, is empty on G and G is disconnected. It is a contradiction. �7

As a consequence of Proposition 6.1, we have that the connectivity of an ELG G could8

be verified by checking the connectivity of G((P)) for every possible proper partitioning of9

the vertices of G. In addition, observe that G((P)) itself is an ELG (possibly an edge-labeled10

multigraph) and thence, all the properties that hold for this kind of graph also holds for G((P)).11

We are particularly interested in Propositions 3.2 and 3.8, respectively the monochromatic cycle12

removal property and the lower bound on the number of edges necessary to connect an ELG.13

Given an ELG G=(V,E,L) and a proper partitioning of its vertices P= {S1,S2, · · · ,Sp},14

let G∗((P)) denote the monochromatic-cycles free ELG obtained by applying the procedure15

MCR (refer to Algorithm 3.1) on G((P)).16

Definition 6.3. A partitioning cut (or a PCut inequality) is the tree search inequality (4.4)17

derived from a partitioning graph G∗((P)).18

Figure 6.1 illustrates the concept of partitioning cuts as well as the definitions necessary19

to its understanding. Fig. 6.1a presents a small edge-labeled graph G = (V,E,L) and a par-20

titioning P = {S1 = {1,2},S2 = {3,4},S3 = {5,6},S4 = {7,8}}. Fig. 6.1b depicts the graph21

G((P)) = (V ′,E ′,L), V ′ = {s1 = v(S1),s2 = v(S2),s3 = v(S3),s4 = v(S4)}. Fig. 6.1c shows22

the graph G∗((P)), obtained after applying the monochromatic-cycle removal procedure on23

G((P)). The tree search inequality (4.4) derived from the graph G∗((P)), thence a partitioning24

cut, is 2zA + zB + zD + zF ≥ 3.25

The partitioning cuts formulation (PCut), presented in the program (6.1) through (6.3),26

is derived directly from Proposition 6.1 and Definition 6.3. As well as CCut, the model also27

defines only the group of binary variables zl ∈ {0,1}, for which zl = 1 means that every edge28

with the label l is in the solution. The objective function (6.1) minimizes the number of labels29

in the solution. Let E(K,H), K ⊆ L, denote the set of edges with label in K on the ELG H, and30

P(G) be the set of all possible proper partitionings of the vertices of the ELG G. Each constraint31
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Figure 6.1: Proper partitioning, partitioning graphs, and partitioning cuts. (a) An edge-labeled
graph G and a partitioning P = {S1 = {1,2},S2 = {3,4},S3 = {5,6},S4 = {7,8}}. (b) The
graphs G((P)) and (c) G∗((P)). The partitioning cut derived from G∗((P)) is 2zA + zB + zD +
zF ≥ 3

of the set (6.2) ensures that G∗((P)) has a minimum number of edges to be connected. Finally,1

the set of constraints (6.3) defines the domain of the variables.2

Minimize ∑
l∈L

zl (6.1)

s.t. ∑
l∈L
|E
(
{l},G∗((P))

)
| · zl ≥ |P|−1, ∀P ∈ P(G), (6.2)

zl ∈ {0,1}, ∀l ∈ L. (6.3)

Alternatively, we can express the partitioning cuts inequalities (6.2) with respect to the3

cardinality of the partitioning set P, as presented in the inequalities (6.4) to (6.8). Let PCutn4

denote the set of partitioning cuts with |P|= n.5

(PCut2) ∑
l∈L
|E
(
{l},G∗((P))

)
| · zl ≥ 1, ∀P ∈ P(G), |P|= 2, (6.4)

(PCut3) ∑
l∈L
|E
(
{l},G∗((P))

)
| · zl ≥ 2, ∀P ∈ P(G), |P|= 3, (6.5)

(PCut4) ∑
l∈L
|E
(
{l},G∗((P))

)
| · zl ≥ 3, ∀P ∈ P(G), |P|= 4, (6.6)

...

(PCut |V |−1) ∑
l∈L
|E
(
{l},G∗((P))

)
| · zl ≥ |V |−2, ∀P ∈ P(G), |P|= |V |−1, (6.7)

(PCut |V |) ∑
l∈L
|E
(
{l},G∗((P))

)
| · zl ≥ |V |−1, ∀P ∈ P(G), |P|= |V |. (6.8)
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Observe that PCut2 is exactly the colorful cuts inequalities (4.2). In this sense, we have1

that the PCut formulation can be seen an extension of the CCut model. Moreover, since all2

PCut inequalities are valid for both the MLSTP and the GMLSTP (from Propositions 6.1, 3.23

and 3.8), we can ensure the corretude of the formulation. In addition, note that PCut|V | is exactly4

the tree search inequality (4.4) derived from G.5

Further, since the set of inequalities PCut2 and the CCut inequalities (4.2) are equivalent,6

they can be separated exactly as discussed in Section 4.2. Unfortunately, we were not able to7

provide a MIP-based exact separation algorithm for the remaining PCutn inequalities. We leave8

this as an open question in this work. Notwithstanding, we have made an effort to evaluate9

the effectiveness of the PCut inequalities. In this sense, we have generated 100 graphs with10

|V |= 14 and separated the PCut inequalities by enumeration.11

Table 6.1 shows the results of the experiments on the impact of PCut inequalities on12

the linear relaxation of CCut. The first column identifies the formulation, while each of the13

remaining ones presents the results for one dataset, which is a set of 10 ELGs with the same14

edge density d. Further, we also provide the average number of non-empty labels |L| of the15

dataset. Each line of the table reports the average results over the ten graphs in each dataset.16

The first three lines are the reference values: The lines OPT, CCutt , and Gap, refer, respec-17

tively, to the optimal integer solution, to the linear relaxation of CCut formulation with the18

tree search constraint but without any separation method, and to the relative difference be-19

tween them (Gap = (OPT −CCutt)/OPT ). The remaining lines are divided in groups of20

three and each group reports the results of separating a subset of PCut inequalities1. The first21

line of the group gives the average linear relaxation obtained, the second line reports its gap22

with relation to the value in OPT, and the third line report the number of cuts added to the23

model. PCut∗ means the separation of all PCut inequalities. PCuts refers to the subgroup of24

all PCut inequalities composed only by unitary partitions, except for one big partition, e.g.25

P = {{v1,v2,v3},{v4},{v5},{v6},{v7}} .26

From the results of the Table 6.1 we have that the PCut∗ inequalities have a substantial27

impact on the linear relaxation of CCut. Indeed, for sets with d ≤ 0.4 the Gap is ≤ 1.1%.28

Another point that caught our attention was the reduced number of cuts added to the model. For29

instance, 3.4 cuts (in average) were enough to lead the gap to 0% in line PCut∗ and column d =30

0.20. Considering the groups individually, we have that PCut10 performed better for low density31

graphs while PCuts obtained the best results for medium-to-high density graphs. Therefore, the32

results presented justifies further studies on the PCut inequalities.33

1Unfortunately, we were not able to separate the sets PCutn for n ∈ {6,7,8,9} due to its size.
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Table 6.1: Impact of PCut inequalities on the linear relaxation of CCut

Dataset identification
d=0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.80 1.0
|L|=12.9 16.4 19.8 23.5 28.1 31.4 31.6 35.4 40.8 44.7

OPT 9.9 9.4 8.1 8.5 7.9 8.1 6.3 5.9 4.7 4.0

CCutt 7.900 7.550 6.450 6.517 6.308 6.317 4.900 4.503 3.464 2.831

Gap 20.2% 19.7% 20.4% 23.3% 20.1% 22.0% 22.2% 23.7% 26.3% 29.2%

PCut2 8.758 7.900 6.883 6.980 6.569 6.492 5.290 4.702 3.586 2.917

Gap 11.5% 16.0% 15.0% 17.9% 16.8% 19.9% 16.0% 20.3% 23.7% 27.1%

Cuts 4.2 3.5 3.2 3.9 3.8 2.6 3.5 3.5 3.1 2.6

PCut3 9.336 8.284 7.164 7.274 6.841 6.820 5.515 4.876 3.666 3.002

Gap 5.7% 11.9% 11.6% 14.4% 13.4% 15.8% 12.5% 17.4% 22.0% 25.0%

Cuts 9.6 15.1 11.8 14.1 15.4 11.5 11.6 12.1 10.7 9.5

PCut4 9.606 8.538 7.390 7.496 7.007 7.006 5.620 4.963 3.729 3.034

Gap 3.0% 9.2% 8.8% 11.8% 11.3% 13.5% 10.8% 15.9% 20.7% 24.1%

Cuts 15.1 23.0 21.8 27.4 25.7 25.6 27.4 18.2 24.1 18.8

PCut5 9.731 8.761 7.545 7.664 7.166 7.209 5.696 5.057 3.758 3.058

Gap 1.7% 6.8% 6.9% 9.8% 9.3% 11.0% 9.6% 14.3% 20.0% 23.6%

Cuts 16.5 36.4 28.5 46.7 38.4 35.5 34.0 27.0 31.6 26.4

...
...

...
...

...
...

...
...

...
...

...

PCut10 9.900 9.400 7.917 8.500 7.729 7.545 5.465 5.063 3.835 3.076

Gap 0.0% 0.0% 2.3% 0.0% 2.2% 6.8% 13.3% 14.2% 18.4% 23.1%

Cuts 13.2 9.1 4.7 13.0 15.4 15.7 15.3 22.7 15.6 21.7

PCut11 9.900 9.400 7.600 8.129 7.208 7.165 5.410 4.998 3.738 3.041

Gap 0.0% 0.0% 6.2% 4.4% 8.8% 11.5% 14.1% 15.3% 20.5% 24.0%

Cuts 6.1 3.4 3.3 5.0 5.2 9.4 6.4 10.8 7.5 13.9

PCut12 9.600 8.900 7.100 7.480 6.960 6.815 5.271 4.893 3.512 3.027

Gap 3.0% 5.3% 12.3% 12.0% 11.9% 15.9% 16.3% 17.1% 25.3% 24.3%

Cuts 2.9 1.9 2.0 3.1 2.7 3.3 2.5 4.8 5.1 7.7

PCut13 8.900 8.000 6.650 7.050 6.625 6.450 5.150 4.718 3.140 2.966

Gap 10.1% 14.9% 17.9% 17.1% 16.1% 20.4% 18.3% 20.0% 33.2% 25.9%

Cuts 0.9 0.9 0.4 1.1 0.5 1.2 1.2 1.4 2.1 2.3

PCuts 9.650 9.267 7.900 8.250 7.450 7.823 5.858 5.270 3.871 3.126

Gap 2.5% 1.4% 2.5% 2.9% 5.7% 3.4% 7.0% 10.7% 17.6% 21.8%
Cuts 2.9 3.3 4.1 7.8 7.5 11.5 20.4 23.0 17.1 23.2

PCut∗ 9.900 9.400 8.007 8.500 7.825 7.903 5.919 5.319 3.908 3.159

Gap 0.0% 0.0% 1.1% 0.0% 0.9% 2.4% 6.0% 9.9% 16.8% 21.0%
Cuts 3.4 5.1 6.3 8.2 12.1 14.7 26.4 26.0 20.8 27.2
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Due to its exponential size, separating the PCut set of inequalities (6.2) by enumeration1

is not practical for medium to large size input graphs. In this sense, we have proposed a greedy2

heuristic, denominated PCuth, for separating these cuts. It is a deterministic multistart proce-3

dure that uses |V |−2 partitionings as starting points. Though, before introducing the complete4

heuristic, we need to introduce the generatePartitioning routine and to define two neighborhood5

structures: NS and NM.6

Given an integer parameter 2≤ k ≤ |V |−1, the routine generatePartitioning is respon-7

sible to generate an initial partitioning P = {S1,S2, · · · ,Sp}, with p = |V |−k+1, of the vertices8

of G. All partitions are unitary, except for S1, that has k elements. The selection of vertices is9

made by id: the first k vertices are placed in S1 while each of the remaining ones are put in a10

separate partition.11

Given a partitioning P and two partitions Sa,Sb ∈ P such that Sa 6= Sb, va ∈ Sa, and vb ∈12

Sb, performing a swap move on P is to make Sa← (Sa\{va})∪{vb} and Sb← (Sb\{vb})∪{va}.13

In the same sense, performing a migrate move on P is to make Sa← Sa\{va} and Sb← Sb∪{va}.14

Given that, let NS(P) and NM(P) denote, respectively, the set of all possible swap and migration15

moves performed from the partitioning P.16

Consider G = (V,E,L) the input ELG, and Z∗ a solution for the linear relaxation of17

CCut, the heuristic PCuth is presented in Algorithm 6.1. The loop of the lines (2 to 10) controls18

the multistart procedure where the first partitioning with positive violations found is returned.19

The initial partitioning is generated on line 3. The loop of the lines (5 to 10) controls the20

number of moves without positive violation that are allowed. Lastly, the loops of the lines 6 and21

8 evaluates the solutions from NS and NM. We have added a memory to the method (line 10)22

to try to avoid cycles between the partitionings.23

Algorithm 6.1: Separation heuristic for PCut inequalities
1 procedure PCuth(G = (V,E,L), Z∗)
2 for bigPartitionSize← 2 to |V |−1 do
3 s0← s1← generatePartitioning( bigPartitionSize );
4 if s0 is violated then return s0 ;
5 for i← 1 to 4 · |V | do
6 foreach s′ ∈NS(si) do
7 if s′ is violated then return s′ ;

8 foreach s′ ∈NM(si) do
9 if s′ is violated then return s′ ;

10 si+1← theMostViolatedIn(
(
NS(si)∪NM(si)

)
\{si−1});

11 return No cuts found!;
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Figure 6.2 illustrates the swap and migrate moves. Fig. 6.2a presents an example edge-1

labeled graph G = (V,E,L) and a partitioning P = {S1 = {1,2},S2 = {3,4},S3 = {5,6},S4 =2

{7,8}}. In Fig. 6.2b, there were a migration of the vertex 6 from S3 to S4. In Fig. 6.2c there were3

a swap between the vertices 3 and 5. The PCut inequalities associated with the partitionings of4

Fig. 6.2a, b, and c are, respectively, 2zA + zB + zD + zF ≥ 3, zA + zB + zD + zE + zF ≥ 3, and5

zA + zB + zD + zE +2zF ≥ 3.6

Figure 6.2: Example of swap and migrate moves. (a) An edge-labeled graph G and a partition-
ing P = {S1 = {1,2},S2 = {3,4},S3 = {5,6},S4 = {7,8}}. (b) The partitioning after migrating
the vertex 6: P = {S1 = {1,2},S2 = {3,4},S3 = {5},S4 = {6,7,8}}. (c) The partitioning after
swapping the vertices 3 and 5: P = {S1 = {1,2},S2 = {4,5},S3 = {3},S4 = {6,7,8}}

We have evaluated the behavior of the separation heuristic PCuth on the same graphs of7

the previous experiment. The results are reported in Table 6.2, which has the same structure of8

the Table 6.1. The results showed that PCuth has obtained a satisfactory performance, mainly9

for instances with low edge density. Observe that the performance deteriorates as the density of10

the input graphs grows. Fortunately, the worst performance of the CCut formulation, according11

to the experiments discussed in Section 4.3, is when the input graph has a small density. More12

detailed experiments are presented in Section 6.3.13

Table 6.2: Impact of separating heuristicly the PCut inequalities

Dataset identification
d=0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.60 0.80 1.0
|L|=12.9 16.4 19.8 23.5 28.1 31.4 31.6 35.4 40.8 44.7

OPT 9.9 9.4 8.1 8.5 7.9 8.1 6.3 5.9 4.7 4.0

PCuth 9.900 9.233 7.900 8.167 7.340 7.717 5.833 5.298 3.902 3.146

Gap 0.0% 1.8% 2.5% 3.9% 7.1% 4.7% 7.4% 10.2% 17.0% 21.3%

Cuts 3.2 3.2 3.8 7.9 6.9 12.1 20.9 23.3 29.1 27.9
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6.2 Branch-and-bound strategies

The Simplex method (Dantzig et al., 1955) is one of the most efficient approaches for solving1

linear programs in which all the variables are continuous, i.e. they are not required to be in-2

tegers or binaries. If on the one hand the Simplex method has an exponential worst-case time3

complexity, on the other hand it performs very well in practice. In contrast, it is necessary to4

use more sophisticated techniques, such as cutting-planes or branch-and-bound, to deal with in-5

tegrality constraints. The first consists in solving the linear relaxation of the program and refine6

it iteratively by adding new linear inequalities, termed cuts, until a solution without fractional7

variables is found. The second consists in partitioning the solution space into disjoint subspaces8

and solving the resulting models, possibly repartitioning them. In the traditional branch-and-9

bound method, after solving the linear relaxation of the model, a variable x with a fractional10

value x is selected and two subproblems are generated: one for x≤ bxc and another for x≥ dxe11

(x = 0 and x = 1 when x is binary), what leads to a binary branching tree. Figure 6.3 illustrates12

a binary branch-and-bound tree on the z variables of CCut formulation.13

Figure 6.3: A binary branch-and-bound tree on the z variables of CCut formulation

Combining branch-and-bound and cutting-planes leads to the branch-and-cut method,14

a very powerful technique for solving (mixed) integer linear programs. We have studied three15

branch-and-cut algorithms for solving the CCut model in Section 4.2, namely BCA, BCR, and16

BCI . In this section, we discuss alternative branching strategies which can improve the perfor-17

mance of CCut for solving both the MLSTP and the GMLSTP.18

From the results reported in Section 4.3 it is possible to observe that the number of nodes19

visited in the branch-and-bound tree is too big. It is due to the fact that in CCut formulation,20

setting a variable z = 1 has much more impact on the subproblem than setting z = 0. Indeed, in21

the first case a set of edges is added to the solution whereas in the second case it is easy to find22

a substitute for the label that is forbidden to be in the solution. It could be reinforced by the fact23
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that the number of labels in the solution is commonly much smaller than the number of labels1

of the input graph. For instance, the average best solution found for the dataset 200-ld-250 is2

13.8 (refer to Table 4.4), which stands for only 5.52% from the total labels in the input ELGs.3

Such difference between setting a binary variable to 1 or to 0 leads to highly unbalanced branch-4

and-bound trees. Figure 6.6(a) depicts the structure of a highly unbalanced branch-and-bound5

tree.6

As an alternative to the traditional branch-and-bound method, based on a binary decision7

tree, we propose the colorful cuts branch-and-bound (CCutBB), which uses the CCut branching8

strategy, which performs the branching phase using a colorful cut inequality (4.2) as a pivot.9

Given a colorful cut K(S) = {A1,A2, · · · ,Ak}, recall from Definition 4.2 and Proposition 4.110

that at least one label l ∈ K(S) must be in the solution (and thence to have zl = 1), otherwise11

the resulting graph will be disconnected. In this sense, we propose to use K(S) as a pivot to12

partition the problem into k subproblems such that the variables of the subproblem k are set in13

the following way: zk = 1, and zx = 0, ∀x < k. Follows that three questions have to be answered14

in order to implement the colorful cuts branch-and-bound: (i) which colorful cut should be used15

as a pivot? (ii) how the labels in the selected pivot should be sorted? And (iii) in which sequence16

the nodes should be processed?17

We have answered these questions empirically. The resulting procedure, namely the18

colorful cuts branch-and-bound, is presented in Algorithms 6.2, 6.3, and 6.4. Algorithm 6.219

describes the procedure CCutBB, which is the main function. The necessary initializations are20

performed in lines 2 to 4. The main loop (lines 5 to 17) performs a DFS traversal in the branch-21

and-bound tree. The next node to be processed is selected in the line 6 and its linear relaxation is22

solved in line 7, returning a lower bound (LB) and the solution vector Z∗. Two small variants of23

the MVCA are used in the lines 8 and 9 in order to obtain better upper bounds, making possible24

to close some nodes earlier. The procedure MVCA’ adds all labels fixed to 1 to the solution25

and then performs the original MVCA. The procedure MVCA” uses Z∗, the solution vector of26

the linear relaxation of the node, to guide the MVCA. At each iteration, it adds to the solution27

the label l whose have the maximum value of Z∗l . Once all the remaining labels have z∗l = 0,28

it turns into the original MVCA. The lines 10 to 13 present the bound conditions and if these29

conditions are not met, it is necessary to perform a branch on this node (lines 14 to 17) using30

the procedure CCutBranch.31

Algorithm 6.3 describes the procedure CCutBranch, which is responsible for partition-32

ing the given node into smaller subproblems. The necessary initialization is given in line 2.33

