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Introduction en français

Un billard peut être décrit comme un système dynamique modélisant le comportement d'un objet sans volume ni masse, par exemple une particule inniment petite ou un grain de lumière, qui évolue sans frottements dans un milieu homogène délimité par une paroi rééchissante. Comme l'ont très bien résumé Valerii V. Kozlov et Dmitrii V. Treshchëv [START_REF] Kozlov | A Genetic Introduction to the Dynamics of Systems with Impacts[END_REF], l'étude des billards qui [a commencé] avec les travaux de D. Birkho, a été un sujet de recherche populaire combinant diérents éléments de théorie ergodique, théorie de Morse, théorie KAM, etc. Les billards sont d'autant plus remarquables qu'ils apparaissent naturellement dans un grand nombre de problèmes de mécanique et de physique (systèmes vibrant à impacts, diraction des ondes courtes, etc.). 1 La thèse ci-présente s'inscrit dans ce champ de recherche et tente d'apporter des réponses partielles à de grandes questions qui la traversent.

Le mouvement d'une particule dans un billard est régi par deux contraintes: 1) elle se déplace en ligne droite à l'intérieur du milieu et 2) se rééchit sur la paroi selon la loi d'optique géométrique angle d'incidence = angle de réexion. Le modèle mathématique le plus courant pour décrire les assertions 1) et 2) est celui d'une variété Riemannienne complète : le déplacement en lignes droites est celui qui suit les géodésiques, et la mesure des angles est donnée par la métrique. On peut donc par exemple étudier des billards dans le plan, dans l'espace, sur un hyperboloïde ou sur une sphère, ce dernier cas pouvant s'avérer utile par exemple dans une simulation où la courbure de la terre n'est plus négligeable. Il existe cependant d'autres modèles de billards que ces billards dits classiques : évoquons les billards extérieurs, les billards laires, les billards dans les pavages ou les billards pseudo-Euclidiens. Dans cette thèse, une attention particulière sera portée aux billards dits projectifs ainsi qu'aux billards complexes. Ces deux derniers modèles généralisent les billards classiques et peuvent permettre de démontrer certains résultats liés à la théorie classique du billard, ce dont une partie de cette thèse va s'attacher à montrer. Les billards complexes sont une extension naturelle des billards classiques au plan Euclidien complexié, c'est-à-dire à C 2 . Ils ont été introduits et étudiés par Glutsyuk [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | On quadrilateral orbits in complex algebraic planar billiards[END_REF][START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF]] pour 1 Íà÷èíàÿ ñ ðàáîò Äae. Áèðêãîôà, áèëëèàðäû ÿâëÿþòñÿ ïîïóëÿðíîé òåìîé èññëåäîâàíèÿ, ãäå åñòåñòâåííûì îáðàçîì ïåðåïëåòàþòñÿ ðàçëè÷íûå ñþaeåòû èç ýðãîäè÷åñêèé òåîðèè, òåîðèè Ìîðñà, ÊÀÌ-òåîðèè è ò.ä. Ñ äðóãîé ñòîðîíû, áèëëèàðäíûå ñèñòåìû çàìå÷àòåëüíû åùå è òåì, ÷òî åñòåñòâåííî âîçíèêàþò â ðÿäå âàaeíûõ çàäà÷ ìåõàíèêè è ôèçèêè (âèáðîóäàðíûå ñèñòåìû, äèôðàêöèÿ êîðîòêèõ âîëí è äð.). résoudre la conjecture de Ivrii à quatre réexions, la conjecture des billards commutants en dimension 2, ou encore la conjecture d'invisibilité de Plakhov (cas planaire à 4 réexions). Souvent combinés à la théorie des sytèmes Pfaens, ils permettent notamment d'appliquer des méthodes d'analyse complexe à la résolution de problèmes réels. Nous reviendrons plus en détails sur ces questions.

Introduits par Tabachnikov qui les a étudiés en détails [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF][START_REF] Tabachnikov | Introducing projective billiards[END_REF], les billards projectifs généralisent les billards classiques. Un billard projectif est un domaine borné d'un espace euclidien dont le bord est traversé par un champ de droites transverses, dites droites projectives. Une particule à l'intérieur du domaine se déplace le long de droites. Elle est rééchie sur le bord de sorte que la droite incidente, la droite rééchie, la droite projective en le point d'impact, et la droite obtenue par intersection de l'hyperplan contenant ces trois premières droites avec l'hyperplan tangent à la surface forment une famille harmonique. Lorsque la droite projective est perpendiculaire au bord, cette condition impose à la réexion de suivre la loi d'optique géométrique. Ceci reste vrai quand la droite projective est perpendiculaire à la surface pour une métrique pseudo-Euclidienne ou encore une métrique projectivement équivalente à la métrique Euclidienne (c'est à dire dont les géodésiques sont supportées par des droites). Ainsi les billards projectifs englobent diérents types de billards.

Dans le modèle du billard classique à l'intérieur d'un domaine Ω borné de frontière ∂Ω lisse, la dynamique d'une particule évoluant à l'intérieur de Ω se décrit à l'aide de deux objets. Le premier est l'espace des phases, c'est à dire l'ensemble des morceaux de trajectoires entre deux rebonds. Il peut notamment être codé par un couple (p, v), où p est un point du bord ∂Ω et v et un vecteur unitaire dirigé vers l'intérieur de Ω et représentant la direction de la trajectoire. Dans le plan, on peut aussi remplacer v par une mesure θ ∈ [0, π] de l'angle qu'il forme avec la tangente T p ∂Ω. Dépendant de ces deux paramètres, l'espace des phases est ainsi de dimension 2 pour les billards du plan, et de façon générale de dimension 2(d -1) pour les billards dans un espace de dimension d. Le deuxième objet modélisant la dynamique du billard est l'application de billard, une application qui, étant donné un couple (p, v) de l'espace des phases codant la trajectoire d'une particule émise du point p avec une direction v, renvoie le couple (q, w) de l'espace des phases où q ∈ ∂Ω est le prochain point d'impact de la particule et w est le vecteur unitaire dirigeant la trajectoire après réexion. Ces deux objets, espace des phases et application de billard, peuvent aussi être dénis pour d'autres types de billards.

Conjecture de Ivrii

L'un des enjeux de la théorie des billards est l'étude des trajectoires périodiques, c'est-à-dire des trajectoires qui se répètent après un nombre ni de réexions. Ivrii [START_REF] Ivrii | The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary[END_REF] a montré en 1980 que l'étude des orbites périodiques de billards a une application dans un problème célèbre, qui a été résumé par Kac [START_REF] Kac | Can One Hear the Shape of a Drum?[END_REF] en une question : peut-on entendre la forme d'un tambour ? 2 Il s'agit de comprendre si la donnée des valeurs propres du problème de Dirichlet dans un domaine borné Ω ⊂ R d permet de retrouver Ω. Les valeurs propres du problème de Dirichlet sont les réels λ pour lesquels le système ∆u + λu = 0 u |∂Ω = 0 [START_REF] Baryshnikov | Billiards and nonholonomic distributions[END_REF] possède des solutions non-triviales. Elles peuvent être interprétées physiquement comme les diérents modes de vibration d'une forme Ω donnée, ce qui explique la question de Kac. La réponse à cette question s'est avérée être négative et des exemples de domaines de formes distinctes ont été donnés pour lesquels les problèmes de Dirichlet (1) correspondants ont les mêmes valeurs propres. Néanmoins se pose toujours la question de pouvoir retrouver des informations sur Ω à partir des valeurs propres du problème de Dirichlet. Weyl [START_REF] Weyl | Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dierentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)[END_REF] a montré que l'on peut entendre le volume 3 de Ω, au sens ou la connaissance du spectre de Dirichlet permet de retrouver ce volume. En eet, les valeurs propres du problème de Dirichlet peuvent être énumérées par une famille (λ n ) n de sorte que 0 ≤ λ 1 ≤ λ 2 ≤ . . . ≤ λ n ≤ . . . avec λ n → +∞. On note N (λ) le nombre de valeurs propres inférieures ou égales à λ. Alors Weyl a prouvé que N (λ) ∼ (2π) -d v d vol(Ω)λ d/2 , où v d est le volume de la boule unité de R d . Il a aussi conjecturé le second terme de ce développement asymptotique :

N (λ) = (2π) -d v d vol(Ω)λ d/2 - 1 4(2π) d-1 area(∂Ω)λ (d-1)/2 + o(λ (d-1)/2 ).
(

) 2 
Cette formule reste une conjecture dans sa généralité malgré de nombreuses avancées dont une notable est due à Ivrii [START_REF] Ivrii | The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary[END_REF], qui a prouvé que [START_REF] Baryshnikov | Sub-Riemannian geometry and periodic orbits in classical billiards[END_REF] On ne sait pas encore si un tel billard, dit k-rééchissant, existe ou non. Son existence aurait la conséquence amusante suivante: elle permettrait de construire une salle dont les murs sont recouverts de miroirs et de sorte qu'il existe un endroit de la salle où un observateur regardant devant lui peut toujours voir son image de dos, même s'il se déplace un peu et/ou tourne légèrement sur lui-même.

La conjecture de Ivrii a été abordée dans de nombreux articles. Elle a d'abord été prouvée de façon générique par Petkov et Stojanov [START_REF] Petkov | On the number of periodic reecting rays in generic domains[END_REF] : l'ensemble des domaines de R d de bord C ∞ ayant pour tout k ≥ 2 un nombre ni d'orbites périodiques de période k contient un ensemble résiduel, c'est-à-dire une intersection dénombrable d'ouverts denses. Une autre réponse partielle à la conjecture a été donnée par Vasiliev [START_REF] Vasiliev | Two-term asymptotics of the spectrum of a boundary value problem in interior reection of general form[END_REF] qui l'a prouvée pour un domaine convexe de bord analytique. Notons aussi qu'il est possible de restreindre la conjecture à l'ensemble des orbites périodiques d'une période donnée arbitraire, et que l'ensemble de ces conjectures restreintes est équivalent à la conjecture globale. Dans cet idée, Rychlik [START_REF] Rychlik | Periodic points of the billiard ball map in a convex domain[END_REF], puis Stojanov [START_REF] Stojanov | Note on the periodic points of the billiard[END_REF] ont démontré que l'ensemble des orbites de période 3, ou triangulaires, est de mesure nulle dans un billard du plan de frontière de classe C 3 , et Vorobets [START_REF] Ya | On the measure of the set of periodic points of the billiard[END_REF] a étendu ce résultat aux billards en toute dimension. Un peu plus tard, Wojtkowski [START_REF] Wojtkowski | Two applications of Jacobi elds to the billiard ball problem[END_REF], puis Baryshnikov et Zharnitsky [START_REF] Baryshnikov | Billiards and nonholonomic distributions[END_REF] ont donné de nouvelles preuves de ce résultat. Plus récemment, Glutsyuk et Kudryashov [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] ont démontré la conjecture pour les orbites périodiques de période 4 dans des billards planaires de classe C 4 . En toute généralité dans le cas Euclidien, la conjecture de Ivrii tient toujours pour un nombre quelconque de réexions, même pour des classes de billards de frontière très lisse (par exemple analytique par morceaux).

La conjecture de Ivrii s'énonce de façon analogue pour des billards non-Euclidiens, par exemple pour les billards en courbure constante, sur une sphère ou un hyperboloïde. Des exemples remarquables [START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF][START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF] de billards 2-ou 3-rééchissants existent sur la sphère de dimension 2, On peut bouger arbitrairement deux points de l'orbite sans changer son caractère périodique. liés d'une certaine façon à l'existence de points joints par une innité de géodésiques distinctes et contredisant la conjecture de Ivrii sur la sphère, voir la Figure 2. Les articles cités [START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF][START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF] donnent une classication des billards sur la sphère unité S 2 ayant un ouvert d'orbites de période 3 ainsi que la non-existence de tels billards sur l'hyperboloïde H 2 . Malgré tous ces résultats, la conjecture de Ivrii reste encore ouverte. Il semble d'ailleurs que les spécialistes sont partagé.e.s entre celleux qui pensent qu'elle est vraie, et celleux qui pensent qu'elle est fausse et qui recherchent des contre-exemples.

Billards intégrables

Un autre enjeu de la théorie des billards est l'étude des billards dits intégrables. Un billard Ω du plan est dit globalement intégrable si son espace des phases est feuilleté de façon lisse par une famille de courbes fermées invariantes par l'application de billard. On dit aussi que Ω est localement intégrable si seul un voisinage du bord, correspondant à la courbe {θ = 0} dans l'espace des phases, admet un tel feuilletage. Cette propriété se manifeste par l'existence de caustiques correspondant à ces courbes invariantes et qui se dénissent de façon indépendante en toute dimension : une caustique d'un billard Ω est une hypersurface Γ ⊂ Ω telle que toute droite tangente à Γ et intersectant la frontière ∂Ω en un point p est rééchie en une droite tangente à Γ après réexion en p sur le bord de Ω.

Un exemple de billard globalement intégrable est le disque, puisque tout cercle concentrique inclus dans le disque est une caustique du disque. L'ellipse est un exemple de billard localement intégrable, puisque toute trajectoire de billard qui ne passe pas entre les foyers reste tangente à une même ellipse homofocale, qui dès lors est une caustique de l'ellipse initiale. La question a été posée par Birkho et Poritsky de savoir si ce sont les seuls exemples de billards intégrables et cela a donné lieu à la célèbre conjecture de Birkho, ou Birkho-Poritsky comme cela a été rappelé dans [START_REF] Kaloshin | On the local Birkho conjecture for convex billiards[END_REF].

Conjecture de Birkho-Poritsky. Les seuls billards localement intégrables sont les ellipses.

Certaines avancées majeures ont été réalisées sur cette conjecture. Citons le théorème de Bialy [START_REF] Bialy | Convex billiards and a theorem by E. Hopf[END_REF] énonçant que si l'espace des phases d'un billard est feuilleté par des courbes fermées continues invariantes et non-homotopes à un point, alors ∂Ω est un cercle. Cela implique que le seul billard globalement intégrable est le disque. Ce résultat nécessite néanmoins l'hypothèse que le feuilletage est global et ne permet pas de conclure que la conjecture est vraie en toute généralité. Une version algébrique de la conjecture de Birkho-Poritsky a été démontrée conjointement par Bialy, Glutsyuk et Mironov [START_REF] Bialy | Angular billiard and algebraic Birkho conjecture[END_REF][START_REF] Bialy | Algebraic Birkho conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Glutsyuk | On Two-Dimensional Polynomially Integrable Billiards on Surfaces of Constant Curvature[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkho billiards on surfaces of constant curvature[END_REF] pour les billards sur le plan et sur les autres hypersurfaces de courbure constante. Kaloshin et Sorrentino [START_REF] Kaloshin | On the local Birkho conjecture for convex billiards[END_REF] ont prouvé la version locale de la conjecture, démontrant que toute déformation intégrable d'une ellipse est une ellipse. En dimension supérieure, l'étude des billards ayant des caustiques a été conclue par Berger [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] qui a montré que si un billard de R d , avec d ≥ 3, admet une caustique, alors ce dernier est une quadrique et sa caustique est une quadrique homofocale. Ainsi en dimension au moins 3, il sut juste d'une seule caustique, et non plus un feuilletage, pour que la conjecture de Birkho-Poritsky soit vériée.

Résultats obtenus dans cette thèse

Cette thèse présente diérents résultats sur les billards complexes et projectifs, applicables pour certains à la théorie des billards classiques. Elle se divise en trois chapitres : le Chapitre 1 présente en détails les modèles des billards projectifs et complexes. Le Chapitre 2 étudie la notion de caustique dans ces deux modèles de billard. Le Chapitre 3 porte son attention sur l'analogue de la conjecture de Ivrii appliquée aux billards projectifs.

Détails du Chapitre 1

Ce chapitre présente les deux classes de billards étudiées tout au long de cette thèse, les billards complexes et les billards projectifs. Nous exposons brièvement quelques aspects de ces billards pour rendre compréhensible les résumés des chapitres suivants. Plus de détails seront donnés dans le Chapitre 1 lui-même.

Un billard projectif est un domaine borné Ω de R d dont le bord est lisse et muni d'un champ de droites transverses. Ce champ de droites induit en chaque point p ∈ ∂Ω du bord une transformation de l'ensemble des droites orientées passant par p, qui permet de considérer les orbites du billard: une droite orientée 0 intersectant Ω en p est rééchie en une droite orientée Un billard complexe est une courbe complexe γ de CP 2 sur laquelle on dénit une loi de réexion de droites complexes qui l'intersecte. Cette construction est réalisée en considérant la complexication de la métrique Euclidienne dx 2 + dy 2 à C 2 . Étant donnée une droite complexe L ⊂ C 2 dite non-isotrope, on peut dénir une symétrie de droites complexes par rapport à L : cette symétrie est l'unique involution ane non triviale qui xe les points de L et préserve la forme quadratique complexiée dénie précédemment. Deux droites complexes , intersectant γ en un point p sont dites symétriques (pour cette loi de réexion complexe) si la symétrie de droites complexes par rapport à la tangente T p γ envoie l'une sur l'autre. Pour les autres droites L, dites isotropes, on utilise un passage à la limite.

Détails du Chapitre 2

Ce chapitre propose l'étude de propriétés relatives aux caustiques des billards projectifs et complexes. La Section 2.1 présente un premier résultat publié [START_REF] Fierobe | Complex Caustics of the Elliptic Billiard[END_REF] 

C λ : x 2 a -λ + y 2 b -λ = 1
et on étudie le billard complexe sur C 0 . Il est connu que dans le cas du billard réel, les coniques réelles C λ avec λ ∈ R sont des caustiques du billard formé par C 0 . On s'interroge sur le fait de savoir si cela reste vrai dans le cas du billard complexe sur C 0 et quels sont les caustiques complexes inscrites dans des orbites périodiques. On prouve les deux résultats suivants:

Proposition. Toute conique C λ est une caustique complexe de C 0 .

Proposition. Pour tout entier n ≥ 3, il existe un polynôme en (a, b, λ), noté B n a,b (λ), dont les racines complexes en λ correspondent aux caustiques C λ qui sont inscrites dans des orbites de période n. Pour (a, b) en dehors d'un nombre ni de valeurs a/b, le degré en λ du polynôme B n a,b (λ) est (n 2 -1)/4 si n est impair, et n 2 /4 -1 si n est pair.

Ainsi les racines distinctes en λ de B n a,b (λ) diérentes de a et b correspondent aux caustiques complexes de C 0 inscrites dans les orbites périodiques de période n. Nous avons pu montrer que pour un nombre générique de (a, b) (au sens du résultat précédent), ni a ni b ne sont racines (en λ) de B n a,b (λ). Il reste à déterminer si B n a,b (λ) est génériquement à racines simples en λ ou non. Pour l'instant le résultat n'est pas connu, mais est vériée pour de petites périodes. Et en eet, un phénomène surprenant se produit dans le cas des orbites de période 3 lorsque C 0 est une ellipse (avec des résultats similaires pour une hyperbole ou pour les orbites de période 4) :

Proposition. Si a, b > 0, il existe exactement deux coniques complexes homofocales à C 0 dont les orbites complexes qui leur sont circonscrites sont périodiques de période 3. Ce sont des ellipses complexiées : l'une C i est incluse dans C 0 , l'autre C e contient C 0 (voir Figure 3).

Nous avons cherché des propriétés curieuses de ces deux ellipses qui pourraient apparaître, comme la question de savoir si C 0 ou C i sont des caustiques de la plus grande ellipse C e inscrites dans des orbites périodiques du billard réel. Mais les simulations ont échoué à mettre en évidence un tel phénomène. Nous montrons alors qu'un invariant du billard elliptique réel connu sous le nom d'invariant de Joachimsthal se généralise au cas complexe, et qu'il entretient des liens étroits avec les caustiques complexes de l'ellipse.

Cette thèse propose ensuite une étude sur l'existence de caustiques dans les billards projectifs. Notons d'abord que de nombreux résultats ont été obtenus par Tabachnikov [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF][START_REF] Tabachnikov | Introducing projective billiards[END_REF] sur l'existence de formes d'aire dans l'espace des phases qui sont invariantes par l'application de billard projectif, et sur les propriétés d'intégrabilités qui en découlent. Citons par exemple [START_REF] Tabachnikov | Introducing projective billiards[END_REF] Corollaire F : si l'application de billard dans un cercle muni d'une structure de billard projectif a une forme d'aire invariante lisse au voisinage du bord, alors le billard est intégrable. Notons aussi qu'une nouvelle preuve de l'intégrabilité du billard elliptique dans le plan Euclidien, sur l'hyperboloïde ou sur la sphère a été donnée par des considérations sur les billards projectifs (voir Corollaire G de [START_REF] Tabachnikov | Introducing projective billiards[END_REF]). Dans la Section 2.3, nous considérons le cas des caustiques pour des quadriques munies d'une structure de billard projectif. Précisons que dans le terme quadriques sont aussi comprises les coniques. Nous montrons le résultat suivant qui découle d'une construction proposée dans [START_REF] Chang | Elliptical billiard systems and the full Poncelet's theorem in n dimensions[END_REF] pour généraliser le théorème de Poncelet, mais qui ne mentionne pas les billards projectifs : L'argument de Berger que nous généralisons repose sur l'idée suivante. Soit S ⊂ R d une hypersurface, et U, V comme dans l'énoncé de Berger cité plus haut. Toute droite de l'ouvert de droites tangentes à U , intersectant S en p et rééchie en une droite tangente à V , est telle que l'hyperplan tangent à U contenant et l'hyperplan tangent à V contenant intersectent T p S en un même hyperplan H de T p S. Un tel hyperplan H ⊂ T p S est dit autorisé, et l'argument de Nous pensons que ce résultat, valable pour tout billard projectif, n'est pas applicable uniquement pour caractériser les billards pseudo-Euclidiens ayant des caustiques, mais peut-être encore pour d'autres billards. Peut-être permettrait-il au moins d'armer que si un billard projectif admet une caustique, alors cette caustique est une quadrique. Comme ce résultat semble délicat à démontrer, une première avancée pourrait consister à le prouver pour une classe assez générale de billards projectifs, ceux ayant un champ dit exact de droites projectives et qui contient la classe des billards pseudo-Euclidiens, voir [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF].

Proposition. Soit Q 1 et Q 2 deux

Détails du Chapitre 3

Dans ce chapitre, il est question d'étudier un analogue de la conjecture de Ivrii pour les billards projectifs. Une réponse immédiate peut être donnée à cette conjecture grâce à l'exemple déjà cité de billard 3-rééchissant sur la sphère S 2 [START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF][START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF]. Il est en eet possible, en utilisant une projection centrale de la sphère sur un plan ane, d'interpréter ce billard comme un billard projectif, qui dès lors est lui-même 3-rééchissant. Cet exemple de billard projectif, appelé billard droit-sphérique (voir la Figure 4), contredit tout de suite la conjecture de Ivrii pour les billards projectifs.

On peut se demander s'il existe d'autres types de billards projectifs ayant des ouverts d'obites périodiques avec plus que trois réexions. Cette thèse présente des exemples de billards projectifs dans des polygones qui sont k-rééchissants pour le choix arbitraire d'un entier pair k (cf Section 3.1 et [START_REF] Fierobe | Examples of reective projective billiards[END_REF]). Le caractère k-rééchissant de ces billards vient de leur symétrie, symétrie du polygone ou du champ de droites projectives. Bien qu'ayant cherché, nous n'avons pu trouver des exemples "évidents" de billards projectifs k-rééchissants avec k impair, en dehors des billards droit-sphériques. On peut donc soulever la question de l'existence de billards projectifs k-rééchissants dans les polygones, avec k impair supérieur ou égal à 5. Peut-être que la réponse à cette question pourrait s'inspirer de [START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF], qui montre que la conjecture de Ivrii pour des orbites de période impaire est vériée dans une classe assez générale de billards de bord algébrique par morceaux.

Figure 4: À gauche, le billard projectif droit-sphérique obtenu à partir d'un exemple de billard 3-rééchissant sur la sphère, décrit dans [START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF][START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF]. À droite, un exemple de billard projectif 4-rééchissant découvert au cours de cette thèse, voir Section 3.1.

Ces exemples suggèrent donc de classier les billards projectifs possédant des ensembles ouverts ou de mesure non-nulle d'orbites périodiques. L'avantage de cette démarche est de comprendre la conjecture de Ivrii pour d'autres billards. On pourra en tout premier lieu noter que l'existence d'un billard projectif k-rééchissant fournit de nombreux exemples de billards projectifs ayant un ensemble de mesure non-nulle d'orbites k-périodiques par la construction suivante : étant donné un billard projectif k-rééchissant ayant un ouvert U d'orbites périodiques, tout billard qui coïncide avec le précédent sur un ensemble de Cantor de mesure non-nulle inclus dans U possède un ensemble de mesure non-nulle d'orbites k-périodiques. Ainsi quand un billard krééchissant existe, on pourra classier uniquement les billards k-rééchissants pour comprendre les obstructions à la conjecture de Ivrii. Cette thèse s'intéresse notamment au cas particulier des billards projectifs ayant des ensembles ouverts ou de mesure non-nulle d'orbites de période 3. Elle prouve la classication suivante de ces billards en Section 3.3: Théorème. 1) Les seuls billards projectifs 3-rééchissants de R 2 de bord C ∞ par morceaux sont les billards droit-sphériques.

2) Si d ≥ 3, il n'y a pas de billards projectifs dans R d de bord C ∞ par morceaux possédant un ensemble de mesure non-nulle d'orbites 3-périodiques.

La preuve de ce théorème est très largement inspirée de [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] et se décompose en deux étapes: il est d'abord question de traiter le résultat pour une version complexe des billards projectifs 3-rééchissants de bord analytique par morceaux, puis de l'élargir aux bords C ∞ en utilisant les systèmes Pfaens. Cette dernière étape est l'objet de la Section 3.2, dans laquelle sont introduits et étudiés des systèmes Pfaens relatifs aux billards projectifs et Euclidiens. L'utilité des systèmes Pfaens vient d'une idée de Barychnikov et Zharnitsky [START_REF] Baryshnikov | Billiards and nonholonomic distributions[END_REF][START_REF] Baryshnikov | Sub-Riemannian geometry and periodic orbits in classical billiards[END_REF] d'associer un billard classique k-rééchissant à une surface intégrale d'une certaine distribution, appelée distribution de Birkho : pour les billards dans le plan, la distribution de Birkho est la distribution qui associe à un polygone non-dégénéré à k côtés le produit cartésien de ses bissectrices extérieures (c'est-à-dire les droites qui coupent en deux les deux angles extérieurs opposés formés par les droites supportant deux côtés consécutifs du polygone). Elle vérie que si une surface intégrale de dimension 2 de cette distribution est telle que la projection sur chaque sommet est une courbe lisse, alors ces courbes lisses forment des morceaux du bord d'un même billard k-rééchissant. En eet, tout point de la surface intégrale est un polygone dont les bissectrices extérieures sont tangentes aux bords du billard, par dénition de la distribution, et donc est une orbite de période k. Un système Pfaen est alors un objet qui résume la donnée d'une distribution, de la dimension de ses variétés intégrales recherchées, et de conditions dites de transversalité, sur lequel peuvent être eectuées certaines opérations de prolongement dans le but de trouver des surfaces intégrales. L'idée de Barychnikov et Zharnitsky a été reprise dans [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF], où est conjecturé (Conjecture 5) l'énoncé suivant: Conjecture de Kudryashov. Soient k ≥ 3 et d ≥ 2 deux entiers. Il existe un entier r ≥ 2, dépendant uniquement de k et d, tel que l'existence dans R d d'un billard de bord C r par morceaux possédant un ensemble de mesure non-nulle d'orbites k-périodiques entraine l'existence d'un billard analytique par morceaux qui est k-rééchissant. Cette conjecture peut être résumée en disant que si la conjecture de Ivrii est fausse pour les billards de bord C r par morceaux, alors il existe un billard analytique par morceaux k-rééchissant.

Certains arguments présentés dans [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] et dispersés dans l'article permettent de prouver un cas plus simple de cette conjecture en prenant r = ∞, mais ce résultat n'est malheureusement pas énoncé dans l'article. Comme il mérite d'être explicitement formulé, nous en donnons une preuve en Section 3.2, et dont l'essentiel des arguments provient de [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF].

Théorème. La conjecture de Kudryashov est valable pour r = ∞.

Nous prouvons de plus que si un billard k-rééchissant de bord C ∞ par morceaux existe, alors pour tout entier r ≥ 1 son bord peut être approché par des r-jets de billards k-rééchissants de bord analytique par morceaux. Nous élargissons alors aussi au cas des billards projectifs la preuve de la conjecture de Kudryashov avec r = ∞ (cf Section 3.2), en prouvant le résultat suivant:

Théorème. S'il existe un billard projectif de bord C ∞ par morceaux (avec un champ de droites transverses C ∞ par morceaux) possédant un ensemble de mesure non-nulle d'orbites k-périodiques, alors il existe un billard projectif analytique k-rééchissant.

Ainsi ces arguments peuvent fournir des outils intéressants pour la résolution éventuelle de la conjecture de Ivrii : se ramener aux cas des billards k-rééchissants de bord analytique par morceaux ou bien étudier ces mêmes billards dans un cadre projectif. Généraliser peut parfois permettre de simplier.

Perspectives de recherche

Pour récapituler, le travail accompli pendant cette thèse a permis de mieux comprendre les billards projectifs ayant des ensembles de mesure non nulle d'orbites périodiques, de les classier lorsqu'il s'agit en particulier des orbites triangulaires, de mettre en évidence des caustiques dites complexes du billard sur une conique complexiée, de proposer des structures projectives sur des coniques et quadriques de sorte que ces dernières admettent des caustiques, et d'étendre un résultat de Berger pour les caustiques de billards projectifs en dimension au moins 3 qui s'applique à la classication des billards pseudo-Euclidiens ayant des caustiques. Mais l'étude réalisée dans cette thèse n'est pas terminée et soulève peut-être plus de questions qu'elle n'apporte de réponses... Le problème des billards projectifs admettant des caustiques en dimension d ≥ 3 n'est que très partiellement résolu : certes un argument clé de Berger a pu être étendu à cette classe de billards, mais aucun résultat général similaire à celui de Berger n'a pu être prouvé, à part pour le cas très particulier des espaces pseudo-Euclidiens. Il serait intéressant de le généraliser à une classe plus vaste de billards projectifs, par exemples aux billards projectifs ayant un champ dit exact de droites transverses [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF]. Peut-on avancer une conjecture ? Peut-être que les seules caustiques possibles d'un billard projectif en dimension d ≥ 3 sont les quadriques. Je serais très curieux de connaître le résultat.

La conjecture de Ivrii est un problème majeur de théorie des billards. Sans chercher à en donner une réponse dénitive, il pourrait être intéressant d'étudier des classes simples de billards projectifs k-rééchissants. On pourrait par exemple essayer de savoir s'il existe des billards projectifs k-rééchissants dans des polygones avec k ≥ 5 impair. Notre recherche n'a en eet pas permis d'en trouver. On peut plus généralement se demander si les exemples de billards krééchissants que nous présentons en Section 3.1 sont les seuls billards projectifs k-rééchissants dans des polygones. Enn il serait à envisager de comprendre si les arguments de classication des billards projectifs 3-rééchissants avancés par [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] et repris dans le chapitre 3 peuvent être synthétisés et généralisés à un nombre général de réexions.

Introduction in English

A billiard can be described as a dynamical system describing the trajectory of an innitely small object without mass moving in a homogeneous domain bounded by a reective boundary, like the trajectory of a ray of light inside a room covered by mirrors or of a particle. As stated by Valerii V. Kozlov et Dmitrii V. Treshchëv [START_REF] Kozlov | A Genetic Introduction to the Dynamics of Systems with Impacts[END_REF]: Starting with the works of G. D. Birkho, billiards have been a popular topic of investigation where various subjects of ergodic theory, Morse theory, KAM theory, etc. are intertwined. On the other hand, billiard systems are further remarkable in that they arise naturally in a number of important problems of mechanics and physics (vibro-impact systems, the diraction of shortwaves, etc.). The present manuscript investigates this eld of research and present modest results about billiards.

The dynamic of the billiard trajectory is induced by the two following statements: 1) it moves along straight lines inside the domain 2) and it is reected on the boundary following the usual law of optics: angle before reection = angle after reection. There are dierent ways to model statements 1) and 2), and the most common one consists of considering that the domain is inside a complete Riemannian manifold: the straight lines have to be understood as geodesics and the angles are dened by the metric. We can therefore study billiards in the usual plane, the space, on a hyperboloïd or on a sphere, when for example we study the movement of a small object inside a wide domain on the surface of a planet for which the planet's curvature cannot be neglected. However there are other models of billiards than this so-called classical model, such as pseudo-Euclidean billiards, complex billiards, outer billiards or wire billiards. In this manuscript, we focus our attention to the so-called projective billiards and complex billiards.

These billiards are linked with the classical billiard, as it will be shown in this thesis. Complex billiards are a natural generalization of the classical billiards of the Euclidean plane R 2 to its complexication C 2 . They were introduced and studied by Glutsyuk [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | On quadrilateral orbits in complex algebraic planar billiards[END_REF][START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF] to solve Ivrii's conjecture for 4 reections, the commuting billiard conjecture in dimension 2, or Plakhov's invisibility conjecture (planar case with 4 reections). Combined to Pfaan systems, complex billiards can be used to apply methods of complex analytic geometry to problems of standard (real) geometry. These points will be discussed in more details below.

Projective billiards were introduced by Tabachnikov [START_REF] Tabachnikov | Introducing projective billiards[END_REF][START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF] as a generalization of classical billiards of the Euclidean space. A projective billiard is a bounded domain of a Euclidean space whose boundary is endowed with a eld of transverse lines, called projective lines. A trajectory is then reected at a point on the boundary by a specic law of reection depending on the projective line at the point of impact. When the latter projective line is orthogonal to the boundary, the reection of the trajectory is the same as the usual law of optics. This statement is still valid for other billiards, like billiards in pseudo-Euclidean manifolds or in metrics projectively equivalent to the Euclidean one (which are metrics whose geodesics are supported by lines). Therefore, the model of projective billiards contain other models of billiards.

In the classical model of billiard inside a domain Ω bounded by a smooth boundary, the dierent trajectories can be mathematically described by two objects. The rst one is the phase space which is dened as the set of oriented geodesics between two points of reection. It can be described as the set of pairs (p, v) where p is a point of the boundary ∂Ω and v is a unit vector with origin at p, pointing inside Ω and representing the direction of the corresponding geodesic. In dimension 2, v can be replaced by the angle θ ∈ [0, π] it makes with the tangent line T p ∂Ω. The dimension of the phase space is 2 for billiards in the plane, and 2(d -1) for billiards in a space of dimension d. The second object describing a billiard is the billiard map: it is a map associating to an element (p, v) of the phase space representing a trajectory moving from p in the direction given by v the element (q, v) where q is the next point of impact of the trajectory and w is the directing vector of the trajectory after reection. Both objects have similar denitions for other billiard types.

Ivrii's conjecture

One of the main issues of billiard theory is the study of periodic orbits, which are trajectories repeating themselves after a nite number of reections. Ivrii [START_REF] Ivrii | The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary[END_REF] showed in 1980 that the study of periodic orbits has an application in a famous problem which was summarized by Kac [START_REF] Kac | Can One Hear the Shape of a Drum?[END_REF] in one question: Can one hear the shape of a drum ? The problem is about to understand if the eigenvalues of the Laplacien with Dirichlet initial condtions in a bounded domain Ω ⊂ R d determine completely the shape of Ω. These eigenvalues are dened as the real numbers λ ∈ R for which the system ∆u + λu = 0 u |∂Ω = 0

(3) has non-trivial solutions u. They can be interpreted physically as dierent vibration modes of a shape given by Ω. Kac's question was answered negatively since examples of distinct shapes were given in which the corresponding Dirichlet problems (3) have the same eigenvalues. However the question of recovering data about Ω from these eigenvalues is still investigated. Weyl [START_REF] Weyl | Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Dierentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung)[END_REF] showed that we can hear the volume 4 of Ω, meaning that we can recover the volume of Ω from Dirichlet eigenvalues. Indeed, the eigenvalues of Dirichlet problem can be enumerated into a sequence (λ n ) n of real numbers such that 0 ≤ λ 1 ≤ λ 2 ≤ . . . ≤ λ n ≤ . . . and λ n → +∞. If we denote by N (λ) the number of eigenvalues less or equal to λ, then Weyl showed that

N (λ) ∼ (2π) -d v d vol(Ω)λ d/2
, where v d denotes the volume of the unit Euclidean sphere in R d . He also conjectured the second asymptotic term

N (λ) = (2π) -d v d vol(Ω)λ d/2 - 1 4(2π) d-1 area(∂Ω)λ (d-1)/2 + o(λ (d-1)/2 ). ( 4 
)
This conjecture is not proven yet although many results exist and conrm Weyl's conjecture. One of them is a result due to Ivrii [START_REF] Ivrii | The second term of the spectral asymptotics for a Laplace-Beltrami operator on manifolds with boundary[END_REF] who proved that (4) is satised under the assumption that the billiard inside Ω has a few periodic orbits, meaning that the set of parameters in the phase space corresponding to periodic orbits has zero measure in Ω. A famous conjecture was stated following this result:

Ivrii's conjecture. Given a bounded domain in the Euclidean space with suciently smooth boundary, its set of periodic orbits has zero measure.

This conjecture still holds and is more dicult than it was expected at the beginning. Particular cases of billiards with a set of positive measure of periodic orbits are given by the so-called kreective billiards: billiards having open subsets of periodic orbits of period k, more precisely having open subsets in its phase space of parameters (p, v) corresponding to periodic orbits.

The existence of a k-reective billiard is still unknown, but could lead to a rather curious construction: a room whose walls are covered by mirrors and such that there is a place in the room where any observer can still see himself from behind, even by moving or turning a little round.

There is still no denitive answer to Ivrii's conjecture, even for k-reective billiards with any integer k. Many partial results however already exist. Petkov and Stojanov [START_REF] Petkov | On the number of periodic reecting rays in generic domains[END_REF] proved it for generic billiards: the set of all domains in R d with C ∞ -smooth boundary having a nite number of periodic orbits of period k for all k contains a residual set (a countable intersection of open dense subsets). Another answer was given by Vasiliev [START_REF] Vasiliev | Two-term asymptotics of the spectrum of a boundary value problem in interior reection of general form[END_REF] who proved the conjecture for a convex domain with analytic boundary. Rychlik [START_REF] Rychlik | Periodic points of the billiard ball map in a convex domain[END_REF] and then Stojanov [START_REF] Stojanov | Note on the periodic points of the billiard[END_REF] proved that the set of periodic orbits of period 3 has zero measure in any billiard of the Euclidean plane with C 3 -smooth boundary. Vorobets [START_REF] Ya | On the measure of the set of periodic points of the billiard[END_REF] extended this result to billiards in any dimension. Later, Wojtkowski [START_REF] Wojtkowski | Two applications of Jacobi elds to the billiard ball problem[END_REF], and then Baryshnikov and Zharnitsky [START_REF] Baryshnikov | Billiards and nonholonomic distributions[END_REF] gave new proofs of this result. More recently, Glutsyuk and Kudryashov [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] proved the conjecture for periodic orbits of period 4 in planar billiards with C 4 -smooth boundary. Thus in the Euclidean case, Ivrii's conjecture remains unproved for any period and any regularity of the boundary (even for billiards with piecewise-analytic boundary). Figure 6: An example of 3-reective billiard on the sphere presented by Barychnikov. The outer triangle is boundary of the billiard, the interior triangle in dotted lines is an orbit. Two vertices of the orbit can be moved arbitrarily without changing its periodicity.