Then, the procedure CCutSelect (described later) is called in order to choose a colorful cut as34
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a pivot (line 3), which is sorted (line 4) with respect to the number of edges possessed by the1

label. The loop of the lines 5 to 10 creates the new nodes by copying the current one and fixing2

some of its variables according to the rules described previously. Finally, the new set of nodes3

is returned (line 11) as a stack.4

The procedure CCutSelect, presented in Algorithm 6.4, describes the strategy for se-5

lecting the colorful cut which will be used as a pivot for the CCut branching. It consists in6

contracting all the labels of the graph which have been fixed to 1 (lines 3 and 4), removing all7

edges whose label was fixed to 0 (lines 5 and 6), and selecting the colorful cut with the mini-8

mum number of labels, considering only the singletons, i.e., the unitary sets of vertices (lines 79

to 9).10

Algorithm 6.2: Colorful cuts branch and bound
1 procedure CCutBB(G = (V,E,L), LPModel, GlobalUB)
2 nodeStack← emptyStack;
3 rootNode← createNode( LPModel );
4 nodeStack.push( rootNode );

5 while nodeStack is not empty do
6 currenNode← nodeStack.pop();
7 Z∗, LB← solveLR( currentNode );
8 GlobalUB←MIN( GlobalUB, MVCA’(currentNode) );
9 GlobalUB←MIN( GlobalUB, MVCA”(Z*) );

10 if currentNode is infeasible then
11 bound( currentNode );
12 else if GlobalUB - LB < 1 then
13 bound( currentNode );
14 else
15 newNodeStack← CCutBranch( crrentNode ) ;

16 while newNodeStack is not empty do
17 nodeStack.push( newNodeStack.pop() );

18 return GlobalUB ;

The Figure 6.4 illustrates a colorful cuts branch-and-bound tree on the z variables of11

CCut formulation. Observe that this new branching tree is wider than the traditional one since12

it could create more than two subproblems at each branching phase. On the other hand it is13

shorter and more balanced, given that each subproblem has a variable set to 1. Figure 6.6(b)14

depicts the structure of a wide and short colorful cuts branching tree.15

In addition, observe that the structure of the colorful cuts branch-and-bound tree makes16

it very suitable for applying the domination rule (refer to Definition 3.10 and Proposition 3.5)17

and the monochromatic cuts removal (refer to Definition 3.7 and Proposition 3.3). Indeed, from18
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Algorithm 6.3: Colorful cuts branching strategy
1 procedure CCutBranch(currentNode)
2 newNodeStack← emptyStack;
3 K← CCutSelect();
4 Sort K so that |E(Ki)| ≤ |E(Ki+1)|, for i = 1 to size(K)−1;

5 for k = 1 to size(K) do
6 nodek ← copy( currentNode );
7 fix zk = 1 in nodek;

8 for x = 1 to k-1 do
9 fix zx = 0 in nodek;

10 newNodeStack.push( nodek );

11 return newNodeStack ;

Algorithm 6.4: Strategy for quick selection of the pivot CCut
1 procedure CCutSelect(G = (V,E,L), currentNode)
2 H = (V ′,E ′,L′)← G = (V,E,L);

3 foreach zl fixed to 1 in currentNode do
4 H ← H // l;

5 foreach zl fixed to 0 in currentNode do
6 remove all the edges with label l from E ′;

7 Kmin ← K({v}) for any v ∈V ′;

8 foreach v ∈V ′ do
9 if size(K({v} < size(Kmin)) then Kmin ← K({v}) ;

10 return Kmin ;

Figure 6.4: A colorful cuts branch-and-bound tree on the z variables of CCut formulation

Theorem 3.1 and Proposition 3.2, once a variable zA is set to 1, it is possible contract all the1

edges e ∈ E with l(e) = A, remove the formed monochromatic cycles, and solve the problem2

on the resulting graph. This fact allied with the big number of variables set to 0 makes possible3

to find dominated labels as well as monochromatic cuts. Figure 6.5 illustrates the impact of4

the colorful cuts branching on an example ELG. Fig. 6.5(a) presents the ELG G = (V,E,L)5
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which has the colorful cut K({8}) = {A,B}, used as a pivot for the colorful cuts branching.1

Fig. 6.5(b) shows the first subproblem, where zA is set to 1, the label A is contracted, and its2

monochromatic cycles are removed. Observe that the label E became dominated by the label3

F . Fig. 6.5(c) shows the second subproblem, where zA is set to 0, zB is set to 1, the label B4

is contracted, and its monochromatic cycles are removed. Observe that the monochromatic cut5

K({4}) = {F} was created.6

Figure 6.5: The impact of the colorful cuts branching on an example ELG. (a) The ELG G =
(V,E,L) and the colorful cut K({8}) = {A,B}, used as pivot. (b) The subproblem generated by
setting zA = 1. (b) The subproblem generated by setting zA = 0, and zB = 1

We have performed an experiment to verify the quality of the CCut branching strategy in7

comparison to the branch-and-cut algorithm BCI(CCutt ,DFS), which uses the traditional binary8

branching strategy. This experiment is presented in Section 6.3. Unfortunately, as reported in9

Tables 6.5 and 6.6, we have observed that the CCut branching strategy presents serious conver-10

gence problems. Probably, it is due the fact that the number of nodes in the branch-and-bound11

tree grows too fast with its height.12

Aiming to combine the balance provided by the colorful cuts branch-and-bound tree13

with the convergence power of the traditional one, we propose a new hybrid branching strategy,14

namely the colorful cuts hybrid branch-and-bound (CCutHB). Given an integer parameter h0 >15

0, it consists in using the colorful cuts branching in the first few h0 levels of the tree2 and then16

switch to the traditional binary branching. This strategy allows a good use of the contraction and17

dominance properties at the beginning of the tree whereas it delivers much smaller subproblems18

to the traditional branch and bound. Further, the traditional branch-and-bound phase of this19

method could be solved by calling directly the Cplex solver.20

Figure 6.6 illustrates the limitations of the branching strategies described previously and21

presents the structure of the proposed hybrid branch-and-bound tree. Fig. 6.6(a) depicts an22

2Consider the root node is at level 0
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unbalanced traditional branch-and-bound tree. Fig. 6.6(b) shows a wide and short colorful cuts1

branch-and-bound tree. Fig. 6.6(c) presents the structure of the proposed hybrid branching2

strategy. The next section provides more detailed computational experiments in order to assess3

the quality of the new proposed strategy.4

Figure 6.6: The limitations of the branching strategies and the structure of the hybrid branch-
and-bound tree. (a) An unbalanced traditional branch-and-bound tree. (b) A wide and short
colorful cuts branch-and-bound tree. (c) The structure of the hybrid branching strategy. (d) The
subtitles

6.3 Computational experiments

This section reports the computational experiments performed in order to evaluate the methods5

proposed in this chapter, namely the PCut formulation (specifically the PCut inequalities) and6

the branch-and-bound strategies CCutBB and CCutHB. First, we study the impact of adding the7

PCut inequalities to the branch-and-cut algorithms studied in Chapter 4. Next, we test the new8

proposed branch-and-bound strategies. Lastly, we combine these two approaches into a new9

branch-and-cut algorithm and verify its performance.10

All experiments reported in this chapter were implemented in C++ language and com-11

piled by using g++ 4.6.3 with the optimization flag -O3. The formulations and all of its derived12

procedures were implemented using the Concert library and Cplex 12.51 as the solver. The ex-13

periments were performed on a computer with Intel(R) Core(TM) i7-4790K CPU, 3.4GHz, 1614

GB of RAM, and Ubuntu 14.04 as the operating system. Although the processor of this device15

has more than one core, the algorithms were executed using a single core and a single thread16

within a time limit of 2 hours. Further, we turned off all presolve features and all automatic17

cutting-plane generation procedures while all other parameters of the Cplex were set to their18

respective default values. Moreover, it is possible to observe from the experiments reported in19

Chapter 4 that the branch-and-cut algorithm BCI(CCutt ,DFS), CCutt for short, has obtained20

very consistent results with respect both to running times and linear relaxation quality. For this21
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reason, we use this method as a reference to assess the quality of the improvements proposed in1

this chapter.2

The first experiment performed studies the impact of separating heuristically the PCut3

inequalities in the root node of the branch-and-cut algorithm BCI(CCutt ,DFS). For this exper-4

iment, we have considered the graphs with number of vertices n = |V | ∈ {100,200} from the5

group 2 of ELGs generated by Cerulli et al. (2005) (refer to Section 4.3 for more details). How-6

ever, due to the size of the input graphs, we had to modify slightly the heuristic PCuth, presented7

in Algorithm 6.1. In the lines 6 and 8, instead of evaluating all the sets NS(si) and NM(si), we8

evaluate just n solutions taken randomly from each set. Further, we have changed the limits for9

the generation of the initial solution (line 2) to [n−60,n−10]. We call this modified version of10

PCuth as PCutrh.11

The results of this experiment are reported in Tables 6.3 and 6.4. Each line of these tables12

represents a dataset, which is a set with 10 instances with the same n-l-d configuration. The first13

two columns identify the input instances. The next column reports the average optimal solution14

for the dataset. It was obtained from the results reported in Chapter 43, and the remaining15

columns show the computational results of the methods considered. The next six columns refer16

to the results of CCutt , while the last six refer to the results of adding the separation heuristic17

PCutrh on the root node of BCI(CCutt ,DFS). The column ‘?’ reports the number of instances18

the method has failed in solving to optimality within each dataset. The columns UB, gap and19

gapr report, respectively, the average upper bound, the average gap ((UB−LB)/UB), and the20

average gap on the root node of the model ((UB−LR)/UB), considering each instance within21

each dataset. The column cuts refers to the total number of cuts added to the model. Lastly, the22

column t(s) reports the total time (in seconds) necessary to solve all instances in each dataset.23

The results for instances with n = 100 show that separating the PCut inequalities im-24

proves slightly the linear relaxation of the model. However, it could not obtain better results25

than CCutt . Despite both methods were able to solve all instances of this group to optimality,26

seems that adding the PCut inequalities to the model makes it harder to solve. Indded, CCutt27

has achieved the best time for 11 out of 12 datasets. For instances with n = 200, PCutrh stills28

improving the linear relaxation of CCutt . Besides, for this group, adding the PCut inequalities29

has shortened the time needed to solve 7 datasets out of 12. Observe that the performance of30

the new method gets better as the number of label increases and the edge density get smaller.31

Indeed, for instances with d = 0.2 and l = |L| = 200, the method CCutt + PCutrh was able to32

obtain a better upper bound as well as to solve more instances to the optimality.33

3The methods reported in Chapter 4 were not able to find all the optimal solutions for the instances with
|V |= 200. The missing values were taken from (Silva et al., 2015)
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Table 6.3: Computational results for CCutt + PCutrh on instances with |V |= 100

CCutt CCutt + PCutrh

d l Opt ? UB t(s) cuts gap gapr ? UB t(s) cuts gap gapr
0.8 25 1.8 0 1.8 0.033 0 0% 36% 0 1.8 0.014 0 0% 36%

50 2.0 0 2.0 0.089 1 0% 35% 0 2.0 14.210 8 0% 35%
100 3.0 0 3.0 1.997 24 0% 33% 0 3.0 67.645 90 0% 33%
125 4.0 0 4.0 37.376 4 0% 50% 0 4.0 78.578 107 0% 40%

0.5 25 2.0 0 2.0 0.059 1 0% 35% 0 2.0 2.508 0 0% 35%
50 3.0 0 3.0 0.556 5 0% 39% 0 3.0 60.531 99 0% 39%

100 4.7 0 4.7 18.230 47 0% 34% 0 4.7 41.760 181 0% 33%
125 5.2 0 5.2 9.079 49 0% 29% 0 5.2 51.809 264 0% 29%

0.2 25 4.5 0 4.5 0.173 5 0% 36% 0 4.5 8.622 20 0% 36%
50 6.7 0 6.7 1.274 12 0% 30% 0 6.7 8.241 80 0% 29%

100 9.7 0 9.7 16.576 214 0% 22% 0 9.7 21.129 428 0% 20%
125 11.0 0 11.0 21.259 566 0% 20% 0 11.0 32.954 648 0% 19%

Table 6.4: Computational results for CCutt + PCutrh on instances with |V |= 200

CCutt CCutt + PCutrh

d l Opt ? UB t(s) cuts gap gapr ? UB t(s) cuts gap gapr
0.8 50 2.0 0 2.0 0.122 0 0% 46% 0 2.0 0.064 0 0% 46%

100 2.6 0 2.6 10.7 7 0% 48% 0 2.6 9863.0 534 0% 48%
200 4.0 0 4.0 975.0 3 0% 48% 0 4.0 732.8 68 0% 48%
250 4.0 0 4.0 435.0 22 0% 48% 0 4.0 839.1 110 0% 37%

0.5 50 2.2 0 2.2 0.5 3 0% 39% 0 2.2 27.8 3 0% 37%
100 3.4 0 3.4 17.9 8 0% 44% 0 3.4 421.6 113 0% 43%
200 5.4 0 5.4 2377.5 63 0% 39% 0 5.4 1774.8 187 0% 39%
250 6.3 0 6.3 12280.5 22 0% 37% 0 6.3 12115.0 156 0% 37%

0.2 50 5.2 0 5.2 7.7 5 0% 44% 0 5.2 46.0 23 0% 44%
100 7.9 0 7.9 529.1 18 0% 39% 0 7.9 399.4 83 0% 39%
200 11.9 3 12.1 29671.5 238 4% 33% 2 11.9 26719.2 480 2% 31%
250 13.7 5 13.8 49853.0 298 6% 30% 5 13.8 48435.0 424 7% 30%

The second experiment aims to verify the quality of the branching strategy CCutBB (in-1

troduced in Section 6.2), by comparing it with the branch-and-cut algorithm BCI(CCutt ,DFS),2

for short CCutt , which uses the traditional binary branching strategy. Again, we have carried3

out both methods for each instance from the group 2 of ELGs generated by Cerulli et al. (2005)4

with number of vertices n = |V | ∈ {100,200}. The results of this experiment are reported in5

Tables 6.5 and 6.6. These tables follow the same structure of tables 6.3 and 6.4, except that6

we have removed the columns cuts and gapr and added the column nodes, which stands for the7

total number of nodes solved in the branch-and-bound tree.8
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Table 6.5: Computational results for CCutBB on instances with |V |= 100

CCutt CCutBB
d l Opt ? UB t(s) nodes gap ? UB t(s) nodes gap

0.8 25 1.8 0 1.8 0.033 0 0% 0 1.8 0.007 0 0%
50 2.0 0 2.0 0.089 0 0% 0 2.0 0.022 0 0%

100 3.0 0 3.0 1.997 12191 0% 0 3.0 2.613 1157 0%
125 4.0 0 4.0 37.376 167241 0% 0 4.0 47.693 19465 0%

0.5 25 2.0 0 2.0 0.059 10 0% 0 2.0 0.016 14 0%
50 3.0 0 3.0 0.556 1437 0% 0 3.0 0.528 493 0%

100 4.7 0 4.7 18.230 148403 0% 0 4.7 16.368 9591 0%
125 5.2 0 5.2 9.079 61949 0% 0 5.2 34.515 16099 0%

0.2 25 4.5 0 4.5 0.173 391 0% 0 4.5 0.095 203 0%
50 6.7 0 6.7 1.274 9037 0% 0 6.7 1.820 2428 0%

100 9.7 0 9.7 16.576 109809 0% 0 9.7 53.747 29315 0%
125 11.0 0 11.0 21.259 109374 0% 0 11.0 531.093 71576 0%

Table 6.6: Computational results for CCutBB on instances with |V |= 200

CCutt CCutBB
d l Opt ? UB t(s) nodes gap ? UB t(s) nodes gap

0.8 50 2.0 0 2.0 0.122 0 0% 0 2.0 0.049 0 0%
100 2.6 0 2.6 10.7 28313 0% 0 2.6 5.7 621 0%
200 4.0 0 4.0 975.0 3333282 0% 0 4.0 718.6 67729 0%
250 4.0 0 4.0 435.0 601875 0% 0 4.0 1548.5 117481 0%

0.5 50 2.2 0 2.2 0.5 470 0% 0 2.2 0.3 85 0%
100 3.4 0 3.4 17.9 72969 0% 0 3.4 19.8 3832 0%
200 5.4 0 5.4 2377.5 7077886 0% 0 5.4 4408.5 526126 0%
250 6.3 0 6.3 12280.5 34418801 0% 0 6.3 17639.8 1439063 0%

0.2 50 5.2 0 5.2 7.7 35236 0% 0 5.2 11.6 7245 0%
100 7.9 0 7.9 529.1 2032335 0% 0 7.9 960.3 343314 0%
200 11.9 3 12.1 29671.5 62381046 4% 8 12.4 61915.0 8881646 25%
250 13.7 5 13.8 49853.0 92983303 6% 10 15.0 72000 8439352 34%

Considering the set of instances with 100 vertices, it is possible to observe that CCutBB1

is very competitive for graphs from medium to high edge densities. Indeed, it has solved all in-2

stances to optimality as well as obtained the best times for 5 out of 8 datasets. Notwithstanding,3

its performance decreases considerably for low density graphs. Specially, CCutBB has used4

500+ s for solving all 10 instances of the dataset 100-125-0.2, while CCutt has used just 21s.5

Further, observe that the number of nodes solved by the branch and bound tree of the CCutBB6

procedure is smaller for 11 out of 12 datasets. As expected, it is due to the fact that the CCutBB7

tree is more balanced than the CCutt one.8
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For the set of instances with 200 vertices, despite the fact CCutBB still visits less nodes,1

it did not performed well. It was able to solve the problems faster for high density input graphs2

(d = 0.8) with l ≤ 200 and for the dataset 200-50-0.5. However, for the remaining datasets,3

its running times are too big in comparison to the CCutt ones. Furthermore, CCutBB was not4

able to solve any instances from the dataset 200-250-0.2 as well as managed to solve only two5

instances from the dataset 200-200-0.2. Along with the results for instances with 100 vertices,6

it suggests CCutBB presents serious convergence problems for ELGs with low edge density7

(l = 0.2) and high number of labels (l ≥ n).8

Lastly, the next experiment aims to evaluate three versions of the method CCutHB (refer9

to Section 6.2), namely CCutHB(h0 = 1), CCutHB(h0 = 2), and CCutHB(h0 = 2) + PCutrh
10

(for short PCutHB). The latter stands for using the heuristic PCutrh for separating the PCut11

inequalities at the root node of the method CCutHB(h0 = 2), which has performed better than12

CCutHB(h0 = 1). We have executed the methods for each instance from the group 2 of ELGs13

generated by Cerulli et al. (2005) with number of vertices n = |V |= 200 and the results of this14

experiment are reported in Table 6.7. Each line of this table reports the results obtained by15

one method. The lines are grouped four by four and each group represents a dataset, which16

is a sett with ten input ELGs with the same n-l-d configuration. The first column identifies17

the algorithm, while the next two identify the dataset. The columns ‘?’, UB, t(s), cuts, gap,18

and gapr have the same meaning as in Table 6.3. The column lrt(s) reports the total time (in19

seconds) necessary to solve the root node of all instances in a dataset. Finnally, the columns20

nodesT and nodesC stands, respectively, for the total number of nodes solved in the traditional21

branch-and-bound tree phase and in the CCut branching one.22

From the results of this experiment it is possible to observe that all approaches derived23

from CCutHB have outperformed CCutt with respect to the number of instances solved to opti-24

mality. It is important to highlight that both CCutHB(h0 = 2) and PCutHB(h0 = 2) have only25

failed to solve 2 out of 120 instances to optimality. It is the best known result so far. Further,26

these methods have also achieved the best UB values for all datasets, with the exception of27

CCutHB(h0 = 1) for the dataset 200-250-0.2.28

Considering the graphs with edge density d ∈ {0.5,0.8}, the method CCutHB(h0 = 1)29

has achieved the best results. Indeed, although all approaches have solved the four datasets30

to optimality, this method was able to complete the tasks in much smaller times, specially for31

instances with l ≥ 200. For this group of instances, seems that separating the PCut inequalities32

only increases the completion time of the method. On the other hand, CCutHB(h0 = 2) has33

achieved the best results for input ELGs with edge density d = 0.2. In fact, it has obtained34
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the best times for 3 out of 4 groups and, along with PCutHB(h0 = 2) solved more instances to1

optimality than the other methods. Regarding separating heuristically the PCut inequalities on2

the root node of PCutHB(h0 = 2), the results suggest that it becomes relevant as the density of3

the input graphs decreases and its number of labels increases. Particularly for the dataset 200-4

250-0.2, the hardest one in this set of experiments, this method was able to improve the running5

time of CCutHB(h0 = 2) and to reduce the total number of nodes in the branch-and-bound tree6

by a factor of 3.57.7

6.4 Concluding remarks

In this chapter we have introduced two improvements for the CCut formulation. The first one8

is based on a new mathematical model, namely PCut, that extends CCut by using the concept9

of partitioning cuts. The second is a new hybrid branching strategy for solving the CCut model10

which is based on the concept of colorful cuts. In addition, we have proposed branch-and-11

cut algorithms and separation procedures, as well as performed computational experiments to12

evaluate the new proposed methods. The improvements proposed lead to four new branch-and13

cut algorithms, namely CCutBB, CCutHB(h0 = 1), CCutHB(h0 = 2), and PCutHB(h0 = 2). We14

can observe from the computational experiments carried out that the new approaches were able15

to overperform CCut, achieving the best results regarding exact methods for both the MLSTP16

and the GMLSTP so far.17

Regarding to PCut model and to the partitioning cuts inequalities, the results have18

showed that they were able to improve slightly the results of the CCut formulation. More-19

over, separating these cuts on the root node of the CCutHB(h0 = 2) has showed to worth for20

instances with low density and a large number of labels. In its turn, CCutBB, the branch-21

and-bound algorithm that uses only the CCut branching strategy did not performed well. As22

evidenced by the experiments, it has presented serious convergence problems. Although, the23

hybrid branching strategies proposed have successful combined the balance of the new branch-24

ing strategy with the convergence power of the traditional one. It is relevant to evidence that25

the resulting methods CCutHB(h0 = 1) and CCutHB(h0 = 2) have improved the performance26

of CCut formulation, being able to solve to optimality 238 out of 240 input graphs.27

We believe the proposed methods can be further improved with the development of new28

heuristics for separating the PCut inequalities. Other improvements would be to provide a smart29

way to select which of the methods would be used based on the characteristics of the input ELG,30

or to change dynamically the parameter h0 accordingly to the node to be solved.31
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Table 6.7: Computational results for CCutHB on ELGs with |V|=200

d l ? UB t(s) lrt(s) nodesT nodesC cuts gap gapr
CCutt 0.8 50 0 2.0 0.122 0.051 0 0 0 0% 46%
CCutHB(h0 = 1) 0 2.0 0.049 0.042 0 0 0 0% 46%
CCutHB(h0 = 2) 0 2.0 0.049 0.042 0 0 0 0% 46%
PCutHB(h0 = 2) 0 2.0 0.052 0.040 0 0 0 0% 46%
CCutt 0.8 100 0 2.6 10.713 0.112 28313 0 7 0% 48%
CCutHB(h0 = 1) 0 2.6 5.931 0.096 0 621 0 0% 48%
CCutHB(h0 = 2) 0 2.6 5.703 0.096 9 621 9 0% 48%
PCutHB(h0 = 2) 0 2.6 10280.1 10270.7 9 621 540 0% 48%
CCutt 0.8 200 0 4.0 975.1 0.024 3333282 0 3 0% 48%
CCutHB(h0 = 1) 0 4.0 11.5 0.030 0 938 0 0% 48%
CCutHB(h0 = 2) 0 4.0 1012.8 0.031 0 67729 0 0% 48%
PCutHB(h0 = 2) 0 4.0 1566.9 515.0 0 67729 65 0% 48%
CCutt 0.8 250 0 4.0 435.0 0.246 601875 0 22 0% 37%
CCutHB(h0 = 1) 0 4.0 64.9 0.033 1011 994 14 0% 37%
CCutHB(h0 = 2) 0 4.0 1750.8 0.033 0 77522 0 0% 37%
PCutHB(h0 = 2) 0 4.0 2319.5 489.4 0 77522 87 0% 37%
CCutt 0.5 50 0 2.2 0.5 0.072 470 0 3 0% 39%
CCutHB(h0 = 1) 0 2.2 0.2 0.046 0 85 0 0% 39%
CCutHB(h0 = 2) 0 2.2 0.3 0.046 0 85 0 0% 39%
PCutHB(h0 = 2) 0 2.2 28.4 28.1 0 85 0 0% 37%
CCutt 0.5 100 0 3.4 17.9 0.055 72969 0 8 0% 44%
CCutHB(h0 = 1) 0 3.4 3.8 0.038 0 454 0 0% 44%
CCutHB(h0 = 2) 0 3.4 26.4 0.038 0 4920 0 0% 44%
PCutHB(h0 = 2) 0 3.4 473.7 445.0 0 4920 112 0% 44%
CCutt 0.5 200 0 5.4 2377.5 0.033 7077886 0 63 0% 39%
CCutHB(h0 = 1) 0 5.4 609.9 0.039 16093 541 23 0% 39%
CCutHB(h0 = 2) 0 5.4 781.0 0.039 0 26450 0 0% 39%
PCutHB(h0 = 2) 0 5.4 1032.5 213.1 0 26450 157 0% 39%
CCutt 0.5 250 0 6.3 12280.5 0.034 34418801 0 22 0% 37%
CCutHB(h0 = 1) 0 6.3 925.2 0.037 89811 565 16 0% 37%
CCutHB(h0 = 2) 0 6.3 724.9 0.037 385 29716 9 0% 37%
PCutHB(h0 = 2) 0 6.3 937.3 207.8 332 29716 156 0% 37%
CCutt 0.2 50 0 5.2 7.7 0.045 35236 0 5 0% 44%
CCutHB(h0 = 1) 0 5.2 9.3 0.025 3 132 0 0% 44%
CCutHB(h0 = 2) 0 5.2 3.6 0.026 0 1281 0 0% 44%
PCutHB(h0 = 2) 0 5.2 40.5 36.9 0 1281 19 0% 44%
CCutt 0.2 100 0 7.9 529.1 0.047 2032335 0 18 0% 39%
CCutHB(h0 = 1) 0 7.9 310.5 0.039 212667 150 12 0% 39%
CCutHB(h0 = 2) 0 7.9 261.2 0.039 1077 2306 2 0% 39%
PCutHB(h0 = 2) 0 7.9 313.3 36.1 1130 2306 77 0% 39%
CCutt 0.2 200 3 12.1 29671.5 0.062 62381046 0 238 4% 33%
CCutHB(h0 = 1) 0 11.9 18507.2 0.051 8657165 159 172 0% 31%
CCutHB(h0 = 2) 0 11.9 13435.0 0.051 241539 2704 47 0% 31%
PCutHB(h0 = 2) 0 11.9 16650.3 117.4 42631 2704 450 0% 31%
CCutt 0.2 250 5 13.8 49853.0 0.055 92983303 0 298 6% 30%
CCutHB(h0 = 1) 4 14.1 44858.2 0.053 11616250 161 299 13% 31%
CCutHB(h0 = 2) 2 13.8 27907.1 0.053 3182721 2478 120 6% 30%
PCutHB(h0 = 2) 2 13.8 25679.9 72.2 891156 2463 342 6% 30%



Chapter 7

Heuristic Methods

In this chapter we propose a new heuristic approach for both MLSTP and GMLSTP. First, we1

present a revised version of the maximum vertex covering algorithm, the most successful con-2

structive heuristic for these problems, and provides a tighter bound to its time complexity. Fur-3

ther, a new MIP-based metaheuristic is proposed for solving the GMLSTP, the multi-start local4

branching (MSLB). It combines the efficiency of the proposed constructive heuristics with the5

capacity of exploration of a new local search method based on MIP. The computational exper-6

iments performed show that the MSLB is superior to the current state-of-the-art metaheuristics7

in respect to quality of the solutions and processing times.8

The remainder of this chapter is structured as follows: Section 7.1 introduces a modified9

version of the maximum vertex covering algorithm and provides a tighter bound on its time10

complexity. Section 7.2 presents the multi-start local branching, a new MIP-based metaheuristic11

for solving the MLSTP. Section 7.3 discuss an experimental analysis of the proposed method in12

comparison of the state-of-the-art metaheuristics for the problem.13

7.1 Revised MVCA

As discussed in Section 2.2, one can say the MVCA is the most successful constructive heuristic14

for both MLSTP and GMLSTP. It has been used to provide initial solutions or to complete par-15

tial ones by many metaheuristic-based methods. Moreover, even other constructive heuristics16

rely on MVCA to build or to rebuild solutions.17

This section proposes a revised version of MVCA, namely rMVCA, with the aim of18

providing a best upper bound on its running time complexity. This new version is based on19

Theorem 3.1 and on the fact that G//L′ has exactly the same number of vertices as the number20
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of connected components of G[L′], for L′ ∈ L, as discussed in Section 3.1. The main idea is to1

carry out fewer operations to determine the next label to be added to the solution. To do so, at2

each iteration, the method keeps a precomputed version of the graph for each possible choice3

of label, as well as update these auxiliary data structures dynamically.4

Assume that G is a monochromatic-cycle-free ELG. As discussed in Section 3.2, the5

monochromatic cycles can be broken by using Algorithm 3.1. The rMVCA is presented in6

Algorithm 7.1: in the line 2, C is defined to carry the set of labels of the solution; the loop of7

line 3 computes the graph Gl = G // {l}, ∀l ∈ L, that stands for the resulting graph if the label8

l is added to the current solution; the loop of lines 4-14 represents one iteration of the method,9

while its condition assures the connectivity of the final graph; the greedy choice of the rMVCA10

is performed in the line 5; the loop of lines 7-10 updates the input graph to reflect the label11

chosen to enter the solution; in the line 11 the solution is updated; and in the loop of lines 12-1412

each graph Gl , l ∈ L\C, is updated such that Gl = G//C∪{l}. Recall, from Definition 3.5, that13

ξ (e,El) stands for the projection of the edge e on the set of edges of the graph Gl .14

Algorithm 7.1: Revised MVCA
1 procedure rMVCA(G = (V,E,L))
2 Let C← /0 be the set of labels of the solution;
3 foreach l ∈ L do Gl ← G//{l}= (Vl,El,L) ;
4 while |V |> 1 do
5 c← argminl∈L\C(|Vl|);
6 E∗← /0 ;
7 foreach e = (v1,v2) ∈ E({c}) do
8 if v1 6= v2 then
9 E∗← E∗∪{e} ;

10 G← G/e ;

11 C←C∪{c};
12 foreach l ∈ L\C do
13 foreach e ∈ E∗ do
14 Gl ← Gl/ξ (e,El) ;

15 return C;

It is easy to see that the rMVCA follows exactly the definition of the MVCA: it starts15

with the solution C = /0, and, while the number of vertices of G//C is greater than 1, iteratively16

adds to C the label that minimizes the number of vertices of G//C. At each iteration of rMVCA,17

G //C is the current solution graph, Gl is G //C∪{l}, ∀l ∈ L\C, and the label with minimum18

|Vl| is the one to be added to the solution. Once the label c is chosen to enter the solution, it is19

necessary to update the current solution graph to G//C∪{c} and each graph Gl to G//C∪{l}∪20

{c}. Remark that if an edge is not able to contract two vertices of G//C, it cannot contract two21



7.1 Revised MVCA 96

vertices of G//C∪{l}. Thence, when updating each graph Gl , it is only necessary to consider1

the edges that were able to contract vertices of G//C.2

Theorem 7.1. The time complexity of the rMVCA is O(αnkn), where n = |V |, k = |L|, αn =3

α(n,n), and α is the inverse of the Ackerman’s function.4

Proof. First, rMVCA assumes that the input graph does not have monochromatic cycles. Let5

G = (V,E,L) be the input graph. This implementation represents the set of vertices of the6

graphs G and Gl , ∀l ∈ L, by using data structures for disjoint sets (Cormen et al., 2009). Since7

O(n) union-find operations are necessary to compute each graph Gl , the loop of the line 3 takes8

O(αnkn) time.9

Let p be the number of iterations of the main loop. We have that p < n, because at10

most n− 1 labels are added to the final solution, as well as p < k, because all the labels are11

added to the solution in the worst case. Remark that the number of vertices of each graph is12

given by n minus the number of successful union operations performed on that graph, what13

can be computed while contracting it. Then, the greedy choice of the line 5 is performed in14

O(pk) ⊆ O(kn) total time. Also, the condition of the loop in the line 4 and the operations of15

lines 6 and 11 can be carried out in constant time, resulting in O(p)⊆ O(n) total time.16

The update of the current solution graph, lines 7-10, requires O(n) union-find operations17

per iteration, in a total time of O(αn pn) ⊆ O(αnkn). Finally, let qi = |E∗| be the cardinality18

of E∗ at the ith iteration. Thus, the total number of union-find operations necessary to update19

each graph Gl , l ∈ L\C (lines 12-14) is q = ∑
p
i=1 qi. Since E∗ stands for the set of edges that20

actually contracted two vertices of G, and only n−1 edges do contract vertices of G during the21

complete execution of the rMVCA, follows that q = n−1. Thus, as the method keeps k graphs22

updated, this step takes an overall time of O(α(q,n) · kq) ⊆ O(αnkn). As a consequence, the23

time complexity of the rMVCA is O((αnkn)+(kn)+(n)+(αnkn)+(αnkn))⊆ O(αnkn). �24

Figure 7.1 illustrates an execution of the rMVCA by using data structures for disjoint25

sets to represent the vertices of the graphs Gl , ∀l ∈ L. For sake of clarity, the union-find op-26

erations do not use path compression and union by rank, as well as the unions are done from27

the larger ID to the smaller one. The Fig.7.1a brings the input graph, the set of vertices of the28

graphs Gl , and their cardinalities. The Fig.7.1b presents the update of the current solution graph29

after the choice of the label A. Fig.7.1c shows the graph at the beginning of the second iteration,30

as well as the set or vertices of Gl , ∀l ∈ L\C, updated at the end of the previous iteration by31

using the set E∗ = {(1,2),(3,6),(3,7)}. In Fig.7.1d is showed the update of the current solu-32

tion graph after choosing the label B. Note that the edge e = (1,1) ∈ E({B}) was not capable33
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Figure 7.1: Execution of rMVCA. (a) The input graph and the set of vertices of Gl , ∀l ∈ L.
(b) G← G // {A}. (c) The solution graph and the set of vertices of Gl , ∀l ∈ L\{A}, at the 2nd

iteration. (d) G← G//{B}. (e) The solution graph and the set of vertices of Gl , ∀l ∈ L\{A,B},
at the 3rd iteration

to contract its endpoints on G, and thence it is not necessary to consider e while updating the1

graphs Gl . For this iteration E∗ = {(3,5),(3,1)}. Lastly, from Fig.7.1e, that brings the graphs2

G and Gl , ∀l ∈ L\C, at the beginning of the third iteration of the method, we have that choosing3

the labels C or F connects the solution.4
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7.2 Multi-start local branching

In this section, we introduce the multi-start local branching procedure (MSLB), a new hy-1

brid metaheuristic for the MLSTP. The MSLB incorporates two new constructive heuristics:2

a parametrized version of MVCA (pMVCA) and a MIP-based procedure denominated round3

and contract (R&C), and a local search family of heuristics based on a local branching approach4

(LB). The remaining of this section describes the methods pMVCA, R&C, and LB, as well as5

the metaheuristic MSLB.6

7.2.1 Parametrized MVCA

The first few choices made by greedy heuristics, such as the rMVCA, play an important role7

in the quality of the solution they yield. This is due to the fact that initially, these methods do8

not have enough information to make good decisions, while these bad decisions could lead the9

solution towards a local minimum. In fact, an experiment performed by Cerrone et al. (2017)10

on 10.000 randomly generated ELGs have demonstrated that from the first 25% selections of11

MVCA, less than 50% of the labels were part of the optimal solution.12

This section proposes a parametrized version of rMVCA, denominated pMVCA, in or-13

der to minimize the impact of the initial choices of the method while keeping the greediness of14

the last selections. To this end, at each iteration, the label to enter into the solution is chosen15

randomly from the Restricted Candidate List (RCL) in the same way as in GRASP (Resende,16

2009), where the RCL is a list with the |RCL| best label selections for that iteration. Given17

δ ,θ ∈ (0,1], two parameters of pMVCA, the size of the RCL at iteration i ∈ {0,1, · · ·} is given18

by max(1,b|L| · δ · θ ic). Note that δ defines the initial size of the RCL, while θ controls the19

gradual reduction of its size through the iterations, what increases the greediness of the algo-20

rithm.21

Some characteristics of pMVCA make it very suitable for multi-start procedures: it is22

based on an efficient constructive heuristic, the rMVCA; the randomness of the first choices23

allows the method to generate diversified solutions, as well as different configurations of δ and24

θ allow it to explore varied regions of the solution space; and the greediness of its last choices25

does not allow the method to generate very bad solutions.26



7.2 Multi-start local branching 99

7.2.2 Round & Contract heuristic

As discussed previously, the majority of the successful heuristic algorithms proposed for the1

MLSTP rely on MVCA. In this section we present the Round & Contract (R&C) procedure, a2

MIP-based constructive heuristic proposed as an alternative to this fact.3

Let Z∗ ← CCut∗(G) represent the solution of the linear relaxation (LR) of the CCut4

formulation for the graph G, such that Z∗l is the value of the variable associated with the label5

l in Z∗. The R&C starts with the solution C = /0, and, while G //C is not connected, at each6

iteration, adds to C the label c ∈ L\C with the greater Z∗c . Given that CCut has an exponential7

number of constraints, it was executed with the singleton inequalities (4.5) in the place of the8

set of colorful cuts ones (4.2). Despite the fact that the constraints 4.2 could be dynamically9

separated, for the sake of performance, it is not carried out in the R&C method.10

The R&C method is described in Algorithm 7.2. Each iteration of the main loop (lines11

3-7) solves the linear relaxation of the CCut formulation for G (line 4); selects the label c with12

greater Z∗c (line 5); add it to the solution (line 6); and contracts the current solution graph G to13

reflect the inclusion of c in C (line 7). The loop stops when the graph has only one vertex, then14

the solution C is returned (line 8).15

Algorithm 7.2: Round and contract heuristic
1 procedure R&C(G = (V,E,L))
2 Let C← /0 be the set of selected labels;
3 while |V |> 1 do
4 Z∗← CCut∗(G);
5 c← argmaxl∈L\C(Z

∗
l );

6 C←C∪{c};
7 G← G//{c} ;

8 return C;

Figure 7.2 brings an example when the R&C heuristic leads to a solution better the one16

generated by the MVCA. Fig 7.2(a) presents the input ELG and the LR of CCut. Fig 7.2(b) and17

(c) illustrates the choices of MVCA, which lead to the solution {A,B,C}. In its turn, Fig 7.2(d)18

and (e) illustrates the choices of R&C, which lead to the solution {A,B}.19

7.2.3 A local search heuristic based on local branching techniques

The local branching technique, as proposed by Fischetti and Lodi (2003), is a generic strategy20

designed to improve the heuristic behavior of MIP solvers. It consists to solve the MIP with21
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Figure 7.2: Comparison between the heuristics MVCA and R&C. (a) Input graph. (b-c) Execu-
tion of the MVCA that produces a solution with three labels. (d-e) Execution of the R&C that
produces a solution with two colors. From (a) to (b) there is a contraction for edges with the
chosen label A. After the selection of the label B, the graph in (d) becomes trivial

an additional constraint in order to achieve good incumbent solutions at very early stages of1

the computation. More formally, let x be a set of binary decision variables for a MIP, I be2

the indices of x, x̂ be a reference solution, and ∆(x, x̂) = ∑i∈I |xi− x̂i|. Given an integer k > 0,3

the method partitions the solution space by means of the disjunction ∆(x, x̂) ≤ k (left branch)4

or ∆(x, x̂) ≥ k + 1 (right branch). Then, the left branch subproblem is solved first to search5

for better incumbent solutions in the subspace near to x̂, while the right branch subproblem is6

responsible for solving the remaining problem.7

This section proposes a new family of local search heuristics for the GMLSTP, denom-8

inated LB, inspired on the local branching technique. Since there is no compromise with opti-9

mality, there is no interest in solving the right branch subproblem. Furthermore, to have more10

control of the method, we have re-partitioned the left branch into the yet smaller subproblems:11