Ivrii's conjecture can be stated analogously for non-Euclidean billiards, such as billiards in manifolds of constant curvature, on a sphere or on a hyperboloïd. Remarkable examples of 2and 3-reective billiards can be given on the 2-dimensional sphere S 2 [3, 10], which are linked with the existence of points joined by an innite number of geodesics, see Figure 6. The cited articles give a classication of billiards on the unit sphere S 2 having a set of non-zero measure of periodic orbit of period 3. They also prove that Ivrii's conjecture for 3-periodic orbits is also true for billiards on the hyperboloïd.

Integrable billiards

An other important issue of billiard theory is the study of the so-called integrable billiards. A billiard Ω of the plane is said to be globally integrable if its phase space is foliated by smooth closed curves invariant by the billiard map. Ω is said to be locally integrable if such a foliation exists only in neighborhood of the curve {θ = 0} in the phase space. This property is strongly linked with the existence of caustics corresponding to these invariant curves, and which can be dened independantly in all dimensions: a caustic of a billiard Ω is a hypersurface Γ ⊂ Ω such that any line tangent to Γ and intersecting the boundary ∂Ω at p is reected into a line tangent to Γ after reection at p on ∂Ω.

An example of globally integrable billiard is the disk, since any concentric circle inside the disk is a caustic of the corresponding billiard. An ellipse is an example of a locally integrable billiard, since any billiard trajectory which do not passes between the foci of the ellipse remains tangent to a smaller confocal ellipse. Birkho and Poritsky asked if these examples are the only such examples of locally integrable billiard, and this question is now cited as a famous conjecture, as it is recalled in [START_REF] Kaloshin | On the local Birkho conjecture for convex billiards[END_REF].

Birkho-Poritsky conjecture. If a billiard is locally integrable, then it is an ellipse.

Major results were discovered about this conjecture. Bialy [START_REF] Bialy | Convex billiards and a theorem by E. Hopf[END_REF] proved that if the phase space of the billiard Ω is foliated by not null-homotopic continuous invariant closed curves, then ∂Ω is a circle. Notice that this result requires the foliation to be global and implies that the only globally integrable billiard is the circle. An algebraic proof of Birkho-Poritsky conjecture for planar billiards and billiards on surfaces of constant curvature was found by Bialy, Glutsyuk and Mironov [START_REF] Bialy | Angular billiard and algebraic Birkho conjecture[END_REF][START_REF] Bialy | Algebraic Birkho conjecture for billiards on Sphere and Hyperbolic plane[END_REF][START_REF] Glutsyuk | On Two-Dimensional Polynomially Integrable Billiards on Surfaces of Constant Curvature[END_REF][START_REF] Glutsyuk | On polynomially integrable Birkho billiards on surfaces of constant curvature[END_REF]. Kaloshin and Sorrentino [START_REF] Kaloshin | On the local Birkho conjecture for convex billiards[END_REF] showed that any integrable deformation of an ellipse is an ellipse. In greater dimension, the study of billiards having caustics was ended earlier by Berger [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] who proved that if a billiard Ω in R d , with d ≥ 3, has a caustic, then ∂Ω is a quadric and its caustic is a confocal quadric. The assumptions of this result are weaker, and they do not require the existence of a foliation.

Results obtained in this thesis

This manuscript pesents dierent results about complex and projective billiards which some of them can also be applied to classical billiards. It is structured in three chapters: Chapter 1 exposes in details both models of complex and projective billiards. Chapter 2 study the existence of caustics for dierent billiards of both types. Chapter 3 is focused on the analogue of Ivrii's conjecture for projective billiards.

Details of Chapter 1

This chapter presents two types of billiards studied all along this manuscript: the complex and projective billiards. We present here briey the denitions of these billiards to understand the overviews of each chapter.

A projective billiard is a bounded domain Ω of R d whose boundary is smooth and endowed with a smooth eld of transverse lines. This eld of lines induces at each point p ∈ ∂Ω of the boundary a transformation of the eld of oriented lines containing p, and which allows to construct billiards orbits: an oriented line 0 intersecting Ω at a point p is reected by previous transformation at p into a line 1 . If 1 intersect ∂Ω in another point, this construction can be repeated, and so on.

A complex billiard is a complex curve γ of CP 2 on which we can also dene a law of reection on lines intersecting it. This construction can be realised by considering the complexication of the Euclidean metric dx 2 + dy 2 to C 2 . Given a so-called non-isotropic complex line L ⊂ C 2 , one can dene a symetry of complex lines with respect to L as the unique non-trivial ane involution preserving the latter complex quadratic form and xing the points of the line L. Two complex lines , intersecting γ at a point p are said to be symetric for the complex reection law if the symetry of lines with respect to the tangent lines T p γ sends to or to .

Details of Chapter 2

In this chapter, we present results related to the existence of caustics in projective and complex billiards. Section 2.1 describes a rst result on the so-called complex caustics of an ellipse or hyperbola. We say that a conic C ⊂ CP 2 is a complex caustic of another conic C ⊂ CP 2 if any line tangent to C is reected into a line tangent to C by the complex law of reection in one of the intersection point of with C. Given a, b ∈ R * , we introduce the set (C λ ) λ∈C of conics of CP 2 given by the equation

C λ : x 2 a -λ + y 2 b -λ = 1
and we study the complex billiard dened by C 0 . It is known that in the case of the usual billiard on the real conic C 0 , the real conics C λ are caustics. We answer the question if this is still true for the complex billiard, and which are the conics inscribed in periodic orbits. We prove the following results:

Proposition. Any conic C λ is a complex caustic of C 0 . Proposition. Let n ≥ 3 be an integer. There is a polynomial in (a, b, λ), denoted by B n a,b (λ), whose complex roots in λ corresponds to the caustics C λ inscribed in periodic orbits of period n. For all (a, b) outside a nite number of values of a/b, the degree in λ of the polynomial

B n a,b (λ)
is (n 2 -1)/4 if n is odd, and n 2 /4 -1 if n is even.

Thus the distinct roots in λ of B n a,b (λ) dierent from a and b corresponds to the complex caustics of C 0 inscribed in such periodic orbits of period n. We were able to show that for a generic number of pairs (a, b) (in the sense of previous result), neither a nor b are roots (in λ) of B n a,b (λ).

It remains to understand if B n

a,b (λ) has generically simple roots in λ or not. For now, the result is still unknown, but is true for small periods. And a surprising phenomenon appears for period 3 when C 0 is an ellipse (and similar results have been achieved for a hyperbola or periodic orbits of period 4):

Proposition. If a, b > 0, there are exactly two complex conics confocal to C 0 which are inscribed in periodic orbits of period 3. They are complexied ellipses: one of them C i is included in C 0 , the other one C e contains C 0 (see Figure 7).

By curiosity, we looked for specic billiards properties of these ellipse, like the possibility for C 0 or C i to be a caustic of C e inscribed in periodic orbits of the classical billiard. But simulations failed to show such eventual curious result. We then show that an invariant of the real elliptic billiard known as Joachimsthal invariant can be generalized to the complex billiard. These are two complexied ellipses, one of them is included in C 0 and the other one contains it. The graphic represents their real parts. On the right, the complex caustics of C 0 for periodic orbits of period 4.

This thesis then presents a result related to the existence of caustics in projective billiards. Let us rst note that numerous results were obtained by Tabachnikov [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF][START_REF] Tabachnikov | Introducing projective billiards[END_REF] on the existence of area forms of the phase space invariant by the projective billiard map, and on their consequences about the integrability of the billiard. For example Corollary F of [START_REF] Tabachnikov | Introducing projective billiards[END_REF] states that if the projective billiard inside a circle has an invariant area form smooth up to the boundary, then the billiard is integrable. Note also that a new proof of the integrability of the elliptic billiard in the Euclidean plane, on the sphere or on a hyperboloid was given using considerations about projective billiards (see Corollary G of [START_REF] Tabachnikov | Introducing projective billiards[END_REF]).

In Section 2.3, we investigate the existence of caustics for quadrics endowed with a structure of projective billiard. Let us precise that in the following results the term quadric contains the conics. We show the following result which is a consequence of a construction contained in [START_REF] Chang | Elliptical billiard systems and the full Poncelet's theorem in n dimensions[END_REF] to generalize Poncelet theorem, but the latter does not mention the projective billiards:

Proposition. Let Q 1 and Q 2 be two distinct conics or quadrics. There is an open dense subset of Q 1 which can be endowed with a structure of projective billiard such that Q 2 is caustic of the corresponding projective billiard on Q 1 .

Given two distinct quadrics Q 1 and Q 2 , we can consider the pencil of quadrics F * (Q 1 , Q 2 ), which contains Q 1 and Q 2 and is dened by duality: the dual quadrics of the quadrics contained in

F * (Q 1 , Q 2 ) is a line containing the dual quadrics of Q 1 and Q 2 (in the space of quadrics). We can interpret F * (Q 1 , Q 2 )
as a generalization of the notion of pencil of confocal quadrics. Then we prove:

Proposition. The quadrics of

F * (Q 1 , Q 2 ) are caustics of Q 1 for the structure of projective billiard induced by Q 2 on Q 1 . Any quadric of F * (Q 1 , Q 2 )
induces the same projective structure on Q 1 as the one induced by Q 2 .

In dimension greater than 2, the study of billiards having caustics has been ended by Berger [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF]. He stated a result whose assumptions are weaker than Birkho-Poritsky conjecture: Berger showed that if there are hypersurfaces S, U , V of R d , with d ≥ 3, having non-degenerate second fundamental forms and such that there is an open subset of lines tangent to U and intersecting S which are reected by S in lines tangent to V , then S is a piece of quadric, and U, V are pieces of one and the same confocal quadric.

We prove at Section 2.4 that a key argument of Berger's proof can be generalized to projective billiards of R d , d ≥ 3, and we apply it to generalize Berger's result to pseudo-Euclidean billiards:

Theorem. Let Ω ⊂ R d , d ≥ 3, be a strictly convex pseudo-Euclidean billiard having a caustic Γ. Then ∂Ω is an ellipsoid and Γ is a piece of quadric which is confocal for the pseudo-Euclidean metric.

The argument of Berger we generalize can be described as follows. Let S ⊂ R d be a hypersurface and U, V be as in the previous mentionned result of Berger. Any line of the open subset of lines tangent to U , intersecting S at p and reected in a line tangent to V , is such that the hyperplane tangent to U containing and the hyperplane tangent to V containing intersect T p S in the same hyperplane H of T p S. Such hyperplane H ⊂ T p S is said to be permitted. Berger's key argument states that for a xed p there are at most d-1 such permitted hyperplanes. We show that in the case of projective billiards, this argument is still satised generically (a more precise meaning to this word will be given later):

Proposition. Generically at a point of reection of a projective billiard in dimension d ≥ 3, the number of permitted hyperplanes is at most d -1.

We think that this result is applicable not only to pseudo-Euclidean billiards. Maybe it could be used at least to show that if a projective billiard has a caustic, then this caustic is a quadric. A rst step would consist for example in proving it for a wider class of projective biliards containing pseudo-Euclidean billiards, and called projective billiards with exact transverse line elds, see [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF].

Details of Chapter 3

We study in this chapter the analogue of Ivrii's conjecture for projective billiards. A rst answer can be given thanks to the above mentionned example of 3-reective billiard on the unit sphere S 2 [START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF][START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF]. Indeed, a central projection from the sphere onto an ane plane projects such 3-reective billiard into a 3-reective projective billiard of the plane. This example of projective billiard, called right-spherical billiard (see Figure 8), immediately contradicts Ivrii's conjecture for projective billiards. We can ask if there are other examples of projective billiards having open subsets of periodic orbits with more than 3 reections. This thesis presents examples of projective billiards inside polygons which are k-reective for any choice of an arbitrary even integer k (cf Section 3.1 and [START_REF] Fierobe | Examples of reective projective billiards[END_REF]). Their k-reectivity comes from the particular symmetry of the polygons and of their projective elds of lines. We were unable to nd other examples of k-reective billiards with an odd k. We can ask the question wether there exist or not k-reective billiards in polygons with an odd k ≥ 5. Maybe the answer to this question could use a similar argument to [START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF], which prove Ivrii's conjecture for periodic orbits of odd periods inside billiards with piecewise algebraic boundary. These examples suggest to classify the projective billiards having open subsets or subsets of nonzero measure of periodic orbits. The benet of this method is to understand Ivrii's conjecture in other geometries. We can rst note that the existence of a k-reective projective billiard gives numerous examples of projective billiards having a subset of non-zero measure of k-periodic orbits by the following construction: given a k-reective projective billiard having an open subset U of k-periodic orbits, any billiard which coincide with the rst one on a Cantor set of positive measure included in U has a subset of non-zero measure of k-periodic orbits. Therefore we can focus on classifying k-reective projective billiards only, as soon as a k-reective billiard already exists. This manuscript gives a classication of billiards having open subsets of periodic orbits (in dimension 2) and subset of non-zero measure of periodic orbits (in dimension d ≥ 3):

Proposition. 1) The only 3-reective projective billiard of R 2 with piecewise C ∞ -smooth boundary is the right-spherical billiard.

Figure 8: On the left, the right-spherical billiard obtained from an example of 3-reective billiard on the sphere, as described in [START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF][START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF]. On the right, an example of 4-reective projective billiard presented in this manuscript,see Section 3.1.

2) If d ≥ 3, there is no projective billiard in R d with C ∞ -smooth boundary having a set of non-zero measure of 3-periodic orbits.

The proof of this theorem is widely inspired from [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] and can be decomposed in two steps: we rst study a complex version of 3-reective projective billiards with piecewise analytic boundary, then we extend the result to C ∞ -smooth boundary using the theory of Pfaan systems. This last step is presented in Section 3.2, in which Pfaan systems related to projective and Eulidean billiards are introduced and studied.

Pfaan systems are a tool based on analytic distribution, and their application to billiard theory can be attributed to Barychnikov and Zharnitsky [START_REF] Baryshnikov | Billiards and nonholonomic distributions[END_REF][START_REF] Baryshnikov | Sub-Riemannian geometry and periodic orbits in classical billiards[END_REF]: they had the idea to associate to a k-reective billiard an intergal surface of a certain distribution, called Birkho's distribution.

In the case of planar billiards, Birkho's distribution is the distribution associating to a nondegenerate k-sided polygon the cartesian product of its outer bisectors (which are the lines splitting in half the outer opposite angles formed by the lines supporting two consecutive sides of the polygon). Thus, if a 2-dimensional integral surface of Birkho's distribution is such that its projections onto each vertex are smooth curves, then these smooth curves are on the boundary of a k-reective billiard. Indeed, any point of the integral surface is a polygon whose outer bisectors are tangent to the boundary of the billiard, by denition of the distribution, hence is a k-periodic orbit. A Pfaan system is then an object which contains the data of a distribution, the dimension of its integral surfaces of interest, and some transversality conditions, on which can be applied what are called prolongations in order to nd intergal surfaces. Barychnikov and Zharnitsky's idea was also used in [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF], where the following conjecture (Conjecture 5) is stated:

Kudryashov's conjecture. Let k ≥ 3 and d ≥ 2 be integers. There is an integer r ≥ 2, uniquely depending on k and d, such that if there is a piecewise C r -smooth billiard in R d having a set of non-zero measure of k-periodic orbits, then there is a k-reective billiard with piecewise analytic boundary. This conjecture can be understood as follows: If Ivrii's conjecture is false for billiards with piecewise C r -smooth boundary, then there is a k-reective billiard with piecewise analytic boundary.

Some arguments of [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] can be used to prove the case r = ∞, but the corresponding result is not mentioned. In our opinion, it is a remarkable result which needs to be explicitely formulated.

Hence we give a complete proof of it in Section 3.2, whose arguments comes from [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF].

Theorem. Kudryashov's conjecture holds for r = ∞.

We also prove that if a k-reective billiard with piecewise C ∞ -smooth boundary exists, then for any integer r ≥ 1 its boundary can be approwimated by r-jets of k-reective billiards with piecewise analytic boundary. We further extend this proof to the class of projective billiards (cf Section 3.2):

Theorem. If there is a piecewise C ∞ -smooth projective billiard (with a piecewise C ∞ -smooth eld of transverse lines) having a subset of non-zero measure of periodic orbits, then there is a piecewise analytic k-reective projective billiard.

These arguments can give interesting tools towards the possible resolution of Ivrii's conjecture, like for example studying the more simple case of k-reective billiards with piecewise analytic boundary, or studying these billiards in the class of projective billiards. Generalizations could maybe lead to simplications.

Perspectives

To conclude, the main results obtained during this thesis helped to better understand projective billiards with sets of non-zero measure of periodic orbits, to classify them in the particular case of 3-periodic orbits, to expose so-called complex caustics of the elliptic billiard, to show the existence of projective billiard structures on conics and quadrics so that the latter admit caustics, and to generalize a result of Berger to projective billiards in dimension at least 3, which was applied to classify pseudo-Euclidean billiards having caustics. Nevertheless, the study realised during this thesis is not over and raises maybe more questions than it gives answers... The problem of projective billiards having caustics in dimension d ≥ 3 has only partial answers: a key argument of Berger was succesfuly generalized to projective billiards, but the result of Berger was itself generalized only to a small class of projective billiards (the pseudo-Euclidean ones). It could be interesting to nd a more general class of billiards in which this result can be proven to be true, for example the so-called projective billiards with exact transverse line elds [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF]. We can maybe state a conjecture: possibly, if a projective billiard in dimension d ≥ 3 has a caustic then this caustic is a quadric. I am very curious about the answer.

Ivrii's conjecture is also a major problem of billiard theory. We do not pretend to give an answer, but it could be interesting to study "simple" classes of k-reective projective billiards. We can try fro example to answer the question if there are k-reective projective billiards with an odd k ≥ 5 inside polygons. We were unable to nd examples of such billiards. More generally, we can investigate the question if the examples of k-reective billiards presented in Section 3.1 are the only k-reective projective billiards inside polygons. We can nally try to understand if the arguments given in [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] and also studied in Chapter 3 to classify 3-reective projective billiards can be generalized to a nite number of reections.

Chapter 1

Complex and projective billiards

Billiards are usually dened as bounded domains Ω in complete Riemannian manifolds, on the boundary of which the geodesics can be reected into new ones by the classical law of reection of physical optics. In the case when Ω is of dimension 2, this law states that the angle with the boundary made by the geodesic before impact has to be the same as the angle with the boundary made by the reected geodesic. In dimension at least 3, the vectors directing the incident and reected geodesics together with any normal vector to the boundary at the point of impact should also be contained in the same plane.

In this chapter, we dene other types of reection, or reection laws. Before going further into details, we would like the reader to think of them as follows: if K is either the eld R or C and H is an ane hyperplane of K d (the tangent space) containing a point p (the point of impact), a law of reection at p with respect to H can be thought of as a non-trivial involutive map of the set of lines containing p xing the lines included in H. When K = R, we can further orient the lines containing p with respect to H, so that the image by the reection law of an oriented line has an opposite orientation with respect to H (see Figure 1.1). This chapter presents two types of billiards, the projective and complex billiards, dened by laws of reections inspired from previous idea, and described in dierent sections. The law of reection of projective billiards, or projective law of reection (see Section 1.1), is dened with help of a transverse line L to H at p. It was introduced and studied by Tabachnikov [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF][START_REF] Tabachnikov | Introducing projective billiards[END_REF]. The law of reection of complex billiards, or complex law of reection (see Section 1.2), is dened in C 2 using a complexication of the Euclidean metric. It was introduced and studied by Glutsyuk [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF][START_REF] Glutsyuk | On quadrilateral orbits in complex algebraic planar billiards[END_REF][START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF].

Projective billiards

In this section, we dene the usual model of projective billiard in R d as it is presented in [START_REF] Tabachnikov | Exact transverse line elds and projective billiards in a ball[END_REF][START_REF] Tabachnikov | Introducing projective billiards[END_REF]. This model of billiard generalizes the usual model of Euclidean billiard, but also of pseudo-Euclidean billiards and of billiards in metrics projectively equivalent to the Euclidean one (metrics in R d whose geodesics are contained in lines).

A projective billiard in R d is a hypersurface S or a collection of hypersurfaces endowed with a eld of transverse lines to S, called eld of projective lines. For example, if R d is endowed with a metric or a eld of non-degenerate quadratic forms, we can dene a eld of lines on a hypersurface S ⊂ R d as follows: for p ∈ S, dene the line L(p) to be the line containing p and orthogonal to T p S with respect to the metric or quadratic form. It is however possible that line L(p) is not transverse to S at p if the restriction to T p S of the eld of quadratic forms is degenerate. Otherwise, S has the structure of a projective billiard induced by the metric or the eld of quadratic forms.

A reection law, called projective reection law, can be dened on a hypersurface S endowed with a eld of transverse lines L: given an oriented line of R d intersecting S at a certain point p, we dene the reected line to be a line containing p and satisfying a condition of harmonicity with L(p) (see Denition 3.54). In the case when the projective lines L(p) at p is orthogonal to T p S, the reected line coincides with the line reected by the usual law of reection (which preserves the angles of reection in the Euclidean case).

We rst recall some properties about harmonic quadruples of lines in Subsection 1.1.1, then we apply it to dene projective billiards in Subsection 1.1.2, and we nally introduce the projective billiard map in Subsection 1.1.3.

Harmonic quadruple of lines

In this section, K is the eld R or C. We recall some properties of the cross-ratio and harmonic quadruple of points in P 1 (K). They can be extended to quadruple of lines containing the same point, and this will lead to the denition of projective reection law. Most of the results on harmonic quadruples of points are very basic, and we refer the reader for example to [START_REF] Berger | Geometry, Volumes I and II[END_REF] for more details.

Let d ≥ 1 be an integer. We denote by P d (K) the d-dimensional projective space, which is the set of equivalence classes in K d+1 {0} for the relation ∼, dened for all x, y ∈ K d+1 {0} by x ∼ y if and only if there is λ ∈ K {0} such that y = λx. For x = (x 0 , . . . , x d ) ∈ K d+1 {0}, write (x 0 : . . . : x d ) ∈ P d (K) the equivalence class of x for this relation.

Cross-ratio. The cross-ratio of four distinct points p 1 , p 2 , p 3 , p 4 of P 1 (K) is a well-known quantity which can be dened in many dierent ways. Here we adopt the denition of [START_REF] Berger | Geometry, Volumes I and II[END_REF] Vol. I Chap. 6. based on the sharp 3-reectivity of the projective line's group of transformations:

Denition 1.1. The cross-ratio of four distinct points p 1 , p 2 , p 3 , p

4 of P 1 (K) is the image h(p 4 )
of the only projective transformation

h of P 1 (K) satisfying h(p 1 ) = ∞, h(p 2 ) = 0 and h(p 3 ) = 1,
where ∞ = (1 : 0) and x stands for (x : 1) given any x ∈ K.

The cross-ratio of four distinct points is invariant under projective transformations of P 1 (K) ([5] Sec. 6.1.4.). We say that the quadruple (p 1 , p 2 , p 3 , p 4 ) is harmonic if the cross-ratio of the corresponding points is -1. If we permute p 1 with p 2 , or p 3 with p 4 , or even (p 1 , p 2 ) with (p 3 , p 4 ), then the corresponding quadruple of points is still harmonic ([5] Prop. 6.3.1.). Example 1.2. Denote by 0 the point (0 : 1) and by ∞ the point (1 : 0). Given any point p = (x : 1) of P 1 (K), the point p = (-x : 1) is the only point such that the quadruple

(p, p , 0, ∞) is harmonic (see Figure 1.2). Hence a quadruple of points (p, p , 0, ∞) is harmonic if and only if 0 is the midpoint of [p, p ].
Harmonicity and involutive transformations. Harmonic quadruple of points are closely related to the existence of involutive maps of the projective line P 1 (K) ([5] Sec. 6.7.). Indeed, given two distinct points p 3 , p 4 of P 1 (K), there is a unique non-trivial projective involution s of P 1 (K) xing p 3 and p 4 . The map s has the property that any quadruple of points of the type (p 1 , p 2 , p 3 , p 4 ) is harmonic if and only if s(p 1 ) = p 2 .

Example 1.3. Using the same notations as in Example 1.2, the non-trivial projective involution

of P 1 (K) xing 0 and ∞ is the map represented in the chart {(x : 1) | x ∈ K } as x → -x.
Space of lines. The space of lines in P 2 (K) is the set containing all lines of P 2 (K). We can identify it with a 2-dimensional projective space as follows: we see P 2 (K) as the projectivization P(V ) of the space V = K 3 . In this representation, the space of lines of P 2 (K) can be identied with P(V * ), where V * is the dual space of V : to any hyperplane H of V corresponds a unique set of colinear linear forms on V having H as a kernel.

We can also identify it in a non-unique way with P 2 (K) via a non-degenerate quadratic form, since the latter induces an isomorphism between V and V * (more details will be given in Section 2.1).

Space of lines containing a xed point. The set of lines containing a point p ∈ P 2 (K) can be identied with a projective line P 1 (K). We give two ways to state this identication, the rst one being canonical, the other one being more geometric: Identication 1. The set of lines p * containing a xed point p is a line in P(V * ). Indeed, if x is a non-zero vector of V whose equivalence class in P(V ) is p, the map α ∈ V * → α(x) ∈ K is a non-zero linear form and its kernel is a hyperplane of V . Hence p * is a one-dimensional projective space. Identication 2. Consider a line L which do not contain the point p. We can dene a projective transformation L → p * by associating to any q ∈ L the line pq. This gives a projective correspondance between the lines containing p and the points on L.

Therefore the cross-ratio of four lines containing p is well-dened in any identication of p * with P 1 (K) and doesn't depend on the identication since it is invariant by projective transformations: Denition 1.4 (Harmonic quadrupe of lines in the plane). Let 1 , 2 , 3 , 4 be distinct lines 1 , 2 , 3 , 4 containing a point p ∈ P 2 (K). We say that the quadruple of lines ( 1 , 2 , 3 , 4 ) is harmonic if at least one of the following equivalent conditions is satised:

p q 1 q 2 q 3 q 4 1 2 3 4 L Figure 1.3: 1 , 2 , 3 , 4
form a harmonic quadruple of lines if and only if their intersection points q 1 , q 2 , q 3 , q 4 with L form a harmonic quadruple of points.

1) The cross-ratio of the corresponding lines is -1 in any identication of p * with P 1 (K).

2) The intersection points q 1 , q 2 , q 3 , q 4 of 1 , 2 , 3 , 4 with a line L not containing p form a harmonic quadruple of points (see Figure 1.3).

3) The unique non-trivial projective involution of p * xing 3 and 4 permutes 1 and 2 .

Remark 1.5. In fact condition 3) allows to extend the condition of harmonicity in the case when 1 and 2 are both equal to either 3 or 4 .

Remark 1.6. Notice that if the quadruple of lines ( 1 , 2 , 3 , 4 ) is harmonic, then so are the quadruples of lines obtained by permuting 1 with 2 , or 3 with 4 , or even ( 1 , 2 ) with ( 3 , 4 ).

We will often use this remark.

Azimuth of a line. A computational way to work with harmonic quadruple of lines can be described by the following idea from [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF]. Consider an identication of a line L not containing p or of p * with P 1 (K) = K ∪ {∞}: any line containing p can be associated with a value z ∈ K ∪{∞} called azimuth of , denoted by az( ), and dened as the corresponding coordinate of in P 1 (K).

Proposition 1.7 ([5] Prop. 6.7.2.). Let ( 1 , 2 , 3 , 4 ) be a quadruple of lines through p. Denote by (z 1 , z 2 , z 3 , z 4 ) their corresponding azimuths. The quadruple of lines is harmonic if and only if there is a non-trivial involutive projective transformation h of K ∪ {∞} xing z 3 , z 4 and permuting z 1 and z 2 . The latter transformation is given for all z ∈ P 1 (K) by

h(z) = (z 3 + z 4 )z -2z 3 z 4 2z -(z 3 + z 4 ) . (1.1)
Proof. A proof of the rst statement is given in [START_REF] Berger | Geometry, Volumes I and II[END_REF] Prop. 6.7.2. Formula (1.1) for h is not explicitely given in [START_REF] Berger | Geometry, Volumes I and II[END_REF], but the reader may check that it denes a non-trivial involutive transformation xing z 3 and z 4 .

In any dimension d ≥ 2. We can extend statement 2) The lines , , L are contained in the same plane P and the quadruple of lines ( , , L, H ∩P) is harmonic. The involution s is called the projective reection law with respect to (L, H).

Proof. Identify p * with P d-1 (K), so that the set of lines of p * contained in H is a projective hyperplane of P d-1 (K) and L is a point of P d-1 (K) \ H : the latter are the projections in

P d-1 (K) of a linear hyperplane H 0 ⊂ K d and of a one-dimensional linear subspace L 0 ⊂ K d such that K d = H 0 ⊕L 0 .
Consider the linear map acting identically on H 0 and on L 0 as x → -x.

Then the map s is obtained from it by passing to the quotients. In the same way, a linear map of K d preserving the one-dimensional subspaces of H 0 restricts to H 0 as a homothety, and the unicity of s follows.

1) ⇔ 2) The restriction of s to any plane P containing L is well-dened, non-trivial and involutive. Hence the equivalence between both statements is a consequence of condition 3) of Denition 1.4.

Line-framed hypersurfaces and projective reection law

In this section, we introduce line-framed hypersurfaces and their reection law, which are the formal objects used to dene projective billiards. These denitions are based on the following identication: given a point p ∈ R d , a line through p can be seen as an element of P(T p R d ) via the exponential map exp p : Denition 1.9. A line-framed hypersurface (see Figure 1.4) is a regularly embedded connected

T p R d → R d .
(d -1)-dimensional surface Σ ⊂ P(T R d )
with the following properties:

-The projection π sends Σ dieomorphically to a regularly embedded hypersurface S ⊂ R 2 , which will be identied with Σ and called the classical boundary of the hypersurface Σ.

-For every (p, L) ∈ Σ the line L is transverse to T p S.

We will often say that Σ is a line framed-hypersurface over S = π(Σ), and that L is the eld of projective lines of Σ. In particular, L(p) is the line such that (p, L(p)) ∈ Σ.

Remark 1.10. An analogous denition can be given without supposing that L is transverse to T p S. In this case we say that such line-framed hypersurface has projective singularities.

Remark 1.11. Line-framed hypersurface can also be dened on P(T P d (R)) with analogue statements as in Denition 1.9.

Let Σ be a line-framed hypersurface over an hypersurface S ⊂ R d . The projective reection law on Σ can be dened as follows:

Denition 1.12. Let p ∈ S and , be oriented lines intersecting S at p. We say that is obtained from by the projective reection law on Σ at p if the lines , , L(p) are contained in a plane P the quadruple of lines , , L(p), T p S ∩ P is harmonic in P; -the orientations of and with respect to T p S are opposite.

Using previous statements, projective billiards can be dened as follows:

Denition 1.13. A projective billiard is a domain Ω whose boundary S = ∂Ω is the classical boundary of a C 1 -smooth line-framed hypersurface Σ together with the corresponding projective reection law on Σ. See Figure 1.4.

Projective orbits and projective billiard map

One can study the orbits of the projective reection law inside bounded domain Ω whose boundary S = ∂Ω is the classical boundary of a C 1 -smooth line-framed hypersurface Σ.

Denition 1.14. A projective orbit, or simply an orbit, of the projective billiard Ω is a sequence of points p 1 , . . . , p k ∈ ∂Ω such that for each j = 1, . . . , k -1 -p j = p j+1 , the line p j p j+1 is oriented from p j to p j+1 ; -the interior of each segment p j p j+1 is included in Ω ; -for j > 1, the lines p j-1 p j and p j p j+1 are transverse to S at p j ; -for j > 1, the line p j p j+1 is obtained from p j-1 p j by the projective reection law at p j . The orbit is said to be k-periodic if (p 1 , . . . , p k , p 1 , p 2 ) is an orbit.

Let (p 1 , p 2 , p 3 ) be a projective orbit of Σ such that the line p 2 p 3 is transverse to S at p 3 . There is an open subset U (p 1 ,p 2 ) of S × S containing (p 1 , p 2 ) such that for all (q 1 , q 2 ) ∈ U (p 1 ,p 2 ) , q 1 = q 2 , the line q 1 q 2 is transverse to S at q 2 and is reected into a line intersecting S transversaly at a point q 3 by the projective law of reection at q 2 . We can dene on U (p 1 ,p 2 ) the projective billiard map using above description as the map B :

U (p 1 ,p 2 ) → S × S satisfying B(q 1 , q 2 ) = (q 2 , q 3 ). (1.2) Proposition 1.15. Let r ≥ 2 be an integer. If Σ is C r -smooth (respectively analytic) then B is a C r-1 -smooth (respectively an analytic) map of rank 2(d -1).
Proof. We rst show that B is of class C r-1 (resp. analytic). Indeed, notice that there is a C r-1 -smooth (resp. an analytic map) dened on the restriction of the set P(T R d ) |S which associate to (p, ), where p ∈ S and is a line containing p, the element (p, ) where is the line containing p and obtained by the projective reection law at p dened by Σ. In fact the restriction of such map on each ber {p} × P(T R d ) is a projective transformation depending C r-1 -smoothly (resp. analyticaly) on p. We conclude on the regularity by proving the following result: consider a line intersecting a C r -smooth (resp. an analytic) hypersurface S transversaly at a point p; then if another line is close to , then intersects S at a point q close to p and that the map → q is of class C r (resp. is analytic). Indeed, consider a ane hyperspace H intersecting transversally at a point p 1 and v = 0 be a unit vector directing . There is a dieomorphism between a neighborhood of U of lines containing and a neighborhood

U (p 1 ,v) of (p 1 , v) in H × .
Now consider an open subset U p of p and a C r -smooth (resp. an analytic) submersion f :

U p → R such that S ∩U p = f -1 ({0}). The map F : U (p 1 ,v) ×R → R dened by F (q 1 , v , t) = f (q 1 +tv ) is well-dened in a neighborhood of (p 1 , v, τ ) where p = p 1 +τ v, and is C r -smooth (resp. analytic). Its dierential in t at (p 1 , v, τ ) is df (p) • v
and the latter is non-zero since v is not in the tangent space to S at p. The conclusion follows from the implicit function theorem.

Finally, the map B : U (p 1 ,p 2 ) → S ×S is a local dieomorphism onto its image, since if B(q 1 , q 2 ) = (q 2 , q 3 ) then B(q 3 , q 2 ) = (q 2 , q 1 ) and we can easily contruct a smooth inverse map for B.

Projective billiards induced by a metric

As explained in the introductive section, other types of billiards such as the usual billiards, billiards in metrics projectively equivalent to the Euclidean metric or billiards in pseudo-Euclidean spaces can be dened as specic projective billiards. In this section, we recall briey these different types of billiards and give an explanation on why they can be seen as projective billiards.

We rst dene dierent metrics on R d :

Euclidean metric. It is the canonical Riemannian metric on R d : d j=1 dx 2 j on R d . Metrics projectively equivalent to the Euclidean metric. They are Riemannian metrics in R d whose geodesics are lines. A theorem of Beltrami [START_REF] Beltrami | Risoluzione del problema: Riportare i punti di una supercie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette[END_REF][START_REF] Matveev | Geometric explanation of the Beltrami theorem[END_REF] improved in all dimensions by Lipschitz and Schur implies that such metrics have constant sectional curvature. We describe two famous examples of such metrics (which can also be found in [START_REF] Tabachnikov | Introducing projective billiards[END_REF]):

Sphere. Consider the upper half open hemisphere H N of the unit sphere S 2 of center O, given by the equations x 2 + y 2 + z 2 = 1 and z > 0 in R 3 . Any point p ∈ H N can be mapped to a unique point q of the plane P ⊂ R 3 given by equation z = -1: q is dened to be the intersection point of the line Op with P . This denes a dieomorphism ϕ : H N → P . The geodesics of S 2 for the usual spherical metric g S 2 are contained in great circles, which are the intersection of S 2 with a plane containing O. Therefore, their image by ϕ are lines of P , see Figure 1.5. Hence the geodesics of P for the pushforwarded metric ϕ * g S 2 are lines.

Hyperboloïd. Consider the upper sheet (x > 0) of the hyperboloïd of equation

x 2 -y 2 -z 2 = 1,
denoted by H 2 . The usual Minkovski metric g H 2 on H 2 is the restriction of dy 2 +dz 2 -dx 2 to the tangent planes of H 2 . The geodesics of H 2 are the intersections of H 2 with a plane containing the origin O. Hence the same construction can be applied to push forward the metric g H 2 on a plane where it is projectively equivalent to the Euclidean metric.

Pseudo-Euclidean metrics. [START_REF] Dragovi¢ | Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics[END_REF][START_REF] Adabrah | Periodic billiards within conics in the Minkowski plane and Akhiezer polynomials[END_REF][START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF] A pseudo-Euclidean space of signature (k, ), with k + = d, is the space R d endowed with the non-degenerate bilinear form

•|• dened for all x, y ∈ R d by x|y = k j=1 x j y j - d j=k+1
x j y j .

(1.3) Now consider the following situation which gives the denition on how a line intersecting a hyperplane is reected in these metrics. Let H ⊂ R d be a hyperplane, q a non-degenerate quadratic form on R d (for example one of the previous dened metrics) such that the q-orthogonal space to H, H ⊥ , which is one-dimensional, is not included in H (for example when q is positivedenite). Any vector v ∈ R d has a unique decomposition v = h + n where h ∈ H and n ∈ H ⊥ , and can be associated to the vector s(v) = h -n. The map s is linear and induces a non-trivial involution on the set of lines containing the origin O which xes the line H ⊥ and any line included in H.

Proposition 1.16. The map s, called the usual law of reection in the metric q, coincides with the projective law of reection with respect to (L, H) (Proposition 1.8).

Proof. Both maps satisfy the same properties, hence coincide by Proposition 1.8. Therefore, if S ⊂ R d is a smooth hypersurface, and g is one of previous metrics (a pseudo-Euclidean metric, the Euclidean metric or a projectively equivalent one), then we can dene at each point p ∈ S the g-orthogonal line L(p) to T p S containing p. If at each point p, the line L(p) is transverse to T p S, then g induces a line-framed hypersurface over S denoted by

S g = (p, L) ∈ P(T R d ) L = (T p S) ⊥g .
By Proposition 1.16, any orbit in S for the usual reection law in the metric g is an orbit of the corresponding projective billiard.