∆(x, x̂) = 1, ∆(x, x̂) = 2, · · · , ∆(x, x̂) = k.12

Given C ⊆ L, a solution for the GMLSTP, B an upper bound, and an integer 2 ≤ k ≤13

|C|, the local search heuristic LBk consists in solving the CCut formulation along with the14

constraints 7.1 and 7.2 within a time limit of k seconds. The constraint 7.1 forces CCut to15

search only for solutions that use exactly |C|− k labels of C, while the inequality 7.2 discards16

solutions equal to or worse than the given upper bound. In other words, unless the timeout is17

reached, an execution of the procedure LBk for a reference solution C returns a solution that18

uses |C|− k labels of C and improves the given upper bound, if such solution exists.19
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∑
l∈C

zl = |C|− k. (7.1)

∑
l∈L

zl ≤ B−1. (7.2)

Remark that, as in the R&C heuristic, the CCut formulation is initialized with the single-1

ton constraints (4.5) in the place of colorful cuts inequalities (4.2). However, the LB procedure2

has to care with the feasibility of the returned solutions. To this end, whenever an integer solu-3

tion C′ is found, it is executed a depth-first search procedure on G[C′] and if it is disconnected,4

the inequality 4.2 related to each component of G[C′] is added to the model. This was carried out5

by using the Lazy Callbacks feature of Cplex. Further, note that it is advantageous to configure6

the solver in order to prioritize feasibility over optimality.7

7.2.4 The multi-start local branching metaheuristic

In this section, we present the multi-start local branching (MSLB) procedure. It is a new8

MIP-based hybrid metaheuristic for the MLSTP that uses the constructive heuristics rMVCA,9

pMVCA and R&C to yield good solutions fast, and the LB family of local search heuristics in10

order to improve their quality. The MSLB can be divided into four phases, namely Initializa-11

tion, Tuning, Roulette, and MIP-Based, and the latter three are executed in sequence within a12

multi-start loop until a stop condition is reached.13

The Initialization phase is responsible for performing the preliminary operations neces-14

sary for the execution of the MSLB, such as the preparation of data structures and the removal15

of monochromatic cycles from the input graph. Further, due to the deterministic behavior of the16

heuristic rMVCA, it is carried out in this phase in order to achieve an initial upper bound fast.17

The Tuning phase of MSLB consists in a big number of calls to the constructive heuris-18

tic pMVCA. Recall that pMVCA is very efficient because it is based on rMVCA and that its19

behavior depends on the parameters δ and θ . Let ∆ = {0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7},20

Θ = {0.1,0.2,0.3,0.4}, and Ω = {(δ ,θ) | δ ∈ ∆,θ ∈ Θ}. The Tuning phase is presented in21

Algorithm 7.3. The main loop (lines 2-5) is executed once for each set of parameters ω ∈ Ω.22

Then, the heuristic pMVCA is executed λ = 200 times for the selected ω (lines 3 and 4) and23

the best p = 100 solutions found on the overall procedure are kept in the pool of solutions P24

(line 5). Let A	B = (A\B)∪ (B\A) represent the symmetric difference between the sets A and25

B. In order to increase the diversification of the MSLB, a solution C that has |C	C′| ≤ 1 for26
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some C′ ∈ P it is not allowed to enter P. Moreover, the values of the parameters ∆, Θ, λ , and p1

were chosen through empirical observations.2

Algorithm 7.3: Tunning phase of MSLB
1 procedure Tuning(G = (V,E,L),Ω,P,λ)
2 foreach ω ∈Ω (in a random way) do
3 for i = 1,2, · · · ,λ do
4 C← pMVCA(G,ω);
5 P← update_pool(P,C);

The Roulette phase of MSLB uses the information obtained in the Tuning phase in3

order to execute the pMVCA heuristic privileging the parameters ω ∈ Ω which had better per-4

formance. This strategy allows the MSLB to adapt itself to the characteristics of the input5

instance. Let pω be the number of solutions in P that were obtained by using pMVCA with the6

configuration ω , and let pΩ = ∑ω∈Ω pω . The Roulette executes the pMVCA twice the number7

of iterations of Tuning. For each iteration, it chooses randomly a parametrization ω ∈ Ω in a8

biased way, where pω/pΩ is the probability of ω to be chosen. The Roulette phase is presented9

in Algorithm 7.4. The main loop of the procedure (lines 2-5) is executed 2λ · |Ω| times. At each10

iteration, a set of parameters ω ∈Ω is selected (line 3), the pMVCA is carried out (line 4), and11

the pool of solutions P is updated (line 5). Note that the update of P reflects immediately on the12

probabilities of each ω to be chosen.13

Algorithm 7.4: Roulette phase of MSLB
1 procedure Roulette(G = (V,E,L),Ω,P,λ)
2 for i = 1,2, · · · ,(2λ · |Ω|) do
3 ω ← biased_randomly_pick(Ω,P);
4 C← pMVCA(G,ω);
5 P← update_pool(P,C);

The procedures based on the CCut formulation are executed at the MIP-Based phase.14

The R&C heuristic is carried out first, and, due to its deterministic behavior, it is executed just15

once during the entire MSLB. Subsequently, the family of local search heuristics LB is applied16

in order to improve the quality of the solutions in P. The MIP-Based phase is described in17

Algorithm 7.5. First, the R&C heuristic is executed (lines 2-4). Afterward, the LB2 is applied18

over each solution C ∈ P (lines 5-7). Let maxLBk ≥ 3 be an input parameter that limits the19

search space of LB, let b be the value of the best solution in P, and let P∗ ⊆ P = {C ∈ P | |C|=20

b}. The LBk is then applied over each solution in P∗, for each k ∈ {3,4, · · · ,maxLBk} (lines 8-21

11), in order to perform a deeper search over the most promising solutions. Note that the R&C22
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could have been executed at the Initialization phase, just as rMVCA. However, unlike rMVCA1

and pMVCA, R&C is a MIP-based heuristic and hence has a longer running time. In this case,2

moving R&C to the MIP-Based phase allows the MSLB to finish the Tuning and the Roulette3

phases much earlier.4

Algorithm 7.5: MIP-Based phase of MSLB
1 procedure MIP-Based(G = (V,E,L),P,maxLBk)

2 if first time calling this procedure then
3 C← R&C(G);
4 P← update_pool(P,C);

5 foreach C ∈ P do
6 C′← LB2(G,C);
7 P← update_pool(P,C′);

8 for k = 3,4, · · · ,maxLBk do
9 foreach C ∈ P∗ do

10 C′← LBk(G,C);
11 P← update_pool(P,C′);

Lastly, at the end of the MIP-Based phase, the pool of solutions P is reinitialized and the5

method is redirected to the Tuning phase. Figure 7.3 shows an overview of the multi-start local6

branching metaheuristic.7

Figure 7.3: Overview of the multi-start local branching metaheuristic

7.3 Computational experiments

In this section, we perform computational experiments in order to evaluate and compare the8

metaheuristic proposed in this work with the state-of-the-art ones in the literature, both in terms9
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of solution quality and computational running time. In the sequel, a statistical analysis is applied1

to the results. The MSLB metaheuristic, proposed in this work, is compared with the methods2

GRASP and VNS proposed by Consoli et al. (2009) and COMPL and INTELL proposed by3

Consoli et al. (2015).4

7.3.1 Environment setup

The MSLB metaheuristic was implemented in C++ language and compiled by using g++ 4.8.4,5

with the optimization flag -O3. The CCut formulation and all of its derived procedures were6

implemented using the Concert library and Cplex 12.51 as the solver. The experiments were7

performed on a computer with Intel(R) Core(TM) i7-4790K CPU, 4.00GHz, 16 GB of RAM,8

and Ubuntu 14.04 as the operating system. Although the processor of this device has more than9

one core, the algorithm was executed by using a single core and a single thread.10

In our computations we have considered the group 2 of ELGs generated by Cerulli et al.11

(2005), a benchmark already consolidated in the literature. Further, we also used the instances12

with 1000 vertices generated by Consoli et al. (2015). Thus, the group of input graphs of the13

experiments has instances with number of vertices n = |V | ∈ {100,200,500,1000}, number14

of labels l = |L| ∈ {0.25n,0.5n,n,1.25n}, and edge densities d ∈ {0.2,0.5,0.8}. Also, each15

dataset consists in 10 different graphs for one n-l-d configuration. The instances of the group 116

generated by Cerulli et al. (2005) were not considered due to their very small dimensions.17

7.3.2 Preliminary experiments

A first round of experiments was performed in order to determine the value of the parameter18

maxLBk. Recall this parameter controls the number of LB local search heuristics applied on the19

MIP-Based phase of MSLB. The value of maxLBk must be chosen carefully in order to provide20

a balance between capacity of improvement and computational cost. On the one hand, small21

values of maxLBk make it execute fast but limit the search to a reduced portion of the solution22

space. On the other hand, larger values of maxLBk allow the LBk to search a wide subset of the23

solution space but may limit the number of solutions the method is able to address.24

Four challenging datasets were chosen for this experiment: 200-200-0.2, 200-250-0.2,25

500-500-0.2, and 500-625-0.2. Then, for each maxLBk ∈ {3,4,5,6,7,8}, and for each instance26

in the datasets, the MSLB was executed 10 times. The Table 7.1 reports, for each configuration27

of maxLBk, the total number of times the LB was able to find a solution better than the best one28

found in the previous phases (column #u), and the average objective function obtained for the29
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10 instances of the dataset (column avg.). Also, the best results for each line are highlighted in1

bold and the worst ones are sub-lined.2

Table 7.1: Tunning of the parameter maxLBk

maxLBk=3 4 5 6 7 8

n l d #u avg. #u avg. #u avg. #u avg. #u avg. #u avg.

200 200 0.2 22 11.93 31 11.90 33 11.91 24 11.90 30 11.93 32 11.91

200 250 0.2 10 13.77 16 13.73 15 13.75 15 13.75 15 13.72 13 13.74

500 500 0.2 21 15.34 20 15.38 24 15.40 14 15.49 19 15.44 17 15.45

500 625 0.2 8 18.07 8 18.10 16 18.03 10 18.08 17 18.03 18 18.01

Total 61 59.11 75 59.11 88 59.09 63 59.22 81 59.12 80 59.11

From Table 7.1 it is possible to observe that the MSLB is not very sensitive to changes3

in maxLBk. Indeed, the difference between the best and the fourth total averages in only 0.02.4

Although the maxLBk = 5 did not reach the best avg. for any individual dataset, this config-5

uration always performed near the best, and, because of that, it was able to obtain the overall6

best results. A second round of tests was carried out with instances with n = 1000, from which7

we have noticed the LB performs too slow for this group. It happens because the LB heuristics8

are based on CCut, a mathematical formulation, and it does not scale with the size of input.9

Based on the experiments reported here, we chose and do not execute any LB for instances with10

n≥ 1000, and to set maxLBk = 5 for instances with n≤ 500.11

7.3.3 Performance analysis

The next experiments aim to compare the MSLB with the methods GRASP, VNS, COMPL12

(CMPL in the tables), and INTELL in terms of solution quality and computational running13

time. The MSLB was executed using a maximum allowed CPU time (max-time) as stopping14

condition. The max-time configuration was the same as the used by Consoli et al. (2015): 20,15

60, 300, and 1000 seconds for instances with 100, 200, 500, and 1000 vertices, respectively.16

For each execution, the best solution found was recorded as well as the time at which it was17

obtained.18

The results of these experiments are reported in Tables 7.2 - 7.9. Each line of the tables19

represents a dataset, which is a set with 10 instances with the same n-l-d configuration. The20

first two columns of each table identify the input instances. The next column reports the optimal21

solution, obtained by the A∗ algorithm (Chang and Leu, 1997), and the remaining columns show22

the computational results of the considered metaheuristics. The results reported in the columns23
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Opt, GRASP, VNS, CMPL, and INTELL are the ones given in Consoli et al. (2015), which1

performed one single execution of the methods for each instance. Conversely, we choose to2

perform 10 runs of the MSLB for each dataset, in order to mitigate the effects of randomness in3

the evaluation of the method.4

The last four columns refer to the results of MSLB: the average objective function over5

all the ten runs (column avg.), the best/worst average objective function obtained in a single run6

(column b.r./w.r.), and the average objective function considering the best result found for each7

individual instance over all the 10 runs (column best). The computational times reported in the8

tables are the average times (in seconds) at which the best solutions were obtained. For the9

columns b.r., w.r., and best, the average result is reported in the case of ties. When a metaheuris-10

tic reaches the optimum, the value is sub-lined to highlight this fact. Just as in Consoli et al.11

(2015), the performance of an algorithm is considered better than another if either it obtained a12

smaller average objective function value, or an equal average objective function value but in a13

shorter computational running time.14

Tables 7.2 and 7.3 report the results for instances with n = 100. All the methods perform15

very well for this group. Indeed, they are able to find all the optimal values in a very small16

amount of time. However, it is possible to see that the MSLB needs less time than the others17

to yield the same results. Almost the same happens for instances with 200 vertices (Tables18

7.4 and 7.5). But, for instances with l ≥ 100 and d = 0.2, the MSLB yielded better average19

objective values. Moreover, the MSLB was able to improve the best-known solution (BKS) for20

two datasets. These values are highlighted with a ’*’.21
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Table 7.2: Computational results for instances with n = 100

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

25 0.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8

0.5 2 2 2 2 2 2 2 2 2

0.2 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

50 0.8 2 2 2 2 2 2 2 2 2

0.5 3 3 3 3 3 3 3 3 3

0.2 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7

100 0.8 3 3 3 3 3 3 3 3 3

0.5 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7

0.2 - 9.8 9.7 9.7 9.7 9.7 9.7 9.7 9.7

125 0.8 4 4 4 4 4 4 4 4 4

0.5 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

0.2 - 11 11 11 11 11 11 11 11

Total - 57.7 57.6 57.6 57.6 57.6 57.6 57.6 57.6

Table 7.3: Computational CPU-time results for instances with n = 100

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

25 0.8 0.003 0.002 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.5 0.006 0.003 0.000 0.003 0.002 0.000 0.000 0.000 0.000

0.2 0.027 0.003 0.003 0.002 0.002 0.001 0.001 0.001 0.001

50 0.8 0.005 0.002 0.005 0.005 0.000 0.000 0.000 0.000 0.000

0.5 0.033 0.031 0.019 0.017 0.014 0.001 0.001 0.001 0.001

0.2 12.100 0.044 0.027 0.067 0.016 0.003 0.003 0.003 0.003

100 0.8 0.225 0.093 0.223 0.237 0.077 0.003 0.003 0.003 0.003

0.5 2.600 0.014 0.034 0.116 0.033 0.002 0.002 0.002 0.002

0.2 - 0.939 0.406 0.272 0.233 0.119 0.119 0.119 0.119

125 0.8 0.515 0.003 0.008 0.008 0.000 0.000 0.000 0.000 0.000

0.5 17.600 0.362 0.507 0.631 0.105 0.014 0.014 0.014 0.014

0.2 - 0.448 0.435 0.357 0.292 0.200 0.200 0.200 0.200

Total - 1.943 1.665 1.714 0.772 0.342 0.342 0.342 0.342
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The analysis of the results for instances with n = 500, reported in Tables 7.6 and 7.7,1

can be divided in three groups. The methods obtained a similar performance for the datasets in2

the five first lines in terms of average objective value, but the MSLB achieved the best times.3

INTELL and COMPL were the best ones in the dataset 500-625-0.2. For the remaining datasets,4

it is possible to state that the MSLB performed better than the others both in terms of solution5

quality and running time. Again, the MSLB was able to improve the BKS for five datasets6

(values with a ’*’).7

Table 7.4: Computational results for instances with n = 200

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

50 0.8 2 2 2 2 2 2 2 2 2

0.5 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2

0.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2 5.2

100 0.8 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

0.5 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4

0.2 NF 8.1 7.9 8 7.9 7.9 7.9 7.9 7.9

200 0.8 4 4 4 4 4 4 4 4 4

0.5 NF 5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.4

0.2 NF 12.2 12 12.1 12 11.9 11.9∗ 11.9 11.9

250 0.8 4 4.1 4 4.1 4 4 4 4 4

0.5 NF 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.3

0.2 NF 13.9 13.9 13.9 13.9 13.77 13.7∗ 13.7 13.8

Total - 69.4 68.9 69.2 68.9 68.67 68.6 68.6 68.7
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Table 7.5: Computational CPU-time results for instances with n = 200

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

50 0.8 0.016 0.008 0.003 0.000 0.000 0.000 0.000 0.000 0.000

0.5 0.016 0.009 0.012 0.016 0.003 0.000 0.000 0.000 0.000

0.2 4.300 0.020 0.229 0.205 0.190 0.002 0.002 0.002 0.002

100 0.8 0.087 0.031 0.120 0.446 0.022 0.005 0.005 0.005 0.005

0.5 0.727 0.076 0.072 0.173 0.055 0.004 0.004 0.004 0.004

0.2 NF 0.513 1.700 7.900 1.600 0.695 0.695 0.695 0.695

200 0.8 22.100 0.036 0.028 0.059 0.018 0.000 0.000 0.000 0.000

0.5 NF 0.552 1.100 2.500 0.463 0.028 0.028 0.028 0.028

0.2 NF 7.200 12.800 2.300 11.500 5.207 5.207 5.207 5.207

250 0.8 19.200 4.800 1.300 1.800 1.100 0.152 0.152 0.152 0.152

0.5 NF 0.389 2.300 2.200 1.100 0.027 0.027 0.027 0.027

0.2 NF 1.400 2.500 1.500 1.300 2.134 3.681 2.294 1.471

Total - 15.035 22.164 19.100 17.351 8.254 9.801 8.414 7.591

The results for instances with n = 1000 (reported in Tables 7.8 and 7.9) highlights the1

difference in performance from MSLB to the other methods. The MSLB has improved the BKS2

for six datasets (values with a ’*’), and also has proved the optimality for the dataset 1000-250-3

0.8. It was possible since the removal of monochromatic cycles detects any solution with value4

1 and, after that, if any method finds a solution with value 2, this solution is optimal. Beyond5

that, even when the other methods are able to find the same average objective value for a dataset,6

much more time is needed. For instance, even reaching better solutions than INTELL, the total7

time of the MSLB was approximately 4.5 times smaller.8
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Table 7.6: Computational results for instances with n = 500

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

125 0.8 2 2 2 2 2 2 2 2 2

0.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6

0.2 NF 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2

250 0.8 3 3 3 3 3 3 3 3 3

0.5 NF 4.2 4.1 4.2 4.1 4.1 4.1 4.1 4.1

0.2 NF 9.9 9.9 9.9 9.9 9.8 9.8∗ 9.8 9.8

500 0.8 NF 4.7 4.7 4.9 4.7 4.4 4.3∗ 4.3 4.5

0.5 NF 6.5 6.5 6.5 6.4 6.4 6.4 6.4 6.4

0.2 NF 15.9 15.8 15.8 15.8 15.38 15.2∗ 15.3 15.5

625 0.8 NF 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1

0.5 NF 7.9 7.9 7.9 7.9 7.54 7.4∗ 7.4 7.6

0.2 NF 18.4 18.3 18 18 18.06 17.8∗ 17.9 18.1

Total - 86.4 86.1 86.1 85.7 84.58 83.9 84.1 84.9

Table 7.7: Computational CPU-time results for instances with n = 500

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

125 0.8 0.183 0.107 0.012 0.425 0.010 0.008 0.008 0.008 0.008

0.5 0.546 0.453 1.100 0.993 0.423 0.047 0.047 0.047 0.047

0.2 NF 4.100 3.800 3.800 3.500 0.024 0.024 0.024 0.024

250 0.8 4.900 0.190 0.042 0.551 0.034 0.010 0.010 0.010 0.010

0.5 NF 0.470 83.700 19.200 71.300 6.679 6.679 6.679 6.679

0.2 NF 2.500 4.900 4.700 3.700 0.572 0.572 0.572 0.572

500 0.8 NF 22.700 22.500 21.200 20.500 5.825 6.471 12.289 2.041

0.5 NF 60.900 31.400 44.600 80.500 1.159 1.159 1.159 1.159

0.2 NF 18.900 138.100 121.600 82.600 27.603 33.644 32.133 29.370

625 0.8 NF 4.800 10.100 20.300 4.100 0.104 0.104 0.104 0.104

0.5 NF 16.600 32.200 35.200 26.700 5.278 6.136 5.953 3.907

0.2 NF 50.500 156.500 137.400 97.600 22.456 30.088 35.343 15.322

Total - 182.220 484.355 409.969 390.967 69.765 84.941 94.321 59.243
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Considering the above, it is possible to classify the benchmark into easy instances and1

hard ones. The majority of methods is able to reach the best solution for the easy instances.2

For this group, the MSLB yield these solutions faster. It is mostly on account of the Tuning3

and Roulette phases, both relying on the pMVCA. On the other hand, for the hard datasets, the4

MSLB was able to find the best solutions. It was due to the capacity of intensification given by5

the LB family of local search heuristics.6

Moreover, from the columns b.r. and w.r., is possible to see that the gap between the best7

and the worst runs of MSLB in very small. Indeed, this difference is 0 for 41 of 48 datasets.8

For the remaining cases, this difference is ≤ 0.2 in 6 cases and 0.3 in the other one. Finally,9

although MSLB has been executed on a different machine from the other algorithms, both10

microprocessors have the same 4.0 GHz clock speed, what attenuates this difference.11

Table 7.8: Computational results for instances with n = 1000

MSLB

l d Opt GRASP VNS CMPL INTELL avg. best b.r. w.r.