Complex billiards

In this section, we present a natural generalization of the usual reection law in the Euclidean plane to C 2 and also CP 2 : the complex reection law. It was introduced, together with complex planar billiards, by Glutsyuk in [START_REF] Glutsyuk | On quadrilateral orbits in complex algebraic planar billiards[END_REF] and [START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF]. See also [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF] where they were applied to solve the two-dimensional Tabachnikov's Commuting Billiard conjecture and a particular case of two-dimensional Plakhov's Invisibility conjecture with four reections.

Complex reection law

We denote by CP 2 the set P 2 (C) dened at Section 1.1.1. Any element of CP 2 can be written as a triple (x : y : z), with (x, y, z) ∈ C 3 {0}. By construction (tx : ty : tz) = (x : y : z) for any complex number t = 0. In this set of coordinates, the complex projective space is the disjoint union

CP 2 = U z ∪ L ∞ of the so-called standard open subset U z = {(x : y : 1) | (x, y) ∈ C 2 } and the line L ∞ = {(x : y : 0) | (x, y) ∈ C 2 {0}} called line at innity. The map (x, y) ∈ C 2 → (x : y : 1) ∈ U z
is an analytic chart mapping C 2 to U z . Hence we can consider the pushforward of the nondegenerate quadratic form q = dx 2 + dy 2 dened on T CP 2 |Uz := T U z .

Denition 1.17. A line of CP 2 is said to be isotropic if it contains either the point I = (1 : i : 0)

or the point J = (1 : -i : 0), and non-isotropic if not. Notice that the line at innity is isotropic.

In the case of a non-isotropic line L ⊂ CP 2 , we can dene a complex q-isometric involution of the space U z C 2 xing the points of L. This involution can be constructed by considering the projective transformations preserving L and its q-orthogonal lines. This involution induces a symmetry on lines of U z , and can be extended to all lines of CP 2 by sending L ∞ to L ∞ . In the case of an isotropic line, this contruction fails since q-orthogonal lines to L are its parallel lines.

Denition 1.18 ([24], denition 2.1). The symmetry with respect to a line L = L ∞ is dened as follows:

-Case 1: L is non-isotropic. The symmetry acting on C 2 is the unique non-trivial complex q-isometric involution xing the points of the line L. It induces the same symmetry acting on lines.

-Case 2: L is isotropic. We dene the symmetry of lines through a point p ∈ L ∩ U z : two lines and which contain p are called symmetric if there are sequences

(L n ) n , ( n ) n , ( n ) n of lines through points p n so that L n is non-isotropic, n and n are symmetric with respect to L n , n → , n → , L n → L and p n → p.
We recall now lemma 2.3 [START_REF] Glutsyuk | On quadrilateral orbits in complex algebraic planar billiards[END_REF] which gives an idea of this notion of symmetry in the case of an isotropic line through a nite point.

Lemma 1.19 ([24], lemma 2.3). If L is an isotropic line through a point p ∈ U z and , are two lines which contain x, then and are symmetric with respect to L if and only if either = L, or = L.

Complex orbits

Let γ ⊂ CP 2 be a complex curve of CP 2 (that is smooth at each point).

Denition 1.20 ([24]). A non-degenerate orbit on γ is a nite sequence (p 1 , . . . , p k ) ∈ γ k such that -p j = p j+1 for each j ∈ {1, . . . , k -1}; -T p j γ is not isotropic for each j ∈ {1, . . . , k}; -the lines p j-1 p j and p j p j+1 are symmetric with respect to the tangent line T p j γ for each

j ∈ {2, . . . , k -1}.
The side of an orbit is one of the lines p j p j+1 . A non-degenerate k-periodic orbit is a non-

degenerate orbit (p 1 , . . . , p k ) ∈ γ k such that (p 1 , . . . , p k , p 1 , p 2 ) is a non-degenerate orbit.
By opposition we can dene degenerate orbits as follows:

Denition 1.21 ([24]). A degenerate orbit (resp. a degenerate k-periodic orbit) on γ is a set of points (p 1 , . . . , p k ) ∈ γ k which is the limit of non-degenerate orbits (resp. non-degenerate k-periodic orbits) and is not a non-degenerate orbit (resp. non-degenerate k-periodic orbits).

We can also dene the side of a degenerate orbit as the limit of the sides of non-degenerate orbits converging to it. In the case when p j = p j+1 , we can naturally dene the side p j p j+1 as the tangent line T p j γ.

Proof by complexication: circumcenters of triangular orbits

In this section, we present a published result [START_REF] Fierobe | On the Circumcenters of Triangular Orbits in Elliptic Billiard[END_REF] on the circumcenters of triangular orbits in an elliptic billiard, which is of great interest for us since its proof uses complex billiards to solve a problem of real geometry. More precisely, we are interested in the usual billiard inside an ellipse and its 3-periodic or triangular orbits. We show that the set of all circumcenters to these orbits is an ellipse. The proof of this result is based on the complexication of the problem and on the use of the complex reection law introduced at Section 1.2.

Theorem 1.22. The set C of the circumcenters of all triangular orbits of the billiard within an ellipse is also an ellipse.

Remark 1.23. Theorem 1.22 is obvious in the particular case where the ellipse is a circle, because then the set of circumcenters is reduced to a single point. Thus, we will assume that the ellipse is not a circle.

There are many other results similar to theorem 1.22. Dan Reznik discovered experimentally the same result for the incenters of triangular orbits, see the video [START_REF] Reznik | [END_REF] and the github page [START_REF] Reznik | New Properties of Triangular Orbits in Elliptic Billiards[END_REF] written with Jair Koiller. Romaskevich (see [START_REF] Romaskevich | On the incenters of triangular orbits in elliptic billiard[END_REF]) conrmed these observations by proving them and her proof widely inspired ours. Tabachnikov and Schwartz, in [START_REF] Schwartz | Centers of mass of Poncelet polygons, 200 years after[END_REF], proved that the loci of the centers of mass (and of an other particular point) of a 1-parameter family of Poncelet n-gons in an ellipse is an ellipse homothetic to the previous one. They also mention that a similar result was proved by Zaslawski, Kosov and Muzafarov for the orthocenters ( [START_REF] Zaslavsky | Trajectories of remarkable points of the Poncelet triangle[END_REF], reference from [START_REF] Schwartz | Centers of mass of Poncelet polygons, 200 years after[END_REF]). And Garcia (see [START_REF] Garcia | Elliptic Billiards and Ellipses Associated to the 3-Periodic Orbits[END_REF]) uses explicit calculations to prove that the loci of circumcenters, incenters and orthocenters of triangular orbits are ellipses, and describes them precisely. His proof of the result about circumcenters was found simultaneously and independantly to us.

Before going into details, we give here a brief summary of the proof, which is inspired by [START_REF] Romaskevich | On the incenters of triangular orbits in elliptic billiard[END_REF], and in which we use the same complex methods. We consider a projective complexied version of C, denoted by Ĉ, which turns out to be an algebraic curve as a consequence of Remmert proper mapping theorem and Chow's theorem, see [START_REF] Ph | Principles of algebraic geometry[END_REF] p. 34. Then we show that the intersection of the complex curve Ĉ with the foci line of the boundary ellipse E is reduced to two points, each one of them corresponding to a single triangular orbit. Further algebraic arguments on the intersection type of Ĉ with the foci line of E allow to conclude that it is a conic, using Bezout theorem. It's then possible to check that Ĉ is an ellipse since its real part is bounded.

As explained, one considers the projective complex Zariski closure of the ellipse E and a complexied version Ĉ of C. In order to dene Ĉ and to prove the rst statement concerning the intersection with the foci line, we study an extension of the reection law and of the triangular orbits to complex domain, as in [START_REF] Romaskevich | On the incenters of triangular orbits in elliptic billiard[END_REF], and we use some of the results contained in the latter article such as Proposition 1.33.

Section 1.3.1 is devoted to the complex reection law and to complex orbits in a complexied ellipse: Subsection 1.3.1.1 recalls some results about complexied conics; we further dene what is a triangular complex orbit in Subsection 1.3.1.2; then, in Section 1.3.2 we introduce the denition and we study properties of complex circumscribed circles to such orbits: Proposition 1.41 is the main result of this section. Finally, Section 1.3.3 is devoted to the proof of Theorem 1.22, using previous results.

Complex triangular obits on an ellipse

In this section, we recall some results about complexied conics and we study results about triangular orbits of the complexied ellipse E.

Preliminary results on complexied conics

We dene a complexied conic as the algebraic closure of a real conic in R 2 : an ellipse, a hyperbola or a parabola. We recall that an ellipse cuts the line at innity in two distinct points with strictly complex coordinates, a hyperbola in two distinct points with real coordinates, and a parabola is tangent to the line at innity. The following results on conics are well-known and can be found in [START_REF] Berger | Geometry, Volumes I and II[END_REF][START_REF] Klein | Über höhere Geometrie[END_REF]. During the proof, it will be convenient to distinguish two types of orbits : the ones with no points at innity, and the others, with at least one point at innity: 

Circumcircles and circumcenters of complex orbits

Here we present the last part of the required denitions, which concerns the complex circles circumscribed to triangular orbits. This part is dierent from the previous one, because here the considered conics are complex and not necessarily complexied versions of real conics.

Denition 1.36. A complex circle is a regular complex conic passing through both isotropic points at innity, I and J. Its center is the intersection point of its tangent lines at I and J.

Proposition 1.37. For a non-degenerate nite orbit, there is a unique complex circle passing through the vertices of the orbit and both isotropic points at innity. It is called the circumscribed circle or circumcircle to the non-degenerate orbit.

Proof. Denote by α, β, γ the vertices of the orbit. We have to prove that no three points of α, β, γ, I, J are collinear. Indeed, as no vertices are on the line at innity, we only need to study two dierent cases: 1) α, β, γ are not collinear because they are distinct and they lie on the ellipse which has at most two intersection points with any line. 2) α, β, I are not collinear or else the line αβ would be isotropic. But this is impossible for a non-degenerate triangular orbit by Remark 1.32. We then exclude all other possible combinations of two vertices of the orbit with I or J, using the same arguments.

Let us extend this denition to degenerate orbits.

Denition 1.38. Let T be a degenerate or innite orbit. A circumscribed circle of T is the limit (in the space of conics) of a converging sequence of circumscribed circles of non-degenerate nite orbits converging to T . If a sequence of complex circles converges to a conic so that their centers converge to a point c ∈ CP 2 , then c is called a center of the limit conic. A circumcenter of T is a center of its circumscribed circle.

Remark 1.39. A priori, a limit conic K may have several centers in the sense of this denition.

Indeed, c depends on the choice of the sequence of circles converging to K. See Case 4 of Proposition 1.40 and its proof for more details.

Even if they are called circles, the circumscribed circles to a degenerate or innite orbit can degenerate into pairs of lines, as described below.

Proposition 1.40. The limit of a converging sequence of complex circles is one of the following:

1. a regular circle ;

2. a pair of isotropic non-parallel nite lines ; the corresponding center lies on their intersection ;

3. the innite line and a nite line d ; the center c lies on the line at innity and represents a direction which is orthogonal to d ; 4. the line at innity taken twice : its center can be an arbitrary point in CP 2 .

Proof. The equation of a regular circle D is of the form

a(x 2 + y 2 ) + pxz + qyz + rz 2 = 0
where a, p, q, r ∈ C, a = 0 and 4ar = p 2 + q 2 . Both isotropic tangent lines to D have equations 2a(x ± iy) + (p ± iq)z = 0, whose intersection is c = (p : q : -2a), which is the center of D by denition.

If we take a limit of regular circles, the equation of the limit circle is of the same type, that is

a(x 2 + y 2 ) + pxz + qyz + rz 2 = 0
but maybe with a = 0 or 4ar = p 2 + q 2 . And the center c is still of coordinates (q : p : -2a).

If a = 0, the limit circle is the union of the line at innity (z = 0) and the line d of equation px + qy + rz = 0. The line d is nite if and only if (p, q) = 0, and in this case it has direction (q, -p). Since c = (p : q : 0), the direction represented by c is orthogonal to d. If d is innite, the limit circle is the (double) line at innity. Note that in this case the center can be an arbitrary point.

If a = 0, but 4ar = p 2 + q 2 , the equation of the limit circle becomes

x + p 2a z 2 + y + q 2a z 2 = 0
which is the equation of two isotropic non collinear lines intersecting at the point (-p 2a : -q 2a :

1) = (p : q : -2a) = c. If a = 0 and 4ar = p 2 + q 2 , the limit circle is regular. Now let us nd which triangular orbits have their center on the line of real foci of E.

Proposition 1.41. Suppose that T is a complex triangular orbit whose circumcenter lies on the real foci line. Then T is nite, non-degenerate, symmetric with respect to the real foci line of E, and has a vertex on it.

Proof. Let T be a triangular orbit with a circumscribed circle C having a center c on the real foci line of E.

First case : Suppose T is nite and non-degenerate. We follow the arguments of Romaskevich [START_REF] Romaskevich | On the incenters of triangular orbits in elliptic billiard[END_REF] who treated the similar case for incenters. Indeed, at least two vertices should lie outside the foci line. If the line through them is not orthogonal to the foci line, then this pair of vertices together with their symmetric points and the remaining third vertex in T are ve distinct points contained in the intersection E ∩ C. This is impossible, since E is not a circle. Finally, the remaining vertex has to be on the foci line, or else we could nd two distinct orbits sharing a common side, which is impossible by denition of the reection law with respect to non-isotropic lines.

Second case : Suppose T is innite. Last case : Suppose T is degenerate. Then C cannot be a regular circle, otherwise the latter would be tangent to E in a point of isotropic tangency (by Proposition 1.33): this would imply that this point of isotropic tangency is I or J, which is impossible since they do not belong to E, assumed not to be a circle.

The circumcircle C cannot be the union of the line at innity and another line d. Otherwise, by the same arguments as in the second case, this line would be othogonal to the real foci line. Since T is nite (Proposition 1.35), d goes through its both vertices, implying that they are symmetric with respect to the foci line. Therefore, both vertices are points of isotropic tangency but this cannot happen for a degenerate triangular orbit.

Finally suppose C is the union of two isotropic lines having dierent directions. Lemma 1.42. Let C n be a sequence of circles containing two distinct points M n and N n of E converging to the same nite point α. Suppose C n has a center c n converging to a nite point c = α. Then the line cα is orthogonal to the line T α E.

Proof. The tangent line to C n at M n is orthogonal to the line M n c n hence the same is true for their limits. The limit of T Mn C n is obviously the limit of the line M n N n . Since M n and N n are on E, the line M n N n also converges to the tangent line

T α E. Hence T α E is orthogonal to αc.
Thus if α is a vertex of isotropic tangency of the orbit, Lemma 1.42 implies that αc is orthogonal to T α E, hence αc = T α E since the latter is isotropic. Recall that α does not lie in the real foci line. Since both isotropic lines constituing the circle go through c, one of them is T α E. Hence, they are both tangent to E by symmetry with respect to the real foci line. Thus the other vertex of T is a point of isotropic tangency of E, which is not possible by the previous arguments (such an orbit is not closed).

Proof of Theorem 1.22

We reall that E is a complexied ellipse, which we will identify with CP 1 . As stated in [START_REF] Poncelet | Traite des propriétés projectives des gures[END_REF], the 3-periodic real orbit are tangent to a smaller confocal ellipse, whose complexication is denoted by γ.

Consider the Zariski closure T of the set of real triangular orbits (which are circumscribed about γ). Let T 3 denote the set of triangles with vertices in E that are circumscribed about γ. It is a Zariski closed subset of E 3 (CP 1 ) 3 that contains the real orbits and can be identied with the set of pairs (A, L), where A is a point of the complexied ellipse E and L is a line through A that is tangent to γ. The set of the above pairs (A, L) is identied with an elliptic curve, and each pair extends to a circumscribed triangle as above, see the complex Poncelet Theorem and its proof in [START_REF] Flatto | Poncelet's Theorem[END_REF] for more details. Hence T 3 is an irreducible algebraic curve. Each triangle in T is circumscribed about γ, by denition and since this is true for the real triangular orbits and the tangency condition of the edges with γ is algebraic. Thus T ⊂ T 3 . Hence T = T 3 , by denition and since the curve of real triangular orbits (which is contained in T ) is Zariski dense in T 3 (irreducibility). Now the set T ⊂ T of complex non-degenerate triangular orbits circumscribed about the Poncelet ellipse γ is a subset of T 3 = T , Zariski open in T (because T \ T is dened by polynomial equations). Note that T \ T is nite (since it is a proper Zariski closed subset of an algebraic curve T ), and T is dense in T for the usual topology. Thus the analytic map φ : T → CP 2 which assigns to a non-degenerate orbit its circumcenter can be extended to a holomorphic map T → CP 2 , being a rational map. And by Remmert proper mapping theorem (see [START_REF] Ph | Principles of algebraic geometry[END_REF]), its image denoted by Ĉ is an irreducible analytic curve of CP 2 , hence it is an irreducible algebraic curve by Chow theorem (see [START_REF] Ph | Principles of algebraic geometry[END_REF]).

Let us show that Ĉ is a conic, using Bezout theorem and studying its intersection with the real foci line of E. In fact, we already know two distinct points lying on this intersection: the circumcenters c 1 and c 2 of both triangular real orbits T 1 and T 2 circumscribed about Poncelet's ellipse γ and having a vertex on the foci line.

Lemma 1.43. The foci line of the ellipse intersects Ĉ in only c 1 and c 2 which are distinct, and for each i the only triangular orbit of T having c i as a circumcenter is T i .

Proof. Take a point c of Ĉ lying on the foci line. Then by Proposition 1.41, an orbit of center c is nite, non-degenerate, and has a vertex on the foci line. If this orbit is in T , it is circumscribed about γ. One of its vertices lies on the foci line, hence coincides with a vertex of some T i . Hence it is T 1 or T 2 , otherwise we could nd a number strictly greater than two of tangent lines to γ containing a vertex of E. Furthermore, if c 1 = c 2 , the circumcircle of T 1 would be the same as the one of T 2 by symmetry, and E would share six dictinct points with the former, which is impossible. The result follows.

Theorem 1.44. The set Ĉ ⊂ CP 2 is a complexied ellipse.

Proof. Let us show that c 1 is a regular point of Ĉ, and that the latter intersects the foci line transversally. Fix an order on the vertices of T 1 and consider the germ (T , T 1 ). The latter is irreducible (because parametrized by γ), hence the germ (V, c 1 ) ⊂ ( Ĉ, c 1 ) dened as φ(T , T 1 ) is also irreducible. By Lemma 1.43, any other irreducible component V of ( Ĉ, c 1 ) is parametrized locally by φ and a germ (T , T 1 ), where T 1 is obtained from T 1 by a permutation of its vertices. Thus V = V since φ doesn't change by permutation of the vertices of the orbits: ( Ĉ, c 1 ) is irreducible.

We x a local biholomorphic parametrization P (t) of the complexied ellipse E, so that P 0 = P (0) is a vertex of the real ellipse E that is also a vertex of the real triangular orbit T 1 . This gives local parametrizations of the orbits T (P ) whose rst vertex is P and of their circumcenters c(t) = φ(T (P (t))). We restrict P to the curve P (t) parametrizing the real points of E. We can suppose that P (t) and P (-t) are symmetric with respect to F. Write r(t) = |P (t)c(t)| for the radius of the circumscribed circle to T (t). Thus we have c(0) = φ(T 1 ) = c 1 , and we need to show that c (0) = 0 and that c (0) has not the same direction as the line of real foci of E.

First, we have r(t) = r(-t) by symmetry, and r is smooth around 0 since P (0) = c(0). Thus, r (0) = 0. This implies that the vector c (0) -P (0) is orthogonal to the line c(0)P (0), which is the real foci line by denition. But P (0) is already orthogonal to the foci line (being a vector tangent to E at its vertex P 0 ), hence the same hold for c (0). It's then enough to show that c (0) = 0.

Suppose the contrary, i.e. c (0) = 0. We use again r (0) = 0. If we denote by Q(t) one of the other vertices of T (t) and Q 0 = Q(0), then since also r(t) = |Q(t)c(t)|, the equality r (0) = 0 gives that the line Q 0 c 1 is orthogonal to T Q 0 E. It means that the circumscribed circle D to T 1 has the same tangent line in Q 0 as E. Since this is also true in P 0 and in the third point of T 1 (same proof), we get that E and D have three common points with the same tangent lines, which means that E is a circle. But this case was excluded at the beginning (remark 1.23).

Hence c (0) = 0 and c (0) is orthogonal to the line of real foci. The proof is the same for c 2 . Hence by Bezout theorem, Ĉ is a complexied conic. Since its real part is bounded, it is a complexied ellipse.

Chapter 2

On the existence of caustics

This chapter is devoted to the study of caustics in complex billiards and projective billiards. In the classical model of billiard, a caustic of a billiard Ω is a hypersurface C inside Ω such that any oriented line tangent to C and intersecting ∂Ω transversally is reected on ∂Ω into a line tangent to C. This implies that any iterated reections of a line tangent to C will produce tangent lines to C.

Caustics of projective billiards can be dened similarly

: Denition 2.1. Let Σ ⊂ P(T R d ) be a line-framed hypersurface over a hypersurface S ⊂ R d . A caustic of Σ is a hypersurface Γ ⊂ R d such that any line ⊂ R d tangent to Γ and interecting S
transversally at a point p, is reected into a line tangent to Γ by the projective law of reection at p. Caustics of complex billiards (or complex caustics) are dicult to dene in the general case since there is no possible orientation of lines. For our purpose to work on conics such denition is more simple, since any line of CP 2 is either tangent to a xed conic or intersects it in exactly two distinct points. Therefore, complex caustics can be dened as follows in this specic case: let C, C ⊂ CP 2 be two distinct conics. We say that C is a complex caustic of C if for any line tangent to C and p a point of intersection of the line with C, the line reected from by the complex law of reection at p on C is also tangent to C . This chapter is structured as follows. Basic results about conics and quadrics are rst recalled at Section 2.1. Then we present results about complex caustics of the billiard on a complexied ellipse or hyperbola at Section 2.2. It is followed by Section 2.3 which explains that given a certain pencil of conics or quadrics and any xed conic or quadric Q of this pencil, Q can be endowed with a structure of projective billiard such that any element of the pencil is a caustic for Q. Finally, an argument of Berger [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] will be generalized to projective billiards at Section 2.4, and applied in the case of pseudo-Euclidean billiards to show that if a pseudo-Euclidean billiard has a caustic, then it is itself a quadric.

General properties of quadrics

In this section we describe general properties on conics which we are going to use all along Chapter 2. They are very classic and can be found in [START_REF] Berger | Geometry, Volumes I and II[END_REF], Vol. II, Chap. 13 to 17.

Let K be the eld R or C, d ≥ 1 an integer and π : K d+1 {0} → P d (K) the natural projection. Denition 2.2. A quadric Q of K is dened as the image by π of sets of the form

Z q = x ∈ K d+1 {0} | q(x) = 0
where q is a non-zero quadratic form over K d+1 . The quadric Q is said to be non-degenerate if q is non-degenerate, and non-empty if Q = ∅. In the specic case when d = 2, we can also say that Q is a conic (in this study, a conic is a quadric).

The space Q(K d+1 ) of quadratic forms over K d+1 is a vector space such that two non-zero colinear quadratic forms dene the same quadric. The converse is false with K = R, by considering for example the quadratic forms on R 2 dened by q 1 (x, y) = x 2 + y 2 and q 2 (x, y) = x 2 + 2y 2 . But in the case when K = C the converse is true and is part of a more general theorem on algebraic curves: Theorem 2.3 (Nullstellensatz for quadrics, see [START_REF] Berger | Geometry, Volumes I and II[END_REF]). The map [q] ∈ PQ(C d+1 ) → π(Z q ) ⊂ P d (C) is a one-to-one correspondance between equivalence classes [q] of quadratic forms q over C d+1 and quadrics of P d (C).

Example 2.4. Given an integer k ∈ {0, . . . , d -1}, and real numbers a 0 < a 1 < . . . < a d , consider the family of quadrics

Q k := (Q k λ ) λ =a j of RP d
given by the equation

Q k λ : k j=0 x 2 j a j -λ + d-1 j=k+1 x 2 j a j + λ = x 2 d .
(2.1)

The quadric Q k 0 is the same for all k and contained in all families Q k . Any non-degenerate quadric can be described by an equation of this form by an appropriate orthogonal change of coordinates. When k = d -1, this family is the standard family of confocal quadrics, see Figure 2.1. In the case when k < d -1, this family is considered to be the family of confocal quadrics for a pseudo-Euclidean metric (Figure 2.2, see for example [START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF] or [START_REF] Adabrah | Periodic billiards within conics in the Minkowski plane and Akhiezer polynomials[END_REF]) dened as the following non-degenerate quadratic form of R d k j=0

x 2 j - d-1 j=k+1 x 2 j .
More details on pseudo-Euclidean metrics and one these pencils of pseudo-confocal quadrics will be given in Section 2.4.

Polarity with respect to a quadratic form

In this section we recall some very basic and well-know facts about polarity. We refer the reader to [START_REF] Berger | Geometry, Volumes I and II[END_REF] Chap. 14, [START_REF] Dragovi¢ | Poncelet Porisms and Beyond[END_REF] Chap. 4, or [START_REF] Izmestiev | Spherical and hyperbolic conics, Eighteen Essays in Non-Euclidean Geometry[END_REF] Sec. 2 for more details.

Let K be the eld R or C, d ≥ 1 an integer, V the space K d+1 , and π :

K d+1 {0} → P d (K) the natural projection: if x ∈ V , its equivalence classe in P d (K) is π(x).
Given a non-trivial vector subspace H ⊂ V , we dene P(H) to be the set of equivalence classes of non-zero vectors contained in H, ie P(H) = π(H {0}).

Denition 2.5. A polarity is the choice of a non-degenerate quadratic form over V . When we speak about polarity without an explicit choice of a quadratic form, this implicitely refers to the polarity with respect to the quadratic form

Q 0 = d j=0 x 2 j (2.2)
which is called sometimes absolute polarity (see [START_REF] Izmestiev | Spherical and hyperbolic conics, Eighteen Essays in Non-Euclidean Geometry[END_REF] for this terminology). When q denes a non-empty quadric Q, we can also speak of polarity with respect to Q.

This choice of quadratic form has concrete geometric consequences, described in what follows. An isomorphism. Given a non-degenerate quadratic form q over V , one can consider the isomorphism from V to its dual space V * dened by

x ∈ V → q(x, •) ∈ V * .
It induces a projective isomorphism I q : P(V ) → P(V * ) which only depends on the equivalence class of q in PQ(V ).

A bijection between points and projective hyperplanes. The projective hyperplanes of P(V ) can be identied with P(V * ), by associating to any non-zero linear form α on V its kernel ker α ⊂ V . Therefore the map I q induces an explicit realization of this identication via the map π(x) ∈ P(V ) → P(ker q(x, •)) ⊂ P(V ).

More generally, we can dene a bijective correspondance between k-dimensional and (d-1-k)dimensional projective subspaces of P(V ) via the map

P(W ) → P(W ⊥q )
where W ⊥q denes the q-orthogonal vector subspace of W in V .

Denition 2.6. Given a projective space H = P(W ) ⊂ P(V ), we call polar space of H with respect to q the projective space P(W ⊥q ). The polar space of a point with respect to q is a projective hyperplane. The polar space of a hyperplane is a point, also called pole with respect to q of this hyperplane.

Dual hypersurfaces/curves. Let Γ be a C 1 -smooth hypersurface of P(V ). The projective hyperplane containing p and tangent to Γ is a projective space T p Γ = P(W ), and we can consider its pole with respect to q: the latter is the point u p = π(x) such that x is q-orthogonal to W . The collection of all u p when p describes Γ is called dual of Γ with respect to q and denoted by Γ * .

Dual quadric. Let q 1 be another non-degenerate quadratic form. There is a (d + 1) × (d + 1) invertible matrix M with coecients in K such that for all x, y ∈ V , q 1 (x, y) = q(M x, y).

We dene the dual of q 1 with respect to q as the quadratic form q 1 * over V satisfying for all

x, y ∈ V the equality q 1 * (x, y) = q(M -1 x, y). It is well-known that the dual with respect to q of a quadric Q 1 dened by the quadratic form q 1 is a quadric dened by the dual q 1 * of q 1 with respect to q, see for example [START_REF] Izmestiev | Spherical and hyperbolic conics, Eighteen Essays in Non-Euclidean Geometry[END_REF]:

Proposition 2.7. The dual of a non-empty non-degenerate quadric Q 1 dened by the quadratic form q 1 is the quadric dened by the quadratic form q 1 * .

Pencil of quadrics

We recall that Q(K d+1 ) is the set of quadratic forms over K d+1 . In this subsection we will abusively write quadrics for quadratic forms.

Denition 2.8 (see [START_REF] Berger | Geometry, Volumes I and II[END_REF], Ch. 14.1). A pencil of quadrics is a line in PQ(K d+1 ). It can be equivalently dened as a set of quadratic forms of the type

F(q 1 , q 2 ) := λq 1 + µq 2 (λ, µ) ∈ K 2 {0}
where q 1 , q 2 are quadratic forms with distinct equivalence classes in PQ(K d+1 ) (non-colinear).

We say that the pencil F(q 1 , q 2 ) is non-degenerate if it contains at least one non-degenerate quadratic form.

Since the map (λ, µ) → det(λq 1 + µq 2 ) is a homogeneous polynomial of degree at most d + 1 over K, a pencil of quadrics contains either only degenerate quadratic forms, or a nite number less than d + 1 of degenerate quadratic forms.

Let us consider the absolute polarity, that is the polarity with respect to the quadratic form

Q 0 = j x 2
j (see Subsection 2.1.1). Given a non-degenerate quadratic form q, we can dene its dual q * . Denition 2.9. The dual pencil of quadrics associated to a non-degenerate pencil of quadrics F(q 1 , q 2 ), is the set F(q 1 , q 2 ) * of duals q * of non-degenerate quadratic forms q contained in F(q 1 , q 2 ) :

F(q 1 , q 2 ) * = {q * | q ∈ F(q 1 , q 2 ), q is non-degenerate} = {(λq 1 + µq 2 ) * | det(λq 1 + µq 2 ) = 0} .
The pencil of (q 1 , q 2 )-confocal quadrics is the set F(q 1 * , q 2 * ) * which contains q 1 and q 2 . Remark 2.10. The pencil of (q 1 , q 2 )-confocal quadrics F(q 1 * , q 2 * ) * contains q 1 and q 2 by involutivity of polarity operations.

Example 2.11. Consider two confocal conics C and D of RP 2 dened by the quadratic forms

q C (x, y, z) = x 2 a + y 2 b -z 2 and q D (x, y, z) = x 2 a-λ + y 2 b-λ -z 2 with a, b, λ ∈ R, λ /
∈ {a, b}. By Proposition 2.7, their dual conics are dened by their dual quadratic forms q C * = ax 2 + by 2 -z 2 and q D * = (a -λ)x 2 + (b -λ)y 2 -z 2 . Hence q D * belong to the pencil of quadrics F(q C * , q D * ) = F(q C * , q Eucl ) where q Eucl is the degenerate quadratic form q Eucl (x, y) = x 2 + y 2 .

More generally, confocal conics or quadrics (for the usual meaning) can be dened as quadrics of a pencil of the form F(q 1 * , q 2 * ) * , which contains the quadratic form dening the Euclidean metric after an eventual change of coordinates (see [START_REF] Izmestiev | Spherical and hyperbolic conics, Eighteen Essays in Non-Euclidean Geometry[END_REF]). This explains our terminology.

Theorems of Poncelet and Cayley

The theorems of Poncelet and Cayley are remarkable results on conics and many dierent versions of these theorems exists, see for example [START_REF] Berger | Geometry, Volumes I and II[END_REF], Section 16.6, but also [START_REF] Chang | Elliptical billiard systems and the full Poncelet's theorem in n dimensions[END_REF][START_REF] Dragovi¢ | Poncelet Porisms and Beyond[END_REF][START_REF] Dragovi¢ | Bicentennial of the Great Poncelet Theorem (1813-2013[END_REF][START_REF] Ph | Cayley's explicit solution to Poncelet's porism[END_REF], and [START_REF] Poncelet | Traite des propriétés projectives des gures[END_REF] for the original statement. Here we present the version of [START_REF] Flatto | Poncelet's Theorem[END_REF][START_REF] Ph | Cayley's explicit solution to Poncelet's porism[END_REF] since we consider conics of CP 2 .

Let C, D be two conics in CP 2 . We say that C, D are in general position if their intersection consists of four distinct points. The statements of Poncelet's and Cayley's theorems are about polygons inscribed in C and circumscribed about D: an n-sided polygon is an ordered set P = (p 1 , . . . , p n ) of distinct points of CP 2 called the vertices of P . An n-sided polygon P is said to be inscribed in C if p j ∈ C for all j and circumscribed about D if for all j, the two tangent lines to D containing p j are p j-1 p j and p j p j+1 (where the indices j -1 and j + 1 are seen modulo n).

Theorem 2.12 (Poncelet,[START_REF] Ph | Cayley's explicit solution to Poncelet's porism[END_REF] p. 3). Let C, D be two conics of CP 2 in general position.

Suppose that there is an n-sided polygon inscribed in C and circumscribed about D. Then for any point p ∈ C there is an n-sided polygon inscribed in C and circumscribed about D having p as a vertex.

The natural question which arises is about the existence of such n-sided polygons. The answer is given by Cayley's theorem. Theorem 2.13 (Cayley, [START_REF] Ph | Cayley's explicit solution to Poncelet's porism[END_REF] p. 4). Let C, D be two conics of CP 2 in general position. Let Q C , Q D be two quadratic forms dening respectively C and D. Consider an analytic branch of t → det(tQ C + Q D ) dened in a neighborhood of 0 and denote its analytic expansion at 0 by when n is even, with m = n 2 .

det(tQ C + Q D ) = A 0 + A 1 t + A 2 t 2 . . .

Complex caustics of complexied conics

We present in this section what can be considered as a complexied version of the result stating that given a conic C of the Euclidean plane, any confocal conic C to C is a caustic of the billiard on C. The results presented in this section can also be found in [START_REF] Fierobe | Complex Caustics of the Elliptic Billiard[END_REF].

Denition 2.14. Let C ⊂ CP 2 be a conic. Given another conic C ⊂ CP 2 , we say that C is a complex caustic of C if any line tangent to C and intersecting C at a certain point p is reected into a line tangent to C by the complex reection law at p.

Let C, C be conics such that C a complex caustic of C. Suppose we have n distinct points p 1 , . . . , p n on C. Denition 2.14 implies that the following statements are equivalent:

-(p 1 , . . . , p n ) is a piece of non-degenerate orbit of C (see Denition 1.20) such that p j p j+1 is tangent to C for a certain j < n -1;

for each j ∈ {2, . . . , n -1}, the tangent lines to C containing p j are exactly the lines p j-1 p j and p j p j+1 . In the case of n-periodic orbits, if C is a caustic of C, the n-periodic orbits of C are the same as the n-sided polygons circumscribed about C . Hence Poncelet's theorem (see theorem 2.12) implies that if an orbit circumscribed about some caustic C is n-periodic, then all orbits circumscribed about C are n-periodic: Proposition 2.15. Let C, C be conics in general position such that C is a complex caustic of C. Suppose that there is an n-periodic orbit of C circumscribed about C (as an n-sided polygon). Then any billiard orbit of C circumscribed about C is n-periodic.

This induces the following denition: Denition 2.16. Given two conics C, C in general position, we say that C is an n-caustic of C if C is a caustic of C about which an n-periodic orbit of C is circumscribed.

Confocal conics are complex caustics

In the following we show that given the complexication C of a real conic, its confocal conics are caustics. Suppose that we are given a set of coordinates (x : y : z) on CP 2 such that C is dened by the following equation in the ane chart

U z = {z = 1} C : x 2 a + y 2 b = 1 (2.3)
where x, y ∈ C and a, b ∈ R * . The confocal conics C λ to C are given by the following family of equations depending on a λ ∈ C dierent from a or b:

C λ : x 2 a -λ + y 2 b -λ = 1.
(2.4)

Remark 2.17. In the case of the real elliptic billiard, that is when a, b are positive and we study the usual billiard inside the ellipse C, it is well-known (see [START_REF] Tabachnikov | Geometry and Billiards[END_REF] Chapt. 4) that the real conics given by Equation (2.4) with 0 < λ < a and λ = b are caustics in the usual meaning. Let F 1 , F 2 be the two foci of the ellipse C. Given an orbit of the elliptic billiard, we distinguish between three disjoint situations: 1) If the orbit has an edge containing a focus, then all its edges alternatively contain one of both foci.

2) If the orbit has an edge intersecting the interior of the segment F 1 F 2 , then all its edges intersect the interior of F 1 F 2 and remain tangent to the same hyperbola C λ with b < λ < a.

3) If the orbit has an edge which does not intersect F 1 F 2 , then all its edges do not intersect F 1 F 2 and remain tangent to the same smaller confocal ellipse C λ with 0 < λ < b.

Proposition 2.18. For any λ ∈ C {a, b}, the confocal conic C λ is a complex caustic of C.

Proof. First notice that given p ∈ C, the tangent line to C at p is not the line at innity dened by L ∞ = {z = 0}. Therefore the complex reection law induces a projective transformation on the set of lines containing p, hence on the projective line p * CP 1 dened as the polar space of p, and its action on p * is denoted by q → q . For λ = a, b, the absolute dual conic C * λ of C λ is given by the equation (a -λ)x 2 + (b -λ)y 2 = 1 and thus is also dened for λ = a or b (as a degenerate conic). Hence we can consider the set

V = (p, q, λ) ∈ C × CP 2 × C | q ∈ p * ∩ C * λ
which is an algebraic subset of CP 2 × C since it is given by polynomial equations. Let V 0 be the algebraic subset of V containing the elements (p, q, λ) ∈ V such that (p, q , λ) ∈ V . If λ is a real number, denote by C R λ the points of C λ with real coordinates which can be considered as the conic of RP 2 dened by Equation (2.4). If p is a point on C R and λ is a real number dierent from a or b, we know that the line of RP 2 containing p and tangent to C R λ is reected into a line tangent to C R λ by the usual reection law at p (see Remark 2.17). Hence the same holds for the complexication of these objects since the same equations are satised. Hence the map s : C × CP 2 × C → C × C dened by (p, q, λ) → (p, λ) is such that s(V 0 ) contains C R × (R {a, b}). Now since C can be identied with CP 1 , C × CP 2 × C and C × C are projective spaces, and therefore s(V 0 ) is an algebraic subset of C × C. From the identication

C R RP 1 we get that C R × (R {a, b}) is Zariski-dense. Hence s(V 0 ) = C × C: this means that if (p, λ) ∈ C × C with λ = a
or b, there is a q ∈ p * ∩ C * λ for which (p, q, λ) ∈ V 0 , and by construction we have exactly p * ∩ C * λ = {q, q }. Therefore both lines tangent to C λ and containing p are reected into each other by the complex reection law at p.

Number of complex confocal n-caustics

Given an integer n ≥ 2, and a real conic C, we would like to study the n-caustics of the complex billiard C. Caustics of n-periodic orbits of the real elliptic billiard are such that their complexications are n-caustics of the corresponding complex billiard by denition. We will show that other complex n-caustics can appear. In the case when n = 3 and C is an ellipse, it is well-known that the usual 3-periodic orbits of C are all circumscribed about exactly one smaller confocal ellipse γ 3 . Therefore, the complexication of γ 3 is a 3-caustic of C. We can ask if it is the only 3-caustic confocal to the complexication of C. The answer is no, since there is another complexied ellipse confocal to C which is a 3-caustic as it will be shown in this subsection. Interestingly, this caustic is bigger than C.

Remark 2.19. In the case of the real elliptic billiard, we can associate to a caustic of a periodic orbit an invariant quantity called rotation number which is an integer. It can be dened as follows (see [START_REF] Tabachnikov | Geometry and Billiards[END_REF] Chapt. 6). Parametrize the ellipse C by S 1 = R/Z. For a periodic orbit given by parameters (x 1 , . . . , x n ) ∈ (S 1 ) n , consider t 1 , . . . , t n ∈ (0, 1) such that for each k modulo n, the class of t k in R/Z is x k+1 -x k . Since the orbit is closed, the quantity ρ = t 1 + . . . + t n is an integer called rotation number of the orbit. Now since this quantity depends continuously on the orbit, it is the same for all periodic orbits circumscribed about the same caustic. As a consequence, periodic orbits with dierent rotation numbers are circumscribed about distinct caustics. Birkho's theorem (see [START_REF] Tabachnikov | Geometry and Billiards[END_REF] Chapt. 6 or [START_REF] Kozlov | A Genetic Introduction to the Dynamics of Systems with Impacts[END_REF] Chapt. II) states, for all n ≥ 2 and ρ ≤ (n -1)/2 coprime with n, the existence of n-periodic orbits, hence the existence of caustics with rotation number ρ in the elliptic case.

Remark 2.20. If a complex n-caustic C λ of C is inscribed in a periodic orbit with all its vertices having real coordinates then λ is a real number comprised between 0 and a (see Remark 2.17). Hence if λ is a complex number outside [0, a] corresponding to an n-caustic C λ , then the periodic orbits circumscribed about C λ have at least one point with a strictly complex coordinate. They corresponds to either complexied bigger confocal ellipses (case λ ∈ R -), or to what will be called strictly complex confocal conics (case λ ∈ C ] -∞, a]). As it will be shown, the case n = 4 provides examples of 4-caustics of each of the above described types.

Counting n-caustics using Cayley's determinant

Let C be the conic given by Equation (2.3), and C λ the family of its confocal conics given by Equation (2.3). Fix an integer n ≥ 3: we study the number N a,b (n) of confocal complex n-caustics of C. As stated in Proposition 2.18, each C λ is a caustic of C (with λ = a, b). For λ = 0, C λ and C are in general position, hence we can study the complex numbers λ for which C λ is an n-caustic of C. In this subsection we prove the following results: if n is odd,

n 2 4 -1 if n is even.
Proposition 2.23. There exist r 1 , . . . , r q ∈ R such that for all (a, b) with a/b / ∈ {r 1 , . . . , r q }, a and b are not roots of B n a,b . Remark 2.24. We show in Proposition 2.25 that p ≥ 1 by studying the case of the circle, more precisely that 1 belongs to the collection of {r 1 , . . . , r p }.

Proof of Proposition 2.21. Suppose rst that n = 2m+1 is odd and x a λ = a, b. As explained, C λ is an n-caustic if and only if on can nd an n-sided polygon inscribed in C and circumscribed about C. Hence we apply Cayley's theorem (see Theorem 2.13): there is such a polygon if and only if the determinant

A n (λ) = A 2 (λ) . . . A m+1 (λ) . . . . . . . . . A m+1 (λ) . . . A 2m (λ)
vanishes, where the A k (λ) are the coecients in the analytic expansion of

f : t → det(tQ 0 + Q λ )
where Q 0 and Q λ are quadratic forms respectively associated to C and to C λ . The quadratic form

Q λ = (a -λ) -1 x 2 + (b -λ) -1 y 2 -z 2 denes C λ in CP 2 .
Replacing λ by 0, we get Q 0 . Therefore

tQ 0 + Q λ = t a + 1 a -λ x 2 + t b + 1 b -λ y 2 -(t + 1)z 2 hence det(tQ 0 + Q λ ) = - t a + 1 a -λ t b + 1 b -λ (t + 1)
which we factorize in

det(tQ 0 + Q λ ) = - 1 (a -λ)(b -λ) a -λ a t + 1 b -λ b t + 1 (t + 1).
Dene the map g : t → a-λ a t + 1 b-λ b t + 1 (t + 1) and write its Taylor expansion as

g(t) = ∞ k=0 B k (λ)t . k Since f (t) = ig(t) (a -λ)(b -λ)
we have

A k (λ) = iB k (λ) (a -λ)(b -λ) .
This shows that A n (λ) is a function of λ which vanishes at λ = a, b if and only if the determinant

B n (λ) = B 2 (λ) . . . B m+1 (λ)
. . . also vanishes. Let us compute the B k 's. Write

√ t + 1 = c 0 + c 1 t + c 2 t 2 + . . . where c k = 1 k! 1 2 1 2 -1 . . . 1 2 -k + 1 = (-1) k+1 4 k (2k -1) 2k k .
(2.5)

Therefore for any β we have

√ βt + 1 = c 0 + c 1 βt + c 2 β 2 t 2 + . . . Hence B k (λ) is given by B k (λ) = u+v+w=k c u c v c w a u b v (a -λ) u (b -λ) v .
(2.6)

Therefore each B k is a polynomial in λ of degree at least k. Hence B n (λ) = B n a,b (λ) is a polynomial in λ verifying: for any λ = a, b, B n a,b (λ) = 0 if and only if A n (λ) = 0, which is true if and only if there exists an n-sided polygon inscribed in C and circumscribed about C λ . The same proof also works when n is even. It remains to give an upper bound on deg B n a,b (λ). Suppose rst that n = 2m + 1 is odd. For any permutation σ of {1, . . . , m} we have Proof of Proposition 2.22. Suppose n = 2m + 1 is odd. By Equation (2.6), B k is of degree ≤ k and the coecient in front of λ k is

d(B k ) = (-1) k u+v=k c u c v a u b v = 1 4 k u+v=k 1 a u b v (2u -1)(2v -1) 2u u 2v v .
(2.7)

Fix a permutation σ of {1, . . . , m}. We have

deg m j=1 B σ(j)+j = m j=1 deg B σ(j)+j ≤ m j=1 (σ(j) + j) = m(m + 1)
and the coecient in front of 

λ m(m+1) is m j=1 d(B σ(j)+j ). Since B n a,b (λ) is a sum of ± m j=1 B σ(j)+j
-k is - 1 4 k (2k -1) 2k k = - 2 4 k Cat k-1
where Cat k = 1 k+1 2k k is the k-th Catalan number. Now by m-linearity of the determinant, d n (a, b) is also a homogeneous polynomial in (a -1 , b -1 ), and we apply the same procedure as before: for any permutation σ of {1, . . . , m}, we have 

(-1) m 2 m(2m+1) det H m
where H m is the Hankel matrix of the sequence (Cat k+1 ) k dened as

H m =      Cat 1 Cat 2 • • • Cat m Cat 2 Cat 3 . . . . . . . . . Cat m • • • Cat 2m-1      .
One can show that det H m = 1, see for example [START_REF] Krattenthaler | Advanced determinant calculus: a complement[END_REF] Theorem 33, or [START_REF] Krattenthaler | Determinants of (generalised) Catalan numbers[END_REF] Formula (1.2) for the case when n is odd and Formula (1.3) for the case when n is even. Hence d n (a, b) is a non-zero homogeneous polynomial in (a -1 , b -1 ) and therefore there exists a nite collection of numbers r 1 , . . . , r p ∈ R such that for all a, b > 0, we have d n (a, b) = 0 if and only if a/b ∈ {r 1 , . . . , r p }.

Proof of Proposition 2.23. Suppose n = 2m + 1 is odd. By Equation (2.6), for k ≥ 2,

B k -a 2 = v+w=k c v c w b 2v (b 2 -a 2 ) v = 1 b 2k v+w=k c v c w b 2w (b 2 -a 2 ) v = 1 b 2k P k (a, b) (2.8) 
where P k (a, b) is a homogeneous polynomial in (a, b) of degree 2k. The coecient in front of a 2k is

(-1) k c k = - 1 4 k (2k -1) 2k k = - Cat k-1 2 2k-1 .
As in the proof of Proposition 2.22, for any permutation σ of {1, . . . , m},

m j=1 B σ(j)+j (-a 2 ) = m j=1 1 b 2(σ(j)+j) P σ(j)+j (a, b) = Q σ (a, b) b 2m(m+1) where Q σ (a, b) is a homogeneous polynomial of degree m j=1 deg P j+σ(j) = m j=1 2(σ(j) + j) = 2m(m + 1) whose coecient in front of a 2m(m+1) is m j=1 - Cat j+σ(j)-1 2 2(j+σ(j))-1 = (-1) m 2 m(2m+1) m j=1 Cat j+σ(j)-1 .
As in proof of Proposition 2.22, B n (-a 2 ) is a sum of products of the form ± m j=1 B σ(j)+j (-a 2 ) hence can be written as

R n (a, b) b 2m(m+1)
where R n (a, b) is the sum of ε(σ) m j=1 Q σ(j)+j (a, b) and ε(σ) is the parity of σ. Thus R n (a, b) is a homogeneous polynomial of degree 2m(m + 1) whose coecient in front of a 2m(m+1) is

(-1) m 2 m(2m+1) det H m = (-1) m 2 m(2m+1)
as in the proof of Proposition 2.22. Thus R n (a, b) is a nonzero homogeneous polynomial such that

B n (-a 2 ) = R n (a, b) b 2m(m+1) .
We can do the same with B n (-b 2 ) to obtain the same conclusion, which nishes the proof.

Case of the circle

In this section we compute deg B n a,b in the case of the circle (a = b), and show that in this case this degree is strictly less than the upper bound given in Proposition 2.21. Proposition 2.25. When a = b (in the case of the circle),

deg B n a,b = n-1 2 if n is odd n 2 -1 if n is even. Proof. Suppose n = 2m + 1 is odd. By Equation 2.6, when a = b = R, for k ≥ 2 B k = k w=0 c k-w 1 + λ a 2 w u+v=w c u c v .
Let us compute u+v=w c u c v : it is the Taylor coecient at t w of the function We give a list of exlicit formulas of B n a,b for small n. To simplify the formulas we rather express

√ 1 + t 2 = 1 + t, therefore we get that u+v=w c u c v = 1 if 0 ≤ w ≤ 1 0 if w ≥ 2. Hence B k = c k + c k-1 x where x = 1 + λ/a 2 .
Bn a,b = µ n B n
a,b where µ n is a non-zero real number dened by

µ n = (-1) m 2 m(2m+1) (ab) m(m+1) if n = 2m + 1 is odd, 1 m (-1) m+1 2 (m-1)(2m+1) (ab) (m-1)(m+1)
if n = 2m is even.

We further replace its variable λ by X for a better reading.

-

Case n = 3 B3 a,b = (a -b) 2 X 2 + 2ab(a + b)X -3a 2 b 2 -Case n = 4 B4 a,b = (a + b)(a -b) 2 X 3 -ab(a -b) 2 X 2 -(ab) 2 (a + b)X + (ab) 3 -Case n = 5 B5 a,b = (a -b) 6 X 6 + 2ab(3a + b)(a + 3b)(a + b)(a -b) 2 X 5 -(ab) 2 (29a 2 + 54ab + 29b 2 )(a -b) 2 X 4 + 36(ab) 3 (a + b)(a -b) 2 X 3 -(ab) 4 (9a 2 -34ab + 9b 2 )X 2 -10(ab) 5 (a + b)X + 5(ab) 6
This list can be extended using formal calculus on a computer, but this has no interest for the present study. We rather mention that B n a,b has generically simple roots for small values of n. Moreover, on the examples of this list, the exceptional values of the pair (a, b) for which the degree formula of Proposition 2.22 is not satised are contained in the sets a = b or a = -b. Is it always the case for all n ? Conjecture 2.26. For all n ≥ 3, B n a,b has generically simple roots.

Here generically has the same meaning as in Proposition 2.22. If the conjecture is true, this would imply that the number of complex n-caustics is generically given by the degree of B n a,b as computed in Proposition 2.22.

Study of complex 3-caustics

We study the particular case of complex caustics of 3-periodic orbits. We will say that a complex conic is an ellipse (respectively a hyperbola) if its real part is an ellipse (respectively a hyperbola). Proposition 2.27. The complex reection law on the billiard dened by a complexied ellipse or hyperbola C has exactly two 3-caustics which are complexied conics of the same type than C, see Figure 2 

C C λ + C λ -
λ ± = - ab (a -b) 2 a + b ± 2 √ a 2 -ab + b 2 .
These roots are real and satisfy the following inequalities:

when C is an ellipse, with a, b > 0:

a -λ + > a > a -λ -> 0 and b -λ + > b > b -λ -> 0 Hence C λ + and C λ -are complexied ellipses, C λ -is nested in C which is nested in C λ + .
when C is a hyperbola, with a > 0 > b: 

a -λ -> a > a -λ + > 0 and 0 > b -λ -> b > b -λ + Hence C λ + and C λ -are complexied

Study of complex 4-caustics

We study the particular case of complex caustics of 4-periodic orbits. We will say that a complex conic is an ellipse (respectively a hyperbola) if its real part is an ellipse (respectively a hyperbola). These roots satisfy the following inequalities:

when C is an ellipse, with a > b > 0:

a -λ 1 > a > a -λ 2 > 0 and b -λ 1 > b > b -λ 2 > 0 b -λ 3 < 0 and a -λ 3    > 0 if a > 2b = 0 if a = 2b < 0 if a < 2b
Hence C λ 1 and C λ 2 are always complexied ellipses,

C λ 2 is nested in C which is nested in C λ 1 .
The conic C λ 3 is an hyperbola if a > 2b, not dened if a = 2b and a complex conic if a < 2b.

when C is a hyperbola, with a > 0 > b:

Case |b| < a 0 < a -λ 1 < a < a -λ 3 < a -λ 2 and b -λ 1 < b < b -λ 3 < 0 < b -λ 2
Hence C λ 1 is a hyperbola, C λ 2 an ellipse, C λ 3 a hyperbola. The branches of C are in the domain bounded by the corresponding branches of C λ 1 and

C λ 3 . Case |b| > a a -λ 2 < 0 < a -λ 1 < a < a -λ 3 and b -λ 2 < b -λ 1 < b < b -λ 3 < 0
Hence C λ 1 is a hyperbola, C λ 2 a complex conic, C λ 3 a hyperbola. The branches of C are in the domain bounded by the corresponding branches of C λ 1 and C λ 3 .

Complex Joachimsthal invariant

The rst proof of Proposition 2.18 which we were able to obtain was dierent from the one we give in Subsection 2.2.1. It used a complex version of the so-called Joachimsthal invariant, a well-known quantity in the theory of billiards on conics. This complex invariant is described in the present subsection.

The context of this subsection is as follows. We consider the conic C of R 2 given by equation (2.3):

C : x 2 a + y 2 b = 1
where a, b = 0 and x, y ∈ R. Its complexication is given by the same equation with x, y ∈ C.

In [START_REF] Tabachnikov | Geometry and Billiards[END_REF] Chapter 4, Theorem 4.4 shows that for a set of points and directions dened as successive billiard reections on the real ellipse C with a, b > 0, there is an invariant quantity. Known as Joachimsthal invariant, it is dened by

xv x a + yv y b
where (x, y) are the coordinates of a vertex of an orbit, and v a unitary vector having this vertex as starting point and pointing toward the next vertex. Let us mention another reference about Joachimsthal invariant, which was given to us by the referee of our original article: see [START_REF] Kozlov | A Genetic Introduction to the Dynamics of Systems with Impacts[END_REF], Chapter IV.

In our case, we consider the complexied version of C, and Joachimsthal invariant has to be modied to handle the complex structure. Hence from now on, we choose a, b = 0 and C denote the complexication of the previous dened conic. As described in Section 1.2, C 2 can be endowed with the non-degenerate complex quadratic form q(x, y) = x 2 + y 2 which vanishes on vectors of the space C(1, i) ∪ C(1, -i), called isotropic vectors. We recall that we can consider complex orbits (p 1 , . . . , p k ) on C viewed as a conic of CP 2 via an embedding C 2 ⊂ CP 2 . When an orbit has an edge p j p j+1 which is directed by an isotropic vector, we say that the orbit is isotropic, and non-isotropic otherwise.

In the case when a point p belongs to the so-called line at innity L ∞ := CP 2 C 2 , we say that p is innite, and nite otherwise. Now if p = (x, y) ∈ C 2 and v = (v x , v y ) ∈ C 2 is not isotropic, then we dene the complex Joachimsthal invariant at (p, v) as the complex quantity

P (p, v) = 1 q(v) xv x a + yv y b 2 .
In what follows we show that if T = (p 0 , . . . , p k ) is a non-degenerate and non-isotropic orbit on C, the quantity P (p j , v) do not depend on the choice of a nite vertex p j or of a directing vector of p j-1 p j (Proposition 2.29 and Figure 2.5). Moreover, let C λ be the caustic to which T remains tangent, as shown in Proposition 2.18. If we denote by P (T ) previous invariant quantity associated with T then the caustic C λ satises λ = abP (T ), as shown in Proposition 2.32. Conversely, we show that if the quantity P (p j , v) is preserved on a polygon inscribed in C, then the latter is an orbit (except for degenerate cases of polygons), see Lemma 2.33 and Lemma 2.34.

C p 0 p 1 p 2 v 0 v 1 v 1 v 2 Figure 2
.5: In Proposition 2.29, we consider all quantities P (p 0 , v 0 ), P (p 1 , v 1 ), P (p 1 , v 1 ) and

P (p 2 , v 2 ).
Proposition 2.29. Let T = (p 0 , p 1 , p 2 ) be a non-degenerate and non-isotropic orbit on C with p 0 nite. Then the quantity P (p j , v) do not depend on the choice of a nite vertex p j of T or of a directing vector of p j-1 p j or p j p j+1 (see Fig. 2.5).

Proof. As explained in [START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF], the reection with respect to a non-isotropic line permutes the isotropic directions v I = (1, i) and v J = (1, -i). Hence in our case, q(v) = 0 for all v taken like in the proposition we want to prove.

First case: If p 0 and p 1 are nite, write p 0 = (x 0 , y 0 ), p 1 = (x 1 , y 1 ). Take v 0 a vector such that q(v 0 ) = 1 and directing p 0 p 1 , and v 1 vector such that q(v 1 ) = 1 and directing p 1 p 2 . Dene the matrix

A = 1/a 0 0 1/b .
Then since p T j Ap j = 1 and since A is symmetric, we get

(p 1 -p 0 ) T A(p 1 + p 0 ) = p T 1 Ap 0 -p T 0 Ap 1 = 0. Since v 0 is collinear to p 1 -p 0 we have further v T 0 A(p 1 + p 0 ) = 0, thus v T 0 Ap 1 = -v T 0 Ap 0 .
(2.9)

But since p 0 p 1 and p 1 p 2 are symmetric with respect to the tangent line of C at p 1 , which is also the orthogonal line to Ap 1 (the gradient in p 1 of the bilinear form dening C), we only have two possibilities : either v 0 + v 1 or v 0 -v 1 is orthogonal to Ap 1 as we see by decomposing both v 0 and v 1 in normal and tangential components. Hence

(v 0 + v 1 ) T Ap 1 = 0 or (v 0 -v 1 ) T Ap 1 = 0.
In both cases we get

v T 0 Ap 1 2 = v T 1 Ap 1 2
and using equality (2.9), we get

v T 0 Ap 0 2 = v T 1 Ap 1 2 (2.10)
which proves Proposition 2.29 for unitary vectors. For general vectors, it is enough to divide them by a square root of q(v), which explains the factor 1/q(v) appearing in the formula of

P (p, v).
Second case: If p 0 is nite and p 1 innite (see Fig. 2.6), then p 2 is nite. Indeed, p 0 p 1 is not the line at innity and T p 1 C is not isotropic. Hence the line symmetric to p 0 p 1 with respect to T p 1 C is nite and parallel to p 0 p 1 and to T p 1 C (the three lines intersects at the same innite point). Thus the other point of intersection p 2 of the latter symmetric line with C has to be nite. If we consider v a non-zero vector directing the lines p 0 p 1 , p 1 p 2 and T p 1 C, we need to prove that

P (p 0 , v) = P (p 2 , v).
But p 2 = -p 0 since T p 1 C goes through the origin O = (0, 0) (by property of a tangent line at an innite point of C) and the ellipse C is symmetric across O (see Fig. 2.6). This implies that

P (p 0 , v) = P (p 2 , v).
Corollary 2.30. Let T = (p 0 , . . . , p n ) be a non-degenerate and non-isotropic orbit on C. Then the quantity P (p j , v) dened as before do not depend on the choice of a nite vertex p j or on v, a directing vector of p j-1 p j or p j p j+1 . Thus we can write P (p j , v) = P (T ).

Here we prove that the invariant P (T ) is linked with the caustic of the orbit T . We rst recall a result based on duality of conics, which can be deduced from Subsection 2.1.1. We consider coordinates on CP 2 such that any point of CP 2 can be denoted by (x : y : z), where

(x, y, z) ∈ C 3 {0}.
Lemma 2.31. let C be a conic in CP 2 given by the equation p T Ap = 0 where A is a 3 × 3 symmetric invertible matrix, p = (x : y : z), and v = (α, β, γ) ∈ C 3 dening the line v of equation αx Proposition 2.32. Let T be a non-degenerate non-isotropic orbit of C tangent to a complex conic C λ , with λ ∈ C dierent from a and b, given by Equation 2.4. Then λ = abP (T ).

+ βy + γz = 0. Then v is tangent to C if and only if v T A -1 v = 0. p 0 p 1 p 2 O C v v v p 0 p 1 p 1 p 2 Tp 1 C
Proof. Consider a set of coordinates of CP2 such that the conic C λ is given by the equation

p T B λ -1 p = 0, where B λ =   a -λ 0 0 0 b -λ 0 0 0 -1   .
Write T = (p 0 , . . . , p n ). Since the orbit is non-isotropic, two consecutive sides p j-1 p j and p j p j+1 cannot be the line at innity. Hence we suppose without loss of generality that p 0 is nite. Then the line p 0 p 1 is dened in CP 2 by the equation v y x -v x y + (v x y 0 -v y x 0 )z = 0, where p 0 = (x 0 , y 0 ) and v = (v x , v y ) is a directing vector of p 0 p 1 in C 2 . Hence we have p 0 p 1 = w (in the notations of Lemma 2.31) where w = (v y , -v x , v x y 0 -v y x 0 ). It allows us to compute

w T B λ w = (a -λ)v 2 y + (b -λ)v 2 x -(v x y 0 -v y x 0 ) 2
which can be rearranged as

w T B λ w = -λq(v) + (a -x 2 0 )v 2 y + (b -y 2 0 )v 2
x + 2v x v y x 0 y 0 . Using the fact that p 0 lies on C gives

a -x 2 0 = a b y 2 0 , b -y 2 0 = b a x 2 0 which implies that w T B λ w = -λq(v) + ab x 0 v x a 2 + y 0 v y b 2
Since p 0 p 1 is tangent to C λ , w T B λ w = 0 and we get the result.

In what follows, we show that the invariant property implies a billiard reection property. then one of the following cases holds: 1) 1 = 2 ;

2) 1 and 2 are symmetric with respect to T p C.

Proof. We can suppose q(v 1 ) = q(v 2 ) = 1. By Equality (2.11), we have v T

1 Ap = ±v T 2 Ap hence (v 2 ± v 1 ) T Ap = 0. Thus we get that v 1 + v 2 or v 2 -v 1 is orthogonal to Ap which is orthogonal to the tangent line of C at p. Hence v 1 + v 2 or v 1 -v 2 is tangent to C at p.
This implies that one of these vectors is xed by the complex reection with respect to T p C. This means that the components of the v j 's along the direction of T p C ⊥ are the same or have opposite signs. Since the v j 's are unit vectors, their components along the direction of T p C are also the same or have opposite signs. Hence we have only three possibilities: a) v 1 and v 2 are symmetric with respect to T M C, b) v 1 and v 2 are symmetric with respect to

T M C ⊥ , c) v 2 = ±v 1 .
All these cases imply the result. Lemma 2.34. Suppose that C is not a circle (ie a = b). Let p 0 , p 1 , p 2 be points on C such that p 0 , p 2 are nite and p 1 innite. Let v j be a vector directing the line p 1 p j , j = 0, 2. If

P (p 0 , v 0 ) = P (p 2 , v 2 )
(2.12) then one of the following cases holds: 1) p 0 = p 2 ; 2) p 0 p 1 and p 1 p 2 are symmetric with respect to T p 1 C.

Proof. Since the three lines p 0 p 1 , p 1 p 2 and T p 1 C contain the same innite point p 1 , they are parallel, and therefore directed by the same vector v = v 0 = v 2 . The vector v cannot be isotropic, since an ellipse having an isotropic tangent line at a innite point is a circle (it is recalled at Section 1.3 or it can be shown independantly by computations). Suppose that q(v) = 1. As before, Equation (2.12) implies that p 2 -p 1 is either colinear or orthogonal to v. Both cases gives the result.

Caustics of quadrics endowed with a structure of projective billiard

In this section, we use an idea found in [START_REF] Chang | Elliptical billiard systems and the full Poncelet's theorem in n dimensions[END_REF] Sec. III: it appeared to us as a construction of a eld of projective lines on a quadric using another quadric, also projective billiards are not mentioned in the corresponding paper. We rst describe how to construct such eld, and then we study its properties related to caustics. All the results taken separately are well-known, the only interest of our work is to gather them and to interpret them as results on projective billiards. Let Q 1 , Q 2 be two non-empty and non-degenerate distinct quadrics. Consider a point p ∈ Q 1 such that Q 2 is not tangent to Q 1 at p. Let u be the pole of T p Q 1 with respect to Q 2 (see Denition 2.6). Since Q 2 is not tangent to Q 1 at p, we have u = p and we can dene the line

L Q 2 (p) = pu. Lemma 2.35. The line L Q 2 (p) is tangent to Q 1 at p if and only if T p Q 1 is tangent to Q 2 .
Proof. L Q 2 (p) is tangent to Q 1 at p if and only if u ∈ T p Q 1 and the proof follows from the denition of polar spaces as projections of specic orthogonal spaces, see Section 2.1.

The set of points

p ∈ Q 1 such that L Q 2 (p) is dened corresponds to the set of such p for which Q 2 is not tangent to Q 1 at p. Since Q 1 = Q 2 , it is a dense open subset of Q 1 . By Lemma 2.35, the set U of points p ∈ U such that L Q 2 (p) is transverse to Q 1 is
also open and dense in Q 1 (the complementary set of a strict algebraic subset).

Denition 2.36. We denote by Q 1 Q 2 the line-framed hypersurface over U dened by

Q 1 Q 2 = {(p, L Q 2 (p)) | p ∈ U } .
If q 2 is a quadratic form dening Q 2 , we can also write

Q 1 q 2 .
Proposition 2.37. The quadric Q 2 is a caustic of the line-framed hypersurface Let ⊂ P be the other tangent line to C in P containing p (since such a tangent line already exists, there are exactly two distinct such tangent lines). To conclude the proof, we show that the lines , , pu and T p Q 1 ∩ P form a harmonic set of lines. Denote by T the line T p Q 1 ∩ P and by z, z the respective tangency points of and . Now consider the polarity in the plane P with respect to the conic C: the polar line p * to p contains z and z , hence p * = zz . Then since u is the pole in P of T = T p Q 1 ∩ P , we have that u ∈ zz . Now consider the map s from p * to p * such that the image s(x) of a point x ∈ p * is the pole of the line px. By construction, s xes the points z and z , and permutes u with the intersection point of T with p * . Therefore these four points are harmonic, and so are the lines , , pu and T which concludes the proof.

Q 1 Q 2 over Q 1 . Proof. Let p ∈ Q 1 Q 2 such that T p Q 1 is not tangent to Q 2 . Let u be the pole of T p Q 1 with respect to Q 2 . Note that the line L Q 2 (p) = pu is not tangent to Q 2 ,
Let q 1 , q 2 be non-degenerate quadratic forms dening Q 1 and Q 2 . We can consider their respective dual quadratic forms q 1 * and q 2 * , together with the non-degenerate pencil of quadrics F(q 1 * , q 2 * ). Notice that q 1 and q 2 belongs to the corresponding dual pencil of quadric F(q 1 * , q 2 * ) * which we called pencil of (q 1 , q 2 )-confocal quadrics (see Section 2.1). We prove in fact that all quadratic forms of F(q 1 * , q 2 * ) * dene the same eld of projective lines over Q 1 :

Proposition 2.38. Let q 3 ∈ F(q 1 * , q 2 * ) * not colinear to q 1 . Then

Q 1 q 3 = Q 1 q 2 .
Corollary 2.39. Any quadric Q = Q 1 dened by a quadratic form q ∈ F(q 1 * , q 2 * ) * is a caustic

of Q 1 q 2 .
Proof of Proposition 2.38. Fix p ∈ Q 1 and q 3 ∈ F(q 1 * , q 2 * ) * . We want to show that the pole u 3 of T p Q 1 with respect to q 3 and the pole u 2 of T p Q 1 with respect to q 2 are on the same line.

By assumption, one can nd λ, µ ∈ R such that

q 3 * = λq 1 * + µq 2 *
(2.13) and µ = 0. Denote by [x] the equivalence class in RP d of an element x ∈ R d+1 . For j = 1, 2, 3, choose an x j ∈ R d+1 {0} such that the dual of T p Q 1 with respect to q j is [x j ]: we have by construction

p = [x 1 ], u 2 = [x 2 ] and u 3 = [x 3 ].
Further denote by M j the (d + 1) × (d + 1) invertible matrix such that for all x, y ∈ R d+1 we can write q j (x, y) = Q 0 (M j x, y), where Q 0 is the quadratic form k x 2 k . Equation 2.13 can be rewritten as M 3

-1 = λM 1 -1 + µM 2 -1 .
Let V ⊂ R d+1 be the hyperplane such that T p Q 1 = P(V ). For j = 1, 2, 3, the vector x j is q j -orthogonal to V , hence M j x j is Q 0 -orthogonal to V . In particular, we can nd non-zero

ν 2 , ν 3 ∈ R such that M 1 x 1 = ν 2 M 2 x 2 and M 3 x 3 = ν 3 M 1 x 1 .
Hence

x 3 = ν 3 M 3 -1 M 1 x 1 = ν 3 λx 1 + µM 2 -1 M 1 x 1 = ν 3 (λx 1 + µν 2 x 2 ) (2.14)
It follows from this equation that u 3 is on the line containing p = [x 1 ] and

u 2 = [x 2 ].
Let q d be a degenerate quadratic form over R d+1 of rank d. The kernel ker q d of q d has dimension 1 and is generated by a non-zero vector x d . Thus given a hyperplane V 0 of R d+1 transverse to ker q d , the restriction of the form q d to V 0 is non-degenerate. Consider the ane subspace

V = x d + V 0 ⊂ R d+1 . Its tautological projection P(V ) is an ane chart identied with V 0 R d by x ∈ V 0 → [x d + x] ∈ P(V )
, where [y] denotes the equivalence class of y in RP d . Hence we deal with q d as a non-degenerate quadratic form on P(V ) V 0 . We can dene its dual q d * with respect to the restriction of Q 0 to V 0 (the latter is dened as a quadratic form on

V 0 P(V )).
In what follows, we take V 0 ⊂ R d+1 to be the Q 0 -orthogonal hyperplane to ker q d , where

Q 0 = j x 2 j (see Equation 2.2).
Proposition 2.40. Let q d be a degenerate quadratic form over R d+1 of rank d contained in the pencil of quadrics F(q 1 * , q 2 * ) * . Let V 0 be the Q 0 -orthogonal hyperplane to ker q d and V ⊂ R d+1 an ane space parallel to V 0 . Then given p ∈ Q 1 ∩ P(V ), the intersections T p Q 1 ∩ P(V ) and L Q 2 (p) ∩ P(V ) are q d * -orthogonal.

Proof. Let p ∈ Q 1 ∩ P(V ) and u be the pole of T p Q 1 with respect to q 2 . We want to show that the line pu and the hyperplane T p Q 1 are q d * -orthogonal when intersected with P(V ). Write

p = [X 1 ] and u = [X 2 ].
We rst nd the q d * -orthogonal line to

T p Q 1 through p in P(V ). Let T 0 ⊂ V 0 be the hyperplane such that T p Q 1 = {[x + λx d ] | x ∈ T 0 , λ ∈ R }. Let y ∈ V 0 be such that y is q d * -orthogonal to T 0 . Let f d : V 0 → V 0 be the invertible linear map such that q d (x, x ) = Q 0 (f d (x),
x ) for all x, x ∈ V 0 , and f 1 : R d+1 → R d+1 be the invertible linear map dened for all x, x ∈ R d+1 by q 1 (x, x ) = Q 0 (f 1 (x), x ). By construction, for all x ∈ T 0 we have

0 = q d * (y, x) = Q 0 (f d -1 (y), x) Writing f 1 (X 1 ) = π V 0 f 1 (X 1 ) + λx d , where π V 0 f 1 (X 1 ) ∈ V 0 , λ ∈ R, we have for the same x ∈ T 0 Q 0 (π V 0 f 1 (X 1 ), x) = Q 0 (f 1 (X 1 ), x) = q 1 (X 1 , x) = 0
since V 0 and ker q d are Q 0 -orthogonal. We deduce that f d -1 (y) and π V 0 f 1 (X 1 ) are colinear, hence y and f d (π V 0 f 1 (X 1 )) are colinear. Hence the q d * -orthogonal space to T 0 is Rf d (π V 0 f 1 (X 1 )). Now let us show that f d (π V 0 f 1 (X 1 )) ∈ V 0 considered as a point in P(V ) (after the above identication V V 0 P(V )) lies in the line pu. This will conclude the proof. Let f 2 : R d+1 → R d+1 be the invertible linear map dened for all x, x ∈ R d+1 by q 2 (x, x ) = Q 0 (f 2 (x), x ).

The deinition of pole and tangent line to

Q 1 allows us to write [f 1 (X 1 )] = [f 2 (X 2 )], hence u = [X 2 ] = [f 2 -1 • f 1 (X 1 )].
And since q d ∈ F(q 1 * , q 2 * ), we can write α 2 f 2

-1 = f d + α 1 f 1 -1
where α 1 , α 2 ∈ R * and f d has been extended to the whole space R d+1 by f d (x d ) = 0. Therefore,

u = [f 2 -1 • f 1 (X 1 )] = [f d (f 1 (X 1 )) + α 1 X 1 ]. This shows that f d (f 1 (X 1 )) = f d (π V 0 f 1 (X 1 )) ∈ pu.
We apply the previous result to families of (pseudo-)confocal quadrics as it was described in Section 2.1. Fix an integer k ∈ {0, . . . , d -1}, real numbers a 0 < a 1 < . . . < a d and consider the family of quadrics

Q k := (Q k λ ) λ =a j of RP d
given by the equation

Q k λ : k j=0 x 2 j a j -λ + d-1 j=k+1 x 2 j a j + λ = x 2 d .
(2.15)

We think of this family as a family of confocal quadratics for a certain pseudo-Euclidean metric (an Euclidean metric when k = d -1) which is the degenerate quadratic form of R d+1 dened by

q k d (x) = k j=0 x 2 j - d-1 j=k+1 x 2 j .
The restriction of q k d to the ane chart {x d = 1} R d is a non-degenerate quadratic form on R d . Note that given a non-degenerate quadratic form q 1 dening a non-degenerate quadric of Q k , the quadrics of Q k are dened by the pencil F(q 1 * , q k d ) * . By Propositions 2.37 and 2.38, all quadrics Q k λ with λ = 0 dene the same eld of projective lines L k (p) on Q := Q k 0 for which they are caustics.

Proposition 2.41. The line L k (p) of the eld of projective lines dened on

Q := Q k 0 by its confocal quadrics is q k d -orthogonal to T p Q in the ane chart {x d = 1} R d .
Proof. This is a direct consequence of Proposition 2.40: by denition, the quadratic forms dening each Q k λ form a pencil of quadrics containing q k d . Moreover, the Q 0 -orthogonal space to ker q k d is the vector space V 0 = {x d = 0}. The restriction to V 0 of q k d is non-degenerate and its dual q k d * with respect to the restriction

Q 0|V 0 is q k d itself.

On Berger property Only quadrics have caustics

In this section, we are interested in projective billiards in dimension d ≥ 3 having caustics.

We try to study a generalization to projective billiards of a fundamental result discovered by Berger in [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] and which can be stated as follows:

Theorem 2.42 (Berger,[START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF]). Let d ≥ 3 and S, U , V be open subsets of C 2 -smooth hypersurfaces in R d with non-degenerate second fundamental forms. Suppose that there is an open subset of lines tangent to U and intersecting S transversally which are reected into lines tangent to V . Then S is a piece of quadric and U, V are pieces of one and the same quadric confocal to S.

Glutsyuk [START_REF] Glutsyuk | On commuting billiards in higher-dimensional spaces of constant curvature[END_REF] extended Berger's result to space forms of non-zero constant curvature, that is to the Euclidean unit sphere S d and the hyperbolic space H d with d ≥ 3. In the corresponding paper [START_REF] Glutsyuk | On commuting billiards in higher-dimensional spaces of constant curvature[END_REF], this result is also used to prove the Commuting Billiards Conjecture in dimension d ≥ 3. This conjecture was stated by Tabachnikov, see [START_REF] Tabachnikov | Commuting dual billiard maps[END_REF][START_REF] Tabachnikov | Geometry and Billiards[END_REF], and was also proved by Glutsyuk in dimension 2, see [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF]. We can now call it Commuting Billiards Theorem, and the latter can be stated as follows: consider two nested billiards of R d (respectively R 2 ) with C 2smooth (respectively piecewise C 4 -smooth) strictly convex boundaries. Each one of their billiard maps acts on the set of oriented lines intersecting them. If these maps commute then the billiards are confocal ellipsoids (respectively ellipses).