250 0.8 NF 2.1 2.1 2.1 2.1 2 2∗ 2 2

0.5 NF 3.3 3.3 3.3 3.3 3 3∗ 3 3

0.2 NF 5.2 5 5.2 5 5 5 5 5

500 0.8 NF 3 3 3 3 3 3 3 3

0.5 NF 4.2 4.1 4.2 4 4 4 4 4

0.2 NF 9.8 9.6 9.6 9.5 9 9∗ 9 9

1000 0.8 NF 5.1 5.1 5 5 5 5 5 5

0.5 NF 7.7 7.5 7.2 7 7 7 7 7

0.2 NF 14.9 14.9 14.9 14.8 14.29 14∗ 14.2 14.5

1250 0.8 NF 6.2 6.2 6.1 6 6 6 6 6

0.5 NF 8.9 8.8 8.9 8.6 8.18 8.1∗ 8.1 8.3

0.2 NF 17.8 17.7 17.6 17.1 17 17∗ 17 17

Total - 88.2 87.3 87.1 85.4 83.47 83.1 83.3 83.8
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Table 7.9: Computational CPU-time results for instances with n = 1000

MSLB

l d GRASP VNS CMPL INTELL avg. best b.r. w.r

250 0.8 1.2 0.918 1.2 0.796 0.023 0.023 0.023 0.023

0.5 1.2 0.563 1.5 0.459 0.022 0.022 0.022 0.022

0.2 24.3 43.800 50.1 25.100 0.176 0.176 0.176 0.176

500 0.8 2.1 0.730 1.5 0.701 0.034 0.034 0.034 0.034

0.5 102.3 237.100 162.1 92.200 1.954 1.954 1.954 1.954

0.2 94.1 91.100 90.5 82.300 0.027 0.027 0.027 0.027

1000 0.8 36.6 28.100 29.8 26.900 0.069 0.069 0.069 0.069

0.5 115.8 135.800 205.1 134.800 0.978 0.978 0.978 0.978

0.2 211.9 237.100 226.1 208.900 169.177 238.247 217.095 71.880

1250 0.8 39.9 25.100 25.3 25.100 0.050 0.050 0.050 0.050

0.5 530.2 561.400 506.4 408.300 171.951 186.899 198.837 128.758

0.2 616.1 697.100 610.4 644.400 5.320 5.320 5.320 5.320

Total 1775.7 2058.811 1910.0 1649.955 349.781 433.799 424.585 209.290

7.3.4 Statistical analysis

A statistical analysis was carried out to enrich the performance analysis of the computational1

experiments. These tests were conducted using the software R 3.0.2. and the package PMCMR2

4.1. For the first test, the null hypothesis is that there is no significant difference between the3

algorithms and, hence, the deviations obtained were merely random. The Friedman test is a4

nonparametric procedure based on ranks that detects the existence of significant differences be-5

tween the results of multiple multiple test attempts (e.g. for multiple algorithms) over different6

groups of instances.7

From the results reported in Section 7.3.3 and considering the column avg. for the8

MSLB, the algorithms received ranks from 1 to 5 for each dataset. The ties were broken by the9

average of the ranks. The average ranks obtained considering all datasets of the benchmark was:10

3.990, 3.708, 4.073, 2.104, and 1.125, for the metaheuristics GRASP, VNS, COMPL, INTELL,11

and MSLB, respectively. Through the routine friedman.test, the statistic value obtained was12

χ2
F = 136.867, with p-value = 2.2e−16. Indeed, the null hypothesis can be rejected with a13

level of significance α = 0.01 and 99% of confidence. Thus, we are able to detect significant14

differences between the algorithms on a pairwise comparison through post-hoc tests.15
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The Table 7.10 presents the p-values obtained by the Nemenyi test through the routine1

posthoc.friedman.nemenyi.test. The p-values of Nemenyi test indicate that the perfor-2

mance of MSLB is significantly better than GRASP, VNS, and COMPL for α = 0.01 and 99%3

of confidence, as well as its performance is significantly better than INTELL for α = 0.05 and4

95% of confidence.5

Table 7.10: The p-values obtained by pairwise comparisons through the Nemenyi test

GRASP VNS CMPL INTELL
VNS 0.91 - - -

CMPL 1.00 0.79 - -
INTELL 5.2e-08 6.6e-06 1.1e-08 -

MSLB 3.7e-14 7.8e-14 6.2e-14 0.02

The tests performed strongly suggest that the results analyzed in the section 7.3.3 were6

not the result of randomness. The reader is referred to Demšar (2006) and Derrac et al. (2011)7

for more details about Friedman and Nemenyi tests and others nonparametric statistics, in ad-8

dition to a more in-depth discussion on the power of these procedures.9

7.4 Concluding remarks

In the present chapter, we have proposed a revised version of the MVCA, which is the most10

important constructive heuristic for both MLSTP and GMLSTP. We have performed a com-11

plexity analysis and proved the time complexity of the rMVCA is O(αnkn), a tighter bound12

for this heuristic. Further, we have proposed the MSLB, a new MIP-based metaheuristic that13

combines the efficiency of a parametrized version of rMVCA with the capacity of exploration14

of a new local search method based on local branching techniques. Lastly, we have carried out15

computational experiments to compare the MSLB with the state-of-the-art metaheuristics for16

the MLSTP. The results show MSLB achieved the best performance both in quality of solutions17

and processing times.18



Part III

Related Problems

The last part of this thesis is focused on problems related to the MLSTP, that is to say,1

connectivity problems defined over edge-labeled graphs. First, we propose new mathematical2

formulations based on CCut for solving several problems defined over ELGs. In the sequel,3

we discuss in more detail the minimum labeling global cut problem. Finally, we introduce the4

minimum representation spanning tree problem, prove it is NP-complete, and propose heuristic5

and exact algorithms to solve it.6



Chapter 8

Exact Methods for Connectivity Prob-

lems de�ned on ELGs

As discussed in the previous chapters, given an ELG G = (V,E,L), the minimum labeling1

spanning tree problem aims to find a minimum cardinality subset of labels L′ ⊆ L such that the2

spanning subgraph induced by the set of edges with label in L′ is connected. Moreover, it is3

possible to state that the MLSTP is the most studied problem among the ones defined on ELGs4

(refer to Chapter 2 for more information on the literature of the MLSTP). Other examples of5

interesting problems defined on ELGs are the labeled maximum matching problem (Carrabs6

et al., 2009), the maximum labeled clique problem (Carrabs et al., 2014), and the rainbow cycle7

cover problem (Silvestri et al., 2016).8

In particular, many problems formulated on ELGs have the connectivity as a subjacent9

objective. This kind of problem has been the subject of research in recent years, as in the works10

of Carrabs et al. (2017) on the rainbow spanning forest problem, Ismkhan (2017) on the colorful11

traveling salesman problem and Cerrone et al. (2017) on the minimum labeling spanning tree12

problem. The two main goals of this chapter are (i) to describe connectivity problems defined13

on ELGs that can possibly inspire new researches (and researchers), and (ii) to propose new14

MIP-based mathematical models, extensions and/or adaptations of the colorful cuts formulation15

(refer to Section 4.1), for solving some of these problems. In the sequel, we briefly present five16

connectivity problems defined on ELGs.17

The colorful traveling salesman problem: The colorful traveling salesman problem (CTSP)18

was proposed independently by Cerulli et al. (2006b) (as the minimum labelling Hamiltonian19

cycle problem) and by Xiong et al. (2007). Both have proved the problem is NP-complete on20

complete graphs. Given an ELG, the goal of the CTSP is to find a Hamiltonian tour with the21

minimum number of labels. Figure 8.1 illustrates the CTSP. Fig. 8.1(a) brings an input ELG22
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G = (V,E,L). Fig. 8.1(b) depicts a solution with 3 labels while Fig. 8.1(c) shows a solution1

with only 2 labels.2

Figure 8.1: The colorful traveling salesman problem. (a) The input ELG G = (V,E,L). (b) A
solution for G using the labels B, C, and F . (c) A solution for G using the labels B and E

The k-labeled spanning forest problem: The k-labeled spanning forest problem (kLSFP),3

proposed by Cerulli et al. (2014), consists in: given an ELG G = (V,E,L) and an integer con-4

stant k ∈ Z+, find the minimum number of connected components by using at most k labels.5

According to the authors, this kind of constraint is important in real life situations when there6

is a limit that cannot be violated, such as the number of wireless network frequencies in some7

area. Moreover, the authors have demonstrated the kLSFP is NP-complete since it is a general-8

ization of the MLSTP. Figure 8.2 brings an example of the kLSFP for k = 4. Fig. 8.2(a) depicts9

the input ELG G = (V,E,L). Fig. 8.2(b) presents G[{D,E,G,H}], an optimal solution for this10

instance which represents a spanning forest with four maximal connected components.11

Figure 8.2: The k-labeled spanning forest problem. (a) The input ELG G = (V,E,L). (b) A
solution for G where G[{D,E,G,H}] has 4 maximal connected components

The label-constrained minimum spanning tree problem: Given an edge-labeled-and-12

weighted graph G = (V,E,L) and an integer constant k ∈ Z+, the label-constrained minimum13
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spanning tree problem (LCMSTP), proposed by Xiong et al. (2008), aims to find a spanning1

tree T = (V,E ′,L′) of G such that the total edge weight is minimized and |L′| ≤ k. The authors2

proved the LCMSTP is NP-hard by reduction from the MLSTP.3

The cost-constrained minimum label spanning tree problem: Given an edge-labeled-and-4

weighted graph G = (V,E,L) and an integer constant k ∈ Z+, the cost-constrained minimum5

label spanning tree problem (CCMLSTP), also proposed by Xiong et al. (2008), aims to find a6

spanning tree with the smallest number of labels and a total edge cost of no more than k.7

The minimal cost/minimal label spanning tree problem: The minimal cost/minimal label8

spanning tree problem (MC/MLSTP), proposed by Clímaco et al. (2010), is a bicriterion multi-9

objective problem that combines the MLSTP and the minimum spanning tree problem. Given10

an edge-labeled-and-weighted graph, the first objective is to minimize the sum of the weights11

of the edges of the resulting spanning tree, while the second aims to minimize its number of12

labels. According to Clímaco et al. (2010), these two criterion are conflicting in most cases.13

Figure 8.3 illustrates the MC/MLSTP, highlighting the conflicting criteria. Fig. 8.3(a) brings14

the edge-labeled-and-weighted input graph. Fig. 8.3(b) presents a solution with 4 labels and 2415

as the sum of the edge weights. Notwithstanding, Fig. 8.3(c) presents a solution with 5 labels16

and 21 as the sum of the edge weights.17

Figure 8.3: Example of the minimal cost/minimal label spanning tree problem. (a) The input
edge-labeled-and-weighted graph. (b) A solution with 4 labels and edge cost 24. (c) A solution
with 5 labels and edge cost 21

The next sections discuss in more detail some connectivity problems defined on ELGs,18

introduce new ones, and propose new MIP-based mathematical models, extensions and/or adap-19

tations of the colorful cuts formulation, for solving these problems. We add a “?” before the20

name of the problem in order to emphasize, to the best of our knowledge, when it is being first21

proposed in this work. Otherwise, we cite the work where the problem was introduced.22
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8.1 Connectivity problems with optional vertices

This section addresses a class of connectivity problems defined on ELGs in which it is not1

necessary to connect the entire graph, but only specific subsets of its vertices. The objective is2

to show how to adapt the CCut formulation to solve each of these problems.3

The minimum labeling path problem (Jacob et al., 1999): Given an input ELG G= (V,E,L),4

and a pair of vertices s, t ∈V , the aim of the minimum labeling path problem (MLPP) is to find5

a path connecting s to t by using the minimum number of labels. According to Carr et al. (2000)6

and Broersma et al. (2005), the MLPP is NP-complete. Note that the MLPP can be equivalently7

defined in the following way: given an input ELG G = (V,E,L), the goal is to find a smallest8

cardinality subset L′ ∈ L such that s and t are connected in G[L′]. Verifying the equivalence9

between these definitions is straightforward (refer to the demonstration of Definition 1.4).10

The CCut formulation adapted to the MLPP is presented in the program (8.1) through11

(8.3). The objective function (8.1) minimizes the number of labels, and the exponential set12

of constraints (8.2) ensures the connectivity of the vertices s and t in the solution graph by13

requiring at least one active label for every colorful cut that separates these vertices.14

Minimize ∑
l∈L

zl (8.1)

s.t. ∑
l∈K(S)

zl ≥ 1, ∀S⊂V,s ∈ S, t /∈ S, (8.2)

zl ∈ {0,1}, ∀l ∈ L. (8.3)

As discussed in Section 3.3, the solution of the MLPP for any pair s, t ∈ V is a lower15

bound for the MLSTP. In such case, could be interesting to find out the best of these bounds,16

we denominate the labeled diameter of an ELG. A question arises: is that possible to compute17

the labeled diameter at once, instead of computing the MLPP for every s, t pair of the graph?18

The min-color generalized forest problem (Carr et al., 2000): Given an ELG G = (V,E,L),19

and set of pairs of distinct vertices V = {(s1, t1),(s2, t2), · · ·}, the min-color generalized forest20

problem (MCGFP), proposed by Carr et al. (2000), is a generalization of the MLPP that aims21

to find a smallest cardinality subset L′ ∈ L such that every pair (s, t) ∈ V is connected in G[L′].22

The MCGFP is NP-hard, since the case when |V|= 1 is exactly the MLPP.23

The CCut formulation adapted to the MCGFP is presented in the program (8.4) through24
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(8.6). The objective function (8.4) minimizes the number of labels, and the exponential set of1

constraints (8.5) ensures that each pair of vertices (s, t) ∈ V is connected in the solution graph2

by requiring at least one active label for every colorful cut that separates these vertices.3

Minimize ∑
l∈L

zl (8.4)

s.t. ∑
l∈K(S)

zl ≥ 1, ∀S⊂V | ∃ (si, ti) ∈ V such that si ∈ S and ti /∈ S, (8.5)

zl ∈ {0,1}, ∀l ∈ L. (8.6)

Figure 8.4 depicts both the MLPP and the MCGFP. Fig. 8.4(a) presents an input ELG4

G = (V,E,L). Fig. 8.4(b) evidences that the solution of the MLPP on G for s = 1, t = 2 is {D},5

for s = 5, t = 4 is {F}, and for s = 7, t = 6 is {C}. Fig. 8.4(c) shows that the solution for the6

MCGFP on G for V= {(1,2),(5,4),(7,6)} is {A,B}.7

Figure 8.4: Example of the MLPP and of the MCGFP. (a) The input ELG G = (V,E,L). (b)
The solution for three separate instances of the MLPP on G. (c) The solution for the MCGFP
for V= {(1,2),(5,4),(7,6)}

The minimum labeling Steiner problem (Cerulli et al., 2006a): Given an undirected8

weighted graph G = (V,E) and a subset of its vertices Q⊆V , namely terminals, the Steiner tree9

problem in graphs (STP) consists in finding a minimum cost subgraph of G such that the set of10

terminals is connected. To do so, some vertices from the set V\Q, namely Steiner vertices, could11

be used. In its turn, the minimum labeling Steiner problem (MLSteiner), proposed by Cerulli12

et al. (2006a), extends both the MLSTP and the STP. Formally, given an ELG G = (V,E,L) and13

a set of terminals Q⊆V , the aim of the MLSteiner is to find a minimum cardinality set of labels14

L′ ⊆ L such that all the vertices of Q belong to the same connected component in G[L′]. The15

MLSteiner is NP-hard since it is exactly the MLSTP if Q =V .16
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The CCut formulation adapted to the MLSteiner problem is presented in the program1

(8.7) through (8.9). The objective function (8.7) minimizes the number of labels, and the expo-2

nential set of constraints (8.8) ensures that the vertices in Q are connected in the solution graph3

by requiring at least one active label for every colorful cut that separates them.4

Minimize ∑
l∈L

zl (8.7)

s.t. ∑
l∈K(S)

zl ≥ 1, ∀S⊂V,S∩Q 6= /0,S∩Q 6= Q, (8.8)

zl ∈ {0,1}, ∀l ∈ L. (8.9)

Figure 8.5 illustrates the MLSteiner problem. Fig. 8.5(a) shows the input ELG G =5

(V,E,L), where Q = {1,2,6,7} is the set of terminals, represented in black. Fig. 8.5(b) and6

8.5(c) present two solutions with cost 3 and 2, respectively. Observe that both solutions use the7

Steiner vertex v = 3.8

Figure 8.5: Example of the minimum labeling Steiner problem. (a) An input ELG, where the
set of terminals are represented in black. (b) A solution with 3 labels using the Steiner vertex 3.
(b) A solution with 2 labels using the Steiner vertex 3

? The prize-collecting minimum labeling tree problem: Motivated by a real world applica-9

tion on transport (or computer) networks, we propose the prize-collecting minimum labeling10

tree problem (PC-MLT), a more general connectivity problem defined on ELGs that extends the11

MLSTP, the MLPP and the MLSteiner. The PC-MLT consists in finding a minimum-labeled12

tree such that the sum of its prizes is greater than a required value. To the best of our knowl-13

edge, this is the first study on the PC-MLT. This problem has applications when it is desirable14

to achieve certain objective (e.g. to provide access to some resource to a certain number of15

people) by using a minimum number of labels. Observe from Balas (1989) that the idea of16

prize-collecting optimization problems is not new.17
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Formally, let G = (V,E,L) be an ELG, P : V → R a pricing function on the vertices of1

G, and PMIN an input constant representing the minimum prize to be collected. The aim of the2

PC-MLT is to find a minimum cardinality set L′ ⊂ L such that G[L′] has a connected component3

spanning the set of vertices Q ⊆ V , namely the solution set, and ∑v∈Q P(v) ≥ PMIN. Observe4

that the MLSTP is a special case of the PC-MLT: let P(v) = 1, ∀v ∈ V , and PMIN = |V |.5

Therefore, since the MLSTP is NP-hard, the PC-MLT also belongs to this class of problems.6

Figure 8.6 illustrates the prize-collecting minimum labeling tree problem. Fig. 8.6(a)7

presents an input ELG for the PC-MLT with PMIN = 22. The prizes are presented near8

each vertex of G. Fig 8.6(b) shows a solution for this instance with L′ = {A,C,D}, Q =9

{2,3,4,5,8,9,11,12}, and ∑v∈Q P(v) = 27. The vertices of V\Q are in gray.10

Figure 8.6: Example of the prize-collecting minimum labeling tree problem. (a) An input ELG
with prizes associated with its vertices. (b) A solution for this instance with L′ = {A,C,D},
Q = {2,3,4,5,8,9,11,12}, and ∑v∈Q P(v) = 27

The CCut formulation adapted to the PC-MLT is presented in the program (8.10) through11

(8.13). In addition to the variables zl , the model also defines the group of binary variables12

wv ∈ {0,1}, for which wv = 1 if and only if the vertex v ∈V belongs to the solution set Q. The13

objective function (8.10) minimizes the number of labels. The exponential set of constraints14

(8.11) ensures that the vertices in the solution set Q are connected in the solution graph by15

requiring at least one active label for every colorful cut that separates them. Remark that, in16

contrast to the previously presented adaptations of CCut, the set of constraints (8.11) defines17

O(|V |2) inequalities for each proper subset S. Lastly, the constraint (8.12) ensures that the18

minimum required prize is collected, and the set of constraints (8.13) defines the domain of the19

variables.20

Minimize ∑
l∈L

zl (8.10)
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s.t. ∑
l∈K(S)

zl ≥ wp +wq−1, ∀S⊂V,S 6= /0,∀p ∈ S,∀q ∈V\S, (8.11)

∑
v∈V

wv ·P(v)≥ PMIN, (8.12)

zl ∈ {0,1},wv ∈ {0,1}, ∀v ∈V,∀l ∈ L. (8.13)

8.2 Problems de�ned on arc-labeled digraphs

In this section, we address three connectivity problems defined on arc-labeled digraphs (ALD),1

that are directed graphs in which each arc has one label associated (recall Definition 1.6), and2

show how to adapt the CCut formulation to solve them. This kind of problem arises when there3

are asymmetries in the links between vertices. Consider the following definitions:4

Definition 8.1. Given an ALD D = (V,A,L), and a subset of labels L′ ⊆ L, D[L′] is the spanning5

subgraph of D induced by the set of arcs A(L′) = {a ∈ A | la(a) ∈ L′}.6

Definition 8.2. For convenience, when a problem defines a special root vertex r ∈ V , let V+
7

denote the set V\{r}.8

? The minimal labeling arborescence problem: Given an ALD D = (V,A,L) and a root9

vertex r ∈V , the goal of the minimal labeling arborescence problem (MLAP) is to find a set of10

labels L′ ⊆ L, such that D[L′] contains a directed path from r to each vertex v ∈ V+, and |L′|11

is minimized. The MLAP is NP-complete. Mutatis mutandis, the proof is the same given by12

Chang and Leu (1997) to the MLSTP (refer to Section 2.1).13

The CCut formulation adapted to the MLAP is presented in the program (8.14) through14

(8.16). Let K−(S) = {la(a) | a∈ δ−(S)} be the set of labels represented in δ−(S), that is the set15

of ingoing arcs in the cut set [S,V\S], for any S ⊂ V . The objective function (8.14) minimizes16

the number of labels in the solution. In its turn, the exponential set of constraints (8.15) ensures17

that there is a directed path from r to any vertex v ∈V+ in the solution digraph by requiring at18

least one active label (and as a consequence an active arc) for every K−(S) that separates the19

root from v.20

Minimize ∑
l∈L

zl (8.14)
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s.t. ∑
l∈K−(S)

zl ≥ 1, ∀S⊂V,S 6= /0,r /∈ S, (8.15)

zl ∈ {0,1}, ∀l ∈ L. (8.16)

? The minimal labeling strongly connected problem: Given an ALD D = (V,A,L), the min-1

imal labeling strongly connected problem (MLSCP) aims to find a set of labels L′ ⊆ L, such2

that |L′| is minimized and D[L′] is strongly connected. Recall a directed graph is strongly con-3

nected if there is a path in each direction between each pair of its vertices. The MLSCP is4

NP-complete. Again, Mutatis mutandis, the proof is the same given by Chang and Leu (1997)5

to the MLSTP (refer to Section 2.1).6

The CCut formulation adapted to the MLSCP is presented in the program (8.17) through7

(8.19). The objective function (8.17) minimizes the number of labels in the solution, and the8

exponential set of constraints (8.18) ensures that there is a path in each direction between each9

pair of vertices s, t ∈ V in the solution digraph by requiring at least one active label (and as10

a consequence an active arc) for every K−(S) that separates t from s. Recall that K−(S) =11

{la(a) | a ∈ δ−(S)}.12

Minimize ∑
l∈L

zl (8.17)

s.t. ∑
l∈K−(S)

zl ≥ 1, ∀S⊂V,S 6= /0, (8.18)

zl ∈ {0,1}, ∀l ∈ L. (8.19)

Figure 8.7 depicts both the MLAP and the MLSCP. Fig. 8.7(a) presents an input ALD13

D = (V,A,L). Fig. 8.7(b) shows a solution for the MLAP considering the root node r = 8. Fig.14

8.7(c) illustrates a solution for the MLSCP.15

The maximum flow minimal labeling problem (Cerulli and Granata, 2009): The maximum16

flow minimal labeling problem (MFMLP) is a variant of the classical maximum flow problem17

defined on ALDs. Given and ALD D = (V,A,L), a capacity function c : A → R, and two18

vertices s, t ∈V , the MFMLP aims to find a subset L′ ⊆ L with minimum cardinality, such that19

the maximum flow from the source s to the sink t on D[L′] is maximum, i.e. it has the same value20

of maximum s-t flow on D. Granata et al. (2013) proved the MFMLP is NP-hard by reduction21

from the minimum labeled spanning tree problem.22
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Figure 8.7: Example of both the MLAP and the MLSCP. (a) An input ALD D = (V,A,L).
(b) L′ = {A,B,D,F}, a solution for the MLAP on D, considering the root node r = 8. (c)
L′ = {A,C,D,F}, a solution for the MLSCP on D

Figure 8.8 illustrates the maximum flow minimal labeling problem. Fig. 8.8(a) presents1

an input capacited ALD D = (V,A,L). Fig. 8.8(b) shows a solution for the MFMLP with2

L′ = {A,B,D,E,F} and Fig. 8.8(c) shows another one with L′ = {A,B,D,F}.3

Figure 8.8: maximum flow minimal labeling problem. (a) An input ALD with capacities asso-
ciated with its vertices and a maximum s-t flow F∗ = 10. Solutions for this input instance with
(b) L′ = {A,B,D,E,F} and (c) L′ = {A,B,D,F}

The CCut formulation adapted to the MFMLP is presented in the program (8.20) through4

(8.22), in which F∗ is the maximum flow in D, K−(S) = {la(a) | a ∈ δ−(S)} is the set of5

labels represented in δ−(S), and δ−(S) is the set of ingoing arcs in the cut set [S,V\S], for any6

S ⊂ V . The objective function (8.20) minimizes the number of labels in the solution, and the7

exponential set of constraints (8.21) ensures that the sum of the capacities of the arcs in any s-t8

cut is not lesser than F∗. In this case, from the min-cut max-flow theorem, it follows that the9

maximum flow from s to t is at least F∗.10

Minimize ∑
l∈L

zl (8.20)
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s.t. ∑
l∈K−(S)

(
∑

a∈δ−(S)
la(a)=l

c(a)
)
· zl ≥ F∗, ∀S⊂V,s /∈ S, t ∈ S, (8.21)

zl ∈ {0,1}, ∀l ∈ L. (8.22)

Considering that sometimes the capacities are too big in comparison to F∗, the formula-1

tion can be improved by replacing the inequalities (8.21) by the inequalities (8.23).2

∑
l∈K−(S)

min
(

∑
a∈δ−(S)
la(a)=l

c(a), F∗
)
· zl ≥ F∗, ∀S⊂V,s /∈ S, t ∈ S. (8.23)

Moreover, consider the concept of necessary label given by Granata et al. (2013):3

Definition 8.3. A label l ∈ L is necessary with respect to the MFMLP if the maximum s-t flow4

in the graph D[L\{l}] is strictly less than the maximum s-t flow in D.5

It is easy to see that the label F ∈ L is necessary in the instance presented in Figure6

8.8(a). Let L ⊆ L be the set of necessary labels for an input ALD, the formulation can be7

further improved by replacing the inequalities (8.23) by the inequalities (8.24).8

∑
l∈K−(S)\L

min
(

∑
a∈δ−(S)
la(a)=l

c(a), F∗− ∑
a∈δ−(S)
la(a)∈L

c(a)
)
· zl ≥ F∗− ∑

a∈δ−(S)
la(a)∈L

c(a), ∀S⊂V,s /∈ S, t ∈ S.

(8.24)

Lastly, it could be interesting to consider an extension of the MFMLP in which the9

desired maximum s-t flow in the solution digraph should be greater than a given value F� ≤ F∗.10

We call this extension the minimum labeling given flow problem (MLGFP).11

8.3 Problems with enhanced connectivity

In this section, we address three problems defined on ELGs that look for solution graphs with12

more connectivity requirements than the MLSTP. This kind of problem arises when it is desir-13

able the solution graph to still connected even if k links, k labels, or a node fails. We show how14

to adapt the CCut formulation to solve these problems.15
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? The minimum labeling edge-k-connected graph problem: Given an ELG G = (V,E,L),1

the aim of the minimum labeling edge-k-connected graph problem (MLEkCGP) is to find a2

minimum cardinality set of labels L′ ⊆ L such that G[L′] is edge-k-connected, i.e. it remains3

connected even if k− 1 edges are removed from it. The MLEkCGP is NP-complete. Indeed,4

when k = 1 this problem is exactly the MLSTP.5

The CCut formulation adapted to the MLEkCGP problem is presented in the program6

(8.25) through (8.27). Let E(L′), L′ ⊆ L, be the set of edges with label l(e) ∈ L′. The objective7

function (8.25) minimizes the number of labels, and the exponential set of constraints (8.26)8

ensures the solution graph is edge-k-connected by requiring at least k active edges for every cut9

in the graph.10

Minimize ∑
l∈L

zl (8.25)

s.t. ∑
l∈K(S)

min
(
k, |E({l})∩δ (S)|

)
· zl ≥ k, ∀S⊂V,S 6= /0, (8.26)

zl ∈ {0,1}, ∀l ∈ L. (8.27)

? The minimum labeling label-k-connected graph problem: Given an ELG G = (V,E,L),11

the aim of the minimum labeling label-k-connected graph problem (MLLkCGP) is to find a12

minimum cardinality set of labels L′ ⊆ L such that G[L′] is label-k-connected, i.e. it remains13

connected even if k− 1 labels are removed from it. The MLLkCGP is NP-complete. Indeed,14

when k = 1 this problem is exactly the MLSTP.15

The CCut formulation adapted to the MLLkCGP problem is presented in the program16

(8.28) through (8.30). The objective function (8.28) minimizes the number of labels, and the17

exponential set of constraints (8.29) ensures the solution graph is label-k-connected by requiring18

at least k active labels for every cut in the graph.19

Minimize ∑
l∈L

zl (8.28)

s.t. ∑
l∈K(S)

zl ≥ k, ∀S⊂V,S 6= /0, (8.29)

zl ∈ {0,1}, ∀l ∈ L. (8.30)

The minimum labeling vertex-biconnected graph problem (Perez and Consoli, 2015):20
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Given an ELG G = (V,E,L), the aim of the minimum labeling vertex-biconnected graph prob-1

lem (MLVBGP) is to find a minimum cardinality set of labels L′ ⊆ L, such that G[L′] is vertex-2

biconnected, i.e. it is connected even if one vertex is removed from it.3

The MLVBGP is NP-complete. The proof is given by extending the transformation4

given in Section 2.1. Let G(U,S) = (V,E,L), |U | ≥ 2, be the graph built from a set covering5

instance as given in Section 2.1. Let G′← G//{k∗}, and let v be the vertex originated from v∗6

in the contraction. Add a new vertex w to G′ and, for every edge e = (v, j) ∈ E, add to G′ a7

new edge y = (w, j), such that l(e) = l(y). It is straightforward to verify that G′ has a vertex-8

biconnected spanning subgraph with k labels if and only if a minimum set covering with k sets9

does exist.10

Figure 8.9 illustrates the extension of the graph G(U,S) = (V,E,L). Fig. 8.9(a) brings11

the ELG G built from a set covering instance presented in Section 2.1, Fig. 2.1(b). Fig. 8.9(b)12

depicts the graph G′ = G // {k∗}, and Fig. 8.9(c) shows the graph G′ after adding the clone13

vertex w.14

Figure 8.9: The MLVBGP is NP-complete. (a) An ELG G(U,S) = (V,E,L) built from an
instance of the set covering problem. (b) The graph G′ = G // {k∗}. (c) The graph G′ after
adding the clone vertex w, depicted in gray

Let G[[S]] be the subgraph induced by the set of vertices S ⊆ V and, for convenience,15

let K(S,G) be the colorful cut derived from the set of vertices S on the graph G = (V,E,L),16

where S ⊂ V , S 6= /0. Figure 8.10 illustrates these concepts. Fig. 8.10(a) presents the input17

ELG G = (V,E,L), and the Figures 8.10(b) to (f) show the graphs G[[V\{v}]], for each v ∈ V .18

Moreover, considering S = {1}, the colorful cut K(S,G[[V\{2}]]) is {C,D} (Fig. 8.10(c)),19

while K(S,G[[V\{3}]]) is {A,C} (Fig. 8.10(d)).20

The CCut formulation adapted to the MLVBGP problem is presented in the program21

(8.31) through (8.33). It is derived directly from the definition of the problem, using CCut to22



8.3 Problems with enhanced connectivity 128

Figure 8.10: Illustration of the concepts of subgraph induced by a set of vertices and K(S,G), the
colorful cut derived from the set of vertices S on the graph G. (a) An input ELG G = (V,E,L).
(b) to (f) The graphs G[[V\{v}]], for each v ∈V

ensure that the graph G[[V\{v}]] is connected ∀v ∈V . The objective function (8.31) minimizes1

the number of labels, and the exponential set of constraints (8.32) ensures the solution graph is2

vertex biconnected by requiring that every cut in the solution graph has an active label even if a3

vertex is removed.4

Minimize ∑
l∈L

zl (8.31)

s.t. ∑
l∈K(Sv,Gv)

zl ≥ 1,

∀v ∈V | Gv = G[[V\{v}]] = (V v,Ev,Lv),

∀Sv ⊂V v,Sv 6= /0,
(8.32)

zl ∈ {0,1}, ∀l ∈ L. (8.33)

Indeed, this formulation can be further improved by replacing the set of inequalities5

(8.32) by the set (8.34). First, let N(S) = {v ∈ V\S | e = (v,x) ∈ δ (S) or e = (x,v) ∈ δ (S)},6

for any S ⊆ V , be the set of neighbor vertices of S. Considering the graph G = (V,E,L) pre-7

sented in Fig. 8.10(a) and S = {5}, we have that N(S) = {1,4}, K(S,G[[V\{1}]]) = {B},8

K(S,G[[V\{2}]]) = K(S,G[[V\{3}]]) = {B,C}, and K(S,G[[V\{4}]]) = {C}. Observe that if9

v /∈ N(S), and v /∈ S, then K(S,G[[V\{v}]]) = K(S,G). Further, note that if v ∈ N(S), then10

K(S,G[[V\{v}]]) ⊆ K(S,G), and the colorful cut inequality associated with K(S,G) is domi-11
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nated (or redundant) by the one associated with K(S,G[[V\{v}]]). Thence, to ensure the solu-1

tion graph is biconnected, it is only necessary to satisfy the colorful cuts K(S,G[[V\{v}]]), for2

all S⊂V , S 6= /0, |S| ≤ |V |−2, and for all v ∈ N(S). This is the set of constraints (8.34).3

∑
l∈K(Sv,Gv)

zl ≥ 1,

∀S⊂V,S 6= /0, |S| ≤ |V |−2,

∀v ∈ N(S),Gv = G[[V\{v}]] = (V v,Ev,Lv).
(8.34)

Lastly, the Figure 8.11 illustrates the three enhanced connectivity problems discussed4

in this section. The graph in Fig. 8.11(a) is edge-2-connected, satisfying the MLEkCGP for5

k = 2. However, the removal of either the label D or the vertex 3 disconnects it. The graph6

in Fig. 8.11(b) is label-2-connected, satisfying the MLLkCGP for k = 2. Again, the removal7

of the vertex 3 disconnects it. The graph in Fig. 8.11(c) is vertex biconnected, satisfying the8

MLVBGP.9

Figure 8.11: Illustration of enhanced connectivity problems defined on ELGs. (a) An ELG that
is edge-2-connected, satisfying the MLEkCGP for k = 2. (b) An ELG that is label-2-connected,
satisfying the MLLkCGP for k = 2. (c) An ELG that is vertex biconnected, satisfying the
MLVBGP



Chapter 9

The Minimum Labeling Global Cut Prob-

lem

This chapter addresses the minimum labeling global cut problem (MLGCP). Given an ELG, the1

problem consists in finding a minimum cardinality set of labels whose removal disconnects the2

input graph. This problem is closely related to both MLSTP and GMLSTP, since it arises as3

the separation problem for the colorful cuts inequalities (refer to Section 4.1). The Figure 9.14

illustrates the MLGCP. Fig. 9.1(a) brings the input ELG. Fig. 9.1(b) highlights a cut with the5

labels E and F , while the Fig. 9.1(c) shows the input graph is disconnected without these labels.6

Figure 9.1: Illustration of the MLGCP. (a) The input ELG G = (V,E,L). (b) The colorful cut
K({2,3,4}) = {E,F}. (c) The graph G[{A,B,C,D}], which is disconnected

Formally, given an ELG G = (V,E,L), the minimum labeling global cut problem aims7

to find a subset of labels L′ ⊆ L, such that G[L\L′] is not connected and |L′| is minimized. The8

computational complexity of the MLGCP still remains as a theoretical open question. Despite9

of that, the problem of finding an s-t cut with the minimum number of colors — namely, the10

minimum labeling s-t cut problem (MLstCP) — is NP-hard (Jha et al., 2002; Coudert et al.,11

2007).12
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Coudert et al. (2007) and Coudert et al. (2014) address both the MLGCP and the MLstCP1

with the goal of assessing the capacity of a network to remain connected when links are at shared2

risk. For instance, considering an wireless network, an attacker can shut down all of the links at3

a certain frequency by creating a strong jam signal. Another example is when two cables share4

the same duct in part of their way.5

Several approximation algorithms have been proposed for the MLstCP (Zhang et al.,6

2011; Tang and Zhang, 2012; Zhang, 2014). The best results were obtained by Zhang (2014),7

who proved the problem is lmax−approximated and fmax−approximated, where lmax is the size8

of the largest s− t path and fmax is an upper bound on the number of edges of a label. Lastly,9

Zhang (2014) have demonstrated that the MLGCP is can be solved polynomially if the input10

ELG is planar, has a small value of fmax, or has a limited treewidth.11

In the following sections, we propose three new mathematical formulations for the ML-12

GCP and branch-and-cut algorithms to solve them. The computational experiments showed13

that the proposed methods are able to solve small and average sized instances in a reasonable14

amount of time.15

9.1 Partition based formulations

The first model we propose, denominated PART, aims to partition the the set of vertices of the16

input ELG into two sets S and S =V\S. For any set S⊂V , S 6= /0, the removal of all edges that17

have one endpoint in S and the other in S disconnects the graph. Let zl , ∀l ∈ L, be a variable that18

is set to 1 if and only if the label l is part of the solution cut. Let xe, ∀e ∈ E, be a variable that is19

set to 1 if and only if the edge e is part of the solution cut. And let wv, ∀v ∈V be a variable that20

is set to 1 if the vertex v belongs to the set S and to 0 otherwise. The model PART is described21

in the program (9.1) to (9.8).22

PART = Minimize ∑
l∈L

zl (9.1)
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s.t. 1≤ ∑
v∈V

wv < |V |, (9.2)

zl(e) ≥ xe, ∀e ∈ E, (9.3)

xe ≥ wi−w j, ∀e = (i, j) ∈ E, (9.4)

xe ≥ w j−wi, ∀e = (i, j) ∈ E, (9.5)

zl ≥ 0, ∀l ∈ L, (9.6)

xe ≥ 0, ∀e ∈ E, (9.7)

wv ∈ {0,1}, ∀v ∈V. (9.8)