This section is structured as follows. We rst extend in Subsection 2.4.1 a key argument of Berger's proof to projective billiards. In Subsection 2.4.2, we dene a distribution of hyperplanes related to cones of lines tangent to possible caustics. In Subsection 2.4.3, we apply results found in the two rst subsections to show that if a convex pseudo-Euclidean billiard has a caustic, then it is a quadric and its caustic is a confocal quadric for the pseudo-Euclidean metric.

Berger's key argument for projective billiards

We rst extend a result based on an observation made by Berger [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] in the case of usual billiards. This observation can be stated as follows for projective billiards: consider hypersurfaces S, U, V of R d and a line-framed hypersurface Σ over S. Suppose that there is an open subset of lines tangent to U and intersecting S which are reected into lines tangent to V by the projective law of reection on Σ. If we consider three non-colinear points A ∈ U , B ∈ S, C ∈ V such that the above property is satised with = AB and = BC, then by symmetry the intersection

H = T A U ∩ T B S coincides with T C V ∩ T B S.
This observation leads to a result of niteness on such hyperplanes H of T B S which we are going to detail below. Let Σ be a line-framed hypersurface over a hypersurface S ⊂ R d , (B, L) ∈ Σ and ξ ∈ T B S a non-zero vector.

Denition 2.43. Let H be a hyperplane of T B S. H is said to be permitted by ξ if ξ / ∈ H and for any C 1 -smooth germ of curve (B(t), L(t)) ∈ Σ with B(0) = B and L(0) = L, and any C 1 -smooth germ of curve ξ(t) ∈ T B(t) S with ξ(0) = ξ, there exist germs of C 1 -smooth curves A(t), C(t) in R d such that -A := A(0), B, C := C(0) are not colinear and the vector ξ belongs to the plane ABC; -A (0) belongs to the hyperplane containing the line AB and H; -C (0) belongs to the hyperplane containing the line CB and H; -A(t)B(t) is reected into B(t)C(t) by the projective reection law on Σ at B(t).

Denition 2.44. If is a line intersecting S transversally at B, we will say that a hyperplane H ⊂ T B S is permitted by if it is permitted by a non-zero vector ξ in the intersection of the plane containing L and with T B S.

The main result of this section is the following proposition:

Proposition 2.45. Suppose S has non-degenerate second fundamental form at B. Then there is a closed subset F of T B S such that T B S \F is dense in T B S and such that for all ξ ∈ T B S \F , the number of hyperplanes H ⊂ T B S permitted by ξ is at most d -1.

Remark 2.46. In the proof we show that F is the nite union of strict vector subspaces of T B S.

Proof of Proposition 2.45. The proof is computational and we wonder if one can nd a more geometrical one. We apply the same formulas as in [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF], and use a result of linear algebra to conclude. We endow R d with its usual Riemannian metric: we denote by x • y the canonical scalar product on R d .

Let H be a hyperplane of T B S permitted by a certain ξ ∈ T B S, and let η ∈ T B S be an orthogonal vector to H of norm 1. Choose an orthonormal basis (u 1 , . . . , u d-1 ) of eigenvectors of S's second fundamental form at B, and denote by k 1 , . . . , k d-1 the corresponding eigenvalues.

Choose α i such that ξ = cos(α i )u i + sin(α i )v i , where v i is a vector of length 1 orthogonal to u i , and write

i = cos(α i ) ∈ [-1, 1]. Note that ξ = d-1 k=1 k u k . Fix an i ∈ {1, . . . , d -1}.
Let A(t), (B(t), L(t)), C(t) be as in Denition 2.43 and verifying B (0) = u i . Let n(t) be a smooth family of normal vectors to S at B(t) of length 1, and ν(t) a smooth family of vectors directing L(t) and such that ν(t) • n(t) = 1. Dene u i (t) = B (t) for all t, extend v i into a vector eld v i (t) along B(t) by parallel transport, and set ξ(t) = cos(α i )u i (t) + sin(α i )v i (t). In the following, given any curve γ(t), we will write γ for γ (0).

1)

We rst express in a matrix form the fact that A (0) belongs to the hyperplane P A containing the line AB and H, and that C (0) belongs to the hyperplane P C containing the line AC and H.

Here we adapt the computations of [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] to the projective case. Let e(t) = E 1 (t)ν(t) + E 2 (t)ξ(t) and e(t) = E 1 (t)ν(t) -E 2 (t)ξ(t) be two unit vectors directing the oriented lines A(t)B(t) and B(t)C(t), with E 1 (t), E 2 (t) ∈ R, and having the same orientation with respect to T B S. One can write

A(t) = B(t) + a(t)e(t)
and

C(t) = B(t) + c(t)e(t) (2.16)
where a(t), c(t) > 0. Normal vectors to P A and P C can be respectively dened by

n A = (η • e)n -(n • e)η = (E 1 (η • ν) + E 2 (η • ξ))n -E 1 η, n C = (η • e)n -(n • e)η = (E 1 (η • ν) -E 2 (η • ξ))n -E 1 η.
If we denote by the derivative taken in 0, we get

A • n A = 0 and C • n C = 0.
(2.17)

Now since e is parallel to P A we have e • n A = 0, hence by combining Equations (2.16) and (2.17) we get

0 = A • n A = u i • n A + a(e • n A ) (2.18)
Yet, as recalled in [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] 

we have n = k i u i , u i = -k i n, v i = 0, hence ξ = -k i i n.
Therefore replacing e by its expression in Equation (2.18) gives

0 = A • n A = -E 1 (η • u i ) + a ((E 2 E 1 -E 1 E 2 -k i i E 2 2 + E 1 E 2 (n • ν ))(η • ξ) +(E 2 1 (n • ν ) -k i i E 1 E 2 )(η • ν) -E 2 1 (η • ν )) (2.19) 
and the same with C by changing E 2 in -E 2 and a in c:

0 = C • n C = -E 1 (η • u i ) + c ((E 2 E 1 -E 1 E 2 -k i i E 2 2 -E 1 E 2 (n • ν ))(η • ξ) +(E 2 1 (n • ν ) + k i i E 1 E 2 )(η • ν) -E 2 1 (η • ν )) (2.20) 

If we substitute Equations (2.19) and (2.20) in

A •n A a + C •n C c = 0 we get 1 a + 1 c E 1 (η • u i ) = 2E 2 1 (n • ν )(η • ν) -2E 2 1 (η • ν ) -2k i i E 2 2 (η • ξ) = -2E 2 1 (η • N i ) -2k i i E 2 2 (η • ξ) (2.21) 
where

N i = ν -(n • ν )ν. The vector N i lies in T B S since we can check that (N i • n) = 0. Now (n(t) • ν(t)) = 1 for all t, hence (n • ν ) = -(n • ν) = -k i (u i • ν),
and N i can be expressed as

N i = dν • u i + k i (u i • ν)ν. N i only depends on the 2-jet of Σ at (B, L).
Let us rewrite Equation (2.21) in a matrix form. Denote by

-α the quantity -(a -1 + c -1 )/2E 1 ; -V ξ the vector given by V ξ = (E 2 /E 1 ) 2 d-1 i=1 k i i u i ; -M the matrix of M d-1 (R)
whose lines are given by the coordinates of N i in the orthonormal basis (u 1 , . . . , u d-1 ). Then Equation (2.21), together with the assumption that ξ / ∈ H, can be rewritten as

M η + (ξ • η)V ξ = αη η / ∈ ξ ⊥ (2.22)
where η and ξ are considered as vectors of R d-1 with coordinates given by their coordinates in the basis (u 1 , . . . , u d-1 ).

2) For xed α and ξ, we now study the space of solutions η of Equation (2.22).

Given an endomorphism f of R k , we call eigenspace of f any subspace of R k of the form ker(f -βid) for a certain β, and denote by Im f the set of all f (x) where x ∈ R k .

Lemma 2.47. Let β 1 , . . . , β s be the real eigenvalues of M . If V ξ doesn't belong to any of the sets Im (M -

β i I d-1 ), then the eigenspaces of the endomorphism f M,ξ of R d-1 dened by f M,ξ : x → M x + (ξ • x)V ξ
are either of dimension at most 1 or contain only orthogonal vectors to ξ.

Proof. Let α be an eigenvalue of f M,ξ . Consider an eigenvector x of f M,ξ associated to α: it satises

(M -αI d-1 )x = -(ξ • x)V ξ . If α = β k for all k, then M -αI d-1 is invertible. Hence x ∈ R(M -αI d-1 ) -1 V ξ and therefore the eigenspace of f M,ξ associated to α is of dimension at most 1. Now if α = β k for a certain k, since V ξ / ∈ Im (M -β k I d-1
) we necessarily have (ξ • x) = 0 and the eigenspace of f M,ξ associated to α contains only orthogonal vectors to ξ.

We can now nish the proof of Proposition 2.45. The second fundamental form of S at B is non-degenerate, hence none of the k i equals 0. Hence the set

F of vectors ξ ∈ R d-1 = d-1 i=1 i u i such that V ξ belongs to ∪ i Im (M -β i I d-1 )
is the nite union of strict vector subspaces of T B S, and it depends neither on E 1 nor on E 2 ; it depends only on M . Thus if we suppose that ξ / ∈ F , Lemma 2.47 implies that there are one-dimensional vector subspaces G 1 , . . . , G s of T B S, s ≤ d -1, contained in the eigenspaces of f M,ξ such that any solution η of Equation (2.22) is contained in some G i . Hence any hyperplane H permitted by ξ is an orthogonal space in T B S to one of the G i , which ends the proof of the result.

Distributions of permitted hyperplanes

Let Σ be a line-framed hypersurface over a hypersurface S ⊂ R d , and B ∈ S such that S has a non-degenerate second fundamental form at B. In this section, we dene d -1 distributions of hyperplanes based on Proposition 2.45. We use the same notations as in the statement of this proposition. Let ξ ∈ T B S be a vector outside F and H ⊂ T B S be a hyperplane permitted by ξ. As a consequence of Lemma 2.47 together with the implicit function theorem, there are neighborhoods U H of H in the Grassmanian and U ξ of ξ in T B S, and an analytic map H : U ξ → U H such that for any hyperplane H ∈ U H , H is permitted by a vector ξ ∈ U ξ if and only if H = H(ξ ). The same can be done with hyperplanes permitted by a line .

In the case when the number of hyperplanes of T B S permitted by is exactly d -1, we have dened, in a neighborhood of , d -1 analytic elds of hyperplanes H 1 , . . . , H d-1 in T B S, depending on . For each one of them, dene Hk ( ) the ane hyperplane of R d containing H k ( ) and . The latter can be considered as a hypersurface of the set of lines L B RP d-1 containing B, and it contains . We denote by h k ( ) = T Hk ( ) ⊂ T L B its tangent space at . Proof. This is a direct consequence of Equation (2.22), which only depends on the 1-jet of the normal vector eld n to S at B and on the 1-jet at B of a normalized directing vector eld ν of the projective eld of lines of Σ.

In the following proposition, we suppose that Σ has d -1 permitted distributions at B, h 1 , . . . , h d-1 , well-dened in a neighborhood of a line intersecting S at B. Proposition 2.50. Let U, V ⊂ R d be hypersurfaces with non-degenerate second fondamental forms, with tangent to U . Suppose that there is an open subset Ω, containing , of lines tangent to U and intersecting S which are reected into lines tangent to V by the projective law of reection on Σ. Then for any line in Ω containing B and tangent to U at a point A, the hyperplane H = T A U ∩ T B S is permitted by . The corresponding hyperplanes on T L B coincide with one of the d -1 permitted distributions of Σ at B, say h j . The set of lines containing B and tangent to U is an integral surface of h j .

Proof. It is easy to check that H satises all requirements of Denition 2.43 since the pair U, V is a caustic of S. Hence H is a hyperplane of T B S permitted by . The corresponding hyperplane h( ) ⊂ T L B coincides with one of the d -1 permitted distributions h j ( ) by denition. The rest of the result follows from the denition of the distribution h j .

Caustics of billiards in pseudo-Euclidean spaces

In this section, we are interested specically in billiards of pseudo-Euclidean spaces of dimension d ≥ 3 having caustics. We adopt the denition of pseudo-Euclidean spaces used in [START_REF] Dragovi¢ | Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics[END_REF][START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF]: the pseudo-Euclidean space E k,l of signature (k, l), k, l ∈ N, with k + l = d, is the space R d endowed with the non-degenerate symetric bilinear form

•|• dened for x, y ∈ R d by x|y = k j=1 x j y j - d j=k+1
x j y j .

(2.23)

We will denote by q k d the quadratic form associated to

•|• . A line ⊂ E k,l directed by a non-zero vector v is said to be -space-like if v|v > 0; -time-like if v|v < 0; -light-like if v|v = 0.
Denote the usual scalar product on R d by (x • y) for all x, y ∈ R d . An ane ellipsoid is a set containing at least two points which is of the form

E = x ∈ R d | (Ax • x) + (B • x) + C = 0
where A ∈ M d (R) is a positive-denite symmetric matrix, B ∈ R d is a vector, and C ∈ R. As noticed in [START_REF] Dragovi¢ | Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics[END_REF][START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF], since A is positive-denite there is a linear change of coordinates in R d preserving the pseudo-Euclidean metric (2.23), in which (Ax • x) takes the form

(Ax • x) = d j=1 x 2 j a j
where a 1 , . . . , a d > 0. Therefore, by an appropriate choice of a new origin, the ellipsoid E is given by an equation of the form

d j=1 x 2 j a j = 1 (2.24) 
where a 1 , . . . , a d > 0. Notice that the form of the pseudo-Euclidean metric (2.23) is left unchanged in this set of coordinates. A pseudo-confocal quadric to E is a quadric Q λ which can be expressed in this new set of coordinates by an equation of the form

Q λ : k j=1 x 2 j a j -λ + d j=k+1 x 2 j a j + λ = 1.
(

where λ ∈ R. See Figure 2.2 for a 3-dimensional representation.

Let us recall results from [START_REF] Dragovi¢ | Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics[END_REF][START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF] which can be applied to a general quadric, not only an ellipsoid:

Theorem 2.51 (pseudo-Euclidean version of Chasles theorem; see [START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF] Theorem 4.8 and [START_REF] Dragovi¢ | Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics[END_REF] Theorem 2.3). A space-or time-like line intersecting E is tangent to d -1 pseudo-confocal quadrics. The tangent hyperplanes at the tangency points with are pairwise orthogonal.

Theorem 2.52 (pseudo-Euclidean version of Jacobi-Chasles theorem; see [START_REF] Khesin | Pseudo-Riemannian geodesics and billiards[END_REF] Theorem 4.9).

A space-or time-like billiard trajectory in E remains tangent to d -1 xed quadrics Q λ .

We deduce the following result:

Theorem 2.53. Let S, U, V ⊂ R d be open subsets of hypersurfaces with non-degenerate second fundamental forms, and S being convex. Suppose that there is an open subset of the set of lines intersecting S and tangent to U which are reected into lines tangent to V by pseudo-Euclidean reection on S. Then S is a piece of quadric; U, V are pieces of one and the same quadric pseudo-confocal to S.

Proof. We rst begin by proving the following Lemma 2.54. Consider the set K of lines tangent to U and intersecting S transversally. Then the set of lines of K which are not light-like is an open dense subset of K.

Proof. Denote by K 0 this set. It is clearly open, and it remains to show that it is dense. Suppose the contrary, then there is a light-like line ∈ K contained in an open subset Ω ⊂ K \ K 0 of K. Let x ∈ U be the point of tangency of with U . All lines tangent to U at x and suciently close to are contained in Ω, hence the pseudo-Euclidean metric v|v vanishes on an open subset of T x U , hence on T x U . This implies that T x U is contained in its orthogonal space, contradiction.

We can now prove Theorem 2.53. Consider the line-framed hypersurface Σ = S q k d over S dened by the pseudo-Euclidean metric q k d (see Subsection 1.1.4). Consider a line of K which is not light-like and intersecting S at a point B transversally. Using the same notations as in Proposition 2.45, we can suppose that any non-zero vector ξ of the intersection of T B S with the plane containing and the pseudo-Euclidean normal line to S at B is not in F . Now consider an ane ellipsoid E tangent to S at B, with the same principal directions. In particular, S and E have the same 2-jet at B, and therefore their eld of normal lines with respect to the pseudo-Euclidean metric have the same 1-jet at B. Let E = E q k d be the lineframed hypersurface over E induced by the pseudo-Euclidean metric q k d : let us show that E has d -1 permitted distribution at B which are integrable. By Proposition 2.49, Σ will have the same permitted distributions at B.

Indeed, by Theorem 2.51, one can nd

d -1 pseudo-confocal quadrics Q 1 , . . . , Q d-1 tangent to
, and such that the hyperplanes containing and tangent to each Q j are pairwise orthogonal. By Theorem 2.52, each Q j is a caustic of E , and by Proposition 2.50, the intersection of the latter hyperplanes with T B E are pairwise distinct and permitted by . Therefore E has d -1 permitted distributions h 1 , . . . , h d-1 dened on a neighborhood of in L B which are induced by the latter hyperplanes. Moreover, the distributions h 1 , . . . , h d-1 are integrable: the integral manifold of h j is the set of lines tangent to one quadric among Q 1 , . . . , Q d-1 . Therefore the union of all lines contained in the integral manifold of h j is a piece of quadratic cone (a cone dened by a quadratic form).

Yet, the set of lines containing B and tangent to U and V is also an integral manifold of one of the permitted distributions h j of Σ at B, by Proposition 2.49 and Proposition 2.50. Hence U and V are tangent to one of previously dened quadratic cones at points dening curves of U and V . The same operation can be applied by taking dierent points B in a small open subset of S. Now by an argument of [START_REF] Berger | Seules les quadriques admettent des caustiques[END_REF] working on the duals of U and V , this implies that U and V are pieces of one and the same quadric Q.

To prove that S is a piece of pseudo-confocal quadric, we use the same argument as Berger in the pseudo-Euclidean case. For points 

Chapter 3

Billiards with open subsets of periodic orbits

This chapter is devoted to the study of periodic orbits of projective billiards and of an analogue of Ivrii's conjecture for projective billiards.

A projective billiard Ω is said to be k-reective if we can nd a k-periodic orbit p = (p 1 , . . . , p k ) and an open subset

U 1 × U 2 ⊂ (∂Ω) 2 containing (p 1 , p 2 ) such that for any (q 1 , q 2 ) ∈ U 1 × U 2 ,
Ω has a k-periodic orbit q = (q 1 , q 2 , . . . , q k ) close to p. The billiard Ω is said to be k-pseudoreective if the same statement is satised with U 1 ×U 2 replaced by a subset of (∂Ω) 2 of non-zero measure. Using these denitions, Ivrii's conjecture for projective billiards can be stated as the following injunction: classify the k-pseudo-reective projective billiards for all integer k ≥ 3.

The conditions of k-reectivity and k-pseudo-reectivity are local properties in the following sense: as a consequence of Proposition 1.15, if (q 1 , q 2 ) is chosen suciently close to (p 1 , p 2 ) on (∂Ω) 2 , then the corresponding orbit q = (q 1 , q 2 , . . . , q k ) has its vertices q j in open small neighborhoods V j ⊂ ∂Ω of the vertices p j of the orbit p = (p 1 , . . . , p k ). Therefore, if we perturb ∂Ω arbitrarily outside each V j , the set of periodic orbits close to p will remain unchanged, and the property of k-reectivity and k-pseudo-reectivity is kept intact. This is why we can only consider the germs of curves or hypersurfaces (∂Ω, p j ), j = 1, . . . , k, and work with them to study the analogue of Ivrii's conjecture for projective billiards. We give a new local denition of projective billiards corresponding to this idea: This result is an easy corollary of the Uniqueness Theorem for analytic extension.

Remark 3.3. We will sometimes consider that the α j are line-framed hypersurfaces of P(T RP d )

(see Remark 1.11).

This chapter is structured as follows: dierent examples of k-reective projective billiards inside polygons are given at Section 3.1. Section 3.2 introduces Pfaan systems and applies them to the study of Ivrii's conjecture. A classication of the 3-reective and 3-pseudo-reective local projective billiards is given at Section 3.3.

Examples of k-reective projective billiards

In this section, we construct dierent types of local projective billiards in the plane which are k-reective for all integer k being either 3 or an even integer. The constructed examples are projective billiards whose classical boundaries are lines, hence can be considered as projective billiards inside polygons. All the results presented here are gathered in a preprint [START_REF] Fierobe | Examples of reective projective billiards[END_REF].

Remark 3.4. I apologize in advance for this remark which is not related directly to mathematical considerations. I remember the results of this section as a very pleasant moment of my thesis.

In this remark I just describe a funny anecdote taking place in a train from Nizhnyi Novgorod to Novosibirsk and related to the discovery of the present results. I found some of the latter's proofs during this two days long journey, while the train was moving in the middle of beautiful empty frozen steppes. When the redaction was over, I tried to put the preprint online. But wi was only available for short periods of time at dierent train stops situated midway between Nizhnyi Novgorod and Novosibirsk, so that I had to be quite dexterous and try again many times to achieve the upload. This journey appeared to me as a great moment of creativity, which probably would have been dierent if I decided to take the airplane instead of the train in order to join Novosibirsk from Nizhnyi Novgorod.

Given distinct points O, P, Q ∈ RP 2 not on the same line, one can consider the line P Q endowed with the eld of transverse lines containing O, denoted by P Q O :

P Q O = (p, L) ∈ P(T RP 2 ) | p ∈ P Q, O ∈ L .
Denition 3.5. Given three points P 1 , P 2 , P 3 not on the same line, the right-spherical billiard -n = k even: the centrally-projective polygon based at points O, P 1 , P 2 , . . . , P n is n reective, where n ≥ 4 is an even integer, P 1 , . . . , P n enumerate the vertices of a regular polygon in the clockwise (or counterclockwise) order and O is its center of symmetry;

-k = 2n: the centrally-projective polygon based at any points O, P 1 , P 2 , . . . , P n is 2nreective, where n ≥ 3 is an integer. Remark 3.8. There is another class of 4-reective projective billiards inside quadrilaterals which can be constructed using two right-spherical billiards and "gluing" them together. We do not give details about this construction and we refer the interested reader to [START_REF] Fierobe | Examples of reective projective billiards[END_REF]. The next subsections will be devoted to the proof of Proposition 3.7. In the proof, we will consider virtual orbits, which are the same as orbits dened in the introductive section without the statement about orientation of lines. For virtual orbits, the reection at each point can cross the boundary. Notice also that, as for usual orbits, a side p j p j+1 of a virtual orbit can cross another boundary, a i with i = j, j + 1, of the billiard without being reected by it. In certain cases, for example when the classical boundaries a j are lines, the virtual orbit (p j ) j of (p 1 , p 2 ) ∈ a 1 × a 2 is uniquely dened. We say that (p 1 , p 2 ) determines the orbit (p j ) j . Remark 3.9. Projective billiards in centrally-projective polygons are strongly related to dual billiards in polygons, as explained in [START_REF] Tabachnikov | Introducing projective billiards[END_REF]. A dual billiard (or outer billiard) [START_REF] Shaidenko | Global stability of a class of discontinuous dual billiards[END_REF][START_REF] Tabachnikov | On the dual billiard problem[END_REF] is an oriented closed convex curve γ together with a map ϕ dened on the exterior of the curve as follows: given a point p outside the closed domain bounded by the curve, there are two tangent lines to γ containing p which we can orient from p to any point of tangency. Each of them is tangent to γ either at a unique point, or along a segment (convexity). Choose the so-called right tangent line, which has the same orientation, as γ, at their tangency point(s). We deal only with those points p for which the corresponding tangency point (denoted by q) is unique. In the case, when γ is a polygon, the point q is its vertex. In this case the orientation condition should be modied as follows. Turn the oriented line pq around the point q until it becomes tangent to γ along a segment adjacent to q (either clockwise, or counterclockwise). Then the rotated line and the latter segment should have the same orientation. Set ϕ(p) to be the point obtained by reecting p with respect to q. We would like to thank Sergei Tabachnikov who pointed us out the following results: in a certain class of polygons, called rational polygons, the outer orbits are always nite (see [START_REF] Tabachnikov | Geometry and Billiards[END_REF] Chapt. 9, or [START_REF] Shaidenko | Global stability of a class of discontinuous dual billiards[END_REF] for a proof). Rational polygons are polygons whose vertices lie on the ane image of a lattice. For example triangles and parallelograms are rational polygons. They have the property that the outer orbit (p j ) j of a given point p 0 is discrete (indeed, the vectors joining for each j the points p j and p j+2 are in a lattice, as it can be deduced from Lemma 3.17). In [START_REF] Shaidenko | Global stability of a class of discontinuous dual billiards[END_REF], it is shown that orbits in rational polygons are also bounded, which proves their niteness. Results on dual billiards are of great interest for projective billiards endowed with a so-called centrally-projective eld of lines (meaning that the transverse lines to the boundary of the billiard contain the same point O). Indeed, such projective billiards are conjugated by polarity with dual billiards, see [START_REF] Tabachnikov | Introducing projective billiards[END_REF]. Let us describe this construction for polygons: suppose we are given a centrally-projective polygon based at points O, P 1 , P 2 , . . . , P n and an orbit (p j ) j∈Z of the corresponding projective billiard. In our case, this means that each p j lies on the side P j P j+1 (see Denition 3.1). Consider a polarity such that the point O is the pole of the line at innity (see Section 2.1). For each k denote by Q k the pole of the line P k P k+1 and by q k the pole of p k p k+1 : then the line Op k has its pole ω k at innity, and the points q k-1 , q k , Q k , ω k form a harmonic quadruple of points (since they are poles of lines in a harmonic set of lines). Therefore Q k is the midpoint of the segment q k q k+1 and we recover the dynamics of a dual billiard outside the polygon Q 1 • • • Q n where (q k ) k is an orbit. The dynamics in this case is more simple since by construction the midpoints of successive edges are consecutive vertices of the polygon. Hence both projective and dual billiards are conjugated by polarity. This link between centrally-projective polygons and dual billiards about polygons and the niteness of orbits in rational polygons immediately implies the following result: projective billiards in centrally-projective polygons which are duals of rational polygons have only periodic orbits. It could be interesting to describe this new class of centrally-projective polygons (the centrally-projective quadrilateral of Proposition 3.7, case n = k = 4, is an example of such polygon, since its associated dual billiard is a parallelogram, as it will be explained below).

3-reectivity of the right-spherical billiard

In this subsection, we denote by P 1 , P 2 , P 3 three non-colinear points of RP 2 and we consider the right-spherical billiard based at P 1 , P 2 , P 3 . Given an integer j modulo 3 and p ∈ P j P j+1 , we denote by L j (p) the projective line at p of P j P j+1 P j+2 , that is L j (p) = pP j+2 , the line containing p and P j+2 . We give two proofs of Proposition 3.10. The rst one is based on the observation that the right-spherical billiard is obtained by the projection of a 3-reective billiard on the sphere S 2 to the Euclidean plane (see Section 1.1.4). The other proof uses more intrinsic arguments about harmonic sets of lines. Proof 1. Projective transformations do not change the cross-ratio of four distinct points on the same line, hence if four lines form a harmonic set then their images by a projective transformation also form a harmonic set. Therefore it is enough to show that at least one example of right-spherical billiard is 3-reective. As explained in the introductive section, a triangle on the sphere S 2 having only right angles is a 3-reective classical billiard on the sphere S 2 (see Figure 6 in the introductive section). This example was found by Baryshnikov [3,[START_REF] Blumen | Three-Period Orbits in Billiards on the Surfaces of Constant Curvature[END_REF]. Choose such triangle on the upper open hemisphere of S 2 , and project it on the plane P = {z = -1} by a projection with respect to the center of S 2 (see Section 1.1.4 for more details). Endow P with the metric g obtained by pushing forward the spherical metric with this projection: the geodesics of the Riemannian manifold (P, g) are lines. By construction, we obtain a 3-reective billiard whose boundary is a triangle P 1 P 2 P 3 , and the g-normal line to P j P j+1 at any point p is the line joining p to the opposite vertex P j+2 (see Figure 3.4). By Proposition 1.16, two lines and containing p are symetric with respect to P j P j+1 in the metric g if and only if the quadruple of lines ( , , P j P j+1 , pP j+2 ) is harmonic. Therefore, the orbits of the billiard P 1 P 2 P 3 in the metric g coincide with the orbits of the right-spherical billiard based at P 1 , P 2 , P 3 , and the corresponding right-spherical billiard is 3-reective.

Proof 2. This proof was found by Simon Allais in a talk we had about harmonicity conditions in a projective space. Let p 3 ∈ P 1 P 3 be such that p 1 p 2 , p 2 p 3 , P 2 P 3 , L 2 (p 2 ) are harmonic lines. Dene p 3 ∈ P 1 P 3 similarly: p 1 p 2 , p 1 p 3 , P 1 P 2 , L 1 (p 1 ) are harmonic lines. Let us show that p 3 = p 3 (see Figure 3.5). Consider the line P 1 P 3 and let A be its point of intersection with p 1 p 2 . Let us consider harmonic quadruples of points on P 1 P 3 . By harmonicity of the previous dened lines passing through p 2 , the quadruple of points (A, p 3 , P 3 , P 1 ) is harmonic. Doing the same with the lines passing through p 1 , the quadruple of points (A, p 3 , P 3 , P 1 ) is harmonic. Hence p 3 = p 3 since the projective transformation dening the cross-ratio is one to one. Now let us prove that the lines p 2 p 3 , p 1 p 3 , P 1 P 3 , L 3 (p 3 ) are harmonic lines. Consider the line P 1 P 2 : p 2 p 3 intersects it at a certain point denoted by B, p 3 p 1 at p 1 , P 3 P 1 at P 1 and L 3 (p 3 ) at P 2 . But the quadruple of points (B, p 1 , P 1 , P 2 ) is harmonic since there is a reection law at p 2 whose lines intersect P 1 P 2 exactly in those points.

4-reectivity of the centrally-projective quadrilateral

In this subsection, we denote by P 1 , P 2 , P 3 , P 4 points of RP 2 such that no three of them are colinear, and O the intersection point of the line P 1 P 3 with P 2 P 4 . We consider the centrallyprojective quadrilateral based at O, P 1 , P 2 , P 3 , P 4 . Given an integer j modulo 4 and p ∈ P j P j+1 , we denote by L j (p) the projective line at p of P j P j+1 O , that is L j (p) = Op, the line containing p and O. Proposition 3.11. Any (p 1 , p 2 ) ∈ P 1 P 2 × P 2 P 3 with p 1 = p 2 determines a 4-periodic orbit of the centrally-projective polygon based at O, P 1 , P 2 , P 3 , P 4 . Proof. Let p 3 ∈ P 3 P 4 such that p 1 p 2 is reected into p 2 p 3 by the reection law at p 2 . Let p 4 ∈ P 4 P 1 such that p 2 p 3 is reected into p 3 p 4 by the reection law at p 3 . Let p 4 ∈ P 4 P 1 such that p 1 p 2 is reected into p 1 p 4 by the reection law at p 1 . Denote by d the line reected from p 3 p 4 by the projective reection law at p 4 . We have to show that d = p 1 p 4 . First, let us introduce a few notations (see Figure 3.6). Consider the line p 1 p 2 ; it intersects: the line P 1 P 3 at a point B and the line P 2 P 4 at a point A . Now consider the line p 2 p 3 ; it intersects: the line P 1 P 3 at a point B and the line P 2 P 4 at a point A. Finally let C be the intersection point of p 3 p 4 with P 2 P 4 and D the intersection point of p 1 p 4 with P 1 P 3 . Then, notice that by the projective law of reection at p 2 , the quadruple of points (A, A , P 2 , O) is harmonic. Since the points P 2 , A , O correpond to the lines P 1 P 2 , p 1 p 2 , L 1 (p 1 ), the previously dened reected line p 1 p 4 needs to pass through A in order to form a harmonic quadruple of lines. The same remark on the other diagonal leads to note that p 3 p 4 passes through B. Now by the reection law at p 3 , one observe that the quadruple of points Remark 3.12. Another proof can be given by duality: as explained at Remark 3.9, we can associate a dual billiard to the centrally-projective quadrilateral P 1 P 2 P 3 P 4 of Proposition 3.6 by a polarity sending O at innity. Since the point O is on both its diagonals P 1 P 3 and P 2 P 4 , the dual polygon to

P 1 P 2 P 3 P 4 is a parallelogram Q 1 Q 2 Q 3 Q 4 (
hence a rational polygon). The study of the simplied dual billiard outside Q 1 Q 2 Q 3 Q 4 (as described in Remark 3.9) gives another proof of Proposition 3.6 as a simple consequence of the famous intercept theorem in geometry.

3.1.3 2m-reectivity of centrally-projective regular 2m-sided polygons Let n = 2m ≥ 4 be an even integer, P 1 , . . . , P n be a clockwise enumeration of the vertices of a regular polygon, and O be the intersection point of its great diagonals (that is the point of intersection of the lines P j P j+k where j is an integer taken modulo n). We consider the centrally-projective polygon based at O, P 1 , . . . , P n . Proof. Fix (p 1 , p 2 ) ∈ P 1 P 2 × P 2 P 3 with p 1 = p 2 and consider its backward and forward orbit p = (p j ) j∈Z . During the proof, all indices, except for p j , will be considered modulo n. We rst prove the following Lemma 3.14. Fix an integer and consider the great diagonal ∆ = P P +m . Then for any r ≥ 0, the lines p -r-2 p -r-1 and p +r p +r+1 intersect ∆ at the same point. See Figure 3.8. Proof. Let us prove Lemma 3.14 by induction on r.

Case when r = 0: Fix an integer . Let A be the intersection point of p -2 p -1 with ∆ , A the intersection point of p p +1 with ∆ and B the intersection point of p -1 p with ∆ . Consider harmonic quadruples of points on ∆ : (A, B, P , O) is harmonic by the reection law in p -1 , and (A , B, P , O) is harmonic by the reection law in p +1 . Hence A = A which concludes the proof for r = 0.

Inductive step: suppose Lemma 3.14 is true for any integer and any r < r and let us prove it for r. See Figure 3.8 for a detailled drawing of the situation. Fix an integer ∈ Z.

By assumption, we know that p -r-1 p -r and p +r-1 p +r intersect ∆ at the same point A. Moreover, by symmetry of the regular polygon with respect to the line ∆ , the lines P -r-1 P -r and P +r P +r+1 intersect ∆ at the same point. Now the intersection points of p -r-1 p -r with p +r-1 p +r , of P -r-1 P -r with P +r P +r+1 , and of p -r-1 O with p +r O lie on ∆ . Hence in order to sastisfy the projective reection law at p -r-1 and at p +r respectively, the lines p -r-1 p -r-2 and p +r p +r+1 should intersect at the same point. Hence the inductive step is over and this conclude the proof.

Let us nally prove Proposition 3.13. We have to show that p 0 p 1 = p n p n+1 . We will use Lemma 3.14. First, by setting = m + 1 and r = m -1, we conclude that the lines p 0 p 1 and p n p n+1 intersect ∆ m+1 = ∆ 1 at the same point denoted by A. Then, by setting = m+2 and r = m-2 we get that the lines p 2 p 3 and p n p n+1 intersect ∆ m+2 = ∆ 2 at the same point denoted by B. Now it is also true that p 0 p 1 intersects ∆ 2 at B, by setting = 2 and r = 0 in Lemma 3.14. Hence we have shown that p n p n+1 = AB = p 0 p 1 which concludes the proof.

2n-reectivity of centrally-projective n-sided polygons

Let n ≥ 3 be an integer, O, P 1 , . . . , P n be points in RP 2 such that no three of them are colinear. We consider the centrally-projective polygon based at O, P 1 , . . . , P n . Proposition 3.15. Suppose that n is odd. Then any (p 1 , p 2 ) ∈ P 1 P 2 × P 2 P 3 with p 1 = p 2 determines a 2n-periodic orbit of the centrally-projective polygon based at O, P 1 , . . . , P n . See Figure 3.9.

Proof. The idea of the proof is based on a construction which can be found in [START_REF] Tabachnikov | Introducing projective billiards[END_REF], to associate to a projective billiard a dual billiard. For a an introduction to dual billiards see for example [START_REF] Tabachnikov | On the dual billiard problem[END_REF]. Consider a line L ∞ ⊂ RP 2 which does not contain any of the points O, P 1 , . . . , P n (seen as the line at innity) and a polarity which sends O to L ∞ (that is a choice of a quadratic form for which O is the pole of L ∞ ; see Section 2.1).

Consider the orbit (p j ) j∈Z of (p 1 , p 2 ) ∈ P 1 P 2 × P 2 P 3 with p 1 = p 2 . For each j, denote by q j the polar dual of the line p j p j+1 by Q j the polar dual of the line P j P j+1 , and by ω j the polar dual of the projective line at p j of the centrally-projective billiard, namely Op j . Since the line Op j contains O, its polar dual ω j belongs to L ∞ .

Given an integer j, the lines p j-1 p j , p j p j+1 , P j P j+1 and Op j form a harmonic quadruple of lines passing through the point p j , hence the points q j-1 , q j , Q j , ω j all belong to the same line (given by the polar dual of p j ) and they form a harmonic set of points. Since ω j is on L ∞ , the harmonicity condition implies that Q j is at equal distance from q j-1 and from q j in the open set RP 2 \ L ∞ which is canonically dieomorphic to R 2 . This can be rewritten in terms of vectors of

RP 2 \ L ∞ R 2 as ----→ q j-1 Q j = --→ Q j q j . (3.1) 
Thus, we have transformed our problem into a simplied version of dual billiards in polygons, dened as follows:

Denition 3.16. Let Q 1 , . . . , Q n be distinct points in R 2 and q 0 ∈ R 2 . The virtual outer orbit of q 0 associated to (Q 1 , . . . , Q n ) is the sequence (q j ) j∈Z of points of R 2 such that for each j, the point Q j is on the line q j-1 q j and is at equal distance from q j-1 and from q j .

In our case, the problem is to show that any virtual outer orbit q = (q j ) j∈Z of the above constructed points Q 1 , . . . , Q n is 2n-periodic in the sense that q 2n+j = q j for a certain j (and thus for all j). By polar duality, we will recover that the corresponding virtual orbit of the original local projective billiard is 2n-periodic.

Lemma 3.17. For all j ∈ Z we have the relation

-----→ q j-1 q j+1 = 2 ----→ Q j Q j+1 .
Proof. This relation comes from Relation (3.1), which denes a conguration as in the intercept theorem:

-

----→ q j-1 q j+1 = ----→ q j-1 Q j + --→ Q j q j + ----→ q j Q j+1 + -----→ Q j+1 q j+1 = 2 --→ Q j q j + 2 ----→ q j Q j+1 = 2 ----→ Q j Q j+1 .
We conclude the proof of of Proposition 3.15 by showing that q 2n+1 = q 1 . Indeed, by Lemma 3.17 we have

----→ q 1 q 2n+1 = n j=1 ------→ q 2j-1 q 2j+1 = 2 n j=1 ------→ Q 2j Q 2j+1 .
Since n is odd, if we write n = 2m + 1 with an integer m ≥ 1, the latter sum can be rewritten as

n j=1 ------→ Q 2j Q 2j+1 = m j=1 ------→ Q 2j Q 2j+1 + n j=m+1 ------→ Q 2j Q 2j+1 = m j=1 ------→ Q 2j Q 2j+1 + m+1 i=1 -----→ Q 2i-1 Q 2i (3.2)
where the last equality is obtained by the change of variables j = i + k and the relation

Q i+n = Q i .
It is easy to see that the last quantity of (3.2) equals

------→ Q 1 Q 2m+2 = ---→ Q 1 Q 1 = 0.
Hence q 1 = q 2n+1 and therefore the lines p 1 p 2 and p 2n+1 p 2n+2 are the same which implies that the orbit (p j ) j is 2n-periodic.

Billiards and Pfaan systems

In this section we present a strong link between k-reective (eventually projective) billiards and integral surfaces of a certain distribution called Birkho's distribution. The idea was developped in [START_REF] Baryshnikov | Billiards and nonholonomic distributions[END_REF], and interesting arguments are given in [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF] from which this section of the manuscript is inspired. Some of the results presented in this section are gathered in a preprint [START_REF] Fierobe | On projective billiards with open subsets of triangular orbits[END_REF].

Classical Birkho's distribution

Let M be a smooth or analytic manifold and k be a non-zero positive integer. We denote by Gr k (T M ) the ber bundle over M made by k-dimensional vector subspaces of T M , and by π : Gr k (T M ) → M its natural projection. ,p k ) such that for each j = 2, . . . , k -1 the points p j-1 , p j , p j+1 do not lie on the same line of R d . For each j (modulo k), consider the interior bisector L j (p) ⊂ R d of the oriented angle between the vectors ---→ p j p j-1 and ---→ p j p j+1 and denote by H j (p) ⊂ R d its orthogonal hyperplane (with respect to the Euclidean metric of R d ).

The hyperplanes H j (p) have the following simple property related to billiards which is simply due to the denition of the reection law on the billiard. Lemma 3.20. Let Ω be a (classical) billiard in R d and p be a sequence of points (p 1 , . . . , p k ) on the boundary ∂Ω such that p ∈ U . Then p is a k-periodic orbit if and only if T p j ∂Ω = H j (p).

Then we can identify T p U with ⊕ k j=1 T p j R d , and consider the projections π j M → R d sending p to p j . We can consider the Denition 3.21. The

k(d -1)-dimensionnal analytic distribution on U ⊂ (R d ) k dened for all p ∈ U by D(p) = ⊕ k j=1 H j (p)
is called Birkho's distribution. We further say that an integral (respectively pseudo-integral) manifold S of D is non-trivial if the restriction of each π j to S has rank d -1 for all p ∈ S (respectively p ∈ V ).

Notice that if the restrictions of π j to S have rank d -1 at p, then there is a small neighborhood W of p such that the π j (V ) are submanifolds of R d of the same regularity than S. Birkho's distribution has then the following property which is related to the latter remark and to Lemma 3.20:

Proposition 3.22. 1) If B is a local C r -smooth (respectively analytic) k-reective billiard, then there is a subset of k-periodic orbits of B which is a non-trivial 2(d-1)-dimensional C r-1 -smooth (respectively analytic) integral manifold of D.

2) Conversely, if S ⊂ U is a C r -smooth (respectively an analytic) non-trivial integral manifold of D of dimension 2(d -1), then for all p ∈ S there is a neighborhood W ⊂ S of p for which (π 1 (W ), . . . , π k (W )) is a local C r -smooth (respectively analytic) k-reective billiard.

Proof. 1) Suppose that B is a local C r -smooth (respectively analytic) k-reective billiard. We denote by a 1 , . . . , a k its classical boundaries. Consider p = (p 1 , . . . , p k ) a k-periodic orbit of B such that any (q 1 , q 2 ) ∈ a 1 × a 2 suciently close to (p 1 , p 2 ) can be completed into a k-periodic orbit of B. Given (q j , q j+1 ) ∈ a j × a j+1 close enough to (p j , p j+1 ), the line q j q j+1 is reected at q j+1 into a line intersecting a j+1 at a certain point q j+2 close to p j+2 . Therefore, one can dene a C r-1 -smooth (respectively an analytic) map B j (q j , q j+1 ) = (q j+1 , q j+2 ) locally on a neighborhood of (p j , p j+1 ), and which is a dieomorphism onto its image (see Proposition 1.15). Consider the set S dened as the graph of the map s : (q 1 , q 2 ) → (q 3 , . . . , q k ) where each q j+1 is dened as a map of (q 1 , q 2 ) by the relation

B j • • • • • B 1 (q 1 , q 2 ) = (q j+1 , q j+2 ).
By construction, S is a 2(d -1)-dimensional C r-1 -smooth (respectively analytic) immersed submanifold of U , and the restriction of each π j to S has rank d -

1 since B j • • • • • B 1 is a local dieomorphism.
By assumptions, one can suppose that S contains only k-periodic orbits by shrinking the set of denition of s. By Lemma 3.20, for q ∈ S and any j, T q j a j = H j (q), hence dπ j (T q S) = H j (q). Therefore S is an integral manifold of D.

2) Suppose that S ⊂ U is a C r -smooth (respectively an analytic) non-trivial integral manifold of D and p ∈ S. Choose a neighborhood W ⊂ S of p for which a 1 := π 1 (W ), . . . , a k := π k (W ) are C r -smooth (respectively analytic) immersed submanifolds of R d . Since S is an integral manifold of D, any q = (q 1 , . . . , q k ) ∈ U satises T q j a j = dπ j (T q S) = dπ j (D(q)) = H j (q), hence is a k-periodic orbit of B := (a 1 , . . . , a k ) by Lemma 3.20. It remains to show that B is k-reective. Consider the map i : p ∈ S → (p 1 , p 2 ) ∈ a 1 × a 2 . Let us show that i is a local dieomorphism in a neighborhood of p. The map s of part 1) is such that s • i(q) = q for all q ∈ W since the latter are periodic orbits of B. Therefore di(p) is injective, and because dim S = dim a 1 × a 2 = 2(d -1) the conclusion follows.

Proposition 3.22 has an analogue for pseudo-integral surfaces and k-pseudo-reective billiards.

In the following proposition, we say that a property is satised for almost all points p in a subset V of a smooth manifold, if the set of points p ∈ V for which it is not satised has zero Lebesgue measure.

Proposition 3.23. 1) If B is a local C r -smooth k-pseudo-reective billiard, then there is a subset of (not necessarily periodic) orbits of B which is a non-trivial 2(d -1)-dimensional C r-1smooth pseudo-integral manifold of D.

2) Conversely, if S ⊂ U is a C r -smooth non-trivial pseudo-integral manifold of D of dimension Consider the map i : p ∈ S → (p 1 , p 2 ) ∈ a 1 × a 2 . The map s of part 1) is such that s • i(q) = q for all q ∈ W ∩ V since the latter are periodic orbits of B. Therefore by Lemma 3.27, since p is a Lebesgue point of V we can write ds(p 1 , p 2 ) • di(p) = Id and the conclusion follows as before.

Prolongations of Pfaan systems

Let M be an analytic manifold, D be an analytic distribution on M , and k ∈ {1, . . . , dim D}.

We denote by Gr k (T M ) the ber bundle over M made by k-dimensional vector subspaces of T M , with its natural projection π : Gr k (T M ) → M .

One can dene a natural analytic distribution K on Gr k (T M ), called contact distribution, and dened for all (x, E) ∈ Gr k (T M ) by K(x, E) = dπ -1 (E). In this subsection we introduce Pfaan systems and their prolongations, as a way to link integral manifolds of D and integral manifolds of K contained in some submanifolds of (x, E) ∈ Gr k (T M ).

Denition 3.28 ([27], denition 21). Given a family of analytic distributions (D i ) i on M , we call the data P = (M, D, k; (D i ) i ) a Pfaan system with transversality conditions.

-A k-plane E ∈ Gr k (T M ) is said to be integral if for any 1-form ω vanishing on D, dω vanishes on E.

-An integral manifold (or surface) of P is an integral manifold of D of dimension k such that, for all i, its tangent subspaces either are transverse to D i , or intersect it by zero.

-An pseudo-integral manifold (or surface) of P is a pseudo-integral manifold of D of dimension k such that, for x lying in its integral set V (see Denition 3.18) and for all i, T x S is either transverse to D i , or intersects it by zero.

It follows immediately that the tangent planes to an integral manifold S are integral. Notice also that if S is a pseudo-integral manifold and V is its integral set, then, due to Lemma 3.27, T x S is integral for any Lebesgue point x of V .

In the following P = (M, D, k; (D i ) i ) denote a Pfaan system with transversality conditions. As described in [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF], subsection 2.3, the set M k of integral k-planes of M is an analytic subset hence a stratied manifold: it is a locally nite and at most countable disjoint union of smooth analytically constructible subsets (see [START_REF] Lojasiewicz | Introduction to Complex Analytic Geometry[END_REF], section IV.8).

Denition 3.29 ([27], denition 23). Let M be a stratum of M k , K the restriction of the contact distribution K to M , and D i the pull-back of D i on M for each i. The Pfaan system

P = (M , K , k; (D i ) i , ker dπ) is called a rst Cartan prolongation of P. If S ⊂ M is a C r -smooth submanifold of M of dimension k, one can consider the subset S (1) ⊂ Gr k (T M ) dened by S (1) = {(x, T x S) | x ∈ S } . (3.4)
It is C r-1 -smooth submanifold of Gr k (T M ), of dimension dim S and transverse to π. We call it the rst lift of S.

Proposition 3.30 ([27], subsection 2.3, [START_REF] Bryant | Exterior Dierential Systems[END_REF], chapter VI). The lift S (1) of an integral surface S of P contains an open dense subset such that each its connected component S lies in some stratum M of M k , and such that S is an integral surface of the rst Cartan prolongation

P = (M , K , k; (D i ) i , ker dπ).
Proof. As explained, the tangent planes of an integral manifolds are integral, hence S (1) is contained in the set M k of integral k-planes of D. Now let S be a connected component of S (1) contained in a stratum M of M k . For all p = (x, T x S) ∈ S we have dπ(T p S (1) ) = T x S, hence T p S (1) ⊂ K(p) and therefore T p S ⊂ K (p). Moreover, the equality dπ(T p S (1) ) = T x S implies that dπ is injective on T p S (1) hence on T p S , and the transversality condition with ker dπ is satised. One can easily check that he other transversality conditions are satised.

The converse result is also true, but only locally: Proposition 3.31. Let M be a stratum of M k and S be an integral manifold of the Pfaan system P = (M , K , k; (D i ) i , ker dπ) such that the intersection T S ∩ ker dπ is {0}. Then for any p ∈ S there is an open subset U ⊂ S containing p and such that S := π(U ) is an integral surface of P such that S (1) = S .

Proof. Since T S ∩ ker dπ = {0} are transverse, there is a small neighborhood U of p such that S := π(U ) is a k-dimensionnal manifold with T π(q) S = dπ(T q S ) for any q ∈ U . Hence if q = (x, E) ∈ U , then T π(q) S = E, because S is an integral manifold of the distribution K . Therefore T x S is an integral plane of D, and thus S is an integral manifold of D. One can analogously check that S saties transversality conditions D i .

The same constructions work also for pseudo-integral manifolds of P:

Proposition 3.32 ([27], subsection 2.3). Let S ⊂ M be a pseudo-intergral surface of P, and V be its integral set. Suppose p = (x, T x S) ∈ S (1) is such that x is a Lebesgue point of V . Then replacing p by a Lebesgue point in V arbitrarily close to p (now denoted by p) one can achieve that there is a stratum M of M k and a smooth submanifold S in an open subset of M , such that:

-S contains p and is tangent to S (1) at p; -S is a pseudo-integral surface of the Cartan prolongation P = (M , K , k; (D i ) i , ker dπ).

Proof. Denote by V ⊂ S (1) the set of points p = (x, T x S) ∈ S (1) such that x ∈ V : π maps the Lebesgue points of V to the Lebesgue points of V . Denote by L( V ) the set of Lebesgue points of V . As explained, any Lebesgue point p ∈ L( V ) of V belongs to M k (since T x S is an integral plane, where p = (x, T x S)).

Fix p ∈ L( V ): p is also a Lebesgue point of L( V ) which is a simple consequence of Lebesgue density theorem (Theorem 3.26). In particular, any small neighborhood of p in L( V ) has nonzero measure in S (1) . Hence one can choose a stratum M of M k containing points arbitrarily close to p such that M ∩L( V ) has non-zero Lebesgue measure in S (1) and the latter intersection (considered as a subset in S (1) ) has Lebesgue points arbitrarily close to p. From now on, p will be one of the latter Lebesgue points.

On a small neighborhood W of p in Gr k (T M ), one can dene a smooth map s : W → M such that s(q) = q for q ∈ W ∩ M (take for example the orthogonal projection onto M in a set of coordinates). For q ∈ L( V ) ∩ M , we have s(q) = q = i(q) where i : S (1) → Gr k (T M ) is the natural embedding of S (1) . By Lemma 3.27, ds(p) = di(p) hence ds(p) is injective, and therefore one can suppose that S := s(S (1) ∩ W ) is an -dimensional submanifold of M (by shrinking W if necessary). It is tangent to S (1) since T p S = Im ds(p) = Im di(p) = T p S (1) .

Let us show that S is a pseudo-integral manifold of the Cartan prolongation P = (M , K , k; (D i ) i , ker dπ). Write V = L( V ) ∩ W , the Lebesgue points of V contained in W . Previous argument shows that V ⊂ S and that for all q ∈ V , T q S = T q S (1) , hence dπ(T q S ) = T π(q) S Proposition 1.15), for each j the maps dproj j |T P S , dπ j |T P S have rank d-1 and dπ j (T P S) = T p j a j . By Lemma 3.43, we can write T j (P ) ⊂ T p j a j = dπ j (T P S) = dπ j (E) since P corresponds to a k-periodic orbit. Hence S (1) ⊂ M , and the rest of the proof follows easily.

2) Let q ∈ S . The transversality condition with dπ implies that there is an open subset W ⊂ S such that S := π(W ) is a 2(d-1)-dimensional C r -smooth (resp. analytic) submanifold of U . Since S is an integral manifold of the contact distribution K , we can write S (1) = W and for P ∈ S we have (P, T P S) ∈ M . We conclude that dproj j |T P S and dπ j |T P S have rank d -1 for each j, and that T j (P ) ⊂ dπ j (T P S). The rank condition implies the existence of an open subset W ⊂ W containing q such that for each j, α j = proj j • π(W ) is a lineframed hypersurface over a hypersurface a j = π j • π(W ). If P = (p 1 , L 1 , . . . , p k , L k ) ∈ π(W ), then (p 1 , . . . , p k ) is a k-periodic orbit of (α 1 , . . . , α k ) since for all j we have (p j , L j ) ∈ α j , T j (P ) ⊂ T p j a j = dπ j (T P S). Finally the same argument as in the proof of Proposition 3.22 shows that the map 2) Suppose that one can nd an analytic pseudo-integral manifold S of the Pfaan system P such that the intersection ker dπ(p) ∩ T p S is {0} for every p ∈ S . Then for almost all q in the set V of Denition 3.18, there is an open subset W ⊂ S containing q and such that Proof. 1) Write B = (α 1 , . . . , α k ) and denote by a 1 , . . . , a k its classical boundaries. Let V 0 ⊂ a 1 ×a 2 be a set of non-zero measure be such that all (q 1 , q 2 ) ∈ V 0 can be completed in a k-periodic orbit of B. Let p = (p 1 , . . . , p k ) be a k-periodic orbit of B such that (p 1 , p 2 ) ∈ V 0 is a Lebesgue point of V 0 . Similarly to the proofs of Propositions 3.23 and 3.45, there is an open subset U (p 1 ,p 2 ) ⊂ a 1 × a 2 containing (p 1 , p 2 ) such that the set S of elements (q 1 , L 1 (q 1 ), . . . , q k , L k (q k )) ∈ α 1 ×. . .×α k for which (q 1 , . . . , q k ) is a (non-necessarily periodic) orbit of B with (q 1 , q 2 ) ∈ U is a 2(d -1)-dimensional submanifold of M = P(T R d ) k dieomorphic to U (p 1 ,p 2 ) . Let V ⊂ S be the set of non-zero measure corresponding to V 0 in S. For Q = (q 1 , L 1 (q 1 ), . . . , q k , L k (q k )) ∈ S, the maps dproj j |T Q S and dπ j |T Q S have rank d -1 by Lemma 1.15, and if Q ∈ V we have Q ∈ U and T j (Q) ⊂ T q j a j for all j by k-periodicity. Therefore any Q ∈ V is such that (P, T P S) ∈ M , hence the rst lift S (1) Gr 2(d-1) (T M ) of S contains a subset V := π -1 (V ) ∩ S (1) of non-zero measure included in M . Now as in the proof of Proposition 3.32, we can project a neighborhood of S (1) containing a Lebesgue point of V on an pseudo-integral manifold S ⊂ M of the desired Pfaan system P .

P ∈ π(W ) → (p 1 , p 2 ) ∈ a 1 × a 2 is a local dieomorphism, hence that (α 1 , . . . , α k ) is k-reective.
(proj 1 • π(W ), . . . , proj k • π(W )) is a local C r -smooth k-pseudo-
2) As in the proof of Proposition 3.45, if q is a Lebesgue point of V , the transversality conditions implies that there is an open subset W ⊂ S containing q such that S := π(W ) is a 2(d -1)dimensional C r -smooth submanifold of U . Let V 1 ⊂ S be the image by π of the set V ∩ W . For P ∈ V , if (P, E) ∈ S , we have T (P,E) S ⊂ K (P, E) hence T P S = dπ(T (P,E) S ) ⊂ E. This implies that for all j and all P ∈ V 1 , rk dπ j |T P S = d -1, rk dproj j |T P S = d -1 and T j (P ) ⊂ dπ j (T P S).

The rst two rank conditions are analytically open conditions satised on the subset V 1 ⊂ S of non-zero measure, hence are satised on an open dense subset of S. Hence by shrinking W , one can suppose that for all j, the set α j := proj j (S) is a line-framed hypersurface over the hypersurface a j := π j (S). If Q = (q 1 , L 1 (q 1 ), . . . , q k , L k (q k )) ∈ V 1 , then (q 1 , . . . , q k ) is a k-periodic orbit of (α 1 , . . . , α k ). Since V 1 has non-zero measure in S, the conclusion follows from the same argument as in the proof of Proposition 3.23. Then given open subsets V 1 , . . . , V k of P(T R d ) containing respectively α 1 , . . . , α k , one can nd a local analytic k-reective projective billiard (β 1 , . . . , β k ) such that β j ⊂ V j for all j.

Proof. As in Proposition 3.46 1), one can nd a C ∞ -smooth pseudo-integral manifold S of the Pfaan system P = (M , K , 2(d -1); ker dπ) dened in the proposition, which is contained in the ber over V := V 1 × . . . × V k . Now by Corollary 3.33 and the theorem of Cartan-Kuranishi-Rachevsky (Theorem 3.34), P |V posseses an analytic integral manifold. The conclusion follows from Proposition 3.46 2).

In the following, we name by k-reective set of a local k-reective billiard (α 1 , . . . , α k ) the set of its k-periodic orbits p = (p 1 , p 2 , . . . , p k ) for which there is an open subset U ⊂ a 1 ×a 2 containing (p 1 , p 2 ) and whose elements (q 1 , q 2 ) ∈ U can be completed into a k-periodic orbit close to p.

Theorem 3.49. Suppose that one can nd a local C ∞ -smooth k-reective projective billiard (α 1 , . . . , α k ). Then given any integer r > 0, any element P = (p 1 , L 1 (p 1 ), . . . , p k , L k (p k )) ∈ α 1 ×. . .×α k such that (p 1 , . . . , p k ) lies in its k-reective set, and any neighborhoods V 1 , . . . , V k ⊂ G(P(T R d ), d -1, r) containing respectively the germs of hypersurfaces (α 1 , (p 1 , L 1 (p 1 ))), . . ., (a k , (p k , L k (p k ))), one can nd a local analytic k-reective projective billiard (β 1 , . . . , β k ) and an orbit q = (q 1 , . . . , q k ) in its k-reective set such that (β j , (q j , L j (q j ))) ∈ V j for all j.

Remark 3.50. It might be possible that Theorem 3.49 remains valid for a k-pseudo-reective projective billiard (α 1 , . . . , α k ). The answer to this problem can possibly be found using the results of this manuscript.

Proof. Choose P and V 1 , . . . , V d as in Theorem 3.49. As in Proposition 3.45 1), one can nd a C ∞ -smooth pseudo-integral manifold S of the Pfaan system P = (M , K , 2(d-1); ker dπ) dened in the proposition, such that the 2(d-1)-dimensional manifold S := π(S ) is a set containing k-periodic orbits of the projective billiard (α 1 , . . . , α k ). Hence (proj j • π(S ), proj j (P )) ∈ V j for each j. Now for P ∈ S, we can choose an open set W ⊂ G(M , 2(d -1), r) containing the germ of S at (P, T P S) such that any germ (S 1 , P 1 ) ∈ W is transverse to ker dπ and satises (proj j • π(S ), proj j (P 1 )) ∈ V j . By Proposition 3.38, the Pfaan system P posseses an analytic integral manifold S a for which one can nd (P a , E) ∈ S a verifying (S a , (P a , E)) ∈ W . The conclusion follows from Proposition 3.45.

Triangular orbits of projective billiards

In this section, we study the particular case of triangular orbits of projective billiards. More precisely, we investigate the question of classifying the 3-reective and 3-pseudo-reective local projective billiards.

As shown in Section 3.1, given three non-colinear points P 1 , P 2 , P 3 in the Euclidean plane, the right-spherical billiard based at P 1 , P 2 , P 3 is 3-reective (see Proposition 3.10). In this section, the intersection point r ∈ 3 of the line containing p 1 and reected from the line p 1 r by the projective law of reection at p 1 . Since r is not in the line L 1 (p 1 ), the points r and r are distinct. Approching (p 1 , r, r ) by a 3-periodic orbit, we see that the quadruple of lines (p 1 r, r r, L 2 (r), 2 ) is harmonic. Two cases can happen: either L 2 (r) = 2 , or L 2 (r) = 2 . In the rst case, three lines of the harmonic quadruple should be the same (see Remark 1.5). In the second case, the four lines are pairwise distinct, and the line p 1 r is completely determined by the triple of lines ( 2 , 3 , L 2 (r)), hence does not depend on p 1 . We get a contradiction in both cases and we conclude that r is contained in L 1 (p 1 ). Using Lemma 1.15, the same argument applied to p 2 and p 3 shows that B is right-spherical.

Corollary 3.57. Let B = (α 1 , α 2 , α 3 ) be a C 1 -smooth local projective billiard of R 2 such that its classical boundaries are included in lines. If B is 3-reective and p = (p 1 , p 2 , p 3 ) is a 3-periodic orbit in its 3-reective set, then each α j coincides with the boundary of a right-spherical billiard in a neighborhood of π -1 (p j ) ∩ α j .

Proof. If the classical boundaries of α 1 , α 2 , α 3 are contained in lines 1 , 2 , 3 , then as in the proof of Proposition 3.56 one can dene for each j an analytic map s j : j → P(T R 2 ) such that Im s j and α j coincide in a neighborhood of p j . Hence α j is analytic in a neighborhood of p j and we can consider its complexication α j . The complex local projective biliard B := ( α 1 , α 2 , α 3 ) is also 3-reective and its classical boundaries are contained in lines. Hence it is a right-spherical billiard by Proposition 3.56. This concludes the proof.

Space of 3-periodic orbits attached to a curve

In this section, we study an anologue idea to [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF] which can be described as follows. Given a complex local projective billiard B = (α 1 , α 2 , α 3 ) in C 2 , we can consider other complex local projective billiards of the form B = (α 1 , α 2 , α 3 ), that is just with the same rst boundary α 1 .

Let us say that such a billiard B is a local projective billiard attached to α 1 .

Suppose now that B is 3-reective: we can ask if there is a billiard B attached to α 1 which is 3-reective but dierent from B. We show in fact that this is the case, and that particularly interesting such billiards appear. The main arguments of this subsection are taken from the theory of analytic distribution and of an analogue of Birkho's distribution in the complex projective case.

Singular analytic distributions

We recall some denitions and properties of singular analytic distributions, which can be found in [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF].

Denition 3.58 ([23], Lemma 2.27). Let W be a complex manifold, Σ ⊂ W a nowhere dense closed subset, k ∈ {0, . . . , n} and D an analytic eld of k-dimensional planes dened on W \ Σ.

We say that D is a singular analytic distribution of dimension k and singular set Sing(D) = Σ if D extends analytically to no points in Σ and if for all x ∈ W , one can nd holomorphic 1-forms α 1 ,..., α p dened on a neighborhood U of x and such that for all y ∈ U \ Σ,

D(y) = p i=1
ker α i (y).

Singular analytic distributions can be restricted to analytic subsets: As in the smooth case, we can look for integral surfaces dened by the following Denition 3.61 ([23], Denition 2.34). Let D be a k-dimensional analytic distribution on an irreducible analytic subset M and ∈ {0, . . . , k}. An integral -surface of D is a submanifold S ⊂ M \ Sing(D) of dimension such that for all x ∈ S, we have the inclusion T x S ⊂ D(x).

The analytic distribution D is said to be integrable if each x ∈ M \ Sing(D) is contained in an integral k-surface. (In this case the k-dimensional integral surfaces form a holomorphic foliation of the manifold M \ Sing(D), by Frobenius theorem.)

We can nally introduce the following lemma, which will be used in a key result (Corollary 3.69). We recall here that the analytic closure of a subset A of a complex manifold W , is the smallest analytic subset of W containing A. We denote it by A an .

Lemma 3.62 ([23], Lemma 2.38). Let D be a k-dimensional singular analytic distribution on an analytic subset N and S be a k-dimensional integral surface of D. Then the restriction of D to S an is an integrable analytic distribution of dimension k.

The proof is the same as in [START_REF] Glutsyuk | On 4-reective complex analytic billiards[END_REF]:

Proof. Write M = S an . First, let us prove that D |M is k-dimensional. Consider the subset

A := x ∈ M \ Sing(D |M ) | D(x) ⊂ T x M .
It contains S \ Sing(D |M ), hence its closure, which is an analytic subset of M , contains S. By denition, A an = M which implies that D |M is k-dimensional.

Now let us show that D |M is integrable. The argument is similar: dene the subset B of those x ∈ M \ Sing(D |M ) such that the Frobenius integrability condition is satised. B contains S \ Sing(D |M ) and its closure is an analytic subset of M containing S, hence it is the whole M . Thus Frobenius theorem can be applied on the manifold M \ Sing(D |M ), which implies the result.

Birkho's distribution and the 3-reective billiard problem

In this section we dene an analogue of Birkho's distribution in the case of complex local projective billiards attached to a xed line-framed curve α. We give an analogue of Proposition 3.22 for such billiards at Proposition 3.64.

We rst dene the space of the distribution. Let L be the ber bundle

L = P(T CP 2 ) × CP 2 P(T CP 2 )
that is the set of triples (p, L, T ) where p ∈ CP 2 and L, T are lines in T p CP 2 . Consider the space α × L × L of triples P = (P 1 , P 2 , P 3 ) where P 1 = (p 1 , L 1 ) ∈ α, P 2 = (p 2 , L 2 , T 2 ) ∈ L,

P 3 = (p 3 , L 3 , T 3 ) ∈ L.
Consider the subspace M 0 α of 3-periodic billiard orbits having one reection in α, that is the set of elements P ∈ α × L × L such that the points p 1 , p 2 , p 3 do not lie on the same line and the quadruples of lines (p 1 p 2 , p 1 p 3 , L 1 , T p 1 α), (p 2 p 3 , p 2 p 1 , L 2 , T 2 ), (p 3 p 1 , p 3 p 2 , L 3 , T 3 ) form harmonic sets of distinct lines. Denote by M α the analytic closure of M 0 α . We use the same notations for the dierent projections as in Section 3.2:

proj 1 : α × L 2 → α, proj 2 , proj 3 : α × L 2 → P(T CP 2 ) dened for all P ∈ α × L 2 and all integers j = 1, 2, 3 by proj j (P ) = (p j , L j ); -π 1 , π 2 , π 3 : α × L 2 → CP 2 dened for all P ∈ α × L 2 and all integer j = 1, 2, 3 by π j (P ) = p j . Denition 3.63. We call Birkho's distribution attached to α the restriction D α to M α of the analytic distribution D dened for all P ∈ α × L 2 by D(P ) = dπ 2 -1 (T 2 ) ∩ dπ 3 -1 (T 3 ).

Proposition 3.64 (Analogue of Proposition 3.22 for D α ). Let P ∈ M 0 α such that one can nd a 2-dimensional integral analytic surface S of D α containing P . Suppose that for each j = 1, 2, 3 the restrictions of proj j and π j to S have rank 1. Then there exists a neighborhood U of P in S such that the complex local projective billiard (α, proj 2 (U ), proj 3 (U )) is 3-reective.

Proof. Let U ⊂ S be an open subset such that α 2 := proj 2 (U ) and α 3 := proj 3 (U ) are complex line-framed curves over the complex curves a 2 := π 2 (U ) and a 3 := π 3 (U ). Since S is an integral surface of D, for Q = (q 1 , L 1 , q 2 , L 2 , T 2 , q 3 , L 3 , T 3 ) ∈ U we can write T q 2 a 2 = dπ 2 (T Q S) ⊂ T 2 , hence T q 2 a 2 = T 2 and it follows that the quadruple of lines (q 2 q 1 , q 2 q 3 , L 2 , T q 2 a 2 ) is harmonic, and a similar argument can be applied to the lines through q 3 . Hence (q 1 , q 2 , q 3 ) is a 3-periodic orbit of B := (α, α 2 , α 3 ).

If p 1 ∈ a 1 , the set Ŝ0 p 1 := Ŝp 1 ∩ Ŝ0 is also a Zariski-open dense subset of Ŝp 1 satisfying the following property resulting from Propositions 3.69 and 3.64: if P ∈ Ŝ0 p 1 , there is a local projective billiard of the form (α 1 , α 2 , α 3 ) which is 3-reective and for which (π 1 (P ) = p 1 , π 2 (P ), π 3 (P )) is a 3periodic orbit. Lemma 3.74. Let p 1 ∈ a 1 . There is a point q 1 ∈ a 1 which can be chosen arbitrary close to p 1 such that T q 1 a 1 intersects π 2 ( Ŝ0 p 1 ) at a point q 2 distinct from q 1 .

Proof. By Chow's theorem, π 2 ( Ŝp 1 ) is an algebraic subset of CP 2 which contains the classical boundary a 2 of α 2 . By Chevalley's theorem, π 2 ( Ŝ0 p 1 ) is a constructible dense subset of π 2 ( Ŝp 1 ). Now since a 1 is not a line, the map q 1 → T q 1 a 1 is not a constant map. Hence if π 2 ( Ŝp 1 ) = CP 2 , there are points q 1 arbitrary close to p 1 such that T q 1 a 1 contains an open dense subset of points q 2 ∈ π 2 ( Ŝ0 p 1 ) which are not in a 1 . If dim π 2 ( Ŝp 1 ) = 1, the algebraic set π 2 ( Ŝp 1 ) π 2 ( Ŝ0 p 1 ) is nite. Since a 1 is not a line, we can choose q 1 close to p 1 such that T q 1 a 1 doesn't intersect π 2 ( Ŝp 1 ) π 2 ( Ŝ0 p 1 ). By Bezout's theorem, T q 1 a 1 intersects π 2 ( Ŝp 1 ) hence π 2 ( Ŝ0 p 1 ).

Choose a point q 1 ∈ a 1 close to p 1 and a point P ∈ Ŝ0 p 1 such that p 2 := π 2 (P ) is contained in T q 1 a 1 . By Propositions 3.69 and 3.64 there is a local projective billiard of the form (α 1 , α 2 , α 3 ) with projective boundaries (a 1 , a 2 , a 3 ) which is 3-reective and for which (p 1 , p 2 , p 3 ) := (π 1 (P ), π 2 (P ), π 3 (P )) is a 3-periodic orbit. By construction, p 2 is contained in T q 1 a 1 and a 2 at the same time. If the germs of curves (a 1 , q 1 ) and (a 2 , p 2 ) coincide, set q 2 := p 2 and there is nothing more to do. Otherwise, we can change q 1 for a point arbitrary close to q 1 such that q 1 = p 2 and T q 1 a 1 intersects a 2 transversally at a point q 2 close to p 2 and dierent from q 1 . This concludes the proof. Proposition 3.75. There is a 3-reective complex local projective billiard (α 1 , β 2 , β 3 ) attached to α 1 , with classical boundaries a 1 , b 2 , b 3 , having a one-parameter family of at orbits. We can nd a α 1 -at orbit (q 1 , q 2 , q 3 ) with the following properties (see Figure 3.12): 1) The points q 1 , q 2 , q 3 lies on T p 1 a 1 .

2) If two points among {q 1 , q 2 , q 3 } coincide, then the corresponding classical borders coincide. 3) T p 1 a 1 intersect b 2 transversally at q 2 if q 1 = q 2 , and b 3 transversally at q 3 if q 1 = q 3 .

a 1 b 2 q 1 q 2 Tq 1 a 1 b 3 L 2 (q 2 )
L 1 (q 1 ) q 3 L 3 (q 3 ) Figure 3.12: The local projective billiard of Proposition 3.75. Here the three points q 1 , q 2 , q 3 are pairwise distinct.

containing L 1 (p 1 ) and p 1 q 2 , which are intersecting lines inside P(p 2 ). Hence p 1 q 2 q 3 = P(p 2 ) and thus α 2 (p 2 ) is an analytic curve such that for all q 2 ∈ V , the point q 2 and L 2 (q 2 ) are in P(p 2 ).

The same argument work for α 1 (p 2 ), and also for α 3 (p 2 ) by 1.15. This implies that B(p 2 ) is a 3-reective local projective billiard inside P(p 2 ).

In particular, by Theorem 3.71, a 1 (p 2 ) is contained in a line denoted by (p 2 ) which is itself included in T p 1 a 1 (since the tangent space of a 1 (p 2 ) is included in the tangent space of a 1 ) and in P(p 2 ). Hence a 1 intersect (p 2 ) in an open subset of (p 2 ) containing p 1 . This result is true for any p 2 ∈ V , implying the same result for lines in a neighborhood of (p 2 ) in T p 1 a 1 : hence by Lemma 3.83, a 1 is supported by an hyperplane, which concludes the proof.

Let H 1 be the hyperplane containing a 1 and H 2 be the hyperplane containing a 2 .

Lemma 3.86. There is a point q 2 ∈ H 2 such that for all p 1 ∈ a 1 the line L 1 (p 1 ) goes through q 2 . Similarly, there is a point q 1 ∈ H 1 such that for all p 2 ∈ a 2 the line L 2 (p 2 ) goes through q 1 .

Proof. Let us show the existence of q 2 , the existence of q 1 being analogous. Fix p 1 ∈ U , and consider the point q 2 ∈ H 2 of intersection of L 1 (p 1 ) with H 2 . For p 2 ∈ V , consider the plane P(p 2 ) containing the triangular orbit starting by (p 1 , p 2 ), as in Lemma 3.84: dene a 1 (p 2 ), a 2 (p 2 ), a 3 (p 2 ), α 1 (p 2 ), α 2 (p 2 ), α 3 (p 2 ), U , V as in the proof of Lemma 3.85. One has q 2 ∈ a 2 (p 2 ) ⊂ P(p 2 ), by Lemma 3.84. We recall that (α 1 (p 2 ), α 2 (p 2 ), α 3 (p 2 )) is a planar 3-reective complex local projective billiard. By Theorem 3.71 it is a right-spherical billiard, hence each p 1 ∈ U is such that L 1 (p 1 ) and L 1 (p 1 ) intersect a 2 (p 2 ) at the same point which is q 2 = L 1 (p 1 ) ∩ a 2 (p 2 ) by construction. Therefore, any p 1 ∈ U is such that L 1 (p 1 ) passes through q 2 . Hence by analyticity, if (p 2 ) is the line of intersection of P(p 2 ) with a 1 , every p 1 ∈ a 1 ∩ (p 2 ) is such that L 1 (p 1 ) passes through q 2 . Now the union of all (p 2 ) for p 2 ∈ V contains a non-empty open subset Ω of a 1 , which by construction has the following property: all p 1 ∈ Ω is such that L 1 (p 1 ) passes through q 2 . By analyticity, this is also true for all p 1 ∈ a 1 , and the proof is complete. Now we can nish the proof of Theorem 3.82. Indeed, any p = (p 1 , p 2 ) ∈ U × V , can be completed in a 3-periodic orbit which lies in a plane P(p). This plane P(p) contains L 1 (p 1 ) and L 2 (p 2 ) (Lemma 3.84), hence goes through q 1 and q 2 as in Lemma 3.86. If q 1 = q 2 , P (p) = p 1 q 1 q 2 , but this is impossible since in this case P (p 2 ) doesn't depend on p 2 ), which therefore can be chosen outside the plane p 1 q 1 q 2 . Hence q 1 = q 2 ∈ H 1 , implying that all p 1 ∈ U are such that L 1 (p 1 ) ⊂ T p 1 a 1 . This contradicts the denition of α 1 , and the result is proved.
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 1 Figure 1: À gauche, un rayon lumineux se rééchissant sur le bord d'un domaine selon la loi d'optique géométrique. À droite, un billard projectif et son champ de droites transverses.
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 2 Figure 2: Un exemple de billard 3-rééchissant sur la sphère proposé par Barychnikov. Le triangle extérieur représente le bord du billard, le triangle intérieur en pointillé est une orbite. On peut bouger arbitrairement deux points de l'orbite sans changer son caractère périodique.

  Berger est que pour p xé il y a au plus d -1 hyperplans autorisés. Nous montrons que dans le cas projectif, l'argument est encore valable génériquement (un sens plus précis sera donné à ce mot) : Proposition. Génériquement en un point de réexion d'un billard projectif en dimension ≥ 3, le nombre d'hyperplans autorisés est au plus d -1.
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 5 Figure 5: On the left, a ray of light reected on the boundary of a reective domain. On the right, a projective billiard with its eld of projective transverse lines.
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 7 Figure7: On the left, an ellipse C 0 with its two caustics C i and C e inscribed in triangular orbits. These are two complexied ellipses, one of them is included in C 0 and the other one contains it. The graphic represents their real parts. On the right, the complex caustics of C 0 for periodic orbits of period 4.
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 11 Figure 1.1: An oriented line reected at p by a certain law of reection on a line tangent to a curve γ (left)/a hyperplane H (right).
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 12 Figure 1.2:The harmonic quadruple of points (p, p , 0, ∞) represented 1) by points on the ane chart K 2) by their equivalence classes in P 1 (K) as dotted lines.
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 14 Figure 1.4: left: A line-framed curve α over the curve a. center: A bounded domain Ω whose boundary ∂Ω is a line-framed curve. right: The same domain Ω endowed with a so-called centrally-projective[START_REF] Tabachnikov | Introducing projective billiards[END_REF] eld of transverse lines (dotted lines).