The objective function (9.1) minimizes the number of labels that are necessary to discon-1

nect the input ELG. The constraint (9.2) avoid connected solutions. The set of inequalities (9.3)2

binds the variables of labels with the edge ones. The constraints (9.4) and (9.5) activates the3

edges of the cut, while the constraints (9.6) to (9.8) define the domain of the decision variables.4

Observe that combining the constraints (9.3), (9.4) and (9.5), we have ze ≥ xe ≥ |wi−5

w j|, what is equivalent to ze≥ |wi−w j|. Given that, it is possible to eliminate the edge variables6

from the formulation. Moreover, we can eliminate the symmetry of the solutions by arbitrarily7

choosing a vertex to be in S. The reformulated model, denominated PART2, is presented in the8

program (9.9) to (9.15).9

PART2 = Minimize ∑
l∈L

zl (9.9)

s.t. ∑
v∈V

wv ≥ 1, (9.10)

w1 = 0, (9.11)

zl(e) ≥ wi−w j, ∀e = (i, j) ∈ E, (9.12)

zl(e) ≥ w j−wi, ∀e = (i, j) ∈ E, (9.13)

zl ≥ 0, ∀l ∈ L, (9.14)

wv ∈ {0,1}, ∀v ∈V. (9.15)
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9.2 A clustering based formulation

The second formulation we propose for the MLGCP is based in the cluster editing problem1

(CEP). The CEP consist in: given an undirected graph G = (V,E), transform G into a graph that2

consists of a disjoint union of cliques by inserting and/or deleting a minimum number of edges.3

To solve the MLGCP in the way the CEP is solved, we consider the addition of an edge has cost4

0, while the cost of the removal of e ∈ E is modeled as the cost of removing the label l(e) ∈ L5

from G.6

Consider G = (V,E,L) the input ELG for the MLGCP. Let xi j, ∀i, j ∈ V , i 6= j, be a7

binary decision variable that is set to 1 if the edge e = (i, j) is part of the solution, and to 08

otherwise. Further, let zl , ∀l ∈ L, be a continuous variable that is set to 1 if and only if the label9

l is part of the solution cut. The formulation P3E is presented in the program (9.16)-(9.23). The10

objective function (9.16) minimizes the number of labels in the solution cut. The constraints11

(9.17) bind the edge with the label variables. The set of inequalities (9.18), (9.19), and (9.20)12

are the classic P3 (paths with three vertices) elimination constraints, as discussed in the sequel.13

The inequality (9.21) ensures the solution is not empty. Finally, the expressions (9.22) to (9.23)14

define the domain of the decision variables.15

P3E = Minimize ∑
l∈L

zl (9.16)

s.t. zl(e) ≥ xi j, ∀e = (i, j) ∈ E, (9.17)

+xi j + x jk− xki ≥ 0, ∀i, j,k ∈V, i 6= j, j 6= k,k 6= i, (9.18)

+xi j− x jk + xki ≥ 0, ∀i, j,k ∈V, i 6= j, j 6= k,k 6= i, (9.19)

−xi j + x jk + xki ≥ 0, ∀i, j,k ∈V, i 6= j, j 6= k,k 6= i, (9.20)

∑
e=(i, j)∈E

xi j ≥ 1, (9.21)

zl ≥ 0, ∀l ∈ L, (9.22)

xi j ∈ {0,1}, ∀i, j ∈V, i 6= j. (9.23)

According to Grötschel and Wakabayashi (1990), G is a disjoint union of cliques if and16

only if G does not have any path with three vertices, for short P3, as its subgraph. Figure 9.217
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illustrates the configurations allowed and forbidden to G become a disjoint union of cliques for1

any u,v,w ∈ V . Fig. 9.2(a) presents the allowed configurations, while the Fig. 9.2(b) presents2

the forbidden ones, namely, the P3 subgraphs.3

Figure 9.2: Allowed and forbidden configurations according to the P3 elimination inequalities.
(a) The allowed and (b) the forbidden configurations

Given the size of the set of P3 elimination inequalities, we propose to solve the P3E4

model by branch-and-cut. The proposed algorithm starts without any inequality for elimination5

of P3 and, for every integer solution found, it checks by enumeration if any constraint of this set6

has been violated.7

9.3 A tree elimination based formulation

The third formulation we propose for the MLGCP is based on the fact that a spanning tree is8

minimal connected graph with respect to its number of edges, and, as a consequence, if a graph9

does not have any spanning trees it is disconnected. Let T be the set of all spanning trees of10

G, such that Lt(T ), T ∈ T represents the set of labels of the edges of T ; and let zl , ∀l ∈ L, be a11

variable that is set to 1 if and only if the label l is part of the solution cut; the program (9.24) to12

(9.26) presents the tree elimination formulation (TEF).13

TEF = Minimize ∑
l∈L

zl (9.24)

s.t. ∑
l∈L(T )

zl ≥ 1, ∀T ∈ T, (9.25)

zl ∈ {0,1}, ∀l ∈ L. (9.26)
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The objective function (9.24) minimizes the number of labels of the solution. The expo-1

nential set of tree elimination constraints (9.25) ensures that the solution graph is not connected2

by prohibiting any spanning tree of G. The constraints (9.26) define the domain of the decision3

variables z.4

Figure 9.3 illustrates the tree elimination constraints. Fig. 9.3(a) brings an input ELG5

G = (V,E,L), while Fig. 9.3(b) shows an spanning tree T of G that uses the set of labels6

{A,C,D,E}. Since T has to be eliminated for G to be connected, the inequality7

zA + zC + zD + zE ≥ 1

ensures that at least one label of T is part of the solution.8

Figure 9.3: Illustration of spanning tree on an ELG. (a) An input ELG G = (V,E,L). (b) A tree
of G with the set of labels {A,C,D,E}

Since the number of spanning trees on a graph with n nodes is O(nn−2), it is not practical9

to add all the set of restrictions (9.25) at once to the model. Instead, we propose a branch-and-10

cut algorithm. It starts the model without any tree elimination constraints and, for any integer11

solution found, if it is possible to build a spanning tree with the remaining labels, the associated12

tree elimination inequality (9.25) is added to the model. We used the MVCA heuristic (refer to13

Section 2.2) to find spanning trees which uses the minimum number of labels.14

Furthermore, we propose a separation heuristic for the tree eliminations inequalities15

(9.25). Let z∗l be the value of the variable zl in the linear relaxation of the TEF model, and let H16

be an empty ELG with the same set of vertices of the input graph. Chose the label l with lower17

z∗l and add all of it edges to H. Repeat this procedure until H is connected. If the sum of the18

values z∗l of the selected labels is lesser than 1, then this cut is violated.19
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9.4 Computational experiments

In this section we describe the computational experiments performed in order to assess the1

performance of the mathematical formulations proposed for the MLGCP. All the methods were2

implemented in C++ language and compiled by using g++ 4.6.3, with the optimization flag -3

O3. All formulations and their derived procedures were implemented using the Concert library4

and Cplex 12.4 as the solver. The experiments were performed on a computer with Intel(R)5

Core(TM) i7, 64 bits, CPU, 2.93GHz, 8 GB of RAM, and Ubuntu 14.04 as the operating system.6

Although the processor of this device has more than one core, the algorithms were executed by7

using a single core and a single thread within a time limit of one hour.8

We have considered the group 2 of ELGs generated by Cerulli et al. (2005) for the9

first set of computations. This group of input graphs has instances with number of vertices10

n = |V | ∈ {50,100,200}, number of labels l = |L| ∈ {0.25n,0.5n,n,1.25n}, and edge densities11

d ∈{0.2,0.5,0.8}. Also, each dataset consists in 10 different graphs for one n-l-d configuration.12

The Tables 9.1 to 9.3 present the results of the first group of experiments performed.13

Each line represents a dataset with 10 different graphs for one n-l-d configuration. The first14

group of columns identifies the dataset. The column UB brings the average value of the best15

integer solutions found (considering all the methods). The remaining columns are divided into16

three groups: PART2, P3E and TEF, one for each formulation. The column O indicates the num-17

ber of optimal solutions found by the method. The column t(s) indicates the average running18

time in seconds. The column gap represents (as a percentage) the average of the differences19

between the UBs and LBs achieved by the method. Finally, the column gapr reports (as a20

percentage) the average of the differences between the UBs and the linear relaxations1.21

We can observe from Table 9.1 that the models PART2 and TEF are able to solve to22

optimality all the instances of this group. Although the model P3E has failed in only one23

instance, its computational times are too high in comparison with the other models. The TEF24

has obtained the best linear relaxation for all datasets and the best computational times for25

instances with small values of d and l.26

The results for the method P3E are omitted from the next tables since it was not able to27

find any integer solution within one hour. From Table 9.2, we have that the TEF still has the best28

linear relaxation for all instances. For instances with l = 25, the TEF has the best computational29

times. While the PART2 was able to solve all of the instances on this group, the TEF has failed30

for 32 graphs. Then, it is possible to notice a degradation on the performance of the TEF as the31

1The values for the linear relaxations were obtained by setting Cplex to NodeLimit(1).
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values of l and d grows.1

Table 9.1: Results of the computational experiments for instances with |V |= 50

Instance P3E PART2 TEF

|L| d UB O t (s) gap gapr O t (s) gap gapr O t (s) gap gapr

ld 2,5 10 843,4 0 67,4 10 0,05 0 56,0 10 0,006 0 6

12 md 7,4 10 947,0 0 90,4 10 0,08 0 77,8 10 0,001 0 22,0

hd 9,8 10 596,7 0 69,9 10 0,05 0 35,3 10 0,001 0 24,2

ld 2,7 10 1015,9 0 74,6 10 0,183 0 38,1 10 0,009 0 8,6

25 md 9,9 10 997,5 0 93,4 10 0,31 0 81,7 10 0,04 0 38,9

hd 15,5 10 1511,2 0 96,1 10 0,31 0 87,9 10 0,05 0 31,7

ld 2,8 9 1399,9 8,9 73,6 10 0,17 0 37,5 10 0,04 0 13,7

50 md 11,6 10 805,2 0 94,8 10 0,82 0 85,1 10 0,85 0 40,3

hd 21,3 10 1280,9 0 97,2 10 1,48 0 90,8 10 3,1 0 45,9

ld 2,8 10 1124,9 0 73,8 10 0,13 0 38,0 10 0,05 0 11,1

62 md 12,1 10 715,0 0 95,1 10 1,1 0 85,8 10 4,4 0 45,5

hd 22,7 10 809,4 0 97,7 10 1,8 0 91,0 10 12,7 0 58,6

Table 9.2: Results of the computational experiments for instances with |V |= 100

Instance PART2 TEF

|L| d UB O t (s) gap gapr O t (s) gap gapr

ld 6,2 10 0,9 0 83,2 10 0,06 0 37,9

25 md 16,5 10 0,7 0 91,1 10 0,09 0 35,6

hd 21 10 0,5 0 86,3 10 0,1 0 39,2

ld 6,8 10 2,5 0 83,7 10 0,4 0 37,7

50 md 22,2 10 5,7 0 93,5 10 6,5 0 55,1

hd 33,1 10 4,8 0 95,8 10 6,5 0 48,3

ld 7,2 10 2,1 0 84,3 10 10,9 0 41,5

100 md 26,5 10 9,3 0 95,3 5 2012,7 8,4 63,9

hd 45,2 10 22,4 0 96,4 2 3071,5 10,3 61,8

ld 7,2 10 3,1 0 84,1 10 75,8 0 38,0

125 md 27,1 10 36,1 0 95,0 1 3409,0 17,8 55,7

hd 48,6 10 43,3 0 96,7 0 3600,0 15,0 90,1
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From Table 9.3, we have that the TEF still has the best linear relaxation for all of the1

instances. However, it failed to solve three groups of instances (marked with a ∗). It was not2

able to yield feasoble integer solutions within one hour of execution. Even with a worse linear3

relaxation, PART2 has solved 101 instances out of 120.4

Table 9.3: Results of the computational experiments for instances with |V |= 200

Instance PART2 TEF

|L| d UB O t (s) gap gapr O t (s) gap gapr

ld 13,2 10 34,4 0 93,7 10 5,7 0 57,4

50 md 32,7 10 9,7 0 97,1 10 9,4 0 48,5

hd 43,3 10 6,9 0 97,5 10 2,5 0 43,4

ld 15 10 188,3 0 94,7 9 1219,8 3,1 55,0

100 md 45,4 10 699,5 0 98,3 0 3600 15,5 62,9

hd 68,8 10 238,9 0 98,7 0 3600 9,4 62,8

ld 15,9 10 614,4 0 94,0 0 3600 45,4 61,6

200 md 54,1 6 2066,0 11,1 98,2 0 3600 32,3 56,9

hd 93,8 7 2051,9 14,3 98,9 0 3600 * *

ld 16,1 10 691,6 0 93,9 0 3600 42,7 56,4

250 md 56,5 3 2990,2 35,6 98,1 0 3600 * *

hd 99,4 5 2550,3 26,7 96,9 0 3600 * *

We have observed from the results of the first set of experiments that the optimal solution5

for most of the instances considered is trivial in the sense that it was obtained by disconnecting6

exactly one vertex from the remaining of the graph. One question arises: how far are the optimal7

solutions from the trivial ones? Consider the labeled hypercube (LH) family of graphs built as8

follows: Let LH0 = ({v}, /0, /0) be the LH graph of dimension 0. To build the LHn you take9

two graphs LHn−1 and connect each vertex to its correspondent by using an edge with a new10

label Ln. Following this construction, we have that removing one label from any LHn graph,11

n > 0, disconnects it, while that all the the trivial solutions have cardinality n. Follows that12

the difference between the value of the optimal and the trivial solutions can be arbitrarily big.13

Figure 9.4 presents the first four LH graphs.14

Therefore, we generated a new group of ELGs and carried out a second set of compu-15

tational experiments. The graphs of this group were generated in such a way that a non-trivial16

solution (most likely the optimal one) is known in advance. Their dimensions range from n-l-d17

= 100-20-0.2 to 200-400-0.8.18
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Figure 9.4: Illustration of the construction of the the labeled hypercube graphs. The graphs (a)
LH0, (b) LH1, (c) LH2, and (d) LH3

Tables 9.4 and 9.5 present the results of the second set of experiments. Each line of these1

tables refer to a single input graph. The first column brings the dimension of the instance, where2

D stands for 100 times the density of the graph. The columns T and P represent, respectively,3

the costs of the best trivial solution and of the previously known non-trivial one. The meaning4

of the following columns are similar to the ones in Tables 9.1 to 9.3. Values in bold mean the5

method found a solution as good as P.6

From Table 9.4 we have that PART2 was able to solve all instances with 100 vertices7

within one hour. In contrast, TEF did not obtain the optimal solution in 9 of 30 instances, not8

even being able to yield any feasible solution in 3 cases. Moreover, it is possible to notice9

a degradation on the linear relaxations obtained by TEF in relation to the ones of the first10

experiment. From Table 9.5 we have that PART2 was able to solve 25 of 30 of the instances11

with 200 vertices. As expected, the running times of this model grow as the number of labels12

of the input graph increases. The TEF only achieved the optimal solution for 5 instances, while13

it did not find any feasible solutions for another 5 instances. For the instances 200.100.80,14

200.133.80, and 200.133.50 the TEF obtained the optimal solution in much less time than15

PART2.16

Lastly, the computational experiments performed showed that the proposed methods are17

able to solve small to medium instances to optimality within one hour. The method P3E pre-18

sented a bad performance due to its large number of variables and inequalities. In its turn, even19

having a poor linear relaxation, the PART2 has achieved the best performance. This perfor-20

mance is due to the linear number of inequalities of the model (with respect to the edges of the21

graph) and to the branch-and-bound on the variables w, which have a linear dimension n. The22

model TEF achieved the best linear relaxations, but presented serious convergence problems.23
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Table 9.4: Results of the second experiment for instances with |V |= 100

Instance PART2 TEF
n.l.D T P UB t(s) gap gapr UB t(s) gap gapr
100.50.20 15 13 13 3,0 0,0% 77,3% 13 5,0 0,0% 76,9%
100.67.20 16 15 15 2,4 0,0% 85,7% 15 80,1 0,0% 86,7%
100.83.20 16 14 14 4,3 0,0% 78,9% 14 25,1 0,0% 78,6%
100.100.20 16 14 14 2,4 0,0% 84,6% 14 198,6 0,0% 85,7%
100.117.20 16 14 14 2,8 0,0% 84,6% 14 351,4 0,0% 78,6%
100.133.20 15 14 14 13,4 0,0% 81,1% 14 590,5 0,0% 82,1%
100.150.20 16 15 15 11,2 0,0% 85,1% 15 361,2 0,0% 80,0%
100.164.20 14 13 13 7,7 0,0% 81,5% 14 3600,0 9,8% 85,7%
100.183.20 14 13 13 6,6 0,0% 79,9% 13 1234,3 0,0% 84,6%
100.200.20 16 14 14 28,0 0,0% 81,1% 17 3600,0 27,1% 88,2%

100.50.50 24 23 23 6,1 0,0% 88,1% 23 0,2 0,0% 78,3%
100.67.50 34 30 30 7,1 0,0% 90,1% 30 27,6 0,0% 83,3%
100.83.50 33 32 32 10,1 0,0% 90,9% 32 201,9 0,0% 81,3%
100.100.50 36 35 35 10,0 0,0% 91,3% 35 2033,8 0,0% 85,7%
100.117.50 38 35 35 6,3 0,0% 91,4% * 3600,0 * *
100.133.50 40 37 37 18,1 0,0% 92,2% * 3600,0 * *
100.150.50 40 38 38 7,5 0,0% 91,8% 41 3600,0 41,5% 90,2%
100.164.50 40 37 37 163,9 0,0% 91,6% * 3600,0 * *
100.183.50 41 35 35 58,8 0,0% 91,0% 41 3600,0 46,3% 91,9%
100.200.50 41 39 39 14,6 0,0% 92,2% 42 3600,0 51,2% 92,9%

100.50.80 35 31 31 2,9 0,0% 90,1% 31 0,1 0,0% 87,1%
100.67.80 42 36 36 8,9 0,0% 91,1% 36 1,0 0,0% 66,7%
100.83.80 41 38 38 7,3 0,0% 91,7% 38 2,9 0,0% 85,5%
100.100.80 44 37 37 11,8 0,0% 91,7% 37 10,1 0,0% 83,8%
100.117.80 46 42 42 13,2 0,0% 92,3% 42 146,5 0,0% 84,5%
100.133.80 48 47 47 84,8 0,0% 93,0% 47 917,7 0,0% 87,9%
100.150.80 42 38 38 17,5 0,0% 90,4% 38 120,8 0,0% 88,2%
100.164.80 39 36 36 9,2 0,0% 90,6% 36 183,0 0,0% 86,1%
100.183.80 42 40 40 19,7 0,0% 91,4% 40 1028,3 0,0% 90,0%
100.200.80 43 42 42 15,8 0,0% 91,6% 43 3600,0 14,0% 89,9%
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Table 9.5: Results of the second experiment for instances with |V |= 200

Instance PART.2 TEF
n.l.D T P UB t(s) gap gapr UB t(s) gap gapr
200.100.20 33 29 29 147,73 0,0% 91,3% 31 3600,00 27,5% 89,2%
200.133.20 33 29 29 127,55 0,0% 90,3% * 3600,00 * *
200.167.20 31 25 25 125,71 0,0% 89,7% * 3600,00 * *
200.200.20 32 30 30 297,66 0,0% 91,5% 33 3600,00 56,6% 92,4%
200.233.20 32 27 27 181,01 0,0% 91,4% 34 3600,00 63,2% 93,1%
200.267.20 32 30 30 127,42 0,0% 90,6% 33 3600,00 62,1% 90,9%
200.300.20 34 33 33 170,04 0,0% 92,0% 35 3600,00 66,7% 92,9%
200.333.20 33 31 31 387,29 0,0% 92,4% 34 3600,00 72,5% 92,6%
200.367.20 32 29 29 117,65 0,0% 92,6% 35 3600,00 73,3% 91,4%
200.400.20 32 26 26 544,64 0,0% 89,9% 36 3600,00 75,0% 94,4%