Figure 1 . 5 :

 15 Figure 1.5: A great circle of the sphere projected onto an ane horizontal plane.

Figure 2 . 1 :

 21 Figure 2.1: Dierent types of confocal quadrics in dimension d = 3 depending on the choice of λ.

Figure 2 . 2 :

 22 Figure 2.2: Dierent types of pseudo-confocal quadrics in dimension d = 3 depending on the choice of λ.

B- 1 j=1B

 1 σ(j)+j = m j=1 deg B σ(j)+j ≤ m j=1 (σ(j) + j) = m(m + 1) and since B n a,b (λ) is a sum of ± m j=1 B σ(j)+j over all σ, we have deg B n a,b (λ) ≤ m(m + 1) = n 2 -1 4 . If n = 2m is even, Cayley's determinant gives B n a,b (λ) = det(B i+j+1 ) 1≤i,j≤m-1 . Hence for any permutation σ of {1, . . . , m} we have deg mσ(j)+j+1 = m 2 -1 and the same argument leads to deg B n a,b ≤ m 2 -1 = n 2 4 -1.

  over all σ, we have that deg B n a,b (λ) ≤ m(m + 1), and the coecient in front of λ m(m+1) isd n (a, b) = d(B 2 ) . . . d(B m+1 ) m+1 ) . . . d(B 2m ).Let us show that d n (a, b) = 0 except for specic (a, b) as described in Proposition 2.22. Note rst that each d(B k ) is a homogeneous polynomial in (a -1 , b -1 ) of degree k, and by Equation (2.7) the coecient in front of a

1 .

 1 j) + j) = m(m + 1) and the coecient in front of a -k is Since d n (a, b) is a sum of ± m j=1 d(B σ(j)+j ) over all σ, we have that deg d n (a, b) ≤ m(m + 1), and the coecient in front of a -m(m+1) is

Figure 2 . 3 :

 23 Figure 2.3: When a = 2 and b = 1, the conic C is an ellipse having two complexied ellipses C λ -and C λ + as complex caustics of 3-periodic orbits.

C C 2 C 1 C 3 Figure 2 . 4 :

 21324 Figure 2.4: When a = 3 and b = 1, the conic C 0 is an ellipse having two complexied ellipses C 1 , C 2 and a complexied hyperbola C 3 as complex caustics of 4-periodic orbits. Proposition 2.28. The 4-caustics of the complex reection law on the billiard dened by a complexied ellipse or hyperbola C are detailed in the following table:

  conic ellipse str. complex conic The polynomial B 4 a,b (λ) is computed in Subsection 2.2.2.3. If a = b and a = -b, it has three distinct roots, expressed as

Figure 2 . 6 :

 26 Figure 2.6: An orbit (p 0 , p 1 , p 2 ) on C with p 1 innite as in the proof of Proposition 2.29. The points p 0 and p 2 are symmetric across O, hence p 2 = -p 0 and P (p 0 , v) = P (p 2 , v). Here C is represented as an hyperbola which allows us to view the tangent line at the innity point p 1 as the vertical asymptote.

Figure 2 . 7 :

 27 Figure 2.7: The confocal caustic C λ inscribed in a piece of billiard trajectory.

Denition 2 . 48 .

 248 The d -1 elds of hyperplanes h 1 , . . . , h d-1 dene distributions on an open subset of L B RP d-1 containing and called the permitted distributions of Σ at B. Proposition 2.49. Suppose that the number of hyperplanes of T B S permitted by is exactly d -1, so that the d -1 permitted distributions of Σ at B are well-dened. Further suppose that Σ is a line-framed hypersurface over a hypersurface S ⊂ R d containing B. If S and S have the same 2-jet at B and the elds of projective lines of Σ and Σ have the same 1-jet at B, then the d -1 permitted distributions at B of Σ are well-dened and coincide with the permitted distributions of Σ at B.

6 Figure 3 . 1 :

 631 Figure 3.1: A local projective billiard in triangle with a 6-periodic orbit (p j ) j=1...6 in yellow. The elds of projective lines are represented by dotted lines.

1 L 2 L 3 Figure 3 . 3 :

 12333 Figure 3.3: The centrally-projective quadrilateral based at O, P 1 , P 2 , P 3 , P 4 with each one of its elds of transverse lines L 1 , L 2 , L 3 , L 4

1 L 2 L 3 Figure 3 . 4 :

 12334 Figure 3.4: The right-spherical billiard based at P 1 , P 2 , P 3 and a triangular orbit (p 1 , p 2 , p 3 ) obtained by reecting any segment p 1 p 2 two times

3 Figure 3 . 5 :

 335 Figure 3.5: As in the proof of Proposition 3.10, both quadruples of points (p 2 , A, P 1 , P 3 ) and (p 2 , A, P 1 , P 2 ) are harmonic, hence necessarily p 2 = p 2 .

3 L 1 L 4 Figure 3 . 6 :

 31436 Figure 3.6: The centrally-projective quadrilateral based at O, P 1 , P 2 , P 3 , P 4 with a periodic orbit obtained by reecting p 1 p 2 three times. Here the notations are the same as in the proof of Proposition 3.11.

1 Figure 3 . 7 :

 137 Figure 3.7: A centrally-projective regular polygon based at O, P 1 , . . . , P 6 and a piece of trajectory after four projective reections.

Figure 3 . 8 :

 38 Figure 3.8: As in the proof of Lemma 3.14, since the lines p -r-1 p -r and p +r-1 p +r intersect L at the same point, the lines p -r-2 p -r-1 and p +r p +r+1 also intersect L at a same point.

4 Figure 3 . 9 :

 439 Figure 3.9: A 6-periodic orbit (p k ) k on a centrally-projective triangle based at 0, P 1 , P 2 , P 3 . The dotted lines are representatives of the projective elds of lines on the sides of the triangle.

Denition 3 .

 3 [START_REF] Fierobe | On the Circumcenters of Triangular Orbits in Elliptic Billiard[END_REF]. A k-dimensional distribution on M is a smooth (or analytic) section D :M → Gr k (T M). An -dimensional integral manifold (or surface) of D is a smooth (or analytic) submanifold S ⊂ M of dimension such that for all p ∈ S T p S ⊂ D(p).

( 3 . 3 )

 33 An -dimensional pseudo-integral manifold (or surface) of D is a smooth (or analytic) submanifold S ⊂ M of dimension such that (3.3) holds only for p in a subset V ⊂ S of non-zero Lebesgue measure, called integral set. Remark 3.19. A connected analytic pseudo-integral manifold of an analytic distribution is an integralble manifold. This result is implied by the Uniqueness Theorem for analytic extension. Now let us dene the usual version of Birkho's distribution. We set M = (R d ) k . Consider the open dense subset U ⊂ M of k-tuples p = (p 1 , . . .

Proposition 3 . 46 (

 346 Analogue of Proposition 3.23 for projective billiards). 1) Let B be a local C r -smooth k-pseudo-reective billiard. Then the Pfaan system P = (M , K , 2(d -1); ker dπ) has a C r-2 -smooth pseudo-integral manifold.

3. 2 . 5 . 3

 253 From smooth to analytic k-reective projective billiards Theorem 3.48. Suppose that one can nd a local C ∞ -smooth k-pseudo-reective projective billiard (α 1 , . . . , α k ).

3 Figure 3 . 10 :

 3310 Figure 3.10: The two cases of Proposition 3.56: on the left, the lines 1 , 2 , 3 do not intersect at the same point; on the right, they do intersect at the same point. Each transverse line is represented as a dotted line (on the right L j stands for L j (p j )).

Proposition 3 .

 3 59([23], Denition 2.32). Let W be a complex manifold, M an irreducible analytic subset of W and D a singular analytic distibution on W with M Sing(D). Then there exists an open dense subset M o reg of point x ∈ M reg for whichD |M (x) := D(x) ∩ T x Mhas minimal dimension. We say that D |M is a singular analytic distribution on M of singular set Sing(D) := M \ M o reg . Remark 3.60. When M is not irreducible anymore, we still can restrict D to M by looking at its restriction to each of the irreducible components of M .

  est vériée sous réserve que le billard constitué par Ω a peu d'orbites périodiques. Plus précisément, la condition imposée est que l'ensemble des paramètres correspondant aux orbites périodiques dans l'espace des phases du billard soit de mesure nulle. Cela a donné lieu à une célèbre conjecture portant son nom : Conjecture de Ivrii. Étant donné un domaine d'un espace Euclidien dont le bord est suisamment lisse, l'ensemble de ses orbites périodiques est de mesure nulle.

Cette conjecture, qui tient toujours, relève d'une grande complexité malgré sa simplicité apparente. Si elle est vériée, elle impliquerait notamment qu'un billard ne possède pas d'ouvert d'orbites périodiques, c'est à dire que son espace des phases ne contient pas d'ouvert contenant uniquement des paramètres (p, v) associés à des orbites périodiques d'une période donnée k.

  Figure 3: A gauche, une ellipse C 0 avec ses deux caustiques complexes C i et C e inscrites dans des orbites triangulaires. Ce sont des ellipses complexiées, l'une incluse dans C 0 et l'autre la contenant. Le graphique représente leur partie réelle. A droite, les trois caustiques complexes de C 0 pour les orbites de période 4. complexe d'une autre conique C ⊂ CP 2 si toute droite tangente à C est rééchie en une droite tangente à C par réexion complexe en l'un des deux points d'intersection de avec C. Étant donnés a, b ∈ R * , on introduit la famille (C λ ) λ∈C de coniques de C 2 dénies par l'équation

	Ce	
	C 0	C 0
	C i	

sur les caustiques dites complexes d'une ellipse ou d'une hyperbole. On dira qu'une conique C ⊂ CP 2 est une caustique

  coniques ou quadriques distinctes. On peut munir un ouvert dense de Q 1 d'une structure de billard projectif de sorte que Q 2 est une caustique pour le billard projectif induit sur Q 1 .Proposition. Soit Ω ⊂ R d , d ≥ 3, un billard pseudo-Euclidien strictement convexe qui admet une caustique Γ. Alors ∂Ω est un ellipsoïde et Γ est un morceau de quadrique homofocale pour la métrique pseudo-Euclidienne.

  Proposition 1.8. There is a unique non-trivial projective involution s of p * , xing L and the lines included in H. Given any pair of lines , intersecting H transversally at p, s satises the following equivalent statements: 1) = s( );

[START_REF] Baryshnikov | Spherical billiards with periodic orbits[END_REF] 

of Denition 1.4 to lines of P d (K) as follows. Let p ∈ P d (K): the set p * of lines containing the point p is a projective space of dimension d -1 (by the same argument as for P 2 (K)). Let H ⊂ P d (K) be a projective hyperplane and L a line intersecting H transversally at p.

  Proposition 1.24([5] subsection 17.4.2.1). A conic is a circle if and only if some of the points I or J belong to it. Furthermore, if a conic is a circle, then both I and J belong to it.

	Denition 1.20).
	Remark 1.31. The vertices of a non-degenerate orbit are not collinear since a line intersects the
	ellipse in at most two points.

In fact, a circle has two isotropic tangent lines intersecting at its center (see the following propositions).

Proposition 1.25 ([5] 

subsection

17.4.3.1)

. A focus f of a conic lies in the intersection of two isotropic tangent lines to the conic.

Proposition 1.26 ([41]

, p. 179). Two complexied confocal ellipses have the same tangent isotropic lines, which are four isotropic lines taken with multiplicities: one pair intersecting at a focus, and the other one -at the other focus. This brings us to the following redenition of the foci: Denition 1.27

([5] 

subsection 17.4.3.2). The complex foci of an ellipse are the intersection points of its isotropic tangent lines.

Remark 1.28. The complex projective closure of a real ellipse has four complex foci, including two real ones. Corollary 1.29. A conic has at most four dinstinct nite isotropic tangent lines, each two of them intersecting either at a focus, or at an isotropic point at innity.

1.3.1.2 Triangular orbits

Let E ⊂ CP 2 be a complexied ellipse which is not a circle. Denition 1.30. A non-degenerate triangular orbit is a non-degenerate 3-periodic orbit (see Remark 1.32. As explained in

[START_REF] Glutsyuk | On Odd-periodic Orbits in complex planar billiards[END_REF]

, the reection with respect to a non-isotropic line permutes the isotropic directions I and J. This argument implies that a non-degenerate triangular orbit has no isotropic side. Proposition 1.33

([50]

, lemma 3.4). A degenerate triangular orbit of E has an isotropic side A which is tangent to E, and two coinciding non-isotropic sides B.

  Denition 1.34. An innite triangular orbit on E is an orbit which has at least one vertex on the line at innity. The orbits with only nite vertices are called nite orbits. Proposition 1.35. An innite triangular orbit is non-degenerate, and has exactly one vertex at innity. Proof. First note that the results recalled in Subsection 1.3.1.1 imply that a tangent line of the ellipse E at a point on L ∞ cannot be isotropic. Suppose two vertices, α, β, of the orbit are at innity. Then, αβ is the line at innity. But the tangent T β to the ellipse E in β is not isotropic, and the line at innity reects to itself through the reection by T β . Hence, the orbit is {α, β} = L ∞ ∩ E, which should be a degenerate orbit. But it cannot be a degenerate orbit by Proposition 1.33 since the tangent lines to its vertices α, β are not isotropic. Thus, only one vertex lies at innity. Therefore, if it is a degenerate orbit, it has two vertices, α, β, corresponding by Proposition 1.33 to two sides, A which is isotropic and tangent to the ellipse in α, and B which is a line containing α and β. Since the tangency points of isotropic tangent lines are nite, α is nite. Thus β is innite (because the orbit is supposed innite). Then B and the tangent line T β E to the ellipse in β are collinear (since they have the same intersection point at innity). But both are stable by the complex reection by T β , hence T

β E = B which is impossible since B is not tangent to the ellipse.

  Then the line at innity cuts C in three distinct points, hence C is degenerate. By Proposition 1.40, C contains the line at innity. Since T has only one innite vertex α by Proposition 1.35, and two other nite vertices β, γ, the other line d ⊂ C is not the line at innity. Again by Proposition 1.40, the center is innite and represents the orthogonal direction to d. Since it is on the real foci line, the latter is orthogonal to d. Thus d intersects the innity line at the same point as the line orthogonal to the foci line. This point does not lie in E, and in particular, d does not contain α. Hence, we have d = βγ is a side of T , α / ∈ d and by the same symmetry argument as in the rst case α should belong to the real foci line. But this is impossible since the latter intersects E in only two nite points.

  Then there is an n-sided polygon inscribed in C and circumscribed about D if and only if

	A 2 . . . A m+1 . . . A 2m . . . A m+1 . . . . . .	= 0,	when n is odd, with m =	n -1 2	,
	or				
	A 3 . . .	. . . A m+1 . . . . . .	= 0	
	A m+1 . . . A 2m-1		

  2.22. There exist r 1 , . . . , r p ∈ R such that for all (a, b) with a/b / ∈ {r 1 , . . . , r p },

	we have	n 2 -1	
	deg B n a,b =	4	
	Proposition 2.21. Let n ≥ 3. There is a polynomial B n a,b (λ) such that λ / ∈ {a, b} is a root of B n a,b (λ) if and only if C λ is an n-caustic of C.
	The degree of B n a,b satises		
	deg B n a,b ≤	n 2 -1 4 n 2	if n is odd

4 -1 if n is even. If B n a,b has only simple roots distinct from a and b then N a,b (n) = deg B n a,b .

Proposition

  Using the multilinearity of det, it is not hard to see that B n a,b is of degree m if n is odd and m -1 if n is even.

	2.2.2.3 Explicit formulas of B n a,b for n = 3 to 6

  .3 and the following table: (λ) is computed at Subsection 2.2.2.3. If a = b, it has two distinct roots, λ + and λ -, expressed as

	The polynomial B 3 a,b		
	C	ellipse hyperbola
	Quantity of 3-caustics	2	2
	Types of 3-caustics	ellipse hyperbola
		ellipse hyperbola

  hyperbolas, and C is in the domain delimited by each pair of corresponding branches of C λ + and C λ -. + and λ -have opposite signs. The remaining inequalities are not so dicult to prove.

Proof. Since the map x → x 2 -x + 1 never vanishes on R, the quantity a 2 -ab + a 2 is always positive, hence λ + and λ -are real numbers. We can further check that a+b+2 √ a 2 -ab + b 2 ≥ 0 and a + b -2 √ a 2 -ab + b 2 ≤ 0 by comparing the squares of a + b and of 2 √ a 2 -ab + b 2 . Hence λ

  Lemma 2.33. Let p be a nite point on C such that the line T p C is non-isotropic. Let 1 , 2 two lines containing p and directed by non-isitropic vectors v 1 , v 2 . If

P (p, v 1 ) = P (p, v 2 ) (2.11)

  since otherwise we would have pu ⊂ T p Q 1 by a polarity argument and contradicting Lemma 2.35. Let be a line tangent to Q 2 and intersecting Q 1 at p transversally. Since L Q 2 (p) is not tangent to Q 2 , the lines and L Q 2 (p) are distinct: one can consider the unique 2-dimensional plane

P containing both lines and L Q 2 (p). The plane P intersect Q 2 transversally: otherwise if P is tangent to Q 2 one get that ⊂ T p Q 1 by a polarity argument, which contradicts the transversality of with Q 1 . Therefore the intersection C := Q 2 ∩ P is a non-degenerate nonempty conic of P .

  B ∈ R d close to B, consider the quadratic cone C B tangent to Q and containing B . We can dene a hyperplane H B ⊂ R d containing B as the only hyperplane through B close to T B S such that C B is symmetric by the pseudo-Euclidean orthogonal symmetry with respect to H B . The induced hyperplane distribution is integrable and its integral surfaces are quadrics pseudo-confocal to Q by Theorem 2.52. Hence S is a piece of quadric pseudo-confocal to Q.

  Denition 3.1. A local projective billiard B is a collection of line-framed hypersurfaces α 1 , . . . , α k ⊂ P(T R d ) over hypersurfaces a 1 , . . . , a k of R d called classical boundaries of B. It is said to be respectively C r -smooth (with r = 1, 2, . . . , ∞) or analytic if all α j are C r -smooth or are analytic.An orbit of B is a (nite or innite) sequence of points (p j ) j=-s...t , with integers s ≤ t eventually innite, such that for each j (seen modulo k)-p j ∈ a j mod k , p j = p j+1 and the line p j p j+1 is oriented from p j to p j+1 ; -the line p j p j+1 is transverse to both a j and a j+1 ; -the line p j p j+1 is obtained from p j-1 p j by the projective reection law of α j mod k at p j .If k is a multiple of k, an orbit (p j ) j is said to be k -periodic if s = 1, t = k and (p 1 , . . . , p k , p 1 , p 2 ) is an orbit. A local classical billiard (or simply local billiard) is a local projective billiard whose line-framed hypersurfaces are induced by the Euclidean metric, i.e. the lines of the projective elds of lines are orthogonal to the tangent hyperplanes (see Subsection 1.1.4). A local projective billiard B is said to be k-reective (respectively k-pseudo-reective) if there is a non-empty open subset (respectively a subset of non-zero measure) U 1 × U 2 ⊂ a 1 × a 2 such that to any pair (p 1 , p 2 ) ∈ U 1 × U 2 corresponds a k-periodic orbit of B. The k-reective set of B is the set of pairs (p 1 , p 2 ) contained in open subsets U 1 × U 2 ⊂ a 1 × a 2 satisfying previous property. Remark 3.2. If an analytic local projective billiard is k-pseudo-reective, then it is k-reective.

  based at P 1 , P 2 , P 3 is the local projective billiard (P 1 P 2 P 3 , P 2 P 3 P 1 , P 3 P 1 P 2 ). See Figure3.2. Figure3.2: The right-spherical billiard based at P 1 , P 2 , P 3 with each one of its elds of projective lines L 1 , L 2 , L 3 Denition 3.6. Let n + 1 points O, P 1 , P 2 , . . . , P n be such that for each j modulo n, P j , P j+1 and O are not on the same line. The centrally-projective polygon based at O, P 1 , . . . , P n is the local projective billiard (P 1 P 2 O , P 2 P 3 O , . . . , P n P 1 O ). When n = 4 we will say quadrilateral instead of polygon. See Figure3.3.We show that the right-spherical billiard is 3-reective and that specic centrally-projective polygons with n-vertices are k-reective, where the dierent cases for n and k are summarized in the following proposition: Proposition 3.7. Let n, k ≥ 3 be integers. The following local projective billiards with n vertices are k-reective:-n = k = 3: the right-spherical billiard based at any points P 1 , P 2 , P 3 is 3-reective; -n = k = 4: the centrally-projective quadrilateral based at any points O, P 1 , P 2 , P 3 , P 4 is 4-reective, where O is the intersection point of P 1 P 3 and P 2 P 4 ;

	P 2	
	L 2	P 3
	L 1	
	L 3	
	P 1	

  (A, C , O, P 4 ) is harmonic. But P 4 P 1 passes through P 4 , p 4 p 3 through C and L 4 (p 4 ) through O. Hence d needs to pass through A. Then, by the reection law at p 1 , one observe that the quadruple of points (B, D , O, P 1 ) is harmonic. But P 4 P 1 passes through P 1 , p 4 p 3 through B and L 4 (p 4 ) through O. Hence d needs to pass through D . Therefore we conclude that d = AD = p 1 p 4 .

  2(d -1), then for almost all p in the set V of Denition 3.18 there is a neighborhood W ⊂ S of

p for which (π 1 (W ), . . . , π k (W )) is a local C r -smooth k-pseudo-reective billiard. Remark 3.24. Notice that the analytic version of this result is given by Proposition 3.22, since k-pseudo-reective analytic billiards are k-reective, and connected analytic pseudo-integrable manifolds are integrable (see Remarks 3.2 and 3.19).

  reective projective billiard. Remark 3.47. Notice that the analytic version of this result is given by Proposition 3.45, since k-pseudo-reective analytic projective billiards are k-reective, and connected analytic pseudointegrable manifolds are integrable (see Remarks 3.2 and 3.19).

Can one hear the shape of a drum , titre de l'article cité,[START_REF] Kac | Can One Hear the Shape of a Drum?[END_REF].

The rst pertinent result is that one can hear the area of Ω ,[START_REF] Kac | Can One Hear the Shape of a Drum?[END_REF] 

par la transformation décrite précédemment. Si 1 intersecte le bord en un autre point, cette construction peut être répétée, et ainsi de suite.

Étant données deux quadriquesQ 1 et Q 2 distinctes, on peut alors considérer le faisceau F * (Q 1 , Q 2 ) de quadriques qui contient Q 1 et Q 2 etest déni ainsi par dualité : l'ensemble des quadriques duales des quadriques de F * (Q 1 , Q 2 ) est une droite qui contient les quadriques duales de Q 1 et Q 2 (dans l'espace des quadriques). On peut le voir comme une généralisation des faisceaux de quadriques homofocales. On prouve alors:

The rst pertinent result is that one can hear the area of Ω ,[START_REF] Kac | Can One Hear the Shape of a Drum?[END_REF] 

B m+1 (λ) . . . B 2m (λ)

= -q(v) (λ -abP (M 0 , v)) .

Remerciements

Proof. The proof is analogous to the proof of Proposition 3.22, except that we will work with so-called Lebesgue points. Let us rst recall dentions and results about them. Denition 3.25. Let V ⊂ R d be a Lebesgue measurable set. A point x ∈ V is said to be a Lebesgue point of V if one has

where λ is the Lebesgue measure of R d and B(x, r) is the Euclidean ball of radius r > 0 centered at x.

This denition naturally extends to subset V of smooth dierentiable manifolds. We observe the following Theorem 3.26 (Lebesgue density theorem). Let V be a Lebesgue measurable set of a smooth dierentiable manifold. Then almost all points of V are Lebesgue poins of V .

Lemma 3.27 (see [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF]). Let U ⊂ M be an open subset of a dierentiable manifold M and f, g : U → N be C r -smooth maps from U to a dierentiable manifold N . If V is a subset of U on which f = g and p is a Lebesgue point of V , then the 1-jets of f and g at p coincide.

Proof. Choosing a convenient set of coordinates, one can suppose that U ⊂ M = R d , N = R k , p = 0 and also that g = 0, by substituing f -g to f . Consider the map P : R d \ {0} → ∂B(0, 1)

dened by P (x) = x/ x where • is the Euclidean metric. We rst prove that for r > 0 W r := P (V ∩ B(0, r) \ {0}) is dense in ∂B(0, 1). Indeed, otherwise there would exist a nonempty open subset U of ∂B(0, 1) included in ∂B(0, 1) \ W r . The cone U := P -1 (U ) is open an satises for all 0 < ρ ≤ r that -λ(U ∩ B(0, ρ)) = ρ d λ(U ∩ B(0, 1)), since U ∩ B(0, ρ) is obtained from U ∩ B(0, 1) by the dilatation x → ρx;

-U ∩ B(0, ρ) ⊂ B(0, ρ) \ V , because U and W r have empty intersection. Hence for 0 < ρ ≤ r λ(V ∩ B(0, ρ)) λ(B(0, ρ)) = 1 -λ(B(0, ρ) \ V ) λ(B(0, ρ)) ≤ 1 -λ(U ∩ B(0, ρ)) λ(B(0, ρ)) = 1 -λ(U ∩ B(0, 1)) λ(B(0, 1)) < 1

and the latter bound doesn't depend on ρ, which is impossible since p = 0 is a Lebesgue point of V . Hence for v ∈ ∂B(0, 1), one can nd a sequence of v n ∈ V such that v n → 0 and P (v n ) → v. This implies that df (0)

Now we can prove Proposition 3.23:

1) Suppose that B is a local C r -smooth k-pseudo-reective billiard. We denote by a 1 , . . . , a k its classical boundaries and by V ⊂ a 1 × a 2 a subset of non-zero measure of points (q 1 , q 2 ) which can be completed into a k-periodic orbit of B. Consider p = (p 1 , . . . , p k ) a k-periodic orbit of B such that (p 1 , p 2 ) ∈ a 1 × a 2 is a Lebesgue point of V . The corresponding manifold S dened in Proposition 3.22 as the graph of a map s does not only contain k-periodic orbits anymore. However by Lemma 3.20, all q = (q 1 , q 2 ) ∈ V lying in an open subset W containing p on which s is dened is such that s(q) is k-periodic. Then since (p 1 , p 2 ) ∈ W ∩ V is a Lebesgue point of V , W ∩ V has non-zero measure in W . Hence the subset s(W ∩ V ) ⊂ S has non-zero measure in S and contains only k-periodic orbits.

2) Suppose that S ⊂ U is a C r -smooth non-trivial pseudo-integral manifold of D, V the set of points p ∈ S for which T p S ⊂ D(p) and p ∈ V a Lebesgue point. Choose a neighborhood W ⊂ S of p for which a 1 := π 1 (W ), . . . , a k := π k (W ) are C r -smooth immersed submanifolds of R d . As in the proof of Proposition 3.22, any q ∈ W ∩V is a k-periodic orbit of B := (a 1 , . . . , a k ).

and S is a pseudo-integral surface of K . The transversality conditions follow from the same argument.

Propositions 3.30 and 3.32 imply the existence of an integral (respectively a pseudo-integral) manifold S in the grassmanian as soon as there is an integral (respectively a pseudo-integral) manifold S in M . Let us call S a rst Cartan prolongation of S. We deduce the following Corollary 3.33. Let S ⊂ M be a C r -smooth integral (respectively pseudo-intergral) manifold of P. Then there is a sequence P (k) k=0...r of Pfaan systems and a sequence S k of integral (respectively pseudo-integral) manifolds of P (k) , such that P (0) = P and such that for each k < r, P (k+1) and S k+1 are rst Cartan prolongations of P (k) and S k .

We conclude this subsection by the folowing powerful result on prolongations of a Pfaan system P. It is cited in [START_REF] Glutsyuk | No planar billiard possesses an open set of quadrilateral trajectories[END_REF], theorem 24, and in [START_REF] Bryant | Exterior Dierential Systems[END_REF], chapter VI, paragraph 3. The original statement of this result can be found in [START_REF] Rachevsky | Geometrical theory of partial dierential equations[END_REF] which is in russian.

Theorem 3.34 (E. Cartan [START_REF] Cartan | Les systèmes diérentiels extérieurs et leurs applications géométriques[END_REF], M. Kuranishi [START_REF] Kuranishi | Cartan's Prolongation Theorem of Exterior Dierential Systems[END_REF], P. K. Rachevsky [START_REF] Rachevsky | Geometrical theory of partial dierential equations[END_REF]). Suppose that P has no analytic integral surfaces. Then for any sequence of Pfaan systems P (k) = (M (k) , . . .) such that P (0) = P and P (k+1) is a rst Cartan prolongation of P (k) , one can nd an integer k 0 > 0 for which M (k 0 ) = ∅.

r-jets approximation of integral manifolds

Let M be an analytic manifold, D be an analytic distribution on M , k ∈ {1, . . . , dim D} and r > 0 an integer.

Let p ∈ M . A germ of C r -smooth k-dimensional submanifold of M at p is the family of C r -smooth submanifolds of dimension k of M containing p and satisfying: given to such submanifolds S, S , there is an open subset V of M containing p for which S ∩ V = S ∩ V . Denote by (S, p) the germs of submanifolds at p containing S and by G(M, k, r) the set of all germs of C r -smooth k-dimensional submanifolds of M at p. In the following we dene a topology on G(M, k, r) (which is not Hausdor). Given a C r -smooth submanifold S ⊂ M containing p, there is an injective C r -smooth immersion f dened on an open subset U ⊂ R k containing 0 and such that f (0) = p and (f (U ), p) = (S, p). Denote by

on an open subset U of R k containing 0, and by J r k (M ) the space of all such r-jets.

Denition 3.35. Given an open subset

) the set of germs (S, p) for which one can nd an injective immersion f :

The topology generated by all G(Ω) will be called Whitney C r -topology on G(M, k, r).

The Whitney C r -topology on G(M, k, r) is not Hausdor: if two germs (S, p) and (S , p) of C r -smooth submanifolds are parametrized by injective immersions having the same r-jets, then any neighborhood of (S, p) contains (S , p).

The following result shows that if prolongations of integral manifolds are close in the Whitney C r -topology, then the initial manifolds are also close in the Whitney C r+1 -topology. Proposition 3.36. Let (S, p) be a germ of k-dimensional C r+1 -smooth submanifold. Then for any open subset V 0 ⊂ G(M, k, r + 1) containing (S, p), there is an open subset V 1 ⊂ G(Gr k (T M ) , k, r) containing S (1) , (p, T p S) such that

S (1) , (q,

Proof. Given a C r+1 -smooth injective immersion f : U → M dened on an open subset U ⊂ R k , one can dened its rst lift to be the C r -smooth injective immersion

Notice that if S is a submanifold of M parametrized by f , then the rst lift S (1) of S is parametrized by f (1) . Therefore, by an appropriate choice of coordinates, we just have to show the following Lemma 3.37. ) ) at 0, and verifying the following property: for any C r+1 -smooth injective immersion g dened on an open subset

Proof of Lemma 3.37. Replacing f and g by ψ

The canonical basis B denes a set of coordinates in Gr k T R d in which the coordinates of Im df are the coordinates of (∂ 1 f 0 , . . . , ∂ k f 0 ) in (e d-k , . . . , e d ), and the coordinates of Im dg are the coordinates of (∂ 1 g 0 , . . . , ∂ k g 0 ) in (e d-k , . . . , e d ). Therefore, saying that the r-jet of Im dg at 0 is close to the r-jet of Im df at 0 means that the same holds for the r-jets at 0 of the partial derivatives (∂ 1 g 0 , . . . , ∂ k g 0 ) and (∂ 1 f 0 , . . . , ∂ k f 0 ). And with the additionnal assumption that g(0) is close to f (0), this means that the (r + 1)-jets of f and g • ϕ at 0 are close. This concludes the proof of Proposition 3.36.

Given a Pfaan system

smooth integral manifold S of P and p ∈ S, the following result establishes the existence of germs of analytic integral manifolds of P arbitrarily close to (S, p) in the Whitney C r -topology. Proposition 3.38. Let S ⊂ M be a C ∞ -smooth integral manifold of a Pfaan system P = (M, D, k; (D i ) i ), p ∈ S and a positive integer r. Then for any open subset V ⊂ G(M, k, r) containing (S, p) one can nd an analytic integral manifold S a ⊂ M of P and p a ∈ S a such that (S a , p a ) ∈ V .

Proof. We rst prove Proposition 3.38 for r = 0. We need to show that for any open subset V ⊂ M containing p, one can nd an analytic integral manifold S of P intersecting V . The set V contains the C ∞ -smooth integral manifold S ∩ V of P. Hence, one can nd a sequence of prolongations P (r) = (M (r) , . . .) of the Pfaan system P = (M, D, k; (D i ) i ) such that M (r) = ∅ for all r (Corollary 3.33). Therefore, Theorem 3.34 implies the existence of an analytic integral surface of P in V , which concludes the proof in the case when r = 0. We conclude the proof by induction. Let r > 0 and V ⊂ G(M, k, r) be an open subset containing (S, p). By Proposition 3.36, there is an open subset V 1 ⊂ G(Gr k (T M ) , k, r -1) containing S (1) , (p, T p S) such that for all ( S, q) ∈ G(M, k, r) satisfying S(1) , (q, T q S) ∈ V 1 then ( S, q) ∈ V 0 . Hence given a prolongation P = (M , K , k; (D i ) i , ker dπ) of P on a stratum M containing a prolongation S of S, the germs of

containing (S , (p, T p S)). By shrinking V 1 if necessary, one can further suppose that if ( S, q) ∈ V 1 , then T S ∩ ker dπ is {0}. By induction, one can nd an analytic integral manifold S a of P and a point q a ∈ S a such that (S a , q a ) ∈ V 1 . The conclusion follows immediately from Proposition 3.31.

From smooth to analytic k-reective classical billiards

In this subsection, we show that the existence of a k-pseudo-reective C ∞ -smooth classical billiard implies the existence of a k-reective analytic classical billiard. We also prove that k-reective C ∞ -smooth classical billiards can be approximated by r-jets of k-reective analytic billiards (a more precise meaning will be given).

To establish these results, we translate Propositions 3.22 and 3.23 in terms of Pfaan systems with transversality conditions. Let D be the classical Birkho's distribution dened on the subset U of M = (R d ) k constituted by all p = (p 1 , . . . , p k ) such that p j-1 , p j , p j+1 do not lie on the same line for each j modulo k (see Denition 3.21). Denote by π 1 , . . . , π k : M → R d the maps given by π j (p) = p j for each j. Given a 2(d -1)-dimensional vector space E ⊂ D(p), we have rk dπ |E ≤ d -1 by construction of Birkho's distribution. We consider the following Lemma 3.39. A 2(d -1)-dimensional vector space E ⊂ D(p) is transverse to ker dπ j if and

Proof. By Grassmann's formula, we get dim(ker dπ j|D + E) = rk dπ j|E + dim D -rk dπ j|D .

Hence ker dπ j|D + E = D if and only if rk dπ j|E + dim D = rk dπ j|D = d -1.

Lemma 3.39 implies that in Propositions 3.22 and 3.23 we can replace the terms non-trivial 2(d -1)-dimensional integral (respectively pseudo-integral) manifolds of Birkho's distribution D by integral (respectively pseudo-integral) manifolds of the Pfaan system with transversality conditions given by P = (U, D, 2(d -1); ker dπ 1 , . . . , ker dπ k ).

Theorem 3.40. Suppose that one can nd a local C ∞ -smooth k-pseudo-reective classical bil-

Proof. By proposition 3.23 and Lemma 3.39, one can nd a C ∞ -smooth pseudo-integral manifold S of the above dened Pfaan system P, which is contained in

In particular, S is a C ∞ -smooth pseudo-integral manifold of the Pfaan system P |V := (V, D, 2(d-1); ker dπ 1 , . . . , ker dπ k ). Now by Corollary 3.33 and the theorem of Cartan-Kuranishi-Rachevsky (Theorem 3.34), P |V posseses an analytic integral manifold. The conclusion follows from Proposition 3.22 and Lemma 3.39.

In the following, we name by k-reective set of a local k-reective billiard (a 1 , . . . , a k ) the set of its k-periodic orbits p = (p 1 , p 2 , . . . , p k ) for which there is an open subset U ⊂ a 1 ×a 2 containing (p 1 , p 2 ) and whose elements (q 1 , q 2 ) ∈ U can be completed into a k-periodic orbit close to p. Theorem 3.41. Suppose that one can nd a local C ∞ -smooth k-reective classical billiard (a 1 , . . . , a k ). Then given any integer r > 0, any orbit p = (p 1 , . . . , p k ) ∈ a 1 × . . . × a k in its k-reective set, and any neighborhoods

containing respectively the germs of hypersurfaces (a 1 , p 1 ), . . . , (a k , p k ), one can nd a local analytic k-reective classical billiard (b 1 , . . . , b k ) and an orbit q = (q 1 , . . . , q k ) in its k-reective set such that (b j , q j ) ∈ V j for all j.

Remark 3.42. It might be possible that Theorem 3.41 remains valid for a k-pseudo-reective billiard (a 1 , . . . , a k ). The answer to this problem can possibly be found using the results of this manuscript.

Proof. Choose p and V 1 , . . . , V d as in the statement of Theorem 3.41. By Proposition 3.22 and Lemma 3.39, one can nd a C ∞ -smooth integral manifold S of the above dened Pfaan system P such that (π j (S),

, r) containing the germ (S, p) be such that any germ (S , q) ∈ W transverse to all ker dπ j satises (π j (S ), π j (q)) ∈ V j . By Proposition 3.38, the Pfaan system P := ((R d ) k , D, 2(d -1); D 1 , . . . , D k ) posseses an analytic integral manifold S a for which one can nd p a ∈ S a verifying (S a , p a ) ∈ W . The conclusion follows from Proposition 3.22.

From smooth to analytic k-reective projective billiards

In this subsection, we extend the classical Birkho's distribution and its links with the kreective classical billiards to projective billiards. In the case of projective billiards, the natural space on which the distribution is dened has to be replaced to take into account each eld of projective transverse lines.