200.100.50 59 51 51 99,09 0,0% 94,8% 51 751,05 0,0% 90,2%
200.133.50 44 43 43 811,47 0,0% 93,5% 43 23,68 0,0% 93,0%
200.167.50 63 52 52 952,59 0,0% 94,4% 71 3600,00 54,9% 93,7%
200.200.50 77 71 71 99,07 0,0% 95,9% 78 3600,00 61,5% 92,3%
200.233.50 68 64 64 108,29 0,0% 95,2% 83 3600,00 69,5% 94,6%
200.267.50 66 63 63 1852,27 0,0% 95,2% * 3600,00 * *
200.300.50 78 73 73 1640,15 0,0% 95,9% 81 3600,00 70,2% 94,1%
200.333.50 75 68 68 1416,81 0,0% 95,5% 84 3600,00 77,3% 95,8%
200.367.50 83 75 75 3600,00 37,3% 95,8% 84 3600,00 72,9% 95,2%
200.400.50 75 68 68 3027,69 0,0% 95,5% * 3600,00 * *

200.100.80 82 69 69 211,98 0,0% 95,8% 69 3,55 0,0% 82,6%
200.133.80 81 75 75 84,57 0,0% 96,1% 75 10,23 0,0% 86,7%
200.166.80 96 86 86 81,65 0,0% 96,6% 88 3600,00 6,0% 90,9%
200.200.80 99 85 85 70,87 0,0% 96,4% 86 3600,00 16,4% 93,0%
200.233.80 88 83 83 105,88 0,0% 96,4% 83 3600,00 16,3% 91,6%
200.267.80 95 89 89 95,03 0,0% 96,5% 100 3600,00 52,0% 93,0%
200.300.80 102 95 95 3600,00 19,7% 96,8% 135 3600,00 73,3% 94,8%
200.333.80 103 93 93 3600,00 62,8% 96,6% * 3600,00 * *
200.367.80 108 102 102 3600,00 60,2% 96,8% 136 3600,00 74,1% 95,6%
200.400.80 98 92 92 3600,00 59,1% 96,4% 144 3600,00 79,0% 95,8%



Chapter 10

The Minimum Representation Spanning

Tree Problem

In this chapter we introduce the minimum representation spanning tree problem (MRSTP), a1

new connectivity problem defined on ELGs. In contrast to the MLSTP, which searches for the2

overall homogeneity of the network, the focus of the MRSTP is the homogeneity of each vertex3

in the graph. One application of the MRSTP is when it is necessary to make investments on the4

nodes of a network, for instance for buying software licenses, or hardware to enable the use of5

new protocols. The problem also has applications in areas such as transport projects, network6

design, telecommunication systems, and distribution of energy. Follows the formal definition7

of the MRSTP.8

Definition 10.1. Given an ELG G = (V,E,L), the representation set of a vertex v ∈V is the set9

of labels that have at least one edge incident to v. Formally, r(v) = K({v}), where K stands for10

the colorful cut defined by {v} (see Definition 4.2).11

Definition 10.2. Given an ELG G = (V,E,L), the minimum representation spanning tree12

problem (MRSTP) aims to find a spanning tree T = (V ′,E ′,L′) of G such that the function13

R(T ) = ∑v∈V ′ |r(v)| is minimized.14

Remark that, since T is a tree, r(v) ≥ 1, ∀v ∈ V ′. Thence, it is convenient to use the15

representation function Rt(G) = ∑v∈V (|r(v)|−1) as the objective function for the MRSTP.16

Figure 10.1(a) illustrates the MRSTP. Fig. 10.1(a) introduces the input ELG G =17

(V,E,L). Fig. 10.1(b) shows a solution with |L| = 3 and Rt = 4, while Fig. 10.1(c) presents18

another solution with |L| = 4 e Rt = 3. Observe that the best solution for the MLSTP is not19

necessarily the best one for the MRSTP.20

We prove the MRSTP is NP-complete by using the same steps Chang and Leu (1997)21
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Figure 10.1: Illustration of the minimum representation spanning tree problem. (a) The input
ELG G = (V,E,L). (b) A solution for the MRSTP with |L| = 3 and Rt = 4. (c) A solution for
the MRSTP with |L|= 4 and Rt = 3

used to prove the MLSTP is NP-complete. First we define a decision version of the MRSTP, the1

bounded minimum representation spanning tree problem (B-MRSTP). In the sequel, we show2

the B-MRSTP is NP, and prove how to map the decision version of the set covering problem3

(SCP) to the B-MRSTP.4

Definition 10.3. The bounded minimum representation spanning tree problem: Given an ELG5

G = (V,E,L) and a constant k ∈ Z+, is there a spanning tree T of G such that Rt(T )≤ k?6

Lemma 10.1. The B-MRSTP is NP.7

Proof. It is easy to see that B-MRSTP ∈ NP since an algorithm can check in polynomial time if8

the solution edges connect all the vertices and Rt(T )≤ k. �9

Lemma 10.2. The B-MRSTP is NP-hard.10

Proof. This Lemma is proved by transforming the the decision version of the set covering prob-11

lem (B-SCP), that is NP-complete (Karp, 1972), to the B-MRSTP. Given U the universe set, S12

a set of subsets of U, and a constant k ∈ Z+, the question associated with the B-SCP is if there13

exists a set C⊆ S such that |C| ≤ k and
⋃

S∈C(S) =U.14

First, let G(U,S) = (V,E,L) be an ELG built as follows: consider the sets V = {p,q},15

L = {W}, and E = {e = (p,q)} such that l(e) = W, initially composed only by auxiliary ele-16

ments. Then, add a vertex v(u) to V for each u ∈U, add a label S to L for each set S ∈ S, and17

for each u ∈U and S ∈ S such that u ∈ S add the edge e = (p,v(u)) with the label l(e) = S to E.18

Figure 10.2 illustrates the construction of the graph G(U,S). Fig. 10.2(a) presents the19

sets U and S of an example instance of the SCP. Fig. 10.2(b) shows the ELG G(U,S) = (V,E,L)20

built from this instance. Fig. 10.2(c) presents a solution of the MRSTP for the graph G(U,S).21

Observe that the construction of the graph G(U,S) can be accomplished in a polynomial22
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Figure 10.2: Transformation from the SCP to the MRSTP. (a) An input instance (U,S) for the
set covering problem. (b) the instance of the MRSTP originated from (U,S). (c) The solution
of the MRSTP for this instance

number of operations. Further, G has a spanning tree T with Rt(T )≤ k if and only if the SCP1

for (U,S) has a solution C with |C| ≤ k. �2

Theorem 10.1. B-MRSTP is NP-complete.3

Proof. This theorem is a direct consequence of Lemmas 10.1 and 10.2. �4

Observe that the construction proposed in the proof of Lemma 10.2 only proves the5

MRSTP is NP-hard for multigraph instances of the problem. However, we can change the6

graph G(U,S) = (V,E,L) so that it becomes simple. For each edge e = (p,v(u)) ∈ E\{e′ =7

(p,q)}, remove e from E, add to V a new vertex v(e), and add to E the edges k′ = (p,v(e)),8

k′′ = (v(e),v(u)), such that l(k′) = l(e) and l(k′′) = W . It is easy to see that G has a spanning9

tree T with Rt(T )≤ k+ |U | if and only if the SCP has a solution C with |C| ≤ k. Further, remark10

that every graph G(U,S) is planar by construction, and then the MRSTP is NP-hard even for11

planar input graphs. Figure 10.3 illustrates this new transformation.12

10.1 A MIP-based exact method

In this section we propose a MIP formulation for the MRSTP. Let xe be a binary variable that13

is set to 1 if the edge e ∈ E is in the final solution and to 0 otherwise, and let zv
l be a binary14

variable that is set to 1 if the label l ∈ L is represented in the vertex v ∈ V and to 0 otherwise.15

The formulation is presented in the program (10.1 to 10.6).16
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Figure 10.3: Transformation from the SCP to the MRSTP in a simple ELG. (a) An input in-
stance (U,S) for the set covering problem. (b) the simple ELG originated from (U,S). (c) The
solution of the MRSTP for this instance

The objective function (10.1) models the representation function Rt. The set of inequal-1

ities (10.2) ensures the connectivity of the solution. The constraints (10.3) and (10.4) bind the2

edges to the label variables. The constraint (10.5) strengthen the formulation by reinforcing the3

solution is a tree. Finally, the domain of the variables is defined in (10.6).4

Minimize
(

∑
v∈V

∑
l∈L

zv
l

)
−|V | (10.1)

s.t. ∑
xe∈δ (S)

xe ≥ 1, ∀S⊂V,S 6= /0, (10.2)

zv
l(e) ≥ xe, ∀e = (v,w) ∈ E, (10.3)

zw
l(e) ≥ xe, ∀e = (v,w) ∈ E, (10.4)

∑
xe∈E

xe = |V |−1, (10.5)

zv
l ,xe ∈ {0,1}, ∀l ∈ L,v ∈V,e ∈ E. (10.6)

10.2 Constructive heuristics

Moreover, we propose the KBased and the PBased algorithms, two new greedy constructive5

heuristics for the MRSTP inspired by Kruskal’s and Prim’s algorithms (Cormen et al., 2009),6
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respectively. Let G = (V,E,L) be the input ELG, and K be the set of the maximal monochro-1

matic connected components (MMCC) of G. The KBased algorithm starts with the solution2

E ′ = /0 and, while G(V,E ′,L) is not connected, at each iteration, it adds to E ′, avoiding to create3

any cycles, the edges of the MMCC k ∈K that minimizes the number of connected components4

of G(V,E ′,L).5

Algorithm 10.1 describes the KBased heuristic. The necessary initializations are carried6

out in the lines 2 and 3. Each iteration of the main loop (lines 5 to 9) looks for the MMCC that7

minimizes the number of connected components, denoted by W (G), of the solution (line 6) and8

adds its non-cycle edges to the final graph (lines 7 to 9). Notice that given a solution tree, its Rt9

function can be computed in O(|V |2).10

Algorithm 10.1: The KBased heuristic for the MRSTP
1 procedure KBased(G = (V,E,L))
2 Let E ′← /0 be the set of edges of the solution;
3 Let K be the set of MMCCs of G;
4 Let E(K) be the set of edges of the MMCC K ∈K ;
5 while |E ′|< |V |−1 do
6 k← argminK∈K(W (G = (V,E ′∪E(K),L)));
7 foreach e ∈ E(k) do
8 if G = (V,E ′∪{e},L) has no cycles then
9 E ′← E ′∪{e′} ;

10 return G = (V,E ′,L);

In its turn, the PBased heuristic is a variant of the KBased algorithm. It starts with11

a solution maximal connected component S = {r}, where r ∈ V is an arbitrarily chosen root12

node, and executes the same main loop as the KBased algorithm. The difference is that the13

PBased heuristic only consider to enter the solution the MMCCs that make S to grow.14

10.3 Computational experiments

In this section we describe the computational experiments performed to evaluate the perfor-15

mance of both the proposed heuristics and the mathematical formulation. All the methods were16

implemented in C++ language and compiled by using g++ 4.8.4, with the optimization flag17

-O3. The mathematical formulation and its derived procedures were implemented using the18

Concert library and Cplex 12.51 as the solver. The experiments were performed on a computer19

with Intel(R) Core(TM) i7, 64 bits, CPU, 4.00GHz, 16 GB of RAM, and Ubuntu 14.04 as the20

operating system. Although the processor of this device has more than one core, the algorithms21



10.3 Computational experiments 147

were executed by using a single core and a single thread within a time limit of two hours.1

For this set of experiments, we have considered the 120 edge-labeled graphs of the group2

1, generated by Cerulli et al. (2005). This group of ELGs has instances with number of vertices3

n = |V | ∈ {20,30,40,50}, number of labels l = |L|= n, and edge densities d ∈ {ld = 0.2,md =4

0.5,hd = 0.8}. Also, each dataset consists in 10 different graphs for one n-l-d configuration.5

Moreover, given the exponential size of the group of inequalities 10.2, it is not practical6

to solve the model with all of these constraints. In such case, given a solution for the linear7

relaxation of the model, we separate the inequalities 10.2 by using a simple DFS procedure:8

compute the connected components of the solution graph by considering only the edges e ∈ E9

that have xe > 0, and add an inequality 10.2 for each maximal connected component found (if10

the graph is not connected). This separation procedure is also executed whenever an integer11

solution is found, to ensure its feasibility.12

The results of the experiments are reported in Table 10.1. Each line represents a dataset13

with 10 different graphs for one n-l-d configuration, and the first group of columns identifies14

this dataset. The remaining columns are divided into three groups: KBased, PBased and Exact,15

related to the results obtained by the proposed heuristics and by the mathematical formulation,16

respectively. The column rt reports the best integer solution found by the methods. The columns17

t(ms) and t(s) indicates the average running time in milliseconds and seconds, respectively. The18

column O reports the number of optimal solutions found by the exact method. The column19

gap represents (as a percentage) the average value of the differences between the UBs and LBs20

achieved by the exact method. Finally, the column gapr reports (as a percentage) the average21

of the differences between the UBs and the linear relaxations1.22

Regarding to the heuristics, we can observe that the KBased has obtained the best re-23

sults, having lost to the PBased only in two datasets: 20-20-hd and 40-40-md. As expected24

from constructive greedy heuristics, both KBased and PBased has presented very small running25

times, ranging from 0.001 to 9.4 milliseconds, with a slight advantage for the KBased. Their26

objective function results, however, are not too close to the ones obtained by the exact method.27

Despite of that, these heuristics arise as interesting alternatives for larger instances (e.g. 50-50-28

hd), when the exact method is not able to find good integer solutions. Another way to improve29

these rt results is to use these heuristics to provide initial solutions for metaheuristic methods.30

From the results reported, we have that the exact method performed very well for graphs31

with n≤ 30, having solved 57 out of 60 instances. However, the performance drops very quickly32

for graphs with n≥ 40, when the method solved only 34 out of 60 instances. Also, it is possible33

1The values for the linear relaxations were obtained by setting Cplex to NodeLimit(1).
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Table 10.1: Computational experiments for instances with |V | ∈ {20,30,40,50}

Instance KBased PBased Exact
n d rt t(ms) rt t(ms) rt t(s) O gap gapr

ld 12.4 0.0 12.7 0.0 12.3 0.0 10 0.00% 1.25%
20 md 6.3 0.1 6.8 0.1 5.7 0.2 10 0.00% 3.04%

hd 4.8 0.0 4.5 0.0 2.8 5.9 10 0.00% 6.16%

ld 16 1.1 16.4 1.0 15.3 0.3 10 0.00% 1.12%
30 md 9.3 1.6 9.5 1.6 6.7 10.3 10 0.00% 2.98%

hd 5.7 1.1 6.4 1.3 3.8 2845.7 7 1.97% 8.78%

ld 19.7 3.6 20.8 4.0 18.9 20.4 10 0.00% 2.08%
40 md 12.7 4.5 12.6 4.4 8.6 1855.2 8 0.89% 4.21%

hd 8.7 3.1 8.8 3.1 5.9 5585.1 3 7.79% 11.21%

ld 23.7 7.9 24.1 8.1 21.7 728.7 9 0.17% 1.84%
50 md 14.3 8.9 14.9 9.4 10 5062.1 4 1.93% 4.75%

hd 12.6 6.1 13.9 7.2 15.1 7200.0 0 19.97% 21.27%

to observe from its running times that the complexity of the problem grows with the number of1

edges on the input graph, to the point of the exact method not being able to solve any instance2

on the dataset 50-50-hd. Further, for the instance 7 of this group, the exact method was not able3

to find any feasible integer solution2.4

Lastly, it is possible to state that the MRSTP is harder to solve to the optimality in5

comparison to the MLSTP. The mathematical formulation CCut was able to solve the MLSTP6

for all of the instances with 100 vertices of the group 2 of Cerulli et al. (2005), while the7

exact method proposed for the MRSTP has failed to solve an entire set of instances with 508

vertices. In this sense, we believe that further researches can propose improved exact, heuristic9

and metaheuristic methods for this problem, as well as to study more deeply its characteristics10

in order to introduce reduction rules or preprocessing procedures.11

2We have used the rt value obtained by the KBased heuristic for this instance to compute the averages reported
on the columns rt, gap, and gapr of the exact method in the line 50-50-hd.



Chapter 11

Concluding Remarks and Future Work

In this thesis we have addressed several connectivity problems defined over edge-labeled1

graphs, in special the minimum labeling spanning tree problem and its generalized version.2

We have carried out an extensive literature review on these problems, describing the state-of-3

the-art contributions in each field. By observing the recent publications, one can verify that this4

theme is indeed an area of interest for researches.5

The contributions of this work are both theoretical and practical. On the theoretical side,6

we have introduced new useful concepts, definitions, properties and theorems regarding edge-7

labeled graphs, as well as a polyhedral study on the GMLSTP. We can summarize the main8

theoretical contributions on this work as follows:9

• We have introduced the concept of label contraction and some interesting properties re-10

lating contracted graphs with graphs induced by a set of labels;11

• We have provided some results for the CCut polytope, in particular concerning its di-12

mension and its facet compositions. New valid inequalities were introduced, and the13

conditions in which they define facets have been given;14

• We have performed polyhedral comparisons againts the polytope associated with the15

state-of-the-art formulations and their variations. Our results have showed that CCut16

formulation theoretically performs better with respect to its polytope than all currently17

available mathematical formulations for the GMLSTP and MLSTP;18

• We have proposed a new monochromatic cycles removal procedure (MCR) that can be19

carried out in O(α(m,n) ·m), where α stands for the inverse of the Ackerman’s function.20

• We have proposed the heuristic rMVCA, a revised version of MVCA, and have proved21
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its worst case time complexity is O(αnkn), where n = |V |, k = |L|, and αn = α(n,n). It is1

a tighter bound on the running time complexity of the MVCA.2

On the practical side, we have proposed new heuristics — such as the metaheuristic-3

based algorithm MSLB, and the constructive heuristic pMVCA — and exact methods — such4

as new mathematical formulations and branch-and-cut algorithms — for solving the GMLSTP.5

We can summarize the main practical contributions on this work as follows:6

• We have proposed the MSLB, a new MIP-based metaheuristic that combines the effi-7

ciency of a parametrized version of rMVCA with the capacity of exploration of a new8

local search method based on local branching techniques;9

• We have carried out computational experiments to compare the MSLB with the state-of-10

the-art metaheuristics for the MLSTP. The results have showed that the MSLB achieved11

the best performance both in quality of solutions and processing times.12

• We have presented a new mathematical formulation based on the concept of colorful cuts13

—namely CCut— for solving the GMLSTP. It is the first model to use only decision14

variables for labels.15

• We have proposed branch-and-cut algorithms for CCut and compared them with the state-16

of-the-art exact methods for both the MLSTP and the GMLSTP. The computational ex-17

periments have showed that the proposed methods outperforms the previous ones.18

• We have improved the CCut formulation by proposing and separating a new set of valid19

inequalities, namely the partitioning cuts inequalities;20

• We have introduced CCutBB and CCutHB, two new branching strategies for solving the21

CCut formulation. The computational experiments performed shows that, from the best22

of our knowledge, the new approaches were able to achieve the best results regarding23

exact methods for the MLSTP so far.24

The last part of this thesis has addressed problems related to the MLSTP, to be specific,25

connectivity problems defined over edge-labeled graphs (or digraphs). We have introduced new26

variants of the MLSTP, such as the minimum representation spanning tree problem and the prize27

collecting MLSTP. We have also proposed new mathematical formulations based on CCut for28

solving these problems.29

Further, we have dedicated special attention to the minimum labeling global cut prob-30

lem, since its weighted version arises as the separation problem for the colorful cuts inequalities31
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of the CCut formulation. We have proposed the first MIP-based formulations to solve this prob-1

lem. The computational experiments performed showed that the proposed methods are able to2

solve small to medium instances to optimality in a reasonable amount of time.3

In future research projects, we intend to study some heuristic pre-processing techniques4

to apply on the input ELG without losing its optimality. Moreover, we further plan to adapt the5

MSLB in order to solve other problems defined on ELG, such as the minimum labeling path6

problem and the minimum global cut problem, aiming to evaluate this method in a more general7

way. Moreover, we believe that the search for more facet-defining families of inequalities should8

be continued, as well as the polyhedral studies for the related problems discussed in this work.9
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