Projective Birkho distribution

Consider the space P(T R d ), which can be identied as the set of (p, L) such that p ∈ R d is a point and L ⊂ R d is a line containing p, together with the natural projection Π :

such that for each j (modulo k), (p j , L j ) ∈ P(T R d ), p j-1 , p j , p j+1 do not lie on the same line, L j belongs to the plane p j-1 p j p j+1 and doesn't coincide with the lines p j-1 p j and p j+1 p j . Note that when d = 2, U is an open dense subset of M .

We dene for each j the maps proj j :

and

In what follows, we introduce the analogue of Birkho's exterior bissectors for elements in

, one can dene for each j (modulo k) the line T j (P ) ⊂ R d containing p j and such that the four lines p j-1 p j , p j+1 p j , L j T j (P ) are in the same plane and form a harmonic set of lines. This induces an analytic map U → P(T R d ) k which associates to a P ∈ U the element (p 1 , T 1 (P ), . . . , p k , T k (P )).

The analogue of Lemma 3.20 is given by the following Lemma 3.43. Let B = (α 1 , . . . , α k ) be a local projective billiard in P(RR d ) with classical boundaries a 1 , . . . , a k and P = (p 1 , L 1 , . . . , p k , L k ) ∈ U such that (p j , L j ) ∈ α j for all j. Then p = (p 1 , . . . , p k ) is a k-periodic orbit of B if and only if T j (P ) ⊂ T p j a j for all j.

Proof. Fix j and denote by H the plane containing p j-1 , p j and p j+1 . The line p j-1 p j is reected into the line p j p j+1 by the projective law of reection at p j ∈ a j if and only if the lines p j-1 p j , p j p j+1 , L j , T p j a j ∩ H form a harmonic set of lines in H. This is the same as saying that T j = T p j a j ∩ H ⊂ T p j a j .

Notice that when d = 2, the inclusion T j ⊂ T p j a j is in fact an equality.

Denition 3.44. The projective Birkho's distribution is the analytic map D proj : U → Gr k (T M ) dened for all P ∈ U by D proj (P ) = T 1 (P ) ⊕ . . . ⊕ T k (P ).

Local projective billiards and integral manifolds

The proofs of Propositions 3.22 and 3.23 cannot be immediately applied for projective billiards since a 3-reective local projective billiard does not correspond to a integral surface of D proj anymore by Lemma 3.43, except in the case when d = 2. To solve this problem, we consider a version of the k-reective billiard problem in the grassmannian bundle.

Denote by T M |U the set of (P, E) ∈ U ×Gr 2(d-1) (T P M ). We consider the set

satisfying for all j the following conditions:

-T j (P ) ⊂ dπ j (E);

In the space of coordinates, the rst condition can be expressed as a closed algebraic condition and the second and third ones dene a Zariski open subset in an algebraic set. Hence M is a constructible subset of Gr 2(d-1) T M |U .

We can endow M with the restriction of the contact distribution dened by K (p, E) = dπ -1 (E) ∩ T (p,E) M for all (p, E) ∈ M , where π : Gr 2(d-1) (T M ) → M is the natural projection. Consider the Pfaan system P := (M , K , 2(d -1); ker dπ).

Proposition 3.45 (Analogue of Proposition 3.22 for projective billiards). 1) Let B be a local C r -smooth (resp. analytic) k-reective projective billiard. Then the lifting to U of the set of kperiodic orbits of B contains a 2(d-1)-dimensional C r-1 -smooth (resp. analytic) submanifold S of U . The rst lift S (1) of S to Gr 2(d-1) (T M ) contains an open dense subset S which is a C r-2smooth (resp. analytic) integral manifold of the Pfaan system P = (M , K , 2(d -1); ker dπ).

2) Suppose that one can nd a C r -smooth (resp. an analytic) integral manifold S of the Pfaan system P such that the intersection ker dπ with T S is {0}. Then for q ∈ S , there is an open subset W ⊂ S containing q and such that (proj

Proof. 1) Write B = (α 1 , . . . , α k ), and let a 1 , . . . , a k be its classical boundaries. For each j, denote by L j (p) the projective line of α j at a point p ∈ a j . As in Proposition 3.22, we can consider the C r-1 -smooth (resp. analytic) map s

analytic) injectively immersed submanifold of U . Let S (1) be its rst lift to Gr 2(d-1) (T M ). If (P, E) ∈ S (1) , then P ∈ S and E = T P S. Since the billiard map is a local dieomorphism (see we present a result classifying the other 3-reective projective billiards, see Theorem 3.51. Let us say that a local projective billiard B = (α 1 , α 2 , α 3 ) of P(T R 2 ) is right-spherical if it has a 3-periodic orbit p = (p 1 , p 2 , p 3 ) such that each α j contains a neighborhood of p j which coincides with the boundary of a right-spherical billiard. Notice that in the analytic case, this is the same as saying that each α j should be contained in the boundary of a right-spherical billiard. This section is devoted to prove the following Theorem 3.51. 1) (Planar billiards) If a C ∞ -smooth local projective billiard in the Euclidean plane is 3-reective, then it is right-spherical.

2) (Multidimensional billiards) There are no C ∞ -smooth 3-pseudo-reective local projective billiards in R d with d ≥ 3.

Complex projective billiards

We can dene a complex version for local projective billiards. It consists of denitions analogous to the real case and taking place in the space P(T C d ), considered as the space of pairs (p, L) where p ∈ C d and L is a complex line of C d containing p. Denote by π the map P(T C d ) → C d which associates to a pair (p, L) ∈ P(T C d ) the point p. Denition 3.52. A complex line-framed hypersurface is a (d -1)-dimensional connected complex submanifold Σ of P(T C d ) such that:

-π is a biholomorphism between Σ and a complex hypersurface

We say that Σ is a line-framed hypersurface over S. In the case when d = 2, we say that Σ is complex line-framed curve.

Remark 3.53. We can also consider the analogous denition of a complex line-framed hypersurface of P(T CP d ) over a complex hypersurface of CP d .

The projective law of reection (see Denition 3.54) can be analogously dened in C d using the same harmonicity conditions on complex lines (see Section 1.1.1):

Denition 3.54. Let Σ be a complex line-framed hypersurface over S. Let p ∈ S and , be complex lines intersecting S at p. We say that is obtained from by the projective reection law on Σ at p if the lines , , L(p) are contained in a complex plane P; -the quadruple of lines , , L(p), T p S ∩ P is harmonic in P.

Denition 3.55. A complex local projective billiard B is a collection of complex line-framed

We can dene analogously complex orbits and complex periodic orbits of B as in Denition 3.1 without the statement on orientation of lines. The notions of k-reective complex local projective billiard and k-reective set of such billiard admit also a similar denition. Finally, right-spherical billiards in C 2 can be dened exactly as in the real case by considering complex lines instead of real lines.

The reason why we introduce complex versions of line-framed hypersurfaces and of local projective billiards is the following: given an analytic line-framed hypersurface Σ of P(T R d ), we can consider its complexication Σ which is a complex line-framed hypersurface of P(T C d ). Hence given an analytic local projective billiard B = (α 1 , . . . , α k ) of R d and an orbit p = (p 1 , . . . , p k )

of B, the complexication α j of each α j denes a complex line-framed hypersurface in a neighborhood of π -1 (p j ) ∩ α j . Now if B is k-reective and p is a periodic orbit and in the k-reective set of B, then by analyticity the complex local projective billiard B := ( α 1 , . . . , α k ) is also k-reective.

3-reective projective billiards supported by lines

In this section we show that if a local projective billiard in R 2 or C 2 has its classical boundary supported by lines and is 3-reective, then it is a right-spherical billiard. We rst prove the complex version and then we deduce the real case.

Proposition 3.56. Let B = (α 1 , α 2 , α 3 ) be a complex local projective billiard of C 2 such that its classical boundaries are included in complex lines. If B is 3-reective then it is right-spherical.

Proof. For each j = 1, 2, 3, let j be the line of C 2 such that a j = π(α j ) is included in j .

We rst show that each α j can be extended into a complex line-framed hypersurface α j over the whole line j . Notice that if such an extension exists it is unique by analyticity. Let (p 1 , p 2 , p 3 ) be a 3-periodic orbit of B such that p 1 is not contained on 2 nor 3 . Given a point q 2 ∈ 2 , we construct a point q 3 ∈ 3 as follows: the line p 1 q 2 is reected into a line intersecting 3 at a point q 3 by the projective law of reection at p 1 with respect to α 1 . Here maybe q 3 lies at innity with respect to an embedding C 2 ⊂ CP 2 . Yet the line q 2 q 3 is well-dened and depends analytically on q 2 since q 3 depends analytically on q 2 by the implicit function theorem. If q 2 is such that p 1 , q 2 , q 3 are not on the same line, we can dene a unique line L 2 (q 2 ) containing q 2 such that the four lines p 1 q 2 , q 2 q 3 , 2 , L 2 (q 2 ) form a harmonic set of lines. This denes a meromorphic map s 2 : q 2 ∈ 2 → (q 2 , L 2 (q 2 )) ∈ P(T C 2 ). Identifying P(T C 2 ) with C 2 × CP 1 , the map L 2 can be seen as a holomorphic map 2 → CP 1 hence is dened everywhere. Dene α 2 to be the image of s 2 . Since α 2 coincide with α 2 on an open subset by 3-reectivity, it contains α 2 . We can do the same with α 1 and α 3 dening α 1 and α 3 .

The projective billiard maps of B = (α 1 , α 2 , α 3 ) denoted by B 1 : We can consider two cases depending on the position of the lines 1 , 2 , 3 (see Figure 3.10):

First case. Suppose that 1 , 2 , 3 intersect at the same point.

be the respective projective lines of α 1 , α 2 , α 3 over p 1 , p 2 , p 3 . The lines L 1 (p 1 ) and L 2 (p 2 ) intersects 3 at the same point r 2 since both quadruples of lines (p

) are harmonic and the three rst lines of one quadruple intersect 3 at the same points as the three rst lines of the other quadruple. The same argument shows that the lines L 1 (p 1 ) and L 3 (p 3 ) intersects 2 at the same point r 3 . Since p is in the 3-reective set, one can nd 3-periodic orbits of the form (q 1 , p 2 , q 3 ) and (q 1 , q 2 , p 3 ), with for all j, q j ∈ j close to p j . In the rst case r 2 is constant since p 2 is xed, and r 2 is contained in L 1 (q 1 ). In the second case, r 3 is also constant and is contained in L 1 (q 1 ). Hence, for q 1 close to p 1 , the line L 1 (q 1 ) is constant which is impossible since it should contain q 1 .

Second case. Suppose that 1 , 2 , 3 do not intersect at a the same point.

Let r the point of intersection of 2 with 3 . We show that given p 1 ∈ 1 , the projective line L 1 (p 1 ) contains r. Suppose the contrary: r / ∈ L 1 (p 1 ). Further suppose that p 1 is not contained in 2 nor 3 , and that the quadruple of lines (p 1 r, 3 , L 2 (r), 2 ) is not harmonic. Consider It remains to show that B is 3-reective. Indeed, write a = π 1 (α) and let us show that the projection j : U → a × a 2 onto (q 1 , q 2 ) has rank 2 in a neighborhood of P . Denote by s : a × a 2 → α × L 2 the map dened by s(q 1 , q 2 ) = (q 1 , L 1 (q 1 ), q 2 , L 2 (q 2 ), T p 2 a 2 , p 3 , L 3 (q 3 ), T q 3 a 3 ) where q 3 is the point of intersection with a 3 of the line reected from q 1 q 2 by the projective reection on α 2 , L 1 (q 1 ) is the projective line of α at q 1 , L 2 (q 2 ) is the projective line of α 2 at q 2 and L 3 (q 3 ) is the projective line of α 3 at q 3 . The map s is dened in a neighborhood of (p 1 , p 2 ) and satises s • j(Q) = Q for all Q ∈ U close to P . Hence j has rank 2 in a neighborhood of P and therefore B is 3-reective.

Reduction of the space of orbits

In this subsection, we suppose that we are given a complex local projective billiard B = (α 1 , α 2 , α 3 ) with classical boundaries a 1 , a 2 , a 3 , which is 3-reective, and we investigate the structure of complex local projective billiards attached to α := α 1 .

Since B is 3-reective, there is a 2-dimensional integral surface S of D α in M 0 α such that for each P ∈ S, (p 1 , p 2 , p 3 ) = (π 1 (P ), π 2 (P ), π 3 (P )) is a 3-periodic orbit of B (this is an easy consequence of the arguments detailed in the proof of Proposition 3.64). Denote by Ŝ the analytic closure of S in M α . In this subsection we want to prove that dim Ŝ ≤ 4.

To achive this result on dimension, we rst construct two analytic subsets M α,2 and M α,3 of α × L 2 containing S. Consider an element P = (p 1 , L 1 , p 2 , L 2 , T 2 , p 3 , L 3 , T 3 ) ∈ M 0 α . By the implicit function theorem, we can dene an analytic map j (p 2 ,L 2 ,T 2 ) on a neighborhood of p 3 in a := π(α), with values in CP 2 , as follows: if q 1 ∈ a, the line 1 obtained from q 1 p 2 by the projective law of reection at p 1 , and the line 2 such that the quadruple of lines (q 1 p 2 , 2 , L 2 , T 2 ) is harmonic, intersect at a point q 3 , and we set j (p 2 ,L 2 ,T 2 ) (q 1 ) = q 3 . The map j (p 2 ,L 2 ,T 2 ) is analytic and obviously non-constant with j (p 2 ,L 2 ,T 2 ) (p 1 ) = p 3 . Its image is an irreducible germ of analytic curve at p 3 , and we can consider the latter's tangent line at p 3 denoted by T p 1 j (p 2 ,L 2 ,T 2 ) .

Let M α,3 ⊂ M α be the analytic closure of the set P ∈ M 0 α T 3 = T p 1 j (p 2 ,L 2 ,T 2 ) . We can analogously dene M α,2 ⊂ M α by exchanging the roles of p 3 and p 2 .

Proposition 3.65. The analytic closure Ŝ of S is contained in M α,2 ∩ M α,3 .

Proof. We only have to show that S is contained in M α,2 ∩ M α,3 . If P ∈ S, the image of a neighborhood of p 1 by j (p 2 ,L 2 ,T 2 ) is contained in a 3 = π(α 3 ) by 3-reectivity of the local projective billiard B. Hence T p 1 j (p 2 ,L 2 ,T 2 ) coincide with the tangent line T p 3 a 3 = T 3 , and therefore P ∈ M α,3 . The same argument applied to M α,2 implies the result.

We can now prove that dim Ŝ ≤ 4. Consider the set F of triples (p 1 , p 2 , p 3 ) ∈ a × CP 2 × CP 2 such that the points p 1 and p 2 are contained in a line which is reected into a line containing p 3 by the projective reection law at p 1 on α. F is an analytic set of dimension 4, as one can easily see. Now the map s : α × L 2 → a × CP 2 × CP 2 which associates to P the triple p = (p 1 , p 2 , p 3 ) is such that s(S) ⊂ F , hence s( Ŝ) is an analytic subset of F . Proposition 3.66. The map s : Ŝ → F has generically nite bers, in the following sense:

there exists an open dense subset U ⊂ s( Ŝ) (a complement to a proper analytic subset) such that s -1 (p) is nite for every p ∈ U . In particular dim Ŝ ≤ 4.

Proof.

Consider the open dense subset U ⊂ F of triples (p 1 , p 2 , p 3 ) in F for which p 1 , p 2 , p 3 are not on the same line and the points p 2 , p 3 are not contained in the line T p 1 a nor the projective line L 1 (p 1 ) of α at p 1 .

Consider p = (p 1 , p 2 , p 3 ) ∈ U and suppose that the ber s -1 (p) is not nite. By construction, s -1 (p) is an analytic subset contained in {(p 1 , L 1 (p 1 ))}×{p 2 }×P(T p 2 CP 2 ) 2 ×{p 3 }×P(T p 3 CP 2 ) 2 , hence it is algebraic by Chow's theorem (see [START_REF] Ph | Principles of algebraic geometry[END_REF]). Since s -1 is not nite, at least one of the projection from s -1 (p) to L 2 , T 2 , L 3 or T 3 is innite. Without loss of generality we suppose that the projection to T 2 is innite: the image of such projection is an innite analytic subset in P(T p 2 CP 2 ) CP 1 , hence is the whole CP 1 by Chow's theorem. Therefore we can consider an element P = (p 1 , L 1 , p 2 , L 2 , T 2 , p 3 , L 3 , T 3 ) ∈ s -1 (p) for which T 2 is dierent from the lines p 1 p 2 and p 2 p 3 with usual identication. By the same argument, we can consider another element P ∈ s -1 (p) of the form P = (p 1 , L 1 , p 2 , L 2 , L 2 , p 3 , L 3 , T 3 ), that is the projection on T 2 of P gives previous L 2 . Since P and P are in M α , the quadruple of lines (p 1 p 2 , p 2 p 3 , L 2 , T 2 ) and (p 1 p 2 , p 2 p 3 , L 2 , L 2 ) are harmonic, hence

. Applying the same argument to P we get T 3 = T p 1 j (p 2 ,T 2 ,L 2 ) . Now, permuting L 2 and T 2 doesn't change the projective reection law at p 2 , and j (p 2 ,L 2 ,T 2 ) = j (p 2 ,T 2 ,L 2 ) , therefore T 3 = T 3 . The harmonicity conditions at p 3 implies that L 3 = L 3 . Thus we just proved that P = (p 1 , L 1 , p 2 , L 2 , T 2 , p 3 , L 3 , T 3 ) and P = (p 1 , L 1 , p 2 , T 2 , L 2 , p 3 , L 3 , T 3 ). But if we consider now that P, P ∈ M α,2 , by the same arguments we get that T 2 = T p 1 j (p 1 ,L 3 ,T 3 ) = L 2 . This contradicts the harmonicity condition of the quadruple of lines (p 1 p 2 , p 1 p 3 , L 2 , T 2 ). Hence s -1 (p) is nite.

Given a point p 1 ∈ a = π(α 1 ), we denote by Ŝp 1 the set π 1 -1 (p 1 ) ∩ Ŝ. It is algebraic by Chow's theorem.

Lemma 3.67. Suppose dim Ŝ ≥ 3. Then for all p 1 lying outside a discrete subset of a we have

Proof. For j = 2, 3 and any p 1 ∈ a, the set π j ( Ŝp 1 ) ⊂ CP 2 is algebraic by Chow's theorem and contains the classical boundary a j = π(α j ), hence it has dimension at least 1. Now since the map π 1 : Ŝ → a is surjective, for p 1 lying outside a discrete subset a * of a the algebraic set Ŝp 1 has dimension at least 2. And exactly as in the proof of Proposition 3.66, the restriction of s to Ŝp 1 has generically nite bers. Hence if p 1 / ∈ a * we have dim s( Ŝp 1 ) ≥ 2. Suppose that π 2 ( Ŝp 1 ) has dimension 1. Hence for all points p 2 in an open and dense subset of π 2 ( Ŝp 1 ), the ber over p 2 of the projection s( Ŝp 1 ) → π 2 ( Ŝp 1 ) sending (p 1 , p 2 , p 3 ) to p 2 has dimension 1. By denition of F , this ber over a xed point p 2 is contained in the set of triples (p 1 , p 2 , p 3 ) for which p 3 is in a line determined by p 1 and p 2 : is obtained from the line p 1 p 2 by the projective law of reection on α at p 1 . Hence the ber over p 2 contains all triples (p 1 , p 2 , p 3 ) where p 3 ∈ . Therefore π 3 ( Ŝp 1 ) contains all lines obtained by the projective law of reection from a line p 1 p 2 where p 2 ∈ π 2 ( Ŝp 1 ).

If a 2 is not contained in a line, there are innitely many such lines and we get π 3 ( Ŝp 1 ) = CP 2 . If a 2 is contained in a line, we get the same result by choosing p 1 outside this line.

Integrability of Birkho's distribution on

Ŝ

In this subsection, we suppose that we are given a complex local projective billiard B = (α 1 , α 2 , α 3 ) with classical boundaries a 1 , a 2 , a 3 , which is 3-reective. We consider the restriction to Ŝ of Birkho's distribution attached to α 1 , denoted by D Ŝ . We rst compute the dimension of D Ŝ and then we show that it is integrable. Proposition 3.68. The singular analytic distribution D Ŝ is 2-dimensional.

Proof. We rst have dim D Ŝ ≥ dim S = 2 since T P S ⊂ D Ŝ (P ) for P ∈ S. By Proposition 3.66, 2 ≤ dim Ŝ ≤ 4 and so is dim D Ŝ . We consider two cases: dim Ŝ = 3 and dim Ŝ = 4. In both cases, we consider a regular point P = (p 1 , L 1 , p 2 , L 2 , T 2 , p 3 , L 3 , T 3 ) of Ŝ such that dim D Ŝ (P ) is minimal. We can further suppose that P ∈ M 0 α since Ŝ ∩ M 0 α is an open dense subset of Ŝ.

Case when dim Ŝ = 3. We have to nd one vector u ∈ T P Ŝ which is not in D Ŝ (P ). By Lemma 3.67 we can suppose that p 1 satises without loss generality π 2 ( Ŝp 1 ) = CP 2 . Hence there is a path u(t) ∈ Ŝ such that u(0) = P and π 2 • u(t) is contained in the the line p 1 p 2 with non-zero derivative at 0. The vector u (0) of T P Ŝ is such that dπ 2 • u (0) is a non-zero vector directed along the line p 1 p 2 . Hence

Case when dim Ŝ = 4. Let us nd two linearly independent vectors u, v ∈ T P Ŝ such that D Ŝ (P ) and the plane spanned by (u, v) intersect by {0}. We can suppose that p 1 is such that Ŝp 1 = 3, and as in the proof of Proposition 3.66 that s( Ŝp

be a path such that u(0) = P , π 2 • u(t) belongs to the line p 1 p 2 with non-zero derivative at 0 and π 3 • u(t) is contant equal to p 3 . Now exchange the role of p 2 and p 3 and dene similarly a path v(t) such that v(0) = P , π 3 • v(t) ∈ p 1 p 3 with non-zero derivative at 0 and

Then u (0) and v (0) are linearly independant since

Similarly µ = 0 and this concludes the proof.

As a consequence of Proposition 3.68 and Lemma 3.62, we can state the following Corollary 3.69. The singular analytic distribution D Ŝ is integrable.

Proof of Theorem 3.51 for analytic planar billiards

In this section, we prove the following result:

Proposition 3.70. Let B be a complex local projective billiard of C 2 . If B is 3-reective, then its classical boundaries are contained in lines.

We deduce a proof of Theorem 3.51 in the case of complex local projective billiards from this result and from Proposition 3.56:

Theorem 3.71 (Complex version of Theorem 3.51 case 1.). Let B be a complex local projective billiard of C 2 or an analytic local projective billiard of R 2 . If B is 3-reective, then it is rightspherical.

Proof. By complexication, we can suppose that B is a complex local projective billiard of C 2 which is 3-reective. By Proposition 3.70 the classical boundaries of B are contained in lines. This implies that B is right-spherical by Proposition 3.56.

The idea of the proof is as follows: let B = (α 1 , α 2 , α 3 ) be a complex local projective billiard with classical boundaries denoted by a 1 , a 2 , a 3 and suppose that B is 3-reective. If one of the classical boundaries, say a 1 , is not contained in a line, then we consider the complex local projective billiards attached to α 1 (as dened at the beginning of Section 3.3.3). We show that the existence of B implies the existence of a complex local projective billiard attached to α 1 having what we call a one-parameter family of at orbits dened below (Denition 3.72). We nally show that if such a billiard has this property, then a 1 is contained in a line.

Denition 3.72. Let B = (α 1 , α 2 , α 3 ) be a complex local projective billiard with classical boundaries a 1 , a 2 , a 3 .

-We say that B has a one-parameter family of at orbits if there is a an open subset V ⊂ a 1 such for all points p 1 ∈ V , the tangent line T p 1 a 1 intersects a 2 at a point p 2 and a 3 at a point p 3 depending continuously on p 1 , and verifying the following property: there is a sequence of 3-periodic orbits of B of the form (p 1 , q n 2 , q n

3 ) converging to (p 1 , p 2 , p 3 ) and belonging to the 3-reective set of B.

-Any triple (p 1 , p 2 , p 3 ) as above is called an α 1 -at orbit of B.

Note that the property of having a one-parameter family of at orbits can be found on rightspherical billiards. They are the only such analytic billiards as Theorem 3.51 shows.

Existence of a particular 3-reective local projective billiard

Let B = (α 1 , α 2 , α 3 ) be a complex local projective billiard with classical boundaries a 1 , a 2 , a 3 . Suppose that B is 3-reective and that a 1 is not contained in a line.

In what follows, we use the following denition: given two curves γ, γ ⊂ CP 2 and point p ∈ γ, p, p ∈ γ , we say that the germs (γ, p) and (γ , p ) coincide if p = p and there is an open subset

with classical boundaries a 1 , a 2 , a 3 , and points q 1 ∈ a 1 , q 2 ∈ a 2 , such that one of the following cases holds: 1) The germs of curves (a 1 , q 1 ) and (a 2 , q 2 ) coincide; 2) q 1 = q 2 and T q 1 a 1 intersects a 2 transversally at q 2 (see Figure 3.11).

Figure 3.11: The local projective billiard in the second case of Proposition 3.73:

Proof. Let S be the 2-dimensional integral surface S of D α 1 in M 0 α 1 such that for each P ∈ S, (p 1 , p 2 , p 3 ) = (π 1 (P ), π 2 (P ), π 3 (P )) is a 3-periodic orbit of B, and denote by Ŝ the analytic closure of S in M α . By Corollary 3.69, the restriction

Consider the subset Ŝ0 ⊂ Ŝ consisting of points P of Ŝ ∩ M 0 α outside the singular set of D Ŝ for which the restrictions of dproj j (P ) and dπ j (P ) is of rank 1: Ŝ0 is an Zariski-open dense subset of Ŝ since these conditions are given by anlytically open relations which are satised on S.

Proof. Let B = (α 1 , α 2 , α 3 ) be the local projective billiard from Proposition 3.73, with classical boundaries a 1 , a 2 , a 3 . Let q 1 , q 2 be the points from Proposition 3.73.

We rst dene a meromorphic map from a 1 ×a 2 to CP 2 as follows: let (p 1 , p 2 ) ∈ a 1 ×a 2 such that p 1 = p 2 and consider the point p 3 ∈ CP 2 of intersection of the lines 1 and 2 , where 1 is the line reected from p 1 p 2 by the projective law of reection on α 1 at p 1 , and 2 is the line reected from p 1 p 2 by the projective law of reection on α 2 at p 2 . The map p 3 : (p 1 , p 2 ) → p 3 (p 1 , p 2 ) ∈ CP 2 is a meromorphic map, hence is well-dened and analytic outsie a discret subset of a 1 × a 2 (an analytic subset of codimension 2). Hence by eventually moving q 1 a little, one can suppose that the map p 3 is analytic at (q 1 , q 2 ) and we write q 3 = p 3 (q 1 , q 2 ).

Moreover, the map p 3 (p 1 , p 2 ) has rank one on an open subset of a 1 × a 2 since B is 3-reective, hence it is of rank one on an open dense subset of a 1 × a 2 and sends a small neighborhood of (q 1 , q 2 ) into an analytic curve b 3 of CP 2 intersecting T q 1 a 1 at q 3 . Hence for (p 1 , p 2 ) in a neighborhood of (q 1 , q 2 ), we can dene the line L 3 (p 3 ) containing p 3 and such that the quadruple of lines (p 1 p 3 , p 2 p 3 , L 3 (p 3 ), T p 3 b 3 ) is harmonic. By the same argument, on an open dense subset the map has rank one and L 3 (p 3 ) = T p 3 b 3 . Again by moving q 1 a little we can suppose that L 3 (q 3 ) = T q 3 b 3 and that if the germs (a 1 , p 1 ) and (b 3 , q 3 ) do not coincide, then p 1 = q 3 , and the same with (a 2 , q 2 ) instead of (a 1 , p 1 ). Hence the image β 3 of the map (p 1 , p 2 ) → (p 3 , L 3 ) is a complex line-framed curve with classical boundary b 3 .

By construction, if we denote by β 2 = α 2 the line-framed curve over b 2 := a 2 , then (α 1 , β 2 , β 3 ) is the desired 3-reective complex local projective billiard.

The 3-reective local projective billiard of Proposition 3.75 cannot exist

Let B = (α 1 , α 2 , α 3 ) be a complex local projective billiard with classical boundaries a 1 , a 2 , a 3 . Suppose that B is 3-reective and that a 1 is not contained in a line. Let B 0 = (α 1 , β 2 , β 3 ) be the 3-reective local projective billiard from Proposition 3.75 with classical boundaries a 1 , b 2 , b 3 . In this subsection we show that the existence of B 0 is impossible (under the already made assumption that a 1 is not a line).

Let (q 1 , q 2 , q 3 ) be the α 1 -at orbit of Proposition 3.75. Denote by L 1 (p 1 ), L 2 (p 2 ), L 3 (p 3 ) the elds of projective lines respectively on a 1 , b 2 , b 3 . Choose an ane chart C 2 ⊂ CP 2 containing the points q 1 , q 2 , q 3 and a coordinate on the line L ∞ = CP 2 C 2 such that az(T q 1 a 1 ) = 0 and ∞ / ∈ {az(T q 2 b 2 ), az(T q 3 b 3 ), az(L 1 (q 1 ))}

where az( ) is the coordinate of the intersection point L∩L ∞ of a line with L ∞ (see Subsection 1.1.1). When considering a 3-periodic orbit of the form (q 1 , p 2 , p 3 ), we will write z = az(q 1 p 2 ), z * = az(p 2 p 3 ), z = az(q 1 p 3 )

and nd asymptotic relations on z, z * , z when (q 1 , p 2 , p 3 ) is close to (q 1 , q 2 , q 3 ) (see Figure 3.13, and section 1.1.1 for further details on azimuths).

Proposition 3.76. When (q 1 , p 2 , p 3 ) is close to (q 1 , q 2 , q 3 ), the following asymptotic equivalence relations are satised:

where I 2 (respectively, I 3 ) is the intersection index of b 2 (respectively b 3 ) with the tangent line T q 1 a 1 at q 2 (respectively q 3 ).

Figure 3.13: The local projective billiard B 0 with an orbit (q 1 , p 2 , p 3 ).

From Proposition 3.76, we deduce that where t = az(T q 1 a 1 ), = az(L 1 (q 1 )). In the chosen set of coordinates we have, when

Proposition 3.78. If q 1 = q 2 then when p 2 ∈ b 2 goes to q 2 , we have

where I 2 ≥ 2 is the index of intersection of a with the tangent line T q 1 a 1 at A 1 .

Proof. In the case when q 2 = q 1 , the germs (b 2 , q 2 ) and (a 1 , q 1 ) coincide as prescribed in Proposition 3.75. Take a 3-periodic orbit of the form (q 1 , p 2 , p 3 ) close to (q 1 , q 2 , q 3 ). Write t = az(T p 2 b 2 ), = az(L 2 (p 2 )). Equation (1.1) in Section 1.1.1 implies that

Now, when p 2 → q 2 , since a 1 and b 2 coincide in a neighborhood of q 2 , we can compute that t ∼ Iz. Thus

Lemma 3.79. If q 2 = q 3 , then the germs (a 1 , q 1 ), (b 2 , q 2 ) and (b 3 , q 3 ) coincide.

Proof. Suppose that the three germs do not coincide and that q 2 = q 3 : as prescribed in Proposition 3.75 we should have (b 3 , q 3 ) = (b 2 , q 2 ) but q 1 = q 2 with T p 1 a 1 intersecting b 2 transversally at q 2 by Proposition 3.75. Consider a 3-periodic orbit of the form (q 1 , p 2 , p 3 ) close to (q 1 , q 2 , q 3 ).

Then write t = az(T p 2 b 2 ) and = az(L 2 (p 2 )). Remark 1.6 and Equation (1.1) in Section 1.1.1 imply that

Now, when p 2 → q 2 , we have z → 0 and t → t 0 where t 0 := az(T q 2 b 2 ) / ∈ {0, ∞} by transversality of b 2 with T q 1 a 1 at q 2 and by choice of coordinates. But we also have z * → t 0 because p 2 p 3 → T q 2 b 2 since p 2 ,p 3 are distinct points of the same irreducible germ of curve b 2 = b 3 converging to the same point q 2 = q 3 . Hence, when

But this is not the case by Proposition 3.75, contradiction.

Proposition 3.80. Suppose that q 2 = q 1 . Then when p 2 ∈ b 2 goes to q 2 , we have

which allows to extend the formula of Proposition 3.78 by setting I 2 = 1 in this case (transverse intersection).

Proof. First, let us prove the following lemma, which gives the form of the projective eld of lines locally around q 2 : Lemma 3.81. Suppose that q 2 = q 1 . Then when p 2 ∈ b 2 is close to q 2 , there is a p 1 ∈ a 1 close to q 1 for which L 2 (p 2 ) is tangent to a 1 at p 1 .

Proof. Proposition 3.75 implies that T q 1 a 1 intersects b 2 transversally at q 2 . By the implicit function theorem, there is an analytic map which associates to any p 1 close to q 1 a point p 2 ∈ b 2 close to q 2 which is contained in T p 1 a 1 . Since a 1 is not a line, this map is not constant, hence is open and thus parametrizes (maybe non-bijectively) the germ of b 2 at q 2 . We choose p 1 in the neighborhood of q 1 , and denote by p 2 the corresponding point on b 2 obtained via the above parametrization.

We can suppose that that T p 1 a 1 is transverse to b 2 at p 2 and that p 2 / ∈ b 3 (possible by Lemma 3.79). Consider a 3-periodic orbit of the form (p 1 , p 2 , p 3 ) such that p 2 converges to p 2 . The line p 1 p 2 converges to T p 1 a 1 and by the projective reection law at p 1 we get that the line p 1 p 3 also converges to T p 1 a 1 , hence the limit p 3 of p 3 lies on T p 1 a 1 . We also have that p 3 = p 1 (Lemma 3.79). Hence p 2 p 3 = T p 1 a = p 1 p 2 : T p 1 a 1 is invariant by the projective reection law of β 2 at p 2 . Since the latter tangent line is transverse to b 2 , we have T p 1 a 1 = L 2 (p 2 ), and this concludes the proof.

We now conclude the proof of Proposition 3.80. As in Lemma 3.81, when p 2 ∈ b 2 is close to q 1 , L 2 (q 2 ) is tangent to a 1 at a point p 1 close to q 1 . Write t = az(T p 2 b 2 ), = az(L 2 (p 2 )). We have, by Equation (1.1) in Section 1.1.1,

Now in this conguration, we easily compute using Lemma 3.81 that, when p 2 → q 2 , ∼ z.

Here besides Lemma 3.79, we essentially use the inequality q 2 = q 1 . This allows to use the following argument. As p 2 tends to q 2 , the lines L 2 (p 2 ) and L 2 (q 2 ) = T q 1 a 1 intersect at a point converging to q 1 , while p 2 remains distant from q 1 . This implies the required asymptotic equivalence of azimuths.

But we have also t → t 0 where t 0 = az(T q 2 b 2 ) / ∈ {0, ∞} (by the transversality condition of the intersection with T q 1 a 1 ). Hence, Equation (3.5) implies, when p 2 → q 2 , that

Proof of Proposition 3.76. The rst asymptotic equivalence, z ∼ -z , comes from Proposition 3.77. The second one comes from Proposition 3.78, when I 2 ≥ 2, and from Proposition 3.80, when I 2 = 1. Finally the third one can be deduced from the second one by interchanging the germ of curves (b 2 , q 2 ) and (b 3 , q 3 ).

Proof of Proposition 3.70

We nally prove Proposition 3.70 which will complete the proof of Theorem 3.71.

Let B = (α 1 , α 2 , α 3 ) be a complex local projective billiard with classical boundaries a 1 , a 2 , a 3 . Suppose that B is 3-reective and that one curve among {a 1 , a 2 , a 3 }, say for example a 1 , is not contained in a line. Let B 0 = (α 1 , β 2 , β 3 ) be the 3-reective local projective billiard from Proposition 3.75.

Using the same notations as in Proposition 3.76, we deduce that 2I 3 -1 = -(2I 2 -1) which is impossible since 2I 2 -1 and 2I 3 -1 are strictly positive integers. Hence B 0 cannot exist, contradiction: a 1 is contained in a line. By symmetry of previous argument, a 1 , a 2 , an a 3 are contained in lines, which proves Proposition 3.70.

Proof of Theorem 3.51: planar case

In this section we give a proof of Theorem 3.51 in the case of planar projective billiards, that is case 1). Let (α 1 , α 2 , α 3 ) be a C ∞ -smooth local projective billiard of R 2 which is 3-reective.

Let a 1 , a 2 , a 3 be its classical boundaries.

Let p = (p 1 , p 2 , p 3 ) be in its 3-reective set. By Theorem 3.49, one can nd an analytic 3reective local projective billiard B a with classical boundaries b 1 , b 2 , b 3 and a 3-periodic orbit q of B a such that for each j, the germs of curves (b j , q j ) and (a j , p j ) are arbitrary close in the Withney C r -topology (see Denition 3.72), for a xed integer r > 0. By Theorem 3.71, the germs (b j , q j ) are germs of lines.

Since this is also true for points close to in R d which is 3-pseudo-reective. Theorem 3.48 implies the existence of an analytic local projective billiard which is 3-reective. By complexication, this contradicts Theorem 3.82.

We rst prove this auxiliary lemma: Lemma 3.83. Let W ⊂ C d be a complex hypersurface, p ∈ W and U a non-empty open subset of P(T p W ). Suppose that for any v ∈ T p W with π(v) ∈ U , the hypersurface W contains the points p + tv for all t ∈ C in a neighborhood of 0 depending on v. Then W is a hyperplane.

Proof. We can suppose that p = 0, T p W = z d = 0 and W is locally the graph of an analytic

is an open subset containing 0. Let v ∈ C d-1 be a non-zero vector such that P(v) ∈ U . By assumption, for t close to 0 we have g v (t) := f (tv) = 0. Since g v is analytic, it is 0 everywhere where it is dened. Yet the set {tv|t ∈ R, P(v) ∈ U } contains a non-empty open subset of V , on which f should vanish. By analyticity f = 0 and W is the hyperplane dened by the equation z d = 0.

Proof of Theorem 3.82. Suppose that we can nd a 3-reective complex local projective billiard Now consider for each j = 1, 2, 3 the curve α j (p 2 ) = π -1 (a j (p 2 )) ∩ α j . Let us show that B(p 2 ) = (α 1 (p 2 ), α 2 (p 2 ), α 3 (p 2 )) is a planar 3-reective projective billiard. Consider the open subsets U = U ∩a 1 (p 2 ) of a 1 (p 2 ) and V = V ∩a 2 (p 2 ) of a 2 (p 2 ). Any q 2 ∈ V is such that (p 1 , q 2 ) can be completed in a 3-periodic orbit (p 1 , q 2 , q 3 ) of B and by Lemma 3.84, p 1 q 2 q 3 is a plane